diff --git "a/34458/metadata.json" "b/34458/metadata.json" new file mode 100644--- /dev/null +++ "b/34458/metadata.json" @@ -0,0 +1,47397 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "34458", + "quality_score": 0.8749, + "per_segment_quality_scores": [ + { + "start": 93.31, + "end": 94.36, + "probability": 0.2857 + }, + { + "start": 94.36, + "end": 97.78, + "probability": 0.6848 + }, + { + "start": 97.82, + "end": 101.22, + "probability": 0.8799 + }, + { + "start": 109.7, + "end": 111.92, + "probability": 0.7793 + }, + { + "start": 115.76, + "end": 119.22, + "probability": 0.9082 + }, + { + "start": 119.22, + "end": 122.72, + "probability": 0.9933 + }, + { + "start": 123.28, + "end": 123.36, + "probability": 0.0031 + }, + { + "start": 125.16, + "end": 128.08, + "probability": 0.7842 + }, + { + "start": 128.54, + "end": 132.06, + "probability": 0.9962 + }, + { + "start": 132.44, + "end": 133.54, + "probability": 0.8052 + }, + { + "start": 133.82, + "end": 137.12, + "probability": 0.7111 + }, + { + "start": 140.82, + "end": 142.8, + "probability": 0.964 + }, + { + "start": 142.92, + "end": 143.96, + "probability": 0.8953 + }, + { + "start": 145.42, + "end": 148.73, + "probability": 0.9128 + }, + { + "start": 149.8, + "end": 151.42, + "probability": 0.987 + }, + { + "start": 153.3, + "end": 153.92, + "probability": 0.6579 + }, + { + "start": 155.42, + "end": 159.82, + "probability": 0.951 + }, + { + "start": 160.44, + "end": 162.82, + "probability": 0.7638 + }, + { + "start": 163.8, + "end": 165.74, + "probability": 0.8808 + }, + { + "start": 166.44, + "end": 167.08, + "probability": 0.9591 + }, + { + "start": 167.44, + "end": 168.08, + "probability": 0.9877 + }, + { + "start": 168.18, + "end": 169.24, + "probability": 0.8593 + }, + { + "start": 169.7, + "end": 170.56, + "probability": 0.6149 + }, + { + "start": 171.02, + "end": 176.64, + "probability": 0.9639 + }, + { + "start": 177.6, + "end": 182.34, + "probability": 0.9399 + }, + { + "start": 183.9, + "end": 186.34, + "probability": 0.6705 + }, + { + "start": 187.62, + "end": 189.72, + "probability": 0.8476 + }, + { + "start": 190.8, + "end": 193.16, + "probability": 0.9851 + }, + { + "start": 194.24, + "end": 196.9, + "probability": 0.7885 + }, + { + "start": 197.12, + "end": 198.1, + "probability": 0.92 + }, + { + "start": 198.16, + "end": 199.94, + "probability": 0.7175 + }, + { + "start": 200.52, + "end": 203.08, + "probability": 0.912 + }, + { + "start": 203.96, + "end": 208.26, + "probability": 0.9199 + }, + { + "start": 209.96, + "end": 215.14, + "probability": 0.9951 + }, + { + "start": 216.1, + "end": 217.42, + "probability": 0.2044 + }, + { + "start": 217.72, + "end": 220.18, + "probability": 0.9974 + }, + { + "start": 220.18, + "end": 223.74, + "probability": 0.9831 + }, + { + "start": 223.9, + "end": 225.74, + "probability": 0.99 + }, + { + "start": 226.96, + "end": 229.96, + "probability": 0.9321 + }, + { + "start": 229.96, + "end": 233.34, + "probability": 0.9966 + }, + { + "start": 233.7, + "end": 235.18, + "probability": 0.9886 + }, + { + "start": 236.28, + "end": 240.94, + "probability": 0.9903 + }, + { + "start": 240.94, + "end": 246.52, + "probability": 0.9821 + }, + { + "start": 246.88, + "end": 250.3, + "probability": 0.9939 + }, + { + "start": 251.72, + "end": 252.74, + "probability": 0.6669 + }, + { + "start": 254.0, + "end": 256.06, + "probability": 0.8504 + }, + { + "start": 257.24, + "end": 260.62, + "probability": 0.9127 + }, + { + "start": 260.62, + "end": 263.46, + "probability": 0.8355 + }, + { + "start": 263.62, + "end": 265.92, + "probability": 0.6844 + }, + { + "start": 266.06, + "end": 266.34, + "probability": 0.8315 + }, + { + "start": 267.2, + "end": 268.32, + "probability": 0.673 + }, + { + "start": 269.92, + "end": 273.44, + "probability": 0.8547 + }, + { + "start": 275.5, + "end": 276.63, + "probability": 0.9951 + }, + { + "start": 277.08, + "end": 277.58, + "probability": 0.0892 + }, + { + "start": 278.9, + "end": 280.06, + "probability": 0.5083 + }, + { + "start": 280.32, + "end": 280.6, + "probability": 0.1797 + }, + { + "start": 281.16, + "end": 283.74, + "probability": 0.8931 + }, + { + "start": 284.4, + "end": 285.06, + "probability": 0.9883 + }, + { + "start": 285.42, + "end": 285.72, + "probability": 0.1386 + }, + { + "start": 285.72, + "end": 286.46, + "probability": 0.0977 + }, + { + "start": 286.58, + "end": 287.58, + "probability": 0.8457 + }, + { + "start": 287.94, + "end": 289.3, + "probability": 0.8318 + }, + { + "start": 290.4, + "end": 294.34, + "probability": 0.6059 + }, + { + "start": 295.52, + "end": 297.72, + "probability": 0.0863 + }, + { + "start": 297.72, + "end": 299.45, + "probability": 0.5872 + }, + { + "start": 300.04, + "end": 305.32, + "probability": 0.8924 + }, + { + "start": 305.94, + "end": 307.06, + "probability": 0.7044 + }, + { + "start": 307.92, + "end": 312.02, + "probability": 0.9322 + }, + { + "start": 314.02, + "end": 316.04, + "probability": 0.876 + }, + { + "start": 318.08, + "end": 322.76, + "probability": 0.9832 + }, + { + "start": 323.13, + "end": 328.86, + "probability": 0.9609 + }, + { + "start": 329.1, + "end": 331.24, + "probability": 0.958 + }, + { + "start": 331.84, + "end": 333.42, + "probability": 0.6709 + }, + { + "start": 334.52, + "end": 337.18, + "probability": 0.9956 + }, + { + "start": 338.46, + "end": 341.82, + "probability": 0.9861 + }, + { + "start": 343.38, + "end": 346.19, + "probability": 0.9317 + }, + { + "start": 347.48, + "end": 350.48, + "probability": 0.9853 + }, + { + "start": 351.62, + "end": 356.6, + "probability": 0.9626 + }, + { + "start": 356.68, + "end": 359.0, + "probability": 0.9805 + }, + { + "start": 360.12, + "end": 361.38, + "probability": 0.8303 + }, + { + "start": 361.66, + "end": 362.9, + "probability": 0.7449 + }, + { + "start": 363.46, + "end": 366.16, + "probability": 0.8462 + }, + { + "start": 367.52, + "end": 368.94, + "probability": 0.7405 + }, + { + "start": 369.12, + "end": 370.88, + "probability": 0.9627 + }, + { + "start": 370.96, + "end": 374.12, + "probability": 0.9622 + }, + { + "start": 374.9, + "end": 377.5, + "probability": 0.8105 + }, + { + "start": 378.22, + "end": 378.9, + "probability": 0.874 + }, + { + "start": 379.4, + "end": 383.44, + "probability": 0.8351 + }, + { + "start": 383.5, + "end": 385.08, + "probability": 0.9382 + }, + { + "start": 389.92, + "end": 394.34, + "probability": 0.9113 + }, + { + "start": 395.12, + "end": 400.62, + "probability": 0.9854 + }, + { + "start": 400.62, + "end": 405.34, + "probability": 0.9886 + }, + { + "start": 406.2, + "end": 406.84, + "probability": 0.5467 + }, + { + "start": 407.2, + "end": 409.42, + "probability": 0.4353 + }, + { + "start": 412.42, + "end": 417.14, + "probability": 0.4498 + }, + { + "start": 417.24, + "end": 422.38, + "probability": 0.6578 + }, + { + "start": 423.78, + "end": 428.52, + "probability": 0.7342 + }, + { + "start": 428.94, + "end": 429.24, + "probability": 0.6082 + }, + { + "start": 429.36, + "end": 434.18, + "probability": 0.9401 + }, + { + "start": 434.24, + "end": 434.56, + "probability": 0.7419 + }, + { + "start": 434.62, + "end": 439.19, + "probability": 0.9987 + }, + { + "start": 440.36, + "end": 440.6, + "probability": 0.801 + }, + { + "start": 441.04, + "end": 443.06, + "probability": 0.6211 + }, + { + "start": 443.1, + "end": 445.92, + "probability": 0.6606 + }, + { + "start": 446.3, + "end": 447.86, + "probability": 0.8558 + }, + { + "start": 448.3, + "end": 451.4, + "probability": 0.6356 + }, + { + "start": 451.4, + "end": 452.1, + "probability": 0.9299 + }, + { + "start": 452.64, + "end": 453.72, + "probability": 0.3165 + }, + { + "start": 453.82, + "end": 454.22, + "probability": 0.6413 + }, + { + "start": 454.44, + "end": 461.42, + "probability": 0.7153 + }, + { + "start": 461.56, + "end": 465.82, + "probability": 0.9948 + }, + { + "start": 465.9, + "end": 467.36, + "probability": 0.8785 + }, + { + "start": 467.88, + "end": 468.22, + "probability": 0.7981 + }, + { + "start": 468.52, + "end": 470.6, + "probability": 0.901 + }, + { + "start": 470.76, + "end": 471.62, + "probability": 0.513 + }, + { + "start": 477.52, + "end": 478.34, + "probability": 0.8599 + }, + { + "start": 478.76, + "end": 481.02, + "probability": 0.8936 + }, + { + "start": 481.24, + "end": 483.08, + "probability": 0.9507 + }, + { + "start": 483.54, + "end": 484.86, + "probability": 0.7338 + }, + { + "start": 485.36, + "end": 488.0, + "probability": 0.0778 + }, + { + "start": 488.76, + "end": 493.36, + "probability": 0.2578 + }, + { + "start": 494.66, + "end": 497.9, + "probability": 0.2721 + }, + { + "start": 497.9, + "end": 500.08, + "probability": 0.3603 + }, + { + "start": 501.3, + "end": 501.4, + "probability": 0.032 + }, + { + "start": 501.4, + "end": 503.62, + "probability": 0.2381 + }, + { + "start": 503.94, + "end": 505.68, + "probability": 0.2482 + }, + { + "start": 505.8, + "end": 507.9, + "probability": 0.7948 + }, + { + "start": 508.4, + "end": 512.76, + "probability": 0.8546 + }, + { + "start": 515.18, + "end": 517.26, + "probability": 0.8739 + }, + { + "start": 517.88, + "end": 522.28, + "probability": 0.9847 + }, + { + "start": 522.4, + "end": 525.02, + "probability": 0.6702 + }, + { + "start": 525.36, + "end": 531.24, + "probability": 0.7156 + }, + { + "start": 533.56, + "end": 537.54, + "probability": 0.9816 + }, + { + "start": 538.02, + "end": 539.92, + "probability": 0.5539 + }, + { + "start": 541.06, + "end": 543.06, + "probability": 0.8696 + }, + { + "start": 543.14, + "end": 544.86, + "probability": 0.969 + }, + { + "start": 545.26, + "end": 550.12, + "probability": 0.7337 + }, + { + "start": 550.12, + "end": 556.42, + "probability": 0.9278 + }, + { + "start": 557.0, + "end": 563.9, + "probability": 0.9457 + }, + { + "start": 564.92, + "end": 565.42, + "probability": 0.966 + }, + { + "start": 566.0, + "end": 568.18, + "probability": 0.9051 + }, + { + "start": 568.34, + "end": 571.16, + "probability": 0.7741 + }, + { + "start": 571.26, + "end": 572.63, + "probability": 0.9922 + }, + { + "start": 573.52, + "end": 576.26, + "probability": 0.9604 + }, + { + "start": 576.4, + "end": 577.11, + "probability": 0.2993 + }, + { + "start": 578.66, + "end": 579.38, + "probability": 0.6674 + }, + { + "start": 579.76, + "end": 585.06, + "probability": 0.8297 + }, + { + "start": 585.76, + "end": 591.46, + "probability": 0.9854 + }, + { + "start": 591.58, + "end": 594.42, + "probability": 0.9967 + }, + { + "start": 594.5, + "end": 595.24, + "probability": 0.9872 + }, + { + "start": 596.02, + "end": 597.7, + "probability": 0.7102 + }, + { + "start": 597.8, + "end": 598.8, + "probability": 0.7021 + }, + { + "start": 598.86, + "end": 600.1, + "probability": 0.8968 + }, + { + "start": 600.28, + "end": 600.96, + "probability": 0.7919 + }, + { + "start": 602.6, + "end": 603.5, + "probability": 0.3664 + }, + { + "start": 603.92, + "end": 607.36, + "probability": 0.8638 + }, + { + "start": 607.36, + "end": 610.24, + "probability": 0.9021 + }, + { + "start": 610.48, + "end": 612.2, + "probability": 0.969 + }, + { + "start": 613.04, + "end": 614.72, + "probability": 0.9142 + }, + { + "start": 616.54, + "end": 619.67, + "probability": 0.7264 + }, + { + "start": 621.6, + "end": 623.12, + "probability": 0.9194 + }, + { + "start": 623.12, + "end": 630.08, + "probability": 0.9658 + }, + { + "start": 630.08, + "end": 633.7, + "probability": 0.9952 + }, + { + "start": 633.9, + "end": 636.18, + "probability": 0.538 + }, + { + "start": 637.26, + "end": 640.92, + "probability": 0.582 + }, + { + "start": 641.1, + "end": 644.74, + "probability": 0.9795 + }, + { + "start": 645.7, + "end": 647.6, + "probability": 0.9583 + }, + { + "start": 647.68, + "end": 648.56, + "probability": 0.7625 + }, + { + "start": 650.81, + "end": 653.03, + "probability": 0.6299 + }, + { + "start": 655.08, + "end": 655.64, + "probability": 0.5108 + }, + { + "start": 656.9, + "end": 657.94, + "probability": 0.6701 + }, + { + "start": 658.5, + "end": 666.92, + "probability": 0.9329 + }, + { + "start": 668.12, + "end": 671.4, + "probability": 0.8687 + }, + { + "start": 673.22, + "end": 677.98, + "probability": 0.978 + }, + { + "start": 678.56, + "end": 680.94, + "probability": 0.8082 + }, + { + "start": 682.22, + "end": 685.16, + "probability": 0.9736 + }, + { + "start": 688.06, + "end": 692.84, + "probability": 0.9231 + }, + { + "start": 693.8, + "end": 695.08, + "probability": 0.7073 + }, + { + "start": 695.16, + "end": 696.8, + "probability": 0.9492 + }, + { + "start": 698.2, + "end": 701.26, + "probability": 0.9711 + }, + { + "start": 701.92, + "end": 703.28, + "probability": 0.9907 + }, + { + "start": 704.7, + "end": 710.28, + "probability": 0.7218 + }, + { + "start": 711.12, + "end": 712.98, + "probability": 0.9 + }, + { + "start": 714.72, + "end": 716.04, + "probability": 0.8621 + }, + { + "start": 720.84, + "end": 724.4, + "probability": 0.9332 + }, + { + "start": 728.82, + "end": 732.08, + "probability": 0.9865 + }, + { + "start": 732.72, + "end": 735.6, + "probability": 0.6982 + }, + { + "start": 735.68, + "end": 736.46, + "probability": 0.9622 + }, + { + "start": 737.23, + "end": 743.66, + "probability": 0.922 + }, + { + "start": 746.35, + "end": 747.14, + "probability": 0.4958 + }, + { + "start": 747.14, + "end": 747.66, + "probability": 0.1288 + }, + { + "start": 748.32, + "end": 749.92, + "probability": 0.737 + }, + { + "start": 750.9, + "end": 754.64, + "probability": 0.9235 + }, + { + "start": 755.42, + "end": 757.98, + "probability": 0.9008 + }, + { + "start": 758.92, + "end": 759.4, + "probability": 0.4004 + }, + { + "start": 759.44, + "end": 761.52, + "probability": 0.9814 + }, + { + "start": 761.52, + "end": 765.58, + "probability": 0.9844 + }, + { + "start": 766.52, + "end": 770.3, + "probability": 0.9263 + }, + { + "start": 772.02, + "end": 777.74, + "probability": 0.6187 + }, + { + "start": 778.4, + "end": 782.58, + "probability": 0.7968 + }, + { + "start": 782.64, + "end": 785.24, + "probability": 0.8919 + }, + { + "start": 785.92, + "end": 787.08, + "probability": 0.7429 + }, + { + "start": 787.24, + "end": 788.24, + "probability": 0.8133 + }, + { + "start": 788.32, + "end": 791.94, + "probability": 0.9539 + }, + { + "start": 791.94, + "end": 794.73, + "probability": 0.8094 + }, + { + "start": 795.46, + "end": 799.56, + "probability": 0.9332 + }, + { + "start": 800.24, + "end": 803.0, + "probability": 0.9993 + }, + { + "start": 804.06, + "end": 805.68, + "probability": 0.5789 + }, + { + "start": 805.78, + "end": 807.98, + "probability": 0.7741 + }, + { + "start": 809.28, + "end": 810.3, + "probability": 0.7316 + }, + { + "start": 810.96, + "end": 811.18, + "probability": 0.0958 + }, + { + "start": 811.5, + "end": 814.96, + "probability": 0.9541 + }, + { + "start": 815.46, + "end": 818.5, + "probability": 0.6469 + }, + { + "start": 819.78, + "end": 822.18, + "probability": 0.8729 + }, + { + "start": 822.32, + "end": 823.46, + "probability": 0.3926 + }, + { + "start": 824.12, + "end": 824.88, + "probability": 0.3269 + }, + { + "start": 824.94, + "end": 825.7, + "probability": 0.4736 + }, + { + "start": 826.06, + "end": 829.14, + "probability": 0.8515 + }, + { + "start": 829.84, + "end": 834.1, + "probability": 0.9219 + }, + { + "start": 834.22, + "end": 835.26, + "probability": 0.4279 + }, + { + "start": 835.28, + "end": 837.7, + "probability": 0.907 + }, + { + "start": 837.76, + "end": 838.52, + "probability": 0.7798 + }, + { + "start": 838.56, + "end": 839.32, + "probability": 0.5364 + }, + { + "start": 839.36, + "end": 839.54, + "probability": 0.3819 + }, + { + "start": 839.64, + "end": 840.92, + "probability": 0.9224 + }, + { + "start": 841.0, + "end": 842.98, + "probability": 0.7935 + }, + { + "start": 843.1, + "end": 843.64, + "probability": 0.4137 + }, + { + "start": 844.24, + "end": 845.3, + "probability": 0.8418 + }, + { + "start": 845.35, + "end": 845.58, + "probability": 0.1375 + }, + { + "start": 845.58, + "end": 846.86, + "probability": 0.3931 + }, + { + "start": 847.0, + "end": 847.92, + "probability": 0.9078 + }, + { + "start": 847.98, + "end": 850.18, + "probability": 0.3043 + }, + { + "start": 850.18, + "end": 850.92, + "probability": 0.8073 + }, + { + "start": 851.14, + "end": 851.64, + "probability": 0.699 + }, + { + "start": 851.72, + "end": 853.4, + "probability": 0.9917 + }, + { + "start": 854.02, + "end": 856.0, + "probability": 0.5812 + }, + { + "start": 856.2, + "end": 857.42, + "probability": 0.6771 + }, + { + "start": 858.08, + "end": 859.91, + "probability": 0.856 + }, + { + "start": 860.34, + "end": 860.42, + "probability": 0.4303 + }, + { + "start": 860.42, + "end": 860.84, + "probability": 0.1865 + }, + { + "start": 860.84, + "end": 861.05, + "probability": 0.2636 + }, + { + "start": 862.02, + "end": 862.6, + "probability": 0.5668 + }, + { + "start": 862.64, + "end": 863.28, + "probability": 0.7712 + }, + { + "start": 863.52, + "end": 866.52, + "probability": 0.8887 + }, + { + "start": 866.62, + "end": 868.34, + "probability": 0.9736 + }, + { + "start": 868.9, + "end": 870.94, + "probability": 0.5164 + }, + { + "start": 870.94, + "end": 871.56, + "probability": 0.5942 + }, + { + "start": 871.68, + "end": 875.32, + "probability": 0.968 + }, + { + "start": 875.82, + "end": 878.45, + "probability": 0.6622 + }, + { + "start": 878.94, + "end": 882.86, + "probability": 0.4123 + }, + { + "start": 882.86, + "end": 885.64, + "probability": 0.7405 + }, + { + "start": 886.12, + "end": 887.46, + "probability": 0.8983 + }, + { + "start": 887.53, + "end": 889.0, + "probability": 0.7484 + }, + { + "start": 889.08, + "end": 889.56, + "probability": 0.693 + }, + { + "start": 889.58, + "end": 890.51, + "probability": 0.9818 + }, + { + "start": 890.76, + "end": 896.88, + "probability": 0.8276 + }, + { + "start": 896.92, + "end": 897.44, + "probability": 0.5012 + }, + { + "start": 897.76, + "end": 898.25, + "probability": 0.001 + }, + { + "start": 898.54, + "end": 900.2, + "probability": 0.9957 + }, + { + "start": 900.36, + "end": 900.52, + "probability": 0.7574 + }, + { + "start": 900.56, + "end": 901.88, + "probability": 0.9521 + }, + { + "start": 901.88, + "end": 902.22, + "probability": 0.1979 + }, + { + "start": 902.22, + "end": 902.5, + "probability": 0.5017 + }, + { + "start": 902.58, + "end": 903.98, + "probability": 0.9336 + }, + { + "start": 903.98, + "end": 906.76, + "probability": 0.3859 + }, + { + "start": 906.76, + "end": 907.64, + "probability": 0.7725 + }, + { + "start": 907.72, + "end": 911.34, + "probability": 0.5135 + }, + { + "start": 911.42, + "end": 911.9, + "probability": 0.7116 + }, + { + "start": 912.66, + "end": 912.76, + "probability": 0.2813 + }, + { + "start": 913.02, + "end": 915.02, + "probability": 0.8041 + }, + { + "start": 915.16, + "end": 917.44, + "probability": 0.5624 + }, + { + "start": 917.44, + "end": 918.04, + "probability": 0.7407 + }, + { + "start": 918.12, + "end": 920.32, + "probability": 0.8784 + }, + { + "start": 921.16, + "end": 921.96, + "probability": 0.9537 + }, + { + "start": 922.04, + "end": 922.42, + "probability": 0.3169 + }, + { + "start": 922.66, + "end": 923.98, + "probability": 0.7211 + }, + { + "start": 924.34, + "end": 928.34, + "probability": 0.8825 + }, + { + "start": 928.42, + "end": 930.94, + "probability": 0.9868 + }, + { + "start": 931.16, + "end": 933.9, + "probability": 0.8506 + }, + { + "start": 934.34, + "end": 934.36, + "probability": 0.0789 + }, + { + "start": 934.36, + "end": 936.1, + "probability": 0.749 + }, + { + "start": 936.52, + "end": 939.1, + "probability": 0.9956 + }, + { + "start": 939.1, + "end": 941.88, + "probability": 0.9943 + }, + { + "start": 942.06, + "end": 943.8, + "probability": 0.9267 + }, + { + "start": 944.3, + "end": 944.58, + "probability": 0.5594 + }, + { + "start": 946.58, + "end": 947.84, + "probability": 0.5646 + }, + { + "start": 948.52, + "end": 951.62, + "probability": 0.9941 + }, + { + "start": 952.02, + "end": 955.34, + "probability": 0.9941 + }, + { + "start": 955.4, + "end": 956.46, + "probability": 0.8619 + }, + { + "start": 956.76, + "end": 961.24, + "probability": 0.9756 + }, + { + "start": 961.74, + "end": 962.52, + "probability": 0.4728 + }, + { + "start": 962.78, + "end": 964.2, + "probability": 0.9523 + }, + { + "start": 964.32, + "end": 966.38, + "probability": 0.9939 + }, + { + "start": 966.44, + "end": 967.7, + "probability": 0.824 + }, + { + "start": 968.26, + "end": 969.88, + "probability": 0.8729 + }, + { + "start": 969.96, + "end": 970.76, + "probability": 0.9585 + }, + { + "start": 971.04, + "end": 972.38, + "probability": 0.9849 + }, + { + "start": 972.6, + "end": 979.02, + "probability": 0.9766 + }, + { + "start": 979.34, + "end": 981.3, + "probability": 0.8539 + }, + { + "start": 981.42, + "end": 983.38, + "probability": 0.9512 + }, + { + "start": 983.78, + "end": 984.26, + "probability": 0.7682 + }, + { + "start": 984.34, + "end": 984.76, + "probability": 0.4325 + }, + { + "start": 984.78, + "end": 985.36, + "probability": 0.8037 + }, + { + "start": 985.42, + "end": 989.64, + "probability": 0.9648 + }, + { + "start": 989.64, + "end": 992.16, + "probability": 0.7331 + }, + { + "start": 992.2, + "end": 993.84, + "probability": 0.9066 + }, + { + "start": 993.84, + "end": 997.96, + "probability": 0.9045 + }, + { + "start": 998.48, + "end": 1000.92, + "probability": 0.9246 + }, + { + "start": 1005.6, + "end": 1006.4, + "probability": 0.5982 + }, + { + "start": 1006.56, + "end": 1007.14, + "probability": 0.854 + }, + { + "start": 1007.26, + "end": 1008.22, + "probability": 0.901 + }, + { + "start": 1008.64, + "end": 1008.8, + "probability": 0.5847 + }, + { + "start": 1008.9, + "end": 1009.83, + "probability": 0.9109 + }, + { + "start": 1010.4, + "end": 1012.3, + "probability": 0.9607 + }, + { + "start": 1012.82, + "end": 1014.42, + "probability": 0.4482 + }, + { + "start": 1014.42, + "end": 1014.52, + "probability": 0.4964 + }, + { + "start": 1015.28, + "end": 1017.1, + "probability": 0.8102 + }, + { + "start": 1017.78, + "end": 1019.28, + "probability": 0.9569 + }, + { + "start": 1019.38, + "end": 1021.98, + "probability": 0.9691 + }, + { + "start": 1022.52, + "end": 1028.16, + "probability": 0.9801 + }, + { + "start": 1029.06, + "end": 1032.1, + "probability": 0.791 + }, + { + "start": 1033.26, + "end": 1039.98, + "probability": 0.7509 + }, + { + "start": 1040.34, + "end": 1042.85, + "probability": 0.7175 + }, + { + "start": 1043.36, + "end": 1043.72, + "probability": 0.3894 + }, + { + "start": 1043.78, + "end": 1045.74, + "probability": 0.6709 + }, + { + "start": 1045.9, + "end": 1046.52, + "probability": 0.2649 + }, + { + "start": 1046.54, + "end": 1047.48, + "probability": 0.9018 + }, + { + "start": 1047.96, + "end": 1049.29, + "probability": 0.6803 + }, + { + "start": 1049.86, + "end": 1053.8, + "probability": 0.8436 + }, + { + "start": 1054.12, + "end": 1056.92, + "probability": 0.8236 + }, + { + "start": 1057.14, + "end": 1058.62, + "probability": 0.8314 + }, + { + "start": 1058.92, + "end": 1061.18, + "probability": 0.5403 + }, + { + "start": 1062.2, + "end": 1062.2, + "probability": 0.4643 + }, + { + "start": 1062.2, + "end": 1062.66, + "probability": 0.3827 + }, + { + "start": 1062.94, + "end": 1066.14, + "probability": 0.6689 + }, + { + "start": 1066.52, + "end": 1068.74, + "probability": 0.7801 + }, + { + "start": 1069.58, + "end": 1071.43, + "probability": 0.9229 + }, + { + "start": 1071.52, + "end": 1073.12, + "probability": 0.989 + }, + { + "start": 1073.38, + "end": 1074.18, + "probability": 0.9907 + }, + { + "start": 1074.58, + "end": 1078.72, + "probability": 0.9956 + }, + { + "start": 1078.72, + "end": 1083.7, + "probability": 0.9293 + }, + { + "start": 1083.84, + "end": 1085.31, + "probability": 0.9531 + }, + { + "start": 1085.98, + "end": 1088.82, + "probability": 0.7528 + }, + { + "start": 1089.12, + "end": 1090.3, + "probability": 0.7869 + }, + { + "start": 1096.3, + "end": 1096.88, + "probability": 0.8479 + }, + { + "start": 1097.02, + "end": 1099.68, + "probability": 0.8963 + }, + { + "start": 1099.78, + "end": 1101.5, + "probability": 0.9854 + }, + { + "start": 1102.2, + "end": 1102.36, + "probability": 0.5347 + }, + { + "start": 1102.6, + "end": 1103.52, + "probability": 0.9291 + }, + { + "start": 1103.98, + "end": 1106.98, + "probability": 0.988 + }, + { + "start": 1107.22, + "end": 1108.38, + "probability": 0.6424 + }, + { + "start": 1108.98, + "end": 1112.66, + "probability": 0.8821 + }, + { + "start": 1112.66, + "end": 1117.56, + "probability": 0.8637 + }, + { + "start": 1117.92, + "end": 1120.16, + "probability": 0.8752 + }, + { + "start": 1121.46, + "end": 1124.52, + "probability": 0.9898 + }, + { + "start": 1125.02, + "end": 1127.25, + "probability": 0.9581 + }, + { + "start": 1128.08, + "end": 1132.24, + "probability": 0.9934 + }, + { + "start": 1132.5, + "end": 1137.06, + "probability": 0.9986 + }, + { + "start": 1137.28, + "end": 1138.78, + "probability": 0.4855 + }, + { + "start": 1138.86, + "end": 1139.48, + "probability": 0.9282 + }, + { + "start": 1139.56, + "end": 1141.62, + "probability": 0.9927 + }, + { + "start": 1142.1, + "end": 1142.28, + "probability": 0.4982 + }, + { + "start": 1142.28, + "end": 1144.58, + "probability": 0.7314 + }, + { + "start": 1144.64, + "end": 1146.46, + "probability": 0.6218 + }, + { + "start": 1147.24, + "end": 1150.84, + "probability": 0.8174 + }, + { + "start": 1151.4, + "end": 1151.96, + "probability": 0.795 + }, + { + "start": 1152.94, + "end": 1158.82, + "probability": 0.9481 + }, + { + "start": 1159.54, + "end": 1160.5, + "probability": 0.5785 + }, + { + "start": 1160.58, + "end": 1161.78, + "probability": 0.9816 + }, + { + "start": 1162.06, + "end": 1163.04, + "probability": 0.939 + }, + { + "start": 1163.36, + "end": 1165.26, + "probability": 0.9907 + }, + { + "start": 1165.26, + "end": 1169.24, + "probability": 0.9967 + }, + { + "start": 1169.74, + "end": 1172.6, + "probability": 0.815 + }, + { + "start": 1173.0, + "end": 1173.56, + "probability": 0.9335 + }, + { + "start": 1173.64, + "end": 1174.5, + "probability": 0.8159 + }, + { + "start": 1175.0, + "end": 1178.88, + "probability": 0.9718 + }, + { + "start": 1178.88, + "end": 1181.7, + "probability": 0.9955 + }, + { + "start": 1182.36, + "end": 1187.5, + "probability": 0.9976 + }, + { + "start": 1188.2, + "end": 1189.54, + "probability": 0.9009 + }, + { + "start": 1189.64, + "end": 1190.82, + "probability": 0.9788 + }, + { + "start": 1190.88, + "end": 1191.98, + "probability": 0.8385 + }, + { + "start": 1192.42, + "end": 1193.67, + "probability": 0.9897 + }, + { + "start": 1194.94, + "end": 1195.7, + "probability": 0.8955 + }, + { + "start": 1195.92, + "end": 1198.14, + "probability": 0.764 + }, + { + "start": 1198.6, + "end": 1200.4, + "probability": 0.8616 + }, + { + "start": 1200.52, + "end": 1203.34, + "probability": 0.113 + }, + { + "start": 1203.34, + "end": 1206.04, + "probability": 0.5752 + }, + { + "start": 1206.24, + "end": 1207.52, + "probability": 0.2205 + }, + { + "start": 1207.52, + "end": 1207.52, + "probability": 0.2252 + }, + { + "start": 1207.52, + "end": 1209.52, + "probability": 0.9956 + }, + { + "start": 1209.54, + "end": 1216.04, + "probability": 0.9475 + }, + { + "start": 1216.4, + "end": 1221.72, + "probability": 0.9893 + }, + { + "start": 1222.26, + "end": 1223.94, + "probability": 0.991 + }, + { + "start": 1224.44, + "end": 1227.16, + "probability": 0.991 + }, + { + "start": 1227.3, + "end": 1228.16, + "probability": 0.7042 + }, + { + "start": 1228.54, + "end": 1230.66, + "probability": 0.8761 + }, + { + "start": 1230.66, + "end": 1230.86, + "probability": 0.3491 + }, + { + "start": 1230.98, + "end": 1233.98, + "probability": 0.9915 + }, + { + "start": 1233.98, + "end": 1236.38, + "probability": 0.9957 + }, + { + "start": 1237.0, + "end": 1238.92, + "probability": 0.8472 + }, + { + "start": 1239.0, + "end": 1239.92, + "probability": 0.8865 + }, + { + "start": 1247.04, + "end": 1248.48, + "probability": 0.8094 + }, + { + "start": 1248.92, + "end": 1250.06, + "probability": 0.8772 + }, + { + "start": 1250.26, + "end": 1250.8, + "probability": 0.1637 + }, + { + "start": 1250.88, + "end": 1251.43, + "probability": 0.9829 + }, + { + "start": 1251.94, + "end": 1252.96, + "probability": 0.717 + }, + { + "start": 1253.5, + "end": 1254.1, + "probability": 0.967 + }, + { + "start": 1254.61, + "end": 1255.71, + "probability": 0.8965 + }, + { + "start": 1256.98, + "end": 1261.1, + "probability": 0.9243 + }, + { + "start": 1261.14, + "end": 1262.16, + "probability": 0.879 + }, + { + "start": 1262.26, + "end": 1266.1, + "probability": 0.9957 + }, + { + "start": 1266.72, + "end": 1267.84, + "probability": 0.8513 + }, + { + "start": 1268.24, + "end": 1270.12, + "probability": 0.9224 + }, + { + "start": 1270.2, + "end": 1270.72, + "probability": 0.7356 + }, + { + "start": 1270.88, + "end": 1273.12, + "probability": 0.7054 + }, + { + "start": 1273.18, + "end": 1274.58, + "probability": 0.7083 + }, + { + "start": 1274.84, + "end": 1277.58, + "probability": 0.9715 + }, + { + "start": 1277.86, + "end": 1280.32, + "probability": 0.9816 + }, + { + "start": 1282.53, + "end": 1287.74, + "probability": 0.7387 + }, + { + "start": 1289.22, + "end": 1294.0, + "probability": 0.9044 + }, + { + "start": 1294.54, + "end": 1295.7, + "probability": 0.7587 + }, + { + "start": 1297.18, + "end": 1298.32, + "probability": 0.209 + }, + { + "start": 1298.84, + "end": 1299.56, + "probability": 0.7505 + }, + { + "start": 1299.8, + "end": 1301.08, + "probability": 0.8772 + }, + { + "start": 1301.26, + "end": 1308.02, + "probability": 0.675 + }, + { + "start": 1309.02, + "end": 1310.0, + "probability": 0.7061 + }, + { + "start": 1310.06, + "end": 1312.8, + "probability": 0.9784 + }, + { + "start": 1313.02, + "end": 1314.42, + "probability": 0.8352 + }, + { + "start": 1315.06, + "end": 1316.7, + "probability": 0.8736 + }, + { + "start": 1316.72, + "end": 1317.5, + "probability": 0.9514 + }, + { + "start": 1317.88, + "end": 1321.3, + "probability": 0.9064 + }, + { + "start": 1321.78, + "end": 1322.04, + "probability": 0.868 + }, + { + "start": 1322.16, + "end": 1323.7, + "probability": 0.96 + }, + { + "start": 1323.96, + "end": 1324.58, + "probability": 0.8597 + }, + { + "start": 1325.02, + "end": 1325.88, + "probability": 0.5765 + }, + { + "start": 1326.24, + "end": 1330.28, + "probability": 0.8997 + }, + { + "start": 1330.38, + "end": 1332.06, + "probability": 0.9424 + }, + { + "start": 1332.28, + "end": 1333.72, + "probability": 0.7568 + }, + { + "start": 1333.8, + "end": 1334.48, + "probability": 0.733 + }, + { + "start": 1334.94, + "end": 1338.26, + "probability": 0.9985 + }, + { + "start": 1338.6, + "end": 1339.98, + "probability": 0.9935 + }, + { + "start": 1340.68, + "end": 1343.46, + "probability": 0.7608 + }, + { + "start": 1344.08, + "end": 1344.42, + "probability": 0.8202 + }, + { + "start": 1344.56, + "end": 1347.52, + "probability": 0.994 + }, + { + "start": 1347.64, + "end": 1349.4, + "probability": 0.7637 + }, + { + "start": 1350.3, + "end": 1350.3, + "probability": 0.3257 + }, + { + "start": 1356.1, + "end": 1356.54, + "probability": 0.0448 + }, + { + "start": 1356.54, + "end": 1358.52, + "probability": 0.5737 + }, + { + "start": 1358.64, + "end": 1362.86, + "probability": 0.9921 + }, + { + "start": 1363.46, + "end": 1364.6, + "probability": 0.8196 + }, + { + "start": 1364.66, + "end": 1367.24, + "probability": 0.6422 + }, + { + "start": 1367.24, + "end": 1368.92, + "probability": 0.9985 + }, + { + "start": 1369.6, + "end": 1370.64, + "probability": 0.8865 + }, + { + "start": 1370.86, + "end": 1372.3, + "probability": 0.7098 + }, + { + "start": 1372.48, + "end": 1372.98, + "probability": 0.8065 + }, + { + "start": 1373.08, + "end": 1375.24, + "probability": 0.9107 + }, + { + "start": 1375.4, + "end": 1376.88, + "probability": 0.9688 + }, + { + "start": 1377.58, + "end": 1380.22, + "probability": 0.9846 + }, + { + "start": 1380.3, + "end": 1381.92, + "probability": 0.981 + }, + { + "start": 1382.32, + "end": 1384.6, + "probability": 0.9112 + }, + { + "start": 1384.74, + "end": 1388.1, + "probability": 0.9904 + }, + { + "start": 1388.72, + "end": 1393.74, + "probability": 0.9525 + }, + { + "start": 1394.68, + "end": 1397.82, + "probability": 0.7374 + }, + { + "start": 1399.54, + "end": 1400.14, + "probability": 0.9458 + }, + { + "start": 1400.82, + "end": 1402.64, + "probability": 0.9966 + }, + { + "start": 1403.28, + "end": 1405.04, + "probability": 0.7523 + }, + { + "start": 1407.34, + "end": 1411.43, + "probability": 0.8235 + }, + { + "start": 1412.24, + "end": 1413.84, + "probability": 0.7295 + }, + { + "start": 1414.06, + "end": 1415.4, + "probability": 0.6579 + }, + { + "start": 1416.24, + "end": 1417.26, + "probability": 0.8645 + }, + { + "start": 1417.32, + "end": 1418.4, + "probability": 0.9161 + }, + { + "start": 1418.42, + "end": 1418.74, + "probability": 0.8079 + }, + { + "start": 1418.78, + "end": 1419.72, + "probability": 0.9038 + }, + { + "start": 1419.86, + "end": 1421.06, + "probability": 0.9544 + }, + { + "start": 1421.74, + "end": 1427.92, + "probability": 0.8741 + }, + { + "start": 1428.86, + "end": 1431.67, + "probability": 0.7196 + }, + { + "start": 1431.8, + "end": 1433.68, + "probability": 0.771 + }, + { + "start": 1434.1, + "end": 1435.62, + "probability": 0.8884 + }, + { + "start": 1435.74, + "end": 1438.0, + "probability": 0.4977 + }, + { + "start": 1438.52, + "end": 1439.2, + "probability": 0.6588 + }, + { + "start": 1439.9, + "end": 1444.06, + "probability": 0.9292 + }, + { + "start": 1444.96, + "end": 1447.02, + "probability": 0.5859 + }, + { + "start": 1447.3, + "end": 1448.14, + "probability": 0.9197 + }, + { + "start": 1448.46, + "end": 1449.6, + "probability": 0.9141 + }, + { + "start": 1450.04, + "end": 1450.96, + "probability": 0.7935 + }, + { + "start": 1451.04, + "end": 1452.6, + "probability": 0.9777 + }, + { + "start": 1452.98, + "end": 1455.32, + "probability": 0.6382 + }, + { + "start": 1455.36, + "end": 1455.46, + "probability": 0.9456 + }, + { + "start": 1456.62, + "end": 1459.72, + "probability": 0.9501 + }, + { + "start": 1460.06, + "end": 1463.06, + "probability": 0.9941 + }, + { + "start": 1463.24, + "end": 1463.87, + "probability": 0.908 + }, + { + "start": 1464.44, + "end": 1468.36, + "probability": 0.8878 + }, + { + "start": 1468.84, + "end": 1471.2, + "probability": 0.9827 + }, + { + "start": 1471.78, + "end": 1473.52, + "probability": 0.8955 + }, + { + "start": 1474.12, + "end": 1477.7, + "probability": 0.957 + }, + { + "start": 1477.86, + "end": 1480.54, + "probability": 0.9142 + }, + { + "start": 1481.22, + "end": 1481.7, + "probability": 0.9725 + }, + { + "start": 1484.32, + "end": 1487.72, + "probability": 0.9434 + }, + { + "start": 1488.38, + "end": 1494.58, + "probability": 0.9832 + }, + { + "start": 1494.96, + "end": 1496.46, + "probability": 0.9532 + }, + { + "start": 1497.04, + "end": 1502.54, + "probability": 0.9822 + }, + { + "start": 1502.56, + "end": 1505.2, + "probability": 0.5308 + }, + { + "start": 1505.5, + "end": 1505.5, + "probability": 0.1917 + }, + { + "start": 1505.5, + "end": 1507.06, + "probability": 0.5244 + }, + { + "start": 1507.22, + "end": 1508.7, + "probability": 0.9976 + }, + { + "start": 1508.98, + "end": 1513.84, + "probability": 0.9272 + }, + { + "start": 1514.62, + "end": 1517.58, + "probability": 0.8628 + }, + { + "start": 1518.02, + "end": 1521.36, + "probability": 0.8762 + }, + { + "start": 1521.96, + "end": 1523.84, + "probability": 0.9941 + }, + { + "start": 1524.52, + "end": 1528.06, + "probability": 0.9551 + }, + { + "start": 1528.32, + "end": 1529.58, + "probability": 0.7676 + }, + { + "start": 1529.78, + "end": 1531.04, + "probability": 0.9103 + }, + { + "start": 1531.48, + "end": 1534.36, + "probability": 0.9652 + }, + { + "start": 1535.4, + "end": 1535.5, + "probability": 0.1401 + }, + { + "start": 1535.64, + "end": 1535.76, + "probability": 0.5219 + }, + { + "start": 1535.76, + "end": 1539.02, + "probability": 0.2914 + }, + { + "start": 1539.65, + "end": 1542.88, + "probability": 0.2971 + }, + { + "start": 1543.02, + "end": 1544.0, + "probability": 0.8177 + }, + { + "start": 1545.08, + "end": 1548.18, + "probability": 0.0892 + }, + { + "start": 1548.4, + "end": 1548.47, + "probability": 0.046 + }, + { + "start": 1550.02, + "end": 1550.96, + "probability": 0.0308 + }, + { + "start": 1550.96, + "end": 1550.98, + "probability": 0.0234 + }, + { + "start": 1550.98, + "end": 1551.98, + "probability": 0.2185 + }, + { + "start": 1552.06, + "end": 1556.78, + "probability": 0.3076 + }, + { + "start": 1556.78, + "end": 1557.86, + "probability": 0.3284 + }, + { + "start": 1558.34, + "end": 1559.22, + "probability": 0.3615 + }, + { + "start": 1559.3, + "end": 1560.78, + "probability": 0.7354 + }, + { + "start": 1561.08, + "end": 1562.04, + "probability": 0.8615 + }, + { + "start": 1562.08, + "end": 1563.4, + "probability": 0.8779 + }, + { + "start": 1563.44, + "end": 1564.97, + "probability": 0.6777 + }, + { + "start": 1565.54, + "end": 1567.05, + "probability": 0.9403 + }, + { + "start": 1567.44, + "end": 1569.1, + "probability": 0.9763 + }, + { + "start": 1569.3, + "end": 1572.26, + "probability": 0.7256 + }, + { + "start": 1572.6, + "end": 1575.64, + "probability": 0.6606 + }, + { + "start": 1578.22, + "end": 1580.26, + "probability": 0.7913 + }, + { + "start": 1582.78, + "end": 1585.96, + "probability": 0.9968 + }, + { + "start": 1585.98, + "end": 1587.52, + "probability": 0.9621 + }, + { + "start": 1587.7, + "end": 1590.14, + "probability": 0.8717 + }, + { + "start": 1590.34, + "end": 1592.17, + "probability": 0.7402 + }, + { + "start": 1593.12, + "end": 1594.36, + "probability": 0.7844 + }, + { + "start": 1595.76, + "end": 1600.74, + "probability": 0.9535 + }, + { + "start": 1600.96, + "end": 1602.74, + "probability": 0.7337 + }, + { + "start": 1603.46, + "end": 1608.64, + "probability": 0.9092 + }, + { + "start": 1609.26, + "end": 1611.61, + "probability": 0.7533 + }, + { + "start": 1612.36, + "end": 1614.6, + "probability": 0.8644 + }, + { + "start": 1614.62, + "end": 1621.6, + "probability": 0.9893 + }, + { + "start": 1622.86, + "end": 1624.94, + "probability": 0.8198 + }, + { + "start": 1624.98, + "end": 1627.24, + "probability": 0.8501 + }, + { + "start": 1627.78, + "end": 1628.72, + "probability": 0.7813 + }, + { + "start": 1628.86, + "end": 1629.38, + "probability": 0.9063 + }, + { + "start": 1629.54, + "end": 1630.56, + "probability": 0.87 + }, + { + "start": 1630.64, + "end": 1631.42, + "probability": 0.6802 + }, + { + "start": 1632.18, + "end": 1635.74, + "probability": 0.9578 + }, + { + "start": 1636.42, + "end": 1637.26, + "probability": 0.9812 + }, + { + "start": 1637.9, + "end": 1640.58, + "probability": 0.539 + }, + { + "start": 1641.26, + "end": 1641.78, + "probability": 0.4202 + }, + { + "start": 1642.78, + "end": 1645.62, + "probability": 0.9915 + }, + { + "start": 1645.86, + "end": 1647.38, + "probability": 0.8624 + }, + { + "start": 1648.28, + "end": 1651.1, + "probability": 0.9969 + }, + { + "start": 1651.76, + "end": 1653.36, + "probability": 0.9802 + }, + { + "start": 1653.9, + "end": 1656.66, + "probability": 0.9601 + }, + { + "start": 1656.66, + "end": 1660.46, + "probability": 0.9899 + }, + { + "start": 1661.0, + "end": 1665.52, + "probability": 0.9883 + }, + { + "start": 1666.14, + "end": 1667.58, + "probability": 0.9916 + }, + { + "start": 1668.36, + "end": 1671.2, + "probability": 0.6502 + }, + { + "start": 1672.0, + "end": 1672.24, + "probability": 0.818 + }, + { + "start": 1672.38, + "end": 1675.74, + "probability": 0.9958 + }, + { + "start": 1677.1, + "end": 1679.86, + "probability": 0.9963 + }, + { + "start": 1680.58, + "end": 1681.48, + "probability": 0.6643 + }, + { + "start": 1682.64, + "end": 1684.56, + "probability": 0.9776 + }, + { + "start": 1685.34, + "end": 1687.0, + "probability": 0.9891 + }, + { + "start": 1687.58, + "end": 1688.76, + "probability": 0.8857 + }, + { + "start": 1689.02, + "end": 1691.5, + "probability": 0.9901 + }, + { + "start": 1692.4, + "end": 1695.54, + "probability": 0.8337 + }, + { + "start": 1696.58, + "end": 1699.06, + "probability": 0.9039 + }, + { + "start": 1699.66, + "end": 1703.46, + "probability": 0.8821 + }, + { + "start": 1704.14, + "end": 1706.36, + "probability": 0.9928 + }, + { + "start": 1707.06, + "end": 1708.92, + "probability": 0.9293 + }, + { + "start": 1709.62, + "end": 1711.18, + "probability": 0.9964 + }, + { + "start": 1711.96, + "end": 1712.61, + "probability": 0.936 + }, + { + "start": 1713.86, + "end": 1720.86, + "probability": 0.9637 + }, + { + "start": 1721.64, + "end": 1722.57, + "probability": 0.9956 + }, + { + "start": 1723.44, + "end": 1725.68, + "probability": 0.8779 + }, + { + "start": 1726.02, + "end": 1728.16, + "probability": 0.9552 + }, + { + "start": 1728.58, + "end": 1730.28, + "probability": 0.978 + }, + { + "start": 1730.46, + "end": 1732.86, + "probability": 0.9888 + }, + { + "start": 1733.34, + "end": 1736.16, + "probability": 0.9811 + }, + { + "start": 1736.82, + "end": 1738.18, + "probability": 0.7983 + }, + { + "start": 1738.7, + "end": 1741.36, + "probability": 0.8399 + }, + { + "start": 1741.88, + "end": 1743.2, + "probability": 0.9541 + }, + { + "start": 1743.88, + "end": 1746.7, + "probability": 0.9543 + }, + { + "start": 1747.2, + "end": 1749.48, + "probability": 0.9864 + }, + { + "start": 1750.58, + "end": 1752.86, + "probability": 0.6695 + }, + { + "start": 1752.96, + "end": 1755.14, + "probability": 0.8066 + }, + { + "start": 1755.96, + "end": 1757.66, + "probability": 0.3804 + }, + { + "start": 1757.78, + "end": 1760.5, + "probability": 0.8674 + }, + { + "start": 1760.58, + "end": 1761.1, + "probability": 0.8887 + }, + { + "start": 1762.52, + "end": 1762.84, + "probability": 0.4538 + }, + { + "start": 1762.94, + "end": 1763.48, + "probability": 0.8134 + }, + { + "start": 1763.64, + "end": 1768.28, + "probability": 0.9351 + }, + { + "start": 1768.92, + "end": 1770.5, + "probability": 0.9254 + }, + { + "start": 1771.64, + "end": 1774.8, + "probability": 0.9889 + }, + { + "start": 1775.38, + "end": 1780.16, + "probability": 0.9296 + }, + { + "start": 1780.58, + "end": 1784.02, + "probability": 0.8356 + }, + { + "start": 1785.0, + "end": 1789.56, + "probability": 0.9111 + }, + { + "start": 1789.56, + "end": 1796.76, + "probability": 0.9919 + }, + { + "start": 1796.94, + "end": 1800.22, + "probability": 0.9792 + }, + { + "start": 1800.78, + "end": 1800.94, + "probability": 0.5489 + }, + { + "start": 1801.04, + "end": 1804.52, + "probability": 0.9956 + }, + { + "start": 1804.6, + "end": 1810.24, + "probability": 0.9958 + }, + { + "start": 1810.68, + "end": 1811.3, + "probability": 0.799 + }, + { + "start": 1811.42, + "end": 1817.14, + "probability": 0.9875 + }, + { + "start": 1817.46, + "end": 1818.7, + "probability": 0.9137 + }, + { + "start": 1819.72, + "end": 1824.48, + "probability": 0.9899 + }, + { + "start": 1824.76, + "end": 1828.85, + "probability": 0.9716 + }, + { + "start": 1829.4, + "end": 1832.14, + "probability": 0.9352 + }, + { + "start": 1832.5, + "end": 1833.74, + "probability": 0.9927 + }, + { + "start": 1833.74, + "end": 1834.7, + "probability": 0.6842 + }, + { + "start": 1834.84, + "end": 1837.24, + "probability": 0.9042 + }, + { + "start": 1837.4, + "end": 1843.3, + "probability": 0.9489 + }, + { + "start": 1843.98, + "end": 1845.82, + "probability": 0.759 + }, + { + "start": 1846.06, + "end": 1849.18, + "probability": 0.9374 + }, + { + "start": 1849.56, + "end": 1851.32, + "probability": 0.5545 + }, + { + "start": 1851.32, + "end": 1851.32, + "probability": 0.0613 + }, + { + "start": 1851.32, + "end": 1852.62, + "probability": 0.8811 + }, + { + "start": 1853.14, + "end": 1854.68, + "probability": 0.9674 + }, + { + "start": 1855.56, + "end": 1860.48, + "probability": 0.7487 + }, + { + "start": 1860.48, + "end": 1863.66, + "probability": 0.9893 + }, + { + "start": 1865.16, + "end": 1869.56, + "probability": 0.9976 + }, + { + "start": 1870.52, + "end": 1877.9, + "probability": 0.9818 + }, + { + "start": 1877.9, + "end": 1883.4, + "probability": 0.9968 + }, + { + "start": 1884.4, + "end": 1887.82, + "probability": 0.9934 + }, + { + "start": 1888.88, + "end": 1890.06, + "probability": 0.6919 + }, + { + "start": 1890.2, + "end": 1893.48, + "probability": 0.8896 + }, + { + "start": 1893.58, + "end": 1899.16, + "probability": 0.789 + }, + { + "start": 1899.88, + "end": 1906.38, + "probability": 0.9823 + }, + { + "start": 1906.96, + "end": 1908.06, + "probability": 0.8945 + }, + { + "start": 1908.38, + "end": 1908.9, + "probability": 0.4255 + }, + { + "start": 1908.98, + "end": 1909.4, + "probability": 0.7159 + }, + { + "start": 1909.52, + "end": 1910.68, + "probability": 0.9807 + }, + { + "start": 1910.68, + "end": 1912.26, + "probability": 0.9793 + }, + { + "start": 1912.36, + "end": 1913.38, + "probability": 0.6593 + }, + { + "start": 1913.46, + "end": 1913.58, + "probability": 0.6033 + }, + { + "start": 1913.66, + "end": 1914.26, + "probability": 0.7369 + }, + { + "start": 1914.42, + "end": 1915.48, + "probability": 0.8452 + }, + { + "start": 1915.52, + "end": 1917.24, + "probability": 0.903 + }, + { + "start": 1917.76, + "end": 1920.08, + "probability": 0.977 + }, + { + "start": 1920.42, + "end": 1922.64, + "probability": 0.8022 + }, + { + "start": 1923.0, + "end": 1924.53, + "probability": 0.9302 + }, + { + "start": 1925.18, + "end": 1928.88, + "probability": 0.9353 + }, + { + "start": 1929.28, + "end": 1931.48, + "probability": 0.9709 + }, + { + "start": 1931.78, + "end": 1934.04, + "probability": 0.7388 + }, + { + "start": 1934.56, + "end": 1936.46, + "probability": 0.0082 + }, + { + "start": 1936.46, + "end": 1937.1, + "probability": 0.3792 + }, + { + "start": 1937.84, + "end": 1939.9, + "probability": 0.9033 + }, + { + "start": 1940.0, + "end": 1940.62, + "probability": 0.4173 + }, + { + "start": 1940.78, + "end": 1941.81, + "probability": 0.7939 + }, + { + "start": 1942.36, + "end": 1946.14, + "probability": 0.8879 + }, + { + "start": 1946.18, + "end": 1946.5, + "probability": 0.7787 + }, + { + "start": 1946.58, + "end": 1947.8, + "probability": 0.7296 + }, + { + "start": 1948.4, + "end": 1952.66, + "probability": 0.9446 + }, + { + "start": 1953.14, + "end": 1956.16, + "probability": 0.9866 + }, + { + "start": 1956.42, + "end": 1957.54, + "probability": 0.7036 + }, + { + "start": 1957.54, + "end": 1958.0, + "probability": 0.3286 + }, + { + "start": 1958.04, + "end": 1959.18, + "probability": 0.8599 + }, + { + "start": 1959.46, + "end": 1962.23, + "probability": 0.9548 + }, + { + "start": 1962.56, + "end": 1962.56, + "probability": 0.2375 + }, + { + "start": 1962.56, + "end": 1964.03, + "probability": 0.7844 + }, + { + "start": 1964.7, + "end": 1968.82, + "probability": 0.9153 + }, + { + "start": 1969.16, + "end": 1970.06, + "probability": 0.5619 + }, + { + "start": 1970.06, + "end": 1970.36, + "probability": 0.3615 + }, + { + "start": 1970.56, + "end": 1971.44, + "probability": 0.6203 + }, + { + "start": 1971.58, + "end": 1973.42, + "probability": 0.9314 + }, + { + "start": 1973.64, + "end": 1974.46, + "probability": 0.6213 + }, + { + "start": 1975.16, + "end": 1975.86, + "probability": 0.4416 + }, + { + "start": 1976.02, + "end": 1976.2, + "probability": 0.1185 + }, + { + "start": 1976.2, + "end": 1976.2, + "probability": 0.0677 + }, + { + "start": 1976.2, + "end": 1976.2, + "probability": 0.3964 + }, + { + "start": 1976.2, + "end": 1976.76, + "probability": 0.4149 + }, + { + "start": 1977.58, + "end": 1981.34, + "probability": 0.9321 + }, + { + "start": 1982.34, + "end": 1983.88, + "probability": 0.8277 + }, + { + "start": 1983.98, + "end": 1986.02, + "probability": 0.6851 + }, + { + "start": 1986.64, + "end": 1989.54, + "probability": 0.7863 + }, + { + "start": 1989.62, + "end": 1990.39, + "probability": 0.9806 + }, + { + "start": 1990.78, + "end": 1991.74, + "probability": 0.6316 + }, + { + "start": 1992.34, + "end": 1992.56, + "probability": 0.9491 + }, + { + "start": 1992.68, + "end": 1993.48, + "probability": 0.6566 + }, + { + "start": 1993.56, + "end": 1998.36, + "probability": 0.9254 + }, + { + "start": 1999.4, + "end": 2002.12, + "probability": 0.9816 + }, + { + "start": 2002.76, + "end": 2003.94, + "probability": 0.9709 + }, + { + "start": 2005.64, + "end": 2005.72, + "probability": 0.1582 + }, + { + "start": 2005.72, + "end": 2005.72, + "probability": 0.0707 + }, + { + "start": 2005.72, + "end": 2009.24, + "probability": 0.8652 + }, + { + "start": 2009.26, + "end": 2012.88, + "probability": 0.3839 + }, + { + "start": 2013.1, + "end": 2017.66, + "probability": 0.8971 + }, + { + "start": 2018.22, + "end": 2019.88, + "probability": 0.7359 + }, + { + "start": 2019.98, + "end": 2021.34, + "probability": 0.4054 + }, + { + "start": 2022.02, + "end": 2023.7, + "probability": 0.9926 + }, + { + "start": 2024.56, + "end": 2025.06, + "probability": 0.9 + }, + { + "start": 2025.12, + "end": 2025.88, + "probability": 0.4594 + }, + { + "start": 2025.96, + "end": 2028.44, + "probability": 0.8401 + }, + { + "start": 2028.44, + "end": 2031.58, + "probability": 0.9989 + }, + { + "start": 2031.96, + "end": 2033.61, + "probability": 0.9897 + }, + { + "start": 2034.0, + "end": 2034.6, + "probability": 0.7448 + }, + { + "start": 2035.06, + "end": 2036.08, + "probability": 0.9502 + }, + { + "start": 2036.1, + "end": 2036.62, + "probability": 0.9737 + }, + { + "start": 2036.68, + "end": 2037.06, + "probability": 0.9807 + }, + { + "start": 2037.14, + "end": 2037.72, + "probability": 0.8476 + }, + { + "start": 2037.82, + "end": 2038.5, + "probability": 0.8377 + }, + { + "start": 2038.96, + "end": 2039.64, + "probability": 0.7573 + }, + { + "start": 2040.36, + "end": 2042.46, + "probability": 0.9825 + }, + { + "start": 2042.96, + "end": 2045.22, + "probability": 0.9915 + }, + { + "start": 2045.98, + "end": 2047.12, + "probability": 0.769 + }, + { + "start": 2047.54, + "end": 2050.22, + "probability": 0.7238 + }, + { + "start": 2050.56, + "end": 2052.62, + "probability": 0.9926 + }, + { + "start": 2053.82, + "end": 2055.34, + "probability": 0.9985 + }, + { + "start": 2055.82, + "end": 2059.2, + "probability": 0.9974 + }, + { + "start": 2059.42, + "end": 2063.04, + "probability": 0.9316 + }, + { + "start": 2063.4, + "end": 2064.78, + "probability": 0.9696 + }, + { + "start": 2064.92, + "end": 2066.15, + "probability": 0.9883 + }, + { + "start": 2067.1, + "end": 2068.48, + "probability": 0.9575 + }, + { + "start": 2068.86, + "end": 2069.56, + "probability": 0.6718 + }, + { + "start": 2069.66, + "end": 2071.22, + "probability": 0.1244 + }, + { + "start": 2071.8, + "end": 2073.92, + "probability": 0.7496 + }, + { + "start": 2074.02, + "end": 2074.41, + "probability": 0.4736 + }, + { + "start": 2074.77, + "end": 2074.88, + "probability": 0.1361 + }, + { + "start": 2074.98, + "end": 2077.16, + "probability": 0.7202 + }, + { + "start": 2077.72, + "end": 2082.02, + "probability": 0.9974 + }, + { + "start": 2082.14, + "end": 2084.25, + "probability": 0.9363 + }, + { + "start": 2085.88, + "end": 2086.02, + "probability": 0.0038 + }, + { + "start": 2086.02, + "end": 2087.84, + "probability": 0.6733 + }, + { + "start": 2088.08, + "end": 2088.84, + "probability": 0.7784 + }, + { + "start": 2089.02, + "end": 2090.21, + "probability": 0.9048 + }, + { + "start": 2090.58, + "end": 2092.38, + "probability": 0.9141 + }, + { + "start": 2092.38, + "end": 2096.0, + "probability": 0.9751 + }, + { + "start": 2096.18, + "end": 2100.5, + "probability": 0.9917 + }, + { + "start": 2100.86, + "end": 2102.02, + "probability": 0.8731 + }, + { + "start": 2102.4, + "end": 2103.06, + "probability": 0.8641 + }, + { + "start": 2103.5, + "end": 2106.18, + "probability": 0.9982 + }, + { + "start": 2106.64, + "end": 2107.06, + "probability": 0.6002 + }, + { + "start": 2107.18, + "end": 2107.78, + "probability": 0.4797 + }, + { + "start": 2108.02, + "end": 2111.22, + "probability": 0.9765 + }, + { + "start": 2111.8, + "end": 2114.76, + "probability": 0.9977 + }, + { + "start": 2116.16, + "end": 2119.2, + "probability": 0.9575 + }, + { + "start": 2119.56, + "end": 2121.86, + "probability": 0.9315 + }, + { + "start": 2122.16, + "end": 2124.86, + "probability": 0.9945 + }, + { + "start": 2125.34, + "end": 2125.64, + "probability": 0.6524 + }, + { + "start": 2125.68, + "end": 2128.04, + "probability": 0.8013 + }, + { + "start": 2128.44, + "end": 2129.78, + "probability": 0.8074 + }, + { + "start": 2130.08, + "end": 2130.92, + "probability": 0.7564 + }, + { + "start": 2132.3, + "end": 2138.56, + "probability": 0.887 + }, + { + "start": 2138.8, + "end": 2142.46, + "probability": 0.8359 + }, + { + "start": 2143.12, + "end": 2143.42, + "probability": 0.5161 + }, + { + "start": 2143.44, + "end": 2143.98, + "probability": 0.7033 + }, + { + "start": 2144.04, + "end": 2147.24, + "probability": 0.8732 + }, + { + "start": 2147.88, + "end": 2150.68, + "probability": 0.9609 + }, + { + "start": 2151.56, + "end": 2152.3, + "probability": 0.6331 + }, + { + "start": 2153.08, + "end": 2158.48, + "probability": 0.9938 + }, + { + "start": 2158.62, + "end": 2160.24, + "probability": 0.998 + }, + { + "start": 2160.82, + "end": 2162.72, + "probability": 0.5773 + }, + { + "start": 2162.86, + "end": 2163.14, + "probability": 0.4438 + }, + { + "start": 2164.3, + "end": 2165.2, + "probability": 0.8025 + }, + { + "start": 2165.38, + "end": 2171.64, + "probability": 0.9556 + }, + { + "start": 2171.82, + "end": 2173.96, + "probability": 0.9086 + }, + { + "start": 2174.36, + "end": 2176.53, + "probability": 0.9976 + }, + { + "start": 2177.24, + "end": 2180.62, + "probability": 0.9832 + }, + { + "start": 2180.62, + "end": 2184.02, + "probability": 0.9647 + }, + { + "start": 2184.28, + "end": 2186.08, + "probability": 0.9681 + }, + { + "start": 2186.42, + "end": 2186.6, + "probability": 0.6174 + }, + { + "start": 2187.24, + "end": 2188.28, + "probability": 0.1067 + }, + { + "start": 2188.74, + "end": 2190.66, + "probability": 0.585 + }, + { + "start": 2190.74, + "end": 2191.88, + "probability": 0.9683 + }, + { + "start": 2192.28, + "end": 2193.2, + "probability": 0.6045 + }, + { + "start": 2193.42, + "end": 2198.5, + "probability": 0.7731 + }, + { + "start": 2199.08, + "end": 2199.82, + "probability": 0.0899 + }, + { + "start": 2199.82, + "end": 2199.82, + "probability": 0.2434 + }, + { + "start": 2199.82, + "end": 2201.52, + "probability": 0.3971 + }, + { + "start": 2201.52, + "end": 2201.74, + "probability": 0.3394 + }, + { + "start": 2202.22, + "end": 2203.56, + "probability": 0.4453 + }, + { + "start": 2203.74, + "end": 2204.98, + "probability": 0.7889 + }, + { + "start": 2205.1, + "end": 2205.84, + "probability": 0.8204 + }, + { + "start": 2206.06, + "end": 2211.0, + "probability": 0.5977 + }, + { + "start": 2211.08, + "end": 2213.32, + "probability": 0.9749 + }, + { + "start": 2213.74, + "end": 2217.76, + "probability": 0.8766 + }, + { + "start": 2218.18, + "end": 2223.12, + "probability": 0.963 + }, + { + "start": 2223.28, + "end": 2227.18, + "probability": 0.9979 + }, + { + "start": 2227.18, + "end": 2230.74, + "probability": 0.9987 + }, + { + "start": 2230.8, + "end": 2233.34, + "probability": 0.9348 + }, + { + "start": 2233.34, + "end": 2236.28, + "probability": 0.9575 + }, + { + "start": 2236.42, + "end": 2238.26, + "probability": 0.5507 + }, + { + "start": 2238.36, + "end": 2241.22, + "probability": 0.0714 + }, + { + "start": 2241.22, + "end": 2244.44, + "probability": 0.7374 + }, + { + "start": 2244.56, + "end": 2247.56, + "probability": 0.8438 + }, + { + "start": 2247.9, + "end": 2249.26, + "probability": 0.7965 + }, + { + "start": 2249.54, + "end": 2251.04, + "probability": 0.9932 + }, + { + "start": 2251.2, + "end": 2251.77, + "probability": 0.9959 + }, + { + "start": 2252.22, + "end": 2253.81, + "probability": 0.9175 + }, + { + "start": 2254.16, + "end": 2256.42, + "probability": 0.7432 + }, + { + "start": 2256.48, + "end": 2258.26, + "probability": 0.9785 + }, + { + "start": 2258.92, + "end": 2260.92, + "probability": 0.6027 + }, + { + "start": 2261.8, + "end": 2262.99, + "probability": 0.9561 + }, + { + "start": 2263.12, + "end": 2264.92, + "probability": 0.8843 + }, + { + "start": 2265.08, + "end": 2266.8, + "probability": 0.6312 + }, + { + "start": 2266.98, + "end": 2272.7, + "probability": 0.5765 + }, + { + "start": 2272.7, + "end": 2276.3, + "probability": 0.9907 + }, + { + "start": 2277.52, + "end": 2279.6, + "probability": 0.9779 + }, + { + "start": 2279.88, + "end": 2280.5, + "probability": 0.7669 + }, + { + "start": 2280.62, + "end": 2281.44, + "probability": 0.6932 + }, + { + "start": 2281.58, + "end": 2282.24, + "probability": 0.8244 + }, + { + "start": 2282.76, + "end": 2288.0, + "probability": 0.9609 + }, + { + "start": 2288.36, + "end": 2289.4, + "probability": 0.5765 + }, + { + "start": 2289.66, + "end": 2291.58, + "probability": 0.967 + }, + { + "start": 2292.1, + "end": 2294.4, + "probability": 0.8442 + }, + { + "start": 2294.78, + "end": 2298.7, + "probability": 0.9891 + }, + { + "start": 2299.76, + "end": 2302.32, + "probability": 0.9233 + }, + { + "start": 2303.2, + "end": 2305.3, + "probability": 0.884 + }, + { + "start": 2306.62, + "end": 2311.1, + "probability": 0.9578 + }, + { + "start": 2311.2, + "end": 2315.28, + "probability": 0.9126 + }, + { + "start": 2316.56, + "end": 2316.9, + "probability": 0.3692 + }, + { + "start": 2316.96, + "end": 2317.54, + "probability": 0.8785 + }, + { + "start": 2317.6, + "end": 2322.34, + "probability": 0.8547 + }, + { + "start": 2322.34, + "end": 2324.6, + "probability": 0.8498 + }, + { + "start": 2324.66, + "end": 2325.02, + "probability": 0.8606 + }, + { + "start": 2325.12, + "end": 2325.64, + "probability": 0.9095 + }, + { + "start": 2325.74, + "end": 2326.32, + "probability": 0.8482 + }, + { + "start": 2327.36, + "end": 2327.96, + "probability": 0.7816 + }, + { + "start": 2328.14, + "end": 2332.24, + "probability": 0.8022 + }, + { + "start": 2333.1, + "end": 2334.48, + "probability": 0.9424 + }, + { + "start": 2334.58, + "end": 2334.78, + "probability": 0.6415 + }, + { + "start": 2334.86, + "end": 2335.34, + "probability": 0.7328 + }, + { + "start": 2335.44, + "end": 2336.92, + "probability": 0.9558 + }, + { + "start": 2336.92, + "end": 2338.66, + "probability": 0.9309 + }, + { + "start": 2338.78, + "end": 2339.94, + "probability": 0.6702 + }, + { + "start": 2339.98, + "end": 2341.26, + "probability": 0.6091 + }, + { + "start": 2341.72, + "end": 2342.17, + "probability": 0.77 + }, + { + "start": 2342.4, + "end": 2343.96, + "probability": 0.9852 + }, + { + "start": 2344.0, + "end": 2345.18, + "probability": 0.9601 + }, + { + "start": 2345.96, + "end": 2352.58, + "probability": 0.8565 + }, + { + "start": 2353.82, + "end": 2355.76, + "probability": 0.6573 + }, + { + "start": 2355.88, + "end": 2357.36, + "probability": 0.9719 + }, + { + "start": 2357.52, + "end": 2358.56, + "probability": 0.8755 + }, + { + "start": 2358.68, + "end": 2359.24, + "probability": 0.758 + }, + { + "start": 2359.7, + "end": 2360.74, + "probability": 0.6637 + }, + { + "start": 2361.24, + "end": 2362.31, + "probability": 0.9596 + }, + { + "start": 2362.76, + "end": 2364.86, + "probability": 0.7725 + }, + { + "start": 2364.94, + "end": 2365.0, + "probability": 0.3126 + }, + { + "start": 2365.2, + "end": 2370.3, + "probability": 0.8905 + }, + { + "start": 2370.92, + "end": 2372.2, + "probability": 0.5818 + }, + { + "start": 2372.28, + "end": 2373.56, + "probability": 0.8786 + }, + { + "start": 2373.94, + "end": 2375.68, + "probability": 0.9349 + }, + { + "start": 2376.38, + "end": 2377.13, + "probability": 0.3544 + }, + { + "start": 2379.32, + "end": 2379.68, + "probability": 0.8121 + }, + { + "start": 2380.74, + "end": 2382.62, + "probability": 0.9258 + }, + { + "start": 2382.74, + "end": 2383.3, + "probability": 0.8241 + }, + { + "start": 2383.36, + "end": 2384.06, + "probability": 0.7163 + }, + { + "start": 2385.0, + "end": 2387.86, + "probability": 0.8507 + }, + { + "start": 2389.06, + "end": 2391.72, + "probability": 0.8988 + }, + { + "start": 2391.86, + "end": 2394.48, + "probability": 0.962 + }, + { + "start": 2395.48, + "end": 2399.68, + "probability": 0.9815 + }, + { + "start": 2399.68, + "end": 2405.16, + "probability": 0.9521 + }, + { + "start": 2406.58, + "end": 2408.84, + "probability": 0.993 + }, + { + "start": 2408.84, + "end": 2412.52, + "probability": 0.9879 + }, + { + "start": 2413.14, + "end": 2418.96, + "probability": 0.875 + }, + { + "start": 2419.26, + "end": 2422.72, + "probability": 0.8746 + }, + { + "start": 2423.86, + "end": 2426.64, + "probability": 0.7892 + }, + { + "start": 2427.72, + "end": 2431.58, + "probability": 0.9681 + }, + { + "start": 2432.08, + "end": 2433.94, + "probability": 0.747 + }, + { + "start": 2434.04, + "end": 2435.54, + "probability": 0.557 + }, + { + "start": 2436.54, + "end": 2438.14, + "probability": 0.9282 + }, + { + "start": 2438.36, + "end": 2438.64, + "probability": 0.7828 + }, + { + "start": 2438.72, + "end": 2439.0, + "probability": 0.7438 + }, + { + "start": 2439.06, + "end": 2443.06, + "probability": 0.8444 + }, + { + "start": 2443.62, + "end": 2445.82, + "probability": 0.7478 + }, + { + "start": 2445.94, + "end": 2449.82, + "probability": 0.9213 + }, + { + "start": 2450.18, + "end": 2451.92, + "probability": 0.6692 + }, + { + "start": 2452.36, + "end": 2454.44, + "probability": 0.8854 + }, + { + "start": 2454.54, + "end": 2458.92, + "probability": 0.9839 + }, + { + "start": 2459.62, + "end": 2463.22, + "probability": 0.9938 + }, + { + "start": 2463.66, + "end": 2464.7, + "probability": 0.8905 + }, + { + "start": 2465.22, + "end": 2466.24, + "probability": 0.9668 + }, + { + "start": 2466.46, + "end": 2469.4, + "probability": 0.985 + }, + { + "start": 2469.56, + "end": 2471.48, + "probability": 0.9827 + }, + { + "start": 2471.48, + "end": 2474.1, + "probability": 0.6712 + }, + { + "start": 2474.28, + "end": 2475.64, + "probability": 0.7529 + }, + { + "start": 2475.68, + "end": 2477.2, + "probability": 0.7722 + }, + { + "start": 2477.6, + "end": 2478.32, + "probability": 0.7539 + }, + { + "start": 2478.92, + "end": 2480.76, + "probability": 0.6462 + }, + { + "start": 2481.06, + "end": 2484.54, + "probability": 0.6543 + }, + { + "start": 2498.16, + "end": 2499.04, + "probability": 0.6266 + }, + { + "start": 2499.24, + "end": 2500.42, + "probability": 0.7948 + }, + { + "start": 2500.88, + "end": 2504.36, + "probability": 0.9907 + }, + { + "start": 2504.36, + "end": 2509.5, + "probability": 0.9594 + }, + { + "start": 2511.48, + "end": 2513.7, + "probability": 0.8613 + }, + { + "start": 2514.28, + "end": 2523.15, + "probability": 0.9923 + }, + { + "start": 2524.27, + "end": 2531.54, + "probability": 0.9796 + }, + { + "start": 2532.06, + "end": 2532.98, + "probability": 0.8313 + }, + { + "start": 2533.02, + "end": 2539.98, + "probability": 0.979 + }, + { + "start": 2540.78, + "end": 2541.4, + "probability": 0.4896 + }, + { + "start": 2541.58, + "end": 2547.56, + "probability": 0.9312 + }, + { + "start": 2548.66, + "end": 2551.6, + "probability": 0.7455 + }, + { + "start": 2552.12, + "end": 2557.62, + "probability": 0.8081 + }, + { + "start": 2558.8, + "end": 2564.3, + "probability": 0.8911 + }, + { + "start": 2564.92, + "end": 2571.22, + "probability": 0.9848 + }, + { + "start": 2571.92, + "end": 2575.58, + "probability": 0.9912 + }, + { + "start": 2575.68, + "end": 2577.5, + "probability": 0.9669 + }, + { + "start": 2577.58, + "end": 2585.28, + "probability": 0.9841 + }, + { + "start": 2585.84, + "end": 2588.62, + "probability": 0.3355 + }, + { + "start": 2588.62, + "end": 2590.0, + "probability": 0.6744 + }, + { + "start": 2591.14, + "end": 2591.76, + "probability": 0.1534 + }, + { + "start": 2591.76, + "end": 2598.46, + "probability": 0.8909 + }, + { + "start": 2598.58, + "end": 2601.3, + "probability": 0.9699 + }, + { + "start": 2601.7, + "end": 2604.66, + "probability": 0.8138 + }, + { + "start": 2604.82, + "end": 2605.64, + "probability": 0.9192 + }, + { + "start": 2605.76, + "end": 2608.52, + "probability": 0.9153 + }, + { + "start": 2609.0, + "end": 2611.14, + "probability": 0.9735 + }, + { + "start": 2612.48, + "end": 2615.16, + "probability": 0.9619 + }, + { + "start": 2615.58, + "end": 2618.32, + "probability": 0.98 + }, + { + "start": 2618.32, + "end": 2618.96, + "probability": 0.3044 + }, + { + "start": 2619.0, + "end": 2620.06, + "probability": 0.7034 + }, + { + "start": 2620.96, + "end": 2624.48, + "probability": 0.8876 + }, + { + "start": 2624.9, + "end": 2626.68, + "probability": 0.959 + }, + { + "start": 2627.36, + "end": 2630.42, + "probability": 0.8225 + }, + { + "start": 2632.1, + "end": 2632.94, + "probability": 0.9488 + }, + { + "start": 2633.34, + "end": 2634.02, + "probability": 0.7198 + }, + { + "start": 2634.86, + "end": 2643.18, + "probability": 0.9767 + }, + { + "start": 2643.18, + "end": 2648.28, + "probability": 0.999 + }, + { + "start": 2648.44, + "end": 2649.76, + "probability": 0.6396 + }, + { + "start": 2650.46, + "end": 2651.8, + "probability": 0.9367 + }, + { + "start": 2652.52, + "end": 2657.5, + "probability": 0.9959 + }, + { + "start": 2657.64, + "end": 2658.58, + "probability": 0.6969 + }, + { + "start": 2659.3, + "end": 2660.02, + "probability": 0.9094 + }, + { + "start": 2661.51, + "end": 2670.34, + "probability": 0.9921 + }, + { + "start": 2670.74, + "end": 2671.98, + "probability": 0.975 + }, + { + "start": 2672.82, + "end": 2676.72, + "probability": 0.9769 + }, + { + "start": 2677.24, + "end": 2683.1, + "probability": 0.9861 + }, + { + "start": 2683.76, + "end": 2684.26, + "probability": 0.5656 + }, + { + "start": 2684.6, + "end": 2690.42, + "probability": 0.9949 + }, + { + "start": 2690.58, + "end": 2691.96, + "probability": 0.999 + }, + { + "start": 2692.0, + "end": 2695.11, + "probability": 0.9969 + }, + { + "start": 2696.12, + "end": 2696.84, + "probability": 0.0949 + }, + { + "start": 2697.82, + "end": 2698.56, + "probability": 0.2415 + }, + { + "start": 2698.56, + "end": 2698.56, + "probability": 0.1467 + }, + { + "start": 2698.56, + "end": 2699.02, + "probability": 0.706 + }, + { + "start": 2700.92, + "end": 2702.72, + "probability": 0.1871 + }, + { + "start": 2703.96, + "end": 2704.06, + "probability": 0.1406 + }, + { + "start": 2704.06, + "end": 2705.53, + "probability": 0.2279 + }, + { + "start": 2705.74, + "end": 2709.02, + "probability": 0.354 + }, + { + "start": 2709.02, + "end": 2710.86, + "probability": 0.2722 + }, + { + "start": 2711.6, + "end": 2711.86, + "probability": 0.2422 + }, + { + "start": 2712.04, + "end": 2712.58, + "probability": 0.1572 + }, + { + "start": 2712.68, + "end": 2713.34, + "probability": 0.3821 + }, + { + "start": 2713.44, + "end": 2716.24, + "probability": 0.9404 + }, + { + "start": 2716.3, + "end": 2717.34, + "probability": 0.9519 + }, + { + "start": 2717.38, + "end": 2721.2, + "probability": 0.9967 + }, + { + "start": 2721.84, + "end": 2725.18, + "probability": 0.9827 + }, + { + "start": 2725.42, + "end": 2727.3, + "probability": 0.6593 + }, + { + "start": 2727.46, + "end": 2731.32, + "probability": 0.9669 + }, + { + "start": 2731.32, + "end": 2735.94, + "probability": 0.9897 + }, + { + "start": 2736.24, + "end": 2738.72, + "probability": 0.9767 + }, + { + "start": 2738.88, + "end": 2739.76, + "probability": 0.9431 + }, + { + "start": 2739.9, + "end": 2741.04, + "probability": 0.94 + }, + { + "start": 2741.46, + "end": 2748.94, + "probability": 0.985 + }, + { + "start": 2748.94, + "end": 2748.96, + "probability": 0.4412 + }, + { + "start": 2748.96, + "end": 2749.0, + "probability": 0.2409 + }, + { + "start": 2749.0, + "end": 2750.92, + "probability": 0.7681 + }, + { + "start": 2751.48, + "end": 2754.62, + "probability": 0.949 + }, + { + "start": 2755.26, + "end": 2758.68, + "probability": 0.8819 + }, + { + "start": 2759.22, + "end": 2760.62, + "probability": 0.9078 + }, + { + "start": 2762.26, + "end": 2763.82, + "probability": 0.7666 + }, + { + "start": 2763.92, + "end": 2763.92, + "probability": 0.1824 + }, + { + "start": 2763.92, + "end": 2764.1, + "probability": 0.4566 + }, + { + "start": 2764.1, + "end": 2765.88, + "probability": 0.7441 + }, + { + "start": 2765.98, + "end": 2767.02, + "probability": 0.2129 + }, + { + "start": 2767.68, + "end": 2767.68, + "probability": 0.0823 + }, + { + "start": 2767.68, + "end": 2768.36, + "probability": 0.6205 + }, + { + "start": 2768.46, + "end": 2771.0, + "probability": 0.981 + }, + { + "start": 2771.04, + "end": 2772.6, + "probability": 0.9357 + }, + { + "start": 2772.7, + "end": 2774.34, + "probability": 0.9787 + }, + { + "start": 2774.36, + "end": 2775.42, + "probability": 0.322 + }, + { + "start": 2775.58, + "end": 2776.44, + "probability": 0.5418 + }, + { + "start": 2776.46, + "end": 2777.46, + "probability": 0.9302 + }, + { + "start": 2778.2, + "end": 2778.68, + "probability": 0.8864 + }, + { + "start": 2778.82, + "end": 2781.64, + "probability": 0.7717 + }, + { + "start": 2781.72, + "end": 2782.9, + "probability": 0.5913 + }, + { + "start": 2782.98, + "end": 2784.06, + "probability": 0.7406 + }, + { + "start": 2784.16, + "end": 2784.22, + "probability": 0.0004 + }, + { + "start": 2786.34, + "end": 2788.28, + "probability": 0.3811 + }, + { + "start": 2790.58, + "end": 2791.26, + "probability": 0.075 + }, + { + "start": 2791.26, + "end": 2791.26, + "probability": 0.393 + }, + { + "start": 2791.26, + "end": 2791.54, + "probability": 0.0735 + }, + { + "start": 2791.7, + "end": 2794.02, + "probability": 0.2548 + }, + { + "start": 2794.02, + "end": 2794.2, + "probability": 0.0501 + }, + { + "start": 2794.28, + "end": 2795.52, + "probability": 0.8423 + }, + { + "start": 2797.41, + "end": 2799.94, + "probability": 0.0338 + }, + { + "start": 2799.94, + "end": 2800.08, + "probability": 0.0052 + }, + { + "start": 2800.08, + "end": 2800.08, + "probability": 0.0273 + }, + { + "start": 2800.08, + "end": 2800.08, + "probability": 0.0466 + }, + { + "start": 2800.08, + "end": 2800.08, + "probability": 0.1177 + }, + { + "start": 2800.08, + "end": 2800.08, + "probability": 0.1003 + }, + { + "start": 2800.08, + "end": 2800.08, + "probability": 0.2557 + }, + { + "start": 2800.08, + "end": 2803.62, + "probability": 0.9272 + }, + { + "start": 2804.1, + "end": 2807.76, + "probability": 0.9707 + }, + { + "start": 2807.76, + "end": 2812.54, + "probability": 0.8041 + }, + { + "start": 2813.16, + "end": 2816.08, + "probability": 0.9424 + }, + { + "start": 2816.68, + "end": 2817.84, + "probability": 0.9025 + }, + { + "start": 2817.9, + "end": 2822.2, + "probability": 0.9936 + }, + { + "start": 2822.66, + "end": 2826.32, + "probability": 0.9546 + }, + { + "start": 2826.32, + "end": 2831.26, + "probability": 0.9935 + }, + { + "start": 2831.26, + "end": 2835.62, + "probability": 0.9798 + }, + { + "start": 2836.42, + "end": 2836.52, + "probability": 0.2346 + }, + { + "start": 2836.78, + "end": 2837.42, + "probability": 0.8849 + }, + { + "start": 2837.72, + "end": 2844.4, + "probability": 0.9438 + }, + { + "start": 2844.62, + "end": 2844.84, + "probability": 0.0528 + }, + { + "start": 2845.32, + "end": 2850.0, + "probability": 0.9303 + }, + { + "start": 2850.08, + "end": 2850.9, + "probability": 0.8638 + }, + { + "start": 2851.46, + "end": 2852.38, + "probability": 0.0244 + }, + { + "start": 2852.38, + "end": 2853.44, + "probability": 0.7944 + }, + { + "start": 2853.94, + "end": 2858.96, + "probability": 0.9765 + }, + { + "start": 2859.42, + "end": 2862.44, + "probability": 0.9951 + }, + { + "start": 2863.06, + "end": 2863.96, + "probability": 0.9582 + }, + { + "start": 2864.02, + "end": 2865.36, + "probability": 0.9951 + }, + { + "start": 2867.94, + "end": 2869.2, + "probability": 0.3928 + }, + { + "start": 2869.82, + "end": 2870.58, + "probability": 0.8358 + }, + { + "start": 2871.56, + "end": 2876.98, + "probability": 0.9959 + }, + { + "start": 2877.38, + "end": 2882.02, + "probability": 0.9962 + }, + { + "start": 2882.14, + "end": 2885.1, + "probability": 0.9984 + }, + { + "start": 2885.1, + "end": 2888.92, + "probability": 0.9976 + }, + { + "start": 2888.98, + "end": 2893.28, + "probability": 0.9788 + }, + { + "start": 2893.36, + "end": 2894.58, + "probability": 0.9146 + }, + { + "start": 2895.18, + "end": 2896.78, + "probability": 0.9771 + }, + { + "start": 2896.98, + "end": 2902.44, + "probability": 0.9956 + }, + { + "start": 2902.44, + "end": 2908.0, + "probability": 0.9974 + }, + { + "start": 2908.66, + "end": 2913.16, + "probability": 0.9865 + }, + { + "start": 2913.8, + "end": 2916.2, + "probability": 0.9661 + }, + { + "start": 2916.32, + "end": 2918.7, + "probability": 0.9827 + }, + { + "start": 2919.4, + "end": 2923.92, + "probability": 0.9885 + }, + { + "start": 2924.58, + "end": 2930.6, + "probability": 0.987 + }, + { + "start": 2930.74, + "end": 2931.56, + "probability": 0.6293 + }, + { + "start": 2932.02, + "end": 2932.72, + "probability": 0.5878 + }, + { + "start": 2932.78, + "end": 2939.06, + "probability": 0.959 + }, + { + "start": 2939.48, + "end": 2942.54, + "probability": 0.9954 + }, + { + "start": 2942.62, + "end": 2946.84, + "probability": 0.9933 + }, + { + "start": 2946.84, + "end": 2951.82, + "probability": 0.9115 + }, + { + "start": 2951.88, + "end": 2956.58, + "probability": 0.9813 + }, + { + "start": 2956.68, + "end": 2958.17, + "probability": 0.9024 + }, + { + "start": 2958.26, + "end": 2961.12, + "probability": 0.9906 + }, + { + "start": 2961.46, + "end": 2962.22, + "probability": 0.9472 + }, + { + "start": 2962.34, + "end": 2964.14, + "probability": 0.731 + }, + { + "start": 2964.34, + "end": 2965.4, + "probability": 0.7018 + }, + { + "start": 2966.1, + "end": 2969.64, + "probability": 0.9647 + }, + { + "start": 2969.74, + "end": 2971.08, + "probability": 0.8746 + }, + { + "start": 2971.66, + "end": 2972.1, + "probability": 0.4927 + }, + { + "start": 2972.12, + "end": 2975.0, + "probability": 0.8893 + }, + { + "start": 2975.1, + "end": 2976.78, + "probability": 0.4004 + }, + { + "start": 2976.78, + "end": 2976.98, + "probability": 0.3511 + }, + { + "start": 2976.98, + "end": 2976.98, + "probability": 0.0316 + }, + { + "start": 2976.98, + "end": 2977.1, + "probability": 0.0426 + }, + { + "start": 2977.1, + "end": 2977.16, + "probability": 0.4036 + }, + { + "start": 2977.16, + "end": 2979.01, + "probability": 0.4003 + }, + { + "start": 2980.18, + "end": 2981.3, + "probability": 0.512 + }, + { + "start": 2981.4, + "end": 2985.52, + "probability": 0.1274 + }, + { + "start": 2985.68, + "end": 2987.87, + "probability": 0.0631 + }, + { + "start": 2988.32, + "end": 2988.32, + "probability": 0.1767 + }, + { + "start": 2988.32, + "end": 2992.38, + "probability": 0.5342 + }, + { + "start": 2992.38, + "end": 2996.21, + "probability": 0.6733 + }, + { + "start": 2996.74, + "end": 2997.72, + "probability": 0.5391 + }, + { + "start": 2998.04, + "end": 2998.04, + "probability": 0.064 + }, + { + "start": 2999.32, + "end": 3000.1, + "probability": 0.0233 + }, + { + "start": 3000.1, + "end": 3002.84, + "probability": 0.3135 + }, + { + "start": 3003.6, + "end": 3006.32, + "probability": 0.5025 + }, + { + "start": 3006.48, + "end": 3010.26, + "probability": 0.8479 + }, + { + "start": 3010.36, + "end": 3013.62, + "probability": 0.9919 + }, + { + "start": 3014.56, + "end": 3017.46, + "probability": 0.8545 + }, + { + "start": 3018.48, + "end": 3020.88, + "probability": 0.7571 + }, + { + "start": 3021.54, + "end": 3022.68, + "probability": 0.1824 + }, + { + "start": 3022.74, + "end": 3026.1, + "probability": 0.6879 + }, + { + "start": 3026.3, + "end": 3027.43, + "probability": 0.6344 + }, + { + "start": 3028.34, + "end": 3029.78, + "probability": 0.9886 + }, + { + "start": 3029.96, + "end": 3031.42, + "probability": 0.8795 + }, + { + "start": 3031.72, + "end": 3032.98, + "probability": 0.4847 + }, + { + "start": 3033.8, + "end": 3038.34, + "probability": 0.8655 + }, + { + "start": 3038.34, + "end": 3042.64, + "probability": 0.9948 + }, + { + "start": 3043.2, + "end": 3045.16, + "probability": 0.3405 + }, + { + "start": 3046.52, + "end": 3048.86, + "probability": 0.6421 + }, + { + "start": 3049.06, + "end": 3051.32, + "probability": 0.8133 + }, + { + "start": 3051.56, + "end": 3055.24, + "probability": 0.4704 + }, + { + "start": 3055.24, + "end": 3058.71, + "probability": 0.1889 + }, + { + "start": 3058.98, + "end": 3059.98, + "probability": 0.0609 + }, + { + "start": 3060.14, + "end": 3060.72, + "probability": 0.4634 + }, + { + "start": 3061.8, + "end": 3064.58, + "probability": 0.746 + }, + { + "start": 3064.7, + "end": 3065.44, + "probability": 0.7075 + }, + { + "start": 3065.86, + "end": 3066.7, + "probability": 0.8277 + }, + { + "start": 3066.78, + "end": 3072.46, + "probability": 0.994 + }, + { + "start": 3072.98, + "end": 3080.64, + "probability": 0.9889 + }, + { + "start": 3080.7, + "end": 3082.96, + "probability": 0.9385 + }, + { + "start": 3083.68, + "end": 3087.22, + "probability": 0.9889 + }, + { + "start": 3087.22, + "end": 3091.16, + "probability": 0.8718 + }, + { + "start": 3091.32, + "end": 3091.76, + "probability": 0.7625 + }, + { + "start": 3091.9, + "end": 3096.26, + "probability": 0.9088 + }, + { + "start": 3096.74, + "end": 3100.54, + "probability": 0.9807 + }, + { + "start": 3108.32, + "end": 3110.74, + "probability": 0.7319 + }, + { + "start": 3111.94, + "end": 3115.3, + "probability": 0.2832 + }, + { + "start": 3115.96, + "end": 3116.18, + "probability": 0.7202 + }, + { + "start": 3117.34, + "end": 3118.02, + "probability": 0.1518 + }, + { + "start": 3118.54, + "end": 3118.78, + "probability": 0.2905 + }, + { + "start": 3118.78, + "end": 3119.12, + "probability": 0.4931 + }, + { + "start": 3119.44, + "end": 3120.52, + "probability": 0.1571 + }, + { + "start": 3122.7, + "end": 3122.8, + "probability": 0.0129 + }, + { + "start": 3122.8, + "end": 3122.8, + "probability": 0.2261 + }, + { + "start": 3122.8, + "end": 3125.22, + "probability": 0.9237 + }, + { + "start": 3126.84, + "end": 3130.08, + "probability": 0.747 + }, + { + "start": 3130.2, + "end": 3131.5, + "probability": 0.8635 + }, + { + "start": 3131.6, + "end": 3132.72, + "probability": 0.6685 + }, + { + "start": 3133.2, + "end": 3133.83, + "probability": 0.2573 + }, + { + "start": 3135.22, + "end": 3137.4, + "probability": 0.8372 + }, + { + "start": 3138.06, + "end": 3142.72, + "probability": 0.9758 + }, + { + "start": 3142.72, + "end": 3146.88, + "probability": 0.9909 + }, + { + "start": 3147.56, + "end": 3149.16, + "probability": 0.8529 + }, + { + "start": 3149.28, + "end": 3151.38, + "probability": 0.7006 + }, + { + "start": 3152.14, + "end": 3154.4, + "probability": 0.9934 + }, + { + "start": 3156.18, + "end": 3158.72, + "probability": 0.6372 + }, + { + "start": 3158.84, + "end": 3163.22, + "probability": 0.9906 + }, + { + "start": 3163.8, + "end": 3163.8, + "probability": 0.0708 + }, + { + "start": 3163.8, + "end": 3166.62, + "probability": 0.0877 + }, + { + "start": 3167.2, + "end": 3171.24, + "probability": 0.1786 + }, + { + "start": 3171.38, + "end": 3172.68, + "probability": 0.9917 + }, + { + "start": 3174.22, + "end": 3178.08, + "probability": 0.9818 + }, + { + "start": 3178.08, + "end": 3182.3, + "probability": 0.7978 + }, + { + "start": 3182.54, + "end": 3184.94, + "probability": 0.9774 + }, + { + "start": 3185.66, + "end": 3185.96, + "probability": 0.0816 + }, + { + "start": 3186.34, + "end": 3188.82, + "probability": 0.799 + }, + { + "start": 3188.82, + "end": 3191.62, + "probability": 0.9908 + }, + { + "start": 3192.18, + "end": 3194.4, + "probability": 0.8587 + }, + { + "start": 3194.44, + "end": 3196.7, + "probability": 0.9863 + }, + { + "start": 3196.92, + "end": 3198.72, + "probability": 0.9922 + }, + { + "start": 3198.96, + "end": 3199.44, + "probability": 0.771 + }, + { + "start": 3199.5, + "end": 3201.24, + "probability": 0.908 + }, + { + "start": 3201.3, + "end": 3202.98, + "probability": 0.9695 + }, + { + "start": 3203.82, + "end": 3206.95, + "probability": 0.4771 + }, + { + "start": 3207.64, + "end": 3211.08, + "probability": 0.7775 + }, + { + "start": 3211.16, + "end": 3218.38, + "probability": 0.9808 + }, + { + "start": 3219.44, + "end": 3225.0, + "probability": 0.6716 + }, + { + "start": 3225.44, + "end": 3229.78, + "probability": 0.4308 + }, + { + "start": 3230.02, + "end": 3230.94, + "probability": 0.2093 + }, + { + "start": 3230.94, + "end": 3234.78, + "probability": 0.7173 + }, + { + "start": 3234.84, + "end": 3235.44, + "probability": 0.5728 + }, + { + "start": 3235.44, + "end": 3236.7, + "probability": 0.8882 + }, + { + "start": 3236.98, + "end": 3240.44, + "probability": 0.9662 + }, + { + "start": 3240.76, + "end": 3243.97, + "probability": 0.9956 + }, + { + "start": 3244.12, + "end": 3250.43, + "probability": 0.9307 + }, + { + "start": 3251.8, + "end": 3255.06, + "probability": 0.7228 + }, + { + "start": 3255.58, + "end": 3258.88, + "probability": 0.827 + }, + { + "start": 3259.32, + "end": 3260.48, + "probability": 0.9148 + }, + { + "start": 3260.54, + "end": 3263.07, + "probability": 0.9596 + }, + { + "start": 3263.68, + "end": 3264.98, + "probability": 0.7441 + }, + { + "start": 3265.02, + "end": 3266.32, + "probability": 0.9033 + }, + { + "start": 3266.46, + "end": 3267.52, + "probability": 0.8228 + }, + { + "start": 3267.6, + "end": 3268.16, + "probability": 0.7906 + }, + { + "start": 3268.28, + "end": 3273.58, + "probability": 0.9792 + }, + { + "start": 3273.86, + "end": 3275.06, + "probability": 0.7971 + }, + { + "start": 3275.34, + "end": 3277.2, + "probability": 0.7485 + }, + { + "start": 3277.62, + "end": 3281.4, + "probability": 0.9453 + }, + { + "start": 3282.12, + "end": 3282.42, + "probability": 0.0866 + }, + { + "start": 3282.42, + "end": 3282.42, + "probability": 0.0743 + }, + { + "start": 3282.42, + "end": 3288.84, + "probability": 0.834 + }, + { + "start": 3289.18, + "end": 3291.82, + "probability": 0.9922 + }, + { + "start": 3291.82, + "end": 3295.08, + "probability": 0.9631 + }, + { + "start": 3295.3, + "end": 3296.85, + "probability": 0.9264 + }, + { + "start": 3297.16, + "end": 3297.82, + "probability": 0.8262 + }, + { + "start": 3297.92, + "end": 3298.34, + "probability": 0.677 + }, + { + "start": 3298.44, + "end": 3301.5, + "probability": 0.9369 + }, + { + "start": 3301.5, + "end": 3305.02, + "probability": 0.9941 + }, + { + "start": 3305.7, + "end": 3307.96, + "probability": 0.8022 + }, + { + "start": 3308.42, + "end": 3312.14, + "probability": 0.9515 + }, + { + "start": 3312.5, + "end": 3313.32, + "probability": 0.7714 + }, + { + "start": 3313.38, + "end": 3315.12, + "probability": 0.9899 + }, + { + "start": 3315.42, + "end": 3316.54, + "probability": 0.7047 + }, + { + "start": 3316.66, + "end": 3317.25, + "probability": 0.691 + }, + { + "start": 3317.6, + "end": 3319.37, + "probability": 0.2665 + }, + { + "start": 3319.54, + "end": 3320.64, + "probability": 0.6029 + }, + { + "start": 3320.82, + "end": 3326.04, + "probability": 0.9229 + }, + { + "start": 3326.42, + "end": 3326.48, + "probability": 0.0982 + }, + { + "start": 3326.48, + "end": 3329.1, + "probability": 0.9294 + }, + { + "start": 3329.18, + "end": 3330.1, + "probability": 0.7375 + }, + { + "start": 3330.22, + "end": 3331.72, + "probability": 0.824 + }, + { + "start": 3332.12, + "end": 3335.66, + "probability": 0.9719 + }, + { + "start": 3335.84, + "end": 3338.64, + "probability": 0.9211 + }, + { + "start": 3338.72, + "end": 3338.9, + "probability": 0.7935 + }, + { + "start": 3338.98, + "end": 3342.1, + "probability": 0.9119 + }, + { + "start": 3342.88, + "end": 3344.6, + "probability": 0.8306 + }, + { + "start": 3345.38, + "end": 3346.75, + "probability": 0.9468 + }, + { + "start": 3346.86, + "end": 3350.02, + "probability": 0.6688 + }, + { + "start": 3350.04, + "end": 3352.37, + "probability": 0.7333 + }, + { + "start": 3352.6, + "end": 3354.56, + "probability": 0.5314 + }, + { + "start": 3354.92, + "end": 3359.18, + "probability": 0.8374 + }, + { + "start": 3359.56, + "end": 3360.0, + "probability": 0.573 + }, + { + "start": 3360.02, + "end": 3360.58, + "probability": 0.4204 + }, + { + "start": 3360.62, + "end": 3361.58, + "probability": 0.5838 + }, + { + "start": 3364.78, + "end": 3365.36, + "probability": 0.1824 + }, + { + "start": 3366.78, + "end": 3367.98, + "probability": 0.0759 + }, + { + "start": 3370.31, + "end": 3375.11, + "probability": 0.0058 + }, + { + "start": 3378.4, + "end": 3379.38, + "probability": 0.096 + }, + { + "start": 3379.38, + "end": 3380.14, + "probability": 0.275 + }, + { + "start": 3381.02, + "end": 3381.86, + "probability": 0.5362 + }, + { + "start": 3382.36, + "end": 3382.64, + "probability": 0.2983 + }, + { + "start": 3382.68, + "end": 3382.96, + "probability": 0.4969 + }, + { + "start": 3383.08, + "end": 3386.34, + "probability": 0.7833 + }, + { + "start": 3386.34, + "end": 3390.36, + "probability": 0.9946 + }, + { + "start": 3393.6, + "end": 3395.52, + "probability": 0.8371 + }, + { + "start": 3395.62, + "end": 3397.18, + "probability": 0.7843 + }, + { + "start": 3397.66, + "end": 3398.94, + "probability": 0.8369 + }, + { + "start": 3400.12, + "end": 3404.98, + "probability": 0.9089 + }, + { + "start": 3405.26, + "end": 3406.64, + "probability": 0.7931 + }, + { + "start": 3407.16, + "end": 3408.28, + "probability": 0.5143 + }, + { + "start": 3408.42, + "end": 3411.78, + "probability": 0.8327 + }, + { + "start": 3412.22, + "end": 3414.02, + "probability": 0.9666 + }, + { + "start": 3414.62, + "end": 3415.9, + "probability": 0.9773 + }, + { + "start": 3419.52, + "end": 3421.4, + "probability": 0.5736 + }, + { + "start": 3422.38, + "end": 3424.22, + "probability": 0.5744 + }, + { + "start": 3424.3, + "end": 3424.3, + "probability": 0.3326 + }, + { + "start": 3424.3, + "end": 3424.84, + "probability": 0.8476 + }, + { + "start": 3424.96, + "end": 3426.14, + "probability": 0.7373 + }, + { + "start": 3426.38, + "end": 3430.2, + "probability": 0.9102 + }, + { + "start": 3430.3, + "end": 3431.38, + "probability": 0.5248 + }, + { + "start": 3431.9, + "end": 3435.3, + "probability": 0.8745 + }, + { + "start": 3436.02, + "end": 3441.02, + "probability": 0.7201 + }, + { + "start": 3441.02, + "end": 3447.8, + "probability": 0.9921 + }, + { + "start": 3448.22, + "end": 3451.34, + "probability": 0.9038 + }, + { + "start": 3451.34, + "end": 3455.5, + "probability": 0.9417 + }, + { + "start": 3455.54, + "end": 3456.98, + "probability": 0.7508 + }, + { + "start": 3457.06, + "end": 3458.36, + "probability": 0.9299 + }, + { + "start": 3458.62, + "end": 3461.9, + "probability": 0.897 + }, + { + "start": 3461.96, + "end": 3464.62, + "probability": 0.9448 + }, + { + "start": 3464.62, + "end": 3468.2, + "probability": 0.9849 + }, + { + "start": 3468.64, + "end": 3470.84, + "probability": 0.9072 + }, + { + "start": 3471.2, + "end": 3471.62, + "probability": 0.5693 + }, + { + "start": 3471.62, + "end": 3475.08, + "probability": 0.9868 + }, + { + "start": 3475.08, + "end": 3482.06, + "probability": 0.9363 + }, + { + "start": 3482.06, + "end": 3486.5, + "probability": 0.8144 + }, + { + "start": 3486.5, + "end": 3491.5, + "probability": 0.9536 + }, + { + "start": 3491.5, + "end": 3491.72, + "probability": 0.7073 + }, + { + "start": 3492.32, + "end": 3494.34, + "probability": 0.8857 + }, + { + "start": 3494.42, + "end": 3497.92, + "probability": 0.6276 + }, + { + "start": 3498.16, + "end": 3498.16, + "probability": 0.0003 + }, + { + "start": 3500.14, + "end": 3500.8, + "probability": 0.5139 + }, + { + "start": 3502.79, + "end": 3504.32, + "probability": 0.0458 + }, + { + "start": 3504.32, + "end": 3505.8, + "probability": 0.6303 + }, + { + "start": 3505.8, + "end": 3505.8, + "probability": 0.2775 + }, + { + "start": 3505.8, + "end": 3506.74, + "probability": 0.6176 + }, + { + "start": 3507.46, + "end": 3509.6, + "probability": 0.6433 + }, + { + "start": 3510.12, + "end": 3513.32, + "probability": 0.8175 + }, + { + "start": 3513.44, + "end": 3516.82, + "probability": 0.5026 + }, + { + "start": 3516.82, + "end": 3517.44, + "probability": 0.2634 + }, + { + "start": 3517.62, + "end": 3518.36, + "probability": 0.4776 + }, + { + "start": 3522.5, + "end": 3524.5, + "probability": 0.112 + }, + { + "start": 3534.84, + "end": 3536.04, + "probability": 0.1505 + }, + { + "start": 3536.04, + "end": 3536.04, + "probability": 0.1538 + }, + { + "start": 3536.04, + "end": 3537.1, + "probability": 0.2504 + }, + { + "start": 3537.98, + "end": 3538.58, + "probability": 0.5876 + }, + { + "start": 3538.78, + "end": 3544.62, + "probability": 0.8363 + }, + { + "start": 3544.86, + "end": 3545.74, + "probability": 0.7291 + }, + { + "start": 3546.38, + "end": 3547.46, + "probability": 0.7499 + }, + { + "start": 3547.52, + "end": 3547.52, + "probability": 0.6131 + }, + { + "start": 3547.52, + "end": 3547.88, + "probability": 0.4606 + }, + { + "start": 3547.94, + "end": 3551.24, + "probability": 0.8879 + }, + { + "start": 3552.94, + "end": 3553.08, + "probability": 0.0956 + }, + { + "start": 3553.08, + "end": 3553.56, + "probability": 0.6824 + }, + { + "start": 3553.56, + "end": 3555.56, + "probability": 0.8722 + }, + { + "start": 3555.66, + "end": 3555.92, + "probability": 0.5049 + }, + { + "start": 3556.34, + "end": 3558.28, + "probability": 0.879 + }, + { + "start": 3558.86, + "end": 3561.16, + "probability": 0.8453 + }, + { + "start": 3561.92, + "end": 3564.22, + "probability": 0.8728 + }, + { + "start": 3564.24, + "end": 3565.22, + "probability": 0.6474 + }, + { + "start": 3565.38, + "end": 3567.74, + "probability": 0.316 + }, + { + "start": 3568.68, + "end": 3572.96, + "probability": 0.9839 + }, + { + "start": 3573.06, + "end": 3574.08, + "probability": 0.7368 + }, + { + "start": 3574.16, + "end": 3576.02, + "probability": 0.7783 + }, + { + "start": 3576.46, + "end": 3579.66, + "probability": 0.9543 + }, + { + "start": 3582.84, + "end": 3585.36, + "probability": 0.8664 + }, + { + "start": 3586.16, + "end": 3591.7, + "probability": 0.9868 + }, + { + "start": 3591.7, + "end": 3592.76, + "probability": 0.6714 + }, + { + "start": 3593.18, + "end": 3597.08, + "probability": 0.9007 + }, + { + "start": 3598.06, + "end": 3602.58, + "probability": 0.9935 + }, + { + "start": 3602.58, + "end": 3609.06, + "probability": 0.9463 + }, + { + "start": 3609.5, + "end": 3613.88, + "probability": 0.9906 + }, + { + "start": 3613.92, + "end": 3623.96, + "probability": 0.976 + }, + { + "start": 3624.64, + "end": 3630.42, + "probability": 0.9976 + }, + { + "start": 3631.34, + "end": 3635.24, + "probability": 0.9756 + }, + { + "start": 3635.24, + "end": 3638.78, + "probability": 0.9827 + }, + { + "start": 3639.28, + "end": 3642.24, + "probability": 0.9211 + }, + { + "start": 3643.0, + "end": 3644.28, + "probability": 0.8901 + }, + { + "start": 3644.62, + "end": 3648.86, + "probability": 0.9885 + }, + { + "start": 3649.7, + "end": 3651.72, + "probability": 0.9125 + }, + { + "start": 3652.02, + "end": 3655.76, + "probability": 0.944 + }, + { + "start": 3655.88, + "end": 3657.76, + "probability": 0.97 + }, + { + "start": 3657.84, + "end": 3660.14, + "probability": 0.7918 + }, + { + "start": 3660.22, + "end": 3661.76, + "probability": 0.8737 + }, + { + "start": 3662.12, + "end": 3663.56, + "probability": 0.8835 + }, + { + "start": 3663.72, + "end": 3665.89, + "probability": 0.5075 + }, + { + "start": 3666.08, + "end": 3668.72, + "probability": 0.6339 + }, + { + "start": 3669.32, + "end": 3669.32, + "probability": 0.2499 + }, + { + "start": 3669.32, + "end": 3669.92, + "probability": 0.2751 + }, + { + "start": 3670.49, + "end": 3672.58, + "probability": 0.1583 + }, + { + "start": 3672.58, + "end": 3677.8, + "probability": 0.9932 + }, + { + "start": 3678.16, + "end": 3680.62, + "probability": 0.4333 + }, + { + "start": 3680.62, + "end": 3684.76, + "probability": 0.9581 + }, + { + "start": 3684.82, + "end": 3687.76, + "probability": 0.7457 + }, + { + "start": 3688.3, + "end": 3692.62, + "probability": 0.902 + }, + { + "start": 3692.7, + "end": 3697.8, + "probability": 0.9897 + }, + { + "start": 3698.0, + "end": 3699.36, + "probability": 0.7867 + }, + { + "start": 3699.58, + "end": 3702.42, + "probability": 0.9178 + }, + { + "start": 3702.76, + "end": 3705.3, + "probability": 0.8479 + }, + { + "start": 3705.34, + "end": 3710.06, + "probability": 0.984 + }, + { + "start": 3710.18, + "end": 3713.32, + "probability": 0.8317 + }, + { + "start": 3713.44, + "end": 3717.96, + "probability": 0.8116 + }, + { + "start": 3718.16, + "end": 3724.26, + "probability": 0.7482 + }, + { + "start": 3732.26, + "end": 3733.5, + "probability": 0.6955 + }, + { + "start": 3735.18, + "end": 3737.0, + "probability": 0.3015 + }, + { + "start": 3745.12, + "end": 3747.24, + "probability": 0.3537 + }, + { + "start": 3749.84, + "end": 3750.42, + "probability": 0.4996 + }, + { + "start": 3750.54, + "end": 3751.56, + "probability": 0.611 + }, + { + "start": 3751.64, + "end": 3751.92, + "probability": 0.5012 + }, + { + "start": 3751.96, + "end": 3752.06, + "probability": 0.4869 + }, + { + "start": 3757.07, + "end": 3762.06, + "probability": 0.9922 + }, + { + "start": 3763.82, + "end": 3769.62, + "probability": 0.998 + }, + { + "start": 3769.62, + "end": 3774.2, + "probability": 0.9911 + }, + { + "start": 3776.1, + "end": 3776.12, + "probability": 0.5521 + }, + { + "start": 3776.22, + "end": 3777.52, + "probability": 0.8776 + }, + { + "start": 3778.36, + "end": 3780.74, + "probability": 0.9858 + }, + { + "start": 3780.78, + "end": 3781.36, + "probability": 0.5908 + }, + { + "start": 3781.42, + "end": 3783.78, + "probability": 0.9541 + }, + { + "start": 3783.88, + "end": 3785.16, + "probability": 0.9153 + }, + { + "start": 3785.26, + "end": 3786.82, + "probability": 0.6523 + }, + { + "start": 3786.92, + "end": 3792.04, + "probability": 0.8616 + }, + { + "start": 3792.6, + "end": 3792.8, + "probability": 0.7085 + }, + { + "start": 3792.82, + "end": 3793.04, + "probability": 0.8088 + }, + { + "start": 3793.04, + "end": 3793.52, + "probability": 0.5238 + }, + { + "start": 3793.56, + "end": 3794.18, + "probability": 0.8367 + }, + { + "start": 3794.28, + "end": 3795.88, + "probability": 0.5404 + }, + { + "start": 3795.96, + "end": 3800.08, + "probability": 0.7178 + }, + { + "start": 3800.08, + "end": 3801.88, + "probability": 0.9858 + }, + { + "start": 3802.02, + "end": 3802.74, + "probability": 0.8387 + }, + { + "start": 3804.62, + "end": 3807.5, + "probability": 0.8256 + }, + { + "start": 3813.44, + "end": 3816.26, + "probability": 0.5071 + }, + { + "start": 3823.1, + "end": 3827.78, + "probability": 0.9289 + }, + { + "start": 3828.64, + "end": 3834.7, + "probability": 0.9709 + }, + { + "start": 3835.56, + "end": 3836.94, + "probability": 0.9194 + }, + { + "start": 3837.8, + "end": 3843.1, + "probability": 0.9893 + }, + { + "start": 3843.78, + "end": 3845.56, + "probability": 0.9977 + }, + { + "start": 3846.82, + "end": 3849.23, + "probability": 0.9963 + }, + { + "start": 3849.78, + "end": 3854.7, + "probability": 0.8115 + }, + { + "start": 3854.72, + "end": 3855.96, + "probability": 0.4803 + }, + { + "start": 3856.62, + "end": 3859.28, + "probability": 0.9296 + }, + { + "start": 3860.36, + "end": 3864.92, + "probability": 0.9969 + }, + { + "start": 3865.6, + "end": 3867.61, + "probability": 0.998 + }, + { + "start": 3868.4, + "end": 3871.86, + "probability": 0.9709 + }, + { + "start": 3872.78, + "end": 3873.3, + "probability": 0.8865 + }, + { + "start": 3873.88, + "end": 3878.12, + "probability": 0.9974 + }, + { + "start": 3878.54, + "end": 3881.22, + "probability": 0.993 + }, + { + "start": 3882.12, + "end": 3883.82, + "probability": 0.9965 + }, + { + "start": 3884.54, + "end": 3886.4, + "probability": 0.9658 + }, + { + "start": 3886.82, + "end": 3888.98, + "probability": 0.9811 + }, + { + "start": 3890.14, + "end": 3892.44, + "probability": 0.8697 + }, + { + "start": 3892.6, + "end": 3896.56, + "probability": 0.9578 + }, + { + "start": 3897.32, + "end": 3902.02, + "probability": 0.9784 + }, + { + "start": 3902.02, + "end": 3906.4, + "probability": 0.9973 + }, + { + "start": 3907.58, + "end": 3908.3, + "probability": 0.5812 + }, + { + "start": 3908.44, + "end": 3911.62, + "probability": 0.674 + }, + { + "start": 3912.96, + "end": 3913.08, + "probability": 0.0031 + }, + { + "start": 3913.1, + "end": 3913.12, + "probability": 0.0509 + }, + { + "start": 3913.12, + "end": 3914.04, + "probability": 0.6941 + }, + { + "start": 3914.44, + "end": 3915.28, + "probability": 0.0709 + }, + { + "start": 3915.76, + "end": 3920.9, + "probability": 0.9583 + }, + { + "start": 3920.98, + "end": 3922.82, + "probability": 0.6879 + }, + { + "start": 3923.16, + "end": 3924.2, + "probability": 0.5756 + }, + { + "start": 3924.56, + "end": 3927.82, + "probability": 0.6134 + }, + { + "start": 3928.2, + "end": 3931.12, + "probability": 0.9802 + }, + { + "start": 3931.12, + "end": 3936.48, + "probability": 0.9685 + }, + { + "start": 3937.26, + "end": 3943.1, + "probability": 0.9898 + }, + { + "start": 3944.66, + "end": 3948.44, + "probability": 0.9512 + }, + { + "start": 3948.44, + "end": 3952.86, + "probability": 0.9962 + }, + { + "start": 3953.36, + "end": 3956.64, + "probability": 0.9956 + }, + { + "start": 3957.96, + "end": 3962.76, + "probability": 0.9373 + }, + { + "start": 3963.44, + "end": 3965.44, + "probability": 0.9569 + }, + { + "start": 3965.96, + "end": 3968.32, + "probability": 0.958 + }, + { + "start": 3968.96, + "end": 3971.98, + "probability": 0.9896 + }, + { + "start": 3972.36, + "end": 3974.26, + "probability": 0.8557 + }, + { + "start": 3975.9, + "end": 3976.66, + "probability": 0.665 + }, + { + "start": 3977.88, + "end": 3977.98, + "probability": 0.2578 + }, + { + "start": 3978.5, + "end": 3978.5, + "probability": 0.2762 + }, + { + "start": 3978.5, + "end": 3978.54, + "probability": 0.3855 + }, + { + "start": 3978.54, + "end": 3980.12, + "probability": 0.6538 + }, + { + "start": 3980.14, + "end": 3980.48, + "probability": 0.3974 + }, + { + "start": 3980.48, + "end": 3980.98, + "probability": 0.4637 + }, + { + "start": 3980.98, + "end": 3981.18, + "probability": 0.5113 + }, + { + "start": 3981.24, + "end": 3982.86, + "probability": 0.6838 + }, + { + "start": 3982.94, + "end": 3986.76, + "probability": 0.7266 + }, + { + "start": 3986.78, + "end": 3989.66, + "probability": 0.8403 + }, + { + "start": 3989.66, + "end": 3993.0, + "probability": 0.8861 + }, + { + "start": 3993.22, + "end": 3995.12, + "probability": 0.8655 + }, + { + "start": 3996.42, + "end": 4001.24, + "probability": 0.9923 + }, + { + "start": 4001.26, + "end": 4001.42, + "probability": 0.8478 + }, + { + "start": 4002.28, + "end": 4005.56, + "probability": 0.174 + }, + { + "start": 4005.56, + "end": 4008.16, + "probability": 0.5029 + }, + { + "start": 4008.26, + "end": 4010.44, + "probability": 0.6281 + }, + { + "start": 4010.78, + "end": 4012.74, + "probability": 0.7471 + }, + { + "start": 4012.96, + "end": 4013.5, + "probability": 0.8292 + }, + { + "start": 4013.62, + "end": 4015.54, + "probability": 0.7491 + }, + { + "start": 4015.62, + "end": 4015.96, + "probability": 0.6413 + }, + { + "start": 4016.74, + "end": 4020.48, + "probability": 0.9407 + }, + { + "start": 4021.34, + "end": 4026.84, + "probability": 0.7291 + }, + { + "start": 4030.24, + "end": 4031.78, + "probability": 0.9583 + }, + { + "start": 4032.48, + "end": 4033.76, + "probability": 0.8345 + }, + { + "start": 4034.36, + "end": 4036.16, + "probability": 0.722 + }, + { + "start": 4036.2, + "end": 4037.92, + "probability": 0.7708 + }, + { + "start": 4038.14, + "end": 4041.08, + "probability": 0.9141 + }, + { + "start": 4041.3, + "end": 4042.0, + "probability": 0.6132 + }, + { + "start": 4044.77, + "end": 4047.36, + "probability": 0.8796 + }, + { + "start": 4047.44, + "end": 4047.76, + "probability": 0.4758 + }, + { + "start": 4047.88, + "end": 4048.48, + "probability": 0.5058 + }, + { + "start": 4048.78, + "end": 4050.02, + "probability": 0.9446 + }, + { + "start": 4050.12, + "end": 4053.86, + "probability": 0.9711 + }, + { + "start": 4054.2, + "end": 4059.56, + "probability": 0.8496 + }, + { + "start": 4061.11, + "end": 4064.59, + "probability": 0.9609 + }, + { + "start": 4065.02, + "end": 4067.48, + "probability": 0.2348 + }, + { + "start": 4068.71, + "end": 4070.38, + "probability": 0.8887 + }, + { + "start": 4070.46, + "end": 4073.1, + "probability": 0.6429 + }, + { + "start": 4074.99, + "end": 4077.58, + "probability": 0.5005 + }, + { + "start": 4077.66, + "end": 4079.32, + "probability": 0.8425 + }, + { + "start": 4079.4, + "end": 4080.86, + "probability": 0.9375 + }, + { + "start": 4081.1, + "end": 4081.6, + "probability": 0.8649 + }, + { + "start": 4081.8, + "end": 4085.24, + "probability": 0.9627 + }, + { + "start": 4085.76, + "end": 4087.1, + "probability": 0.7549 + }, + { + "start": 4088.16, + "end": 4095.54, + "probability": 0.6969 + }, + { + "start": 4096.78, + "end": 4099.3, + "probability": 0.997 + }, + { + "start": 4100.52, + "end": 4102.05, + "probability": 0.9971 + }, + { + "start": 4103.0, + "end": 4104.94, + "probability": 0.7966 + }, + { + "start": 4104.94, + "end": 4107.78, + "probability": 0.8505 + }, + { + "start": 4108.46, + "end": 4111.84, + "probability": 0.8277 + }, + { + "start": 4112.42, + "end": 4113.32, + "probability": 0.7794 + }, + { + "start": 4113.62, + "end": 4114.14, + "probability": 0.9254 + }, + { + "start": 4114.7, + "end": 4116.48, + "probability": 0.9971 + }, + { + "start": 4117.16, + "end": 4120.7, + "probability": 0.9515 + }, + { + "start": 4121.3, + "end": 4130.28, + "probability": 0.7361 + }, + { + "start": 4130.28, + "end": 4133.26, + "probability": 0.8227 + }, + { + "start": 4133.7, + "end": 4134.88, + "probability": 0.6913 + }, + { + "start": 4135.8, + "end": 4139.16, + "probability": 0.9487 + }, + { + "start": 4139.88, + "end": 4143.42, + "probability": 0.7534 + }, + { + "start": 4143.94, + "end": 4149.34, + "probability": 0.9858 + }, + { + "start": 4149.54, + "end": 4150.62, + "probability": 0.7511 + }, + { + "start": 4150.62, + "end": 4151.24, + "probability": 0.8239 + }, + { + "start": 4151.4, + "end": 4154.92, + "probability": 0.9715 + }, + { + "start": 4155.22, + "end": 4160.24, + "probability": 0.9806 + }, + { + "start": 4160.74, + "end": 4161.46, + "probability": 0.2981 + }, + { + "start": 4161.84, + "end": 4163.3, + "probability": 0.9318 + }, + { + "start": 4164.0, + "end": 4168.14, + "probability": 0.6771 + }, + { + "start": 4168.7, + "end": 4169.62, + "probability": 0.7855 + }, + { + "start": 4169.78, + "end": 4171.44, + "probability": 0.9946 + }, + { + "start": 4171.72, + "end": 4172.36, + "probability": 0.8882 + }, + { + "start": 4172.66, + "end": 4173.9, + "probability": 0.8748 + }, + { + "start": 4174.04, + "end": 4178.34, + "probability": 0.9406 + }, + { + "start": 4178.7, + "end": 4182.72, + "probability": 0.964 + }, + { + "start": 4183.02, + "end": 4185.08, + "probability": 0.8412 + }, + { + "start": 4185.3, + "end": 4186.08, + "probability": 0.8818 + }, + { + "start": 4186.28, + "end": 4187.84, + "probability": 0.6875 + }, + { + "start": 4188.26, + "end": 4191.04, + "probability": 0.9259 + }, + { + "start": 4191.3, + "end": 4193.37, + "probability": 0.9868 + }, + { + "start": 4193.6, + "end": 4199.88, + "probability": 0.9974 + }, + { + "start": 4200.4, + "end": 4209.78, + "probability": 0.9761 + }, + { + "start": 4210.0, + "end": 4210.56, + "probability": 0.6517 + }, + { + "start": 4210.78, + "end": 4211.96, + "probability": 0.9354 + }, + { + "start": 4212.56, + "end": 4215.26, + "probability": 0.7607 + }, + { + "start": 4215.34, + "end": 4218.1, + "probability": 0.7558 + }, + { + "start": 4218.18, + "end": 4218.58, + "probability": 0.2227 + }, + { + "start": 4219.68, + "end": 4222.14, + "probability": 0.1444 + }, + { + "start": 4222.14, + "end": 4223.68, + "probability": 0.7157 + }, + { + "start": 4223.9, + "end": 4226.16, + "probability": 0.9551 + }, + { + "start": 4227.3, + "end": 4230.32, + "probability": 0.8787 + }, + { + "start": 4230.9, + "end": 4233.48, + "probability": 0.4998 + }, + { + "start": 4234.7, + "end": 4238.52, + "probability": 0.9629 + }, + { + "start": 4238.7, + "end": 4239.52, + "probability": 0.6577 + }, + { + "start": 4239.76, + "end": 4240.46, + "probability": 0.4596 + }, + { + "start": 4240.46, + "end": 4241.26, + "probability": 0.3608 + }, + { + "start": 4241.3, + "end": 4242.0, + "probability": 0.3116 + }, + { + "start": 4242.0, + "end": 4242.38, + "probability": 0.6296 + }, + { + "start": 4254.28, + "end": 4254.9, + "probability": 0.3101 + }, + { + "start": 4255.94, + "end": 4257.92, + "probability": 0.0391 + }, + { + "start": 4257.92, + "end": 4257.92, + "probability": 0.0667 + }, + { + "start": 4258.48, + "end": 4258.88, + "probability": 0.0344 + }, + { + "start": 4258.88, + "end": 4259.58, + "probability": 0.0953 + }, + { + "start": 4259.58, + "end": 4260.5, + "probability": 0.257 + }, + { + "start": 4261.14, + "end": 4262.4, + "probability": 0.8573 + }, + { + "start": 4263.04, + "end": 4263.78, + "probability": 0.5453 + }, + { + "start": 4263.86, + "end": 4264.12, + "probability": 0.4626 + }, + { + "start": 4264.14, + "end": 4264.42, + "probability": 0.7113 + }, + { + "start": 4264.56, + "end": 4267.68, + "probability": 0.9248 + }, + { + "start": 4267.74, + "end": 4268.32, + "probability": 0.3543 + }, + { + "start": 4268.4, + "end": 4271.58, + "probability": 0.9961 + }, + { + "start": 4272.92, + "end": 4273.9, + "probability": 0.676 + }, + { + "start": 4274.06, + "end": 4276.66, + "probability": 0.9597 + }, + { + "start": 4277.5, + "end": 4279.16, + "probability": 0.7929 + }, + { + "start": 4279.87, + "end": 4280.82, + "probability": 0.2992 + }, + { + "start": 4280.9, + "end": 4282.11, + "probability": 0.0667 + }, + { + "start": 4282.88, + "end": 4286.68, + "probability": 0.8429 + }, + { + "start": 4286.8, + "end": 4287.84, + "probability": 0.5513 + }, + { + "start": 4288.04, + "end": 4289.58, + "probability": 0.9788 + }, + { + "start": 4290.22, + "end": 4291.56, + "probability": 0.8896 + }, + { + "start": 4291.7, + "end": 4294.56, + "probability": 0.9316 + }, + { + "start": 4295.02, + "end": 4297.32, + "probability": 0.9676 + }, + { + "start": 4297.52, + "end": 4297.94, + "probability": 0.8777 + }, + { + "start": 4298.28, + "end": 4299.84, + "probability": 0.8857 + }, + { + "start": 4300.16, + "end": 4301.98, + "probability": 0.7154 + }, + { + "start": 4302.22, + "end": 4304.06, + "probability": 0.9395 + }, + { + "start": 4307.46, + "end": 4310.96, + "probability": 0.5911 + }, + { + "start": 4310.98, + "end": 4313.32, + "probability": 0.7076 + }, + { + "start": 4313.68, + "end": 4314.6, + "probability": 0.3582 + }, + { + "start": 4316.28, + "end": 4319.5, + "probability": 0.9468 + }, + { + "start": 4319.66, + "end": 4321.26, + "probability": 0.5771 + }, + { + "start": 4321.84, + "end": 4323.48, + "probability": 0.9499 + }, + { + "start": 4324.58, + "end": 4327.1, + "probability": 0.7264 + }, + { + "start": 4337.92, + "end": 4344.84, + "probability": 0.8236 + }, + { + "start": 4344.9, + "end": 4347.8, + "probability": 0.9413 + }, + { + "start": 4348.44, + "end": 4350.7, + "probability": 0.6679 + }, + { + "start": 4351.44, + "end": 4353.58, + "probability": 0.9941 + }, + { + "start": 4353.66, + "end": 4354.94, + "probability": 0.9845 + }, + { + "start": 4355.44, + "end": 4357.06, + "probability": 0.9268 + }, + { + "start": 4358.54, + "end": 4362.84, + "probability": 0.877 + }, + { + "start": 4362.96, + "end": 4363.24, + "probability": 0.7244 + }, + { + "start": 4363.42, + "end": 4364.76, + "probability": 0.9834 + }, + { + "start": 4365.34, + "end": 4368.94, + "probability": 0.923 + }, + { + "start": 4370.08, + "end": 4375.88, + "probability": 0.692 + }, + { + "start": 4376.74, + "end": 4379.8, + "probability": 0.9866 + }, + { + "start": 4379.8, + "end": 4385.37, + "probability": 0.9719 + }, + { + "start": 4385.9, + "end": 4387.22, + "probability": 0.6356 + }, + { + "start": 4387.4, + "end": 4389.25, + "probability": 0.9885 + }, + { + "start": 4389.96, + "end": 4391.31, + "probability": 0.7732 + }, + { + "start": 4392.94, + "end": 4396.74, + "probability": 0.9482 + }, + { + "start": 4397.38, + "end": 4398.96, + "probability": 0.9105 + }, + { + "start": 4399.26, + "end": 4400.58, + "probability": 0.5378 + }, + { + "start": 4401.12, + "end": 4402.18, + "probability": 0.906 + }, + { + "start": 4403.1, + "end": 4404.41, + "probability": 0.6346 + }, + { + "start": 4405.4, + "end": 4409.44, + "probability": 0.5838 + }, + { + "start": 4410.1, + "end": 4412.8, + "probability": 0.9596 + }, + { + "start": 4413.24, + "end": 4414.42, + "probability": 0.9688 + }, + { + "start": 4414.48, + "end": 4415.9, + "probability": 0.7038 + }, + { + "start": 4416.38, + "end": 4418.58, + "probability": 0.6506 + }, + { + "start": 4418.76, + "end": 4420.82, + "probability": 0.6808 + }, + { + "start": 4420.9, + "end": 4425.58, + "probability": 0.9626 + }, + { + "start": 4425.68, + "end": 4432.12, + "probability": 0.8506 + }, + { + "start": 4432.64, + "end": 4433.74, + "probability": 0.705 + }, + { + "start": 4434.34, + "end": 4436.35, + "probability": 0.7217 + }, + { + "start": 4436.5, + "end": 4437.5, + "probability": 0.9397 + }, + { + "start": 4438.02, + "end": 4442.08, + "probability": 0.969 + }, + { + "start": 4442.16, + "end": 4442.92, + "probability": 0.6389 + }, + { + "start": 4443.9, + "end": 4447.0, + "probability": 0.9575 + }, + { + "start": 4447.0, + "end": 4450.6, + "probability": 0.9823 + }, + { + "start": 4451.12, + "end": 4452.1, + "probability": 0.7838 + }, + { + "start": 4452.46, + "end": 4452.7, + "probability": 0.8974 + }, + { + "start": 4452.78, + "end": 4455.92, + "probability": 0.9731 + }, + { + "start": 4456.0, + "end": 4456.5, + "probability": 0.0339 + }, + { + "start": 4457.58, + "end": 4460.56, + "probability": 0.9934 + }, + { + "start": 4460.68, + "end": 4465.12, + "probability": 0.9908 + }, + { + "start": 4465.4, + "end": 4467.34, + "probability": 0.8608 + }, + { + "start": 4467.5, + "end": 4468.73, + "probability": 0.9927 + }, + { + "start": 4469.28, + "end": 4472.7, + "probability": 0.9199 + }, + { + "start": 4472.72, + "end": 4475.54, + "probability": 0.8727 + }, + { + "start": 4475.72, + "end": 4475.72, + "probability": 0.227 + }, + { + "start": 4475.72, + "end": 4476.42, + "probability": 0.1781 + }, + { + "start": 4476.74, + "end": 4479.08, + "probability": 0.9844 + }, + { + "start": 4479.48, + "end": 4483.02, + "probability": 0.9817 + }, + { + "start": 4483.02, + "end": 4486.08, + "probability": 0.8422 + }, + { + "start": 4486.08, + "end": 4489.46, + "probability": 0.522 + }, + { + "start": 4489.56, + "end": 4490.28, + "probability": 0.5008 + }, + { + "start": 4490.62, + "end": 4491.36, + "probability": 0.92 + }, + { + "start": 4491.48, + "end": 4493.4, + "probability": 0.905 + }, + { + "start": 4493.84, + "end": 4496.06, + "probability": 0.9941 + }, + { + "start": 4496.9, + "end": 4501.42, + "probability": 0.937 + }, + { + "start": 4501.74, + "end": 4502.76, + "probability": 0.477 + }, + { + "start": 4502.78, + "end": 4504.56, + "probability": 0.6664 + }, + { + "start": 4504.66, + "end": 4505.86, + "probability": 0.8035 + }, + { + "start": 4505.86, + "end": 4509.64, + "probability": 0.9334 + }, + { + "start": 4509.78, + "end": 4515.24, + "probability": 0.7998 + }, + { + "start": 4515.74, + "end": 4517.4, + "probability": 0.9982 + }, + { + "start": 4517.56, + "end": 4518.26, + "probability": 0.9218 + }, + { + "start": 4518.28, + "end": 4519.6, + "probability": 0.9103 + }, + { + "start": 4520.04, + "end": 4520.74, + "probability": 0.905 + }, + { + "start": 4521.46, + "end": 4523.95, + "probability": 0.9934 + }, + { + "start": 4525.48, + "end": 4527.52, + "probability": 0.9033 + }, + { + "start": 4527.64, + "end": 4529.14, + "probability": 0.9102 + }, + { + "start": 4529.22, + "end": 4531.24, + "probability": 0.8303 + }, + { + "start": 4531.36, + "end": 4532.2, + "probability": 0.8374 + }, + { + "start": 4532.26, + "end": 4535.74, + "probability": 0.9882 + }, + { + "start": 4535.84, + "end": 4537.04, + "probability": 0.6205 + }, + { + "start": 4537.06, + "end": 4539.28, + "probability": 0.9253 + }, + { + "start": 4539.3, + "end": 4540.48, + "probability": 0.7015 + }, + { + "start": 4541.02, + "end": 4543.54, + "probability": 0.8912 + }, + { + "start": 4543.7, + "end": 4543.7, + "probability": 0.2952 + }, + { + "start": 4543.7, + "end": 4544.6, + "probability": 0.6513 + }, + { + "start": 4544.72, + "end": 4545.6, + "probability": 0.8108 + }, + { + "start": 4546.08, + "end": 4546.76, + "probability": 0.5324 + }, + { + "start": 4547.68, + "end": 4550.74, + "probability": 0.7226 + }, + { + "start": 4550.74, + "end": 4551.82, + "probability": 0.9875 + }, + { + "start": 4551.82, + "end": 4553.86, + "probability": 0.4671 + }, + { + "start": 4555.5, + "end": 4557.9, + "probability": 0.6714 + }, + { + "start": 4558.8, + "end": 4561.46, + "probability": 0.6683 + }, + { + "start": 4565.8, + "end": 4566.48, + "probability": 0.4821 + }, + { + "start": 4566.52, + "end": 4567.64, + "probability": 0.6869 + }, + { + "start": 4567.94, + "end": 4571.86, + "probability": 0.991 + }, + { + "start": 4571.86, + "end": 4577.44, + "probability": 0.959 + }, + { + "start": 4578.56, + "end": 4581.34, + "probability": 0.9412 + }, + { + "start": 4582.1, + "end": 4585.94, + "probability": 0.9874 + }, + { + "start": 4586.1, + "end": 4589.34, + "probability": 0.6318 + }, + { + "start": 4591.06, + "end": 4594.44, + "probability": 0.8574 + }, + { + "start": 4594.56, + "end": 4595.4, + "probability": 0.8407 + }, + { + "start": 4597.09, + "end": 4600.02, + "probability": 0.8407 + }, + { + "start": 4600.3, + "end": 4602.26, + "probability": 0.7807 + }, + { + "start": 4602.34, + "end": 4603.25, + "probability": 0.8753 + }, + { + "start": 4604.52, + "end": 4608.54, + "probability": 0.8765 + }, + { + "start": 4609.44, + "end": 4610.3, + "probability": 0.7266 + }, + { + "start": 4610.84, + "end": 4614.12, + "probability": 0.9667 + }, + { + "start": 4614.12, + "end": 4619.58, + "probability": 0.9982 + }, + { + "start": 4620.34, + "end": 4620.86, + "probability": 0.5279 + }, + { + "start": 4621.08, + "end": 4625.76, + "probability": 0.7963 + }, + { + "start": 4625.86, + "end": 4626.38, + "probability": 0.6619 + }, + { + "start": 4626.4, + "end": 4628.12, + "probability": 0.8556 + }, + { + "start": 4628.22, + "end": 4630.3, + "probability": 0.6748 + }, + { + "start": 4630.92, + "end": 4633.62, + "probability": 0.995 + }, + { + "start": 4634.2, + "end": 4639.4, + "probability": 0.9757 + }, + { + "start": 4639.96, + "end": 4645.24, + "probability": 0.975 + }, + { + "start": 4645.76, + "end": 4648.7, + "probability": 0.9577 + }, + { + "start": 4652.04, + "end": 4658.0, + "probability": 0.984 + }, + { + "start": 4658.9, + "end": 4660.2, + "probability": 0.7976 + }, + { + "start": 4660.52, + "end": 4662.52, + "probability": 0.9658 + }, + { + "start": 4662.76, + "end": 4671.1, + "probability": 0.9936 + }, + { + "start": 4671.72, + "end": 4674.74, + "probability": 0.9598 + }, + { + "start": 4675.8, + "end": 4676.54, + "probability": 0.7573 + }, + { + "start": 4677.3, + "end": 4679.62, + "probability": 0.9844 + }, + { + "start": 4679.7, + "end": 4684.78, + "probability": 0.9629 + }, + { + "start": 4685.62, + "end": 4688.4, + "probability": 0.9209 + }, + { + "start": 4689.46, + "end": 4689.88, + "probability": 0.4535 + }, + { + "start": 4690.02, + "end": 4693.04, + "probability": 0.992 + }, + { + "start": 4693.04, + "end": 4695.6, + "probability": 0.9985 + }, + { + "start": 4695.6, + "end": 4700.72, + "probability": 0.9976 + }, + { + "start": 4700.92, + "end": 4701.32, + "probability": 0.6326 + }, + { + "start": 4701.46, + "end": 4707.9, + "probability": 0.8277 + }, + { + "start": 4709.16, + "end": 4715.06, + "probability": 0.9945 + }, + { + "start": 4715.06, + "end": 4718.94, + "probability": 0.9993 + }, + { + "start": 4719.26, + "end": 4725.86, + "probability": 0.83 + }, + { + "start": 4726.72, + "end": 4728.08, + "probability": 0.9064 + }, + { + "start": 4728.38, + "end": 4732.88, + "probability": 0.9001 + }, + { + "start": 4734.58, + "end": 4734.72, + "probability": 0.0946 + }, + { + "start": 4734.88, + "end": 4738.46, + "probability": 0.9747 + }, + { + "start": 4738.96, + "end": 4740.94, + "probability": 0.9948 + }, + { + "start": 4740.94, + "end": 4743.26, + "probability": 0.9225 + }, + { + "start": 4743.38, + "end": 4745.14, + "probability": 0.5416 + }, + { + "start": 4746.0, + "end": 4746.1, + "probability": 0.0632 + }, + { + "start": 4746.28, + "end": 4752.1, + "probability": 0.9937 + }, + { + "start": 4752.18, + "end": 4753.0, + "probability": 0.7379 + }, + { + "start": 4753.66, + "end": 4757.52, + "probability": 0.9806 + }, + { + "start": 4757.52, + "end": 4759.76, + "probability": 0.998 + }, + { + "start": 4760.24, + "end": 4764.28, + "probability": 0.9613 + }, + { + "start": 4764.34, + "end": 4767.5, + "probability": 0.9731 + }, + { + "start": 4767.9, + "end": 4767.9, + "probability": 0.0002 + }, + { + "start": 4769.06, + "end": 4771.58, + "probability": 0.0571 + }, + { + "start": 4773.71, + "end": 4778.74, + "probability": 0.076 + }, + { + "start": 4778.74, + "end": 4778.74, + "probability": 0.0236 + }, + { + "start": 4778.74, + "end": 4782.69, + "probability": 0.4769 + }, + { + "start": 4784.22, + "end": 4786.34, + "probability": 0.7327 + }, + { + "start": 4786.56, + "end": 4789.42, + "probability": 0.9807 + }, + { + "start": 4789.42, + "end": 4795.38, + "probability": 0.7872 + }, + { + "start": 4795.46, + "end": 4797.54, + "probability": 0.8743 + }, + { + "start": 4798.52, + "end": 4800.16, + "probability": 0.8652 + }, + { + "start": 4800.88, + "end": 4805.08, + "probability": 0.9815 + }, + { + "start": 4805.22, + "end": 4806.62, + "probability": 0.9595 + }, + { + "start": 4807.02, + "end": 4811.92, + "probability": 0.9943 + }, + { + "start": 4814.3, + "end": 4817.4, + "probability": 0.9749 + }, + { + "start": 4817.4, + "end": 4822.98, + "probability": 0.976 + }, + { + "start": 4824.66, + "end": 4825.86, + "probability": 0.896 + }, + { + "start": 4826.4, + "end": 4826.98, + "probability": 0.6327 + }, + { + "start": 4827.48, + "end": 4827.96, + "probability": 0.3653 + }, + { + "start": 4828.14, + "end": 4832.2, + "probability": 0.8525 + }, + { + "start": 4832.78, + "end": 4837.34, + "probability": 0.9968 + }, + { + "start": 4838.54, + "end": 4840.54, + "probability": 0.9059 + }, + { + "start": 4841.0, + "end": 4842.3, + "probability": 0.7773 + }, + { + "start": 4843.34, + "end": 4846.92, + "probability": 0.9616 + }, + { + "start": 4847.84, + "end": 4848.64, + "probability": 0.4412 + }, + { + "start": 4848.84, + "end": 4851.48, + "probability": 0.7309 + }, + { + "start": 4851.56, + "end": 4853.8, + "probability": 0.905 + }, + { + "start": 4854.1, + "end": 4856.7, + "probability": 0.9821 + }, + { + "start": 4856.8, + "end": 4859.72, + "probability": 0.9729 + }, + { + "start": 4860.22, + "end": 4860.99, + "probability": 0.3051 + }, + { + "start": 4861.74, + "end": 4864.04, + "probability": 0.0506 + }, + { + "start": 4864.4, + "end": 4865.44, + "probability": 0.0849 + }, + { + "start": 4866.72, + "end": 4869.62, + "probability": 0.829 + }, + { + "start": 4869.76, + "end": 4875.16, + "probability": 0.9785 + }, + { + "start": 4875.34, + "end": 4879.88, + "probability": 0.9885 + }, + { + "start": 4880.58, + "end": 4884.06, + "probability": 0.9515 + }, + { + "start": 4885.02, + "end": 4886.1, + "probability": 0.647 + }, + { + "start": 4886.22, + "end": 4886.64, + "probability": 0.3425 + }, + { + "start": 4886.76, + "end": 4889.58, + "probability": 0.7862 + }, + { + "start": 4889.68, + "end": 4890.0, + "probability": 0.4201 + }, + { + "start": 4890.04, + "end": 4890.86, + "probability": 0.5506 + }, + { + "start": 4891.0, + "end": 4893.94, + "probability": 0.9581 + }, + { + "start": 4893.94, + "end": 4897.72, + "probability": 0.7235 + }, + { + "start": 4897.84, + "end": 4899.3, + "probability": 0.8027 + }, + { + "start": 4899.44, + "end": 4900.82, + "probability": 0.3858 + }, + { + "start": 4901.66, + "end": 4905.24, + "probability": 0.9593 + }, + { + "start": 4905.62, + "end": 4908.34, + "probability": 0.7038 + }, + { + "start": 4908.42, + "end": 4908.92, + "probability": 0.4457 + }, + { + "start": 4908.96, + "end": 4909.96, + "probability": 0.6951 + }, + { + "start": 4913.56, + "end": 4914.22, + "probability": 0.2843 + }, + { + "start": 4916.4, + "end": 4918.92, + "probability": 0.0687 + }, + { + "start": 4922.18, + "end": 4924.26, + "probability": 0.2271 + }, + { + "start": 4925.12, + "end": 4926.46, + "probability": 0.0288 + }, + { + "start": 4927.1, + "end": 4927.4, + "probability": 0.1033 + }, + { + "start": 4933.18, + "end": 4935.46, + "probability": 0.7187 + }, + { + "start": 4936.94, + "end": 4937.56, + "probability": 0.0225 + }, + { + "start": 4939.88, + "end": 4942.0, + "probability": 0.4632 + }, + { + "start": 4943.0, + "end": 4944.46, + "probability": 0.3418 + }, + { + "start": 4944.56, + "end": 4946.44, + "probability": 0.1489 + }, + { + "start": 4951.54, + "end": 4951.72, + "probability": 0.0139 + }, + { + "start": 4955.96, + "end": 4957.16, + "probability": 0.1643 + }, + { + "start": 4960.94, + "end": 4964.2, + "probability": 0.087 + }, + { + "start": 4964.2, + "end": 4968.59, + "probability": 0.0877 + }, + { + "start": 4968.62, + "end": 4969.96, + "probability": 0.1407 + }, + { + "start": 4969.96, + "end": 4970.16, + "probability": 0.2436 + }, + { + "start": 4970.16, + "end": 4971.78, + "probability": 0.0562 + }, + { + "start": 4974.98, + "end": 4975.21, + "probability": 0.1379 + }, + { + "start": 4977.82, + "end": 4977.96, + "probability": 0.14 + }, + { + "start": 4977.96, + "end": 4977.96, + "probability": 0.0757 + }, + { + "start": 4977.96, + "end": 4977.96, + "probability": 0.0159 + }, + { + "start": 4977.96, + "end": 4978.62, + "probability": 0.0193 + }, + { + "start": 4979.12, + "end": 4979.18, + "probability": 0.0353 + }, + { + "start": 5011.0, + "end": 5011.0, + "probability": 0.0 + }, + { + "start": 5011.0, + "end": 5011.0, + "probability": 0.0 + }, + { + "start": 5011.0, + "end": 5011.0, + "probability": 0.0 + }, + { + "start": 5011.0, + "end": 5011.0, + "probability": 0.0 + }, + { + "start": 5011.0, + "end": 5011.0, + "probability": 0.0 + }, + { + "start": 5011.0, + "end": 5011.0, + "probability": 0.0 + }, + { + "start": 5011.0, + "end": 5011.0, + "probability": 0.0 + }, + { + "start": 5011.0, + "end": 5011.0, + "probability": 0.0 + }, + { + "start": 5011.0, + "end": 5011.0, + "probability": 0.0 + }, + { + "start": 5011.0, + "end": 5011.0, + "probability": 0.0 + }, + { + "start": 5011.0, + "end": 5011.0, + "probability": 0.0 + }, + { + "start": 5011.0, + "end": 5011.0, + "probability": 0.0 + }, + { + "start": 5011.0, + "end": 5011.0, + "probability": 0.0 + }, + { + "start": 5011.0, + "end": 5011.0, + "probability": 0.0 + }, + { + "start": 5011.0, + "end": 5011.0, + "probability": 0.0 + }, + { + "start": 5011.0, + "end": 5011.0, + "probability": 0.0 + }, + { + "start": 5011.0, + "end": 5011.0, + "probability": 0.0 + }, + { + "start": 5011.0, + "end": 5011.24, + "probability": 0.1361 + }, + { + "start": 5011.24, + "end": 5011.24, + "probability": 0.0324 + }, + { + "start": 5011.24, + "end": 5014.2, + "probability": 0.9832 + }, + { + "start": 5014.2, + "end": 5021.18, + "probability": 0.8203 + }, + { + "start": 5022.56, + "end": 5026.75, + "probability": 0.9896 + }, + { + "start": 5027.4, + "end": 5031.3, + "probability": 0.9954 + }, + { + "start": 5032.5, + "end": 5034.72, + "probability": 0.6505 + }, + { + "start": 5035.7, + "end": 5038.52, + "probability": 0.9563 + }, + { + "start": 5039.18, + "end": 5042.76, + "probability": 0.9924 + }, + { + "start": 5042.76, + "end": 5048.34, + "probability": 0.9266 + }, + { + "start": 5049.02, + "end": 5055.76, + "probability": 0.8733 + }, + { + "start": 5055.76, + "end": 5061.96, + "probability": 0.9065 + }, + { + "start": 5063.14, + "end": 5064.86, + "probability": 0.9013 + }, + { + "start": 5065.04, + "end": 5067.4, + "probability": 0.9753 + }, + { + "start": 5067.56, + "end": 5071.26, + "probability": 0.9652 + }, + { + "start": 5071.26, + "end": 5075.44, + "probability": 0.9956 + }, + { + "start": 5076.46, + "end": 5084.36, + "probability": 0.9639 + }, + { + "start": 5084.36, + "end": 5088.98, + "probability": 0.998 + }, + { + "start": 5089.74, + "end": 5095.38, + "probability": 0.9923 + }, + { + "start": 5095.94, + "end": 5102.74, + "probability": 0.998 + }, + { + "start": 5103.46, + "end": 5107.0, + "probability": 0.8164 + }, + { + "start": 5108.04, + "end": 5114.3, + "probability": 0.8943 + }, + { + "start": 5115.4, + "end": 5120.46, + "probability": 0.9888 + }, + { + "start": 5123.22, + "end": 5129.86, + "probability": 0.9159 + }, + { + "start": 5130.84, + "end": 5137.84, + "probability": 0.9898 + }, + { + "start": 5137.84, + "end": 5146.58, + "probability": 0.9983 + }, + { + "start": 5147.52, + "end": 5149.0, + "probability": 0.5835 + }, + { + "start": 5149.08, + "end": 5152.28, + "probability": 0.703 + }, + { + "start": 5152.34, + "end": 5154.05, + "probability": 0.9973 + }, + { + "start": 5157.32, + "end": 5160.08, + "probability": 0.9384 + }, + { + "start": 5160.88, + "end": 5165.64, + "probability": 0.9921 + }, + { + "start": 5165.64, + "end": 5170.46, + "probability": 0.9969 + }, + { + "start": 5171.14, + "end": 5177.26, + "probability": 0.9712 + }, + { + "start": 5177.26, + "end": 5182.68, + "probability": 0.9812 + }, + { + "start": 5183.28, + "end": 5184.94, + "probability": 0.8441 + }, + { + "start": 5185.5, + "end": 5190.3, + "probability": 0.9731 + }, + { + "start": 5190.74, + "end": 5194.22, + "probability": 0.9602 + }, + { + "start": 5194.56, + "end": 5195.86, + "probability": 0.8915 + }, + { + "start": 5196.38, + "end": 5197.38, + "probability": 0.8853 + }, + { + "start": 5197.54, + "end": 5204.88, + "probability": 0.9723 + }, + { + "start": 5205.86, + "end": 5207.92, + "probability": 0.585 + }, + { + "start": 5208.32, + "end": 5211.16, + "probability": 0.7157 + }, + { + "start": 5211.3, + "end": 5212.64, + "probability": 0.6456 + }, + { + "start": 5213.91, + "end": 5217.2, + "probability": 0.9472 + }, + { + "start": 5217.44, + "end": 5222.9, + "probability": 0.9789 + }, + { + "start": 5222.9, + "end": 5229.64, + "probability": 0.9792 + }, + { + "start": 5230.42, + "end": 5231.86, + "probability": 0.9389 + }, + { + "start": 5232.66, + "end": 5235.42, + "probability": 0.99 + }, + { + "start": 5235.56, + "end": 5236.5, + "probability": 0.6407 + }, + { + "start": 5236.56, + "end": 5240.92, + "probability": 0.9525 + }, + { + "start": 5243.02, + "end": 5246.9, + "probability": 0.9647 + }, + { + "start": 5248.0, + "end": 5252.48, + "probability": 0.735 + }, + { + "start": 5253.44, + "end": 5254.66, + "probability": 0.9468 + }, + { + "start": 5255.24, + "end": 5256.52, + "probability": 0.8354 + }, + { + "start": 5256.96, + "end": 5259.92, + "probability": 0.957 + }, + { + "start": 5260.46, + "end": 5262.2, + "probability": 0.9744 + }, + { + "start": 5262.26, + "end": 5262.96, + "probability": 0.9877 + }, + { + "start": 5263.0, + "end": 5264.12, + "probability": 0.9484 + }, + { + "start": 5264.18, + "end": 5268.96, + "probability": 0.9658 + }, + { + "start": 5269.62, + "end": 5272.16, + "probability": 0.8597 + }, + { + "start": 5272.22, + "end": 5273.94, + "probability": 0.572 + }, + { + "start": 5274.0, + "end": 5276.42, + "probability": 0.9868 + }, + { + "start": 5276.54, + "end": 5277.34, + "probability": 0.7451 + }, + { + "start": 5277.96, + "end": 5279.98, + "probability": 0.9258 + }, + { + "start": 5281.12, + "end": 5285.7, + "probability": 0.918 + }, + { + "start": 5286.56, + "end": 5289.66, + "probability": 0.9766 + }, + { + "start": 5289.66, + "end": 5295.38, + "probability": 0.6728 + }, + { + "start": 5296.16, + "end": 5299.5, + "probability": 0.8807 + }, + { + "start": 5300.16, + "end": 5302.72, + "probability": 0.8957 + }, + { + "start": 5302.78, + "end": 5308.72, + "probability": 0.9937 + }, + { + "start": 5309.36, + "end": 5313.06, + "probability": 0.7938 + }, + { + "start": 5313.7, + "end": 5317.98, + "probability": 0.9797 + }, + { + "start": 5318.48, + "end": 5320.08, + "probability": 0.9824 + }, + { + "start": 5320.64, + "end": 5323.82, + "probability": 0.8623 + }, + { + "start": 5324.7, + "end": 5326.06, + "probability": 0.9223 + }, + { + "start": 5326.62, + "end": 5327.58, + "probability": 0.3424 + }, + { + "start": 5328.24, + "end": 5330.66, + "probability": 0.8412 + }, + { + "start": 5331.1, + "end": 5336.72, + "probability": 0.9827 + }, + { + "start": 5336.72, + "end": 5340.94, + "probability": 0.9985 + }, + { + "start": 5341.22, + "end": 5345.3, + "probability": 0.9781 + }, + { + "start": 5345.46, + "end": 5346.28, + "probability": 0.2164 + }, + { + "start": 5346.64, + "end": 5348.1, + "probability": 0.758 + }, + { + "start": 5348.64, + "end": 5350.2, + "probability": 0.7695 + }, + { + "start": 5350.84, + "end": 5352.86, + "probability": 0.8225 + }, + { + "start": 5353.02, + "end": 5353.86, + "probability": 0.698 + }, + { + "start": 5354.42, + "end": 5355.52, + "probability": 0.8645 + }, + { + "start": 5355.56, + "end": 5359.96, + "probability": 0.8216 + }, + { + "start": 5360.34, + "end": 5363.9, + "probability": 0.8159 + }, + { + "start": 5363.96, + "end": 5365.4, + "probability": 0.0562 + }, + { + "start": 5365.4, + "end": 5366.96, + "probability": 0.7131 + }, + { + "start": 5367.28, + "end": 5371.26, + "probability": 0.9827 + }, + { + "start": 5372.78, + "end": 5377.9, + "probability": 0.9915 + }, + { + "start": 5378.02, + "end": 5379.54, + "probability": 0.9978 + }, + { + "start": 5380.32, + "end": 5382.1, + "probability": 0.9861 + }, + { + "start": 5382.78, + "end": 5386.74, + "probability": 0.9698 + }, + { + "start": 5387.84, + "end": 5390.22, + "probability": 0.8306 + }, + { + "start": 5390.92, + "end": 5394.2, + "probability": 0.9861 + }, + { + "start": 5394.96, + "end": 5395.94, + "probability": 0.6422 + }, + { + "start": 5396.5, + "end": 5402.64, + "probability": 0.9565 + }, + { + "start": 5402.64, + "end": 5407.28, + "probability": 0.9815 + }, + { + "start": 5407.7, + "end": 5411.52, + "probability": 0.9083 + }, + { + "start": 5411.58, + "end": 5413.28, + "probability": 0.8987 + }, + { + "start": 5413.52, + "end": 5416.28, + "probability": 0.916 + }, + { + "start": 5416.76, + "end": 5419.44, + "probability": 0.9888 + }, + { + "start": 5419.58, + "end": 5422.72, + "probability": 0.9526 + }, + { + "start": 5422.86, + "end": 5424.24, + "probability": 0.9769 + }, + { + "start": 5424.36, + "end": 5426.1, + "probability": 0.9133 + }, + { + "start": 5426.7, + "end": 5431.22, + "probability": 0.8016 + }, + { + "start": 5431.78, + "end": 5440.74, + "probability": 0.8626 + }, + { + "start": 5441.14, + "end": 5442.14, + "probability": 0.9388 + }, + { + "start": 5442.46, + "end": 5443.16, + "probability": 0.8522 + }, + { + "start": 5443.46, + "end": 5445.66, + "probability": 0.5836 + }, + { + "start": 5445.72, + "end": 5453.32, + "probability": 0.9982 + }, + { + "start": 5453.76, + "end": 5454.6, + "probability": 0.3327 + }, + { + "start": 5454.76, + "end": 5457.96, + "probability": 0.9907 + }, + { + "start": 5458.08, + "end": 5459.52, + "probability": 0.9688 + }, + { + "start": 5459.96, + "end": 5462.9, + "probability": 0.9536 + }, + { + "start": 5462.9, + "end": 5468.88, + "probability": 0.9067 + }, + { + "start": 5469.52, + "end": 5472.56, + "probability": 0.7595 + }, + { + "start": 5472.9, + "end": 5474.6, + "probability": 0.9047 + }, + { + "start": 5474.64, + "end": 5476.6, + "probability": 0.9818 + }, + { + "start": 5477.06, + "end": 5482.02, + "probability": 0.9624 + }, + { + "start": 5482.12, + "end": 5482.78, + "probability": 0.7449 + }, + { + "start": 5483.06, + "end": 5485.82, + "probability": 0.9631 + }, + { + "start": 5486.04, + "end": 5486.3, + "probability": 0.5382 + }, + { + "start": 5486.98, + "end": 5490.68, + "probability": 0.8144 + }, + { + "start": 5502.48, + "end": 5503.04, + "probability": 0.548 + }, + { + "start": 5503.14, + "end": 5504.64, + "probability": 0.8664 + }, + { + "start": 5505.26, + "end": 5508.47, + "probability": 0.7124 + }, + { + "start": 5509.92, + "end": 5513.38, + "probability": 0.9179 + }, + { + "start": 5513.38, + "end": 5515.0, + "probability": 0.6648 + }, + { + "start": 5515.7, + "end": 5518.14, + "probability": 0.86 + }, + { + "start": 5518.22, + "end": 5523.7, + "probability": 0.8929 + }, + { + "start": 5524.16, + "end": 5525.4, + "probability": 0.808 + }, + { + "start": 5525.52, + "end": 5526.38, + "probability": 0.7595 + }, + { + "start": 5526.5, + "end": 5527.23, + "probability": 0.9205 + }, + { + "start": 5528.74, + "end": 5529.16, + "probability": 0.8623 + }, + { + "start": 5529.24, + "end": 5529.88, + "probability": 0.6305 + }, + { + "start": 5530.32, + "end": 5534.3, + "probability": 0.9246 + }, + { + "start": 5535.12, + "end": 5536.34, + "probability": 0.9082 + }, + { + "start": 5536.86, + "end": 5538.04, + "probability": 0.8728 + }, + { + "start": 5538.54, + "end": 5542.84, + "probability": 0.9902 + }, + { + "start": 5542.84, + "end": 5544.99, + "probability": 0.8337 + }, + { + "start": 5545.84, + "end": 5546.35, + "probability": 0.9316 + }, + { + "start": 5546.87, + "end": 5549.87, + "probability": 0.7065 + }, + { + "start": 5550.12, + "end": 5552.34, + "probability": 0.9983 + }, + { + "start": 5553.14, + "end": 5555.94, + "probability": 0.9721 + }, + { + "start": 5556.52, + "end": 5559.22, + "probability": 0.9875 + }, + { + "start": 5560.22, + "end": 5563.76, + "probability": 0.9524 + }, + { + "start": 5564.94, + "end": 5565.04, + "probability": 0.2965 + }, + { + "start": 5565.04, + "end": 5566.89, + "probability": 0.6137 + }, + { + "start": 5568.74, + "end": 5570.26, + "probability": 0.4876 + }, + { + "start": 5570.99, + "end": 5574.3, + "probability": 0.8983 + }, + { + "start": 5574.54, + "end": 5578.24, + "probability": 0.7103 + }, + { + "start": 5578.92, + "end": 5581.88, + "probability": 0.9698 + }, + { + "start": 5583.56, + "end": 5587.88, + "probability": 0.7516 + }, + { + "start": 5588.4, + "end": 5589.63, + "probability": 0.9299 + }, + { + "start": 5589.96, + "end": 5592.72, + "probability": 0.9956 + }, + { + "start": 5593.18, + "end": 5594.12, + "probability": 0.9709 + }, + { + "start": 5594.52, + "end": 5595.27, + "probability": 0.9917 + }, + { + "start": 5595.82, + "end": 5600.4, + "probability": 0.9003 + }, + { + "start": 5600.88, + "end": 5601.6, + "probability": 0.95 + }, + { + "start": 5602.24, + "end": 5605.32, + "probability": 0.8855 + }, + { + "start": 5605.72, + "end": 5606.0, + "probability": 0.548 + }, + { + "start": 5606.08, + "end": 5607.86, + "probability": 0.9595 + }, + { + "start": 5608.26, + "end": 5610.82, + "probability": 0.9906 + }, + { + "start": 5611.56, + "end": 5614.16, + "probability": 0.949 + }, + { + "start": 5614.7, + "end": 5616.23, + "probability": 0.783 + }, + { + "start": 5617.06, + "end": 5622.28, + "probability": 0.7661 + }, + { + "start": 5622.42, + "end": 5624.04, + "probability": 0.663 + }, + { + "start": 5624.5, + "end": 5626.46, + "probability": 0.8789 + }, + { + "start": 5626.58, + "end": 5631.96, + "probability": 0.2708 + }, + { + "start": 5632.44, + "end": 5636.4, + "probability": 0.2452 + }, + { + "start": 5636.42, + "end": 5641.72, + "probability": 0.9106 + }, + { + "start": 5642.08, + "end": 5645.22, + "probability": 0.9946 + }, + { + "start": 5645.6, + "end": 5646.56, + "probability": 0.8845 + }, + { + "start": 5646.94, + "end": 5650.86, + "probability": 0.9958 + }, + { + "start": 5650.96, + "end": 5653.84, + "probability": 0.9177 + }, + { + "start": 5653.86, + "end": 5657.1, + "probability": 0.7211 + }, + { + "start": 5657.42, + "end": 5660.98, + "probability": 0.9478 + }, + { + "start": 5661.12, + "end": 5662.42, + "probability": 0.8256 + }, + { + "start": 5662.74, + "end": 5666.78, + "probability": 0.7921 + }, + { + "start": 5667.1, + "end": 5667.64, + "probability": 0.6141 + }, + { + "start": 5667.74, + "end": 5669.8, + "probability": 0.9409 + }, + { + "start": 5669.92, + "end": 5670.46, + "probability": 0.9313 + }, + { + "start": 5670.64, + "end": 5671.56, + "probability": 0.9165 + }, + { + "start": 5671.98, + "end": 5673.84, + "probability": 0.8671 + }, + { + "start": 5674.62, + "end": 5675.85, + "probability": 0.9635 + }, + { + "start": 5676.74, + "end": 5679.28, + "probability": 0.9963 + }, + { + "start": 5679.96, + "end": 5683.38, + "probability": 0.0545 + }, + { + "start": 5683.72, + "end": 5684.74, + "probability": 0.4768 + }, + { + "start": 5684.9, + "end": 5686.1, + "probability": 0.7179 + }, + { + "start": 5686.1, + "end": 5690.36, + "probability": 0.8337 + }, + { + "start": 5690.48, + "end": 5691.17, + "probability": 0.0539 + }, + { + "start": 5691.64, + "end": 5691.64, + "probability": 0.0651 + }, + { + "start": 5691.64, + "end": 5695.5, + "probability": 0.8488 + }, + { + "start": 5695.98, + "end": 5696.98, + "probability": 0.9486 + }, + { + "start": 5697.36, + "end": 5698.32, + "probability": 0.9845 + }, + { + "start": 5698.66, + "end": 5700.56, + "probability": 0.6396 + }, + { + "start": 5701.02, + "end": 5701.18, + "probability": 0.0974 + }, + { + "start": 5702.79, + "end": 5706.48, + "probability": 0.1297 + }, + { + "start": 5706.48, + "end": 5711.02, + "probability": 0.8897 + }, + { + "start": 5711.02, + "end": 5712.58, + "probability": 0.8948 + }, + { + "start": 5712.78, + "end": 5716.82, + "probability": 0.8805 + }, + { + "start": 5717.36, + "end": 5720.86, + "probability": 0.962 + }, + { + "start": 5721.28, + "end": 5722.5, + "probability": 0.968 + }, + { + "start": 5722.94, + "end": 5723.44, + "probability": 0.8318 + }, + { + "start": 5723.52, + "end": 5724.88, + "probability": 0.7592 + }, + { + "start": 5724.98, + "end": 5726.06, + "probability": 0.8943 + }, + { + "start": 5726.24, + "end": 5728.96, + "probability": 0.6751 + }, + { + "start": 5729.1, + "end": 5729.68, + "probability": 0.8524 + }, + { + "start": 5729.84, + "end": 5730.18, + "probability": 0.48 + }, + { + "start": 5730.56, + "end": 5732.08, + "probability": 0.9949 + }, + { + "start": 5732.64, + "end": 5737.02, + "probability": 0.9711 + }, + { + "start": 5738.82, + "end": 5742.62, + "probability": 0.9985 + }, + { + "start": 5744.28, + "end": 5745.5, + "probability": 0.8645 + }, + { + "start": 5745.78, + "end": 5750.69, + "probability": 0.9102 + }, + { + "start": 5751.14, + "end": 5752.04, + "probability": 0.7617 + }, + { + "start": 5752.44, + "end": 5753.0, + "probability": 0.9769 + }, + { + "start": 5753.24, + "end": 5755.6, + "probability": 0.9909 + }, + { + "start": 5755.72, + "end": 5759.76, + "probability": 0.428 + }, + { + "start": 5760.32, + "end": 5762.58, + "probability": 0.7622 + }, + { + "start": 5762.74, + "end": 5763.44, + "probability": 0.5853 + }, + { + "start": 5763.8, + "end": 5764.72, + "probability": 0.713 + }, + { + "start": 5765.4, + "end": 5765.4, + "probability": 0.0156 + }, + { + "start": 5765.42, + "end": 5767.89, + "probability": 0.7965 + }, + { + "start": 5768.9, + "end": 5772.87, + "probability": 0.9631 + }, + { + "start": 5773.12, + "end": 5774.46, + "probability": 0.946 + }, + { + "start": 5774.86, + "end": 5778.14, + "probability": 0.8843 + }, + { + "start": 5778.14, + "end": 5782.42, + "probability": 0.9961 + }, + { + "start": 5782.68, + "end": 5786.5, + "probability": 0.7659 + }, + { + "start": 5786.82, + "end": 5787.68, + "probability": 0.9016 + }, + { + "start": 5787.8, + "end": 5789.34, + "probability": 0.8671 + }, + { + "start": 5789.44, + "end": 5790.02, + "probability": 0.8625 + }, + { + "start": 5798.08, + "end": 5801.7, + "probability": 0.7008 + }, + { + "start": 5803.32, + "end": 5804.52, + "probability": 0.7369 + }, + { + "start": 5806.32, + "end": 5809.48, + "probability": 0.9057 + }, + { + "start": 5810.48, + "end": 5813.62, + "probability": 0.9877 + }, + { + "start": 5816.12, + "end": 5818.72, + "probability": 0.9271 + }, + { + "start": 5818.78, + "end": 5820.06, + "probability": 0.8552 + }, + { + "start": 5820.2, + "end": 5821.84, + "probability": 0.8141 + }, + { + "start": 5822.42, + "end": 5825.08, + "probability": 0.4464 + }, + { + "start": 5825.26, + "end": 5825.26, + "probability": 0.1179 + }, + { + "start": 5825.26, + "end": 5826.92, + "probability": 0.828 + }, + { + "start": 5827.04, + "end": 5829.8, + "probability": 0.2763 + }, + { + "start": 5834.8, + "end": 5837.1, + "probability": 0.9209 + }, + { + "start": 5837.14, + "end": 5838.26, + "probability": 0.9653 + }, + { + "start": 5845.08, + "end": 5850.16, + "probability": 0.8921 + }, + { + "start": 5851.26, + "end": 5861.18, + "probability": 0.9913 + }, + { + "start": 5861.78, + "end": 5865.96, + "probability": 0.9952 + }, + { + "start": 5865.96, + "end": 5871.66, + "probability": 0.8184 + }, + { + "start": 5872.42, + "end": 5875.38, + "probability": 0.8347 + }, + { + "start": 5875.38, + "end": 5879.96, + "probability": 0.9979 + }, + { + "start": 5881.14, + "end": 5881.96, + "probability": 0.4896 + }, + { + "start": 5882.1, + "end": 5883.36, + "probability": 0.615 + }, + { + "start": 5883.66, + "end": 5884.3, + "probability": 0.8303 + }, + { + "start": 5884.38, + "end": 5885.18, + "probability": 0.681 + }, + { + "start": 5885.88, + "end": 5889.82, + "probability": 0.9937 + }, + { + "start": 5889.82, + "end": 5893.12, + "probability": 0.989 + }, + { + "start": 5893.4, + "end": 5896.88, + "probability": 0.9918 + }, + { + "start": 5896.98, + "end": 5901.2, + "probability": 0.8552 + }, + { + "start": 5901.64, + "end": 5902.2, + "probability": 0.6667 + }, + { + "start": 5902.54, + "end": 5906.14, + "probability": 0.9721 + }, + { + "start": 5906.44, + "end": 5908.5, + "probability": 0.8823 + }, + { + "start": 5908.84, + "end": 5912.76, + "probability": 0.9584 + }, + { + "start": 5912.92, + "end": 5916.68, + "probability": 0.9839 + }, + { + "start": 5916.68, + "end": 5918.04, + "probability": 0.557 + }, + { + "start": 5919.02, + "end": 5920.88, + "probability": 0.7059 + }, + { + "start": 5921.34, + "end": 5925.24, + "probability": 0.9258 + }, + { + "start": 5925.6, + "end": 5928.61, + "probability": 0.9221 + }, + { + "start": 5929.42, + "end": 5931.1, + "probability": 0.9642 + }, + { + "start": 5932.14, + "end": 5935.22, + "probability": 0.4887 + }, + { + "start": 5936.1, + "end": 5939.74, + "probability": 0.9208 + }, + { + "start": 5939.84, + "end": 5941.92, + "probability": 0.6613 + }, + { + "start": 5942.38, + "end": 5943.3, + "probability": 0.6148 + }, + { + "start": 5943.66, + "end": 5944.34, + "probability": 0.5874 + }, + { + "start": 5950.4, + "end": 5953.07, + "probability": 0.0275 + }, + { + "start": 5955.48, + "end": 5960.2, + "probability": 0.0507 + }, + { + "start": 5961.0, + "end": 5961.68, + "probability": 0.3625 + }, + { + "start": 5961.68, + "end": 5963.48, + "probability": 0.4217 + }, + { + "start": 5964.04, + "end": 5965.32, + "probability": 0.5635 + }, + { + "start": 5965.44, + "end": 5967.88, + "probability": 0.8341 + }, + { + "start": 5969.36, + "end": 5972.28, + "probability": 0.8506 + }, + { + "start": 5972.28, + "end": 5973.7, + "probability": 0.5517 + }, + { + "start": 5973.96, + "end": 5975.72, + "probability": 0.5333 + }, + { + "start": 5976.74, + "end": 5981.22, + "probability": 0.8656 + }, + { + "start": 5985.86, + "end": 5985.86, + "probability": 0.2756 + }, + { + "start": 5985.86, + "end": 5987.3, + "probability": 0.6751 + }, + { + "start": 5988.28, + "end": 5989.6, + "probability": 0.9746 + }, + { + "start": 5989.78, + "end": 5990.91, + "probability": 0.9824 + }, + { + "start": 5992.0, + "end": 5992.34, + "probability": 0.5607 + }, + { + "start": 5992.34, + "end": 5993.06, + "probability": 0.4838 + }, + { + "start": 5993.24, + "end": 5995.0, + "probability": 0.7185 + }, + { + "start": 5995.3, + "end": 5997.32, + "probability": 0.9886 + }, + { + "start": 5997.5, + "end": 5999.4, + "probability": 0.8394 + }, + { + "start": 6000.02, + "end": 6001.8, + "probability": 0.9025 + }, + { + "start": 6003.16, + "end": 6003.5, + "probability": 0.39 + }, + { + "start": 6003.56, + "end": 6007.48, + "probability": 0.7107 + }, + { + "start": 6008.24, + "end": 6013.74, + "probability": 0.9962 + }, + { + "start": 6013.74, + "end": 6017.9, + "probability": 0.9983 + }, + { + "start": 6019.26, + "end": 6022.28, + "probability": 0.9951 + }, + { + "start": 6022.28, + "end": 6025.98, + "probability": 0.9949 + }, + { + "start": 6026.26, + "end": 6027.6, + "probability": 0.8481 + }, + { + "start": 6028.2, + "end": 6030.0, + "probability": 0.8159 + }, + { + "start": 6030.46, + "end": 6035.08, + "probability": 0.9926 + }, + { + "start": 6035.58, + "end": 6036.22, + "probability": 0.8472 + }, + { + "start": 6036.7, + "end": 6039.96, + "probability": 0.9899 + }, + { + "start": 6040.68, + "end": 6046.06, + "probability": 0.9458 + }, + { + "start": 6046.06, + "end": 6052.0, + "probability": 0.8289 + }, + { + "start": 6053.02, + "end": 6057.92, + "probability": 0.8977 + }, + { + "start": 6057.92, + "end": 6062.88, + "probability": 0.985 + }, + { + "start": 6063.72, + "end": 6064.72, + "probability": 0.8841 + }, + { + "start": 6064.78, + "end": 6065.98, + "probability": 0.978 + }, + { + "start": 6066.32, + "end": 6069.2, + "probability": 0.9202 + }, + { + "start": 6069.62, + "end": 6071.22, + "probability": 0.85 + }, + { + "start": 6072.36, + "end": 6075.96, + "probability": 0.723 + }, + { + "start": 6075.96, + "end": 6078.22, + "probability": 0.8937 + }, + { + "start": 6079.44, + "end": 6083.7, + "probability": 0.9054 + }, + { + "start": 6083.7, + "end": 6087.42, + "probability": 0.9458 + }, + { + "start": 6087.98, + "end": 6092.74, + "probability": 0.9671 + }, + { + "start": 6093.74, + "end": 6096.24, + "probability": 0.9744 + }, + { + "start": 6097.5, + "end": 6100.58, + "probability": 0.9964 + }, + { + "start": 6100.58, + "end": 6104.68, + "probability": 0.9972 + }, + { + "start": 6105.78, + "end": 6109.32, + "probability": 0.974 + }, + { + "start": 6109.84, + "end": 6112.9, + "probability": 0.984 + }, + { + "start": 6113.34, + "end": 6115.12, + "probability": 0.9961 + }, + { + "start": 6116.02, + "end": 6118.82, + "probability": 0.9559 + }, + { + "start": 6119.4, + "end": 6121.74, + "probability": 0.9907 + }, + { + "start": 6122.52, + "end": 6128.2, + "probability": 0.9802 + }, + { + "start": 6128.2, + "end": 6134.08, + "probability": 0.9907 + }, + { + "start": 6134.64, + "end": 6140.14, + "probability": 0.9888 + }, + { + "start": 6140.14, + "end": 6145.54, + "probability": 0.9201 + }, + { + "start": 6146.04, + "end": 6151.51, + "probability": 0.9887 + }, + { + "start": 6152.7, + "end": 6153.98, + "probability": 0.9426 + }, + { + "start": 6154.84, + "end": 6160.86, + "probability": 0.9725 + }, + { + "start": 6161.38, + "end": 6164.04, + "probability": 0.9966 + }, + { + "start": 6164.6, + "end": 6169.8, + "probability": 0.9789 + }, + { + "start": 6169.8, + "end": 6175.18, + "probability": 0.9111 + }, + { + "start": 6175.46, + "end": 6178.02, + "probability": 0.9919 + }, + { + "start": 6179.04, + "end": 6180.34, + "probability": 0.9792 + }, + { + "start": 6181.62, + "end": 6185.62, + "probability": 0.9033 + }, + { + "start": 6186.36, + "end": 6187.5, + "probability": 0.7984 + }, + { + "start": 6188.16, + "end": 6189.34, + "probability": 0.623 + }, + { + "start": 6190.5, + "end": 6191.6, + "probability": 0.6447 + }, + { + "start": 6191.76, + "end": 6201.18, + "probability": 0.9507 + }, + { + "start": 6201.18, + "end": 6206.62, + "probability": 0.8373 + }, + { + "start": 6207.02, + "end": 6210.12, + "probability": 0.919 + }, + { + "start": 6210.88, + "end": 6214.64, + "probability": 0.9287 + }, + { + "start": 6215.1, + "end": 6219.22, + "probability": 0.9971 + }, + { + "start": 6219.86, + "end": 6223.76, + "probability": 0.9609 + }, + { + "start": 6224.22, + "end": 6225.18, + "probability": 0.696 + }, + { + "start": 6225.22, + "end": 6226.18, + "probability": 0.9642 + }, + { + "start": 6226.56, + "end": 6231.04, + "probability": 0.9231 + }, + { + "start": 6231.04, + "end": 6235.38, + "probability": 0.9976 + }, + { + "start": 6235.72, + "end": 6239.24, + "probability": 0.8333 + }, + { + "start": 6240.12, + "end": 6242.48, + "probability": 0.9819 + }, + { + "start": 6243.04, + "end": 6245.43, + "probability": 0.9647 + }, + { + "start": 6246.1, + "end": 6246.3, + "probability": 0.3927 + }, + { + "start": 6246.38, + "end": 6247.48, + "probability": 0.9062 + }, + { + "start": 6247.56, + "end": 6253.78, + "probability": 0.9438 + }, + { + "start": 6253.78, + "end": 6260.28, + "probability": 0.8663 + }, + { + "start": 6260.6, + "end": 6262.72, + "probability": 0.893 + }, + { + "start": 6262.72, + "end": 6266.7, + "probability": 0.9788 + }, + { + "start": 6267.18, + "end": 6271.28, + "probability": 0.9965 + }, + { + "start": 6271.84, + "end": 6272.86, + "probability": 0.7621 + }, + { + "start": 6274.94, + "end": 6279.28, + "probability": 0.8969 + }, + { + "start": 6280.46, + "end": 6284.68, + "probability": 0.9641 + }, + { + "start": 6285.12, + "end": 6287.72, + "probability": 0.9701 + }, + { + "start": 6287.8, + "end": 6288.0, + "probability": 0.8818 + }, + { + "start": 6288.04, + "end": 6293.28, + "probability": 0.9534 + }, + { + "start": 6294.24, + "end": 6297.82, + "probability": 0.9858 + }, + { + "start": 6298.42, + "end": 6303.36, + "probability": 0.9807 + }, + { + "start": 6303.82, + "end": 6308.53, + "probability": 0.9775 + }, + { + "start": 6308.76, + "end": 6312.22, + "probability": 0.9942 + }, + { + "start": 6312.92, + "end": 6313.84, + "probability": 0.8297 + }, + { + "start": 6314.14, + "end": 6315.04, + "probability": 0.8728 + }, + { + "start": 6315.14, + "end": 6316.02, + "probability": 0.9716 + }, + { + "start": 6316.32, + "end": 6317.3, + "probability": 0.9886 + }, + { + "start": 6317.5, + "end": 6318.36, + "probability": 0.8774 + }, + { + "start": 6318.56, + "end": 6321.12, + "probability": 0.7313 + }, + { + "start": 6321.66, + "end": 6325.52, + "probability": 0.8496 + }, + { + "start": 6325.84, + "end": 6327.0, + "probability": 0.8652 + }, + { + "start": 6327.42, + "end": 6328.69, + "probability": 0.9456 + }, + { + "start": 6329.04, + "end": 6336.3, + "probability": 0.9543 + }, + { + "start": 6336.8, + "end": 6340.02, + "probability": 0.9845 + }, + { + "start": 6340.54, + "end": 6340.7, + "probability": 0.5146 + }, + { + "start": 6340.7, + "end": 6342.5, + "probability": 0.9008 + }, + { + "start": 6342.58, + "end": 6343.99, + "probability": 0.9757 + }, + { + "start": 6344.78, + "end": 6348.38, + "probability": 0.9147 + }, + { + "start": 6348.38, + "end": 6351.14, + "probability": 0.9908 + }, + { + "start": 6351.24, + "end": 6351.98, + "probability": 0.7365 + }, + { + "start": 6352.4, + "end": 6356.78, + "probability": 0.9424 + }, + { + "start": 6357.26, + "end": 6358.62, + "probability": 0.9934 + }, + { + "start": 6359.3, + "end": 6363.82, + "probability": 0.9668 + }, + { + "start": 6363.82, + "end": 6367.42, + "probability": 0.9955 + }, + { + "start": 6367.96, + "end": 6370.71, + "probability": 0.9839 + }, + { + "start": 6371.36, + "end": 6373.96, + "probability": 0.8662 + }, + { + "start": 6374.46, + "end": 6378.16, + "probability": 0.9979 + }, + { + "start": 6378.66, + "end": 6380.02, + "probability": 0.8975 + }, + { + "start": 6380.4, + "end": 6382.84, + "probability": 0.9585 + }, + { + "start": 6383.16, + "end": 6384.26, + "probability": 0.8119 + }, + { + "start": 6384.38, + "end": 6385.34, + "probability": 0.9924 + }, + { + "start": 6385.4, + "end": 6386.35, + "probability": 0.9918 + }, + { + "start": 6387.14, + "end": 6390.58, + "probability": 0.999 + }, + { + "start": 6391.42, + "end": 6396.82, + "probability": 0.9675 + }, + { + "start": 6397.2, + "end": 6399.98, + "probability": 0.9712 + }, + { + "start": 6399.98, + "end": 6402.62, + "probability": 0.6568 + }, + { + "start": 6403.12, + "end": 6409.36, + "probability": 0.9813 + }, + { + "start": 6410.1, + "end": 6414.96, + "probability": 0.8399 + }, + { + "start": 6414.96, + "end": 6418.32, + "probability": 0.7132 + }, + { + "start": 6418.98, + "end": 6421.02, + "probability": 0.9976 + }, + { + "start": 6421.02, + "end": 6425.34, + "probability": 0.9821 + }, + { + "start": 6425.8, + "end": 6427.76, + "probability": 0.9279 + }, + { + "start": 6428.3, + "end": 6433.52, + "probability": 0.9772 + }, + { + "start": 6434.08, + "end": 6437.22, + "probability": 0.7449 + }, + { + "start": 6437.74, + "end": 6439.76, + "probability": 0.9635 + }, + { + "start": 6440.04, + "end": 6440.58, + "probability": 0.9674 + }, + { + "start": 6440.68, + "end": 6441.0, + "probability": 0.8048 + }, + { + "start": 6441.04, + "end": 6445.68, + "probability": 0.7928 + }, + { + "start": 6445.76, + "end": 6450.08, + "probability": 0.8225 + }, + { + "start": 6450.1, + "end": 6450.61, + "probability": 0.8396 + }, + { + "start": 6451.5, + "end": 6454.98, + "probability": 0.7474 + }, + { + "start": 6455.46, + "end": 6457.3, + "probability": 0.9763 + }, + { + "start": 6457.88, + "end": 6460.38, + "probability": 0.9974 + }, + { + "start": 6460.92, + "end": 6464.3, + "probability": 0.9937 + }, + { + "start": 6464.58, + "end": 6469.22, + "probability": 0.9968 + }, + { + "start": 6469.36, + "end": 6471.7, + "probability": 0.8469 + }, + { + "start": 6472.1, + "end": 6476.84, + "probability": 0.9813 + }, + { + "start": 6477.22, + "end": 6481.02, + "probability": 0.9639 + }, + { + "start": 6481.02, + "end": 6481.02, + "probability": 0.3505 + }, + { + "start": 6481.32, + "end": 6482.88, + "probability": 0.7289 + }, + { + "start": 6482.88, + "end": 6484.96, + "probability": 0.9902 + }, + { + "start": 6485.54, + "end": 6488.56, + "probability": 0.9214 + }, + { + "start": 6489.28, + "end": 6492.8, + "probability": 0.949 + }, + { + "start": 6504.94, + "end": 6506.38, + "probability": 0.6432 + }, + { + "start": 6507.5, + "end": 6509.42, + "probability": 0.9144 + }, + { + "start": 6510.08, + "end": 6512.74, + "probability": 0.9893 + }, + { + "start": 6512.74, + "end": 6515.46, + "probability": 0.8836 + }, + { + "start": 6516.24, + "end": 6520.14, + "probability": 0.9111 + }, + { + "start": 6520.32, + "end": 6522.32, + "probability": 0.9865 + }, + { + "start": 6523.14, + "end": 6523.14, + "probability": 0.0001 + }, + { + "start": 6523.8, + "end": 6524.62, + "probability": 0.1722 + }, + { + "start": 6525.48, + "end": 6529.82, + "probability": 0.8175 + }, + { + "start": 6530.72, + "end": 6531.42, + "probability": 0.6311 + }, + { + "start": 6531.68, + "end": 6532.58, + "probability": 0.9368 + }, + { + "start": 6533.52, + "end": 6534.04, + "probability": 0.8888 + }, + { + "start": 6534.42, + "end": 6535.92, + "probability": 0.8745 + }, + { + "start": 6535.98, + "end": 6536.46, + "probability": 0.5199 + }, + { + "start": 6536.58, + "end": 6537.64, + "probability": 0.9003 + }, + { + "start": 6538.32, + "end": 6542.4, + "probability": 0.9289 + }, + { + "start": 6542.9, + "end": 6543.92, + "probability": 0.8571 + }, + { + "start": 6544.76, + "end": 6548.24, + "probability": 0.8954 + }, + { + "start": 6548.24, + "end": 6549.26, + "probability": 0.8683 + }, + { + "start": 6550.04, + "end": 6551.84, + "probability": 0.9967 + }, + { + "start": 6552.28, + "end": 6556.54, + "probability": 0.9871 + }, + { + "start": 6556.82, + "end": 6557.98, + "probability": 0.6486 + }, + { + "start": 6558.42, + "end": 6559.34, + "probability": 0.5033 + }, + { + "start": 6559.8, + "end": 6560.38, + "probability": 0.9219 + }, + { + "start": 6562.68, + "end": 6565.7, + "probability": 0.9717 + }, + { + "start": 6566.14, + "end": 6568.6, + "probability": 0.853 + }, + { + "start": 6569.36, + "end": 6570.76, + "probability": 0.9844 + }, + { + "start": 6572.02, + "end": 6574.64, + "probability": 0.9983 + }, + { + "start": 6574.78, + "end": 6577.21, + "probability": 0.928 + }, + { + "start": 6577.32, + "end": 6577.32, + "probability": 0.691 + }, + { + "start": 6577.42, + "end": 6578.75, + "probability": 0.1039 + }, + { + "start": 6579.04, + "end": 6579.52, + "probability": 0.6443 + }, + { + "start": 6579.6, + "end": 6580.49, + "probability": 0.4869 + }, + { + "start": 6580.66, + "end": 6582.25, + "probability": 0.9956 + }, + { + "start": 6582.78, + "end": 6583.64, + "probability": 0.0279 + }, + { + "start": 6583.64, + "end": 6585.12, + "probability": 0.1893 + }, + { + "start": 6585.14, + "end": 6586.02, + "probability": 0.2538 + }, + { + "start": 6586.02, + "end": 6586.26, + "probability": 0.4444 + }, + { + "start": 6586.26, + "end": 6586.33, + "probability": 0.2629 + }, + { + "start": 6587.0, + "end": 6588.34, + "probability": 0.6063 + }, + { + "start": 6588.34, + "end": 6589.04, + "probability": 0.7725 + }, + { + "start": 6589.14, + "end": 6595.22, + "probability": 0.971 + }, + { + "start": 6596.36, + "end": 6598.84, + "probability": 0.8535 + }, + { + "start": 6598.9, + "end": 6601.44, + "probability": 0.8043 + }, + { + "start": 6601.44, + "end": 6602.76, + "probability": 0.9595 + }, + { + "start": 6602.96, + "end": 6604.02, + "probability": 0.3006 + }, + { + "start": 6606.22, + "end": 6607.86, + "probability": 0.5931 + }, + { + "start": 6607.9, + "end": 6609.44, + "probability": 0.522 + }, + { + "start": 6609.54, + "end": 6613.54, + "probability": 0.8473 + }, + { + "start": 6613.66, + "end": 6614.44, + "probability": 0.2773 + }, + { + "start": 6615.32, + "end": 6616.8, + "probability": 0.9949 + }, + { + "start": 6617.32, + "end": 6621.78, + "probability": 0.939 + }, + { + "start": 6622.04, + "end": 6624.5, + "probability": 0.9609 + }, + { + "start": 6624.66, + "end": 6625.55, + "probability": 0.9946 + }, + { + "start": 6627.08, + "end": 6628.66, + "probability": 0.2746 + }, + { + "start": 6629.06, + "end": 6631.98, + "probability": 0.9705 + }, + { + "start": 6632.26, + "end": 6632.46, + "probability": 0.5575 + }, + { + "start": 6632.6, + "end": 6634.8, + "probability": 0.9331 + }, + { + "start": 6635.2, + "end": 6635.86, + "probability": 0.9529 + }, + { + "start": 6636.06, + "end": 6636.86, + "probability": 0.9524 + }, + { + "start": 6637.1, + "end": 6638.38, + "probability": 0.6879 + }, + { + "start": 6639.02, + "end": 6639.6, + "probability": 0.6109 + }, + { + "start": 6639.9, + "end": 6641.12, + "probability": 0.8087 + }, + { + "start": 6641.32, + "end": 6642.04, + "probability": 0.9145 + }, + { + "start": 6642.26, + "end": 6644.52, + "probability": 0.7402 + }, + { + "start": 6644.6, + "end": 6646.44, + "probability": 0.7637 + }, + { + "start": 6646.66, + "end": 6652.7, + "probability": 0.9534 + }, + { + "start": 6653.82, + "end": 6656.79, + "probability": 0.9913 + }, + { + "start": 6657.36, + "end": 6660.08, + "probability": 0.7473 + }, + { + "start": 6660.44, + "end": 6662.78, + "probability": 0.8979 + }, + { + "start": 6663.16, + "end": 6666.28, + "probability": 0.7608 + }, + { + "start": 6667.66, + "end": 6669.02, + "probability": 0.8068 + }, + { + "start": 6669.86, + "end": 6672.44, + "probability": 0.6136 + }, + { + "start": 6672.86, + "end": 6674.5, + "probability": 0.806 + }, + { + "start": 6675.48, + "end": 6676.18, + "probability": 0.2085 + }, + { + "start": 6676.26, + "end": 6676.48, + "probability": 0.5925 + }, + { + "start": 6676.6, + "end": 6677.64, + "probability": 0.6762 + }, + { + "start": 6677.94, + "end": 6682.58, + "probability": 0.9923 + }, + { + "start": 6684.4, + "end": 6689.36, + "probability": 0.1699 + }, + { + "start": 6689.44, + "end": 6692.28, + "probability": 0.9896 + }, + { + "start": 6693.34, + "end": 6697.92, + "probability": 0.3751 + }, + { + "start": 6697.96, + "end": 6699.0, + "probability": 0.7574 + }, + { + "start": 6699.06, + "end": 6699.32, + "probability": 0.5556 + }, + { + "start": 6699.42, + "end": 6700.1, + "probability": 0.4707 + }, + { + "start": 6700.1, + "end": 6701.8, + "probability": 0.4483 + }, + { + "start": 6702.1, + "end": 6704.14, + "probability": 0.0955 + }, + { + "start": 6705.4, + "end": 6706.33, + "probability": 0.9727 + }, + { + "start": 6707.7, + "end": 6708.64, + "probability": 0.939 + }, + { + "start": 6708.64, + "end": 6709.82, + "probability": 0.524 + }, + { + "start": 6709.82, + "end": 6713.02, + "probability": 0.4261 + }, + { + "start": 6713.36, + "end": 6713.8, + "probability": 0.3802 + }, + { + "start": 6713.84, + "end": 6714.28, + "probability": 0.1142 + }, + { + "start": 6716.48, + "end": 6720.54, + "probability": 0.9702 + }, + { + "start": 6721.48, + "end": 6721.92, + "probability": 0.6913 + }, + { + "start": 6721.98, + "end": 6725.7, + "probability": 0.9807 + }, + { + "start": 6726.52, + "end": 6728.52, + "probability": 0.9896 + }, + { + "start": 6728.62, + "end": 6731.04, + "probability": 0.9229 + }, + { + "start": 6731.12, + "end": 6732.68, + "probability": 0.8102 + }, + { + "start": 6733.4, + "end": 6734.84, + "probability": 0.6043 + }, + { + "start": 6735.86, + "end": 6737.22, + "probability": 0.8149 + }, + { + "start": 6737.72, + "end": 6739.13, + "probability": 0.9896 + }, + { + "start": 6739.28, + "end": 6740.32, + "probability": 0.7505 + }, + { + "start": 6740.44, + "end": 6742.1, + "probability": 0.6165 + }, + { + "start": 6742.38, + "end": 6743.48, + "probability": 0.9293 + }, + { + "start": 6743.6, + "end": 6744.6, + "probability": 0.9813 + }, + { + "start": 6744.6, + "end": 6746.02, + "probability": 0.8195 + }, + { + "start": 6746.2, + "end": 6747.9, + "probability": 0.9631 + }, + { + "start": 6748.06, + "end": 6750.66, + "probability": 0.8275 + }, + { + "start": 6750.66, + "end": 6753.12, + "probability": 0.9958 + }, + { + "start": 6753.88, + "end": 6754.72, + "probability": 0.5916 + }, + { + "start": 6754.9, + "end": 6755.46, + "probability": 0.6721 + }, + { + "start": 6755.56, + "end": 6758.48, + "probability": 0.9435 + }, + { + "start": 6759.42, + "end": 6760.28, + "probability": 0.0233 + }, + { + "start": 6760.28, + "end": 6762.09, + "probability": 0.2827 + }, + { + "start": 6762.8, + "end": 6766.88, + "probability": 0.9243 + }, + { + "start": 6768.3, + "end": 6772.25, + "probability": 0.7539 + }, + { + "start": 6772.9, + "end": 6775.02, + "probability": 0.9795 + }, + { + "start": 6775.7, + "end": 6776.62, + "probability": 0.8005 + }, + { + "start": 6776.64, + "end": 6776.98, + "probability": 0.9857 + }, + { + "start": 6777.72, + "end": 6780.32, + "probability": 0.9334 + }, + { + "start": 6781.9, + "end": 6783.12, + "probability": 0.9603 + }, + { + "start": 6784.86, + "end": 6786.72, + "probability": 0.6746 + }, + { + "start": 6787.04, + "end": 6792.65, + "probability": 0.9072 + }, + { + "start": 6799.48, + "end": 6803.44, + "probability": 0.2434 + }, + { + "start": 6803.44, + "end": 6806.8, + "probability": 0.0249 + }, + { + "start": 6818.04, + "end": 6819.08, + "probability": 0.1613 + }, + { + "start": 6820.28, + "end": 6824.04, + "probability": 0.4358 + }, + { + "start": 6825.03, + "end": 6825.6, + "probability": 0.1426 + }, + { + "start": 6825.6, + "end": 6825.72, + "probability": 0.0654 + }, + { + "start": 6825.72, + "end": 6826.08, + "probability": 0.2387 + }, + { + "start": 6826.08, + "end": 6826.24, + "probability": 0.1029 + }, + { + "start": 6826.24, + "end": 6827.22, + "probability": 0.1192 + }, + { + "start": 6829.08, + "end": 6829.08, + "probability": 0.0462 + }, + { + "start": 6829.08, + "end": 6831.58, + "probability": 0.5515 + }, + { + "start": 6833.26, + "end": 6833.28, + "probability": 0.1575 + }, + { + "start": 6833.94, + "end": 6834.9, + "probability": 0.1223 + }, + { + "start": 6836.67, + "end": 6836.74, + "probability": 0.0817 + }, + { + "start": 6836.74, + "end": 6837.37, + "probability": 0.0266 + }, + { + "start": 6839.56, + "end": 6841.02, + "probability": 0.035 + }, + { + "start": 6841.76, + "end": 6842.94, + "probability": 0.3214 + }, + { + "start": 6844.36, + "end": 6846.68, + "probability": 0.0875 + }, + { + "start": 6847.41, + "end": 6848.21, + "probability": 0.0312 + }, + { + "start": 6849.66, + "end": 6851.82, + "probability": 0.1404 + }, + { + "start": 6851.82, + "end": 6851.82, + "probability": 0.1172 + }, + { + "start": 6854.78, + "end": 6855.88, + "probability": 0.0139 + }, + { + "start": 6858.17, + "end": 6859.2, + "probability": 0.1116 + }, + { + "start": 6859.2, + "end": 6861.04, + "probability": 0.0548 + }, + { + "start": 6861.1, + "end": 6861.16, + "probability": 0.0504 + }, + { + "start": 6861.16, + "end": 6861.66, + "probability": 0.017 + }, + { + "start": 6862.0, + "end": 6862.0, + "probability": 0.0 + }, + { + "start": 6862.0, + "end": 6862.0, + "probability": 0.0 + }, + { + "start": 6862.0, + "end": 6862.0, + "probability": 0.0 + }, + { + "start": 6862.0, + "end": 6862.0, + "probability": 0.0 + }, + { + "start": 6862.2, + "end": 6862.62, + "probability": 0.048 + }, + { + "start": 6869.16, + "end": 6872.92, + "probability": 0.0338 + }, + { + "start": 6872.92, + "end": 6873.24, + "probability": 0.0768 + }, + { + "start": 6873.98, + "end": 6874.54, + "probability": 0.0136 + }, + { + "start": 6874.79, + "end": 6874.91, + "probability": 0.14 + }, + { + "start": 6875.48, + "end": 6877.64, + "probability": 0.0535 + }, + { + "start": 6877.76, + "end": 6878.32, + "probability": 0.0124 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.0, + "end": 6984.0, + "probability": 0.0 + }, + { + "start": 6984.12, + "end": 6984.8, + "probability": 0.3068 + }, + { + "start": 6985.28, + "end": 6987.06, + "probability": 0.7145 + }, + { + "start": 6987.98, + "end": 6988.88, + "probability": 0.6654 + }, + { + "start": 6989.32, + "end": 6991.26, + "probability": 0.7953 + }, + { + "start": 6991.38, + "end": 6997.14, + "probability": 0.8258 + }, + { + "start": 7004.46, + "end": 7009.72, + "probability": 0.9885 + }, + { + "start": 7009.8, + "end": 7011.18, + "probability": 0.7339 + }, + { + "start": 7011.64, + "end": 7011.78, + "probability": 0.7224 + }, + { + "start": 7011.86, + "end": 7013.55, + "probability": 0.8612 + }, + { + "start": 7013.68, + "end": 7016.12, + "probability": 0.9883 + }, + { + "start": 7016.3, + "end": 7021.2, + "probability": 0.9928 + }, + { + "start": 7021.22, + "end": 7024.06, + "probability": 0.8833 + }, + { + "start": 7030.06, + "end": 7032.48, + "probability": 0.3478 + }, + { + "start": 7033.16, + "end": 7033.16, + "probability": 0.0429 + }, + { + "start": 7033.16, + "end": 7033.16, + "probability": 0.0531 + }, + { + "start": 7033.16, + "end": 7034.82, + "probability": 0.1665 + }, + { + "start": 7035.52, + "end": 7036.52, + "probability": 0.7271 + }, + { + "start": 7036.52, + "end": 7037.01, + "probability": 0.7328 + }, + { + "start": 7037.32, + "end": 7037.88, + "probability": 0.3221 + }, + { + "start": 7038.16, + "end": 7042.48, + "probability": 0.2611 + }, + { + "start": 7045.64, + "end": 7046.06, + "probability": 0.363 + }, + { + "start": 7046.5, + "end": 7050.04, + "probability": 0.6289 + }, + { + "start": 7050.2, + "end": 7051.42, + "probability": 0.9685 + }, + { + "start": 7051.74, + "end": 7053.5, + "probability": 0.9386 + }, + { + "start": 7053.64, + "end": 7055.72, + "probability": 0.8979 + }, + { + "start": 7055.74, + "end": 7056.94, + "probability": 0.8397 + }, + { + "start": 7057.22, + "end": 7062.78, + "probability": 0.894 + }, + { + "start": 7062.84, + "end": 7063.2, + "probability": 0.2825 + }, + { + "start": 7063.36, + "end": 7065.48, + "probability": 0.9678 + }, + { + "start": 7066.48, + "end": 7069.88, + "probability": 0.8594 + }, + { + "start": 7069.88, + "end": 7073.15, + "probability": 0.9907 + }, + { + "start": 7073.56, + "end": 7074.96, + "probability": 0.9917 + }, + { + "start": 7075.36, + "end": 7077.46, + "probability": 0.9696 + }, + { + "start": 7077.7, + "end": 7079.17, + "probability": 0.9386 + }, + { + "start": 7079.42, + "end": 7081.27, + "probability": 0.9978 + }, + { + "start": 7081.78, + "end": 7084.3, + "probability": 0.9887 + }, + { + "start": 7084.38, + "end": 7085.16, + "probability": 0.9806 + }, + { + "start": 7085.82, + "end": 7089.22, + "probability": 0.9656 + }, + { + "start": 7089.72, + "end": 7090.38, + "probability": 0.7795 + }, + { + "start": 7090.9, + "end": 7094.68, + "probability": 0.9573 + }, + { + "start": 7094.94, + "end": 7097.98, + "probability": 0.9175 + }, + { + "start": 7098.04, + "end": 7100.08, + "probability": 0.9842 + }, + { + "start": 7100.36, + "end": 7102.8, + "probability": 0.9749 + }, + { + "start": 7103.1, + "end": 7103.94, + "probability": 0.6032 + }, + { + "start": 7104.38, + "end": 7107.0, + "probability": 0.993 + }, + { + "start": 7107.58, + "end": 7111.68, + "probability": 0.9222 + }, + { + "start": 7111.76, + "end": 7114.84, + "probability": 0.5384 + }, + { + "start": 7115.2, + "end": 7115.9, + "probability": 0.9552 + }, + { + "start": 7116.12, + "end": 7117.02, + "probability": 0.9795 + }, + { + "start": 7117.12, + "end": 7118.14, + "probability": 0.8114 + }, + { + "start": 7118.38, + "end": 7119.08, + "probability": 0.4576 + }, + { + "start": 7119.12, + "end": 7119.84, + "probability": 0.4348 + }, + { + "start": 7119.9, + "end": 7121.28, + "probability": 0.9766 + }, + { + "start": 7121.4, + "end": 7123.06, + "probability": 0.9858 + }, + { + "start": 7123.28, + "end": 7128.0, + "probability": 0.9722 + }, + { + "start": 7128.4, + "end": 7128.9, + "probability": 0.6827 + }, + { + "start": 7129.22, + "end": 7132.66, + "probability": 0.9799 + }, + { + "start": 7133.08, + "end": 7133.5, + "probability": 0.8013 + }, + { + "start": 7133.62, + "end": 7135.14, + "probability": 0.9285 + }, + { + "start": 7135.44, + "end": 7136.22, + "probability": 0.8007 + }, + { + "start": 7136.26, + "end": 7137.92, + "probability": 0.9883 + }, + { + "start": 7138.58, + "end": 7139.71, + "probability": 0.9746 + }, + { + "start": 7140.3, + "end": 7141.3, + "probability": 0.9082 + }, + { + "start": 7142.36, + "end": 7143.29, + "probability": 0.998 + }, + { + "start": 7143.68, + "end": 7146.62, + "probability": 0.8694 + }, + { + "start": 7147.12, + "end": 7148.88, + "probability": 0.9961 + }, + { + "start": 7149.36, + "end": 7150.56, + "probability": 0.9875 + }, + { + "start": 7150.72, + "end": 7154.68, + "probability": 0.9937 + }, + { + "start": 7156.5, + "end": 7160.3, + "probability": 0.9605 + }, + { + "start": 7160.74, + "end": 7164.58, + "probability": 0.9937 + }, + { + "start": 7164.98, + "end": 7167.47, + "probability": 0.9873 + }, + { + "start": 7167.78, + "end": 7169.94, + "probability": 0.9991 + }, + { + "start": 7170.1, + "end": 7172.38, + "probability": 0.9913 + }, + { + "start": 7173.02, + "end": 7175.94, + "probability": 0.9651 + }, + { + "start": 7177.6, + "end": 7180.46, + "probability": 0.9946 + }, + { + "start": 7181.08, + "end": 7182.24, + "probability": 0.8541 + }, + { + "start": 7182.52, + "end": 7183.68, + "probability": 0.9709 + }, + { + "start": 7183.76, + "end": 7184.9, + "probability": 0.9753 + }, + { + "start": 7184.98, + "end": 7186.72, + "probability": 0.7426 + }, + { + "start": 7186.86, + "end": 7187.64, + "probability": 0.8782 + }, + { + "start": 7187.76, + "end": 7188.19, + "probability": 0.7158 + }, + { + "start": 7189.32, + "end": 7190.78, + "probability": 0.9257 + }, + { + "start": 7191.38, + "end": 7195.0, + "probability": 0.9663 + }, + { + "start": 7196.08, + "end": 7196.4, + "probability": 0.5498 + }, + { + "start": 7196.44, + "end": 7199.16, + "probability": 0.9849 + }, + { + "start": 7199.22, + "end": 7202.18, + "probability": 0.5064 + }, + { + "start": 7202.38, + "end": 7207.24, + "probability": 0.9832 + }, + { + "start": 7207.58, + "end": 7209.64, + "probability": 0.8955 + }, + { + "start": 7209.68, + "end": 7213.44, + "probability": 0.7309 + }, + { + "start": 7213.52, + "end": 7215.48, + "probability": 0.9162 + }, + { + "start": 7215.7, + "end": 7217.4, + "probability": 0.4349 + }, + { + "start": 7217.62, + "end": 7219.78, + "probability": 0.2857 + }, + { + "start": 7219.9, + "end": 7220.72, + "probability": 0.8131 + }, + { + "start": 7221.1, + "end": 7223.62, + "probability": 0.8972 + }, + { + "start": 7223.76, + "end": 7224.98, + "probability": 0.811 + }, + { + "start": 7225.28, + "end": 7226.26, + "probability": 0.9605 + }, + { + "start": 7226.38, + "end": 7227.46, + "probability": 0.99 + }, + { + "start": 7227.86, + "end": 7228.4, + "probability": 0.7753 + }, + { + "start": 7228.68, + "end": 7229.56, + "probability": 0.9297 + }, + { + "start": 7230.14, + "end": 7232.84, + "probability": 0.8889 + }, + { + "start": 7233.46, + "end": 7233.54, + "probability": 0.1622 + }, + { + "start": 7233.54, + "end": 7235.54, + "probability": 0.7498 + }, + { + "start": 7236.12, + "end": 7239.26, + "probability": 0.8437 + }, + { + "start": 7239.26, + "end": 7240.72, + "probability": 0.5559 + }, + { + "start": 7241.22, + "end": 7242.68, + "probability": 0.5495 + }, + { + "start": 7243.0, + "end": 7247.0, + "probability": 0.8402 + }, + { + "start": 7247.18, + "end": 7248.1, + "probability": 0.1939 + }, + { + "start": 7248.16, + "end": 7248.88, + "probability": 0.4532 + }, + { + "start": 7249.24, + "end": 7249.76, + "probability": 0.0842 + }, + { + "start": 7252.13, + "end": 7252.95, + "probability": 0.0263 + }, + { + "start": 7253.22, + "end": 7254.04, + "probability": 0.0096 + }, + { + "start": 7254.04, + "end": 7256.2, + "probability": 0.0558 + }, + { + "start": 7258.2, + "end": 7259.12, + "probability": 0.2875 + }, + { + "start": 7265.58, + "end": 7272.56, + "probability": 0.3821 + }, + { + "start": 7272.58, + "end": 7275.14, + "probability": 0.9243 + }, + { + "start": 7276.26, + "end": 7280.82, + "probability": 0.7312 + }, + { + "start": 7282.1, + "end": 7287.56, + "probability": 0.8795 + }, + { + "start": 7289.22, + "end": 7292.02, + "probability": 0.8437 + }, + { + "start": 7292.7, + "end": 7296.3, + "probability": 0.9533 + }, + { + "start": 7297.42, + "end": 7300.98, + "probability": 0.7318 + }, + { + "start": 7301.12, + "end": 7303.1, + "probability": 0.8984 + }, + { + "start": 7303.2, + "end": 7303.66, + "probability": 0.6613 + }, + { + "start": 7303.76, + "end": 7306.36, + "probability": 0.7336 + }, + { + "start": 7307.66, + "end": 7309.44, + "probability": 0.6107 + }, + { + "start": 7311.94, + "end": 7315.64, + "probability": 0.6912 + }, + { + "start": 7316.74, + "end": 7326.86, + "probability": 0.7681 + }, + { + "start": 7327.6, + "end": 7330.52, + "probability": 0.9587 + }, + { + "start": 7331.38, + "end": 7337.9, + "probability": 0.9672 + }, + { + "start": 7339.0, + "end": 7343.2, + "probability": 0.9657 + }, + { + "start": 7343.3, + "end": 7343.86, + "probability": 0.5086 + }, + { + "start": 7344.7, + "end": 7349.0, + "probability": 0.986 + }, + { + "start": 7349.16, + "end": 7350.7, + "probability": 0.9542 + }, + { + "start": 7351.24, + "end": 7353.8, + "probability": 0.8679 + }, + { + "start": 7353.98, + "end": 7354.72, + "probability": 0.8701 + }, + { + "start": 7356.52, + "end": 7359.84, + "probability": 0.9832 + }, + { + "start": 7360.6, + "end": 7365.7, + "probability": 0.9967 + }, + { + "start": 7366.76, + "end": 7367.46, + "probability": 0.886 + }, + { + "start": 7367.58, + "end": 7368.56, + "probability": 0.7908 + }, + { + "start": 7368.98, + "end": 7372.34, + "probability": 0.9942 + }, + { + "start": 7372.84, + "end": 7373.7, + "probability": 0.9216 + }, + { + "start": 7373.8, + "end": 7374.52, + "probability": 0.8376 + }, + { + "start": 7374.62, + "end": 7376.64, + "probability": 0.9983 + }, + { + "start": 7378.85, + "end": 7385.26, + "probability": 0.942 + }, + { + "start": 7386.58, + "end": 7388.54, + "probability": 0.9747 + }, + { + "start": 7389.22, + "end": 7390.5, + "probability": 0.9788 + }, + { + "start": 7391.6, + "end": 7397.94, + "probability": 0.9969 + }, + { + "start": 7399.18, + "end": 7401.58, + "probability": 0.9993 + }, + { + "start": 7403.38, + "end": 7406.26, + "probability": 0.9746 + }, + { + "start": 7407.06, + "end": 7407.56, + "probability": 0.902 + }, + { + "start": 7407.64, + "end": 7408.44, + "probability": 0.7627 + }, + { + "start": 7408.66, + "end": 7409.94, + "probability": 0.8176 + }, + { + "start": 7409.94, + "end": 7411.84, + "probability": 0.7497 + }, + { + "start": 7411.94, + "end": 7412.64, + "probability": 0.7109 + }, + { + "start": 7412.74, + "end": 7413.92, + "probability": 0.9021 + }, + { + "start": 7414.02, + "end": 7414.52, + "probability": 0.2517 + }, + { + "start": 7415.26, + "end": 7421.26, + "probability": 0.9943 + }, + { + "start": 7422.0, + "end": 7425.2, + "probability": 0.527 + }, + { + "start": 7425.72, + "end": 7429.08, + "probability": 0.9945 + }, + { + "start": 7429.08, + "end": 7431.96, + "probability": 0.9924 + }, + { + "start": 7433.24, + "end": 7436.24, + "probability": 0.9043 + }, + { + "start": 7437.08, + "end": 7443.0, + "probability": 0.9905 + }, + { + "start": 7443.66, + "end": 7447.12, + "probability": 0.9423 + }, + { + "start": 7448.14, + "end": 7449.46, + "probability": 0.8606 + }, + { + "start": 7449.54, + "end": 7449.74, + "probability": 0.7407 + }, + { + "start": 7449.8, + "end": 7450.54, + "probability": 0.9441 + }, + { + "start": 7451.02, + "end": 7453.14, + "probability": 0.888 + }, + { + "start": 7453.62, + "end": 7457.38, + "probability": 0.9233 + }, + { + "start": 7457.6, + "end": 7465.3, + "probability": 0.9956 + }, + { + "start": 7466.06, + "end": 7467.88, + "probability": 0.9722 + }, + { + "start": 7468.92, + "end": 7469.76, + "probability": 0.7985 + }, + { + "start": 7470.38, + "end": 7474.4, + "probability": 0.9906 + }, + { + "start": 7474.4, + "end": 7478.22, + "probability": 0.9979 + }, + { + "start": 7478.84, + "end": 7485.1, + "probability": 0.7137 + }, + { + "start": 7485.64, + "end": 7486.5, + "probability": 0.5579 + }, + { + "start": 7486.62, + "end": 7491.4, + "probability": 0.9942 + }, + { + "start": 7491.4, + "end": 7496.42, + "probability": 0.9994 + }, + { + "start": 7497.0, + "end": 7497.7, + "probability": 0.7615 + }, + { + "start": 7498.22, + "end": 7498.76, + "probability": 0.6649 + }, + { + "start": 7498.78, + "end": 7499.6, + "probability": 0.8593 + }, + { + "start": 7500.06, + "end": 7504.06, + "probability": 0.989 + }, + { + "start": 7505.94, + "end": 7509.22, + "probability": 0.9945 + }, + { + "start": 7510.14, + "end": 7512.04, + "probability": 0.6237 + }, + { + "start": 7512.84, + "end": 7516.22, + "probability": 0.8761 + }, + { + "start": 7516.6, + "end": 7518.62, + "probability": 0.9937 + }, + { + "start": 7520.08, + "end": 7521.54, + "probability": 0.9767 + }, + { + "start": 7521.72, + "end": 7528.52, + "probability": 0.9825 + }, + { + "start": 7529.28, + "end": 7529.48, + "probability": 0.7588 + }, + { + "start": 7530.06, + "end": 7530.26, + "probability": 0.8463 + }, + { + "start": 7530.82, + "end": 7532.46, + "probability": 0.9711 + }, + { + "start": 7533.16, + "end": 7541.02, + "probability": 0.9677 + }, + { + "start": 7541.9, + "end": 7544.14, + "probability": 0.9816 + }, + { + "start": 7544.36, + "end": 7546.08, + "probability": 0.9625 + }, + { + "start": 7546.84, + "end": 7547.5, + "probability": 0.7153 + }, + { + "start": 7548.04, + "end": 7549.78, + "probability": 0.9769 + }, + { + "start": 7550.26, + "end": 7552.28, + "probability": 0.6814 + }, + { + "start": 7552.74, + "end": 7553.84, + "probability": 0.9485 + }, + { + "start": 7553.94, + "end": 7554.66, + "probability": 0.7554 + }, + { + "start": 7554.82, + "end": 7561.66, + "probability": 0.7458 + }, + { + "start": 7562.58, + "end": 7563.84, + "probability": 0.828 + }, + { + "start": 7564.4, + "end": 7568.02, + "probability": 0.9946 + }, + { + "start": 7568.7, + "end": 7570.04, + "probability": 0.9227 + }, + { + "start": 7570.86, + "end": 7571.86, + "probability": 0.9762 + }, + { + "start": 7572.4, + "end": 7576.24, + "probability": 0.9824 + }, + { + "start": 7577.4, + "end": 7580.82, + "probability": 0.9945 + }, + { + "start": 7581.84, + "end": 7584.28, + "probability": 0.9824 + }, + { + "start": 7584.78, + "end": 7586.43, + "probability": 0.9736 + }, + { + "start": 7586.7, + "end": 7587.6, + "probability": 0.902 + }, + { + "start": 7588.48, + "end": 7589.9, + "probability": 0.9017 + }, + { + "start": 7590.04, + "end": 7592.46, + "probability": 0.9912 + }, + { + "start": 7593.02, + "end": 7596.22, + "probability": 0.7546 + }, + { + "start": 7596.28, + "end": 7602.06, + "probability": 0.9948 + }, + { + "start": 7602.94, + "end": 7605.34, + "probability": 0.9734 + }, + { + "start": 7605.84, + "end": 7608.1, + "probability": 0.973 + }, + { + "start": 7608.34, + "end": 7611.44, + "probability": 0.9174 + }, + { + "start": 7612.28, + "end": 7617.18, + "probability": 0.9985 + }, + { + "start": 7617.64, + "end": 7618.12, + "probability": 0.4364 + }, + { + "start": 7618.5, + "end": 7621.1, + "probability": 0.9632 + }, + { + "start": 7621.48, + "end": 7623.98, + "probability": 0.9781 + }, + { + "start": 7624.66, + "end": 7630.98, + "probability": 0.9728 + }, + { + "start": 7631.52, + "end": 7632.28, + "probability": 0.8454 + }, + { + "start": 7632.34, + "end": 7634.2, + "probability": 0.9287 + }, + { + "start": 7634.7, + "end": 7636.74, + "probability": 0.9952 + }, + { + "start": 7637.18, + "end": 7638.34, + "probability": 0.9332 + }, + { + "start": 7638.4, + "end": 7641.28, + "probability": 0.8848 + }, + { + "start": 7641.68, + "end": 7641.68, + "probability": 0.4287 + }, + { + "start": 7641.68, + "end": 7644.82, + "probability": 0.9719 + }, + { + "start": 7645.14, + "end": 7646.2, + "probability": 0.8631 + }, + { + "start": 7646.32, + "end": 7648.82, + "probability": 0.9807 + }, + { + "start": 7649.12, + "end": 7650.08, + "probability": 0.6628 + }, + { + "start": 7650.6, + "end": 7654.32, + "probability": 0.8872 + }, + { + "start": 7657.0, + "end": 7660.18, + "probability": 0.534 + }, + { + "start": 7660.18, + "end": 7661.12, + "probability": 0.6646 + }, + { + "start": 7661.5, + "end": 7663.28, + "probability": 0.4709 + }, + { + "start": 7663.34, + "end": 7666.88, + "probability": 0.9944 + }, + { + "start": 7667.8, + "end": 7668.12, + "probability": 0.7852 + }, + { + "start": 7668.18, + "end": 7671.6, + "probability": 0.9608 + }, + { + "start": 7671.96, + "end": 7672.8, + "probability": 0.7473 + }, + { + "start": 7673.6, + "end": 7676.1, + "probability": 0.8734 + }, + { + "start": 7676.96, + "end": 7677.46, + "probability": 0.9669 + }, + { + "start": 7678.09, + "end": 7681.72, + "probability": 0.9765 + }, + { + "start": 7681.72, + "end": 7686.3, + "probability": 0.9964 + }, + { + "start": 7687.46, + "end": 7690.56, + "probability": 0.9681 + }, + { + "start": 7691.34, + "end": 7692.06, + "probability": 0.705 + }, + { + "start": 7692.58, + "end": 7695.38, + "probability": 0.9974 + }, + { + "start": 7696.26, + "end": 7701.2, + "probability": 0.9972 + }, + { + "start": 7701.72, + "end": 7701.94, + "probability": 0.7841 + }, + { + "start": 7702.12, + "end": 7703.38, + "probability": 0.9985 + }, + { + "start": 7703.48, + "end": 7706.25, + "probability": 0.9265 + }, + { + "start": 7706.88, + "end": 7707.84, + "probability": 0.7826 + }, + { + "start": 7708.3, + "end": 7710.32, + "probability": 0.7825 + }, + { + "start": 7710.74, + "end": 7712.24, + "probability": 0.9912 + }, + { + "start": 7712.72, + "end": 7714.48, + "probability": 0.9434 + }, + { + "start": 7715.04, + "end": 7718.42, + "probability": 0.9682 + }, + { + "start": 7718.8, + "end": 7720.86, + "probability": 0.9566 + }, + { + "start": 7721.36, + "end": 7721.64, + "probability": 0.6603 + }, + { + "start": 7721.74, + "end": 7722.22, + "probability": 0.9811 + }, + { + "start": 7722.38, + "end": 7723.02, + "probability": 0.7576 + }, + { + "start": 7723.1, + "end": 7724.22, + "probability": 0.959 + }, + { + "start": 7724.64, + "end": 7726.36, + "probability": 0.9775 + }, + { + "start": 7726.52, + "end": 7729.82, + "probability": 0.8718 + }, + { + "start": 7729.92, + "end": 7730.48, + "probability": 0.5039 + }, + { + "start": 7730.56, + "end": 7732.26, + "probability": 0.8523 + }, + { + "start": 7732.3, + "end": 7732.72, + "probability": 0.8195 + }, + { + "start": 7733.04, + "end": 7737.08, + "probability": 0.9875 + }, + { + "start": 7737.46, + "end": 7744.52, + "probability": 0.964 + }, + { + "start": 7747.68, + "end": 7749.88, + "probability": 0.998 + }, + { + "start": 7750.8, + "end": 7752.22, + "probability": 0.9619 + }, + { + "start": 7752.68, + "end": 7753.48, + "probability": 0.7871 + }, + { + "start": 7753.78, + "end": 7754.68, + "probability": 0.9427 + }, + { + "start": 7754.78, + "end": 7756.62, + "probability": 0.9423 + }, + { + "start": 7757.3, + "end": 7757.93, + "probability": 0.9382 + }, + { + "start": 7758.3, + "end": 7759.2, + "probability": 0.9412 + }, + { + "start": 7759.76, + "end": 7761.58, + "probability": 0.8779 + }, + { + "start": 7761.6, + "end": 7762.38, + "probability": 0.9751 + }, + { + "start": 7763.0, + "end": 7765.28, + "probability": 0.9913 + }, + { + "start": 7765.36, + "end": 7766.6, + "probability": 0.8339 + }, + { + "start": 7767.16, + "end": 7770.92, + "probability": 0.8066 + }, + { + "start": 7771.44, + "end": 7772.56, + "probability": 0.9602 + }, + { + "start": 7772.9, + "end": 7773.32, + "probability": 0.9538 + }, + { + "start": 7773.62, + "end": 7774.26, + "probability": 0.5422 + }, + { + "start": 7774.44, + "end": 7776.88, + "probability": 0.879 + }, + { + "start": 7777.3, + "end": 7780.24, + "probability": 0.9572 + }, + { + "start": 7780.38, + "end": 7781.62, + "probability": 0.9752 + }, + { + "start": 7782.04, + "end": 7785.0, + "probability": 0.8452 + }, + { + "start": 7785.46, + "end": 7786.54, + "probability": 0.9912 + }, + { + "start": 7787.16, + "end": 7788.62, + "probability": 0.5444 + }, + { + "start": 7789.28, + "end": 7790.58, + "probability": 0.8899 + }, + { + "start": 7791.78, + "end": 7792.22, + "probability": 0.5894 + }, + { + "start": 7792.28, + "end": 7793.6, + "probability": 0.9824 + }, + { + "start": 7793.88, + "end": 7795.06, + "probability": 0.868 + }, + { + "start": 7795.98, + "end": 7796.78, + "probability": 0.4024 + }, + { + "start": 7799.02, + "end": 7802.22, + "probability": 0.9595 + }, + { + "start": 7802.48, + "end": 7802.74, + "probability": 0.7791 + }, + { + "start": 7803.86, + "end": 7807.12, + "probability": 0.368 + }, + { + "start": 7807.68, + "end": 7810.14, + "probability": 0.9118 + }, + { + "start": 7811.26, + "end": 7816.68, + "probability": 0.9858 + }, + { + "start": 7818.66, + "end": 7820.18, + "probability": 0.4997 + }, + { + "start": 7820.28, + "end": 7821.98, + "probability": 0.6769 + }, + { + "start": 7821.98, + "end": 7824.08, + "probability": 0.7972 + }, + { + "start": 7824.68, + "end": 7828.26, + "probability": 0.8979 + }, + { + "start": 7828.48, + "end": 7829.2, + "probability": 0.8662 + }, + { + "start": 7829.3, + "end": 7830.84, + "probability": 0.7699 + }, + { + "start": 7831.0, + "end": 7838.81, + "probability": 0.9868 + }, + { + "start": 7839.96, + "end": 7841.16, + "probability": 0.9821 + }, + { + "start": 7841.42, + "end": 7841.78, + "probability": 0.3218 + }, + { + "start": 7841.82, + "end": 7842.48, + "probability": 0.8359 + }, + { + "start": 7842.72, + "end": 7844.86, + "probability": 0.7213 + }, + { + "start": 7845.24, + "end": 7845.24, + "probability": 0.3384 + }, + { + "start": 7845.24, + "end": 7846.06, + "probability": 0.6835 + }, + { + "start": 7846.14, + "end": 7847.28, + "probability": 0.8981 + }, + { + "start": 7848.04, + "end": 7849.32, + "probability": 0.917 + }, + { + "start": 7850.48, + "end": 7851.04, + "probability": 0.825 + }, + { + "start": 7852.02, + "end": 7857.46, + "probability": 0.9606 + }, + { + "start": 7858.94, + "end": 7860.54, + "probability": 0.3333 + }, + { + "start": 7861.2, + "end": 7863.8, + "probability": 0.559 + }, + { + "start": 7864.02, + "end": 7864.93, + "probability": 0.867 + }, + { + "start": 7865.02, + "end": 7866.4, + "probability": 0.9788 + }, + { + "start": 7866.54, + "end": 7868.68, + "probability": 0.9119 + }, + { + "start": 7868.76, + "end": 7869.8, + "probability": 0.7517 + }, + { + "start": 7869.86, + "end": 7870.74, + "probability": 0.9271 + }, + { + "start": 7871.4, + "end": 7876.78, + "probability": 0.7242 + }, + { + "start": 7877.18, + "end": 7878.5, + "probability": 0.3789 + }, + { + "start": 7878.72, + "end": 7883.74, + "probability": 0.8518 + }, + { + "start": 7884.5, + "end": 7886.98, + "probability": 0.8767 + }, + { + "start": 7887.46, + "end": 7889.74, + "probability": 0.9907 + }, + { + "start": 7890.02, + "end": 7893.62, + "probability": 0.8194 + }, + { + "start": 7894.34, + "end": 7898.1, + "probability": 0.8777 + }, + { + "start": 7898.78, + "end": 7900.24, + "probability": 0.9761 + }, + { + "start": 7900.98, + "end": 7903.78, + "probability": 0.6815 + }, + { + "start": 7903.92, + "end": 7905.62, + "probability": 0.8455 + }, + { + "start": 7905.8, + "end": 7910.32, + "probability": 0.9467 + }, + { + "start": 7910.38, + "end": 7912.24, + "probability": 0.9917 + }, + { + "start": 7912.88, + "end": 7914.98, + "probability": 0.9917 + }, + { + "start": 7915.3, + "end": 7916.14, + "probability": 0.6868 + }, + { + "start": 7916.22, + "end": 7919.67, + "probability": 0.9696 + }, + { + "start": 7920.36, + "end": 7924.08, + "probability": 0.9805 + }, + { + "start": 7924.18, + "end": 7925.74, + "probability": 0.9834 + }, + { + "start": 7926.42, + "end": 7927.26, + "probability": 0.9521 + }, + { + "start": 7928.42, + "end": 7929.66, + "probability": 0.9105 + }, + { + "start": 7930.02, + "end": 7932.3, + "probability": 0.7918 + }, + { + "start": 7932.44, + "end": 7935.02, + "probability": 0.7416 + }, + { + "start": 7935.08, + "end": 7935.92, + "probability": 0.6903 + }, + { + "start": 7936.58, + "end": 7938.52, + "probability": 0.9868 + }, + { + "start": 7938.78, + "end": 7941.92, + "probability": 0.9595 + }, + { + "start": 7943.4, + "end": 7948.2, + "probability": 0.9858 + }, + { + "start": 7949.1, + "end": 7952.32, + "probability": 0.998 + }, + { + "start": 7952.72, + "end": 7953.52, + "probability": 0.8194 + }, + { + "start": 7954.32, + "end": 7958.2, + "probability": 0.9783 + }, + { + "start": 7959.16, + "end": 7963.16, + "probability": 0.9954 + }, + { + "start": 7963.7, + "end": 7965.2, + "probability": 0.9835 + }, + { + "start": 7966.04, + "end": 7970.3, + "probability": 0.9822 + }, + { + "start": 7970.56, + "end": 7973.86, + "probability": 0.9622 + }, + { + "start": 7974.64, + "end": 7979.41, + "probability": 0.9548 + }, + { + "start": 7979.86, + "end": 7981.96, + "probability": 0.9168 + }, + { + "start": 7982.72, + "end": 7983.12, + "probability": 0.5554 + }, + { + "start": 7983.22, + "end": 7984.56, + "probability": 0.9418 + }, + { + "start": 7984.8, + "end": 7985.62, + "probability": 0.8145 + }, + { + "start": 7985.82, + "end": 7987.02, + "probability": 0.8972 + }, + { + "start": 7987.12, + "end": 7990.52, + "probability": 0.9557 + }, + { + "start": 7990.52, + "end": 7996.26, + "probability": 0.9973 + }, + { + "start": 7996.26, + "end": 8001.52, + "probability": 0.9821 + }, + { + "start": 8002.2, + "end": 8005.68, + "probability": 0.9974 + }, + { + "start": 8005.72, + "end": 8008.16, + "probability": 0.9979 + }, + { + "start": 8008.16, + "end": 8010.56, + "probability": 0.9131 + }, + { + "start": 8010.6, + "end": 8011.9, + "probability": 0.9469 + }, + { + "start": 8012.72, + "end": 8016.64, + "probability": 0.8993 + }, + { + "start": 8017.04, + "end": 8018.16, + "probability": 0.9777 + }, + { + "start": 8018.66, + "end": 8020.94, + "probability": 0.9331 + }, + { + "start": 8020.94, + "end": 8023.54, + "probability": 0.9849 + }, + { + "start": 8023.7, + "end": 8024.2, + "probability": 0.6376 + }, + { + "start": 8024.96, + "end": 8027.38, + "probability": 0.9972 + }, + { + "start": 8028.12, + "end": 8031.94, + "probability": 0.9958 + }, + { + "start": 8031.94, + "end": 8036.46, + "probability": 0.9864 + }, + { + "start": 8036.9, + "end": 8038.28, + "probability": 0.9224 + }, + { + "start": 8038.6, + "end": 8042.28, + "probability": 0.7703 + }, + { + "start": 8042.28, + "end": 8045.68, + "probability": 0.9685 + }, + { + "start": 8046.4, + "end": 8049.24, + "probability": 0.7108 + }, + { + "start": 8049.42, + "end": 8052.98, + "probability": 0.9813 + }, + { + "start": 8053.16, + "end": 8053.64, + "probability": 0.8269 + }, + { + "start": 8054.28, + "end": 8056.38, + "probability": 0.8244 + }, + { + "start": 8056.76, + "end": 8060.44, + "probability": 0.795 + }, + { + "start": 8061.32, + "end": 8064.9, + "probability": 0.9917 + }, + { + "start": 8066.12, + "end": 8069.64, + "probability": 0.9159 + }, + { + "start": 8069.94, + "end": 8070.94, + "probability": 0.8089 + }, + { + "start": 8071.08, + "end": 8073.02, + "probability": 0.0812 + }, + { + "start": 8073.34, + "end": 8076.26, + "probability": 0.9546 + }, + { + "start": 8077.42, + "end": 8078.06, + "probability": 0.667 + }, + { + "start": 8081.96, + "end": 8083.54, + "probability": 0.647 + }, + { + "start": 8087.82, + "end": 8088.5, + "probability": 0.5128 + }, + { + "start": 8088.66, + "end": 8090.17, + "probability": 0.9155 + }, + { + "start": 8092.86, + "end": 8095.92, + "probability": 0.8168 + }, + { + "start": 8096.78, + "end": 8099.54, + "probability": 0.9943 + }, + { + "start": 8099.78, + "end": 8103.32, + "probability": 0.9936 + }, + { + "start": 8103.32, + "end": 8108.14, + "probability": 0.9985 + }, + { + "start": 8108.86, + "end": 8111.46, + "probability": 0.9908 + }, + { + "start": 8111.62, + "end": 8117.04, + "probability": 0.9933 + }, + { + "start": 8117.98, + "end": 8122.32, + "probability": 0.965 + }, + { + "start": 8123.1, + "end": 8127.49, + "probability": 0.835 + }, + { + "start": 8128.74, + "end": 8133.11, + "probability": 0.9983 + }, + { + "start": 8133.96, + "end": 8134.94, + "probability": 0.8945 + }, + { + "start": 8136.06, + "end": 8140.96, + "probability": 0.9977 + }, + { + "start": 8141.66, + "end": 8147.32, + "probability": 0.9975 + }, + { + "start": 8147.32, + "end": 8154.48, + "probability": 0.9985 + }, + { + "start": 8155.2, + "end": 8158.42, + "probability": 0.905 + }, + { + "start": 8159.52, + "end": 8167.12, + "probability": 0.9861 + }, + { + "start": 8167.12, + "end": 8174.36, + "probability": 0.9958 + }, + { + "start": 8175.2, + "end": 8179.53, + "probability": 0.9934 + }, + { + "start": 8179.68, + "end": 8184.74, + "probability": 0.9357 + }, + { + "start": 8185.22, + "end": 8188.86, + "probability": 0.8581 + }, + { + "start": 8189.36, + "end": 8191.56, + "probability": 0.946 + }, + { + "start": 8192.76, + "end": 8196.2, + "probability": 0.9922 + }, + { + "start": 8196.76, + "end": 8199.02, + "probability": 0.9709 + }, + { + "start": 8199.52, + "end": 8201.5, + "probability": 0.9931 + }, + { + "start": 8202.16, + "end": 8208.14, + "probability": 0.8754 + }, + { + "start": 8208.62, + "end": 8210.42, + "probability": 0.8718 + }, + { + "start": 8211.04, + "end": 8213.36, + "probability": 0.9668 + }, + { + "start": 8213.86, + "end": 8217.68, + "probability": 0.9908 + }, + { + "start": 8218.02, + "end": 8220.86, + "probability": 0.9606 + }, + { + "start": 8221.46, + "end": 8223.22, + "probability": 0.9925 + }, + { + "start": 8224.22, + "end": 8225.08, + "probability": 0.7609 + }, + { + "start": 8225.74, + "end": 8226.74, + "probability": 0.7691 + }, + { + "start": 8227.12, + "end": 8229.5, + "probability": 0.9835 + }, + { + "start": 8230.14, + "end": 8231.8, + "probability": 0.9449 + }, + { + "start": 8232.28, + "end": 8236.32, + "probability": 0.9731 + }, + { + "start": 8236.88, + "end": 8240.8, + "probability": 0.9921 + }, + { + "start": 8241.32, + "end": 8245.4, + "probability": 0.995 + }, + { + "start": 8245.4, + "end": 8250.08, + "probability": 0.992 + }, + { + "start": 8251.32, + "end": 8252.5, + "probability": 0.9839 + }, + { + "start": 8252.62, + "end": 8253.71, + "probability": 0.8177 + }, + { + "start": 8254.22, + "end": 8255.92, + "probability": 0.9751 + }, + { + "start": 8257.1, + "end": 8258.18, + "probability": 0.9059 + }, + { + "start": 8258.36, + "end": 8263.24, + "probability": 0.9945 + }, + { + "start": 8263.82, + "end": 8266.76, + "probability": 0.9626 + }, + { + "start": 8267.54, + "end": 8270.86, + "probability": 0.9961 + }, + { + "start": 8271.74, + "end": 8274.6, + "probability": 0.9886 + }, + { + "start": 8274.6, + "end": 8278.72, + "probability": 0.9985 + }, + { + "start": 8279.48, + "end": 8282.38, + "probability": 0.9775 + }, + { + "start": 8282.38, + "end": 8288.36, + "probability": 0.9622 + }, + { + "start": 8289.06, + "end": 8293.22, + "probability": 0.9919 + }, + { + "start": 8293.38, + "end": 8294.44, + "probability": 0.9346 + }, + { + "start": 8294.58, + "end": 8295.46, + "probability": 0.8026 + }, + { + "start": 8295.56, + "end": 8296.04, + "probability": 0.8259 + }, + { + "start": 8296.54, + "end": 8297.6, + "probability": 0.6938 + }, + { + "start": 8298.28, + "end": 8302.78, + "probability": 0.9313 + }, + { + "start": 8302.78, + "end": 8306.54, + "probability": 0.9924 + }, + { + "start": 8307.28, + "end": 8311.4, + "probability": 0.9222 + }, + { + "start": 8311.92, + "end": 8315.56, + "probability": 0.9948 + }, + { + "start": 8315.96, + "end": 8317.28, + "probability": 0.9266 + }, + { + "start": 8317.38, + "end": 8319.62, + "probability": 0.9019 + }, + { + "start": 8319.78, + "end": 8320.44, + "probability": 0.8104 + }, + { + "start": 8321.2, + "end": 8328.18, + "probability": 0.9253 + }, + { + "start": 8328.64, + "end": 8334.14, + "probability": 0.9442 + }, + { + "start": 8334.98, + "end": 8336.96, + "probability": 0.7847 + }, + { + "start": 8337.61, + "end": 8342.38, + "probability": 0.9105 + }, + { + "start": 8343.28, + "end": 8345.86, + "probability": 0.9968 + }, + { + "start": 8345.86, + "end": 8349.4, + "probability": 0.9863 + }, + { + "start": 8350.04, + "end": 8353.16, + "probability": 0.8945 + }, + { + "start": 8353.62, + "end": 8356.92, + "probability": 0.9657 + }, + { + "start": 8357.7, + "end": 8359.6, + "probability": 0.9946 + }, + { + "start": 8360.32, + "end": 8363.28, + "probability": 0.8104 + }, + { + "start": 8363.68, + "end": 8366.82, + "probability": 0.7477 + }, + { + "start": 8366.84, + "end": 8367.4, + "probability": 0.8002 + }, + { + "start": 8367.9, + "end": 8371.18, + "probability": 0.9935 + }, + { + "start": 8372.02, + "end": 8375.1, + "probability": 0.9797 + }, + { + "start": 8375.52, + "end": 8379.72, + "probability": 0.9549 + }, + { + "start": 8380.28, + "end": 8381.98, + "probability": 0.8148 + }, + { + "start": 8382.88, + "end": 8385.06, + "probability": 0.9811 + }, + { + "start": 8385.5, + "end": 8386.68, + "probability": 0.9502 + }, + { + "start": 8387.38, + "end": 8389.68, + "probability": 0.955 + }, + { + "start": 8390.12, + "end": 8395.54, + "probability": 0.9734 + }, + { + "start": 8396.04, + "end": 8400.12, + "probability": 0.9842 + }, + { + "start": 8400.12, + "end": 8404.78, + "probability": 0.9928 + }, + { + "start": 8405.2, + "end": 8409.48, + "probability": 0.9822 + }, + { + "start": 8409.48, + "end": 8413.38, + "probability": 0.9979 + }, + { + "start": 8413.94, + "end": 8416.78, + "probability": 0.7473 + }, + { + "start": 8417.12, + "end": 8421.0, + "probability": 0.9902 + }, + { + "start": 8422.02, + "end": 8425.94, + "probability": 0.989 + }, + { + "start": 8426.48, + "end": 8429.42, + "probability": 0.9147 + }, + { + "start": 8429.74, + "end": 8432.2, + "probability": 0.869 + }, + { + "start": 8433.08, + "end": 8433.46, + "probability": 0.7617 + }, + { + "start": 8433.52, + "end": 8436.64, + "probability": 0.937 + }, + { + "start": 8436.96, + "end": 8439.7, + "probability": 0.8306 + }, + { + "start": 8440.24, + "end": 8444.56, + "probability": 0.9055 + }, + { + "start": 8445.74, + "end": 8448.64, + "probability": 0.9189 + }, + { + "start": 8449.2, + "end": 8451.9, + "probability": 0.9868 + }, + { + "start": 8455.1, + "end": 8459.34, + "probability": 0.9056 + }, + { + "start": 8460.02, + "end": 8462.72, + "probability": 0.9027 + }, + { + "start": 8463.9, + "end": 8467.78, + "probability": 0.8807 + }, + { + "start": 8468.18, + "end": 8473.64, + "probability": 0.9617 + }, + { + "start": 8473.92, + "end": 8474.66, + "probability": 0.8882 + }, + { + "start": 8475.86, + "end": 8478.86, + "probability": 0.9753 + }, + { + "start": 8479.54, + "end": 8483.62, + "probability": 0.967 + }, + { + "start": 8484.22, + "end": 8484.8, + "probability": 0.594 + }, + { + "start": 8484.88, + "end": 8486.92, + "probability": 0.8607 + }, + { + "start": 8487.4, + "end": 8488.04, + "probability": 0.8819 + }, + { + "start": 8488.14, + "end": 8489.5, + "probability": 0.8083 + }, + { + "start": 8490.22, + "end": 8494.64, + "probability": 0.8752 + }, + { + "start": 8494.82, + "end": 8496.9, + "probability": 0.9343 + }, + { + "start": 8497.6, + "end": 8501.04, + "probability": 0.9521 + }, + { + "start": 8501.62, + "end": 8502.74, + "probability": 0.8769 + }, + { + "start": 8503.28, + "end": 8505.24, + "probability": 0.9377 + }, + { + "start": 8505.74, + "end": 8509.74, + "probability": 0.9775 + }, + { + "start": 8509.74, + "end": 8514.94, + "probability": 0.9962 + }, + { + "start": 8516.42, + "end": 8518.22, + "probability": 0.723 + }, + { + "start": 8518.46, + "end": 8519.14, + "probability": 0.5046 + }, + { + "start": 8519.16, + "end": 8522.34, + "probability": 0.9978 + }, + { + "start": 8522.38, + "end": 8526.58, + "probability": 0.9688 + }, + { + "start": 8527.52, + "end": 8531.02, + "probability": 0.9974 + }, + { + "start": 8531.96, + "end": 8533.36, + "probability": 0.5825 + }, + { + "start": 8533.94, + "end": 8535.76, + "probability": 0.9639 + }, + { + "start": 8535.82, + "end": 8537.64, + "probability": 0.9757 + }, + { + "start": 8537.7, + "end": 8538.49, + "probability": 0.6603 + }, + { + "start": 8539.54, + "end": 8540.54, + "probability": 0.9572 + }, + { + "start": 8541.8, + "end": 8547.76, + "probability": 0.9019 + }, + { + "start": 8548.68, + "end": 8551.56, + "probability": 0.9926 + }, + { + "start": 8551.56, + "end": 8555.3, + "probability": 0.9966 + }, + { + "start": 8556.04, + "end": 8560.94, + "probability": 0.8612 + }, + { + "start": 8561.26, + "end": 8562.94, + "probability": 0.801 + }, + { + "start": 8564.0, + "end": 8564.86, + "probability": 0.5755 + }, + { + "start": 8564.9, + "end": 8567.12, + "probability": 0.9717 + }, + { + "start": 8567.2, + "end": 8569.56, + "probability": 0.9226 + }, + { + "start": 8570.08, + "end": 8579.24, + "probability": 0.9874 + }, + { + "start": 8579.74, + "end": 8581.2, + "probability": 0.9119 + }, + { + "start": 8581.58, + "end": 8581.99, + "probability": 0.1577 + }, + { + "start": 8584.56, + "end": 8587.6, + "probability": 0.4535 + }, + { + "start": 8587.78, + "end": 8591.14, + "probability": 0.7474 + }, + { + "start": 8591.42, + "end": 8592.02, + "probability": 0.4878 + }, + { + "start": 8592.12, + "end": 8595.22, + "probability": 0.7267 + }, + { + "start": 8595.78, + "end": 8598.5, + "probability": 0.5679 + }, + { + "start": 8598.5, + "end": 8598.64, + "probability": 0.3561 + }, + { + "start": 8598.64, + "end": 8600.3, + "probability": 0.6412 + }, + { + "start": 8600.3, + "end": 8602.66, + "probability": 0.9882 + }, + { + "start": 8603.2, + "end": 8606.96, + "probability": 0.8597 + }, + { + "start": 8606.96, + "end": 8613.72, + "probability": 0.8523 + }, + { + "start": 8613.84, + "end": 8616.86, + "probability": 0.9177 + }, + { + "start": 8617.82, + "end": 8621.1, + "probability": 0.9129 + }, + { + "start": 8621.96, + "end": 8623.5, + "probability": 0.688 + }, + { + "start": 8623.56, + "end": 8625.28, + "probability": 0.867 + }, + { + "start": 8625.84, + "end": 8628.08, + "probability": 0.9167 + }, + { + "start": 8628.28, + "end": 8629.22, + "probability": 0.7325 + }, + { + "start": 8629.5, + "end": 8631.98, + "probability": 0.979 + }, + { + "start": 8632.56, + "end": 8632.98, + "probability": 0.9479 + }, + { + "start": 8633.26, + "end": 8634.5, + "probability": 0.9583 + }, + { + "start": 8634.58, + "end": 8635.12, + "probability": 0.8701 + }, + { + "start": 8635.38, + "end": 8635.92, + "probability": 0.5001 + }, + { + "start": 8635.98, + "end": 8636.82, + "probability": 0.634 + }, + { + "start": 8637.26, + "end": 8638.24, + "probability": 0.8699 + }, + { + "start": 8638.3, + "end": 8639.48, + "probability": 0.9474 + }, + { + "start": 8639.8, + "end": 8641.18, + "probability": 0.8323 + }, + { + "start": 8641.82, + "end": 8646.98, + "probability": 0.9666 + }, + { + "start": 8647.32, + "end": 8649.36, + "probability": 0.7031 + }, + { + "start": 8650.16, + "end": 8651.66, + "probability": 0.9119 + }, + { + "start": 8651.68, + "end": 8655.58, + "probability": 0.319 + }, + { + "start": 8655.94, + "end": 8661.88, + "probability": 0.9856 + }, + { + "start": 8661.88, + "end": 8667.3, + "probability": 0.8647 + }, + { + "start": 8667.92, + "end": 8672.42, + "probability": 0.9836 + }, + { + "start": 8672.78, + "end": 8677.54, + "probability": 0.9931 + }, + { + "start": 8678.04, + "end": 8681.44, + "probability": 0.8694 + }, + { + "start": 8682.0, + "end": 8684.5, + "probability": 0.8349 + }, + { + "start": 8684.82, + "end": 8689.12, + "probability": 0.9746 + }, + { + "start": 8689.98, + "end": 8695.6, + "probability": 0.9961 + }, + { + "start": 8695.84, + "end": 8696.26, + "probability": 0.8245 + }, + { + "start": 8696.88, + "end": 8699.54, + "probability": 0.9683 + }, + { + "start": 8699.76, + "end": 8704.02, + "probability": 0.8525 + }, + { + "start": 8706.6, + "end": 8709.36, + "probability": 0.121 + }, + { + "start": 8723.24, + "end": 8725.92, + "probability": 0.6283 + }, + { + "start": 8727.56, + "end": 8731.08, + "probability": 0.9861 + }, + { + "start": 8731.76, + "end": 8735.62, + "probability": 0.9857 + }, + { + "start": 8735.62, + "end": 8739.84, + "probability": 0.9965 + }, + { + "start": 8739.92, + "end": 8741.9, + "probability": 0.8316 + }, + { + "start": 8742.76, + "end": 8743.2, + "probability": 0.7826 + }, + { + "start": 8743.28, + "end": 8744.36, + "probability": 0.9507 + }, + { + "start": 8744.44, + "end": 8746.0, + "probability": 0.9378 + }, + { + "start": 8746.4, + "end": 8746.84, + "probability": 0.6854 + }, + { + "start": 8746.96, + "end": 8748.54, + "probability": 0.7226 + }, + { + "start": 8748.84, + "end": 8751.1, + "probability": 0.8911 + }, + { + "start": 8751.74, + "end": 8752.88, + "probability": 0.8861 + }, + { + "start": 8753.48, + "end": 8757.52, + "probability": 0.9796 + }, + { + "start": 8758.04, + "end": 8759.34, + "probability": 0.9185 + }, + { + "start": 8760.36, + "end": 8763.22, + "probability": 0.9233 + }, + { + "start": 8763.88, + "end": 8766.42, + "probability": 0.9704 + }, + { + "start": 8767.24, + "end": 8768.35, + "probability": 0.9261 + }, + { + "start": 8768.6, + "end": 8774.54, + "probability": 0.9783 + }, + { + "start": 8775.0, + "end": 8777.64, + "probability": 0.9751 + }, + { + "start": 8778.16, + "end": 8779.28, + "probability": 0.7511 + }, + { + "start": 8779.9, + "end": 8782.08, + "probability": 0.9246 + }, + { + "start": 8783.06, + "end": 8785.64, + "probability": 0.891 + }, + { + "start": 8785.98, + "end": 8788.64, + "probability": 0.9769 + }, + { + "start": 8789.12, + "end": 8790.54, + "probability": 0.8682 + }, + { + "start": 8791.24, + "end": 8792.6, + "probability": 0.6345 + }, + { + "start": 8792.74, + "end": 8795.38, + "probability": 0.889 + }, + { + "start": 8795.92, + "end": 8800.1, + "probability": 0.9913 + }, + { + "start": 8800.66, + "end": 8800.66, + "probability": 0.1286 + }, + { + "start": 8800.7, + "end": 8804.78, + "probability": 0.9907 + }, + { + "start": 8805.42, + "end": 8808.06, + "probability": 0.8913 + }, + { + "start": 8808.62, + "end": 8811.22, + "probability": 0.9951 + }, + { + "start": 8811.7, + "end": 8814.4, + "probability": 0.9078 + }, + { + "start": 8815.1, + "end": 8816.64, + "probability": 0.8231 + }, + { + "start": 8816.84, + "end": 8818.24, + "probability": 0.855 + }, + { + "start": 8819.18, + "end": 8821.76, + "probability": 0.6313 + }, + { + "start": 8822.74, + "end": 8825.88, + "probability": 0.7953 + }, + { + "start": 8826.4, + "end": 8827.2, + "probability": 0.7528 + }, + { + "start": 8827.74, + "end": 8828.16, + "probability": 0.6867 + }, + { + "start": 8829.08, + "end": 8830.19, + "probability": 0.943 + }, + { + "start": 8831.04, + "end": 8836.66, + "probability": 0.9631 + }, + { + "start": 8838.1, + "end": 8838.87, + "probability": 0.6327 + }, + { + "start": 8839.68, + "end": 8843.22, + "probability": 0.9524 + }, + { + "start": 8844.0, + "end": 8847.38, + "probability": 0.933 + }, + { + "start": 8847.5, + "end": 8847.7, + "probability": 0.123 + }, + { + "start": 8847.78, + "end": 8847.94, + "probability": 0.4308 + }, + { + "start": 8848.02, + "end": 8848.98, + "probability": 0.7417 + }, + { + "start": 8849.22, + "end": 8851.3, + "probability": 0.7625 + }, + { + "start": 8851.34, + "end": 8852.28, + "probability": 0.6426 + }, + { + "start": 8854.09, + "end": 8856.8, + "probability": 0.8978 + }, + { + "start": 8862.08, + "end": 8866.76, + "probability": 0.9385 + }, + { + "start": 8870.74, + "end": 8870.86, + "probability": 0.4728 + }, + { + "start": 8871.0, + "end": 8875.74, + "probability": 0.9395 + }, + { + "start": 8875.96, + "end": 8878.56, + "probability": 0.7581 + }, + { + "start": 8879.32, + "end": 8879.54, + "probability": 0.2665 + }, + { + "start": 8879.68, + "end": 8883.06, + "probability": 0.933 + }, + { + "start": 8883.2, + "end": 8883.74, + "probability": 0.9262 + }, + { + "start": 8883.86, + "end": 8885.04, + "probability": 0.8858 + }, + { + "start": 8885.44, + "end": 8889.96, + "probability": 0.9453 + }, + { + "start": 8890.48, + "end": 8891.2, + "probability": 0.7485 + }, + { + "start": 8891.3, + "end": 8895.08, + "probability": 0.9216 + }, + { + "start": 8895.18, + "end": 8897.48, + "probability": 0.9673 + }, + { + "start": 8897.54, + "end": 8898.58, + "probability": 0.9571 + }, + { + "start": 8898.98, + "end": 8905.04, + "probability": 0.9881 + }, + { + "start": 8905.4, + "end": 8909.38, + "probability": 0.9959 + }, + { + "start": 8909.72, + "end": 8917.58, + "probability": 0.9893 + }, + { + "start": 8917.8, + "end": 8920.3, + "probability": 0.998 + }, + { + "start": 8920.78, + "end": 8923.6, + "probability": 0.9987 + }, + { + "start": 8924.04, + "end": 8926.32, + "probability": 0.9224 + }, + { + "start": 8927.72, + "end": 8930.34, + "probability": 0.6954 + }, + { + "start": 8930.4, + "end": 8933.62, + "probability": 0.632 + }, + { + "start": 8933.8, + "end": 8935.88, + "probability": 0.8366 + }, + { + "start": 8936.04, + "end": 8937.2, + "probability": 0.7203 + }, + { + "start": 8937.34, + "end": 8938.94, + "probability": 0.4746 + }, + { + "start": 8939.24, + "end": 8941.36, + "probability": 0.8582 + }, + { + "start": 8941.9, + "end": 8942.86, + "probability": 0.4628 + }, + { + "start": 8942.86, + "end": 8943.8, + "probability": 0.5058 + }, + { + "start": 8943.88, + "end": 8944.4, + "probability": 0.4774 + }, + { + "start": 8955.84, + "end": 8959.94, + "probability": 0.0361 + }, + { + "start": 8959.94, + "end": 8959.94, + "probability": 0.0564 + }, + { + "start": 8961.5, + "end": 8961.76, + "probability": 0.0783 + }, + { + "start": 8961.76, + "end": 8966.26, + "probability": 0.7144 + }, + { + "start": 8966.36, + "end": 8970.16, + "probability": 0.896 + }, + { + "start": 8971.42, + "end": 8972.98, + "probability": 0.2511 + }, + { + "start": 8973.22, + "end": 8975.0, + "probability": 0.9078 + }, + { + "start": 8975.36, + "end": 8976.28, + "probability": 0.6589 + }, + { + "start": 8976.36, + "end": 8978.32, + "probability": 0.5386 + }, + { + "start": 8979.16, + "end": 8979.46, + "probability": 0.2355 + }, + { + "start": 8979.48, + "end": 8979.84, + "probability": 0.426 + }, + { + "start": 8979.98, + "end": 8981.64, + "probability": 0.8793 + }, + { + "start": 8981.64, + "end": 8983.64, + "probability": 0.7653 + }, + { + "start": 8983.86, + "end": 8985.38, + "probability": 0.5327 + }, + { + "start": 8985.88, + "end": 8986.58, + "probability": 0.5581 + }, + { + "start": 8987.26, + "end": 8988.6, + "probability": 0.8845 + }, + { + "start": 8990.14, + "end": 8992.1, + "probability": 0.9404 + }, + { + "start": 8999.92, + "end": 9000.78, + "probability": 0.6654 + }, + { + "start": 9001.72, + "end": 9004.66, + "probability": 0.9383 + }, + { + "start": 9006.1, + "end": 9006.5, + "probability": 0.7286 + }, + { + "start": 9006.6, + "end": 9007.56, + "probability": 0.6931 + }, + { + "start": 9007.68, + "end": 9009.36, + "probability": 0.9857 + }, + { + "start": 9010.26, + "end": 9011.86, + "probability": 0.9005 + }, + { + "start": 9015.78, + "end": 9017.04, + "probability": 0.3359 + }, + { + "start": 9017.04, + "end": 9017.44, + "probability": 0.483 + }, + { + "start": 9017.98, + "end": 9019.16, + "probability": 0.4298 + }, + { + "start": 9019.22, + "end": 9020.24, + "probability": 0.8779 + }, + { + "start": 9020.6, + "end": 9024.04, + "probability": 0.9894 + }, + { + "start": 9025.02, + "end": 9026.56, + "probability": 0.9968 + }, + { + "start": 9030.02, + "end": 9031.66, + "probability": 0.7475 + }, + { + "start": 9033.3, + "end": 9035.2, + "probability": 0.9976 + }, + { + "start": 9037.72, + "end": 9044.62, + "probability": 0.9943 + }, + { + "start": 9045.78, + "end": 9051.16, + "probability": 0.644 + }, + { + "start": 9051.22, + "end": 9053.46, + "probability": 0.9775 + }, + { + "start": 9054.3, + "end": 9055.84, + "probability": 0.8293 + }, + { + "start": 9056.58, + "end": 9058.35, + "probability": 0.9817 + }, + { + "start": 9058.46, + "end": 9059.68, + "probability": 0.9182 + }, + { + "start": 9062.02, + "end": 9064.52, + "probability": 0.8851 + }, + { + "start": 9065.58, + "end": 9066.58, + "probability": 0.9642 + }, + { + "start": 9066.58, + "end": 9069.42, + "probability": 0.9701 + }, + { + "start": 9069.6, + "end": 9070.54, + "probability": 0.6854 + }, + { + "start": 9070.68, + "end": 9071.18, + "probability": 0.4365 + }, + { + "start": 9071.98, + "end": 9076.76, + "probability": 0.9705 + }, + { + "start": 9077.4, + "end": 9081.86, + "probability": 0.678 + }, + { + "start": 9083.82, + "end": 9085.94, + "probability": 0.9919 + }, + { + "start": 9086.46, + "end": 9087.59, + "probability": 0.9937 + }, + { + "start": 9088.76, + "end": 9089.68, + "probability": 0.9443 + }, + { + "start": 9090.3, + "end": 9093.86, + "probability": 0.9975 + }, + { + "start": 9094.86, + "end": 9095.92, + "probability": 0.9896 + }, + { + "start": 9096.12, + "end": 9097.28, + "probability": 0.9486 + }, + { + "start": 9097.92, + "end": 9099.02, + "probability": 0.9946 + }, + { + "start": 9100.14, + "end": 9101.98, + "probability": 0.9457 + }, + { + "start": 9103.24, + "end": 9110.84, + "probability": 0.995 + }, + { + "start": 9112.02, + "end": 9113.98, + "probability": 0.9803 + }, + { + "start": 9114.88, + "end": 9115.67, + "probability": 0.9966 + }, + { + "start": 9117.12, + "end": 9119.7, + "probability": 0.5988 + }, + { + "start": 9119.7, + "end": 9121.9, + "probability": 0.9113 + }, + { + "start": 9122.84, + "end": 9123.26, + "probability": 0.5991 + }, + { + "start": 9123.4, + "end": 9125.36, + "probability": 0.9768 + }, + { + "start": 9125.4, + "end": 9126.18, + "probability": 0.662 + }, + { + "start": 9126.32, + "end": 9129.7, + "probability": 0.9707 + }, + { + "start": 9131.68, + "end": 9134.92, + "probability": 0.9925 + }, + { + "start": 9135.02, + "end": 9137.16, + "probability": 0.8254 + }, + { + "start": 9137.98, + "end": 9138.72, + "probability": 0.584 + }, + { + "start": 9139.3, + "end": 9140.6, + "probability": 0.8726 + }, + { + "start": 9140.66, + "end": 9142.3, + "probability": 0.739 + }, + { + "start": 9144.04, + "end": 9144.98, + "probability": 0.9376 + }, + { + "start": 9145.9, + "end": 9148.2, + "probability": 0.6709 + }, + { + "start": 9149.56, + "end": 9150.46, + "probability": 0.9102 + }, + { + "start": 9151.74, + "end": 9152.64, + "probability": 0.9529 + }, + { + "start": 9152.66, + "end": 9154.11, + "probability": 0.9978 + }, + { + "start": 9155.58, + "end": 9157.2, + "probability": 0.9718 + }, + { + "start": 9158.58, + "end": 9162.1, + "probability": 0.8867 + }, + { + "start": 9163.64, + "end": 9166.34, + "probability": 0.8311 + }, + { + "start": 9167.14, + "end": 9168.9, + "probability": 0.9966 + }, + { + "start": 9169.64, + "end": 9173.0, + "probability": 0.9673 + }, + { + "start": 9174.2, + "end": 9175.8, + "probability": 0.9784 + }, + { + "start": 9177.2, + "end": 9178.44, + "probability": 0.8429 + }, + { + "start": 9180.4, + "end": 9185.02, + "probability": 0.6978 + }, + { + "start": 9190.44, + "end": 9194.98, + "probability": 0.8929 + }, + { + "start": 9195.86, + "end": 9198.11, + "probability": 0.9889 + }, + { + "start": 9199.0, + "end": 9201.55, + "probability": 0.7653 + }, + { + "start": 9201.84, + "end": 9206.76, + "probability": 0.9292 + }, + { + "start": 9207.6, + "end": 9209.14, + "probability": 0.7285 + }, + { + "start": 9210.68, + "end": 9213.52, + "probability": 0.8266 + }, + { + "start": 9215.14, + "end": 9216.16, + "probability": 0.482 + }, + { + "start": 9216.76, + "end": 9221.16, + "probability": 0.7362 + }, + { + "start": 9222.28, + "end": 9223.04, + "probability": 0.7119 + }, + { + "start": 9223.16, + "end": 9223.56, + "probability": 0.7694 + }, + { + "start": 9223.64, + "end": 9224.66, + "probability": 0.9913 + }, + { + "start": 9224.76, + "end": 9226.54, + "probability": 0.9886 + }, + { + "start": 9228.22, + "end": 9231.94, + "probability": 0.9946 + }, + { + "start": 9233.06, + "end": 9239.28, + "probability": 0.9421 + }, + { + "start": 9239.46, + "end": 9240.3, + "probability": 0.9558 + }, + { + "start": 9241.02, + "end": 9242.09, + "probability": 0.9718 + }, + { + "start": 9242.74, + "end": 9244.72, + "probability": 0.9183 + }, + { + "start": 9244.88, + "end": 9249.57, + "probability": 0.9967 + }, + { + "start": 9251.02, + "end": 9254.08, + "probability": 0.9987 + }, + { + "start": 9255.16, + "end": 9256.76, + "probability": 0.9877 + }, + { + "start": 9257.86, + "end": 9260.14, + "probability": 0.9926 + }, + { + "start": 9261.42, + "end": 9266.0, + "probability": 0.9539 + }, + { + "start": 9266.44, + "end": 9271.18, + "probability": 0.9915 + }, + { + "start": 9272.2, + "end": 9275.72, + "probability": 0.9794 + }, + { + "start": 9275.8, + "end": 9279.48, + "probability": 0.9844 + }, + { + "start": 9279.62, + "end": 9280.56, + "probability": 0.88 + }, + { + "start": 9281.14, + "end": 9281.86, + "probability": 0.9383 + }, + { + "start": 9283.4, + "end": 9284.72, + "probability": 0.9976 + }, + { + "start": 9285.74, + "end": 9291.22, + "probability": 0.9954 + }, + { + "start": 9292.76, + "end": 9295.66, + "probability": 0.6747 + }, + { + "start": 9296.54, + "end": 9297.18, + "probability": 0.3776 + }, + { + "start": 9298.2, + "end": 9301.52, + "probability": 0.6477 + }, + { + "start": 9302.98, + "end": 9303.7, + "probability": 0.4538 + }, + { + "start": 9303.72, + "end": 9304.22, + "probability": 0.7883 + }, + { + "start": 9304.26, + "end": 9309.36, + "probability": 0.9824 + }, + { + "start": 9309.36, + "end": 9312.46, + "probability": 0.9814 + }, + { + "start": 9313.2, + "end": 9319.74, + "probability": 0.9162 + }, + { + "start": 9320.6, + "end": 9322.16, + "probability": 0.9604 + }, + { + "start": 9323.36, + "end": 9324.78, + "probability": 0.9719 + }, + { + "start": 9324.82, + "end": 9326.64, + "probability": 0.9976 + }, + { + "start": 9327.56, + "end": 9329.4, + "probability": 0.9111 + }, + { + "start": 9330.28, + "end": 9331.1, + "probability": 0.6839 + }, + { + "start": 9331.95, + "end": 9332.64, + "probability": 0.2546 + }, + { + "start": 9332.72, + "end": 9333.38, + "probability": 0.5196 + }, + { + "start": 9333.98, + "end": 9335.3, + "probability": 0.658 + }, + { + "start": 9335.5, + "end": 9335.5, + "probability": 0.2444 + }, + { + "start": 9335.6, + "end": 9336.52, + "probability": 0.5804 + }, + { + "start": 9336.62, + "end": 9336.96, + "probability": 0.3306 + }, + { + "start": 9336.98, + "end": 9337.7, + "probability": 0.3279 + }, + { + "start": 9337.84, + "end": 9340.1, + "probability": 0.666 + }, + { + "start": 9340.78, + "end": 9342.34, + "probability": 0.2149 + }, + { + "start": 9342.68, + "end": 9343.64, + "probability": 0.3477 + }, + { + "start": 9343.66, + "end": 9343.78, + "probability": 0.6711 + }, + { + "start": 9343.86, + "end": 9343.96, + "probability": 0.5084 + }, + { + "start": 9344.06, + "end": 9344.54, + "probability": 0.7319 + }, + { + "start": 9344.64, + "end": 9345.84, + "probability": 0.9037 + }, + { + "start": 9345.88, + "end": 9347.04, + "probability": 0.2315 + }, + { + "start": 9347.12, + "end": 9348.32, + "probability": 0.8765 + }, + { + "start": 9348.98, + "end": 9356.3, + "probability": 0.9571 + }, + { + "start": 9357.82, + "end": 9359.22, + "probability": 0.6726 + }, + { + "start": 9359.84, + "end": 9360.22, + "probability": 0.9432 + }, + { + "start": 9360.3, + "end": 9360.64, + "probability": 0.894 + }, + { + "start": 9360.76, + "end": 9362.3, + "probability": 0.9373 + }, + { + "start": 9362.76, + "end": 9363.72, + "probability": 0.7748 + }, + { + "start": 9364.34, + "end": 9368.7, + "probability": 0.9375 + }, + { + "start": 9370.04, + "end": 9371.46, + "probability": 0.9245 + }, + { + "start": 9371.46, + "end": 9371.82, + "probability": 0.3287 + }, + { + "start": 9372.4, + "end": 9372.92, + "probability": 0.3139 + }, + { + "start": 9373.3, + "end": 9374.06, + "probability": 0.4953 + }, + { + "start": 9374.46, + "end": 9374.74, + "probability": 0.2713 + }, + { + "start": 9375.22, + "end": 9376.6, + "probability": 0.7448 + }, + { + "start": 9376.72, + "end": 9377.48, + "probability": 0.3568 + }, + { + "start": 9377.48, + "end": 9379.22, + "probability": 0.0912 + }, + { + "start": 9379.3, + "end": 9380.46, + "probability": 0.0937 + }, + { + "start": 9380.6, + "end": 9381.48, + "probability": 0.7783 + }, + { + "start": 9382.14, + "end": 9384.44, + "probability": 0.4377 + }, + { + "start": 9384.46, + "end": 9385.36, + "probability": 0.4611 + }, + { + "start": 9385.48, + "end": 9386.08, + "probability": 0.7026 + }, + { + "start": 9386.88, + "end": 9387.23, + "probability": 0.2037 + }, + { + "start": 9388.1, + "end": 9389.26, + "probability": 0.5156 + }, + { + "start": 9389.32, + "end": 9391.5, + "probability": 0.1507 + }, + { + "start": 9391.54, + "end": 9393.4, + "probability": 0.6459 + }, + { + "start": 9393.9, + "end": 9395.8, + "probability": 0.8937 + }, + { + "start": 9395.88, + "end": 9397.98, + "probability": 0.9635 + }, + { + "start": 9398.7, + "end": 9403.7, + "probability": 0.9922 + }, + { + "start": 9404.3, + "end": 9404.4, + "probability": 0.1419 + }, + { + "start": 9404.96, + "end": 9409.64, + "probability": 0.9509 + }, + { + "start": 9409.76, + "end": 9410.66, + "probability": 0.696 + }, + { + "start": 9411.82, + "end": 9413.52, + "probability": 0.9116 + }, + { + "start": 9413.72, + "end": 9415.36, + "probability": 0.5155 + }, + { + "start": 9415.38, + "end": 9416.28, + "probability": 0.7572 + }, + { + "start": 9416.28, + "end": 9417.18, + "probability": 0.3877 + }, + { + "start": 9417.28, + "end": 9418.54, + "probability": 0.698 + }, + { + "start": 9418.54, + "end": 9419.5, + "probability": 0.7845 + }, + { + "start": 9419.54, + "end": 9420.82, + "probability": 0.3746 + }, + { + "start": 9421.0, + "end": 9421.28, + "probability": 0.5612 + }, + { + "start": 9421.42, + "end": 9422.52, + "probability": 0.7406 + }, + { + "start": 9424.9, + "end": 9425.67, + "probability": 0.1042 + }, + { + "start": 9427.6, + "end": 9428.68, + "probability": 0.6618 + }, + { + "start": 9429.46, + "end": 9432.56, + "probability": 0.0436 + }, + { + "start": 9432.9, + "end": 9438.88, + "probability": 0.8451 + }, + { + "start": 9438.92, + "end": 9440.26, + "probability": 0.6083 + }, + { + "start": 9440.58, + "end": 9441.52, + "probability": 0.5972 + }, + { + "start": 9442.22, + "end": 9443.9, + "probability": 0.9664 + }, + { + "start": 9444.88, + "end": 9445.68, + "probability": 0.4917 + }, + { + "start": 9446.3, + "end": 9451.61, + "probability": 0.9953 + }, + { + "start": 9452.72, + "end": 9453.56, + "probability": 0.9816 + }, + { + "start": 9455.02, + "end": 9457.32, + "probability": 0.6597 + }, + { + "start": 9458.3, + "end": 9466.07, + "probability": 0.9834 + }, + { + "start": 9466.7, + "end": 9468.14, + "probability": 0.9507 + }, + { + "start": 9468.84, + "end": 9471.56, + "probability": 0.9988 + }, + { + "start": 9472.28, + "end": 9474.68, + "probability": 0.9967 + }, + { + "start": 9475.18, + "end": 9477.44, + "probability": 0.9941 + }, + { + "start": 9477.84, + "end": 9479.14, + "probability": 0.6549 + }, + { + "start": 9479.82, + "end": 9481.78, + "probability": 0.9409 + }, + { + "start": 9481.86, + "end": 9483.44, + "probability": 0.9783 + }, + { + "start": 9484.58, + "end": 9485.44, + "probability": 0.9466 + }, + { + "start": 9485.52, + "end": 9485.8, + "probability": 0.4808 + }, + { + "start": 9485.86, + "end": 9487.56, + "probability": 0.7431 + }, + { + "start": 9488.04, + "end": 9489.08, + "probability": 0.9756 + }, + { + "start": 9489.2, + "end": 9490.08, + "probability": 0.5181 + }, + { + "start": 9490.34, + "end": 9491.78, + "probability": 0.5609 + }, + { + "start": 9492.72, + "end": 9494.96, + "probability": 0.8951 + }, + { + "start": 9496.36, + "end": 9496.7, + "probability": 0.4061 + }, + { + "start": 9498.68, + "end": 9500.54, + "probability": 0.8755 + }, + { + "start": 9500.64, + "end": 9501.96, + "probability": 0.0887 + }, + { + "start": 9502.78, + "end": 9504.4, + "probability": 0.5029 + }, + { + "start": 9504.4, + "end": 9507.74, + "probability": 0.7906 + }, + { + "start": 9507.84, + "end": 9507.84, + "probability": 0.2342 + }, + { + "start": 9507.84, + "end": 9509.08, + "probability": 0.104 + }, + { + "start": 9509.16, + "end": 9510.74, + "probability": 0.4743 + }, + { + "start": 9510.8, + "end": 9512.8, + "probability": 0.749 + }, + { + "start": 9512.86, + "end": 9513.36, + "probability": 0.522 + }, + { + "start": 9513.5, + "end": 9514.18, + "probability": 0.9602 + }, + { + "start": 9514.48, + "end": 9516.56, + "probability": 0.4667 + }, + { + "start": 9516.66, + "end": 9517.97, + "probability": 0.5239 + }, + { + "start": 9519.94, + "end": 9520.64, + "probability": 0.2204 + }, + { + "start": 9520.64, + "end": 9521.8, + "probability": 0.8245 + }, + { + "start": 9521.88, + "end": 9523.38, + "probability": 0.9801 + }, + { + "start": 9523.48, + "end": 9524.78, + "probability": 0.9302 + }, + { + "start": 9525.02, + "end": 9525.9, + "probability": 0.5687 + }, + { + "start": 9526.02, + "end": 9528.18, + "probability": 0.9331 + }, + { + "start": 9528.22, + "end": 9529.02, + "probability": 0.9518 + }, + { + "start": 9530.02, + "end": 9531.52, + "probability": 0.8271 + }, + { + "start": 9532.0, + "end": 9533.48, + "probability": 0.9799 + }, + { + "start": 9533.74, + "end": 9536.42, + "probability": 0.9956 + }, + { + "start": 9536.64, + "end": 9537.7, + "probability": 0.9471 + }, + { + "start": 9538.04, + "end": 9539.04, + "probability": 0.8185 + }, + { + "start": 9539.22, + "end": 9540.68, + "probability": 0.9531 + }, + { + "start": 9540.76, + "end": 9542.74, + "probability": 0.9865 + }, + { + "start": 9543.04, + "end": 9544.74, + "probability": 0.7986 + }, + { + "start": 9547.48, + "end": 9547.82, + "probability": 0.0919 + }, + { + "start": 9547.82, + "end": 9547.92, + "probability": 0.1851 + }, + { + "start": 9548.0, + "end": 9548.0, + "probability": 0.0131 + }, + { + "start": 9548.0, + "end": 9548.28, + "probability": 0.1968 + }, + { + "start": 9548.36, + "end": 9550.86, + "probability": 0.3963 + }, + { + "start": 9550.86, + "end": 9551.08, + "probability": 0.3845 + }, + { + "start": 9551.66, + "end": 9554.6, + "probability": 0.6617 + }, + { + "start": 9554.6, + "end": 9557.74, + "probability": 0.7311 + }, + { + "start": 9557.84, + "end": 9558.18, + "probability": 0.6365 + }, + { + "start": 9558.32, + "end": 9560.36, + "probability": 0.5418 + }, + { + "start": 9560.36, + "end": 9561.28, + "probability": 0.5722 + }, + { + "start": 9561.48, + "end": 9561.99, + "probability": 0.3609 + }, + { + "start": 9562.6, + "end": 9563.98, + "probability": 0.6145 + }, + { + "start": 9564.06, + "end": 9564.62, + "probability": 0.5853 + }, + { + "start": 9564.96, + "end": 9566.06, + "probability": 0.6135 + }, + { + "start": 9566.75, + "end": 9568.42, + "probability": 0.529 + }, + { + "start": 9568.52, + "end": 9570.2, + "probability": 0.874 + }, + { + "start": 9570.28, + "end": 9571.1, + "probability": 0.0573 + }, + { + "start": 9571.3, + "end": 9572.44, + "probability": 0.6849 + }, + { + "start": 9572.64, + "end": 9575.64, + "probability": 0.2368 + }, + { + "start": 9576.64, + "end": 9577.6, + "probability": 0.1598 + }, + { + "start": 9577.6, + "end": 9577.92, + "probability": 0.145 + }, + { + "start": 9577.92, + "end": 9579.18, + "probability": 0.3705 + }, + { + "start": 9579.42, + "end": 9580.46, + "probability": 0.8467 + }, + { + "start": 9580.56, + "end": 9582.16, + "probability": 0.7 + }, + { + "start": 9582.28, + "end": 9586.54, + "probability": 0.9758 + }, + { + "start": 9586.8, + "end": 9588.62, + "probability": 0.8477 + }, + { + "start": 9588.82, + "end": 9589.22, + "probability": 0.1773 + }, + { + "start": 9589.38, + "end": 9592.7, + "probability": 0.9937 + }, + { + "start": 9592.96, + "end": 9594.46, + "probability": 0.9839 + }, + { + "start": 9594.5, + "end": 9596.47, + "probability": 0.9951 + }, + { + "start": 9596.68, + "end": 9599.1, + "probability": 0.4406 + }, + { + "start": 9599.5, + "end": 9600.36, + "probability": 0.1502 + }, + { + "start": 9600.36, + "end": 9601.9, + "probability": 0.3766 + }, + { + "start": 9602.0, + "end": 9602.5, + "probability": 0.3754 + }, + { + "start": 9602.96, + "end": 9603.48, + "probability": 0.4348 + }, + { + "start": 9603.77, + "end": 9606.0, + "probability": 0.7244 + }, + { + "start": 9606.0, + "end": 9607.42, + "probability": 0.7202 + }, + { + "start": 9607.5, + "end": 9609.28, + "probability": 0.7823 + }, + { + "start": 9609.3, + "end": 9611.96, + "probability": 0.7708 + }, + { + "start": 9612.1, + "end": 9613.78, + "probability": 0.9803 + }, + { + "start": 9614.5, + "end": 9615.21, + "probability": 0.5848 + }, + { + "start": 9615.38, + "end": 9616.46, + "probability": 0.8874 + }, + { + "start": 9616.46, + "end": 9617.74, + "probability": 0.6642 + }, + { + "start": 9617.74, + "end": 9618.88, + "probability": 0.6922 + }, + { + "start": 9618.9, + "end": 9619.78, + "probability": 0.5043 + }, + { + "start": 9620.95, + "end": 9621.54, + "probability": 0.0288 + }, + { + "start": 9621.54, + "end": 9622.48, + "probability": 0.4518 + }, + { + "start": 9623.22, + "end": 9624.56, + "probability": 0.9689 + }, + { + "start": 9625.4, + "end": 9627.5, + "probability": 0.6152 + }, + { + "start": 9627.54, + "end": 9628.83, + "probability": 0.6473 + }, + { + "start": 9629.94, + "end": 9631.7, + "probability": 0.9372 + }, + { + "start": 9632.36, + "end": 9634.14, + "probability": 0.7495 + }, + { + "start": 9634.18, + "end": 9635.5, + "probability": 0.8042 + }, + { + "start": 9636.5, + "end": 9636.5, + "probability": 0.1106 + }, + { + "start": 9636.5, + "end": 9639.26, + "probability": 0.8429 + }, + { + "start": 9641.72, + "end": 9644.44, + "probability": 0.9243 + }, + { + "start": 9644.52, + "end": 9645.94, + "probability": 0.7151 + }, + { + "start": 9646.42, + "end": 9648.66, + "probability": 0.9863 + }, + { + "start": 9648.8, + "end": 9649.66, + "probability": 0.5485 + }, + { + "start": 9650.3, + "end": 9655.02, + "probability": 0.9908 + }, + { + "start": 9655.08, + "end": 9655.64, + "probability": 0.6496 + }, + { + "start": 9656.13, + "end": 9656.56, + "probability": 0.0879 + }, + { + "start": 9656.62, + "end": 9657.48, + "probability": 0.6694 + }, + { + "start": 9657.48, + "end": 9658.48, + "probability": 0.0424 + }, + { + "start": 9658.5, + "end": 9659.02, + "probability": 0.6221 + }, + { + "start": 9660.08, + "end": 9660.7, + "probability": 0.3257 + }, + { + "start": 9660.7, + "end": 9664.32, + "probability": 0.8588 + }, + { + "start": 9665.04, + "end": 9668.64, + "probability": 0.9533 + }, + { + "start": 9669.24, + "end": 9671.44, + "probability": 0.9679 + }, + { + "start": 9672.0, + "end": 9675.66, + "probability": 0.7468 + }, + { + "start": 9676.16, + "end": 9678.18, + "probability": 0.7302 + }, + { + "start": 9678.18, + "end": 9678.18, + "probability": 0.6076 + }, + { + "start": 9678.2, + "end": 9679.88, + "probability": 0.9642 + }, + { + "start": 9680.06, + "end": 9681.26, + "probability": 0.985 + }, + { + "start": 9681.34, + "end": 9682.62, + "probability": 0.9038 + }, + { + "start": 9682.84, + "end": 9686.66, + "probability": 0.9731 + }, + { + "start": 9687.06, + "end": 9691.08, + "probability": 0.9929 + }, + { + "start": 9691.12, + "end": 9691.74, + "probability": 0.935 + }, + { + "start": 9691.94, + "end": 9694.06, + "probability": 0.8386 + }, + { + "start": 9694.18, + "end": 9694.8, + "probability": 0.4493 + }, + { + "start": 9695.06, + "end": 9696.46, + "probability": 0.9502 + }, + { + "start": 9696.54, + "end": 9697.58, + "probability": 0.896 + }, + { + "start": 9697.88, + "end": 9699.5, + "probability": 0.9177 + }, + { + "start": 9705.46, + "end": 9712.12, + "probability": 0.8019 + }, + { + "start": 9712.22, + "end": 9713.54, + "probability": 0.7904 + }, + { + "start": 9713.64, + "end": 9715.22, + "probability": 0.835 + }, + { + "start": 9716.04, + "end": 9719.3, + "probability": 0.9659 + }, + { + "start": 9719.54, + "end": 9720.64, + "probability": 0.7213 + }, + { + "start": 9721.32, + "end": 9724.52, + "probability": 0.9927 + }, + { + "start": 9724.98, + "end": 9729.14, + "probability": 0.9944 + }, + { + "start": 9729.58, + "end": 9731.48, + "probability": 0.9988 + }, + { + "start": 9731.92, + "end": 9733.38, + "probability": 0.9572 + }, + { + "start": 9734.08, + "end": 9734.62, + "probability": 0.7421 + }, + { + "start": 9735.42, + "end": 9740.02, + "probability": 0.9744 + }, + { + "start": 9740.02, + "end": 9742.86, + "probability": 0.9919 + }, + { + "start": 9745.84, + "end": 9749.3, + "probability": 0.9268 + }, + { + "start": 9749.66, + "end": 9751.5, + "probability": 0.01 + }, + { + "start": 9751.58, + "end": 9753.76, + "probability": 0.8446 + }, + { + "start": 9754.58, + "end": 9755.26, + "probability": 0.1229 + }, + { + "start": 9755.46, + "end": 9755.46, + "probability": 0.0157 + }, + { + "start": 9755.46, + "end": 9757.34, + "probability": 0.094 + }, + { + "start": 9757.34, + "end": 9762.26, + "probability": 0.6359 + }, + { + "start": 9762.76, + "end": 9766.1, + "probability": 0.9653 + }, + { + "start": 9766.1, + "end": 9769.44, + "probability": 0.9864 + }, + { + "start": 9769.66, + "end": 9774.6, + "probability": 0.9751 + }, + { + "start": 9774.6, + "end": 9779.4, + "probability": 0.9951 + }, + { + "start": 9779.72, + "end": 9785.44, + "probability": 0.9954 + }, + { + "start": 9786.44, + "end": 9790.88, + "probability": 0.9248 + }, + { + "start": 9790.88, + "end": 9796.34, + "probability": 0.9962 + }, + { + "start": 9796.88, + "end": 9801.1, + "probability": 0.9761 + }, + { + "start": 9801.64, + "end": 9805.12, + "probability": 0.9947 + }, + { + "start": 9805.76, + "end": 9809.06, + "probability": 0.9633 + }, + { + "start": 9809.74, + "end": 9811.4, + "probability": 0.9748 + }, + { + "start": 9811.82, + "end": 9814.56, + "probability": 0.9769 + }, + { + "start": 9814.64, + "end": 9820.1, + "probability": 0.8903 + }, + { + "start": 9820.7, + "end": 9823.84, + "probability": 0.9678 + }, + { + "start": 9824.5, + "end": 9827.08, + "probability": 0.9727 + }, + { + "start": 9827.92, + "end": 9833.5, + "probability": 0.9283 + }, + { + "start": 9834.16, + "end": 9838.02, + "probability": 0.9891 + }, + { + "start": 9838.84, + "end": 9841.78, + "probability": 0.8351 + }, + { + "start": 9841.94, + "end": 9843.92, + "probability": 0.8363 + }, + { + "start": 9844.0, + "end": 9846.98, + "probability": 0.7759 + }, + { + "start": 9847.0, + "end": 9847.0, + "probability": 0.6725 + }, + { + "start": 9847.0, + "end": 9847.32, + "probability": 0.6664 + }, + { + "start": 9847.44, + "end": 9847.96, + "probability": 0.6114 + }, + { + "start": 9848.12, + "end": 9849.88, + "probability": 0.9605 + }, + { + "start": 9850.22, + "end": 9850.96, + "probability": 0.9824 + }, + { + "start": 9851.36, + "end": 9854.66, + "probability": 0.9276 + }, + { + "start": 9854.84, + "end": 9855.46, + "probability": 0.0868 + }, + { + "start": 9855.58, + "end": 9857.8, + "probability": 0.7683 + }, + { + "start": 9857.8, + "end": 9859.54, + "probability": 0.0365 + }, + { + "start": 9860.24, + "end": 9861.0, + "probability": 0.9543 + }, + { + "start": 9861.18, + "end": 9862.42, + "probability": 0.3467 + }, + { + "start": 9862.92, + "end": 9863.62, + "probability": 0.2033 + }, + { + "start": 9864.85, + "end": 9868.5, + "probability": 0.9902 + }, + { + "start": 9869.62, + "end": 9870.36, + "probability": 0.52 + }, + { + "start": 9871.54, + "end": 9876.64, + "probability": 0.9782 + }, + { + "start": 9877.12, + "end": 9878.94, + "probability": 0.9049 + }, + { + "start": 9879.22, + "end": 9883.54, + "probability": 0.9883 + }, + { + "start": 9884.12, + "end": 9887.8, + "probability": 0.7112 + }, + { + "start": 9887.92, + "end": 9890.32, + "probability": 0.9883 + }, + { + "start": 9891.02, + "end": 9896.32, + "probability": 0.9717 + }, + { + "start": 9896.92, + "end": 9898.52, + "probability": 0.9969 + }, + { + "start": 9899.06, + "end": 9900.9, + "probability": 0.9831 + }, + { + "start": 9901.44, + "end": 9904.24, + "probability": 0.7874 + }, + { + "start": 9904.48, + "end": 9905.86, + "probability": 0.7403 + }, + { + "start": 9906.2, + "end": 9907.04, + "probability": 0.9307 + }, + { + "start": 9907.8, + "end": 9911.24, + "probability": 0.8106 + }, + { + "start": 9911.34, + "end": 9914.12, + "probability": 0.9797 + }, + { + "start": 9914.7, + "end": 9917.18, + "probability": 0.8102 + }, + { + "start": 9917.78, + "end": 9920.22, + "probability": 0.9435 + }, + { + "start": 9924.25, + "end": 9925.94, + "probability": 0.6324 + }, + { + "start": 9926.98, + "end": 9929.78, + "probability": 0.8821 + }, + { + "start": 9930.38, + "end": 9933.24, + "probability": 0.621 + }, + { + "start": 9933.58, + "end": 9936.94, + "probability": 0.9724 + }, + { + "start": 9937.02, + "end": 9937.7, + "probability": 0.9276 + }, + { + "start": 9937.78, + "end": 9940.74, + "probability": 0.9814 + }, + { + "start": 9941.4, + "end": 9945.1, + "probability": 0.9689 + }, + { + "start": 9945.16, + "end": 9945.78, + "probability": 0.7944 + }, + { + "start": 9945.94, + "end": 9950.28, + "probability": 0.9917 + }, + { + "start": 9950.5, + "end": 9951.56, + "probability": 0.9622 + }, + { + "start": 9952.24, + "end": 9952.7, + "probability": 0.8142 + }, + { + "start": 9952.86, + "end": 9954.8, + "probability": 0.6562 + }, + { + "start": 9954.82, + "end": 9955.68, + "probability": 0.7766 + }, + { + "start": 9955.76, + "end": 9962.98, + "probability": 0.7621 + }, + { + "start": 9982.18, + "end": 9983.2, + "probability": 0.7184 + }, + { + "start": 9984.84, + "end": 9987.0, + "probability": 0.8714 + }, + { + "start": 9989.24, + "end": 9992.58, + "probability": 0.9487 + }, + { + "start": 9994.44, + "end": 9997.52, + "probability": 0.8882 + }, + { + "start": 9998.54, + "end": 10000.72, + "probability": 0.9326 + }, + { + "start": 10001.48, + "end": 10002.97, + "probability": 0.9302 + }, + { + "start": 10004.22, + "end": 10006.2, + "probability": 0.3124 + }, + { + "start": 10006.22, + "end": 10006.4, + "probability": 0.1167 + }, + { + "start": 10006.4, + "end": 10007.08, + "probability": 0.2352 + }, + { + "start": 10007.08, + "end": 10007.98, + "probability": 0.2844 + }, + { + "start": 10007.98, + "end": 10009.12, + "probability": 0.8022 + }, + { + "start": 10009.26, + "end": 10009.74, + "probability": 0.4344 + }, + { + "start": 10010.08, + "end": 10011.08, + "probability": 0.0767 + }, + { + "start": 10011.26, + "end": 10012.6, + "probability": 0.8241 + }, + { + "start": 10013.54, + "end": 10013.54, + "probability": 0.1091 + }, + { + "start": 10013.54, + "end": 10017.06, + "probability": 0.9731 + }, + { + "start": 10017.2, + "end": 10018.38, + "probability": 0.7233 + }, + { + "start": 10018.84, + "end": 10019.62, + "probability": 0.5944 + }, + { + "start": 10019.84, + "end": 10021.34, + "probability": 0.5295 + }, + { + "start": 10021.52, + "end": 10022.08, + "probability": 0.5341 + }, + { + "start": 10022.08, + "end": 10024.9, + "probability": 0.962 + }, + { + "start": 10024.96, + "end": 10029.24, + "probability": 0.9895 + }, + { + "start": 10029.74, + "end": 10030.6, + "probability": 0.97 + }, + { + "start": 10031.58, + "end": 10031.58, + "probability": 0.0955 + }, + { + "start": 10031.82, + "end": 10032.58, + "probability": 0.162 + }, + { + "start": 10033.06, + "end": 10035.2, + "probability": 0.951 + }, + { + "start": 10035.7, + "end": 10037.88, + "probability": 0.999 + }, + { + "start": 10038.22, + "end": 10039.86, + "probability": 0.7957 + }, + { + "start": 10040.64, + "end": 10043.96, + "probability": 0.7385 + }, + { + "start": 10044.06, + "end": 10045.69, + "probability": 0.9502 + }, + { + "start": 10045.94, + "end": 10047.12, + "probability": 0.6473 + }, + { + "start": 10047.14, + "end": 10048.18, + "probability": 0.6978 + }, + { + "start": 10048.22, + "end": 10050.14, + "probability": 0.9637 + }, + { + "start": 10050.22, + "end": 10051.86, + "probability": 0.5369 + }, + { + "start": 10052.74, + "end": 10055.28, + "probability": 0.9165 + }, + { + "start": 10055.74, + "end": 10057.46, + "probability": 0.93 + }, + { + "start": 10057.64, + "end": 10058.72, + "probability": 0.4758 + }, + { + "start": 10058.88, + "end": 10059.4, + "probability": 0.6971 + }, + { + "start": 10059.86, + "end": 10061.26, + "probability": 0.2727 + }, + { + "start": 10062.5, + "end": 10066.7, + "probability": 0.8773 + }, + { + "start": 10067.44, + "end": 10067.92, + "probability": 0.9654 + }, + { + "start": 10067.96, + "end": 10071.84, + "probability": 0.9946 + }, + { + "start": 10071.96, + "end": 10072.87, + "probability": 0.7681 + }, + { + "start": 10073.56, + "end": 10076.82, + "probability": 0.9807 + }, + { + "start": 10078.06, + "end": 10083.36, + "probability": 0.9794 + }, + { + "start": 10083.64, + "end": 10084.64, + "probability": 0.9624 + }, + { + "start": 10085.14, + "end": 10088.16, + "probability": 0.8692 + }, + { + "start": 10088.6, + "end": 10093.24, + "probability": 0.9976 + }, + { + "start": 10093.32, + "end": 10095.04, + "probability": 0.9395 + }, + { + "start": 10095.58, + "end": 10097.3, + "probability": 0.7319 + }, + { + "start": 10097.78, + "end": 10099.9, + "probability": 0.972 + }, + { + "start": 10100.24, + "end": 10102.76, + "probability": 0.9971 + }, + { + "start": 10103.18, + "end": 10105.02, + "probability": 0.7905 + }, + { + "start": 10105.12, + "end": 10108.42, + "probability": 0.7825 + }, + { + "start": 10108.42, + "end": 10111.7, + "probability": 0.9966 + }, + { + "start": 10112.28, + "end": 10113.66, + "probability": 0.8545 + }, + { + "start": 10114.6, + "end": 10115.92, + "probability": 0.9628 + }, + { + "start": 10115.94, + "end": 10117.38, + "probability": 0.8634 + }, + { + "start": 10117.46, + "end": 10119.12, + "probability": 0.7119 + }, + { + "start": 10119.82, + "end": 10122.76, + "probability": 0.8338 + }, + { + "start": 10123.64, + "end": 10126.46, + "probability": 0.833 + }, + { + "start": 10126.54, + "end": 10127.12, + "probability": 0.7328 + }, + { + "start": 10127.2, + "end": 10127.98, + "probability": 0.9499 + }, + { + "start": 10129.42, + "end": 10130.48, + "probability": 0.6838 + }, + { + "start": 10131.56, + "end": 10134.66, + "probability": 0.996 + }, + { + "start": 10135.76, + "end": 10139.82, + "probability": 0.9786 + }, + { + "start": 10141.26, + "end": 10141.52, + "probability": 0.4152 + }, + { + "start": 10141.52, + "end": 10142.16, + "probability": 0.5084 + }, + { + "start": 10142.34, + "end": 10145.9, + "probability": 0.645 + }, + { + "start": 10147.4, + "end": 10148.12, + "probability": 0.4286 + }, + { + "start": 10148.12, + "end": 10149.48, + "probability": 0.6828 + }, + { + "start": 10150.16, + "end": 10151.36, + "probability": 0.9883 + }, + { + "start": 10151.48, + "end": 10154.2, + "probability": 0.8851 + }, + { + "start": 10154.42, + "end": 10156.0, + "probability": 0.9843 + }, + { + "start": 10157.06, + "end": 10158.48, + "probability": 0.9364 + }, + { + "start": 10158.98, + "end": 10161.2, + "probability": 0.7637 + }, + { + "start": 10161.2, + "end": 10162.28, + "probability": 0.9907 + }, + { + "start": 10162.38, + "end": 10163.48, + "probability": 0.9419 + }, + { + "start": 10164.24, + "end": 10166.94, + "probability": 0.9911 + }, + { + "start": 10167.36, + "end": 10171.1, + "probability": 0.9532 + }, + { + "start": 10171.14, + "end": 10172.96, + "probability": 0.8815 + }, + { + "start": 10173.6, + "end": 10175.94, + "probability": 0.9945 + }, + { + "start": 10176.04, + "end": 10176.6, + "probability": 0.8054 + }, + { + "start": 10176.86, + "end": 10178.7, + "probability": 0.8557 + }, + { + "start": 10178.8, + "end": 10181.18, + "probability": 0.6993 + }, + { + "start": 10182.82, + "end": 10184.82, + "probability": 0.9263 + }, + { + "start": 10184.96, + "end": 10186.64, + "probability": 0.8117 + }, + { + "start": 10186.82, + "end": 10188.5, + "probability": 0.5759 + }, + { + "start": 10188.98, + "end": 10192.04, + "probability": 0.7405 + }, + { + "start": 10192.2, + "end": 10192.98, + "probability": 0.5845 + }, + { + "start": 10192.98, + "end": 10194.72, + "probability": 0.3855 + }, + { + "start": 10195.62, + "end": 10199.9, + "probability": 0.0268 + }, + { + "start": 10200.84, + "end": 10206.92, + "probability": 0.0886 + }, + { + "start": 10207.86, + "end": 10209.24, + "probability": 0.0035 + }, + { + "start": 10211.42, + "end": 10212.32, + "probability": 0.3514 + }, + { + "start": 10212.32, + "end": 10216.48, + "probability": 0.6147 + }, + { + "start": 10216.56, + "end": 10218.8, + "probability": 0.6157 + }, + { + "start": 10219.72, + "end": 10222.36, + "probability": 0.9636 + }, + { + "start": 10222.4, + "end": 10224.96, + "probability": 0.7825 + }, + { + "start": 10225.12, + "end": 10226.38, + "probability": 0.5021 + }, + { + "start": 10227.26, + "end": 10227.54, + "probability": 0.9642 + }, + { + "start": 10228.26, + "end": 10229.96, + "probability": 0.6835 + }, + { + "start": 10230.06, + "end": 10231.82, + "probability": 0.9583 + }, + { + "start": 10241.82, + "end": 10244.3, + "probability": 0.7642 + }, + { + "start": 10245.12, + "end": 10246.94, + "probability": 0.7673 + }, + { + "start": 10247.86, + "end": 10250.48, + "probability": 0.9867 + }, + { + "start": 10252.58, + "end": 10255.14, + "probability": 0.7498 + }, + { + "start": 10257.12, + "end": 10258.32, + "probability": 0.9498 + }, + { + "start": 10259.68, + "end": 10263.92, + "probability": 0.9141 + }, + { + "start": 10264.98, + "end": 10266.58, + "probability": 0.9535 + }, + { + "start": 10266.78, + "end": 10268.5, + "probability": 0.9816 + }, + { + "start": 10269.1, + "end": 10270.38, + "probability": 0.9897 + }, + { + "start": 10271.68, + "end": 10274.68, + "probability": 0.9771 + }, + { + "start": 10275.42, + "end": 10278.68, + "probability": 0.9857 + }, + { + "start": 10279.28, + "end": 10283.17, + "probability": 0.9966 + }, + { + "start": 10284.66, + "end": 10285.12, + "probability": 0.7278 + }, + { + "start": 10285.82, + "end": 10288.0, + "probability": 0.9325 + }, + { + "start": 10288.9, + "end": 10291.54, + "probability": 0.869 + }, + { + "start": 10291.92, + "end": 10292.64, + "probability": 0.774 + }, + { + "start": 10293.78, + "end": 10300.02, + "probability": 0.9827 + }, + { + "start": 10301.36, + "end": 10303.44, + "probability": 0.9497 + }, + { + "start": 10304.66, + "end": 10307.84, + "probability": 0.9855 + }, + { + "start": 10309.26, + "end": 10311.44, + "probability": 0.9866 + }, + { + "start": 10312.12, + "end": 10316.96, + "probability": 0.9954 + }, + { + "start": 10318.46, + "end": 10322.66, + "probability": 0.999 + }, + { + "start": 10323.44, + "end": 10328.8, + "probability": 0.9966 + }, + { + "start": 10330.02, + "end": 10330.02, + "probability": 0.0844 + }, + { + "start": 10330.6, + "end": 10331.94, + "probability": 0.7112 + }, + { + "start": 10332.88, + "end": 10338.18, + "probability": 0.9971 + }, + { + "start": 10338.18, + "end": 10344.66, + "probability": 0.9938 + }, + { + "start": 10346.34, + "end": 10348.39, + "probability": 0.9785 + }, + { + "start": 10349.1, + "end": 10352.81, + "probability": 0.9801 + }, + { + "start": 10354.44, + "end": 10358.62, + "probability": 0.9332 + }, + { + "start": 10358.62, + "end": 10364.06, + "probability": 0.9958 + }, + { + "start": 10364.98, + "end": 10366.94, + "probability": 0.9814 + }, + { + "start": 10367.64, + "end": 10368.78, + "probability": 0.7771 + }, + { + "start": 10369.54, + "end": 10370.64, + "probability": 0.8436 + }, + { + "start": 10371.42, + "end": 10372.58, + "probability": 0.9192 + }, + { + "start": 10373.12, + "end": 10374.32, + "probability": 0.8959 + }, + { + "start": 10374.9, + "end": 10376.14, + "probability": 0.7303 + }, + { + "start": 10376.72, + "end": 10380.06, + "probability": 0.9778 + }, + { + "start": 10380.76, + "end": 10385.08, + "probability": 0.9045 + }, + { + "start": 10385.94, + "end": 10388.42, + "probability": 0.8806 + }, + { + "start": 10389.12, + "end": 10390.1, + "probability": 0.9542 + }, + { + "start": 10391.58, + "end": 10396.24, + "probability": 0.8819 + }, + { + "start": 10396.98, + "end": 10398.82, + "probability": 0.9784 + }, + { + "start": 10399.82, + "end": 10405.04, + "probability": 0.9935 + }, + { + "start": 10405.04, + "end": 10410.68, + "probability": 0.9793 + }, + { + "start": 10412.6, + "end": 10414.02, + "probability": 0.6557 + }, + { + "start": 10414.72, + "end": 10417.84, + "probability": 0.8655 + }, + { + "start": 10418.38, + "end": 10419.7, + "probability": 0.7794 + }, + { + "start": 10420.24, + "end": 10423.7, + "probability": 0.9843 + }, + { + "start": 10424.58, + "end": 10426.4, + "probability": 0.737 + }, + { + "start": 10427.14, + "end": 10429.62, + "probability": 0.9987 + }, + { + "start": 10429.62, + "end": 10433.82, + "probability": 0.9759 + }, + { + "start": 10435.0, + "end": 10436.16, + "probability": 0.8569 + }, + { + "start": 10436.3, + "end": 10437.36, + "probability": 0.8831 + }, + { + "start": 10437.68, + "end": 10438.96, + "probability": 0.7302 + }, + { + "start": 10439.36, + "end": 10441.94, + "probability": 0.9883 + }, + { + "start": 10442.66, + "end": 10447.26, + "probability": 0.8644 + }, + { + "start": 10448.34, + "end": 10454.28, + "probability": 0.9888 + }, + { + "start": 10454.82, + "end": 10460.3, + "probability": 0.9823 + }, + { + "start": 10461.56, + "end": 10464.86, + "probability": 0.9766 + }, + { + "start": 10465.58, + "end": 10467.48, + "probability": 0.7219 + }, + { + "start": 10468.22, + "end": 10469.56, + "probability": 0.7589 + }, + { + "start": 10470.6, + "end": 10475.38, + "probability": 0.9939 + }, + { + "start": 10476.1, + "end": 10479.64, + "probability": 0.9878 + }, + { + "start": 10479.76, + "end": 10480.12, + "probability": 0.6959 + }, + { + "start": 10482.1, + "end": 10484.12, + "probability": 0.9851 + }, + { + "start": 10484.76, + "end": 10486.62, + "probability": 0.8639 + }, + { + "start": 10487.5, + "end": 10492.32, + "probability": 0.9814 + }, + { + "start": 10493.78, + "end": 10495.84, + "probability": 0.9883 + }, + { + "start": 10497.66, + "end": 10498.42, + "probability": 0.9453 + }, + { + "start": 10498.52, + "end": 10499.18, + "probability": 0.7779 + }, + { + "start": 10499.56, + "end": 10503.6, + "probability": 0.979 + }, + { + "start": 10505.42, + "end": 10510.78, + "probability": 0.75 + }, + { + "start": 10512.18, + "end": 10517.15, + "probability": 0.9281 + }, + { + "start": 10518.1, + "end": 10520.24, + "probability": 0.994 + }, + { + "start": 10521.6, + "end": 10523.14, + "probability": 0.9908 + }, + { + "start": 10523.9, + "end": 10527.46, + "probability": 0.9331 + }, + { + "start": 10528.74, + "end": 10530.02, + "probability": 0.7625 + }, + { + "start": 10530.42, + "end": 10533.18, + "probability": 0.9843 + }, + { + "start": 10533.92, + "end": 10535.42, + "probability": 0.9269 + }, + { + "start": 10535.92, + "end": 10539.9, + "probability": 0.9769 + }, + { + "start": 10541.18, + "end": 10543.16, + "probability": 0.5946 + }, + { + "start": 10543.74, + "end": 10546.4, + "probability": 0.8552 + }, + { + "start": 10548.44, + "end": 10549.68, + "probability": 0.7457 + }, + { + "start": 10549.68, + "end": 10550.12, + "probability": 0.8294 + }, + { + "start": 10550.22, + "end": 10552.04, + "probability": 0.68 + }, + { + "start": 10552.22, + "end": 10552.78, + "probability": 0.6665 + }, + { + "start": 10553.0, + "end": 10554.8, + "probability": 0.9448 + }, + { + "start": 10554.98, + "end": 10557.28, + "probability": 0.9106 + }, + { + "start": 10557.34, + "end": 10557.9, + "probability": 0.7514 + }, + { + "start": 10558.3, + "end": 10561.9, + "probability": 0.9893 + }, + { + "start": 10561.9, + "end": 10562.11, + "probability": 0.0035 + }, + { + "start": 10562.88, + "end": 10563.58, + "probability": 0.7483 + }, + { + "start": 10564.18, + "end": 10565.56, + "probability": 0.7083 + }, + { + "start": 10565.68, + "end": 10567.02, + "probability": 0.9512 + }, + { + "start": 10567.04, + "end": 10569.04, + "probability": 0.7398 + }, + { + "start": 10569.26, + "end": 10569.46, + "probability": 0.0979 + }, + { + "start": 10569.52, + "end": 10569.92, + "probability": 0.8675 + }, + { + "start": 10570.02, + "end": 10570.2, + "probability": 0.6379 + }, + { + "start": 10570.4, + "end": 10571.24, + "probability": 0.3078 + }, + { + "start": 10571.4, + "end": 10574.8, + "probability": 0.0271 + }, + { + "start": 10575.14, + "end": 10575.92, + "probability": 0.7679 + }, + { + "start": 10576.02, + "end": 10578.28, + "probability": 0.9562 + }, + { + "start": 10578.34, + "end": 10579.12, + "probability": 0.9811 + }, + { + "start": 10579.6, + "end": 10580.72, + "probability": 0.925 + }, + { + "start": 10581.08, + "end": 10583.49, + "probability": 0.709 + }, + { + "start": 10584.4, + "end": 10588.66, + "probability": 0.7956 + }, + { + "start": 10589.26, + "end": 10589.98, + "probability": 0.9202 + }, + { + "start": 10590.24, + "end": 10591.6, + "probability": 0.817 + }, + { + "start": 10591.8, + "end": 10592.21, + "probability": 0.8491 + }, + { + "start": 10592.76, + "end": 10594.08, + "probability": 0.4444 + }, + { + "start": 10594.44, + "end": 10595.46, + "probability": 0.7017 + }, + { + "start": 10596.82, + "end": 10598.02, + "probability": 0.5782 + }, + { + "start": 10598.34, + "end": 10599.48, + "probability": 0.9478 + }, + { + "start": 10599.64, + "end": 10602.1, + "probability": 0.9478 + }, + { + "start": 10602.82, + "end": 10604.38, + "probability": 0.9012 + }, + { + "start": 10604.6, + "end": 10608.28, + "probability": 0.9202 + }, + { + "start": 10608.42, + "end": 10609.04, + "probability": 0.5549 + }, + { + "start": 10609.88, + "end": 10612.83, + "probability": 0.6937 + }, + { + "start": 10613.54, + "end": 10614.36, + "probability": 0.8256 + }, + { + "start": 10614.46, + "end": 10617.26, + "probability": 0.9062 + }, + { + "start": 10618.74, + "end": 10621.84, + "probability": 0.9915 + }, + { + "start": 10622.12, + "end": 10623.18, + "probability": 0.6948 + }, + { + "start": 10623.26, + "end": 10626.58, + "probability": 0.9744 + }, + { + "start": 10626.66, + "end": 10628.02, + "probability": 0.6592 + }, + { + "start": 10628.26, + "end": 10631.46, + "probability": 0.975 + }, + { + "start": 10631.76, + "end": 10633.58, + "probability": 0.9712 + }, + { + "start": 10634.48, + "end": 10635.22, + "probability": 0.9312 + }, + { + "start": 10637.88, + "end": 10638.8, + "probability": 0.9741 + }, + { + "start": 10638.96, + "end": 10640.06, + "probability": 0.4849 + }, + { + "start": 10640.12, + "end": 10640.9, + "probability": 0.6792 + }, + { + "start": 10641.16, + "end": 10642.87, + "probability": 0.9629 + }, + { + "start": 10643.12, + "end": 10643.76, + "probability": 0.8802 + }, + { + "start": 10643.78, + "end": 10647.76, + "probability": 0.8733 + }, + { + "start": 10648.92, + "end": 10652.1, + "probability": 0.9964 + }, + { + "start": 10653.84, + "end": 10657.62, + "probability": 0.9976 + }, + { + "start": 10657.62, + "end": 10662.76, + "probability": 0.9902 + }, + { + "start": 10663.42, + "end": 10668.3, + "probability": 0.905 + }, + { + "start": 10669.36, + "end": 10672.94, + "probability": 0.9113 + }, + { + "start": 10672.94, + "end": 10675.76, + "probability": 0.8979 + }, + { + "start": 10675.82, + "end": 10678.31, + "probability": 0.87 + }, + { + "start": 10679.5, + "end": 10680.72, + "probability": 0.5314 + }, + { + "start": 10682.38, + "end": 10684.38, + "probability": 0.944 + }, + { + "start": 10684.64, + "end": 10689.48, + "probability": 0.3018 + }, + { + "start": 10689.58, + "end": 10691.28, + "probability": 0.3701 + }, + { + "start": 10691.78, + "end": 10692.42, + "probability": 0.376 + }, + { + "start": 10692.78, + "end": 10695.26, + "probability": 0.8637 + }, + { + "start": 10695.54, + "end": 10698.26, + "probability": 0.9863 + }, + { + "start": 10698.34, + "end": 10699.68, + "probability": 0.3658 + }, + { + "start": 10699.82, + "end": 10700.66, + "probability": 0.5801 + }, + { + "start": 10701.14, + "end": 10704.34, + "probability": 0.7631 + }, + { + "start": 10704.62, + "end": 10709.58, + "probability": 0.9841 + }, + { + "start": 10710.16, + "end": 10711.14, + "probability": 0.846 + }, + { + "start": 10713.06, + "end": 10716.76, + "probability": 0.9864 + }, + { + "start": 10717.86, + "end": 10719.0, + "probability": 0.9829 + }, + { + "start": 10719.72, + "end": 10722.92, + "probability": 0.9978 + }, + { + "start": 10723.56, + "end": 10727.8, + "probability": 0.9386 + }, + { + "start": 10728.58, + "end": 10732.7, + "probability": 0.947 + }, + { + "start": 10732.7, + "end": 10737.72, + "probability": 0.9709 + }, + { + "start": 10737.8, + "end": 10739.68, + "probability": 0.7092 + }, + { + "start": 10740.12, + "end": 10743.18, + "probability": 0.9681 + }, + { + "start": 10744.2, + "end": 10745.4, + "probability": 0.9224 + }, + { + "start": 10745.92, + "end": 10747.46, + "probability": 0.9951 + }, + { + "start": 10747.98, + "end": 10752.44, + "probability": 0.9635 + }, + { + "start": 10754.26, + "end": 10757.86, + "probability": 0.9766 + }, + { + "start": 10758.92, + "end": 10760.86, + "probability": 0.9943 + }, + { + "start": 10761.48, + "end": 10766.56, + "probability": 0.9903 + }, + { + "start": 10766.7, + "end": 10771.34, + "probability": 0.9626 + }, + { + "start": 10771.42, + "end": 10771.68, + "probability": 0.7428 + }, + { + "start": 10771.76, + "end": 10774.76, + "probability": 0.1059 + }, + { + "start": 10775.3, + "end": 10779.76, + "probability": 0.6777 + }, + { + "start": 10779.96, + "end": 10780.38, + "probability": 0.7317 + }, + { + "start": 10780.38, + "end": 10780.68, + "probability": 0.778 + }, + { + "start": 10780.86, + "end": 10784.4, + "probability": 0.9761 + }, + { + "start": 10784.56, + "end": 10791.82, + "probability": 0.9975 + }, + { + "start": 10792.12, + "end": 10793.14, + "probability": 0.5981 + }, + { + "start": 10793.16, + "end": 10796.68, + "probability": 0.8511 + }, + { + "start": 10797.44, + "end": 10801.94, + "probability": 0.9978 + }, + { + "start": 10802.06, + "end": 10802.92, + "probability": 0.7799 + }, + { + "start": 10803.52, + "end": 10804.06, + "probability": 0.2338 + }, + { + "start": 10804.06, + "end": 10806.6, + "probability": 0.0252 + }, + { + "start": 10806.6, + "end": 10807.06, + "probability": 0.5479 + }, + { + "start": 10807.06, + "end": 10807.24, + "probability": 0.1109 + }, + { + "start": 10807.36, + "end": 10809.22, + "probability": 0.7503 + }, + { + "start": 10809.3, + "end": 10810.18, + "probability": 0.7668 + }, + { + "start": 10810.42, + "end": 10811.1, + "probability": 0.2862 + }, + { + "start": 10811.12, + "end": 10812.54, + "probability": 0.926 + }, + { + "start": 10812.62, + "end": 10813.18, + "probability": 0.7083 + }, + { + "start": 10814.96, + "end": 10820.28, + "probability": 0.3594 + }, + { + "start": 10820.28, + "end": 10820.28, + "probability": 0.2481 + }, + { + "start": 10820.28, + "end": 10821.94, + "probability": 0.2058 + }, + { + "start": 10823.68, + "end": 10825.22, + "probability": 0.7169 + }, + { + "start": 10825.3, + "end": 10828.92, + "probability": 0.4296 + }, + { + "start": 10828.92, + "end": 10830.96, + "probability": 0.3931 + }, + { + "start": 10831.06, + "end": 10833.58, + "probability": 0.9763 + }, + { + "start": 10833.78, + "end": 10842.3, + "probability": 0.9537 + }, + { + "start": 10843.92, + "end": 10845.86, + "probability": 0.8658 + }, + { + "start": 10846.34, + "end": 10846.6, + "probability": 0.6635 + }, + { + "start": 10847.22, + "end": 10849.02, + "probability": 0.6867 + }, + { + "start": 10849.18, + "end": 10854.26, + "probability": 0.9836 + }, + { + "start": 10854.46, + "end": 10858.78, + "probability": 0.9915 + }, + { + "start": 10859.4, + "end": 10862.67, + "probability": 0.9969 + }, + { + "start": 10862.78, + "end": 10863.62, + "probability": 0.6516 + }, + { + "start": 10864.08, + "end": 10866.0, + "probability": 0.8894 + }, + { + "start": 10866.06, + "end": 10866.5, + "probability": 0.2708 + }, + { + "start": 10866.5, + "end": 10867.76, + "probability": 0.4198 + }, + { + "start": 10867.84, + "end": 10868.4, + "probability": 0.1016 + }, + { + "start": 10868.4, + "end": 10868.66, + "probability": 0.7266 + }, + { + "start": 10868.76, + "end": 10871.52, + "probability": 0.9625 + }, + { + "start": 10871.86, + "end": 10873.71, + "probability": 0.9805 + }, + { + "start": 10874.0, + "end": 10876.36, + "probability": 0.9835 + }, + { + "start": 10876.62, + "end": 10878.4, + "probability": 0.9733 + }, + { + "start": 10878.4, + "end": 10879.48, + "probability": 0.7042 + }, + { + "start": 10879.66, + "end": 10881.58, + "probability": 0.8315 + }, + { + "start": 10881.7, + "end": 10881.7, + "probability": 0.2177 + }, + { + "start": 10881.7, + "end": 10884.8, + "probability": 0.9525 + }, + { + "start": 10884.98, + "end": 10887.52, + "probability": 0.978 + }, + { + "start": 10887.52, + "end": 10887.54, + "probability": 0.1423 + }, + { + "start": 10887.54, + "end": 10888.24, + "probability": 0.6934 + }, + { + "start": 10888.8, + "end": 10889.64, + "probability": 0.0874 + }, + { + "start": 10889.86, + "end": 10889.86, + "probability": 0.13 + }, + { + "start": 10889.86, + "end": 10890.56, + "probability": 0.3257 + }, + { + "start": 10890.74, + "end": 10892.2, + "probability": 0.4766 + }, + { + "start": 10892.82, + "end": 10895.38, + "probability": 0.8945 + }, + { + "start": 10897.62, + "end": 10899.34, + "probability": 0.9886 + }, + { + "start": 10899.88, + "end": 10901.5, + "probability": 0.9849 + }, + { + "start": 10901.58, + "end": 10903.8, + "probability": 0.9342 + }, + { + "start": 10904.24, + "end": 10906.98, + "probability": 0.7692 + }, + { + "start": 10907.76, + "end": 10912.68, + "probability": 0.7957 + }, + { + "start": 10912.68, + "end": 10917.14, + "probability": 0.8737 + }, + { + "start": 10917.3, + "end": 10923.36, + "probability": 0.9426 + }, + { + "start": 10923.84, + "end": 10929.64, + "probability": 0.8713 + }, + { + "start": 10930.24, + "end": 10931.1, + "probability": 0.856 + }, + { + "start": 10933.52, + "end": 10934.1, + "probability": 0.5637 + }, + { + "start": 10934.16, + "end": 10935.0, + "probability": 0.6669 + }, + { + "start": 10936.3, + "end": 10940.44, + "probability": 0.8173 + }, + { + "start": 10941.0, + "end": 10943.72, + "probability": 0.5877 + }, + { + "start": 10944.26, + "end": 10948.46, + "probability": 0.9386 + }, + { + "start": 10948.56, + "end": 10954.8, + "probability": 0.9035 + }, + { + "start": 10954.94, + "end": 10955.22, + "probability": 0.6932 + }, + { + "start": 10955.28, + "end": 10956.08, + "probability": 0.7481 + }, + { + "start": 10956.6, + "end": 10959.76, + "probability": 0.9856 + }, + { + "start": 10959.9, + "end": 10961.16, + "probability": 0.9958 + }, + { + "start": 10961.7, + "end": 10963.35, + "probability": 0.9581 + }, + { + "start": 10964.08, + "end": 10965.14, + "probability": 0.81 + }, + { + "start": 10966.38, + "end": 10969.46, + "probability": 0.9492 + }, + { + "start": 10969.62, + "end": 10970.12, + "probability": 0.7873 + }, + { + "start": 10970.18, + "end": 10971.36, + "probability": 0.9692 + }, + { + "start": 10972.4, + "end": 10976.56, + "probability": 0.9839 + }, + { + "start": 10976.86, + "end": 10978.34, + "probability": 0.9079 + }, + { + "start": 10979.34, + "end": 10979.96, + "probability": 0.9372 + }, + { + "start": 10981.24, + "end": 10986.24, + "probability": 0.9534 + }, + { + "start": 10987.36, + "end": 10989.1, + "probability": 0.8358 + }, + { + "start": 10989.5, + "end": 10991.72, + "probability": 0.7671 + }, + { + "start": 10992.24, + "end": 10994.2, + "probability": 0.9798 + }, + { + "start": 10994.44, + "end": 10997.42, + "probability": 0.9299 + }, + { + "start": 10998.62, + "end": 11000.12, + "probability": 0.7704 + }, + { + "start": 11000.28, + "end": 11001.36, + "probability": 0.9868 + }, + { + "start": 11001.62, + "end": 11004.54, + "probability": 0.1806 + }, + { + "start": 11004.54, + "end": 11005.3, + "probability": 0.5957 + }, + { + "start": 11005.48, + "end": 11006.66, + "probability": 0.8486 + }, + { + "start": 11007.26, + "end": 11010.6, + "probability": 0.9419 + }, + { + "start": 11010.72, + "end": 11014.77, + "probability": 0.9475 + }, + { + "start": 11015.82, + "end": 11016.22, + "probability": 0.6284 + }, + { + "start": 11018.35, + "end": 11022.7, + "probability": 0.6489 + }, + { + "start": 11023.38, + "end": 11028.8, + "probability": 0.9452 + }, + { + "start": 11029.38, + "end": 11030.04, + "probability": 0.8856 + }, + { + "start": 11030.08, + "end": 11030.54, + "probability": 0.8929 + }, + { + "start": 11030.58, + "end": 11031.14, + "probability": 0.8137 + }, + { + "start": 11031.14, + "end": 11031.71, + "probability": 0.9277 + }, + { + "start": 11031.98, + "end": 11032.8, + "probability": 0.8571 + }, + { + "start": 11033.88, + "end": 11036.68, + "probability": 0.9909 + }, + { + "start": 11036.68, + "end": 11039.94, + "probability": 0.9989 + }, + { + "start": 11040.46, + "end": 11041.34, + "probability": 0.7773 + }, + { + "start": 11041.78, + "end": 11045.06, + "probability": 0.8783 + }, + { + "start": 11045.32, + "end": 11046.0, + "probability": 0.7174 + }, + { + "start": 11046.26, + "end": 11049.62, + "probability": 0.9884 + }, + { + "start": 11050.08, + "end": 11052.74, + "probability": 0.8971 + }, + { + "start": 11052.84, + "end": 11055.08, + "probability": 0.9867 + }, + { + "start": 11055.58, + "end": 11058.08, + "probability": 0.9858 + }, + { + "start": 11058.62, + "end": 11062.62, + "probability": 0.947 + }, + { + "start": 11063.08, + "end": 11065.8, + "probability": 0.9902 + }, + { + "start": 11066.88, + "end": 11069.26, + "probability": 0.9368 + }, + { + "start": 11069.34, + "end": 11070.0, + "probability": 0.8371 + }, + { + "start": 11070.06, + "end": 11070.94, + "probability": 0.839 + }, + { + "start": 11072.78, + "end": 11077.36, + "probability": 0.9331 + }, + { + "start": 11078.02, + "end": 11081.38, + "probability": 0.9961 + }, + { + "start": 11082.0, + "end": 11083.46, + "probability": 0.5134 + }, + { + "start": 11086.8, + "end": 11087.08, + "probability": 0.0695 + }, + { + "start": 11087.08, + "end": 11087.08, + "probability": 0.2172 + }, + { + "start": 11087.08, + "end": 11088.74, + "probability": 0.705 + }, + { + "start": 11090.44, + "end": 11092.4, + "probability": 0.884 + }, + { + "start": 11093.2, + "end": 11095.96, + "probability": 0.9746 + }, + { + "start": 11096.82, + "end": 11097.44, + "probability": 0.8557 + }, + { + "start": 11098.32, + "end": 11101.32, + "probability": 0.9611 + }, + { + "start": 11102.1, + "end": 11105.48, + "probability": 0.7931 + }, + { + "start": 11105.58, + "end": 11108.88, + "probability": 0.9496 + }, + { + "start": 11109.86, + "end": 11113.98, + "probability": 0.9883 + }, + { + "start": 11115.12, + "end": 11117.52, + "probability": 0.91 + }, + { + "start": 11118.28, + "end": 11119.4, + "probability": 0.8573 + }, + { + "start": 11119.48, + "end": 11124.34, + "probability": 0.887 + }, + { + "start": 11124.85, + "end": 11124.92, + "probability": 0.0182 + }, + { + "start": 11124.92, + "end": 11127.98, + "probability": 0.9666 + }, + { + "start": 11128.24, + "end": 11129.28, + "probability": 0.8648 + }, + { + "start": 11129.72, + "end": 11132.42, + "probability": 0.9976 + }, + { + "start": 11133.02, + "end": 11134.66, + "probability": 0.8018 + }, + { + "start": 11135.24, + "end": 11136.12, + "probability": 0.5559 + }, + { + "start": 11136.64, + "end": 11138.2, + "probability": 0.8541 + }, + { + "start": 11138.72, + "end": 11139.32, + "probability": 0.8584 + }, + { + "start": 11140.06, + "end": 11141.68, + "probability": 0.9419 + }, + { + "start": 11143.14, + "end": 11146.42, + "probability": 0.7344 + }, + { + "start": 11146.5, + "end": 11147.66, + "probability": 0.7772 + }, + { + "start": 11148.12, + "end": 11150.86, + "probability": 0.9912 + }, + { + "start": 11151.42, + "end": 11153.46, + "probability": 0.9974 + }, + { + "start": 11153.46, + "end": 11155.4, + "probability": 0.9962 + }, + { + "start": 11156.38, + "end": 11159.44, + "probability": 0.9407 + }, + { + "start": 11160.08, + "end": 11161.5, + "probability": 0.7389 + }, + { + "start": 11161.6, + "end": 11162.86, + "probability": 0.9905 + }, + { + "start": 11163.5, + "end": 11164.74, + "probability": 0.897 + }, + { + "start": 11166.22, + "end": 11168.42, + "probability": 0.9438 + }, + { + "start": 11168.58, + "end": 11172.06, + "probability": 0.8691 + }, + { + "start": 11174.92, + "end": 11175.56, + "probability": 0.1287 + }, + { + "start": 11175.56, + "end": 11175.56, + "probability": 0.0178 + }, + { + "start": 11175.56, + "end": 11176.12, + "probability": 0.3804 + }, + { + "start": 11176.64, + "end": 11178.77, + "probability": 0.7744 + }, + { + "start": 11179.72, + "end": 11180.42, + "probability": 0.9238 + }, + { + "start": 11180.42, + "end": 11181.48, + "probability": 0.7447 + }, + { + "start": 11181.74, + "end": 11187.06, + "probability": 0.9546 + }, + { + "start": 11188.46, + "end": 11189.74, + "probability": 0.7145 + }, + { + "start": 11189.78, + "end": 11192.24, + "probability": 0.9863 + }, + { + "start": 11193.84, + "end": 11195.04, + "probability": 0.0297 + }, + { + "start": 11195.04, + "end": 11197.14, + "probability": 0.9622 + }, + { + "start": 11197.84, + "end": 11199.52, + "probability": 0.9826 + }, + { + "start": 11199.62, + "end": 11201.16, + "probability": 0.8588 + }, + { + "start": 11201.16, + "end": 11203.48, + "probability": 0.9987 + }, + { + "start": 11203.5, + "end": 11204.53, + "probability": 0.7419 + }, + { + "start": 11205.14, + "end": 11206.52, + "probability": 0.9988 + }, + { + "start": 11206.82, + "end": 11207.66, + "probability": 0.9299 + }, + { + "start": 11207.76, + "end": 11208.46, + "probability": 0.9747 + }, + { + "start": 11208.58, + "end": 11209.66, + "probability": 0.9877 + }, + { + "start": 11209.72, + "end": 11210.76, + "probability": 0.7942 + }, + { + "start": 11211.24, + "end": 11214.44, + "probability": 0.9878 + }, + { + "start": 11214.82, + "end": 11218.8, + "probability": 0.832 + }, + { + "start": 11219.36, + "end": 11220.16, + "probability": 0.8197 + }, + { + "start": 11221.24, + "end": 11224.88, + "probability": 0.9883 + }, + { + "start": 11226.52, + "end": 11227.78, + "probability": 0.7761 + }, + { + "start": 11227.98, + "end": 11228.9, + "probability": 0.6874 + }, + { + "start": 11229.38, + "end": 11234.0, + "probability": 0.8622 + }, + { + "start": 11234.36, + "end": 11238.56, + "probability": 0.887 + }, + { + "start": 11238.66, + "end": 11241.92, + "probability": 0.9907 + }, + { + "start": 11242.4, + "end": 11245.06, + "probability": 0.8999 + }, + { + "start": 11245.84, + "end": 11246.6, + "probability": 0.7236 + }, + { + "start": 11246.94, + "end": 11248.0, + "probability": 0.6084 + }, + { + "start": 11248.14, + "end": 11248.97, + "probability": 0.675 + }, + { + "start": 11249.12, + "end": 11250.56, + "probability": 0.8877 + }, + { + "start": 11250.64, + "end": 11250.9, + "probability": 0.9405 + }, + { + "start": 11250.96, + "end": 11251.5, + "probability": 0.8901 + }, + { + "start": 11253.14, + "end": 11257.1, + "probability": 0.9966 + }, + { + "start": 11257.9, + "end": 11259.02, + "probability": 0.6167 + }, + { + "start": 11259.66, + "end": 11262.04, + "probability": 0.9518 + }, + { + "start": 11263.76, + "end": 11266.52, + "probability": 0.8244 + }, + { + "start": 11267.14, + "end": 11268.78, + "probability": 0.8878 + }, + { + "start": 11268.86, + "end": 11269.4, + "probability": 0.9468 + }, + { + "start": 11269.44, + "end": 11271.28, + "probability": 0.7753 + }, + { + "start": 11271.44, + "end": 11272.86, + "probability": 0.5873 + }, + { + "start": 11272.96, + "end": 11274.86, + "probability": 0.7503 + }, + { + "start": 11275.82, + "end": 11276.99, + "probability": 0.5369 + }, + { + "start": 11277.86, + "end": 11279.64, + "probability": 0.6768 + }, + { + "start": 11279.92, + "end": 11281.74, + "probability": 0.8235 + }, + { + "start": 11282.28, + "end": 11283.4, + "probability": 0.8771 + }, + { + "start": 11283.46, + "end": 11284.68, + "probability": 0.9922 + }, + { + "start": 11297.04, + "end": 11302.98, + "probability": 0.1653 + }, + { + "start": 11302.98, + "end": 11302.98, + "probability": 0.017 + }, + { + "start": 11303.04, + "end": 11304.24, + "probability": 0.118 + }, + { + "start": 11304.28, + "end": 11307.34, + "probability": 0.1175 + }, + { + "start": 11310.12, + "end": 11316.16, + "probability": 0.0317 + }, + { + "start": 11316.16, + "end": 11316.48, + "probability": 0.0304 + }, + { + "start": 11317.49, + "end": 11318.88, + "probability": 0.1294 + }, + { + "start": 11318.88, + "end": 11319.06, + "probability": 0.0698 + }, + { + "start": 11319.06, + "end": 11319.94, + "probability": 0.023 + }, + { + "start": 11320.52, + "end": 11323.86, + "probability": 0.0261 + }, + { + "start": 11324.86, + "end": 11325.76, + "probability": 0.0125 + }, + { + "start": 11326.83, + "end": 11327.93, + "probability": 0.0116 + }, + { + "start": 11328.62, + "end": 11330.37, + "probability": 0.0381 + }, + { + "start": 11331.46, + "end": 11332.0, + "probability": 0.8813 + }, + { + "start": 11333.08, + "end": 11333.44, + "probability": 0.0325 + }, + { + "start": 11333.44, + "end": 11333.44, + "probability": 0.0525 + }, + { + "start": 11333.44, + "end": 11333.44, + "probability": 0.0533 + }, + { + "start": 11333.44, + "end": 11334.54, + "probability": 0.1516 + }, + { + "start": 11335.14, + "end": 11340.68, + "probability": 0.8204 + }, + { + "start": 11341.36, + "end": 11343.08, + "probability": 0.9985 + }, + { + "start": 11343.74, + "end": 11348.64, + "probability": 0.9663 + }, + { + "start": 11348.64, + "end": 11353.94, + "probability": 0.9866 + }, + { + "start": 11354.62, + "end": 11354.98, + "probability": 0.9783 + }, + { + "start": 11355.74, + "end": 11357.58, + "probability": 0.9699 + }, + { + "start": 11357.82, + "end": 11361.3, + "probability": 0.8922 + }, + { + "start": 11361.48, + "end": 11362.9, + "probability": 0.7526 + }, + { + "start": 11363.22, + "end": 11364.24, + "probability": 0.9985 + }, + { + "start": 11364.48, + "end": 11365.72, + "probability": 0.9684 + }, + { + "start": 11365.82, + "end": 11366.44, + "probability": 0.8645 + }, + { + "start": 11366.52, + "end": 11367.45, + "probability": 0.9946 + }, + { + "start": 11368.02, + "end": 11369.7, + "probability": 0.9977 + }, + { + "start": 11369.94, + "end": 11370.8, + "probability": 0.9358 + }, + { + "start": 11371.3, + "end": 11372.28, + "probability": 0.6931 + }, + { + "start": 11372.36, + "end": 11373.14, + "probability": 0.9377 + }, + { + "start": 11373.18, + "end": 11373.66, + "probability": 0.6469 + }, + { + "start": 11376.18, + "end": 11380.6, + "probability": 0.9401 + }, + { + "start": 11381.52, + "end": 11382.94, + "probability": 0.9911 + }, + { + "start": 11383.0, + "end": 11383.9, + "probability": 0.9072 + }, + { + "start": 11384.9, + "end": 11387.38, + "probability": 0.957 + }, + { + "start": 11388.72, + "end": 11389.75, + "probability": 0.5867 + }, + { + "start": 11390.4, + "end": 11392.28, + "probability": 0.8292 + }, + { + "start": 11393.14, + "end": 11394.78, + "probability": 0.9771 + }, + { + "start": 11395.38, + "end": 11396.18, + "probability": 0.8312 + }, + { + "start": 11396.3, + "end": 11397.28, + "probability": 0.968 + }, + { + "start": 11397.45, + "end": 11398.04, + "probability": 0.7194 + }, + { + "start": 11398.38, + "end": 11400.37, + "probability": 0.9941 + }, + { + "start": 11400.7, + "end": 11402.26, + "probability": 0.6044 + }, + { + "start": 11402.8, + "end": 11403.48, + "probability": 0.8693 + }, + { + "start": 11404.06, + "end": 11408.3, + "probability": 0.9471 + }, + { + "start": 11408.46, + "end": 11409.6, + "probability": 0.8586 + }, + { + "start": 11410.08, + "end": 11410.62, + "probability": 0.6783 + }, + { + "start": 11411.06, + "end": 11412.2, + "probability": 0.7317 + }, + { + "start": 11412.78, + "end": 11415.34, + "probability": 0.1522 + }, + { + "start": 11415.34, + "end": 11415.66, + "probability": 0.3364 + }, + { + "start": 11416.56, + "end": 11417.16, + "probability": 0.4441 + }, + { + "start": 11418.18, + "end": 11419.68, + "probability": 0.7713 + }, + { + "start": 11421.1, + "end": 11423.26, + "probability": 0.8569 + }, + { + "start": 11423.34, + "end": 11423.86, + "probability": 0.9117 + }, + { + "start": 11445.34, + "end": 11448.94, + "probability": 0.6731 + }, + { + "start": 11450.26, + "end": 11452.38, + "probability": 0.9379 + }, + { + "start": 11452.92, + "end": 11455.68, + "probability": 0.9727 + }, + { + "start": 11456.6, + "end": 11460.46, + "probability": 0.9952 + }, + { + "start": 11461.44, + "end": 11462.96, + "probability": 0.8543 + }, + { + "start": 11463.12, + "end": 11464.78, + "probability": 0.7261 + }, + { + "start": 11464.96, + "end": 11469.16, + "probability": 0.9839 + }, + { + "start": 11470.14, + "end": 11470.96, + "probability": 0.9231 + }, + { + "start": 11471.0, + "end": 11472.22, + "probability": 0.9631 + }, + { + "start": 11472.42, + "end": 11474.74, + "probability": 0.9367 + }, + { + "start": 11475.94, + "end": 11479.98, + "probability": 0.9902 + }, + { + "start": 11480.5, + "end": 11483.86, + "probability": 0.7599 + }, + { + "start": 11484.34, + "end": 11486.5, + "probability": 0.0402 + }, + { + "start": 11486.76, + "end": 11487.3, + "probability": 0.8581 + }, + { + "start": 11487.38, + "end": 11488.98, + "probability": 0.9733 + }, + { + "start": 11489.28, + "end": 11492.41, + "probability": 0.9849 + }, + { + "start": 11492.94, + "end": 11494.76, + "probability": 0.9921 + }, + { + "start": 11495.1, + "end": 11497.32, + "probability": 0.9608 + }, + { + "start": 11497.8, + "end": 11499.24, + "probability": 0.9992 + }, + { + "start": 11499.34, + "end": 11500.45, + "probability": 0.9551 + }, + { + "start": 11501.24, + "end": 11504.8, + "probability": 0.9961 + }, + { + "start": 11505.32, + "end": 11511.88, + "probability": 0.9939 + }, + { + "start": 11512.38, + "end": 11514.24, + "probability": 0.7545 + }, + { + "start": 11515.12, + "end": 11515.54, + "probability": 0.4841 + }, + { + "start": 11515.64, + "end": 11515.84, + "probability": 0.5189 + }, + { + "start": 11515.94, + "end": 11516.6, + "probability": 0.9585 + }, + { + "start": 11516.8, + "end": 11518.98, + "probability": 0.9772 + }, + { + "start": 11519.56, + "end": 11522.0, + "probability": 0.8951 + }, + { + "start": 11522.62, + "end": 11528.96, + "probability": 0.9914 + }, + { + "start": 11529.56, + "end": 11530.28, + "probability": 0.8833 + }, + { + "start": 11530.36, + "end": 11531.1, + "probability": 0.9396 + }, + { + "start": 11531.44, + "end": 11534.3, + "probability": 0.9856 + }, + { + "start": 11534.42, + "end": 11535.46, + "probability": 0.8325 + }, + { + "start": 11535.98, + "end": 11538.58, + "probability": 0.9928 + }, + { + "start": 11538.94, + "end": 11540.48, + "probability": 0.7056 + }, + { + "start": 11540.82, + "end": 11541.4, + "probability": 0.9851 + }, + { + "start": 11541.54, + "end": 11542.54, + "probability": 0.9225 + }, + { + "start": 11542.74, + "end": 11544.34, + "probability": 0.9901 + }, + { + "start": 11544.72, + "end": 11546.62, + "probability": 0.0954 + }, + { + "start": 11546.84, + "end": 11548.64, + "probability": 0.449 + }, + { + "start": 11549.26, + "end": 11550.92, + "probability": 0.9977 + }, + { + "start": 11552.22, + "end": 11554.24, + "probability": 0.9964 + }, + { + "start": 11554.38, + "end": 11555.68, + "probability": 0.8918 + }, + { + "start": 11555.8, + "end": 11557.82, + "probability": 0.9908 + }, + { + "start": 11558.98, + "end": 11562.1, + "probability": 0.998 + }, + { + "start": 11562.14, + "end": 11564.34, + "probability": 0.9882 + }, + { + "start": 11564.5, + "end": 11564.98, + "probability": 0.8521 + }, + { + "start": 11565.06, + "end": 11566.34, + "probability": 0.9368 + }, + { + "start": 11567.96, + "end": 11568.98, + "probability": 0.904 + }, + { + "start": 11569.12, + "end": 11571.46, + "probability": 0.8789 + }, + { + "start": 11571.86, + "end": 11573.39, + "probability": 0.9307 + }, + { + "start": 11574.46, + "end": 11582.24, + "probability": 0.9115 + }, + { + "start": 11583.16, + "end": 11584.6, + "probability": 0.6789 + }, + { + "start": 11585.14, + "end": 11587.36, + "probability": 0.9813 + }, + { + "start": 11587.56, + "end": 11588.86, + "probability": 0.7049 + }, + { + "start": 11589.1, + "end": 11591.84, + "probability": 0.9423 + }, + { + "start": 11591.92, + "end": 11592.9, + "probability": 0.8249 + }, + { + "start": 11593.26, + "end": 11597.56, + "probability": 0.9712 + }, + { + "start": 11597.56, + "end": 11601.26, + "probability": 0.992 + }, + { + "start": 11601.38, + "end": 11604.86, + "probability": 0.8102 + }, + { + "start": 11604.86, + "end": 11608.08, + "probability": 0.998 + }, + { + "start": 11608.7, + "end": 11609.58, + "probability": 0.988 + }, + { + "start": 11610.42, + "end": 11615.8, + "probability": 0.9965 + }, + { + "start": 11616.22, + "end": 11618.28, + "probability": 0.7775 + }, + { + "start": 11619.18, + "end": 11619.64, + "probability": 0.8748 + }, + { + "start": 11619.72, + "end": 11623.39, + "probability": 0.8861 + }, + { + "start": 11624.36, + "end": 11625.16, + "probability": 0.5208 + }, + { + "start": 11625.34, + "end": 11628.96, + "probability": 0.9915 + }, + { + "start": 11629.0, + "end": 11629.98, + "probability": 0.7401 + }, + { + "start": 11630.32, + "end": 11633.54, + "probability": 0.9305 + }, + { + "start": 11634.16, + "end": 11638.02, + "probability": 0.8872 + }, + { + "start": 11638.88, + "end": 11642.4, + "probability": 0.8253 + }, + { + "start": 11643.14, + "end": 11647.22, + "probability": 0.9928 + }, + { + "start": 11647.32, + "end": 11649.76, + "probability": 0.9957 + }, + { + "start": 11650.7, + "end": 11656.22, + "probability": 0.9641 + }, + { + "start": 11656.22, + "end": 11662.36, + "probability": 0.9901 + }, + { + "start": 11662.82, + "end": 11667.26, + "probability": 0.9802 + }, + { + "start": 11667.76, + "end": 11669.33, + "probability": 0.822 + }, + { + "start": 11669.38, + "end": 11672.84, + "probability": 0.8162 + }, + { + "start": 11673.28, + "end": 11675.6, + "probability": 0.9856 + }, + { + "start": 11675.72, + "end": 11676.48, + "probability": 0.848 + }, + { + "start": 11676.82, + "end": 11676.82, + "probability": 0.5451 + }, + { + "start": 11677.14, + "end": 11678.92, + "probability": 0.9089 + }, + { + "start": 11679.84, + "end": 11680.24, + "probability": 0.059 + }, + { + "start": 11693.5, + "end": 11695.68, + "probability": 0.9927 + }, + { + "start": 11695.68, + "end": 11696.34, + "probability": 0.7022 + }, + { + "start": 11696.34, + "end": 11698.08, + "probability": 0.7463 + }, + { + "start": 11698.18, + "end": 11700.6, + "probability": 0.9788 + }, + { + "start": 11700.74, + "end": 11701.92, + "probability": 0.6143 + }, + { + "start": 11704.12, + "end": 11705.4, + "probability": 0.0035 + }, + { + "start": 11705.4, + "end": 11710.06, + "probability": 0.8156 + }, + { + "start": 11710.16, + "end": 11710.62, + "probability": 0.4458 + }, + { + "start": 11710.68, + "end": 11711.98, + "probability": 0.3927 + }, + { + "start": 11712.95, + "end": 11715.6, + "probability": 0.734 + }, + { + "start": 11715.84, + "end": 11716.73, + "probability": 0.7971 + }, + { + "start": 11717.3, + "end": 11718.7, + "probability": 0.9094 + }, + { + "start": 11718.78, + "end": 11720.68, + "probability": 0.8339 + }, + { + "start": 11721.04, + "end": 11723.0, + "probability": 0.903 + }, + { + "start": 11723.1, + "end": 11724.98, + "probability": 0.926 + }, + { + "start": 11725.04, + "end": 11725.83, + "probability": 0.6792 + }, + { + "start": 11726.22, + "end": 11728.3, + "probability": 0.9444 + }, + { + "start": 11728.76, + "end": 11731.73, + "probability": 0.9282 + }, + { + "start": 11732.48, + "end": 11733.9, + "probability": 0.0133 + }, + { + "start": 11734.82, + "end": 11734.86, + "probability": 0.0272 + }, + { + "start": 11735.0, + "end": 11735.0, + "probability": 0.0091 + }, + { + "start": 11735.0, + "end": 11735.62, + "probability": 0.0476 + }, + { + "start": 11735.86, + "end": 11736.92, + "probability": 0.6822 + }, + { + "start": 11737.5, + "end": 11739.94, + "probability": 0.6383 + }, + { + "start": 11740.0, + "end": 11740.76, + "probability": 0.8255 + }, + { + "start": 11740.98, + "end": 11743.78, + "probability": 0.5123 + }, + { + "start": 11743.92, + "end": 11745.3, + "probability": 0.6396 + }, + { + "start": 11745.56, + "end": 11749.36, + "probability": 0.9498 + }, + { + "start": 11749.92, + "end": 11752.44, + "probability": 0.9013 + }, + { + "start": 11752.58, + "end": 11756.18, + "probability": 0.9447 + }, + { + "start": 11756.42, + "end": 11760.66, + "probability": 0.6084 + }, + { + "start": 11761.82, + "end": 11766.12, + "probability": 0.9609 + }, + { + "start": 11767.08, + "end": 11770.68, + "probability": 0.9971 + }, + { + "start": 11770.8, + "end": 11771.42, + "probability": 0.7087 + }, + { + "start": 11771.52, + "end": 11773.58, + "probability": 0.9039 + }, + { + "start": 11773.66, + "end": 11774.44, + "probability": 0.5137 + }, + { + "start": 11774.56, + "end": 11776.53, + "probability": 0.9977 + }, + { + "start": 11777.8, + "end": 11778.94, + "probability": 0.9195 + }, + { + "start": 11779.02, + "end": 11781.02, + "probability": 0.8913 + }, + { + "start": 11781.14, + "end": 11781.6, + "probability": 0.907 + }, + { + "start": 11781.72, + "end": 11783.48, + "probability": 0.986 + }, + { + "start": 11783.62, + "end": 11785.37, + "probability": 0.9359 + }, + { + "start": 11785.96, + "end": 11786.97, + "probability": 0.9827 + }, + { + "start": 11787.16, + "end": 11789.22, + "probability": 0.988 + }, + { + "start": 11789.66, + "end": 11792.16, + "probability": 0.9984 + }, + { + "start": 11792.4, + "end": 11793.62, + "probability": 0.9766 + }, + { + "start": 11793.74, + "end": 11794.19, + "probability": 0.9301 + }, + { + "start": 11794.62, + "end": 11795.78, + "probability": 0.8359 + }, + { + "start": 11796.4, + "end": 11797.12, + "probability": 0.9254 + }, + { + "start": 11797.26, + "end": 11800.78, + "probability": 0.997 + }, + { + "start": 11801.44, + "end": 11803.34, + "probability": 0.5099 + }, + { + "start": 11804.9, + "end": 11806.2, + "probability": 0.1236 + }, + { + "start": 11807.11, + "end": 11809.96, + "probability": 0.8047 + }, + { + "start": 11809.96, + "end": 11811.8, + "probability": 0.3401 + }, + { + "start": 11811.8, + "end": 11813.52, + "probability": 0.8669 + }, + { + "start": 11813.72, + "end": 11814.22, + "probability": 0.9671 + }, + { + "start": 11814.72, + "end": 11821.64, + "probability": 0.7264 + }, + { + "start": 11821.64, + "end": 11823.28, + "probability": 0.8264 + }, + { + "start": 11823.54, + "end": 11826.23, + "probability": 0.9846 + }, + { + "start": 11826.6, + "end": 11829.7, + "probability": 0.7257 + }, + { + "start": 11829.78, + "end": 11832.42, + "probability": 0.7551 + }, + { + "start": 11833.95, + "end": 11835.98, + "probability": 0.5963 + }, + { + "start": 11836.18, + "end": 11836.52, + "probability": 0.1263 + }, + { + "start": 11836.58, + "end": 11837.0, + "probability": 0.9305 + }, + { + "start": 11837.22, + "end": 11837.84, + "probability": 0.4878 + }, + { + "start": 11837.84, + "end": 11841.2, + "probability": 0.9932 + }, + { + "start": 11841.54, + "end": 11842.58, + "probability": 0.8236 + }, + { + "start": 11842.74, + "end": 11844.26, + "probability": 0.9852 + }, + { + "start": 11844.42, + "end": 11845.48, + "probability": 0.9546 + }, + { + "start": 11845.62, + "end": 11847.68, + "probability": 0.6661 + }, + { + "start": 11847.84, + "end": 11848.26, + "probability": 0.6628 + }, + { + "start": 11848.26, + "end": 11851.38, + "probability": 0.9839 + }, + { + "start": 11851.74, + "end": 11855.5, + "probability": 0.9373 + }, + { + "start": 11856.22, + "end": 11860.26, + "probability": 0.9346 + }, + { + "start": 11861.1, + "end": 11864.5, + "probability": 0.6275 + }, + { + "start": 11864.54, + "end": 11866.5, + "probability": 0.8854 + }, + { + "start": 11867.18, + "end": 11870.54, + "probability": 0.945 + }, + { + "start": 11870.62, + "end": 11871.24, + "probability": 0.8544 + }, + { + "start": 11871.32, + "end": 11872.2, + "probability": 0.9982 + }, + { + "start": 11873.36, + "end": 11878.78, + "probability": 0.441 + }, + { + "start": 11879.3, + "end": 11880.4, + "probability": 0.4211 + }, + { + "start": 11880.88, + "end": 11884.48, + "probability": 0.9629 + }, + { + "start": 11885.34, + "end": 11887.02, + "probability": 0.6493 + }, + { + "start": 11887.74, + "end": 11888.66, + "probability": 0.1875 + }, + { + "start": 11890.62, + "end": 11890.94, + "probability": 0.1439 + }, + { + "start": 11891.4, + "end": 11891.4, + "probability": 0.2231 + }, + { + "start": 11891.4, + "end": 11895.42, + "probability": 0.7264 + }, + { + "start": 11895.94, + "end": 11896.68, + "probability": 0.1585 + }, + { + "start": 11896.72, + "end": 11897.44, + "probability": 0.5335 + }, + { + "start": 11897.68, + "end": 11898.04, + "probability": 0.6704 + }, + { + "start": 11898.14, + "end": 11899.5, + "probability": 0.7725 + }, + { + "start": 11900.46, + "end": 11900.88, + "probability": 0.6728 + }, + { + "start": 11900.96, + "end": 11901.28, + "probability": 0.6371 + }, + { + "start": 11901.44, + "end": 11903.56, + "probability": 0.9584 + }, + { + "start": 11903.96, + "end": 11905.58, + "probability": 0.8912 + }, + { + "start": 11906.16, + "end": 11909.28, + "probability": 0.8381 + }, + { + "start": 11909.94, + "end": 11911.0, + "probability": 0.9917 + }, + { + "start": 11911.06, + "end": 11912.04, + "probability": 0.9733 + }, + { + "start": 11912.16, + "end": 11913.2, + "probability": 0.8621 + }, + { + "start": 11913.34, + "end": 11914.2, + "probability": 0.7067 + }, + { + "start": 11914.24, + "end": 11914.94, + "probability": 0.8734 + }, + { + "start": 11915.18, + "end": 11917.1, + "probability": 0.9884 + }, + { + "start": 11917.76, + "end": 11921.1, + "probability": 0.9663 + }, + { + "start": 11921.42, + "end": 11923.24, + "probability": 0.8652 + }, + { + "start": 11923.66, + "end": 11925.92, + "probability": 0.9769 + }, + { + "start": 11925.98, + "end": 11926.9, + "probability": 0.791 + }, + { + "start": 11927.02, + "end": 11928.02, + "probability": 0.7694 + }, + { + "start": 11928.1, + "end": 11929.0, + "probability": 0.8365 + }, + { + "start": 11929.22, + "end": 11930.03, + "probability": 0.8483 + }, + { + "start": 11931.14, + "end": 11932.54, + "probability": 0.9351 + }, + { + "start": 11932.62, + "end": 11934.34, + "probability": 0.6889 + }, + { + "start": 11934.76, + "end": 11935.14, + "probability": 0.9154 + }, + { + "start": 11935.2, + "end": 11936.1, + "probability": 0.9932 + }, + { + "start": 11936.14, + "end": 11938.28, + "probability": 0.9581 + }, + { + "start": 11938.46, + "end": 11940.2, + "probability": 0.9697 + }, + { + "start": 11940.46, + "end": 11941.74, + "probability": 0.8771 + }, + { + "start": 11942.2, + "end": 11944.26, + "probability": 0.7707 + }, + { + "start": 11944.38, + "end": 11945.73, + "probability": 0.8805 + }, + { + "start": 11945.94, + "end": 11946.76, + "probability": 0.8818 + }, + { + "start": 11946.84, + "end": 11947.76, + "probability": 0.862 + }, + { + "start": 11947.92, + "end": 11950.5, + "probability": 0.9862 + }, + { + "start": 11950.84, + "end": 11951.65, + "probability": 0.0259 + }, + { + "start": 11952.38, + "end": 11954.02, + "probability": 0.6101 + }, + { + "start": 11954.1, + "end": 11954.96, + "probability": 0.8949 + }, + { + "start": 11955.44, + "end": 11957.34, + "probability": 0.9985 + }, + { + "start": 11957.38, + "end": 11958.24, + "probability": 0.9718 + }, + { + "start": 11958.98, + "end": 11959.64, + "probability": 0.8582 + }, + { + "start": 11959.74, + "end": 11962.14, + "probability": 0.9348 + }, + { + "start": 11962.18, + "end": 11968.56, + "probability": 0.9377 + }, + { + "start": 11968.96, + "end": 11972.25, + "probability": 0.9813 + }, + { + "start": 11972.46, + "end": 11976.68, + "probability": 0.9184 + }, + { + "start": 11976.82, + "end": 11980.02, + "probability": 0.881 + }, + { + "start": 11980.4, + "end": 11983.86, + "probability": 0.9868 + }, + { + "start": 11983.92, + "end": 11986.48, + "probability": 0.8733 + }, + { + "start": 11986.6, + "end": 11987.1, + "probability": 0.5953 + }, + { + "start": 11987.14, + "end": 11989.9, + "probability": 0.9717 + }, + { + "start": 11990.22, + "end": 11992.56, + "probability": 0.9792 + }, + { + "start": 11992.98, + "end": 11995.62, + "probability": 0.7588 + }, + { + "start": 11995.68, + "end": 11997.02, + "probability": 0.6392 + }, + { + "start": 11997.06, + "end": 11997.64, + "probability": 0.5518 + }, + { + "start": 11997.7, + "end": 12002.18, + "probability": 0.9882 + }, + { + "start": 12003.12, + "end": 12004.64, + "probability": 0.9742 + }, + { + "start": 12004.72, + "end": 12006.84, + "probability": 0.9856 + }, + { + "start": 12006.88, + "end": 12009.98, + "probability": 0.9864 + }, + { + "start": 12010.32, + "end": 12012.36, + "probability": 0.7718 + }, + { + "start": 12012.44, + "end": 12013.4, + "probability": 0.9469 + }, + { + "start": 12013.5, + "end": 12015.42, + "probability": 0.7479 + }, + { + "start": 12015.56, + "end": 12018.08, + "probability": 0.9817 + }, + { + "start": 12018.66, + "end": 12020.0, + "probability": 0.9365 + }, + { + "start": 12020.12, + "end": 12021.02, + "probability": 0.4326 + }, + { + "start": 12021.02, + "end": 12021.32, + "probability": 0.4965 + }, + { + "start": 12021.36, + "end": 12022.52, + "probability": 0.6609 + }, + { + "start": 12022.64, + "end": 12024.18, + "probability": 0.8285 + }, + { + "start": 12024.36, + "end": 12026.5, + "probability": 0.8651 + }, + { + "start": 12026.6, + "end": 12027.38, + "probability": 0.7846 + }, + { + "start": 12029.37, + "end": 12032.82, + "probability": 0.4185 + }, + { + "start": 12032.86, + "end": 12032.86, + "probability": 0.4638 + }, + { + "start": 12032.86, + "end": 12034.5, + "probability": 0.4891 + }, + { + "start": 12034.5, + "end": 12035.52, + "probability": 0.7176 + }, + { + "start": 12035.72, + "end": 12037.17, + "probability": 0.9504 + }, + { + "start": 12039.12, + "end": 12039.54, + "probability": 0.3123 + }, + { + "start": 12039.54, + "end": 12039.54, + "probability": 0.5036 + }, + { + "start": 12039.59, + "end": 12040.88, + "probability": 0.8502 + }, + { + "start": 12040.88, + "end": 12042.93, + "probability": 0.9114 + }, + { + "start": 12044.26, + "end": 12044.26, + "probability": 0.1138 + }, + { + "start": 12044.26, + "end": 12044.58, + "probability": 0.3652 + }, + { + "start": 12045.48, + "end": 12050.08, + "probability": 0.9414 + }, + { + "start": 12077.04, + "end": 12077.84, + "probability": 0.0507 + }, + { + "start": 12080.84, + "end": 12083.64, + "probability": 0.1108 + }, + { + "start": 12087.1, + "end": 12088.54, + "probability": 0.5372 + }, + { + "start": 12092.26, + "end": 12095.24, + "probability": 0.0042 + }, + { + "start": 12095.36, + "end": 12099.55, + "probability": 0.0232 + }, + { + "start": 12101.76, + "end": 12104.22, + "probability": 0.0315 + }, + { + "start": 12104.63, + "end": 12106.71, + "probability": 0.197 + }, + { + "start": 12107.48, + "end": 12107.48, + "probability": 0.2835 + }, + { + "start": 12111.4, + "end": 12113.12, + "probability": 0.0577 + }, + { + "start": 12113.12, + "end": 12113.58, + "probability": 0.0722 + }, + { + "start": 12113.58, + "end": 12113.98, + "probability": 0.0381 + }, + { + "start": 12114.0, + "end": 12114.0, + "probability": 0.0 + }, + { + "start": 12114.0, + "end": 12114.0, + "probability": 0.0 + }, + { + "start": 12114.0, + "end": 12114.0, + "probability": 0.0 + }, + { + "start": 12114.0, + "end": 12114.0, + "probability": 0.0 + }, + { + "start": 12114.0, + "end": 12114.0, + "probability": 0.0 + }, + { + "start": 12114.0, + "end": 12114.0, + "probability": 0.0 + }, + { + "start": 12114.0, + "end": 12114.0, + "probability": 0.0 + }, + { + "start": 12114.0, + "end": 12114.0, + "probability": 0.0 + }, + { + "start": 12114.0, + "end": 12114.0, + "probability": 0.0 + }, + { + "start": 12114.0, + "end": 12114.0, + "probability": 0.0 + }, + { + "start": 12115.58, + "end": 12118.8, + "probability": 0.7056 + }, + { + "start": 12119.02, + "end": 12120.68, + "probability": 0.5295 + }, + { + "start": 12122.62, + "end": 12123.88, + "probability": 0.7355 + }, + { + "start": 12125.44, + "end": 12125.82, + "probability": 0.3045 + }, + { + "start": 12127.12, + "end": 12129.13, + "probability": 0.0768 + }, + { + "start": 12130.28, + "end": 12134.26, + "probability": 0.2468 + }, + { + "start": 12135.72, + "end": 12138.94, + "probability": 0.7371 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.0, + "end": 12250.0, + "probability": 0.0 + }, + { + "start": 12250.42, + "end": 12250.62, + "probability": 0.0312 + }, + { + "start": 12250.62, + "end": 12250.62, + "probability": 0.2627 + }, + { + "start": 12250.62, + "end": 12250.62, + "probability": 0.1147 + }, + { + "start": 12250.62, + "end": 12251.74, + "probability": 0.3269 + }, + { + "start": 12251.74, + "end": 12254.76, + "probability": 0.9802 + }, + { + "start": 12255.54, + "end": 12260.02, + "probability": 0.9884 + }, + { + "start": 12261.84, + "end": 12264.34, + "probability": 0.9875 + }, + { + "start": 12265.54, + "end": 12265.54, + "probability": 0.0092 + }, + { + "start": 12265.54, + "end": 12269.7, + "probability": 0.9824 + }, + { + "start": 12269.7, + "end": 12276.2, + "probability": 0.9046 + }, + { + "start": 12277.62, + "end": 12280.22, + "probability": 0.0092 + }, + { + "start": 12280.22, + "end": 12281.16, + "probability": 0.3453 + }, + { + "start": 12281.84, + "end": 12285.52, + "probability": 0.9886 + }, + { + "start": 12285.92, + "end": 12286.44, + "probability": 0.1136 + }, + { + "start": 12286.74, + "end": 12287.28, + "probability": 0.8315 + }, + { + "start": 12288.46, + "end": 12290.28, + "probability": 0.7859 + }, + { + "start": 12290.62, + "end": 12293.84, + "probability": 0.5151 + }, + { + "start": 12293.98, + "end": 12297.08, + "probability": 0.6521 + }, + { + "start": 12298.18, + "end": 12301.72, + "probability": 0.6422 + }, + { + "start": 12302.24, + "end": 12306.52, + "probability": 0.6762 + }, + { + "start": 12307.46, + "end": 12314.44, + "probability": 0.3431 + }, + { + "start": 12316.92, + "end": 12317.44, + "probability": 0.0868 + }, + { + "start": 12317.44, + "end": 12317.88, + "probability": 0.0258 + }, + { + "start": 12317.88, + "end": 12317.88, + "probability": 0.25 + }, + { + "start": 12317.88, + "end": 12318.86, + "probability": 0.1363 + }, + { + "start": 12319.32, + "end": 12321.74, + "probability": 0.5862 + }, + { + "start": 12322.78, + "end": 12323.6, + "probability": 0.7971 + }, + { + "start": 12324.1, + "end": 12327.4, + "probability": 0.6489 + }, + { + "start": 12327.4, + "end": 12329.36, + "probability": 0.5874 + }, + { + "start": 12329.64, + "end": 12330.38, + "probability": 0.2341 + }, + { + "start": 12330.38, + "end": 12330.87, + "probability": 0.5086 + }, + { + "start": 12331.92, + "end": 12333.78, + "probability": 0.6735 + }, + { + "start": 12333.9, + "end": 12334.77, + "probability": 0.9365 + }, + { + "start": 12335.3, + "end": 12336.6, + "probability": 0.7846 + }, + { + "start": 12336.96, + "end": 12337.8, + "probability": 0.302 + }, + { + "start": 12340.84, + "end": 12342.54, + "probability": 0.8342 + }, + { + "start": 12344.17, + "end": 12347.32, + "probability": 0.6662 + }, + { + "start": 12347.44, + "end": 12350.94, + "probability": 0.2582 + }, + { + "start": 12350.94, + "end": 12350.94, + "probability": 0.4163 + }, + { + "start": 12350.94, + "end": 12351.32, + "probability": 0.4109 + }, + { + "start": 12351.76, + "end": 12354.58, + "probability": 0.6667 + }, + { + "start": 12355.46, + "end": 12360.2, + "probability": 0.8109 + }, + { + "start": 12362.16, + "end": 12363.2, + "probability": 0.8133 + }, + { + "start": 12372.32, + "end": 12375.1, + "probability": 0.6783 + }, + { + "start": 12375.32, + "end": 12376.9, + "probability": 0.1785 + }, + { + "start": 12377.04, + "end": 12377.42, + "probability": 0.8154 + }, + { + "start": 12381.68, + "end": 12385.72, + "probability": 0.6649 + }, + { + "start": 12386.02, + "end": 12391.85, + "probability": 0.9838 + }, + { + "start": 12392.56, + "end": 12398.28, + "probability": 0.9902 + }, + { + "start": 12398.4, + "end": 12399.48, + "probability": 0.7719 + }, + { + "start": 12400.2, + "end": 12401.68, + "probability": 0.7659 + }, + { + "start": 12401.86, + "end": 12412.54, + "probability": 0.8829 + }, + { + "start": 12412.84, + "end": 12413.26, + "probability": 0.8441 + }, + { + "start": 12413.3, + "end": 12416.14, + "probability": 0.8786 + }, + { + "start": 12417.12, + "end": 12421.82, + "probability": 0.9516 + }, + { + "start": 12422.1, + "end": 12425.0, + "probability": 0.918 + }, + { + "start": 12425.22, + "end": 12430.26, + "probability": 0.9877 + }, + { + "start": 12430.7, + "end": 12437.12, + "probability": 0.9818 + }, + { + "start": 12437.66, + "end": 12441.06, + "probability": 0.9912 + }, + { + "start": 12441.06, + "end": 12443.58, + "probability": 0.718 + }, + { + "start": 12443.76, + "end": 12444.58, + "probability": 0.8598 + }, + { + "start": 12445.44, + "end": 12445.9, + "probability": 0.525 + }, + { + "start": 12446.42, + "end": 12447.5, + "probability": 0.9716 + }, + { + "start": 12447.74, + "end": 12448.72, + "probability": 0.8261 + }, + { + "start": 12448.9, + "end": 12452.84, + "probability": 0.816 + }, + { + "start": 12452.92, + "end": 12456.02, + "probability": 0.9934 + }, + { + "start": 12456.4, + "end": 12458.32, + "probability": 0.9897 + }, + { + "start": 12458.94, + "end": 12463.8, + "probability": 0.9823 + }, + { + "start": 12464.53, + "end": 12466.74, + "probability": 0.8944 + }, + { + "start": 12467.75, + "end": 12473.5, + "probability": 0.8971 + }, + { + "start": 12474.74, + "end": 12478.88, + "probability": 0.9736 + }, + { + "start": 12479.69, + "end": 12483.66, + "probability": 0.9829 + }, + { + "start": 12483.7, + "end": 12484.68, + "probability": 0.9417 + }, + { + "start": 12485.24, + "end": 12487.2, + "probability": 0.9878 + }, + { + "start": 12488.8, + "end": 12494.6, + "probability": 0.9937 + }, + { + "start": 12495.36, + "end": 12496.96, + "probability": 0.9097 + }, + { + "start": 12498.36, + "end": 12501.68, + "probability": 0.9951 + }, + { + "start": 12502.24, + "end": 12504.58, + "probability": 0.9926 + }, + { + "start": 12505.1, + "end": 12509.62, + "probability": 0.9594 + }, + { + "start": 12509.74, + "end": 12511.76, + "probability": 0.9952 + }, + { + "start": 12512.54, + "end": 12514.86, + "probability": 0.8975 + }, + { + "start": 12515.56, + "end": 12516.02, + "probability": 0.0526 + }, + { + "start": 12516.02, + "end": 12517.72, + "probability": 0.5514 + }, + { + "start": 12517.76, + "end": 12522.5, + "probability": 0.9494 + }, + { + "start": 12522.94, + "end": 12526.86, + "probability": 0.9047 + }, + { + "start": 12527.9, + "end": 12531.96, + "probability": 0.9826 + }, + { + "start": 12532.54, + "end": 12538.12, + "probability": 0.9865 + }, + { + "start": 12538.34, + "end": 12539.0, + "probability": 0.7254 + }, + { + "start": 12539.18, + "end": 12544.08, + "probability": 0.8784 + }, + { + "start": 12544.08, + "end": 12549.72, + "probability": 0.976 + }, + { + "start": 12550.4, + "end": 12554.76, + "probability": 0.8603 + }, + { + "start": 12555.32, + "end": 12557.7, + "probability": 0.6883 + }, + { + "start": 12558.04, + "end": 12563.5, + "probability": 0.9744 + }, + { + "start": 12563.86, + "end": 12566.0, + "probability": 0.9907 + }, + { + "start": 12566.58, + "end": 12568.34, + "probability": 0.935 + }, + { + "start": 12569.22, + "end": 12573.08, + "probability": 0.9895 + }, + { + "start": 12573.64, + "end": 12575.64, + "probability": 0.9686 + }, + { + "start": 12576.28, + "end": 12579.23, + "probability": 0.7877 + }, + { + "start": 12580.28, + "end": 12583.08, + "probability": 0.951 + }, + { + "start": 12583.6, + "end": 12584.54, + "probability": 0.961 + }, + { + "start": 12584.88, + "end": 12585.88, + "probability": 0.8352 + }, + { + "start": 12586.12, + "end": 12587.22, + "probability": 0.9553 + }, + { + "start": 12587.48, + "end": 12590.38, + "probability": 0.8279 + }, + { + "start": 12590.58, + "end": 12594.64, + "probability": 0.9681 + }, + { + "start": 12595.66, + "end": 12597.88, + "probability": 0.9172 + }, + { + "start": 12598.64, + "end": 12599.92, + "probability": 0.9299 + }, + { + "start": 12601.2, + "end": 12603.32, + "probability": 0.9772 + }, + { + "start": 12605.0, + "end": 12608.04, + "probability": 0.9989 + }, + { + "start": 12608.08, + "end": 12610.64, + "probability": 0.9966 + }, + { + "start": 12611.46, + "end": 12615.28, + "probability": 0.9962 + }, + { + "start": 12615.28, + "end": 12619.04, + "probability": 0.9945 + }, + { + "start": 12619.94, + "end": 12625.32, + "probability": 0.9977 + }, + { + "start": 12626.56, + "end": 12628.16, + "probability": 0.9884 + }, + { + "start": 12629.08, + "end": 12629.4, + "probability": 0.4845 + }, + { + "start": 12629.4, + "end": 12634.0, + "probability": 0.889 + }, + { + "start": 12634.48, + "end": 12636.48, + "probability": 0.936 + }, + { + "start": 12637.22, + "end": 12638.92, + "probability": 0.8605 + }, + { + "start": 12639.74, + "end": 12644.42, + "probability": 0.9449 + }, + { + "start": 12645.14, + "end": 12647.58, + "probability": 0.9337 + }, + { + "start": 12648.58, + "end": 12654.4, + "probability": 0.9606 + }, + { + "start": 12657.28, + "end": 12658.23, + "probability": 0.9612 + }, + { + "start": 12658.96, + "end": 12664.24, + "probability": 0.9792 + }, + { + "start": 12665.14, + "end": 12670.62, + "probability": 0.9677 + }, + { + "start": 12672.84, + "end": 12674.14, + "probability": 0.9172 + }, + { + "start": 12676.16, + "end": 12677.42, + "probability": 0.9211 + }, + { + "start": 12678.76, + "end": 12680.26, + "probability": 0.8779 + }, + { + "start": 12680.46, + "end": 12682.42, + "probability": 0.9363 + }, + { + "start": 12683.08, + "end": 12683.84, + "probability": 0.8511 + }, + { + "start": 12684.52, + "end": 12687.46, + "probability": 0.9875 + }, + { + "start": 12687.88, + "end": 12688.5, + "probability": 0.8449 + }, + { + "start": 12688.64, + "end": 12694.7, + "probability": 0.8843 + }, + { + "start": 12695.24, + "end": 12696.26, + "probability": 0.7928 + }, + { + "start": 12696.5, + "end": 12697.72, + "probability": 0.9061 + }, + { + "start": 12698.78, + "end": 12700.16, + "probability": 0.9475 + }, + { + "start": 12700.92, + "end": 12702.16, + "probability": 0.9863 + }, + { + "start": 12703.0, + "end": 12705.46, + "probability": 0.9928 + }, + { + "start": 12706.6, + "end": 12709.16, + "probability": 0.9736 + }, + { + "start": 12709.64, + "end": 12710.84, + "probability": 0.8821 + }, + { + "start": 12711.3, + "end": 12714.68, + "probability": 0.9747 + }, + { + "start": 12715.14, + "end": 12716.92, + "probability": 0.9985 + }, + { + "start": 12718.12, + "end": 12719.64, + "probability": 0.9604 + }, + { + "start": 12721.3, + "end": 12725.04, + "probability": 0.9645 + }, + { + "start": 12725.68, + "end": 12726.68, + "probability": 0.5287 + }, + { + "start": 12726.72, + "end": 12727.48, + "probability": 0.795 + }, + { + "start": 12727.58, + "end": 12731.98, + "probability": 0.9869 + }, + { + "start": 12732.28, + "end": 12735.1, + "probability": 0.9819 + }, + { + "start": 12735.76, + "end": 12741.12, + "probability": 0.724 + }, + { + "start": 12742.24, + "end": 12747.98, + "probability": 0.9949 + }, + { + "start": 12749.38, + "end": 12753.2, + "probability": 0.9861 + }, + { + "start": 12754.08, + "end": 12757.46, + "probability": 0.9927 + }, + { + "start": 12757.9, + "end": 12759.0, + "probability": 0.6762 + }, + { + "start": 12759.34, + "end": 12760.52, + "probability": 0.3891 + }, + { + "start": 12761.52, + "end": 12763.66, + "probability": 0.7841 + }, + { + "start": 12763.76, + "end": 12766.38, + "probability": 0.8832 + }, + { + "start": 12766.56, + "end": 12768.46, + "probability": 0.969 + }, + { + "start": 12769.34, + "end": 12769.62, + "probability": 0.7696 + }, + { + "start": 12769.68, + "end": 12770.72, + "probability": 0.6761 + }, + { + "start": 12770.8, + "end": 12771.54, + "probability": 0.7516 + }, + { + "start": 12772.0, + "end": 12772.98, + "probability": 0.662 + }, + { + "start": 12773.42, + "end": 12780.2, + "probability": 0.7672 + }, + { + "start": 12780.2, + "end": 12783.48, + "probability": 0.9965 + }, + { + "start": 12783.6, + "end": 12787.32, + "probability": 0.985 + }, + { + "start": 12787.32, + "end": 12793.34, + "probability": 0.9825 + }, + { + "start": 12794.52, + "end": 12797.34, + "probability": 0.9976 + }, + { + "start": 12798.98, + "end": 12802.96, + "probability": 0.9954 + }, + { + "start": 12804.0, + "end": 12805.42, + "probability": 0.6543 + }, + { + "start": 12805.5, + "end": 12807.02, + "probability": 0.911 + }, + { + "start": 12807.14, + "end": 12807.14, + "probability": 0.0537 + }, + { + "start": 12807.14, + "end": 12808.62, + "probability": 0.1366 + }, + { + "start": 12808.76, + "end": 12809.4, + "probability": 0.5322 + }, + { + "start": 12809.74, + "end": 12811.28, + "probability": 0.8297 + }, + { + "start": 12812.94, + "end": 12814.02, + "probability": 0.917 + }, + { + "start": 12826.88, + "end": 12831.1, + "probability": 0.211 + }, + { + "start": 12832.04, + "end": 12832.62, + "probability": 0.0078 + }, + { + "start": 12832.74, + "end": 12832.98, + "probability": 0.3298 + }, + { + "start": 12832.98, + "end": 12835.44, + "probability": 0.1043 + }, + { + "start": 12835.9, + "end": 12836.34, + "probability": 0.0096 + }, + { + "start": 12836.34, + "end": 12836.34, + "probability": 0.0563 + }, + { + "start": 12836.34, + "end": 12836.34, + "probability": 0.0628 + }, + { + "start": 12836.34, + "end": 12836.34, + "probability": 0.0654 + }, + { + "start": 12836.34, + "end": 12836.34, + "probability": 0.1828 + }, + { + "start": 12836.34, + "end": 12836.55, + "probability": 0.2233 + }, + { + "start": 12836.84, + "end": 12837.16, + "probability": 0.6178 + }, + { + "start": 12837.36, + "end": 12838.26, + "probability": 0.496 + }, + { + "start": 12838.32, + "end": 12841.36, + "probability": 0.7563 + }, + { + "start": 12841.9, + "end": 12844.84, + "probability": 0.985 + }, + { + "start": 12844.84, + "end": 12846.82, + "probability": 0.8356 + }, + { + "start": 12846.82, + "end": 12846.96, + "probability": 0.0105 + }, + { + "start": 12847.24, + "end": 12849.96, + "probability": 0.9425 + }, + { + "start": 12850.12, + "end": 12852.24, + "probability": 0.8687 + }, + { + "start": 12852.64, + "end": 12855.74, + "probability": 0.5019 + }, + { + "start": 12855.78, + "end": 12858.42, + "probability": 0.597 + }, + { + "start": 12858.78, + "end": 12859.28, + "probability": 0.1382 + }, + { + "start": 12859.54, + "end": 12860.04, + "probability": 0.3014 + }, + { + "start": 12861.15, + "end": 12863.3, + "probability": 0.8882 + }, + { + "start": 12863.4, + "end": 12864.78, + "probability": 0.8412 + }, + { + "start": 12865.34, + "end": 12868.9, + "probability": 0.986 + }, + { + "start": 12869.3, + "end": 12869.82, + "probability": 0.4981 + }, + { + "start": 12869.88, + "end": 12870.82, + "probability": 0.7201 + }, + { + "start": 12871.56, + "end": 12874.04, + "probability": 0.8722 + }, + { + "start": 12875.04, + "end": 12877.56, + "probability": 0.7558 + }, + { + "start": 12878.24, + "end": 12879.38, + "probability": 0.9042 + }, + { + "start": 12879.92, + "end": 12884.28, + "probability": 0.9904 + }, + { + "start": 12885.62, + "end": 12887.24, + "probability": 0.6893 + }, + { + "start": 12887.38, + "end": 12889.06, + "probability": 0.8143 + }, + { + "start": 12889.14, + "end": 12890.12, + "probability": 0.5129 + }, + { + "start": 12890.18, + "end": 12893.38, + "probability": 0.835 + }, + { + "start": 12893.78, + "end": 12894.18, + "probability": 0.5508 + }, + { + "start": 12894.3, + "end": 12896.28, + "probability": 0.9896 + }, + { + "start": 12896.32, + "end": 12899.54, + "probability": 0.9863 + }, + { + "start": 12899.54, + "end": 12902.92, + "probability": 0.9266 + }, + { + "start": 12903.02, + "end": 12906.24, + "probability": 0.9723 + }, + { + "start": 12906.38, + "end": 12909.18, + "probability": 0.8618 + }, + { + "start": 12909.54, + "end": 12912.22, + "probability": 0.9164 + }, + { + "start": 12912.28, + "end": 12912.56, + "probability": 0.7666 + }, + { + "start": 12912.66, + "end": 12914.1, + "probability": 0.9628 + }, + { + "start": 12914.18, + "end": 12914.9, + "probability": 0.9866 + }, + { + "start": 12914.96, + "end": 12915.9, + "probability": 0.7567 + }, + { + "start": 12916.02, + "end": 12917.58, + "probability": 0.7529 + }, + { + "start": 12917.66, + "end": 12918.78, + "probability": 0.9141 + }, + { + "start": 12919.12, + "end": 12921.3, + "probability": 0.978 + }, + { + "start": 12921.54, + "end": 12923.42, + "probability": 0.8969 + }, + { + "start": 12923.74, + "end": 12924.4, + "probability": 0.6188 + }, + { + "start": 12924.88, + "end": 12929.28, + "probability": 0.9427 + }, + { + "start": 12929.52, + "end": 12935.28, + "probability": 0.9229 + }, + { + "start": 12935.62, + "end": 12936.48, + "probability": 0.6772 + }, + { + "start": 12936.58, + "end": 12937.14, + "probability": 0.8616 + }, + { + "start": 12937.56, + "end": 12940.76, + "probability": 0.9927 + }, + { + "start": 12940.8, + "end": 12942.16, + "probability": 0.8767 + }, + { + "start": 12942.5, + "end": 12945.54, + "probability": 0.9944 + }, + { + "start": 12946.08, + "end": 12947.26, + "probability": 0.9033 + }, + { + "start": 12947.42, + "end": 12947.96, + "probability": 0.6301 + }, + { + "start": 12948.28, + "end": 12949.02, + "probability": 0.9858 + }, + { + "start": 12949.2, + "end": 12951.32, + "probability": 0.5227 + }, + { + "start": 12951.88, + "end": 12954.44, + "probability": 0.9404 + }, + { + "start": 12954.98, + "end": 12956.36, + "probability": 0.9313 + }, + { + "start": 12957.3, + "end": 12959.1, + "probability": 0.9536 + }, + { + "start": 12959.48, + "end": 12961.64, + "probability": 0.9956 + }, + { + "start": 12962.22, + "end": 12967.4, + "probability": 0.9971 + }, + { + "start": 12967.62, + "end": 12968.7, + "probability": 0.9478 + }, + { + "start": 12969.3, + "end": 12974.52, + "probability": 0.9711 + }, + { + "start": 12974.88, + "end": 12976.22, + "probability": 0.8386 + }, + { + "start": 12976.56, + "end": 12978.46, + "probability": 0.9907 + }, + { + "start": 12978.6, + "end": 12980.02, + "probability": 0.9198 + }, + { + "start": 12980.56, + "end": 12982.17, + "probability": 0.994 + }, + { + "start": 12983.0, + "end": 12985.48, + "probability": 0.9703 + }, + { + "start": 12987.44, + "end": 12989.46, + "probability": 0.791 + }, + { + "start": 12991.02, + "end": 12992.04, + "probability": 0.2232 + }, + { + "start": 12992.48, + "end": 12995.16, + "probability": 0.9871 + }, + { + "start": 12995.32, + "end": 12995.32, + "probability": 0.6216 + }, + { + "start": 12995.36, + "end": 12995.92, + "probability": 0.9825 + }, + { + "start": 12998.34, + "end": 13001.24, + "probability": 0.7152 + }, + { + "start": 13001.5, + "end": 13005.04, + "probability": 0.9912 + }, + { + "start": 13006.16, + "end": 13007.42, + "probability": 0.7932 + }, + { + "start": 13007.54, + "end": 13008.34, + "probability": 0.7358 + }, + { + "start": 13009.72, + "end": 13020.96, + "probability": 0.8664 + }, + { + "start": 13021.16, + "end": 13022.46, + "probability": 0.8653 + }, + { + "start": 13023.2, + "end": 13024.68, + "probability": 0.9678 + }, + { + "start": 13024.86, + "end": 13030.4, + "probability": 0.9424 + }, + { + "start": 13030.84, + "end": 13032.04, + "probability": 0.7559 + }, + { + "start": 13032.22, + "end": 13032.98, + "probability": 0.452 + }, + { + "start": 13033.7, + "end": 13034.74, + "probability": 0.6616 + }, + { + "start": 13035.48, + "end": 13038.9, + "probability": 0.7401 + }, + { + "start": 13039.82, + "end": 13045.38, + "probability": 0.9728 + }, + { + "start": 13045.38, + "end": 13049.0, + "probability": 0.9904 + }, + { + "start": 13049.5, + "end": 13053.42, + "probability": 0.9062 + }, + { + "start": 13053.78, + "end": 13055.24, + "probability": 0.9399 + }, + { + "start": 13056.08, + "end": 13058.76, + "probability": 0.9798 + }, + { + "start": 13061.2, + "end": 13063.34, + "probability": 0.9974 + }, + { + "start": 13063.42, + "end": 13069.22, + "probability": 0.9729 + }, + { + "start": 13069.6, + "end": 13074.74, + "probability": 0.9941 + }, + { + "start": 13074.88, + "end": 13075.23, + "probability": 0.8795 + }, + { + "start": 13075.72, + "end": 13076.21, + "probability": 0.9395 + }, + { + "start": 13076.76, + "end": 13078.32, + "probability": 0.9858 + }, + { + "start": 13078.4, + "end": 13084.8, + "probability": 0.97 + }, + { + "start": 13087.02, + "end": 13087.82, + "probability": 0.8995 + }, + { + "start": 13088.94, + "end": 13092.12, + "probability": 0.6087 + }, + { + "start": 13093.58, + "end": 13097.8, + "probability": 0.9753 + }, + { + "start": 13099.94, + "end": 13104.66, + "probability": 0.6972 + }, + { + "start": 13104.66, + "end": 13106.02, + "probability": 0.8149 + }, + { + "start": 13106.12, + "end": 13106.68, + "probability": 0.7049 + }, + { + "start": 13106.86, + "end": 13109.64, + "probability": 0.9513 + }, + { + "start": 13110.06, + "end": 13111.22, + "probability": 0.8113 + }, + { + "start": 13111.76, + "end": 13112.44, + "probability": 0.533 + }, + { + "start": 13112.7, + "end": 13113.33, + "probability": 0.7852 + }, + { + "start": 13113.56, + "end": 13114.92, + "probability": 0.9601 + }, + { + "start": 13115.74, + "end": 13118.74, + "probability": 0.988 + }, + { + "start": 13118.94, + "end": 13119.58, + "probability": 0.5867 + }, + { + "start": 13120.32, + "end": 13121.8, + "probability": 0.6833 + }, + { + "start": 13123.12, + "end": 13124.34, + "probability": 0.9862 + }, + { + "start": 13125.12, + "end": 13129.96, + "probability": 0.9896 + }, + { + "start": 13132.54, + "end": 13137.7, + "probability": 0.988 + }, + { + "start": 13138.1, + "end": 13139.46, + "probability": 0.8901 + }, + { + "start": 13139.5, + "end": 13139.96, + "probability": 0.6199 + }, + { + "start": 13140.16, + "end": 13140.36, + "probability": 0.5826 + }, + { + "start": 13140.44, + "end": 13143.17, + "probability": 0.9841 + }, + { + "start": 13144.38, + "end": 13145.08, + "probability": 0.945 + }, + { + "start": 13145.18, + "end": 13146.06, + "probability": 0.9172 + }, + { + "start": 13146.24, + "end": 13147.28, + "probability": 0.9528 + }, + { + "start": 13147.42, + "end": 13148.26, + "probability": 0.8241 + }, + { + "start": 13148.72, + "end": 13149.86, + "probability": 0.9478 + }, + { + "start": 13150.1, + "end": 13150.88, + "probability": 0.9068 + }, + { + "start": 13152.12, + "end": 13154.64, + "probability": 0.7008 + }, + { + "start": 13155.16, + "end": 13156.08, + "probability": 0.9304 + }, + { + "start": 13156.18, + "end": 13157.54, + "probability": 0.7908 + }, + { + "start": 13157.54, + "end": 13160.45, + "probability": 0.9871 + }, + { + "start": 13161.14, + "end": 13161.48, + "probability": 0.4861 + }, + { + "start": 13161.74, + "end": 13164.78, + "probability": 0.9858 + }, + { + "start": 13164.78, + "end": 13167.02, + "probability": 0.4317 + }, + { + "start": 13167.02, + "end": 13170.47, + "probability": 0.26 + }, + { + "start": 13170.72, + "end": 13172.58, + "probability": 0.4411 + }, + { + "start": 13172.58, + "end": 13173.09, + "probability": 0.0131 + }, + { + "start": 13174.9, + "end": 13175.04, + "probability": 0.0028 + }, + { + "start": 13177.54, + "end": 13179.2, + "probability": 0.0562 + }, + { + "start": 13179.2, + "end": 13179.6, + "probability": 0.1236 + }, + { + "start": 13181.2, + "end": 13181.2, + "probability": 0.2629 + }, + { + "start": 13183.12, + "end": 13186.6, + "probability": 0.0117 + }, + { + "start": 13186.72, + "end": 13189.28, + "probability": 0.204 + }, + { + "start": 13191.16, + "end": 13191.92, + "probability": 0.821 + }, + { + "start": 13192.06, + "end": 13193.1, + "probability": 0.9787 + }, + { + "start": 13193.34, + "end": 13194.14, + "probability": 0.8285 + }, + { + "start": 13194.62, + "end": 13196.66, + "probability": 0.9087 + }, + { + "start": 13197.16, + "end": 13199.0, + "probability": 0.9186 + }, + { + "start": 13200.95, + "end": 13201.44, + "probability": 0.026 + }, + { + "start": 13201.44, + "end": 13203.36, + "probability": 0.8726 + }, + { + "start": 13203.52, + "end": 13204.42, + "probability": 0.5132 + }, + { + "start": 13205.42, + "end": 13207.1, + "probability": 0.731 + }, + { + "start": 13207.22, + "end": 13209.94, + "probability": 0.9673 + }, + { + "start": 13210.52, + "end": 13214.84, + "probability": 0.9735 + }, + { + "start": 13215.06, + "end": 13216.7, + "probability": 0.8856 + }, + { + "start": 13217.34, + "end": 13220.14, + "probability": 0.9294 + }, + { + "start": 13220.74, + "end": 13223.56, + "probability": 0.8145 + }, + { + "start": 13224.32, + "end": 13227.5, + "probability": 0.946 + }, + { + "start": 13227.7, + "end": 13228.54, + "probability": 0.5535 + }, + { + "start": 13228.6, + "end": 13230.36, + "probability": 0.7056 + }, + { + "start": 13230.75, + "end": 13233.32, + "probability": 0.7884 + }, + { + "start": 13233.48, + "end": 13236.08, + "probability": 0.9604 + }, + { + "start": 13236.62, + "end": 13242.1, + "probability": 0.668 + }, + { + "start": 13242.1, + "end": 13244.84, + "probability": 0.8312 + }, + { + "start": 13245.52, + "end": 13247.04, + "probability": 0.9697 + }, + { + "start": 13247.2, + "end": 13251.9, + "probability": 0.9028 + }, + { + "start": 13252.3, + "end": 13252.98, + "probability": 0.6765 + }, + { + "start": 13253.1, + "end": 13254.3, + "probability": 0.9699 + }, + { + "start": 13254.38, + "end": 13256.88, + "probability": 0.9262 + }, + { + "start": 13256.94, + "end": 13259.36, + "probability": 0.8998 + }, + { + "start": 13260.08, + "end": 13262.94, + "probability": 0.9295 + }, + { + "start": 13262.94, + "end": 13266.9, + "probability": 0.9895 + }, + { + "start": 13267.04, + "end": 13270.76, + "probability": 0.9504 + }, + { + "start": 13271.6, + "end": 13271.84, + "probability": 0.4264 + }, + { + "start": 13272.0, + "end": 13275.22, + "probability": 0.9781 + }, + { + "start": 13275.84, + "end": 13276.66, + "probability": 0.4675 + }, + { + "start": 13276.9, + "end": 13279.6, + "probability": 0.9679 + }, + { + "start": 13280.1, + "end": 13283.64, + "probability": 0.9416 + }, + { + "start": 13284.42, + "end": 13285.58, + "probability": 0.8379 + }, + { + "start": 13285.66, + "end": 13288.32, + "probability": 0.8722 + }, + { + "start": 13288.96, + "end": 13294.12, + "probability": 0.9961 + }, + { + "start": 13294.72, + "end": 13297.24, + "probability": 0.9951 + }, + { + "start": 13297.24, + "end": 13299.7, + "probability": 0.7315 + }, + { + "start": 13300.32, + "end": 13302.76, + "probability": 0.6277 + }, + { + "start": 13303.46, + "end": 13304.74, + "probability": 0.9441 + }, + { + "start": 13304.92, + "end": 13307.08, + "probability": 0.9685 + }, + { + "start": 13307.08, + "end": 13310.8, + "probability": 0.8807 + }, + { + "start": 13311.04, + "end": 13312.64, + "probability": 0.8369 + }, + { + "start": 13313.14, + "end": 13313.98, + "probability": 0.7295 + }, + { + "start": 13314.76, + "end": 13317.3, + "probability": 0.7108 + }, + { + "start": 13317.9, + "end": 13319.94, + "probability": 0.811 + }, + { + "start": 13320.58, + "end": 13321.2, + "probability": 0.8679 + }, + { + "start": 13322.12, + "end": 13325.98, + "probability": 0.8305 + }, + { + "start": 13326.1, + "end": 13327.38, + "probability": 0.8906 + }, + { + "start": 13328.28, + "end": 13329.14, + "probability": 0.5856 + }, + { + "start": 13333.48, + "end": 13336.96, + "probability": 0.4997 + }, + { + "start": 13337.72, + "end": 13340.56, + "probability": 0.7914 + }, + { + "start": 13341.0, + "end": 13342.9, + "probability": 0.8182 + }, + { + "start": 13344.78, + "end": 13345.9, + "probability": 0.1547 + }, + { + "start": 13346.9, + "end": 13348.62, + "probability": 0.8278 + }, + { + "start": 13359.22, + "end": 13360.62, + "probability": 0.8352 + }, + { + "start": 13360.71, + "end": 13366.88, + "probability": 0.9507 + }, + { + "start": 13367.6, + "end": 13370.26, + "probability": 0.7698 + }, + { + "start": 13371.24, + "end": 13379.4, + "probability": 0.9572 + }, + { + "start": 13379.4, + "end": 13386.24, + "probability": 0.9904 + }, + { + "start": 13386.68, + "end": 13390.98, + "probability": 0.9736 + }, + { + "start": 13391.5, + "end": 13393.6, + "probability": 0.9963 + }, + { + "start": 13393.72, + "end": 13395.22, + "probability": 0.9688 + }, + { + "start": 13395.74, + "end": 13399.78, + "probability": 0.8048 + }, + { + "start": 13401.35, + "end": 13406.38, + "probability": 0.9922 + }, + { + "start": 13406.84, + "end": 13411.88, + "probability": 0.8866 + }, + { + "start": 13411.88, + "end": 13415.58, + "probability": 0.9985 + }, + { + "start": 13415.94, + "end": 13418.6, + "probability": 0.989 + }, + { + "start": 13418.7, + "end": 13419.26, + "probability": 0.5751 + }, + { + "start": 13419.78, + "end": 13420.54, + "probability": 0.6671 + }, + { + "start": 13424.5, + "end": 13425.9, + "probability": 0.9458 + }, + { + "start": 13430.36, + "end": 13431.52, + "probability": 0.072 + }, + { + "start": 13434.74, + "end": 13434.74, + "probability": 0.0048 + }, + { + "start": 13435.54, + "end": 13437.06, + "probability": 0.1724 + }, + { + "start": 13444.92, + "end": 13446.82, + "probability": 0.0256 + }, + { + "start": 13448.5, + "end": 13450.88, + "probability": 0.038 + }, + { + "start": 13450.88, + "end": 13450.96, + "probability": 0.0434 + }, + { + "start": 13450.96, + "end": 13450.96, + "probability": 0.0509 + }, + { + "start": 13450.96, + "end": 13452.54, + "probability": 0.1021 + }, + { + "start": 13453.38, + "end": 13455.58, + "probability": 0.5466 + }, + { + "start": 13455.94, + "end": 13457.36, + "probability": 0.8071 + }, + { + "start": 13458.0, + "end": 13459.34, + "probability": 0.5662 + }, + { + "start": 13459.38, + "end": 13461.02, + "probability": 0.7865 + }, + { + "start": 13461.36, + "end": 13465.36, + "probability": 0.8738 + }, + { + "start": 13469.44, + "end": 13469.7, + "probability": 0.0335 + }, + { + "start": 13469.7, + "end": 13471.04, + "probability": 0.7118 + }, + { + "start": 13471.94, + "end": 13473.92, + "probability": 0.9199 + }, + { + "start": 13474.84, + "end": 13476.76, + "probability": 0.8687 + }, + { + "start": 13479.74, + "end": 13480.16, + "probability": 0.3574 + }, + { + "start": 13497.5, + "end": 13497.68, + "probability": 0.2903 + }, + { + "start": 13497.68, + "end": 13498.84, + "probability": 0.5647 + }, + { + "start": 13498.92, + "end": 13500.48, + "probability": 0.4042 + }, + { + "start": 13500.5, + "end": 13501.64, + "probability": 0.7754 + }, + { + "start": 13501.86, + "end": 13501.86, + "probability": 0.5165 + }, + { + "start": 13501.86, + "end": 13502.22, + "probability": 0.4577 + }, + { + "start": 13502.38, + "end": 13503.0, + "probability": 0.7348 + }, + { + "start": 13504.36, + "end": 13506.22, + "probability": 0.9104 + }, + { + "start": 13508.0, + "end": 13516.08, + "probability": 0.9825 + }, + { + "start": 13516.22, + "end": 13517.5, + "probability": 0.7997 + }, + { + "start": 13518.18, + "end": 13521.74, + "probability": 0.9964 + }, + { + "start": 13521.74, + "end": 13526.8, + "probability": 0.9907 + }, + { + "start": 13527.38, + "end": 13527.7, + "probability": 0.6476 + }, + { + "start": 13527.96, + "end": 13529.46, + "probability": 0.9562 + }, + { + "start": 13529.6, + "end": 13530.66, + "probability": 0.9337 + }, + { + "start": 13530.74, + "end": 13532.63, + "probability": 0.9731 + }, + { + "start": 13533.18, + "end": 13534.22, + "probability": 0.9152 + }, + { + "start": 13534.7, + "end": 13540.2, + "probability": 0.9121 + }, + { + "start": 13540.58, + "end": 13544.88, + "probability": 0.8733 + }, + { + "start": 13545.06, + "end": 13550.16, + "probability": 0.916 + }, + { + "start": 13550.16, + "end": 13553.66, + "probability": 0.998 + }, + { + "start": 13554.32, + "end": 13557.5, + "probability": 0.9195 + }, + { + "start": 13557.62, + "end": 13558.42, + "probability": 0.993 + }, + { + "start": 13558.46, + "end": 13559.4, + "probability": 0.9558 + }, + { + "start": 13559.64, + "end": 13562.9, + "probability": 0.9797 + }, + { + "start": 13563.26, + "end": 13566.26, + "probability": 0.9393 + }, + { + "start": 13566.26, + "end": 13569.92, + "probability": 0.9586 + }, + { + "start": 13570.32, + "end": 13571.92, + "probability": 0.8414 + }, + { + "start": 13572.18, + "end": 13573.06, + "probability": 0.9103 + }, + { + "start": 13573.28, + "end": 13576.17, + "probability": 0.9271 + }, + { + "start": 13577.02, + "end": 13582.38, + "probability": 0.9659 + }, + { + "start": 13582.74, + "end": 13586.8, + "probability": 0.9912 + }, + { + "start": 13587.5, + "end": 13591.12, + "probability": 0.9302 + }, + { + "start": 13592.04, + "end": 13594.3, + "probability": 0.9507 + }, + { + "start": 13594.5, + "end": 13595.96, + "probability": 0.9469 + }, + { + "start": 13596.06, + "end": 13601.96, + "probability": 0.9865 + }, + { + "start": 13601.96, + "end": 13608.86, + "probability": 0.9955 + }, + { + "start": 13609.38, + "end": 13610.56, + "probability": 0.8078 + }, + { + "start": 13610.98, + "end": 13616.48, + "probability": 0.9922 + }, + { + "start": 13616.92, + "end": 13622.18, + "probability": 0.9924 + }, + { + "start": 13622.18, + "end": 13627.58, + "probability": 0.9858 + }, + { + "start": 13628.32, + "end": 13629.82, + "probability": 0.0402 + }, + { + "start": 13630.66, + "end": 13633.8, + "probability": 0.9558 + }, + { + "start": 13634.5, + "end": 13636.46, + "probability": 0.583 + }, + { + "start": 13637.08, + "end": 13637.94, + "probability": 0.6123 + }, + { + "start": 13637.96, + "end": 13638.86, + "probability": 0.8345 + }, + { + "start": 13639.32, + "end": 13644.28, + "probability": 0.9765 + }, + { + "start": 13644.78, + "end": 13648.44, + "probability": 0.9813 + }, + { + "start": 13648.44, + "end": 13652.3, + "probability": 0.9876 + }, + { + "start": 13652.66, + "end": 13656.1, + "probability": 0.9869 + }, + { + "start": 13656.92, + "end": 13662.82, + "probability": 0.8794 + }, + { + "start": 13663.26, + "end": 13665.32, + "probability": 0.7991 + }, + { + "start": 13665.4, + "end": 13665.84, + "probability": 0.5591 + }, + { + "start": 13666.08, + "end": 13666.86, + "probability": 0.5473 + }, + { + "start": 13666.88, + "end": 13668.58, + "probability": 0.5472 + }, + { + "start": 13669.68, + "end": 13671.92, + "probability": 0.6685 + }, + { + "start": 13675.02, + "end": 13679.18, + "probability": 0.9116 + }, + { + "start": 13685.66, + "end": 13686.6, + "probability": 0.5903 + }, + { + "start": 13687.0, + "end": 13688.32, + "probability": 0.6958 + }, + { + "start": 13688.42, + "end": 13689.74, + "probability": 0.6673 + }, + { + "start": 13690.48, + "end": 13693.46, + "probability": 0.9874 + }, + { + "start": 13693.62, + "end": 13698.94, + "probability": 0.9439 + }, + { + "start": 13699.02, + "end": 13700.46, + "probability": 0.7937 + }, + { + "start": 13700.94, + "end": 13702.58, + "probability": 0.9966 + }, + { + "start": 13703.42, + "end": 13708.56, + "probability": 0.9868 + }, + { + "start": 13709.2, + "end": 13712.4, + "probability": 0.9951 + }, + { + "start": 13712.92, + "end": 13713.96, + "probability": 0.6317 + }, + { + "start": 13714.8, + "end": 13715.72, + "probability": 0.7854 + }, + { + "start": 13716.22, + "end": 13721.52, + "probability": 0.9928 + }, + { + "start": 13722.06, + "end": 13730.7, + "probability": 0.8984 + }, + { + "start": 13731.48, + "end": 13737.22, + "probability": 0.9534 + }, + { + "start": 13737.4, + "end": 13742.8, + "probability": 0.9939 + }, + { + "start": 13743.3, + "end": 13746.88, + "probability": 0.8854 + }, + { + "start": 13747.04, + "end": 13751.4, + "probability": 0.9268 + }, + { + "start": 13752.44, + "end": 13754.34, + "probability": 0.6509 + }, + { + "start": 13754.64, + "end": 13759.36, + "probability": 0.9794 + }, + { + "start": 13760.56, + "end": 13765.92, + "probability": 0.9927 + }, + { + "start": 13766.38, + "end": 13767.18, + "probability": 0.5305 + }, + { + "start": 13768.4, + "end": 13769.44, + "probability": 0.0041 + }, + { + "start": 13769.74, + "end": 13770.86, + "probability": 0.5791 + }, + { + "start": 13771.06, + "end": 13772.94, + "probability": 0.9919 + }, + { + "start": 13772.94, + "end": 13774.2, + "probability": 0.8198 + }, + { + "start": 13774.28, + "end": 13775.24, + "probability": 0.7696 + }, + { + "start": 13776.52, + "end": 13777.74, + "probability": 0.8252 + }, + { + "start": 13778.1, + "end": 13779.5, + "probability": 0.7925 + }, + { + "start": 13784.94, + "end": 13787.74, + "probability": 0.0705 + }, + { + "start": 13789.1, + "end": 13793.58, + "probability": 0.1279 + }, + { + "start": 13798.24, + "end": 13799.34, + "probability": 0.0024 + }, + { + "start": 13801.05, + "end": 13803.54, + "probability": 0.016 + }, + { + "start": 13811.64, + "end": 13814.08, + "probability": 0.05 + }, + { + "start": 13816.85, + "end": 13818.26, + "probability": 0.1163 + }, + { + "start": 13821.0, + "end": 13821.18, + "probability": 0.1068 + }, + { + "start": 13822.58, + "end": 13822.8, + "probability": 0.3904 + }, + { + "start": 13824.9, + "end": 13828.72, + "probability": 0.0546 + }, + { + "start": 13874.0, + "end": 13874.0, + "probability": 0.0 + }, + { + "start": 13874.0, + "end": 13874.0, + "probability": 0.0 + }, + { + "start": 13874.0, + "end": 13874.0, + "probability": 0.0 + }, + { + "start": 13874.0, + "end": 13874.0, + "probability": 0.0 + }, + { + "start": 13874.0, + "end": 13874.0, + "probability": 0.0 + }, + { + "start": 13874.0, + "end": 13874.0, + "probability": 0.0 + }, + { + "start": 13874.0, + "end": 13874.0, + "probability": 0.0 + }, + { + "start": 13874.0, + "end": 13874.0, + "probability": 0.0 + }, + { + "start": 13874.0, + "end": 13874.0, + "probability": 0.0 + }, + { + "start": 13874.0, + "end": 13874.0, + "probability": 0.0 + }, + { + "start": 13874.0, + "end": 13874.0, + "probability": 0.0 + }, + { + "start": 13874.0, + "end": 13874.0, + "probability": 0.0 + }, + { + "start": 13874.0, + "end": 13874.0, + "probability": 0.0 + }, + { + "start": 13874.0, + "end": 13874.0, + "probability": 0.0 + }, + { + "start": 13874.0, + "end": 13874.0, + "probability": 0.0 + }, + { + "start": 13874.0, + "end": 13874.0, + "probability": 0.0 + }, + { + "start": 13874.0, + "end": 13874.0, + "probability": 0.0 + }, + { + "start": 13874.0, + "end": 13874.0, + "probability": 0.0 + }, + { + "start": 13874.0, + "end": 13874.0, + "probability": 0.0 + }, + { + "start": 13874.0, + "end": 13874.0, + "probability": 0.0 + }, + { + "start": 13874.0, + "end": 13874.0, + "probability": 0.0 + }, + { + "start": 13874.0, + "end": 13874.0, + "probability": 0.0 + }, + { + "start": 13874.0, + "end": 13874.0, + "probability": 0.0 + }, + { + "start": 13874.0, + "end": 13874.0, + "probability": 0.0 + }, + { + "start": 13874.24, + "end": 13874.24, + "probability": 0.0785 + }, + { + "start": 13874.24, + "end": 13874.24, + "probability": 0.0103 + }, + { + "start": 13874.24, + "end": 13876.26, + "probability": 0.3119 + }, + { + "start": 13876.92, + "end": 13878.52, + "probability": 0.6668 + }, + { + "start": 13879.28, + "end": 13881.54, + "probability": 0.6405 + }, + { + "start": 13881.74, + "end": 13886.18, + "probability": 0.9427 + }, + { + "start": 13886.18, + "end": 13889.34, + "probability": 0.8998 + }, + { + "start": 13889.4, + "end": 13889.9, + "probability": 0.4635 + }, + { + "start": 13889.98, + "end": 13890.64, + "probability": 0.4518 + }, + { + "start": 13891.14, + "end": 13893.22, + "probability": 0.9119 + }, + { + "start": 13893.66, + "end": 13894.78, + "probability": 0.8967 + }, + { + "start": 13894.9, + "end": 13895.8, + "probability": 0.673 + }, + { + "start": 13895.9, + "end": 13898.84, + "probability": 0.8233 + }, + { + "start": 13899.96, + "end": 13902.59, + "probability": 0.9419 + }, + { + "start": 13904.06, + "end": 13906.3, + "probability": 0.7739 + }, + { + "start": 13906.64, + "end": 13910.05, + "probability": 0.971 + }, + { + "start": 13910.3, + "end": 13911.28, + "probability": 0.9641 + }, + { + "start": 13911.9, + "end": 13915.52, + "probability": 0.5621 + }, + { + "start": 13916.22, + "end": 13920.22, + "probability": 0.8233 + }, + { + "start": 13920.22, + "end": 13923.46, + "probability": 0.94 + }, + { + "start": 13923.66, + "end": 13927.06, + "probability": 0.9636 + }, + { + "start": 13927.14, + "end": 13927.58, + "probability": 0.9126 + }, + { + "start": 13927.72, + "end": 13928.44, + "probability": 0.6745 + }, + { + "start": 13928.9, + "end": 13933.24, + "probability": 0.9161 + }, + { + "start": 13933.3, + "end": 13934.68, + "probability": 0.9911 + }, + { + "start": 13935.4, + "end": 13940.04, + "probability": 0.9493 + }, + { + "start": 13940.12, + "end": 13941.04, + "probability": 0.8336 + }, + { + "start": 13941.7, + "end": 13944.26, + "probability": 0.8865 + }, + { + "start": 13944.38, + "end": 13949.88, + "probability": 0.9924 + }, + { + "start": 13950.6, + "end": 13953.26, + "probability": 0.9691 + }, + { + "start": 13954.06, + "end": 13954.18, + "probability": 0.2359 + }, + { + "start": 13954.18, + "end": 13954.4, + "probability": 0.6673 + }, + { + "start": 13954.48, + "end": 13956.1, + "probability": 0.809 + }, + { + "start": 13956.16, + "end": 13960.26, + "probability": 0.97 + }, + { + "start": 13960.26, + "end": 13962.82, + "probability": 0.8797 + }, + { + "start": 13962.96, + "end": 13965.3, + "probability": 0.8363 + }, + { + "start": 13965.74, + "end": 13966.87, + "probability": 0.843 + }, + { + "start": 13967.34, + "end": 13969.7, + "probability": 0.8848 + }, + { + "start": 13969.76, + "end": 13969.96, + "probability": 0.6593 + }, + { + "start": 13970.08, + "end": 13970.94, + "probability": 0.704 + }, + { + "start": 13971.34, + "end": 13973.9, + "probability": 0.9847 + }, + { + "start": 13974.84, + "end": 13979.9, + "probability": 0.9644 + }, + { + "start": 13979.9, + "end": 13985.36, + "probability": 0.9738 + }, + { + "start": 13985.64, + "end": 13988.78, + "probability": 0.9044 + }, + { + "start": 13989.46, + "end": 13992.8, + "probability": 0.9824 + }, + { + "start": 13993.28, + "end": 13995.44, + "probability": 0.9915 + }, + { + "start": 13995.86, + "end": 13999.32, + "probability": 0.9869 + }, + { + "start": 14000.18, + "end": 14003.96, + "probability": 0.9861 + }, + { + "start": 14003.96, + "end": 14006.98, + "probability": 0.8955 + }, + { + "start": 14007.08, + "end": 14011.74, + "probability": 0.8841 + }, + { + "start": 14012.1, + "end": 14014.6, + "probability": 0.9969 + }, + { + "start": 14015.12, + "end": 14019.82, + "probability": 0.9781 + }, + { + "start": 14020.88, + "end": 14024.78, + "probability": 0.9178 + }, + { + "start": 14024.88, + "end": 14029.74, + "probability": 0.9854 + }, + { + "start": 14029.74, + "end": 14033.02, + "probability": 0.9615 + }, + { + "start": 14033.14, + "end": 14036.86, + "probability": 0.9132 + }, + { + "start": 14037.1, + "end": 14042.24, + "probability": 0.8733 + }, + { + "start": 14042.66, + "end": 14047.72, + "probability": 0.9781 + }, + { + "start": 14049.6, + "end": 14049.8, + "probability": 0.8432 + }, + { + "start": 14049.94, + "end": 14051.36, + "probability": 0.7358 + }, + { + "start": 14051.44, + "end": 14052.04, + "probability": 0.4895 + }, + { + "start": 14052.18, + "end": 14056.06, + "probability": 0.9243 + }, + { + "start": 14056.06, + "end": 14056.18, + "probability": 0.4272 + }, + { + "start": 14056.5, + "end": 14056.58, + "probability": 0.3695 + }, + { + "start": 14056.72, + "end": 14058.54, + "probability": 0.5669 + }, + { + "start": 14058.68, + "end": 14060.56, + "probability": 0.9395 + }, + { + "start": 14060.76, + "end": 14064.12, + "probability": 0.998 + }, + { + "start": 14064.88, + "end": 14068.68, + "probability": 0.9344 + }, + { + "start": 14068.68, + "end": 14069.88, + "probability": 0.9834 + }, + { + "start": 14070.06, + "end": 14070.96, + "probability": 0.2692 + }, + { + "start": 14071.25, + "end": 14074.49, + "probability": 0.8016 + }, + { + "start": 14075.36, + "end": 14077.28, + "probability": 0.8474 + }, + { + "start": 14077.38, + "end": 14077.6, + "probability": 0.8735 + }, + { + "start": 14077.72, + "end": 14079.42, + "probability": 0.8931 + }, + { + "start": 14079.48, + "end": 14081.92, + "probability": 0.7935 + }, + { + "start": 14082.06, + "end": 14083.74, + "probability": 0.9512 + }, + { + "start": 14083.76, + "end": 14086.2, + "probability": 0.9177 + }, + { + "start": 14086.34, + "end": 14089.58, + "probability": 0.7517 + }, + { + "start": 14090.18, + "end": 14093.5, + "probability": 0.6851 + }, + { + "start": 14093.86, + "end": 14095.74, + "probability": 0.9536 + }, + { + "start": 14096.38, + "end": 14098.38, + "probability": 0.7521 + }, + { + "start": 14098.7, + "end": 14101.65, + "probability": 0.0897 + }, + { + "start": 14102.74, + "end": 14102.84, + "probability": 0.1483 + }, + { + "start": 14102.84, + "end": 14103.16, + "probability": 0.0431 + }, + { + "start": 14105.28, + "end": 14107.64, + "probability": 0.6663 + }, + { + "start": 14107.68, + "end": 14108.74, + "probability": 0.7832 + }, + { + "start": 14108.84, + "end": 14109.85, + "probability": 0.8389 + }, + { + "start": 14110.34, + "end": 14111.42, + "probability": 0.9448 + }, + { + "start": 14111.5, + "end": 14112.44, + "probability": 0.7259 + }, + { + "start": 14112.54, + "end": 14114.14, + "probability": 0.9509 + }, + { + "start": 14114.96, + "end": 14118.06, + "probability": 0.9344 + }, + { + "start": 14118.74, + "end": 14122.88, + "probability": 0.9931 + }, + { + "start": 14122.92, + "end": 14123.38, + "probability": 0.4626 + }, + { + "start": 14123.46, + "end": 14126.56, + "probability": 0.8671 + }, + { + "start": 14127.12, + "end": 14128.4, + "probability": 0.1787 + }, + { + "start": 14128.82, + "end": 14131.7, + "probability": 0.9746 + }, + { + "start": 14132.66, + "end": 14135.77, + "probability": 0.628 + }, + { + "start": 14136.0, + "end": 14139.4, + "probability": 0.9985 + }, + { + "start": 14139.48, + "end": 14141.7, + "probability": 0.9931 + }, + { + "start": 14141.76, + "end": 14144.1, + "probability": 0.998 + }, + { + "start": 14144.68, + "end": 14145.97, + "probability": 0.9937 + }, + { + "start": 14146.37, + "end": 14147.93, + "probability": 0.5756 + }, + { + "start": 14148.97, + "end": 14151.49, + "probability": 0.2316 + }, + { + "start": 14152.13, + "end": 14154.33, + "probability": 0.7715 + }, + { + "start": 14154.49, + "end": 14155.33, + "probability": 0.5472 + }, + { + "start": 14155.35, + "end": 14157.17, + "probability": 0.2342 + }, + { + "start": 14157.31, + "end": 14159.59, + "probability": 0.9516 + }, + { + "start": 14159.71, + "end": 14160.03, + "probability": 0.8269 + }, + { + "start": 14160.15, + "end": 14160.93, + "probability": 0.783 + }, + { + "start": 14161.29, + "end": 14164.44, + "probability": 0.259 + }, + { + "start": 14166.17, + "end": 14168.27, + "probability": 0.6432 + }, + { + "start": 14168.95, + "end": 14169.47, + "probability": 0.3576 + }, + { + "start": 14169.47, + "end": 14172.11, + "probability": 0.0876 + }, + { + "start": 14173.51, + "end": 14178.03, + "probability": 0.9272 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.34, + "end": 14283.28, + "probability": 0.01 + }, + { + "start": 14283.28, + "end": 14283.28, + "probability": 0.2067 + }, + { + "start": 14283.28, + "end": 14285.7, + "probability": 0.7237 + }, + { + "start": 14285.74, + "end": 14288.96, + "probability": 0.8744 + }, + { + "start": 14289.1, + "end": 14291.86, + "probability": 0.9702 + }, + { + "start": 14293.02, + "end": 14294.88, + "probability": 0.9481 + }, + { + "start": 14295.0, + "end": 14295.48, + "probability": 0.7389 + }, + { + "start": 14295.56, + "end": 14296.31, + "probability": 0.4813 + }, + { + "start": 14296.5, + "end": 14298.15, + "probability": 0.6816 + }, + { + "start": 14299.16, + "end": 14300.44, + "probability": 0.8302 + }, + { + "start": 14300.6, + "end": 14306.12, + "probability": 0.9129 + }, + { + "start": 14306.22, + "end": 14314.46, + "probability": 0.9851 + }, + { + "start": 14315.94, + "end": 14318.32, + "probability": 0.7771 + }, + { + "start": 14319.08, + "end": 14320.74, + "probability": 0.526 + }, + { + "start": 14322.68, + "end": 14324.14, + "probability": 0.6927 + }, + { + "start": 14324.34, + "end": 14327.26, + "probability": 0.8224 + }, + { + "start": 14328.5, + "end": 14331.16, + "probability": 0.9917 + }, + { + "start": 14331.3, + "end": 14332.8, + "probability": 0.9858 + }, + { + "start": 14334.13, + "end": 14336.92, + "probability": 0.794 + }, + { + "start": 14338.0, + "end": 14340.36, + "probability": 0.7837 + }, + { + "start": 14340.54, + "end": 14341.8, + "probability": 0.8103 + }, + { + "start": 14341.94, + "end": 14342.78, + "probability": 0.235 + }, + { + "start": 14342.94, + "end": 14343.82, + "probability": 0.8784 + }, + { + "start": 14344.38, + "end": 14348.38, + "probability": 0.9799 + }, + { + "start": 14349.68, + "end": 14354.34, + "probability": 0.9744 + }, + { + "start": 14354.34, + "end": 14359.0, + "probability": 0.8643 + }, + { + "start": 14359.98, + "end": 14361.58, + "probability": 0.9312 + }, + { + "start": 14361.68, + "end": 14362.78, + "probability": 0.5454 + }, + { + "start": 14362.86, + "end": 14368.6, + "probability": 0.834 + }, + { + "start": 14369.46, + "end": 14371.92, + "probability": 0.232 + }, + { + "start": 14371.92, + "end": 14373.08, + "probability": 0.3806 + }, + { + "start": 14373.18, + "end": 14375.36, + "probability": 0.8918 + }, + { + "start": 14375.6, + "end": 14383.44, + "probability": 0.7191 + }, + { + "start": 14384.84, + "end": 14385.84, + "probability": 0.6436 + }, + { + "start": 14386.98, + "end": 14390.04, + "probability": 0.918 + }, + { + "start": 14390.9, + "end": 14393.26, + "probability": 0.7858 + }, + { + "start": 14393.3, + "end": 14395.37, + "probability": 0.7395 + }, + { + "start": 14396.26, + "end": 14397.18, + "probability": 0.7287 + }, + { + "start": 14397.2, + "end": 14398.88, + "probability": 0.9832 + }, + { + "start": 14398.94, + "end": 14401.24, + "probability": 0.4368 + }, + { + "start": 14402.22, + "end": 14402.86, + "probability": 0.5498 + }, + { + "start": 14402.86, + "end": 14404.32, + "probability": 0.0227 + }, + { + "start": 14404.68, + "end": 14406.12, + "probability": 0.8935 + }, + { + "start": 14406.24, + "end": 14406.68, + "probability": 0.5449 + }, + { + "start": 14406.76, + "end": 14407.66, + "probability": 0.5439 + }, + { + "start": 14407.82, + "end": 14408.73, + "probability": 0.9023 + }, + { + "start": 14409.16, + "end": 14410.64, + "probability": 0.9502 + }, + { + "start": 14410.84, + "end": 14411.7, + "probability": 0.4484 + }, + { + "start": 14412.36, + "end": 14415.64, + "probability": 0.8981 + }, + { + "start": 14417.0, + "end": 14418.16, + "probability": 0.6389 + }, + { + "start": 14418.8, + "end": 14419.36, + "probability": 0.4845 + }, + { + "start": 14419.78, + "end": 14420.4, + "probability": 0.4626 + }, + { + "start": 14420.8, + "end": 14421.54, + "probability": 0.8994 + }, + { + "start": 14422.0, + "end": 14423.1, + "probability": 0.583 + }, + { + "start": 14424.2, + "end": 14424.88, + "probability": 0.3382 + }, + { + "start": 14424.92, + "end": 14425.92, + "probability": 0.0982 + }, + { + "start": 14426.72, + "end": 14427.64, + "probability": 0.9436 + }, + { + "start": 14427.76, + "end": 14428.4, + "probability": 0.6627 + }, + { + "start": 14428.64, + "end": 14431.24, + "probability": 0.9745 + }, + { + "start": 14431.86, + "end": 14433.28, + "probability": 0.0874 + }, + { + "start": 14433.5, + "end": 14434.04, + "probability": 0.5889 + }, + { + "start": 14434.18, + "end": 14435.56, + "probability": 0.7458 + }, + { + "start": 14435.7, + "end": 14437.09, + "probability": 0.8433 + }, + { + "start": 14440.02, + "end": 14443.78, + "probability": 0.7545 + }, + { + "start": 14445.08, + "end": 14448.52, + "probability": 0.9033 + }, + { + "start": 14448.52, + "end": 14451.03, + "probability": 0.8514 + }, + { + "start": 14453.4, + "end": 14455.86, + "probability": 0.9882 + }, + { + "start": 14457.04, + "end": 14460.12, + "probability": 0.9148 + }, + { + "start": 14461.32, + "end": 14462.58, + "probability": 0.7874 + }, + { + "start": 14464.08, + "end": 14464.7, + "probability": 0.7343 + }, + { + "start": 14465.42, + "end": 14465.58, + "probability": 0.2475 + }, + { + "start": 14465.58, + "end": 14466.34, + "probability": 0.6354 + }, + { + "start": 14466.46, + "end": 14467.44, + "probability": 0.8913 + }, + { + "start": 14467.92, + "end": 14468.82, + "probability": 0.813 + }, + { + "start": 14468.9, + "end": 14469.74, + "probability": 0.9811 + }, + { + "start": 14470.24, + "end": 14476.74, + "probability": 0.9365 + }, + { + "start": 14478.32, + "end": 14480.2, + "probability": 0.7869 + }, + { + "start": 14480.46, + "end": 14481.34, + "probability": 0.7034 + }, + { + "start": 14481.42, + "end": 14487.16, + "probability": 0.9301 + }, + { + "start": 14490.02, + "end": 14490.94, + "probability": 0.5332 + }, + { + "start": 14491.08, + "end": 14496.24, + "probability": 0.9517 + }, + { + "start": 14497.8, + "end": 14499.84, + "probability": 0.707 + }, + { + "start": 14499.94, + "end": 14502.44, + "probability": 0.6982 + }, + { + "start": 14503.89, + "end": 14504.68, + "probability": 0.64 + }, + { + "start": 14504.82, + "end": 14505.12, + "probability": 0.7114 + }, + { + "start": 14505.76, + "end": 14507.4, + "probability": 0.9716 + }, + { + "start": 14507.44, + "end": 14508.9, + "probability": 0.9442 + }, + { + "start": 14510.26, + "end": 14513.04, + "probability": 0.9648 + }, + { + "start": 14513.8, + "end": 14519.14, + "probability": 0.6865 + }, + { + "start": 14519.96, + "end": 14521.7, + "probability": 0.4685 + }, + { + "start": 14521.9, + "end": 14528.8, + "probability": 0.7969 + }, + { + "start": 14529.38, + "end": 14530.9, + "probability": 0.6247 + }, + { + "start": 14531.28, + "end": 14534.28, + "probability": 0.9865 + }, + { + "start": 14534.32, + "end": 14534.92, + "probability": 0.6373 + }, + { + "start": 14535.28, + "end": 14536.64, + "probability": 0.4177 + }, + { + "start": 14537.06, + "end": 14539.62, + "probability": 0.5513 + }, + { + "start": 14562.12, + "end": 14564.4, + "probability": 0.7327 + }, + { + "start": 14570.04, + "end": 14571.2, + "probability": 0.374 + }, + { + "start": 14572.98, + "end": 14573.26, + "probability": 0.0037 + }, + { + "start": 14573.84, + "end": 14575.24, + "probability": 0.0787 + }, + { + "start": 14575.74, + "end": 14578.28, + "probability": 0.6527 + }, + { + "start": 14579.5, + "end": 14582.43, + "probability": 0.9549 + }, + { + "start": 14585.22, + "end": 14586.12, + "probability": 0.1419 + }, + { + "start": 14586.12, + "end": 14586.12, + "probability": 0.0756 + }, + { + "start": 14586.12, + "end": 14586.18, + "probability": 0.0737 + }, + { + "start": 14586.46, + "end": 14590.2, + "probability": 0.7195 + }, + { + "start": 14590.3, + "end": 14592.46, + "probability": 0.7637 + }, + { + "start": 14592.72, + "end": 14593.72, + "probability": 0.7881 + }, + { + "start": 14593.84, + "end": 14594.61, + "probability": 0.7532 + }, + { + "start": 14594.86, + "end": 14595.64, + "probability": 0.5919 + }, + { + "start": 14595.64, + "end": 14596.08, + "probability": 0.0408 + }, + { + "start": 14596.1, + "end": 14596.83, + "probability": 0.9672 + }, + { + "start": 14597.1, + "end": 14598.02, + "probability": 0.6196 + }, + { + "start": 14598.16, + "end": 14600.68, + "probability": 0.8344 + }, + { + "start": 14600.88, + "end": 14602.06, + "probability": 0.9595 + }, + { + "start": 14602.16, + "end": 14604.64, + "probability": 0.6442 + }, + { + "start": 14605.48, + "end": 14607.38, + "probability": 0.8467 + }, + { + "start": 14607.46, + "end": 14608.3, + "probability": 0.6763 + }, + { + "start": 14608.4, + "end": 14609.92, + "probability": 0.7512 + }, + { + "start": 14609.96, + "end": 14610.38, + "probability": 0.8492 + }, + { + "start": 14610.42, + "end": 14610.8, + "probability": 0.6867 + }, + { + "start": 14610.92, + "end": 14611.56, + "probability": 0.8132 + }, + { + "start": 14612.06, + "end": 14612.22, + "probability": 0.0063 + }, + { + "start": 14612.26, + "end": 14613.64, + "probability": 0.8958 + }, + { + "start": 14614.02, + "end": 14615.34, + "probability": 0.7014 + }, + { + "start": 14615.58, + "end": 14616.06, + "probability": 0.8124 + }, + { + "start": 14617.64, + "end": 14619.58, + "probability": 0.1307 + }, + { + "start": 14619.58, + "end": 14620.88, + "probability": 0.4435 + }, + { + "start": 14620.88, + "end": 14622.3, + "probability": 0.017 + }, + { + "start": 14622.66, + "end": 14624.72, + "probability": 0.71 + }, + { + "start": 14624.86, + "end": 14627.36, + "probability": 0.6336 + }, + { + "start": 14627.6, + "end": 14629.12, + "probability": 0.9883 + }, + { + "start": 14629.22, + "end": 14629.94, + "probability": 0.9659 + }, + { + "start": 14630.3, + "end": 14630.64, + "probability": 0.1893 + }, + { + "start": 14630.66, + "end": 14631.22, + "probability": 0.2875 + }, + { + "start": 14632.18, + "end": 14633.02, + "probability": 0.9026 + }, + { + "start": 14633.16, + "end": 14635.68, + "probability": 0.6585 + }, + { + "start": 14636.5, + "end": 14637.43, + "probability": 0.9697 + }, + { + "start": 14637.66, + "end": 14639.1, + "probability": 0.6976 + }, + { + "start": 14639.28, + "end": 14640.86, + "probability": 0.8881 + }, + { + "start": 14641.32, + "end": 14641.68, + "probability": 0.6991 + }, + { + "start": 14641.86, + "end": 14642.94, + "probability": 0.8171 + }, + { + "start": 14643.02, + "end": 14643.42, + "probability": 0.5398 + }, + { + "start": 14643.52, + "end": 14644.14, + "probability": 0.8257 + }, + { + "start": 14646.64, + "end": 14650.82, + "probability": 0.0371 + }, + { + "start": 14653.51, + "end": 14654.34, + "probability": 0.1565 + }, + { + "start": 14654.34, + "end": 14654.34, + "probability": 0.0203 + }, + { + "start": 14654.34, + "end": 14654.34, + "probability": 0.0302 + }, + { + "start": 14654.34, + "end": 14656.0, + "probability": 0.399 + }, + { + "start": 14656.7, + "end": 14659.92, + "probability": 0.7961 + }, + { + "start": 14660.14, + "end": 14661.1, + "probability": 0.7448 + }, + { + "start": 14662.12, + "end": 14662.12, + "probability": 0.4046 + }, + { + "start": 14662.12, + "end": 14662.34, + "probability": 0.3515 + }, + { + "start": 14662.58, + "end": 14663.18, + "probability": 0.828 + }, + { + "start": 14663.32, + "end": 14664.42, + "probability": 0.7957 + }, + { + "start": 14664.52, + "end": 14665.5, + "probability": 0.8953 + }, + { + "start": 14665.74, + "end": 14668.52, + "probability": 0.9676 + }, + { + "start": 14669.56, + "end": 14672.62, + "probability": 0.9954 + }, + { + "start": 14672.76, + "end": 14673.22, + "probability": 0.81 + }, + { + "start": 14673.46, + "end": 14678.68, + "probability": 0.9976 + }, + { + "start": 14678.68, + "end": 14684.22, + "probability": 0.9929 + }, + { + "start": 14684.22, + "end": 14689.98, + "probability": 0.998 + }, + { + "start": 14690.94, + "end": 14691.66, + "probability": 0.5812 + }, + { + "start": 14691.74, + "end": 14692.44, + "probability": 0.7846 + }, + { + "start": 14692.58, + "end": 14698.16, + "probability": 0.9958 + }, + { + "start": 14698.16, + "end": 14702.8, + "probability": 0.9971 + }, + { + "start": 14704.1, + "end": 14708.8, + "probability": 0.991 + }, + { + "start": 14710.0, + "end": 14716.72, + "probability": 0.9519 + }, + { + "start": 14717.72, + "end": 14722.36, + "probability": 0.9851 + }, + { + "start": 14722.92, + "end": 14727.3, + "probability": 0.8499 + }, + { + "start": 14727.3, + "end": 14731.9, + "probability": 0.9767 + }, + { + "start": 14732.64, + "end": 14735.48, + "probability": 0.9897 + }, + { + "start": 14736.28, + "end": 14739.9, + "probability": 0.997 + }, + { + "start": 14743.36, + "end": 14745.58, + "probability": 0.9229 + }, + { + "start": 14746.76, + "end": 14749.2, + "probability": 0.6517 + }, + { + "start": 14750.4, + "end": 14750.96, + "probability": 0.8187 + }, + { + "start": 14751.58, + "end": 14754.98, + "probability": 0.9873 + }, + { + "start": 14755.22, + "end": 14758.5, + "probability": 0.9717 + }, + { + "start": 14759.58, + "end": 14760.98, + "probability": 0.8357 + }, + { + "start": 14761.18, + "end": 14765.12, + "probability": 0.9956 + }, + { + "start": 14765.64, + "end": 14770.96, + "probability": 0.9952 + }, + { + "start": 14771.04, + "end": 14772.68, + "probability": 0.9706 + }, + { + "start": 14774.64, + "end": 14776.84, + "probability": 0.9771 + }, + { + "start": 14777.36, + "end": 14779.04, + "probability": 0.9902 + }, + { + "start": 14779.74, + "end": 14782.1, + "probability": 0.7265 + }, + { + "start": 14782.6, + "end": 14783.76, + "probability": 0.8826 + }, + { + "start": 14783.86, + "end": 14786.54, + "probability": 0.9868 + }, + { + "start": 14786.6, + "end": 14789.4, + "probability": 0.9883 + }, + { + "start": 14790.78, + "end": 14791.26, + "probability": 0.6997 + }, + { + "start": 14791.86, + "end": 14799.08, + "probability": 0.9419 + }, + { + "start": 14799.72, + "end": 14808.5, + "probability": 0.942 + }, + { + "start": 14808.54, + "end": 14811.78, + "probability": 0.9961 + }, + { + "start": 14811.78, + "end": 14816.7, + "probability": 0.9917 + }, + { + "start": 14816.78, + "end": 14822.4, + "probability": 0.9884 + }, + { + "start": 14822.6, + "end": 14824.7, + "probability": 0.9568 + }, + { + "start": 14824.96, + "end": 14827.06, + "probability": 0.7433 + }, + { + "start": 14828.24, + "end": 14832.64, + "probability": 0.9309 + }, + { + "start": 14832.8, + "end": 14834.12, + "probability": 0.88 + }, + { + "start": 14834.5, + "end": 14836.56, + "probability": 0.9888 + }, + { + "start": 14836.62, + "end": 14843.7, + "probability": 0.9929 + }, + { + "start": 14844.04, + "end": 14847.06, + "probability": 0.021 + }, + { + "start": 14854.9, + "end": 14856.35, + "probability": 0.9849 + }, + { + "start": 14856.44, + "end": 14856.44, + "probability": 0.0281 + }, + { + "start": 14856.44, + "end": 14856.44, + "probability": 0.1162 + }, + { + "start": 14856.44, + "end": 14858.26, + "probability": 0.264 + }, + { + "start": 14858.74, + "end": 14864.12, + "probability": 0.9688 + }, + { + "start": 14864.56, + "end": 14866.41, + "probability": 0.4387 + }, + { + "start": 14867.64, + "end": 14868.46, + "probability": 0.8073 + }, + { + "start": 14869.06, + "end": 14870.96, + "probability": 0.9738 + }, + { + "start": 14871.08, + "end": 14872.92, + "probability": 0.9473 + }, + { + "start": 14873.32, + "end": 14874.3, + "probability": 0.9192 + }, + { + "start": 14874.82, + "end": 14876.66, + "probability": 0.9973 + }, + { + "start": 14877.44, + "end": 14879.8, + "probability": 0.8646 + }, + { + "start": 14879.88, + "end": 14880.34, + "probability": 0.8672 + }, + { + "start": 14880.82, + "end": 14881.6, + "probability": 0.6437 + }, + { + "start": 14881.76, + "end": 14884.06, + "probability": 0.8842 + }, + { + "start": 14884.4, + "end": 14887.52, + "probability": 0.6653 + }, + { + "start": 14887.54, + "end": 14889.15, + "probability": 0.2672 + }, + { + "start": 14890.42, + "end": 14890.84, + "probability": 0.7435 + }, + { + "start": 14891.54, + "end": 14893.86, + "probability": 0.9652 + }, + { + "start": 14894.56, + "end": 14896.98, + "probability": 0.7422 + }, + { + "start": 14897.04, + "end": 14900.48, + "probability": 0.877 + }, + { + "start": 14900.56, + "end": 14903.86, + "probability": 0.9098 + }, + { + "start": 14903.92, + "end": 14907.06, + "probability": 0.979 + }, + { + "start": 14907.1, + "end": 14908.54, + "probability": 0.8911 + }, + { + "start": 14908.92, + "end": 14912.64, + "probability": 0.9531 + }, + { + "start": 14912.64, + "end": 14914.22, + "probability": 0.6402 + }, + { + "start": 14914.22, + "end": 14915.27, + "probability": 0.9177 + }, + { + "start": 14916.28, + "end": 14916.88, + "probability": 0.2751 + }, + { + "start": 14916.9, + "end": 14918.86, + "probability": 0.6736 + }, + { + "start": 14920.7, + "end": 14923.46, + "probability": 0.7772 + }, + { + "start": 14923.46, + "end": 14924.32, + "probability": 0.6372 + }, + { + "start": 14943.3, + "end": 14943.98, + "probability": 0.462 + }, + { + "start": 14944.88, + "end": 14946.72, + "probability": 0.7808 + }, + { + "start": 14946.92, + "end": 14948.46, + "probability": 0.7646 + }, + { + "start": 14948.88, + "end": 14953.48, + "probability": 0.9466 + }, + { + "start": 14954.24, + "end": 14956.52, + "probability": 0.9975 + }, + { + "start": 14956.78, + "end": 14957.68, + "probability": 0.7195 + }, + { + "start": 14957.76, + "end": 14959.06, + "probability": 0.807 + }, + { + "start": 14960.02, + "end": 14963.28, + "probability": 0.998 + }, + { + "start": 14963.28, + "end": 14969.26, + "probability": 0.8704 + }, + { + "start": 14970.68, + "end": 14975.36, + "probability": 0.9816 + }, + { + "start": 14976.54, + "end": 14982.16, + "probability": 0.9858 + }, + { + "start": 14982.66, + "end": 14983.8, + "probability": 0.8385 + }, + { + "start": 14984.88, + "end": 14986.66, + "probability": 0.6564 + }, + { + "start": 14987.24, + "end": 14996.6, + "probability": 0.7875 + }, + { + "start": 14998.0, + "end": 14999.86, + "probability": 0.816 + }, + { + "start": 15000.88, + "end": 15002.26, + "probability": 0.791 + }, + { + "start": 15003.16, + "end": 15004.68, + "probability": 0.4783 + }, + { + "start": 15005.46, + "end": 15006.34, + "probability": 0.7203 + }, + { + "start": 15007.18, + "end": 15008.96, + "probability": 0.6511 + }, + { + "start": 15009.68, + "end": 15013.02, + "probability": 0.9827 + }, + { + "start": 15013.02, + "end": 15018.2, + "probability": 0.9971 + }, + { + "start": 15019.32, + "end": 15025.08, + "probability": 0.9585 + }, + { + "start": 15025.64, + "end": 15027.74, + "probability": 0.8032 + }, + { + "start": 15027.98, + "end": 15029.32, + "probability": 0.8107 + }, + { + "start": 15029.74, + "end": 15030.22, + "probability": 0.5658 + }, + { + "start": 15030.36, + "end": 15031.92, + "probability": 0.9539 + }, + { + "start": 15033.76, + "end": 15038.26, + "probability": 0.9785 + }, + { + "start": 15039.22, + "end": 15043.92, + "probability": 0.9824 + }, + { + "start": 15044.12, + "end": 15046.28, + "probability": 0.9726 + }, + { + "start": 15046.92, + "end": 15047.64, + "probability": 0.8716 + }, + { + "start": 15048.14, + "end": 15053.78, + "probability": 0.986 + }, + { + "start": 15055.04, + "end": 15056.78, + "probability": 0.8696 + }, + { + "start": 15057.08, + "end": 15058.46, + "probability": 0.9583 + }, + { + "start": 15058.86, + "end": 15064.48, + "probability": 0.9807 + }, + { + "start": 15064.96, + "end": 15068.3, + "probability": 0.9443 + }, + { + "start": 15069.7, + "end": 15070.42, + "probability": 0.7968 + }, + { + "start": 15070.68, + "end": 15074.26, + "probability": 0.9928 + }, + { + "start": 15074.58, + "end": 15077.16, + "probability": 0.9327 + }, + { + "start": 15077.24, + "end": 15080.84, + "probability": 0.9812 + }, + { + "start": 15080.84, + "end": 15085.56, + "probability": 0.9973 + }, + { + "start": 15085.64, + "end": 15089.4, + "probability": 0.9973 + }, + { + "start": 15089.76, + "end": 15094.26, + "probability": 0.9974 + }, + { + "start": 15094.86, + "end": 15095.58, + "probability": 0.9089 + }, + { + "start": 15096.02, + "end": 15098.78, + "probability": 0.9705 + }, + { + "start": 15098.78, + "end": 15104.78, + "probability": 0.9918 + }, + { + "start": 15105.88, + "end": 15109.42, + "probability": 0.9952 + }, + { + "start": 15109.42, + "end": 15112.5, + "probability": 0.9979 + }, + { + "start": 15113.18, + "end": 15116.68, + "probability": 0.9988 + }, + { + "start": 15116.68, + "end": 15121.06, + "probability": 0.9753 + }, + { + "start": 15122.1, + "end": 15123.91, + "probability": 0.7711 + }, + { + "start": 15124.42, + "end": 15128.42, + "probability": 0.7896 + }, + { + "start": 15128.52, + "end": 15129.22, + "probability": 0.7052 + }, + { + "start": 15129.74, + "end": 15134.14, + "probability": 0.7507 + }, + { + "start": 15134.62, + "end": 15137.96, + "probability": 0.9936 + }, + { + "start": 15137.96, + "end": 15142.76, + "probability": 0.9989 + }, + { + "start": 15142.76, + "end": 15148.18, + "probability": 0.9932 + }, + { + "start": 15149.0, + "end": 15150.9, + "probability": 0.8053 + }, + { + "start": 15151.56, + "end": 15156.9, + "probability": 0.9943 + }, + { + "start": 15157.08, + "end": 15157.62, + "probability": 0.862 + }, + { + "start": 15158.4, + "end": 15160.12, + "probability": 0.9854 + }, + { + "start": 15160.24, + "end": 15167.62, + "probability": 0.963 + }, + { + "start": 15168.24, + "end": 15171.34, + "probability": 0.989 + }, + { + "start": 15171.8, + "end": 15174.54, + "probability": 0.991 + }, + { + "start": 15174.66, + "end": 15175.96, + "probability": 0.8309 + }, + { + "start": 15176.38, + "end": 15180.96, + "probability": 0.9415 + }, + { + "start": 15181.42, + "end": 15185.06, + "probability": 0.9832 + }, + { + "start": 15185.56, + "end": 15188.48, + "probability": 0.9414 + }, + { + "start": 15188.54, + "end": 15190.06, + "probability": 0.9905 + }, + { + "start": 15190.7, + "end": 15194.58, + "probability": 0.9917 + }, + { + "start": 15195.48, + "end": 15200.56, + "probability": 0.9797 + }, + { + "start": 15201.54, + "end": 15211.08, + "probability": 0.9885 + }, + { + "start": 15211.34, + "end": 15211.88, + "probability": 0.7414 + }, + { + "start": 15212.36, + "end": 15213.06, + "probability": 0.7029 + }, + { + "start": 15213.56, + "end": 15215.1, + "probability": 0.8231 + }, + { + "start": 15217.7, + "end": 15220.66, + "probability": 0.9756 + }, + { + "start": 15220.82, + "end": 15221.84, + "probability": 0.7385 + }, + { + "start": 15224.35, + "end": 15228.42, + "probability": 0.667 + }, + { + "start": 15232.82, + "end": 15233.32, + "probability": 0.6451 + }, + { + "start": 15234.52, + "end": 15236.62, + "probability": 0.6405 + }, + { + "start": 15236.82, + "end": 15240.26, + "probability": 0.9949 + }, + { + "start": 15240.32, + "end": 15240.94, + "probability": 0.8747 + }, + { + "start": 15241.02, + "end": 15245.54, + "probability": 0.8597 + }, + { + "start": 15246.58, + "end": 15250.12, + "probability": 0.9604 + }, + { + "start": 15250.76, + "end": 15255.9, + "probability": 0.6184 + }, + { + "start": 15255.92, + "end": 15257.04, + "probability": 0.6216 + }, + { + "start": 15257.16, + "end": 15259.24, + "probability": 0.9412 + }, + { + "start": 15260.24, + "end": 15260.78, + "probability": 0.9634 + }, + { + "start": 15262.02, + "end": 15266.4, + "probability": 0.9941 + }, + { + "start": 15267.5, + "end": 15270.89, + "probability": 0.9876 + }, + { + "start": 15271.46, + "end": 15275.42, + "probability": 0.998 + }, + { + "start": 15276.44, + "end": 15279.06, + "probability": 0.0486 + }, + { + "start": 15279.32, + "end": 15279.32, + "probability": 0.0953 + }, + { + "start": 15279.32, + "end": 15280.22, + "probability": 0.7766 + }, + { + "start": 15280.24, + "end": 15282.48, + "probability": 0.979 + }, + { + "start": 15283.02, + "end": 15283.76, + "probability": 0.9854 + }, + { + "start": 15283.82, + "end": 15286.56, + "probability": 0.8617 + }, + { + "start": 15286.62, + "end": 15287.62, + "probability": 0.9455 + }, + { + "start": 15287.86, + "end": 15288.38, + "probability": 0.983 + }, + { + "start": 15288.72, + "end": 15291.58, + "probability": 0.9585 + }, + { + "start": 15291.58, + "end": 15294.76, + "probability": 0.933 + }, + { + "start": 15295.85, + "end": 15297.48, + "probability": 0.9983 + }, + { + "start": 15298.4, + "end": 15302.24, + "probability": 0.9656 + }, + { + "start": 15302.34, + "end": 15303.28, + "probability": 0.6678 + }, + { + "start": 15303.32, + "end": 15306.58, + "probability": 0.998 + }, + { + "start": 15306.62, + "end": 15307.16, + "probability": 0.6183 + }, + { + "start": 15307.36, + "end": 15307.74, + "probability": 0.5681 + }, + { + "start": 15308.26, + "end": 15313.22, + "probability": 0.93 + }, + { + "start": 15313.84, + "end": 15315.88, + "probability": 0.9421 + }, + { + "start": 15316.44, + "end": 15319.08, + "probability": 0.9907 + }, + { + "start": 15319.14, + "end": 15323.74, + "probability": 0.9785 + }, + { + "start": 15323.74, + "end": 15324.16, + "probability": 0.5035 + }, + { + "start": 15324.16, + "end": 15325.24, + "probability": 0.6683 + }, + { + "start": 15326.16, + "end": 15327.44, + "probability": 0.886 + }, + { + "start": 15331.32, + "end": 15333.8, + "probability": 0.7323 + }, + { + "start": 15334.22, + "end": 15334.56, + "probability": 0.5845 + }, + { + "start": 15334.6, + "end": 15338.48, + "probability": 0.9846 + }, + { + "start": 15338.7, + "end": 15339.8, + "probability": 0.9864 + }, + { + "start": 15340.32, + "end": 15340.76, + "probability": 0.9486 + }, + { + "start": 15340.98, + "end": 15342.8, + "probability": 0.9707 + }, + { + "start": 15343.24, + "end": 15346.02, + "probability": 0.9949 + }, + { + "start": 15346.7, + "end": 15349.13, + "probability": 0.9196 + }, + { + "start": 15349.62, + "end": 15350.68, + "probability": 0.8382 + }, + { + "start": 15351.18, + "end": 15352.42, + "probability": 0.8904 + }, + { + "start": 15352.74, + "end": 15353.94, + "probability": 0.8645 + }, + { + "start": 15354.06, + "end": 15355.06, + "probability": 0.9708 + }, + { + "start": 15355.5, + "end": 15356.9, + "probability": 0.96 + }, + { + "start": 15357.28, + "end": 15361.12, + "probability": 0.9722 + }, + { + "start": 15361.29, + "end": 15364.78, + "probability": 0.9946 + }, + { + "start": 15365.16, + "end": 15369.28, + "probability": 0.9552 + }, + { + "start": 15369.9, + "end": 15370.98, + "probability": 0.9971 + }, + { + "start": 15371.06, + "end": 15373.0, + "probability": 0.9816 + }, + { + "start": 15373.42, + "end": 15374.53, + "probability": 0.9294 + }, + { + "start": 15374.62, + "end": 15376.59, + "probability": 0.5966 + }, + { + "start": 15376.92, + "end": 15378.16, + "probability": 0.8184 + }, + { + "start": 15378.48, + "end": 15379.96, + "probability": 0.9622 + }, + { + "start": 15380.56, + "end": 15383.6, + "probability": 0.8665 + }, + { + "start": 15383.66, + "end": 15387.8, + "probability": 0.9823 + }, + { + "start": 15388.22, + "end": 15392.16, + "probability": 0.4426 + }, + { + "start": 15392.16, + "end": 15395.32, + "probability": 0.9748 + }, + { + "start": 15395.7, + "end": 15397.23, + "probability": 0.9849 + }, + { + "start": 15398.05, + "end": 15401.73, + "probability": 0.9844 + }, + { + "start": 15401.81, + "end": 15402.07, + "probability": 0.7562 + }, + { + "start": 15402.11, + "end": 15402.73, + "probability": 0.708 + }, + { + "start": 15402.75, + "end": 15404.26, + "probability": 0.8663 + }, + { + "start": 15404.81, + "end": 15406.73, + "probability": 0.9019 + }, + { + "start": 15407.11, + "end": 15408.07, + "probability": 0.911 + }, + { + "start": 15408.17, + "end": 15409.25, + "probability": 0.9678 + }, + { + "start": 15409.29, + "end": 15412.07, + "probability": 0.7032 + }, + { + "start": 15412.29, + "end": 15414.05, + "probability": 0.8752 + }, + { + "start": 15414.33, + "end": 15415.49, + "probability": 0.8289 + }, + { + "start": 15415.57, + "end": 15415.97, + "probability": 0.7417 + }, + { + "start": 15416.27, + "end": 15418.09, + "probability": 0.4916 + }, + { + "start": 15418.13, + "end": 15419.08, + "probability": 0.5298 + }, + { + "start": 15419.67, + "end": 15421.97, + "probability": 0.8546 + }, + { + "start": 15422.95, + "end": 15424.47, + "probability": 0.9854 + }, + { + "start": 15425.07, + "end": 15425.65, + "probability": 0.7849 + }, + { + "start": 15426.67, + "end": 15429.21, + "probability": 0.4403 + }, + { + "start": 15441.13, + "end": 15445.89, + "probability": 0.3479 + }, + { + "start": 15446.03, + "end": 15448.89, + "probability": 0.68 + }, + { + "start": 15448.89, + "end": 15454.17, + "probability": 0.2454 + }, + { + "start": 15454.39, + "end": 15454.69, + "probability": 0.9629 + }, + { + "start": 15471.37, + "end": 15471.37, + "probability": 0.0774 + }, + { + "start": 15471.37, + "end": 15471.37, + "probability": 0.1095 + }, + { + "start": 15471.37, + "end": 15471.37, + "probability": 0.0178 + }, + { + "start": 15471.37, + "end": 15471.39, + "probability": 0.2109 + }, + { + "start": 15473.69, + "end": 15473.69, + "probability": 0.0002 + }, + { + "start": 15480.01, + "end": 15480.01, + "probability": 0.0445 + }, + { + "start": 15480.01, + "end": 15480.01, + "probability": 0.0652 + }, + { + "start": 15480.01, + "end": 15482.39, + "probability": 0.4263 + }, + { + "start": 15483.69, + "end": 15489.01, + "probability": 0.1775 + }, + { + "start": 15490.73, + "end": 15491.89, + "probability": 0.8453 + }, + { + "start": 15493.89, + "end": 15495.11, + "probability": 0.74 + }, + { + "start": 15496.41, + "end": 15500.59, + "probability": 0.9858 + }, + { + "start": 15522.0, + "end": 15522.0, + "probability": 0.0 + }, + { + "start": 15522.0, + "end": 15522.0, + "probability": 0.0 + }, + { + "start": 15522.0, + "end": 15522.0, + "probability": 0.0 + }, + { + "start": 15522.0, + "end": 15522.0, + "probability": 0.0 + }, + { + "start": 15522.0, + "end": 15522.0, + "probability": 0.0 + }, + { + "start": 15522.0, + "end": 15522.0, + "probability": 0.0 + }, + { + "start": 15522.0, + "end": 15522.0, + "probability": 0.0 + }, + { + "start": 15522.0, + "end": 15522.0, + "probability": 0.0 + }, + { + "start": 15522.42, + "end": 15523.82, + "probability": 0.4909 + }, + { + "start": 15525.2, + "end": 15527.36, + "probability": 0.8866 + }, + { + "start": 15529.38, + "end": 15535.82, + "probability": 0.945 + }, + { + "start": 15537.68, + "end": 15538.22, + "probability": 0.6998 + }, + { + "start": 15538.5, + "end": 15540.74, + "probability": 0.7031 + }, + { + "start": 15541.44, + "end": 15543.56, + "probability": 0.926 + }, + { + "start": 15544.28, + "end": 15545.61, + "probability": 0.7594 + }, + { + "start": 15546.78, + "end": 15547.55, + "probability": 0.8965 + }, + { + "start": 15547.78, + "end": 15548.39, + "probability": 0.9349 + }, + { + "start": 15549.32, + "end": 15550.48, + "probability": 0.9856 + }, + { + "start": 15550.54, + "end": 15551.7, + "probability": 0.9841 + }, + { + "start": 15552.44, + "end": 15562.24, + "probability": 0.9552 + }, + { + "start": 15562.86, + "end": 15565.64, + "probability": 0.9659 + }, + { + "start": 15566.42, + "end": 15566.94, + "probability": 0.9196 + }, + { + "start": 15567.98, + "end": 15569.28, + "probability": 0.9951 + }, + { + "start": 15570.34, + "end": 15572.78, + "probability": 0.9845 + }, + { + "start": 15573.56, + "end": 15579.32, + "probability": 0.9504 + }, + { + "start": 15579.58, + "end": 15580.6, + "probability": 0.9613 + }, + { + "start": 15581.72, + "end": 15586.26, + "probability": 0.8076 + }, + { + "start": 15587.12, + "end": 15590.34, + "probability": 0.9631 + }, + { + "start": 15591.24, + "end": 15593.02, + "probability": 0.7292 + }, + { + "start": 15594.52, + "end": 15598.46, + "probability": 0.8178 + }, + { + "start": 15599.44, + "end": 15602.8, + "probability": 0.9427 + }, + { + "start": 15603.38, + "end": 15608.06, + "probability": 0.7939 + }, + { + "start": 15608.06, + "end": 15614.36, + "probability": 0.9982 + }, + { + "start": 15617.02, + "end": 15618.38, + "probability": 0.787 + }, + { + "start": 15619.34, + "end": 15620.46, + "probability": 0.8481 + }, + { + "start": 15620.56, + "end": 15621.0, + "probability": 0.8411 + }, + { + "start": 15621.18, + "end": 15622.9, + "probability": 0.7683 + }, + { + "start": 15624.47, + "end": 15632.26, + "probability": 0.2298 + }, + { + "start": 15632.3, + "end": 15639.9, + "probability": 0.9714 + }, + { + "start": 15640.72, + "end": 15648.36, + "probability": 0.9871 + }, + { + "start": 15648.76, + "end": 15649.86, + "probability": 0.8341 + }, + { + "start": 15650.74, + "end": 15651.48, + "probability": 0.9279 + }, + { + "start": 15651.58, + "end": 15654.64, + "probability": 0.9873 + }, + { + "start": 15654.86, + "end": 15657.78, + "probability": 0.6708 + }, + { + "start": 15658.76, + "end": 15662.26, + "probability": 0.9678 + }, + { + "start": 15662.9, + "end": 15665.78, + "probability": 0.7211 + }, + { + "start": 15665.92, + "end": 15669.16, + "probability": 0.8012 + }, + { + "start": 15669.76, + "end": 15670.76, + "probability": 0.4739 + }, + { + "start": 15672.32, + "end": 15675.06, + "probability": 0.8984 + }, + { + "start": 15675.16, + "end": 15677.86, + "probability": 0.954 + }, + { + "start": 15679.06, + "end": 15683.24, + "probability": 0.9787 + }, + { + "start": 15683.84, + "end": 15687.06, + "probability": 0.9824 + }, + { + "start": 15687.92, + "end": 15691.96, + "probability": 0.9453 + }, + { + "start": 15692.64, + "end": 15693.1, + "probability": 0.8184 + }, + { + "start": 15693.18, + "end": 15693.38, + "probability": 0.882 + }, + { + "start": 15693.46, + "end": 15697.5, + "probability": 0.7566 + }, + { + "start": 15698.14, + "end": 15701.04, + "probability": 0.8771 + }, + { + "start": 15701.58, + "end": 15704.02, + "probability": 0.9464 + }, + { + "start": 15704.84, + "end": 15710.38, + "probability": 0.8393 + }, + { + "start": 15710.66, + "end": 15712.51, + "probability": 0.9985 + }, + { + "start": 15713.02, + "end": 15715.02, + "probability": 0.853 + }, + { + "start": 15715.66, + "end": 15719.52, + "probability": 0.9852 + }, + { + "start": 15720.0, + "end": 15722.74, + "probability": 0.7846 + }, + { + "start": 15722.74, + "end": 15723.74, + "probability": 0.2714 + }, + { + "start": 15724.34, + "end": 15724.34, + "probability": 0.0041 + }, + { + "start": 15724.34, + "end": 15724.36, + "probability": 0.3977 + }, + { + "start": 15724.42, + "end": 15725.76, + "probability": 0.7007 + }, + { + "start": 15726.24, + "end": 15726.48, + "probability": 0.5517 + }, + { + "start": 15726.52, + "end": 15729.86, + "probability": 0.8645 + }, + { + "start": 15729.92, + "end": 15731.48, + "probability": 0.9271 + }, + { + "start": 15732.04, + "end": 15736.14, + "probability": 0.9905 + }, + { + "start": 15736.9, + "end": 15738.52, + "probability": 0.6766 + }, + { + "start": 15738.72, + "end": 15741.08, + "probability": 0.5601 + }, + { + "start": 15742.14, + "end": 15745.04, + "probability": 0.6046 + }, + { + "start": 15745.26, + "end": 15748.72, + "probability": 0.6875 + }, + { + "start": 15748.78, + "end": 15748.78, + "probability": 0.4933 + }, + { + "start": 15748.78, + "end": 15749.45, + "probability": 0.6718 + }, + { + "start": 15751.0, + "end": 15752.34, + "probability": 0.6817 + }, + { + "start": 15752.88, + "end": 15753.82, + "probability": 0.5527 + }, + { + "start": 15753.98, + "end": 15757.34, + "probability": 0.9211 + }, + { + "start": 15758.84, + "end": 15761.22, + "probability": 0.4131 + }, + { + "start": 15762.92, + "end": 15764.72, + "probability": 0.4271 + }, + { + "start": 15765.1, + "end": 15766.28, + "probability": 0.142 + }, + { + "start": 15766.52, + "end": 15767.28, + "probability": 0.6969 + }, + { + "start": 15767.28, + "end": 15768.8, + "probability": 0.6752 + }, + { + "start": 15768.84, + "end": 15769.7, + "probability": 0.752 + }, + { + "start": 15770.66, + "end": 15772.86, + "probability": 0.2371 + }, + { + "start": 15773.76, + "end": 15775.92, + "probability": 0.5775 + }, + { + "start": 15776.02, + "end": 15776.98, + "probability": 0.862 + }, + { + "start": 15777.1, + "end": 15778.18, + "probability": 0.6703 + }, + { + "start": 15778.66, + "end": 15779.6, + "probability": 0.7375 + }, + { + "start": 15786.5, + "end": 15791.64, + "probability": 0.8655 + }, + { + "start": 15791.64, + "end": 15793.86, + "probability": 0.0178 + }, + { + "start": 15794.78, + "end": 15794.96, + "probability": 0.3162 + }, + { + "start": 15795.68, + "end": 15795.68, + "probability": 0.3 + }, + { + "start": 15806.88, + "end": 15806.88, + "probability": 0.0597 + }, + { + "start": 15806.88, + "end": 15806.88, + "probability": 0.33 + }, + { + "start": 15806.88, + "end": 15806.88, + "probability": 0.2138 + }, + { + "start": 15806.88, + "end": 15806.88, + "probability": 0.3889 + }, + { + "start": 15806.88, + "end": 15806.88, + "probability": 0.1655 + }, + { + "start": 15806.88, + "end": 15807.64, + "probability": 0.5087 + }, + { + "start": 15808.26, + "end": 15809.0, + "probability": 0.7309 + }, + { + "start": 15810.42, + "end": 15812.98, + "probability": 0.8104 + }, + { + "start": 15813.1, + "end": 15813.5, + "probability": 0.4956 + }, + { + "start": 15813.56, + "end": 15816.54, + "probability": 0.8376 + }, + { + "start": 15816.78, + "end": 15820.02, + "probability": 0.8797 + }, + { + "start": 15820.12, + "end": 15823.0, + "probability": 0.7844 + }, + { + "start": 15824.3, + "end": 15830.78, + "probability": 0.6353 + }, + { + "start": 15831.86, + "end": 15836.96, + "probability": 0.9846 + }, + { + "start": 15838.5, + "end": 15841.7, + "probability": 0.9651 + }, + { + "start": 15841.96, + "end": 15849.6, + "probability": 0.9873 + }, + { + "start": 15850.6, + "end": 15858.52, + "probability": 0.984 + }, + { + "start": 15859.86, + "end": 15863.72, + "probability": 0.8769 + }, + { + "start": 15864.6, + "end": 15872.84, + "probability": 0.994 + }, + { + "start": 15873.0, + "end": 15876.24, + "probability": 0.9922 + }, + { + "start": 15877.38, + "end": 15883.36, + "probability": 0.9917 + }, + { + "start": 15884.36, + "end": 15885.04, + "probability": 0.5947 + }, + { + "start": 15885.46, + "end": 15891.78, + "probability": 0.9913 + }, + { + "start": 15892.78, + "end": 15895.24, + "probability": 0.6764 + }, + { + "start": 15895.34, + "end": 15898.34, + "probability": 0.771 + }, + { + "start": 15898.54, + "end": 15902.24, + "probability": 0.7954 + }, + { + "start": 15902.96, + "end": 15904.26, + "probability": 0.9769 + }, + { + "start": 15905.46, + "end": 15906.46, + "probability": 0.9373 + }, + { + "start": 15907.56, + "end": 15912.04, + "probability": 0.9778 + }, + { + "start": 15913.5, + "end": 15919.08, + "probability": 0.9881 + }, + { + "start": 15919.92, + "end": 15923.76, + "probability": 0.9984 + }, + { + "start": 15924.46, + "end": 15933.66, + "probability": 0.994 + }, + { + "start": 15934.2, + "end": 15938.52, + "probability": 0.4229 + }, + { + "start": 15938.82, + "end": 15942.42, + "probability": 0.5782 + }, + { + "start": 15943.46, + "end": 15946.16, + "probability": 0.6785 + }, + { + "start": 15946.72, + "end": 15947.76, + "probability": 0.1741 + }, + { + "start": 15947.76, + "end": 15952.52, + "probability": 0.9248 + }, + { + "start": 15953.36, + "end": 15956.04, + "probability": 0.9738 + }, + { + "start": 15957.24, + "end": 15958.04, + "probability": 0.7053 + }, + { + "start": 15958.2, + "end": 15965.96, + "probability": 0.984 + }, + { + "start": 15966.26, + "end": 15967.46, + "probability": 0.9242 + }, + { + "start": 15967.94, + "end": 15971.28, + "probability": 0.9804 + }, + { + "start": 15972.66, + "end": 15976.34, + "probability": 0.8555 + }, + { + "start": 15979.82, + "end": 15984.52, + "probability": 0.8957 + }, + { + "start": 15984.94, + "end": 15987.74, + "probability": 0.983 + }, + { + "start": 15988.4, + "end": 15988.4, + "probability": 0.2117 + }, + { + "start": 15988.4, + "end": 15990.86, + "probability": 0.8577 + }, + { + "start": 15991.38, + "end": 15992.62, + "probability": 0.946 + }, + { + "start": 15993.54, + "end": 15997.64, + "probability": 0.6938 + }, + { + "start": 15997.64, + "end": 15997.7, + "probability": 0.0499 + }, + { + "start": 15997.76, + "end": 15998.67, + "probability": 0.5752 + }, + { + "start": 15999.16, + "end": 15999.8, + "probability": 0.5818 + }, + { + "start": 15999.84, + "end": 16000.44, + "probability": 0.4178 + }, + { + "start": 16000.6, + "end": 16000.76, + "probability": 0.1197 + }, + { + "start": 16000.76, + "end": 16002.32, + "probability": 0.7437 + }, + { + "start": 16002.32, + "end": 16003.53, + "probability": 0.5054 + }, + { + "start": 16003.9, + "end": 16004.12, + "probability": 0.1524 + }, + { + "start": 16004.14, + "end": 16006.38, + "probability": 0.9229 + }, + { + "start": 16006.38, + "end": 16009.04, + "probability": 0.8299 + }, + { + "start": 16009.68, + "end": 16011.68, + "probability": 0.8838 + }, + { + "start": 16011.88, + "end": 16011.88, + "probability": 0.013 + }, + { + "start": 16011.88, + "end": 16011.88, + "probability": 0.1922 + }, + { + "start": 16011.88, + "end": 16011.88, + "probability": 0.256 + }, + { + "start": 16011.88, + "end": 16017.32, + "probability": 0.7985 + }, + { + "start": 16017.84, + "end": 16017.98, + "probability": 0.0252 + }, + { + "start": 16017.98, + "end": 16021.74, + "probability": 0.8199 + }, + { + "start": 16022.14, + "end": 16026.02, + "probability": 0.9514 + }, + { + "start": 16026.1, + "end": 16027.38, + "probability": 0.71 + }, + { + "start": 16027.84, + "end": 16032.12, + "probability": 0.9989 + }, + { + "start": 16032.12, + "end": 16036.6, + "probability": 0.9312 + }, + { + "start": 16036.87, + "end": 16039.34, + "probability": 0.9995 + }, + { + "start": 16039.34, + "end": 16042.88, + "probability": 0.9348 + }, + { + "start": 16043.06, + "end": 16044.02, + "probability": 0.8488 + }, + { + "start": 16044.2, + "end": 16045.58, + "probability": 0.8507 + }, + { + "start": 16046.14, + "end": 16047.44, + "probability": 0.865 + }, + { + "start": 16048.18, + "end": 16053.44, + "probability": 0.91 + }, + { + "start": 16053.9, + "end": 16054.14, + "probability": 0.364 + }, + { + "start": 16054.26, + "end": 16056.84, + "probability": 0.9277 + }, + { + "start": 16057.02, + "end": 16060.04, + "probability": 0.9897 + }, + { + "start": 16060.56, + "end": 16065.38, + "probability": 0.9545 + }, + { + "start": 16065.98, + "end": 16068.76, + "probability": 0.9204 + }, + { + "start": 16069.02, + "end": 16069.2, + "probability": 0.4188 + }, + { + "start": 16069.2, + "end": 16070.52, + "probability": 0.5692 + }, + { + "start": 16071.22, + "end": 16072.6, + "probability": 0.8986 + }, + { + "start": 16073.3, + "end": 16073.96, + "probability": 0.8267 + }, + { + "start": 16074.4, + "end": 16075.66, + "probability": 0.9499 + }, + { + "start": 16075.98, + "end": 16076.64, + "probability": 0.9297 + }, + { + "start": 16077.14, + "end": 16078.96, + "probability": 0.5487 + }, + { + "start": 16079.02, + "end": 16079.44, + "probability": 0.7925 + }, + { + "start": 16112.68, + "end": 16112.68, + "probability": 0.8175 + }, + { + "start": 16112.68, + "end": 16113.35, + "probability": 0.7111 + }, + { + "start": 16113.92, + "end": 16114.54, + "probability": 0.6432 + }, + { + "start": 16115.16, + "end": 16116.32, + "probability": 0.6808 + }, + { + "start": 16117.1, + "end": 16121.48, + "probability": 0.9568 + }, + { + "start": 16122.04, + "end": 16124.74, + "probability": 0.9322 + }, + { + "start": 16125.42, + "end": 16125.46, + "probability": 0.0043 + }, + { + "start": 16125.48, + "end": 16125.9, + "probability": 0.7318 + }, + { + "start": 16126.0, + "end": 16131.38, + "probability": 0.9517 + }, + { + "start": 16132.0, + "end": 16133.8, + "probability": 0.9798 + }, + { + "start": 16134.78, + "end": 16136.74, + "probability": 0.9973 + }, + { + "start": 16137.68, + "end": 16138.3, + "probability": 0.863 + }, + { + "start": 16138.8, + "end": 16140.02, + "probability": 0.9526 + }, + { + "start": 16140.08, + "end": 16142.96, + "probability": 0.9037 + }, + { + "start": 16143.42, + "end": 16144.82, + "probability": 0.6698 + }, + { + "start": 16144.9, + "end": 16149.22, + "probability": 0.8576 + }, + { + "start": 16150.08, + "end": 16151.36, + "probability": 0.7565 + }, + { + "start": 16151.48, + "end": 16152.4, + "probability": 0.9632 + }, + { + "start": 16152.48, + "end": 16153.92, + "probability": 0.9135 + }, + { + "start": 16154.04, + "end": 16154.56, + "probability": 0.9475 + }, + { + "start": 16154.98, + "end": 16156.7, + "probability": 0.9907 + }, + { + "start": 16157.42, + "end": 16159.64, + "probability": 0.9855 + }, + { + "start": 16160.14, + "end": 16163.68, + "probability": 0.992 + }, + { + "start": 16163.86, + "end": 16165.38, + "probability": 0.9172 + }, + { + "start": 16165.86, + "end": 16169.34, + "probability": 0.9807 + }, + { + "start": 16169.74, + "end": 16174.52, + "probability": 0.9833 + }, + { + "start": 16174.52, + "end": 16177.98, + "probability": 0.9904 + }, + { + "start": 16178.48, + "end": 16180.04, + "probability": 0.9407 + }, + { + "start": 16180.5, + "end": 16181.06, + "probability": 0.59 + }, + { + "start": 16181.16, + "end": 16182.02, + "probability": 0.81 + }, + { + "start": 16182.36, + "end": 16184.54, + "probability": 0.9517 + }, + { + "start": 16184.6, + "end": 16186.32, + "probability": 0.9033 + }, + { + "start": 16186.76, + "end": 16190.84, + "probability": 0.9896 + }, + { + "start": 16191.22, + "end": 16194.02, + "probability": 0.9553 + }, + { + "start": 16194.1, + "end": 16194.94, + "probability": 0.8952 + }, + { + "start": 16195.06, + "end": 16196.48, + "probability": 0.8872 + }, + { + "start": 16196.92, + "end": 16199.6, + "probability": 0.993 + }, + { + "start": 16199.96, + "end": 16200.54, + "probability": 0.9785 + }, + { + "start": 16201.32, + "end": 16201.78, + "probability": 0.5332 + }, + { + "start": 16202.64, + "end": 16203.82, + "probability": 0.785 + }, + { + "start": 16203.92, + "end": 16205.9, + "probability": 0.9209 + }, + { + "start": 16205.98, + "end": 16210.7, + "probability": 0.9822 + }, + { + "start": 16211.16, + "end": 16212.24, + "probability": 0.9842 + }, + { + "start": 16212.46, + "end": 16213.84, + "probability": 0.7312 + }, + { + "start": 16214.52, + "end": 16218.4, + "probability": 0.8292 + }, + { + "start": 16218.48, + "end": 16219.24, + "probability": 0.7514 + }, + { + "start": 16219.3, + "end": 16223.14, + "probability": 0.9792 + }, + { + "start": 16224.06, + "end": 16227.48, + "probability": 0.9725 + }, + { + "start": 16227.48, + "end": 16231.54, + "probability": 0.9985 + }, + { + "start": 16231.78, + "end": 16236.08, + "probability": 0.9916 + }, + { + "start": 16236.72, + "end": 16237.28, + "probability": 0.8447 + }, + { + "start": 16238.04, + "end": 16239.22, + "probability": 0.4157 + }, + { + "start": 16239.46, + "end": 16242.14, + "probability": 0.8235 + }, + { + "start": 16242.42, + "end": 16243.4, + "probability": 0.8838 + }, + { + "start": 16243.82, + "end": 16245.12, + "probability": 0.8689 + }, + { + "start": 16245.22, + "end": 16249.14, + "probability": 0.9074 + }, + { + "start": 16249.22, + "end": 16249.82, + "probability": 0.9114 + }, + { + "start": 16250.18, + "end": 16253.46, + "probability": 0.9835 + }, + { + "start": 16253.56, + "end": 16254.54, + "probability": 0.7572 + }, + { + "start": 16254.7, + "end": 16255.06, + "probability": 0.7903 + }, + { + "start": 16255.12, + "end": 16258.04, + "probability": 0.9807 + }, + { + "start": 16258.04, + "end": 16261.84, + "probability": 0.9984 + }, + { + "start": 16262.4, + "end": 16266.38, + "probability": 0.9526 + }, + { + "start": 16266.7, + "end": 16268.54, + "probability": 0.7656 + }, + { + "start": 16268.98, + "end": 16269.28, + "probability": 0.4124 + }, + { + "start": 16269.32, + "end": 16269.8, + "probability": 0.9019 + }, + { + "start": 16269.9, + "end": 16272.92, + "probability": 0.9963 + }, + { + "start": 16273.36, + "end": 16274.88, + "probability": 0.7668 + }, + { + "start": 16274.98, + "end": 16278.88, + "probability": 0.9185 + }, + { + "start": 16279.26, + "end": 16281.24, + "probability": 0.7299 + }, + { + "start": 16281.46, + "end": 16282.54, + "probability": 0.8262 + }, + { + "start": 16283.04, + "end": 16285.84, + "probability": 0.9297 + }, + { + "start": 16285.92, + "end": 16286.24, + "probability": 0.8104 + }, + { + "start": 16287.36, + "end": 16289.08, + "probability": 0.6923 + }, + { + "start": 16289.46, + "end": 16289.98, + "probability": 0.6752 + }, + { + "start": 16290.52, + "end": 16291.16, + "probability": 0.5335 + }, + { + "start": 16291.72, + "end": 16292.32, + "probability": 0.7857 + }, + { + "start": 16293.16, + "end": 16294.9, + "probability": 0.7298 + }, + { + "start": 16296.88, + "end": 16297.94, + "probability": 0.7961 + }, + { + "start": 16318.02, + "end": 16320.6, + "probability": 0.7376 + }, + { + "start": 16322.16, + "end": 16327.34, + "probability": 0.9808 + }, + { + "start": 16327.96, + "end": 16329.26, + "probability": 0.5395 + }, + { + "start": 16329.88, + "end": 16330.68, + "probability": 0.8829 + }, + { + "start": 16331.24, + "end": 16333.34, + "probability": 0.863 + }, + { + "start": 16333.94, + "end": 16335.7, + "probability": 0.7706 + }, + { + "start": 16336.42, + "end": 16336.56, + "probability": 0.0568 + }, + { + "start": 16336.56, + "end": 16337.86, + "probability": 0.7496 + }, + { + "start": 16339.9, + "end": 16340.54, + "probability": 0.822 + }, + { + "start": 16340.74, + "end": 16343.16, + "probability": 0.8719 + }, + { + "start": 16343.78, + "end": 16345.2, + "probability": 0.8377 + }, + { + "start": 16348.26, + "end": 16348.26, + "probability": 0.028 + }, + { + "start": 16348.26, + "end": 16351.36, + "probability": 0.5524 + }, + { + "start": 16351.64, + "end": 16351.88, + "probability": 0.5052 + }, + { + "start": 16351.92, + "end": 16352.08, + "probability": 0.049 + }, + { + "start": 16352.08, + "end": 16352.78, + "probability": 0.2891 + }, + { + "start": 16353.54, + "end": 16355.22, + "probability": 0.9099 + }, + { + "start": 16355.5, + "end": 16358.26, + "probability": 0.9302 + }, + { + "start": 16358.5, + "end": 16360.02, + "probability": 0.7249 + }, + { + "start": 16360.72, + "end": 16362.14, + "probability": 0.967 + }, + { + "start": 16362.36, + "end": 16363.02, + "probability": 0.2342 + }, + { + "start": 16363.02, + "end": 16363.2, + "probability": 0.4979 + }, + { + "start": 16363.2, + "end": 16364.02, + "probability": 0.1822 + }, + { + "start": 16364.02, + "end": 16364.76, + "probability": 0.6213 + }, + { + "start": 16364.76, + "end": 16365.52, + "probability": 0.6184 + }, + { + "start": 16365.96, + "end": 16366.49, + "probability": 0.8501 + }, + { + "start": 16366.82, + "end": 16368.78, + "probability": 0.8918 + }, + { + "start": 16368.94, + "end": 16371.02, + "probability": 0.8148 + }, + { + "start": 16371.24, + "end": 16371.9, + "probability": 0.7079 + }, + { + "start": 16372.48, + "end": 16374.88, + "probability": 0.5369 + }, + { + "start": 16375.08, + "end": 16375.66, + "probability": 0.3002 + }, + { + "start": 16375.8, + "end": 16376.82, + "probability": 0.6562 + }, + { + "start": 16377.16, + "end": 16378.56, + "probability": 0.7099 + }, + { + "start": 16378.8, + "end": 16379.58, + "probability": 0.8018 + }, + { + "start": 16379.9, + "end": 16380.64, + "probability": 0.9808 + }, + { + "start": 16381.18, + "end": 16382.62, + "probability": 0.9487 + }, + { + "start": 16382.66, + "end": 16384.84, + "probability": 0.7839 + }, + { + "start": 16385.0, + "end": 16386.3, + "probability": 0.5241 + }, + { + "start": 16386.46, + "end": 16386.84, + "probability": 0.5354 + }, + { + "start": 16386.96, + "end": 16390.64, + "probability": 0.205 + }, + { + "start": 16390.64, + "end": 16392.06, + "probability": 0.7662 + }, + { + "start": 16392.14, + "end": 16395.54, + "probability": 0.986 + }, + { + "start": 16395.58, + "end": 16396.48, + "probability": 0.6018 + }, + { + "start": 16396.7, + "end": 16399.46, + "probability": 0.9787 + }, + { + "start": 16399.92, + "end": 16402.94, + "probability": 0.9978 + }, + { + "start": 16403.58, + "end": 16406.4, + "probability": 0.8806 + }, + { + "start": 16406.76, + "end": 16408.62, + "probability": 0.9928 + }, + { + "start": 16409.16, + "end": 16413.07, + "probability": 0.8407 + }, + { + "start": 16413.88, + "end": 16415.6, + "probability": 0.6687 + }, + { + "start": 16416.3, + "end": 16417.92, + "probability": 0.8608 + }, + { + "start": 16418.32, + "end": 16422.24, + "probability": 0.8514 + }, + { + "start": 16423.0, + "end": 16425.16, + "probability": 0.8878 + }, + { + "start": 16425.76, + "end": 16427.58, + "probability": 0.9896 + }, + { + "start": 16427.9, + "end": 16429.0, + "probability": 0.9922 + }, + { + "start": 16429.5, + "end": 16430.52, + "probability": 0.6868 + }, + { + "start": 16431.38, + "end": 16433.72, + "probability": 0.9928 + }, + { + "start": 16434.36, + "end": 16437.8, + "probability": 0.9904 + }, + { + "start": 16438.14, + "end": 16438.84, + "probability": 0.9301 + }, + { + "start": 16439.1, + "end": 16439.84, + "probability": 0.5573 + }, + { + "start": 16440.52, + "end": 16443.91, + "probability": 0.9761 + }, + { + "start": 16444.54, + "end": 16446.24, + "probability": 0.8764 + }, + { + "start": 16446.84, + "end": 16447.98, + "probability": 0.7278 + }, + { + "start": 16448.9, + "end": 16453.9, + "probability": 0.9958 + }, + { + "start": 16453.9, + "end": 16458.08, + "probability": 0.929 + }, + { + "start": 16458.56, + "end": 16460.66, + "probability": 0.8536 + }, + { + "start": 16461.2, + "end": 16463.3, + "probability": 0.988 + }, + { + "start": 16463.34, + "end": 16464.4, + "probability": 0.9899 + }, + { + "start": 16465.06, + "end": 16467.52, + "probability": 0.9736 + }, + { + "start": 16467.86, + "end": 16469.2, + "probability": 0.6795 + }, + { + "start": 16469.72, + "end": 16470.68, + "probability": 0.9111 + }, + { + "start": 16472.96, + "end": 16473.44, + "probability": 0.4651 + }, + { + "start": 16473.52, + "end": 16476.78, + "probability": 0.9421 + }, + { + "start": 16477.06, + "end": 16477.12, + "probability": 0.1902 + }, + { + "start": 16477.4, + "end": 16479.12, + "probability": 0.5746 + }, + { + "start": 16479.3, + "end": 16481.18, + "probability": 0.9653 + }, + { + "start": 16482.2, + "end": 16484.72, + "probability": 0.8518 + }, + { + "start": 16484.74, + "end": 16485.18, + "probability": 0.4545 + }, + { + "start": 16485.32, + "end": 16486.89, + "probability": 0.9761 + }, + { + "start": 16488.52, + "end": 16489.56, + "probability": 0.3133 + }, + { + "start": 16490.36, + "end": 16491.9, + "probability": 0.2696 + }, + { + "start": 16492.18, + "end": 16492.28, + "probability": 0.4627 + }, + { + "start": 16492.34, + "end": 16492.92, + "probability": 0.7492 + }, + { + "start": 16495.9, + "end": 16497.01, + "probability": 0.7681 + }, + { + "start": 16498.16, + "end": 16498.72, + "probability": 0.7186 + }, + { + "start": 16501.26, + "end": 16501.62, + "probability": 0.2317 + }, + { + "start": 16501.62, + "end": 16501.8, + "probability": 0.4431 + }, + { + "start": 16502.16, + "end": 16502.56, + "probability": 0.1103 + }, + { + "start": 16502.62, + "end": 16504.5, + "probability": 0.4213 + }, + { + "start": 16505.72, + "end": 16507.6, + "probability": 0.5471 + }, + { + "start": 16507.6, + "end": 16508.24, + "probability": 0.6585 + }, + { + "start": 16508.78, + "end": 16509.1, + "probability": 0.8915 + }, + { + "start": 16515.58, + "end": 16517.32, + "probability": 0.3054 + }, + { + "start": 16519.32, + "end": 16522.16, + "probability": 0.9517 + }, + { + "start": 16522.88, + "end": 16524.48, + "probability": 0.8798 + }, + { + "start": 16526.56, + "end": 16526.7, + "probability": 0.0603 + }, + { + "start": 16526.8, + "end": 16528.7, + "probability": 0.305 + }, + { + "start": 16530.16, + "end": 16530.62, + "probability": 0.4175 + }, + { + "start": 16530.62, + "end": 16531.56, + "probability": 0.4805 + }, + { + "start": 16532.46, + "end": 16535.3, + "probability": 0.917 + }, + { + "start": 16535.54, + "end": 16536.14, + "probability": 0.4226 + }, + { + "start": 16537.0, + "end": 16540.6, + "probability": 0.9195 + }, + { + "start": 16542.64, + "end": 16544.34, + "probability": 0.6737 + }, + { + "start": 16544.34, + "end": 16546.52, + "probability": 0.8345 + }, + { + "start": 16546.66, + "end": 16547.92, + "probability": 0.935 + }, + { + "start": 16548.36, + "end": 16551.0, + "probability": 0.7299 + }, + { + "start": 16551.46, + "end": 16553.4, + "probability": 0.3177 + }, + { + "start": 16553.5, + "end": 16554.54, + "probability": 0.9725 + }, + { + "start": 16554.62, + "end": 16555.04, + "probability": 0.8264 + }, + { + "start": 16556.12, + "end": 16556.34, + "probability": 0.8071 + }, + { + "start": 16556.94, + "end": 16557.54, + "probability": 0.8543 + }, + { + "start": 16557.74, + "end": 16559.91, + "probability": 0.0248 + }, + { + "start": 16562.86, + "end": 16564.14, + "probability": 0.6645 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.0, + "end": 16668.0, + "probability": 0.0 + }, + { + "start": 16668.5, + "end": 16668.5, + "probability": 0.0271 + }, + { + "start": 16668.5, + "end": 16673.52, + "probability": 0.694 + }, + { + "start": 16674.06, + "end": 16678.44, + "probability": 0.9346 + }, + { + "start": 16679.56, + "end": 16686.04, + "probability": 0.9556 + }, + { + "start": 16686.82, + "end": 16687.26, + "probability": 0.5912 + }, + { + "start": 16687.56, + "end": 16688.58, + "probability": 0.8721 + }, + { + "start": 16688.9, + "end": 16694.34, + "probability": 0.8894 + }, + { + "start": 16695.02, + "end": 16696.74, + "probability": 0.8778 + }, + { + "start": 16697.26, + "end": 16701.56, + "probability": 0.9297 + }, + { + "start": 16702.34, + "end": 16706.32, + "probability": 0.9439 + }, + { + "start": 16706.44, + "end": 16707.22, + "probability": 0.5534 + }, + { + "start": 16707.48, + "end": 16708.74, + "probability": 0.9852 + }, + { + "start": 16708.78, + "end": 16710.0, + "probability": 0.7283 + }, + { + "start": 16710.48, + "end": 16712.6, + "probability": 0.9759 + }, + { + "start": 16713.4, + "end": 16714.0, + "probability": 0.7189 + }, + { + "start": 16714.66, + "end": 16716.06, + "probability": 0.8221 + }, + { + "start": 16716.16, + "end": 16718.12, + "probability": 0.9976 + }, + { + "start": 16718.5, + "end": 16719.54, + "probability": 0.9686 + }, + { + "start": 16719.74, + "end": 16720.7, + "probability": 0.9132 + }, + { + "start": 16721.04, + "end": 16723.06, + "probability": 0.968 + }, + { + "start": 16723.14, + "end": 16725.0, + "probability": 0.9919 + }, + { + "start": 16725.32, + "end": 16729.47, + "probability": 0.9933 + }, + { + "start": 16730.2, + "end": 16734.4, + "probability": 0.9958 + }, + { + "start": 16734.78, + "end": 16736.7, + "probability": 0.8951 + }, + { + "start": 16737.0, + "end": 16739.32, + "probability": 0.9963 + }, + { + "start": 16739.32, + "end": 16743.24, + "probability": 0.9769 + }, + { + "start": 16743.32, + "end": 16743.78, + "probability": 0.797 + }, + { + "start": 16744.92, + "end": 16749.6, + "probability": 0.9932 + }, + { + "start": 16750.2, + "end": 16752.5, + "probability": 0.9948 + }, + { + "start": 16752.5, + "end": 16755.32, + "probability": 0.9951 + }, + { + "start": 16756.02, + "end": 16759.82, + "probability": 0.8948 + }, + { + "start": 16760.42, + "end": 16761.02, + "probability": 0.8218 + }, + { + "start": 16761.2, + "end": 16762.14, + "probability": 0.96 + }, + { + "start": 16762.28, + "end": 16763.16, + "probability": 0.894 + }, + { + "start": 16763.22, + "end": 16764.42, + "probability": 0.9766 + }, + { + "start": 16764.7, + "end": 16767.21, + "probability": 0.9779 + }, + { + "start": 16767.3, + "end": 16768.88, + "probability": 0.9694 + }, + { + "start": 16769.48, + "end": 16772.08, + "probability": 0.9909 + }, + { + "start": 16772.08, + "end": 16777.16, + "probability": 0.9316 + }, + { + "start": 16777.78, + "end": 16780.02, + "probability": 0.9973 + }, + { + "start": 16780.02, + "end": 16783.6, + "probability": 0.9932 + }, + { + "start": 16784.06, + "end": 16785.02, + "probability": 0.9737 + }, + { + "start": 16785.26, + "end": 16788.76, + "probability": 0.9984 + }, + { + "start": 16789.1, + "end": 16791.64, + "probability": 0.9868 + }, + { + "start": 16791.64, + "end": 16795.04, + "probability": 0.9905 + }, + { + "start": 16795.4, + "end": 16796.6, + "probability": 0.6678 + }, + { + "start": 16796.9, + "end": 16799.2, + "probability": 0.9732 + }, + { + "start": 16799.86, + "end": 16800.3, + "probability": 0.6309 + }, + { + "start": 16800.4, + "end": 16803.9, + "probability": 0.9911 + }, + { + "start": 16804.26, + "end": 16807.22, + "probability": 0.9961 + }, + { + "start": 16807.56, + "end": 16808.22, + "probability": 0.8221 + }, + { + "start": 16808.44, + "end": 16808.7, + "probability": 0.8292 + }, + { + "start": 16809.2, + "end": 16810.56, + "probability": 0.5232 + }, + { + "start": 16810.62, + "end": 16812.16, + "probability": 0.719 + }, + { + "start": 16819.38, + "end": 16820.0, + "probability": 0.8892 + }, + { + "start": 16825.58, + "end": 16826.94, + "probability": 0.6124 + }, + { + "start": 16828.08, + "end": 16828.88, + "probability": 0.7244 + }, + { + "start": 16829.54, + "end": 16833.34, + "probability": 0.9893 + }, + { + "start": 16834.04, + "end": 16835.02, + "probability": 0.8897 + }, + { + "start": 16835.66, + "end": 16838.26, + "probability": 0.9395 + }, + { + "start": 16838.3, + "end": 16841.24, + "probability": 0.8026 + }, + { + "start": 16841.3, + "end": 16843.28, + "probability": 0.9985 + }, + { + "start": 16843.46, + "end": 16844.14, + "probability": 0.9927 + }, + { + "start": 16845.18, + "end": 16849.81, + "probability": 0.8667 + }, + { + "start": 16849.82, + "end": 16853.76, + "probability": 0.6547 + }, + { + "start": 16854.38, + "end": 16856.2, + "probability": 0.9787 + }, + { + "start": 16856.66, + "end": 16859.22, + "probability": 0.9827 + }, + { + "start": 16859.4, + "end": 16862.44, + "probability": 0.9086 + }, + { + "start": 16863.08, + "end": 16864.96, + "probability": 0.6244 + }, + { + "start": 16866.54, + "end": 16867.83, + "probability": 0.8613 + }, + { + "start": 16869.12, + "end": 16870.78, + "probability": 0.9438 + }, + { + "start": 16870.88, + "end": 16871.95, + "probability": 0.979 + }, + { + "start": 16872.5, + "end": 16875.9, + "probability": 0.9819 + }, + { + "start": 16875.9, + "end": 16879.24, + "probability": 0.9593 + }, + { + "start": 16879.62, + "end": 16881.15, + "probability": 0.9855 + }, + { + "start": 16881.24, + "end": 16882.18, + "probability": 0.8381 + }, + { + "start": 16882.38, + "end": 16883.76, + "probability": 0.8228 + }, + { + "start": 16883.86, + "end": 16885.62, + "probability": 0.9388 + }, + { + "start": 16885.84, + "end": 16886.84, + "probability": 0.5581 + }, + { + "start": 16887.6, + "end": 16890.32, + "probability": 0.7327 + }, + { + "start": 16890.8, + "end": 16891.58, + "probability": 0.8849 + }, + { + "start": 16891.7, + "end": 16896.06, + "probability": 0.9308 + }, + { + "start": 16896.42, + "end": 16897.7, + "probability": 0.9937 + }, + { + "start": 16897.98, + "end": 16898.9, + "probability": 0.8784 + }, + { + "start": 16899.24, + "end": 16900.26, + "probability": 0.9626 + }, + { + "start": 16900.62, + "end": 16905.36, + "probability": 0.9653 + }, + { + "start": 16905.44, + "end": 16908.1, + "probability": 0.9906 + }, + { + "start": 16908.36, + "end": 16912.08, + "probability": 0.9845 + }, + { + "start": 16912.96, + "end": 16915.21, + "probability": 0.8057 + }, + { + "start": 16915.7, + "end": 16917.04, + "probability": 0.9618 + }, + { + "start": 16917.2, + "end": 16918.62, + "probability": 0.8237 + }, + { + "start": 16918.82, + "end": 16921.86, + "probability": 0.982 + }, + { + "start": 16922.54, + "end": 16925.02, + "probability": 0.9492 + }, + { + "start": 16925.1, + "end": 16926.32, + "probability": 0.9051 + }, + { + "start": 16926.42, + "end": 16927.49, + "probability": 0.992 + }, + { + "start": 16928.62, + "end": 16931.54, + "probability": 0.9606 + }, + { + "start": 16931.66, + "end": 16933.4, + "probability": 0.9657 + }, + { + "start": 16933.9, + "end": 16934.86, + "probability": 0.4592 + }, + { + "start": 16934.92, + "end": 16936.3, + "probability": 0.8237 + }, + { + "start": 16936.58, + "end": 16941.0, + "probability": 0.9976 + }, + { + "start": 16941.5, + "end": 16942.57, + "probability": 0.9788 + }, + { + "start": 16943.1, + "end": 16948.18, + "probability": 0.9937 + }, + { + "start": 16948.48, + "end": 16950.66, + "probability": 0.9805 + }, + { + "start": 16950.86, + "end": 16952.78, + "probability": 0.9644 + }, + { + "start": 16953.18, + "end": 16955.86, + "probability": 0.9332 + }, + { + "start": 16956.22, + "end": 16957.08, + "probability": 0.9431 + }, + { + "start": 16957.16, + "end": 16960.16, + "probability": 0.9928 + }, + { + "start": 16960.42, + "end": 16961.24, + "probability": 0.5487 + }, + { + "start": 16961.36, + "end": 16963.32, + "probability": 0.9509 + }, + { + "start": 16963.52, + "end": 16967.34, + "probability": 0.998 + }, + { + "start": 16967.66, + "end": 16967.9, + "probability": 0.8418 + }, + { + "start": 16967.96, + "end": 16969.86, + "probability": 0.9964 + }, + { + "start": 16970.12, + "end": 16972.28, + "probability": 0.9935 + }, + { + "start": 16972.38, + "end": 16974.72, + "probability": 0.9424 + }, + { + "start": 16974.84, + "end": 16975.54, + "probability": 0.5244 + }, + { + "start": 16976.02, + "end": 16979.46, + "probability": 0.9963 + }, + { + "start": 16979.72, + "end": 16981.09, + "probability": 0.9911 + }, + { + "start": 16981.3, + "end": 16982.4, + "probability": 0.9362 + }, + { + "start": 16982.52, + "end": 16984.76, + "probability": 0.9956 + }, + { + "start": 16985.18, + "end": 16986.76, + "probability": 0.8887 + }, + { + "start": 16987.22, + "end": 16987.48, + "probability": 0.6161 + }, + { + "start": 16987.66, + "end": 16988.34, + "probability": 0.5689 + }, + { + "start": 16989.18, + "end": 16990.9, + "probability": 0.7039 + }, + { + "start": 17001.96, + "end": 17002.48, + "probability": 0.9082 + }, + { + "start": 17013.56, + "end": 17015.0, + "probability": 0.5335 + }, + { + "start": 17015.22, + "end": 17015.22, + "probability": 0.5073 + }, + { + "start": 17015.22, + "end": 17016.1, + "probability": 0.729 + }, + { + "start": 17016.18, + "end": 17017.34, + "probability": 0.6383 + }, + { + "start": 17018.42, + "end": 17021.86, + "probability": 0.9514 + }, + { + "start": 17022.84, + "end": 17024.82, + "probability": 0.9115 + }, + { + "start": 17025.64, + "end": 17026.7, + "probability": 0.8006 + }, + { + "start": 17026.86, + "end": 17027.76, + "probability": 0.8503 + }, + { + "start": 17027.82, + "end": 17028.88, + "probability": 0.9568 + }, + { + "start": 17029.4, + "end": 17032.52, + "probability": 0.9893 + }, + { + "start": 17033.46, + "end": 17036.48, + "probability": 0.9068 + }, + { + "start": 17036.94, + "end": 17038.26, + "probability": 0.9795 + }, + { + "start": 17039.04, + "end": 17041.78, + "probability": 0.9902 + }, + { + "start": 17042.72, + "end": 17044.08, + "probability": 0.9195 + }, + { + "start": 17044.8, + "end": 17046.8, + "probability": 0.8166 + }, + { + "start": 17047.5, + "end": 17049.5, + "probability": 0.9478 + }, + { + "start": 17049.64, + "end": 17051.9, + "probability": 0.9844 + }, + { + "start": 17052.66, + "end": 17055.42, + "probability": 0.9491 + }, + { + "start": 17056.06, + "end": 17059.62, + "probability": 0.9865 + }, + { + "start": 17060.62, + "end": 17062.26, + "probability": 0.7904 + }, + { + "start": 17062.56, + "end": 17064.14, + "probability": 0.8398 + }, + { + "start": 17064.18, + "end": 17065.38, + "probability": 0.9475 + }, + { + "start": 17066.26, + "end": 17067.2, + "probability": 0.8998 + }, + { + "start": 17068.66, + "end": 17070.72, + "probability": 0.7946 + }, + { + "start": 17071.12, + "end": 17076.28, + "probability": 0.9782 + }, + { + "start": 17076.84, + "end": 17078.5, + "probability": 0.9726 + }, + { + "start": 17078.88, + "end": 17083.8, + "probability": 0.9449 + }, + { + "start": 17084.4, + "end": 17085.82, + "probability": 0.7509 + }, + { + "start": 17087.22, + "end": 17090.52, + "probability": 0.9673 + }, + { + "start": 17091.32, + "end": 17094.18, + "probability": 0.9934 + }, + { + "start": 17095.46, + "end": 17098.68, + "probability": 0.9415 + }, + { + "start": 17100.3, + "end": 17104.52, + "probability": 0.9985 + }, + { + "start": 17105.36, + "end": 17112.76, + "probability": 0.9961 + }, + { + "start": 17113.52, + "end": 17114.16, + "probability": 0.5713 + }, + { + "start": 17114.5, + "end": 17118.36, + "probability": 0.96 + }, + { + "start": 17118.48, + "end": 17119.02, + "probability": 0.8443 + }, + { + "start": 17119.38, + "end": 17120.74, + "probability": 0.9438 + }, + { + "start": 17121.84, + "end": 17124.7, + "probability": 0.9146 + }, + { + "start": 17125.26, + "end": 17125.83, + "probability": 0.9392 + }, + { + "start": 17126.2, + "end": 17129.06, + "probability": 0.9973 + }, + { + "start": 17129.06, + "end": 17131.72, + "probability": 0.9279 + }, + { + "start": 17132.14, + "end": 17133.52, + "probability": 0.9241 + }, + { + "start": 17134.8, + "end": 17139.24, + "probability": 0.9986 + }, + { + "start": 17139.24, + "end": 17143.44, + "probability": 0.9952 + }, + { + "start": 17143.8, + "end": 17144.85, + "probability": 0.9963 + }, + { + "start": 17145.8, + "end": 17149.22, + "probability": 0.9932 + }, + { + "start": 17149.94, + "end": 17154.98, + "probability": 0.9666 + }, + { + "start": 17155.74, + "end": 17156.98, + "probability": 0.9979 + }, + { + "start": 17157.0, + "end": 17157.28, + "probability": 0.8979 + }, + { + "start": 17157.32, + "end": 17158.9, + "probability": 0.8926 + }, + { + "start": 17159.02, + "end": 17160.98, + "probability": 0.9956 + }, + { + "start": 17161.96, + "end": 17168.18, + "probability": 0.9908 + }, + { + "start": 17168.36, + "end": 17168.94, + "probability": 0.8682 + }, + { + "start": 17169.44, + "end": 17174.68, + "probability": 0.991 + }, + { + "start": 17175.58, + "end": 17179.04, + "probability": 0.9919 + }, + { + "start": 17180.58, + "end": 17181.16, + "probability": 0.4751 + }, + { + "start": 17182.66, + "end": 17187.1, + "probability": 0.9386 + }, + { + "start": 17187.56, + "end": 17190.54, + "probability": 0.8701 + }, + { + "start": 17190.88, + "end": 17193.78, + "probability": 0.9926 + }, + { + "start": 17194.44, + "end": 17195.28, + "probability": 0.6878 + }, + { + "start": 17195.74, + "end": 17197.82, + "probability": 0.9702 + }, + { + "start": 17197.82, + "end": 17200.84, + "probability": 0.9987 + }, + { + "start": 17201.48, + "end": 17204.5, + "probability": 0.9923 + }, + { + "start": 17205.26, + "end": 17206.4, + "probability": 0.903 + }, + { + "start": 17207.5, + "end": 17208.18, + "probability": 0.9346 + }, + { + "start": 17208.76, + "end": 17210.36, + "probability": 0.9519 + }, + { + "start": 17210.88, + "end": 17212.94, + "probability": 0.9862 + }, + { + "start": 17213.04, + "end": 17215.43, + "probability": 0.8946 + }, + { + "start": 17215.9, + "end": 17218.0, + "probability": 0.9586 + }, + { + "start": 17218.02, + "end": 17218.58, + "probability": 0.5045 + }, + { + "start": 17218.64, + "end": 17221.68, + "probability": 0.9596 + }, + { + "start": 17222.3, + "end": 17222.93, + "probability": 0.9291 + }, + { + "start": 17223.1, + "end": 17223.98, + "probability": 0.9097 + }, + { + "start": 17224.12, + "end": 17229.26, + "probability": 0.9888 + }, + { + "start": 17230.98, + "end": 17236.26, + "probability": 0.9846 + }, + { + "start": 17237.62, + "end": 17243.4, + "probability": 0.989 + }, + { + "start": 17243.46, + "end": 17244.58, + "probability": 0.9502 + }, + { + "start": 17244.64, + "end": 17245.44, + "probability": 0.8828 + }, + { + "start": 17246.0, + "end": 17248.35, + "probability": 0.9797 + }, + { + "start": 17248.88, + "end": 17250.3, + "probability": 0.6954 + }, + { + "start": 17250.5, + "end": 17252.06, + "probability": 0.9917 + }, + { + "start": 17252.78, + "end": 17257.14, + "probability": 0.9858 + }, + { + "start": 17257.96, + "end": 17260.12, + "probability": 0.9781 + }, + { + "start": 17260.26, + "end": 17262.12, + "probability": 0.9574 + }, + { + "start": 17262.76, + "end": 17265.32, + "probability": 0.9973 + }, + { + "start": 17265.46, + "end": 17266.48, + "probability": 0.8758 + }, + { + "start": 17266.6, + "end": 17269.48, + "probability": 0.9978 + }, + { + "start": 17269.68, + "end": 17272.06, + "probability": 0.9951 + }, + { + "start": 17272.56, + "end": 17274.64, + "probability": 0.9932 + }, + { + "start": 17275.18, + "end": 17275.5, + "probability": 0.7965 + }, + { + "start": 17276.0, + "end": 17277.92, + "probability": 0.9688 + }, + { + "start": 17278.08, + "end": 17282.52, + "probability": 0.9978 + }, + { + "start": 17282.72, + "end": 17285.38, + "probability": 0.8528 + }, + { + "start": 17285.9, + "end": 17287.9, + "probability": 0.9915 + }, + { + "start": 17288.12, + "end": 17288.5, + "probability": 0.8658 + }, + { + "start": 17289.5, + "end": 17290.76, + "probability": 0.4201 + }, + { + "start": 17290.84, + "end": 17293.02, + "probability": 0.7302 + }, + { + "start": 17293.54, + "end": 17295.58, + "probability": 0.7296 + }, + { + "start": 17296.02, + "end": 17298.08, + "probability": 0.7544 + }, + { + "start": 17298.72, + "end": 17300.82, + "probability": 0.739 + }, + { + "start": 17301.38, + "end": 17301.62, + "probability": 0.5731 + }, + { + "start": 17303.06, + "end": 17303.84, + "probability": 0.2353 + }, + { + "start": 17304.12, + "end": 17304.22, + "probability": 0.1588 + }, + { + "start": 17304.22, + "end": 17304.5, + "probability": 0.8519 + }, + { + "start": 17304.58, + "end": 17304.78, + "probability": 0.9368 + }, + { + "start": 17307.88, + "end": 17308.68, + "probability": 0.6396 + }, + { + "start": 17313.36, + "end": 17314.72, + "probability": 0.9966 + }, + { + "start": 17317.74, + "end": 17319.44, + "probability": 0.2939 + }, + { + "start": 17319.58, + "end": 17319.88, + "probability": 0.4068 + }, + { + "start": 17320.14, + "end": 17321.38, + "probability": 0.9243 + }, + { + "start": 17321.44, + "end": 17322.3, + "probability": 0.9014 + }, + { + "start": 17322.98, + "end": 17324.02, + "probability": 0.4326 + }, + { + "start": 17326.92, + "end": 17328.46, + "probability": 0.9912 + }, + { + "start": 17329.52, + "end": 17329.52, + "probability": 0.3348 + }, + { + "start": 17329.6, + "end": 17329.8, + "probability": 0.9877 + }, + { + "start": 17331.12, + "end": 17332.36, + "probability": 0.7958 + }, + { + "start": 17332.56, + "end": 17333.48, + "probability": 0.9926 + }, + { + "start": 17335.44, + "end": 17336.4, + "probability": 0.8244 + }, + { + "start": 17336.46, + "end": 17338.9, + "probability": 0.8869 + }, + { + "start": 17339.0, + "end": 17340.12, + "probability": 0.915 + }, + { + "start": 17341.14, + "end": 17343.34, + "probability": 0.6598 + }, + { + "start": 17344.32, + "end": 17345.5, + "probability": 0.6362 + }, + { + "start": 17346.22, + "end": 17347.5, + "probability": 0.4863 + }, + { + "start": 17347.6, + "end": 17348.59, + "probability": 0.8381 + }, + { + "start": 17350.02, + "end": 17351.24, + "probability": 0.4493 + }, + { + "start": 17353.2, + "end": 17357.14, + "probability": 0.9951 + }, + { + "start": 17357.4, + "end": 17358.46, + "probability": 0.9022 + }, + { + "start": 17358.64, + "end": 17363.38, + "probability": 0.9604 + }, + { + "start": 17364.36, + "end": 17364.98, + "probability": 0.6702 + }, + { + "start": 17365.24, + "end": 17369.68, + "probability": 0.8398 + }, + { + "start": 17370.66, + "end": 17372.24, + "probability": 0.9619 + }, + { + "start": 17373.3, + "end": 17375.56, + "probability": 0.7393 + }, + { + "start": 17376.1, + "end": 17377.84, + "probability": 0.4528 + }, + { + "start": 17378.4, + "end": 17380.06, + "probability": 0.9212 + }, + { + "start": 17381.26, + "end": 17384.79, + "probability": 0.5939 + }, + { + "start": 17385.68, + "end": 17389.84, + "probability": 0.8797 + }, + { + "start": 17390.74, + "end": 17391.37, + "probability": 0.7823 + }, + { + "start": 17392.84, + "end": 17394.66, + "probability": 0.9165 + }, + { + "start": 17395.54, + "end": 17403.34, + "probability": 0.9091 + }, + { + "start": 17404.06, + "end": 17407.0, + "probability": 0.9761 + }, + { + "start": 17407.0, + "end": 17416.34, + "probability": 0.9795 + }, + { + "start": 17417.16, + "end": 17419.82, + "probability": 0.9904 + }, + { + "start": 17420.84, + "end": 17423.44, + "probability": 0.9888 + }, + { + "start": 17425.84, + "end": 17428.78, + "probability": 0.8912 + }, + { + "start": 17428.78, + "end": 17431.66, + "probability": 0.9381 + }, + { + "start": 17432.5, + "end": 17435.7, + "probability": 0.9757 + }, + { + "start": 17436.2, + "end": 17437.08, + "probability": 0.5662 + }, + { + "start": 17437.14, + "end": 17439.08, + "probability": 0.9911 + }, + { + "start": 17439.54, + "end": 17441.78, + "probability": 0.8555 + }, + { + "start": 17442.68, + "end": 17444.84, + "probability": 0.694 + }, + { + "start": 17444.98, + "end": 17448.36, + "probability": 0.9204 + }, + { + "start": 17450.22, + "end": 17451.38, + "probability": 0.8652 + }, + { + "start": 17451.52, + "end": 17453.32, + "probability": 0.9717 + }, + { + "start": 17453.44, + "end": 17454.2, + "probability": 0.8878 + }, + { + "start": 17454.72, + "end": 17456.1, + "probability": 0.6862 + }, + { + "start": 17456.22, + "end": 17459.12, + "probability": 0.7069 + }, + { + "start": 17459.34, + "end": 17460.32, + "probability": 0.771 + }, + { + "start": 17461.16, + "end": 17466.48, + "probability": 0.9006 + }, + { + "start": 17467.12, + "end": 17467.46, + "probability": 0.4128 + }, + { + "start": 17467.56, + "end": 17471.98, + "probability": 0.9132 + }, + { + "start": 17472.44, + "end": 17474.3, + "probability": 0.9808 + }, + { + "start": 17474.98, + "end": 17478.46, + "probability": 0.692 + }, + { + "start": 17478.98, + "end": 17479.87, + "probability": 0.8943 + }, + { + "start": 17480.54, + "end": 17483.15, + "probability": 0.8954 + }, + { + "start": 17483.78, + "end": 17484.76, + "probability": 0.9956 + }, + { + "start": 17485.68, + "end": 17486.58, + "probability": 0.2907 + }, + { + "start": 17487.52, + "end": 17490.3, + "probability": 0.8576 + }, + { + "start": 17492.24, + "end": 17495.04, + "probability": 0.9622 + }, + { + "start": 17495.68, + "end": 17498.54, + "probability": 0.9626 + }, + { + "start": 17499.06, + "end": 17500.34, + "probability": 0.9504 + }, + { + "start": 17500.44, + "end": 17503.26, + "probability": 0.7475 + }, + { + "start": 17503.36, + "end": 17505.08, + "probability": 0.8076 + }, + { + "start": 17505.78, + "end": 17508.34, + "probability": 0.6987 + }, + { + "start": 17508.9, + "end": 17514.14, + "probability": 0.8904 + }, + { + "start": 17514.8, + "end": 17515.76, + "probability": 0.8203 + }, + { + "start": 17515.88, + "end": 17520.24, + "probability": 0.6051 + }, + { + "start": 17520.66, + "end": 17525.06, + "probability": 0.9752 + }, + { + "start": 17525.06, + "end": 17530.08, + "probability": 0.76 + }, + { + "start": 17530.22, + "end": 17537.24, + "probability": 0.9735 + }, + { + "start": 17538.74, + "end": 17539.76, + "probability": 0.7436 + }, + { + "start": 17540.28, + "end": 17542.38, + "probability": 0.9856 + }, + { + "start": 17542.98, + "end": 17546.54, + "probability": 0.8768 + }, + { + "start": 17546.86, + "end": 17550.06, + "probability": 0.9271 + }, + { + "start": 17550.52, + "end": 17552.92, + "probability": 0.9285 + }, + { + "start": 17553.76, + "end": 17554.14, + "probability": 0.1311 + }, + { + "start": 17554.36, + "end": 17555.82, + "probability": 0.8976 + }, + { + "start": 17555.84, + "end": 17557.92, + "probability": 0.7042 + }, + { + "start": 17558.08, + "end": 17559.02, + "probability": 0.7159 + }, + { + "start": 17559.72, + "end": 17561.8, + "probability": 0.6608 + }, + { + "start": 17562.04, + "end": 17565.78, + "probability": 0.8217 + }, + { + "start": 17565.84, + "end": 17567.26, + "probability": 0.5823 + }, + { + "start": 17567.96, + "end": 17570.47, + "probability": 0.7768 + }, + { + "start": 17571.66, + "end": 17574.0, + "probability": 0.981 + }, + { + "start": 17574.96, + "end": 17577.68, + "probability": 0.7618 + }, + { + "start": 17577.68, + "end": 17581.06, + "probability": 0.5033 + }, + { + "start": 17581.56, + "end": 17588.56, + "probability": 0.9591 + }, + { + "start": 17588.62, + "end": 17588.62, + "probability": 0.044 + }, + { + "start": 17588.62, + "end": 17588.62, + "probability": 0.1772 + }, + { + "start": 17588.62, + "end": 17588.7, + "probability": 0.5332 + }, + { + "start": 17588.7, + "end": 17590.86, + "probability": 0.6736 + }, + { + "start": 17592.96, + "end": 17592.96, + "probability": 0.4482 + }, + { + "start": 17592.96, + "end": 17596.28, + "probability": 0.7857 + }, + { + "start": 17601.0, + "end": 17602.68, + "probability": 0.7598 + }, + { + "start": 17602.8, + "end": 17603.68, + "probability": 0.6874 + }, + { + "start": 17605.2, + "end": 17605.92, + "probability": 0.9375 + }, + { + "start": 17608.42, + "end": 17609.38, + "probability": 0.6412 + }, + { + "start": 17609.72, + "end": 17609.82, + "probability": 0.7084 + }, + { + "start": 17612.92, + "end": 17613.6, + "probability": 0.8698 + }, + { + "start": 17614.72, + "end": 17618.64, + "probability": 0.8455 + }, + { + "start": 17619.36, + "end": 17621.26, + "probability": 0.9462 + }, + { + "start": 17621.4, + "end": 17621.98, + "probability": 0.915 + }, + { + "start": 17622.06, + "end": 17624.83, + "probability": 0.9926 + }, + { + "start": 17625.38, + "end": 17626.0, + "probability": 0.5799 + }, + { + "start": 17626.52, + "end": 17627.94, + "probability": 0.7263 + }, + { + "start": 17627.94, + "end": 17629.06, + "probability": 0.9216 + }, + { + "start": 17629.16, + "end": 17630.8, + "probability": 0.7357 + }, + { + "start": 17631.72, + "end": 17636.54, + "probability": 0.9619 + }, + { + "start": 17637.24, + "end": 17639.18, + "probability": 0.977 + }, + { + "start": 17640.54, + "end": 17641.14, + "probability": 0.8122 + }, + { + "start": 17641.74, + "end": 17644.74, + "probability": 0.9532 + }, + { + "start": 17649.4, + "end": 17650.88, + "probability": 0.9114 + }, + { + "start": 17651.3, + "end": 17655.22, + "probability": 0.844 + }, + { + "start": 17655.56, + "end": 17656.24, + "probability": 0.7858 + }, + { + "start": 17656.4, + "end": 17657.46, + "probability": 0.9796 + }, + { + "start": 17657.56, + "end": 17658.0, + "probability": 0.8953 + }, + { + "start": 17658.06, + "end": 17659.16, + "probability": 0.8498 + }, + { + "start": 17660.12, + "end": 17663.22, + "probability": 0.9932 + }, + { + "start": 17664.26, + "end": 17666.0, + "probability": 0.7095 + }, + { + "start": 17666.72, + "end": 17667.2, + "probability": 0.6734 + }, + { + "start": 17667.3, + "end": 17671.28, + "probability": 0.7831 + }, + { + "start": 17672.14, + "end": 17675.34, + "probability": 0.9561 + }, + { + "start": 17676.24, + "end": 17677.32, + "probability": 0.9082 + }, + { + "start": 17677.66, + "end": 17680.14, + "probability": 0.8699 + }, + { + "start": 17680.7, + "end": 17682.18, + "probability": 0.8676 + }, + { + "start": 17682.64, + "end": 17684.3, + "probability": 0.932 + }, + { + "start": 17684.4, + "end": 17687.28, + "probability": 0.4955 + }, + { + "start": 17687.92, + "end": 17690.88, + "probability": 0.7625 + }, + { + "start": 17691.74, + "end": 17694.34, + "probability": 0.9316 + }, + { + "start": 17697.06, + "end": 17698.84, + "probability": 0.6213 + }, + { + "start": 17699.44, + "end": 17701.26, + "probability": 0.6168 + }, + { + "start": 17701.96, + "end": 17702.78, + "probability": 0.6599 + }, + { + "start": 17703.66, + "end": 17706.72, + "probability": 0.9862 + }, + { + "start": 17707.28, + "end": 17710.3, + "probability": 0.8844 + }, + { + "start": 17710.92, + "end": 17713.9, + "probability": 0.5322 + }, + { + "start": 17714.44, + "end": 17717.0, + "probability": 0.8758 + }, + { + "start": 17717.68, + "end": 17720.22, + "probability": 0.9659 + }, + { + "start": 17720.32, + "end": 17725.21, + "probability": 0.9961 + }, + { + "start": 17725.9, + "end": 17727.66, + "probability": 0.6809 + }, + { + "start": 17729.46, + "end": 17735.12, + "probability": 0.9846 + }, + { + "start": 17735.84, + "end": 17737.0, + "probability": 0.9949 + }, + { + "start": 17737.08, + "end": 17740.44, + "probability": 0.9187 + }, + { + "start": 17741.16, + "end": 17748.4, + "probability": 0.9902 + }, + { + "start": 17748.6, + "end": 17750.22, + "probability": 0.9483 + }, + { + "start": 17750.7, + "end": 17753.28, + "probability": 0.7312 + }, + { + "start": 17753.32, + "end": 17759.28, + "probability": 0.96 + }, + { + "start": 17759.58, + "end": 17760.46, + "probability": 0.6546 + }, + { + "start": 17760.94, + "end": 17761.82, + "probability": 0.9829 + }, + { + "start": 17761.86, + "end": 17763.4, + "probability": 0.8112 + }, + { + "start": 17763.7, + "end": 17765.42, + "probability": 0.8983 + }, + { + "start": 17766.24, + "end": 17768.84, + "probability": 0.9955 + }, + { + "start": 17769.38, + "end": 17769.74, + "probability": 0.9746 + }, + { + "start": 17769.96, + "end": 17770.52, + "probability": 0.9111 + }, + { + "start": 17771.9, + "end": 17775.18, + "probability": 0.9744 + }, + { + "start": 17775.68, + "end": 17779.23, + "probability": 0.9924 + }, + { + "start": 17779.88, + "end": 17781.06, + "probability": 0.7738 + }, + { + "start": 17781.42, + "end": 17783.98, + "probability": 0.9776 + }, + { + "start": 17784.66, + "end": 17787.18, + "probability": 0.7056 + }, + { + "start": 17787.6, + "end": 17790.94, + "probability": 0.7002 + }, + { + "start": 17791.1, + "end": 17792.06, + "probability": 0.7456 + }, + { + "start": 17792.48, + "end": 17793.8, + "probability": 0.7359 + }, + { + "start": 17794.26, + "end": 17796.92, + "probability": 0.7021 + }, + { + "start": 17796.92, + "end": 17799.86, + "probability": 0.752 + }, + { + "start": 17801.32, + "end": 17802.58, + "probability": 0.4399 + }, + { + "start": 17803.14, + "end": 17805.84, + "probability": 0.8817 + }, + { + "start": 17809.42, + "end": 17810.12, + "probability": 0.363 + }, + { + "start": 17810.82, + "end": 17811.93, + "probability": 0.705 + }, + { + "start": 17812.28, + "end": 17814.3, + "probability": 0.974 + }, + { + "start": 17814.68, + "end": 17819.78, + "probability": 0.9717 + }, + { + "start": 17820.7, + "end": 17823.06, + "probability": 0.8804 + }, + { + "start": 17823.64, + "end": 17826.46, + "probability": 0.9951 + }, + { + "start": 17827.32, + "end": 17827.32, + "probability": 0.3583 + }, + { + "start": 17827.58, + "end": 17829.24, + "probability": 0.8828 + }, + { + "start": 17829.36, + "end": 17830.46, + "probability": 0.9082 + }, + { + "start": 17830.84, + "end": 17838.22, + "probability": 0.986 + }, + { + "start": 17838.4, + "end": 17841.32, + "probability": 0.9847 + }, + { + "start": 17841.49, + "end": 17845.0, + "probability": 0.9895 + }, + { + "start": 17845.5, + "end": 17848.56, + "probability": 0.9761 + }, + { + "start": 17848.64, + "end": 17852.14, + "probability": 0.8669 + }, + { + "start": 17852.46, + "end": 17853.9, + "probability": 0.9467 + }, + { + "start": 17854.32, + "end": 17854.6, + "probability": 0.7887 + }, + { + "start": 17855.34, + "end": 17857.42, + "probability": 0.7985 + }, + { + "start": 17857.66, + "end": 17858.21, + "probability": 0.9641 + }, + { + "start": 17859.16, + "end": 17860.14, + "probability": 0.9376 + }, + { + "start": 17880.48, + "end": 17883.0, + "probability": 0.7422 + }, + { + "start": 17884.26, + "end": 17887.7, + "probability": 0.9185 + }, + { + "start": 17889.3, + "end": 17893.66, + "probability": 0.9424 + }, + { + "start": 17894.88, + "end": 17899.6, + "probability": 0.936 + }, + { + "start": 17900.98, + "end": 17906.68, + "probability": 0.931 + }, + { + "start": 17908.82, + "end": 17910.52, + "probability": 0.484 + }, + { + "start": 17911.36, + "end": 17918.1, + "probability": 0.9843 + }, + { + "start": 17919.74, + "end": 17926.1, + "probability": 0.9571 + }, + { + "start": 17926.96, + "end": 17934.48, + "probability": 0.9958 + }, + { + "start": 17934.48, + "end": 17942.06, + "probability": 0.9993 + }, + { + "start": 17942.32, + "end": 17944.24, + "probability": 0.9087 + }, + { + "start": 17945.0, + "end": 17952.34, + "probability": 0.9917 + }, + { + "start": 17952.6, + "end": 17957.86, + "probability": 0.9559 + }, + { + "start": 17958.8, + "end": 17965.55, + "probability": 0.8201 + }, + { + "start": 17967.82, + "end": 17968.82, + "probability": 0.6116 + }, + { + "start": 17969.88, + "end": 17970.78, + "probability": 0.9152 + }, + { + "start": 17970.78, + "end": 17974.1, + "probability": 0.9813 + }, + { + "start": 17975.84, + "end": 17984.76, + "probability": 0.9697 + }, + { + "start": 17985.34, + "end": 17989.97, + "probability": 0.8483 + }, + { + "start": 17990.78, + "end": 17992.34, + "probability": 0.1503 + }, + { + "start": 17993.52, + "end": 17994.32, + "probability": 0.5343 + }, + { + "start": 17994.4, + "end": 17995.94, + "probability": 0.7725 + }, + { + "start": 17996.46, + "end": 17999.16, + "probability": 0.9502 + }, + { + "start": 17999.24, + "end": 18000.94, + "probability": 0.535 + }, + { + "start": 18001.62, + "end": 18009.08, + "probability": 0.9595 + }, + { + "start": 18010.38, + "end": 18015.84, + "probability": 0.7123 + }, + { + "start": 18016.26, + "end": 18017.78, + "probability": 0.9702 + }, + { + "start": 18017.86, + "end": 18019.43, + "probability": 0.4997 + }, + { + "start": 18019.74, + "end": 18023.83, + "probability": 0.7804 + }, + { + "start": 18024.04, + "end": 18027.06, + "probability": 0.9713 + }, + { + "start": 18027.14, + "end": 18029.38, + "probability": 0.9973 + }, + { + "start": 18029.86, + "end": 18030.92, + "probability": 0.7535 + }, + { + "start": 18031.54, + "end": 18032.48, + "probability": 0.7214 + }, + { + "start": 18033.96, + "end": 18035.5, + "probability": 0.8311 + }, + { + "start": 18036.02, + "end": 18037.58, + "probability": 0.6186 + }, + { + "start": 18038.1, + "end": 18040.36, + "probability": 0.6158 + }, + { + "start": 18041.52, + "end": 18041.64, + "probability": 0.7836 + }, + { + "start": 18044.64, + "end": 18045.9, + "probability": 0.8379 + }, + { + "start": 18047.72, + "end": 18053.06, + "probability": 0.9976 + }, + { + "start": 18053.06, + "end": 18059.86, + "probability": 0.7826 + }, + { + "start": 18061.36, + "end": 18063.98, + "probability": 0.9978 + }, + { + "start": 18063.98, + "end": 18066.8, + "probability": 0.9888 + }, + { + "start": 18067.92, + "end": 18068.98, + "probability": 0.8207 + }, + { + "start": 18069.12, + "end": 18073.08, + "probability": 0.9457 + }, + { + "start": 18073.5, + "end": 18074.62, + "probability": 0.943 + }, + { + "start": 18074.7, + "end": 18076.22, + "probability": 0.8209 + }, + { + "start": 18076.62, + "end": 18080.34, + "probability": 0.9895 + }, + { + "start": 18081.28, + "end": 18082.14, + "probability": 0.8354 + }, + { + "start": 18083.46, + "end": 18085.2, + "probability": 0.8584 + }, + { + "start": 18085.32, + "end": 18086.4, + "probability": 0.8867 + }, + { + "start": 18086.54, + "end": 18089.74, + "probability": 0.9814 + }, + { + "start": 18090.6, + "end": 18095.7, + "probability": 0.9888 + }, + { + "start": 18095.7, + "end": 18099.7, + "probability": 0.9818 + }, + { + "start": 18099.78, + "end": 18101.66, + "probability": 0.9927 + }, + { + "start": 18106.24, + "end": 18111.16, + "probability": 0.8725 + }, + { + "start": 18112.34, + "end": 18112.34, + "probability": 0.1967 + }, + { + "start": 18112.34, + "end": 18117.06, + "probability": 0.9897 + }, + { + "start": 18117.36, + "end": 18123.34, + "probability": 0.9968 + }, + { + "start": 18123.72, + "end": 18125.12, + "probability": 0.9694 + }, + { + "start": 18125.16, + "end": 18127.31, + "probability": 0.9716 + }, + { + "start": 18128.0, + "end": 18132.94, + "probability": 0.9875 + }, + { + "start": 18133.02, + "end": 18134.08, + "probability": 0.6701 + }, + { + "start": 18136.56, + "end": 18138.44, + "probability": 0.5326 + }, + { + "start": 18138.54, + "end": 18138.76, + "probability": 0.4998 + }, + { + "start": 18139.48, + "end": 18140.94, + "probability": 0.7749 + }, + { + "start": 18141.58, + "end": 18143.04, + "probability": 0.8387 + }, + { + "start": 18155.72, + "end": 18158.5, + "probability": 0.6614 + }, + { + "start": 18160.22, + "end": 18162.66, + "probability": 0.9212 + }, + { + "start": 18164.78, + "end": 18167.44, + "probability": 0.971 + }, + { + "start": 18167.44, + "end": 18174.24, + "probability": 0.7967 + }, + { + "start": 18174.42, + "end": 18174.6, + "probability": 0.5883 + }, + { + "start": 18175.06, + "end": 18177.84, + "probability": 0.8005 + }, + { + "start": 18177.96, + "end": 18178.82, + "probability": 0.9292 + }, + { + "start": 18179.46, + "end": 18180.8, + "probability": 0.8882 + }, + { + "start": 18183.14, + "end": 18187.16, + "probability": 0.9452 + }, + { + "start": 18188.62, + "end": 18192.48, + "probability": 0.9949 + }, + { + "start": 18194.0, + "end": 18195.2, + "probability": 0.9288 + }, + { + "start": 18195.32, + "end": 18196.92, + "probability": 0.8778 + }, + { + "start": 18197.06, + "end": 18199.02, + "probability": 0.8932 + }, + { + "start": 18199.86, + "end": 18200.86, + "probability": 0.7993 + }, + { + "start": 18201.68, + "end": 18202.3, + "probability": 0.8229 + }, + { + "start": 18203.22, + "end": 18206.92, + "probability": 0.9231 + }, + { + "start": 18207.88, + "end": 18210.22, + "probability": 0.995 + }, + { + "start": 18210.22, + "end": 18212.98, + "probability": 0.9886 + }, + { + "start": 18213.1, + "end": 18214.52, + "probability": 0.9064 + }, + { + "start": 18215.16, + "end": 18215.72, + "probability": 0.7732 + }, + { + "start": 18216.84, + "end": 18218.24, + "probability": 0.9834 + }, + { + "start": 18218.84, + "end": 18225.66, + "probability": 0.967 + }, + { + "start": 18225.74, + "end": 18230.26, + "probability": 0.942 + }, + { + "start": 18230.74, + "end": 18232.58, + "probability": 0.8649 + }, + { + "start": 18232.7, + "end": 18235.18, + "probability": 0.8945 + }, + { + "start": 18235.42, + "end": 18237.08, + "probability": 0.8907 + }, + { + "start": 18238.24, + "end": 18240.1, + "probability": 0.9925 + }, + { + "start": 18240.48, + "end": 18241.2, + "probability": 0.724 + }, + { + "start": 18241.4, + "end": 18243.64, + "probability": 0.9846 + }, + { + "start": 18244.94, + "end": 18248.58, + "probability": 0.9657 + }, + { + "start": 18248.76, + "end": 18254.18, + "probability": 0.9437 + }, + { + "start": 18255.16, + "end": 18255.32, + "probability": 0.0959 + }, + { + "start": 18255.36, + "end": 18259.28, + "probability": 0.9857 + }, + { + "start": 18260.34, + "end": 18265.6, + "probability": 0.9941 + }, + { + "start": 18266.9, + "end": 18269.29, + "probability": 0.9155 + }, + { + "start": 18270.4, + "end": 18273.27, + "probability": 0.6352 + }, + { + "start": 18273.44, + "end": 18275.68, + "probability": 0.9944 + }, + { + "start": 18277.1, + "end": 18277.72, + "probability": 0.8693 + }, + { + "start": 18278.48, + "end": 18279.2, + "probability": 0.957 + }, + { + "start": 18279.74, + "end": 18284.68, + "probability": 0.9478 + }, + { + "start": 18284.82, + "end": 18285.78, + "probability": 0.9243 + }, + { + "start": 18285.82, + "end": 18286.72, + "probability": 0.9905 + }, + { + "start": 18287.48, + "end": 18290.64, + "probability": 0.7339 + }, + { + "start": 18292.9, + "end": 18294.3, + "probability": 0.9932 + }, + { + "start": 18295.16, + "end": 18295.6, + "probability": 0.0529 + }, + { + "start": 18295.82, + "end": 18298.12, + "probability": 0.8494 + }, + { + "start": 18298.66, + "end": 18300.5, + "probability": 0.9819 + }, + { + "start": 18300.84, + "end": 18304.7, + "probability": 0.8813 + }, + { + "start": 18305.16, + "end": 18308.04, + "probability": 0.995 + }, + { + "start": 18308.16, + "end": 18309.06, + "probability": 0.6684 + }, + { + "start": 18309.46, + "end": 18312.14, + "probability": 0.9663 + }, + { + "start": 18312.28, + "end": 18313.73, + "probability": 0.9966 + }, + { + "start": 18314.46, + "end": 18316.58, + "probability": 0.7179 + }, + { + "start": 18317.44, + "end": 18319.58, + "probability": 0.9884 + }, + { + "start": 18319.68, + "end": 18321.08, + "probability": 0.9102 + }, + { + "start": 18321.52, + "end": 18322.02, + "probability": 0.6886 + }, + { + "start": 18323.62, + "end": 18324.78, + "probability": 0.9918 + }, + { + "start": 18326.14, + "end": 18328.66, + "probability": 0.9907 + }, + { + "start": 18330.16, + "end": 18334.62, + "probability": 0.9399 + }, + { + "start": 18335.22, + "end": 18338.02, + "probability": 0.8514 + }, + { + "start": 18340.6, + "end": 18341.22, + "probability": 0.6987 + }, + { + "start": 18341.32, + "end": 18344.5, + "probability": 0.6344 + }, + { + "start": 18344.96, + "end": 18345.5, + "probability": 0.6477 + }, + { + "start": 18345.62, + "end": 18349.2, + "probability": 0.9975 + }, + { + "start": 18351.27, + "end": 18355.98, + "probability": 0.8979 + }, + { + "start": 18356.58, + "end": 18359.98, + "probability": 0.9683 + }, + { + "start": 18360.56, + "end": 18362.0, + "probability": 0.9128 + }, + { + "start": 18363.44, + "end": 18367.66, + "probability": 0.9918 + }, + { + "start": 18368.66, + "end": 18371.64, + "probability": 0.9556 + }, + { + "start": 18371.8, + "end": 18375.9, + "probability": 0.9342 + }, + { + "start": 18376.38, + "end": 18379.9, + "probability": 0.9075 + }, + { + "start": 18380.16, + "end": 18381.18, + "probability": 0.9637 + }, + { + "start": 18381.66, + "end": 18382.96, + "probability": 0.9832 + }, + { + "start": 18383.44, + "end": 18386.86, + "probability": 0.747 + }, + { + "start": 18388.78, + "end": 18391.0, + "probability": 0.9118 + }, + { + "start": 18392.78, + "end": 18393.94, + "probability": 0.8431 + }, + { + "start": 18394.26, + "end": 18395.56, + "probability": 0.8842 + }, + { + "start": 18395.56, + "end": 18396.62, + "probability": 0.9828 + }, + { + "start": 18397.02, + "end": 18402.5, + "probability": 0.9941 + }, + { + "start": 18402.66, + "end": 18403.9, + "probability": 0.5002 + }, + { + "start": 18404.64, + "end": 18408.66, + "probability": 0.9958 + }, + { + "start": 18409.16, + "end": 18415.4, + "probability": 0.9933 + }, + { + "start": 18415.8, + "end": 18416.56, + "probability": 0.9482 + }, + { + "start": 18416.74, + "end": 18417.18, + "probability": 0.9757 + }, + { + "start": 18417.32, + "end": 18417.87, + "probability": 0.9767 + }, + { + "start": 18418.14, + "end": 18418.64, + "probability": 0.7009 + }, + { + "start": 18419.9, + "end": 18423.44, + "probability": 0.7181 + }, + { + "start": 18423.9, + "end": 18424.66, + "probability": 0.6836 + }, + { + "start": 18425.42, + "end": 18426.45, + "probability": 0.9878 + }, + { + "start": 18426.6, + "end": 18427.56, + "probability": 0.9438 + }, + { + "start": 18428.0, + "end": 18428.52, + "probability": 0.863 + }, + { + "start": 18429.1, + "end": 18430.36, + "probability": 0.8531 + }, + { + "start": 18431.0, + "end": 18431.82, + "probability": 0.6907 + }, + { + "start": 18433.62, + "end": 18435.36, + "probability": 0.9683 + }, + { + "start": 18438.22, + "end": 18440.18, + "probability": 0.7579 + }, + { + "start": 18440.3, + "end": 18440.56, + "probability": 0.4323 + }, + { + "start": 18441.3, + "end": 18444.9, + "probability": 0.8997 + }, + { + "start": 18445.54, + "end": 18446.84, + "probability": 0.851 + }, + { + "start": 18447.48, + "end": 18448.7, + "probability": 0.8125 + }, + { + "start": 18448.9, + "end": 18449.98, + "probability": 0.9471 + }, + { + "start": 18450.04, + "end": 18452.32, + "probability": 0.9985 + }, + { + "start": 18452.86, + "end": 18453.36, + "probability": 0.4005 + }, + { + "start": 18453.46, + "end": 18454.64, + "probability": 0.7793 + }, + { + "start": 18454.72, + "end": 18455.2, + "probability": 0.605 + }, + { + "start": 18455.6, + "end": 18456.08, + "probability": 0.7095 + }, + { + "start": 18457.96, + "end": 18458.28, + "probability": 0.8835 + }, + { + "start": 18460.64, + "end": 18461.04, + "probability": 0.618 + }, + { + "start": 18461.08, + "end": 18462.2, + "probability": 0.8194 + }, + { + "start": 18464.4, + "end": 18466.14, + "probability": 0.8149 + }, + { + "start": 18467.22, + "end": 18469.96, + "probability": 0.5722 + }, + { + "start": 18470.08, + "end": 18470.72, + "probability": 0.3336 + }, + { + "start": 18470.96, + "end": 18471.78, + "probability": 0.3495 + }, + { + "start": 18471.78, + "end": 18471.78, + "probability": 0.4215 + }, + { + "start": 18471.78, + "end": 18476.08, + "probability": 0.9314 + }, + { + "start": 18477.6, + "end": 18478.74, + "probability": 0.6111 + }, + { + "start": 18480.12, + "end": 18481.2, + "probability": 0.9083 + }, + { + "start": 18481.76, + "end": 18482.3, + "probability": 0.5514 + }, + { + "start": 18482.52, + "end": 18483.22, + "probability": 0.7516 + }, + { + "start": 18487.52, + "end": 18490.0, + "probability": 0.3228 + }, + { + "start": 18498.28, + "end": 18498.34, + "probability": 0.0231 + }, + { + "start": 18498.34, + "end": 18500.18, + "probability": 0.516 + }, + { + "start": 18500.9, + "end": 18502.72, + "probability": 0.7757 + }, + { + "start": 18503.54, + "end": 18504.0, + "probability": 0.3354 + }, + { + "start": 18504.0, + "end": 18506.16, + "probability": 0.8577 + }, + { + "start": 18507.82, + "end": 18507.96, + "probability": 0.2696 + }, + { + "start": 18507.96, + "end": 18508.98, + "probability": 0.704 + }, + { + "start": 18509.06, + "end": 18510.18, + "probability": 0.6794 + }, + { + "start": 18510.24, + "end": 18513.16, + "probability": 0.7542 + }, + { + "start": 18513.16, + "end": 18517.2, + "probability": 0.9712 + }, + { + "start": 18518.18, + "end": 18518.6, + "probability": 0.6735 + }, + { + "start": 18518.82, + "end": 18519.7, + "probability": 0.6734 + }, + { + "start": 18519.72, + "end": 18520.2, + "probability": 0.4549 + }, + { + "start": 18520.34, + "end": 18523.12, + "probability": 0.9694 + }, + { + "start": 18523.12, + "end": 18526.44, + "probability": 0.9916 + }, + { + "start": 18526.92, + "end": 18528.16, + "probability": 0.0209 + }, + { + "start": 18528.82, + "end": 18529.96, + "probability": 0.1488 + }, + { + "start": 18530.48, + "end": 18535.06, + "probability": 0.1228 + }, + { + "start": 18535.58, + "end": 18536.5, + "probability": 0.1389 + }, + { + "start": 18536.52, + "end": 18538.3, + "probability": 0.128 + }, + { + "start": 18539.14, + "end": 18539.92, + "probability": 0.0926 + }, + { + "start": 18541.01, + "end": 18544.54, + "probability": 0.2491 + }, + { + "start": 18545.62, + "end": 18549.84, + "probability": 0.6325 + }, + { + "start": 18552.48, + "end": 18553.86, + "probability": 0.9049 + }, + { + "start": 18557.37, + "end": 18557.88, + "probability": 0.0293 + }, + { + "start": 18557.88, + "end": 18558.66, + "probability": 0.0304 + }, + { + "start": 18560.64, + "end": 18561.2, + "probability": 0.0091 + }, + { + "start": 18561.2, + "end": 18561.58, + "probability": 0.0499 + }, + { + "start": 18561.58, + "end": 18562.12, + "probability": 0.1491 + }, + { + "start": 18563.86, + "end": 18564.64, + "probability": 0.1606 + }, + { + "start": 18564.64, + "end": 18566.0, + "probability": 0.0835 + }, + { + "start": 18569.56, + "end": 18569.58, + "probability": 0.1654 + }, + { + "start": 18570.1, + "end": 18570.86, + "probability": 0.041 + }, + { + "start": 18571.9, + "end": 18573.18, + "probability": 0.0643 + }, + { + "start": 18574.34, + "end": 18574.34, + "probability": 0.0976 + }, + { + "start": 18574.34, + "end": 18575.47, + "probability": 0.0858 + }, + { + "start": 18576.24, + "end": 18577.75, + "probability": 0.3059 + }, + { + "start": 18582.17, + "end": 18582.98, + "probability": 0.0809 + }, + { + "start": 18582.98, + "end": 18583.3, + "probability": 0.0096 + }, + { + "start": 18583.3, + "end": 18589.34, + "probability": 0.052 + }, + { + "start": 18606.0, + "end": 18606.0, + "probability": 0.0 + }, + { + "start": 18606.0, + "end": 18606.0, + "probability": 0.0 + }, + { + "start": 18606.0, + "end": 18606.0, + "probability": 0.0 + }, + { + "start": 18606.0, + "end": 18606.0, + "probability": 0.0 + }, + { + "start": 18606.0, + "end": 18606.0, + "probability": 0.0 + }, + { + "start": 18606.0, + "end": 18606.0, + "probability": 0.0 + }, + { + "start": 18606.0, + "end": 18606.0, + "probability": 0.0 + }, + { + "start": 18606.0, + "end": 18606.0, + "probability": 0.0 + }, + { + "start": 18606.0, + "end": 18606.0, + "probability": 0.0 + }, + { + "start": 18606.0, + "end": 18606.0, + "probability": 0.0 + }, + { + "start": 18606.0, + "end": 18606.0, + "probability": 0.0 + }, + { + "start": 18606.24, + "end": 18610.2, + "probability": 0.9185 + }, + { + "start": 18612.32, + "end": 18614.6, + "probability": 0.9941 + }, + { + "start": 18615.54, + "end": 18617.54, + "probability": 0.8542 + }, + { + "start": 18617.7, + "end": 18618.22, + "probability": 0.9499 + }, + { + "start": 18618.48, + "end": 18619.02, + "probability": 0.5773 + }, + { + "start": 18619.06, + "end": 18620.58, + "probability": 0.9329 + }, + { + "start": 18621.32, + "end": 18622.1, + "probability": 0.9951 + }, + { + "start": 18624.06, + "end": 18631.96, + "probability": 0.9194 + }, + { + "start": 18632.1, + "end": 18634.1, + "probability": 0.8606 + }, + { + "start": 18635.44, + "end": 18636.06, + "probability": 0.9777 + }, + { + "start": 18637.92, + "end": 18640.35, + "probability": 0.9956 + }, + { + "start": 18640.74, + "end": 18642.92, + "probability": 0.9919 + }, + { + "start": 18643.52, + "end": 18647.7, + "probability": 0.9946 + }, + { + "start": 18648.32, + "end": 18649.68, + "probability": 0.477 + }, + { + "start": 18650.24, + "end": 18653.42, + "probability": 0.6245 + }, + { + "start": 18654.52, + "end": 18658.47, + "probability": 0.917 + }, + { + "start": 18659.32, + "end": 18660.34, + "probability": 0.9908 + }, + { + "start": 18662.04, + "end": 18664.56, + "probability": 0.9941 + }, + { + "start": 18664.56, + "end": 18669.2, + "probability": 0.9696 + }, + { + "start": 18669.24, + "end": 18670.56, + "probability": 0.73 + }, + { + "start": 18670.72, + "end": 18673.08, + "probability": 0.8437 + }, + { + "start": 18673.7, + "end": 18677.88, + "probability": 0.9776 + }, + { + "start": 18678.26, + "end": 18679.66, + "probability": 0.9711 + }, + { + "start": 18679.92, + "end": 18680.36, + "probability": 0.793 + }, + { + "start": 18681.16, + "end": 18683.0, + "probability": 0.9084 + }, + { + "start": 18683.42, + "end": 18684.06, + "probability": 0.8109 + }, + { + "start": 18684.22, + "end": 18684.94, + "probability": 0.7943 + }, + { + "start": 18685.24, + "end": 18685.66, + "probability": 0.7264 + }, + { + "start": 18685.88, + "end": 18686.7, + "probability": 0.8921 + }, + { + "start": 18687.56, + "end": 18688.82, + "probability": 0.9587 + }, + { + "start": 18688.88, + "end": 18689.04, + "probability": 0.5412 + }, + { + "start": 18689.52, + "end": 18690.44, + "probability": 0.8484 + }, + { + "start": 18691.12, + "end": 18693.64, + "probability": 0.9361 + }, + { + "start": 18694.84, + "end": 18698.52, + "probability": 0.9968 + }, + { + "start": 18701.7, + "end": 18705.74, + "probability": 0.9938 + }, + { + "start": 18706.4, + "end": 18706.78, + "probability": 0.7621 + }, + { + "start": 18707.12, + "end": 18707.52, + "probability": 0.8326 + }, + { + "start": 18707.86, + "end": 18709.76, + "probability": 0.9894 + }, + { + "start": 18709.86, + "end": 18710.24, + "probability": 0.7724 + }, + { + "start": 18710.26, + "end": 18711.12, + "probability": 0.9259 + }, + { + "start": 18711.38, + "end": 18712.38, + "probability": 0.9939 + }, + { + "start": 18712.44, + "end": 18713.28, + "probability": 0.4692 + }, + { + "start": 18713.62, + "end": 18714.44, + "probability": 0.5233 + }, + { + "start": 18714.68, + "end": 18716.84, + "probability": 0.9678 + }, + { + "start": 18717.2, + "end": 18720.58, + "probability": 0.9105 + }, + { + "start": 18720.64, + "end": 18722.02, + "probability": 0.982 + }, + { + "start": 18722.1, + "end": 18723.52, + "probability": 0.9985 + }, + { + "start": 18723.96, + "end": 18725.28, + "probability": 0.991 + }, + { + "start": 18725.66, + "end": 18729.64, + "probability": 0.9414 + }, + { + "start": 18730.92, + "end": 18732.48, + "probability": 0.8171 + }, + { + "start": 18732.54, + "end": 18734.28, + "probability": 0.9648 + }, + { + "start": 18734.86, + "end": 18737.22, + "probability": 0.9365 + }, + { + "start": 18737.82, + "end": 18740.56, + "probability": 0.8643 + }, + { + "start": 18740.96, + "end": 18745.7, + "probability": 0.9243 + }, + { + "start": 18746.42, + "end": 18748.62, + "probability": 0.8757 + }, + { + "start": 18749.04, + "end": 18753.86, + "probability": 0.9959 + }, + { + "start": 18754.9, + "end": 18758.34, + "probability": 0.5878 + }, + { + "start": 18758.94, + "end": 18760.22, + "probability": 0.9814 + }, + { + "start": 18760.8, + "end": 18761.62, + "probability": 0.8779 + }, + { + "start": 18761.9, + "end": 18764.66, + "probability": 0.9976 + }, + { + "start": 18766.02, + "end": 18770.74, + "probability": 0.9496 + }, + { + "start": 18771.18, + "end": 18772.62, + "probability": 0.7109 + }, + { + "start": 18772.68, + "end": 18773.68, + "probability": 0.8543 + }, + { + "start": 18773.84, + "end": 18775.48, + "probability": 0.9565 + }, + { + "start": 18775.66, + "end": 18776.86, + "probability": 0.9276 + }, + { + "start": 18777.14, + "end": 18779.6, + "probability": 0.9818 + }, + { + "start": 18779.9, + "end": 18780.22, + "probability": 0.2551 + }, + { + "start": 18780.22, + "end": 18781.3, + "probability": 0.5464 + }, + { + "start": 18781.36, + "end": 18783.5, + "probability": 0.9069 + }, + { + "start": 18783.6, + "end": 18784.44, + "probability": 0.3002 + }, + { + "start": 18784.78, + "end": 18785.66, + "probability": 0.5119 + }, + { + "start": 18786.94, + "end": 18787.84, + "probability": 0.9535 + }, + { + "start": 18797.68, + "end": 18797.8, + "probability": 0.2504 + }, + { + "start": 18797.8, + "end": 18798.72, + "probability": 0.7003 + }, + { + "start": 18799.86, + "end": 18800.52, + "probability": 0.8696 + }, + { + "start": 18801.12, + "end": 18805.84, + "probability": 0.8715 + }, + { + "start": 18805.94, + "end": 18807.28, + "probability": 0.9837 + }, + { + "start": 18807.66, + "end": 18812.14, + "probability": 0.9575 + }, + { + "start": 18812.14, + "end": 18815.4, + "probability": 0.3613 + }, + { + "start": 18816.1, + "end": 18817.38, + "probability": 0.8395 + }, + { + "start": 18817.62, + "end": 18821.3, + "probability": 0.9914 + }, + { + "start": 18821.66, + "end": 18823.54, + "probability": 0.894 + }, + { + "start": 18823.66, + "end": 18825.46, + "probability": 0.9912 + }, + { + "start": 18826.4, + "end": 18829.52, + "probability": 0.5998 + }, + { + "start": 18829.52, + "end": 18830.18, + "probability": 0.8314 + }, + { + "start": 18830.32, + "end": 18833.16, + "probability": 0.7036 + }, + { + "start": 18833.72, + "end": 18833.92, + "probability": 0.6372 + }, + { + "start": 18833.92, + "end": 18835.18, + "probability": 0.9824 + }, + { + "start": 18835.56, + "end": 18836.3, + "probability": 0.8705 + }, + { + "start": 18836.42, + "end": 18837.42, + "probability": 0.8374 + }, + { + "start": 18837.52, + "end": 18838.06, + "probability": 0.7773 + }, + { + "start": 18838.14, + "end": 18839.16, + "probability": 0.8314 + }, + { + "start": 18839.86, + "end": 18840.86, + "probability": 0.9226 + }, + { + "start": 18841.06, + "end": 18845.94, + "probability": 0.9939 + }, + { + "start": 18846.26, + "end": 18847.44, + "probability": 0.9712 + }, + { + "start": 18847.62, + "end": 18848.3, + "probability": 0.7363 + }, + { + "start": 18848.48, + "end": 18849.04, + "probability": 0.838 + }, + { + "start": 18849.42, + "end": 18852.92, + "probability": 0.9944 + }, + { + "start": 18853.22, + "end": 18856.18, + "probability": 0.781 + }, + { + "start": 18856.76, + "end": 18858.4, + "probability": 0.9673 + }, + { + "start": 18858.58, + "end": 18858.98, + "probability": 0.7782 + }, + { + "start": 18859.06, + "end": 18860.24, + "probability": 0.954 + }, + { + "start": 18860.62, + "end": 18861.56, + "probability": 0.7502 + }, + { + "start": 18861.76, + "end": 18863.68, + "probability": 0.9743 + }, + { + "start": 18864.04, + "end": 18865.36, + "probability": 0.9915 + }, + { + "start": 18865.46, + "end": 18867.98, + "probability": 0.8528 + }, + { + "start": 18868.62, + "end": 18871.62, + "probability": 0.8859 + }, + { + "start": 18871.7, + "end": 18872.65, + "probability": 0.7005 + }, + { + "start": 18873.62, + "end": 18875.54, + "probability": 0.7257 + }, + { + "start": 18875.76, + "end": 18878.0, + "probability": 0.9857 + }, + { + "start": 18878.06, + "end": 18878.9, + "probability": 0.9768 + }, + { + "start": 18879.2, + "end": 18881.04, + "probability": 0.852 + }, + { + "start": 18881.46, + "end": 18882.62, + "probability": 0.9014 + }, + { + "start": 18882.9, + "end": 18884.04, + "probability": 0.8511 + }, + { + "start": 18884.06, + "end": 18885.22, + "probability": 0.9436 + }, + { + "start": 18885.38, + "end": 18887.2, + "probability": 0.6376 + }, + { + "start": 18887.86, + "end": 18887.86, + "probability": 0.3033 + }, + { + "start": 18887.86, + "end": 18891.74, + "probability": 0.9307 + }, + { + "start": 18892.34, + "end": 18894.07, + "probability": 0.9495 + }, + { + "start": 18894.72, + "end": 18897.24, + "probability": 0.9679 + }, + { + "start": 18900.31, + "end": 18902.38, + "probability": 0.0114 + }, + { + "start": 18902.38, + "end": 18902.58, + "probability": 0.2663 + }, + { + "start": 18902.58, + "end": 18903.52, + "probability": 0.075 + }, + { + "start": 18903.52, + "end": 18904.62, + "probability": 0.682 + }, + { + "start": 18915.26, + "end": 18920.1, + "probability": 0.1059 + }, + { + "start": 18922.32, + "end": 18926.64, + "probability": 0.4917 + }, + { + "start": 18930.29, + "end": 18935.24, + "probability": 0.327 + }, + { + "start": 18935.34, + "end": 18936.52, + "probability": 0.1504 + }, + { + "start": 18952.9, + "end": 18954.7, + "probability": 0.0293 + }, + { + "start": 18954.93, + "end": 18956.94, + "probability": 0.0866 + }, + { + "start": 18957.58, + "end": 18958.14, + "probability": 0.1516 + }, + { + "start": 18961.3, + "end": 18961.3, + "probability": 0.3522 + }, + { + "start": 18961.3, + "end": 18961.78, + "probability": 0.2959 + }, + { + "start": 18965.82, + "end": 18969.26, + "probability": 0.035 + }, + { + "start": 18970.1, + "end": 18970.1, + "probability": 0.0031 + }, + { + "start": 18971.72, + "end": 18981.62, + "probability": 0.0815 + }, + { + "start": 18985.64, + "end": 18988.0, + "probability": 0.0316 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0801 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.1408 + }, + { + "start": 18988.0, + "end": 18988.59, + "probability": 0.0986 + }, + { + "start": 18988.82, + "end": 18990.46, + "probability": 0.0649 + }, + { + "start": 18991.32, + "end": 18991.98, + "probability": 0.0717 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 18992.0, + "end": 18992.0, + "probability": 0.0 + }, + { + "start": 19000.2, + "end": 19004.36, + "probability": 0.1548 + }, + { + "start": 19004.7, + "end": 19004.78, + "probability": 0.0101 + }, + { + "start": 19004.78, + "end": 19005.0, + "probability": 0.1333 + }, + { + "start": 19005.0, + "end": 19005.0, + "probability": 0.2197 + }, + { + "start": 19005.0, + "end": 19005.7, + "probability": 0.1536 + }, + { + "start": 19007.1, + "end": 19010.66, + "probability": 0.0307 + }, + { + "start": 19010.66, + "end": 19012.88, + "probability": 0.1044 + }, + { + "start": 19013.4, + "end": 19015.42, + "probability": 0.1605 + }, + { + "start": 19015.42, + "end": 19019.94, + "probability": 0.1662 + }, + { + "start": 19020.12, + "end": 19022.34, + "probability": 0.2744 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.0, + "end": 19114.0, + "probability": 0.0 + }, + { + "start": 19114.64, + "end": 19120.76, + "probability": 0.9939 + }, + { + "start": 19120.94, + "end": 19123.14, + "probability": 0.9933 + }, + { + "start": 19124.16, + "end": 19129.28, + "probability": 0.9937 + }, + { + "start": 19129.28, + "end": 19132.94, + "probability": 0.9644 + }, + { + "start": 19133.66, + "end": 19134.86, + "probability": 0.9797 + }, + { + "start": 19134.94, + "end": 19138.8, + "probability": 0.8821 + }, + { + "start": 19138.94, + "end": 19139.4, + "probability": 0.6663 + }, + { + "start": 19139.44, + "end": 19140.44, + "probability": 0.5528 + }, + { + "start": 19141.0, + "end": 19143.44, + "probability": 0.9695 + }, + { + "start": 19143.86, + "end": 19144.52, + "probability": 0.7119 + }, + { + "start": 19144.74, + "end": 19147.14, + "probability": 0.9919 + }, + { + "start": 19147.22, + "end": 19151.54, + "probability": 0.9904 + }, + { + "start": 19151.54, + "end": 19155.46, + "probability": 0.9631 + }, + { + "start": 19155.8, + "end": 19157.4, + "probability": 0.9891 + }, + { + "start": 19157.8, + "end": 19159.06, + "probability": 0.9161 + }, + { + "start": 19159.06, + "end": 19161.18, + "probability": 0.874 + }, + { + "start": 19161.32, + "end": 19162.48, + "probability": 0.8063 + }, + { + "start": 19162.56, + "end": 19163.92, + "probability": 0.981 + }, + { + "start": 19164.22, + "end": 19166.54, + "probability": 0.998 + }, + { + "start": 19167.04, + "end": 19169.9, + "probability": 0.9825 + }, + { + "start": 19170.5, + "end": 19176.16, + "probability": 0.8337 + }, + { + "start": 19176.64, + "end": 19177.38, + "probability": 0.4909 + }, + { + "start": 19177.6, + "end": 19179.3, + "probability": 0.7818 + }, + { + "start": 19179.46, + "end": 19181.78, + "probability": 0.7179 + }, + { + "start": 19182.08, + "end": 19183.04, + "probability": 0.4933 + }, + { + "start": 19183.16, + "end": 19183.58, + "probability": 0.9458 + }, + { + "start": 19184.7, + "end": 19185.6, + "probability": 0.9674 + }, + { + "start": 19185.64, + "end": 19190.58, + "probability": 0.9585 + }, + { + "start": 19191.06, + "end": 19191.7, + "probability": 0.9766 + }, + { + "start": 19191.76, + "end": 19192.22, + "probability": 0.8828 + }, + { + "start": 19192.76, + "end": 19195.0, + "probability": 0.9734 + }, + { + "start": 19195.32, + "end": 19198.14, + "probability": 0.977 + }, + { + "start": 19198.68, + "end": 19199.58, + "probability": 0.7802 + }, + { + "start": 19199.88, + "end": 19202.66, + "probability": 0.9922 + }, + { + "start": 19203.1, + "end": 19206.16, + "probability": 0.9749 + }, + { + "start": 19206.54, + "end": 19210.08, + "probability": 0.9941 + }, + { + "start": 19210.86, + "end": 19214.3, + "probability": 0.9329 + }, + { + "start": 19214.38, + "end": 19214.96, + "probability": 0.5992 + }, + { + "start": 19215.0, + "end": 19216.18, + "probability": 0.809 + }, + { + "start": 19216.2, + "end": 19217.06, + "probability": 0.7424 + }, + { + "start": 19217.46, + "end": 19220.74, + "probability": 0.9961 + }, + { + "start": 19221.28, + "end": 19226.64, + "probability": 0.9956 + }, + { + "start": 19226.64, + "end": 19230.1, + "probability": 0.8537 + }, + { + "start": 19230.68, + "end": 19231.94, + "probability": 0.6188 + }, + { + "start": 19232.0, + "end": 19236.48, + "probability": 0.998 + }, + { + "start": 19236.8, + "end": 19239.87, + "probability": 0.9966 + }, + { + "start": 19240.36, + "end": 19241.8, + "probability": 0.7286 + }, + { + "start": 19242.26, + "end": 19244.3, + "probability": 0.8497 + }, + { + "start": 19244.76, + "end": 19247.6, + "probability": 0.953 + }, + { + "start": 19248.02, + "end": 19249.92, + "probability": 0.9742 + }, + { + "start": 19250.08, + "end": 19251.5, + "probability": 0.9881 + }, + { + "start": 19251.82, + "end": 19253.66, + "probability": 0.9927 + }, + { + "start": 19254.04, + "end": 19254.52, + "probability": 0.9512 + }, + { + "start": 19255.06, + "end": 19258.2, + "probability": 0.9979 + }, + { + "start": 19258.58, + "end": 19261.34, + "probability": 0.9879 + }, + { + "start": 19261.34, + "end": 19264.6, + "probability": 0.9825 + }, + { + "start": 19264.74, + "end": 19267.26, + "probability": 0.9888 + }, + { + "start": 19267.68, + "end": 19269.98, + "probability": 0.9889 + }, + { + "start": 19270.1, + "end": 19273.14, + "probability": 0.9966 + }, + { + "start": 19273.14, + "end": 19276.38, + "probability": 0.9984 + }, + { + "start": 19277.1, + "end": 19281.22, + "probability": 0.9935 + }, + { + "start": 19281.92, + "end": 19286.56, + "probability": 0.9945 + }, + { + "start": 19287.0, + "end": 19288.72, + "probability": 0.8086 + }, + { + "start": 19288.84, + "end": 19290.76, + "probability": 0.911 + }, + { + "start": 19290.86, + "end": 19291.98, + "probability": 0.8222 + }, + { + "start": 19292.4, + "end": 19293.38, + "probability": 0.8936 + }, + { + "start": 19293.6, + "end": 19294.94, + "probability": 0.9613 + }, + { + "start": 19295.26, + "end": 19296.68, + "probability": 0.9683 + }, + { + "start": 19296.98, + "end": 19298.2, + "probability": 0.8382 + }, + { + "start": 19298.86, + "end": 19302.06, + "probability": 0.9893 + }, + { + "start": 19302.32, + "end": 19303.5, + "probability": 0.9087 + }, + { + "start": 19303.58, + "end": 19306.18, + "probability": 0.9684 + }, + { + "start": 19306.52, + "end": 19307.08, + "probability": 0.7656 + }, + { + "start": 19307.38, + "end": 19309.72, + "probability": 0.9439 + }, + { + "start": 19309.88, + "end": 19310.2, + "probability": 0.8193 + }, + { + "start": 19310.56, + "end": 19315.56, + "probability": 0.8594 + }, + { + "start": 19315.74, + "end": 19318.58, + "probability": 0.9749 + }, + { + "start": 19318.98, + "end": 19321.42, + "probability": 0.8015 + }, + { + "start": 19321.84, + "end": 19322.34, + "probability": 0.9221 + }, + { + "start": 19322.82, + "end": 19323.56, + "probability": 0.8969 + }, + { + "start": 19323.6, + "end": 19324.52, + "probability": 0.9289 + }, + { + "start": 19324.78, + "end": 19325.14, + "probability": 0.5348 + }, + { + "start": 19325.16, + "end": 19326.16, + "probability": 0.8308 + }, + { + "start": 19327.02, + "end": 19327.54, + "probability": 0.4867 + }, + { + "start": 19327.96, + "end": 19328.88, + "probability": 0.8125 + }, + { + "start": 19329.0, + "end": 19330.42, + "probability": 0.9858 + }, + { + "start": 19330.5, + "end": 19331.28, + "probability": 0.8943 + }, + { + "start": 19331.3, + "end": 19332.8, + "probability": 0.9602 + }, + { + "start": 19333.04, + "end": 19334.3, + "probability": 0.748 + }, + { + "start": 19334.44, + "end": 19335.52, + "probability": 0.8083 + }, + { + "start": 19336.1, + "end": 19339.76, + "probability": 0.9873 + }, + { + "start": 19340.24, + "end": 19342.88, + "probability": 0.8884 + }, + { + "start": 19342.96, + "end": 19343.96, + "probability": 0.9426 + }, + { + "start": 19344.26, + "end": 19345.28, + "probability": 0.9609 + }, + { + "start": 19345.34, + "end": 19346.64, + "probability": 0.9586 + }, + { + "start": 19347.06, + "end": 19348.08, + "probability": 0.8237 + }, + { + "start": 19348.42, + "end": 19350.19, + "probability": 0.7505 + }, + { + "start": 19350.52, + "end": 19351.74, + "probability": 0.8207 + }, + { + "start": 19352.84, + "end": 19353.38, + "probability": 0.519 + }, + { + "start": 19353.54, + "end": 19354.72, + "probability": 0.8047 + }, + { + "start": 19355.62, + "end": 19356.12, + "probability": 0.8614 + }, + { + "start": 19356.3, + "end": 19358.4, + "probability": 0.8514 + }, + { + "start": 19359.14, + "end": 19362.66, + "probability": 0.9011 + }, + { + "start": 19369.86, + "end": 19370.26, + "probability": 0.397 + }, + { + "start": 19370.34, + "end": 19371.61, + "probability": 0.8768 + }, + { + "start": 19372.24, + "end": 19374.64, + "probability": 0.7458 + }, + { + "start": 19375.26, + "end": 19376.06, + "probability": 0.8643 + }, + { + "start": 19376.46, + "end": 19377.85, + "probability": 0.6552 + }, + { + "start": 19378.94, + "end": 19380.02, + "probability": 0.4059 + }, + { + "start": 19380.08, + "end": 19380.68, + "probability": 0.922 + }, + { + "start": 19380.8, + "end": 19381.46, + "probability": 0.9518 + }, + { + "start": 19382.83, + "end": 19384.12, + "probability": 0.7768 + }, + { + "start": 19384.4, + "end": 19388.24, + "probability": 0.7959 + }, + { + "start": 19388.42, + "end": 19392.06, + "probability": 0.8823 + }, + { + "start": 19392.16, + "end": 19394.9, + "probability": 0.9528 + }, + { + "start": 19395.42, + "end": 19398.09, + "probability": 0.9736 + }, + { + "start": 19398.74, + "end": 19403.16, + "probability": 0.9222 + }, + { + "start": 19404.08, + "end": 19405.86, + "probability": 0.7015 + }, + { + "start": 19406.12, + "end": 19408.22, + "probability": 0.8597 + }, + { + "start": 19408.62, + "end": 19411.62, + "probability": 0.9883 + }, + { + "start": 19411.76, + "end": 19412.44, + "probability": 0.6506 + }, + { + "start": 19412.92, + "end": 19415.66, + "probability": 0.9844 + }, + { + "start": 19416.78, + "end": 19417.36, + "probability": 0.707 + }, + { + "start": 19417.4, + "end": 19422.02, + "probability": 0.9441 + }, + { + "start": 19422.2, + "end": 19426.28, + "probability": 0.8497 + }, + { + "start": 19426.42, + "end": 19427.38, + "probability": 0.6783 + }, + { + "start": 19427.54, + "end": 19428.08, + "probability": 0.7433 + }, + { + "start": 19428.6, + "end": 19430.6, + "probability": 0.8921 + }, + { + "start": 19430.8, + "end": 19431.66, + "probability": 0.7899 + }, + { + "start": 19431.76, + "end": 19432.56, + "probability": 0.5484 + }, + { + "start": 19433.16, + "end": 19434.74, + "probability": 0.7552 + }, + { + "start": 19435.58, + "end": 19438.18, + "probability": 0.9394 + }, + { + "start": 19438.3, + "end": 19441.92, + "probability": 0.9541 + }, + { + "start": 19442.46, + "end": 19446.4, + "probability": 0.6552 + }, + { + "start": 19446.78, + "end": 19452.76, + "probability": 0.9328 + }, + { + "start": 19452.82, + "end": 19454.12, + "probability": 0.524 + }, + { + "start": 19454.6, + "end": 19457.36, + "probability": 0.7175 + }, + { + "start": 19457.5, + "end": 19457.96, + "probability": 0.7278 + }, + { + "start": 19458.12, + "end": 19460.06, + "probability": 0.8846 + }, + { + "start": 19460.42, + "end": 19462.78, + "probability": 0.7892 + }, + { + "start": 19463.6, + "end": 19468.42, + "probability": 0.9794 + }, + { + "start": 19468.58, + "end": 19469.42, + "probability": 0.7473 + }, + { + "start": 19469.68, + "end": 19470.42, + "probability": 0.9695 + }, + { + "start": 19470.58, + "end": 19472.72, + "probability": 0.9801 + }, + { + "start": 19472.8, + "end": 19474.56, + "probability": 0.7058 + }, + { + "start": 19474.66, + "end": 19476.29, + "probability": 0.9909 + }, + { + "start": 19476.4, + "end": 19477.64, + "probability": 0.8636 + }, + { + "start": 19478.06, + "end": 19480.7, + "probability": 0.8354 + }, + { + "start": 19480.78, + "end": 19485.21, + "probability": 0.8086 + }, + { + "start": 19486.26, + "end": 19492.9, + "probability": 0.7589 + }, + { + "start": 19492.9, + "end": 19495.55, + "probability": 0.9902 + }, + { + "start": 19496.24, + "end": 19499.22, + "probability": 0.9821 + }, + { + "start": 19500.2, + "end": 19501.52, + "probability": 0.569 + }, + { + "start": 19501.68, + "end": 19503.3, + "probability": 0.6176 + }, + { + "start": 19503.4, + "end": 19504.76, + "probability": 0.7227 + }, + { + "start": 19505.1, + "end": 19507.6, + "probability": 0.9803 + }, + { + "start": 19507.74, + "end": 19509.86, + "probability": 0.6443 + }, + { + "start": 19510.06, + "end": 19512.58, + "probability": 0.9834 + }, + { + "start": 19512.92, + "end": 19514.88, + "probability": 0.9309 + }, + { + "start": 19515.0, + "end": 19516.9, + "probability": 0.8297 + }, + { + "start": 19517.38, + "end": 19519.52, + "probability": 0.7591 + }, + { + "start": 19519.6, + "end": 19520.32, + "probability": 0.7419 + }, + { + "start": 19520.4, + "end": 19522.88, + "probability": 0.9313 + }, + { + "start": 19522.92, + "end": 19523.34, + "probability": 0.8633 + }, + { + "start": 19523.38, + "end": 19524.1, + "probability": 0.8079 + }, + { + "start": 19524.24, + "end": 19525.72, + "probability": 0.9752 + }, + { + "start": 19525.78, + "end": 19526.64, + "probability": 0.9698 + }, + { + "start": 19526.94, + "end": 19528.89, + "probability": 0.7964 + }, + { + "start": 19529.58, + "end": 19530.18, + "probability": 0.392 + }, + { + "start": 19530.42, + "end": 19530.64, + "probability": 0.2635 + }, + { + "start": 19530.64, + "end": 19530.96, + "probability": 0.4751 + }, + { + "start": 19531.02, + "end": 19531.86, + "probability": 0.6138 + }, + { + "start": 19531.88, + "end": 19535.24, + "probability": 0.9395 + }, + { + "start": 19535.76, + "end": 19536.98, + "probability": 0.7867 + }, + { + "start": 19537.1, + "end": 19539.52, + "probability": 0.8267 + }, + { + "start": 19539.58, + "end": 19540.34, + "probability": 0.7949 + }, + { + "start": 19540.36, + "end": 19541.32, + "probability": 0.8628 + }, + { + "start": 19541.38, + "end": 19542.78, + "probability": 0.6703 + }, + { + "start": 19542.86, + "end": 19544.32, + "probability": 0.8283 + }, + { + "start": 19544.34, + "end": 19545.92, + "probability": 0.8051 + }, + { + "start": 19546.06, + "end": 19547.68, + "probability": 0.4734 + }, + { + "start": 19547.78, + "end": 19552.26, + "probability": 0.8674 + }, + { + "start": 19552.98, + "end": 19557.02, + "probability": 0.8782 + }, + { + "start": 19557.4, + "end": 19558.32, + "probability": 0.9014 + }, + { + "start": 19558.48, + "end": 19561.9, + "probability": 0.9856 + }, + { + "start": 19562.3, + "end": 19563.04, + "probability": 0.499 + }, + { + "start": 19563.12, + "end": 19564.58, + "probability": 0.8071 + }, + { + "start": 19564.62, + "end": 19565.3, + "probability": 0.5384 + }, + { + "start": 19565.34, + "end": 19565.68, + "probability": 0.7491 + }, + { + "start": 19565.76, + "end": 19567.74, + "probability": 0.8488 + }, + { + "start": 19568.06, + "end": 19568.72, + "probability": 0.8284 + }, + { + "start": 19568.78, + "end": 19570.62, + "probability": 0.8005 + }, + { + "start": 19570.62, + "end": 19574.16, + "probability": 0.953 + }, + { + "start": 19574.84, + "end": 19576.28, + "probability": 0.9191 + }, + { + "start": 19576.36, + "end": 19576.9, + "probability": 0.7148 + }, + { + "start": 19577.02, + "end": 19580.4, + "probability": 0.8721 + }, + { + "start": 19580.56, + "end": 19581.48, + "probability": 0.9714 + }, + { + "start": 19581.66, + "end": 19582.18, + "probability": 0.9114 + }, + { + "start": 19582.24, + "end": 19583.9, + "probability": 0.8479 + }, + { + "start": 19584.0, + "end": 19584.92, + "probability": 0.9321 + }, + { + "start": 19585.12, + "end": 19587.3, + "probability": 0.9766 + }, + { + "start": 19587.34, + "end": 19587.94, + "probability": 0.4263 + }, + { + "start": 19588.12, + "end": 19589.26, + "probability": 0.4785 + }, + { + "start": 19589.34, + "end": 19589.56, + "probability": 0.874 + }, + { + "start": 19589.64, + "end": 19592.85, + "probability": 0.9596 + }, + { + "start": 19593.14, + "end": 19594.74, + "probability": 0.7235 + }, + { + "start": 19594.82, + "end": 19599.36, + "probability": 0.9251 + }, + { + "start": 19599.7, + "end": 19600.52, + "probability": 0.7008 + }, + { + "start": 19600.56, + "end": 19601.68, + "probability": 0.8721 + }, + { + "start": 19601.82, + "end": 19602.5, + "probability": 0.8664 + }, + { + "start": 19602.62, + "end": 19605.16, + "probability": 0.9224 + }, + { + "start": 19605.18, + "end": 19607.36, + "probability": 0.8768 + }, + { + "start": 19607.48, + "end": 19608.49, + "probability": 0.8879 + }, + { + "start": 19608.96, + "end": 19610.63, + "probability": 0.8765 + }, + { + "start": 19610.9, + "end": 19611.48, + "probability": 0.9243 + }, + { + "start": 19611.52, + "end": 19613.0, + "probability": 0.8246 + }, + { + "start": 19613.14, + "end": 19614.16, + "probability": 0.1403 + }, + { + "start": 19614.2, + "end": 19615.06, + "probability": 0.7595 + }, + { + "start": 19615.28, + "end": 19617.04, + "probability": 0.8858 + }, + { + "start": 19617.14, + "end": 19620.04, + "probability": 0.735 + }, + { + "start": 19620.5, + "end": 19621.7, + "probability": 0.5229 + }, + { + "start": 19622.3, + "end": 19624.72, + "probability": 0.7148 + }, + { + "start": 19625.02, + "end": 19625.74, + "probability": 0.7752 + }, + { + "start": 19625.82, + "end": 19628.6, + "probability": 0.9395 + }, + { + "start": 19628.68, + "end": 19628.68, + "probability": 0.2463 + }, + { + "start": 19628.68, + "end": 19630.82, + "probability": 0.8782 + }, + { + "start": 19631.68, + "end": 19633.94, + "probability": 0.839 + }, + { + "start": 19634.32, + "end": 19635.04, + "probability": 0.0241 + }, + { + "start": 19635.26, + "end": 19636.12, + "probability": 0.6896 + }, + { + "start": 19636.48, + "end": 19638.46, + "probability": 0.8776 + }, + { + "start": 19638.58, + "end": 19640.3, + "probability": 0.9653 + }, + { + "start": 19640.4, + "end": 19643.2, + "probability": 0.7806 + }, + { + "start": 19643.84, + "end": 19645.26, + "probability": 0.7604 + }, + { + "start": 19646.84, + "end": 19650.3, + "probability": 0.0763 + }, + { + "start": 19662.1, + "end": 19665.16, + "probability": 0.6202 + }, + { + "start": 19666.14, + "end": 19667.64, + "probability": 0.7619 + }, + { + "start": 19668.78, + "end": 19675.44, + "probability": 0.979 + }, + { + "start": 19675.5, + "end": 19678.24, + "probability": 0.9783 + }, + { + "start": 19678.58, + "end": 19682.06, + "probability": 0.7744 + }, + { + "start": 19682.82, + "end": 19683.44, + "probability": 0.2527 + }, + { + "start": 19683.54, + "end": 19684.72, + "probability": 0.923 + }, + { + "start": 19684.82, + "end": 19686.9, + "probability": 0.9452 + }, + { + "start": 19687.56, + "end": 19689.02, + "probability": 0.7752 + }, + { + "start": 19689.76, + "end": 19693.08, + "probability": 0.6143 + }, + { + "start": 19693.34, + "end": 19694.7, + "probability": 0.9546 + }, + { + "start": 19695.1, + "end": 19696.26, + "probability": 0.9307 + }, + { + "start": 19696.34, + "end": 19698.78, + "probability": 0.9603 + }, + { + "start": 19698.98, + "end": 19700.08, + "probability": 0.9326 + }, + { + "start": 19700.86, + "end": 19703.3, + "probability": 0.9966 + }, + { + "start": 19703.48, + "end": 19707.52, + "probability": 0.9867 + }, + { + "start": 19707.72, + "end": 19708.16, + "probability": 0.1958 + }, + { + "start": 19708.16, + "end": 19709.54, + "probability": 0.7691 + }, + { + "start": 19709.62, + "end": 19709.74, + "probability": 0.77 + }, + { + "start": 19710.11, + "end": 19714.51, + "probability": 0.9188 + }, + { + "start": 19714.8, + "end": 19716.1, + "probability": 0.9941 + }, + { + "start": 19716.6, + "end": 19719.26, + "probability": 0.9871 + }, + { + "start": 19719.5, + "end": 19721.16, + "probability": 0.7852 + }, + { + "start": 19721.28, + "end": 19722.66, + "probability": 0.907 + }, + { + "start": 19722.88, + "end": 19726.96, + "probability": 0.9849 + }, + { + "start": 19728.65, + "end": 19734.2, + "probability": 0.9971 + }, + { + "start": 19734.52, + "end": 19736.74, + "probability": 0.9609 + }, + { + "start": 19736.9, + "end": 19740.54, + "probability": 0.9689 + }, + { + "start": 19740.92, + "end": 19744.22, + "probability": 0.9611 + }, + { + "start": 19744.22, + "end": 19747.64, + "probability": 0.9946 + }, + { + "start": 19747.78, + "end": 19749.74, + "probability": 0.8078 + }, + { + "start": 19749.78, + "end": 19751.52, + "probability": 0.9691 + }, + { + "start": 19751.6, + "end": 19752.04, + "probability": 0.6907 + }, + { + "start": 19752.76, + "end": 19753.76, + "probability": 0.9337 + }, + { + "start": 19753.92, + "end": 19758.1, + "probability": 0.9761 + }, + { + "start": 19758.2, + "end": 19758.78, + "probability": 0.5117 + }, + { + "start": 19759.18, + "end": 19763.86, + "probability": 0.9788 + }, + { + "start": 19764.0, + "end": 19764.18, + "probability": 0.4948 + }, + { + "start": 19764.34, + "end": 19766.74, + "probability": 0.9875 + }, + { + "start": 19766.84, + "end": 19768.68, + "probability": 0.98 + }, + { + "start": 19768.84, + "end": 19770.22, + "probability": 0.9824 + }, + { + "start": 19770.46, + "end": 19772.52, + "probability": 0.8975 + }, + { + "start": 19773.62, + "end": 19775.95, + "probability": 0.9722 + }, + { + "start": 19776.26, + "end": 19777.54, + "probability": 0.9604 + }, + { + "start": 19777.72, + "end": 19778.38, + "probability": 0.3964 + }, + { + "start": 19778.54, + "end": 19779.24, + "probability": 0.8514 + }, + { + "start": 19780.72, + "end": 19786.7, + "probability": 0.9986 + }, + { + "start": 19787.04, + "end": 19793.36, + "probability": 0.9808 + }, + { + "start": 19793.36, + "end": 19797.74, + "probability": 0.973 + }, + { + "start": 19797.94, + "end": 19801.66, + "probability": 0.9611 + }, + { + "start": 19801.76, + "end": 19804.08, + "probability": 0.8543 + }, + { + "start": 19804.16, + "end": 19805.16, + "probability": 0.8198 + }, + { + "start": 19805.88, + "end": 19806.2, + "probability": 0.2978 + }, + { + "start": 19806.54, + "end": 19810.74, + "probability": 0.9689 + }, + { + "start": 19810.78, + "end": 19812.28, + "probability": 0.9791 + }, + { + "start": 19813.42, + "end": 19814.78, + "probability": 0.7441 + }, + { + "start": 19814.86, + "end": 19817.82, + "probability": 0.7834 + }, + { + "start": 19817.86, + "end": 19823.56, + "probability": 0.9912 + }, + { + "start": 19824.22, + "end": 19826.46, + "probability": 0.9937 + }, + { + "start": 19827.3, + "end": 19827.46, + "probability": 0.2838 + }, + { + "start": 19827.46, + "end": 19829.06, + "probability": 0.9964 + }, + { + "start": 19829.24, + "end": 19830.22, + "probability": 0.8171 + }, + { + "start": 19830.38, + "end": 19830.8, + "probability": 0.8868 + }, + { + "start": 19830.9, + "end": 19834.66, + "probability": 0.9502 + }, + { + "start": 19834.7, + "end": 19837.64, + "probability": 0.96 + }, + { + "start": 19837.84, + "end": 19840.96, + "probability": 0.853 + }, + { + "start": 19841.04, + "end": 19844.14, + "probability": 0.9966 + }, + { + "start": 19844.24, + "end": 19844.66, + "probability": 0.6866 + }, + { + "start": 19844.78, + "end": 19845.42, + "probability": 0.747 + }, + { + "start": 19845.62, + "end": 19848.12, + "probability": 0.9753 + }, + { + "start": 19848.18, + "end": 19853.84, + "probability": 0.8909 + }, + { + "start": 19854.0, + "end": 19857.54, + "probability": 0.9403 + }, + { + "start": 19857.96, + "end": 19861.2, + "probability": 0.9531 + }, + { + "start": 19861.44, + "end": 19865.14, + "probability": 0.8929 + }, + { + "start": 19866.06, + "end": 19867.98, + "probability": 0.9687 + }, + { + "start": 19868.1, + "end": 19869.12, + "probability": 0.8558 + }, + { + "start": 19869.26, + "end": 19873.14, + "probability": 0.9956 + }, + { + "start": 19873.14, + "end": 19876.56, + "probability": 0.8898 + }, + { + "start": 19876.82, + "end": 19878.92, + "probability": 0.9971 + }, + { + "start": 19879.02, + "end": 19881.14, + "probability": 0.9316 + }, + { + "start": 19881.6, + "end": 19883.06, + "probability": 0.8501 + }, + { + "start": 19883.12, + "end": 19884.6, + "probability": 0.9922 + }, + { + "start": 19884.68, + "end": 19886.06, + "probability": 0.9478 + }, + { + "start": 19886.44, + "end": 19889.04, + "probability": 0.8685 + }, + { + "start": 19889.14, + "end": 19890.75, + "probability": 0.9927 + }, + { + "start": 19891.0, + "end": 19891.94, + "probability": 0.7479 + }, + { + "start": 19892.22, + "end": 19892.24, + "probability": 0.0026 + }, + { + "start": 19893.3, + "end": 19894.62, + "probability": 0.0303 + }, + { + "start": 19894.62, + "end": 19895.36, + "probability": 0.2635 + }, + { + "start": 19895.5, + "end": 19895.74, + "probability": 0.3444 + }, + { + "start": 19895.84, + "end": 19899.7, + "probability": 0.2907 + }, + { + "start": 19900.02, + "end": 19900.32, + "probability": 0.443 + }, + { + "start": 19900.38, + "end": 19901.12, + "probability": 0.507 + }, + { + "start": 19901.34, + "end": 19902.43, + "probability": 0.8957 + }, + { + "start": 19902.9, + "end": 19904.1, + "probability": 0.9834 + }, + { + "start": 19904.18, + "end": 19904.9, + "probability": 0.9121 + }, + { + "start": 19905.06, + "end": 19908.02, + "probability": 0.8931 + }, + { + "start": 19908.16, + "end": 19909.56, + "probability": 0.9272 + }, + { + "start": 19909.74, + "end": 19912.62, + "probability": 0.9479 + }, + { + "start": 19913.32, + "end": 19913.71, + "probability": 0.0438 + }, + { + "start": 19915.48, + "end": 19915.6, + "probability": 0.0003 + }, + { + "start": 19915.6, + "end": 19915.6, + "probability": 0.0421 + }, + { + "start": 19915.6, + "end": 19917.5, + "probability": 0.5843 + }, + { + "start": 19917.64, + "end": 19918.26, + "probability": 0.7499 + }, + { + "start": 19918.26, + "end": 19920.08, + "probability": 0.8315 + }, + { + "start": 19920.1, + "end": 19920.82, + "probability": 0.0041 + }, + { + "start": 19920.82, + "end": 19925.82, + "probability": 0.6842 + }, + { + "start": 19926.44, + "end": 19927.66, + "probability": 0.752 + }, + { + "start": 19927.76, + "end": 19929.18, + "probability": 0.9807 + }, + { + "start": 19929.38, + "end": 19929.94, + "probability": 0.0041 + }, + { + "start": 19930.44, + "end": 19930.44, + "probability": 0.2359 + }, + { + "start": 19930.44, + "end": 19931.46, + "probability": 0.5763 + }, + { + "start": 19932.02, + "end": 19933.5, + "probability": 0.0449 + }, + { + "start": 19933.5, + "end": 19933.71, + "probability": 0.2979 + }, + { + "start": 19934.82, + "end": 19937.5, + "probability": 0.7805 + }, + { + "start": 19937.56, + "end": 19940.6, + "probability": 0.0912 + }, + { + "start": 19941.38, + "end": 19942.36, + "probability": 0.0435 + }, + { + "start": 19942.36, + "end": 19942.9, + "probability": 0.0118 + }, + { + "start": 19942.94, + "end": 19945.48, + "probability": 0.8593 + }, + { + "start": 19945.84, + "end": 19947.22, + "probability": 0.9772 + }, + { + "start": 19947.42, + "end": 19949.0, + "probability": 0.8054 + }, + { + "start": 19949.06, + "end": 19950.84, + "probability": 0.8486 + }, + { + "start": 19950.98, + "end": 19951.76, + "probability": 0.8654 + }, + { + "start": 19951.9, + "end": 19955.2, + "probability": 0.9105 + }, + { + "start": 19955.32, + "end": 19956.68, + "probability": 0.9941 + }, + { + "start": 19956.82, + "end": 19959.62, + "probability": 0.5561 + }, + { + "start": 19960.06, + "end": 19960.98, + "probability": 0.7627 + }, + { + "start": 19961.26, + "end": 19962.9, + "probability": 0.1143 + }, + { + "start": 19963.12, + "end": 19964.4, + "probability": 0.7935 + }, + { + "start": 19965.98, + "end": 19966.06, + "probability": 0.0031 + }, + { + "start": 19966.06, + "end": 19966.06, + "probability": 0.1361 + }, + { + "start": 19966.06, + "end": 19966.06, + "probability": 0.0811 + }, + { + "start": 19966.06, + "end": 19966.96, + "probability": 0.3563 + }, + { + "start": 19967.64, + "end": 19969.2, + "probability": 0.7707 + }, + { + "start": 19969.34, + "end": 19974.88, + "probability": 0.9421 + }, + { + "start": 19975.0, + "end": 19976.8, + "probability": 0.874 + }, + { + "start": 19977.04, + "end": 19977.58, + "probability": 0.8623 + }, + { + "start": 19977.66, + "end": 19982.48, + "probability": 0.8332 + }, + { + "start": 19983.02, + "end": 19985.72, + "probability": 0.9738 + }, + { + "start": 19985.76, + "end": 19988.52, + "probability": 0.8692 + }, + { + "start": 19988.58, + "end": 19991.36, + "probability": 0.9634 + }, + { + "start": 19991.36, + "end": 19993.94, + "probability": 0.9995 + }, + { + "start": 19994.56, + "end": 19995.16, + "probability": 0.6331 + }, + { + "start": 19995.86, + "end": 19996.68, + "probability": 0.9188 + }, + { + "start": 19996.72, + "end": 19997.84, + "probability": 0.9426 + }, + { + "start": 19998.06, + "end": 19998.81, + "probability": 0.7605 + }, + { + "start": 19998.84, + "end": 20002.3, + "probability": 0.7993 + }, + { + "start": 20002.32, + "end": 20003.74, + "probability": 0.522 + }, + { + "start": 20004.48, + "end": 20009.56, + "probability": 0.9694 + }, + { + "start": 20009.64, + "end": 20013.16, + "probability": 0.9487 + }, + { + "start": 20013.34, + "end": 20015.96, + "probability": 0.8266 + }, + { + "start": 20016.04, + "end": 20017.44, + "probability": 0.8824 + }, + { + "start": 20017.5, + "end": 20019.08, + "probability": 0.4881 + }, + { + "start": 20019.18, + "end": 20022.03, + "probability": 0.9838 + }, + { + "start": 20022.12, + "end": 20023.48, + "probability": 0.7568 + }, + { + "start": 20023.64, + "end": 20024.78, + "probability": 0.6526 + }, + { + "start": 20024.84, + "end": 20026.64, + "probability": 0.8651 + }, + { + "start": 20026.7, + "end": 20027.4, + "probability": 0.6453 + }, + { + "start": 20027.68, + "end": 20031.44, + "probability": 0.9873 + }, + { + "start": 20031.66, + "end": 20032.34, + "probability": 0.5629 + }, + { + "start": 20032.46, + "end": 20034.86, + "probability": 0.9517 + }, + { + "start": 20034.96, + "end": 20036.26, + "probability": 0.7245 + }, + { + "start": 20036.64, + "end": 20036.82, + "probability": 0.9167 + }, + { + "start": 20040.74, + "end": 20042.46, + "probability": 0.5781 + }, + { + "start": 20042.8, + "end": 20045.0, + "probability": 0.2725 + }, + { + "start": 20045.62, + "end": 20046.1, + "probability": 0.6457 + }, + { + "start": 20046.58, + "end": 20051.74, + "probability": 0.9951 + }, + { + "start": 20052.24, + "end": 20053.98, + "probability": 0.9421 + }, + { + "start": 20054.22, + "end": 20054.78, + "probability": 0.9877 + }, + { + "start": 20055.32, + "end": 20058.19, + "probability": 0.9961 + }, + { + "start": 20058.64, + "end": 20060.14, + "probability": 0.9321 + }, + { + "start": 20060.72, + "end": 20063.42, + "probability": 0.9929 + }, + { + "start": 20063.48, + "end": 20064.24, + "probability": 0.9512 + }, + { + "start": 20064.46, + "end": 20065.22, + "probability": 0.9705 + }, + { + "start": 20065.88, + "end": 20067.48, + "probability": 0.8967 + }, + { + "start": 20068.06, + "end": 20070.02, + "probability": 0.9825 + }, + { + "start": 20070.26, + "end": 20073.3, + "probability": 0.9634 + }, + { + "start": 20073.74, + "end": 20077.02, + "probability": 0.9617 + }, + { + "start": 20077.06, + "end": 20077.7, + "probability": 0.8873 + }, + { + "start": 20078.36, + "end": 20078.76, + "probability": 0.7061 + }, + { + "start": 20078.94, + "end": 20080.54, + "probability": 0.0107 + }, + { + "start": 20080.72, + "end": 20080.8, + "probability": 0.0175 + }, + { + "start": 20080.8, + "end": 20081.78, + "probability": 0.0571 + }, + { + "start": 20081.82, + "end": 20083.24, + "probability": 0.9599 + }, + { + "start": 20083.36, + "end": 20085.67, + "probability": 0.9961 + }, + { + "start": 20085.88, + "end": 20086.28, + "probability": 0.57 + }, + { + "start": 20086.28, + "end": 20087.9, + "probability": 0.6061 + }, + { + "start": 20088.46, + "end": 20091.94, + "probability": 0.5385 + }, + { + "start": 20092.06, + "end": 20092.78, + "probability": 0.3461 + }, + { + "start": 20092.86, + "end": 20093.76, + "probability": 0.8558 + }, + { + "start": 20093.86, + "end": 20097.78, + "probability": 0.9678 + }, + { + "start": 20097.92, + "end": 20099.42, + "probability": 0.9175 + }, + { + "start": 20099.44, + "end": 20100.42, + "probability": 0.5654 + }, + { + "start": 20100.76, + "end": 20101.58, + "probability": 0.3761 + }, + { + "start": 20101.76, + "end": 20103.08, + "probability": 0.6283 + }, + { + "start": 20103.12, + "end": 20104.44, + "probability": 0.9371 + }, + { + "start": 20104.6, + "end": 20105.5, + "probability": 0.8059 + }, + { + "start": 20105.62, + "end": 20106.44, + "probability": 0.7258 + }, + { + "start": 20106.58, + "end": 20109.1, + "probability": 0.9828 + }, + { + "start": 20109.28, + "end": 20110.4, + "probability": 0.9646 + }, + { + "start": 20110.4, + "end": 20111.54, + "probability": 0.297 + }, + { + "start": 20111.7, + "end": 20115.56, + "probability": 0.9529 + }, + { + "start": 20115.68, + "end": 20118.36, + "probability": 0.9981 + }, + { + "start": 20118.36, + "end": 20120.94, + "probability": 0.8683 + }, + { + "start": 20121.85, + "end": 20124.6, + "probability": 0.1702 + }, + { + "start": 20124.6, + "end": 20124.7, + "probability": 0.1364 + }, + { + "start": 20124.7, + "end": 20124.7, + "probability": 0.5908 + }, + { + "start": 20124.7, + "end": 20124.82, + "probability": 0.2761 + }, + { + "start": 20125.26, + "end": 20125.44, + "probability": 0.7742 + }, + { + "start": 20126.14, + "end": 20126.66, + "probability": 0.4389 + }, + { + "start": 20127.0, + "end": 20129.4, + "probability": 0.9811 + }, + { + "start": 20129.4, + "end": 20132.2, + "probability": 0.9754 + }, + { + "start": 20132.36, + "end": 20134.82, + "probability": 0.2147 + }, + { + "start": 20135.24, + "end": 20136.08, + "probability": 0.0158 + }, + { + "start": 20136.08, + "end": 20137.42, + "probability": 0.461 + }, + { + "start": 20137.68, + "end": 20139.94, + "probability": 0.9486 + }, + { + "start": 20140.18, + "end": 20142.54, + "probability": 0.9844 + }, + { + "start": 20142.84, + "end": 20144.06, + "probability": 0.9248 + }, + { + "start": 20144.54, + "end": 20144.96, + "probability": 0.4927 + }, + { + "start": 20145.02, + "end": 20146.6, + "probability": 0.984 + }, + { + "start": 20146.64, + "end": 20147.42, + "probability": 0.8805 + }, + { + "start": 20148.44, + "end": 20150.36, + "probability": 0.9407 + }, + { + "start": 20150.5, + "end": 20152.38, + "probability": 0.9094 + }, + { + "start": 20152.46, + "end": 20154.02, + "probability": 0.9403 + }, + { + "start": 20154.2, + "end": 20156.28, + "probability": 0.9898 + }, + { + "start": 20156.68, + "end": 20157.2, + "probability": 0.8136 + }, + { + "start": 20157.54, + "end": 20158.74, + "probability": 0.7514 + }, + { + "start": 20158.78, + "end": 20159.98, + "probability": 0.9746 + }, + { + "start": 20160.44, + "end": 20161.38, + "probability": 0.9355 + }, + { + "start": 20161.8, + "end": 20162.14, + "probability": 0.6695 + }, + { + "start": 20162.24, + "end": 20166.56, + "probability": 0.8973 + }, + { + "start": 20166.64, + "end": 20167.88, + "probability": 0.9125 + }, + { + "start": 20168.3, + "end": 20170.32, + "probability": 0.9503 + }, + { + "start": 20170.4, + "end": 20172.02, + "probability": 0.6768 + }, + { + "start": 20172.6, + "end": 20174.8, + "probability": 0.8645 + }, + { + "start": 20174.92, + "end": 20175.5, + "probability": 0.3894 + }, + { + "start": 20176.46, + "end": 20178.48, + "probability": 0.9783 + }, + { + "start": 20178.54, + "end": 20179.38, + "probability": 0.6458 + }, + { + "start": 20179.58, + "end": 20181.12, + "probability": 0.6945 + }, + { + "start": 20181.86, + "end": 20182.44, + "probability": 0.1707 + }, + { + "start": 20182.44, + "end": 20184.6, + "probability": 0.6636 + }, + { + "start": 20184.8, + "end": 20185.22, + "probability": 0.1823 + }, + { + "start": 20186.16, + "end": 20187.32, + "probability": 0.4703 + }, + { + "start": 20187.72, + "end": 20188.5, + "probability": 0.775 + }, + { + "start": 20188.52, + "end": 20193.0, + "probability": 0.3418 + }, + { + "start": 20193.0, + "end": 20193.59, + "probability": 0.1162 + }, + { + "start": 20194.28, + "end": 20194.34, + "probability": 0.2692 + }, + { + "start": 20194.34, + "end": 20194.34, + "probability": 0.3431 + }, + { + "start": 20194.34, + "end": 20194.34, + "probability": 0.3608 + }, + { + "start": 20194.34, + "end": 20195.76, + "probability": 0.0805 + }, + { + "start": 20196.72, + "end": 20196.72, + "probability": 0.0153 + }, + { + "start": 20196.72, + "end": 20199.76, + "probability": 0.7413 + }, + { + "start": 20199.96, + "end": 20201.2, + "probability": 0.6701 + }, + { + "start": 20202.4, + "end": 20203.0, + "probability": 0.5395 + }, + { + "start": 20203.08, + "end": 20204.05, + "probability": 0.9731 + }, + { + "start": 20204.92, + "end": 20207.48, + "probability": 0.9922 + }, + { + "start": 20207.5, + "end": 20209.84, + "probability": 0.885 + }, + { + "start": 20210.14, + "end": 20211.58, + "probability": 0.9808 + }, + { + "start": 20211.66, + "end": 20213.92, + "probability": 0.9749 + }, + { + "start": 20213.94, + "end": 20215.92, + "probability": 0.9817 + }, + { + "start": 20216.08, + "end": 20218.36, + "probability": 0.7756 + }, + { + "start": 20218.52, + "end": 20220.92, + "probability": 0.9888 + }, + { + "start": 20221.71, + "end": 20223.9, + "probability": 0.6605 + }, + { + "start": 20224.88, + "end": 20225.76, + "probability": 0.935 + }, + { + "start": 20227.52, + "end": 20232.2, + "probability": 0.6748 + }, + { + "start": 20232.2, + "end": 20235.4, + "probability": 0.994 + }, + { + "start": 20236.84, + "end": 20237.7, + "probability": 0.6167 + }, + { + "start": 20237.9, + "end": 20240.32, + "probability": 0.9962 + }, + { + "start": 20240.32, + "end": 20245.22, + "probability": 0.998 + }, + { + "start": 20245.84, + "end": 20246.72, + "probability": 0.9237 + }, + { + "start": 20247.18, + "end": 20249.96, + "probability": 0.9839 + }, + { + "start": 20249.96, + "end": 20252.88, + "probability": 0.986 + }, + { + "start": 20253.32, + "end": 20254.5, + "probability": 0.8477 + }, + { + "start": 20254.68, + "end": 20255.48, + "probability": 0.9612 + }, + { + "start": 20255.8, + "end": 20260.68, + "probability": 0.9606 + }, + { + "start": 20261.16, + "end": 20264.66, + "probability": 0.9968 + }, + { + "start": 20264.74, + "end": 20268.84, + "probability": 0.9968 + }, + { + "start": 20269.32, + "end": 20270.96, + "probability": 0.8545 + }, + { + "start": 20271.78, + "end": 20274.02, + "probability": 0.4531 + }, + { + "start": 20274.76, + "end": 20276.24, + "probability": 0.6585 + }, + { + "start": 20276.34, + "end": 20277.78, + "probability": 0.6005 + }, + { + "start": 20277.9, + "end": 20279.64, + "probability": 0.8474 + }, + { + "start": 20279.66, + "end": 20281.92, + "probability": 0.7862 + }, + { + "start": 20282.02, + "end": 20285.6, + "probability": 0.8127 + }, + { + "start": 20285.66, + "end": 20287.22, + "probability": 0.8131 + }, + { + "start": 20287.72, + "end": 20288.42, + "probability": 0.855 + }, + { + "start": 20288.72, + "end": 20292.18, + "probability": 0.9755 + }, + { + "start": 20292.75, + "end": 20296.52, + "probability": 0.7726 + }, + { + "start": 20296.9, + "end": 20300.26, + "probability": 0.9183 + }, + { + "start": 20300.5, + "end": 20303.82, + "probability": 0.7926 + }, + { + "start": 20303.88, + "end": 20305.24, + "probability": 0.7749 + }, + { + "start": 20306.26, + "end": 20309.48, + "probability": 0.9961 + }, + { + "start": 20309.48, + "end": 20312.94, + "probability": 0.697 + }, + { + "start": 20313.34, + "end": 20314.08, + "probability": 0.7936 + }, + { + "start": 20314.56, + "end": 20314.98, + "probability": 0.472 + }, + { + "start": 20315.06, + "end": 20316.36, + "probability": 0.8092 + }, + { + "start": 20316.4, + "end": 20318.5, + "probability": 0.9762 + }, + { + "start": 20319.1, + "end": 20320.56, + "probability": 0.9888 + }, + { + "start": 20320.8, + "end": 20322.66, + "probability": 0.9847 + }, + { + "start": 20323.12, + "end": 20326.12, + "probability": 0.9132 + }, + { + "start": 20326.82, + "end": 20329.84, + "probability": 0.7649 + }, + { + "start": 20330.14, + "end": 20332.36, + "probability": 0.8517 + }, + { + "start": 20332.42, + "end": 20333.66, + "probability": 0.958 + }, + { + "start": 20333.7, + "end": 20336.92, + "probability": 0.8577 + }, + { + "start": 20337.1, + "end": 20340.86, + "probability": 0.7987 + }, + { + "start": 20340.94, + "end": 20342.3, + "probability": 0.6492 + }, + { + "start": 20342.44, + "end": 20343.4, + "probability": 0.6538 + }, + { + "start": 20343.68, + "end": 20343.98, + "probability": 0.0516 + }, + { + "start": 20344.02, + "end": 20345.28, + "probability": 0.8423 + }, + { + "start": 20345.3, + "end": 20347.94, + "probability": 0.4329 + }, + { + "start": 20347.94, + "end": 20349.09, + "probability": 0.1084 + }, + { + "start": 20351.26, + "end": 20351.26, + "probability": 0.0189 + }, + { + "start": 20351.26, + "end": 20353.76, + "probability": 0.4842 + }, + { + "start": 20353.86, + "end": 20356.18, + "probability": 0.91 + }, + { + "start": 20356.4, + "end": 20356.78, + "probability": 0.1471 + }, + { + "start": 20356.84, + "end": 20362.52, + "probability": 0.9123 + }, + { + "start": 20362.52, + "end": 20367.76, + "probability": 0.8953 + }, + { + "start": 20367.88, + "end": 20368.74, + "probability": 0.4692 + }, + { + "start": 20368.82, + "end": 20369.82, + "probability": 0.9863 + }, + { + "start": 20370.12, + "end": 20370.86, + "probability": 0.8103 + }, + { + "start": 20370.94, + "end": 20371.44, + "probability": 0.9473 + }, + { + "start": 20371.52, + "end": 20372.1, + "probability": 0.9618 + }, + { + "start": 20372.12, + "end": 20373.96, + "probability": 0.7089 + }, + { + "start": 20374.04, + "end": 20374.9, + "probability": 0.3271 + }, + { + "start": 20375.14, + "end": 20376.66, + "probability": 0.9695 + }, + { + "start": 20376.98, + "end": 20377.88, + "probability": 0.8662 + }, + { + "start": 20378.2, + "end": 20379.64, + "probability": 0.8404 + }, + { + "start": 20379.7, + "end": 20382.29, + "probability": 0.8092 + }, + { + "start": 20383.1, + "end": 20383.86, + "probability": 0.7974 + }, + { + "start": 20384.02, + "end": 20385.88, + "probability": 0.8462 + }, + { + "start": 20385.92, + "end": 20387.58, + "probability": 0.5557 + }, + { + "start": 20388.52, + "end": 20393.78, + "probability": 0.9619 + }, + { + "start": 20394.14, + "end": 20402.12, + "probability": 0.1068 + }, + { + "start": 20402.46, + "end": 20402.78, + "probability": 0.1548 + }, + { + "start": 20402.78, + "end": 20402.78, + "probability": 0.0884 + }, + { + "start": 20402.78, + "end": 20402.78, + "probability": 0.142 + }, + { + "start": 20402.78, + "end": 20402.9, + "probability": 0.0398 + }, + { + "start": 20402.9, + "end": 20403.2, + "probability": 0.2847 + }, + { + "start": 20403.7, + "end": 20404.98, + "probability": 0.6074 + }, + { + "start": 20405.4, + "end": 20409.48, + "probability": 0.842 + }, + { + "start": 20409.86, + "end": 20410.92, + "probability": 0.8079 + }, + { + "start": 20411.08, + "end": 20412.45, + "probability": 0.9768 + }, + { + "start": 20412.52, + "end": 20414.52, + "probability": 0.8363 + }, + { + "start": 20414.66, + "end": 20415.78, + "probability": 0.847 + }, + { + "start": 20415.88, + "end": 20417.5, + "probability": 0.9866 + }, + { + "start": 20418.26, + "end": 20420.26, + "probability": 0.7076 + }, + { + "start": 20420.42, + "end": 20422.06, + "probability": 0.9694 + }, + { + "start": 20423.42, + "end": 20427.08, + "probability": 0.9813 + }, + { + "start": 20427.16, + "end": 20429.68, + "probability": 0.9272 + }, + { + "start": 20429.78, + "end": 20432.68, + "probability": 0.9966 + }, + { + "start": 20433.24, + "end": 20434.6, + "probability": 0.5706 + }, + { + "start": 20434.66, + "end": 20435.18, + "probability": 0.8653 + }, + { + "start": 20435.24, + "end": 20439.44, + "probability": 0.9911 + }, + { + "start": 20439.76, + "end": 20440.92, + "probability": 0.8181 + }, + { + "start": 20441.1, + "end": 20441.62, + "probability": 0.593 + }, + { + "start": 20441.66, + "end": 20443.12, + "probability": 0.6423 + }, + { + "start": 20443.2, + "end": 20445.5, + "probability": 0.7163 + }, + { + "start": 20446.08, + "end": 20449.5, + "probability": 0.9722 + }, + { + "start": 20450.46, + "end": 20455.0, + "probability": 0.9771 + }, + { + "start": 20455.0, + "end": 20459.84, + "probability": 0.9919 + }, + { + "start": 20459.94, + "end": 20461.9, + "probability": 0.6661 + }, + { + "start": 20462.02, + "end": 20464.46, + "probability": 0.7843 + }, + { + "start": 20464.66, + "end": 20466.32, + "probability": 0.8895 + }, + { + "start": 20466.9, + "end": 20467.6, + "probability": 0.8935 + }, + { + "start": 20468.44, + "end": 20468.86, + "probability": 0.4943 + }, + { + "start": 20469.0, + "end": 20469.74, + "probability": 0.7807 + }, + { + "start": 20469.9, + "end": 20472.56, + "probability": 0.9969 + }, + { + "start": 20473.02, + "end": 20475.16, + "probability": 0.9951 + }, + { + "start": 20475.3, + "end": 20478.5, + "probability": 0.9084 + }, + { + "start": 20478.82, + "end": 20480.74, + "probability": 0.9853 + }, + { + "start": 20482.71, + "end": 20484.6, + "probability": 0.2234 + }, + { + "start": 20484.6, + "end": 20485.5, + "probability": 0.6549 + }, + { + "start": 20485.58, + "end": 20486.64, + "probability": 0.9073 + }, + { + "start": 20486.68, + "end": 20490.79, + "probability": 0.945 + }, + { + "start": 20491.4, + "end": 20493.2, + "probability": 0.9933 + }, + { + "start": 20494.26, + "end": 20496.54, + "probability": 0.6293 + }, + { + "start": 20496.6, + "end": 20498.06, + "probability": 0.8755 + }, + { + "start": 20498.18, + "end": 20500.4, + "probability": 0.6834 + }, + { + "start": 20501.72, + "end": 20507.34, + "probability": 0.9845 + }, + { + "start": 20507.34, + "end": 20511.1, + "probability": 0.1595 + }, + { + "start": 20511.52, + "end": 20512.2, + "probability": 0.5643 + }, + { + "start": 20512.24, + "end": 20512.4, + "probability": 0.8341 + }, + { + "start": 20512.58, + "end": 20513.78, + "probability": 0.8874 + }, + { + "start": 20513.92, + "end": 20516.1, + "probability": 0.941 + }, + { + "start": 20516.22, + "end": 20516.98, + "probability": 0.7563 + }, + { + "start": 20517.06, + "end": 20518.76, + "probability": 0.7092 + }, + { + "start": 20519.32, + "end": 20521.78, + "probability": 0.866 + }, + { + "start": 20521.78, + "end": 20524.14, + "probability": 0.7907 + }, + { + "start": 20524.3, + "end": 20528.0, + "probability": 0.9893 + }, + { + "start": 20530.48, + "end": 20530.48, + "probability": 0.1378 + }, + { + "start": 20530.48, + "end": 20531.3, + "probability": 0.3007 + }, + { + "start": 20531.92, + "end": 20533.68, + "probability": 0.7845 + }, + { + "start": 20534.32, + "end": 20536.56, + "probability": 0.829 + }, + { + "start": 20536.7, + "end": 20537.6, + "probability": 0.6388 + }, + { + "start": 20538.38, + "end": 20544.1, + "probability": 0.9883 + }, + { + "start": 20544.26, + "end": 20546.26, + "probability": 0.9561 + }, + { + "start": 20546.78, + "end": 20548.18, + "probability": 0.5081 + }, + { + "start": 20549.52, + "end": 20551.02, + "probability": 0.8528 + }, + { + "start": 20552.06, + "end": 20553.32, + "probability": 0.4997 + }, + { + "start": 20554.25, + "end": 20556.14, + "probability": 0.0537 + }, + { + "start": 20556.14, + "end": 20560.38, + "probability": 0.8276 + }, + { + "start": 20560.8, + "end": 20563.58, + "probability": 0.7472 + }, + { + "start": 20563.84, + "end": 20564.54, + "probability": 0.1521 + }, + { + "start": 20564.54, + "end": 20566.1, + "probability": 0.9505 + }, + { + "start": 20566.1, + "end": 20568.52, + "probability": 0.9966 + }, + { + "start": 20568.52, + "end": 20569.26, + "probability": 0.7549 + }, + { + "start": 20569.32, + "end": 20569.36, + "probability": 0.0485 + }, + { + "start": 20569.36, + "end": 20571.71, + "probability": 0.8507 + }, + { + "start": 20572.16, + "end": 20573.14, + "probability": 0.7262 + }, + { + "start": 20573.73, + "end": 20575.2, + "probability": 0.225 + }, + { + "start": 20575.2, + "end": 20575.2, + "probability": 0.0557 + }, + { + "start": 20575.2, + "end": 20575.22, + "probability": 0.1329 + }, + { + "start": 20575.36, + "end": 20575.36, + "probability": 0.5155 + }, + { + "start": 20575.48, + "end": 20575.48, + "probability": 0.4081 + }, + { + "start": 20575.54, + "end": 20576.27, + "probability": 0.8601 + }, + { + "start": 20577.18, + "end": 20578.84, + "probability": 0.9258 + }, + { + "start": 20579.12, + "end": 20579.9, + "probability": 0.9475 + }, + { + "start": 20579.98, + "end": 20580.64, + "probability": 0.9462 + }, + { + "start": 20580.68, + "end": 20582.42, + "probability": 0.9583 + }, + { + "start": 20582.5, + "end": 20582.6, + "probability": 0.0345 + }, + { + "start": 20582.6, + "end": 20584.06, + "probability": 0.8099 + }, + { + "start": 20584.42, + "end": 20585.54, + "probability": 0.9447 + }, + { + "start": 20585.72, + "end": 20585.72, + "probability": 0.0052 + }, + { + "start": 20585.72, + "end": 20589.66, + "probability": 0.9697 + }, + { + "start": 20589.76, + "end": 20590.08, + "probability": 0.9635 + }, + { + "start": 20590.18, + "end": 20590.88, + "probability": 0.9609 + }, + { + "start": 20591.42, + "end": 20594.9, + "probability": 0.9782 + }, + { + "start": 20595.34, + "end": 20600.86, + "probability": 0.9911 + }, + { + "start": 20601.74, + "end": 20604.4, + "probability": 0.995 + }, + { + "start": 20604.4, + "end": 20606.42, + "probability": 0.996 + }, + { + "start": 20608.18, + "end": 20608.94, + "probability": 0.8118 + }, + { + "start": 20609.8, + "end": 20610.36, + "probability": 0.7559 + }, + { + "start": 20611.3, + "end": 20612.66, + "probability": 0.7656 + }, + { + "start": 20612.76, + "end": 20616.86, + "probability": 0.9934 + }, + { + "start": 20618.52, + "end": 20618.52, + "probability": 0.0475 + }, + { + "start": 20618.52, + "end": 20623.8, + "probability": 0.9757 + }, + { + "start": 20624.32, + "end": 20624.46, + "probability": 0.1354 + }, + { + "start": 20624.62, + "end": 20631.02, + "probability": 0.9717 + }, + { + "start": 20631.38, + "end": 20633.23, + "probability": 0.9956 + }, + { + "start": 20633.5, + "end": 20634.86, + "probability": 0.9907 + }, + { + "start": 20636.02, + "end": 20636.24, + "probability": 0.297 + }, + { + "start": 20636.24, + "end": 20636.5, + "probability": 0.5958 + }, + { + "start": 20636.56, + "end": 20639.06, + "probability": 0.5847 + }, + { + "start": 20639.34, + "end": 20640.46, + "probability": 0.686 + }, + { + "start": 20640.58, + "end": 20642.68, + "probability": 0.483 + }, + { + "start": 20642.82, + "end": 20644.32, + "probability": 0.6735 + }, + { + "start": 20644.66, + "end": 20645.46, + "probability": 0.9405 + }, + { + "start": 20645.96, + "end": 20646.84, + "probability": 0.9826 + }, + { + "start": 20647.42, + "end": 20653.68, + "probability": 0.7531 + }, + { + "start": 20653.8, + "end": 20655.12, + "probability": 0.9011 + }, + { + "start": 20655.7, + "end": 20659.8, + "probability": 0.9627 + }, + { + "start": 20659.88, + "end": 20661.16, + "probability": 0.9538 + }, + { + "start": 20661.46, + "end": 20663.74, + "probability": 0.96 + }, + { + "start": 20664.1, + "end": 20665.08, + "probability": 0.8272 + }, + { + "start": 20665.68, + "end": 20666.02, + "probability": 0.9464 + }, + { + "start": 20666.2, + "end": 20666.87, + "probability": 0.9365 + }, + { + "start": 20667.9, + "end": 20670.52, + "probability": 0.9684 + }, + { + "start": 20670.56, + "end": 20671.6, + "probability": 0.943 + }, + { + "start": 20671.88, + "end": 20674.54, + "probability": 0.9677 + }, + { + "start": 20674.68, + "end": 20675.52, + "probability": 0.2321 + }, + { + "start": 20675.6, + "end": 20677.54, + "probability": 0.7456 + }, + { + "start": 20678.42, + "end": 20681.94, + "probability": 0.9741 + }, + { + "start": 20681.94, + "end": 20685.84, + "probability": 0.9889 + }, + { + "start": 20686.46, + "end": 20687.48, + "probability": 0.7681 + }, + { + "start": 20688.34, + "end": 20692.3, + "probability": 0.6547 + }, + { + "start": 20693.34, + "end": 20694.98, + "probability": 0.5024 + }, + { + "start": 20696.32, + "end": 20696.72, + "probability": 0.4935 + }, + { + "start": 20696.8, + "end": 20699.1, + "probability": 0.9968 + }, + { + "start": 20699.56, + "end": 20701.24, + "probability": 0.8702 + }, + { + "start": 20701.5, + "end": 20702.34, + "probability": 0.5606 + }, + { + "start": 20702.36, + "end": 20703.39, + "probability": 0.876 + }, + { + "start": 20703.52, + "end": 20704.04, + "probability": 0.9845 + }, + { + "start": 20704.62, + "end": 20708.6, + "probability": 0.8551 + }, + { + "start": 20708.82, + "end": 20713.76, + "probability": 0.9825 + }, + { + "start": 20713.76, + "end": 20718.86, + "probability": 0.9969 + }, + { + "start": 20719.0, + "end": 20722.66, + "probability": 0.9851 + }, + { + "start": 20722.74, + "end": 20725.48, + "probability": 0.8709 + }, + { + "start": 20725.86, + "end": 20726.42, + "probability": 0.8101 + }, + { + "start": 20727.56, + "end": 20731.18, + "probability": 0.4217 + }, + { + "start": 20732.0, + "end": 20733.44, + "probability": 0.8154 + }, + { + "start": 20733.44, + "end": 20734.06, + "probability": 0.739 + }, + { + "start": 20734.32, + "end": 20739.28, + "probability": 0.9937 + }, + { + "start": 20739.5, + "end": 20740.08, + "probability": 0.8744 + }, + { + "start": 20740.14, + "end": 20741.92, + "probability": 0.7039 + }, + { + "start": 20742.08, + "end": 20743.8, + "probability": 0.9722 + }, + { + "start": 20743.9, + "end": 20745.68, + "probability": 0.9976 + }, + { + "start": 20745.84, + "end": 20745.84, + "probability": 0.0044 + }, + { + "start": 20745.9, + "end": 20748.36, + "probability": 0.8672 + }, + { + "start": 20748.42, + "end": 20750.36, + "probability": 0.8267 + }, + { + "start": 20750.8, + "end": 20754.62, + "probability": 0.9153 + }, + { + "start": 20755.42, + "end": 20759.34, + "probability": 0.424 + }, + { + "start": 20759.52, + "end": 20762.0, + "probability": 0.9966 + }, + { + "start": 20762.1, + "end": 20762.96, + "probability": 0.7512 + }, + { + "start": 20763.16, + "end": 20763.2, + "probability": 0.0578 + }, + { + "start": 20763.2, + "end": 20763.2, + "probability": 0.1293 + }, + { + "start": 20763.2, + "end": 20768.14, + "probability": 0.9257 + }, + { + "start": 20768.8, + "end": 20769.7, + "probability": 0.3116 + }, + { + "start": 20770.18, + "end": 20772.18, + "probability": 0.7383 + }, + { + "start": 20772.24, + "end": 20774.86, + "probability": 0.9439 + }, + { + "start": 20775.62, + "end": 20779.8, + "probability": 0.9468 + }, + { + "start": 20780.1, + "end": 20784.08, + "probability": 0.9979 + }, + { + "start": 20784.14, + "end": 20787.04, + "probability": 0.998 + }, + { + "start": 20787.12, + "end": 20791.06, + "probability": 0.9581 + }, + { + "start": 20791.22, + "end": 20792.8, + "probability": 0.9095 + }, + { + "start": 20792.8, + "end": 20794.4, + "probability": 0.1064 + }, + { + "start": 20794.74, + "end": 20798.76, + "probability": 0.9921 + }, + { + "start": 20798.9, + "end": 20799.46, + "probability": 0.2635 + }, + { + "start": 20799.46, + "end": 20804.64, + "probability": 0.9474 + }, + { + "start": 20804.86, + "end": 20807.26, + "probability": 0.6898 + }, + { + "start": 20807.78, + "end": 20810.28, + "probability": 0.7917 + }, + { + "start": 20810.92, + "end": 20813.56, + "probability": 0.9713 + }, + { + "start": 20813.88, + "end": 20816.78, + "probability": 0.9939 + }, + { + "start": 20817.26, + "end": 20820.74, + "probability": 0.9172 + }, + { + "start": 20821.28, + "end": 20823.04, + "probability": 0.909 + }, + { + "start": 20823.52, + "end": 20824.64, + "probability": 0.6996 + }, + { + "start": 20824.78, + "end": 20825.38, + "probability": 0.9081 + }, + { + "start": 20825.46, + "end": 20825.7, + "probability": 0.9452 + }, + { + "start": 20825.86, + "end": 20827.61, + "probability": 0.9187 + }, + { + "start": 20827.98, + "end": 20831.72, + "probability": 0.9209 + }, + { + "start": 20832.34, + "end": 20834.18, + "probability": 0.9783 + }, + { + "start": 20834.32, + "end": 20839.46, + "probability": 0.9956 + }, + { + "start": 20840.78, + "end": 20841.76, + "probability": 0.1446 + }, + { + "start": 20841.92, + "end": 20845.56, + "probability": 0.6776 + }, + { + "start": 20845.84, + "end": 20846.96, + "probability": 0.6062 + }, + { + "start": 20848.28, + "end": 20849.08, + "probability": 0.6231 + }, + { + "start": 20849.1, + "end": 20853.22, + "probability": 0.6667 + }, + { + "start": 20853.56, + "end": 20857.92, + "probability": 0.879 + }, + { + "start": 20861.54, + "end": 20865.58, + "probability": 0.6693 + }, + { + "start": 20867.22, + "end": 20869.08, + "probability": 0.196 + }, + { + "start": 20869.3, + "end": 20870.98, + "probability": 0.5048 + }, + { + "start": 20871.0, + "end": 20872.05, + "probability": 0.9292 + }, + { + "start": 20872.98, + "end": 20873.78, + "probability": 0.0484 + }, + { + "start": 20873.78, + "end": 20876.36, + "probability": 0.0926 + }, + { + "start": 20876.36, + "end": 20878.6, + "probability": 0.1988 + }, + { + "start": 20880.03, + "end": 20883.34, + "probability": 0.2115 + }, + { + "start": 20883.34, + "end": 20883.48, + "probability": 0.0131 + }, + { + "start": 20884.8, + "end": 20885.6, + "probability": 0.1116 + }, + { + "start": 20885.8, + "end": 20886.44, + "probability": 0.0028 + }, + { + "start": 20888.62, + "end": 20891.7, + "probability": 0.0629 + }, + { + "start": 20891.7, + "end": 20892.26, + "probability": 0.1732 + }, + { + "start": 20892.26, + "end": 20892.6, + "probability": 0.0085 + }, + { + "start": 20892.86, + "end": 20894.98, + "probability": 0.1038 + }, + { + "start": 20895.08, + "end": 20895.18, + "probability": 0.0377 + }, + { + "start": 20897.38, + "end": 20899.54, + "probability": 0.0794 + }, + { + "start": 20900.16, + "end": 20902.84, + "probability": 0.0429 + }, + { + "start": 20902.84, + "end": 20904.1, + "probability": 0.032 + }, + { + "start": 20904.92, + "end": 20908.95, + "probability": 0.0706 + }, + { + "start": 20909.1, + "end": 20911.3, + "probability": 0.0688 + }, + { + "start": 20911.84, + "end": 20917.42, + "probability": 0.192 + }, + { + "start": 20923.2, + "end": 20924.64, + "probability": 0.0333 + }, + { + "start": 20925.0, + "end": 20925.0, + "probability": 0.0 + }, + { + "start": 20925.0, + "end": 20925.0, + "probability": 0.0 + }, + { + "start": 20925.0, + "end": 20925.0, + "probability": 0.0 + }, + { + "start": 20925.0, + "end": 20925.0, + "probability": 0.0 + }, + { + "start": 20925.0, + "end": 20925.0, + "probability": 0.0 + }, + { + "start": 20925.0, + "end": 20925.0, + "probability": 0.0 + }, + { + "start": 20925.0, + "end": 20925.0, + "probability": 0.0 + }, + { + "start": 20925.0, + "end": 20925.0, + "probability": 0.0 + }, + { + "start": 20925.0, + "end": 20925.0, + "probability": 0.0 + }, + { + "start": 20925.0, + "end": 20925.0, + "probability": 0.0 + }, + { + "start": 20925.0, + "end": 20925.0, + "probability": 0.0 + }, + { + "start": 20925.0, + "end": 20925.0, + "probability": 0.0 + }, + { + "start": 20925.0, + "end": 20925.0, + "probability": 0.0 + }, + { + "start": 20925.0, + "end": 20925.0, + "probability": 0.0 + }, + { + "start": 20925.0, + "end": 20925.0, + "probability": 0.0 + }, + { + "start": 20925.0, + "end": 20925.0, + "probability": 0.0 + }, + { + "start": 20925.0, + "end": 20925.0, + "probability": 0.0 + }, + { + "start": 20925.0, + "end": 20925.0, + "probability": 0.0 + }, + { + "start": 20925.0, + "end": 20925.0, + "probability": 0.0 + }, + { + "start": 20925.0, + "end": 20925.0, + "probability": 0.0 + }, + { + "start": 20925.0, + "end": 20925.0, + "probability": 0.0 + }, + { + "start": 20925.0, + "end": 20925.0, + "probability": 0.0 + }, + { + "start": 20925.12, + "end": 20925.64, + "probability": 0.4865 + }, + { + "start": 20925.82, + "end": 20928.26, + "probability": 0.8912 + }, + { + "start": 20928.26, + "end": 20928.26, + "probability": 0.0827 + }, + { + "start": 20928.26, + "end": 20930.26, + "probability": 0.5952 + }, + { + "start": 20930.36, + "end": 20933.0, + "probability": 0.4667 + }, + { + "start": 20933.56, + "end": 20933.7, + "probability": 0.0184 + }, + { + "start": 20933.72, + "end": 20933.72, + "probability": 0.2193 + }, + { + "start": 20933.72, + "end": 20935.06, + "probability": 0.1782 + }, + { + "start": 20935.16, + "end": 20936.08, + "probability": 0.4936 + }, + { + "start": 20936.2, + "end": 20937.07, + "probability": 0.6597 + }, + { + "start": 20937.46, + "end": 20937.82, + "probability": 0.3022 + }, + { + "start": 20937.98, + "end": 20941.34, + "probability": 0.3963 + }, + { + "start": 20941.52, + "end": 20942.42, + "probability": 0.0497 + }, + { + "start": 20942.42, + "end": 20944.4, + "probability": 0.9227 + }, + { + "start": 20945.54, + "end": 20947.58, + "probability": 0.7381 + }, + { + "start": 20947.6, + "end": 20948.32, + "probability": 0.9067 + }, + { + "start": 20948.44, + "end": 20951.04, + "probability": 0.9925 + }, + { + "start": 20951.32, + "end": 20953.58, + "probability": 0.9764 + }, + { + "start": 20954.3, + "end": 20955.04, + "probability": 0.5704 + }, + { + "start": 20955.14, + "end": 20956.34, + "probability": 0.918 + }, + { + "start": 20956.76, + "end": 20961.02, + "probability": 0.9056 + }, + { + "start": 20961.18, + "end": 20964.36, + "probability": 0.9881 + }, + { + "start": 20964.36, + "end": 20966.8, + "probability": 0.9392 + }, + { + "start": 20967.2, + "end": 20971.88, + "probability": 0.9694 + }, + { + "start": 20971.88, + "end": 20974.84, + "probability": 0.5418 + }, + { + "start": 20975.18, + "end": 20976.96, + "probability": 0.9495 + }, + { + "start": 20977.1, + "end": 20977.48, + "probability": 0.7614 + }, + { + "start": 20978.02, + "end": 20978.62, + "probability": 0.6509 + }, + { + "start": 20978.7, + "end": 20980.49, + "probability": 0.752 + }, + { + "start": 20983.22, + "end": 20983.94, + "probability": 0.6529 + }, + { + "start": 20984.04, + "end": 20987.32, + "probability": 0.9777 + }, + { + "start": 20987.36, + "end": 20990.98, + "probability": 0.9944 + }, + { + "start": 20991.08, + "end": 20991.74, + "probability": 0.7399 + }, + { + "start": 20991.8, + "end": 20993.36, + "probability": 0.7238 + }, + { + "start": 20993.38, + "end": 20993.72, + "probability": 0.2085 + }, + { + "start": 20993.74, + "end": 20994.9, + "probability": 0.7136 + }, + { + "start": 20995.34, + "end": 20997.66, + "probability": 0.5151 + }, + { + "start": 20998.14, + "end": 20999.6, + "probability": 0.4661 + }, + { + "start": 20999.6, + "end": 20999.6, + "probability": 0.6142 + }, + { + "start": 20999.6, + "end": 21000.06, + "probability": 0.4575 + }, + { + "start": 21000.42, + "end": 21001.62, + "probability": 0.5712 + }, + { + "start": 21001.62, + "end": 21003.86, + "probability": 0.4187 + }, + { + "start": 21004.72, + "end": 21004.98, + "probability": 0.1395 + }, + { + "start": 21005.2, + "end": 21005.34, + "probability": 0.9463 + }, + { + "start": 21005.42, + "end": 21005.86, + "probability": 0.815 + }, + { + "start": 21005.96, + "end": 21011.34, + "probability": 0.9933 + }, + { + "start": 21011.38, + "end": 21016.96, + "probability": 0.785 + }, + { + "start": 21018.28, + "end": 21020.6, + "probability": 0.9935 + }, + { + "start": 21021.78, + "end": 21023.64, + "probability": 0.804 + }, + { + "start": 21024.64, + "end": 21027.66, + "probability": 0.7419 + }, + { + "start": 21028.58, + "end": 21030.2, + "probability": 0.7266 + }, + { + "start": 21030.54, + "end": 21034.78, + "probability": 0.9648 + }, + { + "start": 21035.26, + "end": 21039.4, + "probability": 0.9686 + }, + { + "start": 21040.22, + "end": 21041.96, + "probability": 0.9878 + }, + { + "start": 21042.06, + "end": 21042.56, + "probability": 0.5377 + }, + { + "start": 21043.02, + "end": 21043.98, + "probability": 0.73 + }, + { + "start": 21044.78, + "end": 21048.34, + "probability": 0.9689 + }, + { + "start": 21048.5, + "end": 21049.36, + "probability": 0.822 + }, + { + "start": 21049.44, + "end": 21050.88, + "probability": 0.9706 + }, + { + "start": 21050.94, + "end": 21053.08, + "probability": 0.9628 + }, + { + "start": 21054.22, + "end": 21054.62, + "probability": 0.9358 + }, + { + "start": 21054.74, + "end": 21055.4, + "probability": 0.6329 + }, + { + "start": 21055.48, + "end": 21057.7, + "probability": 0.9929 + }, + { + "start": 21057.84, + "end": 21060.36, + "probability": 0.9771 + }, + { + "start": 21060.86, + "end": 21062.48, + "probability": 0.9753 + }, + { + "start": 21063.1, + "end": 21066.36, + "probability": 0.996 + }, + { + "start": 21066.36, + "end": 21069.34, + "probability": 0.9915 + }, + { + "start": 21069.82, + "end": 21071.6, + "probability": 0.9873 + }, + { + "start": 21072.4, + "end": 21074.73, + "probability": 0.8879 + }, + { + "start": 21075.24, + "end": 21077.9, + "probability": 0.9258 + }, + { + "start": 21078.66, + "end": 21084.3, + "probability": 0.9236 + }, + { + "start": 21084.46, + "end": 21085.14, + "probability": 0.8835 + }, + { + "start": 21085.16, + "end": 21086.42, + "probability": 0.9028 + }, + { + "start": 21086.78, + "end": 21088.02, + "probability": 0.966 + }, + { + "start": 21088.16, + "end": 21089.5, + "probability": 0.9674 + }, + { + "start": 21090.04, + "end": 21090.86, + "probability": 0.997 + }, + { + "start": 21091.4, + "end": 21095.22, + "probability": 0.9727 + }, + { + "start": 21096.2, + "end": 21098.24, + "probability": 0.9823 + }, + { + "start": 21098.86, + "end": 21101.52, + "probability": 0.9835 + }, + { + "start": 21102.18, + "end": 21102.82, + "probability": 0.9935 + }, + { + "start": 21103.48, + "end": 21104.74, + "probability": 0.7524 + }, + { + "start": 21105.18, + "end": 21107.7, + "probability": 0.9966 + }, + { + "start": 21107.7, + "end": 21111.08, + "probability": 0.9932 + }, + { + "start": 21112.08, + "end": 21112.46, + "probability": 0.5357 + }, + { + "start": 21112.52, + "end": 21113.52, + "probability": 0.857 + }, + { + "start": 21113.6, + "end": 21117.28, + "probability": 0.9977 + }, + { + "start": 21117.92, + "end": 21122.86, + "probability": 0.9996 + }, + { + "start": 21122.86, + "end": 21127.8, + "probability": 0.9993 + }, + { + "start": 21127.96, + "end": 21128.04, + "probability": 0.4346 + }, + { + "start": 21128.18, + "end": 21133.68, + "probability": 0.9584 + }, + { + "start": 21133.72, + "end": 21135.12, + "probability": 0.6192 + }, + { + "start": 21135.2, + "end": 21137.74, + "probability": 0.6559 + }, + { + "start": 21137.86, + "end": 21139.57, + "probability": 0.9404 + }, + { + "start": 21142.82, + "end": 21144.12, + "probability": 0.5896 + }, + { + "start": 21145.32, + "end": 21150.64, + "probability": 0.9961 + }, + { + "start": 21151.42, + "end": 21151.42, + "probability": 0.2732 + }, + { + "start": 21152.06, + "end": 21154.9, + "probability": 0.6202 + }, + { + "start": 21155.22, + "end": 21156.84, + "probability": 0.8343 + }, + { + "start": 21157.28, + "end": 21160.16, + "probability": 0.9358 + }, + { + "start": 21160.98, + "end": 21162.89, + "probability": 0.9775 + }, + { + "start": 21163.36, + "end": 21164.62, + "probability": 0.774 + }, + { + "start": 21164.68, + "end": 21166.62, + "probability": 0.9288 + }, + { + "start": 21168.02, + "end": 21169.28, + "probability": 0.8006 + }, + { + "start": 21169.48, + "end": 21172.82, + "probability": 0.9868 + }, + { + "start": 21173.06, + "end": 21173.78, + "probability": 0.8817 + }, + { + "start": 21174.28, + "end": 21176.6, + "probability": 0.8412 + }, + { + "start": 21177.34, + "end": 21179.95, + "probability": 0.9932 + }, + { + "start": 21180.2, + "end": 21181.48, + "probability": 0.9793 + }, + { + "start": 21182.22, + "end": 21183.26, + "probability": 0.6496 + }, + { + "start": 21183.86, + "end": 21186.36, + "probability": 0.8696 + }, + { + "start": 21186.44, + "end": 21189.96, + "probability": 0.8258 + }, + { + "start": 21190.46, + "end": 21191.66, + "probability": 0.9043 + }, + { + "start": 21191.9, + "end": 21196.94, + "probability": 0.9849 + }, + { + "start": 21197.34, + "end": 21199.78, + "probability": 0.797 + }, + { + "start": 21200.48, + "end": 21201.16, + "probability": 0.6499 + }, + { + "start": 21201.24, + "end": 21202.86, + "probability": 0.9163 + }, + { + "start": 21203.38, + "end": 21205.78, + "probability": 0.7341 + }, + { + "start": 21206.04, + "end": 21209.78, + "probability": 0.8724 + }, + { + "start": 21209.94, + "end": 21210.52, + "probability": 0.5337 + }, + { + "start": 21210.72, + "end": 21212.42, + "probability": 0.9922 + }, + { + "start": 21212.9, + "end": 21214.28, + "probability": 0.9988 + }, + { + "start": 21214.56, + "end": 21216.59, + "probability": 0.9954 + }, + { + "start": 21217.04, + "end": 21218.76, + "probability": 0.9824 + }, + { + "start": 21218.96, + "end": 21221.82, + "probability": 0.8623 + }, + { + "start": 21221.9, + "end": 21222.06, + "probability": 0.4433 + }, + { + "start": 21222.08, + "end": 21224.34, + "probability": 0.9155 + }, + { + "start": 21225.2, + "end": 21229.7, + "probability": 0.9908 + }, + { + "start": 21230.36, + "end": 21232.24, + "probability": 0.9082 + }, + { + "start": 21232.92, + "end": 21237.14, + "probability": 0.9095 + }, + { + "start": 21237.64, + "end": 21239.3, + "probability": 0.9635 + }, + { + "start": 21239.7, + "end": 21244.74, + "probability": 0.9708 + }, + { + "start": 21245.36, + "end": 21247.42, + "probability": 0.7548 + }, + { + "start": 21248.22, + "end": 21249.9, + "probability": 0.7967 + }, + { + "start": 21250.9, + "end": 21252.28, + "probability": 0.971 + }, + { + "start": 21252.92, + "end": 21260.68, + "probability": 0.7581 + }, + { + "start": 21260.72, + "end": 21261.98, + "probability": 0.8478 + }, + { + "start": 21262.06, + "end": 21265.0, + "probability": 0.9141 + }, + { + "start": 21265.96, + "end": 21267.06, + "probability": 0.9608 + }, + { + "start": 21267.6, + "end": 21270.72, + "probability": 0.863 + }, + { + "start": 21270.78, + "end": 21272.68, + "probability": 0.884 + }, + { + "start": 21273.52, + "end": 21274.42, + "probability": 0.6469 + }, + { + "start": 21274.78, + "end": 21277.12, + "probability": 0.6641 + }, + { + "start": 21279.0, + "end": 21279.18, + "probability": 0.1864 + }, + { + "start": 21279.18, + "end": 21283.38, + "probability": 0.9861 + }, + { + "start": 21283.88, + "end": 21284.62, + "probability": 0.7176 + }, + { + "start": 21287.6, + "end": 21287.98, + "probability": 0.298 + }, + { + "start": 21299.4, + "end": 21299.74, + "probability": 0.3303 + }, + { + "start": 21299.74, + "end": 21300.58, + "probability": 0.3996 + }, + { + "start": 21301.62, + "end": 21303.22, + "probability": 0.8409 + }, + { + "start": 21303.22, + "end": 21305.04, + "probability": 0.5724 + }, + { + "start": 21305.16, + "end": 21307.38, + "probability": 0.9517 + }, + { + "start": 21307.72, + "end": 21309.9, + "probability": 0.6188 + }, + { + "start": 21310.06, + "end": 21311.8, + "probability": 0.5888 + }, + { + "start": 21312.62, + "end": 21315.26, + "probability": 0.9375 + }, + { + "start": 21315.26, + "end": 21318.84, + "probability": 0.891 + }, + { + "start": 21319.54, + "end": 21321.56, + "probability": 0.9724 + }, + { + "start": 21322.56, + "end": 21323.38, + "probability": 0.6718 + }, + { + "start": 21331.74, + "end": 21333.38, + "probability": 0.5459 + }, + { + "start": 21334.38, + "end": 21337.46, + "probability": 0.97 + }, + { + "start": 21337.46, + "end": 21341.18, + "probability": 0.9548 + }, + { + "start": 21342.06, + "end": 21343.72, + "probability": 0.5974 + }, + { + "start": 21343.92, + "end": 21345.43, + "probability": 0.9912 + }, + { + "start": 21346.5, + "end": 21351.66, + "probability": 0.8084 + }, + { + "start": 21351.72, + "end": 21353.1, + "probability": 0.589 + }, + { + "start": 21353.72, + "end": 21357.52, + "probability": 0.9906 + }, + { + "start": 21358.18, + "end": 21360.26, + "probability": 0.9299 + }, + { + "start": 21360.42, + "end": 21361.06, + "probability": 0.5899 + }, + { + "start": 21361.12, + "end": 21366.34, + "probability": 0.7104 + }, + { + "start": 21366.78, + "end": 21368.26, + "probability": 0.8044 + }, + { + "start": 21368.74, + "end": 21371.6, + "probability": 0.9953 + }, + { + "start": 21372.38, + "end": 21374.78, + "probability": 0.5948 + }, + { + "start": 21375.4, + "end": 21379.04, + "probability": 0.6796 + }, + { + "start": 21379.12, + "end": 21381.96, + "probability": 0.671 + }, + { + "start": 21382.34, + "end": 21387.82, + "probability": 0.9907 + }, + { + "start": 21388.52, + "end": 21391.72, + "probability": 0.8294 + }, + { + "start": 21392.34, + "end": 21393.26, + "probability": 0.9199 + }, + { + "start": 21394.6, + "end": 21398.42, + "probability": 0.8325 + }, + { + "start": 21398.98, + "end": 21400.18, + "probability": 0.8677 + }, + { + "start": 21400.34, + "end": 21401.71, + "probability": 0.8547 + }, + { + "start": 21402.5, + "end": 21403.46, + "probability": 0.7597 + }, + { + "start": 21404.14, + "end": 21406.7, + "probability": 0.929 + }, + { + "start": 21407.14, + "end": 21411.94, + "probability": 0.972 + }, + { + "start": 21412.48, + "end": 21413.56, + "probability": 0.9239 + }, + { + "start": 21414.56, + "end": 21417.58, + "probability": 0.9829 + }, + { + "start": 21418.6, + "end": 21420.18, + "probability": 0.8396 + }, + { + "start": 21420.7, + "end": 21424.2, + "probability": 0.9316 + }, + { + "start": 21424.2, + "end": 21427.46, + "probability": 0.9971 + }, + { + "start": 21428.14, + "end": 21432.44, + "probability": 0.816 + }, + { + "start": 21432.44, + "end": 21438.02, + "probability": 0.8437 + }, + { + "start": 21438.42, + "end": 21444.86, + "probability": 0.9427 + }, + { + "start": 21445.04, + "end": 21445.76, + "probability": 0.303 + }, + { + "start": 21446.36, + "end": 21451.12, + "probability": 0.8468 + }, + { + "start": 21451.92, + "end": 21459.1, + "probability": 0.9469 + }, + { + "start": 21460.12, + "end": 21464.36, + "probability": 0.7175 + }, + { + "start": 21464.36, + "end": 21468.66, + "probability": 0.8873 + }, + { + "start": 21469.16, + "end": 21472.58, + "probability": 0.9681 + }, + { + "start": 21472.58, + "end": 21477.08, + "probability": 0.9873 + }, + { + "start": 21478.04, + "end": 21485.02, + "probability": 0.9016 + }, + { + "start": 21485.48, + "end": 21488.27, + "probability": 0.9763 + }, + { + "start": 21488.46, + "end": 21490.98, + "probability": 0.8253 + }, + { + "start": 21491.02, + "end": 21493.5, + "probability": 0.8893 + }, + { + "start": 21494.9, + "end": 21498.94, + "probability": 0.9841 + }, + { + "start": 21499.92, + "end": 21500.9, + "probability": 0.6459 + }, + { + "start": 21501.22, + "end": 21505.8, + "probability": 0.9846 + }, + { + "start": 21508.04, + "end": 21511.68, + "probability": 0.9303 + }, + { + "start": 21512.4, + "end": 21513.82, + "probability": 0.7666 + }, + { + "start": 21514.86, + "end": 21515.44, + "probability": 0.3572 + }, + { + "start": 21516.26, + "end": 21517.48, + "probability": 0.9971 + }, + { + "start": 21518.08, + "end": 21521.6, + "probability": 0.8589 + }, + { + "start": 21521.66, + "end": 21522.7, + "probability": 0.8053 + }, + { + "start": 21523.14, + "end": 21524.36, + "probability": 0.7283 + }, + { + "start": 21524.5, + "end": 21525.42, + "probability": 0.5665 + }, + { + "start": 21526.72, + "end": 21533.04, + "probability": 0.9976 + }, + { + "start": 21533.62, + "end": 21534.76, + "probability": 0.999 + }, + { + "start": 21535.5, + "end": 21540.9, + "probability": 0.9877 + }, + { + "start": 21541.76, + "end": 21544.2, + "probability": 0.7248 + }, + { + "start": 21544.88, + "end": 21546.92, + "probability": 0.984 + }, + { + "start": 21547.02, + "end": 21549.54, + "probability": 0.8396 + }, + { + "start": 21550.36, + "end": 21554.08, + "probability": 0.9334 + }, + { + "start": 21554.08, + "end": 21558.24, + "probability": 0.9712 + }, + { + "start": 21558.36, + "end": 21561.28, + "probability": 0.9028 + }, + { + "start": 21562.08, + "end": 21564.64, + "probability": 0.9207 + }, + { + "start": 21565.22, + "end": 21568.1, + "probability": 0.9496 + }, + { + "start": 21568.64, + "end": 21571.28, + "probability": 0.4334 + }, + { + "start": 21571.28, + "end": 21573.3, + "probability": 0.5234 + }, + { + "start": 21573.36, + "end": 21574.54, + "probability": 0.6214 + }, + { + "start": 21575.4, + "end": 21577.38, + "probability": 0.9615 + }, + { + "start": 21578.14, + "end": 21582.42, + "probability": 0.8011 + }, + { + "start": 21583.4, + "end": 21586.22, + "probability": 0.9592 + }, + { + "start": 21587.18, + "end": 21590.08, + "probability": 0.7515 + }, + { + "start": 21590.18, + "end": 21590.28, + "probability": 0.8729 + }, + { + "start": 21591.46, + "end": 21594.33, + "probability": 0.9735 + }, + { + "start": 21595.12, + "end": 21597.1, + "probability": 0.9893 + }, + { + "start": 21597.26, + "end": 21597.82, + "probability": 0.8378 + }, + { + "start": 21598.42, + "end": 21602.16, + "probability": 0.802 + }, + { + "start": 21602.86, + "end": 21602.96, + "probability": 0.0006 + }, + { + "start": 21603.56, + "end": 21605.14, + "probability": 0.7379 + }, + { + "start": 21605.94, + "end": 21607.66, + "probability": 0.9688 + }, + { + "start": 21610.56, + "end": 21611.48, + "probability": 0.4304 + }, + { + "start": 21612.58, + "end": 21613.56, + "probability": 0.9985 + }, + { + "start": 21614.52, + "end": 21618.08, + "probability": 0.8164 + }, + { + "start": 21618.72, + "end": 21620.56, + "probability": 0.5895 + }, + { + "start": 21620.68, + "end": 21622.42, + "probability": 0.9924 + }, + { + "start": 21623.22, + "end": 21624.74, + "probability": 0.8284 + }, + { + "start": 21625.66, + "end": 21627.94, + "probability": 0.9829 + }, + { + "start": 21628.16, + "end": 21630.84, + "probability": 0.9591 + }, + { + "start": 21631.32, + "end": 21632.34, + "probability": 0.8708 + }, + { + "start": 21632.86, + "end": 21637.42, + "probability": 0.9458 + }, + { + "start": 21637.98, + "end": 21641.5, + "probability": 0.979 + }, + { + "start": 21641.82, + "end": 21642.06, + "probability": 0.7354 + }, + { + "start": 21642.8, + "end": 21643.6, + "probability": 0.6366 + }, + { + "start": 21644.0, + "end": 21646.7, + "probability": 0.7594 + }, + { + "start": 21647.86, + "end": 21651.42, + "probability": 0.8938 + }, + { + "start": 21652.1, + "end": 21653.0, + "probability": 0.5611 + }, + { + "start": 21654.86, + "end": 21657.62, + "probability": 0.7517 + }, + { + "start": 21658.06, + "end": 21660.54, + "probability": 0.9049 + }, + { + "start": 21661.68, + "end": 21662.36, + "probability": 0.6509 + }, + { + "start": 21662.52, + "end": 21662.98, + "probability": 0.883 + }, + { + "start": 21663.08, + "end": 21664.8, + "probability": 0.923 + }, + { + "start": 21665.96, + "end": 21666.81, + "probability": 0.2802 + }, + { + "start": 21667.32, + "end": 21669.24, + "probability": 0.8859 + }, + { + "start": 21669.92, + "end": 21672.0, + "probability": 0.8589 + }, + { + "start": 21673.12, + "end": 21673.82, + "probability": 0.8156 + }, + { + "start": 21674.94, + "end": 21676.21, + "probability": 0.6055 + }, + { + "start": 21676.88, + "end": 21677.86, + "probability": 0.89 + }, + { + "start": 21678.76, + "end": 21681.41, + "probability": 0.6278 + }, + { + "start": 21682.58, + "end": 21685.38, + "probability": 0.9048 + }, + { + "start": 21686.44, + "end": 21689.4, + "probability": 0.9575 + }, + { + "start": 21689.5, + "end": 21690.98, + "probability": 0.7905 + }, + { + "start": 21691.18, + "end": 21693.92, + "probability": 0.9786 + }, + { + "start": 21694.12, + "end": 21697.38, + "probability": 0.9991 + }, + { + "start": 21697.92, + "end": 21699.54, + "probability": 0.7017 + }, + { + "start": 21700.06, + "end": 21702.86, + "probability": 0.5959 + }, + { + "start": 21704.16, + "end": 21708.34, + "probability": 0.9357 + }, + { + "start": 21708.54, + "end": 21710.0, + "probability": 0.9803 + }, + { + "start": 21710.2, + "end": 21713.7, + "probability": 0.9653 + }, + { + "start": 21714.8, + "end": 21723.34, + "probability": 0.6724 + }, + { + "start": 21723.54, + "end": 21723.54, + "probability": 0.19 + }, + { + "start": 21723.54, + "end": 21724.12, + "probability": 0.733 + }, + { + "start": 21724.94, + "end": 21726.14, + "probability": 0.9803 + }, + { + "start": 21726.2, + "end": 21729.12, + "probability": 0.9897 + }, + { + "start": 21730.12, + "end": 21733.2, + "probability": 0.9991 + }, + { + "start": 21733.3, + "end": 21734.84, + "probability": 0.9053 + }, + { + "start": 21734.94, + "end": 21740.5, + "probability": 0.9593 + }, + { + "start": 21741.48, + "end": 21742.37, + "probability": 0.8326 + }, + { + "start": 21743.16, + "end": 21744.6, + "probability": 0.6604 + }, + { + "start": 21744.74, + "end": 21747.48, + "probability": 0.8649 + }, + { + "start": 21748.14, + "end": 21750.0, + "probability": 0.855 + }, + { + "start": 21750.16, + "end": 21750.92, + "probability": 0.7714 + }, + { + "start": 21750.98, + "end": 21752.08, + "probability": 0.9626 + }, + { + "start": 21752.16, + "end": 21752.82, + "probability": 0.5752 + }, + { + "start": 21753.34, + "end": 21756.18, + "probability": 0.9626 + }, + { + "start": 21757.16, + "end": 21759.86, + "probability": 0.9956 + }, + { + "start": 21760.4, + "end": 21761.56, + "probability": 0.9383 + }, + { + "start": 21761.76, + "end": 21763.2, + "probability": 0.9764 + }, + { + "start": 21763.34, + "end": 21766.56, + "probability": 0.9746 + }, + { + "start": 21767.4, + "end": 21773.36, + "probability": 0.8933 + }, + { + "start": 21773.98, + "end": 21774.96, + "probability": 0.0079 + }, + { + "start": 21776.2, + "end": 21776.64, + "probability": 0.0296 + }, + { + "start": 21776.64, + "end": 21776.66, + "probability": 0.1843 + }, + { + "start": 21776.66, + "end": 21776.94, + "probability": 0.0215 + }, + { + "start": 21777.46, + "end": 21780.64, + "probability": 0.7693 + }, + { + "start": 21780.74, + "end": 21782.14, + "probability": 0.674 + }, + { + "start": 21782.2, + "end": 21783.68, + "probability": 0.837 + }, + { + "start": 21783.98, + "end": 21784.9, + "probability": 0.822 + }, + { + "start": 21784.98, + "end": 21785.64, + "probability": 0.8842 + }, + { + "start": 21785.7, + "end": 21787.31, + "probability": 0.9692 + }, + { + "start": 21787.44, + "end": 21788.72, + "probability": 0.9203 + }, + { + "start": 21788.74, + "end": 21790.84, + "probability": 0.9609 + }, + { + "start": 21791.36, + "end": 21793.02, + "probability": 0.9578 + }, + { + "start": 21793.1, + "end": 21796.04, + "probability": 0.9175 + }, + { + "start": 21797.69, + "end": 21799.51, + "probability": 0.6485 + }, + { + "start": 21800.02, + "end": 21800.51, + "probability": 0.5701 + }, + { + "start": 21800.8, + "end": 21802.38, + "probability": 0.9479 + }, + { + "start": 21802.44, + "end": 21805.18, + "probability": 0.9077 + }, + { + "start": 21805.36, + "end": 21807.6, + "probability": 0.9664 + }, + { + "start": 21807.88, + "end": 21808.62, + "probability": 0.9968 + }, + { + "start": 21809.22, + "end": 21809.64, + "probability": 0.6669 + }, + { + "start": 21810.2, + "end": 21811.44, + "probability": 0.8697 + }, + { + "start": 21812.08, + "end": 21814.98, + "probability": 0.668 + }, + { + "start": 21815.54, + "end": 21817.56, + "probability": 0.844 + }, + { + "start": 21819.68, + "end": 21824.34, + "probability": 0.8545 + }, + { + "start": 21824.64, + "end": 21825.6, + "probability": 0.541 + }, + { + "start": 21825.78, + "end": 21826.76, + "probability": 0.6062 + }, + { + "start": 21827.26, + "end": 21828.26, + "probability": 0.7577 + }, + { + "start": 21828.36, + "end": 21830.72, + "probability": 0.988 + }, + { + "start": 21830.8, + "end": 21832.04, + "probability": 0.985 + }, + { + "start": 21832.6, + "end": 21836.3, + "probability": 0.9198 + }, + { + "start": 21836.8, + "end": 21839.88, + "probability": 0.9818 + }, + { + "start": 21839.88, + "end": 21843.5, + "probability": 0.984 + }, + { + "start": 21843.6, + "end": 21846.34, + "probability": 0.9918 + }, + { + "start": 21846.34, + "end": 21849.38, + "probability": 0.9987 + }, + { + "start": 21849.58, + "end": 21855.1, + "probability": 0.993 + }, + { + "start": 21855.96, + "end": 21856.24, + "probability": 0.4038 + }, + { + "start": 21856.9, + "end": 21860.0, + "probability": 0.5424 + }, + { + "start": 21860.14, + "end": 21860.86, + "probability": 0.5698 + }, + { + "start": 21860.96, + "end": 21862.1, + "probability": 0.9836 + }, + { + "start": 21862.26, + "end": 21863.82, + "probability": 0.0463 + }, + { + "start": 21863.86, + "end": 21865.8, + "probability": 0.9119 + }, + { + "start": 21865.8, + "end": 21869.3, + "probability": 0.9365 + }, + { + "start": 21869.92, + "end": 21871.04, + "probability": 0.1093 + }, + { + "start": 21871.22, + "end": 21871.4, + "probability": 0.0436 + }, + { + "start": 21871.4, + "end": 21873.78, + "probability": 0.7135 + }, + { + "start": 21873.86, + "end": 21877.66, + "probability": 0.8908 + }, + { + "start": 21877.66, + "end": 21881.18, + "probability": 0.9182 + }, + { + "start": 21881.28, + "end": 21882.24, + "probability": 0.9536 + }, + { + "start": 21882.34, + "end": 21885.94, + "probability": 0.9866 + }, + { + "start": 21886.14, + "end": 21891.38, + "probability": 0.9868 + }, + { + "start": 21892.26, + "end": 21892.5, + "probability": 0.6923 + }, + { + "start": 21893.02, + "end": 21896.45, + "probability": 0.9773 + }, + { + "start": 21897.72, + "end": 21900.22, + "probability": 0.9305 + }, + { + "start": 21900.34, + "end": 21904.34, + "probability": 0.9775 + }, + { + "start": 21904.5, + "end": 21904.76, + "probability": 0.8703 + }, + { + "start": 21905.12, + "end": 21905.62, + "probability": 0.6919 + }, + { + "start": 21905.76, + "end": 21907.04, + "probability": 0.9505 + }, + { + "start": 21907.36, + "end": 21908.64, + "probability": 0.8605 + }, + { + "start": 21908.88, + "end": 21910.08, + "probability": 0.9849 + }, + { + "start": 21910.16, + "end": 21912.76, + "probability": 0.9593 + }, + { + "start": 21913.84, + "end": 21914.62, + "probability": 0.4982 + }, + { + "start": 21914.74, + "end": 21915.66, + "probability": 0.8129 + }, + { + "start": 21915.8, + "end": 21916.88, + "probability": 0.9573 + }, + { + "start": 21916.96, + "end": 21917.52, + "probability": 0.8566 + }, + { + "start": 21917.6, + "end": 21923.54, + "probability": 0.8346 + }, + { + "start": 21923.86, + "end": 21926.04, + "probability": 0.9834 + }, + { + "start": 21927.12, + "end": 21930.76, + "probability": 0.0009 + }, + { + "start": 21930.76, + "end": 21931.84, + "probability": 0.1029 + }, + { + "start": 21932.0, + "end": 21934.0, + "probability": 0.9379 + }, + { + "start": 21934.1, + "end": 21934.86, + "probability": 0.8885 + }, + { + "start": 21935.02, + "end": 21935.56, + "probability": 0.8065 + }, + { + "start": 21935.56, + "end": 21940.06, + "probability": 0.9784 + }, + { + "start": 21940.96, + "end": 21942.08, + "probability": 0.8735 + }, + { + "start": 21942.82, + "end": 21945.64, + "probability": 0.9167 + }, + { + "start": 21945.64, + "end": 21948.52, + "probability": 0.9904 + }, + { + "start": 21949.28, + "end": 21954.36, + "probability": 0.9922 + }, + { + "start": 21954.72, + "end": 21956.08, + "probability": 0.8506 + }, + { + "start": 21956.28, + "end": 21958.8, + "probability": 0.967 + }, + { + "start": 21959.2, + "end": 21960.84, + "probability": 0.8159 + }, + { + "start": 21961.04, + "end": 21964.2, + "probability": 0.8601 + }, + { + "start": 21965.0, + "end": 21965.72, + "probability": 0.8617 + }, + { + "start": 21966.08, + "end": 21968.06, + "probability": 0.9524 + }, + { + "start": 21968.18, + "end": 21970.92, + "probability": 0.9532 + }, + { + "start": 21971.0, + "end": 21976.72, + "probability": 0.991 + }, + { + "start": 21976.72, + "end": 21980.98, + "probability": 0.9772 + }, + { + "start": 21981.68, + "end": 21984.68, + "probability": 0.9434 + }, + { + "start": 21985.54, + "end": 21988.22, + "probability": 0.8327 + }, + { + "start": 21988.46, + "end": 21991.16, + "probability": 0.9105 + }, + { + "start": 21991.7, + "end": 21992.9, + "probability": 0.9135 + }, + { + "start": 21993.9, + "end": 21994.2, + "probability": 0.4866 + }, + { + "start": 21994.36, + "end": 21995.98, + "probability": 0.7448 + }, + { + "start": 21996.02, + "end": 22001.04, + "probability": 0.9904 + }, + { + "start": 22001.46, + "end": 22004.76, + "probability": 0.6771 + }, + { + "start": 22004.76, + "end": 22008.82, + "probability": 0.7004 + }, + { + "start": 22009.28, + "end": 22011.18, + "probability": 0.9912 + }, + { + "start": 22011.26, + "end": 22012.42, + "probability": 0.9902 + }, + { + "start": 22013.22, + "end": 22014.92, + "probability": 0.9941 + }, + { + "start": 22015.26, + "end": 22016.24, + "probability": 0.8196 + }, + { + "start": 22016.44, + "end": 22019.1, + "probability": 0.9803 + }, + { + "start": 22019.66, + "end": 22020.06, + "probability": 0.74 + }, + { + "start": 22020.64, + "end": 22022.48, + "probability": 0.7234 + }, + { + "start": 22022.8, + "end": 22026.2, + "probability": 0.9608 + }, + { + "start": 22027.06, + "end": 22030.16, + "probability": 0.0691 + }, + { + "start": 22031.02, + "end": 22032.18, + "probability": 0.6368 + }, + { + "start": 22032.2, + "end": 22033.32, + "probability": 0.9043 + }, + { + "start": 22033.6, + "end": 22035.25, + "probability": 0.3585 + }, + { + "start": 22035.76, + "end": 22042.82, + "probability": 0.116 + }, + { + "start": 22043.32, + "end": 22046.36, + "probability": 0.7378 + }, + { + "start": 22046.86, + "end": 22048.71, + "probability": 0.2555 + }, + { + "start": 22050.32, + "end": 22050.32, + "probability": 0.6894 + }, + { + "start": 22050.32, + "end": 22051.36, + "probability": 0.1223 + }, + { + "start": 22051.48, + "end": 22052.58, + "probability": 0.899 + }, + { + "start": 22055.7, + "end": 22055.94, + "probability": 0.1129 + }, + { + "start": 22056.48, + "end": 22057.6, + "probability": 0.2891 + }, + { + "start": 22057.6, + "end": 22059.08, + "probability": 0.644 + }, + { + "start": 22060.97, + "end": 22062.98, + "probability": 0.3192 + }, + { + "start": 22062.98, + "end": 22064.26, + "probability": 0.4354 + }, + { + "start": 22064.48, + "end": 22068.93, + "probability": 0.9138 + }, + { + "start": 22071.6, + "end": 22072.58, + "probability": 0.3572 + }, + { + "start": 22073.52, + "end": 22073.52, + "probability": 0.0749 + }, + { + "start": 22073.52, + "end": 22074.72, + "probability": 0.4722 + }, + { + "start": 22075.04, + "end": 22075.76, + "probability": 0.4588 + }, + { + "start": 22076.02, + "end": 22076.1, + "probability": 0.654 + }, + { + "start": 22085.66, + "end": 22085.8, + "probability": 0.0045 + }, + { + "start": 22085.8, + "end": 22086.02, + "probability": 0.1958 + }, + { + "start": 22086.02, + "end": 22086.24, + "probability": 0.1153 + }, + { + "start": 22089.96, + "end": 22091.62, + "probability": 0.6242 + }, + { + "start": 22093.1, + "end": 22095.06, + "probability": 0.6245 + }, + { + "start": 22095.2, + "end": 22098.02, + "probability": 0.5355 + }, + { + "start": 22098.6, + "end": 22099.84, + "probability": 0.8092 + }, + { + "start": 22099.88, + "end": 22101.26, + "probability": 0.9246 + }, + { + "start": 22101.46, + "end": 22103.76, + "probability": 0.5378 + }, + { + "start": 22104.56, + "end": 22106.32, + "probability": 0.9556 + }, + { + "start": 22107.14, + "end": 22109.56, + "probability": 0.9745 + }, + { + "start": 22109.74, + "end": 22110.98, + "probability": 0.8263 + }, + { + "start": 22111.64, + "end": 22113.74, + "probability": 0.6353 + }, + { + "start": 22114.52, + "end": 22115.68, + "probability": 0.6643 + }, + { + "start": 22129.4, + "end": 22134.44, + "probability": 0.4338 + }, + { + "start": 22135.14, + "end": 22136.76, + "probability": 0.806 + }, + { + "start": 22137.44, + "end": 22140.42, + "probability": 0.5434 + }, + { + "start": 22141.22, + "end": 22145.0, + "probability": 0.9926 + }, + { + "start": 22146.12, + "end": 22151.7, + "probability": 0.9788 + }, + { + "start": 22153.32, + "end": 22154.8, + "probability": 0.9133 + }, + { + "start": 22154.9, + "end": 22157.34, + "probability": 0.9932 + }, + { + "start": 22157.68, + "end": 22160.52, + "probability": 0.9321 + }, + { + "start": 22161.18, + "end": 22163.78, + "probability": 0.8856 + }, + { + "start": 22165.08, + "end": 22168.62, + "probability": 0.8244 + }, + { + "start": 22169.24, + "end": 22171.5, + "probability": 0.1068 + }, + { + "start": 22175.74, + "end": 22179.44, + "probability": 0.1109 + }, + { + "start": 22180.62, + "end": 22181.2, + "probability": 0.261 + }, + { + "start": 22182.2, + "end": 22185.56, + "probability": 0.0933 + }, + { + "start": 22187.68, + "end": 22188.78, + "probability": 0.183 + }, + { + "start": 22189.38, + "end": 22191.86, + "probability": 0.0661 + }, + { + "start": 22213.26, + "end": 22214.78, + "probability": 0.1771 + }, + { + "start": 22216.84, + "end": 22218.56, + "probability": 0.4964 + }, + { + "start": 22219.76, + "end": 22221.32, + "probability": 0.9182 + }, + { + "start": 22222.34, + "end": 22226.78, + "probability": 0.9893 + }, + { + "start": 22228.48, + "end": 22228.8, + "probability": 0.9292 + }, + { + "start": 22229.36, + "end": 22233.14, + "probability": 0.9843 + }, + { + "start": 22234.54, + "end": 22234.92, + "probability": 0.5051 + }, + { + "start": 22235.04, + "end": 22237.02, + "probability": 0.9824 + }, + { + "start": 22237.34, + "end": 22241.82, + "probability": 0.8298 + }, + { + "start": 22243.1, + "end": 22246.06, + "probability": 0.6762 + }, + { + "start": 22246.94, + "end": 22249.18, + "probability": 0.8457 + }, + { + "start": 22250.2, + "end": 22254.62, + "probability": 0.9922 + }, + { + "start": 22255.14, + "end": 22259.5, + "probability": 0.9779 + }, + { + "start": 22260.48, + "end": 22263.24, + "probability": 0.9106 + }, + { + "start": 22264.64, + "end": 22268.72, + "probability": 0.8584 + }, + { + "start": 22269.3, + "end": 22271.84, + "probability": 0.2765 + }, + { + "start": 22272.6, + "end": 22274.18, + "probability": 0.8198 + }, + { + "start": 22274.3, + "end": 22275.54, + "probability": 0.7511 + }, + { + "start": 22277.18, + "end": 22279.98, + "probability": 0.8454 + }, + { + "start": 22281.24, + "end": 22283.0, + "probability": 0.9881 + }, + { + "start": 22283.64, + "end": 22287.18, + "probability": 0.8724 + }, + { + "start": 22288.36, + "end": 22290.0, + "probability": 0.9883 + }, + { + "start": 22290.16, + "end": 22290.54, + "probability": 0.6276 + }, + { + "start": 22290.56, + "end": 22291.7, + "probability": 0.8682 + }, + { + "start": 22291.82, + "end": 22292.76, + "probability": 0.9304 + }, + { + "start": 22292.8, + "end": 22293.14, + "probability": 0.866 + }, + { + "start": 22294.78, + "end": 22296.84, + "probability": 0.8015 + }, + { + "start": 22298.44, + "end": 22300.44, + "probability": 0.9973 + }, + { + "start": 22301.06, + "end": 22305.82, + "probability": 0.7168 + }, + { + "start": 22306.88, + "end": 22310.38, + "probability": 0.9409 + }, + { + "start": 22311.82, + "end": 22317.64, + "probability": 0.9958 + }, + { + "start": 22318.66, + "end": 22320.54, + "probability": 0.5249 + }, + { + "start": 22320.62, + "end": 22326.18, + "probability": 0.9722 + }, + { + "start": 22326.94, + "end": 22332.34, + "probability": 0.9932 + }, + { + "start": 22332.98, + "end": 22338.84, + "probability": 0.8527 + }, + { + "start": 22338.92, + "end": 22343.78, + "probability": 0.9929 + }, + { + "start": 22344.66, + "end": 22348.5, + "probability": 0.9 + }, + { + "start": 22350.0, + "end": 22353.9, + "probability": 0.9776 + }, + { + "start": 22355.0, + "end": 22356.72, + "probability": 0.8186 + }, + { + "start": 22357.72, + "end": 22361.0, + "probability": 0.976 + }, + { + "start": 22361.04, + "end": 22365.04, + "probability": 0.9146 + }, + { + "start": 22365.12, + "end": 22366.18, + "probability": 0.6395 + }, + { + "start": 22367.68, + "end": 22372.18, + "probability": 0.6666 + }, + { + "start": 22373.42, + "end": 22375.42, + "probability": 0.9238 + }, + { + "start": 22377.38, + "end": 22378.34, + "probability": 0.8764 + }, + { + "start": 22379.8, + "end": 22384.42, + "probability": 0.9604 + }, + { + "start": 22385.18, + "end": 22387.2, + "probability": 0.9017 + }, + { + "start": 22388.72, + "end": 22390.54, + "probability": 0.8662 + }, + { + "start": 22391.32, + "end": 22393.44, + "probability": 0.994 + }, + { + "start": 22395.26, + "end": 22398.42, + "probability": 0.9663 + }, + { + "start": 22399.88, + "end": 22401.2, + "probability": 0.9429 + }, + { + "start": 22401.38, + "end": 22402.26, + "probability": 0.8057 + }, + { + "start": 22402.3, + "end": 22402.76, + "probability": 0.7123 + }, + { + "start": 22403.18, + "end": 22405.72, + "probability": 0.9909 + }, + { + "start": 22407.26, + "end": 22410.2, + "probability": 0.8238 + }, + { + "start": 22410.4, + "end": 22411.56, + "probability": 0.8408 + }, + { + "start": 22411.64, + "end": 22412.68, + "probability": 0.6836 + }, + { + "start": 22413.02, + "end": 22418.02, + "probability": 0.9953 + }, + { + "start": 22418.36, + "end": 22422.32, + "probability": 0.863 + }, + { + "start": 22422.88, + "end": 22424.64, + "probability": 0.9977 + }, + { + "start": 22425.22, + "end": 22425.7, + "probability": 0.5288 + }, + { + "start": 22426.28, + "end": 22427.59, + "probability": 0.6542 + }, + { + "start": 22427.64, + "end": 22428.5, + "probability": 0.5591 + }, + { + "start": 22429.08, + "end": 22429.82, + "probability": 0.4871 + }, + { + "start": 22429.96, + "end": 22430.56, + "probability": 0.4999 + }, + { + "start": 22430.72, + "end": 22431.68, + "probability": 0.6877 + }, + { + "start": 22432.3, + "end": 22433.68, + "probability": 0.9914 + }, + { + "start": 22433.76, + "end": 22436.7, + "probability": 0.8261 + }, + { + "start": 22437.46, + "end": 22440.44, + "probability": 0.893 + }, + { + "start": 22440.68, + "end": 22441.76, + "probability": 0.7465 + }, + { + "start": 22442.24, + "end": 22446.02, + "probability": 0.9543 + }, + { + "start": 22446.02, + "end": 22450.84, + "probability": 0.8944 + }, + { + "start": 22450.94, + "end": 22455.48, + "probability": 0.8098 + }, + { + "start": 22455.48, + "end": 22457.32, + "probability": 0.8191 + }, + { + "start": 22458.92, + "end": 22463.66, + "probability": 0.9822 + }, + { + "start": 22463.84, + "end": 22470.6, + "probability": 0.9887 + }, + { + "start": 22471.64, + "end": 22473.6, + "probability": 0.9941 + }, + { + "start": 22476.68, + "end": 22478.28, + "probability": 0.9946 + }, + { + "start": 22479.28, + "end": 22480.28, + "probability": 0.6459 + }, + { + "start": 22480.46, + "end": 22480.92, + "probability": 0.7827 + }, + { + "start": 22481.1, + "end": 22482.26, + "probability": 0.729 + }, + { + "start": 22482.36, + "end": 22483.92, + "probability": 0.954 + }, + { + "start": 22484.0, + "end": 22484.32, + "probability": 0.8855 + }, + { + "start": 22484.86, + "end": 22486.28, + "probability": 0.8809 + }, + { + "start": 22489.16, + "end": 22491.66, + "probability": 0.929 + }, + { + "start": 22492.26, + "end": 22496.22, + "probability": 0.9824 + }, + { + "start": 22497.54, + "end": 22500.7, + "probability": 0.8842 + }, + { + "start": 22501.3, + "end": 22504.32, + "probability": 0.9674 + }, + { + "start": 22504.58, + "end": 22506.78, + "probability": 0.9608 + }, + { + "start": 22507.06, + "end": 22507.9, + "probability": 0.9288 + }, + { + "start": 22509.2, + "end": 22509.72, + "probability": 0.7804 + }, + { + "start": 22510.42, + "end": 22512.55, + "probability": 0.9692 + }, + { + "start": 22513.44, + "end": 22516.66, + "probability": 0.834 + }, + { + "start": 22517.54, + "end": 22519.18, + "probability": 0.9412 + }, + { + "start": 22519.82, + "end": 22521.62, + "probability": 0.9474 + }, + { + "start": 22522.08, + "end": 22525.18, + "probability": 0.9811 + }, + { + "start": 22525.3, + "end": 22526.12, + "probability": 0.5185 + }, + { + "start": 22526.64, + "end": 22528.78, + "probability": 0.7261 + }, + { + "start": 22529.4, + "end": 22531.8, + "probability": 0.9962 + }, + { + "start": 22532.62, + "end": 22532.68, + "probability": 0.4223 + }, + { + "start": 22533.1, + "end": 22533.36, + "probability": 0.7017 + }, + { + "start": 22533.86, + "end": 22538.4, + "probability": 0.8342 + }, + { + "start": 22539.64, + "end": 22541.52, + "probability": 0.6745 + }, + { + "start": 22541.74, + "end": 22542.52, + "probability": 0.75 + }, + { + "start": 22542.7, + "end": 22543.94, + "probability": 0.7467 + }, + { + "start": 22544.02, + "end": 22544.6, + "probability": 0.4217 + }, + { + "start": 22544.94, + "end": 22549.36, + "probability": 0.9644 + }, + { + "start": 22549.88, + "end": 22555.32, + "probability": 0.9925 + }, + { + "start": 22555.48, + "end": 22556.18, + "probability": 0.7284 + }, + { + "start": 22556.84, + "end": 22559.18, + "probability": 0.8836 + }, + { + "start": 22559.18, + "end": 22561.88, + "probability": 0.8326 + }, + { + "start": 22562.24, + "end": 22564.06, + "probability": 0.9579 + }, + { + "start": 22564.4, + "end": 22566.21, + "probability": 0.9636 + }, + { + "start": 22566.44, + "end": 22570.32, + "probability": 0.8728 + }, + { + "start": 22570.62, + "end": 22573.38, + "probability": 0.9252 + }, + { + "start": 22573.4, + "end": 22574.36, + "probability": 0.8963 + }, + { + "start": 22574.44, + "end": 22574.68, + "probability": 0.6767 + }, + { + "start": 22574.76, + "end": 22575.58, + "probability": 0.6525 + }, + { + "start": 22575.86, + "end": 22575.94, + "probability": 0.3662 + }, + { + "start": 22575.94, + "end": 22578.02, + "probability": 0.8107 + }, + { + "start": 22578.5, + "end": 22580.22, + "probability": 0.9725 + }, + { + "start": 22580.6, + "end": 22582.46, + "probability": 0.9968 + }, + { + "start": 22583.36, + "end": 22584.06, + "probability": 0.954 + }, + { + "start": 22585.02, + "end": 22586.44, + "probability": 0.7239 + }, + { + "start": 22587.4, + "end": 22591.8, + "probability": 0.9121 + }, + { + "start": 22592.3, + "end": 22594.1, + "probability": 0.8423 + }, + { + "start": 22595.22, + "end": 22598.6, + "probability": 0.8869 + }, + { + "start": 22599.32, + "end": 22601.64, + "probability": 0.8146 + }, + { + "start": 22602.66, + "end": 22605.4, + "probability": 0.8618 + }, + { + "start": 22606.34, + "end": 22609.9, + "probability": 0.9656 + }, + { + "start": 22609.9, + "end": 22614.08, + "probability": 0.7494 + }, + { + "start": 22615.12, + "end": 22619.24, + "probability": 0.8079 + }, + { + "start": 22619.66, + "end": 22624.72, + "probability": 0.8901 + }, + { + "start": 22625.94, + "end": 22627.68, + "probability": 0.7512 + }, + { + "start": 22627.78, + "end": 22628.6, + "probability": 0.7366 + }, + { + "start": 22629.08, + "end": 22630.9, + "probability": 0.9717 + }, + { + "start": 22631.42, + "end": 22636.02, + "probability": 0.887 + }, + { + "start": 22644.2, + "end": 22650.1, + "probability": 0.8635 + }, + { + "start": 22650.76, + "end": 22652.26, + "probability": 0.6015 + }, + { + "start": 22653.34, + "end": 22654.4, + "probability": 0.546 + }, + { + "start": 22656.06, + "end": 22660.74, + "probability": 0.7463 + }, + { + "start": 22660.94, + "end": 22664.82, + "probability": 0.981 + }, + { + "start": 22665.68, + "end": 22667.8, + "probability": 0.8887 + }, + { + "start": 22668.66, + "end": 22669.24, + "probability": 0.8507 + }, + { + "start": 22669.32, + "end": 22671.98, + "probability": 0.7529 + }, + { + "start": 22672.66, + "end": 22676.76, + "probability": 0.926 + }, + { + "start": 22676.76, + "end": 22677.72, + "probability": 0.9492 + }, + { + "start": 22677.96, + "end": 22679.4, + "probability": 0.9264 + }, + { + "start": 22680.08, + "end": 22681.34, + "probability": 0.8329 + }, + { + "start": 22681.6, + "end": 22684.78, + "probability": 0.9062 + }, + { + "start": 22685.66, + "end": 22688.3, + "probability": 0.7013 + }, + { + "start": 22688.42, + "end": 22689.16, + "probability": 0.5629 + }, + { + "start": 22689.18, + "end": 22692.02, + "probability": 0.7805 + }, + { + "start": 22692.72, + "end": 22696.14, + "probability": 0.9852 + }, + { + "start": 22696.92, + "end": 22700.6, + "probability": 0.9817 + }, + { + "start": 22700.86, + "end": 22702.22, + "probability": 0.9171 + }, + { + "start": 22702.7, + "end": 22703.95, + "probability": 0.8198 + }, + { + "start": 22704.14, + "end": 22704.78, + "probability": 0.5859 + }, + { + "start": 22705.12, + "end": 22706.4, + "probability": 0.9116 + }, + { + "start": 22706.8, + "end": 22708.72, + "probability": 0.86 + }, + { + "start": 22708.78, + "end": 22713.0, + "probability": 0.9716 + }, + { + "start": 22713.6, + "end": 22714.74, + "probability": 0.8552 + }, + { + "start": 22716.44, + "end": 22717.16, + "probability": 0.7909 + }, + { + "start": 22717.34, + "end": 22720.22, + "probability": 0.6401 + }, + { + "start": 22720.88, + "end": 22721.9, + "probability": 0.8472 + }, + { + "start": 22722.52, + "end": 22727.49, + "probability": 0.9896 + }, + { + "start": 22729.66, + "end": 22730.78, + "probability": 0.7397 + }, + { + "start": 22731.56, + "end": 22735.68, + "probability": 0.8026 + }, + { + "start": 22736.26, + "end": 22739.06, + "probability": 0.9941 + }, + { + "start": 22740.32, + "end": 22742.28, + "probability": 0.714 + }, + { + "start": 22742.98, + "end": 22745.92, + "probability": 0.7311 + }, + { + "start": 22746.26, + "end": 22747.58, + "probability": 0.701 + }, + { + "start": 22747.72, + "end": 22749.6, + "probability": 0.9189 + }, + { + "start": 22749.68, + "end": 22753.06, + "probability": 0.9816 + }, + { + "start": 22753.1, + "end": 22754.68, + "probability": 0.99 + }, + { + "start": 22755.48, + "end": 22759.28, + "probability": 0.8878 + }, + { + "start": 22759.86, + "end": 22761.36, + "probability": 0.9451 + }, + { + "start": 22762.46, + "end": 22765.22, + "probability": 0.9756 + }, + { + "start": 22766.52, + "end": 22767.0, + "probability": 0.8072 + }, + { + "start": 22767.06, + "end": 22769.54, + "probability": 0.939 + }, + { + "start": 22769.94, + "end": 22771.48, + "probability": 0.9434 + }, + { + "start": 22771.98, + "end": 22775.06, + "probability": 0.8796 + }, + { + "start": 22775.06, + "end": 22778.24, + "probability": 0.9781 + }, + { + "start": 22778.5, + "end": 22780.96, + "probability": 0.9971 + }, + { + "start": 22781.04, + "end": 22784.54, + "probability": 0.8988 + }, + { + "start": 22785.26, + "end": 22787.84, + "probability": 0.8399 + }, + { + "start": 22788.22, + "end": 22791.38, + "probability": 0.9594 + }, + { + "start": 22791.44, + "end": 22791.54, + "probability": 0.4164 + }, + { + "start": 22792.12, + "end": 22795.59, + "probability": 0.991 + }, + { + "start": 22795.98, + "end": 22797.08, + "probability": 0.8573 + }, + { + "start": 22797.2, + "end": 22797.76, + "probability": 0.7077 + }, + { + "start": 22797.9, + "end": 22800.84, + "probability": 0.9971 + }, + { + "start": 22801.6, + "end": 22802.68, + "probability": 0.8079 + }, + { + "start": 22802.76, + "end": 22804.26, + "probability": 0.5075 + }, + { + "start": 22805.46, + "end": 22805.92, + "probability": 0.4502 + }, + { + "start": 22806.1, + "end": 22807.58, + "probability": 0.9368 + }, + { + "start": 22807.88, + "end": 22808.32, + "probability": 0.5607 + }, + { + "start": 22808.4, + "end": 22810.0, + "probability": 0.9743 + }, + { + "start": 22810.56, + "end": 22815.08, + "probability": 0.9414 + }, + { + "start": 22815.74, + "end": 22819.74, + "probability": 0.9653 + }, + { + "start": 22819.82, + "end": 22820.82, + "probability": 0.6957 + }, + { + "start": 22821.44, + "end": 22825.1, + "probability": 0.9761 + }, + { + "start": 22825.58, + "end": 22832.44, + "probability": 0.9639 + }, + { + "start": 22832.58, + "end": 22835.84, + "probability": 0.9946 + }, + { + "start": 22835.84, + "end": 22840.62, + "probability": 0.8996 + }, + { + "start": 22840.88, + "end": 22841.3, + "probability": 0.5086 + }, + { + "start": 22841.72, + "end": 22841.82, + "probability": 0.3076 + }, + { + "start": 22841.82, + "end": 22843.48, + "probability": 0.5707 + }, + { + "start": 22843.76, + "end": 22846.96, + "probability": 0.8357 + }, + { + "start": 22847.78, + "end": 22850.94, + "probability": 0.8762 + }, + { + "start": 22857.02, + "end": 22857.82, + "probability": 0.6559 + }, + { + "start": 22873.24, + "end": 22873.34, + "probability": 0.0109 + }, + { + "start": 22873.34, + "end": 22875.16, + "probability": 0.7377 + }, + { + "start": 22876.2, + "end": 22877.06, + "probability": 0.8023 + }, + { + "start": 22878.16, + "end": 22878.96, + "probability": 0.8319 + }, + { + "start": 22879.2, + "end": 22881.8, + "probability": 0.9824 + }, + { + "start": 22882.8, + "end": 22885.05, + "probability": 0.9225 + }, + { + "start": 22886.02, + "end": 22886.76, + "probability": 0.9348 + }, + { + "start": 22888.08, + "end": 22890.52, + "probability": 0.9901 + }, + { + "start": 22894.88, + "end": 22896.88, + "probability": 0.818 + }, + { + "start": 22897.48, + "end": 22898.36, + "probability": 0.6815 + }, + { + "start": 22899.14, + "end": 22900.14, + "probability": 0.7823 + }, + { + "start": 22900.22, + "end": 22903.58, + "probability": 0.952 + }, + { + "start": 22904.44, + "end": 22907.36, + "probability": 0.9816 + }, + { + "start": 22907.42, + "end": 22908.54, + "probability": 0.994 + }, + { + "start": 22909.14, + "end": 22909.92, + "probability": 0.4806 + }, + { + "start": 22910.0, + "end": 22913.62, + "probability": 0.9983 + }, + { + "start": 22914.16, + "end": 22915.54, + "probability": 0.9004 + }, + { + "start": 22916.82, + "end": 22923.52, + "probability": 0.8777 + }, + { + "start": 22925.1, + "end": 22926.34, + "probability": 0.7916 + }, + { + "start": 22926.52, + "end": 22928.42, + "probability": 0.7766 + }, + { + "start": 22928.48, + "end": 22933.72, + "probability": 0.9556 + }, + { + "start": 22934.42, + "end": 22936.96, + "probability": 0.8441 + }, + { + "start": 22938.16, + "end": 22944.62, + "probability": 0.8918 + }, + { + "start": 22945.92, + "end": 22948.92, + "probability": 0.8745 + }, + { + "start": 22950.46, + "end": 22953.06, + "probability": 0.9829 + }, + { + "start": 22954.44, + "end": 22957.66, + "probability": 0.9972 + }, + { + "start": 22957.66, + "end": 22961.24, + "probability": 0.9053 + }, + { + "start": 22962.24, + "end": 22963.56, + "probability": 0.9654 + }, + { + "start": 22964.16, + "end": 22966.3, + "probability": 0.9667 + }, + { + "start": 22967.04, + "end": 22969.98, + "probability": 0.9651 + }, + { + "start": 22970.88, + "end": 22973.24, + "probability": 0.9799 + }, + { + "start": 22974.24, + "end": 22978.85, + "probability": 0.9954 + }, + { + "start": 22979.3, + "end": 22980.34, + "probability": 0.845 + }, + { + "start": 22980.46, + "end": 22981.04, + "probability": 0.8992 + }, + { + "start": 22981.18, + "end": 22982.16, + "probability": 0.9081 + }, + { + "start": 22982.86, + "end": 22985.04, + "probability": 0.9824 + }, + { + "start": 22985.6, + "end": 22987.3, + "probability": 0.9779 + }, + { + "start": 22988.24, + "end": 22990.26, + "probability": 0.7788 + }, + { + "start": 22991.4, + "end": 22992.32, + "probability": 0.7241 + }, + { + "start": 22992.34, + "end": 22996.7, + "probability": 0.997 + }, + { + "start": 22996.7, + "end": 23002.18, + "probability": 0.9987 + }, + { + "start": 23003.24, + "end": 23006.82, + "probability": 0.8911 + }, + { + "start": 23006.82, + "end": 23010.0, + "probability": 0.9219 + }, + { + "start": 23011.66, + "end": 23013.91, + "probability": 0.6722 + }, + { + "start": 23014.72, + "end": 23015.62, + "probability": 0.6046 + }, + { + "start": 23016.92, + "end": 23019.88, + "probability": 0.8193 + }, + { + "start": 23020.44, + "end": 23021.3, + "probability": 0.2126 + }, + { + "start": 23022.34, + "end": 23023.26, + "probability": 0.9868 + }, + { + "start": 23024.0, + "end": 23025.06, + "probability": 0.9163 + }, + { + "start": 23025.22, + "end": 23026.26, + "probability": 0.941 + }, + { + "start": 23026.32, + "end": 23028.54, + "probability": 0.9889 + }, + { + "start": 23030.28, + "end": 23036.36, + "probability": 0.9746 + }, + { + "start": 23036.84, + "end": 23038.66, + "probability": 0.949 + }, + { + "start": 23039.4, + "end": 23041.26, + "probability": 0.9951 + }, + { + "start": 23041.78, + "end": 23045.04, + "probability": 0.9973 + }, + { + "start": 23045.64, + "end": 23050.16, + "probability": 0.9094 + }, + { + "start": 23050.16, + "end": 23056.36, + "probability": 0.9614 + }, + { + "start": 23056.96, + "end": 23059.34, + "probability": 0.9047 + }, + { + "start": 23060.58, + "end": 23063.1, + "probability": 0.9071 + }, + { + "start": 23064.67, + "end": 23068.98, + "probability": 0.9938 + }, + { + "start": 23069.36, + "end": 23072.2, + "probability": 0.9849 + }, + { + "start": 23073.62, + "end": 23078.04, + "probability": 0.8568 + }, + { + "start": 23078.12, + "end": 23078.86, + "probability": 0.9673 + }, + { + "start": 23079.56, + "end": 23080.78, + "probability": 0.7725 + }, + { + "start": 23082.12, + "end": 23084.54, + "probability": 0.7836 + }, + { + "start": 23085.2, + "end": 23089.2, + "probability": 0.9067 + }, + { + "start": 23089.9, + "end": 23096.62, + "probability": 0.9714 + }, + { + "start": 23097.58, + "end": 23099.42, + "probability": 0.9543 + }, + { + "start": 23100.44, + "end": 23104.44, + "probability": 0.9969 + }, + { + "start": 23105.06, + "end": 23106.1, + "probability": 0.9473 + }, + { + "start": 23106.7, + "end": 23109.83, + "probability": 0.9412 + }, + { + "start": 23110.4, + "end": 23112.28, + "probability": 0.9797 + }, + { + "start": 23112.88, + "end": 23115.14, + "probability": 0.9401 + }, + { + "start": 23116.32, + "end": 23118.48, + "probability": 0.7924 + }, + { + "start": 23119.18, + "end": 23121.48, + "probability": 0.7645 + }, + { + "start": 23122.56, + "end": 23125.5, + "probability": 0.9891 + }, + { + "start": 23125.88, + "end": 23127.46, + "probability": 0.8875 + }, + { + "start": 23127.46, + "end": 23132.32, + "probability": 0.9937 + }, + { + "start": 23132.54, + "end": 23133.08, + "probability": 0.5031 + }, + { + "start": 23133.44, + "end": 23133.46, + "probability": 0.0204 + }, + { + "start": 23133.46, + "end": 23133.76, + "probability": 0.7949 + }, + { + "start": 23134.4, + "end": 23134.98, + "probability": 0.3765 + }, + { + "start": 23135.14, + "end": 23136.86, + "probability": 0.983 + }, + { + "start": 23137.52, + "end": 23139.1, + "probability": 0.9187 + }, + { + "start": 23139.84, + "end": 23143.04, + "probability": 0.999 + }, + { + "start": 23143.9, + "end": 23145.16, + "probability": 0.9934 + }, + { + "start": 23146.64, + "end": 23149.88, + "probability": 0.8374 + }, + { + "start": 23150.48, + "end": 23151.42, + "probability": 0.9473 + }, + { + "start": 23151.98, + "end": 23153.02, + "probability": 0.9581 + }, + { + "start": 23153.64, + "end": 23155.94, + "probability": 0.9961 + }, + { + "start": 23156.6, + "end": 23162.04, + "probability": 0.959 + }, + { + "start": 23162.74, + "end": 23164.4, + "probability": 0.6014 + }, + { + "start": 23164.7, + "end": 23166.39, + "probability": 0.8202 + }, + { + "start": 23166.9, + "end": 23168.46, + "probability": 0.0375 + }, + { + "start": 23168.58, + "end": 23168.58, + "probability": 0.245 + }, + { + "start": 23168.74, + "end": 23172.14, + "probability": 0.9377 + }, + { + "start": 23172.2, + "end": 23172.92, + "probability": 0.587 + }, + { + "start": 23173.28, + "end": 23173.94, + "probability": 0.7467 + }, + { + "start": 23174.32, + "end": 23174.94, + "probability": 0.2649 + }, + { + "start": 23175.14, + "end": 23176.7, + "probability": 0.6924 + }, + { + "start": 23177.42, + "end": 23179.34, + "probability": 0.6254 + }, + { + "start": 23180.06, + "end": 23182.24, + "probability": 0.7018 + }, + { + "start": 23182.4, + "end": 23186.26, + "probability": 0.9044 + }, + { + "start": 23186.64, + "end": 23189.46, + "probability": 0.9971 + }, + { + "start": 23191.46, + "end": 23191.78, + "probability": 0.7811 + }, + { + "start": 23191.88, + "end": 23192.12, + "probability": 0.7356 + }, + { + "start": 23192.24, + "end": 23192.64, + "probability": 0.3833 + }, + { + "start": 23192.64, + "end": 23192.86, + "probability": 0.6851 + }, + { + "start": 23193.0, + "end": 23194.49, + "probability": 0.733 + }, + { + "start": 23195.38, + "end": 23197.88, + "probability": 0.7958 + }, + { + "start": 23197.98, + "end": 23200.0, + "probability": 0.7503 + }, + { + "start": 23200.6, + "end": 23201.92, + "probability": 0.7974 + }, + { + "start": 23202.36, + "end": 23203.41, + "probability": 0.0766 + }, + { + "start": 23203.74, + "end": 23204.44, + "probability": 0.4558 + }, + { + "start": 23206.53, + "end": 23213.24, + "probability": 0.9635 + }, + { + "start": 23213.46, + "end": 23213.74, + "probability": 0.5228 + }, + { + "start": 23213.74, + "end": 23216.48, + "probability": 0.9942 + }, + { + "start": 23217.12, + "end": 23218.51, + "probability": 0.8035 + }, + { + "start": 23219.36, + "end": 23223.54, + "probability": 0.9863 + }, + { + "start": 23224.16, + "end": 23224.96, + "probability": 0.7023 + }, + { + "start": 23225.36, + "end": 23228.98, + "probability": 0.9086 + }, + { + "start": 23229.1, + "end": 23229.82, + "probability": 0.7471 + }, + { + "start": 23230.26, + "end": 23232.17, + "probability": 0.9742 + }, + { + "start": 23232.46, + "end": 23235.22, + "probability": 0.8062 + }, + { + "start": 23235.22, + "end": 23238.54, + "probability": 0.5389 + }, + { + "start": 23238.62, + "end": 23241.22, + "probability": 0.9328 + }, + { + "start": 23241.92, + "end": 23242.24, + "probability": 0.0493 + }, + { + "start": 23242.24, + "end": 23243.06, + "probability": 0.2184 + }, + { + "start": 23243.06, + "end": 23245.82, + "probability": 0.8979 + }, + { + "start": 23245.98, + "end": 23247.66, + "probability": 0.7349 + }, + { + "start": 23247.66, + "end": 23248.83, + "probability": 0.9648 + }, + { + "start": 23249.28, + "end": 23253.72, + "probability": 0.9708 + }, + { + "start": 23254.06, + "end": 23256.36, + "probability": 0.9961 + }, + { + "start": 23256.36, + "end": 23259.24, + "probability": 0.9894 + }, + { + "start": 23259.96, + "end": 23262.36, + "probability": 0.7317 + }, + { + "start": 23262.88, + "end": 23266.22, + "probability": 0.9143 + }, + { + "start": 23266.76, + "end": 23266.78, + "probability": 0.1371 + }, + { + "start": 23266.78, + "end": 23267.58, + "probability": 0.4489 + }, + { + "start": 23267.76, + "end": 23268.14, + "probability": 0.8636 + }, + { + "start": 23268.32, + "end": 23271.08, + "probability": 0.9835 + }, + { + "start": 23271.5, + "end": 23272.3, + "probability": 0.9644 + }, + { + "start": 23272.48, + "end": 23278.44, + "probability": 0.9767 + }, + { + "start": 23278.44, + "end": 23279.48, + "probability": 0.4466 + }, + { + "start": 23279.64, + "end": 23280.72, + "probability": 0.487 + }, + { + "start": 23281.62, + "end": 23281.92, + "probability": 0.1759 + }, + { + "start": 23281.92, + "end": 23282.7, + "probability": 0.5925 + }, + { + "start": 23282.88, + "end": 23284.98, + "probability": 0.8837 + }, + { + "start": 23286.66, + "end": 23288.2, + "probability": 0.9808 + }, + { + "start": 23288.22, + "end": 23289.57, + "probability": 0.813 + }, + { + "start": 23290.2, + "end": 23294.68, + "probability": 0.9912 + }, + { + "start": 23294.72, + "end": 23296.02, + "probability": 0.9071 + }, + { + "start": 23296.4, + "end": 23298.9, + "probability": 0.9971 + }, + { + "start": 23298.9, + "end": 23299.45, + "probability": 0.8836 + }, + { + "start": 23300.12, + "end": 23301.79, + "probability": 0.9878 + }, + { + "start": 23302.12, + "end": 23303.64, + "probability": 0.9683 + }, + { + "start": 23304.06, + "end": 23305.95, + "probability": 0.9885 + }, + { + "start": 23306.4, + "end": 23306.52, + "probability": 0.3909 + }, + { + "start": 23306.56, + "end": 23308.83, + "probability": 0.9748 + }, + { + "start": 23309.46, + "end": 23309.46, + "probability": 0.1542 + }, + { + "start": 23309.46, + "end": 23311.39, + "probability": 0.9548 + }, + { + "start": 23311.4, + "end": 23312.44, + "probability": 0.9614 + }, + { + "start": 23312.74, + "end": 23312.88, + "probability": 0.2012 + }, + { + "start": 23312.88, + "end": 23316.3, + "probability": 0.9888 + }, + { + "start": 23316.4, + "end": 23318.54, + "probability": 0.9901 + }, + { + "start": 23318.62, + "end": 23323.38, + "probability": 0.9227 + }, + { + "start": 23323.62, + "end": 23324.32, + "probability": 0.2269 + }, + { + "start": 23324.48, + "end": 23324.78, + "probability": 0.0907 + }, + { + "start": 23324.78, + "end": 23326.46, + "probability": 0.3877 + }, + { + "start": 23326.46, + "end": 23326.53, + "probability": 0.0369 + }, + { + "start": 23326.68, + "end": 23326.68, + "probability": 0.2652 + }, + { + "start": 23326.74, + "end": 23328.0, + "probability": 0.5917 + }, + { + "start": 23328.14, + "end": 23328.16, + "probability": 0.4437 + }, + { + "start": 23328.16, + "end": 23329.91, + "probability": 0.9009 + }, + { + "start": 23330.65, + "end": 23331.09, + "probability": 0.3271 + }, + { + "start": 23331.09, + "end": 23334.19, + "probability": 0.9475 + }, + { + "start": 23335.49, + "end": 23337.41, + "probability": 0.3583 + }, + { + "start": 23337.51, + "end": 23342.39, + "probability": 0.531 + }, + { + "start": 23343.73, + "end": 23344.23, + "probability": 0.0027 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23458.0, + "end": 23458.0, + "probability": 0.0 + }, + { + "start": 23479.22, + "end": 23482.14, + "probability": 0.0587 + }, + { + "start": 23483.0, + "end": 23484.04, + "probability": 0.0535 + }, + { + "start": 23484.4, + "end": 23487.7, + "probability": 0.143 + }, + { + "start": 23488.3, + "end": 23489.24, + "probability": 0.1776 + }, + { + "start": 23497.68, + "end": 23498.16, + "probability": 0.3285 + }, + { + "start": 23500.65, + "end": 23504.56, + "probability": 0.3285 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.0, + "end": 23578.0, + "probability": 0.0 + }, + { + "start": 23578.14, + "end": 23580.8, + "probability": 0.6523 + }, + { + "start": 23580.98, + "end": 23584.48, + "probability": 0.742 + }, + { + "start": 23584.92, + "end": 23588.48, + "probability": 0.96 + }, + { + "start": 23588.74, + "end": 23590.64, + "probability": 0.978 + }, + { + "start": 23590.9, + "end": 23591.72, + "probability": 0.7693 + }, + { + "start": 23591.88, + "end": 23593.88, + "probability": 0.9272 + }, + { + "start": 23594.28, + "end": 23596.6, + "probability": 0.994 + }, + { + "start": 23596.74, + "end": 23597.24, + "probability": 0.418 + }, + { + "start": 23597.6, + "end": 23598.54, + "probability": 0.5675 + }, + { + "start": 23598.7, + "end": 23600.3, + "probability": 0.8994 + }, + { + "start": 23601.84, + "end": 23604.64, + "probability": 0.8056 + }, + { + "start": 23604.7, + "end": 23605.62, + "probability": 0.7614 + }, + { + "start": 23606.98, + "end": 23608.5, + "probability": 0.6164 + }, + { + "start": 23608.96, + "end": 23608.96, + "probability": 0.0818 + }, + { + "start": 23608.96, + "end": 23611.04, + "probability": 0.9606 + }, + { + "start": 23612.0, + "end": 23614.8, + "probability": 0.7946 + }, + { + "start": 23615.74, + "end": 23617.08, + "probability": 0.8594 + }, + { + "start": 23617.74, + "end": 23620.52, + "probability": 0.9822 + }, + { + "start": 23621.74, + "end": 23624.02, + "probability": 0.9985 + }, + { + "start": 23624.64, + "end": 23626.92, + "probability": 0.9839 + }, + { + "start": 23626.96, + "end": 23628.34, + "probability": 0.9798 + }, + { + "start": 23629.1, + "end": 23632.4, + "probability": 0.9648 + }, + { + "start": 23632.94, + "end": 23634.88, + "probability": 0.9077 + }, + { + "start": 23634.96, + "end": 23636.76, + "probability": 0.9253 + }, + { + "start": 23636.88, + "end": 23637.68, + "probability": 0.9861 + }, + { + "start": 23638.4, + "end": 23641.92, + "probability": 0.9966 + }, + { + "start": 23642.32, + "end": 23644.68, + "probability": 0.9848 + }, + { + "start": 23645.54, + "end": 23646.22, + "probability": 0.6458 + }, + { + "start": 23646.38, + "end": 23650.22, + "probability": 0.9725 + }, + { + "start": 23650.22, + "end": 23654.42, + "probability": 0.959 + }, + { + "start": 23654.94, + "end": 23658.88, + "probability": 0.9911 + }, + { + "start": 23659.24, + "end": 23661.76, + "probability": 0.9972 + }, + { + "start": 23662.6, + "end": 23664.5, + "probability": 0.9895 + }, + { + "start": 23665.22, + "end": 23669.3, + "probability": 0.9927 + }, + { + "start": 23669.36, + "end": 23670.5, + "probability": 0.8572 + }, + { + "start": 23671.1, + "end": 23674.96, + "probability": 0.8802 + }, + { + "start": 23675.9, + "end": 23680.08, + "probability": 0.9971 + }, + { + "start": 23680.08, + "end": 23683.96, + "probability": 0.9991 + }, + { + "start": 23684.48, + "end": 23685.39, + "probability": 0.8584 + }, + { + "start": 23685.72, + "end": 23686.36, + "probability": 0.8001 + }, + { + "start": 23686.56, + "end": 23687.3, + "probability": 0.914 + }, + { + "start": 23687.62, + "end": 23690.42, + "probability": 0.9782 + }, + { + "start": 23690.64, + "end": 23691.8, + "probability": 0.9906 + }, + { + "start": 23691.88, + "end": 23695.8, + "probability": 0.9509 + }, + { + "start": 23697.46, + "end": 23698.94, + "probability": 0.8984 + }, + { + "start": 23699.02, + "end": 23703.68, + "probability": 0.967 + }, + { + "start": 23703.84, + "end": 23704.88, + "probability": 0.7664 + }, + { + "start": 23705.58, + "end": 23707.64, + "probability": 0.9826 + }, + { + "start": 23707.9, + "end": 23710.16, + "probability": 0.9565 + }, + { + "start": 23710.42, + "end": 23711.88, + "probability": 0.9854 + }, + { + "start": 23712.52, + "end": 23715.58, + "probability": 0.8748 + }, + { + "start": 23715.64, + "end": 23716.66, + "probability": 0.958 + }, + { + "start": 23717.18, + "end": 23719.5, + "probability": 0.7356 + }, + { + "start": 23720.18, + "end": 23721.32, + "probability": 0.637 + }, + { + "start": 23721.58, + "end": 23726.16, + "probability": 0.7513 + }, + { + "start": 23726.46, + "end": 23728.68, + "probability": 0.989 + }, + { + "start": 23729.02, + "end": 23730.06, + "probability": 0.9338 + }, + { + "start": 23730.12, + "end": 23731.14, + "probability": 0.8529 + }, + { + "start": 23731.38, + "end": 23734.46, + "probability": 0.8002 + }, + { + "start": 23737.0, + "end": 23738.1, + "probability": 0.9746 + }, + { + "start": 23739.92, + "end": 23740.54, + "probability": 0.5119 + }, + { + "start": 23741.12, + "end": 23743.29, + "probability": 0.767 + }, + { + "start": 23746.1, + "end": 23746.94, + "probability": 0.0798 + }, + { + "start": 23747.26, + "end": 23748.3, + "probability": 0.0276 + }, + { + "start": 23748.36, + "end": 23749.08, + "probability": 0.084 + }, + { + "start": 23749.14, + "end": 23749.64, + "probability": 0.3881 + }, + { + "start": 23751.07, + "end": 23752.54, + "probability": 0.019 + }, + { + "start": 23752.84, + "end": 23757.74, + "probability": 0.8043 + }, + { + "start": 23757.82, + "end": 23761.02, + "probability": 0.3995 + }, + { + "start": 23766.76, + "end": 23771.12, + "probability": 0.6441 + }, + { + "start": 23773.94, + "end": 23779.4, + "probability": 0.0846 + }, + { + "start": 23779.98, + "end": 23781.34, + "probability": 0.3942 + }, + { + "start": 23781.5, + "end": 23783.28, + "probability": 0.5201 + }, + { + "start": 23783.28, + "end": 23784.74, + "probability": 0.8074 + }, + { + "start": 23785.54, + "end": 23785.64, + "probability": 0.0699 + }, + { + "start": 23787.04, + "end": 23787.04, + "probability": 0.0006 + }, + { + "start": 23800.94, + "end": 23803.26, + "probability": 0.0268 + }, + { + "start": 23803.34, + "end": 23803.88, + "probability": 0.6058 + }, + { + "start": 23804.0, + "end": 23805.54, + "probability": 0.9688 + }, + { + "start": 23805.58, + "end": 23806.3, + "probability": 0.9307 + }, + { + "start": 23806.36, + "end": 23808.6, + "probability": 0.9771 + }, + { + "start": 23808.96, + "end": 23809.96, + "probability": 0.9099 + }, + { + "start": 23810.46, + "end": 23811.2, + "probability": 0.8454 + }, + { + "start": 23814.72, + "end": 23816.3, + "probability": 0.3066 + }, + { + "start": 23816.3, + "end": 23816.3, + "probability": 0.0155 + }, + { + "start": 23823.76, + "end": 23824.2, + "probability": 0.0646 + }, + { + "start": 23824.2, + "end": 23824.66, + "probability": 0.3861 + }, + { + "start": 23824.76, + "end": 23824.94, + "probability": 0.3828 + }, + { + "start": 23824.98, + "end": 23825.22, + "probability": 0.2912 + }, + { + "start": 23825.4, + "end": 23825.7, + "probability": 0.8565 + }, + { + "start": 23825.7, + "end": 23827.38, + "probability": 0.5183 + }, + { + "start": 23827.5, + "end": 23828.42, + "probability": 0.8327 + }, + { + "start": 23829.01, + "end": 23833.0, + "probability": 0.6323 + }, + { + "start": 23833.38, + "end": 23834.34, + "probability": 0.9403 + }, + { + "start": 23834.46, + "end": 23835.64, + "probability": 0.9978 + }, + { + "start": 23836.18, + "end": 23837.28, + "probability": 0.9997 + }, + { + "start": 23838.34, + "end": 23841.52, + "probability": 0.8639 + }, + { + "start": 23841.82, + "end": 23842.36, + "probability": 0.3595 + }, + { + "start": 23842.96, + "end": 23843.52, + "probability": 0.3649 + }, + { + "start": 23844.0, + "end": 23845.16, + "probability": 0.2085 + }, + { + "start": 23847.58, + "end": 23847.68, + "probability": 0.6364 + }, + { + "start": 23848.52, + "end": 23849.66, + "probability": 0.3834 + }, + { + "start": 23849.72, + "end": 23850.1, + "probability": 0.235 + }, + { + "start": 23850.65, + "end": 23855.08, + "probability": 0.376 + }, + { + "start": 23855.08, + "end": 23858.32, + "probability": 0.7047 + }, + { + "start": 23859.36, + "end": 23861.28, + "probability": 0.2956 + }, + { + "start": 23861.46, + "end": 23861.98, + "probability": 0.3995 + }, + { + "start": 23862.06, + "end": 23862.91, + "probability": 0.8369 + }, + { + "start": 23863.2, + "end": 23864.72, + "probability": 0.1968 + }, + { + "start": 23864.72, + "end": 23865.98, + "probability": 0.6431 + }, + { + "start": 23866.08, + "end": 23866.5, + "probability": 0.3708 + }, + { + "start": 23866.58, + "end": 23867.72, + "probability": 0.0888 + }, + { + "start": 23867.74, + "end": 23868.72, + "probability": 0.5051 + }, + { + "start": 23868.9, + "end": 23869.62, + "probability": 0.6269 + }, + { + "start": 23869.86, + "end": 23872.7, + "probability": 0.5053 + }, + { + "start": 23872.78, + "end": 23874.04, + "probability": 0.7958 + }, + { + "start": 23874.04, + "end": 23875.8, + "probability": 0.529 + }, + { + "start": 23875.9, + "end": 23876.82, + "probability": 0.5242 + }, + { + "start": 23876.94, + "end": 23879.18, + "probability": 0.3148 + }, + { + "start": 23879.28, + "end": 23881.61, + "probability": 0.198 + }, + { + "start": 23881.84, + "end": 23884.36, + "probability": 0.4159 + }, + { + "start": 23884.36, + "end": 23884.5, + "probability": 0.4708 + }, + { + "start": 23885.5, + "end": 23887.17, + "probability": 0.156 + }, + { + "start": 23890.25, + "end": 23893.08, + "probability": 0.7963 + }, + { + "start": 23893.22, + "end": 23894.26, + "probability": 0.5153 + }, + { + "start": 23894.26, + "end": 23895.4, + "probability": 0.4134 + }, + { + "start": 23895.68, + "end": 23897.0, + "probability": 0.6804 + }, + { + "start": 23897.88, + "end": 23900.56, + "probability": 0.9161 + }, + { + "start": 23900.66, + "end": 23902.9, + "probability": 0.9756 + }, + { + "start": 23903.1, + "end": 23906.32, + "probability": 0.8927 + }, + { + "start": 23907.2, + "end": 23910.38, + "probability": 0.7117 + }, + { + "start": 23911.96, + "end": 23917.54, + "probability": 0.9696 + }, + { + "start": 23917.54, + "end": 23923.56, + "probability": 0.9391 + }, + { + "start": 23924.58, + "end": 23926.34, + "probability": 0.815 + }, + { + "start": 23926.54, + "end": 23927.5, + "probability": 0.8013 + }, + { + "start": 23928.44, + "end": 23931.5, + "probability": 0.9902 + }, + { + "start": 23931.5, + "end": 23935.58, + "probability": 0.8567 + }, + { + "start": 23936.42, + "end": 23941.28, + "probability": 0.9925 + }, + { + "start": 23942.56, + "end": 23943.62, + "probability": 0.6885 + }, + { + "start": 23946.24, + "end": 23947.56, + "probability": 0.8628 + }, + { + "start": 23947.64, + "end": 23948.74, + "probability": 0.7347 + }, + { + "start": 23949.86, + "end": 23957.14, + "probability": 0.9933 + }, + { + "start": 23957.28, + "end": 23957.98, + "probability": 0.9064 + }, + { + "start": 23958.18, + "end": 23960.12, + "probability": 0.9504 + }, + { + "start": 23960.46, + "end": 23961.4, + "probability": 0.9952 + }, + { + "start": 23962.48, + "end": 23963.48, + "probability": 0.8096 + }, + { + "start": 23963.92, + "end": 23965.1, + "probability": 0.7013 + }, + { + "start": 23965.26, + "end": 23966.54, + "probability": 0.3279 + }, + { + "start": 23967.02, + "end": 23969.34, + "probability": 0.8493 + }, + { + "start": 23969.48, + "end": 23971.24, + "probability": 0.9059 + }, + { + "start": 23971.8, + "end": 23973.22, + "probability": 0.8529 + }, + { + "start": 23973.64, + "end": 23976.72, + "probability": 0.9962 + }, + { + "start": 23976.72, + "end": 23979.5, + "probability": 0.9744 + }, + { + "start": 23979.82, + "end": 23980.64, + "probability": 0.7119 + }, + { + "start": 23980.72, + "end": 23981.56, + "probability": 0.9121 + }, + { + "start": 23982.14, + "end": 23986.3, + "probability": 0.9852 + }, + { + "start": 23986.74, + "end": 23987.64, + "probability": 0.7423 + }, + { + "start": 23987.7, + "end": 23989.8, + "probability": 0.8898 + }, + { + "start": 23989.88, + "end": 23991.78, + "probability": 0.9585 + }, + { + "start": 23992.16, + "end": 23994.88, + "probability": 0.9987 + }, + { + "start": 23994.88, + "end": 23998.62, + "probability": 0.9993 + }, + { + "start": 23999.12, + "end": 24002.32, + "probability": 0.9591 + }, + { + "start": 24004.06, + "end": 24005.52, + "probability": 0.6112 + }, + { + "start": 24006.24, + "end": 24007.42, + "probability": 0.7006 + }, + { + "start": 24009.5, + "end": 24009.85, + "probability": 0.6255 + }, + { + "start": 24010.1, + "end": 24011.58, + "probability": 0.8538 + }, + { + "start": 24013.34, + "end": 24018.02, + "probability": 0.665 + }, + { + "start": 24018.22, + "end": 24021.74, + "probability": 0.7496 + }, + { + "start": 24022.2, + "end": 24023.68, + "probability": 0.763 + }, + { + "start": 24024.3, + "end": 24029.0, + "probability": 0.7869 + }, + { + "start": 24029.02, + "end": 24030.62, + "probability": 0.8191 + }, + { + "start": 24030.96, + "end": 24032.78, + "probability": 0.8328 + }, + { + "start": 24032.9, + "end": 24034.22, + "probability": 0.4207 + }, + { + "start": 24034.28, + "end": 24037.8, + "probability": 0.3341 + }, + { + "start": 24038.3, + "end": 24038.48, + "probability": 0.0987 + }, + { + "start": 24038.48, + "end": 24038.48, + "probability": 0.1098 + }, + { + "start": 24038.48, + "end": 24040.03, + "probability": 0.5686 + }, + { + "start": 24040.4, + "end": 24041.58, + "probability": 0.2009 + }, + { + "start": 24042.1, + "end": 24045.06, + "probability": 0.3612 + }, + { + "start": 24046.08, + "end": 24046.4, + "probability": 0.3832 + }, + { + "start": 24046.82, + "end": 24047.22, + "probability": 0.6296 + }, + { + "start": 24047.52, + "end": 24047.82, + "probability": 0.6583 + }, + { + "start": 24047.82, + "end": 24048.14, + "probability": 0.2325 + }, + { + "start": 24048.18, + "end": 24049.18, + "probability": 0.4029 + }, + { + "start": 24049.38, + "end": 24049.38, + "probability": 0.5123 + }, + { + "start": 24049.5, + "end": 24051.16, + "probability": 0.8475 + }, + { + "start": 24051.28, + "end": 24052.16, + "probability": 0.8022 + }, + { + "start": 24052.18, + "end": 24054.7, + "probability": 0.1704 + }, + { + "start": 24057.58, + "end": 24058.64, + "probability": 0.0688 + }, + { + "start": 24058.64, + "end": 24059.6, + "probability": 0.0484 + }, + { + "start": 24059.6, + "end": 24060.64, + "probability": 0.4264 + }, + { + "start": 24060.9, + "end": 24064.96, + "probability": 0.9565 + }, + { + "start": 24066.26, + "end": 24071.06, + "probability": 0.9076 + }, + { + "start": 24071.56, + "end": 24074.8, + "probability": 0.9946 + }, + { + "start": 24074.88, + "end": 24077.08, + "probability": 0.9188 + }, + { + "start": 24077.2, + "end": 24082.54, + "probability": 0.9907 + }, + { + "start": 24083.28, + "end": 24088.16, + "probability": 0.9868 + }, + { + "start": 24088.76, + "end": 24093.44, + "probability": 0.9974 + }, + { + "start": 24093.44, + "end": 24097.94, + "probability": 0.9937 + }, + { + "start": 24099.01, + "end": 24102.56, + "probability": 0.999 + }, + { + "start": 24103.22, + "end": 24105.24, + "probability": 0.9806 + }, + { + "start": 24106.56, + "end": 24109.0, + "probability": 0.9751 + }, + { + "start": 24109.38, + "end": 24110.31, + "probability": 0.7955 + }, + { + "start": 24111.18, + "end": 24112.46, + "probability": 0.9143 + }, + { + "start": 24112.5, + "end": 24113.36, + "probability": 0.9214 + }, + { + "start": 24113.68, + "end": 24115.68, + "probability": 0.9644 + }, + { + "start": 24116.0, + "end": 24119.74, + "probability": 0.9674 + }, + { + "start": 24120.4, + "end": 24124.88, + "probability": 0.9907 + }, + { + "start": 24125.68, + "end": 24127.74, + "probability": 0.993 + }, + { + "start": 24127.89, + "end": 24130.86, + "probability": 0.8634 + }, + { + "start": 24131.3, + "end": 24134.92, + "probability": 0.471 + }, + { + "start": 24134.92, + "end": 24135.38, + "probability": 0.2992 + }, + { + "start": 24135.8, + "end": 24139.36, + "probability": 0.8581 + }, + { + "start": 24139.82, + "end": 24140.54, + "probability": 0.9626 + }, + { + "start": 24141.1, + "end": 24142.54, + "probability": 0.6826 + }, + { + "start": 24142.62, + "end": 24144.18, + "probability": 0.6914 + }, + { + "start": 24144.32, + "end": 24149.46, + "probability": 0.9127 + }, + { + "start": 24149.46, + "end": 24152.54, + "probability": 0.9839 + }, + { + "start": 24152.78, + "end": 24155.4, + "probability": 0.9467 + }, + { + "start": 24156.02, + "end": 24160.3, + "probability": 0.8096 + }, + { + "start": 24160.5, + "end": 24160.84, + "probability": 0.0218 + }, + { + "start": 24160.84, + "end": 24167.96, + "probability": 0.9016 + }, + { + "start": 24167.96, + "end": 24173.0, + "probability": 0.9942 + }, + { + "start": 24173.06, + "end": 24175.06, + "probability": 0.7625 + }, + { + "start": 24175.14, + "end": 24176.12, + "probability": 0.0384 + }, + { + "start": 24176.12, + "end": 24176.12, + "probability": 0.0855 + }, + { + "start": 24176.12, + "end": 24178.22, + "probability": 0.281 + }, + { + "start": 24178.24, + "end": 24179.48, + "probability": 0.0708 + }, + { + "start": 24179.48, + "end": 24179.92, + "probability": 0.1218 + }, + { + "start": 24180.34, + "end": 24180.94, + "probability": 0.1759 + }, + { + "start": 24180.94, + "end": 24180.94, + "probability": 0.1414 + }, + { + "start": 24181.1, + "end": 24185.08, + "probability": 0.7592 + }, + { + "start": 24185.88, + "end": 24185.88, + "probability": 0.0594 + }, + { + "start": 24185.88, + "end": 24186.82, + "probability": 0.819 + }, + { + "start": 24186.9, + "end": 24191.4, + "probability": 0.9902 + }, + { + "start": 24193.9, + "end": 24193.9, + "probability": 0.096 + }, + { + "start": 24193.9, + "end": 24193.9, + "probability": 0.1642 + }, + { + "start": 24193.9, + "end": 24194.44, + "probability": 0.378 + }, + { + "start": 24194.92, + "end": 24197.32, + "probability": 0.9604 + }, + { + "start": 24197.72, + "end": 24199.88, + "probability": 0.9546 + }, + { + "start": 24200.84, + "end": 24202.84, + "probability": 0.0274 + }, + { + "start": 24205.16, + "end": 24207.72, + "probability": 0.0129 + }, + { + "start": 24210.04, + "end": 24211.1, + "probability": 0.001 + }, + { + "start": 24212.76, + "end": 24213.86, + "probability": 0.0689 + }, + { + "start": 24213.88, + "end": 24215.14, + "probability": 0.3222 + }, + { + "start": 24215.34, + "end": 24215.52, + "probability": 0.0187 + }, + { + "start": 24215.8, + "end": 24220.7, + "probability": 0.0923 + }, + { + "start": 24220.7, + "end": 24220.84, + "probability": 0.0468 + }, + { + "start": 24220.86, + "end": 24222.3, + "probability": 0.2717 + }, + { + "start": 24223.35, + "end": 24225.87, + "probability": 0.0608 + }, + { + "start": 24229.4, + "end": 24230.92, + "probability": 0.0311 + }, + { + "start": 24231.96, + "end": 24233.44, + "probability": 0.111 + }, + { + "start": 24235.92, + "end": 24237.62, + "probability": 0.0418 + }, + { + "start": 24237.62, + "end": 24240.26, + "probability": 0.1036 + }, + { + "start": 24240.36, + "end": 24241.76, + "probability": 0.2148 + }, + { + "start": 24242.32, + "end": 24244.7, + "probability": 0.0247 + }, + { + "start": 24245.12, + "end": 24245.94, + "probability": 0.2301 + }, + { + "start": 24246.92, + "end": 24250.12, + "probability": 0.4395 + }, + { + "start": 24250.54, + "end": 24257.98, + "probability": 0.0391 + }, + { + "start": 24258.0, + "end": 24258.0, + "probability": 0.0 + }, + { + "start": 24258.0, + "end": 24258.0, + "probability": 0.0 + }, + { + "start": 24258.0, + "end": 24258.0, + "probability": 0.0 + }, + { + "start": 24258.0, + "end": 24258.0, + "probability": 0.0 + }, + { + "start": 24258.0, + "end": 24258.0, + "probability": 0.0 + }, + { + "start": 24258.0, + "end": 24258.0, + "probability": 0.0 + }, + { + "start": 24258.0, + "end": 24258.0, + "probability": 0.0 + }, + { + "start": 24258.0, + "end": 24258.0, + "probability": 0.0 + }, + { + "start": 24258.0, + "end": 24258.0, + "probability": 0.0 + }, + { + "start": 24258.0, + "end": 24258.0, + "probability": 0.0 + }, + { + "start": 24258.0, + "end": 24258.0, + "probability": 0.0 + }, + { + "start": 24258.0, + "end": 24258.0, + "probability": 0.0 + }, + { + "start": 24258.0, + "end": 24258.0, + "probability": 0.0 + }, + { + "start": 24258.0, + "end": 24258.0, + "probability": 0.0 + }, + { + "start": 24258.0, + "end": 24258.0, + "probability": 0.0 + }, + { + "start": 24258.0, + "end": 24258.0, + "probability": 0.0 + }, + { + "start": 24258.0, + "end": 24258.0, + "probability": 0.0 + }, + { + "start": 24258.0, + "end": 24258.0, + "probability": 0.0 + }, + { + "start": 24258.0, + "end": 24258.0, + "probability": 0.0 + }, + { + "start": 24258.0, + "end": 24258.0, + "probability": 0.0 + }, + { + "start": 24258.0, + "end": 24258.0, + "probability": 0.0 + }, + { + "start": 24258.0, + "end": 24258.0, + "probability": 0.0 + }, + { + "start": 24258.0, + "end": 24258.0, + "probability": 0.0 + }, + { + "start": 24258.0, + "end": 24258.0, + "probability": 0.0 + }, + { + "start": 24258.0, + "end": 24258.0, + "probability": 0.0 + }, + { + "start": 24258.0, + "end": 24258.0, + "probability": 0.0 + }, + { + "start": 24259.99, + "end": 24265.68, + "probability": 0.6444 + }, + { + "start": 24265.94, + "end": 24266.56, + "probability": 0.5608 + }, + { + "start": 24266.78, + "end": 24267.78, + "probability": 0.6603 + }, + { + "start": 24268.06, + "end": 24269.76, + "probability": 0.9417 + }, + { + "start": 24270.0, + "end": 24274.64, + "probability": 0.9004 + }, + { + "start": 24274.88, + "end": 24277.12, + "probability": 0.9969 + }, + { + "start": 24277.12, + "end": 24281.68, + "probability": 0.9961 + }, + { + "start": 24282.08, + "end": 24283.76, + "probability": 0.7562 + }, + { + "start": 24284.26, + "end": 24285.66, + "probability": 0.9888 + }, + { + "start": 24285.74, + "end": 24286.44, + "probability": 0.7712 + }, + { + "start": 24286.48, + "end": 24287.84, + "probability": 0.8521 + }, + { + "start": 24287.9, + "end": 24289.04, + "probability": 0.6997 + }, + { + "start": 24289.14, + "end": 24291.9, + "probability": 0.9749 + }, + { + "start": 24291.92, + "end": 24292.16, + "probability": 0.0056 + }, + { + "start": 24292.16, + "end": 24293.2, + "probability": 0.0487 + }, + { + "start": 24293.2, + "end": 24293.26, + "probability": 0.0025 + }, + { + "start": 24293.28, + "end": 24294.02, + "probability": 0.609 + }, + { + "start": 24294.52, + "end": 24296.5, + "probability": 0.9949 + }, + { + "start": 24296.78, + "end": 24297.94, + "probability": 0.966 + }, + { + "start": 24298.1, + "end": 24299.36, + "probability": 0.9629 + }, + { + "start": 24299.54, + "end": 24300.32, + "probability": 0.5379 + }, + { + "start": 24300.42, + "end": 24305.16, + "probability": 0.9336 + }, + { + "start": 24305.4, + "end": 24305.78, + "probability": 0.9381 + }, + { + "start": 24305.8, + "end": 24308.1, + "probability": 0.9961 + }, + { + "start": 24308.36, + "end": 24310.54, + "probability": 0.9939 + }, + { + "start": 24311.1, + "end": 24312.88, + "probability": 0.566 + }, + { + "start": 24316.02, + "end": 24316.28, + "probability": 0.0771 + }, + { + "start": 24316.28, + "end": 24316.28, + "probability": 0.3286 + }, + { + "start": 24316.28, + "end": 24316.28, + "probability": 0.1372 + }, + { + "start": 24316.28, + "end": 24317.32, + "probability": 0.8435 + }, + { + "start": 24317.9, + "end": 24319.72, + "probability": 0.486 + }, + { + "start": 24319.78, + "end": 24319.88, + "probability": 0.2667 + }, + { + "start": 24320.1, + "end": 24320.26, + "probability": 0.6237 + }, + { + "start": 24320.26, + "end": 24323.86, + "probability": 0.9529 + }, + { + "start": 24324.1, + "end": 24324.32, + "probability": 0.5255 + }, + { + "start": 24324.48, + "end": 24328.14, + "probability": 0.9774 + }, + { + "start": 24328.28, + "end": 24333.94, + "probability": 0.9071 + }, + { + "start": 24334.1, + "end": 24335.6, + "probability": 0.6077 + }, + { + "start": 24335.66, + "end": 24338.1, + "probability": 0.9355 + }, + { + "start": 24338.28, + "end": 24340.43, + "probability": 0.9756 + }, + { + "start": 24340.66, + "end": 24341.62, + "probability": 0.967 + }, + { + "start": 24341.8, + "end": 24342.7, + "probability": 0.7344 + }, + { + "start": 24344.55, + "end": 24348.49, + "probability": 0.3053 + }, + { + "start": 24348.68, + "end": 24348.92, + "probability": 0.0104 + }, + { + "start": 24350.04, + "end": 24350.18, + "probability": 0.0934 + }, + { + "start": 24350.18, + "end": 24350.18, + "probability": 0.1196 + }, + { + "start": 24350.18, + "end": 24351.71, + "probability": 0.6517 + }, + { + "start": 24352.28, + "end": 24352.82, + "probability": 0.6644 + }, + { + "start": 24353.32, + "end": 24354.2, + "probability": 0.8345 + }, + { + "start": 24354.32, + "end": 24358.36, + "probability": 0.9907 + }, + { + "start": 24358.56, + "end": 24361.2, + "probability": 0.984 + }, + { + "start": 24361.38, + "end": 24362.06, + "probability": 0.8074 + }, + { + "start": 24362.24, + "end": 24366.26, + "probability": 0.9977 + }, + { + "start": 24366.58, + "end": 24368.0, + "probability": 0.9638 + }, + { + "start": 24368.56, + "end": 24369.18, + "probability": 0.6654 + }, + { + "start": 24369.24, + "end": 24369.8, + "probability": 0.8379 + }, + { + "start": 24369.98, + "end": 24373.56, + "probability": 0.7228 + }, + { + "start": 24373.78, + "end": 24377.78, + "probability": 0.9968 + }, + { + "start": 24377.78, + "end": 24381.72, + "probability": 0.9949 + }, + { + "start": 24382.14, + "end": 24383.08, + "probability": 0.8508 + }, + { + "start": 24384.27, + "end": 24386.24, + "probability": 0.1693 + }, + { + "start": 24386.24, + "end": 24388.4, + "probability": 0.7256 + }, + { + "start": 24388.48, + "end": 24389.7, + "probability": 0.8465 + }, + { + "start": 24389.86, + "end": 24392.92, + "probability": 0.9551 + }, + { + "start": 24393.02, + "end": 24394.38, + "probability": 0.9114 + }, + { + "start": 24395.28, + "end": 24399.2, + "probability": 0.9935 + }, + { + "start": 24399.68, + "end": 24401.64, + "probability": 0.9081 + }, + { + "start": 24402.1, + "end": 24403.12, + "probability": 0.8969 + }, + { + "start": 24403.18, + "end": 24404.48, + "probability": 0.951 + }, + { + "start": 24404.92, + "end": 24406.6, + "probability": 0.9565 + }, + { + "start": 24406.64, + "end": 24410.12, + "probability": 0.9966 + }, + { + "start": 24410.12, + "end": 24412.5, + "probability": 0.8881 + }, + { + "start": 24413.16, + "end": 24415.4, + "probability": 0.0883 + }, + { + "start": 24415.54, + "end": 24417.56, + "probability": 0.5555 + }, + { + "start": 24417.9, + "end": 24419.26, + "probability": 0.0558 + }, + { + "start": 24419.26, + "end": 24421.22, + "probability": 0.7876 + }, + { + "start": 24421.22, + "end": 24422.37, + "probability": 0.3602 + }, + { + "start": 24422.74, + "end": 24422.74, + "probability": 0.1053 + }, + { + "start": 24422.74, + "end": 24422.74, + "probability": 0.464 + }, + { + "start": 24422.74, + "end": 24426.14, + "probability": 0.4632 + }, + { + "start": 24426.52, + "end": 24428.32, + "probability": 0.2562 + }, + { + "start": 24428.92, + "end": 24430.12, + "probability": 0.1895 + }, + { + "start": 24431.84, + "end": 24433.2, + "probability": 0.2054 + }, + { + "start": 24433.44, + "end": 24434.89, + "probability": 0.3364 + }, + { + "start": 24435.5, + "end": 24436.68, + "probability": 0.3581 + }, + { + "start": 24437.1, + "end": 24440.4, + "probability": 0.9858 + }, + { + "start": 24440.72, + "end": 24442.42, + "probability": 0.7553 + }, + { + "start": 24442.8, + "end": 24444.02, + "probability": 0.9883 + }, + { + "start": 24444.1, + "end": 24445.04, + "probability": 0.7999 + }, + { + "start": 24445.08, + "end": 24445.96, + "probability": 0.9477 + }, + { + "start": 24446.36, + "end": 24447.44, + "probability": 0.9932 + }, + { + "start": 24448.24, + "end": 24452.96, + "probability": 0.985 + }, + { + "start": 24452.96, + "end": 24456.26, + "probability": 0.9941 + }, + { + "start": 24456.58, + "end": 24457.56, + "probability": 0.9438 + }, + { + "start": 24457.64, + "end": 24458.92, + "probability": 0.5756 + }, + { + "start": 24459.3, + "end": 24460.76, + "probability": 0.896 + }, + { + "start": 24461.04, + "end": 24463.06, + "probability": 0.9675 + }, + { + "start": 24463.32, + "end": 24465.64, + "probability": 0.8144 + }, + { + "start": 24466.72, + "end": 24467.58, + "probability": 0.9711 + }, + { + "start": 24467.7, + "end": 24469.02, + "probability": 0.9869 + }, + { + "start": 24469.06, + "end": 24469.78, + "probability": 0.876 + }, + { + "start": 24470.06, + "end": 24473.06, + "probability": 0.9724 + }, + { + "start": 24473.14, + "end": 24473.66, + "probability": 0.5427 + }, + { + "start": 24473.72, + "end": 24474.7, + "probability": 0.9813 + }, + { + "start": 24474.82, + "end": 24475.34, + "probability": 0.942 + }, + { + "start": 24475.74, + "end": 24477.1, + "probability": 0.7336 + }, + { + "start": 24477.34, + "end": 24478.9, + "probability": 0.6925 + }, + { + "start": 24479.02, + "end": 24479.6, + "probability": 0.1266 + }, + { + "start": 24479.6, + "end": 24479.6, + "probability": 0.4351 + }, + { + "start": 24479.6, + "end": 24479.88, + "probability": 0.1694 + }, + { + "start": 24479.96, + "end": 24482.6, + "probability": 0.751 + }, + { + "start": 24482.6, + "end": 24485.15, + "probability": 0.9821 + }, + { + "start": 24485.34, + "end": 24485.88, + "probability": 0.0306 + }, + { + "start": 24485.88, + "end": 24487.08, + "probability": 0.0523 + }, + { + "start": 24487.08, + "end": 24492.2, + "probability": 0.8942 + }, + { + "start": 24492.32, + "end": 24493.2, + "probability": 0.0725 + }, + { + "start": 24493.26, + "end": 24493.5, + "probability": 0.3738 + }, + { + "start": 24493.5, + "end": 24495.2, + "probability": 0.293 + }, + { + "start": 24495.44, + "end": 24495.46, + "probability": 0.2956 + }, + { + "start": 24495.56, + "end": 24496.82, + "probability": 0.6815 + }, + { + "start": 24497.2, + "end": 24499.08, + "probability": 0.972 + }, + { + "start": 24499.72, + "end": 24501.04, + "probability": 0.8394 + }, + { + "start": 24501.26, + "end": 24502.56, + "probability": 0.7706 + }, + { + "start": 24502.8, + "end": 24502.82, + "probability": 0.0876 + }, + { + "start": 24502.82, + "end": 24503.1, + "probability": 0.3894 + }, + { + "start": 24503.1, + "end": 24505.04, + "probability": 0.9827 + }, + { + "start": 24505.58, + "end": 24508.46, + "probability": 0.9618 + }, + { + "start": 24508.56, + "end": 24508.66, + "probability": 0.1191 + }, + { + "start": 24508.66, + "end": 24508.66, + "probability": 0.1844 + }, + { + "start": 24508.66, + "end": 24510.62, + "probability": 0.4795 + }, + { + "start": 24510.68, + "end": 24510.8, + "probability": 0.2289 + }, + { + "start": 24510.8, + "end": 24512.72, + "probability": 0.9966 + }, + { + "start": 24512.78, + "end": 24514.68, + "probability": 0.8224 + }, + { + "start": 24514.76, + "end": 24516.56, + "probability": 0.6994 + }, + { + "start": 24516.58, + "end": 24516.74, + "probability": 0.2837 + }, + { + "start": 24516.74, + "end": 24516.74, + "probability": 0.0358 + }, + { + "start": 24516.74, + "end": 24519.1, + "probability": 0.6979 + }, + { + "start": 24519.34, + "end": 24519.66, + "probability": 0.6848 + }, + { + "start": 24521.62, + "end": 24526.48, + "probability": 0.9115 + }, + { + "start": 24526.68, + "end": 24529.64, + "probability": 0.9839 + }, + { + "start": 24529.68, + "end": 24530.22, + "probability": 0.9528 + }, + { + "start": 24530.82, + "end": 24532.26, + "probability": 0.9563 + }, + { + "start": 24532.34, + "end": 24533.1, + "probability": 0.7946 + }, + { + "start": 24533.54, + "end": 24536.42, + "probability": 0.1197 + }, + { + "start": 24536.54, + "end": 24536.78, + "probability": 0.0917 + }, + { + "start": 24537.72, + "end": 24538.14, + "probability": 0.0316 + }, + { + "start": 24538.14, + "end": 24538.14, + "probability": 0.2168 + }, + { + "start": 24538.3, + "end": 24538.3, + "probability": 0.05 + }, + { + "start": 24538.3, + "end": 24539.54, + "probability": 0.684 + }, + { + "start": 24539.68, + "end": 24541.96, + "probability": 0.9379 + }, + { + "start": 24542.02, + "end": 24543.63, + "probability": 0.8253 + }, + { + "start": 24544.54, + "end": 24546.26, + "probability": 0.9883 + }, + { + "start": 24546.38, + "end": 24548.24, + "probability": 0.6368 + }, + { + "start": 24548.24, + "end": 24549.34, + "probability": 0.4103 + }, + { + "start": 24549.74, + "end": 24550.5, + "probability": 0.3678 + }, + { + "start": 24550.5, + "end": 24550.98, + "probability": 0.8428 + }, + { + "start": 24551.44, + "end": 24554.32, + "probability": 0.5073 + }, + { + "start": 24554.32, + "end": 24555.36, + "probability": 0.7655 + }, + { + "start": 24555.47, + "end": 24556.24, + "probability": 0.8024 + }, + { + "start": 24556.32, + "end": 24557.2, + "probability": 0.5103 + }, + { + "start": 24557.46, + "end": 24558.24, + "probability": 0.4823 + }, + { + "start": 24558.24, + "end": 24559.84, + "probability": 0.6492 + }, + { + "start": 24560.08, + "end": 24561.34, + "probability": 0.4989 + }, + { + "start": 24561.34, + "end": 24562.76, + "probability": 0.0838 + }, + { + "start": 24563.54, + "end": 24565.38, + "probability": 0.1392 + }, + { + "start": 24565.38, + "end": 24567.46, + "probability": 0.2589 + }, + { + "start": 24567.76, + "end": 24571.74, + "probability": 0.4941 + }, + { + "start": 24572.12, + "end": 24573.3, + "probability": 0.5294 + }, + { + "start": 24574.12, + "end": 24574.6, + "probability": 0.0367 + }, + { + "start": 24574.6, + "end": 24574.6, + "probability": 0.0366 + }, + { + "start": 24574.6, + "end": 24574.6, + "probability": 0.0381 + }, + { + "start": 24574.6, + "end": 24576.59, + "probability": 0.2256 + }, + { + "start": 24576.96, + "end": 24578.6, + "probability": 0.2537 + }, + { + "start": 24578.6, + "end": 24579.96, + "probability": 0.2828 + }, + { + "start": 24579.96, + "end": 24582.56, + "probability": 0.221 + }, + { + "start": 24584.44, + "end": 24584.44, + "probability": 0.0098 + }, + { + "start": 24584.44, + "end": 24584.44, + "probability": 0.1514 + }, + { + "start": 24584.44, + "end": 24584.44, + "probability": 0.0658 + }, + { + "start": 24584.44, + "end": 24584.44, + "probability": 0.0867 + }, + { + "start": 24584.44, + "end": 24584.44, + "probability": 0.2157 + }, + { + "start": 24584.44, + "end": 24586.55, + "probability": 0.4481 + }, + { + "start": 24587.22, + "end": 24589.02, + "probability": 0.5703 + }, + { + "start": 24589.78, + "end": 24589.8, + "probability": 0.1109 + }, + { + "start": 24589.8, + "end": 24589.8, + "probability": 0.2236 + }, + { + "start": 24589.8, + "end": 24589.8, + "probability": 0.0313 + }, + { + "start": 24589.8, + "end": 24591.19, + "probability": 0.6293 + }, + { + "start": 24591.36, + "end": 24591.8, + "probability": 0.3375 + }, + { + "start": 24592.12, + "end": 24594.1, + "probability": 0.7675 + }, + { + "start": 24594.16, + "end": 24595.28, + "probability": 0.8074 + }, + { + "start": 24596.44, + "end": 24596.44, + "probability": 0.0229 + }, + { + "start": 24596.44, + "end": 24596.54, + "probability": 0.1231 + }, + { + "start": 24596.54, + "end": 24598.52, + "probability": 0.5007 + }, + { + "start": 24598.78, + "end": 24600.22, + "probability": 0.3733 + }, + { + "start": 24600.68, + "end": 24602.14, + "probability": 0.513 + }, + { + "start": 24602.4, + "end": 24603.1, + "probability": 0.0867 + }, + { + "start": 24603.24, + "end": 24604.78, + "probability": 0.9282 + }, + { + "start": 24605.08, + "end": 24607.58, + "probability": 0.7433 + }, + { + "start": 24608.26, + "end": 24609.94, + "probability": 0.6797 + }, + { + "start": 24610.58, + "end": 24611.56, + "probability": 0.0417 + }, + { + "start": 24611.56, + "end": 24613.5, + "probability": 0.0591 + }, + { + "start": 24614.0, + "end": 24615.66, + "probability": 0.1771 + }, + { + "start": 24616.16, + "end": 24618.7, + "probability": 0.6843 + }, + { + "start": 24618.7, + "end": 24623.96, + "probability": 0.7449 + }, + { + "start": 24624.04, + "end": 24627.58, + "probability": 0.0241 + }, + { + "start": 24627.58, + "end": 24627.58, + "probability": 0.064 + }, + { + "start": 24627.58, + "end": 24628.46, + "probability": 0.1785 + }, + { + "start": 24628.66, + "end": 24630.23, + "probability": 0.0927 + }, + { + "start": 24631.24, + "end": 24631.24, + "probability": 0.0691 + }, + { + "start": 24631.24, + "end": 24633.86, + "probability": 0.5815 + }, + { + "start": 24635.84, + "end": 24636.82, + "probability": 0.8395 + }, + { + "start": 24637.06, + "end": 24637.72, + "probability": 0.6531 + }, + { + "start": 24637.72, + "end": 24639.5, + "probability": 0.9301 + }, + { + "start": 24641.12, + "end": 24643.2, + "probability": 0.2277 + }, + { + "start": 24643.56, + "end": 24645.64, + "probability": 0.5369 + }, + { + "start": 24646.06, + "end": 24648.62, + "probability": 0.7308 + }, + { + "start": 24651.96, + "end": 24653.52, + "probability": 0.1336 + }, + { + "start": 24653.66, + "end": 24654.88, + "probability": 0.8572 + }, + { + "start": 24655.42, + "end": 24656.84, + "probability": 0.7915 + }, + { + "start": 24658.38, + "end": 24658.9, + "probability": 0.5384 + }, + { + "start": 24659.42, + "end": 24661.38, + "probability": 0.252 + }, + { + "start": 24662.02, + "end": 24664.4, + "probability": 0.6664 + }, + { + "start": 24664.4, + "end": 24665.86, + "probability": 0.6287 + }, + { + "start": 24666.04, + "end": 24666.54, + "probability": 0.9033 + }, + { + "start": 24666.66, + "end": 24668.6, + "probability": 0.8811 + }, + { + "start": 24669.3, + "end": 24673.56, + "probability": 0.9304 + }, + { + "start": 24674.12, + "end": 24676.8, + "probability": 0.8395 + }, + { + "start": 24677.26, + "end": 24678.32, + "probability": 0.4999 + }, + { + "start": 24679.08, + "end": 24679.29, + "probability": 0.1338 + }, + { + "start": 24679.4, + "end": 24679.8, + "probability": 0.3461 + }, + { + "start": 24679.8, + "end": 24680.14, + "probability": 0.4475 + }, + { + "start": 24680.22, + "end": 24681.16, + "probability": 0.8216 + }, + { + "start": 24681.16, + "end": 24683.29, + "probability": 0.7698 + }, + { + "start": 24683.56, + "end": 24684.52, + "probability": 0.6707 + }, + { + "start": 24684.52, + "end": 24687.1, + "probability": 0.7992 + }, + { + "start": 24687.18, + "end": 24687.67, + "probability": 0.9045 + }, + { + "start": 24688.02, + "end": 24690.44, + "probability": 0.7576 + }, + { + "start": 24692.51, + "end": 24694.06, + "probability": 0.0168 + }, + { + "start": 24694.06, + "end": 24694.39, + "probability": 0.1138 + }, + { + "start": 24694.8, + "end": 24695.92, + "probability": 0.0772 + }, + { + "start": 24696.38, + "end": 24697.08, + "probability": 0.2045 + }, + { + "start": 24697.08, + "end": 24698.34, + "probability": 0.1003 + }, + { + "start": 24698.74, + "end": 24701.09, + "probability": 0.4012 + }, + { + "start": 24703.6, + "end": 24705.44, + "probability": 0.7748 + }, + { + "start": 24705.52, + "end": 24707.26, + "probability": 0.7061 + }, + { + "start": 24707.38, + "end": 24708.96, + "probability": 0.8218 + }, + { + "start": 24709.0, + "end": 24710.28, + "probability": 0.729 + }, + { + "start": 24710.72, + "end": 24711.5, + "probability": 0.4188 + }, + { + "start": 24711.5, + "end": 24712.28, + "probability": 0.5415 + }, + { + "start": 24712.38, + "end": 24715.46, + "probability": 0.9366 + }, + { + "start": 24715.46, + "end": 24716.68, + "probability": 0.7828 + }, + { + "start": 24716.88, + "end": 24717.58, + "probability": 0.1902 + }, + { + "start": 24717.64, + "end": 24721.32, + "probability": 0.9307 + }, + { + "start": 24721.74, + "end": 24722.24, + "probability": 0.8683 + }, + { + "start": 24722.74, + "end": 24724.76, + "probability": 0.97 + }, + { + "start": 24724.82, + "end": 24725.1, + "probability": 0.8541 + }, + { + "start": 24725.34, + "end": 24728.2, + "probability": 0.9964 + }, + { + "start": 24728.2, + "end": 24733.96, + "probability": 0.9604 + }, + { + "start": 24734.36, + "end": 24737.94, + "probability": 0.9706 + }, + { + "start": 24738.3, + "end": 24742.08, + "probability": 0.891 + }, + { + "start": 24742.22, + "end": 24746.16, + "probability": 0.9674 + }, + { + "start": 24746.38, + "end": 24749.32, + "probability": 0.9677 + }, + { + "start": 24750.02, + "end": 24754.32, + "probability": 0.6283 + }, + { + "start": 24754.46, + "end": 24757.18, + "probability": 0.993 + }, + { + "start": 24757.26, + "end": 24757.78, + "probability": 0.6087 + }, + { + "start": 24757.86, + "end": 24758.6, + "probability": 0.9125 + }, + { + "start": 24759.04, + "end": 24763.64, + "probability": 0.9653 + }, + { + "start": 24764.06, + "end": 24768.2, + "probability": 0.881 + }, + { + "start": 24768.2, + "end": 24768.76, + "probability": 0.0694 + }, + { + "start": 24769.78, + "end": 24772.66, + "probability": 0.8316 + }, + { + "start": 24773.12, + "end": 24778.02, + "probability": 0.9895 + }, + { + "start": 24778.02, + "end": 24782.26, + "probability": 0.9951 + }, + { + "start": 24782.64, + "end": 24787.98, + "probability": 0.994 + }, + { + "start": 24788.64, + "end": 24789.48, + "probability": 0.9109 + }, + { + "start": 24789.6, + "end": 24792.12, + "probability": 0.958 + }, + { + "start": 24792.64, + "end": 24796.84, + "probability": 0.9882 + }, + { + "start": 24797.24, + "end": 24801.56, + "probability": 0.9932 + }, + { + "start": 24802.02, + "end": 24802.3, + "probability": 0.6348 + }, + { + "start": 24802.42, + "end": 24808.02, + "probability": 0.9913 + }, + { + "start": 24809.24, + "end": 24810.18, + "probability": 0.8807 + }, + { + "start": 24810.42, + "end": 24811.64, + "probability": 0.9644 + }, + { + "start": 24811.76, + "end": 24812.22, + "probability": 0.5698 + }, + { + "start": 24812.54, + "end": 24816.4, + "probability": 0.9761 + }, + { + "start": 24816.5, + "end": 24818.08, + "probability": 0.6112 + }, + { + "start": 24818.78, + "end": 24821.18, + "probability": 0.9368 + }, + { + "start": 24821.46, + "end": 24821.96, + "probability": 0.7543 + }, + { + "start": 24822.02, + "end": 24822.76, + "probability": 0.7698 + }, + { + "start": 24823.22, + "end": 24824.18, + "probability": 0.5018 + }, + { + "start": 24824.52, + "end": 24826.56, + "probability": 0.9919 + }, + { + "start": 24826.86, + "end": 24828.8, + "probability": 0.9175 + }, + { + "start": 24829.44, + "end": 24834.78, + "probability": 0.9897 + }, + { + "start": 24835.22, + "end": 24836.7, + "probability": 0.9937 + }, + { + "start": 24837.14, + "end": 24837.86, + "probability": 0.66 + }, + { + "start": 24838.86, + "end": 24841.12, + "probability": 0.9543 + }, + { + "start": 24841.24, + "end": 24842.54, + "probability": 0.7208 + }, + { + "start": 24842.86, + "end": 24845.56, + "probability": 0.9967 + }, + { + "start": 24845.56, + "end": 24849.08, + "probability": 0.9896 + }, + { + "start": 24849.52, + "end": 24850.87, + "probability": 0.9966 + }, + { + "start": 24851.42, + "end": 24852.16, + "probability": 0.9491 + }, + { + "start": 24852.3, + "end": 24852.88, + "probability": 0.4794 + }, + { + "start": 24852.98, + "end": 24857.58, + "probability": 0.9763 + }, + { + "start": 24857.84, + "end": 24860.36, + "probability": 0.7745 + }, + { + "start": 24860.36, + "end": 24863.48, + "probability": 0.9878 + }, + { + "start": 24863.48, + "end": 24865.74, + "probability": 0.9551 + }, + { + "start": 24865.88, + "end": 24866.12, + "probability": 0.715 + }, + { + "start": 24866.62, + "end": 24866.72, + "probability": 0.6161 + }, + { + "start": 24868.72, + "end": 24869.4, + "probability": 0.7385 + }, + { + "start": 24869.58, + "end": 24871.61, + "probability": 0.8613 + }, + { + "start": 24872.54, + "end": 24874.22, + "probability": 0.4876 + }, + { + "start": 24883.01, + "end": 24885.74, + "probability": 0.7743 + }, + { + "start": 24888.42, + "end": 24891.24, + "probability": 0.9867 + }, + { + "start": 24891.8, + "end": 24892.86, + "probability": 0.8065 + }, + { + "start": 24894.3, + "end": 24894.46, + "probability": 0.0445 + }, + { + "start": 24894.6, + "end": 24897.2, + "probability": 0.9585 + }, + { + "start": 24898.1, + "end": 24905.32, + "probability": 0.9728 + }, + { + "start": 24905.56, + "end": 24909.62, + "probability": 0.9379 + }, + { + "start": 24909.72, + "end": 24914.28, + "probability": 0.9531 + }, + { + "start": 24914.46, + "end": 24915.02, + "probability": 0.6455 + }, + { + "start": 24916.3, + "end": 24920.44, + "probability": 0.9965 + }, + { + "start": 24921.42, + "end": 24922.74, + "probability": 0.8143 + }, + { + "start": 24924.18, + "end": 24926.52, + "probability": 0.8732 + }, + { + "start": 24926.58, + "end": 24928.22, + "probability": 0.9479 + }, + { + "start": 24928.42, + "end": 24932.1, + "probability": 0.9883 + }, + { + "start": 24932.56, + "end": 24940.46, + "probability": 0.9349 + }, + { + "start": 24940.46, + "end": 24945.18, + "probability": 0.9986 + }, + { + "start": 24945.78, + "end": 24947.3, + "probability": 0.8872 + }, + { + "start": 24947.56, + "end": 24949.06, + "probability": 0.8286 + }, + { + "start": 24949.14, + "end": 24950.14, + "probability": 0.951 + }, + { + "start": 24950.6, + "end": 24957.0, + "probability": 0.9937 + }, + { + "start": 24957.0, + "end": 24963.62, + "probability": 0.9938 + }, + { + "start": 24964.04, + "end": 24965.76, + "probability": 0.9961 + }, + { + "start": 24966.14, + "end": 24970.92, + "probability": 0.9755 + }, + { + "start": 24971.46, + "end": 24972.58, + "probability": 0.8745 + }, + { + "start": 24973.04, + "end": 24976.08, + "probability": 0.9836 + }, + { + "start": 24976.28, + "end": 24982.44, + "probability": 0.978 + }, + { + "start": 24982.88, + "end": 24985.46, + "probability": 0.9437 + }, + { + "start": 24985.98, + "end": 24989.12, + "probability": 0.9171 + }, + { + "start": 24989.58, + "end": 24995.56, + "probability": 0.993 + }, + { + "start": 24996.28, + "end": 24999.42, + "probability": 0.9805 + }, + { + "start": 24999.46, + "end": 25002.32, + "probability": 0.8879 + }, + { + "start": 25002.56, + "end": 25005.64, + "probability": 0.9648 + }, + { + "start": 25006.1, + "end": 25007.86, + "probability": 0.9326 + }, + { + "start": 25008.0, + "end": 25011.58, + "probability": 0.9467 + }, + { + "start": 25012.36, + "end": 25013.36, + "probability": 0.4736 + }, + { + "start": 25014.12, + "end": 25016.2, + "probability": 0.8125 + }, + { + "start": 25016.72, + "end": 25019.98, + "probability": 0.9963 + }, + { + "start": 25021.24, + "end": 25024.54, + "probability": 0.9932 + }, + { + "start": 25025.22, + "end": 25027.9, + "probability": 0.2842 + }, + { + "start": 25028.04, + "end": 25030.22, + "probability": 0.4599 + }, + { + "start": 25030.6, + "end": 25032.78, + "probability": 0.9805 + }, + { + "start": 25032.96, + "end": 25034.36, + "probability": 0.8755 + }, + { + "start": 25034.38, + "end": 25036.8, + "probability": 0.4583 + }, + { + "start": 25036.86, + "end": 25037.46, + "probability": 0.8036 + }, + { + "start": 25037.56, + "end": 25039.48, + "probability": 0.8397 + }, + { + "start": 25039.58, + "end": 25040.7, + "probability": 0.2438 + }, + { + "start": 25041.16, + "end": 25046.08, + "probability": 0.9508 + }, + { + "start": 25046.74, + "end": 25052.88, + "probability": 0.9453 + }, + { + "start": 25052.98, + "end": 25053.6, + "probability": 0.1624 + }, + { + "start": 25054.02, + "end": 25054.9, + "probability": 0.4555 + }, + { + "start": 25055.12, + "end": 25058.36, + "probability": 0.7757 + }, + { + "start": 25058.64, + "end": 25059.56, + "probability": 0.8179 + }, + { + "start": 25059.64, + "end": 25063.34, + "probability": 0.9824 + }, + { + "start": 25063.42, + "end": 25066.92, + "probability": 0.9364 + }, + { + "start": 25067.22, + "end": 25070.92, + "probability": 0.993 + }, + { + "start": 25071.48, + "end": 25074.3, + "probability": 0.966 + }, + { + "start": 25074.3, + "end": 25078.9, + "probability": 0.8605 + }, + { + "start": 25079.24, + "end": 25081.44, + "probability": 0.9338 + }, + { + "start": 25081.62, + "end": 25082.64, + "probability": 0.7013 + }, + { + "start": 25082.72, + "end": 25083.99, + "probability": 0.9292 + }, + { + "start": 25084.44, + "end": 25086.24, + "probability": 0.0996 + }, + { + "start": 25086.24, + "end": 25088.4, + "probability": 0.0628 + }, + { + "start": 25088.5, + "end": 25089.84, + "probability": 0.7928 + }, + { + "start": 25090.1, + "end": 25090.18, + "probability": 0.1219 + }, + { + "start": 25090.18, + "end": 25090.2, + "probability": 0.016 + }, + { + "start": 25090.2, + "end": 25092.69, + "probability": 0.7366 + }, + { + "start": 25093.38, + "end": 25095.04, + "probability": 0.0994 + }, + { + "start": 25095.1, + "end": 25097.3, + "probability": 0.9552 + }, + { + "start": 25097.44, + "end": 25098.8, + "probability": 0.8765 + }, + { + "start": 25098.9, + "end": 25100.18, + "probability": 0.7529 + }, + { + "start": 25100.28, + "end": 25104.04, + "probability": 0.9864 + }, + { + "start": 25104.28, + "end": 25104.7, + "probability": 0.3548 + }, + { + "start": 25104.74, + "end": 25105.24, + "probability": 0.7142 + }, + { + "start": 25105.4, + "end": 25106.44, + "probability": 0.9213 + }, + { + "start": 25106.6, + "end": 25110.98, + "probability": 0.96 + }, + { + "start": 25111.36, + "end": 25112.06, + "probability": 0.793 + }, + { + "start": 25112.16, + "end": 25114.34, + "probability": 0.9017 + }, + { + "start": 25115.04, + "end": 25117.1, + "probability": 0.9736 + }, + { + "start": 25117.26, + "end": 25120.18, + "probability": 0.8544 + }, + { + "start": 25120.56, + "end": 25121.56, + "probability": 0.7594 + }, + { + "start": 25121.92, + "end": 25123.32, + "probability": 0.6667 + }, + { + "start": 25123.46, + "end": 25125.7, + "probability": 0.6797 + }, + { + "start": 25125.86, + "end": 25127.04, + "probability": 0.9302 + }, + { + "start": 25127.5, + "end": 25129.46, + "probability": 0.925 + }, + { + "start": 25129.54, + "end": 25130.14, + "probability": 0.8327 + }, + { + "start": 25130.22, + "end": 25130.96, + "probability": 0.867 + }, + { + "start": 25131.26, + "end": 25134.0, + "probability": 0.8991 + }, + { + "start": 25134.3, + "end": 25135.88, + "probability": 0.76 + }, + { + "start": 25136.24, + "end": 25138.9, + "probability": 0.9591 + }, + { + "start": 25138.98, + "end": 25139.98, + "probability": 0.9336 + }, + { + "start": 25140.26, + "end": 25143.84, + "probability": 0.9258 + }, + { + "start": 25143.98, + "end": 25146.78, + "probability": 0.7047 + }, + { + "start": 25146.88, + "end": 25152.28, + "probability": 0.9327 + }, + { + "start": 25152.48, + "end": 25154.22, + "probability": 0.9758 + }, + { + "start": 25154.78, + "end": 25156.78, + "probability": 0.9922 + }, + { + "start": 25156.78, + "end": 25160.5, + "probability": 0.9219 + }, + { + "start": 25160.92, + "end": 25162.62, + "probability": 0.6502 + }, + { + "start": 25163.12, + "end": 25165.7, + "probability": 0.567 + }, + { + "start": 25166.18, + "end": 25168.36, + "probability": 0.9952 + }, + { + "start": 25168.84, + "end": 25169.22, + "probability": 0.3489 + }, + { + "start": 25169.32, + "end": 25170.62, + "probability": 0.869 + }, + { + "start": 25171.16, + "end": 25171.5, + "probability": 0.131 + }, + { + "start": 25172.06, + "end": 25172.82, + "probability": 0.0539 + }, + { + "start": 25174.67, + "end": 25177.4, + "probability": 0.9123 + }, + { + "start": 25180.42, + "end": 25182.04, + "probability": 0.6088 + }, + { + "start": 25182.12, + "end": 25184.3, + "probability": 0.8822 + }, + { + "start": 25184.38, + "end": 25185.44, + "probability": 0.8236 + }, + { + "start": 25185.48, + "end": 25186.2, + "probability": 0.9196 + }, + { + "start": 25187.22, + "end": 25189.08, + "probability": 0.7977 + }, + { + "start": 25189.94, + "end": 25190.5, + "probability": 0.6195 + }, + { + "start": 25193.2, + "end": 25194.54, + "probability": 0.9546 + }, + { + "start": 25195.5, + "end": 25196.04, + "probability": 0.9749 + }, + { + "start": 25199.12, + "end": 25201.12, + "probability": 0.9914 + }, + { + "start": 25201.22, + "end": 25202.92, + "probability": 0.9911 + }, + { + "start": 25203.46, + "end": 25204.16, + "probability": 0.7614 + }, + { + "start": 25204.18, + "end": 25210.36, + "probability": 0.6687 + }, + { + "start": 25217.7, + "end": 25218.8, + "probability": 0.3868 + }, + { + "start": 25226.56, + "end": 25227.98, + "probability": 0.7218 + }, + { + "start": 25231.92, + "end": 25233.78, + "probability": 0.5441 + }, + { + "start": 25234.32, + "end": 25234.52, + "probability": 0.8728 + }, + { + "start": 25237.6, + "end": 25240.36, + "probability": 0.8754 + }, + { + "start": 25241.38, + "end": 25243.14, + "probability": 0.6805 + }, + { + "start": 25243.34, + "end": 25247.14, + "probability": 0.7582 + }, + { + "start": 25247.46, + "end": 25248.08, + "probability": 0.6357 + }, + { + "start": 25249.08, + "end": 25252.16, + "probability": 0.9346 + }, + { + "start": 25254.88, + "end": 25256.98, + "probability": 0.7391 + }, + { + "start": 25258.0, + "end": 25262.94, + "probability": 0.8554 + }, + { + "start": 25263.52, + "end": 25266.64, + "probability": 0.817 + }, + { + "start": 25267.16, + "end": 25267.67, + "probability": 0.0132 + }, + { + "start": 25268.78, + "end": 25269.96, + "probability": 0.9459 + }, + { + "start": 25270.0, + "end": 25271.3, + "probability": 0.3263 + }, + { + "start": 25271.94, + "end": 25274.24, + "probability": 0.7458 + }, + { + "start": 25274.24, + "end": 25276.28, + "probability": 0.9863 + }, + { + "start": 25276.4, + "end": 25277.1, + "probability": 0.8706 + }, + { + "start": 25277.16, + "end": 25281.24, + "probability": 0.8752 + }, + { + "start": 25281.98, + "end": 25283.76, + "probability": 0.851 + }, + { + "start": 25283.76, + "end": 25286.46, + "probability": 0.9666 + }, + { + "start": 25286.88, + "end": 25287.86, + "probability": 0.7944 + }, + { + "start": 25288.24, + "end": 25290.44, + "probability": 0.2875 + }, + { + "start": 25291.24, + "end": 25293.26, + "probability": 0.835 + }, + { + "start": 25295.74, + "end": 25299.52, + "probability": 0.9813 + }, + { + "start": 25301.66, + "end": 25303.52, + "probability": 0.9808 + }, + { + "start": 25303.66, + "end": 25305.41, + "probability": 0.9894 + }, + { + "start": 25305.66, + "end": 25306.76, + "probability": 0.8355 + }, + { + "start": 25308.12, + "end": 25312.32, + "probability": 0.9593 + }, + { + "start": 25312.76, + "end": 25313.84, + "probability": 0.9302 + }, + { + "start": 25315.0, + "end": 25318.38, + "probability": 0.7778 + }, + { + "start": 25320.32, + "end": 25321.16, + "probability": 0.8382 + }, + { + "start": 25321.62, + "end": 25323.16, + "probability": 0.9052 + }, + { + "start": 25323.18, + "end": 25324.24, + "probability": 0.7367 + }, + { + "start": 25327.13, + "end": 25330.52, + "probability": 0.7019 + }, + { + "start": 25331.86, + "end": 25335.66, + "probability": 0.9717 + }, + { + "start": 25335.68, + "end": 25336.88, + "probability": 0.9767 + }, + { + "start": 25338.36, + "end": 25339.18, + "probability": 0.7617 + }, + { + "start": 25339.32, + "end": 25340.82, + "probability": 0.8162 + }, + { + "start": 25340.96, + "end": 25342.75, + "probability": 0.9932 + }, + { + "start": 25343.02, + "end": 25344.36, + "probability": 0.9911 + }, + { + "start": 25344.48, + "end": 25346.38, + "probability": 0.9521 + }, + { + "start": 25347.52, + "end": 25347.6, + "probability": 0.8612 + }, + { + "start": 25347.7, + "end": 25350.08, + "probability": 0.9772 + }, + { + "start": 25350.16, + "end": 25350.64, + "probability": 0.9028 + }, + { + "start": 25351.7, + "end": 25353.66, + "probability": 0.6306 + }, + { + "start": 25354.62, + "end": 25357.96, + "probability": 0.9871 + }, + { + "start": 25357.96, + "end": 25362.18, + "probability": 0.9945 + }, + { + "start": 25363.3, + "end": 25365.66, + "probability": 0.9821 + }, + { + "start": 25366.76, + "end": 25368.18, + "probability": 0.9218 + }, + { + "start": 25368.28, + "end": 25370.64, + "probability": 0.8462 + }, + { + "start": 25370.76, + "end": 25371.78, + "probability": 0.921 + }, + { + "start": 25373.04, + "end": 25373.98, + "probability": 0.9875 + }, + { + "start": 25374.04, + "end": 25375.36, + "probability": 0.9733 + }, + { + "start": 25375.44, + "end": 25377.3, + "probability": 0.8915 + }, + { + "start": 25378.02, + "end": 25379.34, + "probability": 0.9599 + }, + { + "start": 25380.12, + "end": 25383.08, + "probability": 0.9586 + }, + { + "start": 25384.72, + "end": 25386.6, + "probability": 0.8009 + }, + { + "start": 25387.46, + "end": 25388.88, + "probability": 0.8643 + }, + { + "start": 25389.52, + "end": 25390.5, + "probability": 0.9685 + }, + { + "start": 25390.56, + "end": 25393.32, + "probability": 0.9767 + }, + { + "start": 25394.34, + "end": 25398.26, + "probability": 0.9679 + }, + { + "start": 25399.06, + "end": 25402.28, + "probability": 0.887 + }, + { + "start": 25403.32, + "end": 25403.42, + "probability": 0.5212 + }, + { + "start": 25403.54, + "end": 25410.12, + "probability": 0.9877 + }, + { + "start": 25410.36, + "end": 25411.43, + "probability": 0.7954 + }, + { + "start": 25411.58, + "end": 25415.32, + "probability": 0.9832 + }, + { + "start": 25417.36, + "end": 25418.22, + "probability": 0.4152 + }, + { + "start": 25418.82, + "end": 25419.88, + "probability": 0.3573 + }, + { + "start": 25420.7, + "end": 25422.08, + "probability": 0.7669 + }, + { + "start": 25422.8, + "end": 25423.9, + "probability": 0.7321 + }, + { + "start": 25424.1, + "end": 25425.6, + "probability": 0.9492 + }, + { + "start": 25425.86, + "end": 25427.92, + "probability": 0.9667 + }, + { + "start": 25428.4, + "end": 25429.36, + "probability": 0.8855 + }, + { + "start": 25429.46, + "end": 25431.98, + "probability": 0.9508 + }, + { + "start": 25432.12, + "end": 25434.38, + "probability": 0.979 + }, + { + "start": 25434.64, + "end": 25435.3, + "probability": 0.4429 + }, + { + "start": 25435.9, + "end": 25438.12, + "probability": 0.6723 + }, + { + "start": 25438.18, + "end": 25439.84, + "probability": 0.8245 + }, + { + "start": 25439.9, + "end": 25442.02, + "probability": 0.6303 + }, + { + "start": 25442.58, + "end": 25446.94, + "probability": 0.9609 + }, + { + "start": 25447.06, + "end": 25448.02, + "probability": 0.9618 + }, + { + "start": 25448.06, + "end": 25449.78, + "probability": 0.9294 + }, + { + "start": 25450.46, + "end": 25451.96, + "probability": 0.9326 + }, + { + "start": 25452.02, + "end": 25453.36, + "probability": 0.9322 + }, + { + "start": 25453.48, + "end": 25455.54, + "probability": 0.9292 + }, + { + "start": 25455.78, + "end": 25456.04, + "probability": 0.7961 + }, + { + "start": 25457.32, + "end": 25457.82, + "probability": 0.7403 + }, + { + "start": 25458.86, + "end": 25461.18, + "probability": 0.98 + }, + { + "start": 25461.78, + "end": 25463.5, + "probability": 0.8737 + }, + { + "start": 25464.02, + "end": 25466.32, + "probability": 0.8987 + }, + { + "start": 25466.78, + "end": 25468.92, + "probability": 0.7218 + }, + { + "start": 25469.5, + "end": 25475.08, + "probability": 0.9867 + }, + { + "start": 25475.74, + "end": 25477.52, + "probability": 0.997 + }, + { + "start": 25478.14, + "end": 25481.38, + "probability": 0.9849 + }, + { + "start": 25481.9, + "end": 25483.06, + "probability": 0.9437 + }, + { + "start": 25483.54, + "end": 25485.83, + "probability": 0.9933 + }, + { + "start": 25486.08, + "end": 25488.74, + "probability": 0.9736 + }, + { + "start": 25489.08, + "end": 25490.78, + "probability": 0.851 + }, + { + "start": 25491.42, + "end": 25493.32, + "probability": 0.6128 + }, + { + "start": 25493.68, + "end": 25495.94, + "probability": 0.3132 + }, + { + "start": 25496.38, + "end": 25497.6, + "probability": 0.5839 + }, + { + "start": 25498.0, + "end": 25502.5, + "probability": 0.9932 + }, + { + "start": 25502.54, + "end": 25504.08, + "probability": 0.3751 + }, + { + "start": 25506.96, + "end": 25508.34, + "probability": 0.0235 + }, + { + "start": 25508.34, + "end": 25508.36, + "probability": 0.041 + }, + { + "start": 25508.36, + "end": 25512.1, + "probability": 0.5344 + }, + { + "start": 25512.78, + "end": 25513.5, + "probability": 0.1576 + }, + { + "start": 25514.08, + "end": 25517.64, + "probability": 0.5179 + }, + { + "start": 25517.78, + "end": 25519.74, + "probability": 0.9466 + }, + { + "start": 25519.98, + "end": 25523.14, + "probability": 0.7745 + }, + { + "start": 25523.86, + "end": 25525.44, + "probability": 0.5425 + }, + { + "start": 25526.42, + "end": 25527.02, + "probability": 0.7572 + }, + { + "start": 25527.86, + "end": 25529.06, + "probability": 0.5453 + }, + { + "start": 25529.36, + "end": 25531.14, + "probability": 0.5788 + }, + { + "start": 25531.92, + "end": 25533.58, + "probability": 0.8872 + }, + { + "start": 25533.72, + "end": 25535.66, + "probability": 0.8094 + }, + { + "start": 25541.2, + "end": 25544.0, + "probability": 0.503 + }, + { + "start": 25544.02, + "end": 25544.5, + "probability": 0.8688 + }, + { + "start": 25545.34, + "end": 25547.1, + "probability": 0.6439 + }, + { + "start": 25547.7, + "end": 25547.7, + "probability": 0.5197 + }, + { + "start": 25547.7, + "end": 25548.94, + "probability": 0.7652 + }, + { + "start": 25549.36, + "end": 25552.64, + "probability": 0.9633 + }, + { + "start": 25552.64, + "end": 25555.46, + "probability": 0.9763 + }, + { + "start": 25556.46, + "end": 25559.2, + "probability": 0.9734 + }, + { + "start": 25559.2, + "end": 25561.9, + "probability": 0.8932 + }, + { + "start": 25562.0, + "end": 25566.58, + "probability": 0.8971 + }, + { + "start": 25566.78, + "end": 25567.6, + "probability": 0.6381 + }, + { + "start": 25568.18, + "end": 25571.94, + "probability": 0.9537 + }, + { + "start": 25572.06, + "end": 25573.32, + "probability": 0.6489 + }, + { + "start": 25573.4, + "end": 25574.24, + "probability": 0.8125 + }, + { + "start": 25574.3, + "end": 25575.64, + "probability": 0.8856 + }, + { + "start": 25576.18, + "end": 25576.64, + "probability": 0.4603 + }, + { + "start": 25576.92, + "end": 25577.68, + "probability": 0.7605 + }, + { + "start": 25577.78, + "end": 25578.58, + "probability": 0.6683 + }, + { + "start": 25578.9, + "end": 25581.4, + "probability": 0.9009 + }, + { + "start": 25582.06, + "end": 25582.46, + "probability": 0.6819 + }, + { + "start": 25583.42, + "end": 25583.86, + "probability": 0.0181 + }, + { + "start": 25585.22, + "end": 25589.7, + "probability": 0.9972 + }, + { + "start": 25590.38, + "end": 25592.06, + "probability": 0.9207 + }, + { + "start": 25592.58, + "end": 25597.0, + "probability": 0.9545 + }, + { + "start": 25597.42, + "end": 25598.56, + "probability": 0.9878 + }, + { + "start": 25599.08, + "end": 25605.44, + "probability": 0.9224 + }, + { + "start": 25606.08, + "end": 25606.08, + "probability": 0.3477 + }, + { + "start": 25606.08, + "end": 25609.36, + "probability": 0.9951 + }, + { + "start": 25609.7, + "end": 25612.06, + "probability": 0.9385 + }, + { + "start": 25612.52, + "end": 25614.18, + "probability": 0.9937 + }, + { + "start": 25614.56, + "end": 25615.32, + "probability": 0.6828 + }, + { + "start": 25615.9, + "end": 25618.9, + "probability": 0.5693 + }, + { + "start": 25619.62, + "end": 25619.62, + "probability": 0.4484 + }, + { + "start": 25619.62, + "end": 25620.48, + "probability": 0.5417 + }, + { + "start": 25620.76, + "end": 25622.58, + "probability": 0.6011 + }, + { + "start": 25622.72, + "end": 25624.16, + "probability": 0.4398 + }, + { + "start": 25624.48, + "end": 25627.58, + "probability": 0.9849 + }, + { + "start": 25628.1, + "end": 25628.98, + "probability": 0.637 + }, + { + "start": 25629.7, + "end": 25631.98, + "probability": 0.9928 + }, + { + "start": 25632.0, + "end": 25635.94, + "probability": 0.635 + }, + { + "start": 25636.5, + "end": 25638.22, + "probability": 0.2999 + }, + { + "start": 25638.34, + "end": 25639.08, + "probability": 0.5324 + }, + { + "start": 25639.14, + "end": 25642.18, + "probability": 0.9888 + }, + { + "start": 25642.7, + "end": 25645.34, + "probability": 0.9542 + }, + { + "start": 25646.22, + "end": 25647.32, + "probability": 0.3767 + }, + { + "start": 25648.06, + "end": 25648.68, + "probability": 0.6337 + }, + { + "start": 25649.36, + "end": 25650.52, + "probability": 0.743 + }, + { + "start": 25650.7, + "end": 25651.0, + "probability": 0.9385 + }, + { + "start": 25651.46, + "end": 25653.06, + "probability": 0.6225 + }, + { + "start": 25653.06, + "end": 25654.01, + "probability": 0.636 + }, + { + "start": 25654.06, + "end": 25654.76, + "probability": 0.2626 + }, + { + "start": 25654.76, + "end": 25655.66, + "probability": 0.1098 + }, + { + "start": 25655.96, + "end": 25656.36, + "probability": 0.8531 + }, + { + "start": 25656.4, + "end": 25657.06, + "probability": 0.3057 + }, + { + "start": 25658.3, + "end": 25659.14, + "probability": 0.8331 + }, + { + "start": 25659.6, + "end": 25661.6, + "probability": 0.5966 + }, + { + "start": 25673.95, + "end": 25676.76, + "probability": 0.6726 + }, + { + "start": 25677.38, + "end": 25682.09, + "probability": 0.6321 + }, + { + "start": 25682.34, + "end": 25686.84, + "probability": 0.7997 + }, + { + "start": 25687.58, + "end": 25690.48, + "probability": 0.8965 + }, + { + "start": 25690.48, + "end": 25696.04, + "probability": 0.9979 + }, + { + "start": 25696.24, + "end": 25699.56, + "probability": 0.9069 + }, + { + "start": 25700.52, + "end": 25704.42, + "probability": 0.8004 + }, + { + "start": 25704.78, + "end": 25710.32, + "probability": 0.9789 + }, + { + "start": 25711.42, + "end": 25712.3, + "probability": 0.5471 + }, + { + "start": 25712.46, + "end": 25716.1, + "probability": 0.9665 + }, + { + "start": 25716.74, + "end": 25719.36, + "probability": 0.9854 + }, + { + "start": 25720.12, + "end": 25723.06, + "probability": 0.9268 + }, + { + "start": 25723.6, + "end": 25727.2, + "probability": 0.967 + }, + { + "start": 25727.6, + "end": 25730.26, + "probability": 0.1107 + }, + { + "start": 25730.66, + "end": 25730.86, + "probability": 0.1649 + }, + { + "start": 25730.86, + "end": 25731.8, + "probability": 0.8345 + }, + { + "start": 25732.72, + "end": 25736.4, + "probability": 0.9788 + }, + { + "start": 25736.64, + "end": 25740.28, + "probability": 0.9974 + }, + { + "start": 25740.68, + "end": 25746.34, + "probability": 0.8915 + }, + { + "start": 25747.06, + "end": 25752.74, + "probability": 0.9416 + }, + { + "start": 25753.22, + "end": 25755.19, + "probability": 0.5873 + }, + { + "start": 25756.04, + "end": 25757.08, + "probability": 0.6824 + }, + { + "start": 25757.22, + "end": 25758.16, + "probability": 0.9085 + }, + { + "start": 25758.24, + "end": 25761.52, + "probability": 0.9038 + }, + { + "start": 25762.04, + "end": 25766.28, + "probability": 0.9384 + }, + { + "start": 25766.66, + "end": 25769.92, + "probability": 0.8088 + }, + { + "start": 25770.36, + "end": 25772.98, + "probability": 0.746 + }, + { + "start": 25773.88, + "end": 25775.04, + "probability": 0.6944 + }, + { + "start": 25776.44, + "end": 25781.92, + "probability": 0.9221 + }, + { + "start": 25782.46, + "end": 25783.06, + "probability": 0.7404 + }, + { + "start": 25783.18, + "end": 25785.1, + "probability": 0.9784 + }, + { + "start": 25785.14, + "end": 25785.74, + "probability": 0.7966 + }, + { + "start": 25786.28, + "end": 25787.08, + "probability": 0.5563 + }, + { + "start": 25787.7, + "end": 25790.28, + "probability": 0.6975 + }, + { + "start": 25790.38, + "end": 25791.28, + "probability": 0.8114 + }, + { + "start": 25791.38, + "end": 25792.36, + "probability": 0.9637 + }, + { + "start": 25792.64, + "end": 25794.32, + "probability": 0.9429 + }, + { + "start": 25794.46, + "end": 25795.12, + "probability": 0.9753 + }, + { + "start": 25795.28, + "end": 25795.94, + "probability": 0.9845 + }, + { + "start": 25796.02, + "end": 25796.82, + "probability": 0.6808 + }, + { + "start": 25797.22, + "end": 25802.98, + "probability": 0.8741 + }, + { + "start": 25803.46, + "end": 25805.82, + "probability": 0.9932 + }, + { + "start": 25806.48, + "end": 25810.24, + "probability": 0.9712 + }, + { + "start": 25810.68, + "end": 25812.96, + "probability": 0.9064 + }, + { + "start": 25813.52, + "end": 25815.26, + "probability": 0.8227 + }, + { + "start": 25815.3, + "end": 25815.8, + "probability": 0.6048 + }, + { + "start": 25816.22, + "end": 25818.02, + "probability": 0.9958 + }, + { + "start": 25820.12, + "end": 25820.7, + "probability": 0.8315 + }, + { + "start": 25821.24, + "end": 25821.7, + "probability": 0.2111 + }, + { + "start": 25821.82, + "end": 25822.9, + "probability": 0.9221 + }, + { + "start": 25831.02, + "end": 25831.38, + "probability": 0.1098 + }, + { + "start": 25832.12, + "end": 25833.62, + "probability": 0.9966 + }, + { + "start": 25833.98, + "end": 25835.78, + "probability": 0.928 + }, + { + "start": 25836.44, + "end": 25840.22, + "probability": 0.8239 + }, + { + "start": 25840.66, + "end": 25845.86, + "probability": 0.7995 + }, + { + "start": 25845.94, + "end": 25846.88, + "probability": 0.4379 + }, + { + "start": 25846.92, + "end": 25849.04, + "probability": 0.9582 + }, + { + "start": 25849.34, + "end": 25850.76, + "probability": 0.9653 + }, + { + "start": 25850.86, + "end": 25852.92, + "probability": 0.7375 + }, + { + "start": 25853.04, + "end": 25853.66, + "probability": 0.8555 + }, + { + "start": 25853.74, + "end": 25855.06, + "probability": 0.6725 + }, + { + "start": 25855.46, + "end": 25856.8, + "probability": 0.8809 + }, + { + "start": 25856.9, + "end": 25857.9, + "probability": 0.9946 + }, + { + "start": 25858.04, + "end": 25861.02, + "probability": 0.9601 + }, + { + "start": 25861.08, + "end": 25861.96, + "probability": 0.614 + }, + { + "start": 25862.14, + "end": 25865.84, + "probability": 0.5987 + }, + { + "start": 25866.0, + "end": 25872.7, + "probability": 0.9084 + }, + { + "start": 25873.12, + "end": 25879.44, + "probability": 0.9912 + }, + { + "start": 25880.65, + "end": 25884.38, + "probability": 0.9873 + }, + { + "start": 25884.46, + "end": 25886.28, + "probability": 0.6831 + }, + { + "start": 25886.46, + "end": 25889.14, + "probability": 0.9761 + }, + { + "start": 25890.52, + "end": 25895.92, + "probability": 0.9639 + }, + { + "start": 25896.52, + "end": 25898.72, + "probability": 0.9879 + }, + { + "start": 25898.98, + "end": 25900.4, + "probability": 0.9288 + }, + { + "start": 25900.82, + "end": 25901.9, + "probability": 0.8097 + }, + { + "start": 25902.28, + "end": 25903.8, + "probability": 0.5198 + }, + { + "start": 25904.36, + "end": 25908.74, + "probability": 0.946 + }, + { + "start": 25909.02, + "end": 25911.58, + "probability": 0.9083 + }, + { + "start": 25911.74, + "end": 25913.76, + "probability": 0.9535 + }, + { + "start": 25914.38, + "end": 25917.08, + "probability": 0.7499 + }, + { + "start": 25917.34, + "end": 25921.04, + "probability": 0.9625 + }, + { + "start": 25921.9, + "end": 25923.22, + "probability": 0.455 + }, + { + "start": 25923.28, + "end": 25924.9, + "probability": 0.889 + }, + { + "start": 25925.12, + "end": 25926.7, + "probability": 0.9591 + }, + { + "start": 25926.82, + "end": 25928.98, + "probability": 0.9231 + }, + { + "start": 25929.46, + "end": 25931.0, + "probability": 0.7938 + }, + { + "start": 25931.5, + "end": 25932.72, + "probability": 0.6864 + }, + { + "start": 25933.16, + "end": 25937.38, + "probability": 0.7479 + }, + { + "start": 25937.84, + "end": 25940.96, + "probability": 0.8661 + }, + { + "start": 25940.96, + "end": 25943.64, + "probability": 0.942 + }, + { + "start": 25944.12, + "end": 25946.06, + "probability": 0.5 + }, + { + "start": 25946.88, + "end": 25948.74, + "probability": 0.4267 + }, + { + "start": 25949.22, + "end": 25951.47, + "probability": 0.8127 + }, + { + "start": 25951.84, + "end": 25954.5, + "probability": 0.313 + }, + { + "start": 25954.92, + "end": 25955.92, + "probability": 0.7126 + }, + { + "start": 25956.02, + "end": 25956.39, + "probability": 0.6601 + }, + { + "start": 25957.28, + "end": 25959.74, + "probability": 0.9197 + }, + { + "start": 25959.92, + "end": 25960.44, + "probability": 0.2771 + }, + { + "start": 25960.6, + "end": 25963.34, + "probability": 0.8333 + }, + { + "start": 25964.44, + "end": 25967.8, + "probability": 0.8088 + }, + { + "start": 25968.28, + "end": 25970.24, + "probability": 0.7741 + }, + { + "start": 25970.8, + "end": 25973.27, + "probability": 0.9919 + }, + { + "start": 25976.88, + "end": 25978.73, + "probability": 0.0563 + }, + { + "start": 25979.08, + "end": 25980.31, + "probability": 0.7386 + }, + { + "start": 25980.92, + "end": 25984.04, + "probability": 0.8369 + }, + { + "start": 25984.14, + "end": 25985.5, + "probability": 0.1575 + }, + { + "start": 25985.7, + "end": 25986.32, + "probability": 0.6326 + }, + { + "start": 25986.38, + "end": 25989.12, + "probability": 0.7608 + }, + { + "start": 25989.28, + "end": 25989.58, + "probability": 0.7447 + }, + { + "start": 25989.7, + "end": 25994.56, + "probability": 0.9526 + }, + { + "start": 25994.6, + "end": 25995.72, + "probability": 0.6744 + }, + { + "start": 25995.84, + "end": 25996.65, + "probability": 0.8226 + }, + { + "start": 25997.04, + "end": 25997.38, + "probability": 0.5236 + }, + { + "start": 25997.56, + "end": 25999.54, + "probability": 0.7949 + }, + { + "start": 25999.9, + "end": 26000.86, + "probability": 0.9634 + }, + { + "start": 26000.98, + "end": 26002.28, + "probability": 0.3743 + }, + { + "start": 26002.52, + "end": 26004.14, + "probability": 0.7594 + }, + { + "start": 26004.28, + "end": 26005.16, + "probability": 0.9181 + }, + { + "start": 26005.6, + "end": 26008.32, + "probability": 0.8226 + }, + { + "start": 26008.7, + "end": 26008.9, + "probability": 0.2482 + }, + { + "start": 26009.04, + "end": 26011.5, + "probability": 0.9198 + }, + { + "start": 26011.72, + "end": 26013.34, + "probability": 0.8731 + }, + { + "start": 26014.2, + "end": 26014.64, + "probability": 0.4687 + }, + { + "start": 26014.86, + "end": 26016.64, + "probability": 0.9026 + }, + { + "start": 26016.76, + "end": 26018.9, + "probability": 0.377 + }, + { + "start": 26018.94, + "end": 26019.34, + "probability": 0.9322 + }, + { + "start": 26026.92, + "end": 26027.62, + "probability": 0.3313 + }, + { + "start": 26027.62, + "end": 26027.62, + "probability": 0.3192 + }, + { + "start": 26027.9, + "end": 26028.82, + "probability": 0.688 + }, + { + "start": 26028.84, + "end": 26029.66, + "probability": 0.7034 + }, + { + "start": 26029.8, + "end": 26033.46, + "probability": 0.7549 + }, + { + "start": 26033.6, + "end": 26034.36, + "probability": 0.5234 + }, + { + "start": 26034.88, + "end": 26035.86, + "probability": 0.9795 + }, + { + "start": 26036.38, + "end": 26036.5, + "probability": 0.2808 + }, + { + "start": 26036.5, + "end": 26038.7, + "probability": 0.6511 + }, + { + "start": 26038.7, + "end": 26041.48, + "probability": 0.9665 + }, + { + "start": 26041.8, + "end": 26042.82, + "probability": 0.6213 + }, + { + "start": 26043.3, + "end": 26045.42, + "probability": 0.6527 + }, + { + "start": 26048.45, + "end": 26049.1, + "probability": 0.1965 + }, + { + "start": 26049.1, + "end": 26050.0, + "probability": 0.0436 + }, + { + "start": 26050.1, + "end": 26051.9, + "probability": 0.8731 + }, + { + "start": 26052.28, + "end": 26055.68, + "probability": 0.9775 + }, + { + "start": 26056.48, + "end": 26058.1, + "probability": 0.7703 + }, + { + "start": 26058.52, + "end": 26061.9, + "probability": 0.9536 + }, + { + "start": 26062.24, + "end": 26067.1, + "probability": 0.85 + }, + { + "start": 26067.78, + "end": 26068.16, + "probability": 0.5015 + }, + { + "start": 26068.26, + "end": 26072.18, + "probability": 0.8961 + }, + { + "start": 26072.44, + "end": 26073.86, + "probability": 0.9982 + }, + { + "start": 26074.38, + "end": 26077.93, + "probability": 0.8613 + }, + { + "start": 26079.06, + "end": 26083.44, + "probability": 0.9727 + }, + { + "start": 26084.96, + "end": 26087.12, + "probability": 0.3728 + }, + { + "start": 26087.14, + "end": 26087.66, + "probability": 0.681 + }, + { + "start": 26088.18, + "end": 26088.84, + "probability": 0.8816 + }, + { + "start": 26088.9, + "end": 26091.2, + "probability": 0.8143 + }, + { + "start": 26091.68, + "end": 26092.94, + "probability": 0.7243 + }, + { + "start": 26094.14, + "end": 26095.22, + "probability": 0.4276 + }, + { + "start": 26095.58, + "end": 26095.64, + "probability": 0.0062 + } + ], + "segments_count": 9476, + "words_count": 47671, + "avg_words_per_segment": 5.0307, + "avg_segment_duration": 2.0805, + "avg_words_per_minute": 109.4887, + "plenum_id": "34458", + "duration": 26123.79, + "title": null, + "plenum_date": "2014-01-22" +} \ No newline at end of file