diff --git "a/34722/metadata.json" "b/34722/metadata.json" new file mode 100644--- /dev/null +++ "b/34722/metadata.json" @@ -0,0 +1,30577 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "34722", + "quality_score": 0.9023, + "per_segment_quality_scores": [ + { + "start": 69.46, + "end": 73.46, + "probability": 0.1729 + }, + { + "start": 73.48, + "end": 74.32, + "probability": 0.1468 + }, + { + "start": 74.68, + "end": 74.78, + "probability": 0.1112 + }, + { + "start": 74.78, + "end": 77.48, + "probability": 0.4211 + }, + { + "start": 81.04, + "end": 84.76, + "probability": 0.1179 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 127.74, + "end": 132.26, + "probability": 0.9397 + }, + { + "start": 132.58, + "end": 139.28, + "probability": 0.1444 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.0, + "end": 245.0, + "probability": 0.0 + }, + { + "start": 245.16, + "end": 245.36, + "probability": 0.015 + }, + { + "start": 245.36, + "end": 245.36, + "probability": 0.0563 + }, + { + "start": 245.36, + "end": 245.36, + "probability": 0.1688 + }, + { + "start": 245.36, + "end": 245.36, + "probability": 0.0357 + }, + { + "start": 245.36, + "end": 245.36, + "probability": 0.1235 + }, + { + "start": 245.36, + "end": 247.08, + "probability": 0.3052 + }, + { + "start": 247.08, + "end": 247.28, + "probability": 0.3427 + }, + { + "start": 248.68, + "end": 250.34, + "probability": 0.6259 + }, + { + "start": 252.32, + "end": 259.02, + "probability": 0.9061 + }, + { + "start": 260.32, + "end": 264.04, + "probability": 0.7568 + }, + { + "start": 265.9, + "end": 267.36, + "probability": 0.9719 + }, + { + "start": 267.88, + "end": 269.26, + "probability": 0.8762 + }, + { + "start": 270.16, + "end": 270.64, + "probability": 0.4594 + }, + { + "start": 270.66, + "end": 271.92, + "probability": 0.5583 + }, + { + "start": 272.88, + "end": 276.24, + "probability": 0.9567 + }, + { + "start": 276.36, + "end": 277.08, + "probability": 0.2761 + }, + { + "start": 277.38, + "end": 278.64, + "probability": 0.6041 + }, + { + "start": 278.84, + "end": 280.68, + "probability": 0.4102 + }, + { + "start": 282.06, + "end": 284.7, + "probability": 0.7824 + }, + { + "start": 285.18, + "end": 285.68, + "probability": 0.2115 + }, + { + "start": 288.28, + "end": 290.48, + "probability": 0.9144 + }, + { + "start": 291.02, + "end": 294.74, + "probability": 0.9723 + }, + { + "start": 295.46, + "end": 299.14, + "probability": 0.9258 + }, + { + "start": 300.86, + "end": 305.44, + "probability": 0.9583 + }, + { + "start": 306.04, + "end": 307.22, + "probability": 0.949 + }, + { + "start": 308.66, + "end": 314.58, + "probability": 0.8292 + }, + { + "start": 315.44, + "end": 317.0, + "probability": 0.9531 + }, + { + "start": 318.0, + "end": 320.38, + "probability": 0.952 + }, + { + "start": 321.66, + "end": 324.98, + "probability": 0.9259 + }, + { + "start": 325.96, + "end": 331.04, + "probability": 0.9799 + }, + { + "start": 331.48, + "end": 332.25, + "probability": 0.9863 + }, + { + "start": 333.38, + "end": 334.6, + "probability": 0.8581 + }, + { + "start": 335.7, + "end": 336.26, + "probability": 0.8698 + }, + { + "start": 337.64, + "end": 339.66, + "probability": 0.9423 + }, + { + "start": 340.14, + "end": 342.26, + "probability": 0.9363 + }, + { + "start": 342.54, + "end": 344.14, + "probability": 0.847 + }, + { + "start": 344.46, + "end": 344.8, + "probability": 0.4564 + }, + { + "start": 345.62, + "end": 346.08, + "probability": 0.6692 + }, + { + "start": 347.04, + "end": 351.66, + "probability": 0.7492 + }, + { + "start": 351.66, + "end": 356.96, + "probability": 0.9517 + }, + { + "start": 357.1, + "end": 357.48, + "probability": 0.3365 + }, + { + "start": 357.56, + "end": 358.52, + "probability": 0.7556 + }, + { + "start": 359.62, + "end": 360.86, + "probability": 0.6172 + }, + { + "start": 361.42, + "end": 363.46, + "probability": 0.9357 + }, + { + "start": 363.64, + "end": 367.58, + "probability": 0.7635 + }, + { + "start": 368.28, + "end": 371.46, + "probability": 0.9887 + }, + { + "start": 372.26, + "end": 374.2, + "probability": 0.8812 + }, + { + "start": 376.0, + "end": 377.2, + "probability": 0.8079 + }, + { + "start": 378.06, + "end": 379.34, + "probability": 0.9821 + }, + { + "start": 380.62, + "end": 381.95, + "probability": 0.6421 + }, + { + "start": 383.52, + "end": 385.92, + "probability": 0.8945 + }, + { + "start": 387.04, + "end": 388.22, + "probability": 0.6624 + }, + { + "start": 390.02, + "end": 393.28, + "probability": 0.9321 + }, + { + "start": 394.22, + "end": 397.1, + "probability": 0.8617 + }, + { + "start": 399.64, + "end": 401.42, + "probability": 0.5764 + }, + { + "start": 403.26, + "end": 404.32, + "probability": 0.7856 + }, + { + "start": 405.38, + "end": 406.24, + "probability": 0.7587 + }, + { + "start": 407.0, + "end": 408.14, + "probability": 0.7953 + }, + { + "start": 409.12, + "end": 410.22, + "probability": 0.7998 + }, + { + "start": 411.36, + "end": 413.76, + "probability": 0.9653 + }, + { + "start": 414.74, + "end": 415.42, + "probability": 0.5797 + }, + { + "start": 415.44, + "end": 418.34, + "probability": 0.978 + }, + { + "start": 418.34, + "end": 423.5, + "probability": 0.9625 + }, + { + "start": 423.66, + "end": 426.48, + "probability": 0.8496 + }, + { + "start": 427.54, + "end": 432.54, + "probability": 0.9157 + }, + { + "start": 433.62, + "end": 437.06, + "probability": 0.966 + }, + { + "start": 438.28, + "end": 444.32, + "probability": 0.9888 + }, + { + "start": 445.38, + "end": 447.98, + "probability": 0.991 + }, + { + "start": 448.98, + "end": 454.46, + "probability": 0.9912 + }, + { + "start": 454.46, + "end": 458.66, + "probability": 0.9976 + }, + { + "start": 460.18, + "end": 464.46, + "probability": 0.9189 + }, + { + "start": 464.68, + "end": 466.42, + "probability": 0.9195 + }, + { + "start": 466.48, + "end": 467.5, + "probability": 0.853 + }, + { + "start": 468.54, + "end": 470.94, + "probability": 0.9131 + }, + { + "start": 471.56, + "end": 475.78, + "probability": 0.9902 + }, + { + "start": 476.76, + "end": 477.96, + "probability": 0.8462 + }, + { + "start": 478.5, + "end": 481.7, + "probability": 0.6614 + }, + { + "start": 482.68, + "end": 486.24, + "probability": 0.9696 + }, + { + "start": 486.84, + "end": 487.38, + "probability": 0.7847 + }, + { + "start": 487.96, + "end": 489.38, + "probability": 0.9512 + }, + { + "start": 490.06, + "end": 495.02, + "probability": 0.8882 + }, + { + "start": 496.96, + "end": 499.04, + "probability": 0.7827 + }, + { + "start": 499.68, + "end": 501.38, + "probability": 0.5297 + }, + { + "start": 502.7, + "end": 506.56, + "probability": 0.9832 + }, + { + "start": 508.78, + "end": 509.58, + "probability": 0.8571 + }, + { + "start": 510.64, + "end": 514.14, + "probability": 0.9923 + }, + { + "start": 515.08, + "end": 515.6, + "probability": 0.9958 + }, + { + "start": 516.88, + "end": 518.16, + "probability": 0.801 + }, + { + "start": 518.8, + "end": 519.24, + "probability": 0.7735 + }, + { + "start": 520.78, + "end": 524.26, + "probability": 0.7244 + }, + { + "start": 525.58, + "end": 527.66, + "probability": 0.9816 + }, + { + "start": 528.36, + "end": 529.8, + "probability": 0.7932 + }, + { + "start": 531.34, + "end": 533.44, + "probability": 0.8872 + }, + { + "start": 534.12, + "end": 537.84, + "probability": 0.9798 + }, + { + "start": 539.02, + "end": 541.76, + "probability": 0.9492 + }, + { + "start": 542.3, + "end": 544.22, + "probability": 0.9019 + }, + { + "start": 545.33, + "end": 550.16, + "probability": 0.8664 + }, + { + "start": 550.6, + "end": 550.62, + "probability": 0.3535 + }, + { + "start": 550.82, + "end": 551.6, + "probability": 0.7509 + }, + { + "start": 551.7, + "end": 552.18, + "probability": 0.498 + }, + { + "start": 552.44, + "end": 554.56, + "probability": 0.9775 + }, + { + "start": 554.72, + "end": 555.08, + "probability": 0.645 + }, + { + "start": 555.64, + "end": 559.92, + "probability": 0.8285 + }, + { + "start": 561.18, + "end": 564.8, + "probability": 0.9189 + }, + { + "start": 568.02, + "end": 569.94, + "probability": 0.983 + }, + { + "start": 570.62, + "end": 571.88, + "probability": 0.6495 + }, + { + "start": 573.36, + "end": 577.3, + "probability": 0.9995 + }, + { + "start": 577.52, + "end": 578.48, + "probability": 0.6974 + }, + { + "start": 580.06, + "end": 581.48, + "probability": 0.9761 + }, + { + "start": 582.22, + "end": 584.54, + "probability": 0.9036 + }, + { + "start": 585.44, + "end": 588.46, + "probability": 0.8472 + }, + { + "start": 590.78, + "end": 593.12, + "probability": 0.8613 + }, + { + "start": 594.0, + "end": 598.38, + "probability": 0.9956 + }, + { + "start": 599.52, + "end": 601.1, + "probability": 0.7372 + }, + { + "start": 601.22, + "end": 603.74, + "probability": 0.9708 + }, + { + "start": 604.46, + "end": 607.9, + "probability": 0.9438 + }, + { + "start": 607.96, + "end": 609.8, + "probability": 0.9357 + }, + { + "start": 609.9, + "end": 611.46, + "probability": 0.8143 + }, + { + "start": 613.18, + "end": 615.06, + "probability": 0.8636 + }, + { + "start": 615.22, + "end": 616.26, + "probability": 0.5815 + }, + { + "start": 616.42, + "end": 618.04, + "probability": 0.9116 + }, + { + "start": 618.9, + "end": 620.68, + "probability": 0.907 + }, + { + "start": 622.0, + "end": 622.88, + "probability": 0.7581 + }, + { + "start": 624.18, + "end": 630.38, + "probability": 0.9914 + }, + { + "start": 633.8, + "end": 636.54, + "probability": 0.6107 + }, + { + "start": 637.5, + "end": 638.62, + "probability": 0.8686 + }, + { + "start": 639.52, + "end": 644.06, + "probability": 0.9597 + }, + { + "start": 644.16, + "end": 645.58, + "probability": 0.8218 + }, + { + "start": 646.26, + "end": 650.68, + "probability": 0.9956 + }, + { + "start": 650.68, + "end": 655.92, + "probability": 0.9882 + }, + { + "start": 656.76, + "end": 659.72, + "probability": 0.7958 + }, + { + "start": 660.54, + "end": 662.52, + "probability": 0.9631 + }, + { + "start": 663.38, + "end": 664.2, + "probability": 0.8931 + }, + { + "start": 664.42, + "end": 665.58, + "probability": 0.9309 + }, + { + "start": 665.7, + "end": 669.07, + "probability": 0.9803 + }, + { + "start": 669.88, + "end": 669.88, + "probability": 0.0105 + }, + { + "start": 670.66, + "end": 670.76, + "probability": 0.0076 + }, + { + "start": 670.82, + "end": 674.85, + "probability": 0.1418 + }, + { + "start": 675.56, + "end": 676.72, + "probability": 0.018 + }, + { + "start": 676.72, + "end": 681.68, + "probability": 0.8502 + }, + { + "start": 682.54, + "end": 687.56, + "probability": 0.933 + }, + { + "start": 687.76, + "end": 688.8, + "probability": 0.8164 + }, + { + "start": 688.84, + "end": 689.8, + "probability": 0.5631 + }, + { + "start": 689.96, + "end": 692.01, + "probability": 0.8309 + }, + { + "start": 692.2, + "end": 693.64, + "probability": 0.9172 + }, + { + "start": 694.04, + "end": 694.84, + "probability": 0.8588 + }, + { + "start": 695.22, + "end": 696.8, + "probability": 0.95 + }, + { + "start": 697.14, + "end": 702.64, + "probability": 0.9599 + }, + { + "start": 703.42, + "end": 705.34, + "probability": 0.9094 + }, + { + "start": 705.42, + "end": 706.92, + "probability": 0.9307 + }, + { + "start": 706.98, + "end": 707.53, + "probability": 0.9646 + }, + { + "start": 708.14, + "end": 710.86, + "probability": 0.8235 + }, + { + "start": 713.44, + "end": 715.28, + "probability": 0.7826 + }, + { + "start": 715.32, + "end": 717.68, + "probability": 0.8723 + }, + { + "start": 717.82, + "end": 718.58, + "probability": 0.9111 + }, + { + "start": 718.84, + "end": 719.9, + "probability": 0.1843 + }, + { + "start": 720.22, + "end": 723.82, + "probability": 0.7718 + }, + { + "start": 725.4, + "end": 729.74, + "probability": 0.8874 + }, + { + "start": 731.7, + "end": 732.52, + "probability": 0.6961 + }, + { + "start": 732.6, + "end": 733.9, + "probability": 0.8945 + }, + { + "start": 734.22, + "end": 736.26, + "probability": 0.9972 + }, + { + "start": 739.28, + "end": 739.94, + "probability": 0.495 + }, + { + "start": 741.98, + "end": 742.48, + "probability": 0.7303 + }, + { + "start": 742.7, + "end": 744.46, + "probability": 0.8797 + }, + { + "start": 744.64, + "end": 749.48, + "probability": 0.9541 + }, + { + "start": 749.84, + "end": 751.06, + "probability": 0.8513 + }, + { + "start": 751.72, + "end": 753.3, + "probability": 0.9038 + }, + { + "start": 753.34, + "end": 758.88, + "probability": 0.9905 + }, + { + "start": 761.02, + "end": 762.9, + "probability": 0.5351 + }, + { + "start": 763.72, + "end": 768.32, + "probability": 0.9473 + }, + { + "start": 769.74, + "end": 774.28, + "probability": 0.75 + }, + { + "start": 775.36, + "end": 779.76, + "probability": 0.7116 + }, + { + "start": 780.8, + "end": 782.03, + "probability": 0.9436 + }, + { + "start": 782.8, + "end": 786.68, + "probability": 0.7812 + }, + { + "start": 786.94, + "end": 788.24, + "probability": 0.7793 + }, + { + "start": 789.06, + "end": 792.68, + "probability": 0.9951 + }, + { + "start": 793.24, + "end": 793.98, + "probability": 0.7955 + }, + { + "start": 794.28, + "end": 798.96, + "probability": 0.9308 + }, + { + "start": 800.0, + "end": 800.82, + "probability": 0.9704 + }, + { + "start": 802.6, + "end": 803.28, + "probability": 0.9598 + }, + { + "start": 805.48, + "end": 806.32, + "probability": 0.5841 + }, + { + "start": 809.52, + "end": 812.48, + "probability": 0.636 + }, + { + "start": 813.66, + "end": 814.0, + "probability": 0.5928 + }, + { + "start": 815.18, + "end": 818.26, + "probability": 0.283 + }, + { + "start": 818.54, + "end": 820.06, + "probability": 0.6182 + }, + { + "start": 820.48, + "end": 823.02, + "probability": 0.9953 + }, + { + "start": 824.06, + "end": 825.58, + "probability": 0.9477 + }, + { + "start": 826.98, + "end": 828.54, + "probability": 0.7826 + }, + { + "start": 828.84, + "end": 829.36, + "probability": 0.7183 + }, + { + "start": 829.42, + "end": 832.6, + "probability": 0.9614 + }, + { + "start": 832.6, + "end": 833.0, + "probability": 0.7172 + }, + { + "start": 834.24, + "end": 835.56, + "probability": 0.9641 + }, + { + "start": 836.38, + "end": 838.54, + "probability": 0.8463 + }, + { + "start": 840.1, + "end": 840.99, + "probability": 0.9746 + }, + { + "start": 842.6, + "end": 843.97, + "probability": 0.7599 + }, + { + "start": 844.94, + "end": 846.76, + "probability": 0.9673 + }, + { + "start": 847.3, + "end": 848.96, + "probability": 0.7262 + }, + { + "start": 849.36, + "end": 850.52, + "probability": 0.9391 + }, + { + "start": 851.46, + "end": 852.56, + "probability": 0.9049 + }, + { + "start": 854.4, + "end": 856.64, + "probability": 0.7006 + }, + { + "start": 857.54, + "end": 860.77, + "probability": 0.9749 + }, + { + "start": 862.42, + "end": 863.9, + "probability": 0.9225 + }, + { + "start": 865.08, + "end": 866.74, + "probability": 0.8296 + }, + { + "start": 866.74, + "end": 867.42, + "probability": 0.794 + }, + { + "start": 867.48, + "end": 867.92, + "probability": 0.95 + }, + { + "start": 867.98, + "end": 873.06, + "probability": 0.9614 + }, + { + "start": 874.16, + "end": 879.38, + "probability": 0.9344 + }, + { + "start": 879.96, + "end": 884.52, + "probability": 0.9487 + }, + { + "start": 886.38, + "end": 889.22, + "probability": 0.7485 + }, + { + "start": 889.26, + "end": 889.64, + "probability": 0.6835 + }, + { + "start": 889.86, + "end": 890.72, + "probability": 0.7478 + }, + { + "start": 890.82, + "end": 891.74, + "probability": 0.5469 + }, + { + "start": 891.8, + "end": 893.74, + "probability": 0.9753 + }, + { + "start": 894.28, + "end": 895.24, + "probability": 0.5408 + }, + { + "start": 896.18, + "end": 897.48, + "probability": 0.6189 + }, + { + "start": 898.94, + "end": 898.94, + "probability": 0.3654 + }, + { + "start": 898.94, + "end": 904.34, + "probability": 0.9512 + }, + { + "start": 904.44, + "end": 907.28, + "probability": 0.9144 + }, + { + "start": 907.36, + "end": 907.7, + "probability": 0.5633 + }, + { + "start": 908.64, + "end": 911.74, + "probability": 0.9976 + }, + { + "start": 911.82, + "end": 916.96, + "probability": 0.9014 + }, + { + "start": 918.08, + "end": 922.02, + "probability": 0.9665 + }, + { + "start": 922.1, + "end": 922.34, + "probability": 0.739 + }, + { + "start": 922.5, + "end": 925.02, + "probability": 0.5742 + }, + { + "start": 925.02, + "end": 927.2, + "probability": 0.9478 + }, + { + "start": 928.18, + "end": 928.82, + "probability": 0.8789 + }, + { + "start": 928.96, + "end": 930.37, + "probability": 0.9878 + }, + { + "start": 931.91, + "end": 941.76, + "probability": 0.9412 + }, + { + "start": 941.92, + "end": 942.56, + "probability": 0.6857 + }, + { + "start": 942.8, + "end": 943.0, + "probability": 0.5789 + }, + { + "start": 943.46, + "end": 945.8, + "probability": 0.8699 + }, + { + "start": 946.54, + "end": 951.1, + "probability": 0.7937 + }, + { + "start": 951.9, + "end": 954.16, + "probability": 0.9843 + }, + { + "start": 954.78, + "end": 957.82, + "probability": 0.7236 + }, + { + "start": 958.36, + "end": 960.0, + "probability": 0.9739 + }, + { + "start": 960.44, + "end": 962.22, + "probability": 0.9951 + }, + { + "start": 962.22, + "end": 965.08, + "probability": 0.954 + }, + { + "start": 965.9, + "end": 966.1, + "probability": 0.8377 + }, + { + "start": 966.38, + "end": 968.63, + "probability": 0.782 + }, + { + "start": 969.24, + "end": 971.38, + "probability": 0.7785 + }, + { + "start": 971.48, + "end": 974.12, + "probability": 0.8017 + }, + { + "start": 974.2, + "end": 974.64, + "probability": 0.5576 + }, + { + "start": 974.8, + "end": 975.56, + "probability": 0.9211 + }, + { + "start": 975.8, + "end": 978.4, + "probability": 0.931 + }, + { + "start": 978.44, + "end": 979.42, + "probability": 0.9549 + }, + { + "start": 979.76, + "end": 983.72, + "probability": 0.9161 + }, + { + "start": 984.66, + "end": 984.66, + "probability": 0.1401 + }, + { + "start": 984.66, + "end": 985.16, + "probability": 0.3209 + }, + { + "start": 985.4, + "end": 991.0, + "probability": 0.6561 + }, + { + "start": 991.08, + "end": 994.14, + "probability": 0.9812 + }, + { + "start": 994.22, + "end": 997.12, + "probability": 0.8531 + }, + { + "start": 998.46, + "end": 1005.08, + "probability": 0.9071 + }, + { + "start": 1005.74, + "end": 1008.16, + "probability": 0.9899 + }, + { + "start": 1008.94, + "end": 1012.48, + "probability": 0.9984 + }, + { + "start": 1012.98, + "end": 1013.34, + "probability": 0.5911 + }, + { + "start": 1023.04, + "end": 1023.24, + "probability": 0.2977 + }, + { + "start": 1023.4, + "end": 1024.02, + "probability": 0.5887 + }, + { + "start": 1024.56, + "end": 1025.68, + "probability": 0.8872 + }, + { + "start": 1026.88, + "end": 1028.58, + "probability": 0.9355 + }, + { + "start": 1030.4, + "end": 1033.54, + "probability": 0.876 + }, + { + "start": 1034.68, + "end": 1035.38, + "probability": 0.8024 + }, + { + "start": 1036.24, + "end": 1037.4, + "probability": 0.8209 + }, + { + "start": 1038.26, + "end": 1040.94, + "probability": 0.9426 + }, + { + "start": 1041.72, + "end": 1043.54, + "probability": 0.6915 + }, + { + "start": 1043.72, + "end": 1046.54, + "probability": 0.8367 + }, + { + "start": 1046.94, + "end": 1047.82, + "probability": 0.0163 + }, + { + "start": 1047.9, + "end": 1052.7, + "probability": 0.9293 + }, + { + "start": 1053.16, + "end": 1054.95, + "probability": 0.6784 + }, + { + "start": 1055.88, + "end": 1057.44, + "probability": 0.9831 + }, + { + "start": 1059.12, + "end": 1063.32, + "probability": 0.9914 + }, + { + "start": 1064.26, + "end": 1069.78, + "probability": 0.9013 + }, + { + "start": 1070.66, + "end": 1075.24, + "probability": 0.9988 + }, + { + "start": 1075.92, + "end": 1077.84, + "probability": 0.7333 + }, + { + "start": 1080.02, + "end": 1080.88, + "probability": 0.8491 + }, + { + "start": 1082.14, + "end": 1084.56, + "probability": 0.9983 + }, + { + "start": 1085.44, + "end": 1089.12, + "probability": 0.9929 + }, + { + "start": 1089.9, + "end": 1092.9, + "probability": 0.9142 + }, + { + "start": 1093.88, + "end": 1094.98, + "probability": 0.6493 + }, + { + "start": 1095.52, + "end": 1096.86, + "probability": 0.6738 + }, + { + "start": 1096.9, + "end": 1099.86, + "probability": 0.9166 + }, + { + "start": 1100.86, + "end": 1105.73, + "probability": 0.9744 + }, + { + "start": 1106.34, + "end": 1107.68, + "probability": 0.7344 + }, + { + "start": 1108.74, + "end": 1111.36, + "probability": 0.9715 + }, + { + "start": 1111.52, + "end": 1113.88, + "probability": 0.987 + }, + { + "start": 1114.96, + "end": 1120.86, + "probability": 0.9891 + }, + { + "start": 1121.82, + "end": 1122.64, + "probability": 0.7456 + }, + { + "start": 1123.6, + "end": 1129.14, + "probability": 0.9919 + }, + { + "start": 1130.2, + "end": 1130.62, + "probability": 0.2259 + }, + { + "start": 1132.12, + "end": 1134.12, + "probability": 0.399 + }, + { + "start": 1136.74, + "end": 1138.9, + "probability": 0.7498 + }, + { + "start": 1138.96, + "end": 1139.48, + "probability": 0.6564 + }, + { + "start": 1139.68, + "end": 1140.2, + "probability": 0.868 + }, + { + "start": 1141.52, + "end": 1143.08, + "probability": 0.9878 + }, + { + "start": 1146.74, + "end": 1147.64, + "probability": 0.4318 + }, + { + "start": 1147.72, + "end": 1148.64, + "probability": 0.4997 + }, + { + "start": 1149.12, + "end": 1153.82, + "probability": 0.7922 + }, + { + "start": 1154.5, + "end": 1157.98, + "probability": 0.6565 + }, + { + "start": 1159.42, + "end": 1160.22, + "probability": 0.8372 + }, + { + "start": 1160.76, + "end": 1161.26, + "probability": 0.7641 + }, + { + "start": 1163.38, + "end": 1169.32, + "probability": 0.9974 + }, + { + "start": 1169.92, + "end": 1171.38, + "probability": 0.8506 + }, + { + "start": 1172.62, + "end": 1174.62, + "probability": 0.988 + }, + { + "start": 1174.7, + "end": 1175.2, + "probability": 0.7508 + }, + { + "start": 1175.8, + "end": 1178.42, + "probability": 0.9915 + }, + { + "start": 1178.7, + "end": 1179.74, + "probability": 0.9423 + }, + { + "start": 1181.22, + "end": 1183.46, + "probability": 0.9698 + }, + { + "start": 1184.68, + "end": 1192.58, + "probability": 0.9846 + }, + { + "start": 1192.76, + "end": 1194.46, + "probability": 0.9429 + }, + { + "start": 1195.04, + "end": 1197.82, + "probability": 0.9494 + }, + { + "start": 1198.76, + "end": 1201.14, + "probability": 0.8101 + }, + { + "start": 1202.0, + "end": 1206.88, + "probability": 0.6918 + }, + { + "start": 1207.6, + "end": 1208.65, + "probability": 0.7813 + }, + { + "start": 1209.72, + "end": 1214.96, + "probability": 0.9695 + }, + { + "start": 1216.76, + "end": 1218.02, + "probability": 0.6017 + }, + { + "start": 1221.8, + "end": 1225.08, + "probability": 0.9734 + }, + { + "start": 1225.96, + "end": 1228.38, + "probability": 0.9282 + }, + { + "start": 1229.16, + "end": 1230.4, + "probability": 0.899 + }, + { + "start": 1231.28, + "end": 1233.52, + "probability": 0.7373 + }, + { + "start": 1234.7, + "end": 1239.14, + "probability": 0.9499 + }, + { + "start": 1239.9, + "end": 1243.56, + "probability": 0.9656 + }, + { + "start": 1244.1, + "end": 1246.52, + "probability": 0.8718 + }, + { + "start": 1247.4, + "end": 1249.96, + "probability": 0.9091 + }, + { + "start": 1250.9, + "end": 1252.65, + "probability": 0.822 + }, + { + "start": 1253.78, + "end": 1256.8, + "probability": 0.7963 + }, + { + "start": 1258.08, + "end": 1259.22, + "probability": 0.6772 + }, + { + "start": 1259.88, + "end": 1263.24, + "probability": 0.9578 + }, + { + "start": 1263.38, + "end": 1264.1, + "probability": 0.8058 + }, + { + "start": 1264.7, + "end": 1269.08, + "probability": 0.9818 + }, + { + "start": 1269.6, + "end": 1272.16, + "probability": 0.6668 + }, + { + "start": 1273.44, + "end": 1274.6, + "probability": 0.9966 + }, + { + "start": 1275.44, + "end": 1278.52, + "probability": 0.9357 + }, + { + "start": 1282.32, + "end": 1282.94, + "probability": 0.6899 + }, + { + "start": 1283.12, + "end": 1287.42, + "probability": 0.804 + }, + { + "start": 1287.98, + "end": 1288.66, + "probability": 0.9616 + }, + { + "start": 1288.88, + "end": 1289.2, + "probability": 0.3501 + }, + { + "start": 1289.42, + "end": 1293.84, + "probability": 0.6033 + }, + { + "start": 1294.3, + "end": 1295.54, + "probability": 0.8545 + }, + { + "start": 1295.62, + "end": 1301.46, + "probability": 0.9798 + }, + { + "start": 1302.88, + "end": 1305.06, + "probability": 0.7087 + }, + { + "start": 1305.06, + "end": 1307.56, + "probability": 0.5907 + }, + { + "start": 1308.12, + "end": 1310.46, + "probability": 0.1622 + }, + { + "start": 1311.38, + "end": 1313.48, + "probability": 0.9907 + }, + { + "start": 1314.8, + "end": 1318.52, + "probability": 0.6839 + }, + { + "start": 1319.32, + "end": 1323.98, + "probability": 0.974 + }, + { + "start": 1324.78, + "end": 1328.62, + "probability": 0.9727 + }, + { + "start": 1328.76, + "end": 1330.3, + "probability": 0.9362 + }, + { + "start": 1330.44, + "end": 1335.0, + "probability": 0.9911 + }, + { + "start": 1335.76, + "end": 1338.86, + "probability": 0.993 + }, + { + "start": 1340.0, + "end": 1341.56, + "probability": 0.5739 + }, + { + "start": 1341.92, + "end": 1342.78, + "probability": 0.8697 + }, + { + "start": 1342.94, + "end": 1343.36, + "probability": 0.447 + }, + { + "start": 1343.4, + "end": 1344.12, + "probability": 0.7376 + }, + { + "start": 1344.64, + "end": 1350.08, + "probability": 0.9644 + }, + { + "start": 1350.24, + "end": 1351.12, + "probability": 0.9895 + }, + { + "start": 1353.0, + "end": 1354.7, + "probability": 0.6115 + }, + { + "start": 1356.3, + "end": 1357.86, + "probability": 0.8069 + }, + { + "start": 1357.92, + "end": 1358.62, + "probability": 0.6313 + }, + { + "start": 1358.68, + "end": 1360.34, + "probability": 0.5589 + }, + { + "start": 1360.52, + "end": 1361.4, + "probability": 0.769 + }, + { + "start": 1362.52, + "end": 1364.04, + "probability": 0.6455 + }, + { + "start": 1364.68, + "end": 1369.58, + "probability": 0.9785 + }, + { + "start": 1369.58, + "end": 1372.92, + "probability": 0.9914 + }, + { + "start": 1374.26, + "end": 1376.24, + "probability": 0.8624 + }, + { + "start": 1376.24, + "end": 1379.62, + "probability": 0.8152 + }, + { + "start": 1379.62, + "end": 1381.88, + "probability": 0.7335 + }, + { + "start": 1381.88, + "end": 1385.16, + "probability": 0.8088 + }, + { + "start": 1386.54, + "end": 1387.1, + "probability": 0.5208 + }, + { + "start": 1387.64, + "end": 1390.99, + "probability": 0.8229 + }, + { + "start": 1391.34, + "end": 1391.58, + "probability": 0.5864 + }, + { + "start": 1393.62, + "end": 1394.94, + "probability": 0.8638 + }, + { + "start": 1395.48, + "end": 1396.8, + "probability": 0.9301 + }, + { + "start": 1396.8, + "end": 1396.98, + "probability": 0.7216 + }, + { + "start": 1398.0, + "end": 1398.26, + "probability": 0.6202 + }, + { + "start": 1398.42, + "end": 1398.98, + "probability": 0.7695 + }, + { + "start": 1399.14, + "end": 1399.94, + "probability": 0.6242 + }, + { + "start": 1400.12, + "end": 1401.78, + "probability": 0.7249 + }, + { + "start": 1402.34, + "end": 1403.83, + "probability": 0.908 + }, + { + "start": 1405.06, + "end": 1406.38, + "probability": 0.9791 + }, + { + "start": 1407.78, + "end": 1411.82, + "probability": 0.9905 + }, + { + "start": 1412.42, + "end": 1416.58, + "probability": 0.9018 + }, + { + "start": 1417.22, + "end": 1420.12, + "probability": 0.9944 + }, + { + "start": 1420.96, + "end": 1423.1, + "probability": 0.9889 + }, + { + "start": 1423.44, + "end": 1424.44, + "probability": 0.5709 + }, + { + "start": 1425.42, + "end": 1427.98, + "probability": 0.9766 + }, + { + "start": 1428.46, + "end": 1429.16, + "probability": 0.5068 + }, + { + "start": 1430.3, + "end": 1431.68, + "probability": 0.9814 + }, + { + "start": 1435.18, + "end": 1437.13, + "probability": 0.9775 + }, + { + "start": 1438.3, + "end": 1439.21, + "probability": 0.9751 + }, + { + "start": 1440.44, + "end": 1443.48, + "probability": 0.9908 + }, + { + "start": 1444.26, + "end": 1446.76, + "probability": 0.9282 + }, + { + "start": 1447.82, + "end": 1449.38, + "probability": 0.8806 + }, + { + "start": 1450.63, + "end": 1451.26, + "probability": 0.0679 + }, + { + "start": 1451.26, + "end": 1451.8, + "probability": 0.2931 + }, + { + "start": 1453.78, + "end": 1456.22, + "probability": 0.8198 + }, + { + "start": 1457.46, + "end": 1459.96, + "probability": 0.9252 + }, + { + "start": 1461.38, + "end": 1464.56, + "probability": 0.8723 + }, + { + "start": 1465.72, + "end": 1468.22, + "probability": 0.9707 + }, + { + "start": 1469.18, + "end": 1470.66, + "probability": 0.9922 + }, + { + "start": 1471.42, + "end": 1473.52, + "probability": 0.9692 + }, + { + "start": 1474.88, + "end": 1475.0, + "probability": 0.6926 + }, + { + "start": 1475.1, + "end": 1478.14, + "probability": 0.9572 + }, + { + "start": 1478.2, + "end": 1480.1, + "probability": 0.8054 + }, + { + "start": 1480.68, + "end": 1481.32, + "probability": 0.1483 + }, + { + "start": 1483.0, + "end": 1483.06, + "probability": 0.0624 + }, + { + "start": 1483.06, + "end": 1483.06, + "probability": 0.1041 + }, + { + "start": 1483.06, + "end": 1485.94, + "probability": 0.6215 + }, + { + "start": 1486.06, + "end": 1488.84, + "probability": 0.7915 + }, + { + "start": 1489.5, + "end": 1490.6, + "probability": 0.9294 + }, + { + "start": 1490.66, + "end": 1491.7, + "probability": 0.0789 + }, + { + "start": 1491.86, + "end": 1494.12, + "probability": 0.979 + }, + { + "start": 1495.02, + "end": 1495.72, + "probability": 0.5583 + }, + { + "start": 1495.8, + "end": 1497.88, + "probability": 0.9353 + }, + { + "start": 1498.02, + "end": 1498.62, + "probability": 0.7977 + }, + { + "start": 1498.86, + "end": 1499.54, + "probability": 0.5739 + }, + { + "start": 1500.0, + "end": 1500.16, + "probability": 0.8132 + }, + { + "start": 1500.2, + "end": 1502.0, + "probability": 0.8198 + }, + { + "start": 1502.8, + "end": 1505.68, + "probability": 0.769 + }, + { + "start": 1506.28, + "end": 1508.48, + "probability": 0.8549 + }, + { + "start": 1509.42, + "end": 1511.72, + "probability": 0.7887 + }, + { + "start": 1512.28, + "end": 1513.02, + "probability": 0.7646 + }, + { + "start": 1513.72, + "end": 1515.94, + "probability": 0.7926 + }, + { + "start": 1517.36, + "end": 1517.66, + "probability": 0.9375 + }, + { + "start": 1518.22, + "end": 1519.33, + "probability": 0.9229 + }, + { + "start": 1520.1, + "end": 1521.46, + "probability": 0.9783 + }, + { + "start": 1522.66, + "end": 1524.08, + "probability": 0.9512 + }, + { + "start": 1524.84, + "end": 1526.54, + "probability": 0.8308 + }, + { + "start": 1527.14, + "end": 1527.78, + "probability": 0.9838 + }, + { + "start": 1527.9, + "end": 1527.96, + "probability": 0.3739 + }, + { + "start": 1528.06, + "end": 1529.54, + "probability": 0.8274 + }, + { + "start": 1529.96, + "end": 1531.24, + "probability": 0.8348 + }, + { + "start": 1532.54, + "end": 1532.7, + "probability": 0.7485 + }, + { + "start": 1532.74, + "end": 1533.73, + "probability": 0.915 + }, + { + "start": 1534.44, + "end": 1536.62, + "probability": 0.9122 + }, + { + "start": 1537.68, + "end": 1539.92, + "probability": 0.7739 + }, + { + "start": 1540.56, + "end": 1542.15, + "probability": 0.9966 + }, + { + "start": 1544.4, + "end": 1545.14, + "probability": 0.368 + }, + { + "start": 1546.14, + "end": 1548.12, + "probability": 0.8011 + }, + { + "start": 1549.04, + "end": 1551.82, + "probability": 0.7617 + }, + { + "start": 1553.18, + "end": 1555.03, + "probability": 0.9287 + }, + { + "start": 1555.94, + "end": 1557.12, + "probability": 0.9749 + }, + { + "start": 1557.72, + "end": 1558.28, + "probability": 0.6941 + }, + { + "start": 1558.94, + "end": 1560.58, + "probability": 0.8432 + }, + { + "start": 1562.12, + "end": 1563.98, + "probability": 0.853 + }, + { + "start": 1564.46, + "end": 1565.5, + "probability": 0.9282 + }, + { + "start": 1566.38, + "end": 1567.71, + "probability": 0.9489 + }, + { + "start": 1568.52, + "end": 1571.74, + "probability": 0.7743 + }, + { + "start": 1573.58, + "end": 1574.9, + "probability": 0.866 + }, + { + "start": 1575.74, + "end": 1577.31, + "probability": 0.9404 + }, + { + "start": 1588.64, + "end": 1588.78, + "probability": 0.8726 + }, + { + "start": 1588.86, + "end": 1589.16, + "probability": 0.1174 + }, + { + "start": 1589.16, + "end": 1589.16, + "probability": 0.0424 + }, + { + "start": 1589.16, + "end": 1589.16, + "probability": 0.0898 + }, + { + "start": 1589.16, + "end": 1590.0, + "probability": 0.0955 + }, + { + "start": 1590.82, + "end": 1594.14, + "probability": 0.6658 + }, + { + "start": 1594.22, + "end": 1595.06, + "probability": 0.7016 + }, + { + "start": 1595.72, + "end": 1597.7, + "probability": 0.5194 + }, + { + "start": 1597.98, + "end": 1600.19, + "probability": 0.8077 + }, + { + "start": 1601.42, + "end": 1603.2, + "probability": 0.9902 + }, + { + "start": 1604.32, + "end": 1605.3, + "probability": 0.9529 + }, + { + "start": 1606.18, + "end": 1606.74, + "probability": 0.8575 + }, + { + "start": 1607.74, + "end": 1611.78, + "probability": 0.9951 + }, + { + "start": 1612.48, + "end": 1613.83, + "probability": 0.7093 + }, + { + "start": 1614.44, + "end": 1616.24, + "probability": 0.9961 + }, + { + "start": 1616.78, + "end": 1618.61, + "probability": 0.9971 + }, + { + "start": 1618.94, + "end": 1620.48, + "probability": 0.9949 + }, + { + "start": 1620.82, + "end": 1622.1, + "probability": 0.9954 + }, + { + "start": 1622.58, + "end": 1623.26, + "probability": 0.7711 + }, + { + "start": 1623.68, + "end": 1627.44, + "probability": 0.9928 + }, + { + "start": 1627.84, + "end": 1631.82, + "probability": 0.9878 + }, + { + "start": 1632.54, + "end": 1633.16, + "probability": 0.897 + }, + { + "start": 1635.24, + "end": 1635.98, + "probability": 0.6904 + }, + { + "start": 1636.74, + "end": 1638.34, + "probability": 0.7573 + }, + { + "start": 1639.08, + "end": 1641.02, + "probability": 0.4609 + }, + { + "start": 1641.56, + "end": 1643.2, + "probability": 0.9962 + }, + { + "start": 1643.52, + "end": 1645.98, + "probability": 0.9629 + }, + { + "start": 1645.98, + "end": 1651.48, + "probability": 0.9976 + }, + { + "start": 1651.92, + "end": 1653.76, + "probability": 0.8763 + }, + { + "start": 1655.9, + "end": 1656.81, + "probability": 0.9773 + }, + { + "start": 1657.18, + "end": 1658.32, + "probability": 0.701 + }, + { + "start": 1658.76, + "end": 1665.34, + "probability": 0.9463 + }, + { + "start": 1665.84, + "end": 1668.24, + "probability": 0.9409 + }, + { + "start": 1668.72, + "end": 1671.46, + "probability": 0.93 + }, + { + "start": 1672.12, + "end": 1674.08, + "probability": 0.9963 + }, + { + "start": 1674.94, + "end": 1675.7, + "probability": 0.5315 + }, + { + "start": 1676.08, + "end": 1679.28, + "probability": 0.9824 + }, + { + "start": 1679.74, + "end": 1685.24, + "probability": 0.9527 + }, + { + "start": 1685.42, + "end": 1685.64, + "probability": 0.6447 + }, + { + "start": 1686.8, + "end": 1688.4, + "probability": 0.9022 + }, + { + "start": 1689.08, + "end": 1691.86, + "probability": 0.9311 + }, + { + "start": 1692.48, + "end": 1696.88, + "probability": 0.8823 + }, + { + "start": 1697.14, + "end": 1698.72, + "probability": 0.6952 + }, + { + "start": 1698.84, + "end": 1699.92, + "probability": 0.9597 + }, + { + "start": 1700.64, + "end": 1702.4, + "probability": 0.7461 + }, + { + "start": 1703.42, + "end": 1704.8, + "probability": 0.9704 + }, + { + "start": 1706.16, + "end": 1709.26, + "probability": 0.7341 + }, + { + "start": 1709.36, + "end": 1710.54, + "probability": 0.8096 + }, + { + "start": 1710.96, + "end": 1711.94, + "probability": 0.6537 + }, + { + "start": 1712.04, + "end": 1713.82, + "probability": 0.4429 + }, + { + "start": 1714.28, + "end": 1717.06, + "probability": 0.99 + }, + { + "start": 1717.26, + "end": 1717.86, + "probability": 0.7046 + }, + { + "start": 1718.22, + "end": 1718.64, + "probability": 0.5733 + }, + { + "start": 1719.24, + "end": 1723.44, + "probability": 0.9938 + }, + { + "start": 1724.54, + "end": 1728.24, + "probability": 0.994 + }, + { + "start": 1730.0, + "end": 1730.72, + "probability": 0.6593 + }, + { + "start": 1730.88, + "end": 1732.78, + "probability": 0.8014 + }, + { + "start": 1734.3, + "end": 1735.1, + "probability": 0.6131 + }, + { + "start": 1735.16, + "end": 1735.7, + "probability": 0.7412 + }, + { + "start": 1735.86, + "end": 1740.42, + "probability": 0.9219 + }, + { + "start": 1740.5, + "end": 1743.18, + "probability": 0.7377 + }, + { + "start": 1744.0, + "end": 1746.12, + "probability": 0.9781 + }, + { + "start": 1746.32, + "end": 1748.6, + "probability": 0.9584 + }, + { + "start": 1749.58, + "end": 1750.74, + "probability": 0.8018 + }, + { + "start": 1750.88, + "end": 1756.06, + "probability": 0.9556 + }, + { + "start": 1756.26, + "end": 1756.98, + "probability": 0.7516 + }, + { + "start": 1757.14, + "end": 1763.74, + "probability": 0.9746 + }, + { + "start": 1764.24, + "end": 1767.4, + "probability": 0.9958 + }, + { + "start": 1768.26, + "end": 1777.22, + "probability": 0.9717 + }, + { + "start": 1777.32, + "end": 1779.82, + "probability": 0.8741 + }, + { + "start": 1780.74, + "end": 1783.76, + "probability": 0.7477 + }, + { + "start": 1784.76, + "end": 1786.04, + "probability": 0.9692 + }, + { + "start": 1786.18, + "end": 1787.36, + "probability": 0.9353 + }, + { + "start": 1787.74, + "end": 1790.44, + "probability": 0.9861 + }, + { + "start": 1791.26, + "end": 1794.8, + "probability": 0.9979 + }, + { + "start": 1796.1, + "end": 1800.28, + "probability": 0.9761 + }, + { + "start": 1801.28, + "end": 1802.76, + "probability": 0.9428 + }, + { + "start": 1803.18, + "end": 1808.8, + "probability": 0.9874 + }, + { + "start": 1809.34, + "end": 1811.14, + "probability": 0.9711 + }, + { + "start": 1811.6, + "end": 1813.04, + "probability": 0.6922 + }, + { + "start": 1813.32, + "end": 1818.28, + "probability": 0.9815 + }, + { + "start": 1819.22, + "end": 1822.82, + "probability": 0.9678 + }, + { + "start": 1823.32, + "end": 1829.08, + "probability": 0.7417 + }, + { + "start": 1830.2, + "end": 1831.78, + "probability": 0.6469 + }, + { + "start": 1831.9, + "end": 1832.86, + "probability": 0.918 + }, + { + "start": 1832.92, + "end": 1834.72, + "probability": 0.9961 + }, + { + "start": 1835.32, + "end": 1837.46, + "probability": 0.8652 + }, + { + "start": 1838.18, + "end": 1838.76, + "probability": 0.9556 + }, + { + "start": 1839.3, + "end": 1842.94, + "probability": 0.9656 + }, + { + "start": 1842.94, + "end": 1846.04, + "probability": 0.9975 + }, + { + "start": 1847.74, + "end": 1850.48, + "probability": 0.77 + }, + { + "start": 1851.08, + "end": 1853.98, + "probability": 0.9848 + }, + { + "start": 1854.46, + "end": 1856.28, + "probability": 0.8711 + }, + { + "start": 1857.48, + "end": 1862.16, + "probability": 0.9438 + }, + { + "start": 1862.16, + "end": 1865.68, + "probability": 0.9728 + }, + { + "start": 1865.78, + "end": 1873.4, + "probability": 0.9888 + }, + { + "start": 1873.74, + "end": 1874.32, + "probability": 0.7521 + }, + { + "start": 1874.42, + "end": 1879.36, + "probability": 0.9302 + }, + { + "start": 1879.72, + "end": 1881.1, + "probability": 0.9766 + }, + { + "start": 1882.68, + "end": 1884.32, + "probability": 0.6481 + }, + { + "start": 1885.24, + "end": 1888.94, + "probability": 0.7603 + }, + { + "start": 1889.06, + "end": 1891.72, + "probability": 0.8583 + }, + { + "start": 1892.8, + "end": 1894.34, + "probability": 0.8631 + }, + { + "start": 1895.3, + "end": 1899.64, + "probability": 0.4527 + }, + { + "start": 1902.08, + "end": 1905.34, + "probability": 0.9152 + }, + { + "start": 1905.34, + "end": 1911.08, + "probability": 0.9098 + }, + { + "start": 1911.76, + "end": 1915.1, + "probability": 0.8392 + }, + { + "start": 1915.44, + "end": 1923.53, + "probability": 0.8692 + }, + { + "start": 1924.2, + "end": 1926.78, + "probability": 0.7881 + }, + { + "start": 1926.8, + "end": 1927.78, + "probability": 0.8574 + }, + { + "start": 1928.06, + "end": 1932.88, + "probability": 0.8899 + }, + { + "start": 1933.98, + "end": 1938.9, + "probability": 0.9933 + }, + { + "start": 1939.82, + "end": 1946.24, + "probability": 0.9782 + }, + { + "start": 1946.46, + "end": 1948.52, + "probability": 0.7975 + }, + { + "start": 1948.94, + "end": 1953.24, + "probability": 0.9471 + }, + { + "start": 1954.1, + "end": 1959.07, + "probability": 0.9535 + }, + { + "start": 1960.8, + "end": 1965.84, + "probability": 0.9287 + }, + { + "start": 1968.06, + "end": 1968.78, + "probability": 0.8967 + }, + { + "start": 1970.56, + "end": 1976.4, + "probability": 0.8766 + }, + { + "start": 1977.04, + "end": 1978.58, + "probability": 0.9773 + }, + { + "start": 1979.78, + "end": 1987.1, + "probability": 0.9921 + }, + { + "start": 1987.62, + "end": 1992.64, + "probability": 0.9962 + }, + { + "start": 1993.26, + "end": 1998.7, + "probability": 0.9917 + }, + { + "start": 1999.24, + "end": 2004.18, + "probability": 0.9995 + }, + { + "start": 2004.32, + "end": 2008.64, + "probability": 0.8677 + }, + { + "start": 2009.3, + "end": 2012.9, + "probability": 0.706 + }, + { + "start": 2013.24, + "end": 2016.66, + "probability": 0.9078 + }, + { + "start": 2017.82, + "end": 2022.9, + "probability": 0.8577 + }, + { + "start": 2023.34, + "end": 2026.26, + "probability": 0.9946 + }, + { + "start": 2026.62, + "end": 2027.26, + "probability": 0.8236 + }, + { + "start": 2027.6, + "end": 2030.26, + "probability": 0.9929 + }, + { + "start": 2031.64, + "end": 2035.24, + "probability": 0.6813 + }, + { + "start": 2035.98, + "end": 2039.32, + "probability": 0.8533 + }, + { + "start": 2039.6, + "end": 2041.48, + "probability": 0.9908 + }, + { + "start": 2041.74, + "end": 2043.74, + "probability": 0.9408 + }, + { + "start": 2044.22, + "end": 2046.66, + "probability": 0.9805 + }, + { + "start": 2046.78, + "end": 2047.43, + "probability": 0.8428 + }, + { + "start": 2048.98, + "end": 2054.28, + "probability": 0.9722 + }, + { + "start": 2054.58, + "end": 2057.0, + "probability": 0.9622 + }, + { + "start": 2057.04, + "end": 2061.24, + "probability": 0.9932 + }, + { + "start": 2061.24, + "end": 2063.64, + "probability": 0.9995 + }, + { + "start": 2064.1, + "end": 2067.54, + "probability": 0.9951 + }, + { + "start": 2068.24, + "end": 2071.02, + "probability": 0.9751 + }, + { + "start": 2073.12, + "end": 2076.54, + "probability": 0.9546 + }, + { + "start": 2077.68, + "end": 2077.68, + "probability": 0.0039 + }, + { + "start": 2077.82, + "end": 2078.82, + "probability": 0.8436 + }, + { + "start": 2079.0, + "end": 2082.7, + "probability": 0.9299 + }, + { + "start": 2083.12, + "end": 2088.2, + "probability": 0.9245 + }, + { + "start": 2088.2, + "end": 2091.3, + "probability": 0.9636 + }, + { + "start": 2092.1, + "end": 2097.58, + "probability": 0.8402 + }, + { + "start": 2098.14, + "end": 2103.56, + "probability": 0.9574 + }, + { + "start": 2103.7, + "end": 2105.4, + "probability": 0.8238 + }, + { + "start": 2105.72, + "end": 2107.64, + "probability": 0.9088 + }, + { + "start": 2108.56, + "end": 2115.48, + "probability": 0.9951 + }, + { + "start": 2115.94, + "end": 2119.26, + "probability": 0.7936 + }, + { + "start": 2120.08, + "end": 2121.62, + "probability": 0.6186 + }, + { + "start": 2123.98, + "end": 2128.08, + "probability": 0.9033 + }, + { + "start": 2128.62, + "end": 2131.64, + "probability": 0.9298 + }, + { + "start": 2132.26, + "end": 2136.33, + "probability": 0.9622 + }, + { + "start": 2136.8, + "end": 2137.73, + "probability": 0.9941 + }, + { + "start": 2138.34, + "end": 2142.84, + "probability": 0.9953 + }, + { + "start": 2143.02, + "end": 2144.38, + "probability": 0.9611 + }, + { + "start": 2144.64, + "end": 2148.58, + "probability": 0.9893 + }, + { + "start": 2149.48, + "end": 2154.54, + "probability": 0.9243 + }, + { + "start": 2155.18, + "end": 2155.7, + "probability": 0.8865 + }, + { + "start": 2156.28, + "end": 2158.22, + "probability": 0.9736 + }, + { + "start": 2158.72, + "end": 2161.78, + "probability": 0.7111 + }, + { + "start": 2161.86, + "end": 2163.22, + "probability": 0.77 + }, + { + "start": 2163.7, + "end": 2165.92, + "probability": 0.9524 + }, + { + "start": 2166.0, + "end": 2169.42, + "probability": 0.9589 + }, + { + "start": 2172.6, + "end": 2175.48, + "probability": 0.9917 + }, + { + "start": 2175.48, + "end": 2176.32, + "probability": 0.6829 + }, + { + "start": 2176.98, + "end": 2179.68, + "probability": 0.9946 + }, + { + "start": 2179.76, + "end": 2182.8, + "probability": 0.8845 + }, + { + "start": 2182.92, + "end": 2183.44, + "probability": 0.577 + }, + { + "start": 2183.62, + "end": 2184.64, + "probability": 0.921 + }, + { + "start": 2184.82, + "end": 2189.86, + "probability": 0.9932 + }, + { + "start": 2190.16, + "end": 2191.74, + "probability": 0.9951 + }, + { + "start": 2192.76, + "end": 2195.44, + "probability": 0.9874 + }, + { + "start": 2195.8, + "end": 2198.12, + "probability": 0.9979 + }, + { + "start": 2198.72, + "end": 2201.76, + "probability": 0.9966 + }, + { + "start": 2201.76, + "end": 2207.36, + "probability": 0.9766 + }, + { + "start": 2207.7, + "end": 2211.26, + "probability": 0.9969 + }, + { + "start": 2211.4, + "end": 2214.0, + "probability": 0.9821 + }, + { + "start": 2214.26, + "end": 2217.16, + "probability": 0.9969 + }, + { + "start": 2217.42, + "end": 2218.16, + "probability": 0.9575 + }, + { + "start": 2218.18, + "end": 2218.72, + "probability": 0.9507 + }, + { + "start": 2218.82, + "end": 2219.78, + "probability": 0.7974 + }, + { + "start": 2219.84, + "end": 2223.14, + "probability": 0.5985 + }, + { + "start": 2223.98, + "end": 2226.52, + "probability": 0.9907 + }, + { + "start": 2227.16, + "end": 2230.44, + "probability": 0.9912 + }, + { + "start": 2230.44, + "end": 2236.64, + "probability": 0.9939 + }, + { + "start": 2237.52, + "end": 2241.22, + "probability": 0.9962 + }, + { + "start": 2242.18, + "end": 2247.56, + "probability": 0.9966 + }, + { + "start": 2247.84, + "end": 2249.17, + "probability": 0.9646 + }, + { + "start": 2249.42, + "end": 2252.2, + "probability": 0.9969 + }, + { + "start": 2252.58, + "end": 2253.82, + "probability": 0.9964 + }, + { + "start": 2254.44, + "end": 2255.7, + "probability": 0.7376 + }, + { + "start": 2256.02, + "end": 2256.92, + "probability": 0.8137 + }, + { + "start": 2257.2, + "end": 2258.97, + "probability": 0.9976 + }, + { + "start": 2259.26, + "end": 2263.8, + "probability": 0.9871 + }, + { + "start": 2264.58, + "end": 2270.38, + "probability": 0.9957 + }, + { + "start": 2271.1, + "end": 2271.9, + "probability": 0.9758 + }, + { + "start": 2271.94, + "end": 2273.32, + "probability": 0.9066 + }, + { + "start": 2273.62, + "end": 2274.98, + "probability": 0.9471 + }, + { + "start": 2275.16, + "end": 2277.34, + "probability": 0.9255 + }, + { + "start": 2278.04, + "end": 2281.36, + "probability": 0.9868 + }, + { + "start": 2282.48, + "end": 2283.4, + "probability": 0.6575 + }, + { + "start": 2283.48, + "end": 2285.08, + "probability": 0.9795 + }, + { + "start": 2285.46, + "end": 2287.44, + "probability": 0.9657 + }, + { + "start": 2287.56, + "end": 2290.8, + "probability": 0.9936 + }, + { + "start": 2290.8, + "end": 2294.18, + "probability": 0.9972 + }, + { + "start": 2294.72, + "end": 2298.62, + "probability": 0.9351 + }, + { + "start": 2299.04, + "end": 2300.44, + "probability": 0.8928 + }, + { + "start": 2300.76, + "end": 2302.46, + "probability": 0.8984 + }, + { + "start": 2302.56, + "end": 2306.78, + "probability": 0.9731 + }, + { + "start": 2307.34, + "end": 2309.84, + "probability": 0.3838 + }, + { + "start": 2310.52, + "end": 2311.79, + "probability": 0.9459 + }, + { + "start": 2312.78, + "end": 2313.5, + "probability": 0.9603 + }, + { + "start": 2313.9, + "end": 2317.1, + "probability": 0.9985 + }, + { + "start": 2317.68, + "end": 2318.76, + "probability": 0.9744 + }, + { + "start": 2318.86, + "end": 2323.54, + "probability": 0.9002 + }, + { + "start": 2323.98, + "end": 2325.6, + "probability": 0.9722 + }, + { + "start": 2325.88, + "end": 2326.98, + "probability": 0.9792 + }, + { + "start": 2327.1, + "end": 2329.56, + "probability": 0.9663 + }, + { + "start": 2329.96, + "end": 2331.36, + "probability": 0.988 + }, + { + "start": 2332.26, + "end": 2333.86, + "probability": 0.9935 + }, + { + "start": 2334.02, + "end": 2334.9, + "probability": 0.742 + }, + { + "start": 2335.22, + "end": 2337.1, + "probability": 0.9635 + }, + { + "start": 2338.02, + "end": 2341.22, + "probability": 0.995 + }, + { + "start": 2341.7, + "end": 2342.54, + "probability": 0.9751 + }, + { + "start": 2342.9, + "end": 2343.88, + "probability": 0.9436 + }, + { + "start": 2344.26, + "end": 2345.3, + "probability": 0.9462 + }, + { + "start": 2345.7, + "end": 2347.36, + "probability": 0.7787 + }, + { + "start": 2347.46, + "end": 2351.28, + "probability": 0.9888 + }, + { + "start": 2351.28, + "end": 2356.18, + "probability": 0.9671 + }, + { + "start": 2356.92, + "end": 2359.24, + "probability": 0.5916 + }, + { + "start": 2359.84, + "end": 2360.02, + "probability": 0.2621 + }, + { + "start": 2360.18, + "end": 2361.12, + "probability": 0.7998 + }, + { + "start": 2361.18, + "end": 2364.3, + "probability": 0.8073 + }, + { + "start": 2364.7, + "end": 2367.8, + "probability": 0.9893 + }, + { + "start": 2367.9, + "end": 2368.22, + "probability": 0.8992 + }, + { + "start": 2369.18, + "end": 2371.64, + "probability": 0.7961 + }, + { + "start": 2372.74, + "end": 2376.88, + "probability": 0.9917 + }, + { + "start": 2377.04, + "end": 2378.34, + "probability": 0.9466 + }, + { + "start": 2378.42, + "end": 2383.16, + "probability": 0.832 + }, + { + "start": 2383.16, + "end": 2387.54, + "probability": 0.9566 + }, + { + "start": 2388.06, + "end": 2389.7, + "probability": 0.8293 + }, + { + "start": 2404.62, + "end": 2407.5, + "probability": 0.6555 + }, + { + "start": 2409.02, + "end": 2410.0, + "probability": 0.9067 + }, + { + "start": 2410.14, + "end": 2413.54, + "probability": 0.9427 + }, + { + "start": 2413.54, + "end": 2417.66, + "probability": 0.9879 + }, + { + "start": 2418.7, + "end": 2419.1, + "probability": 0.0742 + }, + { + "start": 2423.38, + "end": 2426.16, + "probability": 0.5405 + }, + { + "start": 2428.34, + "end": 2430.74, + "probability": 0.701 + }, + { + "start": 2431.1, + "end": 2434.18, + "probability": 0.6055 + }, + { + "start": 2435.18, + "end": 2438.56, + "probability": 0.9648 + }, + { + "start": 2438.78, + "end": 2440.42, + "probability": 0.7997 + }, + { + "start": 2441.16, + "end": 2441.84, + "probability": 0.3173 + }, + { + "start": 2441.86, + "end": 2443.6, + "probability": 0.2301 + }, + { + "start": 2443.84, + "end": 2445.1, + "probability": 0.4365 + }, + { + "start": 2445.24, + "end": 2446.08, + "probability": 0.9238 + }, + { + "start": 2446.08, + "end": 2447.9, + "probability": 0.9513 + }, + { + "start": 2448.04, + "end": 2448.6, + "probability": 0.9205 + }, + { + "start": 2448.68, + "end": 2456.72, + "probability": 0.9443 + }, + { + "start": 2457.2, + "end": 2460.38, + "probability": 0.8772 + }, + { + "start": 2460.68, + "end": 2464.02, + "probability": 0.9158 + }, + { + "start": 2464.12, + "end": 2471.3, + "probability": 0.9753 + }, + { + "start": 2471.54, + "end": 2472.02, + "probability": 0.029 + }, + { + "start": 2472.02, + "end": 2473.08, + "probability": 0.7661 + }, + { + "start": 2473.16, + "end": 2474.74, + "probability": 0.9405 + }, + { + "start": 2475.16, + "end": 2478.36, + "probability": 0.4412 + }, + { + "start": 2479.12, + "end": 2480.02, + "probability": 0.9786 + }, + { + "start": 2480.5, + "end": 2485.58, + "probability": 0.9395 + }, + { + "start": 2485.82, + "end": 2489.88, + "probability": 0.9915 + }, + { + "start": 2490.18, + "end": 2491.34, + "probability": 0.8793 + }, + { + "start": 2491.38, + "end": 2495.48, + "probability": 0.5002 + }, + { + "start": 2495.62, + "end": 2496.96, + "probability": 0.9325 + }, + { + "start": 2497.5, + "end": 2501.38, + "probability": 0.9992 + }, + { + "start": 2502.64, + "end": 2504.82, + "probability": 0.9773 + }, + { + "start": 2505.02, + "end": 2505.38, + "probability": 0.8007 + }, + { + "start": 2505.54, + "end": 2506.08, + "probability": 0.9833 + }, + { + "start": 2506.18, + "end": 2506.76, + "probability": 0.95 + }, + { + "start": 2506.8, + "end": 2507.6, + "probability": 0.8813 + }, + { + "start": 2508.68, + "end": 2511.0, + "probability": 0.9956 + }, + { + "start": 2511.48, + "end": 2517.06, + "probability": 0.9463 + }, + { + "start": 2518.02, + "end": 2520.24, + "probability": 0.9972 + }, + { + "start": 2520.76, + "end": 2526.12, + "probability": 0.9975 + }, + { + "start": 2526.86, + "end": 2529.14, + "probability": 0.9912 + }, + { + "start": 2529.9, + "end": 2539.34, + "probability": 0.9878 + }, + { + "start": 2539.4, + "end": 2541.8, + "probability": 0.9017 + }, + { + "start": 2542.68, + "end": 2543.42, + "probability": 0.7907 + }, + { + "start": 2543.86, + "end": 2545.28, + "probability": 0.8062 + }, + { + "start": 2546.72, + "end": 2549.4, + "probability": 0.9678 + }, + { + "start": 2549.52, + "end": 2551.9, + "probability": 0.9676 + }, + { + "start": 2551.94, + "end": 2557.76, + "probability": 0.9982 + }, + { + "start": 2557.98, + "end": 2559.52, + "probability": 0.7705 + }, + { + "start": 2560.76, + "end": 2563.86, + "probability": 0.6365 + }, + { + "start": 2565.96, + "end": 2568.82, + "probability": 0.9062 + }, + { + "start": 2570.78, + "end": 2571.1, + "probability": 0.6462 + }, + { + "start": 2572.26, + "end": 2572.58, + "probability": 0.4257 + }, + { + "start": 2573.6, + "end": 2576.48, + "probability": 0.8789 + }, + { + "start": 2576.96, + "end": 2583.04, + "probability": 0.9537 + }, + { + "start": 2583.52, + "end": 2587.04, + "probability": 0.9728 + }, + { + "start": 2588.26, + "end": 2591.34, + "probability": 0.9987 + }, + { + "start": 2591.92, + "end": 2597.58, + "probability": 0.9912 + }, + { + "start": 2598.02, + "end": 2604.68, + "probability": 0.9952 + }, + { + "start": 2605.7, + "end": 2608.42, + "probability": 0.9987 + }, + { + "start": 2608.96, + "end": 2612.82, + "probability": 0.9491 + }, + { + "start": 2612.92, + "end": 2613.66, + "probability": 0.7745 + }, + { + "start": 2613.76, + "end": 2615.56, + "probability": 0.8232 + }, + { + "start": 2616.28, + "end": 2618.98, + "probability": 0.8726 + }, + { + "start": 2619.22, + "end": 2622.46, + "probability": 0.9772 + }, + { + "start": 2622.72, + "end": 2624.9, + "probability": 0.9907 + }, + { + "start": 2625.34, + "end": 2626.54, + "probability": 0.7111 + }, + { + "start": 2626.68, + "end": 2634.56, + "probability": 0.7893 + }, + { + "start": 2635.68, + "end": 2637.98, + "probability": 0.7688 + }, + { + "start": 2638.0, + "end": 2638.72, + "probability": 0.7703 + }, + { + "start": 2638.82, + "end": 2645.88, + "probability": 0.9972 + }, + { + "start": 2645.88, + "end": 2652.72, + "probability": 0.9884 + }, + { + "start": 2653.5, + "end": 2660.12, + "probability": 0.9976 + }, + { + "start": 2660.72, + "end": 2664.42, + "probability": 0.728 + }, + { + "start": 2664.76, + "end": 2667.14, + "probability": 0.8766 + }, + { + "start": 2667.62, + "end": 2669.38, + "probability": 0.8079 + }, + { + "start": 2669.8, + "end": 2673.01, + "probability": 0.8091 + }, + { + "start": 2673.92, + "end": 2675.3, + "probability": 0.8836 + }, + { + "start": 2675.84, + "end": 2680.78, + "probability": 0.999 + }, + { + "start": 2681.44, + "end": 2683.2, + "probability": 0.996 + }, + { + "start": 2683.7, + "end": 2686.56, + "probability": 0.9946 + }, + { + "start": 2686.56, + "end": 2691.5, + "probability": 0.9929 + }, + { + "start": 2692.72, + "end": 2697.96, + "probability": 0.991 + }, + { + "start": 2698.82, + "end": 2702.16, + "probability": 0.9798 + }, + { + "start": 2703.18, + "end": 2708.82, + "probability": 0.9146 + }, + { + "start": 2708.82, + "end": 2715.8, + "probability": 0.9433 + }, + { + "start": 2716.24, + "end": 2718.1, + "probability": 0.981 + }, + { + "start": 2718.54, + "end": 2724.39, + "probability": 0.9919 + }, + { + "start": 2725.24, + "end": 2731.44, + "probability": 0.9683 + }, + { + "start": 2731.46, + "end": 2733.86, + "probability": 0.9583 + }, + { + "start": 2734.44, + "end": 2734.98, + "probability": 0.8153 + }, + { + "start": 2735.08, + "end": 2740.28, + "probability": 0.9702 + }, + { + "start": 2740.92, + "end": 2746.64, + "probability": 0.973 + }, + { + "start": 2746.88, + "end": 2750.3, + "probability": 0.9976 + }, + { + "start": 2750.8, + "end": 2754.26, + "probability": 0.9057 + }, + { + "start": 2755.54, + "end": 2760.26, + "probability": 0.9041 + }, + { + "start": 2760.26, + "end": 2764.26, + "probability": 0.9933 + }, + { + "start": 2765.0, + "end": 2770.96, + "probability": 0.889 + }, + { + "start": 2771.48, + "end": 2776.86, + "probability": 0.9811 + }, + { + "start": 2777.78, + "end": 2782.88, + "probability": 0.9932 + }, + { + "start": 2783.48, + "end": 2787.38, + "probability": 0.7945 + }, + { + "start": 2788.26, + "end": 2791.6, + "probability": 0.9149 + }, + { + "start": 2792.14, + "end": 2794.42, + "probability": 0.9048 + }, + { + "start": 2795.54, + "end": 2796.68, + "probability": 0.7789 + }, + { + "start": 2797.36, + "end": 2801.54, + "probability": 0.9899 + }, + { + "start": 2802.4, + "end": 2805.52, + "probability": 0.9764 + }, + { + "start": 2806.58, + "end": 2809.94, + "probability": 0.9136 + }, + { + "start": 2810.48, + "end": 2816.08, + "probability": 0.9525 + }, + { + "start": 2816.74, + "end": 2821.74, + "probability": 0.8441 + }, + { + "start": 2822.32, + "end": 2825.66, + "probability": 0.8798 + }, + { + "start": 2825.66, + "end": 2830.44, + "probability": 0.9677 + }, + { + "start": 2830.8, + "end": 2833.2, + "probability": 0.8664 + }, + { + "start": 2834.38, + "end": 2836.6, + "probability": 0.9986 + }, + { + "start": 2837.44, + "end": 2839.12, + "probability": 0.7855 + }, + { + "start": 2839.9, + "end": 2839.9, + "probability": 0.0689 + }, + { + "start": 2839.9, + "end": 2840.62, + "probability": 0.9293 + }, + { + "start": 2840.66, + "end": 2841.22, + "probability": 0.8629 + }, + { + "start": 2841.7, + "end": 2844.26, + "probability": 0.9286 + }, + { + "start": 2844.66, + "end": 2846.28, + "probability": 0.5243 + }, + { + "start": 2847.04, + "end": 2850.32, + "probability": 0.9818 + }, + { + "start": 2851.74, + "end": 2856.32, + "probability": 0.8841 + }, + { + "start": 2857.08, + "end": 2860.8, + "probability": 0.9587 + }, + { + "start": 2861.58, + "end": 2865.94, + "probability": 0.9948 + }, + { + "start": 2866.42, + "end": 2873.1, + "probability": 0.8713 + }, + { + "start": 2874.04, + "end": 2874.14, + "probability": 0.0382 + }, + { + "start": 2874.14, + "end": 2876.7, + "probability": 0.2636 + }, + { + "start": 2876.94, + "end": 2877.6, + "probability": 0.2198 + }, + { + "start": 2877.74, + "end": 2880.88, + "probability": 0.4512 + }, + { + "start": 2881.1, + "end": 2882.05, + "probability": 0.9346 + }, + { + "start": 2882.38, + "end": 2882.96, + "probability": 0.6881 + }, + { + "start": 2882.96, + "end": 2885.84, + "probability": 0.8614 + }, + { + "start": 2886.15, + "end": 2888.94, + "probability": 0.9314 + }, + { + "start": 2890.02, + "end": 2891.58, + "probability": 0.9314 + }, + { + "start": 2891.8, + "end": 2893.02, + "probability": 0.8648 + }, + { + "start": 2893.12, + "end": 2894.82, + "probability": 0.8575 + }, + { + "start": 2895.5, + "end": 2899.54, + "probability": 0.9514 + }, + { + "start": 2899.94, + "end": 2903.6, + "probability": 0.1195 + }, + { + "start": 2904.32, + "end": 2905.84, + "probability": 0.5087 + }, + { + "start": 2906.44, + "end": 2907.0, + "probability": 0.9404 + }, + { + "start": 2907.86, + "end": 2911.08, + "probability": 0.9907 + }, + { + "start": 2911.08, + "end": 2915.2, + "probability": 0.6296 + }, + { + "start": 2915.88, + "end": 2921.38, + "probability": 0.9757 + }, + { + "start": 2922.26, + "end": 2925.5, + "probability": 0.9992 + }, + { + "start": 2925.5, + "end": 2931.78, + "probability": 0.9837 + }, + { + "start": 2932.32, + "end": 2937.14, + "probability": 0.9902 + }, + { + "start": 2937.36, + "end": 2942.74, + "probability": 0.6387 + }, + { + "start": 2943.36, + "end": 2946.32, + "probability": 0.6394 + }, + { + "start": 2946.38, + "end": 2947.94, + "probability": 0.76 + }, + { + "start": 2948.66, + "end": 2954.28, + "probability": 0.9725 + }, + { + "start": 2954.94, + "end": 2957.32, + "probability": 0.9966 + }, + { + "start": 2958.3, + "end": 2965.92, + "probability": 0.8151 + }, + { + "start": 2966.74, + "end": 2967.46, + "probability": 0.015 + }, + { + "start": 2967.46, + "end": 2967.92, + "probability": 0.2729 + }, + { + "start": 2968.12, + "end": 2968.84, + "probability": 0.9136 + }, + { + "start": 2968.9, + "end": 2970.2, + "probability": 0.7631 + }, + { + "start": 2970.24, + "end": 2971.34, + "probability": 0.4631 + }, + { + "start": 2971.56, + "end": 2972.64, + "probability": 0.7815 + }, + { + "start": 2972.64, + "end": 2972.64, + "probability": 0.0503 + }, + { + "start": 2972.64, + "end": 2972.88, + "probability": 0.4817 + }, + { + "start": 2973.04, + "end": 2973.28, + "probability": 0.5916 + }, + { + "start": 2973.52, + "end": 2977.7, + "probability": 0.7742 + }, + { + "start": 2977.88, + "end": 2980.9, + "probability": 0.9482 + }, + { + "start": 2981.16, + "end": 2983.64, + "probability": 0.4761 + }, + { + "start": 2983.72, + "end": 2985.64, + "probability": 0.9547 + }, + { + "start": 2986.02, + "end": 2987.2, + "probability": 0.5396 + }, + { + "start": 2987.54, + "end": 2988.88, + "probability": 0.9297 + }, + { + "start": 2989.44, + "end": 2991.06, + "probability": 0.9161 + }, + { + "start": 2991.12, + "end": 2992.94, + "probability": 0.8544 + }, + { + "start": 2993.12, + "end": 2993.92, + "probability": 0.5591 + }, + { + "start": 2994.0, + "end": 2997.18, + "probability": 0.988 + }, + { + "start": 2997.86, + "end": 3000.62, + "probability": 0.9974 + }, + { + "start": 3001.46, + "end": 3003.98, + "probability": 0.7286 + }, + { + "start": 3004.54, + "end": 3007.54, + "probability": 0.9454 + }, + { + "start": 3009.04, + "end": 3011.36, + "probability": 0.9269 + }, + { + "start": 3011.6, + "end": 3016.86, + "probability": 0.9922 + }, + { + "start": 3017.34, + "end": 3021.3, + "probability": 0.9873 + }, + { + "start": 3022.74, + "end": 3023.7, + "probability": 0.464 + }, + { + "start": 3024.22, + "end": 3026.22, + "probability": 0.0953 + }, + { + "start": 3026.9, + "end": 3031.04, + "probability": 0.4991 + }, + { + "start": 3032.46, + "end": 3034.68, + "probability": 0.9227 + }, + { + "start": 3035.36, + "end": 3037.94, + "probability": 0.9957 + }, + { + "start": 3038.6, + "end": 3041.54, + "probability": 0.9121 + }, + { + "start": 3042.26, + "end": 3045.76, + "probability": 0.9355 + }, + { + "start": 3046.52, + "end": 3049.5, + "probability": 0.976 + }, + { + "start": 3050.74, + "end": 3052.94, + "probability": 0.6672 + }, + { + "start": 3053.48, + "end": 3054.76, + "probability": 0.6945 + }, + { + "start": 3055.36, + "end": 3056.64, + "probability": 0.6325 + }, + { + "start": 3056.72, + "end": 3057.16, + "probability": 0.9142 + }, + { + "start": 3057.24, + "end": 3060.0, + "probability": 0.9123 + }, + { + "start": 3060.22, + "end": 3062.66, + "probability": 0.8118 + }, + { + "start": 3063.0, + "end": 3068.02, + "probability": 0.9712 + }, + { + "start": 3068.92, + "end": 3071.06, + "probability": 0.9048 + }, + { + "start": 3071.68, + "end": 3073.18, + "probability": 0.9842 + }, + { + "start": 3073.86, + "end": 3075.42, + "probability": 0.8516 + }, + { + "start": 3075.42, + "end": 3077.06, + "probability": 0.9941 + }, + { + "start": 3077.84, + "end": 3081.36, + "probability": 0.9909 + }, + { + "start": 3081.36, + "end": 3084.98, + "probability": 0.9923 + }, + { + "start": 3085.9, + "end": 3086.36, + "probability": 0.7566 + }, + { + "start": 3086.5, + "end": 3090.66, + "probability": 0.9609 + }, + { + "start": 3091.12, + "end": 3091.7, + "probability": 0.7519 + }, + { + "start": 3092.56, + "end": 3095.54, + "probability": 0.9612 + }, + { + "start": 3096.84, + "end": 3097.66, + "probability": 0.7022 + }, + { + "start": 3099.56, + "end": 3103.08, + "probability": 0.9238 + }, + { + "start": 3103.26, + "end": 3110.0, + "probability": 0.7745 + }, + { + "start": 3110.68, + "end": 3117.26, + "probability": 0.9829 + }, + { + "start": 3117.68, + "end": 3119.48, + "probability": 0.7443 + }, + { + "start": 3119.92, + "end": 3123.46, + "probability": 0.994 + }, + { + "start": 3138.3, + "end": 3141.62, + "probability": 0.4329 + }, + { + "start": 3143.26, + "end": 3147.7, + "probability": 0.9941 + }, + { + "start": 3148.34, + "end": 3151.78, + "probability": 0.8921 + }, + { + "start": 3152.64, + "end": 3153.56, + "probability": 0.8357 + }, + { + "start": 3155.42, + "end": 3156.18, + "probability": 0.9793 + }, + { + "start": 3157.02, + "end": 3158.32, + "probability": 0.8997 + }, + { + "start": 3158.52, + "end": 3159.84, + "probability": 0.827 + }, + { + "start": 3159.94, + "end": 3164.92, + "probability": 0.9651 + }, + { + "start": 3166.26, + "end": 3171.18, + "probability": 0.9829 + }, + { + "start": 3171.3, + "end": 3175.42, + "probability": 0.9513 + }, + { + "start": 3176.16, + "end": 3178.22, + "probability": 0.8898 + }, + { + "start": 3179.24, + "end": 3180.98, + "probability": 0.9817 + }, + { + "start": 3181.64, + "end": 3183.84, + "probability": 0.8803 + }, + { + "start": 3185.16, + "end": 3188.46, + "probability": 0.8972 + }, + { + "start": 3188.46, + "end": 3192.8, + "probability": 0.9773 + }, + { + "start": 3193.5, + "end": 3197.68, + "probability": 0.9756 + }, + { + "start": 3198.98, + "end": 3202.16, + "probability": 0.9674 + }, + { + "start": 3203.26, + "end": 3209.96, + "probability": 0.9703 + }, + { + "start": 3210.48, + "end": 3211.4, + "probability": 0.6993 + }, + { + "start": 3213.2, + "end": 3216.76, + "probability": 0.8823 + }, + { + "start": 3218.44, + "end": 3222.86, + "probability": 0.728 + }, + { + "start": 3223.76, + "end": 3230.06, + "probability": 0.9757 + }, + { + "start": 3231.42, + "end": 3234.88, + "probability": 0.6663 + }, + { + "start": 3235.7, + "end": 3240.22, + "probability": 0.9633 + }, + { + "start": 3241.72, + "end": 3247.34, + "probability": 0.9548 + }, + { + "start": 3248.02, + "end": 3249.62, + "probability": 0.7929 + }, + { + "start": 3250.54, + "end": 3253.08, + "probability": 0.9445 + }, + { + "start": 3254.22, + "end": 3255.26, + "probability": 0.4835 + }, + { + "start": 3255.46, + "end": 3259.94, + "probability": 0.8166 + }, + { + "start": 3261.62, + "end": 3264.12, + "probability": 0.5215 + }, + { + "start": 3264.74, + "end": 3266.16, + "probability": 0.8842 + }, + { + "start": 3270.28, + "end": 3272.82, + "probability": 0.9189 + }, + { + "start": 3272.96, + "end": 3278.58, + "probability": 0.9678 + }, + { + "start": 3280.38, + "end": 3281.42, + "probability": 0.6851 + }, + { + "start": 3281.5, + "end": 3285.24, + "probability": 0.8846 + }, + { + "start": 3286.02, + "end": 3288.66, + "probability": 0.7886 + }, + { + "start": 3290.06, + "end": 3291.18, + "probability": 0.5589 + }, + { + "start": 3293.14, + "end": 3295.24, + "probability": 0.8297 + }, + { + "start": 3295.68, + "end": 3298.32, + "probability": 0.9564 + }, + { + "start": 3299.04, + "end": 3304.36, + "probability": 0.9918 + }, + { + "start": 3307.62, + "end": 3308.82, + "probability": 0.9503 + }, + { + "start": 3309.04, + "end": 3310.24, + "probability": 0.8557 + }, + { + "start": 3310.32, + "end": 3311.62, + "probability": 0.6801 + }, + { + "start": 3311.8, + "end": 3317.14, + "probability": 0.9625 + }, + { + "start": 3317.8, + "end": 3321.06, + "probability": 0.8634 + }, + { + "start": 3322.46, + "end": 3324.96, + "probability": 0.9221 + }, + { + "start": 3325.8, + "end": 3329.3, + "probability": 0.9821 + }, + { + "start": 3330.34, + "end": 3333.3, + "probability": 0.7975 + }, + { + "start": 3334.0, + "end": 3335.68, + "probability": 0.9294 + }, + { + "start": 3336.8, + "end": 3339.66, + "probability": 0.8093 + }, + { + "start": 3340.64, + "end": 3345.58, + "probability": 0.9258 + }, + { + "start": 3346.5, + "end": 3348.24, + "probability": 0.931 + }, + { + "start": 3348.9, + "end": 3350.34, + "probability": 0.8689 + }, + { + "start": 3351.44, + "end": 3353.92, + "probability": 0.8999 + }, + { + "start": 3355.02, + "end": 3356.54, + "probability": 0.9557 + }, + { + "start": 3357.48, + "end": 3365.66, + "probability": 0.9319 + }, + { + "start": 3367.32, + "end": 3372.4, + "probability": 0.7217 + }, + { + "start": 3372.4, + "end": 3376.76, + "probability": 0.8484 + }, + { + "start": 3377.92, + "end": 3380.56, + "probability": 0.9042 + }, + { + "start": 3381.12, + "end": 3381.51, + "probability": 0.549 + }, + { + "start": 3381.84, + "end": 3383.08, + "probability": 0.8801 + }, + { + "start": 3383.18, + "end": 3385.72, + "probability": 0.9387 + }, + { + "start": 3387.08, + "end": 3390.22, + "probability": 0.9768 + }, + { + "start": 3391.38, + "end": 3394.74, + "probability": 0.8179 + }, + { + "start": 3395.98, + "end": 3398.04, + "probability": 0.9127 + }, + { + "start": 3399.0, + "end": 3402.88, + "probability": 0.8334 + }, + { + "start": 3403.92, + "end": 3406.72, + "probability": 0.9639 + }, + { + "start": 3407.54, + "end": 3409.32, + "probability": 0.7888 + }, + { + "start": 3409.5, + "end": 3413.12, + "probability": 0.9492 + }, + { + "start": 3413.12, + "end": 3413.82, + "probability": 0.7345 + }, + { + "start": 3414.26, + "end": 3415.68, + "probability": 0.8507 + }, + { + "start": 3416.64, + "end": 3417.9, + "probability": 0.8567 + }, + { + "start": 3418.58, + "end": 3422.02, + "probability": 0.5603 + }, + { + "start": 3423.62, + "end": 3427.88, + "probability": 0.8191 + }, + { + "start": 3428.46, + "end": 3430.76, + "probability": 0.5985 + }, + { + "start": 3431.1, + "end": 3436.92, + "probability": 0.8116 + }, + { + "start": 3437.88, + "end": 3442.64, + "probability": 0.8759 + }, + { + "start": 3443.32, + "end": 3443.6, + "probability": 0.5965 + }, + { + "start": 3443.8, + "end": 3450.08, + "probability": 0.9937 + }, + { + "start": 3450.62, + "end": 3452.4, + "probability": 0.991 + }, + { + "start": 3452.94, + "end": 3457.32, + "probability": 0.9912 + }, + { + "start": 3457.64, + "end": 3458.28, + "probability": 0.4243 + }, + { + "start": 3458.72, + "end": 3460.05, + "probability": 0.9854 + }, + { + "start": 3460.82, + "end": 3465.72, + "probability": 0.9226 + }, + { + "start": 3466.22, + "end": 3467.9, + "probability": 0.7992 + }, + { + "start": 3468.28, + "end": 3469.82, + "probability": 0.9799 + }, + { + "start": 3471.02, + "end": 3472.18, + "probability": 0.7412 + }, + { + "start": 3474.9, + "end": 3476.8, + "probability": 0.8934 + }, + { + "start": 3477.38, + "end": 3484.04, + "probability": 0.8335 + }, + { + "start": 3484.36, + "end": 3486.5, + "probability": 0.9336 + }, + { + "start": 3486.6, + "end": 3487.64, + "probability": 0.5417 + }, + { + "start": 3488.28, + "end": 3489.56, + "probability": 0.928 + }, + { + "start": 3496.78, + "end": 3501.15, + "probability": 0.9207 + }, + { + "start": 3503.24, + "end": 3510.82, + "probability": 0.8872 + }, + { + "start": 3511.78, + "end": 3518.22, + "probability": 0.7601 + }, + { + "start": 3519.58, + "end": 3526.74, + "probability": 0.948 + }, + { + "start": 3527.48, + "end": 3529.52, + "probability": 0.8785 + }, + { + "start": 3530.98, + "end": 3531.9, + "probability": 0.7843 + }, + { + "start": 3531.98, + "end": 3533.6, + "probability": 0.9866 + }, + { + "start": 3533.66, + "end": 3534.8, + "probability": 0.604 + }, + { + "start": 3535.1, + "end": 3536.2, + "probability": 0.676 + }, + { + "start": 3536.2, + "end": 3537.0, + "probability": 0.3803 + }, + { + "start": 3537.22, + "end": 3537.46, + "probability": 0.8647 + }, + { + "start": 3537.56, + "end": 3539.7, + "probability": 0.9314 + }, + { + "start": 3539.78, + "end": 3540.64, + "probability": 0.7953 + }, + { + "start": 3540.88, + "end": 3544.59, + "probability": 0.7852 + }, + { + "start": 3545.91, + "end": 3548.06, + "probability": 0.925 + }, + { + "start": 3548.1, + "end": 3549.24, + "probability": 0.3778 + }, + { + "start": 3550.64, + "end": 3551.16, + "probability": 0.6887 + }, + { + "start": 3551.22, + "end": 3552.44, + "probability": 0.9233 + }, + { + "start": 3552.5, + "end": 3554.12, + "probability": 0.8244 + }, + { + "start": 3554.5, + "end": 3559.32, + "probability": 0.9336 + }, + { + "start": 3560.26, + "end": 3562.0, + "probability": 0.1216 + }, + { + "start": 3562.1, + "end": 3562.6, + "probability": 0.2825 + }, + { + "start": 3562.72, + "end": 3567.12, + "probability": 0.83 + }, + { + "start": 3569.52, + "end": 3572.44, + "probability": 0.941 + }, + { + "start": 3573.36, + "end": 3576.5, + "probability": 0.7285 + }, + { + "start": 3577.06, + "end": 3581.92, + "probability": 0.7793 + }, + { + "start": 3582.34, + "end": 3583.24, + "probability": 0.829 + }, + { + "start": 3583.38, + "end": 3584.54, + "probability": 0.9956 + }, + { + "start": 3585.4, + "end": 3586.01, + "probability": 0.0109 + }, + { + "start": 3587.18, + "end": 3589.84, + "probability": 0.0303 + }, + { + "start": 3597.38, + "end": 3600.94, + "probability": 0.0321 + }, + { + "start": 3602.2, + "end": 3602.68, + "probability": 0.0377 + }, + { + "start": 3642.6, + "end": 3645.14, + "probability": 0.842 + }, + { + "start": 3645.8, + "end": 3647.48, + "probability": 0.4465 + }, + { + "start": 3648.36, + "end": 3653.48, + "probability": 0.7261 + }, + { + "start": 3654.5, + "end": 3658.11, + "probability": 0.9041 + }, + { + "start": 3658.36, + "end": 3662.46, + "probability": 0.9891 + }, + { + "start": 3662.46, + "end": 3666.98, + "probability": 0.9683 + }, + { + "start": 3679.94, + "end": 3679.94, + "probability": 0.2687 + }, + { + "start": 3679.94, + "end": 3680.04, + "probability": 0.0511 + }, + { + "start": 3680.04, + "end": 3680.22, + "probability": 0.0651 + }, + { + "start": 3680.22, + "end": 3680.24, + "probability": 0.1496 + }, + { + "start": 3697.42, + "end": 3702.06, + "probability": 0.9326 + }, + { + "start": 3702.06, + "end": 3707.3, + "probability": 0.989 + }, + { + "start": 3709.01, + "end": 3712.4, + "probability": 0.7297 + }, + { + "start": 3713.4, + "end": 3715.18, + "probability": 0.8973 + }, + { + "start": 3715.42, + "end": 3722.96, + "probability": 0.9715 + }, + { + "start": 3723.46, + "end": 3727.76, + "probability": 0.9131 + }, + { + "start": 3728.56, + "end": 3730.74, + "probability": 0.9839 + }, + { + "start": 3731.54, + "end": 3732.74, + "probability": 0.9268 + }, + { + "start": 3733.28, + "end": 3735.94, + "probability": 0.8374 + }, + { + "start": 3736.96, + "end": 3741.74, + "probability": 0.9837 + }, + { + "start": 3743.14, + "end": 3746.9, + "probability": 0.9856 + }, + { + "start": 3749.42, + "end": 3751.56, + "probability": 0.9463 + }, + { + "start": 3753.11, + "end": 3754.27, + "probability": 0.4441 + }, + { + "start": 3755.44, + "end": 3756.36, + "probability": 0.9787 + }, + { + "start": 3756.48, + "end": 3756.62, + "probability": 0.4345 + }, + { + "start": 3756.68, + "end": 3757.86, + "probability": 0.7424 + }, + { + "start": 3758.34, + "end": 3761.08, + "probability": 0.9917 + }, + { + "start": 3763.62, + "end": 3766.26, + "probability": 0.9814 + }, + { + "start": 3766.82, + "end": 3769.48, + "probability": 0.0898 + }, + { + "start": 3769.88, + "end": 3771.74, + "probability": 0.9906 + }, + { + "start": 3771.84, + "end": 3773.64, + "probability": 0.9551 + }, + { + "start": 3773.94, + "end": 3775.96, + "probability": 0.9832 + }, + { + "start": 3775.98, + "end": 3784.56, + "probability": 0.8793 + }, + { + "start": 3785.1, + "end": 3786.64, + "probability": 0.7603 + }, + { + "start": 3786.7, + "end": 3787.44, + "probability": 0.0366 + }, + { + "start": 3788.06, + "end": 3794.72, + "probability": 0.9745 + }, + { + "start": 3795.92, + "end": 3797.5, + "probability": 0.9578 + }, + { + "start": 3798.14, + "end": 3798.69, + "probability": 0.9653 + }, + { + "start": 3799.9, + "end": 3800.25, + "probability": 0.8887 + }, + { + "start": 3801.68, + "end": 3802.17, + "probability": 0.8628 + }, + { + "start": 3803.62, + "end": 3804.24, + "probability": 0.9852 + }, + { + "start": 3807.22, + "end": 3810.6, + "probability": 0.877 + }, + { + "start": 3811.12, + "end": 3812.64, + "probability": 0.0374 + }, + { + "start": 3812.64, + "end": 3812.74, + "probability": 0.1654 + }, + { + "start": 3814.8, + "end": 3817.02, + "probability": 0.8691 + }, + { + "start": 3817.04, + "end": 3817.14, + "probability": 0.8843 + }, + { + "start": 3817.84, + "end": 3817.84, + "probability": 0.1352 + }, + { + "start": 3817.84, + "end": 3820.34, + "probability": 0.9157 + }, + { + "start": 3820.54, + "end": 3823.98, + "probability": 0.9086 + }, + { + "start": 3824.64, + "end": 3826.92, + "probability": 0.8407 + }, + { + "start": 3827.18, + "end": 3828.46, + "probability": 0.4374 + }, + { + "start": 3828.48, + "end": 3835.08, + "probability": 0.983 + }, + { + "start": 3835.2, + "end": 3835.92, + "probability": 0.9126 + }, + { + "start": 3837.14, + "end": 3838.21, + "probability": 0.938 + }, + { + "start": 3850.51, + "end": 3851.94, + "probability": 0.6135 + }, + { + "start": 3851.94, + "end": 3852.12, + "probability": 0.013 + }, + { + "start": 3852.12, + "end": 3852.12, + "probability": 0.0965 + }, + { + "start": 3852.12, + "end": 3852.12, + "probability": 0.1348 + }, + { + "start": 3852.12, + "end": 3852.84, + "probability": 0.3105 + }, + { + "start": 3853.56, + "end": 3855.1, + "probability": 0.2278 + }, + { + "start": 3856.3, + "end": 3856.94, + "probability": 0.4044 + }, + { + "start": 3858.92, + "end": 3859.44, + "probability": 0.2293 + }, + { + "start": 3859.44, + "end": 3859.44, + "probability": 0.0251 + }, + { + "start": 3859.44, + "end": 3859.44, + "probability": 0.0517 + }, + { + "start": 3859.44, + "end": 3863.6, + "probability": 0.8096 + }, + { + "start": 3863.86, + "end": 3863.86, + "probability": 0.0507 + }, + { + "start": 3863.86, + "end": 3863.86, + "probability": 0.0543 + }, + { + "start": 3863.86, + "end": 3866.06, + "probability": 0.8224 + }, + { + "start": 3866.4, + "end": 3866.98, + "probability": 0.9198 + }, + { + "start": 3867.22, + "end": 3869.64, + "probability": 0.9126 + }, + { + "start": 3870.6, + "end": 3871.7, + "probability": 0.5297 + }, + { + "start": 3873.48, + "end": 3876.72, + "probability": 0.9855 + }, + { + "start": 3876.8, + "end": 3878.22, + "probability": 0.6897 + }, + { + "start": 3878.96, + "end": 3879.88, + "probability": 0.9689 + }, + { + "start": 3879.96, + "end": 3882.74, + "probability": 0.981 + }, + { + "start": 3883.16, + "end": 3883.66, + "probability": 0.8826 + }, + { + "start": 3883.72, + "end": 3889.08, + "probability": 0.9662 + }, + { + "start": 3890.76, + "end": 3895.46, + "probability": 0.9991 + }, + { + "start": 3895.86, + "end": 3898.86, + "probability": 0.9956 + }, + { + "start": 3899.88, + "end": 3901.28, + "probability": 0.9985 + }, + { + "start": 3903.06, + "end": 3904.5, + "probability": 0.9199 + }, + { + "start": 3905.86, + "end": 3908.32, + "probability": 0.9819 + }, + { + "start": 3908.5, + "end": 3910.12, + "probability": 0.6595 + }, + { + "start": 3910.16, + "end": 3910.82, + "probability": 0.4948 + }, + { + "start": 3910.84, + "end": 3914.42, + "probability": 0.896 + }, + { + "start": 3914.42, + "end": 3918.0, + "probability": 0.8583 + }, + { + "start": 3920.46, + "end": 3923.46, + "probability": 0.9935 + }, + { + "start": 3923.68, + "end": 3925.04, + "probability": 0.5119 + }, + { + "start": 3925.08, + "end": 3926.14, + "probability": 0.7212 + }, + { + "start": 3926.26, + "end": 3926.58, + "probability": 0.7856 + }, + { + "start": 3926.62, + "end": 3927.48, + "probability": 0.7983 + }, + { + "start": 3928.08, + "end": 3930.18, + "probability": 0.955 + }, + { + "start": 3930.28, + "end": 3933.1, + "probability": 0.8556 + }, + { + "start": 3933.42, + "end": 3935.66, + "probability": 0.9136 + }, + { + "start": 3936.78, + "end": 3936.78, + "probability": 0.0461 + }, + { + "start": 3936.78, + "end": 3936.78, + "probability": 0.0942 + }, + { + "start": 3936.78, + "end": 3937.98, + "probability": 0.3573 + }, + { + "start": 3938.18, + "end": 3941.14, + "probability": 0.9011 + }, + { + "start": 3941.94, + "end": 3944.48, + "probability": 0.9602 + }, + { + "start": 3945.08, + "end": 3947.64, + "probability": 0.7266 + }, + { + "start": 3948.04, + "end": 3950.8, + "probability": 0.845 + }, + { + "start": 3950.8, + "end": 3950.96, + "probability": 0.0064 + }, + { + "start": 3950.96, + "end": 3953.46, + "probability": 0.4563 + }, + { + "start": 3953.6, + "end": 3955.46, + "probability": 0.24 + }, + { + "start": 3955.62, + "end": 3956.84, + "probability": 0.9587 + }, + { + "start": 3956.98, + "end": 3959.02, + "probability": 0.1515 + }, + { + "start": 3959.12, + "end": 3959.52, + "probability": 0.8989 + }, + { + "start": 3959.76, + "end": 3963.71, + "probability": 0.9927 + }, + { + "start": 3964.36, + "end": 3967.88, + "probability": 0.9243 + }, + { + "start": 3967.96, + "end": 3969.62, + "probability": 0.9586 + }, + { + "start": 3969.98, + "end": 3973.57, + "probability": 0.9937 + }, + { + "start": 3974.52, + "end": 3975.28, + "probability": 0.9009 + }, + { + "start": 3975.92, + "end": 3976.94, + "probability": 0.9956 + }, + { + "start": 3977.0, + "end": 3977.42, + "probability": 0.6181 + }, + { + "start": 3977.9, + "end": 3981.18, + "probability": 0.9799 + }, + { + "start": 3981.78, + "end": 3982.74, + "probability": 0.7354 + }, + { + "start": 3983.04, + "end": 3984.42, + "probability": 0.8855 + }, + { + "start": 3984.92, + "end": 3985.88, + "probability": 0.8723 + }, + { + "start": 3986.2, + "end": 3987.64, + "probability": 0.9984 + }, + { + "start": 3987.64, + "end": 3988.8, + "probability": 0.93 + }, + { + "start": 3989.1, + "end": 3991.12, + "probability": 0.813 + }, + { + "start": 3991.26, + "end": 3992.1, + "probability": 0.5668 + }, + { + "start": 3992.2, + "end": 3994.9, + "probability": 0.9929 + }, + { + "start": 3995.22, + "end": 3999.14, + "probability": 0.9586 + }, + { + "start": 3999.18, + "end": 4000.14, + "probability": 0.959 + }, + { + "start": 4000.3, + "end": 4001.1, + "probability": 0.7147 + }, + { + "start": 4001.46, + "end": 4002.52, + "probability": 0.8973 + }, + { + "start": 4003.16, + "end": 4004.69, + "probability": 0.9956 + }, + { + "start": 4005.46, + "end": 4007.72, + "probability": 0.9354 + }, + { + "start": 4008.12, + "end": 4009.06, + "probability": 0.8702 + }, + { + "start": 4009.97, + "end": 4013.24, + "probability": 0.9578 + }, + { + "start": 4013.6, + "end": 4014.34, + "probability": 0.8483 + }, + { + "start": 4015.4, + "end": 4015.84, + "probability": 0.4748 + }, + { + "start": 4016.52, + "end": 4018.5, + "probability": 0.8229 + }, + { + "start": 4019.08, + "end": 4020.02, + "probability": 0.8164 + }, + { + "start": 4020.7, + "end": 4021.88, + "probability": 0.5831 + }, + { + "start": 4022.9, + "end": 4027.2, + "probability": 0.9836 + }, + { + "start": 4027.76, + "end": 4028.46, + "probability": 0.7902 + }, + { + "start": 4029.08, + "end": 4031.84, + "probability": 0.8231 + }, + { + "start": 4032.22, + "end": 4033.52, + "probability": 0.9702 + }, + { + "start": 4033.88, + "end": 4034.84, + "probability": 0.9812 + }, + { + "start": 4035.16, + "end": 4036.72, + "probability": 0.9172 + }, + { + "start": 4037.02, + "end": 4038.42, + "probability": 0.8586 + }, + { + "start": 4039.66, + "end": 4045.94, + "probability": 0.9216 + }, + { + "start": 4046.14, + "end": 4048.16, + "probability": 0.965 + }, + { + "start": 4048.34, + "end": 4050.53, + "probability": 0.7539 + }, + { + "start": 4051.46, + "end": 4054.12, + "probability": 0.7914 + }, + { + "start": 4054.76, + "end": 4056.44, + "probability": 0.8355 + }, + { + "start": 4056.72, + "end": 4058.38, + "probability": 0.979 + }, + { + "start": 4058.56, + "end": 4059.71, + "probability": 0.7657 + }, + { + "start": 4060.28, + "end": 4061.6, + "probability": 0.9187 + }, + { + "start": 4062.22, + "end": 4062.38, + "probability": 0.2594 + }, + { + "start": 4062.5, + "end": 4067.82, + "probability": 0.8264 + }, + { + "start": 4068.34, + "end": 4068.58, + "probability": 0.6395 + }, + { + "start": 4069.02, + "end": 4069.9, + "probability": 0.9629 + }, + { + "start": 4070.02, + "end": 4071.56, + "probability": 0.7573 + }, + { + "start": 4071.84, + "end": 4072.68, + "probability": 0.4825 + }, + { + "start": 4072.72, + "end": 4074.96, + "probability": 0.911 + }, + { + "start": 4075.24, + "end": 4077.32, + "probability": 0.9519 + }, + { + "start": 4077.6, + "end": 4078.15, + "probability": 0.9416 + }, + { + "start": 4078.32, + "end": 4079.56, + "probability": 0.7324 + }, + { + "start": 4079.96, + "end": 4081.0, + "probability": 0.9858 + }, + { + "start": 4081.4, + "end": 4083.8, + "probability": 0.9956 + }, + { + "start": 4084.76, + "end": 4087.56, + "probability": 0.9848 + }, + { + "start": 4088.06, + "end": 4090.6, + "probability": 0.9844 + }, + { + "start": 4091.1, + "end": 4092.46, + "probability": 0.9625 + }, + { + "start": 4092.62, + "end": 4093.68, + "probability": 0.9602 + }, + { + "start": 4094.02, + "end": 4094.7, + "probability": 0.6861 + }, + { + "start": 4094.86, + "end": 4096.42, + "probability": 0.9579 + }, + { + "start": 4096.76, + "end": 4098.42, + "probability": 0.9199 + }, + { + "start": 4098.92, + "end": 4099.3, + "probability": 0.0376 + }, + { + "start": 4099.3, + "end": 4100.14, + "probability": 0.8161 + }, + { + "start": 4100.16, + "end": 4102.14, + "probability": 0.9708 + }, + { + "start": 4102.5, + "end": 4104.48, + "probability": 0.955 + }, + { + "start": 4104.5, + "end": 4105.24, + "probability": 0.9281 + }, + { + "start": 4105.5, + "end": 4106.48, + "probability": 0.9756 + }, + { + "start": 4106.56, + "end": 4108.14, + "probability": 0.9518 + }, + { + "start": 4108.4, + "end": 4109.24, + "probability": 0.8894 + }, + { + "start": 4109.98, + "end": 4111.38, + "probability": 0.73 + }, + { + "start": 4111.9, + "end": 4118.92, + "probability": 0.9292 + }, + { + "start": 4119.18, + "end": 4121.26, + "probability": 0.8995 + }, + { + "start": 4122.08, + "end": 4123.3, + "probability": 0.9963 + }, + { + "start": 4123.72, + "end": 4125.9, + "probability": 0.9935 + }, + { + "start": 4126.38, + "end": 4129.38, + "probability": 0.9935 + }, + { + "start": 4129.78, + "end": 4132.88, + "probability": 0.9909 + }, + { + "start": 4133.82, + "end": 4135.08, + "probability": 0.5739 + }, + { + "start": 4135.12, + "end": 4136.9, + "probability": 0.8659 + }, + { + "start": 4141.32, + "end": 4142.44, + "probability": 0.6469 + }, + { + "start": 4142.52, + "end": 4143.58, + "probability": 0.6583 + }, + { + "start": 4143.66, + "end": 4145.26, + "probability": 0.7677 + }, + { + "start": 4145.52, + "end": 4146.16, + "probability": 0.7445 + }, + { + "start": 4146.2, + "end": 4148.9, + "probability": 0.9464 + }, + { + "start": 4148.9, + "end": 4151.76, + "probability": 0.953 + }, + { + "start": 4151.84, + "end": 4157.08, + "probability": 0.403 + }, + { + "start": 4157.14, + "end": 4161.02, + "probability": 0.9125 + }, + { + "start": 4162.04, + "end": 4162.4, + "probability": 0.3666 + }, + { + "start": 4162.92, + "end": 4165.22, + "probability": 0.8298 + }, + { + "start": 4165.32, + "end": 4167.14, + "probability": 0.6826 + }, + { + "start": 4168.08, + "end": 4168.7, + "probability": 0.5407 + }, + { + "start": 4168.76, + "end": 4169.62, + "probability": 0.6747 + }, + { + "start": 4169.74, + "end": 4173.12, + "probability": 0.9024 + }, + { + "start": 4173.2, + "end": 4173.82, + "probability": 0.6535 + }, + { + "start": 4173.9, + "end": 4176.22, + "probability": 0.9922 + }, + { + "start": 4177.48, + "end": 4178.44, + "probability": 0.7967 + }, + { + "start": 4178.96, + "end": 4180.8, + "probability": 0.8772 + }, + { + "start": 4181.62, + "end": 4183.58, + "probability": 0.8627 + }, + { + "start": 4183.74, + "end": 4184.6, + "probability": 0.9846 + }, + { + "start": 4186.24, + "end": 4188.1, + "probability": 0.2373 + }, + { + "start": 4188.68, + "end": 4189.62, + "probability": 0.811 + }, + { + "start": 4190.06, + "end": 4190.66, + "probability": 0.8762 + }, + { + "start": 4191.54, + "end": 4194.56, + "probability": 0.6344 + }, + { + "start": 4195.5, + "end": 4198.98, + "probability": 0.9844 + }, + { + "start": 4198.98, + "end": 4203.68, + "probability": 0.9976 + }, + { + "start": 4204.46, + "end": 4207.06, + "probability": 0.9726 + }, + { + "start": 4207.8, + "end": 4210.18, + "probability": 0.9922 + }, + { + "start": 4211.26, + "end": 4214.76, + "probability": 0.9945 + }, + { + "start": 4215.92, + "end": 4221.28, + "probability": 0.9702 + }, + { + "start": 4222.5, + "end": 4224.92, + "probability": 0.9985 + }, + { + "start": 4225.52, + "end": 4226.62, + "probability": 0.9058 + }, + { + "start": 4227.02, + "end": 4230.48, + "probability": 0.9768 + }, + { + "start": 4231.9, + "end": 4235.8, + "probability": 0.9897 + }, + { + "start": 4236.34, + "end": 4238.21, + "probability": 0.7604 + }, + { + "start": 4239.42, + "end": 4241.32, + "probability": 0.9027 + }, + { + "start": 4242.7, + "end": 4244.41, + "probability": 0.9951 + }, + { + "start": 4246.86, + "end": 4251.56, + "probability": 0.9246 + }, + { + "start": 4251.74, + "end": 4254.0, + "probability": 0.9624 + }, + { + "start": 4254.22, + "end": 4256.4, + "probability": 0.8199 + }, + { + "start": 4258.06, + "end": 4260.76, + "probability": 0.9326 + }, + { + "start": 4261.4, + "end": 4263.38, + "probability": 0.8983 + }, + { + "start": 4264.22, + "end": 4266.16, + "probability": 0.9558 + }, + { + "start": 4266.86, + "end": 4268.1, + "probability": 0.9424 + }, + { + "start": 4269.52, + "end": 4272.96, + "probability": 0.9985 + }, + { + "start": 4273.84, + "end": 4274.22, + "probability": 0.9653 + }, + { + "start": 4275.52, + "end": 4278.74, + "probability": 0.9983 + }, + { + "start": 4278.74, + "end": 4282.68, + "probability": 0.989 + }, + { + "start": 4283.94, + "end": 4289.06, + "probability": 0.9865 + }, + { + "start": 4289.18, + "end": 4291.1, + "probability": 0.8128 + }, + { + "start": 4292.2, + "end": 4293.3, + "probability": 0.71 + }, + { + "start": 4293.86, + "end": 4296.06, + "probability": 0.7812 + }, + { + "start": 4298.38, + "end": 4304.0, + "probability": 0.9918 + }, + { + "start": 4304.0, + "end": 4308.6, + "probability": 0.9976 + }, + { + "start": 4310.94, + "end": 4313.9, + "probability": 0.6819 + }, + { + "start": 4315.42, + "end": 4318.5, + "probability": 0.997 + }, + { + "start": 4319.94, + "end": 4322.3, + "probability": 0.9925 + }, + { + "start": 4322.44, + "end": 4323.57, + "probability": 0.9619 + }, + { + "start": 4324.24, + "end": 4325.58, + "probability": 0.9799 + }, + { + "start": 4326.3, + "end": 4327.1, + "probability": 0.979 + }, + { + "start": 4327.18, + "end": 4328.2, + "probability": 0.9557 + }, + { + "start": 4328.26, + "end": 4329.84, + "probability": 0.9316 + }, + { + "start": 4330.86, + "end": 4332.66, + "probability": 0.9487 + }, + { + "start": 4333.44, + "end": 4334.58, + "probability": 0.8553 + }, + { + "start": 4334.8, + "end": 4335.38, + "probability": 0.854 + }, + { + "start": 4335.66, + "end": 4338.4, + "probability": 0.8421 + }, + { + "start": 4338.9, + "end": 4340.54, + "probability": 0.958 + }, + { + "start": 4341.86, + "end": 4346.84, + "probability": 0.9841 + }, + { + "start": 4348.24, + "end": 4350.14, + "probability": 0.7462 + }, + { + "start": 4351.38, + "end": 4354.6, + "probability": 0.9439 + }, + { + "start": 4355.32, + "end": 4359.36, + "probability": 0.9808 + }, + { + "start": 4359.92, + "end": 4360.78, + "probability": 0.9714 + }, + { + "start": 4362.38, + "end": 4364.48, + "probability": 0.9291 + }, + { + "start": 4365.78, + "end": 4366.06, + "probability": 0.4176 + }, + { + "start": 4366.14, + "end": 4366.9, + "probability": 0.5476 + }, + { + "start": 4366.9, + "end": 4368.96, + "probability": 0.9399 + }, + { + "start": 4369.32, + "end": 4370.36, + "probability": 0.512 + }, + { + "start": 4370.98, + "end": 4373.46, + "probability": 0.7791 + }, + { + "start": 4374.16, + "end": 4380.54, + "probability": 0.8766 + }, + { + "start": 4380.54, + "end": 4386.4, + "probability": 0.9976 + }, + { + "start": 4386.92, + "end": 4389.42, + "probability": 0.8496 + }, + { + "start": 4390.36, + "end": 4391.76, + "probability": 0.981 + }, + { + "start": 4392.54, + "end": 4394.88, + "probability": 0.9258 + }, + { + "start": 4395.4, + "end": 4396.48, + "probability": 0.794 + }, + { + "start": 4397.16, + "end": 4398.06, + "probability": 0.9172 + }, + { + "start": 4399.0, + "end": 4400.9, + "probability": 0.995 + }, + { + "start": 4403.8, + "end": 4405.3, + "probability": 0.9617 + }, + { + "start": 4407.02, + "end": 4408.48, + "probability": 0.9303 + }, + { + "start": 4408.62, + "end": 4409.52, + "probability": 0.9132 + }, + { + "start": 4409.68, + "end": 4411.26, + "probability": 0.9021 + }, + { + "start": 4412.14, + "end": 4417.1, + "probability": 0.6507 + }, + { + "start": 4418.8, + "end": 4421.38, + "probability": 0.979 + }, + { + "start": 4421.52, + "end": 4427.24, + "probability": 0.9886 + }, + { + "start": 4427.68, + "end": 4430.46, + "probability": 0.9675 + }, + { + "start": 4431.08, + "end": 4435.32, + "probability": 0.9196 + }, + { + "start": 4436.36, + "end": 4437.88, + "probability": 0.9542 + }, + { + "start": 4438.86, + "end": 4439.8, + "probability": 0.4205 + }, + { + "start": 4439.8, + "end": 4440.29, + "probability": 0.4687 + }, + { + "start": 4440.42, + "end": 4442.82, + "probability": 0.7607 + }, + { + "start": 4443.52, + "end": 4445.52, + "probability": 0.673 + }, + { + "start": 4446.62, + "end": 4447.8, + "probability": 0.9176 + }, + { + "start": 4461.84, + "end": 4461.84, + "probability": 0.2394 + }, + { + "start": 4461.84, + "end": 4463.12, + "probability": 0.626 + }, + { + "start": 4463.52, + "end": 4463.64, + "probability": 0.4822 + }, + { + "start": 4463.68, + "end": 4466.56, + "probability": 0.6685 + }, + { + "start": 4466.62, + "end": 4467.92, + "probability": 0.9614 + }, + { + "start": 4468.12, + "end": 4470.01, + "probability": 0.833 + }, + { + "start": 4470.5, + "end": 4471.75, + "probability": 0.9006 + }, + { + "start": 4472.08, + "end": 4473.3, + "probability": 0.7432 + }, + { + "start": 4474.08, + "end": 4477.22, + "probability": 0.7018 + }, + { + "start": 4478.22, + "end": 4479.48, + "probability": 0.007 + }, + { + "start": 4479.48, + "end": 4480.52, + "probability": 0.7788 + }, + { + "start": 4480.68, + "end": 4482.6, + "probability": 0.9238 + }, + { + "start": 4483.04, + "end": 4486.04, + "probability": 0.7817 + }, + { + "start": 4486.44, + "end": 4489.19, + "probability": 0.9321 + }, + { + "start": 4490.14, + "end": 4494.6, + "probability": 0.8682 + }, + { + "start": 4494.82, + "end": 4497.12, + "probability": 0.8364 + }, + { + "start": 4497.12, + "end": 4501.08, + "probability": 0.4375 + }, + { + "start": 4501.69, + "end": 4502.3, + "probability": 0.0874 + }, + { + "start": 4503.54, + "end": 4504.22, + "probability": 0.2304 + }, + { + "start": 4504.24, + "end": 4504.68, + "probability": 0.0161 + }, + { + "start": 4504.68, + "end": 4505.52, + "probability": 0.3007 + }, + { + "start": 4505.72, + "end": 4505.94, + "probability": 0.2847 + }, + { + "start": 4505.94, + "end": 4506.84, + "probability": 0.7521 + }, + { + "start": 4506.94, + "end": 4507.38, + "probability": 0.5857 + }, + { + "start": 4507.68, + "end": 4508.28, + "probability": 0.7026 + }, + { + "start": 4508.28, + "end": 4508.62, + "probability": 0.7197 + }, + { + "start": 4508.86, + "end": 4510.46, + "probability": 0.8422 + }, + { + "start": 4510.8, + "end": 4511.7, + "probability": 0.5351 + }, + { + "start": 4511.8, + "end": 4514.9, + "probability": 0.7716 + }, + { + "start": 4514.94, + "end": 4516.24, + "probability": 0.8572 + }, + { + "start": 4516.74, + "end": 4518.82, + "probability": 0.7479 + }, + { + "start": 4519.4, + "end": 4523.0, + "probability": 0.9608 + }, + { + "start": 4523.1, + "end": 4523.98, + "probability": 0.953 + }, + { + "start": 4524.2, + "end": 4524.82, + "probability": 0.9528 + }, + { + "start": 4524.86, + "end": 4525.6, + "probability": 0.9438 + }, + { + "start": 4525.8, + "end": 4526.18, + "probability": 0.4672 + }, + { + "start": 4526.24, + "end": 4527.16, + "probability": 0.5721 + }, + { + "start": 4527.6, + "end": 4530.32, + "probability": 0.9971 + }, + { + "start": 4530.84, + "end": 4533.36, + "probability": 0.3008 + }, + { + "start": 4533.38, + "end": 4534.4, + "probability": 0.868 + }, + { + "start": 4534.46, + "end": 4536.22, + "probability": 0.9766 + }, + { + "start": 4536.22, + "end": 4538.9, + "probability": 0.7412 + }, + { + "start": 4538.9, + "end": 4540.44, + "probability": 0.0705 + }, + { + "start": 4540.5, + "end": 4540.86, + "probability": 0.5264 + }, + { + "start": 4540.88, + "end": 4542.34, + "probability": 0.9133 + }, + { + "start": 4542.38, + "end": 4548.08, + "probability": 0.946 + }, + { + "start": 4548.32, + "end": 4548.96, + "probability": 0.6457 + }, + { + "start": 4549.04, + "end": 4550.4, + "probability": 0.8685 + }, + { + "start": 4550.42, + "end": 4551.22, + "probability": 0.4669 + }, + { + "start": 4551.74, + "end": 4553.36, + "probability": 0.9158 + }, + { + "start": 4553.7, + "end": 4558.03, + "probability": 0.9231 + }, + { + "start": 4558.78, + "end": 4561.65, + "probability": 0.8512 + }, + { + "start": 4562.78, + "end": 4566.12, + "probability": 0.0187 + }, + { + "start": 4566.12, + "end": 4566.8, + "probability": 0.131 + }, + { + "start": 4566.8, + "end": 4567.46, + "probability": 0.2736 + }, + { + "start": 4567.46, + "end": 4567.98, + "probability": 0.0532 + }, + { + "start": 4568.9, + "end": 4570.2, + "probability": 0.2187 + }, + { + "start": 4570.38, + "end": 4573.74, + "probability": 0.2611 + }, + { + "start": 4574.74, + "end": 4574.94, + "probability": 0.0004 + }, + { + "start": 4574.94, + "end": 4574.94, + "probability": 0.3683 + }, + { + "start": 4574.94, + "end": 4574.94, + "probability": 0.29 + }, + { + "start": 4574.94, + "end": 4574.94, + "probability": 0.0258 + }, + { + "start": 4574.94, + "end": 4575.66, + "probability": 0.1898 + }, + { + "start": 4576.76, + "end": 4577.78, + "probability": 0.1924 + }, + { + "start": 4578.9, + "end": 4581.76, + "probability": 0.9668 + }, + { + "start": 4582.36, + "end": 4583.8, + "probability": 0.2418 + }, + { + "start": 4583.88, + "end": 4588.3, + "probability": 0.9986 + }, + { + "start": 4588.3, + "end": 4593.68, + "probability": 0.9836 + }, + { + "start": 4593.7, + "end": 4594.14, + "probability": 0.7227 + }, + { + "start": 4594.24, + "end": 4595.1, + "probability": 0.6451 + }, + { + "start": 4595.32, + "end": 4597.08, + "probability": 0.6572 + }, + { + "start": 4597.08, + "end": 4597.32, + "probability": 0.7089 + }, + { + "start": 4597.34, + "end": 4598.24, + "probability": 0.9536 + }, + { + "start": 4598.8, + "end": 4600.96, + "probability": 0.9923 + }, + { + "start": 4601.06, + "end": 4604.74, + "probability": 0.9785 + }, + { + "start": 4605.5, + "end": 4606.26, + "probability": 0.7115 + }, + { + "start": 4606.42, + "end": 4609.53, + "probability": 0.7764 + }, + { + "start": 4609.94, + "end": 4612.0, + "probability": 0.9915 + }, + { + "start": 4612.0, + "end": 4615.42, + "probability": 0.9858 + }, + { + "start": 4615.44, + "end": 4616.58, + "probability": 0.767 + }, + { + "start": 4616.84, + "end": 4617.1, + "probability": 0.0224 + }, + { + "start": 4617.1, + "end": 4618.34, + "probability": 0.9092 + }, + { + "start": 4618.38, + "end": 4619.24, + "probability": 0.8052 + }, + { + "start": 4619.32, + "end": 4621.56, + "probability": 0.657 + }, + { + "start": 4622.08, + "end": 4623.2, + "probability": 0.4376 + }, + { + "start": 4623.62, + "end": 4623.76, + "probability": 0.047 + }, + { + "start": 4623.76, + "end": 4623.96, + "probability": 0.4392 + }, + { + "start": 4624.28, + "end": 4628.46, + "probability": 0.9688 + }, + { + "start": 4628.67, + "end": 4632.19, + "probability": 0.9917 + }, + { + "start": 4632.24, + "end": 4634.22, + "probability": 0.9404 + }, + { + "start": 4634.86, + "end": 4637.6, + "probability": 0.0393 + }, + { + "start": 4637.6, + "end": 4638.93, + "probability": 0.2621 + }, + { + "start": 4639.9, + "end": 4641.54, + "probability": 0.0705 + }, + { + "start": 4644.04, + "end": 4644.46, + "probability": 0.0493 + }, + { + "start": 4644.46, + "end": 4644.46, + "probability": 0.0965 + }, + { + "start": 4644.46, + "end": 4644.46, + "probability": 0.2268 + }, + { + "start": 4644.46, + "end": 4644.46, + "probability": 0.0516 + }, + { + "start": 4644.46, + "end": 4645.52, + "probability": 0.7128 + }, + { + "start": 4645.86, + "end": 4646.7, + "probability": 0.7829 + }, + { + "start": 4647.36, + "end": 4648.66, + "probability": 0.4771 + }, + { + "start": 4649.6, + "end": 4651.42, + "probability": 0.9596 + }, + { + "start": 4651.86, + "end": 4655.62, + "probability": 0.9792 + }, + { + "start": 4656.65, + "end": 4658.8, + "probability": 0.8298 + }, + { + "start": 4658.86, + "end": 4661.32, + "probability": 0.9631 + }, + { + "start": 4661.4, + "end": 4666.32, + "probability": 0.9961 + }, + { + "start": 4666.64, + "end": 4668.64, + "probability": 0.9988 + }, + { + "start": 4668.7, + "end": 4669.38, + "probability": 0.9927 + }, + { + "start": 4669.42, + "end": 4670.34, + "probability": 0.9241 + }, + { + "start": 4670.98, + "end": 4671.48, + "probability": 0.5722 + }, + { + "start": 4671.52, + "end": 4671.86, + "probability": 0.8326 + }, + { + "start": 4672.14, + "end": 4673.18, + "probability": 0.7425 + }, + { + "start": 4674.44, + "end": 4677.7, + "probability": 0.8765 + }, + { + "start": 4677.74, + "end": 4679.4, + "probability": 0.9684 + }, + { + "start": 4679.92, + "end": 4683.07, + "probability": 0.8445 + }, + { + "start": 4683.58, + "end": 4687.54, + "probability": 0.6944 + }, + { + "start": 4687.64, + "end": 4690.16, + "probability": 0.9944 + }, + { + "start": 4691.04, + "end": 4692.58, + "probability": 0.2322 + }, + { + "start": 4692.58, + "end": 4693.96, + "probability": 0.7755 + }, + { + "start": 4695.14, + "end": 4696.54, + "probability": 0.8785 + }, + { + "start": 4696.68, + "end": 4697.9, + "probability": 0.9419 + }, + { + "start": 4698.06, + "end": 4698.86, + "probability": 0.2875 + }, + { + "start": 4700.36, + "end": 4704.72, + "probability": 0.8706 + }, + { + "start": 4706.0, + "end": 4708.12, + "probability": 0.9674 + }, + { + "start": 4709.18, + "end": 4713.92, + "probability": 0.9073 + }, + { + "start": 4714.96, + "end": 4715.8, + "probability": 0.699 + }, + { + "start": 4716.64, + "end": 4718.6, + "probability": 0.4136 + }, + { + "start": 4718.6, + "end": 4719.44, + "probability": 0.6074 + }, + { + "start": 4719.6, + "end": 4720.24, + "probability": 0.3687 + }, + { + "start": 4720.24, + "end": 4722.06, + "probability": 0.6282 + }, + { + "start": 4722.74, + "end": 4723.78, + "probability": 0.5949 + }, + { + "start": 4723.9, + "end": 4724.45, + "probability": 0.1474 + }, + { + "start": 4724.88, + "end": 4728.22, + "probability": 0.436 + }, + { + "start": 4728.58, + "end": 4730.08, + "probability": 0.6709 + }, + { + "start": 4730.3, + "end": 4731.88, + "probability": 0.7891 + }, + { + "start": 4732.82, + "end": 4736.28, + "probability": 0.9407 + }, + { + "start": 4738.62, + "end": 4744.7, + "probability": 0.8789 + }, + { + "start": 4744.78, + "end": 4745.27, + "probability": 0.7117 + }, + { + "start": 4745.52, + "end": 4746.44, + "probability": 0.9768 + }, + { + "start": 4747.8, + "end": 4750.42, + "probability": 0.7901 + }, + { + "start": 4750.68, + "end": 4752.26, + "probability": 0.9954 + }, + { + "start": 4753.32, + "end": 4756.28, + "probability": 0.9953 + }, + { + "start": 4757.26, + "end": 4757.7, + "probability": 0.7322 + }, + { + "start": 4758.04, + "end": 4758.66, + "probability": 0.8893 + }, + { + "start": 4758.84, + "end": 4760.94, + "probability": 0.9626 + }, + { + "start": 4760.96, + "end": 4761.44, + "probability": 0.9461 + }, + { + "start": 4761.5, + "end": 4762.36, + "probability": 0.9055 + }, + { + "start": 4762.7, + "end": 4764.32, + "probability": 0.6997 + }, + { + "start": 4764.82, + "end": 4766.62, + "probability": 0.107 + }, + { + "start": 4767.76, + "end": 4770.4, + "probability": 0.9453 + }, + { + "start": 4770.66, + "end": 4772.57, + "probability": 0.9814 + }, + { + "start": 4773.36, + "end": 4773.74, + "probability": 0.2007 + }, + { + "start": 4773.74, + "end": 4773.88, + "probability": 0.557 + }, + { + "start": 4774.56, + "end": 4776.6, + "probability": 0.8423 + }, + { + "start": 4778.32, + "end": 4778.52, + "probability": 0.5347 + }, + { + "start": 4778.66, + "end": 4784.96, + "probability": 0.9749 + }, + { + "start": 4784.98, + "end": 4788.46, + "probability": 0.9894 + }, + { + "start": 4789.02, + "end": 4794.96, + "probability": 0.9917 + }, + { + "start": 4795.02, + "end": 4796.16, + "probability": 0.8858 + }, + { + "start": 4796.5, + "end": 4798.37, + "probability": 0.9313 + }, + { + "start": 4798.98, + "end": 4801.02, + "probability": 0.9917 + }, + { + "start": 4801.08, + "end": 4801.68, + "probability": 0.7629 + }, + { + "start": 4802.4, + "end": 4803.28, + "probability": 0.7715 + }, + { + "start": 4803.28, + "end": 4803.48, + "probability": 0.3684 + }, + { + "start": 4803.5, + "end": 4804.42, + "probability": 0.725 + }, + { + "start": 4804.56, + "end": 4805.5, + "probability": 0.6321 + }, + { + "start": 4806.34, + "end": 4810.2, + "probability": 0.7431 + }, + { + "start": 4810.26, + "end": 4810.84, + "probability": 0.8761 + }, + { + "start": 4811.34, + "end": 4813.8, + "probability": 0.6942 + }, + { + "start": 4815.1, + "end": 4819.22, + "probability": 0.9242 + }, + { + "start": 4820.24, + "end": 4826.52, + "probability": 0.8455 + }, + { + "start": 4826.66, + "end": 4827.74, + "probability": 0.8876 + }, + { + "start": 4827.8, + "end": 4828.72, + "probability": 0.9716 + }, + { + "start": 4828.9, + "end": 4832.36, + "probability": 0.9927 + }, + { + "start": 4832.92, + "end": 4834.28, + "probability": 0.9679 + }, + { + "start": 4834.5, + "end": 4838.24, + "probability": 0.9798 + }, + { + "start": 4839.33, + "end": 4841.06, + "probability": 0.8867 + }, + { + "start": 4841.14, + "end": 4842.05, + "probability": 0.7645 + }, + { + "start": 4842.54, + "end": 4843.65, + "probability": 0.7433 + }, + { + "start": 4844.48, + "end": 4845.52, + "probability": 0.9993 + }, + { + "start": 4845.66, + "end": 4848.46, + "probability": 0.7666 + }, + { + "start": 4848.92, + "end": 4849.82, + "probability": 0.8307 + }, + { + "start": 4850.04, + "end": 4852.06, + "probability": 0.9784 + }, + { + "start": 4852.18, + "end": 4852.96, + "probability": 0.7496 + }, + { + "start": 4853.06, + "end": 4853.9, + "probability": 0.8931 + }, + { + "start": 4854.42, + "end": 4856.21, + "probability": 0.9658 + }, + { + "start": 4856.88, + "end": 4857.76, + "probability": 0.9786 + }, + { + "start": 4858.5, + "end": 4860.2, + "probability": 0.9186 + }, + { + "start": 4860.34, + "end": 4861.12, + "probability": 0.8231 + }, + { + "start": 4861.46, + "end": 4865.46, + "probability": 0.8839 + }, + { + "start": 4865.82, + "end": 4867.78, + "probability": 0.9601 + }, + { + "start": 4868.62, + "end": 4870.42, + "probability": 0.9019 + }, + { + "start": 4871.34, + "end": 4874.26, + "probability": 0.9856 + }, + { + "start": 4874.42, + "end": 4876.46, + "probability": 0.9968 + }, + { + "start": 4877.06, + "end": 4879.52, + "probability": 0.6356 + }, + { + "start": 4880.28, + "end": 4880.96, + "probability": 0.9133 + }, + { + "start": 4881.22, + "end": 4881.6, + "probability": 0.8831 + }, + { + "start": 4881.66, + "end": 4883.28, + "probability": 0.7982 + }, + { + "start": 4883.84, + "end": 4885.46, + "probability": 0.9251 + }, + { + "start": 4885.92, + "end": 4889.04, + "probability": 0.9995 + }, + { + "start": 4889.04, + "end": 4892.66, + "probability": 0.9978 + }, + { + "start": 4892.76, + "end": 4895.48, + "probability": 0.9717 + }, + { + "start": 4895.76, + "end": 4898.82, + "probability": 0.7497 + }, + { + "start": 4899.22, + "end": 4902.9, + "probability": 0.9963 + }, + { + "start": 4902.96, + "end": 4903.92, + "probability": 0.6656 + }, + { + "start": 4904.02, + "end": 4905.46, + "probability": 0.8694 + }, + { + "start": 4906.14, + "end": 4907.22, + "probability": 0.9819 + }, + { + "start": 4907.26, + "end": 4910.06, + "probability": 0.9486 + }, + { + "start": 4910.18, + "end": 4911.16, + "probability": 0.5278 + }, + { + "start": 4911.38, + "end": 4914.81, + "probability": 0.9847 + }, + { + "start": 4916.04, + "end": 4917.36, + "probability": 0.8484 + }, + { + "start": 4917.48, + "end": 4918.9, + "probability": 0.9821 + }, + { + "start": 4919.14, + "end": 4922.64, + "probability": 0.9059 + }, + { + "start": 4923.22, + "end": 4926.02, + "probability": 0.9773 + }, + { + "start": 4926.56, + "end": 4930.84, + "probability": 0.9497 + }, + { + "start": 4931.78, + "end": 4932.78, + "probability": 0.9565 + }, + { + "start": 4932.84, + "end": 4933.56, + "probability": 0.7951 + }, + { + "start": 4933.64, + "end": 4934.38, + "probability": 0.726 + }, + { + "start": 4934.42, + "end": 4936.3, + "probability": 0.9826 + }, + { + "start": 4936.52, + "end": 4939.08, + "probability": 0.9842 + }, + { + "start": 4939.44, + "end": 4940.94, + "probability": 0.8842 + }, + { + "start": 4941.36, + "end": 4942.5, + "probability": 0.7428 + }, + { + "start": 4942.62, + "end": 4943.78, + "probability": 0.9342 + }, + { + "start": 4944.32, + "end": 4945.86, + "probability": 0.9875 + }, + { + "start": 4946.22, + "end": 4946.84, + "probability": 0.968 + }, + { + "start": 4946.9, + "end": 4947.98, + "probability": 0.9653 + }, + { + "start": 4948.02, + "end": 4950.82, + "probability": 0.9009 + }, + { + "start": 4950.9, + "end": 4952.19, + "probability": 0.8195 + }, + { + "start": 4952.68, + "end": 4954.32, + "probability": 0.7666 + }, + { + "start": 4954.72, + "end": 4956.74, + "probability": 0.6957 + }, + { + "start": 4956.74, + "end": 4959.9, + "probability": 0.9161 + }, + { + "start": 4960.0, + "end": 4960.5, + "probability": 0.809 + }, + { + "start": 4960.58, + "end": 4961.2, + "probability": 0.5327 + }, + { + "start": 4961.66, + "end": 4962.94, + "probability": 0.864 + }, + { + "start": 4963.82, + "end": 4964.9, + "probability": 0.9508 + }, + { + "start": 4969.68, + "end": 4972.48, + "probability": 0.9788 + }, + { + "start": 4975.3, + "end": 4977.7, + "probability": 0.864 + }, + { + "start": 4994.16, + "end": 4998.48, + "probability": 0.7429 + }, + { + "start": 4999.45, + "end": 5002.66, + "probability": 0.8729 + }, + { + "start": 5002.96, + "end": 5007.57, + "probability": 0.8922 + }, + { + "start": 5009.16, + "end": 5009.6, + "probability": 0.8779 + }, + { + "start": 5010.88, + "end": 5011.44, + "probability": 0.9863 + }, + { + "start": 5013.78, + "end": 5017.28, + "probability": 0.8566 + }, + { + "start": 5019.98, + "end": 5021.3, + "probability": 0.4667 + }, + { + "start": 5022.32, + "end": 5029.64, + "probability": 0.7466 + }, + { + "start": 5030.48, + "end": 5036.3, + "probability": 0.9825 + }, + { + "start": 5036.3, + "end": 5040.46, + "probability": 0.9919 + }, + { + "start": 5041.94, + "end": 5044.02, + "probability": 0.9866 + }, + { + "start": 5044.02, + "end": 5049.58, + "probability": 0.9862 + }, + { + "start": 5051.06, + "end": 5054.24, + "probability": 0.9952 + }, + { + "start": 5054.66, + "end": 5055.15, + "probability": 0.7374 + }, + { + "start": 5055.38, + "end": 5056.86, + "probability": 0.865 + }, + { + "start": 5057.82, + "end": 5059.82, + "probability": 0.8218 + }, + { + "start": 5061.14, + "end": 5066.24, + "probability": 0.6722 + }, + { + "start": 5067.0, + "end": 5069.4, + "probability": 0.6266 + }, + { + "start": 5070.62, + "end": 5071.28, + "probability": 0.856 + }, + { + "start": 5072.76, + "end": 5079.06, + "probability": 0.9459 + }, + { + "start": 5079.8, + "end": 5088.2, + "probability": 0.9656 + }, + { + "start": 5088.2, + "end": 5092.28, + "probability": 0.9907 + }, + { + "start": 5092.46, + "end": 5093.06, + "probability": 0.7337 + }, + { + "start": 5093.7, + "end": 5097.62, + "probability": 0.7261 + }, + { + "start": 5098.26, + "end": 5102.1, + "probability": 0.8969 + }, + { + "start": 5102.6, + "end": 5108.24, + "probability": 0.9607 + }, + { + "start": 5110.26, + "end": 5114.68, + "probability": 0.7385 + }, + { + "start": 5115.66, + "end": 5120.52, + "probability": 0.9401 + }, + { + "start": 5120.52, + "end": 5127.52, + "probability": 0.9773 + }, + { + "start": 5128.52, + "end": 5130.76, + "probability": 0.8942 + }, + { + "start": 5130.76, + "end": 5136.06, + "probability": 0.9543 + }, + { + "start": 5136.84, + "end": 5138.9, + "probability": 0.9054 + }, + { + "start": 5139.04, + "end": 5141.98, + "probability": 0.8959 + }, + { + "start": 5142.72, + "end": 5145.04, + "probability": 0.5442 + }, + { + "start": 5145.26, + "end": 5149.02, + "probability": 0.9045 + }, + { + "start": 5149.22, + "end": 5150.22, + "probability": 0.6396 + }, + { + "start": 5150.56, + "end": 5153.34, + "probability": 0.9731 + }, + { + "start": 5153.4, + "end": 5153.66, + "probability": 0.9596 + }, + { + "start": 5153.74, + "end": 5155.56, + "probability": 0.9956 + }, + { + "start": 5156.5, + "end": 5157.78, + "probability": 0.8293 + }, + { + "start": 5158.08, + "end": 5161.68, + "probability": 0.9723 + }, + { + "start": 5161.74, + "end": 5162.48, + "probability": 0.8686 + }, + { + "start": 5162.88, + "end": 5165.86, + "probability": 0.9846 + }, + { + "start": 5165.9, + "end": 5167.94, + "probability": 0.7475 + }, + { + "start": 5169.64, + "end": 5170.9, + "probability": 0.7488 + }, + { + "start": 5170.96, + "end": 5173.26, + "probability": 0.8728 + }, + { + "start": 5174.5, + "end": 5175.12, + "probability": 0.636 + }, + { + "start": 5175.32, + "end": 5177.28, + "probability": 0.9093 + }, + { + "start": 5177.52, + "end": 5179.96, + "probability": 0.9582 + }, + { + "start": 5179.96, + "end": 5183.02, + "probability": 0.9943 + }, + { + "start": 5183.12, + "end": 5185.48, + "probability": 0.9731 + }, + { + "start": 5185.9, + "end": 5188.04, + "probability": 0.7402 + }, + { + "start": 5188.14, + "end": 5190.22, + "probability": 0.8164 + }, + { + "start": 5190.3, + "end": 5191.74, + "probability": 0.6968 + }, + { + "start": 5192.08, + "end": 5193.5, + "probability": 0.9625 + }, + { + "start": 5193.5, + "end": 5196.02, + "probability": 0.9705 + }, + { + "start": 5196.22, + "end": 5201.4, + "probability": 0.9848 + }, + { + "start": 5201.4, + "end": 5205.16, + "probability": 0.999 + }, + { + "start": 5205.28, + "end": 5205.66, + "probability": 0.2818 + }, + { + "start": 5205.66, + "end": 5206.02, + "probability": 0.2441 + }, + { + "start": 5206.24, + "end": 5209.3, + "probability": 0.7922 + }, + { + "start": 5210.94, + "end": 5212.06, + "probability": 0.6364 + }, + { + "start": 5212.2, + "end": 5213.06, + "probability": 0.8492 + }, + { + "start": 5213.26, + "end": 5214.28, + "probability": 0.5921 + }, + { + "start": 5214.36, + "end": 5215.26, + "probability": 0.4746 + }, + { + "start": 5215.44, + "end": 5217.68, + "probability": 0.673 + }, + { + "start": 5217.82, + "end": 5218.68, + "probability": 0.7406 + }, + { + "start": 5219.02, + "end": 5221.14, + "probability": 0.9897 + }, + { + "start": 5222.14, + "end": 5225.91, + "probability": 0.8687 + }, + { + "start": 5226.3, + "end": 5227.3, + "probability": 0.9767 + }, + { + "start": 5227.74, + "end": 5229.35, + "probability": 0.844 + }, + { + "start": 5229.4, + "end": 5232.78, + "probability": 0.9958 + }, + { + "start": 5233.0, + "end": 5234.92, + "probability": 0.6649 + }, + { + "start": 5235.14, + "end": 5236.08, + "probability": 0.6891 + }, + { + "start": 5236.18, + "end": 5238.88, + "probability": 0.5175 + }, + { + "start": 5238.96, + "end": 5239.98, + "probability": 0.9444 + }, + { + "start": 5240.3, + "end": 5241.62, + "probability": 0.6972 + }, + { + "start": 5242.5, + "end": 5242.88, + "probability": 0.6964 + }, + { + "start": 5243.14, + "end": 5244.08, + "probability": 0.7634 + }, + { + "start": 5244.14, + "end": 5244.76, + "probability": 0.9167 + }, + { + "start": 5245.08, + "end": 5250.3, + "probability": 0.9194 + }, + { + "start": 5250.54, + "end": 5251.86, + "probability": 0.931 + }, + { + "start": 5251.86, + "end": 5252.8, + "probability": 0.6526 + }, + { + "start": 5252.86, + "end": 5253.28, + "probability": 0.9502 + }, + { + "start": 5253.38, + "end": 5254.96, + "probability": 0.8895 + }, + { + "start": 5254.98, + "end": 5255.16, + "probability": 0.4499 + }, + { + "start": 5255.42, + "end": 5255.9, + "probability": 0.5367 + }, + { + "start": 5256.2, + "end": 5257.56, + "probability": 0.9521 + }, + { + "start": 5257.62, + "end": 5258.16, + "probability": 0.6898 + }, + { + "start": 5258.18, + "end": 5258.72, + "probability": 0.4197 + }, + { + "start": 5258.8, + "end": 5260.16, + "probability": 0.979 + }, + { + "start": 5261.58, + "end": 5263.12, + "probability": 0.7973 + }, + { + "start": 5276.32, + "end": 5276.94, + "probability": 0.494 + }, + { + "start": 5276.94, + "end": 5277.14, + "probability": 0.715 + }, + { + "start": 5279.16, + "end": 5280.38, + "probability": 0.6998 + }, + { + "start": 5280.38, + "end": 5281.9, + "probability": 0.7818 + }, + { + "start": 5282.12, + "end": 5287.42, + "probability": 0.7394 + }, + { + "start": 5291.64, + "end": 5293.6, + "probability": 0.5426 + }, + { + "start": 5293.76, + "end": 5294.74, + "probability": 0.8039 + }, + { + "start": 5297.54, + "end": 5298.82, + "probability": 0.9302 + }, + { + "start": 5299.02, + "end": 5302.6, + "probability": 0.882 + }, + { + "start": 5302.66, + "end": 5304.1, + "probability": 0.8086 + }, + { + "start": 5305.18, + "end": 5307.0, + "probability": 0.9902 + }, + { + "start": 5310.62, + "end": 5313.02, + "probability": 0.9263 + }, + { + "start": 5315.38, + "end": 5317.88, + "probability": 0.9325 + }, + { + "start": 5319.24, + "end": 5321.62, + "probability": 0.5142 + }, + { + "start": 5323.6, + "end": 5324.74, + "probability": 0.7147 + }, + { + "start": 5325.9, + "end": 5331.44, + "probability": 0.5289 + }, + { + "start": 5332.42, + "end": 5336.98, + "probability": 0.6667 + }, + { + "start": 5342.18, + "end": 5345.24, + "probability": 0.6608 + }, + { + "start": 5346.42, + "end": 5350.26, + "probability": 0.7757 + }, + { + "start": 5351.46, + "end": 5354.7, + "probability": 0.7019 + }, + { + "start": 5355.56, + "end": 5357.8, + "probability": 0.721 + }, + { + "start": 5358.94, + "end": 5362.26, + "probability": 0.8822 + }, + { + "start": 5363.76, + "end": 5365.56, + "probability": 0.8028 + }, + { + "start": 5366.38, + "end": 5367.68, + "probability": 0.5647 + }, + { + "start": 5369.18, + "end": 5370.86, + "probability": 0.7526 + }, + { + "start": 5371.84, + "end": 5372.88, + "probability": 0.7774 + }, + { + "start": 5374.32, + "end": 5376.34, + "probability": 0.9114 + }, + { + "start": 5378.04, + "end": 5379.66, + "probability": 0.8584 + }, + { + "start": 5382.1, + "end": 5384.58, + "probability": 0.8649 + }, + { + "start": 5385.22, + "end": 5385.29, + "probability": 0.0141 + }, + { + "start": 5386.2, + "end": 5388.3, + "probability": 0.7878 + }, + { + "start": 5389.56, + "end": 5389.56, + "probability": 0.0232 + }, + { + "start": 5389.56, + "end": 5392.22, + "probability": 0.5098 + }, + { + "start": 5394.12, + "end": 5395.76, + "probability": 0.8687 + }, + { + "start": 5396.46, + "end": 5397.46, + "probability": 0.8746 + }, + { + "start": 5400.56, + "end": 5401.56, + "probability": 0.504 + }, + { + "start": 5401.94, + "end": 5403.06, + "probability": 0.8739 + }, + { + "start": 5403.28, + "end": 5404.24, + "probability": 0.3653 + }, + { + "start": 5404.6, + "end": 5405.32, + "probability": 0.7524 + }, + { + "start": 5405.74, + "end": 5406.32, + "probability": 0.2845 + }, + { + "start": 5406.46, + "end": 5407.62, + "probability": 0.7001 + }, + { + "start": 5408.94, + "end": 5410.14, + "probability": 0.8004 + }, + { + "start": 5411.48, + "end": 5414.3, + "probability": 0.656 + }, + { + "start": 5415.12, + "end": 5416.96, + "probability": 0.9492 + }, + { + "start": 5418.18, + "end": 5419.64, + "probability": 0.6453 + }, + { + "start": 5421.68, + "end": 5424.4, + "probability": 0.8768 + }, + { + "start": 5425.76, + "end": 5430.66, + "probability": 0.8848 + }, + { + "start": 5432.58, + "end": 5433.88, + "probability": 0.4088 + }, + { + "start": 5434.52, + "end": 5434.78, + "probability": 0.774 + }, + { + "start": 5438.06, + "end": 5438.88, + "probability": 0.8448 + }, + { + "start": 5439.9, + "end": 5442.38, + "probability": 0.9604 + }, + { + "start": 5442.64, + "end": 5446.0, + "probability": 0.8152 + }, + { + "start": 5446.42, + "end": 5447.38, + "probability": 0.9729 + }, + { + "start": 5449.0, + "end": 5452.88, + "probability": 0.8597 + }, + { + "start": 5453.72, + "end": 5457.48, + "probability": 0.6217 + }, + { + "start": 5458.5, + "end": 5459.7, + "probability": 0.6222 + }, + { + "start": 5461.1, + "end": 5462.78, + "probability": 0.5835 + }, + { + "start": 5463.36, + "end": 5465.4, + "probability": 0.5737 + }, + { + "start": 5467.58, + "end": 5471.28, + "probability": 0.9248 + }, + { + "start": 5471.9, + "end": 5473.14, + "probability": 0.7484 + }, + { + "start": 5473.64, + "end": 5479.42, + "probability": 0.8658 + }, + { + "start": 5479.52, + "end": 5480.2, + "probability": 0.2708 + }, + { + "start": 5480.28, + "end": 5480.54, + "probability": 0.5287 + }, + { + "start": 5481.04, + "end": 5482.66, + "probability": 0.3208 + }, + { + "start": 5482.78, + "end": 5484.44, + "probability": 0.9219 + }, + { + "start": 5485.02, + "end": 5486.2, + "probability": 0.9401 + }, + { + "start": 5487.12, + "end": 5490.22, + "probability": 0.7686 + }, + { + "start": 5490.9, + "end": 5492.47, + "probability": 0.0773 + }, + { + "start": 5493.34, + "end": 5493.46, + "probability": 0.4691 + }, + { + "start": 5493.84, + "end": 5495.2, + "probability": 0.8139 + }, + { + "start": 5495.3, + "end": 5496.12, + "probability": 0.693 + }, + { + "start": 5496.46, + "end": 5499.48, + "probability": 0.675 + }, + { + "start": 5500.2, + "end": 5503.96, + "probability": 0.7202 + }, + { + "start": 5505.74, + "end": 5508.84, + "probability": 0.4768 + }, + { + "start": 5511.92, + "end": 5513.2, + "probability": 0.9019 + }, + { + "start": 5516.56, + "end": 5519.1, + "probability": 0.559 + }, + { + "start": 5520.74, + "end": 5522.28, + "probability": 0.7817 + }, + { + "start": 5523.58, + "end": 5525.36, + "probability": 0.7398 + }, + { + "start": 5526.1, + "end": 5527.9, + "probability": 0.2733 + }, + { + "start": 5528.08, + "end": 5528.54, + "probability": 0.531 + }, + { + "start": 5528.74, + "end": 5531.08, + "probability": 0.8705 + }, + { + "start": 5531.54, + "end": 5535.2, + "probability": 0.9238 + }, + { + "start": 5536.18, + "end": 5537.44, + "probability": 0.8577 + }, + { + "start": 5537.9, + "end": 5538.72, + "probability": 0.792 + }, + { + "start": 5538.84, + "end": 5539.26, + "probability": 0.8109 + }, + { + "start": 5540.28, + "end": 5541.66, + "probability": 0.5876 + }, + { + "start": 5541.78, + "end": 5543.9, + "probability": 0.9366 + }, + { + "start": 5545.24, + "end": 5545.54, + "probability": 0.4219 + }, + { + "start": 5545.6, + "end": 5546.72, + "probability": 0.8811 + }, + { + "start": 5546.82, + "end": 5547.26, + "probability": 0.6593 + }, + { + "start": 5547.3, + "end": 5547.88, + "probability": 0.996 + }, + { + "start": 5548.46, + "end": 5549.32, + "probability": 0.5494 + }, + { + "start": 5550.2, + "end": 5552.22, + "probability": 0.9559 + }, + { + "start": 5552.3, + "end": 5553.86, + "probability": 0.3865 + }, + { + "start": 5553.9, + "end": 5554.42, + "probability": 0.8882 + }, + { + "start": 5554.94, + "end": 5556.7, + "probability": 0.9387 + }, + { + "start": 5558.06, + "end": 5560.76, + "probability": 0.5444 + }, + { + "start": 5563.1, + "end": 5566.28, + "probability": 0.8271 + }, + { + "start": 5566.44, + "end": 5568.28, + "probability": 0.7956 + }, + { + "start": 5568.36, + "end": 5569.0, + "probability": 0.2911 + }, + { + "start": 5569.82, + "end": 5571.64, + "probability": 0.9825 + }, + { + "start": 5573.26, + "end": 5577.28, + "probability": 0.9021 + }, + { + "start": 5577.8, + "end": 5581.28, + "probability": 0.945 + }, + { + "start": 5582.16, + "end": 5587.43, + "probability": 0.999 + }, + { + "start": 5587.7, + "end": 5589.8, + "probability": 0.9894 + }, + { + "start": 5590.5, + "end": 5591.46, + "probability": 0.8486 + }, + { + "start": 5591.6, + "end": 5598.9, + "probability": 0.988 + }, + { + "start": 5599.66, + "end": 5602.18, + "probability": 0.9819 + }, + { + "start": 5602.78, + "end": 5605.04, + "probability": 0.1404 + }, + { + "start": 5605.96, + "end": 5611.04, + "probability": 0.9936 + }, + { + "start": 5611.04, + "end": 5613.42, + "probability": 0.9941 + }, + { + "start": 5614.0, + "end": 5615.7, + "probability": 0.9778 + }, + { + "start": 5615.84, + "end": 5618.66, + "probability": 0.9767 + }, + { + "start": 5618.82, + "end": 5620.4, + "probability": 0.9471 + }, + { + "start": 5620.42, + "end": 5623.26, + "probability": 0.9626 + }, + { + "start": 5623.94, + "end": 5627.42, + "probability": 0.958 + }, + { + "start": 5628.36, + "end": 5634.9, + "probability": 0.9718 + }, + { + "start": 5635.68, + "end": 5638.68, + "probability": 0.9576 + }, + { + "start": 5639.4, + "end": 5643.97, + "probability": 0.9132 + }, + { + "start": 5645.24, + "end": 5645.64, + "probability": 0.7369 + }, + { + "start": 5645.76, + "end": 5647.56, + "probability": 0.9949 + }, + { + "start": 5647.72, + "end": 5648.49, + "probability": 0.9822 + }, + { + "start": 5649.0, + "end": 5651.56, + "probability": 0.9871 + }, + { + "start": 5651.82, + "end": 5651.92, + "probability": 0.5623 + }, + { + "start": 5652.66, + "end": 5654.05, + "probability": 0.9937 + }, + { + "start": 5654.64, + "end": 5657.1, + "probability": 0.3484 + }, + { + "start": 5657.1, + "end": 5661.78, + "probability": 0.9852 + }, + { + "start": 5662.66, + "end": 5666.5, + "probability": 0.9592 + }, + { + "start": 5666.54, + "end": 5668.2, + "probability": 0.9092 + }, + { + "start": 5669.2, + "end": 5669.66, + "probability": 0.0124 + }, + { + "start": 5670.16, + "end": 5672.96, + "probability": 0.5991 + }, + { + "start": 5673.26, + "end": 5673.84, + "probability": 0.3754 + }, + { + "start": 5673.98, + "end": 5675.4, + "probability": 0.7849 + }, + { + "start": 5676.18, + "end": 5679.52, + "probability": 0.8805 + }, + { + "start": 5680.86, + "end": 5685.08, + "probability": 0.994 + }, + { + "start": 5686.34, + "end": 5689.34, + "probability": 0.988 + }, + { + "start": 5689.34, + "end": 5695.74, + "probability": 0.981 + }, + { + "start": 5697.8, + "end": 5702.58, + "probability": 0.9829 + }, + { + "start": 5703.26, + "end": 5706.22, + "probability": 0.958 + }, + { + "start": 5706.8, + "end": 5709.98, + "probability": 0.9976 + }, + { + "start": 5710.96, + "end": 5714.4, + "probability": 0.9956 + }, + { + "start": 5714.82, + "end": 5715.12, + "probability": 0.4635 + }, + { + "start": 5715.16, + "end": 5718.14, + "probability": 0.9968 + }, + { + "start": 5718.14, + "end": 5719.98, + "probability": 0.9951 + }, + { + "start": 5720.62, + "end": 5722.0, + "probability": 0.7535 + }, + { + "start": 5723.12, + "end": 5723.8, + "probability": 0.7127 + }, + { + "start": 5724.38, + "end": 5725.2, + "probability": 0.614 + }, + { + "start": 5725.32, + "end": 5729.27, + "probability": 0.9849 + }, + { + "start": 5730.72, + "end": 5731.2, + "probability": 0.7901 + }, + { + "start": 5731.24, + "end": 5732.02, + "probability": 0.8248 + }, + { + "start": 5732.02, + "end": 5737.84, + "probability": 0.9497 + }, + { + "start": 5738.18, + "end": 5740.4, + "probability": 0.6782 + }, + { + "start": 5740.5, + "end": 5741.38, + "probability": 0.6712 + }, + { + "start": 5741.52, + "end": 5743.98, + "probability": 0.9702 + }, + { + "start": 5744.02, + "end": 5745.02, + "probability": 0.7909 + }, + { + "start": 5745.74, + "end": 5750.84, + "probability": 0.9455 + }, + { + "start": 5751.12, + "end": 5754.94, + "probability": 0.9937 + }, + { + "start": 5755.54, + "end": 5759.7, + "probability": 0.7331 + }, + { + "start": 5759.94, + "end": 5763.63, + "probability": 0.9989 + }, + { + "start": 5764.34, + "end": 5768.4, + "probability": 0.9941 + }, + { + "start": 5768.66, + "end": 5769.68, + "probability": 0.5144 + }, + { + "start": 5769.76, + "end": 5771.26, + "probability": 0.7949 + }, + { + "start": 5771.38, + "end": 5773.6, + "probability": 0.8382 + }, + { + "start": 5773.64, + "end": 5775.06, + "probability": 0.4991 + }, + { + "start": 5796.52, + "end": 5799.32, + "probability": 0.6903 + }, + { + "start": 5802.8, + "end": 5803.52, + "probability": 0.7358 + }, + { + "start": 5803.88, + "end": 5806.64, + "probability": 0.9277 + }, + { + "start": 5806.82, + "end": 5809.08, + "probability": 0.9619 + }, + { + "start": 5809.18, + "end": 5810.6, + "probability": 0.8238 + }, + { + "start": 5811.08, + "end": 5816.24, + "probability": 0.994 + }, + { + "start": 5816.24, + "end": 5820.82, + "probability": 0.9541 + }, + { + "start": 5822.0, + "end": 5823.8, + "probability": 0.8288 + }, + { + "start": 5825.34, + "end": 5828.58, + "probability": 0.9709 + }, + { + "start": 5830.46, + "end": 5832.1, + "probability": 0.9979 + }, + { + "start": 5836.12, + "end": 5839.72, + "probability": 0.4789 + }, + { + "start": 5839.9, + "end": 5840.9, + "probability": 0.9844 + }, + { + "start": 5842.58, + "end": 5846.7, + "probability": 0.9676 + }, + { + "start": 5847.42, + "end": 5849.44, + "probability": 0.9947 + }, + { + "start": 5851.02, + "end": 5856.0, + "probability": 0.938 + }, + { + "start": 5856.48, + "end": 5862.38, + "probability": 0.8889 + }, + { + "start": 5863.26, + "end": 5863.8, + "probability": 0.25 + }, + { + "start": 5864.34, + "end": 5865.58, + "probability": 0.8766 + }, + { + "start": 5866.9, + "end": 5869.02, + "probability": 0.993 + }, + { + "start": 5870.22, + "end": 5871.34, + "probability": 0.861 + }, + { + "start": 5872.66, + "end": 5875.46, + "probability": 0.9225 + }, + { + "start": 5877.08, + "end": 5883.2, + "probability": 0.9226 + }, + { + "start": 5883.94, + "end": 5886.38, + "probability": 0.6794 + }, + { + "start": 5887.32, + "end": 5890.9, + "probability": 0.9902 + }, + { + "start": 5892.48, + "end": 5893.54, + "probability": 0.9697 + }, + { + "start": 5895.72, + "end": 5898.74, + "probability": 0.9333 + }, + { + "start": 5899.38, + "end": 5902.13, + "probability": 0.6949 + }, + { + "start": 5903.18, + "end": 5906.6, + "probability": 0.9956 + }, + { + "start": 5907.6, + "end": 5907.6, + "probability": 0.8872 + }, + { + "start": 5910.48, + "end": 5915.64, + "probability": 0.7282 + }, + { + "start": 5916.1, + "end": 5918.77, + "probability": 0.9884 + }, + { + "start": 5918.9, + "end": 5922.16, + "probability": 0.9568 + }, + { + "start": 5925.04, + "end": 5931.42, + "probability": 0.9747 + }, + { + "start": 5932.32, + "end": 5936.4, + "probability": 0.8604 + }, + { + "start": 5938.26, + "end": 5942.16, + "probability": 0.9939 + }, + { + "start": 5943.14, + "end": 5947.4, + "probability": 0.9923 + }, + { + "start": 5949.36, + "end": 5954.4, + "probability": 0.9487 + }, + { + "start": 5955.6, + "end": 5956.72, + "probability": 0.8564 + }, + { + "start": 5957.58, + "end": 5959.09, + "probability": 0.3938 + }, + { + "start": 5960.16, + "end": 5961.14, + "probability": 0.7761 + }, + { + "start": 5961.66, + "end": 5964.78, + "probability": 0.822 + }, + { + "start": 5966.54, + "end": 5969.6, + "probability": 0.7743 + }, + { + "start": 5970.44, + "end": 5976.6, + "probability": 0.972 + }, + { + "start": 5978.1, + "end": 5980.7, + "probability": 0.8833 + }, + { + "start": 5982.32, + "end": 5986.68, + "probability": 0.9746 + }, + { + "start": 5987.64, + "end": 5989.58, + "probability": 0.6119 + }, + { + "start": 5990.76, + "end": 5994.14, + "probability": 0.8971 + }, + { + "start": 5994.28, + "end": 5996.32, + "probability": 0.8943 + }, + { + "start": 5996.54, + "end": 5997.52, + "probability": 0.8185 + }, + { + "start": 5997.6, + "end": 6003.4, + "probability": 0.9176 + }, + { + "start": 6005.92, + "end": 6007.0, + "probability": 0.61 + }, + { + "start": 6007.6, + "end": 6009.58, + "probability": 0.78 + }, + { + "start": 6009.98, + "end": 6012.7, + "probability": 0.9852 + }, + { + "start": 6013.54, + "end": 6016.76, + "probability": 0.7414 + }, + { + "start": 6017.06, + "end": 6017.85, + "probability": 0.9497 + }, + { + "start": 6017.96, + "end": 6018.59, + "probability": 0.9233 + }, + { + "start": 6018.92, + "end": 6021.72, + "probability": 0.874 + }, + { + "start": 6021.86, + "end": 6022.06, + "probability": 0.396 + }, + { + "start": 6022.06, + "end": 6029.28, + "probability": 0.9648 + }, + { + "start": 6030.28, + "end": 6031.92, + "probability": 0.6757 + }, + { + "start": 6032.54, + "end": 6035.56, + "probability": 0.9948 + }, + { + "start": 6036.36, + "end": 6037.3, + "probability": 0.9417 + }, + { + "start": 6037.88, + "end": 6041.18, + "probability": 0.9785 + }, + { + "start": 6041.74, + "end": 6046.94, + "probability": 0.9155 + }, + { + "start": 6047.48, + "end": 6047.86, + "probability": 0.2779 + }, + { + "start": 6047.86, + "end": 6049.34, + "probability": 0.6342 + }, + { + "start": 6049.5, + "end": 6051.66, + "probability": 0.7377 + }, + { + "start": 6052.12, + "end": 6052.5, + "probability": 0.4789 + }, + { + "start": 6052.56, + "end": 6054.22, + "probability": 0.9663 + }, + { + "start": 6054.86, + "end": 6057.96, + "probability": 0.9116 + }, + { + "start": 6058.82, + "end": 6060.74, + "probability": 0.9799 + }, + { + "start": 6062.0, + "end": 6064.3, + "probability": 0.7218 + }, + { + "start": 6064.58, + "end": 6065.42, + "probability": 0.5776 + }, + { + "start": 6065.48, + "end": 6065.7, + "probability": 0.9492 + }, + { + "start": 6068.38, + "end": 6068.88, + "probability": 0.6447 + }, + { + "start": 6068.96, + "end": 6071.3, + "probability": 0.7078 + }, + { + "start": 6071.84, + "end": 6074.46, + "probability": 0.9889 + }, + { + "start": 6075.32, + "end": 6076.32, + "probability": 0.9014 + }, + { + "start": 6077.36, + "end": 6078.12, + "probability": 0.0764 + }, + { + "start": 6078.7, + "end": 6080.96, + "probability": 0.9777 + }, + { + "start": 6080.96, + "end": 6084.54, + "probability": 0.7683 + }, + { + "start": 6084.76, + "end": 6088.12, + "probability": 0.5999 + }, + { + "start": 6089.08, + "end": 6091.9, + "probability": 0.8083 + }, + { + "start": 6091.98, + "end": 6094.52, + "probability": 0.9451 + }, + { + "start": 6095.14, + "end": 6096.98, + "probability": 0.966 + }, + { + "start": 6098.08, + "end": 6098.56, + "probability": 0.3575 + }, + { + "start": 6098.72, + "end": 6104.38, + "probability": 0.9154 + }, + { + "start": 6104.5, + "end": 6105.24, + "probability": 0.9524 + }, + { + "start": 6105.6, + "end": 6106.74, + "probability": 0.9668 + }, + { + "start": 6107.56, + "end": 6108.7, + "probability": 0.7527 + }, + { + "start": 6109.64, + "end": 6113.34, + "probability": 0.9534 + }, + { + "start": 6114.12, + "end": 6116.1, + "probability": 0.6562 + }, + { + "start": 6116.92, + "end": 6118.7, + "probability": 0.9501 + }, + { + "start": 6119.28, + "end": 6120.96, + "probability": 0.942 + }, + { + "start": 6121.54, + "end": 6122.9, + "probability": 0.9854 + }, + { + "start": 6123.46, + "end": 6129.46, + "probability": 0.9791 + }, + { + "start": 6131.18, + "end": 6132.7, + "probability": 0.7575 + }, + { + "start": 6134.04, + "end": 6138.4, + "probability": 0.9454 + }, + { + "start": 6139.24, + "end": 6141.12, + "probability": 0.8307 + }, + { + "start": 6142.18, + "end": 6143.23, + "probability": 0.9546 + }, + { + "start": 6144.36, + "end": 6147.31, + "probability": 0.9615 + }, + { + "start": 6148.26, + "end": 6153.86, + "probability": 0.9795 + }, + { + "start": 6154.22, + "end": 6154.99, + "probability": 0.9939 + }, + { + "start": 6156.42, + "end": 6158.68, + "probability": 0.9011 + }, + { + "start": 6159.56, + "end": 6161.2, + "probability": 0.9788 + }, + { + "start": 6161.66, + "end": 6164.8, + "probability": 0.9607 + }, + { + "start": 6165.16, + "end": 6166.08, + "probability": 0.63 + }, + { + "start": 6166.46, + "end": 6167.28, + "probability": 0.8353 + }, + { + "start": 6167.84, + "end": 6168.08, + "probability": 0.4807 + }, + { + "start": 6168.66, + "end": 6169.5, + "probability": 0.1908 + }, + { + "start": 6170.2, + "end": 6173.26, + "probability": 0.9294 + }, + { + "start": 6173.94, + "end": 6179.3, + "probability": 0.9564 + }, + { + "start": 6179.8, + "end": 6184.42, + "probability": 0.7149 + }, + { + "start": 6184.6, + "end": 6185.5, + "probability": 0.6351 + }, + { + "start": 6186.3, + "end": 6191.12, + "probability": 0.7499 + }, + { + "start": 6191.92, + "end": 6195.4, + "probability": 0.953 + }, + { + "start": 6196.04, + "end": 6202.08, + "probability": 0.9872 + }, + { + "start": 6202.68, + "end": 6209.94, + "probability": 0.9245 + }, + { + "start": 6210.42, + "end": 6211.74, + "probability": 0.9421 + }, + { + "start": 6211.76, + "end": 6214.94, + "probability": 0.9153 + }, + { + "start": 6215.42, + "end": 6216.86, + "probability": 0.7296 + }, + { + "start": 6217.42, + "end": 6221.34, + "probability": 0.9868 + }, + { + "start": 6221.86, + "end": 6222.54, + "probability": 0.4893 + }, + { + "start": 6223.06, + "end": 6224.24, + "probability": 0.6879 + }, + { + "start": 6224.66, + "end": 6230.52, + "probability": 0.9518 + }, + { + "start": 6231.2, + "end": 6234.68, + "probability": 0.8022 + }, + { + "start": 6235.18, + "end": 6238.58, + "probability": 0.9853 + }, + { + "start": 6239.02, + "end": 6241.3, + "probability": 0.9711 + }, + { + "start": 6241.6, + "end": 6241.8, + "probability": 0.5099 + }, + { + "start": 6242.28, + "end": 6244.72, + "probability": 0.8036 + }, + { + "start": 6244.74, + "end": 6246.64, + "probability": 0.9453 + }, + { + "start": 6247.46, + "end": 6248.66, + "probability": 0.8127 + }, + { + "start": 6251.64, + "end": 6257.96, + "probability": 0.6499 + }, + { + "start": 6260.22, + "end": 6261.58, + "probability": 0.5449 + }, + { + "start": 6262.94, + "end": 6264.02, + "probability": 0.7368 + }, + { + "start": 6266.2, + "end": 6269.26, + "probability": 0.9614 + }, + { + "start": 6270.92, + "end": 6275.52, + "probability": 0.9974 + }, + { + "start": 6278.16, + "end": 6278.68, + "probability": 0.4331 + }, + { + "start": 6285.46, + "end": 6286.88, + "probability": 0.2388 + }, + { + "start": 6288.08, + "end": 6289.28, + "probability": 0.0553 + }, + { + "start": 6289.86, + "end": 6294.26, + "probability": 0.416 + }, + { + "start": 6295.34, + "end": 6299.36, + "probability": 0.8997 + }, + { + "start": 6299.78, + "end": 6302.32, + "probability": 0.319 + }, + { + "start": 6302.36, + "end": 6302.74, + "probability": 0.7109 + }, + { + "start": 6302.74, + "end": 6303.22, + "probability": 0.4844 + }, + { + "start": 6304.0, + "end": 6304.54, + "probability": 0.1993 + }, + { + "start": 6304.62, + "end": 6308.76, + "probability": 0.5026 + }, + { + "start": 6310.49, + "end": 6314.58, + "probability": 0.7673 + }, + { + "start": 6314.78, + "end": 6319.99, + "probability": 0.9741 + }, + { + "start": 6321.52, + "end": 6326.34, + "probability": 0.9578 + }, + { + "start": 6326.4, + "end": 6332.12, + "probability": 0.9591 + }, + { + "start": 6333.42, + "end": 6338.52, + "probability": 0.7628 + }, + { + "start": 6338.66, + "end": 6340.34, + "probability": 0.8898 + }, + { + "start": 6340.98, + "end": 6342.74, + "probability": 0.9565 + }, + { + "start": 6343.54, + "end": 6343.76, + "probability": 0.8529 + }, + { + "start": 6344.76, + "end": 6350.0, + "probability": 0.9581 + }, + { + "start": 6350.88, + "end": 6355.54, + "probability": 0.9829 + }, + { + "start": 6356.04, + "end": 6359.02, + "probability": 0.9963 + }, + { + "start": 6359.62, + "end": 6361.53, + "probability": 0.7452 + }, + { + "start": 6362.68, + "end": 6363.63, + "probability": 0.7525 + }, + { + "start": 6364.66, + "end": 6371.52, + "probability": 0.8953 + }, + { + "start": 6372.92, + "end": 6376.02, + "probability": 0.9185 + }, + { + "start": 6376.38, + "end": 6382.0, + "probability": 0.9916 + }, + { + "start": 6382.44, + "end": 6385.92, + "probability": 0.9696 + }, + { + "start": 6386.68, + "end": 6391.48, + "probability": 0.9876 + }, + { + "start": 6392.42, + "end": 6394.86, + "probability": 0.9936 + }, + { + "start": 6395.56, + "end": 6397.72, + "probability": 0.8149 + }, + { + "start": 6398.3, + "end": 6406.0, + "probability": 0.9132 + }, + { + "start": 6406.1, + "end": 6414.56, + "probability": 0.9858 + }, + { + "start": 6414.78, + "end": 6416.44, + "probability": 0.6268 + }, + { + "start": 6417.16, + "end": 6420.23, + "probability": 0.724 + }, + { + "start": 6420.7, + "end": 6426.52, + "probability": 0.7923 + }, + { + "start": 6426.76, + "end": 6433.82, + "probability": 0.9349 + }, + { + "start": 6434.42, + "end": 6436.72, + "probability": 0.7855 + }, + { + "start": 6437.4, + "end": 6444.3, + "probability": 0.9487 + }, + { + "start": 6445.12, + "end": 6451.66, + "probability": 0.9976 + }, + { + "start": 6452.44, + "end": 6455.82, + "probability": 0.4975 + }, + { + "start": 6457.94, + "end": 6465.12, + "probability": 0.9579 + }, + { + "start": 6465.6, + "end": 6466.5, + "probability": 0.5528 + }, + { + "start": 6466.68, + "end": 6475.9, + "probability": 0.7734 + }, + { + "start": 6476.44, + "end": 6481.34, + "probability": 0.9323 + }, + { + "start": 6481.78, + "end": 6486.22, + "probability": 0.9529 + }, + { + "start": 6487.11, + "end": 6493.26, + "probability": 0.9319 + }, + { + "start": 6494.12, + "end": 6495.9, + "probability": 0.9985 + }, + { + "start": 6496.52, + "end": 6496.78, + "probability": 0.9812 + }, + { + "start": 6497.36, + "end": 6498.24, + "probability": 0.9852 + }, + { + "start": 6498.32, + "end": 6498.68, + "probability": 0.827 + }, + { + "start": 6499.16, + "end": 6500.36, + "probability": 0.6083 + }, + { + "start": 6500.4, + "end": 6502.22, + "probability": 0.877 + }, + { + "start": 6503.14, + "end": 6503.52, + "probability": 0.4425 + }, + { + "start": 6503.68, + "end": 6506.66, + "probability": 0.9143 + }, + { + "start": 6507.86, + "end": 6510.14, + "probability": 0.8373 + }, + { + "start": 6510.74, + "end": 6512.66, + "probability": 0.9336 + }, + { + "start": 6514.32, + "end": 6516.18, + "probability": 0.9133 + }, + { + "start": 6519.14, + "end": 6522.46, + "probability": 0.8132 + }, + { + "start": 6523.9, + "end": 6525.38, + "probability": 0.994 + }, + { + "start": 6525.62, + "end": 6526.42, + "probability": 0.7903 + }, + { + "start": 6527.1, + "end": 6530.77, + "probability": 0.9397 + }, + { + "start": 6532.6, + "end": 6543.64, + "probability": 0.9582 + }, + { + "start": 6544.9, + "end": 6547.45, + "probability": 0.9933 + }, + { + "start": 6548.32, + "end": 6549.18, + "probability": 0.7076 + }, + { + "start": 6550.64, + "end": 6555.06, + "probability": 0.994 + }, + { + "start": 6555.68, + "end": 6558.66, + "probability": 0.6912 + }, + { + "start": 6559.34, + "end": 6564.72, + "probability": 0.8654 + }, + { + "start": 6565.82, + "end": 6567.46, + "probability": 0.7884 + }, + { + "start": 6568.82, + "end": 6572.03, + "probability": 0.9432 + }, + { + "start": 6572.72, + "end": 6573.82, + "probability": 0.7036 + }, + { + "start": 6574.3, + "end": 6575.34, + "probability": 0.8788 + }, + { + "start": 6577.0, + "end": 6579.12, + "probability": 0.8208 + }, + { + "start": 6579.86, + "end": 6580.8, + "probability": 0.7531 + }, + { + "start": 6580.92, + "end": 6581.48, + "probability": 0.9769 + }, + { + "start": 6582.72, + "end": 6583.74, + "probability": 0.9839 + }, + { + "start": 6586.04, + "end": 6588.0, + "probability": 0.8735 + }, + { + "start": 6589.36, + "end": 6591.72, + "probability": 0.9951 + }, + { + "start": 6592.96, + "end": 6595.24, + "probability": 0.6652 + }, + { + "start": 6598.16, + "end": 6601.64, + "probability": 0.8678 + }, + { + "start": 6602.8, + "end": 6604.68, + "probability": 0.7711 + }, + { + "start": 6606.06, + "end": 6613.27, + "probability": 0.9644 + }, + { + "start": 6613.98, + "end": 6617.3, + "probability": 0.9438 + }, + { + "start": 6617.7, + "end": 6619.24, + "probability": 0.1871 + }, + { + "start": 6619.38, + "end": 6619.94, + "probability": 0.7729 + }, + { + "start": 6620.24, + "end": 6624.5, + "probability": 0.2794 + }, + { + "start": 6624.5, + "end": 6624.5, + "probability": 0.0883 + }, + { + "start": 6624.5, + "end": 6625.7, + "probability": 0.2495 + }, + { + "start": 6626.2, + "end": 6627.48, + "probability": 0.2666 + }, + { + "start": 6627.48, + "end": 6630.6, + "probability": 0.8499 + }, + { + "start": 6630.6, + "end": 6635.2, + "probability": 0.886 + }, + { + "start": 6635.76, + "end": 6637.36, + "probability": 0.6985 + }, + { + "start": 6638.22, + "end": 6639.14, + "probability": 0.5437 + }, + { + "start": 6639.76, + "end": 6640.9, + "probability": 0.6751 + }, + { + "start": 6641.02, + "end": 6642.26, + "probability": 0.6583 + }, + { + "start": 6642.39, + "end": 6646.58, + "probability": 0.9229 + }, + { + "start": 6648.7, + "end": 6650.18, + "probability": 0.3444 + }, + { + "start": 6652.44, + "end": 6653.76, + "probability": 0.9814 + }, + { + "start": 6654.36, + "end": 6659.0, + "probability": 0.9773 + }, + { + "start": 6660.7, + "end": 6664.94, + "probability": 0.9523 + }, + { + "start": 6664.94, + "end": 6669.18, + "probability": 0.9843 + }, + { + "start": 6670.42, + "end": 6671.24, + "probability": 0.4833 + }, + { + "start": 6672.26, + "end": 6673.42, + "probability": 0.5092 + }, + { + "start": 6674.7, + "end": 6676.04, + "probability": 0.8072 + }, + { + "start": 6676.7, + "end": 6680.8, + "probability": 0.9953 + }, + { + "start": 6680.8, + "end": 6686.14, + "probability": 0.7659 + }, + { + "start": 6687.0, + "end": 6692.46, + "probability": 0.9606 + }, + { + "start": 6692.82, + "end": 6697.16, + "probability": 0.9589 + }, + { + "start": 6698.0, + "end": 6702.1, + "probability": 0.6797 + }, + { + "start": 6703.0, + "end": 6707.66, + "probability": 0.7796 + }, + { + "start": 6708.26, + "end": 6709.06, + "probability": 0.9618 + }, + { + "start": 6709.18, + "end": 6709.64, + "probability": 0.5529 + }, + { + "start": 6710.2, + "end": 6710.34, + "probability": 0.3151 + }, + { + "start": 6710.34, + "end": 6710.6, + "probability": 0.5315 + }, + { + "start": 6710.76, + "end": 6712.94, + "probability": 0.8681 + }, + { + "start": 6713.9, + "end": 6716.38, + "probability": 0.7328 + }, + { + "start": 6717.28, + "end": 6719.5, + "probability": 0.9705 + }, + { + "start": 6733.94, + "end": 6734.72, + "probability": 0.6816 + }, + { + "start": 6734.86, + "end": 6737.7, + "probability": 0.9855 + }, + { + "start": 6738.38, + "end": 6738.84, + "probability": 0.9016 + }, + { + "start": 6739.04, + "end": 6739.76, + "probability": 0.759 + }, + { + "start": 6740.96, + "end": 6741.58, + "probability": 0.8428 + }, + { + "start": 6741.68, + "end": 6743.09, + "probability": 0.7623 + }, + { + "start": 6743.9, + "end": 6745.66, + "probability": 0.1336 + }, + { + "start": 6745.66, + "end": 6747.02, + "probability": 0.5198 + }, + { + "start": 6747.98, + "end": 6748.4, + "probability": 0.1218 + }, + { + "start": 6748.58, + "end": 6748.72, + "probability": 0.0388 + }, + { + "start": 6748.72, + "end": 6751.22, + "probability": 0.9504 + }, + { + "start": 6751.22, + "end": 6752.16, + "probability": 0.028 + }, + { + "start": 6752.68, + "end": 6752.74, + "probability": 0.2537 + }, + { + "start": 6752.74, + "end": 6753.74, + "probability": 0.5171 + }, + { + "start": 6754.14, + "end": 6754.48, + "probability": 0.7344 + }, + { + "start": 6754.92, + "end": 6757.05, + "probability": 0.6488 + }, + { + "start": 6758.38, + "end": 6761.38, + "probability": 0.9692 + }, + { + "start": 6761.5, + "end": 6763.0, + "probability": 0.9198 + }, + { + "start": 6763.04, + "end": 6766.18, + "probability": 0.9827 + }, + { + "start": 6768.72, + "end": 6770.88, + "probability": 0.9624 + }, + { + "start": 6772.26, + "end": 6774.0, + "probability": 0.8412 + }, + { + "start": 6775.5, + "end": 6779.26, + "probability": 0.9985 + }, + { + "start": 6779.34, + "end": 6780.32, + "probability": 0.7349 + }, + { + "start": 6780.36, + "end": 6781.42, + "probability": 0.9681 + }, + { + "start": 6782.72, + "end": 6785.1, + "probability": 0.8612 + }, + { + "start": 6785.94, + "end": 6790.66, + "probability": 0.9984 + }, + { + "start": 6791.9, + "end": 6791.9, + "probability": 0.0005 + }, + { + "start": 6792.8, + "end": 6792.9, + "probability": 0.1967 + }, + { + "start": 6792.9, + "end": 6794.38, + "probability": 0.7089 + }, + { + "start": 6795.58, + "end": 6797.62, + "probability": 0.6783 + }, + { + "start": 6798.78, + "end": 6801.0, + "probability": 0.8994 + }, + { + "start": 6802.44, + "end": 6805.78, + "probability": 0.9565 + }, + { + "start": 6806.78, + "end": 6808.6, + "probability": 0.9783 + }, + { + "start": 6809.18, + "end": 6810.2, + "probability": 0.9767 + }, + { + "start": 6810.66, + "end": 6812.28, + "probability": 0.9951 + }, + { + "start": 6813.98, + "end": 6816.66, + "probability": 0.9976 + }, + { + "start": 6817.88, + "end": 6821.62, + "probability": 0.9966 + }, + { + "start": 6821.62, + "end": 6824.68, + "probability": 0.8916 + }, + { + "start": 6825.92, + "end": 6829.94, + "probability": 0.958 + }, + { + "start": 6830.84, + "end": 6833.04, + "probability": 0.9511 + }, + { + "start": 6833.4, + "end": 6835.08, + "probability": 0.7086 + }, + { + "start": 6835.1, + "end": 6837.28, + "probability": 0.9975 + }, + { + "start": 6837.36, + "end": 6840.74, + "probability": 0.9785 + }, + { + "start": 6843.68, + "end": 6845.28, + "probability": 0.7411 + }, + { + "start": 6846.94, + "end": 6849.21, + "probability": 0.9971 + }, + { + "start": 6849.44, + "end": 6851.3, + "probability": 0.9156 + }, + { + "start": 6851.5, + "end": 6852.64, + "probability": 0.9729 + }, + { + "start": 6854.1, + "end": 6860.1, + "probability": 0.9136 + }, + { + "start": 6860.6, + "end": 6861.86, + "probability": 0.0297 + }, + { + "start": 6862.16, + "end": 6864.2, + "probability": 0.5324 + }, + { + "start": 6864.88, + "end": 6866.76, + "probability": 0.8278 + }, + { + "start": 6866.78, + "end": 6871.48, + "probability": 0.9312 + }, + { + "start": 6872.04, + "end": 6872.88, + "probability": 0.04 + }, + { + "start": 6873.28, + "end": 6874.64, + "probability": 0.9551 + }, + { + "start": 6875.64, + "end": 6880.62, + "probability": 0.9927 + }, + { + "start": 6880.62, + "end": 6883.46, + "probability": 0.947 + }, + { + "start": 6884.86, + "end": 6885.98, + "probability": 0.9619 + }, + { + "start": 6887.12, + "end": 6892.86, + "probability": 0.9903 + }, + { + "start": 6894.2, + "end": 6895.9, + "probability": 0.9845 + }, + { + "start": 6896.76, + "end": 6899.58, + "probability": 0.9961 + }, + { + "start": 6899.72, + "end": 6901.22, + "probability": 0.8552 + }, + { + "start": 6902.7, + "end": 6902.74, + "probability": 0.6699 + }, + { + "start": 6903.44, + "end": 6905.22, + "probability": 0.6204 + }, + { + "start": 6906.62, + "end": 6908.74, + "probability": 0.8192 + }, + { + "start": 6909.52, + "end": 6915.5, + "probability": 0.9937 + }, + { + "start": 6915.78, + "end": 6919.66, + "probability": 0.9474 + }, + { + "start": 6920.04, + "end": 6923.22, + "probability": 0.7426 + }, + { + "start": 6924.04, + "end": 6925.26, + "probability": 0.9185 + }, + { + "start": 6925.84, + "end": 6931.52, + "probability": 0.9387 + }, + { + "start": 6931.84, + "end": 6932.72, + "probability": 0.9741 + }, + { + "start": 6933.18, + "end": 6934.34, + "probability": 0.5595 + }, + { + "start": 6934.58, + "end": 6939.54, + "probability": 0.9504 + }, + { + "start": 6939.6, + "end": 6942.76, + "probability": 0.9935 + }, + { + "start": 6943.42, + "end": 6945.08, + "probability": 0.7516 + }, + { + "start": 6964.72, + "end": 6965.36, + "probability": 0.9663 + }, + { + "start": 6965.86, + "end": 6966.82, + "probability": 0.9731 + }, + { + "start": 6967.98, + "end": 6969.57, + "probability": 0.9772 + }, + { + "start": 6971.28, + "end": 6972.22, + "probability": 0.1529 + }, + { + "start": 6972.44, + "end": 6972.52, + "probability": 0.1882 + }, + { + "start": 6973.04, + "end": 6974.12, + "probability": 0.7765 + }, + { + "start": 6974.26, + "end": 6974.86, + "probability": 0.7628 + }, + { + "start": 6974.96, + "end": 6976.49, + "probability": 0.7715 + }, + { + "start": 6976.5, + "end": 6982.64, + "probability": 0.9467 + }, + { + "start": 6983.2, + "end": 6985.94, + "probability": 0.9968 + }, + { + "start": 6987.5, + "end": 6990.44, + "probability": 0.9261 + }, + { + "start": 6991.04, + "end": 6993.68, + "probability": 0.9617 + }, + { + "start": 6993.74, + "end": 7000.92, + "probability": 0.9777 + }, + { + "start": 7001.46, + "end": 7003.64, + "probability": 0.9957 + }, + { + "start": 7004.38, + "end": 7006.6, + "probability": 0.9783 + }, + { + "start": 7007.22, + "end": 7011.92, + "probability": 0.99 + }, + { + "start": 7012.8, + "end": 7014.98, + "probability": 0.8327 + }, + { + "start": 7015.76, + "end": 7016.82, + "probability": 0.8078 + }, + { + "start": 7017.4, + "end": 7018.04, + "probability": 0.698 + }, + { + "start": 7018.12, + "end": 7018.76, + "probability": 0.8838 + }, + { + "start": 7018.82, + "end": 7020.97, + "probability": 0.8755 + }, + { + "start": 7021.54, + "end": 7023.18, + "probability": 0.9873 + }, + { + "start": 7023.26, + "end": 7023.92, + "probability": 0.8301 + }, + { + "start": 7024.18, + "end": 7027.64, + "probability": 0.9663 + }, + { + "start": 7027.94, + "end": 7031.8, + "probability": 0.9761 + }, + { + "start": 7031.9, + "end": 7032.46, + "probability": 0.6468 + }, + { + "start": 7032.64, + "end": 7033.52, + "probability": 0.9517 + }, + { + "start": 7034.45, + "end": 7037.76, + "probability": 0.9107 + }, + { + "start": 7038.16, + "end": 7039.04, + "probability": 0.9829 + }, + { + "start": 7039.14, + "end": 7040.22, + "probability": 0.8631 + }, + { + "start": 7040.28, + "end": 7042.1, + "probability": 0.9805 + }, + { + "start": 7042.68, + "end": 7043.72, + "probability": 0.742 + }, + { + "start": 7044.34, + "end": 7045.12, + "probability": 0.9178 + }, + { + "start": 7045.3, + "end": 7050.16, + "probability": 0.9341 + }, + { + "start": 7050.6, + "end": 7052.46, + "probability": 0.9206 + }, + { + "start": 7052.58, + "end": 7053.16, + "probability": 0.8147 + }, + { + "start": 7053.56, + "end": 7054.4, + "probability": 0.8681 + }, + { + "start": 7054.68, + "end": 7058.28, + "probability": 0.9684 + }, + { + "start": 7059.58, + "end": 7060.02, + "probability": 0.8164 + }, + { + "start": 7060.6, + "end": 7063.62, + "probability": 0.988 + }, + { + "start": 7064.48, + "end": 7065.58, + "probability": 0.9617 + }, + { + "start": 7065.64, + "end": 7068.04, + "probability": 0.9939 + }, + { + "start": 7068.28, + "end": 7070.24, + "probability": 0.868 + }, + { + "start": 7070.58, + "end": 7072.28, + "probability": 0.9919 + }, + { + "start": 7072.34, + "end": 7077.24, + "probability": 0.9775 + }, + { + "start": 7077.64, + "end": 7079.52, + "probability": 0.2756 + }, + { + "start": 7079.62, + "end": 7082.36, + "probability": 0.3787 + }, + { + "start": 7082.86, + "end": 7085.4, + "probability": 0.8532 + }, + { + "start": 7085.48, + "end": 7086.92, + "probability": 0.1942 + }, + { + "start": 7087.16, + "end": 7089.44, + "probability": 0.5345 + }, + { + "start": 7089.52, + "end": 7091.24, + "probability": 0.6258 + }, + { + "start": 7091.55, + "end": 7095.18, + "probability": 0.9412 + }, + { + "start": 7095.22, + "end": 7097.28, + "probability": 0.9618 + }, + { + "start": 7097.38, + "end": 7097.88, + "probability": 0.9684 + }, + { + "start": 7097.98, + "end": 7100.68, + "probability": 0.9926 + }, + { + "start": 7100.98, + "end": 7102.58, + "probability": 0.7134 + }, + { + "start": 7102.6, + "end": 7102.94, + "probability": 0.9263 + }, + { + "start": 7103.02, + "end": 7103.9, + "probability": 0.97 + }, + { + "start": 7104.0, + "end": 7104.88, + "probability": 0.874 + }, + { + "start": 7105.24, + "end": 7106.01, + "probability": 0.8455 + }, + { + "start": 7106.54, + "end": 7108.2, + "probability": 0.9615 + }, + { + "start": 7108.42, + "end": 7111.34, + "probability": 0.9421 + }, + { + "start": 7111.47, + "end": 7112.77, + "probability": 0.9961 + }, + { + "start": 7113.36, + "end": 7114.48, + "probability": 0.9061 + }, + { + "start": 7114.56, + "end": 7115.18, + "probability": 0.6361 + }, + { + "start": 7115.24, + "end": 7117.16, + "probability": 0.9121 + }, + { + "start": 7117.6, + "end": 7117.96, + "probability": 0.3523 + }, + { + "start": 7118.04, + "end": 7122.16, + "probability": 0.9824 + }, + { + "start": 7122.16, + "end": 7128.36, + "probability": 0.9624 + }, + { + "start": 7128.56, + "end": 7129.48, + "probability": 0.6755 + }, + { + "start": 7130.58, + "end": 7131.62, + "probability": 0.8005 + }, + { + "start": 7131.94, + "end": 7135.32, + "probability": 0.6414 + }, + { + "start": 7135.32, + "end": 7139.0, + "probability": 0.8691 + }, + { + "start": 7139.08, + "end": 7139.08, + "probability": 0.411 + }, + { + "start": 7139.24, + "end": 7139.86, + "probability": 0.069 + }, + { + "start": 7139.92, + "end": 7140.32, + "probability": 0.4621 + }, + { + "start": 7140.52, + "end": 7141.6, + "probability": 0.1687 + }, + { + "start": 7141.6, + "end": 7143.64, + "probability": 0.4153 + }, + { + "start": 7143.72, + "end": 7146.36, + "probability": 0.6723 + }, + { + "start": 7146.36, + "end": 7147.9, + "probability": 0.0136 + }, + { + "start": 7147.9, + "end": 7148.52, + "probability": 0.0029 + }, + { + "start": 7148.6, + "end": 7148.62, + "probability": 0.1024 + }, + { + "start": 7148.62, + "end": 7149.22, + "probability": 0.0433 + }, + { + "start": 7149.44, + "end": 7150.1, + "probability": 0.2176 + }, + { + "start": 7150.1, + "end": 7150.54, + "probability": 0.7501 + }, + { + "start": 7150.56, + "end": 7153.12, + "probability": 0.7896 + }, + { + "start": 7153.24, + "end": 7153.32, + "probability": 0.3598 + }, + { + "start": 7153.32, + "end": 7154.16, + "probability": 0.4533 + }, + { + "start": 7154.66, + "end": 7155.78, + "probability": 0.8132 + }, + { + "start": 7155.92, + "end": 7156.6, + "probability": 0.9199 + }, + { + "start": 7156.64, + "end": 7157.74, + "probability": 0.8591 + }, + { + "start": 7157.96, + "end": 7159.62, + "probability": 0.9976 + }, + { + "start": 7159.82, + "end": 7162.82, + "probability": 0.7998 + }, + { + "start": 7163.02, + "end": 7163.02, + "probability": 0.4735 + }, + { + "start": 7163.02, + "end": 7163.04, + "probability": 0.5422 + }, + { + "start": 7163.18, + "end": 7167.1, + "probability": 0.9946 + }, + { + "start": 7167.3, + "end": 7168.98, + "probability": 0.5842 + }, + { + "start": 7169.06, + "end": 7171.1, + "probability": 0.8659 + }, + { + "start": 7171.2, + "end": 7173.76, + "probability": 0.8516 + }, + { + "start": 7173.84, + "end": 7175.9, + "probability": 0.7915 + }, + { + "start": 7175.9, + "end": 7175.9, + "probability": 0.0395 + }, + { + "start": 7175.9, + "end": 7178.22, + "probability": 0.7156 + }, + { + "start": 7178.94, + "end": 7181.36, + "probability": 0.7143 + }, + { + "start": 7181.46, + "end": 7183.52, + "probability": 0.985 + }, + { + "start": 7183.58, + "end": 7183.92, + "probability": 0.1483 + }, + { + "start": 7184.38, + "end": 7185.0, + "probability": 0.3895 + }, + { + "start": 7185.12, + "end": 7185.88, + "probability": 0.9485 + }, + { + "start": 7186.04, + "end": 7187.38, + "probability": 0.539 + }, + { + "start": 7187.62, + "end": 7191.84, + "probability": 0.173 + }, + { + "start": 7191.96, + "end": 7193.36, + "probability": 0.9729 + }, + { + "start": 7194.48, + "end": 7197.96, + "probability": 0.7319 + }, + { + "start": 7197.99, + "end": 7199.78, + "probability": 0.1245 + }, + { + "start": 7199.78, + "end": 7200.84, + "probability": 0.5941 + }, + { + "start": 7200.9, + "end": 7201.96, + "probability": 0.7158 + }, + { + "start": 7202.0, + "end": 7202.66, + "probability": 0.1539 + }, + { + "start": 7203.0, + "end": 7204.47, + "probability": 0.665 + }, + { + "start": 7205.54, + "end": 7209.53, + "probability": 0.9865 + }, + { + "start": 7210.26, + "end": 7210.8, + "probability": 0.0476 + }, + { + "start": 7210.96, + "end": 7214.12, + "probability": 0.7202 + }, + { + "start": 7214.74, + "end": 7216.04, + "probability": 0.272 + }, + { + "start": 7216.16, + "end": 7223.24, + "probability": 0.6471 + }, + { + "start": 7223.5, + "end": 7225.96, + "probability": 0.9839 + }, + { + "start": 7226.16, + "end": 7227.02, + "probability": 0.8519 + }, + { + "start": 7227.14, + "end": 7230.06, + "probability": 0.9963 + }, + { + "start": 7230.52, + "end": 7231.42, + "probability": 0.7437 + }, + { + "start": 7231.52, + "end": 7232.8, + "probability": 0.9205 + }, + { + "start": 7232.94, + "end": 7234.9, + "probability": 0.9832 + }, + { + "start": 7235.58, + "end": 7236.58, + "probability": 0.5728 + }, + { + "start": 7236.84, + "end": 7240.0, + "probability": 0.971 + }, + { + "start": 7241.14, + "end": 7244.02, + "probability": 0.9141 + }, + { + "start": 7244.06, + "end": 7245.48, + "probability": 0.9608 + }, + { + "start": 7246.62, + "end": 7251.76, + "probability": 0.5052 + }, + { + "start": 7251.84, + "end": 7252.4, + "probability": 0.9392 + }, + { + "start": 7252.48, + "end": 7254.58, + "probability": 0.7601 + }, + { + "start": 7254.84, + "end": 7255.9, + "probability": 0.7002 + }, + { + "start": 7256.16, + "end": 7257.26, + "probability": 0.7855 + }, + { + "start": 7257.52, + "end": 7261.24, + "probability": 0.9961 + }, + { + "start": 7261.24, + "end": 7264.98, + "probability": 0.9953 + }, + { + "start": 7265.78, + "end": 7269.84, + "probability": 0.9937 + }, + { + "start": 7270.12, + "end": 7270.92, + "probability": 0.9772 + }, + { + "start": 7271.2, + "end": 7271.8, + "probability": 0.9635 + }, + { + "start": 7272.2, + "end": 7273.92, + "probability": 0.8922 + }, + { + "start": 7274.3, + "end": 7275.68, + "probability": 0.8201 + }, + { + "start": 7276.42, + "end": 7277.86, + "probability": 0.8197 + }, + { + "start": 7278.08, + "end": 7279.02, + "probability": 0.9326 + }, + { + "start": 7279.08, + "end": 7279.88, + "probability": 0.9694 + }, + { + "start": 7280.4, + "end": 7283.22, + "probability": 0.933 + }, + { + "start": 7283.44, + "end": 7285.22, + "probability": 0.9855 + }, + { + "start": 7285.3, + "end": 7286.1, + "probability": 0.9771 + }, + { + "start": 7286.24, + "end": 7287.01, + "probability": 0.7668 + }, + { + "start": 7288.1, + "end": 7288.97, + "probability": 0.647 + }, + { + "start": 7289.28, + "end": 7290.68, + "probability": 0.5343 + }, + { + "start": 7290.88, + "end": 7292.1, + "probability": 0.6458 + }, + { + "start": 7292.32, + "end": 7293.22, + "probability": 0.8885 + }, + { + "start": 7293.36, + "end": 7294.98, + "probability": 0.8911 + }, + { + "start": 7295.28, + "end": 7297.76, + "probability": 0.8247 + }, + { + "start": 7297.76, + "end": 7299.52, + "probability": 0.8922 + }, + { + "start": 7299.76, + "end": 7302.94, + "probability": 0.9988 + }, + { + "start": 7303.0, + "end": 7304.21, + "probability": 0.501 + }, + { + "start": 7304.6, + "end": 7306.18, + "probability": 0.7255 + }, + { + "start": 7306.2, + "end": 7309.64, + "probability": 0.8823 + }, + { + "start": 7309.98, + "end": 7311.14, + "probability": 0.8112 + }, + { + "start": 7311.7, + "end": 7314.26, + "probability": 0.9966 + }, + { + "start": 7314.74, + "end": 7316.5, + "probability": 0.862 + }, + { + "start": 7316.6, + "end": 7317.56, + "probability": 0.6504 + }, + { + "start": 7317.82, + "end": 7321.58, + "probability": 0.8718 + }, + { + "start": 7321.9, + "end": 7326.1, + "probability": 0.9213 + }, + { + "start": 7326.24, + "end": 7329.76, + "probability": 0.9025 + }, + { + "start": 7332.18, + "end": 7332.2, + "probability": 0.0614 + }, + { + "start": 7332.2, + "end": 7332.2, + "probability": 0.4142 + }, + { + "start": 7332.2, + "end": 7336.4, + "probability": 0.96 + }, + { + "start": 7336.64, + "end": 7339.6, + "probability": 0.9874 + }, + { + "start": 7340.02, + "end": 7344.04, + "probability": 0.868 + }, + { + "start": 7344.34, + "end": 7345.64, + "probability": 0.7255 + }, + { + "start": 7346.24, + "end": 7347.5, + "probability": 0.1426 + }, + { + "start": 7347.92, + "end": 7349.36, + "probability": 0.2213 + }, + { + "start": 7349.44, + "end": 7350.34, + "probability": 0.2556 + }, + { + "start": 7350.34, + "end": 7351.08, + "probability": 0.7371 + }, + { + "start": 7351.18, + "end": 7354.26, + "probability": 0.6451 + }, + { + "start": 7354.34, + "end": 7355.2, + "probability": 0.9774 + }, + { + "start": 7355.28, + "end": 7355.76, + "probability": 0.343 + }, + { + "start": 7355.86, + "end": 7356.98, + "probability": 0.8305 + }, + { + "start": 7357.04, + "end": 7359.94, + "probability": 0.7942 + }, + { + "start": 7360.56, + "end": 7362.69, + "probability": 0.6504 + }, + { + "start": 7363.12, + "end": 7363.2, + "probability": 0.2924 + }, + { + "start": 7363.26, + "end": 7367.58, + "probability": 0.8865 + }, + { + "start": 7368.16, + "end": 7369.62, + "probability": 0.9633 + }, + { + "start": 7371.22, + "end": 7373.74, + "probability": 0.4782 + }, + { + "start": 7373.78, + "end": 7374.62, + "probability": 0.8955 + }, + { + "start": 7374.66, + "end": 7377.96, + "probability": 0.9424 + }, + { + "start": 7377.96, + "end": 7381.88, + "probability": 0.9924 + }, + { + "start": 7382.44, + "end": 7385.2, + "probability": 0.8823 + }, + { + "start": 7385.48, + "end": 7386.2, + "probability": 0.8272 + }, + { + "start": 7386.42, + "end": 7388.34, + "probability": 0.868 + }, + { + "start": 7389.24, + "end": 7392.6, + "probability": 0.9844 + }, + { + "start": 7393.06, + "end": 7394.18, + "probability": 0.8041 + }, + { + "start": 7394.28, + "end": 7394.62, + "probability": 0.9275 + }, + { + "start": 7394.88, + "end": 7396.38, + "probability": 0.703 + }, + { + "start": 7396.82, + "end": 7400.64, + "probability": 0.6945 + }, + { + "start": 7400.94, + "end": 7408.04, + "probability": 0.9921 + }, + { + "start": 7408.04, + "end": 7414.42, + "probability": 0.9963 + }, + { + "start": 7414.8, + "end": 7418.36, + "probability": 0.9987 + }, + { + "start": 7418.63, + "end": 7421.9, + "probability": 0.9985 + }, + { + "start": 7422.5, + "end": 7424.2, + "probability": 0.9976 + }, + { + "start": 7425.82, + "end": 7427.96, + "probability": 0.6803 + }, + { + "start": 7428.1, + "end": 7433.1, + "probability": 0.9948 + }, + { + "start": 7433.5, + "end": 7434.9, + "probability": 0.8493 + }, + { + "start": 7435.34, + "end": 7435.92, + "probability": 0.9114 + }, + { + "start": 7435.94, + "end": 7438.34, + "probability": 0.9953 + }, + { + "start": 7438.66, + "end": 7439.82, + "probability": 0.9159 + }, + { + "start": 7439.9, + "end": 7440.62, + "probability": 0.8998 + }, + { + "start": 7440.82, + "end": 7441.62, + "probability": 0.7307 + }, + { + "start": 7442.18, + "end": 7443.16, + "probability": 0.8448 + }, + { + "start": 7443.24, + "end": 7443.8, + "probability": 0.7885 + }, + { + "start": 7444.24, + "end": 7444.86, + "probability": 0.7239 + }, + { + "start": 7444.88, + "end": 7445.7, + "probability": 0.8429 + }, + { + "start": 7445.78, + "end": 7447.1, + "probability": 0.7393 + }, + { + "start": 7450.02, + "end": 7450.02, + "probability": 0.0437 + }, + { + "start": 7450.02, + "end": 7450.02, + "probability": 0.0104 + }, + { + "start": 7450.02, + "end": 7451.16, + "probability": 0.3366 + }, + { + "start": 7451.16, + "end": 7457.68, + "probability": 0.8862 + }, + { + "start": 7457.78, + "end": 7461.04, + "probability": 0.5948 + }, + { + "start": 7461.38, + "end": 7462.36, + "probability": 0.8315 + }, + { + "start": 7463.22, + "end": 7464.96, + "probability": 0.7754 + }, + { + "start": 7465.1, + "end": 7466.76, + "probability": 0.901 + }, + { + "start": 7467.06, + "end": 7468.06, + "probability": 0.981 + }, + { + "start": 7468.62, + "end": 7474.92, + "probability": 0.966 + }, + { + "start": 7474.98, + "end": 7475.86, + "probability": 0.6458 + }, + { + "start": 7476.2, + "end": 7480.92, + "probability": 0.7602 + }, + { + "start": 7481.44, + "end": 7482.56, + "probability": 0.8616 + }, + { + "start": 7482.92, + "end": 7484.16, + "probability": 0.9938 + }, + { + "start": 7484.4, + "end": 7485.54, + "probability": 0.9788 + }, + { + "start": 7485.78, + "end": 7488.2, + "probability": 0.8131 + }, + { + "start": 7488.34, + "end": 7490.38, + "probability": 0.9414 + }, + { + "start": 7490.42, + "end": 7494.94, + "probability": 0.9063 + }, + { + "start": 7495.22, + "end": 7498.18, + "probability": 0.9009 + }, + { + "start": 7498.46, + "end": 7499.34, + "probability": 0.7561 + }, + { + "start": 7499.8, + "end": 7501.7, + "probability": 0.5243 + }, + { + "start": 7502.0, + "end": 7506.42, + "probability": 0.9674 + }, + { + "start": 7506.68, + "end": 7507.68, + "probability": 0.986 + }, + { + "start": 7508.14, + "end": 7511.7, + "probability": 0.9949 + }, + { + "start": 7512.12, + "end": 7515.78, + "probability": 0.9885 + }, + { + "start": 7515.78, + "end": 7520.0, + "probability": 0.9807 + }, + { + "start": 7520.34, + "end": 7521.66, + "probability": 0.9867 + }, + { + "start": 7521.84, + "end": 7523.92, + "probability": 0.9956 + }, + { + "start": 7524.06, + "end": 7526.72, + "probability": 0.9124 + }, + { + "start": 7526.86, + "end": 7529.78, + "probability": 0.7532 + }, + { + "start": 7529.98, + "end": 7531.1, + "probability": 0.9535 + }, + { + "start": 7531.18, + "end": 7532.0, + "probability": 0.7097 + }, + { + "start": 7532.28, + "end": 7535.02, + "probability": 0.7728 + }, + { + "start": 7535.34, + "end": 7540.0, + "probability": 0.9884 + }, + { + "start": 7540.44, + "end": 7543.52, + "probability": 0.9963 + }, + { + "start": 7543.9, + "end": 7548.4, + "probability": 0.8677 + }, + { + "start": 7548.56, + "end": 7550.62, + "probability": 0.9883 + }, + { + "start": 7551.04, + "end": 7551.64, + "probability": 0.467 + }, + { + "start": 7551.66, + "end": 7556.42, + "probability": 0.8667 + }, + { + "start": 7556.72, + "end": 7557.36, + "probability": 0.5312 + }, + { + "start": 7557.46, + "end": 7559.26, + "probability": 0.9268 + }, + { + "start": 7559.42, + "end": 7561.06, + "probability": 0.7912 + }, + { + "start": 7561.36, + "end": 7562.4, + "probability": 0.8371 + }, + { + "start": 7562.58, + "end": 7564.1, + "probability": 0.9896 + }, + { + "start": 7565.08, + "end": 7566.54, + "probability": 0.9733 + }, + { + "start": 7568.5, + "end": 7572.56, + "probability": 0.7515 + }, + { + "start": 7581.26, + "end": 7587.2, + "probability": 0.9739 + }, + { + "start": 7587.72, + "end": 7588.96, + "probability": 0.8621 + }, + { + "start": 7589.38, + "end": 7594.0, + "probability": 0.9806 + }, + { + "start": 7594.16, + "end": 7598.18, + "probability": 0.9873 + }, + { + "start": 7598.48, + "end": 7604.32, + "probability": 0.9822 + }, + { + "start": 7605.94, + "end": 7606.74, + "probability": 0.8891 + }, + { + "start": 7606.8, + "end": 7608.52, + "probability": 0.8928 + }, + { + "start": 7608.52, + "end": 7613.16, + "probability": 0.8393 + }, + { + "start": 7613.32, + "end": 7616.45, + "probability": 0.9183 + }, + { + "start": 7616.62, + "end": 7620.06, + "probability": 0.9762 + }, + { + "start": 7621.52, + "end": 7623.76, + "probability": 0.253 + }, + { + "start": 7632.64, + "end": 7632.92, + "probability": 0.1095 + }, + { + "start": 7637.56, + "end": 7637.56, + "probability": 0.0158 + }, + { + "start": 7637.56, + "end": 7638.42, + "probability": 0.6145 + }, + { + "start": 7638.46, + "end": 7640.2, + "probability": 0.7979 + }, + { + "start": 7640.32, + "end": 7641.6, + "probability": 0.9269 + }, + { + "start": 7641.94, + "end": 7643.34, + "probability": 0.8924 + }, + { + "start": 7643.88, + "end": 7647.42, + "probability": 0.9759 + }, + { + "start": 7648.24, + "end": 7653.46, + "probability": 0.9982 + }, + { + "start": 7654.08, + "end": 7654.84, + "probability": 0.9969 + }, + { + "start": 7655.38, + "end": 7656.94, + "probability": 0.9998 + }, + { + "start": 7658.22, + "end": 7661.02, + "probability": 0.6684 + }, + { + "start": 7661.22, + "end": 7664.58, + "probability": 0.9653 + }, + { + "start": 7664.58, + "end": 7668.02, + "probability": 0.9954 + }, + { + "start": 7669.04, + "end": 7670.78, + "probability": 0.9255 + }, + { + "start": 7671.06, + "end": 7672.32, + "probability": 0.7969 + }, + { + "start": 7672.78, + "end": 7675.02, + "probability": 0.9659 + }, + { + "start": 7675.6, + "end": 7677.88, + "probability": 0.9975 + }, + { + "start": 7678.76, + "end": 7680.52, + "probability": 0.6692 + }, + { + "start": 7680.7, + "end": 7683.44, + "probability": 0.9507 + }, + { + "start": 7683.46, + "end": 7686.16, + "probability": 0.9465 + }, + { + "start": 7687.0, + "end": 7689.6, + "probability": 0.6401 + }, + { + "start": 7689.7, + "end": 7694.92, + "probability": 0.9291 + }, + { + "start": 7695.7, + "end": 7698.46, + "probability": 0.9932 + }, + { + "start": 7698.48, + "end": 7701.78, + "probability": 0.999 + }, + { + "start": 7702.2, + "end": 7704.02, + "probability": 0.9722 + }, + { + "start": 7704.7, + "end": 7708.14, + "probability": 0.9944 + }, + { + "start": 7708.26, + "end": 7708.9, + "probability": 0.7856 + }, + { + "start": 7708.96, + "end": 7715.08, + "probability": 0.922 + }, + { + "start": 7715.22, + "end": 7720.92, + "probability": 0.9963 + }, + { + "start": 7720.92, + "end": 7725.42, + "probability": 0.9927 + }, + { + "start": 7726.6, + "end": 7730.81, + "probability": 0.9958 + }, + { + "start": 7731.34, + "end": 7735.56, + "probability": 0.9956 + }, + { + "start": 7736.58, + "end": 7737.14, + "probability": 0.9215 + }, + { + "start": 7737.24, + "end": 7739.82, + "probability": 0.7698 + }, + { + "start": 7740.02, + "end": 7742.3, + "probability": 0.9966 + }, + { + "start": 7742.76, + "end": 7743.96, + "probability": 0.7396 + }, + { + "start": 7744.62, + "end": 7748.02, + "probability": 0.8299 + }, + { + "start": 7748.66, + "end": 7749.54, + "probability": 0.5767 + }, + { + "start": 7749.88, + "end": 7752.16, + "probability": 0.9876 + }, + { + "start": 7753.5, + "end": 7754.1, + "probability": 0.8174 + }, + { + "start": 7754.2, + "end": 7759.08, + "probability": 0.894 + }, + { + "start": 7759.62, + "end": 7762.04, + "probability": 0.7543 + }, + { + "start": 7762.56, + "end": 7767.14, + "probability": 0.7957 + }, + { + "start": 7767.42, + "end": 7770.38, + "probability": 0.9805 + }, + { + "start": 7771.54, + "end": 7772.32, + "probability": 0.6931 + }, + { + "start": 7773.28, + "end": 7774.18, + "probability": 0.752 + }, + { + "start": 7774.48, + "end": 7775.24, + "probability": 0.8753 + }, + { + "start": 7792.1, + "end": 7792.56, + "probability": 0.354 + }, + { + "start": 7792.56, + "end": 7795.54, + "probability": 0.6241 + }, + { + "start": 7795.76, + "end": 7798.42, + "probability": 0.9652 + }, + { + "start": 7800.92, + "end": 7802.74, + "probability": 0.6775 + }, + { + "start": 7803.48, + "end": 7805.94, + "probability": 0.9443 + }, + { + "start": 7806.0, + "end": 7809.52, + "probability": 0.8753 + }, + { + "start": 7809.52, + "end": 7814.64, + "probability": 0.7741 + }, + { + "start": 7815.3, + "end": 7818.38, + "probability": 0.9893 + }, + { + "start": 7818.46, + "end": 7819.66, + "probability": 0.357 + }, + { + "start": 7819.72, + "end": 7820.38, + "probability": 0.3676 + }, + { + "start": 7823.9, + "end": 7825.84, + "probability": 0.544 + }, + { + "start": 7836.23, + "end": 7837.0, + "probability": 0.056 + }, + { + "start": 7837.0, + "end": 7838.58, + "probability": 0.2779 + }, + { + "start": 7839.1, + "end": 7839.62, + "probability": 0.4023 + }, + { + "start": 7839.76, + "end": 7841.38, + "probability": 0.8534 + }, + { + "start": 7842.52, + "end": 7849.3, + "probability": 0.4527 + }, + { + "start": 7850.06, + "end": 7850.06, + "probability": 0.0242 + }, + { + "start": 7850.06, + "end": 7850.06, + "probability": 0.1068 + }, + { + "start": 7850.06, + "end": 7853.24, + "probability": 0.979 + }, + { + "start": 7854.56, + "end": 7855.74, + "probability": 0.5319 + }, + { + "start": 7855.82, + "end": 7856.54, + "probability": 0.6668 + }, + { + "start": 7862.39, + "end": 7869.64, + "probability": 0.2818 + }, + { + "start": 7871.6, + "end": 7875.4, + "probability": 0.4509 + }, + { + "start": 7875.5, + "end": 7879.62, + "probability": 0.9051 + }, + { + "start": 7881.32, + "end": 7882.02, + "probability": 0.8715 + }, + { + "start": 7882.1, + "end": 7883.26, + "probability": 0.9748 + }, + { + "start": 7883.32, + "end": 7888.38, + "probability": 0.9756 + }, + { + "start": 7889.04, + "end": 7892.0, + "probability": 0.9791 + }, + { + "start": 7892.3, + "end": 7893.4, + "probability": 0.4011 + }, + { + "start": 7893.44, + "end": 7894.14, + "probability": 0.6982 + }, + { + "start": 7903.61, + "end": 7904.1, + "probability": 0.3395 + }, + { + "start": 7904.62, + "end": 7907.9, + "probability": 0.2318 + }, + { + "start": 7908.42, + "end": 7909.52, + "probability": 0.6531 + }, + { + "start": 7910.16, + "end": 7914.54, + "probability": 0.6797 + }, + { + "start": 7914.66, + "end": 7917.72, + "probability": 0.8608 + }, + { + "start": 7918.18, + "end": 7920.9, + "probability": 0.9862 + }, + { + "start": 7922.16, + "end": 7923.94, + "probability": 0.9365 + }, + { + "start": 7924.48, + "end": 7929.88, + "probability": 0.9187 + }, + { + "start": 7929.94, + "end": 7930.54, + "probability": 0.0811 + }, + { + "start": 7930.98, + "end": 7932.58, + "probability": 0.8634 + }, + { + "start": 7933.18, + "end": 7936.06, + "probability": 0.984 + }, + { + "start": 7936.06, + "end": 7939.48, + "probability": 0.8847 + }, + { + "start": 7955.66, + "end": 7956.88, + "probability": 0.6518 + }, + { + "start": 7959.14, + "end": 7960.56, + "probability": 0.8363 + }, + { + "start": 7961.98, + "end": 7965.86, + "probability": 0.9939 + }, + { + "start": 7966.6, + "end": 7974.0, + "probability": 0.9766 + }, + { + "start": 7974.54, + "end": 7974.84, + "probability": 0.0015 + }, + { + "start": 7974.9, + "end": 7982.2, + "probability": 0.834 + }, + { + "start": 7982.9, + "end": 7984.38, + "probability": 0.6673 + }, + { + "start": 7984.38, + "end": 7993.68, + "probability": 0.991 + }, + { + "start": 7993.68, + "end": 8001.94, + "probability": 0.9502 + }, + { + "start": 8002.62, + "end": 8009.88, + "probability": 0.9451 + }, + { + "start": 8010.14, + "end": 8017.24, + "probability": 0.9448 + }, + { + "start": 8018.18, + "end": 8019.2, + "probability": 0.4057 + }, + { + "start": 8019.78, + "end": 8023.96, + "probability": 0.995 + }, + { + "start": 8024.68, + "end": 8029.68, + "probability": 0.9726 + }, + { + "start": 8030.78, + "end": 8036.7, + "probability": 0.973 + }, + { + "start": 8037.22, + "end": 8045.24, + "probability": 0.9531 + }, + { + "start": 8045.96, + "end": 8049.65, + "probability": 0.9897 + }, + { + "start": 8049.66, + "end": 8054.2, + "probability": 0.8922 + }, + { + "start": 8055.96, + "end": 8058.08, + "probability": 0.9243 + }, + { + "start": 8058.54, + "end": 8062.12, + "probability": 0.9498 + }, + { + "start": 8062.76, + "end": 8064.24, + "probability": 0.9027 + }, + { + "start": 8064.9, + "end": 8072.04, + "probability": 0.9902 + }, + { + "start": 8072.96, + "end": 8080.84, + "probability": 0.8599 + }, + { + "start": 8081.46, + "end": 8087.42, + "probability": 0.9973 + }, + { + "start": 8087.94, + "end": 8094.64, + "probability": 0.9608 + }, + { + "start": 8095.68, + "end": 8101.62, + "probability": 0.9333 + }, + { + "start": 8102.26, + "end": 8109.44, + "probability": 0.7386 + }, + { + "start": 8109.78, + "end": 8111.44, + "probability": 0.9204 + }, + { + "start": 8111.96, + "end": 8113.56, + "probability": 0.913 + }, + { + "start": 8113.66, + "end": 8120.2, + "probability": 0.9438 + }, + { + "start": 8120.84, + "end": 8126.3, + "probability": 0.9571 + }, + { + "start": 8126.94, + "end": 8132.94, + "probability": 0.9956 + }, + { + "start": 8132.94, + "end": 8139.12, + "probability": 0.9599 + }, + { + "start": 8140.22, + "end": 8143.44, + "probability": 0.9907 + }, + { + "start": 8143.52, + "end": 8149.13, + "probability": 0.9696 + }, + { + "start": 8150.12, + "end": 8153.32, + "probability": 0.8849 + }, + { + "start": 8153.6, + "end": 8158.22, + "probability": 0.9958 + }, + { + "start": 8159.28, + "end": 8160.1, + "probability": 0.963 + }, + { + "start": 8160.72, + "end": 8163.68, + "probability": 0.8943 + }, + { + "start": 8164.26, + "end": 8167.02, + "probability": 0.9855 + }, + { + "start": 8167.02, + "end": 8167.9, + "probability": 0.9407 + }, + { + "start": 8168.06, + "end": 8172.2, + "probability": 0.9922 + }, + { + "start": 8172.32, + "end": 8173.62, + "probability": 0.9883 + }, + { + "start": 8174.48, + "end": 8174.74, + "probability": 0.6866 + }, + { + "start": 8174.88, + "end": 8180.78, + "probability": 0.9846 + }, + { + "start": 8181.5, + "end": 8187.62, + "probability": 0.9794 + }, + { + "start": 8188.18, + "end": 8188.86, + "probability": 0.9622 + }, + { + "start": 8188.98, + "end": 8190.38, + "probability": 0.5856 + }, + { + "start": 8190.46, + "end": 8192.38, + "probability": 0.9785 + }, + { + "start": 8193.14, + "end": 8195.12, + "probability": 0.9907 + }, + { + "start": 8195.12, + "end": 8199.78, + "probability": 0.8139 + }, + { + "start": 8201.12, + "end": 8207.4, + "probability": 0.6409 + }, + { + "start": 8208.28, + "end": 8209.24, + "probability": 0.571 + }, + { + "start": 8209.34, + "end": 8210.16, + "probability": 0.6839 + }, + { + "start": 8210.34, + "end": 8211.68, + "probability": 0.6336 + }, + { + "start": 8213.46, + "end": 8218.18, + "probability": 0.8448 + }, + { + "start": 8218.18, + "end": 8219.86, + "probability": 0.0607 + }, + { + "start": 8224.0, + "end": 8225.2, + "probability": 0.0019 + }, + { + "start": 8225.2, + "end": 8226.02, + "probability": 0.2905 + }, + { + "start": 8226.5, + "end": 8229.08, + "probability": 0.7346 + }, + { + "start": 8229.12, + "end": 8231.89, + "probability": 0.8531 + }, + { + "start": 8233.44, + "end": 8235.46, + "probability": 0.8893 + }, + { + "start": 8238.24, + "end": 8240.22, + "probability": 0.7585 + }, + { + "start": 8240.68, + "end": 8241.16, + "probability": 0.5269 + }, + { + "start": 8258.68, + "end": 8263.92, + "probability": 0.7914 + }, + { + "start": 8264.0, + "end": 8265.04, + "probability": 0.5811 + }, + { + "start": 8265.38, + "end": 8266.1, + "probability": 0.1312 + }, + { + "start": 8266.1, + "end": 8268.28, + "probability": 0.0285 + }, + { + "start": 8269.74, + "end": 8271.12, + "probability": 0.5257 + }, + { + "start": 8272.26, + "end": 8273.92, + "probability": 0.0289 + }, + { + "start": 8274.08, + "end": 8275.7, + "probability": 0.5989 + }, + { + "start": 8276.32, + "end": 8277.92, + "probability": 0.6105 + }, + { + "start": 8279.88, + "end": 8279.9, + "probability": 0.016 + }, + { + "start": 8279.9, + "end": 8279.9, + "probability": 0.0166 + }, + { + "start": 8279.9, + "end": 8279.9, + "probability": 0.1933 + }, + { + "start": 8279.9, + "end": 8283.22, + "probability": 0.3736 + }, + { + "start": 8287.08, + "end": 8288.04, + "probability": 0.1261 + }, + { + "start": 8292.96, + "end": 8293.56, + "probability": 0.3601 + }, + { + "start": 8293.56, + "end": 8293.9, + "probability": 0.5437 + }, + { + "start": 8294.06, + "end": 8296.7, + "probability": 0.6978 + }, + { + "start": 8299.02, + "end": 8300.46, + "probability": 0.976 + }, + { + "start": 8309.78, + "end": 8312.94, + "probability": 0.6206 + }, + { + "start": 8314.26, + "end": 8316.12, + "probability": 0.8066 + }, + { + "start": 8317.08, + "end": 8320.64, + "probability": 0.9955 + }, + { + "start": 8321.66, + "end": 8322.88, + "probability": 0.0164 + }, + { + "start": 8323.3, + "end": 8325.52, + "probability": 0.1932 + }, + { + "start": 8325.74, + "end": 8327.42, + "probability": 0.9057 + }, + { + "start": 8329.04, + "end": 8330.92, + "probability": 0.8834 + }, + { + "start": 8332.08, + "end": 8336.38, + "probability": 0.8922 + }, + { + "start": 8337.42, + "end": 8338.28, + "probability": 0.8442 + }, + { + "start": 8338.88, + "end": 8339.36, + "probability": 0.7166 + }, + { + "start": 8339.5, + "end": 8344.58, + "probability": 0.9859 + }, + { + "start": 8345.92, + "end": 8350.86, + "probability": 0.984 + }, + { + "start": 8351.9, + "end": 8352.92, + "probability": 0.895 + }, + { + "start": 8353.82, + "end": 8359.04, + "probability": 0.9971 + }, + { + "start": 8359.12, + "end": 8364.56, + "probability": 0.9741 + }, + { + "start": 8366.2, + "end": 8367.04, + "probability": 0.5604 + }, + { + "start": 8367.2, + "end": 8373.24, + "probability": 0.8726 + }, + { + "start": 8374.18, + "end": 8377.58, + "probability": 0.9252 + }, + { + "start": 8377.58, + "end": 8380.2, + "probability": 0.9976 + }, + { + "start": 8380.86, + "end": 8387.4, + "probability": 0.9642 + }, + { + "start": 8387.4, + "end": 8392.3, + "probability": 0.9969 + }, + { + "start": 8393.6, + "end": 8397.4, + "probability": 0.9982 + }, + { + "start": 8398.48, + "end": 8402.78, + "probability": 0.8525 + }, + { + "start": 8403.68, + "end": 8406.16, + "probability": 0.8556 + }, + { + "start": 8406.86, + "end": 8413.78, + "probability": 0.9987 + }, + { + "start": 8414.46, + "end": 8417.56, + "probability": 0.8289 + }, + { + "start": 8418.36, + "end": 8423.04, + "probability": 0.9893 + }, + { + "start": 8424.1, + "end": 8430.54, + "probability": 0.9954 + }, + { + "start": 8430.54, + "end": 8438.54, + "probability": 0.9946 + }, + { + "start": 8438.58, + "end": 8447.42, + "probability": 0.9941 + }, + { + "start": 8448.46, + "end": 8451.24, + "probability": 0.8603 + }, + { + "start": 8452.02, + "end": 8454.62, + "probability": 0.7552 + }, + { + "start": 8455.72, + "end": 8458.18, + "probability": 0.8605 + }, + { + "start": 8458.8, + "end": 8460.68, + "probability": 0.8827 + }, + { + "start": 8462.18, + "end": 8464.84, + "probability": 0.9792 + }, + { + "start": 8465.46, + "end": 8468.26, + "probability": 0.9932 + }, + { + "start": 8468.4, + "end": 8472.1, + "probability": 0.9964 + }, + { + "start": 8472.96, + "end": 8474.42, + "probability": 0.8842 + }, + { + "start": 8475.06, + "end": 8477.12, + "probability": 0.9837 + }, + { + "start": 8477.66, + "end": 8481.76, + "probability": 0.6548 + }, + { + "start": 8482.82, + "end": 8487.1, + "probability": 0.9898 + }, + { + "start": 8488.06, + "end": 8489.52, + "probability": 0.8498 + }, + { + "start": 8490.16, + "end": 8497.2, + "probability": 0.9761 + }, + { + "start": 8498.22, + "end": 8506.04, + "probability": 0.9561 + }, + { + "start": 8506.04, + "end": 8511.16, + "probability": 0.9857 + }, + { + "start": 8511.26, + "end": 8512.58, + "probability": 0.8767 + }, + { + "start": 8513.24, + "end": 8517.92, + "probability": 0.6193 + }, + { + "start": 8519.1, + "end": 8524.38, + "probability": 0.9905 + }, + { + "start": 8525.04, + "end": 8525.88, + "probability": 0.999 + }, + { + "start": 8526.88, + "end": 8528.8, + "probability": 0.9958 + }, + { + "start": 8529.52, + "end": 8530.54, + "probability": 0.9954 + }, + { + "start": 8531.16, + "end": 8533.62, + "probability": 0.9151 + }, + { + "start": 8534.98, + "end": 8537.68, + "probability": 0.9783 + }, + { + "start": 8538.72, + "end": 8543.68, + "probability": 0.9562 + }, + { + "start": 8544.62, + "end": 8546.34, + "probability": 0.9624 + }, + { + "start": 8547.16, + "end": 8552.1, + "probability": 0.9946 + }, + { + "start": 8552.64, + "end": 8556.46, + "probability": 0.9952 + }, + { + "start": 8557.14, + "end": 8561.88, + "probability": 0.9881 + }, + { + "start": 8561.94, + "end": 8566.2, + "probability": 0.9926 + }, + { + "start": 8567.64, + "end": 8571.76, + "probability": 0.9946 + }, + { + "start": 8572.32, + "end": 8575.82, + "probability": 0.7314 + }, + { + "start": 8576.58, + "end": 8580.74, + "probability": 0.9937 + }, + { + "start": 8581.02, + "end": 8585.92, + "probability": 0.9968 + }, + { + "start": 8587.08, + "end": 8588.28, + "probability": 0.6974 + }, + { + "start": 8588.84, + "end": 8592.78, + "probability": 0.8169 + }, + { + "start": 8593.46, + "end": 8597.58, + "probability": 0.9946 + }, + { + "start": 8597.58, + "end": 8601.26, + "probability": 0.9988 + }, + { + "start": 8602.24, + "end": 8603.1, + "probability": 0.5121 + }, + { + "start": 8603.92, + "end": 8607.0, + "probability": 0.9995 + }, + { + "start": 8607.86, + "end": 8611.92, + "probability": 0.9955 + }, + { + "start": 8611.92, + "end": 8615.16, + "probability": 0.9671 + }, + { + "start": 8616.38, + "end": 8618.62, + "probability": 0.9668 + }, + { + "start": 8619.52, + "end": 8625.5, + "probability": 0.8914 + }, + { + "start": 8626.66, + "end": 8627.08, + "probability": 0.5709 + }, + { + "start": 8627.2, + "end": 8630.46, + "probability": 0.9907 + }, + { + "start": 8630.46, + "end": 8634.86, + "probability": 0.9994 + }, + { + "start": 8636.12, + "end": 8640.78, + "probability": 0.9709 + }, + { + "start": 8640.86, + "end": 8641.84, + "probability": 0.4933 + }, + { + "start": 8642.96, + "end": 8646.64, + "probability": 0.8455 + }, + { + "start": 8647.58, + "end": 8648.22, + "probability": 0.6277 + }, + { + "start": 8649.14, + "end": 8651.84, + "probability": 0.6987 + }, + { + "start": 8651.9, + "end": 8652.68, + "probability": 0.626 + }, + { + "start": 8653.44, + "end": 8654.22, + "probability": 0.406 + }, + { + "start": 8654.76, + "end": 8655.5, + "probability": 0.439 + }, + { + "start": 8657.5, + "end": 8659.54, + "probability": 0.6374 + }, + { + "start": 8660.76, + "end": 8661.38, + "probability": 0.5288 + }, + { + "start": 8661.46, + "end": 8665.42, + "probability": 0.9689 + }, + { + "start": 8666.18, + "end": 8666.56, + "probability": 0.7776 + }, + { + "start": 8666.84, + "end": 8669.64, + "probability": 0.5991 + }, + { + "start": 8669.8, + "end": 8672.88, + "probability": 0.9758 + }, + { + "start": 8672.88, + "end": 8675.38, + "probability": 0.3285 + }, + { + "start": 8676.08, + "end": 8682.64, + "probability": 0.966 + }, + { + "start": 8682.72, + "end": 8683.44, + "probability": 0.7404 + }, + { + "start": 8684.24, + "end": 8684.8, + "probability": 0.7201 + }, + { + "start": 8686.12, + "end": 8686.98, + "probability": 0.0079 + }, + { + "start": 8690.41, + "end": 8692.02, + "probability": 0.0003 + }, + { + "start": 8697.0, + "end": 8698.24, + "probability": 0.0689 + }, + { + "start": 8699.02, + "end": 8700.2, + "probability": 0.5309 + }, + { + "start": 8700.42, + "end": 8702.12, + "probability": 0.9226 + }, + { + "start": 8702.8, + "end": 8705.68, + "probability": 0.9541 + }, + { + "start": 8706.34, + "end": 8707.88, + "probability": 0.5689 + }, + { + "start": 8708.76, + "end": 8712.18, + "probability": 0.699 + }, + { + "start": 8714.64, + "end": 8715.0, + "probability": 0.0102 + }, + { + "start": 8717.84, + "end": 8718.86, + "probability": 0.5033 + }, + { + "start": 8727.54, + "end": 8728.12, + "probability": 0.0783 + }, + { + "start": 8728.12, + "end": 8730.54, + "probability": 0.6873 + }, + { + "start": 8730.72, + "end": 8734.46, + "probability": 0.9764 + }, + { + "start": 8734.46, + "end": 8735.56, + "probability": 0.7108 + }, + { + "start": 8735.7, + "end": 8738.62, + "probability": 0.4937 + }, + { + "start": 8739.62, + "end": 8741.7, + "probability": 0.7812 + }, + { + "start": 8741.8, + "end": 8742.2, + "probability": 0.6844 + }, + { + "start": 8743.04, + "end": 8744.16, + "probability": 0.7106 + }, + { + "start": 8744.26, + "end": 8745.74, + "probability": 0.7454 + }, + { + "start": 8746.16, + "end": 8748.1, + "probability": 0.928 + }, + { + "start": 8748.6, + "end": 8750.18, + "probability": 0.9819 + }, + { + "start": 8750.44, + "end": 8751.84, + "probability": 0.999 + }, + { + "start": 8752.46, + "end": 8755.54, + "probability": 0.5444 + }, + { + "start": 8756.18, + "end": 8758.28, + "probability": 0.777 + }, + { + "start": 8758.54, + "end": 8758.76, + "probability": 0.7547 + }, + { + "start": 8759.24, + "end": 8759.46, + "probability": 0.3748 + }, + { + "start": 8759.68, + "end": 8762.06, + "probability": 0.8542 + }, + { + "start": 8762.06, + "end": 8765.62, + "probability": 0.8543 + }, + { + "start": 8766.84, + "end": 8770.66, + "probability": 0.7218 + }, + { + "start": 8770.78, + "end": 8771.52, + "probability": 0.8698 + }, + { + "start": 8772.18, + "end": 8775.1, + "probability": 0.9495 + }, + { + "start": 8776.68, + "end": 8777.5, + "probability": 0.8031 + }, + { + "start": 8779.14, + "end": 8782.34, + "probability": 0.9937 + }, + { + "start": 8783.04, + "end": 8787.12, + "probability": 0.2212 + }, + { + "start": 8787.98, + "end": 8789.4, + "probability": 0.909 + }, + { + "start": 8790.36, + "end": 8794.92, + "probability": 0.9963 + }, + { + "start": 8794.92, + "end": 8802.44, + "probability": 0.9943 + }, + { + "start": 8803.32, + "end": 8803.88, + "probability": 0.4013 + }, + { + "start": 8804.88, + "end": 8810.52, + "probability": 0.9653 + }, + { + "start": 8811.46, + "end": 8814.12, + "probability": 0.3275 + }, + { + "start": 8814.84, + "end": 8817.92, + "probability": 0.9643 + }, + { + "start": 8819.02, + "end": 8821.56, + "probability": 0.731 + }, + { + "start": 8822.76, + "end": 8825.02, + "probability": 0.3411 + }, + { + "start": 8825.28, + "end": 8834.22, + "probability": 0.9719 + }, + { + "start": 8834.46, + "end": 8836.66, + "probability": 0.9765 + }, + { + "start": 8838.22, + "end": 8840.38, + "probability": 0.959 + }, + { + "start": 8841.3, + "end": 8845.02, + "probability": 0.9962 + }, + { + "start": 8845.66, + "end": 8847.62, + "probability": 0.7127 + }, + { + "start": 8848.26, + "end": 8853.32, + "probability": 0.9341 + }, + { + "start": 8853.94, + "end": 8857.64, + "probability": 0.9891 + }, + { + "start": 8857.64, + "end": 8860.54, + "probability": 0.9978 + }, + { + "start": 8861.82, + "end": 8864.24, + "probability": 0.9811 + }, + { + "start": 8865.1, + "end": 8867.92, + "probability": 0.9469 + }, + { + "start": 8867.92, + "end": 8871.5, + "probability": 0.8229 + }, + { + "start": 8872.12, + "end": 8875.46, + "probability": 0.997 + }, + { + "start": 8876.52, + "end": 8882.46, + "probability": 0.7838 + }, + { + "start": 8883.28, + "end": 8885.78, + "probability": 0.8885 + }, + { + "start": 8886.54, + "end": 8891.64, + "probability": 0.9956 + }, + { + "start": 8892.56, + "end": 8897.72, + "probability": 0.9591 + }, + { + "start": 8897.72, + "end": 8900.16, + "probability": 0.9297 + }, + { + "start": 8900.82, + "end": 8905.22, + "probability": 0.9264 + }, + { + "start": 8905.34, + "end": 8905.58, + "probability": 0.5239 + }, + { + "start": 8905.62, + "end": 8906.1, + "probability": 0.8882 + }, + { + "start": 8906.88, + "end": 8908.54, + "probability": 0.9091 + }, + { + "start": 8910.04, + "end": 8913.72, + "probability": 0.9915 + }, + { + "start": 8913.72, + "end": 8913.82, + "probability": 0.8295 + }, + { + "start": 8915.08, + "end": 8915.18, + "probability": 0.9618 + }, + { + "start": 8916.04, + "end": 8916.66, + "probability": 0.8244 + }, + { + "start": 8917.26, + "end": 8919.6, + "probability": 0.9526 + }, + { + "start": 8920.32, + "end": 8923.04, + "probability": 0.8693 + }, + { + "start": 8924.16, + "end": 8928.9, + "probability": 0.9189 + }, + { + "start": 8928.9, + "end": 8932.08, + "probability": 0.9392 + }, + { + "start": 8932.18, + "end": 8934.61, + "probability": 0.9867 + }, + { + "start": 8935.5, + "end": 8936.72, + "probability": 0.3169 + }, + { + "start": 8937.88, + "end": 8939.08, + "probability": 0.9581 + }, + { + "start": 8940.5, + "end": 8940.8, + "probability": 0.5674 + }, + { + "start": 8940.9, + "end": 8946.48, + "probability": 0.6629 + }, + { + "start": 8946.48, + "end": 8950.84, + "probability": 0.9547 + }, + { + "start": 8952.0, + "end": 8952.9, + "probability": 0.6343 + }, + { + "start": 8954.0, + "end": 8957.06, + "probability": 0.9813 + }, + { + "start": 8957.06, + "end": 8964.14, + "probability": 0.7729 + }, + { + "start": 8964.9, + "end": 8966.94, + "probability": 0.9769 + }, + { + "start": 8967.52, + "end": 8970.02, + "probability": 0.7264 + }, + { + "start": 8970.62, + "end": 8971.22, + "probability": 0.6824 + }, + { + "start": 8971.98, + "end": 8973.24, + "probability": 0.9584 + }, + { + "start": 8974.28, + "end": 8977.48, + "probability": 0.803 + }, + { + "start": 8977.48, + "end": 8981.32, + "probability": 0.9175 + }, + { + "start": 8982.16, + "end": 8986.86, + "probability": 0.9729 + }, + { + "start": 8986.86, + "end": 8989.86, + "probability": 0.991 + }, + { + "start": 8990.52, + "end": 8993.34, + "probability": 0.8607 + }, + { + "start": 8994.86, + "end": 9002.04, + "probability": 0.9863 + }, + { + "start": 9002.8, + "end": 9003.82, + "probability": 0.9113 + }, + { + "start": 9003.98, + "end": 9007.36, + "probability": 0.9696 + }, + { + "start": 9008.08, + "end": 9014.34, + "probability": 0.986 + }, + { + "start": 9015.2, + "end": 9018.02, + "probability": 0.9961 + }, + { + "start": 9018.02, + "end": 9022.48, + "probability": 0.9924 + }, + { + "start": 9023.6, + "end": 9025.74, + "probability": 0.9853 + }, + { + "start": 9025.74, + "end": 9027.86, + "probability": 0.9813 + }, + { + "start": 9028.78, + "end": 9031.46, + "probability": 0.981 + }, + { + "start": 9031.46, + "end": 9034.06, + "probability": 0.994 + }, + { + "start": 9034.98, + "end": 9037.08, + "probability": 0.9828 + }, + { + "start": 9037.86, + "end": 9041.34, + "probability": 0.9814 + }, + { + "start": 9042.36, + "end": 9045.92, + "probability": 0.8782 + }, + { + "start": 9045.94, + "end": 9046.9, + "probability": 0.5146 + }, + { + "start": 9047.08, + "end": 9048.22, + "probability": 0.6396 + }, + { + "start": 9048.9, + "end": 9054.3, + "probability": 0.876 + }, + { + "start": 9055.14, + "end": 9058.4, + "probability": 0.9985 + }, + { + "start": 9058.52, + "end": 9063.58, + "probability": 0.957 + }, + { + "start": 9064.16, + "end": 9065.66, + "probability": 0.982 + }, + { + "start": 9066.62, + "end": 9069.6, + "probability": 0.756 + }, + { + "start": 9070.24, + "end": 9072.5, + "probability": 0.9017 + }, + { + "start": 9073.82, + "end": 9074.5, + "probability": 0.797 + }, + { + "start": 9074.66, + "end": 9075.54, + "probability": 0.6625 + }, + { + "start": 9075.62, + "end": 9076.56, + "probability": 0.9801 + }, + { + "start": 9077.54, + "end": 9077.78, + "probability": 0.345 + }, + { + "start": 9077.88, + "end": 9083.12, + "probability": 0.9692 + }, + { + "start": 9084.22, + "end": 9084.66, + "probability": 0.654 + }, + { + "start": 9084.78, + "end": 9089.08, + "probability": 0.9668 + }, + { + "start": 9089.72, + "end": 9092.6, + "probability": 0.7363 + }, + { + "start": 9092.66, + "end": 9093.64, + "probability": 0.8832 + }, + { + "start": 9094.14, + "end": 9095.5, + "probability": 0.6946 + }, + { + "start": 9095.92, + "end": 9096.66, + "probability": 0.5932 + }, + { + "start": 9096.76, + "end": 9098.26, + "probability": 0.706 + }, + { + "start": 9099.72, + "end": 9102.76, + "probability": 0.6493 + }, + { + "start": 9103.24, + "end": 9103.88, + "probability": 0.6919 + }, + { + "start": 9104.34, + "end": 9106.58, + "probability": 0.9747 + }, + { + "start": 9107.06, + "end": 9107.68, + "probability": 0.8491 + }, + { + "start": 9108.58, + "end": 9109.36, + "probability": 0.6917 + }, + { + "start": 9109.5, + "end": 9110.66, + "probability": 0.6031 + }, + { + "start": 9111.12, + "end": 9111.16, + "probability": 0.5659 + }, + { + "start": 9112.8, + "end": 9115.62, + "probability": 0.9241 + }, + { + "start": 9115.74, + "end": 9119.32, + "probability": 0.9827 + }, + { + "start": 9119.84, + "end": 9120.18, + "probability": 0.6758 + }, + { + "start": 9120.86, + "end": 9121.38, + "probability": 0.2542 + }, + { + "start": 9122.36, + "end": 9123.04, + "probability": 0.0211 + }, + { + "start": 9123.84, + "end": 9128.6, + "probability": 0.9371 + }, + { + "start": 9129.4, + "end": 9130.0, + "probability": 0.5703 + }, + { + "start": 9130.08, + "end": 9130.94, + "probability": 0.6958 + }, + { + "start": 9133.02, + "end": 9134.12, + "probability": 0.0249 + }, + { + "start": 9144.06, + "end": 9146.45, + "probability": 0.3171 + }, + { + "start": 9148.04, + "end": 9150.82, + "probability": 0.7107 + }, + { + "start": 9151.82, + "end": 9154.78, + "probability": 0.9865 + }, + { + "start": 9156.34, + "end": 9157.22, + "probability": 0.6069 + }, + { + "start": 9157.38, + "end": 9157.62, + "probability": 0.9448 + }, + { + "start": 9161.52, + "end": 9165.52, + "probability": 0.133 + }, + { + "start": 9165.52, + "end": 9165.9, + "probability": 0.592 + }, + { + "start": 9165.94, + "end": 9166.32, + "probability": 0.091 + }, + { + "start": 9173.28, + "end": 9175.34, + "probability": 0.7343 + }, + { + "start": 9175.52, + "end": 9179.1, + "probability": 0.8437 + }, + { + "start": 9179.66, + "end": 9182.5, + "probability": 0.9702 + }, + { + "start": 9184.1, + "end": 9188.98, + "probability": 0.234 + }, + { + "start": 9192.78, + "end": 9192.94, + "probability": 0.1219 + }, + { + "start": 9192.94, + "end": 9195.58, + "probability": 0.0974 + }, + { + "start": 9196.14, + "end": 9196.54, + "probability": 0.0005 + }, + { + "start": 9222.4, + "end": 9224.04, + "probability": 0.6257 + }, + { + "start": 9224.12, + "end": 9228.28, + "probability": 0.9397 + }, + { + "start": 9228.5, + "end": 9229.58, + "probability": 0.8798 + }, + { + "start": 9230.18, + "end": 9232.72, + "probability": 0.6706 + }, + { + "start": 9233.36, + "end": 9236.78, + "probability": 0.9543 + }, + { + "start": 9237.08, + "end": 9240.4, + "probability": 0.9944 + }, + { + "start": 9241.02, + "end": 9242.6, + "probability": 0.9525 + }, + { + "start": 9243.14, + "end": 9245.42, + "probability": 0.8567 + }, + { + "start": 9245.74, + "end": 9245.86, + "probability": 0.7945 + }, + { + "start": 9246.64, + "end": 9248.74, + "probability": 0.0267 + }, + { + "start": 9249.24, + "end": 9251.76, + "probability": 0.0384 + }, + { + "start": 9252.46, + "end": 9257.24, + "probability": 0.2131 + }, + { + "start": 9262.24, + "end": 9263.12, + "probability": 0.0934 + }, + { + "start": 9266.18, + "end": 9266.28, + "probability": 0.188 + }, + { + "start": 9266.28, + "end": 9266.28, + "probability": 0.2223 + }, + { + "start": 9266.28, + "end": 9267.12, + "probability": 0.5173 + }, + { + "start": 9269.44, + "end": 9270.44, + "probability": 0.6438 + }, + { + "start": 9271.22, + "end": 9272.24, + "probability": 0.9804 + }, + { + "start": 9272.34, + "end": 9277.1, + "probability": 0.936 + }, + { + "start": 9277.74, + "end": 9279.16, + "probability": 0.6008 + }, + { + "start": 9280.06, + "end": 9283.16, + "probability": 0.9451 + }, + { + "start": 9284.6, + "end": 9288.7, + "probability": 0.9953 + }, + { + "start": 9289.8, + "end": 9291.06, + "probability": 0.6521 + }, + { + "start": 9291.7, + "end": 9294.14, + "probability": 0.8291 + }, + { + "start": 9296.52, + "end": 9300.04, + "probability": 0.979 + }, + { + "start": 9301.78, + "end": 9304.0, + "probability": 0.9711 + }, + { + "start": 9305.02, + "end": 9307.18, + "probability": 0.9238 + }, + { + "start": 9311.08, + "end": 9313.62, + "probability": 0.9841 + }, + { + "start": 9313.62, + "end": 9316.04, + "probability": 0.9922 + }, + { + "start": 9316.92, + "end": 9318.34, + "probability": 0.8159 + }, + { + "start": 9318.5, + "end": 9320.24, + "probability": 0.8855 + }, + { + "start": 9321.24, + "end": 9323.58, + "probability": 0.9808 + }, + { + "start": 9323.6, + "end": 9326.9, + "probability": 0.993 + }, + { + "start": 9327.86, + "end": 9331.44, + "probability": 0.9798 + }, + { + "start": 9332.48, + "end": 9335.16, + "probability": 0.9757 + }, + { + "start": 9335.16, + "end": 9337.82, + "probability": 0.9202 + }, + { + "start": 9339.58, + "end": 9344.82, + "probability": 0.9736 + }, + { + "start": 9344.84, + "end": 9350.8, + "probability": 0.9971 + }, + { + "start": 9351.58, + "end": 9355.6, + "probability": 0.9785 + }, + { + "start": 9355.6, + "end": 9359.54, + "probability": 0.9771 + }, + { + "start": 9360.3, + "end": 9364.58, + "probability": 0.9965 + }, + { + "start": 9365.54, + "end": 9366.6, + "probability": 0.9957 + }, + { + "start": 9368.08, + "end": 9369.1, + "probability": 0.9873 + }, + { + "start": 9369.72, + "end": 9374.1, + "probability": 0.9968 + }, + { + "start": 9374.1, + "end": 9378.58, + "probability": 0.9663 + }, + { + "start": 9379.42, + "end": 9382.34, + "probability": 0.9795 + }, + { + "start": 9382.34, + "end": 9385.06, + "probability": 0.9946 + }, + { + "start": 9385.06, + "end": 9385.5, + "probability": 0.0607 + }, + { + "start": 9386.56, + "end": 9390.28, + "probability": 0.9626 + }, + { + "start": 9390.28, + "end": 9394.5, + "probability": 0.9929 + }, + { + "start": 9395.38, + "end": 9397.2, + "probability": 0.9695 + }, + { + "start": 9397.38, + "end": 9400.7, + "probability": 0.9933 + }, + { + "start": 9402.0, + "end": 9402.5, + "probability": 0.7747 + }, + { + "start": 9403.02, + "end": 9404.26, + "probability": 0.6738 + }, + { + "start": 9404.34, + "end": 9404.48, + "probability": 0.3466 + }, + { + "start": 9404.6, + "end": 9405.68, + "probability": 0.861 + }, + { + "start": 9405.74, + "end": 9408.1, + "probability": 0.9053 + }, + { + "start": 9408.62, + "end": 9410.76, + "probability": 0.9908 + }, + { + "start": 9412.18, + "end": 9414.58, + "probability": 0.7955 + }, + { + "start": 9416.36, + "end": 9418.54, + "probability": 0.9535 + }, + { + "start": 9419.12, + "end": 9419.56, + "probability": 0.7063 + }, + { + "start": 9421.18, + "end": 9421.96, + "probability": 0.8784 + }, + { + "start": 9422.08, + "end": 9425.08, + "probability": 0.7384 + }, + { + "start": 9426.86, + "end": 9429.08, + "probability": 0.982 + }, + { + "start": 9429.74, + "end": 9432.86, + "probability": 0.9463 + }, + { + "start": 9433.04, + "end": 9434.42, + "probability": 0.8318 + }, + { + "start": 9442.18, + "end": 9444.18, + "probability": 0.6787 + }, + { + "start": 9445.02, + "end": 9450.64, + "probability": 0.8399 + }, + { + "start": 9451.72, + "end": 9453.28, + "probability": 0.8739 + }, + { + "start": 9454.02, + "end": 9455.3, + "probability": 0.8848 + }, + { + "start": 9455.86, + "end": 9458.56, + "probability": 0.9863 + }, + { + "start": 9459.62, + "end": 9463.74, + "probability": 0.9717 + }, + { + "start": 9464.62, + "end": 9468.94, + "probability": 0.9738 + }, + { + "start": 9470.04, + "end": 9472.04, + "probability": 0.7862 + }, + { + "start": 9473.56, + "end": 9476.88, + "probability": 0.9511 + }, + { + "start": 9476.88, + "end": 9481.16, + "probability": 0.9953 + }, + { + "start": 9482.02, + "end": 9483.18, + "probability": 0.8812 + }, + { + "start": 9483.98, + "end": 9487.68, + "probability": 0.9966 + }, + { + "start": 9487.68, + "end": 9490.54, + "probability": 0.9536 + }, + { + "start": 9491.32, + "end": 9496.0, + "probability": 0.9995 + }, + { + "start": 9496.48, + "end": 9498.22, + "probability": 0.7866 + }, + { + "start": 9498.92, + "end": 9503.1, + "probability": 0.9877 + }, + { + "start": 9503.4, + "end": 9504.9, + "probability": 0.9922 + }, + { + "start": 9505.44, + "end": 9510.2, + "probability": 0.996 + }, + { + "start": 9510.54, + "end": 9510.78, + "probability": 0.5266 + }, + { + "start": 9510.88, + "end": 9511.26, + "probability": 0.5653 + }, + { + "start": 9511.3, + "end": 9514.44, + "probability": 0.971 + }, + { + "start": 9515.86, + "end": 9518.1, + "probability": 0.8832 + }, + { + "start": 9518.24, + "end": 9520.08, + "probability": 0.8786 + }, + { + "start": 9520.2, + "end": 9521.66, + "probability": 0.8688 + }, + { + "start": 9522.6, + "end": 9526.94, + "probability": 0.9839 + }, + { + "start": 9526.94, + "end": 9531.18, + "probability": 0.9985 + }, + { + "start": 9531.78, + "end": 9533.32, + "probability": 0.8932 + }, + { + "start": 9533.44, + "end": 9535.76, + "probability": 0.9386 + }, + { + "start": 9536.24, + "end": 9540.06, + "probability": 0.8301 + }, + { + "start": 9540.6, + "end": 9542.28, + "probability": 0.8518 + }, + { + "start": 9542.72, + "end": 9545.08, + "probability": 0.9355 + }, + { + "start": 9545.42, + "end": 9549.14, + "probability": 0.9578 + }, + { + "start": 9549.14, + "end": 9552.83, + "probability": 0.9941 + }, + { + "start": 9553.54, + "end": 9554.94, + "probability": 0.3511 + }, + { + "start": 9555.04, + "end": 9555.9, + "probability": 0.5002 + }, + { + "start": 9556.34, + "end": 9558.26, + "probability": 0.8538 + }, + { + "start": 9558.38, + "end": 9559.54, + "probability": 0.9945 + }, + { + "start": 9560.52, + "end": 9560.9, + "probability": 0.4691 + }, + { + "start": 9560.98, + "end": 9563.74, + "probability": 0.9909 + }, + { + "start": 9564.08, + "end": 9566.88, + "probability": 0.8921 + }, + { + "start": 9567.56, + "end": 9568.19, + "probability": 0.9932 + }, + { + "start": 9568.5, + "end": 9568.57, + "probability": 0.4092 + }, + { + "start": 9569.7, + "end": 9570.19, + "probability": 0.5791 + }, + { + "start": 9570.82, + "end": 9574.02, + "probability": 0.8284 + }, + { + "start": 9574.02, + "end": 9577.66, + "probability": 0.9551 + }, + { + "start": 9578.42, + "end": 9582.32, + "probability": 0.9921 + }, + { + "start": 9582.58, + "end": 9587.96, + "probability": 0.9717 + }, + { + "start": 9588.04, + "end": 9591.06, + "probability": 0.9653 + }, + { + "start": 9591.06, + "end": 9594.52, + "probability": 0.9985 + }, + { + "start": 9594.9, + "end": 9596.62, + "probability": 0.8735 + }, + { + "start": 9596.78, + "end": 9601.54, + "probability": 0.9621 + }, + { + "start": 9601.66, + "end": 9605.52, + "probability": 0.9966 + }, + { + "start": 9605.72, + "end": 9607.31, + "probability": 0.9915 + }, + { + "start": 9607.78, + "end": 9608.45, + "probability": 0.9709 + }, + { + "start": 9609.32, + "end": 9614.58, + "probability": 0.998 + }, + { + "start": 9614.58, + "end": 9618.84, + "probability": 0.9996 + }, + { + "start": 9619.52, + "end": 9620.86, + "probability": 0.7468 + }, + { + "start": 9621.06, + "end": 9623.46, + "probability": 0.9937 + }, + { + "start": 9623.46, + "end": 9626.66, + "probability": 0.9881 + }, + { + "start": 9628.02, + "end": 9629.9, + "probability": 0.9614 + }, + { + "start": 9631.24, + "end": 9635.9, + "probability": 0.9988 + }, + { + "start": 9636.54, + "end": 9642.44, + "probability": 0.9313 + }, + { + "start": 9643.16, + "end": 9647.76, + "probability": 0.9461 + }, + { + "start": 9648.42, + "end": 9650.72, + "probability": 0.9943 + }, + { + "start": 9651.36, + "end": 9656.55, + "probability": 0.9977 + }, + { + "start": 9656.76, + "end": 9661.86, + "probability": 0.9992 + }, + { + "start": 9662.8, + "end": 9667.66, + "probability": 0.9976 + }, + { + "start": 9668.12, + "end": 9670.14, + "probability": 0.9769 + }, + { + "start": 9670.28, + "end": 9672.96, + "probability": 0.989 + }, + { + "start": 9672.96, + "end": 9676.1, + "probability": 0.9993 + }, + { + "start": 9676.38, + "end": 9678.34, + "probability": 0.988 + }, + { + "start": 9678.74, + "end": 9682.9, + "probability": 0.9935 + }, + { + "start": 9683.02, + "end": 9685.88, + "probability": 0.9754 + }, + { + "start": 9686.36, + "end": 9689.08, + "probability": 0.9954 + }, + { + "start": 9689.08, + "end": 9691.69, + "probability": 0.9983 + }, + { + "start": 9692.14, + "end": 9693.19, + "probability": 0.9879 + }, + { + "start": 9693.52, + "end": 9693.98, + "probability": 0.8658 + }, + { + "start": 9695.24, + "end": 9697.92, + "probability": 0.8259 + }, + { + "start": 9698.04, + "end": 9699.8, + "probability": 0.6981 + }, + { + "start": 9700.46, + "end": 9701.34, + "probability": 0.9834 + }, + { + "start": 9702.34, + "end": 9705.36, + "probability": 0.9388 + }, + { + "start": 9705.8, + "end": 9706.98, + "probability": 0.8027 + }, + { + "start": 9707.08, + "end": 9709.79, + "probability": 0.9553 + }, + { + "start": 9710.12, + "end": 9710.56, + "probability": 0.7426 + }, + { + "start": 9710.64, + "end": 9711.04, + "probability": 0.721 + }, + { + "start": 9711.18, + "end": 9711.7, + "probability": 0.4626 + }, + { + "start": 9724.5, + "end": 9724.98, + "probability": 0.0224 + }, + { + "start": 9724.98, + "end": 9727.54, + "probability": 0.6057 + }, + { + "start": 9727.74, + "end": 9730.14, + "probability": 0.9525 + }, + { + "start": 9731.04, + "end": 9734.9, + "probability": 0.7878 + }, + { + "start": 9735.88, + "end": 9736.66, + "probability": 0.5749 + }, + { + "start": 9751.26, + "end": 9751.56, + "probability": 0.1872 + }, + { + "start": 9751.56, + "end": 9751.56, + "probability": 0.5462 + }, + { + "start": 9751.56, + "end": 9751.56, + "probability": 0.1021 + }, + { + "start": 9751.56, + "end": 9753.06, + "probability": 0.7488 + }, + { + "start": 9753.18, + "end": 9755.26, + "probability": 0.991 + }, + { + "start": 9755.98, + "end": 9758.48, + "probability": 0.6039 + }, + { + "start": 9759.48, + "end": 9762.06, + "probability": 0.978 + }, + { + "start": 9763.78, + "end": 9765.76, + "probability": 0.6367 + }, + { + "start": 9766.28, + "end": 9768.26, + "probability": 0.9807 + }, + { + "start": 9768.32, + "end": 9770.48, + "probability": 0.8889 + }, + { + "start": 9770.76, + "end": 9771.22, + "probability": 0.6639 + }, + { + "start": 9771.92, + "end": 9772.9, + "probability": 0.6709 + }, + { + "start": 9773.24, + "end": 9775.44, + "probability": 0.9018 + }, + { + "start": 9776.08, + "end": 9778.32, + "probability": 0.9069 + }, + { + "start": 9795.6, + "end": 9799.53, + "probability": 0.5816 + }, + { + "start": 9799.78, + "end": 9805.52, + "probability": 0.9534 + }, + { + "start": 9805.92, + "end": 9806.6, + "probability": 0.6708 + }, + { + "start": 9807.26, + "end": 9810.12, + "probability": 0.8306 + }, + { + "start": 9810.22, + "end": 9812.48, + "probability": 0.9757 + }, + { + "start": 9813.72, + "end": 9815.64, + "probability": 0.8744 + }, + { + "start": 9816.3, + "end": 9816.92, + "probability": 0.3379 + }, + { + "start": 9817.68, + "end": 9819.04, + "probability": 0.5945 + }, + { + "start": 9819.14, + "end": 9820.64, + "probability": 0.4467 + }, + { + "start": 9820.94, + "end": 9822.12, + "probability": 0.8992 + }, + { + "start": 9822.12, + "end": 9824.06, + "probability": 0.9519 + }, + { + "start": 9824.06, + "end": 9826.64, + "probability": 0.9281 + }, + { + "start": 9827.02, + "end": 9827.78, + "probability": 0.5031 + }, + { + "start": 9827.8, + "end": 9827.96, + "probability": 0.4357 + }, + { + "start": 9828.1, + "end": 9828.92, + "probability": 0.9079 + }, + { + "start": 9829.04, + "end": 9830.68, + "probability": 0.9842 + }, + { + "start": 9831.16, + "end": 9835.88, + "probability": 0.98 + }, + { + "start": 9835.88, + "end": 9841.18, + "probability": 0.9787 + }, + { + "start": 9841.56, + "end": 9842.64, + "probability": 0.9435 + }, + { + "start": 9842.64, + "end": 9843.58, + "probability": 0.7005 + }, + { + "start": 9843.62, + "end": 9844.35, + "probability": 0.7668 + }, + { + "start": 9844.94, + "end": 9846.98, + "probability": 0.8703 + }, + { + "start": 9847.54, + "end": 9849.62, + "probability": 0.6145 + }, + { + "start": 9849.62, + "end": 9850.58, + "probability": 0.6292 + }, + { + "start": 9851.0, + "end": 9852.18, + "probability": 0.8999 + }, + { + "start": 9852.32, + "end": 9853.58, + "probability": 0.9897 + }, + { + "start": 9853.64, + "end": 9857.32, + "probability": 0.9166 + }, + { + "start": 9857.4, + "end": 9857.88, + "probability": 0.8929 + }, + { + "start": 9861.14, + "end": 9865.44, + "probability": 0.9703 + }, + { + "start": 9865.98, + "end": 9866.94, + "probability": 0.9434 + }, + { + "start": 9867.0, + "end": 9867.6, + "probability": 0.6574 + }, + { + "start": 9867.68, + "end": 9870.04, + "probability": 0.9454 + }, + { + "start": 9870.12, + "end": 9870.7, + "probability": 0.8781 + }, + { + "start": 9871.0, + "end": 9872.68, + "probability": 0.8422 + }, + { + "start": 9873.8, + "end": 9876.84, + "probability": 0.9966 + }, + { + "start": 9876.88, + "end": 9879.76, + "probability": 0.6222 + }, + { + "start": 9880.3, + "end": 9883.0, + "probability": 0.8595 + }, + { + "start": 9883.44, + "end": 9885.92, + "probability": 0.988 + }, + { + "start": 9886.02, + "end": 9886.98, + "probability": 0.5915 + }, + { + "start": 9887.16, + "end": 9890.44, + "probability": 0.9084 + }, + { + "start": 9890.48, + "end": 9891.46, + "probability": 0.7083 + }, + { + "start": 9893.52, + "end": 9897.38, + "probability": 0.4543 + }, + { + "start": 9904.46, + "end": 9905.66, + "probability": 0.779 + }, + { + "start": 9905.76, + "end": 9906.94, + "probability": 0.7937 + }, + { + "start": 9907.24, + "end": 9908.9, + "probability": 0.985 + }, + { + "start": 9908.9, + "end": 9911.34, + "probability": 0.9896 + }, + { + "start": 9911.4, + "end": 9913.94, + "probability": 0.7505 + }, + { + "start": 9914.68, + "end": 9916.68, + "probability": 0.309 + }, + { + "start": 9917.68, + "end": 9920.04, + "probability": 0.9954 + }, + { + "start": 9920.24, + "end": 9923.28, + "probability": 0.9446 + }, + { + "start": 9923.88, + "end": 9924.88, + "probability": 0.8799 + }, + { + "start": 9925.0, + "end": 9927.46, + "probability": 0.9783 + }, + { + "start": 9927.62, + "end": 9930.5, + "probability": 0.8592 + }, + { + "start": 9930.68, + "end": 9932.32, + "probability": 0.998 + }, + { + "start": 9933.24, + "end": 9936.34, + "probability": 0.9664 + }, + { + "start": 9936.34, + "end": 9939.56, + "probability": 0.9985 + }, + { + "start": 9940.12, + "end": 9942.64, + "probability": 0.818 + }, + { + "start": 9942.64, + "end": 9946.5, + "probability": 0.9997 + }, + { + "start": 9947.06, + "end": 9950.36, + "probability": 0.9329 + }, + { + "start": 9950.36, + "end": 9954.52, + "probability": 0.978 + }, + { + "start": 9955.1, + "end": 9959.48, + "probability": 0.993 + }, + { + "start": 9959.48, + "end": 9964.84, + "probability": 0.9947 + }, + { + "start": 9965.32, + "end": 9967.34, + "probability": 0.9897 + }, + { + "start": 9967.42, + "end": 9968.69, + "probability": 0.8993 + }, + { + "start": 9968.9, + "end": 9972.22, + "probability": 0.9672 + }, + { + "start": 9972.84, + "end": 9973.9, + "probability": 0.6839 + }, + { + "start": 9974.04, + "end": 9974.76, + "probability": 0.5093 + }, + { + "start": 9974.82, + "end": 9975.24, + "probability": 0.4533 + }, + { + "start": 9975.3, + "end": 9981.14, + "probability": 0.9897 + }, + { + "start": 9981.62, + "end": 9982.0, + "probability": 0.7612 + }, + { + "start": 9982.06, + "end": 9982.66, + "probability": 0.2131 + }, + { + "start": 9983.68, + "end": 9986.08, + "probability": 0.6805 + }, + { + "start": 9987.06, + "end": 9991.84, + "probability": 0.9788 + }, + { + "start": 9991.92, + "end": 9992.2, + "probability": 0.8893 + }, + { + "start": 9992.3, + "end": 9993.6, + "probability": 0.9749 + }, + { + "start": 9993.64, + "end": 9994.62, + "probability": 0.9277 + }, + { + "start": 9994.86, + "end": 9995.08, + "probability": 0.6704 + }, + { + "start": 9995.24, + "end": 9995.56, + "probability": 0.5959 + }, + { + "start": 9995.64, + "end": 9998.62, + "probability": 0.8114 + }, + { + "start": 9999.52, + "end": 10002.34, + "probability": 0.7388 + }, + { + "start": 10002.38, + "end": 10005.24, + "probability": 0.919 + }, + { + "start": 10011.36, + "end": 10011.46, + "probability": 0.3605 + }, + { + "start": 10011.46, + "end": 10013.84, + "probability": 0.9544 + }, + { + "start": 10015.16, + "end": 10016.52, + "probability": 0.9393 + }, + { + "start": 10016.54, + "end": 10019.08, + "probability": 0.388 + }, + { + "start": 10019.18, + "end": 10024.82, + "probability": 0.645 + }, + { + "start": 10038.58, + "end": 10039.9, + "probability": 0.3691 + }, + { + "start": 10039.9, + "end": 10039.9, + "probability": 0.3958 + }, + { + "start": 10040.08, + "end": 10040.08, + "probability": 0.0579 + }, + { + "start": 10040.08, + "end": 10040.78, + "probability": 0.7302 + }, + { + "start": 10041.3, + "end": 10043.88, + "probability": 0.5136 + }, + { + "start": 10044.06, + "end": 10046.42, + "probability": 0.8932 + }, + { + "start": 10047.08, + "end": 10047.86, + "probability": 0.4431 + }, + { + "start": 10047.86, + "end": 10050.38, + "probability": 0.687 + }, + { + "start": 10050.88, + "end": 10051.34, + "probability": 0.6541 + }, + { + "start": 10052.04, + "end": 10052.5, + "probability": 0.6712 + }, + { + "start": 10052.94, + "end": 10053.6, + "probability": 0.5211 + }, + { + "start": 10054.18, + "end": 10054.52, + "probability": 0.52 + }, + { + "start": 10054.52, + "end": 10054.56, + "probability": 0.5795 + }, + { + "start": 10054.66, + "end": 10055.0, + "probability": 0.511 + }, + { + "start": 10055.06, + "end": 10055.68, + "probability": 0.8955 + }, + { + "start": 10056.12, + "end": 10060.48, + "probability": 0.9241 + }, + { + "start": 10060.56, + "end": 10061.44, + "probability": 0.576 + }, + { + "start": 10078.77, + "end": 10081.54, + "probability": 0.7222 + }, + { + "start": 10082.1, + "end": 10083.7, + "probability": 0.5534 + }, + { + "start": 10084.34, + "end": 10085.38, + "probability": 0.5178 + }, + { + "start": 10086.16, + "end": 10086.3, + "probability": 0.119 + }, + { + "start": 10086.3, + "end": 10088.24, + "probability": 0.4016 + }, + { + "start": 10089.0, + "end": 10093.66, + "probability": 0.9659 + }, + { + "start": 10094.2, + "end": 10094.72, + "probability": 0.0182 + }, + { + "start": 10094.72, + "end": 10097.38, + "probability": 0.0131 + }, + { + "start": 10097.98, + "end": 10099.86, + "probability": 0.1242 + }, + { + "start": 10100.26, + "end": 10101.76, + "probability": 0.2049 + }, + { + "start": 10102.94, + "end": 10103.8, + "probability": 0.0533 + }, + { + "start": 10105.62, + "end": 10108.34, + "probability": 0.1874 + }, + { + "start": 10113.18, + "end": 10113.6, + "probability": 0.3039 + }, + { + "start": 10113.6, + "end": 10115.44, + "probability": 0.0331 + }, + { + "start": 10117.76, + "end": 10118.3, + "probability": 0.0151 + }, + { + "start": 10123.58, + "end": 10125.52, + "probability": 0.4095 + }, + { + "start": 10126.3, + "end": 10126.3, + "probability": 0.0428 + }, + { + "start": 10126.3, + "end": 10131.06, + "probability": 0.1704 + }, + { + "start": 10131.24, + "end": 10131.5, + "probability": 0.211 + }, + { + "start": 10131.5, + "end": 10132.02, + "probability": 0.0994 + }, + { + "start": 10132.82, + "end": 10134.62, + "probability": 0.1917 + }, + { + "start": 10135.16, + "end": 10136.98, + "probability": 0.1481 + }, + { + "start": 10137.0, + "end": 10137.0, + "probability": 0.0 + }, + { + "start": 10137.0, + "end": 10137.0, + "probability": 0.0 + }, + { + "start": 10137.0, + "end": 10137.0, + "probability": 0.0 + }, + { + "start": 10137.0, + "end": 10137.0, + "probability": 0.0 + }, + { + "start": 10137.0, + "end": 10137.0, + "probability": 0.0 + }, + { + "start": 10178.62, + "end": 10182.12, + "probability": 0.6325 + }, + { + "start": 10184.08, + "end": 10189.98, + "probability": 0.0983 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10299.0, + "probability": 0.0 + }, + { + "start": 10299.12, + "end": 10299.46, + "probability": 0.2799 + }, + { + "start": 10300.16, + "end": 10300.96, + "probability": 0.2567 + }, + { + "start": 10300.96, + "end": 10300.96, + "probability": 0.2607 + }, + { + "start": 10300.96, + "end": 10301.12, + "probability": 0.2608 + }, + { + "start": 10301.32, + "end": 10304.22, + "probability": 0.9177 + }, + { + "start": 10304.32, + "end": 10305.86, + "probability": 0.7622 + }, + { + "start": 10306.1, + "end": 10313.74, + "probability": 0.9844 + }, + { + "start": 10313.74, + "end": 10319.0, + "probability": 0.9521 + }, + { + "start": 10319.54, + "end": 10322.38, + "probability": 0.9674 + }, + { + "start": 10322.58, + "end": 10324.2, + "probability": 0.7938 + }, + { + "start": 10324.34, + "end": 10327.58, + "probability": 0.9723 + }, + { + "start": 10327.98, + "end": 10329.46, + "probability": 0.9629 + }, + { + "start": 10329.64, + "end": 10332.9, + "probability": 0.9932 + }, + { + "start": 10332.98, + "end": 10334.14, + "probability": 0.7519 + }, + { + "start": 10335.02, + "end": 10335.5, + "probability": 0.435 + }, + { + "start": 10335.64, + "end": 10339.46, + "probability": 0.9952 + }, + { + "start": 10340.22, + "end": 10342.91, + "probability": 0.8451 + }, + { + "start": 10343.1, + "end": 10348.54, + "probability": 0.9902 + }, + { + "start": 10348.9, + "end": 10350.84, + "probability": 0.9926 + }, + { + "start": 10350.98, + "end": 10351.62, + "probability": 0.6782 + }, + { + "start": 10351.7, + "end": 10353.96, + "probability": 0.9398 + }, + { + "start": 10354.04, + "end": 10356.9, + "probability": 0.9814 + }, + { + "start": 10357.42, + "end": 10358.86, + "probability": 0.7534 + }, + { + "start": 10359.2, + "end": 10360.36, + "probability": 0.8481 + }, + { + "start": 10361.34, + "end": 10365.26, + "probability": 0.9978 + }, + { + "start": 10365.52, + "end": 10368.38, + "probability": 0.8673 + }, + { + "start": 10369.02, + "end": 10372.34, + "probability": 0.9069 + }, + { + "start": 10372.61, + "end": 10374.86, + "probability": 0.9947 + }, + { + "start": 10375.0, + "end": 10376.56, + "probability": 0.9907 + }, + { + "start": 10377.12, + "end": 10381.38, + "probability": 0.9917 + }, + { + "start": 10381.9, + "end": 10385.0, + "probability": 0.9995 + }, + { + "start": 10385.22, + "end": 10386.76, + "probability": 0.9985 + }, + { + "start": 10386.8, + "end": 10389.54, + "probability": 0.9976 + }, + { + "start": 10389.56, + "end": 10389.98, + "probability": 0.758 + }, + { + "start": 10390.58, + "end": 10391.78, + "probability": 0.7481 + }, + { + "start": 10391.84, + "end": 10392.06, + "probability": 0.8949 + }, + { + "start": 10392.24, + "end": 10395.88, + "probability": 0.9947 + }, + { + "start": 10395.88, + "end": 10399.1, + "probability": 0.9346 + }, + { + "start": 10399.26, + "end": 10400.28, + "probability": 0.6037 + }, + { + "start": 10400.8, + "end": 10402.1, + "probability": 0.7379 + }, + { + "start": 10403.94, + "end": 10405.27, + "probability": 0.5659 + }, + { + "start": 10408.12, + "end": 10408.96, + "probability": 0.7687 + }, + { + "start": 10426.44, + "end": 10431.64, + "probability": 0.749 + }, + { + "start": 10431.84, + "end": 10434.82, + "probability": 0.6011 + }, + { + "start": 10436.0, + "end": 10436.28, + "probability": 0.0267 + }, + { + "start": 10436.28, + "end": 10441.76, + "probability": 0.1353 + }, + { + "start": 10450.7, + "end": 10451.9, + "probability": 0.0182 + }, + { + "start": 10454.74, + "end": 10457.64, + "probability": 0.0704 + }, + { + "start": 10458.66, + "end": 10465.42, + "probability": 0.2878 + }, + { + "start": 10469.64, + "end": 10469.64, + "probability": 0.041 + }, + { + "start": 10469.64, + "end": 10469.64, + "probability": 0.0333 + }, + { + "start": 10469.64, + "end": 10472.22, + "probability": 0.1875 + }, + { + "start": 10485.38, + "end": 10485.96, + "probability": 0.267 + }, + { + "start": 10488.36, + "end": 10493.5, + "probability": 0.0236 + }, + { + "start": 10494.2, + "end": 10494.68, + "probability": 0.0179 + }, + { + "start": 10495.64, + "end": 10500.5, + "probability": 0.0591 + }, + { + "start": 10500.5, + "end": 10500.7, + "probability": 0.2242 + }, + { + "start": 10535.0, + "end": 10535.0, + "probability": 0.0 + }, + { + "start": 10535.0, + "end": 10535.0, + "probability": 0.0 + }, + { + "start": 10535.0, + "end": 10535.0, + "probability": 0.0 + }, + { + "start": 10535.0, + "end": 10535.0, + "probability": 0.0 + }, + { + "start": 10535.0, + "end": 10535.0, + "probability": 0.0 + }, + { + "start": 10535.0, + "end": 10535.0, + "probability": 0.0 + }, + { + "start": 10535.0, + "end": 10535.0, + "probability": 0.0 + }, + { + "start": 10535.0, + "end": 10535.0, + "probability": 0.0 + }, + { + "start": 10535.0, + "end": 10535.0, + "probability": 0.0 + }, + { + "start": 10535.0, + "end": 10535.0, + "probability": 0.0 + }, + { + "start": 10535.0, + "end": 10535.0, + "probability": 0.0 + }, + { + "start": 10535.0, + "end": 10535.0, + "probability": 0.0 + }, + { + "start": 10535.0, + "end": 10535.0, + "probability": 0.0 + }, + { + "start": 10535.0, + "end": 10535.0, + "probability": 0.0 + }, + { + "start": 10535.0, + "end": 10535.0, + "probability": 0.0 + }, + { + "start": 10535.0, + "end": 10535.0, + "probability": 0.0 + }, + { + "start": 10535.0, + "end": 10535.0, + "probability": 0.0 + }, + { + "start": 10535.0, + "end": 10535.0, + "probability": 0.0 + }, + { + "start": 10535.0, + "end": 10535.0, + "probability": 0.0 + }, + { + "start": 10535.0, + "end": 10535.0, + "probability": 0.0 + }, + { + "start": 10535.0, + "end": 10535.0, + "probability": 0.0 + }, + { + "start": 10535.22, + "end": 10536.06, + "probability": 0.031 + }, + { + "start": 10536.06, + "end": 10537.48, + "probability": 0.5544 + }, + { + "start": 10538.06, + "end": 10540.09, + "probability": 0.9529 + }, + { + "start": 10541.36, + "end": 10542.74, + "probability": 0.9539 + }, + { + "start": 10542.82, + "end": 10543.6, + "probability": 0.9073 + }, + { + "start": 10543.92, + "end": 10547.18, + "probability": 0.9943 + }, + { + "start": 10547.18, + "end": 10549.44, + "probability": 0.9974 + }, + { + "start": 10549.86, + "end": 10551.82, + "probability": 0.6797 + }, + { + "start": 10552.2, + "end": 10553.28, + "probability": 0.8977 + }, + { + "start": 10553.76, + "end": 10553.92, + "probability": 0.1338 + }, + { + "start": 10553.98, + "end": 10559.48, + "probability": 0.9726 + }, + { + "start": 10559.48, + "end": 10563.34, + "probability": 0.829 + }, + { + "start": 10563.5, + "end": 10565.2, + "probability": 0.5745 + }, + { + "start": 10565.26, + "end": 10566.54, + "probability": 0.2005 + }, + { + "start": 10567.36, + "end": 10570.3, + "probability": 0.9963 + }, + { + "start": 10571.22, + "end": 10571.76, + "probability": 0.7898 + }, + { + "start": 10584.9, + "end": 10589.64, + "probability": 0.7637 + }, + { + "start": 10590.58, + "end": 10593.56, + "probability": 0.5097 + }, + { + "start": 10593.76, + "end": 10594.68, + "probability": 0.5341 + }, + { + "start": 10594.8, + "end": 10595.4, + "probability": 0.0438 + }, + { + "start": 10597.66, + "end": 10597.66, + "probability": 0.058 + }, + { + "start": 10597.66, + "end": 10600.68, + "probability": 0.2119 + }, + { + "start": 10600.8, + "end": 10603.42, + "probability": 0.0409 + }, + { + "start": 10603.42, + "end": 10605.86, + "probability": 0.0444 + }, + { + "start": 10607.68, + "end": 10608.58, + "probability": 0.0336 + }, + { + "start": 10608.7, + "end": 10610.36, + "probability": 0.1596 + }, + { + "start": 10610.92, + "end": 10612.32, + "probability": 0.0303 + }, + { + "start": 10613.92, + "end": 10614.34, + "probability": 0.0429 + }, + { + "start": 10615.62, + "end": 10616.66, + "probability": 0.0115 + }, + { + "start": 10616.66, + "end": 10616.66, + "probability": 0.0673 + }, + { + "start": 10616.66, + "end": 10616.66, + "probability": 0.1067 + }, + { + "start": 10616.66, + "end": 10617.16, + "probability": 0.3884 + }, + { + "start": 10623.48, + "end": 10624.08, + "probability": 0.6105 + }, + { + "start": 10633.66, + "end": 10635.75, + "probability": 0.9396 + }, + { + "start": 10645.56, + "end": 10645.8, + "probability": 0.1093 + }, + { + "start": 10646.1, + "end": 10653.56, + "probability": 0.9916 + }, + { + "start": 10653.7, + "end": 10654.9, + "probability": 0.6656 + }, + { + "start": 10655.16, + "end": 10656.3, + "probability": 0.6491 + }, + { + "start": 10656.76, + "end": 10661.34, + "probability": 0.9857 + }, + { + "start": 10661.5, + "end": 10662.2, + "probability": 0.6464 + }, + { + "start": 10663.52, + "end": 10666.02, + "probability": 0.8048 + }, + { + "start": 10667.52, + "end": 10668.28, + "probability": 0.5173 + }, + { + "start": 10668.92, + "end": 10669.48, + "probability": 0.0731 + }, + { + "start": 10681.18, + "end": 10681.88, + "probability": 0.5471 + }, + { + "start": 10681.98, + "end": 10683.12, + "probability": 0.851 + }, + { + "start": 10683.54, + "end": 10687.8, + "probability": 0.9916 + }, + { + "start": 10687.8, + "end": 10692.86, + "probability": 0.7603 + }, + { + "start": 10694.58, + "end": 10699.72, + "probability": 0.7419 + }, + { + "start": 10701.26, + "end": 10703.04, + "probability": 0.7552 + }, + { + "start": 10703.28, + "end": 10708.08, + "probability": 0.7736 + }, + { + "start": 10709.36, + "end": 10712.45, + "probability": 0.3803 + }, + { + "start": 10713.58, + "end": 10716.22, + "probability": 0.9624 + }, + { + "start": 10717.5, + "end": 10721.78, + "probability": 0.7751 + }, + { + "start": 10723.14, + "end": 10724.9, + "probability": 0.7882 + }, + { + "start": 10725.06, + "end": 10725.94, + "probability": 0.8691 + }, + { + "start": 10726.16, + "end": 10727.39, + "probability": 0.986 + }, + { + "start": 10727.58, + "end": 10728.7, + "probability": 0.716 + }, + { + "start": 10729.26, + "end": 10731.36, + "probability": 0.9858 + }, + { + "start": 10731.44, + "end": 10736.14, + "probability": 0.8115 + }, + { + "start": 10736.84, + "end": 10738.06, + "probability": 0.535 + }, + { + "start": 10739.0, + "end": 10741.74, + "probability": 0.9913 + }, + { + "start": 10741.74, + "end": 10747.08, + "probability": 0.8823 + }, + { + "start": 10748.02, + "end": 10750.12, + "probability": 0.8411 + }, + { + "start": 10750.8, + "end": 10751.82, + "probability": 0.9452 + }, + { + "start": 10753.1, + "end": 10754.18, + "probability": 0.4977 + }, + { + "start": 10755.7, + "end": 10761.4, + "probability": 0.892 + }, + { + "start": 10761.4, + "end": 10766.5, + "probability": 0.9952 + }, + { + "start": 10767.26, + "end": 10767.68, + "probability": 0.3835 + }, + { + "start": 10768.74, + "end": 10769.52, + "probability": 0.8171 + }, + { + "start": 10771.14, + "end": 10775.78, + "probability": 0.9033 + }, + { + "start": 10776.56, + "end": 10778.77, + "probability": 0.8354 + }, + { + "start": 10779.68, + "end": 10783.78, + "probability": 0.9331 + }, + { + "start": 10784.6, + "end": 10789.16, + "probability": 0.7195 + }, + { + "start": 10790.3, + "end": 10792.88, + "probability": 0.4259 + }, + { + "start": 10793.76, + "end": 10794.2, + "probability": 0.5657 + }, + { + "start": 10795.56, + "end": 10796.87, + "probability": 0.1789 + }, + { + "start": 10797.96, + "end": 10801.6, + "probability": 0.9937 + }, + { + "start": 10801.68, + "end": 10804.0, + "probability": 0.9718 + }, + { + "start": 10804.7, + "end": 10809.14, + "probability": 0.8326 + }, + { + "start": 10810.14, + "end": 10811.76, + "probability": 0.7576 + }, + { + "start": 10811.8, + "end": 10815.94, + "probability": 0.9901 + }, + { + "start": 10816.4, + "end": 10818.38, + "probability": 0.9896 + }, + { + "start": 10819.34, + "end": 10823.74, + "probability": 0.929 + }, + { + "start": 10823.96, + "end": 10827.78, + "probability": 0.9946 + }, + { + "start": 10827.94, + "end": 10828.2, + "probability": 0.7073 + }, + { + "start": 10829.66, + "end": 10830.81, + "probability": 0.735 + }, + { + "start": 10831.56, + "end": 10834.24, + "probability": 0.6875 + }, + { + "start": 10838.1, + "end": 10838.78, + "probability": 0.7492 + }, + { + "start": 10839.56, + "end": 10840.42, + "probability": 0.8985 + }, + { + "start": 10861.64, + "end": 10862.3, + "probability": 0.4002 + }, + { + "start": 10862.3, + "end": 10862.71, + "probability": 0.3673 + }, + { + "start": 10868.72, + "end": 10871.82, + "probability": 0.5833 + }, + { + "start": 10872.98, + "end": 10881.71, + "probability": 0.992 + }, + { + "start": 10884.04, + "end": 10888.58, + "probability": 0.8464 + }, + { + "start": 10889.52, + "end": 10892.4, + "probability": 0.9838 + }, + { + "start": 10893.72, + "end": 10894.42, + "probability": 0.6558 + }, + { + "start": 10895.86, + "end": 10901.34, + "probability": 0.9777 + }, + { + "start": 10902.08, + "end": 10902.96, + "probability": 0.691 + }, + { + "start": 10903.46, + "end": 10906.32, + "probability": 0.8358 + }, + { + "start": 10908.02, + "end": 10912.32, + "probability": 0.8721 + }, + { + "start": 10914.24, + "end": 10916.28, + "probability": 0.7218 + }, + { + "start": 10916.94, + "end": 10921.9, + "probability": 0.6499 + }, + { + "start": 10922.58, + "end": 10924.7, + "probability": 0.9095 + }, + { + "start": 10925.28, + "end": 10930.86, + "probability": 0.7863 + }, + { + "start": 10931.54, + "end": 10932.92, + "probability": 0.6771 + }, + { + "start": 10934.1, + "end": 10936.98, + "probability": 0.911 + }, + { + "start": 10937.96, + "end": 10939.46, + "probability": 0.4929 + }, + { + "start": 10940.44, + "end": 10944.2, + "probability": 0.9883 + }, + { + "start": 10945.62, + "end": 10951.22, + "probability": 0.8764 + }, + { + "start": 10952.78, + "end": 10954.5, + "probability": 0.724 + }, + { + "start": 10956.16, + "end": 10956.96, + "probability": 0.5991 + }, + { + "start": 10957.16, + "end": 10960.46, + "probability": 0.9399 + }, + { + "start": 10960.88, + "end": 10962.14, + "probability": 0.9749 + }, + { + "start": 10962.78, + "end": 10963.6, + "probability": 0.8142 + }, + { + "start": 10964.32, + "end": 10965.78, + "probability": 0.902 + }, + { + "start": 10966.78, + "end": 10968.34, + "probability": 0.5675 + }, + { + "start": 10968.66, + "end": 10973.34, + "probability": 0.9826 + }, + { + "start": 10974.22, + "end": 10975.44, + "probability": 0.9683 + }, + { + "start": 10976.3, + "end": 10977.28, + "probability": 0.9519 + }, + { + "start": 10978.06, + "end": 10979.56, + "probability": 0.9471 + }, + { + "start": 10981.38, + "end": 10983.18, + "probability": 0.733 + }, + { + "start": 10983.84, + "end": 10992.72, + "probability": 0.981 + }, + { + "start": 10993.24, + "end": 10994.68, + "probability": 0.6605 + }, + { + "start": 10995.66, + "end": 11000.0, + "probability": 0.915 + }, + { + "start": 11000.64, + "end": 11003.74, + "probability": 0.9882 + }, + { + "start": 11003.86, + "end": 11004.22, + "probability": 0.7054 + }, + { + "start": 11004.36, + "end": 11005.84, + "probability": 0.6565 + }, + { + "start": 11006.34, + "end": 11008.28, + "probability": 0.7495 + }, + { + "start": 11008.86, + "end": 11012.34, + "probability": 0.7967 + }, + { + "start": 11012.86, + "end": 11013.72, + "probability": 0.9073 + }, + { + "start": 11013.98, + "end": 11015.54, + "probability": 0.9409 + }, + { + "start": 11015.84, + "end": 11016.9, + "probability": 0.9741 + }, + { + "start": 11017.28, + "end": 11019.56, + "probability": 0.9531 + }, + { + "start": 11021.1, + "end": 11022.84, + "probability": 0.8505 + }, + { + "start": 11023.62, + "end": 11028.88, + "probability": 0.9794 + }, + { + "start": 11029.12, + "end": 11031.2, + "probability": 0.9751 + }, + { + "start": 11031.88, + "end": 11033.68, + "probability": 0.7654 + }, + { + "start": 11034.49, + "end": 11036.76, + "probability": 0.9256 + }, + { + "start": 11037.72, + "end": 11042.56, + "probability": 0.9958 + }, + { + "start": 11042.78, + "end": 11043.28, + "probability": 0.3252 + }, + { + "start": 11044.5, + "end": 11047.44, + "probability": 0.7964 + }, + { + "start": 11048.28, + "end": 11050.95, + "probability": 0.8374 + }, + { + "start": 11051.54, + "end": 11055.1, + "probability": 0.9758 + }, + { + "start": 11055.32, + "end": 11055.76, + "probability": 0.3772 + }, + { + "start": 11055.78, + "end": 11056.82, + "probability": 0.8967 + }, + { + "start": 11057.26, + "end": 11059.26, + "probability": 0.8538 + }, + { + "start": 11060.14, + "end": 11065.56, + "probability": 0.996 + }, + { + "start": 11066.14, + "end": 11066.58, + "probability": 0.6987 + }, + { + "start": 11067.38, + "end": 11068.34, + "probability": 0.6592 + }, + { + "start": 11068.42, + "end": 11068.96, + "probability": 0.8648 + }, + { + "start": 11069.06, + "end": 11069.9, + "probability": 0.8155 + }, + { + "start": 11069.98, + "end": 11073.58, + "probability": 0.9846 + }, + { + "start": 11074.76, + "end": 11081.16, + "probability": 0.8359 + }, + { + "start": 11082.2, + "end": 11082.84, + "probability": 0.4812 + }, + { + "start": 11083.54, + "end": 11086.22, + "probability": 0.9075 + }, + { + "start": 11110.98, + "end": 11111.82, + "probability": 0.508 + }, + { + "start": 11113.46, + "end": 11115.96, + "probability": 0.6589 + }, + { + "start": 11117.2, + "end": 11118.16, + "probability": 0.7079 + }, + { + "start": 11119.22, + "end": 11123.06, + "probability": 0.9376 + }, + { + "start": 11123.82, + "end": 11125.82, + "probability": 0.9638 + }, + { + "start": 11126.6, + "end": 11128.12, + "probability": 0.9136 + }, + { + "start": 11129.78, + "end": 11129.9, + "probability": 0.9619 + }, + { + "start": 11131.64, + "end": 11134.72, + "probability": 0.9382 + }, + { + "start": 11135.7, + "end": 11144.84, + "probability": 0.9854 + }, + { + "start": 11146.26, + "end": 11147.03, + "probability": 0.8652 + }, + { + "start": 11148.68, + "end": 11153.6, + "probability": 0.9978 + }, + { + "start": 11153.6, + "end": 11160.96, + "probability": 0.9894 + }, + { + "start": 11162.4, + "end": 11163.9, + "probability": 0.9845 + }, + { + "start": 11167.32, + "end": 11171.23, + "probability": 0.9272 + }, + { + "start": 11172.32, + "end": 11173.64, + "probability": 0.9045 + }, + { + "start": 11176.12, + "end": 11179.18, + "probability": 0.9751 + }, + { + "start": 11179.22, + "end": 11182.3, + "probability": 0.994 + }, + { + "start": 11183.06, + "end": 11184.52, + "probability": 0.9644 + }, + { + "start": 11186.26, + "end": 11186.88, + "probability": 0.8761 + }, + { + "start": 11186.94, + "end": 11190.65, + "probability": 0.9412 + }, + { + "start": 11192.32, + "end": 11193.28, + "probability": 0.7276 + }, + { + "start": 11195.24, + "end": 11199.26, + "probability": 0.9964 + }, + { + "start": 11199.32, + "end": 11200.96, + "probability": 0.9782 + }, + { + "start": 11202.08, + "end": 11203.6, + "probability": 0.9912 + }, + { + "start": 11205.48, + "end": 11208.74, + "probability": 0.5896 + }, + { + "start": 11209.58, + "end": 11210.74, + "probability": 0.8403 + }, + { + "start": 11211.12, + "end": 11212.62, + "probability": 0.8165 + }, + { + "start": 11213.52, + "end": 11215.04, + "probability": 0.8948 + }, + { + "start": 11216.64, + "end": 11218.4, + "probability": 0.9162 + }, + { + "start": 11219.38, + "end": 11221.0, + "probability": 0.9133 + }, + { + "start": 11221.68, + "end": 11222.8, + "probability": 0.772 + }, + { + "start": 11223.88, + "end": 11229.12, + "probability": 0.9312 + }, + { + "start": 11231.26, + "end": 11234.14, + "probability": 0.8625 + }, + { + "start": 11234.92, + "end": 11235.92, + "probability": 0.9624 + }, + { + "start": 11236.86, + "end": 11242.08, + "probability": 0.9219 + }, + { + "start": 11242.6, + "end": 11249.6, + "probability": 0.9886 + }, + { + "start": 11249.84, + "end": 11252.78, + "probability": 0.7366 + }, + { + "start": 11255.1, + "end": 11255.88, + "probability": 0.695 + }, + { + "start": 11256.6, + "end": 11259.24, + "probability": 0.9877 + }, + { + "start": 11259.38, + "end": 11264.2, + "probability": 0.9086 + }, + { + "start": 11264.76, + "end": 11271.2, + "probability": 0.9581 + }, + { + "start": 11271.76, + "end": 11277.04, + "probability": 0.9457 + }, + { + "start": 11282.42, + "end": 11286.06, + "probability": 0.9711 + }, + { + "start": 11286.06, + "end": 11288.56, + "probability": 0.9282 + }, + { + "start": 11289.06, + "end": 11289.28, + "probability": 0.5516 + }, + { + "start": 11290.6, + "end": 11291.94, + "probability": 0.5804 + }, + { + "start": 11292.08, + "end": 11294.06, + "probability": 0.7774 + }, + { + "start": 11299.88, + "end": 11300.16, + "probability": 0.3733 + }, + { + "start": 11300.92, + "end": 11304.48, + "probability": 0.7792 + }, + { + "start": 11307.16, + "end": 11308.02, + "probability": 0.76 + }, + { + "start": 11308.92, + "end": 11310.94, + "probability": 0.9136 + }, + { + "start": 11326.02, + "end": 11329.24, + "probability": 0.6151 + }, + { + "start": 11330.62, + "end": 11332.7, + "probability": 0.9394 + }, + { + "start": 11333.62, + "end": 11334.78, + "probability": 0.9418 + }, + { + "start": 11335.6, + "end": 11339.9, + "probability": 0.9808 + }, + { + "start": 11340.52, + "end": 11347.4, + "probability": 0.9907 + }, + { + "start": 11347.56, + "end": 11348.16, + "probability": 0.871 + }, + { + "start": 11348.52, + "end": 11348.98, + "probability": 0.5649 + }, + { + "start": 11349.84, + "end": 11351.18, + "probability": 0.9467 + }, + { + "start": 11352.56, + "end": 11359.28, + "probability": 0.9823 + }, + { + "start": 11360.4, + "end": 11363.84, + "probability": 0.9631 + }, + { + "start": 11364.76, + "end": 11367.46, + "probability": 0.9311 + }, + { + "start": 11368.54, + "end": 11370.1, + "probability": 0.9794 + }, + { + "start": 11370.7, + "end": 11372.47, + "probability": 0.9686 + }, + { + "start": 11373.36, + "end": 11374.5, + "probability": 0.9609 + }, + { + "start": 11375.86, + "end": 11376.36, + "probability": 0.6012 + }, + { + "start": 11376.44, + "end": 11382.82, + "probability": 0.9294 + }, + { + "start": 11383.14, + "end": 11384.0, + "probability": 0.7467 + }, + { + "start": 11384.36, + "end": 11386.46, + "probability": 0.9978 + }, + { + "start": 11386.98, + "end": 11390.34, + "probability": 0.0122 + }, + { + "start": 11392.22, + "end": 11394.4, + "probability": 0.7992 + }, + { + "start": 11394.82, + "end": 11400.32, + "probability": 0.8488 + }, + { + "start": 11400.88, + "end": 11408.32, + "probability": 0.9547 + }, + { + "start": 11408.36, + "end": 11411.56, + "probability": 0.9885 + }, + { + "start": 11411.68, + "end": 11413.3, + "probability": 0.9946 + }, + { + "start": 11413.76, + "end": 11417.96, + "probability": 0.9919 + }, + { + "start": 11418.48, + "end": 11420.18, + "probability": 0.9409 + }, + { + "start": 11421.1, + "end": 11425.96, + "probability": 0.7631 + }, + { + "start": 11426.4, + "end": 11428.78, + "probability": 0.9833 + }, + { + "start": 11429.24, + "end": 11433.46, + "probability": 0.9939 + }, + { + "start": 11433.46, + "end": 11437.42, + "probability": 0.9987 + }, + { + "start": 11438.96, + "end": 11442.04, + "probability": 0.9966 + }, + { + "start": 11442.62, + "end": 11445.98, + "probability": 0.9907 + }, + { + "start": 11446.42, + "end": 11451.2, + "probability": 0.9611 + }, + { + "start": 11451.7, + "end": 11455.64, + "probability": 0.9802 + }, + { + "start": 11455.74, + "end": 11460.56, + "probability": 0.9129 + }, + { + "start": 11461.32, + "end": 11466.2, + "probability": 0.9971 + }, + { + "start": 11466.82, + "end": 11466.98, + "probability": 0.2345 + }, + { + "start": 11467.06, + "end": 11469.56, + "probability": 0.9832 + }, + { + "start": 11469.96, + "end": 11471.96, + "probability": 0.9934 + }, + { + "start": 11472.02, + "end": 11472.84, + "probability": 0.9721 + }, + { + "start": 11473.26, + "end": 11475.22, + "probability": 0.9749 + }, + { + "start": 11475.72, + "end": 11479.4, + "probability": 0.9364 + }, + { + "start": 11479.74, + "end": 11481.76, + "probability": 0.9943 + }, + { + "start": 11481.86, + "end": 11486.62, + "probability": 0.9953 + }, + { + "start": 11487.04, + "end": 11491.3, + "probability": 0.999 + }, + { + "start": 11491.3, + "end": 11496.44, + "probability": 0.998 + }, + { + "start": 11496.54, + "end": 11496.94, + "probability": 0.7134 + }, + { + "start": 11499.61, + "end": 11502.04, + "probability": 0.5512 + }, + { + "start": 11502.14, + "end": 11504.66, + "probability": 0.9026 + }, + { + "start": 11510.48, + "end": 11514.0, + "probability": 0.663 + }, + { + "start": 11515.36, + "end": 11520.82, + "probability": 0.9235 + }, + { + "start": 11520.82, + "end": 11526.62, + "probability": 0.9703 + }, + { + "start": 11527.1, + "end": 11530.9, + "probability": 0.9912 + }, + { + "start": 11531.6, + "end": 11533.86, + "probability": 0.9054 + }, + { + "start": 11533.96, + "end": 11535.0, + "probability": 0.6589 + }, + { + "start": 11535.02, + "end": 11535.87, + "probability": 0.8151 + }, + { + "start": 11536.62, + "end": 11539.32, + "probability": 0.8811 + }, + { + "start": 11540.62, + "end": 11544.38, + "probability": 0.9902 + }, + { + "start": 11544.38, + "end": 11547.78, + "probability": 0.9965 + }, + { + "start": 11548.54, + "end": 11551.96, + "probability": 0.8666 + }, + { + "start": 11552.78, + "end": 11553.4, + "probability": 0.7105 + }, + { + "start": 11553.58, + "end": 11554.08, + "probability": 0.9285 + }, + { + "start": 11554.34, + "end": 11557.48, + "probability": 0.9348 + }, + { + "start": 11558.46, + "end": 11560.44, + "probability": 0.9869 + }, + { + "start": 11560.5, + "end": 11563.5, + "probability": 0.9271 + }, + { + "start": 11563.56, + "end": 11565.3, + "probability": 0.7992 + }, + { + "start": 11565.36, + "end": 11568.02, + "probability": 0.9371 + }, + { + "start": 11568.42, + "end": 11569.8, + "probability": 0.9854 + }, + { + "start": 11569.9, + "end": 11570.5, + "probability": 0.6459 + }, + { + "start": 11570.6, + "end": 11571.0, + "probability": 0.5378 + }, + { + "start": 11571.4, + "end": 11575.04, + "probability": 0.9781 + }, + { + "start": 11575.16, + "end": 11575.78, + "probability": 0.8352 + }, + { + "start": 11576.2, + "end": 11578.12, + "probability": 0.3033 + }, + { + "start": 11578.44, + "end": 11580.62, + "probability": 0.7908 + }, + { + "start": 11580.92, + "end": 11582.72, + "probability": 0.9118 + }, + { + "start": 11583.22, + "end": 11584.34, + "probability": 0.8279 + }, + { + "start": 11584.4, + "end": 11585.5, + "probability": 0.9858 + }, + { + "start": 11585.58, + "end": 11587.48, + "probability": 0.99 + }, + { + "start": 11587.78, + "end": 11590.3, + "probability": 0.9919 + }, + { + "start": 11591.88, + "end": 11598.2, + "probability": 0.8979 + }, + { + "start": 11598.96, + "end": 11602.54, + "probability": 0.9847 + }, + { + "start": 11602.62, + "end": 11603.66, + "probability": 0.7573 + }, + { + "start": 11604.22, + "end": 11608.56, + "probability": 0.9181 + }, + { + "start": 11608.56, + "end": 11611.98, + "probability": 0.9451 + }, + { + "start": 11612.16, + "end": 11615.16, + "probability": 0.9557 + }, + { + "start": 11616.2, + "end": 11619.6, + "probability": 0.9927 + }, + { + "start": 11619.6, + "end": 11622.54, + "probability": 0.999 + }, + { + "start": 11622.68, + "end": 11623.18, + "probability": 0.7608 + }, + { + "start": 11625.78, + "end": 11627.14, + "probability": 0.6484 + }, + { + "start": 11627.28, + "end": 11630.24, + "probability": 0.6914 + }, + { + "start": 11630.58, + "end": 11632.46, + "probability": 0.983 + }, + { + "start": 11634.82, + "end": 11635.42, + "probability": 0.2827 + }, + { + "start": 11635.56, + "end": 11636.96, + "probability": 0.8332 + }, + { + "start": 11650.46, + "end": 11650.96, + "probability": 0.4773 + }, + { + "start": 11651.76, + "end": 11652.52, + "probability": 0.7447 + }, + { + "start": 11654.28, + "end": 11655.58, + "probability": 0.639 + }, + { + "start": 11655.72, + "end": 11657.92, + "probability": 0.8087 + }, + { + "start": 11658.26, + "end": 11661.38, + "probability": 0.9831 + }, + { + "start": 11663.12, + "end": 11667.62, + "probability": 0.9839 + }, + { + "start": 11669.4, + "end": 11677.06, + "probability": 0.8016 + }, + { + "start": 11677.76, + "end": 11682.12, + "probability": 0.9724 + }, + { + "start": 11684.23, + "end": 11690.46, + "probability": 0.978 + }, + { + "start": 11692.38, + "end": 11692.9, + "probability": 0.9722 + }, + { + "start": 11696.88, + "end": 11698.28, + "probability": 0.8813 + }, + { + "start": 11700.06, + "end": 11701.0, + "probability": 0.8527 + }, + { + "start": 11703.26, + "end": 11707.68, + "probability": 0.9621 + }, + { + "start": 11709.78, + "end": 11710.78, + "probability": 0.492 + }, + { + "start": 11712.12, + "end": 11713.6, + "probability": 0.9896 + }, + { + "start": 11715.04, + "end": 11720.4, + "probability": 0.7843 + }, + { + "start": 11720.94, + "end": 11723.86, + "probability": 0.9265 + }, + { + "start": 11724.8, + "end": 11729.2, + "probability": 0.7576 + }, + { + "start": 11729.88, + "end": 11731.14, + "probability": 0.5529 + }, + { + "start": 11731.86, + "end": 11732.66, + "probability": 0.7149 + }, + { + "start": 11732.9, + "end": 11733.76, + "probability": 0.5851 + }, + { + "start": 11735.7, + "end": 11738.14, + "probability": 0.847 + }, + { + "start": 11738.52, + "end": 11742.76, + "probability": 0.9938 + }, + { + "start": 11744.98, + "end": 11746.18, + "probability": 0.7419 + }, + { + "start": 11748.62, + "end": 11752.58, + "probability": 0.9856 + }, + { + "start": 11753.1, + "end": 11756.62, + "probability": 0.9963 + }, + { + "start": 11757.36, + "end": 11764.94, + "probability": 0.9901 + }, + { + "start": 11765.66, + "end": 11767.66, + "probability": 0.8683 + }, + { + "start": 11768.7, + "end": 11778.02, + "probability": 0.9961 + }, + { + "start": 11778.16, + "end": 11781.06, + "probability": 0.9426 + }, + { + "start": 11782.3, + "end": 11786.54, + "probability": 0.9771 + }, + { + "start": 11788.28, + "end": 11792.52, + "probability": 0.6436 + }, + { + "start": 11793.72, + "end": 11801.86, + "probability": 0.984 + }, + { + "start": 11801.86, + "end": 11808.62, + "probability": 0.8612 + }, + { + "start": 11809.74, + "end": 11812.62, + "probability": 0.9517 + }, + { + "start": 11812.78, + "end": 11814.08, + "probability": 0.9873 + }, + { + "start": 11814.26, + "end": 11820.26, + "probability": 0.9451 + }, + { + "start": 11821.16, + "end": 11828.0, + "probability": 0.9882 + }, + { + "start": 11828.0, + "end": 11832.82, + "probability": 0.921 + }, + { + "start": 11833.62, + "end": 11835.2, + "probability": 0.9939 + }, + { + "start": 11835.32, + "end": 11838.32, + "probability": 0.8219 + }, + { + "start": 11838.9, + "end": 11839.76, + "probability": 0.3035 + }, + { + "start": 11840.08, + "end": 11848.76, + "probability": 0.9749 + }, + { + "start": 11849.44, + "end": 11850.76, + "probability": 0.7678 + }, + { + "start": 11850.88, + "end": 11852.02, + "probability": 0.9718 + }, + { + "start": 11852.2, + "end": 11853.38, + "probability": 0.5792 + }, + { + "start": 11853.52, + "end": 11855.06, + "probability": 0.3968 + }, + { + "start": 11856.0, + "end": 11860.98, + "probability": 0.9574 + }, + { + "start": 11861.6, + "end": 11866.54, + "probability": 0.9967 + }, + { + "start": 11867.34, + "end": 11872.3, + "probability": 0.88 + }, + { + "start": 11872.7, + "end": 11877.82, + "probability": 0.9851 + }, + { + "start": 11877.82, + "end": 11882.98, + "probability": 0.9751 + }, + { + "start": 11883.5, + "end": 11885.32, + "probability": 0.8978 + }, + { + "start": 11885.4, + "end": 11887.16, + "probability": 0.7562 + }, + { + "start": 11887.24, + "end": 11887.42, + "probability": 0.4547 + }, + { + "start": 11887.42, + "end": 11889.12, + "probability": 0.9184 + }, + { + "start": 11889.56, + "end": 11895.9, + "probability": 0.9197 + }, + { + "start": 11895.9, + "end": 11899.7, + "probability": 0.825 + }, + { + "start": 11902.28, + "end": 11905.22, + "probability": 0.895 + }, + { + "start": 11905.22, + "end": 11909.36, + "probability": 0.9934 + }, + { + "start": 11909.88, + "end": 11914.5, + "probability": 0.9841 + }, + { + "start": 11914.88, + "end": 11919.98, + "probability": 0.9816 + }, + { + "start": 11920.04, + "end": 11920.22, + "probability": 0.3127 + }, + { + "start": 11920.38, + "end": 11922.68, + "probability": 0.9494 + }, + { + "start": 11923.26, + "end": 11927.0, + "probability": 0.9004 + }, + { + "start": 11927.28, + "end": 11927.74, + "probability": 0.8793 + }, + { + "start": 11927.84, + "end": 11929.24, + "probability": 0.5814 + }, + { + "start": 11929.34, + "end": 11931.38, + "probability": 0.949 + }, + { + "start": 11948.92, + "end": 11952.14, + "probability": 0.5669 + }, + { + "start": 11953.64, + "end": 11959.28, + "probability": 0.9963 + }, + { + "start": 11960.28, + "end": 11961.46, + "probability": 0.98 + }, + { + "start": 11961.62, + "end": 11962.28, + "probability": 0.972 + }, + { + "start": 11962.32, + "end": 11963.9, + "probability": 0.9961 + }, + { + "start": 11964.68, + "end": 11966.16, + "probability": 0.6447 + }, + { + "start": 11966.28, + "end": 11969.1, + "probability": 0.9897 + }, + { + "start": 11969.56, + "end": 11971.18, + "probability": 0.9354 + }, + { + "start": 11972.26, + "end": 11974.56, + "probability": 0.9518 + }, + { + "start": 11975.36, + "end": 11980.18, + "probability": 0.9927 + }, + { + "start": 11981.62, + "end": 11983.65, + "probability": 0.9844 + }, + { + "start": 11984.36, + "end": 11986.16, + "probability": 0.9941 + }, + { + "start": 11987.06, + "end": 11991.78, + "probability": 0.9822 + }, + { + "start": 11993.34, + "end": 11997.06, + "probability": 0.8491 + }, + { + "start": 11997.46, + "end": 11998.8, + "probability": 0.9902 + }, + { + "start": 11999.06, + "end": 12001.34, + "probability": 0.9465 + }, + { + "start": 12001.38, + "end": 12002.46, + "probability": 0.9536 + }, + { + "start": 12004.3, + "end": 12006.08, + "probability": 0.9949 + }, + { + "start": 12006.6, + "end": 12009.62, + "probability": 0.9977 + }, + { + "start": 12009.62, + "end": 12014.94, + "probability": 0.9849 + }, + { + "start": 12016.32, + "end": 12017.88, + "probability": 0.7129 + }, + { + "start": 12018.6, + "end": 12019.56, + "probability": 0.9429 + }, + { + "start": 12019.92, + "end": 12021.22, + "probability": 0.9078 + }, + { + "start": 12021.24, + "end": 12024.58, + "probability": 0.9293 + }, + { + "start": 12024.96, + "end": 12027.3, + "probability": 0.9562 + }, + { + "start": 12029.73, + "end": 12031.3, + "probability": 0.9517 + }, + { + "start": 12031.3, + "end": 12032.2, + "probability": 0.9844 + }, + { + "start": 12032.7, + "end": 12035.7, + "probability": 0.9651 + }, + { + "start": 12036.68, + "end": 12045.26, + "probability": 0.9884 + }, + { + "start": 12045.68, + "end": 12047.82, + "probability": 0.7464 + }, + { + "start": 12049.14, + "end": 12051.56, + "probability": 0.9805 + }, + { + "start": 12053.36, + "end": 12060.88, + "probability": 0.9818 + }, + { + "start": 12061.34, + "end": 12064.4, + "probability": 0.9656 + }, + { + "start": 12065.36, + "end": 12068.04, + "probability": 0.9156 + }, + { + "start": 12068.64, + "end": 12069.72, + "probability": 0.8392 + }, + { + "start": 12070.08, + "end": 12074.16, + "probability": 0.9493 + }, + { + "start": 12074.26, + "end": 12075.54, + "probability": 0.9024 + }, + { + "start": 12076.12, + "end": 12079.04, + "probability": 0.9969 + }, + { + "start": 12079.9, + "end": 12084.22, + "probability": 0.9245 + }, + { + "start": 12084.66, + "end": 12087.48, + "probability": 0.998 + }, + { + "start": 12087.98, + "end": 12089.82, + "probability": 0.9507 + }, + { + "start": 12089.9, + "end": 12090.46, + "probability": 0.8376 + }, + { + "start": 12090.5, + "end": 12091.4, + "probability": 0.9489 + }, + { + "start": 12091.94, + "end": 12093.2, + "probability": 0.9231 + }, + { + "start": 12093.72, + "end": 12097.98, + "probability": 0.9983 + }, + { + "start": 12097.98, + "end": 12101.64, + "probability": 0.991 + }, + { + "start": 12102.36, + "end": 12104.38, + "probability": 0.8719 + }, + { + "start": 12104.98, + "end": 12108.8, + "probability": 0.978 + }, + { + "start": 12109.6, + "end": 12114.04, + "probability": 0.9761 + }, + { + "start": 12114.54, + "end": 12120.74, + "probability": 0.9836 + }, + { + "start": 12120.86, + "end": 12126.72, + "probability": 0.9993 + }, + { + "start": 12127.16, + "end": 12133.2, + "probability": 0.9902 + }, + { + "start": 12133.4, + "end": 12133.52, + "probability": 0.3091 + }, + { + "start": 12133.56, + "end": 12135.32, + "probability": 0.985 + }, + { + "start": 12136.0, + "end": 12139.8, + "probability": 0.9515 + }, + { + "start": 12140.2, + "end": 12144.06, + "probability": 0.9927 + }, + { + "start": 12144.06, + "end": 12148.08, + "probability": 0.9941 + }, + { + "start": 12148.46, + "end": 12149.46, + "probability": 0.8784 + }, + { + "start": 12149.54, + "end": 12150.32, + "probability": 0.8532 + }, + { + "start": 12151.63, + "end": 12152.96, + "probability": 0.7739 + }, + { + "start": 12153.66, + "end": 12155.96, + "probability": 0.9302 + }, + { + "start": 12178.3, + "end": 12180.12, + "probability": 0.6761 + }, + { + "start": 12181.54, + "end": 12186.16, + "probability": 0.946 + }, + { + "start": 12186.72, + "end": 12188.38, + "probability": 0.8374 + }, + { + "start": 12189.62, + "end": 12191.26, + "probability": 0.8098 + }, + { + "start": 12191.34, + "end": 12192.96, + "probability": 0.9405 + }, + { + "start": 12193.62, + "end": 12197.0, + "probability": 0.7924 + }, + { + "start": 12197.66, + "end": 12200.68, + "probability": 0.9001 + }, + { + "start": 12201.74, + "end": 12204.22, + "probability": 0.8178 + }, + { + "start": 12204.9, + "end": 12208.18, + "probability": 0.9895 + }, + { + "start": 12208.18, + "end": 12212.7, + "probability": 0.9975 + }, + { + "start": 12213.64, + "end": 12214.74, + "probability": 0.8311 + }, + { + "start": 12215.42, + "end": 12220.78, + "probability": 0.981 + }, + { + "start": 12220.96, + "end": 12222.74, + "probability": 0.9979 + }, + { + "start": 12223.84, + "end": 12226.56, + "probability": 0.7581 + }, + { + "start": 12226.68, + "end": 12229.9, + "probability": 0.9054 + }, + { + "start": 12230.3, + "end": 12231.64, + "probability": 0.6589 + }, + { + "start": 12231.7, + "end": 12232.84, + "probability": 0.8591 + }, + { + "start": 12233.24, + "end": 12234.3, + "probability": 0.9009 + }, + { + "start": 12234.82, + "end": 12236.34, + "probability": 0.5669 + }, + { + "start": 12236.76, + "end": 12239.32, + "probability": 0.8784 + }, + { + "start": 12240.18, + "end": 12244.5, + "probability": 0.9995 + }, + { + "start": 12244.5, + "end": 12248.52, + "probability": 0.8121 + }, + { + "start": 12249.96, + "end": 12253.48, + "probability": 0.9118 + }, + { + "start": 12253.66, + "end": 12258.76, + "probability": 0.9833 + }, + { + "start": 12258.76, + "end": 12263.32, + "probability": 0.9884 + }, + { + "start": 12264.48, + "end": 12267.14, + "probability": 0.966 + }, + { + "start": 12268.06, + "end": 12271.37, + "probability": 0.8824 + }, + { + "start": 12272.28, + "end": 12274.86, + "probability": 0.993 + }, + { + "start": 12274.86, + "end": 12277.24, + "probability": 0.9436 + }, + { + "start": 12278.64, + "end": 12280.8, + "probability": 0.9665 + }, + { + "start": 12280.94, + "end": 12285.54, + "probability": 0.9984 + }, + { + "start": 12286.22, + "end": 12290.08, + "probability": 0.9744 + }, + { + "start": 12290.2, + "end": 12292.4, + "probability": 0.5832 + }, + { + "start": 12292.76, + "end": 12293.32, + "probability": 0.731 + }, + { + "start": 12293.36, + "end": 12295.06, + "probability": 0.6011 + }, + { + "start": 12295.54, + "end": 12299.12, + "probability": 0.9976 + }, + { + "start": 12299.62, + "end": 12300.42, + "probability": 0.9781 + }, + { + "start": 12301.38, + "end": 12305.4, + "probability": 0.9863 + }, + { + "start": 12306.1, + "end": 12310.58, + "probability": 0.8815 + }, + { + "start": 12310.58, + "end": 12313.54, + "probability": 0.9817 + }, + { + "start": 12313.68, + "end": 12317.2, + "probability": 0.9863 + }, + { + "start": 12318.48, + "end": 12319.3, + "probability": 0.438 + }, + { + "start": 12319.4, + "end": 12321.72, + "probability": 0.9594 + }, + { + "start": 12321.84, + "end": 12323.2, + "probability": 0.9893 + }, + { + "start": 12323.36, + "end": 12324.9, + "probability": 0.9612 + }, + { + "start": 12325.46, + "end": 12326.02, + "probability": 0.9822 + }, + { + "start": 12326.14, + "end": 12326.76, + "probability": 0.779 + }, + { + "start": 12327.02, + "end": 12329.22, + "probability": 0.9398 + }, + { + "start": 12330.22, + "end": 12330.95, + "probability": 0.4376 + }, + { + "start": 12331.04, + "end": 12333.46, + "probability": 0.9948 + }, + { + "start": 12333.46, + "end": 12337.12, + "probability": 0.9803 + }, + { + "start": 12337.64, + "end": 12338.72, + "probability": 0.45 + }, + { + "start": 12338.88, + "end": 12340.88, + "probability": 0.9372 + }, + { + "start": 12341.02, + "end": 12345.08, + "probability": 0.9894 + }, + { + "start": 12345.78, + "end": 12351.6, + "probability": 0.9851 + }, + { + "start": 12352.52, + "end": 12356.38, + "probability": 0.6582 + }, + { + "start": 12356.5, + "end": 12356.62, + "probability": 0.0473 + }, + { + "start": 12356.7, + "end": 12361.14, + "probability": 0.9538 + }, + { + "start": 12361.26, + "end": 12361.86, + "probability": 0.5202 + }, + { + "start": 12362.3, + "end": 12362.68, + "probability": 0.7591 + }, + { + "start": 12362.8, + "end": 12363.36, + "probability": 0.7962 + }, + { + "start": 12363.5, + "end": 12367.74, + "probability": 0.901 + }, + { + "start": 12368.04, + "end": 12371.31, + "probability": 0.9881 + }, + { + "start": 12371.82, + "end": 12374.86, + "probability": 0.9691 + }, + { + "start": 12375.22, + "end": 12376.46, + "probability": 0.9408 + }, + { + "start": 12376.64, + "end": 12378.64, + "probability": 0.8858 + }, + { + "start": 12378.76, + "end": 12380.72, + "probability": 0.9149 + }, + { + "start": 12380.8, + "end": 12382.24, + "probability": 0.9834 + }, + { + "start": 12382.34, + "end": 12383.88, + "probability": 0.6652 + }, + { + "start": 12383.92, + "end": 12384.12, + "probability": 0.752 + }, + { + "start": 12385.06, + "end": 12386.6, + "probability": 0.7141 + }, + { + "start": 12387.12, + "end": 12389.06, + "probability": 0.7028 + }, + { + "start": 12389.14, + "end": 12390.77, + "probability": 0.9762 + }, + { + "start": 12392.54, + "end": 12393.34, + "probability": 0.7475 + }, + { + "start": 12394.52, + "end": 12396.78, + "probability": 0.9772 + }, + { + "start": 12397.48, + "end": 12398.28, + "probability": 0.9226 + }, + { + "start": 12398.82, + "end": 12402.2, + "probability": 0.8982 + }, + { + "start": 12403.26, + "end": 12404.24, + "probability": 0.9044 + }, + { + "start": 12405.24, + "end": 12406.76, + "probability": 0.8749 + }, + { + "start": 12407.98, + "end": 12408.76, + "probability": 0.7446 + }, + { + "start": 12409.36, + "end": 12411.99, + "probability": 0.9272 + }, + { + "start": 12422.88, + "end": 12423.1, + "probability": 0.508 + }, + { + "start": 12429.68, + "end": 12431.8, + "probability": 0.6827 + }, + { + "start": 12433.26, + "end": 12433.96, + "probability": 0.9197 + }, + { + "start": 12434.84, + "end": 12438.64, + "probability": 0.9758 + }, + { + "start": 12438.74, + "end": 12441.38, + "probability": 0.9769 + }, + { + "start": 12442.84, + "end": 12444.92, + "probability": 0.9624 + }, + { + "start": 12445.54, + "end": 12447.54, + "probability": 0.9409 + }, + { + "start": 12448.7, + "end": 12451.94, + "probability": 0.981 + }, + { + "start": 12453.66, + "end": 12458.48, + "probability": 0.9788 + }, + { + "start": 12458.48, + "end": 12466.78, + "probability": 0.9824 + }, + { + "start": 12467.72, + "end": 12469.2, + "probability": 0.7266 + }, + { + "start": 12469.5, + "end": 12473.32, + "probability": 0.8717 + }, + { + "start": 12473.92, + "end": 12475.46, + "probability": 0.9961 + }, + { + "start": 12476.26, + "end": 12480.3, + "probability": 0.9835 + }, + { + "start": 12481.54, + "end": 12482.56, + "probability": 0.9952 + }, + { + "start": 12485.5, + "end": 12487.64, + "probability": 0.7977 + }, + { + "start": 12489.0, + "end": 12496.24, + "probability": 0.9727 + }, + { + "start": 12497.02, + "end": 12499.76, + "probability": 0.9193 + }, + { + "start": 12500.94, + "end": 12505.28, + "probability": 0.9504 + }, + { + "start": 12507.08, + "end": 12510.06, + "probability": 0.9077 + }, + { + "start": 12510.66, + "end": 12512.74, + "probability": 0.9801 + }, + { + "start": 12513.34, + "end": 12516.28, + "probability": 0.9924 + }, + { + "start": 12517.02, + "end": 12522.42, + "probability": 0.9968 + }, + { + "start": 12523.32, + "end": 12524.34, + "probability": 0.9403 + }, + { + "start": 12525.0, + "end": 12526.8, + "probability": 0.9922 + }, + { + "start": 12528.9, + "end": 12531.66, + "probability": 0.9336 + }, + { + "start": 12532.84, + "end": 12535.54, + "probability": 0.928 + }, + { + "start": 12536.66, + "end": 12540.7, + "probability": 0.921 + }, + { + "start": 12540.7, + "end": 12543.94, + "probability": 0.9952 + }, + { + "start": 12544.42, + "end": 12546.6, + "probability": 0.9728 + }, + { + "start": 12546.72, + "end": 12547.46, + "probability": 0.8357 + }, + { + "start": 12547.56, + "end": 12552.44, + "probability": 0.9867 + }, + { + "start": 12552.44, + "end": 12556.64, + "probability": 0.9637 + }, + { + "start": 12557.04, + "end": 12562.68, + "probability": 0.9887 + }, + { + "start": 12564.98, + "end": 12568.26, + "probability": 0.8588 + }, + { + "start": 12568.96, + "end": 12569.62, + "probability": 0.5676 + }, + { + "start": 12570.02, + "end": 12570.88, + "probability": 0.6221 + }, + { + "start": 12570.98, + "end": 12572.52, + "probability": 0.7605 + }, + { + "start": 12572.92, + "end": 12573.52, + "probability": 0.9448 + }, + { + "start": 12573.86, + "end": 12577.14, + "probability": 0.9692 + }, + { + "start": 12577.14, + "end": 12578.44, + "probability": 0.9823 + }, + { + "start": 12578.5, + "end": 12579.62, + "probability": 0.8971 + }, + { + "start": 12580.16, + "end": 12582.16, + "probability": 0.9032 + }, + { + "start": 12582.58, + "end": 12583.8, + "probability": 0.9441 + }, + { + "start": 12583.8, + "end": 12585.1, + "probability": 0.9288 + }, + { + "start": 12586.28, + "end": 12586.96, + "probability": 0.6033 + }, + { + "start": 12587.18, + "end": 12588.0, + "probability": 0.8787 + }, + { + "start": 12588.46, + "end": 12590.22, + "probability": 0.9238 + }, + { + "start": 12590.26, + "end": 12592.62, + "probability": 0.9683 + }, + { + "start": 12592.98, + "end": 12593.5, + "probability": 0.947 + }, + { + "start": 12593.52, + "end": 12594.08, + "probability": 0.9577 + }, + { + "start": 12594.18, + "end": 12599.74, + "probability": 0.7758 + }, + { + "start": 12600.54, + "end": 12602.38, + "probability": 0.9919 + }, + { + "start": 12602.88, + "end": 12603.2, + "probability": 0.4217 + }, + { + "start": 12603.34, + "end": 12605.18, + "probability": 0.9976 + }, + { + "start": 12605.92, + "end": 12608.98, + "probability": 0.7971 + }, + { + "start": 12609.14, + "end": 12613.78, + "probability": 0.9365 + }, + { + "start": 12613.78, + "end": 12615.42, + "probability": 0.813 + }, + { + "start": 12616.08, + "end": 12621.96, + "probability": 0.8752 + }, + { + "start": 12622.42, + "end": 12623.98, + "probability": 0.6456 + }, + { + "start": 12624.68, + "end": 12626.58, + "probability": 0.9123 + }, + { + "start": 12627.38, + "end": 12627.98, + "probability": 0.7228 + }, + { + "start": 12630.3, + "end": 12631.32, + "probability": 0.9762 + }, + { + "start": 12641.08, + "end": 12642.34, + "probability": 0.6145 + }, + { + "start": 12643.38, + "end": 12643.48, + "probability": 0.4099 + }, + { + "start": 12643.54, + "end": 12643.98, + "probability": 0.8853 + }, + { + "start": 12644.1, + "end": 12644.84, + "probability": 0.9149 + }, + { + "start": 12644.92, + "end": 12646.7, + "probability": 0.948 + }, + { + "start": 12647.02, + "end": 12650.22, + "probability": 0.7909 + }, + { + "start": 12653.3, + "end": 12654.68, + "probability": 0.2744 + }, + { + "start": 12656.18, + "end": 12658.6, + "probability": 0.9773 + }, + { + "start": 12659.48, + "end": 12660.52, + "probability": 0.9377 + }, + { + "start": 12661.36, + "end": 12662.18, + "probability": 0.946 + }, + { + "start": 12662.76, + "end": 12663.56, + "probability": 0.253 + }, + { + "start": 12663.78, + "end": 12664.88, + "probability": 0.9674 + }, + { + "start": 12665.86, + "end": 12666.58, + "probability": 0.8476 + }, + { + "start": 12666.74, + "end": 12668.98, + "probability": 0.8998 + }, + { + "start": 12669.04, + "end": 12670.32, + "probability": 0.955 + }, + { + "start": 12670.8, + "end": 12671.84, + "probability": 0.9811 + }, + { + "start": 12672.74, + "end": 12673.04, + "probability": 0.6086 + }, + { + "start": 12673.18, + "end": 12673.6, + "probability": 0.4422 + }, + { + "start": 12673.6, + "end": 12676.5, + "probability": 0.9424 + }, + { + "start": 12677.46, + "end": 12679.96, + "probability": 0.93 + }, + { + "start": 12680.9, + "end": 12683.76, + "probability": 0.9833 + }, + { + "start": 12684.54, + "end": 12685.96, + "probability": 0.9027 + }, + { + "start": 12686.04, + "end": 12688.86, + "probability": 0.8236 + }, + { + "start": 12689.56, + "end": 12691.44, + "probability": 0.8149 + }, + { + "start": 12691.86, + "end": 12692.16, + "probability": 0.6686 + }, + { + "start": 12692.7, + "end": 12693.78, + "probability": 0.973 + }, + { + "start": 12694.24, + "end": 12698.08, + "probability": 0.9351 + }, + { + "start": 12699.3, + "end": 12701.62, + "probability": 0.9336 + }, + { + "start": 12701.76, + "end": 12702.14, + "probability": 0.9193 + }, + { + "start": 12703.1, + "end": 12705.28, + "probability": 0.9972 + }, + { + "start": 12705.7, + "end": 12707.62, + "probability": 0.9878 + }, + { + "start": 12708.64, + "end": 12712.04, + "probability": 0.9867 + }, + { + "start": 12712.64, + "end": 12714.08, + "probability": 0.931 + }, + { + "start": 12714.2, + "end": 12716.52, + "probability": 0.9865 + }, + { + "start": 12717.18, + "end": 12719.16, + "probability": 0.9928 + }, + { + "start": 12719.26, + "end": 12720.4, + "probability": 0.9484 + }, + { + "start": 12720.78, + "end": 12723.06, + "probability": 0.8728 + }, + { + "start": 12723.18, + "end": 12725.46, + "probability": 0.8403 + }, + { + "start": 12726.26, + "end": 12727.16, + "probability": 0.7166 + }, + { + "start": 12727.2, + "end": 12730.22, + "probability": 0.8289 + }, + { + "start": 12730.32, + "end": 12731.54, + "probability": 0.9299 + }, + { + "start": 12732.34, + "end": 12733.74, + "probability": 0.8239 + }, + { + "start": 12734.4, + "end": 12736.8, + "probability": 0.936 + }, + { + "start": 12737.8, + "end": 12740.67, + "probability": 0.9507 + }, + { + "start": 12741.4, + "end": 12745.74, + "probability": 0.7343 + }, + { + "start": 12746.16, + "end": 12747.26, + "probability": 0.9692 + }, + { + "start": 12747.62, + "end": 12748.88, + "probability": 0.9847 + }, + { + "start": 12748.9, + "end": 12750.38, + "probability": 0.9616 + }, + { + "start": 12750.4, + "end": 12751.0, + "probability": 0.889 + }, + { + "start": 12751.36, + "end": 12754.88, + "probability": 0.9731 + }, + { + "start": 12755.48, + "end": 12756.4, + "probability": 0.9521 + }, + { + "start": 12757.06, + "end": 12759.26, + "probability": 0.9305 + }, + { + "start": 12759.44, + "end": 12760.64, + "probability": 0.8137 + }, + { + "start": 12761.08, + "end": 12764.9, + "probability": 0.9888 + }, + { + "start": 12765.56, + "end": 12767.44, + "probability": 0.9844 + }, + { + "start": 12767.86, + "end": 12768.87, + "probability": 0.7581 + }, + { + "start": 12769.48, + "end": 12770.74, + "probability": 0.9891 + }, + { + "start": 12771.82, + "end": 12774.24, + "probability": 0.7324 + }, + { + "start": 12774.92, + "end": 12775.74, + "probability": 0.3806 + }, + { + "start": 12776.42, + "end": 12777.14, + "probability": 0.9794 + }, + { + "start": 12777.86, + "end": 12779.74, + "probability": 0.9761 + }, + { + "start": 12779.96, + "end": 12784.16, + "probability": 0.889 + }, + { + "start": 12784.7, + "end": 12786.22, + "probability": 0.9873 + }, + { + "start": 12786.92, + "end": 12788.79, + "probability": 0.9131 + }, + { + "start": 12789.5, + "end": 12792.7, + "probability": 0.9032 + }, + { + "start": 12793.04, + "end": 12794.2, + "probability": 0.9111 + }, + { + "start": 12794.98, + "end": 12796.65, + "probability": 0.8795 + }, + { + "start": 12797.82, + "end": 12798.34, + "probability": 0.5355 + }, + { + "start": 12798.6, + "end": 12799.74, + "probability": 0.8999 + }, + { + "start": 12800.34, + "end": 12801.44, + "probability": 0.8726 + }, + { + "start": 12802.08, + "end": 12804.16, + "probability": 0.9081 + }, + { + "start": 12804.66, + "end": 12806.04, + "probability": 0.8584 + }, + { + "start": 12807.04, + "end": 12809.22, + "probability": 0.9609 + }, + { + "start": 12809.3, + "end": 12810.58, + "probability": 0.9132 + }, + { + "start": 12811.28, + "end": 12813.18, + "probability": 0.9536 + }, + { + "start": 12813.54, + "end": 12813.96, + "probability": 0.5538 + }, + { + "start": 12814.56, + "end": 12816.12, + "probability": 0.9985 + }, + { + "start": 12817.19, + "end": 12819.6, + "probability": 0.9574 + }, + { + "start": 12819.82, + "end": 12820.56, + "probability": 0.7102 + }, + { + "start": 12821.08, + "end": 12823.12, + "probability": 0.9042 + }, + { + "start": 12823.46, + "end": 12823.46, + "probability": 0.0895 + }, + { + "start": 12823.46, + "end": 12826.66, + "probability": 0.7434 + }, + { + "start": 12827.42, + "end": 12829.32, + "probability": 0.8185 + }, + { + "start": 12829.98, + "end": 12831.42, + "probability": 0.9922 + }, + { + "start": 12832.72, + "end": 12834.04, + "probability": 0.5015 + }, + { + "start": 12834.26, + "end": 12835.92, + "probability": 0.8423 + }, + { + "start": 12837.08, + "end": 12837.84, + "probability": 0.7468 + }, + { + "start": 12838.1, + "end": 12839.66, + "probability": 0.9838 + }, + { + "start": 12840.64, + "end": 12841.3, + "probability": 0.8717 + }, + { + "start": 12841.42, + "end": 12843.14, + "probability": 0.8256 + }, + { + "start": 12867.64, + "end": 12870.24, + "probability": 0.706 + }, + { + "start": 12871.06, + "end": 12872.8, + "probability": 0.9982 + }, + { + "start": 12873.62, + "end": 12875.24, + "probability": 0.8214 + }, + { + "start": 12876.58, + "end": 12878.12, + "probability": 0.9917 + }, + { + "start": 12879.02, + "end": 12881.82, + "probability": 0.9971 + }, + { + "start": 12882.58, + "end": 12885.3, + "probability": 0.9856 + }, + { + "start": 12886.02, + "end": 12888.04, + "probability": 0.6899 + }, + { + "start": 12888.56, + "end": 12890.06, + "probability": 0.9419 + }, + { + "start": 12891.22, + "end": 12892.98, + "probability": 0.9258 + }, + { + "start": 12893.18, + "end": 12894.22, + "probability": 0.9583 + }, + { + "start": 12894.9, + "end": 12896.24, + "probability": 0.9897 + }, + { + "start": 12896.84, + "end": 12901.7, + "probability": 0.9949 + }, + { + "start": 12902.38, + "end": 12903.66, + "probability": 0.8368 + }, + { + "start": 12904.84, + "end": 12905.81, + "probability": 0.6297 + }, + { + "start": 12907.12, + "end": 12910.34, + "probability": 0.924 + }, + { + "start": 12910.86, + "end": 12913.0, + "probability": 0.9764 + }, + { + "start": 12913.62, + "end": 12916.4, + "probability": 0.9043 + }, + { + "start": 12917.22, + "end": 12923.96, + "probability": 0.8652 + }, + { + "start": 12923.96, + "end": 12928.64, + "probability": 0.984 + }, + { + "start": 12929.36, + "end": 12930.06, + "probability": 0.4236 + }, + { + "start": 12930.16, + "end": 12931.18, + "probability": 0.908 + }, + { + "start": 12931.6, + "end": 12935.25, + "probability": 0.6815 + }, + { + "start": 12935.44, + "end": 12939.24, + "probability": 0.99 + }, + { + "start": 12939.88, + "end": 12947.54, + "probability": 0.952 + }, + { + "start": 12948.76, + "end": 12953.98, + "probability": 0.8114 + }, + { + "start": 12953.98, + "end": 12957.7, + "probability": 0.9508 + }, + { + "start": 12958.64, + "end": 12959.82, + "probability": 0.784 + }, + { + "start": 12960.56, + "end": 12962.8, + "probability": 0.639 + }, + { + "start": 12964.1, + "end": 12965.22, + "probability": 0.7186 + }, + { + "start": 12966.0, + "end": 12969.28, + "probability": 0.9248 + }, + { + "start": 12970.4, + "end": 12974.8, + "probability": 0.7119 + }, + { + "start": 12975.48, + "end": 12978.26, + "probability": 0.87 + }, + { + "start": 12979.02, + "end": 12981.36, + "probability": 0.9556 + }, + { + "start": 12981.9, + "end": 12982.36, + "probability": 0.5219 + }, + { + "start": 12982.38, + "end": 12984.12, + "probability": 0.9917 + }, + { + "start": 12984.44, + "end": 12985.96, + "probability": 0.998 + }, + { + "start": 12986.42, + "end": 12987.86, + "probability": 0.7978 + }, + { + "start": 12988.38, + "end": 12992.3, + "probability": 0.77 + }, + { + "start": 12992.66, + "end": 12993.38, + "probability": 0.6596 + }, + { + "start": 12993.42, + "end": 12993.68, + "probability": 0.8032 + }, + { + "start": 12993.82, + "end": 12996.08, + "probability": 0.9746 + }, + { + "start": 12996.58, + "end": 12997.6, + "probability": 0.8867 + }, + { + "start": 12997.96, + "end": 13002.38, + "probability": 0.9443 + }, + { + "start": 13003.24, + "end": 13007.2, + "probability": 0.6184 + }, + { + "start": 13007.86, + "end": 13010.2, + "probability": 0.8258 + }, + { + "start": 13010.48, + "end": 13012.62, + "probability": 0.9417 + }, + { + "start": 13013.02, + "end": 13015.8, + "probability": 0.6655 + }, + { + "start": 13016.12, + "end": 13017.23, + "probability": 0.9806 + }, + { + "start": 13018.66, + "end": 13023.08, + "probability": 0.9724 + }, + { + "start": 13023.22, + "end": 13024.06, + "probability": 0.7198 + }, + { + "start": 13024.06, + "end": 13030.8, + "probability": 0.9633 + }, + { + "start": 13031.04, + "end": 13032.74, + "probability": 0.8126 + }, + { + "start": 13033.5, + "end": 13037.52, + "probability": 0.9434 + }, + { + "start": 13037.84, + "end": 13043.16, + "probability": 0.9829 + }, + { + "start": 13044.47, + "end": 13047.46, + "probability": 0.9907 + }, + { + "start": 13048.34, + "end": 13053.76, + "probability": 0.9152 + }, + { + "start": 13054.22, + "end": 13056.59, + "probability": 0.8753 + }, + { + "start": 13057.62, + "end": 13059.9, + "probability": 0.7886 + }, + { + "start": 13060.18, + "end": 13061.44, + "probability": 0.8216 + }, + { + "start": 13061.6, + "end": 13062.16, + "probability": 0.8835 + }, + { + "start": 13062.8, + "end": 13063.98, + "probability": 0.9668 + }, + { + "start": 13064.12, + "end": 13064.99, + "probability": 0.9803 + }, + { + "start": 13065.64, + "end": 13067.4, + "probability": 0.9199 + }, + { + "start": 13067.86, + "end": 13069.54, + "probability": 0.7378 + }, + { + "start": 13069.84, + "end": 13075.68, + "probability": 0.841 + }, + { + "start": 13076.52, + "end": 13077.62, + "probability": 0.6804 + }, + { + "start": 13078.14, + "end": 13079.04, + "probability": 0.7857 + }, + { + "start": 13079.64, + "end": 13081.21, + "probability": 0.5618 + }, + { + "start": 13081.94, + "end": 13084.14, + "probability": 0.8899 + }, + { + "start": 13084.3, + "end": 13087.08, + "probability": 0.9719 + }, + { + "start": 13087.2, + "end": 13088.11, + "probability": 0.924 + }, + { + "start": 13088.62, + "end": 13089.46, + "probability": 0.8814 + }, + { + "start": 13089.58, + "end": 13092.68, + "probability": 0.8047 + }, + { + "start": 13093.1, + "end": 13093.74, + "probability": 0.4383 + }, + { + "start": 13093.88, + "end": 13094.76, + "probability": 0.6656 + }, + { + "start": 13094.98, + "end": 13098.0, + "probability": 0.9878 + }, + { + "start": 13099.36, + "end": 13101.18, + "probability": 0.7445 + }, + { + "start": 13101.3, + "end": 13103.24, + "probability": 0.9291 + }, + { + "start": 13104.58, + "end": 13105.5, + "probability": 0.774 + }, + { + "start": 13106.24, + "end": 13109.2, + "probability": 0.9297 + }, + { + "start": 13119.78, + "end": 13120.58, + "probability": 0.6616 + }, + { + "start": 13120.74, + "end": 13121.95, + "probability": 0.9427 + }, + { + "start": 13122.2, + "end": 13124.34, + "probability": 0.8988 + }, + { + "start": 13125.08, + "end": 13128.14, + "probability": 0.9102 + }, + { + "start": 13128.74, + "end": 13131.8, + "probability": 0.7661 + }, + { + "start": 13132.08, + "end": 13134.74, + "probability": 0.9328 + }, + { + "start": 13136.26, + "end": 13139.92, + "probability": 0.9484 + }, + { + "start": 13140.22, + "end": 13145.6, + "probability": 0.8936 + }, + { + "start": 13146.06, + "end": 13147.22, + "probability": 0.9836 + }, + { + "start": 13147.78, + "end": 13151.22, + "probability": 0.9624 + }, + { + "start": 13151.8, + "end": 13153.8, + "probability": 0.9953 + }, + { + "start": 13154.7, + "end": 13162.86, + "probability": 0.9901 + }, + { + "start": 13163.12, + "end": 13167.1, + "probability": 0.8907 + }, + { + "start": 13167.3, + "end": 13172.38, + "probability": 0.9167 + }, + { + "start": 13172.96, + "end": 13176.42, + "probability": 0.829 + }, + { + "start": 13176.9, + "end": 13177.9, + "probability": 0.8997 + }, + { + "start": 13177.96, + "end": 13178.56, + "probability": 0.9105 + }, + { + "start": 13178.72, + "end": 13181.84, + "probability": 0.9521 + }, + { + "start": 13182.1, + "end": 13183.17, + "probability": 0.9752 + }, + { + "start": 13183.66, + "end": 13186.66, + "probability": 0.9683 + }, + { + "start": 13188.18, + "end": 13189.4, + "probability": 0.9797 + }, + { + "start": 13190.58, + "end": 13191.52, + "probability": 0.7658 + }, + { + "start": 13192.38, + "end": 13193.66, + "probability": 0.6556 + }, + { + "start": 13193.82, + "end": 13196.44, + "probability": 0.3016 + }, + { + "start": 13196.78, + "end": 13199.1, + "probability": 0.99 + }, + { + "start": 13199.26, + "end": 13199.84, + "probability": 0.7598 + }, + { + "start": 13200.24, + "end": 13202.0, + "probability": 0.977 + }, + { + "start": 13202.16, + "end": 13203.4, + "probability": 0.9349 + }, + { + "start": 13203.84, + "end": 13205.74, + "probability": 0.9741 + }, + { + "start": 13206.48, + "end": 13207.02, + "probability": 0.5486 + }, + { + "start": 13207.18, + "end": 13213.58, + "probability": 0.9868 + }, + { + "start": 13213.7, + "end": 13214.52, + "probability": 0.6967 + }, + { + "start": 13214.6, + "end": 13215.4, + "probability": 0.4882 + }, + { + "start": 13215.66, + "end": 13219.08, + "probability": 0.9852 + }, + { + "start": 13219.12, + "end": 13219.66, + "probability": 0.8371 + }, + { + "start": 13221.04, + "end": 13222.59, + "probability": 0.6279 + }, + { + "start": 13223.1, + "end": 13228.3, + "probability": 0.7015 + }, + { + "start": 13228.52, + "end": 13228.96, + "probability": 0.7783 + }, + { + "start": 13248.92, + "end": 13249.2, + "probability": 0.2569 + }, + { + "start": 13249.2, + "end": 13250.84, + "probability": 0.671 + }, + { + "start": 13252.06, + "end": 13257.36, + "probability": 0.8657 + }, + { + "start": 13258.22, + "end": 13259.13, + "probability": 0.9511 + }, + { + "start": 13259.26, + "end": 13259.75, + "probability": 0.8647 + }, + { + "start": 13260.5, + "end": 13262.12, + "probability": 0.9639 + }, + { + "start": 13262.26, + "end": 13263.36, + "probability": 0.9799 + }, + { + "start": 13264.4, + "end": 13265.26, + "probability": 0.7308 + }, + { + "start": 13265.86, + "end": 13271.0, + "probability": 0.8518 + }, + { + "start": 13271.56, + "end": 13272.74, + "probability": 0.9958 + }, + { + "start": 13274.56, + "end": 13278.74, + "probability": 0.9861 + }, + { + "start": 13279.3, + "end": 13281.62, + "probability": 0.9945 + }, + { + "start": 13282.48, + "end": 13286.74, + "probability": 0.8031 + }, + { + "start": 13287.24, + "end": 13288.7, + "probability": 0.5829 + }, + { + "start": 13289.36, + "end": 13293.96, + "probability": 0.9452 + }, + { + "start": 13294.58, + "end": 13298.4, + "probability": 0.8673 + }, + { + "start": 13299.52, + "end": 13303.07, + "probability": 0.9897 + }, + { + "start": 13303.56, + "end": 13305.76, + "probability": 0.6023 + }, + { + "start": 13306.06, + "end": 13306.86, + "probability": 0.9813 + }, + { + "start": 13307.24, + "end": 13308.5, + "probability": 0.7726 + }, + { + "start": 13308.96, + "end": 13310.24, + "probability": 0.6235 + }, + { + "start": 13310.4, + "end": 13314.04, + "probability": 0.8647 + }, + { + "start": 13314.42, + "end": 13315.64, + "probability": 0.9758 + }, + { + "start": 13315.92, + "end": 13317.72, + "probability": 0.9829 + }, + { + "start": 13317.84, + "end": 13321.68, + "probability": 0.8549 + }, + { + "start": 13321.72, + "end": 13324.5, + "probability": 0.8229 + }, + { + "start": 13324.88, + "end": 13325.58, + "probability": 0.6665 + }, + { + "start": 13325.6, + "end": 13326.34, + "probability": 0.7204 + }, + { + "start": 13326.46, + "end": 13327.48, + "probability": 0.5682 + }, + { + "start": 13327.56, + "end": 13328.06, + "probability": 0.6806 + }, + { + "start": 13328.34, + "end": 13330.18, + "probability": 0.775 + }, + { + "start": 13330.3, + "end": 13332.16, + "probability": 0.9355 + }, + { + "start": 13332.62, + "end": 13333.22, + "probability": 0.7505 + }, + { + "start": 13333.82, + "end": 13336.78, + "probability": 0.6541 + }, + { + "start": 13336.78, + "end": 13336.78, + "probability": 0.1372 + }, + { + "start": 13336.92, + "end": 13336.96, + "probability": 0.5285 + }, + { + "start": 13336.96, + "end": 13338.8, + "probability": 0.6001 + }, + { + "start": 13339.36, + "end": 13339.36, + "probability": 0.0569 + }, + { + "start": 13339.36, + "end": 13339.36, + "probability": 0.1361 + }, + { + "start": 13339.45, + "end": 13341.54, + "probability": 0.6853 + }, + { + "start": 13341.64, + "end": 13343.86, + "probability": 0.9054 + }, + { + "start": 13344.12, + "end": 13346.54, + "probability": 0.8763 + }, + { + "start": 13346.68, + "end": 13347.06, + "probability": 0.3223 + }, + { + "start": 13347.12, + "end": 13347.74, + "probability": 0.6662 + }, + { + "start": 13348.12, + "end": 13348.7, + "probability": 0.8034 + }, + { + "start": 13348.88, + "end": 13351.86, + "probability": 0.7758 + }, + { + "start": 13352.16, + "end": 13353.24, + "probability": 0.8102 + }, + { + "start": 13353.36, + "end": 13355.16, + "probability": 0.8093 + }, + { + "start": 13355.34, + "end": 13355.7, + "probability": 0.0558 + }, + { + "start": 13355.7, + "end": 13361.06, + "probability": 0.7829 + }, + { + "start": 13361.08, + "end": 13363.1, + "probability": 0.9009 + }, + { + "start": 13363.38, + "end": 13363.92, + "probability": 0.8245 + }, + { + "start": 13364.02, + "end": 13366.1, + "probability": 0.9842 + }, + { + "start": 13366.66, + "end": 13368.24, + "probability": 0.7709 + }, + { + "start": 13368.32, + "end": 13371.1, + "probability": 0.9539 + }, + { + "start": 13371.36, + "end": 13374.1, + "probability": 0.7802 + }, + { + "start": 13374.58, + "end": 13377.92, + "probability": 0.9478 + }, + { + "start": 13378.34, + "end": 13378.98, + "probability": 0.6779 + }, + { + "start": 13379.02, + "end": 13380.42, + "probability": 0.9961 + }, + { + "start": 13380.74, + "end": 13384.26, + "probability": 0.9688 + }, + { + "start": 13384.44, + "end": 13385.28, + "probability": 0.9719 + }, + { + "start": 13385.62, + "end": 13386.2, + "probability": 0.7095 + }, + { + "start": 13386.94, + "end": 13387.8, + "probability": 0.5552 + }, + { + "start": 13388.0, + "end": 13388.54, + "probability": 0.9889 + }, + { + "start": 13389.34, + "end": 13391.68, + "probability": 0.9399 + }, + { + "start": 13398.88, + "end": 13401.4, + "probability": 0.6391 + }, + { + "start": 13402.54, + "end": 13403.38, + "probability": 0.7769 + }, + { + "start": 13405.36, + "end": 13407.92, + "probability": 0.9272 + }, + { + "start": 13408.68, + "end": 13412.68, + "probability": 0.2057 + }, + { + "start": 13414.8, + "end": 13416.02, + "probability": 0.0 + }, + { + "start": 13416.8, + "end": 13418.86, + "probability": 0.0757 + }, + { + "start": 13420.14, + "end": 13421.52, + "probability": 0.1316 + }, + { + "start": 13421.72, + "end": 13425.98, + "probability": 0.3385 + }, + { + "start": 13426.72, + "end": 13429.72, + "probability": 0.7216 + }, + { + "start": 13430.32, + "end": 13430.72, + "probability": 0.9894 + }, + { + "start": 13432.58, + "end": 13436.0, + "probability": 0.9375 + }, + { + "start": 13438.14, + "end": 13441.5, + "probability": 0.7312 + }, + { + "start": 13442.1, + "end": 13443.28, + "probability": 0.7808 + }, + { + "start": 13443.38, + "end": 13444.64, + "probability": 0.5568 + }, + { + "start": 13444.7, + "end": 13446.28, + "probability": 0.851 + }, + { + "start": 13446.4, + "end": 13447.76, + "probability": 0.9868 + }, + { + "start": 13448.46, + "end": 13450.64, + "probability": 0.9192 + }, + { + "start": 13451.2, + "end": 13451.38, + "probability": 0.0326 + }, + { + "start": 13451.88, + "end": 13453.7, + "probability": 0.1177 + }, + { + "start": 13453.84, + "end": 13454.7, + "probability": 0.9832 + }, + { + "start": 13454.8, + "end": 13455.62, + "probability": 0.6766 + }, + { + "start": 13456.24, + "end": 13460.02, + "probability": 0.7905 + }, + { + "start": 13460.24, + "end": 13463.12, + "probability": 0.1789 + }, + { + "start": 13463.4, + "end": 13464.44, + "probability": 0.9463 + }, + { + "start": 13464.52, + "end": 13465.74, + "probability": 0.7034 + }, + { + "start": 13466.24, + "end": 13468.77, + "probability": 0.8238 + }, + { + "start": 13469.44, + "end": 13471.42, + "probability": 0.8159 + }, + { + "start": 13471.72, + "end": 13473.2, + "probability": 0.9745 + }, + { + "start": 13473.2, + "end": 13473.98, + "probability": 0.697 + }, + { + "start": 13474.46, + "end": 13477.14, + "probability": 0.6832 + }, + { + "start": 13480.52, + "end": 13484.3, + "probability": 0.9317 + }, + { + "start": 13484.98, + "end": 13488.36, + "probability": 0.7354 + }, + { + "start": 13489.61, + "end": 13493.0, + "probability": 0.9694 + }, + { + "start": 13495.11, + "end": 13496.51, + "probability": 0.5012 + }, + { + "start": 13497.32, + "end": 13501.86, + "probability": 0.9226 + }, + { + "start": 13501.92, + "end": 13502.28, + "probability": 0.7079 + }, + { + "start": 13518.78, + "end": 13518.96, + "probability": 0.251 + }, + { + "start": 13518.96, + "end": 13520.26, + "probability": 0.7005 + }, + { + "start": 13522.76, + "end": 13526.36, + "probability": 0.4425 + }, + { + "start": 13527.22, + "end": 13529.78, + "probability": 0.9702 + }, + { + "start": 13529.78, + "end": 13533.56, + "probability": 0.6437 + }, + { + "start": 13535.38, + "end": 13536.94, + "probability": 0.6606 + }, + { + "start": 13537.08, + "end": 13543.1, + "probability": 0.9018 + }, + { + "start": 13543.36, + "end": 13548.31, + "probability": 0.978 + }, + { + "start": 13549.2, + "end": 13550.74, + "probability": 0.8989 + }, + { + "start": 13551.28, + "end": 13552.16, + "probability": 0.6958 + }, + { + "start": 13553.12, + "end": 13554.7, + "probability": 0.9226 + }, + { + "start": 13555.42, + "end": 13556.22, + "probability": 0.9637 + }, + { + "start": 13556.84, + "end": 13558.42, + "probability": 0.8244 + }, + { + "start": 13560.0, + "end": 13562.24, + "probability": 0.978 + }, + { + "start": 13562.24, + "end": 13565.32, + "probability": 0.9959 + }, + { + "start": 13566.48, + "end": 13571.36, + "probability": 0.994 + }, + { + "start": 13571.46, + "end": 13572.86, + "probability": 0.9854 + }, + { + "start": 13574.12, + "end": 13574.92, + "probability": 0.8203 + }, + { + "start": 13575.26, + "end": 13577.32, + "probability": 0.9928 + }, + { + "start": 13577.46, + "end": 13581.22, + "probability": 0.9729 + }, + { + "start": 13582.28, + "end": 13586.18, + "probability": 0.9897 + }, + { + "start": 13587.22, + "end": 13590.28, + "probability": 0.8876 + }, + { + "start": 13591.52, + "end": 13595.66, + "probability": 0.9622 + }, + { + "start": 13597.06, + "end": 13603.24, + "probability": 0.7814 + }, + { + "start": 13604.06, + "end": 13609.8, + "probability": 0.7386 + }, + { + "start": 13611.28, + "end": 13614.3, + "probability": 0.9053 + }, + { + "start": 13615.08, + "end": 13617.96, + "probability": 0.8546 + }, + { + "start": 13618.54, + "end": 13620.2, + "probability": 0.8695 + }, + { + "start": 13621.36, + "end": 13623.02, + "probability": 0.9327 + }, + { + "start": 13623.1, + "end": 13625.54, + "probability": 0.9616 + }, + { + "start": 13625.6, + "end": 13626.66, + "probability": 0.9356 + }, + { + "start": 13627.4, + "end": 13629.06, + "probability": 0.9897 + }, + { + "start": 13630.54, + "end": 13634.52, + "probability": 0.9393 + }, + { + "start": 13634.64, + "end": 13636.08, + "probability": 0.9827 + }, + { + "start": 13636.96, + "end": 13640.7, + "probability": 0.9756 + }, + { + "start": 13641.72, + "end": 13643.66, + "probability": 0.9769 + }, + { + "start": 13644.34, + "end": 13646.48, + "probability": 0.9941 + }, + { + "start": 13647.62, + "end": 13650.12, + "probability": 0.9956 + }, + { + "start": 13650.2, + "end": 13652.58, + "probability": 0.9907 + }, + { + "start": 13653.34, + "end": 13655.99, + "probability": 0.9224 + }, + { + "start": 13657.1, + "end": 13657.68, + "probability": 0.8436 + }, + { + "start": 13657.86, + "end": 13661.58, + "probability": 0.9539 + }, + { + "start": 13661.58, + "end": 13665.78, + "probability": 0.7545 + }, + { + "start": 13666.42, + "end": 13669.68, + "probability": 0.9955 + }, + { + "start": 13670.82, + "end": 13671.92, + "probability": 0.959 + }, + { + "start": 13672.86, + "end": 13677.42, + "probability": 0.9907 + }, + { + "start": 13677.42, + "end": 13681.96, + "probability": 0.9933 + }, + { + "start": 13682.54, + "end": 13684.08, + "probability": 0.9624 + }, + { + "start": 13685.32, + "end": 13686.28, + "probability": 0.1656 + }, + { + "start": 13686.28, + "end": 13688.74, + "probability": 0.7848 + }, + { + "start": 13689.52, + "end": 13692.2, + "probability": 0.9775 + }, + { + "start": 13693.08, + "end": 13693.94, + "probability": 0.4633 + }, + { + "start": 13694.28, + "end": 13695.94, + "probability": 0.816 + }, + { + "start": 13696.64, + "end": 13697.04, + "probability": 0.8147 + }, + { + "start": 13697.82, + "end": 13698.88, + "probability": 0.0558 + }, + { + "start": 13699.78, + "end": 13701.52, + "probability": 0.8197 + }, + { + "start": 13702.22, + "end": 13706.71, + "probability": 0.918 + }, + { + "start": 13709.38, + "end": 13711.52, + "probability": 0.9451 + }, + { + "start": 13721.28, + "end": 13722.22, + "probability": 0.782 + }, + { + "start": 13722.44, + "end": 13723.34, + "probability": 0.7867 + }, + { + "start": 13723.44, + "end": 13724.02, + "probability": 0.717 + }, + { + "start": 13724.1, + "end": 13726.12, + "probability": 0.9961 + }, + { + "start": 13727.44, + "end": 13732.38, + "probability": 0.9043 + }, + { + "start": 13732.92, + "end": 13734.08, + "probability": 0.873 + }, + { + "start": 13734.16, + "end": 13734.64, + "probability": 0.6805 + }, + { + "start": 13734.84, + "end": 13736.62, + "probability": 0.9279 + }, + { + "start": 13736.82, + "end": 13737.34, + "probability": 0.7337 + }, + { + "start": 13737.84, + "end": 13738.58, + "probability": 0.8466 + }, + { + "start": 13738.68, + "end": 13739.5, + "probability": 0.9684 + }, + { + "start": 13739.52, + "end": 13740.74, + "probability": 0.7798 + }, + { + "start": 13741.52, + "end": 13744.82, + "probability": 0.6658 + }, + { + "start": 13745.46, + "end": 13749.2, + "probability": 0.9683 + }, + { + "start": 13749.44, + "end": 13752.92, + "probability": 0.9812 + }, + { + "start": 13753.78, + "end": 13758.22, + "probability": 0.8745 + }, + { + "start": 13758.38, + "end": 13759.0, + "probability": 0.8978 + }, + { + "start": 13759.12, + "end": 13760.12, + "probability": 0.9325 + }, + { + "start": 13760.24, + "end": 13760.8, + "probability": 0.6761 + }, + { + "start": 13761.02, + "end": 13761.86, + "probability": 0.9023 + }, + { + "start": 13762.34, + "end": 13763.9, + "probability": 0.9717 + }, + { + "start": 13763.96, + "end": 13764.72, + "probability": 0.9548 + }, + { + "start": 13765.04, + "end": 13770.24, + "probability": 0.983 + }, + { + "start": 13770.24, + "end": 13776.42, + "probability": 0.9989 + }, + { + "start": 13776.46, + "end": 13779.12, + "probability": 0.9847 + }, + { + "start": 13780.02, + "end": 13784.3, + "probability": 0.9839 + }, + { + "start": 13785.22, + "end": 13789.86, + "probability": 0.9928 + }, + { + "start": 13789.96, + "end": 13791.46, + "probability": 0.7777 + }, + { + "start": 13793.04, + "end": 13796.44, + "probability": 0.9955 + }, + { + "start": 13797.86, + "end": 13801.7, + "probability": 0.9931 + }, + { + "start": 13801.78, + "end": 13808.28, + "probability": 0.978 + }, + { + "start": 13808.86, + "end": 13812.62, + "probability": 0.9991 + }, + { + "start": 13812.62, + "end": 13816.28, + "probability": 0.9739 + }, + { + "start": 13817.5, + "end": 13817.88, + "probability": 0.5817 + }, + { + "start": 13818.24, + "end": 13819.34, + "probability": 0.8525 + }, + { + "start": 13819.42, + "end": 13823.98, + "probability": 0.9924 + }, + { + "start": 13824.5, + "end": 13826.62, + "probability": 0.8661 + }, + { + "start": 13827.14, + "end": 13828.86, + "probability": 0.9326 + }, + { + "start": 13829.36, + "end": 13830.54, + "probability": 0.8737 + }, + { + "start": 13830.6, + "end": 13833.38, + "probability": 0.9797 + }, + { + "start": 13833.48, + "end": 13834.2, + "probability": 0.6312 + }, + { + "start": 13835.16, + "end": 13838.88, + "probability": 0.9865 + }, + { + "start": 13840.2, + "end": 13842.51, + "probability": 0.9922 + }, + { + "start": 13843.46, + "end": 13848.08, + "probability": 0.9049 + }, + { + "start": 13848.5, + "end": 13850.14, + "probability": 0.9789 + }, + { + "start": 13850.4, + "end": 13851.24, + "probability": 0.975 + }, + { + "start": 13851.32, + "end": 13851.82, + "probability": 0.8907 + }, + { + "start": 13851.92, + "end": 13853.04, + "probability": 0.9353 + }, + { + "start": 13853.76, + "end": 13857.32, + "probability": 0.9849 + }, + { + "start": 13857.32, + "end": 13862.38, + "probability": 0.9377 + }, + { + "start": 13862.46, + "end": 13864.98, + "probability": 0.9921 + }, + { + "start": 13865.42, + "end": 13869.42, + "probability": 0.9329 + }, + { + "start": 13869.62, + "end": 13871.72, + "probability": 0.9986 + }, + { + "start": 13872.18, + "end": 13874.8, + "probability": 0.8697 + }, + { + "start": 13874.9, + "end": 13878.22, + "probability": 0.9709 + }, + { + "start": 13878.82, + "end": 13879.34, + "probability": 0.7449 + }, + { + "start": 13879.62, + "end": 13880.64, + "probability": 0.915 + }, + { + "start": 13880.72, + "end": 13883.1, + "probability": 0.9358 + }, + { + "start": 13883.3, + "end": 13883.92, + "probability": 0.9675 + }, + { + "start": 13884.3, + "end": 13888.06, + "probability": 0.9718 + }, + { + "start": 13888.56, + "end": 13891.82, + "probability": 0.954 + }, + { + "start": 13892.04, + "end": 13897.64, + "probability": 0.5628 + }, + { + "start": 13898.14, + "end": 13899.6, + "probability": 0.5733 + }, + { + "start": 13899.72, + "end": 13901.12, + "probability": 0.6676 + }, + { + "start": 13901.36, + "end": 13902.94, + "probability": 0.8896 + }, + { + "start": 13903.06, + "end": 13903.44, + "probability": 0.4908 + }, + { + "start": 13903.5, + "end": 13905.12, + "probability": 0.837 + }, + { + "start": 13905.54, + "end": 13910.22, + "probability": 0.9967 + }, + { + "start": 13910.72, + "end": 13911.52, + "probability": 0.6516 + }, + { + "start": 13911.56, + "end": 13913.3, + "probability": 0.9836 + }, + { + "start": 13913.7, + "end": 13915.22, + "probability": 0.9375 + }, + { + "start": 13915.66, + "end": 13917.12, + "probability": 0.9417 + }, + { + "start": 13917.42, + "end": 13920.06, + "probability": 0.9946 + }, + { + "start": 13920.22, + "end": 13921.4, + "probability": 0.9862 + }, + { + "start": 13921.5, + "end": 13921.88, + "probability": 0.7684 + }, + { + "start": 13922.6, + "end": 13923.7, + "probability": 0.6719 + }, + { + "start": 13925.48, + "end": 13927.28, + "probability": 0.8403 + }, + { + "start": 13927.5, + "end": 13929.28, + "probability": 0.9556 + }, + { + "start": 13929.58, + "end": 13931.37, + "probability": 0.9465 + }, + { + "start": 13958.48, + "end": 13958.78, + "probability": 0.4316 + }, + { + "start": 13958.92, + "end": 13959.48, + "probability": 0.6086 + }, + { + "start": 13959.66, + "end": 13960.62, + "probability": 0.7963 + }, + { + "start": 13960.76, + "end": 13962.3, + "probability": 0.7802 + }, + { + "start": 13962.56, + "end": 13965.32, + "probability": 0.9823 + }, + { + "start": 13965.7, + "end": 13966.2, + "probability": 0.9358 + }, + { + "start": 13966.32, + "end": 13967.44, + "probability": 0.9198 + }, + { + "start": 13967.5, + "end": 13968.78, + "probability": 0.8858 + }, + { + "start": 13969.4, + "end": 13972.24, + "probability": 0.9371 + }, + { + "start": 13972.82, + "end": 13974.88, + "probability": 0.8763 + }, + { + "start": 13975.04, + "end": 13979.44, + "probability": 0.7024 + }, + { + "start": 13980.42, + "end": 13982.36, + "probability": 0.7795 + }, + { + "start": 13982.6, + "end": 13986.34, + "probability": 0.7395 + }, + { + "start": 13986.38, + "end": 13987.32, + "probability": 0.8094 + }, + { + "start": 13988.58, + "end": 13990.52, + "probability": 0.4386 + }, + { + "start": 13990.96, + "end": 13991.82, + "probability": 0.887 + }, + { + "start": 13991.94, + "end": 13996.0, + "probability": 0.9464 + }, + { + "start": 13996.66, + "end": 13999.62, + "probability": 0.7904 + }, + { + "start": 13999.7, + "end": 14001.22, + "probability": 0.9401 + }, + { + "start": 14001.68, + "end": 14006.1, + "probability": 0.9873 + }, + { + "start": 14006.52, + "end": 14007.34, + "probability": 0.8312 + }, + { + "start": 14007.36, + "end": 14008.6, + "probability": 0.6898 + }, + { + "start": 14009.34, + "end": 14012.28, + "probability": 0.9832 + }, + { + "start": 14013.18, + "end": 14015.89, + "probability": 0.9829 + }, + { + "start": 14016.54, + "end": 14019.02, + "probability": 0.9204 + }, + { + "start": 14019.04, + "end": 14021.14, + "probability": 0.9453 + }, + { + "start": 14021.34, + "end": 14023.6, + "probability": 0.9966 + }, + { + "start": 14023.6, + "end": 14026.74, + "probability": 0.798 + }, + { + "start": 14027.34, + "end": 14031.56, + "probability": 0.9783 + }, + { + "start": 14031.56, + "end": 14035.96, + "probability": 0.9973 + }, + { + "start": 14036.44, + "end": 14038.4, + "probability": 0.9888 + }, + { + "start": 14038.52, + "end": 14041.03, + "probability": 0.9475 + }, + { + "start": 14041.36, + "end": 14045.16, + "probability": 0.965 + }, + { + "start": 14045.58, + "end": 14047.82, + "probability": 0.9971 + }, + { + "start": 14047.82, + "end": 14051.22, + "probability": 0.9994 + }, + { + "start": 14051.62, + "end": 14054.76, + "probability": 0.9985 + }, + { + "start": 14055.18, + "end": 14057.62, + "probability": 0.9641 + }, + { + "start": 14057.74, + "end": 14062.08, + "probability": 0.9809 + }, + { + "start": 14062.62, + "end": 14063.36, + "probability": 0.7178 + }, + { + "start": 14063.46, + "end": 14067.6, + "probability": 0.9943 + }, + { + "start": 14067.66, + "end": 14071.4, + "probability": 0.979 + }, + { + "start": 14071.78, + "end": 14075.64, + "probability": 0.9702 + }, + { + "start": 14076.34, + "end": 14077.41, + "probability": 0.7949 + }, + { + "start": 14077.78, + "end": 14080.76, + "probability": 0.7962 + }, + { + "start": 14081.14, + "end": 14084.42, + "probability": 0.9378 + }, + { + "start": 14084.42, + "end": 14087.06, + "probability": 0.9973 + }, + { + "start": 14087.36, + "end": 14089.68, + "probability": 0.8295 + }, + { + "start": 14090.02, + "end": 14092.79, + "probability": 0.9579 + }, + { + "start": 14093.06, + "end": 14097.4, + "probability": 0.9963 + }, + { + "start": 14097.5, + "end": 14098.3, + "probability": 0.963 + }, + { + "start": 14098.68, + "end": 14100.22, + "probability": 0.693 + }, + { + "start": 14100.36, + "end": 14101.78, + "probability": 0.6112 + }, + { + "start": 14102.18, + "end": 14104.76, + "probability": 0.9645 + }, + { + "start": 14104.86, + "end": 14106.34, + "probability": 0.5699 + }, + { + "start": 14106.48, + "end": 14107.1, + "probability": 0.7399 + }, + { + "start": 14108.14, + "end": 14111.06, + "probability": 0.8351 + }, + { + "start": 14111.22, + "end": 14113.48, + "probability": 0.7102 + }, + { + "start": 14114.46, + "end": 14115.76, + "probability": 0.9399 + }, + { + "start": 14115.86, + "end": 14117.66, + "probability": 0.7571 + }, + { + "start": 14117.7, + "end": 14118.18, + "probability": 0.8849 + }, + { + "start": 14130.34, + "end": 14132.62, + "probability": 0.7039 + }, + { + "start": 14133.92, + "end": 14138.88, + "probability": 0.9832 + }, + { + "start": 14139.54, + "end": 14142.84, + "probability": 0.9884 + }, + { + "start": 14144.0, + "end": 14146.3, + "probability": 0.9937 + }, + { + "start": 14146.86, + "end": 14151.04, + "probability": 0.9935 + }, + { + "start": 14151.86, + "end": 14153.72, + "probability": 0.9807 + }, + { + "start": 14154.34, + "end": 14157.46, + "probability": 0.9334 + }, + { + "start": 14158.4, + "end": 14161.58, + "probability": 0.9886 + }, + { + "start": 14162.86, + "end": 14169.18, + "probability": 0.9897 + }, + { + "start": 14170.18, + "end": 14176.72, + "probability": 0.9938 + }, + { + "start": 14177.0, + "end": 14179.04, + "probability": 0.9143 + }, + { + "start": 14179.44, + "end": 14188.12, + "probability": 0.9878 + }, + { + "start": 14189.3, + "end": 14189.94, + "probability": 0.8868 + }, + { + "start": 14190.28, + "end": 14190.74, + "probability": 0.5432 + }, + { + "start": 14190.88, + "end": 14197.9, + "probability": 0.9904 + }, + { + "start": 14197.9, + "end": 14205.18, + "probability": 0.9997 + }, + { + "start": 14205.8, + "end": 14211.0, + "probability": 0.9351 + }, + { + "start": 14213.62, + "end": 14217.46, + "probability": 0.9424 + }, + { + "start": 14217.58, + "end": 14222.88, + "probability": 0.995 + }, + { + "start": 14223.64, + "end": 14223.74, + "probability": 0.5778 + }, + { + "start": 14223.74, + "end": 14228.66, + "probability": 0.714 + }, + { + "start": 14229.32, + "end": 14236.06, + "probability": 0.9683 + }, + { + "start": 14236.06, + "end": 14242.22, + "probability": 0.9753 + }, + { + "start": 14242.84, + "end": 14250.42, + "probability": 0.9855 + }, + { + "start": 14251.22, + "end": 14255.32, + "probability": 0.801 + }, + { + "start": 14256.34, + "end": 14261.46, + "probability": 0.9941 + }, + { + "start": 14261.76, + "end": 14263.96, + "probability": 0.6519 + }, + { + "start": 14264.38, + "end": 14265.82, + "probability": 0.7599 + }, + { + "start": 14266.36, + "end": 14267.04, + "probability": 0.6145 + }, + { + "start": 14267.14, + "end": 14267.7, + "probability": 0.8559 + }, + { + "start": 14268.08, + "end": 14271.94, + "probability": 0.9693 + }, + { + "start": 14272.52, + "end": 14275.44, + "probability": 0.8055 + }, + { + "start": 14275.72, + "end": 14276.9, + "probability": 0.4251 + }, + { + "start": 14276.9, + "end": 14281.14, + "probability": 0.8476 + }, + { + "start": 14282.1, + "end": 14284.44, + "probability": 0.8334 + }, + { + "start": 14284.8, + "end": 14285.9, + "probability": 0.5329 + }, + { + "start": 14286.08, + "end": 14287.2, + "probability": 0.9268 + }, + { + "start": 14287.48, + "end": 14288.52, + "probability": 0.5888 + }, + { + "start": 14290.1, + "end": 14296.4, + "probability": 0.8297 + }, + { + "start": 14296.98, + "end": 14299.12, + "probability": 0.4116 + }, + { + "start": 14299.92, + "end": 14303.26, + "probability": 0.2501 + }, + { + "start": 14304.26, + "end": 14304.54, + "probability": 0.4161 + }, + { + "start": 14305.56, + "end": 14305.56, + "probability": 0.2282 + }, + { + "start": 14305.56, + "end": 14305.56, + "probability": 0.0135 + }, + { + "start": 14305.56, + "end": 14305.66, + "probability": 0.6057 + }, + { + "start": 14307.64, + "end": 14311.52, + "probability": 0.7969 + }, + { + "start": 14311.6, + "end": 14312.52, + "probability": 0.4212 + }, + { + "start": 14312.56, + "end": 14317.68, + "probability": 0.661 + }, + { + "start": 14318.2, + "end": 14320.04, + "probability": 0.7616 + }, + { + "start": 14320.6, + "end": 14327.08, + "probability": 0.8357 + }, + { + "start": 14327.64, + "end": 14328.86, + "probability": 0.9167 + }, + { + "start": 14330.24, + "end": 14330.84, + "probability": 0.7497 + }, + { + "start": 14331.64, + "end": 14336.68, + "probability": 0.9861 + }, + { + "start": 14337.14, + "end": 14337.54, + "probability": 0.7256 + }, + { + "start": 14337.62, + "end": 14337.62, + "probability": 0.6402 + }, + { + "start": 14337.86, + "end": 14338.22, + "probability": 0.342 + }, + { + "start": 14338.3, + "end": 14338.8, + "probability": 0.7981 + }, + { + "start": 14339.06, + "end": 14345.56, + "probability": 0.9662 + }, + { + "start": 14345.9, + "end": 14346.16, + "probability": 0.7287 + }, + { + "start": 14346.88, + "end": 14348.08, + "probability": 0.5937 + }, + { + "start": 14348.26, + "end": 14350.62, + "probability": 0.9809 + }, + { + "start": 14350.72, + "end": 14352.34, + "probability": 0.9529 + }, + { + "start": 14354.21, + "end": 14356.66, + "probability": 0.5249 + }, + { + "start": 14357.62, + "end": 14360.1, + "probability": 0.0345 + }, + { + "start": 14361.04, + "end": 14363.36, + "probability": 0.417 + }, + { + "start": 14363.36, + "end": 14365.26, + "probability": 0.466 + }, + { + "start": 14365.46, + "end": 14369.58, + "probability": 0.9141 + }, + { + "start": 14370.1, + "end": 14370.98, + "probability": 0.9823 + }, + { + "start": 14371.76, + "end": 14373.64, + "probability": 0.1231 + }, + { + "start": 14373.64, + "end": 14374.16, + "probability": 0.409 + }, + { + "start": 14375.1, + "end": 14376.68, + "probability": 0.6252 + }, + { + "start": 14376.84, + "end": 14378.16, + "probability": 0.5228 + }, + { + "start": 14378.52, + "end": 14378.64, + "probability": 0.2606 + }, + { + "start": 14378.66, + "end": 14379.42, + "probability": 0.9534 + }, + { + "start": 14379.78, + "end": 14380.63, + "probability": 0.8627 + }, + { + "start": 14380.88, + "end": 14381.0, + "probability": 0.324 + }, + { + "start": 14381.06, + "end": 14381.3, + "probability": 0.3929 + }, + { + "start": 14381.3, + "end": 14381.64, + "probability": 0.9595 + }, + { + "start": 14382.34, + "end": 14383.02, + "probability": 0.961 + }, + { + "start": 14383.6, + "end": 14386.08, + "probability": 0.8048 + }, + { + "start": 14410.96, + "end": 14412.7, + "probability": 0.7215 + }, + { + "start": 14413.66, + "end": 14416.32, + "probability": 0.993 + }, + { + "start": 14417.65, + "end": 14423.14, + "probability": 0.9987 + }, + { + "start": 14423.74, + "end": 14427.16, + "probability": 0.9828 + }, + { + "start": 14427.78, + "end": 14431.2, + "probability": 0.9089 + }, + { + "start": 14432.14, + "end": 14434.78, + "probability": 0.9045 + }, + { + "start": 14435.42, + "end": 14437.38, + "probability": 0.9611 + }, + { + "start": 14438.03, + "end": 14442.56, + "probability": 0.8639 + }, + { + "start": 14443.38, + "end": 14447.92, + "probability": 0.9101 + }, + { + "start": 14449.1, + "end": 14451.54, + "probability": 0.9277 + }, + { + "start": 14452.08, + "end": 14455.0, + "probability": 0.9924 + }, + { + "start": 14455.0, + "end": 14457.34, + "probability": 0.925 + }, + { + "start": 14457.58, + "end": 14460.3, + "probability": 0.9955 + }, + { + "start": 14460.96, + "end": 14463.82, + "probability": 0.9961 + }, + { + "start": 14463.9, + "end": 14467.34, + "probability": 0.9937 + }, + { + "start": 14467.96, + "end": 14473.24, + "probability": 0.9992 + }, + { + "start": 14473.24, + "end": 14480.62, + "probability": 0.9928 + }, + { + "start": 14481.28, + "end": 14484.12, + "probability": 0.9971 + }, + { + "start": 14485.02, + "end": 14485.82, + "probability": 0.6421 + }, + { + "start": 14486.36, + "end": 14490.38, + "probability": 0.9929 + }, + { + "start": 14490.46, + "end": 14494.98, + "probability": 0.98 + }, + { + "start": 14495.32, + "end": 14501.98, + "probability": 0.9856 + }, + { + "start": 14502.52, + "end": 14503.53, + "probability": 0.9727 + }, + { + "start": 14504.74, + "end": 14506.36, + "probability": 0.3083 + }, + { + "start": 14506.5, + "end": 14510.34, + "probability": 0.9837 + }, + { + "start": 14510.42, + "end": 14513.5, + "probability": 0.8256 + }, + { + "start": 14513.74, + "end": 14514.58, + "probability": 0.9528 + }, + { + "start": 14515.04, + "end": 14516.04, + "probability": 0.9371 + }, + { + "start": 14516.14, + "end": 14517.92, + "probability": 0.9937 + }, + { + "start": 14518.06, + "end": 14518.38, + "probability": 0.9932 + }, + { + "start": 14519.36, + "end": 14520.3, + "probability": 0.7426 + }, + { + "start": 14520.36, + "end": 14527.02, + "probability": 0.9912 + }, + { + "start": 14527.16, + "end": 14527.68, + "probability": 0.8248 + }, + { + "start": 14527.8, + "end": 14528.64, + "probability": 0.9814 + }, + { + "start": 14528.7, + "end": 14531.76, + "probability": 0.9595 + }, + { + "start": 14532.14, + "end": 14535.13, + "probability": 0.8223 + }, + { + "start": 14535.46, + "end": 14539.44, + "probability": 0.8691 + }, + { + "start": 14539.54, + "end": 14544.24, + "probability": 0.997 + }, + { + "start": 14544.7, + "end": 14545.66, + "probability": 0.7632 + }, + { + "start": 14545.7, + "end": 14548.62, + "probability": 0.9977 + }, + { + "start": 14549.04, + "end": 14551.06, + "probability": 0.9863 + }, + { + "start": 14551.22, + "end": 14553.2, + "probability": 0.8265 + }, + { + "start": 14553.3, + "end": 14556.08, + "probability": 0.9758 + }, + { + "start": 14556.26, + "end": 14557.3, + "probability": 0.9418 + }, + { + "start": 14557.54, + "end": 14558.45, + "probability": 0.9562 + }, + { + "start": 14558.82, + "end": 14562.12, + "probability": 0.973 + }, + { + "start": 14562.26, + "end": 14563.12, + "probability": 0.833 + }, + { + "start": 14563.58, + "end": 14567.52, + "probability": 0.896 + }, + { + "start": 14567.64, + "end": 14572.36, + "probability": 0.9964 + }, + { + "start": 14572.52, + "end": 14572.92, + "probability": 0.7824 + }, + { + "start": 14573.7, + "end": 14575.62, + "probability": 0.7619 + }, + { + "start": 14576.32, + "end": 14577.98, + "probability": 0.9692 + }, + { + "start": 14578.62, + "end": 14579.24, + "probability": 0.2297 + }, + { + "start": 14579.48, + "end": 14580.78, + "probability": 0.6435 + }, + { + "start": 14581.52, + "end": 14582.36, + "probability": 0.4238 + }, + { + "start": 14582.36, + "end": 14583.06, + "probability": 0.8368 + }, + { + "start": 14585.74, + "end": 14587.62, + "probability": 0.4699 + }, + { + "start": 14588.12, + "end": 14591.46, + "probability": 0.8837 + }, + { + "start": 14592.28, + "end": 14593.16, + "probability": 0.4744 + }, + { + "start": 14595.16, + "end": 14597.38, + "probability": 0.9076 + }, + { + "start": 14598.92, + "end": 14600.64, + "probability": 0.6142 + }, + { + "start": 14600.64, + "end": 14604.4, + "probability": 0.8208 + }, + { + "start": 14604.78, + "end": 14608.0, + "probability": 0.7158 + }, + { + "start": 14608.32, + "end": 14610.36, + "probability": 0.6231 + }, + { + "start": 14610.72, + "end": 14610.78, + "probability": 0.2564 + }, + { + "start": 14610.78, + "end": 14613.96, + "probability": 0.9912 + }, + { + "start": 14614.12, + "end": 14615.62, + "probability": 0.9823 + }, + { + "start": 14615.7, + "end": 14619.0, + "probability": 0.9873 + }, + { + "start": 14619.8, + "end": 14623.66, + "probability": 0.9569 + }, + { + "start": 14625.82, + "end": 14627.8, + "probability": 0.7442 + }, + { + "start": 14628.76, + "end": 14633.12, + "probability": 0.996 + }, + { + "start": 14633.18, + "end": 14634.12, + "probability": 0.8567 + }, + { + "start": 14635.6, + "end": 14638.18, + "probability": 0.9985 + }, + { + "start": 14638.82, + "end": 14645.76, + "probability": 0.9893 + }, + { + "start": 14645.84, + "end": 14647.7, + "probability": 0.9594 + }, + { + "start": 14648.22, + "end": 14649.72, + "probability": 0.9463 + }, + { + "start": 14650.72, + "end": 14655.94, + "probability": 0.9984 + }, + { + "start": 14656.46, + "end": 14661.38, + "probability": 0.9962 + }, + { + "start": 14661.38, + "end": 14666.96, + "probability": 0.9981 + }, + { + "start": 14667.36, + "end": 14669.88, + "probability": 0.9988 + }, + { + "start": 14670.94, + "end": 14672.04, + "probability": 0.6423 + }, + { + "start": 14672.28, + "end": 14676.08, + "probability": 0.9919 + }, + { + "start": 14676.74, + "end": 14678.72, + "probability": 0.9787 + }, + { + "start": 14679.74, + "end": 14682.12, + "probability": 0.9961 + }, + { + "start": 14682.76, + "end": 14686.54, + "probability": 0.9946 + }, + { + "start": 14687.58, + "end": 14692.4, + "probability": 0.9939 + }, + { + "start": 14693.46, + "end": 14696.82, + "probability": 0.995 + }, + { + "start": 14697.88, + "end": 14699.52, + "probability": 0.998 + }, + { + "start": 14700.24, + "end": 14702.36, + "probability": 0.9929 + }, + { + "start": 14702.5, + "end": 14704.62, + "probability": 0.9988 + }, + { + "start": 14705.32, + "end": 14707.04, + "probability": 0.9958 + }, + { + "start": 14708.26, + "end": 14712.34, + "probability": 0.9753 + }, + { + "start": 14712.96, + "end": 14715.2, + "probability": 0.9941 + }, + { + "start": 14715.32, + "end": 14716.4, + "probability": 0.4818 + }, + { + "start": 14716.96, + "end": 14720.56, + "probability": 0.9849 + }, + { + "start": 14720.94, + "end": 14724.42, + "probability": 0.9873 + }, + { + "start": 14724.86, + "end": 14726.58, + "probability": 0.8447 + }, + { + "start": 14726.94, + "end": 14731.38, + "probability": 0.993 + }, + { + "start": 14731.92, + "end": 14734.82, + "probability": 0.999 + }, + { + "start": 14735.54, + "end": 14738.88, + "probability": 0.9976 + }, + { + "start": 14739.72, + "end": 14742.28, + "probability": 0.9325 + }, + { + "start": 14742.8, + "end": 14747.88, + "probability": 0.988 + }, + { + "start": 14748.42, + "end": 14750.25, + "probability": 0.9043 + }, + { + "start": 14751.5, + "end": 14752.82, + "probability": 0.9604 + }, + { + "start": 14753.18, + "end": 14756.5, + "probability": 0.9961 + }, + { + "start": 14757.62, + "end": 14758.74, + "probability": 0.9048 + }, + { + "start": 14758.84, + "end": 14765.52, + "probability": 0.9833 + }, + { + "start": 14765.52, + "end": 14770.96, + "probability": 0.9946 + }, + { + "start": 14771.96, + "end": 14773.24, + "probability": 0.7846 + }, + { + "start": 14773.8, + "end": 14776.24, + "probability": 0.925 + }, + { + "start": 14777.04, + "end": 14781.78, + "probability": 0.8685 + }, + { + "start": 14782.42, + "end": 14784.92, + "probability": 0.9222 + }, + { + "start": 14785.38, + "end": 14787.18, + "probability": 0.9845 + }, + { + "start": 14789.01, + "end": 14791.42, + "probability": 0.9932 + }, + { + "start": 14791.42, + "end": 14791.84, + "probability": 0.3407 + }, + { + "start": 14792.44, + "end": 14794.78, + "probability": 0.9375 + }, + { + "start": 14795.22, + "end": 14798.36, + "probability": 0.9604 + }, + { + "start": 14798.82, + "end": 14804.16, + "probability": 0.9819 + }, + { + "start": 14804.42, + "end": 14805.64, + "probability": 0.8436 + }, + { + "start": 14805.66, + "end": 14806.42, + "probability": 0.5333 + }, + { + "start": 14807.16, + "end": 14810.18, + "probability": 0.7738 + }, + { + "start": 14810.8, + "end": 14812.16, + "probability": 0.7667 + }, + { + "start": 14812.5, + "end": 14813.24, + "probability": 0.9157 + }, + { + "start": 14818.4, + "end": 14820.78, + "probability": 0.7424 + }, + { + "start": 14836.1, + "end": 14837.61, + "probability": 0.6741 + }, + { + "start": 14838.52, + "end": 14839.64, + "probability": 0.7896 + }, + { + "start": 14839.8, + "end": 14843.5, + "probability": 0.9831 + }, + { + "start": 14844.5, + "end": 14847.5, + "probability": 0.9897 + }, + { + "start": 14847.5, + "end": 14850.16, + "probability": 0.8716 + }, + { + "start": 14851.46, + "end": 14853.22, + "probability": 0.9307 + }, + { + "start": 14853.52, + "end": 14856.68, + "probability": 0.9247 + }, + { + "start": 14857.5, + "end": 14860.76, + "probability": 0.7403 + }, + { + "start": 14861.48, + "end": 14864.62, + "probability": 0.9534 + }, + { + "start": 14865.51, + "end": 14867.22, + "probability": 0.7739 + }, + { + "start": 14867.34, + "end": 14867.66, + "probability": 0.7259 + }, + { + "start": 14867.74, + "end": 14870.62, + "probability": 0.9219 + }, + { + "start": 14870.82, + "end": 14871.86, + "probability": 0.5114 + }, + { + "start": 14871.94, + "end": 14872.28, + "probability": 0.2629 + }, + { + "start": 14873.18, + "end": 14874.3, + "probability": 0.7737 + }, + { + "start": 14875.6, + "end": 14876.88, + "probability": 0.3033 + }, + { + "start": 14877.12, + "end": 14880.84, + "probability": 0.2065 + }, + { + "start": 14883.76, + "end": 14885.76, + "probability": 0.9785 + }, + { + "start": 14885.9, + "end": 14887.02, + "probability": 0.8133 + }, + { + "start": 14887.16, + "end": 14888.84, + "probability": 0.7455 + }, + { + "start": 14889.0, + "end": 14890.14, + "probability": 0.6888 + }, + { + "start": 14891.02, + "end": 14892.56, + "probability": 0.9851 + }, + { + "start": 14892.62, + "end": 14895.06, + "probability": 0.939 + }, + { + "start": 14895.64, + "end": 14896.38, + "probability": 0.9289 + }, + { + "start": 14897.54, + "end": 14900.02, + "probability": 0.6584 + }, + { + "start": 14900.04, + "end": 14903.7, + "probability": 0.8609 + }, + { + "start": 14904.82, + "end": 14911.44, + "probability": 0.9409 + }, + { + "start": 14911.6, + "end": 14913.34, + "probability": 0.1541 + }, + { + "start": 14914.14, + "end": 14916.72, + "probability": 0.938 + }, + { + "start": 14917.44, + "end": 14919.37, + "probability": 0.9245 + }, + { + "start": 14919.7, + "end": 14922.82, + "probability": 0.1697 + }, + { + "start": 14923.22, + "end": 14925.8, + "probability": 0.9136 + }, + { + "start": 14927.3, + "end": 14930.5, + "probability": 0.8627 + }, + { + "start": 14931.1, + "end": 14931.96, + "probability": 0.908 + }, + { + "start": 14932.64, + "end": 14935.2, + "probability": 0.9922 + }, + { + "start": 14935.2, + "end": 14938.22, + "probability": 0.9823 + }, + { + "start": 14938.32, + "end": 14940.94, + "probability": 0.9575 + }, + { + "start": 14941.44, + "end": 14942.38, + "probability": 0.8378 + }, + { + "start": 14942.48, + "end": 14943.08, + "probability": 0.5385 + }, + { + "start": 14943.9, + "end": 14944.32, + "probability": 0.884 + }, + { + "start": 14945.24, + "end": 14947.26, + "probability": 0.9941 + }, + { + "start": 14947.4, + "end": 14950.5, + "probability": 0.9406 + }, + { + "start": 14950.6, + "end": 14953.64, + "probability": 0.9727 + }, + { + "start": 14954.5, + "end": 14958.68, + "probability": 0.9892 + }, + { + "start": 14960.04, + "end": 14960.7, + "probability": 0.638 + }, + { + "start": 14961.48, + "end": 14964.88, + "probability": 0.9907 + }, + { + "start": 14965.26, + "end": 14966.34, + "probability": 0.8877 + }, + { + "start": 14966.42, + "end": 14966.92, + "probability": 0.7599 + }, + { + "start": 14967.44, + "end": 14968.28, + "probability": 0.9693 + }, + { + "start": 14968.94, + "end": 14970.42, + "probability": 0.8281 + }, + { + "start": 14970.92, + "end": 14972.28, + "probability": 0.9683 + }, + { + "start": 14972.76, + "end": 14973.54, + "probability": 0.7361 + }, + { + "start": 14974.6, + "end": 14976.2, + "probability": 0.2041 + }, + { + "start": 14976.36, + "end": 14979.48, + "probability": 0.7889 + }, + { + "start": 14979.8, + "end": 14981.4, + "probability": 0.5552 + }, + { + "start": 14981.48, + "end": 14982.34, + "probability": 0.2325 + }, + { + "start": 14983.0, + "end": 14983.7, + "probability": 0.0135 + }, + { + "start": 14984.4, + "end": 14987.16, + "probability": 0.4533 + }, + { + "start": 14987.74, + "end": 14989.94, + "probability": 0.7205 + }, + { + "start": 14990.02, + "end": 14992.12, + "probability": 0.7747 + }, + { + "start": 14992.54, + "end": 14993.94, + "probability": 0.9932 + }, + { + "start": 14994.34, + "end": 14995.34, + "probability": 0.7753 + }, + { + "start": 14995.64, + "end": 14996.36, + "probability": 0.7149 + }, + { + "start": 14996.92, + "end": 14997.3, + "probability": 0.6021 + }, + { + "start": 14997.94, + "end": 14999.16, + "probability": 0.8814 + }, + { + "start": 15000.1, + "end": 15003.64, + "probability": 0.4398 + }, + { + "start": 15003.72, + "end": 15005.26, + "probability": 0.4095 + }, + { + "start": 15009.96, + "end": 15010.08, + "probability": 0.0162 + }, + { + "start": 15010.08, + "end": 15010.08, + "probability": 0.0465 + }, + { + "start": 15010.08, + "end": 15010.08, + "probability": 0.0725 + }, + { + "start": 15010.08, + "end": 15010.08, + "probability": 0.1091 + }, + { + "start": 15010.08, + "end": 15011.24, + "probability": 0.7184 + }, + { + "start": 15011.5, + "end": 15012.14, + "probability": 0.6647 + }, + { + "start": 15012.66, + "end": 15015.34, + "probability": 0.9775 + }, + { + "start": 15015.9, + "end": 15019.2, + "probability": 0.7498 + }, + { + "start": 15019.68, + "end": 15025.92, + "probability": 0.954 + }, + { + "start": 15026.2, + "end": 15027.8, + "probability": 0.6914 + }, + { + "start": 15028.44, + "end": 15029.52, + "probability": 0.6125 + }, + { + "start": 15029.64, + "end": 15030.86, + "probability": 0.9349 + }, + { + "start": 15031.58, + "end": 15033.4, + "probability": 0.7407 + }, + { + "start": 15033.58, + "end": 15034.78, + "probability": 0.9459 + }, + { + "start": 15034.82, + "end": 15037.64, + "probability": 0.9088 + }, + { + "start": 15038.02, + "end": 15038.66, + "probability": 0.7953 + }, + { + "start": 15039.26, + "end": 15041.54, + "probability": 0.8606 + }, + { + "start": 15041.7, + "end": 15043.12, + "probability": 0.9477 + }, + { + "start": 15043.18, + "end": 15043.44, + "probability": 0.5548 + }, + { + "start": 15043.44, + "end": 15044.6, + "probability": 0.7187 + }, + { + "start": 15046.05, + "end": 15048.18, + "probability": 0.6218 + }, + { + "start": 15048.22, + "end": 15050.32, + "probability": 0.851 + }, + { + "start": 15050.48, + "end": 15053.22, + "probability": 0.7931 + }, + { + "start": 15053.34, + "end": 15055.4, + "probability": 0.3039 + }, + { + "start": 15055.4, + "end": 15056.04, + "probability": 0.5223 + }, + { + "start": 15056.04, + "end": 15056.04, + "probability": 0.6761 + }, + { + "start": 15056.1, + "end": 15057.54, + "probability": 0.7868 + }, + { + "start": 15058.1, + "end": 15059.46, + "probability": 0.9241 + }, + { + "start": 15059.52, + "end": 15061.02, + "probability": 0.8543 + }, + { + "start": 15061.56, + "end": 15064.14, + "probability": 0.9031 + }, + { + "start": 15064.26, + "end": 15066.88, + "probability": 0.9786 + }, + { + "start": 15067.16, + "end": 15067.44, + "probability": 0.7153 + }, + { + "start": 15067.5, + "end": 15069.98, + "probability": 0.9132 + }, + { + "start": 15070.08, + "end": 15071.97, + "probability": 0.6269 + }, + { + "start": 15072.34, + "end": 15073.52, + "probability": 0.8503 + }, + { + "start": 15074.18, + "end": 15074.64, + "probability": 0.8372 + }, + { + "start": 15074.82, + "end": 15076.57, + "probability": 0.9231 + }, + { + "start": 15077.1, + "end": 15077.5, + "probability": 0.7215 + }, + { + "start": 15078.18, + "end": 15079.46, + "probability": 0.7233 + }, + { + "start": 15079.58, + "end": 15081.56, + "probability": 0.8298 + }, + { + "start": 15082.1, + "end": 15086.2, + "probability": 0.9544 + }, + { + "start": 15087.02, + "end": 15088.84, + "probability": 0.9389 + }, + { + "start": 15090.32, + "end": 15091.12, + "probability": 0.8742 + }, + { + "start": 15091.76, + "end": 15093.42, + "probability": 0.8268 + }, + { + "start": 15093.62, + "end": 15094.36, + "probability": 0.6782 + }, + { + "start": 15094.5, + "end": 15095.34, + "probability": 0.991 + }, + { + "start": 15096.16, + "end": 15096.94, + "probability": 0.461 + }, + { + "start": 15097.52, + "end": 15098.5, + "probability": 0.6154 + }, + { + "start": 15099.9, + "end": 15101.76, + "probability": 0.9169 + }, + { + "start": 15102.48, + "end": 15103.16, + "probability": 0.6955 + }, + { + "start": 15103.76, + "end": 15104.82, + "probability": 0.9652 + }, + { + "start": 15127.46, + "end": 15127.92, + "probability": 0.6883 + }, + { + "start": 15129.32, + "end": 15131.72, + "probability": 0.7664 + }, + { + "start": 15132.32, + "end": 15136.56, + "probability": 0.9959 + }, + { + "start": 15137.4, + "end": 15139.66, + "probability": 0.998 + }, + { + "start": 15139.66, + "end": 15143.96, + "probability": 0.9151 + }, + { + "start": 15144.06, + "end": 15145.04, + "probability": 0.8347 + }, + { + "start": 15146.02, + "end": 15148.96, + "probability": 0.7062 + }, + { + "start": 15150.04, + "end": 15154.44, + "probability": 0.9941 + }, + { + "start": 15154.44, + "end": 15158.2, + "probability": 0.9767 + }, + { + "start": 15159.0, + "end": 15163.82, + "probability": 0.9346 + }, + { + "start": 15164.12, + "end": 15164.84, + "probability": 0.6388 + }, + { + "start": 15165.34, + "end": 15167.16, + "probability": 0.9243 + }, + { + "start": 15167.72, + "end": 15170.08, + "probability": 0.9971 + }, + { + "start": 15170.24, + "end": 15171.96, + "probability": 0.8044 + }, + { + "start": 15172.54, + "end": 15173.54, + "probability": 0.9309 + }, + { + "start": 15173.54, + "end": 15176.98, + "probability": 0.9893 + }, + { + "start": 15176.98, + "end": 15181.06, + "probability": 0.9077 + }, + { + "start": 15181.96, + "end": 15182.56, + "probability": 0.4451 + }, + { + "start": 15182.96, + "end": 15185.42, + "probability": 0.9945 + }, + { + "start": 15185.92, + "end": 15189.42, + "probability": 0.9972 + }, + { + "start": 15190.0, + "end": 15193.88, + "probability": 0.9848 + }, + { + "start": 15194.02, + "end": 15194.86, + "probability": 0.8152 + }, + { + "start": 15196.8, + "end": 15202.99, + "probability": 0.9781 + }, + { + "start": 15203.46, + "end": 15206.6, + "probability": 0.9513 + }, + { + "start": 15207.48, + "end": 15209.48, + "probability": 0.9429 + }, + { + "start": 15209.48, + "end": 15211.42, + "probability": 0.9771 + }, + { + "start": 15212.04, + "end": 15214.54, + "probability": 0.8906 + }, + { + "start": 15214.78, + "end": 15218.22, + "probability": 0.9918 + }, + { + "start": 15218.56, + "end": 15219.06, + "probability": 0.9329 + }, + { + "start": 15219.9, + "end": 15220.74, + "probability": 0.7433 + }, + { + "start": 15221.16, + "end": 15225.5, + "probability": 0.9941 + }, + { + "start": 15225.98, + "end": 15231.12, + "probability": 0.9948 + }, + { + "start": 15231.12, + "end": 15235.8, + "probability": 0.9624 + }, + { + "start": 15236.16, + "end": 15238.44, + "probability": 0.8639 + }, + { + "start": 15238.76, + "end": 15241.22, + "probability": 0.9587 + }, + { + "start": 15241.92, + "end": 15244.82, + "probability": 0.9941 + }, + { + "start": 15245.02, + "end": 15247.5, + "probability": 0.9937 + }, + { + "start": 15248.82, + "end": 15251.78, + "probability": 0.989 + }, + { + "start": 15251.78, + "end": 15255.46, + "probability": 0.9593 + }, + { + "start": 15256.42, + "end": 15258.64, + "probability": 0.9741 + }, + { + "start": 15259.18, + "end": 15264.64, + "probability": 0.9993 + }, + { + "start": 15264.64, + "end": 15269.78, + "probability": 0.9878 + }, + { + "start": 15270.26, + "end": 15272.14, + "probability": 0.9316 + }, + { + "start": 15272.92, + "end": 15277.2, + "probability": 0.9954 + }, + { + "start": 15277.76, + "end": 15279.54, + "probability": 0.9509 + }, + { + "start": 15280.16, + "end": 15283.2, + "probability": 0.9983 + }, + { + "start": 15283.82, + "end": 15289.7, + "probability": 0.9712 + }, + { + "start": 15290.14, + "end": 15293.2, + "probability": 0.992 + }, + { + "start": 15293.3, + "end": 15296.22, + "probability": 0.9609 + }, + { + "start": 15296.48, + "end": 15298.5, + "probability": 0.9385 + }, + { + "start": 15300.3, + "end": 15302.84, + "probability": 0.9654 + }, + { + "start": 15302.92, + "end": 15306.14, + "probability": 0.9579 + }, + { + "start": 15306.3, + "end": 15308.5, + "probability": 0.8999 + }, + { + "start": 15308.96, + "end": 15310.96, + "probability": 0.9856 + }, + { + "start": 15311.44, + "end": 15315.68, + "probability": 0.9872 + }, + { + "start": 15315.78, + "end": 15316.72, + "probability": 0.8936 + }, + { + "start": 15316.8, + "end": 15318.4, + "probability": 0.7931 + }, + { + "start": 15319.08, + "end": 15324.78, + "probability": 0.9886 + }, + { + "start": 15324.96, + "end": 15330.38, + "probability": 0.935 + }, + { + "start": 15330.96, + "end": 15333.36, + "probability": 0.9883 + }, + { + "start": 15333.96, + "end": 15336.16, + "probability": 0.8147 + }, + { + "start": 15336.34, + "end": 15338.2, + "probability": 0.807 + }, + { + "start": 15338.52, + "end": 15340.72, + "probability": 0.991 + }, + { + "start": 15341.08, + "end": 15342.8, + "probability": 0.7519 + }, + { + "start": 15342.96, + "end": 15346.42, + "probability": 0.9745 + }, + { + "start": 15346.58, + "end": 15349.08, + "probability": 0.9484 + }, + { + "start": 15349.28, + "end": 15350.34, + "probability": 0.9539 + }, + { + "start": 15350.56, + "end": 15352.7, + "probability": 0.9941 + }, + { + "start": 15352.7, + "end": 15355.38, + "probability": 0.8375 + }, + { + "start": 15356.18, + "end": 15357.74, + "probability": 0.9756 + }, + { + "start": 15358.04, + "end": 15362.06, + "probability": 0.9939 + }, + { + "start": 15362.06, + "end": 15365.16, + "probability": 0.7068 + }, + { + "start": 15365.7, + "end": 15367.15, + "probability": 0.978 + }, + { + "start": 15367.56, + "end": 15369.6, + "probability": 0.9689 + }, + { + "start": 15369.62, + "end": 15369.88, + "probability": 0.6117 + }, + { + "start": 15370.0, + "end": 15371.66, + "probability": 0.6968 + }, + { + "start": 15372.2, + "end": 15374.04, + "probability": 0.7265 + }, + { + "start": 15375.54, + "end": 15378.34, + "probability": 0.9297 + }, + { + "start": 15379.22, + "end": 15381.34, + "probability": 0.9255 + }, + { + "start": 15382.72, + "end": 15384.74, + "probability": 0.8103 + }, + { + "start": 15385.32, + "end": 15387.82, + "probability": 0.9845 + }, + { + "start": 15397.34, + "end": 15397.42, + "probability": 0.4849 + }, + { + "start": 15397.42, + "end": 15397.84, + "probability": 0.3793 + }, + { + "start": 15397.86, + "end": 15399.4, + "probability": 0.8363 + }, + { + "start": 15399.46, + "end": 15400.22, + "probability": 0.8464 + }, + { + "start": 15400.26, + "end": 15400.98, + "probability": 0.9309 + }, + { + "start": 15401.6, + "end": 15402.38, + "probability": 0.7982 + }, + { + "start": 15404.3, + "end": 15405.26, + "probability": 0.8933 + }, + { + "start": 15405.82, + "end": 15406.4, + "probability": 0.9585 + }, + { + "start": 15409.56, + "end": 15411.04, + "probability": 0.5716 + }, + { + "start": 15412.4, + "end": 15412.58, + "probability": 0.7799 + }, + { + "start": 15413.12, + "end": 15414.72, + "probability": 0.555 + }, + { + "start": 15416.58, + "end": 15418.04, + "probability": 0.7143 + }, + { + "start": 15418.88, + "end": 15420.0, + "probability": 0.9299 + }, + { + "start": 15421.14, + "end": 15422.1, + "probability": 0.9645 + }, + { + "start": 15422.1, + "end": 15424.08, + "probability": 0.9812 + }, + { + "start": 15424.08, + "end": 15427.82, + "probability": 0.8467 + }, + { + "start": 15428.6, + "end": 15434.06, + "probability": 0.6271 + }, + { + "start": 15434.26, + "end": 15434.9, + "probability": 0.6413 + }, + { + "start": 15434.92, + "end": 15438.42, + "probability": 0.9022 + }, + { + "start": 15438.64, + "end": 15443.5, + "probability": 0.8474 + }, + { + "start": 15443.5, + "end": 15446.78, + "probability": 0.3821 + }, + { + "start": 15447.82, + "end": 15449.82, + "probability": 0.7167 + }, + { + "start": 15451.2, + "end": 15452.9, + "probability": 0.899 + }, + { + "start": 15452.98, + "end": 15453.88, + "probability": 0.9715 + }, + { + "start": 15454.8, + "end": 15457.6, + "probability": 0.9551 + }, + { + "start": 15458.0, + "end": 15459.98, + "probability": 0.9241 + }, + { + "start": 15460.94, + "end": 15464.0, + "probability": 0.9462 + }, + { + "start": 15464.06, + "end": 15464.34, + "probability": 0.8861 + }, + { + "start": 15464.46, + "end": 15472.0, + "probability": 0.6662 + }, + { + "start": 15472.1, + "end": 15472.75, + "probability": 0.8778 + }, + { + "start": 15473.38, + "end": 15475.48, + "probability": 0.6412 + }, + { + "start": 15476.14, + "end": 15477.7, + "probability": 0.4153 + }, + { + "start": 15478.46, + "end": 15482.3, + "probability": 0.8151 + }, + { + "start": 15482.44, + "end": 15483.88, + "probability": 0.6752 + }, + { + "start": 15484.16, + "end": 15488.6, + "probability": 0.7246 + }, + { + "start": 15488.92, + "end": 15489.86, + "probability": 0.8594 + }, + { + "start": 15491.02, + "end": 15492.28, + "probability": 0.7882 + }, + { + "start": 15493.02, + "end": 15499.62, + "probability": 0.9866 + }, + { + "start": 15500.36, + "end": 15505.64, + "probability": 0.9912 + }, + { + "start": 15505.9, + "end": 15508.96, + "probability": 0.8456 + }, + { + "start": 15508.96, + "end": 15514.3, + "probability": 0.8971 + }, + { + "start": 15514.66, + "end": 15518.16, + "probability": 0.9491 + }, + { + "start": 15518.28, + "end": 15520.72, + "probability": 0.6518 + }, + { + "start": 15521.26, + "end": 15524.48, + "probability": 0.9902 + }, + { + "start": 15524.64, + "end": 15526.31, + "probability": 0.8585 + }, + { + "start": 15526.86, + "end": 15527.28, + "probability": 0.8394 + }, + { + "start": 15528.4, + "end": 15530.94, + "probability": 0.1663 + }, + { + "start": 15530.94, + "end": 15530.94, + "probability": 0.0874 + }, + { + "start": 15530.94, + "end": 15531.6, + "probability": 0.1186 + }, + { + "start": 15532.02, + "end": 15534.84, + "probability": 0.7823 + }, + { + "start": 15535.16, + "end": 15535.2, + "probability": 0.1908 + }, + { + "start": 15535.28, + "end": 15536.22, + "probability": 0.8686 + }, + { + "start": 15536.3, + "end": 15536.78, + "probability": 0.6217 + }, + { + "start": 15536.92, + "end": 15539.84, + "probability": 0.841 + }, + { + "start": 15539.92, + "end": 15540.34, + "probability": 0.6391 + }, + { + "start": 15540.4, + "end": 15544.36, + "probability": 0.9868 + }, + { + "start": 15544.5, + "end": 15545.52, + "probability": 0.9556 + }, + { + "start": 15546.06, + "end": 15547.55, + "probability": 0.9712 + }, + { + "start": 15548.3, + "end": 15550.5, + "probability": 0.8529 + }, + { + "start": 15551.22, + "end": 15553.12, + "probability": 0.8712 + }, + { + "start": 15553.38, + "end": 15555.48, + "probability": 0.9258 + }, + { + "start": 15556.1, + "end": 15558.2, + "probability": 0.7353 + }, + { + "start": 15560.44, + "end": 15568.06, + "probability": 0.7449 + }, + { + "start": 15568.16, + "end": 15569.24, + "probability": 0.5831 + }, + { + "start": 15569.58, + "end": 15570.2, + "probability": 0.3113 + }, + { + "start": 15570.5, + "end": 15572.18, + "probability": 0.5278 + }, + { + "start": 15572.44, + "end": 15573.54, + "probability": 0.5977 + }, + { + "start": 15573.64, + "end": 15575.36, + "probability": 0.6685 + }, + { + "start": 15575.42, + "end": 15575.88, + "probability": 0.6473 + }, + { + "start": 15575.92, + "end": 15576.68, + "probability": 0.9116 + }, + { + "start": 15576.78, + "end": 15577.23, + "probability": 0.9136 + }, + { + "start": 15577.94, + "end": 15579.9, + "probability": 0.6463 + }, + { + "start": 15579.96, + "end": 15580.54, + "probability": 0.8794 + }, + { + "start": 15580.6, + "end": 15584.9, + "probability": 0.9504 + }, + { + "start": 15585.5, + "end": 15586.09, + "probability": 0.9474 + }, + { + "start": 15586.14, + "end": 15587.66, + "probability": 0.9736 + }, + { + "start": 15587.82, + "end": 15589.57, + "probability": 0.9578 + }, + { + "start": 15590.62, + "end": 15591.96, + "probability": 0.917 + }, + { + "start": 15592.16, + "end": 15593.28, + "probability": 0.9651 + }, + { + "start": 15593.32, + "end": 15593.9, + "probability": 0.9605 + }, + { + "start": 15593.9, + "end": 15595.92, + "probability": 0.9667 + }, + { + "start": 15596.38, + "end": 15596.84, + "probability": 0.6626 + }, + { + "start": 15596.88, + "end": 15597.38, + "probability": 0.9216 + }, + { + "start": 15597.46, + "end": 15599.84, + "probability": 0.7906 + }, + { + "start": 15600.3, + "end": 15603.24, + "probability": 0.7732 + }, + { + "start": 15603.88, + "end": 15604.86, + "probability": 0.9816 + }, + { + "start": 15604.92, + "end": 15606.23, + "probability": 0.7798 + }, + { + "start": 15606.78, + "end": 15607.98, + "probability": 0.5785 + }, + { + "start": 15608.14, + "end": 15608.64, + "probability": 0.5757 + }, + { + "start": 15608.78, + "end": 15611.16, + "probability": 0.8995 + }, + { + "start": 15611.26, + "end": 15613.24, + "probability": 0.9401 + }, + { + "start": 15613.62, + "end": 15615.94, + "probability": 0.8894 + }, + { + "start": 15616.28, + "end": 15618.14, + "probability": 0.722 + }, + { + "start": 15618.9, + "end": 15619.66, + "probability": 0.962 + }, + { + "start": 15619.98, + "end": 15624.03, + "probability": 0.9272 + }, + { + "start": 15624.84, + "end": 15626.68, + "probability": 0.4469 + }, + { + "start": 15626.92, + "end": 15631.7, + "probability": 0.9579 + }, + { + "start": 15631.76, + "end": 15633.6, + "probability": 0.8877 + }, + { + "start": 15634.08, + "end": 15637.06, + "probability": 0.9736 + }, + { + "start": 15637.68, + "end": 15639.44, + "probability": 0.9771 + }, + { + "start": 15639.48, + "end": 15642.6, + "probability": 0.7639 + }, + { + "start": 15642.7, + "end": 15644.31, + "probability": 0.9856 + }, + { + "start": 15644.72, + "end": 15647.3, + "probability": 0.8966 + }, + { + "start": 15647.32, + "end": 15647.76, + "probability": 0.7322 + }, + { + "start": 15647.96, + "end": 15649.42, + "probability": 0.5407 + }, + { + "start": 15649.52, + "end": 15652.77, + "probability": 0.9073 + }, + { + "start": 15675.82, + "end": 15677.62, + "probability": 0.7157 + }, + { + "start": 15679.06, + "end": 15682.64, + "probability": 0.9904 + }, + { + "start": 15683.94, + "end": 15689.04, + "probability": 0.9535 + }, + { + "start": 15690.12, + "end": 15694.72, + "probability": 0.982 + }, + { + "start": 15695.38, + "end": 15696.34, + "probability": 0.8574 + }, + { + "start": 15697.2, + "end": 15700.47, + "probability": 0.9838 + }, + { + "start": 15701.7, + "end": 15703.42, + "probability": 0.8702 + }, + { + "start": 15703.78, + "end": 15707.08, + "probability": 0.6037 + }, + { + "start": 15707.88, + "end": 15710.73, + "probability": 0.8118 + }, + { + "start": 15712.0, + "end": 15717.6, + "probability": 0.9846 + }, + { + "start": 15717.7, + "end": 15719.64, + "probability": 0.9925 + }, + { + "start": 15720.76, + "end": 15728.86, + "probability": 0.972 + }, + { + "start": 15728.96, + "end": 15731.3, + "probability": 0.1659 + }, + { + "start": 15732.62, + "end": 15734.84, + "probability": 0.8294 + }, + { + "start": 15735.58, + "end": 15738.26, + "probability": 0.9929 + }, + { + "start": 15738.26, + "end": 15743.42, + "probability": 0.9328 + }, + { + "start": 15744.2, + "end": 15748.38, + "probability": 0.9828 + }, + { + "start": 15748.44, + "end": 15751.04, + "probability": 0.9944 + }, + { + "start": 15752.86, + "end": 15754.8, + "probability": 0.9995 + }, + { + "start": 15755.36, + "end": 15759.46, + "probability": 0.9976 + }, + { + "start": 15760.24, + "end": 15763.22, + "probability": 0.8876 + }, + { + "start": 15764.36, + "end": 15770.22, + "probability": 0.9796 + }, + { + "start": 15770.22, + "end": 15774.78, + "probability": 0.9873 + }, + { + "start": 15775.4, + "end": 15777.2, + "probability": 0.9979 + }, + { + "start": 15778.22, + "end": 15784.72, + "probability": 0.9788 + }, + { + "start": 15784.72, + "end": 15788.4, + "probability": 0.9803 + }, + { + "start": 15788.62, + "end": 15790.28, + "probability": 0.9912 + }, + { + "start": 15790.42, + "end": 15791.88, + "probability": 0.9497 + }, + { + "start": 15791.96, + "end": 15792.48, + "probability": 0.757 + }, + { + "start": 15792.92, + "end": 15793.46, + "probability": 0.8848 + }, + { + "start": 15794.06, + "end": 15796.81, + "probability": 0.9775 + }, + { + "start": 15797.68, + "end": 15798.28, + "probability": 0.8763 + }, + { + "start": 15798.4, + "end": 15802.64, + "probability": 0.4934 + }, + { + "start": 15803.16, + "end": 15807.72, + "probability": 0.98 + }, + { + "start": 15808.2, + "end": 15811.16, + "probability": 0.6418 + }, + { + "start": 15812.0, + "end": 15816.4, + "probability": 0.9527 + }, + { + "start": 15817.52, + "end": 15819.62, + "probability": 0.9263 + }, + { + "start": 15820.28, + "end": 15822.01, + "probability": 0.9402 + }, + { + "start": 15822.56, + "end": 15824.22, + "probability": 0.9858 + }, + { + "start": 15824.42, + "end": 15825.38, + "probability": 0.8278 + }, + { + "start": 15825.72, + "end": 15826.56, + "probability": 0.8316 + }, + { + "start": 15827.4, + "end": 15827.9, + "probability": 0.9532 + }, + { + "start": 15828.0, + "end": 15831.88, + "probability": 0.978 + }, + { + "start": 15831.98, + "end": 15832.8, + "probability": 0.8972 + }, + { + "start": 15833.28, + "end": 15834.18, + "probability": 0.9839 + }, + { + "start": 15834.52, + "end": 15836.1, + "probability": 0.9937 + }, + { + "start": 15836.7, + "end": 15840.62, + "probability": 0.9765 + }, + { + "start": 15841.1, + "end": 15843.19, + "probability": 0.736 + }, + { + "start": 15844.18, + "end": 15851.8, + "probability": 0.7548 + }, + { + "start": 15852.06, + "end": 15854.84, + "probability": 0.884 + }, + { + "start": 15855.34, + "end": 15859.36, + "probability": 0.9521 + }, + { + "start": 15860.14, + "end": 15862.92, + "probability": 0.7547 + }, + { + "start": 15863.28, + "end": 15864.58, + "probability": 0.6719 + }, + { + "start": 15864.8, + "end": 15867.54, + "probability": 0.8849 + }, + { + "start": 15867.84, + "end": 15870.78, + "probability": 0.9863 + }, + { + "start": 15871.06, + "end": 15874.48, + "probability": 0.9819 + }, + { + "start": 15874.54, + "end": 15874.98, + "probability": 0.6401 + }, + { + "start": 15875.74, + "end": 15877.2, + "probability": 0.4484 + }, + { + "start": 15877.2, + "end": 15879.88, + "probability": 0.9133 + }, + { + "start": 15901.58, + "end": 15902.36, + "probability": 0.5245 + }, + { + "start": 15902.44, + "end": 15903.12, + "probability": 0.7505 + }, + { + "start": 15903.28, + "end": 15904.36, + "probability": 0.5587 + }, + { + "start": 15905.22, + "end": 15909.2, + "probability": 0.9023 + }, + { + "start": 15909.24, + "end": 15910.3, + "probability": 0.855 + }, + { + "start": 15911.12, + "end": 15912.54, + "probability": 0.826 + }, + { + "start": 15913.14, + "end": 15917.22, + "probability": 0.9984 + }, + { + "start": 15917.36, + "end": 15919.76, + "probability": 0.8594 + }, + { + "start": 15920.12, + "end": 15921.2, + "probability": 0.7681 + }, + { + "start": 15921.54, + "end": 15924.02, + "probability": 0.8709 + }, + { + "start": 15924.72, + "end": 15927.62, + "probability": 0.8354 + }, + { + "start": 15927.78, + "end": 15928.68, + "probability": 0.9681 + }, + { + "start": 15928.74, + "end": 15929.54, + "probability": 0.9754 + }, + { + "start": 15929.62, + "end": 15930.42, + "probability": 0.6239 + }, + { + "start": 15930.94, + "end": 15934.12, + "probability": 0.9645 + }, + { + "start": 15934.68, + "end": 15935.58, + "probability": 0.9285 + }, + { + "start": 15935.9, + "end": 15939.56, + "probability": 0.9811 + }, + { + "start": 15940.9, + "end": 15943.5, + "probability": 0.7288 + }, + { + "start": 15943.82, + "end": 15945.15, + "probability": 0.9731 + }, + { + "start": 15945.6, + "end": 15948.26, + "probability": 0.9039 + }, + { + "start": 15948.88, + "end": 15950.72, + "probability": 0.5676 + }, + { + "start": 15951.36, + "end": 15955.76, + "probability": 0.9495 + }, + { + "start": 15956.46, + "end": 15960.92, + "probability": 0.8801 + }, + { + "start": 15960.92, + "end": 15966.91, + "probability": 0.8357 + }, + { + "start": 15967.46, + "end": 15969.48, + "probability": 0.9877 + }, + { + "start": 15969.81, + "end": 15971.3, + "probability": 0.6548 + }, + { + "start": 15971.4, + "end": 15971.94, + "probability": 0.7679 + }, + { + "start": 15972.82, + "end": 15974.16, + "probability": 0.8093 + }, + { + "start": 15975.22, + "end": 15976.36, + "probability": 0.75 + }, + { + "start": 15976.48, + "end": 15978.7, + "probability": 0.7051 + }, + { + "start": 15979.28, + "end": 15982.56, + "probability": 0.8352 + }, + { + "start": 15983.32, + "end": 15988.04, + "probability": 0.7297 + }, + { + "start": 15988.18, + "end": 15989.12, + "probability": 0.7109 + }, + { + "start": 15989.54, + "end": 15992.48, + "probability": 0.915 + }, + { + "start": 15992.62, + "end": 15994.74, + "probability": 0.9644 + }, + { + "start": 15995.08, + "end": 15995.78, + "probability": 0.4962 + }, + { + "start": 15996.46, + "end": 15997.04, + "probability": 0.339 + }, + { + "start": 15997.2, + "end": 15997.4, + "probability": 0.734 + }, + { + "start": 15997.6, + "end": 15998.2, + "probability": 0.3431 + }, + { + "start": 15998.58, + "end": 16002.26, + "probability": 0.7927 + }, + { + "start": 16002.66, + "end": 16006.22, + "probability": 0.7763 + }, + { + "start": 16006.26, + "end": 16010.62, + "probability": 0.9121 + }, + { + "start": 16011.02, + "end": 16013.26, + "probability": 0.8337 + }, + { + "start": 16014.2, + "end": 16016.0, + "probability": 0.9949 + }, + { + "start": 16017.0, + "end": 16020.92, + "probability": 0.9939 + }, + { + "start": 16021.64, + "end": 16028.0, + "probability": 0.9878 + }, + { + "start": 16028.92, + "end": 16031.18, + "probability": 0.9671 + }, + { + "start": 16032.14, + "end": 16034.14, + "probability": 0.7589 + }, + { + "start": 16034.2, + "end": 16035.04, + "probability": 0.9902 + }, + { + "start": 16035.6, + "end": 16038.5, + "probability": 0.9465 + }, + { + "start": 16039.14, + "end": 16042.92, + "probability": 0.9967 + }, + { + "start": 16043.36, + "end": 16044.86, + "probability": 0.9941 + }, + { + "start": 16045.44, + "end": 16046.94, + "probability": 0.803 + }, + { + "start": 16047.9, + "end": 16049.9, + "probability": 0.7623 + }, + { + "start": 16050.26, + "end": 16054.34, + "probability": 0.7384 + }, + { + "start": 16055.22, + "end": 16055.96, + "probability": 0.4827 + }, + { + "start": 16056.88, + "end": 16062.02, + "probability": 0.9925 + }, + { + "start": 16062.48, + "end": 16067.64, + "probability": 0.9495 + }, + { + "start": 16067.76, + "end": 16068.72, + "probability": 0.8042 + }, + { + "start": 16068.78, + "end": 16069.96, + "probability": 0.8931 + }, + { + "start": 16070.32, + "end": 16070.48, + "probability": 0.5294 + }, + { + "start": 16070.68, + "end": 16071.52, + "probability": 0.2329 + }, + { + "start": 16071.68, + "end": 16072.78, + "probability": 0.9495 + }, + { + "start": 16072.78, + "end": 16074.4, + "probability": 0.8379 + }, + { + "start": 16074.76, + "end": 16075.92, + "probability": 0.8521 + }, + { + "start": 16076.78, + "end": 16079.08, + "probability": 0.8257 + }, + { + "start": 16079.94, + "end": 16081.93, + "probability": 0.9536 + }, + { + "start": 16082.76, + "end": 16083.98, + "probability": 0.5522 + }, + { + "start": 16084.26, + "end": 16087.52, + "probability": 0.5177 + }, + { + "start": 16087.62, + "end": 16089.64, + "probability": 0.5952 + }, + { + "start": 16089.7, + "end": 16090.83, + "probability": 0.7712 + }, + { + "start": 16091.68, + "end": 16094.24, + "probability": 0.9491 + }, + { + "start": 16094.78, + "end": 16094.9, + "probability": 0.6353 + }, + { + "start": 16095.02, + "end": 16095.66, + "probability": 0.7062 + }, + { + "start": 16095.78, + "end": 16097.54, + "probability": 0.6262 + }, + { + "start": 16097.68, + "end": 16100.36, + "probability": 0.9958 + }, + { + "start": 16101.13, + "end": 16105.88, + "probability": 0.9917 + }, + { + "start": 16106.3, + "end": 16107.64, + "probability": 0.7558 + }, + { + "start": 16108.9, + "end": 16109.98, + "probability": 0.5078 + }, + { + "start": 16110.06, + "end": 16111.18, + "probability": 0.599 + }, + { + "start": 16111.6, + "end": 16115.42, + "probability": 0.9299 + }, + { + "start": 16115.62, + "end": 16122.18, + "probability": 0.9935 + }, + { + "start": 16122.46, + "end": 16123.16, + "probability": 0.75 + }, + { + "start": 16123.5, + "end": 16126.38, + "probability": 0.7186 + }, + { + "start": 16127.87, + "end": 16132.32, + "probability": 0.7192 + }, + { + "start": 16132.54, + "end": 16136.59, + "probability": 0.6266 + }, + { + "start": 16137.18, + "end": 16137.9, + "probability": 0.6184 + }, + { + "start": 16138.52, + "end": 16139.2, + "probability": 0.6482 + }, + { + "start": 16156.46, + "end": 16162.64, + "probability": 0.2621 + }, + { + "start": 16163.3, + "end": 16163.46, + "probability": 0.0 + }, + { + "start": 16166.17, + "end": 16166.8, + "probability": 0.0176 + }, + { + "start": 16169.28, + "end": 16175.38, + "probability": 0.5402 + }, + { + "start": 16175.38, + "end": 16177.16, + "probability": 0.0069 + }, + { + "start": 16184.59, + "end": 16185.5, + "probability": 0.5609 + }, + { + "start": 16187.38, + "end": 16191.86, + "probability": 0.4058 + }, + { + "start": 16193.06, + "end": 16193.86, + "probability": 0.2649 + }, + { + "start": 16217.62, + "end": 16221.64, + "probability": 0.8621 + }, + { + "start": 16222.04, + "end": 16224.53, + "probability": 0.9535 + }, + { + "start": 16226.04, + "end": 16229.7, + "probability": 0.2032 + }, + { + "start": 16230.62, + "end": 16232.68, + "probability": 0.77 + }, + { + "start": 16232.68, + "end": 16233.38, + "probability": 0.3802 + }, + { + "start": 16234.3, + "end": 16235.26, + "probability": 0.4285 + }, + { + "start": 16236.44, + "end": 16236.68, + "probability": 0.046 + }, + { + "start": 16236.68, + "end": 16236.68, + "probability": 0.0987 + }, + { + "start": 16236.68, + "end": 16236.68, + "probability": 0.0109 + }, + { + "start": 16236.68, + "end": 16236.68, + "probability": 0.0419 + }, + { + "start": 16236.68, + "end": 16236.68, + "probability": 0.0716 + }, + { + "start": 16236.68, + "end": 16237.6, + "probability": 0.1545 + }, + { + "start": 16239.6, + "end": 16240.82, + "probability": 0.0137 + }, + { + "start": 16241.84, + "end": 16242.16, + "probability": 0.106 + }, + { + "start": 16242.22, + "end": 16242.87, + "probability": 0.0212 + }, + { + "start": 16242.96, + "end": 16242.96, + "probability": 0.1808 + }, + { + "start": 16243.0, + "end": 16243.0, + "probability": 0.0 + }, + { + "start": 16243.0, + "end": 16243.0, + "probability": 0.0 + }, + { + "start": 16243.0, + "end": 16243.0, + "probability": 0.0 + }, + { + "start": 16243.0, + "end": 16243.0, + "probability": 0.0 + }, + { + "start": 16243.0, + "end": 16243.0, + "probability": 0.0 + }, + { + "start": 16243.0, + "end": 16243.0, + "probability": 0.0 + }, + { + "start": 16243.82, + "end": 16245.22, + "probability": 0.1091 + }, + { + "start": 16245.22, + "end": 16246.08, + "probability": 0.0146 + }, + { + "start": 16254.42, + "end": 16255.34, + "probability": 0.2976 + }, + { + "start": 16255.34, + "end": 16255.96, + "probability": 0.1287 + }, + { + "start": 16256.52, + "end": 16260.32, + "probability": 0.7672 + }, + { + "start": 16260.34, + "end": 16260.66, + "probability": 0.7945 + }, + { + "start": 16260.76, + "end": 16263.92, + "probability": 0.8488 + }, + { + "start": 16264.22, + "end": 16267.12, + "probability": 0.929 + }, + { + "start": 16267.24, + "end": 16267.72, + "probability": 0.8918 + }, + { + "start": 16267.76, + "end": 16270.08, + "probability": 0.9335 + }, + { + "start": 16271.62, + "end": 16272.24, + "probability": 0.6661 + }, + { + "start": 16272.32, + "end": 16273.02, + "probability": 0.718 + }, + { + "start": 16273.36, + "end": 16274.06, + "probability": 0.5939 + }, + { + "start": 16274.72, + "end": 16274.8, + "probability": 0.2169 + }, + { + "start": 16276.6, + "end": 16277.48, + "probability": 0.2043 + }, + { + "start": 16279.77, + "end": 16282.98, + "probability": 0.0653 + }, + { + "start": 16292.9, + "end": 16293.64, + "probability": 0.0058 + }, + { + "start": 16293.64, + "end": 16293.64, + "probability": 0.013 + }, + { + "start": 16293.64, + "end": 16294.14, + "probability": 0.0706 + }, + { + "start": 16294.14, + "end": 16294.14, + "probability": 0.5581 + }, + { + "start": 16294.14, + "end": 16294.7, + "probability": 0.4558 + }, + { + "start": 16295.6, + "end": 16296.6, + "probability": 0.9368 + }, + { + "start": 16297.16, + "end": 16297.18, + "probability": 0.0252 + }, + { + "start": 16297.18, + "end": 16299.52, + "probability": 0.7887 + }, + { + "start": 16301.47, + "end": 16302.42, + "probability": 0.5615 + }, + { + "start": 16302.44, + "end": 16302.74, + "probability": 0.9377 + }, + { + "start": 16302.94, + "end": 16306.62, + "probability": 0.9277 + }, + { + "start": 16307.46, + "end": 16310.44, + "probability": 0.8605 + }, + { + "start": 16311.56, + "end": 16315.16, + "probability": 0.9925 + }, + { + "start": 16315.82, + "end": 16319.54, + "probability": 0.8756 + }, + { + "start": 16320.24, + "end": 16320.74, + "probability": 0.5929 + }, + { + "start": 16321.92, + "end": 16325.08, + "probability": 0.8376 + }, + { + "start": 16325.12, + "end": 16325.58, + "probability": 0.8211 + }, + { + "start": 16332.06, + "end": 16334.28, + "probability": 0.4572 + }, + { + "start": 16335.08, + "end": 16336.2, + "probability": 0.7916 + }, + { + "start": 16337.06, + "end": 16339.5, + "probability": 0.9738 + }, + { + "start": 16341.1, + "end": 16341.94, + "probability": 0.4862 + }, + { + "start": 16342.68, + "end": 16344.44, + "probability": 0.6028 + }, + { + "start": 16344.6, + "end": 16344.94, + "probability": 0.8064 + }, + { + "start": 16346.66, + "end": 16349.42, + "probability": 0.8454 + }, + { + "start": 16350.2, + "end": 16354.48, + "probability": 0.9153 + }, + { + "start": 16354.74, + "end": 16357.82, + "probability": 0.0483 + }, + { + "start": 16358.18, + "end": 16359.24, + "probability": 0.7497 + }, + { + "start": 16359.94, + "end": 16361.64, + "probability": 0.6331 + }, + { + "start": 16362.7, + "end": 16365.14, + "probability": 0.8299 + }, + { + "start": 16365.26, + "end": 16365.7, + "probability": 0.9727 + }, + { + "start": 16367.5, + "end": 16368.28, + "probability": 0.9025 + }, + { + "start": 16368.4, + "end": 16371.18, + "probability": 0.9972 + }, + { + "start": 16371.18, + "end": 16374.1, + "probability": 0.8406 + }, + { + "start": 16375.06, + "end": 16375.86, + "probability": 0.21 + }, + { + "start": 16376.68, + "end": 16377.34, + "probability": 0.9497 + }, + { + "start": 16377.92, + "end": 16379.16, + "probability": 0.7994 + }, + { + "start": 16380.44, + "end": 16381.42, + "probability": 0.6289 + }, + { + "start": 16381.48, + "end": 16382.38, + "probability": 0.7124 + }, + { + "start": 16383.0, + "end": 16390.26, + "probability": 0.997 + }, + { + "start": 16390.82, + "end": 16391.86, + "probability": 0.7853 + }, + { + "start": 16392.42, + "end": 16393.02, + "probability": 0.9327 + }, + { + "start": 16394.22, + "end": 16396.08, + "probability": 0.5482 + }, + { + "start": 16396.68, + "end": 16398.62, + "probability": 0.8627 + }, + { + "start": 16399.16, + "end": 16402.96, + "probability": 0.9922 + }, + { + "start": 16404.14, + "end": 16407.73, + "probability": 0.8308 + }, + { + "start": 16408.04, + "end": 16409.14, + "probability": 0.866 + }, + { + "start": 16409.88, + "end": 16412.48, + "probability": 0.9787 + }, + { + "start": 16413.42, + "end": 16416.56, + "probability": 0.8588 + }, + { + "start": 16417.24, + "end": 16418.26, + "probability": 0.7515 + }, + { + "start": 16418.58, + "end": 16420.62, + "probability": 0.1861 + }, + { + "start": 16420.84, + "end": 16422.86, + "probability": 0.9723 + }, + { + "start": 16423.42, + "end": 16427.38, + "probability": 0.8442 + }, + { + "start": 16428.16, + "end": 16432.78, + "probability": 0.8534 + }, + { + "start": 16433.56, + "end": 16435.28, + "probability": 0.8884 + }, + { + "start": 16435.96, + "end": 16439.2, + "probability": 0.9922 + }, + { + "start": 16439.88, + "end": 16442.18, + "probability": 0.9811 + }, + { + "start": 16442.97, + "end": 16448.48, + "probability": 0.7292 + }, + { + "start": 16448.48, + "end": 16451.56, + "probability": 0.8465 + }, + { + "start": 16452.12, + "end": 16453.08, + "probability": 0.7792 + }, + { + "start": 16453.7, + "end": 16454.92, + "probability": 0.9026 + }, + { + "start": 16455.9, + "end": 16458.2, + "probability": 0.8531 + }, + { + "start": 16458.26, + "end": 16464.62, + "probability": 0.9908 + }, + { + "start": 16465.06, + "end": 16467.35, + "probability": 0.9973 + }, + { + "start": 16468.46, + "end": 16470.42, + "probability": 0.9291 + }, + { + "start": 16471.1, + "end": 16476.02, + "probability": 0.9783 + }, + { + "start": 16476.02, + "end": 16481.86, + "probability": 0.9968 + }, + { + "start": 16482.28, + "end": 16483.52, + "probability": 0.5925 + }, + { + "start": 16484.48, + "end": 16486.86, + "probability": 0.9243 + }, + { + "start": 16487.54, + "end": 16491.48, + "probability": 0.9612 + }, + { + "start": 16492.22, + "end": 16494.48, + "probability": 0.9952 + }, + { + "start": 16495.04, + "end": 16498.18, + "probability": 0.9994 + }, + { + "start": 16498.94, + "end": 16502.04, + "probability": 0.9888 + }, + { + "start": 16502.62, + "end": 16506.52, + "probability": 0.992 + }, + { + "start": 16507.38, + "end": 16509.62, + "probability": 0.9503 + }, + { + "start": 16510.26, + "end": 16512.88, + "probability": 0.9927 + }, + { + "start": 16513.72, + "end": 16515.14, + "probability": 0.9207 + }, + { + "start": 16515.92, + "end": 16516.77, + "probability": 0.8199 + }, + { + "start": 16517.02, + "end": 16520.66, + "probability": 0.9502 + }, + { + "start": 16521.56, + "end": 16522.2, + "probability": 0.6995 + }, + { + "start": 16522.56, + "end": 16525.72, + "probability": 0.95 + }, + { + "start": 16525.72, + "end": 16527.1, + "probability": 0.6648 + }, + { + "start": 16527.46, + "end": 16528.76, + "probability": 0.987 + }, + { + "start": 16529.14, + "end": 16532.53, + "probability": 0.984 + }, + { + "start": 16533.08, + "end": 16535.88, + "probability": 0.7054 + }, + { + "start": 16536.22, + "end": 16536.46, + "probability": 0.7239 + }, + { + "start": 16537.04, + "end": 16540.64, + "probability": 0.9692 + }, + { + "start": 16540.82, + "end": 16542.4, + "probability": 0.6796 + }, + { + "start": 16543.06, + "end": 16543.6, + "probability": 0.7991 + }, + { + "start": 16543.6, + "end": 16543.78, + "probability": 0.6143 + }, + { + "start": 16543.92, + "end": 16545.59, + "probability": 0.6757 + }, + { + "start": 16546.74, + "end": 16550.99, + "probability": 0.7712 + }, + { + "start": 16551.04, + "end": 16551.74, + "probability": 0.2128 + }, + { + "start": 16551.98, + "end": 16553.86, + "probability": 0.998 + }, + { + "start": 16554.44, + "end": 16558.11, + "probability": 0.9746 + }, + { + "start": 16559.96, + "end": 16560.44, + "probability": 0.3463 + }, + { + "start": 16560.44, + "end": 16561.48, + "probability": 0.6182 + }, + { + "start": 16561.52, + "end": 16562.08, + "probability": 0.7164 + }, + { + "start": 16578.56, + "end": 16581.86, + "probability": 0.6611 + }, + { + "start": 16582.68, + "end": 16585.08, + "probability": 0.9661 + }, + { + "start": 16585.79, + "end": 16586.39, + "probability": 0.4336 + }, + { + "start": 16588.16, + "end": 16593.64, + "probability": 0.985 + }, + { + "start": 16594.1, + "end": 16598.86, + "probability": 0.5527 + }, + { + "start": 16598.98, + "end": 16599.96, + "probability": 0.7207 + }, + { + "start": 16600.3, + "end": 16603.88, + "probability": 0.9777 + }, + { + "start": 16603.94, + "end": 16604.1, + "probability": 0.4168 + }, + { + "start": 16631.38, + "end": 16631.74, + "probability": 0.3277 + }, + { + "start": 16631.74, + "end": 16632.4, + "probability": 0.5711 + }, + { + "start": 16633.66, + "end": 16635.38, + "probability": 0.9575 + }, + { + "start": 16637.48, + "end": 16641.66, + "probability": 0.9912 + }, + { + "start": 16642.5, + "end": 16645.64, + "probability": 0.9049 + }, + { + "start": 16645.98, + "end": 16648.92, + "probability": 0.9734 + }, + { + "start": 16649.9, + "end": 16655.28, + "probability": 0.9721 + }, + { + "start": 16656.18, + "end": 16664.5, + "probability": 0.9858 + }, + { + "start": 16665.36, + "end": 16668.88, + "probability": 0.9883 + }, + { + "start": 16669.56, + "end": 16674.84, + "probability": 0.9388 + }, + { + "start": 16675.32, + "end": 16687.24, + "probability": 0.9811 + }, + { + "start": 16688.02, + "end": 16691.98, + "probability": 0.9676 + }, + { + "start": 16691.98, + "end": 16696.86, + "probability": 0.9937 + }, + { + "start": 16697.98, + "end": 16703.28, + "probability": 0.9986 + }, + { + "start": 16703.28, + "end": 16708.52, + "probability": 0.9849 + }, + { + "start": 16709.36, + "end": 16712.39, + "probability": 0.8179 + }, + { + "start": 16713.22, + "end": 16718.6, + "probability": 0.9895 + }, + { + "start": 16718.6, + "end": 16725.16, + "probability": 0.9971 + }, + { + "start": 16725.84, + "end": 16728.52, + "probability": 0.9749 + }, + { + "start": 16729.2, + "end": 16732.12, + "probability": 0.8674 + }, + { + "start": 16732.94, + "end": 16739.8, + "probability": 0.9941 + }, + { + "start": 16740.92, + "end": 16748.02, + "probability": 0.9873 + }, + { + "start": 16748.56, + "end": 16750.68, + "probability": 0.9716 + }, + { + "start": 16751.66, + "end": 16756.44, + "probability": 0.9915 + }, + { + "start": 16757.12, + "end": 16757.96, + "probability": 0.8194 + }, + { + "start": 16758.78, + "end": 16763.02, + "probability": 0.9702 + }, + { + "start": 16763.52, + "end": 16770.2, + "probability": 0.9844 + }, + { + "start": 16770.98, + "end": 16776.6, + "probability": 0.945 + }, + { + "start": 16777.18, + "end": 16778.12, + "probability": 0.8023 + }, + { + "start": 16778.8, + "end": 16784.84, + "probability": 0.9185 + }, + { + "start": 16785.04, + "end": 16790.24, + "probability": 0.9315 + }, + { + "start": 16790.92, + "end": 16796.32, + "probability": 0.9602 + }, + { + "start": 16796.98, + "end": 16800.02, + "probability": 0.9678 + }, + { + "start": 16800.7, + "end": 16804.32, + "probability": 0.8827 + }, + { + "start": 16804.7, + "end": 16807.3, + "probability": 0.8041 + }, + { + "start": 16808.2, + "end": 16813.24, + "probability": 0.9188 + }, + { + "start": 16813.24, + "end": 16822.92, + "probability": 0.8119 + }, + { + "start": 16823.54, + "end": 16824.56, + "probability": 0.8221 + }, + { + "start": 16825.2, + "end": 16830.26, + "probability": 0.9443 + }, + { + "start": 16831.1, + "end": 16832.42, + "probability": 0.9397 + }, + { + "start": 16832.94, + "end": 16838.62, + "probability": 0.9413 + }, + { + "start": 16839.26, + "end": 16843.82, + "probability": 0.9202 + }, + { + "start": 16843.82, + "end": 16849.52, + "probability": 0.742 + }, + { + "start": 16850.28, + "end": 16851.8, + "probability": 0.5771 + }, + { + "start": 16852.66, + "end": 16855.19, + "probability": 0.7533 + }, + { + "start": 16855.46, + "end": 16856.82, + "probability": 0.7093 + }, + { + "start": 16857.56, + "end": 16860.12, + "probability": 0.6954 + }, + { + "start": 16860.86, + "end": 16863.6, + "probability": 0.9105 + }, + { + "start": 16863.66, + "end": 16864.32, + "probability": 0.5709 + }, + { + "start": 16864.4, + "end": 16865.5, + "probability": 0.8384 + }, + { + "start": 16866.16, + "end": 16871.48, + "probability": 0.8976 + }, + { + "start": 16871.78, + "end": 16875.78, + "probability": 0.9687 + }, + { + "start": 16876.36, + "end": 16876.95, + "probability": 0.985 + }, + { + "start": 16877.76, + "end": 16881.47, + "probability": 0.8865 + }, + { + "start": 16882.42, + "end": 16884.36, + "probability": 0.9971 + }, + { + "start": 16884.62, + "end": 16887.6, + "probability": 0.9976 + }, + { + "start": 16888.58, + "end": 16892.66, + "probability": 0.7192 + }, + { + "start": 16893.34, + "end": 16898.3, + "probability": 0.9362 + }, + { + "start": 16898.82, + "end": 16901.0, + "probability": 0.813 + }, + { + "start": 16901.7, + "end": 16902.66, + "probability": 0.4789 + }, + { + "start": 16902.76, + "end": 16904.48, + "probability": 0.8392 + }, + { + "start": 16904.96, + "end": 16906.92, + "probability": 0.8422 + }, + { + "start": 16907.06, + "end": 16907.56, + "probability": 0.7158 + }, + { + "start": 16908.28, + "end": 16910.96, + "probability": 0.9948 + }, + { + "start": 16912.16, + "end": 16914.86, + "probability": 0.9966 + }, + { + "start": 16915.0, + "end": 16916.26, + "probability": 0.6677 + }, + { + "start": 16917.2, + "end": 16918.4, + "probability": 0.5888 + }, + { + "start": 16918.82, + "end": 16921.64, + "probability": 0.847 + }, + { + "start": 16922.22, + "end": 16925.86, + "probability": 0.6917 + }, + { + "start": 16926.44, + "end": 16928.68, + "probability": 0.9817 + }, + { + "start": 16929.32, + "end": 16933.88, + "probability": 0.9692 + }, + { + "start": 16934.06, + "end": 16937.23, + "probability": 0.9771 + }, + { + "start": 16938.16, + "end": 16942.02, + "probability": 0.9889 + }, + { + "start": 16942.56, + "end": 16946.4, + "probability": 0.9909 + }, + { + "start": 16946.4, + "end": 16951.3, + "probability": 0.9864 + }, + { + "start": 16952.0, + "end": 16953.34, + "probability": 0.4901 + }, + { + "start": 16953.68, + "end": 16957.6, + "probability": 0.8281 + }, + { + "start": 16957.6, + "end": 16962.52, + "probability": 0.93 + }, + { + "start": 16962.64, + "end": 16963.84, + "probability": 0.8214 + }, + { + "start": 16964.62, + "end": 16968.46, + "probability": 0.8476 + }, + { + "start": 16968.88, + "end": 16972.2, + "probability": 0.9484 + }, + { + "start": 16972.72, + "end": 16973.42, + "probability": 0.5286 + }, + { + "start": 16973.48, + "end": 16976.36, + "probability": 0.4667 + }, + { + "start": 16977.3, + "end": 16979.44, + "probability": 0.6843 + }, + { + "start": 16979.52, + "end": 16981.76, + "probability": 0.9227 + }, + { + "start": 16983.28, + "end": 16984.28, + "probability": 0.656 + }, + { + "start": 16985.48, + "end": 16986.6, + "probability": 0.7105 + }, + { + "start": 16987.52, + "end": 16988.08, + "probability": 0.4477 + }, + { + "start": 16988.18, + "end": 16989.2, + "probability": 0.9327 + }, + { + "start": 16989.72, + "end": 16990.8, + "probability": 0.9678 + }, + { + "start": 16993.34, + "end": 16994.38, + "probability": 0.0081 + }, + { + "start": 16996.24, + "end": 16997.26, + "probability": 0.0185 + }, + { + "start": 16997.3, + "end": 16997.62, + "probability": 0.0618 + }, + { + "start": 17014.5, + "end": 17015.5, + "probability": 0.2221 + }, + { + "start": 17018.98, + "end": 17026.18, + "probability": 0.9836 + }, + { + "start": 17026.26, + "end": 17027.43, + "probability": 0.6659 + }, + { + "start": 17028.3, + "end": 17031.44, + "probability": 0.9975 + }, + { + "start": 17031.44, + "end": 17036.2, + "probability": 0.9751 + }, + { + "start": 17036.72, + "end": 17040.88, + "probability": 0.9668 + }, + { + "start": 17041.0, + "end": 17041.86, + "probability": 0.6486 + }, + { + "start": 17042.54, + "end": 17046.54, + "probability": 0.9723 + }, + { + "start": 17046.54, + "end": 17050.72, + "probability": 0.9746 + }, + { + "start": 17050.84, + "end": 17052.93, + "probability": 0.8829 + }, + { + "start": 17053.82, + "end": 17055.66, + "probability": 0.9985 + }, + { + "start": 17056.62, + "end": 17058.0, + "probability": 0.5575 + }, + { + "start": 17058.08, + "end": 17059.86, + "probability": 0.992 + }, + { + "start": 17060.2, + "end": 17061.28, + "probability": 0.7226 + }, + { + "start": 17061.76, + "end": 17063.07, + "probability": 0.9707 + }, + { + "start": 17063.24, + "end": 17064.46, + "probability": 0.9906 + }, + { + "start": 17065.24, + "end": 17065.94, + "probability": 0.9776 + }, + { + "start": 17066.26, + "end": 17067.0, + "probability": 0.6282 + }, + { + "start": 17067.1, + "end": 17067.94, + "probability": 0.7234 + }, + { + "start": 17069.34, + "end": 17071.1, + "probability": 0.9878 + }, + { + "start": 17071.3, + "end": 17075.44, + "probability": 0.9811 + }, + { + "start": 17076.24, + "end": 17077.54, + "probability": 0.863 + }, + { + "start": 17077.92, + "end": 17081.68, + "probability": 0.7986 + }, + { + "start": 17081.78, + "end": 17082.78, + "probability": 0.4946 + }, + { + "start": 17082.82, + "end": 17085.16, + "probability": 0.9266 + }, + { + "start": 17085.3, + "end": 17088.42, + "probability": 0.979 + }, + { + "start": 17088.5, + "end": 17089.52, + "probability": 0.9508 + }, + { + "start": 17089.62, + "end": 17090.54, + "probability": 0.8461 + }, + { + "start": 17091.84, + "end": 17093.26, + "probability": 0.8114 + }, + { + "start": 17093.94, + "end": 17094.84, + "probability": 0.9696 + }, + { + "start": 17096.02, + "end": 17098.32, + "probability": 0.984 + }, + { + "start": 17098.42, + "end": 17098.76, + "probability": 0.4328 + }, + { + "start": 17098.94, + "end": 17101.46, + "probability": 0.4364 + }, + { + "start": 17101.8, + "end": 17103.4, + "probability": 0.7396 + }, + { + "start": 17103.8, + "end": 17104.48, + "probability": 0.8965 + }, + { + "start": 17104.6, + "end": 17106.28, + "probability": 0.7928 + }, + { + "start": 17106.82, + "end": 17108.23, + "probability": 0.65 + }, + { + "start": 17110.12, + "end": 17112.24, + "probability": 0.9763 + }, + { + "start": 17112.38, + "end": 17113.66, + "probability": 0.7413 + }, + { + "start": 17113.66, + "end": 17114.74, + "probability": 0.862 + }, + { + "start": 17114.86, + "end": 17118.38, + "probability": 0.8937 + }, + { + "start": 17118.82, + "end": 17119.36, + "probability": 0.5373 + }, + { + "start": 17119.46, + "end": 17120.78, + "probability": 0.721 + }, + { + "start": 17120.9, + "end": 17123.22, + "probability": 0.8726 + }, + { + "start": 17123.84, + "end": 17127.4, + "probability": 0.9957 + }, + { + "start": 17127.54, + "end": 17131.06, + "probability": 0.7331 + }, + { + "start": 17131.06, + "end": 17135.76, + "probability": 0.8087 + }, + { + "start": 17136.3, + "end": 17141.18, + "probability": 0.9155 + }, + { + "start": 17141.68, + "end": 17143.22, + "probability": 0.9443 + }, + { + "start": 17143.46, + "end": 17144.28, + "probability": 0.9507 + }, + { + "start": 17145.06, + "end": 17148.04, + "probability": 0.9841 + }, + { + "start": 17148.04, + "end": 17151.28, + "probability": 0.9931 + }, + { + "start": 17151.98, + "end": 17152.34, + "probability": 0.3001 + }, + { + "start": 17152.48, + "end": 17153.16, + "probability": 0.4842 + }, + { + "start": 17153.26, + "end": 17155.2, + "probability": 0.8931 + }, + { + "start": 17155.8, + "end": 17160.06, + "probability": 0.9034 + }, + { + "start": 17160.18, + "end": 17163.88, + "probability": 0.9766 + }, + { + "start": 17163.94, + "end": 17166.7, + "probability": 0.9871 + }, + { + "start": 17167.24, + "end": 17169.83, + "probability": 0.8192 + }, + { + "start": 17170.42, + "end": 17177.64, + "probability": 0.9698 + }, + { + "start": 17177.64, + "end": 17182.78, + "probability": 0.9875 + }, + { + "start": 17183.58, + "end": 17186.24, + "probability": 0.8627 + }, + { + "start": 17186.24, + "end": 17188.78, + "probability": 0.6674 + }, + { + "start": 17189.68, + "end": 17192.98, + "probability": 0.8107 + }, + { + "start": 17193.12, + "end": 17194.4, + "probability": 0.8275 + }, + { + "start": 17194.52, + "end": 17195.16, + "probability": 0.8258 + }, + { + "start": 17195.24, + "end": 17195.86, + "probability": 0.8972 + }, + { + "start": 17195.9, + "end": 17196.78, + "probability": 0.7 + }, + { + "start": 17197.14, + "end": 17198.6, + "probability": 0.9887 + }, + { + "start": 17199.4, + "end": 17206.12, + "probability": 0.9958 + }, + { + "start": 17206.66, + "end": 17207.58, + "probability": 0.8835 + }, + { + "start": 17207.72, + "end": 17211.18, + "probability": 0.9821 + }, + { + "start": 17211.3, + "end": 17212.97, + "probability": 0.8861 + }, + { + "start": 17213.18, + "end": 17214.88, + "probability": 0.8506 + }, + { + "start": 17215.96, + "end": 17218.62, + "probability": 0.786 + }, + { + "start": 17218.72, + "end": 17219.48, + "probability": 0.4288 + }, + { + "start": 17219.5, + "end": 17222.68, + "probability": 0.6737 + }, + { + "start": 17223.0, + "end": 17227.32, + "probability": 0.9451 + }, + { + "start": 17227.78, + "end": 17229.12, + "probability": 0.8018 + }, + { + "start": 17230.22, + "end": 17239.16, + "probability": 0.791 + }, + { + "start": 17239.24, + "end": 17240.75, + "probability": 0.5581 + }, + { + "start": 17240.96, + "end": 17241.5, + "probability": 0.6931 + }, + { + "start": 17241.54, + "end": 17245.33, + "probability": 0.9006 + }, + { + "start": 17245.74, + "end": 17247.22, + "probability": 0.9829 + }, + { + "start": 17248.04, + "end": 17251.98, + "probability": 0.9089 + }, + { + "start": 17251.98, + "end": 17256.74, + "probability": 0.7379 + }, + { + "start": 17257.02, + "end": 17261.5, + "probability": 0.9865 + }, + { + "start": 17261.74, + "end": 17263.06, + "probability": 0.9956 + }, + { + "start": 17263.44, + "end": 17268.36, + "probability": 0.9951 + }, + { + "start": 17268.92, + "end": 17271.4, + "probability": 0.865 + }, + { + "start": 17271.66, + "end": 17274.94, + "probability": 0.9519 + }, + { + "start": 17275.54, + "end": 17279.98, + "probability": 0.994 + }, + { + "start": 17280.14, + "end": 17280.9, + "probability": 0.8807 + }, + { + "start": 17280.96, + "end": 17281.32, + "probability": 0.7587 + }, + { + "start": 17282.58, + "end": 17284.16, + "probability": 0.7751 + }, + { + "start": 17284.32, + "end": 17287.4, + "probability": 0.9037 + }, + { + "start": 17287.58, + "end": 17288.64, + "probability": 0.6451 + }, + { + "start": 17289.54, + "end": 17291.92, + "probability": 0.1265 + }, + { + "start": 17292.08, + "end": 17293.6, + "probability": 0.8743 + }, + { + "start": 17294.22, + "end": 17295.55, + "probability": 0.5269 + }, + { + "start": 17295.82, + "end": 17295.96, + "probability": 0.864 + }, + { + "start": 17296.8, + "end": 17298.84, + "probability": 0.6846 + }, + { + "start": 17299.42, + "end": 17300.2, + "probability": 0.3361 + }, + { + "start": 17300.2, + "end": 17300.62, + "probability": 0.1245 + }, + { + "start": 17300.8, + "end": 17304.22, + "probability": 0.4187 + }, + { + "start": 17304.22, + "end": 17304.22, + "probability": 0.0241 + }, + { + "start": 17304.22, + "end": 17305.5, + "probability": 0.1704 + }, + { + "start": 17305.5, + "end": 17306.6, + "probability": 0.4875 + }, + { + "start": 17306.8, + "end": 17307.82, + "probability": 0.6908 + }, + { + "start": 17307.84, + "end": 17308.88, + "probability": 0.7649 + }, + { + "start": 17309.2, + "end": 17310.8, + "probability": 0.6645 + }, + { + "start": 17310.86, + "end": 17313.62, + "probability": 0.8689 + }, + { + "start": 17314.16, + "end": 17315.36, + "probability": 0.9888 + }, + { + "start": 17315.74, + "end": 17316.74, + "probability": 0.4162 + }, + { + "start": 17317.4, + "end": 17318.12, + "probability": 0.8431 + }, + { + "start": 17320.09, + "end": 17322.52, + "probability": 0.9225 + }, + { + "start": 17326.64, + "end": 17330.74, + "probability": 0.9906 + }, + { + "start": 17332.08, + "end": 17335.2, + "probability": 0.9683 + }, + { + "start": 17336.12, + "end": 17338.76, + "probability": 0.9981 + }, + { + "start": 17340.6, + "end": 17341.1, + "probability": 0.3094 + }, + { + "start": 17341.76, + "end": 17344.66, + "probability": 0.967 + }, + { + "start": 17345.6, + "end": 17348.8, + "probability": 0.9988 + }, + { + "start": 17350.14, + "end": 17353.2, + "probability": 0.9982 + }, + { + "start": 17354.3, + "end": 17355.18, + "probability": 0.9366 + }, + { + "start": 17356.84, + "end": 17357.64, + "probability": 0.0833 + }, + { + "start": 17357.68, + "end": 17357.9, + "probability": 0.085 + }, + { + "start": 17357.9, + "end": 17359.8, + "probability": 0.765 + }, + { + "start": 17361.04, + "end": 17361.16, + "probability": 0.4957 + }, + { + "start": 17361.16, + "end": 17367.14, + "probability": 0.8555 + }, + { + "start": 17367.44, + "end": 17370.64, + "probability": 0.9578 + }, + { + "start": 17371.74, + "end": 17373.42, + "probability": 0.881 + }, + { + "start": 17373.52, + "end": 17375.58, + "probability": 0.9219 + }, + { + "start": 17376.66, + "end": 17379.28, + "probability": 0.8998 + }, + { + "start": 17380.78, + "end": 17381.88, + "probability": 0.6793 + }, + { + "start": 17382.76, + "end": 17383.91, + "probability": 0.9674 + }, + { + "start": 17385.38, + "end": 17388.94, + "probability": 0.8286 + }, + { + "start": 17389.68, + "end": 17390.62, + "probability": 0.9126 + }, + { + "start": 17390.94, + "end": 17391.66, + "probability": 0.8711 + }, + { + "start": 17392.9, + "end": 17396.14, + "probability": 0.9541 + }, + { + "start": 17399.32, + "end": 17402.18, + "probability": 0.9907 + }, + { + "start": 17405.06, + "end": 17411.32, + "probability": 0.9572 + }, + { + "start": 17412.72, + "end": 17415.92, + "probability": 0.9181 + }, + { + "start": 17417.38, + "end": 17423.9, + "probability": 0.9957 + }, + { + "start": 17425.22, + "end": 17430.56, + "probability": 0.9793 + }, + { + "start": 17432.08, + "end": 17432.82, + "probability": 0.947 + }, + { + "start": 17434.24, + "end": 17434.76, + "probability": 0.9639 + }, + { + "start": 17436.3, + "end": 17439.34, + "probability": 0.9243 + }, + { + "start": 17441.2, + "end": 17442.68, + "probability": 0.8658 + }, + { + "start": 17444.46, + "end": 17449.56, + "probability": 0.9554 + }, + { + "start": 17450.78, + "end": 17451.74, + "probability": 0.8074 + }, + { + "start": 17452.6, + "end": 17453.4, + "probability": 0.9824 + }, + { + "start": 17455.52, + "end": 17456.92, + "probability": 0.5647 + }, + { + "start": 17458.4, + "end": 17463.02, + "probability": 0.983 + }, + { + "start": 17464.28, + "end": 17465.56, + "probability": 0.8871 + }, + { + "start": 17467.34, + "end": 17470.48, + "probability": 0.9716 + }, + { + "start": 17471.58, + "end": 17477.06, + "probability": 0.9813 + }, + { + "start": 17477.54, + "end": 17479.1, + "probability": 0.9763 + }, + { + "start": 17479.1, + "end": 17479.24, + "probability": 0.8859 + }, + { + "start": 17480.04, + "end": 17480.78, + "probability": 0.7663 + }, + { + "start": 17480.86, + "end": 17482.0, + "probability": 0.9298 + }, + { + "start": 17482.5, + "end": 17483.44, + "probability": 0.9455 + }, + { + "start": 17483.48, + "end": 17484.22, + "probability": 0.7785 + }, + { + "start": 17484.68, + "end": 17485.94, + "probability": 0.8397 + }, + { + "start": 17486.02, + "end": 17488.68, + "probability": 0.7028 + }, + { + "start": 17488.9, + "end": 17490.26, + "probability": 0.9893 + }, + { + "start": 17490.26, + "end": 17492.72, + "probability": 0.8968 + }, + { + "start": 17492.76, + "end": 17493.94, + "probability": 0.8834 + }, + { + "start": 17494.34, + "end": 17494.86, + "probability": 0.8187 + }, + { + "start": 17495.34, + "end": 17495.77, + "probability": 0.8069 + }, + { + "start": 17496.04, + "end": 17496.58, + "probability": 0.9637 + }, + { + "start": 17496.7, + "end": 17498.42, + "probability": 0.7236 + }, + { + "start": 17498.42, + "end": 17499.38, + "probability": 0.8601 + }, + { + "start": 17500.2, + "end": 17501.28, + "probability": 0.9564 + }, + { + "start": 17502.94, + "end": 17503.88, + "probability": 0.8818 + }, + { + "start": 17504.84, + "end": 17506.97, + "probability": 0.6285 + }, + { + "start": 17507.42, + "end": 17509.2, + "probability": 0.8625 + }, + { + "start": 17509.72, + "end": 17509.86, + "probability": 0.2661 + }, + { + "start": 17509.86, + "end": 17513.34, + "probability": 0.5298 + }, + { + "start": 17513.4, + "end": 17514.2, + "probability": 0.3896 + }, + { + "start": 17514.26, + "end": 17514.26, + "probability": 0.4627 + }, + { + "start": 17514.72, + "end": 17517.64, + "probability": 0.967 + }, + { + "start": 17534.46, + "end": 17534.68, + "probability": 0.0135 + }, + { + "start": 17534.68, + "end": 17534.9, + "probability": 0.7332 + }, + { + "start": 17535.12, + "end": 17536.36, + "probability": 0.7314 + }, + { + "start": 17536.54, + "end": 17536.56, + "probability": 0.2976 + }, + { + "start": 17536.56, + "end": 17537.16, + "probability": 0.811 + }, + { + "start": 17537.24, + "end": 17538.66, + "probability": 0.6548 + }, + { + "start": 17538.76, + "end": 17540.7, + "probability": 0.972 + }, + { + "start": 17540.84, + "end": 17541.7, + "probability": 0.9482 + }, + { + "start": 17541.8, + "end": 17543.7, + "probability": 0.988 + }, + { + "start": 17545.0, + "end": 17549.18, + "probability": 0.992 + }, + { + "start": 17549.18, + "end": 17552.36, + "probability": 0.9988 + }, + { + "start": 17552.42, + "end": 17556.94, + "probability": 0.9926 + }, + { + "start": 17556.94, + "end": 17559.22, + "probability": 0.9993 + }, + { + "start": 17560.54, + "end": 17565.96, + "probability": 0.998 + }, + { + "start": 17567.04, + "end": 17567.86, + "probability": 0.7492 + }, + { + "start": 17567.96, + "end": 17572.5, + "probability": 0.9832 + }, + { + "start": 17573.4, + "end": 17575.7, + "probability": 0.9755 + }, + { + "start": 17576.56, + "end": 17579.4, + "probability": 0.9883 + }, + { + "start": 17580.64, + "end": 17583.66, + "probability": 0.9832 + }, + { + "start": 17584.3, + "end": 17589.22, + "probability": 0.9989 + }, + { + "start": 17589.88, + "end": 17592.86, + "probability": 0.9551 + }, + { + "start": 17593.18, + "end": 17594.92, + "probability": 0.4454 + }, + { + "start": 17595.0, + "end": 17595.42, + "probability": 0.9351 + }, + { + "start": 17595.8, + "end": 17598.3, + "probability": 0.9716 + }, + { + "start": 17599.68, + "end": 17607.9, + "probability": 0.9536 + }, + { + "start": 17608.54, + "end": 17615.4, + "probability": 0.9995 + }, + { + "start": 17617.7, + "end": 17623.8, + "probability": 0.9742 + }, + { + "start": 17624.88, + "end": 17628.4, + "probability": 0.7654 + }, + { + "start": 17629.24, + "end": 17634.9, + "probability": 0.9785 + }, + { + "start": 17634.9, + "end": 17639.54, + "probability": 0.9227 + }, + { + "start": 17640.8, + "end": 17645.48, + "probability": 0.9936 + }, + { + "start": 17646.04, + "end": 17649.62, + "probability": 0.9973 + }, + { + "start": 17650.36, + "end": 17654.5, + "probability": 0.9985 + }, + { + "start": 17655.28, + "end": 17658.54, + "probability": 0.968 + }, + { + "start": 17659.62, + "end": 17664.6, + "probability": 0.994 + }, + { + "start": 17665.22, + "end": 17668.34, + "probability": 0.9983 + }, + { + "start": 17669.12, + "end": 17674.66, + "probability": 0.9868 + }, + { + "start": 17675.26, + "end": 17683.08, + "probability": 0.9531 + }, + { + "start": 17683.38, + "end": 17687.6, + "probability": 0.9927 + }, + { + "start": 17687.6, + "end": 17694.98, + "probability": 0.9979 + }, + { + "start": 17695.88, + "end": 17698.88, + "probability": 0.9988 + }, + { + "start": 17698.88, + "end": 17702.36, + "probability": 0.9983 + }, + { + "start": 17703.02, + "end": 17706.82, + "probability": 0.9933 + }, + { + "start": 17707.0, + "end": 17710.92, + "probability": 0.9827 + }, + { + "start": 17711.42, + "end": 17718.5, + "probability": 0.9502 + }, + { + "start": 17718.66, + "end": 17721.84, + "probability": 0.9863 + }, + { + "start": 17722.48, + "end": 17724.4, + "probability": 0.9422 + }, + { + "start": 17725.08, + "end": 17727.5, + "probability": 0.9525 + }, + { + "start": 17727.6, + "end": 17729.4, + "probability": 0.9932 + }, + { + "start": 17729.86, + "end": 17735.42, + "probability": 0.9929 + }, + { + "start": 17735.92, + "end": 17738.38, + "probability": 0.8293 + }, + { + "start": 17738.8, + "end": 17743.12, + "probability": 0.9425 + }, + { + "start": 17743.78, + "end": 17745.18, + "probability": 0.9439 + }, + { + "start": 17745.44, + "end": 17745.76, + "probability": 0.9101 + }, + { + "start": 17746.92, + "end": 17748.8, + "probability": 0.7988 + }, + { + "start": 17749.54, + "end": 17754.48, + "probability": 0.9878 + }, + { + "start": 17757.76, + "end": 17758.0, + "probability": 0.4843 + }, + { + "start": 17758.86, + "end": 17760.37, + "probability": 0.3334 + }, + { + "start": 17761.92, + "end": 17762.52, + "probability": 0.4065 + }, + { + "start": 17762.82, + "end": 17763.88, + "probability": 0.7475 + }, + { + "start": 17771.96, + "end": 17773.64, + "probability": 0.7129 + }, + { + "start": 17774.08, + "end": 17775.0, + "probability": 0.1215 + }, + { + "start": 17775.6, + "end": 17780.04, + "probability": 0.3293 + }, + { + "start": 17781.57, + "end": 17786.3, + "probability": 0.0621 + }, + { + "start": 17786.3, + "end": 17787.48, + "probability": 0.0325 + }, + { + "start": 17792.4, + "end": 17792.94, + "probability": 0.0187 + }, + { + "start": 17793.44, + "end": 17793.44, + "probability": 0.0234 + }, + { + "start": 17793.44, + "end": 17794.42, + "probability": 0.5677 + }, + { + "start": 17794.56, + "end": 17797.44, + "probability": 0.0777 + }, + { + "start": 17798.26, + "end": 17799.0, + "probability": 0.0547 + }, + { + "start": 17807.14, + "end": 17807.84, + "probability": 0.5827 + }, + { + "start": 17835.04, + "end": 17836.02, + "probability": 0.0273 + }, + { + "start": 17838.33, + "end": 17840.44, + "probability": 0.4795 + }, + { + "start": 17842.54, + "end": 17843.78, + "probability": 0.1349 + }, + { + "start": 17843.78, + "end": 17845.28, + "probability": 0.0873 + }, + { + "start": 17845.78, + "end": 17845.8, + "probability": 0.0166 + }, + { + "start": 17845.8, + "end": 17845.8, + "probability": 0.1317 + }, + { + "start": 17845.8, + "end": 17845.8, + "probability": 0.2933 + }, + { + "start": 17845.8, + "end": 17845.8, + "probability": 0.2245 + }, + { + "start": 17845.8, + "end": 17845.82, + "probability": 0.2825 + }, + { + "start": 17845.82, + "end": 17845.98, + "probability": 0.0563 + }, + { + "start": 17846.0, + "end": 17846.0, + "probability": 0.0 + }, + { + "start": 17846.0, + "end": 17846.0, + "probability": 0.0 + }, + { + "start": 17846.0, + "end": 17846.0, + "probability": 0.0 + }, + { + "start": 17846.0, + "end": 17846.0, + "probability": 0.0 + }, + { + "start": 17846.0, + "end": 17846.0, + "probability": 0.0 + }, + { + "start": 17846.0, + "end": 17846.0, + "probability": 0.0 + }, + { + "start": 17846.0, + "end": 17846.0, + "probability": 0.0 + }, + { + "start": 17846.0, + "end": 17846.0, + "probability": 0.0 + }, + { + "start": 17846.0, + "end": 17846.0, + "probability": 0.0 + }, + { + "start": 17846.0, + "end": 17846.0, + "probability": 0.0 + }, + { + "start": 17846.0, + "end": 17846.0, + "probability": 0.0 + }, + { + "start": 17846.0, + "end": 17846.0, + "probability": 0.0 + }, + { + "start": 17846.24, + "end": 17848.6, + "probability": 0.8214 + }, + { + "start": 17848.82, + "end": 17850.0, + "probability": 0.6436 + }, + { + "start": 17850.1, + "end": 17853.92, + "probability": 0.9845 + }, + { + "start": 17854.28, + "end": 17854.38, + "probability": 0.2717 + }, + { + "start": 17854.38, + "end": 17855.56, + "probability": 0.9065 + }, + { + "start": 17867.12, + "end": 17868.2, + "probability": 0.6249 + }, + { + "start": 17868.3, + "end": 17868.3, + "probability": 0.5166 + }, + { + "start": 17868.3, + "end": 17868.7, + "probability": 0.6102 + }, + { + "start": 17868.78, + "end": 17870.04, + "probability": 0.8343 + }, + { + "start": 17870.86, + "end": 17874.16, + "probability": 0.991 + }, + { + "start": 17874.16, + "end": 17878.64, + "probability": 0.7921 + }, + { + "start": 17879.84, + "end": 17880.8, + "probability": 0.6196 + }, + { + "start": 17880.86, + "end": 17884.96, + "probability": 0.9705 + }, + { + "start": 17885.66, + "end": 17886.84, + "probability": 0.8491 + }, + { + "start": 17887.82, + "end": 17895.54, + "probability": 0.9805 + }, + { + "start": 17895.54, + "end": 17899.56, + "probability": 0.9696 + }, + { + "start": 17899.94, + "end": 17901.94, + "probability": 0.9327 + }, + { + "start": 17902.04, + "end": 17904.28, + "probability": 0.988 + }, + { + "start": 17904.92, + "end": 17912.22, + "probability": 0.9893 + }, + { + "start": 17912.22, + "end": 17917.5, + "probability": 0.9991 + }, + { + "start": 17918.32, + "end": 17919.56, + "probability": 0.7789 + }, + { + "start": 17920.8, + "end": 17923.82, + "probability": 0.9873 + }, + { + "start": 17925.42, + "end": 17929.48, + "probability": 0.9995 + }, + { + "start": 17930.34, + "end": 17935.42, + "probability": 0.9785 + }, + { + "start": 17935.6, + "end": 17936.54, + "probability": 0.5266 + }, + { + "start": 17936.62, + "end": 17938.1, + "probability": 0.9735 + }, + { + "start": 17938.96, + "end": 17940.8, + "probability": 0.7889 + }, + { + "start": 17940.82, + "end": 17943.24, + "probability": 0.9227 + }, + { + "start": 17943.46, + "end": 17945.12, + "probability": 0.9744 + }, + { + "start": 17945.22, + "end": 17948.52, + "probability": 0.9965 + }, + { + "start": 17950.16, + "end": 17950.96, + "probability": 0.8111 + }, + { + "start": 17951.18, + "end": 17952.6, + "probability": 0.9707 + }, + { + "start": 17952.68, + "end": 17954.7, + "probability": 0.9784 + }, + { + "start": 17954.96, + "end": 17958.66, + "probability": 0.9668 + }, + { + "start": 17958.66, + "end": 17962.7, + "probability": 0.9976 + }, + { + "start": 17963.26, + "end": 17968.58, + "probability": 0.9902 + }, + { + "start": 17968.74, + "end": 17971.86, + "probability": 0.9941 + }, + { + "start": 17971.86, + "end": 17975.38, + "probability": 0.9993 + }, + { + "start": 17976.56, + "end": 17977.82, + "probability": 0.8996 + }, + { + "start": 17978.5, + "end": 17985.36, + "probability": 0.9958 + }, + { + "start": 17985.46, + "end": 17991.26, + "probability": 0.9982 + }, + { + "start": 17991.66, + "end": 17995.14, + "probability": 0.9983 + }, + { + "start": 17995.14, + "end": 17998.42, + "probability": 0.9844 + }, + { + "start": 17999.74, + "end": 18001.94, + "probability": 0.9146 + }, + { + "start": 18002.88, + "end": 18006.7, + "probability": 0.9858 + }, + { + "start": 18011.16, + "end": 18012.82, + "probability": 0.6649 + }, + { + "start": 18013.46, + "end": 18013.92, + "probability": 0.4611 + }, + { + "start": 18013.98, + "end": 18018.08, + "probability": 0.9888 + }, + { + "start": 18018.86, + "end": 18020.92, + "probability": 0.9965 + }, + { + "start": 18021.06, + "end": 18023.34, + "probability": 0.9907 + }, + { + "start": 18023.44, + "end": 18024.5, + "probability": 0.984 + }, + { + "start": 18024.66, + "end": 18024.84, + "probability": 0.9624 + }, + { + "start": 18025.38, + "end": 18028.2, + "probability": 0.9988 + }, + { + "start": 18029.24, + "end": 18031.36, + "probability": 0.5747 + }, + { + "start": 18032.38, + "end": 18037.96, + "probability": 0.9966 + }, + { + "start": 18038.06, + "end": 18040.82, + "probability": 0.9954 + }, + { + "start": 18041.63, + "end": 18042.5, + "probability": 0.8615 + }, + { + "start": 18042.58, + "end": 18045.6, + "probability": 0.9961 + }, + { + "start": 18045.6, + "end": 18047.58, + "probability": 0.8233 + }, + { + "start": 18047.68, + "end": 18047.88, + "probability": 0.7479 + }, + { + "start": 18049.1, + "end": 18050.94, + "probability": 0.8772 + }, + { + "start": 18051.8, + "end": 18054.38, + "probability": 0.9719 + }, + { + "start": 18054.5, + "end": 18057.92, + "probability": 0.993 + }, + { + "start": 18058.18, + "end": 18061.4, + "probability": 0.8843 + }, + { + "start": 18062.54, + "end": 18064.36, + "probability": 0.7752 + }, + { + "start": 18064.52, + "end": 18069.69, + "probability": 0.9629 + }, + { + "start": 18071.08, + "end": 18071.86, + "probability": 0.6501 + }, + { + "start": 18071.88, + "end": 18076.24, + "probability": 0.9949 + }, + { + "start": 18076.42, + "end": 18076.86, + "probability": 0.5571 + }, + { + "start": 18085.76, + "end": 18087.96, + "probability": 0.0609 + }, + { + "start": 18090.72, + "end": 18092.72, + "probability": 0.0262 + }, + { + "start": 18098.0, + "end": 18098.48, + "probability": 0.0517 + }, + { + "start": 18113.96, + "end": 18117.0, + "probability": 0.4003 + }, + { + "start": 18120.06, + "end": 18122.44, + "probability": 0.0877 + }, + { + "start": 18122.44, + "end": 18122.92, + "probability": 0.1469 + }, + { + "start": 18124.02, + "end": 18127.8, + "probability": 0.235 + }, + { + "start": 18128.36, + "end": 18128.68, + "probability": 0.1058 + }, + { + "start": 18128.74, + "end": 18129.2, + "probability": 0.241 + }, + { + "start": 18129.24, + "end": 18129.46, + "probability": 0.2144 + }, + { + "start": 18129.62, + "end": 18131.44, + "probability": 0.0517 + }, + { + "start": 18136.22, + "end": 18138.02, + "probability": 0.0697 + }, + { + "start": 18140.4, + "end": 18144.62, + "probability": 0.098 + }, + { + "start": 18145.24, + "end": 18148.06, + "probability": 0.0706 + }, + { + "start": 18148.06, + "end": 18148.06, + "probability": 0.0217 + }, + { + "start": 18148.06, + "end": 18148.16, + "probability": 0.0378 + }, + { + "start": 18149.25, + "end": 18150.2, + "probability": 0.0676 + }, + { + "start": 18150.2, + "end": 18150.36, + "probability": 0.0172 + }, + { + "start": 18150.36, + "end": 18151.7, + "probability": 0.0605 + }, + { + "start": 18152.72, + "end": 18155.2, + "probability": 0.047 + }, + { + "start": 18158.72, + "end": 18160.94, + "probability": 0.0456 + }, + { + "start": 18161.0, + "end": 18161.0, + "probability": 0.0 + }, + { + "start": 18161.0, + "end": 18161.0, + "probability": 0.0 + }, + { + "start": 18161.0, + "end": 18161.0, + "probability": 0.0 + }, + { + "start": 18161.0, + "end": 18161.0, + "probability": 0.0 + }, + { + "start": 18161.0, + "end": 18161.0, + "probability": 0.0 + }, + { + "start": 18161.0, + "end": 18161.0, + "probability": 0.0 + }, + { + "start": 18161.0, + "end": 18161.0, + "probability": 0.0 + }, + { + "start": 18161.0, + "end": 18161.0, + "probability": 0.0 + }, + { + "start": 18161.0, + "end": 18161.0, + "probability": 0.0 + }, + { + "start": 18161.0, + "end": 18161.0, + "probability": 0.0 + }, + { + "start": 18161.0, + "end": 18161.0, + "probability": 0.0 + }, + { + "start": 18161.0, + "end": 18161.0, + "probability": 0.0 + }, + { + "start": 18161.0, + "end": 18161.0, + "probability": 0.0 + }, + { + "start": 18161.78, + "end": 18165.74, + "probability": 0.9798 + }, + { + "start": 18165.88, + "end": 18171.82, + "probability": 0.8306 + }, + { + "start": 18171.82, + "end": 18173.86, + "probability": 0.9971 + }, + { + "start": 18174.0, + "end": 18177.06, + "probability": 0.7966 + }, + { + "start": 18177.06, + "end": 18181.14, + "probability": 0.9915 + }, + { + "start": 18181.22, + "end": 18186.06, + "probability": 0.9305 + }, + { + "start": 18187.02, + "end": 18192.88, + "probability": 0.9237 + }, + { + "start": 18193.5, + "end": 18201.96, + "probability": 0.9559 + }, + { + "start": 18202.12, + "end": 18203.06, + "probability": 0.7238 + }, + { + "start": 18203.24, + "end": 18207.14, + "probability": 0.9355 + }, + { + "start": 18207.36, + "end": 18212.08, + "probability": 0.9311 + }, + { + "start": 18212.12, + "end": 18213.74, + "probability": 0.864 + }, + { + "start": 18213.88, + "end": 18216.06, + "probability": 0.9972 + }, + { + "start": 18216.46, + "end": 18216.96, + "probability": 0.9575 + }, + { + "start": 18218.36, + "end": 18219.88, + "probability": 0.6588 + }, + { + "start": 18221.2, + "end": 18222.64, + "probability": 0.8382 + }, + { + "start": 18222.7, + "end": 18223.22, + "probability": 0.7517 + }, + { + "start": 18223.3, + "end": 18224.1, + "probability": 0.8895 + }, + { + "start": 18224.5, + "end": 18224.64, + "probability": 0.8303 + }, + { + "start": 18224.84, + "end": 18225.76, + "probability": 0.726 + }, + { + "start": 18228.1, + "end": 18228.54, + "probability": 0.9548 + }, + { + "start": 18230.76, + "end": 18231.4, + "probability": 0.9427 + }, + { + "start": 18233.34, + "end": 18234.24, + "probability": 0.9878 + }, + { + "start": 18234.5, + "end": 18236.0, + "probability": 0.9814 + }, + { + "start": 18244.94, + "end": 18248.02, + "probability": 0.4608 + }, + { + "start": 18248.82, + "end": 18250.64, + "probability": 0.6861 + }, + { + "start": 18250.76, + "end": 18254.84, + "probability": 0.8838 + }, + { + "start": 18254.98, + "end": 18262.96, + "probability": 0.9546 + }, + { + "start": 18264.32, + "end": 18269.96, + "probability": 0.9974 + }, + { + "start": 18270.98, + "end": 18272.54, + "probability": 0.6212 + }, + { + "start": 18273.16, + "end": 18274.74, + "probability": 0.64 + }, + { + "start": 18274.82, + "end": 18279.64, + "probability": 0.9229 + }, + { + "start": 18279.64, + "end": 18285.88, + "probability": 0.8418 + }, + { + "start": 18286.74, + "end": 18287.46, + "probability": 0.9496 + }, + { + "start": 18287.52, + "end": 18288.12, + "probability": 0.7329 + }, + { + "start": 18288.2, + "end": 18293.78, + "probability": 0.98 + }, + { + "start": 18294.4, + "end": 18301.24, + "probability": 0.9959 + }, + { + "start": 18302.08, + "end": 18302.66, + "probability": 0.4026 + }, + { + "start": 18303.98, + "end": 18308.12, + "probability": 0.8938 + }, + { + "start": 18308.18, + "end": 18316.02, + "probability": 0.9458 + }, + { + "start": 18316.52, + "end": 18318.94, + "probability": 0.9968 + }, + { + "start": 18319.46, + "end": 18321.9, + "probability": 0.9905 + }, + { + "start": 18322.34, + "end": 18326.2, + "probability": 0.9978 + }, + { + "start": 18328.4, + "end": 18329.92, + "probability": 0.8319 + }, + { + "start": 18330.54, + "end": 18330.9, + "probability": 0.959 + }, + { + "start": 18330.96, + "end": 18335.32, + "probability": 0.9847 + }, + { + "start": 18335.41, + "end": 18338.88, + "probability": 0.7097 + }, + { + "start": 18338.92, + "end": 18340.3, + "probability": 0.9658 + }, + { + "start": 18341.5, + "end": 18343.74, + "probability": 0.3152 + }, + { + "start": 18343.86, + "end": 18344.28, + "probability": 0.4276 + }, + { + "start": 18344.32, + "end": 18344.84, + "probability": 0.6657 + }, + { + "start": 18361.78, + "end": 18366.58, + "probability": 0.1573 + }, + { + "start": 18368.87, + "end": 18370.94, + "probability": 0.0507 + }, + { + "start": 18370.94, + "end": 18370.94, + "probability": 0.5985 + }, + { + "start": 18370.94, + "end": 18371.04, + "probability": 0.3154 + }, + { + "start": 18371.24, + "end": 18375.9, + "probability": 0.8234 + }, + { + "start": 18375.9, + "end": 18376.5, + "probability": 0.1875 + }, + { + "start": 18383.42, + "end": 18384.2, + "probability": 0.0209 + }, + { + "start": 18385.64, + "end": 18385.84, + "probability": 0.0644 + }, + { + "start": 18385.84, + "end": 18386.0, + "probability": 0.0102 + }, + { + "start": 18386.82, + "end": 18388.06, + "probability": 0.1236 + }, + { + "start": 18388.06, + "end": 18388.3, + "probability": 0.0829 + }, + { + "start": 18393.3, + "end": 18397.62, + "probability": 0.0973 + }, + { + "start": 18397.86, + "end": 18397.86, + "probability": 0.1109 + }, + { + "start": 18398.0, + "end": 18398.68, + "probability": 0.509 + }, + { + "start": 18400.01, + "end": 18406.28, + "probability": 0.9809 + }, + { + "start": 18408.26, + "end": 18408.96, + "probability": 0.1225 + }, + { + "start": 18409.28, + "end": 18412.04, + "probability": 0.0532 + }, + { + "start": 18412.34, + "end": 18413.0, + "probability": 0.0755 + }, + { + "start": 18413.08, + "end": 18414.4, + "probability": 0.0867 + }, + { + "start": 18414.87, + "end": 18415.22, + "probability": 0.2145 + }, + { + "start": 18415.22, + "end": 18415.9, + "probability": 0.1559 + }, + { + "start": 18416.56, + "end": 18419.82, + "probability": 0.2692 + }, + { + "start": 18421.76, + "end": 18422.76, + "probability": 0.035 + }, + { + "start": 18423.0, + "end": 18423.0, + "probability": 0.0 + }, + { + "start": 18423.0, + "end": 18423.0, + "probability": 0.0 + }, + { + "start": 18423.0, + "end": 18423.0, + "probability": 0.0 + }, + { + "start": 18423.0, + "end": 18423.0, + "probability": 0.0 + }, + { + "start": 18423.87, + "end": 18424.92, + "probability": 0.0192 + }, + { + "start": 18424.92, + "end": 18429.94, + "probability": 0.7376 + }, + { + "start": 18429.94, + "end": 18434.7, + "probability": 0.9954 + }, + { + "start": 18435.84, + "end": 18436.46, + "probability": 0.6603 + }, + { + "start": 18436.62, + "end": 18441.9, + "probability": 0.9924 + }, + { + "start": 18442.86, + "end": 18444.46, + "probability": 0.6916 + }, + { + "start": 18444.56, + "end": 18445.15, + "probability": 0.8494 + }, + { + "start": 18446.16, + "end": 18448.0, + "probability": 0.9569 + }, + { + "start": 18448.16, + "end": 18448.68, + "probability": 0.7831 + }, + { + "start": 18449.36, + "end": 18451.44, + "probability": 0.9435 + }, + { + "start": 18452.04, + "end": 18459.1, + "probability": 0.9775 + }, + { + "start": 18459.92, + "end": 18463.34, + "probability": 0.795 + }, + { + "start": 18464.88, + "end": 18468.84, + "probability": 0.9003 + }, + { + "start": 18469.8, + "end": 18474.84, + "probability": 0.8904 + }, + { + "start": 18475.24, + "end": 18476.18, + "probability": 0.7578 + }, + { + "start": 18476.4, + "end": 18477.1, + "probability": 0.8256 + }, + { + "start": 18477.24, + "end": 18478.5, + "probability": 0.4416 + }, + { + "start": 18478.98, + "end": 18480.74, + "probability": 0.9957 + }, + { + "start": 18481.16, + "end": 18482.4, + "probability": 0.9869 + }, + { + "start": 18482.88, + "end": 18486.34, + "probability": 0.8475 + }, + { + "start": 18486.86, + "end": 18490.94, + "probability": 0.7627 + }, + { + "start": 18491.5, + "end": 18495.34, + "probability": 0.9761 + }, + { + "start": 18495.78, + "end": 18496.2, + "probability": 0.4996 + }, + { + "start": 18496.44, + "end": 18503.1, + "probability": 0.9762 + }, + { + "start": 18503.32, + "end": 18505.04, + "probability": 0.7773 + }, + { + "start": 18505.68, + "end": 18506.3, + "probability": 0.4933 + }, + { + "start": 18506.36, + "end": 18507.38, + "probability": 0.9228 + }, + { + "start": 18507.5, + "end": 18511.32, + "probability": 0.9719 + }, + { + "start": 18511.9, + "end": 18515.8, + "probability": 0.9944 + }, + { + "start": 18516.16, + "end": 18518.96, + "probability": 0.9305 + }, + { + "start": 18519.34, + "end": 18522.28, + "probability": 0.9782 + }, + { + "start": 18522.64, + "end": 18527.42, + "probability": 0.9535 + }, + { + "start": 18527.86, + "end": 18531.52, + "probability": 0.9954 + }, + { + "start": 18532.06, + "end": 18533.36, + "probability": 0.6986 + }, + { + "start": 18534.06, + "end": 18538.92, + "probability": 0.5065 + }, + { + "start": 18538.92, + "end": 18542.74, + "probability": 0.9712 + }, + { + "start": 18542.96, + "end": 18543.56, + "probability": 0.5473 + }, + { + "start": 18544.06, + "end": 18547.44, + "probability": 0.9822 + }, + { + "start": 18547.78, + "end": 18548.42, + "probability": 0.721 + }, + { + "start": 18548.76, + "end": 18552.92, + "probability": 0.9573 + }, + { + "start": 18553.44, + "end": 18559.76, + "probability": 0.8921 + }, + { + "start": 18561.04, + "end": 18568.36, + "probability": 0.9595 + }, + { + "start": 18568.5, + "end": 18572.42, + "probability": 0.933 + }, + { + "start": 18572.72, + "end": 18573.1, + "probability": 0.7629 + }, + { + "start": 18573.68, + "end": 18574.96, + "probability": 0.568 + }, + { + "start": 18576.34, + "end": 18578.7, + "probability": 0.5444 + }, + { + "start": 18579.12, + "end": 18579.98, + "probability": 0.7407 + }, + { + "start": 18581.52, + "end": 18583.84, + "probability": 0.9011 + }, + { + "start": 18605.26, + "end": 18607.8, + "probability": 0.6406 + }, + { + "start": 18609.78, + "end": 18611.5, + "probability": 0.9552 + }, + { + "start": 18612.34, + "end": 18614.32, + "probability": 0.8694 + }, + { + "start": 18615.02, + "end": 18619.24, + "probability": 0.9695 + }, + { + "start": 18620.14, + "end": 18622.84, + "probability": 0.9989 + }, + { + "start": 18624.32, + "end": 18624.72, + "probability": 0.5545 + }, + { + "start": 18624.8, + "end": 18631.0, + "probability": 0.8982 + }, + { + "start": 18631.76, + "end": 18633.08, + "probability": 0.8049 + }, + { + "start": 18633.1, + "end": 18633.82, + "probability": 0.913 + }, + { + "start": 18633.9, + "end": 18634.84, + "probability": 0.884 + }, + { + "start": 18635.0, + "end": 18639.12, + "probability": 0.854 + }, + { + "start": 18639.12, + "end": 18639.12, + "probability": 0.0254 + }, + { + "start": 18639.12, + "end": 18642.8, + "probability": 0.9843 + }, + { + "start": 18643.36, + "end": 18645.1, + "probability": 0.534 + }, + { + "start": 18645.8, + "end": 18649.74, + "probability": 0.8815 + }, + { + "start": 18650.58, + "end": 18651.32, + "probability": 0.7551 + }, + { + "start": 18651.98, + "end": 18655.94, + "probability": 0.9646 + }, + { + "start": 18656.8, + "end": 18658.55, + "probability": 0.9312 + }, + { + "start": 18659.4, + "end": 18660.92, + "probability": 0.9922 + }, + { + "start": 18661.46, + "end": 18662.9, + "probability": 0.8589 + }, + { + "start": 18663.04, + "end": 18665.94, + "probability": 0.9808 + }, + { + "start": 18667.34, + "end": 18670.58, + "probability": 0.8466 + }, + { + "start": 18671.4, + "end": 18676.56, + "probability": 0.7513 + }, + { + "start": 18677.0, + "end": 18677.56, + "probability": 0.6614 + }, + { + "start": 18678.54, + "end": 18680.84, + "probability": 0.728 + }, + { + "start": 18681.88, + "end": 18685.86, + "probability": 0.9245 + }, + { + "start": 18685.98, + "end": 18686.54, + "probability": 0.9407 + }, + { + "start": 18687.72, + "end": 18695.5, + "probability": 0.9303 + }, + { + "start": 18695.88, + "end": 18697.92, + "probability": 0.7274 + }, + { + "start": 18699.06, + "end": 18699.12, + "probability": 0.0318 + }, + { + "start": 18699.12, + "end": 18700.6, + "probability": 0.8213 + }, + { + "start": 18700.74, + "end": 18703.08, + "probability": 0.686 + }, + { + "start": 18703.82, + "end": 18704.85, + "probability": 0.8969 + }, + { + "start": 18706.2, + "end": 18711.28, + "probability": 0.7836 + }, + { + "start": 18713.04, + "end": 18714.5, + "probability": 0.3313 + }, + { + "start": 18715.04, + "end": 18717.44, + "probability": 0.8094 + }, + { + "start": 18718.44, + "end": 18719.96, + "probability": 0.8047 + }, + { + "start": 18720.44, + "end": 18721.38, + "probability": 0.8393 + }, + { + "start": 18721.72, + "end": 18723.12, + "probability": 0.653 + }, + { + "start": 18723.22, + "end": 18724.43, + "probability": 0.7812 + }, + { + "start": 18725.05, + "end": 18728.36, + "probability": 0.9697 + }, + { + "start": 18728.82, + "end": 18728.96, + "probability": 0.791 + }, + { + "start": 18729.08, + "end": 18730.5, + "probability": 0.8384 + }, + { + "start": 18731.02, + "end": 18733.82, + "probability": 0.9871 + }, + { + "start": 18734.06, + "end": 18735.9, + "probability": 0.8762 + }, + { + "start": 18736.3, + "end": 18740.04, + "probability": 0.9211 + }, + { + "start": 18740.34, + "end": 18742.38, + "probability": 0.9922 + }, + { + "start": 18742.9, + "end": 18748.72, + "probability": 0.9727 + }, + { + "start": 18749.36, + "end": 18752.1, + "probability": 0.85 + }, + { + "start": 18752.78, + "end": 18757.12, + "probability": 0.9565 + }, + { + "start": 18757.18, + "end": 18757.86, + "probability": 0.8678 + }, + { + "start": 18758.54, + "end": 18759.26, + "probability": 0.8804 + }, + { + "start": 18759.4, + "end": 18760.44, + "probability": 0.8914 + }, + { + "start": 18760.68, + "end": 18761.68, + "probability": 0.5833 + }, + { + "start": 18761.84, + "end": 18763.96, + "probability": 0.9023 + }, + { + "start": 18764.08, + "end": 18768.08, + "probability": 0.8056 + }, + { + "start": 18768.22, + "end": 18768.8, + "probability": 0.2503 + }, + { + "start": 18770.08, + "end": 18771.74, + "probability": 0.1381 + }, + { + "start": 18771.74, + "end": 18773.16, + "probability": 0.2158 + }, + { + "start": 18773.16, + "end": 18778.18, + "probability": 0.9455 + }, + { + "start": 18778.24, + "end": 18782.78, + "probability": 0.7733 + }, + { + "start": 18782.84, + "end": 18784.12, + "probability": 0.838 + }, + { + "start": 18784.66, + "end": 18785.4, + "probability": 0.981 + }, + { + "start": 18785.66, + "end": 18789.1, + "probability": 0.7186 + }, + { + "start": 18792.84, + "end": 18799.26, + "probability": 0.6691 + }, + { + "start": 18799.4, + "end": 18806.3, + "probability": 0.978 + }, + { + "start": 18806.82, + "end": 18807.96, + "probability": 0.4431 + }, + { + "start": 18808.58, + "end": 18811.08, + "probability": 0.7798 + }, + { + "start": 18811.12, + "end": 18811.34, + "probability": 0.6583 + }, + { + "start": 18811.74, + "end": 18813.64, + "probability": 0.6305 + }, + { + "start": 18814.34, + "end": 18817.32, + "probability": 0.9289 + }, + { + "start": 18817.4, + "end": 18817.88, + "probability": 0.9273 + }, + { + "start": 18818.0, + "end": 18820.34, + "probability": 0.9395 + }, + { + "start": 18820.42, + "end": 18821.56, + "probability": 0.7363 + }, + { + "start": 18821.6, + "end": 18825.84, + "probability": 0.9352 + }, + { + "start": 18826.54, + "end": 18827.86, + "probability": 0.7373 + }, + { + "start": 18827.86, + "end": 18829.82, + "probability": 0.875 + }, + { + "start": 18829.84, + "end": 18831.96, + "probability": 0.7576 + }, + { + "start": 18832.04, + "end": 18833.64, + "probability": 0.8841 + }, + { + "start": 18834.0, + "end": 18834.52, + "probability": 0.8888 + }, + { + "start": 18835.34, + "end": 18838.66, + "probability": 0.8903 + }, + { + "start": 18842.78, + "end": 18844.24, + "probability": 0.9717 + }, + { + "start": 18844.3, + "end": 18846.12, + "probability": 0.8905 + }, + { + "start": 18846.58, + "end": 18847.76, + "probability": 0.849 + }, + { + "start": 18848.12, + "end": 18849.42, + "probability": 0.8369 + }, + { + "start": 18849.58, + "end": 18850.64, + "probability": 0.9222 + }, + { + "start": 18850.68, + "end": 18853.5, + "probability": 0.8701 + }, + { + "start": 18854.74, + "end": 18856.3, + "probability": 0.996 + }, + { + "start": 18857.82, + "end": 18859.02, + "probability": 0.291 + }, + { + "start": 18860.14, + "end": 18867.34, + "probability": 0.7068 + }, + { + "start": 18868.72, + "end": 18872.52, + "probability": 0.8277 + }, + { + "start": 18873.16, + "end": 18874.32, + "probability": 0.8822 + }, + { + "start": 18874.52, + "end": 18879.12, + "probability": 0.8682 + }, + { + "start": 18879.64, + "end": 18882.26, + "probability": 0.9943 + }, + { + "start": 18882.9, + "end": 18883.58, + "probability": 0.604 + }, + { + "start": 18884.1, + "end": 18886.43, + "probability": 0.9839 + }, + { + "start": 18887.08, + "end": 18890.52, + "probability": 0.9762 + }, + { + "start": 18891.78, + "end": 18893.98, + "probability": 0.9604 + }, + { + "start": 18895.08, + "end": 18896.42, + "probability": 0.7876 + }, + { + "start": 18896.92, + "end": 18902.0, + "probability": 0.9946 + }, + { + "start": 18902.4, + "end": 18907.12, + "probability": 0.9945 + }, + { + "start": 18907.3, + "end": 18910.2, + "probability": 0.8219 + }, + { + "start": 18910.3, + "end": 18912.26, + "probability": 0.2386 + }, + { + "start": 18912.54, + "end": 18913.38, + "probability": 0.8122 + }, + { + "start": 18913.56, + "end": 18918.4, + "probability": 0.3474 + }, + { + "start": 18918.68, + "end": 18921.69, + "probability": 0.5792 + }, + { + "start": 18921.98, + "end": 18923.21, + "probability": 0.946 + }, + { + "start": 18924.61, + "end": 18928.44, + "probability": 0.8355 + }, + { + "start": 18928.62, + "end": 18930.16, + "probability": 0.9331 + }, + { + "start": 18930.28, + "end": 18931.06, + "probability": 0.9594 + }, + { + "start": 18931.18, + "end": 18933.16, + "probability": 0.6154 + }, + { + "start": 18933.34, + "end": 18936.34, + "probability": 0.9354 + }, + { + "start": 18936.5, + "end": 18937.74, + "probability": 0.791 + }, + { + "start": 18939.4, + "end": 18940.86, + "probability": 0.9965 + }, + { + "start": 18941.56, + "end": 18943.09, + "probability": 0.5797 + }, + { + "start": 18943.24, + "end": 18945.76, + "probability": 0.938 + }, + { + "start": 18945.86, + "end": 18947.92, + "probability": 0.9914 + }, + { + "start": 18948.28, + "end": 18950.28, + "probability": 0.517 + }, + { + "start": 18951.02, + "end": 18951.44, + "probability": 0.7012 + }, + { + "start": 18951.48, + "end": 18952.08, + "probability": 0.6309 + }, + { + "start": 18953.95, + "end": 18954.67, + "probability": 0.0885 + }, + { + "start": 18968.2, + "end": 18974.62, + "probability": 0.8451 + }, + { + "start": 18975.48, + "end": 18975.8, + "probability": 0.5939 + }, + { + "start": 18976.58, + "end": 18978.66, + "probability": 0.1186 + }, + { + "start": 18979.56, + "end": 18984.74, + "probability": 0.6625 + }, + { + "start": 18984.78, + "end": 18986.32, + "probability": 0.1904 + }, + { + "start": 18986.32, + "end": 18987.76, + "probability": 0.0593 + }, + { + "start": 18987.94, + "end": 18989.44, + "probability": 0.3359 + }, + { + "start": 18991.1, + "end": 18993.68, + "probability": 0.1093 + }, + { + "start": 18994.58, + "end": 18995.0, + "probability": 0.0842 + }, + { + "start": 18997.42, + "end": 19000.18, + "probability": 0.0431 + }, + { + "start": 19000.18, + "end": 19001.32, + "probability": 0.0635 + }, + { + "start": 19003.61, + "end": 19004.44, + "probability": 0.0313 + }, + { + "start": 19091.68, + "end": 19091.68, + "probability": 0.0 + } + ], + "segments_count": 6112, + "words_count": 31078, + "avg_words_per_segment": 5.0848, + "avg_segment_duration": 2.26, + "avg_words_per_minute": 97.6698, + "plenum_id": "34722", + "duration": 19091.68, + "title": null, + "plenum_date": "2014-02-03" +} \ No newline at end of file