diff --git "a/46315/metadata.json" "b/46315/metadata.json" new file mode 100644--- /dev/null +++ "b/46315/metadata.json" @@ -0,0 +1,40487 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "46315", + "quality_score": 0.861, + "per_segment_quality_scores": [ + { + "start": 68.52, + "end": 69.18, + "probability": 0.0052 + }, + { + "start": 74.08, + "end": 78.06, + "probability": 0.7232 + }, + { + "start": 78.16, + "end": 79.06, + "probability": 0.3715 + }, + { + "start": 79.72, + "end": 83.82, + "probability": 0.9833 + }, + { + "start": 84.38, + "end": 85.74, + "probability": 0.8532 + }, + { + "start": 91.82, + "end": 95.9, + "probability": 0.7414 + }, + { + "start": 95.98, + "end": 97.28, + "probability": 0.7681 + }, + { + "start": 98.15, + "end": 99.9, + "probability": 0.4894 + }, + { + "start": 101.1, + "end": 106.92, + "probability": 0.6246 + }, + { + "start": 108.9, + "end": 114.2, + "probability": 0.2904 + }, + { + "start": 114.76, + "end": 118.1, + "probability": 0.8573 + }, + { + "start": 118.62, + "end": 119.48, + "probability": 0.6624 + }, + { + "start": 120.5, + "end": 123.58, + "probability": 0.9451 + }, + { + "start": 123.82, + "end": 126.56, + "probability": 0.1975 + }, + { + "start": 127.28, + "end": 129.24, + "probability": 0.5438 + }, + { + "start": 129.32, + "end": 130.16, + "probability": 0.9712 + }, + { + "start": 136.5, + "end": 138.8, + "probability": 0.2268 + }, + { + "start": 138.82, + "end": 139.4, + "probability": 0.6256 + }, + { + "start": 139.9, + "end": 142.0, + "probability": 0.8915 + }, + { + "start": 142.24, + "end": 143.98, + "probability": 0.6289 + }, + { + "start": 144.72, + "end": 147.1, + "probability": 0.7733 + }, + { + "start": 147.9, + "end": 149.74, + "probability": 0.6975 + }, + { + "start": 150.56, + "end": 152.2, + "probability": 0.7107 + }, + { + "start": 153.44, + "end": 159.84, + "probability": 0.9849 + }, + { + "start": 162.28, + "end": 164.52, + "probability": 0.4939 + }, + { + "start": 165.98, + "end": 171.64, + "probability": 0.7464 + }, + { + "start": 172.36, + "end": 175.14, + "probability": 0.8299 + }, + { + "start": 176.5, + "end": 176.76, + "probability": 0.9626 + }, + { + "start": 177.36, + "end": 180.38, + "probability": 0.8263 + }, + { + "start": 180.38, + "end": 183.96, + "probability": 0.9845 + }, + { + "start": 184.7, + "end": 187.86, + "probability": 0.9874 + }, + { + "start": 189.05, + "end": 193.1, + "probability": 0.6895 + }, + { + "start": 193.22, + "end": 197.1, + "probability": 0.9558 + }, + { + "start": 198.12, + "end": 202.66, + "probability": 0.9861 + }, + { + "start": 203.34, + "end": 207.14, + "probability": 0.9918 + }, + { + "start": 207.14, + "end": 210.28, + "probability": 0.9623 + }, + { + "start": 211.48, + "end": 212.78, + "probability": 0.7554 + }, + { + "start": 212.82, + "end": 213.48, + "probability": 0.5894 + }, + { + "start": 213.62, + "end": 214.78, + "probability": 0.7062 + }, + { + "start": 215.62, + "end": 217.42, + "probability": 0.7963 + }, + { + "start": 218.46, + "end": 219.4, + "probability": 0.9375 + }, + { + "start": 219.52, + "end": 222.56, + "probability": 0.8448 + }, + { + "start": 223.4, + "end": 227.98, + "probability": 0.9089 + }, + { + "start": 229.38, + "end": 231.2, + "probability": 0.9104 + }, + { + "start": 232.58, + "end": 235.64, + "probability": 0.9772 + }, + { + "start": 236.3, + "end": 239.64, + "probability": 0.994 + }, + { + "start": 240.82, + "end": 242.84, + "probability": 0.9526 + }, + { + "start": 244.18, + "end": 245.46, + "probability": 0.9181 + }, + { + "start": 246.78, + "end": 248.02, + "probability": 0.7471 + }, + { + "start": 248.06, + "end": 250.82, + "probability": 0.981 + }, + { + "start": 251.5, + "end": 252.04, + "probability": 0.8777 + }, + { + "start": 252.96, + "end": 255.82, + "probability": 0.9944 + }, + { + "start": 257.04, + "end": 261.42, + "probability": 0.9905 + }, + { + "start": 261.5, + "end": 262.28, + "probability": 0.9961 + }, + { + "start": 263.02, + "end": 263.98, + "probability": 0.9482 + }, + { + "start": 265.34, + "end": 269.88, + "probability": 0.9658 + }, + { + "start": 270.84, + "end": 272.84, + "probability": 0.993 + }, + { + "start": 273.48, + "end": 274.56, + "probability": 0.9817 + }, + { + "start": 275.7, + "end": 277.28, + "probability": 0.992 + }, + { + "start": 278.06, + "end": 282.0, + "probability": 0.7861 + }, + { + "start": 284.46, + "end": 285.78, + "probability": 0.6327 + }, + { + "start": 285.82, + "end": 288.52, + "probability": 0.6852 + }, + { + "start": 288.7, + "end": 292.68, + "probability": 0.9622 + }, + { + "start": 293.68, + "end": 296.32, + "probability": 0.6685 + }, + { + "start": 297.38, + "end": 301.0, + "probability": 0.8279 + }, + { + "start": 301.88, + "end": 305.7, + "probability": 0.6925 + }, + { + "start": 306.52, + "end": 309.64, + "probability": 0.6649 + }, + { + "start": 309.68, + "end": 311.14, + "probability": 0.9541 + }, + { + "start": 311.74, + "end": 312.32, + "probability": 0.3365 + }, + { + "start": 312.34, + "end": 319.38, + "probability": 0.9894 + }, + { + "start": 319.88, + "end": 321.16, + "probability": 0.0522 + }, + { + "start": 321.68, + "end": 323.14, + "probability": 0.7485 + }, + { + "start": 323.34, + "end": 326.22, + "probability": 0.8289 + }, + { + "start": 326.3, + "end": 328.78, + "probability": 0.9007 + }, + { + "start": 328.94, + "end": 332.0, + "probability": 0.8604 + }, + { + "start": 333.1, + "end": 336.02, + "probability": 0.763 + }, + { + "start": 336.84, + "end": 343.3, + "probability": 0.9895 + }, + { + "start": 343.6, + "end": 343.74, + "probability": 0.4458 + }, + { + "start": 343.74, + "end": 350.46, + "probability": 0.7907 + }, + { + "start": 351.0, + "end": 351.66, + "probability": 0.7954 + }, + { + "start": 352.22, + "end": 354.34, + "probability": 0.6315 + }, + { + "start": 354.44, + "end": 356.26, + "probability": 0.811 + }, + { + "start": 363.18, + "end": 364.96, + "probability": 0.6677 + }, + { + "start": 365.78, + "end": 370.06, + "probability": 0.9775 + }, + { + "start": 370.72, + "end": 374.18, + "probability": 0.9614 + }, + { + "start": 374.18, + "end": 377.18, + "probability": 0.9775 + }, + { + "start": 377.86, + "end": 378.72, + "probability": 0.9131 + }, + { + "start": 379.44, + "end": 382.3, + "probability": 0.8991 + }, + { + "start": 382.94, + "end": 388.74, + "probability": 0.9318 + }, + { + "start": 389.22, + "end": 392.98, + "probability": 0.475 + }, + { + "start": 394.0, + "end": 396.82, + "probability": 0.8119 + }, + { + "start": 396.9, + "end": 398.54, + "probability": 0.9689 + }, + { + "start": 399.14, + "end": 400.98, + "probability": 0.7141 + }, + { + "start": 402.04, + "end": 405.94, + "probability": 0.7713 + }, + { + "start": 406.56, + "end": 406.98, + "probability": 0.9058 + }, + { + "start": 407.16, + "end": 409.92, + "probability": 0.8942 + }, + { + "start": 409.92, + "end": 412.57, + "probability": 0.9874 + }, + { + "start": 413.48, + "end": 413.64, + "probability": 0.7144 + }, + { + "start": 414.02, + "end": 415.64, + "probability": 0.4539 + }, + { + "start": 415.7, + "end": 417.24, + "probability": 0.6844 + }, + { + "start": 418.54, + "end": 423.9, + "probability": 0.5979 + }, + { + "start": 425.4, + "end": 426.24, + "probability": 0.7887 + }, + { + "start": 426.34, + "end": 427.96, + "probability": 0.9817 + }, + { + "start": 428.72, + "end": 430.8, + "probability": 0.5714 + }, + { + "start": 430.8, + "end": 436.42, + "probability": 0.3831 + }, + { + "start": 436.42, + "end": 437.22, + "probability": 0.7876 + }, + { + "start": 439.7, + "end": 441.88, + "probability": 0.7897 + }, + { + "start": 442.72, + "end": 445.9, + "probability": 0.9536 + }, + { + "start": 446.24, + "end": 448.66, + "probability": 0.7775 + }, + { + "start": 449.6, + "end": 452.22, + "probability": 0.9853 + }, + { + "start": 453.0, + "end": 454.76, + "probability": 0.9934 + }, + { + "start": 455.04, + "end": 455.91, + "probability": 0.8623 + }, + { + "start": 456.84, + "end": 460.22, + "probability": 0.7416 + }, + { + "start": 460.8, + "end": 462.98, + "probability": 0.4252 + }, + { + "start": 463.28, + "end": 464.56, + "probability": 0.1986 + }, + { + "start": 464.72, + "end": 470.04, + "probability": 0.9351 + }, + { + "start": 470.12, + "end": 471.9, + "probability": 0.8195 + }, + { + "start": 471.98, + "end": 472.88, + "probability": 0.8549 + }, + { + "start": 473.62, + "end": 475.56, + "probability": 0.9927 + }, + { + "start": 476.66, + "end": 477.6, + "probability": 0.9363 + }, + { + "start": 478.14, + "end": 479.36, + "probability": 0.9553 + }, + { + "start": 479.78, + "end": 482.74, + "probability": 0.9884 + }, + { + "start": 482.78, + "end": 484.86, + "probability": 0.992 + }, + { + "start": 486.28, + "end": 488.74, + "probability": 0.9954 + }, + { + "start": 489.4, + "end": 492.08, + "probability": 0.8433 + }, + { + "start": 492.76, + "end": 495.98, + "probability": 0.9268 + }, + { + "start": 496.14, + "end": 499.4, + "probability": 0.9783 + }, + { + "start": 499.88, + "end": 505.07, + "probability": 0.8274 + }, + { + "start": 505.65, + "end": 510.1, + "probability": 0.7124 + }, + { + "start": 510.48, + "end": 511.44, + "probability": 0.9242 + }, + { + "start": 511.96, + "end": 513.72, + "probability": 0.9725 + }, + { + "start": 513.78, + "end": 515.37, + "probability": 0.9922 + }, + { + "start": 516.14, + "end": 518.1, + "probability": 0.9802 + }, + { + "start": 518.36, + "end": 518.78, + "probability": 0.6729 + }, + { + "start": 519.64, + "end": 522.66, + "probability": 0.2899 + }, + { + "start": 522.8, + "end": 523.98, + "probability": 0.5521 + }, + { + "start": 524.1, + "end": 524.86, + "probability": 0.3238 + }, + { + "start": 524.88, + "end": 527.92, + "probability": 0.0457 + }, + { + "start": 528.0, + "end": 530.2, + "probability": 0.5519 + }, + { + "start": 530.96, + "end": 532.62, + "probability": 0.119 + }, + { + "start": 532.62, + "end": 536.3, + "probability": 0.7501 + }, + { + "start": 538.12, + "end": 544.16, + "probability": 0.058 + }, + { + "start": 544.74, + "end": 546.5, + "probability": 0.3611 + }, + { + "start": 547.12, + "end": 547.79, + "probability": 0.476 + }, + { + "start": 548.74, + "end": 550.02, + "probability": 0.5951 + }, + { + "start": 550.36, + "end": 552.18, + "probability": 0.1328 + }, + { + "start": 553.38, + "end": 553.73, + "probability": 0.0115 + }, + { + "start": 555.08, + "end": 558.94, + "probability": 0.385 + }, + { + "start": 559.04, + "end": 560.86, + "probability": 0.9891 + }, + { + "start": 561.14, + "end": 562.64, + "probability": 0.4954 + }, + { + "start": 563.5, + "end": 565.96, + "probability": 0.9902 + }, + { + "start": 565.96, + "end": 567.64, + "probability": 0.9915 + }, + { + "start": 568.22, + "end": 568.62, + "probability": 0.5674 + }, + { + "start": 570.0, + "end": 574.62, + "probability": 0.7098 + }, + { + "start": 574.66, + "end": 576.3, + "probability": 0.9138 + }, + { + "start": 576.38, + "end": 580.01, + "probability": 0.793 + }, + { + "start": 580.12, + "end": 582.52, + "probability": 0.7174 + }, + { + "start": 582.64, + "end": 583.56, + "probability": 0.7825 + }, + { + "start": 584.17, + "end": 586.72, + "probability": 0.1417 + }, + { + "start": 586.96, + "end": 587.64, + "probability": 0.5141 + }, + { + "start": 587.74, + "end": 588.2, + "probability": 0.7681 + }, + { + "start": 588.5, + "end": 589.48, + "probability": 0.8201 + }, + { + "start": 589.58, + "end": 590.64, + "probability": 0.8135 + }, + { + "start": 590.76, + "end": 591.54, + "probability": 0.978 + }, + { + "start": 591.68, + "end": 592.98, + "probability": 0.6183 + }, + { + "start": 593.52, + "end": 593.94, + "probability": 0.3973 + }, + { + "start": 594.6, + "end": 596.7, + "probability": 0.8196 + }, + { + "start": 596.88, + "end": 597.0, + "probability": 0.4156 + }, + { + "start": 597.26, + "end": 597.3, + "probability": 0.7162 + }, + { + "start": 597.3, + "end": 601.0, + "probability": 0.8571 + }, + { + "start": 603.48, + "end": 605.27, + "probability": 0.8662 + }, + { + "start": 605.52, + "end": 605.98, + "probability": 0.7815 + }, + { + "start": 606.18, + "end": 608.68, + "probability": 0.9783 + }, + { + "start": 608.7, + "end": 611.96, + "probability": 0.9987 + }, + { + "start": 612.54, + "end": 618.58, + "probability": 0.9967 + }, + { + "start": 619.28, + "end": 623.32, + "probability": 0.9844 + }, + { + "start": 623.66, + "end": 624.84, + "probability": 0.9447 + }, + { + "start": 625.35, + "end": 626.2, + "probability": 0.6383 + }, + { + "start": 626.3, + "end": 628.42, + "probability": 0.981 + }, + { + "start": 628.76, + "end": 629.6, + "probability": 0.6737 + }, + { + "start": 629.68, + "end": 630.42, + "probability": 0.8408 + }, + { + "start": 630.86, + "end": 631.94, + "probability": 0.8875 + }, + { + "start": 632.0, + "end": 633.52, + "probability": 0.9258 + }, + { + "start": 634.66, + "end": 640.32, + "probability": 0.6645 + }, + { + "start": 640.32, + "end": 642.92, + "probability": 0.9818 + }, + { + "start": 642.96, + "end": 646.32, + "probability": 0.8196 + }, + { + "start": 647.44, + "end": 649.84, + "probability": 0.7546 + }, + { + "start": 652.6, + "end": 655.84, + "probability": 0.983 + }, + { + "start": 656.54, + "end": 657.16, + "probability": 0.9398 + }, + { + "start": 657.66, + "end": 657.86, + "probability": 0.7538 + }, + { + "start": 657.88, + "end": 661.24, + "probability": 0.9928 + }, + { + "start": 661.24, + "end": 665.32, + "probability": 0.8696 + }, + { + "start": 666.76, + "end": 667.44, + "probability": 0.8494 + }, + { + "start": 668.46, + "end": 670.68, + "probability": 0.7248 + }, + { + "start": 670.72, + "end": 674.24, + "probability": 0.8292 + }, + { + "start": 675.0, + "end": 676.98, + "probability": 0.9126 + }, + { + "start": 677.16, + "end": 677.84, + "probability": 0.4059 + }, + { + "start": 677.84, + "end": 678.1, + "probability": 0.6348 + }, + { + "start": 678.84, + "end": 679.22, + "probability": 0.2843 + }, + { + "start": 679.22, + "end": 680.07, + "probability": 0.3523 + }, + { + "start": 680.64, + "end": 681.18, + "probability": 0.1625 + }, + { + "start": 681.3, + "end": 682.94, + "probability": 0.7153 + }, + { + "start": 683.02, + "end": 683.99, + "probability": 0.518 + }, + { + "start": 684.54, + "end": 686.46, + "probability": 0.8647 + }, + { + "start": 686.54, + "end": 687.22, + "probability": 0.9899 + }, + { + "start": 687.4, + "end": 692.76, + "probability": 0.9802 + }, + { + "start": 692.96, + "end": 693.58, + "probability": 0.6792 + }, + { + "start": 693.88, + "end": 697.0, + "probability": 0.9486 + }, + { + "start": 697.24, + "end": 697.94, + "probability": 0.6757 + }, + { + "start": 698.02, + "end": 699.56, + "probability": 0.988 + }, + { + "start": 700.06, + "end": 701.28, + "probability": 0.9344 + }, + { + "start": 703.4, + "end": 703.98, + "probability": 0.2312 + }, + { + "start": 703.98, + "end": 704.1, + "probability": 0.1469 + }, + { + "start": 704.26, + "end": 705.32, + "probability": 0.7054 + }, + { + "start": 705.4, + "end": 705.48, + "probability": 0.1664 + }, + { + "start": 705.48, + "end": 708.8, + "probability": 0.4722 + }, + { + "start": 709.2, + "end": 710.26, + "probability": 0.6134 + }, + { + "start": 710.78, + "end": 712.92, + "probability": 0.1796 + }, + { + "start": 713.02, + "end": 713.28, + "probability": 0.6879 + }, + { + "start": 713.4, + "end": 715.3, + "probability": 0.4011 + }, + { + "start": 716.58, + "end": 718.02, + "probability": 0.0048 + }, + { + "start": 718.42, + "end": 719.66, + "probability": 0.4214 + }, + { + "start": 720.36, + "end": 722.46, + "probability": 0.8649 + }, + { + "start": 722.54, + "end": 723.98, + "probability": 0.2383 + }, + { + "start": 723.98, + "end": 724.06, + "probability": 0.0812 + }, + { + "start": 724.06, + "end": 726.72, + "probability": 0.9834 + }, + { + "start": 727.06, + "end": 730.56, + "probability": 0.7808 + }, + { + "start": 730.56, + "end": 730.92, + "probability": 0.0191 + }, + { + "start": 731.42, + "end": 735.24, + "probability": 0.8774 + }, + { + "start": 735.28, + "end": 735.64, + "probability": 0.7176 + }, + { + "start": 736.16, + "end": 739.2, + "probability": 0.9838 + }, + { + "start": 739.68, + "end": 744.36, + "probability": 0.107 + }, + { + "start": 744.42, + "end": 744.5, + "probability": 0.3496 + }, + { + "start": 744.5, + "end": 745.68, + "probability": 0.2652 + }, + { + "start": 745.72, + "end": 750.52, + "probability": 0.389 + }, + { + "start": 751.98, + "end": 757.24, + "probability": 0.9606 + }, + { + "start": 758.6, + "end": 762.08, + "probability": 0.8914 + }, + { + "start": 762.3, + "end": 763.66, + "probability": 0.9805 + }, + { + "start": 763.78, + "end": 766.82, + "probability": 0.9259 + }, + { + "start": 767.64, + "end": 770.34, + "probability": 0.0955 + }, + { + "start": 772.4, + "end": 773.88, + "probability": 0.1044 + }, + { + "start": 773.88, + "end": 774.14, + "probability": 0.015 + }, + { + "start": 774.14, + "end": 779.54, + "probability": 0.8248 + }, + { + "start": 780.14, + "end": 785.02, + "probability": 0.5059 + }, + { + "start": 785.8, + "end": 789.56, + "probability": 0.9861 + }, + { + "start": 790.26, + "end": 791.78, + "probability": 0.9697 + }, + { + "start": 792.38, + "end": 795.16, + "probability": 0.6968 + }, + { + "start": 795.76, + "end": 797.64, + "probability": 0.8423 + }, + { + "start": 798.06, + "end": 801.64, + "probability": 0.9048 + }, + { + "start": 802.12, + "end": 806.14, + "probability": 0.7285 + }, + { + "start": 807.08, + "end": 810.32, + "probability": 0.932 + }, + { + "start": 810.76, + "end": 815.86, + "probability": 0.981 + }, + { + "start": 816.16, + "end": 817.88, + "probability": 0.9816 + }, + { + "start": 818.28, + "end": 818.8, + "probability": 0.7553 + }, + { + "start": 818.82, + "end": 819.06, + "probability": 0.7469 + }, + { + "start": 819.14, + "end": 821.9, + "probability": 0.9966 + }, + { + "start": 821.92, + "end": 822.34, + "probability": 0.8612 + }, + { + "start": 823.0, + "end": 824.38, + "probability": 0.5317 + }, + { + "start": 824.68, + "end": 825.68, + "probability": 0.8024 + }, + { + "start": 826.14, + "end": 827.18, + "probability": 0.6853 + }, + { + "start": 827.8, + "end": 828.32, + "probability": 0.5898 + }, + { + "start": 829.38, + "end": 830.52, + "probability": 0.7349 + }, + { + "start": 831.26, + "end": 834.92, + "probability": 0.9675 + }, + { + "start": 836.26, + "end": 838.7, + "probability": 0.9351 + }, + { + "start": 839.18, + "end": 840.62, + "probability": 0.7419 + }, + { + "start": 841.28, + "end": 845.86, + "probability": 0.9894 + }, + { + "start": 846.58, + "end": 850.1, + "probability": 0.9814 + }, + { + "start": 850.18, + "end": 851.54, + "probability": 0.8585 + }, + { + "start": 852.7, + "end": 853.54, + "probability": 0.957 + }, + { + "start": 853.68, + "end": 853.98, + "probability": 0.8218 + }, + { + "start": 854.04, + "end": 858.2, + "probability": 0.9482 + }, + { + "start": 858.2, + "end": 861.68, + "probability": 0.9742 + }, + { + "start": 862.12, + "end": 863.18, + "probability": 0.8162 + }, + { + "start": 863.76, + "end": 868.22, + "probability": 0.9006 + }, + { + "start": 868.86, + "end": 871.0, + "probability": 0.9844 + }, + { + "start": 871.56, + "end": 876.32, + "probability": 0.8833 + }, + { + "start": 877.44, + "end": 879.48, + "probability": 0.8189 + }, + { + "start": 880.28, + "end": 884.16, + "probability": 0.9759 + }, + { + "start": 884.16, + "end": 889.28, + "probability": 0.9939 + }, + { + "start": 890.2, + "end": 890.46, + "probability": 0.7401 + }, + { + "start": 890.48, + "end": 890.96, + "probability": 0.5221 + }, + { + "start": 892.28, + "end": 894.42, + "probability": 0.4523 + }, + { + "start": 894.9, + "end": 896.0, + "probability": 0.6904 + }, + { + "start": 896.02, + "end": 898.04, + "probability": 0.9958 + }, + { + "start": 898.04, + "end": 900.66, + "probability": 0.8143 + }, + { + "start": 900.94, + "end": 902.28, + "probability": 0.6279 + }, + { + "start": 902.72, + "end": 902.84, + "probability": 0.8157 + }, + { + "start": 903.94, + "end": 904.38, + "probability": 0.0278 + }, + { + "start": 905.24, + "end": 907.36, + "probability": 0.8007 + }, + { + "start": 907.54, + "end": 907.7, + "probability": 0.6232 + }, + { + "start": 907.74, + "end": 909.16, + "probability": 0.8074 + }, + { + "start": 909.3, + "end": 910.1, + "probability": 0.7524 + }, + { + "start": 910.18, + "end": 913.12, + "probability": 0.8877 + }, + { + "start": 913.28, + "end": 916.16, + "probability": 0.9339 + }, + { + "start": 916.34, + "end": 917.76, + "probability": 0.5839 + }, + { + "start": 920.04, + "end": 922.5, + "probability": 0.6406 + }, + { + "start": 923.34, + "end": 925.12, + "probability": 0.6709 + }, + { + "start": 925.74, + "end": 928.18, + "probability": 0.9917 + }, + { + "start": 928.84, + "end": 930.36, + "probability": 0.9658 + }, + { + "start": 930.4, + "end": 930.84, + "probability": 0.6718 + }, + { + "start": 931.4, + "end": 934.62, + "probability": 0.9952 + }, + { + "start": 934.98, + "end": 935.14, + "probability": 0.7504 + }, + { + "start": 935.26, + "end": 936.56, + "probability": 0.9941 + }, + { + "start": 936.74, + "end": 938.9, + "probability": 0.9131 + }, + { + "start": 940.26, + "end": 942.58, + "probability": 0.9983 + }, + { + "start": 942.72, + "end": 944.12, + "probability": 0.9915 + }, + { + "start": 944.38, + "end": 945.38, + "probability": 0.9767 + }, + { + "start": 945.48, + "end": 946.96, + "probability": 0.9438 + }, + { + "start": 947.72, + "end": 951.06, + "probability": 0.9771 + }, + { + "start": 951.18, + "end": 955.46, + "probability": 0.9983 + }, + { + "start": 956.04, + "end": 959.38, + "probability": 0.9623 + }, + { + "start": 960.12, + "end": 962.42, + "probability": 0.9655 + }, + { + "start": 963.0, + "end": 968.28, + "probability": 0.8662 + }, + { + "start": 968.9, + "end": 971.58, + "probability": 0.9303 + }, + { + "start": 971.58, + "end": 972.34, + "probability": 0.9207 + }, + { + "start": 972.64, + "end": 975.54, + "probability": 0.9496 + }, + { + "start": 976.18, + "end": 977.94, + "probability": 0.8017 + }, + { + "start": 978.52, + "end": 981.4, + "probability": 0.6688 + }, + { + "start": 981.72, + "end": 985.36, + "probability": 0.8573 + }, + { + "start": 986.44, + "end": 989.44, + "probability": 0.9911 + }, + { + "start": 989.48, + "end": 989.78, + "probability": 0.86 + }, + { + "start": 991.28, + "end": 992.96, + "probability": 0.6884 + }, + { + "start": 992.98, + "end": 994.88, + "probability": 0.4855 + }, + { + "start": 994.98, + "end": 995.84, + "probability": 0.8007 + }, + { + "start": 996.42, + "end": 999.82, + "probability": 0.9553 + }, + { + "start": 1001.1, + "end": 1002.08, + "probability": 0.732 + }, + { + "start": 1003.24, + "end": 1006.42, + "probability": 0.6408 + }, + { + "start": 1011.2, + "end": 1013.52, + "probability": 0.6091 + }, + { + "start": 1014.64, + "end": 1019.78, + "probability": 0.5995 + }, + { + "start": 1019.78, + "end": 1024.48, + "probability": 0.9896 + }, + { + "start": 1026.26, + "end": 1030.4, + "probability": 0.84 + }, + { + "start": 1030.66, + "end": 1036.08, + "probability": 0.9889 + }, + { + "start": 1036.26, + "end": 1036.48, + "probability": 0.5328 + }, + { + "start": 1036.74, + "end": 1040.8, + "probability": 0.8201 + }, + { + "start": 1040.94, + "end": 1043.08, + "probability": 0.9854 + }, + { + "start": 1043.62, + "end": 1046.9, + "probability": 0.926 + }, + { + "start": 1048.24, + "end": 1048.54, + "probability": 0.4146 + }, + { + "start": 1048.6, + "end": 1052.18, + "probability": 0.93 + }, + { + "start": 1052.52, + "end": 1053.36, + "probability": 0.752 + }, + { + "start": 1053.46, + "end": 1057.8, + "probability": 0.9736 + }, + { + "start": 1058.86, + "end": 1059.04, + "probability": 0.6682 + }, + { + "start": 1059.5, + "end": 1061.7, + "probability": 0.5109 + }, + { + "start": 1061.76, + "end": 1064.54, + "probability": 0.7016 + }, + { + "start": 1064.62, + "end": 1068.66, + "probability": 0.7222 + }, + { + "start": 1068.8, + "end": 1070.94, + "probability": 0.9741 + }, + { + "start": 1070.94, + "end": 1073.28, + "probability": 0.9976 + }, + { + "start": 1073.38, + "end": 1073.5, + "probability": 0.4144 + }, + { + "start": 1073.92, + "end": 1075.98, + "probability": 0.8477 + }, + { + "start": 1076.68, + "end": 1078.06, + "probability": 0.9219 + }, + { + "start": 1078.18, + "end": 1080.62, + "probability": 0.9645 + }, + { + "start": 1080.8, + "end": 1083.48, + "probability": 0.9678 + }, + { + "start": 1083.98, + "end": 1088.04, + "probability": 0.9692 + }, + { + "start": 1089.24, + "end": 1091.66, + "probability": 0.9043 + }, + { + "start": 1092.42, + "end": 1094.74, + "probability": 0.8669 + }, + { + "start": 1095.24, + "end": 1096.3, + "probability": 0.9076 + }, + { + "start": 1096.78, + "end": 1103.0, + "probability": 0.9795 + }, + { + "start": 1103.12, + "end": 1103.4, + "probability": 0.934 + }, + { + "start": 1103.8, + "end": 1105.14, + "probability": 0.5302 + }, + { + "start": 1105.3, + "end": 1112.46, + "probability": 0.9564 + }, + { + "start": 1112.86, + "end": 1120.96, + "probability": 0.9496 + }, + { + "start": 1121.38, + "end": 1123.92, + "probability": 0.9811 + }, + { + "start": 1123.98, + "end": 1128.14, + "probability": 0.8792 + }, + { + "start": 1128.56, + "end": 1130.62, + "probability": 0.8228 + }, + { + "start": 1130.98, + "end": 1131.76, + "probability": 0.8403 + }, + { + "start": 1132.24, + "end": 1134.16, + "probability": 0.4317 + }, + { + "start": 1134.5, + "end": 1139.56, + "probability": 0.8441 + }, + { + "start": 1140.53, + "end": 1141.41, + "probability": 0.1256 + }, + { + "start": 1143.68, + "end": 1144.7, + "probability": 0.6811 + }, + { + "start": 1145.2, + "end": 1146.74, + "probability": 0.884 + }, + { + "start": 1147.8, + "end": 1149.08, + "probability": 0.9463 + }, + { + "start": 1149.22, + "end": 1152.02, + "probability": 0.8669 + }, + { + "start": 1152.36, + "end": 1153.56, + "probability": 0.915 + }, + { + "start": 1154.02, + "end": 1154.88, + "probability": 0.8929 + }, + { + "start": 1155.32, + "end": 1158.1, + "probability": 0.9706 + }, + { + "start": 1158.56, + "end": 1159.64, + "probability": 0.8263 + }, + { + "start": 1159.74, + "end": 1160.2, + "probability": 0.9041 + }, + { + "start": 1160.28, + "end": 1161.32, + "probability": 0.716 + }, + { + "start": 1161.48, + "end": 1162.26, + "probability": 0.5025 + }, + { + "start": 1162.36, + "end": 1163.0, + "probability": 0.6515 + }, + { + "start": 1163.08, + "end": 1163.88, + "probability": 0.306 + }, + { + "start": 1164.14, + "end": 1164.14, + "probability": 0.1635 + }, + { + "start": 1164.26, + "end": 1167.57, + "probability": 0.9275 + }, + { + "start": 1171.83, + "end": 1174.78, + "probability": 0.8256 + }, + { + "start": 1175.28, + "end": 1176.58, + "probability": 0.9809 + }, + { + "start": 1177.04, + "end": 1182.18, + "probability": 0.8326 + }, + { + "start": 1182.42, + "end": 1183.8, + "probability": 0.44 + }, + { + "start": 1184.4, + "end": 1188.22, + "probability": 0.8975 + }, + { + "start": 1188.94, + "end": 1192.76, + "probability": 0.9821 + }, + { + "start": 1192.9, + "end": 1195.3, + "probability": 0.722 + }, + { + "start": 1195.6, + "end": 1198.14, + "probability": 0.9594 + }, + { + "start": 1198.46, + "end": 1199.76, + "probability": 0.9545 + }, + { + "start": 1200.06, + "end": 1201.57, + "probability": 0.972 + }, + { + "start": 1202.14, + "end": 1206.84, + "probability": 0.7792 + }, + { + "start": 1207.0, + "end": 1208.98, + "probability": 0.9141 + }, + { + "start": 1209.02, + "end": 1209.64, + "probability": 0.9839 + }, + { + "start": 1210.1, + "end": 1210.92, + "probability": 0.8443 + }, + { + "start": 1211.5, + "end": 1218.86, + "probability": 0.9863 + }, + { + "start": 1219.22, + "end": 1220.1, + "probability": 0.9878 + }, + { + "start": 1220.54, + "end": 1223.62, + "probability": 0.9081 + }, + { + "start": 1223.92, + "end": 1225.5, + "probability": 0.5265 + }, + { + "start": 1225.76, + "end": 1228.58, + "probability": 0.9883 + }, + { + "start": 1229.1, + "end": 1235.68, + "probability": 0.8911 + }, + { + "start": 1236.1, + "end": 1236.5, + "probability": 0.8535 + }, + { + "start": 1236.7, + "end": 1240.44, + "probability": 0.6931 + }, + { + "start": 1241.08, + "end": 1247.36, + "probability": 0.9697 + }, + { + "start": 1247.36, + "end": 1253.72, + "probability": 0.8601 + }, + { + "start": 1254.24, + "end": 1255.6, + "probability": 0.7968 + }, + { + "start": 1257.0, + "end": 1258.74, + "probability": 0.8136 + }, + { + "start": 1259.9, + "end": 1261.14, + "probability": 0.9772 + }, + { + "start": 1261.18, + "end": 1266.5, + "probability": 0.9412 + }, + { + "start": 1267.12, + "end": 1269.68, + "probability": 0.9434 + }, + { + "start": 1269.78, + "end": 1275.88, + "probability": 0.8171 + }, + { + "start": 1276.38, + "end": 1278.94, + "probability": 0.9297 + }, + { + "start": 1278.94, + "end": 1282.44, + "probability": 0.9961 + }, + { + "start": 1283.0, + "end": 1283.94, + "probability": 0.7586 + }, + { + "start": 1284.14, + "end": 1284.54, + "probability": 0.8278 + }, + { + "start": 1284.72, + "end": 1286.2, + "probability": 0.7978 + }, + { + "start": 1286.32, + "end": 1289.12, + "probability": 0.9206 + }, + { + "start": 1289.76, + "end": 1292.8, + "probability": 0.9851 + }, + { + "start": 1293.64, + "end": 1296.04, + "probability": 0.96 + }, + { + "start": 1296.56, + "end": 1296.56, + "probability": 0.0285 + }, + { + "start": 1296.56, + "end": 1297.02, + "probability": 0.5956 + }, + { + "start": 1297.32, + "end": 1300.64, + "probability": 0.736 + }, + { + "start": 1301.42, + "end": 1302.51, + "probability": 0.6174 + }, + { + "start": 1303.46, + "end": 1304.0, + "probability": 0.5691 + }, + { + "start": 1304.42, + "end": 1305.28, + "probability": 0.7896 + }, + { + "start": 1305.32, + "end": 1309.64, + "probability": 0.7611 + }, + { + "start": 1309.98, + "end": 1310.68, + "probability": 0.3519 + }, + { + "start": 1311.28, + "end": 1314.2, + "probability": 0.8783 + }, + { + "start": 1314.26, + "end": 1316.74, + "probability": 0.8626 + }, + { + "start": 1316.74, + "end": 1319.06, + "probability": 0.9875 + }, + { + "start": 1319.62, + "end": 1321.04, + "probability": 0.5979 + }, + { + "start": 1322.24, + "end": 1328.52, + "probability": 0.9976 + }, + { + "start": 1328.52, + "end": 1331.64, + "probability": 0.9962 + }, + { + "start": 1332.12, + "end": 1334.38, + "probability": 0.8618 + }, + { + "start": 1334.46, + "end": 1340.06, + "probability": 0.9839 + }, + { + "start": 1341.2, + "end": 1342.76, + "probability": 0.5432 + }, + { + "start": 1342.78, + "end": 1343.8, + "probability": 0.7581 + }, + { + "start": 1343.84, + "end": 1346.3, + "probability": 0.857 + }, + { + "start": 1346.38, + "end": 1346.8, + "probability": 0.7239 + }, + { + "start": 1346.84, + "end": 1347.14, + "probability": 0.8095 + }, + { + "start": 1347.2, + "end": 1347.74, + "probability": 0.8445 + }, + { + "start": 1348.22, + "end": 1348.54, + "probability": 0.51 + }, + { + "start": 1348.94, + "end": 1349.7, + "probability": 0.4993 + }, + { + "start": 1349.82, + "end": 1351.14, + "probability": 0.9272 + }, + { + "start": 1352.64, + "end": 1357.3, + "probability": 0.6094 + }, + { + "start": 1358.68, + "end": 1360.84, + "probability": 0.9744 + }, + { + "start": 1360.84, + "end": 1363.14, + "probability": 0.9209 + }, + { + "start": 1364.38, + "end": 1366.12, + "probability": 0.9863 + }, + { + "start": 1368.06, + "end": 1368.96, + "probability": 0.9375 + }, + { + "start": 1370.24, + "end": 1372.7, + "probability": 0.833 + }, + { + "start": 1372.7, + "end": 1375.78, + "probability": 0.5482 + }, + { + "start": 1376.58, + "end": 1378.28, + "probability": 0.9927 + }, + { + "start": 1378.38, + "end": 1379.04, + "probability": 0.7361 + }, + { + "start": 1379.22, + "end": 1381.42, + "probability": 0.9208 + }, + { + "start": 1382.2, + "end": 1383.68, + "probability": 0.8923 + }, + { + "start": 1384.76, + "end": 1387.76, + "probability": 0.9795 + }, + { + "start": 1388.0, + "end": 1388.38, + "probability": 0.2761 + }, + { + "start": 1388.94, + "end": 1389.34, + "probability": 0.3876 + }, + { + "start": 1390.3, + "end": 1390.34, + "probability": 0.0346 + }, + { + "start": 1390.36, + "end": 1390.36, + "probability": 0.1828 + }, + { + "start": 1390.8, + "end": 1394.66, + "probability": 0.8672 + }, + { + "start": 1395.24, + "end": 1397.28, + "probability": 0.7716 + }, + { + "start": 1398.28, + "end": 1401.8, + "probability": 0.9424 + }, + { + "start": 1401.92, + "end": 1402.53, + "probability": 0.8595 + }, + { + "start": 1402.88, + "end": 1404.12, + "probability": 0.909 + }, + { + "start": 1404.52, + "end": 1407.15, + "probability": 0.9736 + }, + { + "start": 1407.42, + "end": 1407.92, + "probability": 0.7255 + }, + { + "start": 1408.86, + "end": 1411.04, + "probability": 0.9448 + }, + { + "start": 1411.58, + "end": 1412.18, + "probability": 0.6361 + }, + { + "start": 1414.12, + "end": 1417.76, + "probability": 0.7035 + }, + { + "start": 1421.48, + "end": 1424.3, + "probability": 0.9982 + }, + { + "start": 1424.52, + "end": 1427.4, + "probability": 0.9933 + }, + { + "start": 1427.56, + "end": 1429.54, + "probability": 0.9896 + }, + { + "start": 1430.08, + "end": 1431.7, + "probability": 0.6611 + }, + { + "start": 1431.9, + "end": 1432.84, + "probability": 0.6505 + }, + { + "start": 1433.04, + "end": 1434.16, + "probability": 0.6573 + }, + { + "start": 1434.78, + "end": 1434.84, + "probability": 0.0074 + }, + { + "start": 1436.24, + "end": 1436.7, + "probability": 0.665 + }, + { + "start": 1436.72, + "end": 1438.56, + "probability": 0.8225 + }, + { + "start": 1438.96, + "end": 1443.32, + "probability": 0.7194 + }, + { + "start": 1444.21, + "end": 1446.36, + "probability": 0.8014 + }, + { + "start": 1447.98, + "end": 1451.06, + "probability": 0.9329 + }, + { + "start": 1452.0, + "end": 1455.36, + "probability": 0.8915 + }, + { + "start": 1456.28, + "end": 1458.9, + "probability": 0.7071 + }, + { + "start": 1458.94, + "end": 1460.02, + "probability": 0.9521 + }, + { + "start": 1460.32, + "end": 1462.18, + "probability": 0.8998 + }, + { + "start": 1462.4, + "end": 1463.9, + "probability": 0.4509 + }, + { + "start": 1464.02, + "end": 1465.92, + "probability": 0.5606 + }, + { + "start": 1466.46, + "end": 1468.9, + "probability": 0.8593 + }, + { + "start": 1469.0, + "end": 1470.8, + "probability": 0.9861 + }, + { + "start": 1471.82, + "end": 1472.66, + "probability": 0.908 + }, + { + "start": 1473.66, + "end": 1478.74, + "probability": 0.9888 + }, + { + "start": 1479.38, + "end": 1484.24, + "probability": 0.6897 + }, + { + "start": 1484.92, + "end": 1490.94, + "probability": 0.7129 + }, + { + "start": 1491.72, + "end": 1494.26, + "probability": 0.8415 + }, + { + "start": 1495.74, + "end": 1496.24, + "probability": 0.3331 + }, + { + "start": 1497.5, + "end": 1499.9, + "probability": 0.8647 + }, + { + "start": 1500.5, + "end": 1502.88, + "probability": 0.8047 + }, + { + "start": 1506.9, + "end": 1507.46, + "probability": 0.5113 + }, + { + "start": 1508.12, + "end": 1509.2, + "probability": 0.7663 + }, + { + "start": 1509.44, + "end": 1510.32, + "probability": 0.435 + }, + { + "start": 1510.36, + "end": 1514.32, + "probability": 0.8451 + }, + { + "start": 1514.46, + "end": 1517.3, + "probability": 0.8986 + }, + { + "start": 1518.32, + "end": 1520.04, + "probability": 0.7391 + }, + { + "start": 1520.24, + "end": 1522.28, + "probability": 0.892 + }, + { + "start": 1522.32, + "end": 1523.46, + "probability": 0.9751 + }, + { + "start": 1523.96, + "end": 1524.7, + "probability": 0.6976 + }, + { + "start": 1525.76, + "end": 1529.06, + "probability": 0.749 + }, + { + "start": 1529.16, + "end": 1530.04, + "probability": 0.8543 + }, + { + "start": 1530.26, + "end": 1532.3, + "probability": 0.9583 + }, + { + "start": 1532.3, + "end": 1537.41, + "probability": 0.9865 + }, + { + "start": 1538.28, + "end": 1541.78, + "probability": 0.7227 + }, + { + "start": 1542.3, + "end": 1546.72, + "probability": 0.7441 + }, + { + "start": 1547.08, + "end": 1550.5, + "probability": 0.9516 + }, + { + "start": 1551.5, + "end": 1554.08, + "probability": 0.2399 + }, + { + "start": 1554.68, + "end": 1556.1, + "probability": 0.9422 + }, + { + "start": 1557.24, + "end": 1558.78, + "probability": 0.5141 + }, + { + "start": 1559.08, + "end": 1560.66, + "probability": 0.7262 + }, + { + "start": 1561.08, + "end": 1563.32, + "probability": 0.7534 + }, + { + "start": 1564.38, + "end": 1566.3, + "probability": 0.8141 + }, + { + "start": 1567.76, + "end": 1571.4, + "probability": 0.8892 + }, + { + "start": 1572.62, + "end": 1575.84, + "probability": 0.9759 + }, + { + "start": 1577.04, + "end": 1580.1, + "probability": 0.7427 + }, + { + "start": 1581.0, + "end": 1583.02, + "probability": 0.6518 + }, + { + "start": 1584.26, + "end": 1588.24, + "probability": 0.9818 + }, + { + "start": 1589.12, + "end": 1592.8, + "probability": 0.8767 + }, + { + "start": 1593.9, + "end": 1596.16, + "probability": 0.9874 + }, + { + "start": 1596.88, + "end": 1600.14, + "probability": 0.8805 + }, + { + "start": 1601.36, + "end": 1604.68, + "probability": 0.8862 + }, + { + "start": 1605.34, + "end": 1606.22, + "probability": 0.7469 + }, + { + "start": 1606.9, + "end": 1609.14, + "probability": 0.5299 + }, + { + "start": 1610.0, + "end": 1613.26, + "probability": 0.8051 + }, + { + "start": 1614.94, + "end": 1615.24, + "probability": 0.436 + }, + { + "start": 1615.4, + "end": 1622.16, + "probability": 0.902 + }, + { + "start": 1623.22, + "end": 1625.62, + "probability": 0.9515 + }, + { + "start": 1626.34, + "end": 1629.28, + "probability": 0.9876 + }, + { + "start": 1631.08, + "end": 1635.34, + "probability": 0.8125 + }, + { + "start": 1636.06, + "end": 1640.64, + "probability": 0.9855 + }, + { + "start": 1641.2, + "end": 1644.82, + "probability": 0.974 + }, + { + "start": 1644.82, + "end": 1648.12, + "probability": 0.9875 + }, + { + "start": 1649.3, + "end": 1652.48, + "probability": 0.8 + }, + { + "start": 1653.14, + "end": 1655.34, + "probability": 0.9489 + }, + { + "start": 1656.46, + "end": 1659.92, + "probability": 0.9946 + }, + { + "start": 1660.9, + "end": 1661.38, + "probability": 0.5238 + }, + { + "start": 1661.5, + "end": 1665.86, + "probability": 0.9682 + }, + { + "start": 1665.94, + "end": 1667.04, + "probability": 0.7929 + }, + { + "start": 1667.8, + "end": 1670.29, + "probability": 0.645 + }, + { + "start": 1671.06, + "end": 1675.38, + "probability": 0.98 + }, + { + "start": 1676.26, + "end": 1679.9, + "probability": 0.7004 + }, + { + "start": 1681.66, + "end": 1684.18, + "probability": 0.7865 + }, + { + "start": 1685.82, + "end": 1692.86, + "probability": 0.9881 + }, + { + "start": 1693.76, + "end": 1695.8, + "probability": 0.8152 + }, + { + "start": 1696.98, + "end": 1701.32, + "probability": 0.9493 + }, + { + "start": 1702.48, + "end": 1705.5, + "probability": 0.4446 + }, + { + "start": 1706.7, + "end": 1710.24, + "probability": 0.8809 + }, + { + "start": 1711.02, + "end": 1713.92, + "probability": 0.8581 + }, + { + "start": 1714.78, + "end": 1715.56, + "probability": 0.2533 + }, + { + "start": 1715.7, + "end": 1716.04, + "probability": 0.6246 + }, + { + "start": 1716.3, + "end": 1721.72, + "probability": 0.7493 + }, + { + "start": 1722.54, + "end": 1724.8, + "probability": 0.7572 + }, + { + "start": 1726.46, + "end": 1730.22, + "probability": 0.8967 + }, + { + "start": 1731.4, + "end": 1732.72, + "probability": 0.7099 + }, + { + "start": 1734.44, + "end": 1739.12, + "probability": 0.7976 + }, + { + "start": 1739.26, + "end": 1739.48, + "probability": 0.7866 + }, + { + "start": 1739.58, + "end": 1741.0, + "probability": 0.8394 + }, + { + "start": 1741.2, + "end": 1741.2, + "probability": 0.7769 + }, + { + "start": 1742.72, + "end": 1745.36, + "probability": 0.8018 + }, + { + "start": 1746.66, + "end": 1749.22, + "probability": 0.8104 + }, + { + "start": 1750.46, + "end": 1751.8, + "probability": 0.7189 + }, + { + "start": 1752.34, + "end": 1755.42, + "probability": 0.7105 + }, + { + "start": 1755.58, + "end": 1756.72, + "probability": 0.8592 + }, + { + "start": 1756.78, + "end": 1758.2, + "probability": 0.9731 + }, + { + "start": 1758.88, + "end": 1760.54, + "probability": 0.9498 + }, + { + "start": 1760.68, + "end": 1761.96, + "probability": 0.4705 + }, + { + "start": 1763.18, + "end": 1765.72, + "probability": 0.6838 + }, + { + "start": 1766.0, + "end": 1770.64, + "probability": 0.859 + }, + { + "start": 1771.42, + "end": 1774.44, + "probability": 0.8864 + }, + { + "start": 1774.52, + "end": 1775.04, + "probability": 0.5119 + }, + { + "start": 1775.04, + "end": 1778.64, + "probability": 0.9857 + }, + { + "start": 1778.78, + "end": 1780.24, + "probability": 0.8903 + }, + { + "start": 1780.88, + "end": 1783.3, + "probability": 0.8965 + }, + { + "start": 1784.42, + "end": 1785.02, + "probability": 0.545 + }, + { + "start": 1785.08, + "end": 1785.26, + "probability": 0.8485 + }, + { + "start": 1785.34, + "end": 1787.54, + "probability": 0.9438 + }, + { + "start": 1787.72, + "end": 1788.56, + "probability": 0.8219 + }, + { + "start": 1789.38, + "end": 1792.3, + "probability": 0.9887 + }, + { + "start": 1793.02, + "end": 1793.82, + "probability": 0.8975 + }, + { + "start": 1794.1, + "end": 1795.26, + "probability": 0.6368 + }, + { + "start": 1796.24, + "end": 1798.12, + "probability": 0.8895 + }, + { + "start": 1798.36, + "end": 1801.82, + "probability": 0.9595 + }, + { + "start": 1802.14, + "end": 1804.3, + "probability": 0.826 + }, + { + "start": 1804.46, + "end": 1805.24, + "probability": 0.9941 + }, + { + "start": 1806.56, + "end": 1811.2, + "probability": 0.9489 + }, + { + "start": 1811.88, + "end": 1813.92, + "probability": 0.6843 + }, + { + "start": 1814.82, + "end": 1817.92, + "probability": 0.9404 + }, + { + "start": 1819.02, + "end": 1821.48, + "probability": 0.7747 + }, + { + "start": 1821.6, + "end": 1824.14, + "probability": 0.9521 + }, + { + "start": 1824.26, + "end": 1825.0, + "probability": 0.815 + }, + { + "start": 1825.04, + "end": 1825.8, + "probability": 0.9234 + }, + { + "start": 1826.06, + "end": 1826.68, + "probability": 0.5657 + }, + { + "start": 1826.76, + "end": 1828.86, + "probability": 0.7701 + }, + { + "start": 1829.44, + "end": 1830.68, + "probability": 0.9705 + }, + { + "start": 1831.18, + "end": 1832.22, + "probability": 0.6714 + }, + { + "start": 1832.54, + "end": 1840.08, + "probability": 0.8563 + }, + { + "start": 1840.08, + "end": 1841.84, + "probability": 0.8293 + }, + { + "start": 1842.28, + "end": 1845.04, + "probability": 0.9099 + }, + { + "start": 1845.18, + "end": 1846.94, + "probability": 0.8068 + }, + { + "start": 1847.06, + "end": 1853.76, + "probability": 0.9773 + }, + { + "start": 1854.46, + "end": 1857.52, + "probability": 0.9544 + }, + { + "start": 1858.06, + "end": 1861.44, + "probability": 0.9919 + }, + { + "start": 1861.56, + "end": 1862.78, + "probability": 0.7371 + }, + { + "start": 1863.44, + "end": 1865.62, + "probability": 0.9351 + }, + { + "start": 1866.02, + "end": 1866.86, + "probability": 0.923 + }, + { + "start": 1866.9, + "end": 1868.96, + "probability": 0.673 + }, + { + "start": 1869.36, + "end": 1872.46, + "probability": 0.6369 + }, + { + "start": 1872.94, + "end": 1875.6, + "probability": 0.986 + }, + { + "start": 1875.72, + "end": 1876.82, + "probability": 0.888 + }, + { + "start": 1877.26, + "end": 1879.48, + "probability": 0.9502 + }, + { + "start": 1880.12, + "end": 1880.64, + "probability": 0.8839 + }, + { + "start": 1880.68, + "end": 1885.8, + "probability": 0.8718 + }, + { + "start": 1886.06, + "end": 1886.6, + "probability": 0.6361 + }, + { + "start": 1886.62, + "end": 1890.7, + "probability": 0.9725 + }, + { + "start": 1891.22, + "end": 1892.3, + "probability": 0.9056 + }, + { + "start": 1892.54, + "end": 1894.8, + "probability": 0.9543 + }, + { + "start": 1894.8, + "end": 1899.26, + "probability": 0.9861 + }, + { + "start": 1900.22, + "end": 1902.02, + "probability": 0.6582 + }, + { + "start": 1902.02, + "end": 1902.02, + "probability": 0.0554 + }, + { + "start": 1902.02, + "end": 1903.48, + "probability": 0.9264 + }, + { + "start": 1904.14, + "end": 1906.44, + "probability": 0.8806 + }, + { + "start": 1907.62, + "end": 1907.92, + "probability": 0.9793 + }, + { + "start": 1908.56, + "end": 1909.14, + "probability": 0.8584 + }, + { + "start": 1910.86, + "end": 1912.8, + "probability": 0.6785 + }, + { + "start": 1913.16, + "end": 1914.98, + "probability": 0.6938 + }, + { + "start": 1915.2, + "end": 1918.64, + "probability": 0.9669 + }, + { + "start": 1920.48, + "end": 1922.02, + "probability": 0.7947 + }, + { + "start": 1922.16, + "end": 1924.08, + "probability": 0.7311 + }, + { + "start": 1926.8, + "end": 1927.56, + "probability": 0.6538 + }, + { + "start": 1927.76, + "end": 1929.56, + "probability": 0.9307 + }, + { + "start": 1929.66, + "end": 1931.34, + "probability": 0.7655 + }, + { + "start": 1931.36, + "end": 1932.28, + "probability": 0.9564 + }, + { + "start": 1932.5, + "end": 1933.98, + "probability": 0.9802 + }, + { + "start": 1935.72, + "end": 1938.9, + "probability": 0.893 + }, + { + "start": 1941.76, + "end": 1942.54, + "probability": 0.0267 + }, + { + "start": 1943.06, + "end": 1947.86, + "probability": 0.998 + }, + { + "start": 1947.86, + "end": 1953.14, + "probability": 0.995 + }, + { + "start": 1953.96, + "end": 1956.76, + "probability": 0.9272 + }, + { + "start": 1957.16, + "end": 1959.78, + "probability": 0.526 + }, + { + "start": 1959.78, + "end": 1961.84, + "probability": 0.9871 + }, + { + "start": 1961.94, + "end": 1963.56, + "probability": 0.9535 + }, + { + "start": 1963.88, + "end": 1965.14, + "probability": 0.9611 + }, + { + "start": 1965.72, + "end": 1968.32, + "probability": 0.9937 + }, + { + "start": 1968.66, + "end": 1970.48, + "probability": 0.8721 + }, + { + "start": 1970.64, + "end": 1972.98, + "probability": 0.9799 + }, + { + "start": 1973.38, + "end": 1975.88, + "probability": 0.9915 + }, + { + "start": 1976.16, + "end": 1980.32, + "probability": 0.986 + }, + { + "start": 1980.66, + "end": 1982.58, + "probability": 0.9768 + }, + { + "start": 1982.84, + "end": 1984.98, + "probability": 0.0546 + }, + { + "start": 1984.98, + "end": 1985.84, + "probability": 0.5512 + }, + { + "start": 1986.12, + "end": 1989.36, + "probability": 0.9118 + }, + { + "start": 1989.52, + "end": 1990.84, + "probability": 0.9909 + }, + { + "start": 1990.88, + "end": 1992.82, + "probability": 0.8913 + }, + { + "start": 1992.9, + "end": 1993.12, + "probability": 0.8054 + }, + { + "start": 1993.48, + "end": 1995.96, + "probability": 0.4842 + }, + { + "start": 1996.25, + "end": 1997.25, + "probability": 0.1621 + }, + { + "start": 2003.6, + "end": 2004.3, + "probability": 0.2546 + }, + { + "start": 2004.52, + "end": 2005.24, + "probability": 0.7261 + }, + { + "start": 2006.26, + "end": 2012.72, + "probability": 0.9393 + }, + { + "start": 2012.78, + "end": 2014.3, + "probability": 0.9348 + }, + { + "start": 2014.98, + "end": 2016.44, + "probability": 0.8052 + }, + { + "start": 2017.22, + "end": 2019.02, + "probability": 0.7247 + }, + { + "start": 2019.58, + "end": 2021.22, + "probability": 0.6669 + }, + { + "start": 2021.78, + "end": 2022.88, + "probability": 0.7363 + }, + { + "start": 2023.32, + "end": 2025.1, + "probability": 0.818 + }, + { + "start": 2025.36, + "end": 2026.44, + "probability": 0.6366 + }, + { + "start": 2026.5, + "end": 2028.34, + "probability": 0.8145 + }, + { + "start": 2028.44, + "end": 2030.08, + "probability": 0.8916 + }, + { + "start": 2030.5, + "end": 2031.62, + "probability": 0.8423 + }, + { + "start": 2031.84, + "end": 2032.74, + "probability": 0.8913 + }, + { + "start": 2032.74, + "end": 2034.61, + "probability": 0.9017 + }, + { + "start": 2035.32, + "end": 2039.66, + "probability": 0.9915 + }, + { + "start": 2039.66, + "end": 2042.32, + "probability": 0.7327 + }, + { + "start": 2042.72, + "end": 2044.54, + "probability": 0.9328 + }, + { + "start": 2045.66, + "end": 2045.94, + "probability": 0.2471 + }, + { + "start": 2045.96, + "end": 2046.96, + "probability": 0.2963 + }, + { + "start": 2047.02, + "end": 2048.32, + "probability": 0.7705 + }, + { + "start": 2049.06, + "end": 2051.44, + "probability": 0.5571 + }, + { + "start": 2058.64, + "end": 2060.96, + "probability": 0.7771 + }, + { + "start": 2062.24, + "end": 2062.88, + "probability": 0.8707 + }, + { + "start": 2063.16, + "end": 2064.32, + "probability": 0.8892 + }, + { + "start": 2064.64, + "end": 2065.21, + "probability": 0.5894 + }, + { + "start": 2065.32, + "end": 2066.14, + "probability": 0.9558 + }, + { + "start": 2066.18, + "end": 2067.34, + "probability": 0.699 + }, + { + "start": 2068.48, + "end": 2069.36, + "probability": 0.9565 + }, + { + "start": 2069.56, + "end": 2070.76, + "probability": 0.9366 + }, + { + "start": 2070.82, + "end": 2073.26, + "probability": 0.7068 + }, + { + "start": 2073.26, + "end": 2076.3, + "probability": 0.9743 + }, + { + "start": 2077.1, + "end": 2080.56, + "probability": 0.9659 + }, + { + "start": 2081.96, + "end": 2085.82, + "probability": 0.9355 + }, + { + "start": 2086.14, + "end": 2087.0, + "probability": 0.9367 + }, + { + "start": 2087.78, + "end": 2089.9, + "probability": 0.9963 + }, + { + "start": 2091.0, + "end": 2095.96, + "probability": 0.6641 + }, + { + "start": 2097.0, + "end": 2100.1, + "probability": 0.9074 + }, + { + "start": 2100.9, + "end": 2102.78, + "probability": 0.9963 + }, + { + "start": 2102.8, + "end": 2105.94, + "probability": 0.9814 + }, + { + "start": 2107.1, + "end": 2109.18, + "probability": 0.9288 + }, + { + "start": 2110.08, + "end": 2110.88, + "probability": 0.642 + }, + { + "start": 2110.94, + "end": 2112.0, + "probability": 0.7609 + }, + { + "start": 2112.16, + "end": 2113.2, + "probability": 0.8299 + }, + { + "start": 2114.06, + "end": 2115.1, + "probability": 0.8851 + }, + { + "start": 2115.96, + "end": 2120.32, + "probability": 0.9821 + }, + { + "start": 2120.43, + "end": 2125.42, + "probability": 0.9895 + }, + { + "start": 2125.7, + "end": 2129.76, + "probability": 0.8789 + }, + { + "start": 2130.6, + "end": 2132.88, + "probability": 0.8545 + }, + { + "start": 2133.1, + "end": 2134.78, + "probability": 0.9072 + }, + { + "start": 2136.08, + "end": 2136.86, + "probability": 0.7435 + }, + { + "start": 2137.58, + "end": 2142.6, + "probability": 0.9695 + }, + { + "start": 2143.32, + "end": 2147.16, + "probability": 0.9814 + }, + { + "start": 2147.5, + "end": 2152.64, + "probability": 0.9389 + }, + { + "start": 2152.84, + "end": 2155.99, + "probability": 0.999 + }, + { + "start": 2156.52, + "end": 2157.56, + "probability": 0.7281 + }, + { + "start": 2158.32, + "end": 2159.86, + "probability": 0.9885 + }, + { + "start": 2160.02, + "end": 2161.2, + "probability": 0.8917 + }, + { + "start": 2161.32, + "end": 2164.56, + "probability": 0.9851 + }, + { + "start": 2164.56, + "end": 2167.18, + "probability": 0.9986 + }, + { + "start": 2167.26, + "end": 2168.04, + "probability": 0.999 + }, + { + "start": 2168.38, + "end": 2168.82, + "probability": 0.7847 + }, + { + "start": 2168.9, + "end": 2170.34, + "probability": 0.5489 + }, + { + "start": 2170.94, + "end": 2173.26, + "probability": 0.9435 + }, + { + "start": 2173.52, + "end": 2173.62, + "probability": 0.4204 + }, + { + "start": 2173.76, + "end": 2176.58, + "probability": 0.6663 + }, + { + "start": 2176.84, + "end": 2178.32, + "probability": 0.6763 + }, + { + "start": 2178.52, + "end": 2179.8, + "probability": 0.879 + }, + { + "start": 2181.2, + "end": 2182.68, + "probability": 0.8536 + }, + { + "start": 2185.66, + "end": 2188.88, + "probability": 0.5517 + }, + { + "start": 2190.3, + "end": 2190.44, + "probability": 0.4595 + }, + { + "start": 2192.12, + "end": 2197.24, + "probability": 0.8621 + }, + { + "start": 2198.24, + "end": 2199.8, + "probability": 0.9379 + }, + { + "start": 2200.88, + "end": 2204.46, + "probability": 0.9816 + }, + { + "start": 2204.96, + "end": 2206.04, + "probability": 0.6999 + }, + { + "start": 2207.18, + "end": 2209.44, + "probability": 0.9096 + }, + { + "start": 2210.3, + "end": 2212.06, + "probability": 0.9054 + }, + { + "start": 2212.26, + "end": 2214.47, + "probability": 0.9881 + }, + { + "start": 2214.64, + "end": 2217.02, + "probability": 0.8334 + }, + { + "start": 2217.3, + "end": 2218.94, + "probability": 0.1311 + }, + { + "start": 2219.72, + "end": 2221.06, + "probability": 0.0176 + }, + { + "start": 2221.98, + "end": 2222.56, + "probability": 0.052 + }, + { + "start": 2222.56, + "end": 2222.56, + "probability": 0.1391 + }, + { + "start": 2222.56, + "end": 2227.72, + "probability": 0.8077 + }, + { + "start": 2228.48, + "end": 2232.24, + "probability": 0.9549 + }, + { + "start": 2232.26, + "end": 2236.95, + "probability": 0.8048 + }, + { + "start": 2237.6, + "end": 2239.64, + "probability": 0.9696 + }, + { + "start": 2240.24, + "end": 2243.02, + "probability": 0.8169 + }, + { + "start": 2243.02, + "end": 2246.06, + "probability": 0.9865 + }, + { + "start": 2246.3, + "end": 2246.72, + "probability": 0.8617 + }, + { + "start": 2247.34, + "end": 2248.34, + "probability": 0.9867 + }, + { + "start": 2248.56, + "end": 2249.24, + "probability": 0.9769 + }, + { + "start": 2249.34, + "end": 2255.38, + "probability": 0.9932 + }, + { + "start": 2256.44, + "end": 2262.14, + "probability": 0.533 + }, + { + "start": 2262.88, + "end": 2266.4, + "probability": 0.9821 + }, + { + "start": 2266.9, + "end": 2269.41, + "probability": 0.9858 + }, + { + "start": 2270.1, + "end": 2271.88, + "probability": 0.5639 + }, + { + "start": 2272.16, + "end": 2272.16, + "probability": 0.0096 + }, + { + "start": 2272.16, + "end": 2276.36, + "probability": 0.8624 + }, + { + "start": 2276.42, + "end": 2276.88, + "probability": 0.4405 + }, + { + "start": 2276.98, + "end": 2278.16, + "probability": 0.8264 + }, + { + "start": 2279.12, + "end": 2281.19, + "probability": 0.8093 + }, + { + "start": 2282.08, + "end": 2284.24, + "probability": 0.6894 + }, + { + "start": 2285.02, + "end": 2287.3, + "probability": 0.7707 + }, + { + "start": 2287.4, + "end": 2287.96, + "probability": 0.7227 + }, + { + "start": 2288.1, + "end": 2295.28, + "probability": 0.6788 + }, + { + "start": 2295.32, + "end": 2298.8, + "probability": 0.9204 + }, + { + "start": 2299.5, + "end": 2302.05, + "probability": 0.6933 + }, + { + "start": 2303.66, + "end": 2305.74, + "probability": 0.8214 + }, + { + "start": 2306.58, + "end": 2307.4, + "probability": 0.9575 + }, + { + "start": 2307.6, + "end": 2307.8, + "probability": 0.8227 + }, + { + "start": 2307.94, + "end": 2312.0, + "probability": 0.8071 + }, + { + "start": 2312.0, + "end": 2315.88, + "probability": 0.9458 + }, + { + "start": 2316.04, + "end": 2316.86, + "probability": 0.7677 + }, + { + "start": 2317.92, + "end": 2319.6, + "probability": 0.8529 + }, + { + "start": 2319.8, + "end": 2324.86, + "probability": 0.9604 + }, + { + "start": 2325.38, + "end": 2326.76, + "probability": 0.9899 + }, + { + "start": 2327.7, + "end": 2328.34, + "probability": 0.0715 + }, + { + "start": 2328.34, + "end": 2328.34, + "probability": 0.0188 + }, + { + "start": 2329.33, + "end": 2329.54, + "probability": 0.0462 + }, + { + "start": 2329.54, + "end": 2332.28, + "probability": 0.2603 + }, + { + "start": 2334.64, + "end": 2336.4, + "probability": 0.7695 + }, + { + "start": 2336.54, + "end": 2339.3, + "probability": 0.5498 + }, + { + "start": 2339.72, + "end": 2342.08, + "probability": 0.8499 + }, + { + "start": 2342.6, + "end": 2344.24, + "probability": 0.831 + }, + { + "start": 2344.62, + "end": 2346.88, + "probability": 0.8699 + }, + { + "start": 2347.06, + "end": 2348.64, + "probability": 0.8047 + }, + { + "start": 2349.86, + "end": 2352.06, + "probability": 0.9562 + }, + { + "start": 2352.86, + "end": 2355.44, + "probability": 0.9408 + }, + { + "start": 2355.96, + "end": 2357.92, + "probability": 0.7472 + }, + { + "start": 2358.14, + "end": 2358.6, + "probability": 0.9284 + }, + { + "start": 2359.36, + "end": 2361.64, + "probability": 0.9453 + }, + { + "start": 2361.64, + "end": 2365.22, + "probability": 0.9506 + }, + { + "start": 2365.38, + "end": 2367.88, + "probability": 0.9932 + }, + { + "start": 2368.62, + "end": 2370.12, + "probability": 0.9041 + }, + { + "start": 2371.22, + "end": 2374.32, + "probability": 0.9927 + }, + { + "start": 2375.0, + "end": 2379.26, + "probability": 0.9926 + }, + { + "start": 2379.82, + "end": 2380.88, + "probability": 0.9491 + }, + { + "start": 2381.62, + "end": 2383.44, + "probability": 0.9768 + }, + { + "start": 2384.1, + "end": 2385.1, + "probability": 0.9932 + }, + { + "start": 2386.04, + "end": 2388.72, + "probability": 0.4889 + }, + { + "start": 2388.88, + "end": 2390.48, + "probability": 0.7963 + }, + { + "start": 2391.46, + "end": 2395.58, + "probability": 0.9456 + }, + { + "start": 2396.44, + "end": 2398.79, + "probability": 0.9941 + }, + { + "start": 2399.4, + "end": 2400.34, + "probability": 0.8611 + }, + { + "start": 2400.48, + "end": 2400.8, + "probability": 0.6586 + }, + { + "start": 2401.6, + "end": 2405.46, + "probability": 0.9799 + }, + { + "start": 2405.54, + "end": 2406.76, + "probability": 0.9707 + }, + { + "start": 2407.8, + "end": 2408.78, + "probability": 0.8892 + }, + { + "start": 2409.14, + "end": 2410.92, + "probability": 0.9897 + }, + { + "start": 2411.36, + "end": 2412.56, + "probability": 0.9515 + }, + { + "start": 2412.72, + "end": 2416.11, + "probability": 0.7644 + }, + { + "start": 2417.24, + "end": 2418.44, + "probability": 0.7592 + }, + { + "start": 2418.54, + "end": 2422.76, + "probability": 0.866 + }, + { + "start": 2422.76, + "end": 2422.83, + "probability": 0.0248 + }, + { + "start": 2423.4, + "end": 2423.56, + "probability": 0.1375 + }, + { + "start": 2423.56, + "end": 2424.78, + "probability": 0.4121 + }, + { + "start": 2424.84, + "end": 2428.82, + "probability": 0.9814 + }, + { + "start": 2429.68, + "end": 2431.1, + "probability": 0.7594 + }, + { + "start": 2431.18, + "end": 2434.3, + "probability": 0.9829 + }, + { + "start": 2434.42, + "end": 2437.66, + "probability": 0.9457 + }, + { + "start": 2438.8, + "end": 2441.92, + "probability": 0.9111 + }, + { + "start": 2442.56, + "end": 2444.58, + "probability": 0.9766 + }, + { + "start": 2445.26, + "end": 2448.18, + "probability": 0.8962 + }, + { + "start": 2448.28, + "end": 2450.48, + "probability": 0.9446 + }, + { + "start": 2450.54, + "end": 2451.37, + "probability": 0.8911 + }, + { + "start": 2451.84, + "end": 2453.0, + "probability": 0.9198 + }, + { + "start": 2453.4, + "end": 2454.44, + "probability": 0.9541 + }, + { + "start": 2454.48, + "end": 2456.32, + "probability": 0.8528 + }, + { + "start": 2456.9, + "end": 2459.56, + "probability": 0.9312 + }, + { + "start": 2460.24, + "end": 2462.42, + "probability": 0.9351 + }, + { + "start": 2463.34, + "end": 2465.48, + "probability": 0.2255 + }, + { + "start": 2465.64, + "end": 2466.44, + "probability": 0.5617 + }, + { + "start": 2467.32, + "end": 2470.2, + "probability": 0.7839 + }, + { + "start": 2470.84, + "end": 2472.16, + "probability": 0.785 + }, + { + "start": 2472.4, + "end": 2472.82, + "probability": 0.5444 + }, + { + "start": 2473.44, + "end": 2476.66, + "probability": 0.8325 + }, + { + "start": 2477.82, + "end": 2479.06, + "probability": 0.8851 + }, + { + "start": 2479.66, + "end": 2480.72, + "probability": 0.9794 + }, + { + "start": 2481.76, + "end": 2485.16, + "probability": 0.7076 + }, + { + "start": 2485.4, + "end": 2487.22, + "probability": 0.6021 + }, + { + "start": 2488.06, + "end": 2489.97, + "probability": 0.8411 + }, + { + "start": 2490.22, + "end": 2491.6, + "probability": 0.7599 + }, + { + "start": 2492.78, + "end": 2495.76, + "probability": 0.9561 + }, + { + "start": 2496.68, + "end": 2497.52, + "probability": 0.7391 + }, + { + "start": 2498.44, + "end": 2501.86, + "probability": 0.9795 + }, + { + "start": 2502.72, + "end": 2506.1, + "probability": 0.9979 + }, + { + "start": 2506.58, + "end": 2508.1, + "probability": 0.7578 + }, + { + "start": 2508.16, + "end": 2509.91, + "probability": 0.9566 + }, + { + "start": 2510.84, + "end": 2512.96, + "probability": 0.9837 + }, + { + "start": 2515.39, + "end": 2518.66, + "probability": 0.986 + }, + { + "start": 2518.78, + "end": 2519.39, + "probability": 0.3987 + }, + { + "start": 2519.52, + "end": 2520.36, + "probability": 0.0775 + }, + { + "start": 2520.5, + "end": 2520.76, + "probability": 0.4912 + }, + { + "start": 2520.96, + "end": 2522.74, + "probability": 0.2234 + }, + { + "start": 2523.62, + "end": 2524.62, + "probability": 0.868 + }, + { + "start": 2524.8, + "end": 2525.59, + "probability": 0.7153 + }, + { + "start": 2525.68, + "end": 2526.26, + "probability": 0.7856 + }, + { + "start": 2526.32, + "end": 2527.24, + "probability": 0.9858 + }, + { + "start": 2528.1, + "end": 2532.26, + "probability": 0.9158 + }, + { + "start": 2532.36, + "end": 2533.68, + "probability": 0.9727 + }, + { + "start": 2534.26, + "end": 2536.47, + "probability": 0.8727 + }, + { + "start": 2537.24, + "end": 2538.92, + "probability": 0.991 + }, + { + "start": 2539.86, + "end": 2542.68, + "probability": 0.9606 + }, + { + "start": 2542.72, + "end": 2544.12, + "probability": 0.9428 + }, + { + "start": 2544.86, + "end": 2548.18, + "probability": 0.9722 + }, + { + "start": 2548.3, + "end": 2552.1, + "probability": 0.8018 + }, + { + "start": 2553.04, + "end": 2554.9, + "probability": 0.9852 + }, + { + "start": 2555.12, + "end": 2557.64, + "probability": 0.7944 + }, + { + "start": 2557.74, + "end": 2559.74, + "probability": 0.9836 + }, + { + "start": 2560.56, + "end": 2563.22, + "probability": 0.9406 + }, + { + "start": 2563.92, + "end": 2567.64, + "probability": 0.9863 + }, + { + "start": 2568.42, + "end": 2570.78, + "probability": 0.9955 + }, + { + "start": 2571.72, + "end": 2575.48, + "probability": 0.9785 + }, + { + "start": 2576.54, + "end": 2578.4, + "probability": 0.9329 + }, + { + "start": 2578.44, + "end": 2581.56, + "probability": 0.9917 + }, + { + "start": 2582.12, + "end": 2583.86, + "probability": 0.9397 + }, + { + "start": 2584.46, + "end": 2585.16, + "probability": 0.0743 + }, + { + "start": 2587.08, + "end": 2587.3, + "probability": 0.1049 + }, + { + "start": 2587.3, + "end": 2587.3, + "probability": 0.0727 + }, + { + "start": 2587.3, + "end": 2587.32, + "probability": 0.6373 + }, + { + "start": 2587.44, + "end": 2588.12, + "probability": 0.8449 + }, + { + "start": 2588.76, + "end": 2593.16, + "probability": 0.5705 + }, + { + "start": 2593.62, + "end": 2594.08, + "probability": 0.0141 + }, + { + "start": 2594.08, + "end": 2594.42, + "probability": 0.1561 + }, + { + "start": 2594.62, + "end": 2597.54, + "probability": 0.5856 + }, + { + "start": 2597.68, + "end": 2601.0, + "probability": 0.6718 + }, + { + "start": 2601.22, + "end": 2601.26, + "probability": 0.3479 + }, + { + "start": 2601.4, + "end": 2601.56, + "probability": 0.7859 + }, + { + "start": 2601.68, + "end": 2603.34, + "probability": 0.989 + }, + { + "start": 2603.5, + "end": 2604.56, + "probability": 0.8974 + }, + { + "start": 2604.58, + "end": 2604.76, + "probability": 0.744 + }, + { + "start": 2604.94, + "end": 2604.96, + "probability": 0.7067 + }, + { + "start": 2605.04, + "end": 2607.05, + "probability": 0.8696 + }, + { + "start": 2607.2, + "end": 2615.68, + "probability": 0.9667 + }, + { + "start": 2615.72, + "end": 2618.16, + "probability": 0.9901 + }, + { + "start": 2619.32, + "end": 2621.66, + "probability": 0.9979 + }, + { + "start": 2622.36, + "end": 2624.26, + "probability": 0.9937 + }, + { + "start": 2625.32, + "end": 2629.76, + "probability": 0.9752 + }, + { + "start": 2629.88, + "end": 2631.04, + "probability": 0.9854 + }, + { + "start": 2632.43, + "end": 2635.92, + "probability": 0.7853 + }, + { + "start": 2636.8, + "end": 2640.0, + "probability": 0.8887 + }, + { + "start": 2640.0, + "end": 2644.86, + "probability": 0.9521 + }, + { + "start": 2646.22, + "end": 2647.8, + "probability": 0.7586 + }, + { + "start": 2648.18, + "end": 2649.18, + "probability": 0.7917 + }, + { + "start": 2649.36, + "end": 2652.28, + "probability": 0.9835 + }, + { + "start": 2653.46, + "end": 2656.92, + "probability": 0.9574 + }, + { + "start": 2657.62, + "end": 2659.14, + "probability": 0.9668 + }, + { + "start": 2660.0, + "end": 2664.12, + "probability": 0.9462 + }, + { + "start": 2666.26, + "end": 2670.02, + "probability": 0.568 + }, + { + "start": 2671.06, + "end": 2672.56, + "probability": 0.8981 + }, + { + "start": 2673.24, + "end": 2675.72, + "probability": 0.9956 + }, + { + "start": 2676.52, + "end": 2678.02, + "probability": 0.9776 + }, + { + "start": 2679.1, + "end": 2681.72, + "probability": 0.8633 + }, + { + "start": 2682.02, + "end": 2683.26, + "probability": 0.6386 + }, + { + "start": 2684.16, + "end": 2684.9, + "probability": 0.5697 + }, + { + "start": 2685.72, + "end": 2687.1, + "probability": 0.6766 + }, + { + "start": 2688.0, + "end": 2690.64, + "probability": 0.9225 + }, + { + "start": 2692.04, + "end": 2694.64, + "probability": 0.7051 + }, + { + "start": 2695.5, + "end": 2697.7, + "probability": 0.979 + }, + { + "start": 2697.78, + "end": 2699.92, + "probability": 0.6914 + }, + { + "start": 2700.36, + "end": 2701.74, + "probability": 0.9456 + }, + { + "start": 2702.42, + "end": 2705.62, + "probability": 0.9756 + }, + { + "start": 2706.32, + "end": 2707.84, + "probability": 0.8444 + }, + { + "start": 2708.62, + "end": 2710.54, + "probability": 0.9148 + }, + { + "start": 2711.94, + "end": 2715.37, + "probability": 0.9421 + }, + { + "start": 2716.16, + "end": 2719.5, + "probability": 0.8993 + }, + { + "start": 2720.18, + "end": 2721.43, + "probability": 0.9626 + }, + { + "start": 2722.58, + "end": 2724.38, + "probability": 0.6968 + }, + { + "start": 2725.98, + "end": 2727.37, + "probability": 0.7837 + }, + { + "start": 2727.6, + "end": 2728.78, + "probability": 0.9253 + }, + { + "start": 2730.46, + "end": 2732.48, + "probability": 0.481 + }, + { + "start": 2733.26, + "end": 2735.94, + "probability": 0.9366 + }, + { + "start": 2736.0, + "end": 2737.26, + "probability": 0.7779 + }, + { + "start": 2738.02, + "end": 2739.26, + "probability": 0.8171 + }, + { + "start": 2740.6, + "end": 2741.64, + "probability": 0.9753 + }, + { + "start": 2742.54, + "end": 2746.04, + "probability": 0.9473 + }, + { + "start": 2746.3, + "end": 2747.04, + "probability": 0.7414 + }, + { + "start": 2747.16, + "end": 2748.36, + "probability": 0.9301 + }, + { + "start": 2749.46, + "end": 2753.26, + "probability": 0.948 + }, + { + "start": 2753.96, + "end": 2755.5, + "probability": 0.8114 + }, + { + "start": 2756.2, + "end": 2758.32, + "probability": 0.7847 + }, + { + "start": 2759.1, + "end": 2760.42, + "probability": 0.7964 + }, + { + "start": 2761.1, + "end": 2761.52, + "probability": 0.885 + }, + { + "start": 2761.54, + "end": 2762.44, + "probability": 0.988 + }, + { + "start": 2762.92, + "end": 2763.6, + "probability": 0.5323 + }, + { + "start": 2763.7, + "end": 2764.3, + "probability": 0.7357 + }, + { + "start": 2765.46, + "end": 2768.04, + "probability": 0.9501 + }, + { + "start": 2768.8, + "end": 2769.5, + "probability": 0.8837 + }, + { + "start": 2770.06, + "end": 2773.29, + "probability": 0.9794 + }, + { + "start": 2774.3, + "end": 2774.7, + "probability": 0.9349 + }, + { + "start": 2774.9, + "end": 2777.3, + "probability": 0.9124 + }, + { + "start": 2777.42, + "end": 2778.82, + "probability": 0.8548 + }, + { + "start": 2779.06, + "end": 2780.1, + "probability": 0.8743 + }, + { + "start": 2780.2, + "end": 2780.92, + "probability": 0.6536 + }, + { + "start": 2780.96, + "end": 2781.8, + "probability": 0.4373 + }, + { + "start": 2782.52, + "end": 2785.16, + "probability": 0.7554 + }, + { + "start": 2785.66, + "end": 2787.6, + "probability": 0.7153 + }, + { + "start": 2787.66, + "end": 2789.5, + "probability": 0.985 + }, + { + "start": 2789.8, + "end": 2791.5, + "probability": 0.9374 + }, + { + "start": 2792.4, + "end": 2796.94, + "probability": 0.9754 + }, + { + "start": 2798.58, + "end": 2799.58, + "probability": 0.344 + }, + { + "start": 2799.68, + "end": 2801.04, + "probability": 0.9927 + }, + { + "start": 2801.4, + "end": 2802.84, + "probability": 0.7399 + }, + { + "start": 2803.0, + "end": 2805.24, + "probability": 0.6676 + }, + { + "start": 2808.16, + "end": 2808.72, + "probability": 0.3724 + }, + { + "start": 2809.24, + "end": 2811.54, + "probability": 0.8884 + }, + { + "start": 2812.36, + "end": 2815.01, + "probability": 0.8081 + }, + { + "start": 2815.82, + "end": 2818.4, + "probability": 0.9538 + }, + { + "start": 2819.12, + "end": 2821.56, + "probability": 0.783 + }, + { + "start": 2822.52, + "end": 2824.1, + "probability": 0.929 + }, + { + "start": 2825.08, + "end": 2832.08, + "probability": 0.9714 + }, + { + "start": 2832.88, + "end": 2834.82, + "probability": 0.7804 + }, + { + "start": 2835.42, + "end": 2838.28, + "probability": 0.7313 + }, + { + "start": 2838.76, + "end": 2839.46, + "probability": 0.6355 + }, + { + "start": 2840.26, + "end": 2843.36, + "probability": 0.964 + }, + { + "start": 2844.08, + "end": 2846.94, + "probability": 0.7063 + }, + { + "start": 2847.06, + "end": 2847.34, + "probability": 0.6761 + }, + { + "start": 2848.38, + "end": 2849.04, + "probability": 0.3374 + }, + { + "start": 2849.04, + "end": 2850.36, + "probability": 0.5518 + }, + { + "start": 2850.36, + "end": 2852.26, + "probability": 0.7192 + }, + { + "start": 2853.3, + "end": 2858.16, + "probability": 0.8795 + }, + { + "start": 2859.02, + "end": 2864.54, + "probability": 0.8818 + }, + { + "start": 2864.54, + "end": 2868.14, + "probability": 0.9634 + }, + { + "start": 2869.74, + "end": 2872.24, + "probability": 0.5937 + }, + { + "start": 2875.61, + "end": 2878.74, + "probability": 0.7448 + }, + { + "start": 2878.8, + "end": 2882.0, + "probability": 0.9951 + }, + { + "start": 2882.22, + "end": 2883.52, + "probability": 0.593 + }, + { + "start": 2883.72, + "end": 2887.36, + "probability": 0.9829 + }, + { + "start": 2887.36, + "end": 2888.48, + "probability": 0.528 + }, + { + "start": 2889.62, + "end": 2893.38, + "probability": 0.9313 + }, + { + "start": 2894.42, + "end": 2896.66, + "probability": 0.9801 + }, + { + "start": 2897.72, + "end": 2900.72, + "probability": 0.9277 + }, + { + "start": 2902.02, + "end": 2903.82, + "probability": 0.7807 + }, + { + "start": 2904.6, + "end": 2907.72, + "probability": 0.718 + }, + { + "start": 2907.72, + "end": 2910.14, + "probability": 0.9973 + }, + { + "start": 2911.32, + "end": 2914.44, + "probability": 0.9474 + }, + { + "start": 2919.2, + "end": 2925.06, + "probability": 0.9158 + }, + { + "start": 2925.12, + "end": 2925.66, + "probability": 0.7063 + }, + { + "start": 2926.86, + "end": 2929.18, + "probability": 0.9315 + }, + { + "start": 2929.72, + "end": 2931.88, + "probability": 0.5519 + }, + { + "start": 2932.56, + "end": 2935.09, + "probability": 0.7541 + }, + { + "start": 2936.12, + "end": 2939.14, + "probability": 0.9375 + }, + { + "start": 2939.14, + "end": 2944.26, + "probability": 0.9798 + }, + { + "start": 2944.54, + "end": 2945.7, + "probability": 0.9709 + }, + { + "start": 2946.46, + "end": 2948.78, + "probability": 0.9961 + }, + { + "start": 2949.74, + "end": 2952.26, + "probability": 0.9886 + }, + { + "start": 2952.8, + "end": 2956.34, + "probability": 0.9867 + }, + { + "start": 2956.48, + "end": 2957.66, + "probability": 0.7844 + }, + { + "start": 2958.36, + "end": 2961.34, + "probability": 0.9391 + }, + { + "start": 2962.54, + "end": 2962.9, + "probability": 0.7462 + }, + { + "start": 2963.08, + "end": 2965.96, + "probability": 0.9168 + }, + { + "start": 2967.38, + "end": 2970.66, + "probability": 0.9979 + }, + { + "start": 2970.66, + "end": 2973.16, + "probability": 0.9979 + }, + { + "start": 2973.68, + "end": 2974.72, + "probability": 0.6605 + }, + { + "start": 2976.01, + "end": 2979.84, + "probability": 0.9858 + }, + { + "start": 2980.9, + "end": 2983.64, + "probability": 0.9755 + }, + { + "start": 2983.64, + "end": 2987.12, + "probability": 0.9896 + }, + { + "start": 2987.84, + "end": 2989.86, + "probability": 0.9777 + }, + { + "start": 2991.0, + "end": 2993.4, + "probability": 0.9462 + }, + { + "start": 2993.58, + "end": 2998.96, + "probability": 0.8918 + }, + { + "start": 2999.84, + "end": 3002.72, + "probability": 0.9221 + }, + { + "start": 3003.56, + "end": 3004.94, + "probability": 0.9899 + }, + { + "start": 3005.66, + "end": 3009.36, + "probability": 0.8727 + }, + { + "start": 3010.88, + "end": 3013.0, + "probability": 0.9783 + }, + { + "start": 3013.0, + "end": 3016.36, + "probability": 0.9637 + }, + { + "start": 3017.04, + "end": 3021.06, + "probability": 0.9927 + }, + { + "start": 3022.86, + "end": 3023.1, + "probability": 0.7055 + }, + { + "start": 3023.62, + "end": 3025.6, + "probability": 0.7725 + }, + { + "start": 3027.12, + "end": 3029.26, + "probability": 0.3806 + }, + { + "start": 3029.3, + "end": 3030.5, + "probability": 0.725 + }, + { + "start": 3031.24, + "end": 3033.1, + "probability": 0.8529 + }, + { + "start": 3034.94, + "end": 3039.92, + "probability": 0.7454 + }, + { + "start": 3041.18, + "end": 3042.76, + "probability": 0.9711 + }, + { + "start": 3043.6, + "end": 3046.0, + "probability": 0.9824 + }, + { + "start": 3046.64, + "end": 3050.66, + "probability": 0.9749 + }, + { + "start": 3051.34, + "end": 3053.64, + "probability": 0.9846 + }, + { + "start": 3054.4, + "end": 3058.0, + "probability": 0.958 + }, + { + "start": 3058.12, + "end": 3061.59, + "probability": 0.9536 + }, + { + "start": 3062.0, + "end": 3065.65, + "probability": 0.9644 + }, + { + "start": 3066.52, + "end": 3070.3, + "probability": 0.9988 + }, + { + "start": 3070.82, + "end": 3074.26, + "probability": 0.9967 + }, + { + "start": 3074.26, + "end": 3077.06, + "probability": 0.9978 + }, + { + "start": 3077.74, + "end": 3078.5, + "probability": 0.5095 + }, + { + "start": 3078.98, + "end": 3083.64, + "probability": 0.9968 + }, + { + "start": 3084.06, + "end": 3084.5, + "probability": 0.5265 + }, + { + "start": 3084.62, + "end": 3092.04, + "probability": 0.9738 + }, + { + "start": 3092.22, + "end": 3093.72, + "probability": 0.8649 + }, + { + "start": 3094.34, + "end": 3095.38, + "probability": 0.4496 + }, + { + "start": 3095.52, + "end": 3096.9, + "probability": 0.8179 + }, + { + "start": 3097.16, + "end": 3100.04, + "probability": 0.943 + }, + { + "start": 3101.08, + "end": 3103.16, + "probability": 0.9778 + }, + { + "start": 3103.26, + "end": 3104.28, + "probability": 0.6709 + }, + { + "start": 3104.86, + "end": 3106.74, + "probability": 0.6636 + }, + { + "start": 3107.9, + "end": 3109.96, + "probability": 0.8693 + }, + { + "start": 3110.06, + "end": 3115.82, + "probability": 0.954 + }, + { + "start": 3116.02, + "end": 3117.12, + "probability": 0.6659 + }, + { + "start": 3118.48, + "end": 3123.56, + "probability": 0.9718 + }, + { + "start": 3123.58, + "end": 3128.18, + "probability": 0.9846 + }, + { + "start": 3128.8, + "end": 3132.18, + "probability": 0.6597 + }, + { + "start": 3133.0, + "end": 3136.52, + "probability": 0.9734 + }, + { + "start": 3137.36, + "end": 3138.74, + "probability": 0.7265 + }, + { + "start": 3139.68, + "end": 3145.38, + "probability": 0.9973 + }, + { + "start": 3145.56, + "end": 3147.14, + "probability": 0.9749 + }, + { + "start": 3147.96, + "end": 3151.94, + "probability": 0.9382 + }, + { + "start": 3152.14, + "end": 3153.0, + "probability": 0.9644 + }, + { + "start": 3153.6, + "end": 3156.28, + "probability": 0.9279 + }, + { + "start": 3156.88, + "end": 3159.14, + "probability": 0.9238 + }, + { + "start": 3159.8, + "end": 3164.18, + "probability": 0.9888 + }, + { + "start": 3164.24, + "end": 3165.52, + "probability": 0.8437 + }, + { + "start": 3166.46, + "end": 3168.76, + "probability": 0.7785 + }, + { + "start": 3169.78, + "end": 3172.2, + "probability": 0.9856 + }, + { + "start": 3172.82, + "end": 3174.2, + "probability": 0.8524 + }, + { + "start": 3174.46, + "end": 3179.72, + "probability": 0.9909 + }, + { + "start": 3180.96, + "end": 3183.6, + "probability": 0.9782 + }, + { + "start": 3183.6, + "end": 3187.08, + "probability": 0.996 + }, + { + "start": 3188.04, + "end": 3189.58, + "probability": 0.9117 + }, + { + "start": 3190.36, + "end": 3192.98, + "probability": 0.9979 + }, + { + "start": 3193.7, + "end": 3195.46, + "probability": 0.9025 + }, + { + "start": 3196.06, + "end": 3199.86, + "probability": 0.9766 + }, + { + "start": 3199.96, + "end": 3201.5, + "probability": 0.9459 + }, + { + "start": 3202.32, + "end": 3205.92, + "probability": 0.9733 + }, + { + "start": 3205.92, + "end": 3211.02, + "probability": 0.9973 + }, + { + "start": 3211.2, + "end": 3211.4, + "probability": 0.7611 + }, + { + "start": 3211.46, + "end": 3212.22, + "probability": 0.6135 + }, + { + "start": 3212.92, + "end": 3217.96, + "probability": 0.928 + }, + { + "start": 3218.4, + "end": 3219.48, + "probability": 0.9272 + }, + { + "start": 3220.04, + "end": 3220.84, + "probability": 0.7476 + }, + { + "start": 3220.92, + "end": 3221.54, + "probability": 0.9919 + }, + { + "start": 3221.64, + "end": 3223.28, + "probability": 0.9976 + }, + { + "start": 3224.26, + "end": 3227.2, + "probability": 0.9958 + }, + { + "start": 3228.18, + "end": 3230.58, + "probability": 0.613 + }, + { + "start": 3231.04, + "end": 3232.24, + "probability": 0.5541 + }, + { + "start": 3232.46, + "end": 3234.29, + "probability": 0.9341 + }, + { + "start": 3234.68, + "end": 3235.2, + "probability": 0.4289 + }, + { + "start": 3235.24, + "end": 3238.82, + "probability": 0.9133 + }, + { + "start": 3238.92, + "end": 3240.92, + "probability": 0.916 + }, + { + "start": 3241.8, + "end": 3245.16, + "probability": 0.9541 + }, + { + "start": 3246.71, + "end": 3251.08, + "probability": 0.6703 + }, + { + "start": 3251.54, + "end": 3256.98, + "probability": 0.8623 + }, + { + "start": 3257.46, + "end": 3259.08, + "probability": 0.7625 + }, + { + "start": 3261.16, + "end": 3262.02, + "probability": 0.2412 + }, + { + "start": 3262.62, + "end": 3263.58, + "probability": 0.299 + }, + { + "start": 3263.58, + "end": 3264.72, + "probability": 0.9766 + }, + { + "start": 3266.12, + "end": 3266.58, + "probability": 0.5688 + }, + { + "start": 3266.6, + "end": 3271.18, + "probability": 0.9021 + }, + { + "start": 3271.76, + "end": 3274.1, + "probability": 0.9773 + }, + { + "start": 3274.78, + "end": 3277.42, + "probability": 0.6667 + }, + { + "start": 3278.08, + "end": 3280.88, + "probability": 0.7927 + }, + { + "start": 3282.08, + "end": 3282.8, + "probability": 0.2885 + }, + { + "start": 3282.8, + "end": 3283.54, + "probability": 0.8369 + }, + { + "start": 3283.84, + "end": 3285.66, + "probability": 0.6988 + }, + { + "start": 3286.63, + "end": 3286.75, + "probability": 0.0809 + }, + { + "start": 3287.76, + "end": 3289.09, + "probability": 0.9937 + }, + { + "start": 3290.22, + "end": 3293.34, + "probability": 0.8331 + }, + { + "start": 3294.56, + "end": 3299.3, + "probability": 0.6743 + }, + { + "start": 3299.6, + "end": 3299.9, + "probability": 0.8231 + }, + { + "start": 3301.5, + "end": 3306.28, + "probability": 0.9948 + }, + { + "start": 3307.64, + "end": 3310.64, + "probability": 0.6624 + }, + { + "start": 3311.34, + "end": 3313.24, + "probability": 0.8927 + }, + { + "start": 3314.48, + "end": 3315.12, + "probability": 0.8879 + }, + { + "start": 3315.2, + "end": 3316.46, + "probability": 0.9461 + }, + { + "start": 3316.7, + "end": 3318.75, + "probability": 0.8018 + }, + { + "start": 3319.24, + "end": 3320.14, + "probability": 0.4787 + }, + { + "start": 3320.18, + "end": 3320.64, + "probability": 0.6608 + }, + { + "start": 3322.84, + "end": 3329.0, + "probability": 0.7789 + }, + { + "start": 3331.17, + "end": 3333.38, + "probability": 0.7573 + }, + { + "start": 3333.58, + "end": 3337.9, + "probability": 0.9961 + }, + { + "start": 3338.68, + "end": 3341.42, + "probability": 0.8923 + }, + { + "start": 3342.06, + "end": 3342.2, + "probability": 0.0513 + }, + { + "start": 3343.16, + "end": 3345.96, + "probability": 0.7455 + }, + { + "start": 3347.4, + "end": 3349.96, + "probability": 0.9809 + }, + { + "start": 3351.04, + "end": 3354.26, + "probability": 0.9912 + }, + { + "start": 3355.18, + "end": 3357.42, + "probability": 0.7684 + }, + { + "start": 3358.26, + "end": 3360.38, + "probability": 0.9144 + }, + { + "start": 3361.6, + "end": 3362.8, + "probability": 0.9109 + }, + { + "start": 3363.82, + "end": 3366.84, + "probability": 0.9502 + }, + { + "start": 3368.48, + "end": 3372.76, + "probability": 0.9543 + }, + { + "start": 3373.94, + "end": 3374.6, + "probability": 0.7975 + }, + { + "start": 3374.74, + "end": 3378.42, + "probability": 0.9671 + }, + { + "start": 3378.6, + "end": 3379.24, + "probability": 0.8612 + }, + { + "start": 3379.32, + "end": 3381.9, + "probability": 0.9491 + }, + { + "start": 3382.78, + "end": 3385.0, + "probability": 0.958 + }, + { + "start": 3385.72, + "end": 3389.5, + "probability": 0.9923 + }, + { + "start": 3390.5, + "end": 3393.88, + "probability": 0.992 + }, + { + "start": 3394.78, + "end": 3396.4, + "probability": 0.7669 + }, + { + "start": 3397.04, + "end": 3398.76, + "probability": 0.8411 + }, + { + "start": 3398.88, + "end": 3405.3, + "probability": 0.9604 + }, + { + "start": 3405.3, + "end": 3409.74, + "probability": 0.9876 + }, + { + "start": 3410.88, + "end": 3412.56, + "probability": 0.9338 + }, + { + "start": 3412.56, + "end": 3414.84, + "probability": 0.9808 + }, + { + "start": 3415.78, + "end": 3419.3, + "probability": 0.7924 + }, + { + "start": 3420.06, + "end": 3423.8, + "probability": 0.944 + }, + { + "start": 3424.16, + "end": 3429.46, + "probability": 0.9971 + }, + { + "start": 3429.46, + "end": 3434.28, + "probability": 0.9987 + }, + { + "start": 3434.96, + "end": 3435.32, + "probability": 0.5936 + }, + { + "start": 3435.4, + "end": 3438.78, + "probability": 0.9275 + }, + { + "start": 3439.5, + "end": 3442.39, + "probability": 0.9536 + }, + { + "start": 3442.96, + "end": 3444.1, + "probability": 0.6641 + }, + { + "start": 3445.68, + "end": 3446.22, + "probability": 0.7253 + }, + { + "start": 3446.24, + "end": 3451.52, + "probability": 0.7529 + }, + { + "start": 3451.64, + "end": 3452.22, + "probability": 0.843 + }, + { + "start": 3452.3, + "end": 3452.94, + "probability": 0.896 + }, + { + "start": 3453.96, + "end": 3457.2, + "probability": 0.9312 + }, + { + "start": 3457.96, + "end": 3460.46, + "probability": 0.9269 + }, + { + "start": 3461.58, + "end": 3465.14, + "probability": 0.9371 + }, + { + "start": 3465.82, + "end": 3467.22, + "probability": 0.992 + }, + { + "start": 3468.0, + "end": 3470.26, + "probability": 0.957 + }, + { + "start": 3470.26, + "end": 3473.7, + "probability": 0.6294 + }, + { + "start": 3474.34, + "end": 3477.06, + "probability": 0.8639 + }, + { + "start": 3477.46, + "end": 3480.84, + "probability": 0.9814 + }, + { + "start": 3481.1, + "end": 3482.08, + "probability": 0.8706 + }, + { + "start": 3482.7, + "end": 3483.92, + "probability": 0.79 + }, + { + "start": 3484.2, + "end": 3485.18, + "probability": 0.5027 + }, + { + "start": 3485.28, + "end": 3485.48, + "probability": 0.6068 + }, + { + "start": 3485.5, + "end": 3486.81, + "probability": 0.9528 + }, + { + "start": 3487.28, + "end": 3488.96, + "probability": 0.8041 + }, + { + "start": 3489.92, + "end": 3491.64, + "probability": 0.9669 + }, + { + "start": 3491.76, + "end": 3496.1, + "probability": 0.9097 + }, + { + "start": 3498.16, + "end": 3501.34, + "probability": 0.8796 + }, + { + "start": 3501.66, + "end": 3504.3, + "probability": 0.9645 + }, + { + "start": 3505.66, + "end": 3506.68, + "probability": 0.5728 + }, + { + "start": 3506.8, + "end": 3510.1, + "probability": 0.8333 + }, + { + "start": 3510.1, + "end": 3513.42, + "probability": 0.9386 + }, + { + "start": 3513.54, + "end": 3517.74, + "probability": 0.933 + }, + { + "start": 3517.9, + "end": 3518.78, + "probability": 0.7734 + }, + { + "start": 3518.96, + "end": 3521.68, + "probability": 0.9274 + }, + { + "start": 3521.84, + "end": 3523.0, + "probability": 0.7652 + }, + { + "start": 3523.9, + "end": 3524.5, + "probability": 0.5908 + }, + { + "start": 3525.06, + "end": 3526.1, + "probability": 0.7243 + }, + { + "start": 3526.16, + "end": 3529.6, + "probability": 0.7908 + }, + { + "start": 3529.78, + "end": 3530.86, + "probability": 0.5959 + }, + { + "start": 3531.0, + "end": 3533.06, + "probability": 0.9411 + }, + { + "start": 3534.2, + "end": 3535.48, + "probability": 0.6045 + }, + { + "start": 3536.32, + "end": 3536.78, + "probability": 0.3231 + }, + { + "start": 3540.14, + "end": 3542.22, + "probability": 0.5136 + }, + { + "start": 3542.28, + "end": 3543.48, + "probability": 0.7107 + }, + { + "start": 3543.56, + "end": 3545.34, + "probability": 0.8415 + }, + { + "start": 3545.34, + "end": 3546.18, + "probability": 0.8113 + }, + { + "start": 3546.54, + "end": 3549.04, + "probability": 0.9821 + }, + { + "start": 3549.1, + "end": 3553.24, + "probability": 0.994 + }, + { + "start": 3553.56, + "end": 3557.12, + "probability": 0.9121 + }, + { + "start": 3557.66, + "end": 3559.68, + "probability": 0.9934 + }, + { + "start": 3559.84, + "end": 3561.7, + "probability": 0.9914 + }, + { + "start": 3562.24, + "end": 3563.76, + "probability": 0.8228 + }, + { + "start": 3564.54, + "end": 3569.52, + "probability": 0.7926 + }, + { + "start": 3569.64, + "end": 3573.26, + "probability": 0.9714 + }, + { + "start": 3574.52, + "end": 3576.78, + "probability": 0.984 + }, + { + "start": 3576.84, + "end": 3577.61, + "probability": 0.861 + }, + { + "start": 3577.96, + "end": 3581.52, + "probability": 0.3379 + }, + { + "start": 3581.52, + "end": 3581.52, + "probability": 0.1209 + }, + { + "start": 3581.52, + "end": 3581.52, + "probability": 0.0837 + }, + { + "start": 3581.52, + "end": 3583.0, + "probability": 0.6765 + }, + { + "start": 3583.12, + "end": 3583.64, + "probability": 0.589 + }, + { + "start": 3583.9, + "end": 3585.28, + "probability": 0.4782 + }, + { + "start": 3585.28, + "end": 3586.02, + "probability": 0.7896 + }, + { + "start": 3586.9, + "end": 3589.06, + "probability": 0.8216 + }, + { + "start": 3589.3, + "end": 3590.82, + "probability": 0.7507 + }, + { + "start": 3592.52, + "end": 3593.5, + "probability": 0.6053 + }, + { + "start": 3594.34, + "end": 3598.92, + "probability": 0.982 + }, + { + "start": 3600.47, + "end": 3604.28, + "probability": 0.9897 + }, + { + "start": 3604.56, + "end": 3607.32, + "probability": 0.9515 + }, + { + "start": 3607.9, + "end": 3609.36, + "probability": 0.946 + }, + { + "start": 3609.84, + "end": 3610.54, + "probability": 0.8455 + }, + { + "start": 3610.7, + "end": 3616.22, + "probability": 0.6762 + }, + { + "start": 3617.14, + "end": 3618.94, + "probability": 0.7851 + }, + { + "start": 3618.98, + "end": 3620.7, + "probability": 0.9795 + }, + { + "start": 3621.84, + "end": 3623.54, + "probability": 0.9434 + }, + { + "start": 3623.7, + "end": 3626.03, + "probability": 0.8085 + }, + { + "start": 3627.24, + "end": 3632.08, + "probability": 0.9748 + }, + { + "start": 3632.43, + "end": 3635.26, + "probability": 0.9944 + }, + { + "start": 3635.86, + "end": 3638.1, + "probability": 0.9985 + }, + { + "start": 3638.76, + "end": 3639.94, + "probability": 0.7225 + }, + { + "start": 3640.5, + "end": 3643.94, + "probability": 0.9325 + }, + { + "start": 3644.58, + "end": 3646.24, + "probability": 0.736 + }, + { + "start": 3646.82, + "end": 3648.34, + "probability": 0.9106 + }, + { + "start": 3649.08, + "end": 3653.76, + "probability": 0.9935 + }, + { + "start": 3653.88, + "end": 3654.56, + "probability": 0.1791 + }, + { + "start": 3654.68, + "end": 3656.77, + "probability": 0.9617 + }, + { + "start": 3658.86, + "end": 3659.0, + "probability": 0.9163 + }, + { + "start": 3659.92, + "end": 3663.8, + "probability": 0.9992 + }, + { + "start": 3664.42, + "end": 3664.98, + "probability": 0.3839 + }, + { + "start": 3665.42, + "end": 3665.68, + "probability": 0.8052 + }, + { + "start": 3665.92, + "end": 3667.4, + "probability": 0.4035 + }, + { + "start": 3667.46, + "end": 3668.56, + "probability": 0.5251 + }, + { + "start": 3668.76, + "end": 3671.6, + "probability": 0.9727 + }, + { + "start": 3672.34, + "end": 3673.65, + "probability": 0.9695 + }, + { + "start": 3673.86, + "end": 3678.58, + "probability": 0.9808 + }, + { + "start": 3678.58, + "end": 3683.14, + "probability": 0.9849 + }, + { + "start": 3683.82, + "end": 3685.08, + "probability": 0.9581 + }, + { + "start": 3686.42, + "end": 3688.44, + "probability": 0.8542 + }, + { + "start": 3688.5, + "end": 3690.12, + "probability": 0.8727 + }, + { + "start": 3691.0, + "end": 3697.8, + "probability": 0.9459 + }, + { + "start": 3698.76, + "end": 3704.66, + "probability": 0.9932 + }, + { + "start": 3704.66, + "end": 3707.52, + "probability": 0.9501 + }, + { + "start": 3708.32, + "end": 3710.28, + "probability": 0.9938 + }, + { + "start": 3711.04, + "end": 3715.28, + "probability": 0.995 + }, + { + "start": 3716.0, + "end": 3718.8, + "probability": 0.8975 + }, + { + "start": 3719.68, + "end": 3723.72, + "probability": 0.8513 + }, + { + "start": 3723.86, + "end": 3726.48, + "probability": 0.9795 + }, + { + "start": 3727.1, + "end": 3728.92, + "probability": 0.7382 + }, + { + "start": 3729.86, + "end": 3731.78, + "probability": 0.9421 + }, + { + "start": 3732.48, + "end": 3735.92, + "probability": 0.9984 + }, + { + "start": 3736.76, + "end": 3740.2, + "probability": 0.8811 + }, + { + "start": 3741.48, + "end": 3744.94, + "probability": 0.9688 + }, + { + "start": 3745.2, + "end": 3746.34, + "probability": 0.5355 + }, + { + "start": 3747.38, + "end": 3752.32, + "probability": 0.6967 + }, + { + "start": 3752.32, + "end": 3755.66, + "probability": 0.9912 + }, + { + "start": 3756.46, + "end": 3761.28, + "probability": 0.9718 + }, + { + "start": 3761.47, + "end": 3764.72, + "probability": 0.8409 + }, + { + "start": 3765.46, + "end": 3768.64, + "probability": 0.8291 + }, + { + "start": 3768.78, + "end": 3769.49, + "probability": 0.8988 + }, + { + "start": 3770.44, + "end": 3773.4, + "probability": 0.9953 + }, + { + "start": 3773.4, + "end": 3775.5, + "probability": 0.9964 + }, + { + "start": 3777.26, + "end": 3778.2, + "probability": 0.5687 + }, + { + "start": 3778.46, + "end": 3781.1, + "probability": 0.9507 + }, + { + "start": 3781.22, + "end": 3781.5, + "probability": 0.4421 + }, + { + "start": 3782.3, + "end": 3783.64, + "probability": 0.9514 + }, + { + "start": 3784.5, + "end": 3785.76, + "probability": 0.7167 + }, + { + "start": 3786.68, + "end": 3788.1, + "probability": 0.7341 + }, + { + "start": 3793.8, + "end": 3797.96, + "probability": 0.9507 + }, + { + "start": 3798.34, + "end": 3800.0, + "probability": 0.6796 + }, + { + "start": 3808.56, + "end": 3809.42, + "probability": 0.1049 + }, + { + "start": 3810.04, + "end": 3812.92, + "probability": 0.7086 + }, + { + "start": 3813.6, + "end": 3814.98, + "probability": 0.8091 + }, + { + "start": 3815.3, + "end": 3817.22, + "probability": 0.9011 + }, + { + "start": 3819.22, + "end": 3819.58, + "probability": 0.2909 + }, + { + "start": 3820.22, + "end": 3824.68, + "probability": 0.1028 + }, + { + "start": 3825.72, + "end": 3828.5, + "probability": 0.1103 + }, + { + "start": 3828.68, + "end": 3829.12, + "probability": 0.8499 + }, + { + "start": 3829.24, + "end": 3836.22, + "probability": 0.9912 + }, + { + "start": 3836.7, + "end": 3838.3, + "probability": 0.8512 + }, + { + "start": 3838.46, + "end": 3841.42, + "probability": 0.8283 + }, + { + "start": 3842.3, + "end": 3843.74, + "probability": 0.9085 + }, + { + "start": 3844.04, + "end": 3846.34, + "probability": 0.2333 + }, + { + "start": 3848.36, + "end": 3849.2, + "probability": 0.2184 + }, + { + "start": 3851.97, + "end": 3855.76, + "probability": 0.6587 + }, + { + "start": 3855.88, + "end": 3857.39, + "probability": 0.8722 + }, + { + "start": 3859.53, + "end": 3860.98, + "probability": 0.7523 + }, + { + "start": 3862.0, + "end": 3866.36, + "probability": 0.9343 + }, + { + "start": 3866.36, + "end": 3872.5, + "probability": 0.8633 + }, + { + "start": 3873.86, + "end": 3877.16, + "probability": 0.7723 + }, + { + "start": 3878.3, + "end": 3880.48, + "probability": 0.9441 + }, + { + "start": 3881.2, + "end": 3883.24, + "probability": 0.4072 + }, + { + "start": 3883.86, + "end": 3885.34, + "probability": 0.884 + }, + { + "start": 3888.08, + "end": 3893.28, + "probability": 0.8349 + }, + { + "start": 3893.8, + "end": 3895.2, + "probability": 0.9423 + }, + { + "start": 3896.62, + "end": 3900.2, + "probability": 0.984 + }, + { + "start": 3901.18, + "end": 3905.44, + "probability": 0.8846 + }, + { + "start": 3905.78, + "end": 3907.3, + "probability": 0.8281 + }, + { + "start": 3908.64, + "end": 3909.6, + "probability": 0.5267 + }, + { + "start": 3910.82, + "end": 3910.96, + "probability": 0.5274 + }, + { + "start": 3911.44, + "end": 3915.84, + "probability": 0.9856 + }, + { + "start": 3915.88, + "end": 3919.7, + "probability": 0.9366 + }, + { + "start": 3919.86, + "end": 3920.06, + "probability": 0.6672 + }, + { + "start": 3921.54, + "end": 3923.76, + "probability": 0.5615 + }, + { + "start": 3923.88, + "end": 3925.52, + "probability": 0.8471 + }, + { + "start": 3925.74, + "end": 3927.76, + "probability": 0.6561 + }, + { + "start": 3927.88, + "end": 3929.24, + "probability": 0.9728 + }, + { + "start": 3930.6, + "end": 3937.56, + "probability": 0.7557 + }, + { + "start": 3938.52, + "end": 3943.32, + "probability": 0.9307 + }, + { + "start": 3943.42, + "end": 3950.38, + "probability": 0.9966 + }, + { + "start": 3951.18, + "end": 3951.74, + "probability": 0.4352 + }, + { + "start": 3951.9, + "end": 3954.9, + "probability": 0.8725 + }, + { + "start": 3954.9, + "end": 3957.38, + "probability": 0.9906 + }, + { + "start": 3957.96, + "end": 3959.4, + "probability": 0.7283 + }, + { + "start": 3959.86, + "end": 3963.98, + "probability": 0.9921 + }, + { + "start": 3964.64, + "end": 3965.4, + "probability": 0.8591 + }, + { + "start": 3965.56, + "end": 3969.32, + "probability": 0.9888 + }, + { + "start": 3970.38, + "end": 3971.54, + "probability": 0.9412 + }, + { + "start": 3971.7, + "end": 3975.88, + "probability": 0.9479 + }, + { + "start": 3977.08, + "end": 3982.4, + "probability": 0.887 + }, + { + "start": 3983.66, + "end": 3987.78, + "probability": 0.9586 + }, + { + "start": 3987.78, + "end": 3990.68, + "probability": 0.9954 + }, + { + "start": 3991.62, + "end": 3994.28, + "probability": 0.8572 + }, + { + "start": 3996.42, + "end": 3999.58, + "probability": 0.8703 + }, + { + "start": 4000.36, + "end": 4003.5, + "probability": 0.9923 + }, + { + "start": 4004.14, + "end": 4006.68, + "probability": 0.9241 + }, + { + "start": 4006.8, + "end": 4007.82, + "probability": 0.9679 + }, + { + "start": 4007.98, + "end": 4009.34, + "probability": 0.9171 + }, + { + "start": 4009.94, + "end": 4012.74, + "probability": 0.8393 + }, + { + "start": 4013.75, + "end": 4015.46, + "probability": 0.8734 + }, + { + "start": 4016.18, + "end": 4018.02, + "probability": 0.6433 + }, + { + "start": 4018.08, + "end": 4020.42, + "probability": 0.6985 + }, + { + "start": 4021.38, + "end": 4022.06, + "probability": 0.3632 + }, + { + "start": 4022.52, + "end": 4023.58, + "probability": 0.9823 + }, + { + "start": 4023.66, + "end": 4024.24, + "probability": 0.7229 + }, + { + "start": 4024.38, + "end": 4027.25, + "probability": 0.625 + }, + { + "start": 4028.68, + "end": 4029.98, + "probability": 0.7638 + }, + { + "start": 4031.44, + "end": 4038.66, + "probability": 0.9954 + }, + { + "start": 4040.04, + "end": 4044.24, + "probability": 0.9639 + }, + { + "start": 4044.28, + "end": 4044.88, + "probability": 0.8274 + }, + { + "start": 4044.96, + "end": 4045.56, + "probability": 0.5947 + }, + { + "start": 4045.74, + "end": 4046.7, + "probability": 0.9668 + }, + { + "start": 4047.58, + "end": 4049.46, + "probability": 0.6212 + }, + { + "start": 4049.5, + "end": 4050.26, + "probability": 0.8223 + }, + { + "start": 4050.34, + "end": 4052.58, + "probability": 0.8319 + }, + { + "start": 4052.92, + "end": 4054.18, + "probability": 0.5956 + }, + { + "start": 4054.68, + "end": 4055.56, + "probability": 0.7569 + }, + { + "start": 4058.76, + "end": 4061.14, + "probability": 0.6796 + }, + { + "start": 4061.7, + "end": 4062.94, + "probability": 0.8813 + }, + { + "start": 4063.62, + "end": 4065.66, + "probability": 0.5187 + }, + { + "start": 4066.38, + "end": 4068.96, + "probability": 0.8782 + }, + { + "start": 4069.44, + "end": 4070.39, + "probability": 0.5135 + }, + { + "start": 4071.46, + "end": 4073.14, + "probability": 0.4083 + }, + { + "start": 4073.5, + "end": 4076.56, + "probability": 0.7847 + }, + { + "start": 4076.7, + "end": 4077.14, + "probability": 0.7345 + }, + { + "start": 4077.24, + "end": 4078.28, + "probability": 0.7533 + }, + { + "start": 4078.42, + "end": 4083.66, + "probability": 0.9814 + }, + { + "start": 4084.04, + "end": 4084.24, + "probability": 0.5729 + }, + { + "start": 4084.34, + "end": 4086.2, + "probability": 0.468 + }, + { + "start": 4086.26, + "end": 4087.52, + "probability": 0.6882 + }, + { + "start": 4087.54, + "end": 4089.53, + "probability": 0.7202 + }, + { + "start": 4092.66, + "end": 4093.52, + "probability": 0.7873 + }, + { + "start": 4094.26, + "end": 4095.06, + "probability": 0.7354 + }, + { + "start": 4095.18, + "end": 4096.22, + "probability": 0.644 + }, + { + "start": 4096.32, + "end": 4101.4, + "probability": 0.8168 + }, + { + "start": 4102.02, + "end": 4103.32, + "probability": 0.844 + }, + { + "start": 4104.56, + "end": 4108.5, + "probability": 0.9795 + }, + { + "start": 4109.54, + "end": 4113.96, + "probability": 0.8972 + }, + { + "start": 4114.53, + "end": 4117.6, + "probability": 0.939 + }, + { + "start": 4118.78, + "end": 4120.72, + "probability": 0.3259 + }, + { + "start": 4121.56, + "end": 4122.4, + "probability": 0.2532 + }, + { + "start": 4122.4, + "end": 4123.08, + "probability": 0.962 + }, + { + "start": 4124.3, + "end": 4125.06, + "probability": 0.8729 + }, + { + "start": 4126.38, + "end": 4129.26, + "probability": 0.9021 + }, + { + "start": 4130.56, + "end": 4137.22, + "probability": 0.971 + }, + { + "start": 4138.96, + "end": 4143.54, + "probability": 0.7949 + }, + { + "start": 4144.64, + "end": 4145.9, + "probability": 0.9425 + }, + { + "start": 4146.0, + "end": 4147.34, + "probability": 0.9743 + }, + { + "start": 4147.4, + "end": 4148.54, + "probability": 0.8077 + }, + { + "start": 4148.94, + "end": 4150.52, + "probability": 0.5796 + }, + { + "start": 4151.12, + "end": 4151.9, + "probability": 0.9753 + }, + { + "start": 4152.0, + "end": 4155.4, + "probability": 0.9033 + }, + { + "start": 4156.18, + "end": 4158.92, + "probability": 0.9143 + }, + { + "start": 4159.0, + "end": 4161.1, + "probability": 0.5893 + }, + { + "start": 4161.1, + "end": 4162.48, + "probability": 0.5002 + }, + { + "start": 4162.56, + "end": 4164.02, + "probability": 0.8087 + }, + { + "start": 4164.12, + "end": 4164.86, + "probability": 0.91 + }, + { + "start": 4165.06, + "end": 4167.42, + "probability": 0.7525 + }, + { + "start": 4167.96, + "end": 4170.14, + "probability": 0.8914 + }, + { + "start": 4171.34, + "end": 4174.12, + "probability": 0.9849 + }, + { + "start": 4174.86, + "end": 4177.74, + "probability": 0.69 + }, + { + "start": 4178.38, + "end": 4179.61, + "probability": 0.9702 + }, + { + "start": 4180.84, + "end": 4184.6, + "probability": 0.9446 + }, + { + "start": 4185.2, + "end": 4189.0, + "probability": 0.9873 + }, + { + "start": 4189.56, + "end": 4192.22, + "probability": 0.8939 + }, + { + "start": 4193.06, + "end": 4194.96, + "probability": 0.9915 + }, + { + "start": 4195.9, + "end": 4196.94, + "probability": 0.98 + }, + { + "start": 4197.12, + "end": 4198.73, + "probability": 0.9867 + }, + { + "start": 4199.3, + "end": 4199.92, + "probability": 0.9385 + }, + { + "start": 4200.56, + "end": 4202.08, + "probability": 0.9864 + }, + { + "start": 4202.76, + "end": 4204.82, + "probability": 0.9329 + }, + { + "start": 4204.9, + "end": 4205.76, + "probability": 0.9688 + }, + { + "start": 4206.24, + "end": 4208.16, + "probability": 0.9437 + }, + { + "start": 4208.38, + "end": 4211.62, + "probability": 0.9905 + }, + { + "start": 4211.7, + "end": 4214.86, + "probability": 0.9149 + }, + { + "start": 4215.4, + "end": 4219.08, + "probability": 0.9922 + }, + { + "start": 4219.64, + "end": 4222.12, + "probability": 0.7482 + }, + { + "start": 4222.84, + "end": 4223.96, + "probability": 0.4433 + }, + { + "start": 4224.12, + "end": 4227.86, + "probability": 0.9843 + }, + { + "start": 4228.88, + "end": 4231.74, + "probability": 0.5629 + }, + { + "start": 4232.38, + "end": 4234.99, + "probability": 0.8179 + }, + { + "start": 4237.2, + "end": 4240.0, + "probability": 0.9488 + }, + { + "start": 4241.2, + "end": 4242.3, + "probability": 0.3716 + }, + { + "start": 4242.56, + "end": 4243.52, + "probability": 0.3444 + }, + { + "start": 4243.84, + "end": 4244.12, + "probability": 0.0032 + }, + { + "start": 4245.18, + "end": 4246.52, + "probability": 0.1663 + }, + { + "start": 4246.52, + "end": 4247.48, + "probability": 0.507 + }, + { + "start": 4248.26, + "end": 4254.5, + "probability": 0.9125 + }, + { + "start": 4255.38, + "end": 4260.18, + "probability": 0.9979 + }, + { + "start": 4261.3, + "end": 4264.04, + "probability": 0.978 + }, + { + "start": 4264.24, + "end": 4266.96, + "probability": 0.9968 + }, + { + "start": 4267.52, + "end": 4270.02, + "probability": 0.9978 + }, + { + "start": 4270.24, + "end": 4272.28, + "probability": 0.9922 + }, + { + "start": 4272.98, + "end": 4274.14, + "probability": 0.8416 + }, + { + "start": 4274.3, + "end": 4274.96, + "probability": 0.9315 + }, + { + "start": 4275.6, + "end": 4276.84, + "probability": 0.9893 + }, + { + "start": 4277.66, + "end": 4281.92, + "probability": 0.8909 + }, + { + "start": 4281.94, + "end": 4283.18, + "probability": 0.9903 + }, + { + "start": 4286.41, + "end": 4289.56, + "probability": 0.6962 + }, + { + "start": 4290.14, + "end": 4292.26, + "probability": 0.7732 + }, + { + "start": 4293.38, + "end": 4296.14, + "probability": 0.9158 + }, + { + "start": 4297.38, + "end": 4299.4, + "probability": 0.7827 + }, + { + "start": 4300.3, + "end": 4303.94, + "probability": 0.9791 + }, + { + "start": 4304.58, + "end": 4307.82, + "probability": 0.8547 + }, + { + "start": 4308.04, + "end": 4310.08, + "probability": 0.8466 + }, + { + "start": 4310.72, + "end": 4312.6, + "probability": 0.9789 + }, + { + "start": 4313.18, + "end": 4314.82, + "probability": 0.4752 + }, + { + "start": 4316.08, + "end": 4321.32, + "probability": 0.7635 + }, + { + "start": 4322.1, + "end": 4324.86, + "probability": 0.9338 + }, + { + "start": 4326.06, + "end": 4327.92, + "probability": 0.9478 + }, + { + "start": 4328.76, + "end": 4330.42, + "probability": 0.9805 + }, + { + "start": 4331.94, + "end": 4339.22, + "probability": 0.98 + }, + { + "start": 4341.02, + "end": 4342.32, + "probability": 0.9027 + }, + { + "start": 4342.52, + "end": 4348.06, + "probability": 0.9997 + }, + { + "start": 4348.6, + "end": 4349.86, + "probability": 0.9182 + }, + { + "start": 4350.56, + "end": 4351.52, + "probability": 0.6011 + }, + { + "start": 4352.66, + "end": 4358.1, + "probability": 0.9497 + }, + { + "start": 4358.88, + "end": 4362.5, + "probability": 0.9933 + }, + { + "start": 4363.34, + "end": 4366.44, + "probability": 0.8798 + }, + { + "start": 4367.04, + "end": 4369.71, + "probability": 0.981 + }, + { + "start": 4370.64, + "end": 4374.26, + "probability": 0.9921 + }, + { + "start": 4374.96, + "end": 4377.8, + "probability": 0.993 + }, + { + "start": 4378.52, + "end": 4380.95, + "probability": 0.9937 + }, + { + "start": 4381.74, + "end": 4384.7, + "probability": 0.7807 + }, + { + "start": 4385.46, + "end": 4387.96, + "probability": 0.9891 + }, + { + "start": 4388.04, + "end": 4388.9, + "probability": 0.5894 + }, + { + "start": 4390.5, + "end": 4393.5, + "probability": 0.9958 + }, + { + "start": 4393.54, + "end": 4394.22, + "probability": 0.8589 + }, + { + "start": 4394.94, + "end": 4398.18, + "probability": 0.9652 + }, + { + "start": 4399.08, + "end": 4402.42, + "probability": 0.9907 + }, + { + "start": 4402.9, + "end": 4405.32, + "probability": 0.939 + }, + { + "start": 4405.92, + "end": 4409.56, + "probability": 0.9856 + }, + { + "start": 4410.2, + "end": 4413.36, + "probability": 0.9541 + }, + { + "start": 4414.0, + "end": 4415.66, + "probability": 0.6637 + }, + { + "start": 4416.04, + "end": 4416.84, + "probability": 0.6578 + }, + { + "start": 4417.18, + "end": 4417.6, + "probability": 0.0105 + }, + { + "start": 4417.92, + "end": 4418.04, + "probability": 0.2692 + }, + { + "start": 4418.04, + "end": 4418.4, + "probability": 0.5206 + }, + { + "start": 4420.24, + "end": 4422.32, + "probability": 0.4991 + }, + { + "start": 4422.93, + "end": 4426.7, + "probability": 0.8624 + }, + { + "start": 4426.8, + "end": 4431.24, + "probability": 0.9084 + }, + { + "start": 4431.8, + "end": 4434.32, + "probability": 0.8371 + }, + { + "start": 4434.32, + "end": 4434.94, + "probability": 0.8859 + }, + { + "start": 4435.12, + "end": 4437.22, + "probability": 0.9272 + }, + { + "start": 4437.34, + "end": 4437.82, + "probability": 0.4303 + }, + { + "start": 4438.4, + "end": 4439.38, + "probability": 0.7119 + }, + { + "start": 4439.54, + "end": 4441.34, + "probability": 0.9134 + }, + { + "start": 4441.52, + "end": 4443.3, + "probability": 0.9681 + }, + { + "start": 4443.5, + "end": 4445.18, + "probability": 0.3934 + }, + { + "start": 4445.18, + "end": 4445.36, + "probability": 0.3278 + }, + { + "start": 4445.36, + "end": 4446.32, + "probability": 0.9062 + }, + { + "start": 4446.68, + "end": 4447.68, + "probability": 0.9897 + }, + { + "start": 4447.9, + "end": 4449.17, + "probability": 0.6978 + }, + { + "start": 4449.6, + "end": 4453.02, + "probability": 0.9209 + }, + { + "start": 4453.08, + "end": 4454.18, + "probability": 0.9165 + }, + { + "start": 4454.72, + "end": 4456.58, + "probability": 0.9675 + }, + { + "start": 4457.3, + "end": 4457.78, + "probability": 0.6035 + }, + { + "start": 4457.84, + "end": 4461.42, + "probability": 0.9915 + }, + { + "start": 4461.86, + "end": 4462.2, + "probability": 0.884 + }, + { + "start": 4462.68, + "end": 4463.92, + "probability": 0.9126 + }, + { + "start": 4464.12, + "end": 4465.76, + "probability": 0.7556 + }, + { + "start": 4465.82, + "end": 4467.02, + "probability": 0.953 + }, + { + "start": 4467.08, + "end": 4470.26, + "probability": 0.8771 + }, + { + "start": 4471.29, + "end": 4474.2, + "probability": 0.891 + }, + { + "start": 4474.5, + "end": 4476.9, + "probability": 0.7526 + }, + { + "start": 4476.96, + "end": 4477.96, + "probability": 0.7997 + }, + { + "start": 4478.4, + "end": 4480.96, + "probability": 0.9535 + }, + { + "start": 4481.94, + "end": 4485.08, + "probability": 0.9469 + }, + { + "start": 4485.08, + "end": 4488.34, + "probability": 0.7862 + }, + { + "start": 4488.56, + "end": 4489.86, + "probability": 0.3926 + }, + { + "start": 4490.88, + "end": 4493.88, + "probability": 0.8955 + }, + { + "start": 4494.42, + "end": 4496.18, + "probability": 0.6734 + }, + { + "start": 4500.46, + "end": 4502.94, + "probability": 0.7661 + }, + { + "start": 4509.9, + "end": 4510.14, + "probability": 0.2552 + }, + { + "start": 4510.16, + "end": 4511.2, + "probability": 0.6555 + }, + { + "start": 4511.96, + "end": 4512.86, + "probability": 0.6742 + }, + { + "start": 4513.68, + "end": 4517.42, + "probability": 0.9811 + }, + { + "start": 4518.14, + "end": 4520.74, + "probability": 0.9686 + }, + { + "start": 4521.36, + "end": 4523.14, + "probability": 0.9774 + }, + { + "start": 4523.56, + "end": 4526.92, + "probability": 0.9988 + }, + { + "start": 4527.8, + "end": 4528.48, + "probability": 0.8396 + }, + { + "start": 4528.64, + "end": 4531.8, + "probability": 0.9447 + }, + { + "start": 4531.96, + "end": 4533.5, + "probability": 0.947 + }, + { + "start": 4534.0, + "end": 4536.26, + "probability": 0.9974 + }, + { + "start": 4537.02, + "end": 4539.2, + "probability": 0.9963 + }, + { + "start": 4539.3, + "end": 4539.8, + "probability": 0.6353 + }, + { + "start": 4539.82, + "end": 4540.86, + "probability": 0.9036 + }, + { + "start": 4541.26, + "end": 4543.62, + "probability": 0.9928 + }, + { + "start": 4544.34, + "end": 4547.24, + "probability": 0.9834 + }, + { + "start": 4547.42, + "end": 4551.78, + "probability": 0.93 + }, + { + "start": 4551.78, + "end": 4556.5, + "probability": 0.9989 + }, + { + "start": 4557.44, + "end": 4558.86, + "probability": 0.9993 + }, + { + "start": 4559.14, + "end": 4559.44, + "probability": 0.8052 + }, + { + "start": 4559.5, + "end": 4561.82, + "probability": 0.978 + }, + { + "start": 4562.14, + "end": 4563.8, + "probability": 0.9672 + }, + { + "start": 4564.2, + "end": 4566.0, + "probability": 0.9734 + }, + { + "start": 4566.32, + "end": 4567.26, + "probability": 0.9907 + }, + { + "start": 4567.32, + "end": 4568.2, + "probability": 0.9775 + }, + { + "start": 4569.08, + "end": 4571.12, + "probability": 0.9771 + }, + { + "start": 4571.64, + "end": 4574.79, + "probability": 0.9983 + }, + { + "start": 4575.06, + "end": 4577.96, + "probability": 0.9908 + }, + { + "start": 4578.58, + "end": 4580.18, + "probability": 0.8589 + }, + { + "start": 4580.68, + "end": 4584.72, + "probability": 0.9702 + }, + { + "start": 4585.22, + "end": 4587.52, + "probability": 0.9854 + }, + { + "start": 4588.9, + "end": 4591.22, + "probability": 0.9897 + }, + { + "start": 4591.46, + "end": 4592.08, + "probability": 0.8938 + }, + { + "start": 4592.58, + "end": 4594.66, + "probability": 0.9873 + }, + { + "start": 4594.66, + "end": 4597.5, + "probability": 0.9711 + }, + { + "start": 4597.84, + "end": 4599.62, + "probability": 0.9847 + }, + { + "start": 4600.1, + "end": 4600.42, + "probability": 0.7185 + }, + { + "start": 4600.54, + "end": 4601.78, + "probability": 0.7969 + }, + { + "start": 4602.92, + "end": 4607.74, + "probability": 0.9943 + }, + { + "start": 4607.74, + "end": 4613.64, + "probability": 0.992 + }, + { + "start": 4614.02, + "end": 4616.66, + "probability": 0.9966 + }, + { + "start": 4617.4, + "end": 4622.14, + "probability": 0.9905 + }, + { + "start": 4622.62, + "end": 4627.38, + "probability": 0.9787 + }, + { + "start": 4627.72, + "end": 4629.3, + "probability": 0.8289 + }, + { + "start": 4629.36, + "end": 4630.98, + "probability": 0.7485 + }, + { + "start": 4631.36, + "end": 4633.55, + "probability": 0.9719 + }, + { + "start": 4633.62, + "end": 4637.34, + "probability": 0.9027 + }, + { + "start": 4637.96, + "end": 4640.52, + "probability": 0.9653 + }, + { + "start": 4641.68, + "end": 4645.7, + "probability": 0.88 + }, + { + "start": 4646.04, + "end": 4648.36, + "probability": 0.9972 + }, + { + "start": 4649.2, + "end": 4652.28, + "probability": 0.9902 + }, + { + "start": 4652.32, + "end": 4653.58, + "probability": 0.9164 + }, + { + "start": 4653.96, + "end": 4657.86, + "probability": 0.9816 + }, + { + "start": 4658.6, + "end": 4662.94, + "probability": 0.9829 + }, + { + "start": 4663.12, + "end": 4665.16, + "probability": 0.9915 + }, + { + "start": 4665.46, + "end": 4668.86, + "probability": 0.9839 + }, + { + "start": 4669.66, + "end": 4671.18, + "probability": 0.9905 + }, + { + "start": 4671.3, + "end": 4672.14, + "probability": 0.9686 + }, + { + "start": 4672.98, + "end": 4675.5, + "probability": 0.9978 + }, + { + "start": 4675.8, + "end": 4676.48, + "probability": 0.6945 + }, + { + "start": 4676.96, + "end": 4678.34, + "probability": 0.9971 + }, + { + "start": 4678.42, + "end": 4681.38, + "probability": 0.9868 + }, + { + "start": 4681.64, + "end": 4683.74, + "probability": 0.9839 + }, + { + "start": 4683.86, + "end": 4685.52, + "probability": 0.9906 + }, + { + "start": 4686.52, + "end": 4686.82, + "probability": 0.413 + }, + { + "start": 4686.88, + "end": 4690.1, + "probability": 0.9601 + }, + { + "start": 4690.1, + "end": 4691.92, + "probability": 0.9895 + }, + { + "start": 4692.66, + "end": 4695.09, + "probability": 0.9949 + }, + { + "start": 4695.88, + "end": 4699.34, + "probability": 0.9985 + }, + { + "start": 4700.22, + "end": 4701.94, + "probability": 0.9885 + }, + { + "start": 4702.16, + "end": 4706.04, + "probability": 0.9849 + }, + { + "start": 4706.18, + "end": 4709.42, + "probability": 0.882 + }, + { + "start": 4709.92, + "end": 4713.16, + "probability": 0.9945 + }, + { + "start": 4713.78, + "end": 4717.48, + "probability": 0.8717 + }, + { + "start": 4717.56, + "end": 4721.44, + "probability": 0.8671 + }, + { + "start": 4721.54, + "end": 4722.6, + "probability": 0.5967 + }, + { + "start": 4722.92, + "end": 4725.82, + "probability": 0.6146 + }, + { + "start": 4727.48, + "end": 4728.67, + "probability": 0.6217 + }, + { + "start": 4729.2, + "end": 4730.2, + "probability": 0.8224 + }, + { + "start": 4730.24, + "end": 4733.42, + "probability": 0.9987 + }, + { + "start": 4734.18, + "end": 4738.96, + "probability": 0.9955 + }, + { + "start": 4738.96, + "end": 4743.24, + "probability": 0.9937 + }, + { + "start": 4743.3, + "end": 4745.76, + "probability": 0.9897 + }, + { + "start": 4746.04, + "end": 4748.08, + "probability": 0.8812 + }, + { + "start": 4748.96, + "end": 4750.18, + "probability": 0.8604 + }, + { + "start": 4750.28, + "end": 4753.08, + "probability": 0.9813 + }, + { + "start": 4753.8, + "end": 4754.42, + "probability": 0.73 + }, + { + "start": 4754.94, + "end": 4758.5, + "probability": 0.7937 + }, + { + "start": 4758.98, + "end": 4759.24, + "probability": 0.4801 + }, + { + "start": 4759.32, + "end": 4762.74, + "probability": 0.9902 + }, + { + "start": 4762.76, + "end": 4765.0, + "probability": 0.9699 + }, + { + "start": 4765.36, + "end": 4767.52, + "probability": 0.999 + }, + { + "start": 4767.96, + "end": 4769.06, + "probability": 0.6507 + }, + { + "start": 4769.14, + "end": 4771.14, + "probability": 0.9699 + }, + { + "start": 4771.4, + "end": 4774.0, + "probability": 0.9839 + }, + { + "start": 4774.3, + "end": 4777.82, + "probability": 0.9929 + }, + { + "start": 4778.14, + "end": 4779.02, + "probability": 0.9236 + }, + { + "start": 4780.04, + "end": 4781.12, + "probability": 0.7582 + }, + { + "start": 4781.7, + "end": 4783.44, + "probability": 0.9182 + }, + { + "start": 4783.56, + "end": 4784.78, + "probability": 0.9657 + }, + { + "start": 4785.22, + "end": 4786.2, + "probability": 0.9138 + }, + { + "start": 4786.28, + "end": 4788.64, + "probability": 0.9883 + }, + { + "start": 4788.68, + "end": 4789.1, + "probability": 0.894 + }, + { + "start": 4789.92, + "end": 4792.08, + "probability": 0.7507 + }, + { + "start": 4792.48, + "end": 4797.1, + "probability": 0.8931 + }, + { + "start": 4828.68, + "end": 4829.64, + "probability": 0.5314 + }, + { + "start": 4829.72, + "end": 4829.72, + "probability": 0.3376 + }, + { + "start": 4829.72, + "end": 4830.28, + "probability": 0.8122 + }, + { + "start": 4830.42, + "end": 4831.7, + "probability": 0.8271 + }, + { + "start": 4831.82, + "end": 4832.78, + "probability": 0.7963 + }, + { + "start": 4833.78, + "end": 4835.22, + "probability": 0.6992 + }, + { + "start": 4835.32, + "end": 4836.54, + "probability": 0.8124 + }, + { + "start": 4838.6, + "end": 4842.18, + "probability": 0.7229 + }, + { + "start": 4844.3, + "end": 4847.52, + "probability": 0.9579 + }, + { + "start": 4848.06, + "end": 4849.94, + "probability": 0.6957 + }, + { + "start": 4850.62, + "end": 4851.96, + "probability": 0.7416 + }, + { + "start": 4852.88, + "end": 4853.62, + "probability": 0.6865 + }, + { + "start": 4854.2, + "end": 4855.78, + "probability": 0.4527 + }, + { + "start": 4855.86, + "end": 4856.12, + "probability": 0.4678 + }, + { + "start": 4857.46, + "end": 4861.18, + "probability": 0.8422 + }, + { + "start": 4861.28, + "end": 4862.35, + "probability": 0.6567 + }, + { + "start": 4863.94, + "end": 4866.2, + "probability": 0.8657 + }, + { + "start": 4866.82, + "end": 4870.26, + "probability": 0.6919 + }, + { + "start": 4870.28, + "end": 4872.44, + "probability": 0.6742 + }, + { + "start": 4872.46, + "end": 4873.66, + "probability": 0.6078 + }, + { + "start": 4875.56, + "end": 4877.86, + "probability": 0.7986 + }, + { + "start": 4879.88, + "end": 4879.88, + "probability": 0.0857 + }, + { + "start": 4879.88, + "end": 4881.52, + "probability": 0.1597 + }, + { + "start": 4882.86, + "end": 4883.06, + "probability": 0.1563 + }, + { + "start": 4886.14, + "end": 4888.1, + "probability": 0.087 + }, + { + "start": 4890.2, + "end": 4892.18, + "probability": 0.327 + }, + { + "start": 4893.02, + "end": 4894.54, + "probability": 0.6808 + }, + { + "start": 4894.56, + "end": 4897.02, + "probability": 0.752 + }, + { + "start": 4897.94, + "end": 4899.6, + "probability": 0.6418 + }, + { + "start": 4899.76, + "end": 4903.02, + "probability": 0.9929 + }, + { + "start": 4903.84, + "end": 4904.42, + "probability": 0.7052 + }, + { + "start": 4904.56, + "end": 4905.4, + "probability": 0.73 + }, + { + "start": 4905.56, + "end": 4909.28, + "probability": 0.9833 + }, + { + "start": 4919.54, + "end": 4923.16, + "probability": 0.6465 + }, + { + "start": 4923.86, + "end": 4925.3, + "probability": 0.9093 + }, + { + "start": 4925.84, + "end": 4931.92, + "probability": 0.9823 + }, + { + "start": 4932.72, + "end": 4935.9, + "probability": 0.9275 + }, + { + "start": 4937.54, + "end": 4941.06, + "probability": 0.6583 + }, + { + "start": 4942.02, + "end": 4945.78, + "probability": 0.9528 + }, + { + "start": 4947.8, + "end": 4949.48, + "probability": 0.9934 + }, + { + "start": 4950.72, + "end": 4952.36, + "probability": 0.3764 + }, + { + "start": 4956.5, + "end": 4958.36, + "probability": 0.7662 + }, + { + "start": 4959.06, + "end": 4962.76, + "probability": 0.8328 + }, + { + "start": 4962.76, + "end": 4966.64, + "probability": 0.8236 + }, + { + "start": 4967.28, + "end": 4969.82, + "probability": 0.6138 + }, + { + "start": 4973.16, + "end": 4976.66, + "probability": 0.5857 + }, + { + "start": 4977.22, + "end": 4979.32, + "probability": 0.7466 + }, + { + "start": 4980.12, + "end": 4982.78, + "probability": 0.8995 + }, + { + "start": 4984.0, + "end": 4988.58, + "probability": 0.8978 + }, + { + "start": 4995.54, + "end": 4998.72, + "probability": 0.7102 + }, + { + "start": 4999.52, + "end": 5000.86, + "probability": 0.873 + }, + { + "start": 5001.54, + "end": 5005.46, + "probability": 0.9928 + }, + { + "start": 5005.94, + "end": 5009.36, + "probability": 0.9622 + }, + { + "start": 5009.74, + "end": 5013.38, + "probability": 0.9754 + }, + { + "start": 5013.38, + "end": 5017.38, + "probability": 0.9981 + }, + { + "start": 5017.94, + "end": 5018.44, + "probability": 0.4237 + }, + { + "start": 5018.5, + "end": 5020.02, + "probability": 0.8206 + }, + { + "start": 5020.06, + "end": 5021.02, + "probability": 0.9104 + }, + { + "start": 5021.66, + "end": 5025.0, + "probability": 0.9774 + }, + { + "start": 5025.48, + "end": 5027.53, + "probability": 0.977 + }, + { + "start": 5028.36, + "end": 5032.56, + "probability": 0.8076 + }, + { + "start": 5032.92, + "end": 5035.66, + "probability": 0.7422 + }, + { + "start": 5035.96, + "end": 5038.56, + "probability": 0.7939 + }, + { + "start": 5039.1, + "end": 5042.16, + "probability": 0.9771 + }, + { + "start": 5042.16, + "end": 5044.5, + "probability": 0.7296 + }, + { + "start": 5045.72, + "end": 5048.78, + "probability": 0.9803 + }, + { + "start": 5049.16, + "end": 5051.98, + "probability": 0.881 + }, + { + "start": 5052.68, + "end": 5058.08, + "probability": 0.969 + }, + { + "start": 5058.08, + "end": 5063.34, + "probability": 0.9918 + }, + { + "start": 5063.66, + "end": 5069.0, + "probability": 0.9346 + }, + { + "start": 5069.52, + "end": 5071.16, + "probability": 0.1666 + }, + { + "start": 5071.54, + "end": 5072.2, + "probability": 0.0345 + }, + { + "start": 5072.2, + "end": 5076.4, + "probability": 0.9799 + }, + { + "start": 5077.14, + "end": 5081.78, + "probability": 0.8743 + }, + { + "start": 5082.1, + "end": 5084.78, + "probability": 0.9855 + }, + { + "start": 5084.78, + "end": 5088.36, + "probability": 0.9976 + }, + { + "start": 5089.0, + "end": 5093.96, + "probability": 0.9586 + }, + { + "start": 5094.76, + "end": 5098.01, + "probability": 0.9963 + }, + { + "start": 5098.16, + "end": 5102.0, + "probability": 0.9139 + }, + { + "start": 5102.32, + "end": 5108.82, + "probability": 0.6611 + }, + { + "start": 5109.0, + "end": 5112.06, + "probability": 0.9397 + }, + { + "start": 5112.06, + "end": 5116.28, + "probability": 0.8848 + }, + { + "start": 5116.56, + "end": 5118.04, + "probability": 0.9338 + }, + { + "start": 5118.08, + "end": 5119.24, + "probability": 0.5688 + }, + { + "start": 5119.26, + "end": 5119.46, + "probability": 0.8186 + }, + { + "start": 5120.64, + "end": 5124.36, + "probability": 0.9831 + }, + { + "start": 5124.36, + "end": 5127.94, + "probability": 0.9307 + }, + { + "start": 5128.36, + "end": 5132.54, + "probability": 0.9486 + }, + { + "start": 5132.86, + "end": 5135.73, + "probability": 0.9426 + }, + { + "start": 5136.56, + "end": 5140.42, + "probability": 0.9924 + }, + { + "start": 5141.08, + "end": 5142.08, + "probability": 0.7759 + }, + { + "start": 5142.28, + "end": 5143.74, + "probability": 0.9665 + }, + { + "start": 5144.14, + "end": 5147.06, + "probability": 0.9943 + }, + { + "start": 5147.36, + "end": 5149.1, + "probability": 0.8733 + }, + { + "start": 5149.68, + "end": 5152.7, + "probability": 0.978 + }, + { + "start": 5153.1, + "end": 5155.14, + "probability": 0.9484 + }, + { + "start": 5155.52, + "end": 5155.92, + "probability": 0.8469 + }, + { + "start": 5156.04, + "end": 5156.56, + "probability": 0.9471 + }, + { + "start": 5157.82, + "end": 5160.08, + "probability": 0.9989 + }, + { + "start": 5160.26, + "end": 5160.78, + "probability": 0.9449 + }, + { + "start": 5161.54, + "end": 5164.2, + "probability": 0.9871 + }, + { + "start": 5164.54, + "end": 5166.26, + "probability": 0.8297 + }, + { + "start": 5166.58, + "end": 5169.46, + "probability": 0.991 + }, + { + "start": 5169.78, + "end": 5170.29, + "probability": 0.9808 + }, + { + "start": 5171.18, + "end": 5171.86, + "probability": 0.8022 + }, + { + "start": 5172.02, + "end": 5175.22, + "probability": 0.8999 + }, + { + "start": 5175.32, + "end": 5176.84, + "probability": 0.773 + }, + { + "start": 5177.48, + "end": 5177.96, + "probability": 0.9024 + }, + { + "start": 5178.62, + "end": 5180.34, + "probability": 0.9912 + }, + { + "start": 5180.66, + "end": 5183.31, + "probability": 0.9708 + }, + { + "start": 5184.08, + "end": 5185.7, + "probability": 0.9669 + }, + { + "start": 5186.1, + "end": 5186.82, + "probability": 0.5851 + }, + { + "start": 5187.04, + "end": 5188.22, + "probability": 0.9905 + }, + { + "start": 5189.82, + "end": 5192.06, + "probability": 0.9924 + }, + { + "start": 5192.12, + "end": 5192.72, + "probability": 0.9214 + }, + { + "start": 5192.78, + "end": 5193.92, + "probability": 0.9579 + }, + { + "start": 5194.02, + "end": 5195.16, + "probability": 0.7666 + }, + { + "start": 5195.44, + "end": 5196.04, + "probability": 0.9548 + }, + { + "start": 5196.14, + "end": 5196.54, + "probability": 0.9431 + }, + { + "start": 5197.24, + "end": 5200.54, + "probability": 0.9693 + }, + { + "start": 5201.08, + "end": 5202.98, + "probability": 0.999 + }, + { + "start": 5203.44, + "end": 5205.46, + "probability": 0.9578 + }, + { + "start": 5207.24, + "end": 5207.86, + "probability": 0.8234 + }, + { + "start": 5207.94, + "end": 5213.52, + "probability": 0.8438 + }, + { + "start": 5213.58, + "end": 5218.7, + "probability": 0.9903 + }, + { + "start": 5219.44, + "end": 5221.54, + "probability": 0.7739 + }, + { + "start": 5222.22, + "end": 5223.7, + "probability": 0.9824 + }, + { + "start": 5224.3, + "end": 5227.86, + "probability": 0.9959 + }, + { + "start": 5228.54, + "end": 5230.46, + "probability": 0.7739 + }, + { + "start": 5231.88, + "end": 5234.98, + "probability": 0.9659 + }, + { + "start": 5235.2, + "end": 5237.4, + "probability": 0.7375 + }, + { + "start": 5237.64, + "end": 5240.24, + "probability": 0.9846 + }, + { + "start": 5240.48, + "end": 5243.64, + "probability": 0.9899 + }, + { + "start": 5243.64, + "end": 5248.46, + "probability": 0.9965 + }, + { + "start": 5248.98, + "end": 5249.98, + "probability": 0.9248 + }, + { + "start": 5250.04, + "end": 5251.33, + "probability": 0.8428 + }, + { + "start": 5251.38, + "end": 5253.84, + "probability": 0.8564 + }, + { + "start": 5254.24, + "end": 5256.38, + "probability": 0.9311 + }, + { + "start": 5256.94, + "end": 5259.76, + "probability": 0.998 + }, + { + "start": 5259.92, + "end": 5263.88, + "probability": 0.9868 + }, + { + "start": 5264.4, + "end": 5267.94, + "probability": 0.9325 + }, + { + "start": 5268.04, + "end": 5271.44, + "probability": 0.9777 + }, + { + "start": 5272.08, + "end": 5272.38, + "probability": 0.7264 + }, + { + "start": 5272.52, + "end": 5274.9, + "probability": 0.9964 + }, + { + "start": 5274.9, + "end": 5278.0, + "probability": 0.9989 + }, + { + "start": 5278.18, + "end": 5278.36, + "probability": 0.454 + }, + { + "start": 5278.5, + "end": 5281.05, + "probability": 0.9336 + }, + { + "start": 5281.78, + "end": 5284.88, + "probability": 0.7919 + }, + { + "start": 5304.82, + "end": 5309.14, + "probability": 0.3939 + }, + { + "start": 5309.88, + "end": 5311.52, + "probability": 0.4896 + }, + { + "start": 5311.52, + "end": 5314.88, + "probability": 0.9323 + }, + { + "start": 5315.36, + "end": 5316.26, + "probability": 0.494 + }, + { + "start": 5316.7, + "end": 5321.94, + "probability": 0.7886 + }, + { + "start": 5323.54, + "end": 5326.14, + "probability": 0.333 + }, + { + "start": 5326.26, + "end": 5327.56, + "probability": 0.1597 + }, + { + "start": 5327.96, + "end": 5330.32, + "probability": 0.0528 + }, + { + "start": 5330.5, + "end": 5333.56, + "probability": 0.7303 + }, + { + "start": 5334.26, + "end": 5335.94, + "probability": 0.3255 + }, + { + "start": 5338.28, + "end": 5341.32, + "probability": 0.0155 + }, + { + "start": 5342.1, + "end": 5344.4, + "probability": 0.0646 + }, + { + "start": 5348.89, + "end": 5353.42, + "probability": 0.643 + }, + { + "start": 5353.42, + "end": 5356.38, + "probability": 0.9553 + }, + { + "start": 5356.7, + "end": 5357.94, + "probability": 0.5318 + }, + { + "start": 5358.08, + "end": 5359.62, + "probability": 0.9758 + }, + { + "start": 5360.24, + "end": 5362.76, + "probability": 0.8569 + }, + { + "start": 5363.92, + "end": 5367.16, + "probability": 0.9595 + }, + { + "start": 5369.4, + "end": 5372.5, + "probability": 0.9502 + }, + { + "start": 5373.42, + "end": 5376.52, + "probability": 0.9314 + }, + { + "start": 5376.74, + "end": 5377.54, + "probability": 0.623 + }, + { + "start": 5378.38, + "end": 5380.58, + "probability": 0.8452 + }, + { + "start": 5381.36, + "end": 5382.56, + "probability": 0.808 + }, + { + "start": 5384.02, + "end": 5387.72, + "probability": 0.6987 + }, + { + "start": 5387.72, + "end": 5388.8, + "probability": 0.8403 + }, + { + "start": 5388.88, + "end": 5389.32, + "probability": 0.2586 + }, + { + "start": 5390.3, + "end": 5391.52, + "probability": 0.9797 + }, + { + "start": 5393.86, + "end": 5395.54, + "probability": 0.0364 + }, + { + "start": 5403.32, + "end": 5403.68, + "probability": 0.0194 + }, + { + "start": 5404.34, + "end": 5404.98, + "probability": 0.0125 + }, + { + "start": 5404.98, + "end": 5405.72, + "probability": 0.3257 + }, + { + "start": 5405.72, + "end": 5405.72, + "probability": 0.3522 + }, + { + "start": 5405.72, + "end": 5405.72, + "probability": 0.5012 + }, + { + "start": 5405.72, + "end": 5406.06, + "probability": 0.0695 + }, + { + "start": 5407.76, + "end": 5407.76, + "probability": 0.1145 + }, + { + "start": 5407.76, + "end": 5408.02, + "probability": 0.3795 + }, + { + "start": 5408.54, + "end": 5409.74, + "probability": 0.3618 + }, + { + "start": 5409.84, + "end": 5410.26, + "probability": 0.5041 + }, + { + "start": 5410.92, + "end": 5413.06, + "probability": 0.883 + }, + { + "start": 5417.1, + "end": 5417.74, + "probability": 0.127 + }, + { + "start": 5418.7, + "end": 5421.72, + "probability": 0.9292 + }, + { + "start": 5421.8, + "end": 5422.56, + "probability": 0.8429 + }, + { + "start": 5422.66, + "end": 5423.72, + "probability": 0.8155 + }, + { + "start": 5424.06, + "end": 5425.3, + "probability": 0.8059 + }, + { + "start": 5425.56, + "end": 5427.32, + "probability": 0.826 + }, + { + "start": 5428.18, + "end": 5429.38, + "probability": 0.9558 + }, + { + "start": 5429.72, + "end": 5430.7, + "probability": 0.9082 + }, + { + "start": 5431.14, + "end": 5435.78, + "probability": 0.9619 + }, + { + "start": 5436.08, + "end": 5437.32, + "probability": 0.781 + }, + { + "start": 5437.6, + "end": 5439.04, + "probability": 0.6995 + }, + { + "start": 5439.18, + "end": 5440.9, + "probability": 0.8619 + }, + { + "start": 5441.7, + "end": 5441.7, + "probability": 0.0743 + }, + { + "start": 5441.7, + "end": 5443.14, + "probability": 0.5426 + }, + { + "start": 5443.3, + "end": 5445.66, + "probability": 0.1667 + }, + { + "start": 5445.66, + "end": 5447.7, + "probability": 0.0722 + }, + { + "start": 5449.42, + "end": 5451.93, + "probability": 0.03 + }, + { + "start": 5452.86, + "end": 5454.38, + "probability": 0.1252 + }, + { + "start": 5456.74, + "end": 5456.74, + "probability": 0.3497 + }, + { + "start": 5456.74, + "end": 5457.32, + "probability": 0.2596 + }, + { + "start": 5457.44, + "end": 5458.26, + "probability": 0.517 + }, + { + "start": 5458.64, + "end": 5459.82, + "probability": 0.9773 + }, + { + "start": 5460.38, + "end": 5463.24, + "probability": 0.9785 + }, + { + "start": 5463.48, + "end": 5467.3, + "probability": 0.8161 + }, + { + "start": 5467.72, + "end": 5469.26, + "probability": 0.8829 + }, + { + "start": 5469.36, + "end": 5470.22, + "probability": 0.908 + }, + { + "start": 5470.62, + "end": 5471.36, + "probability": 0.879 + }, + { + "start": 5471.52, + "end": 5472.62, + "probability": 0.7196 + }, + { + "start": 5472.68, + "end": 5475.44, + "probability": 0.928 + }, + { + "start": 5475.68, + "end": 5476.54, + "probability": 0.3517 + }, + { + "start": 5477.06, + "end": 5480.8, + "probability": 0.017 + }, + { + "start": 5482.04, + "end": 5482.44, + "probability": 0.0135 + }, + { + "start": 5482.44, + "end": 5482.54, + "probability": 0.1052 + }, + { + "start": 5482.98, + "end": 5483.28, + "probability": 0.5058 + }, + { + "start": 5483.32, + "end": 5484.68, + "probability": 0.7376 + }, + { + "start": 5484.9, + "end": 5488.0, + "probability": 0.8411 + }, + { + "start": 5489.78, + "end": 5492.58, + "probability": 0.6557 + }, + { + "start": 5495.2, + "end": 5495.42, + "probability": 0.1288 + }, + { + "start": 5495.72, + "end": 5496.6, + "probability": 0.8879 + }, + { + "start": 5496.92, + "end": 5498.1, + "probability": 0.371 + }, + { + "start": 5498.34, + "end": 5500.14, + "probability": 0.8019 + }, + { + "start": 5500.52, + "end": 5501.88, + "probability": 0.771 + }, + { + "start": 5501.96, + "end": 5504.78, + "probability": 0.9712 + }, + { + "start": 5504.94, + "end": 5505.92, + "probability": 0.7441 + }, + { + "start": 5506.56, + "end": 5508.18, + "probability": 0.988 + }, + { + "start": 5509.08, + "end": 5509.24, + "probability": 0.38 + }, + { + "start": 5509.26, + "end": 5509.68, + "probability": 0.6969 + }, + { + "start": 5509.76, + "end": 5511.68, + "probability": 0.7543 + }, + { + "start": 5512.14, + "end": 5513.58, + "probability": 0.8861 + }, + { + "start": 5513.74, + "end": 5515.52, + "probability": 0.9504 + }, + { + "start": 5516.18, + "end": 5517.2, + "probability": 0.1238 + }, + { + "start": 5517.92, + "end": 5521.98, + "probability": 0.8782 + }, + { + "start": 5522.84, + "end": 5523.94, + "probability": 0.7198 + }, + { + "start": 5531.28, + "end": 5538.44, + "probability": 0.6618 + }, + { + "start": 5538.48, + "end": 5540.57, + "probability": 0.618 + }, + { + "start": 5540.72, + "end": 5542.1, + "probability": 0.3124 + }, + { + "start": 5543.36, + "end": 5545.34, + "probability": 0.8712 + }, + { + "start": 5546.9, + "end": 5548.42, + "probability": 0.811 + }, + { + "start": 5549.9, + "end": 5552.2, + "probability": 0.6262 + }, + { + "start": 5553.06, + "end": 5555.38, + "probability": 0.9596 + }, + { + "start": 5556.3, + "end": 5560.56, + "probability": 0.7403 + }, + { + "start": 5561.28, + "end": 5562.42, + "probability": 0.5918 + }, + { + "start": 5564.92, + "end": 5567.6, + "probability": 0.9635 + }, + { + "start": 5572.62, + "end": 5575.28, + "probability": 0.5727 + }, + { + "start": 5577.94, + "end": 5578.76, + "probability": 0.6246 + }, + { + "start": 5579.42, + "end": 5582.68, + "probability": 0.9417 + }, + { + "start": 5583.68, + "end": 5585.38, + "probability": 0.9654 + }, + { + "start": 5587.12, + "end": 5589.84, + "probability": 0.9933 + }, + { + "start": 5590.54, + "end": 5592.92, + "probability": 0.8296 + }, + { + "start": 5594.16, + "end": 5594.9, + "probability": 0.9784 + }, + { + "start": 5595.46, + "end": 5596.74, + "probability": 0.4328 + }, + { + "start": 5597.66, + "end": 5598.22, + "probability": 0.7511 + }, + { + "start": 5598.78, + "end": 5600.04, + "probability": 0.6512 + }, + { + "start": 5601.34, + "end": 5603.6, + "probability": 0.9821 + }, + { + "start": 5604.58, + "end": 5605.6, + "probability": 0.8278 + }, + { + "start": 5606.7, + "end": 5608.52, + "probability": 0.9647 + }, + { + "start": 5609.3, + "end": 5612.98, + "probability": 0.9366 + }, + { + "start": 5613.5, + "end": 5614.52, + "probability": 0.9349 + }, + { + "start": 5615.12, + "end": 5617.36, + "probability": 0.9724 + }, + { + "start": 5618.28, + "end": 5621.68, + "probability": 0.9609 + }, + { + "start": 5622.86, + "end": 5623.86, + "probability": 0.9851 + }, + { + "start": 5624.66, + "end": 5626.64, + "probability": 0.9271 + }, + { + "start": 5627.32, + "end": 5627.62, + "probability": 0.6013 + }, + { + "start": 5628.48, + "end": 5629.34, + "probability": 0.7367 + }, + { + "start": 5630.8, + "end": 5632.78, + "probability": 0.9795 + }, + { + "start": 5633.86, + "end": 5636.68, + "probability": 0.9424 + }, + { + "start": 5637.86, + "end": 5639.98, + "probability": 0.8646 + }, + { + "start": 5641.06, + "end": 5641.58, + "probability": 0.9658 + }, + { + "start": 5642.32, + "end": 5643.62, + "probability": 0.9394 + }, + { + "start": 5644.34, + "end": 5648.74, + "probability": 0.9849 + }, + { + "start": 5650.26, + "end": 5651.68, + "probability": 0.9868 + }, + { + "start": 5654.66, + "end": 5655.78, + "probability": 0.6159 + }, + { + "start": 5657.88, + "end": 5658.82, + "probability": 0.6801 + }, + { + "start": 5659.34, + "end": 5660.46, + "probability": 0.4955 + }, + { + "start": 5661.44, + "end": 5661.76, + "probability": 0.8171 + }, + { + "start": 5662.46, + "end": 5663.36, + "probability": 0.8516 + }, + { + "start": 5664.5, + "end": 5665.04, + "probability": 0.9777 + }, + { + "start": 5665.8, + "end": 5667.0, + "probability": 0.8707 + }, + { + "start": 5668.14, + "end": 5668.68, + "probability": 0.9724 + }, + { + "start": 5669.32, + "end": 5670.34, + "probability": 0.9882 + }, + { + "start": 5671.1, + "end": 5674.24, + "probability": 0.9248 + }, + { + "start": 5675.82, + "end": 5677.68, + "probability": 0.9586 + }, + { + "start": 5678.42, + "end": 5679.02, + "probability": 0.9919 + }, + { + "start": 5679.56, + "end": 5681.6, + "probability": 0.9847 + }, + { + "start": 5683.54, + "end": 5685.94, + "probability": 0.8721 + }, + { + "start": 5687.6, + "end": 5693.48, + "probability": 0.7046 + }, + { + "start": 5695.25, + "end": 5698.66, + "probability": 0.8246 + }, + { + "start": 5701.38, + "end": 5703.66, + "probability": 0.9128 + }, + { + "start": 5704.9, + "end": 5706.14, + "probability": 0.6887 + }, + { + "start": 5706.9, + "end": 5708.86, + "probability": 0.9285 + }, + { + "start": 5709.76, + "end": 5712.04, + "probability": 0.7683 + }, + { + "start": 5712.6, + "end": 5716.14, + "probability": 0.7963 + }, + { + "start": 5720.72, + "end": 5725.08, + "probability": 0.8344 + }, + { + "start": 5729.1, + "end": 5730.46, + "probability": 0.8313 + }, + { + "start": 5731.66, + "end": 5732.8, + "probability": 0.8779 + }, + { + "start": 5734.12, + "end": 5736.46, + "probability": 0.9458 + }, + { + "start": 5738.38, + "end": 5741.94, + "probability": 0.9546 + }, + { + "start": 5742.5, + "end": 5743.62, + "probability": 0.8835 + }, + { + "start": 5744.22, + "end": 5745.28, + "probability": 0.8688 + }, + { + "start": 5746.82, + "end": 5746.98, + "probability": 0.4712 + }, + { + "start": 5749.5, + "end": 5754.24, + "probability": 0.5804 + }, + { + "start": 5756.78, + "end": 5759.3, + "probability": 0.8719 + }, + { + "start": 5761.56, + "end": 5763.58, + "probability": 0.7821 + }, + { + "start": 5766.42, + "end": 5770.78, + "probability": 0.9178 + }, + { + "start": 5771.97, + "end": 5773.32, + "probability": 0.947 + }, + { + "start": 5774.74, + "end": 5778.7, + "probability": 0.9797 + }, + { + "start": 5779.28, + "end": 5780.16, + "probability": 0.5488 + }, + { + "start": 5781.06, + "end": 5782.76, + "probability": 0.7045 + }, + { + "start": 5785.42, + "end": 5787.24, + "probability": 0.8627 + }, + { + "start": 5789.18, + "end": 5791.82, + "probability": 0.8704 + }, + { + "start": 5795.12, + "end": 5801.44, + "probability": 0.8879 + }, + { + "start": 5802.72, + "end": 5803.88, + "probability": 0.9495 + }, + { + "start": 5804.78, + "end": 5806.02, + "probability": 0.758 + }, + { + "start": 5809.12, + "end": 5812.34, + "probability": 0.5389 + }, + { + "start": 5813.38, + "end": 5816.52, + "probability": 0.9183 + }, + { + "start": 5819.12, + "end": 5820.72, + "probability": 0.928 + }, + { + "start": 5822.38, + "end": 5824.14, + "probability": 0.9098 + }, + { + "start": 5826.42, + "end": 5828.22, + "probability": 0.9599 + }, + { + "start": 5829.08, + "end": 5831.18, + "probability": 0.7117 + }, + { + "start": 5831.86, + "end": 5832.62, + "probability": 0.9727 + }, + { + "start": 5833.18, + "end": 5834.3, + "probability": 0.9377 + }, + { + "start": 5835.36, + "end": 5836.88, + "probability": 0.4645 + }, + { + "start": 5838.6, + "end": 5840.12, + "probability": 0.5835 + }, + { + "start": 5841.32, + "end": 5844.16, + "probability": 0.8826 + }, + { + "start": 5845.9, + "end": 5847.98, + "probability": 0.7552 + }, + { + "start": 5848.72, + "end": 5851.64, + "probability": 0.9709 + }, + { + "start": 5852.22, + "end": 5854.54, + "probability": 0.9193 + }, + { + "start": 5855.44, + "end": 5859.28, + "probability": 0.951 + }, + { + "start": 5860.1, + "end": 5860.52, + "probability": 0.9478 + }, + { + "start": 5861.18, + "end": 5863.62, + "probability": 0.9797 + }, + { + "start": 5864.14, + "end": 5864.42, + "probability": 0.6909 + }, + { + "start": 5867.16, + "end": 5870.42, + "probability": 0.528 + }, + { + "start": 5872.2, + "end": 5873.9, + "probability": 0.8673 + }, + { + "start": 5874.44, + "end": 5876.04, + "probability": 0.9102 + }, + { + "start": 5876.96, + "end": 5879.86, + "probability": 0.909 + }, + { + "start": 5881.6, + "end": 5885.12, + "probability": 0.981 + }, + { + "start": 5886.3, + "end": 5891.54, + "probability": 0.912 + }, + { + "start": 5892.48, + "end": 5895.06, + "probability": 0.9755 + }, + { + "start": 5895.74, + "end": 5897.68, + "probability": 0.7256 + }, + { + "start": 5901.6, + "end": 5902.82, + "probability": 0.3309 + }, + { + "start": 5903.46, + "end": 5906.02, + "probability": 0.731 + }, + { + "start": 5907.78, + "end": 5908.5, + "probability": 0.9882 + }, + { + "start": 5909.06, + "end": 5909.98, + "probability": 0.9012 + }, + { + "start": 5911.4, + "end": 5913.24, + "probability": 0.951 + }, + { + "start": 5914.4, + "end": 5916.8, + "probability": 0.9485 + }, + { + "start": 5918.02, + "end": 5919.74, + "probability": 0.9485 + }, + { + "start": 5920.58, + "end": 5921.5, + "probability": 0.9329 + }, + { + "start": 5922.68, + "end": 5923.78, + "probability": 0.9628 + }, + { + "start": 5924.38, + "end": 5927.26, + "probability": 0.9847 + }, + { + "start": 5927.94, + "end": 5928.18, + "probability": 0.56 + }, + { + "start": 5928.84, + "end": 5929.9, + "probability": 0.5572 + }, + { + "start": 5930.66, + "end": 5933.32, + "probability": 0.7264 + }, + { + "start": 5936.72, + "end": 5939.22, + "probability": 0.947 + }, + { + "start": 5942.08, + "end": 5945.5, + "probability": 0.8184 + }, + { + "start": 5946.22, + "end": 5947.0, + "probability": 0.8365 + }, + { + "start": 5948.36, + "end": 5950.24, + "probability": 0.8603 + }, + { + "start": 5951.0, + "end": 5953.22, + "probability": 0.9661 + }, + { + "start": 5955.04, + "end": 5955.67, + "probability": 0.3568 + }, + { + "start": 5961.8, + "end": 5964.7, + "probability": 0.6213 + }, + { + "start": 5965.66, + "end": 5968.78, + "probability": 0.9559 + }, + { + "start": 5969.58, + "end": 5970.02, + "probability": 0.8545 + }, + { + "start": 5971.02, + "end": 5972.08, + "probability": 0.9228 + }, + { + "start": 5972.84, + "end": 5973.28, + "probability": 0.9827 + }, + { + "start": 5973.9, + "end": 5974.94, + "probability": 0.9253 + }, + { + "start": 5975.7, + "end": 5978.12, + "probability": 0.9189 + }, + { + "start": 5979.06, + "end": 5982.96, + "probability": 0.9571 + }, + { + "start": 5983.56, + "end": 5985.94, + "probability": 0.9827 + }, + { + "start": 5986.46, + "end": 5990.66, + "probability": 0.7465 + }, + { + "start": 5991.46, + "end": 5991.76, + "probability": 0.9084 + }, + { + "start": 5992.3, + "end": 5993.18, + "probability": 0.7437 + }, + { + "start": 5993.78, + "end": 5994.44, + "probability": 0.9106 + }, + { + "start": 5995.3, + "end": 5996.3, + "probability": 0.9882 + }, + { + "start": 5996.98, + "end": 5998.96, + "probability": 0.989 + }, + { + "start": 5999.68, + "end": 6001.62, + "probability": 0.9703 + }, + { + "start": 6003.38, + "end": 6006.02, + "probability": 0.7253 + }, + { + "start": 6007.56, + "end": 6014.3, + "probability": 0.9379 + }, + { + "start": 6015.04, + "end": 6015.94, + "probability": 0.5194 + }, + { + "start": 6016.6, + "end": 6018.66, + "probability": 0.3904 + }, + { + "start": 6018.76, + "end": 6021.84, + "probability": 0.7255 + }, + { + "start": 6022.5, + "end": 6026.62, + "probability": 0.7627 + }, + { + "start": 6027.42, + "end": 6030.0, + "probability": 0.8193 + }, + { + "start": 6031.02, + "end": 6033.82, + "probability": 0.9773 + }, + { + "start": 6034.48, + "end": 6038.34, + "probability": 0.7883 + }, + { + "start": 6039.3, + "end": 6041.46, + "probability": 0.9393 + }, + { + "start": 6042.2, + "end": 6044.5, + "probability": 0.8961 + }, + { + "start": 6045.9, + "end": 6051.1, + "probability": 0.6507 + }, + { + "start": 6051.86, + "end": 6054.98, + "probability": 0.7809 + }, + { + "start": 6057.32, + "end": 6059.38, + "probability": 0.9807 + }, + { + "start": 6060.34, + "end": 6063.48, + "probability": 0.7231 + }, + { + "start": 6064.1, + "end": 6066.68, + "probability": 0.8007 + }, + { + "start": 6068.66, + "end": 6071.18, + "probability": 0.9495 + }, + { + "start": 6072.04, + "end": 6076.18, + "probability": 0.9795 + }, + { + "start": 6077.12, + "end": 6079.3, + "probability": 0.9849 + }, + { + "start": 6080.04, + "end": 6082.26, + "probability": 0.8529 + }, + { + "start": 6082.84, + "end": 6083.78, + "probability": 0.9357 + }, + { + "start": 6085.54, + "end": 6087.66, + "probability": 0.6818 + }, + { + "start": 6088.46, + "end": 6089.68, + "probability": 0.7373 + }, + { + "start": 6090.2, + "end": 6091.72, + "probability": 0.4449 + }, + { + "start": 6092.82, + "end": 6094.96, + "probability": 0.9435 + }, + { + "start": 6095.66, + "end": 6098.4, + "probability": 0.9522 + }, + { + "start": 6099.66, + "end": 6099.86, + "probability": 0.9929 + }, + { + "start": 6102.5, + "end": 6104.34, + "probability": 0.6001 + }, + { + "start": 6105.56, + "end": 6107.7, + "probability": 0.9463 + }, + { + "start": 6108.84, + "end": 6111.18, + "probability": 0.9637 + }, + { + "start": 6112.78, + "end": 6115.66, + "probability": 0.9858 + }, + { + "start": 6116.76, + "end": 6120.2, + "probability": 0.9885 + }, + { + "start": 6122.04, + "end": 6125.24, + "probability": 0.9277 + }, + { + "start": 6126.0, + "end": 6127.96, + "probability": 0.9508 + }, + { + "start": 6128.68, + "end": 6134.24, + "probability": 0.8416 + }, + { + "start": 6135.32, + "end": 6138.84, + "probability": 0.5736 + }, + { + "start": 6141.46, + "end": 6143.56, + "probability": 0.8946 + }, + { + "start": 6144.44, + "end": 6146.64, + "probability": 0.9211 + }, + { + "start": 6147.28, + "end": 6148.96, + "probability": 0.967 + }, + { + "start": 6150.44, + "end": 6152.8, + "probability": 0.9899 + }, + { + "start": 6153.78, + "end": 6157.32, + "probability": 0.984 + }, + { + "start": 6158.68, + "end": 6160.8, + "probability": 0.9733 + }, + { + "start": 6161.2, + "end": 6163.9, + "probability": 0.9686 + }, + { + "start": 6164.66, + "end": 6165.9, + "probability": 0.7239 + }, + { + "start": 6166.42, + "end": 6168.2, + "probability": 0.2809 + }, + { + "start": 6168.4, + "end": 6174.84, + "probability": 0.9729 + }, + { + "start": 6176.34, + "end": 6176.64, + "probability": 0.6154 + }, + { + "start": 6176.84, + "end": 6178.14, + "probability": 0.7606 + }, + { + "start": 6179.02, + "end": 6181.92, + "probability": 0.3683 + }, + { + "start": 6205.26, + "end": 6208.44, + "probability": 0.0108 + }, + { + "start": 6223.46, + "end": 6224.66, + "probability": 0.0233 + }, + { + "start": 6245.08, + "end": 6249.68, + "probability": 0.6517 + }, + { + "start": 6249.86, + "end": 6250.72, + "probability": 0.3432 + }, + { + "start": 6250.92, + "end": 6252.95, + "probability": 0.9739 + }, + { + "start": 6253.62, + "end": 6255.92, + "probability": 0.6513 + }, + { + "start": 6255.98, + "end": 6256.62, + "probability": 0.6104 + }, + { + "start": 6256.62, + "end": 6258.47, + "probability": 0.9666 + }, + { + "start": 6260.16, + "end": 6261.74, + "probability": 0.0011 + }, + { + "start": 6263.06, + "end": 6264.22, + "probability": 0.0687 + }, + { + "start": 6264.22, + "end": 6266.86, + "probability": 0.9127 + }, + { + "start": 6266.86, + "end": 6267.26, + "probability": 0.075 + }, + { + "start": 6267.26, + "end": 6269.39, + "probability": 0.9807 + }, + { + "start": 6270.18, + "end": 6271.74, + "probability": 0.1854 + }, + { + "start": 6272.9, + "end": 6274.14, + "probability": 0.7149 + }, + { + "start": 6274.82, + "end": 6276.16, + "probability": 0.5384 + }, + { + "start": 6278.28, + "end": 6282.3, + "probability": 0.8335 + }, + { + "start": 6295.46, + "end": 6297.32, + "probability": 0.7239 + }, + { + "start": 6297.86, + "end": 6302.22, + "probability": 0.7472 + }, + { + "start": 6303.62, + "end": 6304.52, + "probability": 0.7695 + }, + { + "start": 6304.62, + "end": 6308.24, + "probability": 0.7352 + }, + { + "start": 6308.3, + "end": 6309.19, + "probability": 0.7332 + }, + { + "start": 6309.54, + "end": 6310.86, + "probability": 0.7093 + }, + { + "start": 6311.32, + "end": 6311.98, + "probability": 0.4782 + }, + { + "start": 6312.0, + "end": 6312.82, + "probability": 0.6953 + }, + { + "start": 6313.14, + "end": 6313.68, + "probability": 0.6938 + }, + { + "start": 6313.78, + "end": 6314.42, + "probability": 0.2982 + }, + { + "start": 6315.66, + "end": 6317.02, + "probability": 0.7985 + }, + { + "start": 6318.1, + "end": 6321.72, + "probability": 0.9548 + }, + { + "start": 6321.72, + "end": 6326.96, + "probability": 0.9833 + }, + { + "start": 6328.36, + "end": 6332.1, + "probability": 0.9948 + }, + { + "start": 6332.1, + "end": 6335.7, + "probability": 0.8865 + }, + { + "start": 6336.38, + "end": 6338.88, + "probability": 0.6875 + }, + { + "start": 6339.94, + "end": 6342.86, + "probability": 0.9722 + }, + { + "start": 6342.98, + "end": 6346.62, + "probability": 0.7774 + }, + { + "start": 6346.62, + "end": 6350.9, + "probability": 0.7969 + }, + { + "start": 6351.36, + "end": 6355.12, + "probability": 0.9757 + }, + { + "start": 6356.14, + "end": 6357.04, + "probability": 0.5538 + }, + { + "start": 6357.64, + "end": 6359.48, + "probability": 0.9108 + }, + { + "start": 6360.24, + "end": 6361.18, + "probability": 0.8885 + }, + { + "start": 6361.34, + "end": 6362.0, + "probability": 0.8137 + }, + { + "start": 6362.02, + "end": 6362.64, + "probability": 0.8265 + }, + { + "start": 6363.1, + "end": 6363.8, + "probability": 0.5844 + }, + { + "start": 6364.24, + "end": 6366.9, + "probability": 0.763 + }, + { + "start": 6367.78, + "end": 6372.6, + "probability": 0.872 + }, + { + "start": 6372.92, + "end": 6375.84, + "probability": 0.9373 + }, + { + "start": 6375.92, + "end": 6377.56, + "probability": 0.669 + }, + { + "start": 6377.64, + "end": 6378.44, + "probability": 0.836 + }, + { + "start": 6378.46, + "end": 6380.85, + "probability": 0.8771 + }, + { + "start": 6383.58, + "end": 6385.16, + "probability": 0.9698 + }, + { + "start": 6385.24, + "end": 6386.96, + "probability": 0.8279 + }, + { + "start": 6387.24, + "end": 6389.56, + "probability": 0.9348 + }, + { + "start": 6389.84, + "end": 6392.46, + "probability": 0.8182 + }, + { + "start": 6392.7, + "end": 6393.8, + "probability": 0.7024 + }, + { + "start": 6393.86, + "end": 6396.4, + "probability": 0.938 + }, + { + "start": 6396.54, + "end": 6397.12, + "probability": 0.433 + }, + { + "start": 6397.92, + "end": 6401.66, + "probability": 0.883 + }, + { + "start": 6402.18, + "end": 6406.8, + "probability": 0.9512 + }, + { + "start": 6406.84, + "end": 6412.38, + "probability": 0.9293 + }, + { + "start": 6412.48, + "end": 6413.46, + "probability": 0.9641 + }, + { + "start": 6414.1, + "end": 6415.48, + "probability": 0.9991 + }, + { + "start": 6416.28, + "end": 6418.02, + "probability": 0.9803 + }, + { + "start": 6418.1, + "end": 6418.5, + "probability": 0.4164 + }, + { + "start": 6418.6, + "end": 6423.44, + "probability": 0.8565 + }, + { + "start": 6423.52, + "end": 6426.72, + "probability": 0.7994 + }, + { + "start": 6426.8, + "end": 6427.22, + "probability": 0.7408 + }, + { + "start": 6427.6, + "end": 6430.6, + "probability": 0.8147 + }, + { + "start": 6431.06, + "end": 6434.7, + "probability": 0.9408 + }, + { + "start": 6442.76, + "end": 6445.0, + "probability": 0.7568 + }, + { + "start": 6445.7, + "end": 6448.48, + "probability": 0.9899 + }, + { + "start": 6448.48, + "end": 6451.62, + "probability": 0.9668 + }, + { + "start": 6451.8, + "end": 6451.8, + "probability": 0.0689 + }, + { + "start": 6451.8, + "end": 6453.78, + "probability": 0.9949 + }, + { + "start": 6454.14, + "end": 6456.5, + "probability": 0.996 + }, + { + "start": 6457.1, + "end": 6458.82, + "probability": 0.6049 + }, + { + "start": 6459.36, + "end": 6462.68, + "probability": 0.9801 + }, + { + "start": 6463.2, + "end": 6465.84, + "probability": 0.9607 + }, + { + "start": 6466.38, + "end": 6470.56, + "probability": 0.9981 + }, + { + "start": 6470.56, + "end": 6474.32, + "probability": 0.9564 + }, + { + "start": 6475.18, + "end": 6479.32, + "probability": 0.9836 + }, + { + "start": 6479.72, + "end": 6481.86, + "probability": 0.7821 + }, + { + "start": 6482.26, + "end": 6485.72, + "probability": 0.9948 + }, + { + "start": 6485.72, + "end": 6489.88, + "probability": 0.9473 + }, + { + "start": 6490.44, + "end": 6495.08, + "probability": 0.9783 + }, + { + "start": 6495.56, + "end": 6499.6, + "probability": 0.9514 + }, + { + "start": 6499.84, + "end": 6505.42, + "probability": 0.9721 + }, + { + "start": 6505.96, + "end": 6509.2, + "probability": 0.9869 + }, + { + "start": 6509.94, + "end": 6514.74, + "probability": 0.9984 + }, + { + "start": 6515.1, + "end": 6519.58, + "probability": 0.9965 + }, + { + "start": 6519.58, + "end": 6525.76, + "probability": 0.983 + }, + { + "start": 6526.74, + "end": 6531.64, + "probability": 0.9936 + }, + { + "start": 6532.18, + "end": 6538.08, + "probability": 0.9882 + }, + { + "start": 6538.36, + "end": 6539.48, + "probability": 0.6809 + }, + { + "start": 6539.48, + "end": 6542.96, + "probability": 0.9578 + }, + { + "start": 6543.66, + "end": 6546.68, + "probability": 0.9644 + }, + { + "start": 6546.68, + "end": 6550.4, + "probability": 0.9869 + }, + { + "start": 6550.82, + "end": 6554.68, + "probability": 0.9666 + }, + { + "start": 6554.68, + "end": 6558.7, + "probability": 0.9996 + }, + { + "start": 6559.26, + "end": 6561.26, + "probability": 0.8862 + }, + { + "start": 6561.66, + "end": 6563.2, + "probability": 0.8615 + }, + { + "start": 6563.64, + "end": 6570.12, + "probability": 0.971 + }, + { + "start": 6570.6, + "end": 6572.12, + "probability": 0.7798 + }, + { + "start": 6572.62, + "end": 6575.32, + "probability": 0.8385 + }, + { + "start": 6575.8, + "end": 6576.58, + "probability": 0.8286 + }, + { + "start": 6577.08, + "end": 6584.56, + "probability": 0.9578 + }, + { + "start": 6584.56, + "end": 6590.02, + "probability": 0.9834 + }, + { + "start": 6590.14, + "end": 6593.4, + "probability": 0.779 + }, + { + "start": 6593.52, + "end": 6593.8, + "probability": 0.6967 + }, + { + "start": 6594.02, + "end": 6596.02, + "probability": 0.5493 + }, + { + "start": 6596.08, + "end": 6596.88, + "probability": 0.6807 + }, + { + "start": 6596.98, + "end": 6601.82, + "probability": 0.9905 + }, + { + "start": 6602.58, + "end": 6606.52, + "probability": 0.6198 + }, + { + "start": 6606.83, + "end": 6610.7, + "probability": 0.8434 + }, + { + "start": 6610.8, + "end": 6611.06, + "probability": 0.708 + }, + { + "start": 6611.06, + "end": 6611.32, + "probability": 0.7858 + }, + { + "start": 6611.38, + "end": 6615.4, + "probability": 0.9714 + }, + { + "start": 6615.4, + "end": 6619.68, + "probability": 0.777 + }, + { + "start": 6619.78, + "end": 6620.34, + "probability": 0.1288 + }, + { + "start": 6620.62, + "end": 6624.76, + "probability": 0.7648 + }, + { + "start": 6625.0, + "end": 6625.8, + "probability": 0.6562 + }, + { + "start": 6625.9, + "end": 6626.72, + "probability": 0.6434 + }, + { + "start": 6628.28, + "end": 6629.98, + "probability": 0.7853 + }, + { + "start": 6632.16, + "end": 6634.97, + "probability": 0.2198 + }, + { + "start": 6645.68, + "end": 6649.5, + "probability": 0.0974 + }, + { + "start": 6649.5, + "end": 6650.32, + "probability": 0.0965 + }, + { + "start": 6650.32, + "end": 6650.4, + "probability": 0.019 + }, + { + "start": 6650.4, + "end": 6653.04, + "probability": 0.6492 + }, + { + "start": 6654.24, + "end": 6656.78, + "probability": 0.3349 + }, + { + "start": 6657.0, + "end": 6659.34, + "probability": 0.5837 + }, + { + "start": 6700.46, + "end": 6704.0, + "probability": 0.1133 + }, + { + "start": 6705.63, + "end": 6706.72, + "probability": 0.0708 + }, + { + "start": 6708.12, + "end": 6708.9, + "probability": 0.2458 + }, + { + "start": 6708.9, + "end": 6711.66, + "probability": 0.1801 + }, + { + "start": 6712.0, + "end": 6713.42, + "probability": 0.0686 + }, + { + "start": 6713.58, + "end": 6714.26, + "probability": 0.1516 + }, + { + "start": 6714.28, + "end": 6717.1, + "probability": 0.0526 + }, + { + "start": 6717.1, + "end": 6724.9, + "probability": 0.0706 + }, + { + "start": 6726.0, + "end": 6726.0, + "probability": 0.0 + }, + { + "start": 6726.0, + "end": 6726.0, + "probability": 0.0 + }, + { + "start": 6726.0, + "end": 6726.0, + "probability": 0.0 + }, + { + "start": 6726.0, + "end": 6726.0, + "probability": 0.0 + }, + { + "start": 6726.0, + "end": 6726.0, + "probability": 0.0 + }, + { + "start": 6726.0, + "end": 6726.0, + "probability": 0.0 + }, + { + "start": 6726.0, + "end": 6726.0, + "probability": 0.0 + }, + { + "start": 6726.0, + "end": 6726.0, + "probability": 0.0 + }, + { + "start": 6726.0, + "end": 6726.0, + "probability": 0.0 + }, + { + "start": 6726.0, + "end": 6726.0, + "probability": 0.0 + }, + { + "start": 6726.0, + "end": 6726.0, + "probability": 0.0 + }, + { + "start": 6726.0, + "end": 6726.0, + "probability": 0.0 + }, + { + "start": 6726.0, + "end": 6726.0, + "probability": 0.0 + }, + { + "start": 6726.0, + "end": 6726.0, + "probability": 0.0 + }, + { + "start": 6726.0, + "end": 6726.0, + "probability": 0.0 + }, + { + "start": 6726.0, + "end": 6726.0, + "probability": 0.0 + }, + { + "start": 6726.0, + "end": 6726.0, + "probability": 0.0 + }, + { + "start": 6726.18, + "end": 6726.18, + "probability": 0.0735 + }, + { + "start": 6726.18, + "end": 6726.46, + "probability": 0.1154 + }, + { + "start": 6727.18, + "end": 6728.42, + "probability": 0.4141 + }, + { + "start": 6730.0, + "end": 6731.63, + "probability": 0.7645 + }, + { + "start": 6740.18, + "end": 6741.26, + "probability": 0.6872 + }, + { + "start": 6741.42, + "end": 6742.86, + "probability": 0.7686 + }, + { + "start": 6743.16, + "end": 6744.32, + "probability": 0.9286 + }, + { + "start": 6744.84, + "end": 6746.2, + "probability": 0.9595 + }, + { + "start": 6746.9, + "end": 6750.4, + "probability": 0.9421 + }, + { + "start": 6751.26, + "end": 6753.34, + "probability": 0.9101 + }, + { + "start": 6753.58, + "end": 6756.26, + "probability": 0.9561 + }, + { + "start": 6756.66, + "end": 6759.9, + "probability": 0.7572 + }, + { + "start": 6760.26, + "end": 6762.96, + "probability": 0.9915 + }, + { + "start": 6763.16, + "end": 6763.98, + "probability": 0.8311 + }, + { + "start": 6764.18, + "end": 6768.76, + "probability": 0.7987 + }, + { + "start": 6769.32, + "end": 6774.4, + "probability": 0.9917 + }, + { + "start": 6774.74, + "end": 6776.52, + "probability": 0.9936 + }, + { + "start": 6777.04, + "end": 6779.48, + "probability": 0.9607 + }, + { + "start": 6779.48, + "end": 6783.24, + "probability": 0.9632 + }, + { + "start": 6783.46, + "end": 6785.14, + "probability": 0.8751 + }, + { + "start": 6785.56, + "end": 6790.52, + "probability": 0.9884 + }, + { + "start": 6790.82, + "end": 6793.3, + "probability": 0.8482 + }, + { + "start": 6793.44, + "end": 6796.5, + "probability": 0.8354 + }, + { + "start": 6797.04, + "end": 6798.14, + "probability": 0.5943 + }, + { + "start": 6798.4, + "end": 6802.54, + "probability": 0.9939 + }, + { + "start": 6802.54, + "end": 6806.0, + "probability": 0.9922 + }, + { + "start": 6806.78, + "end": 6810.14, + "probability": 0.9949 + }, + { + "start": 6810.84, + "end": 6815.12, + "probability": 0.8159 + }, + { + "start": 6816.04, + "end": 6819.06, + "probability": 0.9967 + }, + { + "start": 6819.06, + "end": 6823.0, + "probability": 0.9944 + }, + { + "start": 6823.48, + "end": 6825.92, + "probability": 0.9943 + }, + { + "start": 6826.56, + "end": 6830.1, + "probability": 0.9753 + }, + { + "start": 6830.1, + "end": 6833.3, + "probability": 0.9987 + }, + { + "start": 6833.5, + "end": 6833.88, + "probability": 0.4764 + }, + { + "start": 6834.04, + "end": 6838.46, + "probability": 0.9812 + }, + { + "start": 6838.86, + "end": 6841.44, + "probability": 0.9079 + }, + { + "start": 6842.24, + "end": 6844.14, + "probability": 0.9006 + }, + { + "start": 6844.14, + "end": 6847.48, + "probability": 0.9798 + }, + { + "start": 6848.24, + "end": 6851.24, + "probability": 0.9671 + }, + { + "start": 6851.98, + "end": 6855.36, + "probability": 0.9916 + }, + { + "start": 6855.36, + "end": 6859.42, + "probability": 0.9987 + }, + { + "start": 6859.48, + "end": 6860.26, + "probability": 0.7716 + }, + { + "start": 6861.14, + "end": 6863.32, + "probability": 0.9976 + }, + { + "start": 6863.32, + "end": 6866.14, + "probability": 0.9956 + }, + { + "start": 6867.0, + "end": 6867.3, + "probability": 0.5891 + }, + { + "start": 6868.08, + "end": 6872.94, + "probability": 0.9868 + }, + { + "start": 6873.38, + "end": 6873.8, + "probability": 0.9112 + }, + { + "start": 6874.06, + "end": 6879.16, + "probability": 0.9624 + }, + { + "start": 6879.56, + "end": 6884.26, + "probability": 0.9562 + }, + { + "start": 6885.0, + "end": 6886.48, + "probability": 0.8912 + }, + { + "start": 6886.58, + "end": 6887.2, + "probability": 0.8224 + }, + { + "start": 6887.4, + "end": 6891.02, + "probability": 0.9758 + }, + { + "start": 6891.02, + "end": 6898.24, + "probability": 0.9278 + }, + { + "start": 6898.64, + "end": 6902.04, + "probability": 0.9343 + }, + { + "start": 6902.04, + "end": 6905.1, + "probability": 0.9897 + }, + { + "start": 6906.2, + "end": 6908.84, + "probability": 0.9974 + }, + { + "start": 6909.56, + "end": 6912.46, + "probability": 0.9901 + }, + { + "start": 6912.46, + "end": 6916.64, + "probability": 0.9541 + }, + { + "start": 6917.1, + "end": 6920.12, + "probability": 0.9832 + }, + { + "start": 6920.5, + "end": 6924.44, + "probability": 0.8878 + }, + { + "start": 6925.32, + "end": 6925.46, + "probability": 0.4483 + }, + { + "start": 6925.56, + "end": 6929.3, + "probability": 0.9922 + }, + { + "start": 6930.22, + "end": 6935.2, + "probability": 0.975 + }, + { + "start": 6935.56, + "end": 6940.8, + "probability": 0.9139 + }, + { + "start": 6941.34, + "end": 6944.44, + "probability": 0.9545 + }, + { + "start": 6944.78, + "end": 6948.2, + "probability": 0.9603 + }, + { + "start": 6948.76, + "end": 6955.44, + "probability": 0.9697 + }, + { + "start": 6955.82, + "end": 6960.72, + "probability": 0.9927 + }, + { + "start": 6961.28, + "end": 6965.88, + "probability": 0.9692 + }, + { + "start": 6965.96, + "end": 6966.86, + "probability": 0.6879 + }, + { + "start": 6966.9, + "end": 6970.12, + "probability": 0.8165 + }, + { + "start": 6970.58, + "end": 6973.08, + "probability": 0.9306 + }, + { + "start": 6973.2, + "end": 6976.36, + "probability": 0.9956 + }, + { + "start": 6976.72, + "end": 6978.04, + "probability": 0.8397 + }, + { + "start": 6978.08, + "end": 6981.22, + "probability": 0.92 + }, + { + "start": 6981.26, + "end": 6982.4, + "probability": 0.9914 + }, + { + "start": 6983.0, + "end": 6987.68, + "probability": 0.6003 + }, + { + "start": 6988.48, + "end": 6989.88, + "probability": 0.9688 + }, + { + "start": 6990.64, + "end": 6991.64, + "probability": 0.547 + }, + { + "start": 6993.18, + "end": 6997.06, + "probability": 0.8384 + }, + { + "start": 6998.02, + "end": 7000.28, + "probability": 0.9604 + }, + { + "start": 7000.62, + "end": 7002.34, + "probability": 0.8437 + }, + { + "start": 7002.5, + "end": 7003.03, + "probability": 0.8795 + }, + { + "start": 7003.64, + "end": 7004.7, + "probability": 0.9402 + }, + { + "start": 7017.16, + "end": 7018.22, + "probability": 0.5963 + }, + { + "start": 7019.82, + "end": 7021.9, + "probability": 0.7883 + }, + { + "start": 7023.9, + "end": 7026.64, + "probability": 0.5113 + }, + { + "start": 7027.24, + "end": 7030.66, + "probability": 0.9373 + }, + { + "start": 7030.86, + "end": 7032.92, + "probability": 0.7443 + }, + { + "start": 7034.2, + "end": 7035.64, + "probability": 0.9945 + }, + { + "start": 7037.78, + "end": 7039.16, + "probability": 0.8606 + }, + { + "start": 7040.28, + "end": 7047.04, + "probability": 0.8986 + }, + { + "start": 7047.7, + "end": 7048.78, + "probability": 0.8632 + }, + { + "start": 7050.34, + "end": 7051.34, + "probability": 0.7437 + }, + { + "start": 7057.2, + "end": 7057.92, + "probability": 0.7036 + }, + { + "start": 7058.1, + "end": 7059.54, + "probability": 0.4887 + }, + { + "start": 7059.54, + "end": 7059.94, + "probability": 0.0016 + }, + { + "start": 7067.48, + "end": 7068.78, + "probability": 0.7489 + }, + { + "start": 7069.82, + "end": 7070.64, + "probability": 0.5132 + }, + { + "start": 7071.58, + "end": 7073.22, + "probability": 0.347 + }, + { + "start": 7074.8, + "end": 7076.46, + "probability": 0.8506 + }, + { + "start": 7078.16, + "end": 7080.02, + "probability": 0.8979 + }, + { + "start": 7081.0, + "end": 7082.94, + "probability": 0.9906 + }, + { + "start": 7083.68, + "end": 7084.91, + "probability": 0.9824 + }, + { + "start": 7086.02, + "end": 7089.2, + "probability": 0.8673 + }, + { + "start": 7090.9, + "end": 7092.84, + "probability": 0.9181 + }, + { + "start": 7093.56, + "end": 7095.26, + "probability": 0.8853 + }, + { + "start": 7096.28, + "end": 7097.0, + "probability": 0.6994 + }, + { + "start": 7097.98, + "end": 7100.64, + "probability": 0.8551 + }, + { + "start": 7101.58, + "end": 7102.2, + "probability": 0.5991 + }, + { + "start": 7103.24, + "end": 7104.88, + "probability": 0.9468 + }, + { + "start": 7105.12, + "end": 7105.8, + "probability": 0.8548 + }, + { + "start": 7107.66, + "end": 7109.98, + "probability": 0.8583 + }, + { + "start": 7111.42, + "end": 7113.58, + "probability": 0.8541 + }, + { + "start": 7113.92, + "end": 7118.88, + "probability": 0.894 + }, + { + "start": 7119.82, + "end": 7124.1, + "probability": 0.9254 + }, + { + "start": 7125.06, + "end": 7128.01, + "probability": 0.981 + }, + { + "start": 7128.94, + "end": 7130.76, + "probability": 0.9851 + }, + { + "start": 7131.34, + "end": 7132.54, + "probability": 0.6388 + }, + { + "start": 7132.94, + "end": 7136.68, + "probability": 0.8724 + }, + { + "start": 7136.98, + "end": 7139.4, + "probability": 0.989 + }, + { + "start": 7140.08, + "end": 7141.84, + "probability": 0.3511 + }, + { + "start": 7142.44, + "end": 7144.76, + "probability": 0.6967 + }, + { + "start": 7146.18, + "end": 7148.97, + "probability": 0.9556 + }, + { + "start": 7149.68, + "end": 7150.46, + "probability": 0.4312 + }, + { + "start": 7151.74, + "end": 7152.76, + "probability": 0.4018 + }, + { + "start": 7153.76, + "end": 7155.98, + "probability": 0.9866 + }, + { + "start": 7156.72, + "end": 7160.12, + "probability": 0.8064 + }, + { + "start": 7160.12, + "end": 7164.56, + "probability": 0.8917 + }, + { + "start": 7166.7, + "end": 7169.34, + "probability": 0.8879 + }, + { + "start": 7169.86, + "end": 7174.0, + "probability": 0.8874 + }, + { + "start": 7174.64, + "end": 7176.66, + "probability": 0.974 + }, + { + "start": 7176.7, + "end": 7182.36, + "probability": 0.9769 + }, + { + "start": 7182.36, + "end": 7188.28, + "probability": 0.995 + }, + { + "start": 7188.9, + "end": 7191.58, + "probability": 0.9888 + }, + { + "start": 7192.52, + "end": 7193.71, + "probability": 0.6736 + }, + { + "start": 7194.3, + "end": 7196.78, + "probability": 0.8685 + }, + { + "start": 7197.18, + "end": 7199.66, + "probability": 0.8757 + }, + { + "start": 7200.2, + "end": 7207.5, + "probability": 0.6425 + }, + { + "start": 7209.0, + "end": 7211.02, + "probability": 0.6669 + }, + { + "start": 7211.54, + "end": 7217.9, + "probability": 0.7692 + }, + { + "start": 7218.2, + "end": 7219.52, + "probability": 0.7779 + }, + { + "start": 7220.1, + "end": 7223.98, + "probability": 0.9806 + }, + { + "start": 7224.64, + "end": 7230.94, + "probability": 0.9738 + }, + { + "start": 7232.3, + "end": 7234.54, + "probability": 0.9886 + }, + { + "start": 7235.16, + "end": 7238.2, + "probability": 0.8335 + }, + { + "start": 7238.56, + "end": 7241.02, + "probability": 0.9187 + }, + { + "start": 7241.82, + "end": 7242.28, + "probability": 0.578 + }, + { + "start": 7242.92, + "end": 7245.0, + "probability": 0.9709 + }, + { + "start": 7245.8, + "end": 7246.02, + "probability": 0.1393 + }, + { + "start": 7246.02, + "end": 7247.14, + "probability": 0.5844 + }, + { + "start": 7247.66, + "end": 7252.32, + "probability": 0.7612 + }, + { + "start": 7252.94, + "end": 7254.56, + "probability": 0.6537 + }, + { + "start": 7255.42, + "end": 7259.0, + "probability": 0.9425 + }, + { + "start": 7259.22, + "end": 7261.88, + "probability": 0.7595 + }, + { + "start": 7262.0, + "end": 7264.9, + "probability": 0.9943 + }, + { + "start": 7265.28, + "end": 7265.8, + "probability": 0.7838 + }, + { + "start": 7265.96, + "end": 7267.52, + "probability": 0.6953 + }, + { + "start": 7267.82, + "end": 7269.84, + "probability": 0.8707 + }, + { + "start": 7270.14, + "end": 7271.48, + "probability": 0.9324 + }, + { + "start": 7271.48, + "end": 7272.34, + "probability": 0.2439 + }, + { + "start": 7273.4, + "end": 7278.46, + "probability": 0.9797 + }, + { + "start": 7279.92, + "end": 7281.92, + "probability": 0.8135 + }, + { + "start": 7282.26, + "end": 7283.04, + "probability": 0.8159 + }, + { + "start": 7283.44, + "end": 7286.7, + "probability": 0.6866 + }, + { + "start": 7287.24, + "end": 7291.7, + "probability": 0.876 + }, + { + "start": 7292.06, + "end": 7296.08, + "probability": 0.9659 + }, + { + "start": 7296.22, + "end": 7300.42, + "probability": 0.9727 + }, + { + "start": 7300.78, + "end": 7301.8, + "probability": 0.6295 + }, + { + "start": 7301.9, + "end": 7302.34, + "probability": 0.7645 + }, + { + "start": 7302.46, + "end": 7303.4, + "probability": 0.7815 + }, + { + "start": 7303.6, + "end": 7306.38, + "probability": 0.9556 + }, + { + "start": 7306.74, + "end": 7313.08, + "probability": 0.8682 + }, + { + "start": 7313.48, + "end": 7316.22, + "probability": 0.9803 + }, + { + "start": 7316.52, + "end": 7320.18, + "probability": 0.9834 + }, + { + "start": 7321.2, + "end": 7324.9, + "probability": 0.9461 + }, + { + "start": 7325.62, + "end": 7328.18, + "probability": 0.7606 + }, + { + "start": 7328.24, + "end": 7329.46, + "probability": 0.8637 + }, + { + "start": 7329.7, + "end": 7336.12, + "probability": 0.9778 + }, + { + "start": 7336.22, + "end": 7337.12, + "probability": 0.5857 + }, + { + "start": 7337.62, + "end": 7343.56, + "probability": 0.8649 + }, + { + "start": 7344.4, + "end": 7347.54, + "probability": 0.8003 + }, + { + "start": 7349.06, + "end": 7351.78, + "probability": 0.8646 + }, + { + "start": 7352.54, + "end": 7353.84, + "probability": 0.8311 + }, + { + "start": 7355.0, + "end": 7358.88, + "probability": 0.8434 + }, + { + "start": 7359.02, + "end": 7365.78, + "probability": 0.9639 + }, + { + "start": 7366.6, + "end": 7371.6, + "probability": 0.9027 + }, + { + "start": 7372.18, + "end": 7374.68, + "probability": 0.8273 + }, + { + "start": 7375.02, + "end": 7376.44, + "probability": 0.9588 + }, + { + "start": 7376.86, + "end": 7378.84, + "probability": 0.7362 + }, + { + "start": 7378.92, + "end": 7381.34, + "probability": 0.9648 + }, + { + "start": 7381.78, + "end": 7384.46, + "probability": 0.9552 + }, + { + "start": 7385.08, + "end": 7387.12, + "probability": 0.7842 + }, + { + "start": 7387.6, + "end": 7388.44, + "probability": 0.4755 + }, + { + "start": 7388.56, + "end": 7393.06, + "probability": 0.9927 + }, + { + "start": 7393.06, + "end": 7396.58, + "probability": 0.9829 + }, + { + "start": 7397.04, + "end": 7400.22, + "probability": 0.9852 + }, + { + "start": 7400.74, + "end": 7403.56, + "probability": 0.9482 + }, + { + "start": 7404.0, + "end": 7407.54, + "probability": 0.8973 + }, + { + "start": 7407.82, + "end": 7408.64, + "probability": 0.8945 + }, + { + "start": 7409.0, + "end": 7412.22, + "probability": 0.8586 + }, + { + "start": 7412.52, + "end": 7416.78, + "probability": 0.7174 + }, + { + "start": 7417.18, + "end": 7422.34, + "probability": 0.9298 + }, + { + "start": 7422.64, + "end": 7428.68, + "probability": 0.507 + }, + { + "start": 7428.82, + "end": 7431.04, + "probability": 0.947 + }, + { + "start": 7431.8, + "end": 7432.38, + "probability": 0.3346 + }, + { + "start": 7433.24, + "end": 7433.8, + "probability": 0.6889 + }, + { + "start": 7435.28, + "end": 7438.74, + "probability": 0.9536 + }, + { + "start": 7439.44, + "end": 7439.84, + "probability": 0.5847 + }, + { + "start": 7441.14, + "end": 7442.88, + "probability": 0.9949 + }, + { + "start": 7443.68, + "end": 7445.8, + "probability": 0.9861 + }, + { + "start": 7446.6, + "end": 7453.32, + "probability": 0.9908 + }, + { + "start": 7453.6, + "end": 7455.28, + "probability": 0.9683 + }, + { + "start": 7455.4, + "end": 7456.54, + "probability": 0.8788 + }, + { + "start": 7456.64, + "end": 7457.78, + "probability": 0.8266 + }, + { + "start": 7458.52, + "end": 7460.48, + "probability": 0.9009 + }, + { + "start": 7461.02, + "end": 7463.94, + "probability": 0.9896 + }, + { + "start": 7464.32, + "end": 7468.34, + "probability": 0.8109 + }, + { + "start": 7471.84, + "end": 7474.1, + "probability": 0.863 + }, + { + "start": 7474.2, + "end": 7474.32, + "probability": 0.856 + }, + { + "start": 7478.9, + "end": 7480.18, + "probability": 0.5244 + }, + { + "start": 7480.28, + "end": 7483.52, + "probability": 0.9854 + }, + { + "start": 7483.64, + "end": 7485.24, + "probability": 0.9402 + }, + { + "start": 7485.78, + "end": 7486.86, + "probability": 0.872 + }, + { + "start": 7487.86, + "end": 7490.26, + "probability": 0.9648 + }, + { + "start": 7490.7, + "end": 7492.16, + "probability": 0.96 + }, + { + "start": 7492.78, + "end": 7497.9, + "probability": 0.9891 + }, + { + "start": 7498.32, + "end": 7499.8, + "probability": 0.6786 + }, + { + "start": 7499.84, + "end": 7500.48, + "probability": 0.6942 + }, + { + "start": 7500.88, + "end": 7501.94, + "probability": 0.0539 + }, + { + "start": 7502.22, + "end": 7502.76, + "probability": 0.7477 + }, + { + "start": 7503.32, + "end": 7504.78, + "probability": 0.8181 + }, + { + "start": 7505.52, + "end": 7511.94, + "probability": 0.9116 + }, + { + "start": 7512.38, + "end": 7514.48, + "probability": 0.9958 + }, + { + "start": 7514.8, + "end": 7517.34, + "probability": 0.9966 + }, + { + "start": 7517.64, + "end": 7520.92, + "probability": 0.9579 + }, + { + "start": 7520.98, + "end": 7521.5, + "probability": 0.8224 + }, + { + "start": 7521.58, + "end": 7524.24, + "probability": 0.6531 + }, + { + "start": 7524.24, + "end": 7524.48, + "probability": 0.3261 + }, + { + "start": 7524.82, + "end": 7525.18, + "probability": 0.5196 + }, + { + "start": 7525.88, + "end": 7525.98, + "probability": 0.4475 + }, + { + "start": 7527.52, + "end": 7530.78, + "probability": 0.0563 + }, + { + "start": 7531.66, + "end": 7534.24, + "probability": 0.5079 + }, + { + "start": 7534.64, + "end": 7537.12, + "probability": 0.9146 + }, + { + "start": 7537.92, + "end": 7539.78, + "probability": 0.7986 + }, + { + "start": 7541.24, + "end": 7543.38, + "probability": 0.2297 + }, + { + "start": 7544.5, + "end": 7548.32, + "probability": 0.9788 + }, + { + "start": 7550.16, + "end": 7556.22, + "probability": 0.5005 + }, + { + "start": 7556.92, + "end": 7558.46, + "probability": 0.4964 + }, + { + "start": 7558.86, + "end": 7560.4, + "probability": 0.8727 + }, + { + "start": 7560.62, + "end": 7562.0, + "probability": 0.2098 + }, + { + "start": 7562.42, + "end": 7563.29, + "probability": 0.9176 + }, + { + "start": 7569.26, + "end": 7569.86, + "probability": 0.1481 + }, + { + "start": 7575.04, + "end": 7577.48, + "probability": 0.3073 + }, + { + "start": 7578.8, + "end": 7580.76, + "probability": 0.3676 + }, + { + "start": 7580.82, + "end": 7581.6, + "probability": 0.591 + }, + { + "start": 7581.96, + "end": 7583.86, + "probability": 0.1324 + }, + { + "start": 7584.36, + "end": 7586.09, + "probability": 0.1554 + }, + { + "start": 7586.64, + "end": 7588.48, + "probability": 0.4803 + }, + { + "start": 7588.64, + "end": 7589.8, + "probability": 0.6083 + }, + { + "start": 7590.0, + "end": 7591.34, + "probability": 0.777 + }, + { + "start": 7592.18, + "end": 7596.22, + "probability": 0.8127 + }, + { + "start": 7597.0, + "end": 7600.56, + "probability": 0.6214 + }, + { + "start": 7602.96, + "end": 7604.2, + "probability": 0.8609 + }, + { + "start": 7604.24, + "end": 7608.76, + "probability": 0.9841 + }, + { + "start": 7608.84, + "end": 7610.74, + "probability": 0.9598 + }, + { + "start": 7611.62, + "end": 7611.86, + "probability": 0.6494 + }, + { + "start": 7611.86, + "end": 7614.28, + "probability": 0.9761 + }, + { + "start": 7615.64, + "end": 7622.22, + "probability": 0.9896 + }, + { + "start": 7623.06, + "end": 7627.7, + "probability": 0.8782 + }, + { + "start": 7627.78, + "end": 7628.5, + "probability": 0.7371 + }, + { + "start": 7630.06, + "end": 7633.0, + "probability": 0.9546 + }, + { + "start": 7633.62, + "end": 7634.7, + "probability": 0.747 + }, + { + "start": 7635.16, + "end": 7636.54, + "probability": 0.9941 + }, + { + "start": 7636.54, + "end": 7637.4, + "probability": 0.838 + }, + { + "start": 7638.68, + "end": 7640.21, + "probability": 0.8701 + }, + { + "start": 7641.3, + "end": 7642.1, + "probability": 0.8718 + }, + { + "start": 7643.04, + "end": 7644.52, + "probability": 0.7242 + }, + { + "start": 7644.7, + "end": 7646.34, + "probability": 0.4729 + }, + { + "start": 7647.04, + "end": 7648.38, + "probability": 0.759 + }, + { + "start": 7648.82, + "end": 7648.82, + "probability": 0.0014 + }, + { + "start": 7649.52, + "end": 7650.2, + "probability": 0.0268 + }, + { + "start": 7651.06, + "end": 7652.56, + "probability": 0.0527 + }, + { + "start": 7652.56, + "end": 7652.56, + "probability": 0.3205 + }, + { + "start": 7652.56, + "end": 7655.56, + "probability": 0.1097 + }, + { + "start": 7656.1, + "end": 7656.1, + "probability": 0.2932 + }, + { + "start": 7656.1, + "end": 7658.88, + "probability": 0.7312 + }, + { + "start": 7659.56, + "end": 7663.24, + "probability": 0.637 + }, + { + "start": 7663.88, + "end": 7665.98, + "probability": 0.8325 + }, + { + "start": 7666.46, + "end": 7667.34, + "probability": 0.3828 + }, + { + "start": 7669.35, + "end": 7673.32, + "probability": 0.4971 + }, + { + "start": 7673.7, + "end": 7674.78, + "probability": 0.4401 + }, + { + "start": 7674.96, + "end": 7678.34, + "probability": 0.7535 + }, + { + "start": 7678.46, + "end": 7680.18, + "probability": 0.8955 + }, + { + "start": 7682.44, + "end": 7683.57, + "probability": 0.626 + }, + { + "start": 7686.02, + "end": 7690.9, + "probability": 0.8175 + }, + { + "start": 7691.88, + "end": 7694.68, + "probability": 0.8965 + }, + { + "start": 7695.8, + "end": 7699.6, + "probability": 0.7747 + }, + { + "start": 7699.96, + "end": 7702.48, + "probability": 0.7593 + }, + { + "start": 7703.34, + "end": 7705.53, + "probability": 0.8574 + }, + { + "start": 7706.6, + "end": 7707.33, + "probability": 0.8208 + }, + { + "start": 7707.92, + "end": 7710.48, + "probability": 0.5318 + }, + { + "start": 7711.28, + "end": 7711.74, + "probability": 0.0581 + }, + { + "start": 7719.48, + "end": 7722.16, + "probability": 0.7254 + }, + { + "start": 7722.16, + "end": 7726.05, + "probability": 0.4865 + }, + { + "start": 7726.36, + "end": 7728.02, + "probability": 0.7021 + }, + { + "start": 7728.02, + "end": 7728.9, + "probability": 0.2203 + }, + { + "start": 7728.9, + "end": 7729.86, + "probability": 0.3204 + }, + { + "start": 7730.32, + "end": 7732.08, + "probability": 0.9961 + }, + { + "start": 7734.08, + "end": 7734.62, + "probability": 0.2598 + }, + { + "start": 7734.62, + "end": 7734.86, + "probability": 0.1509 + }, + { + "start": 7734.86, + "end": 7739.22, + "probability": 0.5999 + }, + { + "start": 7739.22, + "end": 7739.24, + "probability": 0.0137 + }, + { + "start": 7739.24, + "end": 7741.8, + "probability": 0.9952 + }, + { + "start": 7742.52, + "end": 7744.49, + "probability": 0.3344 + }, + { + "start": 7744.6, + "end": 7745.36, + "probability": 0.3207 + }, + { + "start": 7745.9, + "end": 7747.4, + "probability": 0.0398 + }, + { + "start": 7748.14, + "end": 7750.64, + "probability": 0.3865 + }, + { + "start": 7751.28, + "end": 7753.64, + "probability": 0.0894 + }, + { + "start": 7754.14, + "end": 7755.16, + "probability": 0.6831 + }, + { + "start": 7755.58, + "end": 7757.14, + "probability": 0.9278 + }, + { + "start": 7757.64, + "end": 7762.66, + "probability": 0.3884 + }, + { + "start": 7764.5, + "end": 7772.5, + "probability": 0.5562 + }, + { + "start": 7772.52, + "end": 7773.96, + "probability": 0.2656 + }, + { + "start": 7774.14, + "end": 7775.16, + "probability": 0.6275 + }, + { + "start": 7775.74, + "end": 7778.7, + "probability": 0.5117 + }, + { + "start": 7778.96, + "end": 7781.84, + "probability": 0.663 + }, + { + "start": 7782.84, + "end": 7783.4, + "probability": 0.4602 + }, + { + "start": 7783.7, + "end": 7784.34, + "probability": 0.2938 + }, + { + "start": 7784.5, + "end": 7784.62, + "probability": 0.7314 + }, + { + "start": 7784.76, + "end": 7784.76, + "probability": 0.6453 + }, + { + "start": 7784.76, + "end": 7787.58, + "probability": 0.6565 + }, + { + "start": 7787.72, + "end": 7788.88, + "probability": 0.2445 + }, + { + "start": 7789.08, + "end": 7791.8, + "probability": 0.3223 + }, + { + "start": 7792.14, + "end": 7792.7, + "probability": 0.4291 + }, + { + "start": 7792.92, + "end": 7793.5, + "probability": 0.6777 + }, + { + "start": 7793.88, + "end": 7794.76, + "probability": 0.4618 + }, + { + "start": 7794.86, + "end": 7796.64, + "probability": 0.6537 + }, + { + "start": 7796.88, + "end": 7797.65, + "probability": 0.483 + }, + { + "start": 7798.04, + "end": 7798.36, + "probability": 0.1771 + }, + { + "start": 7800.76, + "end": 7805.5, + "probability": 0.1058 + }, + { + "start": 7806.08, + "end": 7806.44, + "probability": 0.4319 + }, + { + "start": 7806.48, + "end": 7807.42, + "probability": 0.0665 + }, + { + "start": 7807.96, + "end": 7809.46, + "probability": 0.0269 + }, + { + "start": 7809.96, + "end": 7814.38, + "probability": 0.2772 + }, + { + "start": 7815.76, + "end": 7815.76, + "probability": 0.1661 + }, + { + "start": 7815.76, + "end": 7818.44, + "probability": 0.4186 + }, + { + "start": 7825.8, + "end": 7826.38, + "probability": 0.5515 + }, + { + "start": 7826.42, + "end": 7829.04, + "probability": 0.9956 + }, + { + "start": 7829.18, + "end": 7830.26, + "probability": 0.9652 + }, + { + "start": 7830.58, + "end": 7832.0, + "probability": 0.9411 + }, + { + "start": 7832.1, + "end": 7832.98, + "probability": 0.8621 + }, + { + "start": 7833.3, + "end": 7835.74, + "probability": 0.7772 + }, + { + "start": 7836.06, + "end": 7838.28, + "probability": 0.9292 + }, + { + "start": 7838.46, + "end": 7839.54, + "probability": 0.9103 + }, + { + "start": 7839.98, + "end": 7840.36, + "probability": 0.4187 + }, + { + "start": 7840.54, + "end": 7844.58, + "probability": 0.991 + }, + { + "start": 7844.9, + "end": 7846.24, + "probability": 0.8948 + }, + { + "start": 7846.56, + "end": 7847.92, + "probability": 0.9866 + }, + { + "start": 7848.18, + "end": 7852.13, + "probability": 0.9844 + }, + { + "start": 7852.52, + "end": 7854.54, + "probability": 0.7508 + }, + { + "start": 7854.86, + "end": 7855.66, + "probability": 0.6084 + }, + { + "start": 7856.14, + "end": 7857.28, + "probability": 0.5988 + }, + { + "start": 7857.48, + "end": 7858.88, + "probability": 0.9824 + }, + { + "start": 7859.26, + "end": 7861.2, + "probability": 0.9313 + }, + { + "start": 7861.56, + "end": 7863.58, + "probability": 0.994 + }, + { + "start": 7863.62, + "end": 7865.14, + "probability": 0.9367 + }, + { + "start": 7865.48, + "end": 7867.16, + "probability": 0.9954 + }, + { + "start": 7867.46, + "end": 7869.32, + "probability": 0.9947 + }, + { + "start": 7869.62, + "end": 7870.38, + "probability": 0.8466 + }, + { + "start": 7870.7, + "end": 7872.52, + "probability": 0.7715 + }, + { + "start": 7872.58, + "end": 7873.78, + "probability": 0.3043 + }, + { + "start": 7873.78, + "end": 7874.85, + "probability": 0.665 + }, + { + "start": 7875.34, + "end": 7875.48, + "probability": 0.5986 + }, + { + "start": 7875.5, + "end": 7877.88, + "probability": 0.8484 + }, + { + "start": 7878.3, + "end": 7879.38, + "probability": 0.8829 + }, + { + "start": 7880.68, + "end": 7881.64, + "probability": 0.8279 + }, + { + "start": 7881.7, + "end": 7882.78, + "probability": 0.8057 + }, + { + "start": 7882.86, + "end": 7884.52, + "probability": 0.6742 + }, + { + "start": 7885.48, + "end": 7885.68, + "probability": 0.0043 + }, + { + "start": 7885.68, + "end": 7885.72, + "probability": 0.2413 + }, + { + "start": 7885.72, + "end": 7885.88, + "probability": 0.4504 + }, + { + "start": 7886.42, + "end": 7888.32, + "probability": 0.4045 + }, + { + "start": 7888.32, + "end": 7893.38, + "probability": 0.7406 + }, + { + "start": 7893.5, + "end": 7895.04, + "probability": 0.6298 + }, + { + "start": 7895.44, + "end": 7895.8, + "probability": 0.778 + }, + { + "start": 7896.38, + "end": 7898.84, + "probability": 0.9902 + }, + { + "start": 7899.08, + "end": 7899.67, + "probability": 0.7802 + }, + { + "start": 7900.22, + "end": 7902.8, + "probability": 0.9775 + }, + { + "start": 7903.0, + "end": 7903.3, + "probability": 0.534 + }, + { + "start": 7903.34, + "end": 7906.03, + "probability": 0.9656 + }, + { + "start": 7908.4, + "end": 7908.68, + "probability": 0.4265 + }, + { + "start": 7911.22, + "end": 7914.4, + "probability": 0.0404 + }, + { + "start": 7914.4, + "end": 7914.4, + "probability": 0.1163 + }, + { + "start": 7914.4, + "end": 7915.69, + "probability": 0.1802 + }, + { + "start": 7933.14, + "end": 7936.88, + "probability": 0.8187 + }, + { + "start": 7938.52, + "end": 7939.82, + "probability": 0.958 + }, + { + "start": 7940.1, + "end": 7942.62, + "probability": 0.9441 + }, + { + "start": 7942.9, + "end": 7943.62, + "probability": 0.5254 + }, + { + "start": 7943.92, + "end": 7948.62, + "probability": 0.8307 + }, + { + "start": 7949.5, + "end": 7951.8, + "probability": 0.8597 + }, + { + "start": 7953.61, + "end": 7954.88, + "probability": 0.5079 + }, + { + "start": 7954.88, + "end": 7955.23, + "probability": 0.7186 + }, + { + "start": 7955.88, + "end": 7957.54, + "probability": 0.9203 + }, + { + "start": 7958.06, + "end": 7960.14, + "probability": 0.9859 + }, + { + "start": 7960.46, + "end": 7963.96, + "probability": 0.7992 + }, + { + "start": 7964.4, + "end": 7966.08, + "probability": 0.5127 + }, + { + "start": 7966.2, + "end": 7969.7, + "probability": 0.9932 + }, + { + "start": 7970.32, + "end": 7977.1, + "probability": 0.916 + }, + { + "start": 7977.46, + "end": 7978.28, + "probability": 0.5934 + }, + { + "start": 7979.22, + "end": 7980.12, + "probability": 0.4894 + }, + { + "start": 7980.24, + "end": 7984.98, + "probability": 0.9434 + }, + { + "start": 7985.98, + "end": 7989.06, + "probability": 0.6572 + }, + { + "start": 7989.6, + "end": 7993.22, + "probability": 0.3927 + }, + { + "start": 7994.34, + "end": 7998.26, + "probability": 0.9859 + }, + { + "start": 7999.14, + "end": 8001.24, + "probability": 0.9873 + }, + { + "start": 8001.98, + "end": 8005.68, + "probability": 0.8105 + }, + { + "start": 8005.86, + "end": 8009.92, + "probability": 0.9814 + }, + { + "start": 8010.3, + "end": 8011.9, + "probability": 0.7655 + }, + { + "start": 8012.2, + "end": 8013.24, + "probability": 0.9771 + }, + { + "start": 8013.34, + "end": 8016.12, + "probability": 0.9297 + }, + { + "start": 8016.44, + "end": 8017.26, + "probability": 0.949 + }, + { + "start": 8017.32, + "end": 8018.48, + "probability": 0.9892 + }, + { + "start": 8018.58, + "end": 8019.66, + "probability": 0.6915 + }, + { + "start": 8020.2, + "end": 8027.42, + "probability": 0.9844 + }, + { + "start": 8027.84, + "end": 8029.02, + "probability": 0.8127 + }, + { + "start": 8029.2, + "end": 8030.56, + "probability": 0.6957 + }, + { + "start": 8030.56, + "end": 8031.16, + "probability": 0.9268 + }, + { + "start": 8031.18, + "end": 8031.92, + "probability": 0.6466 + }, + { + "start": 8032.08, + "end": 8033.48, + "probability": 0.6417 + }, + { + "start": 8033.64, + "end": 8035.34, + "probability": 0.8677 + }, + { + "start": 8035.46, + "end": 8036.92, + "probability": 0.7899 + }, + { + "start": 8037.92, + "end": 8039.3, + "probability": 0.9812 + }, + { + "start": 8039.54, + "end": 8041.62, + "probability": 0.6937 + }, + { + "start": 8041.62, + "end": 8042.78, + "probability": 0.6387 + }, + { + "start": 8042.9, + "end": 8045.3, + "probability": 0.7244 + }, + { + "start": 8045.36, + "end": 8051.24, + "probability": 0.9623 + }, + { + "start": 8051.58, + "end": 8054.3, + "probability": 0.74 + }, + { + "start": 8054.46, + "end": 8059.3, + "probability": 0.8608 + }, + { + "start": 8059.64, + "end": 8065.5, + "probability": 0.9683 + }, + { + "start": 8065.86, + "end": 8073.02, + "probability": 0.9972 + }, + { + "start": 8073.34, + "end": 8075.74, + "probability": 0.988 + }, + { + "start": 8076.98, + "end": 8079.92, + "probability": 0.038 + }, + { + "start": 8081.08, + "end": 8084.06, + "probability": 0.3731 + }, + { + "start": 8086.54, + "end": 8093.1, + "probability": 0.5883 + }, + { + "start": 8093.38, + "end": 8094.64, + "probability": 0.6438 + }, + { + "start": 8097.36, + "end": 8100.02, + "probability": 0.9459 + }, + { + "start": 8105.76, + "end": 8109.28, + "probability": 0.9017 + }, + { + "start": 8109.92, + "end": 8112.06, + "probability": 0.0445 + }, + { + "start": 8113.67, + "end": 8116.38, + "probability": 0.3848 + }, + { + "start": 8116.38, + "end": 8117.37, + "probability": 0.6135 + }, + { + "start": 8120.75, + "end": 8122.9, + "probability": 0.6145 + }, + { + "start": 8122.9, + "end": 8123.0, + "probability": 0.1121 + }, + { + "start": 8123.0, + "end": 8123.0, + "probability": 0.0643 + }, + { + "start": 8123.0, + "end": 8123.0, + "probability": 0.0808 + }, + { + "start": 8123.0, + "end": 8123.0, + "probability": 0.801 + }, + { + "start": 8123.0, + "end": 8124.14, + "probability": 0.7007 + }, + { + "start": 8124.18, + "end": 8125.0, + "probability": 0.7646 + }, + { + "start": 8125.02, + "end": 8125.82, + "probability": 0.6622 + }, + { + "start": 8125.9, + "end": 8126.74, + "probability": 0.5568 + }, + { + "start": 8127.0, + "end": 8127.16, + "probability": 0.2037 + }, + { + "start": 8127.16, + "end": 8128.1, + "probability": 0.6932 + }, + { + "start": 8128.2, + "end": 8128.8, + "probability": 0.0716 + }, + { + "start": 8129.06, + "end": 8129.76, + "probability": 0.4158 + }, + { + "start": 8130.08, + "end": 8132.96, + "probability": 0.6543 + }, + { + "start": 8132.96, + "end": 8133.14, + "probability": 0.398 + }, + { + "start": 8133.22, + "end": 8134.3, + "probability": 0.7534 + }, + { + "start": 8134.36, + "end": 8135.14, + "probability": 0.0424 + }, + { + "start": 8135.28, + "end": 8136.22, + "probability": 0.6848 + }, + { + "start": 8137.4, + "end": 8137.46, + "probability": 0.1993 + }, + { + "start": 8137.46, + "end": 8137.64, + "probability": 0.5868 + }, + { + "start": 8137.72, + "end": 8139.06, + "probability": 0.993 + }, + { + "start": 8143.84, + "end": 8146.64, + "probability": 0.7991 + }, + { + "start": 8147.62, + "end": 8150.18, + "probability": 0.9669 + }, + { + "start": 8150.18, + "end": 8152.86, + "probability": 0.823 + }, + { + "start": 8153.82, + "end": 8155.88, + "probability": 0.9333 + }, + { + "start": 8156.42, + "end": 8157.4, + "probability": 0.9468 + }, + { + "start": 8157.9, + "end": 8159.06, + "probability": 0.8083 + }, + { + "start": 8159.52, + "end": 8160.88, + "probability": 0.7049 + }, + { + "start": 8161.28, + "end": 8162.82, + "probability": 0.821 + }, + { + "start": 8163.5, + "end": 8166.4, + "probability": 0.9448 + }, + { + "start": 8167.88, + "end": 8169.52, + "probability": 0.9777 + }, + { + "start": 8170.1, + "end": 8171.24, + "probability": 0.9234 + }, + { + "start": 8171.44, + "end": 8171.44, + "probability": 0.3674 + }, + { + "start": 8171.44, + "end": 8172.8, + "probability": 0.9038 + }, + { + "start": 8173.14, + "end": 8175.6, + "probability": 0.715 + }, + { + "start": 8175.64, + "end": 8175.84, + "probability": 0.1423 + }, + { + "start": 8175.84, + "end": 8178.42, + "probability": 0.5145 + }, + { + "start": 8178.42, + "end": 8178.92, + "probability": 0.0039 + }, + { + "start": 8179.1, + "end": 8179.6, + "probability": 0.4605 + }, + { + "start": 8179.76, + "end": 8181.82, + "probability": 0.9252 + }, + { + "start": 8182.94, + "end": 8184.72, + "probability": 0.9277 + }, + { + "start": 8185.28, + "end": 8187.04, + "probability": 0.8838 + }, + { + "start": 8187.1, + "end": 8187.28, + "probability": 0.8061 + }, + { + "start": 8187.4, + "end": 8188.8, + "probability": 0.766 + }, + { + "start": 8188.8, + "end": 8191.74, + "probability": 0.8029 + }, + { + "start": 8192.82, + "end": 8197.8, + "probability": 0.8974 + }, + { + "start": 8198.44, + "end": 8199.46, + "probability": 0.7181 + }, + { + "start": 8199.64, + "end": 8202.7, + "probability": 0.9568 + }, + { + "start": 8203.54, + "end": 8206.52, + "probability": 0.7992 + }, + { + "start": 8206.62, + "end": 8209.86, + "probability": 0.8428 + }, + { + "start": 8210.02, + "end": 8214.12, + "probability": 0.9047 + }, + { + "start": 8214.14, + "end": 8215.42, + "probability": 0.2655 + }, + { + "start": 8215.42, + "end": 8217.1, + "probability": 0.9809 + }, + { + "start": 8217.42, + "end": 8217.56, + "probability": 0.3743 + }, + { + "start": 8218.32, + "end": 8218.82, + "probability": 0.0233 + }, + { + "start": 8219.1, + "end": 8221.4, + "probability": 0.3619 + }, + { + "start": 8221.7, + "end": 8225.56, + "probability": 0.7698 + }, + { + "start": 8225.62, + "end": 8227.29, + "probability": 0.8721 + }, + { + "start": 8228.1, + "end": 8229.24, + "probability": 0.4573 + }, + { + "start": 8229.6, + "end": 8231.84, + "probability": 0.7837 + }, + { + "start": 8232.82, + "end": 8234.48, + "probability": 0.6459 + }, + { + "start": 8243.08, + "end": 8244.3, + "probability": 0.3961 + }, + { + "start": 8248.16, + "end": 8249.64, + "probability": 0.6507 + }, + { + "start": 8251.08, + "end": 8252.14, + "probability": 0.6001 + }, + { + "start": 8252.98, + "end": 8253.4, + "probability": 0.9191 + }, + { + "start": 8254.1, + "end": 8256.26, + "probability": 0.7845 + }, + { + "start": 8257.88, + "end": 8259.16, + "probability": 0.916 + }, + { + "start": 8261.36, + "end": 8263.76, + "probability": 0.9565 + }, + { + "start": 8264.36, + "end": 8264.88, + "probability": 0.968 + }, + { + "start": 8265.82, + "end": 8266.78, + "probability": 0.6785 + }, + { + "start": 8270.42, + "end": 8275.76, + "probability": 0.4428 + }, + { + "start": 8276.54, + "end": 8278.5, + "probability": 0.8206 + }, + { + "start": 8280.04, + "end": 8281.76, + "probability": 0.8578 + }, + { + "start": 8283.32, + "end": 8286.72, + "probability": 0.8833 + }, + { + "start": 8287.26, + "end": 8288.82, + "probability": 0.9556 + }, + { + "start": 8293.62, + "end": 8301.6, + "probability": 0.6977 + }, + { + "start": 8303.33, + "end": 8306.04, + "probability": 0.8523 + }, + { + "start": 8307.52, + "end": 8309.36, + "probability": 0.9619 + }, + { + "start": 8310.36, + "end": 8312.18, + "probability": 0.9287 + }, + { + "start": 8313.42, + "end": 8315.16, + "probability": 0.9736 + }, + { + "start": 8316.22, + "end": 8317.94, + "probability": 0.9087 + }, + { + "start": 8318.64, + "end": 8318.94, + "probability": 0.9653 + }, + { + "start": 8319.52, + "end": 8320.46, + "probability": 0.9829 + }, + { + "start": 8321.12, + "end": 8322.06, + "probability": 0.7644 + }, + { + "start": 8322.8, + "end": 8323.82, + "probability": 0.6612 + }, + { + "start": 8324.62, + "end": 8326.32, + "probability": 0.6171 + }, + { + "start": 8332.78, + "end": 8334.62, + "probability": 0.7343 + }, + { + "start": 8335.68, + "end": 8336.9, + "probability": 0.7821 + }, + { + "start": 8338.32, + "end": 8340.14, + "probability": 0.9173 + }, + { + "start": 8341.5, + "end": 8343.36, + "probability": 0.9714 + }, + { + "start": 8344.38, + "end": 8346.18, + "probability": 0.9043 + }, + { + "start": 8347.46, + "end": 8348.2, + "probability": 0.9841 + }, + { + "start": 8348.96, + "end": 8349.78, + "probability": 0.6541 + }, + { + "start": 8350.58, + "end": 8351.36, + "probability": 0.9933 + }, + { + "start": 8351.94, + "end": 8352.7, + "probability": 0.9363 + }, + { + "start": 8353.7, + "end": 8355.8, + "probability": 0.8763 + }, + { + "start": 8357.0, + "end": 8357.44, + "probability": 0.9109 + }, + { + "start": 8360.82, + "end": 8362.44, + "probability": 0.786 + }, + { + "start": 8363.56, + "end": 8365.42, + "probability": 0.8276 + }, + { + "start": 8366.92, + "end": 8367.78, + "probability": 0.9608 + }, + { + "start": 8368.46, + "end": 8369.76, + "probability": 0.629 + }, + { + "start": 8370.66, + "end": 8372.26, + "probability": 0.9652 + }, + { + "start": 8374.8, + "end": 8377.14, + "probability": 0.9316 + }, + { + "start": 8378.42, + "end": 8379.08, + "probability": 0.9875 + }, + { + "start": 8379.84, + "end": 8380.62, + "probability": 0.9811 + }, + { + "start": 8381.7, + "end": 8383.58, + "probability": 0.9808 + }, + { + "start": 8385.78, + "end": 8387.16, + "probability": 0.9945 + }, + { + "start": 8388.14, + "end": 8388.96, + "probability": 0.5617 + }, + { + "start": 8389.8, + "end": 8390.28, + "probability": 0.7386 + }, + { + "start": 8390.86, + "end": 8391.84, + "probability": 0.8328 + }, + { + "start": 8393.14, + "end": 8395.2, + "probability": 0.5656 + }, + { + "start": 8396.5, + "end": 8396.92, + "probability": 0.9891 + }, + { + "start": 8398.6, + "end": 8399.52, + "probability": 0.9613 + }, + { + "start": 8400.2, + "end": 8402.4, + "probability": 0.9803 + }, + { + "start": 8410.7, + "end": 8412.3, + "probability": 0.6311 + }, + { + "start": 8413.16, + "end": 8417.08, + "probability": 0.7888 + }, + { + "start": 8417.92, + "end": 8418.86, + "probability": 0.9697 + }, + { + "start": 8419.98, + "end": 8423.46, + "probability": 0.8569 + }, + { + "start": 8427.3, + "end": 8428.78, + "probability": 0.5938 + }, + { + "start": 8429.3, + "end": 8431.84, + "probability": 0.3431 + }, + { + "start": 8433.12, + "end": 8435.7, + "probability": 0.4704 + }, + { + "start": 8436.64, + "end": 8439.18, + "probability": 0.6986 + }, + { + "start": 8439.84, + "end": 8440.16, + "probability": 0.9353 + }, + { + "start": 8440.94, + "end": 8441.44, + "probability": 0.941 + }, + { + "start": 8442.8, + "end": 8447.24, + "probability": 0.8892 + }, + { + "start": 8448.04, + "end": 8448.34, + "probability": 0.969 + }, + { + "start": 8449.1, + "end": 8451.42, + "probability": 0.9543 + }, + { + "start": 8452.38, + "end": 8453.14, + "probability": 0.8883 + }, + { + "start": 8453.88, + "end": 8456.26, + "probability": 0.8647 + }, + { + "start": 8457.06, + "end": 8459.86, + "probability": 0.7739 + }, + { + "start": 8460.48, + "end": 8461.32, + "probability": 0.6237 + }, + { + "start": 8462.84, + "end": 8463.2, + "probability": 0.9416 + }, + { + "start": 8464.26, + "end": 8466.02, + "probability": 0.8907 + }, + { + "start": 8466.62, + "end": 8468.42, + "probability": 0.9595 + }, + { + "start": 8470.56, + "end": 8472.84, + "probability": 0.9833 + }, + { + "start": 8474.14, + "end": 8474.74, + "probability": 0.9831 + }, + { + "start": 8475.58, + "end": 8476.66, + "probability": 0.9928 + }, + { + "start": 8477.48, + "end": 8479.34, + "probability": 0.9504 + }, + { + "start": 8480.2, + "end": 8481.76, + "probability": 0.954 + }, + { + "start": 8482.86, + "end": 8484.48, + "probability": 0.7871 + }, + { + "start": 8488.96, + "end": 8491.86, + "probability": 0.6509 + }, + { + "start": 8492.7, + "end": 8495.1, + "probability": 0.8481 + }, + { + "start": 8496.62, + "end": 8497.68, + "probability": 0.9819 + }, + { + "start": 8500.54, + "end": 8501.4, + "probability": 0.5106 + }, + { + "start": 8502.04, + "end": 8502.34, + "probability": 0.9028 + }, + { + "start": 8502.94, + "end": 8504.56, + "probability": 0.9114 + }, + { + "start": 8505.44, + "end": 8506.77, + "probability": 0.6939 + }, + { + "start": 8507.7, + "end": 8509.54, + "probability": 0.9828 + }, + { + "start": 8510.76, + "end": 8512.72, + "probability": 0.9775 + }, + { + "start": 8514.58, + "end": 8515.96, + "probability": 0.8351 + }, + { + "start": 8516.8, + "end": 8519.08, + "probability": 0.9813 + }, + { + "start": 8520.2, + "end": 8521.92, + "probability": 0.7103 + }, + { + "start": 8522.56, + "end": 8523.48, + "probability": 0.8403 + }, + { + "start": 8524.14, + "end": 8525.54, + "probability": 0.929 + }, + { + "start": 8526.56, + "end": 8529.34, + "probability": 0.7699 + }, + { + "start": 8530.4, + "end": 8532.44, + "probability": 0.9026 + }, + { + "start": 8536.04, + "end": 8540.38, + "probability": 0.8019 + }, + { + "start": 8541.4, + "end": 8547.04, + "probability": 0.7854 + }, + { + "start": 8548.78, + "end": 8549.82, + "probability": 0.922 + }, + { + "start": 8551.92, + "end": 8557.58, + "probability": 0.8983 + }, + { + "start": 8558.14, + "end": 8560.68, + "probability": 0.8733 + }, + { + "start": 8563.04, + "end": 8565.68, + "probability": 0.5368 + }, + { + "start": 8566.74, + "end": 8569.32, + "probability": 0.9394 + }, + { + "start": 8569.86, + "end": 8571.74, + "probability": 0.9692 + }, + { + "start": 8572.1, + "end": 8574.34, + "probability": 0.9077 + }, + { + "start": 8575.44, + "end": 8577.32, + "probability": 0.8314 + }, + { + "start": 8578.06, + "end": 8579.88, + "probability": 0.923 + }, + { + "start": 8580.52, + "end": 8583.18, + "probability": 0.51 + }, + { + "start": 8583.82, + "end": 8585.44, + "probability": 0.8061 + }, + { + "start": 8586.86, + "end": 8587.82, + "probability": 0.6716 + }, + { + "start": 8588.54, + "end": 8591.94, + "probability": 0.8788 + }, + { + "start": 8592.9, + "end": 8597.7, + "probability": 0.9813 + }, + { + "start": 8598.76, + "end": 8602.5, + "probability": 0.9513 + }, + { + "start": 8603.16, + "end": 8604.8, + "probability": 0.9884 + }, + { + "start": 8606.3, + "end": 8609.02, + "probability": 0.854 + }, + { + "start": 8609.98, + "end": 8615.04, + "probability": 0.7027 + }, + { + "start": 8615.6, + "end": 8616.92, + "probability": 0.9164 + }, + { + "start": 8617.9, + "end": 8619.92, + "probability": 0.8198 + }, + { + "start": 8621.1, + "end": 8623.56, + "probability": 0.658 + }, + { + "start": 8624.4, + "end": 8629.26, + "probability": 0.9513 + }, + { + "start": 8630.46, + "end": 8631.0, + "probability": 0.9811 + }, + { + "start": 8631.82, + "end": 8632.58, + "probability": 0.9524 + }, + { + "start": 8633.56, + "end": 8633.94, + "probability": 0.9854 + }, + { + "start": 8634.82, + "end": 8636.16, + "probability": 0.8473 + }, + { + "start": 8636.96, + "end": 8638.4, + "probability": 0.846 + }, + { + "start": 8639.5, + "end": 8641.26, + "probability": 0.7884 + }, + { + "start": 8641.78, + "end": 8642.8, + "probability": 0.8975 + }, + { + "start": 8643.9, + "end": 8645.06, + "probability": 0.8425 + }, + { + "start": 8646.04, + "end": 8646.5, + "probability": 0.99 + }, + { + "start": 8647.08, + "end": 8651.44, + "probability": 0.943 + }, + { + "start": 8652.42, + "end": 8652.94, + "probability": 0.9891 + }, + { + "start": 8653.66, + "end": 8654.68, + "probability": 0.9643 + }, + { + "start": 8656.0, + "end": 8656.42, + "probability": 0.9736 + }, + { + "start": 8657.04, + "end": 8658.64, + "probability": 0.9731 + }, + { + "start": 8659.26, + "end": 8662.6, + "probability": 0.9744 + }, + { + "start": 8663.28, + "end": 8664.22, + "probability": 0.6968 + }, + { + "start": 8665.0, + "end": 8665.28, + "probability": 0.9202 + }, + { + "start": 8666.42, + "end": 8667.84, + "probability": 0.701 + }, + { + "start": 8668.48, + "end": 8668.9, + "probability": 0.969 + }, + { + "start": 8669.44, + "end": 8670.34, + "probability": 0.9872 + }, + { + "start": 8671.14, + "end": 8673.44, + "probability": 0.991 + }, + { + "start": 8674.1, + "end": 8675.82, + "probability": 0.978 + }, + { + "start": 8676.82, + "end": 8681.0, + "probability": 0.8263 + }, + { + "start": 8682.56, + "end": 8691.5, + "probability": 0.8841 + }, + { + "start": 8692.24, + "end": 8693.46, + "probability": 0.485 + }, + { + "start": 8693.62, + "end": 8695.7, + "probability": 0.8391 + }, + { + "start": 8696.12, + "end": 8698.08, + "probability": 0.8261 + }, + { + "start": 8699.96, + "end": 8702.2, + "probability": 0.2755 + }, + { + "start": 8702.2, + "end": 8702.74, + "probability": 0.5952 + }, + { + "start": 8703.62, + "end": 8705.6, + "probability": 0.8174 + }, + { + "start": 8707.82, + "end": 8711.0, + "probability": 0.7823 + }, + { + "start": 8712.4, + "end": 8714.2, + "probability": 0.9264 + }, + { + "start": 8715.88, + "end": 8716.32, + "probability": 0.759 + }, + { + "start": 8717.0, + "end": 8718.36, + "probability": 0.9081 + }, + { + "start": 8719.06, + "end": 8722.72, + "probability": 0.8926 + }, + { + "start": 8723.76, + "end": 8725.1, + "probability": 0.6365 + }, + { + "start": 8726.98, + "end": 8728.34, + "probability": 0.7079 + }, + { + "start": 8729.3, + "end": 8731.36, + "probability": 0.8066 + }, + { + "start": 8732.98, + "end": 8735.76, + "probability": 0.9672 + }, + { + "start": 8736.56, + "end": 8738.08, + "probability": 0.9649 + }, + { + "start": 8738.74, + "end": 8739.46, + "probability": 0.9543 + }, + { + "start": 8740.18, + "end": 8745.86, + "probability": 0.9858 + }, + { + "start": 8747.96, + "end": 8751.12, + "probability": 0.6949 + }, + { + "start": 8752.22, + "end": 8754.56, + "probability": 0.8843 + }, + { + "start": 8756.52, + "end": 8758.9, + "probability": 0.5524 + }, + { + "start": 8759.7, + "end": 8761.38, + "probability": 0.9873 + }, + { + "start": 8762.54, + "end": 8764.4, + "probability": 0.9413 + }, + { + "start": 8765.2, + "end": 8768.1, + "probability": 0.9593 + }, + { + "start": 8768.64, + "end": 8770.56, + "probability": 0.7146 + }, + { + "start": 8771.38, + "end": 8773.14, + "probability": 0.9412 + }, + { + "start": 8773.72, + "end": 8775.62, + "probability": 0.9505 + }, + { + "start": 8776.56, + "end": 8779.38, + "probability": 0.8208 + }, + { + "start": 8780.0, + "end": 8781.68, + "probability": 0.8629 + }, + { + "start": 8783.84, + "end": 8787.04, + "probability": 0.6575 + }, + { + "start": 8788.76, + "end": 8790.16, + "probability": 0.8521 + }, + { + "start": 8790.96, + "end": 8791.88, + "probability": 0.9323 + }, + { + "start": 8793.38, + "end": 8795.56, + "probability": 0.8612 + }, + { + "start": 8796.24, + "end": 8798.24, + "probability": 0.9511 + }, + { + "start": 8798.76, + "end": 8802.3, + "probability": 0.8494 + }, + { + "start": 8802.88, + "end": 8804.64, + "probability": 0.6763 + }, + { + "start": 8805.28, + "end": 8809.08, + "probability": 0.9438 + }, + { + "start": 8809.96, + "end": 8811.16, + "probability": 0.6423 + }, + { + "start": 8812.32, + "end": 8813.0, + "probability": 0.9821 + }, + { + "start": 8814.28, + "end": 8815.12, + "probability": 0.7802 + }, + { + "start": 8815.9, + "end": 8817.84, + "probability": 0.9496 + }, + { + "start": 8818.32, + "end": 8820.14, + "probability": 0.9427 + }, + { + "start": 8820.5, + "end": 8822.35, + "probability": 0.9199 + }, + { + "start": 8823.52, + "end": 8828.04, + "probability": 0.9832 + }, + { + "start": 8828.52, + "end": 8829.42, + "probability": 0.7812 + }, + { + "start": 8829.54, + "end": 8834.82, + "probability": 0.9132 + }, + { + "start": 8834.82, + "end": 8836.43, + "probability": 0.2806 + }, + { + "start": 8836.58, + "end": 8837.08, + "probability": 0.38 + }, + { + "start": 8837.12, + "end": 8840.4, + "probability": 0.9357 + }, + { + "start": 8841.36, + "end": 8841.74, + "probability": 0.7665 + }, + { + "start": 8842.2, + "end": 8844.02, + "probability": 0.915 + }, + { + "start": 8845.2, + "end": 8847.72, + "probability": 0.1754 + }, + { + "start": 8850.42, + "end": 8852.5, + "probability": 0.0496 + }, + { + "start": 8866.0, + "end": 8869.68, + "probability": 0.0219 + }, + { + "start": 8869.68, + "end": 8869.7, + "probability": 0.0588 + }, + { + "start": 8870.4, + "end": 8873.02, + "probability": 0.045 + }, + { + "start": 8873.14, + "end": 8876.54, + "probability": 0.0613 + }, + { + "start": 8918.78, + "end": 8920.16, + "probability": 0.3372 + }, + { + "start": 8920.96, + "end": 8923.44, + "probability": 0.9132 + }, + { + "start": 8932.38, + "end": 8933.1, + "probability": 0.6739 + }, + { + "start": 8933.86, + "end": 8934.14, + "probability": 0.0023 + }, + { + "start": 8935.02, + "end": 8936.56, + "probability": 0.0819 + }, + { + "start": 8938.2, + "end": 8938.22, + "probability": 0.5312 + }, + { + "start": 8938.22, + "end": 8938.96, + "probability": 0.1928 + }, + { + "start": 8939.04, + "end": 8942.8, + "probability": 0.794 + }, + { + "start": 8943.24, + "end": 8943.26, + "probability": 0.028 + }, + { + "start": 8943.26, + "end": 8945.62, + "probability": 0.5771 + }, + { + "start": 8945.9, + "end": 8946.44, + "probability": 0.7769 + }, + { + "start": 8947.28, + "end": 8950.1, + "probability": 0.0436 + }, + { + "start": 8950.1, + "end": 8951.7, + "probability": 0.9612 + }, + { + "start": 8953.0, + "end": 8953.0, + "probability": 0.0136 + }, + { + "start": 8953.7, + "end": 8955.02, + "probability": 0.2585 + }, + { + "start": 8958.38, + "end": 8959.72, + "probability": 0.6965 + }, + { + "start": 8960.6, + "end": 8963.42, + "probability": 0.8164 + }, + { + "start": 8964.68, + "end": 8966.92, + "probability": 0.9656 + }, + { + "start": 8967.74, + "end": 8969.88, + "probability": 0.9504 + }, + { + "start": 8971.74, + "end": 8973.44, + "probability": 0.922 + }, + { + "start": 8974.22, + "end": 8975.96, + "probability": 0.9749 + }, + { + "start": 8976.62, + "end": 8978.28, + "probability": 0.9777 + }, + { + "start": 8979.14, + "end": 8980.74, + "probability": 0.607 + }, + { + "start": 8982.9, + "end": 8988.08, + "probability": 0.9233 + }, + { + "start": 8989.2, + "end": 8990.86, + "probability": 0.9088 + }, + { + "start": 8991.64, + "end": 8993.32, + "probability": 0.9687 + }, + { + "start": 8995.26, + "end": 8995.6, + "probability": 0.7904 + }, + { + "start": 8996.48, + "end": 8997.96, + "probability": 0.8007 + }, + { + "start": 8998.68, + "end": 9000.76, + "probability": 0.9889 + }, + { + "start": 9001.77, + "end": 9004.38, + "probability": 0.6535 + }, + { + "start": 9009.1, + "end": 9010.82, + "probability": 0.5546 + }, + { + "start": 9012.4, + "end": 9015.06, + "probability": 0.5981 + }, + { + "start": 9018.0, + "end": 9020.12, + "probability": 0.8758 + }, + { + "start": 9023.16, + "end": 9023.62, + "probability": 0.967 + }, + { + "start": 9024.3, + "end": 9025.1, + "probability": 0.7142 + }, + { + "start": 9026.28, + "end": 9027.86, + "probability": 0.9147 + }, + { + "start": 9031.3, + "end": 9032.74, + "probability": 0.9735 + }, + { + "start": 9033.32, + "end": 9034.08, + "probability": 0.7759 + }, + { + "start": 9036.2, + "end": 9036.94, + "probability": 0.6684 + }, + { + "start": 9037.52, + "end": 9039.42, + "probability": 0.9363 + }, + { + "start": 9040.7, + "end": 9041.1, + "probability": 0.9089 + }, + { + "start": 9041.96, + "end": 9043.22, + "probability": 0.6276 + }, + { + "start": 9045.98, + "end": 9047.52, + "probability": 0.9272 + }, + { + "start": 9048.54, + "end": 9050.22, + "probability": 0.8664 + }, + { + "start": 9052.64, + "end": 9054.8, + "probability": 0.9413 + }, + { + "start": 9056.0, + "end": 9056.52, + "probability": 0.9865 + }, + { + "start": 9057.2, + "end": 9058.26, + "probability": 0.9581 + }, + { + "start": 9058.94, + "end": 9062.2, + "probability": 0.6946 + }, + { + "start": 9063.38, + "end": 9065.46, + "probability": 0.519 + }, + { + "start": 9066.54, + "end": 9068.34, + "probability": 0.8219 + }, + { + "start": 9070.08, + "end": 9073.68, + "probability": 0.8443 + }, + { + "start": 9078.6, + "end": 9079.58, + "probability": 0.5689 + }, + { + "start": 9080.4, + "end": 9081.2, + "probability": 0.8018 + }, + { + "start": 9081.92, + "end": 9083.82, + "probability": 0.687 + }, + { + "start": 9084.68, + "end": 9085.98, + "probability": 0.8253 + }, + { + "start": 9088.88, + "end": 9089.46, + "probability": 0.9759 + }, + { + "start": 9090.6, + "end": 9091.38, + "probability": 0.704 + }, + { + "start": 9092.56, + "end": 9092.86, + "probability": 0.9219 + }, + { + "start": 9093.7, + "end": 9094.36, + "probability": 0.8782 + }, + { + "start": 9095.36, + "end": 9097.4, + "probability": 0.9382 + }, + { + "start": 9098.14, + "end": 9099.32, + "probability": 0.9845 + }, + { + "start": 9100.18, + "end": 9101.02, + "probability": 0.8767 + }, + { + "start": 9102.0, + "end": 9102.38, + "probability": 0.9941 + }, + { + "start": 9103.3, + "end": 9104.1, + "probability": 0.7047 + }, + { + "start": 9104.78, + "end": 9106.62, + "probability": 0.6344 + }, + { + "start": 9107.48, + "end": 9108.04, + "probability": 0.9881 + }, + { + "start": 9108.9, + "end": 9110.9, + "probability": 0.971 + }, + { + "start": 9111.52, + "end": 9113.38, + "probability": 0.9835 + }, + { + "start": 9114.02, + "end": 9115.98, + "probability": 0.9816 + }, + { + "start": 9116.76, + "end": 9120.22, + "probability": 0.9076 + }, + { + "start": 9122.07, + "end": 9124.16, + "probability": 0.7785 + }, + { + "start": 9124.6, + "end": 9126.12, + "probability": 0.6464 + }, + { + "start": 9126.92, + "end": 9127.36, + "probability": 0.9647 + }, + { + "start": 9127.9, + "end": 9128.98, + "probability": 0.9159 + }, + { + "start": 9130.04, + "end": 9132.08, + "probability": 0.5525 + }, + { + "start": 9140.14, + "end": 9141.62, + "probability": 0.7037 + }, + { + "start": 9142.28, + "end": 9143.42, + "probability": 0.9675 + }, + { + "start": 9144.12, + "end": 9144.92, + "probability": 0.9701 + }, + { + "start": 9146.24, + "end": 9149.3, + "probability": 0.9483 + }, + { + "start": 9150.02, + "end": 9151.6, + "probability": 0.8599 + }, + { + "start": 9152.6, + "end": 9152.92, + "probability": 0.7243 + }, + { + "start": 9153.82, + "end": 9154.66, + "probability": 0.814 + }, + { + "start": 9155.4, + "end": 9159.38, + "probability": 0.7815 + }, + { + "start": 9160.84, + "end": 9162.42, + "probability": 0.7485 + }, + { + "start": 9163.42, + "end": 9163.94, + "probability": 0.9287 + }, + { + "start": 9164.9, + "end": 9166.04, + "probability": 0.9585 + }, + { + "start": 9167.31, + "end": 9169.02, + "probability": 0.9607 + }, + { + "start": 9170.86, + "end": 9173.66, + "probability": 0.9904 + }, + { + "start": 9175.36, + "end": 9177.1, + "probability": 0.972 + }, + { + "start": 9177.88, + "end": 9179.74, + "probability": 0.8884 + }, + { + "start": 9180.56, + "end": 9182.32, + "probability": 0.6613 + }, + { + "start": 9183.0, + "end": 9185.36, + "probability": 0.7798 + }, + { + "start": 9196.96, + "end": 9201.76, + "probability": 0.6575 + }, + { + "start": 9202.8, + "end": 9204.9, + "probability": 0.7859 + }, + { + "start": 9206.44, + "end": 9207.1, + "probability": 0.9583 + }, + { + "start": 9207.96, + "end": 9208.7, + "probability": 0.7032 + }, + { + "start": 9209.8, + "end": 9210.08, + "probability": 0.9215 + }, + { + "start": 9211.5, + "end": 9212.32, + "probability": 0.8301 + }, + { + "start": 9213.64, + "end": 9215.12, + "probability": 0.9052 + }, + { + "start": 9216.22, + "end": 9217.34, + "probability": 0.949 + }, + { + "start": 9218.58, + "end": 9220.1, + "probability": 0.8371 + }, + { + "start": 9221.0, + "end": 9223.0, + "probability": 0.7049 + }, + { + "start": 9224.06, + "end": 9224.48, + "probability": 0.906 + }, + { + "start": 9225.38, + "end": 9226.04, + "probability": 0.8908 + }, + { + "start": 9227.02, + "end": 9227.32, + "probability": 0.9412 + }, + { + "start": 9228.02, + "end": 9228.82, + "probability": 0.8516 + }, + { + "start": 9229.92, + "end": 9232.3, + "probability": 0.9749 + }, + { + "start": 9233.04, + "end": 9235.08, + "probability": 0.8172 + }, + { + "start": 9235.76, + "end": 9237.58, + "probability": 0.9266 + }, + { + "start": 9239.98, + "end": 9241.6, + "probability": 0.3939 + }, + { + "start": 9246.28, + "end": 9247.44, + "probability": 0.6766 + }, + { + "start": 9248.8, + "end": 9249.66, + "probability": 0.365 + }, + { + "start": 9251.34, + "end": 9251.8, + "probability": 0.938 + }, + { + "start": 9252.58, + "end": 9253.24, + "probability": 0.8674 + }, + { + "start": 9254.06, + "end": 9256.24, + "probability": 0.959 + }, + { + "start": 9257.98, + "end": 9260.16, + "probability": 0.9425 + }, + { + "start": 9262.64, + "end": 9265.6, + "probability": 0.6096 + }, + { + "start": 9267.38, + "end": 9268.68, + "probability": 0.8565 + }, + { + "start": 9269.28, + "end": 9270.16, + "probability": 0.8136 + }, + { + "start": 9273.14, + "end": 9275.58, + "probability": 0.93 + }, + { + "start": 9276.22, + "end": 9277.68, + "probability": 0.9101 + }, + { + "start": 9278.36, + "end": 9280.42, + "probability": 0.9358 + }, + { + "start": 9281.08, + "end": 9283.26, + "probability": 0.8378 + }, + { + "start": 9283.8, + "end": 9284.6, + "probability": 0.6413 + }, + { + "start": 9288.84, + "end": 9289.74, + "probability": 0.5085 + }, + { + "start": 9290.54, + "end": 9290.86, + "probability": 0.8062 + }, + { + "start": 9291.74, + "end": 9292.92, + "probability": 0.6034 + }, + { + "start": 9293.48, + "end": 9295.16, + "probability": 0.7208 + }, + { + "start": 9296.58, + "end": 9298.06, + "probability": 0.893 + }, + { + "start": 9298.6, + "end": 9300.34, + "probability": 0.9427 + }, + { + "start": 9302.42, + "end": 9302.96, + "probability": 0.9886 + }, + { + "start": 9303.94, + "end": 9306.54, + "probability": 0.8983 + }, + { + "start": 9307.5, + "end": 9307.9, + "probability": 0.9639 + }, + { + "start": 9308.82, + "end": 9309.68, + "probability": 0.7874 + }, + { + "start": 9310.28, + "end": 9311.14, + "probability": 0.7595 + }, + { + "start": 9312.14, + "end": 9312.92, + "probability": 0.828 + }, + { + "start": 9314.02, + "end": 9314.42, + "probability": 0.9138 + }, + { + "start": 9315.06, + "end": 9315.88, + "probability": 0.8261 + }, + { + "start": 9316.9, + "end": 9319.32, + "probability": 0.7505 + }, + { + "start": 9321.08, + "end": 9321.56, + "probability": 0.888 + }, + { + "start": 9322.6, + "end": 9323.46, + "probability": 0.9156 + }, + { + "start": 9324.2, + "end": 9328.8, + "probability": 0.8694 + }, + { + "start": 9330.94, + "end": 9332.9, + "probability": 0.9329 + }, + { + "start": 9333.8, + "end": 9334.22, + "probability": 0.9489 + }, + { + "start": 9335.0, + "end": 9335.78, + "probability": 0.6605 + }, + { + "start": 9336.82, + "end": 9337.3, + "probability": 0.7283 + }, + { + "start": 9338.92, + "end": 9339.28, + "probability": 0.6948 + }, + { + "start": 9341.04, + "end": 9342.78, + "probability": 0.9141 + }, + { + "start": 9343.2, + "end": 9344.74, + "probability": 0.9241 + }, + { + "start": 9345.14, + "end": 9348.0, + "probability": 0.8628 + }, + { + "start": 9349.18, + "end": 9351.0, + "probability": 0.983 + }, + { + "start": 9351.6, + "end": 9352.12, + "probability": 0.9927 + }, + { + "start": 9352.84, + "end": 9353.96, + "probability": 0.8161 + }, + { + "start": 9354.76, + "end": 9355.24, + "probability": 0.9917 + }, + { + "start": 9356.22, + "end": 9357.06, + "probability": 0.9102 + }, + { + "start": 9358.7, + "end": 9359.18, + "probability": 0.9875 + }, + { + "start": 9359.94, + "end": 9360.36, + "probability": 0.9606 + }, + { + "start": 9363.32, + "end": 9364.3, + "probability": 0.2147 + }, + { + "start": 9364.84, + "end": 9366.68, + "probability": 0.7072 + }, + { + "start": 9368.48, + "end": 9371.08, + "probability": 0.9169 + }, + { + "start": 9373.82, + "end": 9376.28, + "probability": 0.9089 + }, + { + "start": 9377.06, + "end": 9377.32, + "probability": 0.5388 + }, + { + "start": 9378.08, + "end": 9378.86, + "probability": 0.9525 + }, + { + "start": 9379.75, + "end": 9382.14, + "probability": 0.9814 + }, + { + "start": 9382.9, + "end": 9384.76, + "probability": 0.9336 + }, + { + "start": 9386.2, + "end": 9389.04, + "probability": 0.885 + }, + { + "start": 9390.06, + "end": 9391.12, + "probability": 0.304 + }, + { + "start": 9391.8, + "end": 9393.5, + "probability": 0.88 + }, + { + "start": 9394.88, + "end": 9395.72, + "probability": 0.934 + }, + { + "start": 9397.68, + "end": 9398.86, + "probability": 0.476 + }, + { + "start": 9399.38, + "end": 9401.34, + "probability": 0.8992 + }, + { + "start": 9401.8, + "end": 9403.94, + "probability": 0.8882 + }, + { + "start": 9404.5, + "end": 9404.88, + "probability": 0.9813 + }, + { + "start": 9406.24, + "end": 9407.76, + "probability": 0.462 + }, + { + "start": 9408.5, + "end": 9409.32, + "probability": 0.9738 + }, + { + "start": 9410.96, + "end": 9411.7, + "probability": 0.5569 + }, + { + "start": 9412.22, + "end": 9413.82, + "probability": 0.8354 + }, + { + "start": 9414.68, + "end": 9416.16, + "probability": 0.934 + }, + { + "start": 9416.94, + "end": 9418.46, + "probability": 0.955 + }, + { + "start": 9419.14, + "end": 9420.58, + "probability": 0.9515 + }, + { + "start": 9421.46, + "end": 9423.24, + "probability": 0.9385 + }, + { + "start": 9424.46, + "end": 9428.12, + "probability": 0.9443 + }, + { + "start": 9428.72, + "end": 9430.12, + "probability": 0.7703 + }, + { + "start": 9430.98, + "end": 9431.98, + "probability": 0.5102 + }, + { + "start": 9432.86, + "end": 9433.6, + "probability": 0.9212 + }, + { + "start": 9434.34, + "end": 9437.32, + "probability": 0.9601 + }, + { + "start": 9437.92, + "end": 9439.14, + "probability": 0.6517 + }, + { + "start": 9439.82, + "end": 9441.38, + "probability": 0.9788 + }, + { + "start": 9442.24, + "end": 9443.28, + "probability": 0.9901 + }, + { + "start": 9446.57, + "end": 9447.98, + "probability": 0.4157 + }, + { + "start": 9447.98, + "end": 9448.82, + "probability": 0.5229 + }, + { + "start": 9449.22, + "end": 9451.64, + "probability": 0.6865 + }, + { + "start": 9451.64, + "end": 9453.64, + "probability": 0.6118 + }, + { + "start": 9454.12, + "end": 9455.58, + "probability": 0.9005 + }, + { + "start": 9456.68, + "end": 9459.72, + "probability": 0.9578 + }, + { + "start": 9460.72, + "end": 9461.44, + "probability": 0.6351 + }, + { + "start": 9461.98, + "end": 9463.42, + "probability": 0.9364 + }, + { + "start": 9463.98, + "end": 9465.72, + "probability": 0.9489 + }, + { + "start": 9466.58, + "end": 9468.14, + "probability": 0.9786 + }, + { + "start": 9469.36, + "end": 9471.02, + "probability": 0.8958 + }, + { + "start": 9473.04, + "end": 9473.66, + "probability": 0.8791 + }, + { + "start": 9474.6, + "end": 9475.94, + "probability": 0.8943 + }, + { + "start": 9476.18, + "end": 9477.78, + "probability": 0.9169 + }, + { + "start": 9478.22, + "end": 9478.88, + "probability": 0.8075 + }, + { + "start": 9479.48, + "end": 9480.34, + "probability": 0.7146 + }, + { + "start": 9480.86, + "end": 9482.68, + "probability": 0.8802 + }, + { + "start": 9483.5, + "end": 9484.88, + "probability": 0.9752 + }, + { + "start": 9485.8, + "end": 9487.48, + "probability": 0.9426 + }, + { + "start": 9488.46, + "end": 9490.38, + "probability": 0.9632 + }, + { + "start": 9491.08, + "end": 9494.64, + "probability": 0.9425 + }, + { + "start": 9496.16, + "end": 9496.82, + "probability": 0.9592 + }, + { + "start": 9498.02, + "end": 9498.56, + "probability": 0.8413 + }, + { + "start": 9499.92, + "end": 9501.36, + "probability": 0.9657 + }, + { + "start": 9502.42, + "end": 9504.02, + "probability": 0.9827 + }, + { + "start": 9504.88, + "end": 9506.42, + "probability": 0.9341 + }, + { + "start": 9512.2, + "end": 9512.94, + "probability": 0.4853 + }, + { + "start": 9514.14, + "end": 9515.42, + "probability": 0.4917 + }, + { + "start": 9516.48, + "end": 9519.12, + "probability": 0.6982 + }, + { + "start": 9519.4, + "end": 9527.78, + "probability": 0.902 + }, + { + "start": 9528.15, + "end": 9529.88, + "probability": 0.8243 + }, + { + "start": 9529.88, + "end": 9532.4, + "probability": 0.1487 + }, + { + "start": 9532.4, + "end": 9533.52, + "probability": 0.494 + }, + { + "start": 9533.84, + "end": 9538.16, + "probability": 0.8085 + }, + { + "start": 9538.16, + "end": 9539.0, + "probability": 0.4525 + }, + { + "start": 9540.88, + "end": 9547.06, + "probability": 0.5347 + }, + { + "start": 9547.46, + "end": 9549.18, + "probability": 0.4268 + }, + { + "start": 9549.26, + "end": 9551.8, + "probability": 0.2614 + }, + { + "start": 9568.4, + "end": 9571.02, + "probability": 0.7013 + }, + { + "start": 9572.2, + "end": 9572.5, + "probability": 0.5659 + }, + { + "start": 9572.9, + "end": 9575.78, + "probability": 0.7784 + }, + { + "start": 9577.1, + "end": 9578.08, + "probability": 0.0105 + }, + { + "start": 9579.93, + "end": 9582.76, + "probability": 0.0293 + }, + { + "start": 9582.76, + "end": 9583.14, + "probability": 0.0405 + }, + { + "start": 9585.46, + "end": 9590.6, + "probability": 0.037 + }, + { + "start": 9592.4, + "end": 9595.2, + "probability": 0.0381 + }, + { + "start": 9663.0, + "end": 9663.0, + "probability": 0.0 + }, + { + "start": 9663.0, + "end": 9663.0, + "probability": 0.0 + }, + { + "start": 9663.0, + "end": 9663.0, + "probability": 0.0 + }, + { + "start": 9663.0, + "end": 9663.0, + "probability": 0.0 + }, + { + "start": 9663.0, + "end": 9663.0, + "probability": 0.0 + }, + { + "start": 9673.32, + "end": 9677.18, + "probability": 0.6426 + }, + { + "start": 9677.84, + "end": 9679.8, + "probability": 0.8689 + }, + { + "start": 9680.5, + "end": 9683.02, + "probability": 0.7295 + }, + { + "start": 9683.76, + "end": 9688.18, + "probability": 0.9741 + }, + { + "start": 9689.22, + "end": 9692.98, + "probability": 0.9344 + }, + { + "start": 9704.74, + "end": 9705.56, + "probability": 0.6051 + }, + { + "start": 9707.88, + "end": 9709.15, + "probability": 0.9503 + }, + { + "start": 9711.72, + "end": 9712.6, + "probability": 0.9006 + }, + { + "start": 9714.56, + "end": 9715.28, + "probability": 0.7174 + }, + { + "start": 9715.34, + "end": 9715.96, + "probability": 0.7594 + }, + { + "start": 9716.0, + "end": 9717.66, + "probability": 0.9565 + }, + { + "start": 9717.82, + "end": 9719.48, + "probability": 0.9884 + }, + { + "start": 9721.4, + "end": 9723.08, + "probability": 0.8108 + }, + { + "start": 9723.3, + "end": 9723.66, + "probability": 0.5469 + }, + { + "start": 9723.82, + "end": 9728.64, + "probability": 0.9897 + }, + { + "start": 9729.7, + "end": 9733.36, + "probability": 0.5626 + }, + { + "start": 9733.54, + "end": 9734.16, + "probability": 0.7229 + }, + { + "start": 9734.22, + "end": 9735.45, + "probability": 0.7571 + }, + { + "start": 9735.72, + "end": 9737.23, + "probability": 0.9204 + }, + { + "start": 9737.72, + "end": 9738.12, + "probability": 0.6054 + }, + { + "start": 9738.12, + "end": 9738.34, + "probability": 0.686 + }, + { + "start": 9738.44, + "end": 9739.58, + "probability": 0.8348 + }, + { + "start": 9739.94, + "end": 9741.52, + "probability": 0.714 + }, + { + "start": 9741.56, + "end": 9744.58, + "probability": 0.8261 + }, + { + "start": 9745.92, + "end": 9747.18, + "probability": 0.8298 + }, + { + "start": 9747.18, + "end": 9749.82, + "probability": 0.9468 + }, + { + "start": 9751.44, + "end": 9752.0, + "probability": 0.7432 + }, + { + "start": 9752.08, + "end": 9756.0, + "probability": 0.9286 + }, + { + "start": 9756.42, + "end": 9757.4, + "probability": 0.9177 + }, + { + "start": 9758.1, + "end": 9760.66, + "probability": 0.8796 + }, + { + "start": 9761.66, + "end": 9764.08, + "probability": 0.9896 + }, + { + "start": 9764.08, + "end": 9765.02, + "probability": 0.5417 + }, + { + "start": 9765.12, + "end": 9765.72, + "probability": 0.9453 + }, + { + "start": 9766.7, + "end": 9768.18, + "probability": 0.8838 + }, + { + "start": 9769.72, + "end": 9771.16, + "probability": 0.9852 + }, + { + "start": 9771.22, + "end": 9772.86, + "probability": 0.9632 + }, + { + "start": 9772.96, + "end": 9776.58, + "probability": 0.9641 + }, + { + "start": 9776.96, + "end": 9777.9, + "probability": 0.8572 + }, + { + "start": 9777.98, + "end": 9778.38, + "probability": 0.5552 + }, + { + "start": 9780.38, + "end": 9782.22, + "probability": 0.5757 + }, + { + "start": 9783.12, + "end": 9783.8, + "probability": 0.1875 + }, + { + "start": 9784.08, + "end": 9784.42, + "probability": 0.1819 + }, + { + "start": 9784.42, + "end": 9784.42, + "probability": 0.1537 + }, + { + "start": 9784.42, + "end": 9784.42, + "probability": 0.5602 + }, + { + "start": 9784.42, + "end": 9786.42, + "probability": 0.7902 + }, + { + "start": 9786.82, + "end": 9790.92, + "probability": 0.9715 + }, + { + "start": 9791.0, + "end": 9791.24, + "probability": 0.6971 + }, + { + "start": 9792.54, + "end": 9793.26, + "probability": 0.8379 + }, + { + "start": 9794.8, + "end": 9795.32, + "probability": 0.387 + }, + { + "start": 9795.84, + "end": 9796.3, + "probability": 0.2379 + }, + { + "start": 9796.42, + "end": 9801.84, + "probability": 0.8457 + }, + { + "start": 9803.78, + "end": 9803.86, + "probability": 0.2715 + }, + { + "start": 9803.86, + "end": 9803.86, + "probability": 0.7687 + }, + { + "start": 9803.86, + "end": 9805.36, + "probability": 0.8428 + }, + { + "start": 9805.4, + "end": 9806.16, + "probability": 0.8111 + }, + { + "start": 9807.74, + "end": 9811.12, + "probability": 0.9641 + }, + { + "start": 9811.12, + "end": 9811.75, + "probability": 0.691 + }, + { + "start": 9812.1, + "end": 9816.34, + "probability": 0.9751 + }, + { + "start": 9817.62, + "end": 9818.63, + "probability": 0.6285 + }, + { + "start": 9819.02, + "end": 9819.6, + "probability": 0.8844 + }, + { + "start": 9820.54, + "end": 9821.86, + "probability": 0.1298 + }, + { + "start": 9822.02, + "end": 9824.74, + "probability": 0.9579 + }, + { + "start": 9824.86, + "end": 9826.02, + "probability": 0.9315 + }, + { + "start": 9826.12, + "end": 9827.76, + "probability": 0.8543 + }, + { + "start": 9827.9, + "end": 9828.16, + "probability": 0.2999 + }, + { + "start": 9828.4, + "end": 9830.24, + "probability": 0.8428 + }, + { + "start": 9831.66, + "end": 9834.34, + "probability": 0.9338 + }, + { + "start": 9835.24, + "end": 9835.88, + "probability": 0.6252 + }, + { + "start": 9836.02, + "end": 9836.48, + "probability": 0.6028 + }, + { + "start": 9836.6, + "end": 9840.44, + "probability": 0.8095 + }, + { + "start": 9841.4, + "end": 9843.28, + "probability": 0.9917 + }, + { + "start": 9843.44, + "end": 9844.66, + "probability": 0.9446 + }, + { + "start": 9844.74, + "end": 9848.76, + "probability": 0.8052 + }, + { + "start": 9849.12, + "end": 9852.28, + "probability": 0.9851 + }, + { + "start": 9852.94, + "end": 9853.84, + "probability": 0.9522 + }, + { + "start": 9854.64, + "end": 9854.86, + "probability": 0.6782 + }, + { + "start": 9854.92, + "end": 9855.92, + "probability": 0.8905 + }, + { + "start": 9856.2, + "end": 9858.08, + "probability": 0.9593 + }, + { + "start": 9858.12, + "end": 9859.08, + "probability": 0.9614 + }, + { + "start": 9859.92, + "end": 9865.02, + "probability": 0.8244 + }, + { + "start": 9865.06, + "end": 9867.56, + "probability": 0.8546 + }, + { + "start": 9867.66, + "end": 9868.1, + "probability": 0.3146 + }, + { + "start": 9868.8, + "end": 9869.74, + "probability": 0.9224 + }, + { + "start": 9870.24, + "end": 9874.64, + "probability": 0.6418 + }, + { + "start": 9875.48, + "end": 9876.58, + "probability": 0.7742 + }, + { + "start": 9877.4, + "end": 9880.28, + "probability": 0.9968 + }, + { + "start": 9881.2, + "end": 9882.91, + "probability": 0.8535 + }, + { + "start": 9884.06, + "end": 9887.66, + "probability": 0.8928 + }, + { + "start": 9888.22, + "end": 9891.36, + "probability": 0.9409 + }, + { + "start": 9891.46, + "end": 9892.52, + "probability": 0.77 + }, + { + "start": 9892.88, + "end": 9894.28, + "probability": 0.7909 + }, + { + "start": 9894.36, + "end": 9895.0, + "probability": 0.4742 + }, + { + "start": 9895.94, + "end": 9896.58, + "probability": 0.9454 + }, + { + "start": 9897.64, + "end": 9903.12, + "probability": 0.8223 + }, + { + "start": 9903.8, + "end": 9908.04, + "probability": 0.9655 + }, + { + "start": 9908.14, + "end": 9909.13, + "probability": 0.97 + }, + { + "start": 9909.78, + "end": 9911.88, + "probability": 0.8946 + }, + { + "start": 9912.56, + "end": 9913.96, + "probability": 0.9845 + }, + { + "start": 9914.62, + "end": 9917.14, + "probability": 0.9085 + }, + { + "start": 9918.06, + "end": 9919.66, + "probability": 0.9922 + }, + { + "start": 9919.76, + "end": 9922.92, + "probability": 0.7329 + }, + { + "start": 9922.96, + "end": 9923.7, + "probability": 0.8316 + }, + { + "start": 9924.5, + "end": 9927.52, + "probability": 0.7803 + }, + { + "start": 9927.78, + "end": 9928.6, + "probability": 0.5371 + }, + { + "start": 9929.16, + "end": 9929.4, + "probability": 0.8521 + }, + { + "start": 9929.52, + "end": 9931.1, + "probability": 0.7966 + }, + { + "start": 9931.16, + "end": 9932.34, + "probability": 0.9191 + }, + { + "start": 9932.9, + "end": 9934.64, + "probability": 0.9353 + }, + { + "start": 9935.1, + "end": 9936.6, + "probability": 0.9526 + }, + { + "start": 9937.38, + "end": 9938.24, + "probability": 0.7536 + }, + { + "start": 9938.78, + "end": 9939.89, + "probability": 0.7863 + }, + { + "start": 9940.04, + "end": 9941.26, + "probability": 0.7975 + }, + { + "start": 9941.28, + "end": 9945.34, + "probability": 0.9916 + }, + { + "start": 9945.34, + "end": 9949.84, + "probability": 0.9088 + }, + { + "start": 9950.18, + "end": 9950.7, + "probability": 0.9783 + }, + { + "start": 9950.76, + "end": 9951.18, + "probability": 0.8902 + }, + { + "start": 9951.3, + "end": 9952.48, + "probability": 0.9453 + }, + { + "start": 9952.86, + "end": 9954.22, + "probability": 0.9591 + }, + { + "start": 9954.3, + "end": 9955.04, + "probability": 0.9568 + }, + { + "start": 9955.98, + "end": 9957.52, + "probability": 0.9958 + }, + { + "start": 9958.86, + "end": 9959.76, + "probability": 0.5088 + }, + { + "start": 9960.52, + "end": 9960.82, + "probability": 0.7843 + }, + { + "start": 9961.52, + "end": 9962.94, + "probability": 0.9944 + }, + { + "start": 9963.24, + "end": 9964.64, + "probability": 0.357 + }, + { + "start": 9964.82, + "end": 9965.08, + "probability": 0.6223 + }, + { + "start": 9965.76, + "end": 9967.86, + "probability": 0.9792 + }, + { + "start": 9968.84, + "end": 9969.4, + "probability": 0.0318 + }, + { + "start": 9970.48, + "end": 9973.76, + "probability": 0.9037 + }, + { + "start": 9975.36, + "end": 9977.68, + "probability": 0.8911 + }, + { + "start": 9978.96, + "end": 9981.1, + "probability": 0.9615 + }, + { + "start": 9981.12, + "end": 9984.4, + "probability": 0.979 + }, + { + "start": 9984.48, + "end": 9986.38, + "probability": 0.9529 + }, + { + "start": 9988.74, + "end": 9991.5, + "probability": 0.7205 + }, + { + "start": 9992.52, + "end": 9994.5, + "probability": 0.5677 + }, + { + "start": 9995.36, + "end": 9998.9, + "probability": 0.9801 + }, + { + "start": 9998.9, + "end": 10000.6, + "probability": 0.638 + }, + { + "start": 10000.8, + "end": 10002.06, + "probability": 0.3815 + }, + { + "start": 10002.44, + "end": 10003.94, + "probability": 0.5196 + }, + { + "start": 10003.98, + "end": 10005.86, + "probability": 0.8763 + }, + { + "start": 10005.92, + "end": 10006.92, + "probability": 0.9893 + }, + { + "start": 10007.02, + "end": 10007.2, + "probability": 0.3122 + }, + { + "start": 10008.72, + "end": 10010.12, + "probability": 0.6241 + }, + { + "start": 10010.28, + "end": 10013.16, + "probability": 0.8393 + }, + { + "start": 10013.16, + "end": 10017.09, + "probability": 0.9645 + }, + { + "start": 10017.98, + "end": 10020.12, + "probability": 0.9646 + }, + { + "start": 10020.3, + "end": 10020.44, + "probability": 0.8017 + }, + { + "start": 10021.18, + "end": 10021.94, + "probability": 0.5578 + }, + { + "start": 10022.12, + "end": 10022.66, + "probability": 0.7169 + }, + { + "start": 10023.08, + "end": 10027.98, + "probability": 0.9883 + }, + { + "start": 10028.12, + "end": 10028.8, + "probability": 0.7072 + }, + { + "start": 10029.48, + "end": 10031.36, + "probability": 0.9133 + }, + { + "start": 10032.22, + "end": 10034.12, + "probability": 0.9747 + }, + { + "start": 10034.94, + "end": 10036.8, + "probability": 0.877 + }, + { + "start": 10038.22, + "end": 10041.06, + "probability": 0.7882 + }, + { + "start": 10041.14, + "end": 10044.68, + "probability": 0.9061 + }, + { + "start": 10044.84, + "end": 10046.0, + "probability": 0.8678 + }, + { + "start": 10046.32, + "end": 10047.44, + "probability": 0.8689 + }, + { + "start": 10048.4, + "end": 10051.78, + "probability": 0.9135 + }, + { + "start": 10053.38, + "end": 10055.18, + "probability": 0.9969 + }, + { + "start": 10055.38, + "end": 10056.79, + "probability": 0.9248 + }, + { + "start": 10057.34, + "end": 10061.74, + "probability": 0.984 + }, + { + "start": 10062.72, + "end": 10064.38, + "probability": 0.8931 + }, + { + "start": 10066.14, + "end": 10068.04, + "probability": 0.9409 + }, + { + "start": 10068.42, + "end": 10072.78, + "probability": 0.9714 + }, + { + "start": 10073.88, + "end": 10074.64, + "probability": 0.9109 + }, + { + "start": 10074.94, + "end": 10075.9, + "probability": 0.9482 + }, + { + "start": 10076.32, + "end": 10077.12, + "probability": 0.9601 + }, + { + "start": 10077.2, + "end": 10078.11, + "probability": 0.9539 + }, + { + "start": 10078.96, + "end": 10082.32, + "probability": 0.8335 + }, + { + "start": 10082.62, + "end": 10084.7, + "probability": 0.9053 + }, + { + "start": 10085.34, + "end": 10088.86, + "probability": 0.9009 + }, + { + "start": 10090.48, + "end": 10092.44, + "probability": 0.9929 + }, + { + "start": 10093.22, + "end": 10093.9, + "probability": 0.6892 + }, + { + "start": 10095.34, + "end": 10097.72, + "probability": 0.9863 + }, + { + "start": 10105.42, + "end": 10107.2, + "probability": 0.764 + }, + { + "start": 10107.92, + "end": 10110.84, + "probability": 0.9487 + }, + { + "start": 10110.9, + "end": 10112.55, + "probability": 0.6969 + }, + { + "start": 10113.3, + "end": 10118.12, + "probability": 0.9971 + }, + { + "start": 10118.3, + "end": 10122.48, + "probability": 0.9948 + }, + { + "start": 10122.64, + "end": 10123.4, + "probability": 0.682 + }, + { + "start": 10123.84, + "end": 10125.64, + "probability": 0.9308 + }, + { + "start": 10126.22, + "end": 10127.56, + "probability": 0.9281 + }, + { + "start": 10127.78, + "end": 10129.98, + "probability": 0.9124 + }, + { + "start": 10131.32, + "end": 10134.78, + "probability": 0.9946 + }, + { + "start": 10135.44, + "end": 10138.52, + "probability": 0.9198 + }, + { + "start": 10140.04, + "end": 10142.45, + "probability": 0.7749 + }, + { + "start": 10142.54, + "end": 10142.98, + "probability": 0.8405 + }, + { + "start": 10143.18, + "end": 10144.42, + "probability": 0.9614 + }, + { + "start": 10145.04, + "end": 10145.14, + "probability": 0.3284 + }, + { + "start": 10146.38, + "end": 10150.02, + "probability": 0.9016 + }, + { + "start": 10150.22, + "end": 10151.78, + "probability": 0.5821 + }, + { + "start": 10153.0, + "end": 10155.96, + "probability": 0.9968 + }, + { + "start": 10156.14, + "end": 10158.94, + "probability": 0.9897 + }, + { + "start": 10160.24, + "end": 10164.22, + "probability": 0.9886 + }, + { + "start": 10165.32, + "end": 10168.34, + "probability": 0.9966 + }, + { + "start": 10169.24, + "end": 10171.9, + "probability": 0.9964 + }, + { + "start": 10172.74, + "end": 10175.12, + "probability": 0.9766 + }, + { + "start": 10175.12, + "end": 10177.56, + "probability": 0.9978 + }, + { + "start": 10177.96, + "end": 10179.74, + "probability": 0.9971 + }, + { + "start": 10181.08, + "end": 10182.55, + "probability": 0.6246 + }, + { + "start": 10183.42, + "end": 10184.78, + "probability": 0.9187 + }, + { + "start": 10185.4, + "end": 10188.2, + "probability": 0.9866 + }, + { + "start": 10188.2, + "end": 10191.16, + "probability": 0.9932 + }, + { + "start": 10192.0, + "end": 10194.12, + "probability": 0.8452 + }, + { + "start": 10194.8, + "end": 10197.64, + "probability": 0.8434 + }, + { + "start": 10198.22, + "end": 10200.5, + "probability": 0.981 + }, + { + "start": 10200.56, + "end": 10201.56, + "probability": 0.7264 + }, + { + "start": 10202.42, + "end": 10205.76, + "probability": 0.9346 + }, + { + "start": 10206.4, + "end": 10207.38, + "probability": 0.9865 + }, + { + "start": 10208.18, + "end": 10210.1, + "probability": 0.9057 + }, + { + "start": 10210.7, + "end": 10212.34, + "probability": 0.6265 + }, + { + "start": 10213.52, + "end": 10215.56, + "probability": 0.7907 + }, + { + "start": 10216.52, + "end": 10218.5, + "probability": 0.8232 + }, + { + "start": 10219.56, + "end": 10219.72, + "probability": 0.2033 + }, + { + "start": 10219.84, + "end": 10220.96, + "probability": 0.9917 + }, + { + "start": 10222.24, + "end": 10222.58, + "probability": 0.2303 + }, + { + "start": 10223.4, + "end": 10226.48, + "probability": 0.995 + }, + { + "start": 10227.06, + "end": 10229.22, + "probability": 0.8454 + }, + { + "start": 10229.8, + "end": 10231.92, + "probability": 0.9331 + }, + { + "start": 10232.5, + "end": 10236.48, + "probability": 0.9861 + }, + { + "start": 10237.12, + "end": 10237.92, + "probability": 0.7008 + }, + { + "start": 10238.08, + "end": 10239.56, + "probability": 0.8344 + }, + { + "start": 10239.9, + "end": 10242.5, + "probability": 0.6064 + }, + { + "start": 10242.62, + "end": 10247.2, + "probability": 0.8762 + }, + { + "start": 10247.34, + "end": 10247.85, + "probability": 0.463 + }, + { + "start": 10250.62, + "end": 10251.98, + "probability": 0.7671 + }, + { + "start": 10253.26, + "end": 10255.56, + "probability": 0.583 + }, + { + "start": 10256.22, + "end": 10257.9, + "probability": 0.6671 + }, + { + "start": 10258.32, + "end": 10258.46, + "probability": 0.4727 + }, + { + "start": 10272.76, + "end": 10274.02, + "probability": 0.036 + }, + { + "start": 10283.3, + "end": 10285.1, + "probability": 0.5866 + }, + { + "start": 10287.12, + "end": 10288.04, + "probability": 0.9641 + }, + { + "start": 10288.96, + "end": 10289.76, + "probability": 0.7128 + }, + { + "start": 10292.0, + "end": 10293.04, + "probability": 0.9067 + }, + { + "start": 10295.06, + "end": 10296.08, + "probability": 0.9536 + }, + { + "start": 10297.62, + "end": 10298.9, + "probability": 0.7533 + }, + { + "start": 10300.38, + "end": 10301.88, + "probability": 0.0806 + }, + { + "start": 10302.52, + "end": 10305.52, + "probability": 0.1974 + }, + { + "start": 10305.62, + "end": 10308.33, + "probability": 0.5712 + }, + { + "start": 10308.62, + "end": 10309.12, + "probability": 0.4772 + }, + { + "start": 10317.4, + "end": 10318.14, + "probability": 0.4661 + }, + { + "start": 10318.59, + "end": 10321.78, + "probability": 0.4077 + }, + { + "start": 10321.8, + "end": 10326.74, + "probability": 0.6859 + }, + { + "start": 10327.1, + "end": 10327.66, + "probability": 0.2299 + }, + { + "start": 10328.72, + "end": 10335.0, + "probability": 0.0895 + }, + { + "start": 10336.12, + "end": 10336.16, + "probability": 0.1629 + }, + { + "start": 10338.46, + "end": 10338.68, + "probability": 0.0116 + }, + { + "start": 10338.68, + "end": 10339.14, + "probability": 0.0806 + }, + { + "start": 10339.14, + "end": 10340.48, + "probability": 0.0694 + }, + { + "start": 10342.24, + "end": 10343.9, + "probability": 0.2435 + }, + { + "start": 10344.42, + "end": 10344.64, + "probability": 0.1682 + }, + { + "start": 10344.64, + "end": 10346.21, + "probability": 0.2803 + }, + { + "start": 10346.99, + "end": 10350.42, + "probability": 0.7861 + }, + { + "start": 10350.9, + "end": 10351.86, + "probability": 0.5813 + }, + { + "start": 10353.92, + "end": 10354.48, + "probability": 0.937 + }, + { + "start": 10354.8, + "end": 10355.7, + "probability": 0.9891 + }, + { + "start": 10356.0, + "end": 10356.26, + "probability": 0.7224 + }, + { + "start": 10356.3, + "end": 10356.84, + "probability": 0.7574 + }, + { + "start": 10364.58, + "end": 10366.1, + "probability": 0.5856 + }, + { + "start": 10368.24, + "end": 10371.8, + "probability": 0.9708 + }, + { + "start": 10373.22, + "end": 10375.04, + "probability": 0.731 + }, + { + "start": 10375.48, + "end": 10376.66, + "probability": 0.8499 + }, + { + "start": 10376.86, + "end": 10377.08, + "probability": 0.5934 + }, + { + "start": 10377.1, + "end": 10379.44, + "probability": 0.4642 + }, + { + "start": 10381.12, + "end": 10381.52, + "probability": 0.0787 + }, + { + "start": 10382.22, + "end": 10383.58, + "probability": 0.7269 + }, + { + "start": 10384.42, + "end": 10386.72, + "probability": 0.0107 + }, + { + "start": 10386.72, + "end": 10386.72, + "probability": 0.0641 + }, + { + "start": 10386.72, + "end": 10389.68, + "probability": 0.5301 + }, + { + "start": 10389.68, + "end": 10391.92, + "probability": 0.8956 + }, + { + "start": 10394.46, + "end": 10395.92, + "probability": 0.6413 + }, + { + "start": 10395.92, + "end": 10398.22, + "probability": 0.4892 + }, + { + "start": 10398.26, + "end": 10399.72, + "probability": 0.6803 + }, + { + "start": 10400.74, + "end": 10404.08, + "probability": 0.5645 + }, + { + "start": 10406.02, + "end": 10408.02, + "probability": 0.6349 + }, + { + "start": 10408.12, + "end": 10408.28, + "probability": 0.6349 + }, + { + "start": 10408.42, + "end": 10409.67, + "probability": 0.8389 + }, + { + "start": 10409.86, + "end": 10410.93, + "probability": 0.9785 + }, + { + "start": 10412.96, + "end": 10414.52, + "probability": 0.3389 + }, + { + "start": 10415.06, + "end": 10416.52, + "probability": 0.7861 + }, + { + "start": 10416.66, + "end": 10418.31, + "probability": 0.6517 + }, + { + "start": 10418.96, + "end": 10420.02, + "probability": 0.8371 + }, + { + "start": 10420.1, + "end": 10421.52, + "probability": 0.8693 + }, + { + "start": 10423.16, + "end": 10424.38, + "probability": 0.5474 + }, + { + "start": 10424.54, + "end": 10426.88, + "probability": 0.7288 + }, + { + "start": 10427.44, + "end": 10429.18, + "probability": 0.8672 + }, + { + "start": 10429.22, + "end": 10435.32, + "probability": 0.9512 + }, + { + "start": 10436.14, + "end": 10439.18, + "probability": 0.85 + }, + { + "start": 10441.26, + "end": 10444.02, + "probability": 0.7666 + }, + { + "start": 10444.84, + "end": 10449.24, + "probability": 0.6757 + }, + { + "start": 10449.24, + "end": 10451.22, + "probability": 0.8142 + }, + { + "start": 10451.3, + "end": 10454.44, + "probability": 0.9082 + }, + { + "start": 10454.5, + "end": 10455.28, + "probability": 0.8337 + }, + { + "start": 10455.34, + "end": 10457.02, + "probability": 0.6933 + }, + { + "start": 10458.34, + "end": 10459.22, + "probability": 0.4629 + }, + { + "start": 10459.32, + "end": 10460.48, + "probability": 0.6073 + }, + { + "start": 10460.48, + "end": 10463.7, + "probability": 0.7642 + }, + { + "start": 10464.1, + "end": 10465.36, + "probability": 0.7305 + }, + { + "start": 10465.52, + "end": 10465.7, + "probability": 0.684 + }, + { + "start": 10465.78, + "end": 10465.9, + "probability": 0.286 + }, + { + "start": 10465.9, + "end": 10468.28, + "probability": 0.9421 + }, + { + "start": 10468.46, + "end": 10470.26, + "probability": 0.0102 + }, + { + "start": 10480.98, + "end": 10483.08, + "probability": 0.5511 + }, + { + "start": 10486.76, + "end": 10488.58, + "probability": 0.2941 + }, + { + "start": 10489.34, + "end": 10489.76, + "probability": 0.0052 + }, + { + "start": 10490.44, + "end": 10493.1, + "probability": 0.0265 + }, + { + "start": 10495.82, + "end": 10496.62, + "probability": 0.4329 + }, + { + "start": 10498.66, + "end": 10500.62, + "probability": 0.9824 + }, + { + "start": 10500.72, + "end": 10503.0, + "probability": 0.7778 + }, + { + "start": 10503.12, + "end": 10503.16, + "probability": 0.6621 + }, + { + "start": 10504.06, + "end": 10504.4, + "probability": 0.7402 + }, + { + "start": 10504.5, + "end": 10505.74, + "probability": 0.9886 + }, + { + "start": 10505.82, + "end": 10507.88, + "probability": 0.8777 + }, + { + "start": 10507.96, + "end": 10510.82, + "probability": 0.8602 + }, + { + "start": 10511.48, + "end": 10515.46, + "probability": 0.939 + }, + { + "start": 10515.64, + "end": 10519.2, + "probability": 0.8938 + }, + { + "start": 10519.86, + "end": 10521.98, + "probability": 0.9904 + }, + { + "start": 10522.78, + "end": 10524.58, + "probability": 0.7582 + }, + { + "start": 10524.7, + "end": 10525.92, + "probability": 0.9871 + }, + { + "start": 10526.88, + "end": 10530.4, + "probability": 0.7385 + }, + { + "start": 10531.18, + "end": 10532.2, + "probability": 0.6564 + }, + { + "start": 10532.3, + "end": 10533.5, + "probability": 0.9164 + }, + { + "start": 10533.9, + "end": 10537.3, + "probability": 0.9545 + }, + { + "start": 10537.3, + "end": 10541.98, + "probability": 0.9897 + }, + { + "start": 10542.74, + "end": 10548.12, + "probability": 0.9922 + }, + { + "start": 10548.9, + "end": 10551.86, + "probability": 0.7065 + }, + { + "start": 10552.84, + "end": 10555.74, + "probability": 0.9828 + }, + { + "start": 10556.4, + "end": 10556.92, + "probability": 0.6014 + }, + { + "start": 10557.66, + "end": 10559.48, + "probability": 0.904 + }, + { + "start": 10560.12, + "end": 10563.12, + "probability": 0.8569 + }, + { + "start": 10564.26, + "end": 10567.54, + "probability": 0.9364 + }, + { + "start": 10568.36, + "end": 10570.96, + "probability": 0.9432 + }, + { + "start": 10571.88, + "end": 10575.92, + "probability": 0.9893 + }, + { + "start": 10576.36, + "end": 10579.94, + "probability": 0.9827 + }, + { + "start": 10580.44, + "end": 10585.84, + "probability": 0.8701 + }, + { + "start": 10587.38, + "end": 10587.56, + "probability": 0.62 + }, + { + "start": 10588.3, + "end": 10592.76, + "probability": 0.9803 + }, + { + "start": 10593.6, + "end": 10595.46, + "probability": 0.9692 + }, + { + "start": 10595.58, + "end": 10597.64, + "probability": 0.959 + }, + { + "start": 10598.42, + "end": 10602.66, + "probability": 0.9829 + }, + { + "start": 10603.62, + "end": 10605.88, + "probability": 0.9958 + }, + { + "start": 10605.88, + "end": 10609.54, + "probability": 0.9421 + }, + { + "start": 10610.26, + "end": 10613.78, + "probability": 0.9832 + }, + { + "start": 10614.4, + "end": 10617.7, + "probability": 0.9206 + }, + { + "start": 10618.26, + "end": 10620.44, + "probability": 0.9854 + }, + { + "start": 10620.96, + "end": 10622.3, + "probability": 0.5479 + }, + { + "start": 10622.42, + "end": 10625.24, + "probability": 0.945 + }, + { + "start": 10625.36, + "end": 10625.76, + "probability": 0.8423 + }, + { + "start": 10626.3, + "end": 10628.28, + "probability": 0.9896 + }, + { + "start": 10628.76, + "end": 10631.56, + "probability": 0.9712 + }, + { + "start": 10632.04, + "end": 10637.48, + "probability": 0.9619 + }, + { + "start": 10637.64, + "end": 10638.9, + "probability": 0.7944 + }, + { + "start": 10639.44, + "end": 10639.78, + "probability": 0.9258 + }, + { + "start": 10639.82, + "end": 10640.7, + "probability": 0.9762 + }, + { + "start": 10640.8, + "end": 10641.84, + "probability": 0.9038 + }, + { + "start": 10642.16, + "end": 10643.16, + "probability": 0.8927 + }, + { + "start": 10643.68, + "end": 10644.6, + "probability": 0.9458 + }, + { + "start": 10644.76, + "end": 10646.14, + "probability": 0.9946 + }, + { + "start": 10646.22, + "end": 10650.44, + "probability": 0.9789 + }, + { + "start": 10650.68, + "end": 10653.68, + "probability": 0.9754 + }, + { + "start": 10654.36, + "end": 10658.42, + "probability": 0.9167 + }, + { + "start": 10658.5, + "end": 10659.9, + "probability": 0.9941 + }, + { + "start": 10660.6, + "end": 10663.0, + "probability": 0.9185 + }, + { + "start": 10663.86, + "end": 10664.94, + "probability": 0.9785 + }, + { + "start": 10665.6, + "end": 10667.74, + "probability": 0.9873 + }, + { + "start": 10668.6, + "end": 10671.4, + "probability": 0.9774 + }, + { + "start": 10672.08, + "end": 10675.22, + "probability": 0.8361 + }, + { + "start": 10675.76, + "end": 10676.44, + "probability": 0.8466 + }, + { + "start": 10676.82, + "end": 10678.33, + "probability": 0.9177 + }, + { + "start": 10678.76, + "end": 10684.8, + "probability": 0.9237 + }, + { + "start": 10685.26, + "end": 10687.92, + "probability": 0.9717 + }, + { + "start": 10688.54, + "end": 10690.5, + "probability": 0.798 + }, + { + "start": 10691.28, + "end": 10691.7, + "probability": 0.7175 + }, + { + "start": 10691.95, + "end": 10693.98, + "probability": 0.7582 + }, + { + "start": 10694.08, + "end": 10695.98, + "probability": 0.8562 + }, + { + "start": 10696.36, + "end": 10698.58, + "probability": 0.9584 + }, + { + "start": 10698.82, + "end": 10700.72, + "probability": 0.9927 + }, + { + "start": 10701.7, + "end": 10704.66, + "probability": 0.7186 + }, + { + "start": 10705.2, + "end": 10706.04, + "probability": 0.7409 + }, + { + "start": 10706.2, + "end": 10712.29, + "probability": 0.8619 + }, + { + "start": 10713.94, + "end": 10714.58, + "probability": 0.4352 + }, + { + "start": 10714.78, + "end": 10717.46, + "probability": 0.7546 + }, + { + "start": 10717.58, + "end": 10721.18, + "probability": 0.867 + }, + { + "start": 10721.32, + "end": 10721.76, + "probability": 0.4049 + }, + { + "start": 10723.26, + "end": 10725.34, + "probability": 0.9829 + }, + { + "start": 10725.88, + "end": 10728.24, + "probability": 0.5527 + }, + { + "start": 10728.82, + "end": 10731.5, + "probability": 0.8304 + }, + { + "start": 10732.04, + "end": 10733.64, + "probability": 0.4891 + }, + { + "start": 10734.58, + "end": 10735.38, + "probability": 0.8862 + }, + { + "start": 10736.24, + "end": 10737.22, + "probability": 0.8651 + }, + { + "start": 10737.92, + "end": 10738.24, + "probability": 0.9873 + }, + { + "start": 10739.44, + "end": 10740.24, + "probability": 0.339 + }, + { + "start": 10741.2, + "end": 10743.06, + "probability": 0.8192 + }, + { + "start": 10743.94, + "end": 10744.32, + "probability": 0.9622 + }, + { + "start": 10745.28, + "end": 10746.1, + "probability": 0.8886 + }, + { + "start": 10746.9, + "end": 10748.64, + "probability": 0.973 + }, + { + "start": 10749.38, + "end": 10751.12, + "probability": 0.8861 + }, + { + "start": 10752.18, + "end": 10753.6, + "probability": 0.8461 + }, + { + "start": 10756.72, + "end": 10758.22, + "probability": 0.9797 + }, + { + "start": 10759.22, + "end": 10760.1, + "probability": 0.614 + }, + { + "start": 10761.26, + "end": 10763.26, + "probability": 0.948 + }, + { + "start": 10764.7, + "end": 10766.2, + "probability": 0.8462 + }, + { + "start": 10767.42, + "end": 10768.34, + "probability": 0.6543 + }, + { + "start": 10769.76, + "end": 10771.5, + "probability": 0.9089 + }, + { + "start": 10773.34, + "end": 10774.04, + "probability": 0.934 + }, + { + "start": 10774.6, + "end": 10775.34, + "probability": 0.9449 + }, + { + "start": 10776.0, + "end": 10777.44, + "probability": 0.9849 + }, + { + "start": 10778.46, + "end": 10780.16, + "probability": 0.9868 + }, + { + "start": 10781.46, + "end": 10781.98, + "probability": 0.9907 + }, + { + "start": 10783.04, + "end": 10783.8, + "probability": 0.6958 + }, + { + "start": 10785.16, + "end": 10785.58, + "probability": 0.9863 + }, + { + "start": 10786.38, + "end": 10787.16, + "probability": 0.6435 + }, + { + "start": 10787.88, + "end": 10788.36, + "probability": 0.7033 + }, + { + "start": 10789.16, + "end": 10790.0, + "probability": 0.5003 + }, + { + "start": 10790.92, + "end": 10792.66, + "probability": 0.9588 + }, + { + "start": 10793.26, + "end": 10793.72, + "probability": 0.9128 + }, + { + "start": 10794.54, + "end": 10795.3, + "probability": 0.984 + }, + { + "start": 10796.16, + "end": 10798.04, + "probability": 0.9563 + }, + { + "start": 10798.72, + "end": 10800.7, + "probability": 0.9197 + }, + { + "start": 10801.88, + "end": 10802.36, + "probability": 0.9868 + }, + { + "start": 10803.16, + "end": 10804.13, + "probability": 0.9257 + }, + { + "start": 10805.19, + "end": 10807.32, + "probability": 0.934 + }, + { + "start": 10808.1, + "end": 10808.52, + "probability": 0.9834 + }, + { + "start": 10809.14, + "end": 10811.61, + "probability": 0.9862 + }, + { + "start": 10813.92, + "end": 10814.09, + "probability": 0.3863 + }, + { + "start": 10815.46, + "end": 10815.76, + "probability": 0.8053 + }, + { + "start": 10816.96, + "end": 10817.92, + "probability": 0.7835 + }, + { + "start": 10818.58, + "end": 10820.44, + "probability": 0.7439 + }, + { + "start": 10820.98, + "end": 10821.86, + "probability": 0.9846 + }, + { + "start": 10822.82, + "end": 10823.58, + "probability": 0.9254 + }, + { + "start": 10824.4, + "end": 10826.06, + "probability": 0.7618 + }, + { + "start": 10827.24, + "end": 10829.32, + "probability": 0.9858 + }, + { + "start": 10830.04, + "end": 10831.6, + "probability": 0.8737 + }, + { + "start": 10832.5, + "end": 10833.14, + "probability": 0.6306 + }, + { + "start": 10833.98, + "end": 10834.96, + "probability": 0.4244 + }, + { + "start": 10835.74, + "end": 10836.12, + "probability": 0.8818 + }, + { + "start": 10836.76, + "end": 10837.6, + "probability": 0.8134 + }, + { + "start": 10841.18, + "end": 10844.74, + "probability": 0.8288 + }, + { + "start": 10846.2, + "end": 10848.04, + "probability": 0.9354 + }, + { + "start": 10848.66, + "end": 10852.38, + "probability": 0.9734 + }, + { + "start": 10853.66, + "end": 10855.36, + "probability": 0.9177 + }, + { + "start": 10856.02, + "end": 10858.74, + "probability": 0.991 + }, + { + "start": 10859.88, + "end": 10861.54, + "probability": 0.5436 + }, + { + "start": 10864.04, + "end": 10864.6, + "probability": 0.9715 + }, + { + "start": 10865.52, + "end": 10868.12, + "probability": 0.7536 + }, + { + "start": 10868.72, + "end": 10869.88, + "probability": 0.8561 + }, + { + "start": 10871.82, + "end": 10873.94, + "probability": 0.9102 + }, + { + "start": 10876.0, + "end": 10878.14, + "probability": 0.8695 + }, + { + "start": 10879.02, + "end": 10880.54, + "probability": 0.9123 + }, + { + "start": 10881.64, + "end": 10882.04, + "probability": 0.968 + }, + { + "start": 10883.0, + "end": 10884.1, + "probability": 0.6194 + }, + { + "start": 10885.22, + "end": 10887.16, + "probability": 0.6866 + }, + { + "start": 10888.52, + "end": 10888.9, + "probability": 0.9831 + }, + { + "start": 10890.02, + "end": 10891.18, + "probability": 0.9782 + }, + { + "start": 10893.18, + "end": 10894.26, + "probability": 0.9853 + }, + { + "start": 10894.94, + "end": 10895.66, + "probability": 0.8073 + }, + { + "start": 10897.6, + "end": 10899.1, + "probability": 0.9843 + }, + { + "start": 10900.02, + "end": 10901.26, + "probability": 0.98 + }, + { + "start": 10902.32, + "end": 10902.72, + "probability": 0.9858 + }, + { + "start": 10903.66, + "end": 10904.88, + "probability": 0.9466 + }, + { + "start": 10906.46, + "end": 10909.14, + "probability": 0.9453 + }, + { + "start": 10910.16, + "end": 10910.72, + "probability": 0.7458 + }, + { + "start": 10912.34, + "end": 10913.16, + "probability": 0.8208 + }, + { + "start": 10914.64, + "end": 10918.6, + "probability": 0.7063 + }, + { + "start": 10919.3, + "end": 10920.18, + "probability": 0.9412 + }, + { + "start": 10921.22, + "end": 10922.16, + "probability": 0.8254 + }, + { + "start": 10923.0, + "end": 10923.48, + "probability": 0.9762 + }, + { + "start": 10924.22, + "end": 10925.04, + "probability": 0.8793 + }, + { + "start": 10926.59, + "end": 10927.86, + "probability": 0.9824 + }, + { + "start": 10929.14, + "end": 10929.66, + "probability": 0.9811 + }, + { + "start": 10930.5, + "end": 10931.54, + "probability": 0.9477 + }, + { + "start": 10934.52, + "end": 10935.74, + "probability": 0.7042 + }, + { + "start": 10940.42, + "end": 10941.04, + "probability": 0.6903 + }, + { + "start": 10943.06, + "end": 10943.88, + "probability": 0.6954 + }, + { + "start": 10944.96, + "end": 10946.86, + "probability": 0.8522 + }, + { + "start": 10948.38, + "end": 10954.0, + "probability": 0.7147 + }, + { + "start": 10955.26, + "end": 10957.12, + "probability": 0.5757 + }, + { + "start": 10958.46, + "end": 10960.34, + "probability": 0.6833 + }, + { + "start": 10963.06, + "end": 10965.08, + "probability": 0.8989 + }, + { + "start": 10965.82, + "end": 10966.28, + "probability": 0.9292 + }, + { + "start": 10967.22, + "end": 10967.92, + "probability": 0.5391 + }, + { + "start": 10968.64, + "end": 10968.9, + "probability": 0.7724 + }, + { + "start": 10971.72, + "end": 10972.42, + "probability": 0.5234 + }, + { + "start": 10973.04, + "end": 10974.66, + "probability": 0.8071 + }, + { + "start": 10975.42, + "end": 10975.84, + "probability": 0.9819 + }, + { + "start": 10976.42, + "end": 10977.52, + "probability": 0.9508 + }, + { + "start": 10978.04, + "end": 10979.56, + "probability": 0.9581 + }, + { + "start": 10980.26, + "end": 10980.8, + "probability": 0.995 + }, + { + "start": 10981.46, + "end": 10982.32, + "probability": 0.653 + }, + { + "start": 10983.06, + "end": 10983.48, + "probability": 0.97 + }, + { + "start": 10984.16, + "end": 10984.94, + "probability": 0.9531 + }, + { + "start": 10986.02, + "end": 10988.18, + "probability": 0.8398 + }, + { + "start": 10989.12, + "end": 10989.64, + "probability": 0.9902 + }, + { + "start": 10991.5, + "end": 10992.96, + "probability": 0.9872 + }, + { + "start": 10993.68, + "end": 10995.44, + "probability": 0.6199 + }, + { + "start": 10996.3, + "end": 10998.7, + "probability": 0.8262 + }, + { + "start": 11002.58, + "end": 11003.1, + "probability": 0.7811 + }, + { + "start": 11003.92, + "end": 11005.44, + "probability": 0.7343 + }, + { + "start": 11006.5, + "end": 11007.0, + "probability": 0.9602 + }, + { + "start": 11008.0, + "end": 11008.7, + "probability": 0.8448 + }, + { + "start": 11009.96, + "end": 11010.46, + "probability": 0.9932 + }, + { + "start": 11011.24, + "end": 11012.1, + "probability": 0.9833 + }, + { + "start": 11013.04, + "end": 11013.64, + "probability": 0.9966 + }, + { + "start": 11014.34, + "end": 11015.22, + "probability": 0.8621 + }, + { + "start": 11017.16, + "end": 11022.54, + "probability": 0.978 + }, + { + "start": 11024.82, + "end": 11025.82, + "probability": 0.7938 + }, + { + "start": 11027.72, + "end": 11028.22, + "probability": 0.771 + }, + { + "start": 11029.12, + "end": 11031.98, + "probability": 0.909 + }, + { + "start": 11032.58, + "end": 11034.16, + "probability": 0.8603 + }, + { + "start": 11042.04, + "end": 11047.78, + "probability": 0.5359 + }, + { + "start": 11048.72, + "end": 11051.54, + "probability": 0.7692 + }, + { + "start": 11052.98, + "end": 11055.5, + "probability": 0.6674 + }, + { + "start": 11056.4, + "end": 11058.14, + "probability": 0.9318 + }, + { + "start": 11058.98, + "end": 11061.22, + "probability": 0.8409 + }, + { + "start": 11064.06, + "end": 11065.7, + "probability": 0.8178 + }, + { + "start": 11066.44, + "end": 11067.16, + "probability": 0.8259 + }, + { + "start": 11067.68, + "end": 11068.62, + "probability": 0.8514 + }, + { + "start": 11069.26, + "end": 11069.76, + "probability": 0.9104 + }, + { + "start": 11070.88, + "end": 11071.84, + "probability": 0.975 + }, + { + "start": 11072.6, + "end": 11073.14, + "probability": 0.9777 + }, + { + "start": 11074.04, + "end": 11075.5, + "probability": 0.9946 + }, + { + "start": 11076.2, + "end": 11078.6, + "probability": 0.9534 + }, + { + "start": 11079.54, + "end": 11080.08, + "probability": 0.9847 + }, + { + "start": 11080.78, + "end": 11081.66, + "probability": 0.773 + }, + { + "start": 11083.21, + "end": 11086.32, + "probability": 0.9839 + }, + { + "start": 11087.36, + "end": 11089.12, + "probability": 0.9541 + }, + { + "start": 11090.9, + "end": 11093.22, + "probability": 0.5605 + }, + { + "start": 11094.34, + "end": 11095.98, + "probability": 0.8898 + }, + { + "start": 11097.0, + "end": 11097.52, + "probability": 0.9497 + }, + { + "start": 11098.14, + "end": 11098.86, + "probability": 0.9117 + }, + { + "start": 11100.08, + "end": 11101.6, + "probability": 0.9404 + }, + { + "start": 11102.26, + "end": 11103.12, + "probability": 0.7391 + }, + { + "start": 11104.14, + "end": 11106.0, + "probability": 0.9615 + }, + { + "start": 11106.74, + "end": 11108.32, + "probability": 0.9348 + }, + { + "start": 11109.68, + "end": 11110.5, + "probability": 0.9814 + }, + { + "start": 11111.6, + "end": 11112.64, + "probability": 0.9619 + }, + { + "start": 11114.2, + "end": 11115.16, + "probability": 0.957 + }, + { + "start": 11115.76, + "end": 11116.78, + "probability": 0.9378 + }, + { + "start": 11119.6, + "end": 11121.4, + "probability": 0.7039 + }, + { + "start": 11123.38, + "end": 11127.9, + "probability": 0.8789 + }, + { + "start": 11129.06, + "end": 11129.96, + "probability": 0.7167 + }, + { + "start": 11132.0, + "end": 11133.7, + "probability": 0.8504 + }, + { + "start": 11134.42, + "end": 11135.34, + "probability": 0.8661 + }, + { + "start": 11136.56, + "end": 11138.14, + "probability": 0.9396 + }, + { + "start": 11138.98, + "end": 11141.04, + "probability": 0.9159 + }, + { + "start": 11141.94, + "end": 11142.42, + "probability": 0.9432 + }, + { + "start": 11143.04, + "end": 11143.86, + "probability": 0.7724 + }, + { + "start": 11145.18, + "end": 11146.78, + "probability": 0.987 + }, + { + "start": 11147.92, + "end": 11150.16, + "probability": 0.9471 + }, + { + "start": 11151.4, + "end": 11153.32, + "probability": 0.728 + }, + { + "start": 11155.2, + "end": 11155.76, + "probability": 0.9067 + }, + { + "start": 11156.9, + "end": 11158.2, + "probability": 0.6367 + }, + { + "start": 11159.8, + "end": 11161.42, + "probability": 0.8696 + }, + { + "start": 11167.06, + "end": 11173.54, + "probability": 0.9831 + }, + { + "start": 11174.52, + "end": 11175.8, + "probability": 0.5611 + }, + { + "start": 11176.66, + "end": 11177.22, + "probability": 0.8228 + }, + { + "start": 11178.86, + "end": 11180.12, + "probability": 0.553 + }, + { + "start": 11181.64, + "end": 11182.98, + "probability": 0.5867 + }, + { + "start": 11184.54, + "end": 11185.38, + "probability": 0.4468 + }, + { + "start": 11186.24, + "end": 11188.16, + "probability": 0.8816 + }, + { + "start": 11189.44, + "end": 11191.38, + "probability": 0.85 + }, + { + "start": 11192.38, + "end": 11193.96, + "probability": 0.9581 + }, + { + "start": 11194.7, + "end": 11196.22, + "probability": 0.9762 + }, + { + "start": 11197.72, + "end": 11198.18, + "probability": 0.6915 + }, + { + "start": 11199.7, + "end": 11200.76, + "probability": 0.9366 + }, + { + "start": 11203.18, + "end": 11205.16, + "probability": 0.9195 + }, + { + "start": 11205.7, + "end": 11208.38, + "probability": 0.9516 + }, + { + "start": 11210.22, + "end": 11214.16, + "probability": 0.5573 + }, + { + "start": 11215.26, + "end": 11217.24, + "probability": 0.851 + }, + { + "start": 11218.32, + "end": 11220.4, + "probability": 0.9784 + }, + { + "start": 11221.32, + "end": 11223.56, + "probability": 0.9695 + }, + { + "start": 11225.46, + "end": 11226.28, + "probability": 0.8286 + }, + { + "start": 11227.2, + "end": 11228.28, + "probability": 0.8577 + }, + { + "start": 11229.08, + "end": 11229.58, + "probability": 0.9868 + }, + { + "start": 11231.02, + "end": 11232.58, + "probability": 0.7857 + }, + { + "start": 11233.86, + "end": 11235.84, + "probability": 0.979 + }, + { + "start": 11237.72, + "end": 11238.92, + "probability": 0.7174 + }, + { + "start": 11240.0, + "end": 11240.44, + "probability": 0.6389 + }, + { + "start": 11241.76, + "end": 11242.6, + "probability": 0.858 + }, + { + "start": 11243.36, + "end": 11244.26, + "probability": 0.916 + }, + { + "start": 11245.66, + "end": 11247.04, + "probability": 0.8392 + }, + { + "start": 11248.66, + "end": 11251.8, + "probability": 0.8696 + }, + { + "start": 11252.54, + "end": 11253.46, + "probability": 0.8434 + }, + { + "start": 11254.16, + "end": 11255.9, + "probability": 0.8924 + }, + { + "start": 11256.6, + "end": 11258.08, + "probability": 0.936 + }, + { + "start": 11260.1, + "end": 11262.58, + "probability": 0.3834 + }, + { + "start": 11271.94, + "end": 11274.08, + "probability": 0.4994 + }, + { + "start": 11275.74, + "end": 11279.46, + "probability": 0.5994 + }, + { + "start": 11280.46, + "end": 11282.5, + "probability": 0.7105 + }, + { + "start": 11283.24, + "end": 11287.08, + "probability": 0.9425 + }, + { + "start": 11288.14, + "end": 11290.14, + "probability": 0.9801 + }, + { + "start": 11291.4, + "end": 11292.16, + "probability": 0.9913 + }, + { + "start": 11292.76, + "end": 11293.66, + "probability": 0.8601 + }, + { + "start": 11295.6, + "end": 11297.4, + "probability": 0.6052 + }, + { + "start": 11298.16, + "end": 11300.84, + "probability": 0.9382 + }, + { + "start": 11304.84, + "end": 11305.86, + "probability": 0.6657 + }, + { + "start": 11306.58, + "end": 11309.02, + "probability": 0.8951 + }, + { + "start": 11310.26, + "end": 11311.2, + "probability": 0.7182 + }, + { + "start": 11311.82, + "end": 11315.18, + "probability": 0.9213 + }, + { + "start": 11316.12, + "end": 11317.88, + "probability": 0.9561 + }, + { + "start": 11318.96, + "end": 11320.82, + "probability": 0.8965 + }, + { + "start": 11321.48, + "end": 11323.58, + "probability": 0.9914 + }, + { + "start": 11324.4, + "end": 11324.82, + "probability": 0.714 + }, + { + "start": 11326.24, + "end": 11329.2, + "probability": 0.9728 + }, + { + "start": 11329.86, + "end": 11330.96, + "probability": 0.9082 + }, + { + "start": 11331.7, + "end": 11333.28, + "probability": 0.9691 + }, + { + "start": 11334.28, + "end": 11336.28, + "probability": 0.9927 + }, + { + "start": 11337.02, + "end": 11337.8, + "probability": 0.9976 + }, + { + "start": 11338.44, + "end": 11339.36, + "probability": 0.7428 + }, + { + "start": 11340.48, + "end": 11342.28, + "probability": 0.9421 + }, + { + "start": 11343.62, + "end": 11345.32, + "probability": 0.678 + }, + { + "start": 11349.88, + "end": 11352.76, + "probability": 0.9165 + }, + { + "start": 11352.8, + "end": 11353.34, + "probability": 0.554 + }, + { + "start": 11353.4, + "end": 11355.14, + "probability": 0.9377 + }, + { + "start": 11357.36, + "end": 11357.56, + "probability": 0.7085 + }, + { + "start": 11358.74, + "end": 11361.56, + "probability": 0.6735 + }, + { + "start": 11361.56, + "end": 11364.36, + "probability": 0.6295 + }, + { + "start": 11390.14, + "end": 11392.01, + "probability": 0.5216 + }, + { + "start": 11392.96, + "end": 11394.18, + "probability": 0.9951 + }, + { + "start": 11400.76, + "end": 11400.76, + "probability": 0.0417 + }, + { + "start": 11401.1, + "end": 11401.8, + "probability": 0.0088 + }, + { + "start": 11401.84, + "end": 11402.29, + "probability": 0.0493 + }, + { + "start": 11402.48, + "end": 11402.48, + "probability": 0.0277 + }, + { + "start": 11402.48, + "end": 11402.61, + "probability": 0.1405 + }, + { + "start": 11402.92, + "end": 11403.68, + "probability": 0.4344 + }, + { + "start": 11403.68, + "end": 11403.68, + "probability": 0.1254 + }, + { + "start": 11403.68, + "end": 11403.68, + "probability": 0.0094 + }, + { + "start": 11443.76, + "end": 11446.12, + "probability": 0.6119 + }, + { + "start": 11448.02, + "end": 11449.54, + "probability": 0.7461 + }, + { + "start": 11450.5, + "end": 11452.0, + "probability": 0.9057 + }, + { + "start": 11452.06, + "end": 11452.6, + "probability": 0.6935 + }, + { + "start": 11453.26, + "end": 11454.38, + "probability": 0.7248 + }, + { + "start": 11454.44, + "end": 11455.78, + "probability": 0.7593 + }, + { + "start": 11455.84, + "end": 11457.68, + "probability": 0.947 + }, + { + "start": 11457.88, + "end": 11458.66, + "probability": 0.6259 + }, + { + "start": 11458.66, + "end": 11459.64, + "probability": 0.6862 + }, + { + "start": 11460.3, + "end": 11463.11, + "probability": 0.6686 + }, + { + "start": 11464.02, + "end": 11466.02, + "probability": 0.7119 + }, + { + "start": 11466.3, + "end": 11467.54, + "probability": 0.6466 + }, + { + "start": 11467.62, + "end": 11467.92, + "probability": 0.6102 + }, + { + "start": 11468.0, + "end": 11470.28, + "probability": 0.8978 + }, + { + "start": 11470.36, + "end": 11474.76, + "probability": 0.9052 + }, + { + "start": 11475.54, + "end": 11477.02, + "probability": 0.4167 + }, + { + "start": 11477.36, + "end": 11482.82, + "probability": 0.9447 + }, + { + "start": 11483.74, + "end": 11487.18, + "probability": 0.9925 + }, + { + "start": 11498.54, + "end": 11499.54, + "probability": 0.7586 + }, + { + "start": 11500.42, + "end": 11503.62, + "probability": 0.8277 + }, + { + "start": 11504.88, + "end": 11506.9, + "probability": 0.9936 + }, + { + "start": 11508.74, + "end": 11511.1, + "probability": 0.9979 + }, + { + "start": 11512.5, + "end": 11515.4, + "probability": 0.8721 + }, + { + "start": 11516.18, + "end": 11521.54, + "probability": 0.8911 + }, + { + "start": 11521.54, + "end": 11525.32, + "probability": 0.9532 + }, + { + "start": 11525.4, + "end": 11525.96, + "probability": 0.7701 + }, + { + "start": 11526.52, + "end": 11530.74, + "probability": 0.9287 + }, + { + "start": 11531.66, + "end": 11537.78, + "probability": 0.9948 + }, + { + "start": 11538.62, + "end": 11544.98, + "probability": 0.9951 + }, + { + "start": 11545.72, + "end": 11546.88, + "probability": 0.978 + }, + { + "start": 11547.88, + "end": 11551.86, + "probability": 0.992 + }, + { + "start": 11551.86, + "end": 11557.08, + "probability": 0.993 + }, + { + "start": 11557.88, + "end": 11564.18, + "probability": 0.9977 + }, + { + "start": 11565.06, + "end": 11569.7, + "probability": 0.9281 + }, + { + "start": 11570.92, + "end": 11574.42, + "probability": 0.9585 + }, + { + "start": 11575.92, + "end": 11578.16, + "probability": 0.9939 + }, + { + "start": 11579.12, + "end": 11583.32, + "probability": 0.8485 + }, + { + "start": 11583.32, + "end": 11586.07, + "probability": 0.6295 + }, + { + "start": 11587.66, + "end": 11589.7, + "probability": 0.7751 + }, + { + "start": 11590.66, + "end": 11595.4, + "probability": 0.9965 + }, + { + "start": 11597.88, + "end": 11600.44, + "probability": 0.9893 + }, + { + "start": 11601.26, + "end": 11605.04, + "probability": 0.9703 + }, + { + "start": 11606.04, + "end": 11606.56, + "probability": 0.9449 + }, + { + "start": 11606.72, + "end": 11613.06, + "probability": 0.9883 + }, + { + "start": 11613.36, + "end": 11614.1, + "probability": 0.9456 + }, + { + "start": 11615.46, + "end": 11615.94, + "probability": 0.7823 + }, + { + "start": 11616.6, + "end": 11618.78, + "probability": 0.9495 + }, + { + "start": 11619.5, + "end": 11624.02, + "probability": 0.8755 + }, + { + "start": 11624.2, + "end": 11625.0, + "probability": 0.8398 + }, + { + "start": 11625.72, + "end": 11629.04, + "probability": 0.998 + }, + { + "start": 11629.16, + "end": 11637.46, + "probability": 0.885 + }, + { + "start": 11638.5, + "end": 11643.6, + "probability": 0.9937 + }, + { + "start": 11644.24, + "end": 11647.38, + "probability": 0.9822 + }, + { + "start": 11647.38, + "end": 11651.88, + "probability": 0.9917 + }, + { + "start": 11652.06, + "end": 11652.74, + "probability": 0.4174 + }, + { + "start": 11654.06, + "end": 11654.56, + "probability": 0.8366 + }, + { + "start": 11655.16, + "end": 11656.94, + "probability": 0.9687 + }, + { + "start": 11658.12, + "end": 11662.6, + "probability": 0.9886 + }, + { + "start": 11663.22, + "end": 11664.02, + "probability": 0.585 + }, + { + "start": 11664.56, + "end": 11666.12, + "probability": 0.7819 + }, + { + "start": 11666.72, + "end": 11672.46, + "probability": 0.993 + }, + { + "start": 11673.56, + "end": 11676.68, + "probability": 0.9438 + }, + { + "start": 11677.72, + "end": 11680.88, + "probability": 0.8852 + }, + { + "start": 11681.08, + "end": 11681.94, + "probability": 0.8444 + }, + { + "start": 11682.44, + "end": 11683.44, + "probability": 0.8995 + }, + { + "start": 11684.06, + "end": 11684.88, + "probability": 0.5241 + }, + { + "start": 11685.26, + "end": 11686.08, + "probability": 0.994 + }, + { + "start": 11686.98, + "end": 11690.98, + "probability": 0.9497 + }, + { + "start": 11691.1, + "end": 11694.94, + "probability": 0.9442 + }, + { + "start": 11695.08, + "end": 11698.36, + "probability": 0.9529 + }, + { + "start": 11699.92, + "end": 11703.82, + "probability": 0.9521 + }, + { + "start": 11704.66, + "end": 11708.06, + "probability": 0.9961 + }, + { + "start": 11708.9, + "end": 11711.8, + "probability": 0.978 + }, + { + "start": 11712.5, + "end": 11716.32, + "probability": 0.9444 + }, + { + "start": 11716.88, + "end": 11718.4, + "probability": 0.989 + }, + { + "start": 11719.02, + "end": 11722.46, + "probability": 0.9879 + }, + { + "start": 11722.46, + "end": 11727.8, + "probability": 0.7603 + }, + { + "start": 11728.1, + "end": 11728.4, + "probability": 0.5636 + }, + { + "start": 11728.52, + "end": 11733.52, + "probability": 0.9903 + }, + { + "start": 11734.44, + "end": 11736.28, + "probability": 0.9496 + }, + { + "start": 11737.96, + "end": 11740.28, + "probability": 0.9594 + }, + { + "start": 11741.78, + "end": 11747.82, + "probability": 0.9951 + }, + { + "start": 11749.16, + "end": 11754.28, + "probability": 0.9916 + }, + { + "start": 11754.88, + "end": 11760.28, + "probability": 0.9989 + }, + { + "start": 11761.04, + "end": 11764.68, + "probability": 0.9956 + }, + { + "start": 11767.2, + "end": 11769.74, + "probability": 0.6916 + }, + { + "start": 11771.6, + "end": 11772.98, + "probability": 0.7596 + }, + { + "start": 11773.0, + "end": 11773.86, + "probability": 0.8528 + }, + { + "start": 11774.98, + "end": 11777.14, + "probability": 0.2793 + }, + { + "start": 11825.06, + "end": 11827.72, + "probability": 0.5973 + }, + { + "start": 11829.14, + "end": 11832.26, + "probability": 0.776 + }, + { + "start": 11834.31, + "end": 11839.7, + "probability": 0.968 + }, + { + "start": 11839.7, + "end": 11844.48, + "probability": 0.994 + }, + { + "start": 11846.02, + "end": 11849.2, + "probability": 0.7416 + }, + { + "start": 11849.36, + "end": 11851.7, + "probability": 0.7614 + }, + { + "start": 11854.08, + "end": 11855.98, + "probability": 0.8837 + }, + { + "start": 11857.78, + "end": 11864.58, + "probability": 0.2076 + }, + { + "start": 11870.82, + "end": 11871.1, + "probability": 0.0007 + }, + { + "start": 11871.1, + "end": 11871.1, + "probability": 0.1627 + }, + { + "start": 11871.1, + "end": 11873.1, + "probability": 0.6294 + }, + { + "start": 11874.4, + "end": 11877.5, + "probability": 0.99 + }, + { + "start": 11880.34, + "end": 11882.26, + "probability": 0.8851 + }, + { + "start": 11884.26, + "end": 11890.06, + "probability": 0.9941 + }, + { + "start": 11892.1, + "end": 11893.96, + "probability": 0.9854 + }, + { + "start": 11895.72, + "end": 11897.94, + "probability": 0.9913 + }, + { + "start": 11898.2, + "end": 11898.76, + "probability": 0.1567 + }, + { + "start": 11899.04, + "end": 11899.64, + "probability": 0.2484 + }, + { + "start": 11900.62, + "end": 11904.34, + "probability": 0.9958 + }, + { + "start": 11905.62, + "end": 11906.25, + "probability": 0.8156 + }, + { + "start": 11906.93, + "end": 11910.64, + "probability": 0.9816 + }, + { + "start": 11911.82, + "end": 11915.08, + "probability": 0.934 + }, + { + "start": 11916.18, + "end": 11921.24, + "probability": 0.984 + }, + { + "start": 11922.78, + "end": 11924.16, + "probability": 0.1049 + }, + { + "start": 11927.0, + "end": 11928.52, + "probability": 0.3131 + }, + { + "start": 11928.62, + "end": 11931.62, + "probability": 0.5021 + }, + { + "start": 11931.62, + "end": 11932.56, + "probability": 0.4348 + }, + { + "start": 11932.92, + "end": 11933.26, + "probability": 0.1525 + }, + { + "start": 11933.78, + "end": 11935.6, + "probability": 0.9226 + }, + { + "start": 11936.72, + "end": 11940.04, + "probability": 0.5631 + }, + { + "start": 11941.94, + "end": 11942.36, + "probability": 0.1747 + }, + { + "start": 11942.36, + "end": 11944.3, + "probability": 0.5314 + }, + { + "start": 11944.88, + "end": 11948.94, + "probability": 0.0425 + }, + { + "start": 11949.1, + "end": 11951.34, + "probability": 0.0876 + }, + { + "start": 11952.46, + "end": 11955.78, + "probability": 0.2003 + }, + { + "start": 11955.78, + "end": 11957.08, + "probability": 0.4281 + }, + { + "start": 11957.5, + "end": 11958.66, + "probability": 0.7712 + }, + { + "start": 11959.64, + "end": 11960.34, + "probability": 0.0077 + }, + { + "start": 11960.48, + "end": 11961.6, + "probability": 0.6982 + }, + { + "start": 11961.64, + "end": 11963.36, + "probability": 0.0942 + }, + { + "start": 11963.36, + "end": 11963.4, + "probability": 0.1909 + }, + { + "start": 11963.54, + "end": 11966.96, + "probability": 0.7246 + }, + { + "start": 11967.74, + "end": 11967.98, + "probability": 0.5005 + }, + { + "start": 11968.4, + "end": 11970.7, + "probability": 0.1408 + }, + { + "start": 11971.54, + "end": 11972.48, + "probability": 0.2677 + }, + { + "start": 11976.32, + "end": 11979.0, + "probability": 0.1767 + }, + { + "start": 11980.12, + "end": 11981.21, + "probability": 0.0683 + }, + { + "start": 11982.1, + "end": 11984.76, + "probability": 0.0809 + }, + { + "start": 11985.14, + "end": 11989.06, + "probability": 0.3059 + }, + { + "start": 11989.76, + "end": 11991.23, + "probability": 0.1593 + }, + { + "start": 11992.56, + "end": 11994.12, + "probability": 0.4969 + }, + { + "start": 11995.24, + "end": 11995.46, + "probability": 0.2612 + }, + { + "start": 11996.16, + "end": 11996.74, + "probability": 0.8259 + }, + { + "start": 12001.22, + "end": 12001.94, + "probability": 0.3167 + }, + { + "start": 12003.02, + "end": 12003.64, + "probability": 0.699 + }, + { + "start": 12004.38, + "end": 12006.06, + "probability": 0.6479 + }, + { + "start": 12007.3, + "end": 12009.38, + "probability": 0.9285 + }, + { + "start": 12011.95, + "end": 12014.74, + "probability": 0.7764 + }, + { + "start": 12017.18, + "end": 12017.52, + "probability": 0.8223 + }, + { + "start": 12017.64, + "end": 12018.48, + "probability": 0.7109 + }, + { + "start": 12018.54, + "end": 12019.64, + "probability": 0.6299 + }, + { + "start": 12020.7, + "end": 12022.2, + "probability": 0.8381 + }, + { + "start": 12022.52, + "end": 12023.41, + "probability": 0.7454 + }, + { + "start": 12025.16, + "end": 12028.32, + "probability": 0.6153 + }, + { + "start": 12030.17, + "end": 12033.18, + "probability": 0.752 + }, + { + "start": 12033.28, + "end": 12034.36, + "probability": 0.5058 + }, + { + "start": 12035.42, + "end": 12037.28, + "probability": 0.5344 + }, + { + "start": 12037.28, + "end": 12039.12, + "probability": 0.7069 + }, + { + "start": 12039.14, + "end": 12039.9, + "probability": 0.728 + }, + { + "start": 12041.0, + "end": 12043.0, + "probability": 0.6545 + }, + { + "start": 12043.0, + "end": 12044.77, + "probability": 0.5318 + }, + { + "start": 12044.86, + "end": 12047.36, + "probability": 0.7502 + }, + { + "start": 12047.36, + "end": 12048.06, + "probability": 0.5661 + }, + { + "start": 12049.46, + "end": 12049.98, + "probability": 0.378 + }, + { + "start": 12051.21, + "end": 12055.18, + "probability": 0.8232 + }, + { + "start": 12056.62, + "end": 12058.54, + "probability": 0.2632 + }, + { + "start": 12058.84, + "end": 12060.76, + "probability": 0.9323 + }, + { + "start": 12065.74, + "end": 12068.18, + "probability": 0.6885 + }, + { + "start": 12069.56, + "end": 12071.15, + "probability": 0.1372 + }, + { + "start": 12071.56, + "end": 12073.58, + "probability": 0.7092 + }, + { + "start": 12074.26, + "end": 12076.02, + "probability": 0.2509 + }, + { + "start": 12076.9, + "end": 12077.63, + "probability": 0.686 + }, + { + "start": 12077.84, + "end": 12078.5, + "probability": 0.5997 + }, + { + "start": 12078.6, + "end": 12079.75, + "probability": 0.8085 + }, + { + "start": 12081.8, + "end": 12085.36, + "probability": 0.2584 + }, + { + "start": 12085.58, + "end": 12087.47, + "probability": 0.3583 + }, + { + "start": 12088.18, + "end": 12091.52, + "probability": 0.5317 + }, + { + "start": 12092.24, + "end": 12096.04, + "probability": 0.7109 + }, + { + "start": 12096.3, + "end": 12099.18, + "probability": 0.016 + }, + { + "start": 12099.18, + "end": 12100.12, + "probability": 0.0455 + }, + { + "start": 12100.66, + "end": 12101.21, + "probability": 0.1087 + }, + { + "start": 12102.08, + "end": 12102.08, + "probability": 0.0644 + }, + { + "start": 12105.3, + "end": 12106.74, + "probability": 0.0182 + }, + { + "start": 12107.14, + "end": 12107.94, + "probability": 0.016 + }, + { + "start": 12108.26, + "end": 12109.06, + "probability": 0.2945 + }, + { + "start": 12109.06, + "end": 12110.68, + "probability": 0.3192 + }, + { + "start": 12111.28, + "end": 12112.72, + "probability": 0.381 + }, + { + "start": 12112.9, + "end": 12115.36, + "probability": 0.5716 + }, + { + "start": 12116.0, + "end": 12117.12, + "probability": 0.4774 + }, + { + "start": 12117.3, + "end": 12119.62, + "probability": 0.5743 + }, + { + "start": 12119.96, + "end": 12122.26, + "probability": 0.6765 + }, + { + "start": 12123.61, + "end": 12129.86, + "probability": 0.8723 + }, + { + "start": 12130.92, + "end": 12131.34, + "probability": 0.3201 + }, + { + "start": 12135.89, + "end": 12139.04, + "probability": 0.9248 + }, + { + "start": 12140.66, + "end": 12142.72, + "probability": 0.3962 + }, + { + "start": 12143.06, + "end": 12143.92, + "probability": 0.2991 + }, + { + "start": 12144.16, + "end": 12145.38, + "probability": 0.1175 + }, + { + "start": 12145.7, + "end": 12147.5, + "probability": 0.1551 + }, + { + "start": 12147.62, + "end": 12149.9, + "probability": 0.5066 + }, + { + "start": 12151.22, + "end": 12151.44, + "probability": 0.5094 + }, + { + "start": 12151.44, + "end": 12151.66, + "probability": 0.5679 + }, + { + "start": 12151.74, + "end": 12155.5, + "probability": 0.9875 + }, + { + "start": 12155.6, + "end": 12156.6, + "probability": 0.6929 + }, + { + "start": 12156.68, + "end": 12160.1, + "probability": 0.9917 + }, + { + "start": 12160.2, + "end": 12163.5, + "probability": 0.9912 + }, + { + "start": 12165.22, + "end": 12167.3, + "probability": 0.3736 + }, + { + "start": 12168.12, + "end": 12170.04, + "probability": 0.8362 + }, + { + "start": 12170.9, + "end": 12173.62, + "probability": 0.9603 + }, + { + "start": 12174.88, + "end": 12176.64, + "probability": 0.9819 + }, + { + "start": 12177.78, + "end": 12179.38, + "probability": 0.9128 + }, + { + "start": 12181.3, + "end": 12183.08, + "probability": 0.8734 + }, + { + "start": 12183.92, + "end": 12185.72, + "probability": 0.7633 + }, + { + "start": 12186.88, + "end": 12188.68, + "probability": 0.6647 + }, + { + "start": 12190.5, + "end": 12191.02, + "probability": 0.9688 + }, + { + "start": 12191.94, + "end": 12192.88, + "probability": 0.6125 + }, + { + "start": 12193.42, + "end": 12195.72, + "probability": 0.9769 + }, + { + "start": 12197.28, + "end": 12199.04, + "probability": 0.8904 + }, + { + "start": 12200.16, + "end": 12202.18, + "probability": 0.9837 + }, + { + "start": 12202.98, + "end": 12204.52, + "probability": 0.9489 + }, + { + "start": 12205.36, + "end": 12206.86, + "probability": 0.6587 + }, + { + "start": 12209.12, + "end": 12212.04, + "probability": 0.8636 + }, + { + "start": 12213.0, + "end": 12213.34, + "probability": 0.9281 + }, + { + "start": 12214.76, + "end": 12215.72, + "probability": 0.688 + }, + { + "start": 12218.06, + "end": 12219.66, + "probability": 0.7609 + }, + { + "start": 12220.7, + "end": 12221.34, + "probability": 0.9844 + }, + { + "start": 12222.3, + "end": 12223.22, + "probability": 0.9492 + }, + { + "start": 12226.16, + "end": 12227.86, + "probability": 0.895 + }, + { + "start": 12228.62, + "end": 12233.16, + "probability": 0.7998 + }, + { + "start": 12234.58, + "end": 12234.84, + "probability": 0.7153 + }, + { + "start": 12235.4, + "end": 12236.3, + "probability": 0.8279 + }, + { + "start": 12237.18, + "end": 12237.64, + "probability": 0.9585 + }, + { + "start": 12238.4, + "end": 12239.48, + "probability": 0.919 + }, + { + "start": 12240.08, + "end": 12240.56, + "probability": 0.8782 + }, + { + "start": 12241.42, + "end": 12242.18, + "probability": 0.5987 + }, + { + "start": 12242.76, + "end": 12243.5, + "probability": 0.804 + }, + { + "start": 12244.22, + "end": 12245.14, + "probability": 0.9097 + }, + { + "start": 12246.28, + "end": 12248.04, + "probability": 0.932 + }, + { + "start": 12248.9, + "end": 12250.46, + "probability": 0.9625 + }, + { + "start": 12251.44, + "end": 12251.94, + "probability": 0.9847 + }, + { + "start": 12252.94, + "end": 12254.04, + "probability": 0.9498 + }, + { + "start": 12254.86, + "end": 12256.4, + "probability": 0.5468 + }, + { + "start": 12257.12, + "end": 12257.8, + "probability": 0.6177 + }, + { + "start": 12259.02, + "end": 12259.84, + "probability": 0.9321 + }, + { + "start": 12262.42, + "end": 12263.48, + "probability": 0.9075 + }, + { + "start": 12265.68, + "end": 12268.82, + "probability": 0.9274 + }, + { + "start": 12275.36, + "end": 12276.66, + "probability": 0.6806 + }, + { + "start": 12279.6, + "end": 12280.48, + "probability": 0.4802 + }, + { + "start": 12282.76, + "end": 12283.54, + "probability": 0.939 + }, + { + "start": 12284.12, + "end": 12284.92, + "probability": 0.7773 + }, + { + "start": 12287.22, + "end": 12288.78, + "probability": 0.6934 + }, + { + "start": 12295.56, + "end": 12295.98, + "probability": 0.5325 + }, + { + "start": 12296.9, + "end": 12298.74, + "probability": 0.8457 + }, + { + "start": 12299.48, + "end": 12301.72, + "probability": 0.8946 + }, + { + "start": 12302.92, + "end": 12304.34, + "probability": 0.9003 + }, + { + "start": 12305.76, + "end": 12306.18, + "probability": 0.991 + }, + { + "start": 12307.18, + "end": 12307.52, + "probability": 0.6852 + }, + { + "start": 12309.08, + "end": 12311.66, + "probability": 0.6542 + }, + { + "start": 12313.96, + "end": 12316.86, + "probability": 0.8701 + }, + { + "start": 12317.64, + "end": 12318.14, + "probability": 0.9842 + }, + { + "start": 12319.36, + "end": 12320.46, + "probability": 0.9561 + }, + { + "start": 12325.96, + "end": 12327.56, + "probability": 0.6535 + }, + { + "start": 12328.86, + "end": 12329.16, + "probability": 0.8677 + }, + { + "start": 12329.96, + "end": 12330.8, + "probability": 0.6753 + }, + { + "start": 12331.9, + "end": 12333.72, + "probability": 0.9588 + }, + { + "start": 12334.82, + "end": 12336.82, + "probability": 0.7085 + }, + { + "start": 12338.12, + "end": 12338.84, + "probability": 0.6062 + }, + { + "start": 12339.36, + "end": 12341.3, + "probability": 0.9115 + }, + { + "start": 12342.34, + "end": 12343.54, + "probability": 0.9565 + }, + { + "start": 12346.16, + "end": 12346.9, + "probability": 0.9864 + }, + { + "start": 12347.52, + "end": 12347.8, + "probability": 0.665 + }, + { + "start": 12348.7, + "end": 12349.44, + "probability": 0.5646 + }, + { + "start": 12350.4, + "end": 12351.2, + "probability": 0.7885 + }, + { + "start": 12352.58, + "end": 12354.12, + "probability": 0.8903 + }, + { + "start": 12355.48, + "end": 12357.2, + "probability": 0.9203 + }, + { + "start": 12361.11, + "end": 12363.58, + "probability": 0.9019 + }, + { + "start": 12364.3, + "end": 12366.74, + "probability": 0.9048 + }, + { + "start": 12367.44, + "end": 12369.78, + "probability": 0.7989 + }, + { + "start": 12370.8, + "end": 12372.16, + "probability": 0.9031 + }, + { + "start": 12372.92, + "end": 12373.52, + "probability": 0.9241 + }, + { + "start": 12374.16, + "end": 12375.4, + "probability": 0.7966 + }, + { + "start": 12376.34, + "end": 12376.6, + "probability": 0.7234 + }, + { + "start": 12377.42, + "end": 12378.32, + "probability": 0.5927 + }, + { + "start": 12379.34, + "end": 12379.64, + "probability": 0.8564 + }, + { + "start": 12380.28, + "end": 12380.92, + "probability": 0.905 + }, + { + "start": 12381.9, + "end": 12382.36, + "probability": 0.9816 + }, + { + "start": 12383.14, + "end": 12384.06, + "probability": 0.9802 + }, + { + "start": 12385.94, + "end": 12388.88, + "probability": 0.9932 + }, + { + "start": 12389.76, + "end": 12391.4, + "probability": 0.968 + }, + { + "start": 12392.78, + "end": 12394.02, + "probability": 0.9344 + }, + { + "start": 12395.0, + "end": 12397.62, + "probability": 0.9687 + }, + { + "start": 12400.48, + "end": 12402.22, + "probability": 0.9231 + }, + { + "start": 12403.9, + "end": 12404.34, + "probability": 0.8831 + }, + { + "start": 12407.26, + "end": 12408.2, + "probability": 0.9231 + }, + { + "start": 12408.82, + "end": 12411.88, + "probability": 0.8738 + }, + { + "start": 12412.72, + "end": 12413.5, + "probability": 0.7029 + }, + { + "start": 12414.18, + "end": 12414.5, + "probability": 0.9855 + }, + { + "start": 12416.6, + "end": 12420.04, + "probability": 0.8386 + }, + { + "start": 12421.1, + "end": 12421.52, + "probability": 0.9785 + }, + { + "start": 12422.06, + "end": 12425.18, + "probability": 0.9639 + }, + { + "start": 12425.88, + "end": 12426.38, + "probability": 0.9961 + }, + { + "start": 12427.1, + "end": 12427.96, + "probability": 0.6479 + }, + { + "start": 12428.88, + "end": 12430.36, + "probability": 0.9847 + }, + { + "start": 12431.2, + "end": 12431.62, + "probability": 0.9758 + }, + { + "start": 12432.5, + "end": 12433.26, + "probability": 0.8758 + }, + { + "start": 12434.4, + "end": 12436.62, + "probability": 0.9753 + }, + { + "start": 12436.98, + "end": 12438.68, + "probability": 0.6818 + }, + { + "start": 12439.62, + "end": 12439.92, + "probability": 0.848 + }, + { + "start": 12440.6, + "end": 12441.36, + "probability": 0.8371 + }, + { + "start": 12445.12, + "end": 12448.58, + "probability": 0.722 + }, + { + "start": 12450.26, + "end": 12451.86, + "probability": 0.7554 + }, + { + "start": 12453.46, + "end": 12454.76, + "probability": 0.8853 + }, + { + "start": 12456.5, + "end": 12457.02, + "probability": 0.9836 + }, + { + "start": 12458.24, + "end": 12459.18, + "probability": 0.8566 + }, + { + "start": 12459.84, + "end": 12460.36, + "probability": 0.9553 + }, + { + "start": 12461.04, + "end": 12463.2, + "probability": 0.973 + }, + { + "start": 12463.92, + "end": 12465.46, + "probability": 0.932 + }, + { + "start": 12466.04, + "end": 12466.5, + "probability": 0.8547 + }, + { + "start": 12467.22, + "end": 12468.58, + "probability": 0.8934 + }, + { + "start": 12469.36, + "end": 12470.88, + "probability": 0.8983 + }, + { + "start": 12471.34, + "end": 12473.18, + "probability": 0.7951 + }, + { + "start": 12473.68, + "end": 12473.94, + "probability": 0.6995 + }, + { + "start": 12475.14, + "end": 12478.12, + "probability": 0.8725 + }, + { + "start": 12479.0, + "end": 12479.46, + "probability": 0.9406 + }, + { + "start": 12480.28, + "end": 12481.52, + "probability": 0.7503 + }, + { + "start": 12482.9, + "end": 12486.8, + "probability": 0.9086 + }, + { + "start": 12487.8, + "end": 12489.49, + "probability": 0.7257 + }, + { + "start": 12490.16, + "end": 12490.68, + "probability": 0.9622 + }, + { + "start": 12491.6, + "end": 12494.36, + "probability": 0.9231 + }, + { + "start": 12495.22, + "end": 12496.8, + "probability": 0.9508 + }, + { + "start": 12500.04, + "end": 12500.54, + "probability": 0.9554 + }, + { + "start": 12501.94, + "end": 12503.26, + "probability": 0.9553 + }, + { + "start": 12504.96, + "end": 12506.56, + "probability": 0.9534 + }, + { + "start": 12507.46, + "end": 12509.96, + "probability": 0.8435 + }, + { + "start": 12510.92, + "end": 12513.36, + "probability": 0.7477 + }, + { + "start": 12513.92, + "end": 12515.4, + "probability": 0.841 + }, + { + "start": 12516.16, + "end": 12518.8, + "probability": 0.6758 + }, + { + "start": 12519.32, + "end": 12520.34, + "probability": 0.8455 + }, + { + "start": 12521.3, + "end": 12522.74, + "probability": 0.9089 + }, + { + "start": 12524.48, + "end": 12525.0, + "probability": 0.7308 + }, + { + "start": 12525.72, + "end": 12526.38, + "probability": 0.9199 + }, + { + "start": 12529.78, + "end": 12533.7, + "probability": 0.7756 + }, + { + "start": 12534.2, + "end": 12535.6, + "probability": 0.9654 + }, + { + "start": 12536.02, + "end": 12537.96, + "probability": 0.9071 + }, + { + "start": 12538.88, + "end": 12539.3, + "probability": 0.6869 + }, + { + "start": 12540.3, + "end": 12541.28, + "probability": 0.8315 + }, + { + "start": 12542.92, + "end": 12543.74, + "probability": 0.9707 + }, + { + "start": 12544.42, + "end": 12545.28, + "probability": 0.9147 + }, + { + "start": 12545.92, + "end": 12550.9, + "probability": 0.9709 + }, + { + "start": 12552.28, + "end": 12553.0, + "probability": 0.954 + }, + { + "start": 12553.64, + "end": 12554.52, + "probability": 0.875 + }, + { + "start": 12555.32, + "end": 12555.9, + "probability": 0.9961 + }, + { + "start": 12556.72, + "end": 12557.52, + "probability": 0.986 + }, + { + "start": 12558.16, + "end": 12558.66, + "probability": 0.9968 + }, + { + "start": 12559.64, + "end": 12560.54, + "probability": 0.9885 + }, + { + "start": 12561.3, + "end": 12561.72, + "probability": 0.9819 + }, + { + "start": 12562.44, + "end": 12563.2, + "probability": 0.6001 + }, + { + "start": 12563.96, + "end": 12564.2, + "probability": 0.5433 + }, + { + "start": 12564.86, + "end": 12567.47, + "probability": 0.9774 + }, + { + "start": 12568.44, + "end": 12569.22, + "probability": 0.7156 + }, + { + "start": 12570.32, + "end": 12570.58, + "probability": 0.9822 + }, + { + "start": 12571.16, + "end": 12571.96, + "probability": 0.8321 + }, + { + "start": 12575.46, + "end": 12577.86, + "probability": 0.9286 + }, + { + "start": 12578.58, + "end": 12582.66, + "probability": 0.6096 + }, + { + "start": 12582.68, + "end": 12582.98, + "probability": 0.0474 + }, + { + "start": 12583.08, + "end": 12585.72, + "probability": 0.6638 + }, + { + "start": 12589.24, + "end": 12590.32, + "probability": 0.3773 + }, + { + "start": 12590.8, + "end": 12592.66, + "probability": 0.8379 + }, + { + "start": 12593.22, + "end": 12595.41, + "probability": 0.9562 + }, + { + "start": 12596.3, + "end": 12596.96, + "probability": 0.9791 + }, + { + "start": 12598.22, + "end": 12599.24, + "probability": 0.8319 + }, + { + "start": 12601.3, + "end": 12603.22, + "probability": 0.882 + }, + { + "start": 12606.68, + "end": 12608.09, + "probability": 0.3624 + }, + { + "start": 12609.18, + "end": 12610.78, + "probability": 0.8515 + }, + { + "start": 12611.92, + "end": 12613.08, + "probability": 0.8117 + }, + { + "start": 12614.28, + "end": 12615.08, + "probability": 0.9017 + }, + { + "start": 12615.74, + "end": 12617.34, + "probability": 0.955 + }, + { + "start": 12618.84, + "end": 12623.44, + "probability": 0.6471 + }, + { + "start": 12625.72, + "end": 12627.84, + "probability": 0.9816 + }, + { + "start": 12629.58, + "end": 12630.82, + "probability": 0.9468 + }, + { + "start": 12632.6, + "end": 12635.94, + "probability": 0.1516 + }, + { + "start": 12644.24, + "end": 12644.86, + "probability": 0.5116 + }, + { + "start": 12645.48, + "end": 12646.36, + "probability": 0.6084 + }, + { + "start": 12647.76, + "end": 12649.48, + "probability": 0.8699 + }, + { + "start": 12650.94, + "end": 12652.26, + "probability": 0.9638 + }, + { + "start": 12654.04, + "end": 12654.7, + "probability": 0.9894 + }, + { + "start": 12655.64, + "end": 12656.48, + "probability": 0.7937 + }, + { + "start": 12657.4, + "end": 12658.52, + "probability": 0.6102 + }, + { + "start": 12659.32, + "end": 12660.08, + "probability": 0.9279 + }, + { + "start": 12660.82, + "end": 12661.56, + "probability": 0.9957 + }, + { + "start": 12662.1, + "end": 12664.2, + "probability": 0.8376 + }, + { + "start": 12665.48, + "end": 12666.22, + "probability": 0.9903 + }, + { + "start": 12667.04, + "end": 12668.16, + "probability": 0.973 + }, + { + "start": 12668.68, + "end": 12670.26, + "probability": 0.9797 + }, + { + "start": 12671.38, + "end": 12672.04, + "probability": 0.7991 + }, + { + "start": 12672.8, + "end": 12673.86, + "probability": 0.601 + }, + { + "start": 12675.2, + "end": 12676.18, + "probability": 0.7731 + }, + { + "start": 12678.06, + "end": 12679.6, + "probability": 0.7506 + }, + { + "start": 12680.66, + "end": 12682.98, + "probability": 0.9868 + }, + { + "start": 12684.22, + "end": 12686.02, + "probability": 0.9673 + }, + { + "start": 12687.86, + "end": 12689.82, + "probability": 0.9856 + }, + { + "start": 12690.94, + "end": 12692.66, + "probability": 0.9051 + }, + { + "start": 12693.34, + "end": 12694.8, + "probability": 0.7155 + }, + { + "start": 12695.48, + "end": 12696.98, + "probability": 0.8333 + }, + { + "start": 12698.98, + "end": 12699.38, + "probability": 0.8582 + }, + { + "start": 12700.14, + "end": 12701.26, + "probability": 0.9242 + }, + { + "start": 12701.9, + "end": 12705.38, + "probability": 0.7922 + }, + { + "start": 12706.86, + "end": 12707.86, + "probability": 0.9952 + }, + { + "start": 12709.74, + "end": 12710.6, + "probability": 0.9773 + }, + { + "start": 12711.1, + "end": 12713.32, + "probability": 0.9809 + }, + { + "start": 12713.8, + "end": 12715.48, + "probability": 0.7979 + }, + { + "start": 12717.15, + "end": 12719.22, + "probability": 0.018 + }, + { + "start": 12719.22, + "end": 12719.96, + "probability": 0.4029 + }, + { + "start": 12722.96, + "end": 12725.26, + "probability": 0.9189 + }, + { + "start": 12725.72, + "end": 12728.72, + "probability": 0.9325 + }, + { + "start": 12728.96, + "end": 12730.82, + "probability": 0.8515 + }, + { + "start": 12731.4, + "end": 12733.58, + "probability": 0.8584 + }, + { + "start": 12735.02, + "end": 12740.6, + "probability": 0.5261 + }, + { + "start": 12742.12, + "end": 12743.78, + "probability": 0.8276 + }, + { + "start": 12744.86, + "end": 12747.12, + "probability": 0.8788 + }, + { + "start": 12747.62, + "end": 12749.12, + "probability": 0.5012 + }, + { + "start": 12749.8, + "end": 12750.42, + "probability": 0.9934 + }, + { + "start": 12751.38, + "end": 12752.34, + "probability": 0.7279 + }, + { + "start": 12753.06, + "end": 12754.84, + "probability": 0.9007 + }, + { + "start": 12755.78, + "end": 12760.78, + "probability": 0.9385 + }, + { + "start": 12762.16, + "end": 12764.86, + "probability": 0.8815 + }, + { + "start": 12765.86, + "end": 12766.62, + "probability": 0.9967 + }, + { + "start": 12767.34, + "end": 12768.24, + "probability": 0.8636 + }, + { + "start": 12769.08, + "end": 12771.9, + "probability": 0.9807 + }, + { + "start": 12773.5, + "end": 12775.5, + "probability": 0.8053 + }, + { + "start": 12776.8, + "end": 12778.85, + "probability": 0.9199 + }, + { + "start": 12780.1, + "end": 12783.4, + "probability": 0.9723 + }, + { + "start": 12783.42, + "end": 12784.04, + "probability": 0.5106 + }, + { + "start": 12785.1, + "end": 12787.22, + "probability": 0.2359 + }, + { + "start": 12794.38, + "end": 12798.28, + "probability": 0.7245 + }, + { + "start": 12806.58, + "end": 12807.02, + "probability": 0.1646 + }, + { + "start": 12813.42, + "end": 12814.42, + "probability": 0.6202 + }, + { + "start": 12815.22, + "end": 12815.66, + "probability": 0.5944 + }, + { + "start": 12816.92, + "end": 12822.44, + "probability": 0.8747 + }, + { + "start": 12822.58, + "end": 12823.46, + "probability": 0.1933 + }, + { + "start": 12825.48, + "end": 12826.4, + "probability": 0.4041 + }, + { + "start": 12826.52, + "end": 12827.42, + "probability": 0.9626 + }, + { + "start": 12829.86, + "end": 12831.38, + "probability": 0.3461 + }, + { + "start": 12836.97, + "end": 12837.94, + "probability": 0.0723 + }, + { + "start": 12837.94, + "end": 12841.0, + "probability": 0.0169 + }, + { + "start": 12842.42, + "end": 12843.74, + "probability": 0.0878 + }, + { + "start": 12858.48, + "end": 12859.56, + "probability": 0.0222 + }, + { + "start": 12869.18, + "end": 12875.02, + "probability": 0.0413 + }, + { + "start": 12881.73, + "end": 12883.75, + "probability": 0.053 + }, + { + "start": 12884.84, + "end": 12887.58, + "probability": 0.0079 + }, + { + "start": 12888.12, + "end": 12891.66, + "probability": 0.0735 + }, + { + "start": 12894.71, + "end": 12900.7, + "probability": 0.1236 + }, + { + "start": 12900.7, + "end": 12904.94, + "probability": 0.1594 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13024.42, + "end": 13027.64, + "probability": 0.6771 + }, + { + "start": 13028.34, + "end": 13029.46, + "probability": 0.8728 + }, + { + "start": 13029.68, + "end": 13030.48, + "probability": 0.8498 + }, + { + "start": 13030.54, + "end": 13032.6, + "probability": 0.98 + }, + { + "start": 13032.7, + "end": 13034.16, + "probability": 0.8499 + }, + { + "start": 13034.92, + "end": 13040.9, + "probability": 0.9878 + }, + { + "start": 13041.64, + "end": 13042.98, + "probability": 0.0859 + }, + { + "start": 13042.98, + "end": 13044.02, + "probability": 0.4128 + }, + { + "start": 13044.16, + "end": 13046.17, + "probability": 0.9888 + }, + { + "start": 13046.32, + "end": 13048.18, + "probability": 0.7238 + }, + { + "start": 13049.24, + "end": 13049.86, + "probability": 0.7954 + }, + { + "start": 13049.9, + "end": 13051.56, + "probability": 0.9274 + }, + { + "start": 13051.66, + "end": 13053.14, + "probability": 0.9534 + }, + { + "start": 13053.6, + "end": 13054.82, + "probability": 0.8741 + }, + { + "start": 13055.3, + "end": 13057.34, + "probability": 0.9977 + }, + { + "start": 13057.48, + "end": 13058.58, + "probability": 0.9454 + }, + { + "start": 13058.68, + "end": 13059.52, + "probability": 0.715 + }, + { + "start": 13059.9, + "end": 13060.94, + "probability": 0.8968 + }, + { + "start": 13061.0, + "end": 13062.32, + "probability": 0.9377 + }, + { + "start": 13062.9, + "end": 13065.1, + "probability": 0.8647 + }, + { + "start": 13065.68, + "end": 13068.14, + "probability": 0.9465 + }, + { + "start": 13068.24, + "end": 13069.38, + "probability": 0.7874 + }, + { + "start": 13069.52, + "end": 13070.32, + "probability": 0.9387 + }, + { + "start": 13070.48, + "end": 13071.08, + "probability": 0.87 + }, + { + "start": 13071.14, + "end": 13071.42, + "probability": 0.6998 + }, + { + "start": 13071.74, + "end": 13072.8, + "probability": 0.8308 + }, + { + "start": 13072.92, + "end": 13073.12, + "probability": 0.7971 + }, + { + "start": 13073.54, + "end": 13077.5, + "probability": 0.8975 + }, + { + "start": 13077.92, + "end": 13080.34, + "probability": 0.9663 + }, + { + "start": 13080.34, + "end": 13085.56, + "probability": 0.9724 + }, + { + "start": 13085.66, + "end": 13087.71, + "probability": 0.1882 + }, + { + "start": 13088.06, + "end": 13088.72, + "probability": 0.338 + }, + { + "start": 13088.84, + "end": 13089.0, + "probability": 0.815 + }, + { + "start": 13089.1, + "end": 13089.22, + "probability": 0.771 + }, + { + "start": 13089.28, + "end": 13090.33, + "probability": 0.84 + }, + { + "start": 13090.68, + "end": 13091.22, + "probability": 0.8698 + }, + { + "start": 13091.36, + "end": 13094.28, + "probability": 0.8003 + }, + { + "start": 13095.7, + "end": 13098.82, + "probability": 0.2422 + }, + { + "start": 13099.5, + "end": 13102.18, + "probability": 0.3724 + }, + { + "start": 13102.34, + "end": 13102.92, + "probability": 0.0367 + }, + { + "start": 13102.92, + "end": 13102.92, + "probability": 0.5797 + }, + { + "start": 13102.92, + "end": 13104.16, + "probability": 0.5151 + }, + { + "start": 13104.42, + "end": 13104.82, + "probability": 0.6788 + }, + { + "start": 13104.88, + "end": 13105.32, + "probability": 0.731 + }, + { + "start": 13105.32, + "end": 13108.68, + "probability": 0.9659 + }, + { + "start": 13108.72, + "end": 13110.33, + "probability": 0.9604 + }, + { + "start": 13110.74, + "end": 13110.76, + "probability": 0.0109 + }, + { + "start": 13112.48, + "end": 13117.12, + "probability": 0.4639 + }, + { + "start": 13117.62, + "end": 13120.08, + "probability": 0.9006 + }, + { + "start": 13121.0, + "end": 13123.3, + "probability": 0.9624 + }, + { + "start": 13124.04, + "end": 13126.72, + "probability": 0.7793 + }, + { + "start": 13126.74, + "end": 13127.46, + "probability": 0.9426 + }, + { + "start": 13128.18, + "end": 13128.6, + "probability": 0.5201 + }, + { + "start": 13128.76, + "end": 13131.1, + "probability": 0.7045 + }, + { + "start": 13131.44, + "end": 13131.96, + "probability": 0.7634 + }, + { + "start": 13131.96, + "end": 13133.36, + "probability": 0.8338 + }, + { + "start": 13133.44, + "end": 13134.42, + "probability": 0.5967 + }, + { + "start": 13135.14, + "end": 13137.78, + "probability": 0.9443 + }, + { + "start": 13138.12, + "end": 13139.56, + "probability": 0.9543 + }, + { + "start": 13139.84, + "end": 13143.28, + "probability": 0.7148 + }, + { + "start": 13143.4, + "end": 13144.96, + "probability": 0.6296 + }, + { + "start": 13145.66, + "end": 13149.18, + "probability": 0.9434 + }, + { + "start": 13149.6, + "end": 13152.3, + "probability": 0.76 + }, + { + "start": 13152.52, + "end": 13155.68, + "probability": 0.535 + }, + { + "start": 13155.88, + "end": 13159.46, + "probability": 0.2982 + }, + { + "start": 13159.89, + "end": 13162.26, + "probability": 0.949 + }, + { + "start": 13162.36, + "end": 13164.46, + "probability": 0.9045 + }, + { + "start": 13164.78, + "end": 13165.48, + "probability": 0.7094 + }, + { + "start": 13165.62, + "end": 13166.06, + "probability": 0.6898 + }, + { + "start": 13166.36, + "end": 13168.12, + "probability": 0.8401 + }, + { + "start": 13168.34, + "end": 13170.02, + "probability": 0.9907 + }, + { + "start": 13170.8, + "end": 13170.94, + "probability": 0.7805 + }, + { + "start": 13170.98, + "end": 13171.72, + "probability": 0.9797 + }, + { + "start": 13171.84, + "end": 13175.3, + "probability": 0.9788 + }, + { + "start": 13175.4, + "end": 13176.14, + "probability": 0.8065 + }, + { + "start": 13177.96, + "end": 13180.08, + "probability": 0.6045 + }, + { + "start": 13180.26, + "end": 13182.58, + "probability": 0.8784 + }, + { + "start": 13183.5, + "end": 13185.92, + "probability": 0.9107 + }, + { + "start": 13186.44, + "end": 13187.38, + "probability": 0.5525 + }, + { + "start": 13187.92, + "end": 13189.66, + "probability": 0.7761 + }, + { + "start": 13190.16, + "end": 13192.88, + "probability": 0.8286 + }, + { + "start": 13193.62, + "end": 13195.74, + "probability": 0.3857 + }, + { + "start": 13197.06, + "end": 13199.2, + "probability": 0.068 + }, + { + "start": 13199.5, + "end": 13200.7, + "probability": 0.1563 + }, + { + "start": 13201.08, + "end": 13204.3, + "probability": 0.7552 + }, + { + "start": 13204.3, + "end": 13205.78, + "probability": 0.9718 + }, + { + "start": 13208.28, + "end": 13209.76, + "probability": 0.9917 + }, + { + "start": 13210.32, + "end": 13211.32, + "probability": 0.168 + }, + { + "start": 13211.36, + "end": 13217.04, + "probability": 0.9751 + }, + { + "start": 13217.1, + "end": 13219.2, + "probability": 0.8663 + }, + { + "start": 13219.22, + "end": 13221.26, + "probability": 0.995 + }, + { + "start": 13222.2, + "end": 13222.72, + "probability": 0.7112 + }, + { + "start": 13222.8, + "end": 13223.22, + "probability": 0.4847 + }, + { + "start": 13223.28, + "end": 13224.26, + "probability": 0.7218 + }, + { + "start": 13224.64, + "end": 13225.44, + "probability": 0.981 + }, + { + "start": 13225.52, + "end": 13226.5, + "probability": 0.6049 + }, + { + "start": 13226.66, + "end": 13231.98, + "probability": 0.9708 + }, + { + "start": 13232.52, + "end": 13234.8, + "probability": 0.9414 + }, + { + "start": 13235.1, + "end": 13236.78, + "probability": 0.9667 + }, + { + "start": 13237.3, + "end": 13241.58, + "probability": 0.9922 + }, + { + "start": 13242.82, + "end": 13246.49, + "probability": 0.9946 + }, + { + "start": 13246.66, + "end": 13249.22, + "probability": 0.9064 + }, + { + "start": 13249.68, + "end": 13249.94, + "probability": 0.3429 + }, + { + "start": 13250.18, + "end": 13251.58, + "probability": 0.9516 + }, + { + "start": 13252.16, + "end": 13256.56, + "probability": 0.9967 + }, + { + "start": 13256.9, + "end": 13257.62, + "probability": 0.6832 + }, + { + "start": 13257.82, + "end": 13259.16, + "probability": 0.8061 + }, + { + "start": 13259.62, + "end": 13260.46, + "probability": 0.5844 + }, + { + "start": 13260.58, + "end": 13261.48, + "probability": 0.9218 + }, + { + "start": 13261.72, + "end": 13262.42, + "probability": 0.8848 + }, + { + "start": 13262.68, + "end": 13264.56, + "probability": 0.9686 + }, + { + "start": 13264.62, + "end": 13267.16, + "probability": 0.8701 + }, + { + "start": 13267.16, + "end": 13270.18, + "probability": 0.9851 + }, + { + "start": 13270.46, + "end": 13272.54, + "probability": 0.9694 + }, + { + "start": 13273.16, + "end": 13273.62, + "probability": 0.6634 + }, + { + "start": 13274.02, + "end": 13277.9, + "probability": 0.8117 + }, + { + "start": 13278.08, + "end": 13279.14, + "probability": 0.8982 + }, + { + "start": 13279.38, + "end": 13280.64, + "probability": 0.6992 + }, + { + "start": 13280.96, + "end": 13281.46, + "probability": 0.5775 + }, + { + "start": 13281.48, + "end": 13283.78, + "probability": 0.9221 + }, + { + "start": 13283.78, + "end": 13286.08, + "probability": 0.8747 + }, + { + "start": 13286.46, + "end": 13289.18, + "probability": 0.9974 + }, + { + "start": 13289.32, + "end": 13289.84, + "probability": 0.8568 + }, + { + "start": 13289.92, + "end": 13293.0, + "probability": 0.9829 + }, + { + "start": 13293.4, + "end": 13295.14, + "probability": 0.9887 + }, + { + "start": 13295.2, + "end": 13295.66, + "probability": 0.8765 + }, + { + "start": 13296.18, + "end": 13297.78, + "probability": 0.921 + }, + { + "start": 13298.2, + "end": 13298.55, + "probability": 0.6213 + }, + { + "start": 13299.02, + "end": 13299.52, + "probability": 0.5207 + }, + { + "start": 13299.52, + "end": 13301.26, + "probability": 0.9178 + }, + { + "start": 13301.38, + "end": 13304.92, + "probability": 0.9263 + }, + { + "start": 13305.0, + "end": 13307.3, + "probability": 0.9805 + }, + { + "start": 13307.3, + "end": 13310.02, + "probability": 0.9519 + }, + { + "start": 13311.14, + "end": 13312.78, + "probability": 0.6939 + }, + { + "start": 13323.26, + "end": 13324.3, + "probability": 0.6783 + }, + { + "start": 13324.4, + "end": 13324.96, + "probability": 0.9189 + }, + { + "start": 13325.78, + "end": 13326.6, + "probability": 0.9638 + }, + { + "start": 13327.2, + "end": 13328.92, + "probability": 0.5941 + }, + { + "start": 13329.44, + "end": 13331.6, + "probability": 0.8503 + }, + { + "start": 13332.42, + "end": 13336.28, + "probability": 0.9974 + }, + { + "start": 13336.28, + "end": 13342.88, + "probability": 0.999 + }, + { + "start": 13343.96, + "end": 13345.76, + "probability": 0.7725 + }, + { + "start": 13346.32, + "end": 13350.02, + "probability": 0.9963 + }, + { + "start": 13350.64, + "end": 13353.82, + "probability": 0.996 + }, + { + "start": 13353.94, + "end": 13358.06, + "probability": 0.9268 + }, + { + "start": 13358.84, + "end": 13362.52, + "probability": 0.8277 + }, + { + "start": 13362.7, + "end": 13363.4, + "probability": 0.9578 + }, + { + "start": 13364.0, + "end": 13366.22, + "probability": 0.9846 + }, + { + "start": 13366.4, + "end": 13368.32, + "probability": 0.9956 + }, + { + "start": 13369.02, + "end": 13371.76, + "probability": 0.9363 + }, + { + "start": 13371.92, + "end": 13372.3, + "probability": 0.5431 + }, + { + "start": 13372.4, + "end": 13373.4, + "probability": 0.8892 + }, + { + "start": 13374.36, + "end": 13375.64, + "probability": 0.9941 + }, + { + "start": 13375.98, + "end": 13377.17, + "probability": 0.9306 + }, + { + "start": 13377.68, + "end": 13380.74, + "probability": 0.9629 + }, + { + "start": 13380.74, + "end": 13382.84, + "probability": 0.9992 + }, + { + "start": 13383.0, + "end": 13385.36, + "probability": 0.8271 + }, + { + "start": 13385.44, + "end": 13386.7, + "probability": 0.9041 + }, + { + "start": 13387.12, + "end": 13387.72, + "probability": 0.8858 + }, + { + "start": 13388.12, + "end": 13393.32, + "probability": 0.9255 + }, + { + "start": 13393.9, + "end": 13394.08, + "probability": 0.649 + }, + { + "start": 13395.56, + "end": 13397.92, + "probability": 0.5706 + }, + { + "start": 13398.06, + "end": 13400.7, + "probability": 0.7088 + }, + { + "start": 13408.88, + "end": 13411.06, + "probability": 0.6361 + }, + { + "start": 13412.6, + "end": 13413.5, + "probability": 0.9316 + }, + { + "start": 13413.54, + "end": 13414.32, + "probability": 0.9419 + }, + { + "start": 13417.06, + "end": 13417.98, + "probability": 0.5682 + }, + { + "start": 13417.98, + "end": 13418.82, + "probability": 0.9729 + }, + { + "start": 13418.94, + "end": 13419.66, + "probability": 0.8272 + }, + { + "start": 13420.02, + "end": 13421.41, + "probability": 0.029 + }, + { + "start": 13425.03, + "end": 13429.12, + "probability": 0.0642 + }, + { + "start": 13446.5, + "end": 13448.36, + "probability": 0.2488 + }, + { + "start": 13448.64, + "end": 13451.18, + "probability": 0.8829 + }, + { + "start": 13451.64, + "end": 13452.34, + "probability": 0.2989 + }, + { + "start": 13452.4, + "end": 13453.68, + "probability": 0.8822 + }, + { + "start": 13455.7, + "end": 13458.16, + "probability": 0.7559 + }, + { + "start": 13458.28, + "end": 13458.88, + "probability": 0.7627 + }, + { + "start": 13459.76, + "end": 13460.24, + "probability": 0.0145 + }, + { + "start": 13465.38, + "end": 13469.12, + "probability": 0.4016 + }, + { + "start": 13470.58, + "end": 13471.14, + "probability": 0.2914 + }, + { + "start": 13471.14, + "end": 13471.8, + "probability": 0.3541 + }, + { + "start": 13473.94, + "end": 13476.78, + "probability": 0.7361 + }, + { + "start": 13477.42, + "end": 13478.8, + "probability": 0.8516 + }, + { + "start": 13478.86, + "end": 13479.2, + "probability": 0.9265 + }, + { + "start": 13487.57, + "end": 13490.46, + "probability": 0.5118 + }, + { + "start": 13491.14, + "end": 13498.2, + "probability": 0.5132 + }, + { + "start": 13500.5, + "end": 13501.28, + "probability": 0.6134 + }, + { + "start": 13501.38, + "end": 13504.06, + "probability": 0.938 + }, + { + "start": 13504.18, + "end": 13504.64, + "probability": 0.9305 + }, + { + "start": 13509.24, + "end": 13509.96, + "probability": 0.659 + }, + { + "start": 13512.0, + "end": 13512.6, + "probability": 0.9021 + }, + { + "start": 13514.04, + "end": 13517.6, + "probability": 0.8042 + }, + { + "start": 13517.7, + "end": 13519.52, + "probability": 0.7584 + }, + { + "start": 13519.82, + "end": 13524.12, + "probability": 0.9946 + }, + { + "start": 13524.12, + "end": 13529.68, + "probability": 0.9834 + }, + { + "start": 13529.68, + "end": 13535.04, + "probability": 0.9896 + }, + { + "start": 13536.08, + "end": 13539.8, + "probability": 0.9764 + }, + { + "start": 13539.8, + "end": 13542.04, + "probability": 0.8673 + }, + { + "start": 13542.88, + "end": 13546.08, + "probability": 0.6965 + }, + { + "start": 13546.44, + "end": 13548.18, + "probability": 0.8528 + }, + { + "start": 13548.38, + "end": 13549.96, + "probability": 0.6428 + }, + { + "start": 13552.04, + "end": 13557.42, + "probability": 0.9815 + }, + { + "start": 13558.2, + "end": 13562.74, + "probability": 0.8971 + }, + { + "start": 13563.64, + "end": 13563.82, + "probability": 0.4832 + }, + { + "start": 13563.98, + "end": 13564.86, + "probability": 0.9039 + }, + { + "start": 13565.02, + "end": 13569.32, + "probability": 0.9837 + }, + { + "start": 13569.32, + "end": 13574.62, + "probability": 0.9445 + }, + { + "start": 13575.18, + "end": 13579.1, + "probability": 0.9411 + }, + { + "start": 13579.1, + "end": 13583.06, + "probability": 0.9925 + }, + { + "start": 13583.06, + "end": 13588.72, + "probability": 0.9988 + }, + { + "start": 13589.86, + "end": 13590.32, + "probability": 0.3587 + }, + { + "start": 13590.52, + "end": 13594.3, + "probability": 0.8699 + }, + { + "start": 13595.32, + "end": 13598.98, + "probability": 0.9813 + }, + { + "start": 13599.6, + "end": 13604.84, + "probability": 0.9858 + }, + { + "start": 13605.44, + "end": 13606.92, + "probability": 0.9701 + }, + { + "start": 13608.04, + "end": 13608.14, + "probability": 0.011 + }, + { + "start": 13608.18, + "end": 13612.54, + "probability": 0.9889 + }, + { + "start": 13613.16, + "end": 13616.58, + "probability": 0.9951 + }, + { + "start": 13617.34, + "end": 13617.36, + "probability": 0.1803 + }, + { + "start": 13617.36, + "end": 13623.08, + "probability": 0.9619 + }, + { + "start": 13624.08, + "end": 13624.08, + "probability": 0.0011 + }, + { + "start": 13624.08, + "end": 13627.14, + "probability": 0.9862 + }, + { + "start": 13627.72, + "end": 13630.04, + "probability": 0.9951 + }, + { + "start": 13630.04, + "end": 13635.38, + "probability": 0.9775 + }, + { + "start": 13636.12, + "end": 13639.42, + "probability": 0.6769 + }, + { + "start": 13640.02, + "end": 13644.34, + "probability": 0.9517 + }, + { + "start": 13645.56, + "end": 13645.56, + "probability": 0.0016 + }, + { + "start": 13645.56, + "end": 13651.84, + "probability": 0.9073 + }, + { + "start": 13652.44, + "end": 13658.29, + "probability": 0.869 + }, + { + "start": 13658.42, + "end": 13663.9, + "probability": 0.9787 + }, + { + "start": 13664.64, + "end": 13667.7, + "probability": 0.912 + }, + { + "start": 13668.3, + "end": 13669.58, + "probability": 0.9576 + }, + { + "start": 13669.82, + "end": 13670.02, + "probability": 0.4478 + }, + { + "start": 13670.34, + "end": 13671.3, + "probability": 0.5302 + }, + { + "start": 13671.4, + "end": 13675.66, + "probability": 0.8824 + }, + { + "start": 13682.22, + "end": 13682.66, + "probability": 0.715 + }, + { + "start": 13683.52, + "end": 13689.12, + "probability": 0.674 + }, + { + "start": 13689.4, + "end": 13689.62, + "probability": 0.7729 + }, + { + "start": 13690.78, + "end": 13693.08, + "probability": 0.988 + }, + { + "start": 13693.32, + "end": 13696.75, + "probability": 0.9908 + }, + { + "start": 13697.08, + "end": 13697.6, + "probability": 0.889 + }, + { + "start": 13698.1, + "end": 13699.7, + "probability": 0.9798 + }, + { + "start": 13700.26, + "end": 13702.84, + "probability": 0.6087 + }, + { + "start": 13703.48, + "end": 13708.9, + "probability": 0.9302 + }, + { + "start": 13709.6, + "end": 13713.9, + "probability": 0.8923 + }, + { + "start": 13714.9, + "end": 13721.7, + "probability": 0.9756 + }, + { + "start": 13722.12, + "end": 13724.54, + "probability": 0.959 + }, + { + "start": 13724.9, + "end": 13727.14, + "probability": 0.8333 + }, + { + "start": 13727.74, + "end": 13731.56, + "probability": 0.875 + }, + { + "start": 13732.02, + "end": 13733.14, + "probability": 0.989 + }, + { + "start": 13733.26, + "end": 13737.06, + "probability": 0.9358 + }, + { + "start": 13737.54, + "end": 13740.38, + "probability": 0.996 + }, + { + "start": 13741.19, + "end": 13743.4, + "probability": 0.8472 + }, + { + "start": 13744.04, + "end": 13747.36, + "probability": 0.9945 + }, + { + "start": 13747.72, + "end": 13750.24, + "probability": 0.6715 + }, + { + "start": 13750.68, + "end": 13755.34, + "probability": 0.857 + }, + { + "start": 13755.42, + "end": 13758.12, + "probability": 0.8319 + }, + { + "start": 13758.64, + "end": 13761.88, + "probability": 0.9585 + }, + { + "start": 13761.98, + "end": 13762.74, + "probability": 0.94 + }, + { + "start": 13763.28, + "end": 13764.72, + "probability": 0.6992 + }, + { + "start": 13764.96, + "end": 13766.34, + "probability": 0.8511 + }, + { + "start": 13766.44, + "end": 13769.88, + "probability": 0.7563 + }, + { + "start": 13770.96, + "end": 13772.22, + "probability": 0.6386 + }, + { + "start": 13772.38, + "end": 13773.42, + "probability": 0.7875 + }, + { + "start": 13773.64, + "end": 13780.3, + "probability": 0.9773 + }, + { + "start": 13780.3, + "end": 13785.1, + "probability": 0.9545 + }, + { + "start": 13786.58, + "end": 13789.14, + "probability": 0.6656 + }, + { + "start": 13789.14, + "end": 13789.9, + "probability": 0.7474 + }, + { + "start": 13790.66, + "end": 13794.7, + "probability": 0.0224 + }, + { + "start": 13794.7, + "end": 13796.89, + "probability": 0.1059 + }, + { + "start": 13798.86, + "end": 13799.78, + "probability": 0.0407 + }, + { + "start": 13801.84, + "end": 13802.02, + "probability": 0.1014 + }, + { + "start": 13802.02, + "end": 13802.1, + "probability": 0.4752 + }, + { + "start": 13802.1, + "end": 13802.1, + "probability": 0.3073 + }, + { + "start": 13802.1, + "end": 13802.1, + "probability": 0.2649 + }, + { + "start": 13802.1, + "end": 13804.34, + "probability": 0.4945 + }, + { + "start": 13805.62, + "end": 13805.96, + "probability": 0.7311 + }, + { + "start": 13806.12, + "end": 13807.1, + "probability": 0.6682 + }, + { + "start": 13807.14, + "end": 13807.78, + "probability": 0.4776 + }, + { + "start": 13807.9, + "end": 13808.48, + "probability": 0.3865 + }, + { + "start": 13808.7, + "end": 13809.08, + "probability": 0.6552 + }, + { + "start": 13809.48, + "end": 13810.46, + "probability": 0.7673 + }, + { + "start": 13811.08, + "end": 13816.24, + "probability": 0.9448 + }, + { + "start": 13816.76, + "end": 13819.14, + "probability": 0.8546 + }, + { + "start": 13819.68, + "end": 13823.79, + "probability": 0.9514 + }, + { + "start": 13824.36, + "end": 13829.98, + "probability": 0.9956 + }, + { + "start": 13830.08, + "end": 13831.36, + "probability": 0.6306 + }, + { + "start": 13832.36, + "end": 13835.34, + "probability": 0.9844 + }, + { + "start": 13835.84, + "end": 13837.38, + "probability": 0.4656 + }, + { + "start": 13838.04, + "end": 13839.82, + "probability": 0.994 + }, + { + "start": 13844.66, + "end": 13847.04, + "probability": 0.9836 + }, + { + "start": 13848.33, + "end": 13852.04, + "probability": 0.9242 + }, + { + "start": 13852.82, + "end": 13856.46, + "probability": 0.9469 + }, + { + "start": 13868.53, + "end": 13870.96, + "probability": 0.8142 + }, + { + "start": 13877.16, + "end": 13878.32, + "probability": 0.7532 + }, + { + "start": 13879.24, + "end": 13880.92, + "probability": 0.9521 + }, + { + "start": 13882.66, + "end": 13886.94, + "probability": 0.9483 + }, + { + "start": 13887.94, + "end": 13889.0, + "probability": 0.7347 + }, + { + "start": 13890.62, + "end": 13892.32, + "probability": 0.9746 + }, + { + "start": 13893.0, + "end": 13894.8, + "probability": 0.9879 + }, + { + "start": 13896.42, + "end": 13897.24, + "probability": 0.7814 + }, + { + "start": 13897.48, + "end": 13898.16, + "probability": 0.5714 + }, + { + "start": 13898.24, + "end": 13899.4, + "probability": 0.9308 + }, + { + "start": 13899.82, + "end": 13903.14, + "probability": 0.8781 + }, + { + "start": 13904.7, + "end": 13906.82, + "probability": 0.8339 + }, + { + "start": 13907.8, + "end": 13913.4, + "probability": 0.9453 + }, + { + "start": 13914.46, + "end": 13919.92, + "probability": 0.6509 + }, + { + "start": 13921.58, + "end": 13922.26, + "probability": 0.645 + }, + { + "start": 13922.62, + "end": 13929.78, + "probability": 0.9461 + }, + { + "start": 13930.84, + "end": 13934.02, + "probability": 0.798 + }, + { + "start": 13935.02, + "end": 13937.74, + "probability": 0.9459 + }, + { + "start": 13938.38, + "end": 13939.88, + "probability": 0.7888 + }, + { + "start": 13941.38, + "end": 13942.82, + "probability": 0.9899 + }, + { + "start": 13943.8, + "end": 13946.3, + "probability": 0.9476 + }, + { + "start": 13947.62, + "end": 13948.86, + "probability": 0.9482 + }, + { + "start": 13950.22, + "end": 13956.08, + "probability": 0.9243 + }, + { + "start": 13957.02, + "end": 13958.2, + "probability": 0.9938 + }, + { + "start": 13958.78, + "end": 13963.7, + "probability": 0.9828 + }, + { + "start": 13966.0, + "end": 13968.14, + "probability": 0.7486 + }, + { + "start": 13968.3, + "end": 13968.62, + "probability": 0.4345 + }, + { + "start": 13968.88, + "end": 13969.94, + "probability": 0.87 + }, + { + "start": 13970.62, + "end": 13971.3, + "probability": 0.672 + }, + { + "start": 13972.46, + "end": 13978.46, + "probability": 0.8726 + }, + { + "start": 13979.12, + "end": 13981.56, + "probability": 0.863 + }, + { + "start": 13983.62, + "end": 13987.08, + "probability": 0.9937 + }, + { + "start": 13988.7, + "end": 13990.64, + "probability": 0.9741 + }, + { + "start": 13991.48, + "end": 13994.92, + "probability": 0.9976 + }, + { + "start": 13996.18, + "end": 14001.68, + "probability": 0.9938 + }, + { + "start": 14002.7, + "end": 14004.82, + "probability": 0.9958 + }, + { + "start": 14004.82, + "end": 14008.62, + "probability": 0.9968 + }, + { + "start": 14009.76, + "end": 14010.62, + "probability": 0.998 + }, + { + "start": 14011.14, + "end": 14011.66, + "probability": 0.9582 + }, + { + "start": 14012.42, + "end": 14016.32, + "probability": 0.9734 + }, + { + "start": 14017.18, + "end": 14018.26, + "probability": 0.9429 + }, + { + "start": 14018.8, + "end": 14020.84, + "probability": 0.9635 + }, + { + "start": 14022.36, + "end": 14026.34, + "probability": 0.9618 + }, + { + "start": 14027.58, + "end": 14029.72, + "probability": 0.797 + }, + { + "start": 14030.64, + "end": 14031.92, + "probability": 0.9771 + }, + { + "start": 14032.82, + "end": 14035.5, + "probability": 0.9923 + }, + { + "start": 14037.12, + "end": 14037.78, + "probability": 0.8521 + }, + { + "start": 14038.0, + "end": 14043.7, + "probability": 0.9163 + }, + { + "start": 14044.44, + "end": 14046.18, + "probability": 0.9966 + }, + { + "start": 14046.78, + "end": 14047.74, + "probability": 0.9968 + }, + { + "start": 14048.7, + "end": 14049.66, + "probability": 0.7703 + }, + { + "start": 14049.82, + "end": 14051.96, + "probability": 0.9941 + }, + { + "start": 14052.62, + "end": 14056.22, + "probability": 0.9193 + }, + { + "start": 14057.06, + "end": 14058.6, + "probability": 0.9355 + }, + { + "start": 14059.22, + "end": 14062.6, + "probability": 0.991 + }, + { + "start": 14064.92, + "end": 14068.04, + "probability": 0.9771 + }, + { + "start": 14068.68, + "end": 14069.76, + "probability": 0.7047 + }, + { + "start": 14070.72, + "end": 14072.58, + "probability": 0.8889 + }, + { + "start": 14073.48, + "end": 14074.88, + "probability": 0.7839 + }, + { + "start": 14075.54, + "end": 14080.54, + "probability": 0.9908 + }, + { + "start": 14080.96, + "end": 14083.0, + "probability": 0.8804 + }, + { + "start": 14084.3, + "end": 14086.04, + "probability": 0.8299 + }, + { + "start": 14087.34, + "end": 14090.34, + "probability": 0.9608 + }, + { + "start": 14091.62, + "end": 14092.98, + "probability": 0.9662 + }, + { + "start": 14093.86, + "end": 14094.42, + "probability": 0.5692 + }, + { + "start": 14095.16, + "end": 14096.66, + "probability": 0.9873 + }, + { + "start": 14097.48, + "end": 14100.14, + "probability": 0.6964 + }, + { + "start": 14100.66, + "end": 14102.04, + "probability": 0.7728 + }, + { + "start": 14103.58, + "end": 14105.38, + "probability": 0.031 + }, + { + "start": 14105.38, + "end": 14107.12, + "probability": 0.568 + }, + { + "start": 14107.38, + "end": 14109.62, + "probability": 0.9072 + }, + { + "start": 14110.2, + "end": 14114.02, + "probability": 0.9486 + }, + { + "start": 14114.66, + "end": 14117.12, + "probability": 0.9905 + }, + { + "start": 14117.88, + "end": 14120.9, + "probability": 0.6894 + }, + { + "start": 14120.92, + "end": 14122.82, + "probability": 0.1071 + }, + { + "start": 14123.04, + "end": 14123.62, + "probability": 0.1598 + }, + { + "start": 14123.8, + "end": 14124.94, + "probability": 0.159 + }, + { + "start": 14125.44, + "end": 14126.08, + "probability": 0.7698 + }, + { + "start": 14126.08, + "end": 14127.48, + "probability": 0.4511 + }, + { + "start": 14127.68, + "end": 14128.92, + "probability": 0.4868 + }, + { + "start": 14128.94, + "end": 14130.86, + "probability": 0.7203 + }, + { + "start": 14130.94, + "end": 14132.76, + "probability": 0.87 + }, + { + "start": 14132.98, + "end": 14134.94, + "probability": 0.4667 + }, + { + "start": 14135.2, + "end": 14136.54, + "probability": 0.917 + }, + { + "start": 14136.58, + "end": 14136.58, + "probability": 0.061 + }, + { + "start": 14136.58, + "end": 14139.7, + "probability": 0.9425 + }, + { + "start": 14140.62, + "end": 14140.62, + "probability": 0.0647 + }, + { + "start": 14140.62, + "end": 14140.62, + "probability": 0.0213 + }, + { + "start": 14140.62, + "end": 14141.92, + "probability": 0.7522 + }, + { + "start": 14142.22, + "end": 14142.26, + "probability": 0.0484 + }, + { + "start": 14142.26, + "end": 14142.26, + "probability": 0.0835 + }, + { + "start": 14142.26, + "end": 14142.26, + "probability": 0.4152 + }, + { + "start": 14142.26, + "end": 14146.04, + "probability": 0.5882 + }, + { + "start": 14146.34, + "end": 14148.12, + "probability": 0.9745 + }, + { + "start": 14148.54, + "end": 14151.26, + "probability": 0.9783 + }, + { + "start": 14151.44, + "end": 14152.52, + "probability": 0.9912 + }, + { + "start": 14153.2, + "end": 14154.62, + "probability": 0.089 + }, + { + "start": 14155.6, + "end": 14156.64, + "probability": 0.293 + }, + { + "start": 14156.76, + "end": 14157.78, + "probability": 0.4955 + }, + { + "start": 14157.86, + "end": 14159.04, + "probability": 0.1139 + }, + { + "start": 14159.9, + "end": 14164.22, + "probability": 0.95 + }, + { + "start": 14164.54, + "end": 14166.88, + "probability": 0.7146 + }, + { + "start": 14167.14, + "end": 14169.01, + "probability": 0.9138 + }, + { + "start": 14169.48, + "end": 14172.58, + "probability": 0.0538 + }, + { + "start": 14173.92, + "end": 14175.34, + "probability": 0.1234 + }, + { + "start": 14175.82, + "end": 14181.58, + "probability": 0.7373 + }, + { + "start": 14182.12, + "end": 14184.62, + "probability": 0.3235 + }, + { + "start": 14184.68, + "end": 14187.96, + "probability": 0.4822 + }, + { + "start": 14188.06, + "end": 14188.8, + "probability": 0.0835 + }, + { + "start": 14188.8, + "end": 14189.96, + "probability": 0.1538 + }, + { + "start": 14190.24, + "end": 14191.44, + "probability": 0.1517 + }, + { + "start": 14191.44, + "end": 14191.88, + "probability": 0.6934 + }, + { + "start": 14191.96, + "end": 14192.86, + "probability": 0.7374 + }, + { + "start": 14192.98, + "end": 14195.02, + "probability": 0.5857 + }, + { + "start": 14195.46, + "end": 14196.5, + "probability": 0.8684 + }, + { + "start": 14196.58, + "end": 14197.44, + "probability": 0.0351 + }, + { + "start": 14197.68, + "end": 14197.74, + "probability": 0.0428 + }, + { + "start": 14197.74, + "end": 14197.74, + "probability": 0.0321 + }, + { + "start": 14197.74, + "end": 14200.02, + "probability": 0.3878 + }, + { + "start": 14200.02, + "end": 14201.44, + "probability": 0.6688 + }, + { + "start": 14201.44, + "end": 14206.26, + "probability": 0.8163 + }, + { + "start": 14206.28, + "end": 14211.22, + "probability": 0.8322 + }, + { + "start": 14211.48, + "end": 14211.48, + "probability": 0.2716 + }, + { + "start": 14211.48, + "end": 14211.48, + "probability": 0.0211 + }, + { + "start": 14211.48, + "end": 14211.62, + "probability": 0.2665 + }, + { + "start": 14211.62, + "end": 14212.83, + "probability": 0.5281 + }, + { + "start": 14213.86, + "end": 14217.0, + "probability": 0.7027 + }, + { + "start": 14217.1, + "end": 14217.64, + "probability": 0.1597 + }, + { + "start": 14217.86, + "end": 14221.5, + "probability": 0.593 + }, + { + "start": 14221.78, + "end": 14224.04, + "probability": 0.9523 + }, + { + "start": 14224.44, + "end": 14227.9, + "probability": 0.9756 + }, + { + "start": 14228.58, + "end": 14229.3, + "probability": 0.0655 + }, + { + "start": 14229.5, + "end": 14230.96, + "probability": 0.0317 + }, + { + "start": 14231.26, + "end": 14233.76, + "probability": 0.8324 + }, + { + "start": 14233.98, + "end": 14235.98, + "probability": 0.9209 + }, + { + "start": 14236.36, + "end": 14237.84, + "probability": 0.8702 + }, + { + "start": 14238.01, + "end": 14243.88, + "probability": 0.8939 + }, + { + "start": 14245.69, + "end": 14247.74, + "probability": 0.559 + }, + { + "start": 14247.86, + "end": 14249.02, + "probability": 0.9814 + }, + { + "start": 14249.16, + "end": 14251.74, + "probability": 0.9004 + }, + { + "start": 14253.08, + "end": 14259.54, + "probability": 0.9758 + }, + { + "start": 14259.66, + "end": 14259.88, + "probability": 0.778 + }, + { + "start": 14260.0, + "end": 14260.98, + "probability": 0.9317 + }, + { + "start": 14261.34, + "end": 14262.46, + "probability": 0.9759 + }, + { + "start": 14263.26, + "end": 14264.48, + "probability": 0.0303 + }, + { + "start": 14264.48, + "end": 14264.6, + "probability": 0.2088 + }, + { + "start": 14265.08, + "end": 14270.2, + "probability": 0.5181 + }, + { + "start": 14270.78, + "end": 14271.96, + "probability": 0.7324 + }, + { + "start": 14272.34, + "end": 14274.86, + "probability": 0.1442 + }, + { + "start": 14277.14, + "end": 14277.84, + "probability": 0.014 + }, + { + "start": 14277.84, + "end": 14277.84, + "probability": 0.0135 + }, + { + "start": 14277.84, + "end": 14277.84, + "probability": 0.0132 + }, + { + "start": 14277.84, + "end": 14277.84, + "probability": 0.014 + }, + { + "start": 14277.84, + "end": 14281.14, + "probability": 0.4137 + }, + { + "start": 14281.58, + "end": 14285.52, + "probability": 0.0798 + }, + { + "start": 14285.7, + "end": 14286.88, + "probability": 0.0413 + }, + { + "start": 14287.06, + "end": 14289.24, + "probability": 0.1108 + }, + { + "start": 14289.24, + "end": 14289.87, + "probability": 0.6795 + }, + { + "start": 14290.3, + "end": 14291.66, + "probability": 0.4226 + }, + { + "start": 14291.82, + "end": 14294.32, + "probability": 0.6677 + }, + { + "start": 14294.6, + "end": 14298.26, + "probability": 0.3439 + }, + { + "start": 14298.62, + "end": 14300.12, + "probability": 0.8367 + }, + { + "start": 14303.16, + "end": 14303.36, + "probability": 0.2448 + }, + { + "start": 14303.36, + "end": 14303.64, + "probability": 0.2198 + }, + { + "start": 14304.62, + "end": 14306.12, + "probability": 0.1531 + }, + { + "start": 14306.4, + "end": 14309.77, + "probability": 0.4 + }, + { + "start": 14310.74, + "end": 14314.12, + "probability": 0.7809 + }, + { + "start": 14314.12, + "end": 14315.04, + "probability": 0.8971 + }, + { + "start": 14315.14, + "end": 14317.68, + "probability": 0.6431 + }, + { + "start": 14319.0, + "end": 14319.92, + "probability": 0.0225 + }, + { + "start": 14320.42, + "end": 14320.42, + "probability": 0.1355 + }, + { + "start": 14320.42, + "end": 14328.32, + "probability": 0.868 + }, + { + "start": 14328.48, + "end": 14329.64, + "probability": 0.7791 + }, + { + "start": 14330.0, + "end": 14332.22, + "probability": 0.9849 + }, + { + "start": 14333.12, + "end": 14334.27, + "probability": 0.9824 + }, + { + "start": 14336.44, + "end": 14338.34, + "probability": 0.5216 + }, + { + "start": 14341.38, + "end": 14342.9, + "probability": 0.2661 + }, + { + "start": 14343.74, + "end": 14346.08, + "probability": 0.6374 + }, + { + "start": 14346.18, + "end": 14350.62, + "probability": 0.9397 + }, + { + "start": 14350.76, + "end": 14353.06, + "probability": 0.2006 + }, + { + "start": 14353.28, + "end": 14356.72, + "probability": 0.9266 + }, + { + "start": 14357.38, + "end": 14359.9, + "probability": 0.0003 + }, + { + "start": 14360.14, + "end": 14365.76, + "probability": 0.9847 + }, + { + "start": 14366.68, + "end": 14368.22, + "probability": 0.187 + }, + { + "start": 14368.7, + "end": 14370.06, + "probability": 0.7104 + }, + { + "start": 14370.12, + "end": 14370.72, + "probability": 0.3538 + }, + { + "start": 14370.88, + "end": 14372.48, + "probability": 0.9336 + }, + { + "start": 14372.58, + "end": 14373.0, + "probability": 0.7977 + }, + { + "start": 14373.16, + "end": 14374.42, + "probability": 0.9694 + }, + { + "start": 14374.56, + "end": 14374.7, + "probability": 0.7994 + }, + { + "start": 14374.7, + "end": 14376.6, + "probability": 0.8859 + }, + { + "start": 14377.67, + "end": 14379.47, + "probability": 0.9976 + }, + { + "start": 14380.86, + "end": 14383.34, + "probability": 0.9948 + }, + { + "start": 14384.9, + "end": 14388.0, + "probability": 0.9806 + }, + { + "start": 14388.48, + "end": 14391.1, + "probability": 0.9656 + }, + { + "start": 14391.62, + "end": 14392.62, + "probability": 0.5386 + }, + { + "start": 14392.88, + "end": 14393.74, + "probability": 0.881 + }, + { + "start": 14394.34, + "end": 14397.08, + "probability": 0.0174 + }, + { + "start": 14398.72, + "end": 14399.24, + "probability": 0.0535 + }, + { + "start": 14399.24, + "end": 14401.46, + "probability": 0.4489 + }, + { + "start": 14401.56, + "end": 14405.04, + "probability": 0.1612 + }, + { + "start": 14406.92, + "end": 14407.48, + "probability": 0.0432 + }, + { + "start": 14407.48, + "end": 14407.71, + "probability": 0.1113 + }, + { + "start": 14407.76, + "end": 14409.63, + "probability": 0.2305 + }, + { + "start": 14410.74, + "end": 14412.06, + "probability": 0.8423 + }, + { + "start": 14412.8, + "end": 14414.14, + "probability": 0.7616 + }, + { + "start": 14414.14, + "end": 14416.14, + "probability": 0.9917 + }, + { + "start": 14416.28, + "end": 14417.86, + "probability": 0.338 + }, + { + "start": 14418.2, + "end": 14419.96, + "probability": 0.7529 + }, + { + "start": 14421.02, + "end": 14424.92, + "probability": 0.6189 + }, + { + "start": 14426.06, + "end": 14428.58, + "probability": 0.1365 + }, + { + "start": 14428.7, + "end": 14429.08, + "probability": 0.4519 + }, + { + "start": 14429.28, + "end": 14431.26, + "probability": 0.2486 + }, + { + "start": 14443.81, + "end": 14443.97, + "probability": 0.3904 + }, + { + "start": 14446.1, + "end": 14447.26, + "probability": 0.2965 + }, + { + "start": 14447.46, + "end": 14450.88, + "probability": 0.1046 + }, + { + "start": 14452.12, + "end": 14452.6, + "probability": 0.0418 + }, + { + "start": 14452.62, + "end": 14453.38, + "probability": 0.277 + }, + { + "start": 14453.44, + "end": 14455.72, + "probability": 0.0533 + }, + { + "start": 14455.82, + "end": 14458.66, + "probability": 0.119 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.4, + "end": 14506.38, + "probability": 0.185 + }, + { + "start": 14506.42, + "end": 14508.56, + "probability": 0.0267 + }, + { + "start": 14509.96, + "end": 14511.56, + "probability": 0.1617 + }, + { + "start": 14512.9, + "end": 14514.96, + "probability": 0.2921 + }, + { + "start": 14526.46, + "end": 14526.96, + "probability": 0.2085 + }, + { + "start": 14529.7, + "end": 14530.22, + "probability": 0.1188 + }, + { + "start": 14532.22, + "end": 14533.22, + "probability": 0.0254 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.0, + "end": 14631.0, + "probability": 0.0 + }, + { + "start": 14631.66, + "end": 14634.78, + "probability": 0.7323 + }, + { + "start": 14635.78, + "end": 14636.78, + "probability": 0.8771 + }, + { + "start": 14637.22, + "end": 14640.16, + "probability": 0.9941 + }, + { + "start": 14640.16, + "end": 14643.68, + "probability": 0.9892 + }, + { + "start": 14644.24, + "end": 14646.1, + "probability": 0.9013 + }, + { + "start": 14646.62, + "end": 14651.42, + "probability": 0.9931 + }, + { + "start": 14653.14, + "end": 14657.39, + "probability": 0.9946 + }, + { + "start": 14657.4, + "end": 14663.36, + "probability": 0.9966 + }, + { + "start": 14664.34, + "end": 14668.96, + "probability": 0.9229 + }, + { + "start": 14669.56, + "end": 14671.96, + "probability": 0.8972 + }, + { + "start": 14672.42, + "end": 14675.9, + "probability": 0.9934 + }, + { + "start": 14676.08, + "end": 14680.46, + "probability": 0.969 + }, + { + "start": 14681.02, + "end": 14684.32, + "probability": 0.8341 + }, + { + "start": 14685.92, + "end": 14689.14, + "probability": 0.4427 + }, + { + "start": 14689.5, + "end": 14690.02, + "probability": 0.0183 + }, + { + "start": 14690.02, + "end": 14694.28, + "probability": 0.8535 + }, + { + "start": 14694.28, + "end": 14698.0, + "probability": 0.8636 + }, + { + "start": 14698.72, + "end": 14701.96, + "probability": 0.7968 + }, + { + "start": 14702.44, + "end": 14706.6, + "probability": 0.8197 + }, + { + "start": 14707.2, + "end": 14709.08, + "probability": 0.4901 + }, + { + "start": 14709.6, + "end": 14711.48, + "probability": 0.932 + }, + { + "start": 14712.08, + "end": 14713.18, + "probability": 0.7864 + }, + { + "start": 14713.32, + "end": 14715.18, + "probability": 0.9474 + }, + { + "start": 14715.6, + "end": 14720.72, + "probability": 0.9961 + }, + { + "start": 14721.34, + "end": 14728.98, + "probability": 0.692 + }, + { + "start": 14730.36, + "end": 14734.6, + "probability": 0.0108 + }, + { + "start": 14735.02, + "end": 14738.4, + "probability": 0.3935 + }, + { + "start": 14739.34, + "end": 14740.08, + "probability": 0.0813 + }, + { + "start": 14740.08, + "end": 14746.04, + "probability": 0.4866 + }, + { + "start": 14748.38, + "end": 14752.0, + "probability": 0.0037 + }, + { + "start": 14753.4, + "end": 14754.18, + "probability": 0.0843 + }, + { + "start": 14755.4, + "end": 14755.54, + "probability": 0.0598 + }, + { + "start": 14755.54, + "end": 14755.68, + "probability": 0.6029 + }, + { + "start": 14755.74, + "end": 14756.2, + "probability": 0.4556 + }, + { + "start": 14756.2, + "end": 14756.96, + "probability": 0.4853 + }, + { + "start": 14758.16, + "end": 14758.7, + "probability": 0.1732 + }, + { + "start": 14759.02, + "end": 14759.5, + "probability": 0.6033 + }, + { + "start": 14760.4, + "end": 14764.42, + "probability": 0.4119 + }, + { + "start": 14765.04, + "end": 14766.2, + "probability": 0.2326 + }, + { + "start": 14767.74, + "end": 14771.78, + "probability": 0.8763 + }, + { + "start": 14772.04, + "end": 14776.06, + "probability": 0.1926 + }, + { + "start": 14777.04, + "end": 14777.92, + "probability": 0.068 + }, + { + "start": 14779.6, + "end": 14780.57, + "probability": 0.026 + }, + { + "start": 14782.3, + "end": 14782.56, + "probability": 0.1255 + }, + { + "start": 14782.56, + "end": 14784.1, + "probability": 0.0036 + }, + { + "start": 14785.46, + "end": 14788.44, + "probability": 0.023 + }, + { + "start": 14790.78, + "end": 14793.9, + "probability": 0.1366 + }, + { + "start": 14793.9, + "end": 14794.58, + "probability": 0.0772 + }, + { + "start": 14794.58, + "end": 14794.58, + "probability": 0.1111 + }, + { + "start": 14794.58, + "end": 14795.0, + "probability": 0.0777 + }, + { + "start": 14795.58, + "end": 14798.62, + "probability": 0.3397 + }, + { + "start": 14798.7, + "end": 14800.32, + "probability": 0.4104 + }, + { + "start": 14801.0, + "end": 14801.0, + "probability": 0.0 + }, + { + "start": 14801.0, + "end": 14801.0, + "probability": 0.0 + }, + { + "start": 14801.0, + "end": 14801.0, + "probability": 0.0 + }, + { + "start": 14801.0, + "end": 14801.0, + "probability": 0.0 + }, + { + "start": 14801.0, + "end": 14801.0, + "probability": 0.0 + }, + { + "start": 14801.0, + "end": 14801.0, + "probability": 0.0 + }, + { + "start": 14801.0, + "end": 14801.0, + "probability": 0.0 + }, + { + "start": 14801.16, + "end": 14801.62, + "probability": 0.1736 + }, + { + "start": 14802.46, + "end": 14805.28, + "probability": 0.3406 + }, + { + "start": 14805.82, + "end": 14810.04, + "probability": 0.0689 + }, + { + "start": 14810.6, + "end": 14816.66, + "probability": 0.0362 + }, + { + "start": 14816.66, + "end": 14817.1, + "probability": 0.0663 + }, + { + "start": 14817.1, + "end": 14820.22, + "probability": 0.1452 + }, + { + "start": 14820.7, + "end": 14822.82, + "probability": 0.898 + }, + { + "start": 14823.54, + "end": 14828.74, + "probability": 0.7338 + }, + { + "start": 14829.68, + "end": 14829.82, + "probability": 0.0185 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.0, + "end": 14923.0, + "probability": 0.0 + }, + { + "start": 14923.22, + "end": 14923.46, + "probability": 0.0489 + }, + { + "start": 14923.46, + "end": 14927.6, + "probability": 0.8882 + }, + { + "start": 14928.14, + "end": 14932.0, + "probability": 0.5957 + }, + { + "start": 14932.8, + "end": 14936.7, + "probability": 0.3307 + }, + { + "start": 14937.12, + "end": 14940.0, + "probability": 0.8459 + }, + { + "start": 14940.12, + "end": 14941.06, + "probability": 0.3383 + }, + { + "start": 14941.16, + "end": 14941.72, + "probability": 0.0056 + }, + { + "start": 14941.72, + "end": 14941.86, + "probability": 0.0335 + }, + { + "start": 14942.1, + "end": 14945.36, + "probability": 0.9818 + }, + { + "start": 14945.92, + "end": 14951.6, + "probability": 0.9907 + }, + { + "start": 14952.22, + "end": 14954.7, + "probability": 0.5903 + }, + { + "start": 14955.52, + "end": 14960.98, + "probability": 0.9658 + }, + { + "start": 14961.44, + "end": 14963.18, + "probability": 0.0549 + }, + { + "start": 14963.6, + "end": 14963.94, + "probability": 0.6409 + }, + { + "start": 14964.12, + "end": 14964.84, + "probability": 0.0429 + }, + { + "start": 14964.88, + "end": 14966.32, + "probability": 0.9124 + }, + { + "start": 14966.66, + "end": 14970.16, + "probability": 0.9586 + }, + { + "start": 14970.16, + "end": 14975.24, + "probability": 0.2168 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.0, + "end": 15082.0, + "probability": 0.0 + }, + { + "start": 15082.3, + "end": 15083.89, + "probability": 0.0344 + }, + { + "start": 15085.48, + "end": 15088.3, + "probability": 0.1951 + }, + { + "start": 15089.2, + "end": 15092.0, + "probability": 0.1893 + }, + { + "start": 15092.2, + "end": 15096.98, + "probability": 0.6047 + }, + { + "start": 15097.32, + "end": 15101.36, + "probability": 0.8938 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.0, + "end": 15217.0, + "probability": 0.0 + }, + { + "start": 15217.22, + "end": 15217.22, + "probability": 0.0124 + }, + { + "start": 15217.22, + "end": 15217.22, + "probability": 0.1225 + }, + { + "start": 15217.22, + "end": 15217.4, + "probability": 0.0349 + }, + { + "start": 15217.4, + "end": 15221.9, + "probability": 0.8066 + }, + { + "start": 15221.9, + "end": 15223.32, + "probability": 0.1255 + }, + { + "start": 15224.2, + "end": 15229.58, + "probability": 0.9851 + }, + { + "start": 15230.06, + "end": 15230.58, + "probability": 0.7426 + }, + { + "start": 15230.66, + "end": 15232.62, + "probability": 0.7785 + }, + { + "start": 15232.72, + "end": 15235.7, + "probability": 0.9792 + }, + { + "start": 15236.78, + "end": 15239.18, + "probability": 0.6713 + }, + { + "start": 15239.36, + "end": 15240.92, + "probability": 0.9792 + }, + { + "start": 15241.42, + "end": 15244.8, + "probability": 0.747 + }, + { + "start": 15244.94, + "end": 15246.66, + "probability": 0.9912 + }, + { + "start": 15246.88, + "end": 15253.02, + "probability": 0.9683 + }, + { + "start": 15253.02, + "end": 15256.84, + "probability": 0.9771 + }, + { + "start": 15256.84, + "end": 15260.47, + "probability": 0.98 + }, + { + "start": 15260.84, + "end": 15265.37, + "probability": 0.9875 + }, + { + "start": 15265.98, + "end": 15267.1, + "probability": 0.4984 + }, + { + "start": 15267.12, + "end": 15268.09, + "probability": 0.9819 + }, + { + "start": 15270.2, + "end": 15276.38, + "probability": 0.8921 + }, + { + "start": 15276.98, + "end": 15276.98, + "probability": 0.1417 + }, + { + "start": 15276.98, + "end": 15278.56, + "probability": 0.5967 + }, + { + "start": 15279.16, + "end": 15282.65, + "probability": 0.959 + }, + { + "start": 15283.06, + "end": 15285.53, + "probability": 0.8933 + }, + { + "start": 15285.57, + "end": 15286.35, + "probability": 0.5921 + }, + { + "start": 15286.59, + "end": 15290.81, + "probability": 0.8057 + }, + { + "start": 15290.97, + "end": 15291.95, + "probability": 0.6611 + }, + { + "start": 15292.27, + "end": 15293.23, + "probability": 0.722 + }, + { + "start": 15293.47, + "end": 15294.57, + "probability": 0.4034 + }, + { + "start": 15294.71, + "end": 15296.23, + "probability": 0.7003 + }, + { + "start": 15296.95, + "end": 15298.29, + "probability": 0.2174 + }, + { + "start": 15313.8, + "end": 15316.55, + "probability": 0.0424 + }, + { + "start": 15316.61, + "end": 15317.73, + "probability": 0.2499 + }, + { + "start": 15321.17, + "end": 15329.93, + "probability": 0.6942 + }, + { + "start": 15332.09, + "end": 15333.45, + "probability": 0.3735 + }, + { + "start": 15333.45, + "end": 15333.47, + "probability": 0.4188 + }, + { + "start": 15333.47, + "end": 15334.25, + "probability": 0.1377 + }, + { + "start": 15334.25, + "end": 15334.75, + "probability": 0.5056 + }, + { + "start": 15335.26, + "end": 15338.92, + "probability": 0.0212 + }, + { + "start": 15340.93, + "end": 15341.13, + "probability": 0.1633 + }, + { + "start": 15341.13, + "end": 15342.21, + "probability": 0.2371 + }, + { + "start": 15342.21, + "end": 15342.83, + "probability": 0.0641 + }, + { + "start": 15342.93, + "end": 15344.81, + "probability": 0.2754 + }, + { + "start": 15345.05, + "end": 15348.57, + "probability": 0.5027 + }, + { + "start": 15348.69, + "end": 15349.65, + "probability": 0.1159 + }, + { + "start": 15349.65, + "end": 15352.47, + "probability": 0.2571 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.26, + "end": 15426.43, + "probability": 0.0294 + }, + { + "start": 15426.46, + "end": 15426.53, + "probability": 0.0324 + }, + { + "start": 15427.58, + "end": 15428.78, + "probability": 0.0185 + }, + { + "start": 15428.92, + "end": 15434.66, + "probability": 0.0288 + }, + { + "start": 15435.18, + "end": 15436.64, + "probability": 0.1842 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.0, + "end": 15546.0, + "probability": 0.0 + }, + { + "start": 15546.42, + "end": 15546.54, + "probability": 0.2139 + }, + { + "start": 15547.14, + "end": 15550.28, + "probability": 0.0085 + }, + { + "start": 15550.44, + "end": 15551.4, + "probability": 0.5096 + }, + { + "start": 15551.58, + "end": 15552.22, + "probability": 0.0172 + }, + { + "start": 15552.32, + "end": 15553.88, + "probability": 0.4714 + }, + { + "start": 15558.06, + "end": 15558.8, + "probability": 0.3481 + }, + { + "start": 15561.38, + "end": 15562.16, + "probability": 0.4326 + }, + { + "start": 15563.55, + "end": 15565.81, + "probability": 0.5605 + }, + { + "start": 15565.88, + "end": 15567.88, + "probability": 0.7904 + }, + { + "start": 15567.96, + "end": 15568.66, + "probability": 0.7289 + }, + { + "start": 15568.82, + "end": 15571.2, + "probability": 0.9532 + }, + { + "start": 15571.3, + "end": 15576.2, + "probability": 0.994 + }, + { + "start": 15576.4, + "end": 15577.76, + "probability": 0.9595 + }, + { + "start": 15578.02, + "end": 15580.9, + "probability": 0.726 + }, + { + "start": 15581.08, + "end": 15584.2, + "probability": 0.7561 + }, + { + "start": 15584.36, + "end": 15587.0, + "probability": 0.9203 + }, + { + "start": 15587.06, + "end": 15588.95, + "probability": 0.9531 + }, + { + "start": 15589.38, + "end": 15590.86, + "probability": 0.6298 + }, + { + "start": 15590.92, + "end": 15592.54, + "probability": 0.5044 + }, + { + "start": 15592.74, + "end": 15593.76, + "probability": 0.9082 + }, + { + "start": 15593.88, + "end": 15594.48, + "probability": 0.3929 + }, + { + "start": 15594.84, + "end": 15598.02, + "probability": 0.828 + }, + { + "start": 15598.36, + "end": 15599.32, + "probability": 0.8999 + }, + { + "start": 15599.58, + "end": 15601.7, + "probability": 0.3123 + }, + { + "start": 15602.11, + "end": 15602.31, + "probability": 0.401 + }, + { + "start": 15602.6, + "end": 15603.22, + "probability": 0.4033 + }, + { + "start": 15603.74, + "end": 15604.54, + "probability": 0.6786 + }, + { + "start": 15604.72, + "end": 15607.21, + "probability": 0.456 + }, + { + "start": 15607.86, + "end": 15608.45, + "probability": 0.8811 + }, + { + "start": 15609.42, + "end": 15610.8, + "probability": 0.5994 + }, + { + "start": 15610.92, + "end": 15612.08, + "probability": 0.5453 + }, + { + "start": 15612.4, + "end": 15613.38, + "probability": 0.7902 + }, + { + "start": 15613.42, + "end": 15615.78, + "probability": 0.8262 + }, + { + "start": 15615.98, + "end": 15617.76, + "probability": 0.9954 + }, + { + "start": 15617.9, + "end": 15621.58, + "probability": 0.8779 + }, + { + "start": 15621.7, + "end": 15624.22, + "probability": 0.5449 + }, + { + "start": 15624.26, + "end": 15624.6, + "probability": 0.1588 + }, + { + "start": 15625.32, + "end": 15626.04, + "probability": 0.0145 + }, + { + "start": 15626.04, + "end": 15626.48, + "probability": 0.8258 + }, + { + "start": 15626.74, + "end": 15627.42, + "probability": 0.4631 + }, + { + "start": 15627.42, + "end": 15628.51, + "probability": 0.2319 + }, + { + "start": 15629.22, + "end": 15630.4, + "probability": 0.6589 + }, + { + "start": 15631.64, + "end": 15632.96, + "probability": 0.8545 + }, + { + "start": 15633.2, + "end": 15634.68, + "probability": 0.7264 + }, + { + "start": 15634.74, + "end": 15638.16, + "probability": 0.9611 + }, + { + "start": 15639.72, + "end": 15643.28, + "probability": 0.9889 + }, + { + "start": 15643.74, + "end": 15646.85, + "probability": 0.4033 + }, + { + "start": 15647.34, + "end": 15651.7, + "probability": 0.8595 + }, + { + "start": 15652.54, + "end": 15655.42, + "probability": 0.7886 + }, + { + "start": 15655.92, + "end": 15659.54, + "probability": 0.7514 + }, + { + "start": 15659.88, + "end": 15664.62, + "probability": 0.7141 + }, + { + "start": 15664.72, + "end": 15667.42, + "probability": 0.886 + }, + { + "start": 15668.54, + "end": 15670.68, + "probability": 0.8628 + }, + { + "start": 15672.38, + "end": 15674.04, + "probability": 0.6888 + }, + { + "start": 15676.24, + "end": 15676.74, + "probability": 0.8911 + }, + { + "start": 15677.48, + "end": 15678.46, + "probability": 0.6286 + }, + { + "start": 15679.0, + "end": 15684.62, + "probability": 0.9658 + }, + { + "start": 15686.55, + "end": 15687.18, + "probability": 0.0246 + }, + { + "start": 15688.8, + "end": 15690.08, + "probability": 0.3297 + }, + { + "start": 15690.84, + "end": 15696.28, + "probability": 0.8304 + }, + { + "start": 15698.7, + "end": 15701.48, + "probability": 0.8778 + }, + { + "start": 15702.46, + "end": 15705.4, + "probability": 0.9858 + }, + { + "start": 15706.72, + "end": 15709.14, + "probability": 0.959 + }, + { + "start": 15709.98, + "end": 15712.64, + "probability": 0.7686 + }, + { + "start": 15713.78, + "end": 15716.14, + "probability": 0.9386 + }, + { + "start": 15717.16, + "end": 15719.64, + "probability": 0.7845 + }, + { + "start": 15720.54, + "end": 15722.74, + "probability": 0.923 + }, + { + "start": 15723.64, + "end": 15726.32, + "probability": 0.9681 + }, + { + "start": 15728.72, + "end": 15732.92, + "probability": 0.921 + }, + { + "start": 15733.78, + "end": 15736.66, + "probability": 0.9288 + }, + { + "start": 15737.44, + "end": 15744.84, + "probability": 0.9069 + }, + { + "start": 15746.12, + "end": 15748.38, + "probability": 0.6859 + }, + { + "start": 15749.72, + "end": 15753.04, + "probability": 0.8927 + }, + { + "start": 15754.2, + "end": 15757.32, + "probability": 0.946 + }, + { + "start": 15758.02, + "end": 15761.3, + "probability": 0.9223 + }, + { + "start": 15762.38, + "end": 15764.8, + "probability": 0.8656 + }, + { + "start": 15765.62, + "end": 15768.34, + "probability": 0.9821 + }, + { + "start": 15770.98, + "end": 15772.66, + "probability": 0.8535 + }, + { + "start": 15773.68, + "end": 15774.2, + "probability": 0.9943 + }, + { + "start": 15775.26, + "end": 15776.28, + "probability": 0.6048 + }, + { + "start": 15777.2, + "end": 15779.82, + "probability": 0.8568 + }, + { + "start": 15780.58, + "end": 15781.1, + "probability": 0.9365 + }, + { + "start": 15785.84, + "end": 15787.0, + "probability": 0.5183 + }, + { + "start": 15788.28, + "end": 15790.32, + "probability": 0.8593 + }, + { + "start": 15792.42, + "end": 15794.18, + "probability": 0.7566 + }, + { + "start": 15795.22, + "end": 15797.32, + "probability": 0.9383 + }, + { + "start": 15798.08, + "end": 15800.86, + "probability": 0.9555 + }, + { + "start": 15801.44, + "end": 15802.62, + "probability": 0.9828 + }, + { + "start": 15803.26, + "end": 15803.66, + "probability": 0.904 + }, + { + "start": 15804.24, + "end": 15806.92, + "probability": 0.5809 + }, + { + "start": 15808.02, + "end": 15809.24, + "probability": 0.864 + }, + { + "start": 15810.4, + "end": 15812.46, + "probability": 0.7408 + }, + { + "start": 15813.46, + "end": 15816.42, + "probability": 0.9901 + }, + { + "start": 15817.4, + "end": 15819.92, + "probability": 0.975 + }, + { + "start": 15820.54, + "end": 15821.02, + "probability": 0.9648 + }, + { + "start": 15821.7, + "end": 15822.78, + "probability": 0.9419 + }, + { + "start": 15824.1, + "end": 15828.06, + "probability": 0.8867 + }, + { + "start": 15829.24, + "end": 15831.7, + "probability": 0.9723 + }, + { + "start": 15832.44, + "end": 15832.84, + "probability": 0.9958 + }, + { + "start": 15833.68, + "end": 15835.26, + "probability": 0.7836 + }, + { + "start": 15835.86, + "end": 15839.04, + "probability": 0.8422 + }, + { + "start": 15839.58, + "end": 15840.08, + "probability": 0.9324 + }, + { + "start": 15840.94, + "end": 15842.7, + "probability": 0.9894 + }, + { + "start": 15844.5, + "end": 15845.62, + "probability": 0.9692 + }, + { + "start": 15846.52, + "end": 15848.92, + "probability": 0.9611 + }, + { + "start": 15849.84, + "end": 15852.06, + "probability": 0.9743 + }, + { + "start": 15852.66, + "end": 15855.94, + "probability": 0.9846 + }, + { + "start": 15856.54, + "end": 15858.4, + "probability": 0.8983 + }, + { + "start": 15860.48, + "end": 15861.68, + "probability": 0.3139 + }, + { + "start": 15862.48, + "end": 15867.46, + "probability": 0.3369 + }, + { + "start": 15869.16, + "end": 15874.44, + "probability": 0.7991 + }, + { + "start": 15876.36, + "end": 15876.9, + "probability": 0.9717 + }, + { + "start": 15877.26, + "end": 15879.02, + "probability": 0.568 + }, + { + "start": 15880.06, + "end": 15882.16, + "probability": 0.9012 + }, + { + "start": 15882.68, + "end": 15886.02, + "probability": 0.5049 + }, + { + "start": 15886.88, + "end": 15887.24, + "probability": 0.8225 + }, + { + "start": 15888.46, + "end": 15890.18, + "probability": 0.7597 + }, + { + "start": 15890.92, + "end": 15891.84, + "probability": 0.7155 + }, + { + "start": 15893.42, + "end": 15896.56, + "probability": 0.9775 + }, + { + "start": 15897.14, + "end": 15898.7, + "probability": 0.9132 + }, + { + "start": 15901.38, + "end": 15903.36, + "probability": 0.9401 + }, + { + "start": 15905.82, + "end": 15907.68, + "probability": 0.9338 + }, + { + "start": 15909.46, + "end": 15915.18, + "probability": 0.9162 + }, + { + "start": 15916.8, + "end": 15917.56, + "probability": 0.6453 + }, + { + "start": 15918.24, + "end": 15918.5, + "probability": 0.7874 + }, + { + "start": 15921.54, + "end": 15922.36, + "probability": 0.6978 + }, + { + "start": 15923.26, + "end": 15925.28, + "probability": 0.805 + }, + { + "start": 15926.52, + "end": 15928.3, + "probability": 0.952 + }, + { + "start": 15929.28, + "end": 15931.82, + "probability": 0.9721 + }, + { + "start": 15932.52, + "end": 15937.08, + "probability": 0.6084 + }, + { + "start": 15940.78, + "end": 15943.74, + "probability": 0.726 + }, + { + "start": 15944.74, + "end": 15946.8, + "probability": 0.9363 + }, + { + "start": 15948.92, + "end": 15951.28, + "probability": 0.8052 + }, + { + "start": 15954.7, + "end": 15958.96, + "probability": 0.0185 + }, + { + "start": 15958.96, + "end": 15959.76, + "probability": 0.0714 + }, + { + "start": 15961.3, + "end": 15964.76, + "probability": 0.01 + }, + { + "start": 15964.76, + "end": 15966.42, + "probability": 0.1193 + }, + { + "start": 15966.42, + "end": 15966.62, + "probability": 0.1672 + }, + { + "start": 15967.49, + "end": 15967.7, + "probability": 0.1869 + }, + { + "start": 15968.14, + "end": 15968.7, + "probability": 0.2625 + }, + { + "start": 15969.0, + "end": 15970.8, + "probability": 0.084 + }, + { + "start": 15970.8, + "end": 15977.6, + "probability": 0.1182 + }, + { + "start": 15980.54, + "end": 15982.64, + "probability": 0.0485 + }, + { + "start": 15984.12, + "end": 15984.38, + "probability": 0.1414 + }, + { + "start": 15993.86, + "end": 15995.54, + "probability": 0.0654 + }, + { + "start": 15995.96, + "end": 15998.78, + "probability": 0.1327 + }, + { + "start": 15998.8, + "end": 16000.1, + "probability": 0.0411 + }, + { + "start": 16000.2, + "end": 16002.28, + "probability": 0.2068 + }, + { + "start": 16002.28, + "end": 16002.38, + "probability": 0.1797 + }, + { + "start": 16006.72, + "end": 16007.46, + "probability": 0.5135 + }, + { + "start": 16008.94, + "end": 16009.9, + "probability": 0.0602 + }, + { + "start": 16011.49, + "end": 16013.18, + "probability": 0.0752 + }, + { + "start": 16014.02, + "end": 16016.24, + "probability": 0.1854 + }, + { + "start": 16171.0, + "end": 16171.0, + "probability": 0.0 + }, + { + "start": 16171.0, + "end": 16171.0, + "probability": 0.0 + }, + { + "start": 16171.0, + "end": 16171.0, + "probability": 0.0 + }, + { + "start": 16171.0, + "end": 16171.0, + "probability": 0.0 + }, + { + "start": 16171.0, + "end": 16171.0, + "probability": 0.0 + }, + { + "start": 16171.0, + "end": 16171.0, + "probability": 0.0 + }, + { + "start": 16171.0, + "end": 16171.0, + "probability": 0.0 + }, + { + "start": 16171.0, + "end": 16171.0, + "probability": 0.0 + }, + { + "start": 16171.0, + "end": 16171.0, + "probability": 0.0 + }, + { + "start": 16171.0, + "end": 16171.0, + "probability": 0.0 + }, + { + "start": 16171.0, + "end": 16171.0, + "probability": 0.0 + }, + { + "start": 16171.0, + "end": 16171.0, + "probability": 0.0 + }, + { + "start": 16171.0, + "end": 16171.0, + "probability": 0.0 + }, + { + "start": 16171.0, + "end": 16171.0, + "probability": 0.0 + }, + { + "start": 16171.0, + "end": 16171.0, + "probability": 0.0 + }, + { + "start": 16171.0, + "end": 16171.0, + "probability": 0.0 + }, + { + "start": 16171.0, + "end": 16171.0, + "probability": 0.0 + }, + { + "start": 16171.0, + "end": 16171.0, + "probability": 0.0 + }, + { + "start": 16171.0, + "end": 16171.0, + "probability": 0.0 + }, + { + "start": 16171.0, + "end": 16171.0, + "probability": 0.0 + }, + { + "start": 16171.0, + "end": 16171.0, + "probability": 0.0 + }, + { + "start": 16171.0, + "end": 16171.0, + "probability": 0.0 + }, + { + "start": 16171.0, + "end": 16171.0, + "probability": 0.0 + }, + { + "start": 16171.0, + "end": 16171.0, + "probability": 0.0 + }, + { + "start": 16171.0, + "end": 16171.0, + "probability": 0.0 + }, + { + "start": 16171.0, + "end": 16171.0, + "probability": 0.0 + }, + { + "start": 16171.0, + "end": 16171.0, + "probability": 0.0 + }, + { + "start": 16180.18, + "end": 16181.64, + "probability": 0.5677 + }, + { + "start": 16181.78, + "end": 16185.69, + "probability": 0.8854 + }, + { + "start": 16186.88, + "end": 16188.62, + "probability": 0.5622 + }, + { + "start": 16189.84, + "end": 16192.6, + "probability": 0.8197 + }, + { + "start": 16194.16, + "end": 16194.46, + "probability": 0.7491 + }, + { + "start": 16195.04, + "end": 16196.48, + "probability": 0.8446 + }, + { + "start": 16197.16, + "end": 16199.22, + "probability": 0.5546 + }, + { + "start": 16200.04, + "end": 16203.7, + "probability": 0.9541 + }, + { + "start": 16204.7, + "end": 16205.54, + "probability": 0.9929 + }, + { + "start": 16206.14, + "end": 16207.1, + "probability": 0.9378 + }, + { + "start": 16207.84, + "end": 16210.08, + "probability": 0.9808 + }, + { + "start": 16211.3, + "end": 16214.56, + "probability": 0.9946 + }, + { + "start": 16217.58, + "end": 16218.48, + "probability": 0.4819 + }, + { + "start": 16219.56, + "end": 16223.98, + "probability": 0.9205 + }, + { + "start": 16224.8, + "end": 16225.56, + "probability": 0.9768 + }, + { + "start": 16226.08, + "end": 16227.62, + "probability": 0.8149 + }, + { + "start": 16228.4, + "end": 16230.5, + "probability": 0.9828 + }, + { + "start": 16231.16, + "end": 16233.82, + "probability": 0.8958 + }, + { + "start": 16234.5, + "end": 16236.32, + "probability": 0.8834 + }, + { + "start": 16237.06, + "end": 16239.34, + "probability": 0.816 + }, + { + "start": 16240.48, + "end": 16242.26, + "probability": 0.9097 + }, + { + "start": 16243.12, + "end": 16248.22, + "probability": 0.9283 + }, + { + "start": 16249.46, + "end": 16252.94, + "probability": 0.982 + }, + { + "start": 16253.56, + "end": 16255.98, + "probability": 0.9859 + }, + { + "start": 16256.48, + "end": 16259.52, + "probability": 0.9792 + }, + { + "start": 16260.52, + "end": 16263.58, + "probability": 0.9347 + }, + { + "start": 16264.38, + "end": 16267.5, + "probability": 0.8242 + }, + { + "start": 16268.38, + "end": 16273.48, + "probability": 0.9291 + }, + { + "start": 16274.76, + "end": 16279.06, + "probability": 0.9547 + }, + { + "start": 16279.84, + "end": 16280.74, + "probability": 0.9302 + }, + { + "start": 16282.7, + "end": 16285.52, + "probability": 0.4445 + }, + { + "start": 16286.04, + "end": 16292.88, + "probability": 0.8763 + }, + { + "start": 16294.18, + "end": 16297.4, + "probability": 0.9446 + }, + { + "start": 16297.94, + "end": 16300.5, + "probability": 0.8249 + }, + { + "start": 16301.1, + "end": 16303.58, + "probability": 0.6199 + }, + { + "start": 16304.58, + "end": 16309.52, + "probability": 0.9081 + }, + { + "start": 16310.36, + "end": 16312.98, + "probability": 0.7515 + }, + { + "start": 16313.04, + "end": 16316.86, + "probability": 0.1698 + }, + { + "start": 16316.96, + "end": 16320.56, + "probability": 0.856 + }, + { + "start": 16321.74, + "end": 16323.96, + "probability": 0.9136 + }, + { + "start": 16324.88, + "end": 16325.8, + "probability": 0.9744 + }, + { + "start": 16328.52, + "end": 16335.82, + "probability": 0.9904 + }, + { + "start": 16336.26, + "end": 16337.28, + "probability": 0.8442 + }, + { + "start": 16343.56, + "end": 16346.04, + "probability": 0.9773 + }, + { + "start": 16346.24, + "end": 16346.84, + "probability": 0.6739 + }, + { + "start": 16346.94, + "end": 16350.04, + "probability": 0.8634 + }, + { + "start": 16350.04, + "end": 16350.62, + "probability": 0.0205 + }, + { + "start": 16352.06, + "end": 16352.52, + "probability": 0.4223 + }, + { + "start": 16352.68, + "end": 16353.94, + "probability": 0.4601 + }, + { + "start": 16354.04, + "end": 16355.13, + "probability": 0.1532 + }, + { + "start": 16356.44, + "end": 16358.8, + "probability": 0.7228 + }, + { + "start": 16358.88, + "end": 16362.06, + "probability": 0.9341 + }, + { + "start": 16363.3, + "end": 16363.58, + "probability": 0.0901 + }, + { + "start": 16364.7, + "end": 16365.38, + "probability": 0.3386 + }, + { + "start": 16366.44, + "end": 16367.52, + "probability": 0.0655 + }, + { + "start": 16367.52, + "end": 16367.52, + "probability": 0.1975 + }, + { + "start": 16367.52, + "end": 16368.34, + "probability": 0.2078 + }, + { + "start": 16368.34, + "end": 16368.36, + "probability": 0.2237 + }, + { + "start": 16368.36, + "end": 16370.54, + "probability": 0.44 + }, + { + "start": 16373.62, + "end": 16374.34, + "probability": 0.1152 + }, + { + "start": 16376.1, + "end": 16377.62, + "probability": 0.5335 + }, + { + "start": 16377.64, + "end": 16378.38, + "probability": 0.8052 + }, + { + "start": 16378.96, + "end": 16378.96, + "probability": 0.0196 + }, + { + "start": 16380.04, + "end": 16381.1, + "probability": 0.0669 + }, + { + "start": 16381.1, + "end": 16386.38, + "probability": 0.0497 + }, + { + "start": 16401.46, + "end": 16404.38, + "probability": 0.634 + }, + { + "start": 16405.84, + "end": 16407.18, + "probability": 0.4123 + }, + { + "start": 16407.28, + "end": 16408.98, + "probability": 0.5904 + }, + { + "start": 16412.82, + "end": 16415.62, + "probability": 0.5496 + }, + { + "start": 16416.12, + "end": 16418.98, + "probability": 0.2645 + }, + { + "start": 16427.24, + "end": 16432.22, + "probability": 0.2326 + }, + { + "start": 16463.0, + "end": 16463.0, + "probability": 0.0 + }, + { + "start": 16478.88, + "end": 16479.6, + "probability": 0.8186 + }, + { + "start": 16479.76, + "end": 16481.96, + "probability": 0.9612 + }, + { + "start": 16482.16, + "end": 16483.58, + "probability": 0.7982 + }, + { + "start": 16484.16, + "end": 16488.68, + "probability": 0.973 + }, + { + "start": 16488.9, + "end": 16489.76, + "probability": 0.8721 + }, + { + "start": 16496.56, + "end": 16499.22, + "probability": 0.0756 + }, + { + "start": 16500.16, + "end": 16501.5, + "probability": 0.0794 + }, + { + "start": 16502.01, + "end": 16504.76, + "probability": 0.8481 + }, + { + "start": 16505.64, + "end": 16509.58, + "probability": 0.7349 + }, + { + "start": 16510.81, + "end": 16513.46, + "probability": 0.9082 + }, + { + "start": 16513.66, + "end": 16516.38, + "probability": 0.9699 + }, + { + "start": 16516.52, + "end": 16517.1, + "probability": 0.2029 + }, + { + "start": 16517.36, + "end": 16518.78, + "probability": 0.8953 + }, + { + "start": 16519.02, + "end": 16521.05, + "probability": 0.9746 + }, + { + "start": 16521.54, + "end": 16522.86, + "probability": 0.9565 + }, + { + "start": 16523.36, + "end": 16524.3, + "probability": 0.9758 + }, + { + "start": 16524.56, + "end": 16525.94, + "probability": 0.7379 + }, + { + "start": 16526.97, + "end": 16531.92, + "probability": 0.8596 + }, + { + "start": 16531.98, + "end": 16534.06, + "probability": 0.8318 + }, + { + "start": 16534.22, + "end": 16535.5, + "probability": 0.2256 + }, + { + "start": 16535.64, + "end": 16536.22, + "probability": 0.3062 + }, + { + "start": 16536.91, + "end": 16544.02, + "probability": 0.8203 + }, + { + "start": 16544.8, + "end": 16548.06, + "probability": 0.8232 + }, + { + "start": 16548.72, + "end": 16552.52, + "probability": 0.9849 + }, + { + "start": 16553.06, + "end": 16558.2, + "probability": 0.9805 + }, + { + "start": 16559.2, + "end": 16564.14, + "probability": 0.9902 + }, + { + "start": 16564.88, + "end": 16571.56, + "probability": 0.9969 + }, + { + "start": 16571.86, + "end": 16575.92, + "probability": 0.6968 + }, + { + "start": 16576.7, + "end": 16578.68, + "probability": 0.9367 + }, + { + "start": 16579.48, + "end": 16582.61, + "probability": 0.9399 + }, + { + "start": 16583.1, + "end": 16585.48, + "probability": 0.9688 + }, + { + "start": 16585.48, + "end": 16588.14, + "probability": 0.9943 + }, + { + "start": 16588.52, + "end": 16591.5, + "probability": 0.6834 + }, + { + "start": 16592.02, + "end": 16597.6, + "probability": 0.7208 + }, + { + "start": 16597.76, + "end": 16598.34, + "probability": 0.7155 + }, + { + "start": 16599.28, + "end": 16600.06, + "probability": 0.8329 + }, + { + "start": 16600.54, + "end": 16602.38, + "probability": 0.9085 + }, + { + "start": 16602.78, + "end": 16605.48, + "probability": 0.991 + }, + { + "start": 16605.5, + "end": 16606.84, + "probability": 0.6653 + }, + { + "start": 16606.98, + "end": 16608.28, + "probability": 0.981 + }, + { + "start": 16626.2, + "end": 16626.52, + "probability": 0.3247 + }, + { + "start": 16626.6, + "end": 16628.74, + "probability": 0.7053 + }, + { + "start": 16628.86, + "end": 16630.44, + "probability": 0.9163 + }, + { + "start": 16630.7, + "end": 16631.72, + "probability": 0.8997 + }, + { + "start": 16631.78, + "end": 16633.65, + "probability": 0.9882 + }, + { + "start": 16638.88, + "end": 16641.14, + "probability": 0.649 + }, + { + "start": 16641.66, + "end": 16643.14, + "probability": 0.7964 + }, + { + "start": 16643.3, + "end": 16649.24, + "probability": 0.95 + }, + { + "start": 16649.62, + "end": 16652.46, + "probability": 0.9729 + }, + { + "start": 16652.74, + "end": 16656.42, + "probability": 0.9362 + }, + { + "start": 16657.94, + "end": 16658.64, + "probability": 0.0051 + }, + { + "start": 16658.76, + "end": 16658.82, + "probability": 0.0251 + }, + { + "start": 16658.92, + "end": 16660.25, + "probability": 0.5394 + }, + { + "start": 16661.52, + "end": 16663.36, + "probability": 0.829 + }, + { + "start": 16664.52, + "end": 16666.18, + "probability": 0.8004 + }, + { + "start": 16666.86, + "end": 16669.08, + "probability": 0.5698 + }, + { + "start": 16670.04, + "end": 16671.82, + "probability": 0.8339 + }, + { + "start": 16673.61, + "end": 16680.06, + "probability": 0.8424 + }, + { + "start": 16680.28, + "end": 16682.24, + "probability": 0.9373 + }, + { + "start": 16682.56, + "end": 16684.72, + "probability": 0.7559 + }, + { + "start": 16685.66, + "end": 16690.22, + "probability": 0.9487 + }, + { + "start": 16693.6, + "end": 16694.96, + "probability": 0.6057 + }, + { + "start": 16695.3, + "end": 16697.86, + "probability": 0.8251 + }, + { + "start": 16698.32, + "end": 16700.7, + "probability": 0.8926 + }, + { + "start": 16700.76, + "end": 16700.8, + "probability": 0.3162 + }, + { + "start": 16700.8, + "end": 16701.1, + "probability": 0.4516 + }, + { + "start": 16701.16, + "end": 16702.8, + "probability": 0.6833 + }, + { + "start": 16702.9, + "end": 16705.26, + "probability": 0.958 + }, + { + "start": 16705.28, + "end": 16707.52, + "probability": 0.9879 + }, + { + "start": 16708.58, + "end": 16709.66, + "probability": 0.82 + }, + { + "start": 16710.3, + "end": 16714.36, + "probability": 0.9211 + }, + { + "start": 16715.1, + "end": 16719.16, + "probability": 0.7767 + }, + { + "start": 16720.16, + "end": 16721.38, + "probability": 0.7915 + }, + { + "start": 16721.64, + "end": 16722.16, + "probability": 0.4817 + }, + { + "start": 16724.32, + "end": 16727.82, + "probability": 0.5717 + }, + { + "start": 16728.04, + "end": 16729.16, + "probability": 0.7521 + }, + { + "start": 16729.6, + "end": 16732.68, + "probability": 0.9917 + }, + { + "start": 16733.46, + "end": 16735.84, + "probability": 0.9884 + }, + { + "start": 16735.84, + "end": 16739.2, + "probability": 0.9869 + }, + { + "start": 16739.92, + "end": 16741.8, + "probability": 0.4483 + }, + { + "start": 16742.5, + "end": 16743.22, + "probability": 0.7234 + }, + { + "start": 16743.42, + "end": 16743.64, + "probability": 0.909 + }, + { + "start": 16743.74, + "end": 16747.74, + "probability": 0.6406 + }, + { + "start": 16747.8, + "end": 16749.34, + "probability": 0.7049 + }, + { + "start": 16750.2, + "end": 16750.94, + "probability": 0.9685 + }, + { + "start": 16750.96, + "end": 16752.2, + "probability": 0.9137 + }, + { + "start": 16752.38, + "end": 16760.5, + "probability": 0.9845 + }, + { + "start": 16762.34, + "end": 16765.38, + "probability": 0.9982 + }, + { + "start": 16765.38, + "end": 16770.26, + "probability": 0.999 + }, + { + "start": 16770.88, + "end": 16771.98, + "probability": 0.9762 + }, + { + "start": 16773.54, + "end": 16774.89, + "probability": 0.9649 + }, + { + "start": 16775.88, + "end": 16776.38, + "probability": 0.9382 + }, + { + "start": 16777.18, + "end": 16778.32, + "probability": 0.9338 + }, + { + "start": 16779.54, + "end": 16783.28, + "probability": 0.877 + }, + { + "start": 16784.04, + "end": 16787.88, + "probability": 0.8872 + }, + { + "start": 16788.16, + "end": 16788.56, + "probability": 0.8716 + }, + { + "start": 16789.24, + "end": 16796.14, + "probability": 0.7882 + }, + { + "start": 16796.66, + "end": 16797.9, + "probability": 0.9913 + }, + { + "start": 16798.06, + "end": 16798.52, + "probability": 0.9604 + }, + { + "start": 16799.58, + "end": 16802.44, + "probability": 0.8848 + }, + { + "start": 16802.86, + "end": 16805.54, + "probability": 0.999 + }, + { + "start": 16806.16, + "end": 16810.82, + "probability": 0.9717 + }, + { + "start": 16810.82, + "end": 16814.04, + "probability": 0.9832 + }, + { + "start": 16815.1, + "end": 16816.22, + "probability": 0.9787 + }, + { + "start": 16816.88, + "end": 16822.0, + "probability": 0.9829 + }, + { + "start": 16822.8, + "end": 16826.98, + "probability": 0.8174 + }, + { + "start": 16827.64, + "end": 16830.98, + "probability": 0.9783 + }, + { + "start": 16831.5, + "end": 16833.36, + "probability": 0.9257 + }, + { + "start": 16834.3, + "end": 16834.94, + "probability": 0.8987 + }, + { + "start": 16835.56, + "end": 16837.44, + "probability": 0.3389 + }, + { + "start": 16838.34, + "end": 16840.68, + "probability": 0.9641 + }, + { + "start": 16841.6, + "end": 16848.82, + "probability": 0.9899 + }, + { + "start": 16849.48, + "end": 16853.38, + "probability": 0.9677 + }, + { + "start": 16853.78, + "end": 16856.03, + "probability": 0.9493 + }, + { + "start": 16856.48, + "end": 16858.4, + "probability": 0.9923 + }, + { + "start": 16859.0, + "end": 16859.92, + "probability": 0.592 + }, + { + "start": 16859.98, + "end": 16863.08, + "probability": 0.9919 + }, + { + "start": 16866.24, + "end": 16866.66, + "probability": 0.5743 + }, + { + "start": 16866.92, + "end": 16869.28, + "probability": 0.9341 + }, + { + "start": 16869.4, + "end": 16871.2, + "probability": 0.8203 + }, + { + "start": 16871.26, + "end": 16872.88, + "probability": 0.9238 + }, + { + "start": 16873.3, + "end": 16878.3, + "probability": 0.9376 + }, + { + "start": 16879.3, + "end": 16881.7, + "probability": 0.9636 + }, + { + "start": 16882.38, + "end": 16886.52, + "probability": 0.753 + }, + { + "start": 16886.58, + "end": 16887.44, + "probability": 0.5867 + }, + { + "start": 16888.16, + "end": 16893.96, + "probability": 0.9635 + }, + { + "start": 16894.4, + "end": 16899.44, + "probability": 0.9791 + }, + { + "start": 16900.02, + "end": 16904.62, + "probability": 0.9958 + }, + { + "start": 16905.02, + "end": 16906.98, + "probability": 0.9797 + }, + { + "start": 16907.48, + "end": 16909.92, + "probability": 0.9021 + }, + { + "start": 16910.4, + "end": 16916.82, + "probability": 0.9798 + }, + { + "start": 16917.1, + "end": 16917.58, + "probability": 0.7648 + }, + { + "start": 16919.21, + "end": 16921.72, + "probability": 0.8152 + }, + { + "start": 16921.9, + "end": 16926.24, + "probability": 0.866 + }, + { + "start": 16926.32, + "end": 16929.45, + "probability": 0.9971 + }, + { + "start": 16930.84, + "end": 16934.08, + "probability": 0.9933 + }, + { + "start": 16934.5, + "end": 16937.28, + "probability": 0.9916 + }, + { + "start": 16937.32, + "end": 16938.14, + "probability": 0.4888 + }, + { + "start": 16938.68, + "end": 16940.4, + "probability": 0.4541 + }, + { + "start": 16940.58, + "end": 16941.46, + "probability": 0.8573 + }, + { + "start": 16942.1, + "end": 16942.59, + "probability": 0.8087 + }, + { + "start": 16943.22, + "end": 16945.56, + "probability": 0.1036 + }, + { + "start": 16945.56, + "end": 16946.3, + "probability": 0.2492 + }, + { + "start": 16946.42, + "end": 16946.78, + "probability": 0.26 + }, + { + "start": 16946.92, + "end": 16947.94, + "probability": 0.2888 + }, + { + "start": 16947.98, + "end": 16951.24, + "probability": 0.968 + }, + { + "start": 16951.32, + "end": 16952.22, + "probability": 0.8296 + }, + { + "start": 16953.42, + "end": 16955.02, + "probability": 0.7409 + }, + { + "start": 16955.3, + "end": 16955.7, + "probability": 0.1583 + }, + { + "start": 16955.92, + "end": 16956.56, + "probability": 0.9503 + }, + { + "start": 16956.6, + "end": 16957.58, + "probability": 0.8093 + }, + { + "start": 16957.82, + "end": 16961.48, + "probability": 0.8989 + }, + { + "start": 16961.48, + "end": 16963.98, + "probability": 0.9835 + }, + { + "start": 16963.98, + "end": 16966.61, + "probability": 0.9707 + }, + { + "start": 16967.3, + "end": 16971.98, + "probability": 0.6193 + }, + { + "start": 16972.1, + "end": 16975.68, + "probability": 0.82 + }, + { + "start": 16976.32, + "end": 16978.94, + "probability": 0.9606 + }, + { + "start": 16979.0, + "end": 16980.26, + "probability": 0.6994 + }, + { + "start": 16980.4, + "end": 16982.58, + "probability": 0.9615 + }, + { + "start": 16982.84, + "end": 16985.66, + "probability": 0.9908 + }, + { + "start": 16987.02, + "end": 16989.6, + "probability": 0.9741 + }, + { + "start": 16989.6, + "end": 16991.52, + "probability": 0.996 + }, + { + "start": 16991.6, + "end": 16993.34, + "probability": 0.9832 + }, + { + "start": 16993.6, + "end": 16997.44, + "probability": 0.5302 + }, + { + "start": 16998.24, + "end": 17001.16, + "probability": 0.9795 + }, + { + "start": 17001.16, + "end": 17003.86, + "probability": 0.8529 + }, + { + "start": 17004.74, + "end": 17006.1, + "probability": 0.7239 + }, + { + "start": 17006.12, + "end": 17008.52, + "probability": 0.9956 + }, + { + "start": 17009.0, + "end": 17009.92, + "probability": 0.862 + }, + { + "start": 17010.1, + "end": 17012.32, + "probability": 0.999 + }, + { + "start": 17012.76, + "end": 17016.06, + "probability": 0.9891 + }, + { + "start": 17016.06, + "end": 17019.0, + "probability": 0.9575 + }, + { + "start": 17019.68, + "end": 17027.5, + "probability": 0.9911 + }, + { + "start": 17027.5, + "end": 17032.9, + "probability": 0.998 + }, + { + "start": 17033.02, + "end": 17033.84, + "probability": 0.7344 + }, + { + "start": 17033.88, + "end": 17036.72, + "probability": 0.9567 + }, + { + "start": 17036.76, + "end": 17040.34, + "probability": 0.9961 + }, + { + "start": 17041.04, + "end": 17044.44, + "probability": 0.9922 + }, + { + "start": 17044.44, + "end": 17048.8, + "probability": 0.9977 + }, + { + "start": 17049.4, + "end": 17052.76, + "probability": 0.9779 + }, + { + "start": 17053.24, + "end": 17055.24, + "probability": 0.8778 + }, + { + "start": 17055.32, + "end": 17059.8, + "probability": 0.9878 + }, + { + "start": 17059.8, + "end": 17065.52, + "probability": 0.9913 + }, + { + "start": 17065.98, + "end": 17066.6, + "probability": 0.7067 + }, + { + "start": 17066.66, + "end": 17068.9, + "probability": 0.9777 + }, + { + "start": 17069.08, + "end": 17073.36, + "probability": 0.9896 + }, + { + "start": 17073.36, + "end": 17076.94, + "probability": 0.9946 + }, + { + "start": 17077.34, + "end": 17077.7, + "probability": 0.751 + }, + { + "start": 17077.72, + "end": 17078.98, + "probability": 0.6266 + }, + { + "start": 17079.12, + "end": 17082.8, + "probability": 0.9937 + }, + { + "start": 17083.06, + "end": 17083.36, + "probability": 0.7388 + }, + { + "start": 17083.62, + "end": 17085.66, + "probability": 0.6614 + }, + { + "start": 17086.04, + "end": 17089.46, + "probability": 0.9555 + }, + { + "start": 17091.6, + "end": 17094.1, + "probability": 0.9243 + }, + { + "start": 17095.46, + "end": 17101.54, + "probability": 0.1582 + }, + { + "start": 17103.96, + "end": 17105.66, + "probability": 0.002 + }, + { + "start": 17105.68, + "end": 17109.3, + "probability": 0.0932 + }, + { + "start": 17111.04, + "end": 17112.94, + "probability": 0.0494 + }, + { + "start": 17114.12, + "end": 17114.84, + "probability": 0.0559 + }, + { + "start": 17114.84, + "end": 17117.18, + "probability": 0.7336 + }, + { + "start": 17118.0, + "end": 17118.14, + "probability": 0.3044 + }, + { + "start": 17118.16, + "end": 17122.72, + "probability": 0.6598 + }, + { + "start": 17122.88, + "end": 17124.68, + "probability": 0.9128 + }, + { + "start": 17125.24, + "end": 17128.2, + "probability": 0.9893 + }, + { + "start": 17128.38, + "end": 17131.84, + "probability": 0.9952 + }, + { + "start": 17132.46, + "end": 17135.47, + "probability": 0.9609 + }, + { + "start": 17136.46, + "end": 17137.44, + "probability": 0.993 + }, + { + "start": 17138.18, + "end": 17140.7, + "probability": 0.6848 + }, + { + "start": 17140.82, + "end": 17143.32, + "probability": 0.9178 + }, + { + "start": 17143.42, + "end": 17144.88, + "probability": 0.9983 + }, + { + "start": 17145.14, + "end": 17147.04, + "probability": 0.9966 + }, + { + "start": 17147.4, + "end": 17147.8, + "probability": 0.4912 + }, + { + "start": 17148.98, + "end": 17149.62, + "probability": 0.0001 + }, + { + "start": 17151.0, + "end": 17151.32, + "probability": 0.1486 + }, + { + "start": 17151.32, + "end": 17151.32, + "probability": 0.0911 + }, + { + "start": 17151.32, + "end": 17153.74, + "probability": 0.6997 + }, + { + "start": 17154.2, + "end": 17155.22, + "probability": 0.5737 + }, + { + "start": 17155.24, + "end": 17157.12, + "probability": 0.6958 + }, + { + "start": 17157.3, + "end": 17158.38, + "probability": 0.7977 + }, + { + "start": 17158.52, + "end": 17164.4, + "probability": 0.9366 + }, + { + "start": 17164.58, + "end": 17165.46, + "probability": 0.49 + }, + { + "start": 17165.72, + "end": 17166.44, + "probability": 0.6876 + }, + { + "start": 17166.9, + "end": 17169.5, + "probability": 0.7492 + }, + { + "start": 17170.78, + "end": 17175.96, + "probability": 0.798 + }, + { + "start": 17176.36, + "end": 17178.9, + "probability": 0.9407 + }, + { + "start": 17179.24, + "end": 17182.0, + "probability": 0.9709 + }, + { + "start": 17182.58, + "end": 17185.3, + "probability": 0.9756 + }, + { + "start": 17185.86, + "end": 17186.34, + "probability": 0.8441 + }, + { + "start": 17199.96, + "end": 17200.2, + "probability": 0.3864 + }, + { + "start": 17200.26, + "end": 17201.94, + "probability": 0.6334 + }, + { + "start": 17202.54, + "end": 17207.08, + "probability": 0.9172 + }, + { + "start": 17207.14, + "end": 17209.88, + "probability": 0.7458 + }, + { + "start": 17210.32, + "end": 17213.98, + "probability": 0.9816 + }, + { + "start": 17214.48, + "end": 17215.88, + "probability": 0.9903 + }, + { + "start": 17216.02, + "end": 17216.96, + "probability": 0.9255 + }, + { + "start": 17218.06, + "end": 17220.54, + "probability": 0.9928 + }, + { + "start": 17220.54, + "end": 17224.06, + "probability": 0.8994 + }, + { + "start": 17224.18, + "end": 17224.92, + "probability": 0.9055 + }, + { + "start": 17226.32, + "end": 17227.68, + "probability": 0.9655 + }, + { + "start": 17227.72, + "end": 17232.34, + "probability": 0.9951 + }, + { + "start": 17233.74, + "end": 17234.06, + "probability": 0.6331 + }, + { + "start": 17234.16, + "end": 17236.38, + "probability": 0.9941 + }, + { + "start": 17236.42, + "end": 17237.84, + "probability": 0.9852 + }, + { + "start": 17238.08, + "end": 17240.28, + "probability": 0.9805 + }, + { + "start": 17240.5, + "end": 17243.88, + "probability": 0.8809 + }, + { + "start": 17245.18, + "end": 17249.1, + "probability": 0.9429 + }, + { + "start": 17249.1, + "end": 17252.84, + "probability": 0.9992 + }, + { + "start": 17252.84, + "end": 17257.7, + "probability": 0.995 + }, + { + "start": 17258.4, + "end": 17261.62, + "probability": 0.9986 + }, + { + "start": 17262.44, + "end": 17265.7, + "probability": 0.9991 + }, + { + "start": 17266.12, + "end": 17268.58, + "probability": 0.9812 + }, + { + "start": 17268.98, + "end": 17271.7, + "probability": 0.9823 + }, + { + "start": 17271.86, + "end": 17275.2, + "probability": 0.9958 + }, + { + "start": 17275.7, + "end": 17278.54, + "probability": 0.9956 + }, + { + "start": 17278.54, + "end": 17282.4, + "probability": 0.9291 + }, + { + "start": 17283.06, + "end": 17285.0, + "probability": 0.9515 + }, + { + "start": 17285.78, + "end": 17288.36, + "probability": 0.9955 + }, + { + "start": 17288.7, + "end": 17290.08, + "probability": 0.9559 + }, + { + "start": 17290.48, + "end": 17294.84, + "probability": 0.9975 + }, + { + "start": 17295.32, + "end": 17299.24, + "probability": 0.9811 + }, + { + "start": 17299.94, + "end": 17303.08, + "probability": 0.9554 + }, + { + "start": 17303.74, + "end": 17305.14, + "probability": 0.9058 + }, + { + "start": 17305.4, + "end": 17308.1, + "probability": 0.9893 + }, + { + "start": 17308.82, + "end": 17309.59, + "probability": 0.6056 + }, + { + "start": 17309.74, + "end": 17313.26, + "probability": 0.9878 + }, + { + "start": 17313.58, + "end": 17315.66, + "probability": 0.9807 + }, + { + "start": 17316.66, + "end": 17320.6, + "probability": 0.9906 + }, + { + "start": 17320.82, + "end": 17323.62, + "probability": 0.91 + }, + { + "start": 17323.86, + "end": 17326.98, + "probability": 0.9326 + }, + { + "start": 17327.08, + "end": 17328.2, + "probability": 0.9873 + }, + { + "start": 17328.88, + "end": 17333.08, + "probability": 0.9576 + }, + { + "start": 17333.64, + "end": 17337.62, + "probability": 0.999 + }, + { + "start": 17337.62, + "end": 17341.7, + "probability": 0.9907 + }, + { + "start": 17343.0, + "end": 17344.74, + "probability": 0.983 + }, + { + "start": 17344.92, + "end": 17346.7, + "probability": 0.9934 + }, + { + "start": 17346.8, + "end": 17349.6, + "probability": 0.9678 + }, + { + "start": 17349.66, + "end": 17351.5, + "probability": 0.998 + }, + { + "start": 17351.94, + "end": 17355.94, + "probability": 0.9912 + }, + { + "start": 17356.12, + "end": 17356.78, + "probability": 0.7856 + }, + { + "start": 17356.88, + "end": 17358.54, + "probability": 0.7671 + }, + { + "start": 17359.0, + "end": 17361.14, + "probability": 0.9756 + }, + { + "start": 17361.46, + "end": 17361.84, + "probability": 0.7335 + }, + { + "start": 17362.6, + "end": 17365.16, + "probability": 0.7974 + }, + { + "start": 17365.42, + "end": 17368.66, + "probability": 0.4309 + }, + { + "start": 17368.66, + "end": 17369.9, + "probability": 0.9928 + }, + { + "start": 17370.72, + "end": 17371.98, + "probability": 0.8593 + }, + { + "start": 17372.06, + "end": 17374.95, + "probability": 0.91 + }, + { + "start": 17375.8, + "end": 17376.72, + "probability": 0.4519 + }, + { + "start": 17376.82, + "end": 17377.36, + "probability": 0.8493 + }, + { + "start": 17378.26, + "end": 17381.98, + "probability": 0.2248 + }, + { + "start": 17394.4, + "end": 17394.58, + "probability": 0.1927 + }, + { + "start": 17398.12, + "end": 17403.18, + "probability": 0.732 + }, + { + "start": 17406.67, + "end": 17410.48, + "probability": 0.6114 + }, + { + "start": 17411.42, + "end": 17413.62, + "probability": 0.0598 + }, + { + "start": 17414.44, + "end": 17417.44, + "probability": 0.0311 + }, + { + "start": 17418.3, + "end": 17419.16, + "probability": 0.0495 + }, + { + "start": 17419.58, + "end": 17423.48, + "probability": 0.0387 + }, + { + "start": 17423.84, + "end": 17425.42, + "probability": 0.1773 + }, + { + "start": 17427.46, + "end": 17427.74, + "probability": 0.1059 + }, + { + "start": 17427.74, + "end": 17427.74, + "probability": 0.053 + }, + { + "start": 17427.74, + "end": 17427.74, + "probability": 0.0211 + }, + { + "start": 17427.74, + "end": 17430.4, + "probability": 0.4393 + }, + { + "start": 17431.02, + "end": 17432.26, + "probability": 0.7473 + }, + { + "start": 17447.62, + "end": 17450.2, + "probability": 0.7588 + }, + { + "start": 17451.0, + "end": 17453.84, + "probability": 0.7407 + }, + { + "start": 17454.73, + "end": 17457.2, + "probability": 0.8965 + }, + { + "start": 17459.42, + "end": 17462.46, + "probability": 0.5815 + }, + { + "start": 17464.71, + "end": 17468.56, + "probability": 0.5972 + }, + { + "start": 17469.18, + "end": 17470.68, + "probability": 0.3955 + }, + { + "start": 17471.3, + "end": 17473.28, + "probability": 0.9408 + }, + { + "start": 17474.02, + "end": 17481.84, + "probability": 0.9906 + }, + { + "start": 17482.3, + "end": 17484.38, + "probability": 0.9971 + }, + { + "start": 17485.34, + "end": 17487.52, + "probability": 0.9961 + }, + { + "start": 17488.16, + "end": 17490.44, + "probability": 0.9958 + }, + { + "start": 17490.56, + "end": 17491.1, + "probability": 0.4716 + }, + { + "start": 17491.44, + "end": 17494.08, + "probability": 0.2977 + }, + { + "start": 17495.54, + "end": 17500.08, + "probability": 0.9358 + }, + { + "start": 17501.44, + "end": 17502.78, + "probability": 0.9378 + }, + { + "start": 17503.68, + "end": 17505.46, + "probability": 0.9773 + }, + { + "start": 17506.12, + "end": 17507.66, + "probability": 0.9168 + }, + { + "start": 17508.56, + "end": 17512.64, + "probability": 0.8936 + }, + { + "start": 17513.6, + "end": 17519.5, + "probability": 0.9938 + }, + { + "start": 17520.44, + "end": 17523.32, + "probability": 0.8614 + }, + { + "start": 17524.32, + "end": 17528.64, + "probability": 0.9893 + }, + { + "start": 17529.92, + "end": 17531.94, + "probability": 0.9552 + }, + { + "start": 17532.28, + "end": 17534.98, + "probability": 0.5316 + }, + { + "start": 17535.24, + "end": 17537.64, + "probability": 0.4857 + }, + { + "start": 17538.28, + "end": 17541.96, + "probability": 0.7542 + }, + { + "start": 17543.2, + "end": 17545.76, + "probability": 0.799 + }, + { + "start": 17546.26, + "end": 17549.06, + "probability": 0.9731 + }, + { + "start": 17549.4, + "end": 17553.54, + "probability": 0.5899 + }, + { + "start": 17553.7, + "end": 17554.31, + "probability": 0.4423 + }, + { + "start": 17555.32, + "end": 17555.9, + "probability": 0.5984 + }, + { + "start": 17556.48, + "end": 17560.92, + "probability": 0.7222 + }, + { + "start": 17561.12, + "end": 17562.7, + "probability": 0.7136 + }, + { + "start": 17563.78, + "end": 17565.82, + "probability": 0.7718 + }, + { + "start": 17566.02, + "end": 17570.32, + "probability": 0.8879 + }, + { + "start": 17570.9, + "end": 17572.02, + "probability": 0.937 + }, + { + "start": 17572.8, + "end": 17576.22, + "probability": 0.6321 + }, + { + "start": 17576.48, + "end": 17577.84, + "probability": 0.916 + }, + { + "start": 17578.46, + "end": 17579.52, + "probability": 0.6603 + }, + { + "start": 17580.06, + "end": 17582.32, + "probability": 0.8893 + }, + { + "start": 17583.1, + "end": 17583.72, + "probability": 0.8692 + }, + { + "start": 17585.1, + "end": 17586.72, + "probability": 0.9713 + }, + { + "start": 17587.26, + "end": 17590.74, + "probability": 0.989 + }, + { + "start": 17591.36, + "end": 17594.84, + "probability": 0.8531 + }, + { + "start": 17595.6, + "end": 17597.76, + "probability": 0.8046 + }, + { + "start": 17598.44, + "end": 17606.94, + "probability": 0.9619 + }, + { + "start": 17607.28, + "end": 17607.96, + "probability": 0.9443 + }, + { + "start": 17609.26, + "end": 17610.22, + "probability": 0.9458 + }, + { + "start": 17610.8, + "end": 17613.36, + "probability": 0.8655 + }, + { + "start": 17613.88, + "end": 17616.84, + "probability": 0.9895 + }, + { + "start": 17617.1, + "end": 17619.54, + "probability": 0.7686 + }, + { + "start": 17619.62, + "end": 17620.52, + "probability": 0.7485 + }, + { + "start": 17620.86, + "end": 17623.22, + "probability": 0.9479 + }, + { + "start": 17624.44, + "end": 17625.6, + "probability": 0.8976 + }, + { + "start": 17626.42, + "end": 17628.5, + "probability": 0.9591 + }, + { + "start": 17629.16, + "end": 17632.14, + "probability": 0.9614 + }, + { + "start": 17633.24, + "end": 17635.58, + "probability": 0.9463 + }, + { + "start": 17636.2, + "end": 17638.12, + "probability": 0.9127 + }, + { + "start": 17638.52, + "end": 17640.34, + "probability": 0.7041 + }, + { + "start": 17641.02, + "end": 17646.24, + "probability": 0.9896 + }, + { + "start": 17646.96, + "end": 17648.0, + "probability": 0.7787 + }, + { + "start": 17648.78, + "end": 17655.44, + "probability": 0.9845 + }, + { + "start": 17656.26, + "end": 17656.94, + "probability": 0.7905 + }, + { + "start": 17657.68, + "end": 17660.78, + "probability": 0.8198 + }, + { + "start": 17662.7, + "end": 17666.94, + "probability": 0.0958 + }, + { + "start": 17666.94, + "end": 17667.12, + "probability": 0.0231 + }, + { + "start": 17667.68, + "end": 17670.18, + "probability": 0.7241 + }, + { + "start": 17671.12, + "end": 17671.34, + "probability": 0.9109 + }, + { + "start": 17671.96, + "end": 17674.4, + "probability": 0.9745 + }, + { + "start": 17675.28, + "end": 17678.9, + "probability": 0.7014 + }, + { + "start": 17679.84, + "end": 17680.42, + "probability": 0.9377 + }, + { + "start": 17681.18, + "end": 17681.6, + "probability": 0.6479 + }, + { + "start": 17681.78, + "end": 17691.96, + "probability": 0.9533 + }, + { + "start": 17692.56, + "end": 17693.12, + "probability": 0.4299 + }, + { + "start": 17694.14, + "end": 17697.58, + "probability": 0.7202 + }, + { + "start": 17697.58, + "end": 17701.48, + "probability": 0.9904 + }, + { + "start": 17701.68, + "end": 17703.36, + "probability": 0.4228 + }, + { + "start": 17703.42, + "end": 17706.52, + "probability": 0.9696 + }, + { + "start": 17707.24, + "end": 17709.02, + "probability": 0.9778 + }, + { + "start": 17709.46, + "end": 17711.4, + "probability": 0.9307 + }, + { + "start": 17712.7, + "end": 17713.74, + "probability": 0.8983 + }, + { + "start": 17714.42, + "end": 17716.42, + "probability": 0.6519 + }, + { + "start": 17716.84, + "end": 17720.36, + "probability": 0.9608 + }, + { + "start": 17721.06, + "end": 17725.68, + "probability": 0.9976 + }, + { + "start": 17725.68, + "end": 17729.44, + "probability": 0.9958 + }, + { + "start": 17730.76, + "end": 17733.06, + "probability": 0.9148 + }, + { + "start": 17734.22, + "end": 17736.98, + "probability": 0.876 + }, + { + "start": 17737.82, + "end": 17738.82, + "probability": 0.9463 + }, + { + "start": 17739.52, + "end": 17740.48, + "probability": 0.9861 + }, + { + "start": 17740.74, + "end": 17742.72, + "probability": 0.3552 + }, + { + "start": 17743.7, + "end": 17745.04, + "probability": 0.6868 + }, + { + "start": 17745.04, + "end": 17745.84, + "probability": 0.8884 + }, + { + "start": 17747.12, + "end": 17748.5, + "probability": 0.8035 + }, + { + "start": 17748.66, + "end": 17754.58, + "probability": 0.9787 + }, + { + "start": 17755.28, + "end": 17756.46, + "probability": 0.7422 + }, + { + "start": 17756.88, + "end": 17761.5, + "probability": 0.9907 + }, + { + "start": 17761.76, + "end": 17763.76, + "probability": 0.271 + }, + { + "start": 17763.76, + "end": 17766.52, + "probability": 0.6176 + }, + { + "start": 17767.04, + "end": 17771.12, + "probability": 0.5054 + }, + { + "start": 17771.22, + "end": 17775.26, + "probability": 0.9702 + }, + { + "start": 17776.34, + "end": 17777.3, + "probability": 0.9585 + }, + { + "start": 17778.06, + "end": 17782.24, + "probability": 0.9556 + }, + { + "start": 17785.02, + "end": 17789.88, + "probability": 0.9605 + }, + { + "start": 17790.84, + "end": 17798.06, + "probability": 0.9841 + }, + { + "start": 17798.18, + "end": 17798.92, + "probability": 0.3436 + }, + { + "start": 17799.54, + "end": 17800.78, + "probability": 0.9147 + }, + { + "start": 17801.72, + "end": 17802.92, + "probability": 0.3338 + }, + { + "start": 17803.7, + "end": 17804.58, + "probability": 0.9974 + }, + { + "start": 17805.54, + "end": 17808.38, + "probability": 0.9792 + }, + { + "start": 17808.96, + "end": 17811.16, + "probability": 0.5746 + }, + { + "start": 17811.96, + "end": 17819.2, + "probability": 0.9964 + }, + { + "start": 17819.96, + "end": 17821.76, + "probability": 0.9981 + }, + { + "start": 17823.71, + "end": 17825.74, + "probability": 0.5984 + }, + { + "start": 17826.46, + "end": 17828.24, + "probability": 0.993 + }, + { + "start": 17829.74, + "end": 17830.4, + "probability": 0.5177 + }, + { + "start": 17830.72, + "end": 17831.72, + "probability": 0.7418 + }, + { + "start": 17831.78, + "end": 17833.5, + "probability": 0.9278 + }, + { + "start": 17834.64, + "end": 17834.82, + "probability": 0.6948 + }, + { + "start": 17837.3, + "end": 17837.98, + "probability": 0.7472 + }, + { + "start": 17838.64, + "end": 17841.92, + "probability": 0.9865 + }, + { + "start": 17842.04, + "end": 17843.24, + "probability": 0.9028 + }, + { + "start": 17843.74, + "end": 17848.2, + "probability": 0.9429 + }, + { + "start": 17848.2, + "end": 17853.88, + "probability": 0.9985 + }, + { + "start": 17854.78, + "end": 17858.0, + "probability": 0.9909 + }, + { + "start": 17858.0, + "end": 17862.54, + "probability": 0.963 + }, + { + "start": 17863.06, + "end": 17869.44, + "probability": 0.9834 + }, + { + "start": 17870.14, + "end": 17872.52, + "probability": 0.8692 + }, + { + "start": 17872.56, + "end": 17876.06, + "probability": 0.9526 + }, + { + "start": 17876.3, + "end": 17876.68, + "probability": 0.5286 + }, + { + "start": 17877.3, + "end": 17879.28, + "probability": 0.8923 + }, + { + "start": 17879.86, + "end": 17884.89, + "probability": 0.9792 + }, + { + "start": 17885.86, + "end": 17889.88, + "probability": 0.9961 + }, + { + "start": 17890.26, + "end": 17890.94, + "probability": 0.8791 + }, + { + "start": 17890.98, + "end": 17893.88, + "probability": 0.8366 + }, + { + "start": 17895.14, + "end": 17897.1, + "probability": 0.9212 + }, + { + "start": 17897.46, + "end": 17898.28, + "probability": 0.9404 + }, + { + "start": 17899.54, + "end": 17903.64, + "probability": 0.8124 + }, + { + "start": 17904.9, + "end": 17907.32, + "probability": 0.8621 + }, + { + "start": 17907.98, + "end": 17912.38, + "probability": 0.9554 + }, + { + "start": 17912.9, + "end": 17917.4, + "probability": 0.9655 + }, + { + "start": 17917.96, + "end": 17923.58, + "probability": 0.9777 + }, + { + "start": 17923.98, + "end": 17925.88, + "probability": 0.812 + }, + { + "start": 17926.44, + "end": 17927.94, + "probability": 0.8306 + }, + { + "start": 17928.48, + "end": 17931.16, + "probability": 0.7415 + }, + { + "start": 17931.72, + "end": 17934.6, + "probability": 0.9524 + }, + { + "start": 17935.06, + "end": 17942.02, + "probability": 0.9493 + }, + { + "start": 17942.24, + "end": 17944.14, + "probability": 0.9661 + }, + { + "start": 17944.88, + "end": 17946.44, + "probability": 0.0368 + }, + { + "start": 17947.18, + "end": 17947.74, + "probability": 0.1387 + }, + { + "start": 17948.08, + "end": 17949.4, + "probability": 0.4187 + }, + { + "start": 17949.52, + "end": 17950.66, + "probability": 0.6913 + }, + { + "start": 17951.28, + "end": 17959.68, + "probability": 0.9367 + }, + { + "start": 17960.26, + "end": 17962.96, + "probability": 0.9539 + }, + { + "start": 17963.5, + "end": 17965.06, + "probability": 0.8617 + }, + { + "start": 17965.68, + "end": 17967.42, + "probability": 0.9958 + }, + { + "start": 17967.86, + "end": 17972.68, + "probability": 0.818 + }, + { + "start": 17973.06, + "end": 17975.06, + "probability": 0.9824 + }, + { + "start": 17975.38, + "end": 17977.14, + "probability": 0.9804 + }, + { + "start": 17977.6, + "end": 17979.08, + "probability": 0.8969 + }, + { + "start": 17979.28, + "end": 17981.66, + "probability": 0.9956 + }, + { + "start": 17982.08, + "end": 17984.56, + "probability": 0.9889 + }, + { + "start": 17984.74, + "end": 17988.76, + "probability": 0.9283 + }, + { + "start": 17989.16, + "end": 17996.9, + "probability": 0.9911 + }, + { + "start": 17996.9, + "end": 18001.52, + "probability": 0.99 + }, + { + "start": 18002.26, + "end": 18002.76, + "probability": 0.7041 + }, + { + "start": 18002.88, + "end": 18003.26, + "probability": 0.8076 + }, + { + "start": 18003.46, + "end": 18009.52, + "probability": 0.9855 + }, + { + "start": 18009.6, + "end": 18010.16, + "probability": 0.6177 + }, + { + "start": 18010.66, + "end": 18012.98, + "probability": 0.8433 + }, + { + "start": 18013.54, + "end": 18015.14, + "probability": 0.884 + }, + { + "start": 18016.6, + "end": 18017.86, + "probability": 0.9397 + }, + { + "start": 18028.66, + "end": 18030.08, + "probability": 0.5605 + }, + { + "start": 18030.24, + "end": 18030.24, + "probability": 0.5663 + }, + { + "start": 18030.24, + "end": 18030.8, + "probability": 0.7242 + }, + { + "start": 18030.84, + "end": 18032.18, + "probability": 0.7418 + }, + { + "start": 18032.32, + "end": 18033.98, + "probability": 0.8649 + }, + { + "start": 18034.12, + "end": 18036.7, + "probability": 0.8444 + }, + { + "start": 18036.78, + "end": 18039.22, + "probability": 0.9885 + }, + { + "start": 18039.7, + "end": 18043.52, + "probability": 0.9207 + }, + { + "start": 18043.74, + "end": 18046.64, + "probability": 0.9637 + }, + { + "start": 18047.78, + "end": 18048.12, + "probability": 0.7508 + }, + { + "start": 18048.2, + "end": 18049.12, + "probability": 0.8738 + }, + { + "start": 18049.28, + "end": 18051.38, + "probability": 0.9427 + }, + { + "start": 18051.46, + "end": 18054.38, + "probability": 0.9462 + }, + { + "start": 18055.46, + "end": 18057.42, + "probability": 0.9725 + }, + { + "start": 18057.58, + "end": 18059.3, + "probability": 0.9946 + }, + { + "start": 18059.72, + "end": 18061.44, + "probability": 0.9961 + }, + { + "start": 18061.88, + "end": 18065.0, + "probability": 0.9939 + }, + { + "start": 18065.42, + "end": 18068.44, + "probability": 0.9731 + }, + { + "start": 18068.44, + "end": 18071.0, + "probability": 0.9927 + }, + { + "start": 18071.12, + "end": 18075.16, + "probability": 0.9263 + }, + { + "start": 18075.22, + "end": 18078.94, + "probability": 0.9874 + }, + { + "start": 18078.94, + "end": 18082.68, + "probability": 0.9924 + }, + { + "start": 18083.46, + "end": 18084.34, + "probability": 0.8361 + }, + { + "start": 18084.98, + "end": 18086.42, + "probability": 0.9363 + }, + { + "start": 18086.52, + "end": 18088.78, + "probability": 0.9385 + }, + { + "start": 18089.46, + "end": 18090.98, + "probability": 0.9838 + }, + { + "start": 18091.0, + "end": 18092.36, + "probability": 0.8213 + }, + { + "start": 18092.4, + "end": 18096.58, + "probability": 0.9923 + }, + { + "start": 18096.58, + "end": 18100.9, + "probability": 0.9973 + }, + { + "start": 18101.84, + "end": 18106.0, + "probability": 0.9904 + }, + { + "start": 18106.5, + "end": 18110.86, + "probability": 0.9799 + }, + { + "start": 18110.88, + "end": 18115.45, + "probability": 0.9987 + }, + { + "start": 18116.3, + "end": 18119.34, + "probability": 0.9961 + }, + { + "start": 18119.34, + "end": 18122.92, + "probability": 0.98 + }, + { + "start": 18123.0, + "end": 18123.22, + "probability": 0.8178 + }, + { + "start": 18123.32, + "end": 18123.94, + "probability": 0.9897 + }, + { + "start": 18124.06, + "end": 18129.8, + "probability": 0.9662 + }, + { + "start": 18130.24, + "end": 18132.62, + "probability": 0.9949 + }, + { + "start": 18132.62, + "end": 18135.14, + "probability": 0.9912 + }, + { + "start": 18135.4, + "end": 18135.72, + "probability": 0.978 + }, + { + "start": 18135.84, + "end": 18140.32, + "probability": 0.9886 + }, + { + "start": 18140.88, + "end": 18143.18, + "probability": 0.9872 + }, + { + "start": 18143.26, + "end": 18147.38, + "probability": 0.9888 + }, + { + "start": 18147.84, + "end": 18151.48, + "probability": 0.9763 + }, + { + "start": 18151.64, + "end": 18152.92, + "probability": 0.9141 + }, + { + "start": 18153.52, + "end": 18156.96, + "probability": 0.987 + }, + { + "start": 18157.24, + "end": 18157.42, + "probability": 0.4181 + }, + { + "start": 18157.5, + "end": 18162.36, + "probability": 0.9695 + }, + { + "start": 18162.36, + "end": 18165.72, + "probability": 0.9974 + }, + { + "start": 18165.82, + "end": 18167.86, + "probability": 0.9832 + }, + { + "start": 18168.64, + "end": 18168.74, + "probability": 0.9994 + }, + { + "start": 18169.78, + "end": 18170.7, + "probability": 0.9092 + }, + { + "start": 18171.02, + "end": 18172.58, + "probability": 0.8231 + }, + { + "start": 18172.66, + "end": 18177.28, + "probability": 0.9919 + }, + { + "start": 18178.09, + "end": 18181.24, + "probability": 0.9692 + }, + { + "start": 18181.42, + "end": 18184.6, + "probability": 0.9419 + }, + { + "start": 18185.2, + "end": 18194.26, + "probability": 0.9935 + }, + { + "start": 18196.65, + "end": 18198.34, + "probability": 0.4863 + }, + { + "start": 18198.42, + "end": 18199.08, + "probability": 0.5414 + }, + { + "start": 18199.16, + "end": 18201.52, + "probability": 0.981 + }, + { + "start": 18202.0, + "end": 18204.9, + "probability": 0.9797 + }, + { + "start": 18205.22, + "end": 18206.8, + "probability": 0.9609 + }, + { + "start": 18206.86, + "end": 18208.72, + "probability": 0.9015 + }, + { + "start": 18208.8, + "end": 18215.16, + "probability": 0.989 + }, + { + "start": 18215.36, + "end": 18216.53, + "probability": 0.9775 + }, + { + "start": 18216.86, + "end": 18218.38, + "probability": 0.5526 + }, + { + "start": 18218.54, + "end": 18222.92, + "probability": 0.9883 + }, + { + "start": 18223.34, + "end": 18225.96, + "probability": 0.9825 + }, + { + "start": 18225.96, + "end": 18228.68, + "probability": 0.9912 + }, + { + "start": 18228.74, + "end": 18229.0, + "probability": 0.6961 + }, + { + "start": 18230.2, + "end": 18231.3, + "probability": 0.6048 + }, + { + "start": 18232.38, + "end": 18235.84, + "probability": 0.8901 + }, + { + "start": 18237.2, + "end": 18238.4, + "probability": 0.5822 + }, + { + "start": 18243.38, + "end": 18244.72, + "probability": 0.6874 + }, + { + "start": 18245.11, + "end": 18248.37, + "probability": 0.8895 + }, + { + "start": 18249.38, + "end": 18250.1, + "probability": 0.8667 + }, + { + "start": 18250.16, + "end": 18253.76, + "probability": 0.5804 + }, + { + "start": 18254.52, + "end": 18255.54, + "probability": 0.6305 + }, + { + "start": 18256.42, + "end": 18258.64, + "probability": 0.7419 + }, + { + "start": 18259.58, + "end": 18261.16, + "probability": 0.8244 + }, + { + "start": 18262.4, + "end": 18264.3, + "probability": 0.8362 + }, + { + "start": 18265.34, + "end": 18268.34, + "probability": 0.9043 + }, + { + "start": 18269.2, + "end": 18271.58, + "probability": 0.9569 + }, + { + "start": 18272.56, + "end": 18275.68, + "probability": 0.9238 + }, + { + "start": 18277.12, + "end": 18278.34, + "probability": 0.8238 + }, + { + "start": 18279.56, + "end": 18281.92, + "probability": 0.9854 + }, + { + "start": 18282.7, + "end": 18282.98, + "probability": 0.7063 + }, + { + "start": 18284.1, + "end": 18285.06, + "probability": 0.5101 + }, + { + "start": 18286.3, + "end": 18287.76, + "probability": 0.9414 + }, + { + "start": 18288.38, + "end": 18289.52, + "probability": 0.9263 + }, + { + "start": 18290.84, + "end": 18293.22, + "probability": 0.967 + }, + { + "start": 18294.06, + "end": 18296.14, + "probability": 0.989 + }, + { + "start": 18296.94, + "end": 18300.56, + "probability": 0.9017 + }, + { + "start": 18301.62, + "end": 18303.12, + "probability": 0.7345 + }, + { + "start": 18304.16, + "end": 18306.28, + "probability": 0.8854 + }, + { + "start": 18308.14, + "end": 18310.46, + "probability": 0.71 + }, + { + "start": 18311.48, + "end": 18318.38, + "probability": 0.8535 + }, + { + "start": 18319.34, + "end": 18320.1, + "probability": 0.978 + }, + { + "start": 18321.06, + "end": 18322.08, + "probability": 0.7533 + }, + { + "start": 18323.2, + "end": 18326.3, + "probability": 0.9532 + }, + { + "start": 18327.16, + "end": 18329.84, + "probability": 0.9744 + }, + { + "start": 18331.42, + "end": 18334.18, + "probability": 0.9577 + }, + { + "start": 18336.02, + "end": 18338.44, + "probability": 0.9358 + }, + { + "start": 18339.42, + "end": 18340.16, + "probability": 0.8831 + }, + { + "start": 18340.78, + "end": 18341.7, + "probability": 0.6757 + }, + { + "start": 18343.28, + "end": 18345.68, + "probability": 0.9755 + }, + { + "start": 18346.46, + "end": 18349.5, + "probability": 0.9212 + }, + { + "start": 18350.62, + "end": 18352.6, + "probability": 0.8692 + }, + { + "start": 18354.14, + "end": 18357.66, + "probability": 0.8753 + }, + { + "start": 18358.36, + "end": 18359.42, + "probability": 0.9656 + }, + { + "start": 18360.24, + "end": 18361.28, + "probability": 0.8189 + }, + { + "start": 18362.12, + "end": 18364.32, + "probability": 0.959 + }, + { + "start": 18365.46, + "end": 18366.18, + "probability": 0.9886 + }, + { + "start": 18366.84, + "end": 18368.04, + "probability": 0.6063 + }, + { + "start": 18369.18, + "end": 18370.04, + "probability": 0.8745 + }, + { + "start": 18374.04, + "end": 18375.06, + "probability": 0.5061 + }, + { + "start": 18375.86, + "end": 18378.04, + "probability": 0.8381 + }, + { + "start": 18381.06, + "end": 18381.84, + "probability": 0.8231 + }, + { + "start": 18382.38, + "end": 18383.42, + "probability": 0.7639 + }, + { + "start": 18384.42, + "end": 18385.26, + "probability": 0.9832 + }, + { + "start": 18386.12, + "end": 18387.12, + "probability": 0.9294 + }, + { + "start": 18388.1, + "end": 18388.88, + "probability": 0.9964 + }, + { + "start": 18389.4, + "end": 18390.96, + "probability": 0.9326 + }, + { + "start": 18391.9, + "end": 18394.2, + "probability": 0.979 + }, + { + "start": 18397.34, + "end": 18399.76, + "probability": 0.9056 + }, + { + "start": 18400.8, + "end": 18403.04, + "probability": 0.5549 + }, + { + "start": 18404.0, + "end": 18404.38, + "probability": 0.952 + }, + { + "start": 18405.62, + "end": 18406.16, + "probability": 0.9072 + }, + { + "start": 18408.68, + "end": 18409.52, + "probability": 0.9774 + }, + { + "start": 18410.16, + "end": 18411.84, + "probability": 0.8869 + }, + { + "start": 18412.76, + "end": 18417.56, + "probability": 0.912 + }, + { + "start": 18418.9, + "end": 18422.0, + "probability": 0.8986 + }, + { + "start": 18423.26, + "end": 18425.42, + "probability": 0.9191 + }, + { + "start": 18427.04, + "end": 18432.05, + "probability": 0.7746 + }, + { + "start": 18433.1, + "end": 18434.5, + "probability": 0.9645 + }, + { + "start": 18435.14, + "end": 18436.66, + "probability": 0.9777 + }, + { + "start": 18437.86, + "end": 18439.92, + "probability": 0.9034 + }, + { + "start": 18441.08, + "end": 18443.64, + "probability": 0.9484 + }, + { + "start": 18446.26, + "end": 18448.8, + "probability": 0.9768 + }, + { + "start": 18449.98, + "end": 18450.76, + "probability": 0.9954 + }, + { + "start": 18451.36, + "end": 18453.14, + "probability": 0.9731 + }, + { + "start": 18454.7, + "end": 18457.2, + "probability": 0.9561 + }, + { + "start": 18458.3, + "end": 18459.66, + "probability": 0.9339 + }, + { + "start": 18460.38, + "end": 18463.18, + "probability": 0.8077 + }, + { + "start": 18464.12, + "end": 18466.92, + "probability": 0.6079 + }, + { + "start": 18467.52, + "end": 18468.36, + "probability": 0.9286 + }, + { + "start": 18468.88, + "end": 18469.78, + "probability": 0.9713 + }, + { + "start": 18470.78, + "end": 18473.12, + "probability": 0.8749 + }, + { + "start": 18473.72, + "end": 18474.2, + "probability": 0.9705 + }, + { + "start": 18475.62, + "end": 18476.62, + "probability": 0.9625 + }, + { + "start": 18477.38, + "end": 18478.0, + "probability": 0.9712 + }, + { + "start": 18478.82, + "end": 18484.3, + "probability": 0.9844 + }, + { + "start": 18485.14, + "end": 18485.28, + "probability": 0.4674 + }, + { + "start": 18486.09, + "end": 18493.54, + "probability": 0.4563 + }, + { + "start": 18494.7, + "end": 18497.28, + "probability": 0.9379 + }, + { + "start": 18498.5, + "end": 18500.9, + "probability": 0.9694 + }, + { + "start": 18502.14, + "end": 18504.68, + "probability": 0.9081 + }, + { + "start": 18505.76, + "end": 18508.38, + "probability": 0.9231 + }, + { + "start": 18509.36, + "end": 18511.02, + "probability": 0.9828 + }, + { + "start": 18513.9, + "end": 18515.04, + "probability": 0.6718 + }, + { + "start": 18515.58, + "end": 18517.84, + "probability": 0.6649 + }, + { + "start": 18518.46, + "end": 18518.78, + "probability": 0.9772 + }, + { + "start": 18522.02, + "end": 18523.1, + "probability": 0.6795 + }, + { + "start": 18523.76, + "end": 18525.52, + "probability": 0.8486 + }, + { + "start": 18526.32, + "end": 18528.8, + "probability": 0.9762 + }, + { + "start": 18529.64, + "end": 18531.88, + "probability": 0.9806 + }, + { + "start": 18533.54, + "end": 18535.5, + "probability": 0.6023 + }, + { + "start": 18536.48, + "end": 18541.36, + "probability": 0.972 + }, + { + "start": 18542.34, + "end": 18547.14, + "probability": 0.0327 + }, + { + "start": 18552.32, + "end": 18553.8, + "probability": 0.0615 + }, + { + "start": 18554.76, + "end": 18557.74, + "probability": 0.7562 + }, + { + "start": 18558.6, + "end": 18558.96, + "probability": 0.8021 + }, + { + "start": 18559.74, + "end": 18560.98, + "probability": 0.9411 + }, + { + "start": 18564.14, + "end": 18570.48, + "probability": 0.9391 + }, + { + "start": 18571.34, + "end": 18573.5, + "probability": 0.8215 + }, + { + "start": 18574.54, + "end": 18577.38, + "probability": 0.9421 + }, + { + "start": 18578.28, + "end": 18580.3, + "probability": 0.8159 + }, + { + "start": 18580.86, + "end": 18582.82, + "probability": 0.9664 + }, + { + "start": 18583.24, + "end": 18586.96, + "probability": 0.9731 + }, + { + "start": 18587.42, + "end": 18590.02, + "probability": 0.9559 + }, + { + "start": 18590.14, + "end": 18592.48, + "probability": 0.9806 + }, + { + "start": 18592.82, + "end": 18594.72, + "probability": 0.8199 + }, + { + "start": 18595.7, + "end": 18597.42, + "probability": 0.794 + }, + { + "start": 18597.6, + "end": 18601.16, + "probability": 0.5134 + }, + { + "start": 18602.44, + "end": 18604.66, + "probability": 0.7822 + }, + { + "start": 18606.54, + "end": 18609.28, + "probability": 0.7458 + }, + { + "start": 18610.95, + "end": 18614.22, + "probability": 0.9087 + }, + { + "start": 18614.76, + "end": 18617.1, + "probability": 0.9668 + }, + { + "start": 18617.74, + "end": 18618.18, + "probability": 0.9709 + }, + { + "start": 18618.84, + "end": 18620.86, + "probability": 0.6427 + }, + { + "start": 18621.46, + "end": 18623.5, + "probability": 0.7162 + }, + { + "start": 18624.66, + "end": 18626.78, + "probability": 0.9373 + }, + { + "start": 18627.68, + "end": 18631.44, + "probability": 0.9248 + }, + { + "start": 18633.5, + "end": 18634.26, + "probability": 0.9729 + }, + { + "start": 18635.66, + "end": 18636.58, + "probability": 0.8977 + }, + { + "start": 18638.1, + "end": 18640.34, + "probability": 0.8947 + }, + { + "start": 18640.86, + "end": 18641.62, + "probability": 0.9805 + }, + { + "start": 18642.16, + "end": 18643.36, + "probability": 0.9691 + }, + { + "start": 18644.24, + "end": 18646.4, + "probability": 0.968 + }, + { + "start": 18647.4, + "end": 18649.88, + "probability": 0.6885 + }, + { + "start": 18650.92, + "end": 18651.54, + "probability": 0.83 + }, + { + "start": 18652.1, + "end": 18653.1, + "probability": 0.8112 + }, + { + "start": 18653.94, + "end": 18656.58, + "probability": 0.9482 + }, + { + "start": 18657.78, + "end": 18661.92, + "probability": 0.9675 + }, + { + "start": 18662.64, + "end": 18666.56, + "probability": 0.9821 + }, + { + "start": 18667.54, + "end": 18667.98, + "probability": 0.9526 + }, + { + "start": 18669.1, + "end": 18671.26, + "probability": 0.9771 + }, + { + "start": 18671.94, + "end": 18673.14, + "probability": 0.9763 + }, + { + "start": 18673.72, + "end": 18676.1, + "probability": 0.8221 + }, + { + "start": 18676.72, + "end": 18679.84, + "probability": 0.7825 + }, + { + "start": 18680.36, + "end": 18681.26, + "probability": 0.7402 + }, + { + "start": 18682.58, + "end": 18684.26, + "probability": 0.9566 + }, + { + "start": 18685.02, + "end": 18686.54, + "probability": 0.9603 + }, + { + "start": 18687.64, + "end": 18689.28, + "probability": 0.989 + }, + { + "start": 18690.2, + "end": 18691.86, + "probability": 0.9885 + }, + { + "start": 18692.78, + "end": 18695.16, + "probability": 0.9931 + }, + { + "start": 18695.98, + "end": 18698.68, + "probability": 0.9628 + }, + { + "start": 18700.18, + "end": 18702.66, + "probability": 0.7523 + }, + { + "start": 18703.66, + "end": 18706.12, + "probability": 0.8782 + }, + { + "start": 18708.22, + "end": 18712.34, + "probability": 0.6042 + }, + { + "start": 18714.7, + "end": 18716.74, + "probability": 0.3222 + }, + { + "start": 18717.78, + "end": 18720.06, + "probability": 0.7079 + }, + { + "start": 18720.32, + "end": 18721.98, + "probability": 0.8064 + }, + { + "start": 18723.6, + "end": 18724.32, + "probability": 0.8981 + }, + { + "start": 18725.32, + "end": 18726.26, + "probability": 0.8706 + }, + { + "start": 18727.64, + "end": 18732.3, + "probability": 0.9631 + }, + { + "start": 18733.26, + "end": 18735.38, + "probability": 0.9833 + }, + { + "start": 18736.76, + "end": 18737.48, + "probability": 0.9951 + }, + { + "start": 18738.08, + "end": 18738.98, + "probability": 0.9421 + }, + { + "start": 18739.62, + "end": 18740.32, + "probability": 0.9829 + }, + { + "start": 18740.86, + "end": 18742.0, + "probability": 0.5889 + }, + { + "start": 18742.6, + "end": 18744.26, + "probability": 0.7071 + }, + { + "start": 18745.42, + "end": 18747.58, + "probability": 0.8805 + }, + { + "start": 18748.1, + "end": 18749.0, + "probability": 0.9444 + }, + { + "start": 18750.94, + "end": 18752.24, + "probability": 0.8114 + }, + { + "start": 18752.9, + "end": 18754.08, + "probability": 0.9881 + }, + { + "start": 18755.12, + "end": 18757.5, + "probability": 0.9416 + }, + { + "start": 18758.86, + "end": 18759.66, + "probability": 0.9966 + }, + { + "start": 18760.56, + "end": 18761.62, + "probability": 0.9785 + }, + { + "start": 18762.32, + "end": 18764.76, + "probability": 0.9499 + }, + { + "start": 18765.62, + "end": 18766.96, + "probability": 0.8289 + }, + { + "start": 18767.76, + "end": 18768.86, + "probability": 0.9563 + }, + { + "start": 18769.8, + "end": 18771.78, + "probability": 0.6057 + }, + { + "start": 18772.64, + "end": 18774.84, + "probability": 0.8983 + }, + { + "start": 18775.9, + "end": 18776.8, + "probability": 0.9914 + }, + { + "start": 18780.12, + "end": 18781.0, + "probability": 0.521 + }, + { + "start": 18781.92, + "end": 18783.74, + "probability": 0.8522 + }, + { + "start": 18784.8, + "end": 18788.42, + "probability": 0.9787 + }, + { + "start": 18789.08, + "end": 18789.86, + "probability": 0.9743 + }, + { + "start": 18790.5, + "end": 18792.12, + "probability": 0.9811 + }, + { + "start": 18793.22, + "end": 18795.62, + "probability": 0.9925 + }, + { + "start": 18796.84, + "end": 18799.88, + "probability": 0.9934 + }, + { + "start": 18801.18, + "end": 18804.68, + "probability": 0.8316 + }, + { + "start": 18805.56, + "end": 18806.88, + "probability": 0.8493 + }, + { + "start": 18807.42, + "end": 18808.76, + "probability": 0.891 + }, + { + "start": 18809.38, + "end": 18811.4, + "probability": 0.8936 + }, + { + "start": 18811.92, + "end": 18812.58, + "probability": 0.8676 + }, + { + "start": 18813.16, + "end": 18814.3, + "probability": 0.9068 + }, + { + "start": 18814.96, + "end": 18817.34, + "probability": 0.99 + }, + { + "start": 18818.5, + "end": 18819.26, + "probability": 0.9887 + }, + { + "start": 18820.1, + "end": 18821.06, + "probability": 0.902 + }, + { + "start": 18823.36, + "end": 18823.86, + "probability": 0.6331 + }, + { + "start": 18824.76, + "end": 18826.36, + "probability": 0.9758 + }, + { + "start": 18827.0, + "end": 18829.14, + "probability": 0.6918 + }, + { + "start": 18830.08, + "end": 18830.8, + "probability": 0.9759 + }, + { + "start": 18831.44, + "end": 18835.2, + "probability": 0.9171 + }, + { + "start": 18835.78, + "end": 18837.96, + "probability": 0.9833 + }, + { + "start": 18840.62, + "end": 18840.96, + "probability": 0.9427 + }, + { + "start": 18844.08, + "end": 18844.66, + "probability": 0.5552 + }, + { + "start": 18845.78, + "end": 18847.7, + "probability": 0.9078 + }, + { + "start": 18848.9, + "end": 18850.94, + "probability": 0.9807 + }, + { + "start": 18851.82, + "end": 18853.56, + "probability": 0.9389 + }, + { + "start": 18854.18, + "end": 18856.04, + "probability": 0.9597 + }, + { + "start": 18856.68, + "end": 18858.14, + "probability": 0.9939 + }, + { + "start": 18858.94, + "end": 18860.02, + "probability": 0.9772 + }, + { + "start": 18860.54, + "end": 18862.56, + "probability": 0.9859 + }, + { + "start": 18863.26, + "end": 18867.38, + "probability": 0.8222 + }, + { + "start": 18868.04, + "end": 18868.74, + "probability": 0.9068 + }, + { + "start": 18869.7, + "end": 18871.46, + "probability": 0.9709 + }, + { + "start": 18872.34, + "end": 18874.56, + "probability": 0.9382 + }, + { + "start": 18875.4, + "end": 18878.08, + "probability": 0.802 + }, + { + "start": 18878.9, + "end": 18880.28, + "probability": 0.8479 + }, + { + "start": 18881.0, + "end": 18882.78, + "probability": 0.9419 + }, + { + "start": 18883.58, + "end": 18884.96, + "probability": 0.8046 + }, + { + "start": 18886.6, + "end": 18888.66, + "probability": 0.7883 + }, + { + "start": 18889.48, + "end": 18891.98, + "probability": 0.9115 + }, + { + "start": 18893.62, + "end": 18896.44, + "probability": 0.9257 + }, + { + "start": 18898.31, + "end": 18904.26, + "probability": 0.5848 + }, + { + "start": 18905.22, + "end": 18907.82, + "probability": 0.9512 + }, + { + "start": 18908.86, + "end": 18910.66, + "probability": 0.9782 + }, + { + "start": 18911.6, + "end": 18913.98, + "probability": 0.8289 + }, + { + "start": 18914.78, + "end": 18916.88, + "probability": 0.6591 + }, + { + "start": 18917.62, + "end": 18919.66, + "probability": 0.9331 + }, + { + "start": 18920.24, + "end": 18922.34, + "probability": 0.6203 + }, + { + "start": 18923.02, + "end": 18926.6, + "probability": 0.7829 + }, + { + "start": 18927.22, + "end": 18928.08, + "probability": 0.7442 + }, + { + "start": 18928.92, + "end": 18930.86, + "probability": 0.9682 + }, + { + "start": 18931.6, + "end": 18933.88, + "probability": 0.6114 + }, + { + "start": 18934.34, + "end": 18937.02, + "probability": 0.8638 + }, + { + "start": 18937.58, + "end": 18939.56, + "probability": 0.9692 + }, + { + "start": 18940.9, + "end": 18942.7, + "probability": 0.8968 + }, + { + "start": 18943.28, + "end": 18944.42, + "probability": 0.9032 + }, + { + "start": 18944.96, + "end": 18947.18, + "probability": 0.9858 + }, + { + "start": 18948.04, + "end": 18950.2, + "probability": 0.9863 + }, + { + "start": 18950.84, + "end": 18952.72, + "probability": 0.7475 + }, + { + "start": 18953.56, + "end": 18955.74, + "probability": 0.908 + }, + { + "start": 18956.68, + "end": 18957.3, + "probability": 0.9699 + }, + { + "start": 18957.98, + "end": 18958.82, + "probability": 0.7692 + }, + { + "start": 18959.7, + "end": 18965.82, + "probability": 0.9497 + }, + { + "start": 18966.48, + "end": 18966.64, + "probability": 0.0545 + }, + { + "start": 18967.28, + "end": 18968.34, + "probability": 0.4603 + }, + { + "start": 18968.34, + "end": 18972.9, + "probability": 0.184 + }, + { + "start": 18980.54, + "end": 18983.58, + "probability": 0.0382 + }, + { + "start": 18983.82, + "end": 18985.76, + "probability": 0.218 + }, + { + "start": 18990.16, + "end": 18995.72, + "probability": 0.5288 + }, + { + "start": 18997.26, + "end": 18997.77, + "probability": 0.1946 + }, + { + "start": 18998.44, + "end": 18998.87, + "probability": 0.8893 + }, + { + "start": 18999.9, + "end": 19000.82, + "probability": 0.0511 + }, + { + "start": 19004.38, + "end": 19005.48, + "probability": 0.7166 + }, + { + "start": 19006.22, + "end": 19007.38, + "probability": 0.3905 + }, + { + "start": 19007.42, + "end": 19009.38, + "probability": 0.477 + }, + { + "start": 19009.78, + "end": 19009.78, + "probability": 0.0001 + }, + { + "start": 19011.77, + "end": 19015.7, + "probability": 0.0589 + }, + { + "start": 19018.2, + "end": 19018.64, + "probability": 0.2119 + }, + { + "start": 19036.32, + "end": 19042.4, + "probability": 0.0703 + }, + { + "start": 19080.0, + "end": 19080.0, + "probability": 0.0 + }, + { + "start": 19080.52, + "end": 19085.08, + "probability": 0.4465 + }, + { + "start": 19085.9, + "end": 19087.42, + "probability": 0.9351 + }, + { + "start": 19088.7, + "end": 19089.26, + "probability": 0.9562 + }, + { + "start": 19090.3, + "end": 19093.86, + "probability": 0.3129 + }, + { + "start": 19093.86, + "end": 19093.86, + "probability": 0.3554 + }, + { + "start": 19093.86, + "end": 19093.86, + "probability": 0.4864 + }, + { + "start": 19093.86, + "end": 19093.86, + "probability": 0.5129 + }, + { + "start": 19093.86, + "end": 19093.86, + "probability": 0.4687 + }, + { + "start": 19093.86, + "end": 19093.86, + "probability": 0.5461 + }, + { + "start": 19093.86, + "end": 19093.86, + "probability": 0.5728 + }, + { + "start": 19093.86, + "end": 19094.69, + "probability": 0.2986 + }, + { + "start": 19097.12, + "end": 19099.07, + "probability": 0.9697 + }, + { + "start": 19099.44, + "end": 19100.82, + "probability": 0.7505 + }, + { + "start": 19101.28, + "end": 19103.62, + "probability": 0.5228 + }, + { + "start": 19104.86, + "end": 19107.02, + "probability": 0.5439 + }, + { + "start": 19107.12, + "end": 19107.9, + "probability": 0.7725 + }, + { + "start": 19108.34, + "end": 19109.2, + "probability": 0.4071 + }, + { + "start": 19109.8, + "end": 19109.98, + "probability": 0.9539 + }, + { + "start": 19110.54, + "end": 19112.28, + "probability": 0.5343 + }, + { + "start": 19117.36, + "end": 19118.46, + "probability": 0.715 + }, + { + "start": 19118.98, + "end": 19120.04, + "probability": 0.9458 + }, + { + "start": 19121.1, + "end": 19124.04, + "probability": 0.915 + }, + { + "start": 19125.46, + "end": 19128.76, + "probability": 0.9729 + }, + { + "start": 19129.92, + "end": 19132.28, + "probability": 0.9738 + }, + { + "start": 19133.02, + "end": 19137.36, + "probability": 0.9683 + }, + { + "start": 19138.3, + "end": 19139.44, + "probability": 0.905 + }, + { + "start": 19139.64, + "end": 19144.18, + "probability": 0.995 + }, + { + "start": 19145.14, + "end": 19146.54, + "probability": 0.8733 + }, + { + "start": 19146.68, + "end": 19147.2, + "probability": 0.5807 + }, + { + "start": 19147.6, + "end": 19149.6, + "probability": 0.9769 + }, + { + "start": 19151.99, + "end": 19153.64, + "probability": 0.731 + }, + { + "start": 19154.96, + "end": 19157.0, + "probability": 0.8526 + }, + { + "start": 19159.5, + "end": 19162.04, + "probability": 0.7169 + }, + { + "start": 19162.22, + "end": 19165.6, + "probability": 0.9809 + }, + { + "start": 19165.88, + "end": 19167.22, + "probability": 0.7313 + }, + { + "start": 19167.76, + "end": 19170.98, + "probability": 0.9597 + }, + { + "start": 19173.46, + "end": 19177.54, + "probability": 0.9592 + }, + { + "start": 19178.42, + "end": 19180.3, + "probability": 0.9697 + }, + { + "start": 19182.28, + "end": 19184.34, + "probability": 0.9831 + }, + { + "start": 19186.48, + "end": 19188.38, + "probability": 0.8702 + }, + { + "start": 19188.56, + "end": 19192.12, + "probability": 0.9969 + }, + { + "start": 19193.52, + "end": 19196.52, + "probability": 0.9638 + }, + { + "start": 19198.58, + "end": 19201.62, + "probability": 0.9863 + }, + { + "start": 19202.06, + "end": 19202.9, + "probability": 0.9343 + }, + { + "start": 19204.82, + "end": 19209.27, + "probability": 0.9471 + }, + { + "start": 19211.28, + "end": 19217.48, + "probability": 0.9867 + }, + { + "start": 19220.22, + "end": 19223.2, + "probability": 0.9879 + }, + { + "start": 19224.12, + "end": 19225.92, + "probability": 0.9961 + }, + { + "start": 19230.12, + "end": 19231.74, + "probability": 0.9648 + }, + { + "start": 19233.16, + "end": 19235.52, + "probability": 0.9595 + }, + { + "start": 19236.26, + "end": 19238.56, + "probability": 0.993 + }, + { + "start": 19240.24, + "end": 19240.24, + "probability": 0.9663 + }, + { + "start": 19241.48, + "end": 19244.42, + "probability": 0.8767 + }, + { + "start": 19245.02, + "end": 19251.38, + "probability": 0.995 + }, + { + "start": 19254.12, + "end": 19257.26, + "probability": 0.8927 + }, + { + "start": 19257.86, + "end": 19261.68, + "probability": 0.7786 + }, + { + "start": 19264.34, + "end": 19264.84, + "probability": 0.7096 + }, + { + "start": 19265.9, + "end": 19266.82, + "probability": 0.9466 + }, + { + "start": 19269.66, + "end": 19272.9, + "probability": 0.9099 + }, + { + "start": 19273.78, + "end": 19276.26, + "probability": 0.9614 + }, + { + "start": 19276.96, + "end": 19278.1, + "probability": 0.9705 + }, + { + "start": 19278.48, + "end": 19279.62, + "probability": 0.9199 + }, + { + "start": 19280.84, + "end": 19282.38, + "probability": 0.8415 + }, + { + "start": 19282.46, + "end": 19283.08, + "probability": 0.574 + }, + { + "start": 19283.38, + "end": 19284.32, + "probability": 0.9746 + }, + { + "start": 19286.02, + "end": 19290.5, + "probability": 0.9209 + }, + { + "start": 19291.88, + "end": 19295.26, + "probability": 0.9761 + }, + { + "start": 19297.42, + "end": 19301.42, + "probability": 0.9963 + }, + { + "start": 19301.42, + "end": 19303.78, + "probability": 0.9871 + }, + { + "start": 19305.58, + "end": 19307.88, + "probability": 0.9937 + }, + { + "start": 19308.7, + "end": 19309.78, + "probability": 0.9927 + }, + { + "start": 19310.7, + "end": 19314.38, + "probability": 0.8059 + }, + { + "start": 19314.76, + "end": 19316.06, + "probability": 0.9874 + }, + { + "start": 19317.88, + "end": 19320.46, + "probability": 0.9956 + }, + { + "start": 19322.24, + "end": 19324.5, + "probability": 0.9812 + }, + { + "start": 19325.32, + "end": 19327.68, + "probability": 0.8461 + }, + { + "start": 19328.26, + "end": 19330.46, + "probability": 0.9438 + }, + { + "start": 19331.04, + "end": 19332.06, + "probability": 0.9427 + }, + { + "start": 19332.9, + "end": 19334.36, + "probability": 0.9946 + }, + { + "start": 19334.9, + "end": 19341.98, + "probability": 0.9961 + }, + { + "start": 19342.1, + "end": 19342.74, + "probability": 0.926 + }, + { + "start": 19344.54, + "end": 19348.96, + "probability": 0.9893 + }, + { + "start": 19349.48, + "end": 19350.28, + "probability": 0.8405 + }, + { + "start": 19351.12, + "end": 19353.3, + "probability": 0.6914 + }, + { + "start": 19355.02, + "end": 19356.14, + "probability": 0.9552 + }, + { + "start": 19356.26, + "end": 19356.66, + "probability": 0.8615 + }, + { + "start": 19356.78, + "end": 19357.16, + "probability": 0.2965 + }, + { + "start": 19357.22, + "end": 19358.3, + "probability": 0.9562 + }, + { + "start": 19359.16, + "end": 19362.5, + "probability": 0.8541 + }, + { + "start": 19363.14, + "end": 19365.03, + "probability": 0.9851 + }, + { + "start": 19366.28, + "end": 19366.8, + "probability": 0.8188 + }, + { + "start": 19367.64, + "end": 19368.04, + "probability": 0.8234 + }, + { + "start": 19368.56, + "end": 19369.32, + "probability": 0.6788 + }, + { + "start": 19369.86, + "end": 19371.82, + "probability": 0.8972 + }, + { + "start": 19373.56, + "end": 19376.2, + "probability": 0.6697 + }, + { + "start": 19376.84, + "end": 19378.52, + "probability": 0.9742 + }, + { + "start": 19379.28, + "end": 19380.52, + "probability": 0.6334 + }, + { + "start": 19394.7, + "end": 19395.5, + "probability": 0.6803 + }, + { + "start": 19396.1, + "end": 19396.64, + "probability": 0.0982 + }, + { + "start": 19396.64, + "end": 19398.86, + "probability": 0.6646 + }, + { + "start": 19400.72, + "end": 19405.32, + "probability": 0.8787 + }, + { + "start": 19407.12, + "end": 19409.2, + "probability": 0.9364 + }, + { + "start": 19410.18, + "end": 19412.38, + "probability": 0.8656 + }, + { + "start": 19413.1, + "end": 19415.62, + "probability": 0.7463 + }, + { + "start": 19417.54, + "end": 19419.48, + "probability": 0.9738 + }, + { + "start": 19420.04, + "end": 19421.88, + "probability": 0.9592 + }, + { + "start": 19422.56, + "end": 19423.8, + "probability": 0.9932 + }, + { + "start": 19425.0, + "end": 19427.63, + "probability": 0.93 + }, + { + "start": 19428.1, + "end": 19430.08, + "probability": 0.6952 + }, + { + "start": 19430.32, + "end": 19435.72, + "probability": 0.9646 + }, + { + "start": 19437.0, + "end": 19441.29, + "probability": 0.9905 + }, + { + "start": 19442.16, + "end": 19444.9, + "probability": 0.9991 + }, + { + "start": 19445.62, + "end": 19447.98, + "probability": 0.9997 + }, + { + "start": 19448.66, + "end": 19453.5, + "probability": 0.998 + }, + { + "start": 19455.44, + "end": 19459.92, + "probability": 0.9941 + }, + { + "start": 19461.84, + "end": 19465.52, + "probability": 0.979 + }, + { + "start": 19465.56, + "end": 19465.98, + "probability": 0.5061 + }, + { + "start": 19467.78, + "end": 19469.06, + "probability": 0.9469 + }, + { + "start": 19469.66, + "end": 19473.62, + "probability": 0.9814 + }, + { + "start": 19473.62, + "end": 19479.62, + "probability": 0.9859 + }, + { + "start": 19481.84, + "end": 19481.94, + "probability": 0.1924 + }, + { + "start": 19481.94, + "end": 19487.82, + "probability": 0.9922 + }, + { + "start": 19488.26, + "end": 19494.28, + "probability": 0.9795 + }, + { + "start": 19494.28, + "end": 19497.94, + "probability": 0.9819 + }, + { + "start": 19498.02, + "end": 19499.0, + "probability": 0.0406 + }, + { + "start": 19499.26, + "end": 19502.28, + "probability": 0.7073 + }, + { + "start": 19502.42, + "end": 19502.82, + "probability": 0.5404 + }, + { + "start": 19502.92, + "end": 19504.68, + "probability": 0.3171 + }, + { + "start": 19505.26, + "end": 19508.64, + "probability": 0.8448 + }, + { + "start": 19509.68, + "end": 19511.1, + "probability": 0.9958 + }, + { + "start": 19512.88, + "end": 19515.74, + "probability": 0.5904 + }, + { + "start": 19515.84, + "end": 19519.48, + "probability": 0.9778 + }, + { + "start": 19519.52, + "end": 19521.1, + "probability": 0.6141 + }, + { + "start": 19522.32, + "end": 19524.0, + "probability": 0.9915 + }, + { + "start": 19524.68, + "end": 19527.68, + "probability": 0.9604 + }, + { + "start": 19527.72, + "end": 19529.6, + "probability": 0.9767 + }, + { + "start": 19530.28, + "end": 19531.22, + "probability": 0.8472 + }, + { + "start": 19532.76, + "end": 19533.4, + "probability": 0.9814 + }, + { + "start": 19534.2, + "end": 19536.24, + "probability": 0.9613 + }, + { + "start": 19536.8, + "end": 19537.5, + "probability": 0.9259 + }, + { + "start": 19537.98, + "end": 19538.64, + "probability": 0.7707 + }, + { + "start": 19538.72, + "end": 19539.26, + "probability": 0.6546 + }, + { + "start": 19539.28, + "end": 19541.7, + "probability": 0.9832 + }, + { + "start": 19541.86, + "end": 19542.74, + "probability": 0.4331 + }, + { + "start": 19543.4, + "end": 19546.22, + "probability": 0.9649 + }, + { + "start": 19547.02, + "end": 19549.7, + "probability": 0.9609 + }, + { + "start": 19549.74, + "end": 19552.24, + "probability": 0.9855 + }, + { + "start": 19552.78, + "end": 19554.32, + "probability": 0.7942 + }, + { + "start": 19555.08, + "end": 19555.88, + "probability": 0.7397 + }, + { + "start": 19555.96, + "end": 19558.54, + "probability": 0.9395 + }, + { + "start": 19559.24, + "end": 19561.66, + "probability": 0.7781 + }, + { + "start": 19562.1, + "end": 19563.01, + "probability": 0.9064 + }, + { + "start": 19563.2, + "end": 19563.68, + "probability": 0.7712 + }, + { + "start": 19563.7, + "end": 19564.54, + "probability": 0.9534 + }, + { + "start": 19564.54, + "end": 19565.34, + "probability": 0.7025 + }, + { + "start": 19566.14, + "end": 19569.24, + "probability": 0.9762 + }, + { + "start": 19570.56, + "end": 19571.32, + "probability": 0.8113 + }, + { + "start": 19571.42, + "end": 19573.24, + "probability": 0.8434 + }, + { + "start": 19573.38, + "end": 19574.0, + "probability": 0.6153 + }, + { + "start": 19574.04, + "end": 19575.78, + "probability": 0.7979 + }, + { + "start": 19576.22, + "end": 19578.36, + "probability": 0.9595 + }, + { + "start": 19580.32, + "end": 19582.94, + "probability": 0.8321 + }, + { + "start": 19583.84, + "end": 19585.26, + "probability": 0.9319 + }, + { + "start": 19585.56, + "end": 19587.06, + "probability": 0.8457 + }, + { + "start": 19587.78, + "end": 19590.0, + "probability": 0.9636 + }, + { + "start": 19590.8, + "end": 19592.31, + "probability": 0.9902 + }, + { + "start": 19593.16, + "end": 19596.6, + "probability": 0.9056 + }, + { + "start": 19596.68, + "end": 19597.6, + "probability": 0.4502 + }, + { + "start": 19597.64, + "end": 19601.7, + "probability": 0.5615 + }, + { + "start": 19601.72, + "end": 19603.98, + "probability": 0.7116 + }, + { + "start": 19604.16, + "end": 19605.12, + "probability": 0.8948 + }, + { + "start": 19605.2, + "end": 19606.0, + "probability": 0.7143 + }, + { + "start": 19606.4, + "end": 19607.28, + "probability": 0.824 + }, + { + "start": 19607.38, + "end": 19608.34, + "probability": 0.9792 + }, + { + "start": 19608.42, + "end": 19609.24, + "probability": 0.7149 + }, + { + "start": 19610.28, + "end": 19611.42, + "probability": 0.9854 + }, + { + "start": 19613.1, + "end": 19614.86, + "probability": 0.7747 + }, + { + "start": 19615.12, + "end": 19618.18, + "probability": 0.6739 + }, + { + "start": 19618.44, + "end": 19619.22, + "probability": 0.5638 + }, + { + "start": 19619.34, + "end": 19621.56, + "probability": 0.9981 + }, + { + "start": 19621.64, + "end": 19623.82, + "probability": 0.9906 + }, + { + "start": 19624.28, + "end": 19629.14, + "probability": 0.9875 + }, + { + "start": 19629.34, + "end": 19629.74, + "probability": 0.8719 + }, + { + "start": 19629.98, + "end": 19631.46, + "probability": 0.7717 + }, + { + "start": 19632.18, + "end": 19635.72, + "probability": 0.9559 + }, + { + "start": 19638.1, + "end": 19638.7, + "probability": 0.6203 + }, + { + "start": 19640.5, + "end": 19644.26, + "probability": 0.9055 + }, + { + "start": 19644.28, + "end": 19645.14, + "probability": 0.7412 + }, + { + "start": 19645.14, + "end": 19645.92, + "probability": 0.1395 + }, + { + "start": 19646.12, + "end": 19647.73, + "probability": 0.5559 + }, + { + "start": 19648.2, + "end": 19648.86, + "probability": 0.011 + }, + { + "start": 19648.96, + "end": 19651.36, + "probability": 0.4664 + }, + { + "start": 19651.44, + "end": 19652.5, + "probability": 0.8669 + }, + { + "start": 19652.8, + "end": 19654.4, + "probability": 0.7421 + }, + { + "start": 19654.42, + "end": 19655.07, + "probability": 0.1841 + }, + { + "start": 19655.26, + "end": 19655.89, + "probability": 0.5054 + }, + { + "start": 19657.54, + "end": 19659.26, + "probability": 0.3038 + }, + { + "start": 19659.44, + "end": 19660.34, + "probability": 0.7013 + }, + { + "start": 19660.42, + "end": 19661.6, + "probability": 0.0418 + }, + { + "start": 19661.78, + "end": 19664.52, + "probability": 0.2911 + }, + { + "start": 19664.7, + "end": 19666.78, + "probability": 0.3986 + }, + { + "start": 19668.01, + "end": 19672.28, + "probability": 0.8085 + }, + { + "start": 19674.7, + "end": 19675.64, + "probability": 0.0778 + }, + { + "start": 19675.78, + "end": 19677.42, + "probability": 0.4176 + }, + { + "start": 19677.42, + "end": 19678.06, + "probability": 0.723 + }, + { + "start": 19678.12, + "end": 19679.48, + "probability": 0.7639 + }, + { + "start": 19680.52, + "end": 19682.64, + "probability": 0.9046 + }, + { + "start": 19683.34, + "end": 19684.2, + "probability": 0.9944 + }, + { + "start": 19686.64, + "end": 19688.48, + "probability": 0.4653 + }, + { + "start": 19689.1, + "end": 19690.8, + "probability": 0.8663 + }, + { + "start": 19690.8, + "end": 19690.94, + "probability": 0.3281 + }, + { + "start": 19691.02, + "end": 19691.85, + "probability": 0.4937 + }, + { + "start": 19691.98, + "end": 19694.46, + "probability": 0.9966 + }, + { + "start": 19695.32, + "end": 19696.26, + "probability": 0.9017 + }, + { + "start": 19697.48, + "end": 19700.68, + "probability": 0.9673 + }, + { + "start": 19701.98, + "end": 19705.52, + "probability": 0.9635 + }, + { + "start": 19706.32, + "end": 19710.1, + "probability": 0.9978 + }, + { + "start": 19710.17, + "end": 19712.27, + "probability": 0.998 + }, + { + "start": 19713.26, + "end": 19714.36, + "probability": 0.7518 + }, + { + "start": 19714.4, + "end": 19715.54, + "probability": 0.8916 + }, + { + "start": 19716.0, + "end": 19717.36, + "probability": 0.9916 + }, + { + "start": 19718.68, + "end": 19719.56, + "probability": 0.7549 + }, + { + "start": 19720.78, + "end": 19722.72, + "probability": 0.9174 + }, + { + "start": 19723.62, + "end": 19727.32, + "probability": 0.998 + }, + { + "start": 19728.26, + "end": 19730.62, + "probability": 0.938 + }, + { + "start": 19732.04, + "end": 19736.28, + "probability": 0.9949 + }, + { + "start": 19736.64, + "end": 19739.32, + "probability": 0.9984 + }, + { + "start": 19739.86, + "end": 19741.58, + "probability": 0.9575 + }, + { + "start": 19742.9, + "end": 19747.9, + "probability": 0.9943 + }, + { + "start": 19749.06, + "end": 19751.94, + "probability": 0.994 + }, + { + "start": 19753.12, + "end": 19756.72, + "probability": 0.9826 + }, + { + "start": 19756.8, + "end": 19757.82, + "probability": 0.9017 + }, + { + "start": 19757.92, + "end": 19759.76, + "probability": 0.9803 + }, + { + "start": 19760.88, + "end": 19764.18, + "probability": 0.7275 + }, + { + "start": 19765.04, + "end": 19768.8, + "probability": 0.9919 + }, + { + "start": 19769.36, + "end": 19772.58, + "probability": 0.9968 + }, + { + "start": 19773.88, + "end": 19776.86, + "probability": 0.9939 + }, + { + "start": 19777.7, + "end": 19779.18, + "probability": 0.9971 + }, + { + "start": 19780.22, + "end": 19783.02, + "probability": 0.9972 + }, + { + "start": 19783.9, + "end": 19784.92, + "probability": 0.8258 + }, + { + "start": 19785.42, + "end": 19787.36, + "probability": 0.9926 + }, + { + "start": 19787.74, + "end": 19789.94, + "probability": 0.9983 + }, + { + "start": 19791.26, + "end": 19791.94, + "probability": 0.8066 + }, + { + "start": 19794.02, + "end": 19796.13, + "probability": 0.98 + }, + { + "start": 19796.34, + "end": 19798.32, + "probability": 0.9776 + }, + { + "start": 19798.48, + "end": 19799.49, + "probability": 0.642 + }, + { + "start": 19799.92, + "end": 19803.22, + "probability": 0.9754 + }, + { + "start": 19804.18, + "end": 19808.92, + "probability": 0.9081 + }, + { + "start": 19808.98, + "end": 19811.64, + "probability": 0.9735 + }, + { + "start": 19813.22, + "end": 19818.3, + "probability": 0.9972 + }, + { + "start": 19818.56, + "end": 19819.46, + "probability": 0.9304 + }, + { + "start": 19820.84, + "end": 19823.18, + "probability": 0.9835 + }, + { + "start": 19824.08, + "end": 19824.7, + "probability": 0.6108 + }, + { + "start": 19825.74, + "end": 19828.16, + "probability": 0.9907 + }, + { + "start": 19829.14, + "end": 19831.62, + "probability": 0.957 + }, + { + "start": 19832.24, + "end": 19833.02, + "probability": 0.9403 + }, + { + "start": 19833.1, + "end": 19833.92, + "probability": 0.8645 + }, + { + "start": 19834.0, + "end": 19836.96, + "probability": 0.9477 + }, + { + "start": 19837.3, + "end": 19838.58, + "probability": 0.9628 + }, + { + "start": 19840.62, + "end": 19841.04, + "probability": 0.9882 + }, + { + "start": 19841.94, + "end": 19843.88, + "probability": 0.6589 + }, + { + "start": 19844.46, + "end": 19846.02, + "probability": 0.8231 + }, + { + "start": 19847.76, + "end": 19849.32, + "probability": 0.9872 + }, + { + "start": 19850.22, + "end": 19851.16, + "probability": 0.9351 + }, + { + "start": 19852.52, + "end": 19853.48, + "probability": 0.8444 + }, + { + "start": 19854.3, + "end": 19857.84, + "probability": 0.9988 + }, + { + "start": 19858.46, + "end": 19861.24, + "probability": 0.9664 + }, + { + "start": 19862.04, + "end": 19864.0, + "probability": 0.9358 + }, + { + "start": 19864.86, + "end": 19867.36, + "probability": 0.9973 + }, + { + "start": 19868.12, + "end": 19869.64, + "probability": 0.9824 + }, + { + "start": 19870.4, + "end": 19871.74, + "probability": 0.9006 + }, + { + "start": 19872.22, + "end": 19874.46, + "probability": 0.9196 + }, + { + "start": 19875.36, + "end": 19876.84, + "probability": 0.9727 + }, + { + "start": 19877.26, + "end": 19878.34, + "probability": 0.6386 + }, + { + "start": 19878.82, + "end": 19881.04, + "probability": 0.7155 + }, + { + "start": 19881.18, + "end": 19882.26, + "probability": 0.7869 + }, + { + "start": 19882.28, + "end": 19883.01, + "probability": 0.2888 + }, + { + "start": 19884.76, + "end": 19887.7, + "probability": 0.9237 + }, + { + "start": 19903.72, + "end": 19904.76, + "probability": 0.8358 + }, + { + "start": 19904.78, + "end": 19906.38, + "probability": 0.7796 + }, + { + "start": 19906.68, + "end": 19906.68, + "probability": 0.3562 + }, + { + "start": 19906.68, + "end": 19907.68, + "probability": 0.7308 + }, + { + "start": 19907.78, + "end": 19908.92, + "probability": 0.7357 + }, + { + "start": 19910.16, + "end": 19914.98, + "probability": 0.9962 + }, + { + "start": 19916.48, + "end": 19919.92, + "probability": 0.8779 + }, + { + "start": 19919.96, + "end": 19920.54, + "probability": 0.5712 + }, + { + "start": 19920.6, + "end": 19921.34, + "probability": 0.8499 + }, + { + "start": 19921.38, + "end": 19921.98, + "probability": 0.8515 + }, + { + "start": 19922.08, + "end": 19922.58, + "probability": 0.9165 + }, + { + "start": 19924.22, + "end": 19925.22, + "probability": 0.9821 + }, + { + "start": 19926.6, + "end": 19927.38, + "probability": 0.8742 + }, + { + "start": 19928.5, + "end": 19931.16, + "probability": 0.9986 + }, + { + "start": 19932.36, + "end": 19935.58, + "probability": 0.9515 + }, + { + "start": 19936.56, + "end": 19939.02, + "probability": 0.9314 + }, + { + "start": 19940.16, + "end": 19943.1, + "probability": 0.9739 + }, + { + "start": 19943.62, + "end": 19944.4, + "probability": 0.6581 + }, + { + "start": 19944.78, + "end": 19945.58, + "probability": 0.7632 + }, + { + "start": 19945.9, + "end": 19948.32, + "probability": 0.8541 + }, + { + "start": 19949.4, + "end": 19951.64, + "probability": 0.9697 + }, + { + "start": 19953.32, + "end": 19954.78, + "probability": 0.917 + }, + { + "start": 19956.36, + "end": 19959.54, + "probability": 0.7202 + }, + { + "start": 19960.54, + "end": 19961.58, + "probability": 0.4855 + }, + { + "start": 19962.34, + "end": 19963.3, + "probability": 0.8802 + }, + { + "start": 19963.4, + "end": 19964.62, + "probability": 0.7151 + }, + { + "start": 19965.06, + "end": 19967.42, + "probability": 0.9769 + }, + { + "start": 19968.44, + "end": 19969.5, + "probability": 0.9697 + }, + { + "start": 19970.12, + "end": 19971.3, + "probability": 0.6885 + }, + { + "start": 19972.16, + "end": 19973.68, + "probability": 0.9302 + }, + { + "start": 19975.14, + "end": 19976.6, + "probability": 0.8685 + }, + { + "start": 19977.82, + "end": 19977.84, + "probability": 0.0171 + }, + { + "start": 19983.18, + "end": 19984.06, + "probability": 0.7392 + }, + { + "start": 19984.86, + "end": 19987.1, + "probability": 0.8459 + }, + { + "start": 19988.04, + "end": 19990.04, + "probability": 0.8523 + }, + { + "start": 19991.3, + "end": 19994.22, + "probability": 0.991 + }, + { + "start": 19995.12, + "end": 19996.24, + "probability": 0.9961 + }, + { + "start": 19996.88, + "end": 19998.3, + "probability": 0.6302 + }, + { + "start": 19999.64, + "end": 20006.64, + "probability": 0.9918 + }, + { + "start": 20007.78, + "end": 20007.92, + "probability": 0.3021 + }, + { + "start": 20008.02, + "end": 20008.42, + "probability": 0.5929 + }, + { + "start": 20008.48, + "end": 20010.24, + "probability": 0.9238 + }, + { + "start": 20011.22, + "end": 20015.06, + "probability": 0.6564 + }, + { + "start": 20016.04, + "end": 20016.62, + "probability": 0.871 + }, + { + "start": 20017.74, + "end": 20019.7, + "probability": 0.8569 + }, + { + "start": 20020.66, + "end": 20023.24, + "probability": 0.9592 + }, + { + "start": 20024.08, + "end": 20024.36, + "probability": 0.7798 + }, + { + "start": 20026.41, + "end": 20030.48, + "probability": 0.7485 + }, + { + "start": 20030.88, + "end": 20032.04, + "probability": 0.7818 + }, + { + "start": 20032.48, + "end": 20033.58, + "probability": 0.7062 + }, + { + "start": 20033.62, + "end": 20035.12, + "probability": 0.9858 + }, + { + "start": 20035.4, + "end": 20035.62, + "probability": 0.8201 + }, + { + "start": 20037.56, + "end": 20038.54, + "probability": 0.6914 + }, + { + "start": 20043.72, + "end": 20045.54, + "probability": 0.95 + }, + { + "start": 20047.5, + "end": 20047.98, + "probability": 0.3078 + }, + { + "start": 20049.34, + "end": 20054.42, + "probability": 0.8976 + }, + { + "start": 20055.72, + "end": 20057.34, + "probability": 0.9558 + }, + { + "start": 20057.96, + "end": 20058.76, + "probability": 0.799 + }, + { + "start": 20071.36, + "end": 20072.53, + "probability": 0.9159 + }, + { + "start": 20075.06, + "end": 20078.68, + "probability": 0.7538 + }, + { + "start": 20080.88, + "end": 20086.46, + "probability": 0.9805 + }, + { + "start": 20088.1, + "end": 20092.36, + "probability": 0.9623 + }, + { + "start": 20093.98, + "end": 20096.5, + "probability": 0.9979 + }, + { + "start": 20098.22, + "end": 20101.76, + "probability": 0.9548 + }, + { + "start": 20103.66, + "end": 20109.26, + "probability": 0.9503 + }, + { + "start": 20110.12, + "end": 20112.16, + "probability": 0.9613 + }, + { + "start": 20113.1, + "end": 20114.04, + "probability": 0.5548 + }, + { + "start": 20115.56, + "end": 20119.46, + "probability": 0.935 + }, + { + "start": 20121.38, + "end": 20124.16, + "probability": 0.9327 + }, + { + "start": 20125.32, + "end": 20130.76, + "probability": 0.982 + }, + { + "start": 20132.26, + "end": 20134.84, + "probability": 0.8879 + }, + { + "start": 20136.14, + "end": 20140.16, + "probability": 0.9852 + }, + { + "start": 20141.56, + "end": 20143.32, + "probability": 0.9944 + }, + { + "start": 20145.24, + "end": 20148.68, + "probability": 0.8656 + }, + { + "start": 20149.64, + "end": 20151.76, + "probability": 0.9934 + }, + { + "start": 20152.66, + "end": 20153.96, + "probability": 0.6646 + }, + { + "start": 20155.22, + "end": 20159.66, + "probability": 0.9956 + }, + { + "start": 20160.86, + "end": 20162.5, + "probability": 0.9152 + }, + { + "start": 20163.46, + "end": 20168.72, + "probability": 0.9974 + }, + { + "start": 20168.8, + "end": 20169.62, + "probability": 0.1616 + }, + { + "start": 20170.12, + "end": 20172.68, + "probability": 0.9686 + }, + { + "start": 20172.76, + "end": 20173.58, + "probability": 0.515 + }, + { + "start": 20173.65, + "end": 20174.16, + "probability": 0.4341 + }, + { + "start": 20174.22, + "end": 20178.1, + "probability": 0.5467 + }, + { + "start": 20178.1, + "end": 20178.8, + "probability": 0.0304 + }, + { + "start": 20179.08, + "end": 20179.3, + "probability": 0.1043 + }, + { + "start": 20179.3, + "end": 20185.72, + "probability": 0.4438 + }, + { + "start": 20185.76, + "end": 20188.18, + "probability": 0.5772 + }, + { + "start": 20188.18, + "end": 20189.6, + "probability": 0.8413 + }, + { + "start": 20189.9, + "end": 20191.7, + "probability": 0.7494 + }, + { + "start": 20191.86, + "end": 20197.94, + "probability": 0.854 + }, + { + "start": 20198.22, + "end": 20198.84, + "probability": 0.7257 + }, + { + "start": 20199.44, + "end": 20203.72, + "probability": 0.8817 + }, + { + "start": 20204.12, + "end": 20206.44, + "probability": 0.7116 + }, + { + "start": 20206.72, + "end": 20207.28, + "probability": 0.4355 + }, + { + "start": 20207.28, + "end": 20211.22, + "probability": 0.9636 + }, + { + "start": 20211.32, + "end": 20213.3, + "probability": 0.8138 + }, + { + "start": 20213.74, + "end": 20214.36, + "probability": 0.458 + }, + { + "start": 20214.52, + "end": 20215.81, + "probability": 0.5621 + }, + { + "start": 20216.92, + "end": 20217.6, + "probability": 0.3229 + }, + { + "start": 20218.04, + "end": 20219.34, + "probability": 0.6245 + }, + { + "start": 20219.58, + "end": 20224.04, + "probability": 0.8669 + }, + { + "start": 20224.64, + "end": 20225.92, + "probability": 0.1236 + }, + { + "start": 20225.98, + "end": 20228.3, + "probability": 0.3568 + }, + { + "start": 20228.58, + "end": 20229.78, + "probability": 0.6311 + }, + { + "start": 20230.68, + "end": 20235.72, + "probability": 0.2653 + }, + { + "start": 20236.26, + "end": 20239.02, + "probability": 0.0485 + }, + { + "start": 20239.02, + "end": 20239.34, + "probability": 0.2937 + }, + { + "start": 20240.18, + "end": 20244.62, + "probability": 0.6683 + }, + { + "start": 20244.92, + "end": 20245.26, + "probability": 0.1878 + }, + { + "start": 20245.36, + "end": 20249.44, + "probability": 0.5176 + }, + { + "start": 20250.02, + "end": 20253.42, + "probability": 0.3095 + }, + { + "start": 20253.66, + "end": 20256.85, + "probability": 0.4558 + }, + { + "start": 20257.64, + "end": 20259.12, + "probability": 0.6604 + }, + { + "start": 20259.22, + "end": 20261.94, + "probability": 0.5045 + }, + { + "start": 20262.18, + "end": 20263.38, + "probability": 0.9932 + }, + { + "start": 20263.5, + "end": 20265.02, + "probability": 0.0744 + }, + { + "start": 20265.02, + "end": 20265.33, + "probability": 0.1213 + }, + { + "start": 20266.06, + "end": 20268.32, + "probability": 0.5199 + }, + { + "start": 20268.56, + "end": 20268.82, + "probability": 0.0357 + }, + { + "start": 20268.82, + "end": 20268.88, + "probability": 0.0997 + }, + { + "start": 20268.88, + "end": 20268.88, + "probability": 0.0856 + }, + { + "start": 20268.88, + "end": 20270.24, + "probability": 0.2947 + }, + { + "start": 20270.9, + "end": 20271.96, + "probability": 0.5334 + }, + { + "start": 20272.18, + "end": 20273.18, + "probability": 0.6345 + }, + { + "start": 20273.54, + "end": 20274.44, + "probability": 0.8047 + }, + { + "start": 20274.78, + "end": 20275.72, + "probability": 0.7377 + }, + { + "start": 20275.72, + "end": 20277.68, + "probability": 0.6065 + }, + { + "start": 20277.84, + "end": 20278.66, + "probability": 0.7526 + }, + { + "start": 20279.14, + "end": 20280.04, + "probability": 0.8503 + }, + { + "start": 20280.16, + "end": 20283.7, + "probability": 0.8472 + }, + { + "start": 20284.3, + "end": 20288.4, + "probability": 0.6516 + }, + { + "start": 20289.34, + "end": 20292.7, + "probability": 0.9363 + }, + { + "start": 20293.24, + "end": 20294.7, + "probability": 0.9657 + }, + { + "start": 20294.76, + "end": 20296.88, + "probability": 0.9326 + }, + { + "start": 20297.14, + "end": 20299.12, + "probability": 0.5614 + }, + { + "start": 20299.26, + "end": 20303.42, + "probability": 0.0533 + }, + { + "start": 20305.98, + "end": 20307.38, + "probability": 0.0383 + }, + { + "start": 20307.38, + "end": 20307.38, + "probability": 0.0139 + }, + { + "start": 20307.38, + "end": 20308.58, + "probability": 0.289 + }, + { + "start": 20309.68, + "end": 20311.84, + "probability": 0.3489 + }, + { + "start": 20311.84, + "end": 20316.56, + "probability": 0.1474 + }, + { + "start": 20317.08, + "end": 20320.14, + "probability": 0.4649 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.0, + "end": 20415.0, + "probability": 0.0 + }, + { + "start": 20415.83, + "end": 20416.18, + "probability": 0.043 + }, + { + "start": 20416.18, + "end": 20416.18, + "probability": 0.0805 + }, + { + "start": 20416.18, + "end": 20416.18, + "probability": 0.2362 + }, + { + "start": 20416.18, + "end": 20416.18, + "probability": 0.0423 + }, + { + "start": 20416.18, + "end": 20417.04, + "probability": 0.171 + }, + { + "start": 20418.04, + "end": 20420.06, + "probability": 0.6036 + }, + { + "start": 20421.06, + "end": 20423.18, + "probability": 0.8311 + }, + { + "start": 20424.5, + "end": 20426.3, + "probability": 0.9042 + }, + { + "start": 20426.74, + "end": 20428.82, + "probability": 0.8455 + }, + { + "start": 20429.22, + "end": 20431.52, + "probability": 0.9532 + }, + { + "start": 20432.12, + "end": 20434.08, + "probability": 0.9858 + }, + { + "start": 20435.26, + "end": 20438.34, + "probability": 0.8378 + }, + { + "start": 20439.14, + "end": 20442.38, + "probability": 0.8534 + }, + { + "start": 20442.5, + "end": 20447.56, + "probability": 0.9761 + }, + { + "start": 20448.02, + "end": 20449.28, + "probability": 0.8857 + }, + { + "start": 20449.78, + "end": 20452.14, + "probability": 0.9971 + }, + { + "start": 20452.62, + "end": 20454.84, + "probability": 0.983 + }, + { + "start": 20456.56, + "end": 20456.94, + "probability": 0.2213 + }, + { + "start": 20456.94, + "end": 20459.0, + "probability": 0.6966 + }, + { + "start": 20459.08, + "end": 20460.02, + "probability": 0.3329 + }, + { + "start": 20461.0, + "end": 20464.01, + "probability": 0.8217 + }, + { + "start": 20464.28, + "end": 20467.04, + "probability": 0.8551 + }, + { + "start": 20469.86, + "end": 20472.02, + "probability": 0.2165 + }, + { + "start": 20477.69, + "end": 20479.02, + "probability": 0.0824 + }, + { + "start": 20479.73, + "end": 20480.73, + "probability": 0.1224 + }, + { + "start": 20480.73, + "end": 20480.93, + "probability": 0.2377 + }, + { + "start": 20481.01, + "end": 20484.97, + "probability": 0.181 + }, + { + "start": 20484.97, + "end": 20486.41, + "probability": 0.206 + }, + { + "start": 20489.73, + "end": 20491.27, + "probability": 0.0065 + }, + { + "start": 20491.79, + "end": 20493.11, + "probability": 0.0267 + }, + { + "start": 20496.18, + "end": 20497.03, + "probability": 0.0287 + }, + { + "start": 20497.31, + "end": 20498.96, + "probability": 0.0684 + }, + { + "start": 20501.13, + "end": 20502.71, + "probability": 0.1625 + }, + { + "start": 20505.49, + "end": 20507.67, + "probability": 0.0255 + }, + { + "start": 20507.67, + "end": 20508.93, + "probability": 0.1492 + }, + { + "start": 20510.07, + "end": 20511.45, + "probability": 0.2111 + }, + { + "start": 20514.39, + "end": 20519.03, + "probability": 0.214 + }, + { + "start": 20520.07, + "end": 20522.31, + "probability": 0.0121 + }, + { + "start": 20538.0, + "end": 20538.0, + "probability": 0.0 + }, + { + "start": 20538.0, + "end": 20538.0, + "probability": 0.0 + }, + { + "start": 20538.0, + "end": 20538.0, + "probability": 0.0 + }, + { + "start": 20538.0, + "end": 20538.0, + "probability": 0.0 + }, + { + "start": 20538.0, + "end": 20538.0, + "probability": 0.0 + }, + { + "start": 20538.0, + "end": 20538.0, + "probability": 0.0 + }, + { + "start": 20538.0, + "end": 20538.0, + "probability": 0.0 + }, + { + "start": 20538.0, + "end": 20538.0, + "probability": 0.0 + }, + { + "start": 20538.0, + "end": 20538.0, + "probability": 0.0 + }, + { + "start": 20538.0, + "end": 20538.0, + "probability": 0.0 + }, + { + "start": 20538.0, + "end": 20538.0, + "probability": 0.0 + }, + { + "start": 20538.0, + "end": 20538.0, + "probability": 0.0 + }, + { + "start": 20538.0, + "end": 20538.0, + "probability": 0.0 + }, + { + "start": 20538.46, + "end": 20538.6, + "probability": 0.0094 + }, + { + "start": 20538.6, + "end": 20538.6, + "probability": 0.0464 + }, + { + "start": 20538.6, + "end": 20538.6, + "probability": 0.035 + }, + { + "start": 20538.6, + "end": 20538.6, + "probability": 0.114 + }, + { + "start": 20538.6, + "end": 20539.46, + "probability": 0.8215 + }, + { + "start": 20540.34, + "end": 20541.76, + "probability": 0.7217 + }, + { + "start": 20543.34, + "end": 20549.36, + "probability": 0.9856 + }, + { + "start": 20549.36, + "end": 20553.38, + "probability": 0.9998 + }, + { + "start": 20554.84, + "end": 20557.18, + "probability": 0.8744 + }, + { + "start": 20557.64, + "end": 20563.06, + "probability": 0.9972 + }, + { + "start": 20564.68, + "end": 20567.66, + "probability": 0.998 + }, + { + "start": 20568.26, + "end": 20569.92, + "probability": 0.9871 + }, + { + "start": 20569.98, + "end": 20571.1, + "probability": 0.6795 + }, + { + "start": 20571.36, + "end": 20574.02, + "probability": 0.9863 + }, + { + "start": 20574.66, + "end": 20580.7, + "probability": 0.9591 + }, + { + "start": 20582.24, + "end": 20583.36, + "probability": 0.8031 + }, + { + "start": 20584.48, + "end": 20587.78, + "probability": 0.9564 + }, + { + "start": 20589.06, + "end": 20591.2, + "probability": 0.9492 + }, + { + "start": 20591.88, + "end": 20593.88, + "probability": 0.9989 + }, + { + "start": 20595.12, + "end": 20599.8, + "probability": 0.9326 + }, + { + "start": 20601.38, + "end": 20602.12, + "probability": 0.7675 + }, + { + "start": 20603.3, + "end": 20607.22, + "probability": 0.8521 + }, + { + "start": 20607.94, + "end": 20609.76, + "probability": 0.9941 + }, + { + "start": 20610.3, + "end": 20615.3, + "probability": 0.9921 + }, + { + "start": 20616.12, + "end": 20617.54, + "probability": 0.9985 + }, + { + "start": 20618.18, + "end": 20621.98, + "probability": 0.9645 + }, + { + "start": 20622.12, + "end": 20622.98, + "probability": 0.7262 + }, + { + "start": 20623.2, + "end": 20624.24, + "probability": 0.7255 + }, + { + "start": 20624.58, + "end": 20626.46, + "probability": 0.9814 + }, + { + "start": 20627.02, + "end": 20628.58, + "probability": 0.7526 + }, + { + "start": 20628.74, + "end": 20630.96, + "probability": 0.9499 + }, + { + "start": 20631.02, + "end": 20633.36, + "probability": 0.8691 + }, + { + "start": 20633.46, + "end": 20634.04, + "probability": 0.5289 + }, + { + "start": 20634.08, + "end": 20635.88, + "probability": 0.8137 + }, + { + "start": 20635.88, + "end": 20638.66, + "probability": 0.415 + }, + { + "start": 20638.66, + "end": 20638.76, + "probability": 0.617 + }, + { + "start": 20638.84, + "end": 20640.74, + "probability": 0.9165 + }, + { + "start": 20641.1, + "end": 20641.1, + "probability": 0.3018 + }, + { + "start": 20641.1, + "end": 20642.14, + "probability": 0.759 + }, + { + "start": 20642.68, + "end": 20645.4, + "probability": 0.9274 + }, + { + "start": 20646.26, + "end": 20647.18, + "probability": 0.8633 + }, + { + "start": 20647.88, + "end": 20649.64, + "probability": 0.9941 + }, + { + "start": 20650.36, + "end": 20650.36, + "probability": 0.1803 + }, + { + "start": 20650.36, + "end": 20652.02, + "probability": 0.9354 + }, + { + "start": 20652.48, + "end": 20654.44, + "probability": 0.9613 + }, + { + "start": 20654.56, + "end": 20657.48, + "probability": 0.8504 + }, + { + "start": 20657.58, + "end": 20658.04, + "probability": 0.7476 + }, + { + "start": 20658.12, + "end": 20658.7, + "probability": 0.4287 + }, + { + "start": 20658.72, + "end": 20660.76, + "probability": 0.9795 + }, + { + "start": 20661.12, + "end": 20661.86, + "probability": 0.8123 + }, + { + "start": 20663.56, + "end": 20664.08, + "probability": 0.3701 + }, + { + "start": 20664.8, + "end": 20666.62, + "probability": 0.4157 + }, + { + "start": 20667.06, + "end": 20668.42, + "probability": 0.8155 + }, + { + "start": 20669.51, + "end": 20671.62, + "probability": 0.9736 + }, + { + "start": 20672.2, + "end": 20678.78, + "probability": 0.1122 + }, + { + "start": 20679.64, + "end": 20682.7, + "probability": 0.2015 + }, + { + "start": 20682.7, + "end": 20683.26, + "probability": 0.4845 + }, + { + "start": 20685.96, + "end": 20689.58, + "probability": 0.2162 + }, + { + "start": 20690.0, + "end": 20691.76, + "probability": 0.2329 + }, + { + "start": 20691.76, + "end": 20692.56, + "probability": 0.2178 + }, + { + "start": 20692.66, + "end": 20692.68, + "probability": 0.0935 + }, + { + "start": 20692.68, + "end": 20694.46, + "probability": 0.2627 + }, + { + "start": 20695.34, + "end": 20697.98, + "probability": 0.6424 + }, + { + "start": 20698.84, + "end": 20701.42, + "probability": 0.9554 + }, + { + "start": 20701.52, + "end": 20704.18, + "probability": 0.723 + }, + { + "start": 20704.3, + "end": 20704.9, + "probability": 0.6345 + }, + { + "start": 20705.84, + "end": 20706.16, + "probability": 0.7668 + }, + { + "start": 20706.3, + "end": 20709.36, + "probability": 0.8425 + }, + { + "start": 20709.7, + "end": 20710.56, + "probability": 0.8784 + }, + { + "start": 20711.1, + "end": 20712.48, + "probability": 0.722 + }, + { + "start": 20712.7, + "end": 20713.3, + "probability": 0.7264 + }, + { + "start": 20713.54, + "end": 20717.6, + "probability": 0.9856 + }, + { + "start": 20717.74, + "end": 20719.38, + "probability": 0.4993 + }, + { + "start": 20719.8, + "end": 20720.88, + "probability": 0.5582 + }, + { + "start": 20720.98, + "end": 20721.96, + "probability": 0.928 + }, + { + "start": 20722.8, + "end": 20723.2, + "probability": 0.8458 + }, + { + "start": 20723.22, + "end": 20724.24, + "probability": 0.9199 + }, + { + "start": 20724.7, + "end": 20725.7, + "probability": 0.6713 + }, + { + "start": 20725.9, + "end": 20726.62, + "probability": 0.9165 + }, + { + "start": 20727.24, + "end": 20727.54, + "probability": 0.6503 + }, + { + "start": 20727.58, + "end": 20728.7, + "probability": 0.6907 + }, + { + "start": 20728.84, + "end": 20730.88, + "probability": 0.8731 + }, + { + "start": 20731.66, + "end": 20732.76, + "probability": 0.7605 + }, + { + "start": 20733.72, + "end": 20735.48, + "probability": 0.7077 + }, + { + "start": 20736.3, + "end": 20737.36, + "probability": 0.9375 + }, + { + "start": 20737.56, + "end": 20739.06, + "probability": 0.9891 + }, + { + "start": 20739.14, + "end": 20740.44, + "probability": 0.9321 + }, + { + "start": 20740.48, + "end": 20742.96, + "probability": 0.7133 + }, + { + "start": 20743.12, + "end": 20745.18, + "probability": 0.9015 + }, + { + "start": 20745.58, + "end": 20747.34, + "probability": 0.7187 + }, + { + "start": 20747.7, + "end": 20748.22, + "probability": 0.9592 + }, + { + "start": 20748.52, + "end": 20749.12, + "probability": 0.6542 + }, + { + "start": 20749.68, + "end": 20752.22, + "probability": 0.6472 + }, + { + "start": 20752.86, + "end": 20755.72, + "probability": 0.9639 + }, + { + "start": 20755.8, + "end": 20756.98, + "probability": 0.9324 + }, + { + "start": 20757.04, + "end": 20758.18, + "probability": 0.9263 + }, + { + "start": 20758.28, + "end": 20758.96, + "probability": 0.9429 + }, + { + "start": 20759.02, + "end": 20760.14, + "probability": 0.262 + }, + { + "start": 20760.14, + "end": 20761.84, + "probability": 0.6565 + }, + { + "start": 20762.2, + "end": 20763.6, + "probability": 0.9725 + }, + { + "start": 20764.0, + "end": 20765.06, + "probability": 0.9508 + }, + { + "start": 20765.24, + "end": 20768.08, + "probability": 0.973 + }, + { + "start": 20768.12, + "end": 20769.2, + "probability": 0.9873 + }, + { + "start": 20769.46, + "end": 20773.2, + "probability": 0.9575 + }, + { + "start": 20773.28, + "end": 20775.26, + "probability": 0.9974 + }, + { + "start": 20775.74, + "end": 20777.82, + "probability": 0.8896 + }, + { + "start": 20778.82, + "end": 20782.44, + "probability": 0.9591 + }, + { + "start": 20783.1, + "end": 20786.14, + "probability": 0.938 + }, + { + "start": 20786.6, + "end": 20787.44, + "probability": 0.8563 + }, + { + "start": 20787.8, + "end": 20791.1, + "probability": 0.8389 + }, + { + "start": 20791.14, + "end": 20792.86, + "probability": 0.7749 + }, + { + "start": 20792.92, + "end": 20793.62, + "probability": 0.7656 + }, + { + "start": 20793.78, + "end": 20794.19, + "probability": 0.5044 + }, + { + "start": 20794.88, + "end": 20795.18, + "probability": 0.7646 + }, + { + "start": 20795.26, + "end": 20796.36, + "probability": 0.6772 + }, + { + "start": 20796.4, + "end": 20796.7, + "probability": 0.5245 + }, + { + "start": 20796.76, + "end": 20797.6, + "probability": 0.8727 + }, + { + "start": 20797.86, + "end": 20798.45, + "probability": 0.9119 + }, + { + "start": 20798.96, + "end": 20799.24, + "probability": 0.838 + }, + { + "start": 20799.32, + "end": 20800.02, + "probability": 0.7053 + }, + { + "start": 20800.1, + "end": 20802.42, + "probability": 0.6893 + }, + { + "start": 20802.58, + "end": 20804.82, + "probability": 0.9346 + }, + { + "start": 20804.94, + "end": 20805.57, + "probability": 0.9087 + }, + { + "start": 20806.22, + "end": 20808.1, + "probability": 0.8238 + }, + { + "start": 20808.46, + "end": 20809.42, + "probability": 0.9268 + }, + { + "start": 20809.56, + "end": 20811.16, + "probability": 0.9608 + }, + { + "start": 20812.1, + "end": 20812.64, + "probability": 0.4446 + }, + { + "start": 20813.0, + "end": 20815.1, + "probability": 0.6953 + }, + { + "start": 20815.6, + "end": 20816.18, + "probability": 0.7437 + }, + { + "start": 20816.22, + "end": 20816.8, + "probability": 0.6313 + }, + { + "start": 20817.24, + "end": 20817.86, + "probability": 0.545 + }, + { + "start": 20817.86, + "end": 20820.12, + "probability": 0.7925 + }, + { + "start": 20820.28, + "end": 20821.66, + "probability": 0.7384 + }, + { + "start": 20821.78, + "end": 20822.54, + "probability": 0.8238 + }, + { + "start": 20822.6, + "end": 20825.28, + "probability": 0.8457 + }, + { + "start": 20825.8, + "end": 20826.29, + "probability": 0.4514 + }, + { + "start": 20826.7, + "end": 20827.33, + "probability": 0.7195 + }, + { + "start": 20827.86, + "end": 20828.82, + "probability": 0.5765 + }, + { + "start": 20829.22, + "end": 20830.22, + "probability": 0.7089 + }, + { + "start": 20830.4, + "end": 20831.52, + "probability": 0.8887 + }, + { + "start": 20832.06, + "end": 20835.36, + "probability": 0.7864 + }, + { + "start": 20835.54, + "end": 20836.78, + "probability": 0.9202 + }, + { + "start": 20836.9, + "end": 20837.46, + "probability": 0.5323 + }, + { + "start": 20837.62, + "end": 20838.5, + "probability": 0.5138 + }, + { + "start": 20838.82, + "end": 20839.5, + "probability": 0.7527 + }, + { + "start": 20839.72, + "end": 20841.4, + "probability": 0.6796 + }, + { + "start": 20841.52, + "end": 20842.6, + "probability": 0.9918 + }, + { + "start": 20842.94, + "end": 20845.36, + "probability": 0.9355 + }, + { + "start": 20845.38, + "end": 20846.02, + "probability": 0.8092 + }, + { + "start": 20846.16, + "end": 20848.7, + "probability": 0.755 + }, + { + "start": 20848.8, + "end": 20849.62, + "probability": 0.9398 + }, + { + "start": 20849.64, + "end": 20850.03, + "probability": 0.7842 + }, + { + "start": 20851.28, + "end": 20853.24, + "probability": 0.761 + }, + { + "start": 20853.34, + "end": 20855.76, + "probability": 0.9631 + }, + { + "start": 20855.92, + "end": 20856.67, + "probability": 0.5555 + }, + { + "start": 20857.12, + "end": 20858.6, + "probability": 0.979 + }, + { + "start": 20859.26, + "end": 20861.5, + "probability": 0.3962 + }, + { + "start": 20861.5, + "end": 20862.7, + "probability": 0.5869 + }, + { + "start": 20862.86, + "end": 20864.22, + "probability": 0.6099 + }, + { + "start": 20864.96, + "end": 20869.86, + "probability": 0.6051 + }, + { + "start": 20869.98, + "end": 20870.26, + "probability": 0.6095 + }, + { + "start": 20870.32, + "end": 20871.9, + "probability": 0.6575 + }, + { + "start": 20871.9, + "end": 20873.9, + "probability": 0.7169 + }, + { + "start": 20873.98, + "end": 20875.32, + "probability": 0.8507 + }, + { + "start": 20875.34, + "end": 20881.56, + "probability": 0.7904 + }, + { + "start": 20882.39, + "end": 20884.0, + "probability": 0.9556 + }, + { + "start": 20884.04, + "end": 20886.38, + "probability": 0.7196 + }, + { + "start": 20886.52, + "end": 20887.18, + "probability": 0.957 + }, + { + "start": 20887.86, + "end": 20890.74, + "probability": 0.3159 + }, + { + "start": 20891.42, + "end": 20894.34, + "probability": 0.8822 + }, + { + "start": 20894.5, + "end": 20898.38, + "probability": 0.8601 + }, + { + "start": 20898.5, + "end": 20899.24, + "probability": 0.5082 + }, + { + "start": 20899.82, + "end": 20902.6, + "probability": 0.7998 + }, + { + "start": 20903.28, + "end": 20903.82, + "probability": 0.5061 + }, + { + "start": 20903.82, + "end": 20904.59, + "probability": 0.8258 + }, + { + "start": 20904.66, + "end": 20905.76, + "probability": 0.9489 + }, + { + "start": 20905.8, + "end": 20909.24, + "probability": 0.8842 + }, + { + "start": 20909.42, + "end": 20910.28, + "probability": 0.3701 + }, + { + "start": 20910.84, + "end": 20913.22, + "probability": 0.7788 + }, + { + "start": 20913.8, + "end": 20915.18, + "probability": 0.6897 + }, + { + "start": 20915.2, + "end": 20918.3, + "probability": 0.9167 + }, + { + "start": 20918.4, + "end": 20918.88, + "probability": 0.5204 + }, + { + "start": 20919.0, + "end": 20920.68, + "probability": 0.9918 + }, + { + "start": 20920.82, + "end": 20921.53, + "probability": 0.5601 + }, + { + "start": 20922.53, + "end": 20924.6, + "probability": 0.8826 + }, + { + "start": 20924.62, + "end": 20925.58, + "probability": 0.6626 + }, + { + "start": 20925.62, + "end": 20926.18, + "probability": 0.6471 + }, + { + "start": 20926.52, + "end": 20929.1, + "probability": 0.941 + }, + { + "start": 20930.0, + "end": 20931.96, + "probability": 0.5791 + }, + { + "start": 20932.22, + "end": 20934.04, + "probability": 0.6933 + }, + { + "start": 20934.72, + "end": 20935.74, + "probability": 0.2348 + }, + { + "start": 20935.8, + "end": 20937.44, + "probability": 0.8145 + }, + { + "start": 20937.58, + "end": 20938.59, + "probability": 0.9741 + }, + { + "start": 20939.32, + "end": 20940.3, + "probability": 0.5458 + }, + { + "start": 20940.3, + "end": 20940.94, + "probability": 0.4934 + }, + { + "start": 20940.94, + "end": 20941.58, + "probability": 0.7832 + }, + { + "start": 20941.9, + "end": 20942.49, + "probability": 0.8772 + }, + { + "start": 20944.3, + "end": 20949.26, + "probability": 0.7779 + }, + { + "start": 20949.3, + "end": 20949.86, + "probability": 0.6816 + }, + { + "start": 20950.76, + "end": 20952.46, + "probability": 0.0254 + }, + { + "start": 20954.56, + "end": 20955.34, + "probability": 0.1288 + }, + { + "start": 20956.6, + "end": 20961.52, + "probability": 0.7476 + }, + { + "start": 20972.04, + "end": 20973.86, + "probability": 0.66 + }, + { + "start": 20975.74, + "end": 20978.92, + "probability": 0.9693 + }, + { + "start": 20980.34, + "end": 20981.95, + "probability": 0.9115 + }, + { + "start": 20982.52, + "end": 20984.02, + "probability": 0.9347 + }, + { + "start": 20986.68, + "end": 20987.44, + "probability": 0.731 + }, + { + "start": 20988.62, + "end": 20993.56, + "probability": 0.9187 + }, + { + "start": 20995.48, + "end": 20998.66, + "probability": 0.9478 + }, + { + "start": 20998.78, + "end": 21000.84, + "probability": 0.6906 + }, + { + "start": 21002.94, + "end": 21004.1, + "probability": 0.953 + }, + { + "start": 21004.84, + "end": 21009.52, + "probability": 0.9634 + }, + { + "start": 21011.1, + "end": 21016.58, + "probability": 0.9803 + }, + { + "start": 21018.94, + "end": 21021.34, + "probability": 0.7877 + }, + { + "start": 21023.12, + "end": 21023.72, + "probability": 0.6916 + }, + { + "start": 21024.14, + "end": 21027.8, + "probability": 0.9863 + }, + { + "start": 21028.14, + "end": 21035.44, + "probability": 0.9903 + }, + { + "start": 21036.86, + "end": 21038.1, + "probability": 0.977 + }, + { + "start": 21040.25, + "end": 21042.08, + "probability": 0.5213 + }, + { + "start": 21042.52, + "end": 21044.88, + "probability": 0.6264 + }, + { + "start": 21045.52, + "end": 21046.48, + "probability": 0.9764 + }, + { + "start": 21046.58, + "end": 21047.24, + "probability": 0.7132 + }, + { + "start": 21049.66, + "end": 21052.98, + "probability": 0.9839 + }, + { + "start": 21053.88, + "end": 21056.62, + "probability": 0.946 + }, + { + "start": 21057.42, + "end": 21059.04, + "probability": 0.9761 + }, + { + "start": 21059.76, + "end": 21060.52, + "probability": 0.6624 + }, + { + "start": 21061.68, + "end": 21062.97, + "probability": 0.9753 + }, + { + "start": 21063.72, + "end": 21065.74, + "probability": 0.9229 + }, + { + "start": 21066.78, + "end": 21068.36, + "probability": 0.9579 + }, + { + "start": 21069.04, + "end": 21070.06, + "probability": 0.9249 + }, + { + "start": 21070.98, + "end": 21075.42, + "probability": 0.9553 + }, + { + "start": 21077.84, + "end": 21081.3, + "probability": 0.9884 + }, + { + "start": 21083.28, + "end": 21085.88, + "probability": 0.8606 + }, + { + "start": 21087.06, + "end": 21089.8, + "probability": 0.9578 + }, + { + "start": 21091.8, + "end": 21092.18, + "probability": 0.0568 + }, + { + "start": 21092.18, + "end": 21093.78, + "probability": 0.8018 + }, + { + "start": 21095.2, + "end": 21099.98, + "probability": 0.979 + }, + { + "start": 21100.02, + "end": 21101.44, + "probability": 0.9247 + }, + { + "start": 21102.42, + "end": 21103.5, + "probability": 0.9031 + }, + { + "start": 21105.0, + "end": 21107.1, + "probability": 0.9926 + }, + { + "start": 21108.74, + "end": 21110.42, + "probability": 0.9686 + }, + { + "start": 21110.96, + "end": 21111.88, + "probability": 0.9278 + }, + { + "start": 21112.5, + "end": 21114.16, + "probability": 0.938 + }, + { + "start": 21115.38, + "end": 21117.9, + "probability": 0.9957 + }, + { + "start": 21118.68, + "end": 21120.0, + "probability": 0.9619 + }, + { + "start": 21121.28, + "end": 21122.6, + "probability": 0.9856 + }, + { + "start": 21123.62, + "end": 21129.68, + "probability": 0.9846 + }, + { + "start": 21131.0, + "end": 21132.23, + "probability": 0.9968 + }, + { + "start": 21133.9, + "end": 21135.64, + "probability": 0.9541 + }, + { + "start": 21137.08, + "end": 21139.32, + "probability": 0.9986 + }, + { + "start": 21140.04, + "end": 21142.18, + "probability": 0.9948 + }, + { + "start": 21142.88, + "end": 21144.2, + "probability": 0.9067 + }, + { + "start": 21145.0, + "end": 21145.58, + "probability": 0.9631 + }, + { + "start": 21146.4, + "end": 21148.02, + "probability": 0.6529 + }, + { + "start": 21148.5, + "end": 21150.06, + "probability": 0.8282 + }, + { + "start": 21151.24, + "end": 21154.78, + "probability": 0.9017 + }, + { + "start": 21156.04, + "end": 21157.0, + "probability": 0.6849 + }, + { + "start": 21160.84, + "end": 21163.54, + "probability": 0.2856 + }, + { + "start": 21163.6, + "end": 21164.16, + "probability": 0.0855 + }, + { + "start": 21164.52, + "end": 21168.02, + "probability": 0.1345 + }, + { + "start": 21169.12, + "end": 21170.48, + "probability": 0.7621 + }, + { + "start": 21172.14, + "end": 21174.76, + "probability": 0.9596 + }, + { + "start": 21175.48, + "end": 21181.14, + "probability": 0.9629 + }, + { + "start": 21182.0, + "end": 21184.46, + "probability": 0.862 + }, + { + "start": 21184.68, + "end": 21186.06, + "probability": 0.9543 + }, + { + "start": 21186.88, + "end": 21189.18, + "probability": 0.181 + }, + { + "start": 21189.56, + "end": 21195.14, + "probability": 0.293 + }, + { + "start": 21195.34, + "end": 21198.7, + "probability": 0.3406 + }, + { + "start": 21199.08, + "end": 21199.15, + "probability": 0.0219 + }, + { + "start": 21199.86, + "end": 21199.88, + "probability": 0.1175 + }, + { + "start": 21199.88, + "end": 21202.46, + "probability": 0.8619 + }, + { + "start": 21202.7, + "end": 21202.74, + "probability": 0.4739 + }, + { + "start": 21202.9, + "end": 21204.24, + "probability": 0.9798 + }, + { + "start": 21205.26, + "end": 21206.24, + "probability": 0.8873 + }, + { + "start": 21207.1, + "end": 21208.72, + "probability": 0.9473 + }, + { + "start": 21209.26, + "end": 21211.22, + "probability": 0.8757 + }, + { + "start": 21212.86, + "end": 21216.54, + "probability": 0.986 + }, + { + "start": 21217.5, + "end": 21218.98, + "probability": 0.9357 + }, + { + "start": 21219.18, + "end": 21219.64, + "probability": 0.7589 + }, + { + "start": 21219.76, + "end": 21222.76, + "probability": 0.9591 + }, + { + "start": 21224.03, + "end": 21225.66, + "probability": 0.9183 + }, + { + "start": 21228.04, + "end": 21229.76, + "probability": 0.9683 + }, + { + "start": 21231.3, + "end": 21235.36, + "probability": 0.9958 + }, + { + "start": 21235.88, + "end": 21237.28, + "probability": 0.9666 + }, + { + "start": 21237.38, + "end": 21241.28, + "probability": 0.8579 + }, + { + "start": 21241.28, + "end": 21244.5, + "probability": 0.7957 + }, + { + "start": 21246.32, + "end": 21248.22, + "probability": 0.78 + }, + { + "start": 21250.0, + "end": 21252.94, + "probability": 0.831 + }, + { + "start": 21253.74, + "end": 21255.96, + "probability": 0.8108 + }, + { + "start": 21256.28, + "end": 21257.9, + "probability": 0.9464 + }, + { + "start": 21258.7, + "end": 21261.48, + "probability": 0.8928 + }, + { + "start": 21262.06, + "end": 21263.74, + "probability": 0.8083 + }, + { + "start": 21264.8, + "end": 21265.94, + "probability": 0.9443 + }, + { + "start": 21266.28, + "end": 21268.7, + "probability": 0.969 + }, + { + "start": 21268.8, + "end": 21270.82, + "probability": 0.7686 + }, + { + "start": 21271.6, + "end": 21275.34, + "probability": 0.9678 + }, + { + "start": 21275.9, + "end": 21277.82, + "probability": 0.9399 + }, + { + "start": 21277.9, + "end": 21278.28, + "probability": 0.92 + }, + { + "start": 21279.7, + "end": 21282.02, + "probability": 0.9804 + }, + { + "start": 21282.94, + "end": 21285.72, + "probability": 0.9978 + }, + { + "start": 21286.6, + "end": 21287.84, + "probability": 0.9873 + }, + { + "start": 21290.54, + "end": 21292.1, + "probability": 0.9009 + }, + { + "start": 21292.76, + "end": 21293.62, + "probability": 0.9045 + }, + { + "start": 21294.18, + "end": 21295.68, + "probability": 0.8252 + }, + { + "start": 21296.64, + "end": 21298.72, + "probability": 0.985 + }, + { + "start": 21300.32, + "end": 21302.68, + "probability": 0.9277 + }, + { + "start": 21304.34, + "end": 21307.82, + "probability": 0.9964 + }, + { + "start": 21307.82, + "end": 21311.64, + "probability": 0.9171 + }, + { + "start": 21312.86, + "end": 21313.32, + "probability": 0.0049 + }, + { + "start": 21313.7, + "end": 21313.7, + "probability": 0.0936 + }, + { + "start": 21313.7, + "end": 21314.82, + "probability": 0.5061 + }, + { + "start": 21315.28, + "end": 21315.86, + "probability": 0.6929 + }, + { + "start": 21316.76, + "end": 21318.97, + "probability": 0.2729 + }, + { + "start": 21319.0, + "end": 21319.42, + "probability": 0.4725 + }, + { + "start": 21319.54, + "end": 21320.78, + "probability": 0.7361 + }, + { + "start": 21321.0, + "end": 21322.72, + "probability": 0.8205 + }, + { + "start": 21323.16, + "end": 21324.54, + "probability": 0.2874 + }, + { + "start": 21326.16, + "end": 21328.44, + "probability": 0.947 + }, + { + "start": 21328.46, + "end": 21328.85, + "probability": 0.2325 + }, + { + "start": 21329.58, + "end": 21331.33, + "probability": 0.517 + }, + { + "start": 21331.64, + "end": 21333.3, + "probability": 0.4197 + }, + { + "start": 21333.78, + "end": 21334.83, + "probability": 0.3899 + }, + { + "start": 21335.56, + "end": 21335.8, + "probability": 0.8931 + }, + { + "start": 21336.98, + "end": 21339.26, + "probability": 0.8433 + }, + { + "start": 21340.9, + "end": 21342.02, + "probability": 0.4896 + }, + { + "start": 21342.74, + "end": 21345.0, + "probability": 0.423 + }, + { + "start": 21345.28, + "end": 21346.19, + "probability": 0.3415 + }, + { + "start": 21346.87, + "end": 21347.84, + "probability": 0.7677 + }, + { + "start": 21352.78, + "end": 21353.62, + "probability": 0.9 + }, + { + "start": 21353.72, + "end": 21355.14, + "probability": 0.9942 + }, + { + "start": 21355.34, + "end": 21356.74, + "probability": 0.974 + }, + { + "start": 21356.88, + "end": 21360.54, + "probability": 0.8606 + }, + { + "start": 21360.78, + "end": 21364.38, + "probability": 0.7493 + }, + { + "start": 21364.6, + "end": 21367.58, + "probability": 0.9342 + }, + { + "start": 21368.34, + "end": 21373.68, + "probability": 0.9917 + }, + { + "start": 21374.52, + "end": 21376.74, + "probability": 0.9577 + }, + { + "start": 21377.3, + "end": 21380.74, + "probability": 0.9922 + }, + { + "start": 21381.18, + "end": 21382.32, + "probability": 0.9972 + }, + { + "start": 21382.76, + "end": 21385.46, + "probability": 0.9878 + }, + { + "start": 21386.16, + "end": 21387.9, + "probability": 0.9146 + }, + { + "start": 21388.5, + "end": 21389.84, + "probability": 0.9792 + }, + { + "start": 21390.12, + "end": 21390.42, + "probability": 0.4991 + }, + { + "start": 21390.44, + "end": 21394.4, + "probability": 0.9236 + }, + { + "start": 21394.94, + "end": 21395.44, + "probability": 0.9926 + }, + { + "start": 21396.32, + "end": 21397.05, + "probability": 0.9756 + }, + { + "start": 21397.76, + "end": 21398.93, + "probability": 0.9824 + }, + { + "start": 21399.32, + "end": 21402.74, + "probability": 0.9949 + }, + { + "start": 21402.86, + "end": 21405.64, + "probability": 0.8346 + }, + { + "start": 21405.82, + "end": 21407.48, + "probability": 0.9403 + }, + { + "start": 21407.58, + "end": 21411.12, + "probability": 0.9796 + }, + { + "start": 21411.42, + "end": 21412.68, + "probability": 0.9701 + }, + { + "start": 21412.96, + "end": 21415.2, + "probability": 0.8425 + }, + { + "start": 21415.52, + "end": 21418.72, + "probability": 0.5904 + }, + { + "start": 21418.94, + "end": 21420.26, + "probability": 0.9773 + }, + { + "start": 21420.44, + "end": 21423.16, + "probability": 0.9939 + }, + { + "start": 21423.6, + "end": 21424.76, + "probability": 0.8173 + }, + { + "start": 21425.22, + "end": 21427.46, + "probability": 0.6947 + }, + { + "start": 21427.86, + "end": 21429.7, + "probability": 0.9884 + }, + { + "start": 21430.16, + "end": 21431.86, + "probability": 0.9326 + }, + { + "start": 21431.88, + "end": 21433.4, + "probability": 0.7592 + }, + { + "start": 21433.48, + "end": 21433.92, + "probability": 0.8857 + }, + { + "start": 21434.02, + "end": 21435.16, + "probability": 0.9581 + }, + { + "start": 21435.54, + "end": 21436.46, + "probability": 0.9946 + }, + { + "start": 21436.52, + "end": 21438.34, + "probability": 0.9642 + }, + { + "start": 21438.6, + "end": 21438.82, + "probability": 0.7449 + }, + { + "start": 21438.96, + "end": 21441.32, + "probability": 0.7991 + }, + { + "start": 21441.94, + "end": 21445.7, + "probability": 0.857 + }, + { + "start": 21446.84, + "end": 21447.92, + "probability": 0.9224 + }, + { + "start": 21453.48, + "end": 21453.87, + "probability": 0.7017 + }, + { + "start": 21454.6, + "end": 21455.78, + "probability": 0.9753 + }, + { + "start": 21456.12, + "end": 21458.18, + "probability": 0.2539 + }, + { + "start": 21458.8, + "end": 21459.66, + "probability": 0.1175 + }, + { + "start": 21459.88, + "end": 21462.06, + "probability": 0.2059 + }, + { + "start": 21462.48, + "end": 21463.6, + "probability": 0.6872 + }, + { + "start": 21464.96, + "end": 21467.82, + "probability": 0.6283 + }, + { + "start": 21468.22, + "end": 21470.89, + "probability": 0.4734 + }, + { + "start": 21472.0, + "end": 21472.16, + "probability": 0.0147 + }, + { + "start": 21472.16, + "end": 21472.24, + "probability": 0.5348 + }, + { + "start": 21472.24, + "end": 21473.48, + "probability": 0.0698 + }, + { + "start": 21473.6, + "end": 21474.66, + "probability": 0.3468 + }, + { + "start": 21474.66, + "end": 21476.62, + "probability": 0.744 + }, + { + "start": 21477.66, + "end": 21478.25, + "probability": 0.0124 + }, + { + "start": 21480.42, + "end": 21480.52, + "probability": 0.1597 + }, + { + "start": 21480.52, + "end": 21481.48, + "probability": 0.5241 + }, + { + "start": 21482.14, + "end": 21484.0, + "probability": 0.9455 + }, + { + "start": 21484.84, + "end": 21486.48, + "probability": 0.8488 + }, + { + "start": 21487.52, + "end": 21490.02, + "probability": 0.9316 + }, + { + "start": 21491.86, + "end": 21493.16, + "probability": 0.9936 + }, + { + "start": 21494.7, + "end": 21495.4, + "probability": 0.9981 + }, + { + "start": 21495.98, + "end": 21498.48, + "probability": 0.9997 + }, + { + "start": 21499.68, + "end": 21502.4, + "probability": 0.6921 + }, + { + "start": 21502.78, + "end": 21504.68, + "probability": 0.9663 + }, + { + "start": 21505.72, + "end": 21511.02, + "probability": 0.9965 + }, + { + "start": 21512.38, + "end": 21516.78, + "probability": 0.896 + }, + { + "start": 21517.2, + "end": 21517.85, + "probability": 0.9059 + }, + { + "start": 21518.38, + "end": 21520.92, + "probability": 0.9935 + }, + { + "start": 21521.96, + "end": 21525.72, + "probability": 0.9944 + }, + { + "start": 21526.12, + "end": 21531.66, + "probability": 0.9902 + }, + { + "start": 21533.44, + "end": 21534.5, + "probability": 0.8569 + }, + { + "start": 21534.6, + "end": 21537.46, + "probability": 0.9922 + }, + { + "start": 21538.04, + "end": 21540.66, + "probability": 0.951 + }, + { + "start": 21540.98, + "end": 21542.2, + "probability": 0.9937 + }, + { + "start": 21542.56, + "end": 21543.46, + "probability": 0.8616 + }, + { + "start": 21543.82, + "end": 21545.16, + "probability": 0.9437 + }, + { + "start": 21545.64, + "end": 21548.64, + "probability": 0.907 + }, + { + "start": 21548.64, + "end": 21552.8, + "probability": 0.9456 + }, + { + "start": 21552.9, + "end": 21554.54, + "probability": 0.9951 + }, + { + "start": 21555.08, + "end": 21555.78, + "probability": 0.353 + }, + { + "start": 21555.78, + "end": 21560.52, + "probability": 0.9907 + }, + { + "start": 21560.58, + "end": 21561.24, + "probability": 0.955 + }, + { + "start": 21561.28, + "end": 21561.54, + "probability": 0.8137 + }, + { + "start": 21561.62, + "end": 21563.1, + "probability": 0.9233 + }, + { + "start": 21563.54, + "end": 21568.39, + "probability": 0.9963 + }, + { + "start": 21568.7, + "end": 21573.54, + "probability": 0.9971 + }, + { + "start": 21575.04, + "end": 21577.88, + "probability": 0.9762 + }, + { + "start": 21579.1, + "end": 21580.44, + "probability": 0.9984 + }, + { + "start": 21581.18, + "end": 21583.94, + "probability": 0.7567 + }, + { + "start": 21584.72, + "end": 21586.39, + "probability": 0.9763 + }, + { + "start": 21586.92, + "end": 21588.24, + "probability": 0.8374 + }, + { + "start": 21588.62, + "end": 21589.28, + "probability": 0.7608 + }, + { + "start": 21589.56, + "end": 21590.58, + "probability": 0.6703 + }, + { + "start": 21590.7, + "end": 21591.46, + "probability": 0.9459 + }, + { + "start": 21591.72, + "end": 21597.58, + "probability": 0.9974 + }, + { + "start": 21597.68, + "end": 21599.54, + "probability": 0.9138 + }, + { + "start": 21599.78, + "end": 21600.4, + "probability": 0.8199 + }, + { + "start": 21600.44, + "end": 21601.28, + "probability": 0.7206 + }, + { + "start": 21602.44, + "end": 21604.38, + "probability": 0.9727 + }, + { + "start": 21605.38, + "end": 21606.66, + "probability": 0.4208 + }, + { + "start": 21608.44, + "end": 21612.02, + "probability": 0.7001 + }, + { + "start": 21612.62, + "end": 21614.06, + "probability": 0.8824 + }, + { + "start": 21614.96, + "end": 21616.24, + "probability": 0.8435 + }, + { + "start": 21617.42, + "end": 21618.77, + "probability": 0.416 + }, + { + "start": 21630.04, + "end": 21636.5, + "probability": 0.3127 + }, + { + "start": 21638.28, + "end": 21639.84, + "probability": 0.4981 + }, + { + "start": 21641.82, + "end": 21642.68, + "probability": 0.0544 + }, + { + "start": 21644.42, + "end": 21646.16, + "probability": 0.5021 + }, + { + "start": 21647.74, + "end": 21649.16, + "probability": 0.7128 + }, + { + "start": 21649.68, + "end": 21650.38, + "probability": 0.3507 + }, + { + "start": 21651.88, + "end": 21654.14, + "probability": 0.6407 + }, + { + "start": 21658.32, + "end": 21663.74, + "probability": 0.9775 + }, + { + "start": 21666.04, + "end": 21666.06, + "probability": 0.0458 + }, + { + "start": 21666.06, + "end": 21666.06, + "probability": 0.2796 + }, + { + "start": 21666.06, + "end": 21666.06, + "probability": 0.4636 + }, + { + "start": 21666.06, + "end": 21666.06, + "probability": 0.5001 + }, + { + "start": 21666.06, + "end": 21666.06, + "probability": 0.5099 + }, + { + "start": 21666.06, + "end": 21666.06, + "probability": 0.5786 + }, + { + "start": 21666.06, + "end": 21666.06, + "probability": 0.5847 + }, + { + "start": 21666.06, + "end": 21666.06, + "probability": 0.2117 + }, + { + "start": 21666.06, + "end": 21668.94, + "probability": 0.9027 + }, + { + "start": 21669.6, + "end": 21669.98, + "probability": 0.7506 + }, + { + "start": 21671.44, + "end": 21672.06, + "probability": 0.2698 + }, + { + "start": 21673.9, + "end": 21675.32, + "probability": 0.4874 + }, + { + "start": 21676.04, + "end": 21676.48, + "probability": 0.2439 + }, + { + "start": 21702.76, + "end": 21703.62, + "probability": 0.7097 + }, + { + "start": 21704.56, + "end": 21704.84, + "probability": 0.5342 + }, + { + "start": 21706.06, + "end": 21706.78, + "probability": 0.0536 + }, + { + "start": 21706.78, + "end": 21707.54, + "probability": 0.6091 + }, + { + "start": 21707.88, + "end": 21710.0, + "probability": 0.4806 + }, + { + "start": 21710.22, + "end": 21713.64, + "probability": 0.904 + }, + { + "start": 21713.9, + "end": 21717.28, + "probability": 0.927 + }, + { + "start": 21717.28, + "end": 21722.54, + "probability": 0.9883 + }, + { + "start": 21723.26, + "end": 21724.14, + "probability": 0.5725 + }, + { + "start": 21724.22, + "end": 21725.94, + "probability": 0.8918 + }, + { + "start": 21726.21, + "end": 21733.1, + "probability": 0.7359 + }, + { + "start": 21733.6, + "end": 21735.3, + "probability": 0.8876 + }, + { + "start": 21735.54, + "end": 21739.48, + "probability": 0.9563 + }, + { + "start": 21739.98, + "end": 21740.78, + "probability": 0.7572 + }, + { + "start": 21741.74, + "end": 21743.24, + "probability": 0.897 + }, + { + "start": 21744.1, + "end": 21746.64, + "probability": 0.7444 + }, + { + "start": 21748.78, + "end": 21753.98, + "probability": 0.7827 + }, + { + "start": 21754.48, + "end": 21758.18, + "probability": 0.9319 + }, + { + "start": 21758.72, + "end": 21759.56, + "probability": 0.9834 + }, + { + "start": 21760.48, + "end": 21766.34, + "probability": 0.937 + }, + { + "start": 21766.8, + "end": 21770.5, + "probability": 0.875 + }, + { + "start": 21771.1, + "end": 21778.9, + "probability": 0.9476 + }, + { + "start": 21781.08, + "end": 21783.7, + "probability": 0.9501 + }, + { + "start": 21783.82, + "end": 21784.82, + "probability": 0.8554 + }, + { + "start": 21784.9, + "end": 21786.14, + "probability": 0.9611 + }, + { + "start": 21786.34, + "end": 21787.44, + "probability": 0.7271 + }, + { + "start": 21787.94, + "end": 21789.76, + "probability": 0.5107 + }, + { + "start": 21789.86, + "end": 21791.56, + "probability": 0.7513 + }, + { + "start": 21792.16, + "end": 21796.68, + "probability": 0.9876 + }, + { + "start": 21797.12, + "end": 21800.72, + "probability": 0.9162 + }, + { + "start": 21801.02, + "end": 21802.7, + "probability": 0.5224 + }, + { + "start": 21802.92, + "end": 21806.98, + "probability": 0.8245 + }, + { + "start": 21807.24, + "end": 21808.34, + "probability": 0.674 + }, + { + "start": 21808.68, + "end": 21809.74, + "probability": 0.8293 + }, + { + "start": 21810.08, + "end": 21812.93, + "probability": 0.9081 + }, + { + "start": 21814.04, + "end": 21815.96, + "probability": 0.9829 + }, + { + "start": 21816.0, + "end": 21819.7, + "probability": 0.9188 + }, + { + "start": 21820.8, + "end": 21822.72, + "probability": 0.9458 + }, + { + "start": 21822.88, + "end": 21824.7, + "probability": 0.9796 + }, + { + "start": 21824.9, + "end": 21827.56, + "probability": 0.9929 + }, + { + "start": 21827.74, + "end": 21829.78, + "probability": 0.9287 + }, + { + "start": 21830.16, + "end": 21833.62, + "probability": 0.9825 + }, + { + "start": 21833.86, + "end": 21835.82, + "probability": 0.9692 + }, + { + "start": 21836.3, + "end": 21836.94, + "probability": 0.7128 + }, + { + "start": 21837.1, + "end": 21838.06, + "probability": 0.7182 + }, + { + "start": 21838.22, + "end": 21843.96, + "probability": 0.9581 + }, + { + "start": 21844.02, + "end": 21845.56, + "probability": 0.704 + }, + { + "start": 21845.66, + "end": 21846.8, + "probability": 0.6288 + }, + { + "start": 21847.46, + "end": 21851.42, + "probability": 0.8934 + }, + { + "start": 21851.9, + "end": 21854.06, + "probability": 0.7617 + }, + { + "start": 21854.18, + "end": 21854.92, + "probability": 0.7186 + }, + { + "start": 21855.36, + "end": 21857.46, + "probability": 0.9116 + }, + { + "start": 21858.02, + "end": 21860.22, + "probability": 0.6606 + }, + { + "start": 21860.74, + "end": 21863.9, + "probability": 0.952 + }, + { + "start": 21864.24, + "end": 21864.82, + "probability": 0.7716 + }, + { + "start": 21865.28, + "end": 21867.46, + "probability": 0.9321 + }, + { + "start": 21867.98, + "end": 21873.78, + "probability": 0.9612 + }, + { + "start": 21874.26, + "end": 21875.38, + "probability": 0.9219 + }, + { + "start": 21875.54, + "end": 21878.22, + "probability": 0.9048 + }, + { + "start": 21878.64, + "end": 21879.48, + "probability": 0.5382 + }, + { + "start": 21879.88, + "end": 21881.86, + "probability": 0.991 + }, + { + "start": 21882.04, + "end": 21884.58, + "probability": 0.7157 + }, + { + "start": 21885.02, + "end": 21888.3, + "probability": 0.746 + }, + { + "start": 21888.44, + "end": 21888.98, + "probability": 0.7377 + }, + { + "start": 21889.08, + "end": 21889.88, + "probability": 0.7342 + }, + { + "start": 21890.04, + "end": 21894.08, + "probability": 0.7271 + }, + { + "start": 21894.2, + "end": 21899.62, + "probability": 0.9534 + }, + { + "start": 21900.48, + "end": 21902.92, + "probability": 0.8396 + }, + { + "start": 21903.82, + "end": 21905.56, + "probability": 0.9406 + }, + { + "start": 21906.4, + "end": 21909.14, + "probability": 0.8369 + }, + { + "start": 21909.34, + "end": 21915.22, + "probability": 0.9913 + }, + { + "start": 21915.86, + "end": 21918.58, + "probability": 0.5751 + }, + { + "start": 21919.0, + "end": 21924.5, + "probability": 0.9134 + }, + { + "start": 21924.5, + "end": 21925.86, + "probability": 0.8828 + }, + { + "start": 21926.24, + "end": 21928.28, + "probability": 0.9595 + }, + { + "start": 21928.68, + "end": 21930.62, + "probability": 0.9847 + }, + { + "start": 21930.96, + "end": 21932.6, + "probability": 0.9924 + }, + { + "start": 21933.04, + "end": 21935.14, + "probability": 0.9858 + }, + { + "start": 21935.58, + "end": 21936.62, + "probability": 0.8613 + }, + { + "start": 21936.8, + "end": 21938.6, + "probability": 0.9932 + }, + { + "start": 21938.84, + "end": 21941.34, + "probability": 0.8747 + }, + { + "start": 21941.48, + "end": 21941.98, + "probability": 0.9614 + }, + { + "start": 21942.34, + "end": 21943.56, + "probability": 0.9694 + }, + { + "start": 21943.56, + "end": 21945.0, + "probability": 0.7216 + }, + { + "start": 21945.04, + "end": 21946.72, + "probability": 0.7369 + }, + { + "start": 21947.02, + "end": 21953.22, + "probability": 0.9779 + }, + { + "start": 21953.22, + "end": 21959.56, + "probability": 0.6871 + }, + { + "start": 21959.84, + "end": 21963.42, + "probability": 0.9075 + }, + { + "start": 21963.48, + "end": 21967.8, + "probability": 0.9026 + }, + { + "start": 21967.96, + "end": 21970.26, + "probability": 0.6877 + }, + { + "start": 21970.72, + "end": 21972.44, + "probability": 0.8195 + }, + { + "start": 21972.98, + "end": 21974.88, + "probability": 0.9552 + }, + { + "start": 21975.52, + "end": 21977.52, + "probability": 0.9235 + }, + { + "start": 21978.66, + "end": 21980.98, + "probability": 0.9946 + }, + { + "start": 21983.2, + "end": 21984.0, + "probability": 0.7686 + }, + { + "start": 21984.76, + "end": 21987.04, + "probability": 0.9722 + }, + { + "start": 21990.4, + "end": 21992.52, + "probability": 0.7029 + }, + { + "start": 21992.62, + "end": 21993.2, + "probability": 0.9663 + }, + { + "start": 21999.38, + "end": 21999.38, + "probability": 0.2481 + }, + { + "start": 21999.38, + "end": 21999.38, + "probability": 0.1197 + }, + { + "start": 21999.38, + "end": 21999.38, + "probability": 0.1752 + }, + { + "start": 21999.38, + "end": 21999.38, + "probability": 0.2058 + }, + { + "start": 21999.38, + "end": 21999.38, + "probability": 0.1251 + }, + { + "start": 21999.38, + "end": 21999.38, + "probability": 0.0143 + }, + { + "start": 22023.66, + "end": 22024.78, + "probability": 0.8331 + }, + { + "start": 22025.86, + "end": 22029.76, + "probability": 0.9985 + }, + { + "start": 22030.08, + "end": 22030.7, + "probability": 0.9156 + }, + { + "start": 22030.82, + "end": 22031.24, + "probability": 0.8954 + }, + { + "start": 22031.36, + "end": 22031.82, + "probability": 0.7776 + }, + { + "start": 22032.4, + "end": 22035.54, + "probability": 0.9658 + }, + { + "start": 22036.08, + "end": 22037.22, + "probability": 0.9673 + }, + { + "start": 22037.94, + "end": 22039.12, + "probability": 0.9192 + }, + { + "start": 22039.58, + "end": 22041.24, + "probability": 0.9961 + }, + { + "start": 22041.58, + "end": 22042.38, + "probability": 0.9437 + }, + { + "start": 22042.42, + "end": 22042.92, + "probability": 0.9727 + }, + { + "start": 22043.0, + "end": 22044.46, + "probability": 0.8673 + }, + { + "start": 22044.54, + "end": 22045.52, + "probability": 0.93 + }, + { + "start": 22046.66, + "end": 22051.58, + "probability": 0.993 + }, + { + "start": 22051.58, + "end": 22056.2, + "probability": 0.9572 + }, + { + "start": 22057.08, + "end": 22060.62, + "probability": 0.9961 + }, + { + "start": 22061.22, + "end": 22062.38, + "probability": 0.9621 + }, + { + "start": 22063.04, + "end": 22065.6, + "probability": 0.7626 + }, + { + "start": 22066.68, + "end": 22068.94, + "probability": 0.9141 + }, + { + "start": 22069.68, + "end": 22069.86, + "probability": 0.2651 + }, + { + "start": 22069.86, + "end": 22070.62, + "probability": 0.6741 + }, + { + "start": 22070.92, + "end": 22071.68, + "probability": 0.8809 + }, + { + "start": 22073.02, + "end": 22075.14, + "probability": 0.9739 + }, + { + "start": 22075.64, + "end": 22076.78, + "probability": 0.9966 + }, + { + "start": 22077.1, + "end": 22077.7, + "probability": 0.8873 + }, + { + "start": 22077.96, + "end": 22078.82, + "probability": 0.9438 + }, + { + "start": 22078.9, + "end": 22079.38, + "probability": 0.9123 + }, + { + "start": 22080.18, + "end": 22080.86, + "probability": 0.9373 + }, + { + "start": 22081.48, + "end": 22086.2, + "probability": 0.9722 + }, + { + "start": 22086.36, + "end": 22087.94, + "probability": 0.9138 + }, + { + "start": 22088.94, + "end": 22091.1, + "probability": 0.8937 + }, + { + "start": 22091.78, + "end": 22092.54, + "probability": 0.8895 + }, + { + "start": 22093.14, + "end": 22093.72, + "probability": 0.7925 + }, + { + "start": 22094.94, + "end": 22095.24, + "probability": 0.944 + }, + { + "start": 22095.32, + "end": 22098.58, + "probability": 0.9855 + }, + { + "start": 22099.36, + "end": 22101.68, + "probability": 0.9428 + }, + { + "start": 22102.22, + "end": 22103.04, + "probability": 0.7457 + }, + { + "start": 22103.18, + "end": 22104.0, + "probability": 0.9033 + }, + { + "start": 22104.4, + "end": 22107.0, + "probability": 0.9824 + }, + { + "start": 22109.12, + "end": 22109.52, + "probability": 0.8601 + }, + { + "start": 22109.92, + "end": 22111.98, + "probability": 0.9967 + }, + { + "start": 22112.72, + "end": 22115.96, + "probability": 0.9736 + }, + { + "start": 22117.22, + "end": 22117.9, + "probability": 0.7352 + }, + { + "start": 22118.82, + "end": 22121.32, + "probability": 0.9957 + }, + { + "start": 22122.24, + "end": 22125.98, + "probability": 0.9054 + }, + { + "start": 22126.66, + "end": 22127.92, + "probability": 0.6532 + }, + { + "start": 22128.1, + "end": 22129.42, + "probability": 0.8085 + }, + { + "start": 22129.58, + "end": 22132.54, + "probability": 0.9973 + }, + { + "start": 22132.66, + "end": 22135.5, + "probability": 0.9607 + }, + { + "start": 22135.82, + "end": 22136.54, + "probability": 0.9609 + }, + { + "start": 22136.64, + "end": 22137.08, + "probability": 0.7506 + }, + { + "start": 22137.48, + "end": 22138.07, + "probability": 0.8738 + }, + { + "start": 22139.0, + "end": 22141.06, + "probability": 0.7975 + }, + { + "start": 22141.66, + "end": 22143.84, + "probability": 0.987 + }, + { + "start": 22145.22, + "end": 22146.3, + "probability": 0.9036 + }, + { + "start": 22147.76, + "end": 22148.34, + "probability": 0.5236 + }, + { + "start": 22148.46, + "end": 22150.1, + "probability": 0.9966 + }, + { + "start": 22150.24, + "end": 22151.24, + "probability": 0.9873 + }, + { + "start": 22152.16, + "end": 22152.2, + "probability": 0.5911 + }, + { + "start": 22152.28, + "end": 22156.46, + "probability": 0.9694 + }, + { + "start": 22156.52, + "end": 22157.58, + "probability": 0.7781 + }, + { + "start": 22157.74, + "end": 22158.16, + "probability": 0.9629 + }, + { + "start": 22158.28, + "end": 22158.82, + "probability": 0.8348 + }, + { + "start": 22159.58, + "end": 22160.56, + "probability": 0.8054 + }, + { + "start": 22161.94, + "end": 22166.5, + "probability": 0.9819 + }, + { + "start": 22166.74, + "end": 22167.4, + "probability": 0.9855 + }, + { + "start": 22167.7, + "end": 22168.34, + "probability": 0.9804 + }, + { + "start": 22168.8, + "end": 22172.98, + "probability": 0.9707 + }, + { + "start": 22173.3, + "end": 22173.72, + "probability": 0.8083 + }, + { + "start": 22174.24, + "end": 22177.26, + "probability": 0.8831 + }, + { + "start": 22178.1, + "end": 22179.42, + "probability": 0.9966 + }, + { + "start": 22180.08, + "end": 22182.88, + "probability": 0.9795 + }, + { + "start": 22183.54, + "end": 22187.48, + "probability": 0.9966 + }, + { + "start": 22187.48, + "end": 22190.18, + "probability": 0.9961 + }, + { + "start": 22190.66, + "end": 22191.56, + "probability": 0.9946 + }, + { + "start": 22192.46, + "end": 22194.08, + "probability": 0.8029 + }, + { + "start": 22194.86, + "end": 22197.64, + "probability": 0.8478 + }, + { + "start": 22198.4, + "end": 22201.64, + "probability": 0.9655 + }, + { + "start": 22202.16, + "end": 22203.22, + "probability": 0.9768 + }, + { + "start": 22203.64, + "end": 22204.0, + "probability": 0.5541 + }, + { + "start": 22204.02, + "end": 22206.8, + "probability": 0.7823 + }, + { + "start": 22207.38, + "end": 22209.58, + "probability": 0.933 + }, + { + "start": 22209.96, + "end": 22212.0, + "probability": 0.9778 + }, + { + "start": 22212.08, + "end": 22212.94, + "probability": 0.9521 + }, + { + "start": 22213.0, + "end": 22213.91, + "probability": 0.9771 + }, + { + "start": 22214.56, + "end": 22215.18, + "probability": 0.8923 + }, + { + "start": 22215.48, + "end": 22215.86, + "probability": 0.8364 + }, + { + "start": 22215.94, + "end": 22216.64, + "probability": 0.7162 + }, + { + "start": 22217.86, + "end": 22220.14, + "probability": 0.7102 + }, + { + "start": 22221.3, + "end": 22222.02, + "probability": 0.6622 + }, + { + "start": 22222.96, + "end": 22225.68, + "probability": 0.7365 + }, + { + "start": 22228.62, + "end": 22231.62, + "probability": 0.9814 + }, + { + "start": 22233.1, + "end": 22234.16, + "probability": 0.3223 + }, + { + "start": 22234.94, + "end": 22235.52, + "probability": 0.8536 + }, + { + "start": 22245.94, + "end": 22247.0, + "probability": 0.3842 + }, + { + "start": 22248.4, + "end": 22249.04, + "probability": 0.9798 + }, + { + "start": 22253.98, + "end": 22255.18, + "probability": 0.6281 + }, + { + "start": 22256.0, + "end": 22256.0, + "probability": 0.2847 + }, + { + "start": 22256.0, + "end": 22258.34, + "probability": 0.8985 + }, + { + "start": 22258.46, + "end": 22262.34, + "probability": 0.9795 + }, + { + "start": 22263.02, + "end": 22265.44, + "probability": 0.961 + }, + { + "start": 22266.24, + "end": 22267.86, + "probability": 0.9956 + }, + { + "start": 22269.86, + "end": 22272.8, + "probability": 0.9388 + }, + { + "start": 22273.5, + "end": 22283.02, + "probability": 0.9829 + }, + { + "start": 22283.42, + "end": 22286.32, + "probability": 0.933 + }, + { + "start": 22287.1, + "end": 22289.7, + "probability": 0.9578 + }, + { + "start": 22290.58, + "end": 22291.28, + "probability": 0.914 + }, + { + "start": 22292.0, + "end": 22292.54, + "probability": 0.9321 + }, + { + "start": 22293.46, + "end": 22293.94, + "probability": 0.776 + }, + { + "start": 22296.12, + "end": 22298.64, + "probability": 0.9167 + }, + { + "start": 22299.5, + "end": 22304.28, + "probability": 0.9634 + }, + { + "start": 22305.38, + "end": 22308.62, + "probability": 0.9904 + }, + { + "start": 22309.4, + "end": 22312.18, + "probability": 0.7798 + }, + { + "start": 22313.1, + "end": 22315.98, + "probability": 0.5524 + }, + { + "start": 22316.82, + "end": 22323.38, + "probability": 0.9473 + }, + { + "start": 22324.08, + "end": 22324.94, + "probability": 0.8619 + }, + { + "start": 22326.9, + "end": 22327.4, + "probability": 0.716 + }, + { + "start": 22328.54, + "end": 22337.12, + "probability": 0.9863 + }, + { + "start": 22338.62, + "end": 22341.46, + "probability": 0.9746 + }, + { + "start": 22342.96, + "end": 22346.2, + "probability": 0.8613 + }, + { + "start": 22347.6, + "end": 22349.18, + "probability": 0.9578 + }, + { + "start": 22350.48, + "end": 22352.9, + "probability": 0.9788 + }, + { + "start": 22353.92, + "end": 22360.24, + "probability": 0.956 + }, + { + "start": 22362.3, + "end": 22363.6, + "probability": 0.981 + }, + { + "start": 22364.58, + "end": 22371.86, + "probability": 0.9395 + }, + { + "start": 22372.26, + "end": 22374.54, + "probability": 0.8983 + }, + { + "start": 22376.32, + "end": 22379.06, + "probability": 0.9238 + }, + { + "start": 22385.7, + "end": 22388.5, + "probability": 0.9713 + }, + { + "start": 22389.36, + "end": 22390.9, + "probability": 0.9812 + }, + { + "start": 22391.7, + "end": 22394.76, + "probability": 0.9891 + }, + { + "start": 22395.28, + "end": 22398.68, + "probability": 0.9948 + }, + { + "start": 22399.98, + "end": 22400.72, + "probability": 0.8947 + }, + { + "start": 22401.72, + "end": 22404.6, + "probability": 0.9975 + }, + { + "start": 22405.86, + "end": 22409.04, + "probability": 0.993 + }, + { + "start": 22409.04, + "end": 22413.32, + "probability": 0.9814 + }, + { + "start": 22414.18, + "end": 22416.48, + "probability": 0.975 + }, + { + "start": 22417.64, + "end": 22418.58, + "probability": 0.9602 + }, + { + "start": 22419.32, + "end": 22421.64, + "probability": 0.748 + }, + { + "start": 22423.08, + "end": 22426.62, + "probability": 0.9924 + }, + { + "start": 22428.84, + "end": 22432.28, + "probability": 0.5892 + }, + { + "start": 22434.94, + "end": 22437.36, + "probability": 0.9959 + }, + { + "start": 22438.42, + "end": 22441.06, + "probability": 0.9738 + }, + { + "start": 22443.3, + "end": 22444.66, + "probability": 0.9939 + }, + { + "start": 22445.52, + "end": 22447.98, + "probability": 0.8268 + }, + { + "start": 22449.14, + "end": 22451.48, + "probability": 0.9681 + }, + { + "start": 22452.36, + "end": 22456.54, + "probability": 0.9907 + }, + { + "start": 22457.24, + "end": 22457.84, + "probability": 0.5757 + }, + { + "start": 22458.44, + "end": 22460.68, + "probability": 0.821 + }, + { + "start": 22461.68, + "end": 22466.34, + "probability": 0.994 + }, + { + "start": 22466.62, + "end": 22469.18, + "probability": 0.9768 + }, + { + "start": 22469.72, + "end": 22471.1, + "probability": 0.8791 + }, + { + "start": 22472.22, + "end": 22477.08, + "probability": 0.9927 + }, + { + "start": 22479.38, + "end": 22484.6, + "probability": 0.811 + }, + { + "start": 22484.82, + "end": 22485.22, + "probability": 0.7266 + }, + { + "start": 22486.8, + "end": 22491.76, + "probability": 0.9979 + }, + { + "start": 22492.4, + "end": 22497.5, + "probability": 0.9974 + }, + { + "start": 22498.6, + "end": 22499.66, + "probability": 0.96 + }, + { + "start": 22500.26, + "end": 22501.82, + "probability": 0.9453 + }, + { + "start": 22502.46, + "end": 22504.8, + "probability": 0.9717 + }, + { + "start": 22505.4, + "end": 22509.2, + "probability": 0.7498 + }, + { + "start": 22509.94, + "end": 22511.72, + "probability": 0.9242 + }, + { + "start": 22512.08, + "end": 22514.66, + "probability": 0.8637 + }, + { + "start": 22515.04, + "end": 22517.38, + "probability": 0.9648 + }, + { + "start": 22518.1, + "end": 22522.02, + "probability": 0.8275 + }, + { + "start": 22522.12, + "end": 22522.18, + "probability": 0.5236 + }, + { + "start": 22522.18, + "end": 22522.94, + "probability": 0.5808 + }, + { + "start": 22523.6, + "end": 22530.2, + "probability": 0.9704 + }, + { + "start": 22530.74, + "end": 22531.46, + "probability": 0.8435 + }, + { + "start": 22532.48, + "end": 22533.54, + "probability": 0.907 + }, + { + "start": 22533.92, + "end": 22537.28, + "probability": 0.9461 + }, + { + "start": 22537.54, + "end": 22538.98, + "probability": 0.9922 + }, + { + "start": 22540.5, + "end": 22543.1, + "probability": 0.7847 + }, + { + "start": 22543.56, + "end": 22544.4, + "probability": 0.7175 + }, + { + "start": 22547.3, + "end": 22549.24, + "probability": 0.9003 + }, + { + "start": 22549.58, + "end": 22551.38, + "probability": 0.9528 + }, + { + "start": 22552.94, + "end": 22554.22, + "probability": 0.5761 + }, + { + "start": 22554.52, + "end": 22555.02, + "probability": 0.4655 + }, + { + "start": 22555.4, + "end": 22556.68, + "probability": 0.9448 + }, + { + "start": 22557.22, + "end": 22559.3, + "probability": 0.8748 + }, + { + "start": 22560.26, + "end": 22561.24, + "probability": 0.8183 + }, + { + "start": 22561.36, + "end": 22564.16, + "probability": 0.9359 + }, + { + "start": 22564.98, + "end": 22568.02, + "probability": 0.9532 + }, + { + "start": 22569.57, + "end": 22573.84, + "probability": 0.9839 + }, + { + "start": 22573.84, + "end": 22576.22, + "probability": 0.9977 + }, + { + "start": 22577.62, + "end": 22579.87, + "probability": 0.99 + }, + { + "start": 22581.64, + "end": 22585.82, + "probability": 0.8273 + }, + { + "start": 22586.38, + "end": 22591.28, + "probability": 0.9603 + }, + { + "start": 22593.2, + "end": 22594.41, + "probability": 0.9934 + }, + { + "start": 22595.8, + "end": 22596.53, + "probability": 0.8595 + }, + { + "start": 22597.6, + "end": 22599.14, + "probability": 0.9844 + }, + { + "start": 22600.38, + "end": 22603.82, + "probability": 0.9789 + }, + { + "start": 22604.78, + "end": 22610.8, + "probability": 0.983 + }, + { + "start": 22610.8, + "end": 22614.19, + "probability": 0.9938 + }, + { + "start": 22617.4, + "end": 22620.98, + "probability": 0.9013 + }, + { + "start": 22621.1, + "end": 22622.28, + "probability": 0.7515 + }, + { + "start": 22622.96, + "end": 22624.12, + "probability": 0.8997 + }, + { + "start": 22625.06, + "end": 22629.22, + "probability": 0.9738 + }, + { + "start": 22631.2, + "end": 22631.86, + "probability": 0.8101 + }, + { + "start": 22633.72, + "end": 22637.22, + "probability": 0.9443 + }, + { + "start": 22638.74, + "end": 22640.2, + "probability": 0.5219 + }, + { + "start": 22641.21, + "end": 22644.48, + "probability": 0.8288 + }, + { + "start": 22645.28, + "end": 22646.2, + "probability": 0.9447 + }, + { + "start": 22647.66, + "end": 22649.54, + "probability": 0.0302 + }, + { + "start": 22649.68, + "end": 22650.16, + "probability": 0.6173 + }, + { + "start": 22650.36, + "end": 22650.56, + "probability": 0.3453 + }, + { + "start": 22650.96, + "end": 22651.46, + "probability": 0.3505 + }, + { + "start": 22651.94, + "end": 22653.62, + "probability": 0.2726 + }, + { + "start": 22653.68, + "end": 22654.52, + "probability": 0.6312 + }, + { + "start": 22654.84, + "end": 22656.62, + "probability": 0.8364 + }, + { + "start": 22656.82, + "end": 22658.96, + "probability": 0.9653 + }, + { + "start": 22660.56, + "end": 22664.14, + "probability": 0.9666 + }, + { + "start": 22665.0, + "end": 22667.52, + "probability": 0.9917 + }, + { + "start": 22668.54, + "end": 22671.86, + "probability": 0.9189 + }, + { + "start": 22672.81, + "end": 22674.54, + "probability": 0.9092 + }, + { + "start": 22674.88, + "end": 22676.16, + "probability": 0.6485 + }, + { + "start": 22678.9, + "end": 22682.44, + "probability": 0.5027 + }, + { + "start": 22682.54, + "end": 22682.98, + "probability": 0.6875 + }, + { + "start": 22683.28, + "end": 22683.38, + "probability": 0.8274 + }, + { + "start": 22683.94, + "end": 22685.74, + "probability": 0.8429 + }, + { + "start": 22685.8, + "end": 22685.8, + "probability": 0.0 + }, + { + "start": 22688.64, + "end": 22688.84, + "probability": 0.0525 + }, + { + "start": 22688.84, + "end": 22688.84, + "probability": 0.6476 + }, + { + "start": 22688.84, + "end": 22689.52, + "probability": 0.1253 + }, + { + "start": 22690.22, + "end": 22691.04, + "probability": 0.5289 + }, + { + "start": 22691.18, + "end": 22692.0, + "probability": 0.5091 + }, + { + "start": 22692.18, + "end": 22694.68, + "probability": 0.1064 + }, + { + "start": 22696.52, + "end": 22696.62, + "probability": 0.2738 + }, + { + "start": 22697.5, + "end": 22697.92, + "probability": 0.7286 + }, + { + "start": 22698.06, + "end": 22701.82, + "probability": 0.9504 + }, + { + "start": 22702.9, + "end": 22705.92, + "probability": 0.8456 + }, + { + "start": 22706.02, + "end": 22706.42, + "probability": 0.6617 + }, + { + "start": 22707.2, + "end": 22709.88, + "probability": 0.9753 + }, + { + "start": 22710.64, + "end": 22711.1, + "probability": 0.7974 + }, + { + "start": 22712.02, + "end": 22716.0, + "probability": 0.7631 + }, + { + "start": 22717.12, + "end": 22718.3, + "probability": 0.6758 + }, + { + "start": 22719.02, + "end": 22722.48, + "probability": 0.9409 + }, + { + "start": 22723.04, + "end": 22723.14, + "probability": 0.5962 + }, + { + "start": 22723.22, + "end": 22727.08, + "probability": 0.7329 + }, + { + "start": 22727.84, + "end": 22729.98, + "probability": 0.8608 + }, + { + "start": 22730.28, + "end": 22732.68, + "probability": 0.9554 + }, + { + "start": 22733.46, + "end": 22736.62, + "probability": 0.717 + }, + { + "start": 22737.84, + "end": 22738.94, + "probability": 0.8923 + }, + { + "start": 22739.8, + "end": 22740.5, + "probability": 0.8033 + }, + { + "start": 22740.58, + "end": 22741.62, + "probability": 0.9855 + }, + { + "start": 22741.72, + "end": 22742.36, + "probability": 0.5684 + }, + { + "start": 22742.5, + "end": 22743.1, + "probability": 0.7499 + }, + { + "start": 22743.18, + "end": 22744.22, + "probability": 0.9215 + }, + { + "start": 22744.54, + "end": 22746.06, + "probability": 0.9524 + }, + { + "start": 22747.46, + "end": 22749.68, + "probability": 0.8256 + }, + { + "start": 22750.3, + "end": 22751.72, + "probability": 0.9771 + }, + { + "start": 22752.5, + "end": 22753.7, + "probability": 0.7894 + }, + { + "start": 22754.32, + "end": 22754.88, + "probability": 0.5473 + }, + { + "start": 22756.2, + "end": 22757.22, + "probability": 0.897 + }, + { + "start": 22757.42, + "end": 22758.34, + "probability": 0.9745 + }, + { + "start": 22758.46, + "end": 22759.3, + "probability": 0.9741 + }, + { + "start": 22759.7, + "end": 22763.06, + "probability": 0.993 + }, + { + "start": 22763.14, + "end": 22763.24, + "probability": 0.7621 + }, + { + "start": 22764.42, + "end": 22766.38, + "probability": 0.9609 + }, + { + "start": 22766.68, + "end": 22767.88, + "probability": 0.7934 + }, + { + "start": 22767.92, + "end": 22769.51, + "probability": 0.6734 + }, + { + "start": 22769.82, + "end": 22773.06, + "probability": 0.7683 + }, + { + "start": 22773.74, + "end": 22777.56, + "probability": 0.9668 + }, + { + "start": 22778.12, + "end": 22781.2, + "probability": 0.9909 + }, + { + "start": 22782.38, + "end": 22783.46, + "probability": 0.545 + }, + { + "start": 22783.6, + "end": 22783.94, + "probability": 0.5423 + }, + { + "start": 22785.74, + "end": 22787.12, + "probability": 0.5239 + }, + { + "start": 22787.64, + "end": 22790.32, + "probability": 0.6162 + }, + { + "start": 22790.38, + "end": 22790.96, + "probability": 0.6479 + }, + { + "start": 22791.06, + "end": 22791.62, + "probability": 0.8452 + }, + { + "start": 22791.74, + "end": 22795.96, + "probability": 0.9875 + }, + { + "start": 22796.68, + "end": 22798.56, + "probability": 0.9935 + }, + { + "start": 22799.3, + "end": 22804.1, + "probability": 0.562 + }, + { + "start": 22805.06, + "end": 22807.36, + "probability": 0.7839 + }, + { + "start": 22807.9, + "end": 22808.98, + "probability": 0.0423 + }, + { + "start": 22808.98, + "end": 22809.52, + "probability": 0.2432 + }, + { + "start": 22811.18, + "end": 22812.66, + "probability": 0.9098 + }, + { + "start": 22813.16, + "end": 22814.16, + "probability": 0.4913 + }, + { + "start": 22814.38, + "end": 22816.16, + "probability": 0.6578 + }, + { + "start": 22816.82, + "end": 22818.72, + "probability": 0.9111 + }, + { + "start": 22819.14, + "end": 22821.04, + "probability": 0.8529 + }, + { + "start": 22822.9, + "end": 22829.94, + "probability": 0.9916 + }, + { + "start": 22830.16, + "end": 22830.54, + "probability": 0.2529 + }, + { + "start": 22831.74, + "end": 22833.22, + "probability": 0.8594 + }, + { + "start": 22834.24, + "end": 22836.51, + "probability": 0.9774 + }, + { + "start": 22836.92, + "end": 22838.11, + "probability": 0.9635 + }, + { + "start": 22838.94, + "end": 22840.08, + "probability": 0.9829 + }, + { + "start": 22840.48, + "end": 22840.84, + "probability": 0.7915 + }, + { + "start": 22841.2, + "end": 22842.06, + "probability": 0.6042 + }, + { + "start": 22842.36, + "end": 22844.48, + "probability": 0.4945 + }, + { + "start": 22844.78, + "end": 22845.4, + "probability": 0.0046 + }, + { + "start": 22845.4, + "end": 22845.4, + "probability": 0.2811 + }, + { + "start": 22845.4, + "end": 22845.4, + "probability": 0.4711 + }, + { + "start": 22845.4, + "end": 22847.48, + "probability": 0.7878 + }, + { + "start": 22848.48, + "end": 22849.82, + "probability": 0.9885 + }, + { + "start": 22850.94, + "end": 22854.2, + "probability": 0.7575 + }, + { + "start": 22873.06, + "end": 22873.28, + "probability": 0.7248 + }, + { + "start": 22873.28, + "end": 22873.28, + "probability": 0.2125 + }, + { + "start": 22873.28, + "end": 22873.28, + "probability": 0.084 + }, + { + "start": 22873.28, + "end": 22873.28, + "probability": 0.119 + }, + { + "start": 22873.28, + "end": 22873.28, + "probability": 0.0357 + }, + { + "start": 22873.28, + "end": 22873.28, + "probability": 0.2075 + }, + { + "start": 22873.28, + "end": 22873.28, + "probability": 0.0838 + }, + { + "start": 22873.56, + "end": 22873.56, + "probability": 0.5098 + }, + { + "start": 22879.56, + "end": 22880.42, + "probability": 0.4214 + }, + { + "start": 22889.2, + "end": 22890.42, + "probability": 0.7111 + }, + { + "start": 22891.26, + "end": 22893.03, + "probability": 0.7661 + }, + { + "start": 22893.8, + "end": 22894.3, + "probability": 0.8644 + }, + { + "start": 22895.52, + "end": 22897.6, + "probability": 0.7188 + }, + { + "start": 22902.8, + "end": 22903.44, + "probability": 0.7261 + }, + { + "start": 22904.38, + "end": 22904.96, + "probability": 0.8917 + }, + { + "start": 22906.74, + "end": 22909.66, + "probability": 0.8618 + }, + { + "start": 22909.84, + "end": 22912.9, + "probability": 0.91 + }, + { + "start": 22915.16, + "end": 22919.06, + "probability": 0.7741 + }, + { + "start": 22920.66, + "end": 22925.84, + "probability": 0.7806 + }, + { + "start": 22926.58, + "end": 22928.88, + "probability": 0.9673 + }, + { + "start": 22929.02, + "end": 22930.94, + "probability": 0.7984 + }, + { + "start": 22932.18, + "end": 22936.28, + "probability": 0.9404 + }, + { + "start": 22937.02, + "end": 22940.0, + "probability": 0.6301 + }, + { + "start": 22940.34, + "end": 22943.88, + "probability": 0.9835 + }, + { + "start": 22945.9, + "end": 22948.75, + "probability": 0.7203 + }, + { + "start": 22950.22, + "end": 22951.52, + "probability": 0.2504 + }, + { + "start": 22953.56, + "end": 22954.06, + "probability": 0.1371 + }, + { + "start": 22954.06, + "end": 22955.47, + "probability": 0.0112 + }, + { + "start": 22957.12, + "end": 22960.06, + "probability": 0.2318 + }, + { + "start": 22961.3, + "end": 22963.22, + "probability": 0.834 + }, + { + "start": 22966.46, + "end": 22966.84, + "probability": 0.2093 + }, + { + "start": 22968.29, + "end": 22971.44, + "probability": 0.1073 + }, + { + "start": 22971.5, + "end": 22972.6, + "probability": 0.3047 + }, + { + "start": 22972.66, + "end": 22974.48, + "probability": 0.1993 + }, + { + "start": 22974.52, + "end": 22975.48, + "probability": 0.5898 + }, + { + "start": 22975.9, + "end": 22976.36, + "probability": 0.7568 + }, + { + "start": 22976.36, + "end": 22979.08, + "probability": 0.1728 + }, + { + "start": 22987.96, + "end": 22991.2, + "probability": 0.1027 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.0, + "end": 23059.0, + "probability": 0.0 + }, + { + "start": 23059.22, + "end": 23059.5, + "probability": 0.1074 + }, + { + "start": 23059.5, + "end": 23059.5, + "probability": 0.3228 + }, + { + "start": 23059.5, + "end": 23059.5, + "probability": 0.138 + }, + { + "start": 23059.5, + "end": 23059.5, + "probability": 0.2455 + }, + { + "start": 23059.5, + "end": 23059.5, + "probability": 0.108 + }, + { + "start": 23059.5, + "end": 23059.98, + "probability": 0.095 + }, + { + "start": 23060.32, + "end": 23062.09, + "probability": 0.5802 + }, + { + "start": 23062.84, + "end": 23065.02, + "probability": 0.7903 + }, + { + "start": 23065.34, + "end": 23067.2, + "probability": 0.4757 + }, + { + "start": 23067.36, + "end": 23068.5, + "probability": 0.5335 + }, + { + "start": 23069.5, + "end": 23070.1, + "probability": 0.2687 + }, + { + "start": 23070.34, + "end": 23070.92, + "probability": 0.7403 + }, + { + "start": 23071.12, + "end": 23073.44, + "probability": 0.7769 + }, + { + "start": 23073.74, + "end": 23074.56, + "probability": 0.7085 + }, + { + "start": 23074.92, + "end": 23077.02, + "probability": 0.9081 + }, + { + "start": 23077.22, + "end": 23077.28, + "probability": 0.6657 + }, + { + "start": 23077.28, + "end": 23079.14, + "probability": 0.8459 + }, + { + "start": 23079.4, + "end": 23079.92, + "probability": 0.7446 + }, + { + "start": 23080.24, + "end": 23081.38, + "probability": 0.8259 + }, + { + "start": 23081.7, + "end": 23082.62, + "probability": 0.5149 + }, + { + "start": 23082.74, + "end": 23085.14, + "probability": 0.8583 + }, + { + "start": 23085.3, + "end": 23086.04, + "probability": 0.4368 + }, + { + "start": 23086.06, + "end": 23088.0, + "probability": 0.8138 + }, + { + "start": 23088.0, + "end": 23088.44, + "probability": 0.8467 + }, + { + "start": 23093.22, + "end": 23095.34, + "probability": 0.751 + }, + { + "start": 23096.26, + "end": 23101.0, + "probability": 0.9751 + }, + { + "start": 23101.66, + "end": 23104.14, + "probability": 0.9744 + }, + { + "start": 23104.76, + "end": 23106.12, + "probability": 0.9795 + }, + { + "start": 23106.74, + "end": 23108.78, + "probability": 0.9391 + }, + { + "start": 23109.44, + "end": 23110.52, + "probability": 0.9494 + }, + { + "start": 23110.58, + "end": 23112.04, + "probability": 0.7131 + }, + { + "start": 23112.16, + "end": 23112.4, + "probability": 0.516 + }, + { + "start": 23112.68, + "end": 23114.08, + "probability": 0.8885 + }, + { + "start": 23114.14, + "end": 23115.74, + "probability": 0.9289 + }, + { + "start": 23115.8, + "end": 23117.42, + "probability": 0.9662 + }, + { + "start": 23117.88, + "end": 23119.18, + "probability": 0.9758 + }, + { + "start": 23119.76, + "end": 23124.62, + "probability": 0.9874 + }, + { + "start": 23125.08, + "end": 23127.82, + "probability": 0.9219 + }, + { + "start": 23128.52, + "end": 23129.94, + "probability": 0.7544 + }, + { + "start": 23130.66, + "end": 23132.76, + "probability": 0.9941 + }, + { + "start": 23133.14, + "end": 23133.72, + "probability": 0.9851 + }, + { + "start": 23133.78, + "end": 23134.6, + "probability": 0.8374 + }, + { + "start": 23134.66, + "end": 23136.62, + "probability": 0.9946 + }, + { + "start": 23137.24, + "end": 23138.12, + "probability": 0.9823 + }, + { + "start": 23138.24, + "end": 23138.78, + "probability": 0.9739 + }, + { + "start": 23138.84, + "end": 23139.78, + "probability": 0.9707 + }, + { + "start": 23140.18, + "end": 23141.0, + "probability": 0.8787 + }, + { + "start": 23141.1, + "end": 23141.76, + "probability": 0.966 + }, + { + "start": 23141.84, + "end": 23142.9, + "probability": 0.8716 + }, + { + "start": 23143.36, + "end": 23147.3, + "probability": 0.9927 + }, + { + "start": 23147.72, + "end": 23150.12, + "probability": 0.9937 + }, + { + "start": 23150.4, + "end": 23152.78, + "probability": 0.98 + }, + { + "start": 23153.24, + "end": 23153.92, + "probability": 0.4006 + }, + { + "start": 23154.52, + "end": 23156.04, + "probability": 0.8489 + }, + { + "start": 23157.2, + "end": 23158.56, + "probability": 0.9598 + }, + { + "start": 23159.3, + "end": 23160.38, + "probability": 0.6274 + }, + { + "start": 23161.56, + "end": 23164.66, + "probability": 0.8923 + }, + { + "start": 23165.52, + "end": 23166.88, + "probability": 0.975 + }, + { + "start": 23167.04, + "end": 23168.56, + "probability": 0.9885 + }, + { + "start": 23170.26, + "end": 23171.28, + "probability": 0.757 + }, + { + "start": 23171.62, + "end": 23173.88, + "probability": 0.994 + }, + { + "start": 23174.08, + "end": 23174.08, + "probability": 0.1484 + }, + { + "start": 23174.26, + "end": 23174.34, + "probability": 0.5971 + }, + { + "start": 23174.34, + "end": 23176.06, + "probability": 0.5854 + }, + { + "start": 23176.12, + "end": 23176.92, + "probability": 0.8271 + }, + { + "start": 23177.18, + "end": 23177.8, + "probability": 0.7214 + }, + { + "start": 23178.32, + "end": 23178.86, + "probability": 0.8757 + }, + { + "start": 23178.94, + "end": 23180.1, + "probability": 0.5498 + }, + { + "start": 23180.12, + "end": 23182.84, + "probability": 0.8762 + }, + { + "start": 23183.0, + "end": 23186.08, + "probability": 0.6985 + }, + { + "start": 23186.7, + "end": 23189.12, + "probability": 0.6268 + }, + { + "start": 23189.92, + "end": 23191.84, + "probability": 0.8849 + }, + { + "start": 23192.28, + "end": 23198.16, + "probability": 0.9276 + }, + { + "start": 23198.78, + "end": 23201.34, + "probability": 0.8509 + }, + { + "start": 23202.1, + "end": 23205.46, + "probability": 0.8641 + }, + { + "start": 23206.14, + "end": 23211.02, + "probability": 0.9176 + }, + { + "start": 23211.14, + "end": 23212.12, + "probability": 0.6725 + }, + { + "start": 23212.54, + "end": 23214.96, + "probability": 0.7218 + }, + { + "start": 23215.58, + "end": 23220.52, + "probability": 0.7992 + }, + { + "start": 23220.92, + "end": 23224.1, + "probability": 0.8851 + }, + { + "start": 23224.62, + "end": 23225.3, + "probability": 0.8286 + }, + { + "start": 23225.36, + "end": 23226.3, + "probability": 0.7047 + }, + { + "start": 23226.76, + "end": 23228.72, + "probability": 0.625 + }, + { + "start": 23228.76, + "end": 23228.94, + "probability": 0.7049 + }, + { + "start": 23229.46, + "end": 23230.58, + "probability": 0.6649 + }, + { + "start": 23231.4, + "end": 23236.22, + "probability": 0.8065 + }, + { + "start": 23237.8, + "end": 23238.82, + "probability": 0.8442 + }, + { + "start": 23239.72, + "end": 23241.16, + "probability": 0.4835 + }, + { + "start": 23241.16, + "end": 23241.34, + "probability": 0.4363 + }, + { + "start": 23241.34, + "end": 23241.83, + "probability": 0.6963 + }, + { + "start": 23243.96, + "end": 23245.04, + "probability": 0.6139 + }, + { + "start": 23246.06, + "end": 23248.32, + "probability": 0.9873 + }, + { + "start": 23250.98, + "end": 23253.1, + "probability": 0.6438 + }, + { + "start": 23253.86, + "end": 23254.3, + "probability": 0.844 + }, + { + "start": 23254.62, + "end": 23260.54, + "probability": 0.9801 + }, + { + "start": 23260.54, + "end": 23260.64, + "probability": 0.9276 + }, + { + "start": 23262.38, + "end": 23264.58, + "probability": 0.2597 + }, + { + "start": 23265.38, + "end": 23265.59, + "probability": 0.6049 + }, + { + "start": 23269.27, + "end": 23269.78, + "probability": 0.0195 + }, + { + "start": 23274.41, + "end": 23274.75, + "probability": 0.0602 + }, + { + "start": 23275.26, + "end": 23279.51, + "probability": 0.575 + }, + { + "start": 23280.13, + "end": 23280.81, + "probability": 0.1785 + }, + { + "start": 23294.6, + "end": 23294.67, + "probability": 0.4498 + }, + { + "start": 23294.67, + "end": 23296.55, + "probability": 0.7875 + }, + { + "start": 23297.15, + "end": 23298.27, + "probability": 0.3152 + }, + { + "start": 23299.09, + "end": 23300.51, + "probability": 0.4707 + }, + { + "start": 23300.61, + "end": 23304.57, + "probability": 0.7858 + }, + { + "start": 23304.79, + "end": 23305.37, + "probability": 0.6373 + }, + { + "start": 23305.95, + "end": 23308.95, + "probability": 0.7065 + }, + { + "start": 23310.71, + "end": 23315.32, + "probability": 0.9737 + }, + { + "start": 23317.51, + "end": 23317.51, + "probability": 0.0942 + }, + { + "start": 23317.51, + "end": 23321.47, + "probability": 0.3466 + }, + { + "start": 23321.93, + "end": 23326.07, + "probability": 0.729 + }, + { + "start": 23328.61, + "end": 23330.71, + "probability": 0.7866 + }, + { + "start": 23331.37, + "end": 23334.55, + "probability": 0.5328 + }, + { + "start": 23335.15, + "end": 23337.87, + "probability": 0.9296 + }, + { + "start": 23338.49, + "end": 23339.91, + "probability": 0.7125 + }, + { + "start": 23340.09, + "end": 23340.13, + "probability": 0.6358 + }, + { + "start": 23340.13, + "end": 23340.77, + "probability": 0.7437 + }, + { + "start": 23340.97, + "end": 23342.21, + "probability": 0.6983 + }, + { + "start": 23343.35, + "end": 23349.47, + "probability": 0.9922 + }, + { + "start": 23350.67, + "end": 23353.45, + "probability": 0.9584 + }, + { + "start": 23354.61, + "end": 23359.81, + "probability": 0.7556 + }, + { + "start": 23359.85, + "end": 23363.67, + "probability": 0.9977 + }, + { + "start": 23364.69, + "end": 23367.91, + "probability": 0.911 + }, + { + "start": 23368.27, + "end": 23372.41, + "probability": 0.994 + }, + { + "start": 23373.63, + "end": 23376.73, + "probability": 0.9913 + }, + { + "start": 23377.71, + "end": 23379.83, + "probability": 0.962 + }, + { + "start": 23381.81, + "end": 23388.39, + "probability": 0.9404 + }, + { + "start": 23389.35, + "end": 23390.57, + "probability": 0.5819 + }, + { + "start": 23390.67, + "end": 23391.91, + "probability": 0.9363 + }, + { + "start": 23392.11, + "end": 23394.37, + "probability": 0.9951 + }, + { + "start": 23395.87, + "end": 23400.13, + "probability": 0.772 + }, + { + "start": 23401.37, + "end": 23402.29, + "probability": 0.9251 + }, + { + "start": 23402.87, + "end": 23406.09, + "probability": 0.9048 + }, + { + "start": 23406.87, + "end": 23411.14, + "probability": 0.937 + }, + { + "start": 23413.01, + "end": 23416.93, + "probability": 0.9911 + }, + { + "start": 23417.69, + "end": 23421.87, + "probability": 0.8997 + }, + { + "start": 23423.17, + "end": 23425.21, + "probability": 0.9486 + }, + { + "start": 23425.71, + "end": 23427.95, + "probability": 0.9433 + }, + { + "start": 23428.45, + "end": 23429.45, + "probability": 0.4528 + }, + { + "start": 23429.95, + "end": 23430.53, + "probability": 0.5228 + }, + { + "start": 23430.73, + "end": 23431.21, + "probability": 0.9627 + }, + { + "start": 23431.29, + "end": 23432.61, + "probability": 0.9803 + }, + { + "start": 23433.63, + "end": 23437.77, + "probability": 0.9786 + }, + { + "start": 23439.13, + "end": 23441.59, + "probability": 0.889 + }, + { + "start": 23442.15, + "end": 23445.93, + "probability": 0.9609 + }, + { + "start": 23446.53, + "end": 23447.93, + "probability": 0.6514 + }, + { + "start": 23449.17, + "end": 23451.57, + "probability": 0.9834 + }, + { + "start": 23453.23, + "end": 23456.63, + "probability": 0.8797 + }, + { + "start": 23458.09, + "end": 23458.33, + "probability": 0.699 + }, + { + "start": 23458.37, + "end": 23459.17, + "probability": 0.6483 + }, + { + "start": 23459.19, + "end": 23461.47, + "probability": 0.94 + }, + { + "start": 23462.09, + "end": 23467.03, + "probability": 0.9714 + }, + { + "start": 23467.31, + "end": 23468.39, + "probability": 0.6727 + }, + { + "start": 23468.51, + "end": 23469.25, + "probability": 0.9663 + }, + { + "start": 23469.31, + "end": 23469.41, + "probability": 0.4625 + }, + { + "start": 23472.05, + "end": 23476.41, + "probability": 0.6796 + }, + { + "start": 23478.55, + "end": 23480.41, + "probability": 0.8322 + }, + { + "start": 23480.41, + "end": 23480.41, + "probability": 0.7343 + }, + { + "start": 23480.41, + "end": 23482.55, + "probability": 0.6201 + }, + { + "start": 23484.01, + "end": 23485.71, + "probability": 0.983 + }, + { + "start": 23485.91, + "end": 23487.19, + "probability": 0.6088 + }, + { + "start": 23487.19, + "end": 23488.86, + "probability": 0.796 + }, + { + "start": 23489.47, + "end": 23490.29, + "probability": 0.9071 + }, + { + "start": 23492.23, + "end": 23492.59, + "probability": 0.8424 + }, + { + "start": 23493.25, + "end": 23498.83, + "probability": 0.9639 + }, + { + "start": 23499.07, + "end": 23499.39, + "probability": 0.8629 + }, + { + "start": 23499.47, + "end": 23499.87, + "probability": 0.9642 + }, + { + "start": 23500.25, + "end": 23502.24, + "probability": 0.9863 + }, + { + "start": 23502.75, + "end": 23504.93, + "probability": 0.9109 + }, + { + "start": 23505.17, + "end": 23506.57, + "probability": 0.9194 + }, + { + "start": 23507.41, + "end": 23510.29, + "probability": 0.9927 + }, + { + "start": 23510.29, + "end": 23513.37, + "probability": 0.9969 + }, + { + "start": 23514.17, + "end": 23515.45, + "probability": 0.9629 + }, + { + "start": 23516.09, + "end": 23518.29, + "probability": 0.9706 + }, + { + "start": 23519.21, + "end": 23523.77, + "probability": 0.9295 + }, + { + "start": 23523.77, + "end": 23528.47, + "probability": 0.7495 + }, + { + "start": 23529.13, + "end": 23531.29, + "probability": 0.9896 + }, + { + "start": 23532.17, + "end": 23534.05, + "probability": 0.8745 + }, + { + "start": 23534.15, + "end": 23535.99, + "probability": 0.8906 + }, + { + "start": 23536.89, + "end": 23539.25, + "probability": 0.9934 + }, + { + "start": 23539.41, + "end": 23540.93, + "probability": 0.6872 + }, + { + "start": 23540.99, + "end": 23541.67, + "probability": 0.8132 + }, + { + "start": 23541.79, + "end": 23542.21, + "probability": 0.6378 + }, + { + "start": 23542.81, + "end": 23547.53, + "probability": 0.9888 + }, + { + "start": 23548.17, + "end": 23550.17, + "probability": 0.961 + }, + { + "start": 23550.47, + "end": 23551.75, + "probability": 0.8582 + }, + { + "start": 23552.29, + "end": 23556.07, + "probability": 0.9965 + }, + { + "start": 23556.07, + "end": 23559.79, + "probability": 0.9933 + }, + { + "start": 23560.19, + "end": 23561.39, + "probability": 0.9365 + }, + { + "start": 23561.47, + "end": 23561.99, + "probability": 0.3573 + }, + { + "start": 23561.99, + "end": 23562.47, + "probability": 0.3693 + }, + { + "start": 23564.79, + "end": 23566.69, + "probability": 0.9214 + }, + { + "start": 23567.23, + "end": 23568.67, + "probability": 0.7604 + }, + { + "start": 23569.23, + "end": 23571.13, + "probability": 0.8604 + }, + { + "start": 23571.29, + "end": 23575.49, + "probability": 0.974 + }, + { + "start": 23576.59, + "end": 23577.65, + "probability": 0.6718 + }, + { + "start": 23594.71, + "end": 23595.01, + "probability": 0.3142 + }, + { + "start": 23595.09, + "end": 23595.61, + "probability": 0.5486 + }, + { + "start": 23595.67, + "end": 23597.13, + "probability": 0.6406 + }, + { + "start": 23597.55, + "end": 23599.69, + "probability": 0.8779 + }, + { + "start": 23599.77, + "end": 23603.71, + "probability": 0.9459 + }, + { + "start": 23604.79, + "end": 23608.85, + "probability": 0.9588 + }, + { + "start": 23609.51, + "end": 23611.45, + "probability": 0.9975 + }, + { + "start": 23613.01, + "end": 23615.35, + "probability": 0.9967 + }, + { + "start": 23616.97, + "end": 23619.37, + "probability": 0.7271 + }, + { + "start": 23620.09, + "end": 23622.95, + "probability": 0.9963 + }, + { + "start": 23623.61, + "end": 23625.01, + "probability": 0.9364 + }, + { + "start": 23626.41, + "end": 23630.29, + "probability": 0.9443 + }, + { + "start": 23631.35, + "end": 23633.65, + "probability": 0.959 + }, + { + "start": 23634.21, + "end": 23635.47, + "probability": 0.967 + }, + { + "start": 23635.89, + "end": 23638.15, + "probability": 0.8579 + }, + { + "start": 23639.25, + "end": 23642.07, + "probability": 0.8701 + }, + { + "start": 23642.81, + "end": 23645.49, + "probability": 0.7782 + }, + { + "start": 23646.59, + "end": 23648.67, + "probability": 0.6489 + }, + { + "start": 23649.53, + "end": 23650.85, + "probability": 0.9445 + }, + { + "start": 23651.61, + "end": 23653.11, + "probability": 0.9344 + }, + { + "start": 23653.87, + "end": 23657.41, + "probability": 0.9423 + }, + { + "start": 23657.53, + "end": 23659.51, + "probability": 0.9502 + }, + { + "start": 23659.59, + "end": 23660.03, + "probability": 0.6934 + }, + { + "start": 23660.67, + "end": 23663.15, + "probability": 0.9848 + }, + { + "start": 23664.13, + "end": 23668.29, + "probability": 0.9403 + }, + { + "start": 23668.95, + "end": 23672.37, + "probability": 0.9896 + }, + { + "start": 23672.99, + "end": 23674.35, + "probability": 0.9329 + }, + { + "start": 23675.03, + "end": 23676.31, + "probability": 0.8723 + }, + { + "start": 23676.43, + "end": 23677.93, + "probability": 0.7567 + }, + { + "start": 23678.49, + "end": 23679.53, + "probability": 0.8063 + }, + { + "start": 23680.73, + "end": 23683.39, + "probability": 0.8848 + }, + { + "start": 23683.39, + "end": 23687.73, + "probability": 0.9318 + }, + { + "start": 23687.75, + "end": 23689.45, + "probability": 0.9111 + }, + { + "start": 23690.11, + "end": 23691.33, + "probability": 0.6129 + }, + { + "start": 23692.03, + "end": 23693.85, + "probability": 0.9814 + }, + { + "start": 23695.49, + "end": 23698.03, + "probability": 0.6369 + }, + { + "start": 23698.69, + "end": 23702.19, + "probability": 0.9509 + }, + { + "start": 23702.91, + "end": 23707.53, + "probability": 0.9814 + }, + { + "start": 23708.13, + "end": 23710.43, + "probability": 0.9972 + }, + { + "start": 23710.43, + "end": 23712.85, + "probability": 0.9947 + }, + { + "start": 23714.07, + "end": 23718.53, + "probability": 0.9373 + }, + { + "start": 23719.59, + "end": 23720.23, + "probability": 0.7777 + }, + { + "start": 23721.25, + "end": 23723.99, + "probability": 0.9216 + }, + { + "start": 23724.63, + "end": 23729.03, + "probability": 0.8111 + }, + { + "start": 23729.69, + "end": 23732.25, + "probability": 0.8073 + }, + { + "start": 23732.35, + "end": 23734.31, + "probability": 0.9674 + }, + { + "start": 23735.37, + "end": 23737.75, + "probability": 0.7296 + }, + { + "start": 23738.29, + "end": 23739.63, + "probability": 0.7056 + }, + { + "start": 23740.13, + "end": 23743.37, + "probability": 0.7603 + }, + { + "start": 23743.47, + "end": 23745.93, + "probability": 0.9829 + }, + { + "start": 23746.03, + "end": 23749.09, + "probability": 0.9853 + }, + { + "start": 23749.09, + "end": 23753.57, + "probability": 0.9908 + }, + { + "start": 23754.69, + "end": 23755.57, + "probability": 0.9937 + }, + { + "start": 23756.09, + "end": 23757.59, + "probability": 0.944 + }, + { + "start": 23757.93, + "end": 23759.37, + "probability": 0.8628 + }, + { + "start": 23759.65, + "end": 23762.19, + "probability": 0.9756 + }, + { + "start": 23762.29, + "end": 23765.65, + "probability": 0.9006 + }, + { + "start": 23765.65, + "end": 23767.81, + "probability": 0.9762 + }, + { + "start": 23768.27, + "end": 23770.25, + "probability": 0.9388 + }, + { + "start": 23770.37, + "end": 23771.67, + "probability": 0.9978 + }, + { + "start": 23772.23, + "end": 23773.27, + "probability": 0.3576 + }, + { + "start": 23774.21, + "end": 23775.43, + "probability": 0.8906 + }, + { + "start": 23776.05, + "end": 23777.63, + "probability": 0.8878 + }, + { + "start": 23780.03, + "end": 23782.71, + "probability": 0.9824 + }, + { + "start": 23782.93, + "end": 23783.15, + "probability": 0.4171 + }, + { + "start": 23783.29, + "end": 23787.25, + "probability": 0.9512 + }, + { + "start": 23788.09, + "end": 23790.55, + "probability": 0.9866 + }, + { + "start": 23790.55, + "end": 23792.71, + "probability": 0.9916 + }, + { + "start": 23793.45, + "end": 23797.25, + "probability": 0.8688 + }, + { + "start": 23798.21, + "end": 23802.73, + "probability": 0.9321 + }, + { + "start": 23802.87, + "end": 23804.29, + "probability": 0.6059 + }, + { + "start": 23804.75, + "end": 23805.71, + "probability": 0.6516 + }, + { + "start": 23805.71, + "end": 23806.75, + "probability": 0.8181 + }, + { + "start": 23807.31, + "end": 23809.65, + "probability": 0.9205 + }, + { + "start": 23810.33, + "end": 23812.11, + "probability": 0.8648 + }, + { + "start": 23812.69, + "end": 23813.13, + "probability": 0.6019 + }, + { + "start": 23813.15, + "end": 23813.89, + "probability": 0.9875 + }, + { + "start": 23813.99, + "end": 23815.47, + "probability": 0.8054 + }, + { + "start": 23815.91, + "end": 23819.49, + "probability": 0.844 + }, + { + "start": 23819.49, + "end": 23822.69, + "probability": 0.9404 + }, + { + "start": 23822.77, + "end": 23823.67, + "probability": 0.9625 + }, + { + "start": 23824.33, + "end": 23825.57, + "probability": 0.8359 + }, + { + "start": 23825.65, + "end": 23827.81, + "probability": 0.7925 + }, + { + "start": 23828.29, + "end": 23830.05, + "probability": 0.7976 + }, + { + "start": 23830.64, + "end": 23835.51, + "probability": 0.689 + }, + { + "start": 23836.03, + "end": 23838.75, + "probability": 0.7436 + }, + { + "start": 23838.87, + "end": 23839.99, + "probability": 0.8381 + }, + { + "start": 23840.07, + "end": 23841.91, + "probability": 0.8572 + }, + { + "start": 23842.63, + "end": 23845.25, + "probability": 0.9384 + }, + { + "start": 23845.85, + "end": 23846.75, + "probability": 0.8312 + }, + { + "start": 23847.43, + "end": 23848.39, + "probability": 0.8168 + }, + { + "start": 23848.75, + "end": 23854.07, + "probability": 0.9856 + }, + { + "start": 23854.21, + "end": 23856.81, + "probability": 0.7828 + }, + { + "start": 23856.99, + "end": 23857.61, + "probability": 0.9525 + }, + { + "start": 23857.69, + "end": 23858.67, + "probability": 0.9624 + }, + { + "start": 23859.65, + "end": 23861.39, + "probability": 0.7518 + }, + { + "start": 23862.47, + "end": 23862.54, + "probability": 0.0546 + }, + { + "start": 23863.27, + "end": 23864.27, + "probability": 0.9291 + }, + { + "start": 23864.75, + "end": 23867.95, + "probability": 0.9501 + }, + { + "start": 23868.77, + "end": 23871.27, + "probability": 0.8877 + }, + { + "start": 23871.83, + "end": 23873.11, + "probability": 0.7833 + }, + { + "start": 23873.19, + "end": 23874.85, + "probability": 0.9921 + }, + { + "start": 23875.35, + "end": 23876.61, + "probability": 0.9446 + }, + { + "start": 23877.85, + "end": 23878.09, + "probability": 0.5506 + }, + { + "start": 23878.87, + "end": 23879.67, + "probability": 0.5258 + }, + { + "start": 23879.69, + "end": 23880.35, + "probability": 0.8455 + }, + { + "start": 23880.45, + "end": 23883.96, + "probability": 0.9105 + }, + { + "start": 23884.63, + "end": 23886.83, + "probability": 0.7844 + }, + { + "start": 23887.77, + "end": 23890.41, + "probability": 0.8071 + }, + { + "start": 23891.01, + "end": 23894.39, + "probability": 0.7846 + }, + { + "start": 23895.61, + "end": 23897.09, + "probability": 0.9617 + }, + { + "start": 23897.31, + "end": 23898.43, + "probability": 0.8916 + }, + { + "start": 23898.55, + "end": 23899.59, + "probability": 0.6166 + }, + { + "start": 23900.85, + "end": 23901.89, + "probability": 0.7675 + }, + { + "start": 23902.75, + "end": 23903.19, + "probability": 0.7156 + }, + { + "start": 23903.31, + "end": 23904.29, + "probability": 0.147 + }, + { + "start": 23904.29, + "end": 23904.33, + "probability": 0.7798 + }, + { + "start": 23904.33, + "end": 23905.59, + "probability": 0.2654 + }, + { + "start": 23905.89, + "end": 23905.91, + "probability": 0.5747 + }, + { + "start": 23905.91, + "end": 23906.57, + "probability": 0.6952 + }, + { + "start": 23906.95, + "end": 23907.87, + "probability": 0.5374 + }, + { + "start": 23907.87, + "end": 23911.39, + "probability": 0.8256 + }, + { + "start": 23913.21, + "end": 23915.99, + "probability": 0.8667 + }, + { + "start": 23916.57, + "end": 23919.65, + "probability": 0.9982 + }, + { + "start": 23919.79, + "end": 23921.01, + "probability": 0.9795 + }, + { + "start": 23922.33, + "end": 23925.31, + "probability": 0.9091 + }, + { + "start": 23925.79, + "end": 23930.49, + "probability": 0.6531 + }, + { + "start": 23930.49, + "end": 23931.41, + "probability": 0.51 + }, + { + "start": 23931.49, + "end": 23931.87, + "probability": 0.2658 + }, + { + "start": 23931.89, + "end": 23932.39, + "probability": 0.8959 + }, + { + "start": 23932.53, + "end": 23933.65, + "probability": 0.726 + }, + { + "start": 23933.85, + "end": 23935.47, + "probability": 0.9723 + }, + { + "start": 23943.91, + "end": 23943.91, + "probability": 0.3694 + }, + { + "start": 23943.91, + "end": 23943.91, + "probability": 0.0944 + }, + { + "start": 23943.91, + "end": 23947.51, + "probability": 0.7915 + }, + { + "start": 23948.19, + "end": 23950.15, + "probability": 0.7965 + }, + { + "start": 23951.23, + "end": 23952.23, + "probability": 0.4039 + }, + { + "start": 23953.63, + "end": 23959.11, + "probability": 0.8897 + }, + { + "start": 23959.99, + "end": 23960.85, + "probability": 0.5817 + }, + { + "start": 23965.03, + "end": 23966.89, + "probability": 0.6706 + }, + { + "start": 23967.41, + "end": 23967.79, + "probability": 0.9175 + }, + { + "start": 23969.97, + "end": 23973.53, + "probability": 0.8179 + }, + { + "start": 23975.01, + "end": 23977.57, + "probability": 0.9875 + }, + { + "start": 23978.17, + "end": 23979.43, + "probability": 0.6716 + }, + { + "start": 23981.47, + "end": 23982.27, + "probability": 0.6588 + }, + { + "start": 23982.75, + "end": 23984.45, + "probability": 0.7726 + }, + { + "start": 23986.17, + "end": 23988.13, + "probability": 0.5767 + }, + { + "start": 23988.95, + "end": 23992.11, + "probability": 0.9727 + }, + { + "start": 23992.17, + "end": 23992.79, + "probability": 0.2117 + }, + { + "start": 23992.79, + "end": 23995.23, + "probability": 0.8208 + }, + { + "start": 23996.39, + "end": 23997.21, + "probability": 0.3047 + }, + { + "start": 23997.23, + "end": 23998.07, + "probability": 0.6485 + }, + { + "start": 23998.63, + "end": 23999.57, + "probability": 0.6502 + }, + { + "start": 24000.37, + "end": 24001.23, + "probability": 0.5259 + }, + { + "start": 24001.25, + "end": 24004.47, + "probability": 0.8961 + }, + { + "start": 24005.73, + "end": 24006.35, + "probability": 0.976 + }, + { + "start": 24007.71, + "end": 24008.13, + "probability": 0.0049 + } + ], + "segments_count": 8094, + "words_count": 37411, + "avg_words_per_segment": 4.6221, + "avg_segment_duration": 1.9792, + "avg_words_per_minute": 93.1888, + "plenum_id": "46315", + "duration": 24087.22, + "title": null, + "plenum_date": "2015-11-04" +} \ No newline at end of file