diff --git "a/30123/metadata.json" "b/30123/metadata.json" new file mode 100644--- /dev/null +++ "b/30123/metadata.json" @@ -0,0 +1,41077 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "30123", + "quality_score": 0.9008, + "per_segment_quality_scores": [ + { + "start": 61.24, + "end": 61.52, + "probability": 0.0227 + }, + { + "start": 67.44, + "end": 71.54, + "probability": 0.0438 + }, + { + "start": 71.6, + "end": 75.37, + "probability": 0.0129 + }, + { + "start": 75.96, + "end": 76.02, + "probability": 0.2163 + }, + { + "start": 76.04, + "end": 81.24, + "probability": 0.0427 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.16, + "end": 124.23, + "probability": 0.0824 + }, + { + "start": 124.26, + "end": 125.32, + "probability": 0.2344 + }, + { + "start": 128.72, + "end": 130.16, + "probability": 0.6726 + }, + { + "start": 130.16, + "end": 131.12, + "probability": 0.4425 + }, + { + "start": 131.12, + "end": 131.22, + "probability": 0.9537 + }, + { + "start": 131.94, + "end": 133.2, + "probability": 0.6778 + }, + { + "start": 133.22, + "end": 133.88, + "probability": 0.967 + }, + { + "start": 135.9, + "end": 136.08, + "probability": 0.0097 + }, + { + "start": 136.76, + "end": 138.09, + "probability": 0.3299 + }, + { + "start": 140.0, + "end": 143.78, + "probability": 0.4373 + }, + { + "start": 145.12, + "end": 147.96, + "probability": 0.7781 + }, + { + "start": 149.66, + "end": 155.44, + "probability": 0.9313 + }, + { + "start": 156.48, + "end": 160.24, + "probability": 0.9113 + }, + { + "start": 161.46, + "end": 165.8, + "probability": 0.967 + }, + { + "start": 167.74, + "end": 171.34, + "probability": 0.6518 + }, + { + "start": 171.5, + "end": 172.98, + "probability": 0.9406 + }, + { + "start": 173.06, + "end": 174.26, + "probability": 0.943 + }, + { + "start": 177.64, + "end": 180.14, + "probability": 0.7175 + }, + { + "start": 181.54, + "end": 183.62, + "probability": 0.8543 + }, + { + "start": 184.2, + "end": 189.2, + "probability": 0.9121 + }, + { + "start": 190.08, + "end": 196.02, + "probability": 0.9797 + }, + { + "start": 196.64, + "end": 197.54, + "probability": 0.7437 + }, + { + "start": 199.62, + "end": 203.98, + "probability": 0.994 + }, + { + "start": 205.86, + "end": 207.36, + "probability": 0.799 + }, + { + "start": 208.0, + "end": 210.02, + "probability": 0.8219 + }, + { + "start": 211.14, + "end": 213.7, + "probability": 0.9858 + }, + { + "start": 215.08, + "end": 219.46, + "probability": 0.98 + }, + { + "start": 219.54, + "end": 225.12, + "probability": 0.741 + }, + { + "start": 226.08, + "end": 229.54, + "probability": 0.9469 + }, + { + "start": 230.58, + "end": 234.64, + "probability": 0.995 + }, + { + "start": 235.52, + "end": 240.34, + "probability": 0.9829 + }, + { + "start": 241.56, + "end": 244.38, + "probability": 0.8503 + }, + { + "start": 245.2, + "end": 246.74, + "probability": 0.7706 + }, + { + "start": 247.46, + "end": 250.92, + "probability": 0.9051 + }, + { + "start": 251.44, + "end": 252.44, + "probability": 0.8882 + }, + { + "start": 253.62, + "end": 254.56, + "probability": 0.9921 + }, + { + "start": 255.16, + "end": 256.76, + "probability": 0.9955 + }, + { + "start": 257.62, + "end": 259.9, + "probability": 0.9565 + }, + { + "start": 260.5, + "end": 263.02, + "probability": 0.9354 + }, + { + "start": 263.84, + "end": 267.38, + "probability": 0.9902 + }, + { + "start": 268.72, + "end": 269.98, + "probability": 0.7457 + }, + { + "start": 270.5, + "end": 273.64, + "probability": 0.9863 + }, + { + "start": 274.2, + "end": 276.96, + "probability": 0.9841 + }, + { + "start": 276.96, + "end": 280.58, + "probability": 0.9599 + }, + { + "start": 281.52, + "end": 281.8, + "probability": 0.7135 + }, + { + "start": 283.1, + "end": 284.42, + "probability": 0.5531 + }, + { + "start": 284.6, + "end": 287.0, + "probability": 0.9936 + }, + { + "start": 287.08, + "end": 291.03, + "probability": 0.9422 + }, + { + "start": 293.28, + "end": 294.04, + "probability": 0.8429 + }, + { + "start": 295.82, + "end": 299.52, + "probability": 0.9964 + }, + { + "start": 300.74, + "end": 301.86, + "probability": 0.8316 + }, + { + "start": 304.14, + "end": 305.14, + "probability": 0.9819 + }, + { + "start": 305.46, + "end": 306.74, + "probability": 0.9869 + }, + { + "start": 306.94, + "end": 310.96, + "probability": 0.9559 + }, + { + "start": 311.1, + "end": 311.96, + "probability": 0.9083 + }, + { + "start": 313.1, + "end": 316.14, + "probability": 0.9775 + }, + { + "start": 317.56, + "end": 319.5, + "probability": 0.9883 + }, + { + "start": 319.58, + "end": 320.28, + "probability": 0.5885 + }, + { + "start": 322.62, + "end": 324.54, + "probability": 0.8342 + }, + { + "start": 324.72, + "end": 326.48, + "probability": 0.9105 + }, + { + "start": 331.0, + "end": 331.48, + "probability": 0.5291 + }, + { + "start": 331.56, + "end": 332.2, + "probability": 0.8194 + }, + { + "start": 332.38, + "end": 335.68, + "probability": 0.7468 + }, + { + "start": 336.5, + "end": 338.0, + "probability": 0.817 + }, + { + "start": 338.72, + "end": 340.7, + "probability": 0.9941 + }, + { + "start": 341.44, + "end": 346.49, + "probability": 0.9868 + }, + { + "start": 348.24, + "end": 349.88, + "probability": 0.8091 + }, + { + "start": 351.1, + "end": 352.58, + "probability": 0.803 + }, + { + "start": 353.18, + "end": 358.1, + "probability": 0.9677 + }, + { + "start": 358.1, + "end": 362.2, + "probability": 0.9956 + }, + { + "start": 363.38, + "end": 367.12, + "probability": 0.5854 + }, + { + "start": 367.34, + "end": 372.5, + "probability": 0.9896 + }, + { + "start": 373.34, + "end": 376.62, + "probability": 0.9978 + }, + { + "start": 376.74, + "end": 378.1, + "probability": 0.9854 + }, + { + "start": 378.18, + "end": 379.34, + "probability": 0.8053 + }, + { + "start": 379.66, + "end": 381.2, + "probability": 0.8925 + }, + { + "start": 381.34, + "end": 383.02, + "probability": 0.9469 + }, + { + "start": 383.34, + "end": 386.48, + "probability": 0.6595 + }, + { + "start": 386.66, + "end": 388.26, + "probability": 0.7723 + }, + { + "start": 393.48, + "end": 394.66, + "probability": 0.939 + }, + { + "start": 395.8, + "end": 398.16, + "probability": 0.9593 + }, + { + "start": 398.28, + "end": 399.14, + "probability": 0.9766 + }, + { + "start": 400.32, + "end": 400.8, + "probability": 0.5511 + }, + { + "start": 401.52, + "end": 404.52, + "probability": 0.9397 + }, + { + "start": 405.5, + "end": 407.0, + "probability": 0.7091 + }, + { + "start": 408.12, + "end": 409.1, + "probability": 0.9926 + }, + { + "start": 409.16, + "end": 410.68, + "probability": 0.5788 + }, + { + "start": 410.76, + "end": 411.78, + "probability": 0.9455 + }, + { + "start": 411.84, + "end": 412.76, + "probability": 0.8274 + }, + { + "start": 412.82, + "end": 413.68, + "probability": 0.9924 + }, + { + "start": 414.44, + "end": 417.06, + "probability": 0.9775 + }, + { + "start": 417.78, + "end": 419.76, + "probability": 0.9701 + }, + { + "start": 420.54, + "end": 422.03, + "probability": 0.9746 + }, + { + "start": 422.16, + "end": 424.48, + "probability": 0.9922 + }, + { + "start": 424.48, + "end": 426.36, + "probability": 0.9069 + }, + { + "start": 426.96, + "end": 429.2, + "probability": 0.9946 + }, + { + "start": 429.26, + "end": 430.24, + "probability": 0.9917 + }, + { + "start": 430.54, + "end": 432.48, + "probability": 0.9438 + }, + { + "start": 433.12, + "end": 433.94, + "probability": 0.9604 + }, + { + "start": 434.02, + "end": 434.66, + "probability": 0.8436 + }, + { + "start": 434.76, + "end": 435.48, + "probability": 0.8806 + }, + { + "start": 435.62, + "end": 436.24, + "probability": 0.5139 + }, + { + "start": 436.56, + "end": 438.32, + "probability": 0.2592 + }, + { + "start": 438.4, + "end": 439.78, + "probability": 0.8157 + }, + { + "start": 439.94, + "end": 444.44, + "probability": 0.9902 + }, + { + "start": 444.82, + "end": 448.12, + "probability": 0.9739 + }, + { + "start": 448.56, + "end": 450.41, + "probability": 0.636 + }, + { + "start": 450.62, + "end": 455.0, + "probability": 0.5006 + }, + { + "start": 455.12, + "end": 456.68, + "probability": 0.9047 + }, + { + "start": 457.0, + "end": 459.98, + "probability": 0.8511 + }, + { + "start": 460.04, + "end": 465.48, + "probability": 0.9462 + }, + { + "start": 465.68, + "end": 466.74, + "probability": 0.9961 + }, + { + "start": 466.9, + "end": 469.1, + "probability": 0.8859 + }, + { + "start": 469.2, + "end": 472.18, + "probability": 0.9032 + }, + { + "start": 473.6, + "end": 475.84, + "probability": 0.9601 + }, + { + "start": 477.38, + "end": 478.46, + "probability": 0.8089 + }, + { + "start": 479.02, + "end": 479.8, + "probability": 0.7994 + }, + { + "start": 479.94, + "end": 485.82, + "probability": 0.955 + }, + { + "start": 487.08, + "end": 488.02, + "probability": 0.6302 + }, + { + "start": 488.16, + "end": 489.4, + "probability": 0.9836 + }, + { + "start": 489.5, + "end": 492.14, + "probability": 0.908 + }, + { + "start": 492.2, + "end": 496.14, + "probability": 0.856 + }, + { + "start": 496.94, + "end": 497.84, + "probability": 0.8287 + }, + { + "start": 497.96, + "end": 498.62, + "probability": 0.8947 + }, + { + "start": 498.98, + "end": 500.0, + "probability": 0.9165 + }, + { + "start": 500.42, + "end": 501.34, + "probability": 0.9382 + }, + { + "start": 502.16, + "end": 503.14, + "probability": 0.0076 + }, + { + "start": 504.26, + "end": 504.26, + "probability": 0.0196 + }, + { + "start": 504.68, + "end": 504.68, + "probability": 0.3519 + }, + { + "start": 505.08, + "end": 505.26, + "probability": 0.1573 + }, + { + "start": 505.26, + "end": 506.51, + "probability": 0.7726 + }, + { + "start": 507.26, + "end": 509.44, + "probability": 0.4465 + }, + { + "start": 511.64, + "end": 511.64, + "probability": 0.2482 + }, + { + "start": 511.64, + "end": 511.64, + "probability": 0.2377 + }, + { + "start": 511.88, + "end": 512.96, + "probability": 0.6306 + }, + { + "start": 513.2, + "end": 513.4, + "probability": 0.681 + }, + { + "start": 513.54, + "end": 515.58, + "probability": 0.5219 + }, + { + "start": 515.82, + "end": 517.5, + "probability": 0.7552 + }, + { + "start": 517.6, + "end": 519.5, + "probability": 0.9922 + }, + { + "start": 519.8, + "end": 522.65, + "probability": 0.9822 + }, + { + "start": 523.5, + "end": 525.48, + "probability": 0.1086 + }, + { + "start": 525.48, + "end": 527.9, + "probability": 0.0178 + }, + { + "start": 528.06, + "end": 529.28, + "probability": 0.169 + }, + { + "start": 529.7, + "end": 530.59, + "probability": 0.3267 + }, + { + "start": 531.3, + "end": 534.74, + "probability": 0.845 + }, + { + "start": 535.3, + "end": 538.51, + "probability": 0.9893 + }, + { + "start": 539.32, + "end": 539.72, + "probability": 0.2456 + }, + { + "start": 540.14, + "end": 540.74, + "probability": 0.3362 + }, + { + "start": 542.3, + "end": 543.04, + "probability": 0.5656 + }, + { + "start": 543.08, + "end": 546.04, + "probability": 0.7769 + }, + { + "start": 546.42, + "end": 548.74, + "probability": 0.9698 + }, + { + "start": 548.8, + "end": 549.98, + "probability": 0.9021 + }, + { + "start": 550.68, + "end": 551.3, + "probability": 0.9863 + }, + { + "start": 554.35, + "end": 554.56, + "probability": 0.1348 + }, + { + "start": 554.56, + "end": 556.04, + "probability": 0.312 + }, + { + "start": 556.58, + "end": 558.1, + "probability": 0.8417 + }, + { + "start": 558.98, + "end": 560.66, + "probability": 0.7209 + }, + { + "start": 561.44, + "end": 565.08, + "probability": 0.9829 + }, + { + "start": 565.08, + "end": 569.3, + "probability": 0.8613 + }, + { + "start": 570.16, + "end": 573.22, + "probability": 0.2883 + }, + { + "start": 573.22, + "end": 573.22, + "probability": 0.037 + }, + { + "start": 573.22, + "end": 573.44, + "probability": 0.0784 + }, + { + "start": 573.54, + "end": 574.96, + "probability": 0.8963 + }, + { + "start": 576.06, + "end": 579.84, + "probability": 0.9921 + }, + { + "start": 580.88, + "end": 582.24, + "probability": 0.7725 + }, + { + "start": 582.86, + "end": 583.84, + "probability": 0.9851 + }, + { + "start": 584.82, + "end": 591.64, + "probability": 0.6811 + }, + { + "start": 591.82, + "end": 594.86, + "probability": 0.9885 + }, + { + "start": 595.78, + "end": 597.58, + "probability": 0.9795 + }, + { + "start": 598.66, + "end": 601.0, + "probability": 0.8702 + }, + { + "start": 601.24, + "end": 601.84, + "probability": 0.3375 + }, + { + "start": 601.88, + "end": 603.42, + "probability": 0.9285 + }, + { + "start": 605.16, + "end": 608.98, + "probability": 0.9037 + }, + { + "start": 609.5, + "end": 610.1, + "probability": 0.8642 + }, + { + "start": 610.72, + "end": 611.94, + "probability": 0.884 + }, + { + "start": 612.78, + "end": 617.06, + "probability": 0.9849 + }, + { + "start": 617.54, + "end": 620.38, + "probability": 0.9919 + }, + { + "start": 621.64, + "end": 625.02, + "probability": 0.8752 + }, + { + "start": 626.08, + "end": 629.64, + "probability": 0.9367 + }, + { + "start": 631.02, + "end": 633.2, + "probability": 0.8911 + }, + { + "start": 634.8, + "end": 637.14, + "probability": 0.8994 + }, + { + "start": 637.52, + "end": 638.06, + "probability": 0.6719 + }, + { + "start": 638.5, + "end": 639.62, + "probability": 0.7533 + }, + { + "start": 640.6, + "end": 642.5, + "probability": 0.9171 + }, + { + "start": 642.64, + "end": 643.52, + "probability": 0.8732 + }, + { + "start": 645.07, + "end": 649.26, + "probability": 0.8222 + }, + { + "start": 649.98, + "end": 654.1, + "probability": 0.9755 + }, + { + "start": 654.1, + "end": 654.8, + "probability": 0.8499 + }, + { + "start": 655.64, + "end": 658.9, + "probability": 0.5055 + }, + { + "start": 659.18, + "end": 661.46, + "probability": 0.7535 + }, + { + "start": 662.38, + "end": 666.32, + "probability": 0.8707 + }, + { + "start": 668.26, + "end": 670.54, + "probability": 0.8091 + }, + { + "start": 672.6, + "end": 674.22, + "probability": 0.7603 + }, + { + "start": 674.7, + "end": 675.14, + "probability": 0.504 + }, + { + "start": 675.2, + "end": 676.36, + "probability": 0.7023 + }, + { + "start": 676.48, + "end": 677.14, + "probability": 0.5457 + }, + { + "start": 677.2, + "end": 677.88, + "probability": 0.9355 + }, + { + "start": 677.94, + "end": 679.62, + "probability": 0.9833 + }, + { + "start": 679.86, + "end": 681.16, + "probability": 0.8099 + }, + { + "start": 698.0, + "end": 698.0, + "probability": 0.0464 + }, + { + "start": 698.0, + "end": 698.0, + "probability": 0.0422 + }, + { + "start": 698.0, + "end": 698.0, + "probability": 0.0721 + }, + { + "start": 698.0, + "end": 698.0, + "probability": 0.2554 + }, + { + "start": 698.0, + "end": 698.0, + "probability": 0.4054 + }, + { + "start": 698.0, + "end": 699.94, + "probability": 0.4345 + }, + { + "start": 702.26, + "end": 705.08, + "probability": 0.0877 + }, + { + "start": 705.08, + "end": 706.68, + "probability": 0.8555 + }, + { + "start": 707.36, + "end": 709.04, + "probability": 0.6401 + }, + { + "start": 709.28, + "end": 709.8, + "probability": 0.5149 + }, + { + "start": 710.04, + "end": 710.7, + "probability": 0.5885 + }, + { + "start": 710.8, + "end": 711.5, + "probability": 0.8922 + }, + { + "start": 711.86, + "end": 715.88, + "probability": 0.8425 + }, + { + "start": 716.08, + "end": 719.7, + "probability": 0.8201 + }, + { + "start": 720.58, + "end": 727.34, + "probability": 0.9782 + }, + { + "start": 727.92, + "end": 728.84, + "probability": 0.9584 + }, + { + "start": 729.12, + "end": 731.12, + "probability": 0.8452 + }, + { + "start": 731.86, + "end": 736.32, + "probability": 0.9965 + }, + { + "start": 736.52, + "end": 739.9, + "probability": 0.9973 + }, + { + "start": 740.42, + "end": 741.08, + "probability": 0.9482 + }, + { + "start": 741.6, + "end": 744.94, + "probability": 0.9778 + }, + { + "start": 746.66, + "end": 750.86, + "probability": 0.7888 + }, + { + "start": 751.52, + "end": 757.06, + "probability": 0.9575 + }, + { + "start": 758.48, + "end": 762.62, + "probability": 0.9789 + }, + { + "start": 762.64, + "end": 764.12, + "probability": 0.9575 + }, + { + "start": 764.7, + "end": 765.74, + "probability": 0.908 + }, + { + "start": 766.2, + "end": 767.68, + "probability": 0.9572 + }, + { + "start": 767.78, + "end": 768.56, + "probability": 0.9458 + }, + { + "start": 770.08, + "end": 775.34, + "probability": 0.7913 + }, + { + "start": 776.78, + "end": 779.77, + "probability": 0.9961 + }, + { + "start": 781.2, + "end": 784.12, + "probability": 0.9971 + }, + { + "start": 785.1, + "end": 786.64, + "probability": 0.6785 + }, + { + "start": 786.76, + "end": 790.06, + "probability": 0.9956 + }, + { + "start": 791.38, + "end": 795.26, + "probability": 0.9766 + }, + { + "start": 796.76, + "end": 799.84, + "probability": 0.9846 + }, + { + "start": 800.04, + "end": 803.08, + "probability": 0.994 + }, + { + "start": 803.9, + "end": 805.08, + "probability": 0.9976 + }, + { + "start": 805.8, + "end": 808.5, + "probability": 0.9324 + }, + { + "start": 809.66, + "end": 811.6, + "probability": 0.9993 + }, + { + "start": 812.78, + "end": 815.42, + "probability": 0.8641 + }, + { + "start": 816.02, + "end": 818.78, + "probability": 0.7622 + }, + { + "start": 819.48, + "end": 820.76, + "probability": 0.9294 + }, + { + "start": 820.92, + "end": 821.16, + "probability": 0.6058 + }, + { + "start": 821.28, + "end": 821.68, + "probability": 0.6076 + }, + { + "start": 821.8, + "end": 822.46, + "probability": 0.7818 + }, + { + "start": 822.88, + "end": 824.1, + "probability": 0.6976 + }, + { + "start": 824.22, + "end": 825.21, + "probability": 0.9844 + }, + { + "start": 826.4, + "end": 826.54, + "probability": 0.1259 + }, + { + "start": 826.54, + "end": 831.38, + "probability": 0.8948 + }, + { + "start": 831.46, + "end": 836.56, + "probability": 0.9344 + }, + { + "start": 837.62, + "end": 837.96, + "probability": 0.4107 + }, + { + "start": 838.58, + "end": 843.56, + "probability": 0.9688 + }, + { + "start": 844.66, + "end": 846.98, + "probability": 0.9455 + }, + { + "start": 847.52, + "end": 850.54, + "probability": 0.9694 + }, + { + "start": 851.94, + "end": 854.6, + "probability": 0.974 + }, + { + "start": 854.6, + "end": 858.36, + "probability": 0.9996 + }, + { + "start": 859.3, + "end": 863.26, + "probability": 0.9919 + }, + { + "start": 864.3, + "end": 868.32, + "probability": 0.9484 + }, + { + "start": 869.16, + "end": 872.18, + "probability": 0.9761 + }, + { + "start": 872.72, + "end": 877.86, + "probability": 0.9023 + }, + { + "start": 877.86, + "end": 882.14, + "probability": 0.9945 + }, + { + "start": 882.76, + "end": 885.88, + "probability": 0.6556 + }, + { + "start": 887.36, + "end": 890.22, + "probability": 0.9559 + }, + { + "start": 890.9, + "end": 894.64, + "probability": 0.9854 + }, + { + "start": 896.06, + "end": 899.42, + "probability": 0.932 + }, + { + "start": 900.22, + "end": 902.36, + "probability": 0.825 + }, + { + "start": 903.5, + "end": 907.06, + "probability": 0.9896 + }, + { + "start": 907.79, + "end": 911.44, + "probability": 0.9996 + }, + { + "start": 912.44, + "end": 916.04, + "probability": 0.9952 + }, + { + "start": 917.0, + "end": 919.26, + "probability": 0.9333 + }, + { + "start": 919.26, + "end": 922.18, + "probability": 0.8021 + }, + { + "start": 922.62, + "end": 923.06, + "probability": 0.7285 + }, + { + "start": 923.96, + "end": 925.36, + "probability": 0.915 + }, + { + "start": 926.5, + "end": 926.5, + "probability": 0.0484 + }, + { + "start": 926.6, + "end": 928.6, + "probability": 0.2113 + }, + { + "start": 928.6, + "end": 931.24, + "probability": 0.6506 + }, + { + "start": 931.48, + "end": 933.72, + "probability": 0.1867 + }, + { + "start": 934.28, + "end": 935.98, + "probability": 0.8043 + }, + { + "start": 936.2, + "end": 939.82, + "probability": 0.8525 + }, + { + "start": 940.24, + "end": 940.86, + "probability": 0.8688 + }, + { + "start": 940.98, + "end": 942.46, + "probability": 0.9922 + }, + { + "start": 943.16, + "end": 946.92, + "probability": 0.9907 + }, + { + "start": 946.92, + "end": 951.4, + "probability": 0.9925 + }, + { + "start": 951.96, + "end": 955.88, + "probability": 0.9941 + }, + { + "start": 956.1, + "end": 959.86, + "probability": 0.992 + }, + { + "start": 961.54, + "end": 964.27, + "probability": 0.2936 + }, + { + "start": 966.0, + "end": 966.88, + "probability": 0.0384 + }, + { + "start": 966.88, + "end": 969.88, + "probability": 0.7378 + }, + { + "start": 969.88, + "end": 972.74, + "probability": 0.9946 + }, + { + "start": 972.8, + "end": 973.7, + "probability": 0.9932 + }, + { + "start": 974.28, + "end": 977.18, + "probability": 0.8916 + }, + { + "start": 977.72, + "end": 979.44, + "probability": 0.8674 + }, + { + "start": 979.54, + "end": 980.12, + "probability": 0.8238 + }, + { + "start": 980.3, + "end": 982.32, + "probability": 0.7066 + }, + { + "start": 982.78, + "end": 987.76, + "probability": 0.9816 + }, + { + "start": 988.34, + "end": 990.46, + "probability": 0.8912 + }, + { + "start": 990.86, + "end": 992.06, + "probability": 0.523 + }, + { + "start": 992.2, + "end": 992.68, + "probability": 0.9591 + }, + { + "start": 992.78, + "end": 998.54, + "probability": 0.9525 + }, + { + "start": 999.38, + "end": 1000.76, + "probability": 0.8789 + }, + { + "start": 1000.96, + "end": 1002.88, + "probability": 0.9284 + }, + { + "start": 1003.14, + "end": 1007.06, + "probability": 0.8954 + }, + { + "start": 1007.26, + "end": 1008.14, + "probability": 0.9714 + }, + { + "start": 1008.72, + "end": 1010.08, + "probability": 0.7103 + }, + { + "start": 1010.18, + "end": 1012.32, + "probability": 0.612 + }, + { + "start": 1012.32, + "end": 1015.7, + "probability": 0.8375 + }, + { + "start": 1015.76, + "end": 1016.46, + "probability": 0.4963 + }, + { + "start": 1016.46, + "end": 1017.72, + "probability": 0.8783 + }, + { + "start": 1017.86, + "end": 1021.4, + "probability": 0.9323 + }, + { + "start": 1024.54, + "end": 1027.02, + "probability": 0.9694 + }, + { + "start": 1027.1, + "end": 1027.58, + "probability": 0.6306 + }, + { + "start": 1027.64, + "end": 1030.74, + "probability": 0.8388 + }, + { + "start": 1030.74, + "end": 1035.08, + "probability": 0.9417 + }, + { + "start": 1036.32, + "end": 1037.82, + "probability": 0.8888 + }, + { + "start": 1048.98, + "end": 1050.4, + "probability": 0.5791 + }, + { + "start": 1050.46, + "end": 1054.46, + "probability": 0.876 + }, + { + "start": 1055.22, + "end": 1057.28, + "probability": 0.654 + }, + { + "start": 1057.28, + "end": 1058.72, + "probability": 0.7668 + }, + { + "start": 1059.44, + "end": 1061.64, + "probability": 0.9451 + }, + { + "start": 1062.86, + "end": 1067.26, + "probability": 0.9794 + }, + { + "start": 1068.08, + "end": 1068.62, + "probability": 0.7902 + }, + { + "start": 1069.14, + "end": 1070.76, + "probability": 0.9951 + }, + { + "start": 1071.36, + "end": 1075.22, + "probability": 0.9537 + }, + { + "start": 1075.22, + "end": 1078.94, + "probability": 0.9977 + }, + { + "start": 1079.66, + "end": 1080.54, + "probability": 0.6537 + }, + { + "start": 1081.16, + "end": 1082.26, + "probability": 0.8793 + }, + { + "start": 1082.6, + "end": 1082.8, + "probability": 0.8164 + }, + { + "start": 1083.3, + "end": 1086.76, + "probability": 0.9858 + }, + { + "start": 1087.78, + "end": 1090.7, + "probability": 0.957 + }, + { + "start": 1091.22, + "end": 1094.12, + "probability": 0.9654 + }, + { + "start": 1094.78, + "end": 1096.28, + "probability": 0.7614 + }, + { + "start": 1096.48, + "end": 1097.5, + "probability": 0.6919 + }, + { + "start": 1098.82, + "end": 1102.1, + "probability": 0.6976 + }, + { + "start": 1103.34, + "end": 1105.36, + "probability": 0.7917 + }, + { + "start": 1107.4, + "end": 1113.58, + "probability": 0.9938 + }, + { + "start": 1114.62, + "end": 1116.98, + "probability": 0.9973 + }, + { + "start": 1118.39, + "end": 1121.84, + "probability": 0.9962 + }, + { + "start": 1122.8, + "end": 1125.32, + "probability": 0.8382 + }, + { + "start": 1126.1, + "end": 1129.71, + "probability": 0.9647 + }, + { + "start": 1130.44, + "end": 1133.86, + "probability": 0.9692 + }, + { + "start": 1134.52, + "end": 1135.7, + "probability": 0.8664 + }, + { + "start": 1136.64, + "end": 1139.24, + "probability": 0.9769 + }, + { + "start": 1139.98, + "end": 1143.98, + "probability": 0.9663 + }, + { + "start": 1144.86, + "end": 1147.62, + "probability": 0.87 + }, + { + "start": 1148.98, + "end": 1154.48, + "probability": 0.9687 + }, + { + "start": 1154.62, + "end": 1157.0, + "probability": 0.978 + }, + { + "start": 1157.24, + "end": 1160.84, + "probability": 0.9922 + }, + { + "start": 1161.78, + "end": 1166.86, + "probability": 0.9803 + }, + { + "start": 1168.56, + "end": 1171.2, + "probability": 0.8495 + }, + { + "start": 1171.78, + "end": 1176.92, + "probability": 0.9224 + }, + { + "start": 1176.92, + "end": 1180.62, + "probability": 0.9717 + }, + { + "start": 1181.22, + "end": 1181.77, + "probability": 0.7106 + }, + { + "start": 1182.62, + "end": 1188.22, + "probability": 0.9608 + }, + { + "start": 1188.62, + "end": 1189.66, + "probability": 0.8835 + }, + { + "start": 1190.34, + "end": 1193.7, + "probability": 0.7877 + }, + { + "start": 1197.58, + "end": 1198.6, + "probability": 0.1009 + }, + { + "start": 1200.31, + "end": 1203.4, + "probability": 0.9948 + }, + { + "start": 1204.36, + "end": 1205.76, + "probability": 0.8923 + }, + { + "start": 1206.56, + "end": 1209.72, + "probability": 0.9047 + }, + { + "start": 1210.48, + "end": 1212.8, + "probability": 0.939 + }, + { + "start": 1213.34, + "end": 1215.18, + "probability": 0.8583 + }, + { + "start": 1215.72, + "end": 1220.0, + "probability": 0.9582 + }, + { + "start": 1220.62, + "end": 1221.38, + "probability": 0.8071 + }, + { + "start": 1221.48, + "end": 1225.44, + "probability": 0.9766 + }, + { + "start": 1225.44, + "end": 1231.58, + "probability": 0.9813 + }, + { + "start": 1232.54, + "end": 1235.7, + "probability": 0.998 + }, + { + "start": 1236.28, + "end": 1238.68, + "probability": 0.9511 + }, + { + "start": 1240.22, + "end": 1242.86, + "probability": 0.9839 + }, + { + "start": 1243.3, + "end": 1243.7, + "probability": 0.8563 + }, + { + "start": 1244.76, + "end": 1246.42, + "probability": 0.9099 + }, + { + "start": 1246.52, + "end": 1248.72, + "probability": 0.9298 + }, + { + "start": 1248.8, + "end": 1249.48, + "probability": 0.7687 + }, + { + "start": 1249.6, + "end": 1252.4, + "probability": 0.9783 + }, + { + "start": 1253.56, + "end": 1258.98, + "probability": 0.9731 + }, + { + "start": 1259.14, + "end": 1259.68, + "probability": 0.7817 + }, + { + "start": 1259.86, + "end": 1260.44, + "probability": 0.824 + }, + { + "start": 1261.0, + "end": 1261.84, + "probability": 0.6141 + }, + { + "start": 1263.28, + "end": 1264.24, + "probability": 0.83 + }, + { + "start": 1265.22, + "end": 1266.3, + "probability": 0.7926 + }, + { + "start": 1266.96, + "end": 1269.16, + "probability": 0.8794 + }, + { + "start": 1269.96, + "end": 1271.46, + "probability": 0.9902 + }, + { + "start": 1272.04, + "end": 1273.36, + "probability": 0.6571 + }, + { + "start": 1273.48, + "end": 1275.8, + "probability": 0.5979 + }, + { + "start": 1279.7, + "end": 1280.2, + "probability": 0.4813 + }, + { + "start": 1280.28, + "end": 1282.48, + "probability": 0.643 + }, + { + "start": 1282.6, + "end": 1284.4, + "probability": 0.9378 + }, + { + "start": 1284.52, + "end": 1285.46, + "probability": 0.9692 + }, + { + "start": 1285.64, + "end": 1288.47, + "probability": 0.9468 + }, + { + "start": 1288.62, + "end": 1292.1, + "probability": 0.9888 + }, + { + "start": 1292.9, + "end": 1295.46, + "probability": 0.7942 + }, + { + "start": 1295.54, + "end": 1299.9, + "probability": 0.8685 + }, + { + "start": 1299.9, + "end": 1303.26, + "probability": 0.9968 + }, + { + "start": 1303.42, + "end": 1304.9, + "probability": 0.62 + }, + { + "start": 1305.54, + "end": 1308.44, + "probability": 0.9582 + }, + { + "start": 1308.66, + "end": 1311.42, + "probability": 0.9814 + }, + { + "start": 1311.82, + "end": 1315.08, + "probability": 0.8388 + }, + { + "start": 1315.2, + "end": 1320.24, + "probability": 0.9676 + }, + { + "start": 1320.9, + "end": 1322.24, + "probability": 0.8134 + }, + { + "start": 1322.48, + "end": 1324.4, + "probability": 0.9961 + }, + { + "start": 1325.84, + "end": 1326.46, + "probability": 0.9209 + }, + { + "start": 1327.06, + "end": 1327.75, + "probability": 0.9956 + }, + { + "start": 1329.06, + "end": 1330.34, + "probability": 0.9537 + }, + { + "start": 1330.6, + "end": 1330.94, + "probability": 0.669 + }, + { + "start": 1331.16, + "end": 1336.38, + "probability": 0.9067 + }, + { + "start": 1337.15, + "end": 1337.88, + "probability": 0.8171 + }, + { + "start": 1338.58, + "end": 1340.7, + "probability": 0.2669 + }, + { + "start": 1341.38, + "end": 1343.4, + "probability": 0.9958 + }, + { + "start": 1343.96, + "end": 1346.36, + "probability": 0.462 + }, + { + "start": 1346.52, + "end": 1347.74, + "probability": 0.8032 + }, + { + "start": 1349.31, + "end": 1350.56, + "probability": 0.6904 + }, + { + "start": 1351.72, + "end": 1352.38, + "probability": 0.7703 + }, + { + "start": 1353.52, + "end": 1355.45, + "probability": 0.9141 + }, + { + "start": 1355.86, + "end": 1357.2, + "probability": 0.8335 + }, + { + "start": 1357.96, + "end": 1361.72, + "probability": 0.985 + }, + { + "start": 1363.08, + "end": 1364.12, + "probability": 0.7386 + }, + { + "start": 1365.61, + "end": 1367.54, + "probability": 0.7351 + }, + { + "start": 1367.66, + "end": 1370.58, + "probability": 0.988 + }, + { + "start": 1370.6, + "end": 1372.92, + "probability": 0.9081 + }, + { + "start": 1374.96, + "end": 1378.02, + "probability": 0.6414 + }, + { + "start": 1378.6, + "end": 1380.54, + "probability": 0.9988 + }, + { + "start": 1381.18, + "end": 1387.16, + "probability": 0.9128 + }, + { + "start": 1387.7, + "end": 1390.06, + "probability": 0.981 + }, + { + "start": 1390.22, + "end": 1390.97, + "probability": 0.7041 + }, + { + "start": 1391.58, + "end": 1394.02, + "probability": 0.7771 + }, + { + "start": 1394.08, + "end": 1394.56, + "probability": 0.0244 + }, + { + "start": 1397.64, + "end": 1399.56, + "probability": 0.7463 + }, + { + "start": 1399.86, + "end": 1401.3, + "probability": 0.541 + }, + { + "start": 1401.94, + "end": 1405.94, + "probability": 0.6816 + }, + { + "start": 1406.02, + "end": 1407.01, + "probability": 0.9471 + }, + { + "start": 1407.52, + "end": 1410.42, + "probability": 0.5698 + }, + { + "start": 1410.7, + "end": 1411.99, + "probability": 0.7161 + }, + { + "start": 1412.34, + "end": 1413.44, + "probability": 0.9414 + }, + { + "start": 1413.76, + "end": 1414.74, + "probability": 0.9675 + }, + { + "start": 1414.9, + "end": 1415.64, + "probability": 0.624 + }, + { + "start": 1415.74, + "end": 1416.66, + "probability": 0.8556 + }, + { + "start": 1417.06, + "end": 1421.34, + "probability": 0.9309 + }, + { + "start": 1421.82, + "end": 1423.08, + "probability": 0.8693 + }, + { + "start": 1423.64, + "end": 1425.12, + "probability": 0.9449 + }, + { + "start": 1427.32, + "end": 1428.02, + "probability": 0.2059 + }, + { + "start": 1428.02, + "end": 1428.8, + "probability": 0.2015 + }, + { + "start": 1430.06, + "end": 1431.3, + "probability": 0.2634 + }, + { + "start": 1431.58, + "end": 1431.68, + "probability": 0.3587 + }, + { + "start": 1431.68, + "end": 1433.93, + "probability": 0.7332 + }, + { + "start": 1434.96, + "end": 1435.98, + "probability": 0.3716 + }, + { + "start": 1438.48, + "end": 1439.0, + "probability": 0.5822 + }, + { + "start": 1441.88, + "end": 1443.72, + "probability": 0.9503 + }, + { + "start": 1443.98, + "end": 1447.68, + "probability": 0.9722 + }, + { + "start": 1448.08, + "end": 1449.58, + "probability": 0.9952 + }, + { + "start": 1449.96, + "end": 1451.0, + "probability": 0.9629 + }, + { + "start": 1451.1, + "end": 1454.24, + "probability": 0.9981 + }, + { + "start": 1454.5, + "end": 1456.26, + "probability": 0.9736 + }, + { + "start": 1456.82, + "end": 1460.38, + "probability": 0.896 + }, + { + "start": 1460.94, + "end": 1465.04, + "probability": 0.9731 + }, + { + "start": 1465.36, + "end": 1466.12, + "probability": 0.9568 + }, + { + "start": 1466.32, + "end": 1468.56, + "probability": 0.998 + }, + { + "start": 1469.16, + "end": 1469.56, + "probability": 0.8925 + }, + { + "start": 1469.8, + "end": 1472.32, + "probability": 0.9746 + }, + { + "start": 1472.52, + "end": 1475.46, + "probability": 0.9808 + }, + { + "start": 1475.56, + "end": 1476.48, + "probability": 0.7712 + }, + { + "start": 1476.7, + "end": 1480.2, + "probability": 0.7219 + }, + { + "start": 1480.32, + "end": 1480.86, + "probability": 0.8015 + }, + { + "start": 1481.34, + "end": 1481.34, + "probability": 0.897 + }, + { + "start": 1481.98, + "end": 1485.72, + "probability": 0.9634 + }, + { + "start": 1486.1, + "end": 1486.82, + "probability": 0.9296 + }, + { + "start": 1488.46, + "end": 1493.7, + "probability": 0.9444 + }, + { + "start": 1493.7, + "end": 1499.7, + "probability": 0.8429 + }, + { + "start": 1500.76, + "end": 1503.48, + "probability": 0.9056 + }, + { + "start": 1512.9, + "end": 1513.36, + "probability": 0.6483 + }, + { + "start": 1515.26, + "end": 1517.68, + "probability": 0.6298 + }, + { + "start": 1517.8, + "end": 1521.42, + "probability": 0.995 + }, + { + "start": 1521.42, + "end": 1526.88, + "probability": 0.9341 + }, + { + "start": 1527.74, + "end": 1528.56, + "probability": 0.7891 + }, + { + "start": 1529.66, + "end": 1531.06, + "probability": 0.8429 + }, + { + "start": 1531.8, + "end": 1534.1, + "probability": 0.8947 + }, + { + "start": 1534.58, + "end": 1536.64, + "probability": 0.9499 + }, + { + "start": 1536.64, + "end": 1539.32, + "probability": 0.983 + }, + { + "start": 1539.62, + "end": 1540.52, + "probability": 0.3107 + }, + { + "start": 1540.58, + "end": 1541.72, + "probability": 0.8367 + }, + { + "start": 1542.2, + "end": 1543.98, + "probability": 0.7443 + }, + { + "start": 1544.08, + "end": 1545.66, + "probability": 0.959 + }, + { + "start": 1546.64, + "end": 1547.8, + "probability": 0.7054 + }, + { + "start": 1548.38, + "end": 1550.04, + "probability": 0.663 + }, + { + "start": 1550.7, + "end": 1554.9, + "probability": 0.9531 + }, + { + "start": 1555.34, + "end": 1556.34, + "probability": 0.7638 + }, + { + "start": 1557.14, + "end": 1560.04, + "probability": 0.9919 + }, + { + "start": 1560.04, + "end": 1563.7, + "probability": 0.9763 + }, + { + "start": 1564.12, + "end": 1568.64, + "probability": 0.989 + }, + { + "start": 1569.36, + "end": 1572.08, + "probability": 0.8617 + }, + { + "start": 1573.78, + "end": 1577.56, + "probability": 0.9618 + }, + { + "start": 1577.68, + "end": 1579.36, + "probability": 0.8808 + }, + { + "start": 1579.4, + "end": 1582.56, + "probability": 0.9785 + }, + { + "start": 1582.62, + "end": 1583.54, + "probability": 0.8826 + }, + { + "start": 1584.34, + "end": 1587.9, + "probability": 0.9925 + }, + { + "start": 1588.04, + "end": 1588.62, + "probability": 0.6559 + }, + { + "start": 1589.02, + "end": 1591.9, + "probability": 0.9713 + }, + { + "start": 1592.38, + "end": 1596.22, + "probability": 0.9741 + }, + { + "start": 1597.22, + "end": 1600.9, + "probability": 0.9919 + }, + { + "start": 1601.62, + "end": 1603.64, + "probability": 0.9612 + }, + { + "start": 1604.48, + "end": 1612.9, + "probability": 0.9609 + }, + { + "start": 1613.4, + "end": 1615.92, + "probability": 0.8696 + }, + { + "start": 1617.82, + "end": 1618.52, + "probability": 0.9888 + }, + { + "start": 1619.38, + "end": 1623.82, + "probability": 0.9535 + }, + { + "start": 1624.8, + "end": 1626.52, + "probability": 0.7118 + }, + { + "start": 1627.34, + "end": 1629.68, + "probability": 0.9795 + }, + { + "start": 1630.94, + "end": 1635.22, + "probability": 0.9486 + }, + { + "start": 1636.0, + "end": 1639.72, + "probability": 0.9383 + }, + { + "start": 1640.34, + "end": 1642.72, + "probability": 0.9752 + }, + { + "start": 1642.9, + "end": 1647.02, + "probability": 0.9922 + }, + { + "start": 1647.14, + "end": 1649.84, + "probability": 0.9675 + }, + { + "start": 1650.76, + "end": 1652.48, + "probability": 0.998 + }, + { + "start": 1653.78, + "end": 1661.68, + "probability": 0.9788 + }, + { + "start": 1662.78, + "end": 1665.52, + "probability": 0.9975 + }, + { + "start": 1666.14, + "end": 1672.58, + "probability": 0.9973 + }, + { + "start": 1672.72, + "end": 1676.56, + "probability": 0.8003 + }, + { + "start": 1677.32, + "end": 1680.32, + "probability": 0.882 + }, + { + "start": 1680.64, + "end": 1683.04, + "probability": 0.965 + }, + { + "start": 1683.4, + "end": 1684.18, + "probability": 0.6434 + }, + { + "start": 1684.72, + "end": 1686.22, + "probability": 0.6165 + }, + { + "start": 1686.34, + "end": 1689.44, + "probability": 0.8586 + }, + { + "start": 1689.92, + "end": 1696.52, + "probability": 0.9945 + }, + { + "start": 1696.8, + "end": 1700.76, + "probability": 0.9951 + }, + { + "start": 1700.92, + "end": 1705.2, + "probability": 0.9944 + }, + { + "start": 1705.7, + "end": 1709.0, + "probability": 0.9463 + }, + { + "start": 1709.1, + "end": 1710.2, + "probability": 0.918 + }, + { + "start": 1710.42, + "end": 1712.78, + "probability": 0.9668 + }, + { + "start": 1714.26, + "end": 1716.5, + "probability": 0.9923 + }, + { + "start": 1717.08, + "end": 1719.0, + "probability": 0.9778 + }, + { + "start": 1719.12, + "end": 1722.22, + "probability": 0.9167 + }, + { + "start": 1722.62, + "end": 1726.04, + "probability": 0.9849 + }, + { + "start": 1726.04, + "end": 1729.28, + "probability": 0.9831 + }, + { + "start": 1729.84, + "end": 1731.94, + "probability": 0.8871 + }, + { + "start": 1732.7, + "end": 1734.48, + "probability": 0.6621 + }, + { + "start": 1735.16, + "end": 1736.04, + "probability": 0.9176 + }, + { + "start": 1736.78, + "end": 1741.06, + "probability": 0.9858 + }, + { + "start": 1741.26, + "end": 1743.32, + "probability": 0.9866 + }, + { + "start": 1743.98, + "end": 1745.72, + "probability": 0.7082 + }, + { + "start": 1745.92, + "end": 1749.96, + "probability": 0.9507 + }, + { + "start": 1749.96, + "end": 1753.0, + "probability": 0.9947 + }, + { + "start": 1753.7, + "end": 1756.82, + "probability": 0.9815 + }, + { + "start": 1756.82, + "end": 1761.16, + "probability": 0.995 + }, + { + "start": 1762.84, + "end": 1763.52, + "probability": 0.6504 + }, + { + "start": 1763.62, + "end": 1764.08, + "probability": 0.9477 + }, + { + "start": 1764.42, + "end": 1765.08, + "probability": 0.9332 + }, + { + "start": 1765.36, + "end": 1768.6, + "probability": 0.9559 + }, + { + "start": 1769.74, + "end": 1773.98, + "probability": 0.9515 + }, + { + "start": 1774.3, + "end": 1780.24, + "probability": 0.9749 + }, + { + "start": 1780.8, + "end": 1782.24, + "probability": 0.9517 + }, + { + "start": 1782.4, + "end": 1784.02, + "probability": 0.9796 + }, + { + "start": 1784.9, + "end": 1787.82, + "probability": 0.9988 + }, + { + "start": 1787.82, + "end": 1792.18, + "probability": 0.9958 + }, + { + "start": 1794.54, + "end": 1799.52, + "probability": 0.791 + }, + { + "start": 1799.56, + "end": 1800.14, + "probability": 0.2897 + }, + { + "start": 1800.24, + "end": 1802.18, + "probability": 0.9959 + }, + { + "start": 1802.74, + "end": 1803.8, + "probability": 0.7084 + }, + { + "start": 1804.6, + "end": 1807.34, + "probability": 0.6069 + }, + { + "start": 1807.42, + "end": 1809.68, + "probability": 0.9424 + }, + { + "start": 1809.96, + "end": 1811.92, + "probability": 0.9744 + }, + { + "start": 1812.58, + "end": 1814.46, + "probability": 0.959 + }, + { + "start": 1815.4, + "end": 1819.92, + "probability": 0.9847 + }, + { + "start": 1820.38, + "end": 1824.76, + "probability": 0.9067 + }, + { + "start": 1825.34, + "end": 1828.54, + "probability": 0.8017 + }, + { + "start": 1828.54, + "end": 1832.76, + "probability": 0.8831 + }, + { + "start": 1832.92, + "end": 1833.66, + "probability": 0.8692 + }, + { + "start": 1833.86, + "end": 1834.74, + "probability": 0.6197 + }, + { + "start": 1834.96, + "end": 1837.48, + "probability": 0.9854 + }, + { + "start": 1838.36, + "end": 1840.98, + "probability": 0.9184 + }, + { + "start": 1841.26, + "end": 1843.3, + "probability": 0.9517 + }, + { + "start": 1843.76, + "end": 1844.48, + "probability": 0.8651 + }, + { + "start": 1844.74, + "end": 1847.04, + "probability": 0.9873 + }, + { + "start": 1847.78, + "end": 1849.42, + "probability": 0.9492 + }, + { + "start": 1849.88, + "end": 1851.54, + "probability": 0.9235 + }, + { + "start": 1852.06, + "end": 1856.94, + "probability": 0.9911 + }, + { + "start": 1857.02, + "end": 1858.58, + "probability": 0.8273 + }, + { + "start": 1858.88, + "end": 1863.74, + "probability": 0.9933 + }, + { + "start": 1864.1, + "end": 1866.22, + "probability": 0.925 + }, + { + "start": 1867.0, + "end": 1869.92, + "probability": 0.9101 + }, + { + "start": 1871.2, + "end": 1874.96, + "probability": 0.9946 + }, + { + "start": 1875.0, + "end": 1875.84, + "probability": 0.7866 + }, + { + "start": 1877.98, + "end": 1884.4, + "probability": 0.7991 + }, + { + "start": 1884.42, + "end": 1890.9, + "probability": 0.9962 + }, + { + "start": 1891.12, + "end": 1891.98, + "probability": 0.6456 + }, + { + "start": 1892.24, + "end": 1892.44, + "probability": 0.5364 + }, + { + "start": 1894.16, + "end": 1894.92, + "probability": 0.8264 + }, + { + "start": 1895.02, + "end": 1898.78, + "probability": 0.9881 + }, + { + "start": 1898.78, + "end": 1903.86, + "probability": 0.9983 + }, + { + "start": 1904.34, + "end": 1905.08, + "probability": 0.705 + }, + { + "start": 1906.24, + "end": 1907.38, + "probability": 0.1603 + }, + { + "start": 1907.88, + "end": 1911.12, + "probability": 0.6932 + }, + { + "start": 1911.9, + "end": 1914.24, + "probability": 0.9517 + }, + { + "start": 1914.4, + "end": 1915.48, + "probability": 0.911 + }, + { + "start": 1916.26, + "end": 1917.92, + "probability": 0.6938 + }, + { + "start": 1919.14, + "end": 1921.26, + "probability": 0.9938 + }, + { + "start": 1921.26, + "end": 1924.8, + "probability": 0.9971 + }, + { + "start": 1924.98, + "end": 1928.88, + "probability": 0.9594 + }, + { + "start": 1929.08, + "end": 1929.94, + "probability": 0.915 + }, + { + "start": 1930.44, + "end": 1930.86, + "probability": 0.9575 + }, + { + "start": 1932.16, + "end": 1935.42, + "probability": 0.9904 + }, + { + "start": 1937.84, + "end": 1939.98, + "probability": 0.9399 + }, + { + "start": 1942.1, + "end": 1944.64, + "probability": 0.9438 + }, + { + "start": 1945.68, + "end": 1947.5, + "probability": 0.9243 + }, + { + "start": 1948.14, + "end": 1952.42, + "probability": 0.9878 + }, + { + "start": 1952.9, + "end": 1954.38, + "probability": 0.6784 + }, + { + "start": 1954.52, + "end": 1956.24, + "probability": 0.1555 + }, + { + "start": 1956.3, + "end": 1962.08, + "probability": 0.7514 + }, + { + "start": 1962.08, + "end": 1966.96, + "probability": 0.9473 + }, + { + "start": 1968.63, + "end": 1970.26, + "probability": 0.5237 + }, + { + "start": 1973.36, + "end": 1976.04, + "probability": 0.9829 + }, + { + "start": 1976.62, + "end": 1978.5, + "probability": 0.8786 + }, + { + "start": 1979.38, + "end": 1980.22, + "probability": 0.8071 + }, + { + "start": 1981.02, + "end": 1984.4, + "probability": 0.6892 + }, + { + "start": 1985.5, + "end": 1988.44, + "probability": 0.9861 + }, + { + "start": 1989.34, + "end": 1990.46, + "probability": 0.7561 + }, + { + "start": 1991.1, + "end": 1993.32, + "probability": 0.6469 + }, + { + "start": 1994.2, + "end": 1998.06, + "probability": 0.9331 + }, + { + "start": 1999.57, + "end": 2002.98, + "probability": 0.5686 + }, + { + "start": 2003.64, + "end": 2004.66, + "probability": 0.9541 + }, + { + "start": 2005.7, + "end": 2008.88, + "probability": 0.9851 + }, + { + "start": 2010.38, + "end": 2011.9, + "probability": 0.5971 + }, + { + "start": 2012.64, + "end": 2014.56, + "probability": 0.9578 + }, + { + "start": 2014.72, + "end": 2015.78, + "probability": 0.7666 + }, + { + "start": 2017.3, + "end": 2021.24, + "probability": 0.9841 + }, + { + "start": 2021.36, + "end": 2021.78, + "probability": 0.9695 + }, + { + "start": 2021.92, + "end": 2023.16, + "probability": 0.7821 + }, + { + "start": 2023.5, + "end": 2025.32, + "probability": 0.7307 + }, + { + "start": 2026.46, + "end": 2027.48, + "probability": 0.7644 + }, + { + "start": 2027.9, + "end": 2028.3, + "probability": 0.4142 + }, + { + "start": 2028.46, + "end": 2028.9, + "probability": 0.1998 + }, + { + "start": 2029.1, + "end": 2029.94, + "probability": 0.7817 + }, + { + "start": 2030.38, + "end": 2035.54, + "probability": 0.9256 + }, + { + "start": 2036.2, + "end": 2036.58, + "probability": 0.5822 + }, + { + "start": 2036.66, + "end": 2040.22, + "probability": 0.8378 + }, + { + "start": 2040.93, + "end": 2044.46, + "probability": 0.7767 + }, + { + "start": 2044.76, + "end": 2047.88, + "probability": 0.9904 + }, + { + "start": 2049.04, + "end": 2052.74, + "probability": 0.9891 + }, + { + "start": 2052.84, + "end": 2054.48, + "probability": 0.8207 + }, + { + "start": 2055.24, + "end": 2058.7, + "probability": 0.9953 + }, + { + "start": 2059.22, + "end": 2062.04, + "probability": 0.8632 + }, + { + "start": 2063.18, + "end": 2064.44, + "probability": 0.8209 + }, + { + "start": 2065.66, + "end": 2068.44, + "probability": 0.9827 + }, + { + "start": 2068.66, + "end": 2072.74, + "probability": 0.6639 + }, + { + "start": 2073.48, + "end": 2074.84, + "probability": 0.5344 + }, + { + "start": 2075.08, + "end": 2075.68, + "probability": 0.6926 + }, + { + "start": 2076.32, + "end": 2078.44, + "probability": 0.9292 + }, + { + "start": 2078.94, + "end": 2079.7, + "probability": 0.7089 + }, + { + "start": 2079.76, + "end": 2081.52, + "probability": 0.986 + }, + { + "start": 2082.04, + "end": 2082.72, + "probability": 0.9277 + }, + { + "start": 2083.32, + "end": 2084.2, + "probability": 0.9482 + }, + { + "start": 2084.62, + "end": 2085.64, + "probability": 0.9677 + }, + { + "start": 2085.74, + "end": 2087.06, + "probability": 0.9814 + }, + { + "start": 2088.12, + "end": 2089.48, + "probability": 0.9327 + }, + { + "start": 2089.6, + "end": 2094.96, + "probability": 0.8061 + }, + { + "start": 2095.78, + "end": 2098.52, + "probability": 0.9973 + }, + { + "start": 2099.6, + "end": 2101.12, + "probability": 0.5067 + }, + { + "start": 2101.59, + "end": 2104.78, + "probability": 0.9609 + }, + { + "start": 2106.24, + "end": 2108.72, + "probability": 0.8956 + }, + { + "start": 2109.66, + "end": 2110.94, + "probability": 0.9971 + }, + { + "start": 2111.52, + "end": 2113.12, + "probability": 0.9448 + }, + { + "start": 2113.36, + "end": 2117.32, + "probability": 0.988 + }, + { + "start": 2117.8, + "end": 2118.42, + "probability": 0.7365 + }, + { + "start": 2119.64, + "end": 2121.76, + "probability": 0.9367 + }, + { + "start": 2121.84, + "end": 2123.29, + "probability": 0.9637 + }, + { + "start": 2123.82, + "end": 2124.92, + "probability": 0.8487 + }, + { + "start": 2125.18, + "end": 2126.04, + "probability": 0.7347 + }, + { + "start": 2126.2, + "end": 2128.76, + "probability": 0.8322 + }, + { + "start": 2128.8, + "end": 2131.82, + "probability": 0.8372 + }, + { + "start": 2132.02, + "end": 2132.22, + "probability": 0.6182 + }, + { + "start": 2133.41, + "end": 2135.66, + "probability": 0.9543 + }, + { + "start": 2136.26, + "end": 2138.44, + "probability": 0.9921 + }, + { + "start": 2140.16, + "end": 2142.62, + "probability": 0.9882 + }, + { + "start": 2142.62, + "end": 2145.34, + "probability": 0.9997 + }, + { + "start": 2146.34, + "end": 2148.34, + "probability": 0.9684 + }, + { + "start": 2150.22, + "end": 2150.4, + "probability": 0.511 + }, + { + "start": 2150.46, + "end": 2155.1, + "probability": 0.9285 + }, + { + "start": 2155.72, + "end": 2155.72, + "probability": 0.0462 + }, + { + "start": 2155.72, + "end": 2158.48, + "probability": 0.9436 + }, + { + "start": 2158.48, + "end": 2161.76, + "probability": 0.935 + }, + { + "start": 2162.74, + "end": 2164.36, + "probability": 0.9106 + }, + { + "start": 2164.98, + "end": 2169.02, + "probability": 0.9897 + }, + { + "start": 2169.58, + "end": 2175.32, + "probability": 0.9955 + }, + { + "start": 2176.46, + "end": 2176.86, + "probability": 0.5571 + }, + { + "start": 2176.92, + "end": 2180.9, + "probability": 0.7446 + }, + { + "start": 2181.54, + "end": 2182.18, + "probability": 0.9088 + }, + { + "start": 2182.88, + "end": 2185.02, + "probability": 0.9616 + }, + { + "start": 2185.62, + "end": 2186.6, + "probability": 0.8883 + }, + { + "start": 2187.2, + "end": 2188.68, + "probability": 0.9517 + }, + { + "start": 2189.24, + "end": 2194.16, + "probability": 0.9708 + }, + { + "start": 2194.22, + "end": 2196.92, + "probability": 0.9823 + }, + { + "start": 2197.16, + "end": 2197.42, + "probability": 0.5486 + }, + { + "start": 2197.56, + "end": 2198.88, + "probability": 0.9237 + }, + { + "start": 2199.4, + "end": 2202.66, + "probability": 0.9518 + }, + { + "start": 2203.44, + "end": 2204.22, + "probability": 0.6895 + }, + { + "start": 2204.34, + "end": 2205.32, + "probability": 0.9601 + }, + { + "start": 2205.46, + "end": 2207.54, + "probability": 0.9441 + }, + { + "start": 2207.98, + "end": 2209.98, + "probability": 0.8853 + }, + { + "start": 2210.72, + "end": 2212.54, + "probability": 0.9667 + }, + { + "start": 2212.74, + "end": 2217.26, + "probability": 0.9901 + }, + { + "start": 2217.66, + "end": 2218.0, + "probability": 0.6892 + }, + { + "start": 2219.64, + "end": 2222.22, + "probability": 0.9941 + }, + { + "start": 2226.62, + "end": 2226.88, + "probability": 0.7989 + }, + { + "start": 2226.98, + "end": 2227.44, + "probability": 0.6573 + }, + { + "start": 2227.44, + "end": 2231.14, + "probability": 0.9629 + }, + { + "start": 2232.98, + "end": 2236.14, + "probability": 0.8596 + }, + { + "start": 2236.62, + "end": 2237.46, + "probability": 0.8975 + }, + { + "start": 2237.6, + "end": 2238.48, + "probability": 0.5796 + }, + { + "start": 2238.64, + "end": 2239.6, + "probability": 0.9609 + }, + { + "start": 2239.68, + "end": 2241.6, + "probability": 0.8971 + }, + { + "start": 2241.64, + "end": 2243.1, + "probability": 0.8433 + }, + { + "start": 2243.34, + "end": 2244.48, + "probability": 0.6491 + }, + { + "start": 2244.92, + "end": 2244.92, + "probability": 0.0217 + }, + { + "start": 2244.92, + "end": 2247.5, + "probability": 0.5104 + }, + { + "start": 2247.56, + "end": 2250.0, + "probability": 0.7468 + }, + { + "start": 2250.14, + "end": 2251.05, + "probability": 0.5249 + }, + { + "start": 2251.32, + "end": 2253.92, + "probability": 0.8442 + }, + { + "start": 2253.92, + "end": 2258.2, + "probability": 0.7006 + }, + { + "start": 2258.36, + "end": 2258.98, + "probability": 0.0979 + }, + { + "start": 2259.82, + "end": 2260.38, + "probability": 0.8037 + }, + { + "start": 2261.26, + "end": 2263.78, + "probability": 0.9943 + }, + { + "start": 2263.78, + "end": 2266.68, + "probability": 0.995 + }, + { + "start": 2267.32, + "end": 2269.9, + "probability": 0.7834 + }, + { + "start": 2270.14, + "end": 2273.08, + "probability": 0.8889 + }, + { + "start": 2273.22, + "end": 2274.98, + "probability": 0.7999 + }, + { + "start": 2275.4, + "end": 2276.92, + "probability": 0.7957 + }, + { + "start": 2277.0, + "end": 2278.6, + "probability": 0.9915 + }, + { + "start": 2279.28, + "end": 2282.0, + "probability": 0.9608 + }, + { + "start": 2282.04, + "end": 2282.58, + "probability": 0.7036 + }, + { + "start": 2283.08, + "end": 2287.56, + "probability": 0.9108 + }, + { + "start": 2287.62, + "end": 2289.0, + "probability": 0.8981 + }, + { + "start": 2289.46, + "end": 2290.82, + "probability": 0.416 + }, + { + "start": 2290.96, + "end": 2293.64, + "probability": 0.9945 + }, + { + "start": 2294.22, + "end": 2296.08, + "probability": 0.4021 + }, + { + "start": 2296.7, + "end": 2297.38, + "probability": 0.9409 + }, + { + "start": 2299.4, + "end": 2300.06, + "probability": 0.6745 + }, + { + "start": 2300.72, + "end": 2302.3, + "probability": 0.5735 + }, + { + "start": 2302.38, + "end": 2304.06, + "probability": 0.4799 + }, + { + "start": 2304.06, + "end": 2307.88, + "probability": 0.9946 + }, + { + "start": 2308.14, + "end": 2310.3, + "probability": 0.9868 + }, + { + "start": 2310.36, + "end": 2313.6, + "probability": 0.8238 + }, + { + "start": 2314.2, + "end": 2315.42, + "probability": 0.5078 + }, + { + "start": 2315.9, + "end": 2316.82, + "probability": 0.7032 + }, + { + "start": 2317.2, + "end": 2318.3, + "probability": 0.55 + }, + { + "start": 2318.36, + "end": 2319.95, + "probability": 0.9482 + }, + { + "start": 2321.98, + "end": 2322.62, + "probability": 0.9119 + }, + { + "start": 2322.72, + "end": 2323.88, + "probability": 0.9908 + }, + { + "start": 2323.98, + "end": 2324.82, + "probability": 0.9701 + }, + { + "start": 2325.22, + "end": 2326.03, + "probability": 0.98 + }, + { + "start": 2327.31, + "end": 2331.12, + "probability": 0.9864 + }, + { + "start": 2331.52, + "end": 2332.15, + "probability": 0.7316 + }, + { + "start": 2332.38, + "end": 2336.74, + "probability": 0.9946 + }, + { + "start": 2337.2, + "end": 2339.12, + "probability": 0.9969 + }, + { + "start": 2339.12, + "end": 2342.86, + "probability": 0.8866 + }, + { + "start": 2343.4, + "end": 2345.14, + "probability": 0.9121 + }, + { + "start": 2345.24, + "end": 2346.36, + "probability": 0.9127 + }, + { + "start": 2346.72, + "end": 2348.02, + "probability": 0.6252 + }, + { + "start": 2348.66, + "end": 2349.96, + "probability": 0.9695 + }, + { + "start": 2351.1, + "end": 2352.98, + "probability": 0.9047 + }, + { + "start": 2353.38, + "end": 2355.44, + "probability": 0.95 + }, + { + "start": 2355.74, + "end": 2357.62, + "probability": 0.7332 + }, + { + "start": 2357.66, + "end": 2358.44, + "probability": 0.8148 + }, + { + "start": 2358.5, + "end": 2360.84, + "probability": 0.9961 + }, + { + "start": 2361.08, + "end": 2361.3, + "probability": 0.7258 + }, + { + "start": 2362.12, + "end": 2364.48, + "probability": 0.9806 + }, + { + "start": 2364.6, + "end": 2367.04, + "probability": 0.9795 + }, + { + "start": 2367.08, + "end": 2369.46, + "probability": 0.8721 + }, + { + "start": 2373.46, + "end": 2375.08, + "probability": 0.7254 + }, + { + "start": 2375.78, + "end": 2382.8, + "probability": 0.8256 + }, + { + "start": 2383.8, + "end": 2388.24, + "probability": 0.9847 + }, + { + "start": 2388.24, + "end": 2394.6, + "probability": 0.9038 + }, + { + "start": 2394.64, + "end": 2399.58, + "probability": 0.822 + }, + { + "start": 2400.28, + "end": 2402.98, + "probability": 0.9014 + }, + { + "start": 2403.7, + "end": 2406.58, + "probability": 0.9751 + }, + { + "start": 2407.34, + "end": 2408.98, + "probability": 0.9539 + }, + { + "start": 2409.06, + "end": 2413.12, + "probability": 0.959 + }, + { + "start": 2413.84, + "end": 2422.1, + "probability": 0.9937 + }, + { + "start": 2422.1, + "end": 2426.06, + "probability": 0.9995 + }, + { + "start": 2426.74, + "end": 2430.24, + "probability": 0.9947 + }, + { + "start": 2430.74, + "end": 2434.5, + "probability": 0.9753 + }, + { + "start": 2434.64, + "end": 2437.28, + "probability": 0.9761 + }, + { + "start": 2438.18, + "end": 2440.64, + "probability": 0.6283 + }, + { + "start": 2440.72, + "end": 2441.46, + "probability": 0.863 + }, + { + "start": 2445.22, + "end": 2448.62, + "probability": 0.8981 + }, + { + "start": 2449.3, + "end": 2450.38, + "probability": 0.6354 + }, + { + "start": 2450.98, + "end": 2451.76, + "probability": 0.9722 + }, + { + "start": 2452.54, + "end": 2458.06, + "probability": 0.9972 + }, + { + "start": 2459.22, + "end": 2463.5, + "probability": 0.9971 + }, + { + "start": 2463.76, + "end": 2465.5, + "probability": 0.9891 + }, + { + "start": 2466.1, + "end": 2469.54, + "probability": 0.9744 + }, + { + "start": 2470.18, + "end": 2476.02, + "probability": 0.7649 + }, + { + "start": 2476.68, + "end": 2477.82, + "probability": 0.7959 + }, + { + "start": 2478.06, + "end": 2480.48, + "probability": 0.9264 + }, + { + "start": 2482.4, + "end": 2483.16, + "probability": 0.7039 + }, + { + "start": 2485.12, + "end": 2486.86, + "probability": 0.9001 + }, + { + "start": 2486.9, + "end": 2488.28, + "probability": 0.8438 + }, + { + "start": 2488.42, + "end": 2493.94, + "probability": 0.8255 + }, + { + "start": 2494.7, + "end": 2498.94, + "probability": 0.9993 + }, + { + "start": 2500.02, + "end": 2501.58, + "probability": 0.861 + }, + { + "start": 2502.58, + "end": 2504.58, + "probability": 0.9867 + }, + { + "start": 2505.34, + "end": 2506.52, + "probability": 0.9966 + }, + { + "start": 2507.08, + "end": 2508.22, + "probability": 0.8059 + }, + { + "start": 2508.96, + "end": 2511.96, + "probability": 0.98 + }, + { + "start": 2512.96, + "end": 2515.38, + "probability": 0.9824 + }, + { + "start": 2516.96, + "end": 2517.2, + "probability": 0.0221 + }, + { + "start": 2518.56, + "end": 2520.56, + "probability": 0.3314 + }, + { + "start": 2521.1, + "end": 2523.42, + "probability": 0.1077 + }, + { + "start": 2524.5, + "end": 2524.74, + "probability": 0.0299 + }, + { + "start": 2524.88, + "end": 2525.58, + "probability": 0.6479 + }, + { + "start": 2525.62, + "end": 2526.12, + "probability": 0.8546 + }, + { + "start": 2526.22, + "end": 2526.98, + "probability": 0.656 + }, + { + "start": 2527.06, + "end": 2529.38, + "probability": 0.8194 + }, + { + "start": 2529.46, + "end": 2530.34, + "probability": 0.9834 + }, + { + "start": 2530.82, + "end": 2532.88, + "probability": 0.9832 + }, + { + "start": 2533.02, + "end": 2533.22, + "probability": 0.7423 + }, + { + "start": 2534.08, + "end": 2537.1, + "probability": 0.8647 + }, + { + "start": 2537.66, + "end": 2540.58, + "probability": 0.9606 + }, + { + "start": 2540.74, + "end": 2543.0, + "probability": 0.9032 + }, + { + "start": 2543.14, + "end": 2544.7, + "probability": 0.8019 + }, + { + "start": 2544.92, + "end": 2548.36, + "probability": 0.6724 + }, + { + "start": 2548.36, + "end": 2551.8, + "probability": 0.9165 + }, + { + "start": 2552.84, + "end": 2555.88, + "probability": 0.5977 + }, + { + "start": 2555.88, + "end": 2558.76, + "probability": 0.9985 + }, + { + "start": 2560.32, + "end": 2563.3, + "probability": 0.8967 + }, + { + "start": 2564.36, + "end": 2564.82, + "probability": 0.591 + }, + { + "start": 2565.02, + "end": 2565.86, + "probability": 0.7646 + }, + { + "start": 2566.84, + "end": 2567.88, + "probability": 0.7079 + }, + { + "start": 2568.88, + "end": 2572.06, + "probability": 0.6869 + }, + { + "start": 2572.32, + "end": 2574.48, + "probability": 0.9539 + }, + { + "start": 2575.88, + "end": 2578.58, + "probability": 0.0092 + }, + { + "start": 2579.56, + "end": 2583.28, + "probability": 0.0495 + }, + { + "start": 2583.28, + "end": 2584.96, + "probability": 0.0259 + }, + { + "start": 2584.96, + "end": 2585.06, + "probability": 0.1609 + }, + { + "start": 2585.06, + "end": 2585.06, + "probability": 0.3416 + }, + { + "start": 2585.06, + "end": 2588.8, + "probability": 0.8319 + }, + { + "start": 2589.98, + "end": 2591.86, + "probability": 0.7213 + }, + { + "start": 2592.04, + "end": 2592.38, + "probability": 0.2581 + }, + { + "start": 2593.1, + "end": 2595.74, + "probability": 0.7513 + }, + { + "start": 2596.4, + "end": 2601.98, + "probability": 0.9354 + }, + { + "start": 2602.9, + "end": 2604.74, + "probability": 0.79 + }, + { + "start": 2605.08, + "end": 2607.3, + "probability": 0.9487 + }, + { + "start": 2607.84, + "end": 2609.98, + "probability": 0.9809 + }, + { + "start": 2609.98, + "end": 2612.76, + "probability": 0.9525 + }, + { + "start": 2613.9, + "end": 2617.94, + "probability": 0.998 + }, + { + "start": 2618.16, + "end": 2620.26, + "probability": 0.9666 + }, + { + "start": 2620.3, + "end": 2620.52, + "probability": 0.8153 + }, + { + "start": 2620.56, + "end": 2623.9, + "probability": 0.9111 + }, + { + "start": 2624.34, + "end": 2626.72, + "probability": 0.9819 + }, + { + "start": 2626.92, + "end": 2629.42, + "probability": 0.703 + }, + { + "start": 2629.46, + "end": 2632.0, + "probability": 0.825 + }, + { + "start": 2632.1, + "end": 2635.43, + "probability": 0.785 + }, + { + "start": 2636.16, + "end": 2636.48, + "probability": 0.926 + }, + { + "start": 2636.56, + "end": 2638.68, + "probability": 0.9922 + }, + { + "start": 2638.86, + "end": 2643.86, + "probability": 0.8602 + }, + { + "start": 2644.5, + "end": 2646.52, + "probability": 0.8522 + }, + { + "start": 2646.68, + "end": 2649.5, + "probability": 0.9172 + }, + { + "start": 2649.5, + "end": 2652.36, + "probability": 0.9962 + }, + { + "start": 2652.46, + "end": 2653.02, + "probability": 0.5244 + }, + { + "start": 2653.18, + "end": 2656.64, + "probability": 0.9975 + }, + { + "start": 2657.88, + "end": 2659.7, + "probability": 0.6766 + }, + { + "start": 2659.84, + "end": 2661.36, + "probability": 0.6551 + }, + { + "start": 2661.5, + "end": 2664.54, + "probability": 0.9897 + }, + { + "start": 2664.54, + "end": 2669.22, + "probability": 0.9972 + }, + { + "start": 2670.44, + "end": 2671.1, + "probability": 0.7743 + }, + { + "start": 2671.52, + "end": 2674.42, + "probability": 0.7696 + }, + { + "start": 2674.54, + "end": 2676.36, + "probability": 0.9746 + }, + { + "start": 2676.74, + "end": 2679.06, + "probability": 0.9816 + }, + { + "start": 2679.06, + "end": 2681.26, + "probability": 0.9943 + }, + { + "start": 2681.94, + "end": 2684.48, + "probability": 0.9963 + }, + { + "start": 2684.48, + "end": 2686.86, + "probability": 0.9985 + }, + { + "start": 2687.28, + "end": 2690.76, + "probability": 0.9727 + }, + { + "start": 2690.76, + "end": 2694.44, + "probability": 0.9979 + }, + { + "start": 2694.86, + "end": 2695.98, + "probability": 0.9249 + }, + { + "start": 2696.34, + "end": 2697.94, + "probability": 0.9877 + }, + { + "start": 2698.02, + "end": 2701.34, + "probability": 0.9843 + }, + { + "start": 2701.44, + "end": 2703.66, + "probability": 0.9888 + }, + { + "start": 2706.36, + "end": 2707.64, + "probability": 0.7836 + }, + { + "start": 2707.72, + "end": 2710.58, + "probability": 0.9951 + }, + { + "start": 2711.12, + "end": 2713.74, + "probability": 0.9937 + }, + { + "start": 2714.02, + "end": 2716.64, + "probability": 0.9486 + }, + { + "start": 2716.72, + "end": 2718.98, + "probability": 0.9543 + }, + { + "start": 2719.46, + "end": 2719.7, + "probability": 0.3672 + }, + { + "start": 2719.86, + "end": 2723.96, + "probability": 0.9092 + }, + { + "start": 2724.04, + "end": 2725.72, + "probability": 0.9792 + }, + { + "start": 2726.28, + "end": 2728.66, + "probability": 0.6045 + }, + { + "start": 2728.74, + "end": 2731.48, + "probability": 0.969 + }, + { + "start": 2731.94, + "end": 2737.54, + "probability": 0.9794 + }, + { + "start": 2737.58, + "end": 2739.76, + "probability": 0.9765 + }, + { + "start": 2741.69, + "end": 2744.94, + "probability": 0.8193 + }, + { + "start": 2749.74, + "end": 2750.74, + "probability": 0.6354 + }, + { + "start": 2750.86, + "end": 2753.26, + "probability": 0.9611 + }, + { + "start": 2755.66, + "end": 2756.97, + "probability": 0.9841 + }, + { + "start": 2757.06, + "end": 2759.27, + "probability": 0.9045 + }, + { + "start": 2759.34, + "end": 2763.04, + "probability": 0.9873 + }, + { + "start": 2763.16, + "end": 2764.98, + "probability": 0.6953 + }, + { + "start": 2765.18, + "end": 2766.7, + "probability": 0.9344 + }, + { + "start": 2767.62, + "end": 2771.9, + "probability": 0.8867 + }, + { + "start": 2771.96, + "end": 2772.84, + "probability": 0.6246 + }, + { + "start": 2773.82, + "end": 2774.86, + "probability": 0.9725 + }, + { + "start": 2775.18, + "end": 2776.14, + "probability": 0.84 + }, + { + "start": 2776.22, + "end": 2779.56, + "probability": 0.9892 + }, + { + "start": 2779.68, + "end": 2782.04, + "probability": 0.9795 + }, + { + "start": 2782.22, + "end": 2783.96, + "probability": 0.7544 + }, + { + "start": 2784.04, + "end": 2787.16, + "probability": 0.9431 + }, + { + "start": 2787.34, + "end": 2787.96, + "probability": 0.6216 + }, + { + "start": 2788.04, + "end": 2789.32, + "probability": 0.8843 + }, + { + "start": 2789.38, + "end": 2790.32, + "probability": 0.9854 + }, + { + "start": 2790.48, + "end": 2791.38, + "probability": 0.8949 + }, + { + "start": 2791.64, + "end": 2792.64, + "probability": 0.9841 + }, + { + "start": 2792.74, + "end": 2793.56, + "probability": 0.986 + }, + { + "start": 2793.62, + "end": 2794.18, + "probability": 0.7415 + }, + { + "start": 2794.54, + "end": 2795.92, + "probability": 0.7659 + }, + { + "start": 2796.24, + "end": 2797.66, + "probability": 0.9719 + }, + { + "start": 2797.7, + "end": 2801.16, + "probability": 0.9733 + }, + { + "start": 2801.66, + "end": 2804.14, + "probability": 0.9639 + }, + { + "start": 2804.5, + "end": 2805.92, + "probability": 0.553 + }, + { + "start": 2806.02, + "end": 2807.48, + "probability": 0.8447 + }, + { + "start": 2808.24, + "end": 2808.82, + "probability": 0.827 + }, + { + "start": 2808.9, + "end": 2810.98, + "probability": 0.4824 + }, + { + "start": 2811.02, + "end": 2811.4, + "probability": 0.6205 + }, + { + "start": 2811.5, + "end": 2812.74, + "probability": 0.9117 + }, + { + "start": 2813.56, + "end": 2815.26, + "probability": 0.9775 + }, + { + "start": 2815.48, + "end": 2818.84, + "probability": 0.9696 + }, + { + "start": 2818.84, + "end": 2821.24, + "probability": 0.991 + }, + { + "start": 2821.5, + "end": 2824.96, + "probability": 0.9364 + }, + { + "start": 2825.78, + "end": 2828.12, + "probability": 0.9951 + }, + { + "start": 2828.18, + "end": 2832.7, + "probability": 0.9907 + }, + { + "start": 2833.2, + "end": 2835.94, + "probability": 0.9956 + }, + { + "start": 2836.12, + "end": 2838.29, + "probability": 0.9952 + }, + { + "start": 2838.38, + "end": 2840.9, + "probability": 0.8021 + }, + { + "start": 2841.02, + "end": 2844.1, + "probability": 0.9229 + }, + { + "start": 2844.48, + "end": 2845.98, + "probability": 0.7437 + }, + { + "start": 2846.1, + "end": 2849.08, + "probability": 0.9749 + }, + { + "start": 2849.08, + "end": 2853.1, + "probability": 0.996 + }, + { + "start": 2853.58, + "end": 2853.98, + "probability": 0.3843 + }, + { + "start": 2854.06, + "end": 2857.78, + "probability": 0.9927 + }, + { + "start": 2858.14, + "end": 2858.88, + "probability": 0.8285 + }, + { + "start": 2860.6, + "end": 2864.02, + "probability": 0.9675 + }, + { + "start": 2865.9, + "end": 2868.02, + "probability": 0.647 + }, + { + "start": 2868.16, + "end": 2868.88, + "probability": 0.8741 + }, + { + "start": 2868.98, + "end": 2870.96, + "probability": 0.9365 + }, + { + "start": 2872.24, + "end": 2872.78, + "probability": 0.5135 + }, + { + "start": 2876.06, + "end": 2881.44, + "probability": 0.9383 + }, + { + "start": 2881.54, + "end": 2883.98, + "probability": 0.8988 + }, + { + "start": 2884.64, + "end": 2886.9, + "probability": 0.2247 + }, + { + "start": 2888.68, + "end": 2891.44, + "probability": 0.7268 + }, + { + "start": 2891.56, + "end": 2892.74, + "probability": 0.7214 + }, + { + "start": 2892.86, + "end": 2894.94, + "probability": 0.7624 + }, + { + "start": 2896.26, + "end": 2898.78, + "probability": 0.8158 + }, + { + "start": 2899.32, + "end": 2901.16, + "probability": 0.9431 + }, + { + "start": 2902.64, + "end": 2903.5, + "probability": 0.9224 + }, + { + "start": 2904.52, + "end": 2904.7, + "probability": 0.2062 + }, + { + "start": 2904.7, + "end": 2904.7, + "probability": 0.1811 + }, + { + "start": 2904.7, + "end": 2907.96, + "probability": 0.5956 + }, + { + "start": 2908.18, + "end": 2908.68, + "probability": 0.8554 + }, + { + "start": 2908.92, + "end": 2910.08, + "probability": 0.7824 + }, + { + "start": 2911.12, + "end": 2913.4, + "probability": 0.9339 + }, + { + "start": 2913.58, + "end": 2914.32, + "probability": 0.9767 + }, + { + "start": 2914.46, + "end": 2915.2, + "probability": 0.9617 + }, + { + "start": 2915.98, + "end": 2918.92, + "probability": 0.9279 + }, + { + "start": 2919.74, + "end": 2920.72, + "probability": 0.986 + }, + { + "start": 2920.78, + "end": 2921.73, + "probability": 0.8544 + }, + { + "start": 2921.94, + "end": 2923.36, + "probability": 0.8424 + }, + { + "start": 2923.7, + "end": 2926.38, + "probability": 0.9907 + }, + { + "start": 2926.48, + "end": 2927.12, + "probability": 0.944 + }, + { + "start": 2927.84, + "end": 2928.38, + "probability": 0.97 + }, + { + "start": 2928.5, + "end": 2929.54, + "probability": 0.9739 + }, + { + "start": 2929.68, + "end": 2930.68, + "probability": 0.9603 + }, + { + "start": 2931.16, + "end": 2931.66, + "probability": 0.958 + }, + { + "start": 2932.32, + "end": 2936.5, + "probability": 0.8964 + }, + { + "start": 2937.2, + "end": 2939.72, + "probability": 0.99 + }, + { + "start": 2939.94, + "end": 2940.88, + "probability": 0.9589 + }, + { + "start": 2941.4, + "end": 2943.34, + "probability": 0.9943 + }, + { + "start": 2943.68, + "end": 2946.1, + "probability": 0.9987 + }, + { + "start": 2946.94, + "end": 2948.86, + "probability": 0.9944 + }, + { + "start": 2949.28, + "end": 2950.6, + "probability": 0.5045 + }, + { + "start": 2950.64, + "end": 2953.02, + "probability": 0.9343 + }, + { + "start": 2953.02, + "end": 2956.46, + "probability": 0.9848 + }, + { + "start": 2956.82, + "end": 2957.58, + "probability": 0.7514 + }, + { + "start": 2958.3, + "end": 2961.76, + "probability": 0.9929 + }, + { + "start": 2962.42, + "end": 2963.14, + "probability": 0.9462 + }, + { + "start": 2963.66, + "end": 2966.02, + "probability": 0.8797 + }, + { + "start": 2966.64, + "end": 2968.84, + "probability": 0.8726 + }, + { + "start": 2969.96, + "end": 2970.26, + "probability": 0.8047 + }, + { + "start": 2970.38, + "end": 2971.24, + "probability": 0.877 + }, + { + "start": 2971.42, + "end": 2975.64, + "probability": 0.8448 + }, + { + "start": 2975.94, + "end": 2978.76, + "probability": 0.9763 + }, + { + "start": 2979.62, + "end": 2982.68, + "probability": 0.9941 + }, + { + "start": 2983.12, + "end": 2985.1, + "probability": 0.9386 + }, + { + "start": 2985.1, + "end": 2988.06, + "probability": 0.9981 + }, + { + "start": 2988.62, + "end": 2988.8, + "probability": 0.4522 + }, + { + "start": 2988.9, + "end": 2992.28, + "probability": 0.9968 + }, + { + "start": 2993.14, + "end": 2994.06, + "probability": 0.7943 + }, + { + "start": 2994.18, + "end": 2995.22, + "probability": 0.8855 + }, + { + "start": 2995.3, + "end": 2997.92, + "probability": 0.9964 + }, + { + "start": 2998.76, + "end": 2999.14, + "probability": 0.7751 + }, + { + "start": 2999.24, + "end": 3001.56, + "probability": 0.9914 + }, + { + "start": 3001.64, + "end": 3002.88, + "probability": 0.9469 + }, + { + "start": 3003.6, + "end": 3006.88, + "probability": 0.9948 + }, + { + "start": 3007.24, + "end": 3008.5, + "probability": 0.9878 + }, + { + "start": 3009.16, + "end": 3011.86, + "probability": 0.951 + }, + { + "start": 3012.88, + "end": 3014.76, + "probability": 0.6202 + }, + { + "start": 3014.88, + "end": 3016.32, + "probability": 0.9976 + }, + { + "start": 3016.44, + "end": 3017.72, + "probability": 0.6284 + }, + { + "start": 3017.88, + "end": 3018.24, + "probability": 0.4615 + }, + { + "start": 3018.38, + "end": 3018.74, + "probability": 0.8278 + }, + { + "start": 3019.14, + "end": 3019.58, + "probability": 0.057 + }, + { + "start": 3033.64, + "end": 3033.8, + "probability": 0.0134 + }, + { + "start": 3033.8, + "end": 3033.8, + "probability": 0.019 + }, + { + "start": 3033.8, + "end": 3033.8, + "probability": 0.1157 + }, + { + "start": 3033.8, + "end": 3035.44, + "probability": 0.7752 + }, + { + "start": 3035.62, + "end": 3036.41, + "probability": 0.9547 + }, + { + "start": 3037.36, + "end": 3038.58, + "probability": 0.8303 + }, + { + "start": 3038.72, + "end": 3040.22, + "probability": 0.8812 + }, + { + "start": 3040.44, + "end": 3041.92, + "probability": 0.8433 + }, + { + "start": 3043.0, + "end": 3045.16, + "probability": 0.9954 + }, + { + "start": 3045.74, + "end": 3046.56, + "probability": 0.4704 + }, + { + "start": 3047.68, + "end": 3055.4, + "probability": 0.9956 + }, + { + "start": 3057.2, + "end": 3064.6, + "probability": 0.9766 + }, + { + "start": 3065.56, + "end": 3068.0, + "probability": 0.9708 + }, + { + "start": 3069.46, + "end": 3074.36, + "probability": 0.8679 + }, + { + "start": 3075.04, + "end": 3080.86, + "probability": 0.9958 + }, + { + "start": 3081.4, + "end": 3082.38, + "probability": 0.7839 + }, + { + "start": 3083.62, + "end": 3084.94, + "probability": 0.7655 + }, + { + "start": 3085.72, + "end": 3092.68, + "probability": 0.9933 + }, + { + "start": 3093.6, + "end": 3098.81, + "probability": 0.9224 + }, + { + "start": 3099.74, + "end": 3105.67, + "probability": 0.9678 + }, + { + "start": 3107.48, + "end": 3111.94, + "probability": 0.8007 + }, + { + "start": 3112.62, + "end": 3117.82, + "probability": 0.9487 + }, + { + "start": 3118.66, + "end": 3119.5, + "probability": 0.6885 + }, + { + "start": 3120.24, + "end": 3122.06, + "probability": 0.0042 + }, + { + "start": 3122.16, + "end": 3122.23, + "probability": 0.058 + }, + { + "start": 3122.32, + "end": 3125.62, + "probability": 0.9148 + }, + { + "start": 3126.62, + "end": 3127.92, + "probability": 0.013 + }, + { + "start": 3128.46, + "end": 3129.16, + "probability": 0.641 + }, + { + "start": 3129.48, + "end": 3131.12, + "probability": 0.8995 + }, + { + "start": 3131.22, + "end": 3132.76, + "probability": 0.9961 + }, + { + "start": 3133.58, + "end": 3134.22, + "probability": 0.6165 + }, + { + "start": 3134.68, + "end": 3138.42, + "probability": 0.9751 + }, + { + "start": 3138.42, + "end": 3141.8, + "probability": 0.9961 + }, + { + "start": 3142.52, + "end": 3146.56, + "probability": 0.7895 + }, + { + "start": 3146.9, + "end": 3150.3, + "probability": 0.7541 + }, + { + "start": 3150.44, + "end": 3150.94, + "probability": 0.8429 + }, + { + "start": 3151.08, + "end": 3151.5, + "probability": 0.8752 + }, + { + "start": 3152.64, + "end": 3159.04, + "probability": 0.98 + }, + { + "start": 3159.96, + "end": 3166.18, + "probability": 0.9482 + }, + { + "start": 3166.58, + "end": 3168.32, + "probability": 0.9206 + }, + { + "start": 3169.0, + "end": 3172.12, + "probability": 0.9894 + }, + { + "start": 3173.14, + "end": 3173.56, + "probability": 0.6606 + }, + { + "start": 3173.86, + "end": 3176.76, + "probability": 0.8318 + }, + { + "start": 3177.28, + "end": 3180.64, + "probability": 0.9966 + }, + { + "start": 3180.64, + "end": 3185.3, + "probability": 0.9645 + }, + { + "start": 3185.78, + "end": 3187.3, + "probability": 0.8188 + }, + { + "start": 3187.46, + "end": 3188.46, + "probability": 0.9745 + }, + { + "start": 3188.52, + "end": 3189.96, + "probability": 0.9823 + }, + { + "start": 3190.78, + "end": 3194.06, + "probability": 0.9863 + }, + { + "start": 3194.06, + "end": 3199.0, + "probability": 0.9972 + }, + { + "start": 3199.74, + "end": 3206.1, + "probability": 0.981 + }, + { + "start": 3206.1, + "end": 3210.48, + "probability": 0.9946 + }, + { + "start": 3211.82, + "end": 3216.16, + "probability": 0.8388 + }, + { + "start": 3216.78, + "end": 3218.76, + "probability": 0.9502 + }, + { + "start": 3219.6, + "end": 3224.38, + "probability": 0.9846 + }, + { + "start": 3224.38, + "end": 3229.34, + "probability": 0.9669 + }, + { + "start": 3229.86, + "end": 3231.62, + "probability": 0.323 + }, + { + "start": 3232.48, + "end": 3237.7, + "probability": 0.9759 + }, + { + "start": 3238.32, + "end": 3239.8, + "probability": 0.8845 + }, + { + "start": 3240.78, + "end": 3242.6, + "probability": 0.9036 + }, + { + "start": 3242.82, + "end": 3244.94, + "probability": 0.9978 + }, + { + "start": 3245.54, + "end": 3247.24, + "probability": 0.9237 + }, + { + "start": 3247.76, + "end": 3249.78, + "probability": 0.9576 + }, + { + "start": 3250.32, + "end": 3252.78, + "probability": 0.7485 + }, + { + "start": 3253.6, + "end": 3254.22, + "probability": 0.788 + }, + { + "start": 3254.3, + "end": 3259.0, + "probability": 0.921 + }, + { + "start": 3259.0, + "end": 3263.66, + "probability": 0.9784 + }, + { + "start": 3264.88, + "end": 3266.6, + "probability": 0.9634 + }, + { + "start": 3266.96, + "end": 3267.44, + "probability": 0.7917 + }, + { + "start": 3267.54, + "end": 3269.42, + "probability": 0.748 + }, + { + "start": 3269.98, + "end": 3270.94, + "probability": 0.842 + }, + { + "start": 3271.52, + "end": 3273.04, + "probability": 0.8791 + }, + { + "start": 3273.18, + "end": 3275.26, + "probability": 0.9118 + }, + { + "start": 3275.28, + "end": 3276.14, + "probability": 0.2978 + }, + { + "start": 3276.7, + "end": 3279.78, + "probability": 0.9612 + }, + { + "start": 3280.9, + "end": 3283.14, + "probability": 0.999 + }, + { + "start": 3283.14, + "end": 3285.64, + "probability": 0.9912 + }, + { + "start": 3286.2, + "end": 3291.47, + "probability": 0.9831 + }, + { + "start": 3292.34, + "end": 3293.26, + "probability": 0.7175 + }, + { + "start": 3293.32, + "end": 3294.74, + "probability": 0.6895 + }, + { + "start": 3295.2, + "end": 3297.24, + "probability": 0.9653 + }, + { + "start": 3297.32, + "end": 3298.02, + "probability": 0.5563 + }, + { + "start": 3298.58, + "end": 3301.12, + "probability": 0.9835 + }, + { + "start": 3301.58, + "end": 3305.18, + "probability": 0.9941 + }, + { + "start": 3305.64, + "end": 3307.52, + "probability": 0.9744 + }, + { + "start": 3308.56, + "end": 3309.12, + "probability": 0.7383 + }, + { + "start": 3310.02, + "end": 3312.82, + "probability": 0.6983 + }, + { + "start": 3313.4, + "end": 3316.1, + "probability": 0.9452 + }, + { + "start": 3316.64, + "end": 3322.48, + "probability": 0.9214 + }, + { + "start": 3322.48, + "end": 3326.42, + "probability": 0.9792 + }, + { + "start": 3327.16, + "end": 3327.88, + "probability": 0.7118 + }, + { + "start": 3328.14, + "end": 3329.12, + "probability": 0.8091 + }, + { + "start": 3329.32, + "end": 3330.56, + "probability": 0.6451 + }, + { + "start": 3331.02, + "end": 3331.95, + "probability": 0.7166 + }, + { + "start": 3332.1, + "end": 3335.84, + "probability": 0.9404 + }, + { + "start": 3335.84, + "end": 3339.8, + "probability": 0.9758 + }, + { + "start": 3340.34, + "end": 3345.06, + "probability": 0.9862 + }, + { + "start": 3345.6, + "end": 3349.18, + "probability": 0.9861 + }, + { + "start": 3351.32, + "end": 3355.52, + "probability": 0.8665 + }, + { + "start": 3356.12, + "end": 3358.66, + "probability": 0.9971 + }, + { + "start": 3359.14, + "end": 3361.9, + "probability": 0.9788 + }, + { + "start": 3361.98, + "end": 3365.42, + "probability": 0.986 + }, + { + "start": 3378.46, + "end": 3380.28, + "probability": 0.7879 + }, + { + "start": 3382.68, + "end": 3384.64, + "probability": 0.7012 + }, + { + "start": 3385.36, + "end": 3386.26, + "probability": 0.7222 + }, + { + "start": 3386.34, + "end": 3386.94, + "probability": 0.8959 + }, + { + "start": 3387.04, + "end": 3388.4, + "probability": 0.9963 + }, + { + "start": 3389.02, + "end": 3390.7, + "probability": 0.9905 + }, + { + "start": 3391.32, + "end": 3391.82, + "probability": 0.6208 + }, + { + "start": 3392.7, + "end": 3395.78, + "probability": 0.8516 + }, + { + "start": 3395.94, + "end": 3396.42, + "probability": 0.4464 + }, + { + "start": 3396.74, + "end": 3397.86, + "probability": 0.4537 + }, + { + "start": 3398.22, + "end": 3400.94, + "probability": 0.9676 + }, + { + "start": 3402.46, + "end": 3402.78, + "probability": 0.8814 + }, + { + "start": 3402.86, + "end": 3403.22, + "probability": 0.515 + }, + { + "start": 3404.56, + "end": 3407.08, + "probability": 0.0162 + }, + { + "start": 3407.08, + "end": 3411.54, + "probability": 0.9189 + }, + { + "start": 3412.4, + "end": 3416.74, + "probability": 0.8084 + }, + { + "start": 3417.22, + "end": 3419.4, + "probability": 0.8401 + }, + { + "start": 3420.14, + "end": 3423.28, + "probability": 0.4019 + }, + { + "start": 3423.84, + "end": 3424.02, + "probability": 0.1333 + }, + { + "start": 3424.02, + "end": 3424.02, + "probability": 0.0099 + }, + { + "start": 3424.02, + "end": 3424.6, + "probability": 0.3839 + }, + { + "start": 3427.3, + "end": 3428.98, + "probability": 0.8091 + }, + { + "start": 3430.44, + "end": 3433.92, + "probability": 0.8884 + }, + { + "start": 3434.46, + "end": 3434.95, + "probability": 0.9226 + }, + { + "start": 3435.22, + "end": 3437.82, + "probability": 0.9524 + }, + { + "start": 3438.0, + "end": 3438.92, + "probability": 0.976 + }, + { + "start": 3439.12, + "end": 3439.82, + "probability": 0.8802 + }, + { + "start": 3440.54, + "end": 3441.62, + "probability": 0.7691 + }, + { + "start": 3441.98, + "end": 3444.02, + "probability": 0.8621 + }, + { + "start": 3444.08, + "end": 3444.38, + "probability": 0.495 + }, + { + "start": 3444.56, + "end": 3444.92, + "probability": 0.3475 + }, + { + "start": 3445.38, + "end": 3446.68, + "probability": 0.8022 + }, + { + "start": 3447.26, + "end": 3447.38, + "probability": 0.0053 + }, + { + "start": 3447.38, + "end": 3448.94, + "probability": 0.7247 + }, + { + "start": 3449.0, + "end": 3450.89, + "probability": 0.8896 + }, + { + "start": 3451.52, + "end": 3453.3, + "probability": 0.9119 + }, + { + "start": 3453.68, + "end": 3454.61, + "probability": 0.96 + }, + { + "start": 3455.24, + "end": 3460.66, + "probability": 0.7517 + }, + { + "start": 3461.0, + "end": 3461.8, + "probability": 0.7789 + }, + { + "start": 3461.98, + "end": 3462.68, + "probability": 0.7344 + }, + { + "start": 3462.96, + "end": 3463.78, + "probability": 0.7861 + }, + { + "start": 3464.18, + "end": 3464.86, + "probability": 0.4947 + }, + { + "start": 3465.26, + "end": 3466.04, + "probability": 0.9192 + }, + { + "start": 3466.52, + "end": 3470.8, + "probability": 0.925 + }, + { + "start": 3471.48, + "end": 3474.56, + "probability": 0.8105 + }, + { + "start": 3474.62, + "end": 3474.78, + "probability": 0.0817 + }, + { + "start": 3474.78, + "end": 3476.56, + "probability": 0.8905 + }, + { + "start": 3477.0, + "end": 3477.48, + "probability": 0.2568 + }, + { + "start": 3477.68, + "end": 3478.2, + "probability": 0.2322 + }, + { + "start": 3478.2, + "end": 3478.32, + "probability": 0.5271 + }, + { + "start": 3478.68, + "end": 3480.4, + "probability": 0.4917 + }, + { + "start": 3480.82, + "end": 3482.08, + "probability": 0.5515 + }, + { + "start": 3482.38, + "end": 3483.1, + "probability": 0.583 + }, + { + "start": 3483.28, + "end": 3483.84, + "probability": 0.6482 + }, + { + "start": 3483.88, + "end": 3489.88, + "probability": 0.8116 + }, + { + "start": 3490.3, + "end": 3492.58, + "probability": 0.9132 + }, + { + "start": 3492.58, + "end": 3493.22, + "probability": 0.0088 + }, + { + "start": 3493.22, + "end": 3493.64, + "probability": 0.8836 + }, + { + "start": 3494.08, + "end": 3494.24, + "probability": 0.3005 + }, + { + "start": 3494.24, + "end": 3494.24, + "probability": 0.4834 + }, + { + "start": 3494.32, + "end": 3496.5, + "probability": 0.8051 + }, + { + "start": 3497.14, + "end": 3498.1, + "probability": 0.9641 + }, + { + "start": 3498.38, + "end": 3500.06, + "probability": 0.9573 + }, + { + "start": 3500.42, + "end": 3501.36, + "probability": 0.479 + }, + { + "start": 3501.42, + "end": 3502.36, + "probability": 0.7016 + }, + { + "start": 3503.2, + "end": 3503.2, + "probability": 0.3105 + }, + { + "start": 3503.4, + "end": 3507.04, + "probability": 0.8716 + }, + { + "start": 3507.24, + "end": 3508.36, + "probability": 0.9227 + }, + { + "start": 3508.94, + "end": 3509.84, + "probability": 0.9286 + }, + { + "start": 3510.16, + "end": 3513.42, + "probability": 0.9395 + }, + { + "start": 3513.72, + "end": 3514.72, + "probability": 0.9872 + }, + { + "start": 3515.02, + "end": 3516.08, + "probability": 0.5021 + }, + { + "start": 3516.64, + "end": 3519.79, + "probability": 0.8884 + }, + { + "start": 3522.08, + "end": 3525.7, + "probability": 0.9951 + }, + { + "start": 3526.2, + "end": 3528.06, + "probability": 0.9414 + }, + { + "start": 3528.76, + "end": 3530.7, + "probability": 0.9316 + }, + { + "start": 3531.18, + "end": 3533.64, + "probability": 0.9905 + }, + { + "start": 3533.78, + "end": 3541.9, + "probability": 0.996 + }, + { + "start": 3542.22, + "end": 3546.86, + "probability": 0.9985 + }, + { + "start": 3547.42, + "end": 3549.18, + "probability": 0.9866 + }, + { + "start": 3549.54, + "end": 3550.47, + "probability": 0.6766 + }, + { + "start": 3550.82, + "end": 3553.27, + "probability": 0.9211 + }, + { + "start": 3554.2, + "end": 3555.78, + "probability": 0.8995 + }, + { + "start": 3556.58, + "end": 3556.78, + "probability": 0.0096 + }, + { + "start": 3556.78, + "end": 3559.06, + "probability": 0.5884 + }, + { + "start": 3559.98, + "end": 3562.12, + "probability": 0.2904 + }, + { + "start": 3562.28, + "end": 3563.26, + "probability": 0.8646 + }, + { + "start": 3563.34, + "end": 3566.28, + "probability": 0.9608 + }, + { + "start": 3566.58, + "end": 3568.16, + "probability": 0.772 + }, + { + "start": 3568.48, + "end": 3568.78, + "probability": 0.5106 + }, + { + "start": 3568.78, + "end": 3571.22, + "probability": 0.8636 + }, + { + "start": 3571.54, + "end": 3573.04, + "probability": 0.9075 + }, + { + "start": 3573.6, + "end": 3574.5, + "probability": 0.975 + }, + { + "start": 3575.24, + "end": 3577.88, + "probability": 0.9139 + }, + { + "start": 3577.92, + "end": 3579.82, + "probability": 0.9139 + }, + { + "start": 3580.08, + "end": 3581.62, + "probability": 0.325 + }, + { + "start": 3581.62, + "end": 3582.66, + "probability": 0.5584 + }, + { + "start": 3583.32, + "end": 3585.33, + "probability": 0.9917 + }, + { + "start": 3585.82, + "end": 3586.48, + "probability": 0.914 + }, + { + "start": 3586.52, + "end": 3587.28, + "probability": 0.7376 + }, + { + "start": 3587.54, + "end": 3588.24, + "probability": 0.8789 + }, + { + "start": 3588.6, + "end": 3591.83, + "probability": 0.9866 + }, + { + "start": 3592.16, + "end": 3593.14, + "probability": 0.6772 + }, + { + "start": 3593.32, + "end": 3593.99, + "probability": 0.7706 + }, + { + "start": 3594.52, + "end": 3596.86, + "probability": 0.6132 + }, + { + "start": 3597.56, + "end": 3598.5, + "probability": 0.7462 + }, + { + "start": 3598.68, + "end": 3603.06, + "probability": 0.9647 + }, + { + "start": 3604.43, + "end": 3606.6, + "probability": 0.8552 + }, + { + "start": 3607.3, + "end": 3608.14, + "probability": 0.8383 + }, + { + "start": 3608.26, + "end": 3608.86, + "probability": 0.5421 + }, + { + "start": 3609.38, + "end": 3611.96, + "probability": 0.8491 + }, + { + "start": 3612.12, + "end": 3614.94, + "probability": 0.9438 + }, + { + "start": 3619.74, + "end": 3621.78, + "probability": 0.5027 + }, + { + "start": 3626.98, + "end": 3628.12, + "probability": 0.6918 + }, + { + "start": 3629.04, + "end": 3629.7, + "probability": 0.7581 + }, + { + "start": 3630.4, + "end": 3631.02, + "probability": 0.7893 + }, + { + "start": 3631.16, + "end": 3633.78, + "probability": 0.8188 + }, + { + "start": 3634.04, + "end": 3636.78, + "probability": 0.9477 + }, + { + "start": 3637.34, + "end": 3639.56, + "probability": 0.9725 + }, + { + "start": 3639.62, + "end": 3643.92, + "probability": 0.9368 + }, + { + "start": 3644.34, + "end": 3645.6, + "probability": 0.998 + }, + { + "start": 3645.98, + "end": 3646.76, + "probability": 0.6801 + }, + { + "start": 3646.84, + "end": 3650.35, + "probability": 0.9595 + }, + { + "start": 3651.14, + "end": 3653.5, + "probability": 0.9883 + }, + { + "start": 3653.98, + "end": 3656.64, + "probability": 0.9705 + }, + { + "start": 3656.8, + "end": 3657.78, + "probability": 0.9805 + }, + { + "start": 3658.48, + "end": 3659.36, + "probability": 0.636 + }, + { + "start": 3659.8, + "end": 3661.54, + "probability": 0.9954 + }, + { + "start": 3661.68, + "end": 3661.98, + "probability": 0.6831 + }, + { + "start": 3663.24, + "end": 3665.46, + "probability": 0.6387 + }, + { + "start": 3665.6, + "end": 3667.08, + "probability": 0.994 + }, + { + "start": 3668.18, + "end": 3669.68, + "probability": 0.9164 + }, + { + "start": 3671.92, + "end": 3676.7, + "probability": 0.9558 + }, + { + "start": 3676.78, + "end": 3678.96, + "probability": 0.9362 + }, + { + "start": 3679.04, + "end": 3681.1, + "probability": 0.1899 + }, + { + "start": 3681.56, + "end": 3684.48, + "probability": 0.9313 + }, + { + "start": 3685.24, + "end": 3685.92, + "probability": 0.6309 + }, + { + "start": 3686.6, + "end": 3687.34, + "probability": 0.7575 + }, + { + "start": 3688.2, + "end": 3689.36, + "probability": 0.7939 + }, + { + "start": 3691.08, + "end": 3697.12, + "probability": 0.0425 + }, + { + "start": 3698.3, + "end": 3700.64, + "probability": 0.0127 + }, + { + "start": 3700.64, + "end": 3704.82, + "probability": 0.0255 + }, + { + "start": 3705.22, + "end": 3707.04, + "probability": 0.0178 + }, + { + "start": 3707.04, + "end": 3707.08, + "probability": 0.2476 + }, + { + "start": 3707.08, + "end": 3707.08, + "probability": 0.5062 + }, + { + "start": 3707.08, + "end": 3712.08, + "probability": 0.7892 + }, + { + "start": 3712.88, + "end": 3717.62, + "probability": 0.8897 + }, + { + "start": 3717.64, + "end": 3721.0, + "probability": 0.9957 + }, + { + "start": 3721.22, + "end": 3722.84, + "probability": 0.9592 + }, + { + "start": 3725.22, + "end": 3726.1, + "probability": 0.82 + }, + { + "start": 3726.85, + "end": 3730.62, + "probability": 0.9898 + }, + { + "start": 3730.94, + "end": 3732.2, + "probability": 0.9295 + }, + { + "start": 3732.26, + "end": 3733.5, + "probability": 0.9514 + }, + { + "start": 3733.6, + "end": 3735.49, + "probability": 0.9811 + }, + { + "start": 3735.92, + "end": 3737.52, + "probability": 0.7296 + }, + { + "start": 3737.72, + "end": 3740.44, + "probability": 0.9775 + }, + { + "start": 3741.12, + "end": 3744.9, + "probability": 0.9852 + }, + { + "start": 3744.9, + "end": 3748.92, + "probability": 0.9897 + }, + { + "start": 3749.78, + "end": 3754.32, + "probability": 0.5186 + }, + { + "start": 3757.1, + "end": 3757.14, + "probability": 0.4485 + }, + { + "start": 3757.14, + "end": 3757.14, + "probability": 0.0123 + }, + { + "start": 3757.14, + "end": 3757.96, + "probability": 0.3479 + }, + { + "start": 3758.46, + "end": 3759.94, + "probability": 0.7739 + }, + { + "start": 3760.0, + "end": 3760.72, + "probability": 0.7757 + }, + { + "start": 3761.2, + "end": 3765.38, + "probability": 0.9844 + }, + { + "start": 3778.42, + "end": 3780.4, + "probability": 0.6716 + }, + { + "start": 3780.64, + "end": 3781.16, + "probability": 0.6709 + }, + { + "start": 3781.96, + "end": 3784.42, + "probability": 0.6592 + }, + { + "start": 3784.52, + "end": 3784.52, + "probability": 0.7059 + }, + { + "start": 3784.52, + "end": 3785.32, + "probability": 0.8318 + }, + { + "start": 3785.44, + "end": 3786.34, + "probability": 0.916 + }, + { + "start": 3787.68, + "end": 3792.18, + "probability": 0.9867 + }, + { + "start": 3793.04, + "end": 3793.66, + "probability": 0.8914 + }, + { + "start": 3794.08, + "end": 3796.78, + "probability": 0.9854 + }, + { + "start": 3796.78, + "end": 3800.5, + "probability": 0.9971 + }, + { + "start": 3801.3, + "end": 3804.3, + "probability": 0.8903 + }, + { + "start": 3805.1, + "end": 3808.98, + "probability": 0.9982 + }, + { + "start": 3808.98, + "end": 3812.68, + "probability": 0.9946 + }, + { + "start": 3813.38, + "end": 3815.88, + "probability": 0.9745 + }, + { + "start": 3816.72, + "end": 3819.8, + "probability": 0.9995 + }, + { + "start": 3820.88, + "end": 3825.84, + "probability": 0.7658 + }, + { + "start": 3826.68, + "end": 3829.92, + "probability": 0.8946 + }, + { + "start": 3830.74, + "end": 3833.66, + "probability": 0.998 + }, + { + "start": 3833.66, + "end": 3837.14, + "probability": 0.6379 + }, + { + "start": 3838.18, + "end": 3840.68, + "probability": 0.9886 + }, + { + "start": 3841.22, + "end": 3842.76, + "probability": 0.9386 + }, + { + "start": 3843.2, + "end": 3847.31, + "probability": 0.98 + }, + { + "start": 3847.94, + "end": 3849.08, + "probability": 0.9151 + }, + { + "start": 3849.76, + "end": 3853.2, + "probability": 0.9064 + }, + { + "start": 3854.18, + "end": 3858.92, + "probability": 0.9126 + }, + { + "start": 3859.62, + "end": 3863.52, + "probability": 0.9956 + }, + { + "start": 3863.52, + "end": 3867.18, + "probability": 0.9368 + }, + { + "start": 3868.18, + "end": 3870.8, + "probability": 0.2041 + }, + { + "start": 3870.8, + "end": 3873.64, + "probability": 0.8814 + }, + { + "start": 3874.3, + "end": 3875.66, + "probability": 0.686 + }, + { + "start": 3876.24, + "end": 3878.14, + "probability": 0.9696 + }, + { + "start": 3878.6, + "end": 3879.4, + "probability": 0.7272 + }, + { + "start": 3879.78, + "end": 3884.72, + "probability": 0.9922 + }, + { + "start": 3885.36, + "end": 3886.54, + "probability": 0.9554 + }, + { + "start": 3887.1, + "end": 3890.82, + "probability": 0.9851 + }, + { + "start": 3891.38, + "end": 3892.38, + "probability": 0.9923 + }, + { + "start": 3893.04, + "end": 3895.32, + "probability": 0.9888 + }, + { + "start": 3896.54, + "end": 3899.68, + "probability": 0.9983 + }, + { + "start": 3899.68, + "end": 3902.26, + "probability": 0.9891 + }, + { + "start": 3902.98, + "end": 3908.64, + "probability": 0.9781 + }, + { + "start": 3909.34, + "end": 3912.32, + "probability": 0.903 + }, + { + "start": 3912.94, + "end": 3913.24, + "probability": 0.3579 + }, + { + "start": 3913.32, + "end": 3913.8, + "probability": 0.8515 + }, + { + "start": 3913.86, + "end": 3916.82, + "probability": 0.954 + }, + { + "start": 3917.64, + "end": 3921.14, + "probability": 0.7784 + }, + { + "start": 3921.14, + "end": 3926.88, + "probability": 0.8031 + }, + { + "start": 3927.46, + "end": 3930.92, + "probability": 0.9979 + }, + { + "start": 3930.92, + "end": 3934.4, + "probability": 0.998 + }, + { + "start": 3934.84, + "end": 3939.06, + "probability": 0.9852 + }, + { + "start": 3939.78, + "end": 3942.18, + "probability": 0.8579 + }, + { + "start": 3943.4, + "end": 3947.2, + "probability": 0.8454 + }, + { + "start": 3948.06, + "end": 3953.12, + "probability": 0.9608 + }, + { + "start": 3953.12, + "end": 3958.24, + "probability": 0.9785 + }, + { + "start": 3959.08, + "end": 3961.5, + "probability": 0.9565 + }, + { + "start": 3961.5, + "end": 3963.72, + "probability": 0.6306 + }, + { + "start": 3964.36, + "end": 3968.52, + "probability": 0.796 + }, + { + "start": 3968.94, + "end": 3971.3, + "probability": 0.9251 + }, + { + "start": 3972.14, + "end": 3975.02, + "probability": 0.8042 + }, + { + "start": 3975.44, + "end": 3976.54, + "probability": 0.856 + }, + { + "start": 3976.86, + "end": 3979.14, + "probability": 0.8199 + }, + { + "start": 3979.5, + "end": 3981.62, + "probability": 0.8096 + }, + { + "start": 3982.36, + "end": 3985.3, + "probability": 0.9751 + }, + { + "start": 3985.3, + "end": 3988.48, + "probability": 0.9637 + }, + { + "start": 3988.96, + "end": 3990.62, + "probability": 0.9874 + }, + { + "start": 3991.22, + "end": 3991.92, + "probability": 0.8539 + }, + { + "start": 3992.46, + "end": 3996.86, + "probability": 0.994 + }, + { + "start": 3997.26, + "end": 3999.12, + "probability": 0.9597 + }, + { + "start": 3999.72, + "end": 4003.5, + "probability": 0.9536 + }, + { + "start": 4004.3, + "end": 4010.12, + "probability": 0.95 + }, + { + "start": 4010.44, + "end": 4015.44, + "probability": 0.9802 + }, + { + "start": 4015.44, + "end": 4019.46, + "probability": 0.7629 + }, + { + "start": 4019.88, + "end": 4022.98, + "probability": 0.9771 + }, + { + "start": 4023.68, + "end": 4024.68, + "probability": 0.6913 + }, + { + "start": 4025.22, + "end": 4029.84, + "probability": 0.9846 + }, + { + "start": 4030.46, + "end": 4035.04, + "probability": 0.9858 + }, + { + "start": 4035.44, + "end": 4037.74, + "probability": 0.9983 + }, + { + "start": 4038.34, + "end": 4041.06, + "probability": 0.9614 + }, + { + "start": 4041.06, + "end": 4044.32, + "probability": 0.9979 + }, + { + "start": 4044.78, + "end": 4048.04, + "probability": 0.9735 + }, + { + "start": 4048.04, + "end": 4052.1, + "probability": 0.9874 + }, + { + "start": 4052.4, + "end": 4056.04, + "probability": 0.978 + }, + { + "start": 4056.54, + "end": 4059.18, + "probability": 0.7358 + }, + { + "start": 4059.26, + "end": 4066.62, + "probability": 0.8281 + }, + { + "start": 4067.14, + "end": 4070.22, + "probability": 0.9324 + }, + { + "start": 4070.64, + "end": 4071.24, + "probability": 0.8863 + }, + { + "start": 4071.74, + "end": 4074.48, + "probability": 0.9832 + }, + { + "start": 4074.7, + "end": 4075.18, + "probability": 0.858 + }, + { + "start": 4076.5, + "end": 4078.62, + "probability": 0.7644 + }, + { + "start": 4079.36, + "end": 4080.46, + "probability": 0.8641 + }, + { + "start": 4080.84, + "end": 4081.9, + "probability": 0.7384 + }, + { + "start": 4082.04, + "end": 4083.16, + "probability": 0.9681 + }, + { + "start": 4096.7, + "end": 4097.88, + "probability": 0.7243 + }, + { + "start": 4098.38, + "end": 4099.92, + "probability": 0.8186 + }, + { + "start": 4100.1, + "end": 4101.44, + "probability": 0.9334 + }, + { + "start": 4102.32, + "end": 4103.4, + "probability": 0.8167 + }, + { + "start": 4104.24, + "end": 4109.2, + "probability": 0.9402 + }, + { + "start": 4110.84, + "end": 4112.84, + "probability": 0.995 + }, + { + "start": 4114.02, + "end": 4115.72, + "probability": 0.798 + }, + { + "start": 4115.98, + "end": 4117.34, + "probability": 0.3836 + }, + { + "start": 4117.88, + "end": 4117.9, + "probability": 0.3006 + }, + { + "start": 4118.26, + "end": 4118.3, + "probability": 0.2859 + }, + { + "start": 4118.3, + "end": 4122.8, + "probability": 0.981 + }, + { + "start": 4123.8, + "end": 4129.58, + "probability": 0.9842 + }, + { + "start": 4129.58, + "end": 4132.64, + "probability": 0.998 + }, + { + "start": 4133.4, + "end": 4135.8, + "probability": 0.9982 + }, + { + "start": 4136.62, + "end": 4139.0, + "probability": 0.8506 + }, + { + "start": 4139.66, + "end": 4141.58, + "probability": 0.9766 + }, + { + "start": 4142.2, + "end": 4144.72, + "probability": 0.9937 + }, + { + "start": 4145.38, + "end": 4146.4, + "probability": 0.4465 + }, + { + "start": 4147.64, + "end": 4150.38, + "probability": 0.998 + }, + { + "start": 4151.22, + "end": 4154.92, + "probability": 0.9955 + }, + { + "start": 4154.92, + "end": 4160.16, + "probability": 0.9905 + }, + { + "start": 4160.34, + "end": 4162.26, + "probability": 0.7226 + }, + { + "start": 4162.72, + "end": 4163.38, + "probability": 0.7264 + }, + { + "start": 4164.28, + "end": 4171.04, + "probability": 0.9902 + }, + { + "start": 4171.72, + "end": 4175.0, + "probability": 0.9814 + }, + { + "start": 4175.66, + "end": 4176.64, + "probability": 0.6477 + }, + { + "start": 4177.32, + "end": 4179.3, + "probability": 0.9897 + }, + { + "start": 4179.38, + "end": 4179.96, + "probability": 0.9239 + }, + { + "start": 4180.02, + "end": 4180.88, + "probability": 0.9844 + }, + { + "start": 4181.28, + "end": 4182.12, + "probability": 0.9883 + }, + { + "start": 4182.22, + "end": 4182.9, + "probability": 0.9747 + }, + { + "start": 4183.18, + "end": 4190.2, + "probability": 0.985 + }, + { + "start": 4190.8, + "end": 4194.84, + "probability": 0.9387 + }, + { + "start": 4195.58, + "end": 4200.28, + "probability": 0.9746 + }, + { + "start": 4200.76, + "end": 4204.4, + "probability": 0.9905 + }, + { + "start": 4204.82, + "end": 4205.38, + "probability": 0.8118 + }, + { + "start": 4206.38, + "end": 4209.62, + "probability": 0.9707 + }, + { + "start": 4210.2, + "end": 4215.16, + "probability": 0.7536 + }, + { + "start": 4215.96, + "end": 4218.56, + "probability": 0.6982 + }, + { + "start": 4218.64, + "end": 4221.84, + "probability": 0.9883 + }, + { + "start": 4222.68, + "end": 4225.22, + "probability": 0.9416 + }, + { + "start": 4225.32, + "end": 4225.72, + "probability": 0.7978 + }, + { + "start": 4238.28, + "end": 4238.42, + "probability": 0.1998 + }, + { + "start": 4238.8, + "end": 4239.88, + "probability": 0.9617 + }, + { + "start": 4242.44, + "end": 4244.6, + "probability": 0.9692 + }, + { + "start": 4244.72, + "end": 4245.5, + "probability": 0.8674 + }, + { + "start": 4245.6, + "end": 4246.68, + "probability": 0.8545 + }, + { + "start": 4247.4, + "end": 4248.08, + "probability": 0.8447 + }, + { + "start": 4249.3, + "end": 4252.7, + "probability": 0.9111 + }, + { + "start": 4253.22, + "end": 4257.3, + "probability": 0.993 + }, + { + "start": 4258.46, + "end": 4265.74, + "probability": 0.9633 + }, + { + "start": 4266.96, + "end": 4269.28, + "probability": 0.9985 + }, + { + "start": 4270.32, + "end": 4271.32, + "probability": 0.9868 + }, + { + "start": 4272.52, + "end": 4273.1, + "probability": 0.9917 + }, + { + "start": 4273.22, + "end": 4274.76, + "probability": 0.9889 + }, + { + "start": 4274.88, + "end": 4276.08, + "probability": 0.7664 + }, + { + "start": 4276.92, + "end": 4279.4, + "probability": 0.988 + }, + { + "start": 4280.79, + "end": 4284.88, + "probability": 0.8162 + }, + { + "start": 4285.48, + "end": 4287.14, + "probability": 0.8391 + }, + { + "start": 4287.34, + "end": 4290.42, + "probability": 0.9196 + }, + { + "start": 4291.58, + "end": 4297.38, + "probability": 0.8059 + }, + { + "start": 4297.46, + "end": 4297.92, + "probability": 0.1699 + }, + { + "start": 4299.0, + "end": 4299.52, + "probability": 0.832 + }, + { + "start": 4300.7, + "end": 4301.28, + "probability": 0.8983 + }, + { + "start": 4301.34, + "end": 4301.87, + "probability": 0.9297 + }, + { + "start": 4302.06, + "end": 4302.56, + "probability": 0.6641 + }, + { + "start": 4302.6, + "end": 4303.42, + "probability": 0.8177 + }, + { + "start": 4303.7, + "end": 4305.42, + "probability": 0.8324 + }, + { + "start": 4305.48, + "end": 4306.57, + "probability": 0.8419 + }, + { + "start": 4306.94, + "end": 4307.82, + "probability": 0.9222 + }, + { + "start": 4308.24, + "end": 4309.02, + "probability": 0.6289 + }, + { + "start": 4309.32, + "end": 4311.48, + "probability": 0.9834 + }, + { + "start": 4311.94, + "end": 4312.8, + "probability": 0.8007 + }, + { + "start": 4313.02, + "end": 4316.86, + "probability": 0.939 + }, + { + "start": 4318.38, + "end": 4318.98, + "probability": 0.9433 + }, + { + "start": 4319.78, + "end": 4324.12, + "probability": 0.9182 + }, + { + "start": 4325.06, + "end": 4326.32, + "probability": 0.7242 + }, + { + "start": 4326.36, + "end": 4328.78, + "probability": 0.7189 + }, + { + "start": 4328.8, + "end": 4329.26, + "probability": 0.7786 + }, + { + "start": 4329.88, + "end": 4332.34, + "probability": 0.7957 + }, + { + "start": 4334.94, + "end": 4337.0, + "probability": 0.4203 + }, + { + "start": 4337.18, + "end": 4340.32, + "probability": 0.5502 + }, + { + "start": 4340.88, + "end": 4342.36, + "probability": 0.7502 + }, + { + "start": 4342.44, + "end": 4345.7, + "probability": 0.9224 + }, + { + "start": 4347.28, + "end": 4350.18, + "probability": 0.5693 + }, + { + "start": 4350.54, + "end": 4352.7, + "probability": 0.5421 + }, + { + "start": 4353.2, + "end": 4354.66, + "probability": 0.7478 + }, + { + "start": 4354.72, + "end": 4358.52, + "probability": 0.7061 + }, + { + "start": 4359.22, + "end": 4360.02, + "probability": 0.9972 + }, + { + "start": 4360.8, + "end": 4362.1, + "probability": 0.8813 + }, + { + "start": 4362.32, + "end": 4363.09, + "probability": 0.9966 + }, + { + "start": 4363.86, + "end": 4367.94, + "probability": 0.3863 + }, + { + "start": 4368.24, + "end": 4368.85, + "probability": 0.4263 + }, + { + "start": 4369.36, + "end": 4370.78, + "probability": 0.4138 + }, + { + "start": 4370.78, + "end": 4373.32, + "probability": 0.8432 + }, + { + "start": 4373.5, + "end": 4377.2, + "probability": 0.9277 + }, + { + "start": 4377.26, + "end": 4380.66, + "probability": 0.9941 + }, + { + "start": 4381.08, + "end": 4381.66, + "probability": 0.8546 + }, + { + "start": 4382.24, + "end": 4383.48, + "probability": 0.999 + }, + { + "start": 4383.68, + "end": 4384.96, + "probability": 0.651 + }, + { + "start": 4385.44, + "end": 4386.36, + "probability": 0.7785 + }, + { + "start": 4387.06, + "end": 4389.18, + "probability": 0.8267 + }, + { + "start": 4389.32, + "end": 4390.76, + "probability": 0.9568 + }, + { + "start": 4390.86, + "end": 4392.26, + "probability": 0.8806 + }, + { + "start": 4392.48, + "end": 4393.82, + "probability": 0.9751 + }, + { + "start": 4393.88, + "end": 4394.26, + "probability": 0.9233 + }, + { + "start": 4395.96, + "end": 4398.9, + "probability": 0.9916 + }, + { + "start": 4399.62, + "end": 4399.94, + "probability": 0.9707 + }, + { + "start": 4400.56, + "end": 4402.02, + "probability": 0.9878 + }, + { + "start": 4402.14, + "end": 4403.34, + "probability": 0.976 + }, + { + "start": 4403.44, + "end": 4404.82, + "probability": 0.9521 + }, + { + "start": 4405.78, + "end": 4407.14, + "probability": 0.9921 + }, + { + "start": 4407.32, + "end": 4408.12, + "probability": 0.9092 + }, + { + "start": 4408.2, + "end": 4410.18, + "probability": 0.9072 + }, + { + "start": 4410.66, + "end": 4412.32, + "probability": 0.9819 + }, + { + "start": 4412.52, + "end": 4414.16, + "probability": 0.9127 + }, + { + "start": 4414.24, + "end": 4415.28, + "probability": 0.9518 + }, + { + "start": 4416.24, + "end": 4419.18, + "probability": 0.9807 + }, + { + "start": 4419.82, + "end": 4423.26, + "probability": 0.9971 + }, + { + "start": 4423.26, + "end": 4426.18, + "probability": 0.7999 + }, + { + "start": 4426.48, + "end": 4428.0, + "probability": 0.9381 + }, + { + "start": 4428.5, + "end": 4431.06, + "probability": 0.4776 + }, + { + "start": 4431.2, + "end": 4431.2, + "probability": 0.5495 + }, + { + "start": 4431.72, + "end": 4433.84, + "probability": 0.8553 + }, + { + "start": 4434.5, + "end": 4435.06, + "probability": 0.4403 + }, + { + "start": 4435.38, + "end": 4436.86, + "probability": 0.6202 + }, + { + "start": 4437.62, + "end": 4440.22, + "probability": 0.773 + }, + { + "start": 4440.78, + "end": 4442.94, + "probability": 0.9939 + }, + { + "start": 4443.7, + "end": 4445.58, + "probability": 0.9976 + }, + { + "start": 4447.3, + "end": 4449.08, + "probability": 0.7255 + }, + { + "start": 4449.08, + "end": 4449.38, + "probability": 0.2954 + }, + { + "start": 4449.44, + "end": 4450.3, + "probability": 0.6505 + }, + { + "start": 4450.46, + "end": 4451.88, + "probability": 0.6125 + }, + { + "start": 4451.96, + "end": 4452.92, + "probability": 0.6703 + }, + { + "start": 4452.98, + "end": 4453.0, + "probability": 0.6938 + }, + { + "start": 4454.58, + "end": 4455.5, + "probability": 0.3223 + }, + { + "start": 4456.18, + "end": 4458.92, + "probability": 0.4378 + }, + { + "start": 4459.12, + "end": 4460.1, + "probability": 0.7422 + }, + { + "start": 4460.7, + "end": 4461.7, + "probability": 0.9006 + }, + { + "start": 4461.96, + "end": 4463.4, + "probability": 0.9684 + }, + { + "start": 4463.44, + "end": 4465.08, + "probability": 0.7578 + }, + { + "start": 4465.1, + "end": 4466.7, + "probability": 0.9921 + }, + { + "start": 4468.44, + "end": 4472.04, + "probability": 0.9946 + }, + { + "start": 4472.66, + "end": 4475.34, + "probability": 0.9927 + }, + { + "start": 4475.38, + "end": 4477.16, + "probability": 0.9934 + }, + { + "start": 4477.9, + "end": 4481.28, + "probability": 0.6448 + }, + { + "start": 4482.04, + "end": 4483.34, + "probability": 0.787 + }, + { + "start": 4483.54, + "end": 4486.4, + "probability": 0.7675 + }, + { + "start": 4487.28, + "end": 4490.16, + "probability": 0.9983 + }, + { + "start": 4490.68, + "end": 4491.92, + "probability": 0.8713 + }, + { + "start": 4492.26, + "end": 4495.54, + "probability": 0.906 + }, + { + "start": 4495.78, + "end": 4497.54, + "probability": 0.9868 + }, + { + "start": 4497.62, + "end": 4497.86, + "probability": 0.6718 + }, + { + "start": 4498.16, + "end": 4499.48, + "probability": 0.9769 + }, + { + "start": 4499.58, + "end": 4500.8, + "probability": 0.991 + }, + { + "start": 4501.38, + "end": 4503.8, + "probability": 0.9468 + }, + { + "start": 4504.64, + "end": 4507.5, + "probability": 0.8934 + }, + { + "start": 4507.62, + "end": 4508.12, + "probability": 0.7871 + }, + { + "start": 4508.76, + "end": 4511.16, + "probability": 0.9539 + }, + { + "start": 4511.52, + "end": 4513.14, + "probability": 0.9526 + }, + { + "start": 4513.24, + "end": 4513.98, + "probability": 0.8643 + }, + { + "start": 4514.6, + "end": 4518.66, + "probability": 0.6898 + }, + { + "start": 4519.28, + "end": 4521.3, + "probability": 0.7345 + }, + { + "start": 4521.3, + "end": 4522.26, + "probability": 0.9485 + }, + { + "start": 4529.1, + "end": 4530.2, + "probability": 0.6871 + }, + { + "start": 4530.28, + "end": 4533.48, + "probability": 0.8635 + }, + { + "start": 4534.14, + "end": 4537.76, + "probability": 0.854 + }, + { + "start": 4538.91, + "end": 4543.6, + "probability": 0.6681 + }, + { + "start": 4544.16, + "end": 4546.56, + "probability": 0.9818 + }, + { + "start": 4547.02, + "end": 4548.78, + "probability": 0.844 + }, + { + "start": 4549.32, + "end": 4553.29, + "probability": 0.924 + }, + { + "start": 4553.98, + "end": 4556.96, + "probability": 0.9969 + }, + { + "start": 4556.96, + "end": 4560.48, + "probability": 0.6936 + }, + { + "start": 4560.9, + "end": 4563.68, + "probability": 0.9937 + }, + { + "start": 4563.92, + "end": 4570.0, + "probability": 0.8657 + }, + { + "start": 4570.1, + "end": 4571.06, + "probability": 0.7548 + }, + { + "start": 4571.62, + "end": 4572.2, + "probability": 0.8158 + }, + { + "start": 4572.32, + "end": 4573.28, + "probability": 0.8932 + }, + { + "start": 4573.4, + "end": 4577.56, + "probability": 0.9259 + }, + { + "start": 4577.6, + "end": 4578.88, + "probability": 0.9167 + }, + { + "start": 4579.22, + "end": 4583.54, + "probability": 0.9584 + }, + { + "start": 4584.0, + "end": 4586.6, + "probability": 0.9639 + }, + { + "start": 4586.68, + "end": 4588.12, + "probability": 0.8623 + }, + { + "start": 4588.22, + "end": 4588.82, + "probability": 0.9099 + }, + { + "start": 4588.95, + "end": 4591.68, + "probability": 0.9351 + }, + { + "start": 4591.88, + "end": 4592.76, + "probability": 0.8721 + }, + { + "start": 4593.04, + "end": 4593.86, + "probability": 0.7667 + }, + { + "start": 4593.98, + "end": 4595.36, + "probability": 0.6357 + }, + { + "start": 4595.46, + "end": 4596.0, + "probability": 0.5303 + }, + { + "start": 4597.68, + "end": 4599.68, + "probability": 0.958 + }, + { + "start": 4599.68, + "end": 4602.84, + "probability": 0.9565 + }, + { + "start": 4603.0, + "end": 4604.98, + "probability": 0.436 + }, + { + "start": 4605.78, + "end": 4608.86, + "probability": 0.9701 + }, + { + "start": 4609.32, + "end": 4610.36, + "probability": 0.6309 + }, + { + "start": 4611.06, + "end": 4611.74, + "probability": 0.6664 + }, + { + "start": 4612.4, + "end": 4613.38, + "probability": 0.6389 + }, + { + "start": 4613.46, + "end": 4614.8, + "probability": 0.6458 + }, + { + "start": 4615.5, + "end": 4617.22, + "probability": 0.0853 + }, + { + "start": 4620.22, + "end": 4622.2, + "probability": 0.0369 + }, + { + "start": 4622.6, + "end": 4624.36, + "probability": 0.088 + }, + { + "start": 4633.08, + "end": 4634.94, + "probability": 0.1174 + }, + { + "start": 4635.12, + "end": 4640.04, + "probability": 0.7653 + }, + { + "start": 4640.66, + "end": 4644.56, + "probability": 0.9798 + }, + { + "start": 4644.76, + "end": 4650.52, + "probability": 0.9825 + }, + { + "start": 4652.6, + "end": 4656.14, + "probability": 0.6954 + }, + { + "start": 4656.22, + "end": 4661.9, + "probability": 0.9783 + }, + { + "start": 4663.64, + "end": 4666.32, + "probability": 0.9218 + }, + { + "start": 4666.98, + "end": 4667.72, + "probability": 0.8671 + }, + { + "start": 4668.24, + "end": 4669.88, + "probability": 0.9884 + }, + { + "start": 4669.96, + "end": 4676.38, + "probability": 0.916 + }, + { + "start": 4676.58, + "end": 4678.78, + "probability": 0.218 + }, + { + "start": 4680.12, + "end": 4684.12, + "probability": 0.8514 + }, + { + "start": 4684.76, + "end": 4687.7, + "probability": 0.9538 + }, + { + "start": 4689.26, + "end": 4693.62, + "probability": 0.8563 + }, + { + "start": 4696.16, + "end": 4700.02, + "probability": 0.7633 + }, + { + "start": 4704.4, + "end": 4707.78, + "probability": 0.9497 + }, + { + "start": 4707.78, + "end": 4710.14, + "probability": 0.9989 + }, + { + "start": 4710.5, + "end": 4710.96, + "probability": 0.7251 + }, + { + "start": 4711.7, + "end": 4713.54, + "probability": 0.5924 + }, + { + "start": 4714.42, + "end": 4715.76, + "probability": 0.4494 + }, + { + "start": 4716.32, + "end": 4716.5, + "probability": 0.6199 + }, + { + "start": 4716.64, + "end": 4721.76, + "probability": 0.9896 + }, + { + "start": 4722.64, + "end": 4725.94, + "probability": 0.9861 + }, + { + "start": 4726.46, + "end": 4728.44, + "probability": 0.8072 + }, + { + "start": 4729.62, + "end": 4732.22, + "probability": 0.9962 + }, + { + "start": 4732.22, + "end": 4735.84, + "probability": 0.96 + }, + { + "start": 4736.44, + "end": 4739.56, + "probability": 0.9412 + }, + { + "start": 4740.2, + "end": 4742.66, + "probability": 0.9805 + }, + { + "start": 4743.66, + "end": 4749.7, + "probability": 0.9879 + }, + { + "start": 4750.18, + "end": 4752.94, + "probability": 0.9972 + }, + { + "start": 4753.4, + "end": 4754.16, + "probability": 0.7487 + }, + { + "start": 4754.98, + "end": 4756.52, + "probability": 0.9679 + }, + { + "start": 4756.6, + "end": 4760.5, + "probability": 0.9096 + }, + { + "start": 4760.5, + "end": 4763.6, + "probability": 0.9971 + }, + { + "start": 4764.38, + "end": 4770.2, + "probability": 0.9938 + }, + { + "start": 4771.32, + "end": 4776.4, + "probability": 0.9842 + }, + { + "start": 4777.24, + "end": 4777.92, + "probability": 0.8266 + }, + { + "start": 4778.06, + "end": 4782.16, + "probability": 0.9878 + }, + { + "start": 4782.26, + "end": 4783.86, + "probability": 0.9148 + }, + { + "start": 4784.52, + "end": 4786.12, + "probability": 0.9461 + }, + { + "start": 4786.64, + "end": 4791.5, + "probability": 0.9697 + }, + { + "start": 4792.36, + "end": 4796.04, + "probability": 0.9926 + }, + { + "start": 4796.04, + "end": 4799.34, + "probability": 0.9985 + }, + { + "start": 4799.94, + "end": 4804.94, + "probability": 0.9969 + }, + { + "start": 4805.02, + "end": 4806.52, + "probability": 0.9596 + }, + { + "start": 4807.74, + "end": 4814.36, + "probability": 0.8272 + }, + { + "start": 4815.14, + "end": 4818.9, + "probability": 0.9916 + }, + { + "start": 4818.9, + "end": 4824.6, + "probability": 0.9863 + }, + { + "start": 4825.84, + "end": 4829.86, + "probability": 0.981 + }, + { + "start": 4830.46, + "end": 4833.76, + "probability": 0.8275 + }, + { + "start": 4834.62, + "end": 4839.92, + "probability": 0.9822 + }, + { + "start": 4841.48, + "end": 4844.58, + "probability": 0.9752 + }, + { + "start": 4845.12, + "end": 4847.92, + "probability": 0.9586 + }, + { + "start": 4849.02, + "end": 4851.9, + "probability": 0.9776 + }, + { + "start": 4852.62, + "end": 4854.18, + "probability": 0.9147 + }, + { + "start": 4855.36, + "end": 4858.24, + "probability": 0.9801 + }, + { + "start": 4859.06, + "end": 4862.76, + "probability": 0.9948 + }, + { + "start": 4863.3, + "end": 4864.22, + "probability": 0.6442 + }, + { + "start": 4864.34, + "end": 4869.92, + "probability": 0.9921 + }, + { + "start": 4869.92, + "end": 4872.62, + "probability": 0.9508 + }, + { + "start": 4874.14, + "end": 4875.74, + "probability": 0.8938 + }, + { + "start": 4875.82, + "end": 4877.9, + "probability": 0.7264 + }, + { + "start": 4878.76, + "end": 4883.66, + "probability": 0.9939 + }, + { + "start": 4884.22, + "end": 4885.3, + "probability": 0.8665 + }, + { + "start": 4885.44, + "end": 4885.88, + "probability": 0.5066 + }, + { + "start": 4885.92, + "end": 4893.8, + "probability": 0.9086 + }, + { + "start": 4894.34, + "end": 4894.84, + "probability": 0.6368 + }, + { + "start": 4895.6, + "end": 4898.84, + "probability": 0.9953 + }, + { + "start": 4900.07, + "end": 4902.64, + "probability": 0.9897 + }, + { + "start": 4903.06, + "end": 4906.42, + "probability": 0.9811 + }, + { + "start": 4907.3, + "end": 4910.68, + "probability": 0.9943 + }, + { + "start": 4911.24, + "end": 4912.48, + "probability": 0.9935 + }, + { + "start": 4913.6, + "end": 4916.09, + "probability": 0.8345 + }, + { + "start": 4917.14, + "end": 4921.1, + "probability": 0.9883 + }, + { + "start": 4921.68, + "end": 4924.66, + "probability": 0.9651 + }, + { + "start": 4925.08, + "end": 4926.16, + "probability": 0.8233 + }, + { + "start": 4926.26, + "end": 4926.84, + "probability": 0.9164 + }, + { + "start": 4927.6, + "end": 4930.24, + "probability": 0.962 + }, + { + "start": 4930.66, + "end": 4935.16, + "probability": 0.9832 + }, + { + "start": 4935.58, + "end": 4938.26, + "probability": 0.862 + }, + { + "start": 4939.1, + "end": 4941.82, + "probability": 0.9946 + }, + { + "start": 4942.24, + "end": 4945.18, + "probability": 0.9901 + }, + { + "start": 4945.92, + "end": 4952.04, + "probability": 0.9946 + }, + { + "start": 4952.04, + "end": 4958.96, + "probability": 0.9989 + }, + { + "start": 4960.26, + "end": 4964.64, + "probability": 0.998 + }, + { + "start": 4965.1, + "end": 4969.4, + "probability": 0.9608 + }, + { + "start": 4970.18, + "end": 4970.84, + "probability": 0.4246 + }, + { + "start": 4971.0, + "end": 4975.48, + "probability": 0.9943 + }, + { + "start": 4976.64, + "end": 4979.88, + "probability": 0.9963 + }, + { + "start": 4980.52, + "end": 4983.82, + "probability": 0.8697 + }, + { + "start": 4984.28, + "end": 4985.92, + "probability": 0.7991 + }, + { + "start": 4986.72, + "end": 4988.86, + "probability": 0.8621 + }, + { + "start": 4988.96, + "end": 4989.98, + "probability": 0.8872 + }, + { + "start": 4990.46, + "end": 4994.9, + "probability": 0.9771 + }, + { + "start": 4994.9, + "end": 5000.06, + "probability": 0.901 + }, + { + "start": 5000.18, + "end": 5000.46, + "probability": 0.6111 + }, + { + "start": 5002.02, + "end": 5004.24, + "probability": 0.7339 + }, + { + "start": 5004.54, + "end": 5009.52, + "probability": 0.8662 + }, + { + "start": 5009.52, + "end": 5010.96, + "probability": 0.5667 + }, + { + "start": 5019.42, + "end": 5021.12, + "probability": 0.6588 + }, + { + "start": 5022.5, + "end": 5024.58, + "probability": 0.6295 + }, + { + "start": 5027.32, + "end": 5029.68, + "probability": 0.95 + }, + { + "start": 5029.68, + "end": 5033.08, + "probability": 0.9727 + }, + { + "start": 5034.4, + "end": 5038.1, + "probability": 0.9622 + }, + { + "start": 5039.22, + "end": 5042.86, + "probability": 0.969 + }, + { + "start": 5043.52, + "end": 5045.42, + "probability": 0.8162 + }, + { + "start": 5046.5, + "end": 5049.4, + "probability": 0.9964 + }, + { + "start": 5049.4, + "end": 5053.56, + "probability": 0.9824 + }, + { + "start": 5054.32, + "end": 5056.16, + "probability": 0.9081 + }, + { + "start": 5056.5, + "end": 5060.48, + "probability": 0.8376 + }, + { + "start": 5061.76, + "end": 5066.88, + "probability": 0.981 + }, + { + "start": 5066.88, + "end": 5073.2, + "probability": 0.9912 + }, + { + "start": 5073.84, + "end": 5078.66, + "probability": 0.9893 + }, + { + "start": 5079.3, + "end": 5082.08, + "probability": 0.9365 + }, + { + "start": 5082.82, + "end": 5084.58, + "probability": 0.832 + }, + { + "start": 5084.62, + "end": 5085.44, + "probability": 0.9037 + }, + { + "start": 5085.56, + "end": 5087.0, + "probability": 0.7761 + }, + { + "start": 5087.48, + "end": 5091.14, + "probability": 0.9938 + }, + { + "start": 5092.28, + "end": 5097.12, + "probability": 0.9802 + }, + { + "start": 5097.12, + "end": 5102.06, + "probability": 0.9925 + }, + { + "start": 5102.7, + "end": 5105.84, + "probability": 0.9304 + }, + { + "start": 5107.06, + "end": 5108.86, + "probability": 0.9863 + }, + { + "start": 5109.13, + "end": 5111.4, + "probability": 0.9951 + }, + { + "start": 5112.66, + "end": 5114.46, + "probability": 0.903 + }, + { + "start": 5114.52, + "end": 5116.5, + "probability": 0.6618 + }, + { + "start": 5118.52, + "end": 5121.36, + "probability": 0.8217 + }, + { + "start": 5121.76, + "end": 5126.48, + "probability": 0.9774 + }, + { + "start": 5126.92, + "end": 5127.34, + "probability": 0.3858 + }, + { + "start": 5127.48, + "end": 5128.98, + "probability": 0.5966 + }, + { + "start": 5129.04, + "end": 5130.58, + "probability": 0.8798 + }, + { + "start": 5135.44, + "end": 5137.36, + "probability": 0.9897 + }, + { + "start": 5137.44, + "end": 5139.68, + "probability": 0.8501 + }, + { + "start": 5140.24, + "end": 5142.98, + "probability": 0.9806 + }, + { + "start": 5143.3, + "end": 5145.44, + "probability": 0.0853 + }, + { + "start": 5145.82, + "end": 5149.66, + "probability": 0.8358 + }, + { + "start": 5150.6, + "end": 5151.4, + "probability": 0.6938 + }, + { + "start": 5171.44, + "end": 5175.36, + "probability": 0.1343 + }, + { + "start": 5175.36, + "end": 5175.72, + "probability": 0.0462 + }, + { + "start": 5175.72, + "end": 5177.12, + "probability": 0.0616 + }, + { + "start": 5177.14, + "end": 5178.46, + "probability": 0.4488 + }, + { + "start": 5178.46, + "end": 5180.58, + "probability": 0.5001 + }, + { + "start": 5181.58, + "end": 5184.68, + "probability": 0.0715 + }, + { + "start": 5184.68, + "end": 5186.48, + "probability": 0.0566 + }, + { + "start": 5186.96, + "end": 5189.76, + "probability": 0.0653 + }, + { + "start": 5190.0, + "end": 5191.68, + "probability": 0.2164 + }, + { + "start": 5192.62, + "end": 5192.72, + "probability": 0.0195 + }, + { + "start": 5194.18, + "end": 5194.68, + "probability": 0.1147 + }, + { + "start": 5195.81, + "end": 5198.42, + "probability": 0.1622 + }, + { + "start": 5201.98, + "end": 5202.52, + "probability": 0.009 + }, + { + "start": 5202.52, + "end": 5203.93, + "probability": 0.0173 + }, + { + "start": 5207.48, + "end": 5208.72, + "probability": 0.1049 + }, + { + "start": 5208.9, + "end": 5210.96, + "probability": 0.0322 + }, + { + "start": 5211.4, + "end": 5212.66, + "probability": 0.0442 + }, + { + "start": 5214.2, + "end": 5215.66, + "probability": 0.1016 + }, + { + "start": 5243.0, + "end": 5243.0, + "probability": 0.0 + }, + { + "start": 5243.0, + "end": 5243.0, + "probability": 0.0 + }, + { + "start": 5243.0, + "end": 5243.0, + "probability": 0.0 + }, + { + "start": 5243.0, + "end": 5243.0, + "probability": 0.0 + }, + { + "start": 5243.0, + "end": 5243.0, + "probability": 0.0 + }, + { + "start": 5243.0, + "end": 5243.0, + "probability": 0.0 + }, + { + "start": 5243.0, + "end": 5243.0, + "probability": 0.0 + }, + { + "start": 5243.0, + "end": 5243.0, + "probability": 0.0 + }, + { + "start": 5243.0, + "end": 5243.0, + "probability": 0.0 + }, + { + "start": 5243.0, + "end": 5243.0, + "probability": 0.0 + }, + { + "start": 5243.0, + "end": 5243.0, + "probability": 0.0 + }, + { + "start": 5243.0, + "end": 5243.0, + "probability": 0.0 + }, + { + "start": 5244.37, + "end": 5246.3, + "probability": 0.3291 + }, + { + "start": 5273.12, + "end": 5273.46, + "probability": 0.0053 + }, + { + "start": 5273.62, + "end": 5277.3, + "probability": 0.0555 + }, + { + "start": 5277.86, + "end": 5279.54, + "probability": 0.2546 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.2, + "end": 5365.06, + "probability": 0.1543 + }, + { + "start": 5365.4, + "end": 5365.96, + "probability": 0.0156 + }, + { + "start": 5365.96, + "end": 5365.96, + "probability": 0.1099 + }, + { + "start": 5365.96, + "end": 5368.66, + "probability": 0.8495 + }, + { + "start": 5369.14, + "end": 5370.96, + "probability": 0.89 + }, + { + "start": 5371.52, + "end": 5372.25, + "probability": 0.7084 + }, + { + "start": 5373.3, + "end": 5374.12, + "probability": 0.8832 + }, + { + "start": 5374.18, + "end": 5378.0, + "probability": 0.9608 + }, + { + "start": 5378.64, + "end": 5380.18, + "probability": 0.9844 + }, + { + "start": 5380.68, + "end": 5382.76, + "probability": 0.856 + }, + { + "start": 5382.8, + "end": 5386.0, + "probability": 0.9121 + }, + { + "start": 5386.54, + "end": 5388.56, + "probability": 0.8379 + }, + { + "start": 5389.12, + "end": 5391.08, + "probability": 0.8308 + }, + { + "start": 5391.08, + "end": 5393.82, + "probability": 0.9966 + }, + { + "start": 5395.46, + "end": 5396.62, + "probability": 0.698 + }, + { + "start": 5397.26, + "end": 5398.76, + "probability": 0.9835 + }, + { + "start": 5400.62, + "end": 5401.94, + "probability": 0.9718 + }, + { + "start": 5401.94, + "end": 5403.5, + "probability": 0.7194 + }, + { + "start": 5403.92, + "end": 5406.94, + "probability": 0.9363 + }, + { + "start": 5406.97, + "end": 5410.88, + "probability": 0.9677 + }, + { + "start": 5411.64, + "end": 5413.46, + "probability": 0.5692 + }, + { + "start": 5413.5, + "end": 5415.68, + "probability": 0.9153 + }, + { + "start": 5415.76, + "end": 5416.68, + "probability": 0.8808 + }, + { + "start": 5416.7, + "end": 5417.72, + "probability": 0.6759 + }, + { + "start": 5418.36, + "end": 5419.96, + "probability": 0.9668 + }, + { + "start": 5420.42, + "end": 5420.82, + "probability": 0.9131 + }, + { + "start": 5420.88, + "end": 5422.52, + "probability": 0.4873 + }, + { + "start": 5422.6, + "end": 5425.36, + "probability": 0.7881 + }, + { + "start": 5425.6, + "end": 5426.58, + "probability": 0.9619 + }, + { + "start": 5427.1, + "end": 5428.96, + "probability": 0.9284 + }, + { + "start": 5429.56, + "end": 5431.88, + "probability": 0.8102 + }, + { + "start": 5432.82, + "end": 5434.8, + "probability": 0.7281 + }, + { + "start": 5435.44, + "end": 5438.84, + "probability": 0.9849 + }, + { + "start": 5439.6, + "end": 5445.96, + "probability": 0.9479 + }, + { + "start": 5446.16, + "end": 5451.36, + "probability": 0.9911 + }, + { + "start": 5451.36, + "end": 5456.16, + "probability": 0.9946 + }, + { + "start": 5456.84, + "end": 5459.96, + "probability": 0.9982 + }, + { + "start": 5460.16, + "end": 5462.78, + "probability": 0.7151 + }, + { + "start": 5463.02, + "end": 5465.45, + "probability": 0.9876 + }, + { + "start": 5465.68, + "end": 5466.17, + "probability": 0.9233 + }, + { + "start": 5466.36, + "end": 5467.24, + "probability": 0.9978 + }, + { + "start": 5467.86, + "end": 5469.18, + "probability": 0.982 + }, + { + "start": 5469.3, + "end": 5470.0, + "probability": 0.2176 + }, + { + "start": 5470.06, + "end": 5472.12, + "probability": 0.8055 + }, + { + "start": 5472.38, + "end": 5473.58, + "probability": 0.3516 + }, + { + "start": 5473.62, + "end": 5474.52, + "probability": 0.6258 + }, + { + "start": 5474.66, + "end": 5477.8, + "probability": 0.953 + }, + { + "start": 5478.32, + "end": 5480.0, + "probability": 0.7945 + }, + { + "start": 5480.32, + "end": 5482.07, + "probability": 0.8701 + }, + { + "start": 5482.8, + "end": 5485.42, + "probability": 0.9559 + }, + { + "start": 5485.74, + "end": 5490.14, + "probability": 0.8392 + }, + { + "start": 5496.18, + "end": 5498.32, + "probability": 0.6222 + }, + { + "start": 5498.4, + "end": 5498.74, + "probability": 0.4868 + }, + { + "start": 5498.76, + "end": 5500.46, + "probability": 0.906 + }, + { + "start": 5500.82, + "end": 5503.72, + "probability": 0.9025 + }, + { + "start": 5504.42, + "end": 5507.28, + "probability": 0.9967 + }, + { + "start": 5507.78, + "end": 5509.98, + "probability": 0.9897 + }, + { + "start": 5510.5, + "end": 5515.36, + "probability": 0.9468 + }, + { + "start": 5516.4, + "end": 5520.95, + "probability": 0.9918 + }, + { + "start": 5521.44, + "end": 5526.36, + "probability": 0.8594 + }, + { + "start": 5526.9, + "end": 5531.47, + "probability": 0.9935 + }, + { + "start": 5531.48, + "end": 5535.38, + "probability": 0.9823 + }, + { + "start": 5536.08, + "end": 5541.38, + "probability": 0.9874 + }, + { + "start": 5542.32, + "end": 5544.34, + "probability": 0.9722 + }, + { + "start": 5545.16, + "end": 5547.38, + "probability": 0.9722 + }, + { + "start": 5547.42, + "end": 5551.96, + "probability": 0.9226 + }, + { + "start": 5552.5, + "end": 5553.08, + "probability": 0.4099 + }, + { + "start": 5553.5, + "end": 5556.5, + "probability": 0.9925 + }, + { + "start": 5556.5, + "end": 5561.02, + "probability": 0.9902 + }, + { + "start": 5561.72, + "end": 5563.32, + "probability": 0.6779 + }, + { + "start": 5563.52, + "end": 5564.86, + "probability": 0.9499 + }, + { + "start": 5565.3, + "end": 5572.16, + "probability": 0.9562 + }, + { + "start": 5572.38, + "end": 5575.54, + "probability": 0.9697 + }, + { + "start": 5575.62, + "end": 5576.18, + "probability": 0.6441 + }, + { + "start": 5577.52, + "end": 5580.78, + "probability": 0.8001 + }, + { + "start": 5581.28, + "end": 5582.22, + "probability": 0.9448 + }, + { + "start": 5582.3, + "end": 5583.5, + "probability": 0.9674 + }, + { + "start": 5583.62, + "end": 5587.18, + "probability": 0.9497 + }, + { + "start": 5587.9, + "end": 5589.58, + "probability": 0.7776 + }, + { + "start": 5590.0, + "end": 5591.68, + "probability": 0.8602 + }, + { + "start": 5591.9, + "end": 5594.12, + "probability": 0.8583 + }, + { + "start": 5594.28, + "end": 5596.12, + "probability": 0.0627 + }, + { + "start": 5596.58, + "end": 5598.22, + "probability": 0.9951 + }, + { + "start": 5598.78, + "end": 5599.86, + "probability": 0.4973 + }, + { + "start": 5599.92, + "end": 5600.68, + "probability": 0.6847 + }, + { + "start": 5601.24, + "end": 5602.04, + "probability": 0.7593 + }, + { + "start": 5602.66, + "end": 5603.8, + "probability": 0.6709 + }, + { + "start": 5605.14, + "end": 5605.66, + "probability": 0.1955 + }, + { + "start": 5618.4, + "end": 5619.14, + "probability": 0.1405 + }, + { + "start": 5622.98, + "end": 5625.4, + "probability": 0.0516 + }, + { + "start": 5625.4, + "end": 5625.7, + "probability": 0.0904 + }, + { + "start": 5626.34, + "end": 5628.24, + "probability": 0.0375 + }, + { + "start": 5628.24, + "end": 5630.6, + "probability": 0.2723 + }, + { + "start": 5632.14, + "end": 5637.68, + "probability": 0.0508 + }, + { + "start": 5637.68, + "end": 5640.28, + "probability": 0.0203 + }, + { + "start": 5640.28, + "end": 5641.68, + "probability": 0.0802 + }, + { + "start": 5641.68, + "end": 5642.92, + "probability": 0.1694 + }, + { + "start": 5648.0, + "end": 5649.66, + "probability": 0.048 + }, + { + "start": 5651.04, + "end": 5651.39, + "probability": 0.0197 + }, + { + "start": 5651.46, + "end": 5653.05, + "probability": 0.1681 + }, + { + "start": 5656.63, + "end": 5657.62, + "probability": 0.6156 + }, + { + "start": 5657.62, + "end": 5657.62, + "probability": 0.1297 + }, + { + "start": 5657.62, + "end": 5658.16, + "probability": 0.1662 + }, + { + "start": 5658.16, + "end": 5661.18, + "probability": 0.7135 + }, + { + "start": 5662.0, + "end": 5662.38, + "probability": 0.4257 + }, + { + "start": 5662.98, + "end": 5665.12, + "probability": 0.9213 + }, + { + "start": 5666.12, + "end": 5670.12, + "probability": 0.998 + }, + { + "start": 5670.32, + "end": 5672.94, + "probability": 0.8804 + }, + { + "start": 5673.48, + "end": 5675.18, + "probability": 0.9862 + }, + { + "start": 5677.08, + "end": 5680.28, + "probability": 0.9915 + }, + { + "start": 5680.68, + "end": 5681.7, + "probability": 0.9072 + }, + { + "start": 5682.24, + "end": 5684.7, + "probability": 0.9455 + }, + { + "start": 5685.72, + "end": 5689.64, + "probability": 0.9601 + }, + { + "start": 5690.3, + "end": 5694.22, + "probability": 0.9868 + }, + { + "start": 5694.48, + "end": 5698.88, + "probability": 0.9762 + }, + { + "start": 5699.78, + "end": 5701.62, + "probability": 0.9049 + }, + { + "start": 5702.06, + "end": 5704.9, + "probability": 0.9824 + }, + { + "start": 5705.9, + "end": 5709.6, + "probability": 0.9758 + }, + { + "start": 5710.22, + "end": 5715.42, + "probability": 0.7893 + }, + { + "start": 5715.96, + "end": 5717.24, + "probability": 0.334 + }, + { + "start": 5718.22, + "end": 5721.94, + "probability": 0.3503 + }, + { + "start": 5723.1, + "end": 5723.38, + "probability": 0.3036 + }, + { + "start": 5724.76, + "end": 5726.46, + "probability": 0.2062 + }, + { + "start": 5726.46, + "end": 5726.6, + "probability": 0.3356 + }, + { + "start": 5726.94, + "end": 5726.94, + "probability": 0.3457 + }, + { + "start": 5726.94, + "end": 5726.94, + "probability": 0.4432 + }, + { + "start": 5726.94, + "end": 5727.12, + "probability": 0.624 + }, + { + "start": 5727.72, + "end": 5727.72, + "probability": 0.0024 + }, + { + "start": 5727.72, + "end": 5729.14, + "probability": 0.9836 + }, + { + "start": 5729.32, + "end": 5729.74, + "probability": 0.1345 + }, + { + "start": 5729.9, + "end": 5731.2, + "probability": 0.8687 + }, + { + "start": 5732.5, + "end": 5735.82, + "probability": 0.9402 + }, + { + "start": 5737.66, + "end": 5740.44, + "probability": 0.9754 + }, + { + "start": 5740.72, + "end": 5743.69, + "probability": 0.9558 + }, + { + "start": 5745.22, + "end": 5748.0, + "probability": 0.504 + }, + { + "start": 5748.0, + "end": 5749.6, + "probability": 0.6707 + }, + { + "start": 5749.7, + "end": 5751.72, + "probability": 0.1753 + }, + { + "start": 5752.6, + "end": 5756.58, + "probability": 0.965 + }, + { + "start": 5757.46, + "end": 5758.42, + "probability": 0.9279 + }, + { + "start": 5758.6, + "end": 5762.18, + "probability": 0.9769 + }, + { + "start": 5763.08, + "end": 5767.32, + "probability": 0.6951 + }, + { + "start": 5769.0, + "end": 5771.12, + "probability": 0.6793 + }, + { + "start": 5771.66, + "end": 5773.2, + "probability": 0.9648 + }, + { + "start": 5773.2, + "end": 5777.5, + "probability": 0.8687 + }, + { + "start": 5777.7, + "end": 5782.86, + "probability": 0.9949 + }, + { + "start": 5783.72, + "end": 5791.08, + "probability": 0.958 + }, + { + "start": 5791.32, + "end": 5798.7, + "probability": 0.9939 + }, + { + "start": 5798.7, + "end": 5806.48, + "probability": 0.9859 + }, + { + "start": 5807.94, + "end": 5812.58, + "probability": 0.9783 + }, + { + "start": 5812.58, + "end": 5816.64, + "probability": 0.988 + }, + { + "start": 5817.32, + "end": 5824.0, + "probability": 0.6667 + }, + { + "start": 5824.36, + "end": 5831.38, + "probability": 0.9619 + }, + { + "start": 5831.92, + "end": 5832.48, + "probability": 0.8699 + }, + { + "start": 5833.04, + "end": 5835.4, + "probability": 0.8013 + }, + { + "start": 5835.82, + "end": 5839.39, + "probability": 0.7715 + }, + { + "start": 5842.58, + "end": 5845.44, + "probability": 0.0809 + }, + { + "start": 5860.8, + "end": 5860.8, + "probability": 0.0115 + }, + { + "start": 5860.8, + "end": 5861.52, + "probability": 0.6436 + }, + { + "start": 5861.6, + "end": 5862.92, + "probability": 0.9331 + }, + { + "start": 5863.04, + "end": 5868.48, + "probability": 0.9655 + }, + { + "start": 5868.48, + "end": 5875.08, + "probability": 0.7969 + }, + { + "start": 5875.64, + "end": 5876.92, + "probability": 0.9587 + }, + { + "start": 5878.54, + "end": 5881.22, + "probability": 0.9785 + }, + { + "start": 5881.22, + "end": 5883.78, + "probability": 0.8934 + }, + { + "start": 5883.9, + "end": 5887.24, + "probability": 0.8879 + }, + { + "start": 5887.8, + "end": 5890.04, + "probability": 0.9844 + }, + { + "start": 5890.26, + "end": 5895.02, + "probability": 0.9553 + }, + { + "start": 5896.28, + "end": 5899.42, + "probability": 0.8091 + }, + { + "start": 5899.46, + "end": 5903.3, + "probability": 0.8914 + }, + { + "start": 5904.58, + "end": 5906.28, + "probability": 0.8204 + }, + { + "start": 5907.08, + "end": 5907.94, + "probability": 0.792 + }, + { + "start": 5909.06, + "end": 5915.28, + "probability": 0.1879 + }, + { + "start": 5924.52, + "end": 5925.08, + "probability": 0.0024 + }, + { + "start": 5925.08, + "end": 5925.48, + "probability": 0.0094 + }, + { + "start": 5925.48, + "end": 5925.68, + "probability": 0.0368 + }, + { + "start": 5925.68, + "end": 5925.68, + "probability": 0.5171 + }, + { + "start": 5925.68, + "end": 5925.68, + "probability": 0.0722 + }, + { + "start": 5925.68, + "end": 5927.66, + "probability": 0.8933 + }, + { + "start": 5928.5, + "end": 5929.4, + "probability": 0.9025 + }, + { + "start": 5929.58, + "end": 5933.03, + "probability": 0.6044 + }, + { + "start": 5935.52, + "end": 5939.28, + "probability": 0.8435 + }, + { + "start": 5940.08, + "end": 5942.0, + "probability": 0.7527 + }, + { + "start": 5942.08, + "end": 5944.62, + "probability": 0.0452 + }, + { + "start": 5944.62, + "end": 5944.9, + "probability": 0.1638 + }, + { + "start": 5944.9, + "end": 5945.26, + "probability": 0.7615 + }, + { + "start": 5945.44, + "end": 5946.69, + "probability": 0.9163 + }, + { + "start": 5947.74, + "end": 5948.2, + "probability": 0.4623 + }, + { + "start": 5948.82, + "end": 5950.3, + "probability": 0.8045 + }, + { + "start": 5951.14, + "end": 5952.48, + "probability": 0.7926 + }, + { + "start": 5952.64, + "end": 5955.36, + "probability": 0.8815 + }, + { + "start": 5955.36, + "end": 5958.88, + "probability": 0.7615 + }, + { + "start": 5959.38, + "end": 5960.46, + "probability": 0.9914 + }, + { + "start": 5961.44, + "end": 5962.22, + "probability": 0.5802 + }, + { + "start": 5962.22, + "end": 5963.52, + "probability": 0.6885 + }, + { + "start": 5965.84, + "end": 5966.28, + "probability": 0.6273 + }, + { + "start": 5966.34, + "end": 5969.76, + "probability": 0.791 + }, + { + "start": 5970.38, + "end": 5976.32, + "probability": 0.8133 + }, + { + "start": 5977.0, + "end": 5981.28, + "probability": 0.9969 + }, + { + "start": 5981.28, + "end": 5986.4, + "probability": 0.993 + }, + { + "start": 5987.02, + "end": 5990.84, + "probability": 0.9866 + }, + { + "start": 5991.55, + "end": 5994.74, + "probability": 0.9882 + }, + { + "start": 5994.98, + "end": 5995.24, + "probability": 0.4576 + }, + { + "start": 5995.26, + "end": 6000.02, + "probability": 0.9372 + }, + { + "start": 6000.36, + "end": 6003.26, + "probability": 0.9901 + }, + { + "start": 6003.32, + "end": 6006.86, + "probability": 0.9928 + }, + { + "start": 6007.64, + "end": 6009.91, + "probability": 0.9597 + }, + { + "start": 6012.04, + "end": 6016.62, + "probability": 0.998 + }, + { + "start": 6016.74, + "end": 6018.4, + "probability": 0.9881 + }, + { + "start": 6018.76, + "end": 6022.78, + "probability": 0.9937 + }, + { + "start": 6023.34, + "end": 6025.14, + "probability": 0.9897 + }, + { + "start": 6025.3, + "end": 6032.12, + "probability": 0.9842 + }, + { + "start": 6032.12, + "end": 6036.52, + "probability": 0.9941 + }, + { + "start": 6037.24, + "end": 6042.66, + "probability": 0.8378 + }, + { + "start": 6043.26, + "end": 6047.42, + "probability": 0.9894 + }, + { + "start": 6047.84, + "end": 6053.04, + "probability": 0.9425 + }, + { + "start": 6053.8, + "end": 6056.6, + "probability": 0.9938 + }, + { + "start": 6056.88, + "end": 6057.1, + "probability": 0.74 + }, + { + "start": 6057.44, + "end": 6061.84, + "probability": 0.2018 + }, + { + "start": 6061.84, + "end": 6061.84, + "probability": 0.0574 + }, + { + "start": 6061.84, + "end": 6062.84, + "probability": 0.5158 + }, + { + "start": 6063.88, + "end": 6068.08, + "probability": 0.9433 + }, + { + "start": 6068.54, + "end": 6070.58, + "probability": 0.844 + }, + { + "start": 6071.18, + "end": 6075.3, + "probability": 0.7704 + }, + { + "start": 6076.26, + "end": 6078.0, + "probability": 0.7131 + }, + { + "start": 6078.08, + "end": 6079.14, + "probability": 0.9492 + }, + { + "start": 6079.24, + "end": 6079.9, + "probability": 0.8947 + }, + { + "start": 6080.98, + "end": 6084.56, + "probability": 0.9198 + }, + { + "start": 6085.28, + "end": 6085.96, + "probability": 0.4691 + }, + { + "start": 6087.76, + "end": 6089.5, + "probability": 0.7232 + }, + { + "start": 6090.3, + "end": 6094.76, + "probability": 0.9957 + }, + { + "start": 6095.3, + "end": 6098.88, + "probability": 0.9934 + }, + { + "start": 6098.88, + "end": 6101.94, + "probability": 0.9964 + }, + { + "start": 6102.76, + "end": 6103.56, + "probability": 0.5997 + }, + { + "start": 6103.64, + "end": 6103.86, + "probability": 0.5787 + }, + { + "start": 6103.96, + "end": 6106.44, + "probability": 0.9974 + }, + { + "start": 6106.44, + "end": 6109.3, + "probability": 0.969 + }, + { + "start": 6109.96, + "end": 6113.6, + "probability": 0.7524 + }, + { + "start": 6113.92, + "end": 6115.64, + "probability": 0.9507 + }, + { + "start": 6115.9, + "end": 6119.08, + "probability": 0.9943 + }, + { + "start": 6119.7, + "end": 6121.88, + "probability": 0.998 + }, + { + "start": 6122.6, + "end": 6125.36, + "probability": 0.8125 + }, + { + "start": 6125.36, + "end": 6127.98, + "probability": 0.9844 + }, + { + "start": 6128.36, + "end": 6131.52, + "probability": 0.8934 + }, + { + "start": 6131.68, + "end": 6133.26, + "probability": 0.8316 + }, + { + "start": 6133.72, + "end": 6135.16, + "probability": 0.8928 + }, + { + "start": 6135.42, + "end": 6136.8, + "probability": 0.9242 + }, + { + "start": 6137.48, + "end": 6138.16, + "probability": 0.9839 + }, + { + "start": 6138.22, + "end": 6140.14, + "probability": 0.997 + }, + { + "start": 6140.24, + "end": 6141.48, + "probability": 0.9739 + }, + { + "start": 6143.08, + "end": 6146.62, + "probability": 0.8719 + }, + { + "start": 6146.8, + "end": 6149.16, + "probability": 0.2705 + }, + { + "start": 6150.02, + "end": 6151.7, + "probability": 0.8602 + }, + { + "start": 6152.6, + "end": 6153.14, + "probability": 0.8453 + }, + { + "start": 6155.12, + "end": 6159.86, + "probability": 0.1614 + }, + { + "start": 6160.4, + "end": 6160.5, + "probability": 0.3477 + }, + { + "start": 6164.18, + "end": 6165.06, + "probability": 0.0347 + }, + { + "start": 6165.06, + "end": 6165.06, + "probability": 0.3272 + }, + { + "start": 6165.06, + "end": 6165.88, + "probability": 0.1689 + }, + { + "start": 6168.34, + "end": 6172.1, + "probability": 0.7049 + }, + { + "start": 6172.1, + "end": 6172.14, + "probability": 0.1136 + }, + { + "start": 6172.26, + "end": 6172.6, + "probability": 0.3508 + }, + { + "start": 6172.7, + "end": 6175.36, + "probability": 0.8158 + }, + { + "start": 6175.36, + "end": 6178.56, + "probability": 0.9935 + }, + { + "start": 6178.96, + "end": 6179.24, + "probability": 0.7938 + }, + { + "start": 6180.28, + "end": 6183.54, + "probability": 0.9394 + }, + { + "start": 6183.54, + "end": 6187.3, + "probability": 0.9394 + }, + { + "start": 6187.78, + "end": 6189.36, + "probability": 0.5175 + }, + { + "start": 6190.12, + "end": 6193.62, + "probability": 0.7877 + }, + { + "start": 6194.94, + "end": 6195.52, + "probability": 0.7365 + }, + { + "start": 6195.66, + "end": 6197.1, + "probability": 0.7432 + }, + { + "start": 6197.54, + "end": 6199.98, + "probability": 0.7147 + }, + { + "start": 6202.54, + "end": 6203.9, + "probability": 0.5586 + }, + { + "start": 6203.96, + "end": 6205.02, + "probability": 0.6615 + }, + { + "start": 6205.2, + "end": 6205.62, + "probability": 0.8139 + }, + { + "start": 6205.72, + "end": 6207.82, + "probability": 0.7485 + }, + { + "start": 6208.14, + "end": 6208.7, + "probability": 0.765 + }, + { + "start": 6208.76, + "end": 6210.32, + "probability": 0.8625 + }, + { + "start": 6212.34, + "end": 6213.34, + "probability": 0.7055 + }, + { + "start": 6214.44, + "end": 6219.4, + "probability": 0.9948 + }, + { + "start": 6220.92, + "end": 6223.41, + "probability": 0.5877 + }, + { + "start": 6223.66, + "end": 6226.82, + "probability": 0.8442 + }, + { + "start": 6227.44, + "end": 6233.08, + "probability": 0.8403 + }, + { + "start": 6233.76, + "end": 6236.84, + "probability": 0.8377 + }, + { + "start": 6237.18, + "end": 6238.62, + "probability": 0.9753 + }, + { + "start": 6238.88, + "end": 6243.52, + "probability": 0.9705 + }, + { + "start": 6243.98, + "end": 6243.98, + "probability": 0.3857 + }, + { + "start": 6244.32, + "end": 6245.26, + "probability": 0.8545 + }, + { + "start": 6246.3, + "end": 6253.24, + "probability": 0.8661 + }, + { + "start": 6253.52, + "end": 6254.42, + "probability": 0.7084 + }, + { + "start": 6254.84, + "end": 6256.18, + "probability": 0.5542 + }, + { + "start": 6256.26, + "end": 6257.3, + "probability": 0.7485 + }, + { + "start": 6257.46, + "end": 6260.16, + "probability": 0.9892 + }, + { + "start": 6260.56, + "end": 6262.4, + "probability": 0.9577 + }, + { + "start": 6262.56, + "end": 6269.1, + "probability": 0.7141 + }, + { + "start": 6269.12, + "end": 6270.72, + "probability": 0.8449 + }, + { + "start": 6271.44, + "end": 6272.48, + "probability": 0.7363 + }, + { + "start": 6284.74, + "end": 6285.64, + "probability": 0.539 + }, + { + "start": 6287.26, + "end": 6290.32, + "probability": 0.9828 + }, + { + "start": 6290.32, + "end": 6293.74, + "probability": 0.952 + }, + { + "start": 6294.72, + "end": 6297.56, + "probability": 0.9402 + }, + { + "start": 6297.56, + "end": 6300.3, + "probability": 0.9946 + }, + { + "start": 6300.42, + "end": 6303.38, + "probability": 0.421 + }, + { + "start": 6303.82, + "end": 6305.67, + "probability": 0.5722 + }, + { + "start": 6306.06, + "end": 6311.32, + "probability": 0.9881 + }, + { + "start": 6311.84, + "end": 6316.4, + "probability": 0.9937 + }, + { + "start": 6316.4, + "end": 6320.94, + "probability": 0.9977 + }, + { + "start": 6321.52, + "end": 6324.56, + "probability": 0.9984 + }, + { + "start": 6324.62, + "end": 6328.24, + "probability": 0.9834 + }, + { + "start": 6328.3, + "end": 6328.82, + "probability": 0.6806 + }, + { + "start": 6328.94, + "end": 6330.92, + "probability": 0.9877 + }, + { + "start": 6331.34, + "end": 6332.44, + "probability": 0.8901 + }, + { + "start": 6333.38, + "end": 6337.52, + "probability": 0.7337 + }, + { + "start": 6337.62, + "end": 6339.14, + "probability": 0.5324 + }, + { + "start": 6339.24, + "end": 6342.2, + "probability": 0.8728 + }, + { + "start": 6342.3, + "end": 6345.1, + "probability": 0.7774 + }, + { + "start": 6345.24, + "end": 6346.6, + "probability": 0.3369 + }, + { + "start": 6346.72, + "end": 6347.14, + "probability": 0.8264 + }, + { + "start": 6347.2, + "end": 6347.68, + "probability": 0.3987 + }, + { + "start": 6347.76, + "end": 6348.24, + "probability": 0.6422 + }, + { + "start": 6349.54, + "end": 6359.9, + "probability": 0.1041 + }, + { + "start": 6359.9, + "end": 6362.7, + "probability": 0.018 + }, + { + "start": 6364.02, + "end": 6364.42, + "probability": 0.0681 + }, + { + "start": 6364.46, + "end": 6364.46, + "probability": 0.1042 + }, + { + "start": 6364.46, + "end": 6364.46, + "probability": 0.14 + }, + { + "start": 6364.46, + "end": 6365.44, + "probability": 0.3118 + }, + { + "start": 6365.96, + "end": 6367.72, + "probability": 0.6962 + }, + { + "start": 6367.78, + "end": 6368.08, + "probability": 0.2129 + }, + { + "start": 6368.1, + "end": 6368.3, + "probability": 0.487 + }, + { + "start": 6368.52, + "end": 6371.62, + "probability": 0.8927 + }, + { + "start": 6371.62, + "end": 6375.14, + "probability": 0.851 + }, + { + "start": 6376.44, + "end": 6377.08, + "probability": 0.8339 + }, + { + "start": 6377.8, + "end": 6382.42, + "probability": 0.9387 + }, + { + "start": 6382.42, + "end": 6386.44, + "probability": 0.8093 + }, + { + "start": 6386.5, + "end": 6387.86, + "probability": 0.4303 + }, + { + "start": 6388.62, + "end": 6392.88, + "probability": 0.8988 + }, + { + "start": 6393.26, + "end": 6398.02, + "probability": 0.771 + }, + { + "start": 6405.92, + "end": 6407.0, + "probability": 0.7008 + }, + { + "start": 6407.16, + "end": 6408.66, + "probability": 0.9356 + }, + { + "start": 6408.82, + "end": 6409.66, + "probability": 0.8713 + }, + { + "start": 6412.66, + "end": 6414.24, + "probability": 0.8725 + }, + { + "start": 6414.38, + "end": 6415.44, + "probability": 0.9762 + }, + { + "start": 6415.56, + "end": 6418.64, + "probability": 0.9882 + }, + { + "start": 6418.94, + "end": 6420.36, + "probability": 0.9766 + }, + { + "start": 6420.98, + "end": 6423.9, + "probability": 0.9984 + }, + { + "start": 6423.98, + "end": 6430.04, + "probability": 0.9845 + }, + { + "start": 6430.52, + "end": 6433.68, + "probability": 0.8702 + }, + { + "start": 6433.78, + "end": 6438.84, + "probability": 0.8564 + }, + { + "start": 6438.84, + "end": 6442.72, + "probability": 0.6035 + }, + { + "start": 6443.36, + "end": 6448.54, + "probability": 0.9961 + }, + { + "start": 6449.24, + "end": 6451.66, + "probability": 0.9397 + }, + { + "start": 6451.66, + "end": 6456.14, + "probability": 0.9739 + }, + { + "start": 6456.78, + "end": 6457.34, + "probability": 0.6281 + }, + { + "start": 6457.38, + "end": 6458.48, + "probability": 0.8365 + }, + { + "start": 6458.82, + "end": 6460.38, + "probability": 0.994 + }, + { + "start": 6460.52, + "end": 6462.62, + "probability": 0.9713 + }, + { + "start": 6463.04, + "end": 6465.34, + "probability": 0.8326 + }, + { + "start": 6465.44, + "end": 6468.82, + "probability": 0.6569 + }, + { + "start": 6468.94, + "end": 6472.75, + "probability": 0.9941 + }, + { + "start": 6473.93, + "end": 6476.93, + "probability": 0.7112 + }, + { + "start": 6477.12, + "end": 6479.56, + "probability": 0.9807 + }, + { + "start": 6479.78, + "end": 6481.94, + "probability": 0.99 + }, + { + "start": 6482.5, + "end": 6488.66, + "probability": 0.9186 + }, + { + "start": 6488.66, + "end": 6492.8, + "probability": 0.9842 + }, + { + "start": 6492.92, + "end": 6495.14, + "probability": 0.9827 + }, + { + "start": 6495.95, + "end": 6500.54, + "probability": 0.9883 + }, + { + "start": 6500.6, + "end": 6501.66, + "probability": 0.3019 + }, + { + "start": 6501.76, + "end": 6503.18, + "probability": 0.9146 + }, + { + "start": 6504.02, + "end": 6505.08, + "probability": 0.9494 + }, + { + "start": 6505.16, + "end": 6507.64, + "probability": 0.9056 + }, + { + "start": 6508.18, + "end": 6509.0, + "probability": 0.8865 + }, + { + "start": 6509.8, + "end": 6513.42, + "probability": 0.9937 + }, + { + "start": 6513.64, + "end": 6516.04, + "probability": 0.9604 + }, + { + "start": 6516.04, + "end": 6518.76, + "probability": 0.9263 + }, + { + "start": 6519.34, + "end": 6521.92, + "probability": 0.9973 + }, + { + "start": 6521.92, + "end": 6526.66, + "probability": 0.698 + }, + { + "start": 6526.78, + "end": 6527.64, + "probability": 0.8322 + }, + { + "start": 6527.82, + "end": 6532.88, + "probability": 0.9927 + }, + { + "start": 6533.56, + "end": 6535.62, + "probability": 0.6733 + }, + { + "start": 6535.74, + "end": 6537.74, + "probability": 0.5808 + }, + { + "start": 6538.4, + "end": 6539.26, + "probability": 0.807 + }, + { + "start": 6539.36, + "end": 6544.54, + "probability": 0.9353 + }, + { + "start": 6545.46, + "end": 6547.72, + "probability": 0.909 + }, + { + "start": 6548.08, + "end": 6554.1, + "probability": 0.9951 + }, + { + "start": 6554.98, + "end": 6557.56, + "probability": 0.9568 + }, + { + "start": 6558.32, + "end": 6562.38, + "probability": 0.9253 + }, + { + "start": 6563.28, + "end": 6564.7, + "probability": 0.9984 + }, + { + "start": 6565.12, + "end": 6567.98, + "probability": 0.918 + }, + { + "start": 6568.02, + "end": 6568.76, + "probability": 0.4409 + }, + { + "start": 6568.76, + "end": 6569.96, + "probability": 0.8211 + }, + { + "start": 6570.6, + "end": 6571.74, + "probability": 0.5874 + }, + { + "start": 6572.34, + "end": 6575.38, + "probability": 0.9417 + }, + { + "start": 6575.4, + "end": 6578.8, + "probability": 0.9814 + }, + { + "start": 6578.86, + "end": 6581.5, + "probability": 0.916 + }, + { + "start": 6581.64, + "end": 6582.08, + "probability": 0.5842 + }, + { + "start": 6582.14, + "end": 6584.84, + "probability": 0.9639 + }, + { + "start": 6584.94, + "end": 6585.38, + "probability": 0.6349 + }, + { + "start": 6585.4, + "end": 6589.34, + "probability": 0.9156 + }, + { + "start": 6589.5, + "end": 6590.62, + "probability": 0.8518 + }, + { + "start": 6590.9, + "end": 6592.78, + "probability": 0.9954 + }, + { + "start": 6592.86, + "end": 6593.12, + "probability": 0.8103 + }, + { + "start": 6593.24, + "end": 6597.82, + "probability": 0.7113 + }, + { + "start": 6598.36, + "end": 6600.04, + "probability": 0.9035 + }, + { + "start": 6600.78, + "end": 6601.66, + "probability": 0.8971 + }, + { + "start": 6623.38, + "end": 6625.92, + "probability": 0.7252 + }, + { + "start": 6627.26, + "end": 6627.88, + "probability": 0.8595 + }, + { + "start": 6629.9, + "end": 6636.8, + "probability": 0.8247 + }, + { + "start": 6637.4, + "end": 6643.14, + "probability": 0.9816 + }, + { + "start": 6644.16, + "end": 6650.24, + "probability": 0.7664 + }, + { + "start": 6651.06, + "end": 6652.64, + "probability": 0.9484 + }, + { + "start": 6654.3, + "end": 6658.16, + "probability": 0.8625 + }, + { + "start": 6659.22, + "end": 6661.16, + "probability": 0.9437 + }, + { + "start": 6661.2, + "end": 6663.38, + "probability": 0.8603 + }, + { + "start": 6663.78, + "end": 6665.28, + "probability": 0.9554 + }, + { + "start": 6665.92, + "end": 6669.46, + "probability": 0.9799 + }, + { + "start": 6670.06, + "end": 6671.74, + "probability": 0.9405 + }, + { + "start": 6672.56, + "end": 6673.16, + "probability": 0.5281 + }, + { + "start": 6673.36, + "end": 6673.64, + "probability": 0.2383 + }, + { + "start": 6673.82, + "end": 6680.28, + "probability": 0.8661 + }, + { + "start": 6681.06, + "end": 6685.43, + "probability": 0.9756 + }, + { + "start": 6685.52, + "end": 6687.94, + "probability": 0.9767 + }, + { + "start": 6688.86, + "end": 6690.3, + "probability": 0.9731 + }, + { + "start": 6690.34, + "end": 6691.84, + "probability": 0.3974 + }, + { + "start": 6692.46, + "end": 6694.59, + "probability": 0.9969 + }, + { + "start": 6695.36, + "end": 6698.32, + "probability": 0.9937 + }, + { + "start": 6699.28, + "end": 6703.92, + "probability": 0.7093 + }, + { + "start": 6704.58, + "end": 6705.86, + "probability": 0.9482 + }, + { + "start": 6706.32, + "end": 6709.8, + "probability": 0.991 + }, + { + "start": 6710.66, + "end": 6712.26, + "probability": 0.9172 + }, + { + "start": 6712.38, + "end": 6713.88, + "probability": 0.5498 + }, + { + "start": 6714.05, + "end": 6714.78, + "probability": 0.3218 + }, + { + "start": 6715.0, + "end": 6717.72, + "probability": 0.8451 + }, + { + "start": 6717.9, + "end": 6721.6, + "probability": 0.812 + }, + { + "start": 6722.66, + "end": 6724.5, + "probability": 0.6202 + }, + { + "start": 6725.4, + "end": 6730.84, + "probability": 0.9101 + }, + { + "start": 6730.94, + "end": 6734.74, + "probability": 0.9941 + }, + { + "start": 6735.24, + "end": 6737.52, + "probability": 0.8523 + }, + { + "start": 6738.06, + "end": 6742.78, + "probability": 0.9834 + }, + { + "start": 6743.62, + "end": 6748.94, + "probability": 0.8204 + }, + { + "start": 6748.94, + "end": 6753.24, + "probability": 0.6353 + }, + { + "start": 6753.24, + "end": 6754.4, + "probability": 0.9834 + }, + { + "start": 6755.38, + "end": 6756.6, + "probability": 0.8265 + }, + { + "start": 6757.68, + "end": 6765.3, + "probability": 0.9622 + }, + { + "start": 6767.26, + "end": 6770.54, + "probability": 0.4185 + }, + { + "start": 6771.42, + "end": 6772.38, + "probability": 0.9762 + }, + { + "start": 6773.1, + "end": 6775.66, + "probability": 0.982 + }, + { + "start": 6776.32, + "end": 6777.12, + "probability": 0.8 + }, + { + "start": 6777.5, + "end": 6782.02, + "probability": 0.9862 + }, + { + "start": 6782.44, + "end": 6783.9, + "probability": 0.9967 + }, + { + "start": 6784.48, + "end": 6786.5, + "probability": 0.979 + }, + { + "start": 6787.14, + "end": 6790.52, + "probability": 0.998 + }, + { + "start": 6790.52, + "end": 6790.78, + "probability": 0.7506 + }, + { + "start": 6791.54, + "end": 6794.86, + "probability": 0.8701 + }, + { + "start": 6795.02, + "end": 6797.66, + "probability": 0.7676 + }, + { + "start": 6798.0, + "end": 6801.6, + "probability": 0.9433 + }, + { + "start": 6801.6, + "end": 6805.46, + "probability": 0.769 + }, + { + "start": 6805.56, + "end": 6806.68, + "probability": 0.432 + }, + { + "start": 6807.0, + "end": 6811.5, + "probability": 0.9237 + }, + { + "start": 6812.44, + "end": 6812.58, + "probability": 0.4726 + }, + { + "start": 6813.54, + "end": 6814.08, + "probability": 0.7052 + }, + { + "start": 6815.8, + "end": 6818.54, + "probability": 0.7258 + }, + { + "start": 6819.16, + "end": 6821.16, + "probability": 0.786 + }, + { + "start": 6821.3, + "end": 6822.22, + "probability": 0.5357 + }, + { + "start": 6822.36, + "end": 6823.38, + "probability": 0.8376 + }, + { + "start": 6824.86, + "end": 6825.8, + "probability": 0.7882 + }, + { + "start": 6828.82, + "end": 6830.36, + "probability": 0.2079 + }, + { + "start": 6832.48, + "end": 6843.22, + "probability": 0.045 + }, + { + "start": 6844.48, + "end": 6849.08, + "probability": 0.0382 + }, + { + "start": 6849.72, + "end": 6850.16, + "probability": 0.3473 + }, + { + "start": 6850.16, + "end": 6851.71, + "probability": 0.1425 + }, + { + "start": 6855.7, + "end": 6855.76, + "probability": 0.0209 + }, + { + "start": 6856.56, + "end": 6859.92, + "probability": 0.0951 + }, + { + "start": 6862.66, + "end": 6863.14, + "probability": 0.0449 + }, + { + "start": 6863.14, + "end": 6864.44, + "probability": 0.0581 + }, + { + "start": 6864.44, + "end": 6866.84, + "probability": 0.0437 + }, + { + "start": 6866.86, + "end": 6867.04, + "probability": 0.0853 + }, + { + "start": 6867.04, + "end": 6867.04, + "probability": 0.0541 + }, + { + "start": 6880.16, + "end": 6881.46, + "probability": 0.1402 + }, + { + "start": 6882.88, + "end": 6884.96, + "probability": 0.1861 + }, + { + "start": 6885.06, + "end": 6885.74, + "probability": 0.5046 + }, + { + "start": 6885.88, + "end": 6885.98, + "probability": 0.0435 + }, + { + "start": 6886.0, + "end": 6886.0, + "probability": 0.0 + }, + { + "start": 6886.0, + "end": 6886.0, + "probability": 0.0 + }, + { + "start": 6886.0, + "end": 6886.0, + "probability": 0.0 + }, + { + "start": 6886.0, + "end": 6886.0, + "probability": 0.0 + }, + { + "start": 6886.0, + "end": 6886.0, + "probability": 0.0 + }, + { + "start": 6886.0, + "end": 6886.0, + "probability": 0.0 + }, + { + "start": 6886.0, + "end": 6886.0, + "probability": 0.0 + }, + { + "start": 6886.0, + "end": 6886.0, + "probability": 0.0 + }, + { + "start": 6886.0, + "end": 6886.0, + "probability": 0.0 + }, + { + "start": 6886.14, + "end": 6887.32, + "probability": 0.0354 + }, + { + "start": 6887.64, + "end": 6890.32, + "probability": 0.4454 + }, + { + "start": 6890.52, + "end": 6893.12, + "probability": 0.7483 + }, + { + "start": 6895.32, + "end": 6897.93, + "probability": 0.6564 + }, + { + "start": 6899.78, + "end": 6901.82, + "probability": 0.8428 + }, + { + "start": 6902.72, + "end": 6903.44, + "probability": 0.1776 + }, + { + "start": 6903.46, + "end": 6903.96, + "probability": 0.5733 + }, + { + "start": 6904.04, + "end": 6907.54, + "probability": 0.9421 + }, + { + "start": 6908.4, + "end": 6909.8, + "probability": 0.7733 + }, + { + "start": 6911.14, + "end": 6914.4, + "probability": 0.7039 + }, + { + "start": 6915.46, + "end": 6917.76, + "probability": 0.986 + }, + { + "start": 6918.28, + "end": 6921.64, + "probability": 0.9966 + }, + { + "start": 6922.64, + "end": 6924.72, + "probability": 0.9544 + }, + { + "start": 6926.82, + "end": 6929.08, + "probability": 0.5342 + }, + { + "start": 6930.2, + "end": 6935.94, + "probability": 0.9683 + }, + { + "start": 6935.94, + "end": 6941.14, + "probability": 0.9163 + }, + { + "start": 6942.4, + "end": 6944.64, + "probability": 0.878 + }, + { + "start": 6945.34, + "end": 6948.74, + "probability": 0.7422 + }, + { + "start": 6949.3, + "end": 6951.8, + "probability": 0.8796 + }, + { + "start": 6953.28, + "end": 6956.34, + "probability": 0.6941 + }, + { + "start": 6957.06, + "end": 6960.32, + "probability": 0.9832 + }, + { + "start": 6960.86, + "end": 6962.46, + "probability": 0.9742 + }, + { + "start": 6963.28, + "end": 6964.9, + "probability": 0.9886 + }, + { + "start": 6965.8, + "end": 6968.16, + "probability": 0.7823 + }, + { + "start": 6970.42, + "end": 6974.02, + "probability": 0.8661 + }, + { + "start": 6974.78, + "end": 6976.44, + "probability": 0.9396 + }, + { + "start": 6977.06, + "end": 6979.2, + "probability": 0.9699 + }, + { + "start": 6979.34, + "end": 6981.4, + "probability": 0.4348 + }, + { + "start": 6982.22, + "end": 6986.0, + "probability": 0.9648 + }, + { + "start": 6986.0, + "end": 6989.98, + "probability": 0.9465 + }, + { + "start": 6991.48, + "end": 6996.06, + "probability": 0.9939 + }, + { + "start": 6996.76, + "end": 6999.2, + "probability": 0.9902 + }, + { + "start": 7001.18, + "end": 7002.08, + "probability": 0.9461 + }, + { + "start": 7002.08, + "end": 7007.76, + "probability": 0.9853 + }, + { + "start": 7008.94, + "end": 7011.12, + "probability": 0.901 + }, + { + "start": 7012.64, + "end": 7013.78, + "probability": 0.9664 + }, + { + "start": 7014.82, + "end": 7015.78, + "probability": 0.9559 + }, + { + "start": 7017.08, + "end": 7018.08, + "probability": 0.8777 + }, + { + "start": 7019.22, + "end": 7022.64, + "probability": 0.9414 + }, + { + "start": 7022.64, + "end": 7026.66, + "probability": 0.9862 + }, + { + "start": 7027.38, + "end": 7028.82, + "probability": 0.9355 + }, + { + "start": 7029.54, + "end": 7031.12, + "probability": 0.9956 + }, + { + "start": 7031.6, + "end": 7033.68, + "probability": 0.7496 + }, + { + "start": 7033.76, + "end": 7034.62, + "probability": 0.8393 + }, + { + "start": 7034.94, + "end": 7036.72, + "probability": 0.7181 + }, + { + "start": 7037.26, + "end": 7040.68, + "probability": 0.9282 + }, + { + "start": 7041.14, + "end": 7045.64, + "probability": 0.9813 + }, + { + "start": 7046.38, + "end": 7050.82, + "probability": 0.9159 + }, + { + "start": 7050.92, + "end": 7054.38, + "probability": 0.7487 + }, + { + "start": 7054.46, + "end": 7055.48, + "probability": 0.7722 + }, + { + "start": 7056.44, + "end": 7062.72, + "probability": 0.9873 + }, + { + "start": 7063.54, + "end": 7065.06, + "probability": 0.9832 + }, + { + "start": 7066.08, + "end": 7071.88, + "probability": 0.5852 + }, + { + "start": 7072.94, + "end": 7074.4, + "probability": 0.9963 + }, + { + "start": 7074.98, + "end": 7075.98, + "probability": 0.9087 + }, + { + "start": 7076.64, + "end": 7077.04, + "probability": 0.2961 + }, + { + "start": 7078.76, + "end": 7079.69, + "probability": 0.2053 + }, + { + "start": 7080.04, + "end": 7081.16, + "probability": 0.5691 + }, + { + "start": 7082.18, + "end": 7086.52, + "probability": 0.7349 + }, + { + "start": 7087.74, + "end": 7093.34, + "probability": 0.9518 + }, + { + "start": 7094.78, + "end": 7096.7, + "probability": 0.8373 + }, + { + "start": 7096.78, + "end": 7098.55, + "probability": 0.8273 + }, + { + "start": 7100.06, + "end": 7103.62, + "probability": 0.5715 + }, + { + "start": 7104.34, + "end": 7107.58, + "probability": 0.9302 + }, + { + "start": 7108.18, + "end": 7108.89, + "probability": 0.6928 + }, + { + "start": 7110.46, + "end": 7112.38, + "probability": 0.9596 + }, + { + "start": 7112.64, + "end": 7114.42, + "probability": 0.9788 + }, + { + "start": 7115.14, + "end": 7117.94, + "probability": 0.9945 + }, + { + "start": 7118.36, + "end": 7120.28, + "probability": 0.9504 + }, + { + "start": 7121.36, + "end": 7124.94, + "probability": 0.9951 + }, + { + "start": 7124.94, + "end": 7128.02, + "probability": 0.9912 + }, + { + "start": 7129.1, + "end": 7131.36, + "probability": 0.783 + }, + { + "start": 7131.66, + "end": 7133.4, + "probability": 0.9595 + }, + { + "start": 7134.3, + "end": 7137.08, + "probability": 0.8676 + }, + { + "start": 7138.16, + "end": 7139.06, + "probability": 0.9851 + }, + { + "start": 7140.72, + "end": 7142.76, + "probability": 0.9915 + }, + { + "start": 7143.62, + "end": 7144.82, + "probability": 0.9453 + }, + { + "start": 7145.58, + "end": 7149.22, + "probability": 0.9784 + }, + { + "start": 7150.38, + "end": 7153.38, + "probability": 0.9829 + }, + { + "start": 7154.28, + "end": 7158.72, + "probability": 0.9255 + }, + { + "start": 7159.02, + "end": 7160.38, + "probability": 0.7191 + }, + { + "start": 7161.0, + "end": 7161.92, + "probability": 0.8351 + }, + { + "start": 7162.62, + "end": 7165.68, + "probability": 0.9807 + }, + { + "start": 7165.68, + "end": 7169.54, + "probability": 0.8943 + }, + { + "start": 7170.26, + "end": 7171.66, + "probability": 0.9946 + }, + { + "start": 7172.24, + "end": 7176.52, + "probability": 0.9794 + }, + { + "start": 7176.92, + "end": 7177.32, + "probability": 0.452 + }, + { + "start": 7177.34, + "end": 7178.8, + "probability": 0.9846 + }, + { + "start": 7179.36, + "end": 7182.84, + "probability": 0.4077 + }, + { + "start": 7183.18, + "end": 7183.44, + "probability": 0.1155 + }, + { + "start": 7183.84, + "end": 7186.26, + "probability": 0.5619 + }, + { + "start": 7186.34, + "end": 7186.98, + "probability": 0.5301 + }, + { + "start": 7187.12, + "end": 7188.38, + "probability": 0.8622 + }, + { + "start": 7188.38, + "end": 7190.42, + "probability": 0.7579 + }, + { + "start": 7190.58, + "end": 7191.9, + "probability": 0.5531 + }, + { + "start": 7192.84, + "end": 7195.26, + "probability": 0.7365 + }, + { + "start": 7195.78, + "end": 7196.64, + "probability": 0.9571 + }, + { + "start": 7197.2, + "end": 7199.2, + "probability": 0.9966 + }, + { + "start": 7199.7, + "end": 7202.02, + "probability": 0.9751 + }, + { + "start": 7202.18, + "end": 7202.81, + "probability": 0.4779 + }, + { + "start": 7203.7, + "end": 7204.16, + "probability": 0.2359 + }, + { + "start": 7204.26, + "end": 7207.14, + "probability": 0.7918 + }, + { + "start": 7207.14, + "end": 7210.34, + "probability": 0.7992 + }, + { + "start": 7210.82, + "end": 7216.6, + "probability": 0.7468 + }, + { + "start": 7216.78, + "end": 7217.78, + "probability": 0.5978 + }, + { + "start": 7218.34, + "end": 7220.08, + "probability": 0.6689 + }, + { + "start": 7220.78, + "end": 7223.78, + "probability": 0.6369 + }, + { + "start": 7224.12, + "end": 7227.34, + "probability": 0.9583 + }, + { + "start": 7227.7, + "end": 7231.12, + "probability": 0.9088 + }, + { + "start": 7231.12, + "end": 7233.94, + "probability": 0.8511 + }, + { + "start": 7234.08, + "end": 7234.7, + "probability": 0.4631 + }, + { + "start": 7234.76, + "end": 7240.46, + "probability": 0.8962 + }, + { + "start": 7241.0, + "end": 7243.02, + "probability": 0.8837 + }, + { + "start": 7243.76, + "end": 7244.5, + "probability": 0.6357 + }, + { + "start": 7244.8, + "end": 7245.4, + "probability": 0.6428 + }, + { + "start": 7245.54, + "end": 7245.9, + "probability": 0.7005 + }, + { + "start": 7245.94, + "end": 7250.82, + "probability": 0.8679 + }, + { + "start": 7250.94, + "end": 7251.18, + "probability": 0.7626 + }, + { + "start": 7251.24, + "end": 7252.98, + "probability": 0.9603 + }, + { + "start": 7253.32, + "end": 7254.4, + "probability": 0.8812 + }, + { + "start": 7254.44, + "end": 7256.1, + "probability": 0.9062 + }, + { + "start": 7256.46, + "end": 7257.32, + "probability": 0.7944 + }, + { + "start": 7258.34, + "end": 7264.38, + "probability": 0.9848 + }, + { + "start": 7264.46, + "end": 7266.94, + "probability": 0.8646 + }, + { + "start": 7267.24, + "end": 7267.98, + "probability": 0.7559 + }, + { + "start": 7268.18, + "end": 7269.38, + "probability": 0.9148 + }, + { + "start": 7269.74, + "end": 7270.32, + "probability": 0.88 + }, + { + "start": 7270.38, + "end": 7273.76, + "probability": 0.9253 + }, + { + "start": 7274.18, + "end": 7277.38, + "probability": 0.9238 + }, + { + "start": 7277.5, + "end": 7278.08, + "probability": 0.527 + }, + { + "start": 7278.56, + "end": 7279.8, + "probability": 0.7096 + }, + { + "start": 7280.46, + "end": 7282.12, + "probability": 0.5027 + }, + { + "start": 7282.32, + "end": 7282.6, + "probability": 0.2128 + }, + { + "start": 7282.82, + "end": 7283.08, + "probability": 0.5629 + }, + { + "start": 7283.14, + "end": 7283.22, + "probability": 0.203 + }, + { + "start": 7283.26, + "end": 7284.32, + "probability": 0.8065 + }, + { + "start": 7285.02, + "end": 7285.84, + "probability": 0.5026 + }, + { + "start": 7285.9, + "end": 7286.22, + "probability": 0.7743 + }, + { + "start": 7286.6, + "end": 7287.48, + "probability": 0.8478 + }, + { + "start": 7288.1, + "end": 7290.94, + "probability": 0.7907 + }, + { + "start": 7291.18, + "end": 7293.7, + "probability": 0.7304 + }, + { + "start": 7294.24, + "end": 7295.66, + "probability": 0.6862 + }, + { + "start": 7296.48, + "end": 7298.24, + "probability": 0.6438 + }, + { + "start": 7298.3, + "end": 7301.76, + "probability": 0.9434 + }, + { + "start": 7302.6, + "end": 7304.64, + "probability": 0.9552 + }, + { + "start": 7305.26, + "end": 7309.52, + "probability": 0.9654 + }, + { + "start": 7309.76, + "end": 7310.47, + "probability": 0.9395 + }, + { + "start": 7311.48, + "end": 7312.32, + "probability": 0.5418 + }, + { + "start": 7313.26, + "end": 7315.6, + "probability": 0.8643 + }, + { + "start": 7315.7, + "end": 7316.78, + "probability": 0.8142 + }, + { + "start": 7317.12, + "end": 7319.36, + "probability": 0.9877 + }, + { + "start": 7319.64, + "end": 7320.36, + "probability": 0.325 + }, + { + "start": 7320.48, + "end": 7321.36, + "probability": 0.6957 + }, + { + "start": 7321.5, + "end": 7322.3, + "probability": 0.75 + }, + { + "start": 7322.4, + "end": 7323.42, + "probability": 0.6515 + }, + { + "start": 7323.7, + "end": 7324.28, + "probability": 0.9236 + }, + { + "start": 7324.32, + "end": 7324.78, + "probability": 0.7767 + }, + { + "start": 7325.14, + "end": 7326.0, + "probability": 0.9111 + }, + { + "start": 7326.16, + "end": 7327.66, + "probability": 0.9539 + }, + { + "start": 7327.98, + "end": 7331.46, + "probability": 0.7408 + }, + { + "start": 7331.62, + "end": 7333.08, + "probability": 0.5536 + }, + { + "start": 7333.48, + "end": 7333.73, + "probability": 0.7605 + }, + { + "start": 7334.84, + "end": 7336.15, + "probability": 0.9988 + }, + { + "start": 7336.8, + "end": 7338.76, + "probability": 0.9231 + }, + { + "start": 7339.02, + "end": 7340.44, + "probability": 0.9938 + }, + { + "start": 7340.82, + "end": 7343.08, + "probability": 0.9805 + }, + { + "start": 7343.32, + "end": 7343.74, + "probability": 0.4847 + }, + { + "start": 7343.78, + "end": 7344.92, + "probability": 0.8793 + }, + { + "start": 7344.94, + "end": 7346.1, + "probability": 0.9185 + }, + { + "start": 7346.48, + "end": 7350.9, + "probability": 0.8916 + }, + { + "start": 7351.0, + "end": 7352.0, + "probability": 0.6885 + }, + { + "start": 7352.42, + "end": 7354.64, + "probability": 0.8251 + }, + { + "start": 7356.72, + "end": 7358.82, + "probability": 0.9714 + }, + { + "start": 7359.4, + "end": 7361.52, + "probability": 0.6547 + }, + { + "start": 7362.12, + "end": 7363.1, + "probability": 0.8803 + }, + { + "start": 7385.96, + "end": 7387.0, + "probability": 0.6203 + }, + { + "start": 7387.98, + "end": 7389.56, + "probability": 0.9032 + }, + { + "start": 7391.0, + "end": 7394.1, + "probability": 0.761 + }, + { + "start": 7394.38, + "end": 7400.12, + "probability": 0.9775 + }, + { + "start": 7401.28, + "end": 7408.3, + "probability": 0.9226 + }, + { + "start": 7409.2, + "end": 7410.82, + "probability": 0.9711 + }, + { + "start": 7411.36, + "end": 7412.96, + "probability": 0.874 + }, + { + "start": 7414.02, + "end": 7417.64, + "probability": 0.9661 + }, + { + "start": 7417.64, + "end": 7421.96, + "probability": 0.9771 + }, + { + "start": 7423.1, + "end": 7425.44, + "probability": 0.5444 + }, + { + "start": 7426.36, + "end": 7427.36, + "probability": 0.6691 + }, + { + "start": 7427.52, + "end": 7433.88, + "probability": 0.9728 + }, + { + "start": 7434.48, + "end": 7436.68, + "probability": 0.8541 + }, + { + "start": 7437.26, + "end": 7441.28, + "probability": 0.8563 + }, + { + "start": 7441.5, + "end": 7442.74, + "probability": 0.8918 + }, + { + "start": 7443.64, + "end": 7446.56, + "probability": 0.8757 + }, + { + "start": 7447.16, + "end": 7447.8, + "probability": 0.4969 + }, + { + "start": 7447.98, + "end": 7452.6, + "probability": 0.9076 + }, + { + "start": 7453.2, + "end": 7456.26, + "probability": 0.9295 + }, + { + "start": 7456.6, + "end": 7458.56, + "probability": 0.9945 + }, + { + "start": 7458.56, + "end": 7459.66, + "probability": 0.7027 + }, + { + "start": 7460.16, + "end": 7462.84, + "probability": 0.6847 + }, + { + "start": 7463.14, + "end": 7464.18, + "probability": 0.7717 + }, + { + "start": 7464.24, + "end": 7468.02, + "probability": 0.9297 + }, + { + "start": 7468.76, + "end": 7470.98, + "probability": 0.9166 + }, + { + "start": 7471.34, + "end": 7473.94, + "probability": 0.9625 + }, + { + "start": 7474.66, + "end": 7477.56, + "probability": 0.9562 + }, + { + "start": 7478.1, + "end": 7482.42, + "probability": 0.9262 + }, + { + "start": 7483.16, + "end": 7486.16, + "probability": 0.9831 + }, + { + "start": 7486.8, + "end": 7491.0, + "probability": 0.8618 + }, + { + "start": 7491.74, + "end": 7496.66, + "probability": 0.9964 + }, + { + "start": 7497.18, + "end": 7499.88, + "probability": 0.993 + }, + { + "start": 7500.28, + "end": 7506.46, + "probability": 0.9958 + }, + { + "start": 7507.9, + "end": 7514.48, + "probability": 0.9781 + }, + { + "start": 7514.6, + "end": 7515.66, + "probability": 0.8593 + }, + { + "start": 7516.46, + "end": 7517.34, + "probability": 0.7101 + }, + { + "start": 7517.41, + "end": 7518.18, + "probability": 0.0207 + }, + { + "start": 7518.22, + "end": 7523.56, + "probability": 0.9738 + }, + { + "start": 7523.82, + "end": 7524.68, + "probability": 0.5478 + }, + { + "start": 7525.72, + "end": 7527.15, + "probability": 0.7486 + }, + { + "start": 7527.36, + "end": 7530.2, + "probability": 0.9961 + }, + { + "start": 7530.2, + "end": 7535.34, + "probability": 0.957 + }, + { + "start": 7536.38, + "end": 7539.58, + "probability": 0.9685 + }, + { + "start": 7540.26, + "end": 7542.46, + "probability": 0.7337 + }, + { + "start": 7543.36, + "end": 7545.5, + "probability": 0.7733 + }, + { + "start": 7546.14, + "end": 7547.66, + "probability": 0.9645 + }, + { + "start": 7549.06, + "end": 7553.62, + "probability": 0.7995 + }, + { + "start": 7554.32, + "end": 7558.34, + "probability": 0.995 + }, + { + "start": 7558.52, + "end": 7567.32, + "probability": 0.9738 + }, + { + "start": 7568.36, + "end": 7571.84, + "probability": 0.9909 + }, + { + "start": 7571.84, + "end": 7577.26, + "probability": 0.9407 + }, + { + "start": 7578.1, + "end": 7583.72, + "probability": 0.9898 + }, + { + "start": 7584.74, + "end": 7591.36, + "probability": 0.9701 + }, + { + "start": 7591.36, + "end": 7598.34, + "probability": 0.9782 + }, + { + "start": 7600.02, + "end": 7607.27, + "probability": 0.9782 + }, + { + "start": 7607.54, + "end": 7613.32, + "probability": 0.9995 + }, + { + "start": 7614.3, + "end": 7618.22, + "probability": 0.9865 + }, + { + "start": 7618.88, + "end": 7623.26, + "probability": 0.9697 + }, + { + "start": 7623.96, + "end": 7627.06, + "probability": 0.8574 + }, + { + "start": 7627.14, + "end": 7629.56, + "probability": 0.7458 + }, + { + "start": 7630.12, + "end": 7633.6, + "probability": 0.9862 + }, + { + "start": 7634.26, + "end": 7638.2, + "probability": 0.9103 + }, + { + "start": 7638.9, + "end": 7640.42, + "probability": 0.6359 + }, + { + "start": 7644.08, + "end": 7649.32, + "probability": 0.7969 + }, + { + "start": 7649.32, + "end": 7653.28, + "probability": 0.9989 + }, + { + "start": 7654.34, + "end": 7655.66, + "probability": 0.7444 + }, + { + "start": 7655.76, + "end": 7656.94, + "probability": 0.7664 + }, + { + "start": 7657.16, + "end": 7661.14, + "probability": 0.9941 + }, + { + "start": 7661.14, + "end": 7665.52, + "probability": 0.9941 + }, + { + "start": 7666.12, + "end": 7669.02, + "probability": 0.9937 + }, + { + "start": 7669.2, + "end": 7672.74, + "probability": 0.9767 + }, + { + "start": 7673.12, + "end": 7675.26, + "probability": 0.8521 + }, + { + "start": 7675.82, + "end": 7678.3, + "probability": 0.6533 + }, + { + "start": 7678.48, + "end": 7682.1, + "probability": 0.9854 + }, + { + "start": 7682.56, + "end": 7683.8, + "probability": 0.7227 + }, + { + "start": 7684.72, + "end": 7685.81, + "probability": 0.7778 + }, + { + "start": 7686.08, + "end": 7689.16, + "probability": 0.978 + }, + { + "start": 7690.04, + "end": 7692.04, + "probability": 0.9544 + }, + { + "start": 7692.96, + "end": 7695.5, + "probability": 0.8848 + }, + { + "start": 7696.02, + "end": 7699.28, + "probability": 0.9893 + }, + { + "start": 7699.34, + "end": 7699.9, + "probability": 0.7965 + }, + { + "start": 7700.04, + "end": 7703.7, + "probability": 0.8733 + }, + { + "start": 7704.56, + "end": 7705.56, + "probability": 0.6608 + }, + { + "start": 7708.28, + "end": 7709.3, + "probability": 0.0322 + }, + { + "start": 7709.3, + "end": 7711.86, + "probability": 0.0304 + }, + { + "start": 7712.58, + "end": 7716.4, + "probability": 0.2239 + }, + { + "start": 7717.26, + "end": 7719.64, + "probability": 0.2871 + }, + { + "start": 7719.9, + "end": 7724.68, + "probability": 0.9237 + }, + { + "start": 7725.8, + "end": 7727.7, + "probability": 0.8594 + }, + { + "start": 7732.74, + "end": 7733.52, + "probability": 0.7705 + }, + { + "start": 7733.78, + "end": 7735.15, + "probability": 0.9186 + }, + { + "start": 7736.12, + "end": 7736.62, + "probability": 0.9137 + }, + { + "start": 7736.8, + "end": 7737.78, + "probability": 0.6089 + }, + { + "start": 7737.82, + "end": 7741.96, + "probability": 0.9014 + }, + { + "start": 7742.68, + "end": 7743.78, + "probability": 0.2956 + }, + { + "start": 7744.04, + "end": 7744.58, + "probability": 0.5098 + }, + { + "start": 7744.6, + "end": 7744.96, + "probability": 0.5136 + }, + { + "start": 7745.18, + "end": 7745.82, + "probability": 0.4399 + }, + { + "start": 7745.88, + "end": 7746.44, + "probability": 0.5166 + }, + { + "start": 7746.52, + "end": 7751.54, + "probability": 0.8 + }, + { + "start": 7752.02, + "end": 7754.9, + "probability": 0.9825 + }, + { + "start": 7755.1, + "end": 7760.54, + "probability": 0.9854 + }, + { + "start": 7760.92, + "end": 7762.7, + "probability": 0.9834 + }, + { + "start": 7763.18, + "end": 7764.06, + "probability": 0.9342 + }, + { + "start": 7764.14, + "end": 7767.08, + "probability": 0.9424 + }, + { + "start": 7767.6, + "end": 7769.98, + "probability": 0.8979 + }, + { + "start": 7770.96, + "end": 7771.98, + "probability": 0.9862 + }, + { + "start": 7772.22, + "end": 7777.04, + "probability": 0.5863 + }, + { + "start": 7777.12, + "end": 7779.9, + "probability": 0.665 + }, + { + "start": 7779.96, + "end": 7782.13, + "probability": 0.8042 + }, + { + "start": 7782.68, + "end": 7785.11, + "probability": 0.891 + }, + { + "start": 7785.92, + "end": 7787.06, + "probability": 0.8426 + }, + { + "start": 7787.22, + "end": 7788.26, + "probability": 0.7037 + }, + { + "start": 7788.92, + "end": 7791.18, + "probability": 0.657 + }, + { + "start": 7791.92, + "end": 7793.22, + "probability": 0.57 + }, + { + "start": 7793.32, + "end": 7795.1, + "probability": 0.9956 + }, + { + "start": 7795.32, + "end": 7795.46, + "probability": 0.6671 + }, + { + "start": 7795.52, + "end": 7797.18, + "probability": 0.7818 + }, + { + "start": 7797.4, + "end": 7798.22, + "probability": 0.9451 + }, + { + "start": 7798.58, + "end": 7799.58, + "probability": 0.6465 + }, + { + "start": 7800.3, + "end": 7801.52, + "probability": 0.661 + }, + { + "start": 7801.62, + "end": 7804.76, + "probability": 0.7075 + }, + { + "start": 7805.2, + "end": 7808.46, + "probability": 0.9697 + }, + { + "start": 7808.6, + "end": 7809.68, + "probability": 0.657 + }, + { + "start": 7810.02, + "end": 7811.68, + "probability": 0.8471 + }, + { + "start": 7812.06, + "end": 7815.36, + "probability": 0.8293 + }, + { + "start": 7816.16, + "end": 7818.04, + "probability": 0.5248 + }, + { + "start": 7818.28, + "end": 7818.84, + "probability": 0.6805 + }, + { + "start": 7819.3, + "end": 7819.92, + "probability": 0.7827 + }, + { + "start": 7820.0, + "end": 7820.4, + "probability": 0.82 + }, + { + "start": 7820.48, + "end": 7820.54, + "probability": 0.0859 + }, + { + "start": 7820.54, + "end": 7822.09, + "probability": 0.3933 + }, + { + "start": 7823.02, + "end": 7824.3, + "probability": 0.5642 + }, + { + "start": 7824.9, + "end": 7826.24, + "probability": 0.468 + }, + { + "start": 7826.52, + "end": 7828.12, + "probability": 0.4531 + }, + { + "start": 7828.24, + "end": 7829.58, + "probability": 0.899 + }, + { + "start": 7830.22, + "end": 7831.72, + "probability": 0.217 + }, + { + "start": 7832.95, + "end": 7837.2, + "probability": 0.4174 + }, + { + "start": 7837.43, + "end": 7841.08, + "probability": 0.9852 + }, + { + "start": 7841.86, + "end": 7842.82, + "probability": 0.3226 + }, + { + "start": 7842.82, + "end": 7843.76, + "probability": 0.5224 + }, + { + "start": 7844.3, + "end": 7848.3, + "probability": 0.8507 + }, + { + "start": 7848.74, + "end": 7849.6, + "probability": 0.938 + }, + { + "start": 7849.7, + "end": 7851.16, + "probability": 0.9941 + }, + { + "start": 7851.68, + "end": 7852.81, + "probability": 0.8789 + }, + { + "start": 7853.08, + "end": 7855.79, + "probability": 0.953 + }, + { + "start": 7856.54, + "end": 7858.14, + "probability": 0.8569 + }, + { + "start": 7858.44, + "end": 7860.28, + "probability": 0.8503 + }, + { + "start": 7860.52, + "end": 7865.14, + "probability": 0.8803 + }, + { + "start": 7865.76, + "end": 7867.0, + "probability": 0.9798 + }, + { + "start": 7867.52, + "end": 7870.18, + "probability": 0.9102 + }, + { + "start": 7870.44, + "end": 7873.32, + "probability": 0.8203 + }, + { + "start": 7873.4, + "end": 7873.94, + "probability": 0.7776 + }, + { + "start": 7874.26, + "end": 7876.52, + "probability": 0.7107 + }, + { + "start": 7876.56, + "end": 7878.98, + "probability": 0.8211 + }, + { + "start": 7879.02, + "end": 7881.67, + "probability": 0.765 + }, + { + "start": 7882.96, + "end": 7886.36, + "probability": 0.8441 + }, + { + "start": 7886.56, + "end": 7888.22, + "probability": 0.4293 + }, + { + "start": 7888.28, + "end": 7889.02, + "probability": 0.7402 + }, + { + "start": 7889.42, + "end": 7890.12, + "probability": 0.7644 + }, + { + "start": 7890.48, + "end": 7891.36, + "probability": 0.9301 + }, + { + "start": 7891.98, + "end": 7897.4, + "probability": 0.0324 + }, + { + "start": 7901.74, + "end": 7902.5, + "probability": 0.0024 + }, + { + "start": 7902.5, + "end": 7907.14, + "probability": 0.0073 + }, + { + "start": 7908.9, + "end": 7909.0, + "probability": 0.3984 + }, + { + "start": 7909.0, + "end": 7912.7, + "probability": 0.3065 + }, + { + "start": 7912.76, + "end": 7915.5, + "probability": 0.5389 + }, + { + "start": 7916.68, + "end": 7918.04, + "probability": 0.8854 + }, + { + "start": 7918.44, + "end": 7921.54, + "probability": 0.9768 + }, + { + "start": 7921.68, + "end": 7923.14, + "probability": 0.6089 + }, + { + "start": 7924.0, + "end": 7926.04, + "probability": 0.9011 + }, + { + "start": 7953.26, + "end": 7954.0, + "probability": 0.5387 + }, + { + "start": 7958.42, + "end": 7960.88, + "probability": 0.6843 + }, + { + "start": 7963.06, + "end": 7966.84, + "probability": 0.9943 + }, + { + "start": 7969.14, + "end": 7970.64, + "probability": 0.9768 + }, + { + "start": 7971.6, + "end": 7973.66, + "probability": 0.8332 + }, + { + "start": 7974.38, + "end": 7975.96, + "probability": 0.96 + }, + { + "start": 7977.0, + "end": 7978.34, + "probability": 0.9588 + }, + { + "start": 7979.4, + "end": 7982.54, + "probability": 0.6312 + }, + { + "start": 7983.16, + "end": 7983.86, + "probability": 0.9092 + }, + { + "start": 7985.56, + "end": 7991.62, + "probability": 0.9673 + }, + { + "start": 7992.52, + "end": 7999.84, + "probability": 0.9914 + }, + { + "start": 8001.08, + "end": 8004.88, + "probability": 0.9913 + }, + { + "start": 8005.82, + "end": 8009.96, + "probability": 0.9766 + }, + { + "start": 8010.6, + "end": 8017.06, + "probability": 0.9914 + }, + { + "start": 8018.28, + "end": 8019.36, + "probability": 0.9985 + }, + { + "start": 8023.58, + "end": 8027.34, + "probability": 0.9987 + }, + { + "start": 8027.88, + "end": 8032.34, + "probability": 0.9932 + }, + { + "start": 8037.52, + "end": 8043.44, + "probability": 0.9946 + }, + { + "start": 8044.24, + "end": 8045.06, + "probability": 0.9091 + }, + { + "start": 8045.74, + "end": 8046.42, + "probability": 0.8734 + }, + { + "start": 8046.98, + "end": 8047.92, + "probability": 0.9391 + }, + { + "start": 8048.32, + "end": 8051.8, + "probability": 0.9122 + }, + { + "start": 8052.2, + "end": 8056.88, + "probability": 0.9966 + }, + { + "start": 8057.48, + "end": 8058.54, + "probability": 0.9766 + }, + { + "start": 8059.76, + "end": 8060.3, + "probability": 0.6872 + }, + { + "start": 8061.06, + "end": 8069.14, + "probability": 0.7703 + }, + { + "start": 8069.76, + "end": 8075.14, + "probability": 0.9359 + }, + { + "start": 8076.08, + "end": 8079.4, + "probability": 0.999 + }, + { + "start": 8080.38, + "end": 8084.92, + "probability": 0.9939 + }, + { + "start": 8085.88, + "end": 8086.4, + "probability": 0.3313 + }, + { + "start": 8086.4, + "end": 8088.6, + "probability": 0.6041 + }, + { + "start": 8090.68, + "end": 8095.04, + "probability": 0.9662 + }, + { + "start": 8096.18, + "end": 8097.0, + "probability": 0.914 + }, + { + "start": 8097.94, + "end": 8101.52, + "probability": 0.9893 + }, + { + "start": 8102.16, + "end": 8103.26, + "probability": 0.9302 + }, + { + "start": 8103.96, + "end": 8106.84, + "probability": 0.95 + }, + { + "start": 8107.26, + "end": 8107.72, + "probability": 0.5855 + }, + { + "start": 8107.82, + "end": 8108.32, + "probability": 0.7064 + }, + { + "start": 8108.44, + "end": 8111.1, + "probability": 0.915 + }, + { + "start": 8111.92, + "end": 8113.34, + "probability": 0.7857 + }, + { + "start": 8113.82, + "end": 8117.98, + "probability": 0.9792 + }, + { + "start": 8118.62, + "end": 8121.42, + "probability": 0.81 + }, + { + "start": 8121.9, + "end": 8126.62, + "probability": 0.9865 + }, + { + "start": 8127.08, + "end": 8127.72, + "probability": 0.7968 + }, + { + "start": 8128.04, + "end": 8131.84, + "probability": 0.9793 + }, + { + "start": 8132.04, + "end": 8132.76, + "probability": 0.1503 + }, + { + "start": 8133.44, + "end": 8135.88, + "probability": 0.2267 + }, + { + "start": 8136.5, + "end": 8137.18, + "probability": 0.7841 + }, + { + "start": 8137.36, + "end": 8141.62, + "probability": 0.6936 + }, + { + "start": 8143.0, + "end": 8145.64, + "probability": 0.8502 + }, + { + "start": 8145.88, + "end": 8151.2, + "probability": 0.97 + }, + { + "start": 8151.82, + "end": 8157.52, + "probability": 0.6829 + }, + { + "start": 8157.7, + "end": 8159.82, + "probability": 0.5958 + }, + { + "start": 8162.11, + "end": 8165.08, + "probability": 0.3869 + }, + { + "start": 8165.08, + "end": 8166.6, + "probability": 0.2862 + }, + { + "start": 8167.08, + "end": 8170.56, + "probability": 0.7496 + }, + { + "start": 8171.18, + "end": 8172.2, + "probability": 0.8892 + }, + { + "start": 8172.5, + "end": 8178.74, + "probability": 0.9666 + }, + { + "start": 8179.06, + "end": 8182.4, + "probability": 0.9649 + }, + { + "start": 8182.86, + "end": 8185.94, + "probability": 0.9932 + }, + { + "start": 8186.34, + "end": 8186.98, + "probability": 0.6815 + }, + { + "start": 8187.14, + "end": 8189.4, + "probability": 0.845 + }, + { + "start": 8189.46, + "end": 8193.3, + "probability": 0.7715 + }, + { + "start": 8217.88, + "end": 8221.88, + "probability": 0.6798 + }, + { + "start": 8222.56, + "end": 8224.16, + "probability": 0.7085 + }, + { + "start": 8225.22, + "end": 8227.29, + "probability": 0.9557 + }, + { + "start": 8228.12, + "end": 8233.36, + "probability": 0.8325 + }, + { + "start": 8233.64, + "end": 8235.88, + "probability": 0.9345 + }, + { + "start": 8236.28, + "end": 8238.06, + "probability": 0.9121 + }, + { + "start": 8239.06, + "end": 8245.48, + "probability": 0.8688 + }, + { + "start": 8246.06, + "end": 8257.34, + "probability": 0.9932 + }, + { + "start": 8257.9, + "end": 8259.96, + "probability": 0.3377 + }, + { + "start": 8260.66, + "end": 8264.06, + "probability": 0.9915 + }, + { + "start": 8264.88, + "end": 8267.42, + "probability": 0.9753 + }, + { + "start": 8268.32, + "end": 8272.7, + "probability": 0.7657 + }, + { + "start": 8273.6, + "end": 8274.32, + "probability": 0.6835 + }, + { + "start": 8274.44, + "end": 8275.6, + "probability": 0.9777 + }, + { + "start": 8276.18, + "end": 8280.68, + "probability": 0.9619 + }, + { + "start": 8281.92, + "end": 8282.92, + "probability": 0.8009 + }, + { + "start": 8283.06, + "end": 8284.59, + "probability": 0.99 + }, + { + "start": 8285.34, + "end": 8285.88, + "probability": 0.9849 + }, + { + "start": 8286.86, + "end": 8287.56, + "probability": 0.019 + }, + { + "start": 8288.8, + "end": 8294.58, + "probability": 0.9905 + }, + { + "start": 8295.3, + "end": 8296.08, + "probability": 0.7164 + }, + { + "start": 8296.96, + "end": 8302.82, + "probability": 0.9055 + }, + { + "start": 8303.72, + "end": 8307.52, + "probability": 0.9354 + }, + { + "start": 8308.0, + "end": 8311.4, + "probability": 0.9929 + }, + { + "start": 8311.58, + "end": 8311.86, + "probability": 0.9629 + }, + { + "start": 8312.34, + "end": 8316.84, + "probability": 0.9532 + }, + { + "start": 8317.2, + "end": 8318.56, + "probability": 0.6958 + }, + { + "start": 8318.88, + "end": 8319.46, + "probability": 0.9167 + }, + { + "start": 8319.58, + "end": 8320.44, + "probability": 0.9141 + }, + { + "start": 8321.28, + "end": 8328.0, + "probability": 0.9727 + }, + { + "start": 8329.04, + "end": 8330.02, + "probability": 0.7021 + }, + { + "start": 8330.9, + "end": 8339.6, + "probability": 0.9835 + }, + { + "start": 8340.42, + "end": 8344.1, + "probability": 0.9878 + }, + { + "start": 8344.26, + "end": 8347.04, + "probability": 0.8497 + }, + { + "start": 8348.08, + "end": 8349.32, + "probability": 0.8584 + }, + { + "start": 8349.42, + "end": 8350.78, + "probability": 0.9471 + }, + { + "start": 8350.86, + "end": 8352.02, + "probability": 0.9849 + }, + { + "start": 8352.16, + "end": 8354.02, + "probability": 0.9727 + }, + { + "start": 8354.12, + "end": 8356.12, + "probability": 0.9792 + }, + { + "start": 8356.22, + "end": 8361.0, + "probability": 0.9057 + }, + { + "start": 8361.04, + "end": 8364.82, + "probability": 0.9474 + }, + { + "start": 8365.0, + "end": 8369.72, + "probability": 0.6127 + }, + { + "start": 8370.26, + "end": 8372.16, + "probability": 0.9767 + }, + { + "start": 8373.56, + "end": 8374.96, + "probability": 0.7672 + }, + { + "start": 8375.48, + "end": 8376.8, + "probability": 0.9705 + }, + { + "start": 8378.08, + "end": 8381.04, + "probability": 0.8818 + }, + { + "start": 8381.3, + "end": 8384.5, + "probability": 0.9851 + }, + { + "start": 8385.54, + "end": 8386.56, + "probability": 0.9961 + }, + { + "start": 8388.5, + "end": 8389.92, + "probability": 0.9781 + }, + { + "start": 8390.08, + "end": 8391.1, + "probability": 0.8207 + }, + { + "start": 8391.24, + "end": 8391.84, + "probability": 0.9407 + }, + { + "start": 8391.9, + "end": 8394.14, + "probability": 0.967 + }, + { + "start": 8394.78, + "end": 8398.16, + "probability": 0.8269 + }, + { + "start": 8398.34, + "end": 8398.48, + "probability": 0.6352 + }, + { + "start": 8398.6, + "end": 8399.68, + "probability": 0.3803 + }, + { + "start": 8400.56, + "end": 8406.76, + "probability": 0.9839 + }, + { + "start": 8406.86, + "end": 8408.82, + "probability": 0.7766 + }, + { + "start": 8412.29, + "end": 8415.42, + "probability": 0.7285 + }, + { + "start": 8415.72, + "end": 8419.56, + "probability": 0.7804 + }, + { + "start": 8420.36, + "end": 8428.78, + "probability": 0.8677 + }, + { + "start": 8428.82, + "end": 8430.16, + "probability": 0.8006 + }, + { + "start": 8430.36, + "end": 8432.52, + "probability": 0.842 + }, + { + "start": 8432.84, + "end": 8434.08, + "probability": 0.9256 + }, + { + "start": 8434.46, + "end": 8437.24, + "probability": 0.6933 + }, + { + "start": 8437.9, + "end": 8439.54, + "probability": 0.4375 + }, + { + "start": 8439.58, + "end": 8443.2, + "probability": 0.863 + }, + { + "start": 8443.46, + "end": 8444.44, + "probability": 0.7063 + }, + { + "start": 8444.6, + "end": 8445.36, + "probability": 0.7329 + }, + { + "start": 8445.6, + "end": 8447.0, + "probability": 0.3535 + }, + { + "start": 8447.06, + "end": 8448.06, + "probability": 0.4943 + }, + { + "start": 8448.38, + "end": 8450.58, + "probability": 0.6556 + }, + { + "start": 8450.96, + "end": 8452.02, + "probability": 0.6529 + }, + { + "start": 8452.46, + "end": 8454.14, + "probability": 0.8016 + }, + { + "start": 8454.9, + "end": 8457.08, + "probability": 0.9112 + }, + { + "start": 8457.3, + "end": 8460.72, + "probability": 0.873 + }, + { + "start": 8460.82, + "end": 8462.18, + "probability": 0.2644 + }, + { + "start": 8462.18, + "end": 8465.72, + "probability": 0.5842 + }, + { + "start": 8465.84, + "end": 8465.94, + "probability": 0.769 + }, + { + "start": 8466.02, + "end": 8470.56, + "probability": 0.9592 + }, + { + "start": 8471.06, + "end": 8471.9, + "probability": 0.9614 + }, + { + "start": 8472.2, + "end": 8474.68, + "probability": 0.8594 + }, + { + "start": 8475.42, + "end": 8477.98, + "probability": 0.9397 + }, + { + "start": 8478.08, + "end": 8479.4, + "probability": 0.9084 + }, + { + "start": 8479.62, + "end": 8480.59, + "probability": 0.7997 + }, + { + "start": 8481.0, + "end": 8482.2, + "probability": 0.7543 + }, + { + "start": 8482.38, + "end": 8482.76, + "probability": 0.7153 + }, + { + "start": 8482.88, + "end": 8484.02, + "probability": 0.9086 + }, + { + "start": 8484.28, + "end": 8486.46, + "probability": 0.988 + }, + { + "start": 8486.92, + "end": 8492.2, + "probability": 0.9928 + }, + { + "start": 8492.46, + "end": 8493.6, + "probability": 0.7148 + }, + { + "start": 8493.96, + "end": 8494.92, + "probability": 0.7965 + }, + { + "start": 8494.96, + "end": 8496.08, + "probability": 0.8989 + }, + { + "start": 8496.16, + "end": 8497.82, + "probability": 0.925 + }, + { + "start": 8498.44, + "end": 8501.88, + "probability": 0.9421 + }, + { + "start": 8501.96, + "end": 8503.42, + "probability": 0.8732 + }, + { + "start": 8503.94, + "end": 8506.38, + "probability": 0.6369 + }, + { + "start": 8506.48, + "end": 8506.56, + "probability": 0.5121 + }, + { + "start": 8506.6, + "end": 8507.14, + "probability": 0.7097 + }, + { + "start": 8507.18, + "end": 8508.28, + "probability": 0.8353 + }, + { + "start": 8508.62, + "end": 8510.06, + "probability": 0.9527 + }, + { + "start": 8510.66, + "end": 8510.68, + "probability": 0.48 + }, + { + "start": 8511.0, + "end": 8511.82, + "probability": 0.8827 + }, + { + "start": 8511.9, + "end": 8514.16, + "probability": 0.8033 + }, + { + "start": 8514.54, + "end": 8516.04, + "probability": 0.9759 + }, + { + "start": 8516.22, + "end": 8518.18, + "probability": 0.9929 + }, + { + "start": 8518.24, + "end": 8518.76, + "probability": 0.8824 + }, + { + "start": 8518.86, + "end": 8520.82, + "probability": 0.9829 + }, + { + "start": 8520.88, + "end": 8521.74, + "probability": 0.9894 + }, + { + "start": 8521.82, + "end": 8522.21, + "probability": 0.875 + }, + { + "start": 8522.98, + "end": 8524.22, + "probability": 0.7229 + }, + { + "start": 8524.24, + "end": 8526.18, + "probability": 0.9922 + }, + { + "start": 8526.94, + "end": 8529.4, + "probability": 0.9951 + }, + { + "start": 8529.46, + "end": 8533.64, + "probability": 0.9986 + }, + { + "start": 8534.44, + "end": 8536.4, + "probability": 0.8585 + }, + { + "start": 8536.96, + "end": 8539.54, + "probability": 0.9021 + }, + { + "start": 8539.98, + "end": 8545.48, + "probability": 0.9893 + }, + { + "start": 8546.0, + "end": 8546.36, + "probability": 0.556 + }, + { + "start": 8546.6, + "end": 8548.02, + "probability": 0.9722 + }, + { + "start": 8548.2, + "end": 8549.7, + "probability": 0.9866 + }, + { + "start": 8549.8, + "end": 8550.14, + "probability": 0.7939 + }, + { + "start": 8550.14, + "end": 8552.02, + "probability": 0.6969 + }, + { + "start": 8552.2, + "end": 8552.74, + "probability": 0.8517 + }, + { + "start": 8552.86, + "end": 8553.04, + "probability": 0.8329 + }, + { + "start": 8553.1, + "end": 8553.14, + "probability": 0.3512 + }, + { + "start": 8553.26, + "end": 8553.98, + "probability": 0.7976 + }, + { + "start": 8554.12, + "end": 8556.02, + "probability": 0.9953 + }, + { + "start": 8556.5, + "end": 8557.22, + "probability": 0.8867 + }, + { + "start": 8557.28, + "end": 8562.11, + "probability": 0.9613 + }, + { + "start": 8562.64, + "end": 8563.54, + "probability": 0.9846 + }, + { + "start": 8563.58, + "end": 8564.04, + "probability": 0.6858 + }, + { + "start": 8564.38, + "end": 8568.52, + "probability": 0.9002 + }, + { + "start": 8568.88, + "end": 8574.46, + "probability": 0.9932 + }, + { + "start": 8575.18, + "end": 8578.9, + "probability": 0.9194 + }, + { + "start": 8579.06, + "end": 8580.16, + "probability": 0.8263 + }, + { + "start": 8580.32, + "end": 8581.8, + "probability": 0.811 + }, + { + "start": 8581.88, + "end": 8583.1, + "probability": 0.9841 + }, + { + "start": 8583.22, + "end": 8587.58, + "probability": 0.955 + }, + { + "start": 8587.92, + "end": 8591.22, + "probability": 0.9699 + }, + { + "start": 8591.86, + "end": 8595.06, + "probability": 0.9869 + }, + { + "start": 8595.98, + "end": 8597.78, + "probability": 0.9557 + }, + { + "start": 8597.9, + "end": 8598.4, + "probability": 0.7115 + }, + { + "start": 8601.06, + "end": 8604.88, + "probability": 0.907 + }, + { + "start": 8604.94, + "end": 8607.84, + "probability": 0.9546 + }, + { + "start": 8609.88, + "end": 8610.68, + "probability": 0.8104 + }, + { + "start": 8617.54, + "end": 8620.06, + "probability": 0.8736 + }, + { + "start": 8621.38, + "end": 8623.8, + "probability": 0.9485 + }, + { + "start": 8624.16, + "end": 8625.32, + "probability": 0.8859 + }, + { + "start": 8627.74, + "end": 8629.12, + "probability": 0.9592 + }, + { + "start": 8629.7, + "end": 8631.1, + "probability": 0.823 + }, + { + "start": 8631.62, + "end": 8639.08, + "probability": 0.9928 + }, + { + "start": 8639.68, + "end": 8640.16, + "probability": 0.9508 + }, + { + "start": 8640.26, + "end": 8641.06, + "probability": 0.8311 + }, + { + "start": 8641.16, + "end": 8641.84, + "probability": 0.7899 + }, + { + "start": 8642.08, + "end": 8646.32, + "probability": 0.9482 + }, + { + "start": 8646.86, + "end": 8647.35, + "probability": 0.9064 + }, + { + "start": 8648.06, + "end": 8650.48, + "probability": 0.8354 + }, + { + "start": 8650.94, + "end": 8652.22, + "probability": 0.9752 + }, + { + "start": 8653.47, + "end": 8657.6, + "probability": 0.9829 + }, + { + "start": 8657.74, + "end": 8658.11, + "probability": 0.9618 + }, + { + "start": 8658.9, + "end": 8660.42, + "probability": 0.979 + }, + { + "start": 8660.52, + "end": 8663.7, + "probability": 0.9438 + }, + { + "start": 8663.94, + "end": 8664.36, + "probability": 0.7767 + }, + { + "start": 8664.9, + "end": 8665.88, + "probability": 0.9324 + }, + { + "start": 8665.92, + "end": 8666.12, + "probability": 0.3452 + }, + { + "start": 8666.12, + "end": 8666.66, + "probability": 0.7296 + }, + { + "start": 8666.74, + "end": 8667.38, + "probability": 0.9372 + }, + { + "start": 8667.5, + "end": 8668.88, + "probability": 0.9913 + }, + { + "start": 8669.34, + "end": 8675.52, + "probability": 0.9883 + }, + { + "start": 8675.98, + "end": 8678.5, + "probability": 0.9351 + }, + { + "start": 8678.88, + "end": 8680.76, + "probability": 0.7096 + }, + { + "start": 8681.1, + "end": 8683.28, + "probability": 0.9866 + }, + { + "start": 8683.8, + "end": 8685.12, + "probability": 0.8367 + }, + { + "start": 8685.38, + "end": 8686.37, + "probability": 0.5665 + }, + { + "start": 8688.68, + "end": 8689.26, + "probability": 0.0238 + }, + { + "start": 8689.46, + "end": 8689.46, + "probability": 0.0187 + }, + { + "start": 8689.46, + "end": 8690.34, + "probability": 0.1061 + }, + { + "start": 8691.0, + "end": 8694.7, + "probability": 0.2176 + }, + { + "start": 8695.02, + "end": 8696.58, + "probability": 0.751 + }, + { + "start": 8696.88, + "end": 8701.52, + "probability": 0.9684 + }, + { + "start": 8702.43, + "end": 8704.56, + "probability": 0.9771 + }, + { + "start": 8705.0, + "end": 8708.48, + "probability": 0.9143 + }, + { + "start": 8708.58, + "end": 8709.21, + "probability": 0.9863 + }, + { + "start": 8709.84, + "end": 8713.8, + "probability": 0.9928 + }, + { + "start": 8714.08, + "end": 8714.56, + "probability": 0.6846 + }, + { + "start": 8714.58, + "end": 8715.08, + "probability": 0.981 + }, + { + "start": 8715.36, + "end": 8717.82, + "probability": 0.8371 + }, + { + "start": 8718.74, + "end": 8720.84, + "probability": 0.1812 + }, + { + "start": 8721.62, + "end": 8721.9, + "probability": 0.2472 + }, + { + "start": 8721.9, + "end": 8724.16, + "probability": 0.6749 + }, + { + "start": 8725.04, + "end": 8725.56, + "probability": 0.4742 + }, + { + "start": 8725.6, + "end": 8726.36, + "probability": 0.8 + }, + { + "start": 8726.66, + "end": 8727.36, + "probability": 0.7271 + }, + { + "start": 8727.54, + "end": 8728.52, + "probability": 0.5264 + }, + { + "start": 8728.52, + "end": 8729.28, + "probability": 0.6074 + }, + { + "start": 8729.38, + "end": 8729.84, + "probability": 0.6387 + }, + { + "start": 8729.9, + "end": 8730.64, + "probability": 0.5822 + }, + { + "start": 8748.16, + "end": 8754.82, + "probability": 0.5682 + }, + { + "start": 8754.94, + "end": 8755.38, + "probability": 0.2578 + }, + { + "start": 8755.38, + "end": 8756.38, + "probability": 0.1701 + }, + { + "start": 8756.6, + "end": 8758.4, + "probability": 0.7964 + }, + { + "start": 8760.98, + "end": 8761.04, + "probability": 0.0296 + }, + { + "start": 8761.04, + "end": 8762.26, + "probability": 0.0147 + }, + { + "start": 8762.8, + "end": 8764.8, + "probability": 0.0241 + }, + { + "start": 8775.56, + "end": 8777.02, + "probability": 0.2544 + }, + { + "start": 8777.02, + "end": 8777.02, + "probability": 0.1323 + }, + { + "start": 8777.02, + "end": 8777.88, + "probability": 0.2647 + }, + { + "start": 8778.1, + "end": 8782.02, + "probability": 0.0489 + }, + { + "start": 8782.42, + "end": 8783.18, + "probability": 0.0355 + }, + { + "start": 8783.3, + "end": 8784.44, + "probability": 0.1497 + }, + { + "start": 8784.96, + "end": 8787.3, + "probability": 0.6468 + }, + { + "start": 8787.82, + "end": 8790.78, + "probability": 0.1048 + }, + { + "start": 8790.88, + "end": 8793.68, + "probability": 0.2743 + }, + { + "start": 8801.62, + "end": 8802.28, + "probability": 0.1194 + }, + { + "start": 8830.0, + "end": 8830.0, + "probability": 0.0 + }, + { + "start": 8830.0, + "end": 8830.0, + "probability": 0.0 + }, + { + "start": 8830.0, + "end": 8830.0, + "probability": 0.0 + }, + { + "start": 8830.0, + "end": 8830.0, + "probability": 0.0 + }, + { + "start": 8830.0, + "end": 8830.0, + "probability": 0.0 + }, + { + "start": 8830.0, + "end": 8830.0, + "probability": 0.0 + }, + { + "start": 8830.0, + "end": 8830.0, + "probability": 0.0 + }, + { + "start": 8830.0, + "end": 8830.0, + "probability": 0.0 + }, + { + "start": 8830.0, + "end": 8830.0, + "probability": 0.0 + }, + { + "start": 8830.0, + "end": 8830.0, + "probability": 0.0 + }, + { + "start": 8830.0, + "end": 8830.0, + "probability": 0.0 + }, + { + "start": 8830.0, + "end": 8830.0, + "probability": 0.0 + }, + { + "start": 8830.0, + "end": 8830.0, + "probability": 0.0 + }, + { + "start": 8830.0, + "end": 8830.0, + "probability": 0.0 + }, + { + "start": 8830.0, + "end": 8830.0, + "probability": 0.0 + }, + { + "start": 8830.0, + "end": 8830.0, + "probability": 0.0 + }, + { + "start": 8830.0, + "end": 8830.0, + "probability": 0.0 + }, + { + "start": 8830.0, + "end": 8830.0, + "probability": 0.0 + }, + { + "start": 8830.0, + "end": 8830.0, + "probability": 0.0 + }, + { + "start": 8830.0, + "end": 8830.0, + "probability": 0.0 + }, + { + "start": 8830.0, + "end": 8830.0, + "probability": 0.0 + }, + { + "start": 8830.0, + "end": 8830.0, + "probability": 0.0 + }, + { + "start": 8830.0, + "end": 8830.0, + "probability": 0.0 + }, + { + "start": 8830.22, + "end": 8830.28, + "probability": 0.0825 + }, + { + "start": 8830.28, + "end": 8830.72, + "probability": 0.1191 + }, + { + "start": 8832.14, + "end": 8835.07, + "probability": 0.9816 + }, + { + "start": 8835.52, + "end": 8836.18, + "probability": 0.6821 + }, + { + "start": 8836.26, + "end": 8838.96, + "probability": 0.7262 + }, + { + "start": 8839.54, + "end": 8845.18, + "probability": 0.9855 + }, + { + "start": 8845.18, + "end": 8847.54, + "probability": 0.4017 + }, + { + "start": 8847.68, + "end": 8849.68, + "probability": 0.9406 + }, + { + "start": 8850.22, + "end": 8852.86, + "probability": 0.9788 + }, + { + "start": 8853.74, + "end": 8857.88, + "probability": 0.9278 + }, + { + "start": 8859.62, + "end": 8862.32, + "probability": 0.9216 + }, + { + "start": 8863.06, + "end": 8868.34, + "probability": 0.9904 + }, + { + "start": 8869.64, + "end": 8875.88, + "probability": 0.9983 + }, + { + "start": 8876.64, + "end": 8881.64, + "probability": 0.9982 + }, + { + "start": 8882.58, + "end": 8883.44, + "probability": 0.7947 + }, + { + "start": 8883.98, + "end": 8886.52, + "probability": 0.9902 + }, + { + "start": 8887.58, + "end": 8893.64, + "probability": 0.9444 + }, + { + "start": 8894.98, + "end": 8897.1, + "probability": 0.9848 + }, + { + "start": 8897.68, + "end": 8902.18, + "probability": 0.9883 + }, + { + "start": 8903.68, + "end": 8908.12, + "probability": 0.8915 + }, + { + "start": 8908.12, + "end": 8913.08, + "probability": 0.9939 + }, + { + "start": 8914.6, + "end": 8918.16, + "probability": 0.9487 + }, + { + "start": 8919.08, + "end": 8922.66, + "probability": 0.9885 + }, + { + "start": 8923.46, + "end": 8925.88, + "probability": 0.9206 + }, + { + "start": 8926.76, + "end": 8929.36, + "probability": 0.8412 + }, + { + "start": 8930.44, + "end": 8934.22, + "probability": 0.9957 + }, + { + "start": 8935.28, + "end": 8940.4, + "probability": 0.9763 + }, + { + "start": 8941.56, + "end": 8944.82, + "probability": 0.9703 + }, + { + "start": 8945.08, + "end": 8945.84, + "probability": 0.8197 + }, + { + "start": 8946.28, + "end": 8948.92, + "probability": 0.8224 + }, + { + "start": 8948.96, + "end": 8950.02, + "probability": 0.5288 + }, + { + "start": 8950.08, + "end": 8955.36, + "probability": 0.9013 + }, + { + "start": 8956.34, + "end": 8959.22, + "probability": 0.9315 + }, + { + "start": 8959.72, + "end": 8961.92, + "probability": 0.9629 + }, + { + "start": 8962.48, + "end": 8965.32, + "probability": 0.9657 + }, + { + "start": 8965.96, + "end": 8967.26, + "probability": 0.7337 + }, + { + "start": 8968.18, + "end": 8970.78, + "probability": 0.9956 + }, + { + "start": 8970.96, + "end": 8975.92, + "probability": 0.975 + }, + { + "start": 8976.92, + "end": 8978.4, + "probability": 0.8179 + }, + { + "start": 8979.28, + "end": 8982.88, + "probability": 0.9912 + }, + { + "start": 8984.76, + "end": 8989.44, + "probability": 0.9878 + }, + { + "start": 8990.76, + "end": 8992.66, + "probability": 0.9858 + }, + { + "start": 8992.76, + "end": 8993.78, + "probability": 0.5775 + }, + { + "start": 8993.86, + "end": 8997.66, + "probability": 0.8889 + }, + { + "start": 8998.38, + "end": 9002.46, + "probability": 0.6377 + }, + { + "start": 9003.36, + "end": 9009.54, + "probability": 0.9907 + }, + { + "start": 9010.46, + "end": 9013.56, + "probability": 0.9886 + }, + { + "start": 9013.56, + "end": 9019.48, + "probability": 0.9595 + }, + { + "start": 9020.0, + "end": 9021.68, + "probability": 0.9959 + }, + { + "start": 9021.68, + "end": 9024.48, + "probability": 0.8781 + }, + { + "start": 9024.8, + "end": 9027.42, + "probability": 0.7616 + }, + { + "start": 9027.58, + "end": 9029.81, + "probability": 0.9143 + }, + { + "start": 9031.84, + "end": 9033.02, + "probability": 0.9727 + }, + { + "start": 9033.08, + "end": 9034.72, + "probability": 0.8903 + }, + { + "start": 9035.0, + "end": 9040.24, + "probability": 0.9155 + }, + { + "start": 9042.08, + "end": 9046.8, + "probability": 0.9524 + }, + { + "start": 9046.8, + "end": 9049.98, + "probability": 0.9927 + }, + { + "start": 9050.66, + "end": 9051.14, + "probability": 0.2776 + }, + { + "start": 9053.26, + "end": 9053.8, + "probability": 0.6995 + }, + { + "start": 9054.04, + "end": 9055.18, + "probability": 0.5873 + }, + { + "start": 9055.52, + "end": 9058.64, + "probability": 0.9878 + }, + { + "start": 9059.26, + "end": 9062.98, + "probability": 0.8499 + }, + { + "start": 9063.72, + "end": 9065.6, + "probability": 0.5586 + }, + { + "start": 9065.74, + "end": 9066.33, + "probability": 0.9814 + }, + { + "start": 9067.62, + "end": 9068.32, + "probability": 0.8762 + }, + { + "start": 9069.1, + "end": 9073.6, + "probability": 0.8696 + }, + { + "start": 9073.84, + "end": 9075.82, + "probability": 0.9573 + }, + { + "start": 9076.38, + "end": 9079.4, + "probability": 0.8318 + }, + { + "start": 9082.28, + "end": 9084.22, + "probability": 0.0656 + }, + { + "start": 9084.74, + "end": 9089.34, + "probability": 0.9734 + }, + { + "start": 9089.76, + "end": 9091.06, + "probability": 0.9387 + }, + { + "start": 9093.1, + "end": 9099.26, + "probability": 0.9984 + }, + { + "start": 9100.54, + "end": 9103.12, + "probability": 0.648 + }, + { + "start": 9104.58, + "end": 9106.04, + "probability": 0.9672 + }, + { + "start": 9109.14, + "end": 9111.58, + "probability": 0.7183 + }, + { + "start": 9111.82, + "end": 9111.82, + "probability": 0.1563 + }, + { + "start": 9111.82, + "end": 9113.22, + "probability": 0.7472 + }, + { + "start": 9115.26, + "end": 9117.86, + "probability": 0.9668 + }, + { + "start": 9118.34, + "end": 9123.54, + "probability": 0.9493 + }, + { + "start": 9125.16, + "end": 9126.4, + "probability": 0.3083 + }, + { + "start": 9126.46, + "end": 9128.5, + "probability": 0.9474 + }, + { + "start": 9128.6, + "end": 9130.4, + "probability": 0.7363 + }, + { + "start": 9130.6, + "end": 9131.48, + "probability": 0.933 + }, + { + "start": 9132.38, + "end": 9134.6, + "probability": 0.7485 + }, + { + "start": 9135.38, + "end": 9137.22, + "probability": 0.8785 + }, + { + "start": 9138.3, + "end": 9141.92, + "probability": 0.8335 + }, + { + "start": 9143.06, + "end": 9146.96, + "probability": 0.9558 + }, + { + "start": 9148.0, + "end": 9149.62, + "probability": 0.936 + }, + { + "start": 9150.86, + "end": 9151.9, + "probability": 0.9048 + }, + { + "start": 9153.28, + "end": 9155.44, + "probability": 0.3573 + }, + { + "start": 9156.54, + "end": 9161.96, + "probability": 0.9517 + }, + { + "start": 9163.14, + "end": 9166.34, + "probability": 0.5908 + }, + { + "start": 9167.0, + "end": 9169.84, + "probability": 0.8901 + }, + { + "start": 9171.14, + "end": 9172.08, + "probability": 0.6631 + }, + { + "start": 9172.28, + "end": 9174.74, + "probability": 0.2386 + }, + { + "start": 9174.98, + "end": 9178.52, + "probability": 0.9099 + }, + { + "start": 9178.9, + "end": 9182.58, + "probability": 0.9491 + }, + { + "start": 9183.04, + "end": 9184.37, + "probability": 0.8586 + }, + { + "start": 9185.96, + "end": 9187.04, + "probability": 0.6573 + }, + { + "start": 9188.16, + "end": 9190.26, + "probability": 0.7985 + }, + { + "start": 9190.88, + "end": 9192.02, + "probability": 0.9759 + }, + { + "start": 9192.89, + "end": 9196.94, + "probability": 0.8333 + }, + { + "start": 9197.56, + "end": 9200.28, + "probability": 0.9359 + }, + { + "start": 9201.06, + "end": 9203.62, + "probability": 0.7113 + }, + { + "start": 9203.74, + "end": 9207.6, + "probability": 0.9905 + }, + { + "start": 9207.6, + "end": 9211.96, + "probability": 0.9375 + }, + { + "start": 9212.54, + "end": 9215.61, + "probability": 0.9459 + }, + { + "start": 9216.72, + "end": 9220.82, + "probability": 0.9816 + }, + { + "start": 9223.57, + "end": 9225.58, + "probability": 0.7525 + }, + { + "start": 9226.86, + "end": 9231.46, + "probability": 0.9938 + }, + { + "start": 9232.26, + "end": 9235.54, + "probability": 0.978 + }, + { + "start": 9236.44, + "end": 9236.98, + "probability": 0.7594 + }, + { + "start": 9238.02, + "end": 9242.2, + "probability": 0.9827 + }, + { + "start": 9242.2, + "end": 9245.82, + "probability": 0.999 + }, + { + "start": 9246.6, + "end": 9246.88, + "probability": 0.6842 + }, + { + "start": 9248.16, + "end": 9249.32, + "probability": 0.999 + }, + { + "start": 9250.36, + "end": 9255.82, + "probability": 0.9678 + }, + { + "start": 9256.5, + "end": 9258.02, + "probability": 0.8286 + }, + { + "start": 9259.0, + "end": 9261.9, + "probability": 0.9799 + }, + { + "start": 9263.04, + "end": 9265.02, + "probability": 0.9983 + }, + { + "start": 9266.04, + "end": 9268.26, + "probability": 0.615 + }, + { + "start": 9269.72, + "end": 9270.84, + "probability": 0.9888 + }, + { + "start": 9272.28, + "end": 9274.3, + "probability": 0.75 + }, + { + "start": 9274.6, + "end": 9276.42, + "probability": 0.8168 + }, + { + "start": 9277.28, + "end": 9281.6, + "probability": 0.8546 + }, + { + "start": 9282.54, + "end": 9283.2, + "probability": 0.7062 + }, + { + "start": 9283.7, + "end": 9284.62, + "probability": 0.7274 + }, + { + "start": 9285.12, + "end": 9287.98, + "probability": 0.9939 + }, + { + "start": 9289.32, + "end": 9291.28, + "probability": 0.8413 + }, + { + "start": 9291.86, + "end": 9292.72, + "probability": 0.8286 + }, + { + "start": 9293.06, + "end": 9294.12, + "probability": 0.8687 + }, + { + "start": 9294.28, + "end": 9297.3, + "probability": 0.9204 + }, + { + "start": 9297.96, + "end": 9301.84, + "probability": 0.9497 + }, + { + "start": 9301.92, + "end": 9302.74, + "probability": 0.956 + }, + { + "start": 9302.9, + "end": 9303.48, + "probability": 0.6838 + }, + { + "start": 9304.4, + "end": 9310.44, + "probability": 0.9722 + }, + { + "start": 9311.3, + "end": 9313.42, + "probability": 0.8759 + }, + { + "start": 9313.46, + "end": 9315.76, + "probability": 0.9625 + }, + { + "start": 9315.84, + "end": 9317.16, + "probability": 0.9476 + }, + { + "start": 9318.08, + "end": 9319.14, + "probability": 0.9341 + }, + { + "start": 9319.24, + "end": 9319.5, + "probability": 0.8116 + }, + { + "start": 9319.56, + "end": 9320.5, + "probability": 0.7654 + }, + { + "start": 9320.66, + "end": 9321.88, + "probability": 0.7831 + }, + { + "start": 9323.36, + "end": 9327.82, + "probability": 0.9342 + }, + { + "start": 9328.04, + "end": 9330.0, + "probability": 0.7086 + }, + { + "start": 9331.02, + "end": 9333.38, + "probability": 0.9876 + }, + { + "start": 9334.28, + "end": 9339.96, + "probability": 0.9395 + }, + { + "start": 9340.72, + "end": 9342.06, + "probability": 0.6828 + }, + { + "start": 9342.22, + "end": 9346.1, + "probability": 0.9622 + }, + { + "start": 9346.3, + "end": 9346.94, + "probability": 0.509 + }, + { + "start": 9347.72, + "end": 9349.02, + "probability": 0.9629 + }, + { + "start": 9349.18, + "end": 9350.49, + "probability": 0.9317 + }, + { + "start": 9350.72, + "end": 9351.6, + "probability": 0.8962 + }, + { + "start": 9353.2, + "end": 9357.32, + "probability": 0.9872 + }, + { + "start": 9357.96, + "end": 9361.12, + "probability": 0.9834 + }, + { + "start": 9361.82, + "end": 9363.1, + "probability": 0.9424 + }, + { + "start": 9363.16, + "end": 9367.72, + "probability": 0.9964 + }, + { + "start": 9367.72, + "end": 9371.92, + "probability": 0.9908 + }, + { + "start": 9372.54, + "end": 9377.46, + "probability": 0.9119 + }, + { + "start": 9378.2, + "end": 9380.72, + "probability": 0.7022 + }, + { + "start": 9381.38, + "end": 9385.04, + "probability": 0.9867 + }, + { + "start": 9386.92, + "end": 9389.9, + "probability": 0.6075 + }, + { + "start": 9390.58, + "end": 9391.22, + "probability": 0.8545 + }, + { + "start": 9391.94, + "end": 9396.02, + "probability": 0.7175 + }, + { + "start": 9397.14, + "end": 9398.62, + "probability": 0.9746 + }, + { + "start": 9399.54, + "end": 9404.62, + "probability": 0.9967 + }, + { + "start": 9407.5, + "end": 9412.96, + "probability": 0.9928 + }, + { + "start": 9413.46, + "end": 9414.08, + "probability": 0.4943 + }, + { + "start": 9414.62, + "end": 9415.32, + "probability": 0.582 + }, + { + "start": 9416.34, + "end": 9418.58, + "probability": 0.8306 + }, + { + "start": 9418.72, + "end": 9421.64, + "probability": 0.5493 + }, + { + "start": 9445.6, + "end": 9447.72, + "probability": 0.6492 + }, + { + "start": 9449.9, + "end": 9456.98, + "probability": 0.9797 + }, + { + "start": 9458.08, + "end": 9460.85, + "probability": 0.9567 + }, + { + "start": 9462.66, + "end": 9465.78, + "probability": 0.9983 + }, + { + "start": 9466.24, + "end": 9468.08, + "probability": 0.9893 + }, + { + "start": 9468.84, + "end": 9469.92, + "probability": 0.9726 + }, + { + "start": 9472.32, + "end": 9477.4, + "probability": 0.965 + }, + { + "start": 9477.4, + "end": 9481.1, + "probability": 0.9775 + }, + { + "start": 9482.66, + "end": 9487.04, + "probability": 0.998 + }, + { + "start": 9487.04, + "end": 9491.28, + "probability": 0.9846 + }, + { + "start": 9493.34, + "end": 9499.76, + "probability": 0.2812 + }, + { + "start": 9501.9, + "end": 9504.4, + "probability": 0.3675 + }, + { + "start": 9504.66, + "end": 9508.92, + "probability": 0.8835 + }, + { + "start": 9509.56, + "end": 9514.5, + "probability": 0.985 + }, + { + "start": 9514.6, + "end": 9515.28, + "probability": 0.7676 + }, + { + "start": 9515.3, + "end": 9515.88, + "probability": 0.9606 + }, + { + "start": 9517.56, + "end": 9519.08, + "probability": 0.8061 + }, + { + "start": 9519.08, + "end": 9524.48, + "probability": 0.9894 + }, + { + "start": 9525.82, + "end": 9527.54, + "probability": 0.8517 + }, + { + "start": 9528.58, + "end": 9531.48, + "probability": 0.9446 + }, + { + "start": 9533.12, + "end": 9536.3, + "probability": 0.8859 + }, + { + "start": 9536.56, + "end": 9541.48, + "probability": 0.6514 + }, + { + "start": 9543.0, + "end": 9543.24, + "probability": 0.0327 + }, + { + "start": 9543.24, + "end": 9545.32, + "probability": 0.2927 + }, + { + "start": 9546.16, + "end": 9547.3, + "probability": 0.1381 + }, + { + "start": 9547.46, + "end": 9548.3, + "probability": 0.0563 + }, + { + "start": 9548.74, + "end": 9551.54, + "probability": 0.4451 + }, + { + "start": 9551.66, + "end": 9551.98, + "probability": 0.2771 + }, + { + "start": 9552.1, + "end": 9552.94, + "probability": 0.4694 + }, + { + "start": 9553.02, + "end": 9553.26, + "probability": 0.4746 + }, + { + "start": 9553.28, + "end": 9556.42, + "probability": 0.8838 + }, + { + "start": 9556.76, + "end": 9559.96, + "probability": 0.9625 + }, + { + "start": 9559.96, + "end": 9563.18, + "probability": 0.9937 + }, + { + "start": 9563.6, + "end": 9567.46, + "probability": 0.9802 + }, + { + "start": 9567.5, + "end": 9569.46, + "probability": 0.9981 + }, + { + "start": 9569.54, + "end": 9570.44, + "probability": 0.7853 + }, + { + "start": 9570.74, + "end": 9571.48, + "probability": 0.6879 + }, + { + "start": 9571.76, + "end": 9572.9, + "probability": 0.9836 + }, + { + "start": 9574.6, + "end": 9581.48, + "probability": 0.9761 + }, + { + "start": 9582.86, + "end": 9585.2, + "probability": 0.9962 + }, + { + "start": 9586.04, + "end": 9586.54, + "probability": 0.6875 + }, + { + "start": 9587.82, + "end": 9590.12, + "probability": 0.9233 + }, + { + "start": 9590.3, + "end": 9591.18, + "probability": 0.8722 + }, + { + "start": 9591.26, + "end": 9591.86, + "probability": 0.82 + }, + { + "start": 9591.94, + "end": 9593.22, + "probability": 0.9173 + }, + { + "start": 9593.54, + "end": 9594.46, + "probability": 0.8297 + }, + { + "start": 9594.58, + "end": 9597.1, + "probability": 0.9917 + }, + { + "start": 9598.75, + "end": 9602.5, + "probability": 0.9722 + }, + { + "start": 9602.54, + "end": 9603.1, + "probability": 0.9268 + }, + { + "start": 9603.18, + "end": 9604.96, + "probability": 0.7083 + }, + { + "start": 9605.46, + "end": 9608.4, + "probability": 0.8274 + }, + { + "start": 9609.2, + "end": 9612.3, + "probability": 0.9344 + }, + { + "start": 9612.38, + "end": 9617.74, + "probability": 0.9855 + }, + { + "start": 9618.52, + "end": 9619.34, + "probability": 0.8132 + }, + { + "start": 9619.74, + "end": 9619.82, + "probability": 0.5343 + }, + { + "start": 9619.92, + "end": 9620.94, + "probability": 0.9539 + }, + { + "start": 9621.0, + "end": 9621.7, + "probability": 0.5653 + }, + { + "start": 9621.86, + "end": 9623.4, + "probability": 0.9722 + }, + { + "start": 9624.08, + "end": 9626.66, + "probability": 0.0339 + }, + { + "start": 9626.94, + "end": 9627.72, + "probability": 0.3909 + }, + { + "start": 9628.18, + "end": 9628.4, + "probability": 0.086 + }, + { + "start": 9628.4, + "end": 9629.58, + "probability": 0.0425 + }, + { + "start": 9629.58, + "end": 9631.0, + "probability": 0.64 + }, + { + "start": 9631.8, + "end": 9632.66, + "probability": 0.7284 + }, + { + "start": 9634.14, + "end": 9637.2, + "probability": 0.7598 + }, + { + "start": 9637.2, + "end": 9639.78, + "probability": 0.9645 + }, + { + "start": 9640.4, + "end": 9641.32, + "probability": 0.6765 + }, + { + "start": 9642.62, + "end": 9645.88, + "probability": 0.7597 + }, + { + "start": 9646.14, + "end": 9647.24, + "probability": 0.9803 + }, + { + "start": 9647.87, + "end": 9650.18, + "probability": 0.9863 + }, + { + "start": 9650.4, + "end": 9656.14, + "probability": 0.9775 + }, + { + "start": 9658.22, + "end": 9660.86, + "probability": 0.9764 + }, + { + "start": 9661.48, + "end": 9662.8, + "probability": 0.4834 + }, + { + "start": 9662.92, + "end": 9663.58, + "probability": 0.5936 + }, + { + "start": 9664.0, + "end": 9666.91, + "probability": 0.1144 + }, + { + "start": 9667.8, + "end": 9670.46, + "probability": 0.6912 + }, + { + "start": 9670.56, + "end": 9671.94, + "probability": 0.9678 + }, + { + "start": 9672.12, + "end": 9680.6, + "probability": 0.8654 + }, + { + "start": 9680.76, + "end": 9682.14, + "probability": 0.9338 + }, + { + "start": 9683.12, + "end": 9688.04, + "probability": 0.9879 + }, + { + "start": 9688.32, + "end": 9689.6, + "probability": 0.9314 + }, + { + "start": 9690.26, + "end": 9692.72, + "probability": 0.8847 + }, + { + "start": 9692.8, + "end": 9693.94, + "probability": 0.9694 + }, + { + "start": 9696.2, + "end": 9697.14, + "probability": 0.8595 + }, + { + "start": 9697.42, + "end": 9701.94, + "probability": 0.9571 + }, + { + "start": 9702.0, + "end": 9705.0, + "probability": 0.9833 + }, + { + "start": 9705.6, + "end": 9709.42, + "probability": 0.9854 + }, + { + "start": 9710.86, + "end": 9716.08, + "probability": 0.9556 + }, + { + "start": 9717.08, + "end": 9718.1, + "probability": 0.8133 + }, + { + "start": 9719.43, + "end": 9722.44, + "probability": 0.9391 + }, + { + "start": 9723.4, + "end": 9725.68, + "probability": 0.9902 + }, + { + "start": 9726.62, + "end": 9728.14, + "probability": 0.6456 + }, + { + "start": 9729.32, + "end": 9733.46, + "probability": 0.9927 + }, + { + "start": 9733.54, + "end": 9735.7, + "probability": 0.9817 + }, + { + "start": 9737.82, + "end": 9738.04, + "probability": 0.0281 + }, + { + "start": 9738.04, + "end": 9738.04, + "probability": 0.1086 + }, + { + "start": 9738.04, + "end": 9739.3, + "probability": 0.6863 + }, + { + "start": 9740.1, + "end": 9741.12, + "probability": 0.6785 + }, + { + "start": 9741.92, + "end": 9747.66, + "probability": 0.9933 + }, + { + "start": 9748.9, + "end": 9751.46, + "probability": 0.8357 + }, + { + "start": 9752.48, + "end": 9753.4, + "probability": 0.5185 + }, + { + "start": 9753.92, + "end": 9755.78, + "probability": 0.8885 + }, + { + "start": 9756.28, + "end": 9758.16, + "probability": 0.9619 + }, + { + "start": 9758.5, + "end": 9760.14, + "probability": 0.7998 + }, + { + "start": 9760.98, + "end": 9761.95, + "probability": 0.9052 + }, + { + "start": 9762.62, + "end": 9763.2, + "probability": 0.9658 + }, + { + "start": 9763.54, + "end": 9765.66, + "probability": 0.9932 + }, + { + "start": 9766.26, + "end": 9769.02, + "probability": 0.9994 + }, + { + "start": 9769.68, + "end": 9770.52, + "probability": 0.8199 + }, + { + "start": 9771.12, + "end": 9774.12, + "probability": 0.9694 + }, + { + "start": 9774.7, + "end": 9775.38, + "probability": 0.0521 + }, + { + "start": 9776.02, + "end": 9777.1, + "probability": 0.1408 + }, + { + "start": 9777.38, + "end": 9777.64, + "probability": 0.4388 + }, + { + "start": 9777.74, + "end": 9779.84, + "probability": 0.9721 + }, + { + "start": 9780.02, + "end": 9781.48, + "probability": 0.8105 + }, + { + "start": 9782.02, + "end": 9785.54, + "probability": 0.8805 + }, + { + "start": 9785.66, + "end": 9787.24, + "probability": 0.6381 + }, + { + "start": 9787.3, + "end": 9790.7, + "probability": 0.9932 + }, + { + "start": 9791.56, + "end": 9791.92, + "probability": 0.4502 + }, + { + "start": 9792.04, + "end": 9796.4, + "probability": 0.9699 + }, + { + "start": 9798.18, + "end": 9799.84, + "probability": 0.181 + }, + { + "start": 9799.84, + "end": 9800.26, + "probability": 0.1211 + }, + { + "start": 9801.72, + "end": 9805.08, + "probability": 0.1665 + }, + { + "start": 9806.16, + "end": 9807.01, + "probability": 0.2196 + }, + { + "start": 9808.6, + "end": 9808.78, + "probability": 0.1374 + }, + { + "start": 9808.78, + "end": 9808.78, + "probability": 0.0381 + }, + { + "start": 9808.78, + "end": 9812.3, + "probability": 0.7121 + }, + { + "start": 9812.68, + "end": 9815.16, + "probability": 0.9691 + }, + { + "start": 9817.08, + "end": 9820.48, + "probability": 0.5521 + }, + { + "start": 9820.48, + "end": 9824.74, + "probability": 0.9912 + }, + { + "start": 9825.78, + "end": 9832.38, + "probability": 0.9793 + }, + { + "start": 9832.46, + "end": 9834.99, + "probability": 0.9072 + }, + { + "start": 9836.12, + "end": 9840.14, + "probability": 0.8977 + }, + { + "start": 9840.56, + "end": 9842.04, + "probability": 0.9409 + }, + { + "start": 9844.68, + "end": 9847.58, + "probability": 0.9729 + }, + { + "start": 9847.74, + "end": 9849.56, + "probability": 0.949 + }, + { + "start": 9850.14, + "end": 9852.5, + "probability": 0.9495 + }, + { + "start": 9854.02, + "end": 9856.74, + "probability": 0.9985 + }, + { + "start": 9857.52, + "end": 9859.1, + "probability": 0.7278 + }, + { + "start": 9859.88, + "end": 9861.02, + "probability": 0.8977 + }, + { + "start": 9861.24, + "end": 9861.8, + "probability": 0.66 + }, + { + "start": 9861.8, + "end": 9864.14, + "probability": 0.9757 + }, + { + "start": 9864.62, + "end": 9864.8, + "probability": 0.1385 + }, + { + "start": 9864.8, + "end": 9865.56, + "probability": 0.6859 + }, + { + "start": 9868.17, + "end": 9869.72, + "probability": 0.1022 + }, + { + "start": 9869.72, + "end": 9870.7, + "probability": 0.1692 + }, + { + "start": 9870.7, + "end": 9873.48, + "probability": 0.9481 + }, + { + "start": 9873.62, + "end": 9875.62, + "probability": 0.9961 + }, + { + "start": 9875.62, + "end": 9878.96, + "probability": 0.9875 + }, + { + "start": 9879.36, + "end": 9883.72, + "probability": 0.9964 + }, + { + "start": 9885.92, + "end": 9886.6, + "probability": 0.087 + }, + { + "start": 9886.6, + "end": 9886.6, + "probability": 0.0299 + }, + { + "start": 9886.6, + "end": 9887.34, + "probability": 0.8279 + }, + { + "start": 9888.7, + "end": 9893.5, + "probability": 0.9785 + }, + { + "start": 9893.64, + "end": 9895.26, + "probability": 0.9368 + }, + { + "start": 9895.44, + "end": 9898.08, + "probability": 0.9696 + }, + { + "start": 9898.38, + "end": 9901.76, + "probability": 0.9534 + }, + { + "start": 9902.74, + "end": 9903.54, + "probability": 0.7357 + }, + { + "start": 9903.94, + "end": 9906.46, + "probability": 0.5102 + }, + { + "start": 9906.46, + "end": 9906.46, + "probability": 0.0842 + }, + { + "start": 9906.46, + "end": 9908.31, + "probability": 0.6714 + }, + { + "start": 9908.88, + "end": 9912.96, + "probability": 0.9387 + }, + { + "start": 9912.96, + "end": 9916.16, + "probability": 0.9658 + }, + { + "start": 9916.28, + "end": 9917.14, + "probability": 0.8753 + }, + { + "start": 9918.38, + "end": 9918.38, + "probability": 0.0 + }, + { + "start": 9920.42, + "end": 9920.62, + "probability": 0.0189 + }, + { + "start": 9920.62, + "end": 9920.81, + "probability": 0.1993 + }, + { + "start": 9920.9, + "end": 9921.68, + "probability": 0.3965 + }, + { + "start": 9922.9, + "end": 9923.32, + "probability": 0.0331 + }, + { + "start": 9923.58, + "end": 9923.88, + "probability": 0.2177 + }, + { + "start": 9924.06, + "end": 9926.54, + "probability": 0.7463 + }, + { + "start": 9926.8, + "end": 9927.46, + "probability": 0.606 + }, + { + "start": 9928.12, + "end": 9928.44, + "probability": 0.0391 + }, + { + "start": 9928.44, + "end": 9928.44, + "probability": 0.0636 + }, + { + "start": 9928.44, + "end": 9931.6, + "probability": 0.8277 + }, + { + "start": 9931.7, + "end": 9934.22, + "probability": 0.8345 + }, + { + "start": 9934.68, + "end": 9936.73, + "probability": 0.2023 + }, + { + "start": 9940.22, + "end": 9943.02, + "probability": 0.1672 + }, + { + "start": 9943.86, + "end": 9945.14, + "probability": 0.5273 + }, + { + "start": 9945.14, + "end": 9950.68, + "probability": 0.9219 + }, + { + "start": 9951.16, + "end": 9954.42, + "probability": 0.7665 + }, + { + "start": 9954.72, + "end": 9954.78, + "probability": 0.1324 + }, + { + "start": 9954.98, + "end": 9955.66, + "probability": 0.9086 + }, + { + "start": 9956.18, + "end": 9956.38, + "probability": 0.2436 + }, + { + "start": 9956.38, + "end": 9957.12, + "probability": 0.5073 + }, + { + "start": 9957.22, + "end": 9963.42, + "probability": 0.9941 + }, + { + "start": 9963.86, + "end": 9963.86, + "probability": 0.0508 + }, + { + "start": 9963.86, + "end": 9963.86, + "probability": 0.0122 + }, + { + "start": 9963.86, + "end": 9969.44, + "probability": 0.9593 + }, + { + "start": 9969.92, + "end": 9971.5, + "probability": 0.799 + }, + { + "start": 9972.74, + "end": 9975.38, + "probability": 0.994 + }, + { + "start": 9975.38, + "end": 9978.98, + "probability": 0.9478 + }, + { + "start": 9979.02, + "end": 9982.8, + "probability": 0.9985 + }, + { + "start": 9982.8, + "end": 9984.7, + "probability": 0.9978 + }, + { + "start": 9985.8, + "end": 9985.98, + "probability": 0.6211 + }, + { + "start": 9986.34, + "end": 9988.4, + "probability": 0.7106 + }, + { + "start": 9988.48, + "end": 9990.78, + "probability": 0.7105 + }, + { + "start": 9992.27, + "end": 9994.2, + "probability": 0.9546 + }, + { + "start": 10000.12, + "end": 10000.22, + "probability": 0.2367 + }, + { + "start": 10000.36, + "end": 10001.5, + "probability": 0.9146 + }, + { + "start": 10003.62, + "end": 10004.66, + "probability": 0.7887 + }, + { + "start": 10005.44, + "end": 10007.58, + "probability": 0.9333 + }, + { + "start": 10008.82, + "end": 10014.32, + "probability": 0.9502 + }, + { + "start": 10014.94, + "end": 10018.78, + "probability": 0.9973 + }, + { + "start": 10019.9, + "end": 10023.76, + "probability": 0.8342 + }, + { + "start": 10024.24, + "end": 10025.19, + "probability": 0.7715 + }, + { + "start": 10027.08, + "end": 10031.16, + "probability": 0.9831 + }, + { + "start": 10031.26, + "end": 10031.8, + "probability": 0.5921 + }, + { + "start": 10032.18, + "end": 10033.5, + "probability": 0.7839 + }, + { + "start": 10033.8, + "end": 10037.32, + "probability": 0.0634 + }, + { + "start": 10037.62, + "end": 10038.48, + "probability": 0.452 + }, + { + "start": 10039.44, + "end": 10039.92, + "probability": 0.1152 + }, + { + "start": 10039.92, + "end": 10039.92, + "probability": 0.1324 + }, + { + "start": 10039.92, + "end": 10039.92, + "probability": 0.0888 + }, + { + "start": 10039.92, + "end": 10039.92, + "probability": 0.0473 + }, + { + "start": 10039.92, + "end": 10042.69, + "probability": 0.4615 + }, + { + "start": 10042.94, + "end": 10046.7, + "probability": 0.3312 + }, + { + "start": 10046.72, + "end": 10049.78, + "probability": 0.9193 + }, + { + "start": 10050.08, + "end": 10052.52, + "probability": 0.9525 + }, + { + "start": 10052.7, + "end": 10053.66, + "probability": 0.7492 + }, + { + "start": 10053.94, + "end": 10056.78, + "probability": 0.8545 + }, + { + "start": 10057.8, + "end": 10062.56, + "probability": 0.9659 + }, + { + "start": 10063.22, + "end": 10067.32, + "probability": 0.9968 + }, + { + "start": 10067.9, + "end": 10072.62, + "probability": 0.9341 + }, + { + "start": 10072.74, + "end": 10074.02, + "probability": 0.8584 + }, + { + "start": 10074.64, + "end": 10076.72, + "probability": 0.9912 + }, + { + "start": 10076.8, + "end": 10081.16, + "probability": 0.8906 + }, + { + "start": 10081.78, + "end": 10083.3, + "probability": 0.7534 + }, + { + "start": 10083.34, + "end": 10085.54, + "probability": 0.9397 + }, + { + "start": 10086.02, + "end": 10087.0, + "probability": 0.8044 + }, + { + "start": 10087.64, + "end": 10089.08, + "probability": 0.9779 + }, + { + "start": 10089.64, + "end": 10093.5, + "probability": 0.9526 + }, + { + "start": 10094.08, + "end": 10096.46, + "probability": 0.8257 + }, + { + "start": 10097.54, + "end": 10098.52, + "probability": 0.7086 + }, + { + "start": 10098.78, + "end": 10099.82, + "probability": 0.822 + }, + { + "start": 10100.06, + "end": 10104.76, + "probability": 0.9268 + }, + { + "start": 10105.96, + "end": 10107.34, + "probability": 0.8406 + }, + { + "start": 10109.22, + "end": 10111.46, + "probability": 0.9906 + }, + { + "start": 10111.58, + "end": 10112.44, + "probability": 0.884 + }, + { + "start": 10112.56, + "end": 10114.64, + "probability": 0.9839 + }, + { + "start": 10115.04, + "end": 10115.94, + "probability": 0.848 + }, + { + "start": 10116.06, + "end": 10116.98, + "probability": 0.8693 + }, + { + "start": 10117.9, + "end": 10119.62, + "probability": 0.9531 + }, + { + "start": 10119.8, + "end": 10122.4, + "probability": 0.4528 + }, + { + "start": 10123.72, + "end": 10125.58, + "probability": 0.9541 + }, + { + "start": 10125.64, + "end": 10129.16, + "probability": 0.9893 + }, + { + "start": 10129.86, + "end": 10131.56, + "probability": 0.9209 + }, + { + "start": 10131.84, + "end": 10132.2, + "probability": 0.4267 + }, + { + "start": 10133.1, + "end": 10134.42, + "probability": 0.7068 + }, + { + "start": 10135.04, + "end": 10135.42, + "probability": 0.5627 + }, + { + "start": 10139.55, + "end": 10143.92, + "probability": 0.9932 + }, + { + "start": 10144.02, + "end": 10145.0, + "probability": 0.8988 + }, + { + "start": 10145.94, + "end": 10146.32, + "probability": 0.9753 + }, + { + "start": 10146.36, + "end": 10148.6, + "probability": 0.9814 + }, + { + "start": 10148.7, + "end": 10150.54, + "probability": 0.9421 + }, + { + "start": 10152.46, + "end": 10155.56, + "probability": 0.9951 + }, + { + "start": 10156.96, + "end": 10161.68, + "probability": 0.8989 + }, + { + "start": 10162.34, + "end": 10166.83, + "probability": 0.9954 + }, + { + "start": 10167.48, + "end": 10169.76, + "probability": 0.9585 + }, + { + "start": 10169.9, + "end": 10172.3, + "probability": 0.9128 + }, + { + "start": 10172.8, + "end": 10177.22, + "probability": 0.97 + }, + { + "start": 10178.28, + "end": 10180.32, + "probability": 0.8981 + }, + { + "start": 10181.58, + "end": 10186.04, + "probability": 0.9986 + }, + { + "start": 10186.72, + "end": 10189.56, + "probability": 0.986 + }, + { + "start": 10189.78, + "end": 10194.34, + "probability": 0.9975 + }, + { + "start": 10195.26, + "end": 10196.4, + "probability": 0.5648 + }, + { + "start": 10196.4, + "end": 10201.38, + "probability": 0.8878 + }, + { + "start": 10201.64, + "end": 10203.82, + "probability": 0.9478 + }, + { + "start": 10204.46, + "end": 10207.08, + "probability": 0.7295 + }, + { + "start": 10207.16, + "end": 10209.74, + "probability": 0.7648 + }, + { + "start": 10210.78, + "end": 10213.92, + "probability": 0.961 + }, + { + "start": 10214.1, + "end": 10215.06, + "probability": 0.3998 + }, + { + "start": 10216.18, + "end": 10220.08, + "probability": 0.5566 + }, + { + "start": 10220.48, + "end": 10220.94, + "probability": 0.5939 + }, + { + "start": 10220.96, + "end": 10221.5, + "probability": 0.3853 + }, + { + "start": 10221.56, + "end": 10222.74, + "probability": 0.5025 + }, + { + "start": 10239.38, + "end": 10240.7, + "probability": 0.0731 + }, + { + "start": 10240.7, + "end": 10240.7, + "probability": 0.2448 + }, + { + "start": 10240.7, + "end": 10240.7, + "probability": 0.2664 + }, + { + "start": 10240.7, + "end": 10242.28, + "probability": 0.4047 + }, + { + "start": 10243.1, + "end": 10245.36, + "probability": 0.4229 + }, + { + "start": 10245.36, + "end": 10247.38, + "probability": 0.8442 + }, + { + "start": 10248.96, + "end": 10250.24, + "probability": 0.5881 + }, + { + "start": 10250.4, + "end": 10253.0, + "probability": 0.8989 + }, + { + "start": 10253.18, + "end": 10254.16, + "probability": 0.4447 + }, + { + "start": 10255.28, + "end": 10257.32, + "probability": 0.9148 + }, + { + "start": 10261.58, + "end": 10263.22, + "probability": 0.5765 + }, + { + "start": 10263.78, + "end": 10267.2, + "probability": 0.8635 + }, + { + "start": 10284.48, + "end": 10285.4, + "probability": 0.569 + }, + { + "start": 10287.0, + "end": 10288.04, + "probability": 0.831 + }, + { + "start": 10289.26, + "end": 10290.12, + "probability": 0.8136 + }, + { + "start": 10293.48, + "end": 10293.94, + "probability": 0.873 + }, + { + "start": 10295.06, + "end": 10298.74, + "probability": 0.9756 + }, + { + "start": 10300.2, + "end": 10306.3, + "probability": 0.968 + }, + { + "start": 10306.3, + "end": 10311.26, + "probability": 0.9985 + }, + { + "start": 10311.86, + "end": 10313.02, + "probability": 0.9945 + }, + { + "start": 10313.68, + "end": 10317.66, + "probability": 0.9857 + }, + { + "start": 10318.76, + "end": 10325.6, + "probability": 0.8906 + }, + { + "start": 10326.36, + "end": 10327.84, + "probability": 0.8141 + }, + { + "start": 10328.16, + "end": 10329.16, + "probability": 0.8938 + }, + { + "start": 10329.42, + "end": 10329.82, + "probability": 0.6874 + }, + { + "start": 10331.12, + "end": 10335.58, + "probability": 0.9785 + }, + { + "start": 10336.58, + "end": 10338.58, + "probability": 0.9814 + }, + { + "start": 10339.56, + "end": 10340.74, + "probability": 0.7481 + }, + { + "start": 10341.36, + "end": 10346.76, + "probability": 0.9675 + }, + { + "start": 10347.96, + "end": 10349.68, + "probability": 0.9632 + }, + { + "start": 10350.32, + "end": 10352.56, + "probability": 0.5428 + }, + { + "start": 10353.58, + "end": 10355.38, + "probability": 0.633 + }, + { + "start": 10355.86, + "end": 10357.24, + "probability": 0.7142 + }, + { + "start": 10357.36, + "end": 10358.6, + "probability": 0.7486 + }, + { + "start": 10359.28, + "end": 10362.98, + "probability": 0.976 + }, + { + "start": 10362.98, + "end": 10367.7, + "probability": 0.9492 + }, + { + "start": 10369.52, + "end": 10374.32, + "probability": 0.9924 + }, + { + "start": 10375.9, + "end": 10380.8, + "probability": 0.9877 + }, + { + "start": 10381.74, + "end": 10383.54, + "probability": 0.8242 + }, + { + "start": 10384.32, + "end": 10385.28, + "probability": 0.9718 + }, + { + "start": 10386.1, + "end": 10387.26, + "probability": 0.9478 + }, + { + "start": 10387.86, + "end": 10389.94, + "probability": 0.9846 + }, + { + "start": 10391.38, + "end": 10397.44, + "probability": 0.9867 + }, + { + "start": 10398.3, + "end": 10400.38, + "probability": 0.7249 + }, + { + "start": 10401.84, + "end": 10402.64, + "probability": 0.6596 + }, + { + "start": 10402.82, + "end": 10403.12, + "probability": 0.7939 + }, + { + "start": 10403.28, + "end": 10407.5, + "probability": 0.9056 + }, + { + "start": 10408.36, + "end": 10409.42, + "probability": 0.9632 + }, + { + "start": 10409.98, + "end": 10414.02, + "probability": 0.6755 + }, + { + "start": 10414.64, + "end": 10417.42, + "probability": 0.9774 + }, + { + "start": 10417.76, + "end": 10420.61, + "probability": 0.98 + }, + { + "start": 10421.34, + "end": 10423.72, + "probability": 0.9517 + }, + { + "start": 10425.48, + "end": 10426.32, + "probability": 0.9842 + }, + { + "start": 10427.02, + "end": 10430.24, + "probability": 0.9248 + }, + { + "start": 10431.64, + "end": 10439.76, + "probability": 0.9923 + }, + { + "start": 10441.8, + "end": 10443.4, + "probability": 0.693 + }, + { + "start": 10443.74, + "end": 10445.14, + "probability": 0.9505 + }, + { + "start": 10445.58, + "end": 10446.3, + "probability": 0.6675 + }, + { + "start": 10446.92, + "end": 10451.52, + "probability": 0.9204 + }, + { + "start": 10452.8, + "end": 10457.3, + "probability": 0.7178 + }, + { + "start": 10457.84, + "end": 10465.0, + "probability": 0.9895 + }, + { + "start": 10467.28, + "end": 10474.14, + "probability": 0.9819 + }, + { + "start": 10474.72, + "end": 10475.98, + "probability": 0.865 + }, + { + "start": 10477.28, + "end": 10478.4, + "probability": 0.936 + }, + { + "start": 10480.52, + "end": 10481.52, + "probability": 0.8855 + }, + { + "start": 10481.86, + "end": 10482.3, + "probability": 0.8774 + }, + { + "start": 10483.3, + "end": 10484.86, + "probability": 0.9682 + }, + { + "start": 10485.8, + "end": 10486.62, + "probability": 0.9976 + }, + { + "start": 10487.28, + "end": 10490.94, + "probability": 0.7832 + }, + { + "start": 10491.6, + "end": 10492.39, + "probability": 0.8211 + }, + { + "start": 10493.78, + "end": 10497.74, + "probability": 0.9948 + }, + { + "start": 10498.58, + "end": 10499.68, + "probability": 0.8016 + }, + { + "start": 10500.16, + "end": 10501.14, + "probability": 0.9436 + }, + { + "start": 10501.36, + "end": 10501.9, + "probability": 0.7476 + }, + { + "start": 10502.5, + "end": 10504.64, + "probability": 0.9915 + }, + { + "start": 10505.88, + "end": 10509.68, + "probability": 0.9937 + }, + { + "start": 10510.08, + "end": 10512.6, + "probability": 0.9211 + }, + { + "start": 10514.0, + "end": 10516.44, + "probability": 0.7524 + }, + { + "start": 10517.78, + "end": 10518.66, + "probability": 0.7996 + }, + { + "start": 10519.72, + "end": 10523.8, + "probability": 0.8911 + }, + { + "start": 10523.94, + "end": 10525.1, + "probability": 0.6245 + }, + { + "start": 10526.2, + "end": 10530.86, + "probability": 0.993 + }, + { + "start": 10531.7, + "end": 10532.68, + "probability": 0.9531 + }, + { + "start": 10534.1, + "end": 10539.3, + "probability": 0.9602 + }, + { + "start": 10540.1, + "end": 10542.16, + "probability": 0.9321 + }, + { + "start": 10542.84, + "end": 10544.5, + "probability": 0.9365 + }, + { + "start": 10545.16, + "end": 10547.26, + "probability": 0.7858 + }, + { + "start": 10547.54, + "end": 10549.72, + "probability": 0.9744 + }, + { + "start": 10549.88, + "end": 10551.12, + "probability": 0.9647 + }, + { + "start": 10551.18, + "end": 10554.82, + "probability": 0.9879 + }, + { + "start": 10556.58, + "end": 10557.68, + "probability": 0.7344 + }, + { + "start": 10558.62, + "end": 10560.18, + "probability": 0.6827 + }, + { + "start": 10562.1, + "end": 10565.66, + "probability": 0.9882 + }, + { + "start": 10566.28, + "end": 10567.86, + "probability": 0.9167 + }, + { + "start": 10570.04, + "end": 10574.68, + "probability": 0.9421 + }, + { + "start": 10577.58, + "end": 10579.84, + "probability": 0.9421 + }, + { + "start": 10581.04, + "end": 10582.46, + "probability": 0.8939 + }, + { + "start": 10584.42, + "end": 10587.26, + "probability": 0.6934 + }, + { + "start": 10588.04, + "end": 10590.02, + "probability": 0.8825 + }, + { + "start": 10591.36, + "end": 10592.92, + "probability": 0.703 + }, + { + "start": 10595.14, + "end": 10598.72, + "probability": 0.8806 + }, + { + "start": 10598.78, + "end": 10599.52, + "probability": 0.6762 + }, + { + "start": 10599.58, + "end": 10600.12, + "probability": 0.7676 + }, + { + "start": 10600.2, + "end": 10601.5, + "probability": 0.5347 + }, + { + "start": 10602.12, + "end": 10607.32, + "probability": 0.9772 + }, + { + "start": 10610.94, + "end": 10616.2, + "probability": 0.8173 + }, + { + "start": 10616.2, + "end": 10619.6, + "probability": 0.9963 + }, + { + "start": 10620.64, + "end": 10621.97, + "probability": 0.7419 + }, + { + "start": 10622.98, + "end": 10623.86, + "probability": 0.936 + }, + { + "start": 10625.44, + "end": 10626.48, + "probability": 0.8971 + }, + { + "start": 10627.32, + "end": 10628.72, + "probability": 0.9563 + }, + { + "start": 10630.2, + "end": 10631.98, + "probability": 0.9979 + }, + { + "start": 10634.1, + "end": 10639.06, + "probability": 0.8744 + }, + { + "start": 10640.16, + "end": 10641.48, + "probability": 0.8844 + }, + { + "start": 10642.36, + "end": 10643.22, + "probability": 0.9299 + }, + { + "start": 10644.02, + "end": 10646.74, + "probability": 0.9747 + }, + { + "start": 10647.26, + "end": 10648.24, + "probability": 0.9709 + }, + { + "start": 10648.5, + "end": 10649.46, + "probability": 0.9782 + }, + { + "start": 10649.92, + "end": 10650.9, + "probability": 0.9368 + }, + { + "start": 10651.32, + "end": 10654.54, + "probability": 0.986 + }, + { + "start": 10655.08, + "end": 10657.28, + "probability": 0.8471 + }, + { + "start": 10659.34, + "end": 10664.76, + "probability": 0.825 + }, + { + "start": 10665.82, + "end": 10666.54, + "probability": 0.5711 + }, + { + "start": 10667.22, + "end": 10668.84, + "probability": 0.9774 + }, + { + "start": 10670.08, + "end": 10673.18, + "probability": 0.8429 + }, + { + "start": 10673.78, + "end": 10680.1, + "probability": 0.9584 + }, + { + "start": 10680.5, + "end": 10686.54, + "probability": 0.9734 + }, + { + "start": 10688.2, + "end": 10691.27, + "probability": 0.9878 + }, + { + "start": 10695.08, + "end": 10696.58, + "probability": 0.9808 + }, + { + "start": 10697.4, + "end": 10698.42, + "probability": 0.722 + }, + { + "start": 10699.4, + "end": 10704.24, + "probability": 0.9394 + }, + { + "start": 10704.54, + "end": 10708.58, + "probability": 0.9153 + }, + { + "start": 10711.26, + "end": 10715.0, + "probability": 0.9915 + }, + { + "start": 10715.7, + "end": 10718.9, + "probability": 0.8662 + }, + { + "start": 10720.24, + "end": 10723.04, + "probability": 0.9656 + }, + { + "start": 10723.14, + "end": 10724.4, + "probability": 0.9417 + }, + { + "start": 10725.6, + "end": 10726.18, + "probability": 0.6485 + }, + { + "start": 10726.98, + "end": 10727.62, + "probability": 0.9155 + }, + { + "start": 10728.48, + "end": 10732.4, + "probability": 0.9578 + }, + { + "start": 10732.4, + "end": 10736.32, + "probability": 0.9572 + }, + { + "start": 10736.36, + "end": 10740.06, + "probability": 0.9758 + }, + { + "start": 10740.6, + "end": 10744.04, + "probability": 0.9672 + }, + { + "start": 10744.6, + "end": 10745.64, + "probability": 0.7668 + }, + { + "start": 10746.08, + "end": 10750.6, + "probability": 0.9903 + }, + { + "start": 10751.66, + "end": 10756.58, + "probability": 0.9883 + }, + { + "start": 10757.3, + "end": 10760.32, + "probability": 0.9984 + }, + { + "start": 10761.56, + "end": 10762.52, + "probability": 0.7564 + }, + { + "start": 10762.94, + "end": 10763.9, + "probability": 0.7623 + }, + { + "start": 10764.32, + "end": 10765.84, + "probability": 0.9917 + }, + { + "start": 10767.08, + "end": 10769.3, + "probability": 0.947 + }, + { + "start": 10770.92, + "end": 10774.99, + "probability": 0.8019 + }, + { + "start": 10775.72, + "end": 10779.68, + "probability": 0.9287 + }, + { + "start": 10780.36, + "end": 10782.04, + "probability": 0.9551 + }, + { + "start": 10783.22, + "end": 10784.76, + "probability": 0.9128 + }, + { + "start": 10785.48, + "end": 10787.48, + "probability": 0.8477 + }, + { + "start": 10788.44, + "end": 10793.06, + "probability": 0.9525 + }, + { + "start": 10794.14, + "end": 10797.06, + "probability": 0.8423 + }, + { + "start": 10798.81, + "end": 10800.62, + "probability": 0.2502 + }, + { + "start": 10803.24, + "end": 10803.94, + "probability": 0.7128 + }, + { + "start": 10806.66, + "end": 10807.54, + "probability": 0.6333 + }, + { + "start": 10808.46, + "end": 10810.54, + "probability": 0.4874 + }, + { + "start": 10811.3, + "end": 10814.87, + "probability": 0.9765 + }, + { + "start": 10816.74, + "end": 10821.62, + "probability": 0.9516 + }, + { + "start": 10821.62, + "end": 10826.12, + "probability": 0.993 + }, + { + "start": 10826.4, + "end": 10827.74, + "probability": 0.9978 + }, + { + "start": 10828.14, + "end": 10830.1, + "probability": 0.9236 + }, + { + "start": 10830.16, + "end": 10833.92, + "probability": 0.9665 + }, + { + "start": 10834.65, + "end": 10836.98, + "probability": 0.4937 + }, + { + "start": 10836.98, + "end": 10837.9, + "probability": 0.4749 + }, + { + "start": 10837.94, + "end": 10839.86, + "probability": 0.8286 + }, + { + "start": 10840.04, + "end": 10841.84, + "probability": 0.9215 + }, + { + "start": 10854.28, + "end": 10856.68, + "probability": 0.6262 + }, + { + "start": 10858.26, + "end": 10861.2, + "probability": 0.9231 + }, + { + "start": 10861.2, + "end": 10865.24, + "probability": 0.994 + }, + { + "start": 10865.42, + "end": 10866.34, + "probability": 0.2502 + }, + { + "start": 10866.74, + "end": 10867.02, + "probability": 0.668 + }, + { + "start": 10867.56, + "end": 10871.28, + "probability": 0.9326 + }, + { + "start": 10871.8, + "end": 10874.24, + "probability": 0.9569 + }, + { + "start": 10875.1, + "end": 10877.3, + "probability": 0.8683 + }, + { + "start": 10877.82, + "end": 10880.72, + "probability": 0.9782 + }, + { + "start": 10881.2, + "end": 10882.14, + "probability": 0.9822 + }, + { + "start": 10882.84, + "end": 10885.76, + "probability": 0.964 + }, + { + "start": 10885.82, + "end": 10889.84, + "probability": 0.9922 + }, + { + "start": 10890.64, + "end": 10891.48, + "probability": 0.9679 + }, + { + "start": 10892.26, + "end": 10896.3, + "probability": 0.9949 + }, + { + "start": 10896.3, + "end": 10902.28, + "probability": 0.9979 + }, + { + "start": 10903.08, + "end": 10903.84, + "probability": 0.7057 + }, + { + "start": 10904.12, + "end": 10906.2, + "probability": 0.8416 + }, + { + "start": 10906.36, + "end": 10908.6, + "probability": 0.9836 + }, + { + "start": 10909.0, + "end": 10913.1, + "probability": 0.9958 + }, + { + "start": 10913.62, + "end": 10914.36, + "probability": 0.7741 + }, + { + "start": 10915.08, + "end": 10916.94, + "probability": 0.98 + }, + { + "start": 10917.72, + "end": 10922.92, + "probability": 0.991 + }, + { + "start": 10923.36, + "end": 10926.4, + "probability": 0.998 + }, + { + "start": 10927.54, + "end": 10929.78, + "probability": 0.6425 + }, + { + "start": 10930.04, + "end": 10932.74, + "probability": 0.5401 + }, + { + "start": 10933.74, + "end": 10934.32, + "probability": 0.752 + }, + { + "start": 10935.04, + "end": 10937.02, + "probability": 0.8008 + }, + { + "start": 10947.0, + "end": 10950.24, + "probability": 0.7832 + }, + { + "start": 10951.56, + "end": 10954.28, + "probability": 0.9286 + }, + { + "start": 10955.64, + "end": 10958.38, + "probability": 0.9902 + }, + { + "start": 10958.88, + "end": 10961.96, + "probability": 0.9981 + }, + { + "start": 10963.06, + "end": 10965.98, + "probability": 0.9926 + }, + { + "start": 10967.18, + "end": 10969.08, + "probability": 0.9849 + }, + { + "start": 10969.68, + "end": 10971.14, + "probability": 0.9088 + }, + { + "start": 10973.58, + "end": 10975.66, + "probability": 0.8984 + }, + { + "start": 10976.76, + "end": 10985.36, + "probability": 0.9883 + }, + { + "start": 10986.34, + "end": 10987.24, + "probability": 0.9204 + }, + { + "start": 10987.52, + "end": 10992.42, + "probability": 0.9528 + }, + { + "start": 10992.92, + "end": 10996.84, + "probability": 0.6674 + }, + { + "start": 10997.46, + "end": 11002.18, + "probability": 0.8512 + }, + { + "start": 11002.86, + "end": 11005.04, + "probability": 0.7359 + }, + { + "start": 11005.88, + "end": 11008.04, + "probability": 0.6661 + }, + { + "start": 11008.68, + "end": 11011.63, + "probability": 0.9338 + }, + { + "start": 11012.7, + "end": 11014.52, + "probability": 0.9851 + }, + { + "start": 11015.12, + "end": 11020.22, + "probability": 0.9781 + }, + { + "start": 11021.48, + "end": 11022.4, + "probability": 0.9291 + }, + { + "start": 11023.02, + "end": 11024.02, + "probability": 0.7599 + }, + { + "start": 11024.92, + "end": 11030.04, + "probability": 0.9694 + }, + { + "start": 11030.36, + "end": 11030.92, + "probability": 0.7927 + }, + { + "start": 11032.08, + "end": 11040.18, + "probability": 0.9163 + }, + { + "start": 11040.22, + "end": 11046.2, + "probability": 0.9941 + }, + { + "start": 11046.94, + "end": 11049.06, + "probability": 0.9919 + }, + { + "start": 11049.86, + "end": 11055.66, + "probability": 0.9848 + }, + { + "start": 11056.74, + "end": 11059.6, + "probability": 0.42 + }, + { + "start": 11060.58, + "end": 11062.82, + "probability": 0.9696 + }, + { + "start": 11064.64, + "end": 11066.3, + "probability": 0.9851 + }, + { + "start": 11066.76, + "end": 11071.22, + "probability": 0.7769 + }, + { + "start": 11071.26, + "end": 11078.74, + "probability": 0.9652 + }, + { + "start": 11079.5, + "end": 11080.41, + "probability": 0.9094 + }, + { + "start": 11080.98, + "end": 11082.58, + "probability": 0.8473 + }, + { + "start": 11083.36, + "end": 11084.35, + "probability": 0.978 + }, + { + "start": 11085.6, + "end": 11086.88, + "probability": 0.2293 + }, + { + "start": 11087.54, + "end": 11089.04, + "probability": 0.9917 + }, + { + "start": 11090.34, + "end": 11091.74, + "probability": 0.6938 + }, + { + "start": 11092.82, + "end": 11095.04, + "probability": 0.9595 + }, + { + "start": 11095.84, + "end": 11098.39, + "probability": 0.6829 + }, + { + "start": 11099.86, + "end": 11103.24, + "probability": 0.9505 + }, + { + "start": 11104.68, + "end": 11105.38, + "probability": 0.5936 + }, + { + "start": 11105.46, + "end": 11108.68, + "probability": 0.938 + }, + { + "start": 11109.08, + "end": 11109.88, + "probability": 0.8296 + }, + { + "start": 11110.26, + "end": 11111.78, + "probability": 0.7379 + }, + { + "start": 11112.42, + "end": 11115.02, + "probability": 0.9906 + }, + { + "start": 11115.48, + "end": 11117.64, + "probability": 0.9728 + }, + { + "start": 11118.78, + "end": 11119.44, + "probability": 0.0541 + }, + { + "start": 11121.0, + "end": 11127.34, + "probability": 0.1509 + }, + { + "start": 11127.7, + "end": 11127.78, + "probability": 0.8186 + }, + { + "start": 11127.78, + "end": 11127.78, + "probability": 0.0164 + }, + { + "start": 11127.78, + "end": 11127.78, + "probability": 0.005 + }, + { + "start": 11127.78, + "end": 11127.78, + "probability": 0.0104 + }, + { + "start": 11127.78, + "end": 11128.38, + "probability": 0.1693 + }, + { + "start": 11128.98, + "end": 11131.86, + "probability": 0.841 + }, + { + "start": 11131.86, + "end": 11131.9, + "probability": 0.0899 + }, + { + "start": 11132.1, + "end": 11133.82, + "probability": 0.9224 + }, + { + "start": 11134.26, + "end": 11136.56, + "probability": 0.9086 + }, + { + "start": 11136.98, + "end": 11139.2, + "probability": 0.876 + }, + { + "start": 11139.5, + "end": 11141.5, + "probability": 0.9738 + }, + { + "start": 11141.62, + "end": 11141.62, + "probability": 0.5122 + }, + { + "start": 11141.72, + "end": 11144.3, + "probability": 0.8371 + }, + { + "start": 11144.38, + "end": 11145.02, + "probability": 0.871 + }, + { + "start": 11145.32, + "end": 11146.34, + "probability": 0.8499 + }, + { + "start": 11146.64, + "end": 11147.23, + "probability": 0.9702 + }, + { + "start": 11147.82, + "end": 11148.8, + "probability": 0.9248 + }, + { + "start": 11149.3, + "end": 11150.32, + "probability": 0.7466 + }, + { + "start": 11150.62, + "end": 11154.71, + "probability": 0.811 + }, + { + "start": 11155.78, + "end": 11158.9, + "probability": 0.8366 + }, + { + "start": 11158.98, + "end": 11159.78, + "probability": 0.2833 + }, + { + "start": 11159.84, + "end": 11163.14, + "probability": 0.7668 + }, + { + "start": 11163.14, + "end": 11164.7, + "probability": 0.3817 + }, + { + "start": 11164.8, + "end": 11166.29, + "probability": 0.8462 + }, + { + "start": 11167.02, + "end": 11168.34, + "probability": 0.6447 + }, + { + "start": 11170.04, + "end": 11171.8, + "probability": 0.747 + }, + { + "start": 11172.2, + "end": 11174.16, + "probability": 0.5074 + }, + { + "start": 11174.48, + "end": 11175.6, + "probability": 0.8157 + }, + { + "start": 11175.98, + "end": 11178.54, + "probability": 0.793 + }, + { + "start": 11178.86, + "end": 11179.06, + "probability": 0.4479 + }, + { + "start": 11179.08, + "end": 11181.48, + "probability": 0.5437 + }, + { + "start": 11181.88, + "end": 11184.12, + "probability": 0.6473 + }, + { + "start": 11184.12, + "end": 11184.8, + "probability": 0.9488 + }, + { + "start": 11185.42, + "end": 11187.06, + "probability": 0.699 + }, + { + "start": 11187.18, + "end": 11189.26, + "probability": 0.8248 + }, + { + "start": 11189.86, + "end": 11192.3, + "probability": 0.8252 + }, + { + "start": 11192.46, + "end": 11194.08, + "probability": 0.4991 + }, + { + "start": 11194.6, + "end": 11197.64, + "probability": 0.8288 + }, + { + "start": 11197.76, + "end": 11198.14, + "probability": 0.5894 + }, + { + "start": 11198.18, + "end": 11198.82, + "probability": 0.5189 + }, + { + "start": 11199.3, + "end": 11200.32, + "probability": 0.4111 + }, + { + "start": 11202.87, + "end": 11206.41, + "probability": 0.0826 + }, + { + "start": 11210.08, + "end": 11211.8, + "probability": 0.0935 + }, + { + "start": 11216.44, + "end": 11217.0, + "probability": 0.2251 + }, + { + "start": 11217.0, + "end": 11220.82, + "probability": 0.3367 + }, + { + "start": 11220.82, + "end": 11224.3, + "probability": 0.8327 + }, + { + "start": 11225.28, + "end": 11225.62, + "probability": 0.41 + }, + { + "start": 11225.62, + "end": 11227.24, + "probability": 0.7926 + }, + { + "start": 11227.38, + "end": 11228.92, + "probability": 0.8846 + }, + { + "start": 11230.04, + "end": 11230.7, + "probability": 0.8994 + }, + { + "start": 11230.76, + "end": 11233.88, + "probability": 0.9565 + }, + { + "start": 11233.96, + "end": 11238.52, + "probability": 0.8804 + }, + { + "start": 11239.32, + "end": 11240.7, + "probability": 0.3909 + }, + { + "start": 11240.92, + "end": 11245.06, + "probability": 0.9346 + }, + { + "start": 11245.78, + "end": 11247.42, + "probability": 0.8869 + }, + { + "start": 11247.96, + "end": 11250.34, + "probability": 0.766 + }, + { + "start": 11251.64, + "end": 11255.78, + "probability": 0.73 + }, + { + "start": 11257.1, + "end": 11262.08, + "probability": 0.9946 + }, + { + "start": 11262.08, + "end": 11266.88, + "probability": 0.9962 + }, + { + "start": 11266.88, + "end": 11272.48, + "probability": 0.9948 + }, + { + "start": 11272.6, + "end": 11276.2, + "probability": 0.8664 + }, + { + "start": 11276.72, + "end": 11279.18, + "probability": 0.8433 + }, + { + "start": 11282.26, + "end": 11283.56, + "probability": 0.7826 + }, + { + "start": 11283.68, + "end": 11285.68, + "probability": 0.9229 + }, + { + "start": 11285.86, + "end": 11289.64, + "probability": 0.9921 + }, + { + "start": 11290.44, + "end": 11294.36, + "probability": 0.9927 + }, + { + "start": 11294.36, + "end": 11298.8, + "probability": 0.9976 + }, + { + "start": 11299.12, + "end": 11300.44, + "probability": 0.9902 + }, + { + "start": 11300.52, + "end": 11301.62, + "probability": 0.8436 + }, + { + "start": 11301.72, + "end": 11302.88, + "probability": 0.6687 + }, + { + "start": 11305.3, + "end": 11307.24, + "probability": 0.9256 + }, + { + "start": 11307.38, + "end": 11313.5, + "probability": 0.8745 + }, + { + "start": 11314.7, + "end": 11320.36, + "probability": 0.8995 + }, + { + "start": 11320.64, + "end": 11322.1, + "probability": 0.6669 + }, + { + "start": 11322.18, + "end": 11323.28, + "probability": 0.7388 + }, + { + "start": 11323.86, + "end": 11325.52, + "probability": 0.9316 + }, + { + "start": 11326.26, + "end": 11330.12, + "probability": 0.7974 + }, + { + "start": 11331.06, + "end": 11332.08, + "probability": 0.9146 + }, + { + "start": 11332.28, + "end": 11334.48, + "probability": 0.9575 + }, + { + "start": 11335.38, + "end": 11339.1, + "probability": 0.8135 + }, + { + "start": 11339.2, + "end": 11340.44, + "probability": 0.8432 + }, + { + "start": 11340.96, + "end": 11346.42, + "probability": 0.8315 + }, + { + "start": 11347.42, + "end": 11349.28, + "probability": 0.8727 + }, + { + "start": 11350.2, + "end": 11352.56, + "probability": 0.7361 + }, + { + "start": 11353.16, + "end": 11356.78, + "probability": 0.9947 + }, + { + "start": 11357.1, + "end": 11358.06, + "probability": 0.5646 + }, + { + "start": 11358.18, + "end": 11359.26, + "probability": 0.9378 + }, + { + "start": 11359.54, + "end": 11360.65, + "probability": 0.8853 + }, + { + "start": 11361.72, + "end": 11365.92, + "probability": 0.9729 + }, + { + "start": 11365.92, + "end": 11368.72, + "probability": 0.9765 + }, + { + "start": 11369.56, + "end": 11371.18, + "probability": 0.9291 + }, + { + "start": 11371.3, + "end": 11374.6, + "probability": 0.8371 + }, + { + "start": 11375.0, + "end": 11379.78, + "probability": 0.8264 + }, + { + "start": 11380.54, + "end": 11385.2, + "probability": 0.9849 + }, + { + "start": 11385.36, + "end": 11385.74, + "probability": 0.8979 + }, + { + "start": 11385.88, + "end": 11387.06, + "probability": 0.9637 + }, + { + "start": 11387.18, + "end": 11387.64, + "probability": 0.9666 + }, + { + "start": 11387.76, + "end": 11388.7, + "probability": 0.931 + }, + { + "start": 11389.62, + "end": 11391.86, + "probability": 0.8431 + }, + { + "start": 11392.0, + "end": 11394.34, + "probability": 0.7281 + }, + { + "start": 11394.52, + "end": 11395.78, + "probability": 0.7574 + }, + { + "start": 11396.28, + "end": 11400.74, + "probability": 0.9844 + }, + { + "start": 11400.82, + "end": 11401.91, + "probability": 0.9989 + }, + { + "start": 11403.54, + "end": 11406.33, + "probability": 0.9899 + }, + { + "start": 11407.1, + "end": 11411.0, + "probability": 0.9933 + }, + { + "start": 11411.38, + "end": 11412.12, + "probability": 0.913 + }, + { + "start": 11412.24, + "end": 11413.92, + "probability": 0.9492 + }, + { + "start": 11414.26, + "end": 11416.06, + "probability": 0.9334 + }, + { + "start": 11416.36, + "end": 11417.94, + "probability": 0.9302 + }, + { + "start": 11418.34, + "end": 11418.62, + "probability": 0.4448 + }, + { + "start": 11418.68, + "end": 11419.98, + "probability": 0.9858 + }, + { + "start": 11420.36, + "end": 11421.74, + "probability": 0.9526 + }, + { + "start": 11421.82, + "end": 11423.02, + "probability": 0.7564 + }, + { + "start": 11423.56, + "end": 11429.9, + "probability": 0.9887 + }, + { + "start": 11430.34, + "end": 11431.82, + "probability": 0.8971 + }, + { + "start": 11432.0, + "end": 11432.7, + "probability": 0.699 + }, + { + "start": 11432.76, + "end": 11433.78, + "probability": 0.9413 + }, + { + "start": 11434.2, + "end": 11437.98, + "probability": 0.957 + }, + { + "start": 11438.16, + "end": 11440.02, + "probability": 0.8241 + }, + { + "start": 11440.34, + "end": 11442.88, + "probability": 0.9851 + }, + { + "start": 11443.5, + "end": 11444.68, + "probability": 0.9174 + }, + { + "start": 11444.72, + "end": 11445.78, + "probability": 0.8522 + }, + { + "start": 11445.88, + "end": 11447.6, + "probability": 0.9982 + }, + { + "start": 11449.44, + "end": 11451.1, + "probability": 0.8204 + }, + { + "start": 11452.0, + "end": 11453.0, + "probability": 0.9187 + }, + { + "start": 11453.48, + "end": 11454.38, + "probability": 0.9366 + }, + { + "start": 11454.8, + "end": 11455.7, + "probability": 0.979 + }, + { + "start": 11455.82, + "end": 11456.8, + "probability": 0.9354 + }, + { + "start": 11456.86, + "end": 11457.8, + "probability": 0.9481 + }, + { + "start": 11457.84, + "end": 11458.84, + "probability": 0.9723 + }, + { + "start": 11459.42, + "end": 11463.04, + "probability": 0.967 + }, + { + "start": 11463.6, + "end": 11465.7, + "probability": 0.5377 + }, + { + "start": 11466.2, + "end": 11469.18, + "probability": 0.9037 + }, + { + "start": 11469.7, + "end": 11471.34, + "probability": 0.8917 + }, + { + "start": 11471.42, + "end": 11473.24, + "probability": 0.907 + }, + { + "start": 11473.74, + "end": 11474.04, + "probability": 0.4474 + }, + { + "start": 11474.24, + "end": 11481.24, + "probability": 0.9775 + }, + { + "start": 11482.52, + "end": 11484.62, + "probability": 0.9795 + }, + { + "start": 11484.86, + "end": 11490.12, + "probability": 0.9899 + }, + { + "start": 11490.8, + "end": 11492.42, + "probability": 0.6598 + }, + { + "start": 11492.68, + "end": 11495.14, + "probability": 0.954 + }, + { + "start": 11495.24, + "end": 11496.76, + "probability": 0.928 + }, + { + "start": 11496.76, + "end": 11497.98, + "probability": 0.5737 + }, + { + "start": 11498.58, + "end": 11501.0, + "probability": 0.853 + }, + { + "start": 11501.18, + "end": 11504.52, + "probability": 0.8288 + }, + { + "start": 11505.0, + "end": 11510.48, + "probability": 0.9902 + }, + { + "start": 11511.76, + "end": 11515.42, + "probability": 0.9951 + }, + { + "start": 11515.92, + "end": 11517.46, + "probability": 0.8528 + }, + { + "start": 11517.86, + "end": 11519.98, + "probability": 0.9816 + }, + { + "start": 11520.36, + "end": 11522.08, + "probability": 0.7748 + }, + { + "start": 11522.14, + "end": 11526.4, + "probability": 0.9572 + }, + { + "start": 11526.8, + "end": 11527.72, + "probability": 0.7639 + }, + { + "start": 11528.66, + "end": 11529.36, + "probability": 0.822 + }, + { + "start": 11529.4, + "end": 11530.78, + "probability": 0.8514 + }, + { + "start": 11530.82, + "end": 11535.06, + "probability": 0.9987 + }, + { + "start": 11535.5, + "end": 11540.06, + "probability": 0.988 + }, + { + "start": 11540.56, + "end": 11542.47, + "probability": 0.998 + }, + { + "start": 11543.08, + "end": 11547.3, + "probability": 0.9794 + }, + { + "start": 11547.38, + "end": 11551.58, + "probability": 0.9957 + }, + { + "start": 11551.58, + "end": 11555.2, + "probability": 0.9888 + }, + { + "start": 11555.76, + "end": 11557.42, + "probability": 0.8304 + }, + { + "start": 11558.14, + "end": 11563.2, + "probability": 0.9622 + }, + { + "start": 11563.38, + "end": 11564.72, + "probability": 0.9785 + }, + { + "start": 11565.28, + "end": 11566.72, + "probability": 0.9031 + }, + { + "start": 11566.94, + "end": 11568.52, + "probability": 0.8986 + }, + { + "start": 11568.82, + "end": 11573.1, + "probability": 0.9889 + }, + { + "start": 11573.63, + "end": 11577.06, + "probability": 0.9941 + }, + { + "start": 11578.14, + "end": 11580.96, + "probability": 0.9635 + }, + { + "start": 11581.04, + "end": 11582.44, + "probability": 0.9751 + }, + { + "start": 11582.92, + "end": 11584.38, + "probability": 0.9412 + }, + { + "start": 11584.5, + "end": 11586.3, + "probability": 0.9786 + }, + { + "start": 11587.62, + "end": 11590.58, + "probability": 0.8875 + }, + { + "start": 11591.12, + "end": 11592.86, + "probability": 0.9721 + }, + { + "start": 11593.46, + "end": 11597.64, + "probability": 0.817 + }, + { + "start": 11597.7, + "end": 11600.58, + "probability": 0.9771 + }, + { + "start": 11600.7, + "end": 11601.62, + "probability": 0.8836 + }, + { + "start": 11602.24, + "end": 11604.04, + "probability": 0.9541 + }, + { + "start": 11604.08, + "end": 11605.98, + "probability": 0.9754 + }, + { + "start": 11606.42, + "end": 11608.6, + "probability": 0.9956 + }, + { + "start": 11609.26, + "end": 11614.14, + "probability": 0.9714 + }, + { + "start": 11614.14, + "end": 11618.66, + "probability": 0.8828 + }, + { + "start": 11619.18, + "end": 11621.76, + "probability": 0.7511 + }, + { + "start": 11621.82, + "end": 11623.2, + "probability": 0.7476 + }, + { + "start": 11623.74, + "end": 11626.62, + "probability": 0.9611 + }, + { + "start": 11626.88, + "end": 11627.92, + "probability": 0.5742 + }, + { + "start": 11628.18, + "end": 11629.74, + "probability": 0.9526 + }, + { + "start": 11630.28, + "end": 11631.22, + "probability": 0.8068 + }, + { + "start": 11632.0, + "end": 11634.34, + "probability": 0.8218 + }, + { + "start": 11634.34, + "end": 11637.98, + "probability": 0.939 + }, + { + "start": 11644.58, + "end": 11646.25, + "probability": 0.3868 + }, + { + "start": 11647.74, + "end": 11653.36, + "probability": 0.0943 + }, + { + "start": 11655.68, + "end": 11660.0, + "probability": 0.3499 + }, + { + "start": 11660.26, + "end": 11663.92, + "probability": 0.6164 + }, + { + "start": 11664.58, + "end": 11666.32, + "probability": 0.5043 + }, + { + "start": 11666.56, + "end": 11669.93, + "probability": 0.4228 + }, + { + "start": 11670.68, + "end": 11671.12, + "probability": 0.0858 + }, + { + "start": 11671.12, + "end": 11671.12, + "probability": 0.5013 + }, + { + "start": 11671.12, + "end": 11673.76, + "probability": 0.3919 + }, + { + "start": 11674.1, + "end": 11674.99, + "probability": 0.0534 + }, + { + "start": 11675.6, + "end": 11678.04, + "probability": 0.4672 + }, + { + "start": 11678.24, + "end": 11679.26, + "probability": 0.5974 + }, + { + "start": 11679.58, + "end": 11681.18, + "probability": 0.9447 + }, + { + "start": 11681.74, + "end": 11682.94, + "probability": 0.5802 + }, + { + "start": 11684.62, + "end": 11686.56, + "probability": 0.8001 + }, + { + "start": 11686.94, + "end": 11688.98, + "probability": 0.797 + }, + { + "start": 11689.6, + "end": 11693.3, + "probability": 0.84 + }, + { + "start": 11694.26, + "end": 11695.78, + "probability": 0.7636 + }, + { + "start": 11697.74, + "end": 11702.11, + "probability": 0.8954 + }, + { + "start": 11702.38, + "end": 11707.9, + "probability": 0.9937 + }, + { + "start": 11708.04, + "end": 11709.58, + "probability": 0.862 + }, + { + "start": 11710.46, + "end": 11712.14, + "probability": 0.9963 + }, + { + "start": 11712.94, + "end": 11717.36, + "probability": 0.9589 + }, + { + "start": 11719.61, + "end": 11722.52, + "probability": 0.8479 + }, + { + "start": 11723.72, + "end": 11728.2, + "probability": 0.9814 + }, + { + "start": 11728.2, + "end": 11733.32, + "probability": 0.9893 + }, + { + "start": 11734.04, + "end": 11740.58, + "probability": 0.9851 + }, + { + "start": 11741.82, + "end": 11743.88, + "probability": 0.824 + }, + { + "start": 11744.56, + "end": 11746.54, + "probability": 0.9932 + }, + { + "start": 11747.36, + "end": 11751.3, + "probability": 0.9827 + }, + { + "start": 11752.78, + "end": 11756.42, + "probability": 0.8511 + }, + { + "start": 11757.12, + "end": 11758.98, + "probability": 0.9255 + }, + { + "start": 11759.54, + "end": 11760.3, + "probability": 0.9503 + }, + { + "start": 11760.68, + "end": 11761.84, + "probability": 0.9948 + }, + { + "start": 11762.14, + "end": 11763.08, + "probability": 0.9919 + }, + { + "start": 11763.34, + "end": 11766.64, + "probability": 0.8253 + }, + { + "start": 11766.7, + "end": 11767.94, + "probability": 0.9679 + }, + { + "start": 11768.08, + "end": 11769.0, + "probability": 0.9922 + }, + { + "start": 11769.36, + "end": 11770.18, + "probability": 0.8419 + }, + { + "start": 11770.68, + "end": 11771.5, + "probability": 0.6516 + }, + { + "start": 11771.96, + "end": 11772.54, + "probability": 0.8053 + }, + { + "start": 11772.76, + "end": 11774.58, + "probability": 0.9353 + }, + { + "start": 11774.7, + "end": 11775.16, + "probability": 0.7364 + }, + { + "start": 11775.28, + "end": 11776.96, + "probability": 0.9961 + }, + { + "start": 11777.7, + "end": 11779.5, + "probability": 0.9363 + }, + { + "start": 11780.48, + "end": 11784.36, + "probability": 0.9964 + }, + { + "start": 11785.04, + "end": 11786.72, + "probability": 0.754 + }, + { + "start": 11787.56, + "end": 11791.32, + "probability": 0.9972 + }, + { + "start": 11791.84, + "end": 11795.02, + "probability": 0.9486 + }, + { + "start": 11795.54, + "end": 11797.0, + "probability": 0.9929 + }, + { + "start": 11797.52, + "end": 11797.98, + "probability": 0.9717 + }, + { + "start": 11799.3, + "end": 11801.78, + "probability": 0.937 + }, + { + "start": 11802.56, + "end": 11807.88, + "probability": 0.9818 + }, + { + "start": 11808.58, + "end": 11812.4, + "probability": 0.9692 + }, + { + "start": 11813.44, + "end": 11816.44, + "probability": 0.9836 + }, + { + "start": 11817.74, + "end": 11818.74, + "probability": 0.0998 + }, + { + "start": 11819.48, + "end": 11821.16, + "probability": 0.0714 + }, + { + "start": 11822.3, + "end": 11823.58, + "probability": 0.6453 + }, + { + "start": 11825.16, + "end": 11831.78, + "probability": 0.9703 + }, + { + "start": 11831.78, + "end": 11835.92, + "probability": 0.9993 + }, + { + "start": 11836.8, + "end": 11836.98, + "probability": 0.3022 + }, + { + "start": 11837.1, + "end": 11837.78, + "probability": 0.8226 + }, + { + "start": 11837.92, + "end": 11839.12, + "probability": 0.6052 + }, + { + "start": 11839.42, + "end": 11842.72, + "probability": 0.9802 + }, + { + "start": 11843.46, + "end": 11844.96, + "probability": 0.9353 + }, + { + "start": 11845.72, + "end": 11851.54, + "probability": 0.9741 + }, + { + "start": 11851.54, + "end": 11858.44, + "probability": 0.9569 + }, + { + "start": 11858.74, + "end": 11858.76, + "probability": 0.0704 + }, + { + "start": 11858.76, + "end": 11858.76, + "probability": 0.0762 + }, + { + "start": 11858.76, + "end": 11859.44, + "probability": 0.5725 + }, + { + "start": 11860.14, + "end": 11866.56, + "probability": 0.8558 + }, + { + "start": 11867.12, + "end": 11870.56, + "probability": 0.9857 + }, + { + "start": 11871.6, + "end": 11875.18, + "probability": 0.9902 + }, + { + "start": 11875.18, + "end": 11879.18, + "probability": 0.8496 + }, + { + "start": 11879.44, + "end": 11880.22, + "probability": 0.6181 + }, + { + "start": 11880.98, + "end": 11884.74, + "probability": 0.967 + }, + { + "start": 11885.0, + "end": 11886.82, + "probability": 0.9352 + }, + { + "start": 11887.6, + "end": 11890.38, + "probability": 0.9125 + }, + { + "start": 11891.06, + "end": 11894.52, + "probability": 0.929 + }, + { + "start": 11895.92, + "end": 11900.74, + "probability": 0.8565 + }, + { + "start": 11901.46, + "end": 11902.32, + "probability": 0.844 + }, + { + "start": 11902.92, + "end": 11909.62, + "probability": 0.8729 + }, + { + "start": 11910.16, + "end": 11913.44, + "probability": 0.9964 + }, + { + "start": 11914.6, + "end": 11916.6, + "probability": 0.877 + }, + { + "start": 11917.26, + "end": 11925.7, + "probability": 0.9946 + }, + { + "start": 11926.44, + "end": 11930.7, + "probability": 0.9514 + }, + { + "start": 11931.68, + "end": 11939.0, + "probability": 0.7887 + }, + { + "start": 11939.82, + "end": 11943.6, + "probability": 0.875 + }, + { + "start": 11943.82, + "end": 11944.3, + "probability": 0.8482 + }, + { + "start": 11944.54, + "end": 11949.24, + "probability": 0.9444 + }, + { + "start": 11949.98, + "end": 11954.06, + "probability": 0.978 + }, + { + "start": 11954.98, + "end": 11955.68, + "probability": 0.6622 + }, + { + "start": 11956.3, + "end": 11957.42, + "probability": 0.7752 + }, + { + "start": 11958.5, + "end": 11961.0, + "probability": 0.6576 + }, + { + "start": 11961.14, + "end": 11962.64, + "probability": 0.6923 + }, + { + "start": 11963.88, + "end": 11966.08, + "probability": 0.7952 + }, + { + "start": 11967.76, + "end": 11970.0, + "probability": 0.8276 + }, + { + "start": 11970.4, + "end": 11973.76, + "probability": 0.0332 + }, + { + "start": 11975.18, + "end": 11977.86, + "probability": 0.656 + }, + { + "start": 11977.96, + "end": 11980.2, + "probability": 0.993 + }, + { + "start": 11997.58, + "end": 11998.62, + "probability": 0.4991 + }, + { + "start": 11998.98, + "end": 12005.86, + "probability": 0.754 + }, + { + "start": 12006.3, + "end": 12010.1, + "probability": 0.9991 + }, + { + "start": 12010.82, + "end": 12012.76, + "probability": 0.9889 + }, + { + "start": 12015.72, + "end": 12016.4, + "probability": 0.3539 + }, + { + "start": 12017.14, + "end": 12021.93, + "probability": 0.9362 + }, + { + "start": 12022.34, + "end": 12025.76, + "probability": 0.8731 + }, + { + "start": 12027.06, + "end": 12034.94, + "probability": 0.874 + }, + { + "start": 12035.94, + "end": 12039.3, + "probability": 0.9702 + }, + { + "start": 12039.98, + "end": 12040.86, + "probability": 0.7519 + }, + { + "start": 12042.32, + "end": 12043.06, + "probability": 0.4439 + }, + { + "start": 12043.82, + "end": 12049.38, + "probability": 0.9551 + }, + { + "start": 12050.48, + "end": 12051.86, + "probability": 0.9995 + }, + { + "start": 12052.62, + "end": 12054.4, + "probability": 0.9871 + }, + { + "start": 12055.84, + "end": 12056.42, + "probability": 0.7119 + }, + { + "start": 12057.38, + "end": 12059.62, + "probability": 0.7993 + }, + { + "start": 12062.6, + "end": 12067.74, + "probability": 0.1606 + }, + { + "start": 12068.06, + "end": 12070.3, + "probability": 0.1602 + }, + { + "start": 12071.14, + "end": 12074.56, + "probability": 0.1547 + }, + { + "start": 12078.04, + "end": 12079.44, + "probability": 0.6702 + }, + { + "start": 12079.62, + "end": 12081.82, + "probability": 0.9566 + }, + { + "start": 12081.82, + "end": 12083.52, + "probability": 0.7962 + }, + { + "start": 12083.7, + "end": 12084.96, + "probability": 0.7957 + }, + { + "start": 12085.78, + "end": 12087.0, + "probability": 0.7846 + }, + { + "start": 12088.8, + "end": 12089.5, + "probability": 0.9687 + }, + { + "start": 12089.54, + "end": 12089.98, + "probability": 0.8341 + }, + { + "start": 12090.06, + "end": 12093.3, + "probability": 0.9925 + }, + { + "start": 12093.86, + "end": 12097.56, + "probability": 0.9666 + }, + { + "start": 12099.61, + "end": 12102.68, + "probability": 0.918 + }, + { + "start": 12102.88, + "end": 12104.77, + "probability": 0.7549 + }, + { + "start": 12111.76, + "end": 12116.94, + "probability": 0.8321 + }, + { + "start": 12117.02, + "end": 12119.72, + "probability": 0.9048 + }, + { + "start": 12120.3, + "end": 12121.62, + "probability": 0.9897 + }, + { + "start": 12121.82, + "end": 12124.46, + "probability": 0.8677 + }, + { + "start": 12125.06, + "end": 12127.26, + "probability": 0.8546 + }, + { + "start": 12128.1, + "end": 12130.1, + "probability": 0.8297 + }, + { + "start": 12133.05, + "end": 12136.72, + "probability": 0.6556 + }, + { + "start": 12137.8, + "end": 12143.28, + "probability": 0.9957 + }, + { + "start": 12143.28, + "end": 12149.24, + "probability": 0.9981 + }, + { + "start": 12150.52, + "end": 12155.66, + "probability": 0.9715 + }, + { + "start": 12156.82, + "end": 12158.42, + "probability": 0.6643 + }, + { + "start": 12159.56, + "end": 12167.84, + "probability": 0.7096 + }, + { + "start": 12168.0, + "end": 12171.34, + "probability": 0.977 + }, + { + "start": 12171.82, + "end": 12174.28, + "probability": 0.9854 + }, + { + "start": 12175.1, + "end": 12178.3, + "probability": 0.897 + }, + { + "start": 12179.34, + "end": 12180.56, + "probability": 0.3362 + }, + { + "start": 12180.66, + "end": 12180.66, + "probability": 0.0671 + }, + { + "start": 12180.66, + "end": 12180.66, + "probability": 0.1665 + }, + { + "start": 12180.66, + "end": 12182.2, + "probability": 0.2677 + }, + { + "start": 12182.2, + "end": 12185.54, + "probability": 0.7306 + }, + { + "start": 12186.64, + "end": 12188.12, + "probability": 0.0627 + }, + { + "start": 12188.12, + "end": 12188.12, + "probability": 0.3376 + }, + { + "start": 12188.12, + "end": 12188.78, + "probability": 0.5348 + }, + { + "start": 12189.86, + "end": 12191.84, + "probability": 0.7513 + }, + { + "start": 12191.88, + "end": 12193.14, + "probability": 0.1419 + }, + { + "start": 12193.14, + "end": 12193.28, + "probability": 0.1669 + }, + { + "start": 12193.4, + "end": 12195.56, + "probability": 0.0932 + }, + { + "start": 12195.56, + "end": 12196.0, + "probability": 0.3833 + }, + { + "start": 12196.06, + "end": 12199.05, + "probability": 0.9927 + }, + { + "start": 12199.34, + "end": 12200.42, + "probability": 0.9194 + }, + { + "start": 12205.52, + "end": 12206.26, + "probability": 0.0266 + }, + { + "start": 12206.26, + "end": 12206.26, + "probability": 0.0787 + }, + { + "start": 12206.26, + "end": 12213.7, + "probability": 0.9895 + }, + { + "start": 12214.38, + "end": 12216.34, + "probability": 0.9885 + }, + { + "start": 12218.06, + "end": 12218.6, + "probability": 0.6301 + }, + { + "start": 12220.48, + "end": 12227.0, + "probability": 0.9644 + }, + { + "start": 12227.38, + "end": 12229.9, + "probability": 0.8246 + }, + { + "start": 12230.9, + "end": 12238.22, + "probability": 0.9034 + }, + { + "start": 12238.98, + "end": 12245.94, + "probability": 0.9941 + }, + { + "start": 12247.16, + "end": 12249.98, + "probability": 0.7858 + }, + { + "start": 12251.32, + "end": 12253.58, + "probability": 0.7213 + }, + { + "start": 12254.44, + "end": 12259.42, + "probability": 0.8495 + }, + { + "start": 12260.08, + "end": 12261.66, + "probability": 0.9878 + }, + { + "start": 12264.68, + "end": 12268.25, + "probability": 0.2008 + }, + { + "start": 12271.18, + "end": 12272.26, + "probability": 0.2322 + }, + { + "start": 12272.26, + "end": 12273.22, + "probability": 0.3069 + }, + { + "start": 12273.48, + "end": 12274.2, + "probability": 0.2038 + }, + { + "start": 12274.2, + "end": 12275.54, + "probability": 0.645 + }, + { + "start": 12275.6, + "end": 12277.88, + "probability": 0.9793 + }, + { + "start": 12278.18, + "end": 12278.3, + "probability": 0.559 + }, + { + "start": 12278.56, + "end": 12278.84, + "probability": 0.3123 + }, + { + "start": 12278.84, + "end": 12279.64, + "probability": 0.3486 + }, + { + "start": 12280.04, + "end": 12281.43, + "probability": 0.7703 + }, + { + "start": 12281.9, + "end": 12282.42, + "probability": 0.2296 + }, + { + "start": 12282.54, + "end": 12283.12, + "probability": 0.2598 + }, + { + "start": 12283.46, + "end": 12283.98, + "probability": 0.7365 + }, + { + "start": 12283.98, + "end": 12287.76, + "probability": 0.3419 + }, + { + "start": 12288.0, + "end": 12288.0, + "probability": 0.0269 + }, + { + "start": 12288.0, + "end": 12288.0, + "probability": 0.2204 + }, + { + "start": 12288.02, + "end": 12288.02, + "probability": 0.445 + }, + { + "start": 12288.02, + "end": 12288.96, + "probability": 0.4394 + }, + { + "start": 12289.14, + "end": 12290.24, + "probability": 0.7107 + }, + { + "start": 12290.32, + "end": 12291.72, + "probability": 0.802 + }, + { + "start": 12291.94, + "end": 12294.2, + "probability": 0.8826 + }, + { + "start": 12295.88, + "end": 12296.1, + "probability": 0.0175 + }, + { + "start": 12296.1, + "end": 12296.1, + "probability": 0.4046 + }, + { + "start": 12296.1, + "end": 12296.66, + "probability": 0.0342 + }, + { + "start": 12296.66, + "end": 12297.02, + "probability": 0.3154 + }, + { + "start": 12297.18, + "end": 12299.62, + "probability": 0.848 + }, + { + "start": 12300.16, + "end": 12302.64, + "probability": 0.7376 + }, + { + "start": 12309.48, + "end": 12310.68, + "probability": 0.6949 + }, + { + "start": 12313.1, + "end": 12313.56, + "probability": 0.1327 + }, + { + "start": 12313.8, + "end": 12314.6, + "probability": 0.9586 + }, + { + "start": 12316.8, + "end": 12319.74, + "probability": 0.133 + }, + { + "start": 12320.02, + "end": 12321.9, + "probability": 0.6686 + }, + { + "start": 12321.98, + "end": 12322.36, + "probability": 0.6993 + }, + { + "start": 12322.48, + "end": 12323.95, + "probability": 0.7701 + }, + { + "start": 12324.26, + "end": 12326.7, + "probability": 0.6256 + }, + { + "start": 12326.8, + "end": 12327.71, + "probability": 0.3204 + }, + { + "start": 12328.52, + "end": 12328.78, + "probability": 0.0543 + }, + { + "start": 12328.78, + "end": 12328.78, + "probability": 0.1053 + }, + { + "start": 12328.78, + "end": 12328.78, + "probability": 0.1196 + }, + { + "start": 12328.78, + "end": 12328.78, + "probability": 0.1631 + }, + { + "start": 12328.78, + "end": 12330.44, + "probability": 0.4678 + }, + { + "start": 12330.44, + "end": 12331.24, + "probability": 0.5116 + }, + { + "start": 12331.24, + "end": 12331.88, + "probability": 0.1039 + }, + { + "start": 12333.8, + "end": 12337.44, + "probability": 0.916 + }, + { + "start": 12337.5, + "end": 12341.28, + "probability": 0.9507 + }, + { + "start": 12341.42, + "end": 12342.62, + "probability": 0.6834 + }, + { + "start": 12342.8, + "end": 12342.9, + "probability": 0.0221 + }, + { + "start": 12343.28, + "end": 12343.32, + "probability": 0.0916 + }, + { + "start": 12344.85, + "end": 12344.92, + "probability": 0.0162 + }, + { + "start": 12344.92, + "end": 12344.92, + "probability": 0.0382 + }, + { + "start": 12344.92, + "end": 12346.6, + "probability": 0.1746 + }, + { + "start": 12346.94, + "end": 12347.78, + "probability": 0.6809 + }, + { + "start": 12348.22, + "end": 12356.02, + "probability": 0.9802 + }, + { + "start": 12356.02, + "end": 12361.92, + "probability": 0.9517 + }, + { + "start": 12362.7, + "end": 12362.7, + "probability": 0.0227 + }, + { + "start": 12362.7, + "end": 12364.1, + "probability": 0.5257 + }, + { + "start": 12365.04, + "end": 12365.54, + "probability": 0.268 + }, + { + "start": 12365.64, + "end": 12366.4, + "probability": 0.7336 + }, + { + "start": 12367.04, + "end": 12367.54, + "probability": 0.3446 + }, + { + "start": 12367.54, + "end": 12367.86, + "probability": 0.7136 + }, + { + "start": 12367.92, + "end": 12373.72, + "probability": 0.9423 + }, + { + "start": 12373.78, + "end": 12376.12, + "probability": 0.7252 + }, + { + "start": 12376.34, + "end": 12377.02, + "probability": 0.023 + }, + { + "start": 12377.02, + "end": 12378.32, + "probability": 0.6018 + }, + { + "start": 12378.32, + "end": 12378.32, + "probability": 0.7089 + }, + { + "start": 12378.32, + "end": 12382.38, + "probability": 0.6049 + }, + { + "start": 12382.38, + "end": 12383.52, + "probability": 0.9106 + }, + { + "start": 12383.78, + "end": 12385.86, + "probability": 0.5824 + }, + { + "start": 12386.94, + "end": 12391.28, + "probability": 0.9886 + }, + { + "start": 12391.86, + "end": 12395.06, + "probability": 0.4894 + }, + { + "start": 12395.12, + "end": 12397.64, + "probability": 0.402 + }, + { + "start": 12397.84, + "end": 12399.28, + "probability": 0.5927 + }, + { + "start": 12399.78, + "end": 12400.8, + "probability": 0.787 + }, + { + "start": 12401.0, + "end": 12404.7, + "probability": 0.7043 + }, + { + "start": 12404.9, + "end": 12407.76, + "probability": 0.8684 + }, + { + "start": 12409.0, + "end": 12412.38, + "probability": 0.2392 + }, + { + "start": 12413.88, + "end": 12414.88, + "probability": 0.0126 + }, + { + "start": 12418.96, + "end": 12421.31, + "probability": 0.8691 + }, + { + "start": 12423.26, + "end": 12424.76, + "probability": 0.9408 + }, + { + "start": 12426.28, + "end": 12427.71, + "probability": 0.9755 + }, + { + "start": 12429.72, + "end": 12431.1, + "probability": 0.9774 + }, + { + "start": 12431.14, + "end": 12432.34, + "probability": 0.8625 + }, + { + "start": 12432.38, + "end": 12435.08, + "probability": 0.991 + }, + { + "start": 12437.94, + "end": 12439.14, + "probability": 0.4532 + }, + { + "start": 12439.38, + "end": 12441.68, + "probability": 0.2034 + }, + { + "start": 12441.82, + "end": 12444.1, + "probability": 0.5872 + }, + { + "start": 12445.66, + "end": 12449.26, + "probability": 0.9043 + }, + { + "start": 12449.82, + "end": 12453.0, + "probability": 0.7588 + }, + { + "start": 12453.64, + "end": 12456.76, + "probability": 0.7649 + }, + { + "start": 12457.04, + "end": 12457.04, + "probability": 0.5589 + }, + { + "start": 12457.24, + "end": 12460.14, + "probability": 0.9218 + }, + { + "start": 12460.66, + "end": 12461.82, + "probability": 0.5406 + }, + { + "start": 12462.3, + "end": 12463.58, + "probability": 0.8491 + }, + { + "start": 12463.74, + "end": 12465.32, + "probability": 0.8752 + }, + { + "start": 12465.72, + "end": 12468.02, + "probability": 0.7283 + }, + { + "start": 12468.5, + "end": 12468.58, + "probability": 0.1115 + }, + { + "start": 12468.58, + "end": 12469.61, + "probability": 0.6949 + }, + { + "start": 12470.62, + "end": 12473.62, + "probability": 0.9194 + }, + { + "start": 12474.44, + "end": 12477.12, + "probability": 0.8166 + }, + { + "start": 12478.68, + "end": 12479.34, + "probability": 0.3783 + }, + { + "start": 12479.88, + "end": 12480.9, + "probability": 0.2102 + }, + { + "start": 12480.9, + "end": 12481.68, + "probability": 0.1715 + }, + { + "start": 12481.88, + "end": 12484.18, + "probability": 0.6597 + }, + { + "start": 12484.18, + "end": 12486.94, + "probability": 0.699 + }, + { + "start": 12487.3, + "end": 12490.12, + "probability": 0.4323 + }, + { + "start": 12490.12, + "end": 12491.76, + "probability": 0.4603 + }, + { + "start": 12492.14, + "end": 12494.22, + "probability": 0.1494 + }, + { + "start": 12494.22, + "end": 12495.88, + "probability": 0.4932 + }, + { + "start": 12496.52, + "end": 12500.06, + "probability": 0.7268 + }, + { + "start": 12500.06, + "end": 12501.34, + "probability": 0.0928 + }, + { + "start": 12501.34, + "end": 12503.5, + "probability": 0.9429 + }, + { + "start": 12503.5, + "end": 12504.58, + "probability": 0.8811 + }, + { + "start": 12504.72, + "end": 12505.1, + "probability": 0.6283 + }, + { + "start": 12507.32, + "end": 12508.36, + "probability": 0.9105 + }, + { + "start": 12509.2, + "end": 12514.74, + "probability": 0.9733 + }, + { + "start": 12514.88, + "end": 12516.88, + "probability": 0.6697 + }, + { + "start": 12517.26, + "end": 12518.8, + "probability": 0.5699 + }, + { + "start": 12519.16, + "end": 12522.18, + "probability": 0.9964 + }, + { + "start": 12522.46, + "end": 12527.14, + "probability": 0.9967 + }, + { + "start": 12527.14, + "end": 12530.3, + "probability": 0.8571 + }, + { + "start": 12530.92, + "end": 12532.24, + "probability": 0.7287 + }, + { + "start": 12532.4, + "end": 12537.86, + "probability": 0.8581 + }, + { + "start": 12538.0, + "end": 12539.22, + "probability": 0.9778 + }, + { + "start": 12539.34, + "end": 12540.2, + "probability": 0.9255 + }, + { + "start": 12540.32, + "end": 12541.78, + "probability": 0.7556 + }, + { + "start": 12541.92, + "end": 12542.69, + "probability": 0.8874 + }, + { + "start": 12542.94, + "end": 12543.88, + "probability": 0.978 + }, + { + "start": 12543.96, + "end": 12545.76, + "probability": 0.8037 + }, + { + "start": 12546.7, + "end": 12548.5, + "probability": 0.5785 + }, + { + "start": 12550.26, + "end": 12552.66, + "probability": 0.8022 + }, + { + "start": 12552.74, + "end": 12554.34, + "probability": 0.8966 + }, + { + "start": 12554.42, + "end": 12558.36, + "probability": 0.8646 + }, + { + "start": 12558.4, + "end": 12561.4, + "probability": 0.8914 + }, + { + "start": 12561.5, + "end": 12563.32, + "probability": 0.2497 + }, + { + "start": 12563.7, + "end": 12568.48, + "probability": 0.6505 + }, + { + "start": 12568.84, + "end": 12569.22, + "probability": 0.4408 + }, + { + "start": 12569.24, + "end": 12569.76, + "probability": 0.3899 + }, + { + "start": 12569.86, + "end": 12571.28, + "probability": 0.5176 + }, + { + "start": 12576.52, + "end": 12576.98, + "probability": 0.398 + }, + { + "start": 12580.02, + "end": 12586.76, + "probability": 0.0333 + }, + { + "start": 12586.76, + "end": 12587.42, + "probability": 0.1767 + }, + { + "start": 12588.26, + "end": 12588.44, + "probability": 0.0324 + }, + { + "start": 12588.44, + "end": 12591.2, + "probability": 0.4673 + }, + { + "start": 12591.3, + "end": 12594.56, + "probability": 0.7443 + }, + { + "start": 12595.42, + "end": 12596.96, + "probability": 0.7566 + }, + { + "start": 12597.92, + "end": 12599.63, + "probability": 0.687 + }, + { + "start": 12602.12, + "end": 12605.2, + "probability": 0.9846 + }, + { + "start": 12605.82, + "end": 12610.94, + "probability": 0.9124 + }, + { + "start": 12611.46, + "end": 12613.64, + "probability": 0.1556 + }, + { + "start": 12615.02, + "end": 12615.02, + "probability": 0.1314 + }, + { + "start": 12615.02, + "end": 12615.14, + "probability": 0.3115 + }, + { + "start": 12615.18, + "end": 12617.16, + "probability": 0.6586 + }, + { + "start": 12618.96, + "end": 12620.46, + "probability": 0.5991 + }, + { + "start": 12620.46, + "end": 12622.12, + "probability": 0.5068 + }, + { + "start": 12622.12, + "end": 12623.5, + "probability": 0.8317 + }, + { + "start": 12624.96, + "end": 12624.96, + "probability": 0.3406 + }, + { + "start": 12625.62, + "end": 12627.82, + "probability": 0.918 + }, + { + "start": 12638.74, + "end": 12642.22, + "probability": 0.7556 + }, + { + "start": 12643.2, + "end": 12644.7, + "probability": 0.7771 + }, + { + "start": 12647.05, + "end": 12650.5, + "probability": 0.9066 + }, + { + "start": 12651.54, + "end": 12652.78, + "probability": 0.7262 + }, + { + "start": 12655.6, + "end": 12657.52, + "probability": 0.9712 + }, + { + "start": 12659.24, + "end": 12661.76, + "probability": 0.7956 + }, + { + "start": 12662.6, + "end": 12663.78, + "probability": 0.9161 + }, + { + "start": 12665.72, + "end": 12676.76, + "probability": 0.9505 + }, + { + "start": 12678.08, + "end": 12680.34, + "probability": 0.5059 + }, + { + "start": 12681.04, + "end": 12686.54, + "probability": 0.8231 + }, + { + "start": 12687.26, + "end": 12688.04, + "probability": 0.497 + }, + { + "start": 12688.1, + "end": 12688.44, + "probability": 0.7509 + }, + { + "start": 12688.52, + "end": 12691.62, + "probability": 0.9652 + }, + { + "start": 12692.12, + "end": 12693.54, + "probability": 0.9666 + }, + { + "start": 12693.68, + "end": 12695.51, + "probability": 0.8449 + }, + { + "start": 12695.92, + "end": 12697.74, + "probability": 0.9457 + }, + { + "start": 12699.9, + "end": 12700.88, + "probability": 0.8678 + }, + { + "start": 12701.26, + "end": 12702.66, + "probability": 0.7863 + }, + { + "start": 12704.74, + "end": 12706.58, + "probability": 0.9556 + }, + { + "start": 12706.7, + "end": 12708.22, + "probability": 0.8535 + }, + { + "start": 12709.62, + "end": 12710.54, + "probability": 0.766 + }, + { + "start": 12711.4, + "end": 12712.14, + "probability": 0.7795 + }, + { + "start": 12712.86, + "end": 12713.52, + "probability": 0.4375 + }, + { + "start": 12713.72, + "end": 12714.6, + "probability": 0.9206 + }, + { + "start": 12716.18, + "end": 12716.6, + "probability": 0.0044 + }, + { + "start": 12716.6, + "end": 12717.82, + "probability": 0.398 + }, + { + "start": 12719.1, + "end": 12726.44, + "probability": 0.9419 + }, + { + "start": 12726.72, + "end": 12730.66, + "probability": 0.9897 + }, + { + "start": 12731.78, + "end": 12732.78, + "probability": 0.9266 + }, + { + "start": 12732.92, + "end": 12734.2, + "probability": 0.9209 + }, + { + "start": 12734.7, + "end": 12737.84, + "probability": 0.9888 + }, + { + "start": 12737.94, + "end": 12740.32, + "probability": 0.9219 + }, + { + "start": 12740.48, + "end": 12741.4, + "probability": 0.9164 + }, + { + "start": 12742.7, + "end": 12745.28, + "probability": 0.8345 + }, + { + "start": 12746.24, + "end": 12749.24, + "probability": 0.9561 + }, + { + "start": 12749.76, + "end": 12753.34, + "probability": 0.9628 + }, + { + "start": 12754.06, + "end": 12756.24, + "probability": 0.9608 + }, + { + "start": 12756.66, + "end": 12757.08, + "probability": 0.6181 + }, + { + "start": 12757.1, + "end": 12758.23, + "probability": 0.7048 + }, + { + "start": 12758.4, + "end": 12760.12, + "probability": 0.9242 + }, + { + "start": 12760.44, + "end": 12761.55, + "probability": 0.9924 + }, + { + "start": 12761.78, + "end": 12763.42, + "probability": 0.8593 + }, + { + "start": 12764.7, + "end": 12768.74, + "probability": 0.9429 + }, + { + "start": 12769.5, + "end": 12770.64, + "probability": 0.8654 + }, + { + "start": 12771.8, + "end": 12774.62, + "probability": 0.9027 + }, + { + "start": 12774.68, + "end": 12776.62, + "probability": 0.9902 + }, + { + "start": 12777.68, + "end": 12779.58, + "probability": 0.6108 + }, + { + "start": 12779.88, + "end": 12783.1, + "probability": 0.8063 + }, + { + "start": 12783.9, + "end": 12784.58, + "probability": 0.6972 + }, + { + "start": 12784.9, + "end": 12789.6, + "probability": 0.9788 + }, + { + "start": 12790.32, + "end": 12794.3, + "probability": 0.9581 + }, + { + "start": 12795.06, + "end": 12795.86, + "probability": 0.579 + }, + { + "start": 12796.62, + "end": 12797.86, + "probability": 0.8564 + }, + { + "start": 12797.9, + "end": 12798.4, + "probability": 0.8818 + }, + { + "start": 12799.06, + "end": 12803.16, + "probability": 0.8154 + }, + { + "start": 12804.34, + "end": 12805.46, + "probability": 0.894 + }, + { + "start": 12807.06, + "end": 12808.6, + "probability": 0.9692 + }, + { + "start": 12809.4, + "end": 12812.4, + "probability": 0.7608 + }, + { + "start": 12816.63, + "end": 12823.72, + "probability": 0.9257 + }, + { + "start": 12825.26, + "end": 12826.5, + "probability": 0.8815 + }, + { + "start": 12827.64, + "end": 12831.36, + "probability": 0.7466 + }, + { + "start": 12831.36, + "end": 12833.18, + "probability": 0.9769 + }, + { + "start": 12834.02, + "end": 12840.31, + "probability": 0.99 + }, + { + "start": 12841.08, + "end": 12847.26, + "probability": 0.9842 + }, + { + "start": 12850.86, + "end": 12852.26, + "probability": 0.6424 + }, + { + "start": 12853.66, + "end": 12857.6, + "probability": 0.8878 + }, + { + "start": 12859.3, + "end": 12860.98, + "probability": 0.8489 + }, + { + "start": 12862.48, + "end": 12864.82, + "probability": 0.967 + }, + { + "start": 12864.96, + "end": 12865.86, + "probability": 0.9603 + }, + { + "start": 12866.0, + "end": 12867.24, + "probability": 0.9441 + }, + { + "start": 12868.34, + "end": 12875.6, + "probability": 0.9862 + }, + { + "start": 12875.98, + "end": 12877.64, + "probability": 0.9581 + }, + { + "start": 12877.68, + "end": 12878.46, + "probability": 0.6247 + }, + { + "start": 12879.8, + "end": 12883.32, + "probability": 0.9946 + }, + { + "start": 12884.3, + "end": 12885.24, + "probability": 0.9093 + }, + { + "start": 12886.12, + "end": 12888.36, + "probability": 0.9865 + }, + { + "start": 12889.76, + "end": 12890.3, + "probability": 0.9827 + }, + { + "start": 12893.0, + "end": 12895.18, + "probability": 0.5523 + }, + { + "start": 12895.84, + "end": 12897.68, + "probability": 0.9854 + }, + { + "start": 12897.8, + "end": 12898.52, + "probability": 0.7387 + }, + { + "start": 12898.56, + "end": 12900.0, + "probability": 0.8661 + }, + { + "start": 12901.08, + "end": 12901.92, + "probability": 0.7103 + }, + { + "start": 12902.6, + "end": 12905.28, + "probability": 0.8978 + }, + { + "start": 12906.44, + "end": 12907.96, + "probability": 0.981 + }, + { + "start": 12908.9, + "end": 12911.42, + "probability": 0.982 + }, + { + "start": 12912.14, + "end": 12912.5, + "probability": 0.8536 + }, + { + "start": 12912.6, + "end": 12918.62, + "probability": 0.9172 + }, + { + "start": 12919.66, + "end": 12923.24, + "probability": 0.8848 + }, + { + "start": 12923.94, + "end": 12927.1, + "probability": 0.9258 + }, + { + "start": 12928.4, + "end": 12929.74, + "probability": 0.6263 + }, + { + "start": 12930.82, + "end": 12931.96, + "probability": 0.6824 + }, + { + "start": 12932.02, + "end": 12932.94, + "probability": 0.9793 + }, + { + "start": 12933.02, + "end": 12933.96, + "probability": 0.9834 + }, + { + "start": 12934.62, + "end": 12935.58, + "probability": 0.5843 + }, + { + "start": 12935.72, + "end": 12936.36, + "probability": 0.7487 + }, + { + "start": 12937.54, + "end": 12939.29, + "probability": 0.7039 + }, + { + "start": 12940.58, + "end": 12942.62, + "probability": 0.9804 + }, + { + "start": 12943.4, + "end": 12950.02, + "probability": 0.9126 + }, + { + "start": 12950.02, + "end": 12953.06, + "probability": 0.958 + }, + { + "start": 12953.36, + "end": 12956.14, + "probability": 0.7385 + }, + { + "start": 12956.46, + "end": 12957.92, + "probability": 0.2942 + }, + { + "start": 12958.04, + "end": 12959.04, + "probability": 0.8475 + }, + { + "start": 12959.2, + "end": 12959.9, + "probability": 0.594 + }, + { + "start": 12960.14, + "end": 12960.48, + "probability": 0.6175 + }, + { + "start": 12961.54, + "end": 12964.58, + "probability": 0.877 + }, + { + "start": 12965.6, + "end": 12966.52, + "probability": 0.9386 + }, + { + "start": 12968.04, + "end": 12971.2, + "probability": 0.8999 + }, + { + "start": 12971.3, + "end": 12977.22, + "probability": 0.819 + }, + { + "start": 12977.82, + "end": 12979.12, + "probability": 0.871 + }, + { + "start": 12979.16, + "end": 12984.34, + "probability": 0.9812 + }, + { + "start": 12986.38, + "end": 12987.34, + "probability": 0.6447 + }, + { + "start": 12988.88, + "end": 12991.12, + "probability": 0.9692 + }, + { + "start": 12991.22, + "end": 12993.12, + "probability": 0.9978 + }, + { + "start": 12994.2, + "end": 12996.14, + "probability": 0.8186 + }, + { + "start": 12997.18, + "end": 13001.26, + "probability": 0.9477 + }, + { + "start": 13001.78, + "end": 13008.48, + "probability": 0.9722 + }, + { + "start": 13010.56, + "end": 13015.0, + "probability": 0.7736 + }, + { + "start": 13015.26, + "end": 13017.16, + "probability": 0.9922 + }, + { + "start": 13017.62, + "end": 13019.1, + "probability": 0.9915 + }, + { + "start": 13021.12, + "end": 13022.66, + "probability": 0.8438 + }, + { + "start": 13023.5, + "end": 13024.66, + "probability": 0.9751 + }, + { + "start": 13025.04, + "end": 13032.58, + "probability": 0.9093 + }, + { + "start": 13033.16, + "end": 13033.86, + "probability": 0.4444 + }, + { + "start": 13035.3, + "end": 13036.5, + "probability": 0.7933 + }, + { + "start": 13036.76, + "end": 13039.92, + "probability": 0.9644 + }, + { + "start": 13041.3, + "end": 13044.86, + "probability": 0.3318 + }, + { + "start": 13045.66, + "end": 13048.46, + "probability": 0.9254 + }, + { + "start": 13050.38, + "end": 13054.1, + "probability": 0.9863 + }, + { + "start": 13055.52, + "end": 13058.3, + "probability": 0.9384 + }, + { + "start": 13059.1, + "end": 13060.44, + "probability": 0.9729 + }, + { + "start": 13061.4, + "end": 13065.02, + "probability": 0.5739 + }, + { + "start": 13069.46, + "end": 13075.0, + "probability": 0.9875 + }, + { + "start": 13075.1, + "end": 13077.53, + "probability": 0.9038 + }, + { + "start": 13077.88, + "end": 13079.82, + "probability": 0.9652 + }, + { + "start": 13080.46, + "end": 13082.7, + "probability": 0.8246 + }, + { + "start": 13084.8, + "end": 13087.82, + "probability": 0.717 + }, + { + "start": 13088.36, + "end": 13090.35, + "probability": 0.7473 + }, + { + "start": 13092.88, + "end": 13093.42, + "probability": 0.5764 + }, + { + "start": 13094.24, + "end": 13094.66, + "probability": 0.284 + }, + { + "start": 13096.36, + "end": 13097.72, + "probability": 0.6521 + }, + { + "start": 13100.94, + "end": 13102.32, + "probability": 0.912 + }, + { + "start": 13102.92, + "end": 13105.44, + "probability": 0.613 + }, + { + "start": 13106.06, + "end": 13107.56, + "probability": 0.5127 + }, + { + "start": 13108.06, + "end": 13113.7, + "probability": 0.9917 + }, + { + "start": 13113.7, + "end": 13116.2, + "probability": 0.9908 + }, + { + "start": 13117.8, + "end": 13121.4, + "probability": 0.983 + }, + { + "start": 13122.16, + "end": 13123.34, + "probability": 0.8485 + }, + { + "start": 13125.5, + "end": 13127.48, + "probability": 0.9041 + }, + { + "start": 13129.04, + "end": 13132.98, + "probability": 0.896 + }, + { + "start": 13134.72, + "end": 13135.82, + "probability": 0.9337 + }, + { + "start": 13136.3, + "end": 13137.2, + "probability": 0.5205 + }, + { + "start": 13137.26, + "end": 13138.0, + "probability": 0.7304 + }, + { + "start": 13138.06, + "end": 13139.3, + "probability": 0.9771 + }, + { + "start": 13139.38, + "end": 13140.78, + "probability": 0.8825 + }, + { + "start": 13141.6, + "end": 13142.5, + "probability": 0.9644 + }, + { + "start": 13143.1, + "end": 13145.5, + "probability": 0.7493 + }, + { + "start": 13149.6, + "end": 13150.04, + "probability": 0.543 + }, + { + "start": 13150.62, + "end": 13154.28, + "probability": 0.9901 + }, + { + "start": 13154.44, + "end": 13156.23, + "probability": 0.9917 + }, + { + "start": 13158.26, + "end": 13158.96, + "probability": 0.8042 + }, + { + "start": 13159.86, + "end": 13163.52, + "probability": 0.8661 + }, + { + "start": 13164.1, + "end": 13168.12, + "probability": 0.8804 + }, + { + "start": 13168.48, + "end": 13168.54, + "probability": 0.4364 + }, + { + "start": 13168.54, + "end": 13169.48, + "probability": 0.6805 + }, + { + "start": 13169.78, + "end": 13169.86, + "probability": 0.4165 + }, + { + "start": 13169.96, + "end": 13171.26, + "probability": 0.8632 + }, + { + "start": 13173.12, + "end": 13174.22, + "probability": 0.5213 + }, + { + "start": 13174.3, + "end": 13176.98, + "probability": 0.7841 + }, + { + "start": 13178.94, + "end": 13179.82, + "probability": 0.7654 + }, + { + "start": 13180.74, + "end": 13183.04, + "probability": 0.9061 + }, + { + "start": 13184.0, + "end": 13184.58, + "probability": 0.7081 + }, + { + "start": 13185.26, + "end": 13185.6, + "probability": 0.6054 + }, + { + "start": 13185.72, + "end": 13190.08, + "probability": 0.9512 + }, + { + "start": 13190.28, + "end": 13191.48, + "probability": 0.9857 + }, + { + "start": 13192.2, + "end": 13192.9, + "probability": 0.8793 + }, + { + "start": 13194.72, + "end": 13195.32, + "probability": 0.957 + }, + { + "start": 13196.28, + "end": 13197.52, + "probability": 0.9863 + }, + { + "start": 13199.18, + "end": 13200.27, + "probability": 0.9863 + }, + { + "start": 13201.14, + "end": 13202.92, + "probability": 0.993 + }, + { + "start": 13203.58, + "end": 13204.88, + "probability": 0.991 + }, + { + "start": 13205.1, + "end": 13205.22, + "probability": 0.656 + }, + { + "start": 13205.3, + "end": 13206.22, + "probability": 0.6596 + }, + { + "start": 13206.52, + "end": 13208.82, + "probability": 0.9197 + }, + { + "start": 13209.08, + "end": 13210.04, + "probability": 0.0156 + }, + { + "start": 13210.93, + "end": 13214.68, + "probability": 0.7199 + }, + { + "start": 13214.78, + "end": 13217.72, + "probability": 0.9927 + }, + { + "start": 13217.8, + "end": 13218.78, + "probability": 0.7904 + }, + { + "start": 13219.1, + "end": 13221.4, + "probability": 0.9152 + }, + { + "start": 13221.46, + "end": 13222.07, + "probability": 0.8231 + }, + { + "start": 13223.2, + "end": 13227.0, + "probability": 0.9601 + }, + { + "start": 13227.26, + "end": 13228.34, + "probability": 0.9902 + }, + { + "start": 13228.66, + "end": 13229.92, + "probability": 0.9719 + }, + { + "start": 13230.24, + "end": 13232.8, + "probability": 0.9567 + }, + { + "start": 13233.16, + "end": 13234.9, + "probability": 0.9405 + }, + { + "start": 13235.02, + "end": 13236.78, + "probability": 0.8032 + }, + { + "start": 13237.32, + "end": 13238.76, + "probability": 0.5469 + }, + { + "start": 13239.32, + "end": 13242.14, + "probability": 0.9762 + }, + { + "start": 13242.66, + "end": 13243.6, + "probability": 0.8988 + }, + { + "start": 13243.82, + "end": 13246.14, + "probability": 0.8887 + }, + { + "start": 13246.48, + "end": 13248.56, + "probability": 0.712 + }, + { + "start": 13248.66, + "end": 13248.94, + "probability": 0.9137 + }, + { + "start": 13249.68, + "end": 13255.64, + "probability": 0.9837 + }, + { + "start": 13256.38, + "end": 13261.78, + "probability": 0.7826 + }, + { + "start": 13262.1, + "end": 13262.42, + "probability": 0.0715 + }, + { + "start": 13262.58, + "end": 13264.12, + "probability": 0.6166 + }, + { + "start": 13264.12, + "end": 13264.68, + "probability": 0.7697 + }, + { + "start": 13264.78, + "end": 13270.2, + "probability": 0.9504 + }, + { + "start": 13270.74, + "end": 13270.88, + "probability": 0.0439 + }, + { + "start": 13270.96, + "end": 13271.08, + "probability": 0.4401 + }, + { + "start": 13271.08, + "end": 13276.46, + "probability": 0.9564 + }, + { + "start": 13277.22, + "end": 13279.5, + "probability": 0.9207 + }, + { + "start": 13280.4, + "end": 13282.46, + "probability": 0.9414 + }, + { + "start": 13282.54, + "end": 13283.62, + "probability": 0.8007 + }, + { + "start": 13283.78, + "end": 13284.9, + "probability": 0.3553 + }, + { + "start": 13285.43, + "end": 13288.06, + "probability": 0.7306 + }, + { + "start": 13302.08, + "end": 13304.92, + "probability": 0.7387 + }, + { + "start": 13307.56, + "end": 13309.94, + "probability": 0.8386 + }, + { + "start": 13310.08, + "end": 13311.68, + "probability": 0.8803 + }, + { + "start": 13312.42, + "end": 13313.14, + "probability": 0.0247 + }, + { + "start": 13313.5, + "end": 13314.9, + "probability": 0.83 + }, + { + "start": 13315.24, + "end": 13318.9, + "probability": 0.5083 + }, + { + "start": 13319.42, + "end": 13322.52, + "probability": 0.4179 + }, + { + "start": 13322.82, + "end": 13324.28, + "probability": 0.4776 + }, + { + "start": 13326.14, + "end": 13327.49, + "probability": 0.7861 + }, + { + "start": 13328.66, + "end": 13330.42, + "probability": 0.9861 + }, + { + "start": 13330.42, + "end": 13331.76, + "probability": 0.8435 + }, + { + "start": 13333.55, + "end": 13337.52, + "probability": 0.9299 + }, + { + "start": 13338.3, + "end": 13342.98, + "probability": 0.9917 + }, + { + "start": 13345.0, + "end": 13349.16, + "probability": 0.9559 + }, + { + "start": 13349.16, + "end": 13354.8, + "probability": 0.9985 + }, + { + "start": 13355.98, + "end": 13357.28, + "probability": 0.9983 + }, + { + "start": 13357.94, + "end": 13358.87, + "probability": 0.9849 + }, + { + "start": 13360.42, + "end": 13363.06, + "probability": 0.8321 + }, + { + "start": 13363.68, + "end": 13365.94, + "probability": 0.9956 + }, + { + "start": 13366.6, + "end": 13368.46, + "probability": 0.9589 + }, + { + "start": 13368.56, + "end": 13371.66, + "probability": 0.9872 + }, + { + "start": 13372.46, + "end": 13373.52, + "probability": 0.8345 + }, + { + "start": 13374.1, + "end": 13376.88, + "probability": 0.9313 + }, + { + "start": 13377.08, + "end": 13381.32, + "probability": 0.9634 + }, + { + "start": 13381.4, + "end": 13385.6, + "probability": 0.9814 + }, + { + "start": 13386.12, + "end": 13389.55, + "probability": 0.9912 + }, + { + "start": 13391.08, + "end": 13393.13, + "probability": 0.9863 + }, + { + "start": 13394.98, + "end": 13401.41, + "probability": 0.9946 + }, + { + "start": 13401.56, + "end": 13406.76, + "probability": 0.9978 + }, + { + "start": 13406.98, + "end": 13411.04, + "probability": 0.7751 + }, + { + "start": 13411.24, + "end": 13413.4, + "probability": 0.8621 + }, + { + "start": 13413.52, + "end": 13414.14, + "probability": 0.6137 + }, + { + "start": 13414.26, + "end": 13417.24, + "probability": 0.8796 + }, + { + "start": 13417.78, + "end": 13423.3, + "probability": 0.9943 + }, + { + "start": 13423.82, + "end": 13425.9, + "probability": 0.9954 + }, + { + "start": 13426.0, + "end": 13430.24, + "probability": 0.984 + }, + { + "start": 13430.9, + "end": 13434.7, + "probability": 0.9929 + }, + { + "start": 13434.7, + "end": 13441.9, + "probability": 0.9779 + }, + { + "start": 13442.42, + "end": 13443.32, + "probability": 0.8389 + }, + { + "start": 13443.44, + "end": 13446.14, + "probability": 0.7929 + }, + { + "start": 13446.44, + "end": 13449.22, + "probability": 0.8187 + }, + { + "start": 13449.3, + "end": 13450.88, + "probability": 0.6849 + }, + { + "start": 13451.42, + "end": 13454.22, + "probability": 0.9437 + }, + { + "start": 13454.74, + "end": 13457.52, + "probability": 0.8494 + }, + { + "start": 13458.42, + "end": 13460.04, + "probability": 0.7857 + }, + { + "start": 13460.22, + "end": 13464.94, + "probability": 0.9827 + }, + { + "start": 13465.62, + "end": 13468.78, + "probability": 0.9652 + }, + { + "start": 13469.18, + "end": 13469.74, + "probability": 0.6818 + }, + { + "start": 13469.9, + "end": 13470.68, + "probability": 0.9558 + }, + { + "start": 13470.88, + "end": 13472.46, + "probability": 0.9692 + }, + { + "start": 13472.84, + "end": 13473.34, + "probability": 0.2122 + }, + { + "start": 13473.46, + "end": 13473.96, + "probability": 0.8295 + }, + { + "start": 13474.1, + "end": 13477.86, + "probability": 0.5419 + }, + { + "start": 13477.86, + "end": 13482.85, + "probability": 0.7764 + }, + { + "start": 13483.6, + "end": 13484.83, + "probability": 0.7262 + }, + { + "start": 13485.04, + "end": 13487.28, + "probability": 0.5223 + }, + { + "start": 13487.38, + "end": 13488.32, + "probability": 0.7301 + }, + { + "start": 13488.74, + "end": 13489.88, + "probability": 0.4276 + }, + { + "start": 13490.34, + "end": 13491.26, + "probability": 0.5147 + }, + { + "start": 13491.42, + "end": 13493.1, + "probability": 0.9424 + }, + { + "start": 13493.26, + "end": 13496.8, + "probability": 0.8354 + }, + { + "start": 13497.12, + "end": 13502.74, + "probability": 0.9817 + }, + { + "start": 13504.0, + "end": 13507.78, + "probability": 0.9941 + }, + { + "start": 13507.94, + "end": 13509.22, + "probability": 0.9133 + }, + { + "start": 13509.4, + "end": 13512.44, + "probability": 0.9771 + }, + { + "start": 13513.22, + "end": 13514.3, + "probability": 0.8973 + }, + { + "start": 13514.36, + "end": 13516.98, + "probability": 0.9907 + }, + { + "start": 13517.22, + "end": 13519.24, + "probability": 0.9487 + }, + { + "start": 13519.52, + "end": 13520.78, + "probability": 0.9608 + }, + { + "start": 13521.38, + "end": 13523.1, + "probability": 0.9668 + }, + { + "start": 13523.62, + "end": 13527.08, + "probability": 0.8611 + }, + { + "start": 13527.62, + "end": 13534.16, + "probability": 0.9951 + }, + { + "start": 13534.34, + "end": 13536.18, + "probability": 0.7447 + }, + { + "start": 13536.76, + "end": 13539.36, + "probability": 0.857 + }, + { + "start": 13539.92, + "end": 13546.68, + "probability": 0.8026 + }, + { + "start": 13546.68, + "end": 13552.54, + "probability": 0.9679 + }, + { + "start": 13552.76, + "end": 13553.08, + "probability": 0.6635 + }, + { + "start": 13553.22, + "end": 13555.14, + "probability": 0.9832 + }, + { + "start": 13555.16, + "end": 13555.48, + "probability": 0.8388 + }, + { + "start": 13555.58, + "end": 13564.2, + "probability": 0.9731 + }, + { + "start": 13564.3, + "end": 13565.26, + "probability": 0.6617 + }, + { + "start": 13565.28, + "end": 13566.18, + "probability": 0.8804 + }, + { + "start": 13566.78, + "end": 13571.08, + "probability": 0.1239 + }, + { + "start": 13571.66, + "end": 13572.34, + "probability": 0.5817 + }, + { + "start": 13573.24, + "end": 13575.88, + "probability": 0.9976 + }, + { + "start": 13576.52, + "end": 13580.76, + "probability": 0.6332 + }, + { + "start": 13581.46, + "end": 13586.1, + "probability": 0.9962 + }, + { + "start": 13586.14, + "end": 13588.98, + "probability": 0.9454 + }, + { + "start": 13589.42, + "end": 13589.84, + "probability": 0.985 + }, + { + "start": 13590.56, + "end": 13592.9, + "probability": 0.6945 + }, + { + "start": 13593.06, + "end": 13594.22, + "probability": 0.8003 + }, + { + "start": 13594.46, + "end": 13597.22, + "probability": 0.9152 + }, + { + "start": 13597.32, + "end": 13600.96, + "probability": 0.9943 + }, + { + "start": 13602.54, + "end": 13603.68, + "probability": 0.1621 + }, + { + "start": 13605.3, + "end": 13610.84, + "probability": 0.9714 + }, + { + "start": 13611.08, + "end": 13617.64, + "probability": 0.8501 + }, + { + "start": 13617.8, + "end": 13619.98, + "probability": 0.9362 + }, + { + "start": 13620.12, + "end": 13621.62, + "probability": 0.7371 + }, + { + "start": 13622.1, + "end": 13625.2, + "probability": 0.994 + }, + { + "start": 13625.82, + "end": 13628.9, + "probability": 0.9952 + }, + { + "start": 13629.0, + "end": 13632.96, + "probability": 0.9968 + }, + { + "start": 13633.08, + "end": 13635.06, + "probability": 0.949 + }, + { + "start": 13635.18, + "end": 13636.56, + "probability": 0.8832 + }, + { + "start": 13636.92, + "end": 13637.72, + "probability": 0.8484 + }, + { + "start": 13637.76, + "end": 13640.98, + "probability": 0.9729 + }, + { + "start": 13640.98, + "end": 13645.78, + "probability": 0.9971 + }, + { + "start": 13645.94, + "end": 13649.0, + "probability": 0.9907 + }, + { + "start": 13649.42, + "end": 13650.6, + "probability": 0.7322 + }, + { + "start": 13650.66, + "end": 13654.28, + "probability": 0.95 + }, + { + "start": 13654.74, + "end": 13660.23, + "probability": 0.9987 + }, + { + "start": 13660.86, + "end": 13662.54, + "probability": 0.9492 + }, + { + "start": 13663.36, + "end": 13664.9, + "probability": 0.9941 + }, + { + "start": 13665.04, + "end": 13665.38, + "probability": 0.7275 + }, + { + "start": 13665.4, + "end": 13667.96, + "probability": 0.7716 + }, + { + "start": 13668.12, + "end": 13669.88, + "probability": 0.9833 + }, + { + "start": 13669.96, + "end": 13674.52, + "probability": 0.9428 + }, + { + "start": 13674.92, + "end": 13675.46, + "probability": 0.929 + }, + { + "start": 13676.52, + "end": 13677.65, + "probability": 0.0665 + }, + { + "start": 13678.24, + "end": 13679.04, + "probability": 0.9629 + }, + { + "start": 13679.14, + "end": 13680.32, + "probability": 0.7808 + }, + { + "start": 13680.44, + "end": 13685.38, + "probability": 0.9882 + }, + { + "start": 13685.38, + "end": 13689.76, + "probability": 0.9971 + }, + { + "start": 13690.3, + "end": 13694.04, + "probability": 0.9978 + }, + { + "start": 13694.48, + "end": 13700.62, + "probability": 0.9956 + }, + { + "start": 13700.66, + "end": 13705.3, + "probability": 0.9913 + }, + { + "start": 13705.72, + "end": 13711.54, + "probability": 0.9938 + }, + { + "start": 13712.12, + "end": 13713.68, + "probability": 0.5037 + }, + { + "start": 13713.9, + "end": 13714.87, + "probability": 0.6296 + }, + { + "start": 13715.24, + "end": 13718.64, + "probability": 0.9643 + }, + { + "start": 13718.64, + "end": 13724.76, + "probability": 0.9979 + }, + { + "start": 13724.78, + "end": 13724.9, + "probability": 0.1598 + }, + { + "start": 13725.06, + "end": 13728.44, + "probability": 0.9963 + }, + { + "start": 13728.58, + "end": 13734.1, + "probability": 0.9985 + }, + { + "start": 13734.56, + "end": 13739.7, + "probability": 0.9948 + }, + { + "start": 13740.28, + "end": 13744.68, + "probability": 0.989 + }, + { + "start": 13745.16, + "end": 13746.1, + "probability": 0.8188 + }, + { + "start": 13746.44, + "end": 13748.82, + "probability": 0.8016 + }, + { + "start": 13749.76, + "end": 13750.6, + "probability": 0.6247 + }, + { + "start": 13750.88, + "end": 13753.24, + "probability": 0.9775 + }, + { + "start": 13753.32, + "end": 13755.83, + "probability": 0.998 + }, + { + "start": 13755.9, + "end": 13760.32, + "probability": 0.9978 + }, + { + "start": 13760.86, + "end": 13763.62, + "probability": 0.732 + }, + { + "start": 13763.84, + "end": 13765.36, + "probability": 0.9818 + }, + { + "start": 13770.94, + "end": 13772.86, + "probability": 0.1809 + }, + { + "start": 13777.62, + "end": 13779.2, + "probability": 0.0017 + }, + { + "start": 13782.06, + "end": 13783.98, + "probability": 0.9966 + }, + { + "start": 13784.66, + "end": 13786.62, + "probability": 0.9984 + }, + { + "start": 13787.14, + "end": 13791.06, + "probability": 0.9941 + }, + { + "start": 13791.72, + "end": 13792.44, + "probability": 0.43 + }, + { + "start": 13792.5, + "end": 13794.38, + "probability": 0.8718 + }, + { + "start": 13794.62, + "end": 13794.82, + "probability": 0.9105 + }, + { + "start": 13794.94, + "end": 13798.02, + "probability": 0.9873 + }, + { + "start": 13798.38, + "end": 13805.76, + "probability": 0.9952 + }, + { + "start": 13806.48, + "end": 13809.58, + "probability": 0.8308 + }, + { + "start": 13809.7, + "end": 13810.66, + "probability": 0.5649 + }, + { + "start": 13810.9, + "end": 13815.74, + "probability": 0.9801 + }, + { + "start": 13816.3, + "end": 13818.7, + "probability": 0.9648 + }, + { + "start": 13819.42, + "end": 13824.0, + "probability": 0.9909 + }, + { + "start": 13824.09, + "end": 13833.28, + "probability": 0.9914 + }, + { + "start": 13833.9, + "end": 13834.32, + "probability": 0.5215 + }, + { + "start": 13835.26, + "end": 13842.5, + "probability": 0.9976 + }, + { + "start": 13842.5, + "end": 13848.16, + "probability": 0.9233 + }, + { + "start": 13848.16, + "end": 13853.16, + "probability": 0.9979 + }, + { + "start": 13853.22, + "end": 13853.34, + "probability": 0.2798 + }, + { + "start": 13853.46, + "end": 13858.06, + "probability": 0.9944 + }, + { + "start": 13858.06, + "end": 13861.38, + "probability": 0.9985 + }, + { + "start": 13862.92, + "end": 13865.58, + "probability": 0.9897 + }, + { + "start": 13865.7, + "end": 13867.98, + "probability": 0.9632 + }, + { + "start": 13868.42, + "end": 13869.86, + "probability": 0.8703 + }, + { + "start": 13870.42, + "end": 13871.18, + "probability": 0.476 + }, + { + "start": 13871.26, + "end": 13871.86, + "probability": 0.9229 + }, + { + "start": 13872.1, + "end": 13875.0, + "probability": 0.9975 + }, + { + "start": 13875.6, + "end": 13879.66, + "probability": 0.8619 + }, + { + "start": 13879.9, + "end": 13880.46, + "probability": 0.4243 + }, + { + "start": 13881.06, + "end": 13883.51, + "probability": 0.9919 + }, + { + "start": 13884.08, + "end": 13884.92, + "probability": 0.8606 + }, + { + "start": 13885.0, + "end": 13892.43, + "probability": 0.9923 + }, + { + "start": 13892.52, + "end": 13894.08, + "probability": 0.8654 + }, + { + "start": 13894.92, + "end": 13898.3, + "probability": 0.9937 + }, + { + "start": 13898.3, + "end": 13902.44, + "probability": 0.8407 + }, + { + "start": 13902.54, + "end": 13903.06, + "probability": 0.3985 + }, + { + "start": 13903.16, + "end": 13905.3, + "probability": 0.7508 + }, + { + "start": 13905.44, + "end": 13905.72, + "probability": 0.74 + }, + { + "start": 13906.28, + "end": 13906.86, + "probability": 0.6738 + }, + { + "start": 13906.98, + "end": 13909.6, + "probability": 0.8628 + }, + { + "start": 13910.72, + "end": 13911.22, + "probability": 0.7088 + }, + { + "start": 13912.82, + "end": 13913.06, + "probability": 0.4307 + }, + { + "start": 13914.71, + "end": 13916.0, + "probability": 0.6851 + }, + { + "start": 13917.36, + "end": 13920.94, + "probability": 0.9944 + }, + { + "start": 13921.56, + "end": 13922.14, + "probability": 0.5412 + }, + { + "start": 13923.14, + "end": 13923.14, + "probability": 0.3616 + }, + { + "start": 13942.75, + "end": 13944.39, + "probability": 0.01 + }, + { + "start": 13945.65, + "end": 13947.96, + "probability": 0.0274 + }, + { + "start": 13952.22, + "end": 13952.36, + "probability": 0.0315 + }, + { + "start": 13952.36, + "end": 13954.76, + "probability": 0.2383 + }, + { + "start": 13956.24, + "end": 13956.24, + "probability": 0.3598 + }, + { + "start": 13957.14, + "end": 13957.2, + "probability": 0.0415 + }, + { + "start": 13957.2, + "end": 13957.26, + "probability": 0.2264 + }, + { + "start": 13957.26, + "end": 13957.26, + "probability": 0.0083 + }, + { + "start": 13957.26, + "end": 13957.98, + "probability": 0.0807 + }, + { + "start": 13957.98, + "end": 13959.38, + "probability": 0.0575 + }, + { + "start": 13959.5, + "end": 13961.7, + "probability": 0.8405 + }, + { + "start": 13962.46, + "end": 13966.38, + "probability": 0.613 + }, + { + "start": 13967.2, + "end": 13970.18, + "probability": 0.973 + }, + { + "start": 13970.88, + "end": 13971.96, + "probability": 0.814 + }, + { + "start": 13975.4, + "end": 13977.82, + "probability": 0.6047 + }, + { + "start": 13979.54, + "end": 13987.04, + "probability": 0.9977 + }, + { + "start": 13987.04, + "end": 13995.52, + "probability": 0.999 + }, + { + "start": 13996.0, + "end": 13997.7, + "probability": 0.9845 + }, + { + "start": 13998.2, + "end": 13998.99, + "probability": 0.9596 + }, + { + "start": 13999.76, + "end": 14006.7, + "probability": 0.9811 + }, + { + "start": 14007.98, + "end": 14013.98, + "probability": 0.991 + }, + { + "start": 14014.58, + "end": 14016.6, + "probability": 0.9232 + }, + { + "start": 14017.08, + "end": 14021.7, + "probability": 0.9792 + }, + { + "start": 14022.6, + "end": 14022.84, + "probability": 0.8434 + }, + { + "start": 14022.94, + "end": 14026.98, + "probability": 0.9971 + }, + { + "start": 14027.62, + "end": 14028.68, + "probability": 0.9377 + }, + { + "start": 14029.24, + "end": 14033.54, + "probability": 0.9906 + }, + { + "start": 14034.12, + "end": 14037.64, + "probability": 0.9574 + }, + { + "start": 14038.12, + "end": 14039.06, + "probability": 0.8641 + }, + { + "start": 14039.12, + "end": 14040.34, + "probability": 0.9003 + }, + { + "start": 14041.0, + "end": 14044.96, + "probability": 0.983 + }, + { + "start": 14044.96, + "end": 14049.1, + "probability": 0.9948 + }, + { + "start": 14050.02, + "end": 14051.1, + "probability": 0.973 + }, + { + "start": 14051.28, + "end": 14054.2, + "probability": 0.8128 + }, + { + "start": 14054.56, + "end": 14055.42, + "probability": 0.7805 + }, + { + "start": 14056.04, + "end": 14059.88, + "probability": 0.9971 + }, + { + "start": 14060.8, + "end": 14064.66, + "probability": 0.9441 + }, + { + "start": 14064.66, + "end": 14068.22, + "probability": 0.9846 + }, + { + "start": 14069.1, + "end": 14070.6, + "probability": 0.7548 + }, + { + "start": 14070.84, + "end": 14071.78, + "probability": 0.9119 + }, + { + "start": 14071.86, + "end": 14076.66, + "probability": 0.9851 + }, + { + "start": 14077.24, + "end": 14081.28, + "probability": 0.995 + }, + { + "start": 14081.66, + "end": 14082.8, + "probability": 0.803 + }, + { + "start": 14083.44, + "end": 14084.44, + "probability": 0.9721 + }, + { + "start": 14085.24, + "end": 14085.56, + "probability": 0.4115 + }, + { + "start": 14085.62, + "end": 14086.14, + "probability": 0.9174 + }, + { + "start": 14086.2, + "end": 14086.82, + "probability": 0.6717 + }, + { + "start": 14087.12, + "end": 14088.06, + "probability": 0.8423 + }, + { + "start": 14088.24, + "end": 14089.48, + "probability": 0.9863 + }, + { + "start": 14089.54, + "end": 14091.48, + "probability": 0.8964 + }, + { + "start": 14091.96, + "end": 14099.24, + "probability": 0.966 + }, + { + "start": 14099.74, + "end": 14102.8, + "probability": 0.9662 + }, + { + "start": 14102.9, + "end": 14104.16, + "probability": 0.7435 + }, + { + "start": 14104.72, + "end": 14104.9, + "probability": 0.6194 + }, + { + "start": 14105.06, + "end": 14105.16, + "probability": 0.9062 + }, + { + "start": 14105.32, + "end": 14107.22, + "probability": 0.951 + }, + { + "start": 14107.32, + "end": 14108.4, + "probability": 0.982 + }, + { + "start": 14109.73, + "end": 14113.38, + "probability": 0.9761 + }, + { + "start": 14113.44, + "end": 14115.32, + "probability": 0.9861 + }, + { + "start": 14115.76, + "end": 14117.94, + "probability": 0.8829 + }, + { + "start": 14118.48, + "end": 14119.3, + "probability": 0.4977 + }, + { + "start": 14119.44, + "end": 14122.32, + "probability": 0.9878 + }, + { + "start": 14122.68, + "end": 14123.37, + "probability": 0.9941 + }, + { + "start": 14123.68, + "end": 14124.92, + "probability": 0.9941 + }, + { + "start": 14125.1, + "end": 14125.75, + "probability": 0.9927 + }, + { + "start": 14126.4, + "end": 14127.0, + "probability": 0.9951 + }, + { + "start": 14127.84, + "end": 14129.26, + "probability": 0.8566 + }, + { + "start": 14129.8, + "end": 14131.08, + "probability": 0.9007 + }, + { + "start": 14132.17, + "end": 14137.22, + "probability": 0.9863 + }, + { + "start": 14137.84, + "end": 14138.42, + "probability": 0.8672 + }, + { + "start": 14138.46, + "end": 14140.58, + "probability": 0.9928 + }, + { + "start": 14140.64, + "end": 14142.92, + "probability": 0.9989 + }, + { + "start": 14143.98, + "end": 14150.08, + "probability": 0.999 + }, + { + "start": 14150.08, + "end": 14154.6, + "probability": 0.999 + }, + { + "start": 14155.32, + "end": 14158.36, + "probability": 0.9983 + }, + { + "start": 14158.36, + "end": 14161.06, + "probability": 0.9991 + }, + { + "start": 14161.9, + "end": 14162.28, + "probability": 0.7653 + }, + { + "start": 14162.42, + "end": 14166.26, + "probability": 0.7413 + }, + { + "start": 14166.42, + "end": 14167.58, + "probability": 0.9403 + }, + { + "start": 14168.08, + "end": 14172.64, + "probability": 0.9734 + }, + { + "start": 14174.88, + "end": 14175.5, + "probability": 0.9762 + }, + { + "start": 14175.78, + "end": 14176.0, + "probability": 0.5593 + }, + { + "start": 14176.04, + "end": 14178.46, + "probability": 0.9791 + }, + { + "start": 14178.86, + "end": 14179.7, + "probability": 0.8626 + }, + { + "start": 14179.92, + "end": 14180.62, + "probability": 0.7484 + }, + { + "start": 14180.76, + "end": 14181.64, + "probability": 0.8465 + }, + { + "start": 14182.12, + "end": 14184.44, + "probability": 0.9868 + }, + { + "start": 14185.18, + "end": 14186.94, + "probability": 0.6226 + }, + { + "start": 14187.0, + "end": 14187.52, + "probability": 0.7834 + }, + { + "start": 14187.64, + "end": 14188.58, + "probability": 0.9648 + }, + { + "start": 14188.94, + "end": 14190.5, + "probability": 0.9462 + }, + { + "start": 14190.9, + "end": 14193.54, + "probability": 0.989 + }, + { + "start": 14194.1, + "end": 14195.18, + "probability": 0.6306 + }, + { + "start": 14195.22, + "end": 14196.1, + "probability": 0.8877 + }, + { + "start": 14196.54, + "end": 14198.26, + "probability": 0.6697 + }, + { + "start": 14198.66, + "end": 14199.8, + "probability": 0.8804 + }, + { + "start": 14199.88, + "end": 14200.74, + "probability": 0.9642 + }, + { + "start": 14200.82, + "end": 14201.42, + "probability": 0.9412 + }, + { + "start": 14201.52, + "end": 14202.54, + "probability": 0.7099 + }, + { + "start": 14203.1, + "end": 14207.0, + "probability": 0.9932 + }, + { + "start": 14207.36, + "end": 14208.98, + "probability": 0.8882 + }, + { + "start": 14209.36, + "end": 14210.72, + "probability": 0.5582 + }, + { + "start": 14210.84, + "end": 14215.42, + "probability": 0.907 + }, + { + "start": 14216.26, + "end": 14221.36, + "probability": 0.9142 + }, + { + "start": 14221.66, + "end": 14223.36, + "probability": 0.9902 + }, + { + "start": 14224.08, + "end": 14228.44, + "probability": 0.978 + }, + { + "start": 14229.82, + "end": 14235.02, + "probability": 0.9846 + }, + { + "start": 14235.66, + "end": 14236.38, + "probability": 0.9779 + }, + { + "start": 14236.46, + "end": 14237.28, + "probability": 0.9826 + }, + { + "start": 14237.34, + "end": 14238.74, + "probability": 0.9481 + }, + { + "start": 14239.44, + "end": 14244.32, + "probability": 0.9989 + }, + { + "start": 14247.12, + "end": 14251.14, + "probability": 0.9618 + }, + { + "start": 14251.24, + "end": 14254.26, + "probability": 0.9102 + }, + { + "start": 14254.94, + "end": 14255.92, + "probability": 0.8687 + }, + { + "start": 14256.02, + "end": 14258.18, + "probability": 0.998 + }, + { + "start": 14259.1, + "end": 14260.8, + "probability": 0.8934 + }, + { + "start": 14261.44, + "end": 14262.62, + "probability": 0.8109 + }, + { + "start": 14262.8, + "end": 14264.92, + "probability": 0.9895 + }, + { + "start": 14264.96, + "end": 14265.74, + "probability": 0.9528 + }, + { + "start": 14266.26, + "end": 14267.08, + "probability": 0.9863 + }, + { + "start": 14268.72, + "end": 14269.76, + "probability": 0.9963 + }, + { + "start": 14270.9, + "end": 14275.48, + "probability": 0.9889 + }, + { + "start": 14275.52, + "end": 14277.68, + "probability": 0.986 + }, + { + "start": 14277.84, + "end": 14279.04, + "probability": 0.7929 + }, + { + "start": 14279.56, + "end": 14280.06, + "probability": 0.5793 + }, + { + "start": 14280.26, + "end": 14280.54, + "probability": 0.9893 + }, + { + "start": 14280.62, + "end": 14281.16, + "probability": 0.7616 + }, + { + "start": 14281.3, + "end": 14286.28, + "probability": 0.9875 + }, + { + "start": 14286.38, + "end": 14286.64, + "probability": 0.9752 + }, + { + "start": 14286.66, + "end": 14287.74, + "probability": 0.9209 + }, + { + "start": 14288.34, + "end": 14290.2, + "probability": 0.979 + }, + { + "start": 14290.26, + "end": 14290.28, + "probability": 0.1948 + }, + { + "start": 14290.28, + "end": 14294.36, + "probability": 0.8318 + }, + { + "start": 14295.08, + "end": 14298.0, + "probability": 0.9683 + }, + { + "start": 14298.84, + "end": 14300.54, + "probability": 0.8577 + }, + { + "start": 14301.34, + "end": 14304.66, + "probability": 0.9991 + }, + { + "start": 14304.76, + "end": 14306.26, + "probability": 0.9985 + }, + { + "start": 14306.62, + "end": 14310.52, + "probability": 0.9954 + }, + { + "start": 14311.82, + "end": 14312.38, + "probability": 0.4513 + }, + { + "start": 14312.9, + "end": 14316.14, + "probability": 0.9647 + }, + { + "start": 14316.34, + "end": 14319.12, + "probability": 0.1936 + }, + { + "start": 14319.12, + "end": 14320.22, + "probability": 0.4537 + }, + { + "start": 14320.34, + "end": 14322.68, + "probability": 0.995 + }, + { + "start": 14323.1, + "end": 14326.9, + "probability": 0.9934 + }, + { + "start": 14327.26, + "end": 14331.26, + "probability": 0.9834 + }, + { + "start": 14331.3, + "end": 14333.08, + "probability": 0.9563 + }, + { + "start": 14333.5, + "end": 14335.06, + "probability": 0.6037 + }, + { + "start": 14335.66, + "end": 14336.08, + "probability": 0.63 + }, + { + "start": 14336.24, + "end": 14338.26, + "probability": 0.9488 + }, + { + "start": 14338.64, + "end": 14341.82, + "probability": 0.9844 + }, + { + "start": 14342.04, + "end": 14344.92, + "probability": 0.9245 + }, + { + "start": 14345.5, + "end": 14347.4, + "probability": 0.9902 + }, + { + "start": 14347.98, + "end": 14349.9, + "probability": 0.9926 + }, + { + "start": 14350.36, + "end": 14354.64, + "probability": 0.968 + }, + { + "start": 14355.4, + "end": 14358.44, + "probability": 0.9839 + }, + { + "start": 14358.98, + "end": 14364.86, + "probability": 0.9556 + }, + { + "start": 14365.06, + "end": 14366.88, + "probability": 0.8678 + }, + { + "start": 14367.78, + "end": 14372.0, + "probability": 0.9972 + }, + { + "start": 14372.62, + "end": 14375.8, + "probability": 0.8434 + }, + { + "start": 14376.28, + "end": 14377.96, + "probability": 0.998 + }, + { + "start": 14378.66, + "end": 14379.66, + "probability": 0.9901 + }, + { + "start": 14380.52, + "end": 14383.56, + "probability": 0.9329 + }, + { + "start": 14383.7, + "end": 14384.64, + "probability": 0.9657 + }, + { + "start": 14385.12, + "end": 14388.0, + "probability": 0.8895 + }, + { + "start": 14388.36, + "end": 14389.24, + "probability": 0.8322 + }, + { + "start": 14389.5, + "end": 14390.74, + "probability": 0.9378 + }, + { + "start": 14391.08, + "end": 14393.38, + "probability": 0.9866 + }, + { + "start": 14394.1, + "end": 14396.68, + "probability": 0.8883 + }, + { + "start": 14396.72, + "end": 14397.92, + "probability": 0.9854 + }, + { + "start": 14398.28, + "end": 14402.7, + "probability": 0.9874 + }, + { + "start": 14403.28, + "end": 14404.02, + "probability": 0.9523 + }, + { + "start": 14404.08, + "end": 14405.26, + "probability": 0.9929 + }, + { + "start": 14405.38, + "end": 14408.86, + "probability": 0.9023 + }, + { + "start": 14409.08, + "end": 14409.88, + "probability": 0.8713 + }, + { + "start": 14409.96, + "end": 14411.38, + "probability": 0.9826 + }, + { + "start": 14411.7, + "end": 14414.26, + "probability": 0.9447 + }, + { + "start": 14414.78, + "end": 14416.68, + "probability": 0.9866 + }, + { + "start": 14417.2, + "end": 14421.32, + "probability": 0.9954 + }, + { + "start": 14421.42, + "end": 14422.66, + "probability": 0.9579 + }, + { + "start": 14422.92, + "end": 14426.2, + "probability": 0.9767 + }, + { + "start": 14427.04, + "end": 14427.34, + "probability": 0.7155 + }, + { + "start": 14428.06, + "end": 14430.1, + "probability": 0.9042 + }, + { + "start": 14430.16, + "end": 14433.18, + "probability": 0.8938 + }, + { + "start": 14438.4, + "end": 14440.76, + "probability": 0.7838 + }, + { + "start": 14442.08, + "end": 14443.32, + "probability": 0.8826 + }, + { + "start": 14447.08, + "end": 14448.38, + "probability": 0.1223 + }, + { + "start": 14448.66, + "end": 14448.98, + "probability": 0.5513 + }, + { + "start": 14449.08, + "end": 14450.0, + "probability": 0.8461 + }, + { + "start": 14450.96, + "end": 14451.38, + "probability": 0.1759 + }, + { + "start": 14452.02, + "end": 14452.6, + "probability": 0.7335 + }, + { + "start": 14453.18, + "end": 14456.92, + "probability": 0.764 + }, + { + "start": 14458.04, + "end": 14458.88, + "probability": 0.439 + }, + { + "start": 14459.46, + "end": 14463.7, + "probability": 0.9202 + }, + { + "start": 14463.7, + "end": 14470.7, + "probability": 0.8047 + }, + { + "start": 14470.92, + "end": 14474.66, + "probability": 0.97 + }, + { + "start": 14476.42, + "end": 14477.02, + "probability": 0.7978 + }, + { + "start": 14477.22, + "end": 14479.7, + "probability": 0.9698 + }, + { + "start": 14480.0, + "end": 14482.44, + "probability": 0.9588 + }, + { + "start": 14484.42, + "end": 14485.68, + "probability": 0.3454 + }, + { + "start": 14486.14, + "end": 14492.82, + "probability": 0.9837 + }, + { + "start": 14493.64, + "end": 14496.62, + "probability": 0.9676 + }, + { + "start": 14496.66, + "end": 14499.32, + "probability": 0.9307 + }, + { + "start": 14502.16, + "end": 14504.14, + "probability": 0.8501 + }, + { + "start": 14504.18, + "end": 14506.2, + "probability": 0.9495 + }, + { + "start": 14506.73, + "end": 14511.78, + "probability": 0.6177 + }, + { + "start": 14513.06, + "end": 14515.58, + "probability": 0.7019 + }, + { + "start": 14515.74, + "end": 14516.16, + "probability": 0.3644 + }, + { + "start": 14516.18, + "end": 14522.06, + "probability": 0.9745 + }, + { + "start": 14522.78, + "end": 14527.0, + "probability": 0.7169 + }, + { + "start": 14527.92, + "end": 14528.46, + "probability": 0.6969 + }, + { + "start": 14528.52, + "end": 14533.02, + "probability": 0.9811 + }, + { + "start": 14533.68, + "end": 14534.78, + "probability": 0.8604 + }, + { + "start": 14535.26, + "end": 14539.24, + "probability": 0.9941 + }, + { + "start": 14539.48, + "end": 14541.62, + "probability": 0.7161 + }, + { + "start": 14542.28, + "end": 14545.22, + "probability": 0.9856 + }, + { + "start": 14545.66, + "end": 14546.4, + "probability": 0.6206 + }, + { + "start": 14546.5, + "end": 14547.55, + "probability": 0.8271 + }, + { + "start": 14548.98, + "end": 14552.16, + "probability": 0.7988 + }, + { + "start": 14552.94, + "end": 14557.58, + "probability": 0.9122 + }, + { + "start": 14557.78, + "end": 14561.42, + "probability": 0.9932 + }, + { + "start": 14561.88, + "end": 14563.74, + "probability": 0.79 + }, + { + "start": 14564.22, + "end": 14568.1, + "probability": 0.9794 + }, + { + "start": 14568.74, + "end": 14572.52, + "probability": 0.9598 + }, + { + "start": 14573.18, + "end": 14578.12, + "probability": 0.9219 + }, + { + "start": 14578.36, + "end": 14580.04, + "probability": 0.9978 + }, + { + "start": 14580.08, + "end": 14580.72, + "probability": 0.9932 + }, + { + "start": 14583.3, + "end": 14586.32, + "probability": 0.7239 + }, + { + "start": 14586.58, + "end": 14587.88, + "probability": 0.6795 + }, + { + "start": 14588.54, + "end": 14590.38, + "probability": 0.7732 + }, + { + "start": 14590.68, + "end": 14592.1, + "probability": 0.5306 + }, + { + "start": 14592.82, + "end": 14596.64, + "probability": 0.8547 + }, + { + "start": 14597.5, + "end": 14598.3, + "probability": 0.577 + }, + { + "start": 14598.92, + "end": 14599.36, + "probability": 0.1543 + }, + { + "start": 14603.86, + "end": 14604.62, + "probability": 0.0348 + }, + { + "start": 14606.35, + "end": 14608.3, + "probability": 0.0185 + }, + { + "start": 14620.1, + "end": 14620.94, + "probability": 0.0728 + }, + { + "start": 14621.36, + "end": 14621.36, + "probability": 0.2836 + }, + { + "start": 14621.36, + "end": 14621.68, + "probability": 0.0584 + }, + { + "start": 14622.3, + "end": 14624.58, + "probability": 0.8296 + }, + { + "start": 14624.9, + "end": 14629.84, + "probability": 0.7712 + }, + { + "start": 14630.44, + "end": 14634.96, + "probability": 0.6755 + }, + { + "start": 14635.32, + "end": 14636.78, + "probability": 0.7292 + }, + { + "start": 14637.62, + "end": 14640.26, + "probability": 0.9498 + }, + { + "start": 14640.42, + "end": 14646.23, + "probability": 0.8961 + }, + { + "start": 14648.49, + "end": 14650.88, + "probability": 0.7371 + }, + { + "start": 14651.24, + "end": 14653.2, + "probability": 0.9783 + }, + { + "start": 14669.56, + "end": 14670.46, + "probability": 0.5057 + }, + { + "start": 14671.84, + "end": 14672.9, + "probability": 0.6777 + }, + { + "start": 14676.0, + "end": 14677.14, + "probability": 0.8828 + }, + { + "start": 14678.52, + "end": 14680.72, + "probability": 0.9857 + }, + { + "start": 14682.44, + "end": 14685.1, + "probability": 0.8716 + }, + { + "start": 14687.86, + "end": 14689.92, + "probability": 0.9702 + }, + { + "start": 14690.08, + "end": 14691.86, + "probability": 0.9839 + }, + { + "start": 14692.02, + "end": 14694.2, + "probability": 0.8148 + }, + { + "start": 14695.42, + "end": 14698.4, + "probability": 0.9227 + }, + { + "start": 14699.58, + "end": 14701.86, + "probability": 0.3464 + }, + { + "start": 14703.08, + "end": 14710.78, + "probability": 0.9711 + }, + { + "start": 14710.98, + "end": 14711.98, + "probability": 0.9083 + }, + { + "start": 14712.06, + "end": 14712.82, + "probability": 0.9711 + }, + { + "start": 14712.9, + "end": 14713.78, + "probability": 0.6457 + }, + { + "start": 14717.16, + "end": 14717.56, + "probability": 0.7289 + }, + { + "start": 14718.52, + "end": 14720.0, + "probability": 0.9435 + }, + { + "start": 14720.16, + "end": 14720.7, + "probability": 0.248 + }, + { + "start": 14723.48, + "end": 14723.98, + "probability": 0.0951 + }, + { + "start": 14726.5, + "end": 14727.78, + "probability": 0.8168 + }, + { + "start": 14729.04, + "end": 14731.02, + "probability": 0.9658 + }, + { + "start": 14731.06, + "end": 14732.18, + "probability": 0.8631 + }, + { + "start": 14732.46, + "end": 14734.26, + "probability": 0.9517 + }, + { + "start": 14735.62, + "end": 14737.84, + "probability": 0.9919 + }, + { + "start": 14739.46, + "end": 14741.68, + "probability": 0.9824 + }, + { + "start": 14742.84, + "end": 14745.98, + "probability": 0.9113 + }, + { + "start": 14748.84, + "end": 14752.64, + "probability": 0.9974 + }, + { + "start": 14752.74, + "end": 14754.74, + "probability": 0.8062 + }, + { + "start": 14755.36, + "end": 14760.56, + "probability": 0.9353 + }, + { + "start": 14761.44, + "end": 14763.32, + "probability": 0.9293 + }, + { + "start": 14764.24, + "end": 14767.76, + "probability": 0.9736 + }, + { + "start": 14768.0, + "end": 14769.6, + "probability": 0.9987 + }, + { + "start": 14770.24, + "end": 14772.42, + "probability": 0.995 + }, + { + "start": 14772.64, + "end": 14775.1, + "probability": 0.9829 + }, + { + "start": 14775.14, + "end": 14775.84, + "probability": 0.9585 + }, + { + "start": 14776.18, + "end": 14778.4, + "probability": 0.9941 + }, + { + "start": 14779.16, + "end": 14783.2, + "probability": 0.7157 + }, + { + "start": 14783.98, + "end": 14784.54, + "probability": 0.7497 + }, + { + "start": 14787.5, + "end": 14791.0, + "probability": 0.7099 + }, + { + "start": 14792.86, + "end": 14794.38, + "probability": 0.8237 + }, + { + "start": 14794.52, + "end": 14797.44, + "probability": 0.901 + }, + { + "start": 14797.74, + "end": 14799.86, + "probability": 0.8046 + }, + { + "start": 14800.9, + "end": 14805.1, + "probability": 0.9692 + }, + { + "start": 14805.26, + "end": 14805.66, + "probability": 0.3909 + }, + { + "start": 14806.2, + "end": 14808.42, + "probability": 0.9875 + }, + { + "start": 14809.08, + "end": 14813.42, + "probability": 0.969 + }, + { + "start": 14814.06, + "end": 14816.69, + "probability": 0.9722 + }, + { + "start": 14817.84, + "end": 14823.1, + "probability": 0.944 + }, + { + "start": 14823.56, + "end": 14824.12, + "probability": 0.9256 + }, + { + "start": 14824.18, + "end": 14824.62, + "probability": 0.915 + }, + { + "start": 14826.14, + "end": 14828.56, + "probability": 0.9972 + }, + { + "start": 14829.28, + "end": 14831.5, + "probability": 0.7446 + }, + { + "start": 14833.2, + "end": 14834.6, + "probability": 0.9762 + }, + { + "start": 14835.46, + "end": 14840.14, + "probability": 0.9977 + }, + { + "start": 14840.9, + "end": 14842.73, + "probability": 0.9995 + }, + { + "start": 14842.86, + "end": 14844.11, + "probability": 0.9927 + }, + { + "start": 14845.24, + "end": 14846.2, + "probability": 0.7218 + }, + { + "start": 14848.53, + "end": 14854.65, + "probability": 0.9855 + }, + { + "start": 14855.15, + "end": 14858.34, + "probability": 0.9841 + }, + { + "start": 14859.76, + "end": 14862.48, + "probability": 0.9983 + }, + { + "start": 14863.04, + "end": 14865.28, + "probability": 0.9416 + }, + { + "start": 14866.42, + "end": 14868.58, + "probability": 0.9929 + }, + { + "start": 14869.54, + "end": 14872.6, + "probability": 0.9624 + }, + { + "start": 14873.4, + "end": 14875.25, + "probability": 0.9977 + }, + { + "start": 14876.16, + "end": 14878.4, + "probability": 0.9766 + }, + { + "start": 14879.36, + "end": 14884.28, + "probability": 0.9151 + }, + { + "start": 14885.26, + "end": 14892.63, + "probability": 0.9868 + }, + { + "start": 14892.94, + "end": 14894.64, + "probability": 0.9922 + }, + { + "start": 14894.68, + "end": 14895.66, + "probability": 0.865 + }, + { + "start": 14896.3, + "end": 14898.24, + "probability": 0.9102 + }, + { + "start": 14898.88, + "end": 14902.72, + "probability": 0.9979 + }, + { + "start": 14903.84, + "end": 14906.64, + "probability": 0.9988 + }, + { + "start": 14907.68, + "end": 14915.7, + "probability": 0.9196 + }, + { + "start": 14915.9, + "end": 14916.68, + "probability": 0.9885 + }, + { + "start": 14916.8, + "end": 14917.57, + "probability": 0.9917 + }, + { + "start": 14917.84, + "end": 14918.6, + "probability": 0.9956 + }, + { + "start": 14919.62, + "end": 14921.32, + "probability": 0.9425 + }, + { + "start": 14921.8, + "end": 14923.88, + "probability": 0.9714 + }, + { + "start": 14924.84, + "end": 14926.56, + "probability": 0.9946 + }, + { + "start": 14928.44, + "end": 14929.24, + "probability": 0.5558 + }, + { + "start": 14929.68, + "end": 14931.45, + "probability": 0.9897 + }, + { + "start": 14933.28, + "end": 14937.12, + "probability": 0.5922 + }, + { + "start": 14938.92, + "end": 14942.42, + "probability": 0.7296 + }, + { + "start": 14943.04, + "end": 14945.22, + "probability": 0.8261 + }, + { + "start": 14945.68, + "end": 14948.7, + "probability": 0.905 + }, + { + "start": 14948.74, + "end": 14953.32, + "probability": 0.944 + }, + { + "start": 14953.7, + "end": 14955.9, + "probability": 0.7859 + }, + { + "start": 14955.98, + "end": 14961.8, + "probability": 0.9921 + }, + { + "start": 14963.74, + "end": 14964.66, + "probability": 0.6286 + }, + { + "start": 14965.72, + "end": 14967.18, + "probability": 0.9094 + }, + { + "start": 14967.42, + "end": 14967.82, + "probability": 0.8388 + }, + { + "start": 14968.02, + "end": 14971.4, + "probability": 0.9493 + }, + { + "start": 14972.1, + "end": 14972.66, + "probability": 0.6847 + }, + { + "start": 14974.08, + "end": 14976.28, + "probability": 0.9657 + }, + { + "start": 14976.84, + "end": 14980.1, + "probability": 0.9824 + }, + { + "start": 14980.74, + "end": 14982.84, + "probability": 0.9436 + }, + { + "start": 14984.26, + "end": 14987.93, + "probability": 0.9932 + }, + { + "start": 14988.74, + "end": 14992.18, + "probability": 0.991 + }, + { + "start": 14992.66, + "end": 14994.1, + "probability": 0.9965 + }, + { + "start": 14994.74, + "end": 15000.88, + "probability": 0.9896 + }, + { + "start": 15001.26, + "end": 15006.38, + "probability": 0.9964 + }, + { + "start": 15007.34, + "end": 15010.64, + "probability": 0.939 + }, + { + "start": 15010.78, + "end": 15011.98, + "probability": 0.7749 + }, + { + "start": 15014.0, + "end": 15019.94, + "probability": 0.9633 + }, + { + "start": 15020.84, + "end": 15022.3, + "probability": 0.995 + }, + { + "start": 15023.4, + "end": 15023.96, + "probability": 0.794 + }, + { + "start": 15025.12, + "end": 15027.56, + "probability": 0.9098 + }, + { + "start": 15028.38, + "end": 15032.04, + "probability": 0.8229 + }, + { + "start": 15032.7, + "end": 15033.61, + "probability": 0.894 + }, + { + "start": 15034.2, + "end": 15036.2, + "probability": 0.9738 + }, + { + "start": 15037.79, + "end": 15041.74, + "probability": 0.8617 + }, + { + "start": 15041.74, + "end": 15045.38, + "probability": 0.9512 + }, + { + "start": 15045.98, + "end": 15047.94, + "probability": 0.6138 + }, + { + "start": 15048.5, + "end": 15052.79, + "probability": 0.9255 + }, + { + "start": 15053.12, + "end": 15054.26, + "probability": 0.8536 + }, + { + "start": 15054.96, + "end": 15058.16, + "probability": 0.8911 + }, + { + "start": 15058.96, + "end": 15062.92, + "probability": 0.9865 + }, + { + "start": 15064.08, + "end": 15069.86, + "probability": 0.9668 + }, + { + "start": 15069.96, + "end": 15070.86, + "probability": 0.9718 + }, + { + "start": 15070.9, + "end": 15071.4, + "probability": 0.8626 + }, + { + "start": 15072.44, + "end": 15074.92, + "probability": 0.9961 + }, + { + "start": 15074.92, + "end": 15079.22, + "probability": 0.9874 + }, + { + "start": 15079.96, + "end": 15081.26, + "probability": 0.9503 + }, + { + "start": 15081.74, + "end": 15086.92, + "probability": 0.9838 + }, + { + "start": 15088.06, + "end": 15090.64, + "probability": 0.8808 + }, + { + "start": 15091.2, + "end": 15093.8, + "probability": 0.9948 + }, + { + "start": 15094.34, + "end": 15097.1, + "probability": 0.9733 + }, + { + "start": 15097.36, + "end": 15100.2, + "probability": 0.8389 + }, + { + "start": 15100.24, + "end": 15103.02, + "probability": 0.5226 + }, + { + "start": 15103.02, + "end": 15105.61, + "probability": 0.9448 + }, + { + "start": 15106.3, + "end": 15106.84, + "probability": 0.487 + }, + { + "start": 15106.9, + "end": 15110.84, + "probability": 0.9415 + }, + { + "start": 15111.32, + "end": 15114.78, + "probability": 0.9548 + }, + { + "start": 15115.24, + "end": 15116.76, + "probability": 0.978 + }, + { + "start": 15116.84, + "end": 15119.14, + "probability": 0.5645 + }, + { + "start": 15120.02, + "end": 15120.32, + "probability": 0.6587 + }, + { + "start": 15120.44, + "end": 15124.06, + "probability": 0.7744 + }, + { + "start": 15124.9, + "end": 15127.64, + "probability": 0.9661 + }, + { + "start": 15127.76, + "end": 15128.22, + "probability": 0.5978 + }, + { + "start": 15128.3, + "end": 15128.42, + "probability": 0.1651 + }, + { + "start": 15128.56, + "end": 15128.56, + "probability": 0.2515 + }, + { + "start": 15128.56, + "end": 15128.78, + "probability": 0.2079 + }, + { + "start": 15128.9, + "end": 15129.08, + "probability": 0.2733 + }, + { + "start": 15129.1, + "end": 15129.22, + "probability": 0.1046 + }, + { + "start": 15129.28, + "end": 15130.0, + "probability": 0.0054 + }, + { + "start": 15130.16, + "end": 15130.26, + "probability": 0.0027 + }, + { + "start": 15130.66, + "end": 15132.34, + "probability": 0.3789 + }, + { + "start": 15132.38, + "end": 15133.52, + "probability": 0.9236 + }, + { + "start": 15134.34, + "end": 15135.12, + "probability": 0.9506 + }, + { + "start": 15135.14, + "end": 15136.44, + "probability": 0.9784 + }, + { + "start": 15136.48, + "end": 15141.1, + "probability": 0.8856 + }, + { + "start": 15141.62, + "end": 15142.94, + "probability": 0.8155 + }, + { + "start": 15143.3, + "end": 15145.74, + "probability": 0.8977 + }, + { + "start": 15146.16, + "end": 15150.34, + "probability": 0.9927 + }, + { + "start": 15150.4, + "end": 15152.7, + "probability": 0.8168 + }, + { + "start": 15153.34, + "end": 15156.9, + "probability": 0.891 + }, + { + "start": 15157.38, + "end": 15161.06, + "probability": 0.9905 + }, + { + "start": 15161.3, + "end": 15162.16, + "probability": 0.6227 + }, + { + "start": 15162.76, + "end": 15164.58, + "probability": 0.9272 + }, + { + "start": 15165.1, + "end": 15165.4, + "probability": 0.889 + }, + { + "start": 15165.44, + "end": 15171.8, + "probability": 0.9695 + }, + { + "start": 15172.86, + "end": 15173.42, + "probability": 0.5035 + }, + { + "start": 15174.1, + "end": 15178.2, + "probability": 0.6825 + }, + { + "start": 15178.32, + "end": 15180.96, + "probability": 0.8023 + }, + { + "start": 15181.48, + "end": 15183.38, + "probability": 0.9306 + }, + { + "start": 15183.74, + "end": 15183.92, + "probability": 0.8618 + }, + { + "start": 15187.08, + "end": 15189.64, + "probability": 0.9725 + }, + { + "start": 15190.54, + "end": 15191.64, + "probability": 0.8474 + }, + { + "start": 15192.78, + "end": 15194.44, + "probability": 0.5329 + }, + { + "start": 15194.64, + "end": 15194.64, + "probability": 0.1766 + }, + { + "start": 15194.64, + "end": 15195.52, + "probability": 0.7725 + }, + { + "start": 15195.64, + "end": 15197.58, + "probability": 0.995 + }, + { + "start": 15198.24, + "end": 15200.0, + "probability": 0.8182 + }, + { + "start": 15200.28, + "end": 15202.86, + "probability": 0.7429 + }, + { + "start": 15203.36, + "end": 15207.16, + "probability": 0.9561 + }, + { + "start": 15208.28, + "end": 15211.92, + "probability": 0.7827 + }, + { + "start": 15212.82, + "end": 15214.43, + "probability": 0.7799 + }, + { + "start": 15215.76, + "end": 15221.24, + "probability": 0.9865 + }, + { + "start": 15221.24, + "end": 15225.28, + "probability": 0.9622 + }, + { + "start": 15226.92, + "end": 15229.36, + "probability": 0.9985 + }, + { + "start": 15229.36, + "end": 15233.14, + "probability": 0.9925 + }, + { + "start": 15234.08, + "end": 15234.2, + "probability": 0.2015 + }, + { + "start": 15234.32, + "end": 15234.54, + "probability": 0.8084 + }, + { + "start": 15234.64, + "end": 15236.74, + "probability": 0.9911 + }, + { + "start": 15236.92, + "end": 15240.12, + "probability": 0.9073 + }, + { + "start": 15241.08, + "end": 15244.8, + "probability": 0.7314 + }, + { + "start": 15245.56, + "end": 15246.32, + "probability": 0.886 + }, + { + "start": 15247.26, + "end": 15248.8, + "probability": 0.5328 + }, + { + "start": 15249.3, + "end": 15252.26, + "probability": 0.9523 + }, + { + "start": 15252.72, + "end": 15256.06, + "probability": 0.7422 + }, + { + "start": 15257.0, + "end": 15259.0, + "probability": 0.839 + }, + { + "start": 15259.56, + "end": 15265.3, + "probability": 0.9525 + }, + { + "start": 15265.58, + "end": 15267.32, + "probability": 0.8416 + }, + { + "start": 15268.02, + "end": 15270.44, + "probability": 0.6377 + }, + { + "start": 15272.24, + "end": 15277.56, + "probability": 0.8509 + }, + { + "start": 15278.5, + "end": 15282.58, + "probability": 0.9902 + }, + { + "start": 15282.58, + "end": 15285.7, + "probability": 0.993 + }, + { + "start": 15287.38, + "end": 15295.26, + "probability": 0.9902 + }, + { + "start": 15295.38, + "end": 15295.88, + "probability": 0.9353 + }, + { + "start": 15296.04, + "end": 15299.2, + "probability": 0.8591 + }, + { + "start": 15299.34, + "end": 15299.96, + "probability": 0.9071 + }, + { + "start": 15300.54, + "end": 15303.72, + "probability": 0.8813 + }, + { + "start": 15304.94, + "end": 15306.02, + "probability": 0.9869 + }, + { + "start": 15307.06, + "end": 15309.88, + "probability": 0.8674 + }, + { + "start": 15310.96, + "end": 15314.84, + "probability": 0.8155 + }, + { + "start": 15316.82, + "end": 15318.52, + "probability": 0.9542 + }, + { + "start": 15318.6, + "end": 15319.72, + "probability": 0.9816 + }, + { + "start": 15319.82, + "end": 15324.02, + "probability": 0.9901 + }, + { + "start": 15324.6, + "end": 15327.06, + "probability": 0.9912 + }, + { + "start": 15327.88, + "end": 15330.28, + "probability": 0.9839 + }, + { + "start": 15331.5, + "end": 15335.88, + "probability": 0.984 + }, + { + "start": 15335.88, + "end": 15339.28, + "probability": 0.9823 + }, + { + "start": 15339.82, + "end": 15343.32, + "probability": 0.9966 + }, + { + "start": 15343.84, + "end": 15344.66, + "probability": 0.7413 + }, + { + "start": 15344.74, + "end": 15345.36, + "probability": 0.9623 + }, + { + "start": 15345.46, + "end": 15346.32, + "probability": 0.7922 + }, + { + "start": 15346.4, + "end": 15349.12, + "probability": 0.6053 + }, + { + "start": 15349.82, + "end": 15353.17, + "probability": 0.9429 + }, + { + "start": 15353.4, + "end": 15358.42, + "probability": 0.7146 + }, + { + "start": 15359.14, + "end": 15361.9, + "probability": 0.997 + }, + { + "start": 15361.9, + "end": 15364.96, + "probability": 0.9942 + }, + { + "start": 15365.22, + "end": 15368.74, + "probability": 0.9906 + }, + { + "start": 15368.86, + "end": 15374.16, + "probability": 0.9834 + }, + { + "start": 15375.16, + "end": 15378.12, + "probability": 0.983 + }, + { + "start": 15378.58, + "end": 15382.2, + "probability": 0.9919 + }, + { + "start": 15382.28, + "end": 15385.17, + "probability": 0.9436 + }, + { + "start": 15386.18, + "end": 15386.72, + "probability": 0.6195 + }, + { + "start": 15386.84, + "end": 15386.96, + "probability": 0.6855 + }, + { + "start": 15387.08, + "end": 15391.14, + "probability": 0.9619 + }, + { + "start": 15391.76, + "end": 15393.36, + "probability": 0.8688 + }, + { + "start": 15393.62, + "end": 15398.02, + "probability": 0.9947 + }, + { + "start": 15398.12, + "end": 15399.54, + "probability": 0.9311 + }, + { + "start": 15400.06, + "end": 15402.62, + "probability": 0.9983 + }, + { + "start": 15403.52, + "end": 15409.14, + "probability": 0.998 + }, + { + "start": 15409.96, + "end": 15412.46, + "probability": 0.7793 + }, + { + "start": 15413.46, + "end": 15415.26, + "probability": 0.9941 + }, + { + "start": 15415.6, + "end": 15418.78, + "probability": 0.9899 + }, + { + "start": 15418.82, + "end": 15421.34, + "probability": 0.9866 + }, + { + "start": 15422.1, + "end": 15426.28, + "probability": 0.9961 + }, + { + "start": 15427.26, + "end": 15427.88, + "probability": 0.6025 + }, + { + "start": 15428.04, + "end": 15429.96, + "probability": 0.6977 + }, + { + "start": 15430.0, + "end": 15434.32, + "probability": 0.9717 + }, + { + "start": 15434.32, + "end": 15438.32, + "probability": 0.9932 + }, + { + "start": 15439.2, + "end": 15440.74, + "probability": 0.8439 + }, + { + "start": 15440.76, + "end": 15444.86, + "probability": 0.9712 + }, + { + "start": 15445.0, + "end": 15446.32, + "probability": 0.946 + }, + { + "start": 15446.74, + "end": 15447.68, + "probability": 0.9828 + }, + { + "start": 15447.78, + "end": 15451.16, + "probability": 0.9921 + }, + { + "start": 15454.38, + "end": 15456.9, + "probability": 0.999 + }, + { + "start": 15457.08, + "end": 15459.4, + "probability": 0.9922 + }, + { + "start": 15459.82, + "end": 15463.06, + "probability": 0.9548 + }, + { + "start": 15463.22, + "end": 15469.22, + "probability": 0.992 + }, + { + "start": 15469.74, + "end": 15471.3, + "probability": 0.9875 + }, + { + "start": 15471.4, + "end": 15472.91, + "probability": 0.9956 + }, + { + "start": 15473.86, + "end": 15476.08, + "probability": 0.9504 + }, + { + "start": 15476.52, + "end": 15481.62, + "probability": 0.9773 + }, + { + "start": 15481.72, + "end": 15484.6, + "probability": 0.9883 + }, + { + "start": 15485.16, + "end": 15489.72, + "probability": 0.9945 + }, + { + "start": 15489.94, + "end": 15492.7, + "probability": 0.9834 + }, + { + "start": 15493.2, + "end": 15495.72, + "probability": 0.8471 + }, + { + "start": 15495.78, + "end": 15496.6, + "probability": 0.5366 + }, + { + "start": 15496.7, + "end": 15500.2, + "probability": 0.9831 + }, + { + "start": 15500.22, + "end": 15503.14, + "probability": 0.9093 + }, + { + "start": 15503.28, + "end": 15503.6, + "probability": 0.7504 + }, + { + "start": 15504.08, + "end": 15504.68, + "probability": 0.7584 + }, + { + "start": 15505.82, + "end": 15512.78, + "probability": 0.96 + }, + { + "start": 15513.38, + "end": 15515.88, + "probability": 0.7516 + }, + { + "start": 15516.59, + "end": 15519.84, + "probability": 0.6679 + }, + { + "start": 15522.54, + "end": 15522.64, + "probability": 0.2285 + }, + { + "start": 15522.76, + "end": 15525.84, + "probability": 0.6303 + }, + { + "start": 15526.4, + "end": 15527.84, + "probability": 0.9956 + }, + { + "start": 15528.36, + "end": 15530.78, + "probability": 0.8828 + }, + { + "start": 15530.78, + "end": 15534.78, + "probability": 0.7883 + }, + { + "start": 15535.6, + "end": 15536.82, + "probability": 0.3984 + }, + { + "start": 15536.96, + "end": 15539.78, + "probability": 0.9879 + }, + { + "start": 15539.78, + "end": 15542.32, + "probability": 0.9985 + }, + { + "start": 15542.92, + "end": 15548.48, + "probability": 0.537 + }, + { + "start": 15551.12, + "end": 15553.32, + "probability": 0.9425 + }, + { + "start": 15553.54, + "end": 15560.0, + "probability": 0.9382 + }, + { + "start": 15560.06, + "end": 15560.68, + "probability": 0.0715 + }, + { + "start": 15560.68, + "end": 15560.68, + "probability": 0.3565 + }, + { + "start": 15560.68, + "end": 15560.68, + "probability": 0.0418 + }, + { + "start": 15560.68, + "end": 15562.94, + "probability": 0.7694 + }, + { + "start": 15568.02, + "end": 15569.1, + "probability": 0.5795 + }, + { + "start": 15569.5, + "end": 15572.88, + "probability": 0.4595 + }, + { + "start": 15573.66, + "end": 15575.32, + "probability": 0.9621 + }, + { + "start": 15575.42, + "end": 15578.26, + "probability": 0.9019 + }, + { + "start": 15578.46, + "end": 15579.22, + "probability": 0.7687 + }, + { + "start": 15580.68, + "end": 15582.42, + "probability": 0.8926 + }, + { + "start": 15583.7, + "end": 15586.0, + "probability": 0.5206 + }, + { + "start": 15588.84, + "end": 15594.06, + "probability": 0.9106 + }, + { + "start": 15594.86, + "end": 15598.86, + "probability": 0.8615 + }, + { + "start": 15599.94, + "end": 15603.74, + "probability": 0.9339 + }, + { + "start": 15604.64, + "end": 15605.96, + "probability": 0.7253 + }, + { + "start": 15606.08, + "end": 15606.64, + "probability": 0.8865 + }, + { + "start": 15606.74, + "end": 15607.98, + "probability": 0.8056 + }, + { + "start": 15608.06, + "end": 15610.44, + "probability": 0.957 + }, + { + "start": 15612.06, + "end": 15616.08, + "probability": 0.9766 + }, + { + "start": 15616.78, + "end": 15619.0, + "probability": 0.8874 + }, + { + "start": 15619.2, + "end": 15620.84, + "probability": 0.9098 + }, + { + "start": 15620.94, + "end": 15623.0, + "probability": 0.7517 + }, + { + "start": 15623.54, + "end": 15624.34, + "probability": 0.9637 + }, + { + "start": 15625.1, + "end": 15626.6, + "probability": 0.8909 + }, + { + "start": 15627.2, + "end": 15629.9, + "probability": 0.8854 + }, + { + "start": 15632.46, + "end": 15634.34, + "probability": 0.9754 + }, + { + "start": 15636.86, + "end": 15640.8, + "probability": 0.9286 + }, + { + "start": 15641.88, + "end": 15646.86, + "probability": 0.8236 + }, + { + "start": 15648.26, + "end": 15648.32, + "probability": 0.0749 + }, + { + "start": 15648.32, + "end": 15648.94, + "probability": 0.7956 + }, + { + "start": 15652.84, + "end": 15653.62, + "probability": 0.5208 + }, + { + "start": 15657.94, + "end": 15661.12, + "probability": 0.7976 + }, + { + "start": 15661.46, + "end": 15664.68, + "probability": 0.6606 + }, + { + "start": 15665.0, + "end": 15667.1, + "probability": 0.9346 + }, + { + "start": 15668.74, + "end": 15669.82, + "probability": 0.9907 + }, + { + "start": 15670.64, + "end": 15673.51, + "probability": 0.9917 + }, + { + "start": 15674.62, + "end": 15677.8, + "probability": 0.9059 + }, + { + "start": 15678.32, + "end": 15679.22, + "probability": 0.9395 + }, + { + "start": 15680.66, + "end": 15685.42, + "probability": 0.9902 + }, + { + "start": 15685.62, + "end": 15687.04, + "probability": 0.9185 + }, + { + "start": 15687.88, + "end": 15692.22, + "probability": 0.959 + }, + { + "start": 15693.38, + "end": 15693.54, + "probability": 0.478 + }, + { + "start": 15693.62, + "end": 15694.64, + "probability": 0.5127 + }, + { + "start": 15694.68, + "end": 15696.72, + "probability": 0.918 + }, + { + "start": 15697.24, + "end": 15702.42, + "probability": 0.9917 + }, + { + "start": 15703.07, + "end": 15707.7, + "probability": 0.9471 + }, + { + "start": 15708.46, + "end": 15713.32, + "probability": 0.8552 + }, + { + "start": 15716.42, + "end": 15718.52, + "probability": 0.807 + }, + { + "start": 15719.08, + "end": 15723.4, + "probability": 0.7253 + }, + { + "start": 15724.3, + "end": 15724.46, + "probability": 0.5363 + }, + { + "start": 15724.54, + "end": 15725.52, + "probability": 0.5114 + }, + { + "start": 15725.58, + "end": 15727.72, + "probability": 0.9177 + }, + { + "start": 15727.84, + "end": 15728.4, + "probability": 0.7993 + }, + { + "start": 15728.82, + "end": 15730.18, + "probability": 0.9574 + }, + { + "start": 15730.24, + "end": 15733.44, + "probability": 0.5843 + }, + { + "start": 15733.98, + "end": 15735.22, + "probability": 0.8001 + }, + { + "start": 15736.22, + "end": 15738.34, + "probability": 0.6767 + }, + { + "start": 15739.18, + "end": 15743.82, + "probability": 0.8193 + }, + { + "start": 15743.86, + "end": 15744.48, + "probability": 0.7824 + }, + { + "start": 15744.58, + "end": 15745.36, + "probability": 0.9358 + }, + { + "start": 15745.4, + "end": 15746.3, + "probability": 0.8601 + }, + { + "start": 15746.7, + "end": 15748.25, + "probability": 0.8971 + }, + { + "start": 15748.42, + "end": 15749.61, + "probability": 0.438 + }, + { + "start": 15751.08, + "end": 15754.0, + "probability": 0.9552 + }, + { + "start": 15755.64, + "end": 15758.16, + "probability": 0.8473 + }, + { + "start": 15761.88, + "end": 15765.52, + "probability": 0.9722 + }, + { + "start": 15766.12, + "end": 15766.94, + "probability": 0.9065 + }, + { + "start": 15767.18, + "end": 15767.6, + "probability": 0.7574 + }, + { + "start": 15768.46, + "end": 15776.32, + "probability": 0.9215 + }, + { + "start": 15777.4, + "end": 15780.84, + "probability": 0.9908 + }, + { + "start": 15780.94, + "end": 15782.41, + "probability": 0.8244 + }, + { + "start": 15782.82, + "end": 15783.9, + "probability": 0.28 + }, + { + "start": 15784.02, + "end": 15788.38, + "probability": 0.6471 + }, + { + "start": 15788.5, + "end": 15789.04, + "probability": 0.7855 + }, + { + "start": 15789.2, + "end": 15793.12, + "probability": 0.8752 + }, + { + "start": 15793.32, + "end": 15794.74, + "probability": 0.8729 + }, + { + "start": 15795.06, + "end": 15795.6, + "probability": 0.7502 + }, + { + "start": 15795.66, + "end": 15796.1, + "probability": 0.5615 + }, + { + "start": 15796.16, + "end": 15798.78, + "probability": 0.9529 + }, + { + "start": 15799.2, + "end": 15804.04, + "probability": 0.9709 + }, + { + "start": 15804.64, + "end": 15806.14, + "probability": 0.91 + }, + { + "start": 15806.44, + "end": 15811.32, + "probability": 0.9282 + }, + { + "start": 15812.52, + "end": 15813.24, + "probability": 0.9946 + }, + { + "start": 15815.54, + "end": 15817.06, + "probability": 0.9854 + }, + { + "start": 15817.2, + "end": 15818.78, + "probability": 0.9866 + }, + { + "start": 15818.8, + "end": 15820.06, + "probability": 0.3059 + }, + { + "start": 15820.06, + "end": 15823.02, + "probability": 0.8057 + }, + { + "start": 15824.66, + "end": 15826.0, + "probability": 0.9691 + }, + { + "start": 15826.16, + "end": 15828.12, + "probability": 0.9113 + }, + { + "start": 15828.2, + "end": 15828.92, + "probability": 0.9866 + }, + { + "start": 15829.18, + "end": 15833.14, + "probability": 0.8828 + }, + { + "start": 15833.3, + "end": 15836.42, + "probability": 0.9927 + }, + { + "start": 15836.82, + "end": 15840.1, + "probability": 0.7972 + }, + { + "start": 15840.24, + "end": 15840.56, + "probability": 0.7677 + }, + { + "start": 15840.7, + "end": 15841.44, + "probability": 0.2202 + }, + { + "start": 15841.66, + "end": 15843.44, + "probability": 0.9902 + }, + { + "start": 15843.64, + "end": 15844.65, + "probability": 0.7727 + }, + { + "start": 15845.22, + "end": 15846.22, + "probability": 0.767 + }, + { + "start": 15847.38, + "end": 15848.4, + "probability": 0.4522 + }, + { + "start": 15849.86, + "end": 15851.62, + "probability": 0.8855 + }, + { + "start": 15853.14, + "end": 15855.74, + "probability": 0.9314 + }, + { + "start": 15857.2, + "end": 15859.74, + "probability": 0.7833 + }, + { + "start": 15860.68, + "end": 15862.92, + "probability": 0.9089 + }, + { + "start": 15863.7, + "end": 15864.62, + "probability": 0.8631 + }, + { + "start": 15865.24, + "end": 15867.18, + "probability": 0.998 + }, + { + "start": 15868.26, + "end": 15868.46, + "probability": 0.8876 + }, + { + "start": 15869.62, + "end": 15870.92, + "probability": 0.9252 + }, + { + "start": 15871.02, + "end": 15873.12, + "probability": 0.9221 + }, + { + "start": 15875.54, + "end": 15877.68, + "probability": 0.9845 + }, + { + "start": 15879.02, + "end": 15879.44, + "probability": 0.461 + }, + { + "start": 15882.8, + "end": 15886.98, + "probability": 0.9891 + }, + { + "start": 15886.98, + "end": 15891.5, + "probability": 0.9962 + }, + { + "start": 15892.38, + "end": 15893.5, + "probability": 0.8667 + }, + { + "start": 15894.66, + "end": 15895.34, + "probability": 0.4856 + }, + { + "start": 15895.46, + "end": 15898.08, + "probability": 0.9717 + }, + { + "start": 15899.12, + "end": 15901.76, + "probability": 0.8964 + }, + { + "start": 15901.88, + "end": 15902.23, + "probability": 0.9792 + }, + { + "start": 15902.42, + "end": 15904.7, + "probability": 0.9092 + }, + { + "start": 15904.94, + "end": 15908.08, + "probability": 0.9099 + }, + { + "start": 15908.14, + "end": 15909.24, + "probability": 0.916 + }, + { + "start": 15909.58, + "end": 15910.82, + "probability": 0.8496 + }, + { + "start": 15910.9, + "end": 15911.06, + "probability": 0.3881 + }, + { + "start": 15911.12, + "end": 15916.22, + "probability": 0.885 + }, + { + "start": 15917.48, + "end": 15918.4, + "probability": 0.6638 + }, + { + "start": 15920.9, + "end": 15921.6, + "probability": 0.0169 + }, + { + "start": 15921.6, + "end": 15921.6, + "probability": 0.1302 + }, + { + "start": 15921.6, + "end": 15922.11, + "probability": 0.3573 + }, + { + "start": 15923.78, + "end": 15925.92, + "probability": 0.9761 + }, + { + "start": 15927.76, + "end": 15930.92, + "probability": 0.9652 + }, + { + "start": 15931.62, + "end": 15936.7, + "probability": 0.9849 + }, + { + "start": 15936.88, + "end": 15937.84, + "probability": 0.459 + }, + { + "start": 15938.0, + "end": 15939.94, + "probability": 0.9741 + }, + { + "start": 15940.06, + "end": 15941.16, + "probability": 0.9985 + }, + { + "start": 15941.82, + "end": 15944.54, + "probability": 0.9268 + }, + { + "start": 15944.96, + "end": 15946.42, + "probability": 0.6601 + }, + { + "start": 15947.14, + "end": 15949.88, + "probability": 0.9333 + }, + { + "start": 15950.32, + "end": 15952.58, + "probability": 0.8683 + }, + { + "start": 15952.68, + "end": 15953.06, + "probability": 0.8099 + }, + { + "start": 15953.12, + "end": 15953.88, + "probability": 0.7392 + }, + { + "start": 15953.96, + "end": 15954.38, + "probability": 0.7808 + }, + { + "start": 15955.0, + "end": 15957.5, + "probability": 0.9136 + }, + { + "start": 15957.8, + "end": 15957.92, + "probability": 0.5649 + }, + { + "start": 15958.52, + "end": 15959.1, + "probability": 0.9353 + }, + { + "start": 15960.16, + "end": 15962.24, + "probability": 0.7664 + }, + { + "start": 15964.81, + "end": 15966.46, + "probability": 0.7085 + }, + { + "start": 15990.56, + "end": 15991.72, + "probability": 0.6393 + }, + { + "start": 15992.96, + "end": 15993.94, + "probability": 0.8111 + }, + { + "start": 15995.38, + "end": 15996.88, + "probability": 0.8525 + }, + { + "start": 15997.06, + "end": 16000.58, + "probability": 0.9629 + }, + { + "start": 16000.72, + "end": 16005.58, + "probability": 0.9857 + }, + { + "start": 16007.74, + "end": 16011.32, + "probability": 0.9976 + }, + { + "start": 16012.94, + "end": 16016.76, + "probability": 0.9974 + }, + { + "start": 16017.76, + "end": 16019.16, + "probability": 0.8715 + }, + { + "start": 16020.04, + "end": 16027.7, + "probability": 0.9954 + }, + { + "start": 16028.6, + "end": 16031.52, + "probability": 0.9688 + }, + { + "start": 16032.22, + "end": 16034.68, + "probability": 0.9509 + }, + { + "start": 16035.3, + "end": 16041.18, + "probability": 0.8605 + }, + { + "start": 16041.32, + "end": 16043.47, + "probability": 0.9194 + }, + { + "start": 16045.12, + "end": 16046.28, + "probability": 0.9179 + }, + { + "start": 16048.2, + "end": 16051.46, + "probability": 0.9377 + }, + { + "start": 16052.62, + "end": 16056.62, + "probability": 0.8944 + }, + { + "start": 16057.42, + "end": 16058.76, + "probability": 0.918 + }, + { + "start": 16059.68, + "end": 16064.58, + "probability": 0.963 + }, + { + "start": 16064.98, + "end": 16067.76, + "probability": 0.9946 + }, + { + "start": 16067.76, + "end": 16071.74, + "probability": 0.9476 + }, + { + "start": 16071.78, + "end": 16074.5, + "probability": 0.9972 + }, + { + "start": 16075.3, + "end": 16078.02, + "probability": 0.9507 + }, + { + "start": 16078.82, + "end": 16080.08, + "probability": 0.8182 + }, + { + "start": 16080.66, + "end": 16082.86, + "probability": 0.9458 + }, + { + "start": 16083.12, + "end": 16084.9, + "probability": 0.9547 + }, + { + "start": 16085.42, + "end": 16087.1, + "probability": 0.961 + }, + { + "start": 16087.74, + "end": 16092.28, + "probability": 0.9828 + }, + { + "start": 16093.44, + "end": 16096.82, + "probability": 0.927 + }, + { + "start": 16098.3, + "end": 16100.72, + "probability": 0.893 + }, + { + "start": 16101.02, + "end": 16103.66, + "probability": 0.9922 + }, + { + "start": 16104.36, + "end": 16108.08, + "probability": 0.9754 + }, + { + "start": 16108.64, + "end": 16112.98, + "probability": 0.984 + }, + { + "start": 16113.08, + "end": 16115.86, + "probability": 0.9924 + }, + { + "start": 16116.56, + "end": 16117.88, + "probability": 0.8481 + }, + { + "start": 16118.4, + "end": 16126.48, + "probability": 0.9429 + }, + { + "start": 16127.18, + "end": 16128.38, + "probability": 0.6909 + }, + { + "start": 16129.74, + "end": 16131.71, + "probability": 0.9927 + }, + { + "start": 16131.86, + "end": 16134.18, + "probability": 0.9819 + }, + { + "start": 16134.18, + "end": 16138.7, + "probability": 0.9937 + }, + { + "start": 16138.88, + "end": 16140.96, + "probability": 0.9932 + }, + { + "start": 16141.1, + "end": 16142.44, + "probability": 0.9834 + }, + { + "start": 16142.94, + "end": 16147.28, + "probability": 0.9207 + }, + { + "start": 16147.36, + "end": 16149.58, + "probability": 0.746 + }, + { + "start": 16150.26, + "end": 16155.42, + "probability": 0.9701 + }, + { + "start": 16155.74, + "end": 16159.92, + "probability": 0.9143 + }, + { + "start": 16159.98, + "end": 16161.48, + "probability": 0.7543 + }, + { + "start": 16161.62, + "end": 16163.12, + "probability": 0.791 + }, + { + "start": 16164.12, + "end": 16167.92, + "probability": 0.9781 + }, + { + "start": 16168.12, + "end": 16168.36, + "probability": 0.5473 + }, + { + "start": 16169.06, + "end": 16170.66, + "probability": 0.6345 + }, + { + "start": 16170.78, + "end": 16173.72, + "probability": 0.988 + }, + { + "start": 16174.74, + "end": 16176.08, + "probability": 0.9922 + }, + { + "start": 16176.28, + "end": 16176.36, + "probability": 0.0612 + }, + { + "start": 16176.36, + "end": 16176.52, + "probability": 0.6797 + }, + { + "start": 16176.56, + "end": 16180.4, + "probability": 0.9795 + }, + { + "start": 16182.44, + "end": 16184.44, + "probability": 0.6315 + }, + { + "start": 16185.44, + "end": 16186.85, + "probability": 0.7217 + }, + { + "start": 16187.72, + "end": 16191.46, + "probability": 0.9476 + }, + { + "start": 16191.46, + "end": 16196.1, + "probability": 0.9714 + }, + { + "start": 16197.88, + "end": 16198.34, + "probability": 0.6602 + }, + { + "start": 16199.28, + "end": 16201.16, + "probability": 0.8297 + }, + { + "start": 16209.72, + "end": 16209.72, + "probability": 0.4328 + }, + { + "start": 16209.72, + "end": 16212.04, + "probability": 0.9138 + }, + { + "start": 16212.62, + "end": 16213.16, + "probability": 0.6161 + }, + { + "start": 16213.16, + "end": 16214.4, + "probability": 0.7003 + }, + { + "start": 16215.14, + "end": 16215.24, + "probability": 0.8542 + }, + { + "start": 16215.32, + "end": 16218.55, + "probability": 0.9935 + }, + { + "start": 16218.6, + "end": 16220.46, + "probability": 0.9626 + }, + { + "start": 16221.0, + "end": 16222.38, + "probability": 0.6108 + }, + { + "start": 16223.26, + "end": 16225.56, + "probability": 0.8422 + }, + { + "start": 16225.58, + "end": 16226.28, + "probability": 0.4104 + }, + { + "start": 16226.9, + "end": 16229.14, + "probability": 0.9673 + }, + { + "start": 16229.94, + "end": 16231.61, + "probability": 0.9428 + }, + { + "start": 16232.58, + "end": 16233.68, + "probability": 0.9492 + }, + { + "start": 16234.06, + "end": 16234.84, + "probability": 0.9042 + }, + { + "start": 16235.5, + "end": 16236.8, + "probability": 0.7272 + }, + { + "start": 16237.56, + "end": 16238.98, + "probability": 0.9983 + }, + { + "start": 16239.3, + "end": 16240.59, + "probability": 0.994 + }, + { + "start": 16242.22, + "end": 16245.26, + "probability": 0.9685 + }, + { + "start": 16246.08, + "end": 16246.38, + "probability": 0.9631 + }, + { + "start": 16246.88, + "end": 16248.02, + "probability": 0.932 + }, + { + "start": 16248.2, + "end": 16248.94, + "probability": 0.9336 + }, + { + "start": 16249.02, + "end": 16249.76, + "probability": 0.9326 + }, + { + "start": 16251.02, + "end": 16251.7, + "probability": 0.6237 + }, + { + "start": 16252.22, + "end": 16256.16, + "probability": 0.9985 + }, + { + "start": 16256.24, + "end": 16257.74, + "probability": 0.7751 + }, + { + "start": 16258.3, + "end": 16259.86, + "probability": 0.6871 + }, + { + "start": 16260.32, + "end": 16261.28, + "probability": 0.8779 + }, + { + "start": 16261.4, + "end": 16261.82, + "probability": 0.733 + }, + { + "start": 16261.88, + "end": 16264.28, + "probability": 0.9922 + }, + { + "start": 16264.36, + "end": 16266.04, + "probability": 0.7366 + }, + { + "start": 16266.56, + "end": 16269.76, + "probability": 0.9121 + }, + { + "start": 16269.84, + "end": 16270.27, + "probability": 0.8215 + }, + { + "start": 16270.94, + "end": 16273.9, + "probability": 0.9927 + }, + { + "start": 16273.96, + "end": 16277.62, + "probability": 0.9762 + }, + { + "start": 16277.68, + "end": 16279.2, + "probability": 0.7776 + }, + { + "start": 16279.72, + "end": 16284.98, + "probability": 0.83 + }, + { + "start": 16285.62, + "end": 16288.64, + "probability": 0.9688 + }, + { + "start": 16290.46, + "end": 16292.92, + "probability": 0.9878 + }, + { + "start": 16293.58, + "end": 16296.72, + "probability": 0.9895 + }, + { + "start": 16296.76, + "end": 16299.96, + "probability": 0.8464 + }, + { + "start": 16300.14, + "end": 16300.5, + "probability": 0.8647 + }, + { + "start": 16300.62, + "end": 16301.14, + "probability": 0.4752 + }, + { + "start": 16301.18, + "end": 16301.92, + "probability": 0.894 + }, + { + "start": 16302.46, + "end": 16305.58, + "probability": 0.9012 + }, + { + "start": 16305.7, + "end": 16308.58, + "probability": 0.9634 + }, + { + "start": 16309.08, + "end": 16309.44, + "probability": 0.4153 + }, + { + "start": 16309.46, + "end": 16309.7, + "probability": 0.5703 + }, + { + "start": 16309.7, + "end": 16312.08, + "probability": 0.9505 + }, + { + "start": 16312.14, + "end": 16312.6, + "probability": 0.8899 + }, + { + "start": 16312.7, + "end": 16314.46, + "probability": 0.9811 + }, + { + "start": 16314.5, + "end": 16314.74, + "probability": 0.476 + }, + { + "start": 16314.82, + "end": 16315.2, + "probability": 0.9304 + }, + { + "start": 16315.8, + "end": 16317.08, + "probability": 0.6023 + }, + { + "start": 16317.34, + "end": 16319.34, + "probability": 0.918 + }, + { + "start": 16319.94, + "end": 16320.82, + "probability": 0.839 + }, + { + "start": 16321.0, + "end": 16321.36, + "probability": 0.9463 + }, + { + "start": 16321.44, + "end": 16322.36, + "probability": 0.4791 + }, + { + "start": 16322.38, + "end": 16323.18, + "probability": 0.9506 + }, + { + "start": 16323.68, + "end": 16325.26, + "probability": 0.9988 + }, + { + "start": 16326.46, + "end": 16327.82, + "probability": 0.543 + }, + { + "start": 16328.38, + "end": 16329.78, + "probability": 0.9534 + }, + { + "start": 16329.84, + "end": 16330.86, + "probability": 0.9917 + }, + { + "start": 16330.96, + "end": 16333.22, + "probability": 0.9965 + }, + { + "start": 16333.72, + "end": 16334.42, + "probability": 0.9725 + }, + { + "start": 16334.5, + "end": 16335.7, + "probability": 0.9085 + }, + { + "start": 16335.78, + "end": 16336.86, + "probability": 0.9124 + }, + { + "start": 16337.26, + "end": 16338.56, + "probability": 0.546 + }, + { + "start": 16338.7, + "end": 16338.9, + "probability": 0.9087 + }, + { + "start": 16339.0, + "end": 16341.0, + "probability": 0.9795 + }, + { + "start": 16341.32, + "end": 16342.24, + "probability": 0.737 + }, + { + "start": 16342.92, + "end": 16346.56, + "probability": 0.9714 + }, + { + "start": 16347.2, + "end": 16348.2, + "probability": 0.9957 + }, + { + "start": 16348.32, + "end": 16350.34, + "probability": 0.9805 + }, + { + "start": 16350.42, + "end": 16352.42, + "probability": 0.9927 + }, + { + "start": 16352.56, + "end": 16353.16, + "probability": 0.462 + }, + { + "start": 16353.22, + "end": 16353.48, + "probability": 0.9186 + }, + { + "start": 16353.58, + "end": 16358.16, + "probability": 0.8768 + }, + { + "start": 16358.68, + "end": 16361.66, + "probability": 0.9868 + }, + { + "start": 16361.66, + "end": 16364.56, + "probability": 0.9995 + }, + { + "start": 16364.64, + "end": 16364.94, + "probability": 0.7495 + }, + { + "start": 16365.02, + "end": 16365.4, + "probability": 0.5903 + }, + { + "start": 16365.4, + "end": 16367.26, + "probability": 0.9652 + }, + { + "start": 16367.64, + "end": 16369.1, + "probability": 0.8073 + }, + { + "start": 16369.28, + "end": 16371.2, + "probability": 0.8836 + }, + { + "start": 16371.28, + "end": 16372.06, + "probability": 0.9851 + }, + { + "start": 16372.16, + "end": 16372.96, + "probability": 0.7056 + }, + { + "start": 16374.52, + "end": 16378.02, + "probability": 0.9528 + }, + { + "start": 16378.48, + "end": 16381.78, + "probability": 0.9698 + }, + { + "start": 16382.2, + "end": 16384.4, + "probability": 0.9117 + }, + { + "start": 16384.4, + "end": 16385.84, + "probability": 0.9766 + }, + { + "start": 16385.9, + "end": 16389.46, + "probability": 0.9824 + }, + { + "start": 16390.06, + "end": 16394.3, + "probability": 0.9983 + }, + { + "start": 16394.35, + "end": 16398.56, + "probability": 0.9995 + }, + { + "start": 16398.7, + "end": 16398.96, + "probability": 0.6536 + }, + { + "start": 16399.02, + "end": 16399.96, + "probability": 0.8902 + }, + { + "start": 16400.66, + "end": 16402.64, + "probability": 0.7218 + }, + { + "start": 16402.8, + "end": 16404.24, + "probability": 0.8542 + }, + { + "start": 16404.76, + "end": 16405.16, + "probability": 0.639 + }, + { + "start": 16405.22, + "end": 16408.34, + "probability": 0.7853 + }, + { + "start": 16408.89, + "end": 16413.28, + "probability": 0.9688 + }, + { + "start": 16413.38, + "end": 16413.9, + "probability": 0.8228 + }, + { + "start": 16414.0, + "end": 16414.52, + "probability": 0.4087 + }, + { + "start": 16415.3, + "end": 16417.58, + "probability": 0.9796 + }, + { + "start": 16417.82, + "end": 16419.38, + "probability": 0.957 + }, + { + "start": 16419.42, + "end": 16422.5, + "probability": 0.9922 + }, + { + "start": 16422.56, + "end": 16424.98, + "probability": 0.9397 + }, + { + "start": 16424.98, + "end": 16426.71, + "probability": 0.8319 + }, + { + "start": 16427.02, + "end": 16427.46, + "probability": 0.7766 + }, + { + "start": 16428.3, + "end": 16430.2, + "probability": 0.5726 + }, + { + "start": 16430.78, + "end": 16432.84, + "probability": 0.815 + }, + { + "start": 16433.16, + "end": 16435.06, + "probability": 0.7972 + }, + { + "start": 16435.64, + "end": 16436.2, + "probability": 0.6777 + }, + { + "start": 16436.48, + "end": 16439.6, + "probability": 0.9924 + }, + { + "start": 16463.16, + "end": 16463.86, + "probability": 0.3881 + }, + { + "start": 16466.42, + "end": 16468.72, + "probability": 0.7115 + }, + { + "start": 16470.7, + "end": 16476.12, + "probability": 0.8395 + }, + { + "start": 16476.98, + "end": 16482.72, + "probability": 0.7587 + }, + { + "start": 16482.76, + "end": 16484.4, + "probability": 0.8919 + }, + { + "start": 16485.5, + "end": 16488.86, + "probability": 0.8091 + }, + { + "start": 16490.44, + "end": 16491.08, + "probability": 0.4585 + }, + { + "start": 16491.74, + "end": 16497.8, + "probability": 0.7234 + }, + { + "start": 16499.1, + "end": 16501.24, + "probability": 0.8951 + }, + { + "start": 16502.02, + "end": 16503.64, + "probability": 0.845 + }, + { + "start": 16505.0, + "end": 16506.06, + "probability": 0.8825 + }, + { + "start": 16506.86, + "end": 16508.39, + "probability": 0.9768 + }, + { + "start": 16509.7, + "end": 16512.96, + "probability": 0.9829 + }, + { + "start": 16513.54, + "end": 16517.22, + "probability": 0.8817 + }, + { + "start": 16518.1, + "end": 16518.66, + "probability": 0.2395 + }, + { + "start": 16519.64, + "end": 16520.06, + "probability": 0.8896 + }, + { + "start": 16521.16, + "end": 16523.82, + "probability": 0.9239 + }, + { + "start": 16524.62, + "end": 16527.4, + "probability": 0.9229 + }, + { + "start": 16528.3, + "end": 16528.92, + "probability": 0.9694 + }, + { + "start": 16529.48, + "end": 16531.96, + "probability": 0.9382 + }, + { + "start": 16533.08, + "end": 16533.74, + "probability": 0.9681 + }, + { + "start": 16535.18, + "end": 16541.98, + "probability": 0.8467 + }, + { + "start": 16542.48, + "end": 16543.7, + "probability": 0.0843 + }, + { + "start": 16545.46, + "end": 16545.92, + "probability": 0.0892 + }, + { + "start": 16546.12, + "end": 16546.18, + "probability": 0.4297 + }, + { + "start": 16546.34, + "end": 16546.5, + "probability": 0.4569 + }, + { + "start": 16546.72, + "end": 16550.24, + "probability": 0.9411 + }, + { + "start": 16550.34, + "end": 16555.68, + "probability": 0.7595 + }, + { + "start": 16556.44, + "end": 16561.09, + "probability": 0.9844 + }, + { + "start": 16561.66, + "end": 16563.38, + "probability": 0.7976 + }, + { + "start": 16564.06, + "end": 16565.36, + "probability": 0.2793 + }, + { + "start": 16566.0, + "end": 16566.4, + "probability": 0.0469 + }, + { + "start": 16566.4, + "end": 16566.42, + "probability": 0.0311 + }, + { + "start": 16566.42, + "end": 16566.42, + "probability": 0.1108 + }, + { + "start": 16566.58, + "end": 16566.8, + "probability": 0.2354 + }, + { + "start": 16567.04, + "end": 16567.62, + "probability": 0.8016 + }, + { + "start": 16567.7, + "end": 16567.9, + "probability": 0.6288 + }, + { + "start": 16568.02, + "end": 16568.28, + "probability": 0.8748 + }, + { + "start": 16568.3, + "end": 16568.52, + "probability": 0.6175 + }, + { + "start": 16568.7, + "end": 16569.52, + "probability": 0.6304 + }, + { + "start": 16569.6, + "end": 16570.36, + "probability": 0.7031 + }, + { + "start": 16571.28, + "end": 16573.34, + "probability": 0.9632 + }, + { + "start": 16574.42, + "end": 16578.6, + "probability": 0.965 + }, + { + "start": 16578.66, + "end": 16579.46, + "probability": 0.3649 + }, + { + "start": 16579.64, + "end": 16582.72, + "probability": 0.8853 + }, + { + "start": 16583.12, + "end": 16584.7, + "probability": 0.9807 + }, + { + "start": 16584.78, + "end": 16588.38, + "probability": 0.7596 + }, + { + "start": 16589.0, + "end": 16589.52, + "probability": 0.4807 + }, + { + "start": 16590.2, + "end": 16591.76, + "probability": 0.9778 + }, + { + "start": 16592.66, + "end": 16596.32, + "probability": 0.9531 + }, + { + "start": 16596.56, + "end": 16599.79, + "probability": 0.9813 + }, + { + "start": 16600.32, + "end": 16601.9, + "probability": 0.7386 + }, + { + "start": 16602.92, + "end": 16604.19, + "probability": 0.8157 + }, + { + "start": 16605.06, + "end": 16606.66, + "probability": 0.8179 + }, + { + "start": 16607.22, + "end": 16608.3, + "probability": 0.6382 + }, + { + "start": 16608.46, + "end": 16609.95, + "probability": 0.9761 + }, + { + "start": 16610.12, + "end": 16611.96, + "probability": 0.9031 + }, + { + "start": 16612.86, + "end": 16618.58, + "probability": 0.8813 + }, + { + "start": 16618.7, + "end": 16620.03, + "probability": 0.4908 + }, + { + "start": 16621.46, + "end": 16624.76, + "probability": 0.5895 + }, + { + "start": 16625.0, + "end": 16628.44, + "probability": 0.8304 + }, + { + "start": 16629.06, + "end": 16630.92, + "probability": 0.9677 + }, + { + "start": 16631.94, + "end": 16636.2, + "probability": 0.9328 + }, + { + "start": 16636.38, + "end": 16638.78, + "probability": 0.9607 + }, + { + "start": 16638.92, + "end": 16640.06, + "probability": 0.9048 + }, + { + "start": 16640.14, + "end": 16641.01, + "probability": 0.9184 + }, + { + "start": 16642.22, + "end": 16648.19, + "probability": 0.9923 + }, + { + "start": 16648.92, + "end": 16650.57, + "probability": 0.8081 + }, + { + "start": 16650.82, + "end": 16653.5, + "probability": 0.9913 + }, + { + "start": 16654.32, + "end": 16655.02, + "probability": 0.7512 + }, + { + "start": 16655.1, + "end": 16655.64, + "probability": 0.9004 + }, + { + "start": 16655.84, + "end": 16658.14, + "probability": 0.8691 + }, + { + "start": 16658.18, + "end": 16663.88, + "probability": 0.9754 + }, + { + "start": 16664.12, + "end": 16664.5, + "probability": 0.4987 + }, + { + "start": 16664.64, + "end": 16664.8, + "probability": 0.8235 + }, + { + "start": 16665.1, + "end": 16670.34, + "probability": 0.9872 + }, + { + "start": 16673.2, + "end": 16673.76, + "probability": 0.4363 + }, + { + "start": 16676.36, + "end": 16678.5, + "probability": 0.2915 + }, + { + "start": 16678.6, + "end": 16683.22, + "probability": 0.9319 + }, + { + "start": 16684.08, + "end": 16686.76, + "probability": 0.9957 + }, + { + "start": 16687.72, + "end": 16690.82, + "probability": 0.8853 + }, + { + "start": 16691.26, + "end": 16692.66, + "probability": 0.8099 + }, + { + "start": 16692.66, + "end": 16693.6, + "probability": 0.7706 + }, + { + "start": 16694.26, + "end": 16695.54, + "probability": 0.939 + }, + { + "start": 16696.1, + "end": 16707.92, + "probability": 0.9188 + }, + { + "start": 16709.9, + "end": 16712.84, + "probability": 0.4799 + }, + { + "start": 16714.2, + "end": 16716.1, + "probability": 0.434 + }, + { + "start": 16716.2, + "end": 16717.72, + "probability": 0.761 + }, + { + "start": 16718.08, + "end": 16718.28, + "probability": 0.2737 + }, + { + "start": 16719.1, + "end": 16721.11, + "probability": 0.0849 + }, + { + "start": 16721.16, + "end": 16721.38, + "probability": 0.1808 + }, + { + "start": 16723.9, + "end": 16726.32, + "probability": 0.764 + }, + { + "start": 16727.66, + "end": 16729.58, + "probability": 0.9158 + }, + { + "start": 16729.74, + "end": 16737.2, + "probability": 0.9929 + }, + { + "start": 16737.2, + "end": 16742.64, + "probability": 0.9785 + }, + { + "start": 16743.6, + "end": 16745.28, + "probability": 0.5769 + }, + { + "start": 16746.3, + "end": 16747.96, + "probability": 0.9736 + }, + { + "start": 16748.1, + "end": 16749.34, + "probability": 0.9663 + }, + { + "start": 16750.36, + "end": 16753.62, + "probability": 0.9332 + }, + { + "start": 16753.92, + "end": 16755.34, + "probability": 0.723 + }, + { + "start": 16755.48, + "end": 16757.16, + "probability": 0.8704 + }, + { + "start": 16757.34, + "end": 16758.04, + "probability": 0.2739 + }, + { + "start": 16758.32, + "end": 16759.2, + "probability": 0.5041 + }, + { + "start": 16759.84, + "end": 16765.22, + "probability": 0.9071 + }, + { + "start": 16766.34, + "end": 16768.16, + "probability": 0.9766 + }, + { + "start": 16768.26, + "end": 16772.42, + "probability": 0.7501 + }, + { + "start": 16774.15, + "end": 16780.22, + "probability": 0.8918 + }, + { + "start": 16780.22, + "end": 16784.44, + "probability": 0.9525 + }, + { + "start": 16785.46, + "end": 16788.58, + "probability": 0.7817 + }, + { + "start": 16788.58, + "end": 16791.6, + "probability": 0.7465 + }, + { + "start": 16792.12, + "end": 16794.2, + "probability": 0.9326 + }, + { + "start": 16795.32, + "end": 16797.72, + "probability": 0.8628 + }, + { + "start": 16798.36, + "end": 16798.9, + "probability": 0.6739 + }, + { + "start": 16799.66, + "end": 16803.36, + "probability": 0.7571 + }, + { + "start": 16804.02, + "end": 16806.96, + "probability": 0.955 + }, + { + "start": 16807.04, + "end": 16810.7, + "probability": 0.8416 + }, + { + "start": 16811.36, + "end": 16814.34, + "probability": 0.9765 + }, + { + "start": 16814.42, + "end": 16818.06, + "probability": 0.9881 + }, + { + "start": 16818.06, + "end": 16822.68, + "probability": 0.9857 + }, + { + "start": 16824.14, + "end": 16828.88, + "probability": 0.926 + }, + { + "start": 16828.88, + "end": 16834.12, + "probability": 0.9982 + }, + { + "start": 16835.5, + "end": 16839.1, + "probability": 0.9784 + }, + { + "start": 16839.54, + "end": 16842.44, + "probability": 0.9739 + }, + { + "start": 16842.6, + "end": 16848.6, + "probability": 0.89 + }, + { + "start": 16848.64, + "end": 16850.84, + "probability": 0.9058 + }, + { + "start": 16851.98, + "end": 16853.54, + "probability": 0.9886 + }, + { + "start": 16853.8, + "end": 16854.1, + "probability": 0.4142 + }, + { + "start": 16854.24, + "end": 16857.62, + "probability": 0.8563 + }, + { + "start": 16857.72, + "end": 16860.17, + "probability": 0.7827 + }, + { + "start": 16861.18, + "end": 16863.3, + "probability": 0.8887 + }, + { + "start": 16863.3, + "end": 16866.72, + "probability": 0.965 + }, + { + "start": 16867.3, + "end": 16869.12, + "probability": 0.9809 + }, + { + "start": 16869.26, + "end": 16871.27, + "probability": 0.6975 + }, + { + "start": 16871.72, + "end": 16872.5, + "probability": 0.8314 + }, + { + "start": 16873.3, + "end": 16876.9, + "probability": 0.9637 + }, + { + "start": 16878.02, + "end": 16879.08, + "probability": 0.7358 + }, + { + "start": 16879.22, + "end": 16881.36, + "probability": 0.9189 + }, + { + "start": 16882.28, + "end": 16887.62, + "probability": 0.9954 + }, + { + "start": 16888.32, + "end": 16890.9, + "probability": 0.9381 + }, + { + "start": 16891.52, + "end": 16893.76, + "probability": 0.9324 + }, + { + "start": 16893.92, + "end": 16895.18, + "probability": 0.7777 + }, + { + "start": 16895.26, + "end": 16895.98, + "probability": 0.9177 + }, + { + "start": 16898.48, + "end": 16899.74, + "probability": 0.6254 + }, + { + "start": 16899.82, + "end": 16901.32, + "probability": 0.7861 + }, + { + "start": 16901.58, + "end": 16905.82, + "probability": 0.6485 + }, + { + "start": 16905.92, + "end": 16907.52, + "probability": 0.9361 + }, + { + "start": 16908.38, + "end": 16908.78, + "probability": 0.8498 + }, + { + "start": 16908.86, + "end": 16914.74, + "probability": 0.8999 + }, + { + "start": 16915.62, + "end": 16916.74, + "probability": 0.9446 + }, + { + "start": 16916.94, + "end": 16919.56, + "probability": 0.9676 + }, + { + "start": 16920.32, + "end": 16924.64, + "probability": 0.9191 + }, + { + "start": 16925.68, + "end": 16931.24, + "probability": 0.9067 + }, + { + "start": 16931.96, + "end": 16934.49, + "probability": 0.9594 + }, + { + "start": 16936.6, + "end": 16940.2, + "probability": 0.7079 + }, + { + "start": 16940.22, + "end": 16941.4, + "probability": 0.8617 + }, + { + "start": 16941.64, + "end": 16941.92, + "probability": 0.7118 + }, + { + "start": 16942.8, + "end": 16943.02, + "probability": 0.7308 + }, + { + "start": 16943.64, + "end": 16944.0, + "probability": 0.9631 + }, + { + "start": 16944.56, + "end": 16945.38, + "probability": 0.4575 + }, + { + "start": 16945.84, + "end": 16946.26, + "probability": 0.3129 + }, + { + "start": 16946.46, + "end": 16946.56, + "probability": 0.5621 + }, + { + "start": 16946.8, + "end": 16947.26, + "probability": 0.6251 + }, + { + "start": 16947.82, + "end": 16947.82, + "probability": 0.2662 + }, + { + "start": 16947.82, + "end": 16949.84, + "probability": 0.8164 + }, + { + "start": 16950.0, + "end": 16951.56, + "probability": 0.9565 + }, + { + "start": 16951.64, + "end": 16955.3, + "probability": 0.9535 + }, + { + "start": 16955.6, + "end": 16957.92, + "probability": 0.9476 + }, + { + "start": 16957.94, + "end": 16958.9, + "probability": 0.7745 + }, + { + "start": 16959.1, + "end": 16961.54, + "probability": 0.7994 + }, + { + "start": 16961.66, + "end": 16965.1, + "probability": 0.8323 + }, + { + "start": 16965.12, + "end": 16965.54, + "probability": 0.4906 + }, + { + "start": 16966.14, + "end": 16967.82, + "probability": 0.8931 + }, + { + "start": 16968.72, + "end": 16973.63, + "probability": 0.8928 + }, + { + "start": 16978.1, + "end": 16979.7, + "probability": 0.078 + }, + { + "start": 16982.58, + "end": 16985.24, + "probability": 0.969 + }, + { + "start": 16985.36, + "end": 16986.29, + "probability": 0.4704 + }, + { + "start": 16986.68, + "end": 16986.68, + "probability": 0.0356 + }, + { + "start": 16987.2, + "end": 16988.74, + "probability": 0.4703 + }, + { + "start": 16990.12, + "end": 16991.64, + "probability": 0.7124 + }, + { + "start": 16993.06, + "end": 16995.56, + "probability": 0.4994 + }, + { + "start": 16995.84, + "end": 16996.18, + "probability": 0.5608 + }, + { + "start": 16996.88, + "end": 16997.94, + "probability": 0.9004 + }, + { + "start": 16997.98, + "end": 17000.5, + "probability": 0.8983 + }, + { + "start": 17001.26, + "end": 17004.16, + "probability": 0.9631 + }, + { + "start": 17004.32, + "end": 17004.74, + "probability": 0.7046 + }, + { + "start": 17004.82, + "end": 17005.45, + "probability": 0.5946 + }, + { + "start": 17006.22, + "end": 17008.96, + "probability": 0.9177 + }, + { + "start": 17009.38, + "end": 17014.0, + "probability": 0.6838 + }, + { + "start": 17014.04, + "end": 17014.72, + "probability": 0.803 + }, + { + "start": 17014.82, + "end": 17015.1, + "probability": 0.4744 + }, + { + "start": 17015.18, + "end": 17015.54, + "probability": 0.7512 + }, + { + "start": 17015.6, + "end": 17016.0, + "probability": 0.8114 + }, + { + "start": 17016.62, + "end": 17019.92, + "probability": 0.9976 + }, + { + "start": 17019.92, + "end": 17023.76, + "probability": 0.9712 + }, + { + "start": 17023.96, + "end": 17024.48, + "probability": 0.9619 + }, + { + "start": 17025.88, + "end": 17028.56, + "probability": 0.1328 + }, + { + "start": 17028.6, + "end": 17029.76, + "probability": 0.7012 + }, + { + "start": 17029.8, + "end": 17032.0, + "probability": 0.4943 + }, + { + "start": 17032.34, + "end": 17032.96, + "probability": 0.9001 + }, + { + "start": 17033.04, + "end": 17035.78, + "probability": 0.8967 + }, + { + "start": 17036.12, + "end": 17038.22, + "probability": 0.9609 + }, + { + "start": 17038.9, + "end": 17039.64, + "probability": 0.7164 + }, + { + "start": 17040.96, + "end": 17044.84, + "probability": 0.7339 + }, + { + "start": 17044.92, + "end": 17045.82, + "probability": 0.6881 + }, + { + "start": 17046.14, + "end": 17047.2, + "probability": 0.2333 + }, + { + "start": 17048.24, + "end": 17048.3, + "probability": 0.0943 + }, + { + "start": 17048.3, + "end": 17051.1, + "probability": 0.9028 + }, + { + "start": 17051.72, + "end": 17052.79, + "probability": 0.3633 + }, + { + "start": 17053.5, + "end": 17053.84, + "probability": 0.021 + }, + { + "start": 17053.84, + "end": 17055.98, + "probability": 0.3874 + }, + { + "start": 17056.16, + "end": 17057.22, + "probability": 0.3902 + }, + { + "start": 17057.36, + "end": 17057.36, + "probability": 0.0549 + }, + { + "start": 17057.36, + "end": 17059.84, + "probability": 0.3209 + }, + { + "start": 17059.92, + "end": 17062.04, + "probability": 0.9416 + }, + { + "start": 17062.1, + "end": 17063.76, + "probability": 0.7256 + }, + { + "start": 17065.55, + "end": 17068.38, + "probability": 0.3218 + }, + { + "start": 17068.38, + "end": 17068.7, + "probability": 0.0691 + }, + { + "start": 17068.7, + "end": 17069.1, + "probability": 0.1977 + }, + { + "start": 17069.62, + "end": 17072.34, + "probability": 0.8584 + }, + { + "start": 17072.98, + "end": 17074.06, + "probability": 0.9374 + }, + { + "start": 17074.1, + "end": 17074.94, + "probability": 0.6809 + }, + { + "start": 17075.54, + "end": 17077.44, + "probability": 0.3059 + }, + { + "start": 17077.6, + "end": 17078.34, + "probability": 0.7036 + }, + { + "start": 17078.58, + "end": 17078.72, + "probability": 0.1246 + }, + { + "start": 17080.3, + "end": 17086.48, + "probability": 0.8463 + }, + { + "start": 17088.1, + "end": 17089.9, + "probability": 0.8608 + }, + { + "start": 17090.84, + "end": 17094.3, + "probability": 0.9184 + }, + { + "start": 17094.7, + "end": 17095.96, + "probability": 0.1545 + }, + { + "start": 17096.16, + "end": 17096.77, + "probability": 0.3897 + }, + { + "start": 17097.48, + "end": 17097.9, + "probability": 0.4615 + }, + { + "start": 17098.0, + "end": 17099.1, + "probability": 0.9335 + }, + { + "start": 17099.16, + "end": 17099.58, + "probability": 0.9283 + }, + { + "start": 17100.1, + "end": 17102.14, + "probability": 0.9897 + }, + { + "start": 17102.81, + "end": 17104.31, + "probability": 0.8823 + }, + { + "start": 17104.94, + "end": 17106.64, + "probability": 0.9653 + }, + { + "start": 17106.9, + "end": 17109.74, + "probability": 0.8359 + }, + { + "start": 17110.02, + "end": 17111.06, + "probability": 0.7254 + }, + { + "start": 17124.26, + "end": 17127.2, + "probability": 0.2406 + }, + { + "start": 17127.46, + "end": 17130.78, + "probability": 0.9756 + }, + { + "start": 17131.22, + "end": 17134.62, + "probability": 0.9417 + }, + { + "start": 17134.72, + "end": 17135.04, + "probability": 0.7686 + }, + { + "start": 17135.24, + "end": 17135.74, + "probability": 0.6664 + }, + { + "start": 17135.78, + "end": 17136.38, + "probability": 0.5147 + }, + { + "start": 17137.68, + "end": 17139.68, + "probability": 0.9412 + }, + { + "start": 17156.54, + "end": 17157.4, + "probability": 0.3272 + }, + { + "start": 17158.36, + "end": 17159.24, + "probability": 0.2389 + }, + { + "start": 17159.24, + "end": 17159.24, + "probability": 0.4553 + }, + { + "start": 17161.91, + "end": 17165.52, + "probability": 0.6835 + }, + { + "start": 17165.62, + "end": 17169.92, + "probability": 0.9908 + }, + { + "start": 17171.04, + "end": 17174.32, + "probability": 0.6319 + }, + { + "start": 17174.38, + "end": 17175.76, + "probability": 0.8665 + }, + { + "start": 17176.18, + "end": 17179.38, + "probability": 0.9403 + }, + { + "start": 17179.62, + "end": 17180.12, + "probability": 0.6955 + }, + { + "start": 17182.04, + "end": 17184.82, + "probability": 0.4364 + }, + { + "start": 17184.82, + "end": 17186.64, + "probability": 0.8439 + }, + { + "start": 17186.74, + "end": 17192.02, + "probability": 0.9818 + }, + { + "start": 17192.02, + "end": 17195.0, + "probability": 0.4044 + }, + { + "start": 17195.0, + "end": 17195.0, + "probability": 0.0172 + }, + { + "start": 17195.0, + "end": 17196.8, + "probability": 0.9792 + }, + { + "start": 17197.48, + "end": 17197.96, + "probability": 0.5916 + }, + { + "start": 17197.96, + "end": 17199.94, + "probability": 0.988 + }, + { + "start": 17199.94, + "end": 17202.56, + "probability": 0.8521 + }, + { + "start": 17202.62, + "end": 17206.4, + "probability": 0.974 + }, + { + "start": 17206.4, + "end": 17211.5, + "probability": 0.9214 + }, + { + "start": 17211.97, + "end": 17213.68, + "probability": 0.9224 + }, + { + "start": 17213.78, + "end": 17214.36, + "probability": 0.9084 + }, + { + "start": 17214.56, + "end": 17214.78, + "probability": 0.7727 + }, + { + "start": 17215.74, + "end": 17216.36, + "probability": 0.8248 + }, + { + "start": 17217.46, + "end": 17218.78, + "probability": 0.0726 + }, + { + "start": 17219.52, + "end": 17221.93, + "probability": 0.9238 + }, + { + "start": 17222.48, + "end": 17223.58, + "probability": 0.0883 + }, + { + "start": 17223.58, + "end": 17223.58, + "probability": 0.2462 + }, + { + "start": 17223.58, + "end": 17223.58, + "probability": 0.2433 + }, + { + "start": 17223.58, + "end": 17223.58, + "probability": 0.1473 + }, + { + "start": 17223.58, + "end": 17225.06, + "probability": 0.7744 + }, + { + "start": 17225.06, + "end": 17226.76, + "probability": 0.9523 + }, + { + "start": 17227.76, + "end": 17230.12, + "probability": 0.8768 + }, + { + "start": 17230.72, + "end": 17232.02, + "probability": 0.6474 + }, + { + "start": 17232.38, + "end": 17232.59, + "probability": 0.435 + }, + { + "start": 17232.8, + "end": 17234.22, + "probability": 0.9424 + }, + { + "start": 17235.58, + "end": 17236.44, + "probability": 0.4662 + }, + { + "start": 17236.62, + "end": 17237.22, + "probability": 0.5781 + }, + { + "start": 17240.14, + "end": 17240.24, + "probability": 0.9526 + }, + { + "start": 17242.04, + "end": 17242.56, + "probability": 0.0686 + }, + { + "start": 17244.3, + "end": 17246.06, + "probability": 0.564 + }, + { + "start": 17246.52, + "end": 17247.1, + "probability": 0.5084 + }, + { + "start": 17247.3, + "end": 17248.94, + "probability": 0.9844 + }, + { + "start": 17252.6, + "end": 17254.7, + "probability": 0.9163 + }, + { + "start": 17255.0, + "end": 17256.02, + "probability": 0.654 + }, + { + "start": 17256.12, + "end": 17256.26, + "probability": 0.6352 + }, + { + "start": 17256.26, + "end": 17256.76, + "probability": 0.3611 + }, + { + "start": 17256.82, + "end": 17257.84, + "probability": 0.9778 + }, + { + "start": 17258.16, + "end": 17258.52, + "probability": 0.919 + }, + { + "start": 17261.58, + "end": 17262.38, + "probability": 0.2675 + }, + { + "start": 17263.04, + "end": 17263.34, + "probability": 0.0347 + }, + { + "start": 17263.34, + "end": 17263.34, + "probability": 0.3543 + }, + { + "start": 17263.34, + "end": 17263.76, + "probability": 0.2711 + }, + { + "start": 17264.84, + "end": 17265.26, + "probability": 0.4234 + }, + { + "start": 17265.56, + "end": 17265.56, + "probability": 0.563 + }, + { + "start": 17265.62, + "end": 17267.7, + "probability": 0.8798 + }, + { + "start": 17268.68, + "end": 17269.62, + "probability": 0.8167 + }, + { + "start": 17271.82, + "end": 17272.96, + "probability": 0.9604 + }, + { + "start": 17274.52, + "end": 17277.38, + "probability": 0.9191 + }, + { + "start": 17277.92, + "end": 17279.8, + "probability": 0.5876 + }, + { + "start": 17279.86, + "end": 17280.68, + "probability": 0.7021 + }, + { + "start": 17280.8, + "end": 17281.1, + "probability": 0.5189 + }, + { + "start": 17281.48, + "end": 17281.8, + "probability": 0.7368 + }, + { + "start": 17281.82, + "end": 17282.42, + "probability": 0.8815 + }, + { + "start": 17283.7, + "end": 17284.62, + "probability": 0.9135 + }, + { + "start": 17285.52, + "end": 17286.72, + "probability": 0.9589 + }, + { + "start": 17287.8, + "end": 17291.86, + "probability": 0.7281 + }, + { + "start": 17294.3, + "end": 17294.62, + "probability": 0.3682 + }, + { + "start": 17295.24, + "end": 17295.71, + "probability": 0.5775 + }, + { + "start": 17296.06, + "end": 17298.36, + "probability": 0.5372 + }, + { + "start": 17298.36, + "end": 17298.36, + "probability": 0.5016 + }, + { + "start": 17298.52, + "end": 17299.18, + "probability": 0.8202 + }, + { + "start": 17299.2, + "end": 17300.27, + "probability": 0.7943 + }, + { + "start": 17301.14, + "end": 17306.9, + "probability": 0.4525 + }, + { + "start": 17307.5, + "end": 17307.58, + "probability": 0.023 + }, + { + "start": 17307.58, + "end": 17307.58, + "probability": 0.0689 + }, + { + "start": 17307.58, + "end": 17307.58, + "probability": 0.0755 + }, + { + "start": 17307.58, + "end": 17311.54, + "probability": 0.7494 + }, + { + "start": 17312.56, + "end": 17314.54, + "probability": 0.991 + }, + { + "start": 17314.62, + "end": 17316.28, + "probability": 0.9923 + }, + { + "start": 17316.98, + "end": 17323.1, + "probability": 0.9958 + }, + { + "start": 17323.14, + "end": 17324.74, + "probability": 0.9411 + }, + { + "start": 17326.02, + "end": 17330.86, + "probability": 0.7153 + }, + { + "start": 17331.52, + "end": 17332.12, + "probability": 0.702 + }, + { + "start": 17332.28, + "end": 17333.4, + "probability": 0.7957 + }, + { + "start": 17333.4, + "end": 17334.58, + "probability": 0.5107 + }, + { + "start": 17335.44, + "end": 17338.2, + "probability": 0.1881 + }, + { + "start": 17338.78, + "end": 17338.98, + "probability": 0.5557 + }, + { + "start": 17338.98, + "end": 17338.98, + "probability": 0.0278 + }, + { + "start": 17338.98, + "end": 17341.38, + "probability": 0.8182 + }, + { + "start": 17341.78, + "end": 17345.06, + "probability": 0.9642 + }, + { + "start": 17346.06, + "end": 17346.78, + "probability": 0.6793 + }, + { + "start": 17347.8, + "end": 17351.27, + "probability": 0.0934 + }, + { + "start": 17353.14, + "end": 17353.56, + "probability": 0.0006 + }, + { + "start": 17354.34, + "end": 17354.34, + "probability": 0.1095 + }, + { + "start": 17354.34, + "end": 17354.34, + "probability": 0.2639 + }, + { + "start": 17354.34, + "end": 17354.34, + "probability": 0.5435 + }, + { + "start": 17354.34, + "end": 17354.34, + "probability": 0.0175 + }, + { + "start": 17354.34, + "end": 17354.34, + "probability": 0.4502 + }, + { + "start": 17354.34, + "end": 17354.94, + "probability": 0.6317 + }, + { + "start": 17355.72, + "end": 17360.2, + "probability": 0.8511 + }, + { + "start": 17360.2, + "end": 17362.18, + "probability": 0.9277 + }, + { + "start": 17362.28, + "end": 17365.36, + "probability": 0.8582 + }, + { + "start": 17366.2, + "end": 17367.08, + "probability": 0.9656 + }, + { + "start": 17368.3, + "end": 17369.41, + "probability": 0.999 + }, + { + "start": 17369.88, + "end": 17371.79, + "probability": 0.9832 + }, + { + "start": 17372.24, + "end": 17375.54, + "probability": 0.9303 + }, + { + "start": 17376.44, + "end": 17377.92, + "probability": 0.9783 + }, + { + "start": 17379.38, + "end": 17382.94, + "probability": 0.9606 + }, + { + "start": 17383.28, + "end": 17384.12, + "probability": 0.5047 + }, + { + "start": 17384.38, + "end": 17385.38, + "probability": 0.7598 + }, + { + "start": 17385.46, + "end": 17388.66, + "probability": 0.8934 + }, + { + "start": 17389.08, + "end": 17391.38, + "probability": 0.9951 + }, + { + "start": 17391.68, + "end": 17394.74, + "probability": 0.9536 + }, + { + "start": 17394.96, + "end": 17395.42, + "probability": 0.8837 + }, + { + "start": 17396.28, + "end": 17397.42, + "probability": 0.7115 + }, + { + "start": 17398.42, + "end": 17400.62, + "probability": 0.8849 + }, + { + "start": 17401.44, + "end": 17401.66, + "probability": 0.4844 + }, + { + "start": 17401.76, + "end": 17403.72, + "probability": 0.9041 + }, + { + "start": 17404.46, + "end": 17408.46, + "probability": 0.951 + }, + { + "start": 17409.0, + "end": 17412.04, + "probability": 0.8589 + }, + { + "start": 17412.54, + "end": 17414.68, + "probability": 0.9715 + }, + { + "start": 17415.15, + "end": 17417.44, + "probability": 0.6406 + }, + { + "start": 17417.48, + "end": 17418.34, + "probability": 0.7963 + }, + { + "start": 17418.38, + "end": 17422.48, + "probability": 0.8541 + }, + { + "start": 17422.6, + "end": 17423.85, + "probability": 0.9907 + }, + { + "start": 17424.46, + "end": 17429.16, + "probability": 0.861 + }, + { + "start": 17429.9, + "end": 17432.88, + "probability": 0.0983 + }, + { + "start": 17434.22, + "end": 17434.72, + "probability": 0.0736 + }, + { + "start": 17434.72, + "end": 17435.34, + "probability": 0.0368 + }, + { + "start": 17436.88, + "end": 17438.88, + "probability": 0.8407 + }, + { + "start": 17439.44, + "end": 17441.9, + "probability": 0.9099 + }, + { + "start": 17443.36, + "end": 17443.36, + "probability": 0.0325 + }, + { + "start": 17443.84, + "end": 17445.14, + "probability": 0.382 + }, + { + "start": 17445.34, + "end": 17447.64, + "probability": 0.9596 + }, + { + "start": 17447.76, + "end": 17448.78, + "probability": 0.6298 + }, + { + "start": 17448.92, + "end": 17451.64, + "probability": 0.9535 + }, + { + "start": 17452.54, + "end": 17455.62, + "probability": 0.5986 + }, + { + "start": 17456.16, + "end": 17456.8, + "probability": 0.5184 + }, + { + "start": 17456.8, + "end": 17457.74, + "probability": 0.0432 + }, + { + "start": 17457.74, + "end": 17460.3, + "probability": 0.1958 + }, + { + "start": 17460.7, + "end": 17465.66, + "probability": 0.3449 + }, + { + "start": 17465.84, + "end": 17468.4, + "probability": 0.3059 + }, + { + "start": 17469.28, + "end": 17470.18, + "probability": 0.0791 + }, + { + "start": 17470.18, + "end": 17470.88, + "probability": 0.3211 + }, + { + "start": 17470.96, + "end": 17472.06, + "probability": 0.0424 + }, + { + "start": 17472.06, + "end": 17472.69, + "probability": 0.0504 + }, + { + "start": 17473.12, + "end": 17475.22, + "probability": 0.2239 + }, + { + "start": 17476.91, + "end": 17478.0, + "probability": 0.012 + }, + { + "start": 17480.16, + "end": 17480.36, + "probability": 0.0427 + }, + { + "start": 17480.36, + "end": 17480.36, + "probability": 0.0542 + }, + { + "start": 17480.36, + "end": 17480.36, + "probability": 0.0904 + }, + { + "start": 17480.36, + "end": 17480.99, + "probability": 0.0831 + }, + { + "start": 17481.46, + "end": 17485.16, + "probability": 0.9808 + }, + { + "start": 17485.16, + "end": 17485.18, + "probability": 0.4951 + }, + { + "start": 17485.18, + "end": 17485.74, + "probability": 0.3601 + }, + { + "start": 17485.94, + "end": 17487.55, + "probability": 0.7003 + }, + { + "start": 17488.68, + "end": 17489.78, + "probability": 0.1817 + }, + { + "start": 17492.6, + "end": 17493.06, + "probability": 0.0778 + }, + { + "start": 17493.58, + "end": 17494.02, + "probability": 0.0312 + }, + { + "start": 17494.02, + "end": 17494.02, + "probability": 0.1878 + }, + { + "start": 17494.02, + "end": 17495.88, + "probability": 0.4685 + }, + { + "start": 17495.88, + "end": 17496.44, + "probability": 0.8804 + }, + { + "start": 17496.94, + "end": 17497.26, + "probability": 0.9097 + }, + { + "start": 17497.64, + "end": 17499.94, + "probability": 0.8039 + }, + { + "start": 17502.65, + "end": 17504.26, + "probability": 0.5205 + }, + { + "start": 17508.0, + "end": 17511.2, + "probability": 0.5456 + }, + { + "start": 17511.2, + "end": 17511.2, + "probability": 0.0829 + }, + { + "start": 17511.32, + "end": 17514.08, + "probability": 0.2336 + }, + { + "start": 17514.56, + "end": 17516.18, + "probability": 0.3111 + }, + { + "start": 17516.18, + "end": 17519.44, + "probability": 0.1404 + }, + { + "start": 17521.48, + "end": 17521.82, + "probability": 0.279 + }, + { + "start": 17521.82, + "end": 17521.82, + "probability": 0.0394 + }, + { + "start": 17521.82, + "end": 17521.82, + "probability": 0.0311 + }, + { + "start": 17521.82, + "end": 17521.82, + "probability": 0.3021 + }, + { + "start": 17521.82, + "end": 17521.82, + "probability": 0.4871 + }, + { + "start": 17521.82, + "end": 17522.62, + "probability": 0.0236 + }, + { + "start": 17522.76, + "end": 17524.18, + "probability": 0.9016 + }, + { + "start": 17524.46, + "end": 17526.81, + "probability": 0.545 + }, + { + "start": 17527.34, + "end": 17527.74, + "probability": 0.6173 + }, + { + "start": 17527.92, + "end": 17530.7, + "probability": 0.0202 + }, + { + "start": 17535.0, + "end": 17535.0, + "probability": 0.0 + }, + { + "start": 17535.0, + "end": 17535.0, + "probability": 0.0 + }, + { + "start": 17535.0, + "end": 17535.0, + "probability": 0.0 + }, + { + "start": 17535.0, + "end": 17535.0, + "probability": 0.0 + }, + { + "start": 17535.0, + "end": 17535.0, + "probability": 0.0 + }, + { + "start": 17535.26, + "end": 17536.42, + "probability": 0.0269 + }, + { + "start": 17536.8, + "end": 17537.28, + "probability": 0.197 + }, + { + "start": 17537.28, + "end": 17539.84, + "probability": 0.1091 + }, + { + "start": 17540.02, + "end": 17540.02, + "probability": 0.1492 + }, + { + "start": 17540.02, + "end": 17540.78, + "probability": 0.5147 + }, + { + "start": 17541.3, + "end": 17542.7, + "probability": 0.1404 + }, + { + "start": 17542.7, + "end": 17544.98, + "probability": 0.6576 + }, + { + "start": 17545.48, + "end": 17546.71, + "probability": 0.9367 + }, + { + "start": 17547.44, + "end": 17548.0, + "probability": 0.7188 + }, + { + "start": 17548.12, + "end": 17549.94, + "probability": 0.1374 + }, + { + "start": 17549.94, + "end": 17554.58, + "probability": 0.3768 + }, + { + "start": 17555.08, + "end": 17555.62, + "probability": 0.3095 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17679.0, + "end": 17679.0, + "probability": 0.0 + }, + { + "start": 17728.88, + "end": 17731.78, + "probability": 0.093 + }, + { + "start": 17732.36, + "end": 17733.36, + "probability": 0.0273 + }, + { + "start": 17733.36, + "end": 17735.32, + "probability": 0.036 + }, + { + "start": 17750.22, + "end": 17754.82, + "probability": 0.0066 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.0, + "end": 17807.0, + "probability": 0.0 + }, + { + "start": 17807.14, + "end": 17810.88, + "probability": 0.7838 + }, + { + "start": 17812.44, + "end": 17814.08, + "probability": 0.978 + }, + { + "start": 17814.58, + "end": 17817.62, + "probability": 0.9152 + }, + { + "start": 17818.22, + "end": 17820.46, + "probability": 0.9985 + }, + { + "start": 17822.32, + "end": 17823.86, + "probability": 0.9714 + }, + { + "start": 17824.1, + "end": 17824.36, + "probability": 0.3942 + }, + { + "start": 17824.74, + "end": 17826.26, + "probability": 0.9045 + }, + { + "start": 17827.26, + "end": 17828.38, + "probability": 0.9985 + }, + { + "start": 17829.62, + "end": 17832.64, + "probability": 0.9732 + }, + { + "start": 17834.22, + "end": 17836.36, + "probability": 0.9844 + }, + { + "start": 17837.02, + "end": 17839.64, + "probability": 0.9697 + }, + { + "start": 17840.94, + "end": 17843.92, + "probability": 0.9247 + }, + { + "start": 17845.02, + "end": 17847.96, + "probability": 0.9663 + }, + { + "start": 17848.56, + "end": 17849.92, + "probability": 0.9163 + }, + { + "start": 17850.8, + "end": 17851.72, + "probability": 0.9814 + }, + { + "start": 17852.76, + "end": 17856.44, + "probability": 0.9944 + }, + { + "start": 17857.64, + "end": 17860.4, + "probability": 0.9937 + }, + { + "start": 17861.06, + "end": 17861.46, + "probability": 0.4259 + }, + { + "start": 17861.52, + "end": 17864.54, + "probability": 0.9861 + }, + { + "start": 17864.68, + "end": 17865.25, + "probability": 0.9924 + }, + { + "start": 17865.58, + "end": 17866.54, + "probability": 0.9604 + }, + { + "start": 17866.88, + "end": 17868.04, + "probability": 0.9901 + }, + { + "start": 17868.26, + "end": 17869.18, + "probability": 0.9606 + }, + { + "start": 17870.28, + "end": 17875.86, + "probability": 0.9958 + }, + { + "start": 17876.42, + "end": 17878.26, + "probability": 0.9956 + }, + { + "start": 17878.8, + "end": 17882.46, + "probability": 0.9763 + }, + { + "start": 17883.44, + "end": 17883.76, + "probability": 0.506 + }, + { + "start": 17883.98, + "end": 17887.96, + "probability": 0.9939 + }, + { + "start": 17888.1, + "end": 17888.34, + "probability": 0.6271 + }, + { + "start": 17888.44, + "end": 17888.5, + "probability": 0.8984 + }, + { + "start": 17888.84, + "end": 17889.0, + "probability": 0.7378 + }, + { + "start": 17889.34, + "end": 17890.34, + "probability": 0.9637 + }, + { + "start": 17890.64, + "end": 17892.84, + "probability": 0.8387 + }, + { + "start": 17894.04, + "end": 17894.68, + "probability": 0.881 + }, + { + "start": 17895.36, + "end": 17897.04, + "probability": 0.8486 + }, + { + "start": 17897.76, + "end": 17898.54, + "probability": 0.7681 + }, + { + "start": 17899.26, + "end": 17900.78, + "probability": 0.9618 + }, + { + "start": 17901.46, + "end": 17904.7, + "probability": 0.9606 + }, + { + "start": 17904.7, + "end": 17908.02, + "probability": 0.9974 + }, + { + "start": 17909.22, + "end": 17910.24, + "probability": 0.9529 + }, + { + "start": 17911.04, + "end": 17915.4, + "probability": 0.6168 + }, + { + "start": 17915.4, + "end": 17922.5, + "probability": 0.997 + }, + { + "start": 17923.3, + "end": 17926.38, + "probability": 0.919 + }, + { + "start": 17927.1, + "end": 17932.74, + "probability": 0.9961 + }, + { + "start": 17932.86, + "end": 17933.52, + "probability": 0.6231 + }, + { + "start": 17935.24, + "end": 17938.6, + "probability": 0.8763 + }, + { + "start": 17939.12, + "end": 17939.34, + "probability": 0.0432 + }, + { + "start": 17939.34, + "end": 17941.34, + "probability": 0.9459 + }, + { + "start": 17941.36, + "end": 17941.98, + "probability": 0.0936 + }, + { + "start": 17942.04, + "end": 17944.48, + "probability": 0.8815 + }, + { + "start": 17945.08, + "end": 17947.98, + "probability": 0.8445 + }, + { + "start": 17948.46, + "end": 17953.72, + "probability": 0.9975 + }, + { + "start": 17953.72, + "end": 17960.4, + "probability": 0.9927 + }, + { + "start": 17961.16, + "end": 17965.92, + "probability": 0.9808 + }, + { + "start": 17966.64, + "end": 17971.4, + "probability": 0.9937 + }, + { + "start": 17972.46, + "end": 17975.24, + "probability": 0.918 + }, + { + "start": 17975.8, + "end": 17978.32, + "probability": 0.9313 + }, + { + "start": 17979.12, + "end": 17982.3, + "probability": 0.9954 + }, + { + "start": 17982.92, + "end": 17983.7, + "probability": 0.9929 + }, + { + "start": 17983.72, + "end": 17986.3, + "probability": 0.9956 + }, + { + "start": 17986.38, + "end": 17988.48, + "probability": 0.9164 + }, + { + "start": 17988.62, + "end": 17990.61, + "probability": 0.8078 + }, + { + "start": 17991.44, + "end": 17992.74, + "probability": 0.8578 + }, + { + "start": 17993.22, + "end": 17994.79, + "probability": 0.9126 + }, + { + "start": 17995.38, + "end": 17996.76, + "probability": 0.7957 + }, + { + "start": 17997.46, + "end": 17998.56, + "probability": 0.9149 + }, + { + "start": 17999.46, + "end": 18004.2, + "probability": 0.9725 + }, + { + "start": 18004.64, + "end": 18008.44, + "probability": 0.9875 + }, + { + "start": 18009.62, + "end": 18011.88, + "probability": 0.9445 + }, + { + "start": 18012.44, + "end": 18013.82, + "probability": 0.9519 + }, + { + "start": 18014.34, + "end": 18017.68, + "probability": 0.9897 + }, + { + "start": 18018.36, + "end": 18019.58, + "probability": 0.9465 + }, + { + "start": 18019.96, + "end": 18022.76, + "probability": 0.9816 + }, + { + "start": 18023.1, + "end": 18025.26, + "probability": 0.9907 + }, + { + "start": 18025.32, + "end": 18026.3, + "probability": 0.577 + }, + { + "start": 18026.92, + "end": 18028.64, + "probability": 0.7522 + }, + { + "start": 18029.32, + "end": 18030.06, + "probability": 0.9213 + }, + { + "start": 18030.58, + "end": 18031.1, + "probability": 0.771 + }, + { + "start": 18031.72, + "end": 18033.12, + "probability": 0.981 + }, + { + "start": 18034.84, + "end": 18036.22, + "probability": 0.9068 + }, + { + "start": 18037.16, + "end": 18039.24, + "probability": 0.9705 + }, + { + "start": 18039.6, + "end": 18040.06, + "probability": 0.9462 + }, + { + "start": 18041.68, + "end": 18041.9, + "probability": 0.1685 + }, + { + "start": 18041.98, + "end": 18044.0, + "probability": 0.9805 + }, + { + "start": 18044.04, + "end": 18044.43, + "probability": 0.9448 + }, + { + "start": 18044.84, + "end": 18046.36, + "probability": 0.8845 + }, + { + "start": 18047.14, + "end": 18048.05, + "probability": 0.9985 + }, + { + "start": 18048.66, + "end": 18052.06, + "probability": 0.9981 + }, + { + "start": 18052.4, + "end": 18053.68, + "probability": 0.9256 + }, + { + "start": 18054.22, + "end": 18055.02, + "probability": 0.9182 + }, + { + "start": 18055.58, + "end": 18063.06, + "probability": 0.9927 + }, + { + "start": 18063.1, + "end": 18064.52, + "probability": 0.8743 + }, + { + "start": 18064.52, + "end": 18065.76, + "probability": 0.7519 + }, + { + "start": 18066.04, + "end": 18066.64, + "probability": 0.685 + }, + { + "start": 18066.72, + "end": 18067.86, + "probability": 0.9905 + }, + { + "start": 18068.44, + "end": 18071.52, + "probability": 0.944 + }, + { + "start": 18072.04, + "end": 18075.04, + "probability": 0.9883 + }, + { + "start": 18075.68, + "end": 18078.24, + "probability": 0.9966 + }, + { + "start": 18078.96, + "end": 18080.76, + "probability": 0.8323 + }, + { + "start": 18081.38, + "end": 18085.92, + "probability": 0.9824 + }, + { + "start": 18086.3, + "end": 18087.0, + "probability": 0.6427 + }, + { + "start": 18087.4, + "end": 18090.26, + "probability": 0.9844 + }, + { + "start": 18090.4, + "end": 18090.88, + "probability": 0.7759 + }, + { + "start": 18091.56, + "end": 18092.12, + "probability": 0.7957 + }, + { + "start": 18092.88, + "end": 18094.76, + "probability": 0.9393 + }, + { + "start": 18108.3, + "end": 18108.3, + "probability": 0.0956 + }, + { + "start": 18108.3, + "end": 18108.3, + "probability": 0.1618 + }, + { + "start": 18108.3, + "end": 18108.3, + "probability": 0.0654 + }, + { + "start": 18108.3, + "end": 18108.3, + "probability": 0.2018 + }, + { + "start": 18126.16, + "end": 18133.9, + "probability": 0.8775 + }, + { + "start": 18134.22, + "end": 18135.12, + "probability": 0.9935 + }, + { + "start": 18136.02, + "end": 18136.72, + "probability": 0.886 + }, + { + "start": 18136.72, + "end": 18141.44, + "probability": 0.7673 + }, + { + "start": 18142.04, + "end": 18147.6, + "probability": 0.9669 + }, + { + "start": 18148.8, + "end": 18149.64, + "probability": 0.3972 + }, + { + "start": 18149.74, + "end": 18152.32, + "probability": 0.7655 + }, + { + "start": 18152.38, + "end": 18154.18, + "probability": 0.9842 + }, + { + "start": 18155.08, + "end": 18160.02, + "probability": 0.9563 + }, + { + "start": 18160.84, + "end": 18165.51, + "probability": 0.9946 + }, + { + "start": 18165.68, + "end": 18169.38, + "probability": 0.9658 + }, + { + "start": 18169.66, + "end": 18171.18, + "probability": 0.5433 + }, + { + "start": 18171.34, + "end": 18171.98, + "probability": 0.843 + }, + { + "start": 18172.06, + "end": 18173.1, + "probability": 0.9254 + }, + { + "start": 18173.18, + "end": 18175.9, + "probability": 0.8955 + }, + { + "start": 18176.34, + "end": 18179.06, + "probability": 0.9634 + }, + { + "start": 18180.76, + "end": 18183.32, + "probability": 0.6887 + }, + { + "start": 18183.72, + "end": 18185.32, + "probability": 0.875 + }, + { + "start": 18185.42, + "end": 18186.0, + "probability": 0.7643 + }, + { + "start": 18186.84, + "end": 18187.62, + "probability": 0.8289 + }, + { + "start": 18187.68, + "end": 18190.04, + "probability": 0.9809 + }, + { + "start": 18190.38, + "end": 18195.34, + "probability": 0.9438 + }, + { + "start": 18195.34, + "end": 18199.24, + "probability": 0.8774 + }, + { + "start": 18199.36, + "end": 18199.68, + "probability": 0.6636 + }, + { + "start": 18199.72, + "end": 18200.78, + "probability": 0.7672 + }, + { + "start": 18201.2, + "end": 18205.66, + "probability": 0.9796 + }, + { + "start": 18207.34, + "end": 18207.44, + "probability": 0.2102 + }, + { + "start": 18207.44, + "end": 18210.28, + "probability": 0.9745 + }, + { + "start": 18210.62, + "end": 18212.18, + "probability": 0.9864 + }, + { + "start": 18212.58, + "end": 18213.88, + "probability": 0.8551 + }, + { + "start": 18215.74, + "end": 18218.08, + "probability": 0.9384 + }, + { + "start": 18218.8, + "end": 18222.84, + "probability": 0.9549 + }, + { + "start": 18223.66, + "end": 18227.81, + "probability": 0.9971 + }, + { + "start": 18228.2, + "end": 18231.46, + "probability": 0.9073 + }, + { + "start": 18231.64, + "end": 18233.78, + "probability": 0.7192 + }, + { + "start": 18233.88, + "end": 18234.78, + "probability": 0.6553 + }, + { + "start": 18235.28, + "end": 18236.68, + "probability": 0.9269 + }, + { + "start": 18236.76, + "end": 18241.14, + "probability": 0.9819 + }, + { + "start": 18241.68, + "end": 18245.86, + "probability": 0.993 + }, + { + "start": 18245.86, + "end": 18249.22, + "probability": 0.9779 + }, + { + "start": 18250.08, + "end": 18254.24, + "probability": 0.9907 + }, + { + "start": 18254.86, + "end": 18255.4, + "probability": 0.751 + }, + { + "start": 18256.32, + "end": 18258.68, + "probability": 0.8973 + }, + { + "start": 18259.22, + "end": 18262.56, + "probability": 0.8553 + }, + { + "start": 18263.6, + "end": 18266.44, + "probability": 0.9658 + }, + { + "start": 18266.44, + "end": 18269.44, + "probability": 0.9894 + }, + { + "start": 18270.04, + "end": 18272.42, + "probability": 0.9028 + }, + { + "start": 18272.82, + "end": 18273.44, + "probability": 0.0074 + }, + { + "start": 18273.44, + "end": 18276.9, + "probability": 0.9549 + }, + { + "start": 18276.9, + "end": 18280.3, + "probability": 0.9811 + }, + { + "start": 18280.72, + "end": 18283.4, + "probability": 0.9572 + }, + { + "start": 18283.5, + "end": 18284.1, + "probability": 0.6809 + }, + { + "start": 18284.56, + "end": 18287.94, + "probability": 0.993 + }, + { + "start": 18288.64, + "end": 18289.32, + "probability": 0.5481 + }, + { + "start": 18289.36, + "end": 18289.92, + "probability": 0.896 + }, + { + "start": 18290.14, + "end": 18293.1, + "probability": 0.8811 + }, + { + "start": 18293.58, + "end": 18295.2, + "probability": 0.6621 + }, + { + "start": 18295.44, + "end": 18299.4, + "probability": 0.9965 + }, + { + "start": 18300.94, + "end": 18300.96, + "probability": 0.0297 + }, + { + "start": 18300.98, + "end": 18302.12, + "probability": 0.7678 + }, + { + "start": 18302.26, + "end": 18306.28, + "probability": 0.9974 + }, + { + "start": 18306.62, + "end": 18307.24, + "probability": 0.8248 + }, + { + "start": 18307.26, + "end": 18308.94, + "probability": 0.9832 + }, + { + "start": 18309.3, + "end": 18310.5, + "probability": 0.952 + }, + { + "start": 18310.84, + "end": 18311.18, + "probability": 0.6609 + }, + { + "start": 18311.26, + "end": 18315.52, + "probability": 0.9832 + }, + { + "start": 18315.52, + "end": 18319.54, + "probability": 0.9995 + }, + { + "start": 18319.94, + "end": 18321.7, + "probability": 0.6644 + }, + { + "start": 18321.9, + "end": 18325.2, + "probability": 0.9912 + }, + { + "start": 18325.96, + "end": 18327.66, + "probability": 0.7607 + }, + { + "start": 18330.56, + "end": 18330.68, + "probability": 0.0346 + }, + { + "start": 18330.68, + "end": 18330.68, + "probability": 0.1785 + }, + { + "start": 18330.68, + "end": 18330.96, + "probability": 0.0164 + }, + { + "start": 18330.96, + "end": 18333.26, + "probability": 0.8942 + }, + { + "start": 18333.38, + "end": 18335.24, + "probability": 0.9976 + }, + { + "start": 18335.62, + "end": 18337.44, + "probability": 0.9941 + }, + { + "start": 18337.84, + "end": 18342.18, + "probability": 0.9988 + }, + { + "start": 18342.46, + "end": 18347.3, + "probability": 0.9995 + }, + { + "start": 18347.5, + "end": 18347.78, + "probability": 0.6751 + }, + { + "start": 18347.9, + "end": 18349.34, + "probability": 0.6049 + }, + { + "start": 18349.52, + "end": 18351.1, + "probability": 0.9694 + }, + { + "start": 18352.06, + "end": 18354.62, + "probability": 0.9406 + }, + { + "start": 18355.14, + "end": 18356.2, + "probability": 0.7184 + }, + { + "start": 18357.84, + "end": 18358.1, + "probability": 0.7638 + }, + { + "start": 18360.0, + "end": 18363.16, + "probability": 0.6104 + }, + { + "start": 18363.2, + "end": 18363.68, + "probability": 0.7628 + }, + { + "start": 18373.32, + "end": 18374.88, + "probability": 0.5013 + }, + { + "start": 18379.02, + "end": 18380.35, + "probability": 0.7534 + }, + { + "start": 18385.41, + "end": 18386.14, + "probability": 0.7084 + }, + { + "start": 18388.18, + "end": 18392.41, + "probability": 0.984 + }, + { + "start": 18393.47, + "end": 18397.01, + "probability": 0.9306 + }, + { + "start": 18397.39, + "end": 18399.97, + "probability": 0.9873 + }, + { + "start": 18400.62, + "end": 18401.53, + "probability": 0.947 + }, + { + "start": 18402.26, + "end": 18403.11, + "probability": 0.9591 + }, + { + "start": 18403.86, + "end": 18404.53, + "probability": 0.848 + }, + { + "start": 18405.11, + "end": 18406.05, + "probability": 0.8672 + }, + { + "start": 18406.97, + "end": 18407.72, + "probability": 0.8637 + }, + { + "start": 18409.09, + "end": 18411.65, + "probability": 0.9795 + }, + { + "start": 18412.39, + "end": 18416.07, + "probability": 0.9156 + }, + { + "start": 18418.11, + "end": 18420.21, + "probability": 0.9634 + }, + { + "start": 18420.93, + "end": 18421.13, + "probability": 0.9543 + }, + { + "start": 18421.83, + "end": 18422.71, + "probability": 0.9923 + }, + { + "start": 18423.41, + "end": 18427.79, + "probability": 0.8666 + }, + { + "start": 18427.91, + "end": 18428.81, + "probability": 0.8302 + }, + { + "start": 18430.67, + "end": 18432.31, + "probability": 0.837 + }, + { + "start": 18433.15, + "end": 18434.67, + "probability": 0.896 + }, + { + "start": 18435.47, + "end": 18438.83, + "probability": 0.9893 + }, + { + "start": 18438.95, + "end": 18441.45, + "probability": 0.9923 + }, + { + "start": 18443.91, + "end": 18445.49, + "probability": 0.9319 + }, + { + "start": 18446.81, + "end": 18448.49, + "probability": 0.723 + }, + { + "start": 18451.19, + "end": 18456.15, + "probability": 0.967 + }, + { + "start": 18456.71, + "end": 18458.41, + "probability": 0.9735 + }, + { + "start": 18459.11, + "end": 18461.41, + "probability": 0.7774 + }, + { + "start": 18462.75, + "end": 18464.93, + "probability": 0.9611 + }, + { + "start": 18465.51, + "end": 18466.31, + "probability": 0.8198 + }, + { + "start": 18466.99, + "end": 18469.0, + "probability": 0.8809 + }, + { + "start": 18471.29, + "end": 18473.97, + "probability": 0.9525 + }, + { + "start": 18474.77, + "end": 18478.39, + "probability": 0.7149 + }, + { + "start": 18478.39, + "end": 18482.35, + "probability": 0.9927 + }, + { + "start": 18483.23, + "end": 18485.37, + "probability": 0.7728 + }, + { + "start": 18487.45, + "end": 18488.07, + "probability": 0.7742 + }, + { + "start": 18489.43, + "end": 18493.89, + "probability": 0.9116 + }, + { + "start": 18493.97, + "end": 18496.29, + "probability": 0.929 + }, + { + "start": 18496.39, + "end": 18500.11, + "probability": 0.773 + }, + { + "start": 18501.03, + "end": 18505.15, + "probability": 0.98 + }, + { + "start": 18507.27, + "end": 18508.53, + "probability": 0.9238 + }, + { + "start": 18510.93, + "end": 18513.51, + "probability": 0.983 + }, + { + "start": 18516.21, + "end": 18516.21, + "probability": 0.0212 + }, + { + "start": 18516.21, + "end": 18517.69, + "probability": 0.9209 + }, + { + "start": 18518.55, + "end": 18523.17, + "probability": 0.9307 + }, + { + "start": 18523.23, + "end": 18524.25, + "probability": 0.4815 + }, + { + "start": 18524.37, + "end": 18524.89, + "probability": 0.1897 + }, + { + "start": 18525.65, + "end": 18526.55, + "probability": 0.9741 + }, + { + "start": 18527.45, + "end": 18532.59, + "probability": 0.9736 + }, + { + "start": 18533.03, + "end": 18537.95, + "probability": 0.9889 + }, + { + "start": 18538.05, + "end": 18538.41, + "probability": 0.2584 + }, + { + "start": 18538.57, + "end": 18539.29, + "probability": 0.8873 + }, + { + "start": 18540.05, + "end": 18540.83, + "probability": 0.8782 + }, + { + "start": 18540.89, + "end": 18542.01, + "probability": 0.9282 + }, + { + "start": 18542.49, + "end": 18546.13, + "probability": 0.9803 + }, + { + "start": 18546.97, + "end": 18548.39, + "probability": 0.9847 + }, + { + "start": 18552.51, + "end": 18556.89, + "probability": 0.9157 + }, + { + "start": 18556.97, + "end": 18560.21, + "probability": 0.8894 + }, + { + "start": 18560.65, + "end": 18565.31, + "probability": 0.9942 + }, + { + "start": 18565.99, + "end": 18566.63, + "probability": 0.5271 + }, + { + "start": 18569.77, + "end": 18573.49, + "probability": 0.7471 + }, + { + "start": 18573.49, + "end": 18575.61, + "probability": 0.9707 + }, + { + "start": 18575.61, + "end": 18578.23, + "probability": 0.8426 + }, + { + "start": 18579.15, + "end": 18580.87, + "probability": 0.7277 + }, + { + "start": 18581.61, + "end": 18582.71, + "probability": 0.9655 + }, + { + "start": 18584.63, + "end": 18586.87, + "probability": 0.9841 + }, + { + "start": 18587.01, + "end": 18587.94, + "probability": 0.9705 + }, + { + "start": 18588.65, + "end": 18590.09, + "probability": 0.9829 + }, + { + "start": 18590.23, + "end": 18591.55, + "probability": 0.9217 + }, + { + "start": 18592.65, + "end": 18594.03, + "probability": 0.4145 + }, + { + "start": 18594.45, + "end": 18595.67, + "probability": 0.8965 + }, + { + "start": 18596.33, + "end": 18601.97, + "probability": 0.9584 + }, + { + "start": 18602.51, + "end": 18603.21, + "probability": 0.9373 + }, + { + "start": 18603.83, + "end": 18606.48, + "probability": 0.9084 + }, + { + "start": 18608.81, + "end": 18614.83, + "probability": 0.9502 + }, + { + "start": 18616.35, + "end": 18617.51, + "probability": 0.9451 + }, + { + "start": 18617.69, + "end": 18619.13, + "probability": 0.8772 + }, + { + "start": 18619.91, + "end": 18624.03, + "probability": 0.9852 + }, + { + "start": 18624.03, + "end": 18630.07, + "probability": 0.9086 + }, + { + "start": 18630.69, + "end": 18634.49, + "probability": 0.657 + }, + { + "start": 18634.49, + "end": 18639.61, + "probability": 0.9763 + }, + { + "start": 18639.71, + "end": 18640.35, + "probability": 0.2637 + }, + { + "start": 18641.93, + "end": 18645.59, + "probability": 0.9795 + }, + { + "start": 18647.39, + "end": 18649.77, + "probability": 0.902 + }, + { + "start": 18650.41, + "end": 18651.09, + "probability": 0.8974 + }, + { + "start": 18651.55, + "end": 18654.37, + "probability": 0.8847 + }, + { + "start": 18655.59, + "end": 18659.45, + "probability": 0.9585 + }, + { + "start": 18659.99, + "end": 18661.57, + "probability": 0.851 + }, + { + "start": 18662.25, + "end": 18667.77, + "probability": 0.9819 + }, + { + "start": 18667.79, + "end": 18668.71, + "probability": 0.8695 + }, + { + "start": 18668.79, + "end": 18669.31, + "probability": 0.9395 + }, + { + "start": 18670.27, + "end": 18671.13, + "probability": 0.7334 + }, + { + "start": 18671.75, + "end": 18676.13, + "probability": 0.9081 + }, + { + "start": 18676.19, + "end": 18678.67, + "probability": 0.9954 + }, + { + "start": 18679.87, + "end": 18688.11, + "probability": 0.9428 + }, + { + "start": 18688.51, + "end": 18690.25, + "probability": 0.9346 + }, + { + "start": 18691.07, + "end": 18693.65, + "probability": 0.9471 + }, + { + "start": 18694.09, + "end": 18694.35, + "probability": 0.2528 + }, + { + "start": 18694.54, + "end": 18694.63, + "probability": 0.4896 + }, + { + "start": 18694.63, + "end": 18699.73, + "probability": 0.9706 + }, + { + "start": 18700.57, + "end": 18701.61, + "probability": 0.4261 + }, + { + "start": 18701.61, + "end": 18702.25, + "probability": 0.6299 + }, + { + "start": 18702.65, + "end": 18705.2, + "probability": 0.8755 + }, + { + "start": 18706.21, + "end": 18708.08, + "probability": 0.7222 + }, + { + "start": 18709.39, + "end": 18710.39, + "probability": 0.7634 + }, + { + "start": 18711.61, + "end": 18714.91, + "probability": 0.9207 + }, + { + "start": 18715.09, + "end": 18719.57, + "probability": 0.9176 + }, + { + "start": 18720.67, + "end": 18724.69, + "probability": 0.9877 + }, + { + "start": 18725.73, + "end": 18726.19, + "probability": 0.5283 + }, + { + "start": 18726.23, + "end": 18728.99, + "probability": 0.9591 + }, + { + "start": 18728.99, + "end": 18732.91, + "probability": 0.9944 + }, + { + "start": 18733.63, + "end": 18736.25, + "probability": 0.9105 + }, + { + "start": 18736.89, + "end": 18739.79, + "probability": 0.9883 + }, + { + "start": 18740.43, + "end": 18742.75, + "probability": 0.9888 + }, + { + "start": 18743.39, + "end": 18746.19, + "probability": 0.9854 + }, + { + "start": 18746.83, + "end": 18746.91, + "probability": 0.1064 + }, + { + "start": 18746.91, + "end": 18752.57, + "probability": 0.9812 + }, + { + "start": 18752.81, + "end": 18753.79, + "probability": 0.8948 + }, + { + "start": 18753.87, + "end": 18759.21, + "probability": 0.9882 + }, + { + "start": 18759.35, + "end": 18761.29, + "probability": 0.9946 + }, + { + "start": 18761.95, + "end": 18764.03, + "probability": 0.8633 + }, + { + "start": 18764.23, + "end": 18766.07, + "probability": 0.9495 + }, + { + "start": 18766.33, + "end": 18768.77, + "probability": 0.9922 + }, + { + "start": 18768.77, + "end": 18771.95, + "probability": 0.9436 + }, + { + "start": 18771.95, + "end": 18773.77, + "probability": 0.7659 + }, + { + "start": 18774.61, + "end": 18779.43, + "probability": 0.9971 + }, + { + "start": 18779.91, + "end": 18784.57, + "probability": 0.9858 + }, + { + "start": 18784.87, + "end": 18785.97, + "probability": 0.9481 + }, + { + "start": 18786.19, + "end": 18786.69, + "probability": 0.5217 + }, + { + "start": 18787.03, + "end": 18788.65, + "probability": 0.7991 + }, + { + "start": 18788.97, + "end": 18795.39, + "probability": 0.9987 + }, + { + "start": 18795.77, + "end": 18796.97, + "probability": 0.7639 + }, + { + "start": 18797.67, + "end": 18802.89, + "probability": 0.7813 + }, + { + "start": 18802.93, + "end": 18805.53, + "probability": 0.943 + }, + { + "start": 18805.87, + "end": 18808.75, + "probability": 0.978 + }, + { + "start": 18808.97, + "end": 18809.99, + "probability": 0.8905 + }, + { + "start": 18810.55, + "end": 18812.19, + "probability": 0.8111 + }, + { + "start": 18812.33, + "end": 18813.81, + "probability": 0.9613 + }, + { + "start": 18814.21, + "end": 18816.97, + "probability": 0.765 + }, + { + "start": 18817.09, + "end": 18820.67, + "probability": 0.9633 + }, + { + "start": 18820.87, + "end": 18821.47, + "probability": 0.8443 + }, + { + "start": 18821.75, + "end": 18824.55, + "probability": 0.9939 + }, + { + "start": 18824.69, + "end": 18826.33, + "probability": 0.7428 + }, + { + "start": 18826.39, + "end": 18829.87, + "probability": 0.9708 + }, + { + "start": 18829.97, + "end": 18831.97, + "probability": 0.7571 + }, + { + "start": 18831.97, + "end": 18835.43, + "probability": 0.9893 + }, + { + "start": 18835.75, + "end": 18836.73, + "probability": 0.596 + }, + { + "start": 18836.97, + "end": 18838.85, + "probability": 0.7557 + }, + { + "start": 18839.45, + "end": 18844.19, + "probability": 0.9592 + }, + { + "start": 18844.41, + "end": 18845.23, + "probability": 0.7958 + }, + { + "start": 18845.99, + "end": 18850.05, + "probability": 0.9167 + }, + { + "start": 18850.51, + "end": 18851.75, + "probability": 0.5887 + }, + { + "start": 18851.75, + "end": 18852.01, + "probability": 0.4945 + }, + { + "start": 18852.01, + "end": 18852.01, + "probability": 0.5349 + }, + { + "start": 18852.01, + "end": 18852.83, + "probability": 0.7407 + }, + { + "start": 18853.39, + "end": 18854.03, + "probability": 0.6973 + }, + { + "start": 18854.09, + "end": 18856.71, + "probability": 0.9834 + }, + { + "start": 18856.91, + "end": 18857.69, + "probability": 0.8176 + }, + { + "start": 18857.77, + "end": 18860.27, + "probability": 0.8747 + }, + { + "start": 18860.31, + "end": 18862.37, + "probability": 0.8355 + }, + { + "start": 18862.75, + "end": 18866.61, + "probability": 0.8782 + }, + { + "start": 18869.13, + "end": 18870.83, + "probability": 0.0312 + }, + { + "start": 18881.93, + "end": 18882.09, + "probability": 0.2433 + }, + { + "start": 18882.09, + "end": 18882.19, + "probability": 0.3019 + }, + { + "start": 18882.43, + "end": 18886.13, + "probability": 0.5547 + }, + { + "start": 18886.73, + "end": 18889.17, + "probability": 0.7672 + }, + { + "start": 18889.37, + "end": 18889.81, + "probability": 0.1057 + }, + { + "start": 18891.17, + "end": 18891.87, + "probability": 0.1546 + }, + { + "start": 18891.87, + "end": 18893.73, + "probability": 0.0541 + }, + { + "start": 18894.37, + "end": 18896.61, + "probability": 0.9974 + }, + { + "start": 18896.75, + "end": 18897.91, + "probability": 0.4455 + }, + { + "start": 18897.91, + "end": 18898.53, + "probability": 0.0559 + }, + { + "start": 18899.13, + "end": 18901.75, + "probability": 0.1648 + }, + { + "start": 18902.13, + "end": 18902.99, + "probability": 0.7661 + }, + { + "start": 18906.11, + "end": 18909.07, + "probability": 0.0233 + }, + { + "start": 18909.09, + "end": 18910.53, + "probability": 0.0516 + }, + { + "start": 18910.53, + "end": 18912.19, + "probability": 0.0686 + }, + { + "start": 18912.19, + "end": 18912.49, + "probability": 0.2308 + }, + { + "start": 18912.49, + "end": 18912.49, + "probability": 0.0739 + }, + { + "start": 18912.49, + "end": 18913.21, + "probability": 0.3319 + }, + { + "start": 18913.31, + "end": 18915.11, + "probability": 0.2101 + }, + { + "start": 18915.77, + "end": 18921.01, + "probability": 0.0992 + }, + { + "start": 18926.89, + "end": 18927.75, + "probability": 0.1078 + }, + { + "start": 18928.31, + "end": 18929.89, + "probability": 0.1167 + }, + { + "start": 18970.0, + "end": 18970.0, + "probability": 0.0 + }, + { + "start": 18970.0, + "end": 18970.0, + "probability": 0.0 + }, + { + "start": 18970.0, + "end": 18970.0, + "probability": 0.0 + }, + { + "start": 18970.0, + "end": 18970.0, + "probability": 0.0 + }, + { + "start": 18970.0, + "end": 18970.0, + "probability": 0.0 + }, + { + "start": 18970.0, + "end": 18970.0, + "probability": 0.0 + }, + { + "start": 18970.0, + "end": 18970.0, + "probability": 0.0 + }, + { + "start": 18970.0, + "end": 18970.0, + "probability": 0.0 + }, + { + "start": 18970.0, + "end": 18970.0, + "probability": 0.0 + }, + { + "start": 18970.0, + "end": 18970.0, + "probability": 0.0 + }, + { + "start": 18970.0, + "end": 18970.0, + "probability": 0.0 + }, + { + "start": 18970.0, + "end": 18970.0, + "probability": 0.0 + }, + { + "start": 18970.0, + "end": 18970.0, + "probability": 0.0 + }, + { + "start": 18970.0, + "end": 18970.0, + "probability": 0.0 + }, + { + "start": 18970.0, + "end": 18970.0, + "probability": 0.0 + }, + { + "start": 18970.0, + "end": 18970.0, + "probability": 0.0 + }, + { + "start": 18970.0, + "end": 18970.0, + "probability": 0.0 + }, + { + "start": 18970.0, + "end": 18970.0, + "probability": 0.0 + }, + { + "start": 18970.0, + "end": 18970.0, + "probability": 0.0 + }, + { + "start": 18970.0, + "end": 18970.0, + "probability": 0.0 + }, + { + "start": 18970.0, + "end": 18970.0, + "probability": 0.0 + }, + { + "start": 18970.0, + "end": 18970.0, + "probability": 0.0 + }, + { + "start": 18970.0, + "end": 18970.0, + "probability": 0.0 + }, + { + "start": 18971.09, + "end": 18974.66, + "probability": 0.8152 + }, + { + "start": 18975.14, + "end": 18975.8, + "probability": 0.6624 + }, + { + "start": 18975.94, + "end": 18978.12, + "probability": 0.9019 + }, + { + "start": 18978.9, + "end": 18981.78, + "probability": 0.9062 + }, + { + "start": 18981.88, + "end": 18984.52, + "probability": 0.9816 + }, + { + "start": 18984.6, + "end": 18987.36, + "probability": 0.8463 + }, + { + "start": 18988.24, + "end": 18990.32, + "probability": 0.9312 + }, + { + "start": 18992.32, + "end": 18994.96, + "probability": 0.984 + }, + { + "start": 18995.02, + "end": 18999.72, + "probability": 0.9665 + }, + { + "start": 19000.56, + "end": 19003.89, + "probability": 0.8925 + }, + { + "start": 19004.98, + "end": 19008.72, + "probability": 0.9698 + }, + { + "start": 19009.72, + "end": 19012.22, + "probability": 0.9522 + }, + { + "start": 19012.28, + "end": 19015.12, + "probability": 0.9963 + }, + { + "start": 19016.72, + "end": 19019.58, + "probability": 0.9927 + }, + { + "start": 19020.08, + "end": 19022.08, + "probability": 0.9312 + }, + { + "start": 19023.34, + "end": 19024.38, + "probability": 0.9664 + }, + { + "start": 19025.54, + "end": 19026.82, + "probability": 0.9103 + }, + { + "start": 19026.94, + "end": 19028.22, + "probability": 0.938 + }, + { + "start": 19029.02, + "end": 19029.63, + "probability": 0.9951 + }, + { + "start": 19030.32, + "end": 19035.51, + "probability": 0.9693 + }, + { + "start": 19036.46, + "end": 19037.72, + "probability": 0.8175 + }, + { + "start": 19037.94, + "end": 19042.16, + "probability": 0.9798 + }, + { + "start": 19042.16, + "end": 19045.9, + "probability": 0.9402 + }, + { + "start": 19046.94, + "end": 19047.98, + "probability": 0.6612 + }, + { + "start": 19048.42, + "end": 19051.78, + "probability": 0.9873 + }, + { + "start": 19052.06, + "end": 19053.54, + "probability": 0.7357 + }, + { + "start": 19053.6, + "end": 19056.2, + "probability": 0.9032 + }, + { + "start": 19058.58, + "end": 19059.34, + "probability": 0.818 + }, + { + "start": 19059.46, + "end": 19063.32, + "probability": 0.995 + }, + { + "start": 19063.88, + "end": 19065.14, + "probability": 0.7819 + }, + { + "start": 19066.24, + "end": 19068.36, + "probability": 0.8681 + }, + { + "start": 19069.48, + "end": 19071.42, + "probability": 0.9899 + }, + { + "start": 19072.42, + "end": 19072.5, + "probability": 0.6174 + }, + { + "start": 19072.52, + "end": 19073.02, + "probability": 0.9592 + }, + { + "start": 19073.12, + "end": 19078.04, + "probability": 0.9681 + }, + { + "start": 19078.66, + "end": 19081.26, + "probability": 0.9543 + }, + { + "start": 19082.7, + "end": 19085.38, + "probability": 0.9139 + }, + { + "start": 19085.56, + "end": 19087.56, + "probability": 0.6755 + }, + { + "start": 19088.06, + "end": 19089.88, + "probability": 0.9487 + }, + { + "start": 19091.5, + "end": 19095.44, + "probability": 0.9688 + }, + { + "start": 19095.44, + "end": 19097.32, + "probability": 0.9913 + }, + { + "start": 19099.32, + "end": 19101.22, + "probability": 0.8511 + }, + { + "start": 19101.34, + "end": 19101.66, + "probability": 0.5199 + }, + { + "start": 19101.9, + "end": 19102.68, + "probability": 0.8293 + }, + { + "start": 19107.02, + "end": 19110.72, + "probability": 0.4794 + }, + { + "start": 19111.28, + "end": 19113.06, + "probability": 0.8779 + }, + { + "start": 19113.6, + "end": 19114.69, + "probability": 0.3292 + }, + { + "start": 19115.98, + "end": 19118.22, + "probability": 0.652 + }, + { + "start": 19118.82, + "end": 19122.9, + "probability": 0.6437 + }, + { + "start": 19123.76, + "end": 19126.2, + "probability": 0.6368 + }, + { + "start": 19127.3, + "end": 19135.84, + "probability": 0.5927 + }, + { + "start": 19136.04, + "end": 19136.86, + "probability": 0.1447 + }, + { + "start": 19136.9, + "end": 19137.54, + "probability": 0.7482 + }, + { + "start": 19137.66, + "end": 19139.09, + "probability": 0.9243 + }, + { + "start": 19139.34, + "end": 19140.39, + "probability": 0.8153 + }, + { + "start": 19140.62, + "end": 19141.04, + "probability": 0.8335 + }, + { + "start": 19141.3, + "end": 19141.48, + "probability": 0.2833 + }, + { + "start": 19141.5, + "end": 19141.96, + "probability": 0.6553 + }, + { + "start": 19142.18, + "end": 19142.64, + "probability": 0.4376 + }, + { + "start": 19142.76, + "end": 19143.42, + "probability": 0.3526 + }, + { + "start": 19143.5, + "end": 19143.82, + "probability": 0.3724 + }, + { + "start": 19143.94, + "end": 19144.12, + "probability": 0.2296 + }, + { + "start": 19144.12, + "end": 19144.66, + "probability": 0.5307 + }, + { + "start": 19144.74, + "end": 19145.36, + "probability": 0.6941 + }, + { + "start": 19146.1, + "end": 19148.28, + "probability": 0.7653 + }, + { + "start": 19148.38, + "end": 19150.38, + "probability": 0.9971 + }, + { + "start": 19152.02, + "end": 19152.74, + "probability": 0.6226 + }, + { + "start": 19153.08, + "end": 19153.42, + "probability": 0.7852 + }, + { + "start": 19153.42, + "end": 19154.99, + "probability": 0.7584 + }, + { + "start": 19155.18, + "end": 19155.38, + "probability": 0.5881 + }, + { + "start": 19155.48, + "end": 19157.48, + "probability": 0.9874 + }, + { + "start": 19159.34, + "end": 19159.82, + "probability": 0.0966 + }, + { + "start": 19160.04, + "end": 19160.36, + "probability": 0.6192 + }, + { + "start": 19160.44, + "end": 19161.78, + "probability": 0.8182 + }, + { + "start": 19161.9, + "end": 19162.56, + "probability": 0.7303 + }, + { + "start": 19162.7, + "end": 19163.14, + "probability": 0.7975 + }, + { + "start": 19163.18, + "end": 19163.24, + "probability": 0.1153 + }, + { + "start": 19163.36, + "end": 19165.4, + "probability": 0.5707 + }, + { + "start": 19165.54, + "end": 19166.5, + "probability": 0.9877 + }, + { + "start": 19166.62, + "end": 19168.14, + "probability": 0.958 + }, + { + "start": 19168.92, + "end": 19169.52, + "probability": 0.6857 + }, + { + "start": 19170.56, + "end": 19173.92, + "probability": 0.4791 + }, + { + "start": 19174.08, + "end": 19175.48, + "probability": 0.3383 + }, + { + "start": 19177.02, + "end": 19179.64, + "probability": 0.3983 + }, + { + "start": 19180.76, + "end": 19181.82, + "probability": 0.5683 + }, + { + "start": 19182.04, + "end": 19182.84, + "probability": 0.7351 + }, + { + "start": 19182.98, + "end": 19186.22, + "probability": 0.9531 + }, + { + "start": 19186.4, + "end": 19187.68, + "probability": 0.9778 + }, + { + "start": 19188.84, + "end": 19189.68, + "probability": 0.6426 + }, + { + "start": 19190.12, + "end": 19192.58, + "probability": 0.9727 + }, + { + "start": 19193.0, + "end": 19193.94, + "probability": 0.9923 + }, + { + "start": 19194.08, + "end": 19194.22, + "probability": 0.9749 + }, + { + "start": 19194.76, + "end": 19195.0, + "probability": 0.0262 + }, + { + "start": 19195.0, + "end": 19196.72, + "probability": 0.6737 + }, + { + "start": 19197.52, + "end": 19198.96, + "probability": 0.5238 + }, + { + "start": 19199.12, + "end": 19201.92, + "probability": 0.9906 + }, + { + "start": 19202.7, + "end": 19203.74, + "probability": 0.7845 + }, + { + "start": 19205.36, + "end": 19208.19, + "probability": 0.7429 + }, + { + "start": 19209.24, + "end": 19209.36, + "probability": 0.2928 + }, + { + "start": 19209.72, + "end": 19210.44, + "probability": 0.7261 + }, + { + "start": 19211.32, + "end": 19213.58, + "probability": 0.7346 + }, + { + "start": 19214.18, + "end": 19214.96, + "probability": 0.947 + }, + { + "start": 19215.04, + "end": 19215.64, + "probability": 0.9262 + }, + { + "start": 19215.7, + "end": 19215.86, + "probability": 0.4917 + }, + { + "start": 19215.94, + "end": 19217.04, + "probability": 0.9858 + }, + { + "start": 19218.2, + "end": 19218.98, + "probability": 0.8061 + }, + { + "start": 19219.96, + "end": 19220.62, + "probability": 0.9683 + }, + { + "start": 19220.8, + "end": 19222.4, + "probability": 0.6324 + }, + { + "start": 19222.56, + "end": 19225.96, + "probability": 0.5806 + }, + { + "start": 19226.94, + "end": 19227.28, + "probability": 0.4805 + }, + { + "start": 19227.98, + "end": 19228.38, + "probability": 0.4863 + }, + { + "start": 19228.5, + "end": 19231.22, + "probability": 0.2813 + }, + { + "start": 19231.32, + "end": 19234.18, + "probability": 0.6779 + }, + { + "start": 19235.16, + "end": 19235.16, + "probability": 0.4146 + }, + { + "start": 19235.16, + "end": 19235.26, + "probability": 0.0405 + }, + { + "start": 19235.26, + "end": 19236.59, + "probability": 0.8395 + }, + { + "start": 19237.2, + "end": 19239.94, + "probability": 0.9188 + }, + { + "start": 19240.56, + "end": 19241.08, + "probability": 0.8541 + }, + { + "start": 19241.1, + "end": 19243.4, + "probability": 0.8814 + }, + { + "start": 19244.5, + "end": 19247.88, + "probability": 0.8485 + }, + { + "start": 19247.88, + "end": 19251.4, + "probability": 0.9441 + }, + { + "start": 19252.84, + "end": 19253.5, + "probability": 0.8472 + }, + { + "start": 19254.34, + "end": 19255.88, + "probability": 0.9114 + }, + { + "start": 19256.12, + "end": 19257.72, + "probability": 0.9688 + }, + { + "start": 19258.28, + "end": 19260.3, + "probability": 0.9969 + }, + { + "start": 19262.26, + "end": 19263.28, + "probability": 0.6072 + }, + { + "start": 19264.66, + "end": 19269.56, + "probability": 0.9891 + }, + { + "start": 19271.34, + "end": 19276.62, + "probability": 0.9694 + }, + { + "start": 19277.52, + "end": 19279.36, + "probability": 0.9719 + }, + { + "start": 19279.74, + "end": 19281.7, + "probability": 0.9966 + }, + { + "start": 19282.52, + "end": 19286.06, + "probability": 0.9716 + }, + { + "start": 19286.9, + "end": 19287.82, + "probability": 0.9324 + }, + { + "start": 19288.94, + "end": 19292.38, + "probability": 0.9846 + }, + { + "start": 19293.3, + "end": 19295.64, + "probability": 0.9951 + }, + { + "start": 19296.92, + "end": 19299.94, + "probability": 0.9819 + }, + { + "start": 19299.98, + "end": 19301.38, + "probability": 0.9751 + }, + { + "start": 19302.16, + "end": 19306.82, + "probability": 0.9758 + }, + { + "start": 19307.48, + "end": 19308.94, + "probability": 0.9854 + }, + { + "start": 19309.54, + "end": 19311.82, + "probability": 0.9925 + }, + { + "start": 19312.32, + "end": 19314.98, + "probability": 0.9987 + }, + { + "start": 19315.04, + "end": 19316.24, + "probability": 0.7304 + }, + { + "start": 19316.26, + "end": 19317.8, + "probability": 0.8511 + }, + { + "start": 19318.48, + "end": 19320.86, + "probability": 0.9522 + }, + { + "start": 19321.1, + "end": 19321.32, + "probability": 0.8007 + }, + { + "start": 19321.76, + "end": 19322.2, + "probability": 0.5775 + }, + { + "start": 19322.22, + "end": 19323.34, + "probability": 0.9219 + }, + { + "start": 19323.42, + "end": 19326.2, + "probability": 0.9781 + }, + { + "start": 19326.28, + "end": 19326.56, + "probability": 0.6846 + }, + { + "start": 19326.78, + "end": 19327.44, + "probability": 0.9531 + }, + { + "start": 19328.26, + "end": 19328.74, + "probability": 0.119 + }, + { + "start": 19328.86, + "end": 19330.26, + "probability": 0.7123 + }, + { + "start": 19331.1, + "end": 19332.2, + "probability": 0.9783 + }, + { + "start": 19335.84, + "end": 19338.04, + "probability": 0.9533 + }, + { + "start": 19338.88, + "end": 19340.64, + "probability": 0.6492 + }, + { + "start": 19341.1, + "end": 19341.74, + "probability": 0.7956 + }, + { + "start": 19342.08, + "end": 19343.54, + "probability": 0.9195 + }, + { + "start": 19344.06, + "end": 19344.48, + "probability": 0.7764 + }, + { + "start": 19344.54, + "end": 19345.56, + "probability": 0.7663 + }, + { + "start": 19346.28, + "end": 19347.1, + "probability": 0.9009 + }, + { + "start": 19348.18, + "end": 19349.38, + "probability": 0.9398 + }, + { + "start": 19350.9, + "end": 19355.48, + "probability": 0.9837 + }, + { + "start": 19356.22, + "end": 19359.82, + "probability": 0.9788 + }, + { + "start": 19360.34, + "end": 19363.62, + "probability": 0.937 + }, + { + "start": 19363.62, + "end": 19367.28, + "probability": 0.9043 + }, + { + "start": 19368.34, + "end": 19372.14, + "probability": 0.9655 + }, + { + "start": 19372.14, + "end": 19375.91, + "probability": 0.967 + }, + { + "start": 19377.58, + "end": 19380.1, + "probability": 0.846 + }, + { + "start": 19380.92, + "end": 19387.72, + "probability": 0.9548 + }, + { + "start": 19389.16, + "end": 19390.84, + "probability": 0.9762 + }, + { + "start": 19391.48, + "end": 19393.48, + "probability": 0.9837 + }, + { + "start": 19394.52, + "end": 19401.3, + "probability": 0.9977 + }, + { + "start": 19401.82, + "end": 19408.12, + "probability": 0.9637 + }, + { + "start": 19409.72, + "end": 19413.34, + "probability": 0.9294 + }, + { + "start": 19414.04, + "end": 19415.44, + "probability": 0.6307 + }, + { + "start": 19415.9, + "end": 19419.82, + "probability": 0.9976 + }, + { + "start": 19420.4, + "end": 19421.78, + "probability": 0.9851 + }, + { + "start": 19422.34, + "end": 19423.11, + "probability": 0.875 + }, + { + "start": 19424.8, + "end": 19427.78, + "probability": 0.9786 + }, + { + "start": 19428.48, + "end": 19432.2, + "probability": 0.8403 + }, + { + "start": 19433.28, + "end": 19434.88, + "probability": 0.6281 + }, + { + "start": 19435.62, + "end": 19437.86, + "probability": 0.7614 + }, + { + "start": 19439.14, + "end": 19443.14, + "probability": 0.814 + }, + { + "start": 19443.98, + "end": 19445.86, + "probability": 0.9677 + }, + { + "start": 19447.2, + "end": 19452.12, + "probability": 0.8347 + }, + { + "start": 19452.78, + "end": 19457.68, + "probability": 0.7362 + }, + { + "start": 19458.46, + "end": 19461.98, + "probability": 0.9826 + }, + { + "start": 19462.07, + "end": 19466.1, + "probability": 0.9858 + }, + { + "start": 19467.24, + "end": 19474.12, + "probability": 0.9767 + }, + { + "start": 19474.92, + "end": 19475.76, + "probability": 0.4756 + }, + { + "start": 19477.12, + "end": 19479.98, + "probability": 0.8284 + }, + { + "start": 19480.86, + "end": 19482.46, + "probability": 0.9821 + }, + { + "start": 19483.04, + "end": 19484.5, + "probability": 0.9282 + }, + { + "start": 19486.48, + "end": 19492.24, + "probability": 0.9934 + }, + { + "start": 19493.76, + "end": 19497.34, + "probability": 0.7373 + }, + { + "start": 19498.44, + "end": 19503.02, + "probability": 0.9937 + }, + { + "start": 19504.38, + "end": 19505.2, + "probability": 0.9333 + }, + { + "start": 19506.14, + "end": 19512.86, + "probability": 0.9667 + }, + { + "start": 19513.86, + "end": 19516.23, + "probability": 0.9418 + }, + { + "start": 19517.26, + "end": 19519.32, + "probability": 0.9814 + }, + { + "start": 19519.78, + "end": 19520.9, + "probability": 0.7766 + }, + { + "start": 19521.34, + "end": 19524.32, + "probability": 0.9963 + }, + { + "start": 19525.96, + "end": 19527.6, + "probability": 0.9094 + }, + { + "start": 19528.46, + "end": 19530.74, + "probability": 0.9421 + }, + { + "start": 19531.9, + "end": 19533.4, + "probability": 0.9941 + }, + { + "start": 19534.22, + "end": 19535.98, + "probability": 0.9971 + }, + { + "start": 19537.2, + "end": 19539.66, + "probability": 0.9753 + }, + { + "start": 19539.72, + "end": 19544.58, + "probability": 0.8994 + }, + { + "start": 19544.78, + "end": 19547.18, + "probability": 0.9508 + }, + { + "start": 19547.38, + "end": 19552.24, + "probability": 0.9839 + }, + { + "start": 19552.6, + "end": 19553.76, + "probability": 0.9351 + }, + { + "start": 19554.28, + "end": 19556.12, + "probability": 0.7244 + }, + { + "start": 19556.48, + "end": 19562.14, + "probability": 0.9967 + }, + { + "start": 19562.96, + "end": 19562.98, + "probability": 0.2985 + }, + { + "start": 19563.0, + "end": 19565.38, + "probability": 0.8624 + }, + { + "start": 19566.08, + "end": 19569.02, + "probability": 0.9959 + }, + { + "start": 19569.4, + "end": 19569.58, + "probability": 0.4695 + }, + { + "start": 19569.64, + "end": 19574.34, + "probability": 0.9913 + }, + { + "start": 19574.98, + "end": 19575.26, + "probability": 0.6207 + }, + { + "start": 19575.42, + "end": 19576.8, + "probability": 0.6467 + }, + { + "start": 19577.06, + "end": 19579.29, + "probability": 0.9285 + }, + { + "start": 19580.5, + "end": 19583.28, + "probability": 0.9768 + }, + { + "start": 19584.36, + "end": 19585.24, + "probability": 0.8121 + }, + { + "start": 19597.4, + "end": 19599.43, + "probability": 0.6942 + }, + { + "start": 19599.68, + "end": 19600.76, + "probability": 0.4742 + }, + { + "start": 19600.88, + "end": 19600.88, + "probability": 0.4806 + }, + { + "start": 19600.88, + "end": 19601.74, + "probability": 0.739 + }, + { + "start": 19602.18, + "end": 19604.4, + "probability": 0.6556 + }, + { + "start": 19606.02, + "end": 19608.66, + "probability": 0.5567 + }, + { + "start": 19608.68, + "end": 19610.2, + "probability": 0.7959 + }, + { + "start": 19610.74, + "end": 19611.7, + "probability": 0.8984 + }, + { + "start": 19611.92, + "end": 19614.66, + "probability": 0.8989 + }, + { + "start": 19615.16, + "end": 19616.74, + "probability": 0.9395 + }, + { + "start": 19617.06, + "end": 19618.94, + "probability": 0.0548 + }, + { + "start": 19619.74, + "end": 19621.26, + "probability": 0.1488 + }, + { + "start": 19621.46, + "end": 19622.4, + "probability": 0.6364 + }, + { + "start": 19625.26, + "end": 19625.94, + "probability": 0.5646 + }, + { + "start": 19626.06, + "end": 19626.8, + "probability": 0.4084 + }, + { + "start": 19626.84, + "end": 19628.08, + "probability": 0.6503 + }, + { + "start": 19628.42, + "end": 19632.02, + "probability": 0.9562 + }, + { + "start": 19632.6, + "end": 19636.1, + "probability": 0.9966 + }, + { + "start": 19636.1, + "end": 19640.56, + "probability": 0.9736 + }, + { + "start": 19641.36, + "end": 19643.52, + "probability": 0.924 + }, + { + "start": 19644.0, + "end": 19645.0, + "probability": 0.8162 + }, + { + "start": 19645.34, + "end": 19646.1, + "probability": 0.9292 + }, + { + "start": 19646.86, + "end": 19650.86, + "probability": 0.9624 + }, + { + "start": 19651.52, + "end": 19654.7, + "probability": 0.9617 + }, + { + "start": 19655.24, + "end": 19657.12, + "probability": 0.9781 + }, + { + "start": 19658.18, + "end": 19661.64, + "probability": 0.9008 + }, + { + "start": 19662.26, + "end": 19664.08, + "probability": 0.9763 + }, + { + "start": 19664.7, + "end": 19667.62, + "probability": 0.9197 + }, + { + "start": 19668.08, + "end": 19674.46, + "probability": 0.9672 + }, + { + "start": 19675.24, + "end": 19678.6, + "probability": 0.9345 + }, + { + "start": 19679.32, + "end": 19680.0, + "probability": 0.9181 + }, + { + "start": 19680.1, + "end": 19681.74, + "probability": 0.9946 + }, + { + "start": 19682.24, + "end": 19684.2, + "probability": 0.9941 + }, + { + "start": 19685.22, + "end": 19685.84, + "probability": 0.6164 + }, + { + "start": 19685.86, + "end": 19690.34, + "probability": 0.9692 + }, + { + "start": 19691.32, + "end": 19696.08, + "probability": 0.9908 + }, + { + "start": 19696.62, + "end": 19699.84, + "probability": 0.7867 + }, + { + "start": 19700.76, + "end": 19703.46, + "probability": 0.9697 + }, + { + "start": 19704.78, + "end": 19705.7, + "probability": 0.7177 + }, + { + "start": 19706.24, + "end": 19707.92, + "probability": 0.5277 + }, + { + "start": 19708.62, + "end": 19712.04, + "probability": 0.7802 + }, + { + "start": 19712.04, + "end": 19715.82, + "probability": 0.9883 + }, + { + "start": 19716.72, + "end": 19719.64, + "probability": 0.9897 + }, + { + "start": 19720.14, + "end": 19724.42, + "probability": 0.9371 + }, + { + "start": 19725.08, + "end": 19725.94, + "probability": 0.9468 + }, + { + "start": 19726.02, + "end": 19727.02, + "probability": 0.7388 + }, + { + "start": 19727.16, + "end": 19729.68, + "probability": 0.998 + }, + { + "start": 19730.42, + "end": 19733.32, + "probability": 0.9757 + }, + { + "start": 19734.1, + "end": 19735.18, + "probability": 0.7626 + }, + { + "start": 19735.58, + "end": 19739.14, + "probability": 0.9871 + }, + { + "start": 19739.66, + "end": 19742.72, + "probability": 0.986 + }, + { + "start": 19743.36, + "end": 19745.42, + "probability": 0.9965 + }, + { + "start": 19746.16, + "end": 19749.98, + "probability": 0.9977 + }, + { + "start": 19750.6, + "end": 19754.46, + "probability": 0.9957 + }, + { + "start": 19754.68, + "end": 19755.48, + "probability": 0.7649 + }, + { + "start": 19755.98, + "end": 19757.86, + "probability": 0.9966 + }, + { + "start": 19758.48, + "end": 19761.82, + "probability": 0.8989 + }, + { + "start": 19762.24, + "end": 19765.0, + "probability": 0.9364 + }, + { + "start": 19765.9, + "end": 19767.82, + "probability": 0.9961 + }, + { + "start": 19768.4, + "end": 19769.96, + "probability": 0.753 + }, + { + "start": 19771.08, + "end": 19776.66, + "probability": 0.9382 + }, + { + "start": 19777.3, + "end": 19778.84, + "probability": 0.9839 + }, + { + "start": 19780.04, + "end": 19782.48, + "probability": 0.9958 + }, + { + "start": 19783.04, + "end": 19784.98, + "probability": 0.9355 + }, + { + "start": 19785.42, + "end": 19786.7, + "probability": 0.9329 + }, + { + "start": 19787.16, + "end": 19789.56, + "probability": 0.8916 + }, + { + "start": 19789.64, + "end": 19793.36, + "probability": 0.9866 + }, + { + "start": 19793.88, + "end": 19796.78, + "probability": 0.9488 + }, + { + "start": 19797.86, + "end": 19801.62, + "probability": 0.9602 + }, + { + "start": 19801.62, + "end": 19807.14, + "probability": 0.9912 + }, + { + "start": 19807.76, + "end": 19810.21, + "probability": 0.8972 + }, + { + "start": 19811.44, + "end": 19815.02, + "probability": 0.9482 + }, + { + "start": 19816.16, + "end": 19821.18, + "probability": 0.995 + }, + { + "start": 19822.08, + "end": 19822.57, + "probability": 0.999 + }, + { + "start": 19823.7, + "end": 19828.46, + "probability": 0.9641 + }, + { + "start": 19829.78, + "end": 19830.94, + "probability": 0.9546 + }, + { + "start": 19831.74, + "end": 19832.96, + "probability": 0.957 + }, + { + "start": 19833.88, + "end": 19836.52, + "probability": 0.9917 + }, + { + "start": 19837.0, + "end": 19837.52, + "probability": 0.675 + }, + { + "start": 19837.58, + "end": 19838.34, + "probability": 0.7591 + }, + { + "start": 19838.9, + "end": 19839.78, + "probability": 0.9847 + }, + { + "start": 19840.42, + "end": 19844.38, + "probability": 0.9811 + }, + { + "start": 19844.44, + "end": 19846.3, + "probability": 0.8275 + }, + { + "start": 19847.24, + "end": 19851.0, + "probability": 0.972 + }, + { + "start": 19851.58, + "end": 19853.48, + "probability": 0.8473 + }, + { + "start": 19854.6, + "end": 19857.08, + "probability": 0.9561 + }, + { + "start": 19857.6, + "end": 19860.06, + "probability": 0.9771 + }, + { + "start": 19860.94, + "end": 19862.12, + "probability": 0.5434 + }, + { + "start": 19863.34, + "end": 19865.9, + "probability": 0.6981 + }, + { + "start": 19866.5, + "end": 19869.24, + "probability": 0.4289 + }, + { + "start": 19870.36, + "end": 19872.55, + "probability": 0.7284 + }, + { + "start": 19872.92, + "end": 19876.64, + "probability": 0.6229 + }, + { + "start": 19877.84, + "end": 19879.18, + "probability": 0.8282 + }, + { + "start": 19890.38, + "end": 19890.4, + "probability": 0.2737 + }, + { + "start": 19891.12, + "end": 19891.8, + "probability": 0.66 + }, + { + "start": 19891.94, + "end": 19892.6, + "probability": 0.6942 + }, + { + "start": 19892.7, + "end": 19893.94, + "probability": 0.8752 + }, + { + "start": 19894.0, + "end": 19894.84, + "probability": 0.8124 + }, + { + "start": 19895.52, + "end": 19897.82, + "probability": 0.8104 + }, + { + "start": 19898.36, + "end": 19899.96, + "probability": 0.886 + }, + { + "start": 19900.46, + "end": 19903.46, + "probability": 0.9865 + }, + { + "start": 19903.86, + "end": 19905.82, + "probability": 0.9669 + }, + { + "start": 19906.52, + "end": 19907.24, + "probability": 0.7664 + }, + { + "start": 19907.44, + "end": 19908.66, + "probability": 0.9826 + }, + { + "start": 19909.06, + "end": 19910.08, + "probability": 0.9773 + }, + { + "start": 19910.16, + "end": 19910.88, + "probability": 0.9566 + }, + { + "start": 19911.28, + "end": 19912.2, + "probability": 0.7415 + }, + { + "start": 19912.68, + "end": 19917.94, + "probability": 0.9323 + }, + { + "start": 19918.68, + "end": 19919.84, + "probability": 0.7486 + }, + { + "start": 19920.5, + "end": 19921.1, + "probability": 0.251 + }, + { + "start": 19921.18, + "end": 19922.02, + "probability": 0.7075 + }, + { + "start": 19922.06, + "end": 19924.27, + "probability": 0.981 + }, + { + "start": 19925.34, + "end": 19927.76, + "probability": 0.9253 + }, + { + "start": 19928.32, + "end": 19929.24, + "probability": 0.9543 + }, + { + "start": 19929.42, + "end": 19930.94, + "probability": 0.9907 + }, + { + "start": 19932.64, + "end": 19933.32, + "probability": 0.9734 + }, + { + "start": 19933.46, + "end": 19933.86, + "probability": 0.8965 + }, + { + "start": 19934.0, + "end": 19935.0, + "probability": 0.8802 + }, + { + "start": 19935.46, + "end": 19937.44, + "probability": 0.9748 + }, + { + "start": 19937.64, + "end": 19941.76, + "probability": 0.8723 + }, + { + "start": 19941.76, + "end": 19944.7, + "probability": 0.9931 + }, + { + "start": 19945.24, + "end": 19948.3, + "probability": 0.9937 + }, + { + "start": 19949.04, + "end": 19949.48, + "probability": 0.653 + }, + { + "start": 19949.6, + "end": 19953.34, + "probability": 0.9923 + }, + { + "start": 19954.08, + "end": 19955.78, + "probability": 0.755 + }, + { + "start": 19956.28, + "end": 19958.18, + "probability": 0.8394 + }, + { + "start": 19958.74, + "end": 19960.0, + "probability": 0.9653 + }, + { + "start": 19960.46, + "end": 19961.82, + "probability": 0.9517 + }, + { + "start": 19961.86, + "end": 19962.8, + "probability": 0.8499 + }, + { + "start": 19963.32, + "end": 19964.48, + "probability": 0.9691 + }, + { + "start": 19964.94, + "end": 19966.63, + "probability": 0.983 + }, + { + "start": 19967.14, + "end": 19967.96, + "probability": 0.978 + }, + { + "start": 19968.1, + "end": 19968.82, + "probability": 0.9582 + }, + { + "start": 19969.18, + "end": 19970.52, + "probability": 0.8887 + }, + { + "start": 19970.96, + "end": 19973.16, + "probability": 0.9951 + }, + { + "start": 19973.66, + "end": 19975.42, + "probability": 0.9719 + }, + { + "start": 19976.16, + "end": 19978.16, + "probability": 0.9871 + }, + { + "start": 19978.72, + "end": 19980.18, + "probability": 0.7702 + }, + { + "start": 19981.02, + "end": 19982.36, + "probability": 0.9893 + }, + { + "start": 19983.08, + "end": 19984.12, + "probability": 0.5604 + }, + { + "start": 19984.16, + "end": 19985.92, + "probability": 0.9949 + }, + { + "start": 19986.06, + "end": 19986.7, + "probability": 0.5906 + }, + { + "start": 19987.28, + "end": 19989.32, + "probability": 0.9517 + }, + { + "start": 19989.84, + "end": 19992.56, + "probability": 0.9443 + }, + { + "start": 19992.98, + "end": 19993.7, + "probability": 0.7841 + }, + { + "start": 19994.36, + "end": 19997.72, + "probability": 0.9928 + }, + { + "start": 19998.22, + "end": 20002.2, + "probability": 0.9862 + }, + { + "start": 20002.58, + "end": 20004.62, + "probability": 0.7924 + }, + { + "start": 20005.14, + "end": 20005.68, + "probability": 0.9634 + }, + { + "start": 20005.82, + "end": 20006.56, + "probability": 0.8002 + }, + { + "start": 20006.98, + "end": 20007.96, + "probability": 0.9825 + }, + { + "start": 20008.38, + "end": 20009.64, + "probability": 0.9183 + }, + { + "start": 20009.98, + "end": 20012.3, + "probability": 0.7175 + }, + { + "start": 20012.8, + "end": 20014.8, + "probability": 0.5155 + }, + { + "start": 20015.3, + "end": 20018.36, + "probability": 0.9692 + }, + { + "start": 20019.06, + "end": 20022.0, + "probability": 0.9072 + }, + { + "start": 20022.4, + "end": 20025.62, + "probability": 0.9952 + }, + { + "start": 20026.52, + "end": 20027.16, + "probability": 0.6908 + }, + { + "start": 20027.44, + "end": 20028.22, + "probability": 0.7094 + }, + { + "start": 20028.28, + "end": 20029.48, + "probability": 0.9289 + }, + { + "start": 20029.94, + "end": 20033.48, + "probability": 0.8802 + }, + { + "start": 20034.06, + "end": 20038.9, + "probability": 0.9486 + }, + { + "start": 20039.68, + "end": 20040.58, + "probability": 0.7009 + }, + { + "start": 20040.66, + "end": 20043.15, + "probability": 0.9929 + }, + { + "start": 20043.68, + "end": 20048.08, + "probability": 0.9902 + }, + { + "start": 20048.86, + "end": 20049.58, + "probability": 0.7845 + }, + { + "start": 20049.64, + "end": 20050.44, + "probability": 0.8179 + }, + { + "start": 20050.92, + "end": 20054.99, + "probability": 0.9548 + }, + { + "start": 20055.14, + "end": 20060.82, + "probability": 0.9986 + }, + { + "start": 20062.18, + "end": 20062.58, + "probability": 0.4772 + }, + { + "start": 20062.68, + "end": 20064.12, + "probability": 0.9602 + }, + { + "start": 20065.68, + "end": 20066.94, + "probability": 0.2379 + }, + { + "start": 20067.2, + "end": 20068.04, + "probability": 0.4383 + }, + { + "start": 20069.2, + "end": 20069.74, + "probability": 0.3891 + }, + { + "start": 20069.78, + "end": 20070.16, + "probability": 0.6964 + }, + { + "start": 20070.6, + "end": 20072.68, + "probability": 0.7323 + }, + { + "start": 20072.8, + "end": 20072.94, + "probability": 0.6447 + }, + { + "start": 20073.08, + "end": 20076.74, + "probability": 0.9722 + }, + { + "start": 20077.92, + "end": 20081.32, + "probability": 0.8357 + }, + { + "start": 20082.04, + "end": 20083.16, + "probability": 0.9431 + }, + { + "start": 20097.98, + "end": 20098.14, + "probability": 0.1737 + }, + { + "start": 20098.14, + "end": 20102.9, + "probability": 0.2367 + }, + { + "start": 20103.58, + "end": 20106.3, + "probability": 0.7464 + }, + { + "start": 20107.42, + "end": 20111.98, + "probability": 0.0393 + }, + { + "start": 20111.98, + "end": 20112.74, + "probability": 0.1327 + }, + { + "start": 20113.32, + "end": 20114.86, + "probability": 0.6756 + }, + { + "start": 20114.92, + "end": 20117.36, + "probability": 0.9921 + }, + { + "start": 20118.04, + "end": 20120.5, + "probability": 0.8329 + }, + { + "start": 20121.94, + "end": 20123.65, + "probability": 0.4857 + }, + { + "start": 20124.82, + "end": 20127.44, + "probability": 0.7156 + }, + { + "start": 20128.1, + "end": 20129.36, + "probability": 0.9004 + }, + { + "start": 20130.64, + "end": 20132.52, + "probability": 0.9337 + }, + { + "start": 20134.6, + "end": 20136.84, + "probability": 0.662 + }, + { + "start": 20138.14, + "end": 20139.86, + "probability": 0.6574 + }, + { + "start": 20140.08, + "end": 20141.22, + "probability": 0.8087 + }, + { + "start": 20141.38, + "end": 20143.16, + "probability": 0.7605 + }, + { + "start": 20144.44, + "end": 20148.44, + "probability": 0.9771 + }, + { + "start": 20149.88, + "end": 20150.92, + "probability": 0.8232 + }, + { + "start": 20151.76, + "end": 20153.56, + "probability": 0.9207 + }, + { + "start": 20154.9, + "end": 20156.6, + "probability": 0.9967 + }, + { + "start": 20157.3, + "end": 20159.66, + "probability": 0.8249 + }, + { + "start": 20159.82, + "end": 20160.32, + "probability": 0.8167 + }, + { + "start": 20160.98, + "end": 20163.82, + "probability": 0.9647 + }, + { + "start": 20163.86, + "end": 20165.63, + "probability": 0.9976 + }, + { + "start": 20167.82, + "end": 20170.58, + "probability": 0.9098 + }, + { + "start": 20172.2, + "end": 20176.82, + "probability": 0.9655 + }, + { + "start": 20178.66, + "end": 20179.8, + "probability": 0.8569 + }, + { + "start": 20179.9, + "end": 20180.22, + "probability": 0.8645 + }, + { + "start": 20180.34, + "end": 20183.0, + "probability": 0.9294 + }, + { + "start": 20184.16, + "end": 20188.52, + "probability": 0.9811 + }, + { + "start": 20188.62, + "end": 20190.02, + "probability": 0.9956 + }, + { + "start": 20191.36, + "end": 20192.62, + "probability": 0.8901 + }, + { + "start": 20194.1, + "end": 20197.06, + "probability": 0.6593 + }, + { + "start": 20197.74, + "end": 20201.72, + "probability": 0.8951 + }, + { + "start": 20202.86, + "end": 20209.82, + "probability": 0.9743 + }, + { + "start": 20210.42, + "end": 20211.22, + "probability": 0.8969 + }, + { + "start": 20211.4, + "end": 20211.74, + "probability": 0.5834 + }, + { + "start": 20211.94, + "end": 20212.54, + "probability": 0.3945 + }, + { + "start": 20213.02, + "end": 20214.96, + "probability": 0.9927 + }, + { + "start": 20217.26, + "end": 20221.34, + "probability": 0.9919 + }, + { + "start": 20222.12, + "end": 20228.84, + "probability": 0.991 + }, + { + "start": 20230.74, + "end": 20231.18, + "probability": 0.537 + }, + { + "start": 20231.32, + "end": 20234.14, + "probability": 0.9957 + }, + { + "start": 20234.14, + "end": 20236.86, + "probability": 0.9993 + }, + { + "start": 20236.86, + "end": 20238.42, + "probability": 0.6152 + }, + { + "start": 20239.2, + "end": 20243.56, + "probability": 0.8563 + }, + { + "start": 20244.26, + "end": 20248.2, + "probability": 0.8511 + }, + { + "start": 20248.74, + "end": 20252.88, + "probability": 0.9806 + }, + { + "start": 20254.02, + "end": 20255.58, + "probability": 0.6138 + }, + { + "start": 20255.82, + "end": 20260.22, + "probability": 0.9498 + }, + { + "start": 20261.26, + "end": 20264.52, + "probability": 0.9937 + }, + { + "start": 20265.6, + "end": 20268.6, + "probability": 0.7569 + }, + { + "start": 20269.4, + "end": 20271.7, + "probability": 0.9593 + }, + { + "start": 20273.6, + "end": 20276.2, + "probability": 0.9133 + }, + { + "start": 20276.76, + "end": 20278.94, + "probability": 0.9905 + }, + { + "start": 20278.94, + "end": 20281.92, + "probability": 0.9934 + }, + { + "start": 20283.18, + "end": 20289.0, + "probability": 0.9858 + }, + { + "start": 20289.84, + "end": 20292.88, + "probability": 0.9878 + }, + { + "start": 20293.44, + "end": 20295.7, + "probability": 0.9888 + }, + { + "start": 20296.24, + "end": 20299.08, + "probability": 0.9598 + }, + { + "start": 20299.98, + "end": 20300.96, + "probability": 0.9971 + }, + { + "start": 20306.28, + "end": 20312.48, + "probability": 0.9715 + }, + { + "start": 20312.66, + "end": 20312.84, + "probability": 0.5835 + }, + { + "start": 20312.96, + "end": 20313.94, + "probability": 0.8663 + }, + { + "start": 20314.36, + "end": 20316.48, + "probability": 0.867 + }, + { + "start": 20317.62, + "end": 20321.46, + "probability": 0.8438 + }, + { + "start": 20321.54, + "end": 20321.94, + "probability": 0.8273 + }, + { + "start": 20322.06, + "end": 20323.96, + "probability": 0.8262 + }, + { + "start": 20324.14, + "end": 20329.08, + "probability": 0.9982 + }, + { + "start": 20330.04, + "end": 20331.92, + "probability": 0.904 + }, + { + "start": 20332.68, + "end": 20338.38, + "probability": 0.9546 + }, + { + "start": 20339.0, + "end": 20342.32, + "probability": 0.9035 + }, + { + "start": 20343.26, + "end": 20344.18, + "probability": 0.515 + }, + { + "start": 20344.3, + "end": 20345.54, + "probability": 0.8297 + }, + { + "start": 20345.6, + "end": 20348.04, + "probability": 0.8958 + }, + { + "start": 20348.72, + "end": 20350.76, + "probability": 0.7605 + }, + { + "start": 20351.4, + "end": 20354.5, + "probability": 0.8594 + }, + { + "start": 20355.44, + "end": 20356.68, + "probability": 0.6454 + }, + { + "start": 20356.76, + "end": 20360.48, + "probability": 0.9314 + }, + { + "start": 20360.56, + "end": 20361.14, + "probability": 0.5852 + }, + { + "start": 20361.16, + "end": 20361.84, + "probability": 0.494 + }, + { + "start": 20362.32, + "end": 20363.38, + "probability": 0.8468 + }, + { + "start": 20363.56, + "end": 20364.46, + "probability": 0.8145 + }, + { + "start": 20365.0, + "end": 20366.02, + "probability": 0.8987 + }, + { + "start": 20366.58, + "end": 20369.42, + "probability": 0.9355 + }, + { + "start": 20369.92, + "end": 20370.96, + "probability": 0.7015 + }, + { + "start": 20371.48, + "end": 20373.08, + "probability": 0.9399 + }, + { + "start": 20373.98, + "end": 20377.68, + "probability": 0.9976 + }, + { + "start": 20377.68, + "end": 20382.62, + "probability": 0.9986 + }, + { + "start": 20383.64, + "end": 20384.6, + "probability": 0.8281 + }, + { + "start": 20385.14, + "end": 20388.08, + "probability": 0.8605 + }, + { + "start": 20388.08, + "end": 20392.92, + "probability": 0.9178 + }, + { + "start": 20393.52, + "end": 20396.56, + "probability": 0.5957 + }, + { + "start": 20396.72, + "end": 20401.82, + "probability": 0.9029 + }, + { + "start": 20402.32, + "end": 20407.14, + "probability": 0.9596 + }, + { + "start": 20407.3, + "end": 20408.0, + "probability": 0.808 + }, + { + "start": 20408.4, + "end": 20409.4, + "probability": 0.7744 + }, + { + "start": 20409.88, + "end": 20410.72, + "probability": 0.9711 + }, + { + "start": 20410.8, + "end": 20414.66, + "probability": 0.9421 + }, + { + "start": 20414.7, + "end": 20414.96, + "probability": 0.6501 + }, + { + "start": 20415.4, + "end": 20417.14, + "probability": 0.5458 + }, + { + "start": 20417.34, + "end": 20418.62, + "probability": 0.7111 + }, + { + "start": 20420.64, + "end": 20422.24, + "probability": 0.7629 + }, + { + "start": 20422.9, + "end": 20424.62, + "probability": 0.8372 + }, + { + "start": 20425.7, + "end": 20426.62, + "probability": 0.7576 + }, + { + "start": 20428.57, + "end": 20431.02, + "probability": 0.9657 + }, + { + "start": 20432.68, + "end": 20433.4, + "probability": 0.9677 + }, + { + "start": 20442.14, + "end": 20442.58, + "probability": 0.4034 + }, + { + "start": 20442.66, + "end": 20443.48, + "probability": 0.6969 + }, + { + "start": 20443.88, + "end": 20444.34, + "probability": 0.6528 + }, + { + "start": 20444.44, + "end": 20445.78, + "probability": 0.645 + }, + { + "start": 20445.86, + "end": 20446.8, + "probability": 0.5076 + }, + { + "start": 20448.44, + "end": 20451.48, + "probability": 0.661 + }, + { + "start": 20451.5, + "end": 20452.44, + "probability": 0.9658 + }, + { + "start": 20452.52, + "end": 20452.98, + "probability": 0.806 + }, + { + "start": 20454.34, + "end": 20458.46, + "probability": 0.6291 + }, + { + "start": 20458.52, + "end": 20461.12, + "probability": 0.9943 + }, + { + "start": 20462.14, + "end": 20463.14, + "probability": 0.7024 + }, + { + "start": 20464.0, + "end": 20464.9, + "probability": 0.9834 + }, + { + "start": 20464.96, + "end": 20467.32, + "probability": 0.7156 + }, + { + "start": 20467.44, + "end": 20471.16, + "probability": 0.9853 + }, + { + "start": 20471.26, + "end": 20472.02, + "probability": 0.8254 + }, + { + "start": 20472.14, + "end": 20473.36, + "probability": 0.9461 + }, + { + "start": 20473.44, + "end": 20474.04, + "probability": 0.7184 + }, + { + "start": 20475.02, + "end": 20476.22, + "probability": 0.9532 + }, + { + "start": 20476.32, + "end": 20478.66, + "probability": 0.9453 + }, + { + "start": 20479.12, + "end": 20484.76, + "probability": 0.5384 + }, + { + "start": 20484.84, + "end": 20485.9, + "probability": 0.257 + }, + { + "start": 20487.02, + "end": 20488.53, + "probability": 0.4007 + }, + { + "start": 20491.08, + "end": 20492.22, + "probability": 0.8423 + }, + { + "start": 20492.52, + "end": 20493.6, + "probability": 0.907 + }, + { + "start": 20493.7, + "end": 20494.76, + "probability": 0.7874 + }, + { + "start": 20495.74, + "end": 20500.94, + "probability": 0.9746 + }, + { + "start": 20501.84, + "end": 20502.52, + "probability": 0.5758 + }, + { + "start": 20502.54, + "end": 20505.42, + "probability": 0.7974 + }, + { + "start": 20505.42, + "end": 20508.82, + "probability": 0.7546 + }, + { + "start": 20510.02, + "end": 20510.77, + "probability": 0.6803 + }, + { + "start": 20512.02, + "end": 20515.0, + "probability": 0.6984 + }, + { + "start": 20515.04, + "end": 20516.84, + "probability": 0.784 + }, + { + "start": 20518.76, + "end": 20522.32, + "probability": 0.7356 + }, + { + "start": 20526.84, + "end": 20526.84, + "probability": 0.2001 + }, + { + "start": 20526.84, + "end": 20528.64, + "probability": 0.7708 + }, + { + "start": 20528.98, + "end": 20531.52, + "probability": 0.5848 + }, + { + "start": 20532.68, + "end": 20534.9, + "probability": 0.743 + }, + { + "start": 20535.28, + "end": 20536.98, + "probability": 0.9922 + }, + { + "start": 20537.92, + "end": 20541.8, + "probability": 0.8322 + }, + { + "start": 20542.62, + "end": 20543.58, + "probability": 0.8929 + }, + { + "start": 20544.72, + "end": 20547.46, + "probability": 0.7844 + }, + { + "start": 20547.5, + "end": 20549.68, + "probability": 0.5947 + }, + { + "start": 20550.22, + "end": 20553.3, + "probability": 0.8874 + }, + { + "start": 20553.92, + "end": 20555.8, + "probability": 0.4034 + }, + { + "start": 20555.98, + "end": 20558.66, + "probability": 0.8339 + }, + { + "start": 20559.38, + "end": 20561.48, + "probability": 0.7365 + }, + { + "start": 20561.74, + "end": 20562.74, + "probability": 0.7332 + }, + { + "start": 20562.8, + "end": 20564.58, + "probability": 0.8444 + }, + { + "start": 20565.44, + "end": 20569.02, + "probability": 0.8521 + }, + { + "start": 20569.74, + "end": 20572.02, + "probability": 0.8298 + }, + { + "start": 20572.18, + "end": 20572.34, + "probability": 0.769 + }, + { + "start": 20573.36, + "end": 20574.86, + "probability": 0.7159 + }, + { + "start": 20575.46, + "end": 20577.86, + "probability": 0.8669 + }, + { + "start": 20578.54, + "end": 20580.64, + "probability": 0.9777 + }, + { + "start": 20580.68, + "end": 20583.03, + "probability": 0.696 + }, + { + "start": 20583.88, + "end": 20585.4, + "probability": 0.9236 + }, + { + "start": 20587.46, + "end": 20589.2, + "probability": 0.1659 + }, + { + "start": 20590.48, + "end": 20593.98, + "probability": 0.7339 + }, + { + "start": 20594.86, + "end": 20596.98, + "probability": 0.9681 + }, + { + "start": 20597.04, + "end": 20598.54, + "probability": 0.9582 + }, + { + "start": 20598.76, + "end": 20599.46, + "probability": 0.5793 + }, + { + "start": 20599.96, + "end": 20602.44, + "probability": 0.9888 + }, + { + "start": 20603.08, + "end": 20604.71, + "probability": 0.9265 + }, + { + "start": 20605.2, + "end": 20607.82, + "probability": 0.9958 + }, + { + "start": 20608.7, + "end": 20611.52, + "probability": 0.9942 + }, + { + "start": 20611.92, + "end": 20614.44, + "probability": 0.9092 + }, + { + "start": 20614.52, + "end": 20617.68, + "probability": 0.9957 + }, + { + "start": 20618.1, + "end": 20620.3, + "probability": 0.9955 + }, + { + "start": 20620.64, + "end": 20622.82, + "probability": 0.9978 + }, + { + "start": 20623.46, + "end": 20623.99, + "probability": 0.8243 + }, + { + "start": 20624.16, + "end": 20624.76, + "probability": 0.5928 + }, + { + "start": 20624.88, + "end": 20627.76, + "probability": 0.9614 + }, + { + "start": 20628.52, + "end": 20631.14, + "probability": 0.928 + }, + { + "start": 20631.98, + "end": 20636.5, + "probability": 0.9785 + }, + { + "start": 20637.14, + "end": 20639.6, + "probability": 0.9207 + }, + { + "start": 20640.18, + "end": 20643.25, + "probability": 0.9816 + }, + { + "start": 20643.86, + "end": 20648.98, + "probability": 0.9019 + }, + { + "start": 20648.98, + "end": 20653.42, + "probability": 0.9771 + }, + { + "start": 20654.16, + "end": 20655.44, + "probability": 0.7307 + }, + { + "start": 20655.82, + "end": 20656.24, + "probability": 0.901 + }, + { + "start": 20656.76, + "end": 20658.08, + "probability": 0.7482 + }, + { + "start": 20658.2, + "end": 20659.7, + "probability": 0.9642 + }, + { + "start": 20660.42, + "end": 20662.34, + "probability": 0.7998 + }, + { + "start": 20663.04, + "end": 20666.98, + "probability": 0.9963 + }, + { + "start": 20666.98, + "end": 20669.8, + "probability": 0.8887 + }, + { + "start": 20670.4, + "end": 20671.54, + "probability": 0.9079 + }, + { + "start": 20671.98, + "end": 20674.26, + "probability": 0.987 + }, + { + "start": 20674.7, + "end": 20677.26, + "probability": 0.9233 + }, + { + "start": 20677.84, + "end": 20683.3, + "probability": 0.953 + }, + { + "start": 20683.92, + "end": 20684.48, + "probability": 0.9658 + }, + { + "start": 20684.62, + "end": 20685.34, + "probability": 0.9207 + }, + { + "start": 20685.78, + "end": 20688.32, + "probability": 0.9023 + }, + { + "start": 20689.0, + "end": 20690.26, + "probability": 0.6683 + }, + { + "start": 20690.5, + "end": 20691.18, + "probability": 0.831 + }, + { + "start": 20691.62, + "end": 20692.96, + "probability": 0.8868 + }, + { + "start": 20693.16, + "end": 20695.14, + "probability": 0.3314 + }, + { + "start": 20695.52, + "end": 20696.55, + "probability": 0.9834 + }, + { + "start": 20696.7, + "end": 20697.64, + "probability": 0.8664 + }, + { + "start": 20697.7, + "end": 20700.58, + "probability": 0.8644 + }, + { + "start": 20700.58, + "end": 20701.74, + "probability": 0.7944 + }, + { + "start": 20702.88, + "end": 20705.66, + "probability": 0.9977 + }, + { + "start": 20706.16, + "end": 20707.34, + "probability": 0.8057 + }, + { + "start": 20707.88, + "end": 20708.46, + "probability": 0.8083 + }, + { + "start": 20708.78, + "end": 20710.9, + "probability": 0.7511 + }, + { + "start": 20711.38, + "end": 20712.04, + "probability": 0.2174 + }, + { + "start": 20712.04, + "end": 20713.0, + "probability": 0.8982 + }, + { + "start": 20713.24, + "end": 20713.78, + "probability": 0.3969 + }, + { + "start": 20714.24, + "end": 20717.24, + "probability": 0.6899 + }, + { + "start": 20717.64, + "end": 20718.12, + "probability": 0.4767 + }, + { + "start": 20719.08, + "end": 20720.42, + "probability": 0.9841 + }, + { + "start": 20720.96, + "end": 20722.6, + "probability": 0.9276 + }, + { + "start": 20722.98, + "end": 20723.24, + "probability": 0.803 + }, + { + "start": 20723.34, + "end": 20725.24, + "probability": 0.8428 + }, + { + "start": 20725.48, + "end": 20726.76, + "probability": 0.716 + }, + { + "start": 20727.6, + "end": 20728.27, + "probability": 0.9769 + }, + { + "start": 20729.24, + "end": 20732.94, + "probability": 0.9768 + }, + { + "start": 20732.94, + "end": 20735.62, + "probability": 0.9972 + }, + { + "start": 20736.2, + "end": 20740.8, + "probability": 0.9935 + }, + { + "start": 20740.8, + "end": 20747.16, + "probability": 0.9943 + }, + { + "start": 20747.58, + "end": 20748.06, + "probability": 0.6812 + }, + { + "start": 20748.1, + "end": 20751.68, + "probability": 0.9991 + }, + { + "start": 20751.68, + "end": 20755.14, + "probability": 0.9985 + }, + { + "start": 20755.14, + "end": 20757.94, + "probability": 0.9982 + }, + { + "start": 20759.06, + "end": 20760.2, + "probability": 0.6495 + }, + { + "start": 20760.54, + "end": 20761.42, + "probability": 0.2612 + }, + { + "start": 20761.46, + "end": 20764.28, + "probability": 0.991 + }, + { + "start": 20764.74, + "end": 20765.66, + "probability": 0.5358 + }, + { + "start": 20766.02, + "end": 20770.48, + "probability": 0.9921 + }, + { + "start": 20770.86, + "end": 20771.54, + "probability": 0.9637 + }, + { + "start": 20775.56, + "end": 20777.36, + "probability": 0.5573 + }, + { + "start": 20793.32, + "end": 20793.6, + "probability": 0.2297 + }, + { + "start": 20793.6, + "end": 20794.26, + "probability": 0.315 + }, + { + "start": 20794.82, + "end": 20796.16, + "probability": 0.3895 + }, + { + "start": 20796.3, + "end": 20799.76, + "probability": 0.9593 + }, + { + "start": 20799.76, + "end": 20803.24, + "probability": 0.9806 + }, + { + "start": 20804.22, + "end": 20807.8, + "probability": 0.0349 + }, + { + "start": 20807.8, + "end": 20807.8, + "probability": 0.2943 + }, + { + "start": 20807.8, + "end": 20807.8, + "probability": 0.3132 + }, + { + "start": 20807.8, + "end": 20807.8, + "probability": 0.3687 + }, + { + "start": 20807.8, + "end": 20807.8, + "probability": 0.3656 + }, + { + "start": 20807.8, + "end": 20809.32, + "probability": 0.2757 + }, + { + "start": 20810.48, + "end": 20812.34, + "probability": 0.7047 + }, + { + "start": 20813.51, + "end": 20815.7, + "probability": 0.8942 + }, + { + "start": 20817.44, + "end": 20820.76, + "probability": 0.8049 + }, + { + "start": 20821.4, + "end": 20823.4, + "probability": 0.5327 + }, + { + "start": 20823.46, + "end": 20824.12, + "probability": 0.5971 + }, + { + "start": 20824.78, + "end": 20826.3, + "probability": 0.9937 + }, + { + "start": 20828.02, + "end": 20829.94, + "probability": 0.9761 + }, + { + "start": 20831.44, + "end": 20834.94, + "probability": 0.9254 + }, + { + "start": 20849.06, + "end": 20851.4, + "probability": 0.5502 + }, + { + "start": 20852.28, + "end": 20855.5, + "probability": 0.8259 + }, + { + "start": 20855.5, + "end": 20857.08, + "probability": 0.4735 + }, + { + "start": 20857.16, + "end": 20858.25, + "probability": 0.6457 + }, + { + "start": 20858.46, + "end": 20859.16, + "probability": 0.8013 + }, + { + "start": 20860.15, + "end": 20863.32, + "probability": 0.9341 + }, + { + "start": 20863.78, + "end": 20864.0, + "probability": 0.0521 + }, + { + "start": 20864.0, + "end": 20864.96, + "probability": 0.2476 + }, + { + "start": 20865.02, + "end": 20866.6, + "probability": 0.7753 + }, + { + "start": 20866.84, + "end": 20866.88, + "probability": 0.1384 + }, + { + "start": 20867.87, + "end": 20869.84, + "probability": 0.984 + }, + { + "start": 20870.58, + "end": 20872.11, + "probability": 0.4908 + }, + { + "start": 20872.46, + "end": 20872.46, + "probability": 0.0249 + }, + { + "start": 20872.46, + "end": 20872.58, + "probability": 0.0091 + }, + { + "start": 20872.7, + "end": 20874.76, + "probability": 0.9113 + }, + { + "start": 20875.82, + "end": 20878.04, + "probability": 0.8197 + }, + { + "start": 20878.04, + "end": 20881.98, + "probability": 0.9813 + }, + { + "start": 20882.23, + "end": 20884.1, + "probability": 0.7999 + }, + { + "start": 20884.94, + "end": 20885.66, + "probability": 0.6603 + }, + { + "start": 20886.4, + "end": 20889.24, + "probability": 0.3925 + }, + { + "start": 20890.34, + "end": 20893.2, + "probability": 0.9463 + }, + { + "start": 20894.24, + "end": 20897.3, + "probability": 0.8932 + }, + { + "start": 20898.84, + "end": 20900.18, + "probability": 0.6244 + }, + { + "start": 20900.2, + "end": 20901.08, + "probability": 0.6162 + }, + { + "start": 20901.36, + "end": 20902.26, + "probability": 0.8705 + }, + { + "start": 20902.38, + "end": 20903.48, + "probability": 0.8371 + }, + { + "start": 20903.98, + "end": 20906.08, + "probability": 0.6751 + }, + { + "start": 20906.76, + "end": 20907.58, + "probability": 0.9213 + }, + { + "start": 20908.52, + "end": 20909.36, + "probability": 0.6666 + }, + { + "start": 20909.42, + "end": 20909.96, + "probability": 0.7809 + }, + { + "start": 20910.22, + "end": 20911.01, + "probability": 0.3286 + }, + { + "start": 20912.44, + "end": 20913.16, + "probability": 0.6149 + }, + { + "start": 20914.28, + "end": 20915.22, + "probability": 0.8772 + }, + { + "start": 20915.28, + "end": 20916.94, + "probability": 0.6795 + }, + { + "start": 20917.12, + "end": 20921.56, + "probability": 0.9474 + }, + { + "start": 20921.96, + "end": 20927.08, + "probability": 0.9478 + }, + { + "start": 20928.6, + "end": 20930.38, + "probability": 0.6944 + }, + { + "start": 20930.72, + "end": 20931.76, + "probability": 0.5774 + }, + { + "start": 20932.04, + "end": 20932.38, + "probability": 0.3986 + }, + { + "start": 20933.94, + "end": 20936.42, + "probability": 0.9668 + }, + { + "start": 20936.58, + "end": 20938.24, + "probability": 0.8753 + }, + { + "start": 20938.38, + "end": 20940.58, + "probability": 0.7433 + }, + { + "start": 20941.72, + "end": 20943.63, + "probability": 0.9454 + }, + { + "start": 20943.74, + "end": 20945.98, + "probability": 0.6788 + }, + { + "start": 20946.76, + "end": 20949.41, + "probability": 0.5359 + }, + { + "start": 20955.52, + "end": 20955.76, + "probability": 0.0551 + }, + { + "start": 20955.76, + "end": 20955.76, + "probability": 0.0415 + }, + { + "start": 20955.76, + "end": 20955.76, + "probability": 0.0213 + }, + { + "start": 20955.76, + "end": 20958.7, + "probability": 0.8232 + }, + { + "start": 20959.0, + "end": 20961.74, + "probability": 0.935 + }, + { + "start": 20963.89, + "end": 20965.06, + "probability": 0.9502 + }, + { + "start": 20965.84, + "end": 20966.48, + "probability": 0.7317 + }, + { + "start": 20966.5, + "end": 20969.05, + "probability": 0.9978 + }, + { + "start": 20969.62, + "end": 20970.66, + "probability": 0.8915 + }, + { + "start": 20971.14, + "end": 20973.16, + "probability": 0.9816 + }, + { + "start": 20973.24, + "end": 20973.8, + "probability": 0.9438 + }, + { + "start": 20974.04, + "end": 20975.32, + "probability": 0.9398 + }, + { + "start": 20975.38, + "end": 20977.26, + "probability": 0.9329 + }, + { + "start": 20977.86, + "end": 20978.5, + "probability": 0.7176 + }, + { + "start": 20978.58, + "end": 20979.14, + "probability": 0.9366 + }, + { + "start": 20979.3, + "end": 20979.86, + "probability": 0.9071 + }, + { + "start": 20980.32, + "end": 20980.98, + "probability": 0.9525 + }, + { + "start": 20981.1, + "end": 20981.72, + "probability": 0.9618 + }, + { + "start": 20981.8, + "end": 20982.38, + "probability": 0.4226 + }, + { + "start": 20982.44, + "end": 20983.26, + "probability": 0.6737 + }, + { + "start": 20983.36, + "end": 20983.48, + "probability": 0.5706 + }, + { + "start": 20983.78, + "end": 20984.02, + "probability": 0.965 + }, + { + "start": 20985.32, + "end": 20986.94, + "probability": 0.7631 + }, + { + "start": 20987.94, + "end": 20989.54, + "probability": 0.9481 + }, + { + "start": 20990.46, + "end": 20992.2, + "probability": 0.4835 + }, + { + "start": 20993.06, + "end": 20998.69, + "probability": 0.959 + }, + { + "start": 20999.08, + "end": 21000.34, + "probability": 0.6082 + }, + { + "start": 21000.98, + "end": 21001.92, + "probability": 0.5002 + }, + { + "start": 21002.64, + "end": 21004.78, + "probability": 0.9736 + }, + { + "start": 21005.94, + "end": 21006.94, + "probability": 0.7188 + }, + { + "start": 21006.94, + "end": 21009.51, + "probability": 0.6949 + }, + { + "start": 21010.2, + "end": 21012.34, + "probability": 0.8027 + }, + { + "start": 21013.24, + "end": 21014.96, + "probability": 0.8837 + }, + { + "start": 21015.4, + "end": 21017.38, + "probability": 0.3557 + }, + { + "start": 21017.38, + "end": 21019.86, + "probability": 0.9863 + }, + { + "start": 21020.7, + "end": 21025.9, + "probability": 0.8825 + }, + { + "start": 21025.98, + "end": 21026.42, + "probability": 0.6512 + }, + { + "start": 21027.6, + "end": 21029.9, + "probability": 0.8428 + }, + { + "start": 21030.02, + "end": 21031.74, + "probability": 0.7008 + }, + { + "start": 21032.26, + "end": 21034.82, + "probability": 0.9086 + }, + { + "start": 21036.06, + "end": 21037.98, + "probability": 0.8653 + }, + { + "start": 21038.82, + "end": 21040.58, + "probability": 0.7037 + }, + { + "start": 21040.68, + "end": 21042.68, + "probability": 0.9888 + }, + { + "start": 21042.98, + "end": 21045.54, + "probability": 0.9812 + }, + { + "start": 21046.1, + "end": 21047.58, + "probability": 0.8741 + }, + { + "start": 21047.58, + "end": 21049.84, + "probability": 0.9094 + }, + { + "start": 21051.0, + "end": 21055.82, + "probability": 0.9692 + }, + { + "start": 21056.86, + "end": 21060.18, + "probability": 0.8043 + }, + { + "start": 21060.62, + "end": 21061.2, + "probability": 0.9194 + }, + { + "start": 21061.7, + "end": 21062.26, + "probability": 0.9753 + }, + { + "start": 21062.64, + "end": 21064.08, + "probability": 0.9508 + }, + { + "start": 21064.72, + "end": 21066.09, + "probability": 0.7661 + }, + { + "start": 21066.66, + "end": 21067.2, + "probability": 0.8636 + }, + { + "start": 21067.24, + "end": 21067.98, + "probability": 0.9951 + }, + { + "start": 21068.36, + "end": 21068.76, + "probability": 0.4609 + }, + { + "start": 21070.02, + "end": 21073.94, + "probability": 0.9536 + }, + { + "start": 21074.54, + "end": 21075.46, + "probability": 0.9596 + }, + { + "start": 21075.5, + "end": 21076.52, + "probability": 0.8782 + }, + { + "start": 21076.6, + "end": 21077.68, + "probability": 0.7258 + }, + { + "start": 21077.78, + "end": 21079.36, + "probability": 0.8297 + }, + { + "start": 21079.9, + "end": 21082.31, + "probability": 0.8208 + }, + { + "start": 21082.52, + "end": 21083.08, + "probability": 0.9893 + }, + { + "start": 21084.58, + "end": 21086.28, + "probability": 0.9951 + }, + { + "start": 21086.36, + "end": 21087.2, + "probability": 0.6821 + }, + { + "start": 21087.48, + "end": 21087.68, + "probability": 0.2226 + }, + { + "start": 21087.68, + "end": 21087.68, + "probability": 0.301 + }, + { + "start": 21087.88, + "end": 21091.36, + "probability": 0.9739 + }, + { + "start": 21091.42, + "end": 21093.08, + "probability": 0.7608 + }, + { + "start": 21093.5, + "end": 21093.52, + "probability": 0.4352 + }, + { + "start": 21093.64, + "end": 21094.02, + "probability": 0.7861 + }, + { + "start": 21094.06, + "end": 21096.22, + "probability": 0.9058 + }, + { + "start": 21096.3, + "end": 21097.86, + "probability": 0.5341 + }, + { + "start": 21097.86, + "end": 21098.62, + "probability": 0.5141 + }, + { + "start": 21098.69, + "end": 21099.06, + "probability": 0.7108 + }, + { + "start": 21099.06, + "end": 21101.04, + "probability": 0.2678 + }, + { + "start": 21101.2, + "end": 21102.78, + "probability": 0.6278 + }, + { + "start": 21102.88, + "end": 21103.62, + "probability": 0.6384 + }, + { + "start": 21104.1, + "end": 21105.34, + "probability": 0.9675 + }, + { + "start": 21105.52, + "end": 21105.64, + "probability": 0.4016 + }, + { + "start": 21105.64, + "end": 21107.58, + "probability": 0.5884 + }, + { + "start": 21107.58, + "end": 21108.54, + "probability": 0.3031 + }, + { + "start": 21108.66, + "end": 21108.96, + "probability": 0.8708 + }, + { + "start": 21110.24, + "end": 21110.7, + "probability": 0.9205 + }, + { + "start": 21112.04, + "end": 21115.3, + "probability": 0.984 + }, + { + "start": 21115.88, + "end": 21117.98, + "probability": 0.8652 + }, + { + "start": 21118.12, + "end": 21119.2, + "probability": 0.775 + }, + { + "start": 21119.68, + "end": 21122.33, + "probability": 0.9471 + }, + { + "start": 21122.9, + "end": 21125.06, + "probability": 0.97 + }, + { + "start": 21125.32, + "end": 21126.52, + "probability": 0.5721 + }, + { + "start": 21127.18, + "end": 21129.24, + "probability": 0.9825 + }, + { + "start": 21130.08, + "end": 21133.14, + "probability": 0.9456 + }, + { + "start": 21133.6, + "end": 21134.42, + "probability": 0.8941 + }, + { + "start": 21134.52, + "end": 21135.24, + "probability": 0.8924 + }, + { + "start": 21135.68, + "end": 21138.9, + "probability": 0.9739 + }, + { + "start": 21139.3, + "end": 21141.08, + "probability": 0.8141 + }, + { + "start": 21141.78, + "end": 21143.1, + "probability": 0.9897 + }, + { + "start": 21143.46, + "end": 21144.3, + "probability": 0.9906 + }, + { + "start": 21144.52, + "end": 21144.96, + "probability": 0.824 + }, + { + "start": 21145.36, + "end": 21147.02, + "probability": 0.9927 + }, + { + "start": 21147.44, + "end": 21148.76, + "probability": 0.932 + }, + { + "start": 21149.42, + "end": 21151.4, + "probability": 0.9983 + }, + { + "start": 21151.44, + "end": 21152.96, + "probability": 0.9635 + }, + { + "start": 21153.34, + "end": 21154.4, + "probability": 0.9841 + }, + { + "start": 21154.5, + "end": 21155.24, + "probability": 0.9781 + }, + { + "start": 21155.36, + "end": 21156.34, + "probability": 0.5332 + }, + { + "start": 21156.8, + "end": 21157.87, + "probability": 0.938 + }, + { + "start": 21158.2, + "end": 21158.74, + "probability": 0.8475 + }, + { + "start": 21158.9, + "end": 21159.46, + "probability": 0.3074 + }, + { + "start": 21159.78, + "end": 21160.97, + "probability": 0.7284 + }, + { + "start": 21161.72, + "end": 21162.52, + "probability": 0.9736 + }, + { + "start": 21163.24, + "end": 21164.54, + "probability": 0.975 + }, + { + "start": 21164.62, + "end": 21165.18, + "probability": 0.6522 + }, + { + "start": 21165.22, + "end": 21165.82, + "probability": 0.7677 + }, + { + "start": 21165.92, + "end": 21166.52, + "probability": 0.4331 + }, + { + "start": 21167.04, + "end": 21168.23, + "probability": 0.9908 + }, + { + "start": 21169.1, + "end": 21170.24, + "probability": 0.6842 + }, + { + "start": 21170.36, + "end": 21171.14, + "probability": 0.8912 + }, + { + "start": 21171.66, + "end": 21171.84, + "probability": 0.7805 + }, + { + "start": 21172.38, + "end": 21173.98, + "probability": 0.7817 + }, + { + "start": 21174.22, + "end": 21175.92, + "probability": 0.9926 + }, + { + "start": 21175.98, + "end": 21176.74, + "probability": 0.61 + }, + { + "start": 21177.04, + "end": 21177.52, + "probability": 0.4126 + }, + { + "start": 21177.62, + "end": 21180.6, + "probability": 0.1223 + }, + { + "start": 21180.6, + "end": 21181.66, + "probability": 0.2449 + }, + { + "start": 21182.48, + "end": 21183.86, + "probability": 0.9796 + }, + { + "start": 21184.62, + "end": 21185.44, + "probability": 0.9897 + }, + { + "start": 21185.52, + "end": 21187.2, + "probability": 0.8741 + }, + { + "start": 21188.06, + "end": 21188.36, + "probability": 0.6226 + }, + { + "start": 21189.08, + "end": 21192.27, + "probability": 0.9941 + }, + { + "start": 21193.0, + "end": 21193.48, + "probability": 0.6589 + }, + { + "start": 21193.56, + "end": 21194.42, + "probability": 0.9778 + }, + { + "start": 21194.58, + "end": 21197.32, + "probability": 0.9951 + }, + { + "start": 21198.3, + "end": 21200.6, + "probability": 0.8691 + }, + { + "start": 21201.4, + "end": 21205.82, + "probability": 0.9932 + }, + { + "start": 21206.5, + "end": 21208.4, + "probability": 0.7897 + }, + { + "start": 21209.12, + "end": 21212.04, + "probability": 0.9332 + }, + { + "start": 21212.06, + "end": 21212.7, + "probability": 0.8364 + }, + { + "start": 21213.18, + "end": 21216.4, + "probability": 0.9973 + }, + { + "start": 21217.28, + "end": 21223.86, + "probability": 0.9934 + }, + { + "start": 21224.86, + "end": 21224.96, + "probability": 0.0669 + }, + { + "start": 21224.96, + "end": 21229.2, + "probability": 0.883 + }, + { + "start": 21229.64, + "end": 21235.3, + "probability": 0.9877 + }, + { + "start": 21235.44, + "end": 21236.92, + "probability": 0.8958 + }, + { + "start": 21237.48, + "end": 21239.34, + "probability": 0.8949 + }, + { + "start": 21239.48, + "end": 21242.92, + "probability": 0.7961 + }, + { + "start": 21242.98, + "end": 21244.02, + "probability": 0.6919 + }, + { + "start": 21244.28, + "end": 21244.64, + "probability": 0.5981 + }, + { + "start": 21244.9, + "end": 21246.8, + "probability": 0.7954 + }, + { + "start": 21246.94, + "end": 21249.32, + "probability": 0.9727 + }, + { + "start": 21249.84, + "end": 21251.96, + "probability": 0.9932 + }, + { + "start": 21252.88, + "end": 21254.14, + "probability": 0.692 + }, + { + "start": 21254.7, + "end": 21257.66, + "probability": 0.9657 + }, + { + "start": 21258.4, + "end": 21259.9, + "probability": 0.9797 + }, + { + "start": 21260.82, + "end": 21264.62, + "probability": 0.9372 + }, + { + "start": 21265.68, + "end": 21270.48, + "probability": 0.9819 + }, + { + "start": 21271.14, + "end": 21272.32, + "probability": 0.9881 + }, + { + "start": 21272.48, + "end": 21274.94, + "probability": 0.9983 + }, + { + "start": 21275.04, + "end": 21276.4, + "probability": 0.2689 + }, + { + "start": 21277.0, + "end": 21278.9, + "probability": 0.8425 + }, + { + "start": 21278.96, + "end": 21280.34, + "probability": 0.867 + }, + { + "start": 21280.76, + "end": 21282.25, + "probability": 0.9878 + }, + { + "start": 21283.02, + "end": 21286.66, + "probability": 0.6318 + }, + { + "start": 21286.74, + "end": 21287.68, + "probability": 0.7296 + }, + { + "start": 21288.26, + "end": 21289.32, + "probability": 0.8065 + }, + { + "start": 21289.84, + "end": 21290.3, + "probability": 0.7009 + }, + { + "start": 21290.42, + "end": 21293.74, + "probability": 0.7658 + }, + { + "start": 21294.12, + "end": 21295.12, + "probability": 0.8228 + }, + { + "start": 21295.16, + "end": 21296.8, + "probability": 0.8993 + }, + { + "start": 21296.86, + "end": 21297.44, + "probability": 0.8268 + }, + { + "start": 21297.92, + "end": 21299.96, + "probability": 0.992 + }, + { + "start": 21300.02, + "end": 21303.56, + "probability": 0.9895 + }, + { + "start": 21304.12, + "end": 21305.26, + "probability": 0.8538 + }, + { + "start": 21307.94, + "end": 21313.24, + "probability": 0.9943 + }, + { + "start": 21314.02, + "end": 21321.66, + "probability": 0.9912 + }, + { + "start": 21322.36, + "end": 21323.38, + "probability": 0.6076 + }, + { + "start": 21323.6, + "end": 21327.48, + "probability": 0.9513 + }, + { + "start": 21328.32, + "end": 21331.06, + "probability": 0.9686 + }, + { + "start": 21331.12, + "end": 21337.8, + "probability": 0.9819 + }, + { + "start": 21338.16, + "end": 21339.99, + "probability": 0.8498 + }, + { + "start": 21340.94, + "end": 21343.7, + "probability": 0.9966 + }, + { + "start": 21343.7, + "end": 21346.52, + "probability": 0.9956 + }, + { + "start": 21347.18, + "end": 21347.3, + "probability": 0.3718 + }, + { + "start": 21347.3, + "end": 21347.96, + "probability": 0.5362 + }, + { + "start": 21348.1, + "end": 21350.54, + "probability": 0.9958 + }, + { + "start": 21351.1, + "end": 21351.7, + "probability": 0.9057 + }, + { + "start": 21351.84, + "end": 21352.92, + "probability": 0.9534 + }, + { + "start": 21353.02, + "end": 21354.0, + "probability": 0.917 + }, + { + "start": 21354.14, + "end": 21355.82, + "probability": 0.864 + }, + { + "start": 21356.88, + "end": 21358.93, + "probability": 0.5898 + }, + { + "start": 21359.34, + "end": 21360.98, + "probability": 0.9228 + }, + { + "start": 21361.48, + "end": 21362.98, + "probability": 0.9897 + }, + { + "start": 21363.06, + "end": 21364.38, + "probability": 0.9641 + }, + { + "start": 21364.78, + "end": 21366.88, + "probability": 0.8901 + }, + { + "start": 21368.04, + "end": 21370.18, + "probability": 0.9922 + }, + { + "start": 21370.34, + "end": 21371.18, + "probability": 0.9423 + }, + { + "start": 21371.34, + "end": 21373.8, + "probability": 0.727 + }, + { + "start": 21373.84, + "end": 21377.12, + "probability": 0.9861 + }, + { + "start": 21377.34, + "end": 21377.52, + "probability": 0.7111 + }, + { + "start": 21378.22, + "end": 21379.66, + "probability": 0.611 + }, + { + "start": 21379.82, + "end": 21381.14, + "probability": 0.8209 + }, + { + "start": 21381.5, + "end": 21382.64, + "probability": 0.8775 + }, + { + "start": 21382.66, + "end": 21384.04, + "probability": 0.9541 + }, + { + "start": 21394.54, + "end": 21396.96, + "probability": 0.9834 + }, + { + "start": 21399.38, + "end": 21399.8, + "probability": 0.9163 + }, + { + "start": 21401.66, + "end": 21403.14, + "probability": 0.8712 + }, + { + "start": 21411.68, + "end": 21414.22, + "probability": 0.587 + }, + { + "start": 21415.9, + "end": 21416.68, + "probability": 0.8728 + }, + { + "start": 21418.9, + "end": 21423.42, + "probability": 0.9916 + }, + { + "start": 21423.76, + "end": 21428.8, + "probability": 0.994 + }, + { + "start": 21428.92, + "end": 21429.98, + "probability": 0.9149 + }, + { + "start": 21430.18, + "end": 21432.56, + "probability": 0.8929 + }, + { + "start": 21433.52, + "end": 21437.02, + "probability": 0.9819 + }, + { + "start": 21437.96, + "end": 21440.25, + "probability": 0.983 + }, + { + "start": 21440.98, + "end": 21447.7, + "probability": 0.9635 + }, + { + "start": 21449.62, + "end": 21451.28, + "probability": 0.9476 + }, + { + "start": 21452.14, + "end": 21458.96, + "probability": 0.9903 + }, + { + "start": 21459.2, + "end": 21460.24, + "probability": 0.9365 + }, + { + "start": 21460.84, + "end": 21461.66, + "probability": 0.9352 + }, + { + "start": 21462.62, + "end": 21464.28, + "probability": 0.9922 + }, + { + "start": 21465.1, + "end": 21473.26, + "probability": 0.9226 + }, + { + "start": 21474.44, + "end": 21475.56, + "probability": 0.9102 + }, + { + "start": 21476.56, + "end": 21479.12, + "probability": 0.9751 + }, + { + "start": 21480.0, + "end": 21484.98, + "probability": 0.9933 + }, + { + "start": 21485.56, + "end": 21487.28, + "probability": 0.954 + }, + { + "start": 21487.48, + "end": 21492.6, + "probability": 0.9658 + }, + { + "start": 21493.4, + "end": 21498.44, + "probability": 0.9801 + }, + { + "start": 21500.46, + "end": 21505.09, + "probability": 0.9971 + }, + { + "start": 21505.3, + "end": 21509.48, + "probability": 0.9917 + }, + { + "start": 21509.62, + "end": 21510.88, + "probability": 0.9943 + }, + { + "start": 21511.52, + "end": 21514.36, + "probability": 0.9987 + }, + { + "start": 21515.04, + "end": 21515.24, + "probability": 0.2861 + }, + { + "start": 21515.36, + "end": 21515.88, + "probability": 0.8403 + }, + { + "start": 21516.06, + "end": 21520.46, + "probability": 0.9551 + }, + { + "start": 21521.4, + "end": 21524.5, + "probability": 0.9881 + }, + { + "start": 21525.3, + "end": 21529.1, + "probability": 0.9904 + }, + { + "start": 21530.06, + "end": 21531.3, + "probability": 0.9977 + }, + { + "start": 21532.18, + "end": 21533.48, + "probability": 0.3557 + }, + { + "start": 21534.84, + "end": 21536.46, + "probability": 0.9118 + }, + { + "start": 21536.94, + "end": 21539.68, + "probability": 0.9602 + }, + { + "start": 21540.2, + "end": 21544.28, + "probability": 0.8703 + }, + { + "start": 21545.12, + "end": 21546.8, + "probability": 0.76 + }, + { + "start": 21546.94, + "end": 21549.06, + "probability": 0.7409 + }, + { + "start": 21549.14, + "end": 21550.76, + "probability": 0.9803 + }, + { + "start": 21550.82, + "end": 21553.44, + "probability": 0.9696 + }, + { + "start": 21554.18, + "end": 21559.14, + "probability": 0.9364 + }, + { + "start": 21559.86, + "end": 21563.86, + "probability": 0.8564 + }, + { + "start": 21563.96, + "end": 21564.7, + "probability": 0.6862 + }, + { + "start": 21565.06, + "end": 21568.0, + "probability": 0.9473 + }, + { + "start": 21568.04, + "end": 21571.56, + "probability": 0.9801 + }, + { + "start": 21571.64, + "end": 21572.78, + "probability": 0.7901 + }, + { + "start": 21573.26, + "end": 21574.0, + "probability": 0.4123 + }, + { + "start": 21574.16, + "end": 21580.54, + "probability": 0.983 + }, + { + "start": 21580.9, + "end": 21582.02, + "probability": 0.9893 + }, + { + "start": 21582.26, + "end": 21584.38, + "probability": 0.9565 + }, + { + "start": 21585.03, + "end": 21586.12, + "probability": 0.9636 + }, + { + "start": 21586.18, + "end": 21588.84, + "probability": 0.9399 + }, + { + "start": 21590.04, + "end": 21591.32, + "probability": 0.7012 + }, + { + "start": 21591.48, + "end": 21592.08, + "probability": 0.8542 + }, + { + "start": 21592.12, + "end": 21594.42, + "probability": 0.8621 + }, + { + "start": 21594.64, + "end": 21597.86, + "probability": 0.9342 + }, + { + "start": 21598.0, + "end": 21600.7, + "probability": 0.9918 + }, + { + "start": 21600.8, + "end": 21601.14, + "probability": 0.5194 + }, + { + "start": 21601.98, + "end": 21605.1, + "probability": 0.9817 + }, + { + "start": 21605.56, + "end": 21606.62, + "probability": 0.9915 + }, + { + "start": 21606.7, + "end": 21609.42, + "probability": 0.9628 + }, + { + "start": 21609.84, + "end": 21612.54, + "probability": 0.9629 + }, + { + "start": 21613.7, + "end": 21614.8, + "probability": 0.8582 + }, + { + "start": 21615.18, + "end": 21619.86, + "probability": 0.967 + }, + { + "start": 21619.96, + "end": 21621.04, + "probability": 0.9783 + }, + { + "start": 21621.38, + "end": 21622.38, + "probability": 0.7603 + }, + { + "start": 21622.5, + "end": 21625.08, + "probability": 0.9388 + }, + { + "start": 21625.16, + "end": 21627.1, + "probability": 0.8892 + }, + { + "start": 21627.24, + "end": 21630.22, + "probability": 0.9497 + }, + { + "start": 21631.04, + "end": 21633.56, + "probability": 0.8633 + }, + { + "start": 21633.68, + "end": 21634.26, + "probability": 0.9879 + }, + { + "start": 21634.4, + "end": 21636.82, + "probability": 0.8977 + }, + { + "start": 21637.22, + "end": 21639.08, + "probability": 0.9062 + }, + { + "start": 21639.26, + "end": 21641.38, + "probability": 0.9718 + }, + { + "start": 21641.46, + "end": 21642.26, + "probability": 0.9269 + }, + { + "start": 21642.32, + "end": 21643.18, + "probability": 0.9629 + }, + { + "start": 21643.24, + "end": 21645.22, + "probability": 0.9575 + }, + { + "start": 21645.38, + "end": 21646.18, + "probability": 0.5856 + }, + { + "start": 21646.56, + "end": 21648.98, + "probability": 0.9895 + }, + { + "start": 21649.2, + "end": 21651.4, + "probability": 0.9284 + }, + { + "start": 21651.76, + "end": 21651.98, + "probability": 0.8368 + }, + { + "start": 21652.52, + "end": 21652.82, + "probability": 0.5209 + }, + { + "start": 21652.9, + "end": 21657.2, + "probability": 0.9385 + }, + { + "start": 21657.28, + "end": 21658.72, + "probability": 0.9935 + }, + { + "start": 21659.34, + "end": 21660.2, + "probability": 0.1206 + }, + { + "start": 21660.88, + "end": 21662.1, + "probability": 0.7684 + }, + { + "start": 21662.92, + "end": 21663.4, + "probability": 0.5176 + }, + { + "start": 21664.66, + "end": 21668.05, + "probability": 0.9851 + }, + { + "start": 21668.32, + "end": 21669.8, + "probability": 0.7581 + }, + { + "start": 21669.88, + "end": 21673.36, + "probability": 0.998 + }, + { + "start": 21674.08, + "end": 21676.12, + "probability": 0.9507 + }, + { + "start": 21676.48, + "end": 21678.42, + "probability": 0.944 + }, + { + "start": 21678.5, + "end": 21678.72, + "probability": 0.3761 + }, + { + "start": 21679.3, + "end": 21680.2, + "probability": 0.7522 + }, + { + "start": 21680.5, + "end": 21683.54, + "probability": 0.7021 + }, + { + "start": 21684.14, + "end": 21685.86, + "probability": 0.7205 + }, + { + "start": 21685.94, + "end": 21691.08, + "probability": 0.9772 + }, + { + "start": 21691.08, + "end": 21696.1, + "probability": 0.8025 + }, + { + "start": 21696.62, + "end": 21698.24, + "probability": 0.7457 + }, + { + "start": 21698.42, + "end": 21699.32, + "probability": 0.4944 + }, + { + "start": 21699.4, + "end": 21703.14, + "probability": 0.9216 + }, + { + "start": 21703.34, + "end": 21704.8, + "probability": 0.8115 + }, + { + "start": 21705.12, + "end": 21706.77, + "probability": 0.4906 + }, + { + "start": 21708.32, + "end": 21711.18, + "probability": 0.9836 + }, + { + "start": 21711.24, + "end": 21711.56, + "probability": 0.1757 + }, + { + "start": 21711.6, + "end": 21711.64, + "probability": 0.2661 + }, + { + "start": 21711.72, + "end": 21712.65, + "probability": 0.5587 + }, + { + "start": 21712.74, + "end": 21713.64, + "probability": 0.5312 + }, + { + "start": 21714.32, + "end": 21716.58, + "probability": 0.9475 + }, + { + "start": 21716.68, + "end": 21718.42, + "probability": 0.9917 + }, + { + "start": 21718.42, + "end": 21720.9, + "probability": 0.7867 + }, + { + "start": 21721.42, + "end": 21722.94, + "probability": 0.7905 + }, + { + "start": 21723.72, + "end": 21725.02, + "probability": 0.8833 + }, + { + "start": 21725.58, + "end": 21730.18, + "probability": 0.9549 + }, + { + "start": 21730.34, + "end": 21732.16, + "probability": 0.9115 + }, + { + "start": 21732.5, + "end": 21736.78, + "probability": 0.9844 + }, + { + "start": 21737.5, + "end": 21739.2, + "probability": 0.9766 + }, + { + "start": 21739.82, + "end": 21740.82, + "probability": 0.8901 + }, + { + "start": 21741.44, + "end": 21745.6, + "probability": 0.9834 + }, + { + "start": 21745.9, + "end": 21746.66, + "probability": 0.9516 + }, + { + "start": 21747.26, + "end": 21747.62, + "probability": 0.7388 + }, + { + "start": 21748.94, + "end": 21750.56, + "probability": 0.653 + }, + { + "start": 21751.28, + "end": 21753.28, + "probability": 0.9814 + }, + { + "start": 21754.28, + "end": 21754.28, + "probability": 0.0494 + }, + { + "start": 21754.28, + "end": 21756.47, + "probability": 0.8586 + }, + { + "start": 21757.58, + "end": 21760.58, + "probability": 0.9734 + }, + { + "start": 21760.68, + "end": 21761.64, + "probability": 0.906 + }, + { + "start": 21762.26, + "end": 21762.9, + "probability": 0.5057 + }, + { + "start": 21764.4, + "end": 21764.78, + "probability": 0.5872 + }, + { + "start": 21764.96, + "end": 21769.38, + "probability": 0.987 + }, + { + "start": 21769.96, + "end": 21773.82, + "probability": 0.9573 + }, + { + "start": 21774.7, + "end": 21775.24, + "probability": 0.8586 + }, + { + "start": 21776.14, + "end": 21777.3, + "probability": 0.8367 + }, + { + "start": 21780.96, + "end": 21781.94, + "probability": 0.4468 + }, + { + "start": 21792.04, + "end": 21792.18, + "probability": 0.318 + }, + { + "start": 21792.18, + "end": 21794.76, + "probability": 0.6665 + }, + { + "start": 21796.1, + "end": 21796.66, + "probability": 0.4505 + }, + { + "start": 21796.78, + "end": 21798.38, + "probability": 0.9469 + }, + { + "start": 21798.58, + "end": 21800.64, + "probability": 0.9936 + }, + { + "start": 21802.64, + "end": 21805.46, + "probability": 0.3788 + }, + { + "start": 21806.9, + "end": 21810.04, + "probability": 0.961 + }, + { + "start": 21810.64, + "end": 21813.58, + "probability": 0.7409 + }, + { + "start": 21814.82, + "end": 21816.35, + "probability": 0.8889 + }, + { + "start": 21816.44, + "end": 21817.44, + "probability": 0.9423 + }, + { + "start": 21818.16, + "end": 21819.3, + "probability": 0.337 + }, + { + "start": 21823.3, + "end": 21825.0, + "probability": 0.4976 + }, + { + "start": 21825.6, + "end": 21827.58, + "probability": 0.8972 + }, + { + "start": 21833.59, + "end": 21836.08, + "probability": 0.6861 + }, + { + "start": 21838.42, + "end": 21838.8, + "probability": 0.7657 + }, + { + "start": 21842.02, + "end": 21843.34, + "probability": 0.5047 + }, + { + "start": 21845.42, + "end": 21847.4, + "probability": 0.7405 + }, + { + "start": 21849.28, + "end": 21851.82, + "probability": 0.7679 + }, + { + "start": 21855.16, + "end": 21857.06, + "probability": 0.8993 + }, + { + "start": 21857.74, + "end": 21858.6, + "probability": 0.3694 + }, + { + "start": 21859.2, + "end": 21859.86, + "probability": 0.4533 + }, + { + "start": 21860.94, + "end": 21865.58, + "probability": 0.9527 + }, + { + "start": 21867.02, + "end": 21868.94, + "probability": 0.9714 + }, + { + "start": 21870.82, + "end": 21871.92, + "probability": 0.7589 + }, + { + "start": 21872.08, + "end": 21875.8, + "probability": 0.9523 + }, + { + "start": 21875.8, + "end": 21879.92, + "probability": 0.9837 + }, + { + "start": 21880.5, + "end": 21881.42, + "probability": 0.9219 + }, + { + "start": 21883.76, + "end": 21888.86, + "probability": 0.9961 + }, + { + "start": 21891.08, + "end": 21892.62, + "probability": 0.7801 + }, + { + "start": 21892.8, + "end": 21896.78, + "probability": 0.9842 + }, + { + "start": 21897.7, + "end": 21902.56, + "probability": 0.9978 + }, + { + "start": 21902.82, + "end": 21905.26, + "probability": 0.9598 + }, + { + "start": 21907.24, + "end": 21908.24, + "probability": 0.6519 + }, + { + "start": 21908.98, + "end": 21910.34, + "probability": 0.8213 + }, + { + "start": 21910.86, + "end": 21911.72, + "probability": 0.7816 + }, + { + "start": 21913.98, + "end": 21917.18, + "probability": 0.9753 + }, + { + "start": 21919.96, + "end": 21926.54, + "probability": 0.97 + }, + { + "start": 21927.86, + "end": 21932.34, + "probability": 0.9687 + }, + { + "start": 21936.48, + "end": 21940.02, + "probability": 0.8885 + }, + { + "start": 21940.34, + "end": 21941.76, + "probability": 0.8402 + }, + { + "start": 21942.52, + "end": 21943.66, + "probability": 0.9265 + }, + { + "start": 21945.66, + "end": 21947.66, + "probability": 0.6377 + }, + { + "start": 21947.7, + "end": 21948.38, + "probability": 0.7982 + }, + { + "start": 21948.46, + "end": 21951.74, + "probability": 0.9077 + }, + { + "start": 21951.74, + "end": 21954.24, + "probability": 0.9534 + }, + { + "start": 21955.46, + "end": 21959.76, + "probability": 0.9932 + }, + { + "start": 21960.38, + "end": 21963.02, + "probability": 0.7221 + }, + { + "start": 21963.98, + "end": 21965.3, + "probability": 0.9699 + }, + { + "start": 21966.22, + "end": 21967.76, + "probability": 0.9746 + }, + { + "start": 21968.8, + "end": 21972.62, + "probability": 0.9844 + }, + { + "start": 21973.22, + "end": 21974.68, + "probability": 0.9858 + }, + { + "start": 21976.84, + "end": 21980.34, + "probability": 0.9673 + }, + { + "start": 21980.34, + "end": 21984.96, + "probability": 0.9873 + }, + { + "start": 21988.02, + "end": 21992.14, + "probability": 0.9611 + }, + { + "start": 21992.82, + "end": 21996.38, + "probability": 0.7432 + }, + { + "start": 21997.42, + "end": 22001.82, + "probability": 0.7114 + }, + { + "start": 22002.78, + "end": 22006.24, + "probability": 0.718 + }, + { + "start": 22007.38, + "end": 22010.46, + "probability": 0.9321 + }, + { + "start": 22013.42, + "end": 22013.94, + "probability": 0.645 + }, + { + "start": 22015.98, + "end": 22021.64, + "probability": 0.9531 + }, + { + "start": 22022.84, + "end": 22027.12, + "probability": 0.9582 + }, + { + "start": 22028.64, + "end": 22030.08, + "probability": 0.9525 + }, + { + "start": 22031.6, + "end": 22035.98, + "probability": 0.9185 + }, + { + "start": 22036.2, + "end": 22036.66, + "probability": 0.749 + }, + { + "start": 22036.84, + "end": 22037.96, + "probability": 0.7612 + }, + { + "start": 22038.02, + "end": 22040.82, + "probability": 0.806 + }, + { + "start": 22040.92, + "end": 22041.36, + "probability": 0.9631 + }, + { + "start": 22041.48, + "end": 22041.88, + "probability": 0.9668 + }, + { + "start": 22042.04, + "end": 22042.4, + "probability": 0.8911 + }, + { + "start": 22043.2, + "end": 22044.54, + "probability": 0.896 + }, + { + "start": 22045.46, + "end": 22046.66, + "probability": 0.9261 + }, + { + "start": 22047.02, + "end": 22050.78, + "probability": 0.94 + }, + { + "start": 22051.86, + "end": 22054.34, + "probability": 0.7963 + }, + { + "start": 22056.68, + "end": 22057.42, + "probability": 0.8859 + }, + { + "start": 22058.74, + "end": 22062.94, + "probability": 0.9734 + }, + { + "start": 22063.0, + "end": 22063.98, + "probability": 0.5135 + }, + { + "start": 22064.16, + "end": 22066.04, + "probability": 0.6019 + }, + { + "start": 22067.14, + "end": 22068.84, + "probability": 0.7288 + }, + { + "start": 22069.6, + "end": 22071.36, + "probability": 0.9879 + }, + { + "start": 22071.44, + "end": 22072.96, + "probability": 0.2478 + }, + { + "start": 22075.46, + "end": 22078.22, + "probability": 0.6814 + }, + { + "start": 22078.38, + "end": 22080.52, + "probability": 0.7239 + }, + { + "start": 22080.68, + "end": 22086.4, + "probability": 0.8221 + }, + { + "start": 22086.8, + "end": 22088.3, + "probability": 0.6509 + }, + { + "start": 22089.6, + "end": 22093.64, + "probability": 0.8745 + }, + { + "start": 22094.52, + "end": 22096.96, + "probability": 0.9951 + }, + { + "start": 22097.72, + "end": 22101.46, + "probability": 0.9835 + }, + { + "start": 22102.74, + "end": 22105.5, + "probability": 0.9897 + }, + { + "start": 22106.6, + "end": 22107.09, + "probability": 0.8984 + }, + { + "start": 22108.86, + "end": 22110.16, + "probability": 0.9694 + }, + { + "start": 22110.32, + "end": 22113.32, + "probability": 0.8447 + }, + { + "start": 22113.36, + "end": 22114.74, + "probability": 0.5833 + }, + { + "start": 22116.28, + "end": 22118.44, + "probability": 0.8041 + }, + { + "start": 22119.06, + "end": 22120.26, + "probability": 0.9954 + }, + { + "start": 22120.98, + "end": 22122.14, + "probability": 0.6389 + }, + { + "start": 22123.5, + "end": 22126.02, + "probability": 0.916 + }, + { + "start": 22127.44, + "end": 22131.9, + "probability": 0.9827 + }, + { + "start": 22131.9, + "end": 22135.94, + "probability": 0.7052 + }, + { + "start": 22137.84, + "end": 22139.2, + "probability": 0.9586 + }, + { + "start": 22140.64, + "end": 22142.02, + "probability": 0.962 + }, + { + "start": 22142.6, + "end": 22144.82, + "probability": 0.9053 + }, + { + "start": 22145.34, + "end": 22147.78, + "probability": 0.9971 + }, + { + "start": 22148.44, + "end": 22150.5, + "probability": 0.8887 + }, + { + "start": 22150.6, + "end": 22151.58, + "probability": 0.6722 + }, + { + "start": 22153.8, + "end": 22154.74, + "probability": 0.8975 + }, + { + "start": 22154.84, + "end": 22155.52, + "probability": 0.8636 + }, + { + "start": 22156.92, + "end": 22157.92, + "probability": 0.9319 + }, + { + "start": 22158.06, + "end": 22159.34, + "probability": 0.9264 + }, + { + "start": 22160.32, + "end": 22162.66, + "probability": 0.9404 + }, + { + "start": 22163.38, + "end": 22164.12, + "probability": 0.9463 + }, + { + "start": 22164.76, + "end": 22168.62, + "probability": 0.9786 + }, + { + "start": 22168.74, + "end": 22169.54, + "probability": 0.7066 + }, + { + "start": 22170.08, + "end": 22172.14, + "probability": 0.5909 + }, + { + "start": 22172.84, + "end": 22174.49, + "probability": 0.7441 + }, + { + "start": 22175.54, + "end": 22177.44, + "probability": 0.7014 + }, + { + "start": 22180.62, + "end": 22183.7, + "probability": 0.96 + }, + { + "start": 22184.72, + "end": 22188.44, + "probability": 0.9724 + }, + { + "start": 22194.18, + "end": 22195.72, + "probability": 0.9238 + }, + { + "start": 22195.8, + "end": 22200.12, + "probability": 0.8832 + }, + { + "start": 22200.18, + "end": 22201.74, + "probability": 0.7659 + }, + { + "start": 22201.84, + "end": 22203.52, + "probability": 0.9906 + }, + { + "start": 22205.0, + "end": 22209.46, + "probability": 0.9831 + }, + { + "start": 22210.78, + "end": 22212.22, + "probability": 0.7623 + }, + { + "start": 22213.76, + "end": 22216.34, + "probability": 0.822 + }, + { + "start": 22216.58, + "end": 22220.64, + "probability": 0.6235 + }, + { + "start": 22221.76, + "end": 22227.16, + "probability": 0.7974 + }, + { + "start": 22228.6, + "end": 22231.58, + "probability": 0.9246 + }, + { + "start": 22232.36, + "end": 22232.9, + "probability": 0.628 + }, + { + "start": 22233.48, + "end": 22234.28, + "probability": 0.5914 + }, + { + "start": 22234.5, + "end": 22237.76, + "probability": 0.9874 + }, + { + "start": 22238.78, + "end": 22239.76, + "probability": 0.8853 + }, + { + "start": 22239.96, + "end": 22241.16, + "probability": 0.9607 + }, + { + "start": 22241.84, + "end": 22242.72, + "probability": 0.7556 + }, + { + "start": 22243.78, + "end": 22246.2, + "probability": 0.8464 + }, + { + "start": 22247.22, + "end": 22250.12, + "probability": 0.8375 + }, + { + "start": 22250.88, + "end": 22251.58, + "probability": 0.9215 + }, + { + "start": 22251.82, + "end": 22252.94, + "probability": 0.8229 + }, + { + "start": 22254.16, + "end": 22257.2, + "probability": 0.8516 + }, + { + "start": 22257.74, + "end": 22258.52, + "probability": 0.7129 + }, + { + "start": 22258.66, + "end": 22259.98, + "probability": 0.9436 + }, + { + "start": 22260.52, + "end": 22263.18, + "probability": 0.842 + }, + { + "start": 22263.88, + "end": 22269.02, + "probability": 0.972 + }, + { + "start": 22274.2, + "end": 22277.61, + "probability": 0.7412 + }, + { + "start": 22277.96, + "end": 22279.68, + "probability": 0.9248 + }, + { + "start": 22280.32, + "end": 22283.18, + "probability": 0.9728 + }, + { + "start": 22283.24, + "end": 22286.86, + "probability": 0.6089 + }, + { + "start": 22286.92, + "end": 22287.72, + "probability": 0.941 + }, + { + "start": 22288.22, + "end": 22290.38, + "probability": 0.8562 + }, + { + "start": 22291.04, + "end": 22292.06, + "probability": 0.9646 + }, + { + "start": 22294.6, + "end": 22296.28, + "probability": 0.8945 + }, + { + "start": 22296.52, + "end": 22304.16, + "probability": 0.9224 + }, + { + "start": 22304.92, + "end": 22309.16, + "probability": 0.8617 + }, + { + "start": 22310.08, + "end": 22311.11, + "probability": 0.9912 + }, + { + "start": 22312.24, + "end": 22315.14, + "probability": 0.8779 + }, + { + "start": 22316.92, + "end": 22322.36, + "probability": 0.9831 + }, + { + "start": 22322.48, + "end": 22323.1, + "probability": 0.9162 + }, + { + "start": 22324.02, + "end": 22327.48, + "probability": 0.9951 + }, + { + "start": 22327.48, + "end": 22330.02, + "probability": 0.989 + }, + { + "start": 22330.94, + "end": 22331.96, + "probability": 0.7724 + }, + { + "start": 22332.96, + "end": 22338.38, + "probability": 0.9317 + }, + { + "start": 22339.26, + "end": 22342.49, + "probability": 0.7559 + }, + { + "start": 22343.06, + "end": 22344.34, + "probability": 0.8975 + }, + { + "start": 22344.9, + "end": 22346.7, + "probability": 0.7812 + }, + { + "start": 22349.38, + "end": 22352.8, + "probability": 0.8738 + }, + { + "start": 22355.96, + "end": 22357.24, + "probability": 0.9458 + }, + { + "start": 22357.9, + "end": 22359.96, + "probability": 0.9683 + }, + { + "start": 22361.46, + "end": 22364.94, + "probability": 0.6729 + }, + { + "start": 22365.78, + "end": 22369.38, + "probability": 0.9087 + }, + { + "start": 22369.62, + "end": 22373.34, + "probability": 0.9137 + }, + { + "start": 22373.34, + "end": 22378.38, + "probability": 0.9671 + }, + { + "start": 22378.42, + "end": 22379.68, + "probability": 0.9912 + }, + { + "start": 22380.44, + "end": 22381.86, + "probability": 0.9099 + }, + { + "start": 22383.48, + "end": 22386.2, + "probability": 0.5822 + }, + { + "start": 22387.2, + "end": 22388.5, + "probability": 0.8298 + }, + { + "start": 22389.6, + "end": 22390.1, + "probability": 0.868 + }, + { + "start": 22391.0, + "end": 22392.56, + "probability": 0.9871 + }, + { + "start": 22393.68, + "end": 22394.58, + "probability": 0.6527 + }, + { + "start": 22394.9, + "end": 22399.64, + "probability": 0.8504 + }, + { + "start": 22399.64, + "end": 22401.15, + "probability": 0.7275 + }, + { + "start": 22401.76, + "end": 22403.06, + "probability": 0.8291 + }, + { + "start": 22403.2, + "end": 22404.12, + "probability": 0.403 + }, + { + "start": 22404.34, + "end": 22405.04, + "probability": 0.838 + }, + { + "start": 22405.3, + "end": 22406.7, + "probability": 0.9268 + }, + { + "start": 22411.96, + "end": 22414.26, + "probability": 0.6609 + }, + { + "start": 22414.86, + "end": 22416.79, + "probability": 0.9731 + }, + { + "start": 22417.66, + "end": 22419.04, + "probability": 0.9666 + }, + { + "start": 22420.16, + "end": 22421.18, + "probability": 0.7903 + }, + { + "start": 22421.72, + "end": 22422.28, + "probability": 0.1648 + }, + { + "start": 22422.46, + "end": 22425.74, + "probability": 0.7429 + }, + { + "start": 22426.72, + "end": 22429.82, + "probability": 0.9635 + }, + { + "start": 22430.98, + "end": 22432.08, + "probability": 0.4129 + }, + { + "start": 22432.08, + "end": 22435.22, + "probability": 0.6092 + }, + { + "start": 22435.4, + "end": 22436.9, + "probability": 0.8978 + }, + { + "start": 22437.5, + "end": 22438.02, + "probability": 0.6532 + }, + { + "start": 22439.56, + "end": 22440.3, + "probability": 0.8816 + }, + { + "start": 22441.3, + "end": 22444.46, + "probability": 0.978 + }, + { + "start": 22445.34, + "end": 22447.38, + "probability": 0.8278 + }, + { + "start": 22448.24, + "end": 22450.22, + "probability": 0.9727 + }, + { + "start": 22450.44, + "end": 22454.62, + "probability": 0.9221 + }, + { + "start": 22455.16, + "end": 22457.74, + "probability": 0.8672 + }, + { + "start": 22458.34, + "end": 22462.74, + "probability": 0.9645 + }, + { + "start": 22464.16, + "end": 22466.38, + "probability": 0.9787 + }, + { + "start": 22466.84, + "end": 22467.16, + "probability": 0.4202 + }, + { + "start": 22467.64, + "end": 22469.36, + "probability": 0.5778 + }, + { + "start": 22469.36, + "end": 22469.48, + "probability": 0.1295 + }, + { + "start": 22469.62, + "end": 22471.88, + "probability": 0.9211 + }, + { + "start": 22472.64, + "end": 22475.8, + "probability": 0.9194 + }, + { + "start": 22476.12, + "end": 22479.48, + "probability": 0.9484 + }, + { + "start": 22479.76, + "end": 22483.66, + "probability": 0.7455 + }, + { + "start": 22484.76, + "end": 22486.76, + "probability": 0.7285 + }, + { + "start": 22487.94, + "end": 22489.21, + "probability": 0.937 + }, + { + "start": 22490.5, + "end": 22491.5, + "probability": 0.8431 + }, + { + "start": 22493.02, + "end": 22493.88, + "probability": 0.8861 + }, + { + "start": 22504.84, + "end": 22505.46, + "probability": 0.5265 + }, + { + "start": 22505.96, + "end": 22508.18, + "probability": 0.8788 + }, + { + "start": 22508.76, + "end": 22510.04, + "probability": 0.7422 + }, + { + "start": 22510.76, + "end": 22512.46, + "probability": 0.9616 + }, + { + "start": 22513.24, + "end": 22516.46, + "probability": 0.9271 + }, + { + "start": 22522.34, + "end": 22523.82, + "probability": 0.7284 + }, + { + "start": 22528.31, + "end": 22535.46, + "probability": 0.505 + }, + { + "start": 22536.06, + "end": 22539.7, + "probability": 0.9525 + }, + { + "start": 22539.7, + "end": 22543.14, + "probability": 0.9984 + }, + { + "start": 22545.6, + "end": 22552.0, + "probability": 0.9985 + }, + { + "start": 22553.76, + "end": 22554.78, + "probability": 0.6559 + }, + { + "start": 22555.32, + "end": 22558.02, + "probability": 0.779 + }, + { + "start": 22558.82, + "end": 22560.96, + "probability": 0.9877 + }, + { + "start": 22561.9, + "end": 22563.88, + "probability": 0.9334 + }, + { + "start": 22564.92, + "end": 22567.52, + "probability": 0.9899 + }, + { + "start": 22568.42, + "end": 22569.68, + "probability": 0.6166 + }, + { + "start": 22570.5, + "end": 22570.98, + "probability": 0.7531 + }, + { + "start": 22576.56, + "end": 22577.64, + "probability": 0.5461 + }, + { + "start": 22578.28, + "end": 22579.48, + "probability": 0.4994 + }, + { + "start": 22580.1, + "end": 22585.72, + "probability": 0.873 + }, + { + "start": 22586.86, + "end": 22593.92, + "probability": 0.9773 + }, + { + "start": 22594.2, + "end": 22596.56, + "probability": 0.2258 + }, + { + "start": 22597.9, + "end": 22600.54, + "probability": 0.9878 + }, + { + "start": 22600.54, + "end": 22604.96, + "probability": 0.9915 + }, + { + "start": 22606.1, + "end": 22611.66, + "probability": 0.7464 + }, + { + "start": 22613.02, + "end": 22616.6, + "probability": 0.89 + }, + { + "start": 22617.48, + "end": 22618.64, + "probability": 0.9432 + }, + { + "start": 22618.84, + "end": 22620.92, + "probability": 0.9877 + }, + { + "start": 22621.82, + "end": 22624.3, + "probability": 0.9884 + }, + { + "start": 22624.3, + "end": 22625.4, + "probability": 0.9101 + }, + { + "start": 22625.78, + "end": 22626.9, + "probability": 0.9065 + }, + { + "start": 22627.48, + "end": 22628.68, + "probability": 0.9188 + }, + { + "start": 22629.22, + "end": 22630.38, + "probability": 0.977 + }, + { + "start": 22630.56, + "end": 22631.24, + "probability": 0.61 + }, + { + "start": 22631.36, + "end": 22634.78, + "probability": 0.1412 + }, + { + "start": 22634.86, + "end": 22635.32, + "probability": 0.0204 + }, + { + "start": 22635.32, + "end": 22635.32, + "probability": 0.0271 + }, + { + "start": 22635.32, + "end": 22636.22, + "probability": 0.5593 + }, + { + "start": 22636.64, + "end": 22637.72, + "probability": 0.9272 + }, + { + "start": 22637.82, + "end": 22638.36, + "probability": 0.4494 + }, + { + "start": 22638.76, + "end": 22639.62, + "probability": 0.2702 + }, + { + "start": 22639.64, + "end": 22641.98, + "probability": 0.9961 + }, + { + "start": 22642.52, + "end": 22642.98, + "probability": 0.5986 + }, + { + "start": 22643.12, + "end": 22645.54, + "probability": 0.9294 + }, + { + "start": 22645.66, + "end": 22646.06, + "probability": 0.605 + }, + { + "start": 22646.24, + "end": 22647.7, + "probability": 0.9299 + }, + { + "start": 22647.9, + "end": 22648.84, + "probability": 0.7612 + }, + { + "start": 22649.32, + "end": 22653.38, + "probability": 0.9988 + }, + { + "start": 22653.98, + "end": 22654.56, + "probability": 0.5081 + }, + { + "start": 22655.14, + "end": 22658.2, + "probability": 0.9659 + }, + { + "start": 22658.34, + "end": 22659.5, + "probability": 0.9756 + }, + { + "start": 22660.08, + "end": 22666.34, + "probability": 0.9858 + }, + { + "start": 22667.2, + "end": 22670.12, + "probability": 0.7883 + }, + { + "start": 22670.12, + "end": 22672.34, + "probability": 0.6837 + }, + { + "start": 22672.9, + "end": 22674.74, + "probability": 0.8096 + }, + { + "start": 22674.82, + "end": 22676.1, + "probability": 0.6862 + }, + { + "start": 22676.24, + "end": 22677.44, + "probability": 0.9446 + }, + { + "start": 22677.66, + "end": 22681.56, + "probability": 0.8811 + }, + { + "start": 22681.96, + "end": 22682.78, + "probability": 0.862 + }, + { + "start": 22683.28, + "end": 22684.12, + "probability": 0.6102 + }, + { + "start": 22685.36, + "end": 22685.76, + "probability": 0.5549 + }, + { + "start": 22690.9, + "end": 22690.96, + "probability": 0.1622 + }, + { + "start": 22690.96, + "end": 22693.1, + "probability": 0.9282 + }, + { + "start": 22693.36, + "end": 22694.45, + "probability": 0.9353 + }, + { + "start": 22694.74, + "end": 22695.52, + "probability": 0.8299 + }, + { + "start": 22696.28, + "end": 22697.12, + "probability": 0.793 + }, + { + "start": 22697.34, + "end": 22697.6, + "probability": 0.7004 + }, + { + "start": 22697.62, + "end": 22699.72, + "probability": 0.9752 + }, + { + "start": 22699.86, + "end": 22702.58, + "probability": 0.9445 + }, + { + "start": 22702.66, + "end": 22703.34, + "probability": 0.8357 + }, + { + "start": 22704.1, + "end": 22706.74, + "probability": 0.9587 + }, + { + "start": 22707.36, + "end": 22709.2, + "probability": 0.9619 + }, + { + "start": 22709.26, + "end": 22712.2, + "probability": 0.8267 + }, + { + "start": 22713.2, + "end": 22721.14, + "probability": 0.7877 + }, + { + "start": 22721.92, + "end": 22724.3, + "probability": 0.9937 + }, + { + "start": 22724.46, + "end": 22725.87, + "probability": 0.9847 + }, + { + "start": 22726.34, + "end": 22728.12, + "probability": 0.7321 + }, + { + "start": 22729.78, + "end": 22733.54, + "probability": 0.9951 + }, + { + "start": 22734.5, + "end": 22738.51, + "probability": 0.9951 + }, + { + "start": 22738.98, + "end": 22739.76, + "probability": 0.8472 + }, + { + "start": 22740.0, + "end": 22741.7, + "probability": 0.963 + }, + { + "start": 22742.32, + "end": 22744.7, + "probability": 0.7909 + }, + { + "start": 22745.42, + "end": 22752.48, + "probability": 0.9524 + }, + { + "start": 22752.78, + "end": 22757.3, + "probability": 0.9654 + }, + { + "start": 22757.44, + "end": 22758.96, + "probability": 0.9741 + }, + { + "start": 22759.98, + "end": 22763.42, + "probability": 0.923 + }, + { + "start": 22763.54, + "end": 22765.72, + "probability": 0.7059 + }, + { + "start": 22765.84, + "end": 22765.94, + "probability": 0.3902 + }, + { + "start": 22766.02, + "end": 22766.18, + "probability": 0.1762 + }, + { + "start": 22766.24, + "end": 22766.24, + "probability": 0.0698 + }, + { + "start": 22766.28, + "end": 22767.66, + "probability": 0.7363 + }, + { + "start": 22770.3, + "end": 22770.98, + "probability": 0.6667 + }, + { + "start": 22771.16, + "end": 22773.54, + "probability": 0.9617 + }, + { + "start": 22774.14, + "end": 22777.12, + "probability": 0.9015 + }, + { + "start": 22777.34, + "end": 22778.04, + "probability": 0.8414 + }, + { + "start": 22778.5, + "end": 22778.5, + "probability": 0.0304 + }, + { + "start": 22778.5, + "end": 22778.68, + "probability": 0.0341 + }, + { + "start": 22778.9, + "end": 22781.52, + "probability": 0.8597 + }, + { + "start": 22782.22, + "end": 22784.2, + "probability": 0.7016 + }, + { + "start": 22785.36, + "end": 22789.46, + "probability": 0.426 + }, + { + "start": 22790.78, + "end": 22791.22, + "probability": 0.0851 + }, + { + "start": 22791.22, + "end": 22791.52, + "probability": 0.3961 + }, + { + "start": 22791.68, + "end": 22792.16, + "probability": 0.6999 + }, + { + "start": 22792.26, + "end": 22792.64, + "probability": 0.7839 + }, + { + "start": 22792.76, + "end": 22794.68, + "probability": 0.9814 + }, + { + "start": 22794.68, + "end": 22795.28, + "probability": 0.7349 + }, + { + "start": 22795.52, + "end": 22796.68, + "probability": 0.9907 + }, + { + "start": 22796.8, + "end": 22799.66, + "probability": 0.7568 + }, + { + "start": 22800.04, + "end": 22803.52, + "probability": 0.9765 + }, + { + "start": 22803.96, + "end": 22805.96, + "probability": 0.8604 + }, + { + "start": 22806.24, + "end": 22808.8, + "probability": 0.912 + }, + { + "start": 22809.3, + "end": 22809.3, + "probability": 0.1619 + }, + { + "start": 22809.3, + "end": 22809.34, + "probability": 0.4267 + }, + { + "start": 22809.48, + "end": 22809.48, + "probability": 0.4681 + }, + { + "start": 22809.68, + "end": 22810.86, + "probability": 0.6748 + }, + { + "start": 22810.94, + "end": 22812.18, + "probability": 0.9309 + }, + { + "start": 22812.32, + "end": 22812.74, + "probability": 0.1436 + }, + { + "start": 22812.74, + "end": 22812.74, + "probability": 0.5626 + }, + { + "start": 22812.74, + "end": 22812.74, + "probability": 0.4877 + }, + { + "start": 22812.74, + "end": 22813.24, + "probability": 0.7295 + }, + { + "start": 22813.3, + "end": 22813.36, + "probability": 0.7231 + }, + { + "start": 22813.46, + "end": 22813.6, + "probability": 0.0121 + }, + { + "start": 22813.7, + "end": 22814.84, + "probability": 0.786 + }, + { + "start": 22814.98, + "end": 22816.08, + "probability": 0.707 + }, + { + "start": 22816.4, + "end": 22816.4, + "probability": 0.1076 + }, + { + "start": 22816.4, + "end": 22817.16, + "probability": 0.5559 + }, + { + "start": 22817.36, + "end": 22818.92, + "probability": 0.27 + }, + { + "start": 22818.94, + "end": 22820.37, + "probability": 0.298 + }, + { + "start": 22821.52, + "end": 22823.42, + "probability": 0.495 + }, + { + "start": 22823.42, + "end": 22824.02, + "probability": 0.0683 + }, + { + "start": 22825.5, + "end": 22826.3, + "probability": 0.2088 + }, + { + "start": 22826.3, + "end": 22826.68, + "probability": 0.0354 + }, + { + "start": 22826.68, + "end": 22826.68, + "probability": 0.2932 + }, + { + "start": 22826.68, + "end": 22827.32, + "probability": 0.4351 + }, + { + "start": 22827.64, + "end": 22828.78, + "probability": 0.5899 + }, + { + "start": 22828.84, + "end": 22831.68, + "probability": 0.937 + }, + { + "start": 22832.72, + "end": 22835.8, + "probability": 0.9902 + }, + { + "start": 22837.02, + "end": 22837.4, + "probability": 0.7801 + }, + { + "start": 22838.8, + "end": 22839.54, + "probability": 0.5627 + }, + { + "start": 22840.12, + "end": 22840.6, + "probability": 0.8647 + }, + { + "start": 22841.6, + "end": 22845.26, + "probability": 0.9116 + }, + { + "start": 22845.48, + "end": 22845.62, + "probability": 0.6678 + }, + { + "start": 22845.7, + "end": 22846.33, + "probability": 0.8814 + }, + { + "start": 22847.34, + "end": 22849.9, + "probability": 0.7717 + }, + { + "start": 22850.48, + "end": 22851.58, + "probability": 0.6714 + }, + { + "start": 22851.82, + "end": 22852.7, + "probability": 0.8991 + }, + { + "start": 22853.34, + "end": 22854.62, + "probability": 0.6327 + }, + { + "start": 22854.88, + "end": 22856.56, + "probability": 0.848 + }, + { + "start": 22856.62, + "end": 22857.44, + "probability": 0.8793 + }, + { + "start": 22858.8, + "end": 22860.16, + "probability": 0.6815 + }, + { + "start": 22874.08, + "end": 22875.05, + "probability": 0.4207 + }, + { + "start": 22877.82, + "end": 22887.0, + "probability": 0.8822 + }, + { + "start": 22888.1, + "end": 22896.04, + "probability": 0.9913 + }, + { + "start": 22896.7, + "end": 22900.72, + "probability": 0.9771 + }, + { + "start": 22900.74, + "end": 22905.36, + "probability": 0.9862 + }, + { + "start": 22906.04, + "end": 22907.1, + "probability": 0.6805 + }, + { + "start": 22907.78, + "end": 22912.56, + "probability": 0.9863 + }, + { + "start": 22913.34, + "end": 22916.82, + "probability": 0.8569 + }, + { + "start": 22918.56, + "end": 22924.7, + "probability": 0.5504 + }, + { + "start": 22925.24, + "end": 22929.0, + "probability": 0.4311 + }, + { + "start": 22929.98, + "end": 22935.2, + "probability": 0.9936 + }, + { + "start": 22935.76, + "end": 22937.36, + "probability": 0.6047 + }, + { + "start": 22937.52, + "end": 22939.18, + "probability": 0.9821 + }, + { + "start": 22940.38, + "end": 22941.88, + "probability": 0.8352 + }, + { + "start": 22942.0, + "end": 22944.08, + "probability": 0.504 + }, + { + "start": 22944.76, + "end": 22945.98, + "probability": 0.9834 + }, + { + "start": 22946.7, + "end": 22949.58, + "probability": 0.8264 + }, + { + "start": 22950.5, + "end": 22954.88, + "probability": 0.628 + }, + { + "start": 22954.88, + "end": 22959.24, + "probability": 0.9893 + }, + { + "start": 22959.7, + "end": 22962.78, + "probability": 0.7493 + }, + { + "start": 22962.78, + "end": 22967.08, + "probability": 0.7558 + }, + { + "start": 22968.58, + "end": 22971.62, + "probability": 0.831 + }, + { + "start": 22971.78, + "end": 22974.16, + "probability": 0.9906 + }, + { + "start": 22974.86, + "end": 22975.56, + "probability": 0.7108 + }, + { + "start": 22977.0, + "end": 22979.26, + "probability": 0.9225 + }, + { + "start": 22979.42, + "end": 22984.74, + "probability": 0.8896 + }, + { + "start": 22984.74, + "end": 22987.34, + "probability": 0.9766 + }, + { + "start": 22987.74, + "end": 22989.21, + "probability": 0.8648 + }, + { + "start": 22991.32, + "end": 22993.6, + "probability": 0.91 + }, + { + "start": 22994.14, + "end": 22995.6, + "probability": 0.9272 + }, + { + "start": 22995.66, + "end": 22998.64, + "probability": 0.6722 + }, + { + "start": 22999.16, + "end": 23001.78, + "probability": 0.8611 + }, + { + "start": 23001.82, + "end": 23005.66, + "probability": 0.7502 + }, + { + "start": 23005.76, + "end": 23009.34, + "probability": 0.8046 + }, + { + "start": 23009.68, + "end": 23011.3, + "probability": 0.9757 + }, + { + "start": 23011.44, + "end": 23012.08, + "probability": 0.888 + }, + { + "start": 23012.24, + "end": 23012.94, + "probability": 0.5869 + }, + { + "start": 23013.54, + "end": 23018.3, + "probability": 0.9138 + }, + { + "start": 23019.92, + "end": 23020.7, + "probability": 0.7385 + }, + { + "start": 23020.96, + "end": 23023.7, + "probability": 0.8542 + }, + { + "start": 23023.7, + "end": 23026.9, + "probability": 0.9741 + }, + { + "start": 23027.6, + "end": 23030.48, + "probability": 0.8428 + }, + { + "start": 23031.08, + "end": 23031.94, + "probability": 0.9429 + }, + { + "start": 23032.1, + "end": 23033.16, + "probability": 0.7927 + }, + { + "start": 23033.26, + "end": 23033.64, + "probability": 0.8599 + }, + { + "start": 23033.72, + "end": 23034.78, + "probability": 0.9798 + }, + { + "start": 23034.86, + "end": 23035.64, + "probability": 0.9789 + }, + { + "start": 23035.78, + "end": 23039.66, + "probability": 0.974 + }, + { + "start": 23039.8, + "end": 23040.06, + "probability": 0.4356 + }, + { + "start": 23040.78, + "end": 23040.96, + "probability": 0.3539 + }, + { + "start": 23041.08, + "end": 23041.92, + "probability": 0.824 + }, + { + "start": 23042.28, + "end": 23042.46, + "probability": 0.2154 + }, + { + "start": 23042.56, + "end": 23044.37, + "probability": 0.8799 + }, + { + "start": 23045.3, + "end": 23045.42, + "probability": 0.2863 + }, + { + "start": 23045.56, + "end": 23046.22, + "probability": 0.7314 + }, + { + "start": 23046.28, + "end": 23051.74, + "probability": 0.8996 + }, + { + "start": 23052.48, + "end": 23054.62, + "probability": 0.9471 + }, + { + "start": 23054.92, + "end": 23060.92, + "probability": 0.9626 + }, + { + "start": 23061.16, + "end": 23061.68, + "probability": 0.6135 + }, + { + "start": 23061.76, + "end": 23066.64, + "probability": 0.9694 + }, + { + "start": 23067.1, + "end": 23069.76, + "probability": 0.9105 + }, + { + "start": 23070.84, + "end": 23074.5, + "probability": 0.978 + }, + { + "start": 23075.06, + "end": 23077.04, + "probability": 0.7115 + }, + { + "start": 23077.62, + "end": 23079.96, + "probability": 0.9737 + }, + { + "start": 23080.18, + "end": 23080.42, + "probability": 0.5754 + }, + { + "start": 23080.62, + "end": 23081.28, + "probability": 0.7523 + }, + { + "start": 23081.44, + "end": 23086.02, + "probability": 0.9809 + }, + { + "start": 23086.86, + "end": 23087.86, + "probability": 0.5236 + }, + { + "start": 23087.88, + "end": 23090.58, + "probability": 0.6929 + }, + { + "start": 23090.72, + "end": 23090.86, + "probability": 0.5903 + }, + { + "start": 23090.86, + "end": 23092.85, + "probability": 0.9492 + }, + { + "start": 23093.65, + "end": 23094.87, + "probability": 0.8873 + }, + { + "start": 23096.07, + "end": 23100.83, + "probability": 0.9334 + }, + { + "start": 23101.49, + "end": 23104.29, + "probability": 0.9421 + }, + { + "start": 23104.67, + "end": 23105.85, + "probability": 0.8859 + }, + { + "start": 23106.55, + "end": 23106.95, + "probability": 0.7743 + }, + { + "start": 23107.01, + "end": 23111.37, + "probability": 0.9296 + }, + { + "start": 23111.49, + "end": 23115.71, + "probability": 0.9207 + }, + { + "start": 23116.95, + "end": 23118.83, + "probability": 0.9993 + }, + { + "start": 23119.29, + "end": 23120.91, + "probability": 0.8394 + }, + { + "start": 23121.55, + "end": 23121.83, + "probability": 0.8131 + }, + { + "start": 23122.57, + "end": 23123.35, + "probability": 0.7295 + }, + { + "start": 23123.65, + "end": 23126.05, + "probability": 0.8582 + }, + { + "start": 23127.07, + "end": 23130.35, + "probability": 0.8811 + }, + { + "start": 23131.07, + "end": 23133.21, + "probability": 0.6387 + }, + { + "start": 23134.13, + "end": 23134.65, + "probability": 0.8249 + }, + { + "start": 23134.71, + "end": 23136.09, + "probability": 0.8537 + }, + { + "start": 23136.15, + "end": 23137.17, + "probability": 0.7475 + }, + { + "start": 23140.27, + "end": 23141.05, + "probability": 0.1713 + }, + { + "start": 23143.15, + "end": 23145.15, + "probability": 0.0125 + }, + { + "start": 23145.35, + "end": 23146.97, + "probability": 0.9707 + }, + { + "start": 23147.69, + "end": 23148.39, + "probability": 0.2192 + }, + { + "start": 23149.27, + "end": 23149.67, + "probability": 0.5934 + }, + { + "start": 23149.81, + "end": 23150.25, + "probability": 0.9537 + }, + { + "start": 23154.09, + "end": 23159.37, + "probability": 0.7207 + }, + { + "start": 23159.97, + "end": 23160.89, + "probability": 0.6905 + }, + { + "start": 23161.53, + "end": 23164.05, + "probability": 0.798 + }, + { + "start": 23164.87, + "end": 23166.49, + "probability": 0.9773 + }, + { + "start": 23168.11, + "end": 23173.03, + "probability": 0.9309 + }, + { + "start": 23173.87, + "end": 23176.59, + "probability": 0.8645 + }, + { + "start": 23177.27, + "end": 23177.43, + "probability": 0.6772 + }, + { + "start": 23178.71, + "end": 23179.19, + "probability": 0.7722 + }, + { + "start": 23180.93, + "end": 23183.43, + "probability": 0.8771 + }, + { + "start": 23184.29, + "end": 23185.49, + "probability": 0.6493 + }, + { + "start": 23185.65, + "end": 23189.09, + "probability": 0.9202 + }, + { + "start": 23189.09, + "end": 23192.25, + "probability": 0.7221 + }, + { + "start": 23193.21, + "end": 23195.56, + "probability": 0.9946 + }, + { + "start": 23196.41, + "end": 23201.11, + "probability": 0.98 + }, + { + "start": 23202.03, + "end": 23204.83, + "probability": 0.6196 + }, + { + "start": 23206.11, + "end": 23207.31, + "probability": 0.7945 + }, + { + "start": 23207.35, + "end": 23211.79, + "probability": 0.9722 + }, + { + "start": 23212.81, + "end": 23216.43, + "probability": 0.9618 + }, + { + "start": 23217.31, + "end": 23220.67, + "probability": 0.9115 + }, + { + "start": 23221.29, + "end": 23223.43, + "probability": 0.6613 + }, + { + "start": 23224.19, + "end": 23225.81, + "probability": 0.8656 + }, + { + "start": 23226.63, + "end": 23232.09, + "probability": 0.8376 + }, + { + "start": 23232.77, + "end": 23235.89, + "probability": 0.8536 + }, + { + "start": 23236.35, + "end": 23237.63, + "probability": 0.8918 + }, + { + "start": 23237.71, + "end": 23240.53, + "probability": 0.9774 + }, + { + "start": 23241.27, + "end": 23244.49, + "probability": 0.9601 + }, + { + "start": 23245.07, + "end": 23247.91, + "probability": 0.9397 + }, + { + "start": 23248.11, + "end": 23252.29, + "probability": 0.9812 + }, + { + "start": 23253.17, + "end": 23257.73, + "probability": 0.9912 + }, + { + "start": 23258.65, + "end": 23258.99, + "probability": 0.4044 + }, + { + "start": 23259.15, + "end": 23262.07, + "probability": 0.9316 + }, + { + "start": 23262.07, + "end": 23264.91, + "probability": 0.9231 + }, + { + "start": 23265.79, + "end": 23266.73, + "probability": 0.986 + }, + { + "start": 23266.85, + "end": 23268.21, + "probability": 0.8709 + }, + { + "start": 23268.33, + "end": 23269.55, + "probability": 0.6757 + }, + { + "start": 23269.61, + "end": 23269.97, + "probability": 0.7535 + }, + { + "start": 23270.11, + "end": 23273.29, + "probability": 0.9288 + }, + { + "start": 23273.55, + "end": 23275.57, + "probability": 0.9258 + }, + { + "start": 23276.45, + "end": 23277.17, + "probability": 0.5328 + }, + { + "start": 23277.31, + "end": 23278.67, + "probability": 0.9436 + }, + { + "start": 23278.75, + "end": 23282.09, + "probability": 0.9674 + }, + { + "start": 23282.27, + "end": 23285.11, + "probability": 0.9507 + }, + { + "start": 23285.61, + "end": 23289.79, + "probability": 0.9842 + }, + { + "start": 23290.41, + "end": 23293.57, + "probability": 0.9828 + }, + { + "start": 23293.65, + "end": 23294.95, + "probability": 0.5196 + }, + { + "start": 23295.09, + "end": 23297.27, + "probability": 0.9883 + }, + { + "start": 23297.37, + "end": 23299.47, + "probability": 0.8139 + }, + { + "start": 23300.21, + "end": 23302.03, + "probability": 0.9458 + }, + { + "start": 23302.71, + "end": 23307.39, + "probability": 0.7467 + }, + { + "start": 23307.53, + "end": 23309.77, + "probability": 0.9955 + }, + { + "start": 23309.77, + "end": 23312.47, + "probability": 0.8606 + }, + { + "start": 23313.17, + "end": 23313.51, + "probability": 0.6515 + }, + { + "start": 23313.61, + "end": 23316.01, + "probability": 0.9989 + }, + { + "start": 23316.17, + "end": 23319.59, + "probability": 0.9544 + }, + { + "start": 23319.59, + "end": 23322.45, + "probability": 0.9846 + }, + { + "start": 23323.01, + "end": 23324.67, + "probability": 0.9547 + }, + { + "start": 23327.21, + "end": 23328.43, + "probability": 0.8718 + }, + { + "start": 23328.49, + "end": 23329.33, + "probability": 0.0991 + }, + { + "start": 23329.53, + "end": 23329.53, + "probability": 0.2448 + }, + { + "start": 23329.53, + "end": 23331.05, + "probability": 0.5029 + }, + { + "start": 23331.91, + "end": 23334.75, + "probability": 0.9521 + }, + { + "start": 23334.87, + "end": 23338.39, + "probability": 0.4671 + }, + { + "start": 23338.71, + "end": 23341.75, + "probability": 0.9497 + }, + { + "start": 23342.59, + "end": 23344.11, + "probability": 0.5726 + }, + { + "start": 23346.71, + "end": 23347.69, + "probability": 0.9858 + }, + { + "start": 23349.31, + "end": 23349.83, + "probability": 0.8495 + }, + { + "start": 23349.89, + "end": 23352.51, + "probability": 0.9934 + }, + { + "start": 23352.67, + "end": 23353.67, + "probability": 0.9429 + }, + { + "start": 23354.43, + "end": 23355.27, + "probability": 0.9985 + }, + { + "start": 23355.73, + "end": 23358.43, + "probability": 0.9433 + }, + { + "start": 23358.51, + "end": 23360.95, + "probability": 0.9964 + }, + { + "start": 23360.95, + "end": 23366.63, + "probability": 0.9123 + }, + { + "start": 23366.75, + "end": 23368.39, + "probability": 0.8993 + }, + { + "start": 23368.71, + "end": 23369.97, + "probability": 0.3929 + }, + { + "start": 23372.89, + "end": 23373.61, + "probability": 0.1324 + }, + { + "start": 23373.61, + "end": 23373.61, + "probability": 0.2465 + }, + { + "start": 23373.61, + "end": 23373.67, + "probability": 0.3681 + }, + { + "start": 23375.41, + "end": 23380.99, + "probability": 0.9663 + }, + { + "start": 23380.99, + "end": 23384.97, + "probability": 0.9544 + }, + { + "start": 23385.63, + "end": 23387.59, + "probability": 0.8475 + }, + { + "start": 23387.71, + "end": 23388.59, + "probability": 0.672 + }, + { + "start": 23389.47, + "end": 23390.91, + "probability": 0.9321 + }, + { + "start": 23391.61, + "end": 23393.47, + "probability": 0.8369 + }, + { + "start": 23394.01, + "end": 23394.78, + "probability": 0.946 + }, + { + "start": 23395.39, + "end": 23401.95, + "probability": 0.9673 + }, + { + "start": 23402.45, + "end": 23404.39, + "probability": 0.1155 + }, + { + "start": 23405.81, + "end": 23407.01, + "probability": 0.7104 + }, + { + "start": 23408.05, + "end": 23410.89, + "probability": 0.4996 + }, + { + "start": 23410.95, + "end": 23413.25, + "probability": 0.0243 + }, + { + "start": 23413.97, + "end": 23415.69, + "probability": 0.4965 + }, + { + "start": 23416.53, + "end": 23420.49, + "probability": 0.984 + }, + { + "start": 23420.49, + "end": 23425.41, + "probability": 0.7441 + }, + { + "start": 23426.89, + "end": 23431.57, + "probability": 0.9871 + }, + { + "start": 23432.31, + "end": 23434.41, + "probability": 0.7424 + }, + { + "start": 23435.17, + "end": 23438.51, + "probability": 0.9364 + }, + { + "start": 23439.43, + "end": 23440.23, + "probability": 0.7273 + }, + { + "start": 23440.31, + "end": 23441.03, + "probability": 0.8844 + }, + { + "start": 23441.17, + "end": 23444.31, + "probability": 0.9958 + }, + { + "start": 23445.29, + "end": 23450.39, + "probability": 0.9737 + }, + { + "start": 23451.29, + "end": 23455.87, + "probability": 0.9601 + }, + { + "start": 23456.51, + "end": 23462.85, + "probability": 0.9804 + }, + { + "start": 23463.01, + "end": 23465.27, + "probability": 0.9946 + }, + { + "start": 23466.09, + "end": 23469.66, + "probability": 0.9834 + }, + { + "start": 23470.25, + "end": 23472.89, + "probability": 0.9954 + }, + { + "start": 23473.47, + "end": 23473.97, + "probability": 0.0413 + }, + { + "start": 23474.59, + "end": 23481.69, + "probability": 0.8223 + }, + { + "start": 23482.05, + "end": 23483.49, + "probability": 0.7312 + }, + { + "start": 23483.55, + "end": 23484.35, + "probability": 0.6868 + }, + { + "start": 23484.47, + "end": 23486.05, + "probability": 0.9363 + }, + { + "start": 23487.77, + "end": 23488.81, + "probability": 0.3899 + }, + { + "start": 23489.27, + "end": 23489.41, + "probability": 0.3345 + }, + { + "start": 23489.73, + "end": 23497.65, + "probability": 0.9397 + }, + { + "start": 23498.55, + "end": 23503.15, + "probability": 0.8472 + }, + { + "start": 23503.77, + "end": 23506.93, + "probability": 0.7817 + }, + { + "start": 23508.31, + "end": 23509.19, + "probability": 0.8375 + }, + { + "start": 23509.33, + "end": 23509.83, + "probability": 0.8096 + }, + { + "start": 23509.91, + "end": 23511.31, + "probability": 0.9404 + }, + { + "start": 23511.43, + "end": 23511.75, + "probability": 0.799 + }, + { + "start": 23511.83, + "end": 23512.71, + "probability": 0.8362 + }, + { + "start": 23512.81, + "end": 23514.67, + "probability": 0.9871 + }, + { + "start": 23514.77, + "end": 23515.83, + "probability": 0.6895 + }, + { + "start": 23516.91, + "end": 23517.53, + "probability": 0.4344 + }, + { + "start": 23518.25, + "end": 23524.51, + "probability": 0.9674 + }, + { + "start": 23524.69, + "end": 23526.07, + "probability": 0.9243 + }, + { + "start": 23526.61, + "end": 23527.57, + "probability": 0.4249 + }, + { + "start": 23527.73, + "end": 23528.21, + "probability": 0.4216 + }, + { + "start": 23529.37, + "end": 23530.65, + "probability": 0.5779 + }, + { + "start": 23532.39, + "end": 23535.43, + "probability": 0.9843 + }, + { + "start": 23535.77, + "end": 23538.59, + "probability": 0.8888 + }, + { + "start": 23539.17, + "end": 23540.82, + "probability": 0.8015 + }, + { + "start": 23541.55, + "end": 23542.67, + "probability": 0.9845 + }, + { + "start": 23543.01, + "end": 23545.69, + "probability": 0.6802 + }, + { + "start": 23546.25, + "end": 23548.33, + "probability": 0.9452 + }, + { + "start": 23548.39, + "end": 23549.29, + "probability": 0.9715 + }, + { + "start": 23549.29, + "end": 23550.95, + "probability": 0.9924 + }, + { + "start": 23552.85, + "end": 23553.97, + "probability": 0.6299 + }, + { + "start": 23554.61, + "end": 23555.53, + "probability": 0.6686 + }, + { + "start": 23555.67, + "end": 23556.79, + "probability": 0.42 + }, + { + "start": 23557.25, + "end": 23560.57, + "probability": 0.8106 + }, + { + "start": 23560.77, + "end": 23561.29, + "probability": 0.2688 + }, + { + "start": 23561.91, + "end": 23563.25, + "probability": 0.3342 + }, + { + "start": 23563.57, + "end": 23565.51, + "probability": 0.6785 + }, + { + "start": 23566.97, + "end": 23568.72, + "probability": 0.9272 + }, + { + "start": 23570.15, + "end": 23571.87, + "probability": 0.8135 + }, + { + "start": 23572.37, + "end": 23575.89, + "probability": 0.9889 + }, + { + "start": 23577.33, + "end": 23578.65, + "probability": 0.8857 + }, + { + "start": 23579.23, + "end": 23583.11, + "probability": 0.8547 + }, + { + "start": 23583.57, + "end": 23586.09, + "probability": 0.9939 + }, + { + "start": 23588.57, + "end": 23588.67, + "probability": 0.093 + }, + { + "start": 23589.55, + "end": 23591.75, + "probability": 0.4393 + }, + { + "start": 23592.53, + "end": 23594.79, + "probability": 0.9975 + }, + { + "start": 23595.67, + "end": 23598.53, + "probability": 0.9951 + }, + { + "start": 23598.67, + "end": 23600.07, + "probability": 0.9607 + }, + { + "start": 23600.81, + "end": 23603.01, + "probability": 0.4922 + }, + { + "start": 23603.81, + "end": 23604.45, + "probability": 0.6423 + }, + { + "start": 23604.83, + "end": 23606.51, + "probability": 0.696 + }, + { + "start": 23607.25, + "end": 23610.77, + "probability": 0.9838 + }, + { + "start": 23610.77, + "end": 23615.21, + "probability": 0.9913 + }, + { + "start": 23616.09, + "end": 23616.57, + "probability": 0.7149 + }, + { + "start": 23616.71, + "end": 23618.37, + "probability": 0.985 + }, + { + "start": 23618.51, + "end": 23619.53, + "probability": 0.801 + }, + { + "start": 23619.59, + "end": 23621.21, + "probability": 0.9941 + }, + { + "start": 23621.59, + "end": 23622.41, + "probability": 0.9377 + }, + { + "start": 23622.79, + "end": 23624.41, + "probability": 0.9727 + }, + { + "start": 23625.53, + "end": 23629.81, + "probability": 0.9688 + }, + { + "start": 23629.81, + "end": 23634.65, + "probability": 0.9953 + }, + { + "start": 23635.07, + "end": 23636.91, + "probability": 0.4871 + }, + { + "start": 23638.03, + "end": 23642.33, + "probability": 0.9918 + }, + { + "start": 23642.85, + "end": 23647.37, + "probability": 0.9442 + }, + { + "start": 23647.53, + "end": 23649.61, + "probability": 0.9235 + }, + { + "start": 23650.25, + "end": 23653.47, + "probability": 0.9944 + }, + { + "start": 23653.61, + "end": 23654.73, + "probability": 0.4817 + }, + { + "start": 23655.43, + "end": 23659.03, + "probability": 0.8926 + }, + { + "start": 23659.55, + "end": 23662.93, + "probability": 0.9559 + }, + { + "start": 23663.85, + "end": 23667.83, + "probability": 0.9536 + }, + { + "start": 23668.47, + "end": 23670.37, + "probability": 0.9009 + }, + { + "start": 23671.33, + "end": 23672.35, + "probability": 0.5518 + }, + { + "start": 23672.51, + "end": 23673.25, + "probability": 0.7423 + }, + { + "start": 23673.35, + "end": 23677.67, + "probability": 0.9861 + }, + { + "start": 23678.67, + "end": 23682.29, + "probability": 0.9618 + }, + { + "start": 23682.95, + "end": 23685.25, + "probability": 0.9665 + }, + { + "start": 23685.95, + "end": 23689.17, + "probability": 0.8955 + }, + { + "start": 23689.17, + "end": 23692.23, + "probability": 0.9084 + }, + { + "start": 23693.09, + "end": 23696.05, + "probability": 0.9688 + }, + { + "start": 23696.05, + "end": 23700.17, + "probability": 0.7724 + }, + { + "start": 23700.17, + "end": 23704.89, + "probability": 0.9869 + }, + { + "start": 23706.03, + "end": 23708.87, + "probability": 0.8342 + }, + { + "start": 23709.97, + "end": 23711.29, + "probability": 0.8535 + }, + { + "start": 23711.87, + "end": 23714.01, + "probability": 0.7142 + }, + { + "start": 23714.77, + "end": 23718.77, + "probability": 0.9752 + }, + { + "start": 23718.77, + "end": 23725.21, + "probability": 0.9864 + }, + { + "start": 23726.51, + "end": 23729.19, + "probability": 0.7544 + }, + { + "start": 23729.19, + "end": 23732.33, + "probability": 0.8103 + }, + { + "start": 23733.01, + "end": 23734.61, + "probability": 0.9542 + }, + { + "start": 23735.39, + "end": 23739.29, + "probability": 0.9596 + }, + { + "start": 23739.29, + "end": 23743.75, + "probability": 0.9952 + }, + { + "start": 23744.53, + "end": 23745.03, + "probability": 0.4315 + }, + { + "start": 23745.05, + "end": 23749.43, + "probability": 0.9871 + }, + { + "start": 23750.31, + "end": 23751.55, + "probability": 0.9907 + }, + { + "start": 23752.05, + "end": 23755.77, + "probability": 0.9956 + }, + { + "start": 23755.77, + "end": 23760.85, + "probability": 0.9954 + }, + { + "start": 23761.37, + "end": 23763.39, + "probability": 0.9857 + }, + { + "start": 23763.79, + "end": 23764.53, + "probability": 0.9423 + }, + { + "start": 23764.93, + "end": 23765.61, + "probability": 0.5256 + }, + { + "start": 23769.75, + "end": 23773.53, + "probability": 0.9352 + }, + { + "start": 23773.53, + "end": 23776.87, + "probability": 0.9979 + }, + { + "start": 23778.09, + "end": 23778.58, + "probability": 0.7725 + }, + { + "start": 23778.79, + "end": 23778.99, + "probability": 0.8494 + }, + { + "start": 23779.11, + "end": 23780.59, + "probability": 0.9577 + }, + { + "start": 23780.65, + "end": 23783.27, + "probability": 0.932 + }, + { + "start": 23783.91, + "end": 23785.57, + "probability": 0.2022 + }, + { + "start": 23786.13, + "end": 23786.69, + "probability": 0.6029 + }, + { + "start": 23786.83, + "end": 23787.29, + "probability": 0.9244 + }, + { + "start": 23787.39, + "end": 23790.65, + "probability": 0.979 + }, + { + "start": 23790.85, + "end": 23791.41, + "probability": 0.91 + }, + { + "start": 23791.55, + "end": 23792.03, + "probability": 0.853 + }, + { + "start": 23792.11, + "end": 23792.97, + "probability": 0.9465 + }, + { + "start": 23793.37, + "end": 23794.65, + "probability": 0.981 + }, + { + "start": 23794.79, + "end": 23796.57, + "probability": 0.8736 + }, + { + "start": 23796.71, + "end": 23797.77, + "probability": 0.9938 + }, + { + "start": 23798.47, + "end": 23799.95, + "probability": 0.8263 + }, + { + "start": 23800.27, + "end": 23804.59, + "probability": 0.9852 + }, + { + "start": 23804.73, + "end": 23809.11, + "probability": 0.9858 + }, + { + "start": 23809.61, + "end": 23813.45, + "probability": 0.9937 + }, + { + "start": 23813.85, + "end": 23816.47, + "probability": 0.9998 + }, + { + "start": 23816.57, + "end": 23816.77, + "probability": 0.7139 + }, + { + "start": 23819.47, + "end": 23823.07, + "probability": 0.9008 + }, + { + "start": 23824.99, + "end": 23832.13, + "probability": 0.7388 + }, + { + "start": 23832.25, + "end": 23832.97, + "probability": 0.5231 + }, + { + "start": 23833.49, + "end": 23834.73, + "probability": 0.7847 + }, + { + "start": 23836.59, + "end": 23839.09, + "probability": 0.9404 + }, + { + "start": 23840.27, + "end": 23841.91, + "probability": 0.7892 + }, + { + "start": 23842.63, + "end": 23844.43, + "probability": 0.8307 + }, + { + "start": 23845.61, + "end": 23846.67, + "probability": 0.6033 + }, + { + "start": 23847.33, + "end": 23851.69, + "probability": 0.9214 + }, + { + "start": 23852.53, + "end": 23855.77, + "probability": 0.9804 + }, + { + "start": 23856.49, + "end": 23858.21, + "probability": 0.518 + }, + { + "start": 23858.45, + "end": 23863.05, + "probability": 0.8905 + }, + { + "start": 23864.01, + "end": 23864.29, + "probability": 0.7166 + }, + { + "start": 23864.39, + "end": 23865.96, + "probability": 0.9695 + }, + { + "start": 23867.17, + "end": 23868.21, + "probability": 0.7501 + }, + { + "start": 23868.87, + "end": 23871.99, + "probability": 0.8648 + }, + { + "start": 23873.65, + "end": 23874.79, + "probability": 0.7846 + }, + { + "start": 23875.03, + "end": 23878.95, + "probability": 0.7503 + }, + { + "start": 23880.11, + "end": 23880.51, + "probability": 0.5774 + }, + { + "start": 23880.77, + "end": 23883.81, + "probability": 0.9927 + }, + { + "start": 23883.81, + "end": 23886.99, + "probability": 0.9906 + }, + { + "start": 23887.77, + "end": 23889.67, + "probability": 0.9265 + }, + { + "start": 23890.21, + "end": 23891.11, + "probability": 0.6598 + }, + { + "start": 23891.37, + "end": 23892.83, + "probability": 0.9412 + }, + { + "start": 23892.85, + "end": 23893.25, + "probability": 0.8348 + }, + { + "start": 23893.71, + "end": 23894.77, + "probability": 0.8785 + }, + { + "start": 23895.15, + "end": 23896.29, + "probability": 0.9452 + }, + { + "start": 23896.49, + "end": 23897.7, + "probability": 0.9703 + }, + { + "start": 23898.23, + "end": 23899.75, + "probability": 0.9498 + }, + { + "start": 23899.85, + "end": 23900.75, + "probability": 0.9912 + }, + { + "start": 23900.95, + "end": 23902.13, + "probability": 0.9517 + }, + { + "start": 23902.61, + "end": 23905.93, + "probability": 0.9859 + }, + { + "start": 23906.47, + "end": 23907.23, + "probability": 0.8411 + }, + { + "start": 23907.79, + "end": 23908.23, + "probability": 0.5709 + }, + { + "start": 23908.79, + "end": 23909.81, + "probability": 0.9536 + }, + { + "start": 23909.85, + "end": 23910.76, + "probability": 0.9067 + }, + { + "start": 23910.81, + "end": 23912.73, + "probability": 0.9852 + }, + { + "start": 23912.91, + "end": 23915.07, + "probability": 0.8687 + }, + { + "start": 23915.65, + "end": 23919.61, + "probability": 0.9854 + }, + { + "start": 23920.99, + "end": 23921.19, + "probability": 0.0058 + }, + { + "start": 23923.55, + "end": 23927.35, + "probability": 0.9966 + }, + { + "start": 23927.77, + "end": 23931.97, + "probability": 0.6679 + }, + { + "start": 23932.31, + "end": 23933.11, + "probability": 0.5155 + }, + { + "start": 23933.17, + "end": 23933.63, + "probability": 0.7625 + }, + { + "start": 23934.03, + "end": 23936.24, + "probability": 0.9172 + }, + { + "start": 23936.35, + "end": 23938.83, + "probability": 0.944 + }, + { + "start": 23938.89, + "end": 23939.21, + "probability": 0.5191 + }, + { + "start": 23939.29, + "end": 23939.71, + "probability": 0.7952 + }, + { + "start": 23940.37, + "end": 23942.25, + "probability": 0.6976 + }, + { + "start": 23942.39, + "end": 23945.57, + "probability": 0.7901 + }, + { + "start": 23946.67, + "end": 23950.17, + "probability": 0.4606 + }, + { + "start": 23950.73, + "end": 23954.03, + "probability": 0.7007 + }, + { + "start": 23954.53, + "end": 23954.59, + "probability": 0.0014 + } + ], + "segments_count": 8212, + "words_count": 41785, + "avg_words_per_segment": 5.0883, + "avg_segment_duration": 2.1612, + "avg_words_per_minute": 104.4291, + "plenum_id": "30123", + "duration": 24007.67, + "title": null, + "plenum_date": "2013-07-10" +} \ No newline at end of file