diff --git "a/32414/metadata.json" "b/32414/metadata.json" new file mode 100644--- /dev/null +++ "b/32414/metadata.json" @@ -0,0 +1,30082 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "32414", + "quality_score": 0.8849, + "per_segment_quality_scores": [ + { + "start": 99.16, + "end": 100.15, + "probability": 0.9961 + }, + { + "start": 100.76, + "end": 105.7, + "probability": 0.7688 + }, + { + "start": 105.84, + "end": 107.98, + "probability": 0.787 + }, + { + "start": 109.54, + "end": 111.14, + "probability": 0.9732 + }, + { + "start": 111.88, + "end": 112.66, + "probability": 0.7763 + }, + { + "start": 113.4, + "end": 114.52, + "probability": 0.5241 + }, + { + "start": 116.04, + "end": 119.58, + "probability": 0.9019 + }, + { + "start": 119.72, + "end": 121.64, + "probability": 0.8201 + }, + { + "start": 122.7, + "end": 123.22, + "probability": 0.1635 + }, + { + "start": 124.14, + "end": 124.46, + "probability": 0.1214 + }, + { + "start": 125.54, + "end": 126.18, + "probability": 0.6893 + }, + { + "start": 126.42, + "end": 128.14, + "probability": 0.6998 + }, + { + "start": 128.2, + "end": 130.5, + "probability": 0.9695 + }, + { + "start": 130.76, + "end": 134.0, + "probability": 0.8845 + }, + { + "start": 134.42, + "end": 135.12, + "probability": 0.8796 + }, + { + "start": 139.9, + "end": 141.0, + "probability": 0.6864 + }, + { + "start": 141.96, + "end": 144.9, + "probability": 0.8743 + }, + { + "start": 145.52, + "end": 150.78, + "probability": 0.9221 + }, + { + "start": 150.78, + "end": 157.58, + "probability": 0.9893 + }, + { + "start": 157.62, + "end": 161.58, + "probability": 0.7664 + }, + { + "start": 162.16, + "end": 164.72, + "probability": 0.8008 + }, + { + "start": 164.72, + "end": 168.08, + "probability": 0.9885 + }, + { + "start": 168.68, + "end": 169.84, + "probability": 0.5847 + }, + { + "start": 170.4, + "end": 173.3, + "probability": 0.3623 + }, + { + "start": 173.56, + "end": 175.9, + "probability": 0.6096 + }, + { + "start": 176.24, + "end": 178.14, + "probability": 0.7797 + }, + { + "start": 178.68, + "end": 182.8, + "probability": 0.9946 + }, + { + "start": 182.88, + "end": 183.84, + "probability": 0.5032 + }, + { + "start": 184.58, + "end": 188.14, + "probability": 0.9886 + }, + { + "start": 188.14, + "end": 193.04, + "probability": 0.9418 + }, + { + "start": 193.22, + "end": 195.78, + "probability": 0.9893 + }, + { + "start": 196.4, + "end": 197.82, + "probability": 0.79 + }, + { + "start": 197.98, + "end": 199.84, + "probability": 0.993 + }, + { + "start": 200.98, + "end": 201.56, + "probability": 0.8962 + }, + { + "start": 201.64, + "end": 205.37, + "probability": 0.8523 + }, + { + "start": 205.76, + "end": 208.9, + "probability": 0.9225 + }, + { + "start": 209.4, + "end": 213.54, + "probability": 0.8781 + }, + { + "start": 213.56, + "end": 218.64, + "probability": 0.7244 + }, + { + "start": 218.64, + "end": 221.86, + "probability": 0.9881 + }, + { + "start": 221.86, + "end": 227.46, + "probability": 0.7909 + }, + { + "start": 228.78, + "end": 229.44, + "probability": 0.5284 + }, + { + "start": 229.5, + "end": 232.9, + "probability": 0.9696 + }, + { + "start": 233.35, + "end": 236.78, + "probability": 0.724 + }, + { + "start": 237.26, + "end": 241.48, + "probability": 0.9972 + }, + { + "start": 242.08, + "end": 245.76, + "probability": 0.8417 + }, + { + "start": 245.76, + "end": 248.3, + "probability": 0.9364 + }, + { + "start": 248.46, + "end": 249.72, + "probability": 0.6082 + }, + { + "start": 251.52, + "end": 254.18, + "probability": 0.9528 + }, + { + "start": 254.64, + "end": 258.2, + "probability": 0.8859 + }, + { + "start": 258.64, + "end": 262.58, + "probability": 0.9785 + }, + { + "start": 263.6, + "end": 265.26, + "probability": 0.3871 + }, + { + "start": 265.74, + "end": 265.98, + "probability": 0.2819 + }, + { + "start": 267.2, + "end": 271.96, + "probability": 0.667 + }, + { + "start": 272.78, + "end": 273.46, + "probability": 0.7944 + }, + { + "start": 273.56, + "end": 274.76, + "probability": 0.7808 + }, + { + "start": 274.8, + "end": 281.36, + "probability": 0.9619 + }, + { + "start": 281.44, + "end": 281.92, + "probability": 0.8187 + }, + { + "start": 281.98, + "end": 283.28, + "probability": 0.8368 + }, + { + "start": 284.02, + "end": 286.3, + "probability": 0.9847 + }, + { + "start": 286.36, + "end": 287.8, + "probability": 0.2304 + }, + { + "start": 287.86, + "end": 288.8, + "probability": 0.8761 + }, + { + "start": 288.88, + "end": 292.84, + "probability": 0.9032 + }, + { + "start": 292.88, + "end": 296.45, + "probability": 0.9966 + }, + { + "start": 298.38, + "end": 300.12, + "probability": 0.1076 + }, + { + "start": 300.12, + "end": 305.78, + "probability": 0.6223 + }, + { + "start": 306.08, + "end": 308.28, + "probability": 0.8683 + }, + { + "start": 308.78, + "end": 316.2, + "probability": 0.9625 + }, + { + "start": 318.64, + "end": 325.08, + "probability": 0.9938 + }, + { + "start": 325.5, + "end": 325.8, + "probability": 0.7967 + }, + { + "start": 326.06, + "end": 327.66, + "probability": 0.8914 + }, + { + "start": 327.7, + "end": 328.82, + "probability": 0.6389 + }, + { + "start": 329.86, + "end": 331.22, + "probability": 0.7397 + }, + { + "start": 331.8, + "end": 332.42, + "probability": 0.4888 + }, + { + "start": 333.18, + "end": 334.44, + "probability": 0.0659 + }, + { + "start": 334.9, + "end": 336.11, + "probability": 0.9637 + }, + { + "start": 337.8, + "end": 340.54, + "probability": 0.8206 + }, + { + "start": 340.62, + "end": 341.12, + "probability": 0.8624 + }, + { + "start": 341.22, + "end": 345.24, + "probability": 0.8964 + }, + { + "start": 345.42, + "end": 346.62, + "probability": 0.7452 + }, + { + "start": 347.18, + "end": 351.26, + "probability": 0.8857 + }, + { + "start": 351.32, + "end": 352.64, + "probability": 0.6252 + }, + { + "start": 352.72, + "end": 354.88, + "probability": 0.9188 + }, + { + "start": 355.5, + "end": 358.74, + "probability": 0.7493 + }, + { + "start": 358.74, + "end": 361.82, + "probability": 0.9832 + }, + { + "start": 362.06, + "end": 366.2, + "probability": 0.9958 + }, + { + "start": 367.18, + "end": 371.98, + "probability": 0.9224 + }, + { + "start": 372.58, + "end": 375.23, + "probability": 0.9989 + }, + { + "start": 375.32, + "end": 378.44, + "probability": 0.8827 + }, + { + "start": 379.06, + "end": 381.4, + "probability": 0.5954 + }, + { + "start": 382.32, + "end": 386.1, + "probability": 0.8706 + }, + { + "start": 386.84, + "end": 388.56, + "probability": 0.8871 + }, + { + "start": 388.56, + "end": 391.58, + "probability": 0.9278 + }, + { + "start": 391.98, + "end": 393.54, + "probability": 0.8502 + }, + { + "start": 393.96, + "end": 397.02, + "probability": 0.7975 + }, + { + "start": 397.02, + "end": 400.92, + "probability": 0.9823 + }, + { + "start": 401.64, + "end": 402.28, + "probability": 0.962 + }, + { + "start": 402.64, + "end": 405.16, + "probability": 0.9906 + }, + { + "start": 405.74, + "end": 406.76, + "probability": 0.7213 + }, + { + "start": 406.92, + "end": 410.5, + "probability": 0.9586 + }, + { + "start": 410.5, + "end": 413.82, + "probability": 0.9905 + }, + { + "start": 414.6, + "end": 418.02, + "probability": 0.9707 + }, + { + "start": 418.02, + "end": 426.04, + "probability": 0.998 + }, + { + "start": 426.14, + "end": 430.32, + "probability": 0.7713 + }, + { + "start": 430.42, + "end": 434.22, + "probability": 0.9554 + }, + { + "start": 435.84, + "end": 437.88, + "probability": 0.7859 + }, + { + "start": 438.02, + "end": 441.32, + "probability": 0.9937 + }, + { + "start": 450.34, + "end": 452.32, + "probability": 0.5754 + }, + { + "start": 453.52, + "end": 457.74, + "probability": 0.9946 + }, + { + "start": 457.88, + "end": 460.88, + "probability": 0.9738 + }, + { + "start": 461.5, + "end": 466.18, + "probability": 0.9117 + }, + { + "start": 466.3, + "end": 469.32, + "probability": 0.9371 + }, + { + "start": 470.5, + "end": 472.16, + "probability": 0.9351 + }, + { + "start": 472.26, + "end": 476.68, + "probability": 0.9653 + }, + { + "start": 477.14, + "end": 478.28, + "probability": 0.922 + }, + { + "start": 478.46, + "end": 481.16, + "probability": 0.9434 + }, + { + "start": 481.34, + "end": 483.64, + "probability": 0.9987 + }, + { + "start": 485.62, + "end": 486.88, + "probability": 0.994 + }, + { + "start": 487.0, + "end": 487.9, + "probability": 0.7449 + }, + { + "start": 488.14, + "end": 489.62, + "probability": 0.9963 + }, + { + "start": 490.04, + "end": 493.52, + "probability": 0.9803 + }, + { + "start": 494.56, + "end": 498.0, + "probability": 0.8443 + }, + { + "start": 498.1, + "end": 499.68, + "probability": 0.4568 + }, + { + "start": 499.7, + "end": 500.0, + "probability": 0.6176 + }, + { + "start": 500.6, + "end": 502.58, + "probability": 0.9245 + }, + { + "start": 504.32, + "end": 507.46, + "probability": 0.9713 + }, + { + "start": 507.72, + "end": 509.4, + "probability": 0.9888 + }, + { + "start": 510.22, + "end": 517.24, + "probability": 0.9485 + }, + { + "start": 518.74, + "end": 521.4, + "probability": 0.4136 + }, + { + "start": 534.32, + "end": 535.32, + "probability": 0.7406 + }, + { + "start": 535.48, + "end": 536.08, + "probability": 0.8772 + }, + { + "start": 536.2, + "end": 537.54, + "probability": 0.8724 + }, + { + "start": 539.24, + "end": 541.08, + "probability": 0.3326 + }, + { + "start": 541.32, + "end": 542.4, + "probability": 0.3823 + }, + { + "start": 544.02, + "end": 546.56, + "probability": 0.7996 + }, + { + "start": 546.56, + "end": 549.32, + "probability": 0.9628 + }, + { + "start": 549.88, + "end": 553.66, + "probability": 0.9601 + }, + { + "start": 554.06, + "end": 556.14, + "probability": 0.9754 + }, + { + "start": 556.64, + "end": 557.06, + "probability": 0.4152 + }, + { + "start": 557.2, + "end": 558.2, + "probability": 0.9277 + }, + { + "start": 565.2, + "end": 566.98, + "probability": 0.5001 + }, + { + "start": 567.56, + "end": 573.36, + "probability": 0.9229 + }, + { + "start": 574.46, + "end": 576.48, + "probability": 0.9973 + }, + { + "start": 576.58, + "end": 578.86, + "probability": 0.9987 + }, + { + "start": 579.04, + "end": 581.42, + "probability": 0.7401 + }, + { + "start": 582.22, + "end": 585.64, + "probability": 0.9937 + }, + { + "start": 585.9, + "end": 586.52, + "probability": 0.4892 + }, + { + "start": 586.62, + "end": 588.0, + "probability": 0.9891 + }, + { + "start": 588.98, + "end": 590.64, + "probability": 0.8669 + }, + { + "start": 590.76, + "end": 592.48, + "probability": 0.9686 + }, + { + "start": 592.82, + "end": 593.22, + "probability": 0.6647 + }, + { + "start": 594.32, + "end": 597.28, + "probability": 0.841 + }, + { + "start": 597.44, + "end": 600.84, + "probability": 0.9894 + }, + { + "start": 600.84, + "end": 603.38, + "probability": 0.9816 + }, + { + "start": 604.6, + "end": 610.22, + "probability": 0.9856 + }, + { + "start": 611.32, + "end": 612.76, + "probability": 0.9385 + }, + { + "start": 612.92, + "end": 616.0, + "probability": 0.7153 + }, + { + "start": 616.46, + "end": 620.44, + "probability": 0.9556 + }, + { + "start": 621.64, + "end": 624.8, + "probability": 0.9745 + }, + { + "start": 625.36, + "end": 626.98, + "probability": 0.8816 + }, + { + "start": 628.34, + "end": 633.5, + "probability": 0.9235 + }, + { + "start": 636.54, + "end": 637.48, + "probability": 0.8755 + }, + { + "start": 637.66, + "end": 639.72, + "probability": 0.9299 + }, + { + "start": 640.94, + "end": 642.0, + "probability": 0.9585 + }, + { + "start": 642.18, + "end": 642.28, + "probability": 0.2241 + }, + { + "start": 642.84, + "end": 643.54, + "probability": 0.6705 + }, + { + "start": 644.32, + "end": 645.38, + "probability": 0.8213 + }, + { + "start": 645.4, + "end": 647.64, + "probability": 0.9801 + }, + { + "start": 647.7, + "end": 649.79, + "probability": 0.5491 + }, + { + "start": 650.4, + "end": 650.6, + "probability": 0.3738 + }, + { + "start": 650.62, + "end": 651.56, + "probability": 0.7838 + }, + { + "start": 651.56, + "end": 652.55, + "probability": 0.8696 + }, + { + "start": 654.88, + "end": 658.18, + "probability": 0.8906 + }, + { + "start": 658.18, + "end": 661.98, + "probability": 0.6687 + }, + { + "start": 662.6, + "end": 664.2, + "probability": 0.6313 + }, + { + "start": 664.76, + "end": 665.3, + "probability": 0.4046 + }, + { + "start": 665.82, + "end": 668.56, + "probability": 0.8449 + }, + { + "start": 670.48, + "end": 672.6, + "probability": 0.9812 + }, + { + "start": 673.42, + "end": 675.16, + "probability": 0.708 + }, + { + "start": 675.22, + "end": 675.84, + "probability": 0.7227 + }, + { + "start": 675.9, + "end": 676.56, + "probability": 0.9679 + }, + { + "start": 676.76, + "end": 678.3, + "probability": 0.441 + }, + { + "start": 679.18, + "end": 682.62, + "probability": 0.953 + }, + { + "start": 682.66, + "end": 685.66, + "probability": 0.946 + }, + { + "start": 686.7, + "end": 688.3, + "probability": 0.6989 + }, + { + "start": 688.82, + "end": 692.82, + "probability": 0.896 + }, + { + "start": 693.78, + "end": 702.46, + "probability": 0.9847 + }, + { + "start": 703.18, + "end": 704.8, + "probability": 0.991 + }, + { + "start": 706.16, + "end": 708.33, + "probability": 0.7443 + }, + { + "start": 708.76, + "end": 709.32, + "probability": 0.8207 + }, + { + "start": 709.46, + "end": 712.02, + "probability": 0.9988 + }, + { + "start": 712.02, + "end": 715.58, + "probability": 0.8527 + }, + { + "start": 716.36, + "end": 716.5, + "probability": 0.1336 + }, + { + "start": 716.86, + "end": 719.52, + "probability": 0.9912 + }, + { + "start": 719.52, + "end": 722.2, + "probability": 0.9938 + }, + { + "start": 722.62, + "end": 722.72, + "probability": 0.5131 + }, + { + "start": 722.8, + "end": 724.4, + "probability": 0.7444 + }, + { + "start": 724.52, + "end": 725.91, + "probability": 0.755 + }, + { + "start": 728.64, + "end": 729.72, + "probability": 0.7296 + }, + { + "start": 730.78, + "end": 731.78, + "probability": 0.7252 + }, + { + "start": 733.1, + "end": 737.64, + "probability": 0.895 + }, + { + "start": 737.64, + "end": 742.46, + "probability": 0.9937 + }, + { + "start": 743.44, + "end": 746.34, + "probability": 0.8834 + }, + { + "start": 747.34, + "end": 749.7, + "probability": 0.8427 + }, + { + "start": 750.5, + "end": 754.28, + "probability": 0.9811 + }, + { + "start": 756.18, + "end": 761.62, + "probability": 0.9878 + }, + { + "start": 763.94, + "end": 774.7, + "probability": 0.0278 + }, + { + "start": 774.7, + "end": 774.7, + "probability": 0.3218 + }, + { + "start": 774.7, + "end": 776.26, + "probability": 0.4748 + }, + { + "start": 776.28, + "end": 779.32, + "probability": 0.9944 + }, + { + "start": 780.86, + "end": 786.76, + "probability": 0.9913 + }, + { + "start": 786.84, + "end": 788.14, + "probability": 0.643 + }, + { + "start": 788.86, + "end": 789.9, + "probability": 0.7986 + }, + { + "start": 790.18, + "end": 790.76, + "probability": 0.7492 + }, + { + "start": 790.88, + "end": 794.16, + "probability": 0.9845 + }, + { + "start": 794.16, + "end": 798.54, + "probability": 0.9952 + }, + { + "start": 800.64, + "end": 805.24, + "probability": 0.8961 + }, + { + "start": 805.34, + "end": 806.8, + "probability": 0.9522 + }, + { + "start": 809.56, + "end": 813.66, + "probability": 0.9961 + }, + { + "start": 813.7, + "end": 814.26, + "probability": 0.9384 + }, + { + "start": 814.94, + "end": 820.4, + "probability": 0.9895 + }, + { + "start": 821.66, + "end": 825.06, + "probability": 0.7741 + }, + { + "start": 827.38, + "end": 830.24, + "probability": 0.8982 + }, + { + "start": 830.84, + "end": 832.13, + "probability": 0.6962 + }, + { + "start": 833.14, + "end": 833.6, + "probability": 0.5116 + }, + { + "start": 834.26, + "end": 838.62, + "probability": 0.9738 + }, + { + "start": 839.36, + "end": 840.36, + "probability": 0.6987 + }, + { + "start": 842.14, + "end": 845.34, + "probability": 0.7541 + }, + { + "start": 846.18, + "end": 847.0, + "probability": 0.6127 + }, + { + "start": 848.2, + "end": 853.76, + "probability": 0.9889 + }, + { + "start": 854.04, + "end": 854.96, + "probability": 0.9102 + }, + { + "start": 855.54, + "end": 859.08, + "probability": 0.9466 + }, + { + "start": 859.72, + "end": 866.54, + "probability": 0.985 + }, + { + "start": 867.78, + "end": 868.12, + "probability": 0.4564 + }, + { + "start": 868.2, + "end": 871.42, + "probability": 0.9679 + }, + { + "start": 871.76, + "end": 876.92, + "probability": 0.9395 + }, + { + "start": 877.5, + "end": 880.56, + "probability": 0.9907 + }, + { + "start": 880.56, + "end": 882.9, + "probability": 0.979 + }, + { + "start": 884.4, + "end": 887.76, + "probability": 0.6846 + }, + { + "start": 887.86, + "end": 898.08, + "probability": 0.9929 + }, + { + "start": 899.72, + "end": 903.42, + "probability": 0.8093 + }, + { + "start": 903.82, + "end": 904.32, + "probability": 0.8751 + }, + { + "start": 904.38, + "end": 905.94, + "probability": 0.9162 + }, + { + "start": 907.28, + "end": 909.8, + "probability": 0.7417 + }, + { + "start": 909.88, + "end": 912.85, + "probability": 0.8759 + }, + { + "start": 913.44, + "end": 914.1, + "probability": 0.9894 + }, + { + "start": 914.2, + "end": 914.88, + "probability": 0.977 + }, + { + "start": 914.94, + "end": 921.0, + "probability": 0.9639 + }, + { + "start": 922.16, + "end": 923.66, + "probability": 0.6963 + }, + { + "start": 923.76, + "end": 924.98, + "probability": 0.6904 + }, + { + "start": 925.3, + "end": 928.52, + "probability": 0.9785 + }, + { + "start": 929.34, + "end": 931.02, + "probability": 0.9865 + }, + { + "start": 931.64, + "end": 936.78, + "probability": 0.9653 + }, + { + "start": 938.14, + "end": 943.0, + "probability": 0.9885 + }, + { + "start": 943.84, + "end": 950.78, + "probability": 0.7625 + }, + { + "start": 950.78, + "end": 956.12, + "probability": 0.9954 + }, + { + "start": 956.72, + "end": 958.06, + "probability": 0.9139 + }, + { + "start": 958.16, + "end": 960.88, + "probability": 0.9924 + }, + { + "start": 961.32, + "end": 964.16, + "probability": 0.9608 + }, + { + "start": 964.32, + "end": 968.66, + "probability": 0.9829 + }, + { + "start": 968.98, + "end": 973.02, + "probability": 0.9726 + }, + { + "start": 973.61, + "end": 978.84, + "probability": 0.9546 + }, + { + "start": 978.96, + "end": 984.52, + "probability": 0.984 + }, + { + "start": 984.66, + "end": 989.82, + "probability": 0.7979 + }, + { + "start": 990.16, + "end": 993.62, + "probability": 0.9813 + }, + { + "start": 994.42, + "end": 995.2, + "probability": 0.8696 + }, + { + "start": 995.54, + "end": 1000.56, + "probability": 0.9734 + }, + { + "start": 1000.7, + "end": 1002.66, + "probability": 0.7957 + }, + { + "start": 1003.17, + "end": 1008.7, + "probability": 0.9478 + }, + { + "start": 1008.96, + "end": 1012.12, + "probability": 0.9622 + }, + { + "start": 1012.56, + "end": 1016.44, + "probability": 0.9842 + }, + { + "start": 1017.16, + "end": 1021.1, + "probability": 0.7878 + }, + { + "start": 1021.64, + "end": 1026.26, + "probability": 0.9925 + }, + { + "start": 1026.42, + "end": 1027.96, + "probability": 0.9731 + }, + { + "start": 1028.06, + "end": 1028.9, + "probability": 0.8645 + }, + { + "start": 1029.36, + "end": 1037.84, + "probability": 0.9856 + }, + { + "start": 1038.0, + "end": 1041.98, + "probability": 0.9324 + }, + { + "start": 1041.98, + "end": 1045.14, + "probability": 0.8125 + }, + { + "start": 1045.24, + "end": 1045.4, + "probability": 0.617 + }, + { + "start": 1045.48, + "end": 1049.56, + "probability": 0.9841 + }, + { + "start": 1049.88, + "end": 1052.32, + "probability": 0.9799 + }, + { + "start": 1052.72, + "end": 1053.16, + "probability": 0.39 + }, + { + "start": 1053.16, + "end": 1053.42, + "probability": 0.3748 + }, + { + "start": 1053.68, + "end": 1056.36, + "probability": 0.8362 + }, + { + "start": 1059.58, + "end": 1060.4, + "probability": 0.6659 + }, + { + "start": 1061.26, + "end": 1062.16, + "probability": 0.9335 + }, + { + "start": 1062.36, + "end": 1065.6, + "probability": 0.9328 + }, + { + "start": 1065.66, + "end": 1067.16, + "probability": 0.957 + }, + { + "start": 1067.8, + "end": 1068.3, + "probability": 0.5032 + }, + { + "start": 1068.36, + "end": 1070.36, + "probability": 0.9879 + }, + { + "start": 1070.46, + "end": 1072.9, + "probability": 0.9332 + }, + { + "start": 1073.4, + "end": 1079.63, + "probability": 0.9927 + }, + { + "start": 1080.06, + "end": 1082.26, + "probability": 0.9971 + }, + { + "start": 1082.5, + "end": 1089.28, + "probability": 0.9802 + }, + { + "start": 1089.4, + "end": 1090.88, + "probability": 0.9276 + }, + { + "start": 1091.08, + "end": 1093.48, + "probability": 0.8733 + }, + { + "start": 1093.94, + "end": 1099.08, + "probability": 0.9963 + }, + { + "start": 1099.66, + "end": 1100.56, + "probability": 0.7092 + }, + { + "start": 1100.66, + "end": 1108.38, + "probability": 0.9709 + }, + { + "start": 1108.72, + "end": 1110.44, + "probability": 0.9575 + }, + { + "start": 1111.06, + "end": 1112.54, + "probability": 0.814 + }, + { + "start": 1112.64, + "end": 1112.92, + "probability": 0.7149 + }, + { + "start": 1113.44, + "end": 1115.66, + "probability": 0.9251 + }, + { + "start": 1115.78, + "end": 1118.26, + "probability": 0.7577 + }, + { + "start": 1119.02, + "end": 1119.68, + "probability": 0.9443 + }, + { + "start": 1124.44, + "end": 1128.5, + "probability": 0.5542 + }, + { + "start": 1129.52, + "end": 1132.76, + "probability": 0.6623 + }, + { + "start": 1133.47, + "end": 1138.64, + "probability": 0.9806 + }, + { + "start": 1138.7, + "end": 1139.52, + "probability": 0.4758 + }, + { + "start": 1139.96, + "end": 1142.9, + "probability": 0.896 + }, + { + "start": 1144.42, + "end": 1150.44, + "probability": 0.9664 + }, + { + "start": 1153.96, + "end": 1155.02, + "probability": 0.5311 + }, + { + "start": 1155.1, + "end": 1158.32, + "probability": 0.7621 + }, + { + "start": 1158.98, + "end": 1163.0, + "probability": 0.9855 + }, + { + "start": 1164.48, + "end": 1168.32, + "probability": 0.9971 + }, + { + "start": 1168.58, + "end": 1174.14, + "probability": 0.734 + }, + { + "start": 1175.2, + "end": 1179.29, + "probability": 0.9395 + }, + { + "start": 1179.56, + "end": 1180.1, + "probability": 0.7241 + }, + { + "start": 1180.88, + "end": 1181.46, + "probability": 0.3602 + }, + { + "start": 1181.58, + "end": 1183.76, + "probability": 0.7833 + }, + { + "start": 1183.82, + "end": 1188.33, + "probability": 0.7815 + }, + { + "start": 1188.6, + "end": 1196.66, + "probability": 0.9874 + }, + { + "start": 1197.3, + "end": 1197.66, + "probability": 0.7814 + }, + { + "start": 1198.04, + "end": 1198.68, + "probability": 0.515 + }, + { + "start": 1199.14, + "end": 1201.24, + "probability": 0.9492 + }, + { + "start": 1201.86, + "end": 1202.53, + "probability": 0.6635 + }, + { + "start": 1203.56, + "end": 1211.92, + "probability": 0.9981 + }, + { + "start": 1212.06, + "end": 1213.04, + "probability": 0.9569 + }, + { + "start": 1213.14, + "end": 1214.32, + "probability": 0.9679 + }, + { + "start": 1217.9, + "end": 1219.03, + "probability": 0.953 + }, + { + "start": 1220.9, + "end": 1222.1, + "probability": 0.9701 + }, + { + "start": 1224.02, + "end": 1225.5, + "probability": 0.9403 + }, + { + "start": 1227.28, + "end": 1227.62, + "probability": 0.7486 + }, + { + "start": 1227.74, + "end": 1234.48, + "probability": 0.9894 + }, + { + "start": 1237.24, + "end": 1238.14, + "probability": 0.9683 + }, + { + "start": 1239.04, + "end": 1244.5, + "probability": 0.9848 + }, + { + "start": 1251.42, + "end": 1251.42, + "probability": 0.0488 + }, + { + "start": 1251.42, + "end": 1255.88, + "probability": 0.8153 + }, + { + "start": 1257.28, + "end": 1261.12, + "probability": 0.996 + }, + { + "start": 1263.86, + "end": 1263.86, + "probability": 0.1709 + }, + { + "start": 1264.76, + "end": 1266.06, + "probability": 0.9121 + }, + { + "start": 1266.28, + "end": 1268.12, + "probability": 0.9893 + }, + { + "start": 1269.0, + "end": 1269.78, + "probability": 0.7272 + }, + { + "start": 1270.64, + "end": 1272.62, + "probability": 0.4979 + }, + { + "start": 1272.74, + "end": 1277.26, + "probability": 0.913 + }, + { + "start": 1278.06, + "end": 1280.88, + "probability": 0.7572 + }, + { + "start": 1283.0, + "end": 1283.92, + "probability": 0.7598 + }, + { + "start": 1285.4, + "end": 1286.9, + "probability": 0.9387 + }, + { + "start": 1286.94, + "end": 1287.68, + "probability": 0.9507 + }, + { + "start": 1287.78, + "end": 1292.74, + "probability": 0.9474 + }, + { + "start": 1292.74, + "end": 1295.62, + "probability": 0.9482 + }, + { + "start": 1296.28, + "end": 1296.77, + "probability": 0.9104 + }, + { + "start": 1299.68, + "end": 1303.74, + "probability": 0.9011 + }, + { + "start": 1306.24, + "end": 1306.98, + "probability": 0.6226 + }, + { + "start": 1310.16, + "end": 1311.88, + "probability": 0.974 + }, + { + "start": 1312.4, + "end": 1312.86, + "probability": 0.5198 + }, + { + "start": 1313.02, + "end": 1313.76, + "probability": 0.9741 + }, + { + "start": 1314.1, + "end": 1317.0, + "probability": 0.7747 + }, + { + "start": 1318.28, + "end": 1320.92, + "probability": 0.8881 + }, + { + "start": 1325.12, + "end": 1326.14, + "probability": 0.9849 + }, + { + "start": 1327.64, + "end": 1332.04, + "probability": 0.9526 + }, + { + "start": 1332.9, + "end": 1336.22, + "probability": 0.9834 + }, + { + "start": 1337.2, + "end": 1338.5, + "probability": 0.8145 + }, + { + "start": 1342.0, + "end": 1349.2, + "probability": 0.7508 + }, + { + "start": 1350.16, + "end": 1352.0, + "probability": 0.9951 + }, + { + "start": 1352.52, + "end": 1353.04, + "probability": 0.7097 + }, + { + "start": 1354.62, + "end": 1358.64, + "probability": 0.7693 + }, + { + "start": 1361.2, + "end": 1361.2, + "probability": 0.0285 + }, + { + "start": 1361.2, + "end": 1361.2, + "probability": 0.0581 + }, + { + "start": 1361.2, + "end": 1361.2, + "probability": 0.1405 + }, + { + "start": 1361.2, + "end": 1361.2, + "probability": 0.0471 + }, + { + "start": 1361.2, + "end": 1361.56, + "probability": 0.3103 + }, + { + "start": 1361.6, + "end": 1362.54, + "probability": 0.6291 + }, + { + "start": 1362.64, + "end": 1363.26, + "probability": 0.9619 + }, + { + "start": 1364.6, + "end": 1365.48, + "probability": 0.669 + }, + { + "start": 1366.32, + "end": 1367.16, + "probability": 0.7168 + }, + { + "start": 1367.36, + "end": 1369.4, + "probability": 0.8385 + }, + { + "start": 1369.48, + "end": 1370.86, + "probability": 0.8767 + }, + { + "start": 1372.36, + "end": 1374.58, + "probability": 0.5889 + }, + { + "start": 1376.0, + "end": 1379.06, + "probability": 0.9337 + }, + { + "start": 1381.04, + "end": 1383.7, + "probability": 0.8133 + }, + { + "start": 1385.22, + "end": 1388.3, + "probability": 0.4681 + }, + { + "start": 1388.34, + "end": 1388.94, + "probability": 0.4335 + }, + { + "start": 1389.08, + "end": 1389.42, + "probability": 0.196 + }, + { + "start": 1389.42, + "end": 1389.72, + "probability": 0.423 + }, + { + "start": 1389.84, + "end": 1394.52, + "probability": 0.2611 + }, + { + "start": 1394.52, + "end": 1396.54, + "probability": 0.6443 + }, + { + "start": 1396.82, + "end": 1399.7, + "probability": 0.5986 + }, + { + "start": 1399.86, + "end": 1405.16, + "probability": 0.1468 + }, + { + "start": 1405.66, + "end": 1406.84, + "probability": 0.3937 + }, + { + "start": 1407.54, + "end": 1408.08, + "probability": 0.0355 + }, + { + "start": 1408.08, + "end": 1410.0, + "probability": 0.614 + }, + { + "start": 1410.42, + "end": 1412.68, + "probability": 0.8047 + }, + { + "start": 1412.78, + "end": 1414.02, + "probability": 0.5389 + }, + { + "start": 1414.64, + "end": 1417.59, + "probability": 0.1977 + }, + { + "start": 1418.36, + "end": 1421.04, + "probability": 0.0189 + }, + { + "start": 1421.8, + "end": 1422.3, + "probability": 0.1458 + }, + { + "start": 1422.47, + "end": 1428.46, + "probability": 0.6497 + }, + { + "start": 1429.0, + "end": 1430.12, + "probability": 0.7835 + }, + { + "start": 1430.48, + "end": 1432.06, + "probability": 0.9546 + }, + { + "start": 1432.46, + "end": 1433.18, + "probability": 0.0501 + }, + { + "start": 1433.32, + "end": 1434.52, + "probability": 0.9228 + }, + { + "start": 1434.6, + "end": 1436.28, + "probability": 0.8572 + }, + { + "start": 1436.46, + "end": 1440.18, + "probability": 0.958 + }, + { + "start": 1440.62, + "end": 1443.0, + "probability": 0.9554 + }, + { + "start": 1443.24, + "end": 1448.48, + "probability": 0.9861 + }, + { + "start": 1448.64, + "end": 1451.56, + "probability": 0.9966 + }, + { + "start": 1452.08, + "end": 1453.82, + "probability": 0.9894 + }, + { + "start": 1456.18, + "end": 1457.74, + "probability": 0.8883 + }, + { + "start": 1458.3, + "end": 1460.18, + "probability": 0.9121 + }, + { + "start": 1460.74, + "end": 1467.66, + "probability": 0.8864 + }, + { + "start": 1469.22, + "end": 1474.02, + "probability": 0.982 + }, + { + "start": 1477.4, + "end": 1479.62, + "probability": 0.8986 + }, + { + "start": 1481.12, + "end": 1486.56, + "probability": 0.999 + }, + { + "start": 1486.78, + "end": 1488.76, + "probability": 0.8503 + }, + { + "start": 1489.54, + "end": 1494.0, + "probability": 0.9603 + }, + { + "start": 1496.33, + "end": 1500.04, + "probability": 0.9824 + }, + { + "start": 1500.74, + "end": 1504.38, + "probability": 0.9939 + }, + { + "start": 1504.42, + "end": 1506.06, + "probability": 0.9922 + }, + { + "start": 1507.46, + "end": 1510.12, + "probability": 0.9767 + }, + { + "start": 1510.3, + "end": 1512.12, + "probability": 0.9839 + }, + { + "start": 1513.0, + "end": 1514.82, + "probability": 0.8848 + }, + { + "start": 1515.3, + "end": 1518.32, + "probability": 0.9941 + }, + { + "start": 1518.32, + "end": 1520.82, + "probability": 0.9992 + }, + { + "start": 1521.08, + "end": 1523.34, + "probability": 0.9982 + }, + { + "start": 1524.6, + "end": 1526.14, + "probability": 0.9973 + }, + { + "start": 1526.28, + "end": 1527.78, + "probability": 0.7408 + }, + { + "start": 1527.94, + "end": 1529.02, + "probability": 0.5517 + }, + { + "start": 1530.32, + "end": 1533.62, + "probability": 0.8663 + }, + { + "start": 1534.28, + "end": 1535.86, + "probability": 0.8058 + }, + { + "start": 1538.28, + "end": 1540.4, + "probability": 0.7825 + }, + { + "start": 1541.58, + "end": 1543.24, + "probability": 0.9526 + }, + { + "start": 1543.96, + "end": 1544.78, + "probability": 0.6276 + }, + { + "start": 1544.78, + "end": 1545.94, + "probability": 0.7473 + }, + { + "start": 1546.44, + "end": 1551.9, + "probability": 0.6826 + }, + { + "start": 1552.38, + "end": 1558.8, + "probability": 0.7419 + }, + { + "start": 1560.72, + "end": 1561.52, + "probability": 0.752 + }, + { + "start": 1562.66, + "end": 1565.79, + "probability": 0.9768 + }, + { + "start": 1568.48, + "end": 1572.78, + "probability": 0.9752 + }, + { + "start": 1573.0, + "end": 1576.24, + "probability": 0.9912 + }, + { + "start": 1576.62, + "end": 1578.8, + "probability": 0.781 + }, + { + "start": 1578.9, + "end": 1586.18, + "probability": 0.959 + }, + { + "start": 1596.0, + "end": 1597.6, + "probability": 0.6697 + }, + { + "start": 1598.2, + "end": 1599.84, + "probability": 0.5834 + }, + { + "start": 1601.4, + "end": 1603.64, + "probability": 0.8815 + }, + { + "start": 1603.72, + "end": 1604.46, + "probability": 0.9829 + }, + { + "start": 1604.76, + "end": 1607.12, + "probability": 0.9712 + }, + { + "start": 1609.38, + "end": 1614.08, + "probability": 0.9716 + }, + { + "start": 1614.76, + "end": 1615.32, + "probability": 0.4587 + }, + { + "start": 1617.22, + "end": 1619.84, + "probability": 0.6542 + }, + { + "start": 1621.56, + "end": 1625.72, + "probability": 0.8934 + }, + { + "start": 1627.62, + "end": 1633.04, + "probability": 0.9834 + }, + { + "start": 1634.58, + "end": 1635.96, + "probability": 0.7634 + }, + { + "start": 1638.78, + "end": 1640.6, + "probability": 0.9875 + }, + { + "start": 1641.94, + "end": 1643.28, + "probability": 0.8429 + }, + { + "start": 1643.3, + "end": 1644.34, + "probability": 0.7721 + }, + { + "start": 1644.56, + "end": 1646.66, + "probability": 0.8194 + }, + { + "start": 1646.74, + "end": 1647.52, + "probability": 0.9542 + }, + { + "start": 1647.66, + "end": 1648.94, + "probability": 0.8613 + }, + { + "start": 1649.92, + "end": 1655.72, + "probability": 0.9342 + }, + { + "start": 1655.72, + "end": 1662.18, + "probability": 0.9553 + }, + { + "start": 1662.2, + "end": 1669.66, + "probability": 0.9892 + }, + { + "start": 1670.28, + "end": 1671.7, + "probability": 0.8551 + }, + { + "start": 1675.32, + "end": 1676.9, + "probability": 0.8949 + }, + { + "start": 1677.48, + "end": 1682.32, + "probability": 0.9628 + }, + { + "start": 1683.48, + "end": 1686.16, + "probability": 0.9646 + }, + { + "start": 1686.16, + "end": 1688.3, + "probability": 0.9905 + }, + { + "start": 1689.46, + "end": 1690.8, + "probability": 0.8319 + }, + { + "start": 1691.96, + "end": 1696.86, + "probability": 0.9949 + }, + { + "start": 1697.02, + "end": 1698.12, + "probability": 0.4963 + }, + { + "start": 1698.24, + "end": 1699.28, + "probability": 0.7228 + }, + { + "start": 1699.98, + "end": 1700.66, + "probability": 0.9075 + }, + { + "start": 1700.8, + "end": 1704.84, + "probability": 0.8997 + }, + { + "start": 1704.94, + "end": 1706.53, + "probability": 0.9265 + }, + { + "start": 1708.24, + "end": 1710.58, + "probability": 0.9925 + }, + { + "start": 1710.92, + "end": 1712.44, + "probability": 0.7227 + }, + { + "start": 1712.82, + "end": 1714.52, + "probability": 0.7669 + }, + { + "start": 1716.24, + "end": 1719.36, + "probability": 0.9788 + }, + { + "start": 1719.52, + "end": 1722.68, + "probability": 0.975 + }, + { + "start": 1723.64, + "end": 1724.26, + "probability": 0.4523 + }, + { + "start": 1726.06, + "end": 1727.5, + "probability": 0.9163 + }, + { + "start": 1727.84, + "end": 1732.06, + "probability": 0.9966 + }, + { + "start": 1733.2, + "end": 1735.7, + "probability": 0.9294 + }, + { + "start": 1737.54, + "end": 1738.82, + "probability": 0.8947 + }, + { + "start": 1739.24, + "end": 1741.56, + "probability": 0.9968 + }, + { + "start": 1741.88, + "end": 1743.76, + "probability": 0.9939 + }, + { + "start": 1743.86, + "end": 1745.03, + "probability": 0.9941 + }, + { + "start": 1745.26, + "end": 1747.66, + "probability": 0.8579 + }, + { + "start": 1748.28, + "end": 1751.14, + "probability": 0.8765 + }, + { + "start": 1752.52, + "end": 1755.74, + "probability": 0.8495 + }, + { + "start": 1757.18, + "end": 1763.18, + "probability": 0.9175 + }, + { + "start": 1765.66, + "end": 1766.18, + "probability": 0.8725 + }, + { + "start": 1766.22, + "end": 1769.36, + "probability": 0.9935 + }, + { + "start": 1769.36, + "end": 1772.44, + "probability": 0.9566 + }, + { + "start": 1772.54, + "end": 1773.98, + "probability": 0.7734 + }, + { + "start": 1775.04, + "end": 1777.92, + "probability": 0.9997 + }, + { + "start": 1777.92, + "end": 1786.33, + "probability": 0.8987 + }, + { + "start": 1787.86, + "end": 1789.74, + "probability": 0.9583 + }, + { + "start": 1790.48, + "end": 1794.04, + "probability": 0.9718 + }, + { + "start": 1794.92, + "end": 1795.88, + "probability": 0.6946 + }, + { + "start": 1795.94, + "end": 1797.65, + "probability": 0.882 + }, + { + "start": 1797.98, + "end": 1799.5, + "probability": 0.7901 + }, + { + "start": 1800.52, + "end": 1804.06, + "probability": 0.7318 + }, + { + "start": 1804.62, + "end": 1806.24, + "probability": 0.9834 + }, + { + "start": 1808.2, + "end": 1812.92, + "probability": 0.9784 + }, + { + "start": 1812.92, + "end": 1815.88, + "probability": 0.9985 + }, + { + "start": 1817.1, + "end": 1823.86, + "probability": 0.9865 + }, + { + "start": 1824.44, + "end": 1829.22, + "probability": 0.8421 + }, + { + "start": 1829.28, + "end": 1829.84, + "probability": 0.7124 + }, + { + "start": 1830.38, + "end": 1833.54, + "probability": 0.9386 + }, + { + "start": 1833.72, + "end": 1838.4, + "probability": 0.989 + }, + { + "start": 1839.3, + "end": 1843.46, + "probability": 0.9895 + }, + { + "start": 1843.96, + "end": 1848.15, + "probability": 0.9332 + }, + { + "start": 1848.28, + "end": 1849.66, + "probability": 0.6847 + }, + { + "start": 1849.72, + "end": 1850.48, + "probability": 0.8153 + }, + { + "start": 1850.54, + "end": 1851.14, + "probability": 0.8019 + }, + { + "start": 1851.32, + "end": 1853.7, + "probability": 0.9787 + }, + { + "start": 1853.84, + "end": 1855.28, + "probability": 0.9258 + }, + { + "start": 1856.82, + "end": 1858.32, + "probability": 0.9214 + }, + { + "start": 1859.8, + "end": 1863.72, + "probability": 0.9766 + }, + { + "start": 1864.02, + "end": 1865.36, + "probability": 0.9954 + }, + { + "start": 1866.58, + "end": 1872.3, + "probability": 0.9907 + }, + { + "start": 1872.52, + "end": 1873.62, + "probability": 0.9618 + }, + { + "start": 1874.46, + "end": 1876.26, + "probability": 0.9008 + }, + { + "start": 1878.58, + "end": 1883.44, + "probability": 0.9138 + }, + { + "start": 1883.56, + "end": 1885.21, + "probability": 0.9928 + }, + { + "start": 1885.64, + "end": 1886.54, + "probability": 0.8887 + }, + { + "start": 1888.24, + "end": 1891.74, + "probability": 0.9181 + }, + { + "start": 1892.7, + "end": 1894.92, + "probability": 0.8877 + }, + { + "start": 1895.6, + "end": 1897.26, + "probability": 0.9512 + }, + { + "start": 1897.82, + "end": 1899.64, + "probability": 0.8916 + }, + { + "start": 1899.82, + "end": 1902.8, + "probability": 0.9609 + }, + { + "start": 1905.04, + "end": 1907.3, + "probability": 0.6383 + }, + { + "start": 1907.72, + "end": 1907.94, + "probability": 0.781 + }, + { + "start": 1907.98, + "end": 1908.2, + "probability": 0.5752 + }, + { + "start": 1908.22, + "end": 1909.42, + "probability": 0.8232 + }, + { + "start": 1909.5, + "end": 1911.06, + "probability": 0.9512 + }, + { + "start": 1911.18, + "end": 1912.98, + "probability": 0.9868 + }, + { + "start": 1915.06, + "end": 1918.34, + "probability": 0.955 + }, + { + "start": 1923.16, + "end": 1925.36, + "probability": 0.9435 + }, + { + "start": 1926.14, + "end": 1928.04, + "probability": 0.9164 + }, + { + "start": 1929.08, + "end": 1935.1, + "probability": 0.9863 + }, + { + "start": 1937.88, + "end": 1942.22, + "probability": 0.9786 + }, + { + "start": 1942.9, + "end": 1944.08, + "probability": 0.7295 + }, + { + "start": 1944.12, + "end": 1948.92, + "probability": 0.9827 + }, + { + "start": 1949.54, + "end": 1954.54, + "probability": 0.9968 + }, + { + "start": 1955.26, + "end": 1957.28, + "probability": 0.9471 + }, + { + "start": 1957.46, + "end": 1958.32, + "probability": 0.7088 + }, + { + "start": 1958.32, + "end": 1958.54, + "probability": 0.9431 + }, + { + "start": 1958.64, + "end": 1959.92, + "probability": 0.9438 + }, + { + "start": 1960.92, + "end": 1963.0, + "probability": 0.9946 + }, + { + "start": 1963.96, + "end": 1965.24, + "probability": 0.978 + }, + { + "start": 1965.92, + "end": 1971.28, + "probability": 0.9397 + }, + { + "start": 1971.84, + "end": 1974.88, + "probability": 0.9766 + }, + { + "start": 1976.4, + "end": 1979.06, + "probability": 0.7323 + }, + { + "start": 1979.3, + "end": 1981.3, + "probability": 0.9476 + }, + { + "start": 1981.56, + "end": 1984.06, + "probability": 0.9159 + }, + { + "start": 1984.48, + "end": 1985.58, + "probability": 0.9545 + }, + { + "start": 1985.76, + "end": 1986.8, + "probability": 0.9412 + }, + { + "start": 1987.1, + "end": 1988.24, + "probability": 0.9636 + }, + { + "start": 1988.56, + "end": 1992.0, + "probability": 0.8491 + }, + { + "start": 1992.0, + "end": 1992.12, + "probability": 0.9512 + }, + { + "start": 1992.84, + "end": 1995.16, + "probability": 0.9287 + }, + { + "start": 1995.38, + "end": 1996.42, + "probability": 0.172 + }, + { + "start": 1997.46, + "end": 2000.14, + "probability": 0.1469 + }, + { + "start": 2000.56, + "end": 2003.4, + "probability": 0.8691 + }, + { + "start": 2003.94, + "end": 2008.24, + "probability": 0.939 + }, + { + "start": 2010.38, + "end": 2016.36, + "probability": 0.9982 + }, + { + "start": 2017.0, + "end": 2020.38, + "probability": 0.9806 + }, + { + "start": 2021.64, + "end": 2024.24, + "probability": 0.9629 + }, + { + "start": 2024.24, + "end": 2027.78, + "probability": 0.998 + }, + { + "start": 2029.66, + "end": 2030.86, + "probability": 0.7967 + }, + { + "start": 2031.54, + "end": 2033.5, + "probability": 0.9922 + }, + { + "start": 2034.1, + "end": 2038.02, + "probability": 0.9868 + }, + { + "start": 2038.66, + "end": 2040.72, + "probability": 0.9745 + }, + { + "start": 2041.92, + "end": 2044.08, + "probability": 0.9808 + }, + { + "start": 2044.66, + "end": 2052.0, + "probability": 0.9353 + }, + { + "start": 2053.04, + "end": 2053.3, + "probability": 0.6207 + }, + { + "start": 2053.32, + "end": 2053.76, + "probability": 0.7221 + }, + { + "start": 2053.86, + "end": 2058.38, + "probability": 0.9963 + }, + { + "start": 2058.38, + "end": 2063.26, + "probability": 0.9929 + }, + { + "start": 2064.6, + "end": 2067.5, + "probability": 0.9756 + }, + { + "start": 2070.78, + "end": 2073.64, + "probability": 0.6673 + }, + { + "start": 2074.5, + "end": 2075.82, + "probability": 0.8136 + }, + { + "start": 2075.94, + "end": 2077.1, + "probability": 0.9727 + }, + { + "start": 2077.24, + "end": 2078.72, + "probability": 0.9047 + }, + { + "start": 2079.32, + "end": 2080.78, + "probability": 0.8277 + }, + { + "start": 2081.26, + "end": 2082.99, + "probability": 0.7215 + }, + { + "start": 2083.86, + "end": 2089.14, + "probability": 0.9743 + }, + { + "start": 2089.72, + "end": 2090.92, + "probability": 0.9478 + }, + { + "start": 2091.0, + "end": 2097.32, + "probability": 0.8331 + }, + { + "start": 2097.38, + "end": 2099.16, + "probability": 0.8757 + }, + { + "start": 2102.64, + "end": 2104.66, + "probability": 0.5488 + }, + { + "start": 2105.22, + "end": 2108.18, + "probability": 0.9688 + }, + { + "start": 2109.14, + "end": 2110.2, + "probability": 0.9107 + }, + { + "start": 2111.88, + "end": 2115.46, + "probability": 0.9868 + }, + { + "start": 2116.04, + "end": 2117.48, + "probability": 0.9593 + }, + { + "start": 2117.96, + "end": 2120.4, + "probability": 0.9377 + }, + { + "start": 2121.38, + "end": 2123.72, + "probability": 0.997 + }, + { + "start": 2124.22, + "end": 2130.16, + "probability": 0.9747 + }, + { + "start": 2130.66, + "end": 2131.64, + "probability": 0.8488 + }, + { + "start": 2132.68, + "end": 2137.78, + "probability": 0.965 + }, + { + "start": 2138.04, + "end": 2140.04, + "probability": 0.8253 + }, + { + "start": 2140.24, + "end": 2142.92, + "probability": 0.9081 + }, + { + "start": 2143.48, + "end": 2150.72, + "probability": 0.9774 + }, + { + "start": 2150.92, + "end": 2153.42, + "probability": 0.9735 + }, + { + "start": 2153.6, + "end": 2154.54, + "probability": 0.6528 + }, + { + "start": 2154.62, + "end": 2155.06, + "probability": 0.6801 + }, + { + "start": 2155.08, + "end": 2155.5, + "probability": 0.372 + }, + { + "start": 2156.38, + "end": 2157.86, + "probability": 0.7666 + }, + { + "start": 2159.26, + "end": 2163.38, + "probability": 0.8875 + }, + { + "start": 2164.02, + "end": 2166.0, + "probability": 0.6854 + }, + { + "start": 2166.1, + "end": 2166.62, + "probability": 0.812 + }, + { + "start": 2166.7, + "end": 2167.7, + "probability": 0.5398 + }, + { + "start": 2168.46, + "end": 2172.7, + "probability": 0.9453 + }, + { + "start": 2172.99, + "end": 2177.96, + "probability": 0.9636 + }, + { + "start": 2178.48, + "end": 2181.92, + "probability": 0.9162 + }, + { + "start": 2182.54, + "end": 2184.98, + "probability": 0.9788 + }, + { + "start": 2185.68, + "end": 2188.88, + "probability": 0.995 + }, + { + "start": 2189.44, + "end": 2190.16, + "probability": 0.7557 + }, + { + "start": 2190.68, + "end": 2193.2, + "probability": 0.917 + }, + { + "start": 2193.84, + "end": 2197.48, + "probability": 0.9465 + }, + { + "start": 2198.06, + "end": 2200.96, + "probability": 0.6937 + }, + { + "start": 2201.76, + "end": 2204.5, + "probability": 0.8844 + }, + { + "start": 2205.83, + "end": 2209.96, + "probability": 0.9913 + }, + { + "start": 2210.58, + "end": 2212.26, + "probability": 0.9873 + }, + { + "start": 2212.68, + "end": 2217.38, + "probability": 0.991 + }, + { + "start": 2218.86, + "end": 2221.52, + "probability": 0.6892 + }, + { + "start": 2221.52, + "end": 2223.2, + "probability": 0.8561 + }, + { + "start": 2223.68, + "end": 2225.06, + "probability": 0.855 + }, + { + "start": 2225.22, + "end": 2228.04, + "probability": 0.8051 + }, + { + "start": 2228.54, + "end": 2231.36, + "probability": 0.9414 + }, + { + "start": 2231.52, + "end": 2232.28, + "probability": 0.9789 + }, + { + "start": 2232.3, + "end": 2232.96, + "probability": 0.6851 + }, + { + "start": 2232.96, + "end": 2238.5, + "probability": 0.9984 + }, + { + "start": 2238.5, + "end": 2238.98, + "probability": 0.5884 + }, + { + "start": 2240.02, + "end": 2242.78, + "probability": 0.9913 + }, + { + "start": 2243.42, + "end": 2243.76, + "probability": 0.5447 + }, + { + "start": 2243.86, + "end": 2244.86, + "probability": 0.6448 + }, + { + "start": 2245.06, + "end": 2247.06, + "probability": 0.7137 + }, + { + "start": 2247.12, + "end": 2248.14, + "probability": 0.9797 + }, + { + "start": 2248.36, + "end": 2248.92, + "probability": 0.5808 + }, + { + "start": 2249.02, + "end": 2249.4, + "probability": 0.6791 + }, + { + "start": 2250.16, + "end": 2251.04, + "probability": 0.8126 + }, + { + "start": 2251.42, + "end": 2252.2, + "probability": 0.0623 + }, + { + "start": 2252.2, + "end": 2253.94, + "probability": 0.4774 + }, + { + "start": 2254.6, + "end": 2256.1, + "probability": 0.4697 + }, + { + "start": 2256.2, + "end": 2258.36, + "probability": 0.1018 + }, + { + "start": 2259.1, + "end": 2261.24, + "probability": 0.9579 + }, + { + "start": 2261.48, + "end": 2263.87, + "probability": 0.9715 + }, + { + "start": 2264.3, + "end": 2266.28, + "probability": 0.9405 + }, + { + "start": 2266.44, + "end": 2267.9, + "probability": 0.9034 + }, + { + "start": 2268.1, + "end": 2269.5, + "probability": 0.9639 + }, + { + "start": 2269.64, + "end": 2271.82, + "probability": 0.9897 + }, + { + "start": 2272.1, + "end": 2272.82, + "probability": 0.5846 + }, + { + "start": 2273.28, + "end": 2275.9, + "probability": 0.7703 + }, + { + "start": 2276.14, + "end": 2277.08, + "probability": 0.9153 + }, + { + "start": 2277.3, + "end": 2277.84, + "probability": 0.4238 + }, + { + "start": 2277.96, + "end": 2278.9, + "probability": 0.9436 + }, + { + "start": 2279.04, + "end": 2279.68, + "probability": 0.6542 + }, + { + "start": 2279.8, + "end": 2281.86, + "probability": 0.9589 + }, + { + "start": 2282.24, + "end": 2282.46, + "probability": 0.0441 + }, + { + "start": 2282.46, + "end": 2283.32, + "probability": 0.5602 + }, + { + "start": 2284.68, + "end": 2285.72, + "probability": 0.814 + }, + { + "start": 2285.88, + "end": 2287.12, + "probability": 0.9274 + }, + { + "start": 2287.34, + "end": 2288.66, + "probability": 0.6345 + }, + { + "start": 2288.7, + "end": 2291.86, + "probability": 0.9711 + }, + { + "start": 2295.02, + "end": 2296.56, + "probability": 0.9963 + }, + { + "start": 2296.56, + "end": 2298.74, + "probability": 0.9712 + }, + { + "start": 2299.44, + "end": 2300.12, + "probability": 0.4969 + }, + { + "start": 2300.12, + "end": 2301.32, + "probability": 0.9888 + }, + { + "start": 2304.5, + "end": 2306.08, + "probability": 0.9695 + }, + { + "start": 2306.14, + "end": 2307.66, + "probability": 0.9524 + }, + { + "start": 2308.28, + "end": 2312.98, + "probability": 0.9932 + }, + { + "start": 2313.66, + "end": 2316.96, + "probability": 0.9775 + }, + { + "start": 2317.26, + "end": 2322.96, + "probability": 0.9961 + }, + { + "start": 2324.26, + "end": 2326.06, + "probability": 0.9964 + }, + { + "start": 2327.12, + "end": 2330.32, + "probability": 0.9474 + }, + { + "start": 2333.0, + "end": 2336.0, + "probability": 0.9664 + }, + { + "start": 2336.68, + "end": 2341.78, + "probability": 0.998 + }, + { + "start": 2342.3, + "end": 2345.56, + "probability": 0.9687 + }, + { + "start": 2346.08, + "end": 2348.88, + "probability": 0.9791 + }, + { + "start": 2349.56, + "end": 2352.64, + "probability": 0.9983 + }, + { + "start": 2353.08, + "end": 2355.84, + "probability": 0.9609 + }, + { + "start": 2356.68, + "end": 2357.82, + "probability": 0.652 + }, + { + "start": 2357.9, + "end": 2359.6, + "probability": 0.9871 + }, + { + "start": 2360.02, + "end": 2361.38, + "probability": 0.8521 + }, + { + "start": 2361.92, + "end": 2362.76, + "probability": 0.9502 + }, + { + "start": 2363.18, + "end": 2363.7, + "probability": 0.8662 + }, + { + "start": 2363.82, + "end": 2365.53, + "probability": 0.8789 + }, + { + "start": 2366.1, + "end": 2371.86, + "probability": 0.9557 + }, + { + "start": 2372.36, + "end": 2376.64, + "probability": 0.8308 + }, + { + "start": 2377.5, + "end": 2379.16, + "probability": 0.973 + }, + { + "start": 2379.86, + "end": 2381.98, + "probability": 0.767 + }, + { + "start": 2382.16, + "end": 2383.8, + "probability": 0.9106 + }, + { + "start": 2383.84, + "end": 2385.26, + "probability": 0.9699 + }, + { + "start": 2385.66, + "end": 2387.24, + "probability": 0.9061 + }, + { + "start": 2387.88, + "end": 2390.82, + "probability": 0.903 + }, + { + "start": 2390.88, + "end": 2397.07, + "probability": 0.9553 + }, + { + "start": 2398.3, + "end": 2403.18, + "probability": 0.9799 + }, + { + "start": 2404.52, + "end": 2406.94, + "probability": 0.8058 + }, + { + "start": 2408.1, + "end": 2410.76, + "probability": 0.9971 + }, + { + "start": 2412.04, + "end": 2413.02, + "probability": 0.841 + }, + { + "start": 2413.32, + "end": 2416.98, + "probability": 0.8411 + }, + { + "start": 2417.28, + "end": 2421.8, + "probability": 0.9498 + }, + { + "start": 2422.28, + "end": 2426.26, + "probability": 0.9906 + }, + { + "start": 2426.84, + "end": 2431.68, + "probability": 0.8131 + }, + { + "start": 2432.36, + "end": 2435.12, + "probability": 0.9916 + }, + { + "start": 2435.84, + "end": 2438.34, + "probability": 0.9305 + }, + { + "start": 2438.42, + "end": 2439.24, + "probability": 0.822 + }, + { + "start": 2439.98, + "end": 2442.6, + "probability": 0.8995 + }, + { + "start": 2443.52, + "end": 2444.62, + "probability": 0.6072 + }, + { + "start": 2444.86, + "end": 2448.46, + "probability": 0.9868 + }, + { + "start": 2448.56, + "end": 2449.64, + "probability": 0.9584 + }, + { + "start": 2450.36, + "end": 2451.1, + "probability": 0.337 + }, + { + "start": 2451.1, + "end": 2451.17, + "probability": 0.2446 + }, + { + "start": 2452.64, + "end": 2456.22, + "probability": 0.7854 + }, + { + "start": 2456.32, + "end": 2457.14, + "probability": 0.7598 + }, + { + "start": 2457.34, + "end": 2459.66, + "probability": 0.7064 + }, + { + "start": 2460.74, + "end": 2463.5, + "probability": 0.8717 + }, + { + "start": 2463.58, + "end": 2464.86, + "probability": 0.739 + }, + { + "start": 2465.04, + "end": 2466.74, + "probability": 0.7759 + }, + { + "start": 2466.86, + "end": 2472.5, + "probability": 0.8581 + }, + { + "start": 2473.28, + "end": 2478.32, + "probability": 0.979 + }, + { + "start": 2478.32, + "end": 2481.56, + "probability": 0.9989 + }, + { + "start": 2482.02, + "end": 2483.56, + "probability": 0.6654 + }, + { + "start": 2483.92, + "end": 2485.46, + "probability": 0.8908 + }, + { + "start": 2485.94, + "end": 2487.58, + "probability": 0.9932 + }, + { + "start": 2487.76, + "end": 2490.52, + "probability": 0.9949 + }, + { + "start": 2490.66, + "end": 2492.44, + "probability": 0.9497 + }, + { + "start": 2493.08, + "end": 2494.48, + "probability": 0.6888 + }, + { + "start": 2494.54, + "end": 2497.6, + "probability": 0.9982 + }, + { + "start": 2497.6, + "end": 2501.7, + "probability": 0.9915 + }, + { + "start": 2502.74, + "end": 2503.62, + "probability": 0.9631 + }, + { + "start": 2504.92, + "end": 2509.16, + "probability": 0.9395 + }, + { + "start": 2509.34, + "end": 2510.74, + "probability": 0.9778 + }, + { + "start": 2510.78, + "end": 2511.7, + "probability": 0.6609 + }, + { + "start": 2514.62, + "end": 2516.5, + "probability": 0.7042 + }, + { + "start": 2516.66, + "end": 2517.6, + "probability": 0.76 + }, + { + "start": 2518.7, + "end": 2521.46, + "probability": 0.4143 + }, + { + "start": 2521.82, + "end": 2526.16, + "probability": 0.9709 + }, + { + "start": 2527.06, + "end": 2528.98, + "probability": 0.6639 + }, + { + "start": 2529.62, + "end": 2531.94, + "probability": 0.9803 + }, + { + "start": 2533.0, + "end": 2534.48, + "probability": 0.9151 + }, + { + "start": 2535.24, + "end": 2536.82, + "probability": 0.18 + }, + { + "start": 2537.5, + "end": 2538.1, + "probability": 0.4897 + }, + { + "start": 2538.2, + "end": 2539.68, + "probability": 0.9132 + }, + { + "start": 2539.96, + "end": 2543.4, + "probability": 0.9105 + }, + { + "start": 2543.68, + "end": 2544.26, + "probability": 0.7631 + }, + { + "start": 2544.38, + "end": 2546.9, + "probability": 0.978 + }, + { + "start": 2546.96, + "end": 2550.44, + "probability": 0.8194 + }, + { + "start": 2550.6, + "end": 2554.94, + "probability": 0.9649 + }, + { + "start": 2555.34, + "end": 2555.6, + "probability": 0.0004 + }, + { + "start": 2556.02, + "end": 2558.32, + "probability": 0.6419 + }, + { + "start": 2559.2, + "end": 2563.13, + "probability": 0.4985 + }, + { + "start": 2564.18, + "end": 2565.48, + "probability": 0.8183 + }, + { + "start": 2565.5, + "end": 2568.72, + "probability": 0.9185 + }, + { + "start": 2569.22, + "end": 2570.8, + "probability": 0.8164 + }, + { + "start": 2571.42, + "end": 2573.72, + "probability": 0.9756 + }, + { + "start": 2575.08, + "end": 2578.68, + "probability": 0.9711 + }, + { + "start": 2579.0, + "end": 2580.5, + "probability": 0.9968 + }, + { + "start": 2581.24, + "end": 2581.52, + "probability": 0.7164 + }, + { + "start": 2581.68, + "end": 2586.92, + "probability": 0.972 + }, + { + "start": 2588.06, + "end": 2592.0, + "probability": 0.6199 + }, + { + "start": 2592.46, + "end": 2594.74, + "probability": 0.9657 + }, + { + "start": 2594.92, + "end": 2595.7, + "probability": 0.9153 + }, + { + "start": 2595.8, + "end": 2596.3, + "probability": 0.6521 + }, + { + "start": 2596.46, + "end": 2598.5, + "probability": 0.952 + }, + { + "start": 2599.22, + "end": 2601.76, + "probability": 0.9714 + }, + { + "start": 2602.48, + "end": 2604.29, + "probability": 0.6283 + }, + { + "start": 2604.92, + "end": 2607.06, + "probability": 0.6579 + }, + { + "start": 2607.16, + "end": 2608.2, + "probability": 0.8051 + }, + { + "start": 2608.4, + "end": 2610.98, + "probability": 0.8182 + }, + { + "start": 2610.98, + "end": 2611.16, + "probability": 0.3234 + }, + { + "start": 2611.7, + "end": 2614.82, + "probability": 0.0271 + }, + { + "start": 2614.84, + "end": 2620.4, + "probability": 0.8487 + }, + { + "start": 2620.66, + "end": 2621.84, + "probability": 0.013 + }, + { + "start": 2621.84, + "end": 2622.81, + "probability": 0.3762 + }, + { + "start": 2624.53, + "end": 2627.88, + "probability": 0.5161 + }, + { + "start": 2627.98, + "end": 2630.88, + "probability": 0.7422 + }, + { + "start": 2630.94, + "end": 2631.16, + "probability": 0.7473 + }, + { + "start": 2631.16, + "end": 2634.5, + "probability": 0.9878 + }, + { + "start": 2634.82, + "end": 2637.34, + "probability": 0.2317 + }, + { + "start": 2637.88, + "end": 2638.54, + "probability": 0.6176 + }, + { + "start": 2639.38, + "end": 2641.44, + "probability": 0.5606 + }, + { + "start": 2641.6, + "end": 2644.72, + "probability": 0.875 + }, + { + "start": 2644.72, + "end": 2647.96, + "probability": 0.9136 + }, + { + "start": 2648.76, + "end": 2650.2, + "probability": 0.3931 + }, + { + "start": 2650.32, + "end": 2651.46, + "probability": 0.8131 + }, + { + "start": 2651.62, + "end": 2653.74, + "probability": 0.8584 + }, + { + "start": 2653.94, + "end": 2655.5, + "probability": 0.7115 + }, + { + "start": 2655.72, + "end": 2659.42, + "probability": 0.9948 + }, + { + "start": 2659.42, + "end": 2662.38, + "probability": 0.993 + }, + { + "start": 2662.92, + "end": 2663.4, + "probability": 0.4866 + }, + { + "start": 2663.42, + "end": 2664.08, + "probability": 0.7269 + }, + { + "start": 2664.56, + "end": 2667.54, + "probability": 0.9933 + }, + { + "start": 2667.54, + "end": 2671.36, + "probability": 0.9396 + }, + { + "start": 2671.92, + "end": 2675.56, + "probability": 0.893 + }, + { + "start": 2675.56, + "end": 2680.1, + "probability": 0.9661 + }, + { + "start": 2680.22, + "end": 2680.68, + "probability": 0.3689 + }, + { + "start": 2680.74, + "end": 2682.27, + "probability": 0.813 + }, + { + "start": 2682.8, + "end": 2683.84, + "probability": 0.831 + }, + { + "start": 2683.96, + "end": 2684.74, + "probability": 0.5769 + }, + { + "start": 2685.18, + "end": 2686.57, + "probability": 0.9658 + }, + { + "start": 2687.24, + "end": 2689.34, + "probability": 0.9846 + }, + { + "start": 2690.14, + "end": 2695.0, + "probability": 0.8781 + }, + { + "start": 2695.18, + "end": 2695.69, + "probability": 0.9097 + }, + { + "start": 2696.28, + "end": 2702.04, + "probability": 0.9854 + }, + { + "start": 2702.38, + "end": 2703.7, + "probability": 0.9442 + }, + { + "start": 2703.96, + "end": 2706.5, + "probability": 0.9475 + }, + { + "start": 2706.76, + "end": 2708.7, + "probability": 0.8984 + }, + { + "start": 2709.24, + "end": 2712.66, + "probability": 0.9869 + }, + { + "start": 2712.9, + "end": 2717.26, + "probability": 0.949 + }, + { + "start": 2717.82, + "end": 2720.06, + "probability": 0.8418 + }, + { + "start": 2720.3, + "end": 2722.44, + "probability": 0.941 + }, + { + "start": 2722.66, + "end": 2726.46, + "probability": 0.9541 + }, + { + "start": 2726.7, + "end": 2730.06, + "probability": 0.9788 + }, + { + "start": 2730.42, + "end": 2732.42, + "probability": 0.9218 + }, + { + "start": 2732.84, + "end": 2733.02, + "probability": 0.0023 + }, + { + "start": 2733.02, + "end": 2733.02, + "probability": 0.1438 + }, + { + "start": 2733.02, + "end": 2734.1, + "probability": 0.8354 + }, + { + "start": 2734.66, + "end": 2737.96, + "probability": 0.9834 + }, + { + "start": 2738.3, + "end": 2739.58, + "probability": 0.8604 + }, + { + "start": 2739.66, + "end": 2740.3, + "probability": 0.827 + }, + { + "start": 2741.84, + "end": 2743.14, + "probability": 0.0643 + }, + { + "start": 2744.18, + "end": 2744.28, + "probability": 0.0244 + }, + { + "start": 2745.88, + "end": 2747.44, + "probability": 0.388 + }, + { + "start": 2747.78, + "end": 2750.38, + "probability": 0.4801 + }, + { + "start": 2750.38, + "end": 2753.96, + "probability": 0.7389 + }, + { + "start": 2754.48, + "end": 2758.78, + "probability": 0.9958 + }, + { + "start": 2766.46, + "end": 2770.18, + "probability": 0.7542 + }, + { + "start": 2770.68, + "end": 2774.2, + "probability": 0.4569 + }, + { + "start": 2775.44, + "end": 2779.06, + "probability": 0.8284 + }, + { + "start": 2780.38, + "end": 2783.66, + "probability": 0.8885 + }, + { + "start": 2784.42, + "end": 2786.0, + "probability": 0.8857 + }, + { + "start": 2786.04, + "end": 2788.5, + "probability": 0.8824 + }, + { + "start": 2788.74, + "end": 2791.4, + "probability": 0.9644 + }, + { + "start": 2792.24, + "end": 2794.18, + "probability": 0.9899 + }, + { + "start": 2794.66, + "end": 2795.72, + "probability": 0.9552 + }, + { + "start": 2796.26, + "end": 2800.74, + "probability": 0.9604 + }, + { + "start": 2801.42, + "end": 2801.64, + "probability": 0.6866 + }, + { + "start": 2801.74, + "end": 2802.72, + "probability": 0.5488 + }, + { + "start": 2802.86, + "end": 2804.62, + "probability": 0.8618 + }, + { + "start": 2805.1, + "end": 2806.02, + "probability": 0.4356 + }, + { + "start": 2807.04, + "end": 2808.86, + "probability": 0.0157 + }, + { + "start": 2813.02, + "end": 2816.06, + "probability": 0.989 + }, + { + "start": 2816.12, + "end": 2819.6, + "probability": 0.8994 + }, + { + "start": 2819.64, + "end": 2825.1, + "probability": 0.9489 + }, + { + "start": 2826.92, + "end": 2827.7, + "probability": 0.6646 + }, + { + "start": 2829.42, + "end": 2831.1, + "probability": 0.791 + }, + { + "start": 2832.08, + "end": 2837.48, + "probability": 0.8877 + }, + { + "start": 2838.34, + "end": 2844.4, + "probability": 0.733 + }, + { + "start": 2846.3, + "end": 2849.54, + "probability": 0.9147 + }, + { + "start": 2850.42, + "end": 2852.52, + "probability": 0.8323 + }, + { + "start": 2852.58, + "end": 2853.54, + "probability": 0.6037 + }, + { + "start": 2853.72, + "end": 2857.96, + "probability": 0.9883 + }, + { + "start": 2859.4, + "end": 2863.08, + "probability": 0.782 + }, + { + "start": 2863.46, + "end": 2863.92, + "probability": 0.894 + }, + { + "start": 2865.05, + "end": 2867.3, + "probability": 0.9946 + }, + { + "start": 2867.3, + "end": 2869.2, + "probability": 0.9673 + }, + { + "start": 2869.36, + "end": 2873.16, + "probability": 0.8153 + }, + { + "start": 2874.1, + "end": 2879.34, + "probability": 0.9893 + }, + { + "start": 2879.92, + "end": 2885.62, + "probability": 0.9937 + }, + { + "start": 2885.94, + "end": 2887.57, + "probability": 0.9671 + }, + { + "start": 2887.66, + "end": 2895.14, + "probability": 0.9352 + }, + { + "start": 2895.56, + "end": 2897.16, + "probability": 0.8783 + }, + { + "start": 2897.66, + "end": 2898.58, + "probability": 0.7086 + }, + { + "start": 2898.76, + "end": 2899.64, + "probability": 0.8072 + }, + { + "start": 2899.7, + "end": 2900.22, + "probability": 0.7828 + }, + { + "start": 2900.46, + "end": 2902.18, + "probability": 0.8248 + }, + { + "start": 2902.28, + "end": 2905.52, + "probability": 0.9781 + }, + { + "start": 2905.64, + "end": 2906.76, + "probability": 0.9445 + }, + { + "start": 2906.86, + "end": 2911.82, + "probability": 0.9953 + }, + { + "start": 2912.34, + "end": 2912.84, + "probability": 0.7839 + }, + { + "start": 2915.12, + "end": 2916.52, + "probability": 0.8405 + }, + { + "start": 2916.66, + "end": 2918.2, + "probability": 0.8337 + }, + { + "start": 2920.86, + "end": 2923.46, + "probability": 0.9772 + }, + { + "start": 2923.54, + "end": 2925.6, + "probability": 0.7283 + }, + { + "start": 2925.72, + "end": 2928.02, + "probability": 0.1159 + }, + { + "start": 2929.22, + "end": 2932.48, + "probability": 0.9871 + }, + { + "start": 2939.2, + "end": 2939.84, + "probability": 0.613 + }, + { + "start": 2939.96, + "end": 2940.6, + "probability": 0.5604 + }, + { + "start": 2940.68, + "end": 2941.64, + "probability": 0.6616 + }, + { + "start": 2944.22, + "end": 2946.72, + "probability": 0.3381 + }, + { + "start": 2947.44, + "end": 2949.94, + "probability": 0.1289 + }, + { + "start": 2952.02, + "end": 2953.22, + "probability": 0.0282 + }, + { + "start": 2953.61, + "end": 2957.98, + "probability": 0.0394 + }, + { + "start": 2958.4, + "end": 2959.6, + "probability": 0.0283 + }, + { + "start": 2959.6, + "end": 2959.74, + "probability": 0.5579 + }, + { + "start": 2959.74, + "end": 2959.74, + "probability": 0.0909 + }, + { + "start": 2959.74, + "end": 2961.54, + "probability": 0.3649 + }, + { + "start": 2961.9, + "end": 2967.22, + "probability": 0.9127 + }, + { + "start": 2967.38, + "end": 2968.12, + "probability": 0.8971 + }, + { + "start": 2968.78, + "end": 2971.56, + "probability": 0.995 + }, + { + "start": 2975.5, + "end": 2977.29, + "probability": 0.9792 + }, + { + "start": 2978.48, + "end": 2980.16, + "probability": 0.8486 + }, + { + "start": 2980.68, + "end": 2982.36, + "probability": 0.8731 + }, + { + "start": 2982.48, + "end": 2984.74, + "probability": 0.1824 + }, + { + "start": 2985.18, + "end": 2986.84, + "probability": 0.9961 + }, + { + "start": 2986.84, + "end": 2987.72, + "probability": 0.8491 + }, + { + "start": 3006.98, + "end": 3007.6, + "probability": 0.6364 + }, + { + "start": 3007.86, + "end": 3010.2, + "probability": 0.6732 + }, + { + "start": 3010.54, + "end": 3015.34, + "probability": 0.7507 + }, + { + "start": 3015.86, + "end": 3016.54, + "probability": 0.8765 + }, + { + "start": 3017.88, + "end": 3019.0, + "probability": 0.7742 + }, + { + "start": 3019.04, + "end": 3022.22, + "probability": 0.9097 + }, + { + "start": 3023.48, + "end": 3025.16, + "probability": 0.9198 + }, + { + "start": 3025.28, + "end": 3030.78, + "probability": 0.9946 + }, + { + "start": 3031.06, + "end": 3031.2, + "probability": 0.4979 + }, + { + "start": 3033.5, + "end": 3034.94, + "probability": 0.403 + }, + { + "start": 3036.48, + "end": 3041.9, + "probability": 0.8505 + }, + { + "start": 3043.03, + "end": 3050.52, + "probability": 0.9739 + }, + { + "start": 3050.84, + "end": 3053.62, + "probability": 0.6615 + }, + { + "start": 3053.7, + "end": 3054.64, + "probability": 0.9379 + }, + { + "start": 3055.88, + "end": 3057.06, + "probability": 0.727 + }, + { + "start": 3058.2, + "end": 3059.3, + "probability": 0.7722 + }, + { + "start": 3059.44, + "end": 3061.14, + "probability": 0.9795 + }, + { + "start": 3062.2, + "end": 3063.26, + "probability": 0.6594 + }, + { + "start": 3063.32, + "end": 3064.43, + "probability": 0.7805 + }, + { + "start": 3065.74, + "end": 3066.92, + "probability": 0.6827 + }, + { + "start": 3067.14, + "end": 3070.88, + "probability": 0.9924 + }, + { + "start": 3071.26, + "end": 3071.78, + "probability": 0.7791 + }, + { + "start": 3072.82, + "end": 3073.74, + "probability": 0.6483 + }, + { + "start": 3073.82, + "end": 3080.26, + "probability": 0.8329 + }, + { + "start": 3081.18, + "end": 3083.5, + "probability": 0.7759 + }, + { + "start": 3084.14, + "end": 3085.21, + "probability": 0.1971 + }, + { + "start": 3086.9, + "end": 3090.18, + "probability": 0.9373 + }, + { + "start": 3090.18, + "end": 3093.26, + "probability": 0.9725 + }, + { + "start": 3093.78, + "end": 3096.04, + "probability": 0.7779 + }, + { + "start": 3097.66, + "end": 3100.25, + "probability": 0.2069 + }, + { + "start": 3101.3, + "end": 3104.6, + "probability": 0.7108 + }, + { + "start": 3105.62, + "end": 3107.78, + "probability": 0.6642 + }, + { + "start": 3108.58, + "end": 3108.58, + "probability": 0.7291 + }, + { + "start": 3108.6, + "end": 3113.84, + "probability": 0.954 + }, + { + "start": 3115.4, + "end": 3117.02, + "probability": 0.8841 + }, + { + "start": 3117.14, + "end": 3117.8, + "probability": 0.9644 + }, + { + "start": 3118.32, + "end": 3118.68, + "probability": 0.332 + }, + { + "start": 3125.66, + "end": 3126.84, + "probability": 0.7887 + }, + { + "start": 3127.44, + "end": 3131.26, + "probability": 0.9039 + }, + { + "start": 3131.96, + "end": 3133.72, + "probability": 0.8165 + }, + { + "start": 3134.82, + "end": 3140.58, + "probability": 0.9524 + }, + { + "start": 3140.98, + "end": 3141.76, + "probability": 0.8696 + }, + { + "start": 3142.7, + "end": 3143.4, + "probability": 0.7912 + }, + { + "start": 3144.68, + "end": 3148.0, + "probability": 0.5245 + }, + { + "start": 3148.5, + "end": 3148.99, + "probability": 0.8865 + }, + { + "start": 3149.86, + "end": 3151.82, + "probability": 0.8193 + }, + { + "start": 3152.28, + "end": 3155.76, + "probability": 0.7459 + }, + { + "start": 3155.84, + "end": 3158.9, + "probability": 0.9394 + }, + { + "start": 3159.3, + "end": 3160.64, + "probability": 0.9854 + }, + { + "start": 3162.62, + "end": 3164.54, + "probability": 0.6845 + }, + { + "start": 3166.28, + "end": 3172.68, + "probability": 0.8118 + }, + { + "start": 3175.34, + "end": 3176.12, + "probability": 0.8642 + }, + { + "start": 3177.5, + "end": 3181.65, + "probability": 0.9454 + }, + { + "start": 3182.08, + "end": 3186.26, + "probability": 0.9502 + }, + { + "start": 3188.92, + "end": 3189.62, + "probability": 0.5146 + }, + { + "start": 3189.74, + "end": 3190.92, + "probability": 0.7567 + }, + { + "start": 3190.92, + "end": 3195.0, + "probability": 0.8813 + }, + { + "start": 3195.16, + "end": 3198.62, + "probability": 0.9845 + }, + { + "start": 3199.32, + "end": 3201.7, + "probability": 0.7923 + }, + { + "start": 3202.38, + "end": 3204.88, + "probability": 0.9453 + }, + { + "start": 3206.74, + "end": 3208.86, + "probability": 0.7525 + }, + { + "start": 3209.2, + "end": 3212.68, + "probability": 0.9722 + }, + { + "start": 3212.78, + "end": 3217.88, + "probability": 0.8939 + }, + { + "start": 3218.58, + "end": 3219.44, + "probability": 0.1573 + }, + { + "start": 3219.74, + "end": 3224.22, + "probability": 0.8301 + }, + { + "start": 3224.54, + "end": 3224.58, + "probability": 0.0358 + }, + { + "start": 3224.58, + "end": 3224.58, + "probability": 0.0259 + }, + { + "start": 3224.58, + "end": 3228.86, + "probability": 0.6211 + }, + { + "start": 3228.98, + "end": 3231.19, + "probability": 0.6842 + }, + { + "start": 3231.92, + "end": 3231.94, + "probability": 0.0767 + }, + { + "start": 3231.94, + "end": 3231.94, + "probability": 0.3231 + }, + { + "start": 3231.94, + "end": 3233.34, + "probability": 0.6705 + }, + { + "start": 3233.7, + "end": 3236.82, + "probability": 0.6027 + }, + { + "start": 3236.84, + "end": 3238.24, + "probability": 0.0446 + }, + { + "start": 3238.24, + "end": 3243.05, + "probability": 0.573 + }, + { + "start": 3243.28, + "end": 3244.82, + "probability": 0.1215 + }, + { + "start": 3244.84, + "end": 3247.7, + "probability": 0.5245 + }, + { + "start": 3247.78, + "end": 3249.42, + "probability": 0.9302 + }, + { + "start": 3249.42, + "end": 3249.92, + "probability": 0.5936 + }, + { + "start": 3250.14, + "end": 3251.91, + "probability": 0.3301 + }, + { + "start": 3252.38, + "end": 3252.9, + "probability": 0.2237 + }, + { + "start": 3253.06, + "end": 3253.1, + "probability": 0.0897 + }, + { + "start": 3253.1, + "end": 3253.84, + "probability": 0.1654 + }, + { + "start": 3254.04, + "end": 3254.7, + "probability": 0.7109 + }, + { + "start": 3255.08, + "end": 3256.22, + "probability": 0.4851 + }, + { + "start": 3256.4, + "end": 3257.48, + "probability": 0.5466 + }, + { + "start": 3257.54, + "end": 3259.98, + "probability": 0.6585 + }, + { + "start": 3260.1, + "end": 3261.56, + "probability": 0.9826 + }, + { + "start": 3261.64, + "end": 3262.79, + "probability": 0.7843 + }, + { + "start": 3263.24, + "end": 3264.9, + "probability": 0.55 + }, + { + "start": 3265.12, + "end": 3267.08, + "probability": 0.0377 + }, + { + "start": 3267.1, + "end": 3268.24, + "probability": 0.1138 + }, + { + "start": 3268.68, + "end": 3270.19, + "probability": 0.1267 + }, + { + "start": 3271.52, + "end": 3272.5, + "probability": 0.3258 + }, + { + "start": 3273.28, + "end": 3274.24, + "probability": 0.1458 + }, + { + "start": 3274.46, + "end": 3275.56, + "probability": 0.2079 + }, + { + "start": 3275.7, + "end": 3276.3, + "probability": 0.5322 + }, + { + "start": 3276.6, + "end": 3277.5, + "probability": 0.0828 + }, + { + "start": 3278.5, + "end": 3279.68, + "probability": 0.0694 + }, + { + "start": 3280.84, + "end": 3281.56, + "probability": 0.1469 + }, + { + "start": 3282.64, + "end": 3283.0, + "probability": 0.0386 + }, + { + "start": 3283.0, + "end": 3283.04, + "probability": 0.1821 + }, + { + "start": 3283.04, + "end": 3283.04, + "probability": 0.2947 + }, + { + "start": 3283.04, + "end": 3284.02, + "probability": 0.3812 + }, + { + "start": 3284.4, + "end": 3286.16, + "probability": 0.4112 + }, + { + "start": 3286.54, + "end": 3287.62, + "probability": 0.693 + }, + { + "start": 3288.24, + "end": 3289.74, + "probability": 0.3245 + }, + { + "start": 3336.0, + "end": 3336.0, + "probability": 0.0 + }, + { + "start": 3336.0, + "end": 3336.0, + "probability": 0.0 + }, + { + "start": 3336.0, + "end": 3336.0, + "probability": 0.0 + }, + { + "start": 3336.0, + "end": 3336.0, + "probability": 0.0 + }, + { + "start": 3336.0, + "end": 3336.0, + "probability": 0.0 + }, + { + "start": 3336.0, + "end": 3336.0, + "probability": 0.0 + }, + { + "start": 3336.0, + "end": 3336.0, + "probability": 0.0 + }, + { + "start": 3336.0, + "end": 3336.0, + "probability": 0.0 + }, + { + "start": 3336.0, + "end": 3336.0, + "probability": 0.0 + }, + { + "start": 3336.0, + "end": 3336.0, + "probability": 0.0 + }, + { + "start": 3336.0, + "end": 3336.0, + "probability": 0.0 + }, + { + "start": 3336.0, + "end": 3336.0, + "probability": 0.0 + }, + { + "start": 3336.0, + "end": 3336.0, + "probability": 0.0 + }, + { + "start": 3336.0, + "end": 3336.0, + "probability": 0.0 + }, + { + "start": 3336.0, + "end": 3336.0, + "probability": 0.0 + }, + { + "start": 3336.0, + "end": 3336.0, + "probability": 0.0 + }, + { + "start": 3336.0, + "end": 3336.0, + "probability": 0.0 + }, + { + "start": 3336.0, + "end": 3336.0, + "probability": 0.0 + }, + { + "start": 3336.0, + "end": 3336.0, + "probability": 0.0 + }, + { + "start": 3336.0, + "end": 3336.0, + "probability": 0.0 + }, + { + "start": 3336.0, + "end": 3336.0, + "probability": 0.0 + }, + { + "start": 3336.0, + "end": 3336.0, + "probability": 0.0 + }, + { + "start": 3336.1, + "end": 3337.46, + "probability": 0.0614 + }, + { + "start": 3337.46, + "end": 3337.46, + "probability": 0.1204 + }, + { + "start": 3337.46, + "end": 3338.62, + "probability": 0.0869 + }, + { + "start": 3338.74, + "end": 3338.74, + "probability": 0.0291 + }, + { + "start": 3338.74, + "end": 3339.66, + "probability": 0.0831 + }, + { + "start": 3341.42, + "end": 3345.6, + "probability": 0.3548 + }, + { + "start": 3346.86, + "end": 3347.66, + "probability": 0.0188 + }, + { + "start": 3347.72, + "end": 3348.26, + "probability": 0.0387 + }, + { + "start": 3348.26, + "end": 3348.26, + "probability": 0.1176 + }, + { + "start": 3348.26, + "end": 3349.03, + "probability": 0.1021 + }, + { + "start": 3349.24, + "end": 3350.68, + "probability": 0.6138 + }, + { + "start": 3350.86, + "end": 3350.9, + "probability": 0.0095 + }, + { + "start": 3350.9, + "end": 3350.9, + "probability": 0.0133 + }, + { + "start": 3350.9, + "end": 3350.9, + "probability": 0.65 + }, + { + "start": 3350.9, + "end": 3355.16, + "probability": 0.9692 + }, + { + "start": 3355.36, + "end": 3356.32, + "probability": 0.5912 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.0, + "end": 3464.0, + "probability": 0.0 + }, + { + "start": 3464.58, + "end": 3466.7, + "probability": 0.1424 + }, + { + "start": 3484.4, + "end": 3486.24, + "probability": 0.0218 + }, + { + "start": 3486.24, + "end": 3488.64, + "probability": 0.2223 + }, + { + "start": 3490.68, + "end": 3492.02, + "probability": 0.581 + }, + { + "start": 3495.3, + "end": 3497.88, + "probability": 0.2085 + }, + { + "start": 3499.06, + "end": 3500.6, + "probability": 0.0733 + }, + { + "start": 3501.9, + "end": 3504.88, + "probability": 0.2392 + }, + { + "start": 3505.92, + "end": 3507.06, + "probability": 0.0325 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3592.0, + "probability": 0.0 + }, + { + "start": 3592.0, + "end": 3597.66, + "probability": 0.9639 + }, + { + "start": 3599.36, + "end": 3602.86, + "probability": 0.6388 + }, + { + "start": 3603.86, + "end": 3606.14, + "probability": 0.9901 + }, + { + "start": 3606.14, + "end": 3610.98, + "probability": 0.9944 + }, + { + "start": 3612.24, + "end": 3614.88, + "probability": 0.9982 + }, + { + "start": 3614.88, + "end": 3618.54, + "probability": 0.8903 + }, + { + "start": 3619.16, + "end": 3621.18, + "probability": 0.9673 + }, + { + "start": 3621.58, + "end": 3625.7, + "probability": 0.8764 + }, + { + "start": 3625.7, + "end": 3629.34, + "probability": 0.9976 + }, + { + "start": 3630.4, + "end": 3632.84, + "probability": 0.8665 + }, + { + "start": 3633.3, + "end": 3636.78, + "probability": 0.8981 + }, + { + "start": 3638.12, + "end": 3642.82, + "probability": 0.9712 + }, + { + "start": 3642.82, + "end": 3648.66, + "probability": 0.5824 + }, + { + "start": 3649.42, + "end": 3654.94, + "probability": 0.9759 + }, + { + "start": 3655.6, + "end": 3657.42, + "probability": 0.78 + }, + { + "start": 3657.6, + "end": 3657.6, + "probability": 0.288 + }, + { + "start": 3657.6, + "end": 3657.86, + "probability": 0.4871 + }, + { + "start": 3657.98, + "end": 3659.7, + "probability": 0.6606 + }, + { + "start": 3659.74, + "end": 3661.22, + "probability": 0.8827 + }, + { + "start": 3662.3, + "end": 3667.1, + "probability": 0.5286 + }, + { + "start": 3667.14, + "end": 3669.41, + "probability": 0.8937 + }, + { + "start": 3670.2, + "end": 3671.6, + "probability": 0.7677 + }, + { + "start": 3677.28, + "end": 3678.04, + "probability": 0.7201 + }, + { + "start": 3679.18, + "end": 3679.6, + "probability": 0.5339 + }, + { + "start": 3691.26, + "end": 3692.44, + "probability": 0.4842 + }, + { + "start": 3693.14, + "end": 3698.58, + "probability": 0.8879 + }, + { + "start": 3700.52, + "end": 3702.04, + "probability": 0.5399 + }, + { + "start": 3702.14, + "end": 3703.48, + "probability": 0.8363 + }, + { + "start": 3703.62, + "end": 3704.98, + "probability": 0.8774 + }, + { + "start": 3705.66, + "end": 3707.0, + "probability": 0.6808 + }, + { + "start": 3707.04, + "end": 3707.92, + "probability": 0.8287 + }, + { + "start": 3708.64, + "end": 3712.1, + "probability": 0.7848 + }, + { + "start": 3712.42, + "end": 3716.0, + "probability": 0.7407 + }, + { + "start": 3716.46, + "end": 3721.2, + "probability": 0.963 + }, + { + "start": 3722.92, + "end": 3726.52, + "probability": 0.9571 + }, + { + "start": 3727.28, + "end": 3730.7, + "probability": 0.8828 + }, + { + "start": 3731.36, + "end": 3734.99, + "probability": 0.9307 + }, + { + "start": 3735.42, + "end": 3736.64, + "probability": 0.8734 + }, + { + "start": 3736.76, + "end": 3737.52, + "probability": 0.835 + }, + { + "start": 3737.6, + "end": 3739.46, + "probability": 0.8962 + }, + { + "start": 3739.58, + "end": 3741.49, + "probability": 0.9401 + }, + { + "start": 3741.66, + "end": 3744.92, + "probability": 0.9106 + }, + { + "start": 3745.66, + "end": 3749.22, + "probability": 0.6773 + }, + { + "start": 3749.4, + "end": 3751.46, + "probability": 0.7588 + }, + { + "start": 3752.4, + "end": 3757.64, + "probability": 0.9717 + }, + { + "start": 3758.02, + "end": 3760.4, + "probability": 0.9288 + }, + { + "start": 3760.68, + "end": 3762.39, + "probability": 0.9488 + }, + { + "start": 3763.16, + "end": 3764.76, + "probability": 0.7906 + }, + { + "start": 3765.64, + "end": 3767.96, + "probability": 0.8906 + }, + { + "start": 3768.12, + "end": 3770.8, + "probability": 0.8933 + }, + { + "start": 3771.18, + "end": 3774.62, + "probability": 0.7963 + }, + { + "start": 3774.68, + "end": 3775.06, + "probability": 0.6909 + }, + { + "start": 3775.22, + "end": 3775.48, + "probability": 0.8221 + }, + { + "start": 3776.98, + "end": 3778.74, + "probability": 0.8247 + }, + { + "start": 3778.96, + "end": 3781.27, + "probability": 0.9717 + }, + { + "start": 3783.0, + "end": 3784.04, + "probability": 0.9937 + }, + { + "start": 3788.88, + "end": 3791.76, + "probability": 0.5465 + }, + { + "start": 3791.76, + "end": 3792.22, + "probability": 0.5908 + }, + { + "start": 3792.26, + "end": 3793.04, + "probability": 0.7496 + }, + { + "start": 3798.18, + "end": 3799.96, + "probability": 0.3086 + }, + { + "start": 3800.86, + "end": 3801.02, + "probability": 0.0325 + }, + { + "start": 3802.0, + "end": 3806.06, + "probability": 0.0676 + }, + { + "start": 3807.92, + "end": 3807.92, + "probability": 0.0793 + }, + { + "start": 3807.92, + "end": 3810.22, + "probability": 0.4871 + }, + { + "start": 3810.32, + "end": 3811.56, + "probability": 0.442 + }, + { + "start": 3811.56, + "end": 3819.14, + "probability": 0.8259 + }, + { + "start": 3819.24, + "end": 3820.16, + "probability": 0.9834 + }, + { + "start": 3821.0, + "end": 3821.6, + "probability": 0.226 + }, + { + "start": 3821.62, + "end": 3822.46, + "probability": 0.2786 + }, + { + "start": 3822.48, + "end": 3827.24, + "probability": 0.7006 + }, + { + "start": 3828.22, + "end": 3832.77, + "probability": 0.8825 + }, + { + "start": 3834.52, + "end": 3837.02, + "probability": 0.9912 + }, + { + "start": 3839.8, + "end": 3841.14, + "probability": 0.0343 + }, + { + "start": 3841.14, + "end": 3841.83, + "probability": 0.1894 + }, + { + "start": 3853.26, + "end": 3853.26, + "probability": 0.3414 + }, + { + "start": 3853.26, + "end": 3855.87, + "probability": 0.6722 + }, + { + "start": 3857.32, + "end": 3858.68, + "probability": 0.6539 + }, + { + "start": 3859.46, + "end": 3860.58, + "probability": 0.6392 + }, + { + "start": 3860.82, + "end": 3866.28, + "probability": 0.8147 + }, + { + "start": 3866.6, + "end": 3866.6, + "probability": 0.0565 + }, + { + "start": 3866.84, + "end": 3867.06, + "probability": 0.4096 + }, + { + "start": 3867.26, + "end": 3872.98, + "probability": 0.9581 + }, + { + "start": 3874.42, + "end": 3877.58, + "probability": 0.9885 + }, + { + "start": 3878.66, + "end": 3878.78, + "probability": 0.0194 + }, + { + "start": 3878.78, + "end": 3879.06, + "probability": 0.7315 + }, + { + "start": 3879.22, + "end": 3887.84, + "probability": 0.9819 + }, + { + "start": 3888.66, + "end": 3889.86, + "probability": 0.7111 + }, + { + "start": 3890.66, + "end": 3894.76, + "probability": 0.8793 + }, + { + "start": 3895.6, + "end": 3897.24, + "probability": 0.488 + }, + { + "start": 3898.84, + "end": 3899.92, + "probability": 0.9683 + }, + { + "start": 3903.16, + "end": 3906.79, + "probability": 0.8173 + }, + { + "start": 3907.68, + "end": 3908.72, + "probability": 0.7795 + }, + { + "start": 3909.74, + "end": 3910.92, + "probability": 0.7921 + }, + { + "start": 3912.18, + "end": 3915.63, + "probability": 0.7745 + }, + { + "start": 3921.64, + "end": 3923.68, + "probability": 0.3793 + }, + { + "start": 3924.02, + "end": 3928.84, + "probability": 0.8465 + }, + { + "start": 3929.68, + "end": 3931.2, + "probability": 0.9345 + }, + { + "start": 3931.48, + "end": 3932.7, + "probability": 0.8444 + }, + { + "start": 3933.64, + "end": 3936.24, + "probability": 0.9948 + }, + { + "start": 3937.04, + "end": 3943.8, + "probability": 0.8743 + }, + { + "start": 3943.8, + "end": 3944.4, + "probability": 0.6331 + }, + { + "start": 3944.48, + "end": 3944.76, + "probability": 0.6895 + }, + { + "start": 3944.86, + "end": 3946.34, + "probability": 0.7554 + }, + { + "start": 3947.54, + "end": 3948.54, + "probability": 0.9408 + }, + { + "start": 3950.24, + "end": 3958.56, + "probability": 0.8966 + }, + { + "start": 3958.58, + "end": 3959.9, + "probability": 0.7107 + }, + { + "start": 3960.34, + "end": 3961.48, + "probability": 0.5165 + }, + { + "start": 3962.38, + "end": 3963.68, + "probability": 0.7009 + }, + { + "start": 3963.74, + "end": 3964.18, + "probability": 0.6973 + }, + { + "start": 3964.26, + "end": 3965.76, + "probability": 0.7556 + }, + { + "start": 3966.74, + "end": 3976.8, + "probability": 0.7507 + }, + { + "start": 3978.04, + "end": 3978.24, + "probability": 0.8469 + }, + { + "start": 3978.34, + "end": 3980.52, + "probability": 0.9882 + }, + { + "start": 3980.66, + "end": 3982.04, + "probability": 0.9163 + }, + { + "start": 3982.54, + "end": 3988.72, + "probability": 0.9948 + }, + { + "start": 3990.02, + "end": 3993.88, + "probability": 0.9803 + }, + { + "start": 3994.22, + "end": 3995.54, + "probability": 0.8136 + }, + { + "start": 3995.86, + "end": 3996.88, + "probability": 0.9761 + }, + { + "start": 3998.2, + "end": 4000.94, + "probability": 0.9147 + }, + { + "start": 4001.76, + "end": 4002.52, + "probability": 0.7969 + }, + { + "start": 4003.6, + "end": 4005.88, + "probability": 0.9656 + }, + { + "start": 4006.18, + "end": 4009.98, + "probability": 0.7795 + }, + { + "start": 4011.16, + "end": 4014.46, + "probability": 0.9832 + }, + { + "start": 4014.62, + "end": 4016.04, + "probability": 0.9664 + }, + { + "start": 4016.14, + "end": 4016.8, + "probability": 0.3957 + }, + { + "start": 4016.96, + "end": 4017.58, + "probability": 0.3624 + }, + { + "start": 4018.34, + "end": 4018.72, + "probability": 0.7302 + }, + { + "start": 4020.45, + "end": 4024.26, + "probability": 0.285 + }, + { + "start": 4024.3, + "end": 4024.98, + "probability": 0.6682 + }, + { + "start": 4025.62, + "end": 4028.88, + "probability": 0.5056 + }, + { + "start": 4029.52, + "end": 4030.24, + "probability": 0.7913 + }, + { + "start": 4030.36, + "end": 4031.26, + "probability": 0.7864 + }, + { + "start": 4031.34, + "end": 4031.62, + "probability": 0.7353 + }, + { + "start": 4031.72, + "end": 4032.64, + "probability": 0.7671 + }, + { + "start": 4032.92, + "end": 4035.98, + "probability": 0.9403 + }, + { + "start": 4036.9, + "end": 4038.06, + "probability": 0.6099 + }, + { + "start": 4038.16, + "end": 4038.66, + "probability": 0.8907 + }, + { + "start": 4038.9, + "end": 4039.78, + "probability": 0.7979 + }, + { + "start": 4040.04, + "end": 4043.12, + "probability": 0.6471 + }, + { + "start": 4043.76, + "end": 4045.2, + "probability": 0.9521 + }, + { + "start": 4046.38, + "end": 4049.34, + "probability": 0.7298 + }, + { + "start": 4051.14, + "end": 4052.32, + "probability": 0.1563 + }, + { + "start": 4052.5, + "end": 4054.32, + "probability": 0.3496 + }, + { + "start": 4054.52, + "end": 4056.98, + "probability": 0.9795 + }, + { + "start": 4057.38, + "end": 4058.38, + "probability": 0.8345 + }, + { + "start": 4058.48, + "end": 4060.54, + "probability": 0.9915 + }, + { + "start": 4060.62, + "end": 4060.84, + "probability": 0.3946 + }, + { + "start": 4061.0, + "end": 4061.98, + "probability": 0.855 + }, + { + "start": 4062.52, + "end": 4064.02, + "probability": 0.6841 + }, + { + "start": 4064.2, + "end": 4066.78, + "probability": 0.614 + }, + { + "start": 4066.8, + "end": 4069.35, + "probability": 0.9564 + }, + { + "start": 4070.32, + "end": 4070.84, + "probability": 0.5332 + }, + { + "start": 4071.24, + "end": 4072.91, + "probability": 0.9165 + }, + { + "start": 4073.64, + "end": 4073.68, + "probability": 0.0518 + }, + { + "start": 4073.68, + "end": 4076.46, + "probability": 0.6312 + }, + { + "start": 4076.86, + "end": 4078.12, + "probability": 0.4782 + }, + { + "start": 4078.7, + "end": 4080.1, + "probability": 0.5434 + }, + { + "start": 4080.22, + "end": 4081.84, + "probability": 0.9663 + }, + { + "start": 4082.24, + "end": 4083.16, + "probability": 0.6251 + }, + { + "start": 4083.98, + "end": 4086.1, + "probability": 0.5729 + }, + { + "start": 4086.7, + "end": 4089.08, + "probability": 0.9141 + }, + { + "start": 4089.62, + "end": 4091.98, + "probability": 0.7491 + }, + { + "start": 4092.32, + "end": 4097.62, + "probability": 0.9771 + }, + { + "start": 4097.9, + "end": 4101.32, + "probability": 0.7953 + }, + { + "start": 4101.38, + "end": 4101.96, + "probability": 0.5136 + }, + { + "start": 4102.06, + "end": 4105.92, + "probability": 0.9982 + }, + { + "start": 4106.3, + "end": 4107.29, + "probability": 0.9053 + }, + { + "start": 4107.4, + "end": 4110.54, + "probability": 0.772 + }, + { + "start": 4111.14, + "end": 4111.94, + "probability": 0.588 + }, + { + "start": 4112.08, + "end": 4112.88, + "probability": 0.7448 + }, + { + "start": 4113.06, + "end": 4115.44, + "probability": 0.8094 + }, + { + "start": 4115.78, + "end": 4116.9, + "probability": 0.9941 + }, + { + "start": 4117.02, + "end": 4118.16, + "probability": 0.7917 + }, + { + "start": 4118.32, + "end": 4123.2, + "probability": 0.9798 + }, + { + "start": 4123.92, + "end": 4124.7, + "probability": 0.656 + }, + { + "start": 4125.72, + "end": 4128.7, + "probability": 0.995 + }, + { + "start": 4129.22, + "end": 4131.56, + "probability": 0.9644 + }, + { + "start": 4131.92, + "end": 4136.3, + "probability": 0.6589 + }, + { + "start": 4136.92, + "end": 4140.66, + "probability": 0.6647 + }, + { + "start": 4140.88, + "end": 4146.12, + "probability": 0.8861 + }, + { + "start": 4146.8, + "end": 4149.73, + "probability": 0.9814 + }, + { + "start": 4150.56, + "end": 4152.24, + "probability": 0.9468 + }, + { + "start": 4152.44, + "end": 4154.86, + "probability": 0.865 + }, + { + "start": 4155.76, + "end": 4159.58, + "probability": 0.8495 + }, + { + "start": 4160.52, + "end": 4162.84, + "probability": 0.6776 + }, + { + "start": 4163.6, + "end": 4165.54, + "probability": 0.9944 + }, + { + "start": 4165.54, + "end": 4166.46, + "probability": 0.8804 + }, + { + "start": 4166.54, + "end": 4170.36, + "probability": 0.8046 + }, + { + "start": 4170.44, + "end": 4171.26, + "probability": 0.9131 + }, + { + "start": 4171.74, + "end": 4174.36, + "probability": 0.9252 + }, + { + "start": 4174.72, + "end": 4177.2, + "probability": 0.2109 + }, + { + "start": 4177.26, + "end": 4177.82, + "probability": 0.5771 + }, + { + "start": 4177.9, + "end": 4178.8, + "probability": 0.5576 + }, + { + "start": 4181.15, + "end": 4182.48, + "probability": 0.0617 + }, + { + "start": 4182.48, + "end": 4183.01, + "probability": 0.1885 + }, + { + "start": 4183.84, + "end": 4184.74, + "probability": 0.3432 + }, + { + "start": 4185.36, + "end": 4186.64, + "probability": 0.8325 + }, + { + "start": 4186.72, + "end": 4188.65, + "probability": 0.9978 + }, + { + "start": 4188.8, + "end": 4190.84, + "probability": 0.9984 + }, + { + "start": 4191.1, + "end": 4191.12, + "probability": 0.4236 + }, + { + "start": 4191.22, + "end": 4191.58, + "probability": 0.7685 + }, + { + "start": 4191.72, + "end": 4192.23, + "probability": 0.9097 + }, + { + "start": 4193.12, + "end": 4194.62, + "probability": 0.9893 + }, + { + "start": 4195.44, + "end": 4197.42, + "probability": 0.8885 + }, + { + "start": 4198.0, + "end": 4198.96, + "probability": 0.7008 + }, + { + "start": 4199.52, + "end": 4202.78, + "probability": 0.9874 + }, + { + "start": 4203.66, + "end": 4204.34, + "probability": 0.8122 + }, + { + "start": 4204.42, + "end": 4205.18, + "probability": 0.8527 + }, + { + "start": 4205.22, + "end": 4205.56, + "probability": 0.3062 + }, + { + "start": 4205.56, + "end": 4207.04, + "probability": 0.9805 + }, + { + "start": 4207.1, + "end": 4209.0, + "probability": 0.9875 + }, + { + "start": 4209.04, + "end": 4209.4, + "probability": 0.5961 + }, + { + "start": 4210.72, + "end": 4215.6, + "probability": 0.9679 + }, + { + "start": 4216.16, + "end": 4218.4, + "probability": 0.9775 + }, + { + "start": 4218.5, + "end": 4219.26, + "probability": 0.9421 + }, + { + "start": 4219.68, + "end": 4222.64, + "probability": 0.9971 + }, + { + "start": 4222.82, + "end": 4224.46, + "probability": 0.9585 + }, + { + "start": 4226.22, + "end": 4227.0, + "probability": 0.4019 + }, + { + "start": 4227.0, + "end": 4228.0, + "probability": 0.5183 + }, + { + "start": 4228.16, + "end": 4229.06, + "probability": 0.5972 + }, + { + "start": 4229.4, + "end": 4232.96, + "probability": 0.7894 + }, + { + "start": 4235.43, + "end": 4240.72, + "probability": 0.8386 + }, + { + "start": 4241.02, + "end": 4243.14, + "probability": 0.8451 + }, + { + "start": 4243.2, + "end": 4243.68, + "probability": 0.8949 + }, + { + "start": 4244.18, + "end": 4246.66, + "probability": 0.9313 + }, + { + "start": 4247.06, + "end": 4248.64, + "probability": 0.9705 + }, + { + "start": 4249.02, + "end": 4251.16, + "probability": 0.8486 + }, + { + "start": 4251.66, + "end": 4252.52, + "probability": 0.9429 + }, + { + "start": 4252.76, + "end": 4257.64, + "probability": 0.9689 + }, + { + "start": 4257.94, + "end": 4260.64, + "probability": 0.8993 + }, + { + "start": 4261.76, + "end": 4265.4, + "probability": 0.9541 + }, + { + "start": 4265.52, + "end": 4267.1, + "probability": 0.961 + }, + { + "start": 4268.06, + "end": 4269.94, + "probability": 0.6436 + }, + { + "start": 4270.08, + "end": 4274.16, + "probability": 0.9469 + }, + { + "start": 4274.22, + "end": 4274.64, + "probability": 0.8208 + }, + { + "start": 4275.94, + "end": 4277.88, + "probability": 0.8081 + }, + { + "start": 4278.16, + "end": 4282.54, + "probability": 0.7789 + }, + { + "start": 4282.62, + "end": 4282.86, + "probability": 0.8736 + }, + { + "start": 4295.78, + "end": 4297.46, + "probability": 0.7503 + }, + { + "start": 4298.38, + "end": 4301.82, + "probability": 0.9529 + }, + { + "start": 4301.9, + "end": 4303.04, + "probability": 0.8809 + }, + { + "start": 4303.46, + "end": 4306.15, + "probability": 0.9918 + }, + { + "start": 4306.8, + "end": 4308.78, + "probability": 0.678 + }, + { + "start": 4310.16, + "end": 4314.26, + "probability": 0.8932 + }, + { + "start": 4314.38, + "end": 4315.06, + "probability": 0.2859 + }, + { + "start": 4315.24, + "end": 4315.66, + "probability": 0.4657 + }, + { + "start": 4315.72, + "end": 4317.34, + "probability": 0.7689 + }, + { + "start": 4318.3, + "end": 4320.44, + "probability": 0.9761 + }, + { + "start": 4320.56, + "end": 4322.08, + "probability": 0.8779 + }, + { + "start": 4322.82, + "end": 4326.86, + "probability": 0.9233 + }, + { + "start": 4327.54, + "end": 4328.14, + "probability": 0.8772 + }, + { + "start": 4328.22, + "end": 4331.14, + "probability": 0.9789 + }, + { + "start": 4331.42, + "end": 4335.8, + "probability": 0.9935 + }, + { + "start": 4336.3, + "end": 4338.56, + "probability": 0.9677 + }, + { + "start": 4338.76, + "end": 4339.98, + "probability": 0.959 + }, + { + "start": 4340.12, + "end": 4340.62, + "probability": 0.8599 + }, + { + "start": 4341.16, + "end": 4342.32, + "probability": 0.9899 + }, + { + "start": 4343.02, + "end": 4345.44, + "probability": 0.9895 + }, + { + "start": 4346.38, + "end": 4348.24, + "probability": 0.996 + }, + { + "start": 4348.34, + "end": 4350.12, + "probability": 0.4945 + }, + { + "start": 4350.62, + "end": 4353.48, + "probability": 0.9543 + }, + { + "start": 4353.48, + "end": 4357.5, + "probability": 0.9865 + }, + { + "start": 4358.0, + "end": 4360.52, + "probability": 0.8421 + }, + { + "start": 4360.64, + "end": 4361.16, + "probability": 0.8998 + }, + { + "start": 4361.62, + "end": 4364.54, + "probability": 0.8203 + }, + { + "start": 4364.86, + "end": 4367.84, + "probability": 0.8083 + }, + { + "start": 4368.34, + "end": 4368.76, + "probability": 0.7341 + }, + { + "start": 4368.86, + "end": 4371.82, + "probability": 0.8639 + }, + { + "start": 4371.82, + "end": 4375.46, + "probability": 0.9943 + }, + { + "start": 4379.1, + "end": 4383.9, + "probability": 0.8631 + }, + { + "start": 4384.0, + "end": 4388.18, + "probability": 0.8816 + }, + { + "start": 4388.26, + "end": 4392.54, + "probability": 0.9938 + }, + { + "start": 4392.7, + "end": 4398.09, + "probability": 0.76 + }, + { + "start": 4398.32, + "end": 4399.0, + "probability": 0.7515 + }, + { + "start": 4399.26, + "end": 4399.64, + "probability": 0.2692 + }, + { + "start": 4399.64, + "end": 4399.66, + "probability": 0.7665 + }, + { + "start": 4399.74, + "end": 4401.62, + "probability": 0.9966 + }, + { + "start": 4401.78, + "end": 4402.78, + "probability": 0.9594 + }, + { + "start": 4403.22, + "end": 4404.84, + "probability": 0.7577 + }, + { + "start": 4404.98, + "end": 4404.98, + "probability": 0.1451 + }, + { + "start": 4405.12, + "end": 4407.72, + "probability": 0.9937 + }, + { + "start": 4407.72, + "end": 4412.75, + "probability": 0.988 + }, + { + "start": 4413.16, + "end": 4415.26, + "probability": 0.1548 + }, + { + "start": 4415.96, + "end": 4417.62, + "probability": 0.2458 + }, + { + "start": 4418.28, + "end": 4420.1, + "probability": 0.6021 + }, + { + "start": 4420.68, + "end": 4421.4, + "probability": 0.4735 + }, + { + "start": 4422.9, + "end": 4424.26, + "probability": 0.1236 + }, + { + "start": 4424.4, + "end": 4425.94, + "probability": 0.85 + }, + { + "start": 4426.12, + "end": 4428.4, + "probability": 0.7229 + }, + { + "start": 4428.48, + "end": 4434.2, + "probability": 0.9982 + }, + { + "start": 4434.84, + "end": 4437.92, + "probability": 0.8799 + }, + { + "start": 4438.04, + "end": 4440.02, + "probability": 0.7547 + }, + { + "start": 4440.26, + "end": 4440.82, + "probability": 0.6988 + }, + { + "start": 4441.12, + "end": 4441.82, + "probability": 0.8955 + }, + { + "start": 4443.84, + "end": 4445.48, + "probability": 0.6775 + }, + { + "start": 4445.62, + "end": 4445.96, + "probability": 0.7723 + }, + { + "start": 4446.04, + "end": 4446.72, + "probability": 0.4851 + }, + { + "start": 4446.72, + "end": 4449.18, + "probability": 0.9924 + }, + { + "start": 4450.74, + "end": 4453.34, + "probability": 0.65 + }, + { + "start": 4454.04, + "end": 4456.11, + "probability": 0.9569 + }, + { + "start": 4457.26, + "end": 4459.48, + "probability": 0.552 + }, + { + "start": 4460.48, + "end": 4461.4, + "probability": 0.7874 + }, + { + "start": 4462.16, + "end": 4462.86, + "probability": 0.2771 + }, + { + "start": 4462.86, + "end": 4463.7, + "probability": 0.7086 + }, + { + "start": 4464.48, + "end": 4465.32, + "probability": 0.7754 + }, + { + "start": 4465.98, + "end": 4466.94, + "probability": 0.5161 + }, + { + "start": 4467.24, + "end": 4469.98, + "probability": 0.943 + }, + { + "start": 4470.4, + "end": 4475.76, + "probability": 0.0347 + }, + { + "start": 4476.54, + "end": 4477.32, + "probability": 0.1814 + }, + { + "start": 4477.32, + "end": 4480.21, + "probability": 0.9062 + }, + { + "start": 4481.6, + "end": 4482.26, + "probability": 0.6835 + }, + { + "start": 4483.4, + "end": 4485.88, + "probability": 0.9951 + }, + { + "start": 4485.92, + "end": 4488.5, + "probability": 0.9601 + }, + { + "start": 4488.56, + "end": 4489.18, + "probability": 0.9681 + }, + { + "start": 4489.62, + "end": 4493.96, + "probability": 0.7992 + }, + { + "start": 4494.62, + "end": 4495.92, + "probability": 0.8711 + }, + { + "start": 4495.98, + "end": 4496.8, + "probability": 0.9202 + }, + { + "start": 4497.44, + "end": 4500.82, + "probability": 0.9896 + }, + { + "start": 4501.72, + "end": 4503.1, + "probability": 0.5761 + }, + { + "start": 4504.4, + "end": 4505.76, + "probability": 0.9596 + }, + { + "start": 4505.9, + "end": 4508.6, + "probability": 0.9797 + }, + { + "start": 4509.14, + "end": 4512.08, + "probability": 0.9591 + }, + { + "start": 4512.22, + "end": 4515.7, + "probability": 0.807 + }, + { + "start": 4515.92, + "end": 4520.9, + "probability": 0.991 + }, + { + "start": 4520.94, + "end": 4522.42, + "probability": 0.9331 + }, + { + "start": 4522.98, + "end": 4524.4, + "probability": 0.5786 + }, + { + "start": 4524.82, + "end": 4526.92, + "probability": 0.9965 + }, + { + "start": 4527.14, + "end": 4528.0, + "probability": 0.8689 + }, + { + "start": 4528.7, + "end": 4530.68, + "probability": 0.9378 + }, + { + "start": 4530.82, + "end": 4531.98, + "probability": 0.872 + }, + { + "start": 4532.1, + "end": 4534.51, + "probability": 0.6633 + }, + { + "start": 4535.86, + "end": 4535.9, + "probability": 0.0376 + }, + { + "start": 4535.9, + "end": 4539.18, + "probability": 0.9697 + }, + { + "start": 4540.52, + "end": 4542.72, + "probability": 0.9822 + }, + { + "start": 4542.78, + "end": 4544.8, + "probability": 0.3557 + }, + { + "start": 4544.88, + "end": 4545.54, + "probability": 0.9876 + }, + { + "start": 4546.6, + "end": 4547.14, + "probability": 0.6795 + }, + { + "start": 4547.2, + "end": 4547.86, + "probability": 0.5899 + }, + { + "start": 4548.5, + "end": 4553.04, + "probability": 0.7893 + }, + { + "start": 4553.1, + "end": 4556.46, + "probability": 0.8381 + }, + { + "start": 4556.52, + "end": 4564.18, + "probability": 0.9312 + }, + { + "start": 4564.48, + "end": 4566.64, + "probability": 0.7086 + }, + { + "start": 4567.3, + "end": 4568.6, + "probability": 0.9657 + }, + { + "start": 4569.2, + "end": 4571.63, + "probability": 0.9779 + }, + { + "start": 4571.64, + "end": 4572.24, + "probability": 0.4923 + }, + { + "start": 4572.32, + "end": 4574.9, + "probability": 0.8771 + }, + { + "start": 4575.78, + "end": 4577.9, + "probability": 0.9169 + }, + { + "start": 4578.48, + "end": 4579.78, + "probability": 0.8938 + }, + { + "start": 4579.9, + "end": 4586.2, + "probability": 0.9797 + }, + { + "start": 4586.48, + "end": 4588.02, + "probability": 0.9057 + }, + { + "start": 4588.12, + "end": 4588.92, + "probability": 0.2955 + }, + { + "start": 4589.42, + "end": 4591.32, + "probability": 0.9318 + }, + { + "start": 4591.52, + "end": 4592.44, + "probability": 0.5092 + }, + { + "start": 4592.96, + "end": 4593.68, + "probability": 0.9192 + }, + { + "start": 4593.76, + "end": 4595.16, + "probability": 0.9907 + }, + { + "start": 4595.72, + "end": 4597.41, + "probability": 0.9399 + }, + { + "start": 4598.62, + "end": 4603.06, + "probability": 0.9397 + }, + { + "start": 4603.42, + "end": 4605.4, + "probability": 0.6695 + }, + { + "start": 4605.4, + "end": 4606.22, + "probability": 0.5322 + }, + { + "start": 4606.38, + "end": 4607.68, + "probability": 0.1378 + }, + { + "start": 4607.8, + "end": 4610.6, + "probability": 0.7903 + }, + { + "start": 4610.78, + "end": 4612.56, + "probability": 0.9453 + }, + { + "start": 4613.08, + "end": 4614.6, + "probability": 0.8211 + }, + { + "start": 4614.9, + "end": 4617.2, + "probability": 0.9858 + }, + { + "start": 4617.26, + "end": 4619.84, + "probability": 0.7915 + }, + { + "start": 4620.04, + "end": 4622.08, + "probability": 0.6604 + }, + { + "start": 4622.62, + "end": 4624.14, + "probability": 0.7941 + }, + { + "start": 4624.14, + "end": 4625.3, + "probability": 0.9818 + }, + { + "start": 4625.76, + "end": 4626.58, + "probability": 0.9629 + }, + { + "start": 4626.8, + "end": 4628.1, + "probability": 0.989 + }, + { + "start": 4628.52, + "end": 4632.26, + "probability": 0.9512 + }, + { + "start": 4632.76, + "end": 4637.98, + "probability": 0.9812 + }, + { + "start": 4638.38, + "end": 4640.6, + "probability": 0.8961 + }, + { + "start": 4641.28, + "end": 4643.88, + "probability": 0.8443 + }, + { + "start": 4645.02, + "end": 4647.08, + "probability": 0.8931 + }, + { + "start": 4647.38, + "end": 4649.06, + "probability": 0.9927 + }, + { + "start": 4649.14, + "end": 4649.5, + "probability": 0.8883 + }, + { + "start": 4649.72, + "end": 4651.18, + "probability": 0.6049 + }, + { + "start": 4651.36, + "end": 4653.68, + "probability": 0.7156 + }, + { + "start": 4654.62, + "end": 4656.28, + "probability": 0.1403 + }, + { + "start": 4656.9, + "end": 4657.12, + "probability": 0.0099 + }, + { + "start": 4657.12, + "end": 4658.04, + "probability": 0.5757 + }, + { + "start": 4658.84, + "end": 4661.04, + "probability": 0.8223 + }, + { + "start": 4675.84, + "end": 4678.14, + "probability": 0.8234 + }, + { + "start": 4678.28, + "end": 4680.02, + "probability": 0.6451 + }, + { + "start": 4680.14, + "end": 4682.5, + "probability": 0.9541 + }, + { + "start": 4683.72, + "end": 4686.54, + "probability": 0.8983 + }, + { + "start": 4687.36, + "end": 4690.18, + "probability": 0.8691 + }, + { + "start": 4690.42, + "end": 4690.86, + "probability": 0.9371 + }, + { + "start": 4690.94, + "end": 4693.88, + "probability": 0.8862 + }, + { + "start": 4694.66, + "end": 4696.35, + "probability": 0.998 + }, + { + "start": 4698.12, + "end": 4700.38, + "probability": 0.6384 + }, + { + "start": 4700.78, + "end": 4701.54, + "probability": 0.3083 + }, + { + "start": 4701.87, + "end": 4707.36, + "probability": 0.5631 + }, + { + "start": 4708.24, + "end": 4711.34, + "probability": 0.6777 + }, + { + "start": 4712.02, + "end": 4713.62, + "probability": 0.8692 + }, + { + "start": 4714.54, + "end": 4715.2, + "probability": 0.6843 + }, + { + "start": 4715.42, + "end": 4715.78, + "probability": 0.8162 + }, + { + "start": 4715.84, + "end": 4716.62, + "probability": 0.6589 + }, + { + "start": 4716.68, + "end": 4717.38, + "probability": 0.7927 + }, + { + "start": 4717.84, + "end": 4719.82, + "probability": 0.6644 + }, + { + "start": 4719.94, + "end": 4720.62, + "probability": 0.8979 + }, + { + "start": 4720.64, + "end": 4721.36, + "probability": 0.9541 + }, + { + "start": 4722.14, + "end": 4725.5, + "probability": 0.9615 + }, + { + "start": 4726.9, + "end": 4728.2, + "probability": 0.5265 + }, + { + "start": 4728.2, + "end": 4730.34, + "probability": 0.6905 + }, + { + "start": 4730.48, + "end": 4731.62, + "probability": 0.7101 + }, + { + "start": 4733.98, + "end": 4733.98, + "probability": 0.1731 + }, + { + "start": 4733.98, + "end": 4736.92, + "probability": 0.6667 + }, + { + "start": 4737.52, + "end": 4738.84, + "probability": 0.8391 + }, + { + "start": 4740.04, + "end": 4740.16, + "probability": 0.8354 + }, + { + "start": 4740.3, + "end": 4744.34, + "probability": 0.9567 + }, + { + "start": 4744.5, + "end": 4749.02, + "probability": 0.7813 + }, + { + "start": 4749.2, + "end": 4750.22, + "probability": 0.6384 + }, + { + "start": 4751.52, + "end": 4752.02, + "probability": 0.7719 + }, + { + "start": 4752.1, + "end": 4752.71, + "probability": 0.7151 + }, + { + "start": 4752.8, + "end": 4753.0, + "probability": 0.6999 + }, + { + "start": 4753.08, + "end": 4755.12, + "probability": 0.7086 + }, + { + "start": 4756.32, + "end": 4762.68, + "probability": 0.8323 + }, + { + "start": 4764.04, + "end": 4768.12, + "probability": 0.615 + }, + { + "start": 4769.62, + "end": 4770.46, + "probability": 0.8127 + }, + { + "start": 4771.04, + "end": 4773.32, + "probability": 0.8709 + }, + { + "start": 4773.58, + "end": 4776.22, + "probability": 0.9183 + }, + { + "start": 4776.64, + "end": 4777.42, + "probability": 0.7314 + }, + { + "start": 4777.46, + "end": 4778.64, + "probability": 0.9546 + }, + { + "start": 4779.22, + "end": 4780.08, + "probability": 0.3767 + }, + { + "start": 4780.54, + "end": 4781.94, + "probability": 0.797 + }, + { + "start": 4782.0, + "end": 4783.6, + "probability": 0.9482 + }, + { + "start": 4783.7, + "end": 4787.84, + "probability": 0.8387 + }, + { + "start": 4787.9, + "end": 4788.32, + "probability": 0.7855 + }, + { + "start": 4788.88, + "end": 4792.2, + "probability": 0.9897 + }, + { + "start": 4792.58, + "end": 4793.9, + "probability": 0.915 + }, + { + "start": 4793.98, + "end": 4795.6, + "probability": 0.7842 + }, + { + "start": 4797.02, + "end": 4799.25, + "probability": 0.9557 + }, + { + "start": 4799.82, + "end": 4800.98, + "probability": 0.8996 + }, + { + "start": 4801.08, + "end": 4802.34, + "probability": 0.2426 + }, + { + "start": 4802.88, + "end": 4805.65, + "probability": 0.9736 + }, + { + "start": 4807.06, + "end": 4808.22, + "probability": 0.5004 + }, + { + "start": 4809.08, + "end": 4810.24, + "probability": 0.7957 + }, + { + "start": 4811.24, + "end": 4815.12, + "probability": 0.928 + }, + { + "start": 4815.88, + "end": 4818.11, + "probability": 0.9097 + }, + { + "start": 4820.2, + "end": 4821.66, + "probability": 0.687 + }, + { + "start": 4821.7, + "end": 4822.76, + "probability": 0.8118 + }, + { + "start": 4822.86, + "end": 4824.08, + "probability": 0.7632 + }, + { + "start": 4824.3, + "end": 4824.9, + "probability": 0.7434 + }, + { + "start": 4825.0, + "end": 4825.8, + "probability": 0.9219 + }, + { + "start": 4825.92, + "end": 4828.2, + "probability": 0.9945 + }, + { + "start": 4828.2, + "end": 4830.99, + "probability": 0.9891 + }, + { + "start": 4832.24, + "end": 4833.24, + "probability": 0.9531 + }, + { + "start": 4833.7, + "end": 4837.6, + "probability": 0.7803 + }, + { + "start": 4838.32, + "end": 4839.12, + "probability": 0.8991 + }, + { + "start": 4839.6, + "end": 4840.8, + "probability": 0.8639 + }, + { + "start": 4841.28, + "end": 4842.3, + "probability": 0.8552 + }, + { + "start": 4842.42, + "end": 4843.2, + "probability": 0.564 + }, + { + "start": 4843.56, + "end": 4845.48, + "probability": 0.9289 + }, + { + "start": 4845.62, + "end": 4846.28, + "probability": 0.8999 + }, + { + "start": 4846.92, + "end": 4849.2, + "probability": 0.8562 + }, + { + "start": 4849.32, + "end": 4850.94, + "probability": 0.9404 + }, + { + "start": 4851.12, + "end": 4851.6, + "probability": 0.9395 + }, + { + "start": 4851.7, + "end": 4852.16, + "probability": 0.9664 + }, + { + "start": 4852.74, + "end": 4853.52, + "probability": 0.0665 + }, + { + "start": 4853.52, + "end": 4854.74, + "probability": 0.4792 + }, + { + "start": 4855.0, + "end": 4858.94, + "probability": 0.9891 + }, + { + "start": 4859.52, + "end": 4860.6, + "probability": 0.966 + }, + { + "start": 4861.1, + "end": 4862.14, + "probability": 0.888 + }, + { + "start": 4862.14, + "end": 4862.9, + "probability": 0.7798 + }, + { + "start": 4863.66, + "end": 4866.8, + "probability": 0.8899 + }, + { + "start": 4867.5, + "end": 4870.34, + "probability": 0.9209 + }, + { + "start": 4871.08, + "end": 4872.4, + "probability": 0.6283 + }, + { + "start": 4873.62, + "end": 4875.92, + "probability": 0.874 + }, + { + "start": 4878.49, + "end": 4880.84, + "probability": 0.9033 + }, + { + "start": 4881.1, + "end": 4885.32, + "probability": 0.833 + }, + { + "start": 4886.46, + "end": 4889.34, + "probability": 0.4193 + }, + { + "start": 4889.38, + "end": 4890.02, + "probability": 0.7603 + }, + { + "start": 4890.04, + "end": 4891.38, + "probability": 0.9597 + }, + { + "start": 4891.9, + "end": 4893.76, + "probability": 0.2519 + }, + { + "start": 4895.84, + "end": 4896.5, + "probability": 0.0387 + }, + { + "start": 4899.22, + "end": 4903.41, + "probability": 0.3311 + }, + { + "start": 4903.9, + "end": 4904.11, + "probability": 0.3739 + }, + { + "start": 4905.4, + "end": 4906.12, + "probability": 0.0849 + }, + { + "start": 4907.46, + "end": 4910.0, + "probability": 0.9217 + }, + { + "start": 4910.12, + "end": 4910.62, + "probability": 0.4521 + }, + { + "start": 4910.82, + "end": 4914.12, + "probability": 0.814 + }, + { + "start": 4914.2, + "end": 4914.72, + "probability": 0.729 + }, + { + "start": 4916.48, + "end": 4918.82, + "probability": 0.7974 + }, + { + "start": 4918.82, + "end": 4919.6, + "probability": 0.3496 + }, + { + "start": 4920.56, + "end": 4922.94, + "probability": 0.8628 + }, + { + "start": 4925.35, + "end": 4928.32, + "probability": 0.9653 + }, + { + "start": 4928.32, + "end": 4931.42, + "probability": 0.9831 + }, + { + "start": 4931.5, + "end": 4932.56, + "probability": 0.9295 + }, + { + "start": 4933.72, + "end": 4935.95, + "probability": 0.9834 + }, + { + "start": 4936.92, + "end": 4939.28, + "probability": 0.9736 + }, + { + "start": 4941.18, + "end": 4944.7, + "probability": 0.0065 + }, + { + "start": 4945.68, + "end": 4945.78, + "probability": 0.0088 + }, + { + "start": 4945.78, + "end": 4946.34, + "probability": 0.1478 + }, + { + "start": 4948.56, + "end": 4949.82, + "probability": 0.8335 + }, + { + "start": 4958.12, + "end": 4959.2, + "probability": 0.1059 + }, + { + "start": 4961.38, + "end": 4961.76, + "probability": 0.1876 + }, + { + "start": 4961.76, + "end": 4961.88, + "probability": 0.3545 + }, + { + "start": 4963.64, + "end": 4965.32, + "probability": 0.7835 + }, + { + "start": 4965.54, + "end": 4968.48, + "probability": 0.2054 + }, + { + "start": 4970.0, + "end": 4975.7, + "probability": 0.7899 + }, + { + "start": 4976.38, + "end": 4978.3, + "probability": 0.8086 + }, + { + "start": 4979.74, + "end": 4982.46, + "probability": 0.8255 + }, + { + "start": 4983.58, + "end": 4989.24, + "probability": 0.985 + }, + { + "start": 4989.32, + "end": 4991.34, + "probability": 0.83 + }, + { + "start": 4991.9, + "end": 4999.0, + "probability": 0.9146 + }, + { + "start": 4999.36, + "end": 4999.86, + "probability": 0.5328 + }, + { + "start": 4999.88, + "end": 5005.96, + "probability": 0.9959 + }, + { + "start": 5006.58, + "end": 5014.18, + "probability": 0.9463 + }, + { + "start": 5014.18, + "end": 5020.76, + "probability": 0.945 + }, + { + "start": 5022.36, + "end": 5027.74, + "probability": 0.9642 + }, + { + "start": 5027.78, + "end": 5030.06, + "probability": 0.9328 + }, + { + "start": 5031.9, + "end": 5038.16, + "probability": 0.9917 + }, + { + "start": 5038.16, + "end": 5041.14, + "probability": 0.9508 + }, + { + "start": 5042.52, + "end": 5045.3, + "probability": 0.9945 + }, + { + "start": 5046.08, + "end": 5051.92, + "probability": 0.9958 + }, + { + "start": 5051.92, + "end": 5057.18, + "probability": 0.9897 + }, + { + "start": 5057.68, + "end": 5062.9, + "probability": 0.9509 + }, + { + "start": 5063.52, + "end": 5068.48, + "probability": 0.8491 + }, + { + "start": 5068.68, + "end": 5076.96, + "probability": 0.85 + }, + { + "start": 5077.38, + "end": 5080.26, + "probability": 0.9157 + }, + { + "start": 5081.42, + "end": 5082.5, + "probability": 0.6582 + }, + { + "start": 5083.0, + "end": 5088.74, + "probability": 0.6728 + }, + { + "start": 5088.74, + "end": 5094.44, + "probability": 0.9984 + }, + { + "start": 5094.94, + "end": 5097.02, + "probability": 0.9952 + }, + { + "start": 5098.06, + "end": 5101.12, + "probability": 0.9735 + }, + { + "start": 5101.18, + "end": 5101.92, + "probability": 0.536 + }, + { + "start": 5102.4, + "end": 5103.96, + "probability": 0.9722 + }, + { + "start": 5104.08, + "end": 5105.34, + "probability": 0.9061 + }, + { + "start": 5105.38, + "end": 5106.82, + "probability": 0.9461 + }, + { + "start": 5107.26, + "end": 5108.6, + "probability": 0.8783 + }, + { + "start": 5108.9, + "end": 5112.28, + "probability": 0.9701 + }, + { + "start": 5112.86, + "end": 5116.76, + "probability": 0.9824 + }, + { + "start": 5116.76, + "end": 5121.16, + "probability": 0.9959 + }, + { + "start": 5122.2, + "end": 5124.44, + "probability": 0.8312 + }, + { + "start": 5124.88, + "end": 5128.18, + "probability": 0.8877 + }, + { + "start": 5129.42, + "end": 5131.02, + "probability": 0.6701 + }, + { + "start": 5131.08, + "end": 5132.9, + "probability": 0.6872 + }, + { + "start": 5133.0, + "end": 5135.52, + "probability": 0.8115 + }, + { + "start": 5136.2, + "end": 5143.84, + "probability": 0.8809 + }, + { + "start": 5143.94, + "end": 5147.24, + "probability": 0.926 + }, + { + "start": 5147.3, + "end": 5151.84, + "probability": 0.9847 + }, + { + "start": 5152.68, + "end": 5157.54, + "probability": 0.8766 + }, + { + "start": 5157.7, + "end": 5158.72, + "probability": 0.8011 + }, + { + "start": 5159.04, + "end": 5161.62, + "probability": 0.6439 + }, + { + "start": 5162.06, + "end": 5164.9, + "probability": 0.6706 + }, + { + "start": 5164.92, + "end": 5168.5, + "probability": 0.9906 + }, + { + "start": 5169.0, + "end": 5170.78, + "probability": 0.9118 + }, + { + "start": 5173.06, + "end": 5175.3, + "probability": 0.7604 + }, + { + "start": 5176.02, + "end": 5181.74, + "probability": 0.9164 + }, + { + "start": 5182.22, + "end": 5187.96, + "probability": 0.9088 + }, + { + "start": 5188.3, + "end": 5188.3, + "probability": 0.2327 + }, + { + "start": 5189.44, + "end": 5191.86, + "probability": 0.0701 + }, + { + "start": 5191.86, + "end": 5195.02, + "probability": 0.7212 + }, + { + "start": 5195.38, + "end": 5196.96, + "probability": 0.3227 + }, + { + "start": 5197.56, + "end": 5200.16, + "probability": 0.5153 + }, + { + "start": 5200.26, + "end": 5200.62, + "probability": 0.7272 + }, + { + "start": 5200.72, + "end": 5201.74, + "probability": 0.7567 + }, + { + "start": 5201.88, + "end": 5202.67, + "probability": 0.8906 + }, + { + "start": 5203.06, + "end": 5205.2, + "probability": 0.7742 + }, + { + "start": 5205.32, + "end": 5206.34, + "probability": 0.9434 + }, + { + "start": 5206.44, + "end": 5209.12, + "probability": 0.9102 + }, + { + "start": 5213.34, + "end": 5214.66, + "probability": 0.7068 + }, + { + "start": 5215.24, + "end": 5215.74, + "probability": 0.7891 + }, + { + "start": 5216.18, + "end": 5218.06, + "probability": 0.7776 + }, + { + "start": 5218.24, + "end": 5220.38, + "probability": 0.7736 + }, + { + "start": 5221.24, + "end": 5225.18, + "probability": 0.985 + }, + { + "start": 5227.96, + "end": 5228.84, + "probability": 0.6469 + }, + { + "start": 5229.32, + "end": 5229.86, + "probability": 0.72 + }, + { + "start": 5230.3, + "end": 5230.8, + "probability": 0.3931 + }, + { + "start": 5231.12, + "end": 5236.12, + "probability": 0.4342 + }, + { + "start": 5237.08, + "end": 5239.42, + "probability": 0.5083 + }, + { + "start": 5239.44, + "end": 5241.74, + "probability": 0.1949 + }, + { + "start": 5242.18, + "end": 5242.6, + "probability": 0.6917 + }, + { + "start": 5243.3, + "end": 5244.42, + "probability": 0.1941 + }, + { + "start": 5244.44, + "end": 5244.76, + "probability": 0.4209 + }, + { + "start": 5244.96, + "end": 5245.8, + "probability": 0.6969 + }, + { + "start": 5245.84, + "end": 5254.16, + "probability": 0.4407 + }, + { + "start": 5254.24, + "end": 5255.84, + "probability": 0.7098 + }, + { + "start": 5256.06, + "end": 5257.38, + "probability": 0.8291 + }, + { + "start": 5257.76, + "end": 5259.84, + "probability": 0.8664 + }, + { + "start": 5260.04, + "end": 5260.98, + "probability": 0.9019 + }, + { + "start": 5261.28, + "end": 5263.7, + "probability": 0.9926 + }, + { + "start": 5263.97, + "end": 5266.92, + "probability": 0.9634 + }, + { + "start": 5267.06, + "end": 5268.0, + "probability": 0.9037 + }, + { + "start": 5268.04, + "end": 5269.71, + "probability": 0.9675 + }, + { + "start": 5270.68, + "end": 5273.66, + "probability": 0.4024 + }, + { + "start": 5273.72, + "end": 5273.92, + "probability": 0.8599 + }, + { + "start": 5274.06, + "end": 5275.49, + "probability": 0.7393 + }, + { + "start": 5275.78, + "end": 5276.06, + "probability": 0.9481 + }, + { + "start": 5276.22, + "end": 5278.1, + "probability": 0.7725 + }, + { + "start": 5278.4, + "end": 5282.64, + "probability": 0.9696 + }, + { + "start": 5282.64, + "end": 5288.46, + "probability": 0.9844 + }, + { + "start": 5288.52, + "end": 5289.68, + "probability": 0.9662 + }, + { + "start": 5289.7, + "end": 5290.16, + "probability": 0.854 + }, + { + "start": 5291.08, + "end": 5292.06, + "probability": 0.5524 + }, + { + "start": 5292.34, + "end": 5293.16, + "probability": 0.522 + }, + { + "start": 5293.28, + "end": 5295.34, + "probability": 0.9462 + }, + { + "start": 5295.44, + "end": 5296.9, + "probability": 0.407 + }, + { + "start": 5296.96, + "end": 5300.76, + "probability": 0.7785 + }, + { + "start": 5300.92, + "end": 5302.32, + "probability": 0.8809 + }, + { + "start": 5302.48, + "end": 5303.28, + "probability": 0.5179 + }, + { + "start": 5303.78, + "end": 5306.76, + "probability": 0.9196 + }, + { + "start": 5307.12, + "end": 5310.18, + "probability": 0.8072 + }, + { + "start": 5310.26, + "end": 5311.0, + "probability": 0.8684 + }, + { + "start": 5311.36, + "end": 5316.48, + "probability": 0.964 + }, + { + "start": 5317.04, + "end": 5318.46, + "probability": 0.8735 + }, + { + "start": 5319.1, + "end": 5328.81, + "probability": 0.7964 + }, + { + "start": 5329.8, + "end": 5333.4, + "probability": 0.8748 + }, + { + "start": 5333.84, + "end": 5335.4, + "probability": 0.8007 + }, + { + "start": 5335.6, + "end": 5339.54, + "probability": 0.8734 + }, + { + "start": 5339.92, + "end": 5341.1, + "probability": 0.9526 + }, + { + "start": 5341.26, + "end": 5342.53, + "probability": 0.9188 + }, + { + "start": 5343.04, + "end": 5345.66, + "probability": 0.9867 + }, + { + "start": 5345.82, + "end": 5348.36, + "probability": 0.9634 + }, + { + "start": 5348.44, + "end": 5349.48, + "probability": 0.9619 + }, + { + "start": 5349.94, + "end": 5350.86, + "probability": 0.4054 + }, + { + "start": 5350.98, + "end": 5355.0, + "probability": 0.9884 + }, + { + "start": 5355.3, + "end": 5358.84, + "probability": 0.9521 + }, + { + "start": 5358.88, + "end": 5363.6, + "probability": 0.9937 + }, + { + "start": 5363.7, + "end": 5368.6, + "probability": 0.9404 + }, + { + "start": 5368.9, + "end": 5373.98, + "probability": 0.9928 + }, + { + "start": 5374.46, + "end": 5376.36, + "probability": 0.9104 + }, + { + "start": 5376.54, + "end": 5376.8, + "probability": 0.7258 + }, + { + "start": 5377.44, + "end": 5379.32, + "probability": 0.9352 + }, + { + "start": 5379.54, + "end": 5379.8, + "probability": 0.5757 + }, + { + "start": 5380.82, + "end": 5383.32, + "probability": 0.8212 + }, + { + "start": 5397.54, + "end": 5398.72, + "probability": 0.5833 + }, + { + "start": 5399.26, + "end": 5399.26, + "probability": 0.3595 + }, + { + "start": 5399.26, + "end": 5404.66, + "probability": 0.9358 + }, + { + "start": 5405.06, + "end": 5409.1, + "probability": 0.8683 + }, + { + "start": 5410.08, + "end": 5416.14, + "probability": 0.9886 + }, + { + "start": 5416.22, + "end": 5421.86, + "probability": 0.9429 + }, + { + "start": 5422.36, + "end": 5425.74, + "probability": 0.9969 + }, + { + "start": 5426.32, + "end": 5432.7, + "probability": 0.9548 + }, + { + "start": 5432.8, + "end": 5435.12, + "probability": 0.965 + }, + { + "start": 5435.22, + "end": 5441.0, + "probability": 0.9882 + }, + { + "start": 5441.04, + "end": 5447.08, + "probability": 0.7936 + }, + { + "start": 5447.34, + "end": 5448.14, + "probability": 0.7171 + }, + { + "start": 5448.26, + "end": 5449.79, + "probability": 0.8684 + }, + { + "start": 5451.08, + "end": 5451.1, + "probability": 0.0886 + }, + { + "start": 5451.1, + "end": 5454.19, + "probability": 0.6378 + }, + { + "start": 5454.44, + "end": 5459.56, + "probability": 0.9923 + }, + { + "start": 5459.56, + "end": 5464.12, + "probability": 0.758 + }, + { + "start": 5464.32, + "end": 5469.82, + "probability": 0.9618 + }, + { + "start": 5469.88, + "end": 5471.88, + "probability": 0.9983 + }, + { + "start": 5472.82, + "end": 5473.34, + "probability": 0.893 + }, + { + "start": 5473.44, + "end": 5480.32, + "probability": 0.9858 + }, + { + "start": 5480.42, + "end": 5485.04, + "probability": 0.8123 + }, + { + "start": 5485.58, + "end": 5488.46, + "probability": 0.9381 + }, + { + "start": 5488.62, + "end": 5492.62, + "probability": 0.9463 + }, + { + "start": 5492.76, + "end": 5495.64, + "probability": 0.9742 + }, + { + "start": 5495.82, + "end": 5496.7, + "probability": 0.6702 + }, + { + "start": 5496.76, + "end": 5501.98, + "probability": 0.9785 + }, + { + "start": 5502.08, + "end": 5507.19, + "probability": 0.9453 + }, + { + "start": 5507.74, + "end": 5509.12, + "probability": 0.9047 + }, + { + "start": 5509.7, + "end": 5514.0, + "probability": 0.8255 + }, + { + "start": 5514.58, + "end": 5515.22, + "probability": 0.3758 + }, + { + "start": 5515.4, + "end": 5516.22, + "probability": 0.7105 + }, + { + "start": 5516.38, + "end": 5517.16, + "probability": 0.9932 + }, + { + "start": 5518.06, + "end": 5519.14, + "probability": 0.3977 + }, + { + "start": 5519.18, + "end": 5520.72, + "probability": 0.9778 + }, + { + "start": 5521.32, + "end": 5522.88, + "probability": 0.8798 + }, + { + "start": 5522.94, + "end": 5524.27, + "probability": 0.9536 + }, + { + "start": 5524.82, + "end": 5526.36, + "probability": 0.9423 + }, + { + "start": 5527.26, + "end": 5529.64, + "probability": 0.9828 + }, + { + "start": 5529.76, + "end": 5532.93, + "probability": 0.6627 + }, + { + "start": 5533.14, + "end": 5534.26, + "probability": 0.7249 + }, + { + "start": 5534.76, + "end": 5535.4, + "probability": 0.4609 + }, + { + "start": 5535.5, + "end": 5542.74, + "probability": 0.5105 + }, + { + "start": 5543.26, + "end": 5547.06, + "probability": 0.8945 + }, + { + "start": 5547.6, + "end": 5548.8, + "probability": 0.9238 + }, + { + "start": 5548.98, + "end": 5550.16, + "probability": 0.9398 + }, + { + "start": 5550.18, + "end": 5553.72, + "probability": 0.896 + }, + { + "start": 5553.88, + "end": 5556.01, + "probability": 0.9989 + }, + { + "start": 5556.88, + "end": 5557.92, + "probability": 0.6798 + }, + { + "start": 5557.96, + "end": 5559.04, + "probability": 0.7428 + }, + { + "start": 5559.58, + "end": 5563.78, + "probability": 0.9888 + }, + { + "start": 5564.54, + "end": 5571.0, + "probability": 0.9695 + }, + { + "start": 5571.0, + "end": 5575.32, + "probability": 0.9978 + }, + { + "start": 5575.84, + "end": 5581.84, + "probability": 0.995 + }, + { + "start": 5582.3, + "end": 5582.58, + "probability": 0.4447 + }, + { + "start": 5582.74, + "end": 5583.02, + "probability": 0.7784 + }, + { + "start": 5583.06, + "end": 5583.6, + "probability": 0.9365 + }, + { + "start": 5583.98, + "end": 5584.55, + "probability": 0.8994 + }, + { + "start": 5585.3, + "end": 5589.46, + "probability": 0.9746 + }, + { + "start": 5590.12, + "end": 5592.33, + "probability": 0.9937 + }, + { + "start": 5592.64, + "end": 5596.98, + "probability": 0.9834 + }, + { + "start": 5596.98, + "end": 5601.45, + "probability": 0.998 + }, + { + "start": 5602.0, + "end": 5606.72, + "probability": 0.7733 + }, + { + "start": 5606.82, + "end": 5606.82, + "probability": 0.1824 + }, + { + "start": 5606.82, + "end": 5608.72, + "probability": 0.563 + }, + { + "start": 5609.0, + "end": 5610.54, + "probability": 0.9928 + }, + { + "start": 5610.68, + "end": 5612.6, + "probability": 0.7694 + }, + { + "start": 5613.26, + "end": 5616.6, + "probability": 0.9448 + }, + { + "start": 5616.68, + "end": 5619.76, + "probability": 0.9552 + }, + { + "start": 5620.42, + "end": 5624.88, + "probability": 0.9592 + }, + { + "start": 5625.04, + "end": 5630.6, + "probability": 0.9708 + }, + { + "start": 5630.74, + "end": 5632.84, + "probability": 0.8607 + }, + { + "start": 5633.02, + "end": 5634.42, + "probability": 0.9287 + }, + { + "start": 5634.54, + "end": 5638.92, + "probability": 0.991 + }, + { + "start": 5638.92, + "end": 5644.2, + "probability": 0.9888 + }, + { + "start": 5644.66, + "end": 5647.68, + "probability": 0.7073 + }, + { + "start": 5647.88, + "end": 5651.0, + "probability": 0.8818 + }, + { + "start": 5651.42, + "end": 5658.2, + "probability": 0.7883 + }, + { + "start": 5658.5, + "end": 5659.72, + "probability": 0.4683 + }, + { + "start": 5660.91, + "end": 5665.12, + "probability": 0.8058 + }, + { + "start": 5665.8, + "end": 5670.76, + "probability": 0.9349 + }, + { + "start": 5671.36, + "end": 5675.56, + "probability": 0.9526 + }, + { + "start": 5676.08, + "end": 5677.1, + "probability": 0.6651 + }, + { + "start": 5677.54, + "end": 5682.34, + "probability": 0.9846 + }, + { + "start": 5682.34, + "end": 5688.3, + "probability": 0.9752 + }, + { + "start": 5688.34, + "end": 5689.72, + "probability": 0.379 + }, + { + "start": 5690.56, + "end": 5694.46, + "probability": 0.9966 + }, + { + "start": 5695.34, + "end": 5696.96, + "probability": 0.6221 + }, + { + "start": 5697.02, + "end": 5698.39, + "probability": 0.5224 + }, + { + "start": 5699.32, + "end": 5699.34, + "probability": 0.1865 + }, + { + "start": 5699.34, + "end": 5703.28, + "probability": 0.9922 + }, + { + "start": 5704.26, + "end": 5705.04, + "probability": 0.5792 + }, + { + "start": 5705.22, + "end": 5706.79, + "probability": 0.9937 + }, + { + "start": 5707.2, + "end": 5711.42, + "probability": 0.9935 + }, + { + "start": 5711.56, + "end": 5712.04, + "probability": 0.8828 + }, + { + "start": 5712.98, + "end": 5714.54, + "probability": 0.9638 + }, + { + "start": 5714.9, + "end": 5721.64, + "probability": 0.9758 + }, + { + "start": 5722.14, + "end": 5725.14, + "probability": 0.9864 + }, + { + "start": 5726.5, + "end": 5728.2, + "probability": 0.6892 + }, + { + "start": 5728.56, + "end": 5732.93, + "probability": 0.9963 + }, + { + "start": 5733.7, + "end": 5735.2, + "probability": 0.9707 + }, + { + "start": 5735.3, + "end": 5741.38, + "probability": 0.9875 + }, + { + "start": 5741.68, + "end": 5746.04, + "probability": 0.9341 + }, + { + "start": 5746.04, + "end": 5750.38, + "probability": 0.9871 + }, + { + "start": 5751.02, + "end": 5755.5, + "probability": 0.8772 + }, + { + "start": 5756.36, + "end": 5758.02, + "probability": 0.9767 + }, + { + "start": 5758.4, + "end": 5759.81, + "probability": 0.9885 + }, + { + "start": 5760.62, + "end": 5764.36, + "probability": 0.9628 + }, + { + "start": 5764.52, + "end": 5769.48, + "probability": 0.9675 + }, + { + "start": 5769.56, + "end": 5770.14, + "probability": 0.987 + }, + { + "start": 5770.24, + "end": 5770.66, + "probability": 0.9036 + }, + { + "start": 5770.76, + "end": 5772.62, + "probability": 0.9121 + }, + { + "start": 5772.74, + "end": 5776.12, + "probability": 0.9937 + }, + { + "start": 5776.12, + "end": 5781.5, + "probability": 0.9547 + }, + { + "start": 5781.72, + "end": 5782.16, + "probability": 0.8694 + }, + { + "start": 5782.68, + "end": 5783.52, + "probability": 0.8369 + }, + { + "start": 5783.88, + "end": 5784.68, + "probability": 0.4457 + }, + { + "start": 5784.8, + "end": 5785.9, + "probability": 0.8135 + }, + { + "start": 5786.2, + "end": 5791.92, + "probability": 0.9621 + }, + { + "start": 5792.44, + "end": 5797.2, + "probability": 0.9974 + }, + { + "start": 5797.2, + "end": 5803.24, + "probability": 0.9878 + }, + { + "start": 5803.54, + "end": 5803.96, + "probability": 0.7202 + }, + { + "start": 5804.1, + "end": 5806.16, + "probability": 0.7327 + }, + { + "start": 5806.52, + "end": 5808.26, + "probability": 0.8906 + }, + { + "start": 5808.26, + "end": 5809.78, + "probability": 0.8308 + }, + { + "start": 5810.04, + "end": 5811.42, + "probability": 0.9832 + }, + { + "start": 5811.44, + "end": 5813.5, + "probability": 0.9938 + }, + { + "start": 5815.28, + "end": 5815.44, + "probability": 0.0014 + }, + { + "start": 5816.16, + "end": 5816.38, + "probability": 0.1469 + }, + { + "start": 5816.38, + "end": 5817.34, + "probability": 0.1541 + }, + { + "start": 5820.82, + "end": 5823.46, + "probability": 0.9076 + }, + { + "start": 5825.1, + "end": 5827.36, + "probability": 0.8337 + }, + { + "start": 5828.42, + "end": 5829.0, + "probability": 0.9517 + }, + { + "start": 5831.9, + "end": 5836.24, + "probability": 0.9982 + }, + { + "start": 5836.74, + "end": 5837.06, + "probability": 0.4783 + }, + { + "start": 5837.74, + "end": 5840.06, + "probability": 0.6696 + }, + { + "start": 5840.86, + "end": 5845.77, + "probability": 0.9824 + }, + { + "start": 5846.3, + "end": 5847.62, + "probability": 0.8006 + }, + { + "start": 5847.72, + "end": 5848.32, + "probability": 0.7788 + }, + { + "start": 5848.4, + "end": 5850.56, + "probability": 0.9951 + }, + { + "start": 5850.76, + "end": 5851.28, + "probability": 0.6137 + }, + { + "start": 5851.96, + "end": 5854.54, + "probability": 0.9677 + }, + { + "start": 5855.46, + "end": 5857.1, + "probability": 0.8792 + }, + { + "start": 5857.84, + "end": 5859.54, + "probability": 0.9654 + }, + { + "start": 5859.92, + "end": 5862.05, + "probability": 0.9282 + }, + { + "start": 5863.56, + "end": 5869.96, + "probability": 0.9044 + }, + { + "start": 5870.62, + "end": 5873.84, + "probability": 0.9953 + }, + { + "start": 5873.92, + "end": 5874.92, + "probability": 0.5781 + }, + { + "start": 5875.58, + "end": 5876.78, + "probability": 0.7559 + }, + { + "start": 5877.3, + "end": 5880.44, + "probability": 0.9858 + }, + { + "start": 5880.84, + "end": 5882.06, + "probability": 0.948 + }, + { + "start": 5882.82, + "end": 5883.86, + "probability": 0.6441 + }, + { + "start": 5884.14, + "end": 5884.42, + "probability": 0.0936 + }, + { + "start": 5884.92, + "end": 5885.4, + "probability": 0.6522 + }, + { + "start": 5886.06, + "end": 5887.26, + "probability": 0.8452 + }, + { + "start": 5887.5, + "end": 5888.7, + "probability": 0.9697 + }, + { + "start": 5888.86, + "end": 5892.9, + "probability": 0.9395 + }, + { + "start": 5893.76, + "end": 5896.04, + "probability": 0.8251 + }, + { + "start": 5896.1, + "end": 5898.46, + "probability": 0.582 + }, + { + "start": 5900.02, + "end": 5900.88, + "probability": 0.9946 + }, + { + "start": 5901.8, + "end": 5906.18, + "probability": 0.92 + }, + { + "start": 5907.24, + "end": 5911.7, + "probability": 0.9119 + }, + { + "start": 5912.88, + "end": 5913.86, + "probability": 0.9198 + }, + { + "start": 5914.58, + "end": 5916.24, + "probability": 0.6462 + }, + { + "start": 5916.48, + "end": 5918.14, + "probability": 0.9829 + }, + { + "start": 5918.34, + "end": 5919.18, + "probability": 0.2192 + }, + { + "start": 5919.28, + "end": 5920.44, + "probability": 0.8477 + }, + { + "start": 5922.14, + "end": 5925.78, + "probability": 0.855 + }, + { + "start": 5926.46, + "end": 5927.73, + "probability": 0.9873 + }, + { + "start": 5928.66, + "end": 5932.56, + "probability": 0.9738 + }, + { + "start": 5932.64, + "end": 5933.62, + "probability": 0.9675 + }, + { + "start": 5934.08, + "end": 5935.38, + "probability": 0.9785 + }, + { + "start": 5935.94, + "end": 5937.22, + "probability": 0.8931 + }, + { + "start": 5937.68, + "end": 5941.86, + "probability": 0.8466 + }, + { + "start": 5942.8, + "end": 5946.4, + "probability": 0.912 + }, + { + "start": 5947.98, + "end": 5949.82, + "probability": 0.9775 + }, + { + "start": 5950.8, + "end": 5955.2, + "probability": 0.9551 + }, + { + "start": 5955.36, + "end": 5959.93, + "probability": 0.9943 + }, + { + "start": 5960.32, + "end": 5961.64, + "probability": 0.5085 + }, + { + "start": 5961.66, + "end": 5963.22, + "probability": 0.74 + }, + { + "start": 5963.92, + "end": 5969.28, + "probability": 0.9634 + }, + { + "start": 5969.52, + "end": 5978.02, + "probability": 0.8612 + }, + { + "start": 5978.18, + "end": 5980.03, + "probability": 0.9727 + }, + { + "start": 5981.38, + "end": 5983.74, + "probability": 0.7373 + }, + { + "start": 5984.36, + "end": 5984.66, + "probability": 0.2554 + }, + { + "start": 5984.76, + "end": 5985.14, + "probability": 0.3511 + }, + { + "start": 5986.2, + "end": 5988.59, + "probability": 0.9591 + }, + { + "start": 5989.7, + "end": 5994.16, + "probability": 0.9824 + }, + { + "start": 5994.22, + "end": 5995.44, + "probability": 0.9204 + }, + { + "start": 5995.56, + "end": 5996.36, + "probability": 0.9311 + }, + { + "start": 5997.04, + "end": 6000.34, + "probability": 0.985 + }, + { + "start": 6000.34, + "end": 6001.45, + "probability": 0.9054 + }, + { + "start": 6002.3, + "end": 6004.34, + "probability": 0.952 + }, + { + "start": 6005.04, + "end": 6006.42, + "probability": 0.8107 + }, + { + "start": 6006.56, + "end": 6008.74, + "probability": 0.9803 + }, + { + "start": 6008.88, + "end": 6009.18, + "probability": 0.6375 + }, + { + "start": 6009.18, + "end": 6009.92, + "probability": 0.6912 + }, + { + "start": 6009.92, + "end": 6014.62, + "probability": 0.9932 + }, + { + "start": 6014.64, + "end": 6015.16, + "probability": 0.6424 + }, + { + "start": 6016.02, + "end": 6016.3, + "probability": 0.8084 + }, + { + "start": 6016.34, + "end": 6016.72, + "probability": 0.8122 + }, + { + "start": 6016.82, + "end": 6018.9, + "probability": 0.9644 + }, + { + "start": 6019.48, + "end": 6023.4, + "probability": 0.6807 + }, + { + "start": 6023.44, + "end": 6024.92, + "probability": 0.9251 + }, + { + "start": 6025.16, + "end": 6026.26, + "probability": 0.2356 + }, + { + "start": 6026.26, + "end": 6027.38, + "probability": 0.5803 + }, + { + "start": 6027.52, + "end": 6028.12, + "probability": 0.6108 + }, + { + "start": 6033.44, + "end": 6038.36, + "probability": 0.0132 + }, + { + "start": 6038.36, + "end": 6039.22, + "probability": 0.0257 + }, + { + "start": 6044.6, + "end": 6047.76, + "probability": 0.0303 + }, + { + "start": 6048.0, + "end": 6053.4, + "probability": 0.2455 + }, + { + "start": 6055.26, + "end": 6060.98, + "probability": 0.2113 + }, + { + "start": 6062.26, + "end": 6062.6, + "probability": 0.0258 + }, + { + "start": 6062.6, + "end": 6062.6, + "probability": 0.031 + }, + { + "start": 6062.6, + "end": 6062.6, + "probability": 0.0493 + }, + { + "start": 6062.6, + "end": 6062.72, + "probability": 0.0731 + }, + { + "start": 6062.72, + "end": 6062.86, + "probability": 0.1996 + }, + { + "start": 6065.43, + "end": 6066.0, + "probability": 0.062 + }, + { + "start": 6066.0, + "end": 6066.0, + "probability": 0.1007 + }, + { + "start": 6066.0, + "end": 6066.0, + "probability": 0.2434 + }, + { + "start": 6066.0, + "end": 6066.0, + "probability": 0.0884 + }, + { + "start": 6066.0, + "end": 6069.0, + "probability": 0.4344 + }, + { + "start": 6069.64, + "end": 6070.54, + "probability": 0.0578 + }, + { + "start": 6070.54, + "end": 6072.88, + "probability": 0.8563 + }, + { + "start": 6072.98, + "end": 6074.08, + "probability": 0.4013 + }, + { + "start": 6074.2, + "end": 6079.18, + "probability": 0.9958 + }, + { + "start": 6079.98, + "end": 6082.56, + "probability": 0.8593 + }, + { + "start": 6083.08, + "end": 6084.74, + "probability": 0.5481 + }, + { + "start": 6085.16, + "end": 6087.96, + "probability": 0.8293 + }, + { + "start": 6088.1, + "end": 6089.84, + "probability": 0.5969 + }, + { + "start": 6090.06, + "end": 6093.78, + "probability": 0.9395 + }, + { + "start": 6093.86, + "end": 6098.44, + "probability": 0.9976 + }, + { + "start": 6098.66, + "end": 6099.28, + "probability": 0.4172 + }, + { + "start": 6099.28, + "end": 6103.58, + "probability": 0.9485 + }, + { + "start": 6104.52, + "end": 6107.32, + "probability": 0.9521 + }, + { + "start": 6107.32, + "end": 6110.78, + "probability": 0.9802 + }, + { + "start": 6111.48, + "end": 6116.02, + "probability": 0.9603 + }, + { + "start": 6116.5, + "end": 6117.7, + "probability": 0.6605 + }, + { + "start": 6117.82, + "end": 6119.58, + "probability": 0.9242 + }, + { + "start": 6119.72, + "end": 6120.3, + "probability": 0.7203 + }, + { + "start": 6120.46, + "end": 6121.6, + "probability": 0.8419 + }, + { + "start": 6121.92, + "end": 6122.64, + "probability": 0.9661 + }, + { + "start": 6122.7, + "end": 6123.52, + "probability": 0.8159 + }, + { + "start": 6123.66, + "end": 6125.44, + "probability": 0.7751 + }, + { + "start": 6125.76, + "end": 6126.84, + "probability": 0.6667 + }, + { + "start": 6126.92, + "end": 6128.08, + "probability": 0.8255 + }, + { + "start": 6128.14, + "end": 6129.02, + "probability": 0.7536 + }, + { + "start": 6129.18, + "end": 6129.74, + "probability": 0.8059 + }, + { + "start": 6129.8, + "end": 6130.68, + "probability": 0.7164 + }, + { + "start": 6130.8, + "end": 6132.86, + "probability": 0.8527 + }, + { + "start": 6133.16, + "end": 6133.96, + "probability": 0.8786 + }, + { + "start": 6134.02, + "end": 6136.48, + "probability": 0.9209 + }, + { + "start": 6136.54, + "end": 6138.08, + "probability": 0.7579 + }, + { + "start": 6138.16, + "end": 6140.8, + "probability": 0.9885 + }, + { + "start": 6141.32, + "end": 6142.0, + "probability": 0.6278 + }, + { + "start": 6142.22, + "end": 6145.1, + "probability": 0.974 + }, + { + "start": 6145.26, + "end": 6147.24, + "probability": 0.7183 + }, + { + "start": 6147.38, + "end": 6149.1, + "probability": 0.5502 + }, + { + "start": 6149.4, + "end": 6152.16, + "probability": 0.9312 + }, + { + "start": 6152.76, + "end": 6157.12, + "probability": 0.873 + }, + { + "start": 6157.2, + "end": 6157.2, + "probability": 0.1799 + }, + { + "start": 6157.2, + "end": 6158.68, + "probability": 0.7988 + }, + { + "start": 6159.2, + "end": 6161.24, + "probability": 0.9229 + }, + { + "start": 6161.82, + "end": 6162.4, + "probability": 0.7314 + }, + { + "start": 6162.48, + "end": 6165.6, + "probability": 0.9752 + }, + { + "start": 6165.6, + "end": 6169.0, + "probability": 0.8298 + }, + { + "start": 6169.06, + "end": 6169.14, + "probability": 0.0329 + }, + { + "start": 6169.14, + "end": 6171.76, + "probability": 0.9696 + }, + { + "start": 6172.26, + "end": 6174.12, + "probability": 0.8861 + }, + { + "start": 6175.66, + "end": 6179.62, + "probability": 0.8374 + }, + { + "start": 6179.62, + "end": 6183.96, + "probability": 0.9129 + }, + { + "start": 6184.26, + "end": 6187.56, + "probability": 0.8284 + }, + { + "start": 6187.56, + "end": 6193.1, + "probability": 0.7769 + }, + { + "start": 6193.26, + "end": 6194.9, + "probability": 0.4964 + }, + { + "start": 6195.16, + "end": 6198.2, + "probability": 0.8785 + }, + { + "start": 6198.52, + "end": 6199.1, + "probability": 0.4555 + }, + { + "start": 6199.36, + "end": 6202.6, + "probability": 0.749 + }, + { + "start": 6202.86, + "end": 6204.33, + "probability": 0.9028 + }, + { + "start": 6205.1, + "end": 6210.92, + "probability": 0.9888 + }, + { + "start": 6211.22, + "end": 6212.7, + "probability": 0.543 + }, + { + "start": 6213.42, + "end": 6214.72, + "probability": 0.7039 + }, + { + "start": 6214.8, + "end": 6219.42, + "probability": 0.866 + }, + { + "start": 6219.62, + "end": 6220.8, + "probability": 0.886 + }, + { + "start": 6221.18, + "end": 6222.88, + "probability": 0.9914 + }, + { + "start": 6223.3, + "end": 6228.52, + "probability": 0.9155 + }, + { + "start": 6228.82, + "end": 6229.4, + "probability": 0.5061 + }, + { + "start": 6229.6, + "end": 6230.64, + "probability": 0.574 + }, + { + "start": 6230.8, + "end": 6232.32, + "probability": 0.7743 + }, + { + "start": 6232.34, + "end": 6233.46, + "probability": 0.7674 + }, + { + "start": 6233.9, + "end": 6238.06, + "probability": 0.9937 + }, + { + "start": 6238.06, + "end": 6241.66, + "probability": 0.9873 + }, + { + "start": 6242.12, + "end": 6245.26, + "probability": 0.8501 + }, + { + "start": 6246.14, + "end": 6247.74, + "probability": 0.7412 + }, + { + "start": 6247.9, + "end": 6248.88, + "probability": 0.9684 + }, + { + "start": 6249.06, + "end": 6253.68, + "probability": 0.9223 + }, + { + "start": 6253.84, + "end": 6254.72, + "probability": 0.7785 + }, + { + "start": 6254.76, + "end": 6256.68, + "probability": 0.978 + }, + { + "start": 6256.88, + "end": 6257.94, + "probability": 0.9479 + }, + { + "start": 6258.06, + "end": 6259.96, + "probability": 0.943 + }, + { + "start": 6260.8, + "end": 6262.1, + "probability": 0.7827 + }, + { + "start": 6262.2, + "end": 6263.26, + "probability": 0.946 + }, + { + "start": 6263.42, + "end": 6266.6, + "probability": 0.9958 + }, + { + "start": 6266.6, + "end": 6270.52, + "probability": 0.9768 + }, + { + "start": 6270.94, + "end": 6273.72, + "probability": 0.9805 + }, + { + "start": 6274.4, + "end": 6279.7, + "probability": 0.8825 + }, + { + "start": 6280.08, + "end": 6280.66, + "probability": 0.8585 + }, + { + "start": 6280.82, + "end": 6281.72, + "probability": 0.7378 + }, + { + "start": 6281.9, + "end": 6288.78, + "probability": 0.9863 + }, + { + "start": 6289.86, + "end": 6295.44, + "probability": 0.9915 + }, + { + "start": 6296.26, + "end": 6301.28, + "probability": 0.9902 + }, + { + "start": 6302.14, + "end": 6307.54, + "probability": 0.9812 + }, + { + "start": 6308.06, + "end": 6309.06, + "probability": 0.9542 + }, + { + "start": 6309.9, + "end": 6311.7, + "probability": 0.9762 + }, + { + "start": 6312.36, + "end": 6317.16, + "probability": 0.852 + }, + { + "start": 6317.44, + "end": 6319.84, + "probability": 0.9417 + }, + { + "start": 6320.46, + "end": 6321.82, + "probability": 0.9556 + }, + { + "start": 6322.02, + "end": 6324.24, + "probability": 0.3937 + }, + { + "start": 6324.4, + "end": 6325.8, + "probability": 0.4312 + }, + { + "start": 6327.18, + "end": 6327.88, + "probability": 0.7923 + }, + { + "start": 6328.64, + "end": 6332.67, + "probability": 0.9937 + }, + { + "start": 6332.82, + "end": 6340.18, + "probability": 0.9774 + }, + { + "start": 6341.22, + "end": 6344.2, + "probability": 0.8436 + }, + { + "start": 6344.48, + "end": 6345.14, + "probability": 0.2647 + }, + { + "start": 6345.2, + "end": 6346.46, + "probability": 0.8175 + }, + { + "start": 6347.04, + "end": 6348.18, + "probability": 0.822 + }, + { + "start": 6348.26, + "end": 6349.82, + "probability": 0.8946 + }, + { + "start": 6349.88, + "end": 6351.04, + "probability": 0.9633 + }, + { + "start": 6351.62, + "end": 6354.88, + "probability": 0.9741 + }, + { + "start": 6354.92, + "end": 6358.06, + "probability": 0.9902 + }, + { + "start": 6358.82, + "end": 6361.06, + "probability": 0.8112 + }, + { + "start": 6361.44, + "end": 6362.4, + "probability": 0.9067 + }, + { + "start": 6362.48, + "end": 6364.36, + "probability": 0.9584 + }, + { + "start": 6364.74, + "end": 6366.74, + "probability": 0.9563 + }, + { + "start": 6366.98, + "end": 6372.34, + "probability": 0.9753 + }, + { + "start": 6373.48, + "end": 6375.46, + "probability": 0.9395 + }, + { + "start": 6376.14, + "end": 6378.72, + "probability": 0.9844 + }, + { + "start": 6379.64, + "end": 6381.4, + "probability": 0.941 + }, + { + "start": 6381.42, + "end": 6382.16, + "probability": 0.7837 + }, + { + "start": 6382.48, + "end": 6386.04, + "probability": 0.9933 + }, + { + "start": 6386.32, + "end": 6390.98, + "probability": 0.9862 + }, + { + "start": 6391.16, + "end": 6392.64, + "probability": 0.9555 + }, + { + "start": 6392.68, + "end": 6394.76, + "probability": 0.9258 + }, + { + "start": 6395.3, + "end": 6397.62, + "probability": 0.9772 + }, + { + "start": 6398.46, + "end": 6402.44, + "probability": 0.9928 + }, + { + "start": 6402.44, + "end": 6406.96, + "probability": 0.9498 + }, + { + "start": 6407.56, + "end": 6408.9, + "probability": 0.7504 + }, + { + "start": 6409.42, + "end": 6411.63, + "probability": 0.5575 + }, + { + "start": 6412.04, + "end": 6413.18, + "probability": 0.6896 + }, + { + "start": 6413.3, + "end": 6414.92, + "probability": 0.8532 + }, + { + "start": 6415.18, + "end": 6416.5, + "probability": 0.9584 + }, + { + "start": 6417.26, + "end": 6420.08, + "probability": 0.9846 + }, + { + "start": 6420.14, + "end": 6422.62, + "probability": 0.7231 + }, + { + "start": 6422.76, + "end": 6425.58, + "probability": 0.3662 + }, + { + "start": 6425.58, + "end": 6429.48, + "probability": 0.7969 + }, + { + "start": 6429.9, + "end": 6430.24, + "probability": 0.637 + }, + { + "start": 6430.3, + "end": 6434.14, + "probability": 0.9852 + }, + { + "start": 6434.14, + "end": 6439.3, + "probability": 0.9945 + }, + { + "start": 6439.74, + "end": 6443.46, + "probability": 0.9951 + }, + { + "start": 6443.46, + "end": 6447.04, + "probability": 0.9282 + }, + { + "start": 6447.12, + "end": 6447.9, + "probability": 0.9669 + }, + { + "start": 6447.98, + "end": 6448.72, + "probability": 0.9182 + }, + { + "start": 6448.82, + "end": 6450.84, + "probability": 0.9879 + }, + { + "start": 6451.72, + "end": 6453.12, + "probability": 0.9615 + }, + { + "start": 6453.54, + "end": 6457.5, + "probability": 0.9961 + }, + { + "start": 6457.5, + "end": 6462.32, + "probability": 0.9987 + }, + { + "start": 6463.0, + "end": 6466.24, + "probability": 0.9525 + }, + { + "start": 6467.8, + "end": 6470.02, + "probability": 0.7426 + }, + { + "start": 6470.28, + "end": 6473.12, + "probability": 0.9932 + }, + { + "start": 6473.12, + "end": 6476.54, + "probability": 0.9938 + }, + { + "start": 6477.4, + "end": 6480.35, + "probability": 0.9262 + }, + { + "start": 6481.1, + "end": 6484.24, + "probability": 0.8157 + }, + { + "start": 6484.68, + "end": 6489.54, + "probability": 0.8542 + }, + { + "start": 6490.46, + "end": 6491.2, + "probability": 0.3362 + }, + { + "start": 6491.74, + "end": 6493.44, + "probability": 0.737 + }, + { + "start": 6493.98, + "end": 6496.44, + "probability": 0.949 + }, + { + "start": 6497.02, + "end": 6501.44, + "probability": 0.9116 + }, + { + "start": 6501.6, + "end": 6506.36, + "probability": 0.9741 + }, + { + "start": 6506.58, + "end": 6508.78, + "probability": 0.6724 + }, + { + "start": 6509.44, + "end": 6511.24, + "probability": 0.8571 + }, + { + "start": 6511.68, + "end": 6518.96, + "probability": 0.895 + }, + { + "start": 6519.32, + "end": 6522.1, + "probability": 0.9315 + }, + { + "start": 6522.64, + "end": 6524.74, + "probability": 0.9902 + }, + { + "start": 6524.84, + "end": 6526.16, + "probability": 0.7799 + }, + { + "start": 6526.48, + "end": 6527.42, + "probability": 0.8804 + }, + { + "start": 6527.5, + "end": 6529.22, + "probability": 0.902 + }, + { + "start": 6530.56, + "end": 6532.42, + "probability": 0.9956 + }, + { + "start": 6532.8, + "end": 6533.44, + "probability": 0.7393 + }, + { + "start": 6533.56, + "end": 6533.96, + "probability": 0.9506 + }, + { + "start": 6534.02, + "end": 6537.68, + "probability": 0.9461 + }, + { + "start": 6537.68, + "end": 6541.42, + "probability": 0.9984 + }, + { + "start": 6542.84, + "end": 6544.66, + "probability": 0.9883 + }, + { + "start": 6544.78, + "end": 6546.1, + "probability": 0.814 + }, + { + "start": 6546.28, + "end": 6550.54, + "probability": 0.73 + }, + { + "start": 6550.74, + "end": 6555.74, + "probability": 0.9572 + }, + { + "start": 6556.16, + "end": 6558.2, + "probability": 0.9251 + }, + { + "start": 6558.74, + "end": 6562.64, + "probability": 0.9922 + }, + { + "start": 6562.64, + "end": 6567.54, + "probability": 0.9204 + }, + { + "start": 6568.36, + "end": 6569.86, + "probability": 0.688 + }, + { + "start": 6570.06, + "end": 6572.24, + "probability": 0.9564 + }, + { + "start": 6572.6, + "end": 6576.74, + "probability": 0.98 + }, + { + "start": 6577.0, + "end": 6580.3, + "probability": 0.9785 + }, + { + "start": 6580.72, + "end": 6582.72, + "probability": 0.7966 + }, + { + "start": 6582.94, + "end": 6585.62, + "probability": 0.9064 + }, + { + "start": 6585.96, + "end": 6589.68, + "probability": 0.9232 + }, + { + "start": 6590.04, + "end": 6591.4, + "probability": 0.9672 + }, + { + "start": 6591.92, + "end": 6594.52, + "probability": 0.9503 + }, + { + "start": 6594.66, + "end": 6597.4, + "probability": 0.9948 + }, + { + "start": 6598.02, + "end": 6603.52, + "probability": 0.9678 + }, + { + "start": 6603.98, + "end": 6610.58, + "probability": 0.9905 + }, + { + "start": 6611.02, + "end": 6616.44, + "probability": 0.9774 + }, + { + "start": 6616.86, + "end": 6617.86, + "probability": 0.8606 + }, + { + "start": 6618.36, + "end": 6619.28, + "probability": 0.9616 + }, + { + "start": 6619.5, + "end": 6620.22, + "probability": 0.7885 + }, + { + "start": 6620.56, + "end": 6622.36, + "probability": 0.986 + }, + { + "start": 6623.16, + "end": 6625.02, + "probability": 0.9724 + }, + { + "start": 6625.16, + "end": 6626.28, + "probability": 0.721 + }, + { + "start": 6626.5, + "end": 6631.56, + "probability": 0.9969 + }, + { + "start": 6632.5, + "end": 6633.82, + "probability": 0.7585 + }, + { + "start": 6633.9, + "end": 6634.28, + "probability": 0.6113 + }, + { + "start": 6634.48, + "end": 6634.94, + "probability": 0.7724 + }, + { + "start": 6635.44, + "end": 6637.94, + "probability": 0.9681 + }, + { + "start": 6638.86, + "end": 6645.7, + "probability": 0.9913 + }, + { + "start": 6646.04, + "end": 6649.82, + "probability": 0.9941 + }, + { + "start": 6650.12, + "end": 6654.24, + "probability": 0.9512 + }, + { + "start": 6654.62, + "end": 6657.34, + "probability": 0.9514 + }, + { + "start": 6658.1, + "end": 6659.74, + "probability": 0.9475 + }, + { + "start": 6660.0, + "end": 6662.74, + "probability": 0.9824 + }, + { + "start": 6663.02, + "end": 6666.9, + "probability": 0.9872 + }, + { + "start": 6667.48, + "end": 6668.64, + "probability": 0.9447 + }, + { + "start": 6669.72, + "end": 6672.84, + "probability": 0.9902 + }, + { + "start": 6672.84, + "end": 6676.08, + "probability": 0.9445 + }, + { + "start": 6676.48, + "end": 6677.32, + "probability": 0.8665 + }, + { + "start": 6677.76, + "end": 6680.28, + "probability": 0.9201 + }, + { + "start": 6680.28, + "end": 6686.24, + "probability": 0.9736 + }, + { + "start": 6686.8, + "end": 6688.02, + "probability": 0.9896 + }, + { + "start": 6688.24, + "end": 6689.34, + "probability": 0.9741 + }, + { + "start": 6689.42, + "end": 6696.56, + "probability": 0.9812 + }, + { + "start": 6696.92, + "end": 6697.5, + "probability": 0.7535 + }, + { + "start": 6697.6, + "end": 6700.58, + "probability": 0.9009 + }, + { + "start": 6700.58, + "end": 6704.2, + "probability": 0.9159 + }, + { + "start": 6704.52, + "end": 6705.32, + "probability": 0.9029 + }, + { + "start": 6705.84, + "end": 6706.58, + "probability": 0.7678 + }, + { + "start": 6707.04, + "end": 6708.42, + "probability": 0.9614 + }, + { + "start": 6708.56, + "end": 6710.1, + "probability": 0.9828 + }, + { + "start": 6710.22, + "end": 6714.56, + "probability": 0.9948 + }, + { + "start": 6715.0, + "end": 6721.78, + "probability": 0.9087 + }, + { + "start": 6723.06, + "end": 6729.84, + "probability": 0.9935 + }, + { + "start": 6730.46, + "end": 6736.6, + "probability": 0.9934 + }, + { + "start": 6737.14, + "end": 6740.66, + "probability": 0.8683 + }, + { + "start": 6741.46, + "end": 6744.7, + "probability": 0.9943 + }, + { + "start": 6745.0, + "end": 6749.98, + "probability": 0.9904 + }, + { + "start": 6750.58, + "end": 6753.66, + "probability": 0.9104 + }, + { + "start": 6754.52, + "end": 6757.36, + "probability": 0.9728 + }, + { + "start": 6758.02, + "end": 6760.34, + "probability": 0.9929 + }, + { + "start": 6760.8, + "end": 6763.02, + "probability": 0.9813 + }, + { + "start": 6763.08, + "end": 6765.08, + "probability": 0.9869 + }, + { + "start": 6765.38, + "end": 6767.1, + "probability": 0.9901 + }, + { + "start": 6767.36, + "end": 6768.84, + "probability": 0.7589 + }, + { + "start": 6769.22, + "end": 6770.92, + "probability": 0.8558 + }, + { + "start": 6771.26, + "end": 6772.82, + "probability": 0.923 + }, + { + "start": 6773.94, + "end": 6775.08, + "probability": 0.9097 + }, + { + "start": 6775.2, + "end": 6776.3, + "probability": 0.8934 + }, + { + "start": 6776.48, + "end": 6779.54, + "probability": 0.9895 + }, + { + "start": 6779.54, + "end": 6781.9, + "probability": 0.9957 + }, + { + "start": 6783.48, + "end": 6791.08, + "probability": 0.989 + }, + { + "start": 6791.22, + "end": 6791.94, + "probability": 0.5064 + }, + { + "start": 6792.44, + "end": 6794.96, + "probability": 0.9718 + }, + { + "start": 6795.92, + "end": 6796.62, + "probability": 0.8215 + }, + { + "start": 6796.8, + "end": 6799.18, + "probability": 0.9925 + }, + { + "start": 6799.66, + "end": 6800.79, + "probability": 0.9985 + }, + { + "start": 6800.94, + "end": 6802.7, + "probability": 0.9463 + }, + { + "start": 6803.7, + "end": 6804.38, + "probability": 0.9263 + }, + { + "start": 6805.16, + "end": 6808.76, + "probability": 0.9833 + }, + { + "start": 6809.42, + "end": 6811.01, + "probability": 0.9971 + }, + { + "start": 6811.48, + "end": 6812.4, + "probability": 0.8617 + }, + { + "start": 6812.48, + "end": 6814.86, + "probability": 0.8992 + }, + { + "start": 6814.92, + "end": 6815.74, + "probability": 0.8603 + }, + { + "start": 6816.16, + "end": 6818.82, + "probability": 0.7328 + }, + { + "start": 6819.48, + "end": 6824.54, + "probability": 0.5972 + }, + { + "start": 6824.96, + "end": 6828.92, + "probability": 0.999 + }, + { + "start": 6829.32, + "end": 6831.68, + "probability": 0.993 + }, + { + "start": 6832.12, + "end": 6832.72, + "probability": 0.8834 + }, + { + "start": 6833.24, + "end": 6837.88, + "probability": 0.918 + }, + { + "start": 6838.36, + "end": 6840.0, + "probability": 0.9858 + }, + { + "start": 6840.44, + "end": 6843.7, + "probability": 0.9911 + }, + { + "start": 6844.42, + "end": 6845.14, + "probability": 0.1151 + }, + { + "start": 6845.68, + "end": 6846.1, + "probability": 0.1884 + }, + { + "start": 6847.14, + "end": 6849.36, + "probability": 0.2923 + }, + { + "start": 6849.58, + "end": 6852.76, + "probability": 0.8078 + }, + { + "start": 6852.96, + "end": 6854.6, + "probability": 0.7897 + }, + { + "start": 6854.78, + "end": 6858.06, + "probability": 0.9276 + }, + { + "start": 6858.52, + "end": 6864.18, + "probability": 0.9459 + }, + { + "start": 6864.76, + "end": 6865.08, + "probability": 0.1478 + }, + { + "start": 6865.08, + "end": 6867.0, + "probability": 0.6957 + }, + { + "start": 6867.34, + "end": 6868.98, + "probability": 0.6613 + }, + { + "start": 6869.14, + "end": 6871.18, + "probability": 0.9264 + }, + { + "start": 6871.32, + "end": 6871.64, + "probability": 0.443 + }, + { + "start": 6871.94, + "end": 6872.74, + "probability": 0.4785 + }, + { + "start": 6872.9, + "end": 6876.02, + "probability": 0.8649 + }, + { + "start": 6876.54, + "end": 6880.42, + "probability": 0.7007 + }, + { + "start": 6880.54, + "end": 6881.12, + "probability": 0.4896 + }, + { + "start": 6881.56, + "end": 6882.26, + "probability": 0.4334 + }, + { + "start": 6882.48, + "end": 6883.36, + "probability": 0.7004 + }, + { + "start": 6883.46, + "end": 6887.58, + "probability": 0.9777 + }, + { + "start": 6887.82, + "end": 6890.26, + "probability": 0.9968 + }, + { + "start": 6890.66, + "end": 6891.96, + "probability": 0.996 + }, + { + "start": 6892.04, + "end": 6893.58, + "probability": 0.9072 + }, + { + "start": 6893.84, + "end": 6897.9, + "probability": 0.9628 + }, + { + "start": 6898.5, + "end": 6899.68, + "probability": 0.795 + }, + { + "start": 6899.8, + "end": 6900.78, + "probability": 0.8901 + }, + { + "start": 6900.88, + "end": 6902.2, + "probability": 0.98 + }, + { + "start": 6902.32, + "end": 6905.1, + "probability": 0.9664 + }, + { + "start": 6905.6, + "end": 6910.28, + "probability": 0.8209 + }, + { + "start": 6910.66, + "end": 6912.36, + "probability": 0.9972 + }, + { + "start": 6912.84, + "end": 6914.78, + "probability": 0.9859 + }, + { + "start": 6915.26, + "end": 6915.68, + "probability": 0.733 + }, + { + "start": 6916.38, + "end": 6920.56, + "probability": 0.9684 + }, + { + "start": 6921.08, + "end": 6925.28, + "probability": 0.9408 + }, + { + "start": 6925.66, + "end": 6931.26, + "probability": 0.8444 + }, + { + "start": 6931.32, + "end": 6931.5, + "probability": 0.6241 + }, + { + "start": 6931.64, + "end": 6934.62, + "probability": 0.8839 + }, + { + "start": 6935.2, + "end": 6938.88, + "probability": 0.9941 + }, + { + "start": 6939.18, + "end": 6941.74, + "probability": 0.9985 + }, + { + "start": 6942.1, + "end": 6944.3, + "probability": 0.9969 + }, + { + "start": 6944.42, + "end": 6946.64, + "probability": 0.9968 + }, + { + "start": 6946.98, + "end": 6948.44, + "probability": 0.8608 + }, + { + "start": 6948.72, + "end": 6949.97, + "probability": 0.9848 + }, + { + "start": 6950.56, + "end": 6951.02, + "probability": 0.8479 + }, + { + "start": 6951.36, + "end": 6953.22, + "probability": 0.681 + }, + { + "start": 6953.36, + "end": 6956.34, + "probability": 0.8576 + }, + { + "start": 6956.88, + "end": 6958.28, + "probability": 0.9619 + }, + { + "start": 6958.44, + "end": 6961.88, + "probability": 0.9265 + }, + { + "start": 6961.88, + "end": 6962.14, + "probability": 0.2268 + }, + { + "start": 6962.7, + "end": 6968.2, + "probability": 0.7778 + }, + { + "start": 6969.26, + "end": 6971.26, + "probability": 0.7352 + }, + { + "start": 6972.1, + "end": 6972.16, + "probability": 0.0533 + }, + { + "start": 6972.16, + "end": 6974.32, + "probability": 0.5755 + }, + { + "start": 6974.86, + "end": 6979.68, + "probability": 0.7878 + }, + { + "start": 6980.48, + "end": 6984.4, + "probability": 0.8228 + }, + { + "start": 6984.6, + "end": 6988.22, + "probability": 0.8362 + }, + { + "start": 6989.06, + "end": 6990.64, + "probability": 0.4308 + }, + { + "start": 6990.86, + "end": 6991.64, + "probability": 0.8214 + }, + { + "start": 6999.88, + "end": 7001.18, + "probability": 0.9389 + }, + { + "start": 7001.8, + "end": 7003.06, + "probability": 0.8677 + }, + { + "start": 7003.1, + "end": 7003.78, + "probability": 0.9545 + }, + { + "start": 7003.9, + "end": 7004.7, + "probability": 0.7887 + }, + { + "start": 7004.9, + "end": 7007.0, + "probability": 0.9623 + }, + { + "start": 7007.06, + "end": 7007.82, + "probability": 0.8693 + }, + { + "start": 7007.98, + "end": 7008.34, + "probability": 0.4597 + }, + { + "start": 7009.4, + "end": 7011.5, + "probability": 0.9552 + }, + { + "start": 7011.74, + "end": 7012.59, + "probability": 0.7427 + }, + { + "start": 7013.16, + "end": 7016.5, + "probability": 0.938 + }, + { + "start": 7016.98, + "end": 7018.06, + "probability": 0.7788 + }, + { + "start": 7018.94, + "end": 7019.72, + "probability": 0.7212 + }, + { + "start": 7020.66, + "end": 7026.28, + "probability": 0.9375 + }, + { + "start": 7026.9, + "end": 7030.36, + "probability": 0.9935 + }, + { + "start": 7031.66, + "end": 7031.66, + "probability": 0.2019 + }, + { + "start": 7031.66, + "end": 7034.84, + "probability": 0.882 + }, + { + "start": 7034.88, + "end": 7037.5, + "probability": 0.9847 + }, + { + "start": 7038.14, + "end": 7038.62, + "probability": 0.5349 + }, + { + "start": 7038.68, + "end": 7042.24, + "probability": 0.9753 + }, + { + "start": 7042.74, + "end": 7045.44, + "probability": 0.6905 + }, + { + "start": 7045.86, + "end": 7046.88, + "probability": 0.9059 + }, + { + "start": 7048.24, + "end": 7055.44, + "probability": 0.7562 + }, + { + "start": 7056.34, + "end": 7057.24, + "probability": 0.6708 + }, + { + "start": 7057.94, + "end": 7061.72, + "probability": 0.8948 + }, + { + "start": 7062.24, + "end": 7067.0, + "probability": 0.6589 + }, + { + "start": 7067.76, + "end": 7068.94, + "probability": 0.8804 + }, + { + "start": 7069.1, + "end": 7069.62, + "probability": 0.6262 + }, + { + "start": 7069.72, + "end": 7071.8, + "probability": 0.9729 + }, + { + "start": 7073.12, + "end": 7076.52, + "probability": 0.5007 + }, + { + "start": 7077.14, + "end": 7081.9, + "probability": 0.9419 + }, + { + "start": 7082.78, + "end": 7083.54, + "probability": 0.9578 + }, + { + "start": 7083.62, + "end": 7087.1, + "probability": 0.9214 + }, + { + "start": 7088.54, + "end": 7090.16, + "probability": 0.7545 + }, + { + "start": 7090.9, + "end": 7097.28, + "probability": 0.9788 + }, + { + "start": 7097.36, + "end": 7099.12, + "probability": 0.7068 + }, + { + "start": 7099.5, + "end": 7101.34, + "probability": 0.9688 + }, + { + "start": 7102.62, + "end": 7104.22, + "probability": 0.8054 + }, + { + "start": 7105.42, + "end": 7106.84, + "probability": 0.6889 + }, + { + "start": 7107.8, + "end": 7110.84, + "probability": 0.9627 + }, + { + "start": 7111.1, + "end": 7111.6, + "probability": 0.8002 + }, + { + "start": 7111.66, + "end": 7117.58, + "probability": 0.9769 + }, + { + "start": 7118.58, + "end": 7121.76, + "probability": 0.9889 + }, + { + "start": 7122.38, + "end": 7127.26, + "probability": 0.9612 + }, + { + "start": 7127.26, + "end": 7129.82, + "probability": 0.7039 + }, + { + "start": 7130.86, + "end": 7135.64, + "probability": 0.8062 + }, + { + "start": 7136.16, + "end": 7137.64, + "probability": 0.8922 + }, + { + "start": 7138.66, + "end": 7140.94, + "probability": 0.6154 + }, + { + "start": 7142.06, + "end": 7145.3, + "probability": 0.973 + }, + { + "start": 7145.3, + "end": 7149.04, + "probability": 0.9755 + }, + { + "start": 7149.52, + "end": 7152.68, + "probability": 0.8977 + }, + { + "start": 7153.28, + "end": 7155.16, + "probability": 0.6676 + }, + { + "start": 7155.74, + "end": 7156.94, + "probability": 0.7593 + }, + { + "start": 7157.72, + "end": 7162.52, + "probability": 0.8584 + }, + { + "start": 7163.32, + "end": 7165.56, + "probability": 0.744 + }, + { + "start": 7166.14, + "end": 7167.92, + "probability": 0.9165 + }, + { + "start": 7168.68, + "end": 7172.3, + "probability": 0.9678 + }, + { + "start": 7172.3, + "end": 7173.16, + "probability": 0.3603 + }, + { + "start": 7174.02, + "end": 7174.5, + "probability": 0.7596 + }, + { + "start": 7175.24, + "end": 7178.26, + "probability": 0.6459 + }, + { + "start": 7178.42, + "end": 7180.84, + "probability": 0.7606 + }, + { + "start": 7181.02, + "end": 7183.68, + "probability": 0.8916 + }, + { + "start": 7184.22, + "end": 7189.91, + "probability": 0.9318 + }, + { + "start": 7190.56, + "end": 7192.96, + "probability": 0.9868 + }, + { + "start": 7193.02, + "end": 7194.38, + "probability": 0.7553 + }, + { + "start": 7194.62, + "end": 7196.7, + "probability": 0.9953 + }, + { + "start": 7197.5, + "end": 7198.82, + "probability": 0.9751 + }, + { + "start": 7201.92, + "end": 7203.68, + "probability": 0.7404 + }, + { + "start": 7203.82, + "end": 7203.82, + "probability": 0.5434 + }, + { + "start": 7203.82, + "end": 7204.44, + "probability": 0.707 + }, + { + "start": 7204.48, + "end": 7205.98, + "probability": 0.6616 + }, + { + "start": 7206.62, + "end": 7209.68, + "probability": 0.9779 + }, + { + "start": 7209.9, + "end": 7213.16, + "probability": 0.6721 + }, + { + "start": 7213.88, + "end": 7217.54, + "probability": 0.9807 + }, + { + "start": 7217.54, + "end": 7218.56, + "probability": 0.4678 + }, + { + "start": 7218.56, + "end": 7218.92, + "probability": 0.7002 + }, + { + "start": 7219.06, + "end": 7222.56, + "probability": 0.8623 + }, + { + "start": 7222.66, + "end": 7224.6, + "probability": 0.9531 + }, + { + "start": 7224.8, + "end": 7229.68, + "probability": 0.9272 + }, + { + "start": 7230.28, + "end": 7231.3, + "probability": 0.4994 + }, + { + "start": 7231.44, + "end": 7232.46, + "probability": 0.8804 + }, + { + "start": 7232.6, + "end": 7234.66, + "probability": 0.7396 + }, + { + "start": 7234.74, + "end": 7236.46, + "probability": 0.9961 + }, + { + "start": 7236.68, + "end": 7237.52, + "probability": 0.8579 + }, + { + "start": 7237.52, + "end": 7237.59, + "probability": 0.6401 + }, + { + "start": 7239.08, + "end": 7240.8, + "probability": 0.9438 + }, + { + "start": 7241.04, + "end": 7242.28, + "probability": 0.9323 + }, + { + "start": 7244.12, + "end": 7245.19, + "probability": 0.9909 + }, + { + "start": 7245.56, + "end": 7245.8, + "probability": 0.4009 + }, + { + "start": 7246.14, + "end": 7246.8, + "probability": 0.6761 + }, + { + "start": 7246.92, + "end": 7247.82, + "probability": 0.6227 + }, + { + "start": 7247.92, + "end": 7253.42, + "probability": 0.8775 + }, + { + "start": 7254.06, + "end": 7259.86, + "probability": 0.8038 + }, + { + "start": 7259.86, + "end": 7261.88, + "probability": 0.9635 + }, + { + "start": 7262.02, + "end": 7264.2, + "probability": 0.7468 + }, + { + "start": 7264.7, + "end": 7267.06, + "probability": 0.9598 + }, + { + "start": 7267.4, + "end": 7268.78, + "probability": 0.913 + }, + { + "start": 7268.8, + "end": 7272.26, + "probability": 0.9806 + }, + { + "start": 7272.58, + "end": 7273.68, + "probability": 0.9836 + }, + { + "start": 7274.34, + "end": 7275.5, + "probability": 0.5134 + }, + { + "start": 7275.6, + "end": 7279.84, + "probability": 0.8377 + }, + { + "start": 7280.52, + "end": 7284.16, + "probability": 0.8418 + }, + { + "start": 7284.22, + "end": 7286.86, + "probability": 0.9843 + }, + { + "start": 7286.92, + "end": 7287.8, + "probability": 0.8779 + }, + { + "start": 7288.32, + "end": 7290.62, + "probability": 0.7867 + }, + { + "start": 7290.84, + "end": 7295.22, + "probability": 0.9044 + }, + { + "start": 7295.54, + "end": 7296.12, + "probability": 0.8387 + }, + { + "start": 7296.2, + "end": 7297.12, + "probability": 0.8707 + }, + { + "start": 7297.74, + "end": 7303.62, + "probability": 0.9658 + }, + { + "start": 7303.88, + "end": 7308.4, + "probability": 0.8646 + }, + { + "start": 7309.24, + "end": 7313.72, + "probability": 0.9988 + }, + { + "start": 7313.72, + "end": 7319.46, + "probability": 0.9209 + }, + { + "start": 7319.52, + "end": 7321.36, + "probability": 0.941 + }, + { + "start": 7321.4, + "end": 7323.24, + "probability": 0.9593 + }, + { + "start": 7323.34, + "end": 7325.98, + "probability": 0.9971 + }, + { + "start": 7326.74, + "end": 7330.96, + "probability": 0.9445 + }, + { + "start": 7332.2, + "end": 7338.16, + "probability": 0.9847 + }, + { + "start": 7338.16, + "end": 7343.44, + "probability": 0.9731 + }, + { + "start": 7344.28, + "end": 7350.26, + "probability": 0.9835 + }, + { + "start": 7350.82, + "end": 7357.18, + "probability": 0.9954 + }, + { + "start": 7357.18, + "end": 7360.98, + "probability": 0.9985 + }, + { + "start": 7361.82, + "end": 7368.22, + "probability": 0.9959 + }, + { + "start": 7369.26, + "end": 7370.28, + "probability": 0.7984 + }, + { + "start": 7370.4, + "end": 7374.62, + "probability": 0.9172 + }, + { + "start": 7374.64, + "end": 7379.98, + "probability": 0.8811 + }, + { + "start": 7380.44, + "end": 7383.6, + "probability": 0.9955 + }, + { + "start": 7383.76, + "end": 7385.54, + "probability": 0.5567 + }, + { + "start": 7386.14, + "end": 7387.16, + "probability": 0.9688 + }, + { + "start": 7387.94, + "end": 7391.32, + "probability": 0.8449 + }, + { + "start": 7392.0, + "end": 7395.18, + "probability": 0.9392 + }, + { + "start": 7395.84, + "end": 7398.9, + "probability": 0.9464 + }, + { + "start": 7400.56, + "end": 7401.01, + "probability": 0.9382 + }, + { + "start": 7401.12, + "end": 7401.36, + "probability": 0.8556 + }, + { + "start": 7401.4, + "end": 7404.08, + "probability": 0.9863 + }, + { + "start": 7404.2, + "end": 7406.8, + "probability": 0.9796 + }, + { + "start": 7408.98, + "end": 7413.56, + "probability": 0.9382 + }, + { + "start": 7413.56, + "end": 7417.36, + "probability": 0.9949 + }, + { + "start": 7418.48, + "end": 7419.44, + "probability": 0.9857 + }, + { + "start": 7420.6, + "end": 7420.6, + "probability": 0.2325 + }, + { + "start": 7420.64, + "end": 7421.46, + "probability": 0.7583 + }, + { + "start": 7421.64, + "end": 7425.44, + "probability": 0.9331 + }, + { + "start": 7425.94, + "end": 7426.18, + "probability": 0.5749 + }, + { + "start": 7426.24, + "end": 7427.3, + "probability": 0.9612 + }, + { + "start": 7427.48, + "end": 7433.52, + "probability": 0.9509 + }, + { + "start": 7433.52, + "end": 7437.18, + "probability": 0.9914 + }, + { + "start": 7437.24, + "end": 7438.52, + "probability": 0.8424 + }, + { + "start": 7438.58, + "end": 7442.82, + "probability": 0.9836 + }, + { + "start": 7443.82, + "end": 7445.78, + "probability": 0.998 + }, + { + "start": 7445.86, + "end": 7451.42, + "probability": 0.9851 + }, + { + "start": 7452.66, + "end": 7453.2, + "probability": 0.7019 + }, + { + "start": 7453.28, + "end": 7453.84, + "probability": 0.8833 + }, + { + "start": 7453.92, + "end": 7459.16, + "probability": 0.8088 + }, + { + "start": 7459.16, + "end": 7463.66, + "probability": 0.9473 + }, + { + "start": 7463.78, + "end": 7465.96, + "probability": 0.92 + }, + { + "start": 7465.98, + "end": 7466.4, + "probability": 0.382 + }, + { + "start": 7467.12, + "end": 7471.38, + "probability": 0.988 + }, + { + "start": 7471.44, + "end": 7473.64, + "probability": 0.9956 + }, + { + "start": 7474.42, + "end": 7476.54, + "probability": 0.8632 + }, + { + "start": 7477.28, + "end": 7479.34, + "probability": 0.9268 + }, + { + "start": 7479.68, + "end": 7480.08, + "probability": 0.8446 + }, + { + "start": 7480.16, + "end": 7482.24, + "probability": 0.931 + }, + { + "start": 7482.6, + "end": 7485.56, + "probability": 0.9651 + }, + { + "start": 7488.14, + "end": 7493.28, + "probability": 0.3613 + }, + { + "start": 7494.0, + "end": 7494.97, + "probability": 0.3952 + }, + { + "start": 7502.2, + "end": 7502.38, + "probability": 0.145 + }, + { + "start": 7502.38, + "end": 7502.59, + "probability": 0.1651 + }, + { + "start": 7503.62, + "end": 7504.94, + "probability": 0.0912 + }, + { + "start": 7504.94, + "end": 7504.94, + "probability": 0.0629 + }, + { + "start": 7505.18, + "end": 7506.18, + "probability": 0.1176 + }, + { + "start": 7528.24, + "end": 7530.64, + "probability": 0.7702 + }, + { + "start": 7531.86, + "end": 7534.78, + "probability": 0.9961 + }, + { + "start": 7535.3, + "end": 7538.14, + "probability": 0.9851 + }, + { + "start": 7540.4, + "end": 7542.38, + "probability": 0.9783 + }, + { + "start": 7543.96, + "end": 7547.1, + "probability": 0.789 + }, + { + "start": 7548.0, + "end": 7549.2, + "probability": 0.8835 + }, + { + "start": 7550.52, + "end": 7553.48, + "probability": 0.9946 + }, + { + "start": 7555.06, + "end": 7561.38, + "probability": 0.9749 + }, + { + "start": 7562.86, + "end": 7567.44, + "probability": 0.9512 + }, + { + "start": 7567.64, + "end": 7568.64, + "probability": 0.7023 + }, + { + "start": 7569.48, + "end": 7571.5, + "probability": 0.9132 + }, + { + "start": 7571.7, + "end": 7573.22, + "probability": 0.6467 + }, + { + "start": 7573.6, + "end": 7585.2, + "probability": 0.9025 + }, + { + "start": 7585.2, + "end": 7590.16, + "probability": 0.9698 + }, + { + "start": 7590.8, + "end": 7592.06, + "probability": 0.9703 + }, + { + "start": 7593.24, + "end": 7597.56, + "probability": 0.9106 + }, + { + "start": 7597.68, + "end": 7597.9, + "probability": 0.8586 + }, + { + "start": 7597.96, + "end": 7599.24, + "probability": 0.8861 + }, + { + "start": 7600.26, + "end": 7603.74, + "probability": 0.9678 + }, + { + "start": 7603.74, + "end": 7609.86, + "probability": 0.9905 + }, + { + "start": 7611.32, + "end": 7613.24, + "probability": 0.3885 + }, + { + "start": 7614.0, + "end": 7616.32, + "probability": 0.9683 + }, + { + "start": 7617.12, + "end": 7620.54, + "probability": 0.9881 + }, + { + "start": 7620.7, + "end": 7625.08, + "probability": 0.8609 + }, + { + "start": 7626.12, + "end": 7632.08, + "probability": 0.6154 + }, + { + "start": 7633.48, + "end": 7634.82, + "probability": 0.9054 + }, + { + "start": 7634.92, + "end": 7636.73, + "probability": 0.9662 + }, + { + "start": 7637.14, + "end": 7637.3, + "probability": 0.0059 + }, + { + "start": 7638.0, + "end": 7643.14, + "probability": 0.9801 + }, + { + "start": 7644.14, + "end": 7645.64, + "probability": 0.8289 + }, + { + "start": 7645.7, + "end": 7648.2, + "probability": 0.9565 + }, + { + "start": 7648.46, + "end": 7651.66, + "probability": 0.9194 + }, + { + "start": 7651.74, + "end": 7652.1, + "probability": 0.8463 + }, + { + "start": 7653.84, + "end": 7654.68, + "probability": 0.2998 + }, + { + "start": 7654.84, + "end": 7656.5, + "probability": 0.7651 + }, + { + "start": 7656.66, + "end": 7659.16, + "probability": 0.6981 + }, + { + "start": 7660.76, + "end": 7661.24, + "probability": 0.299 + }, + { + "start": 7663.6, + "end": 7670.0, + "probability": 0.7715 + }, + { + "start": 7670.76, + "end": 7673.31, + "probability": 0.1459 + }, + { + "start": 7674.86, + "end": 7677.82, + "probability": 0.2621 + }, + { + "start": 7678.72, + "end": 7680.24, + "probability": 0.3834 + }, + { + "start": 7682.64, + "end": 7683.91, + "probability": 0.0671 + }, + { + "start": 7684.58, + "end": 7687.5, + "probability": 0.0642 + }, + { + "start": 7687.5, + "end": 7690.96, + "probability": 0.1515 + }, + { + "start": 7692.36, + "end": 7695.12, + "probability": 0.3517 + }, + { + "start": 7696.04, + "end": 7698.1, + "probability": 0.9674 + }, + { + "start": 7698.32, + "end": 7703.08, + "probability": 0.9375 + }, + { + "start": 7704.64, + "end": 7705.98, + "probability": 0.8241 + }, + { + "start": 7708.0, + "end": 7711.86, + "probability": 0.8713 + }, + { + "start": 7712.02, + "end": 7716.44, + "probability": 0.9036 + }, + { + "start": 7716.62, + "end": 7717.58, + "probability": 0.3742 + }, + { + "start": 7719.04, + "end": 7720.98, + "probability": 0.9971 + }, + { + "start": 7722.1, + "end": 7729.42, + "probability": 0.9823 + }, + { + "start": 7729.68, + "end": 7730.68, + "probability": 0.6031 + }, + { + "start": 7730.94, + "end": 7731.73, + "probability": 0.0557 + }, + { + "start": 7732.2, + "end": 7733.12, + "probability": 0.833 + }, + { + "start": 7733.76, + "end": 7734.88, + "probability": 0.7173 + }, + { + "start": 7735.02, + "end": 7737.7, + "probability": 0.7637 + }, + { + "start": 7738.18, + "end": 7739.16, + "probability": 0.517 + }, + { + "start": 7739.26, + "end": 7739.66, + "probability": 0.8423 + }, + { + "start": 7739.7, + "end": 7740.0, + "probability": 0.3726 + }, + { + "start": 7740.06, + "end": 7741.76, + "probability": 0.2568 + }, + { + "start": 7743.36, + "end": 7747.1, + "probability": 0.9577 + }, + { + "start": 7747.18, + "end": 7747.62, + "probability": 0.9445 + }, + { + "start": 7747.74, + "end": 7748.0, + "probability": 0.2059 + }, + { + "start": 7748.92, + "end": 7750.4, + "probability": 0.7617 + }, + { + "start": 7750.68, + "end": 7754.99, + "probability": 0.9471 + }, + { + "start": 7755.32, + "end": 7758.0, + "probability": 0.9651 + }, + { + "start": 7758.14, + "end": 7759.86, + "probability": 0.8984 + }, + { + "start": 7762.44, + "end": 7763.54, + "probability": 0.0466 + }, + { + "start": 7763.54, + "end": 7765.9, + "probability": 0.669 + }, + { + "start": 7766.04, + "end": 7767.48, + "probability": 0.819 + }, + { + "start": 7767.8, + "end": 7771.04, + "probability": 0.436 + }, + { + "start": 7771.08, + "end": 7771.71, + "probability": 0.9375 + }, + { + "start": 7772.04, + "end": 7772.99, + "probability": 0.6348 + }, + { + "start": 7773.14, + "end": 7776.44, + "probability": 0.7605 + }, + { + "start": 7776.7, + "end": 7780.12, + "probability": 0.7052 + }, + { + "start": 7781.22, + "end": 7783.44, + "probability": 0.9734 + }, + { + "start": 7783.88, + "end": 7787.78, + "probability": 0.6749 + }, + { + "start": 7787.9, + "end": 7789.34, + "probability": 0.8352 + }, + { + "start": 7790.28, + "end": 7791.44, + "probability": 0.3162 + }, + { + "start": 7791.74, + "end": 7792.2, + "probability": 0.3959 + }, + { + "start": 7792.56, + "end": 7794.16, + "probability": 0.5421 + }, + { + "start": 7794.91, + "end": 7799.38, + "probability": 0.6633 + }, + { + "start": 7799.76, + "end": 7800.66, + "probability": 0.6983 + }, + { + "start": 7804.84, + "end": 7805.56, + "probability": 0.7414 + }, + { + "start": 7805.72, + "end": 7806.26, + "probability": 0.7437 + }, + { + "start": 7806.34, + "end": 7808.4, + "probability": 0.9181 + }, + { + "start": 7810.34, + "end": 7810.34, + "probability": 0.2238 + }, + { + "start": 7810.34, + "end": 7812.55, + "probability": 0.5997 + }, + { + "start": 7814.82, + "end": 7817.52, + "probability": 0.2182 + }, + { + "start": 7818.62, + "end": 7825.24, + "probability": 0.1975 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7930.0, + "end": 7930.0, + "probability": 0.0 + }, + { + "start": 7938.72, + "end": 7940.68, + "probability": 0.1016 + }, + { + "start": 7940.74, + "end": 7941.12, + "probability": 0.0684 + }, + { + "start": 7941.12, + "end": 7941.83, + "probability": 0.0479 + }, + { + "start": 7943.82, + "end": 7946.64, + "probability": 0.0677 + }, + { + "start": 7946.68, + "end": 7946.94, + "probability": 0.0906 + }, + { + "start": 7950.82, + "end": 7951.9, + "probability": 0.0639 + }, + { + "start": 7952.05, + "end": 7955.42, + "probability": 0.0393 + }, + { + "start": 7956.24, + "end": 7958.92, + "probability": 0.1763 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.0, + "end": 8056.0, + "probability": 0.0 + }, + { + "start": 8056.08, + "end": 8057.14, + "probability": 0.0285 + }, + { + "start": 8057.14, + "end": 8057.14, + "probability": 0.1252 + }, + { + "start": 8057.14, + "end": 8057.14, + "probability": 0.091 + }, + { + "start": 8057.14, + "end": 8060.6, + "probability": 0.3081 + }, + { + "start": 8062.34, + "end": 8066.88, + "probability": 0.9822 + }, + { + "start": 8067.06, + "end": 8072.1, + "probability": 0.997 + }, + { + "start": 8074.13, + "end": 8078.1, + "probability": 0.9363 + }, + { + "start": 8078.32, + "end": 8079.66, + "probability": 0.8438 + }, + { + "start": 8080.06, + "end": 8082.4, + "probability": 0.9734 + }, + { + "start": 8082.92, + "end": 8087.76, + "probability": 0.8294 + }, + { + "start": 8088.74, + "end": 8090.8, + "probability": 0.8459 + }, + { + "start": 8091.26, + "end": 8092.14, + "probability": 0.7575 + }, + { + "start": 8092.22, + "end": 8094.96, + "probability": 0.9696 + }, + { + "start": 8095.26, + "end": 8098.58, + "probability": 0.8755 + }, + { + "start": 8099.54, + "end": 8103.1, + "probability": 0.6204 + }, + { + "start": 8103.1, + "end": 8103.84, + "probability": 0.8396 + }, + { + "start": 8104.34, + "end": 8106.56, + "probability": 0.974 + }, + { + "start": 8106.6, + "end": 8109.52, + "probability": 0.9775 + }, + { + "start": 8110.44, + "end": 8114.24, + "probability": 0.8978 + }, + { + "start": 8114.28, + "end": 8117.5, + "probability": 0.9841 + }, + { + "start": 8118.08, + "end": 8121.52, + "probability": 0.9951 + }, + { + "start": 8122.0, + "end": 8124.36, + "probability": 0.8077 + }, + { + "start": 8124.82, + "end": 8125.78, + "probability": 0.8199 + }, + { + "start": 8126.38, + "end": 8131.1, + "probability": 0.746 + }, + { + "start": 8131.68, + "end": 8141.62, + "probability": 0.9852 + }, + { + "start": 8141.9, + "end": 8142.7, + "probability": 0.5728 + }, + { + "start": 8142.88, + "end": 8143.92, + "probability": 0.8038 + }, + { + "start": 8145.18, + "end": 8149.74, + "probability": 0.9966 + }, + { + "start": 8150.23, + "end": 8153.61, + "probability": 0.7071 + }, + { + "start": 8155.36, + "end": 8156.16, + "probability": 0.7019 + }, + { + "start": 8156.3, + "end": 8156.68, + "probability": 0.8523 + }, + { + "start": 8156.84, + "end": 8159.41, + "probability": 0.98 + }, + { + "start": 8160.0, + "end": 8164.74, + "probability": 0.9043 + }, + { + "start": 8165.04, + "end": 8171.98, + "probability": 0.8163 + }, + { + "start": 8172.38, + "end": 8176.63, + "probability": 0.9166 + }, + { + "start": 8177.84, + "end": 8179.2, + "probability": 0.9117 + }, + { + "start": 8179.3, + "end": 8180.86, + "probability": 0.8435 + }, + { + "start": 8181.2, + "end": 8186.62, + "probability": 0.9974 + }, + { + "start": 8186.62, + "end": 8192.46, + "probability": 0.9857 + }, + { + "start": 8192.96, + "end": 8196.98, + "probability": 0.9492 + }, + { + "start": 8197.76, + "end": 8198.88, + "probability": 0.5152 + }, + { + "start": 8199.08, + "end": 8199.88, + "probability": 0.922 + }, + { + "start": 8200.2, + "end": 8201.18, + "probability": 0.9642 + }, + { + "start": 8201.38, + "end": 8201.94, + "probability": 0.9813 + }, + { + "start": 8202.2, + "end": 8205.06, + "probability": 0.9331 + }, + { + "start": 8205.32, + "end": 8209.98, + "probability": 0.9862 + }, + { + "start": 8209.98, + "end": 8213.18, + "probability": 0.9935 + }, + { + "start": 8213.26, + "end": 8214.12, + "probability": 0.8542 + }, + { + "start": 8214.22, + "end": 8215.08, + "probability": 0.966 + }, + { + "start": 8215.28, + "end": 8216.34, + "probability": 0.86 + }, + { + "start": 8216.52, + "end": 8219.28, + "probability": 0.9875 + }, + { + "start": 8219.64, + "end": 8221.66, + "probability": 0.9963 + }, + { + "start": 8221.86, + "end": 8229.44, + "probability": 0.9426 + }, + { + "start": 8229.8, + "end": 8233.92, + "probability": 0.8557 + }, + { + "start": 8235.02, + "end": 8235.38, + "probability": 0.6156 + }, + { + "start": 8235.38, + "end": 8235.58, + "probability": 0.4145 + }, + { + "start": 8235.64, + "end": 8237.22, + "probability": 0.7743 + }, + { + "start": 8237.28, + "end": 8242.22, + "probability": 0.9928 + }, + { + "start": 8242.38, + "end": 8244.63, + "probability": 0.9966 + }, + { + "start": 8245.04, + "end": 8246.34, + "probability": 0.5752 + }, + { + "start": 8246.5, + "end": 8248.16, + "probability": 0.9698 + }, + { + "start": 8248.48, + "end": 8250.56, + "probability": 0.9701 + }, + { + "start": 8250.98, + "end": 8256.68, + "probability": 0.9305 + }, + { + "start": 8257.1, + "end": 8258.52, + "probability": 0.847 + }, + { + "start": 8259.12, + "end": 8260.16, + "probability": 0.9469 + }, + { + "start": 8260.36, + "end": 8261.58, + "probability": 0.9564 + }, + { + "start": 8261.94, + "end": 8262.64, + "probability": 0.9578 + }, + { + "start": 8262.7, + "end": 8263.42, + "probability": 0.9713 + }, + { + "start": 8263.46, + "end": 8264.9, + "probability": 0.9834 + }, + { + "start": 8265.16, + "end": 8267.26, + "probability": 0.949 + }, + { + "start": 8267.72, + "end": 8269.46, + "probability": 0.9507 + }, + { + "start": 8269.74, + "end": 8272.34, + "probability": 0.9672 + }, + { + "start": 8272.68, + "end": 8273.66, + "probability": 0.8071 + }, + { + "start": 8274.16, + "end": 8279.54, + "probability": 0.9934 + }, + { + "start": 8279.6, + "end": 8280.74, + "probability": 0.9517 + }, + { + "start": 8281.06, + "end": 8283.8, + "probability": 0.9922 + }, + { + "start": 8284.22, + "end": 8289.2, + "probability": 0.6953 + }, + { + "start": 8289.34, + "end": 8294.92, + "probability": 0.967 + }, + { + "start": 8295.32, + "end": 8296.8, + "probability": 0.9923 + }, + { + "start": 8297.18, + "end": 8300.12, + "probability": 0.9339 + }, + { + "start": 8300.44, + "end": 8304.4, + "probability": 0.9829 + }, + { + "start": 8304.68, + "end": 8306.02, + "probability": 0.8895 + }, + { + "start": 8306.32, + "end": 8310.54, + "probability": 0.992 + }, + { + "start": 8310.54, + "end": 8315.76, + "probability": 0.991 + }, + { + "start": 8316.02, + "end": 8318.34, + "probability": 0.9888 + }, + { + "start": 8318.46, + "end": 8319.84, + "probability": 0.7964 + }, + { + "start": 8320.54, + "end": 8323.92, + "probability": 0.978 + }, + { + "start": 8325.2, + "end": 8329.36, + "probability": 0.9423 + }, + { + "start": 8329.68, + "end": 8333.6, + "probability": 0.9979 + }, + { + "start": 8334.0, + "end": 8336.78, + "probability": 0.9644 + }, + { + "start": 8337.04, + "end": 8341.26, + "probability": 0.9958 + }, + { + "start": 8341.7, + "end": 8344.78, + "probability": 0.9764 + }, + { + "start": 8344.78, + "end": 8350.6, + "probability": 0.9014 + }, + { + "start": 8351.06, + "end": 8351.38, + "probability": 0.3466 + }, + { + "start": 8351.48, + "end": 8352.62, + "probability": 0.9858 + }, + { + "start": 8352.68, + "end": 8353.8, + "probability": 0.8182 + }, + { + "start": 8354.16, + "end": 8356.4, + "probability": 0.7456 + }, + { + "start": 8356.42, + "end": 8360.81, + "probability": 0.9406 + }, + { + "start": 8361.2, + "end": 8362.98, + "probability": 0.9365 + }, + { + "start": 8363.12, + "end": 8365.38, + "probability": 0.8007 + }, + { + "start": 8365.7, + "end": 8367.04, + "probability": 0.8694 + }, + { + "start": 8367.24, + "end": 8368.52, + "probability": 0.9856 + }, + { + "start": 8370.08, + "end": 8374.52, + "probability": 0.9853 + }, + { + "start": 8374.52, + "end": 8378.4, + "probability": 0.9571 + }, + { + "start": 8378.84, + "end": 8380.94, + "probability": 0.9927 + }, + { + "start": 8381.26, + "end": 8385.5, + "probability": 0.9666 + }, + { + "start": 8385.58, + "end": 8386.0, + "probability": 0.2573 + }, + { + "start": 8386.08, + "end": 8386.08, + "probability": 0.4146 + }, + { + "start": 8386.1, + "end": 8386.56, + "probability": 0.8245 + }, + { + "start": 8386.64, + "end": 8387.6, + "probability": 0.8116 + }, + { + "start": 8387.66, + "end": 8388.18, + "probability": 0.9307 + }, + { + "start": 8388.24, + "end": 8389.4, + "probability": 0.6308 + }, + { + "start": 8390.04, + "end": 8391.48, + "probability": 0.973 + }, + { + "start": 8392.46, + "end": 8394.72, + "probability": 0.9946 + }, + { + "start": 8395.58, + "end": 8398.3, + "probability": 0.5996 + }, + { + "start": 8398.3, + "end": 8399.26, + "probability": 0.386 + }, + { + "start": 8399.52, + "end": 8399.94, + "probability": 0.0751 + }, + { + "start": 8400.0, + "end": 8400.38, + "probability": 0.4683 + }, + { + "start": 8400.4, + "end": 8401.1, + "probability": 0.8533 + }, + { + "start": 8403.2, + "end": 8405.42, + "probability": 0.0796 + }, + { + "start": 8405.98, + "end": 8407.32, + "probability": 0.7005 + }, + { + "start": 8408.42, + "end": 8410.96, + "probability": 0.3318 + }, + { + "start": 8411.76, + "end": 8412.2, + "probability": 0.007 + }, + { + "start": 8412.2, + "end": 8412.3, + "probability": 0.1469 + }, + { + "start": 8412.3, + "end": 8414.2, + "probability": 0.2775 + }, + { + "start": 8414.2, + "end": 8414.44, + "probability": 0.5236 + }, + { + "start": 8414.6, + "end": 8415.36, + "probability": 0.8152 + }, + { + "start": 8415.42, + "end": 8416.66, + "probability": 0.9095 + }, + { + "start": 8416.72, + "end": 8418.76, + "probability": 0.9785 + }, + { + "start": 8419.58, + "end": 8424.28, + "probability": 0.8655 + }, + { + "start": 8424.82, + "end": 8426.34, + "probability": 0.9735 + }, + { + "start": 8426.6, + "end": 8428.49, + "probability": 0.7677 + }, + { + "start": 8429.32, + "end": 8432.0, + "probability": 0.9272 + }, + { + "start": 8432.56, + "end": 8440.08, + "probability": 0.9889 + }, + { + "start": 8440.68, + "end": 8444.02, + "probability": 0.9937 + }, + { + "start": 8444.02, + "end": 8447.28, + "probability": 0.9948 + }, + { + "start": 8447.38, + "end": 8448.76, + "probability": 0.7933 + }, + { + "start": 8449.08, + "end": 8452.16, + "probability": 0.9596 + }, + { + "start": 8452.48, + "end": 8458.66, + "probability": 0.9974 + }, + { + "start": 8458.98, + "end": 8462.1, + "probability": 0.9976 + }, + { + "start": 8462.3, + "end": 8463.44, + "probability": 0.6069 + }, + { + "start": 8463.48, + "end": 8467.64, + "probability": 0.9953 + }, + { + "start": 8468.02, + "end": 8470.62, + "probability": 0.4819 + }, + { + "start": 8470.94, + "end": 8472.69, + "probability": 0.8745 + }, + { + "start": 8473.08, + "end": 8473.84, + "probability": 0.6284 + }, + { + "start": 8474.22, + "end": 8475.26, + "probability": 0.6526 + }, + { + "start": 8475.58, + "end": 8478.06, + "probability": 0.9802 + }, + { + "start": 8478.38, + "end": 8481.04, + "probability": 0.9961 + }, + { + "start": 8481.04, + "end": 8484.08, + "probability": 0.9882 + }, + { + "start": 8484.44, + "end": 8487.36, + "probability": 0.7049 + }, + { + "start": 8487.46, + "end": 8490.2, + "probability": 0.9673 + }, + { + "start": 8490.64, + "end": 8494.36, + "probability": 0.9944 + }, + { + "start": 8494.96, + "end": 8495.37, + "probability": 0.4933 + }, + { + "start": 8496.34, + "end": 8497.2, + "probability": 0.4443 + }, + { + "start": 8497.38, + "end": 8502.06, + "probability": 0.9961 + }, + { + "start": 8502.1, + "end": 8505.72, + "probability": 0.8738 + }, + { + "start": 8506.18, + "end": 8509.42, + "probability": 0.6558 + }, + { + "start": 8510.14, + "end": 8514.64, + "probability": 0.9762 + }, + { + "start": 8515.06, + "end": 8516.66, + "probability": 0.7542 + }, + { + "start": 8516.98, + "end": 8518.0, + "probability": 0.8376 + }, + { + "start": 8518.41, + "end": 8518.9, + "probability": 0.6641 + }, + { + "start": 8518.9, + "end": 8523.74, + "probability": 0.9909 + }, + { + "start": 8524.4, + "end": 8525.9, + "probability": 0.6309 + }, + { + "start": 8526.06, + "end": 8528.18, + "probability": 0.8345 + }, + { + "start": 8528.66, + "end": 8533.98, + "probability": 0.9973 + }, + { + "start": 8534.28, + "end": 8535.02, + "probability": 0.5055 + }, + { + "start": 8535.2, + "end": 8538.74, + "probability": 0.9922 + }, + { + "start": 8538.74, + "end": 8538.81, + "probability": 0.5703 + }, + { + "start": 8539.04, + "end": 8540.46, + "probability": 0.5962 + }, + { + "start": 8540.58, + "end": 8541.04, + "probability": 0.8553 + }, + { + "start": 8541.14, + "end": 8542.02, + "probability": 0.7883 + }, + { + "start": 8542.02, + "end": 8547.02, + "probability": 0.9459 + }, + { + "start": 8547.96, + "end": 8551.4, + "probability": 0.9275 + }, + { + "start": 8551.54, + "end": 8554.0, + "probability": 0.8196 + }, + { + "start": 8554.08, + "end": 8556.76, + "probability": 0.9797 + }, + { + "start": 8564.58, + "end": 8567.46, + "probability": 0.2375 + }, + { + "start": 8568.16, + "end": 8569.14, + "probability": 0.1227 + }, + { + "start": 8569.34, + "end": 8571.22, + "probability": 0.8988 + }, + { + "start": 8571.22, + "end": 8572.58, + "probability": 0.7618 + }, + { + "start": 8573.08, + "end": 8573.86, + "probability": 0.9973 + }, + { + "start": 8574.12, + "end": 8575.06, + "probability": 0.9278 + }, + { + "start": 8575.44, + "end": 8575.92, + "probability": 0.7133 + }, + { + "start": 8576.08, + "end": 8576.86, + "probability": 0.8699 + }, + { + "start": 8576.94, + "end": 8577.5, + "probability": 0.8746 + }, + { + "start": 8577.62, + "end": 8579.42, + "probability": 0.9242 + }, + { + "start": 8579.86, + "end": 8581.96, + "probability": 0.6994 + }, + { + "start": 8582.32, + "end": 8584.04, + "probability": 0.9797 + }, + { + "start": 8584.1, + "end": 8587.48, + "probability": 0.9528 + }, + { + "start": 8587.84, + "end": 8588.18, + "probability": 0.8844 + }, + { + "start": 8588.26, + "end": 8592.9, + "probability": 0.9956 + }, + { + "start": 8594.38, + "end": 8597.32, + "probability": 0.9382 + }, + { + "start": 8598.06, + "end": 8599.92, + "probability": 0.998 + }, + { + "start": 8600.16, + "end": 8604.1, + "probability": 0.9856 + }, + { + "start": 8604.82, + "end": 8606.82, + "probability": 0.9067 + }, + { + "start": 8607.5, + "end": 8608.66, + "probability": 0.7205 + }, + { + "start": 8609.22, + "end": 8609.78, + "probability": 0.918 + }, + { + "start": 8610.0, + "end": 8610.66, + "probability": 0.4322 + }, + { + "start": 8610.84, + "end": 8612.44, + "probability": 0.6152 + }, + { + "start": 8613.06, + "end": 8616.24, + "probability": 0.9973 + }, + { + "start": 8616.7, + "end": 8618.2, + "probability": 0.9805 + }, + { + "start": 8618.7, + "end": 8619.86, + "probability": 0.9918 + }, + { + "start": 8620.38, + "end": 8624.02, + "probability": 0.9837 + }, + { + "start": 8625.28, + "end": 8626.18, + "probability": 0.4698 + }, + { + "start": 8626.96, + "end": 8628.77, + "probability": 0.3358 + }, + { + "start": 8629.1, + "end": 8631.44, + "probability": 0.8525 + }, + { + "start": 8631.98, + "end": 8636.24, + "probability": 0.697 + }, + { + "start": 8636.68, + "end": 8637.26, + "probability": 0.9267 + }, + { + "start": 8637.52, + "end": 8642.24, + "probability": 0.9305 + }, + { + "start": 8642.84, + "end": 8644.8, + "probability": 0.7925 + }, + { + "start": 8646.11, + "end": 8650.5, + "probability": 0.4277 + }, + { + "start": 8651.06, + "end": 8655.76, + "probability": 0.981 + }, + { + "start": 8656.42, + "end": 8659.12, + "probability": 0.8914 + }, + { + "start": 8659.12, + "end": 8663.34, + "probability": 0.9954 + }, + { + "start": 8663.38, + "end": 8664.67, + "probability": 0.7617 + }, + { + "start": 8665.2, + "end": 8670.12, + "probability": 0.853 + }, + { + "start": 8671.4, + "end": 8673.76, + "probability": 0.56 + }, + { + "start": 8673.78, + "end": 8674.4, + "probability": 0.5347 + }, + { + "start": 8674.56, + "end": 8675.82, + "probability": 0.7555 + }, + { + "start": 8676.54, + "end": 8681.28, + "probability": 0.3073 + }, + { + "start": 8681.54, + "end": 8682.84, + "probability": 0.4981 + }, + { + "start": 8682.84, + "end": 8682.84, + "probability": 0.132 + }, + { + "start": 8682.84, + "end": 8683.12, + "probability": 0.2183 + }, + { + "start": 8683.14, + "end": 8685.8, + "probability": 0.7293 + }, + { + "start": 8685.88, + "end": 8685.88, + "probability": 0.2025 + }, + { + "start": 8686.06, + "end": 8686.6, + "probability": 0.6165 + }, + { + "start": 8686.64, + "end": 8687.9, + "probability": 0.9011 + }, + { + "start": 8688.04, + "end": 8688.82, + "probability": 0.7654 + }, + { + "start": 8688.98, + "end": 8690.44, + "probability": 0.6837 + }, + { + "start": 8690.84, + "end": 8690.84, + "probability": 0.2788 + }, + { + "start": 8691.28, + "end": 8691.28, + "probability": 0.0297 + }, + { + "start": 8691.34, + "end": 8691.36, + "probability": 0.5281 + }, + { + "start": 8691.36, + "end": 8692.04, + "probability": 0.0404 + }, + { + "start": 8692.04, + "end": 8694.38, + "probability": 0.4678 + }, + { + "start": 8694.5, + "end": 8694.9, + "probability": 0.6625 + }, + { + "start": 8694.9, + "end": 8695.18, + "probability": 0.7316 + }, + { + "start": 8695.26, + "end": 8696.22, + "probability": 0.5859 + }, + { + "start": 8696.78, + "end": 8697.72, + "probability": 0.2992 + }, + { + "start": 8697.72, + "end": 8697.72, + "probability": 0.047 + }, + { + "start": 8697.72, + "end": 8697.72, + "probability": 0.0926 + }, + { + "start": 8697.72, + "end": 8697.92, + "probability": 0.3388 + }, + { + "start": 8697.92, + "end": 8699.64, + "probability": 0.7461 + }, + { + "start": 8699.7, + "end": 8701.62, + "probability": 0.8904 + }, + { + "start": 8701.76, + "end": 8704.32, + "probability": 0.0794 + }, + { + "start": 8706.64, + "end": 8706.64, + "probability": 0.1371 + }, + { + "start": 8706.64, + "end": 8706.92, + "probability": 0.2595 + }, + { + "start": 8706.92, + "end": 8707.06, + "probability": 0.4897 + }, + { + "start": 8707.06, + "end": 8707.06, + "probability": 0.0291 + }, + { + "start": 8707.06, + "end": 8707.06, + "probability": 0.0621 + }, + { + "start": 8707.06, + "end": 8707.06, + "probability": 0.0739 + }, + { + "start": 8707.06, + "end": 8708.44, + "probability": 0.854 + }, + { + "start": 8708.44, + "end": 8711.6, + "probability": 0.9275 + }, + { + "start": 8711.64, + "end": 8717.02, + "probability": 0.9823 + }, + { + "start": 8717.56, + "end": 8718.48, + "probability": 0.6547 + }, + { + "start": 8718.56, + "end": 8719.44, + "probability": 0.7644 + }, + { + "start": 8719.56, + "end": 8722.24, + "probability": 0.6907 + }, + { + "start": 8722.92, + "end": 8725.17, + "probability": 0.9839 + }, + { + "start": 8725.46, + "end": 8727.34, + "probability": 0.9745 + }, + { + "start": 8728.04, + "end": 8730.36, + "probability": 0.9793 + }, + { + "start": 8730.46, + "end": 8733.32, + "probability": 0.999 + }, + { + "start": 8734.26, + "end": 8735.72, + "probability": 0.7092 + }, + { + "start": 8737.5, + "end": 8742.26, + "probability": 0.9943 + }, + { + "start": 8742.64, + "end": 8744.2, + "probability": 0.9437 + }, + { + "start": 8744.82, + "end": 8746.38, + "probability": 0.9753 + }, + { + "start": 8747.68, + "end": 8751.82, + "probability": 0.9722 + }, + { + "start": 8752.82, + "end": 8754.38, + "probability": 0.9019 + }, + { + "start": 8754.72, + "end": 8758.1, + "probability": 0.9866 + }, + { + "start": 8758.9, + "end": 8761.74, + "probability": 0.9797 + }, + { + "start": 8762.9, + "end": 8765.22, + "probability": 0.9878 + }, + { + "start": 8765.22, + "end": 8766.14, + "probability": 0.4375 + }, + { + "start": 8766.24, + "end": 8767.22, + "probability": 0.9004 + }, + { + "start": 8767.64, + "end": 8769.08, + "probability": 0.6736 + }, + { + "start": 8769.14, + "end": 8774.06, + "probability": 0.9943 + }, + { + "start": 8774.06, + "end": 8779.66, + "probability": 0.9657 + }, + { + "start": 8779.9, + "end": 8784.28, + "probability": 0.9982 + }, + { + "start": 8784.64, + "end": 8784.86, + "probability": 0.0623 + }, + { + "start": 8785.34, + "end": 8789.4, + "probability": 0.9956 + }, + { + "start": 8789.82, + "end": 8791.38, + "probability": 0.9697 + }, + { + "start": 8791.82, + "end": 8792.88, + "probability": 0.9446 + }, + { + "start": 8793.26, + "end": 8794.18, + "probability": 0.8467 + }, + { + "start": 8794.42, + "end": 8800.28, + "probability": 0.986 + }, + { + "start": 8800.54, + "end": 8803.56, + "probability": 0.989 + }, + { + "start": 8803.56, + "end": 8806.44, + "probability": 0.9821 + }, + { + "start": 8806.8, + "end": 8807.32, + "probability": 0.6571 + }, + { + "start": 8807.32, + "end": 8809.54, + "probability": 0.6989 + }, + { + "start": 8809.66, + "end": 8811.22, + "probability": 0.9073 + }, + { + "start": 8812.42, + "end": 8814.46, + "probability": 0.465 + }, + { + "start": 8814.46, + "end": 8814.66, + "probability": 0.117 + }, + { + "start": 8815.8, + "end": 8818.28, + "probability": 0.972 + }, + { + "start": 8818.4, + "end": 8823.52, + "probability": 0.8447 + }, + { + "start": 8823.92, + "end": 8823.92, + "probability": 0.0195 + }, + { + "start": 8823.92, + "end": 8825.47, + "probability": 0.9185 + }, + { + "start": 8826.92, + "end": 8827.8, + "probability": 0.1817 + }, + { + "start": 8828.24, + "end": 8828.52, + "probability": 0.42 + }, + { + "start": 8828.52, + "end": 8829.38, + "probability": 0.6778 + }, + { + "start": 8829.52, + "end": 8831.84, + "probability": 0.7829 + }, + { + "start": 8831.88, + "end": 8832.38, + "probability": 0.4088 + }, + { + "start": 8832.4, + "end": 8834.32, + "probability": 0.6557 + }, + { + "start": 8834.36, + "end": 8835.22, + "probability": 0.6653 + }, + { + "start": 8836.06, + "end": 8837.7, + "probability": 0.5166 + }, + { + "start": 8838.36, + "end": 8840.32, + "probability": 0.2694 + }, + { + "start": 8841.08, + "end": 8843.82, + "probability": 0.2022 + }, + { + "start": 8844.94, + "end": 8847.8, + "probability": 0.6078 + }, + { + "start": 8850.48, + "end": 8851.38, + "probability": 0.7564 + }, + { + "start": 8854.74, + "end": 8858.56, + "probability": 0.1082 + }, + { + "start": 8859.32, + "end": 8859.32, + "probability": 0.0172 + }, + { + "start": 8860.09, + "end": 8862.49, + "probability": 0.0428 + }, + { + "start": 8863.54, + "end": 8867.78, + "probability": 0.3064 + }, + { + "start": 8867.98, + "end": 8870.86, + "probability": 0.6007 + }, + { + "start": 8870.86, + "end": 8871.64, + "probability": 0.4805 + }, + { + "start": 8871.78, + "end": 8872.62, + "probability": 0.4235 + }, + { + "start": 8872.66, + "end": 8874.84, + "probability": 0.0842 + }, + { + "start": 8874.84, + "end": 8875.1, + "probability": 0.0829 + }, + { + "start": 8875.1, + "end": 8875.1, + "probability": 0.0926 + }, + { + "start": 8875.1, + "end": 8875.1, + "probability": 0.0535 + }, + { + "start": 8875.1, + "end": 8879.2, + "probability": 0.7206 + }, + { + "start": 8879.86, + "end": 8881.18, + "probability": 0.5773 + }, + { + "start": 8881.96, + "end": 8882.8, + "probability": 0.5548 + }, + { + "start": 8883.58, + "end": 8885.66, + "probability": 0.8216 + }, + { + "start": 8885.84, + "end": 8890.1, + "probability": 0.8513 + }, + { + "start": 8891.24, + "end": 8895.38, + "probability": 0.752 + }, + { + "start": 8897.2, + "end": 8900.8, + "probability": 0.9761 + }, + { + "start": 8901.52, + "end": 8903.24, + "probability": 0.7446 + }, + { + "start": 8903.3, + "end": 8907.42, + "probability": 0.721 + }, + { + "start": 8908.88, + "end": 8911.24, + "probability": 0.0762 + }, + { + "start": 8911.82, + "end": 8912.88, + "probability": 0.9214 + }, + { + "start": 8913.34, + "end": 8914.42, + "probability": 0.8949 + }, + { + "start": 8915.6, + "end": 8917.1, + "probability": 0.9973 + }, + { + "start": 8917.26, + "end": 8920.3, + "probability": 0.9956 + }, + { + "start": 8920.48, + "end": 8921.88, + "probability": 0.9982 + }, + { + "start": 8923.7, + "end": 8926.48, + "probability": 0.9465 + }, + { + "start": 8929.74, + "end": 8931.08, + "probability": 0.1226 + }, + { + "start": 8931.08, + "end": 8940.05, + "probability": 0.5554 + }, + { + "start": 8941.42, + "end": 8942.74, + "probability": 0.8806 + }, + { + "start": 8944.1, + "end": 8950.22, + "probability": 0.9766 + }, + { + "start": 8951.34, + "end": 8956.76, + "probability": 0.9575 + }, + { + "start": 8957.22, + "end": 8960.38, + "probability": 0.7518 + }, + { + "start": 8960.86, + "end": 8963.9, + "probability": 0.6949 + }, + { + "start": 8964.56, + "end": 8965.89, + "probability": 0.6648 + }, + { + "start": 8967.22, + "end": 8969.56, + "probability": 0.8717 + }, + { + "start": 8971.5, + "end": 8974.14, + "probability": 0.925 + }, + { + "start": 8975.02, + "end": 8975.9, + "probability": 0.8777 + }, + { + "start": 8976.1, + "end": 8976.96, + "probability": 0.9406 + }, + { + "start": 8977.12, + "end": 8978.74, + "probability": 0.9461 + }, + { + "start": 8979.36, + "end": 8981.74, + "probability": 0.8698 + }, + { + "start": 8982.26, + "end": 8984.88, + "probability": 0.929 + }, + { + "start": 8985.6, + "end": 8987.32, + "probability": 0.939 + }, + { + "start": 8987.88, + "end": 8993.6, + "probability": 0.9795 + }, + { + "start": 8994.4, + "end": 9000.1, + "probability": 0.9899 + }, + { + "start": 9000.24, + "end": 9000.64, + "probability": 0.4942 + }, + { + "start": 9000.64, + "end": 9000.66, + "probability": 0.1573 + }, + { + "start": 9000.66, + "end": 9002.26, + "probability": 0.4106 + }, + { + "start": 9002.6, + "end": 9002.68, + "probability": 0.3723 + }, + { + "start": 9002.84, + "end": 9006.4, + "probability": 0.7603 + }, + { + "start": 9006.56, + "end": 9010.24, + "probability": 0.6898 + }, + { + "start": 9010.32, + "end": 9011.34, + "probability": 0.9027 + }, + { + "start": 9011.42, + "end": 9012.58, + "probability": 0.7329 + }, + { + "start": 9012.78, + "end": 9014.06, + "probability": 0.5064 + }, + { + "start": 9014.16, + "end": 9015.62, + "probability": 0.7884 + }, + { + "start": 9015.64, + "end": 9017.52, + "probability": 0.6372 + }, + { + "start": 9017.58, + "end": 9018.4, + "probability": 0.6734 + }, + { + "start": 9018.48, + "end": 9018.74, + "probability": 0.5717 + }, + { + "start": 9018.88, + "end": 9019.24, + "probability": 0.8014 + }, + { + "start": 9019.44, + "end": 9022.14, + "probability": 0.9299 + }, + { + "start": 9022.64, + "end": 9026.26, + "probability": 0.9471 + }, + { + "start": 9026.68, + "end": 9027.74, + "probability": 0.9796 + }, + { + "start": 9028.32, + "end": 9033.82, + "probability": 0.9719 + }, + { + "start": 9034.02, + "end": 9035.56, + "probability": 0.9225 + }, + { + "start": 9036.64, + "end": 9037.96, + "probability": 0.8905 + }, + { + "start": 9038.48, + "end": 9039.62, + "probability": 0.6273 + }, + { + "start": 9040.06, + "end": 9041.26, + "probability": 0.7547 + }, + { + "start": 9041.32, + "end": 9045.16, + "probability": 0.822 + }, + { + "start": 9046.28, + "end": 9047.6, + "probability": 0.7493 + }, + { + "start": 9048.5, + "end": 9050.94, + "probability": 0.8955 + }, + { + "start": 9051.66, + "end": 9057.56, + "probability": 0.9871 + }, + { + "start": 9058.04, + "end": 9060.32, + "probability": 0.8758 + }, + { + "start": 9060.66, + "end": 9062.84, + "probability": 0.7983 + }, + { + "start": 9063.32, + "end": 9064.3, + "probability": 0.826 + }, + { + "start": 9064.32, + "end": 9065.28, + "probability": 0.3649 + }, + { + "start": 9065.44, + "end": 9067.18, + "probability": 0.5557 + }, + { + "start": 9067.3, + "end": 9067.3, + "probability": 0.2481 + }, + { + "start": 9067.78, + "end": 9069.08, + "probability": 0.5765 + }, + { + "start": 9069.16, + "end": 9070.2, + "probability": 0.3129 + }, + { + "start": 9070.94, + "end": 9071.82, + "probability": 0.6237 + }, + { + "start": 9072.3, + "end": 9073.38, + "probability": 0.526 + }, + { + "start": 9073.44, + "end": 9074.56, + "probability": 0.7578 + }, + { + "start": 9074.56, + "end": 9075.54, + "probability": 0.941 + }, + { + "start": 9076.1, + "end": 9077.57, + "probability": 0.9873 + }, + { + "start": 9078.44, + "end": 9081.36, + "probability": 0.7852 + }, + { + "start": 9082.12, + "end": 9083.36, + "probability": 0.441 + }, + { + "start": 9084.0, + "end": 9088.32, + "probability": 0.9849 + }, + { + "start": 9089.64, + "end": 9091.0, + "probability": 0.561 + }, + { + "start": 9091.64, + "end": 9092.9, + "probability": 0.8395 + }, + { + "start": 9093.16, + "end": 9094.38, + "probability": 0.6189 + }, + { + "start": 9094.52, + "end": 9095.14, + "probability": 0.8399 + }, + { + "start": 9095.3, + "end": 9096.3, + "probability": 0.8144 + }, + { + "start": 9096.3, + "end": 9097.8, + "probability": 0.6839 + }, + { + "start": 9098.08, + "end": 9098.9, + "probability": 0.8043 + }, + { + "start": 9099.7, + "end": 9099.74, + "probability": 0.3037 + }, + { + "start": 9099.78, + "end": 9103.78, + "probability": 0.8324 + }, + { + "start": 9104.1, + "end": 9106.4, + "probability": 0.9863 + }, + { + "start": 9107.1, + "end": 9107.64, + "probability": 0.5438 + }, + { + "start": 9107.74, + "end": 9109.8, + "probability": 0.7252 + }, + { + "start": 9109.92, + "end": 9112.27, + "probability": 0.7992 + }, + { + "start": 9112.96, + "end": 9116.16, + "probability": 0.7497 + }, + { + "start": 9122.78, + "end": 9124.42, + "probability": 0.6639 + }, + { + "start": 9124.54, + "end": 9127.04, + "probability": 0.9673 + }, + { + "start": 9127.12, + "end": 9128.04, + "probability": 0.646 + }, + { + "start": 9128.12, + "end": 9131.06, + "probability": 0.9629 + }, + { + "start": 9132.62, + "end": 9134.36, + "probability": 0.5865 + }, + { + "start": 9134.46, + "end": 9136.66, + "probability": 0.9858 + }, + { + "start": 9136.94, + "end": 9141.24, + "probability": 0.9865 + }, + { + "start": 9142.36, + "end": 9147.81, + "probability": 0.9374 + }, + { + "start": 9148.1, + "end": 9152.96, + "probability": 0.926 + }, + { + "start": 9153.16, + "end": 9153.92, + "probability": 0.688 + }, + { + "start": 9154.1, + "end": 9156.11, + "probability": 0.9199 + }, + { + "start": 9156.5, + "end": 9157.25, + "probability": 0.8861 + }, + { + "start": 9158.52, + "end": 9161.92, + "probability": 0.969 + }, + { + "start": 9162.04, + "end": 9163.46, + "probability": 0.494 + }, + { + "start": 9163.64, + "end": 9165.9, + "probability": 0.8911 + }, + { + "start": 9166.62, + "end": 9170.44, + "probability": 0.9556 + }, + { + "start": 9170.62, + "end": 9175.5, + "probability": 0.689 + }, + { + "start": 9176.34, + "end": 9178.16, + "probability": 0.9924 + }, + { + "start": 9178.3, + "end": 9179.88, + "probability": 0.6929 + }, + { + "start": 9181.24, + "end": 9186.38, + "probability": 0.9386 + }, + { + "start": 9186.86, + "end": 9188.84, + "probability": 0.6401 + }, + { + "start": 9190.4, + "end": 9195.4, + "probability": 0.9952 + }, + { + "start": 9196.62, + "end": 9198.4, + "probability": 0.9897 + }, + { + "start": 9199.26, + "end": 9200.36, + "probability": 0.6514 + }, + { + "start": 9200.94, + "end": 9202.2, + "probability": 0.9412 + }, + { + "start": 9202.26, + "end": 9204.54, + "probability": 0.9789 + }, + { + "start": 9204.7, + "end": 9206.96, + "probability": 0.7789 + }, + { + "start": 9209.64, + "end": 9213.86, + "probability": 0.9277 + }, + { + "start": 9214.04, + "end": 9217.14, + "probability": 0.8742 + }, + { + "start": 9217.36, + "end": 9218.78, + "probability": 0.8887 + }, + { + "start": 9219.04, + "end": 9221.68, + "probability": 0.9927 + }, + { + "start": 9223.06, + "end": 9225.49, + "probability": 0.7714 + }, + { + "start": 9226.14, + "end": 9228.16, + "probability": 0.936 + }, + { + "start": 9229.94, + "end": 9232.64, + "probability": 0.6472 + }, + { + "start": 9233.68, + "end": 9237.66, + "probability": 0.9577 + }, + { + "start": 9238.26, + "end": 9241.64, + "probability": 0.9518 + }, + { + "start": 9244.24, + "end": 9246.72, + "probability": 0.6662 + }, + { + "start": 9247.32, + "end": 9249.66, + "probability": 0.7827 + }, + { + "start": 9249.88, + "end": 9252.18, + "probability": 0.9965 + }, + { + "start": 9252.66, + "end": 9255.34, + "probability": 0.9002 + }, + { + "start": 9257.64, + "end": 9258.7, + "probability": 0.6835 + }, + { + "start": 9259.18, + "end": 9260.1, + "probability": 0.6542 + }, + { + "start": 9260.56, + "end": 9262.34, + "probability": 0.7238 + }, + { + "start": 9262.88, + "end": 9264.32, + "probability": 0.5006 + }, + { + "start": 9264.58, + "end": 9270.68, + "probability": 0.8999 + }, + { + "start": 9271.26, + "end": 9272.66, + "probability": 0.8947 + }, + { + "start": 9272.92, + "end": 9274.14, + "probability": 0.7158 + }, + { + "start": 9274.26, + "end": 9276.46, + "probability": 0.7156 + }, + { + "start": 9276.72, + "end": 9278.16, + "probability": 0.4242 + }, + { + "start": 9278.44, + "end": 9279.48, + "probability": 0.8537 + }, + { + "start": 9280.11, + "end": 9284.96, + "probability": 0.9971 + }, + { + "start": 9285.08, + "end": 9285.85, + "probability": 0.6208 + }, + { + "start": 9287.6, + "end": 9290.84, + "probability": 0.9805 + }, + { + "start": 9293.72, + "end": 9294.12, + "probability": 0.4773 + }, + { + "start": 9294.78, + "end": 9299.26, + "probability": 0.9038 + }, + { + "start": 9299.86, + "end": 9302.96, + "probability": 0.7492 + }, + { + "start": 9303.04, + "end": 9307.62, + "probability": 0.9894 + }, + { + "start": 9307.7, + "end": 9310.65, + "probability": 0.9636 + }, + { + "start": 9311.44, + "end": 9312.0, + "probability": 0.4718 + }, + { + "start": 9312.42, + "end": 9314.08, + "probability": 0.8556 + }, + { + "start": 9316.64, + "end": 9318.38, + "probability": 0.8082 + }, + { + "start": 9318.54, + "end": 9325.52, + "probability": 0.962 + }, + { + "start": 9325.74, + "end": 9329.22, + "probability": 0.9381 + }, + { + "start": 9329.82, + "end": 9333.46, + "probability": 0.5758 + }, + { + "start": 9333.92, + "end": 9337.62, + "probability": 0.6763 + }, + { + "start": 9338.18, + "end": 9341.2, + "probability": 0.9676 + }, + { + "start": 9341.46, + "end": 9342.42, + "probability": 0.9794 + }, + { + "start": 9342.54, + "end": 9343.14, + "probability": 0.5896 + }, + { + "start": 9343.32, + "end": 9344.58, + "probability": 0.8916 + }, + { + "start": 9345.58, + "end": 9347.28, + "probability": 0.3101 + }, + { + "start": 9347.8, + "end": 9350.78, + "probability": 0.9277 + }, + { + "start": 9350.92, + "end": 9352.02, + "probability": 0.7461 + }, + { + "start": 9352.26, + "end": 9353.64, + "probability": 0.6545 + }, + { + "start": 9354.64, + "end": 9359.22, + "probability": 0.8513 + }, + { + "start": 9359.71, + "end": 9365.1, + "probability": 0.6984 + }, + { + "start": 9365.6, + "end": 9366.34, + "probability": 0.7984 + }, + { + "start": 9366.78, + "end": 9371.38, + "probability": 0.9894 + }, + { + "start": 9371.46, + "end": 9375.36, + "probability": 0.9971 + }, + { + "start": 9375.58, + "end": 9375.82, + "probability": 0.8306 + }, + { + "start": 9376.42, + "end": 9378.48, + "probability": 0.5824 + }, + { + "start": 9378.74, + "end": 9380.88, + "probability": 0.8123 + }, + { + "start": 9380.94, + "end": 9381.44, + "probability": 0.4482 + }, + { + "start": 9381.56, + "end": 9382.22, + "probability": 0.6634 + }, + { + "start": 9382.32, + "end": 9383.28, + "probability": 0.6788 + }, + { + "start": 9383.52, + "end": 9390.2, + "probability": 0.9821 + }, + { + "start": 9391.64, + "end": 9392.1, + "probability": 0.7915 + }, + { + "start": 9392.84, + "end": 9393.32, + "probability": 0.6608 + }, + { + "start": 9394.45, + "end": 9396.82, + "probability": 0.0351 + }, + { + "start": 9396.92, + "end": 9396.92, + "probability": 0.2905 + }, + { + "start": 9396.92, + "end": 9397.46, + "probability": 0.3044 + }, + { + "start": 9397.46, + "end": 9398.94, + "probability": 0.3147 + }, + { + "start": 9399.38, + "end": 9403.22, + "probability": 0.4926 + }, + { + "start": 9403.44, + "end": 9404.38, + "probability": 0.1224 + }, + { + "start": 9404.68, + "end": 9406.06, + "probability": 0.6189 + }, + { + "start": 9407.26, + "end": 9410.1, + "probability": 0.5049 + }, + { + "start": 9410.28, + "end": 9413.66, + "probability": 0.8003 + }, + { + "start": 9413.78, + "end": 9418.96, + "probability": 0.626 + }, + { + "start": 9419.64, + "end": 9419.85, + "probability": 0.1895 + }, + { + "start": 9420.34, + "end": 9421.66, + "probability": 0.2381 + }, + { + "start": 9423.23, + "end": 9425.34, + "probability": 0.1511 + }, + { + "start": 9425.34, + "end": 9425.9, + "probability": 0.2879 + }, + { + "start": 9427.0, + "end": 9429.26, + "probability": 0.842 + }, + { + "start": 9429.54, + "end": 9442.34, + "probability": 0.096 + }, + { + "start": 9444.84, + "end": 9447.23, + "probability": 0.1016 + }, + { + "start": 9448.28, + "end": 9451.48, + "probability": 0.2661 + }, + { + "start": 9452.74, + "end": 9453.4, + "probability": 0.1071 + }, + { + "start": 9453.4, + "end": 9457.34, + "probability": 0.232 + }, + { + "start": 9457.9, + "end": 9458.6, + "probability": 0.0845 + }, + { + "start": 9458.6, + "end": 9464.52, + "probability": 0.0424 + }, + { + "start": 9468.06, + "end": 9468.06, + "probability": 0.0064 + }, + { + "start": 9480.0, + "end": 9480.0, + "probability": 0.0 + }, + { + "start": 9480.0, + "end": 9480.0, + "probability": 0.0 + }, + { + "start": 9480.0, + "end": 9480.0, + "probability": 0.0 + }, + { + "start": 9480.0, + "end": 9480.0, + "probability": 0.0 + }, + { + "start": 9480.0, + "end": 9480.0, + "probability": 0.0 + }, + { + "start": 9480.0, + "end": 9480.0, + "probability": 0.0 + }, + { + "start": 9480.0, + "end": 9480.0, + "probability": 0.0 + }, + { + "start": 9480.0, + "end": 9480.0, + "probability": 0.0 + }, + { + "start": 9480.0, + "end": 9480.0, + "probability": 0.0 + }, + { + "start": 9480.0, + "end": 9480.0, + "probability": 0.0 + }, + { + "start": 9480.0, + "end": 9480.0, + "probability": 0.0 + }, + { + "start": 9480.0, + "end": 9480.0, + "probability": 0.0 + }, + { + "start": 9480.0, + "end": 9480.0, + "probability": 0.0 + }, + { + "start": 9480.0, + "end": 9480.0, + "probability": 0.0 + }, + { + "start": 9480.0, + "end": 9480.0, + "probability": 0.0 + }, + { + "start": 9480.48, + "end": 9482.32, + "probability": 0.3221 + }, + { + "start": 9482.46, + "end": 9482.84, + "probability": 0.0202 + }, + { + "start": 9483.04, + "end": 9483.32, + "probability": 0.0936 + }, + { + "start": 9483.32, + "end": 9487.38, + "probability": 0.7687 + }, + { + "start": 9487.98, + "end": 9487.98, + "probability": 0.2135 + }, + { + "start": 9488.0, + "end": 9490.2, + "probability": 0.8164 + }, + { + "start": 9490.6, + "end": 9495.17, + "probability": 0.2908 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.0, + "end": 9610.0, + "probability": 0.0 + }, + { + "start": 9610.12, + "end": 9610.12, + "probability": 0.1519 + }, + { + "start": 9610.12, + "end": 9614.96, + "probability": 0.9648 + }, + { + "start": 9615.56, + "end": 9616.62, + "probability": 0.5504 + }, + { + "start": 9616.64, + "end": 9617.64, + "probability": 0.7822 + }, + { + "start": 9617.74, + "end": 9618.5, + "probability": 0.8957 + }, + { + "start": 9618.62, + "end": 9621.24, + "probability": 0.8774 + }, + { + "start": 9622.06, + "end": 9623.12, + "probability": 0.6508 + }, + { + "start": 9623.88, + "end": 9626.18, + "probability": 0.994 + }, + { + "start": 9627.48, + "end": 9630.14, + "probability": 0.5331 + }, + { + "start": 9630.24, + "end": 9631.22, + "probability": 0.6451 + }, + { + "start": 9632.46, + "end": 9635.08, + "probability": 0.829 + }, + { + "start": 9635.1, + "end": 9636.26, + "probability": 0.9863 + }, + { + "start": 9636.54, + "end": 9639.54, + "probability": 0.9476 + }, + { + "start": 9639.54, + "end": 9642.82, + "probability": 0.9795 + }, + { + "start": 9642.88, + "end": 9645.38, + "probability": 0.7804 + }, + { + "start": 9646.56, + "end": 9652.08, + "probability": 0.8613 + }, + { + "start": 9652.18, + "end": 9652.56, + "probability": 0.8875 + }, + { + "start": 9652.72, + "end": 9653.8, + "probability": 0.8979 + }, + { + "start": 9653.92, + "end": 9658.1, + "probability": 0.9351 + }, + { + "start": 9658.36, + "end": 9659.76, + "probability": 0.935 + }, + { + "start": 9661.26, + "end": 9661.84, + "probability": 0.4151 + }, + { + "start": 9662.46, + "end": 9663.44, + "probability": 0.7887 + }, + { + "start": 9664.14, + "end": 9666.36, + "probability": 0.7584 + }, + { + "start": 9667.52, + "end": 9669.5, + "probability": 0.1099 + }, + { + "start": 9669.92, + "end": 9670.38, + "probability": 0.3898 + }, + { + "start": 9670.64, + "end": 9671.88, + "probability": 0.7779 + }, + { + "start": 9672.24, + "end": 9673.18, + "probability": 0.7524 + }, + { + "start": 9673.24, + "end": 9674.4, + "probability": 0.8589 + }, + { + "start": 9674.78, + "end": 9676.38, + "probability": 0.9868 + }, + { + "start": 9676.48, + "end": 9678.96, + "probability": 0.9711 + }, + { + "start": 9680.74, + "end": 9683.34, + "probability": 0.9272 + }, + { + "start": 9684.16, + "end": 9686.78, + "probability": 0.8153 + }, + { + "start": 9688.12, + "end": 9689.06, + "probability": 0.6367 + }, + { + "start": 9689.26, + "end": 9691.16, + "probability": 0.9375 + }, + { + "start": 9691.82, + "end": 9693.9, + "probability": 0.9262 + }, + { + "start": 9694.58, + "end": 9696.94, + "probability": 0.6647 + }, + { + "start": 9698.12, + "end": 9700.22, + "probability": 0.9426 + }, + { + "start": 9700.52, + "end": 9701.68, + "probability": 0.9874 + }, + { + "start": 9702.54, + "end": 9704.98, + "probability": 0.8716 + }, + { + "start": 9705.46, + "end": 9706.98, + "probability": 0.9938 + }, + { + "start": 9707.12, + "end": 9708.12, + "probability": 0.9722 + }, + { + "start": 9708.34, + "end": 9709.6, + "probability": 0.9788 + }, + { + "start": 9710.34, + "end": 9713.23, + "probability": 0.9954 + }, + { + "start": 9713.88, + "end": 9716.2, + "probability": 0.9715 + }, + { + "start": 9717.14, + "end": 9718.54, + "probability": 0.8794 + }, + { + "start": 9720.7, + "end": 9720.96, + "probability": 0.2877 + }, + { + "start": 9721.8, + "end": 9722.56, + "probability": 0.7101 + }, + { + "start": 9723.16, + "end": 9723.88, + "probability": 0.3362 + }, + { + "start": 9723.96, + "end": 9725.2, + "probability": 0.399 + }, + { + "start": 9725.34, + "end": 9726.64, + "probability": 0.1163 + }, + { + "start": 9727.3, + "end": 9727.84, + "probability": 0.6084 + }, + { + "start": 9728.62, + "end": 9728.74, + "probability": 0.2504 + }, + { + "start": 9728.76, + "end": 9730.54, + "probability": 0.4592 + }, + { + "start": 9731.85, + "end": 9732.27, + "probability": 0.0351 + }, + { + "start": 9732.48, + "end": 9732.56, + "probability": 0.1135 + }, + { + "start": 9732.56, + "end": 9733.32, + "probability": 0.4658 + }, + { + "start": 9733.82, + "end": 9734.08, + "probability": 0.0684 + }, + { + "start": 9734.08, + "end": 9734.08, + "probability": 0.0136 + }, + { + "start": 9734.08, + "end": 9734.18, + "probability": 0.2818 + }, + { + "start": 9734.18, + "end": 9737.68, + "probability": 0.2156 + }, + { + "start": 9737.78, + "end": 9738.46, + "probability": 0.0224 + }, + { + "start": 9738.6, + "end": 9741.26, + "probability": 0.8185 + }, + { + "start": 9741.26, + "end": 9742.76, + "probability": 0.5431 + }, + { + "start": 9743.18, + "end": 9743.22, + "probability": 0.361 + }, + { + "start": 9743.22, + "end": 9743.94, + "probability": 0.5783 + }, + { + "start": 9743.94, + "end": 9744.12, + "probability": 0.2416 + }, + { + "start": 9744.24, + "end": 9745.3, + "probability": 0.9359 + }, + { + "start": 9745.38, + "end": 9746.84, + "probability": 0.7211 + }, + { + "start": 9747.04, + "end": 9748.65, + "probability": 0.9478 + }, + { + "start": 9748.86, + "end": 9748.9, + "probability": 0.1785 + }, + { + "start": 9749.02, + "end": 9751.58, + "probability": 0.972 + }, + { + "start": 9752.0, + "end": 9752.98, + "probability": 0.7097 + }, + { + "start": 9753.42, + "end": 9753.66, + "probability": 0.3212 + }, + { + "start": 9753.66, + "end": 9753.66, + "probability": 0.1017 + }, + { + "start": 9753.66, + "end": 9755.52, + "probability": 0.5826 + }, + { + "start": 9755.68, + "end": 9756.68, + "probability": 0.8356 + }, + { + "start": 9756.84, + "end": 9756.88, + "probability": 0.0278 + }, + { + "start": 9756.88, + "end": 9760.52, + "probability": 0.7505 + }, + { + "start": 9760.58, + "end": 9762.14, + "probability": 0.2705 + }, + { + "start": 9762.36, + "end": 9762.36, + "probability": 0.1421 + }, + { + "start": 9762.36, + "end": 9762.36, + "probability": 0.3837 + }, + { + "start": 9762.36, + "end": 9763.16, + "probability": 0.4811 + }, + { + "start": 9764.4, + "end": 9768.1, + "probability": 0.7888 + }, + { + "start": 9769.76, + "end": 9770.6, + "probability": 0.9708 + }, + { + "start": 9770.72, + "end": 9771.66, + "probability": 0.9923 + }, + { + "start": 9771.74, + "end": 9773.04, + "probability": 0.965 + }, + { + "start": 9773.42, + "end": 9775.4, + "probability": 0.9442 + }, + { + "start": 9776.26, + "end": 9780.4, + "probability": 0.9174 + }, + { + "start": 9781.24, + "end": 9782.76, + "probability": 0.8685 + }, + { + "start": 9783.48, + "end": 9786.34, + "probability": 0.9111 + }, + { + "start": 9786.4, + "end": 9788.32, + "probability": 0.9457 + }, + { + "start": 9789.36, + "end": 9790.56, + "probability": 0.8561 + }, + { + "start": 9791.42, + "end": 9793.16, + "probability": 0.9944 + }, + { + "start": 9795.36, + "end": 9797.78, + "probability": 0.8487 + }, + { + "start": 9798.56, + "end": 9804.0, + "probability": 0.9137 + }, + { + "start": 9805.0, + "end": 9808.62, + "probability": 0.9762 + }, + { + "start": 9809.46, + "end": 9814.08, + "probability": 0.9094 + }, + { + "start": 9815.06, + "end": 9816.38, + "probability": 0.8041 + }, + { + "start": 9819.32, + "end": 9820.8, + "probability": 0.8677 + }, + { + "start": 9820.96, + "end": 9822.2, + "probability": 0.9472 + }, + { + "start": 9822.3, + "end": 9823.32, + "probability": 0.8072 + }, + { + "start": 9823.84, + "end": 9825.22, + "probability": 0.9858 + }, + { + "start": 9826.08, + "end": 9827.02, + "probability": 0.8052 + }, + { + "start": 9827.1, + "end": 9827.84, + "probability": 0.8393 + }, + { + "start": 9827.92, + "end": 9828.92, + "probability": 0.7925 + }, + { + "start": 9829.0, + "end": 9829.84, + "probability": 0.6941 + }, + { + "start": 9830.5, + "end": 9833.52, + "probability": 0.9199 + }, + { + "start": 9836.16, + "end": 9836.88, + "probability": 0.7649 + }, + { + "start": 9839.52, + "end": 9841.9, + "probability": 0.9722 + }, + { + "start": 9842.06, + "end": 9842.68, + "probability": 0.7365 + }, + { + "start": 9842.74, + "end": 9843.64, + "probability": 0.9844 + }, + { + "start": 9844.38, + "end": 9847.16, + "probability": 0.9731 + }, + { + "start": 9848.34, + "end": 9849.44, + "probability": 0.6492 + }, + { + "start": 9849.62, + "end": 9850.36, + "probability": 0.7235 + }, + { + "start": 9850.48, + "end": 9851.9, + "probability": 0.9852 + }, + { + "start": 9853.36, + "end": 9854.2, + "probability": 0.286 + }, + { + "start": 9855.32, + "end": 9858.6, + "probability": 0.8883 + }, + { + "start": 9859.42, + "end": 9861.3, + "probability": 0.7564 + }, + { + "start": 9862.02, + "end": 9863.04, + "probability": 0.9401 + }, + { + "start": 9863.14, + "end": 9866.34, + "probability": 0.9939 + }, + { + "start": 9866.34, + "end": 9869.42, + "probability": 0.998 + }, + { + "start": 9871.26, + "end": 9873.42, + "probability": 0.8558 + }, + { + "start": 9876.46, + "end": 9877.38, + "probability": 0.7995 + }, + { + "start": 9878.0, + "end": 9880.04, + "probability": 0.7854 + }, + { + "start": 9880.14, + "end": 9881.02, + "probability": 0.8347 + }, + { + "start": 9881.68, + "end": 9885.24, + "probability": 0.9891 + }, + { + "start": 9885.96, + "end": 9887.42, + "probability": 0.9907 + }, + { + "start": 9888.92, + "end": 9893.54, + "probability": 0.9468 + }, + { + "start": 9894.32, + "end": 9896.08, + "probability": 0.6529 + }, + { + "start": 9897.42, + "end": 9898.56, + "probability": 0.8188 + }, + { + "start": 9900.78, + "end": 9902.5, + "probability": 0.8244 + }, + { + "start": 9903.34, + "end": 9904.32, + "probability": 0.9863 + }, + { + "start": 9905.44, + "end": 9907.8, + "probability": 0.9478 + }, + { + "start": 9907.8, + "end": 9911.5, + "probability": 0.9972 + }, + { + "start": 9911.7, + "end": 9912.82, + "probability": 0.9073 + }, + { + "start": 9913.94, + "end": 9919.14, + "probability": 0.7546 + }, + { + "start": 9919.9, + "end": 9921.13, + "probability": 0.9106 + }, + { + "start": 9923.56, + "end": 9924.94, + "probability": 0.8534 + }, + { + "start": 9926.84, + "end": 9929.84, + "probability": 0.9909 + }, + { + "start": 9931.66, + "end": 9933.56, + "probability": 0.9377 + }, + { + "start": 9935.28, + "end": 9938.24, + "probability": 0.7674 + }, + { + "start": 9939.58, + "end": 9940.28, + "probability": 0.7169 + }, + { + "start": 9940.86, + "end": 9941.44, + "probability": 0.9796 + }, + { + "start": 9942.22, + "end": 9944.64, + "probability": 0.9594 + }, + { + "start": 9945.66, + "end": 9948.14, + "probability": 0.8811 + }, + { + "start": 9949.5, + "end": 9951.12, + "probability": 0.6498 + }, + { + "start": 9952.12, + "end": 9956.06, + "probability": 0.7427 + }, + { + "start": 9956.86, + "end": 9957.72, + "probability": 0.9823 + }, + { + "start": 9959.18, + "end": 9960.3, + "probability": 0.7614 + }, + { + "start": 9961.3, + "end": 9964.78, + "probability": 0.8057 + }, + { + "start": 9965.56, + "end": 9966.18, + "probability": 0.8788 + }, + { + "start": 9968.86, + "end": 9973.66, + "probability": 0.8882 + }, + { + "start": 9973.68, + "end": 9976.92, + "probability": 0.999 + }, + { + "start": 9978.1, + "end": 9983.86, + "probability": 0.9918 + }, + { + "start": 9984.08, + "end": 9987.4, + "probability": 0.9971 + }, + { + "start": 9988.36, + "end": 9989.38, + "probability": 0.9927 + }, + { + "start": 9989.98, + "end": 9992.0, + "probability": 0.8398 + }, + { + "start": 9994.16, + "end": 9995.12, + "probability": 0.7785 + }, + { + "start": 9995.98, + "end": 9998.74, + "probability": 0.9894 + }, + { + "start": 9999.06, + "end": 10001.36, + "probability": 0.9944 + }, + { + "start": 10001.48, + "end": 10001.94, + "probability": 0.7664 + }, + { + "start": 10002.46, + "end": 10003.18, + "probability": 0.897 + }, + { + "start": 10005.38, + "end": 10007.56, + "probability": 0.9644 + }, + { + "start": 10008.4, + "end": 10012.16, + "probability": 0.936 + }, + { + "start": 10013.18, + "end": 10013.52, + "probability": 0.2906 + }, + { + "start": 10014.36, + "end": 10015.1, + "probability": 0.9457 + }, + { + "start": 10016.14, + "end": 10017.0, + "probability": 0.7942 + }, + { + "start": 10018.3, + "end": 10020.02, + "probability": 0.8203 + }, + { + "start": 10020.42, + "end": 10024.82, + "probability": 0.9954 + }, + { + "start": 10025.38, + "end": 10028.22, + "probability": 0.9826 + }, + { + "start": 10028.28, + "end": 10029.26, + "probability": 0.983 + }, + { + "start": 10031.26, + "end": 10031.9, + "probability": 0.5479 + }, + { + "start": 10033.02, + "end": 10034.52, + "probability": 0.9604 + }, + { + "start": 10035.52, + "end": 10039.16, + "probability": 0.9146 + }, + { + "start": 10039.42, + "end": 10040.5, + "probability": 0.9188 + }, + { + "start": 10041.04, + "end": 10043.3, + "probability": 0.948 + }, + { + "start": 10043.82, + "end": 10045.5, + "probability": 0.9706 + }, + { + "start": 10046.02, + "end": 10046.7, + "probability": 0.9447 + }, + { + "start": 10047.66, + "end": 10049.44, + "probability": 0.9447 + }, + { + "start": 10051.1, + "end": 10052.7, + "probability": 0.7295 + }, + { + "start": 10053.62, + "end": 10057.06, + "probability": 0.994 + }, + { + "start": 10057.52, + "end": 10059.38, + "probability": 0.9744 + }, + { + "start": 10059.38, + "end": 10061.32, + "probability": 0.9031 + }, + { + "start": 10061.72, + "end": 10063.6, + "probability": 0.8784 + }, + { + "start": 10064.2, + "end": 10064.86, + "probability": 0.8577 + }, + { + "start": 10066.52, + "end": 10067.22, + "probability": 0.2359 + }, + { + "start": 10067.26, + "end": 10067.87, + "probability": 0.169 + }, + { + "start": 10069.1, + "end": 10070.56, + "probability": 0.8961 + }, + { + "start": 10070.82, + "end": 10071.4, + "probability": 0.1128 + }, + { + "start": 10071.92, + "end": 10072.28, + "probability": 0.0784 + }, + { + "start": 10072.64, + "end": 10073.98, + "probability": 0.7171 + }, + { + "start": 10074.24, + "end": 10074.96, + "probability": 0.5981 + }, + { + "start": 10075.02, + "end": 10077.56, + "probability": 0.8028 + }, + { + "start": 10077.62, + "end": 10078.76, + "probability": 0.7224 + }, + { + "start": 10079.64, + "end": 10082.46, + "probability": 0.8437 + }, + { + "start": 10083.34, + "end": 10089.68, + "probability": 0.8942 + }, + { + "start": 10091.0, + "end": 10093.4, + "probability": 0.9832 + }, + { + "start": 10095.3, + "end": 10095.3, + "probability": 0.1023 + }, + { + "start": 10095.3, + "end": 10097.32, + "probability": 0.9911 + }, + { + "start": 10097.4, + "end": 10097.86, + "probability": 0.8582 + }, + { + "start": 10098.04, + "end": 10099.04, + "probability": 0.9627 + }, + { + "start": 10099.6, + "end": 10100.3, + "probability": 0.8135 + }, + { + "start": 10100.66, + "end": 10102.32, + "probability": 0.9534 + }, + { + "start": 10102.4, + "end": 10103.3, + "probability": 0.6096 + }, + { + "start": 10103.88, + "end": 10105.67, + "probability": 0.9975 + }, + { + "start": 10105.88, + "end": 10108.52, + "probability": 0.9973 + }, + { + "start": 10109.08, + "end": 10111.96, + "probability": 0.9192 + }, + { + "start": 10112.48, + "end": 10113.82, + "probability": 0.5597 + }, + { + "start": 10114.0, + "end": 10114.94, + "probability": 0.6527 + }, + { + "start": 10115.08, + "end": 10115.6, + "probability": 0.7531 + }, + { + "start": 10115.96, + "end": 10119.44, + "probability": 0.8558 + }, + { + "start": 10119.9, + "end": 10123.48, + "probability": 0.7221 + }, + { + "start": 10124.08, + "end": 10125.38, + "probability": 0.4883 + }, + { + "start": 10125.56, + "end": 10127.32, + "probability": 0.8522 + }, + { + "start": 10127.7, + "end": 10128.24, + "probability": 0.8501 + }, + { + "start": 10128.36, + "end": 10131.26, + "probability": 0.7639 + }, + { + "start": 10131.48, + "end": 10132.1, + "probability": 0.5211 + }, + { + "start": 10132.68, + "end": 10135.14, + "probability": 0.854 + }, + { + "start": 10135.84, + "end": 10139.96, + "probability": 0.9905 + }, + { + "start": 10140.02, + "end": 10141.46, + "probability": 0.9966 + }, + { + "start": 10142.18, + "end": 10145.78, + "probability": 0.8127 + }, + { + "start": 10147.02, + "end": 10153.04, + "probability": 0.9937 + }, + { + "start": 10153.04, + "end": 10153.46, + "probability": 0.4281 + }, + { + "start": 10153.6, + "end": 10155.08, + "probability": 0.7108 + }, + { + "start": 10155.3, + "end": 10159.24, + "probability": 0.9739 + }, + { + "start": 10159.6, + "end": 10162.04, + "probability": 0.9565 + }, + { + "start": 10162.56, + "end": 10167.24, + "probability": 0.9983 + }, + { + "start": 10168.06, + "end": 10170.48, + "probability": 0.9296 + }, + { + "start": 10170.78, + "end": 10172.18, + "probability": 0.3993 + }, + { + "start": 10172.68, + "end": 10173.62, + "probability": 0.4677 + }, + { + "start": 10173.64, + "end": 10177.52, + "probability": 0.3912 + }, + { + "start": 10177.7, + "end": 10177.7, + "probability": 0.0468 + }, + { + "start": 10177.7, + "end": 10178.76, + "probability": 0.3773 + }, + { + "start": 10179.16, + "end": 10180.34, + "probability": 0.7849 + }, + { + "start": 10180.9, + "end": 10182.46, + "probability": 0.2795 + }, + { + "start": 10183.34, + "end": 10185.14, + "probability": 0.709 + }, + { + "start": 10185.98, + "end": 10187.46, + "probability": 0.1847 + }, + { + "start": 10188.06, + "end": 10189.16, + "probability": 0.7634 + }, + { + "start": 10189.28, + "end": 10190.08, + "probability": 0.6824 + }, + { + "start": 10190.28, + "end": 10190.88, + "probability": 0.1785 + }, + { + "start": 10191.06, + "end": 10191.6, + "probability": 0.5482 + }, + { + "start": 10191.76, + "end": 10194.6, + "probability": 0.595 + }, + { + "start": 10194.7, + "end": 10196.42, + "probability": 0.9245 + }, + { + "start": 10196.52, + "end": 10199.92, + "probability": 0.8609 + }, + { + "start": 10200.1, + "end": 10201.0, + "probability": 0.5741 + }, + { + "start": 10202.2, + "end": 10206.88, + "probability": 0.8964 + }, + { + "start": 10207.48, + "end": 10210.95, + "probability": 0.4065 + }, + { + "start": 10212.82, + "end": 10214.58, + "probability": 0.8682 + }, + { + "start": 10215.2, + "end": 10216.84, + "probability": 0.9163 + }, + { + "start": 10216.92, + "end": 10219.32, + "probability": 0.8307 + }, + { + "start": 10219.44, + "end": 10221.0, + "probability": 0.7071 + }, + { + "start": 10221.0, + "end": 10223.3, + "probability": 0.7692 + }, + { + "start": 10224.36, + "end": 10228.48, + "probability": 0.9705 + }, + { + "start": 10228.58, + "end": 10230.02, + "probability": 0.2723 + }, + { + "start": 10240.32, + "end": 10243.04, + "probability": 0.2818 + }, + { + "start": 10243.18, + "end": 10249.12, + "probability": 0.5378 + }, + { + "start": 10249.3, + "end": 10251.5, + "probability": 0.7946 + }, + { + "start": 10252.58, + "end": 10255.24, + "probability": 0.7391 + }, + { + "start": 10256.3, + "end": 10257.68, + "probability": 0.6745 + }, + { + "start": 10258.42, + "end": 10259.4, + "probability": 0.0071 + }, + { + "start": 10263.78, + "end": 10264.48, + "probability": 0.1842 + }, + { + "start": 10267.34, + "end": 10269.18, + "probability": 0.5932 + }, + { + "start": 10269.76, + "end": 10269.86, + "probability": 0.0512 + }, + { + "start": 10269.86, + "end": 10273.38, + "probability": 0.8788 + }, + { + "start": 10273.66, + "end": 10277.49, + "probability": 0.4118 + }, + { + "start": 10278.38, + "end": 10279.68, + "probability": 0.5454 + }, + { + "start": 10280.04, + "end": 10283.12, + "probability": 0.5426 + }, + { + "start": 10283.68, + "end": 10283.72, + "probability": 0.1433 + }, + { + "start": 10283.72, + "end": 10287.42, + "probability": 0.9596 + }, + { + "start": 10287.52, + "end": 10289.18, + "probability": 0.3141 + }, + { + "start": 10289.18, + "end": 10291.3, + "probability": 0.5757 + }, + { + "start": 10292.26, + "end": 10294.04, + "probability": 0.963 + }, + { + "start": 10294.16, + "end": 10294.7, + "probability": 0.5841 + }, + { + "start": 10294.76, + "end": 10296.91, + "probability": 0.7329 + }, + { + "start": 10297.98, + "end": 10299.22, + "probability": 0.6836 + }, + { + "start": 10299.24, + "end": 10299.5, + "probability": 0.3558 + }, + { + "start": 10300.15, + "end": 10300.22, + "probability": 0.0259 + }, + { + "start": 10300.22, + "end": 10300.92, + "probability": 0.5508 + }, + { + "start": 10301.18, + "end": 10305.62, + "probability": 0.8856 + }, + { + "start": 10305.62, + "end": 10309.16, + "probability": 0.9457 + }, + { + "start": 10309.96, + "end": 10316.3, + "probability": 0.4232 + }, + { + "start": 10317.72, + "end": 10322.24, + "probability": 0.1051 + }, + { + "start": 10326.78, + "end": 10331.3, + "probability": 0.5595 + }, + { + "start": 10331.4, + "end": 10337.16, + "probability": 0.1805 + }, + { + "start": 10338.46, + "end": 10339.04, + "probability": 0.0184 + }, + { + "start": 10340.05, + "end": 10340.74, + "probability": 0.04 + }, + { + "start": 10341.58, + "end": 10344.06, + "probability": 0.0386 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.0 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.0 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.0 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.0 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.0 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.0 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.0 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.0 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.0 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.0 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.0 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.0 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.0 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.0 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.0 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.0 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.0 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.0 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.0 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.0 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.0 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.0 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.0 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.0 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.0 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.0 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.0 + }, + { + "start": 10401.24, + "end": 10403.7, + "probability": 0.0353 + }, + { + "start": 10403.84, + "end": 10405.66, + "probability": 0.1309 + }, + { + "start": 10406.96, + "end": 10408.5, + "probability": 0.1364 + }, + { + "start": 10409.86, + "end": 10409.86, + "probability": 0.0431 + }, + { + "start": 10432.24, + "end": 10433.04, + "probability": 0.0695 + }, + { + "start": 10433.04, + "end": 10436.36, + "probability": 0.0173 + }, + { + "start": 10436.7, + "end": 10437.47, + "probability": 0.0435 + }, + { + "start": 10444.14, + "end": 10445.86, + "probability": 0.0546 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.18, + "end": 10536.26, + "probability": 0.2634 + }, + { + "start": 10536.26, + "end": 10536.82, + "probability": 0.4691 + }, + { + "start": 10537.3, + "end": 10538.2, + "probability": 0.7494 + }, + { + "start": 10538.24, + "end": 10540.2, + "probability": 0.7945 + }, + { + "start": 10541.31, + "end": 10543.26, + "probability": 0.9155 + }, + { + "start": 10543.42, + "end": 10544.58, + "probability": 0.8097 + }, + { + "start": 10545.26, + "end": 10549.06, + "probability": 0.9583 + }, + { + "start": 10549.3, + "end": 10552.92, + "probability": 0.9641 + }, + { + "start": 10553.44, + "end": 10556.42, + "probability": 0.9966 + }, + { + "start": 10557.26, + "end": 10559.94, + "probability": 0.6434 + }, + { + "start": 10560.14, + "end": 10562.24, + "probability": 0.6791 + }, + { + "start": 10563.06, + "end": 10566.84, + "probability": 0.9806 + }, + { + "start": 10567.5, + "end": 10567.74, + "probability": 0.4389 + }, + { + "start": 10568.3, + "end": 10568.78, + "probability": 0.9446 + }, + { + "start": 10569.58, + "end": 10569.98, + "probability": 0.7515 + }, + { + "start": 10570.2, + "end": 10571.72, + "probability": 0.8546 + }, + { + "start": 10571.98, + "end": 10572.34, + "probability": 0.5219 + }, + { + "start": 10572.44, + "end": 10573.74, + "probability": 0.8325 + }, + { + "start": 10573.84, + "end": 10576.73, + "probability": 0.8496 + }, + { + "start": 10577.74, + "end": 10579.78, + "probability": 0.9932 + }, + { + "start": 10579.78, + "end": 10583.98, + "probability": 0.9899 + }, + { + "start": 10584.44, + "end": 10585.76, + "probability": 0.8962 + }, + { + "start": 10586.38, + "end": 10587.58, + "probability": 0.9886 + }, + { + "start": 10587.92, + "end": 10589.92, + "probability": 0.9869 + }, + { + "start": 10590.18, + "end": 10592.88, + "probability": 0.9512 + }, + { + "start": 10593.48, + "end": 10594.74, + "probability": 0.998 + }, + { + "start": 10596.26, + "end": 10600.52, + "probability": 0.9111 + }, + { + "start": 10601.72, + "end": 10602.4, + "probability": 0.8816 + }, + { + "start": 10605.06, + "end": 10609.6, + "probability": 0.9954 + }, + { + "start": 10611.26, + "end": 10613.5, + "probability": 0.9975 + }, + { + "start": 10614.06, + "end": 10616.72, + "probability": 0.998 + }, + { + "start": 10617.08, + "end": 10618.16, + "probability": 0.9872 + }, + { + "start": 10618.26, + "end": 10618.92, + "probability": 0.9705 + }, + { + "start": 10619.78, + "end": 10623.34, + "probability": 0.9091 + }, + { + "start": 10624.76, + "end": 10629.62, + "probability": 0.9875 + }, + { + "start": 10629.62, + "end": 10633.26, + "probability": 0.9957 + }, + { + "start": 10634.42, + "end": 10637.02, + "probability": 0.992 + }, + { + "start": 10638.4, + "end": 10644.56, + "probability": 0.9155 + }, + { + "start": 10645.04, + "end": 10645.44, + "probability": 0.7974 + }, + { + "start": 10645.44, + "end": 10648.46, + "probability": 0.9498 + }, + { + "start": 10648.52, + "end": 10648.96, + "probability": 0.2796 + }, + { + "start": 10648.96, + "end": 10649.54, + "probability": 0.8579 + }, + { + "start": 10649.62, + "end": 10650.86, + "probability": 0.7372 + }, + { + "start": 10651.44, + "end": 10653.38, + "probability": 0.6058 + }, + { + "start": 10654.06, + "end": 10655.84, + "probability": 0.9885 + }, + { + "start": 10656.42, + "end": 10658.58, + "probability": 0.9614 + }, + { + "start": 10659.38, + "end": 10660.82, + "probability": 0.9935 + }, + { + "start": 10661.66, + "end": 10665.54, + "probability": 0.6953 + }, + { + "start": 10665.64, + "end": 10668.18, + "probability": 0.9326 + }, + { + "start": 10669.12, + "end": 10674.66, + "probability": 0.9966 + }, + { + "start": 10675.96, + "end": 10677.56, + "probability": 0.936 + }, + { + "start": 10677.62, + "end": 10680.34, + "probability": 0.7776 + }, + { + "start": 10680.84, + "end": 10684.16, + "probability": 0.9639 + }, + { + "start": 10684.24, + "end": 10685.18, + "probability": 0.9924 + }, + { + "start": 10685.64, + "end": 10686.12, + "probability": 0.8817 + }, + { + "start": 10686.22, + "end": 10687.94, + "probability": 0.944 + }, + { + "start": 10688.04, + "end": 10692.3, + "probability": 0.9956 + }, + { + "start": 10692.3, + "end": 10697.71, + "probability": 0.9985 + }, + { + "start": 10698.14, + "end": 10699.95, + "probability": 0.8662 + }, + { + "start": 10700.34, + "end": 10700.92, + "probability": 0.9511 + }, + { + "start": 10701.68, + "end": 10701.78, + "probability": 0.4252 + }, + { + "start": 10701.88, + "end": 10703.62, + "probability": 0.937 + }, + { + "start": 10703.78, + "end": 10704.56, + "probability": 0.9229 + }, + { + "start": 10704.64, + "end": 10706.7, + "probability": 0.8913 + }, + { + "start": 10707.38, + "end": 10709.1, + "probability": 0.6247 + }, + { + "start": 10709.62, + "end": 10709.74, + "probability": 0.7642 + }, + { + "start": 10710.26, + "end": 10710.72, + "probability": 0.9275 + }, + { + "start": 10711.72, + "end": 10715.68, + "probability": 0.8583 + }, + { + "start": 10715.68, + "end": 10717.92, + "probability": 0.517 + }, + { + "start": 10718.12, + "end": 10721.36, + "probability": 0.5013 + }, + { + "start": 10721.46, + "end": 10722.7, + "probability": 0.8624 + }, + { + "start": 10722.72, + "end": 10723.24, + "probability": 0.8524 + }, + { + "start": 10723.74, + "end": 10725.2, + "probability": 0.7275 + }, + { + "start": 10725.4, + "end": 10728.98, + "probability": 0.904 + }, + { + "start": 10729.98, + "end": 10732.94, + "probability": 0.8197 + }, + { + "start": 10733.16, + "end": 10735.08, + "probability": 0.2968 + }, + { + "start": 10735.08, + "end": 10735.86, + "probability": 0.8006 + }, + { + "start": 10735.92, + "end": 10738.13, + "probability": 0.4411 + }, + { + "start": 10738.22, + "end": 10741.52, + "probability": 0.4302 + }, + { + "start": 10741.74, + "end": 10743.24, + "probability": 0.3809 + }, + { + "start": 10743.24, + "end": 10745.44, + "probability": 0.4849 + }, + { + "start": 10746.79, + "end": 10750.08, + "probability": 0.7842 + }, + { + "start": 10750.32, + "end": 10750.4, + "probability": 0.1954 + }, + { + "start": 10750.4, + "end": 10753.7, + "probability": 0.9071 + }, + { + "start": 10754.28, + "end": 10756.02, + "probability": 0.9336 + }, + { + "start": 10756.7, + "end": 10757.24, + "probability": 0.6267 + }, + { + "start": 10758.74, + "end": 10760.66, + "probability": 0.7888 + }, + { + "start": 10761.26, + "end": 10765.7, + "probability": 0.8447 + }, + { + "start": 10767.34, + "end": 10770.28, + "probability": 0.9739 + }, + { + "start": 10771.34, + "end": 10773.58, + "probability": 0.4812 + }, + { + "start": 10775.14, + "end": 10779.14, + "probability": 0.975 + }, + { + "start": 10780.14, + "end": 10782.86, + "probability": 0.8687 + }, + { + "start": 10783.52, + "end": 10784.84, + "probability": 0.8733 + }, + { + "start": 10785.34, + "end": 10789.32, + "probability": 0.9942 + }, + { + "start": 10789.58, + "end": 10793.52, + "probability": 0.9143 + }, + { + "start": 10793.96, + "end": 10794.12, + "probability": 0.6348 + }, + { + "start": 10795.56, + "end": 10801.0, + "probability": 0.9932 + }, + { + "start": 10801.7, + "end": 10802.94, + "probability": 0.9679 + }, + { + "start": 10803.96, + "end": 10805.16, + "probability": 0.9072 + }, + { + "start": 10805.16, + "end": 10806.0, + "probability": 0.7649 + }, + { + "start": 10806.54, + "end": 10808.56, + "probability": 0.9953 + }, + { + "start": 10809.54, + "end": 10810.74, + "probability": 0.9895 + }, + { + "start": 10811.04, + "end": 10811.52, + "probability": 0.6914 + }, + { + "start": 10811.58, + "end": 10814.72, + "probability": 0.9727 + }, + { + "start": 10815.1, + "end": 10816.84, + "probability": 0.9469 + }, + { + "start": 10818.22, + "end": 10821.42, + "probability": 0.9908 + }, + { + "start": 10821.42, + "end": 10824.16, + "probability": 0.7706 + }, + { + "start": 10825.12, + "end": 10827.26, + "probability": 0.9531 + }, + { + "start": 10827.42, + "end": 10828.48, + "probability": 0.5997 + }, + { + "start": 10828.5, + "end": 10829.54, + "probability": 0.9529 + }, + { + "start": 10829.78, + "end": 10831.1, + "probability": 0.9487 + }, + { + "start": 10832.06, + "end": 10835.0, + "probability": 0.6636 + }, + { + "start": 10835.3, + "end": 10838.52, + "probability": 0.8928 + }, + { + "start": 10838.6, + "end": 10840.0, + "probability": 0.9736 + }, + { + "start": 10840.36, + "end": 10841.66, + "probability": 0.9915 + }, + { + "start": 10841.98, + "end": 10842.4, + "probability": 0.9016 + }, + { + "start": 10842.6, + "end": 10844.7, + "probability": 0.9807 + }, + { + "start": 10845.64, + "end": 10849.66, + "probability": 0.9364 + }, + { + "start": 10851.35, + "end": 10853.48, + "probability": 0.7451 + }, + { + "start": 10853.58, + "end": 10856.36, + "probability": 0.8018 + }, + { + "start": 10857.74, + "end": 10859.56, + "probability": 0.9797 + }, + { + "start": 10860.08, + "end": 10862.94, + "probability": 0.9615 + }, + { + "start": 10863.88, + "end": 10865.4, + "probability": 0.6172 + }, + { + "start": 10866.44, + "end": 10868.37, + "probability": 0.7178 + }, + { + "start": 10869.46, + "end": 10870.48, + "probability": 0.6853 + }, + { + "start": 10870.68, + "end": 10878.06, + "probability": 0.9134 + }, + { + "start": 10879.1, + "end": 10881.04, + "probability": 0.9311 + }, + { + "start": 10881.26, + "end": 10883.22, + "probability": 0.8242 + }, + { + "start": 10884.24, + "end": 10886.12, + "probability": 0.7539 + }, + { + "start": 10886.68, + "end": 10887.76, + "probability": 0.9453 + }, + { + "start": 10889.32, + "end": 10890.84, + "probability": 0.912 + }, + { + "start": 10892.52, + "end": 10894.02, + "probability": 0.9873 + }, + { + "start": 10894.28, + "end": 10895.6, + "probability": 0.6746 + }, + { + "start": 10895.66, + "end": 10896.08, + "probability": 0.6285 + }, + { + "start": 10896.18, + "end": 10896.3, + "probability": 0.2988 + }, + { + "start": 10896.3, + "end": 10896.54, + "probability": 0.1933 + }, + { + "start": 10896.54, + "end": 10897.11, + "probability": 0.9388 + }, + { + "start": 10897.3, + "end": 10897.84, + "probability": 0.6039 + }, + { + "start": 10897.94, + "end": 10898.8, + "probability": 0.8843 + }, + { + "start": 10900.66, + "end": 10900.98, + "probability": 0.9449 + }, + { + "start": 10901.04, + "end": 10905.96, + "probability": 0.979 + }, + { + "start": 10907.94, + "end": 10910.74, + "probability": 0.6892 + }, + { + "start": 10911.76, + "end": 10913.54, + "probability": 0.9473 + }, + { + "start": 10914.32, + "end": 10916.1, + "probability": 0.9753 + }, + { + "start": 10918.86, + "end": 10924.76, + "probability": 0.9958 + }, + { + "start": 10924.78, + "end": 10926.0, + "probability": 0.9809 + }, + { + "start": 10926.12, + "end": 10926.84, + "probability": 0.8337 + }, + { + "start": 10927.24, + "end": 10929.1, + "probability": 0.9503 + }, + { + "start": 10929.64, + "end": 10930.04, + "probability": 0.1984 + }, + { + "start": 10930.16, + "end": 10931.24, + "probability": 0.616 + }, + { + "start": 10931.3, + "end": 10932.21, + "probability": 0.9624 + }, + { + "start": 10933.1, + "end": 10934.4, + "probability": 0.6786 + }, + { + "start": 10934.46, + "end": 10936.92, + "probability": 0.9491 + }, + { + "start": 10936.92, + "end": 10940.26, + "probability": 0.9594 + }, + { + "start": 10942.17, + "end": 10944.6, + "probability": 0.9894 + }, + { + "start": 10947.0, + "end": 10948.24, + "probability": 0.9146 + }, + { + "start": 10948.78, + "end": 10956.84, + "probability": 0.8952 + }, + { + "start": 10957.64, + "end": 10959.34, + "probability": 0.8712 + }, + { + "start": 10959.8, + "end": 10960.88, + "probability": 0.8854 + }, + { + "start": 10961.02, + "end": 10961.74, + "probability": 0.6875 + }, + { + "start": 10962.12, + "end": 10963.26, + "probability": 0.6578 + }, + { + "start": 10963.8, + "end": 10964.32, + "probability": 0.5283 + }, + { + "start": 10964.56, + "end": 10965.06, + "probability": 0.8378 + }, + { + "start": 10965.12, + "end": 10969.08, + "probability": 0.8876 + }, + { + "start": 10969.1, + "end": 10969.98, + "probability": 0.5195 + }, + { + "start": 10970.02, + "end": 10970.2, + "probability": 0.7654 + }, + { + "start": 10971.94, + "end": 10972.6, + "probability": 0.9123 + }, + { + "start": 10973.7, + "end": 10976.08, + "probability": 0.9643 + }, + { + "start": 10976.08, + "end": 10978.5, + "probability": 0.9871 + }, + { + "start": 10978.64, + "end": 10979.36, + "probability": 0.6708 + }, + { + "start": 10979.38, + "end": 10980.06, + "probability": 0.8384 + }, + { + "start": 10980.72, + "end": 10981.38, + "probability": 0.8032 + }, + { + "start": 10983.8, + "end": 10984.94, + "probability": 0.8093 + }, + { + "start": 10985.82, + "end": 10988.48, + "probability": 0.9946 + }, + { + "start": 10988.52, + "end": 10993.12, + "probability": 0.7315 + }, + { + "start": 10993.24, + "end": 10993.88, + "probability": 0.9165 + }, + { + "start": 10994.4, + "end": 10995.04, + "probability": 0.6965 + }, + { + "start": 10995.66, + "end": 10998.8, + "probability": 0.7019 + }, + { + "start": 10999.86, + "end": 11000.56, + "probability": 0.4875 + }, + { + "start": 11001.08, + "end": 11001.9, + "probability": 0.666 + }, + { + "start": 11001.94, + "end": 11002.86, + "probability": 0.8852 + }, + { + "start": 11002.88, + "end": 11003.18, + "probability": 0.4281 + }, + { + "start": 11003.2, + "end": 11004.26, + "probability": 0.7185 + }, + { + "start": 11004.64, + "end": 11006.6, + "probability": 0.9414 + }, + { + "start": 11006.92, + "end": 11007.9, + "probability": 0.7675 + }, + { + "start": 11008.48, + "end": 11009.76, + "probability": 0.8504 + }, + { + "start": 11010.98, + "end": 11012.62, + "probability": 0.8708 + }, + { + "start": 11013.32, + "end": 11016.68, + "probability": 0.9852 + }, + { + "start": 11016.7, + "end": 11017.58, + "probability": 0.9343 + }, + { + "start": 11019.28, + "end": 11021.46, + "probability": 0.78 + }, + { + "start": 11024.46, + "end": 11029.12, + "probability": 0.9648 + }, + { + "start": 11029.84, + "end": 11031.86, + "probability": 0.8308 + }, + { + "start": 11033.16, + "end": 11038.02, + "probability": 0.9977 + }, + { + "start": 11038.76, + "end": 11041.56, + "probability": 0.8392 + }, + { + "start": 11042.1, + "end": 11043.06, + "probability": 0.9399 + }, + { + "start": 11043.86, + "end": 11044.32, + "probability": 0.6473 + }, + { + "start": 11047.2, + "end": 11048.62, + "probability": 0.7467 + }, + { + "start": 11048.74, + "end": 11049.38, + "probability": 0.856 + }, + { + "start": 11049.42, + "end": 11050.34, + "probability": 0.8346 + }, + { + "start": 11050.58, + "end": 11051.88, + "probability": 0.9963 + }, + { + "start": 11052.08, + "end": 11052.64, + "probability": 0.4448 + }, + { + "start": 11053.22, + "end": 11057.7, + "probability": 0.9585 + }, + { + "start": 11059.2, + "end": 11060.54, + "probability": 0.821 + }, + { + "start": 11061.48, + "end": 11063.14, + "probability": 0.7674 + }, + { + "start": 11063.76, + "end": 11064.42, + "probability": 0.6659 + }, + { + "start": 11064.5, + "end": 11065.18, + "probability": 0.8075 + }, + { + "start": 11065.3, + "end": 11066.88, + "probability": 0.6824 + }, + { + "start": 11068.1, + "end": 11072.22, + "probability": 0.8696 + }, + { + "start": 11072.22, + "end": 11074.98, + "probability": 0.9141 + }, + { + "start": 11077.4, + "end": 11079.46, + "probability": 0.9511 + }, + { + "start": 11080.72, + "end": 11081.48, + "probability": 0.8028 + }, + { + "start": 11082.1, + "end": 11083.78, + "probability": 0.7704 + }, + { + "start": 11084.82, + "end": 11090.52, + "probability": 0.988 + }, + { + "start": 11091.46, + "end": 11096.2, + "probability": 0.9865 + }, + { + "start": 11101.78, + "end": 11103.24, + "probability": 0.7228 + }, + { + "start": 11104.4, + "end": 11105.35, + "probability": 0.7111 + }, + { + "start": 11106.26, + "end": 11108.8, + "probability": 0.9862 + }, + { + "start": 11110.56, + "end": 11111.54, + "probability": 0.8297 + }, + { + "start": 11112.08, + "end": 11112.84, + "probability": 0.8057 + }, + { + "start": 11113.96, + "end": 11120.42, + "probability": 0.9797 + }, + { + "start": 11121.84, + "end": 11124.36, + "probability": 0.9956 + }, + { + "start": 11125.1, + "end": 11128.1, + "probability": 0.8155 + }, + { + "start": 11128.68, + "end": 11131.14, + "probability": 0.9398 + }, + { + "start": 11131.76, + "end": 11135.44, + "probability": 0.9604 + }, + { + "start": 11136.14, + "end": 11136.28, + "probability": 0.7666 + }, + { + "start": 11137.42, + "end": 11141.0, + "probability": 0.8248 + }, + { + "start": 11141.46, + "end": 11144.56, + "probability": 0.7498 + }, + { + "start": 11144.76, + "end": 11147.34, + "probability": 0.9871 + }, + { + "start": 11165.56, + "end": 11167.02, + "probability": 0.605 + }, + { + "start": 11168.3, + "end": 11168.95, + "probability": 0.7495 + }, + { + "start": 11169.1, + "end": 11169.18, + "probability": 0.0264 + }, + { + "start": 11169.3, + "end": 11172.34, + "probability": 0.6663 + }, + { + "start": 11172.42, + "end": 11172.86, + "probability": 0.6733 + }, + { + "start": 11173.14, + "end": 11173.88, + "probability": 0.6696 + }, + { + "start": 11174.64, + "end": 11177.16, + "probability": 0.7973 + }, + { + "start": 11178.34, + "end": 11179.43, + "probability": 0.7228 + }, + { + "start": 11181.56, + "end": 11182.54, + "probability": 0.9459 + }, + { + "start": 11183.52, + "end": 11188.16, + "probability": 0.9523 + }, + { + "start": 11189.32, + "end": 11189.52, + "probability": 0.2163 + }, + { + "start": 11189.54, + "end": 11190.24, + "probability": 0.0163 + }, + { + "start": 11190.6, + "end": 11190.6, + "probability": 0.4448 + }, + { + "start": 11190.6, + "end": 11191.7, + "probability": 0.6177 + }, + { + "start": 11192.74, + "end": 11193.88, + "probability": 0.7657 + }, + { + "start": 11193.96, + "end": 11197.62, + "probability": 0.9927 + }, + { + "start": 11198.5, + "end": 11200.12, + "probability": 0.2831 + }, + { + "start": 11204.48, + "end": 11209.88, + "probability": 0.7688 + }, + { + "start": 11213.04, + "end": 11213.22, + "probability": 0.1355 + }, + { + "start": 11213.22, + "end": 11214.9, + "probability": 0.4063 + }, + { + "start": 11217.06, + "end": 11219.26, + "probability": 0.8871 + }, + { + "start": 11219.26, + "end": 11223.54, + "probability": 0.8333 + }, + { + "start": 11224.22, + "end": 11227.52, + "probability": 0.901 + }, + { + "start": 11228.88, + "end": 11234.83, + "probability": 0.9593 + }, + { + "start": 11236.54, + "end": 11240.72, + "probability": 0.9922 + }, + { + "start": 11241.48, + "end": 11243.0, + "probability": 0.7433 + }, + { + "start": 11243.78, + "end": 11246.14, + "probability": 0.9951 + }, + { + "start": 11246.68, + "end": 11248.0, + "probability": 0.5637 + }, + { + "start": 11249.17, + "end": 11252.66, + "probability": 0.7297 + }, + { + "start": 11252.68, + "end": 11254.7, + "probability": 0.7169 + }, + { + "start": 11254.82, + "end": 11255.84, + "probability": 0.9442 + }, + { + "start": 11255.96, + "end": 11261.98, + "probability": 0.9726 + }, + { + "start": 11263.18, + "end": 11264.02, + "probability": 0.3163 + }, + { + "start": 11264.02, + "end": 11266.77, + "probability": 0.9946 + }, + { + "start": 11267.64, + "end": 11269.46, + "probability": 0.8889 + }, + { + "start": 11269.62, + "end": 11270.0, + "probability": 0.5745 + }, + { + "start": 11270.0, + "end": 11273.76, + "probability": 0.7773 + }, + { + "start": 11273.88, + "end": 11274.82, + "probability": 0.7421 + }, + { + "start": 11275.08, + "end": 11276.16, + "probability": 0.6303 + }, + { + "start": 11276.2, + "end": 11276.8, + "probability": 0.6608 + }, + { + "start": 11276.9, + "end": 11278.0, + "probability": 0.3253 + }, + { + "start": 11279.14, + "end": 11279.32, + "probability": 0.0216 + }, + { + "start": 11279.32, + "end": 11279.44, + "probability": 0.4476 + }, + { + "start": 11279.56, + "end": 11280.28, + "probability": 0.6931 + }, + { + "start": 11280.32, + "end": 11282.28, + "probability": 0.882 + }, + { + "start": 11282.5, + "end": 11283.34, + "probability": 0.8532 + }, + { + "start": 11283.42, + "end": 11283.84, + "probability": 0.8374 + }, + { + "start": 11283.9, + "end": 11284.62, + "probability": 0.8373 + }, + { + "start": 11284.96, + "end": 11288.82, + "probability": 0.9815 + }, + { + "start": 11289.86, + "end": 11292.98, + "probability": 0.7971 + }, + { + "start": 11293.92, + "end": 11294.84, + "probability": 0.7848 + }, + { + "start": 11295.02, + "end": 11296.08, + "probability": 0.8371 + }, + { + "start": 11296.12, + "end": 11296.88, + "probability": 0.8139 + }, + { + "start": 11296.94, + "end": 11300.42, + "probability": 0.8324 + }, + { + "start": 11300.42, + "end": 11300.82, + "probability": 0.6902 + }, + { + "start": 11301.2, + "end": 11302.9, + "probability": 0.9901 + }, + { + "start": 11303.58, + "end": 11305.14, + "probability": 0.9803 + }, + { + "start": 11305.8, + "end": 11308.92, + "probability": 0.967 + }, + { + "start": 11309.46, + "end": 11311.66, + "probability": 0.9911 + }, + { + "start": 11313.24, + "end": 11316.78, + "probability": 0.9859 + }, + { + "start": 11316.88, + "end": 11319.1, + "probability": 0.9565 + }, + { + "start": 11319.94, + "end": 11322.6, + "probability": 0.9932 + }, + { + "start": 11322.96, + "end": 11325.16, + "probability": 0.9946 + }, + { + "start": 11325.52, + "end": 11327.96, + "probability": 0.9692 + }, + { + "start": 11328.16, + "end": 11329.73, + "probability": 0.9746 + }, + { + "start": 11329.98, + "end": 11332.02, + "probability": 0.9096 + }, + { + "start": 11332.46, + "end": 11334.44, + "probability": 0.9149 + }, + { + "start": 11334.88, + "end": 11339.2, + "probability": 0.9615 + }, + { + "start": 11339.58, + "end": 11340.96, + "probability": 0.9004 + }, + { + "start": 11341.08, + "end": 11342.18, + "probability": 0.8372 + }, + { + "start": 11342.24, + "end": 11342.86, + "probability": 0.7837 + }, + { + "start": 11342.94, + "end": 11344.32, + "probability": 0.9658 + }, + { + "start": 11344.46, + "end": 11345.44, + "probability": 0.9549 + }, + { + "start": 11345.56, + "end": 11345.9, + "probability": 0.3596 + }, + { + "start": 11345.9, + "end": 11348.84, + "probability": 0.9465 + }, + { + "start": 11349.5, + "end": 11351.14, + "probability": 0.9938 + }, + { + "start": 11351.14, + "end": 11353.3, + "probability": 0.9902 + }, + { + "start": 11354.36, + "end": 11357.46, + "probability": 0.9855 + }, + { + "start": 11357.5, + "end": 11358.6, + "probability": 0.9985 + }, + { + "start": 11359.16, + "end": 11361.66, + "probability": 0.9868 + }, + { + "start": 11363.42, + "end": 11367.88, + "probability": 0.8775 + }, + { + "start": 11368.68, + "end": 11370.36, + "probability": 0.9769 + }, + { + "start": 11370.54, + "end": 11374.08, + "probability": 0.9712 + }, + { + "start": 11374.54, + "end": 11375.98, + "probability": 0.9988 + }, + { + "start": 11377.92, + "end": 11378.62, + "probability": 0.3148 + }, + { + "start": 11378.74, + "end": 11383.21, + "probability": 0.9451 + }, + { + "start": 11385.44, + "end": 11390.98, + "probability": 0.8452 + }, + { + "start": 11391.78, + "end": 11393.28, + "probability": 0.8806 + }, + { + "start": 11395.04, + "end": 11396.26, + "probability": 0.8022 + }, + { + "start": 11397.0, + "end": 11397.64, + "probability": 0.8498 + }, + { + "start": 11397.82, + "end": 11398.06, + "probability": 0.7202 + }, + { + "start": 11398.18, + "end": 11398.38, + "probability": 0.7339 + }, + { + "start": 11398.44, + "end": 11398.76, + "probability": 0.8231 + }, + { + "start": 11398.82, + "end": 11399.24, + "probability": 0.5927 + }, + { + "start": 11399.24, + "end": 11399.96, + "probability": 0.9321 + }, + { + "start": 11400.78, + "end": 11405.24, + "probability": 0.991 + }, + { + "start": 11406.74, + "end": 11408.28, + "probability": 0.6024 + }, + { + "start": 11408.86, + "end": 11409.78, + "probability": 0.9151 + }, + { + "start": 11410.48, + "end": 11411.89, + "probability": 0.8507 + }, + { + "start": 11412.8, + "end": 11415.22, + "probability": 0.504 + }, + { + "start": 11416.03, + "end": 11423.04, + "probability": 0.9553 + }, + { + "start": 11424.46, + "end": 11425.06, + "probability": 0.5216 + }, + { + "start": 11425.2, + "end": 11426.16, + "probability": 0.9216 + }, + { + "start": 11426.28, + "end": 11433.12, + "probability": 0.9446 + }, + { + "start": 11434.1, + "end": 11435.36, + "probability": 0.9059 + }, + { + "start": 11435.66, + "end": 11436.22, + "probability": 0.6584 + }, + { + "start": 11436.94, + "end": 11441.66, + "probability": 0.9362 + }, + { + "start": 11442.3, + "end": 11445.08, + "probability": 0.6568 + }, + { + "start": 11445.8, + "end": 11446.34, + "probability": 0.9373 + }, + { + "start": 11447.12, + "end": 11450.3, + "probability": 0.4792 + }, + { + "start": 11451.96, + "end": 11454.22, + "probability": 0.9547 + }, + { + "start": 11454.3, + "end": 11456.84, + "probability": 0.9961 + }, + { + "start": 11457.78, + "end": 11459.34, + "probability": 0.9737 + }, + { + "start": 11460.02, + "end": 11464.72, + "probability": 0.926 + }, + { + "start": 11464.72, + "end": 11467.76, + "probability": 0.9976 + }, + { + "start": 11468.84, + "end": 11470.2, + "probability": 0.752 + }, + { + "start": 11471.02, + "end": 11474.24, + "probability": 0.9341 + }, + { + "start": 11475.92, + "end": 11480.74, + "probability": 0.9736 + }, + { + "start": 11480.94, + "end": 11486.22, + "probability": 0.9941 + }, + { + "start": 11487.04, + "end": 11489.1, + "probability": 0.7923 + }, + { + "start": 11489.28, + "end": 11496.76, + "probability": 0.9761 + }, + { + "start": 11496.98, + "end": 11501.92, + "probability": 0.7386 + }, + { + "start": 11502.12, + "end": 11507.06, + "probability": 0.987 + }, + { + "start": 11508.08, + "end": 11511.6, + "probability": 0.8929 + }, + { + "start": 11511.7, + "end": 11515.24, + "probability": 0.9722 + }, + { + "start": 11518.28, + "end": 11526.64, + "probability": 0.9302 + }, + { + "start": 11527.22, + "end": 11529.72, + "probability": 0.8691 + }, + { + "start": 11530.16, + "end": 11531.2, + "probability": 0.3232 + }, + { + "start": 11531.26, + "end": 11533.42, + "probability": 0.8073 + }, + { + "start": 11533.42, + "end": 11536.26, + "probability": 0.9279 + }, + { + "start": 11536.36, + "end": 11540.36, + "probability": 0.8076 + }, + { + "start": 11540.5, + "end": 11541.86, + "probability": 0.9158 + }, + { + "start": 11541.92, + "end": 11545.94, + "probability": 0.8392 + }, + { + "start": 11548.98, + "end": 11550.88, + "probability": 0.7968 + }, + { + "start": 11551.06, + "end": 11552.8, + "probability": 0.7711 + }, + { + "start": 11553.44, + "end": 11554.3, + "probability": 0.43 + }, + { + "start": 11555.2, + "end": 11556.88, + "probability": 0.7111 + }, + { + "start": 11557.62, + "end": 11559.7, + "probability": 0.9871 + }, + { + "start": 11560.32, + "end": 11560.8, + "probability": 0.7976 + }, + { + "start": 11561.74, + "end": 11566.02, + "probability": 0.9214 + }, + { + "start": 11567.5, + "end": 11569.54, + "probability": 0.581 + }, + { + "start": 11569.74, + "end": 11574.32, + "probability": 0.6393 + }, + { + "start": 11574.48, + "end": 11575.7, + "probability": 0.5013 + }, + { + "start": 11575.78, + "end": 11576.88, + "probability": 0.5456 + }, + { + "start": 11577.62, + "end": 11583.44, + "probability": 0.5919 + }, + { + "start": 11584.9, + "end": 11587.14, + "probability": 0.765 + }, + { + "start": 11587.22, + "end": 11587.64, + "probability": 0.7411 + }, + { + "start": 11587.74, + "end": 11589.0, + "probability": 0.8823 + }, + { + "start": 11589.12, + "end": 11590.22, + "probability": 0.9469 + }, + { + "start": 11590.42, + "end": 11592.08, + "probability": 0.8932 + }, + { + "start": 11592.84, + "end": 11593.92, + "probability": 0.9713 + }, + { + "start": 11594.0, + "end": 11598.16, + "probability": 0.985 + }, + { + "start": 11598.82, + "end": 11602.4, + "probability": 0.9739 + }, + { + "start": 11602.5, + "end": 11603.98, + "probability": 0.8591 + }, + { + "start": 11605.22, + "end": 11609.92, + "probability": 0.9591 + }, + { + "start": 11610.52, + "end": 11611.63, + "probability": 0.8166 + }, + { + "start": 11612.0, + "end": 11614.68, + "probability": 0.9759 + }, + { + "start": 11615.2, + "end": 11619.42, + "probability": 0.9912 + }, + { + "start": 11620.78, + "end": 11622.92, + "probability": 0.929 + }, + { + "start": 11623.12, + "end": 11625.17, + "probability": 0.9941 + }, + { + "start": 11625.86, + "end": 11626.68, + "probability": 0.5576 + }, + { + "start": 11627.36, + "end": 11628.84, + "probability": 0.9222 + }, + { + "start": 11629.46, + "end": 11630.58, + "probability": 0.9102 + }, + { + "start": 11631.36, + "end": 11635.26, + "probability": 0.9321 + }, + { + "start": 11635.94, + "end": 11637.3, + "probability": 0.8706 + }, + { + "start": 11637.68, + "end": 11639.45, + "probability": 0.8762 + }, + { + "start": 11640.1, + "end": 11641.88, + "probability": 0.9017 + }, + { + "start": 11642.32, + "end": 11642.42, + "probability": 0.3147 + }, + { + "start": 11643.5, + "end": 11644.34, + "probability": 0.6533 + }, + { + "start": 11644.44, + "end": 11644.44, + "probability": 0.7286 + }, + { + "start": 11644.44, + "end": 11645.37, + "probability": 0.873 + }, + { + "start": 11647.32, + "end": 11648.02, + "probability": 0.0425 + }, + { + "start": 11648.02, + "end": 11648.02, + "probability": 0.0685 + }, + { + "start": 11648.02, + "end": 11648.02, + "probability": 0.0889 + }, + { + "start": 11648.02, + "end": 11649.52, + "probability": 0.5105 + }, + { + "start": 11650.86, + "end": 11652.48, + "probability": 0.6688 + }, + { + "start": 11653.22, + "end": 11656.44, + "probability": 0.9863 + }, + { + "start": 11656.58, + "end": 11658.74, + "probability": 0.9072 + }, + { + "start": 11659.26, + "end": 11661.02, + "probability": 0.902 + }, + { + "start": 11661.04, + "end": 11661.86, + "probability": 0.5771 + }, + { + "start": 11662.9, + "end": 11666.74, + "probability": 0.9131 + }, + { + "start": 11666.94, + "end": 11669.44, + "probability": 0.9101 + }, + { + "start": 11669.54, + "end": 11671.78, + "probability": 0.7306 + }, + { + "start": 11672.02, + "end": 11673.18, + "probability": 0.3736 + }, + { + "start": 11673.66, + "end": 11678.86, + "probability": 0.9399 + }, + { + "start": 11679.74, + "end": 11681.02, + "probability": 0.8782 + }, + { + "start": 11681.32, + "end": 11683.68, + "probability": 0.8616 + }, + { + "start": 11683.74, + "end": 11684.9, + "probability": 0.7993 + }, + { + "start": 11685.1, + "end": 11687.62, + "probability": 0.9906 + }, + { + "start": 11688.12, + "end": 11689.48, + "probability": 0.9346 + }, + { + "start": 11689.84, + "end": 11693.06, + "probability": 0.9331 + }, + { + "start": 11697.38, + "end": 11698.9, + "probability": 0.5747 + }, + { + "start": 11700.32, + "end": 11701.16, + "probability": 0.601 + }, + { + "start": 11701.56, + "end": 11702.72, + "probability": 0.9523 + }, + { + "start": 11702.88, + "end": 11705.58, + "probability": 0.9484 + }, + { + "start": 11706.04, + "end": 11707.98, + "probability": 0.9807 + }, + { + "start": 11708.14, + "end": 11709.68, + "probability": 0.9746 + }, + { + "start": 11709.72, + "end": 11713.62, + "probability": 0.9722 + }, + { + "start": 11715.96, + "end": 11718.28, + "probability": 0.9762 + }, + { + "start": 11718.9, + "end": 11719.6, + "probability": 0.7004 + }, + { + "start": 11719.76, + "end": 11720.6, + "probability": 0.8825 + }, + { + "start": 11720.64, + "end": 11721.8, + "probability": 0.6069 + }, + { + "start": 11721.94, + "end": 11723.02, + "probability": 0.9843 + }, + { + "start": 11723.08, + "end": 11724.23, + "probability": 0.9966 + }, + { + "start": 11724.82, + "end": 11725.96, + "probability": 0.8672 + }, + { + "start": 11726.08, + "end": 11727.6, + "probability": 0.9806 + }, + { + "start": 11727.66, + "end": 11728.32, + "probability": 0.9386 + }, + { + "start": 11728.72, + "end": 11730.68, + "probability": 0.9956 + }, + { + "start": 11731.53, + "end": 11733.4, + "probability": 0.9966 + }, + { + "start": 11733.92, + "end": 11736.04, + "probability": 0.8894 + }, + { + "start": 11736.26, + "end": 11737.32, + "probability": 0.9264 + }, + { + "start": 11737.38, + "end": 11738.5, + "probability": 0.9277 + }, + { + "start": 11739.26, + "end": 11741.08, + "probability": 0.9854 + }, + { + "start": 11741.44, + "end": 11742.74, + "probability": 0.9929 + }, + { + "start": 11743.02, + "end": 11744.66, + "probability": 0.9441 + }, + { + "start": 11745.32, + "end": 11754.54, + "probability": 0.86 + }, + { + "start": 11754.76, + "end": 11755.06, + "probability": 0.3786 + }, + { + "start": 11755.12, + "end": 11755.78, + "probability": 0.6527 + }, + { + "start": 11755.88, + "end": 11756.52, + "probability": 0.8879 + }, + { + "start": 11756.66, + "end": 11758.36, + "probability": 0.9569 + }, + { + "start": 11758.46, + "end": 11760.64, + "probability": 0.9912 + }, + { + "start": 11762.08, + "end": 11765.5, + "probability": 0.9806 + }, + { + "start": 11765.62, + "end": 11766.54, + "probability": 0.7004 + }, + { + "start": 11766.6, + "end": 11768.3, + "probability": 0.753 + }, + { + "start": 11768.44, + "end": 11771.68, + "probability": 0.9679 + }, + { + "start": 11772.0, + "end": 11773.26, + "probability": 0.812 + }, + { + "start": 11773.86, + "end": 11774.46, + "probability": 0.6806 + }, + { + "start": 11774.52, + "end": 11775.04, + "probability": 0.553 + }, + { + "start": 11775.66, + "end": 11781.68, + "probability": 0.9614 + }, + { + "start": 11782.1, + "end": 11785.86, + "probability": 0.9417 + }, + { + "start": 11785.98, + "end": 11790.24, + "probability": 0.9941 + }, + { + "start": 11790.46, + "end": 11790.76, + "probability": 0.269 + }, + { + "start": 11790.92, + "end": 11791.48, + "probability": 0.49 + }, + { + "start": 11791.98, + "end": 11793.92, + "probability": 0.2998 + }, + { + "start": 11794.0, + "end": 11794.34, + "probability": 0.1986 + }, + { + "start": 11794.34, + "end": 11795.98, + "probability": 0.7773 + }, + { + "start": 11796.08, + "end": 11799.02, + "probability": 0.9959 + }, + { + "start": 11799.02, + "end": 11800.96, + "probability": 0.9891 + }, + { + "start": 11801.58, + "end": 11803.2, + "probability": 0.5179 + }, + { + "start": 11803.2, + "end": 11805.2, + "probability": 0.7642 + }, + { + "start": 11805.22, + "end": 11805.76, + "probability": 0.8095 + }, + { + "start": 11819.6, + "end": 11822.58, + "probability": 0.6649 + }, + { + "start": 11824.52, + "end": 11828.26, + "probability": 0.9205 + }, + { + "start": 11829.18, + "end": 11830.1, + "probability": 0.8349 + }, + { + "start": 11831.84, + "end": 11834.48, + "probability": 0.9956 + }, + { + "start": 11835.18, + "end": 11836.54, + "probability": 0.9803 + }, + { + "start": 11838.3, + "end": 11839.26, + "probability": 0.9136 + }, + { + "start": 11841.54, + "end": 11842.6, + "probability": 0.6786 + }, + { + "start": 11844.36, + "end": 11846.98, + "probability": 0.5691 + }, + { + "start": 11848.44, + "end": 11849.51, + "probability": 0.98 + }, + { + "start": 11850.54, + "end": 11851.92, + "probability": 0.9849 + }, + { + "start": 11852.44, + "end": 11852.92, + "probability": 0.9712 + }, + { + "start": 11854.32, + "end": 11855.7, + "probability": 0.8769 + }, + { + "start": 11857.14, + "end": 11859.92, + "probability": 0.9834 + }, + { + "start": 11861.12, + "end": 11864.0, + "probability": 0.5131 + }, + { + "start": 11864.62, + "end": 11867.36, + "probability": 0.8084 + }, + { + "start": 11869.08, + "end": 11872.74, + "probability": 0.9863 + }, + { + "start": 11874.28, + "end": 11874.9, + "probability": 0.8911 + }, + { + "start": 11875.02, + "end": 11878.18, + "probability": 0.9917 + }, + { + "start": 11879.38, + "end": 11883.16, + "probability": 0.993 + }, + { + "start": 11883.56, + "end": 11885.26, + "probability": 0.91 + }, + { + "start": 11887.22, + "end": 11889.68, + "probability": 0.9243 + }, + { + "start": 11890.82, + "end": 11891.22, + "probability": 0.3991 + }, + { + "start": 11892.18, + "end": 11892.96, + "probability": 0.7779 + }, + { + "start": 11893.9, + "end": 11894.68, + "probability": 0.9666 + }, + { + "start": 11895.52, + "end": 11896.42, + "probability": 0.9686 + }, + { + "start": 11896.48, + "end": 11897.22, + "probability": 0.9873 + }, + { + "start": 11897.24, + "end": 11902.72, + "probability": 0.9852 + }, + { + "start": 11904.84, + "end": 11908.84, + "probability": 0.8408 + }, + { + "start": 11910.18, + "end": 11915.84, + "probability": 0.9962 + }, + { + "start": 11918.3, + "end": 11918.3, + "probability": 0.0267 + }, + { + "start": 11918.3, + "end": 11920.56, + "probability": 0.5592 + }, + { + "start": 11920.62, + "end": 11923.86, + "probability": 0.9797 + }, + { + "start": 11924.48, + "end": 11925.64, + "probability": 0.9515 + }, + { + "start": 11927.48, + "end": 11929.42, + "probability": 0.9707 + }, + { + "start": 11929.5, + "end": 11931.56, + "probability": 0.9165 + }, + { + "start": 11932.18, + "end": 11934.6, + "probability": 0.7788 + }, + { + "start": 11935.86, + "end": 11937.9, + "probability": 0.9985 + }, + { + "start": 11939.42, + "end": 11942.7, + "probability": 0.8226 + }, + { + "start": 11942.7, + "end": 11944.86, + "probability": 0.9972 + }, + { + "start": 11945.26, + "end": 11947.86, + "probability": 0.9972 + }, + { + "start": 11948.22, + "end": 11951.18, + "probability": 0.9503 + }, + { + "start": 11952.34, + "end": 11954.44, + "probability": 0.9785 + }, + { + "start": 11955.92, + "end": 11961.82, + "probability": 0.8885 + }, + { + "start": 11962.62, + "end": 11964.02, + "probability": 0.6944 + }, + { + "start": 11964.64, + "end": 11965.86, + "probability": 0.9399 + }, + { + "start": 11967.4, + "end": 11969.84, + "probability": 0.9953 + }, + { + "start": 11969.84, + "end": 11973.28, + "probability": 0.9976 + }, + { + "start": 11973.84, + "end": 11976.76, + "probability": 0.998 + }, + { + "start": 11977.72, + "end": 11978.88, + "probability": 0.9801 + }, + { + "start": 11981.08, + "end": 11982.34, + "probability": 0.9792 + }, + { + "start": 11984.82, + "end": 11988.96, + "probability": 0.8611 + }, + { + "start": 11990.2, + "end": 11993.16, + "probability": 0.9778 + }, + { + "start": 11993.47, + "end": 11995.88, + "probability": 0.7617 + }, + { + "start": 11996.64, + "end": 11999.14, + "probability": 0.9519 + }, + { + "start": 11999.22, + "end": 12000.5, + "probability": 0.9016 + }, + { + "start": 12001.4, + "end": 12003.28, + "probability": 0.8142 + }, + { + "start": 12004.04, + "end": 12005.96, + "probability": 0.9417 + }, + { + "start": 12006.4, + "end": 12010.94, + "probability": 0.9924 + }, + { + "start": 12011.08, + "end": 12015.34, + "probability": 0.8267 + }, + { + "start": 12015.86, + "end": 12016.84, + "probability": 0.8585 + }, + { + "start": 12019.22, + "end": 12022.18, + "probability": 0.771 + }, + { + "start": 12023.28, + "end": 12023.8, + "probability": 0.7562 + }, + { + "start": 12023.86, + "end": 12025.24, + "probability": 0.9434 + }, + { + "start": 12025.28, + "end": 12026.32, + "probability": 0.8445 + }, + { + "start": 12026.88, + "end": 12031.34, + "probability": 0.9817 + }, + { + "start": 12031.72, + "end": 12032.84, + "probability": 0.616 + }, + { + "start": 12033.52, + "end": 12035.08, + "probability": 0.9698 + }, + { + "start": 12035.12, + "end": 12036.74, + "probability": 0.882 + }, + { + "start": 12037.2, + "end": 12038.94, + "probability": 0.8042 + }, + { + "start": 12039.0, + "end": 12039.98, + "probability": 0.9902 + }, + { + "start": 12040.64, + "end": 12044.74, + "probability": 0.9647 + }, + { + "start": 12045.04, + "end": 12045.8, + "probability": 0.9747 + }, + { + "start": 12046.36, + "end": 12048.66, + "probability": 0.9912 + }, + { + "start": 12049.38, + "end": 12050.64, + "probability": 0.5142 + }, + { + "start": 12051.16, + "end": 12051.84, + "probability": 0.7 + }, + { + "start": 12051.9, + "end": 12052.42, + "probability": 0.7782 + }, + { + "start": 12052.84, + "end": 12054.03, + "probability": 0.9805 + }, + { + "start": 12054.4, + "end": 12054.98, + "probability": 0.9176 + }, + { + "start": 12055.86, + "end": 12059.64, + "probability": 0.9614 + }, + { + "start": 12060.84, + "end": 12061.38, + "probability": 0.8763 + }, + { + "start": 12061.74, + "end": 12062.9, + "probability": 0.9832 + }, + { + "start": 12063.1, + "end": 12063.86, + "probability": 0.388 + }, + { + "start": 12064.02, + "end": 12065.42, + "probability": 0.9658 + }, + { + "start": 12066.54, + "end": 12069.74, + "probability": 0.9502 + }, + { + "start": 12070.12, + "end": 12071.74, + "probability": 0.9885 + }, + { + "start": 12072.06, + "end": 12073.78, + "probability": 0.8587 + }, + { + "start": 12073.95, + "end": 12077.38, + "probability": 0.98 + }, + { + "start": 12079.64, + "end": 12082.25, + "probability": 0.8887 + }, + { + "start": 12084.26, + "end": 12086.52, + "probability": 0.9991 + }, + { + "start": 12086.9, + "end": 12088.0, + "probability": 0.9226 + }, + { + "start": 12088.44, + "end": 12092.62, + "probability": 0.9856 + }, + { + "start": 12094.04, + "end": 12094.3, + "probability": 0.8796 + }, + { + "start": 12095.18, + "end": 12096.3, + "probability": 0.79 + }, + { + "start": 12096.38, + "end": 12096.84, + "probability": 0.8322 + }, + { + "start": 12097.18, + "end": 12097.96, + "probability": 0.6906 + }, + { + "start": 12098.26, + "end": 12099.36, + "probability": 0.602 + }, + { + "start": 12099.38, + "end": 12099.86, + "probability": 0.8363 + }, + { + "start": 12099.9, + "end": 12100.92, + "probability": 0.8571 + }, + { + "start": 12101.36, + "end": 12104.34, + "probability": 0.8881 + }, + { + "start": 12104.88, + "end": 12104.96, + "probability": 0.0945 + }, + { + "start": 12104.96, + "end": 12107.08, + "probability": 0.9233 + }, + { + "start": 12107.86, + "end": 12109.22, + "probability": 0.6803 + }, + { + "start": 12109.24, + "end": 12109.3, + "probability": 0.056 + }, + { + "start": 12109.3, + "end": 12110.14, + "probability": 0.0713 + }, + { + "start": 12110.14, + "end": 12111.02, + "probability": 0.7174 + }, + { + "start": 12111.1, + "end": 12112.21, + "probability": 0.5867 + }, + { + "start": 12113.44, + "end": 12114.63, + "probability": 0.9531 + }, + { + "start": 12116.88, + "end": 12117.18, + "probability": 0.5882 + }, + { + "start": 12117.21, + "end": 12117.3, + "probability": 0.1343 + }, + { + "start": 12117.3, + "end": 12117.36, + "probability": 0.0266 + }, + { + "start": 12117.36, + "end": 12118.64, + "probability": 0.5371 + }, + { + "start": 12118.94, + "end": 12120.66, + "probability": 0.4526 + }, + { + "start": 12122.52, + "end": 12129.26, + "probability": 0.3776 + }, + { + "start": 12132.8, + "end": 12138.42, + "probability": 0.8181 + }, + { + "start": 12140.66, + "end": 12144.28, + "probability": 0.1038 + }, + { + "start": 12146.52, + "end": 12149.52, + "probability": 0.1807 + }, + { + "start": 12150.48, + "end": 12152.38, + "probability": 0.4632 + }, + { + "start": 12152.76, + "end": 12154.82, + "probability": 0.0091 + }, + { + "start": 12174.12, + "end": 12175.08, + "probability": 0.04 + }, + { + "start": 12175.08, + "end": 12175.38, + "probability": 0.1595 + }, + { + "start": 12175.38, + "end": 12175.66, + "probability": 0.0656 + }, + { + "start": 12175.66, + "end": 12175.66, + "probability": 0.0432 + }, + { + "start": 12175.66, + "end": 12176.34, + "probability": 0.0351 + }, + { + "start": 12176.42, + "end": 12179.7, + "probability": 0.0718 + }, + { + "start": 12179.7, + "end": 12181.83, + "probability": 0.2263 + }, + { + "start": 12183.02, + "end": 12184.32, + "probability": 0.0834 + }, + { + "start": 12184.32, + "end": 12186.02, + "probability": 0.0466 + }, + { + "start": 12186.02, + "end": 12186.36, + "probability": 0.1953 + }, + { + "start": 12188.59, + "end": 12189.2, + "probability": 0.1446 + }, + { + "start": 12189.2, + "end": 12190.22, + "probability": 0.1563 + }, + { + "start": 12212.12, + "end": 12212.7, + "probability": 0.2253 + }, + { + "start": 12217.96, + "end": 12218.16, + "probability": 0.0028 + }, + { + "start": 12231.0, + "end": 12231.0, + "probability": 0.0 + }, + { + "start": 12231.0, + "end": 12231.0, + "probability": 0.0 + }, + { + "start": 12231.0, + "end": 12231.0, + "probability": 0.0 + }, + { + "start": 12231.0, + "end": 12231.0, + "probability": 0.0 + }, + { + "start": 12231.0, + "end": 12231.0, + "probability": 0.0 + }, + { + "start": 12231.0, + "end": 12231.0, + "probability": 0.0 + }, + { + "start": 12231.0, + "end": 12231.0, + "probability": 0.0 + }, + { + "start": 12231.0, + "end": 12231.0, + "probability": 0.0 + }, + { + "start": 12231.0, + "end": 12231.0, + "probability": 0.0 + }, + { + "start": 12231.0, + "end": 12231.0, + "probability": 0.0 + }, + { + "start": 12231.0, + "end": 12231.0, + "probability": 0.0 + }, + { + "start": 12231.0, + "end": 12231.0, + "probability": 0.0 + }, + { + "start": 12231.0, + "end": 12231.0, + "probability": 0.0 + }, + { + "start": 12231.0, + "end": 12231.0, + "probability": 0.0 + }, + { + "start": 12231.0, + "end": 12231.0, + "probability": 0.0 + }, + { + "start": 12231.12, + "end": 12234.92, + "probability": 0.8301 + }, + { + "start": 12235.88, + "end": 12236.9, + "probability": 0.9193 + }, + { + "start": 12238.34, + "end": 12240.64, + "probability": 0.739 + }, + { + "start": 12241.36, + "end": 12242.7, + "probability": 0.8164 + }, + { + "start": 12244.42, + "end": 12246.9, + "probability": 0.392 + }, + { + "start": 12247.26, + "end": 12247.82, + "probability": 0.6661 + }, + { + "start": 12248.24, + "end": 12250.5, + "probability": 0.8128 + }, + { + "start": 12250.82, + "end": 12252.2, + "probability": 0.4121 + }, + { + "start": 12252.68, + "end": 12253.52, + "probability": 0.9424 + }, + { + "start": 12254.02, + "end": 12255.8, + "probability": 0.7486 + }, + { + "start": 12256.88, + "end": 12257.52, + "probability": 0.0629 + }, + { + "start": 12257.94, + "end": 12259.17, + "probability": 0.1272 + }, + { + "start": 12259.4, + "end": 12260.4, + "probability": 0.2849 + }, + { + "start": 12261.9, + "end": 12265.56, + "probability": 0.1297 + }, + { + "start": 12266.14, + "end": 12269.86, + "probability": 0.8109 + }, + { + "start": 12271.86, + "end": 12273.1, + "probability": 0.6668 + }, + { + "start": 12273.72, + "end": 12275.62, + "probability": 0.9534 + }, + { + "start": 12276.72, + "end": 12279.9, + "probability": 0.8674 + }, + { + "start": 12280.86, + "end": 12285.73, + "probability": 0.9959 + }, + { + "start": 12286.7, + "end": 12288.4, + "probability": 0.995 + }, + { + "start": 12289.82, + "end": 12296.06, + "probability": 0.9829 + }, + { + "start": 12297.5, + "end": 12300.28, + "probability": 0.9333 + }, + { + "start": 12302.0, + "end": 12305.42, + "probability": 0.8333 + }, + { + "start": 12306.16, + "end": 12309.78, + "probability": 0.5846 + }, + { + "start": 12310.62, + "end": 12311.82, + "probability": 0.921 + }, + { + "start": 12313.14, + "end": 12315.96, + "probability": 0.9817 + }, + { + "start": 12316.72, + "end": 12318.82, + "probability": 0.8617 + }, + { + "start": 12320.14, + "end": 12324.44, + "probability": 0.9074 + }, + { + "start": 12328.08, + "end": 12335.28, + "probability": 0.9697 + }, + { + "start": 12336.42, + "end": 12338.42, + "probability": 0.9373 + }, + { + "start": 12339.6, + "end": 12341.44, + "probability": 0.7663 + }, + { + "start": 12342.8, + "end": 12345.16, + "probability": 0.9482 + }, + { + "start": 12347.44, + "end": 12347.88, + "probability": 0.874 + }, + { + "start": 12349.36, + "end": 12353.66, + "probability": 0.9694 + }, + { + "start": 12354.8, + "end": 12357.6, + "probability": 0.9976 + }, + { + "start": 12362.38, + "end": 12363.92, + "probability": 0.9218 + }, + { + "start": 12366.42, + "end": 12371.06, + "probability": 0.9956 + }, + { + "start": 12372.38, + "end": 12374.46, + "probability": 0.0685 + }, + { + "start": 12375.99, + "end": 12377.72, + "probability": 0.0405 + }, + { + "start": 12379.56, + "end": 12380.3, + "probability": 0.2045 + }, + { + "start": 12380.36, + "end": 12381.14, + "probability": 0.3932 + }, + { + "start": 12382.28, + "end": 12383.12, + "probability": 0.8299 + }, + { + "start": 12386.34, + "end": 12391.58, + "probability": 0.7195 + }, + { + "start": 12392.1, + "end": 12395.0, + "probability": 0.8201 + }, + { + "start": 12395.72, + "end": 12398.07, + "probability": 0.9325 + }, + { + "start": 12398.76, + "end": 12402.02, + "probability": 0.9537 + }, + { + "start": 12402.46, + "end": 12404.02, + "probability": 0.9975 + }, + { + "start": 12406.38, + "end": 12410.48, + "probability": 0.8876 + }, + { + "start": 12411.58, + "end": 12413.42, + "probability": 0.835 + }, + { + "start": 12415.12, + "end": 12419.48, + "probability": 0.8367 + }, + { + "start": 12420.61, + "end": 12423.88, + "probability": 0.5936 + }, + { + "start": 12424.76, + "end": 12427.62, + "probability": 0.9487 + }, + { + "start": 12428.44, + "end": 12431.04, + "probability": 0.6601 + }, + { + "start": 12431.82, + "end": 12433.44, + "probability": 0.6654 + }, + { + "start": 12434.46, + "end": 12439.86, + "probability": 0.8191 + }, + { + "start": 12440.52, + "end": 12441.86, + "probability": 0.6288 + }, + { + "start": 12442.64, + "end": 12447.1, + "probability": 0.8704 + }, + { + "start": 12447.9, + "end": 12450.06, + "probability": 0.7515 + }, + { + "start": 12452.0, + "end": 12453.5, + "probability": 0.3775 + }, + { + "start": 12454.84, + "end": 12455.92, + "probability": 0.8419 + }, + { + "start": 12458.76, + "end": 12460.08, + "probability": 0.851 + }, + { + "start": 12461.02, + "end": 12463.72, + "probability": 0.9284 + }, + { + "start": 12464.46, + "end": 12465.58, + "probability": 0.7164 + }, + { + "start": 12466.36, + "end": 12471.18, + "probability": 0.8986 + }, + { + "start": 12472.68, + "end": 12475.42, + "probability": 0.9734 + }, + { + "start": 12476.3, + "end": 12480.2, + "probability": 0.6602 + }, + { + "start": 12480.88, + "end": 12482.14, + "probability": 0.8295 + }, + { + "start": 12482.82, + "end": 12483.42, + "probability": 0.4428 + }, + { + "start": 12484.42, + "end": 12486.1, + "probability": 0.9091 + }, + { + "start": 12487.56, + "end": 12490.94, + "probability": 0.9753 + }, + { + "start": 12491.6, + "end": 12496.26, + "probability": 0.9949 + }, + { + "start": 12497.42, + "end": 12500.86, + "probability": 0.9841 + }, + { + "start": 12502.22, + "end": 12503.76, + "probability": 0.9575 + }, + { + "start": 12505.42, + "end": 12506.42, + "probability": 0.84 + }, + { + "start": 12507.18, + "end": 12508.2, + "probability": 0.8224 + }, + { + "start": 12508.92, + "end": 12513.4, + "probability": 0.8594 + }, + { + "start": 12514.08, + "end": 12514.92, + "probability": 0.4708 + }, + { + "start": 12515.58, + "end": 12518.76, + "probability": 0.841 + }, + { + "start": 12520.16, + "end": 12524.1, + "probability": 0.9351 + }, + { + "start": 12524.86, + "end": 12527.96, + "probability": 0.9963 + }, + { + "start": 12528.68, + "end": 12530.06, + "probability": 0.9984 + }, + { + "start": 12531.14, + "end": 12531.7, + "probability": 0.6074 + }, + { + "start": 12532.6, + "end": 12535.4, + "probability": 0.8855 + }, + { + "start": 12537.22, + "end": 12537.66, + "probability": 0.7695 + }, + { + "start": 12539.36, + "end": 12542.1, + "probability": 0.9897 + }, + { + "start": 12543.48, + "end": 12544.96, + "probability": 0.8751 + }, + { + "start": 12545.58, + "end": 12549.54, + "probability": 0.9651 + }, + { + "start": 12550.62, + "end": 12552.12, + "probability": 0.8573 + }, + { + "start": 12553.08, + "end": 12555.16, + "probability": 0.99 + }, + { + "start": 12555.76, + "end": 12557.44, + "probability": 0.8706 + }, + { + "start": 12558.48, + "end": 12560.26, + "probability": 0.8624 + }, + { + "start": 12561.22, + "end": 12562.04, + "probability": 0.8276 + }, + { + "start": 12562.58, + "end": 12565.8, + "probability": 0.9397 + }, + { + "start": 12566.42, + "end": 12568.26, + "probability": 0.9242 + }, + { + "start": 12568.88, + "end": 12570.56, + "probability": 0.9196 + }, + { + "start": 12571.12, + "end": 12571.96, + "probability": 0.5785 + }, + { + "start": 12572.74, + "end": 12573.9, + "probability": 0.9988 + }, + { + "start": 12574.8, + "end": 12576.08, + "probability": 0.7019 + }, + { + "start": 12577.36, + "end": 12577.78, + "probability": 0.9902 + }, + { + "start": 12578.84, + "end": 12581.96, + "probability": 0.7449 + }, + { + "start": 12582.64, + "end": 12585.8, + "probability": 0.5114 + }, + { + "start": 12586.04, + "end": 12587.72, + "probability": 0.5067 + }, + { + "start": 12587.72, + "end": 12589.62, + "probability": 0.9594 + }, + { + "start": 12589.82, + "end": 12592.0, + "probability": 0.7573 + }, + { + "start": 12593.58, + "end": 12594.14, + "probability": 0.6589 + }, + { + "start": 12594.38, + "end": 12596.36, + "probability": 0.853 + }, + { + "start": 12597.02, + "end": 12597.68, + "probability": 0.3729 + }, + { + "start": 12598.16, + "end": 12600.74, + "probability": 0.969 + }, + { + "start": 12601.18, + "end": 12601.98, + "probability": 0.7984 + }, + { + "start": 12602.34, + "end": 12605.42, + "probability": 0.9526 + }, + { + "start": 12605.82, + "end": 12609.94, + "probability": 0.9204 + }, + { + "start": 12610.16, + "end": 12613.2, + "probability": 0.9884 + }, + { + "start": 12613.56, + "end": 12614.84, + "probability": 0.5394 + }, + { + "start": 12615.5, + "end": 12621.1, + "probability": 0.9735 + }, + { + "start": 12621.46, + "end": 12622.31, + "probability": 0.9805 + }, + { + "start": 12622.48, + "end": 12623.26, + "probability": 0.73 + }, + { + "start": 12623.34, + "end": 12624.34, + "probability": 0.9589 + }, + { + "start": 12624.46, + "end": 12624.76, + "probability": 0.7952 + }, + { + "start": 12624.76, + "end": 12626.0, + "probability": 0.7842 + }, + { + "start": 12626.91, + "end": 12629.68, + "probability": 0.8166 + }, + { + "start": 12649.26, + "end": 12649.8, + "probability": 0.3207 + }, + { + "start": 12650.06, + "end": 12654.34, + "probability": 0.4023 + }, + { + "start": 12655.34, + "end": 12657.86, + "probability": 0.6964 + }, + { + "start": 12658.62, + "end": 12663.78, + "probability": 0.9049 + }, + { + "start": 12665.66, + "end": 12667.24, + "probability": 0.7216 + }, + { + "start": 12667.32, + "end": 12669.56, + "probability": 0.6232 + }, + { + "start": 12669.7, + "end": 12671.52, + "probability": 0.9308 + }, + { + "start": 12672.22, + "end": 12674.62, + "probability": 0.91 + }, + { + "start": 12675.92, + "end": 12678.74, + "probability": 0.8341 + }, + { + "start": 12679.84, + "end": 12681.9, + "probability": 0.6181 + }, + { + "start": 12682.72, + "end": 12685.68, + "probability": 0.7397 + }, + { + "start": 12686.26, + "end": 12687.48, + "probability": 0.6861 + }, + { + "start": 12688.58, + "end": 12692.28, + "probability": 0.9514 + }, + { + "start": 12693.1, + "end": 12694.9, + "probability": 0.7399 + }, + { + "start": 12695.76, + "end": 12696.64, + "probability": 0.747 + }, + { + "start": 12696.74, + "end": 12700.74, + "probability": 0.9875 + }, + { + "start": 12700.82, + "end": 12701.78, + "probability": 0.8011 + }, + { + "start": 12702.66, + "end": 12705.46, + "probability": 0.9876 + }, + { + "start": 12706.2, + "end": 12709.27, + "probability": 0.9778 + }, + { + "start": 12709.88, + "end": 12711.97, + "probability": 0.9751 + }, + { + "start": 12712.24, + "end": 12713.19, + "probability": 0.9912 + }, + { + "start": 12713.9, + "end": 12718.18, + "probability": 0.6342 + }, + { + "start": 12718.22, + "end": 12721.32, + "probability": 0.9589 + }, + { + "start": 12721.32, + "end": 12728.9, + "probability": 0.8863 + }, + { + "start": 12729.08, + "end": 12733.85, + "probability": 0.6674 + }, + { + "start": 12734.86, + "end": 12734.88, + "probability": 0.4471 + }, + { + "start": 12734.98, + "end": 12737.82, + "probability": 0.9368 + }, + { + "start": 12738.3, + "end": 12740.6, + "probability": 0.9924 + }, + { + "start": 12741.4, + "end": 12743.82, + "probability": 0.8506 + }, + { + "start": 12744.48, + "end": 12746.74, + "probability": 0.9849 + }, + { + "start": 12747.4, + "end": 12748.98, + "probability": 0.8338 + }, + { + "start": 12749.52, + "end": 12753.78, + "probability": 0.6282 + }, + { + "start": 12753.78, + "end": 12757.8, + "probability": 0.9891 + }, + { + "start": 12758.06, + "end": 12758.16, + "probability": 0.2545 + }, + { + "start": 12758.2, + "end": 12759.14, + "probability": 0.9873 + }, + { + "start": 12759.82, + "end": 12762.6, + "probability": 0.811 + }, + { + "start": 12762.72, + "end": 12763.3, + "probability": 0.6683 + }, + { + "start": 12764.06, + "end": 12764.4, + "probability": 0.3848 + }, + { + "start": 12764.56, + "end": 12765.68, + "probability": 0.8538 + }, + { + "start": 12765.72, + "end": 12771.26, + "probability": 0.9749 + }, + { + "start": 12771.88, + "end": 12776.16, + "probability": 0.9987 + }, + { + "start": 12776.68, + "end": 12778.86, + "probability": 0.9974 + }, + { + "start": 12778.86, + "end": 12782.11, + "probability": 0.998 + }, + { + "start": 12783.1, + "end": 12783.62, + "probability": 0.4942 + }, + { + "start": 12783.76, + "end": 12784.56, + "probability": 0.9428 + }, + { + "start": 12784.58, + "end": 12785.32, + "probability": 0.7166 + }, + { + "start": 12785.78, + "end": 12787.08, + "probability": 0.9111 + }, + { + "start": 12787.44, + "end": 12788.16, + "probability": 0.8984 + }, + { + "start": 12788.24, + "end": 12789.24, + "probability": 0.9874 + }, + { + "start": 12789.46, + "end": 12790.16, + "probability": 0.9748 + }, + { + "start": 12790.88, + "end": 12795.92, + "probability": 0.9549 + }, + { + "start": 12796.1, + "end": 12799.4, + "probability": 0.9599 + }, + { + "start": 12799.52, + "end": 12799.88, + "probability": 0.7704 + }, + { + "start": 12800.46, + "end": 12803.56, + "probability": 0.9437 + }, + { + "start": 12803.62, + "end": 12804.94, + "probability": 0.8899 + }, + { + "start": 12805.48, + "end": 12810.86, + "probability": 0.9426 + }, + { + "start": 12811.32, + "end": 12812.54, + "probability": 0.9776 + }, + { + "start": 12812.64, + "end": 12813.48, + "probability": 0.9165 + }, + { + "start": 12813.96, + "end": 12818.08, + "probability": 0.9189 + }, + { + "start": 12818.22, + "end": 12818.46, + "probability": 0.6464 + }, + { + "start": 12818.76, + "end": 12820.66, + "probability": 0.7479 + }, + { + "start": 12820.84, + "end": 12823.04, + "probability": 0.8751 + }, + { + "start": 12825.32, + "end": 12826.06, + "probability": 0.8033 + }, + { + "start": 12826.28, + "end": 12826.74, + "probability": 0.7552 + }, + { + "start": 12826.82, + "end": 12827.64, + "probability": 0.6164 + }, + { + "start": 12828.06, + "end": 12831.52, + "probability": 0.9754 + }, + { + "start": 12831.64, + "end": 12834.32, + "probability": 0.7632 + }, + { + "start": 12834.54, + "end": 12836.02, + "probability": 0.9481 + }, + { + "start": 12838.46, + "end": 12838.46, + "probability": 0.4944 + }, + { + "start": 12838.46, + "end": 12838.84, + "probability": 0.5435 + }, + { + "start": 12838.96, + "end": 12841.8, + "probability": 0.6988 + }, + { + "start": 12843.9, + "end": 12845.59, + "probability": 0.9224 + }, + { + "start": 12846.74, + "end": 12847.1, + "probability": 0.9051 + }, + { + "start": 12847.78, + "end": 12849.48, + "probability": 0.7519 + }, + { + "start": 12850.68, + "end": 12854.14, + "probability": 0.7852 + }, + { + "start": 12855.3, + "end": 12856.32, + "probability": 0.9201 + }, + { + "start": 12856.44, + "end": 12859.4, + "probability": 0.9918 + }, + { + "start": 12859.48, + "end": 12859.98, + "probability": 0.9385 + }, + { + "start": 12860.0, + "end": 12861.5, + "probability": 0.9828 + }, + { + "start": 12862.26, + "end": 12863.24, + "probability": 0.5694 + }, + { + "start": 12864.22, + "end": 12867.4, + "probability": 0.8098 + }, + { + "start": 12867.8, + "end": 12868.94, + "probability": 0.8974 + }, + { + "start": 12869.54, + "end": 12871.2, + "probability": 0.7828 + }, + { + "start": 12871.28, + "end": 12876.68, + "probability": 0.951 + }, + { + "start": 12877.28, + "end": 12880.76, + "probability": 0.88 + }, + { + "start": 12880.76, + "end": 12883.1, + "probability": 0.9941 + }, + { + "start": 12883.7, + "end": 12885.46, + "probability": 0.7876 + }, + { + "start": 12887.18, + "end": 12888.05, + "probability": 0.9963 + }, + { + "start": 12889.02, + "end": 12891.0, + "probability": 0.8267 + }, + { + "start": 12891.79, + "end": 12896.42, + "probability": 0.7609 + }, + { + "start": 12897.2, + "end": 12900.18, + "probability": 0.7379 + }, + { + "start": 12901.56, + "end": 12905.42, + "probability": 0.8588 + }, + { + "start": 12905.66, + "end": 12907.88, + "probability": 0.7674 + }, + { + "start": 12908.5, + "end": 12909.2, + "probability": 0.9785 + }, + { + "start": 12909.24, + "end": 12910.65, + "probability": 0.9308 + }, + { + "start": 12911.46, + "end": 12913.88, + "probability": 0.9665 + }, + { + "start": 12915.16, + "end": 12916.68, + "probability": 0.9896 + }, + { + "start": 12916.88, + "end": 12918.34, + "probability": 0.922 + }, + { + "start": 12918.42, + "end": 12918.66, + "probability": 0.6523 + }, + { + "start": 12918.72, + "end": 12919.72, + "probability": 0.9439 + }, + { + "start": 12919.78, + "end": 12924.24, + "probability": 0.9932 + }, + { + "start": 12924.3, + "end": 12928.12, + "probability": 0.9883 + }, + { + "start": 12928.18, + "end": 12933.12, + "probability": 0.9544 + }, + { + "start": 12933.26, + "end": 12935.4, + "probability": 0.9203 + }, + { + "start": 12935.82, + "end": 12938.06, + "probability": 0.6994 + }, + { + "start": 12938.16, + "end": 12939.34, + "probability": 0.9927 + }, + { + "start": 12940.0, + "end": 12942.58, + "probability": 0.9621 + }, + { + "start": 12943.56, + "end": 12945.16, + "probability": 0.9954 + }, + { + "start": 12945.24, + "end": 12946.1, + "probability": 0.6774 + }, + { + "start": 12946.24, + "end": 12947.52, + "probability": 0.9409 + }, + { + "start": 12948.86, + "end": 12951.08, + "probability": 0.9562 + }, + { + "start": 12952.02, + "end": 12954.86, + "probability": 0.841 + }, + { + "start": 12955.86, + "end": 12958.4, + "probability": 0.991 + }, + { + "start": 12958.46, + "end": 12959.1, + "probability": 0.9531 + }, + { + "start": 12959.18, + "end": 12964.3, + "probability": 0.9789 + }, + { + "start": 12965.08, + "end": 12966.55, + "probability": 0.8863 + }, + { + "start": 12967.98, + "end": 12970.58, + "probability": 0.9874 + }, + { + "start": 12970.66, + "end": 12971.48, + "probability": 0.8512 + }, + { + "start": 12971.58, + "end": 12973.06, + "probability": 0.9264 + }, + { + "start": 12973.74, + "end": 12975.91, + "probability": 0.9564 + }, + { + "start": 12976.08, + "end": 12978.28, + "probability": 0.7285 + }, + { + "start": 12978.52, + "end": 12980.0, + "probability": 0.8054 + }, + { + "start": 12980.5, + "end": 12981.45, + "probability": 0.9026 + }, + { + "start": 12981.72, + "end": 12982.14, + "probability": 0.6505 + }, + { + "start": 12982.24, + "end": 12982.36, + "probability": 0.5573 + }, + { + "start": 12982.5, + "end": 12982.64, + "probability": 0.5199 + }, + { + "start": 12982.78, + "end": 12984.02, + "probability": 0.97 + }, + { + "start": 12984.36, + "end": 12987.82, + "probability": 0.7768 + }, + { + "start": 12987.88, + "end": 12988.6, + "probability": 0.952 + }, + { + "start": 12988.68, + "end": 12989.04, + "probability": 0.9532 + }, + { + "start": 12989.3, + "end": 12990.02, + "probability": 0.9854 + }, + { + "start": 12990.16, + "end": 12991.04, + "probability": 0.9717 + }, + { + "start": 12992.14, + "end": 12992.92, + "probability": 0.6651 + }, + { + "start": 12993.76, + "end": 12995.26, + "probability": 0.6159 + }, + { + "start": 12995.7, + "end": 12995.8, + "probability": 0.3184 + }, + { + "start": 12995.8, + "end": 13000.5, + "probability": 0.6145 + }, + { + "start": 13000.56, + "end": 13002.68, + "probability": 0.9984 + }, + { + "start": 13002.74, + "end": 13003.58, + "probability": 0.8587 + }, + { + "start": 13004.28, + "end": 13006.6, + "probability": 0.993 + }, + { + "start": 13007.0, + "end": 13008.31, + "probability": 0.9971 + }, + { + "start": 13009.1, + "end": 13010.2, + "probability": 0.7497 + }, + { + "start": 13010.24, + "end": 13011.1, + "probability": 0.8458 + }, + { + "start": 13011.2, + "end": 13017.34, + "probability": 0.9958 + }, + { + "start": 13017.88, + "end": 13020.96, + "probability": 0.9371 + }, + { + "start": 13021.7, + "end": 13022.96, + "probability": 0.9919 + }, + { + "start": 13023.06, + "end": 13024.72, + "probability": 0.9968 + }, + { + "start": 13024.8, + "end": 13028.12, + "probability": 0.9849 + }, + { + "start": 13028.32, + "end": 13029.82, + "probability": 0.8692 + }, + { + "start": 13029.88, + "end": 13032.54, + "probability": 0.8289 + }, + { + "start": 13032.94, + "end": 13033.36, + "probability": 0.742 + }, + { + "start": 13034.36, + "end": 13039.15, + "probability": 0.9775 + }, + { + "start": 13039.38, + "end": 13044.52, + "probability": 0.992 + }, + { + "start": 13045.12, + "end": 13047.28, + "probability": 0.8748 + }, + { + "start": 13047.54, + "end": 13048.34, + "probability": 0.8503 + }, + { + "start": 13048.42, + "end": 13054.44, + "probability": 0.9336 + }, + { + "start": 13054.56, + "end": 13055.6, + "probability": 0.9706 + }, + { + "start": 13055.92, + "end": 13056.66, + "probability": 0.6672 + }, + { + "start": 13056.86, + "end": 13060.36, + "probability": 0.9931 + }, + { + "start": 13060.5, + "end": 13063.9, + "probability": 0.9975 + }, + { + "start": 13064.34, + "end": 13065.8, + "probability": 0.9126 + }, + { + "start": 13065.9, + "end": 13066.66, + "probability": 0.6903 + }, + { + "start": 13067.18, + "end": 13069.8, + "probability": 0.7928 + }, + { + "start": 13070.04, + "end": 13072.9, + "probability": 0.8899 + }, + { + "start": 13073.22, + "end": 13074.34, + "probability": 0.878 + }, + { + "start": 13075.44, + "end": 13078.36, + "probability": 0.9094 + }, + { + "start": 13078.94, + "end": 13081.88, + "probability": 0.8251 + }, + { + "start": 13082.74, + "end": 13084.95, + "probability": 0.8997 + }, + { + "start": 13085.22, + "end": 13085.57, + "probability": 0.5003 + }, + { + "start": 13086.94, + "end": 13088.0, + "probability": 0.713 + }, + { + "start": 13088.5, + "end": 13088.72, + "probability": 0.5829 + }, + { + "start": 13088.74, + "end": 13090.82, + "probability": 0.9963 + }, + { + "start": 13090.92, + "end": 13093.2, + "probability": 0.9758 + }, + { + "start": 13093.26, + "end": 13094.04, + "probability": 0.9018 + }, + { + "start": 13094.12, + "end": 13095.92, + "probability": 0.9481 + }, + { + "start": 13096.44, + "end": 13097.5, + "probability": 0.9784 + }, + { + "start": 13097.64, + "end": 13100.44, + "probability": 0.9814 + }, + { + "start": 13100.46, + "end": 13101.8, + "probability": 0.8857 + }, + { + "start": 13101.84, + "end": 13102.5, + "probability": 0.9004 + }, + { + "start": 13102.78, + "end": 13104.78, + "probability": 0.9691 + }, + { + "start": 13106.06, + "end": 13107.26, + "probability": 0.8435 + }, + { + "start": 13107.8, + "end": 13109.34, + "probability": 0.9714 + }, + { + "start": 13109.72, + "end": 13110.34, + "probability": 0.9028 + }, + { + "start": 13110.44, + "end": 13110.6, + "probability": 0.2866 + }, + { + "start": 13110.78, + "end": 13111.14, + "probability": 0.5241 + }, + { + "start": 13111.54, + "end": 13113.32, + "probability": 0.8878 + }, + { + "start": 13113.84, + "end": 13114.24, + "probability": 0.8599 + }, + { + "start": 13114.42, + "end": 13118.72, + "probability": 0.9669 + }, + { + "start": 13118.84, + "end": 13119.26, + "probability": 0.6674 + }, + { + "start": 13119.5, + "end": 13120.8, + "probability": 0.5446 + }, + { + "start": 13120.84, + "end": 13121.48, + "probability": 0.8034 + }, + { + "start": 13121.56, + "end": 13122.54, + "probability": 0.8976 + }, + { + "start": 13122.62, + "end": 13126.16, + "probability": 0.9749 + }, + { + "start": 13127.02, + "end": 13127.86, + "probability": 0.8892 + }, + { + "start": 13128.0, + "end": 13130.36, + "probability": 0.7462 + }, + { + "start": 13130.94, + "end": 13131.8, + "probability": 0.9612 + }, + { + "start": 13131.84, + "end": 13132.6, + "probability": 0.9839 + }, + { + "start": 13132.76, + "end": 13134.64, + "probability": 0.5346 + }, + { + "start": 13134.74, + "end": 13136.08, + "probability": 0.6998 + }, + { + "start": 13143.14, + "end": 13144.16, + "probability": 0.4054 + }, + { + "start": 13144.76, + "end": 13146.0, + "probability": 0.7658 + }, + { + "start": 13146.94, + "end": 13149.06, + "probability": 0.9698 + }, + { + "start": 13149.72, + "end": 13151.0, + "probability": 0.9216 + }, + { + "start": 13151.82, + "end": 13156.9, + "probability": 0.9553 + }, + { + "start": 13156.94, + "end": 13163.12, + "probability": 0.9978 + }, + { + "start": 13163.9, + "end": 13170.02, + "probability": 0.9873 + }, + { + "start": 13171.2, + "end": 13172.2, + "probability": 0.5657 + }, + { + "start": 13172.26, + "end": 13175.24, + "probability": 0.9251 + }, + { + "start": 13176.42, + "end": 13178.7, + "probability": 0.9965 + }, + { + "start": 13181.08, + "end": 13184.56, + "probability": 0.9951 + }, + { + "start": 13185.84, + "end": 13187.72, + "probability": 0.974 + }, + { + "start": 13187.8, + "end": 13191.36, + "probability": 0.8542 + }, + { + "start": 13191.92, + "end": 13193.12, + "probability": 0.7026 + }, + { + "start": 13193.5, + "end": 13197.04, + "probability": 0.9918 + }, + { + "start": 13197.16, + "end": 13200.52, + "probability": 0.9914 + }, + { + "start": 13202.08, + "end": 13205.38, + "probability": 0.9977 + }, + { + "start": 13205.38, + "end": 13208.44, + "probability": 0.9285 + }, + { + "start": 13209.24, + "end": 13209.44, + "probability": 0.5341 + }, + { + "start": 13209.62, + "end": 13211.52, + "probability": 0.9932 + }, + { + "start": 13211.52, + "end": 13215.76, + "probability": 0.9941 + }, + { + "start": 13216.06, + "end": 13218.04, + "probability": 0.5872 + }, + { + "start": 13218.12, + "end": 13222.32, + "probability": 0.9935 + }, + { + "start": 13225.0, + "end": 13226.68, + "probability": 0.8042 + }, + { + "start": 13227.3, + "end": 13228.08, + "probability": 0.8683 + }, + { + "start": 13229.7, + "end": 13230.1, + "probability": 0.7993 + }, + { + "start": 13230.32, + "end": 13235.96, + "probability": 0.9865 + }, + { + "start": 13237.36, + "end": 13239.76, + "probability": 0.9711 + }, + { + "start": 13240.08, + "end": 13241.01, + "probability": 0.8684 + }, + { + "start": 13241.66, + "end": 13242.64, + "probability": 0.975 + }, + { + "start": 13243.92, + "end": 13246.96, + "probability": 0.9862 + }, + { + "start": 13246.96, + "end": 13251.18, + "probability": 0.9394 + }, + { + "start": 13252.46, + "end": 13254.38, + "probability": 0.6854 + }, + { + "start": 13254.48, + "end": 13256.22, + "probability": 0.9976 + }, + { + "start": 13256.24, + "end": 13260.54, + "probability": 0.9969 + }, + { + "start": 13260.82, + "end": 13262.77, + "probability": 0.7098 + }, + { + "start": 13264.28, + "end": 13267.72, + "probability": 0.7593 + }, + { + "start": 13269.5, + "end": 13275.82, + "probability": 0.9657 + }, + { + "start": 13277.46, + "end": 13280.1, + "probability": 0.9838 + }, + { + "start": 13280.88, + "end": 13283.32, + "probability": 0.9987 + }, + { + "start": 13284.56, + "end": 13292.83, + "probability": 0.9485 + }, + { + "start": 13294.16, + "end": 13295.4, + "probability": 0.8779 + }, + { + "start": 13296.42, + "end": 13301.0, + "probability": 0.9868 + }, + { + "start": 13302.48, + "end": 13305.34, + "probability": 0.9656 + }, + { + "start": 13306.16, + "end": 13307.44, + "probability": 0.8463 + }, + { + "start": 13308.06, + "end": 13309.06, + "probability": 0.7362 + }, + { + "start": 13309.78, + "end": 13312.16, + "probability": 0.9622 + }, + { + "start": 13313.24, + "end": 13316.24, + "probability": 0.9691 + }, + { + "start": 13319.06, + "end": 13321.48, + "probability": 0.9918 + }, + { + "start": 13322.58, + "end": 13324.32, + "probability": 0.9006 + }, + { + "start": 13324.32, + "end": 13324.7, + "probability": 0.7125 + }, + { + "start": 13325.62, + "end": 13326.51, + "probability": 0.9917 + }, + { + "start": 13327.32, + "end": 13329.3, + "probability": 0.915 + }, + { + "start": 13329.76, + "end": 13330.77, + "probability": 0.9548 + }, + { + "start": 13331.28, + "end": 13334.66, + "probability": 0.971 + }, + { + "start": 13335.24, + "end": 13335.46, + "probability": 0.8486 + }, + { + "start": 13336.79, + "end": 13340.52, + "probability": 0.7043 + }, + { + "start": 13341.78, + "end": 13341.94, + "probability": 0.003 + }, + { + "start": 13341.94, + "end": 13344.58, + "probability": 0.5431 + }, + { + "start": 13344.58, + "end": 13344.58, + "probability": 0.6847 + }, + { + "start": 13344.66, + "end": 13346.98, + "probability": 0.6871 + }, + { + "start": 13346.98, + "end": 13346.98, + "probability": 0.4826 + }, + { + "start": 13346.98, + "end": 13347.36, + "probability": 0.908 + }, + { + "start": 13347.42, + "end": 13349.98, + "probability": 0.8892 + }, + { + "start": 13350.14, + "end": 13353.0, + "probability": 0.854 + }, + { + "start": 13353.1, + "end": 13357.68, + "probability": 0.9658 + }, + { + "start": 13358.22, + "end": 13361.0, + "probability": 0.9824 + }, + { + "start": 13361.34, + "end": 13362.08, + "probability": 0.8023 + }, + { + "start": 13364.0, + "end": 13364.2, + "probability": 0.1744 + }, + { + "start": 13364.2, + "end": 13364.88, + "probability": 0.572 + }, + { + "start": 13365.32, + "end": 13367.38, + "probability": 0.864 + }, + { + "start": 13367.48, + "end": 13373.02, + "probability": 0.9857 + }, + { + "start": 13374.28, + "end": 13376.62, + "probability": 0.5972 + }, + { + "start": 13376.9, + "end": 13380.54, + "probability": 0.9974 + }, + { + "start": 13380.8, + "end": 13381.76, + "probability": 0.9684 + }, + { + "start": 13383.12, + "end": 13385.14, + "probability": 0.9771 + }, + { + "start": 13385.84, + "end": 13389.08, + "probability": 0.8865 + }, + { + "start": 13389.96, + "end": 13391.26, + "probability": 0.6311 + }, + { + "start": 13391.46, + "end": 13392.16, + "probability": 0.8723 + }, + { + "start": 13392.22, + "end": 13393.92, + "probability": 0.9751 + }, + { + "start": 13395.52, + "end": 13395.54, + "probability": 0.1418 + }, + { + "start": 13395.54, + "end": 13396.58, + "probability": 0.8221 + }, + { + "start": 13397.36, + "end": 13403.36, + "probability": 0.9836 + }, + { + "start": 13404.06, + "end": 13406.96, + "probability": 0.9548 + }, + { + "start": 13407.34, + "end": 13408.06, + "probability": 0.874 + }, + { + "start": 13408.14, + "end": 13409.62, + "probability": 0.8035 + }, + { + "start": 13410.16, + "end": 13413.14, + "probability": 0.9859 + }, + { + "start": 13413.38, + "end": 13414.44, + "probability": 0.2578 + }, + { + "start": 13415.3, + "end": 13417.72, + "probability": 0.6221 + }, + { + "start": 13418.26, + "end": 13421.08, + "probability": 0.949 + }, + { + "start": 13421.82, + "end": 13423.24, + "probability": 0.9953 + }, + { + "start": 13424.16, + "end": 13428.4, + "probability": 0.8027 + }, + { + "start": 13429.64, + "end": 13431.3, + "probability": 0.9863 + }, + { + "start": 13431.46, + "end": 13434.02, + "probability": 0.8805 + }, + { + "start": 13434.14, + "end": 13434.72, + "probability": 0.4639 + }, + { + "start": 13435.16, + "end": 13435.82, + "probability": 0.886 + }, + { + "start": 13436.48, + "end": 13439.82, + "probability": 0.8417 + }, + { + "start": 13440.4, + "end": 13441.84, + "probability": 0.9049 + }, + { + "start": 13442.68, + "end": 13446.92, + "probability": 0.9683 + }, + { + "start": 13447.42, + "end": 13449.02, + "probability": 0.9963 + }, + { + "start": 13449.46, + "end": 13456.98, + "probability": 0.9976 + }, + { + "start": 13457.16, + "end": 13458.14, + "probability": 0.9858 + }, + { + "start": 13458.24, + "end": 13459.72, + "probability": 0.8755 + }, + { + "start": 13459.72, + "end": 13460.42, + "probability": 0.7365 + }, + { + "start": 13460.94, + "end": 13462.0, + "probability": 0.9746 + }, + { + "start": 13462.52, + "end": 13464.2, + "probability": 0.9504 + }, + { + "start": 13464.76, + "end": 13467.8, + "probability": 0.8079 + }, + { + "start": 13468.36, + "end": 13469.44, + "probability": 0.9333 + }, + { + "start": 13470.08, + "end": 13472.71, + "probability": 0.9473 + }, + { + "start": 13474.8, + "end": 13477.0, + "probability": 0.9788 + }, + { + "start": 13477.04, + "end": 13481.08, + "probability": 0.9821 + }, + { + "start": 13483.76, + "end": 13485.12, + "probability": 0.8215 + }, + { + "start": 13485.68, + "end": 13489.82, + "probability": 0.8442 + }, + { + "start": 13490.22, + "end": 13490.76, + "probability": 0.6212 + }, + { + "start": 13490.96, + "end": 13494.54, + "probability": 0.7469 + }, + { + "start": 13496.22, + "end": 13497.32, + "probability": 0.9209 + }, + { + "start": 13497.34, + "end": 13498.27, + "probability": 0.9702 + }, + { + "start": 13498.78, + "end": 13499.72, + "probability": 0.8617 + }, + { + "start": 13499.94, + "end": 13503.78, + "probability": 0.9938 + }, + { + "start": 13503.8, + "end": 13504.8, + "probability": 0.9525 + }, + { + "start": 13505.5, + "end": 13506.44, + "probability": 0.7479 + }, + { + "start": 13506.52, + "end": 13506.8, + "probability": 0.8696 + }, + { + "start": 13507.34, + "end": 13509.0, + "probability": 0.7018 + }, + { + "start": 13509.12, + "end": 13509.8, + "probability": 0.7846 + }, + { + "start": 13510.34, + "end": 13511.0, + "probability": 0.6707 + }, + { + "start": 13511.68, + "end": 13514.32, + "probability": 0.9297 + }, + { + "start": 13514.44, + "end": 13516.14, + "probability": 0.9857 + }, + { + "start": 13516.14, + "end": 13520.32, + "probability": 0.9853 + }, + { + "start": 13520.66, + "end": 13523.02, + "probability": 0.9646 + }, + { + "start": 13523.06, + "end": 13524.72, + "probability": 0.849 + }, + { + "start": 13524.94, + "end": 13525.8, + "probability": 0.8138 + }, + { + "start": 13525.94, + "end": 13527.92, + "probability": 0.8773 + }, + { + "start": 13527.98, + "end": 13529.06, + "probability": 0.964 + }, + { + "start": 13529.26, + "end": 13529.91, + "probability": 0.9863 + }, + { + "start": 13530.88, + "end": 13531.51, + "probability": 0.871 + }, + { + "start": 13532.1, + "end": 13533.1, + "probability": 0.6867 + }, + { + "start": 13533.38, + "end": 13534.82, + "probability": 0.9489 + }, + { + "start": 13535.04, + "end": 13537.02, + "probability": 0.8605 + }, + { + "start": 13540.28, + "end": 13542.58, + "probability": 0.5007 + }, + { + "start": 13544.06, + "end": 13545.56, + "probability": 0.9258 + }, + { + "start": 13547.22, + "end": 13548.58, + "probability": 0.5636 + }, + { + "start": 13549.46, + "end": 13553.44, + "probability": 0.986 + }, + { + "start": 13554.38, + "end": 13557.84, + "probability": 0.9455 + }, + { + "start": 13558.82, + "end": 13559.76, + "probability": 0.7044 + }, + { + "start": 13559.98, + "end": 13567.46, + "probability": 0.9602 + }, + { + "start": 13567.5, + "end": 13572.0, + "probability": 0.9065 + }, + { + "start": 13572.28, + "end": 13576.46, + "probability": 0.8821 + }, + { + "start": 13577.02, + "end": 13578.06, + "probability": 0.3946 + }, + { + "start": 13578.06, + "end": 13581.92, + "probability": 0.9775 + }, + { + "start": 13582.88, + "end": 13584.16, + "probability": 0.6224 + }, + { + "start": 13584.28, + "end": 13585.0, + "probability": 0.7914 + }, + { + "start": 13585.02, + "end": 13587.44, + "probability": 0.9871 + }, + { + "start": 13588.28, + "end": 13589.7, + "probability": 0.857 + }, + { + "start": 13589.8, + "end": 13590.2, + "probability": 0.5846 + }, + { + "start": 13591.64, + "end": 13594.58, + "probability": 0.9966 + }, + { + "start": 13595.14, + "end": 13596.0, + "probability": 0.7527 + }, + { + "start": 13596.1, + "end": 13597.16, + "probability": 0.8836 + }, + { + "start": 13597.22, + "end": 13598.3, + "probability": 0.5488 + }, + { + "start": 13598.44, + "end": 13598.98, + "probability": 0.7558 + }, + { + "start": 13599.6, + "end": 13605.68, + "probability": 0.8409 + }, + { + "start": 13605.74, + "end": 13607.23, + "probability": 0.9346 + }, + { + "start": 13608.06, + "end": 13609.72, + "probability": 0.9336 + }, + { + "start": 13609.74, + "end": 13609.98, + "probability": 0.8021 + }, + { + "start": 13610.04, + "end": 13611.96, + "probability": 0.9424 + }, + { + "start": 13612.36, + "end": 13615.8, + "probability": 0.9824 + }, + { + "start": 13616.04, + "end": 13616.26, + "probability": 0.3061 + }, + { + "start": 13616.26, + "end": 13620.8, + "probability": 0.9785 + }, + { + "start": 13621.34, + "end": 13623.94, + "probability": 0.952 + }, + { + "start": 13624.02, + "end": 13625.32, + "probability": 0.8317 + }, + { + "start": 13625.68, + "end": 13625.68, + "probability": 0.7847 + }, + { + "start": 13626.26, + "end": 13627.16, + "probability": 0.7798 + }, + { + "start": 13627.3, + "end": 13628.24, + "probability": 0.8103 + }, + { + "start": 13628.56, + "end": 13632.24, + "probability": 0.9788 + }, + { + "start": 13632.4, + "end": 13636.42, + "probability": 0.9314 + }, + { + "start": 13636.52, + "end": 13637.77, + "probability": 0.6682 + }, + { + "start": 13638.44, + "end": 13640.6, + "probability": 0.8802 + }, + { + "start": 13640.7, + "end": 13641.32, + "probability": 0.9473 + }, + { + "start": 13641.42, + "end": 13642.71, + "probability": 0.8767 + }, + { + "start": 13643.34, + "end": 13646.94, + "probability": 0.9427 + }, + { + "start": 13647.54, + "end": 13653.24, + "probability": 0.9675 + }, + { + "start": 13653.66, + "end": 13658.06, + "probability": 0.8943 + }, + { + "start": 13658.22, + "end": 13658.98, + "probability": 0.96 + }, + { + "start": 13659.46, + "end": 13660.86, + "probability": 0.9218 + }, + { + "start": 13661.42, + "end": 13664.38, + "probability": 0.8688 + }, + { + "start": 13664.56, + "end": 13668.2, + "probability": 0.9864 + }, + { + "start": 13669.22, + "end": 13670.18, + "probability": 0.5313 + }, + { + "start": 13670.34, + "end": 13672.74, + "probability": 0.9912 + }, + { + "start": 13673.34, + "end": 13673.48, + "probability": 0.4034 + }, + { + "start": 13673.68, + "end": 13673.84, + "probability": 0.9043 + }, + { + "start": 13673.94, + "end": 13675.78, + "probability": 0.7438 + }, + { + "start": 13676.22, + "end": 13677.04, + "probability": 0.6885 + }, + { + "start": 13677.36, + "end": 13683.0, + "probability": 0.73 + }, + { + "start": 13684.76, + "end": 13687.46, + "probability": 0.9849 + }, + { + "start": 13687.8, + "end": 13692.24, + "probability": 0.9806 + }, + { + "start": 13692.6, + "end": 13693.74, + "probability": 0.6686 + }, + { + "start": 13694.14, + "end": 13697.62, + "probability": 0.9971 + }, + { + "start": 13697.86, + "end": 13699.5, + "probability": 0.97 + }, + { + "start": 13700.0, + "end": 13701.46, + "probability": 0.2717 + }, + { + "start": 13703.14, + "end": 13703.64, + "probability": 0.5309 + }, + { + "start": 13704.12, + "end": 13707.4, + "probability": 0.9585 + }, + { + "start": 13707.46, + "end": 13708.4, + "probability": 0.9162 + }, + { + "start": 13708.52, + "end": 13711.12, + "probability": 0.9792 + }, + { + "start": 13711.72, + "end": 13712.32, + "probability": 0.5287 + }, + { + "start": 13712.46, + "end": 13713.06, + "probability": 0.8564 + }, + { + "start": 13713.16, + "end": 13715.94, + "probability": 0.9727 + }, + { + "start": 13716.38, + "end": 13717.98, + "probability": 0.919 + }, + { + "start": 13718.3, + "end": 13721.9, + "probability": 0.3127 + }, + { + "start": 13722.66, + "end": 13726.84, + "probability": 0.9575 + }, + { + "start": 13726.94, + "end": 13734.12, + "probability": 0.9956 + }, + { + "start": 13734.16, + "end": 13737.22, + "probability": 0.9906 + }, + { + "start": 13738.18, + "end": 13740.82, + "probability": 0.7439 + }, + { + "start": 13741.92, + "end": 13745.8, + "probability": 0.9536 + }, + { + "start": 13745.9, + "end": 13746.92, + "probability": 0.9448 + }, + { + "start": 13747.5, + "end": 13747.76, + "probability": 0.5925 + }, + { + "start": 13747.92, + "end": 13748.68, + "probability": 0.7646 + }, + { + "start": 13748.72, + "end": 13751.16, + "probability": 0.9908 + }, + { + "start": 13751.16, + "end": 13754.72, + "probability": 0.958 + }, + { + "start": 13755.36, + "end": 13759.45, + "probability": 0.9938 + }, + { + "start": 13762.02, + "end": 13762.98, + "probability": 0.8343 + }, + { + "start": 13764.78, + "end": 13767.78, + "probability": 0.9746 + }, + { + "start": 13768.02, + "end": 13768.66, + "probability": 0.6255 + }, + { + "start": 13769.26, + "end": 13770.04, + "probability": 0.8235 + }, + { + "start": 13770.8, + "end": 13771.54, + "probability": 0.6621 + }, + { + "start": 13772.84, + "end": 13773.92, + "probability": 0.8691 + }, + { + "start": 13774.98, + "end": 13775.52, + "probability": 0.9462 + }, + { + "start": 13776.22, + "end": 13777.52, + "probability": 0.928 + }, + { + "start": 13778.2, + "end": 13785.2, + "probability": 0.9283 + }, + { + "start": 13785.2, + "end": 13790.22, + "probability": 0.9661 + }, + { + "start": 13790.64, + "end": 13792.92, + "probability": 0.8287 + }, + { + "start": 13793.78, + "end": 13795.1, + "probability": 0.991 + }, + { + "start": 13795.86, + "end": 13797.76, + "probability": 0.9188 + }, + { + "start": 13799.02, + "end": 13799.84, + "probability": 0.9782 + }, + { + "start": 13803.38, + "end": 13806.04, + "probability": 0.8457 + }, + { + "start": 13806.92, + "end": 13812.28, + "probability": 0.991 + }, + { + "start": 13812.34, + "end": 13813.0, + "probability": 0.6506 + }, + { + "start": 13813.38, + "end": 13815.66, + "probability": 0.7708 + }, + { + "start": 13815.66, + "end": 13818.54, + "probability": 0.7667 + }, + { + "start": 13819.34, + "end": 13823.74, + "probability": 0.9876 + }, + { + "start": 13823.84, + "end": 13827.4, + "probability": 0.9237 + }, + { + "start": 13827.82, + "end": 13829.14, + "probability": 0.6606 + }, + { + "start": 13830.6, + "end": 13832.54, + "probability": 0.9924 + }, + { + "start": 13832.66, + "end": 13834.24, + "probability": 0.8791 + }, + { + "start": 13835.44, + "end": 13840.58, + "probability": 0.9849 + }, + { + "start": 13841.3, + "end": 13844.08, + "probability": 0.996 + }, + { + "start": 13844.78, + "end": 13849.2, + "probability": 0.9977 + }, + { + "start": 13849.84, + "end": 13855.5, + "probability": 0.9565 + }, + { + "start": 13855.62, + "end": 13856.46, + "probability": 0.857 + }, + { + "start": 13856.66, + "end": 13859.28, + "probability": 0.984 + }, + { + "start": 13859.72, + "end": 13862.28, + "probability": 0.9884 + }, + { + "start": 13862.36, + "end": 13864.5, + "probability": 0.9951 + }, + { + "start": 13864.6, + "end": 13865.64, + "probability": 0.9666 + }, + { + "start": 13866.5, + "end": 13867.9, + "probability": 0.887 + }, + { + "start": 13868.86, + "end": 13870.02, + "probability": 0.9763 + }, + { + "start": 13871.0, + "end": 13874.94, + "probability": 0.9484 + }, + { + "start": 13875.48, + "end": 13876.24, + "probability": 0.8661 + }, + { + "start": 13877.04, + "end": 13881.1, + "probability": 0.5703 + }, + { + "start": 13881.8, + "end": 13884.74, + "probability": 0.9404 + }, + { + "start": 13884.74, + "end": 13887.94, + "probability": 0.9893 + }, + { + "start": 13888.46, + "end": 13889.12, + "probability": 0.333 + }, + { + "start": 13889.9, + "end": 13893.56, + "probability": 0.5445 + }, + { + "start": 13894.1, + "end": 13894.96, + "probability": 0.6906 + }, + { + "start": 13895.0, + "end": 13895.72, + "probability": 0.8875 + }, + { + "start": 13896.18, + "end": 13898.1, + "probability": 0.9649 + }, + { + "start": 13898.5, + "end": 13899.58, + "probability": 0.9543 + }, + { + "start": 13900.06, + "end": 13903.24, + "probability": 0.862 + }, + { + "start": 13903.32, + "end": 13904.82, + "probability": 0.9393 + }, + { + "start": 13905.8, + "end": 13916.84, + "probability": 0.9698 + }, + { + "start": 13917.64, + "end": 13919.3, + "probability": 0.9705 + }, + { + "start": 13919.72, + "end": 13921.12, + "probability": 0.6561 + }, + { + "start": 13921.32, + "end": 13922.39, + "probability": 0.9976 + }, + { + "start": 13923.28, + "end": 13924.96, + "probability": 0.8708 + }, + { + "start": 13933.88, + "end": 13933.92, + "probability": 0.8298 + }, + { + "start": 13933.92, + "end": 13934.3, + "probability": 0.3243 + }, + { + "start": 13954.14, + "end": 13954.2, + "probability": 0.6107 + }, + { + "start": 13954.2, + "end": 13954.2, + "probability": 0.2052 + }, + { + "start": 13954.2, + "end": 13957.67, + "probability": 0.5924 + }, + { + "start": 13958.24, + "end": 13959.64, + "probability": 0.6155 + }, + { + "start": 13959.8, + "end": 13960.9, + "probability": 0.8542 + }, + { + "start": 13961.04, + "end": 13965.88, + "probability": 0.502 + }, + { + "start": 13966.82, + "end": 13972.08, + "probability": 0.6502 + }, + { + "start": 13972.22, + "end": 13972.22, + "probability": 0.0637 + }, + { + "start": 13972.22, + "end": 13972.64, + "probability": 0.7077 + }, + { + "start": 13974.14, + "end": 13976.8, + "probability": 0.7108 + }, + { + "start": 13977.86, + "end": 13981.3, + "probability": 0.9525 + }, + { + "start": 13981.3, + "end": 13985.98, + "probability": 0.97 + }, + { + "start": 13987.2, + "end": 13991.38, + "probability": 0.9778 + }, + { + "start": 13992.18, + "end": 13996.38, + "probability": 0.895 + }, + { + "start": 13997.5, + "end": 14000.02, + "probability": 0.858 + }, + { + "start": 14000.68, + "end": 14001.86, + "probability": 0.8587 + }, + { + "start": 14002.56, + "end": 14004.24, + "probability": 0.9739 + }, + { + "start": 14004.48, + "end": 14006.74, + "probability": 0.6764 + }, + { + "start": 14007.5, + "end": 14010.46, + "probability": 0.8954 + }, + { + "start": 14010.5, + "end": 14012.44, + "probability": 0.7303 + }, + { + "start": 14013.54, + "end": 14019.46, + "probability": 0.9002 + }, + { + "start": 14020.24, + "end": 14024.64, + "probability": 0.9215 + }, + { + "start": 14025.76, + "end": 14030.86, + "probability": 0.8354 + }, + { + "start": 14030.86, + "end": 14036.64, + "probability": 0.9934 + }, + { + "start": 14037.14, + "end": 14039.14, + "probability": 0.8865 + }, + { + "start": 14039.74, + "end": 14040.48, + "probability": 0.7919 + }, + { + "start": 14041.08, + "end": 14042.66, + "probability": 0.6904 + }, + { + "start": 14045.38, + "end": 14050.42, + "probability": 0.9937 + }, + { + "start": 14051.31, + "end": 14054.68, + "probability": 0.997 + }, + { + "start": 14054.68, + "end": 14057.44, + "probability": 0.7717 + }, + { + "start": 14058.16, + "end": 14060.66, + "probability": 0.946 + }, + { + "start": 14061.24, + "end": 14067.54, + "probability": 0.8501 + }, + { + "start": 14068.74, + "end": 14073.88, + "probability": 0.9885 + }, + { + "start": 14073.96, + "end": 14077.68, + "probability": 0.9819 + }, + { + "start": 14078.58, + "end": 14082.84, + "probability": 0.9441 + }, + { + "start": 14083.24, + "end": 14087.7, + "probability": 0.999 + }, + { + "start": 14087.7, + "end": 14094.24, + "probability": 0.9951 + }, + { + "start": 14094.89, + "end": 14099.22, + "probability": 0.9858 + }, + { + "start": 14099.22, + "end": 14102.16, + "probability": 0.9596 + }, + { + "start": 14103.0, + "end": 14104.1, + "probability": 0.6705 + }, + { + "start": 14104.96, + "end": 14110.04, + "probability": 0.701 + }, + { + "start": 14110.16, + "end": 14115.52, + "probability": 0.8913 + }, + { + "start": 14115.52, + "end": 14119.64, + "probability": 0.9746 + }, + { + "start": 14120.24, + "end": 14121.88, + "probability": 0.7762 + }, + { + "start": 14122.36, + "end": 14125.58, + "probability": 0.9319 + }, + { + "start": 14125.98, + "end": 14127.2, + "probability": 0.9933 + }, + { + "start": 14127.76, + "end": 14129.6, + "probability": 0.9646 + }, + { + "start": 14130.84, + "end": 14135.38, + "probability": 0.9575 + }, + { + "start": 14136.1, + "end": 14141.02, + "probability": 0.9467 + }, + { + "start": 14141.18, + "end": 14141.46, + "probability": 0.5642 + }, + { + "start": 14141.88, + "end": 14142.36, + "probability": 0.7044 + }, + { + "start": 14142.78, + "end": 14143.7, + "probability": 0.6605 + }, + { + "start": 14143.8, + "end": 14146.88, + "probability": 0.9561 + }, + { + "start": 14148.42, + "end": 14152.36, + "probability": 0.9858 + }, + { + "start": 14152.4, + "end": 14154.1, + "probability": 0.8823 + }, + { + "start": 14155.22, + "end": 14157.44, + "probability": 0.6885 + }, + { + "start": 14158.34, + "end": 14159.72, + "probability": 0.769 + }, + { + "start": 14160.64, + "end": 14164.38, + "probability": 0.9722 + }, + { + "start": 14164.4, + "end": 14167.34, + "probability": 0.7804 + }, + { + "start": 14167.5, + "end": 14170.02, + "probability": 0.7267 + }, + { + "start": 14170.16, + "end": 14172.72, + "probability": 0.7622 + }, + { + "start": 14173.38, + "end": 14174.78, + "probability": 0.9036 + }, + { + "start": 14176.72, + "end": 14180.7, + "probability": 0.9531 + }, + { + "start": 14180.86, + "end": 14181.24, + "probability": 0.732 + }, + { + "start": 14181.36, + "end": 14182.34, + "probability": 0.6409 + }, + { + "start": 14182.44, + "end": 14184.08, + "probability": 0.8472 + }, + { + "start": 14184.12, + "end": 14188.78, + "probability": 0.9734 + }, + { + "start": 14189.86, + "end": 14191.58, + "probability": 0.9878 + }, + { + "start": 14192.68, + "end": 14197.2, + "probability": 0.8905 + }, + { + "start": 14197.8, + "end": 14202.72, + "probability": 0.9443 + }, + { + "start": 14203.82, + "end": 14205.36, + "probability": 0.8477 + }, + { + "start": 14205.86, + "end": 14208.0, + "probability": 0.867 + }, + { + "start": 14208.34, + "end": 14210.68, + "probability": 0.9611 + }, + { + "start": 14211.18, + "end": 14213.38, + "probability": 0.9229 + }, + { + "start": 14214.44, + "end": 14217.04, + "probability": 0.9518 + }, + { + "start": 14218.06, + "end": 14221.56, + "probability": 0.8292 + }, + { + "start": 14222.26, + "end": 14228.98, + "probability": 0.9211 + }, + { + "start": 14229.18, + "end": 14231.02, + "probability": 0.9427 + }, + { + "start": 14231.82, + "end": 14233.44, + "probability": 0.8123 + }, + { + "start": 14233.88, + "end": 14238.16, + "probability": 0.9848 + }, + { + "start": 14238.46, + "end": 14239.86, + "probability": 0.9721 + }, + { + "start": 14240.48, + "end": 14244.22, + "probability": 0.9904 + }, + { + "start": 14244.38, + "end": 14247.48, + "probability": 0.9224 + }, + { + "start": 14248.12, + "end": 14249.36, + "probability": 0.9225 + }, + { + "start": 14249.52, + "end": 14249.8, + "probability": 0.7343 + }, + { + "start": 14251.1, + "end": 14255.66, + "probability": 0.8126 + }, + { + "start": 14256.28, + "end": 14258.62, + "probability": 0.9309 + }, + { + "start": 14258.62, + "end": 14259.06, + "probability": 0.7323 + }, + { + "start": 14259.08, + "end": 14264.42, + "probability": 0.9671 + }, + { + "start": 14264.6, + "end": 14265.58, + "probability": 0.7174 + }, + { + "start": 14266.22, + "end": 14268.78, + "probability": 0.9026 + }, + { + "start": 14270.26, + "end": 14272.92, + "probability": 0.824 + }, + { + "start": 14273.68, + "end": 14277.6, + "probability": 0.978 + }, + { + "start": 14278.02, + "end": 14282.68, + "probability": 0.9778 + }, + { + "start": 14283.78, + "end": 14287.08, + "probability": 0.6657 + }, + { + "start": 14288.26, + "end": 14292.3, + "probability": 0.9841 + }, + { + "start": 14293.0, + "end": 14296.34, + "probability": 0.9489 + }, + { + "start": 14297.2, + "end": 14303.62, + "probability": 0.9833 + }, + { + "start": 14304.24, + "end": 14307.62, + "probability": 0.967 + }, + { + "start": 14307.62, + "end": 14313.56, + "probability": 0.9905 + }, + { + "start": 14314.7, + "end": 14315.44, + "probability": 0.6088 + }, + { + "start": 14315.56, + "end": 14317.53, + "probability": 0.7458 + }, + { + "start": 14317.9, + "end": 14318.74, + "probability": 0.7117 + }, + { + "start": 14319.64, + "end": 14321.36, + "probability": 0.9534 + }, + { + "start": 14321.9, + "end": 14324.4, + "probability": 0.6637 + }, + { + "start": 14324.86, + "end": 14328.12, + "probability": 0.9822 + }, + { + "start": 14328.78, + "end": 14333.2, + "probability": 0.9067 + }, + { + "start": 14333.8, + "end": 14335.34, + "probability": 0.8101 + }, + { + "start": 14335.56, + "end": 14336.48, + "probability": 0.3305 + }, + { + "start": 14336.6, + "end": 14338.62, + "probability": 0.7559 + }, + { + "start": 14338.94, + "end": 14340.5, + "probability": 0.9822 + }, + { + "start": 14341.76, + "end": 14342.8, + "probability": 0.8482 + }, + { + "start": 14343.54, + "end": 14344.88, + "probability": 0.8831 + }, + { + "start": 14346.0, + "end": 14348.38, + "probability": 0.9849 + }, + { + "start": 14348.38, + "end": 14353.22, + "probability": 0.9673 + }, + { + "start": 14353.96, + "end": 14358.78, + "probability": 0.8216 + }, + { + "start": 14359.32, + "end": 14362.16, + "probability": 0.9862 + }, + { + "start": 14362.16, + "end": 14365.84, + "probability": 0.9749 + }, + { + "start": 14366.7, + "end": 14367.42, + "probability": 0.6584 + }, + { + "start": 14367.56, + "end": 14370.42, + "probability": 0.967 + }, + { + "start": 14370.52, + "end": 14371.52, + "probability": 0.8754 + }, + { + "start": 14371.6, + "end": 14372.06, + "probability": 0.7973 + }, + { + "start": 14372.98, + "end": 14373.4, + "probability": 0.9442 + }, + { + "start": 14374.34, + "end": 14377.26, + "probability": 0.9624 + }, + { + "start": 14378.08, + "end": 14382.42, + "probability": 0.9808 + }, + { + "start": 14383.74, + "end": 14387.48, + "probability": 0.8387 + }, + { + "start": 14388.18, + "end": 14392.44, + "probability": 0.9604 + }, + { + "start": 14393.52, + "end": 14396.02, + "probability": 0.8527 + }, + { + "start": 14397.12, + "end": 14402.04, + "probability": 0.9884 + }, + { + "start": 14402.28, + "end": 14404.66, + "probability": 0.6779 + }, + { + "start": 14405.72, + "end": 14409.64, + "probability": 0.9314 + }, + { + "start": 14410.44, + "end": 14412.34, + "probability": 0.9131 + }, + { + "start": 14412.8, + "end": 14413.46, + "probability": 0.9854 + }, + { + "start": 14413.84, + "end": 14419.18, + "probability": 0.9797 + }, + { + "start": 14419.9, + "end": 14424.04, + "probability": 0.9771 + }, + { + "start": 14426.1, + "end": 14429.12, + "probability": 0.7628 + }, + { + "start": 14429.78, + "end": 14431.14, + "probability": 0.8465 + }, + { + "start": 14431.48, + "end": 14432.0, + "probability": 0.8693 + }, + { + "start": 14432.14, + "end": 14432.9, + "probability": 0.7781 + }, + { + "start": 14433.04, + "end": 14434.1, + "probability": 0.8721 + }, + { + "start": 14434.18, + "end": 14434.6, + "probability": 0.5058 + }, + { + "start": 14435.46, + "end": 14438.28, + "probability": 0.9848 + }, + { + "start": 14439.02, + "end": 14442.4, + "probability": 0.8904 + }, + { + "start": 14443.62, + "end": 14449.12, + "probability": 0.9934 + }, + { + "start": 14449.56, + "end": 14451.76, + "probability": 0.8861 + }, + { + "start": 14451.84, + "end": 14452.34, + "probability": 0.9368 + }, + { + "start": 14452.72, + "end": 14454.8, + "probability": 0.8814 + }, + { + "start": 14455.74, + "end": 14458.82, + "probability": 0.7695 + }, + { + "start": 14459.8, + "end": 14461.44, + "probability": 0.6924 + }, + { + "start": 14462.44, + "end": 14463.28, + "probability": 0.8691 + }, + { + "start": 14464.12, + "end": 14465.8, + "probability": 0.9688 + }, + { + "start": 14466.68, + "end": 14468.12, + "probability": 0.9097 + }, + { + "start": 14469.04, + "end": 14470.8, + "probability": 0.9102 + }, + { + "start": 14471.64, + "end": 14472.72, + "probability": 0.7751 + }, + { + "start": 14473.38, + "end": 14476.22, + "probability": 0.98 + }, + { + "start": 14476.96, + "end": 14478.6, + "probability": 0.8105 + }, + { + "start": 14479.42, + "end": 14486.06, + "probability": 0.9963 + }, + { + "start": 14486.9, + "end": 14490.74, + "probability": 0.9984 + }, + { + "start": 14491.52, + "end": 14493.1, + "probability": 0.667 + }, + { + "start": 14493.52, + "end": 14495.58, + "probability": 0.801 + }, + { + "start": 14495.74, + "end": 14498.3, + "probability": 0.887 + }, + { + "start": 14500.38, + "end": 14502.1, + "probability": 0.8031 + }, + { + "start": 14512.42, + "end": 14514.6, + "probability": 0.6668 + }, + { + "start": 14516.68, + "end": 14518.14, + "probability": 0.7948 + }, + { + "start": 14518.3, + "end": 14519.42, + "probability": 0.465 + }, + { + "start": 14519.52, + "end": 14522.28, + "probability": 0.9775 + }, + { + "start": 14522.52, + "end": 14525.56, + "probability": 0.9232 + }, + { + "start": 14526.8, + "end": 14529.42, + "probability": 0.9631 + }, + { + "start": 14530.02, + "end": 14530.56, + "probability": 0.6677 + }, + { + "start": 14530.68, + "end": 14530.68, + "probability": 0.3398 + }, + { + "start": 14530.68, + "end": 14534.12, + "probability": 0.8745 + }, + { + "start": 14534.96, + "end": 14534.96, + "probability": 0.0696 + }, + { + "start": 14534.96, + "end": 14536.54, + "probability": 0.7917 + }, + { + "start": 14536.68, + "end": 14537.64, + "probability": 0.9036 + }, + { + "start": 14538.12, + "end": 14539.09, + "probability": 0.9347 + }, + { + "start": 14539.34, + "end": 14541.0, + "probability": 0.6624 + }, + { + "start": 14541.68, + "end": 14543.2, + "probability": 0.9051 + }, + { + "start": 14543.24, + "end": 14543.56, + "probability": 0.4388 + }, + { + "start": 14543.56, + "end": 14546.76, + "probability": 0.7207 + }, + { + "start": 14547.2, + "end": 14549.68, + "probability": 0.6009 + }, + { + "start": 14549.82, + "end": 14552.74, + "probability": 0.9221 + }, + { + "start": 14552.9, + "end": 14553.96, + "probability": 0.6895 + }, + { + "start": 14554.96, + "end": 14556.14, + "probability": 0.8623 + }, + { + "start": 14556.56, + "end": 14558.62, + "probability": 0.8973 + }, + { + "start": 14559.44, + "end": 14563.28, + "probability": 0.9779 + }, + { + "start": 14563.4, + "end": 14564.64, + "probability": 0.7735 + }, + { + "start": 14565.38, + "end": 14567.77, + "probability": 0.9434 + }, + { + "start": 14569.42, + "end": 14571.52, + "probability": 0.8976 + }, + { + "start": 14571.7, + "end": 14572.89, + "probability": 0.8313 + }, + { + "start": 14573.08, + "end": 14575.2, + "probability": 0.9283 + }, + { + "start": 14575.32, + "end": 14576.24, + "probability": 0.8337 + }, + { + "start": 14578.34, + "end": 14583.18, + "probability": 0.9589 + }, + { + "start": 14583.18, + "end": 14585.88, + "probability": 0.9885 + }, + { + "start": 14587.0, + "end": 14587.86, + "probability": 0.8099 + }, + { + "start": 14587.98, + "end": 14590.32, + "probability": 0.9966 + }, + { + "start": 14590.48, + "end": 14592.54, + "probability": 0.9395 + }, + { + "start": 14593.24, + "end": 14595.9, + "probability": 0.8251 + }, + { + "start": 14596.26, + "end": 14599.74, + "probability": 0.9866 + }, + { + "start": 14600.02, + "end": 14601.6, + "probability": 0.4223 + }, + { + "start": 14602.48, + "end": 14603.84, + "probability": 0.8196 + }, + { + "start": 14604.04, + "end": 14605.33, + "probability": 0.9792 + }, + { + "start": 14606.52, + "end": 14609.82, + "probability": 0.8087 + }, + { + "start": 14609.98, + "end": 14614.3, + "probability": 0.9343 + }, + { + "start": 14615.22, + "end": 14620.56, + "probability": 0.7837 + }, + { + "start": 14621.0, + "end": 14624.72, + "probability": 0.9849 + }, + { + "start": 14625.58, + "end": 14628.0, + "probability": 0.7082 + }, + { + "start": 14628.34, + "end": 14629.52, + "probability": 0.6694 + }, + { + "start": 14630.44, + "end": 14631.96, + "probability": 0.9067 + }, + { + "start": 14632.04, + "end": 14634.42, + "probability": 0.8633 + }, + { + "start": 14634.54, + "end": 14637.14, + "probability": 0.8121 + }, + { + "start": 14637.26, + "end": 14638.18, + "probability": 0.9035 + }, + { + "start": 14639.12, + "end": 14640.74, + "probability": 0.555 + }, + { + "start": 14641.92, + "end": 14646.86, + "probability": 0.6436 + }, + { + "start": 14646.98, + "end": 14647.12, + "probability": 0.7983 + }, + { + "start": 14647.3, + "end": 14649.94, + "probability": 0.9827 + }, + { + "start": 14650.32, + "end": 14650.58, + "probability": 0.4393 + }, + { + "start": 14651.02, + "end": 14651.5, + "probability": 0.4809 + }, + { + "start": 14652.86, + "end": 14654.26, + "probability": 0.9121 + }, + { + "start": 14654.34, + "end": 14655.32, + "probability": 0.8094 + }, + { + "start": 14655.54, + "end": 14656.04, + "probability": 0.38 + }, + { + "start": 14656.04, + "end": 14656.71, + "probability": 0.4811 + }, + { + "start": 14658.88, + "end": 14664.04, + "probability": 0.9574 + }, + { + "start": 14664.66, + "end": 14666.7, + "probability": 0.9991 + }, + { + "start": 14667.9, + "end": 14670.18, + "probability": 0.9974 + }, + { + "start": 14671.48, + "end": 14674.68, + "probability": 0.9382 + }, + { + "start": 14676.32, + "end": 14680.34, + "probability": 0.9646 + }, + { + "start": 14681.92, + "end": 14683.04, + "probability": 0.3162 + }, + { + "start": 14683.16, + "end": 14684.14, + "probability": 0.4599 + }, + { + "start": 14684.3, + "end": 14686.88, + "probability": 0.8716 + }, + { + "start": 14686.98, + "end": 14691.16, + "probability": 0.9524 + }, + { + "start": 14691.72, + "end": 14692.76, + "probability": 0.4026 + }, + { + "start": 14693.38, + "end": 14696.1, + "probability": 0.6692 + }, + { + "start": 14696.42, + "end": 14696.84, + "probability": 0.8398 + }, + { + "start": 14697.62, + "end": 14699.1, + "probability": 0.9726 + }, + { + "start": 14700.4, + "end": 14703.74, + "probability": 0.916 + }, + { + "start": 14703.96, + "end": 14705.62, + "probability": 0.8321 + }, + { + "start": 14706.98, + "end": 14707.9, + "probability": 0.4815 + }, + { + "start": 14708.12, + "end": 14712.12, + "probability": 0.9449 + }, + { + "start": 14712.4, + "end": 14713.4, + "probability": 0.6738 + }, + { + "start": 14713.44, + "end": 14714.28, + "probability": 0.5851 + }, + { + "start": 14715.22, + "end": 14719.52, + "probability": 0.9844 + }, + { + "start": 14720.84, + "end": 14723.36, + "probability": 0.9253 + }, + { + "start": 14723.4, + "end": 14724.18, + "probability": 0.8114 + }, + { + "start": 14724.46, + "end": 14725.14, + "probability": 0.9853 + }, + { + "start": 14725.3, + "end": 14727.5, + "probability": 0.9785 + }, + { + "start": 14727.64, + "end": 14729.98, + "probability": 0.9773 + }, + { + "start": 14731.06, + "end": 14735.66, + "probability": 0.8818 + }, + { + "start": 14736.96, + "end": 14740.0, + "probability": 0.9265 + }, + { + "start": 14740.16, + "end": 14742.38, + "probability": 0.9963 + }, + { + "start": 14742.48, + "end": 14743.78, + "probability": 0.998 + }, + { + "start": 14744.04, + "end": 14745.94, + "probability": 0.9037 + }, + { + "start": 14746.66, + "end": 14747.94, + "probability": 0.9467 + }, + { + "start": 14748.12, + "end": 14751.67, + "probability": 0.9235 + }, + { + "start": 14752.6, + "end": 14753.7, + "probability": 0.868 + }, + { + "start": 14753.98, + "end": 14754.8, + "probability": 0.4721 + }, + { + "start": 14754.9, + "end": 14756.92, + "probability": 0.9868 + }, + { + "start": 14757.16, + "end": 14760.84, + "probability": 0.6288 + }, + { + "start": 14761.62, + "end": 14763.14, + "probability": 0.9697 + }, + { + "start": 14763.26, + "end": 14764.98, + "probability": 0.9251 + }, + { + "start": 14766.14, + "end": 14767.74, + "probability": 0.9854 + }, + { + "start": 14768.96, + "end": 14773.56, + "probability": 0.9351 + }, + { + "start": 14774.26, + "end": 14777.42, + "probability": 0.8026 + }, + { + "start": 14777.98, + "end": 14781.46, + "probability": 0.7867 + }, + { + "start": 14781.54, + "end": 14784.24, + "probability": 0.8826 + }, + { + "start": 14784.48, + "end": 14785.6, + "probability": 0.7366 + }, + { + "start": 14786.38, + "end": 14787.4, + "probability": 0.7242 + }, + { + "start": 14787.44, + "end": 14788.44, + "probability": 0.8805 + }, + { + "start": 14788.72, + "end": 14789.94, + "probability": 0.8664 + }, + { + "start": 14790.64, + "end": 14792.14, + "probability": 0.9093 + }, + { + "start": 14792.32, + "end": 14796.92, + "probability": 0.9856 + }, + { + "start": 14796.98, + "end": 14797.7, + "probability": 0.4643 + }, + { + "start": 14798.76, + "end": 14800.84, + "probability": 0.9982 + }, + { + "start": 14801.4, + "end": 14802.92, + "probability": 0.7979 + }, + { + "start": 14803.16, + "end": 14804.84, + "probability": 0.8558 + }, + { + "start": 14805.66, + "end": 14810.16, + "probability": 0.951 + }, + { + "start": 14811.36, + "end": 14812.42, + "probability": 0.6999 + }, + { + "start": 14812.76, + "end": 14813.4, + "probability": 0.4247 + }, + { + "start": 14813.56, + "end": 14814.82, + "probability": 0.7637 + }, + { + "start": 14814.96, + "end": 14815.48, + "probability": 0.9051 + }, + { + "start": 14816.58, + "end": 14819.64, + "probability": 0.7624 + }, + { + "start": 14820.42, + "end": 14820.93, + "probability": 0.8667 + }, + { + "start": 14821.66, + "end": 14824.8, + "probability": 0.8026 + }, + { + "start": 14824.88, + "end": 14826.54, + "probability": 0.8936 + }, + { + "start": 14827.24, + "end": 14829.02, + "probability": 0.9782 + }, + { + "start": 14829.08, + "end": 14830.42, + "probability": 0.985 + }, + { + "start": 14830.76, + "end": 14831.3, + "probability": 0.4312 + }, + { + "start": 14831.66, + "end": 14832.74, + "probability": 0.6554 + }, + { + "start": 14833.16, + "end": 14834.08, + "probability": 0.7961 + }, + { + "start": 14834.26, + "end": 14837.78, + "probability": 0.9454 + }, + { + "start": 14838.12, + "end": 14839.42, + "probability": 0.4893 + }, + { + "start": 14839.42, + "end": 14842.5, + "probability": 0.9499 + }, + { + "start": 14843.96, + "end": 14847.2, + "probability": 0.9937 + }, + { + "start": 14848.36, + "end": 14849.74, + "probability": 0.7941 + }, + { + "start": 14850.68, + "end": 14851.02, + "probability": 0.4736 + }, + { + "start": 14852.06, + "end": 14853.04, + "probability": 0.5568 + }, + { + "start": 14853.36, + "end": 14857.18, + "probability": 0.9258 + }, + { + "start": 14857.32, + "end": 14858.06, + "probability": 0.7417 + }, + { + "start": 14858.98, + "end": 14859.72, + "probability": 0.9125 + }, + { + "start": 14860.38, + "end": 14862.24, + "probability": 0.9698 + }, + { + "start": 14862.32, + "end": 14864.32, + "probability": 0.429 + }, + { + "start": 14864.48, + "end": 14864.82, + "probability": 0.42 + }, + { + "start": 14864.9, + "end": 14865.72, + "probability": 0.9449 + }, + { + "start": 14865.86, + "end": 14866.92, + "probability": 0.9203 + }, + { + "start": 14867.56, + "end": 14868.06, + "probability": 0.9614 + }, + { + "start": 14868.6, + "end": 14869.44, + "probability": 0.7579 + }, + { + "start": 14869.62, + "end": 14871.08, + "probability": 0.9496 + }, + { + "start": 14871.42, + "end": 14874.64, + "probability": 0.7177 + }, + { + "start": 14875.18, + "end": 14875.92, + "probability": 0.8387 + }, + { + "start": 14876.0, + "end": 14879.52, + "probability": 0.9541 + }, + { + "start": 14879.94, + "end": 14880.78, + "probability": 0.9762 + }, + { + "start": 14881.16, + "end": 14882.18, + "probability": 0.8635 + }, + { + "start": 14882.44, + "end": 14882.58, + "probability": 0.6124 + }, + { + "start": 14882.66, + "end": 14883.06, + "probability": 0.9062 + }, + { + "start": 14884.24, + "end": 14885.45, + "probability": 0.9873 + }, + { + "start": 14885.6, + "end": 14888.64, + "probability": 0.8884 + }, + { + "start": 14888.68, + "end": 14889.48, + "probability": 0.9353 + }, + { + "start": 14890.02, + "end": 14890.68, + "probability": 0.6454 + }, + { + "start": 14890.9, + "end": 14892.0, + "probability": 0.5002 + }, + { + "start": 14893.04, + "end": 14893.88, + "probability": 0.4997 + }, + { + "start": 14893.98, + "end": 14896.1, + "probability": 0.5544 + }, + { + "start": 14896.42, + "end": 14896.52, + "probability": 0.2707 + }, + { + "start": 14896.86, + "end": 14898.94, + "probability": 0.9741 + }, + { + "start": 14899.08, + "end": 14901.5, + "probability": 0.7266 + }, + { + "start": 14901.66, + "end": 14903.86, + "probability": 0.978 + }, + { + "start": 14904.4, + "end": 14905.8, + "probability": 0.7733 + }, + { + "start": 14908.36, + "end": 14908.5, + "probability": 0.0226 + }, + { + "start": 14908.5, + "end": 14910.04, + "probability": 0.9457 + }, + { + "start": 14910.48, + "end": 14911.78, + "probability": 0.3135 + }, + { + "start": 14911.96, + "end": 14914.02, + "probability": 0.9883 + }, + { + "start": 14914.26, + "end": 14919.65, + "probability": 0.8192 + }, + { + "start": 14920.12, + "end": 14925.0, + "probability": 0.7761 + }, + { + "start": 14925.34, + "end": 14927.82, + "probability": 0.4803 + }, + { + "start": 14927.82, + "end": 14927.82, + "probability": 0.0062 + }, + { + "start": 14927.82, + "end": 14928.78, + "probability": 0.6703 + }, + { + "start": 14928.84, + "end": 14929.78, + "probability": 0.2529 + }, + { + "start": 14930.44, + "end": 14931.66, + "probability": 0.5439 + }, + { + "start": 14932.44, + "end": 14934.42, + "probability": 0.9702 + }, + { + "start": 14934.6, + "end": 14935.38, + "probability": 0.3055 + }, + { + "start": 14935.54, + "end": 14938.08, + "probability": 0.4711 + }, + { + "start": 14938.62, + "end": 14939.1, + "probability": 0.391 + }, + { + "start": 14939.24, + "end": 14939.24, + "probability": 0.4905 + }, + { + "start": 14939.28, + "end": 14940.92, + "probability": 0.7205 + }, + { + "start": 14940.92, + "end": 14943.64, + "probability": 0.9317 + }, + { + "start": 14943.92, + "end": 14944.02, + "probability": 0.4339 + }, + { + "start": 14944.12, + "end": 14946.16, + "probability": 0.6169 + }, + { + "start": 14946.34, + "end": 14948.2, + "probability": 0.6305 + }, + { + "start": 14948.3, + "end": 14950.82, + "probability": 0.3439 + }, + { + "start": 14950.88, + "end": 14951.4, + "probability": 0.4797 + }, + { + "start": 14951.52, + "end": 14952.76, + "probability": 0.6234 + }, + { + "start": 14953.2, + "end": 14957.5, + "probability": 0.93 + }, + { + "start": 14958.48, + "end": 14959.86, + "probability": 0.8534 + }, + { + "start": 14962.02, + "end": 14963.34, + "probability": 0.8867 + }, + { + "start": 14963.86, + "end": 14967.02, + "probability": 0.9764 + }, + { + "start": 14969.34, + "end": 14971.74, + "probability": 0.9973 + }, + { + "start": 14973.1, + "end": 14974.28, + "probability": 0.687 + }, + { + "start": 14975.1, + "end": 14976.1, + "probability": 0.9438 + }, + { + "start": 14977.16, + "end": 14978.19, + "probability": 0.9902 + }, + { + "start": 14980.24, + "end": 14982.82, + "probability": 0.9965 + }, + { + "start": 14983.18, + "end": 14986.64, + "probability": 0.9768 + }, + { + "start": 14987.68, + "end": 14992.14, + "probability": 0.9373 + }, + { + "start": 14992.38, + "end": 14994.56, + "probability": 0.9739 + }, + { + "start": 14995.2, + "end": 14997.44, + "probability": 0.969 + }, + { + "start": 14998.02, + "end": 15001.62, + "probability": 0.9074 + }, + { + "start": 15002.32, + "end": 15005.08, + "probability": 0.8842 + }, + { + "start": 15006.98, + "end": 15007.66, + "probability": 0.9179 + }, + { + "start": 15007.8, + "end": 15009.58, + "probability": 0.8325 + }, + { + "start": 15009.94, + "end": 15014.38, + "probability": 0.9495 + }, + { + "start": 15015.34, + "end": 15018.96, + "probability": 0.8446 + }, + { + "start": 15019.12, + "end": 15023.72, + "probability": 0.8593 + }, + { + "start": 15024.58, + "end": 15028.42, + "probability": 0.9725 + }, + { + "start": 15028.72, + "end": 15028.94, + "probability": 0.8888 + }, + { + "start": 15029.44, + "end": 15031.16, + "probability": 0.7492 + }, + { + "start": 15031.46, + "end": 15032.87, + "probability": 0.6075 + }, + { + "start": 15034.28, + "end": 15036.24, + "probability": 0.9973 + }, + { + "start": 15036.3, + "end": 15037.48, + "probability": 0.2292 + }, + { + "start": 15037.96, + "end": 15040.22, + "probability": 0.9571 + }, + { + "start": 15052.3, + "end": 15053.94, + "probability": 0.592 + }, + { + "start": 15054.6, + "end": 15055.62, + "probability": 0.6896 + }, + { + "start": 15056.44, + "end": 15059.25, + "probability": 0.687 + }, + { + "start": 15060.34, + "end": 15064.44, + "probability": 0.9929 + }, + { + "start": 15064.58, + "end": 15066.5, + "probability": 0.9754 + }, + { + "start": 15067.02, + "end": 15068.18, + "probability": 0.1032 + }, + { + "start": 15069.1, + "end": 15069.26, + "probability": 0.0615 + }, + { + "start": 15069.26, + "end": 15071.14, + "probability": 0.4965 + }, + { + "start": 15071.16, + "end": 15072.62, + "probability": 0.7681 + }, + { + "start": 15073.02, + "end": 15075.4, + "probability": 0.8392 + }, + { + "start": 15076.26, + "end": 15080.96, + "probability": 0.9904 + }, + { + "start": 15081.34, + "end": 15083.48, + "probability": 0.9971 + }, + { + "start": 15084.3, + "end": 15085.7, + "probability": 0.7305 + }, + { + "start": 15086.16, + "end": 15087.44, + "probability": 0.8858 + }, + { + "start": 15087.52, + "end": 15088.18, + "probability": 0.7791 + }, + { + "start": 15088.22, + "end": 15090.56, + "probability": 0.9849 + }, + { + "start": 15091.34, + "end": 15093.1, + "probability": 0.5095 + }, + { + "start": 15094.9, + "end": 15096.04, + "probability": 0.7879 + }, + { + "start": 15096.26, + "end": 15101.56, + "probability": 0.9894 + }, + { + "start": 15102.44, + "end": 15110.1, + "probability": 0.9908 + }, + { + "start": 15110.76, + "end": 15113.66, + "probability": 0.9508 + }, + { + "start": 15114.68, + "end": 15117.4, + "probability": 0.8875 + }, + { + "start": 15117.52, + "end": 15119.84, + "probability": 0.9966 + }, + { + "start": 15120.46, + "end": 15123.54, + "probability": 0.9912 + }, + { + "start": 15124.04, + "end": 15126.9, + "probability": 0.9781 + }, + { + "start": 15127.62, + "end": 15130.48, + "probability": 0.6994 + }, + { + "start": 15130.84, + "end": 15134.86, + "probability": 0.9975 + }, + { + "start": 15134.86, + "end": 15141.0, + "probability": 0.9832 + }, + { + "start": 15142.0, + "end": 15143.9, + "probability": 0.9765 + }, + { + "start": 15144.6, + "end": 15145.76, + "probability": 0.6748 + }, + { + "start": 15146.22, + "end": 15150.02, + "probability": 0.9474 + }, + { + "start": 15150.5, + "end": 15155.66, + "probability": 0.7477 + }, + { + "start": 15155.82, + "end": 15161.0, + "probability": 0.9616 + }, + { + "start": 15162.0, + "end": 15162.44, + "probability": 0.8275 + }, + { + "start": 15162.56, + "end": 15165.58, + "probability": 0.8594 + }, + { + "start": 15165.58, + "end": 15168.06, + "probability": 0.9945 + }, + { + "start": 15168.74, + "end": 15171.02, + "probability": 0.9896 + }, + { + "start": 15171.54, + "end": 15172.82, + "probability": 0.8308 + }, + { + "start": 15173.24, + "end": 15175.22, + "probability": 0.7193 + }, + { + "start": 15175.3, + "end": 15179.22, + "probability": 0.9613 + }, + { + "start": 15179.4, + "end": 15182.02, + "probability": 0.9787 + }, + { + "start": 15182.1, + "end": 15184.98, + "probability": 0.9863 + }, + { + "start": 15186.44, + "end": 15187.28, + "probability": 0.8089 + }, + { + "start": 15188.38, + "end": 15189.08, + "probability": 0.7047 + }, + { + "start": 15189.28, + "end": 15189.99, + "probability": 0.9673 + }, + { + "start": 15190.58, + "end": 15191.76, + "probability": 0.8868 + }, + { + "start": 15192.12, + "end": 15193.58, + "probability": 0.9715 + }, + { + "start": 15193.82, + "end": 15195.04, + "probability": 0.8994 + }, + { + "start": 15195.44, + "end": 15198.04, + "probability": 0.9859 + }, + { + "start": 15198.66, + "end": 15199.65, + "probability": 0.9499 + }, + { + "start": 15200.0, + "end": 15204.32, + "probability": 0.989 + }, + { + "start": 15204.96, + "end": 15205.84, + "probability": 0.8278 + }, + { + "start": 15206.04, + "end": 15208.28, + "probability": 0.9464 + }, + { + "start": 15208.44, + "end": 15209.92, + "probability": 0.9365 + }, + { + "start": 15210.8, + "end": 15212.54, + "probability": 0.376 + }, + { + "start": 15213.36, + "end": 15216.7, + "probability": 0.6403 + }, + { + "start": 15216.9, + "end": 15219.54, + "probability": 0.9613 + }, + { + "start": 15220.22, + "end": 15224.98, + "probability": 0.9402 + }, + { + "start": 15224.98, + "end": 15229.94, + "probability": 0.9478 + }, + { + "start": 15229.96, + "end": 15232.4, + "probability": 0.9906 + }, + { + "start": 15232.68, + "end": 15236.3, + "probability": 0.9525 + }, + { + "start": 15236.8, + "end": 15239.2, + "probability": 0.8856 + }, + { + "start": 15239.78, + "end": 15245.52, + "probability": 0.9774 + }, + { + "start": 15245.74, + "end": 15248.46, + "probability": 0.9836 + }, + { + "start": 15248.7, + "end": 15249.44, + "probability": 0.8902 + }, + { + "start": 15249.54, + "end": 15250.48, + "probability": 0.5227 + }, + { + "start": 15250.94, + "end": 15251.7, + "probability": 0.8297 + }, + { + "start": 15252.16, + "end": 15256.06, + "probability": 0.9443 + }, + { + "start": 15257.26, + "end": 15260.88, + "probability": 0.9288 + }, + { + "start": 15261.22, + "end": 15264.76, + "probability": 0.9958 + }, + { + "start": 15265.78, + "end": 15269.34, + "probability": 0.9902 + }, + { + "start": 15269.9, + "end": 15274.02, + "probability": 0.8895 + }, + { + "start": 15274.56, + "end": 15277.8, + "probability": 0.9971 + }, + { + "start": 15278.18, + "end": 15280.46, + "probability": 0.979 + }, + { + "start": 15280.46, + "end": 15288.7, + "probability": 0.8917 + }, + { + "start": 15289.02, + "end": 15292.11, + "probability": 0.9902 + }, + { + "start": 15292.66, + "end": 15296.21, + "probability": 0.9138 + }, + { + "start": 15296.88, + "end": 15300.32, + "probability": 0.9666 + }, + { + "start": 15300.32, + "end": 15303.24, + "probability": 0.9959 + }, + { + "start": 15303.84, + "end": 15304.8, + "probability": 0.7464 + }, + { + "start": 15304.84, + "end": 15305.28, + "probability": 0.8359 + }, + { + "start": 15305.32, + "end": 15306.06, + "probability": 0.2394 + }, + { + "start": 15306.48, + "end": 15307.78, + "probability": 0.7745 + }, + { + "start": 15307.94, + "end": 15312.19, + "probability": 0.9604 + }, + { + "start": 15313.18, + "end": 15315.16, + "probability": 0.8871 + }, + { + "start": 15316.08, + "end": 15323.26, + "probability": 0.9935 + }, + { + "start": 15324.64, + "end": 15329.38, + "probability": 0.9969 + }, + { + "start": 15329.78, + "end": 15332.38, + "probability": 0.9667 + }, + { + "start": 15332.52, + "end": 15333.12, + "probability": 0.8199 + }, + { + "start": 15333.72, + "end": 15337.58, + "probability": 0.897 + }, + { + "start": 15337.58, + "end": 15341.36, + "probability": 0.9278 + }, + { + "start": 15341.76, + "end": 15343.15, + "probability": 0.6981 + }, + { + "start": 15344.2, + "end": 15350.1, + "probability": 0.9895 + }, + { + "start": 15350.2, + "end": 15353.9, + "probability": 0.99 + }, + { + "start": 15354.12, + "end": 15355.02, + "probability": 0.0753 + }, + { + "start": 15355.16, + "end": 15355.8, + "probability": 0.3497 + }, + { + "start": 15357.23, + "end": 15359.39, + "probability": 0.3274 + }, + { + "start": 15359.84, + "end": 15360.8, + "probability": 0.6679 + }, + { + "start": 15360.8, + "end": 15362.98, + "probability": 0.1849 + }, + { + "start": 15363.38, + "end": 15368.25, + "probability": 0.9036 + }, + { + "start": 15368.64, + "end": 15370.98, + "probability": 0.8268 + }, + { + "start": 15371.06, + "end": 15373.54, + "probability": 0.8286 + }, + { + "start": 15373.54, + "end": 15377.02, + "probability": 0.9199 + }, + { + "start": 15377.54, + "end": 15381.2, + "probability": 0.655 + }, + { + "start": 15381.2, + "end": 15383.2, + "probability": 0.7624 + }, + { + "start": 15383.94, + "end": 15385.52, + "probability": 0.7424 + }, + { + "start": 15386.26, + "end": 15386.54, + "probability": 0.6084 + }, + { + "start": 15386.54, + "end": 15390.5, + "probability": 0.9976 + }, + { + "start": 15390.68, + "end": 15394.15, + "probability": 0.9665 + }, + { + "start": 15395.26, + "end": 15395.26, + "probability": 0.0944 + }, + { + "start": 15395.48, + "end": 15400.99, + "probability": 0.8226 + }, + { + "start": 15402.1, + "end": 15404.62, + "probability": 0.9645 + }, + { + "start": 15404.92, + "end": 15407.36, + "probability": 0.6662 + }, + { + "start": 15409.7, + "end": 15411.32, + "probability": 0.9883 + }, + { + "start": 15411.46, + "end": 15412.68, + "probability": 0.8417 + }, + { + "start": 15413.08, + "end": 15415.0, + "probability": 0.7537 + }, + { + "start": 15415.16, + "end": 15417.36, + "probability": 0.9931 + }, + { + "start": 15417.42, + "end": 15420.1, + "probability": 0.9971 + }, + { + "start": 15420.64, + "end": 15423.29, + "probability": 0.8385 + }, + { + "start": 15423.42, + "end": 15425.5, + "probability": 0.9243 + }, + { + "start": 15426.38, + "end": 15426.72, + "probability": 0.5273 + }, + { + "start": 15426.88, + "end": 15427.92, + "probability": 0.2731 + }, + { + "start": 15427.98, + "end": 15428.54, + "probability": 0.3886 + }, + { + "start": 15428.9, + "end": 15434.06, + "probability": 0.9725 + }, + { + "start": 15434.68, + "end": 15437.0, + "probability": 0.8767 + }, + { + "start": 15437.26, + "end": 15443.74, + "probability": 0.9829 + }, + { + "start": 15443.76, + "end": 15446.22, + "probability": 0.9943 + }, + { + "start": 15446.6, + "end": 15453.14, + "probability": 0.9877 + }, + { + "start": 15453.38, + "end": 15454.46, + "probability": 0.6775 + }, + { + "start": 15455.18, + "end": 15456.14, + "probability": 0.8134 + }, + { + "start": 15456.24, + "end": 15457.16, + "probability": 0.9132 + }, + { + "start": 15457.66, + "end": 15463.48, + "probability": 0.9766 + }, + { + "start": 15463.52, + "end": 15464.05, + "probability": 0.7419 + }, + { + "start": 15464.24, + "end": 15468.18, + "probability": 0.9546 + }, + { + "start": 15469.76, + "end": 15473.92, + "probability": 0.7912 + }, + { + "start": 15474.38, + "end": 15479.44, + "probability": 0.9948 + }, + { + "start": 15479.44, + "end": 15482.96, + "probability": 0.9732 + }, + { + "start": 15483.04, + "end": 15484.4, + "probability": 0.9223 + }, + { + "start": 15484.52, + "end": 15484.98, + "probability": 0.5332 + }, + { + "start": 15484.98, + "end": 15485.34, + "probability": 0.3681 + }, + { + "start": 15485.54, + "end": 15488.94, + "probability": 0.8982 + }, + { + "start": 15488.94, + "end": 15489.18, + "probability": 0.2722 + }, + { + "start": 15489.32, + "end": 15490.0, + "probability": 0.7053 + }, + { + "start": 15490.22, + "end": 15490.9, + "probability": 0.8381 + }, + { + "start": 15491.48, + "end": 15492.42, + "probability": 0.7913 + }, + { + "start": 15492.58, + "end": 15494.51, + "probability": 0.9823 + }, + { + "start": 15495.62, + "end": 15496.18, + "probability": 0.1584 + }, + { + "start": 15496.18, + "end": 15499.74, + "probability": 0.63 + }, + { + "start": 15499.9, + "end": 15501.22, + "probability": 0.6633 + }, + { + "start": 15501.44, + "end": 15504.62, + "probability": 0.9946 + }, + { + "start": 15504.98, + "end": 15510.12, + "probability": 0.9567 + }, + { + "start": 15510.88, + "end": 15512.92, + "probability": 0.7673 + }, + { + "start": 15513.44, + "end": 15517.26, + "probability": 0.7202 + }, + { + "start": 15517.9, + "end": 15521.14, + "probability": 0.907 + }, + { + "start": 15521.14, + "end": 15525.5, + "probability": 0.9917 + }, + { + "start": 15525.88, + "end": 15527.72, + "probability": 0.9004 + }, + { + "start": 15528.94, + "end": 15529.68, + "probability": 0.9852 + }, + { + "start": 15531.04, + "end": 15532.76, + "probability": 0.7489 + }, + { + "start": 15533.99, + "end": 15537.38, + "probability": 0.8403 + }, + { + "start": 15537.54, + "end": 15542.86, + "probability": 0.9946 + }, + { + "start": 15544.94, + "end": 15547.52, + "probability": 0.8626 + }, + { + "start": 15547.94, + "end": 15550.18, + "probability": 0.8351 + }, + { + "start": 15550.3, + "end": 15554.04, + "probability": 0.9878 + }, + { + "start": 15554.5, + "end": 15555.12, + "probability": 0.984 + }, + { + "start": 15555.8, + "end": 15561.5, + "probability": 0.9879 + }, + { + "start": 15561.96, + "end": 15563.05, + "probability": 0.8953 + }, + { + "start": 15563.24, + "end": 15564.0, + "probability": 0.7403 + }, + { + "start": 15564.1, + "end": 15565.76, + "probability": 0.9103 + }, + { + "start": 15566.04, + "end": 15571.24, + "probability": 0.9928 + }, + { + "start": 15572.18, + "end": 15572.9, + "probability": 0.563 + }, + { + "start": 15572.98, + "end": 15575.36, + "probability": 0.8691 + }, + { + "start": 15575.54, + "end": 15579.33, + "probability": 0.9795 + }, + { + "start": 15579.36, + "end": 15582.4, + "probability": 0.9805 + }, + { + "start": 15582.78, + "end": 15589.12, + "probability": 0.9881 + }, + { + "start": 15589.26, + "end": 15590.36, + "probability": 0.7014 + }, + { + "start": 15590.98, + "end": 15593.04, + "probability": 0.9135 + }, + { + "start": 15593.08, + "end": 15596.92, + "probability": 0.8469 + }, + { + "start": 15597.56, + "end": 15603.54, + "probability": 0.9135 + }, + { + "start": 15604.28, + "end": 15609.38, + "probability": 0.8421 + }, + { + "start": 15610.24, + "end": 15613.0, + "probability": 0.9515 + }, + { + "start": 15613.32, + "end": 15616.3, + "probability": 0.9755 + }, + { + "start": 15617.7, + "end": 15619.44, + "probability": 0.8477 + }, + { + "start": 15620.0, + "end": 15622.3, + "probability": 0.917 + }, + { + "start": 15623.48, + "end": 15623.7, + "probability": 0.6462 + }, + { + "start": 15623.8, + "end": 15626.62, + "probability": 0.9982 + }, + { + "start": 15626.82, + "end": 15633.44, + "probability": 0.991 + }, + { + "start": 15634.38, + "end": 15637.74, + "probability": 0.8111 + }, + { + "start": 15638.02, + "end": 15641.16, + "probability": 0.8238 + }, + { + "start": 15642.08, + "end": 15644.32, + "probability": 0.9651 + }, + { + "start": 15644.52, + "end": 15646.58, + "probability": 0.7493 + }, + { + "start": 15646.84, + "end": 15647.36, + "probability": 0.3158 + }, + { + "start": 15647.42, + "end": 15649.94, + "probability": 0.9127 + }, + { + "start": 15650.18, + "end": 15655.06, + "probability": 0.8285 + }, + { + "start": 15655.06, + "end": 15663.8, + "probability": 0.9578 + }, + { + "start": 15664.52, + "end": 15668.54, + "probability": 0.9203 + }, + { + "start": 15668.76, + "end": 15671.82, + "probability": 0.747 + }, + { + "start": 15672.34, + "end": 15673.94, + "probability": 0.8521 + }, + { + "start": 15674.68, + "end": 15679.9, + "probability": 0.8753 + }, + { + "start": 15680.6, + "end": 15685.22, + "probability": 0.5269 + }, + { + "start": 15685.22, + "end": 15686.08, + "probability": 0.6841 + }, + { + "start": 15686.1, + "end": 15692.48, + "probability": 0.9756 + }, + { + "start": 15692.48, + "end": 15692.48, + "probability": 0.4502 + }, + { + "start": 15692.54, + "end": 15694.56, + "probability": 0.9012 + }, + { + "start": 15695.04, + "end": 15696.74, + "probability": 0.6908 + }, + { + "start": 15696.74, + "end": 15696.94, + "probability": 0.4969 + }, + { + "start": 15697.06, + "end": 15697.73, + "probability": 0.6378 + }, + { + "start": 15698.26, + "end": 15699.58, + "probability": 0.8566 + }, + { + "start": 15699.94, + "end": 15704.72, + "probability": 0.9435 + }, + { + "start": 15705.72, + "end": 15711.08, + "probability": 0.9866 + }, + { + "start": 15711.74, + "end": 15716.08, + "probability": 0.906 + }, + { + "start": 15716.2, + "end": 15718.04, + "probability": 0.8874 + }, + { + "start": 15718.4, + "end": 15721.58, + "probability": 0.9741 + }, + { + "start": 15722.24, + "end": 15725.96, + "probability": 0.1049 + }, + { + "start": 15726.46, + "end": 15735.6, + "probability": 0.8676 + }, + { + "start": 15735.64, + "end": 15737.5, + "probability": 0.698 + }, + { + "start": 15737.6, + "end": 15741.18, + "probability": 0.895 + }, + { + "start": 15741.86, + "end": 15742.34, + "probability": 0.4411 + }, + { + "start": 15742.34, + "end": 15744.76, + "probability": 0.5465 + }, + { + "start": 15744.8, + "end": 15747.8, + "probability": 0.6696 + }, + { + "start": 15747.82, + "end": 15749.34, + "probability": 0.9315 + }, + { + "start": 15749.48, + "end": 15751.04, + "probability": 0.4456 + }, + { + "start": 15751.04, + "end": 15751.66, + "probability": 0.742 + }, + { + "start": 15751.68, + "end": 15751.68, + "probability": 0.4257 + }, + { + "start": 15751.68, + "end": 15752.72, + "probability": 0.9214 + }, + { + "start": 15753.58, + "end": 15753.72, + "probability": 0.8684 + }, + { + "start": 15753.78, + "end": 15754.02, + "probability": 0.7642 + }, + { + "start": 15754.76, + "end": 15757.54, + "probability": 0.9181 + }, + { + "start": 15758.36, + "end": 15759.86, + "probability": 0.3389 + }, + { + "start": 15760.46, + "end": 15760.8, + "probability": 0.8845 + }, + { + "start": 15761.56, + "end": 15762.22, + "probability": 0.1633 + }, + { + "start": 15762.22, + "end": 15763.82, + "probability": 0.9472 + }, + { + "start": 15764.84, + "end": 15765.38, + "probability": 0.3471 + }, + { + "start": 15765.44, + "end": 15765.96, + "probability": 0.3961 + }, + { + "start": 15766.32, + "end": 15767.72, + "probability": 0.9823 + }, + { + "start": 15767.96, + "end": 15769.8, + "probability": 0.4379 + }, + { + "start": 15770.0, + "end": 15772.24, + "probability": 0.9213 + }, + { + "start": 15772.72, + "end": 15774.16, + "probability": 0.9521 + }, + { + "start": 15774.84, + "end": 15776.34, + "probability": 0.9785 + }, + { + "start": 15776.68, + "end": 15777.74, + "probability": 0.9508 + }, + { + "start": 15778.38, + "end": 15780.6, + "probability": 0.557 + }, + { + "start": 15780.7, + "end": 15782.76, + "probability": 0.5024 + }, + { + "start": 15783.1, + "end": 15783.78, + "probability": 0.7209 + }, + { + "start": 15784.14, + "end": 15784.78, + "probability": 0.7615 + }, + { + "start": 15784.78, + "end": 15786.14, + "probability": 0.9518 + }, + { + "start": 15786.26, + "end": 15788.8, + "probability": 0.9814 + }, + { + "start": 15789.12, + "end": 15791.58, + "probability": 0.9875 + }, + { + "start": 15792.66, + "end": 15796.5, + "probability": 0.9851 + }, + { + "start": 15796.56, + "end": 15799.58, + "probability": 0.9416 + }, + { + "start": 15800.16, + "end": 15800.38, + "probability": 0.3399 + }, + { + "start": 15800.38, + "end": 15801.38, + "probability": 0.9729 + }, + { + "start": 15801.48, + "end": 15802.8, + "probability": 0.8272 + }, + { + "start": 15802.88, + "end": 15804.22, + "probability": 0.6316 + }, + { + "start": 15804.46, + "end": 15805.05, + "probability": 0.9368 + }, + { + "start": 15805.42, + "end": 15808.07, + "probability": 0.9756 + }, + { + "start": 15808.32, + "end": 15812.82, + "probability": 0.99 + }, + { + "start": 15813.3, + "end": 15814.28, + "probability": 0.7833 + }, + { + "start": 15814.32, + "end": 15815.24, + "probability": 0.7657 + }, + { + "start": 15815.4, + "end": 15817.57, + "probability": 0.9978 + }, + { + "start": 15818.38, + "end": 15819.1, + "probability": 0.9588 + }, + { + "start": 15819.22, + "end": 15820.54, + "probability": 0.8958 + }, + { + "start": 15820.84, + "end": 15820.9, + "probability": 0.0045 + }, + { + "start": 15820.9, + "end": 15821.81, + "probability": 0.9277 + }, + { + "start": 15822.0, + "end": 15823.3, + "probability": 0.9963 + }, + { + "start": 15824.4, + "end": 15828.96, + "probability": 0.9772 + }, + { + "start": 15829.9, + "end": 15832.94, + "probability": 0.9996 + }, + { + "start": 15832.94, + "end": 15836.24, + "probability": 0.9993 + }, + { + "start": 15836.76, + "end": 15840.78, + "probability": 0.994 + }, + { + "start": 15841.44, + "end": 15845.02, + "probability": 0.9399 + }, + { + "start": 15845.86, + "end": 15848.56, + "probability": 0.9185 + }, + { + "start": 15848.92, + "end": 15850.3, + "probability": 0.914 + }, + { + "start": 15850.8, + "end": 15856.14, + "probability": 0.9768 + }, + { + "start": 15856.6, + "end": 15862.18, + "probability": 0.8623 + }, + { + "start": 15862.92, + "end": 15871.45, + "probability": 0.98 + }, + { + "start": 15872.02, + "end": 15873.98, + "probability": 0.9945 + }, + { + "start": 15874.42, + "end": 15881.04, + "probability": 0.9874 + }, + { + "start": 15881.04, + "end": 15891.44, + "probability": 0.9511 + }, + { + "start": 15892.66, + "end": 15893.42, + "probability": 0.1244 + }, + { + "start": 15895.26, + "end": 15897.9, + "probability": 0.7531 + }, + { + "start": 15897.9, + "end": 15901.82, + "probability": 0.9545 + }, + { + "start": 15902.68, + "end": 15909.48, + "probability": 0.9833 + }, + { + "start": 15909.78, + "end": 15911.02, + "probability": 0.0664 + }, + { + "start": 15912.28, + "end": 15920.5, + "probability": 0.5747 + }, + { + "start": 15920.62, + "end": 15921.44, + "probability": 0.2593 + }, + { + "start": 15922.48, + "end": 15923.64, + "probability": 0.5981 + }, + { + "start": 15924.22, + "end": 15927.82, + "probability": 0.8963 + }, + { + "start": 15929.78, + "end": 15929.82, + "probability": 0.1558 + }, + { + "start": 15929.82, + "end": 15934.26, + "probability": 0.9847 + }, + { + "start": 15934.96, + "end": 15935.74, + "probability": 0.6254 + }, + { + "start": 15936.34, + "end": 15939.06, + "probability": 0.9868 + }, + { + "start": 15939.48, + "end": 15940.32, + "probability": 0.8676 + }, + { + "start": 15940.8, + "end": 15946.08, + "probability": 0.988 + }, + { + "start": 15946.32, + "end": 15949.24, + "probability": 0.9119 + }, + { + "start": 15950.06, + "end": 15950.18, + "probability": 0.327 + }, + { + "start": 15950.28, + "end": 15950.68, + "probability": 0.8689 + }, + { + "start": 15950.8, + "end": 15957.5, + "probability": 0.896 + }, + { + "start": 15958.32, + "end": 15962.66, + "probability": 0.9873 + }, + { + "start": 15963.06, + "end": 15964.98, + "probability": 0.8571 + }, + { + "start": 15965.74, + "end": 15966.36, + "probability": 0.854 + }, + { + "start": 15966.46, + "end": 15971.08, + "probability": 0.9027 + }, + { + "start": 15971.74, + "end": 15972.7, + "probability": 0.852 + }, + { + "start": 15972.82, + "end": 15975.76, + "probability": 0.8825 + }, + { + "start": 15976.66, + "end": 15978.52, + "probability": 0.9694 + }, + { + "start": 15980.28, + "end": 15985.34, + "probability": 0.9456 + }, + { + "start": 15985.38, + "end": 15991.2, + "probability": 0.7379 + }, + { + "start": 15991.38, + "end": 15992.47, + "probability": 0.0267 + }, + { + "start": 15992.54, + "end": 15994.46, + "probability": 0.1608 + }, + { + "start": 15994.46, + "end": 15997.76, + "probability": 0.4985 + }, + { + "start": 15997.78, + "end": 15999.46, + "probability": 0.4072 + }, + { + "start": 15999.76, + "end": 16000.16, + "probability": 0.2111 + }, + { + "start": 16000.16, + "end": 16001.82, + "probability": 0.4404 + }, + { + "start": 16002.02, + "end": 16004.68, + "probability": 0.775 + }, + { + "start": 16004.94, + "end": 16007.08, + "probability": 0.7666 + }, + { + "start": 16007.08, + "end": 16009.98, + "probability": 0.995 + }, + { + "start": 16010.15, + "end": 16010.74, + "probability": 0.019 + }, + { + "start": 16010.94, + "end": 16016.28, + "probability": 0.9315 + }, + { + "start": 16017.24, + "end": 16017.88, + "probability": 0.8219 + }, + { + "start": 16018.76, + "end": 16021.84, + "probability": 0.9935 + }, + { + "start": 16022.46, + "end": 16024.18, + "probability": 0.9883 + }, + { + "start": 16025.1, + "end": 16027.54, + "probability": 0.9246 + }, + { + "start": 16028.42, + "end": 16028.9, + "probability": 0.8854 + }, + { + "start": 16029.48, + "end": 16030.12, + "probability": 0.965 + }, + { + "start": 16030.18, + "end": 16034.34, + "probability": 0.9438 + }, + { + "start": 16035.02, + "end": 16037.5, + "probability": 0.9639 + }, + { + "start": 16037.5, + "end": 16041.86, + "probability": 0.8967 + }, + { + "start": 16042.3, + "end": 16044.56, + "probability": 0.6218 + }, + { + "start": 16044.66, + "end": 16045.26, + "probability": 0.728 + }, + { + "start": 16045.44, + "end": 16050.44, + "probability": 0.9272 + }, + { + "start": 16050.78, + "end": 16051.94, + "probability": 0.6747 + }, + { + "start": 16052.52, + "end": 16057.38, + "probability": 0.9041 + }, + { + "start": 16057.5, + "end": 16059.02, + "probability": 0.9535 + }, + { + "start": 16059.02, + "end": 16060.04, + "probability": 0.9325 + }, + { + "start": 16060.18, + "end": 16061.16, + "probability": 0.9928 + }, + { + "start": 16061.86, + "end": 16064.12, + "probability": 0.9889 + }, + { + "start": 16064.2, + "end": 16066.42, + "probability": 0.9834 + }, + { + "start": 16067.34, + "end": 16069.5, + "probability": 0.9309 + }, + { + "start": 16069.56, + "end": 16070.54, + "probability": 0.8237 + }, + { + "start": 16070.58, + "end": 16072.16, + "probability": 0.9623 + }, + { + "start": 16072.42, + "end": 16073.96, + "probability": 0.944 + }, + { + "start": 16074.9, + "end": 16076.76, + "probability": 0.7549 + }, + { + "start": 16077.14, + "end": 16079.84, + "probability": 0.7997 + }, + { + "start": 16079.84, + "end": 16084.72, + "probability": 0.972 + }, + { + "start": 16085.12, + "end": 16089.18, + "probability": 0.9935 + }, + { + "start": 16089.92, + "end": 16090.04, + "probability": 0.0161 + }, + { + "start": 16090.04, + "end": 16092.9, + "probability": 0.9865 + }, + { + "start": 16093.18, + "end": 16094.18, + "probability": 0.8514 + }, + { + "start": 16094.28, + "end": 16095.0, + "probability": 0.8409 + }, + { + "start": 16095.38, + "end": 16096.58, + "probability": 0.9126 + }, + { + "start": 16097.12, + "end": 16101.92, + "probability": 0.9445 + }, + { + "start": 16102.2, + "end": 16104.54, + "probability": 0.8521 + }, + { + "start": 16105.06, + "end": 16109.84, + "probability": 0.9949 + }, + { + "start": 16110.12, + "end": 16111.3, + "probability": 0.9654 + }, + { + "start": 16112.0, + "end": 16115.02, + "probability": 0.9836 + }, + { + "start": 16115.32, + "end": 16119.72, + "probability": 0.9955 + }, + { + "start": 16119.9, + "end": 16121.16, + "probability": 0.857 + }, + { + "start": 16121.48, + "end": 16123.3, + "probability": 0.9928 + }, + { + "start": 16123.4, + "end": 16124.26, + "probability": 0.9637 + }, + { + "start": 16124.86, + "end": 16125.78, + "probability": 0.868 + }, + { + "start": 16126.54, + "end": 16129.66, + "probability": 0.8623 + }, + { + "start": 16130.06, + "end": 16130.34, + "probability": 0.8387 + }, + { + "start": 16131.04, + "end": 16133.48, + "probability": 0.8917 + }, + { + "start": 16133.78, + "end": 16134.92, + "probability": 0.7387 + }, + { + "start": 16135.54, + "end": 16139.78, + "probability": 0.9735 + }, + { + "start": 16140.24, + "end": 16142.14, + "probability": 0.7391 + }, + { + "start": 16142.2, + "end": 16143.12, + "probability": 0.6932 + }, + { + "start": 16143.3, + "end": 16147.32, + "probability": 0.9024 + }, + { + "start": 16148.84, + "end": 16149.66, + "probability": 0.8132 + }, + { + "start": 16150.5, + "end": 16152.22, + "probability": 0.8451 + }, + { + "start": 16153.78, + "end": 16154.5, + "probability": 0.8908 + }, + { + "start": 16168.72, + "end": 16168.72, + "probability": 0.4035 + }, + { + "start": 16168.72, + "end": 16168.72, + "probability": 0.0791 + }, + { + "start": 16168.72, + "end": 16172.54, + "probability": 0.7461 + }, + { + "start": 16173.0, + "end": 16175.24, + "probability": 0.7444 + }, + { + "start": 16175.84, + "end": 16176.38, + "probability": 0.3116 + }, + { + "start": 16176.38, + "end": 16177.96, + "probability": 0.7183 + }, + { + "start": 16178.1, + "end": 16181.32, + "probability": 0.7293 + }, + { + "start": 16181.44, + "end": 16184.24, + "probability": 0.8409 + }, + { + "start": 16184.44, + "end": 16184.94, + "probability": 0.7363 + }, + { + "start": 16185.02, + "end": 16186.38, + "probability": 0.7544 + }, + { + "start": 16186.58, + "end": 16187.22, + "probability": 0.6448 + }, + { + "start": 16188.0, + "end": 16188.96, + "probability": 0.8893 + }, + { + "start": 16189.06, + "end": 16191.4, + "probability": 0.7906 + }, + { + "start": 16192.34, + "end": 16192.88, + "probability": 0.5369 + }, + { + "start": 16193.48, + "end": 16197.27, + "probability": 0.6975 + }, + { + "start": 16199.74, + "end": 16200.82, + "probability": 0.6562 + }, + { + "start": 16200.98, + "end": 16203.7, + "probability": 0.893 + }, + { + "start": 16204.38, + "end": 16205.66, + "probability": 0.7548 + }, + { + "start": 16205.7, + "end": 16207.04, + "probability": 0.7606 + }, + { + "start": 16207.04, + "end": 16208.6, + "probability": 0.8372 + }, + { + "start": 16209.28, + "end": 16212.02, + "probability": 0.61 + }, + { + "start": 16212.06, + "end": 16212.06, + "probability": 0.7047 + }, + { + "start": 16212.06, + "end": 16212.6, + "probability": 0.9121 + }, + { + "start": 16212.62, + "end": 16214.68, + "probability": 0.5818 + }, + { + "start": 16217.0, + "end": 16218.48, + "probability": 0.3353 + }, + { + "start": 16218.48, + "end": 16218.48, + "probability": 0.3344 + }, + { + "start": 16218.48, + "end": 16220.66, + "probability": 0.6029 + }, + { + "start": 16220.78, + "end": 16221.42, + "probability": 0.8432 + }, + { + "start": 16221.46, + "end": 16223.04, + "probability": 0.8558 + }, + { + "start": 16223.16, + "end": 16224.34, + "probability": 0.8758 + }, + { + "start": 16224.5, + "end": 16225.54, + "probability": 0.5198 + }, + { + "start": 16225.68, + "end": 16227.48, + "probability": 0.9785 + }, + { + "start": 16227.6, + "end": 16228.24, + "probability": 0.5176 + }, + { + "start": 16229.06, + "end": 16230.06, + "probability": 0.386 + }, + { + "start": 16230.06, + "end": 16231.53, + "probability": 0.7245 + }, + { + "start": 16232.02, + "end": 16232.86, + "probability": 0.6393 + }, + { + "start": 16232.94, + "end": 16233.9, + "probability": 0.8462 + }, + { + "start": 16234.08, + "end": 16235.16, + "probability": 0.491 + }, + { + "start": 16235.24, + "end": 16238.0, + "probability": 0.978 + }, + { + "start": 16239.0, + "end": 16245.44, + "probability": 0.7397 + }, + { + "start": 16246.02, + "end": 16250.02, + "probability": 0.9948 + }, + { + "start": 16250.06, + "end": 16254.86, + "probability": 0.9777 + }, + { + "start": 16255.54, + "end": 16257.68, + "probability": 0.8493 + }, + { + "start": 16257.98, + "end": 16259.26, + "probability": 0.7954 + }, + { + "start": 16260.06, + "end": 16261.8, + "probability": 0.102 + }, + { + "start": 16262.46, + "end": 16263.15, + "probability": 0.8628 + }, + { + "start": 16263.82, + "end": 16266.52, + "probability": 0.7813 + }, + { + "start": 16266.64, + "end": 16268.58, + "probability": 0.9248 + }, + { + "start": 16268.62, + "end": 16270.38, + "probability": 0.8781 + }, + { + "start": 16270.42, + "end": 16275.74, + "probability": 0.9945 + }, + { + "start": 16275.9, + "end": 16279.3, + "probability": 0.9955 + }, + { + "start": 16279.3, + "end": 16282.32, + "probability": 0.9981 + }, + { + "start": 16282.38, + "end": 16283.01, + "probability": 0.8604 + }, + { + "start": 16283.12, + "end": 16283.84, + "probability": 0.8148 + }, + { + "start": 16284.2, + "end": 16288.06, + "probability": 0.9433 + }, + { + "start": 16288.74, + "end": 16289.2, + "probability": 0.8505 + }, + { + "start": 16290.02, + "end": 16292.94, + "probability": 0.9976 + }, + { + "start": 16292.94, + "end": 16296.24, + "probability": 0.9616 + }, + { + "start": 16297.32, + "end": 16299.34, + "probability": 0.4608 + }, + { + "start": 16300.18, + "end": 16301.7, + "probability": 0.6606 + }, + { + "start": 16301.72, + "end": 16303.24, + "probability": 0.8945 + }, + { + "start": 16303.36, + "end": 16306.28, + "probability": 0.991 + }, + { + "start": 16306.32, + "end": 16307.84, + "probability": 0.8157 + }, + { + "start": 16308.78, + "end": 16308.86, + "probability": 0.0001 + }, + { + "start": 16310.7, + "end": 16312.1, + "probability": 0.5868 + }, + { + "start": 16313.02, + "end": 16317.62, + "probability": 0.9467 + }, + { + "start": 16318.14, + "end": 16319.58, + "probability": 0.875 + }, + { + "start": 16320.08, + "end": 16323.24, + "probability": 0.9945 + }, + { + "start": 16324.38, + "end": 16328.06, + "probability": 0.9785 + }, + { + "start": 16329.06, + "end": 16332.38, + "probability": 0.9922 + }, + { + "start": 16332.85, + "end": 16336.84, + "probability": 0.9635 + }, + { + "start": 16337.04, + "end": 16340.08, + "probability": 0.9867 + }, + { + "start": 16340.68, + "end": 16342.37, + "probability": 0.3498 + }, + { + "start": 16342.8, + "end": 16345.38, + "probability": 0.7507 + }, + { + "start": 16345.48, + "end": 16346.48, + "probability": 0.6026 + }, + { + "start": 16347.28, + "end": 16347.68, + "probability": 0.6864 + }, + { + "start": 16348.18, + "end": 16352.02, + "probability": 0.9416 + }, + { + "start": 16352.12, + "end": 16355.54, + "probability": 0.9816 + }, + { + "start": 16355.54, + "end": 16359.72, + "probability": 0.9906 + }, + { + "start": 16360.48, + "end": 16364.32, + "probability": 0.9283 + }, + { + "start": 16365.06, + "end": 16367.08, + "probability": 0.755 + }, + { + "start": 16367.08, + "end": 16368.1, + "probability": 0.7158 + }, + { + "start": 16368.38, + "end": 16372.04, + "probability": 0.9701 + }, + { + "start": 16372.04, + "end": 16374.18, + "probability": 0.7836 + }, + { + "start": 16375.26, + "end": 16378.6, + "probability": 0.9902 + }, + { + "start": 16378.72, + "end": 16379.04, + "probability": 0.6426 + }, + { + "start": 16379.2, + "end": 16381.46, + "probability": 0.9744 + }, + { + "start": 16382.2, + "end": 16385.88, + "probability": 0.953 + }, + { + "start": 16386.98, + "end": 16389.9, + "probability": 0.9849 + }, + { + "start": 16390.58, + "end": 16392.38, + "probability": 0.9779 + }, + { + "start": 16392.7, + "end": 16396.56, + "probability": 0.677 + }, + { + "start": 16396.6, + "end": 16397.88, + "probability": 0.964 + }, + { + "start": 16398.58, + "end": 16401.3, + "probability": 0.9912 + }, + { + "start": 16401.3, + "end": 16404.6, + "probability": 0.9979 + }, + { + "start": 16406.22, + "end": 16406.8, + "probability": 0.4453 + }, + { + "start": 16406.98, + "end": 16407.32, + "probability": 0.6143 + }, + { + "start": 16407.48, + "end": 16410.96, + "probability": 0.9969 + }, + { + "start": 16411.08, + "end": 16411.4, + "probability": 0.4272 + }, + { + "start": 16412.12, + "end": 16413.02, + "probability": 0.6106 + }, + { + "start": 16413.18, + "end": 16413.24, + "probability": 0.1035 + }, + { + "start": 16413.26, + "end": 16416.92, + "probability": 0.8183 + }, + { + "start": 16417.48, + "end": 16422.13, + "probability": 0.9858 + }, + { + "start": 16422.96, + "end": 16424.26, + "probability": 0.9691 + }, + { + "start": 16424.9, + "end": 16425.32, + "probability": 0.7249 + }, + { + "start": 16425.38, + "end": 16427.1, + "probability": 0.8616 + }, + { + "start": 16427.14, + "end": 16427.78, + "probability": 0.9252 + }, + { + "start": 16427.9, + "end": 16428.76, + "probability": 0.9863 + }, + { + "start": 16429.06, + "end": 16430.56, + "probability": 0.9571 + }, + { + "start": 16430.64, + "end": 16431.74, + "probability": 0.9774 + }, + { + "start": 16431.96, + "end": 16434.54, + "probability": 0.9772 + }, + { + "start": 16435.3, + "end": 16438.08, + "probability": 0.8693 + }, + { + "start": 16438.84, + "end": 16439.88, + "probability": 0.5854 + }, + { + "start": 16440.08, + "end": 16443.24, + "probability": 0.9885 + }, + { + "start": 16443.64, + "end": 16447.36, + "probability": 0.988 + }, + { + "start": 16447.88, + "end": 16448.36, + "probability": 0.7813 + }, + { + "start": 16448.36, + "end": 16451.12, + "probability": 0.9951 + }, + { + "start": 16451.12, + "end": 16455.06, + "probability": 0.5635 + }, + { + "start": 16455.76, + "end": 16458.02, + "probability": 0.9894 + }, + { + "start": 16458.76, + "end": 16461.44, + "probability": 0.9968 + }, + { + "start": 16461.44, + "end": 16463.82, + "probability": 0.9818 + }, + { + "start": 16464.42, + "end": 16468.3, + "probability": 0.9926 + }, + { + "start": 16468.3, + "end": 16472.8, + "probability": 0.9976 + }, + { + "start": 16473.2, + "end": 16476.86, + "probability": 0.8712 + }, + { + "start": 16477.22, + "end": 16477.72, + "probability": 0.6521 + }, + { + "start": 16478.1, + "end": 16478.81, + "probability": 0.9321 + }, + { + "start": 16479.16, + "end": 16479.34, + "probability": 0.7561 + }, + { + "start": 16479.7, + "end": 16482.12, + "probability": 0.965 + }, + { + "start": 16482.52, + "end": 16483.82, + "probability": 0.9758 + }, + { + "start": 16483.88, + "end": 16485.08, + "probability": 0.9036 + }, + { + "start": 16485.26, + "end": 16487.26, + "probability": 0.8911 + }, + { + "start": 16487.32, + "end": 16491.46, + "probability": 0.9946 + }, + { + "start": 16491.64, + "end": 16495.52, + "probability": 0.9877 + }, + { + "start": 16495.52, + "end": 16499.08, + "probability": 0.9983 + }, + { + "start": 16499.18, + "end": 16500.92, + "probability": 0.9578 + }, + { + "start": 16501.04, + "end": 16503.04, + "probability": 0.9622 + }, + { + "start": 16503.92, + "end": 16507.38, + "probability": 0.8218 + }, + { + "start": 16507.5, + "end": 16509.22, + "probability": 0.7456 + }, + { + "start": 16509.32, + "end": 16511.56, + "probability": 0.9102 + }, + { + "start": 16511.72, + "end": 16513.0, + "probability": 0.7485 + }, + { + "start": 16513.1, + "end": 16515.06, + "probability": 0.9971 + }, + { + "start": 16515.38, + "end": 16517.66, + "probability": 0.4978 + }, + { + "start": 16517.7, + "end": 16520.02, + "probability": 0.6767 + }, + { + "start": 16520.08, + "end": 16522.36, + "probability": 0.8569 + }, + { + "start": 16522.48, + "end": 16526.08, + "probability": 0.9829 + }, + { + "start": 16526.64, + "end": 16531.46, + "probability": 0.9771 + }, + { + "start": 16533.08, + "end": 16533.46, + "probability": 0.7968 + }, + { + "start": 16533.58, + "end": 16535.1, + "probability": 0.6457 + }, + { + "start": 16535.16, + "end": 16537.08, + "probability": 0.9507 + }, + { + "start": 16537.16, + "end": 16538.54, + "probability": 0.397 + }, + { + "start": 16539.96, + "end": 16540.8, + "probability": 0.3565 + }, + { + "start": 16540.84, + "end": 16541.88, + "probability": 0.8653 + }, + { + "start": 16542.06, + "end": 16545.6, + "probability": 0.5181 + }, + { + "start": 16545.6, + "end": 16546.3, + "probability": 0.3432 + }, + { + "start": 16546.64, + "end": 16546.8, + "probability": 0.6669 + }, + { + "start": 16547.32, + "end": 16548.1, + "probability": 0.9118 + }, + { + "start": 16548.86, + "end": 16550.12, + "probability": 0.5894 + }, + { + "start": 16550.12, + "end": 16551.4, + "probability": 0.8252 + }, + { + "start": 16551.8, + "end": 16554.4, + "probability": 0.9941 + }, + { + "start": 16554.5, + "end": 16556.68, + "probability": 0.9802 + }, + { + "start": 16558.16, + "end": 16564.04, + "probability": 0.9678 + }, + { + "start": 16564.04, + "end": 16568.38, + "probability": 0.9985 + }, + { + "start": 16568.38, + "end": 16568.38, + "probability": 0.006 + }, + { + "start": 16568.38, + "end": 16568.72, + "probability": 0.6051 + }, + { + "start": 16569.1, + "end": 16574.32, + "probability": 0.8504 + }, + { + "start": 16574.42, + "end": 16577.58, + "probability": 0.74 + }, + { + "start": 16578.0, + "end": 16580.42, + "probability": 0.9272 + }, + { + "start": 16580.6, + "end": 16581.34, + "probability": 0.8056 + }, + { + "start": 16581.38, + "end": 16582.38, + "probability": 0.7505 + }, + { + "start": 16582.66, + "end": 16585.0, + "probability": 0.7839 + }, + { + "start": 16585.22, + "end": 16585.48, + "probability": 0.8338 + }, + { + "start": 16586.84, + "end": 16589.22, + "probability": 0.6349 + }, + { + "start": 16589.6, + "end": 16590.5, + "probability": 0.6468 + }, + { + "start": 16591.22, + "end": 16593.1, + "probability": 0.6994 + }, + { + "start": 16593.1, + "end": 16595.68, + "probability": 0.9561 + }, + { + "start": 16595.7, + "end": 16598.08, + "probability": 0.989 + }, + { + "start": 16598.24, + "end": 16598.86, + "probability": 0.4327 + }, + { + "start": 16599.94, + "end": 16605.02, + "probability": 0.9946 + }, + { + "start": 16605.02, + "end": 16607.9, + "probability": 0.9817 + }, + { + "start": 16608.68, + "end": 16612.34, + "probability": 0.9805 + }, + { + "start": 16612.86, + "end": 16616.86, + "probability": 0.9851 + }, + { + "start": 16617.16, + "end": 16619.3, + "probability": 0.9127 + }, + { + "start": 16619.62, + "end": 16620.78, + "probability": 0.9954 + }, + { + "start": 16621.16, + "end": 16622.12, + "probability": 0.913 + }, + { + "start": 16622.24, + "end": 16623.44, + "probability": 0.9161 + }, + { + "start": 16624.12, + "end": 16628.2, + "probability": 0.9983 + }, + { + "start": 16628.9, + "end": 16629.38, + "probability": 0.8327 + }, + { + "start": 16629.48, + "end": 16631.56, + "probability": 0.9847 + }, + { + "start": 16631.56, + "end": 16633.92, + "probability": 0.9979 + }, + { + "start": 16634.92, + "end": 16639.14, + "probability": 0.9974 + }, + { + "start": 16639.28, + "end": 16640.58, + "probability": 0.0637 + }, + { + "start": 16640.84, + "end": 16640.94, + "probability": 0.5507 + }, + { + "start": 16642.9, + "end": 16643.84, + "probability": 0.8502 + }, + { + "start": 16644.08, + "end": 16644.18, + "probability": 0.228 + }, + { + "start": 16644.4, + "end": 16644.76, + "probability": 0.3518 + }, + { + "start": 16645.66, + "end": 16646.0, + "probability": 0.949 + }, + { + "start": 16646.08, + "end": 16650.2, + "probability": 0.8193 + }, + { + "start": 16650.26, + "end": 16650.96, + "probability": 0.8591 + }, + { + "start": 16651.5, + "end": 16655.84, + "probability": 0.9704 + }, + { + "start": 16656.18, + "end": 16659.12, + "probability": 0.9826 + }, + { + "start": 16659.28, + "end": 16662.52, + "probability": 0.9335 + }, + { + "start": 16663.1, + "end": 16666.62, + "probability": 0.9943 + }, + { + "start": 16666.8, + "end": 16668.38, + "probability": 0.9371 + }, + { + "start": 16669.04, + "end": 16672.28, + "probability": 0.9938 + }, + { + "start": 16672.28, + "end": 16676.08, + "probability": 0.9993 + }, + { + "start": 16676.54, + "end": 16678.86, + "probability": 0.9598 + }, + { + "start": 16678.86, + "end": 16681.84, + "probability": 0.9948 + }, + { + "start": 16682.6, + "end": 16684.54, + "probability": 0.6352 + }, + { + "start": 16684.54, + "end": 16686.44, + "probability": 0.9969 + }, + { + "start": 16687.06, + "end": 16689.74, + "probability": 0.755 + }, + { + "start": 16690.9, + "end": 16691.28, + "probability": 0.6629 + }, + { + "start": 16691.34, + "end": 16694.76, + "probability": 0.7284 + }, + { + "start": 16695.48, + "end": 16698.66, + "probability": 0.9178 + }, + { + "start": 16698.8, + "end": 16700.32, + "probability": 0.7308 + }, + { + "start": 16701.24, + "end": 16702.86, + "probability": 0.8475 + }, + { + "start": 16703.12, + "end": 16705.42, + "probability": 0.8541 + }, + { + "start": 16705.42, + "end": 16708.06, + "probability": 0.9848 + }, + { + "start": 16708.52, + "end": 16710.5, + "probability": 0.988 + }, + { + "start": 16711.3, + "end": 16714.92, + "probability": 0.9678 + }, + { + "start": 16714.92, + "end": 16718.06, + "probability": 0.9971 + }, + { + "start": 16718.16, + "end": 16718.44, + "probability": 0.7225 + }, + { + "start": 16718.56, + "end": 16720.6, + "probability": 0.9109 + }, + { + "start": 16721.42, + "end": 16724.1, + "probability": 0.9974 + }, + { + "start": 16724.68, + "end": 16726.6, + "probability": 0.8525 + }, + { + "start": 16726.76, + "end": 16727.68, + "probability": 0.8012 + }, + { + "start": 16727.7, + "end": 16729.74, + "probability": 0.9039 + }, + { + "start": 16730.04, + "end": 16733.92, + "probability": 0.9608 + }, + { + "start": 16734.74, + "end": 16734.96, + "probability": 0.6542 + }, + { + "start": 16735.04, + "end": 16737.72, + "probability": 0.8475 + }, + { + "start": 16737.72, + "end": 16740.14, + "probability": 0.7926 + }, + { + "start": 16740.22, + "end": 16742.52, + "probability": 0.9925 + }, + { + "start": 16742.52, + "end": 16744.98, + "probability": 0.8979 + }, + { + "start": 16745.16, + "end": 16748.8, + "probability": 0.9813 + }, + { + "start": 16749.88, + "end": 16752.96, + "probability": 0.9976 + }, + { + "start": 16753.08, + "end": 16755.22, + "probability": 0.955 + }, + { + "start": 16755.92, + "end": 16756.32, + "probability": 0.6154 + }, + { + "start": 16756.36, + "end": 16759.32, + "probability": 0.9951 + }, + { + "start": 16759.32, + "end": 16761.62, + "probability": 0.999 + }, + { + "start": 16762.32, + "end": 16764.94, + "probability": 0.9801 + }, + { + "start": 16765.28, + "end": 16768.52, + "probability": 0.9945 + }, + { + "start": 16769.3, + "end": 16770.02, + "probability": 0.611 + }, + { + "start": 16770.08, + "end": 16773.08, + "probability": 0.9425 + }, + { + "start": 16773.24, + "end": 16777.06, + "probability": 0.9888 + }, + { + "start": 16777.06, + "end": 16781.0, + "probability": 0.9914 + }, + { + "start": 16781.0, + "end": 16784.62, + "probability": 0.8287 + }, + { + "start": 16784.86, + "end": 16787.2, + "probability": 0.9899 + }, + { + "start": 16787.2, + "end": 16790.74, + "probability": 0.9707 + }, + { + "start": 16790.94, + "end": 16792.6, + "probability": 0.9712 + }, + { + "start": 16793.64, + "end": 16795.04, + "probability": 0.9421 + }, + { + "start": 16795.16, + "end": 16797.78, + "probability": 0.9948 + }, + { + "start": 16797.96, + "end": 16802.86, + "probability": 0.9761 + }, + { + "start": 16803.28, + "end": 16806.64, + "probability": 0.9991 + }, + { + "start": 16807.56, + "end": 16807.66, + "probability": 0.0195 + }, + { + "start": 16807.66, + "end": 16808.26, + "probability": 0.9854 + }, + { + "start": 16809.84, + "end": 16811.12, + "probability": 0.667 + }, + { + "start": 16811.78, + "end": 16816.28, + "probability": 0.9493 + }, + { + "start": 16816.64, + "end": 16818.8, + "probability": 0.546 + }, + { + "start": 16818.86, + "end": 16823.04, + "probability": 0.9734 + }, + { + "start": 16823.12, + "end": 16824.16, + "probability": 0.6311 + }, + { + "start": 16824.74, + "end": 16825.22, + "probability": 0.6972 + }, + { + "start": 16825.36, + "end": 16828.1, + "probability": 0.9978 + }, + { + "start": 16828.4, + "end": 16830.36, + "probability": 0.9946 + }, + { + "start": 16831.18, + "end": 16833.78, + "probability": 0.8104 + }, + { + "start": 16833.86, + "end": 16833.93, + "probability": 0.0347 + }, + { + "start": 16834.18, + "end": 16835.42, + "probability": 0.8121 + }, + { + "start": 16836.4, + "end": 16838.52, + "probability": 0.9774 + }, + { + "start": 16838.6, + "end": 16839.6, + "probability": 0.9604 + }, + { + "start": 16839.72, + "end": 16843.14, + "probability": 0.867 + }, + { + "start": 16843.78, + "end": 16847.62, + "probability": 0.98 + }, + { + "start": 16847.62, + "end": 16852.28, + "probability": 0.9968 + }, + { + "start": 16852.28, + "end": 16855.72, + "probability": 0.6104 + }, + { + "start": 16855.78, + "end": 16856.2, + "probability": 0.2272 + }, + { + "start": 16859.24, + "end": 16859.36, + "probability": 0.1245 + }, + { + "start": 16859.36, + "end": 16860.86, + "probability": 0.4858 + }, + { + "start": 16861.28, + "end": 16864.82, + "probability": 0.9114 + }, + { + "start": 16864.96, + "end": 16866.1, + "probability": 0.6951 + }, + { + "start": 16866.56, + "end": 16869.46, + "probability": 0.9948 + }, + { + "start": 16869.6, + "end": 16871.36, + "probability": 0.9976 + }, + { + "start": 16871.5, + "end": 16875.06, + "probability": 0.9963 + }, + { + "start": 16875.06, + "end": 16880.0, + "probability": 0.9974 + }, + { + "start": 16880.46, + "end": 16881.1, + "probability": 0.709 + }, + { + "start": 16881.18, + "end": 16883.54, + "probability": 0.96 + }, + { + "start": 16883.58, + "end": 16885.22, + "probability": 0.9465 + }, + { + "start": 16885.32, + "end": 16887.34, + "probability": 0.976 + }, + { + "start": 16887.72, + "end": 16890.32, + "probability": 0.98 + }, + { + "start": 16891.1, + "end": 16892.24, + "probability": 0.6558 + }, + { + "start": 16892.68, + "end": 16895.48, + "probability": 0.9454 + }, + { + "start": 16896.84, + "end": 16900.09, + "probability": 0.9824 + }, + { + "start": 16900.22, + "end": 16903.42, + "probability": 0.7747 + }, + { + "start": 16904.18, + "end": 16908.44, + "probability": 0.9877 + }, + { + "start": 16908.44, + "end": 16910.98, + "probability": 0.9748 + }, + { + "start": 16912.78, + "end": 16915.76, + "probability": 0.7447 + }, + { + "start": 16915.82, + "end": 16918.62, + "probability": 0.9724 + }, + { + "start": 16918.68, + "end": 16922.38, + "probability": 0.9929 + }, + { + "start": 16923.02, + "end": 16924.24, + "probability": 0.6245 + }, + { + "start": 16924.32, + "end": 16925.99, + "probability": 0.8989 + }, + { + "start": 16926.32, + "end": 16927.78, + "probability": 0.9784 + }, + { + "start": 16928.32, + "end": 16929.54, + "probability": 0.9614 + }, + { + "start": 16930.14, + "end": 16930.76, + "probability": 0.9448 + }, + { + "start": 16935.24, + "end": 16936.26, + "probability": 0.9932 + }, + { + "start": 16937.92, + "end": 16937.98, + "probability": 0.0075 + }, + { + "start": 16937.98, + "end": 16940.8, + "probability": 0.4971 + }, + { + "start": 16941.15, + "end": 16943.84, + "probability": 0.9381 + }, + { + "start": 16944.75, + "end": 16945.7, + "probability": 0.4062 + }, + { + "start": 16945.76, + "end": 16949.14, + "probability": 0.6302 + }, + { + "start": 16949.48, + "end": 16951.46, + "probability": 0.843 + }, + { + "start": 16951.54, + "end": 16951.94, + "probability": 0.6172 + }, + { + "start": 16952.62, + "end": 16955.97, + "probability": 0.7585 + }, + { + "start": 16957.46, + "end": 16963.34, + "probability": 0.6049 + }, + { + "start": 16963.66, + "end": 16966.3, + "probability": 0.5949 + }, + { + "start": 16966.32, + "end": 16967.72, + "probability": 0.4973 + }, + { + "start": 16967.72, + "end": 16969.84, + "probability": 0.7822 + }, + { + "start": 16970.4, + "end": 16973.1, + "probability": 0.7516 + }, + { + "start": 16973.16, + "end": 16975.99, + "probability": 0.8933 + }, + { + "start": 16976.7, + "end": 16977.69, + "probability": 0.4747 + }, + { + "start": 16979.2, + "end": 16979.8, + "probability": 0.7583 + }, + { + "start": 16979.98, + "end": 16982.62, + "probability": 0.8932 + }, + { + "start": 16983.78, + "end": 16986.92, + "probability": 0.7995 + }, + { + "start": 16987.68, + "end": 16989.28, + "probability": 0.474 + }, + { + "start": 16989.34, + "end": 16990.86, + "probability": 0.7351 + }, + { + "start": 16991.56, + "end": 16996.46, + "probability": 0.9512 + }, + { + "start": 16997.28, + "end": 16997.86, + "probability": 0.8395 + }, + { + "start": 16998.24, + "end": 17001.64, + "probability": 0.9724 + }, + { + "start": 17001.64, + "end": 17005.82, + "probability": 0.9937 + }, + { + "start": 17006.66, + "end": 17011.1, + "probability": 0.9487 + }, + { + "start": 17011.7, + "end": 17016.2, + "probability": 0.9805 + }, + { + "start": 17016.94, + "end": 17019.66, + "probability": 0.8296 + }, + { + "start": 17019.84, + "end": 17022.02, + "probability": 0.9823 + }, + { + "start": 17022.7, + "end": 17026.44, + "probability": 0.8551 + }, + { + "start": 17026.7, + "end": 17027.78, + "probability": 0.7961 + }, + { + "start": 17027.86, + "end": 17031.1, + "probability": 0.9878 + }, + { + "start": 17031.8, + "end": 17035.08, + "probability": 0.92 + }, + { + "start": 17035.62, + "end": 17036.62, + "probability": 0.8108 + }, + { + "start": 17036.66, + "end": 17040.68, + "probability": 0.9968 + }, + { + "start": 17040.8, + "end": 17044.1, + "probability": 0.9968 + }, + { + "start": 17045.46, + "end": 17045.86, + "probability": 0.769 + }, + { + "start": 17045.94, + "end": 17046.86, + "probability": 0.9176 + }, + { + "start": 17052.48, + "end": 17054.98, + "probability": 0.9261 + }, + { + "start": 17055.73, + "end": 17061.82, + "probability": 0.9408 + }, + { + "start": 17062.58, + "end": 17069.56, + "probability": 0.9452 + }, + { + "start": 17070.22, + "end": 17071.02, + "probability": 0.8435 + }, + { + "start": 17071.5, + "end": 17073.58, + "probability": 0.9457 + }, + { + "start": 17073.66, + "end": 17074.14, + "probability": 0.5508 + }, + { + "start": 17074.24, + "end": 17075.76, + "probability": 0.5086 + }, + { + "start": 17076.28, + "end": 17077.4, + "probability": 0.8971 + }, + { + "start": 17077.68, + "end": 17081.12, + "probability": 0.8637 + }, + { + "start": 17081.12, + "end": 17084.1, + "probability": 0.8794 + }, + { + "start": 17084.34, + "end": 17084.76, + "probability": 0.0496 + }, + { + "start": 17085.15, + "end": 17087.33, + "probability": 0.9524 + }, + { + "start": 17087.74, + "end": 17090.02, + "probability": 0.988 + }, + { + "start": 17090.76, + "end": 17094.52, + "probability": 0.7615 + }, + { + "start": 17095.12, + "end": 17098.02, + "probability": 0.8438 + }, + { + "start": 17098.58, + "end": 17104.22, + "probability": 0.9829 + }, + { + "start": 17104.22, + "end": 17107.52, + "probability": 0.9927 + }, + { + "start": 17107.72, + "end": 17108.26, + "probability": 0.9917 + }, + { + "start": 17108.34, + "end": 17110.56, + "probability": 0.7432 + }, + { + "start": 17110.66, + "end": 17111.38, + "probability": 0.549 + }, + { + "start": 17111.46, + "end": 17112.42, + "probability": 0.963 + }, + { + "start": 17113.22, + "end": 17115.26, + "probability": 0.9513 + }, + { + "start": 17115.54, + "end": 17115.7, + "probability": 0.7585 + }, + { + "start": 17115.88, + "end": 17116.94, + "probability": 0.7601 + }, + { + "start": 17117.54, + "end": 17119.3, + "probability": 0.325 + }, + { + "start": 17119.42, + "end": 17119.66, + "probability": 0.7975 + }, + { + "start": 17119.68, + "end": 17122.46, + "probability": 0.867 + }, + { + "start": 17122.54, + "end": 17124.32, + "probability": 0.8501 + }, + { + "start": 17124.38, + "end": 17126.66, + "probability": 0.9971 + }, + { + "start": 17126.66, + "end": 17129.92, + "probability": 0.9953 + }, + { + "start": 17130.06, + "end": 17131.2, + "probability": 0.827 + }, + { + "start": 17131.62, + "end": 17132.18, + "probability": 0.655 + }, + { + "start": 17132.22, + "end": 17133.26, + "probability": 0.9513 + }, + { + "start": 17133.9, + "end": 17136.63, + "probability": 0.7161 + }, + { + "start": 17137.34, + "end": 17138.28, + "probability": 0.938 + }, + { + "start": 17138.44, + "end": 17139.27, + "probability": 0.0189 + }, + { + "start": 17139.66, + "end": 17141.3, + "probability": 0.9595 + }, + { + "start": 17141.82, + "end": 17144.66, + "probability": 0.9785 + }, + { + "start": 17144.76, + "end": 17145.02, + "probability": 0.7454 + }, + { + "start": 17145.06, + "end": 17148.34, + "probability": 0.8977 + }, + { + "start": 17148.68, + "end": 17151.28, + "probability": 0.9653 + }, + { + "start": 17151.48, + "end": 17156.18, + "probability": 0.9748 + }, + { + "start": 17156.18, + "end": 17158.78, + "probability": 0.9934 + }, + { + "start": 17159.36, + "end": 17160.8, + "probability": 0.9465 + }, + { + "start": 17160.88, + "end": 17162.32, + "probability": 0.8641 + }, + { + "start": 17162.5, + "end": 17164.04, + "probability": 0.8619 + }, + { + "start": 17164.18, + "end": 17167.68, + "probability": 0.9624 + }, + { + "start": 17167.76, + "end": 17168.92, + "probability": 0.9269 + }, + { + "start": 17169.34, + "end": 17171.76, + "probability": 0.9429 + }, + { + "start": 17172.0, + "end": 17173.3, + "probability": 0.9963 + }, + { + "start": 17173.68, + "end": 17175.6, + "probability": 0.5897 + }, + { + "start": 17175.88, + "end": 17178.38, + "probability": 0.723 + }, + { + "start": 17178.84, + "end": 17180.32, + "probability": 0.6472 + }, + { + "start": 17180.58, + "end": 17181.6, + "probability": 0.9561 + }, + { + "start": 17181.78, + "end": 17184.12, + "probability": 0.7947 + }, + { + "start": 17184.4, + "end": 17188.92, + "probability": 0.9281 + }, + { + "start": 17189.1, + "end": 17192.47, + "probability": 0.8564 + }, + { + "start": 17192.86, + "end": 17196.78, + "probability": 0.5663 + }, + { + "start": 17197.4, + "end": 17197.54, + "probability": 0.3961 + }, + { + "start": 17198.52, + "end": 17202.3, + "probability": 0.9829 + }, + { + "start": 17202.3, + "end": 17204.78, + "probability": 0.9716 + }, + { + "start": 17205.18, + "end": 17205.64, + "probability": 0.5986 + }, + { + "start": 17206.7, + "end": 17208.8, + "probability": 0.8428 + }, + { + "start": 17209.46, + "end": 17210.5, + "probability": 0.8013 + }, + { + "start": 17210.62, + "end": 17214.1, + "probability": 0.8459 + }, + { + "start": 17214.1, + "end": 17217.53, + "probability": 0.9176 + }, + { + "start": 17218.0, + "end": 17221.92, + "probability": 0.749 + }, + { + "start": 17221.98, + "end": 17222.42, + "probability": 0.1756 + }, + { + "start": 17222.52, + "end": 17223.62, + "probability": 0.6045 + }, + { + "start": 17223.92, + "end": 17225.28, + "probability": 0.4344 + }, + { + "start": 17225.8, + "end": 17226.64, + "probability": 0.2972 + }, + { + "start": 17226.7, + "end": 17227.76, + "probability": 0.4885 + }, + { + "start": 17227.86, + "end": 17232.45, + "probability": 0.877 + }, + { + "start": 17233.52, + "end": 17235.02, + "probability": 0.7808 + }, + { + "start": 17235.02, + "end": 17235.6, + "probability": 0.7152 + }, + { + "start": 17235.68, + "end": 17237.34, + "probability": 0.8843 + }, + { + "start": 17239.78, + "end": 17242.18, + "probability": 0.9128 + }, + { + "start": 17242.34, + "end": 17243.26, + "probability": 0.7856 + }, + { + "start": 17243.64, + "end": 17245.04, + "probability": 0.64 + }, + { + "start": 17245.28, + "end": 17245.6, + "probability": 0.7207 + }, + { + "start": 17245.72, + "end": 17248.34, + "probability": 0.8188 + }, + { + "start": 17248.4, + "end": 17249.72, + "probability": 0.8986 + }, + { + "start": 17249.76, + "end": 17250.93, + "probability": 0.9849 + }, + { + "start": 17251.51, + "end": 17253.52, + "probability": 0.8535 + }, + { + "start": 17253.66, + "end": 17257.34, + "probability": 0.7864 + }, + { + "start": 17257.34, + "end": 17257.94, + "probability": 0.9543 + }, + { + "start": 17258.04, + "end": 17261.68, + "probability": 0.7753 + }, + { + "start": 17262.28, + "end": 17263.18, + "probability": 0.7676 + }, + { + "start": 17264.06, + "end": 17267.64, + "probability": 0.8355 + }, + { + "start": 17267.76, + "end": 17268.58, + "probability": 0.9232 + }, + { + "start": 17268.82, + "end": 17269.68, + "probability": 0.9666 + }, + { + "start": 17269.72, + "end": 17270.34, + "probability": 0.4412 + }, + { + "start": 17271.26, + "end": 17273.12, + "probability": 0.7733 + }, + { + "start": 17273.34, + "end": 17275.0, + "probability": 0.9513 + }, + { + "start": 17275.04, + "end": 17276.4, + "probability": 0.2434 + }, + { + "start": 17276.7, + "end": 17278.22, + "probability": 0.5749 + }, + { + "start": 17279.14, + "end": 17279.66, + "probability": 0.0372 + } + ], + "segments_count": 6013, + "words_count": 30080, + "avg_words_per_segment": 5.0025, + "avg_segment_duration": 2.1413, + "avg_words_per_minute": 104.2424, + "plenum_id": "32414", + "duration": 17313.49, + "title": null, + "plenum_date": "2013-11-20" +} \ No newline at end of file