diff --git "a/31718/metadata.json" "b/31718/metadata.json" new file mode 100644--- /dev/null +++ "b/31718/metadata.json" @@ -0,0 +1,34387 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "31718", + "quality_score": 0.8896, + "per_segment_quality_scores": [ + { + "start": 40.92, + "end": 41.78, + "probability": 0.8281 + }, + { + "start": 41.94, + "end": 44.72, + "probability": 0.4685 + }, + { + "start": 44.86, + "end": 49.94, + "probability": 0.991 + }, + { + "start": 50.38, + "end": 52.04, + "probability": 0.9861 + }, + { + "start": 53.1, + "end": 53.82, + "probability": 0.8547 + }, + { + "start": 54.46, + "end": 55.7, + "probability": 0.8984 + }, + { + "start": 55.84, + "end": 57.3, + "probability": 0.8217 + }, + { + "start": 59.22, + "end": 60.7, + "probability": 0.3105 + }, + { + "start": 60.7, + "end": 60.7, + "probability": 0.4395 + }, + { + "start": 60.7, + "end": 61.54, + "probability": 0.3994 + }, + { + "start": 62.06, + "end": 65.36, + "probability": 0.5323 + }, + { + "start": 66.1, + "end": 68.86, + "probability": 0.6104 + }, + { + "start": 68.86, + "end": 71.5, + "probability": 0.7817 + }, + { + "start": 72.04, + "end": 72.62, + "probability": 0.0997 + }, + { + "start": 73.4, + "end": 74.96, + "probability": 0.5821 + }, + { + "start": 75.52, + "end": 79.38, + "probability": 0.8919 + }, + { + "start": 79.92, + "end": 80.94, + "probability": 0.7285 + }, + { + "start": 82.18, + "end": 82.98, + "probability": 0.979 + }, + { + "start": 86.1, + "end": 88.26, + "probability": 0.7115 + }, + { + "start": 88.26, + "end": 89.77, + "probability": 0.1488 + }, + { + "start": 90.02, + "end": 91.54, + "probability": 0.6836 + }, + { + "start": 91.64, + "end": 93.02, + "probability": 0.6597 + }, + { + "start": 93.74, + "end": 96.8, + "probability": 0.3373 + }, + { + "start": 108.16, + "end": 112.14, + "probability": 0.029 + }, + { + "start": 113.16, + "end": 113.88, + "probability": 0.0979 + }, + { + "start": 114.72, + "end": 115.16, + "probability": 0.1763 + }, + { + "start": 115.76, + "end": 118.14, + "probability": 0.1451 + }, + { + "start": 119.64, + "end": 120.78, + "probability": 0.1264 + }, + { + "start": 120.98, + "end": 122.76, + "probability": 0.0506 + }, + { + "start": 123.27, + "end": 124.04, + "probability": 0.0374 + }, + { + "start": 124.8, + "end": 130.22, + "probability": 0.0235 + }, + { + "start": 130.34, + "end": 130.9, + "probability": 0.044 + }, + { + "start": 130.9, + "end": 130.92, + "probability": 0.0166 + }, + { + "start": 130.92, + "end": 130.98, + "probability": 0.0213 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 164.3, + "end": 166.36, + "probability": 0.0478 + }, + { + "start": 172.2, + "end": 175.02, + "probability": 0.0186 + }, + { + "start": 177.06, + "end": 181.42, + "probability": 0.0803 + }, + { + "start": 182.2, + "end": 186.1, + "probability": 0.0716 + }, + { + "start": 187.7, + "end": 192.94, + "probability": 0.0659 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.0, + "end": 265.0, + "probability": 0.0 + }, + { + "start": 265.54, + "end": 265.56, + "probability": 0.0778 + }, + { + "start": 265.56, + "end": 265.56, + "probability": 0.2607 + }, + { + "start": 265.56, + "end": 265.56, + "probability": 0.0403 + }, + { + "start": 265.56, + "end": 265.56, + "probability": 0.0223 + }, + { + "start": 265.56, + "end": 267.76, + "probability": 0.1006 + }, + { + "start": 267.8, + "end": 269.6, + "probability": 0.6289 + }, + { + "start": 270.22, + "end": 272.08, + "probability": 0.6718 + }, + { + "start": 272.34, + "end": 273.82, + "probability": 0.9826 + }, + { + "start": 274.4, + "end": 276.44, + "probability": 0.7748 + }, + { + "start": 277.54, + "end": 279.4, + "probability": 0.9589 + }, + { + "start": 280.1, + "end": 285.44, + "probability": 0.922 + }, + { + "start": 286.02, + "end": 290.8, + "probability": 0.9676 + }, + { + "start": 291.32, + "end": 294.58, + "probability": 0.9339 + }, + { + "start": 295.14, + "end": 296.34, + "probability": 0.6384 + }, + { + "start": 297.36, + "end": 298.68, + "probability": 0.9773 + }, + { + "start": 299.44, + "end": 303.78, + "probability": 0.9941 + }, + { + "start": 304.36, + "end": 307.14, + "probability": 0.9893 + }, + { + "start": 307.78, + "end": 309.9, + "probability": 0.6417 + }, + { + "start": 310.12, + "end": 311.4, + "probability": 0.8509 + }, + { + "start": 311.96, + "end": 314.12, + "probability": 0.4504 + }, + { + "start": 315.22, + "end": 317.32, + "probability": 0.9805 + }, + { + "start": 318.38, + "end": 322.72, + "probability": 0.9517 + }, + { + "start": 323.74, + "end": 325.46, + "probability": 0.9834 + }, + { + "start": 326.92, + "end": 329.42, + "probability": 0.8975 + }, + { + "start": 329.56, + "end": 332.08, + "probability": 0.6993 + }, + { + "start": 332.94, + "end": 334.74, + "probability": 0.9949 + }, + { + "start": 334.78, + "end": 336.0, + "probability": 0.9834 + }, + { + "start": 337.5, + "end": 339.24, + "probability": 0.9684 + }, + { + "start": 339.4, + "end": 340.23, + "probability": 0.9619 + }, + { + "start": 341.5, + "end": 342.51, + "probability": 0.2225 + }, + { + "start": 344.38, + "end": 345.23, + "probability": 0.7422 + }, + { + "start": 346.48, + "end": 347.88, + "probability": 0.8589 + }, + { + "start": 348.68, + "end": 349.82, + "probability": 0.8495 + }, + { + "start": 350.48, + "end": 351.28, + "probability": 0.926 + }, + { + "start": 351.76, + "end": 352.24, + "probability": 0.5233 + }, + { + "start": 352.38, + "end": 353.08, + "probability": 0.8847 + }, + { + "start": 353.16, + "end": 357.68, + "probability": 0.9891 + }, + { + "start": 358.84, + "end": 365.14, + "probability": 0.9973 + }, + { + "start": 365.32, + "end": 366.22, + "probability": 0.5097 + }, + { + "start": 367.9, + "end": 372.24, + "probability": 0.9822 + }, + { + "start": 373.5, + "end": 376.94, + "probability": 0.8183 + }, + { + "start": 378.22, + "end": 382.62, + "probability": 0.9756 + }, + { + "start": 382.74, + "end": 383.4, + "probability": 0.4641 + }, + { + "start": 383.5, + "end": 384.28, + "probability": 0.5209 + }, + { + "start": 384.4, + "end": 385.22, + "probability": 0.8228 + }, + { + "start": 386.74, + "end": 389.52, + "probability": 0.6898 + }, + { + "start": 390.76, + "end": 393.65, + "probability": 0.9905 + }, + { + "start": 394.82, + "end": 398.74, + "probability": 0.9771 + }, + { + "start": 399.78, + "end": 400.6, + "probability": 0.9211 + }, + { + "start": 401.24, + "end": 401.98, + "probability": 0.9893 + }, + { + "start": 403.36, + "end": 407.4, + "probability": 0.7823 + }, + { + "start": 408.16, + "end": 409.26, + "probability": 0.9707 + }, + { + "start": 410.12, + "end": 412.2, + "probability": 0.9896 + }, + { + "start": 412.92, + "end": 416.78, + "probability": 0.76 + }, + { + "start": 417.44, + "end": 418.62, + "probability": 0.9824 + }, + { + "start": 418.66, + "end": 419.32, + "probability": 0.8549 + }, + { + "start": 419.4, + "end": 420.14, + "probability": 0.9323 + }, + { + "start": 420.92, + "end": 423.9, + "probability": 0.957 + }, + { + "start": 424.86, + "end": 426.04, + "probability": 0.7618 + }, + { + "start": 427.06, + "end": 429.58, + "probability": 0.6523 + }, + { + "start": 430.42, + "end": 431.3, + "probability": 0.55 + }, + { + "start": 431.78, + "end": 434.06, + "probability": 0.8542 + }, + { + "start": 434.06, + "end": 435.84, + "probability": 0.9099 + }, + { + "start": 436.66, + "end": 438.14, + "probability": 0.7352 + }, + { + "start": 438.26, + "end": 439.92, + "probability": 0.864 + }, + { + "start": 441.48, + "end": 442.2, + "probability": 0.7572 + }, + { + "start": 442.9, + "end": 444.58, + "probability": 0.8214 + }, + { + "start": 445.8, + "end": 447.8, + "probability": 0.6756 + }, + { + "start": 447.86, + "end": 449.64, + "probability": 0.9854 + }, + { + "start": 450.18, + "end": 450.36, + "probability": 0.4459 + }, + { + "start": 450.44, + "end": 451.56, + "probability": 0.9697 + }, + { + "start": 451.66, + "end": 454.36, + "probability": 0.9645 + }, + { + "start": 454.76, + "end": 456.46, + "probability": 0.6374 + }, + { + "start": 457.66, + "end": 461.44, + "probability": 0.9312 + }, + { + "start": 462.72, + "end": 463.58, + "probability": 0.7201 + }, + { + "start": 463.86, + "end": 465.8, + "probability": 0.9132 + }, + { + "start": 466.2, + "end": 467.29, + "probability": 0.747 + }, + { + "start": 467.72, + "end": 468.54, + "probability": 0.9792 + }, + { + "start": 468.66, + "end": 471.18, + "probability": 0.9266 + }, + { + "start": 472.92, + "end": 474.42, + "probability": 0.9165 + }, + { + "start": 475.5, + "end": 478.58, + "probability": 0.9976 + }, + { + "start": 479.88, + "end": 482.46, + "probability": 0.8465 + }, + { + "start": 483.98, + "end": 486.84, + "probability": 0.769 + }, + { + "start": 487.68, + "end": 491.36, + "probability": 0.9736 + }, + { + "start": 492.5, + "end": 494.78, + "probability": 0.7311 + }, + { + "start": 494.96, + "end": 495.88, + "probability": 0.5353 + }, + { + "start": 496.48, + "end": 497.56, + "probability": 0.9586 + }, + { + "start": 498.82, + "end": 499.8, + "probability": 0.6034 + }, + { + "start": 500.16, + "end": 500.64, + "probability": 0.9194 + }, + { + "start": 500.76, + "end": 503.2, + "probability": 0.6707 + }, + { + "start": 504.58, + "end": 507.12, + "probability": 0.8525 + }, + { + "start": 507.64, + "end": 509.5, + "probability": 0.703 + }, + { + "start": 510.82, + "end": 514.38, + "probability": 0.9793 + }, + { + "start": 515.06, + "end": 515.6, + "probability": 0.9626 + }, + { + "start": 515.74, + "end": 518.47, + "probability": 0.84 + }, + { + "start": 519.04, + "end": 520.94, + "probability": 0.9958 + }, + { + "start": 521.6, + "end": 522.88, + "probability": 0.7796 + }, + { + "start": 523.24, + "end": 523.88, + "probability": 0.9339 + }, + { + "start": 524.44, + "end": 529.48, + "probability": 0.9941 + }, + { + "start": 530.08, + "end": 533.92, + "probability": 0.9723 + }, + { + "start": 535.08, + "end": 537.52, + "probability": 0.7109 + }, + { + "start": 540.1, + "end": 541.72, + "probability": 0.8921 + }, + { + "start": 543.18, + "end": 544.68, + "probability": 0.9647 + }, + { + "start": 545.38, + "end": 547.92, + "probability": 0.8885 + }, + { + "start": 548.7, + "end": 550.4, + "probability": 0.9897 + }, + { + "start": 550.82, + "end": 553.38, + "probability": 0.9845 + }, + { + "start": 553.44, + "end": 554.35, + "probability": 0.9487 + }, + { + "start": 555.1, + "end": 556.62, + "probability": 0.8425 + }, + { + "start": 557.2, + "end": 557.92, + "probability": 0.9225 + }, + { + "start": 558.66, + "end": 559.88, + "probability": 0.9022 + }, + { + "start": 560.04, + "end": 560.6, + "probability": 0.8702 + }, + { + "start": 560.66, + "end": 561.08, + "probability": 0.9696 + }, + { + "start": 561.16, + "end": 562.32, + "probability": 0.6791 + }, + { + "start": 563.22, + "end": 565.74, + "probability": 0.9873 + }, + { + "start": 566.18, + "end": 567.74, + "probability": 0.957 + }, + { + "start": 568.36, + "end": 569.24, + "probability": 0.4584 + }, + { + "start": 569.42, + "end": 570.74, + "probability": 0.7481 + }, + { + "start": 570.92, + "end": 571.6, + "probability": 0.7542 + }, + { + "start": 571.68, + "end": 572.54, + "probability": 0.9233 + }, + { + "start": 572.6, + "end": 573.76, + "probability": 0.9379 + }, + { + "start": 573.94, + "end": 574.78, + "probability": 0.7202 + }, + { + "start": 574.9, + "end": 575.64, + "probability": 0.8706 + }, + { + "start": 578.04, + "end": 578.9, + "probability": 0.4083 + }, + { + "start": 578.9, + "end": 581.32, + "probability": 0.302 + }, + { + "start": 581.86, + "end": 585.16, + "probability": 0.9474 + }, + { + "start": 585.74, + "end": 588.17, + "probability": 0.9054 + }, + { + "start": 588.98, + "end": 592.2, + "probability": 0.8856 + }, + { + "start": 593.1, + "end": 598.64, + "probability": 0.887 + }, + { + "start": 598.9, + "end": 601.82, + "probability": 0.8554 + }, + { + "start": 602.7, + "end": 606.42, + "probability": 0.9475 + }, + { + "start": 606.48, + "end": 610.76, + "probability": 0.965 + }, + { + "start": 611.6, + "end": 614.06, + "probability": 0.9012 + }, + { + "start": 614.1, + "end": 616.06, + "probability": 0.8701 + }, + { + "start": 616.7, + "end": 619.34, + "probability": 0.5486 + }, + { + "start": 619.78, + "end": 621.6, + "probability": 0.9392 + }, + { + "start": 621.88, + "end": 623.34, + "probability": 0.9993 + }, + { + "start": 624.1, + "end": 627.04, + "probability": 0.7697 + }, + { + "start": 627.72, + "end": 629.73, + "probability": 0.7018 + }, + { + "start": 630.8, + "end": 631.74, + "probability": 0.9383 + }, + { + "start": 632.32, + "end": 635.38, + "probability": 0.8393 + }, + { + "start": 635.96, + "end": 636.2, + "probability": 0.4862 + }, + { + "start": 636.3, + "end": 636.66, + "probability": 0.4931 + }, + { + "start": 636.76, + "end": 638.7, + "probability": 0.8294 + }, + { + "start": 638.86, + "end": 640.98, + "probability": 0.7781 + }, + { + "start": 642.82, + "end": 643.8, + "probability": 0.8617 + }, + { + "start": 643.88, + "end": 644.64, + "probability": 0.8903 + }, + { + "start": 644.76, + "end": 646.48, + "probability": 0.9658 + }, + { + "start": 647.26, + "end": 648.76, + "probability": 0.8599 + }, + { + "start": 649.8, + "end": 651.34, + "probability": 0.9878 + }, + { + "start": 651.7, + "end": 653.64, + "probability": 0.9107 + }, + { + "start": 654.1, + "end": 655.51, + "probability": 0.802 + }, + { + "start": 656.32, + "end": 660.89, + "probability": 0.9825 + }, + { + "start": 661.1, + "end": 663.96, + "probability": 0.6823 + }, + { + "start": 664.16, + "end": 665.24, + "probability": 0.8072 + }, + { + "start": 665.32, + "end": 666.92, + "probability": 0.9272 + }, + { + "start": 667.48, + "end": 668.52, + "probability": 0.9952 + }, + { + "start": 669.52, + "end": 673.9, + "probability": 0.7437 + }, + { + "start": 673.98, + "end": 675.58, + "probability": 0.9597 + }, + { + "start": 676.42, + "end": 681.86, + "probability": 0.9789 + }, + { + "start": 681.96, + "end": 683.0, + "probability": 0.7308 + }, + { + "start": 683.42, + "end": 685.08, + "probability": 0.9902 + }, + { + "start": 685.72, + "end": 689.17, + "probability": 0.8789 + }, + { + "start": 689.68, + "end": 693.5, + "probability": 0.9758 + }, + { + "start": 693.88, + "end": 696.7, + "probability": 0.609 + }, + { + "start": 697.28, + "end": 698.42, + "probability": 0.9591 + }, + { + "start": 698.66, + "end": 699.78, + "probability": 0.6727 + }, + { + "start": 699.86, + "end": 700.74, + "probability": 0.9563 + }, + { + "start": 700.9, + "end": 703.12, + "probability": 0.9618 + }, + { + "start": 704.24, + "end": 705.58, + "probability": 0.9878 + }, + { + "start": 706.5, + "end": 707.04, + "probability": 0.9271 + }, + { + "start": 707.76, + "end": 710.74, + "probability": 0.6692 + }, + { + "start": 711.38, + "end": 712.42, + "probability": 0.7447 + }, + { + "start": 712.58, + "end": 716.38, + "probability": 0.8095 + }, + { + "start": 716.74, + "end": 719.04, + "probability": 0.5192 + }, + { + "start": 719.58, + "end": 721.68, + "probability": 0.9049 + }, + { + "start": 722.02, + "end": 724.36, + "probability": 0.9795 + }, + { + "start": 725.4, + "end": 726.1, + "probability": 0.7511 + }, + { + "start": 726.38, + "end": 728.06, + "probability": 0.6437 + }, + { + "start": 728.94, + "end": 730.68, + "probability": 0.9291 + }, + { + "start": 731.94, + "end": 734.2, + "probability": 0.9639 + }, + { + "start": 734.92, + "end": 737.72, + "probability": 0.9866 + }, + { + "start": 738.7, + "end": 740.34, + "probability": 0.9932 + }, + { + "start": 741.1, + "end": 743.26, + "probability": 0.9946 + }, + { + "start": 743.4, + "end": 743.76, + "probability": 0.5886 + }, + { + "start": 743.8, + "end": 743.92, + "probability": 0.6501 + }, + { + "start": 744.06, + "end": 744.8, + "probability": 0.9284 + }, + { + "start": 745.18, + "end": 751.42, + "probability": 0.9899 + }, + { + "start": 752.54, + "end": 753.12, + "probability": 0.8329 + }, + { + "start": 753.36, + "end": 754.72, + "probability": 0.8062 + }, + { + "start": 755.24, + "end": 756.44, + "probability": 0.9773 + }, + { + "start": 758.4, + "end": 761.8, + "probability": 0.9027 + }, + { + "start": 762.98, + "end": 764.76, + "probability": 0.9934 + }, + { + "start": 764.86, + "end": 765.48, + "probability": 0.9374 + }, + { + "start": 765.5, + "end": 765.99, + "probability": 0.7161 + }, + { + "start": 766.58, + "end": 768.06, + "probability": 0.7667 + }, + { + "start": 768.06, + "end": 768.34, + "probability": 0.3839 + }, + { + "start": 768.34, + "end": 770.6, + "probability": 0.7968 + }, + { + "start": 771.5, + "end": 772.74, + "probability": 0.6451 + }, + { + "start": 772.86, + "end": 773.56, + "probability": 0.6722 + }, + { + "start": 775.48, + "end": 777.54, + "probability": 0.8277 + }, + { + "start": 778.32, + "end": 780.5, + "probability": 0.6466 + }, + { + "start": 780.92, + "end": 783.3, + "probability": 0.7787 + }, + { + "start": 784.3, + "end": 785.74, + "probability": 0.7848 + }, + { + "start": 786.12, + "end": 786.78, + "probability": 0.0242 + }, + { + "start": 786.78, + "end": 787.94, + "probability": 0.9712 + }, + { + "start": 787.98, + "end": 789.12, + "probability": 0.9622 + }, + { + "start": 789.66, + "end": 790.5, + "probability": 0.9514 + }, + { + "start": 790.8, + "end": 793.22, + "probability": 0.8573 + }, + { + "start": 793.58, + "end": 794.28, + "probability": 0.3206 + }, + { + "start": 794.4, + "end": 795.14, + "probability": 0.6653 + }, + { + "start": 795.62, + "end": 796.53, + "probability": 0.7078 + }, + { + "start": 797.16, + "end": 798.76, + "probability": 0.8628 + }, + { + "start": 799.12, + "end": 800.36, + "probability": 0.984 + }, + { + "start": 801.22, + "end": 802.72, + "probability": 0.9547 + }, + { + "start": 803.9, + "end": 805.66, + "probability": 0.9587 + }, + { + "start": 805.98, + "end": 807.08, + "probability": 0.6008 + }, + { + "start": 807.18, + "end": 807.5, + "probability": 0.6606 + }, + { + "start": 808.5, + "end": 809.86, + "probability": 0.936 + }, + { + "start": 809.96, + "end": 810.49, + "probability": 0.9346 + }, + { + "start": 811.46, + "end": 814.6, + "probability": 0.9104 + }, + { + "start": 815.26, + "end": 820.92, + "probability": 0.8691 + }, + { + "start": 821.62, + "end": 823.78, + "probability": 0.5591 + }, + { + "start": 824.44, + "end": 825.68, + "probability": 0.9087 + }, + { + "start": 826.14, + "end": 827.76, + "probability": 0.9788 + }, + { + "start": 827.84, + "end": 829.3, + "probability": 0.5789 + }, + { + "start": 829.88, + "end": 830.46, + "probability": 0.6881 + }, + { + "start": 831.04, + "end": 831.92, + "probability": 0.7437 + }, + { + "start": 831.98, + "end": 834.72, + "probability": 0.7751 + }, + { + "start": 835.86, + "end": 837.4, + "probability": 0.9175 + }, + { + "start": 838.14, + "end": 841.06, + "probability": 0.8658 + }, + { + "start": 842.1, + "end": 845.6, + "probability": 0.9409 + }, + { + "start": 846.98, + "end": 847.84, + "probability": 0.71 + }, + { + "start": 847.96, + "end": 851.12, + "probability": 0.8816 + }, + { + "start": 852.67, + "end": 854.7, + "probability": 0.6819 + }, + { + "start": 855.26, + "end": 859.22, + "probability": 0.6189 + }, + { + "start": 859.94, + "end": 860.08, + "probability": 0.0398 + }, + { + "start": 860.08, + "end": 861.68, + "probability": 0.687 + }, + { + "start": 862.72, + "end": 863.24, + "probability": 0.6857 + }, + { + "start": 864.32, + "end": 865.56, + "probability": 0.9833 + }, + { + "start": 866.22, + "end": 868.79, + "probability": 0.9708 + }, + { + "start": 870.02, + "end": 875.04, + "probability": 0.9174 + }, + { + "start": 875.54, + "end": 877.04, + "probability": 0.8016 + }, + { + "start": 877.74, + "end": 879.82, + "probability": 0.9908 + }, + { + "start": 880.02, + "end": 880.5, + "probability": 0.7128 + }, + { + "start": 881.26, + "end": 882.38, + "probability": 0.9827 + }, + { + "start": 883.06, + "end": 886.08, + "probability": 0.9028 + }, + { + "start": 886.66, + "end": 888.94, + "probability": 0.9768 + }, + { + "start": 889.4, + "end": 889.82, + "probability": 0.5655 + }, + { + "start": 890.46, + "end": 890.92, + "probability": 0.4824 + }, + { + "start": 892.9, + "end": 894.7, + "probability": 0.7993 + }, + { + "start": 895.08, + "end": 895.94, + "probability": 0.7531 + }, + { + "start": 896.62, + "end": 897.0, + "probability": 0.4605 + }, + { + "start": 897.02, + "end": 898.92, + "probability": 0.8696 + }, + { + "start": 899.58, + "end": 902.08, + "probability": 0.7963 + }, + { + "start": 903.3, + "end": 905.4, + "probability": 0.9893 + }, + { + "start": 905.5, + "end": 906.24, + "probability": 0.2326 + }, + { + "start": 906.32, + "end": 907.06, + "probability": 0.7121 + }, + { + "start": 907.88, + "end": 912.9, + "probability": 0.9304 + }, + { + "start": 913.48, + "end": 916.4, + "probability": 0.9535 + }, + { + "start": 917.18, + "end": 919.66, + "probability": 0.9877 + }, + { + "start": 920.56, + "end": 922.61, + "probability": 0.9775 + }, + { + "start": 923.48, + "end": 926.84, + "probability": 0.9946 + }, + { + "start": 926.96, + "end": 927.84, + "probability": 0.9862 + }, + { + "start": 928.26, + "end": 928.82, + "probability": 0.1559 + }, + { + "start": 929.16, + "end": 930.0, + "probability": 0.9381 + }, + { + "start": 930.16, + "end": 931.98, + "probability": 0.9897 + }, + { + "start": 932.44, + "end": 932.92, + "probability": 0.6004 + }, + { + "start": 933.0, + "end": 933.72, + "probability": 0.4067 + }, + { + "start": 934.5, + "end": 937.08, + "probability": 0.9891 + }, + { + "start": 937.96, + "end": 941.54, + "probability": 0.7202 + }, + { + "start": 941.7, + "end": 942.3, + "probability": 0.8439 + }, + { + "start": 942.44, + "end": 944.22, + "probability": 0.5635 + }, + { + "start": 944.6, + "end": 947.24, + "probability": 0.668 + }, + { + "start": 947.74, + "end": 950.0, + "probability": 0.9358 + }, + { + "start": 950.6, + "end": 956.26, + "probability": 0.8959 + }, + { + "start": 956.28, + "end": 957.42, + "probability": 0.8937 + }, + { + "start": 958.48, + "end": 960.1, + "probability": 0.9786 + }, + { + "start": 961.24, + "end": 962.47, + "probability": 0.9918 + }, + { + "start": 963.48, + "end": 968.88, + "probability": 0.9971 + }, + { + "start": 969.6, + "end": 972.9, + "probability": 0.9729 + }, + { + "start": 973.0, + "end": 973.78, + "probability": 0.9053 + }, + { + "start": 974.78, + "end": 981.2, + "probability": 0.9805 + }, + { + "start": 981.82, + "end": 985.36, + "probability": 0.9976 + }, + { + "start": 986.06, + "end": 989.54, + "probability": 0.6526 + }, + { + "start": 990.1, + "end": 992.7, + "probability": 0.9974 + }, + { + "start": 992.94, + "end": 994.34, + "probability": 0.9676 + }, + { + "start": 994.76, + "end": 995.24, + "probability": 0.7063 + }, + { + "start": 995.24, + "end": 996.0, + "probability": 0.7379 + }, + { + "start": 996.32, + "end": 996.95, + "probability": 0.9572 + }, + { + "start": 997.68, + "end": 998.56, + "probability": 0.7452 + }, + { + "start": 999.12, + "end": 1000.14, + "probability": 0.4048 + }, + { + "start": 1001.12, + "end": 1002.07, + "probability": 0.6324 + }, + { + "start": 1002.5, + "end": 1002.92, + "probability": 0.8008 + }, + { + "start": 1003.36, + "end": 1006.74, + "probability": 0.9816 + }, + { + "start": 1007.52, + "end": 1010.38, + "probability": 0.7242 + }, + { + "start": 1010.52, + "end": 1011.04, + "probability": 0.6728 + }, + { + "start": 1011.22, + "end": 1012.28, + "probability": 0.757 + }, + { + "start": 1012.52, + "end": 1013.56, + "probability": 0.9723 + }, + { + "start": 1013.7, + "end": 1014.58, + "probability": 0.5949 + }, + { + "start": 1020.36, + "end": 1026.06, + "probability": 0.9854 + }, + { + "start": 1026.42, + "end": 1026.82, + "probability": 0.9101 + }, + { + "start": 1029.04, + "end": 1034.35, + "probability": 0.9424 + }, + { + "start": 1035.06, + "end": 1037.64, + "probability": 0.6865 + }, + { + "start": 1039.26, + "end": 1041.5, + "probability": 0.8716 + }, + { + "start": 1042.66, + "end": 1046.26, + "probability": 0.8672 + }, + { + "start": 1047.4, + "end": 1048.32, + "probability": 0.8899 + }, + { + "start": 1048.62, + "end": 1051.48, + "probability": 0.9604 + }, + { + "start": 1051.54, + "end": 1052.1, + "probability": 0.8091 + }, + { + "start": 1052.96, + "end": 1057.3, + "probability": 0.7367 + }, + { + "start": 1057.44, + "end": 1060.36, + "probability": 0.6921 + }, + { + "start": 1060.52, + "end": 1063.08, + "probability": 0.6906 + }, + { + "start": 1064.64, + "end": 1067.4, + "probability": 0.124 + }, + { + "start": 1068.86, + "end": 1071.43, + "probability": 0.9358 + }, + { + "start": 1072.14, + "end": 1075.12, + "probability": 0.6165 + }, + { + "start": 1075.72, + "end": 1077.26, + "probability": 0.7261 + }, + { + "start": 1077.36, + "end": 1081.0, + "probability": 0.8132 + }, + { + "start": 1081.8, + "end": 1086.52, + "probability": 0.6667 + }, + { + "start": 1087.26, + "end": 1089.76, + "probability": 0.9964 + }, + { + "start": 1090.34, + "end": 1091.04, + "probability": 0.2834 + }, + { + "start": 1091.34, + "end": 1094.38, + "probability": 0.9608 + }, + { + "start": 1095.02, + "end": 1096.88, + "probability": 0.9945 + }, + { + "start": 1096.88, + "end": 1100.94, + "probability": 0.9421 + }, + { + "start": 1101.12, + "end": 1103.7, + "probability": 0.9144 + }, + { + "start": 1104.12, + "end": 1106.14, + "probability": 0.9904 + }, + { + "start": 1106.2, + "end": 1107.6, + "probability": 0.6725 + }, + { + "start": 1107.74, + "end": 1107.9, + "probability": 0.5842 + }, + { + "start": 1108.3, + "end": 1111.4, + "probability": 0.9873 + }, + { + "start": 1112.3, + "end": 1114.88, + "probability": 0.8008 + }, + { + "start": 1115.4, + "end": 1120.62, + "probability": 0.9611 + }, + { + "start": 1121.46, + "end": 1122.26, + "probability": 0.04 + }, + { + "start": 1122.26, + "end": 1125.12, + "probability": 0.8643 + }, + { + "start": 1125.26, + "end": 1126.68, + "probability": 0.9868 + }, + { + "start": 1126.74, + "end": 1129.4, + "probability": 0.9857 + }, + { + "start": 1129.4, + "end": 1133.1, + "probability": 0.9979 + }, + { + "start": 1133.98, + "end": 1135.26, + "probability": 0.9193 + }, + { + "start": 1135.8, + "end": 1138.96, + "probability": 0.9055 + }, + { + "start": 1139.14, + "end": 1140.14, + "probability": 0.9935 + }, + { + "start": 1140.36, + "end": 1141.82, + "probability": 0.988 + }, + { + "start": 1142.66, + "end": 1147.58, + "probability": 0.8604 + }, + { + "start": 1148.14, + "end": 1150.56, + "probability": 0.9926 + }, + { + "start": 1150.56, + "end": 1158.04, + "probability": 0.8989 + }, + { + "start": 1158.16, + "end": 1161.16, + "probability": 0.998 + }, + { + "start": 1161.22, + "end": 1163.04, + "probability": 0.9326 + }, + { + "start": 1163.36, + "end": 1165.74, + "probability": 0.9896 + }, + { + "start": 1166.0, + "end": 1167.1, + "probability": 0.9 + }, + { + "start": 1167.2, + "end": 1168.12, + "probability": 0.7339 + }, + { + "start": 1169.08, + "end": 1173.0, + "probability": 0.9805 + }, + { + "start": 1173.7, + "end": 1175.52, + "probability": 0.0108 + }, + { + "start": 1175.52, + "end": 1180.76, + "probability": 0.6275 + }, + { + "start": 1181.36, + "end": 1181.66, + "probability": 0.4327 + }, + { + "start": 1181.66, + "end": 1182.76, + "probability": 0.595 + }, + { + "start": 1182.94, + "end": 1189.2, + "probability": 0.9668 + }, + { + "start": 1189.48, + "end": 1190.8, + "probability": 0.9619 + }, + { + "start": 1191.5, + "end": 1192.3, + "probability": 0.9114 + }, + { + "start": 1192.56, + "end": 1194.86, + "probability": 0.9575 + }, + { + "start": 1196.02, + "end": 1197.68, + "probability": 0.7157 + }, + { + "start": 1198.74, + "end": 1201.5, + "probability": 0.7988 + }, + { + "start": 1201.78, + "end": 1202.82, + "probability": 0.7446 + }, + { + "start": 1203.28, + "end": 1206.08, + "probability": 0.6547 + }, + { + "start": 1206.22, + "end": 1207.84, + "probability": 0.9111 + }, + { + "start": 1208.3, + "end": 1209.94, + "probability": 0.8211 + }, + { + "start": 1210.38, + "end": 1211.88, + "probability": 0.9759 + }, + { + "start": 1212.52, + "end": 1217.3, + "probability": 0.9888 + }, + { + "start": 1217.98, + "end": 1219.06, + "probability": 0.8277 + }, + { + "start": 1219.16, + "end": 1223.74, + "probability": 0.9709 + }, + { + "start": 1225.5, + "end": 1228.24, + "probability": 0.903 + }, + { + "start": 1228.48, + "end": 1234.18, + "probability": 0.9561 + }, + { + "start": 1234.92, + "end": 1235.22, + "probability": 0.8291 + }, + { + "start": 1235.34, + "end": 1238.24, + "probability": 0.9848 + }, + { + "start": 1238.38, + "end": 1240.96, + "probability": 0.9634 + }, + { + "start": 1241.7, + "end": 1242.78, + "probability": 0.8137 + }, + { + "start": 1242.88, + "end": 1243.4, + "probability": 0.7268 + }, + { + "start": 1243.5, + "end": 1246.06, + "probability": 0.8959 + }, + { + "start": 1246.38, + "end": 1247.88, + "probability": 0.8634 + }, + { + "start": 1248.1, + "end": 1250.48, + "probability": 0.8967 + }, + { + "start": 1251.37, + "end": 1255.5, + "probability": 0.9965 + }, + { + "start": 1256.26, + "end": 1256.7, + "probability": 0.5115 + }, + { + "start": 1256.8, + "end": 1257.98, + "probability": 0.9227 + }, + { + "start": 1258.66, + "end": 1260.88, + "probability": 0.5552 + }, + { + "start": 1260.92, + "end": 1263.94, + "probability": 0.9746 + }, + { + "start": 1264.28, + "end": 1266.52, + "probability": 0.9582 + }, + { + "start": 1266.54, + "end": 1267.6, + "probability": 0.8433 + }, + { + "start": 1268.26, + "end": 1272.34, + "probability": 0.8884 + }, + { + "start": 1273.28, + "end": 1274.82, + "probability": 0.9929 + }, + { + "start": 1274.92, + "end": 1277.74, + "probability": 0.8791 + }, + { + "start": 1277.74, + "end": 1281.7, + "probability": 0.943 + }, + { + "start": 1282.4, + "end": 1285.48, + "probability": 0.927 + }, + { + "start": 1285.78, + "end": 1286.8, + "probability": 0.6591 + }, + { + "start": 1287.16, + "end": 1289.36, + "probability": 0.8054 + }, + { + "start": 1289.84, + "end": 1291.4, + "probability": 0.8518 + }, + { + "start": 1291.46, + "end": 1293.16, + "probability": 0.9216 + }, + { + "start": 1294.12, + "end": 1298.56, + "probability": 0.9873 + }, + { + "start": 1298.56, + "end": 1302.52, + "probability": 0.9944 + }, + { + "start": 1303.76, + "end": 1306.6, + "probability": 0.9513 + }, + { + "start": 1307.26, + "end": 1313.84, + "probability": 0.9968 + }, + { + "start": 1316.66, + "end": 1317.96, + "probability": 0.5692 + }, + { + "start": 1318.72, + "end": 1320.68, + "probability": 0.998 + }, + { + "start": 1320.9, + "end": 1321.28, + "probability": 0.8395 + }, + { + "start": 1321.38, + "end": 1321.92, + "probability": 0.7441 + }, + { + "start": 1322.82, + "end": 1323.44, + "probability": 0.6718 + }, + { + "start": 1323.56, + "end": 1324.88, + "probability": 0.1236 + }, + { + "start": 1325.4, + "end": 1328.7, + "probability": 0.9647 + }, + { + "start": 1329.36, + "end": 1330.19, + "probability": 0.5411 + }, + { + "start": 1330.54, + "end": 1331.74, + "probability": 0.8545 + }, + { + "start": 1332.1, + "end": 1334.2, + "probability": 0.7851 + }, + { + "start": 1334.4, + "end": 1336.1, + "probability": 0.8933 + }, + { + "start": 1336.18, + "end": 1336.38, + "probability": 0.8811 + }, + { + "start": 1336.44, + "end": 1338.0, + "probability": 0.8344 + }, + { + "start": 1338.14, + "end": 1338.62, + "probability": 0.9507 + }, + { + "start": 1338.68, + "end": 1339.54, + "probability": 0.9479 + }, + { + "start": 1339.76, + "end": 1344.25, + "probability": 0.968 + }, + { + "start": 1346.18, + "end": 1347.46, + "probability": 0.6326 + }, + { + "start": 1347.92, + "end": 1348.1, + "probability": 0.7445 + }, + { + "start": 1348.16, + "end": 1350.68, + "probability": 0.9734 + }, + { + "start": 1351.06, + "end": 1352.67, + "probability": 0.9948 + }, + { + "start": 1354.02, + "end": 1354.46, + "probability": 0.9437 + }, + { + "start": 1354.56, + "end": 1357.06, + "probability": 0.9934 + }, + { + "start": 1357.22, + "end": 1362.68, + "probability": 0.2684 + }, + { + "start": 1363.06, + "end": 1363.54, + "probability": 0.5085 + }, + { + "start": 1364.06, + "end": 1366.62, + "probability": 0.6617 + }, + { + "start": 1367.04, + "end": 1369.26, + "probability": 0.9513 + }, + { + "start": 1369.84, + "end": 1370.82, + "probability": 0.7127 + }, + { + "start": 1370.92, + "end": 1374.01, + "probability": 0.7444 + }, + { + "start": 1374.6, + "end": 1376.82, + "probability": 0.8887 + }, + { + "start": 1376.82, + "end": 1381.12, + "probability": 0.9823 + }, + { + "start": 1381.24, + "end": 1383.08, + "probability": 0.6271 + }, + { + "start": 1383.32, + "end": 1383.68, + "probability": 0.9131 + }, + { + "start": 1384.91, + "end": 1390.82, + "probability": 0.9935 + }, + { + "start": 1391.02, + "end": 1391.46, + "probability": 0.9474 + }, + { + "start": 1391.58, + "end": 1391.82, + "probability": 0.9525 + }, + { + "start": 1391.9, + "end": 1392.22, + "probability": 0.9604 + }, + { + "start": 1392.3, + "end": 1392.88, + "probability": 0.6234 + }, + { + "start": 1393.5, + "end": 1394.86, + "probability": 0.9678 + }, + { + "start": 1394.96, + "end": 1397.96, + "probability": 0.9806 + }, + { + "start": 1399.24, + "end": 1406.14, + "probability": 0.9756 + }, + { + "start": 1406.66, + "end": 1413.18, + "probability": 0.965 + }, + { + "start": 1413.92, + "end": 1417.26, + "probability": 0.9823 + }, + { + "start": 1417.74, + "end": 1420.14, + "probability": 0.9093 + }, + { + "start": 1420.16, + "end": 1422.22, + "probability": 0.814 + }, + { + "start": 1422.3, + "end": 1428.78, + "probability": 0.6951 + }, + { + "start": 1429.16, + "end": 1432.46, + "probability": 0.8352 + }, + { + "start": 1432.54, + "end": 1435.0, + "probability": 0.7649 + }, + { + "start": 1436.76, + "end": 1443.26, + "probability": 0.9835 + }, + { + "start": 1443.26, + "end": 1448.66, + "probability": 0.931 + }, + { + "start": 1449.4, + "end": 1452.21, + "probability": 0.9666 + }, + { + "start": 1452.78, + "end": 1454.04, + "probability": 0.9944 + }, + { + "start": 1454.94, + "end": 1458.02, + "probability": 0.9545 + }, + { + "start": 1458.68, + "end": 1459.9, + "probability": 0.9761 + }, + { + "start": 1461.56, + "end": 1463.56, + "probability": 0.9868 + }, + { + "start": 1463.95, + "end": 1467.58, + "probability": 0.9927 + }, + { + "start": 1468.08, + "end": 1468.84, + "probability": 0.6173 + }, + { + "start": 1469.04, + "end": 1470.02, + "probability": 0.985 + }, + { + "start": 1470.08, + "end": 1470.93, + "probability": 0.9911 + }, + { + "start": 1471.02, + "end": 1471.68, + "probability": 0.9694 + }, + { + "start": 1472.54, + "end": 1474.0, + "probability": 0.8102 + }, + { + "start": 1474.44, + "end": 1478.22, + "probability": 0.7692 + }, + { + "start": 1478.24, + "end": 1485.66, + "probability": 0.6927 + }, + { + "start": 1485.66, + "end": 1486.4, + "probability": 0.1713 + }, + { + "start": 1486.4, + "end": 1486.64, + "probability": 0.3791 + }, + { + "start": 1486.64, + "end": 1489.82, + "probability": 0.9502 + }, + { + "start": 1489.86, + "end": 1493.04, + "probability": 0.7564 + }, + { + "start": 1493.92, + "end": 1497.16, + "probability": 0.7479 + }, + { + "start": 1497.68, + "end": 1503.14, + "probability": 0.9937 + }, + { + "start": 1503.14, + "end": 1506.12, + "probability": 0.6435 + }, + { + "start": 1507.36, + "end": 1509.9, + "probability": 0.998 + }, + { + "start": 1510.82, + "end": 1516.82, + "probability": 0.9832 + }, + { + "start": 1519.7, + "end": 1520.56, + "probability": 0.5912 + }, + { + "start": 1524.36, + "end": 1526.92, + "probability": 0.9961 + }, + { + "start": 1527.12, + "end": 1530.14, + "probability": 0.992 + }, + { + "start": 1530.58, + "end": 1532.46, + "probability": 0.9423 + }, + { + "start": 1532.74, + "end": 1533.7, + "probability": 0.681 + }, + { + "start": 1533.9, + "end": 1537.08, + "probability": 0.918 + }, + { + "start": 1537.26, + "end": 1537.92, + "probability": 0.881 + }, + { + "start": 1537.98, + "end": 1538.98, + "probability": 0.6565 + }, + { + "start": 1539.04, + "end": 1539.52, + "probability": 0.2801 + }, + { + "start": 1540.86, + "end": 1542.08, + "probability": 0.1974 + }, + { + "start": 1542.2, + "end": 1544.77, + "probability": 0.7061 + }, + { + "start": 1544.78, + "end": 1546.07, + "probability": 0.1242 + }, + { + "start": 1546.62, + "end": 1547.38, + "probability": 0.8242 + }, + { + "start": 1550.42, + "end": 1552.6, + "probability": 0.7039 + }, + { + "start": 1552.68, + "end": 1553.06, + "probability": 0.3508 + }, + { + "start": 1553.14, + "end": 1553.64, + "probability": 0.6825 + }, + { + "start": 1553.76, + "end": 1559.68, + "probability": 0.9688 + }, + { + "start": 1560.22, + "end": 1563.74, + "probability": 0.9917 + }, + { + "start": 1563.74, + "end": 1568.7, + "probability": 0.7798 + }, + { + "start": 1569.0, + "end": 1572.46, + "probability": 0.987 + }, + { + "start": 1572.84, + "end": 1575.72, + "probability": 0.7788 + }, + { + "start": 1576.44, + "end": 1577.84, + "probability": 0.7447 + }, + { + "start": 1578.22, + "end": 1579.82, + "probability": 0.055 + }, + { + "start": 1580.48, + "end": 1582.7, + "probability": 0.5147 + }, + { + "start": 1582.78, + "end": 1583.84, + "probability": 0.6247 + }, + { + "start": 1584.17, + "end": 1587.64, + "probability": 0.5815 + }, + { + "start": 1587.66, + "end": 1590.0, + "probability": 0.9677 + }, + { + "start": 1590.64, + "end": 1591.76, + "probability": 0.7739 + }, + { + "start": 1591.84, + "end": 1593.36, + "probability": 0.7995 + }, + { + "start": 1593.4, + "end": 1595.8, + "probability": 0.9414 + }, + { + "start": 1597.28, + "end": 1601.66, + "probability": 0.7394 + }, + { + "start": 1602.84, + "end": 1607.38, + "probability": 0.8691 + }, + { + "start": 1608.04, + "end": 1615.12, + "probability": 0.8379 + }, + { + "start": 1615.76, + "end": 1617.08, + "probability": 0.8579 + }, + { + "start": 1617.68, + "end": 1624.64, + "probability": 0.9643 + }, + { + "start": 1624.84, + "end": 1627.14, + "probability": 0.9614 + }, + { + "start": 1627.52, + "end": 1629.52, + "probability": 0.9868 + }, + { + "start": 1629.54, + "end": 1631.31, + "probability": 0.8954 + }, + { + "start": 1631.52, + "end": 1634.82, + "probability": 0.8537 + }, + { + "start": 1634.94, + "end": 1635.91, + "probability": 0.9439 + }, + { + "start": 1636.64, + "end": 1640.46, + "probability": 0.9666 + }, + { + "start": 1640.9, + "end": 1641.88, + "probability": 0.9506 + }, + { + "start": 1642.1, + "end": 1643.66, + "probability": 0.6153 + }, + { + "start": 1643.86, + "end": 1646.04, + "probability": 0.8744 + }, + { + "start": 1646.66, + "end": 1649.96, + "probability": 0.9724 + }, + { + "start": 1650.02, + "end": 1651.48, + "probability": 0.7872 + }, + { + "start": 1652.34, + "end": 1653.7, + "probability": 0.9968 + }, + { + "start": 1653.8, + "end": 1654.58, + "probability": 0.6256 + }, + { + "start": 1654.64, + "end": 1655.68, + "probability": 0.8026 + }, + { + "start": 1655.76, + "end": 1659.2, + "probability": 0.8531 + }, + { + "start": 1659.4, + "end": 1662.59, + "probability": 0.7114 + }, + { + "start": 1665.18, + "end": 1665.18, + "probability": 0.1454 + }, + { + "start": 1665.18, + "end": 1665.94, + "probability": 0.409 + }, + { + "start": 1666.08, + "end": 1667.8, + "probability": 0.7653 + }, + { + "start": 1667.96, + "end": 1668.62, + "probability": 0.3958 + }, + { + "start": 1669.1, + "end": 1672.4, + "probability": 0.9544 + }, + { + "start": 1672.54, + "end": 1674.1, + "probability": 0.6833 + }, + { + "start": 1674.7, + "end": 1675.5, + "probability": 0.5682 + }, + { + "start": 1675.8, + "end": 1676.31, + "probability": 0.8657 + }, + { + "start": 1676.68, + "end": 1678.58, + "probability": 0.8987 + }, + { + "start": 1678.72, + "end": 1680.24, + "probability": 0.8864 + }, + { + "start": 1681.14, + "end": 1684.74, + "probability": 0.8775 + }, + { + "start": 1685.08, + "end": 1685.5, + "probability": 0.7053 + }, + { + "start": 1685.64, + "end": 1687.96, + "probability": 0.7944 + }, + { + "start": 1688.2, + "end": 1690.34, + "probability": 0.915 + }, + { + "start": 1690.34, + "end": 1693.84, + "probability": 0.9167 + }, + { + "start": 1693.84, + "end": 1697.04, + "probability": 0.8373 + }, + { + "start": 1697.7, + "end": 1700.42, + "probability": 0.9807 + }, + { + "start": 1700.42, + "end": 1704.14, + "probability": 0.9466 + }, + { + "start": 1704.52, + "end": 1705.58, + "probability": 0.7972 + }, + { + "start": 1705.86, + "end": 1709.44, + "probability": 0.9907 + }, + { + "start": 1709.84, + "end": 1711.31, + "probability": 0.4767 + }, + { + "start": 1711.44, + "end": 1714.24, + "probability": 0.9902 + }, + { + "start": 1715.16, + "end": 1716.92, + "probability": 0.3519 + }, + { + "start": 1717.3, + "end": 1719.2, + "probability": 0.9535 + }, + { + "start": 1719.7, + "end": 1721.7, + "probability": 0.7644 + }, + { + "start": 1722.64, + "end": 1723.44, + "probability": 0.9126 + }, + { + "start": 1723.62, + "end": 1724.7, + "probability": 0.9605 + }, + { + "start": 1724.8, + "end": 1728.3, + "probability": 0.7098 + }, + { + "start": 1728.92, + "end": 1732.78, + "probability": 0.9843 + }, + { + "start": 1733.6, + "end": 1735.58, + "probability": 0.9663 + }, + { + "start": 1736.24, + "end": 1739.96, + "probability": 0.9707 + }, + { + "start": 1740.28, + "end": 1743.14, + "probability": 0.9721 + }, + { + "start": 1743.96, + "end": 1744.7, + "probability": 0.7782 + }, + { + "start": 1745.34, + "end": 1748.14, + "probability": 0.7666 + }, + { + "start": 1748.96, + "end": 1751.46, + "probability": 0.7929 + }, + { + "start": 1752.14, + "end": 1755.64, + "probability": 0.7023 + }, + { + "start": 1755.74, + "end": 1756.86, + "probability": 0.8977 + }, + { + "start": 1757.44, + "end": 1758.5, + "probability": 0.9064 + }, + { + "start": 1758.98, + "end": 1760.72, + "probability": 0.6704 + }, + { + "start": 1760.76, + "end": 1762.02, + "probability": 0.3807 + }, + { + "start": 1762.22, + "end": 1763.89, + "probability": 0.6075 + }, + { + "start": 1765.02, + "end": 1766.42, + "probability": 0.5775 + }, + { + "start": 1766.58, + "end": 1769.46, + "probability": 0.9932 + }, + { + "start": 1770.0, + "end": 1772.12, + "probability": 0.8861 + }, + { + "start": 1772.36, + "end": 1774.5, + "probability": 0.9627 + }, + { + "start": 1774.62, + "end": 1775.31, + "probability": 0.9821 + }, + { + "start": 1776.1, + "end": 1778.36, + "probability": 0.738 + }, + { + "start": 1778.76, + "end": 1780.08, + "probability": 0.6796 + }, + { + "start": 1780.14, + "end": 1781.41, + "probability": 0.7407 + }, + { + "start": 1781.78, + "end": 1785.0, + "probability": 0.8736 + }, + { + "start": 1785.08, + "end": 1786.92, + "probability": 0.7444 + }, + { + "start": 1787.4, + "end": 1789.0, + "probability": 0.6977 + }, + { + "start": 1789.08, + "end": 1789.94, + "probability": 0.922 + }, + { + "start": 1790.1, + "end": 1792.14, + "probability": 0.9242 + }, + { + "start": 1792.3, + "end": 1794.32, + "probability": 0.9619 + }, + { + "start": 1794.88, + "end": 1795.26, + "probability": 0.4056 + }, + { + "start": 1795.34, + "end": 1797.2, + "probability": 0.952 + }, + { + "start": 1797.26, + "end": 1798.44, + "probability": 0.6983 + }, + { + "start": 1798.96, + "end": 1800.66, + "probability": 0.9696 + }, + { + "start": 1801.98, + "end": 1807.46, + "probability": 0.9775 + }, + { + "start": 1810.1, + "end": 1810.36, + "probability": 0.1162 + }, + { + "start": 1810.36, + "end": 1811.16, + "probability": 0.4404 + }, + { + "start": 1811.26, + "end": 1811.52, + "probability": 0.8446 + }, + { + "start": 1811.58, + "end": 1814.61, + "probability": 0.7505 + }, + { + "start": 1815.2, + "end": 1816.7, + "probability": 0.659 + }, + { + "start": 1816.78, + "end": 1817.5, + "probability": 0.7892 + }, + { + "start": 1818.36, + "end": 1818.6, + "probability": 0.4198 + }, + { + "start": 1818.72, + "end": 1819.48, + "probability": 0.5756 + }, + { + "start": 1819.6, + "end": 1823.98, + "probability": 0.9694 + }, + { + "start": 1824.0, + "end": 1825.08, + "probability": 0.9125 + }, + { + "start": 1825.22, + "end": 1828.74, + "probability": 0.8821 + }, + { + "start": 1828.74, + "end": 1832.64, + "probability": 0.4995 + }, + { + "start": 1833.5, + "end": 1834.12, + "probability": 0.5742 + }, + { + "start": 1834.22, + "end": 1837.32, + "probability": 0.874 + }, + { + "start": 1837.5, + "end": 1839.38, + "probability": 0.9951 + }, + { + "start": 1839.7, + "end": 1843.26, + "probability": 0.7847 + }, + { + "start": 1843.26, + "end": 1847.0, + "probability": 0.995 + }, + { + "start": 1848.18, + "end": 1849.36, + "probability": 0.999 + }, + { + "start": 1849.54, + "end": 1851.6, + "probability": 0.9962 + }, + { + "start": 1852.74, + "end": 1855.42, + "probability": 0.9825 + }, + { + "start": 1856.68, + "end": 1858.58, + "probability": 0.9591 + }, + { + "start": 1858.98, + "end": 1859.92, + "probability": 0.6387 + }, + { + "start": 1860.98, + "end": 1866.36, + "probability": 0.9869 + }, + { + "start": 1866.92, + "end": 1867.4, + "probability": 0.6698 + }, + { + "start": 1867.48, + "end": 1868.46, + "probability": 0.9686 + }, + { + "start": 1868.52, + "end": 1872.62, + "probability": 0.9826 + }, + { + "start": 1872.62, + "end": 1875.32, + "probability": 0.9852 + }, + { + "start": 1875.62, + "end": 1879.98, + "probability": 0.9782 + }, + { + "start": 1880.46, + "end": 1881.4, + "probability": 0.9941 + }, + { + "start": 1881.9, + "end": 1887.04, + "probability": 0.9882 + }, + { + "start": 1887.7, + "end": 1889.58, + "probability": 0.8621 + }, + { + "start": 1889.96, + "end": 1892.69, + "probability": 0.8475 + }, + { + "start": 1893.56, + "end": 1897.06, + "probability": 0.9929 + }, + { + "start": 1897.16, + "end": 1897.78, + "probability": 0.9749 + }, + { + "start": 1898.26, + "end": 1899.69, + "probability": 0.9658 + }, + { + "start": 1901.12, + "end": 1902.72, + "probability": 0.5837 + }, + { + "start": 1902.86, + "end": 1903.79, + "probability": 0.8358 + }, + { + "start": 1904.6, + "end": 1907.68, + "probability": 0.9682 + }, + { + "start": 1908.78, + "end": 1911.36, + "probability": 0.7179 + }, + { + "start": 1912.48, + "end": 1913.88, + "probability": 0.1771 + }, + { + "start": 1914.94, + "end": 1917.02, + "probability": 0.6667 + }, + { + "start": 1917.66, + "end": 1922.22, + "probability": 0.6711 + }, + { + "start": 1922.62, + "end": 1925.94, + "probability": 0.4741 + }, + { + "start": 1926.38, + "end": 1929.8, + "probability": 0.9322 + }, + { + "start": 1929.8, + "end": 1932.78, + "probability": 0.9926 + }, + { + "start": 1933.1, + "end": 1936.12, + "probability": 0.9646 + }, + { + "start": 1936.68, + "end": 1940.26, + "probability": 0.6631 + }, + { + "start": 1940.26, + "end": 1944.48, + "probability": 0.9812 + }, + { + "start": 1944.76, + "end": 1945.6, + "probability": 0.8086 + }, + { + "start": 1946.0, + "end": 1951.34, + "probability": 0.9435 + }, + { + "start": 1951.48, + "end": 1952.26, + "probability": 0.5846 + }, + { + "start": 1953.28, + "end": 1954.82, + "probability": 0.9546 + }, + { + "start": 1954.98, + "end": 1956.0, + "probability": 0.6348 + }, + { + "start": 1956.02, + "end": 1959.96, + "probability": 0.7584 + }, + { + "start": 1960.66, + "end": 1967.2, + "probability": 0.6638 + }, + { + "start": 1967.32, + "end": 1969.56, + "probability": 0.5388 + }, + { + "start": 1969.86, + "end": 1970.78, + "probability": 0.7365 + }, + { + "start": 1971.66, + "end": 1972.18, + "probability": 0.569 + }, + { + "start": 1972.3, + "end": 1973.6, + "probability": 0.9785 + }, + { + "start": 1973.92, + "end": 1975.72, + "probability": 0.8611 + }, + { + "start": 1976.68, + "end": 1980.74, + "probability": 0.9805 + }, + { + "start": 1981.58, + "end": 1985.9, + "probability": 0.9972 + }, + { + "start": 1985.98, + "end": 1986.6, + "probability": 0.6745 + }, + { + "start": 1987.0, + "end": 1990.74, + "probability": 0.9797 + }, + { + "start": 1990.74, + "end": 1996.38, + "probability": 0.8083 + }, + { + "start": 1996.46, + "end": 1999.82, + "probability": 0.6775 + }, + { + "start": 2000.32, + "end": 2001.04, + "probability": 0.7882 + }, + { + "start": 2001.12, + "end": 2001.44, + "probability": 0.7185 + }, + { + "start": 2001.62, + "end": 2003.3, + "probability": 0.8877 + }, + { + "start": 2003.76, + "end": 2007.66, + "probability": 0.99 + }, + { + "start": 2008.42, + "end": 2012.12, + "probability": 0.9983 + }, + { + "start": 2012.32, + "end": 2016.4, + "probability": 0.8012 + }, + { + "start": 2016.94, + "end": 2019.12, + "probability": 0.8936 + }, + { + "start": 2019.18, + "end": 2022.64, + "probability": 0.9758 + }, + { + "start": 2023.04, + "end": 2027.76, + "probability": 0.9971 + }, + { + "start": 2028.12, + "end": 2029.46, + "probability": 0.994 + }, + { + "start": 2030.36, + "end": 2034.94, + "probability": 0.9429 + }, + { + "start": 2035.4, + "end": 2036.91, + "probability": 0.9064 + }, + { + "start": 2037.58, + "end": 2042.84, + "probability": 0.9958 + }, + { + "start": 2043.36, + "end": 2045.92, + "probability": 0.9976 + }, + { + "start": 2046.34, + "end": 2048.28, + "probability": 0.9545 + }, + { + "start": 2049.24, + "end": 2053.78, + "probability": 0.9732 + }, + { + "start": 2053.9, + "end": 2055.08, + "probability": 0.9995 + }, + { + "start": 2056.78, + "end": 2059.4, + "probability": 0.9906 + }, + { + "start": 2059.98, + "end": 2062.74, + "probability": 0.9792 + }, + { + "start": 2062.74, + "end": 2065.52, + "probability": 0.9909 + }, + { + "start": 2066.7, + "end": 2070.42, + "probability": 0.7247 + }, + { + "start": 2071.26, + "end": 2072.4, + "probability": 0.8457 + }, + { + "start": 2072.44, + "end": 2074.62, + "probability": 0.9302 + }, + { + "start": 2074.72, + "end": 2078.74, + "probability": 0.8882 + }, + { + "start": 2079.44, + "end": 2084.2, + "probability": 0.6627 + }, + { + "start": 2084.66, + "end": 2086.36, + "probability": 0.8289 + }, + { + "start": 2086.48, + "end": 2091.8, + "probability": 0.8872 + }, + { + "start": 2094.62, + "end": 2097.56, + "probability": 0.9005 + }, + { + "start": 2097.65, + "end": 2101.08, + "probability": 0.9751 + }, + { + "start": 2101.34, + "end": 2103.6, + "probability": 0.7173 + }, + { + "start": 2103.84, + "end": 2105.83, + "probability": 0.7393 + }, + { + "start": 2105.92, + "end": 2107.62, + "probability": 0.9158 + }, + { + "start": 2108.04, + "end": 2109.06, + "probability": 0.9863 + }, + { + "start": 2110.04, + "end": 2110.72, + "probability": 0.7685 + }, + { + "start": 2110.8, + "end": 2111.56, + "probability": 0.6965 + }, + { + "start": 2111.94, + "end": 2114.18, + "probability": 0.4493 + }, + { + "start": 2114.24, + "end": 2115.72, + "probability": 0.916 + }, + { + "start": 2117.26, + "end": 2121.34, + "probability": 0.7938 + }, + { + "start": 2122.26, + "end": 2126.22, + "probability": 0.7897 + }, + { + "start": 2126.94, + "end": 2129.6, + "probability": 0.9835 + }, + { + "start": 2131.5, + "end": 2133.5, + "probability": 0.5454 + }, + { + "start": 2133.7, + "end": 2138.68, + "probability": 0.9521 + }, + { + "start": 2139.0, + "end": 2142.64, + "probability": 0.9877 + }, + { + "start": 2142.86, + "end": 2147.38, + "probability": 0.9532 + }, + { + "start": 2147.84, + "end": 2149.16, + "probability": 0.7246 + }, + { + "start": 2149.58, + "end": 2150.84, + "probability": 0.7543 + }, + { + "start": 2150.9, + "end": 2152.6, + "probability": 0.928 + }, + { + "start": 2152.64, + "end": 2155.16, + "probability": 0.8051 + }, + { + "start": 2155.5, + "end": 2157.38, + "probability": 0.2867 + }, + { + "start": 2157.38, + "end": 2159.24, + "probability": 0.7265 + }, + { + "start": 2160.44, + "end": 2163.34, + "probability": 0.202 + }, + { + "start": 2163.56, + "end": 2163.68, + "probability": 0.0689 + }, + { + "start": 2163.68, + "end": 2167.51, + "probability": 0.8939 + }, + { + "start": 2167.8, + "end": 2172.64, + "probability": 0.8506 + }, + { + "start": 2173.08, + "end": 2173.84, + "probability": 0.8257 + }, + { + "start": 2173.84, + "end": 2174.98, + "probability": 0.6793 + }, + { + "start": 2175.08, + "end": 2177.18, + "probability": 0.9604 + }, + { + "start": 2177.36, + "end": 2178.66, + "probability": 0.8809 + }, + { + "start": 2179.22, + "end": 2183.12, + "probability": 0.6489 + }, + { + "start": 2183.42, + "end": 2184.16, + "probability": 0.8291 + }, + { + "start": 2184.18, + "end": 2185.45, + "probability": 0.9538 + }, + { + "start": 2185.92, + "end": 2188.9, + "probability": 0.8578 + }, + { + "start": 2189.14, + "end": 2190.2, + "probability": 0.7931 + }, + { + "start": 2190.28, + "end": 2191.58, + "probability": 0.7655 + }, + { + "start": 2191.96, + "end": 2194.88, + "probability": 0.9779 + }, + { + "start": 2194.88, + "end": 2197.42, + "probability": 0.9943 + }, + { + "start": 2197.9, + "end": 2200.78, + "probability": 0.7288 + }, + { + "start": 2200.78, + "end": 2202.28, + "probability": 0.8132 + }, + { + "start": 2202.88, + "end": 2209.04, + "probability": 0.9661 + }, + { + "start": 2209.32, + "end": 2212.0, + "probability": 0.501 + }, + { + "start": 2212.18, + "end": 2213.18, + "probability": 0.8636 + }, + { + "start": 2214.22, + "end": 2215.08, + "probability": 0.1851 + }, + { + "start": 2215.18, + "end": 2217.53, + "probability": 0.7685 + }, + { + "start": 2217.6, + "end": 2219.46, + "probability": 0.9521 + }, + { + "start": 2219.48, + "end": 2224.04, + "probability": 0.989 + }, + { + "start": 2224.26, + "end": 2225.52, + "probability": 0.9956 + }, + { + "start": 2226.34, + "end": 2230.38, + "probability": 0.9734 + }, + { + "start": 2230.8, + "end": 2232.04, + "probability": 0.714 + }, + { + "start": 2232.28, + "end": 2233.26, + "probability": 0.9163 + }, + { + "start": 2233.46, + "end": 2237.52, + "probability": 0.7224 + }, + { + "start": 2237.66, + "end": 2241.92, + "probability": 0.9885 + }, + { + "start": 2242.14, + "end": 2242.44, + "probability": 0.6621 + }, + { + "start": 2242.44, + "end": 2243.74, + "probability": 0.8542 + }, + { + "start": 2243.94, + "end": 2247.78, + "probability": 0.9747 + }, + { + "start": 2247.78, + "end": 2248.32, + "probability": 0.2122 + }, + { + "start": 2248.32, + "end": 2249.24, + "probability": 0.8345 + }, + { + "start": 2249.72, + "end": 2254.1, + "probability": 0.9897 + }, + { + "start": 2254.6, + "end": 2255.96, + "probability": 0.975 + }, + { + "start": 2256.0, + "end": 2257.59, + "probability": 0.8521 + }, + { + "start": 2257.72, + "end": 2259.72, + "probability": 0.9607 + }, + { + "start": 2260.02, + "end": 2262.64, + "probability": 0.5736 + }, + { + "start": 2263.2, + "end": 2263.2, + "probability": 0.1615 + }, + { + "start": 2263.2, + "end": 2264.6, + "probability": 0.0682 + }, + { + "start": 2264.72, + "end": 2266.88, + "probability": 0.505 + }, + { + "start": 2266.88, + "end": 2267.22, + "probability": 0.3263 + }, + { + "start": 2267.82, + "end": 2267.82, + "probability": 0.4071 + }, + { + "start": 2268.02, + "end": 2269.7, + "probability": 0.8929 + }, + { + "start": 2270.08, + "end": 2274.46, + "probability": 0.9322 + }, + { + "start": 2274.8, + "end": 2276.7, + "probability": 0.8655 + }, + { + "start": 2277.44, + "end": 2281.54, + "probability": 0.9087 + }, + { + "start": 2281.72, + "end": 2287.62, + "probability": 0.923 + }, + { + "start": 2287.86, + "end": 2290.56, + "probability": 0.9014 + }, + { + "start": 2290.98, + "end": 2294.7, + "probability": 0.9824 + }, + { + "start": 2294.7, + "end": 2299.26, + "probability": 0.9253 + }, + { + "start": 2300.3, + "end": 2302.82, + "probability": 0.616 + }, + { + "start": 2303.34, + "end": 2304.28, + "probability": 0.8306 + }, + { + "start": 2305.86, + "end": 2306.6, + "probability": 0.9398 + }, + { + "start": 2306.64, + "end": 2310.74, + "probability": 0.9234 + }, + { + "start": 2310.98, + "end": 2312.78, + "probability": 0.9832 + }, + { + "start": 2313.44, + "end": 2313.82, + "probability": 0.0023 + }, + { + "start": 2314.82, + "end": 2316.56, + "probability": 0.8896 + }, + { + "start": 2317.64, + "end": 2319.98, + "probability": 0.7402 + }, + { + "start": 2320.58, + "end": 2326.02, + "probability": 0.9641 + }, + { + "start": 2326.08, + "end": 2327.86, + "probability": 0.9331 + }, + { + "start": 2329.54, + "end": 2330.24, + "probability": 0.7072 + }, + { + "start": 2330.32, + "end": 2331.64, + "probability": 0.9722 + }, + { + "start": 2331.96, + "end": 2333.26, + "probability": 0.8173 + }, + { + "start": 2333.42, + "end": 2338.26, + "probability": 0.928 + }, + { + "start": 2339.54, + "end": 2341.6, + "probability": 0.9719 + }, + { + "start": 2341.6, + "end": 2345.04, + "probability": 0.978 + }, + { + "start": 2345.96, + "end": 2350.88, + "probability": 0.9716 + }, + { + "start": 2351.36, + "end": 2352.18, + "probability": 0.6355 + }, + { + "start": 2353.5, + "end": 2358.73, + "probability": 0.9352 + }, + { + "start": 2359.36, + "end": 2360.48, + "probability": 0.9083 + }, + { + "start": 2361.14, + "end": 2364.68, + "probability": 0.9744 + }, + { + "start": 2366.5, + "end": 2367.8, + "probability": 0.8941 + }, + { + "start": 2368.64, + "end": 2369.7, + "probability": 0.7002 + }, + { + "start": 2370.24, + "end": 2371.52, + "probability": 0.9591 + }, + { + "start": 2372.38, + "end": 2373.92, + "probability": 0.9271 + }, + { + "start": 2374.4, + "end": 2377.56, + "probability": 0.9851 + }, + { + "start": 2378.24, + "end": 2380.46, + "probability": 0.9208 + }, + { + "start": 2387.2, + "end": 2392.52, + "probability": 0.9966 + }, + { + "start": 2392.52, + "end": 2398.18, + "probability": 0.9982 + }, + { + "start": 2399.5, + "end": 2400.36, + "probability": 0.7879 + }, + { + "start": 2400.54, + "end": 2401.08, + "probability": 0.5415 + }, + { + "start": 2401.24, + "end": 2404.34, + "probability": 0.9699 + }, + { + "start": 2404.34, + "end": 2407.92, + "probability": 0.9856 + }, + { + "start": 2408.32, + "end": 2414.44, + "probability": 0.9001 + }, + { + "start": 2414.72, + "end": 2417.1, + "probability": 0.9438 + }, + { + "start": 2419.02, + "end": 2423.4, + "probability": 0.9772 + }, + { + "start": 2424.2, + "end": 2426.72, + "probability": 0.8634 + }, + { + "start": 2427.72, + "end": 2430.64, + "probability": 0.9684 + }, + { + "start": 2432.22, + "end": 2435.86, + "probability": 0.9838 + }, + { + "start": 2435.86, + "end": 2439.96, + "probability": 0.8123 + }, + { + "start": 2440.8, + "end": 2444.24, + "probability": 0.9945 + }, + { + "start": 2445.1, + "end": 2447.21, + "probability": 0.8202 + }, + { + "start": 2448.28, + "end": 2451.52, + "probability": 0.9782 + }, + { + "start": 2451.52, + "end": 2455.16, + "probability": 0.9839 + }, + { + "start": 2456.16, + "end": 2456.34, + "probability": 0.8943 + }, + { + "start": 2456.46, + "end": 2460.3, + "probability": 0.9373 + }, + { + "start": 2461.52, + "end": 2461.88, + "probability": 0.914 + }, + { + "start": 2463.12, + "end": 2467.34, + "probability": 0.9557 + }, + { + "start": 2467.9, + "end": 2468.51, + "probability": 0.8835 + }, + { + "start": 2469.62, + "end": 2470.54, + "probability": 0.9414 + }, + { + "start": 2470.96, + "end": 2474.36, + "probability": 0.9861 + }, + { + "start": 2475.04, + "end": 2475.84, + "probability": 0.7641 + }, + { + "start": 2475.96, + "end": 2479.84, + "probability": 0.9485 + }, + { + "start": 2479.84, + "end": 2484.0, + "probability": 0.9946 + }, + { + "start": 2484.6, + "end": 2485.4, + "probability": 0.9427 + }, + { + "start": 2485.86, + "end": 2489.16, + "probability": 0.9884 + }, + { + "start": 2490.08, + "end": 2491.72, + "probability": 0.8125 + }, + { + "start": 2492.66, + "end": 2495.48, + "probability": 0.98 + }, + { + "start": 2496.3, + "end": 2497.94, + "probability": 0.9586 + }, + { + "start": 2498.7, + "end": 2500.0, + "probability": 0.946 + }, + { + "start": 2500.84, + "end": 2502.22, + "probability": 0.9118 + }, + { + "start": 2503.02, + "end": 2504.8, + "probability": 0.9409 + }, + { + "start": 2505.66, + "end": 2509.0, + "probability": 0.8438 + }, + { + "start": 2510.34, + "end": 2515.52, + "probability": 0.837 + }, + { + "start": 2516.3, + "end": 2517.66, + "probability": 0.6336 + }, + { + "start": 2517.8, + "end": 2518.66, + "probability": 0.702 + }, + { + "start": 2520.1, + "end": 2522.16, + "probability": 0.9639 + }, + { + "start": 2522.28, + "end": 2524.32, + "probability": 0.9804 + }, + { + "start": 2524.6, + "end": 2525.18, + "probability": 0.7404 + }, + { + "start": 2525.58, + "end": 2526.54, + "probability": 0.762 + }, + { + "start": 2527.06, + "end": 2529.76, + "probability": 0.8592 + }, + { + "start": 2529.9, + "end": 2531.86, + "probability": 0.8728 + }, + { + "start": 2532.84, + "end": 2534.24, + "probability": 0.9795 + }, + { + "start": 2534.36, + "end": 2539.36, + "probability": 0.9958 + }, + { + "start": 2540.04, + "end": 2541.74, + "probability": 0.767 + }, + { + "start": 2542.0, + "end": 2543.86, + "probability": 0.9964 + }, + { + "start": 2545.08, + "end": 2546.8, + "probability": 0.8102 + }, + { + "start": 2546.88, + "end": 2547.4, + "probability": 0.7193 + }, + { + "start": 2547.54, + "end": 2550.78, + "probability": 0.9902 + }, + { + "start": 2551.6, + "end": 2553.22, + "probability": 0.9961 + }, + { + "start": 2553.86, + "end": 2555.36, + "probability": 0.4604 + }, + { + "start": 2556.54, + "end": 2558.18, + "probability": 0.8333 + }, + { + "start": 2558.82, + "end": 2560.38, + "probability": 0.9792 + }, + { + "start": 2561.18, + "end": 2563.04, + "probability": 0.9855 + }, + { + "start": 2563.84, + "end": 2566.18, + "probability": 0.9375 + }, + { + "start": 2566.3, + "end": 2566.96, + "probability": 0.6388 + }, + { + "start": 2567.38, + "end": 2572.22, + "probability": 0.8404 + }, + { + "start": 2572.46, + "end": 2575.88, + "probability": 0.9126 + }, + { + "start": 2576.38, + "end": 2580.06, + "probability": 0.8295 + }, + { + "start": 2580.54, + "end": 2582.46, + "probability": 0.8543 + }, + { + "start": 2582.52, + "end": 2585.88, + "probability": 0.8615 + }, + { + "start": 2586.92, + "end": 2588.38, + "probability": 0.7798 + }, + { + "start": 2589.94, + "end": 2591.12, + "probability": 0.5683 + }, + { + "start": 2591.3, + "end": 2593.22, + "probability": 0.7273 + }, + { + "start": 2593.62, + "end": 2597.82, + "probability": 0.9471 + }, + { + "start": 2598.62, + "end": 2600.06, + "probability": 0.694 + }, + { + "start": 2601.14, + "end": 2605.52, + "probability": 0.9604 + }, + { + "start": 2606.1, + "end": 2609.38, + "probability": 0.9853 + }, + { + "start": 2610.2, + "end": 2612.86, + "probability": 0.9883 + }, + { + "start": 2612.86, + "end": 2615.86, + "probability": 0.9343 + }, + { + "start": 2616.56, + "end": 2619.26, + "probability": 0.486 + }, + { + "start": 2619.34, + "end": 2624.76, + "probability": 0.8675 + }, + { + "start": 2626.02, + "end": 2627.96, + "probability": 0.6911 + }, + { + "start": 2628.54, + "end": 2630.12, + "probability": 0.8255 + }, + { + "start": 2630.82, + "end": 2635.28, + "probability": 0.9794 + }, + { + "start": 2636.32, + "end": 2638.1, + "probability": 0.9052 + }, + { + "start": 2638.78, + "end": 2640.94, + "probability": 0.9897 + }, + { + "start": 2641.62, + "end": 2642.92, + "probability": 0.8462 + }, + { + "start": 2643.3, + "end": 2647.24, + "probability": 0.9187 + }, + { + "start": 2647.88, + "end": 2648.4, + "probability": 0.6387 + }, + { + "start": 2649.08, + "end": 2651.17, + "probability": 0.869 + }, + { + "start": 2652.0, + "end": 2653.74, + "probability": 0.981 + }, + { + "start": 2654.38, + "end": 2655.75, + "probability": 0.8066 + }, + { + "start": 2656.86, + "end": 2659.74, + "probability": 0.8424 + }, + { + "start": 2660.42, + "end": 2663.12, + "probability": 0.9805 + }, + { + "start": 2663.52, + "end": 2667.74, + "probability": 0.9549 + }, + { + "start": 2668.08, + "end": 2669.12, + "probability": 0.5245 + }, + { + "start": 2670.1, + "end": 2670.54, + "probability": 0.817 + }, + { + "start": 2671.06, + "end": 2672.2, + "probability": 0.9587 + }, + { + "start": 2672.96, + "end": 2674.1, + "probability": 0.8997 + }, + { + "start": 2674.56, + "end": 2678.0, + "probability": 0.9854 + }, + { + "start": 2678.8, + "end": 2679.6, + "probability": 0.376 + }, + { + "start": 2680.62, + "end": 2681.84, + "probability": 0.834 + }, + { + "start": 2682.66, + "end": 2683.86, + "probability": 0.9082 + }, + { + "start": 2684.56, + "end": 2685.42, + "probability": 0.7559 + }, + { + "start": 2686.4, + "end": 2688.54, + "probability": 0.9932 + }, + { + "start": 2689.14, + "end": 2694.54, + "probability": 0.9767 + }, + { + "start": 2696.44, + "end": 2698.24, + "probability": 0.8646 + }, + { + "start": 2699.04, + "end": 2704.32, + "probability": 0.9131 + }, + { + "start": 2704.98, + "end": 2709.68, + "probability": 0.9921 + }, + { + "start": 2709.82, + "end": 2712.83, + "probability": 0.7037 + }, + { + "start": 2716.62, + "end": 2716.62, + "probability": 0.0605 + }, + { + "start": 2716.62, + "end": 2720.3, + "probability": 0.8802 + }, + { + "start": 2721.46, + "end": 2725.32, + "probability": 0.9935 + }, + { + "start": 2726.26, + "end": 2728.52, + "probability": 0.9316 + }, + { + "start": 2729.4, + "end": 2731.7, + "probability": 0.9792 + }, + { + "start": 2732.26, + "end": 2733.06, + "probability": 0.8446 + }, + { + "start": 2733.88, + "end": 2738.62, + "probability": 0.9742 + }, + { + "start": 2739.76, + "end": 2742.7, + "probability": 0.9359 + }, + { + "start": 2743.6, + "end": 2746.98, + "probability": 0.8618 + }, + { + "start": 2749.0, + "end": 2749.94, + "probability": 0.9895 + }, + { + "start": 2750.7, + "end": 2751.15, + "probability": 0.9668 + }, + { + "start": 2751.64, + "end": 2754.38, + "probability": 0.9932 + }, + { + "start": 2754.72, + "end": 2756.02, + "probability": 0.9243 + }, + { + "start": 2756.62, + "end": 2757.22, + "probability": 0.915 + }, + { + "start": 2757.3, + "end": 2760.98, + "probability": 0.7684 + }, + { + "start": 2761.68, + "end": 2762.6, + "probability": 0.992 + }, + { + "start": 2764.64, + "end": 2765.5, + "probability": 0.7559 + }, + { + "start": 2766.74, + "end": 2767.92, + "probability": 0.9976 + }, + { + "start": 2768.74, + "end": 2770.4, + "probability": 0.9702 + }, + { + "start": 2772.36, + "end": 2772.6, + "probability": 0.4921 + }, + { + "start": 2772.7, + "end": 2776.4, + "probability": 0.9785 + }, + { + "start": 2776.6, + "end": 2780.46, + "probability": 0.9935 + }, + { + "start": 2781.96, + "end": 2785.0, + "probability": 0.9484 + }, + { + "start": 2785.52, + "end": 2787.84, + "probability": 0.9971 + }, + { + "start": 2787.84, + "end": 2791.88, + "probability": 0.9673 + }, + { + "start": 2792.6, + "end": 2792.68, + "probability": 0.2664 + }, + { + "start": 2792.68, + "end": 2792.92, + "probability": 0.4357 + }, + { + "start": 2793.04, + "end": 2793.64, + "probability": 0.902 + }, + { + "start": 2794.02, + "end": 2795.02, + "probability": 0.7194 + }, + { + "start": 2795.34, + "end": 2796.8, + "probability": 0.9404 + }, + { + "start": 2796.94, + "end": 2797.74, + "probability": 0.7747 + }, + { + "start": 2798.18, + "end": 2798.8, + "probability": 0.8251 + }, + { + "start": 2801.14, + "end": 2801.86, + "probability": 0.9668 + }, + { + "start": 2802.38, + "end": 2802.86, + "probability": 0.8055 + }, + { + "start": 2804.08, + "end": 2805.36, + "probability": 0.8191 + }, + { + "start": 2806.94, + "end": 2808.4, + "probability": 0.7262 + }, + { + "start": 2809.26, + "end": 2812.38, + "probability": 0.9901 + }, + { + "start": 2813.46, + "end": 2814.9, + "probability": 0.9777 + }, + { + "start": 2816.7, + "end": 2818.96, + "probability": 0.9116 + }, + { + "start": 2819.32, + "end": 2820.18, + "probability": 0.8204 + }, + { + "start": 2820.8, + "end": 2822.52, + "probability": 0.8322 + }, + { + "start": 2822.54, + "end": 2827.58, + "probability": 0.9685 + }, + { + "start": 2829.54, + "end": 2831.94, + "probability": 0.4852 + }, + { + "start": 2832.62, + "end": 2835.75, + "probability": 0.004 + }, + { + "start": 2837.34, + "end": 2838.6, + "probability": 0.3469 + }, + { + "start": 2840.09, + "end": 2844.6, + "probability": 0.7474 + }, + { + "start": 2844.64, + "end": 2846.7, + "probability": 0.7773 + }, + { + "start": 2847.18, + "end": 2848.18, + "probability": 0.8079 + }, + { + "start": 2848.24, + "end": 2850.42, + "probability": 0.9959 + }, + { + "start": 2850.86, + "end": 2854.34, + "probability": 0.8423 + }, + { + "start": 2855.24, + "end": 2857.92, + "probability": 0.3228 + }, + { + "start": 2858.34, + "end": 2859.7, + "probability": 0.6257 + }, + { + "start": 2859.92, + "end": 2864.68, + "probability": 0.7868 + }, + { + "start": 2870.16, + "end": 2871.18, + "probability": 0.6724 + }, + { + "start": 2872.12, + "end": 2873.54, + "probability": 0.1017 + }, + { + "start": 2875.06, + "end": 2880.1, + "probability": 0.8703 + }, + { + "start": 2881.69, + "end": 2884.82, + "probability": 0.5005 + }, + { + "start": 2885.84, + "end": 2886.88, + "probability": 0.2242 + }, + { + "start": 2886.92, + "end": 2887.72, + "probability": 0.28 + }, + { + "start": 2889.62, + "end": 2891.26, + "probability": 0.0075 + }, + { + "start": 2892.02, + "end": 2894.78, + "probability": 0.8693 + }, + { + "start": 2895.04, + "end": 2897.94, + "probability": 0.6641 + }, + { + "start": 2898.18, + "end": 2899.68, + "probability": 0.9103 + }, + { + "start": 2899.78, + "end": 2902.26, + "probability": 0.9637 + }, + { + "start": 2903.78, + "end": 2905.76, + "probability": 0.7201 + }, + { + "start": 2905.94, + "end": 2911.72, + "probability": 0.8837 + }, + { + "start": 2911.92, + "end": 2918.22, + "probability": 0.951 + }, + { + "start": 2920.74, + "end": 2927.52, + "probability": 0.99 + }, + { + "start": 2927.8, + "end": 2930.44, + "probability": 0.9326 + }, + { + "start": 2931.06, + "end": 2937.28, + "probability": 0.9699 + }, + { + "start": 2937.48, + "end": 2938.82, + "probability": 0.6982 + }, + { + "start": 2939.24, + "end": 2939.72, + "probability": 0.7 + }, + { + "start": 2939.92, + "end": 2941.04, + "probability": 0.9054 + }, + { + "start": 2941.44, + "end": 2949.44, + "probability": 0.8299 + }, + { + "start": 2949.96, + "end": 2953.32, + "probability": 0.7479 + }, + { + "start": 2953.86, + "end": 2955.62, + "probability": 0.664 + }, + { + "start": 2957.14, + "end": 2964.36, + "probability": 0.9943 + }, + { + "start": 2964.56, + "end": 2969.14, + "probability": 0.9917 + }, + { + "start": 2970.94, + "end": 2973.08, + "probability": 0.8864 + }, + { + "start": 2973.26, + "end": 2974.1, + "probability": 0.7556 + }, + { + "start": 2974.26, + "end": 2975.14, + "probability": 0.63 + }, + { + "start": 2975.72, + "end": 2976.33, + "probability": 0.8809 + }, + { + "start": 2976.56, + "end": 2978.82, + "probability": 0.9512 + }, + { + "start": 2979.16, + "end": 2983.08, + "probability": 0.7295 + }, + { + "start": 2983.94, + "end": 2986.7, + "probability": 0.8355 + }, + { + "start": 2987.52, + "end": 2992.48, + "probability": 0.9585 + }, + { + "start": 2993.22, + "end": 2994.3, + "probability": 0.9022 + }, + { + "start": 2994.42, + "end": 2995.88, + "probability": 0.7354 + }, + { + "start": 2996.12, + "end": 3003.54, + "probability": 0.9738 + }, + { + "start": 3006.88, + "end": 3007.7, + "probability": 0.0433 + }, + { + "start": 3007.7, + "end": 3009.72, + "probability": 0.3751 + }, + { + "start": 3011.08, + "end": 3014.96, + "probability": 0.9175 + }, + { + "start": 3015.0, + "end": 3016.06, + "probability": 0.9304 + }, + { + "start": 3016.34, + "end": 3018.8, + "probability": 0.6617 + }, + { + "start": 3019.8, + "end": 3022.58, + "probability": 0.9786 + }, + { + "start": 3022.87, + "end": 3025.64, + "probability": 0.8902 + }, + { + "start": 3026.7, + "end": 3031.1, + "probability": 0.3074 + }, + { + "start": 3031.1, + "end": 3033.82, + "probability": 0.8619 + }, + { + "start": 3033.86, + "end": 3035.66, + "probability": 0.9725 + }, + { + "start": 3035.84, + "end": 3037.8, + "probability": 0.9819 + }, + { + "start": 3037.98, + "end": 3038.36, + "probability": 0.5428 + }, + { + "start": 3039.26, + "end": 3043.07, + "probability": 0.9906 + }, + { + "start": 3043.74, + "end": 3045.89, + "probability": 0.9407 + }, + { + "start": 3046.76, + "end": 3048.36, + "probability": 0.9871 + }, + { + "start": 3048.64, + "end": 3054.14, + "probability": 0.9817 + }, + { + "start": 3054.92, + "end": 3056.42, + "probability": 0.9881 + }, + { + "start": 3058.22, + "end": 3059.74, + "probability": 0.638 + }, + { + "start": 3059.86, + "end": 3060.98, + "probability": 0.6361 + }, + { + "start": 3061.18, + "end": 3062.86, + "probability": 0.767 + }, + { + "start": 3063.28, + "end": 3064.44, + "probability": 0.7582 + }, + { + "start": 3064.58, + "end": 3065.92, + "probability": 0.8091 + }, + { + "start": 3066.48, + "end": 3067.68, + "probability": 0.7134 + }, + { + "start": 3068.46, + "end": 3070.72, + "probability": 0.9832 + }, + { + "start": 3070.76, + "end": 3076.28, + "probability": 0.8798 + }, + { + "start": 3076.28, + "end": 3079.46, + "probability": 0.9281 + }, + { + "start": 3079.88, + "end": 3080.12, + "probability": 0.0372 + }, + { + "start": 3080.28, + "end": 3084.06, + "probability": 0.9194 + }, + { + "start": 3084.58, + "end": 3084.7, + "probability": 0.7786 + }, + { + "start": 3084.78, + "end": 3085.88, + "probability": 0.9714 + }, + { + "start": 3085.92, + "end": 3089.98, + "probability": 0.9651 + }, + { + "start": 3090.7, + "end": 3092.34, + "probability": 0.9022 + }, + { + "start": 3092.72, + "end": 3098.22, + "probability": 0.9812 + }, + { + "start": 3099.36, + "end": 3100.78, + "probability": 0.9133 + }, + { + "start": 3100.82, + "end": 3101.74, + "probability": 0.894 + }, + { + "start": 3101.9, + "end": 3106.12, + "probability": 0.9485 + }, + { + "start": 3106.84, + "end": 3108.22, + "probability": 0.6296 + }, + { + "start": 3109.04, + "end": 3111.48, + "probability": 0.961 + }, + { + "start": 3113.0, + "end": 3113.14, + "probability": 0.013 + }, + { + "start": 3113.24, + "end": 3114.96, + "probability": 0.7078 + }, + { + "start": 3115.1, + "end": 3117.04, + "probability": 0.6222 + }, + { + "start": 3117.12, + "end": 3118.82, + "probability": 0.8808 + }, + { + "start": 3119.3, + "end": 3123.78, + "probability": 0.9758 + }, + { + "start": 3124.18, + "end": 3125.08, + "probability": 0.8325 + }, + { + "start": 3125.84, + "end": 3128.72, + "probability": 0.9875 + }, + { + "start": 3128.92, + "end": 3130.24, + "probability": 0.9017 + }, + { + "start": 3130.84, + "end": 3133.26, + "probability": 0.8998 + }, + { + "start": 3134.68, + "end": 3139.48, + "probability": 0.8782 + }, + { + "start": 3140.04, + "end": 3144.28, + "probability": 0.9018 + }, + { + "start": 3145.08, + "end": 3145.7, + "probability": 0.6443 + }, + { + "start": 3146.3, + "end": 3147.18, + "probability": 0.8919 + }, + { + "start": 3147.28, + "end": 3148.12, + "probability": 0.9193 + }, + { + "start": 3148.32, + "end": 3151.56, + "probability": 0.9144 + }, + { + "start": 3151.66, + "end": 3155.46, + "probability": 0.9565 + }, + { + "start": 3156.06, + "end": 3157.34, + "probability": 0.4248 + }, + { + "start": 3157.48, + "end": 3159.02, + "probability": 0.959 + }, + { + "start": 3159.92, + "end": 3161.28, + "probability": 0.9894 + }, + { + "start": 3161.86, + "end": 3164.8, + "probability": 0.6926 + }, + { + "start": 3164.92, + "end": 3166.86, + "probability": 0.9794 + }, + { + "start": 3167.14, + "end": 3171.68, + "probability": 0.9316 + }, + { + "start": 3171.78, + "end": 3172.36, + "probability": 0.809 + }, + { + "start": 3173.86, + "end": 3179.34, + "probability": 0.8542 + }, + { + "start": 3179.74, + "end": 3180.64, + "probability": 0.9434 + }, + { + "start": 3181.44, + "end": 3183.54, + "probability": 0.9652 + }, + { + "start": 3184.2, + "end": 3190.74, + "probability": 0.9957 + }, + { + "start": 3190.78, + "end": 3191.96, + "probability": 0.074 + }, + { + "start": 3192.32, + "end": 3193.23, + "probability": 0.8921 + }, + { + "start": 3193.6, + "end": 3195.82, + "probability": 0.8057 + }, + { + "start": 3195.92, + "end": 3197.0, + "probability": 0.5703 + }, + { + "start": 3197.08, + "end": 3200.56, + "probability": 0.9697 + }, + { + "start": 3201.22, + "end": 3204.74, + "probability": 0.9474 + }, + { + "start": 3204.74, + "end": 3208.36, + "probability": 0.9846 + }, + { + "start": 3209.04, + "end": 3213.75, + "probability": 0.9508 + }, + { + "start": 3214.34, + "end": 3217.38, + "probability": 0.9855 + }, + { + "start": 3217.98, + "end": 3222.16, + "probability": 0.9967 + }, + { + "start": 3222.92, + "end": 3226.18, + "probability": 0.8431 + }, + { + "start": 3226.92, + "end": 3229.8, + "probability": 0.9727 + }, + { + "start": 3230.8, + "end": 3231.98, + "probability": 0.5128 + }, + { + "start": 3232.04, + "end": 3233.72, + "probability": 0.7699 + }, + { + "start": 3233.76, + "end": 3234.58, + "probability": 0.0982 + }, + { + "start": 3234.58, + "end": 3242.38, + "probability": 0.8324 + }, + { + "start": 3242.88, + "end": 3243.82, + "probability": 0.8594 + }, + { + "start": 3244.7, + "end": 3246.34, + "probability": 0.6609 + }, + { + "start": 3246.94, + "end": 3249.74, + "probability": 0.9716 + }, + { + "start": 3250.98, + "end": 3254.56, + "probability": 0.7364 + }, + { + "start": 3254.9, + "end": 3260.62, + "probability": 0.9816 + }, + { + "start": 3261.84, + "end": 3270.22, + "probability": 0.8427 + }, + { + "start": 3271.44, + "end": 3272.03, + "probability": 0.6132 + }, + { + "start": 3272.92, + "end": 3279.14, + "probability": 0.949 + }, + { + "start": 3279.14, + "end": 3286.06, + "probability": 0.9236 + }, + { + "start": 3286.56, + "end": 3287.68, + "probability": 0.8972 + }, + { + "start": 3288.16, + "end": 3291.04, + "probability": 0.6369 + }, + { + "start": 3291.3, + "end": 3292.68, + "probability": 0.9347 + }, + { + "start": 3293.68, + "end": 3299.64, + "probability": 0.7453 + }, + { + "start": 3300.22, + "end": 3306.2, + "probability": 0.969 + }, + { + "start": 3307.28, + "end": 3310.02, + "probability": 0.9883 + }, + { + "start": 3310.78, + "end": 3314.4, + "probability": 0.8793 + }, + { + "start": 3315.1, + "end": 3318.18, + "probability": 0.8311 + }, + { + "start": 3318.92, + "end": 3323.32, + "probability": 0.8251 + }, + { + "start": 3323.96, + "end": 3327.56, + "probability": 0.9547 + }, + { + "start": 3327.74, + "end": 3334.06, + "probability": 0.8777 + }, + { + "start": 3334.94, + "end": 3338.24, + "probability": 0.9201 + }, + { + "start": 3338.6, + "end": 3341.12, + "probability": 0.7933 + }, + { + "start": 3341.68, + "end": 3344.02, + "probability": 0.7081 + }, + { + "start": 3345.86, + "end": 3346.74, + "probability": 0.5151 + }, + { + "start": 3347.48, + "end": 3349.18, + "probability": 0.6635 + }, + { + "start": 3350.04, + "end": 3350.04, + "probability": 0.1854 + }, + { + "start": 3350.04, + "end": 3354.16, + "probability": 0.9289 + }, + { + "start": 3354.24, + "end": 3359.54, + "probability": 0.9788 + }, + { + "start": 3360.54, + "end": 3361.58, + "probability": 0.8108 + }, + { + "start": 3361.74, + "end": 3366.62, + "probability": 0.9971 + }, + { + "start": 3367.48, + "end": 3370.02, + "probability": 0.9823 + }, + { + "start": 3371.22, + "end": 3376.14, + "probability": 0.9535 + }, + { + "start": 3376.14, + "end": 3381.6, + "probability": 0.9048 + }, + { + "start": 3382.52, + "end": 3386.1, + "probability": 0.9836 + }, + { + "start": 3386.1, + "end": 3390.72, + "probability": 0.9982 + }, + { + "start": 3391.92, + "end": 3394.46, + "probability": 0.9995 + }, + { + "start": 3395.08, + "end": 3397.36, + "probability": 0.9976 + }, + { + "start": 3398.18, + "end": 3399.3, + "probability": 0.9642 + }, + { + "start": 3399.46, + "end": 3402.62, + "probability": 0.918 + }, + { + "start": 3403.08, + "end": 3403.78, + "probability": 0.9852 + }, + { + "start": 3404.68, + "end": 3407.44, + "probability": 0.8581 + }, + { + "start": 3408.06, + "end": 3412.44, + "probability": 0.8369 + }, + { + "start": 3412.44, + "end": 3417.38, + "probability": 0.984 + }, + { + "start": 3418.1, + "end": 3422.04, + "probability": 0.9994 + }, + { + "start": 3422.68, + "end": 3428.14, + "probability": 0.9997 + }, + { + "start": 3429.0, + "end": 3431.92, + "probability": 0.9878 + }, + { + "start": 3432.48, + "end": 3435.04, + "probability": 0.9976 + }, + { + "start": 3435.82, + "end": 3437.8, + "probability": 0.5663 + }, + { + "start": 3438.44, + "end": 3442.56, + "probability": 0.9727 + }, + { + "start": 3443.2, + "end": 3450.22, + "probability": 0.9976 + }, + { + "start": 3450.72, + "end": 3456.12, + "probability": 0.99 + }, + { + "start": 3457.28, + "end": 3462.52, + "probability": 0.9986 + }, + { + "start": 3463.8, + "end": 3466.62, + "probability": 0.6013 + }, + { + "start": 3467.34, + "end": 3468.64, + "probability": 0.6409 + }, + { + "start": 3468.84, + "end": 3469.14, + "probability": 0.8057 + }, + { + "start": 3476.36, + "end": 3477.96, + "probability": 0.6244 + }, + { + "start": 3478.98, + "end": 3480.92, + "probability": 0.8834 + }, + { + "start": 3481.02, + "end": 3482.12, + "probability": 0.7044 + }, + { + "start": 3482.6, + "end": 3483.28, + "probability": 0.7404 + }, + { + "start": 3483.38, + "end": 3485.2, + "probability": 0.5049 + }, + { + "start": 3485.84, + "end": 3489.82, + "probability": 0.6253 + }, + { + "start": 3495.58, + "end": 3497.58, + "probability": 0.7599 + }, + { + "start": 3498.38, + "end": 3498.6, + "probability": 0.5584 + }, + { + "start": 3498.92, + "end": 3499.48, + "probability": 0.8638 + }, + { + "start": 3499.64, + "end": 3502.7, + "probability": 0.6366 + }, + { + "start": 3503.48, + "end": 3504.68, + "probability": 0.722 + }, + { + "start": 3506.04, + "end": 3508.52, + "probability": 0.8604 + }, + { + "start": 3508.86, + "end": 3510.64, + "probability": 0.6903 + }, + { + "start": 3510.72, + "end": 3511.18, + "probability": 0.5614 + }, + { + "start": 3512.32, + "end": 3516.46, + "probability": 0.9078 + }, + { + "start": 3517.24, + "end": 3519.28, + "probability": 0.9419 + }, + { + "start": 3520.32, + "end": 3523.08, + "probability": 0.9819 + }, + { + "start": 3525.14, + "end": 3530.68, + "probability": 0.8273 + }, + { + "start": 3531.84, + "end": 3532.88, + "probability": 0.4224 + }, + { + "start": 3533.42, + "end": 3537.36, + "probability": 0.9873 + }, + { + "start": 3538.38, + "end": 3539.54, + "probability": 0.6474 + }, + { + "start": 3540.4, + "end": 3542.04, + "probability": 0.736 + }, + { + "start": 3542.9, + "end": 3547.66, + "probability": 0.9232 + }, + { + "start": 3548.64, + "end": 3551.18, + "probability": 0.9725 + }, + { + "start": 3551.84, + "end": 3560.6, + "probability": 0.9916 + }, + { + "start": 3561.54, + "end": 3564.92, + "probability": 0.6646 + }, + { + "start": 3565.16, + "end": 3568.16, + "probability": 0.8179 + }, + { + "start": 3571.6, + "end": 3572.7, + "probability": 0.7204 + }, + { + "start": 3572.9, + "end": 3574.02, + "probability": 0.5484 + }, + { + "start": 3574.33, + "end": 3578.09, + "probability": 0.9713 + }, + { + "start": 3578.4, + "end": 3579.96, + "probability": 0.7409 + }, + { + "start": 3580.82, + "end": 3583.72, + "probability": 0.9851 + }, + { + "start": 3583.84, + "end": 3584.72, + "probability": 0.5191 + }, + { + "start": 3584.76, + "end": 3585.46, + "probability": 0.7993 + }, + { + "start": 3585.62, + "end": 3591.2, + "probability": 0.9907 + }, + { + "start": 3593.72, + "end": 3594.76, + "probability": 0.9989 + }, + { + "start": 3595.92, + "end": 3601.18, + "probability": 0.9846 + }, + { + "start": 3602.16, + "end": 3606.16, + "probability": 0.9604 + }, + { + "start": 3606.22, + "end": 3606.94, + "probability": 0.9819 + }, + { + "start": 3607.77, + "end": 3608.82, + "probability": 0.1607 + }, + { + "start": 3608.9, + "end": 3612.0, + "probability": 0.9894 + }, + { + "start": 3612.02, + "end": 3613.86, + "probability": 0.7961 + }, + { + "start": 3613.92, + "end": 3615.02, + "probability": 0.1256 + }, + { + "start": 3615.02, + "end": 3616.24, + "probability": 0.9473 + }, + { + "start": 3616.28, + "end": 3618.17, + "probability": 0.9963 + }, + { + "start": 3619.0, + "end": 3620.22, + "probability": 0.9938 + }, + { + "start": 3620.52, + "end": 3621.62, + "probability": 0.9969 + }, + { + "start": 3621.7, + "end": 3625.02, + "probability": 0.9425 + }, + { + "start": 3625.58, + "end": 3626.86, + "probability": 0.7229 + }, + { + "start": 3626.9, + "end": 3628.18, + "probability": 0.0368 + }, + { + "start": 3628.54, + "end": 3628.7, + "probability": 0.498 + }, + { + "start": 3628.72, + "end": 3630.53, + "probability": 0.1795 + }, + { + "start": 3631.28, + "end": 3631.98, + "probability": 0.7886 + }, + { + "start": 3632.8, + "end": 3635.7, + "probability": 0.5232 + }, + { + "start": 3635.78, + "end": 3638.43, + "probability": 0.4489 + }, + { + "start": 3638.76, + "end": 3641.64, + "probability": 0.3096 + }, + { + "start": 3641.78, + "end": 3647.14, + "probability": 0.1945 + }, + { + "start": 3647.48, + "end": 3647.66, + "probability": 0.3485 + }, + { + "start": 3647.66, + "end": 3651.82, + "probability": 0.5223 + }, + { + "start": 3651.9, + "end": 3653.92, + "probability": 0.6751 + }, + { + "start": 3653.96, + "end": 3654.31, + "probability": 0.2343 + }, + { + "start": 3654.88, + "end": 3655.84, + "probability": 0.2139 + }, + { + "start": 3656.02, + "end": 3658.34, + "probability": 0.6172 + }, + { + "start": 3658.46, + "end": 3659.74, + "probability": 0.5759 + }, + { + "start": 3659.8, + "end": 3660.72, + "probability": 0.5596 + }, + { + "start": 3660.72, + "end": 3662.84, + "probability": 0.9831 + }, + { + "start": 3663.84, + "end": 3664.58, + "probability": 0.9204 + }, + { + "start": 3664.6, + "end": 3665.98, + "probability": 0.7393 + }, + { + "start": 3666.02, + "end": 3666.7, + "probability": 0.4687 + }, + { + "start": 3667.02, + "end": 3669.04, + "probability": 0.9217 + }, + { + "start": 3669.58, + "end": 3672.08, + "probability": 0.9934 + }, + { + "start": 3672.48, + "end": 3674.64, + "probability": 0.9895 + }, + { + "start": 3674.88, + "end": 3677.58, + "probability": 0.77 + }, + { + "start": 3677.6, + "end": 3680.94, + "probability": 0.9522 + }, + { + "start": 3681.42, + "end": 3684.78, + "probability": 0.0513 + }, + { + "start": 3684.78, + "end": 3684.78, + "probability": 0.0819 + }, + { + "start": 3684.78, + "end": 3686.86, + "probability": 0.9346 + }, + { + "start": 3688.04, + "end": 3688.04, + "probability": 0.0696 + }, + { + "start": 3688.04, + "end": 3690.12, + "probability": 0.6195 + }, + { + "start": 3690.58, + "end": 3693.88, + "probability": 0.9565 + }, + { + "start": 3694.0, + "end": 3696.72, + "probability": 0.9718 + }, + { + "start": 3697.3, + "end": 3703.0, + "probability": 0.9882 + }, + { + "start": 3704.08, + "end": 3706.36, + "probability": 0.5107 + }, + { + "start": 3707.16, + "end": 3708.52, + "probability": 0.6914 + }, + { + "start": 3709.22, + "end": 3709.22, + "probability": 0.005 + }, + { + "start": 3709.22, + "end": 3709.22, + "probability": 0.2243 + }, + { + "start": 3709.22, + "end": 3712.6, + "probability": 0.609 + }, + { + "start": 3712.78, + "end": 3715.04, + "probability": 0.9017 + }, + { + "start": 3715.44, + "end": 3719.76, + "probability": 0.934 + }, + { + "start": 3719.88, + "end": 3721.6, + "probability": 0.8669 + }, + { + "start": 3721.6, + "end": 3722.8, + "probability": 0.5834 + }, + { + "start": 3723.58, + "end": 3725.26, + "probability": 0.9883 + }, + { + "start": 3726.94, + "end": 3730.54, + "probability": 0.9926 + }, + { + "start": 3731.02, + "end": 3735.2, + "probability": 0.8715 + }, + { + "start": 3735.6, + "end": 3738.7, + "probability": 0.9187 + }, + { + "start": 3739.12, + "end": 3742.42, + "probability": 0.8973 + }, + { + "start": 3743.47, + "end": 3744.98, + "probability": 0.0663 + }, + { + "start": 3744.98, + "end": 3745.54, + "probability": 0.0914 + }, + { + "start": 3746.78, + "end": 3748.9, + "probability": 0.8822 + }, + { + "start": 3749.94, + "end": 3750.82, + "probability": 0.6421 + }, + { + "start": 3752.46, + "end": 3755.46, + "probability": 0.8442 + }, + { + "start": 3756.08, + "end": 3758.66, + "probability": 0.9143 + }, + { + "start": 3761.92, + "end": 3764.54, + "probability": 0.9587 + }, + { + "start": 3764.76, + "end": 3766.78, + "probability": 0.9043 + }, + { + "start": 3767.12, + "end": 3769.76, + "probability": 0.9543 + }, + { + "start": 3770.04, + "end": 3773.3, + "probability": 0.8085 + }, + { + "start": 3773.4, + "end": 3774.22, + "probability": 0.6379 + }, + { + "start": 3774.28, + "end": 3775.08, + "probability": 0.4336 + }, + { + "start": 3775.24, + "end": 3777.18, + "probability": 0.8945 + }, + { + "start": 3778.24, + "end": 3782.1, + "probability": 0.9943 + }, + { + "start": 3782.42, + "end": 3785.54, + "probability": 0.9878 + }, + { + "start": 3785.96, + "end": 3791.04, + "probability": 0.8924 + }, + { + "start": 3791.58, + "end": 3792.84, + "probability": 0.9341 + }, + { + "start": 3793.4, + "end": 3799.2, + "probability": 0.9683 + }, + { + "start": 3799.64, + "end": 3803.38, + "probability": 0.994 + }, + { + "start": 3804.5, + "end": 3806.63, + "probability": 0.9978 + }, + { + "start": 3807.38, + "end": 3810.58, + "probability": 0.8285 + }, + { + "start": 3812.24, + "end": 3813.7, + "probability": 0.967 + }, + { + "start": 3813.88, + "end": 3817.84, + "probability": 0.9936 + }, + { + "start": 3818.24, + "end": 3822.5, + "probability": 0.5582 + }, + { + "start": 3822.84, + "end": 3824.88, + "probability": 0.7628 + }, + { + "start": 3832.22, + "end": 3833.24, + "probability": 0.6298 + }, + { + "start": 3833.88, + "end": 3837.12, + "probability": 0.9781 + }, + { + "start": 3837.22, + "end": 3838.98, + "probability": 0.8975 + }, + { + "start": 3840.14, + "end": 3843.6, + "probability": 0.7793 + }, + { + "start": 3843.72, + "end": 3848.68, + "probability": 0.858 + }, + { + "start": 3850.52, + "end": 3853.52, + "probability": 0.9764 + }, + { + "start": 3854.32, + "end": 3857.06, + "probability": 0.6636 + }, + { + "start": 3857.62, + "end": 3862.86, + "probability": 0.7979 + }, + { + "start": 3864.36, + "end": 3865.42, + "probability": 0.8673 + }, + { + "start": 3866.84, + "end": 3867.64, + "probability": 0.8075 + }, + { + "start": 3868.54, + "end": 3873.66, + "probability": 0.9692 + }, + { + "start": 3873.94, + "end": 3876.26, + "probability": 0.3971 + }, + { + "start": 3876.84, + "end": 3883.46, + "probability": 0.9229 + }, + { + "start": 3884.24, + "end": 3886.8, + "probability": 0.978 + }, + { + "start": 3887.1, + "end": 3891.36, + "probability": 0.8262 + }, + { + "start": 3892.32, + "end": 3898.04, + "probability": 0.8677 + }, + { + "start": 3899.8, + "end": 3905.66, + "probability": 0.6766 + }, + { + "start": 3905.86, + "end": 3907.36, + "probability": 0.8386 + }, + { + "start": 3907.5, + "end": 3913.52, + "probability": 0.9818 + }, + { + "start": 3915.66, + "end": 3916.8, + "probability": 0.8515 + }, + { + "start": 3917.0, + "end": 3921.86, + "probability": 0.9937 + }, + { + "start": 3922.62, + "end": 3923.52, + "probability": 0.8778 + }, + { + "start": 3923.62, + "end": 3929.46, + "probability": 0.9756 + }, + { + "start": 3930.5, + "end": 3933.68, + "probability": 0.6527 + }, + { + "start": 3933.8, + "end": 3934.32, + "probability": 0.3377 + }, + { + "start": 3934.56, + "end": 3934.64, + "probability": 0.0374 + }, + { + "start": 3934.64, + "end": 3936.62, + "probability": 0.8527 + }, + { + "start": 3936.84, + "end": 3938.32, + "probability": 0.6025 + }, + { + "start": 3938.56, + "end": 3939.2, + "probability": 0.4236 + }, + { + "start": 3939.86, + "end": 3941.54, + "probability": 0.2076 + }, + { + "start": 3942.11, + "end": 3944.92, + "probability": 0.7857 + }, + { + "start": 3945.08, + "end": 3949.16, + "probability": 0.4124 + }, + { + "start": 3949.16, + "end": 3951.2, + "probability": 0.6176 + }, + { + "start": 3951.7, + "end": 3951.7, + "probability": 0.1126 + }, + { + "start": 3951.7, + "end": 3951.7, + "probability": 0.0118 + }, + { + "start": 3951.7, + "end": 3951.7, + "probability": 0.1124 + }, + { + "start": 3951.7, + "end": 3954.11, + "probability": 0.2946 + }, + { + "start": 3954.78, + "end": 3956.36, + "probability": 0.8025 + }, + { + "start": 3957.32, + "end": 3958.56, + "probability": 0.5986 + }, + { + "start": 3958.68, + "end": 3958.68, + "probability": 0.3779 + }, + { + "start": 3958.68, + "end": 3959.76, + "probability": 0.7087 + }, + { + "start": 3960.38, + "end": 3961.4, + "probability": 0.6866 + }, + { + "start": 3961.62, + "end": 3964.76, + "probability": 0.9003 + }, + { + "start": 3964.88, + "end": 3966.32, + "probability": 0.8237 + }, + { + "start": 3966.4, + "end": 3968.84, + "probability": 0.7856 + }, + { + "start": 3969.1, + "end": 3969.62, + "probability": 0.0452 + }, + { + "start": 3969.66, + "end": 3970.0, + "probability": 0.5163 + }, + { + "start": 3970.0, + "end": 3970.0, + "probability": 0.4139 + }, + { + "start": 3970.0, + "end": 3970.0, + "probability": 0.8031 + }, + { + "start": 3970.0, + "end": 3972.04, + "probability": 0.9263 + }, + { + "start": 3972.6, + "end": 3977.72, + "probability": 0.0919 + }, + { + "start": 3977.72, + "end": 3978.12, + "probability": 0.67 + }, + { + "start": 3978.28, + "end": 3979.4, + "probability": 0.7577 + }, + { + "start": 3980.28, + "end": 3984.44, + "probability": 0.7913 + }, + { + "start": 3984.44, + "end": 3988.78, + "probability": 0.9181 + }, + { + "start": 3989.06, + "end": 3993.08, + "probability": 0.9351 + }, + { + "start": 3993.6, + "end": 3997.6, + "probability": 0.5523 + }, + { + "start": 3998.52, + "end": 3998.84, + "probability": 0.7892 + }, + { + "start": 3999.34, + "end": 4001.46, + "probability": 0.9643 + }, + { + "start": 4001.86, + "end": 4002.79, + "probability": 0.9502 + }, + { + "start": 4003.38, + "end": 4005.12, + "probability": 0.9036 + }, + { + "start": 4005.26, + "end": 4006.22, + "probability": 0.7704 + }, + { + "start": 4006.42, + "end": 4007.32, + "probability": 0.8965 + }, + { + "start": 4007.7, + "end": 4010.6, + "probability": 0.9111 + }, + { + "start": 4011.04, + "end": 4014.4, + "probability": 0.8029 + }, + { + "start": 4014.56, + "end": 4016.94, + "probability": 0.0464 + }, + { + "start": 4017.48, + "end": 4017.8, + "probability": 0.0365 + }, + { + "start": 4017.8, + "end": 4017.94, + "probability": 0.168 + }, + { + "start": 4017.94, + "end": 4018.54, + "probability": 0.0978 + }, + { + "start": 4018.9, + "end": 4019.72, + "probability": 0.043 + }, + { + "start": 4019.72, + "end": 4022.88, + "probability": 0.642 + }, + { + "start": 4023.1, + "end": 4024.72, + "probability": 0.9547 + }, + { + "start": 4025.04, + "end": 4027.6, + "probability": 0.8467 + }, + { + "start": 4027.74, + "end": 4029.9, + "probability": 0.9077 + }, + { + "start": 4030.48, + "end": 4031.48, + "probability": 0.7518 + }, + { + "start": 4031.64, + "end": 4037.6, + "probability": 0.8658 + }, + { + "start": 4038.66, + "end": 4039.2, + "probability": 0.3681 + }, + { + "start": 4039.92, + "end": 4042.14, + "probability": 0.5659 + }, + { + "start": 4043.34, + "end": 4044.84, + "probability": 0.6196 + }, + { + "start": 4045.04, + "end": 4046.06, + "probability": 0.3397 + }, + { + "start": 4046.5, + "end": 4048.74, + "probability": 0.8441 + }, + { + "start": 4049.1, + "end": 4050.04, + "probability": 0.7134 + }, + { + "start": 4050.3, + "end": 4052.6, + "probability": 0.4379 + }, + { + "start": 4053.04, + "end": 4056.39, + "probability": 0.6256 + }, + { + "start": 4057.6, + "end": 4058.43, + "probability": 0.0061 + }, + { + "start": 4058.5, + "end": 4059.29, + "probability": 0.1741 + }, + { + "start": 4060.38, + "end": 4061.62, + "probability": 0.4112 + }, + { + "start": 4061.88, + "end": 4066.26, + "probability": 0.0964 + }, + { + "start": 4066.34, + "end": 4068.17, + "probability": 0.0887 + }, + { + "start": 4069.7, + "end": 4070.78, + "probability": 0.2845 + }, + { + "start": 4071.38, + "end": 4075.7, + "probability": 0.3042 + }, + { + "start": 4075.88, + "end": 4080.92, + "probability": 0.8262 + }, + { + "start": 4082.39, + "end": 4083.78, + "probability": 0.3555 + }, + { + "start": 4083.78, + "end": 4084.62, + "probability": 0.7288 + }, + { + "start": 4085.26, + "end": 4087.44, + "probability": 0.8851 + }, + { + "start": 4087.6, + "end": 4089.68, + "probability": 0.5772 + }, + { + "start": 4089.68, + "end": 4090.0, + "probability": 0.2372 + }, + { + "start": 4090.24, + "end": 4091.64, + "probability": 0.9524 + }, + { + "start": 4091.98, + "end": 4095.9, + "probability": 0.8403 + }, + { + "start": 4096.78, + "end": 4102.08, + "probability": 0.8396 + }, + { + "start": 4102.26, + "end": 4103.4, + "probability": 0.6294 + }, + { + "start": 4103.46, + "end": 4104.14, + "probability": 0.7116 + }, + { + "start": 4104.36, + "end": 4107.76, + "probability": 0.981 + }, + { + "start": 4107.9, + "end": 4111.98, + "probability": 0.9964 + }, + { + "start": 4112.2, + "end": 4114.02, + "probability": 0.9446 + }, + { + "start": 4114.16, + "end": 4115.04, + "probability": 0.6183 + }, + { + "start": 4115.22, + "end": 4117.4, + "probability": 0.9345 + }, + { + "start": 4117.82, + "end": 4120.12, + "probability": 0.9846 + }, + { + "start": 4120.7, + "end": 4124.54, + "probability": 0.9808 + }, + { + "start": 4125.44, + "end": 4127.66, + "probability": 0.2524 + }, + { + "start": 4128.28, + "end": 4128.3, + "probability": 0.3249 + }, + { + "start": 4128.3, + "end": 4131.72, + "probability": 0.9706 + }, + { + "start": 4131.78, + "end": 4133.12, + "probability": 0.9243 + }, + { + "start": 4133.76, + "end": 4133.76, + "probability": 0.4496 + }, + { + "start": 4133.8, + "end": 4136.56, + "probability": 0.9946 + }, + { + "start": 4136.96, + "end": 4140.6, + "probability": 0.9775 + }, + { + "start": 4143.12, + "end": 4144.12, + "probability": 0.5221 + }, + { + "start": 4144.12, + "end": 4144.35, + "probability": 0.2103 + }, + { + "start": 4144.48, + "end": 4144.66, + "probability": 0.2687 + }, + { + "start": 4144.66, + "end": 4145.16, + "probability": 0.3328 + }, + { + "start": 4145.16, + "end": 4148.08, + "probability": 0.9861 + }, + { + "start": 4148.64, + "end": 4150.23, + "probability": 0.9632 + }, + { + "start": 4151.04, + "end": 4152.7, + "probability": 0.7311 + }, + { + "start": 4153.66, + "end": 4154.46, + "probability": 0.8353 + }, + { + "start": 4154.6, + "end": 4154.92, + "probability": 0.4598 + }, + { + "start": 4155.16, + "end": 4156.22, + "probability": 0.9779 + }, + { + "start": 4156.72, + "end": 4157.84, + "probability": 0.1561 + }, + { + "start": 4158.22, + "end": 4160.5, + "probability": 0.6694 + }, + { + "start": 4175.26, + "end": 4177.52, + "probability": 0.7694 + }, + { + "start": 4178.42, + "end": 4179.52, + "probability": 0.8959 + }, + { + "start": 4180.96, + "end": 4183.22, + "probability": 0.9403 + }, + { + "start": 4184.28, + "end": 4189.86, + "probability": 0.9656 + }, + { + "start": 4190.1, + "end": 4192.14, + "probability": 0.9857 + }, + { + "start": 4192.66, + "end": 4194.18, + "probability": 0.9854 + }, + { + "start": 4194.66, + "end": 4196.01, + "probability": 0.1324 + }, + { + "start": 4196.4, + "end": 4196.84, + "probability": 0.1552 + }, + { + "start": 4196.84, + "end": 4200.0, + "probability": 0.113 + }, + { + "start": 4200.16, + "end": 4203.74, + "probability": 0.4796 + }, + { + "start": 4205.56, + "end": 4205.92, + "probability": 0.0049 + }, + { + "start": 4205.92, + "end": 4206.78, + "probability": 0.1261 + }, + { + "start": 4207.34, + "end": 4210.04, + "probability": 0.7163 + }, + { + "start": 4212.18, + "end": 4213.67, + "probability": 0.723 + }, + { + "start": 4213.92, + "end": 4214.71, + "probability": 0.0773 + }, + { + "start": 4214.88, + "end": 4215.5, + "probability": 0.9805 + }, + { + "start": 4216.5, + "end": 4219.54, + "probability": 0.7808 + }, + { + "start": 4219.96, + "end": 4223.48, + "probability": 0.742 + }, + { + "start": 4223.48, + "end": 4225.5, + "probability": 0.4588 + }, + { + "start": 4225.62, + "end": 4226.44, + "probability": 0.8379 + }, + { + "start": 4226.48, + "end": 4227.74, + "probability": 0.6349 + }, + { + "start": 4227.88, + "end": 4229.34, + "probability": 0.4223 + }, + { + "start": 4229.34, + "end": 4230.28, + "probability": 0.7478 + }, + { + "start": 4230.54, + "end": 4232.1, + "probability": 0.753 + }, + { + "start": 4232.12, + "end": 4233.6, + "probability": 0.1544 + }, + { + "start": 4233.96, + "end": 4236.56, + "probability": 0.1014 + }, + { + "start": 4236.76, + "end": 4239.1, + "probability": 0.709 + }, + { + "start": 4239.52, + "end": 4239.76, + "probability": 0.4859 + }, + { + "start": 4239.76, + "end": 4247.22, + "probability": 0.8104 + }, + { + "start": 4247.28, + "end": 4247.82, + "probability": 0.0061 + }, + { + "start": 4247.82, + "end": 4249.52, + "probability": 0.8373 + }, + { + "start": 4249.6, + "end": 4252.08, + "probability": 0.8166 + }, + { + "start": 4252.66, + "end": 4254.42, + "probability": 0.892 + }, + { + "start": 4254.7, + "end": 4256.8, + "probability": 0.8384 + }, + { + "start": 4258.32, + "end": 4262.82, + "probability": 0.9679 + }, + { + "start": 4263.12, + "end": 4264.04, + "probability": 0.7469 + }, + { + "start": 4264.84, + "end": 4266.04, + "probability": 0.872 + }, + { + "start": 4266.34, + "end": 4267.88, + "probability": 0.9473 + }, + { + "start": 4268.6, + "end": 4271.72, + "probability": 0.4534 + }, + { + "start": 4271.72, + "end": 4276.25, + "probability": 0.8674 + }, + { + "start": 4279.14, + "end": 4279.38, + "probability": 0.0286 + }, + { + "start": 4279.38, + "end": 4279.38, + "probability": 0.1027 + }, + { + "start": 4279.38, + "end": 4279.38, + "probability": 0.0319 + }, + { + "start": 4279.38, + "end": 4281.62, + "probability": 0.9603 + }, + { + "start": 4282.06, + "end": 4283.06, + "probability": 0.8611 + }, + { + "start": 4283.92, + "end": 4285.23, + "probability": 0.9432 + }, + { + "start": 4285.92, + "end": 4290.46, + "probability": 0.928 + }, + { + "start": 4290.84, + "end": 4293.26, + "probability": 0.9788 + }, + { + "start": 4293.44, + "end": 4294.64, + "probability": 0.0356 + }, + { + "start": 4294.64, + "end": 4295.96, + "probability": 0.6956 + }, + { + "start": 4296.22, + "end": 4297.36, + "probability": 0.6902 + }, + { + "start": 4297.36, + "end": 4300.3, + "probability": 0.9756 + }, + { + "start": 4301.06, + "end": 4301.94, + "probability": 0.3747 + }, + { + "start": 4302.06, + "end": 4302.06, + "probability": 0.3693 + }, + { + "start": 4302.06, + "end": 4303.78, + "probability": 0.6475 + }, + { + "start": 4305.34, + "end": 4305.48, + "probability": 0.3173 + }, + { + "start": 4306.16, + "end": 4308.44, + "probability": 0.5934 + }, + { + "start": 4308.62, + "end": 4310.16, + "probability": 0.7644 + }, + { + "start": 4311.2, + "end": 4311.76, + "probability": 0.8921 + }, + { + "start": 4311.84, + "end": 4314.46, + "probability": 0.9405 + }, + { + "start": 4316.14, + "end": 4320.58, + "probability": 0.8616 + }, + { + "start": 4321.14, + "end": 4321.9, + "probability": 0.8503 + }, + { + "start": 4322.42, + "end": 4323.48, + "probability": 0.9861 + }, + { + "start": 4325.46, + "end": 4326.7, + "probability": 0.6793 + }, + { + "start": 4327.18, + "end": 4328.96, + "probability": 0.9667 + }, + { + "start": 4329.56, + "end": 4332.68, + "probability": 0.8455 + }, + { + "start": 4333.26, + "end": 4335.02, + "probability": 0.2981 + }, + { + "start": 4336.18, + "end": 4336.24, + "probability": 0.1371 + }, + { + "start": 4336.24, + "end": 4337.42, + "probability": 0.338 + }, + { + "start": 4337.94, + "end": 4339.94, + "probability": 0.9645 + }, + { + "start": 4340.18, + "end": 4341.75, + "probability": 0.998 + }, + { + "start": 4342.0, + "end": 4344.36, + "probability": 0.9964 + }, + { + "start": 4344.52, + "end": 4346.75, + "probability": 0.9753 + }, + { + "start": 4347.36, + "end": 4349.92, + "probability": 0.9935 + }, + { + "start": 4349.98, + "end": 4352.84, + "probability": 0.8456 + }, + { + "start": 4353.44, + "end": 4354.24, + "probability": 0.7689 + }, + { + "start": 4354.32, + "end": 4356.74, + "probability": 0.9897 + }, + { + "start": 4357.06, + "end": 4361.58, + "probability": 0.3379 + }, + { + "start": 4361.58, + "end": 4362.88, + "probability": 0.5152 + }, + { + "start": 4363.32, + "end": 4366.08, + "probability": 0.7947 + }, + { + "start": 4366.5, + "end": 4368.48, + "probability": 0.2305 + }, + { + "start": 4369.09, + "end": 4370.23, + "probability": 0.525 + }, + { + "start": 4370.88, + "end": 4372.02, + "probability": 0.0185 + }, + { + "start": 4372.02, + "end": 4372.68, + "probability": 0.1929 + }, + { + "start": 4373.46, + "end": 4374.64, + "probability": 0.6292 + }, + { + "start": 4375.18, + "end": 4378.28, + "probability": 0.8695 + }, + { + "start": 4378.62, + "end": 4379.94, + "probability": 0.9115 + }, + { + "start": 4380.36, + "end": 4381.18, + "probability": 0.9831 + }, + { + "start": 4381.38, + "end": 4382.4, + "probability": 0.8913 + }, + { + "start": 4382.44, + "end": 4387.06, + "probability": 0.9671 + }, + { + "start": 4387.3, + "end": 4390.86, + "probability": 0.9707 + }, + { + "start": 4391.2, + "end": 4393.74, + "probability": 0.9655 + }, + { + "start": 4393.82, + "end": 4393.82, + "probability": 0.0241 + }, + { + "start": 4393.82, + "end": 4394.98, + "probability": 0.9111 + }, + { + "start": 4395.24, + "end": 4395.52, + "probability": 0.0308 + }, + { + "start": 4395.64, + "end": 4397.02, + "probability": 0.8813 + }, + { + "start": 4398.12, + "end": 4399.3, + "probability": 0.6127 + }, + { + "start": 4399.4, + "end": 4400.62, + "probability": 0.8513 + }, + { + "start": 4400.78, + "end": 4401.54, + "probability": 0.5867 + }, + { + "start": 4402.32, + "end": 4403.48, + "probability": 0.8163 + }, + { + "start": 4403.84, + "end": 4405.56, + "probability": 0.9675 + }, + { + "start": 4405.96, + "end": 4406.78, + "probability": 0.9348 + }, + { + "start": 4406.86, + "end": 4408.04, + "probability": 0.7218 + }, + { + "start": 4408.18, + "end": 4409.5, + "probability": 0.8875 + }, + { + "start": 4409.84, + "end": 4410.74, + "probability": 0.8943 + }, + { + "start": 4410.96, + "end": 4412.42, + "probability": 0.9625 + }, + { + "start": 4412.72, + "end": 4413.86, + "probability": 0.9918 + }, + { + "start": 4414.1, + "end": 4417.9, + "probability": 0.0439 + }, + { + "start": 4417.9, + "end": 4417.9, + "probability": 0.1283 + }, + { + "start": 4417.9, + "end": 4419.18, + "probability": 0.2731 + }, + { + "start": 4421.6, + "end": 4423.34, + "probability": 0.507 + }, + { + "start": 4423.34, + "end": 4424.42, + "probability": 0.7186 + }, + { + "start": 4424.78, + "end": 4425.54, + "probability": 0.9389 + }, + { + "start": 4425.84, + "end": 4427.22, + "probability": 0.9738 + }, + { + "start": 4427.96, + "end": 4428.0, + "probability": 0.1876 + }, + { + "start": 4428.0, + "end": 4431.72, + "probability": 0.9797 + }, + { + "start": 4431.72, + "end": 4435.34, + "probability": 0.9516 + }, + { + "start": 4435.54, + "end": 4436.62, + "probability": 0.3769 + }, + { + "start": 4436.66, + "end": 4438.4, + "probability": 0.8822 + }, + { + "start": 4438.74, + "end": 4440.52, + "probability": 0.9474 + }, + { + "start": 4440.88, + "end": 4446.1, + "probability": 0.9939 + }, + { + "start": 4446.1, + "end": 4450.24, + "probability": 0.9951 + }, + { + "start": 4450.32, + "end": 4452.52, + "probability": 0.672 + }, + { + "start": 4453.18, + "end": 4454.38, + "probability": 0.8135 + }, + { + "start": 4454.58, + "end": 4456.28, + "probability": 0.8826 + }, + { + "start": 4456.64, + "end": 4457.94, + "probability": 0.9982 + }, + { + "start": 4458.18, + "end": 4458.78, + "probability": 0.54 + }, + { + "start": 4459.02, + "end": 4460.64, + "probability": 0.8762 + }, + { + "start": 4460.8, + "end": 4461.94, + "probability": 0.8516 + }, + { + "start": 4462.06, + "end": 4462.82, + "probability": 0.9751 + }, + { + "start": 4462.98, + "end": 4463.52, + "probability": 0.9677 + }, + { + "start": 4463.76, + "end": 4464.24, + "probability": 0.976 + }, + { + "start": 4464.28, + "end": 4464.96, + "probability": 0.9131 + }, + { + "start": 4465.0, + "end": 4465.57, + "probability": 0.979 + }, + { + "start": 4466.2, + "end": 4467.86, + "probability": 0.9854 + }, + { + "start": 4468.04, + "end": 4470.68, + "probability": 0.9291 + }, + { + "start": 4470.94, + "end": 4474.11, + "probability": 0.9893 + }, + { + "start": 4474.52, + "end": 4475.24, + "probability": 0.6045 + }, + { + "start": 4475.62, + "end": 4477.14, + "probability": 0.9191 + }, + { + "start": 4477.38, + "end": 4479.35, + "probability": 0.5941 + }, + { + "start": 4479.86, + "end": 4484.94, + "probability": 0.9761 + }, + { + "start": 4485.28, + "end": 4488.1, + "probability": 0.0135 + }, + { + "start": 4488.1, + "end": 4489.18, + "probability": 0.1569 + }, + { + "start": 4489.24, + "end": 4490.62, + "probability": 0.4383 + }, + { + "start": 4490.68, + "end": 4492.09, + "probability": 0.526 + }, + { + "start": 4492.24, + "end": 4494.88, + "probability": 0.4221 + }, + { + "start": 4495.88, + "end": 4496.14, + "probability": 0.2458 + }, + { + "start": 4496.3, + "end": 4501.16, + "probability": 0.3617 + }, + { + "start": 4501.28, + "end": 4505.5, + "probability": 0.9713 + }, + { + "start": 4505.88, + "end": 4508.42, + "probability": 0.8791 + }, + { + "start": 4508.5, + "end": 4511.58, + "probability": 0.6944 + }, + { + "start": 4512.32, + "end": 4515.19, + "probability": 0.0434 + }, + { + "start": 4515.88, + "end": 4515.88, + "probability": 0.3042 + }, + { + "start": 4515.88, + "end": 4519.02, + "probability": 0.3969 + }, + { + "start": 4519.3, + "end": 4519.96, + "probability": 0.4561 + }, + { + "start": 4520.22, + "end": 4522.46, + "probability": 0.5089 + }, + { + "start": 4522.78, + "end": 4523.12, + "probability": 0.002 + }, + { + "start": 4523.76, + "end": 4524.4, + "probability": 0.0061 + }, + { + "start": 4524.4, + "end": 4524.4, + "probability": 0.0953 + }, + { + "start": 4524.48, + "end": 4526.14, + "probability": 0.6716 + }, + { + "start": 4526.2, + "end": 4529.56, + "probability": 0.9009 + }, + { + "start": 4529.74, + "end": 4531.08, + "probability": 0.88 + }, + { + "start": 4531.26, + "end": 4532.74, + "probability": 0.7087 + }, + { + "start": 4533.18, + "end": 4534.08, + "probability": 0.7233 + }, + { + "start": 4534.12, + "end": 4536.2, + "probability": 0.9684 + }, + { + "start": 4536.3, + "end": 4536.82, + "probability": 0.3755 + }, + { + "start": 4537.76, + "end": 4538.8, + "probability": 0.8469 + }, + { + "start": 4538.96, + "end": 4540.96, + "probability": 0.9728 + }, + { + "start": 4541.0, + "end": 4542.36, + "probability": 0.9736 + }, + { + "start": 4542.36, + "end": 4547.28, + "probability": 0.9417 + }, + { + "start": 4548.54, + "end": 4548.96, + "probability": 0.744 + }, + { + "start": 4548.96, + "end": 4555.54, + "probability": 0.9434 + }, + { + "start": 4555.54, + "end": 4556.31, + "probability": 0.0069 + }, + { + "start": 4556.64, + "end": 4557.46, + "probability": 0.4401 + }, + { + "start": 4557.64, + "end": 4558.58, + "probability": 0.8018 + }, + { + "start": 4558.72, + "end": 4560.06, + "probability": 0.7815 + }, + { + "start": 4560.1, + "end": 4562.44, + "probability": 0.9007 + }, + { + "start": 4562.44, + "end": 4562.98, + "probability": 0.0963 + }, + { + "start": 4562.98, + "end": 4563.62, + "probability": 0.2003 + }, + { + "start": 4563.74, + "end": 4565.8, + "probability": 0.2714 + }, + { + "start": 4565.9, + "end": 4568.74, + "probability": 0.8825 + }, + { + "start": 4568.84, + "end": 4569.8, + "probability": 0.7776 + }, + { + "start": 4569.9, + "end": 4570.86, + "probability": 0.8678 + }, + { + "start": 4571.08, + "end": 4572.88, + "probability": 0.9325 + }, + { + "start": 4573.26, + "end": 4574.92, + "probability": 0.8346 + }, + { + "start": 4575.2, + "end": 4577.8, + "probability": 0.9536 + }, + { + "start": 4578.2, + "end": 4579.36, + "probability": 0.8284 + }, + { + "start": 4580.28, + "end": 4584.76, + "probability": 0.9969 + }, + { + "start": 4585.2, + "end": 4586.12, + "probability": 0.845 + }, + { + "start": 4586.58, + "end": 4587.97, + "probability": 0.9917 + }, + { + "start": 4588.44, + "end": 4588.72, + "probability": 0.0988 + }, + { + "start": 4588.72, + "end": 4590.26, + "probability": 0.9915 + }, + { + "start": 4590.48, + "end": 4591.18, + "probability": 0.8342 + }, + { + "start": 4591.26, + "end": 4595.4, + "probability": 0.9974 + }, + { + "start": 4595.48, + "end": 4596.54, + "probability": 0.7579 + }, + { + "start": 4596.7, + "end": 4597.18, + "probability": 0.8182 + }, + { + "start": 4597.36, + "end": 4598.31, + "probability": 0.8415 + }, + { + "start": 4598.78, + "end": 4599.86, + "probability": 0.7972 + }, + { + "start": 4600.68, + "end": 4603.28, + "probability": 0.9901 + }, + { + "start": 4603.78, + "end": 4607.8, + "probability": 0.999 + }, + { + "start": 4608.34, + "end": 4611.94, + "probability": 0.9943 + }, + { + "start": 4612.5, + "end": 4613.76, + "probability": 0.3286 + }, + { + "start": 4613.76, + "end": 4618.52, + "probability": 0.9832 + }, + { + "start": 4618.52, + "end": 4623.06, + "probability": 0.9945 + }, + { + "start": 4623.3, + "end": 4624.86, + "probability": 0.986 + }, + { + "start": 4625.16, + "end": 4625.88, + "probability": 0.7952 + }, + { + "start": 4626.08, + "end": 4630.04, + "probability": 0.914 + }, + { + "start": 4630.58, + "end": 4631.86, + "probability": 0.7387 + }, + { + "start": 4632.04, + "end": 4632.86, + "probability": 0.1697 + }, + { + "start": 4633.04, + "end": 4633.04, + "probability": 0.0228 + }, + { + "start": 4633.08, + "end": 4633.18, + "probability": 0.6376 + }, + { + "start": 4633.18, + "end": 4634.76, + "probability": 0.7895 + }, + { + "start": 4635.06, + "end": 4636.46, + "probability": 0.6813 + }, + { + "start": 4637.36, + "end": 4637.52, + "probability": 0.0028 + }, + { + "start": 4639.42, + "end": 4639.52, + "probability": 0.026 + }, + { + "start": 4639.52, + "end": 4639.52, + "probability": 0.0346 + }, + { + "start": 4639.52, + "end": 4641.88, + "probability": 0.2401 + }, + { + "start": 4641.88, + "end": 4642.84, + "probability": 0.9573 + }, + { + "start": 4646.16, + "end": 4647.18, + "probability": 0.8788 + }, + { + "start": 4647.76, + "end": 4647.96, + "probability": 0.1715 + }, + { + "start": 4647.96, + "end": 4647.96, + "probability": 0.0698 + }, + { + "start": 4647.96, + "end": 4648.34, + "probability": 0.2726 + }, + { + "start": 4648.34, + "end": 4649.4, + "probability": 0.5271 + }, + { + "start": 4649.9, + "end": 4651.22, + "probability": 0.9932 + }, + { + "start": 4651.68, + "end": 4654.56, + "probability": 0.8042 + }, + { + "start": 4654.68, + "end": 4657.12, + "probability": 0.2255 + }, + { + "start": 4657.38, + "end": 4660.1, + "probability": 0.3116 + }, + { + "start": 4660.26, + "end": 4661.1, + "probability": 0.6215 + }, + { + "start": 4661.14, + "end": 4661.48, + "probability": 0.3486 + }, + { + "start": 4661.48, + "end": 4662.04, + "probability": 0.0963 + }, + { + "start": 4662.04, + "end": 4662.16, + "probability": 0.5382 + }, + { + "start": 4662.36, + "end": 4663.9, + "probability": 0.4853 + }, + { + "start": 4663.98, + "end": 4664.16, + "probability": 0.086 + }, + { + "start": 4664.16, + "end": 4664.16, + "probability": 0.3046 + }, + { + "start": 4664.16, + "end": 4664.16, + "probability": 0.5345 + }, + { + "start": 4664.16, + "end": 4668.5, + "probability": 0.9587 + }, + { + "start": 4668.76, + "end": 4673.22, + "probability": 0.9714 + }, + { + "start": 4673.36, + "end": 4673.52, + "probability": 0.9524 + }, + { + "start": 4673.62, + "end": 4674.71, + "probability": 0.9805 + }, + { + "start": 4675.24, + "end": 4676.04, + "probability": 0.8938 + }, + { + "start": 4676.12, + "end": 4679.81, + "probability": 0.9578 + }, + { + "start": 4680.28, + "end": 4680.38, + "probability": 0.0567 + }, + { + "start": 4680.38, + "end": 4682.42, + "probability": 0.6334 + }, + { + "start": 4682.92, + "end": 4684.5, + "probability": 0.0107 + }, + { + "start": 4684.66, + "end": 4685.7, + "probability": 0.6484 + }, + { + "start": 4686.1, + "end": 4688.9, + "probability": 0.1221 + }, + { + "start": 4689.54, + "end": 4693.56, + "probability": 0.6725 + }, + { + "start": 4694.18, + "end": 4695.64, + "probability": 0.4986 + }, + { + "start": 4696.62, + "end": 4696.62, + "probability": 0.0114 + }, + { + "start": 4696.62, + "end": 4698.38, + "probability": 0.3583 + }, + { + "start": 4698.38, + "end": 4701.9, + "probability": 0.5374 + }, + { + "start": 4702.36, + "end": 4705.0, + "probability": 0.2699 + }, + { + "start": 4705.64, + "end": 4707.64, + "probability": 0.716 + }, + { + "start": 4708.38, + "end": 4712.92, + "probability": 0.8908 + }, + { + "start": 4713.1, + "end": 4717.1, + "probability": 0.9658 + }, + { + "start": 4717.62, + "end": 4720.9, + "probability": 0.9962 + }, + { + "start": 4721.3, + "end": 4724.18, + "probability": 0.9961 + }, + { + "start": 4724.6, + "end": 4725.04, + "probability": 0.0001 + }, + { + "start": 4726.96, + "end": 4727.08, + "probability": 0.0383 + }, + { + "start": 4727.08, + "end": 4727.08, + "probability": 0.0875 + }, + { + "start": 4727.08, + "end": 4730.28, + "probability": 0.8555 + }, + { + "start": 4730.36, + "end": 4731.18, + "probability": 0.6507 + }, + { + "start": 4731.46, + "end": 4735.62, + "probability": 0.9178 + }, + { + "start": 4735.84, + "end": 4737.26, + "probability": 0.9832 + }, + { + "start": 4737.64, + "end": 4738.22, + "probability": 0.0533 + }, + { + "start": 4738.22, + "end": 4738.57, + "probability": 0.0341 + }, + { + "start": 4739.58, + "end": 4740.12, + "probability": 0.5132 + }, + { + "start": 4740.24, + "end": 4741.0, + "probability": 0.8408 + }, + { + "start": 4741.26, + "end": 4741.98, + "probability": 0.9222 + }, + { + "start": 4742.24, + "end": 4744.16, + "probability": 0.9785 + }, + { + "start": 4744.76, + "end": 4744.9, + "probability": 0.0429 + }, + { + "start": 4745.06, + "end": 4746.88, + "probability": 0.7824 + }, + { + "start": 4747.0, + "end": 4748.36, + "probability": 0.7046 + }, + { + "start": 4748.78, + "end": 4749.88, + "probability": 0.8918 + }, + { + "start": 4749.9, + "end": 4751.9, + "probability": 0.8804 + }, + { + "start": 4752.32, + "end": 4754.28, + "probability": 0.9929 + }, + { + "start": 4754.28, + "end": 4754.68, + "probability": 0.3319 + }, + { + "start": 4754.9, + "end": 4757.82, + "probability": 0.9635 + }, + { + "start": 4758.02, + "end": 4761.26, + "probability": 0.9445 + }, + { + "start": 4761.4, + "end": 4763.9, + "probability": 0.9629 + }, + { + "start": 4764.02, + "end": 4766.0, + "probability": 0.9254 + }, + { + "start": 4766.12, + "end": 4767.02, + "probability": 0.9064 + }, + { + "start": 4767.02, + "end": 4769.32, + "probability": 0.7033 + }, + { + "start": 4769.36, + "end": 4770.26, + "probability": 0.4462 + }, + { + "start": 4770.56, + "end": 4771.98, + "probability": 0.7598 + }, + { + "start": 4772.08, + "end": 4773.26, + "probability": 0.6915 + }, + { + "start": 4773.36, + "end": 4775.04, + "probability": 0.9744 + }, + { + "start": 4775.12, + "end": 4776.14, + "probability": 0.9892 + }, + { + "start": 4776.68, + "end": 4778.06, + "probability": 0.7994 + }, + { + "start": 4778.56, + "end": 4780.56, + "probability": 0.517 + }, + { + "start": 4780.66, + "end": 4782.46, + "probability": 0.0655 + }, + { + "start": 4782.46, + "end": 4782.46, + "probability": 0.2131 + }, + { + "start": 4782.46, + "end": 4783.22, + "probability": 0.2502 + }, + { + "start": 4785.06, + "end": 4786.06, + "probability": 0.8914 + }, + { + "start": 4786.12, + "end": 4792.62, + "probability": 0.9758 + }, + { + "start": 4792.9, + "end": 4794.24, + "probability": 0.5935 + }, + { + "start": 4794.56, + "end": 4795.64, + "probability": 0.3632 + }, + { + "start": 4796.12, + "end": 4797.86, + "probability": 0.6166 + }, + { + "start": 4797.92, + "end": 4799.2, + "probability": 0.5491 + }, + { + "start": 4799.72, + "end": 4800.9, + "probability": 0.1666 + }, + { + "start": 4801.62, + "end": 4803.18, + "probability": 0.4587 + }, + { + "start": 4803.86, + "end": 4804.85, + "probability": 0.1142 + }, + { + "start": 4806.42, + "end": 4810.12, + "probability": 0.2754 + }, + { + "start": 4810.3, + "end": 4814.88, + "probability": 0.9286 + }, + { + "start": 4815.04, + "end": 4817.5, + "probability": 0.9878 + }, + { + "start": 4817.78, + "end": 4818.9, + "probability": 0.8001 + }, + { + "start": 4819.14, + "end": 4821.42, + "probability": 0.9963 + }, + { + "start": 4821.62, + "end": 4823.84, + "probability": 0.9822 + }, + { + "start": 4824.3, + "end": 4825.6, + "probability": 0.9795 + }, + { + "start": 4826.0, + "end": 4828.5, + "probability": 0.9631 + }, + { + "start": 4828.84, + "end": 4829.74, + "probability": 0.5171 + }, + { + "start": 4829.98, + "end": 4830.88, + "probability": 0.922 + }, + { + "start": 4831.0, + "end": 4831.2, + "probability": 0.4881 + }, + { + "start": 4831.32, + "end": 4833.12, + "probability": 0.9448 + }, + { + "start": 4833.36, + "end": 4834.72, + "probability": 0.4117 + }, + { + "start": 4834.76, + "end": 4836.34, + "probability": 0.8113 + }, + { + "start": 4837.86, + "end": 4843.3, + "probability": 0.8486 + }, + { + "start": 4843.46, + "end": 4845.8, + "probability": 0.9204 + }, + { + "start": 4845.9, + "end": 4847.19, + "probability": 0.9736 + }, + { + "start": 4847.68, + "end": 4848.38, + "probability": 0.6109 + }, + { + "start": 4848.72, + "end": 4849.84, + "probability": 0.9888 + }, + { + "start": 4850.24, + "end": 4852.66, + "probability": 0.9963 + }, + { + "start": 4852.98, + "end": 4860.68, + "probability": 0.8887 + }, + { + "start": 4861.06, + "end": 4861.78, + "probability": 0.5226 + }, + { + "start": 4862.24, + "end": 4862.66, + "probability": 0.3743 + }, + { + "start": 4862.82, + "end": 4862.92, + "probability": 0.8722 + }, + { + "start": 4863.0, + "end": 4863.78, + "probability": 0.3522 + }, + { + "start": 4863.94, + "end": 4866.82, + "probability": 0.9936 + }, + { + "start": 4867.06, + "end": 4867.82, + "probability": 0.8521 + }, + { + "start": 4867.88, + "end": 4870.52, + "probability": 0.9847 + }, + { + "start": 4870.9, + "end": 4871.92, + "probability": 0.7164 + }, + { + "start": 4872.0, + "end": 4872.16, + "probability": 0.8595 + }, + { + "start": 4872.24, + "end": 4875.6, + "probability": 0.8835 + }, + { + "start": 4875.74, + "end": 4876.56, + "probability": 0.6375 + }, + { + "start": 4877.06, + "end": 4878.82, + "probability": 0.6553 + }, + { + "start": 4878.88, + "end": 4879.45, + "probability": 0.9033 + }, + { + "start": 4880.44, + "end": 4881.08, + "probability": 0.6997 + }, + { + "start": 4881.6, + "end": 4882.56, + "probability": 0.8095 + }, + { + "start": 4882.76, + "end": 4883.5, + "probability": 0.7704 + }, + { + "start": 4883.96, + "end": 4885.14, + "probability": 0.929 + }, + { + "start": 4885.22, + "end": 4890.06, + "probability": 0.6973 + }, + { + "start": 4890.82, + "end": 4893.6, + "probability": 0.9876 + }, + { + "start": 4894.84, + "end": 4896.66, + "probability": 0.8501 + }, + { + "start": 4896.76, + "end": 4898.24, + "probability": 0.924 + }, + { + "start": 4898.36, + "end": 4903.56, + "probability": 0.9892 + }, + { + "start": 4903.9, + "end": 4904.34, + "probability": 0.4636 + }, + { + "start": 4905.02, + "end": 4907.72, + "probability": 0.905 + }, + { + "start": 4908.58, + "end": 4911.54, + "probability": 0.5357 + }, + { + "start": 4911.62, + "end": 4913.94, + "probability": 0.9709 + }, + { + "start": 4915.6, + "end": 4916.44, + "probability": 0.9509 + }, + { + "start": 4916.72, + "end": 4919.94, + "probability": 0.9915 + }, + { + "start": 4920.4, + "end": 4922.02, + "probability": 0.8564 + }, + { + "start": 4922.48, + "end": 4927.92, + "probability": 0.9961 + }, + { + "start": 4928.04, + "end": 4928.9, + "probability": 0.4088 + }, + { + "start": 4928.98, + "end": 4929.4, + "probability": 0.7212 + }, + { + "start": 4929.44, + "end": 4930.62, + "probability": 0.8406 + }, + { + "start": 4930.94, + "end": 4931.72, + "probability": 0.8799 + }, + { + "start": 4931.9, + "end": 4933.3, + "probability": 0.9759 + }, + { + "start": 4933.82, + "end": 4935.7, + "probability": 0.7682 + }, + { + "start": 4935.9, + "end": 4942.24, + "probability": 0.9538 + }, + { + "start": 4942.36, + "end": 4942.86, + "probability": 0.0469 + }, + { + "start": 4942.86, + "end": 4943.82, + "probability": 0.3321 + }, + { + "start": 4944.56, + "end": 4945.72, + "probability": 0.7923 + }, + { + "start": 4945.82, + "end": 4947.01, + "probability": 0.8327 + }, + { + "start": 4947.38, + "end": 4948.54, + "probability": 0.6643 + }, + { + "start": 4948.62, + "end": 4949.37, + "probability": 0.9341 + }, + { + "start": 4949.54, + "end": 4951.36, + "probability": 0.9951 + }, + { + "start": 4952.5, + "end": 4952.66, + "probability": 0.1234 + }, + { + "start": 4952.66, + "end": 4952.94, + "probability": 0.3265 + }, + { + "start": 4953.04, + "end": 4954.9, + "probability": 0.4674 + }, + { + "start": 4955.3, + "end": 4956.44, + "probability": 0.2723 + }, + { + "start": 4956.56, + "end": 4958.56, + "probability": 0.2752 + }, + { + "start": 4958.62, + "end": 4960.26, + "probability": 0.6706 + }, + { + "start": 4960.36, + "end": 4962.0, + "probability": 0.9855 + }, + { + "start": 4962.4, + "end": 4966.84, + "probability": 0.9567 + }, + { + "start": 4967.1, + "end": 4969.18, + "probability": 0.6307 + }, + { + "start": 4970.38, + "end": 4971.12, + "probability": 0.3279 + }, + { + "start": 4972.34, + "end": 4972.88, + "probability": 0.7778 + }, + { + "start": 4973.1, + "end": 4975.39, + "probability": 0.9923 + }, + { + "start": 4975.9, + "end": 4976.98, + "probability": 0.9264 + }, + { + "start": 4977.04, + "end": 4978.33, + "probability": 0.9844 + }, + { + "start": 4978.68, + "end": 4980.0, + "probability": 0.9782 + }, + { + "start": 4980.14, + "end": 4981.44, + "probability": 0.9868 + }, + { + "start": 4981.6, + "end": 4983.88, + "probability": 0.9969 + }, + { + "start": 4983.98, + "end": 4984.84, + "probability": 0.293 + }, + { + "start": 4985.1, + "end": 4986.4, + "probability": 0.4776 + }, + { + "start": 4986.6, + "end": 4987.94, + "probability": 0.6305 + }, + { + "start": 4988.02, + "end": 4989.04, + "probability": 0.1648 + }, + { + "start": 4989.04, + "end": 4989.22, + "probability": 0.3134 + }, + { + "start": 4989.26, + "end": 4993.3, + "probability": 0.4311 + }, + { + "start": 4993.52, + "end": 5000.08, + "probability": 0.8458 + }, + { + "start": 5000.2, + "end": 5000.88, + "probability": 0.4594 + }, + { + "start": 5001.26, + "end": 5003.08, + "probability": 0.9966 + }, + { + "start": 5003.18, + "end": 5004.28, + "probability": 0.4756 + }, + { + "start": 5004.44, + "end": 5006.32, + "probability": 0.9892 + }, + { + "start": 5006.56, + "end": 5008.24, + "probability": 0.8713 + }, + { + "start": 5008.44, + "end": 5008.6, + "probability": 0.5283 + }, + { + "start": 5008.64, + "end": 5009.56, + "probability": 0.7336 + }, + { + "start": 5009.64, + "end": 5012.68, + "probability": 0.7487 + }, + { + "start": 5012.9, + "end": 5014.63, + "probability": 0.9383 + }, + { + "start": 5015.64, + "end": 5017.86, + "probability": 0.9795 + }, + { + "start": 5018.1, + "end": 5021.24, + "probability": 0.9963 + }, + { + "start": 5021.48, + "end": 5023.46, + "probability": 0.6922 + }, + { + "start": 5023.74, + "end": 5027.6, + "probability": 0.9906 + }, + { + "start": 5027.82, + "end": 5029.86, + "probability": 0.9884 + }, + { + "start": 5030.06, + "end": 5030.92, + "probability": 0.987 + }, + { + "start": 5030.92, + "end": 5033.62, + "probability": 0.9953 + }, + { + "start": 5033.94, + "end": 5037.72, + "probability": 0.9893 + }, + { + "start": 5038.2, + "end": 5039.8, + "probability": 0.8042 + }, + { + "start": 5040.04, + "end": 5042.82, + "probability": 0.9882 + }, + { + "start": 5044.0, + "end": 5044.68, + "probability": 0.678 + }, + { + "start": 5044.86, + "end": 5046.08, + "probability": 0.8481 + }, + { + "start": 5046.72, + "end": 5051.76, + "probability": 0.8659 + }, + { + "start": 5053.12, + "end": 5054.08, + "probability": 0.4945 + }, + { + "start": 5055.06, + "end": 5055.18, + "probability": 0.3611 + }, + { + "start": 5055.18, + "end": 5056.76, + "probability": 0.6781 + }, + { + "start": 5057.08, + "end": 5058.46, + "probability": 0.5507 + }, + { + "start": 5060.5, + "end": 5070.94, + "probability": 0.9537 + }, + { + "start": 5071.58, + "end": 5075.08, + "probability": 0.8447 + }, + { + "start": 5075.12, + "end": 5080.86, + "probability": 0.36 + }, + { + "start": 5080.88, + "end": 5081.46, + "probability": 0.7682 + }, + { + "start": 5085.46, + "end": 5086.38, + "probability": 0.8885 + }, + { + "start": 5087.46, + "end": 5089.78, + "probability": 0.5657 + }, + { + "start": 5091.5, + "end": 5095.48, + "probability": 0.6844 + }, + { + "start": 5096.7, + "end": 5101.56, + "probability": 0.9059 + }, + { + "start": 5102.04, + "end": 5104.22, + "probability": 0.8094 + }, + { + "start": 5105.25, + "end": 5108.74, + "probability": 0.9108 + }, + { + "start": 5111.44, + "end": 5112.88, + "probability": 0.88 + }, + { + "start": 5113.16, + "end": 5114.0, + "probability": 0.8778 + }, + { + "start": 5115.34, + "end": 5117.14, + "probability": 0.0256 + }, + { + "start": 5117.14, + "end": 5117.94, + "probability": 0.0712 + }, + { + "start": 5118.04, + "end": 5121.9, + "probability": 0.2413 + }, + { + "start": 5122.88, + "end": 5124.4, + "probability": 0.6805 + }, + { + "start": 5124.5, + "end": 5125.68, + "probability": 0.7596 + }, + { + "start": 5125.74, + "end": 5127.12, + "probability": 0.9798 + }, + { + "start": 5127.16, + "end": 5128.3, + "probability": 0.8809 + }, + { + "start": 5128.42, + "end": 5130.9, + "probability": 0.9224 + }, + { + "start": 5132.7, + "end": 5133.32, + "probability": 0.8311 + }, + { + "start": 5134.36, + "end": 5135.2, + "probability": 0.9919 + }, + { + "start": 5135.8, + "end": 5137.98, + "probability": 0.9992 + }, + { + "start": 5139.58, + "end": 5140.32, + "probability": 0.7376 + }, + { + "start": 5141.96, + "end": 5145.8, + "probability": 0.9881 + }, + { + "start": 5147.08, + "end": 5148.68, + "probability": 0.7292 + }, + { + "start": 5148.82, + "end": 5153.38, + "probability": 0.9929 + }, + { + "start": 5153.96, + "end": 5157.7, + "probability": 0.9968 + }, + { + "start": 5157.7, + "end": 5160.34, + "probability": 0.9978 + }, + { + "start": 5161.38, + "end": 5163.2, + "probability": 0.9644 + }, + { + "start": 5163.82, + "end": 5164.14, + "probability": 0.7233 + }, + { + "start": 5164.42, + "end": 5168.12, + "probability": 0.9446 + }, + { + "start": 5169.42, + "end": 5169.78, + "probability": 0.8219 + }, + { + "start": 5169.9, + "end": 5170.28, + "probability": 0.7398 + }, + { + "start": 5170.36, + "end": 5175.88, + "probability": 0.9668 + }, + { + "start": 5177.02, + "end": 5180.28, + "probability": 0.9854 + }, + { + "start": 5180.28, + "end": 5183.46, + "probability": 0.999 + }, + { + "start": 5185.12, + "end": 5187.54, + "probability": 0.7978 + }, + { + "start": 5187.92, + "end": 5188.4, + "probability": 0.4808 + }, + { + "start": 5188.54, + "end": 5190.24, + "probability": 0.9466 + }, + { + "start": 5193.18, + "end": 5196.42, + "probability": 0.8888 + }, + { + "start": 5196.58, + "end": 5199.18, + "probability": 0.8872 + }, + { + "start": 5201.04, + "end": 5203.86, + "probability": 0.7226 + }, + { + "start": 5205.2, + "end": 5206.1, + "probability": 0.9885 + }, + { + "start": 5206.78, + "end": 5210.04, + "probability": 0.9977 + }, + { + "start": 5210.3, + "end": 5211.24, + "probability": 0.9473 + }, + { + "start": 5212.32, + "end": 5215.26, + "probability": 0.8968 + }, + { + "start": 5215.88, + "end": 5218.04, + "probability": 0.8004 + }, + { + "start": 5218.86, + "end": 5220.26, + "probability": 0.9456 + }, + { + "start": 5222.1, + "end": 5222.92, + "probability": 0.5953 + }, + { + "start": 5224.36, + "end": 5227.0, + "probability": 0.8569 + }, + { + "start": 5227.02, + "end": 5228.43, + "probability": 0.6523 + }, + { + "start": 5228.76, + "end": 5229.7, + "probability": 0.6954 + }, + { + "start": 5231.64, + "end": 5234.7, + "probability": 0.9807 + }, + { + "start": 5235.42, + "end": 5237.52, + "probability": 0.6216 + }, + { + "start": 5238.64, + "end": 5239.36, + "probability": 0.7065 + }, + { + "start": 5239.42, + "end": 5245.4, + "probability": 0.9672 + }, + { + "start": 5246.22, + "end": 5247.22, + "probability": 0.0175 + }, + { + "start": 5247.8, + "end": 5249.3, + "probability": 0.4335 + }, + { + "start": 5249.38, + "end": 5251.9, + "probability": 0.8866 + }, + { + "start": 5252.42, + "end": 5255.52, + "probability": 0.6505 + }, + { + "start": 5256.78, + "end": 5258.56, + "probability": 0.9721 + }, + { + "start": 5259.0, + "end": 5261.08, + "probability": 0.9912 + }, + { + "start": 5261.36, + "end": 5262.14, + "probability": 0.0724 + }, + { + "start": 5262.14, + "end": 5264.58, + "probability": 0.1707 + }, + { + "start": 5264.58, + "end": 5269.22, + "probability": 0.7878 + }, + { + "start": 5271.05, + "end": 5276.78, + "probability": 0.9958 + }, + { + "start": 5277.02, + "end": 5277.79, + "probability": 0.9381 + }, + { + "start": 5278.36, + "end": 5279.16, + "probability": 0.8838 + }, + { + "start": 5279.62, + "end": 5280.36, + "probability": 0.8435 + }, + { + "start": 5281.04, + "end": 5283.92, + "probability": 0.9219 + }, + { + "start": 5284.54, + "end": 5286.77, + "probability": 0.9746 + }, + { + "start": 5287.66, + "end": 5292.1, + "probability": 0.8459 + }, + { + "start": 5292.12, + "end": 5292.46, + "probability": 0.6301 + }, + { + "start": 5292.96, + "end": 5293.64, + "probability": 0.7707 + }, + { + "start": 5294.44, + "end": 5297.02, + "probability": 0.8525 + }, + { + "start": 5298.25, + "end": 5300.98, + "probability": 0.5093 + }, + { + "start": 5302.08, + "end": 5303.3, + "probability": 0.7079 + }, + { + "start": 5307.4, + "end": 5307.74, + "probability": 0.5726 + }, + { + "start": 5319.82, + "end": 5320.16, + "probability": 0.3419 + }, + { + "start": 5320.44, + "end": 5321.14, + "probability": 0.7521 + }, + { + "start": 5322.6, + "end": 5325.52, + "probability": 0.6623 + }, + { + "start": 5327.16, + "end": 5329.4, + "probability": 0.9258 + }, + { + "start": 5329.52, + "end": 5330.34, + "probability": 0.7352 + }, + { + "start": 5330.94, + "end": 5331.34, + "probability": 0.6796 + }, + { + "start": 5332.6, + "end": 5333.28, + "probability": 0.7022 + }, + { + "start": 5333.42, + "end": 5333.84, + "probability": 0.4608 + }, + { + "start": 5333.9, + "end": 5334.22, + "probability": 0.7543 + }, + { + "start": 5334.36, + "end": 5334.88, + "probability": 0.4456 + }, + { + "start": 5334.98, + "end": 5335.9, + "probability": 0.8469 + }, + { + "start": 5336.06, + "end": 5338.82, + "probability": 0.6962 + }, + { + "start": 5339.8, + "end": 5341.62, + "probability": 0.4538 + }, + { + "start": 5341.74, + "end": 5342.04, + "probability": 0.49 + }, + { + "start": 5342.04, + "end": 5343.22, + "probability": 0.8138 + }, + { + "start": 5343.78, + "end": 5346.94, + "probability": 0.9893 + }, + { + "start": 5346.94, + "end": 5351.74, + "probability": 0.8665 + }, + { + "start": 5351.8, + "end": 5352.48, + "probability": 0.9827 + }, + { + "start": 5353.74, + "end": 5356.32, + "probability": 0.9956 + }, + { + "start": 5357.62, + "end": 5359.0, + "probability": 0.9924 + }, + { + "start": 5361.08, + "end": 5366.68, + "probability": 0.9536 + }, + { + "start": 5367.76, + "end": 5370.68, + "probability": 0.9539 + }, + { + "start": 5371.98, + "end": 5374.58, + "probability": 0.9988 + }, + { + "start": 5378.42, + "end": 5380.08, + "probability": 0.874 + }, + { + "start": 5380.2, + "end": 5380.88, + "probability": 0.5826 + }, + { + "start": 5381.02, + "end": 5381.32, + "probability": 0.7239 + }, + { + "start": 5381.42, + "end": 5381.94, + "probability": 0.4741 + }, + { + "start": 5382.08, + "end": 5383.12, + "probability": 0.7625 + }, + { + "start": 5383.9, + "end": 5385.38, + "probability": 0.9956 + }, + { + "start": 5387.9, + "end": 5389.06, + "probability": 0.958 + }, + { + "start": 5390.08, + "end": 5392.02, + "probability": 0.0022 + }, + { + "start": 5392.94, + "end": 5395.06, + "probability": 0.0319 + }, + { + "start": 5401.19, + "end": 5402.16, + "probability": 0.8141 + }, + { + "start": 5402.16, + "end": 5403.76, + "probability": 0.8191 + }, + { + "start": 5403.76, + "end": 5403.78, + "probability": 0.0103 + }, + { + "start": 5403.78, + "end": 5403.78, + "probability": 0.004 + }, + { + "start": 5403.78, + "end": 5404.12, + "probability": 0.233 + }, + { + "start": 5404.14, + "end": 5405.32, + "probability": 0.5861 + }, + { + "start": 5405.96, + "end": 5407.11, + "probability": 0.981 + }, + { + "start": 5407.8, + "end": 5410.88, + "probability": 0.6789 + }, + { + "start": 5411.42, + "end": 5415.88, + "probability": 0.8 + }, + { + "start": 5416.24, + "end": 5416.74, + "probability": 0.9784 + }, + { + "start": 5416.86, + "end": 5416.98, + "probability": 0.6346 + }, + { + "start": 5417.04, + "end": 5417.98, + "probability": 0.969 + }, + { + "start": 5418.0, + "end": 5419.13, + "probability": 0.9557 + }, + { + "start": 5420.84, + "end": 5423.27, + "probability": 0.9427 + }, + { + "start": 5424.22, + "end": 5425.72, + "probability": 0.9964 + }, + { + "start": 5426.74, + "end": 5429.04, + "probability": 0.9834 + }, + { + "start": 5429.3, + "end": 5433.88, + "probability": 0.8943 + }, + { + "start": 5435.2, + "end": 5435.98, + "probability": 0.3588 + }, + { + "start": 5436.24, + "end": 5437.64, + "probability": 0.9797 + }, + { + "start": 5438.34, + "end": 5438.82, + "probability": 0.7373 + }, + { + "start": 5438.82, + "end": 5439.58, + "probability": 0.7284 + }, + { + "start": 5439.64, + "end": 5440.36, + "probability": 0.7432 + }, + { + "start": 5440.42, + "end": 5441.68, + "probability": 0.5397 + }, + { + "start": 5441.84, + "end": 5443.58, + "probability": 0.7514 + }, + { + "start": 5443.68, + "end": 5444.28, + "probability": 0.2048 + }, + { + "start": 5446.38, + "end": 5447.14, + "probability": 0.3837 + }, + { + "start": 5448.42, + "end": 5448.94, + "probability": 0.6814 + }, + { + "start": 5448.98, + "end": 5451.1, + "probability": 0.9402 + }, + { + "start": 5451.26, + "end": 5452.03, + "probability": 0.5683 + }, + { + "start": 5453.46, + "end": 5455.14, + "probability": 0.0064 + }, + { + "start": 5455.14, + "end": 5456.46, + "probability": 0.1519 + }, + { + "start": 5456.76, + "end": 5462.08, + "probability": 0.0194 + }, + { + "start": 5467.56, + "end": 5469.84, + "probability": 0.1948 + }, + { + "start": 5484.32, + "end": 5485.1, + "probability": 0.4902 + }, + { + "start": 5485.22, + "end": 5486.46, + "probability": 0.8277 + }, + { + "start": 5488.22, + "end": 5490.34, + "probability": 0.8356 + }, + { + "start": 5492.9, + "end": 5494.82, + "probability": 0.8269 + }, + { + "start": 5495.04, + "end": 5498.96, + "probability": 0.9319 + }, + { + "start": 5499.62, + "end": 5501.4, + "probability": 0.8496 + }, + { + "start": 5502.3, + "end": 5509.9, + "probability": 0.8906 + }, + { + "start": 5511.06, + "end": 5518.42, + "probability": 0.9669 + }, + { + "start": 5520.04, + "end": 5521.48, + "probability": 0.9507 + }, + { + "start": 5522.36, + "end": 5524.16, + "probability": 0.8113 + }, + { + "start": 5525.26, + "end": 5526.32, + "probability": 0.7358 + }, + { + "start": 5526.38, + "end": 5527.7, + "probability": 0.9952 + }, + { + "start": 5528.2, + "end": 5529.39, + "probability": 0.9632 + }, + { + "start": 5530.06, + "end": 5532.56, + "probability": 0.9079 + }, + { + "start": 5533.66, + "end": 5534.76, + "probability": 0.7186 + }, + { + "start": 5535.48, + "end": 5537.13, + "probability": 0.9938 + }, + { + "start": 5539.04, + "end": 5539.86, + "probability": 0.995 + }, + { + "start": 5541.28, + "end": 5546.4, + "probability": 0.9799 + }, + { + "start": 5547.32, + "end": 5553.94, + "probability": 0.9766 + }, + { + "start": 5554.82, + "end": 5556.54, + "probability": 0.968 + }, + { + "start": 5557.26, + "end": 5558.87, + "probability": 0.9966 + }, + { + "start": 5559.68, + "end": 5562.88, + "probability": 0.9604 + }, + { + "start": 5563.66, + "end": 5567.48, + "probability": 0.7605 + }, + { + "start": 5568.4, + "end": 5572.32, + "probability": 0.993 + }, + { + "start": 5573.28, + "end": 5575.7, + "probability": 0.9093 + }, + { + "start": 5576.38, + "end": 5578.13, + "probability": 0.8023 + }, + { + "start": 5578.92, + "end": 5580.04, + "probability": 0.9248 + }, + { + "start": 5581.06, + "end": 5582.82, + "probability": 0.9969 + }, + { + "start": 5583.36, + "end": 5584.64, + "probability": 0.8906 + }, + { + "start": 5585.82, + "end": 5587.64, + "probability": 0.8667 + }, + { + "start": 5588.48, + "end": 5589.58, + "probability": 0.8499 + }, + { + "start": 5589.72, + "end": 5590.76, + "probability": 0.8391 + }, + { + "start": 5591.16, + "end": 5594.06, + "probability": 0.9243 + }, + { + "start": 5596.02, + "end": 5598.9, + "probability": 0.7583 + }, + { + "start": 5599.74, + "end": 5601.32, + "probability": 0.9896 + }, + { + "start": 5602.34, + "end": 5603.38, + "probability": 0.8985 + }, + { + "start": 5603.4, + "end": 5608.02, + "probability": 0.993 + }, + { + "start": 5609.04, + "end": 5611.19, + "probability": 0.998 + }, + { + "start": 5612.12, + "end": 5615.42, + "probability": 0.9974 + }, + { + "start": 5616.18, + "end": 5619.16, + "probability": 0.9457 + }, + { + "start": 5620.02, + "end": 5623.08, + "probability": 0.9863 + }, + { + "start": 5623.68, + "end": 5628.54, + "probability": 0.9925 + }, + { + "start": 5629.21, + "end": 5631.18, + "probability": 0.8691 + }, + { + "start": 5631.72, + "end": 5633.1, + "probability": 0.9141 + }, + { + "start": 5633.18, + "end": 5633.74, + "probability": 0.7916 + }, + { + "start": 5633.74, + "end": 5634.56, + "probability": 0.5232 + }, + { + "start": 5634.84, + "end": 5636.24, + "probability": 0.9956 + }, + { + "start": 5637.06, + "end": 5637.8, + "probability": 0.7376 + }, + { + "start": 5638.56, + "end": 5643.74, + "probability": 0.7474 + }, + { + "start": 5644.7, + "end": 5645.96, + "probability": 0.9906 + }, + { + "start": 5647.82, + "end": 5651.62, + "probability": 0.6293 + }, + { + "start": 5652.46, + "end": 5653.8, + "probability": 0.5177 + }, + { + "start": 5654.76, + "end": 5656.46, + "probability": 0.8192 + }, + { + "start": 5657.98, + "end": 5659.34, + "probability": 0.7205 + }, + { + "start": 5661.24, + "end": 5663.68, + "probability": 0.8702 + }, + { + "start": 5664.8, + "end": 5672.18, + "probability": 0.9525 + }, + { + "start": 5673.42, + "end": 5675.52, + "probability": 0.9677 + }, + { + "start": 5677.48, + "end": 5679.64, + "probability": 0.9849 + }, + { + "start": 5681.02, + "end": 5682.88, + "probability": 0.963 + }, + { + "start": 5683.94, + "end": 5687.04, + "probability": 0.7535 + }, + { + "start": 5687.84, + "end": 5690.22, + "probability": 0.9976 + }, + { + "start": 5690.74, + "end": 5693.1, + "probability": 0.7671 + }, + { + "start": 5693.66, + "end": 5696.04, + "probability": 0.9508 + }, + { + "start": 5696.08, + "end": 5700.24, + "probability": 0.8721 + }, + { + "start": 5700.3, + "end": 5700.72, + "probability": 0.3037 + }, + { + "start": 5700.72, + "end": 5701.0, + "probability": 0.8028 + }, + { + "start": 5701.02, + "end": 5701.9, + "probability": 0.5792 + }, + { + "start": 5702.6, + "end": 5706.46, + "probability": 0.9581 + }, + { + "start": 5706.82, + "end": 5710.86, + "probability": 0.9346 + }, + { + "start": 5711.88, + "end": 5713.2, + "probability": 0.8594 + }, + { + "start": 5713.78, + "end": 5720.84, + "probability": 0.8551 + }, + { + "start": 5720.96, + "end": 5722.08, + "probability": 0.9159 + }, + { + "start": 5722.9, + "end": 5726.46, + "probability": 0.9707 + }, + { + "start": 5726.92, + "end": 5726.92, + "probability": 0.0073 + }, + { + "start": 5726.92, + "end": 5727.7, + "probability": 0.7672 + }, + { + "start": 5728.18, + "end": 5734.36, + "probability": 0.7502 + }, + { + "start": 5734.82, + "end": 5736.2, + "probability": 0.6769 + }, + { + "start": 5736.32, + "end": 5738.24, + "probability": 0.6754 + }, + { + "start": 5738.32, + "end": 5740.7, + "probability": 0.8061 + }, + { + "start": 5752.64, + "end": 5754.72, + "probability": 0.6617 + }, + { + "start": 5755.6, + "end": 5758.89, + "probability": 0.9863 + }, + { + "start": 5759.32, + "end": 5762.58, + "probability": 0.8688 + }, + { + "start": 5762.82, + "end": 5764.14, + "probability": 0.6907 + }, + { + "start": 5765.2, + "end": 5768.46, + "probability": 0.8054 + }, + { + "start": 5768.46, + "end": 5773.72, + "probability": 0.9994 + }, + { + "start": 5775.2, + "end": 5776.76, + "probability": 0.9993 + }, + { + "start": 5777.66, + "end": 5781.62, + "probability": 0.9998 + }, + { + "start": 5782.36, + "end": 5783.74, + "probability": 0.9984 + }, + { + "start": 5785.06, + "end": 5789.0, + "probability": 0.9936 + }, + { + "start": 5789.52, + "end": 5792.44, + "probability": 0.9295 + }, + { + "start": 5793.04, + "end": 5794.78, + "probability": 0.5843 + }, + { + "start": 5795.62, + "end": 5797.28, + "probability": 0.9329 + }, + { + "start": 5797.66, + "end": 5800.82, + "probability": 0.8914 + }, + { + "start": 5800.84, + "end": 5801.72, + "probability": 0.8039 + }, + { + "start": 5802.68, + "end": 5805.32, + "probability": 0.9971 + }, + { + "start": 5805.98, + "end": 5807.04, + "probability": 0.9691 + }, + { + "start": 5807.62, + "end": 5808.72, + "probability": 0.9401 + }, + { + "start": 5809.3, + "end": 5810.62, + "probability": 0.9713 + }, + { + "start": 5811.64, + "end": 5817.72, + "probability": 0.9695 + }, + { + "start": 5818.96, + "end": 5822.88, + "probability": 0.9955 + }, + { + "start": 5822.88, + "end": 5826.68, + "probability": 0.9954 + }, + { + "start": 5828.04, + "end": 5829.06, + "probability": 0.9076 + }, + { + "start": 5829.92, + "end": 5831.16, + "probability": 0.9356 + }, + { + "start": 5832.0, + "end": 5833.9, + "probability": 0.8607 + }, + { + "start": 5835.12, + "end": 5839.66, + "probability": 0.8358 + }, + { + "start": 5840.22, + "end": 5845.58, + "probability": 0.9951 + }, + { + "start": 5846.08, + "end": 5849.28, + "probability": 0.9632 + }, + { + "start": 5850.08, + "end": 5852.94, + "probability": 0.9966 + }, + { + "start": 5853.72, + "end": 5857.2, + "probability": 0.8532 + }, + { + "start": 5857.48, + "end": 5857.98, + "probability": 0.5632 + }, + { + "start": 5858.54, + "end": 5860.58, + "probability": 0.8941 + }, + { + "start": 5860.66, + "end": 5862.1, + "probability": 0.9443 + }, + { + "start": 5873.04, + "end": 5873.18, + "probability": 0.686 + }, + { + "start": 5873.18, + "end": 5874.74, + "probability": 0.6157 + }, + { + "start": 5875.12, + "end": 5875.78, + "probability": 0.4443 + }, + { + "start": 5877.28, + "end": 5879.12, + "probability": 0.8552 + }, + { + "start": 5883.9, + "end": 5885.76, + "probability": 0.7813 + }, + { + "start": 5887.24, + "end": 5888.02, + "probability": 0.8182 + }, + { + "start": 5889.36, + "end": 5890.42, + "probability": 0.8176 + }, + { + "start": 5897.44, + "end": 5899.6, + "probability": 0.7525 + }, + { + "start": 5900.3, + "end": 5902.38, + "probability": 0.9811 + }, + { + "start": 5902.82, + "end": 5903.1, + "probability": 0.8133 + }, + { + "start": 5904.58, + "end": 5906.68, + "probability": 0.9984 + }, + { + "start": 5908.3, + "end": 5909.7, + "probability": 0.9944 + }, + { + "start": 5911.02, + "end": 5911.98, + "probability": 0.9603 + }, + { + "start": 5913.16, + "end": 5914.06, + "probability": 0.928 + }, + { + "start": 5914.14, + "end": 5916.12, + "probability": 0.8326 + }, + { + "start": 5916.26, + "end": 5917.34, + "probability": 0.9951 + }, + { + "start": 5918.86, + "end": 5920.18, + "probability": 0.8503 + }, + { + "start": 5921.1, + "end": 5922.36, + "probability": 0.9476 + }, + { + "start": 5923.06, + "end": 5923.78, + "probability": 0.9653 + }, + { + "start": 5924.52, + "end": 5925.56, + "probability": 0.6585 + }, + { + "start": 5926.32, + "end": 5930.16, + "probability": 0.9146 + }, + { + "start": 5931.4, + "end": 5931.74, + "probability": 0.156 + }, + { + "start": 5932.2, + "end": 5933.24, + "probability": 0.9434 + }, + { + "start": 5934.06, + "end": 5935.18, + "probability": 0.9301 + }, + { + "start": 5936.52, + "end": 5938.78, + "probability": 0.9841 + }, + { + "start": 5940.22, + "end": 5944.42, + "probability": 0.9867 + }, + { + "start": 5945.8, + "end": 5946.97, + "probability": 0.9919 + }, + { + "start": 5948.08, + "end": 5951.92, + "probability": 0.9976 + }, + { + "start": 5952.1, + "end": 5955.38, + "probability": 0.9962 + }, + { + "start": 5956.1, + "end": 5956.78, + "probability": 0.8615 + }, + { + "start": 5958.14, + "end": 5960.06, + "probability": 0.9385 + }, + { + "start": 5961.98, + "end": 5966.36, + "probability": 0.8163 + }, + { + "start": 5966.8, + "end": 5970.02, + "probability": 0.9855 + }, + { + "start": 5970.14, + "end": 5970.54, + "probability": 0.8281 + }, + { + "start": 5970.62, + "end": 5971.7, + "probability": 0.8678 + }, + { + "start": 5971.78, + "end": 5972.4, + "probability": 0.7751 + }, + { + "start": 5974.08, + "end": 5977.1, + "probability": 0.9971 + }, + { + "start": 5977.1, + "end": 5979.38, + "probability": 0.9992 + }, + { + "start": 5980.26, + "end": 5980.74, + "probability": 0.9193 + }, + { + "start": 5982.02, + "end": 5983.42, + "probability": 0.8551 + }, + { + "start": 5983.7, + "end": 5984.96, + "probability": 0.9487 + }, + { + "start": 5985.28, + "end": 5986.68, + "probability": 0.9956 + }, + { + "start": 5987.62, + "end": 5989.24, + "probability": 0.9409 + }, + { + "start": 5989.92, + "end": 5990.96, + "probability": 0.6626 + }, + { + "start": 5991.06, + "end": 5992.24, + "probability": 0.9469 + }, + { + "start": 5992.7, + "end": 5993.0, + "probability": 0.916 + }, + { + "start": 5993.36, + "end": 5994.14, + "probability": 0.9785 + }, + { + "start": 5994.16, + "end": 5995.12, + "probability": 0.7722 + }, + { + "start": 5996.1, + "end": 5997.9, + "probability": 0.9912 + }, + { + "start": 5999.56, + "end": 6001.86, + "probability": 0.9937 + }, + { + "start": 6005.12, + "end": 6006.28, + "probability": 0.9046 + }, + { + "start": 6007.7, + "end": 6009.72, + "probability": 0.9913 + }, + { + "start": 6011.32, + "end": 6012.74, + "probability": 0.8116 + }, + { + "start": 6013.3, + "end": 6018.3, + "probability": 0.8877 + }, + { + "start": 6018.74, + "end": 6021.92, + "probability": 0.9003 + }, + { + "start": 6023.02, + "end": 6026.4, + "probability": 0.9199 + }, + { + "start": 6028.06, + "end": 6030.5, + "probability": 0.9041 + }, + { + "start": 6032.42, + "end": 6032.54, + "probability": 0.8201 + }, + { + "start": 6032.6, + "end": 6032.96, + "probability": 0.9033 + }, + { + "start": 6033.08, + "end": 6034.7, + "probability": 0.937 + }, + { + "start": 6035.02, + "end": 6037.24, + "probability": 0.9822 + }, + { + "start": 6037.6, + "end": 6040.24, + "probability": 0.9922 + }, + { + "start": 6040.52, + "end": 6042.76, + "probability": 0.8563 + }, + { + "start": 6043.06, + "end": 6044.26, + "probability": 0.545 + }, + { + "start": 6044.98, + "end": 6046.01, + "probability": 0.9868 + }, + { + "start": 6046.86, + "end": 6047.83, + "probability": 0.9807 + }, + { + "start": 6048.22, + "end": 6049.28, + "probability": 0.4941 + }, + { + "start": 6049.74, + "end": 6052.0, + "probability": 0.9094 + }, + { + "start": 6052.1, + "end": 6053.25, + "probability": 0.6973 + }, + { + "start": 6053.94, + "end": 6055.34, + "probability": 0.8938 + }, + { + "start": 6055.4, + "end": 6057.42, + "probability": 0.9862 + }, + { + "start": 6057.8, + "end": 6060.08, + "probability": 0.9865 + }, + { + "start": 6060.1, + "end": 6064.02, + "probability": 0.9094 + }, + { + "start": 6064.34, + "end": 6068.98, + "probability": 0.746 + }, + { + "start": 6070.26, + "end": 6071.8, + "probability": 0.916 + }, + { + "start": 6072.0, + "end": 6072.48, + "probability": 0.8674 + }, + { + "start": 6072.58, + "end": 6074.58, + "probability": 0.9917 + }, + { + "start": 6074.88, + "end": 6077.22, + "probability": 0.9655 + }, + { + "start": 6077.24, + "end": 6078.68, + "probability": 0.9932 + }, + { + "start": 6079.46, + "end": 6082.82, + "probability": 0.9932 + }, + { + "start": 6083.12, + "end": 6085.76, + "probability": 0.7616 + }, + { + "start": 6086.72, + "end": 6091.9, + "probability": 0.9539 + }, + { + "start": 6093.2, + "end": 6095.3, + "probability": 0.9934 + }, + { + "start": 6095.66, + "end": 6099.4, + "probability": 0.0975 + }, + { + "start": 6100.56, + "end": 6103.24, + "probability": 0.9888 + }, + { + "start": 6105.1, + "end": 6107.98, + "probability": 0.9771 + }, + { + "start": 6107.98, + "end": 6110.5, + "probability": 0.9976 + }, + { + "start": 6111.34, + "end": 6114.12, + "probability": 0.9823 + }, + { + "start": 6114.9, + "end": 6116.8, + "probability": 0.9142 + }, + { + "start": 6116.92, + "end": 6118.5, + "probability": 0.5998 + }, + { + "start": 6119.12, + "end": 6120.66, + "probability": 0.7947 + }, + { + "start": 6121.32, + "end": 6121.88, + "probability": 0.9818 + }, + { + "start": 6123.42, + "end": 6124.02, + "probability": 0.5264 + }, + { + "start": 6124.86, + "end": 6126.5, + "probability": 0.7742 + }, + { + "start": 6126.66, + "end": 6129.26, + "probability": 0.978 + }, + { + "start": 6129.6, + "end": 6130.42, + "probability": 0.6683 + }, + { + "start": 6130.48, + "end": 6131.98, + "probability": 0.6291 + }, + { + "start": 6132.8, + "end": 6134.0, + "probability": 0.9729 + }, + { + "start": 6134.94, + "end": 6136.14, + "probability": 0.9856 + }, + { + "start": 6136.26, + "end": 6138.96, + "probability": 0.895 + }, + { + "start": 6139.84, + "end": 6142.0, + "probability": 0.9263 + }, + { + "start": 6142.52, + "end": 6143.56, + "probability": 0.7336 + }, + { + "start": 6144.34, + "end": 6145.96, + "probability": 0.7524 + }, + { + "start": 6146.7, + "end": 6148.46, + "probability": 0.9604 + }, + { + "start": 6148.52, + "end": 6150.78, + "probability": 0.806 + }, + { + "start": 6151.48, + "end": 6153.51, + "probability": 0.7648 + }, + { + "start": 6153.86, + "end": 6154.76, + "probability": 0.8485 + }, + { + "start": 6169.62, + "end": 6170.86, + "probability": 0.5224 + }, + { + "start": 6170.88, + "end": 6172.14, + "probability": 0.637 + }, + { + "start": 6172.24, + "end": 6175.92, + "probability": 0.9362 + }, + { + "start": 6176.56, + "end": 6177.0, + "probability": 0.7672 + }, + { + "start": 6177.0, + "end": 6179.54, + "probability": 0.8308 + }, + { + "start": 6179.68, + "end": 6180.36, + "probability": 0.9393 + }, + { + "start": 6181.44, + "end": 6182.4, + "probability": 0.5499 + }, + { + "start": 6183.44, + "end": 6187.66, + "probability": 0.9749 + }, + { + "start": 6187.92, + "end": 6188.95, + "probability": 0.9402 + }, + { + "start": 6189.62, + "end": 6189.82, + "probability": 0.3116 + }, + { + "start": 6189.86, + "end": 6191.64, + "probability": 0.9543 + }, + { + "start": 6191.72, + "end": 6196.0, + "probability": 0.9672 + }, + { + "start": 6196.0, + "end": 6201.14, + "probability": 0.9946 + }, + { + "start": 6201.88, + "end": 6210.38, + "probability": 0.9131 + }, + { + "start": 6210.76, + "end": 6215.98, + "probability": 0.9878 + }, + { + "start": 6216.48, + "end": 6217.7, + "probability": 0.3912 + }, + { + "start": 6217.7, + "end": 6218.24, + "probability": 0.9222 + }, + { + "start": 6219.52, + "end": 6224.78, + "probability": 0.9849 + }, + { + "start": 6224.94, + "end": 6226.78, + "probability": 0.9186 + }, + { + "start": 6227.02, + "end": 6229.5, + "probability": 0.7997 + }, + { + "start": 6229.9, + "end": 6231.7, + "probability": 0.8877 + }, + { + "start": 6232.0, + "end": 6237.4, + "probability": 0.9905 + }, + { + "start": 6237.58, + "end": 6238.04, + "probability": 0.9596 + }, + { + "start": 6238.76, + "end": 6242.4, + "probability": 0.7832 + }, + { + "start": 6243.22, + "end": 6245.48, + "probability": 0.8097 + }, + { + "start": 6245.6, + "end": 6245.92, + "probability": 0.0048 + }, + { + "start": 6246.36, + "end": 6247.04, + "probability": 0.6038 + }, + { + "start": 6247.12, + "end": 6248.48, + "probability": 0.8979 + }, + { + "start": 6248.5, + "end": 6249.8, + "probability": 0.8286 + }, + { + "start": 6250.86, + "end": 6253.14, + "probability": 0.7283 + }, + { + "start": 6253.54, + "end": 6254.89, + "probability": 0.3758 + }, + { + "start": 6255.16, + "end": 6255.76, + "probability": 0.6573 + }, + { + "start": 6256.54, + "end": 6259.4, + "probability": 0.7376 + }, + { + "start": 6259.5, + "end": 6262.14, + "probability": 0.9204 + }, + { + "start": 6262.6, + "end": 6262.76, + "probability": 0.5361 + }, + { + "start": 6262.76, + "end": 6265.52, + "probability": 0.538 + }, + { + "start": 6265.62, + "end": 6266.16, + "probability": 0.5594 + }, + { + "start": 6266.22, + "end": 6267.56, + "probability": 0.7846 + }, + { + "start": 6267.64, + "end": 6268.18, + "probability": 0.4268 + }, + { + "start": 6268.54, + "end": 6271.2, + "probability": 0.6884 + }, + { + "start": 6271.34, + "end": 6272.58, + "probability": 0.8415 + }, + { + "start": 6273.04, + "end": 6274.9, + "probability": 0.9126 + }, + { + "start": 6275.36, + "end": 6278.12, + "probability": 0.9478 + }, + { + "start": 6278.12, + "end": 6282.02, + "probability": 0.9905 + }, + { + "start": 6282.96, + "end": 6284.08, + "probability": 0.2623 + }, + { + "start": 6284.54, + "end": 6287.16, + "probability": 0.9871 + }, + { + "start": 6287.16, + "end": 6290.8, + "probability": 0.7492 + }, + { + "start": 6290.92, + "end": 6290.96, + "probability": 0.1002 + }, + { + "start": 6291.08, + "end": 6291.58, + "probability": 0.4162 + }, + { + "start": 6291.68, + "end": 6294.12, + "probability": 0.9291 + }, + { + "start": 6294.2, + "end": 6294.98, + "probability": 0.8173 + }, + { + "start": 6295.42, + "end": 6297.91, + "probability": 0.9692 + }, + { + "start": 6298.96, + "end": 6302.15, + "probability": 0.8143 + }, + { + "start": 6302.38, + "end": 6303.64, + "probability": 0.6125 + }, + { + "start": 6303.74, + "end": 6308.16, + "probability": 0.8102 + }, + { + "start": 6308.74, + "end": 6309.5, + "probability": 0.9581 + }, + { + "start": 6309.58, + "end": 6312.22, + "probability": 0.6844 + }, + { + "start": 6312.24, + "end": 6313.08, + "probability": 0.7404 + }, + { + "start": 6313.84, + "end": 6314.88, + "probability": 0.9802 + }, + { + "start": 6315.16, + "end": 6318.18, + "probability": 0.9314 + }, + { + "start": 6318.46, + "end": 6322.07, + "probability": 0.9957 + }, + { + "start": 6322.48, + "end": 6326.38, + "probability": 0.9854 + }, + { + "start": 6326.5, + "end": 6329.64, + "probability": 0.9974 + }, + { + "start": 6330.3, + "end": 6331.76, + "probability": 0.9493 + }, + { + "start": 6331.9, + "end": 6334.4, + "probability": 0.9853 + }, + { + "start": 6334.9, + "end": 6336.5, + "probability": 0.4931 + }, + { + "start": 6336.66, + "end": 6338.68, + "probability": 0.973 + }, + { + "start": 6338.82, + "end": 6339.82, + "probability": 0.9372 + }, + { + "start": 6340.18, + "end": 6341.68, + "probability": 0.9668 + }, + { + "start": 6342.08, + "end": 6342.88, + "probability": 0.694 + }, + { + "start": 6344.02, + "end": 6349.52, + "probability": 0.6191 + }, + { + "start": 6350.16, + "end": 6353.08, + "probability": 0.924 + }, + { + "start": 6353.08, + "end": 6353.92, + "probability": 0.6527 + }, + { + "start": 6354.64, + "end": 6354.64, + "probability": 0.0716 + }, + { + "start": 6354.64, + "end": 6356.2, + "probability": 0.9854 + }, + { + "start": 6356.26, + "end": 6356.98, + "probability": 0.7997 + }, + { + "start": 6359.12, + "end": 6363.0, + "probability": 0.8047 + }, + { + "start": 6368.74, + "end": 6371.98, + "probability": 0.5199 + }, + { + "start": 6382.88, + "end": 6386.58, + "probability": 0.7446 + }, + { + "start": 6387.26, + "end": 6387.76, + "probability": 0.6152 + }, + { + "start": 6389.12, + "end": 6391.62, + "probability": 0.9065 + }, + { + "start": 6393.24, + "end": 6398.34, + "probability": 0.9609 + }, + { + "start": 6398.5, + "end": 6400.24, + "probability": 0.921 + }, + { + "start": 6400.64, + "end": 6401.2, + "probability": 0.8937 + }, + { + "start": 6401.28, + "end": 6402.1, + "probability": 0.7511 + }, + { + "start": 6402.92, + "end": 6405.28, + "probability": 0.0228 + }, + { + "start": 6405.28, + "end": 6405.86, + "probability": 0.905 + }, + { + "start": 6406.06, + "end": 6407.92, + "probability": 0.8381 + }, + { + "start": 6408.0, + "end": 6409.3, + "probability": 0.9438 + }, + { + "start": 6409.34, + "end": 6410.26, + "probability": 0.9092 + }, + { + "start": 6410.28, + "end": 6412.36, + "probability": 0.8 + }, + { + "start": 6413.24, + "end": 6414.9, + "probability": 0.9125 + }, + { + "start": 6416.04, + "end": 6418.14, + "probability": 0.9661 + }, + { + "start": 6419.74, + "end": 6425.72, + "probability": 0.9474 + }, + { + "start": 6426.96, + "end": 6433.4, + "probability": 0.9414 + }, + { + "start": 6434.04, + "end": 6436.4, + "probability": 0.7406 + }, + { + "start": 6436.74, + "end": 6438.62, + "probability": 0.9954 + }, + { + "start": 6439.42, + "end": 6442.64, + "probability": 0.9888 + }, + { + "start": 6444.72, + "end": 6447.58, + "probability": 0.806 + }, + { + "start": 6448.7, + "end": 6452.52, + "probability": 0.9598 + }, + { + "start": 6453.86, + "end": 6458.48, + "probability": 0.964 + }, + { + "start": 6459.98, + "end": 6460.98, + "probability": 0.7193 + }, + { + "start": 6461.62, + "end": 6467.18, + "probability": 0.976 + }, + { + "start": 6467.66, + "end": 6473.42, + "probability": 0.9709 + }, + { + "start": 6473.48, + "end": 6474.58, + "probability": 0.7163 + }, + { + "start": 6475.5, + "end": 6476.76, + "probability": 0.5268 + }, + { + "start": 6477.38, + "end": 6480.02, + "probability": 0.7929 + }, + { + "start": 6480.56, + "end": 6481.1, + "probability": 0.5519 + }, + { + "start": 6481.4, + "end": 6483.82, + "probability": 0.9692 + }, + { + "start": 6484.06, + "end": 6488.94, + "probability": 0.9258 + }, + { + "start": 6489.26, + "end": 6495.22, + "probability": 0.8303 + }, + { + "start": 6496.0, + "end": 6497.14, + "probability": 0.3498 + }, + { + "start": 6497.4, + "end": 6498.92, + "probability": 0.574 + }, + { + "start": 6499.0, + "end": 6502.32, + "probability": 0.9688 + }, + { + "start": 6503.08, + "end": 6506.26, + "probability": 0.8647 + }, + { + "start": 6508.94, + "end": 6511.7, + "probability": 0.7326 + }, + { + "start": 6512.12, + "end": 6514.72, + "probability": 0.6587 + }, + { + "start": 6515.12, + "end": 6516.88, + "probability": 0.989 + }, + { + "start": 6517.38, + "end": 6519.48, + "probability": 0.8657 + }, + { + "start": 6520.2, + "end": 6521.32, + "probability": 0.8927 + }, + { + "start": 6523.06, + "end": 6528.14, + "probability": 0.9832 + }, + { + "start": 6528.58, + "end": 6530.28, + "probability": 0.9556 + }, + { + "start": 6530.94, + "end": 6532.23, + "probability": 0.9578 + }, + { + "start": 6532.88, + "end": 6534.38, + "probability": 0.808 + }, + { + "start": 6534.48, + "end": 6535.62, + "probability": 0.9262 + }, + { + "start": 6535.74, + "end": 6537.16, + "probability": 0.7975 + }, + { + "start": 6537.58, + "end": 6538.32, + "probability": 0.9124 + }, + { + "start": 6538.38, + "end": 6539.52, + "probability": 0.8947 + }, + { + "start": 6539.64, + "end": 6542.32, + "probability": 0.8149 + }, + { + "start": 6542.66, + "end": 6544.5, + "probability": 0.984 + }, + { + "start": 6544.84, + "end": 6547.23, + "probability": 0.941 + }, + { + "start": 6547.34, + "end": 6550.86, + "probability": 0.6336 + }, + { + "start": 6551.08, + "end": 6554.6, + "probability": 0.7806 + }, + { + "start": 6554.68, + "end": 6555.98, + "probability": 0.814 + }, + { + "start": 6556.34, + "end": 6560.0, + "probability": 0.787 + }, + { + "start": 6560.06, + "end": 6561.08, + "probability": 0.7278 + }, + { + "start": 6561.44, + "end": 6563.58, + "probability": 0.7854 + }, + { + "start": 6563.98, + "end": 6564.78, + "probability": 0.6181 + }, + { + "start": 6565.48, + "end": 6567.76, + "probability": 0.9851 + }, + { + "start": 6567.84, + "end": 6569.36, + "probability": 0.9729 + }, + { + "start": 6569.44, + "end": 6573.06, + "probability": 0.9839 + }, + { + "start": 6573.54, + "end": 6580.9, + "probability": 0.9731 + }, + { + "start": 6581.32, + "end": 6584.9, + "probability": 0.9897 + }, + { + "start": 6584.92, + "end": 6586.7, + "probability": 0.8022 + }, + { + "start": 6586.9, + "end": 6587.88, + "probability": 0.2586 + }, + { + "start": 6587.88, + "end": 6588.62, + "probability": 0.5884 + }, + { + "start": 6588.78, + "end": 6590.04, + "probability": 0.8664 + }, + { + "start": 6590.18, + "end": 6590.96, + "probability": 0.7682 + }, + { + "start": 6591.0, + "end": 6591.76, + "probability": 0.6455 + }, + { + "start": 6592.18, + "end": 6596.38, + "probability": 0.708 + }, + { + "start": 6597.62, + "end": 6598.92, + "probability": 0.9333 + }, + { + "start": 6600.4, + "end": 6603.66, + "probability": 0.8667 + }, + { + "start": 6603.8, + "end": 6604.6, + "probability": 0.6422 + }, + { + "start": 6604.68, + "end": 6605.6, + "probability": 0.7298 + }, + { + "start": 6605.92, + "end": 6607.96, + "probability": 0.9757 + }, + { + "start": 6608.94, + "end": 6609.7, + "probability": 0.9229 + }, + { + "start": 6610.32, + "end": 6612.88, + "probability": 0.8656 + }, + { + "start": 6613.66, + "end": 6617.5, + "probability": 0.9866 + }, + { + "start": 6617.5, + "end": 6620.98, + "probability": 0.9893 + }, + { + "start": 6621.58, + "end": 6623.42, + "probability": 0.6537 + }, + { + "start": 6624.04, + "end": 6629.24, + "probability": 0.9976 + }, + { + "start": 6629.9, + "end": 6640.06, + "probability": 0.5726 + }, + { + "start": 6640.44, + "end": 6646.39, + "probability": 0.7647 + }, + { + "start": 6648.92, + "end": 6648.92, + "probability": 0.3486 + }, + { + "start": 6648.92, + "end": 6648.92, + "probability": 0.1456 + }, + { + "start": 6648.92, + "end": 6651.08, + "probability": 0.4982 + }, + { + "start": 6651.08, + "end": 6652.46, + "probability": 0.525 + }, + { + "start": 6670.36, + "end": 6672.24, + "probability": 0.5811 + }, + { + "start": 6672.82, + "end": 6675.82, + "probability": 0.6968 + }, + { + "start": 6676.96, + "end": 6677.6, + "probability": 0.0349 + }, + { + "start": 6678.32, + "end": 6680.58, + "probability": 0.3495 + }, + { + "start": 6680.7, + "end": 6684.56, + "probability": 0.9565 + }, + { + "start": 6684.56, + "end": 6688.44, + "probability": 0.811 + }, + { + "start": 6688.64, + "end": 6689.54, + "probability": 0.7018 + }, + { + "start": 6690.12, + "end": 6691.96, + "probability": 0.8625 + }, + { + "start": 6692.06, + "end": 6692.86, + "probability": 0.7637 + }, + { + "start": 6693.02, + "end": 6693.24, + "probability": 0.8279 + }, + { + "start": 6694.12, + "end": 6700.96, + "probability": 0.7985 + }, + { + "start": 6701.84, + "end": 6701.98, + "probability": 0.4383 + }, + { + "start": 6701.98, + "end": 6703.77, + "probability": 0.7363 + }, + { + "start": 6704.24, + "end": 6709.04, + "probability": 0.7983 + }, + { + "start": 6709.68, + "end": 6715.74, + "probability": 0.9603 + }, + { + "start": 6716.18, + "end": 6717.18, + "probability": 0.4411 + }, + { + "start": 6717.28, + "end": 6721.66, + "probability": 0.9751 + }, + { + "start": 6721.76, + "end": 6722.31, + "probability": 0.9405 + }, + { + "start": 6724.24, + "end": 6730.94, + "probability": 0.834 + }, + { + "start": 6731.66, + "end": 6734.34, + "probability": 0.8586 + }, + { + "start": 6735.32, + "end": 6738.46, + "probability": 0.9638 + }, + { + "start": 6738.64, + "end": 6740.04, + "probability": 0.7597 + }, + { + "start": 6740.3, + "end": 6744.54, + "probability": 0.9678 + }, + { + "start": 6745.94, + "end": 6749.86, + "probability": 0.6099 + }, + { + "start": 6750.02, + "end": 6752.76, + "probability": 0.7254 + }, + { + "start": 6753.8, + "end": 6756.86, + "probability": 0.9761 + }, + { + "start": 6757.5, + "end": 6762.32, + "probability": 0.8578 + }, + { + "start": 6762.84, + "end": 6763.32, + "probability": 0.5881 + }, + { + "start": 6763.38, + "end": 6764.02, + "probability": 0.5163 + }, + { + "start": 6764.44, + "end": 6769.88, + "probability": 0.9033 + }, + { + "start": 6769.88, + "end": 6774.36, + "probability": 0.8744 + }, + { + "start": 6775.04, + "end": 6775.12, + "probability": 0.0013 + }, + { + "start": 6776.32, + "end": 6779.02, + "probability": 0.7011 + }, + { + "start": 6785.16, + "end": 6786.16, + "probability": 0.2212 + }, + { + "start": 6786.16, + "end": 6786.86, + "probability": 0.2755 + }, + { + "start": 6786.92, + "end": 6790.98, + "probability": 0.525 + }, + { + "start": 6792.72, + "end": 6793.64, + "probability": 0.7154 + }, + { + "start": 6793.76, + "end": 6795.28, + "probability": 0.9248 + }, + { + "start": 6795.64, + "end": 6796.7, + "probability": 0.8476 + }, + { + "start": 6796.86, + "end": 6798.94, + "probability": 0.9482 + }, + { + "start": 6799.36, + "end": 6802.68, + "probability": 0.9052 + }, + { + "start": 6803.46, + "end": 6804.94, + "probability": 0.5062 + }, + { + "start": 6805.62, + "end": 6807.74, + "probability": 0.8071 + }, + { + "start": 6808.26, + "end": 6808.75, + "probability": 0.6474 + }, + { + "start": 6809.84, + "end": 6811.74, + "probability": 0.7688 + }, + { + "start": 6811.8, + "end": 6812.54, + "probability": 0.977 + }, + { + "start": 6812.8, + "end": 6816.8, + "probability": 0.882 + }, + { + "start": 6817.3, + "end": 6819.8, + "probability": 0.8291 + }, + { + "start": 6820.02, + "end": 6822.78, + "probability": 0.8857 + }, + { + "start": 6823.1, + "end": 6824.14, + "probability": 0.6333 + }, + { + "start": 6824.42, + "end": 6825.88, + "probability": 0.6414 + }, + { + "start": 6826.46, + "end": 6830.42, + "probability": 0.7507 + }, + { + "start": 6830.86, + "end": 6834.88, + "probability": 0.9396 + }, + { + "start": 6835.36, + "end": 6840.82, + "probability": 0.92 + }, + { + "start": 6840.88, + "end": 6845.42, + "probability": 0.0965 + }, + { + "start": 6845.68, + "end": 6846.04, + "probability": 0.0164 + }, + { + "start": 6846.04, + "end": 6846.06, + "probability": 0.0348 + }, + { + "start": 6846.44, + "end": 6850.42, + "probability": 0.7079 + }, + { + "start": 6851.2, + "end": 6854.26, + "probability": 0.7561 + }, + { + "start": 6854.88, + "end": 6857.0, + "probability": 0.8015 + }, + { + "start": 6857.52, + "end": 6861.1, + "probability": 0.8643 + }, + { + "start": 6861.68, + "end": 6868.62, + "probability": 0.8118 + }, + { + "start": 6868.62, + "end": 6873.88, + "probability": 0.9862 + }, + { + "start": 6874.2, + "end": 6874.94, + "probability": 0.6404 + }, + { + "start": 6875.08, + "end": 6879.8, + "probability": 0.868 + }, + { + "start": 6880.1, + "end": 6884.5, + "probability": 0.7906 + }, + { + "start": 6884.6, + "end": 6889.4, + "probability": 0.7878 + }, + { + "start": 6889.74, + "end": 6894.52, + "probability": 0.9315 + }, + { + "start": 6894.92, + "end": 6895.04, + "probability": 0.5541 + }, + { + "start": 6895.06, + "end": 6895.88, + "probability": 0.8262 + }, + { + "start": 6896.54, + "end": 6897.62, + "probability": 0.8479 + }, + { + "start": 6897.72, + "end": 6898.94, + "probability": 0.5863 + }, + { + "start": 6898.98, + "end": 6902.26, + "probability": 0.9017 + }, + { + "start": 6917.02, + "end": 6918.44, + "probability": 0.4243 + }, + { + "start": 6918.96, + "end": 6921.2, + "probability": 0.6384 + }, + { + "start": 6921.98, + "end": 6925.44, + "probability": 0.9914 + }, + { + "start": 6926.0, + "end": 6926.66, + "probability": 0.5652 + }, + { + "start": 6927.96, + "end": 6935.86, + "probability": 0.9501 + }, + { + "start": 6937.42, + "end": 6942.6, + "probability": 0.8501 + }, + { + "start": 6943.05, + "end": 6946.54, + "probability": 0.999 + }, + { + "start": 6947.94, + "end": 6949.68, + "probability": 0.798 + }, + { + "start": 6949.82, + "end": 6950.92, + "probability": 0.8574 + }, + { + "start": 6950.96, + "end": 6952.29, + "probability": 0.9104 + }, + { + "start": 6952.84, + "end": 6954.46, + "probability": 0.9753 + }, + { + "start": 6954.54, + "end": 6956.05, + "probability": 0.5 + }, + { + "start": 6956.9, + "end": 6961.2, + "probability": 0.8544 + }, + { + "start": 6962.82, + "end": 6970.98, + "probability": 0.9311 + }, + { + "start": 6971.96, + "end": 6975.44, + "probability": 0.9985 + }, + { + "start": 6976.36, + "end": 6982.84, + "probability": 0.9823 + }, + { + "start": 6982.84, + "end": 6990.56, + "probability": 0.9219 + }, + { + "start": 6990.84, + "end": 6992.24, + "probability": 0.6295 + }, + { + "start": 6992.76, + "end": 6994.82, + "probability": 0.9858 + }, + { + "start": 6996.1, + "end": 6999.32, + "probability": 0.9839 + }, + { + "start": 6999.32, + "end": 7002.58, + "probability": 0.9063 + }, + { + "start": 7002.98, + "end": 7009.56, + "probability": 0.9897 + }, + { + "start": 7010.1, + "end": 7014.94, + "probability": 0.6966 + }, + { + "start": 7015.38, + "end": 7017.52, + "probability": 0.9433 + }, + { + "start": 7018.88, + "end": 7021.16, + "probability": 0.9743 + }, + { + "start": 7021.74, + "end": 7022.62, + "probability": 0.4213 + }, + { + "start": 7022.98, + "end": 7024.34, + "probability": 0.9619 + }, + { + "start": 7024.46, + "end": 7027.78, + "probability": 0.9906 + }, + { + "start": 7027.78, + "end": 7032.98, + "probability": 0.9945 + }, + { + "start": 7033.44, + "end": 7037.58, + "probability": 0.9912 + }, + { + "start": 7038.38, + "end": 7043.86, + "probability": 0.8794 + }, + { + "start": 7044.54, + "end": 7051.86, + "probability": 0.9865 + }, + { + "start": 7053.32, + "end": 7057.14, + "probability": 0.9806 + }, + { + "start": 7057.42, + "end": 7060.58, + "probability": 0.7526 + }, + { + "start": 7060.64, + "end": 7061.74, + "probability": 0.7394 + }, + { + "start": 7062.22, + "end": 7067.64, + "probability": 0.9625 + }, + { + "start": 7068.92, + "end": 7072.38, + "probability": 0.783 + }, + { + "start": 7073.18, + "end": 7077.24, + "probability": 0.991 + }, + { + "start": 7078.18, + "end": 7079.64, + "probability": 0.6664 + }, + { + "start": 7079.74, + "end": 7080.78, + "probability": 0.9418 + }, + { + "start": 7080.8, + "end": 7081.6, + "probability": 0.8885 + }, + { + "start": 7081.8, + "end": 7082.16, + "probability": 0.5327 + }, + { + "start": 7082.34, + "end": 7083.7, + "probability": 0.9465 + }, + { + "start": 7084.34, + "end": 7088.28, + "probability": 0.9944 + }, + { + "start": 7088.46, + "end": 7090.58, + "probability": 0.9227 + }, + { + "start": 7091.32, + "end": 7095.94, + "probability": 0.9883 + }, + { + "start": 7096.18, + "end": 7099.8, + "probability": 0.6869 + }, + { + "start": 7101.12, + "end": 7104.32, + "probability": 0.8774 + }, + { + "start": 7104.96, + "end": 7107.38, + "probability": 0.6724 + }, + { + "start": 7107.78, + "end": 7108.98, + "probability": 0.5308 + }, + { + "start": 7109.18, + "end": 7110.46, + "probability": 0.9652 + }, + { + "start": 7110.84, + "end": 7113.78, + "probability": 0.9873 + }, + { + "start": 7114.08, + "end": 7117.48, + "probability": 0.9846 + }, + { + "start": 7117.9, + "end": 7119.78, + "probability": 0.9941 + }, + { + "start": 7120.12, + "end": 7123.08, + "probability": 0.9924 + }, + { + "start": 7123.08, + "end": 7127.76, + "probability": 0.9867 + }, + { + "start": 7128.06, + "end": 7129.32, + "probability": 0.9932 + }, + { + "start": 7129.62, + "end": 7132.86, + "probability": 0.9624 + }, + { + "start": 7133.24, + "end": 7134.62, + "probability": 0.9292 + }, + { + "start": 7134.84, + "end": 7136.34, + "probability": 0.8307 + }, + { + "start": 7136.46, + "end": 7142.62, + "probability": 0.9929 + }, + { + "start": 7142.7, + "end": 7143.26, + "probability": 0.7587 + }, + { + "start": 7143.62, + "end": 7144.22, + "probability": 0.6637 + }, + { + "start": 7144.36, + "end": 7145.88, + "probability": 0.93 + }, + { + "start": 7148.56, + "end": 7151.02, + "probability": 0.9395 + }, + { + "start": 7151.12, + "end": 7153.44, + "probability": 0.7572 + }, + { + "start": 7176.26, + "end": 7178.3, + "probability": 0.6492 + }, + { + "start": 7182.42, + "end": 7186.0, + "probability": 0.9628 + }, + { + "start": 7186.0, + "end": 7188.52, + "probability": 0.9834 + }, + { + "start": 7190.58, + "end": 7194.16, + "probability": 0.9353 + }, + { + "start": 7196.08, + "end": 7197.92, + "probability": 0.5508 + }, + { + "start": 7199.72, + "end": 7200.52, + "probability": 0.5307 + }, + { + "start": 7200.71, + "end": 7206.38, + "probability": 0.9448 + }, + { + "start": 7206.52, + "end": 7209.58, + "probability": 0.9435 + }, + { + "start": 7211.58, + "end": 7213.5, + "probability": 0.9724 + }, + { + "start": 7215.52, + "end": 7216.32, + "probability": 0.4963 + }, + { + "start": 7218.78, + "end": 7222.6, + "probability": 0.7953 + }, + { + "start": 7225.36, + "end": 7226.58, + "probability": 0.9867 + }, + { + "start": 7228.4, + "end": 7233.32, + "probability": 0.9778 + }, + { + "start": 7233.46, + "end": 7236.32, + "probability": 0.6377 + }, + { + "start": 7236.5, + "end": 7237.68, + "probability": 0.6858 + }, + { + "start": 7238.78, + "end": 7240.62, + "probability": 0.7345 + }, + { + "start": 7241.5, + "end": 7245.34, + "probability": 0.9736 + }, + { + "start": 7246.5, + "end": 7253.98, + "probability": 0.9702 + }, + { + "start": 7256.26, + "end": 7261.3, + "probability": 0.9134 + }, + { + "start": 7263.76, + "end": 7264.18, + "probability": 0.9699 + }, + { + "start": 7265.56, + "end": 7267.16, + "probability": 0.6397 + }, + { + "start": 7269.08, + "end": 7271.32, + "probability": 0.9734 + }, + { + "start": 7271.5, + "end": 7272.94, + "probability": 0.8156 + }, + { + "start": 7274.04, + "end": 7275.06, + "probability": 0.99 + }, + { + "start": 7276.18, + "end": 7281.1, + "probability": 0.9646 + }, + { + "start": 7282.12, + "end": 7285.46, + "probability": 0.9619 + }, + { + "start": 7286.12, + "end": 7287.96, + "probability": 0.9756 + }, + { + "start": 7288.6, + "end": 7298.0, + "probability": 0.9966 + }, + { + "start": 7300.2, + "end": 7304.62, + "probability": 0.9434 + }, + { + "start": 7305.94, + "end": 7307.4, + "probability": 0.9743 + }, + { + "start": 7311.36, + "end": 7313.66, + "probability": 0.9237 + }, + { + "start": 7314.22, + "end": 7320.08, + "probability": 0.988 + }, + { + "start": 7321.04, + "end": 7321.58, + "probability": 0.6305 + }, + { + "start": 7322.7, + "end": 7323.64, + "probability": 0.8075 + }, + { + "start": 7324.4, + "end": 7325.34, + "probability": 0.7689 + }, + { + "start": 7326.38, + "end": 7329.82, + "probability": 0.9344 + }, + { + "start": 7334.0, + "end": 7334.46, + "probability": 0.683 + }, + { + "start": 7336.88, + "end": 7337.3, + "probability": 0.6539 + }, + { + "start": 7337.3, + "end": 7337.48, + "probability": 0.1316 + }, + { + "start": 7342.26, + "end": 7343.0, + "probability": 0.8936 + }, + { + "start": 7343.56, + "end": 7346.04, + "probability": 0.5275 + }, + { + "start": 7346.28, + "end": 7346.96, + "probability": 0.9066 + }, + { + "start": 7347.08, + "end": 7347.3, + "probability": 0.7988 + }, + { + "start": 7347.34, + "end": 7348.86, + "probability": 0.726 + }, + { + "start": 7349.28, + "end": 7349.4, + "probability": 0.3304 + }, + { + "start": 7349.4, + "end": 7350.46, + "probability": 0.6895 + }, + { + "start": 7350.64, + "end": 7351.28, + "probability": 0.601 + }, + { + "start": 7351.66, + "end": 7354.02, + "probability": 0.5844 + }, + { + "start": 7354.02, + "end": 7355.4, + "probability": 0.9294 + }, + { + "start": 7356.28, + "end": 7358.58, + "probability": 0.7685 + }, + { + "start": 7358.86, + "end": 7360.8, + "probability": 0.9634 + }, + { + "start": 7361.86, + "end": 7362.6, + "probability": 0.0137 + }, + { + "start": 7362.82, + "end": 7364.14, + "probability": 0.0323 + }, + { + "start": 7364.78, + "end": 7365.16, + "probability": 0.168 + }, + { + "start": 7365.16, + "end": 7367.38, + "probability": 0.8484 + }, + { + "start": 7368.02, + "end": 7368.12, + "probability": 0.365 + }, + { + "start": 7369.78, + "end": 7371.9, + "probability": 0.6432 + }, + { + "start": 7371.92, + "end": 7373.84, + "probability": 0.988 + }, + { + "start": 7375.3, + "end": 7377.3, + "probability": 0.7599 + }, + { + "start": 7378.42, + "end": 7381.82, + "probability": 0.993 + }, + { + "start": 7381.9, + "end": 7382.28, + "probability": 0.7171 + }, + { + "start": 7383.58, + "end": 7384.52, + "probability": 0.4846 + }, + { + "start": 7385.72, + "end": 7386.68, + "probability": 0.7234 + }, + { + "start": 7387.34, + "end": 7390.62, + "probability": 0.8794 + }, + { + "start": 7391.4, + "end": 7392.56, + "probability": 0.7968 + }, + { + "start": 7392.66, + "end": 7393.22, + "probability": 0.9639 + }, + { + "start": 7393.42, + "end": 7396.52, + "probability": 0.9211 + }, + { + "start": 7397.24, + "end": 7399.46, + "probability": 0.7777 + }, + { + "start": 7400.18, + "end": 7408.4, + "probability": 0.9603 + }, + { + "start": 7408.74, + "end": 7409.02, + "probability": 0.006 + }, + { + "start": 7410.92, + "end": 7411.18, + "probability": 0.0961 + }, + { + "start": 7411.18, + "end": 7411.18, + "probability": 0.184 + }, + { + "start": 7411.18, + "end": 7411.68, + "probability": 0.1384 + }, + { + "start": 7412.72, + "end": 7413.72, + "probability": 0.7529 + }, + { + "start": 7415.74, + "end": 7418.2, + "probability": 0.8726 + }, + { + "start": 7418.38, + "end": 7420.04, + "probability": 0.1737 + }, + { + "start": 7421.02, + "end": 7424.2, + "probability": 0.3909 + }, + { + "start": 7424.2, + "end": 7425.04, + "probability": 0.4942 + }, + { + "start": 7425.6, + "end": 7426.44, + "probability": 0.6071 + }, + { + "start": 7426.46, + "end": 7428.4, + "probability": 0.4904 + }, + { + "start": 7428.48, + "end": 7429.06, + "probability": 0.5082 + }, + { + "start": 7429.06, + "end": 7430.18, + "probability": 0.146 + }, + { + "start": 7430.34, + "end": 7431.72, + "probability": 0.4384 + }, + { + "start": 7431.78, + "end": 7433.62, + "probability": 0.3572 + }, + { + "start": 7433.62, + "end": 7438.3, + "probability": 0.9678 + }, + { + "start": 7438.46, + "end": 7439.12, + "probability": 0.9836 + }, + { + "start": 7439.62, + "end": 7440.4, + "probability": 0.8426 + }, + { + "start": 7440.6, + "end": 7441.18, + "probability": 0.8541 + }, + { + "start": 7441.2, + "end": 7443.58, + "probability": 0.9438 + }, + { + "start": 7453.9, + "end": 7456.9, + "probability": 0.6538 + }, + { + "start": 7458.42, + "end": 7461.08, + "probability": 0.9657 + }, + { + "start": 7461.92, + "end": 7465.6, + "probability": 0.9502 + }, + { + "start": 7466.56, + "end": 7467.32, + "probability": 0.7318 + }, + { + "start": 7467.9, + "end": 7469.54, + "probability": 0.7705 + }, + { + "start": 7470.02, + "end": 7470.4, + "probability": 0.3493 + }, + { + "start": 7470.66, + "end": 7471.0, + "probability": 0.381 + }, + { + "start": 7471.12, + "end": 7471.94, + "probability": 0.663 + }, + { + "start": 7472.06, + "end": 7472.79, + "probability": 0.5032 + }, + { + "start": 7473.18, + "end": 7477.18, + "probability": 0.6832 + }, + { + "start": 7478.62, + "end": 7480.06, + "probability": 0.9829 + }, + { + "start": 7481.06, + "end": 7482.94, + "probability": 0.9875 + }, + { + "start": 7483.2, + "end": 7485.14, + "probability": 0.9569 + }, + { + "start": 7485.42, + "end": 7487.98, + "probability": 0.9741 + }, + { + "start": 7488.64, + "end": 7490.36, + "probability": 0.8599 + }, + { + "start": 7490.52, + "end": 7492.66, + "probability": 0.868 + }, + { + "start": 7494.38, + "end": 7495.88, + "probability": 0.9744 + }, + { + "start": 7497.26, + "end": 7500.9, + "probability": 0.721 + }, + { + "start": 7500.92, + "end": 7501.34, + "probability": 0.9683 + }, + { + "start": 7501.52, + "end": 7502.38, + "probability": 0.6557 + }, + { + "start": 7502.58, + "end": 7503.9, + "probability": 0.952 + }, + { + "start": 7505.46, + "end": 7508.64, + "probability": 0.834 + }, + { + "start": 7509.34, + "end": 7510.94, + "probability": 0.8693 + }, + { + "start": 7512.0, + "end": 7513.28, + "probability": 0.9953 + }, + { + "start": 7514.16, + "end": 7516.18, + "probability": 0.5938 + }, + { + "start": 7516.92, + "end": 7519.3, + "probability": 0.9906 + }, + { + "start": 7520.24, + "end": 7522.78, + "probability": 0.8476 + }, + { + "start": 7522.84, + "end": 7524.22, + "probability": 0.8161 + }, + { + "start": 7525.14, + "end": 7526.7, + "probability": 0.4741 + }, + { + "start": 7527.68, + "end": 7531.18, + "probability": 0.8809 + }, + { + "start": 7531.52, + "end": 7531.52, + "probability": 0.065 + }, + { + "start": 7531.52, + "end": 7531.52, + "probability": 0.2604 + }, + { + "start": 7531.52, + "end": 7531.52, + "probability": 0.0808 + }, + { + "start": 7531.52, + "end": 7532.34, + "probability": 0.0463 + }, + { + "start": 7532.98, + "end": 7535.66, + "probability": 0.6021 + }, + { + "start": 7536.18, + "end": 7543.74, + "probability": 0.9445 + }, + { + "start": 7543.9, + "end": 7545.32, + "probability": 0.7939 + }, + { + "start": 7546.66, + "end": 7548.73, + "probability": 0.9883 + }, + { + "start": 7549.94, + "end": 7553.08, + "probability": 0.9792 + }, + { + "start": 7553.22, + "end": 7554.62, + "probability": 0.9536 + }, + { + "start": 7555.18, + "end": 7558.72, + "probability": 0.9917 + }, + { + "start": 7559.28, + "end": 7559.4, + "probability": 0.8428 + }, + { + "start": 7559.54, + "end": 7560.36, + "probability": 0.7203 + }, + { + "start": 7561.12, + "end": 7562.34, + "probability": 0.8525 + }, + { + "start": 7562.4, + "end": 7562.81, + "probability": 0.8481 + }, + { + "start": 7564.62, + "end": 7565.1, + "probability": 0.1071 + }, + { + "start": 7565.16, + "end": 7565.18, + "probability": 0.1446 + }, + { + "start": 7565.18, + "end": 7566.88, + "probability": 0.6483 + }, + { + "start": 7567.04, + "end": 7571.68, + "probability": 0.5704 + }, + { + "start": 7571.98, + "end": 7575.07, + "probability": 0.2082 + }, + { + "start": 7575.5, + "end": 7577.12, + "probability": 0.0621 + }, + { + "start": 7577.12, + "end": 7579.1, + "probability": 0.5872 + }, + { + "start": 7579.26, + "end": 7580.74, + "probability": 0.1294 + }, + { + "start": 7581.62, + "end": 7582.44, + "probability": 0.0521 + }, + { + "start": 7582.44, + "end": 7583.68, + "probability": 0.6306 + }, + { + "start": 7583.82, + "end": 7585.52, + "probability": 0.8776 + }, + { + "start": 7585.63, + "end": 7590.36, + "probability": 0.5283 + }, + { + "start": 7590.48, + "end": 7592.48, + "probability": 0.8998 + }, + { + "start": 7592.58, + "end": 7595.4, + "probability": 0.943 + }, + { + "start": 7595.96, + "end": 7600.9, + "probability": 0.9268 + }, + { + "start": 7601.3, + "end": 7602.68, + "probability": 0.839 + }, + { + "start": 7603.49, + "end": 7605.08, + "probability": 0.8491 + }, + { + "start": 7605.18, + "end": 7608.37, + "probability": 0.9736 + }, + { + "start": 7608.92, + "end": 7610.24, + "probability": 0.9575 + }, + { + "start": 7610.42, + "end": 7614.56, + "probability": 0.9373 + }, + { + "start": 7615.92, + "end": 7617.56, + "probability": 0.946 + }, + { + "start": 7617.7, + "end": 7619.07, + "probability": 0.9323 + }, + { + "start": 7619.64, + "end": 7621.81, + "probability": 0.9876 + }, + { + "start": 7623.27, + "end": 7624.29, + "probability": 0.9144 + }, + { + "start": 7624.95, + "end": 7625.85, + "probability": 0.5829 + }, + { + "start": 7626.61, + "end": 7631.19, + "probability": 0.9673 + }, + { + "start": 7631.75, + "end": 7634.75, + "probability": 0.9406 + }, + { + "start": 7635.69, + "end": 7640.05, + "probability": 0.8695 + }, + { + "start": 7640.83, + "end": 7642.75, + "probability": 0.5921 + }, + { + "start": 7643.83, + "end": 7646.47, + "probability": 0.966 + }, + { + "start": 7647.13, + "end": 7651.05, + "probability": 0.83 + }, + { + "start": 7651.83, + "end": 7655.45, + "probability": 0.9794 + }, + { + "start": 7656.87, + "end": 7660.07, + "probability": 0.9958 + }, + { + "start": 7660.15, + "end": 7662.65, + "probability": 0.9122 + }, + { + "start": 7663.23, + "end": 7667.07, + "probability": 0.918 + }, + { + "start": 7667.77, + "end": 7668.41, + "probability": 0.6215 + }, + { + "start": 7669.17, + "end": 7671.11, + "probability": 0.6038 + }, + { + "start": 7671.63, + "end": 7672.95, + "probability": 0.8588 + }, + { + "start": 7673.59, + "end": 7674.31, + "probability": 0.9564 + }, + { + "start": 7674.83, + "end": 7678.93, + "probability": 0.9097 + }, + { + "start": 7679.75, + "end": 7680.95, + "probability": 0.9734 + }, + { + "start": 7681.51, + "end": 7681.93, + "probability": 0.3204 + }, + { + "start": 7681.93, + "end": 7682.47, + "probability": 0.7057 + }, + { + "start": 7682.95, + "end": 7688.03, + "probability": 0.0158 + }, + { + "start": 7688.03, + "end": 7688.07, + "probability": 0.3831 + }, + { + "start": 7688.07, + "end": 7688.59, + "probability": 0.1846 + }, + { + "start": 7690.73, + "end": 7690.89, + "probability": 0.0585 + }, + { + "start": 7691.91, + "end": 7693.19, + "probability": 0.1382 + }, + { + "start": 7693.77, + "end": 7694.37, + "probability": 0.0482 + }, + { + "start": 7695.13, + "end": 7696.27, + "probability": 0.1207 + }, + { + "start": 7696.27, + "end": 7697.67, + "probability": 0.3519 + }, + { + "start": 7698.09, + "end": 7699.45, + "probability": 0.6647 + }, + { + "start": 7699.61, + "end": 7700.85, + "probability": 0.0381 + }, + { + "start": 7700.85, + "end": 7700.85, + "probability": 0.0066 + }, + { + "start": 7702.15, + "end": 7702.87, + "probability": 0.0213 + }, + { + "start": 7703.39, + "end": 7704.21, + "probability": 0.2286 + }, + { + "start": 7704.75, + "end": 7705.33, + "probability": 0.6407 + }, + { + "start": 7708.03, + "end": 7709.25, + "probability": 0.4599 + }, + { + "start": 7709.47, + "end": 7712.35, + "probability": 0.9338 + }, + { + "start": 7712.55, + "end": 7713.46, + "probability": 0.5806 + }, + { + "start": 7714.33, + "end": 7715.57, + "probability": 0.5703 + }, + { + "start": 7716.09, + "end": 7719.25, + "probability": 0.9154 + }, + { + "start": 7719.41, + "end": 7720.67, + "probability": 0.7054 + }, + { + "start": 7720.95, + "end": 7722.15, + "probability": 0.4784 + }, + { + "start": 7722.49, + "end": 7724.17, + "probability": 0.4972 + }, + { + "start": 7724.27, + "end": 7725.87, + "probability": 0.8675 + }, + { + "start": 7726.29, + "end": 7727.19, + "probability": 0.8171 + }, + { + "start": 7727.25, + "end": 7728.89, + "probability": 0.7272 + }, + { + "start": 7728.99, + "end": 7732.35, + "probability": 0.9876 + }, + { + "start": 7732.35, + "end": 7736.05, + "probability": 0.9341 + }, + { + "start": 7736.17, + "end": 7738.35, + "probability": 0.9458 + }, + { + "start": 7738.77, + "end": 7741.13, + "probability": 0.9876 + }, + { + "start": 7741.57, + "end": 7742.33, + "probability": 0.9558 + }, + { + "start": 7742.85, + "end": 7742.99, + "probability": 0.0207 + }, + { + "start": 7742.99, + "end": 7745.88, + "probability": 0.9789 + }, + { + "start": 7746.25, + "end": 7747.33, + "probability": 0.9456 + }, + { + "start": 7747.33, + "end": 7748.15, + "probability": 0.4367 + }, + { + "start": 7748.55, + "end": 7748.87, + "probability": 0.5424 + }, + { + "start": 7749.15, + "end": 7750.47, + "probability": 0.9811 + }, + { + "start": 7750.65, + "end": 7751.03, + "probability": 0.6184 + }, + { + "start": 7751.03, + "end": 7751.47, + "probability": 0.5854 + }, + { + "start": 7751.59, + "end": 7754.97, + "probability": 0.9821 + }, + { + "start": 7755.39, + "end": 7758.86, + "probability": 0.9456 + }, + { + "start": 7759.23, + "end": 7761.25, + "probability": 0.909 + }, + { + "start": 7761.55, + "end": 7762.05, + "probability": 0.9825 + }, + { + "start": 7762.99, + "end": 7764.35, + "probability": 0.9905 + }, + { + "start": 7765.65, + "end": 7766.61, + "probability": 0.479 + }, + { + "start": 7766.67, + "end": 7768.49, + "probability": 0.6872 + }, + { + "start": 7768.93, + "end": 7771.61, + "probability": 0.9102 + }, + { + "start": 7771.75, + "end": 7771.95, + "probability": 0.242 + }, + { + "start": 7771.95, + "end": 7772.86, + "probability": 0.6607 + }, + { + "start": 7772.93, + "end": 7773.63, + "probability": 0.0261 + }, + { + "start": 7773.63, + "end": 7775.97, + "probability": 0.8774 + }, + { + "start": 7776.07, + "end": 7778.4, + "probability": 0.9238 + }, + { + "start": 7778.81, + "end": 7783.29, + "probability": 0.9421 + }, + { + "start": 7783.41, + "end": 7790.35, + "probability": 0.9857 + }, + { + "start": 7790.47, + "end": 7795.45, + "probability": 0.9856 + }, + { + "start": 7796.33, + "end": 7798.61, + "probability": 0.6317 + }, + { + "start": 7799.91, + "end": 7801.69, + "probability": 0.6911 + }, + { + "start": 7801.75, + "end": 7803.27, + "probability": 0.2305 + }, + { + "start": 7803.27, + "end": 7804.17, + "probability": 0.3287 + }, + { + "start": 7804.63, + "end": 7806.23, + "probability": 0.8246 + }, + { + "start": 7806.63, + "end": 7808.75, + "probability": 0.7742 + }, + { + "start": 7809.49, + "end": 7815.11, + "probability": 0.9598 + }, + { + "start": 7815.67, + "end": 7822.47, + "probability": 0.9933 + }, + { + "start": 7823.25, + "end": 7826.31, + "probability": 0.9871 + }, + { + "start": 7826.75, + "end": 7829.33, + "probability": 0.9839 + }, + { + "start": 7829.43, + "end": 7830.35, + "probability": 0.9734 + }, + { + "start": 7830.87, + "end": 7833.43, + "probability": 0.9922 + }, + { + "start": 7833.57, + "end": 7835.11, + "probability": 0.781 + }, + { + "start": 7835.51, + "end": 7836.27, + "probability": 0.6484 + }, + { + "start": 7837.21, + "end": 7838.41, + "probability": 0.7831 + }, + { + "start": 7838.51, + "end": 7841.03, + "probability": 0.678 + }, + { + "start": 7841.41, + "end": 7844.59, + "probability": 0.9268 + }, + { + "start": 7844.79, + "end": 7845.81, + "probability": 0.9795 + }, + { + "start": 7846.23, + "end": 7847.07, + "probability": 0.7785 + }, + { + "start": 7847.25, + "end": 7847.83, + "probability": 0.7882 + }, + { + "start": 7847.89, + "end": 7849.23, + "probability": 0.5755 + }, + { + "start": 7849.63, + "end": 7854.93, + "probability": 0.7986 + }, + { + "start": 7855.17, + "end": 7856.87, + "probability": 0.9749 + }, + { + "start": 7858.49, + "end": 7860.07, + "probability": 0.6699 + }, + { + "start": 7860.19, + "end": 7861.19, + "probability": 0.919 + }, + { + "start": 7861.31, + "end": 7864.69, + "probability": 0.9678 + }, + { + "start": 7864.93, + "end": 7867.03, + "probability": 0.9887 + }, + { + "start": 7867.55, + "end": 7872.51, + "probability": 0.9834 + }, + { + "start": 7873.21, + "end": 7874.51, + "probability": 0.8347 + }, + { + "start": 7874.61, + "end": 7875.13, + "probability": 0.7439 + }, + { + "start": 7875.23, + "end": 7879.37, + "probability": 0.9198 + }, + { + "start": 7880.13, + "end": 7881.39, + "probability": 0.8271 + }, + { + "start": 7881.77, + "end": 7883.93, + "probability": 0.9944 + }, + { + "start": 7884.11, + "end": 7887.29, + "probability": 0.7763 + }, + { + "start": 7887.85, + "end": 7889.45, + "probability": 0.9789 + }, + { + "start": 7890.09, + "end": 7891.83, + "probability": 0.8529 + }, + { + "start": 7894.4, + "end": 7896.23, + "probability": 0.8043 + }, + { + "start": 7896.39, + "end": 7897.71, + "probability": 0.8254 + }, + { + "start": 7897.87, + "end": 7899.53, + "probability": 0.9935 + }, + { + "start": 7899.65, + "end": 7900.69, + "probability": 0.8054 + }, + { + "start": 7901.11, + "end": 7905.19, + "probability": 0.9119 + }, + { + "start": 7905.77, + "end": 7906.77, + "probability": 0.9958 + }, + { + "start": 7907.11, + "end": 7907.57, + "probability": 0.5009 + }, + { + "start": 7907.69, + "end": 7908.93, + "probability": 0.5815 + }, + { + "start": 7908.95, + "end": 7909.87, + "probability": 0.8965 + }, + { + "start": 7909.91, + "end": 7911.51, + "probability": 0.8057 + }, + { + "start": 7911.73, + "end": 7913.37, + "probability": 0.5269 + }, + { + "start": 7915.13, + "end": 7915.81, + "probability": 0.0258 + }, + { + "start": 7915.83, + "end": 7916.21, + "probability": 0.3223 + }, + { + "start": 7916.39, + "end": 7916.57, + "probability": 0.7024 + }, + { + "start": 7916.67, + "end": 7917.81, + "probability": 0.7986 + }, + { + "start": 7917.97, + "end": 7922.65, + "probability": 0.9625 + }, + { + "start": 7922.69, + "end": 7922.95, + "probability": 0.2743 + }, + { + "start": 7923.19, + "end": 7924.77, + "probability": 0.9558 + }, + { + "start": 7924.81, + "end": 7926.05, + "probability": 0.8499 + }, + { + "start": 7926.23, + "end": 7927.79, + "probability": 0.9919 + }, + { + "start": 7929.51, + "end": 7930.49, + "probability": 0.6718 + }, + { + "start": 7930.59, + "end": 7932.49, + "probability": 0.7339 + }, + { + "start": 7932.57, + "end": 7933.31, + "probability": 0.7784 + }, + { + "start": 7933.43, + "end": 7934.53, + "probability": 0.9024 + }, + { + "start": 7934.79, + "end": 7936.21, + "probability": 0.9445 + }, + { + "start": 7937.07, + "end": 7937.55, + "probability": 0.8707 + }, + { + "start": 7937.69, + "end": 7938.69, + "probability": 0.8528 + }, + { + "start": 7939.15, + "end": 7944.37, + "probability": 0.9841 + }, + { + "start": 7944.47, + "end": 7945.45, + "probability": 0.8541 + }, + { + "start": 7945.67, + "end": 7946.95, + "probability": 0.7488 + }, + { + "start": 7947.03, + "end": 7949.47, + "probability": 0.9845 + }, + { + "start": 7949.55, + "end": 7952.11, + "probability": 0.981 + }, + { + "start": 7954.19, + "end": 7958.39, + "probability": 0.9553 + }, + { + "start": 7959.47, + "end": 7962.51, + "probability": 0.7905 + }, + { + "start": 7962.67, + "end": 7963.57, + "probability": 0.7577 + }, + { + "start": 7963.69, + "end": 7965.23, + "probability": 0.6133 + }, + { + "start": 7965.97, + "end": 7966.37, + "probability": 0.5468 + }, + { + "start": 7966.37, + "end": 7967.63, + "probability": 0.5013 + }, + { + "start": 7967.81, + "end": 7968.29, + "probability": 0.7695 + }, + { + "start": 7968.29, + "end": 7970.21, + "probability": 0.5085 + }, + { + "start": 7970.21, + "end": 7970.28, + "probability": 0.2028 + }, + { + "start": 7970.67, + "end": 7972.45, + "probability": 0.9897 + }, + { + "start": 7972.87, + "end": 7973.87, + "probability": 0.9588 + }, + { + "start": 7974.03, + "end": 7974.25, + "probability": 0.5693 + }, + { + "start": 7974.33, + "end": 7975.03, + "probability": 0.7748 + }, + { + "start": 7975.45, + "end": 7976.69, + "probability": 0.8537 + }, + { + "start": 7977.31, + "end": 7978.25, + "probability": 0.8484 + }, + { + "start": 7978.81, + "end": 7982.89, + "probability": 0.9966 + }, + { + "start": 7983.51, + "end": 7986.17, + "probability": 0.8462 + }, + { + "start": 7986.75, + "end": 7990.53, + "probability": 0.9468 + }, + { + "start": 7992.59, + "end": 7994.31, + "probability": 0.9951 + }, + { + "start": 7994.55, + "end": 7996.36, + "probability": 0.9814 + }, + { + "start": 7997.27, + "end": 7999.41, + "probability": 0.9956 + }, + { + "start": 7999.75, + "end": 8002.73, + "probability": 0.9692 + }, + { + "start": 8003.17, + "end": 8008.11, + "probability": 0.8561 + }, + { + "start": 8008.41, + "end": 8010.45, + "probability": 0.9955 + }, + { + "start": 8011.49, + "end": 8015.59, + "probability": 0.8665 + }, + { + "start": 8016.47, + "end": 8016.54, + "probability": 0.0184 + }, + { + "start": 8017.07, + "end": 8018.16, + "probability": 0.4819 + }, + { + "start": 8020.19, + "end": 8020.91, + "probability": 0.2271 + }, + { + "start": 8020.91, + "end": 8025.59, + "probability": 0.9346 + }, + { + "start": 8025.93, + "end": 8027.14, + "probability": 0.9919 + }, + { + "start": 8028.62, + "end": 8030.2, + "probability": 0.7755 + }, + { + "start": 8033.2, + "end": 8034.42, + "probability": 0.6569 + }, + { + "start": 8034.48, + "end": 8036.38, + "probability": 0.8192 + }, + { + "start": 8036.82, + "end": 8039.0, + "probability": 0.8789 + }, + { + "start": 8039.3, + "end": 8042.04, + "probability": 0.937 + }, + { + "start": 8042.04, + "end": 8047.26, + "probability": 0.9829 + }, + { + "start": 8049.34, + "end": 8049.76, + "probability": 0.5152 + }, + { + "start": 8049.76, + "end": 8050.28, + "probability": 0.3842 + }, + { + "start": 8050.94, + "end": 8054.82, + "probability": 0.7389 + }, + { + "start": 8054.94, + "end": 8055.98, + "probability": 0.7764 + }, + { + "start": 8056.36, + "end": 8058.58, + "probability": 0.953 + }, + { + "start": 8058.58, + "end": 8062.0, + "probability": 0.8632 + }, + { + "start": 8062.9, + "end": 8063.98, + "probability": 0.1091 + }, + { + "start": 8064.26, + "end": 8066.02, + "probability": 0.2468 + }, + { + "start": 8066.54, + "end": 8068.8, + "probability": 0.6689 + }, + { + "start": 8069.26, + "end": 8070.93, + "probability": 0.4049 + }, + { + "start": 8071.1, + "end": 8073.76, + "probability": 0.271 + }, + { + "start": 8073.9, + "end": 8075.92, + "probability": 0.7287 + }, + { + "start": 8076.76, + "end": 8079.16, + "probability": 0.0341 + }, + { + "start": 8079.16, + "end": 8079.28, + "probability": 0.5267 + }, + { + "start": 8079.39, + "end": 8081.38, + "probability": 0.9798 + }, + { + "start": 8081.7, + "end": 8083.5, + "probability": 0.9931 + }, + { + "start": 8083.5, + "end": 8085.48, + "probability": 0.9936 + }, + { + "start": 8085.82, + "end": 8086.84, + "probability": 0.9193 + }, + { + "start": 8087.04, + "end": 8087.26, + "probability": 0.751 + }, + { + "start": 8087.36, + "end": 8088.32, + "probability": 0.9185 + }, + { + "start": 8088.32, + "end": 8088.64, + "probability": 0.6924 + }, + { + "start": 8088.74, + "end": 8090.26, + "probability": 0.9813 + }, + { + "start": 8090.28, + "end": 8091.66, + "probability": 0.8512 + }, + { + "start": 8091.72, + "end": 8094.29, + "probability": 0.8535 + }, + { + "start": 8094.66, + "end": 8098.54, + "probability": 0.936 + }, + { + "start": 8101.73, + "end": 8102.36, + "probability": 0.0724 + }, + { + "start": 8102.36, + "end": 8102.38, + "probability": 0.0191 + }, + { + "start": 8102.38, + "end": 8102.45, + "probability": 0.4645 + }, + { + "start": 8104.14, + "end": 8104.54, + "probability": 0.0723 + }, + { + "start": 8104.89, + "end": 8107.48, + "probability": 0.8498 + }, + { + "start": 8107.62, + "end": 8114.08, + "probability": 0.7957 + }, + { + "start": 8114.86, + "end": 8119.58, + "probability": 0.9841 + }, + { + "start": 8119.58, + "end": 8123.3, + "probability": 0.6719 + }, + { + "start": 8123.64, + "end": 8129.02, + "probability": 0.7164 + }, + { + "start": 8129.3, + "end": 8131.94, + "probability": 0.9875 + }, + { + "start": 8132.24, + "end": 8132.86, + "probability": 0.9014 + }, + { + "start": 8132.86, + "end": 8137.56, + "probability": 0.9553 + }, + { + "start": 8138.32, + "end": 8139.68, + "probability": 0.9379 + }, + { + "start": 8139.94, + "end": 8142.6, + "probability": 0.8902 + }, + { + "start": 8142.7, + "end": 8143.38, + "probability": 0.8896 + }, + { + "start": 8143.38, + "end": 8147.04, + "probability": 0.9779 + }, + { + "start": 8147.52, + "end": 8152.2, + "probability": 0.9061 + }, + { + "start": 8152.42, + "end": 8152.92, + "probability": 0.7104 + }, + { + "start": 8153.1, + "end": 8155.98, + "probability": 0.9956 + }, + { + "start": 8156.22, + "end": 8158.1, + "probability": 0.9912 + }, + { + "start": 8158.46, + "end": 8160.28, + "probability": 0.9935 + }, + { + "start": 8160.68, + "end": 8164.26, + "probability": 0.9548 + }, + { + "start": 8164.46, + "end": 8165.0, + "probability": 0.9542 + }, + { + "start": 8165.14, + "end": 8166.24, + "probability": 0.9707 + }, + { + "start": 8166.56, + "end": 8167.2, + "probability": 0.8787 + }, + { + "start": 8167.54, + "end": 8171.6, + "probability": 0.9767 + }, + { + "start": 8171.82, + "end": 8172.88, + "probability": 0.967 + }, + { + "start": 8172.98, + "end": 8174.56, + "probability": 0.8474 + }, + { + "start": 8174.72, + "end": 8176.6, + "probability": 0.9949 + }, + { + "start": 8176.76, + "end": 8178.01, + "probability": 0.9907 + }, + { + "start": 8178.46, + "end": 8179.5, + "probability": 0.9698 + }, + { + "start": 8179.58, + "end": 8182.04, + "probability": 0.9631 + }, + { + "start": 8182.1, + "end": 8185.98, + "probability": 0.959 + }, + { + "start": 8185.98, + "end": 8189.56, + "probability": 0.9134 + }, + { + "start": 8190.2, + "end": 8191.36, + "probability": 0.0176 + }, + { + "start": 8191.54, + "end": 8191.66, + "probability": 0.2368 + }, + { + "start": 8191.66, + "end": 8192.72, + "probability": 0.7772 + }, + { + "start": 8192.8, + "end": 8196.02, + "probability": 0.9839 + }, + { + "start": 8196.16, + "end": 8197.36, + "probability": 0.8827 + }, + { + "start": 8197.68, + "end": 8200.26, + "probability": 0.9803 + }, + { + "start": 8200.64, + "end": 8201.74, + "probability": 0.8464 + }, + { + "start": 8201.92, + "end": 8203.0, + "probability": 0.9689 + }, + { + "start": 8203.06, + "end": 8204.46, + "probability": 0.9423 + }, + { + "start": 8204.98, + "end": 8206.4, + "probability": 0.9792 + }, + { + "start": 8207.22, + "end": 8208.18, + "probability": 0.1608 + }, + { + "start": 8209.6, + "end": 8209.98, + "probability": 0.0276 + }, + { + "start": 8209.98, + "end": 8209.98, + "probability": 0.1457 + }, + { + "start": 8209.98, + "end": 8212.18, + "probability": 0.6943 + }, + { + "start": 8212.22, + "end": 8213.14, + "probability": 0.8407 + }, + { + "start": 8213.64, + "end": 8215.46, + "probability": 0.8221 + }, + { + "start": 8215.86, + "end": 8218.72, + "probability": 0.9739 + }, + { + "start": 8221.92, + "end": 8222.02, + "probability": 0.8611 + }, + { + "start": 8223.46, + "end": 8225.38, + "probability": 0.7163 + }, + { + "start": 8225.7, + "end": 8227.18, + "probability": 0.6653 + }, + { + "start": 8227.52, + "end": 8232.16, + "probability": 0.894 + }, + { + "start": 8232.34, + "end": 8234.02, + "probability": 0.7405 + }, + { + "start": 8234.32, + "end": 8236.76, + "probability": 0.6715 + }, + { + "start": 8236.82, + "end": 8237.04, + "probability": 0.5952 + }, + { + "start": 8237.04, + "end": 8237.74, + "probability": 0.8783 + }, + { + "start": 8237.88, + "end": 8238.84, + "probability": 0.8027 + }, + { + "start": 8239.0, + "end": 8242.86, + "probability": 0.962 + }, + { + "start": 8243.02, + "end": 8247.08, + "probability": 0.9602 + }, + { + "start": 8247.98, + "end": 8251.8, + "probability": 0.8151 + }, + { + "start": 8252.0, + "end": 8253.32, + "probability": 0.6102 + }, + { + "start": 8253.38, + "end": 8254.32, + "probability": 0.614 + }, + { + "start": 8255.06, + "end": 8256.88, + "probability": 0.9553 + }, + { + "start": 8257.86, + "end": 8258.76, + "probability": 0.8886 + }, + { + "start": 8259.04, + "end": 8260.86, + "probability": 0.9482 + }, + { + "start": 8261.76, + "end": 8263.94, + "probability": 0.8798 + }, + { + "start": 8264.3, + "end": 8268.64, + "probability": 0.8795 + }, + { + "start": 8268.72, + "end": 8272.36, + "probability": 0.802 + }, + { + "start": 8272.52, + "end": 8275.52, + "probability": 0.9849 + }, + { + "start": 8276.6, + "end": 8277.7, + "probability": 0.77 + }, + { + "start": 8278.0, + "end": 8278.84, + "probability": 0.9371 + }, + { + "start": 8278.92, + "end": 8280.04, + "probability": 0.6845 + }, + { + "start": 8280.46, + "end": 8283.14, + "probability": 0.0169 + }, + { + "start": 8293.2, + "end": 8293.6, + "probability": 0.0485 + }, + { + "start": 8293.6, + "end": 8299.38, + "probability": 0.5298 + }, + { + "start": 8299.88, + "end": 8304.08, + "probability": 0.9692 + }, + { + "start": 8304.98, + "end": 8305.8, + "probability": 0.7708 + }, + { + "start": 8306.0, + "end": 8308.46, + "probability": 0.9907 + }, + { + "start": 8308.62, + "end": 8310.1, + "probability": 0.6404 + }, + { + "start": 8310.26, + "end": 8313.07, + "probability": 0.8872 + }, + { + "start": 8313.82, + "end": 8314.5, + "probability": 0.6878 + }, + { + "start": 8314.6, + "end": 8315.24, + "probability": 0.6491 + }, + { + "start": 8315.3, + "end": 8316.56, + "probability": 0.81 + }, + { + "start": 8316.9, + "end": 8319.82, + "probability": 0.0117 + }, + { + "start": 8322.16, + "end": 8325.76, + "probability": 0.2471 + }, + { + "start": 8330.11, + "end": 8330.18, + "probability": 0.2931 + }, + { + "start": 8330.36, + "end": 8335.24, + "probability": 0.5194 + }, + { + "start": 8335.62, + "end": 8339.72, + "probability": 0.8017 + }, + { + "start": 8339.92, + "end": 8343.46, + "probability": 0.9769 + }, + { + "start": 8344.46, + "end": 8345.22, + "probability": 0.6708 + }, + { + "start": 8345.26, + "end": 8351.78, + "probability": 0.9619 + }, + { + "start": 8351.98, + "end": 8357.48, + "probability": 0.9679 + }, + { + "start": 8357.72, + "end": 8360.9, + "probability": 0.9186 + }, + { + "start": 8361.88, + "end": 8362.42, + "probability": 0.5802 + }, + { + "start": 8362.58, + "end": 8363.18, + "probability": 0.592 + }, + { + "start": 8363.24, + "end": 8364.12, + "probability": 0.6753 + }, + { + "start": 8364.32, + "end": 8366.22, + "probability": 0.0074 + }, + { + "start": 8373.86, + "end": 8378.18, + "probability": 0.168 + }, + { + "start": 8381.22, + "end": 8387.5, + "probability": 0.5628 + }, + { + "start": 8387.66, + "end": 8390.84, + "probability": 0.8787 + }, + { + "start": 8391.8, + "end": 8395.7, + "probability": 0.9912 + }, + { + "start": 8396.94, + "end": 8398.3, + "probability": 0.3399 + }, + { + "start": 8399.14, + "end": 8402.15, + "probability": 0.8708 + }, + { + "start": 8403.06, + "end": 8404.5, + "probability": 0.7339 + }, + { + "start": 8404.62, + "end": 8405.54, + "probability": 0.7063 + }, + { + "start": 8405.62, + "end": 8406.16, + "probability": 0.2847 + }, + { + "start": 8406.2, + "end": 8406.72, + "probability": 0.4655 + }, + { + "start": 8406.74, + "end": 8407.56, + "probability": 0.5939 + }, + { + "start": 8408.02, + "end": 8409.4, + "probability": 0.0067 + }, + { + "start": 8418.08, + "end": 8418.36, + "probability": 0.1041 + }, + { + "start": 8418.36, + "end": 8419.48, + "probability": 0.4074 + }, + { + "start": 8423.14, + "end": 8423.88, + "probability": 0.1688 + }, + { + "start": 8424.44, + "end": 8426.3, + "probability": 0.5515 + }, + { + "start": 8426.44, + "end": 8429.16, + "probability": 0.854 + }, + { + "start": 8429.3, + "end": 8434.1, + "probability": 0.8298 + }, + { + "start": 8434.78, + "end": 8437.54, + "probability": 0.7491 + }, + { + "start": 8437.92, + "end": 8440.72, + "probability": 0.7207 + }, + { + "start": 8441.06, + "end": 8442.82, + "probability": 0.8878 + }, + { + "start": 8443.0, + "end": 8444.62, + "probability": 0.7858 + }, + { + "start": 8444.66, + "end": 8446.7, + "probability": 0.7084 + }, + { + "start": 8446.88, + "end": 8447.6, + "probability": 0.4065 + }, + { + "start": 8448.0, + "end": 8450.04, + "probability": 0.874 + }, + { + "start": 8473.06, + "end": 8475.2, + "probability": 0.7401 + }, + { + "start": 8475.7, + "end": 8476.1, + "probability": 0.6232 + }, + { + "start": 8476.26, + "end": 8476.86, + "probability": 0.7204 + }, + { + "start": 8477.0, + "end": 8480.96, + "probability": 0.9888 + }, + { + "start": 8481.06, + "end": 8486.14, + "probability": 0.9656 + }, + { + "start": 8487.02, + "end": 8487.48, + "probability": 0.3323 + }, + { + "start": 8487.52, + "end": 8489.22, + "probability": 0.7824 + }, + { + "start": 8489.32, + "end": 8490.68, + "probability": 0.876 + }, + { + "start": 8490.88, + "end": 8493.02, + "probability": 0.835 + }, + { + "start": 8493.06, + "end": 8494.72, + "probability": 0.9188 + }, + { + "start": 8495.44, + "end": 8497.74, + "probability": 0.9836 + }, + { + "start": 8497.84, + "end": 8499.04, + "probability": 0.6484 + }, + { + "start": 8499.18, + "end": 8500.66, + "probability": 0.8132 + }, + { + "start": 8501.18, + "end": 8505.62, + "probability": 0.9937 + }, + { + "start": 8505.62, + "end": 8509.86, + "probability": 0.6075 + }, + { + "start": 8510.34, + "end": 8514.56, + "probability": 0.1694 + }, + { + "start": 8514.68, + "end": 8516.08, + "probability": 0.7366 + }, + { + "start": 8516.14, + "end": 8516.96, + "probability": 0.9471 + }, + { + "start": 8517.0, + "end": 8519.2, + "probability": 0.9362 + }, + { + "start": 8521.3, + "end": 8525.1, + "probability": 0.9897 + }, + { + "start": 8527.12, + "end": 8527.12, + "probability": 0.0001 + }, + { + "start": 8528.9, + "end": 8530.56, + "probability": 0.4173 + }, + { + "start": 8530.82, + "end": 8532.3, + "probability": 0.45 + }, + { + "start": 8538.52, + "end": 8539.62, + "probability": 0.0178 + }, + { + "start": 8555.52, + "end": 8559.32, + "probability": 0.6065 + }, + { + "start": 8559.84, + "end": 8561.72, + "probability": 0.7039 + }, + { + "start": 8561.86, + "end": 8563.94, + "probability": 0.8526 + }, + { + "start": 8564.7, + "end": 8569.78, + "probability": 0.827 + }, + { + "start": 8570.1, + "end": 8571.08, + "probability": 0.8369 + }, + { + "start": 8571.18, + "end": 8572.66, + "probability": 0.8218 + }, + { + "start": 8573.03, + "end": 8574.72, + "probability": 0.9663 + }, + { + "start": 8574.82, + "end": 8578.54, + "probability": 0.9867 + }, + { + "start": 8578.54, + "end": 8581.86, + "probability": 0.7981 + }, + { + "start": 8581.88, + "end": 8590.24, + "probability": 0.9714 + }, + { + "start": 8590.6, + "end": 8592.92, + "probability": 0.7408 + }, + { + "start": 8593.26, + "end": 8599.84, + "probability": 0.822 + }, + { + "start": 8600.98, + "end": 8602.08, + "probability": 0.9719 + }, + { + "start": 8602.66, + "end": 8607.82, + "probability": 0.6248 + }, + { + "start": 8608.76, + "end": 8614.54, + "probability": 0.986 + }, + { + "start": 8615.54, + "end": 8620.36, + "probability": 0.9393 + }, + { + "start": 8620.36, + "end": 8625.2, + "probability": 0.9963 + }, + { + "start": 8626.0, + "end": 8628.94, + "probability": 0.9972 + }, + { + "start": 8628.94, + "end": 8631.78, + "probability": 0.9984 + }, + { + "start": 8632.46, + "end": 8637.26, + "probability": 0.9847 + }, + { + "start": 8637.94, + "end": 8640.9, + "probability": 0.943 + }, + { + "start": 8641.0, + "end": 8643.79, + "probability": 0.9888 + }, + { + "start": 8644.72, + "end": 8652.24, + "probability": 0.9331 + }, + { + "start": 8653.1, + "end": 8654.98, + "probability": 0.9135 + }, + { + "start": 8661.52, + "end": 8664.98, + "probability": 0.5389 + }, + { + "start": 8665.12, + "end": 8666.78, + "probability": 0.703 + }, + { + "start": 8667.76, + "end": 8673.68, + "probability": 0.9929 + }, + { + "start": 8675.1, + "end": 8678.88, + "probability": 0.9966 + }, + { + "start": 8679.7, + "end": 8687.42, + "probability": 0.8968 + }, + { + "start": 8687.78, + "end": 8688.32, + "probability": 0.752 + }, + { + "start": 8688.54, + "end": 8690.14, + "probability": 0.6889 + }, + { + "start": 8690.18, + "end": 8695.09, + "probability": 0.9182 + }, + { + "start": 8696.21, + "end": 8698.88, + "probability": 0.9079 + }, + { + "start": 8699.5, + "end": 8701.92, + "probability": 0.5826 + }, + { + "start": 8702.86, + "end": 8705.14, + "probability": 0.9465 + }, + { + "start": 8705.2, + "end": 8708.44, + "probability": 0.9615 + }, + { + "start": 8708.9, + "end": 8709.06, + "probability": 0.4269 + }, + { + "start": 8709.12, + "end": 8712.56, + "probability": 0.9644 + }, + { + "start": 8728.28, + "end": 8729.32, + "probability": 0.3032 + }, + { + "start": 8729.6, + "end": 8730.84, + "probability": 0.5308 + }, + { + "start": 8741.54, + "end": 8742.3, + "probability": 0.0047 + }, + { + "start": 8749.82, + "end": 8752.4, + "probability": 0.7665 + }, + { + "start": 8757.14, + "end": 8758.12, + "probability": 0.7198 + }, + { + "start": 8760.78, + "end": 8763.98, + "probability": 0.959 + }, + { + "start": 8766.04, + "end": 8766.88, + "probability": 0.9825 + }, + { + "start": 8771.02, + "end": 8776.66, + "probability": 0.9991 + }, + { + "start": 8780.6, + "end": 8785.46, + "probability": 0.8628 + }, + { + "start": 8785.54, + "end": 8786.62, + "probability": 0.7158 + }, + { + "start": 8788.82, + "end": 8796.56, + "probability": 0.9979 + }, + { + "start": 8800.05, + "end": 8803.3, + "probability": 0.9989 + }, + { + "start": 8804.38, + "end": 8807.9, + "probability": 0.9983 + }, + { + "start": 8809.18, + "end": 8811.48, + "probability": 0.9995 + }, + { + "start": 8811.48, + "end": 8814.76, + "probability": 0.9902 + }, + { + "start": 8814.94, + "end": 8818.54, + "probability": 0.8735 + }, + { + "start": 8818.68, + "end": 8819.52, + "probability": 0.6639 + }, + { + "start": 8820.3, + "end": 8821.28, + "probability": 0.9155 + }, + { + "start": 8822.48, + "end": 8823.12, + "probability": 0.8371 + }, + { + "start": 8823.32, + "end": 8824.36, + "probability": 0.9134 + }, + { + "start": 8824.62, + "end": 8825.72, + "probability": 0.9611 + }, + { + "start": 8825.86, + "end": 8826.6, + "probability": 0.824 + }, + { + "start": 8826.98, + "end": 8829.0, + "probability": 0.9053 + }, + { + "start": 8830.3, + "end": 8835.06, + "probability": 0.8844 + }, + { + "start": 8835.78, + "end": 8838.32, + "probability": 0.9857 + }, + { + "start": 8838.86, + "end": 8843.44, + "probability": 0.86 + }, + { + "start": 8844.56, + "end": 8847.04, + "probability": 0.9971 + }, + { + "start": 8847.58, + "end": 8850.36, + "probability": 0.989 + }, + { + "start": 8850.9, + "end": 8854.1, + "probability": 0.928 + }, + { + "start": 8854.18, + "end": 8855.33, + "probability": 0.9387 + }, + { + "start": 8856.18, + "end": 8858.95, + "probability": 0.8477 + }, + { + "start": 8859.82, + "end": 8861.56, + "probability": 0.9761 + }, + { + "start": 8861.9, + "end": 8865.32, + "probability": 0.9985 + }, + { + "start": 8866.34, + "end": 8868.4, + "probability": 0.9417 + }, + { + "start": 8870.54, + "end": 8874.78, + "probability": 0.9233 + }, + { + "start": 8876.14, + "end": 8877.86, + "probability": 0.9673 + }, + { + "start": 8878.54, + "end": 8881.56, + "probability": 0.9859 + }, + { + "start": 8881.64, + "end": 8885.66, + "probability": 0.9606 + }, + { + "start": 8886.14, + "end": 8889.14, + "probability": 0.995 + }, + { + "start": 8890.16, + "end": 8892.76, + "probability": 0.9985 + }, + { + "start": 8892.76, + "end": 8896.2, + "probability": 0.9907 + }, + { + "start": 8896.68, + "end": 8898.56, + "probability": 0.7863 + }, + { + "start": 8900.52, + "end": 8902.48, + "probability": 0.9912 + }, + { + "start": 8902.6, + "end": 8904.16, + "probability": 0.9692 + }, + { + "start": 8905.02, + "end": 8907.4, + "probability": 0.988 + }, + { + "start": 8910.22, + "end": 8915.82, + "probability": 0.9941 + }, + { + "start": 8916.66, + "end": 8919.02, + "probability": 0.8594 + }, + { + "start": 8919.64, + "end": 8921.12, + "probability": 0.8616 + }, + { + "start": 8922.86, + "end": 8925.04, + "probability": 0.9434 + }, + { + "start": 8926.44, + "end": 8927.74, + "probability": 0.9484 + }, + { + "start": 8929.5, + "end": 8930.1, + "probability": 0.2137 + }, + { + "start": 8930.1, + "end": 8932.7, + "probability": 0.8694 + }, + { + "start": 8932.82, + "end": 8934.26, + "probability": 0.7911 + }, + { + "start": 8935.86, + "end": 8938.56, + "probability": 0.9346 + }, + { + "start": 8938.7, + "end": 8939.79, + "probability": 0.9971 + }, + { + "start": 8940.36, + "end": 8941.72, + "probability": 0.8577 + }, + { + "start": 8941.92, + "end": 8943.26, + "probability": 0.9568 + }, + { + "start": 8943.34, + "end": 8944.36, + "probability": 0.9868 + }, + { + "start": 8945.86, + "end": 8947.64, + "probability": 0.9528 + }, + { + "start": 8948.3, + "end": 8952.38, + "probability": 0.9985 + }, + { + "start": 8953.1, + "end": 8955.54, + "probability": 0.9917 + }, + { + "start": 8956.1, + "end": 8959.45, + "probability": 0.9878 + }, + { + "start": 8959.8, + "end": 8960.82, + "probability": 0.9625 + }, + { + "start": 8962.02, + "end": 8966.28, + "probability": 0.9341 + }, + { + "start": 8967.66, + "end": 8972.2, + "probability": 0.9911 + }, + { + "start": 8972.28, + "end": 8972.83, + "probability": 0.8146 + }, + { + "start": 8973.84, + "end": 8977.48, + "probability": 0.7279 + }, + { + "start": 8978.0, + "end": 8982.92, + "probability": 0.9586 + }, + { + "start": 8983.28, + "end": 8984.81, + "probability": 0.8011 + }, + { + "start": 8986.24, + "end": 8988.5, + "probability": 0.7474 + }, + { + "start": 8988.58, + "end": 8990.72, + "probability": 0.9446 + }, + { + "start": 8990.72, + "end": 8994.0, + "probability": 0.71 + }, + { + "start": 8995.2, + "end": 8995.9, + "probability": 0.7767 + }, + { + "start": 8996.1, + "end": 8997.92, + "probability": 0.9041 + }, + { + "start": 8998.02, + "end": 8998.72, + "probability": 0.8975 + }, + { + "start": 8998.74, + "end": 8999.32, + "probability": 0.906 + }, + { + "start": 8999.36, + "end": 9001.1, + "probability": 0.9604 + }, + { + "start": 9003.02, + "end": 9004.28, + "probability": 0.9682 + }, + { + "start": 9005.06, + "end": 9010.0, + "probability": 0.703 + }, + { + "start": 9010.1, + "end": 9011.32, + "probability": 0.9229 + }, + { + "start": 9011.59, + "end": 9015.6, + "probability": 0.9978 + }, + { + "start": 9015.74, + "end": 9017.24, + "probability": 0.8942 + }, + { + "start": 9017.86, + "end": 9020.04, + "probability": 0.9974 + }, + { + "start": 9020.56, + "end": 9022.28, + "probability": 0.9873 + }, + { + "start": 9022.7, + "end": 9025.28, + "probability": 0.8032 + }, + { + "start": 9025.4, + "end": 9026.36, + "probability": 0.9695 + }, + { + "start": 9027.74, + "end": 9029.28, + "probability": 0.972 + }, + { + "start": 9031.6, + "end": 9034.78, + "probability": 0.9941 + }, + { + "start": 9034.88, + "end": 9035.78, + "probability": 0.8132 + }, + { + "start": 9035.9, + "end": 9036.8, + "probability": 0.7344 + }, + { + "start": 9036.86, + "end": 9038.07, + "probability": 0.9028 + }, + { + "start": 9039.62, + "end": 9040.3, + "probability": 0.6938 + }, + { + "start": 9040.36, + "end": 9041.18, + "probability": 0.8606 + }, + { + "start": 9042.32, + "end": 9043.8, + "probability": 0.9692 + }, + { + "start": 9044.92, + "end": 9045.06, + "probability": 0.2256 + }, + { + "start": 9045.68, + "end": 9046.97, + "probability": 0.9263 + }, + { + "start": 9048.18, + "end": 9049.78, + "probability": 0.9875 + }, + { + "start": 9051.14, + "end": 9051.42, + "probability": 0.0135 + }, + { + "start": 9052.4, + "end": 9053.58, + "probability": 0.7841 + }, + { + "start": 9055.36, + "end": 9058.62, + "probability": 0.9908 + }, + { + "start": 9059.22, + "end": 9060.78, + "probability": 0.9961 + }, + { + "start": 9062.34, + "end": 9067.54, + "probability": 0.9863 + }, + { + "start": 9067.54, + "end": 9068.04, + "probability": 0.5702 + }, + { + "start": 9068.26, + "end": 9068.3, + "probability": 0.3637 + }, + { + "start": 9068.3, + "end": 9069.7, + "probability": 0.7059 + }, + { + "start": 9071.0, + "end": 9072.7, + "probability": 0.6543 + }, + { + "start": 9072.74, + "end": 9074.45, + "probability": 0.9971 + }, + { + "start": 9074.88, + "end": 9075.38, + "probability": 0.6847 + }, + { + "start": 9075.44, + "end": 9077.28, + "probability": 0.7972 + }, + { + "start": 9077.44, + "end": 9077.58, + "probability": 0.5161 + }, + { + "start": 9077.72, + "end": 9078.8, + "probability": 0.6108 + }, + { + "start": 9079.44, + "end": 9082.42, + "probability": 0.8733 + }, + { + "start": 9082.44, + "end": 9083.34, + "probability": 0.6081 + }, + { + "start": 9083.66, + "end": 9084.94, + "probability": 0.7722 + }, + { + "start": 9085.06, + "end": 9086.82, + "probability": 0.9522 + }, + { + "start": 9101.44, + "end": 9104.66, + "probability": 0.5894 + }, + { + "start": 9106.2, + "end": 9108.24, + "probability": 0.5052 + }, + { + "start": 9108.5, + "end": 9108.58, + "probability": 0.9077 + }, + { + "start": 9108.58, + "end": 9109.42, + "probability": 0.756 + }, + { + "start": 9109.54, + "end": 9110.68, + "probability": 0.6771 + }, + { + "start": 9112.14, + "end": 9113.18, + "probability": 0.8677 + }, + { + "start": 9113.98, + "end": 9117.6, + "probability": 0.5679 + }, + { + "start": 9117.82, + "end": 9120.24, + "probability": 0.9376 + }, + { + "start": 9120.3, + "end": 9121.92, + "probability": 0.6266 + }, + { + "start": 9122.68, + "end": 9124.12, + "probability": 0.7968 + }, + { + "start": 9126.04, + "end": 9126.71, + "probability": 0.901 + }, + { + "start": 9127.84, + "end": 9129.72, + "probability": 0.7758 + }, + { + "start": 9130.78, + "end": 9132.6, + "probability": 0.9883 + }, + { + "start": 9133.74, + "end": 9137.4, + "probability": 0.9835 + }, + { + "start": 9137.76, + "end": 9139.04, + "probability": 0.6118 + }, + { + "start": 9139.08, + "end": 9140.78, + "probability": 0.9701 + }, + { + "start": 9141.52, + "end": 9142.26, + "probability": 0.6136 + }, + { + "start": 9142.28, + "end": 9143.56, + "probability": 0.8591 + }, + { + "start": 9144.06, + "end": 9146.06, + "probability": 0.989 + }, + { + "start": 9147.2, + "end": 9153.34, + "probability": 0.9807 + }, + { + "start": 9155.0, + "end": 9159.14, + "probability": 0.9924 + }, + { + "start": 9160.96, + "end": 9164.92, + "probability": 0.9621 + }, + { + "start": 9166.78, + "end": 9169.18, + "probability": 0.9966 + }, + { + "start": 9169.36, + "end": 9171.3, + "probability": 0.9952 + }, + { + "start": 9171.98, + "end": 9173.2, + "probability": 0.8186 + }, + { + "start": 9174.48, + "end": 9179.22, + "probability": 0.9841 + }, + { + "start": 9181.1, + "end": 9182.16, + "probability": 0.8139 + }, + { + "start": 9182.66, + "end": 9183.84, + "probability": 0.9626 + }, + { + "start": 9185.06, + "end": 9188.9, + "probability": 0.7411 + }, + { + "start": 9189.78, + "end": 9192.5, + "probability": 0.6576 + }, + { + "start": 9193.46, + "end": 9195.26, + "probability": 0.5434 + }, + { + "start": 9195.38, + "end": 9195.76, + "probability": 0.6537 + }, + { + "start": 9195.86, + "end": 9200.94, + "probability": 0.7836 + }, + { + "start": 9201.12, + "end": 9203.04, + "probability": 0.8173 + }, + { + "start": 9203.54, + "end": 9205.96, + "probability": 0.9898 + }, + { + "start": 9207.22, + "end": 9209.74, + "probability": 0.7308 + }, + { + "start": 9210.28, + "end": 9212.07, + "probability": 0.7275 + }, + { + "start": 9212.8, + "end": 9214.98, + "probability": 0.9902 + }, + { + "start": 9214.98, + "end": 9216.48, + "probability": 0.9807 + }, + { + "start": 9217.1, + "end": 9219.1, + "probability": 0.8681 + }, + { + "start": 9221.46, + "end": 9222.48, + "probability": 0.178 + }, + { + "start": 9222.7, + "end": 9222.74, + "probability": 0.1671 + }, + { + "start": 9222.74, + "end": 9225.04, + "probability": 0.9824 + }, + { + "start": 9225.3, + "end": 9226.08, + "probability": 0.8495 + }, + { + "start": 9226.2, + "end": 9227.09, + "probability": 0.8768 + }, + { + "start": 9229.08, + "end": 9231.16, + "probability": 0.8764 + }, + { + "start": 9232.04, + "end": 9232.9, + "probability": 0.7248 + }, + { + "start": 9233.08, + "end": 9234.7, + "probability": 0.9462 + }, + { + "start": 9234.92, + "end": 9235.66, + "probability": 0.8803 + }, + { + "start": 9236.76, + "end": 9237.97, + "probability": 0.7845 + }, + { + "start": 9239.8, + "end": 9240.84, + "probability": 0.9026 + }, + { + "start": 9241.24, + "end": 9242.0, + "probability": 0.9199 + }, + { + "start": 9242.06, + "end": 9243.3, + "probability": 0.9636 + }, + { + "start": 9243.38, + "end": 9244.7, + "probability": 0.9672 + }, + { + "start": 9245.94, + "end": 9250.02, + "probability": 0.9332 + }, + { + "start": 9251.6, + "end": 9256.98, + "probability": 0.8583 + }, + { + "start": 9257.8, + "end": 9260.54, + "probability": 0.8599 + }, + { + "start": 9260.66, + "end": 9261.44, + "probability": 0.5306 + }, + { + "start": 9261.66, + "end": 9262.48, + "probability": 0.9219 + }, + { + "start": 9263.04, + "end": 9265.56, + "probability": 0.9578 + }, + { + "start": 9266.58, + "end": 9273.64, + "probability": 0.9855 + }, + { + "start": 9274.3, + "end": 9277.86, + "probability": 0.9904 + }, + { + "start": 9278.18, + "end": 9279.44, + "probability": 0.8583 + }, + { + "start": 9279.84, + "end": 9281.0, + "probability": 0.9084 + }, + { + "start": 9281.56, + "end": 9283.84, + "probability": 0.9497 + }, + { + "start": 9284.2, + "end": 9284.62, + "probability": 0.9671 + }, + { + "start": 9285.02, + "end": 9287.74, + "probability": 0.8164 + }, + { + "start": 9288.24, + "end": 9292.88, + "probability": 0.6645 + }, + { + "start": 9293.06, + "end": 9299.88, + "probability": 0.8863 + }, + { + "start": 9300.78, + "end": 9300.88, + "probability": 0.488 + }, + { + "start": 9300.88, + "end": 9303.44, + "probability": 0.9038 + }, + { + "start": 9303.66, + "end": 9305.38, + "probability": 0.9012 + }, + { + "start": 9305.54, + "end": 9306.94, + "probability": 0.3139 + }, + { + "start": 9307.26, + "end": 9309.72, + "probability": 0.9806 + }, + { + "start": 9309.78, + "end": 9310.84, + "probability": 0.6231 + }, + { + "start": 9311.22, + "end": 9311.96, + "probability": 0.3843 + }, + { + "start": 9312.06, + "end": 9314.5, + "probability": 0.9082 + }, + { + "start": 9314.62, + "end": 9315.52, + "probability": 0.9116 + }, + { + "start": 9315.58, + "end": 9316.7, + "probability": 0.9125 + }, + { + "start": 9317.02, + "end": 9318.28, + "probability": 0.8792 + }, + { + "start": 9318.7, + "end": 9322.04, + "probability": 0.7068 + }, + { + "start": 9322.76, + "end": 9323.5, + "probability": 0.7747 + }, + { + "start": 9323.56, + "end": 9328.58, + "probability": 0.8671 + }, + { + "start": 9329.04, + "end": 9333.54, + "probability": 0.9796 + }, + { + "start": 9333.82, + "end": 9337.62, + "probability": 0.9431 + }, + { + "start": 9338.16, + "end": 9339.44, + "probability": 0.6217 + }, + { + "start": 9339.44, + "end": 9343.2, + "probability": 0.7797 + }, + { + "start": 9343.24, + "end": 9344.76, + "probability": 0.4925 + }, + { + "start": 9344.92, + "end": 9346.68, + "probability": 0.9732 + }, + { + "start": 9347.74, + "end": 9351.14, + "probability": 0.9336 + }, + { + "start": 9351.72, + "end": 9352.79, + "probability": 0.9717 + }, + { + "start": 9353.66, + "end": 9355.82, + "probability": 0.9233 + }, + { + "start": 9356.9, + "end": 9361.26, + "probability": 0.9438 + }, + { + "start": 9363.04, + "end": 9363.88, + "probability": 0.9512 + }, + { + "start": 9364.04, + "end": 9364.6, + "probability": 0.8398 + }, + { + "start": 9364.68, + "end": 9366.56, + "probability": 0.8639 + }, + { + "start": 9367.02, + "end": 9370.84, + "probability": 0.9299 + }, + { + "start": 9371.18, + "end": 9373.76, + "probability": 0.742 + }, + { + "start": 9373.76, + "end": 9374.82, + "probability": 0.5814 + }, + { + "start": 9375.46, + "end": 9376.95, + "probability": 0.4984 + }, + { + "start": 9377.58, + "end": 9378.97, + "probability": 0.8709 + }, + { + "start": 9379.82, + "end": 9381.9, + "probability": 0.6652 + }, + { + "start": 9382.32, + "end": 9383.2, + "probability": 0.5422 + }, + { + "start": 9384.36, + "end": 9387.51, + "probability": 0.9932 + }, + { + "start": 9389.32, + "end": 9390.14, + "probability": 0.7356 + }, + { + "start": 9390.22, + "end": 9392.36, + "probability": 0.7158 + }, + { + "start": 9392.58, + "end": 9393.6, + "probability": 0.7308 + }, + { + "start": 9393.76, + "end": 9395.46, + "probability": 0.5716 + }, + { + "start": 9395.62, + "end": 9396.92, + "probability": 0.9401 + }, + { + "start": 9396.92, + "end": 9397.92, + "probability": 0.7931 + }, + { + "start": 9397.96, + "end": 9398.94, + "probability": 0.9927 + }, + { + "start": 9399.5, + "end": 9400.58, + "probability": 0.5725 + }, + { + "start": 9401.62, + "end": 9403.81, + "probability": 0.7882 + }, + { + "start": 9404.74, + "end": 9407.02, + "probability": 0.8916 + }, + { + "start": 9407.24, + "end": 9413.12, + "probability": 0.8262 + }, + { + "start": 9413.22, + "end": 9414.02, + "probability": 0.929 + }, + { + "start": 9415.18, + "end": 9416.64, + "probability": 0.9552 + }, + { + "start": 9416.7, + "end": 9417.3, + "probability": 0.7463 + }, + { + "start": 9417.56, + "end": 9419.0, + "probability": 0.7972 + }, + { + "start": 9419.12, + "end": 9419.68, + "probability": 0.2767 + }, + { + "start": 9419.68, + "end": 9423.98, + "probability": 0.8201 + }, + { + "start": 9424.26, + "end": 9424.7, + "probability": 0.7921 + }, + { + "start": 9425.44, + "end": 9426.52, + "probability": 0.9054 + }, + { + "start": 9426.58, + "end": 9427.72, + "probability": 0.7258 + }, + { + "start": 9428.16, + "end": 9429.4, + "probability": 0.443 + }, + { + "start": 9429.4, + "end": 9431.0, + "probability": 0.4655 + }, + { + "start": 9431.1, + "end": 9434.34, + "probability": 0.9792 + }, + { + "start": 9434.56, + "end": 9434.92, + "probability": 0.7006 + }, + { + "start": 9434.96, + "end": 9436.12, + "probability": 0.5013 + }, + { + "start": 9436.22, + "end": 9436.86, + "probability": 0.8917 + }, + { + "start": 9436.9, + "end": 9442.64, + "probability": 0.794 + }, + { + "start": 9442.7, + "end": 9447.02, + "probability": 0.9456 + }, + { + "start": 9447.18, + "end": 9449.64, + "probability": 0.9443 + }, + { + "start": 9452.0, + "end": 9453.72, + "probability": 0.7638 + }, + { + "start": 9454.32, + "end": 9457.8, + "probability": 0.7915 + }, + { + "start": 9458.38, + "end": 9460.12, + "probability": 0.8074 + }, + { + "start": 9460.68, + "end": 9463.24, + "probability": 0.9485 + }, + { + "start": 9463.28, + "end": 9464.94, + "probability": 0.9834 + }, + { + "start": 9466.2, + "end": 9467.62, + "probability": 0.6013 + }, + { + "start": 9467.62, + "end": 9468.66, + "probability": 0.9656 + }, + { + "start": 9469.0, + "end": 9470.66, + "probability": 0.6654 + }, + { + "start": 9470.98, + "end": 9472.12, + "probability": 0.9081 + }, + { + "start": 9476.0, + "end": 9478.32, + "probability": 0.7975 + }, + { + "start": 9481.54, + "end": 9486.86, + "probability": 0.9552 + }, + { + "start": 9489.5, + "end": 9491.82, + "probability": 0.8745 + }, + { + "start": 9495.22, + "end": 9500.22, + "probability": 0.9648 + }, + { + "start": 9502.82, + "end": 9503.88, + "probability": 0.508 + }, + { + "start": 9504.44, + "end": 9505.44, + "probability": 0.9482 + }, + { + "start": 9506.4, + "end": 9509.64, + "probability": 0.9634 + }, + { + "start": 9510.94, + "end": 9513.58, + "probability": 0.8269 + }, + { + "start": 9516.38, + "end": 9521.54, + "probability": 0.8927 + }, + { + "start": 9522.46, + "end": 9523.38, + "probability": 0.9111 + }, + { + "start": 9525.5, + "end": 9533.5, + "probability": 0.9895 + }, + { + "start": 9535.32, + "end": 9536.9, + "probability": 0.8833 + }, + { + "start": 9537.98, + "end": 9540.98, + "probability": 0.9578 + }, + { + "start": 9542.84, + "end": 9547.28, + "probability": 0.9664 + }, + { + "start": 9547.92, + "end": 9548.88, + "probability": 0.5175 + }, + { + "start": 9549.2, + "end": 9552.88, + "probability": 0.8548 + }, + { + "start": 9553.76, + "end": 9555.28, + "probability": 0.9853 + }, + { + "start": 9555.9, + "end": 9559.94, + "probability": 0.9924 + }, + { + "start": 9560.64, + "end": 9561.48, + "probability": 0.7406 + }, + { + "start": 9561.82, + "end": 9570.76, + "probability": 0.9915 + }, + { + "start": 9571.54, + "end": 9575.8, + "probability": 0.9992 + }, + { + "start": 9577.52, + "end": 9578.92, + "probability": 0.7614 + }, + { + "start": 9579.72, + "end": 9580.44, + "probability": 0.7399 + }, + { + "start": 9581.52, + "end": 9583.2, + "probability": 0.9956 + }, + { + "start": 9583.78, + "end": 9584.66, + "probability": 0.9583 + }, + { + "start": 9585.36, + "end": 9587.7, + "probability": 0.9946 + }, + { + "start": 9588.92, + "end": 9590.56, + "probability": 0.98 + }, + { + "start": 9592.26, + "end": 9596.88, + "probability": 0.9951 + }, + { + "start": 9597.34, + "end": 9598.18, + "probability": 0.9443 + }, + { + "start": 9599.08, + "end": 9601.38, + "probability": 0.7777 + }, + { + "start": 9601.72, + "end": 9606.6, + "probability": 0.967 + }, + { + "start": 9607.96, + "end": 9609.38, + "probability": 0.9785 + }, + { + "start": 9610.02, + "end": 9613.6, + "probability": 0.9617 + }, + { + "start": 9614.5, + "end": 9616.46, + "probability": 0.9858 + }, + { + "start": 9617.82, + "end": 9619.22, + "probability": 0.9707 + }, + { + "start": 9619.98, + "end": 9621.72, + "probability": 0.8071 + }, + { + "start": 9622.44, + "end": 9624.44, + "probability": 0.9753 + }, + { + "start": 9625.52, + "end": 9626.9, + "probability": 0.9949 + }, + { + "start": 9627.2, + "end": 9629.08, + "probability": 0.9734 + }, + { + "start": 9630.74, + "end": 9633.82, + "probability": 0.8382 + }, + { + "start": 9634.96, + "end": 9639.9, + "probability": 0.8377 + }, + { + "start": 9640.62, + "end": 9641.76, + "probability": 0.5231 + }, + { + "start": 9642.4, + "end": 9649.56, + "probability": 0.9614 + }, + { + "start": 9649.98, + "end": 9657.26, + "probability": 0.9622 + }, + { + "start": 9657.52, + "end": 9658.72, + "probability": 0.4964 + }, + { + "start": 9659.36, + "end": 9664.76, + "probability": 0.9798 + }, + { + "start": 9665.42, + "end": 9666.66, + "probability": 0.7158 + }, + { + "start": 9667.44, + "end": 9668.74, + "probability": 0.984 + }, + { + "start": 9671.0, + "end": 9673.44, + "probability": 0.9913 + }, + { + "start": 9674.96, + "end": 9682.1, + "probability": 0.9705 + }, + { + "start": 9684.52, + "end": 9687.1, + "probability": 0.8658 + }, + { + "start": 9687.76, + "end": 9688.52, + "probability": 0.831 + }, + { + "start": 9689.12, + "end": 9695.72, + "probability": 0.9929 + }, + { + "start": 9701.12, + "end": 9708.22, + "probability": 0.9639 + }, + { + "start": 9709.92, + "end": 9712.64, + "probability": 0.9732 + }, + { + "start": 9715.22, + "end": 9716.34, + "probability": 0.9509 + }, + { + "start": 9718.64, + "end": 9720.1, + "probability": 0.7677 + }, + { + "start": 9722.26, + "end": 9723.64, + "probability": 0.4799 + }, + { + "start": 9724.52, + "end": 9726.26, + "probability": 0.9851 + }, + { + "start": 9727.18, + "end": 9727.96, + "probability": 0.6331 + }, + { + "start": 9729.0, + "end": 9731.46, + "probability": 0.9328 + }, + { + "start": 9732.32, + "end": 9734.97, + "probability": 0.9866 + }, + { + "start": 9736.36, + "end": 9741.16, + "probability": 0.9974 + }, + { + "start": 9741.84, + "end": 9743.63, + "probability": 0.9833 + }, + { + "start": 9744.38, + "end": 9745.94, + "probability": 0.984 + }, + { + "start": 9747.16, + "end": 9750.07, + "probability": 0.9771 + }, + { + "start": 9751.84, + "end": 9753.48, + "probability": 0.9963 + }, + { + "start": 9754.24, + "end": 9755.36, + "probability": 0.9919 + }, + { + "start": 9755.52, + "end": 9758.48, + "probability": 0.8872 + }, + { + "start": 9758.94, + "end": 9760.48, + "probability": 0.5999 + }, + { + "start": 9761.94, + "end": 9764.43, + "probability": 0.9849 + }, + { + "start": 9765.58, + "end": 9768.1, + "probability": 0.86 + }, + { + "start": 9769.14, + "end": 9771.04, + "probability": 0.9654 + }, + { + "start": 9771.8, + "end": 9775.28, + "probability": 0.9359 + }, + { + "start": 9776.18, + "end": 9778.38, + "probability": 0.7051 + }, + { + "start": 9778.38, + "end": 9782.22, + "probability": 0.8122 + }, + { + "start": 9782.84, + "end": 9784.86, + "probability": 0.9871 + }, + { + "start": 9784.88, + "end": 9788.18, + "probability": 0.9919 + }, + { + "start": 9788.22, + "end": 9790.18, + "probability": 0.9899 + }, + { + "start": 9790.9, + "end": 9794.26, + "probability": 0.9798 + }, + { + "start": 9795.56, + "end": 9801.18, + "probability": 0.9941 + }, + { + "start": 9801.96, + "end": 9802.7, + "probability": 0.8124 + }, + { + "start": 9809.7, + "end": 9809.98, + "probability": 0.3519 + }, + { + "start": 9810.0, + "end": 9811.04, + "probability": 0.6876 + }, + { + "start": 9812.3, + "end": 9813.28, + "probability": 0.863 + }, + { + "start": 9814.08, + "end": 9816.98, + "probability": 0.9221 + }, + { + "start": 9818.08, + "end": 9822.74, + "probability": 0.9965 + }, + { + "start": 9823.44, + "end": 9824.8, + "probability": 0.731 + }, + { + "start": 9824.92, + "end": 9830.94, + "probability": 0.9487 + }, + { + "start": 9831.18, + "end": 9832.98, + "probability": 0.8587 + }, + { + "start": 9834.1, + "end": 9836.54, + "probability": 0.9005 + }, + { + "start": 9837.8, + "end": 9839.24, + "probability": 0.9749 + }, + { + "start": 9840.5, + "end": 9842.26, + "probability": 0.9017 + }, + { + "start": 9844.02, + "end": 9847.02, + "probability": 0.4464 + }, + { + "start": 9847.1, + "end": 9848.98, + "probability": 0.9967 + }, + { + "start": 9849.72, + "end": 9852.98, + "probability": 0.7616 + }, + { + "start": 9852.98, + "end": 9856.82, + "probability": 0.9483 + }, + { + "start": 9857.36, + "end": 9859.48, + "probability": 0.9245 + }, + { + "start": 9860.54, + "end": 9862.06, + "probability": 0.9943 + }, + { + "start": 9862.14, + "end": 9862.84, + "probability": 0.5642 + }, + { + "start": 9862.86, + "end": 9864.26, + "probability": 0.7625 + }, + { + "start": 9865.36, + "end": 9869.58, + "probability": 0.9823 + }, + { + "start": 9871.08, + "end": 9871.72, + "probability": 0.749 + }, + { + "start": 9872.0, + "end": 9876.24, + "probability": 0.9799 + }, + { + "start": 9876.42, + "end": 9878.5, + "probability": 0.8163 + }, + { + "start": 9878.66, + "end": 9881.24, + "probability": 0.9976 + }, + { + "start": 9882.26, + "end": 9882.96, + "probability": 0.6453 + }, + { + "start": 9883.12, + "end": 9885.44, + "probability": 0.9943 + }, + { + "start": 9885.44, + "end": 9887.94, + "probability": 0.8997 + }, + { + "start": 9888.5, + "end": 9891.58, + "probability": 0.9712 + }, + { + "start": 9891.58, + "end": 9894.5, + "probability": 0.9464 + }, + { + "start": 9895.24, + "end": 9897.4, + "probability": 0.6866 + }, + { + "start": 9897.96, + "end": 9900.4, + "probability": 0.974 + }, + { + "start": 9900.4, + "end": 9904.52, + "probability": 0.9076 + }, + { + "start": 9904.64, + "end": 9906.06, + "probability": 0.8474 + }, + { + "start": 9906.56, + "end": 9907.9, + "probability": 0.9964 + }, + { + "start": 9907.94, + "end": 9908.44, + "probability": 0.8765 + }, + { + "start": 9909.3, + "end": 9914.56, + "probability": 0.8513 + }, + { + "start": 9914.92, + "end": 9917.22, + "probability": 0.9852 + }, + { + "start": 9917.26, + "end": 9918.42, + "probability": 0.9036 + }, + { + "start": 9919.08, + "end": 9921.94, + "probability": 0.9913 + }, + { + "start": 9921.94, + "end": 9925.74, + "probability": 0.9062 + }, + { + "start": 9927.62, + "end": 9930.8, + "probability": 0.8555 + }, + { + "start": 9931.38, + "end": 9932.3, + "probability": 0.5203 + }, + { + "start": 9932.44, + "end": 9935.6, + "probability": 0.9616 + }, + { + "start": 9936.42, + "end": 9940.54, + "probability": 0.9927 + }, + { + "start": 9941.18, + "end": 9943.56, + "probability": 0.5477 + }, + { + "start": 9944.46, + "end": 9947.2, + "probability": 0.909 + }, + { + "start": 9947.28, + "end": 9948.36, + "probability": 0.7618 + }, + { + "start": 9949.2, + "end": 9951.36, + "probability": 0.8696 + }, + { + "start": 9951.52, + "end": 9952.06, + "probability": 0.5066 + }, + { + "start": 9952.16, + "end": 9955.16, + "probability": 0.9934 + }, + { + "start": 9955.16, + "end": 9959.24, + "probability": 0.9796 + }, + { + "start": 9960.92, + "end": 9966.02, + "probability": 0.9368 + }, + { + "start": 9966.02, + "end": 9968.36, + "probability": 0.913 + }, + { + "start": 9968.46, + "end": 9969.96, + "probability": 0.7475 + }, + { + "start": 9970.64, + "end": 9972.35, + "probability": 0.793 + }, + { + "start": 9974.6, + "end": 9975.68, + "probability": 0.7142 + }, + { + "start": 9976.14, + "end": 9979.9, + "probability": 0.9878 + }, + { + "start": 9980.44, + "end": 9983.4, + "probability": 0.9915 + }, + { + "start": 9983.4, + "end": 9988.8, + "probability": 0.9819 + }, + { + "start": 9988.9, + "end": 9992.04, + "probability": 0.9661 + }, + { + "start": 9992.14, + "end": 9996.04, + "probability": 0.9954 + }, + { + "start": 9996.04, + "end": 10000.48, + "probability": 0.994 + }, + { + "start": 10000.6, + "end": 10001.96, + "probability": 0.7751 + }, + { + "start": 10002.48, + "end": 10003.36, + "probability": 0.7025 + }, + { + "start": 10003.56, + "end": 10004.54, + "probability": 0.5736 + }, + { + "start": 10004.64, + "end": 10005.0, + "probability": 0.7911 + }, + { + "start": 10005.08, + "end": 10006.84, + "probability": 0.7393 + }, + { + "start": 10007.26, + "end": 10009.18, + "probability": 0.8899 + }, + { + "start": 10009.18, + "end": 10012.22, + "probability": 0.9856 + }, + { + "start": 10012.52, + "end": 10013.76, + "probability": 0.9228 + }, + { + "start": 10014.2, + "end": 10018.76, + "probability": 0.8659 + }, + { + "start": 10018.78, + "end": 10021.84, + "probability": 0.9753 + }, + { + "start": 10023.08, + "end": 10025.38, + "probability": 0.9883 + }, + { + "start": 10025.38, + "end": 10028.6, + "probability": 0.9543 + }, + { + "start": 10029.26, + "end": 10033.52, + "probability": 0.8733 + }, + { + "start": 10033.74, + "end": 10036.26, + "probability": 0.8059 + }, + { + "start": 10036.6, + "end": 10037.66, + "probability": 0.9078 + }, + { + "start": 10037.86, + "end": 10038.9, + "probability": 0.7385 + }, + { + "start": 10039.24, + "end": 10041.3, + "probability": 0.9226 + }, + { + "start": 10041.66, + "end": 10042.88, + "probability": 0.9558 + }, + { + "start": 10043.02, + "end": 10043.94, + "probability": 0.9471 + }, + { + "start": 10044.06, + "end": 10044.86, + "probability": 0.7234 + }, + { + "start": 10045.38, + "end": 10047.32, + "probability": 0.9495 + }, + { + "start": 10047.44, + "end": 10049.84, + "probability": 0.6693 + }, + { + "start": 10050.5, + "end": 10052.8, + "probability": 0.6306 + }, + { + "start": 10053.2, + "end": 10056.0, + "probability": 0.9883 + }, + { + "start": 10056.12, + "end": 10057.04, + "probability": 0.9535 + }, + { + "start": 10057.06, + "end": 10058.58, + "probability": 0.9969 + }, + { + "start": 10058.92, + "end": 10061.24, + "probability": 0.9844 + }, + { + "start": 10061.56, + "end": 10061.76, + "probability": 0.5567 + }, + { + "start": 10061.84, + "end": 10062.74, + "probability": 0.959 + }, + { + "start": 10063.56, + "end": 10066.4, + "probability": 0.9457 + }, + { + "start": 10066.46, + "end": 10068.24, + "probability": 0.8174 + }, + { + "start": 10068.86, + "end": 10069.8, + "probability": 0.8796 + }, + { + "start": 10070.64, + "end": 10073.52, + "probability": 0.9914 + }, + { + "start": 10073.52, + "end": 10077.14, + "probability": 0.9929 + }, + { + "start": 10077.14, + "end": 10080.68, + "probability": 0.7918 + }, + { + "start": 10080.8, + "end": 10081.98, + "probability": 0.9517 + }, + { + "start": 10082.56, + "end": 10085.02, + "probability": 0.9257 + }, + { + "start": 10085.02, + "end": 10087.42, + "probability": 0.9348 + }, + { + "start": 10088.1, + "end": 10089.4, + "probability": 0.9221 + }, + { + "start": 10089.96, + "end": 10093.96, + "probability": 0.9901 + }, + { + "start": 10094.06, + "end": 10098.26, + "probability": 0.8806 + }, + { + "start": 10099.14, + "end": 10101.06, + "probability": 0.5729 + }, + { + "start": 10101.38, + "end": 10103.88, + "probability": 0.9689 + }, + { + "start": 10104.5, + "end": 10107.18, + "probability": 0.6057 + }, + { + "start": 10107.18, + "end": 10111.78, + "probability": 0.9452 + }, + { + "start": 10112.36, + "end": 10112.86, + "probability": 0.7904 + }, + { + "start": 10113.0, + "end": 10116.48, + "probability": 0.6618 + }, + { + "start": 10117.12, + "end": 10119.56, + "probability": 0.775 + }, + { + "start": 10120.1, + "end": 10122.04, + "probability": 0.9714 + }, + { + "start": 10122.08, + "end": 10123.78, + "probability": 0.2111 + }, + { + "start": 10123.78, + "end": 10127.68, + "probability": 0.8572 + }, + { + "start": 10128.3, + "end": 10130.68, + "probability": 0.8726 + }, + { + "start": 10131.94, + "end": 10136.36, + "probability": 0.9967 + }, + { + "start": 10136.62, + "end": 10137.52, + "probability": 0.7201 + }, + { + "start": 10137.58, + "end": 10141.78, + "probability": 0.9034 + }, + { + "start": 10142.06, + "end": 10144.71, + "probability": 0.9951 + }, + { + "start": 10145.72, + "end": 10148.12, + "probability": 0.9861 + }, + { + "start": 10148.34, + "end": 10150.66, + "probability": 0.8327 + }, + { + "start": 10150.78, + "end": 10151.68, + "probability": 0.7156 + }, + { + "start": 10152.34, + "end": 10154.0, + "probability": 0.925 + }, + { + "start": 10169.54, + "end": 10170.78, + "probability": 0.432 + }, + { + "start": 10171.62, + "end": 10174.94, + "probability": 0.8805 + }, + { + "start": 10175.72, + "end": 10175.86, + "probability": 0.048 + }, + { + "start": 10180.9, + "end": 10182.76, + "probability": 0.5658 + }, + { + "start": 10183.66, + "end": 10185.44, + "probability": 0.9907 + }, + { + "start": 10185.66, + "end": 10192.2, + "probability": 0.9535 + }, + { + "start": 10192.58, + "end": 10193.47, + "probability": 0.7292 + }, + { + "start": 10194.3, + "end": 10197.4, + "probability": 0.9293 + }, + { + "start": 10197.5, + "end": 10198.64, + "probability": 0.8697 + }, + { + "start": 10198.7, + "end": 10200.18, + "probability": 0.5139 + }, + { + "start": 10200.68, + "end": 10202.76, + "probability": 0.9172 + }, + { + "start": 10202.88, + "end": 10203.46, + "probability": 0.9178 + }, + { + "start": 10203.66, + "end": 10205.24, + "probability": 0.9819 + }, + { + "start": 10205.36, + "end": 10206.74, + "probability": 0.9864 + }, + { + "start": 10207.33, + "end": 10208.7, + "probability": 0.469 + }, + { + "start": 10208.76, + "end": 10209.48, + "probability": 0.9014 + }, + { + "start": 10209.78, + "end": 10210.52, + "probability": 0.716 + }, + { + "start": 10211.1, + "end": 10213.04, + "probability": 0.9242 + }, + { + "start": 10213.56, + "end": 10217.16, + "probability": 0.5852 + }, + { + "start": 10217.16, + "end": 10220.76, + "probability": 0.9671 + }, + { + "start": 10221.54, + "end": 10225.3, + "probability": 0.8627 + }, + { + "start": 10225.68, + "end": 10227.58, + "probability": 0.9228 + }, + { + "start": 10228.12, + "end": 10231.54, + "probability": 0.9917 + }, + { + "start": 10232.0, + "end": 10234.16, + "probability": 0.7857 + }, + { + "start": 10234.3, + "end": 10235.9, + "probability": 0.9169 + }, + { + "start": 10235.98, + "end": 10241.28, + "probability": 0.9358 + }, + { + "start": 10241.64, + "end": 10243.38, + "probability": 0.9577 + }, + { + "start": 10244.28, + "end": 10245.46, + "probability": 0.5771 + }, + { + "start": 10246.02, + "end": 10248.66, + "probability": 0.7838 + }, + { + "start": 10249.82, + "end": 10250.24, + "probability": 0.8467 + }, + { + "start": 10250.3, + "end": 10252.48, + "probability": 0.9858 + }, + { + "start": 10253.0, + "end": 10257.54, + "probability": 0.9025 + }, + { + "start": 10257.72, + "end": 10260.98, + "probability": 0.9686 + }, + { + "start": 10261.5, + "end": 10261.84, + "probability": 0.2787 + }, + { + "start": 10261.84, + "end": 10266.4, + "probability": 0.9911 + }, + { + "start": 10266.4, + "end": 10268.96, + "probability": 0.8357 + }, + { + "start": 10269.06, + "end": 10270.22, + "probability": 0.6971 + }, + { + "start": 10270.62, + "end": 10271.68, + "probability": 0.9377 + }, + { + "start": 10272.0, + "end": 10275.06, + "probability": 0.9319 + }, + { + "start": 10275.18, + "end": 10277.08, + "probability": 0.9614 + }, + { + "start": 10277.18, + "end": 10279.48, + "probability": 0.8121 + }, + { + "start": 10279.78, + "end": 10280.74, + "probability": 0.5844 + }, + { + "start": 10281.66, + "end": 10282.92, + "probability": 0.9678 + }, + { + "start": 10283.34, + "end": 10285.0, + "probability": 0.9938 + }, + { + "start": 10285.52, + "end": 10290.8, + "probability": 0.9937 + }, + { + "start": 10292.02, + "end": 10293.52, + "probability": 0.998 + }, + { + "start": 10294.58, + "end": 10295.52, + "probability": 0.8792 + }, + { + "start": 10296.36, + "end": 10298.88, + "probability": 0.9917 + }, + { + "start": 10299.14, + "end": 10301.68, + "probability": 0.7746 + }, + { + "start": 10302.02, + "end": 10308.26, + "probability": 0.8531 + }, + { + "start": 10308.32, + "end": 10311.44, + "probability": 0.6892 + }, + { + "start": 10312.14, + "end": 10313.9, + "probability": 0.631 + }, + { + "start": 10314.28, + "end": 10315.56, + "probability": 0.9312 + }, + { + "start": 10317.02, + "end": 10321.4, + "probability": 0.9256 + }, + { + "start": 10321.88, + "end": 10322.58, + "probability": 0.9666 + }, + { + "start": 10322.68, + "end": 10323.98, + "probability": 0.7234 + }, + { + "start": 10324.24, + "end": 10328.48, + "probability": 0.7516 + }, + { + "start": 10328.88, + "end": 10330.42, + "probability": 0.7731 + }, + { + "start": 10330.52, + "end": 10331.66, + "probability": 0.8126 + }, + { + "start": 10332.02, + "end": 10335.36, + "probability": 0.987 + }, + { + "start": 10335.84, + "end": 10337.2, + "probability": 0.9973 + }, + { + "start": 10337.4, + "end": 10339.24, + "probability": 0.9115 + }, + { + "start": 10340.08, + "end": 10340.22, + "probability": 0.039 + }, + { + "start": 10340.3, + "end": 10340.74, + "probability": 0.863 + }, + { + "start": 10341.0, + "end": 10344.86, + "probability": 0.6839 + }, + { + "start": 10344.9, + "end": 10345.92, + "probability": 0.5509 + }, + { + "start": 10346.74, + "end": 10350.48, + "probability": 0.96 + }, + { + "start": 10350.86, + "end": 10352.48, + "probability": 0.9226 + }, + { + "start": 10352.68, + "end": 10353.42, + "probability": 0.4934 + }, + { + "start": 10354.58, + "end": 10357.72, + "probability": 0.6631 + }, + { + "start": 10357.9, + "end": 10359.66, + "probability": 0.9943 + }, + { + "start": 10359.78, + "end": 10360.77, + "probability": 0.9482 + }, + { + "start": 10360.94, + "end": 10361.62, + "probability": 0.925 + }, + { + "start": 10362.3, + "end": 10366.12, + "probability": 0.9541 + }, + { + "start": 10366.2, + "end": 10367.86, + "probability": 0.9561 + }, + { + "start": 10368.28, + "end": 10369.44, + "probability": 0.9937 + }, + { + "start": 10370.74, + "end": 10373.28, + "probability": 0.5237 + }, + { + "start": 10374.02, + "end": 10375.58, + "probability": 0.9731 + }, + { + "start": 10375.86, + "end": 10377.6, + "probability": 0.6191 + }, + { + "start": 10377.98, + "end": 10379.04, + "probability": 0.6898 + }, + { + "start": 10379.12, + "end": 10380.84, + "probability": 0.668 + }, + { + "start": 10381.12, + "end": 10383.68, + "probability": 0.752 + }, + { + "start": 10383.78, + "end": 10385.12, + "probability": 0.4802 + }, + { + "start": 10385.24, + "end": 10386.37, + "probability": 0.9634 + }, + { + "start": 10386.8, + "end": 10387.43, + "probability": 0.8836 + }, + { + "start": 10387.76, + "end": 10389.28, + "probability": 0.7501 + }, + { + "start": 10390.06, + "end": 10390.76, + "probability": 0.8035 + }, + { + "start": 10390.86, + "end": 10391.98, + "probability": 0.885 + }, + { + "start": 10392.42, + "end": 10392.95, + "probability": 0.9858 + }, + { + "start": 10393.12, + "end": 10394.5, + "probability": 0.9893 + }, + { + "start": 10394.84, + "end": 10398.43, + "probability": 0.9725 + }, + { + "start": 10398.52, + "end": 10401.18, + "probability": 0.5033 + }, + { + "start": 10401.34, + "end": 10402.36, + "probability": 0.8818 + }, + { + "start": 10402.44, + "end": 10403.4, + "probability": 0.9043 + }, + { + "start": 10404.02, + "end": 10405.84, + "probability": 0.9868 + }, + { + "start": 10406.42, + "end": 10407.19, + "probability": 0.8394 + }, + { + "start": 10407.46, + "end": 10408.58, + "probability": 0.9666 + }, + { + "start": 10409.68, + "end": 10413.6, + "probability": 0.7396 + }, + { + "start": 10414.2, + "end": 10416.32, + "probability": 0.9585 + }, + { + "start": 10416.48, + "end": 10420.34, + "probability": 0.901 + }, + { + "start": 10420.92, + "end": 10423.84, + "probability": 0.8179 + }, + { + "start": 10424.34, + "end": 10426.88, + "probability": 0.9556 + }, + { + "start": 10427.48, + "end": 10428.28, + "probability": 0.7558 + }, + { + "start": 10428.38, + "end": 10429.9, + "probability": 0.9825 + }, + { + "start": 10430.02, + "end": 10433.86, + "probability": 0.9827 + }, + { + "start": 10434.28, + "end": 10436.48, + "probability": 0.8984 + }, + { + "start": 10436.48, + "end": 10437.08, + "probability": 0.8167 + }, + { + "start": 10437.18, + "end": 10437.52, + "probability": 0.8406 + }, + { + "start": 10437.58, + "end": 10438.92, + "probability": 0.9033 + }, + { + "start": 10440.12, + "end": 10442.54, + "probability": 0.6676 + }, + { + "start": 10443.18, + "end": 10444.6, + "probability": 0.702 + }, + { + "start": 10445.68, + "end": 10450.6, + "probability": 0.7954 + }, + { + "start": 10450.8, + "end": 10455.0, + "probability": 0.9898 + }, + { + "start": 10455.4, + "end": 10457.54, + "probability": 0.6215 + }, + { + "start": 10457.6, + "end": 10461.68, + "probability": 0.9568 + }, + { + "start": 10462.46, + "end": 10466.12, + "probability": 0.7847 + }, + { + "start": 10466.52, + "end": 10467.24, + "probability": 0.1223 + }, + { + "start": 10467.36, + "end": 10467.5, + "probability": 0.4092 + }, + { + "start": 10467.5, + "end": 10467.99, + "probability": 0.8334 + }, + { + "start": 10468.9, + "end": 10470.32, + "probability": 0.5039 + }, + { + "start": 10470.34, + "end": 10472.12, + "probability": 0.7381 + }, + { + "start": 10472.74, + "end": 10473.74, + "probability": 0.7737 + }, + { + "start": 10474.1, + "end": 10474.56, + "probability": 0.8123 + }, + { + "start": 10475.04, + "end": 10477.0, + "probability": 0.6048 + }, + { + "start": 10477.18, + "end": 10483.42, + "probability": 0.9951 + }, + { + "start": 10493.64, + "end": 10494.98, + "probability": 0.8774 + }, + { + "start": 10495.7, + "end": 10498.68, + "probability": 0.7303 + }, + { + "start": 10498.68, + "end": 10499.1, + "probability": 0.1221 + }, + { + "start": 10499.1, + "end": 10500.26, + "probability": 0.8076 + }, + { + "start": 10503.14, + "end": 10503.8, + "probability": 0.6699 + }, + { + "start": 10503.8, + "end": 10505.14, + "probability": 0.4606 + }, + { + "start": 10505.18, + "end": 10505.62, + "probability": 0.5063 + }, + { + "start": 10508.64, + "end": 10511.58, + "probability": 0.8228 + }, + { + "start": 10512.74, + "end": 10514.18, + "probability": 0.9039 + }, + { + "start": 10515.16, + "end": 10520.42, + "probability": 0.8152 + }, + { + "start": 10521.24, + "end": 10523.36, + "probability": 0.9941 + }, + { + "start": 10524.62, + "end": 10529.46, + "probability": 0.9623 + }, + { + "start": 10530.86, + "end": 10532.06, + "probability": 0.9914 + }, + { + "start": 10533.68, + "end": 10534.92, + "probability": 0.8661 + }, + { + "start": 10536.82, + "end": 10537.94, + "probability": 0.8135 + }, + { + "start": 10538.7, + "end": 10545.14, + "probability": 0.9827 + }, + { + "start": 10546.78, + "end": 10547.62, + "probability": 0.8361 + }, + { + "start": 10548.96, + "end": 10554.76, + "probability": 0.9451 + }, + { + "start": 10554.76, + "end": 10561.06, + "probability": 0.8447 + }, + { + "start": 10562.1, + "end": 10565.5, + "probability": 0.7149 + }, + { + "start": 10566.14, + "end": 10571.4, + "probability": 0.9937 + }, + { + "start": 10571.4, + "end": 10578.44, + "probability": 0.9947 + }, + { + "start": 10579.52, + "end": 10581.28, + "probability": 0.8015 + }, + { + "start": 10583.2, + "end": 10585.55, + "probability": 0.9402 + }, + { + "start": 10586.46, + "end": 10588.98, + "probability": 0.8948 + }, + { + "start": 10589.4, + "end": 10591.96, + "probability": 0.9865 + }, + { + "start": 10592.48, + "end": 10598.22, + "probability": 0.6783 + }, + { + "start": 10598.72, + "end": 10601.68, + "probability": 0.932 + }, + { + "start": 10602.2, + "end": 10606.94, + "probability": 0.9888 + }, + { + "start": 10607.78, + "end": 10609.84, + "probability": 0.9922 + }, + { + "start": 10610.58, + "end": 10611.86, + "probability": 0.5233 + }, + { + "start": 10612.08, + "end": 10614.2, + "probability": 0.9829 + }, + { + "start": 10614.7, + "end": 10617.62, + "probability": 0.9928 + }, + { + "start": 10618.06, + "end": 10619.32, + "probability": 0.9508 + }, + { + "start": 10620.54, + "end": 10622.68, + "probability": 0.9958 + }, + { + "start": 10623.66, + "end": 10624.16, + "probability": 0.8172 + }, + { + "start": 10625.34, + "end": 10627.42, + "probability": 0.9635 + }, + { + "start": 10628.9, + "end": 10632.08, + "probability": 0.9102 + }, + { + "start": 10632.94, + "end": 10636.76, + "probability": 0.9585 + }, + { + "start": 10637.68, + "end": 10639.08, + "probability": 0.9354 + }, + { + "start": 10640.5, + "end": 10644.38, + "probability": 0.9823 + }, + { + "start": 10645.08, + "end": 10645.6, + "probability": 0.72 + }, + { + "start": 10647.02, + "end": 10648.92, + "probability": 0.953 + }, + { + "start": 10652.28, + "end": 10655.82, + "probability": 0.7423 + }, + { + "start": 10657.58, + "end": 10659.12, + "probability": 0.9768 + }, + { + "start": 10661.06, + "end": 10667.44, + "probability": 0.9634 + }, + { + "start": 10670.24, + "end": 10671.26, + "probability": 0.7658 + }, + { + "start": 10672.76, + "end": 10673.92, + "probability": 0.9992 + }, + { + "start": 10675.56, + "end": 10678.74, + "probability": 0.6043 + }, + { + "start": 10679.72, + "end": 10681.0, + "probability": 0.7623 + }, + { + "start": 10683.22, + "end": 10686.24, + "probability": 0.9828 + }, + { + "start": 10687.14, + "end": 10689.84, + "probability": 0.9973 + }, + { + "start": 10690.78, + "end": 10693.22, + "probability": 0.9935 + }, + { + "start": 10694.34, + "end": 10695.46, + "probability": 0.8591 + }, + { + "start": 10697.94, + "end": 10703.16, + "probability": 0.9849 + }, + { + "start": 10705.48, + "end": 10707.8, + "probability": 0.9888 + }, + { + "start": 10708.86, + "end": 10710.88, + "probability": 0.9883 + }, + { + "start": 10713.84, + "end": 10720.04, + "probability": 0.9956 + }, + { + "start": 10721.62, + "end": 10723.27, + "probability": 0.6244 + }, + { + "start": 10725.58, + "end": 10727.1, + "probability": 0.9624 + }, + { + "start": 10730.16, + "end": 10734.14, + "probability": 0.9868 + }, + { + "start": 10735.44, + "end": 10736.26, + "probability": 0.9403 + }, + { + "start": 10737.14, + "end": 10738.76, + "probability": 0.991 + }, + { + "start": 10740.54, + "end": 10742.14, + "probability": 0.9773 + }, + { + "start": 10743.02, + "end": 10747.2, + "probability": 0.9912 + }, + { + "start": 10748.48, + "end": 10753.24, + "probability": 0.908 + }, + { + "start": 10753.78, + "end": 10755.24, + "probability": 0.8185 + }, + { + "start": 10756.06, + "end": 10757.73, + "probability": 0.9849 + }, + { + "start": 10758.5, + "end": 10762.34, + "probability": 0.9906 + }, + { + "start": 10764.96, + "end": 10769.5, + "probability": 0.7546 + }, + { + "start": 10770.32, + "end": 10772.48, + "probability": 0.7321 + }, + { + "start": 10773.26, + "end": 10775.18, + "probability": 0.9946 + }, + { + "start": 10776.1, + "end": 10777.93, + "probability": 0.5806 + }, + { + "start": 10779.16, + "end": 10779.68, + "probability": 0.6217 + }, + { + "start": 10782.06, + "end": 10784.24, + "probability": 0.8953 + }, + { + "start": 10786.04, + "end": 10787.8, + "probability": 0.9897 + }, + { + "start": 10788.3, + "end": 10790.38, + "probability": 0.9663 + }, + { + "start": 10791.32, + "end": 10792.54, + "probability": 0.9084 + }, + { + "start": 10793.68, + "end": 10796.05, + "probability": 0.9895 + }, + { + "start": 10797.96, + "end": 10801.46, + "probability": 0.8469 + }, + { + "start": 10801.96, + "end": 10805.86, + "probability": 0.9726 + }, + { + "start": 10805.92, + "end": 10808.88, + "probability": 0.9954 + }, + { + "start": 10809.34, + "end": 10812.02, + "probability": 0.558 + }, + { + "start": 10812.45, + "end": 10815.68, + "probability": 0.9722 + }, + { + "start": 10816.82, + "end": 10819.13, + "probability": 0.9913 + }, + { + "start": 10820.0, + "end": 10820.56, + "probability": 0.8606 + }, + { + "start": 10821.22, + "end": 10821.94, + "probability": 0.7677 + }, + { + "start": 10822.04, + "end": 10822.62, + "probability": 0.7544 + }, + { + "start": 10824.64, + "end": 10826.34, + "probability": 0.8837 + }, + { + "start": 10827.66, + "end": 10831.3, + "probability": 0.9765 + }, + { + "start": 10833.56, + "end": 10835.48, + "probability": 0.9116 + }, + { + "start": 10836.43, + "end": 10839.42, + "probability": 0.9213 + }, + { + "start": 10839.82, + "end": 10841.96, + "probability": 0.9035 + }, + { + "start": 10850.34, + "end": 10851.84, + "probability": 0.7494 + }, + { + "start": 10853.06, + "end": 10853.74, + "probability": 0.6667 + }, + { + "start": 10853.8, + "end": 10855.38, + "probability": 0.9873 + }, + { + "start": 10855.66, + "end": 10857.6, + "probability": 0.714 + }, + { + "start": 10857.62, + "end": 10859.1, + "probability": 0.9321 + }, + { + "start": 10859.44, + "end": 10863.04, + "probability": 0.6834 + }, + { + "start": 10863.84, + "end": 10865.52, + "probability": 0.6097 + }, + { + "start": 10865.66, + "end": 10869.42, + "probability": 0.9961 + }, + { + "start": 10870.08, + "end": 10872.2, + "probability": 0.8831 + }, + { + "start": 10872.34, + "end": 10873.92, + "probability": 0.8645 + }, + { + "start": 10874.04, + "end": 10875.78, + "probability": 0.8567 + }, + { + "start": 10875.96, + "end": 10876.96, + "probability": 0.884 + }, + { + "start": 10877.58, + "end": 10878.96, + "probability": 0.812 + }, + { + "start": 10879.82, + "end": 10881.75, + "probability": 0.6367 + }, + { + "start": 10885.0, + "end": 10888.38, + "probability": 0.8716 + }, + { + "start": 10889.04, + "end": 10890.54, + "probability": 0.8345 + }, + { + "start": 10891.42, + "end": 10893.66, + "probability": 0.8775 + }, + { + "start": 10896.16, + "end": 10900.62, + "probability": 0.8541 + }, + { + "start": 10900.62, + "end": 10904.22, + "probability": 0.9966 + }, + { + "start": 10905.52, + "end": 10908.08, + "probability": 0.7549 + }, + { + "start": 10908.66, + "end": 10909.06, + "probability": 0.4294 + }, + { + "start": 10909.1, + "end": 10909.88, + "probability": 0.7811 + }, + { + "start": 10910.1, + "end": 10913.9, + "probability": 0.7989 + }, + { + "start": 10914.42, + "end": 10915.66, + "probability": 0.8995 + }, + { + "start": 10915.76, + "end": 10918.22, + "probability": 0.8882 + }, + { + "start": 10918.22, + "end": 10919.94, + "probability": 0.8239 + }, + { + "start": 10920.72, + "end": 10921.88, + "probability": 0.8074 + }, + { + "start": 10922.3, + "end": 10925.16, + "probability": 0.9939 + }, + { + "start": 10925.28, + "end": 10926.12, + "probability": 0.7123 + }, + { + "start": 10926.38, + "end": 10928.26, + "probability": 0.7852 + }, + { + "start": 10928.38, + "end": 10929.1, + "probability": 0.6445 + }, + { + "start": 10929.3, + "end": 10930.96, + "probability": 0.9009 + }, + { + "start": 10932.02, + "end": 10933.06, + "probability": 0.4287 + }, + { + "start": 10933.34, + "end": 10934.56, + "probability": 0.8633 + }, + { + "start": 10934.7, + "end": 10935.32, + "probability": 0.7935 + }, + { + "start": 10935.68, + "end": 10935.9, + "probability": 0.4008 + }, + { + "start": 10935.96, + "end": 10936.78, + "probability": 0.6747 + }, + { + "start": 10936.94, + "end": 10938.34, + "probability": 0.9514 + }, + { + "start": 10938.4, + "end": 10942.64, + "probability": 0.9567 + }, + { + "start": 10943.22, + "end": 10945.9, + "probability": 0.9761 + }, + { + "start": 10945.9, + "end": 10948.78, + "probability": 0.8278 + }, + { + "start": 10949.44, + "end": 10952.54, + "probability": 0.9883 + }, + { + "start": 10953.18, + "end": 10955.7, + "probability": 0.9899 + }, + { + "start": 10955.7, + "end": 10958.08, + "probability": 0.9868 + }, + { + "start": 10958.54, + "end": 10962.7, + "probability": 0.9186 + }, + { + "start": 10962.78, + "end": 10964.78, + "probability": 0.8267 + }, + { + "start": 10965.42, + "end": 10967.54, + "probability": 0.6925 + }, + { + "start": 10969.14, + "end": 10971.56, + "probability": 0.9619 + }, + { + "start": 10971.56, + "end": 10974.36, + "probability": 0.9883 + }, + { + "start": 10974.98, + "end": 10976.76, + "probability": 0.8965 + }, + { + "start": 10977.82, + "end": 10984.2, + "probability": 0.9976 + }, + { + "start": 10984.38, + "end": 10985.31, + "probability": 0.6624 + }, + { + "start": 10986.86, + "end": 10990.14, + "probability": 0.9021 + }, + { + "start": 10991.74, + "end": 10996.0, + "probability": 0.9915 + }, + { + "start": 10996.94, + "end": 10999.04, + "probability": 0.712 + }, + { + "start": 11000.04, + "end": 11000.32, + "probability": 0.675 + }, + { + "start": 11001.28, + "end": 11002.38, + "probability": 0.6792 + }, + { + "start": 11004.0, + "end": 11006.16, + "probability": 0.4971 + }, + { + "start": 11007.83, + "end": 11008.9, + "probability": 0.7261 + }, + { + "start": 11009.0, + "end": 11009.8, + "probability": 0.7418 + }, + { + "start": 11009.96, + "end": 11010.48, + "probability": 0.58 + }, + { + "start": 11010.68, + "end": 11011.74, + "probability": 0.6775 + }, + { + "start": 11012.16, + "end": 11013.12, + "probability": 0.7297 + }, + { + "start": 11013.36, + "end": 11016.92, + "probability": 0.9747 + }, + { + "start": 11017.02, + "end": 11020.02, + "probability": 0.9482 + }, + { + "start": 11020.56, + "end": 11023.76, + "probability": 0.9609 + }, + { + "start": 11024.46, + "end": 11025.84, + "probability": 0.9243 + }, + { + "start": 11025.94, + "end": 11027.14, + "probability": 0.8525 + }, + { + "start": 11027.42, + "end": 11029.15, + "probability": 0.9763 + }, + { + "start": 11029.64, + "end": 11029.82, + "probability": 0.4828 + }, + { + "start": 11029.88, + "end": 11031.4, + "probability": 0.9222 + }, + { + "start": 11031.5, + "end": 11034.26, + "probability": 0.9818 + }, + { + "start": 11034.84, + "end": 11037.3, + "probability": 0.8527 + }, + { + "start": 11037.7, + "end": 11039.66, + "probability": 0.8545 + }, + { + "start": 11039.7, + "end": 11043.72, + "probability": 0.8271 + }, + { + "start": 11044.38, + "end": 11046.62, + "probability": 0.9987 + }, + { + "start": 11047.1, + "end": 11048.75, + "probability": 0.8818 + }, + { + "start": 11049.46, + "end": 11050.12, + "probability": 0.7479 + }, + { + "start": 11050.16, + "end": 11051.02, + "probability": 0.7398 + }, + { + "start": 11051.8, + "end": 11056.38, + "probability": 0.9561 + }, + { + "start": 11056.86, + "end": 11058.02, + "probability": 0.9316 + }, + { + "start": 11058.82, + "end": 11059.41, + "probability": 0.9526 + }, + { + "start": 11059.78, + "end": 11059.92, + "probability": 0.3577 + }, + { + "start": 11061.66, + "end": 11062.98, + "probability": 0.8594 + }, + { + "start": 11063.5, + "end": 11065.2, + "probability": 0.9971 + }, + { + "start": 11066.18, + "end": 11067.52, + "probability": 0.8153 + }, + { + "start": 11068.26, + "end": 11071.06, + "probability": 0.986 + }, + { + "start": 11071.9, + "end": 11073.02, + "probability": 0.8924 + }, + { + "start": 11073.54, + "end": 11075.68, + "probability": 0.7854 + }, + { + "start": 11076.58, + "end": 11079.48, + "probability": 0.9953 + }, + { + "start": 11080.36, + "end": 11082.86, + "probability": 0.9885 + }, + { + "start": 11083.2, + "end": 11086.02, + "probability": 0.947 + }, + { + "start": 11086.32, + "end": 11088.36, + "probability": 0.9665 + }, + { + "start": 11088.62, + "end": 11090.79, + "probability": 0.7982 + }, + { + "start": 11091.14, + "end": 11091.94, + "probability": 0.6964 + }, + { + "start": 11092.44, + "end": 11093.23, + "probability": 0.7526 + }, + { + "start": 11093.72, + "end": 11094.46, + "probability": 0.8649 + }, + { + "start": 11094.96, + "end": 11096.24, + "probability": 0.811 + }, + { + "start": 11096.58, + "end": 11097.38, + "probability": 0.1142 + }, + { + "start": 11100.06, + "end": 11100.26, + "probability": 0.3479 + }, + { + "start": 11102.76, + "end": 11103.66, + "probability": 0.9111 + }, + { + "start": 11103.74, + "end": 11104.88, + "probability": 0.9429 + }, + { + "start": 11104.9, + "end": 11106.6, + "probability": 0.7736 + }, + { + "start": 11107.06, + "end": 11107.74, + "probability": 0.4037 + }, + { + "start": 11108.74, + "end": 11111.36, + "probability": 0.8818 + }, + { + "start": 11111.42, + "end": 11112.26, + "probability": 0.6544 + }, + { + "start": 11112.28, + "end": 11115.02, + "probability": 0.9022 + }, + { + "start": 11115.5, + "end": 11116.78, + "probability": 0.9052 + }, + { + "start": 11117.24, + "end": 11117.88, + "probability": 0.8892 + }, + { + "start": 11117.94, + "end": 11120.22, + "probability": 0.9951 + }, + { + "start": 11120.64, + "end": 11122.2, + "probability": 0.9361 + }, + { + "start": 11122.28, + "end": 11123.76, + "probability": 0.9249 + }, + { + "start": 11125.36, + "end": 11126.92, + "probability": 0.9774 + }, + { + "start": 11127.34, + "end": 11128.97, + "probability": 0.918 + }, + { + "start": 11130.26, + "end": 11132.96, + "probability": 0.898 + }, + { + "start": 11133.08, + "end": 11134.2, + "probability": 0.6668 + }, + { + "start": 11134.64, + "end": 11135.6, + "probability": 0.5372 + }, + { + "start": 11136.32, + "end": 11137.08, + "probability": 0.6262 + }, + { + "start": 11137.2, + "end": 11139.84, + "probability": 0.9517 + }, + { + "start": 11140.66, + "end": 11141.64, + "probability": 0.8068 + }, + { + "start": 11141.96, + "end": 11142.89, + "probability": 0.9753 + }, + { + "start": 11143.74, + "end": 11144.24, + "probability": 0.2765 + }, + { + "start": 11144.24, + "end": 11146.48, + "probability": 0.8941 + }, + { + "start": 11147.32, + "end": 11152.64, + "probability": 0.9957 + }, + { + "start": 11153.66, + "end": 11156.02, + "probability": 0.5056 + }, + { + "start": 11156.1, + "end": 11158.22, + "probability": 0.9755 + }, + { + "start": 11158.42, + "end": 11159.46, + "probability": 0.7935 + }, + { + "start": 11159.8, + "end": 11162.34, + "probability": 0.9266 + }, + { + "start": 11162.88, + "end": 11164.5, + "probability": 0.5559 + }, + { + "start": 11164.64, + "end": 11166.64, + "probability": 0.8994 + }, + { + "start": 11167.7, + "end": 11169.12, + "probability": 0.8697 + }, + { + "start": 11171.46, + "end": 11173.58, + "probability": 0.1044 + }, + { + "start": 11174.68, + "end": 11176.9, + "probability": 0.9214 + }, + { + "start": 11176.96, + "end": 11178.42, + "probability": 0.9427 + }, + { + "start": 11178.6, + "end": 11183.9, + "probability": 0.9258 + }, + { + "start": 11184.04, + "end": 11187.46, + "probability": 0.8582 + }, + { + "start": 11187.6, + "end": 11188.74, + "probability": 0.8071 + }, + { + "start": 11188.76, + "end": 11189.78, + "probability": 0.6221 + }, + { + "start": 11189.78, + "end": 11194.02, + "probability": 0.9386 + }, + { + "start": 11194.32, + "end": 11196.38, + "probability": 0.9696 + }, + { + "start": 11197.14, + "end": 11198.02, + "probability": 0.4687 + }, + { + "start": 11198.14, + "end": 11198.18, + "probability": 0.5801 + }, + { + "start": 11198.18, + "end": 11199.78, + "probability": 0.4257 + }, + { + "start": 11200.04, + "end": 11201.78, + "probability": 0.7321 + }, + { + "start": 11201.92, + "end": 11204.38, + "probability": 0.8916 + }, + { + "start": 11204.78, + "end": 11206.14, + "probability": 0.8679 + }, + { + "start": 11206.24, + "end": 11207.94, + "probability": 0.8999 + }, + { + "start": 11208.48, + "end": 11212.46, + "probability": 0.6689 + }, + { + "start": 11213.34, + "end": 11215.54, + "probability": 0.9378 + }, + { + "start": 11215.86, + "end": 11216.4, + "probability": 0.6005 + }, + { + "start": 11216.48, + "end": 11219.76, + "probability": 0.9702 + }, + { + "start": 11219.86, + "end": 11220.94, + "probability": 0.9575 + }, + { + "start": 11221.7, + "end": 11224.02, + "probability": 0.9849 + }, + { + "start": 11224.18, + "end": 11224.96, + "probability": 0.8116 + }, + { + "start": 11225.66, + "end": 11228.26, + "probability": 0.9206 + }, + { + "start": 11228.44, + "end": 11229.02, + "probability": 0.6387 + }, + { + "start": 11230.96, + "end": 11234.5, + "probability": 0.69 + }, + { + "start": 11234.5, + "end": 11238.48, + "probability": 0.9531 + }, + { + "start": 11238.72, + "end": 11239.6, + "probability": 0.8566 + }, + { + "start": 11240.52, + "end": 11241.3, + "probability": 0.7842 + }, + { + "start": 11241.44, + "end": 11242.96, + "probability": 0.5785 + }, + { + "start": 11242.96, + "end": 11243.72, + "probability": 0.6719 + }, + { + "start": 11243.9, + "end": 11246.1, + "probability": 0.8955 + }, + { + "start": 11246.34, + "end": 11250.45, + "probability": 0.945 + }, + { + "start": 11251.58, + "end": 11253.24, + "probability": 0.0216 + }, + { + "start": 11254.1, + "end": 11254.1, + "probability": 0.126 + }, + { + "start": 11254.1, + "end": 11254.56, + "probability": 0.1156 + }, + { + "start": 11254.56, + "end": 11254.82, + "probability": 0.4618 + }, + { + "start": 11255.14, + "end": 11256.52, + "probability": 0.8472 + }, + { + "start": 11256.6, + "end": 11258.76, + "probability": 0.9533 + }, + { + "start": 11259.34, + "end": 11260.58, + "probability": 0.7131 + }, + { + "start": 11261.15, + "end": 11262.8, + "probability": 0.7008 + }, + { + "start": 11262.94, + "end": 11266.14, + "probability": 0.0187 + }, + { + "start": 11266.14, + "end": 11266.4, + "probability": 0.2049 + }, + { + "start": 11266.42, + "end": 11266.94, + "probability": 0.4995 + }, + { + "start": 11267.34, + "end": 11268.4, + "probability": 0.8335 + }, + { + "start": 11269.22, + "end": 11271.96, + "probability": 0.7836 + }, + { + "start": 11272.04, + "end": 11273.11, + "probability": 0.7256 + }, + { + "start": 11274.68, + "end": 11275.68, + "probability": 0.5811 + }, + { + "start": 11275.74, + "end": 11278.6, + "probability": 0.9771 + }, + { + "start": 11278.72, + "end": 11279.83, + "probability": 0.7744 + }, + { + "start": 11280.34, + "end": 11281.56, + "probability": 0.8961 + }, + { + "start": 11281.98, + "end": 11286.14, + "probability": 0.9657 + }, + { + "start": 11286.14, + "end": 11289.18, + "probability": 0.6615 + }, + { + "start": 11289.36, + "end": 11290.14, + "probability": 0.5347 + }, + { + "start": 11290.22, + "end": 11292.02, + "probability": 0.8359 + }, + { + "start": 11292.02, + "end": 11297.86, + "probability": 0.5854 + }, + { + "start": 11298.0, + "end": 11299.28, + "probability": 0.6501 + }, + { + "start": 11300.56, + "end": 11302.16, + "probability": 0.4874 + }, + { + "start": 11302.3, + "end": 11308.32, + "probability": 0.9246 + }, + { + "start": 11309.26, + "end": 11313.34, + "probability": 0.9451 + }, + { + "start": 11313.38, + "end": 11313.88, + "probability": 0.2767 + }, + { + "start": 11313.9, + "end": 11314.9, + "probability": 0.9422 + }, + { + "start": 11315.04, + "end": 11317.36, + "probability": 0.9063 + }, + { + "start": 11317.42, + "end": 11324.14, + "probability": 0.4164 + }, + { + "start": 11324.24, + "end": 11324.96, + "probability": 0.8086 + }, + { + "start": 11326.08, + "end": 11326.98, + "probability": 0.9343 + }, + { + "start": 11328.68, + "end": 11331.56, + "probability": 0.7338 + }, + { + "start": 11331.82, + "end": 11334.36, + "probability": 0.726 + }, + { + "start": 11334.46, + "end": 11335.44, + "probability": 0.7441 + }, + { + "start": 11335.56, + "end": 11336.18, + "probability": 0.8495 + }, + { + "start": 11336.6, + "end": 11337.5, + "probability": 0.9871 + }, + { + "start": 11337.5, + "end": 11338.04, + "probability": 0.9241 + }, + { + "start": 11338.18, + "end": 11341.5, + "probability": 0.5618 + }, + { + "start": 11341.56, + "end": 11343.9, + "probability": 0.5116 + }, + { + "start": 11344.66, + "end": 11345.82, + "probability": 0.7914 + }, + { + "start": 11346.44, + "end": 11348.2, + "probability": 0.6534 + }, + { + "start": 11348.36, + "end": 11349.37, + "probability": 0.4694 + }, + { + "start": 11350.28, + "end": 11353.36, + "probability": 0.4768 + }, + { + "start": 11354.12, + "end": 11359.89, + "probability": 0.7426 + }, + { + "start": 11360.98, + "end": 11363.76, + "probability": 0.3982 + }, + { + "start": 11363.92, + "end": 11365.8, + "probability": 0.4918 + }, + { + "start": 11366.04, + "end": 11367.56, + "probability": 0.739 + }, + { + "start": 11367.78, + "end": 11368.96, + "probability": 0.9679 + }, + { + "start": 11369.46, + "end": 11369.86, + "probability": 0.6948 + }, + { + "start": 11370.56, + "end": 11372.38, + "probability": 0.8657 + }, + { + "start": 11372.76, + "end": 11378.84, + "probability": 0.9774 + }, + { + "start": 11379.18, + "end": 11384.16, + "probability": 0.7104 + }, + { + "start": 11384.64, + "end": 11388.04, + "probability": 0.9468 + }, + { + "start": 11390.66, + "end": 11391.18, + "probability": 0.0806 + }, + { + "start": 11391.18, + "end": 11391.45, + "probability": 0.4935 + }, + { + "start": 11391.9, + "end": 11392.58, + "probability": 0.7594 + }, + { + "start": 11393.26, + "end": 11394.64, + "probability": 0.981 + }, + { + "start": 11395.12, + "end": 11397.16, + "probability": 0.6785 + }, + { + "start": 11397.3, + "end": 11397.32, + "probability": 0.2806 + }, + { + "start": 11397.32, + "end": 11397.64, + "probability": 0.3731 + }, + { + "start": 11397.68, + "end": 11399.08, + "probability": 0.7401 + }, + { + "start": 11399.5, + "end": 11400.36, + "probability": 0.5962 + }, + { + "start": 11400.86, + "end": 11403.22, + "probability": 0.9632 + }, + { + "start": 11403.22, + "end": 11406.0, + "probability": 0.8677 + }, + { + "start": 11406.14, + "end": 11409.1, + "probability": 0.7328 + }, + { + "start": 11409.72, + "end": 11410.1, + "probability": 0.5784 + }, + { + "start": 11410.18, + "end": 11411.7, + "probability": 0.9785 + }, + { + "start": 11412.06, + "end": 11413.82, + "probability": 0.969 + }, + { + "start": 11415.02, + "end": 11416.82, + "probability": 0.9357 + }, + { + "start": 11417.18, + "end": 11417.87, + "probability": 0.8279 + }, + { + "start": 11419.04, + "end": 11421.46, + "probability": 0.9198 + }, + { + "start": 11421.94, + "end": 11423.62, + "probability": 0.7719 + }, + { + "start": 11423.8, + "end": 11424.62, + "probability": 0.5904 + }, + { + "start": 11424.68, + "end": 11425.3, + "probability": 0.8776 + }, + { + "start": 11425.42, + "end": 11426.58, + "probability": 0.9488 + }, + { + "start": 11428.12, + "end": 11430.08, + "probability": 0.9535 + }, + { + "start": 11430.14, + "end": 11434.14, + "probability": 0.9919 + }, + { + "start": 11434.44, + "end": 11435.56, + "probability": 0.8944 + }, + { + "start": 11435.82, + "end": 11436.74, + "probability": 0.4723 + }, + { + "start": 11436.74, + "end": 11437.54, + "probability": 0.9902 + }, + { + "start": 11439.34, + "end": 11441.12, + "probability": 0.8101 + }, + { + "start": 11441.7, + "end": 11443.82, + "probability": 0.6903 + }, + { + "start": 11445.0, + "end": 11445.62, + "probability": 0.7307 + }, + { + "start": 11445.66, + "end": 11446.84, + "probability": 0.8894 + }, + { + "start": 11446.96, + "end": 11447.42, + "probability": 0.9553 + }, + { + "start": 11447.44, + "end": 11450.24, + "probability": 0.9893 + }, + { + "start": 11450.56, + "end": 11453.94, + "probability": 0.7648 + }, + { + "start": 11454.4, + "end": 11455.88, + "probability": 0.8665 + }, + { + "start": 11456.08, + "end": 11456.8, + "probability": 0.6918 + }, + { + "start": 11457.32, + "end": 11459.64, + "probability": 0.488 + }, + { + "start": 11460.3, + "end": 11460.68, + "probability": 0.7339 + }, + { + "start": 11460.7, + "end": 11461.12, + "probability": 0.5451 + }, + { + "start": 11462.76, + "end": 11466.3, + "probability": 0.1021 + }, + { + "start": 11466.3, + "end": 11466.3, + "probability": 0.3769 + }, + { + "start": 11466.3, + "end": 11466.3, + "probability": 0.4475 + }, + { + "start": 11466.3, + "end": 11467.14, + "probability": 0.0781 + }, + { + "start": 11468.42, + "end": 11469.2, + "probability": 0.2487 + }, + { + "start": 11469.26, + "end": 11469.36, + "probability": 0.4436 + }, + { + "start": 11470.1, + "end": 11470.94, + "probability": 0.8655 + }, + { + "start": 11471.0, + "end": 11471.5, + "probability": 0.7798 + }, + { + "start": 11474.1, + "end": 11476.48, + "probability": 0.6641 + }, + { + "start": 11477.38, + "end": 11478.6, + "probability": 0.8774 + }, + { + "start": 11478.78, + "end": 11481.44, + "probability": 0.9497 + }, + { + "start": 11481.58, + "end": 11482.46, + "probability": 0.7002 + }, + { + "start": 11482.58, + "end": 11483.0, + "probability": 0.4218 + }, + { + "start": 11483.02, + "end": 11484.0, + "probability": 0.8132 + }, + { + "start": 11484.04, + "end": 11485.96, + "probability": 0.951 + }, + { + "start": 11486.5, + "end": 11487.84, + "probability": 0.8265 + }, + { + "start": 11488.24, + "end": 11491.1, + "probability": 0.9849 + }, + { + "start": 11491.2, + "end": 11496.44, + "probability": 0.6369 + }, + { + "start": 11496.58, + "end": 11497.22, + "probability": 0.5479 + }, + { + "start": 11497.24, + "end": 11498.42, + "probability": 0.6056 + }, + { + "start": 11499.4, + "end": 11500.96, + "probability": 0.8877 + }, + { + "start": 11501.48, + "end": 11505.18, + "probability": 0.8188 + }, + { + "start": 11505.18, + "end": 11505.98, + "probability": 0.1918 + }, + { + "start": 11506.0, + "end": 11506.36, + "probability": 0.4318 + }, + { + "start": 11506.68, + "end": 11508.26, + "probability": 0.9668 + }, + { + "start": 11508.58, + "end": 11509.38, + "probability": 0.8188 + }, + { + "start": 11509.48, + "end": 11511.68, + "probability": 0.8092 + }, + { + "start": 11512.74, + "end": 11514.02, + "probability": 0.1233 + }, + { + "start": 11514.02, + "end": 11514.5, + "probability": 0.3228 + }, + { + "start": 11514.68, + "end": 11516.36, + "probability": 0.9292 + }, + { + "start": 11517.2, + "end": 11517.92, + "probability": 0.6147 + }, + { + "start": 11517.94, + "end": 11518.28, + "probability": 0.5953 + }, + { + "start": 11518.9, + "end": 11521.38, + "probability": 0.9927 + }, + { + "start": 11521.46, + "end": 11525.0, + "probability": 0.9176 + }, + { + "start": 11525.38, + "end": 11527.54, + "probability": 0.8936 + }, + { + "start": 11528.48, + "end": 11530.9, + "probability": 0.5713 + }, + { + "start": 11531.0, + "end": 11531.62, + "probability": 0.5207 + }, + { + "start": 11532.1, + "end": 11534.56, + "probability": 0.7793 + }, + { + "start": 11534.86, + "end": 11535.96, + "probability": 0.9246 + }, + { + "start": 11536.24, + "end": 11536.48, + "probability": 0.7443 + }, + { + "start": 11536.6, + "end": 11538.14, + "probability": 0.8489 + }, + { + "start": 11538.32, + "end": 11540.9, + "probability": 0.92 + }, + { + "start": 11552.94, + "end": 11552.94, + "probability": 0.1643 + }, + { + "start": 11552.94, + "end": 11553.31, + "probability": 0.4952 + }, + { + "start": 11553.82, + "end": 11557.16, + "probability": 0.7454 + }, + { + "start": 11557.32, + "end": 11559.9, + "probability": 0.8917 + }, + { + "start": 11560.06, + "end": 11563.5, + "probability": 0.9635 + }, + { + "start": 11563.9, + "end": 11564.44, + "probability": 0.7729 + }, + { + "start": 11565.04, + "end": 11568.62, + "probability": 0.994 + }, + { + "start": 11568.66, + "end": 11569.58, + "probability": 0.7726 + }, + { + "start": 11570.4, + "end": 11572.4, + "probability": 0.6276 + }, + { + "start": 11573.82, + "end": 11576.4, + "probability": 0.5708 + }, + { + "start": 11577.86, + "end": 11581.74, + "probability": 0.9337 + }, + { + "start": 11582.18, + "end": 11583.22, + "probability": 0.6525 + }, + { + "start": 11583.32, + "end": 11588.08, + "probability": 0.9937 + }, + { + "start": 11590.0, + "end": 11592.3, + "probability": 0.9781 + }, + { + "start": 11593.84, + "end": 11594.9, + "probability": 0.8607 + }, + { + "start": 11595.68, + "end": 11599.64, + "probability": 0.6094 + }, + { + "start": 11600.74, + "end": 11603.45, + "probability": 0.9956 + }, + { + "start": 11603.96, + "end": 11604.0, + "probability": 0.0146 + }, + { + "start": 11605.14, + "end": 11608.88, + "probability": 0.9973 + }, + { + "start": 11608.88, + "end": 11613.16, + "probability": 0.9951 + }, + { + "start": 11613.26, + "end": 11613.86, + "probability": 0.53 + }, + { + "start": 11613.96, + "end": 11616.16, + "probability": 0.9899 + }, + { + "start": 11616.16, + "end": 11618.64, + "probability": 0.8077 + }, + { + "start": 11619.34, + "end": 11619.68, + "probability": 0.116 + }, + { + "start": 11621.06, + "end": 11624.06, + "probability": 0.9735 + }, + { + "start": 11624.06, + "end": 11628.1, + "probability": 0.9988 + }, + { + "start": 11628.38, + "end": 11628.66, + "probability": 0.504 + }, + { + "start": 11628.78, + "end": 11629.18, + "probability": 0.4278 + }, + { + "start": 11629.3, + "end": 11630.12, + "probability": 0.7509 + }, + { + "start": 11630.58, + "end": 11631.7, + "probability": 0.8708 + }, + { + "start": 11632.04, + "end": 11633.6, + "probability": 0.8734 + }, + { + "start": 11634.0, + "end": 11635.56, + "probability": 0.7867 + }, + { + "start": 11635.68, + "end": 11638.06, + "probability": 0.9675 + }, + { + "start": 11638.62, + "end": 11639.32, + "probability": 0.7966 + }, + { + "start": 11640.06, + "end": 11641.94, + "probability": 0.9128 + }, + { + "start": 11643.3, + "end": 11644.88, + "probability": 0.8647 + }, + { + "start": 11645.84, + "end": 11650.78, + "probability": 0.9834 + }, + { + "start": 11651.26, + "end": 11651.86, + "probability": 0.5098 + }, + { + "start": 11651.96, + "end": 11654.81, + "probability": 0.9203 + }, + { + "start": 11655.96, + "end": 11658.56, + "probability": 0.3738 + }, + { + "start": 11658.72, + "end": 11659.68, + "probability": 0.8518 + }, + { + "start": 11659.78, + "end": 11662.6, + "probability": 0.875 + }, + { + "start": 11662.6, + "end": 11665.78, + "probability": 0.9712 + }, + { + "start": 11665.96, + "end": 11668.4, + "probability": 0.9766 + }, + { + "start": 11668.82, + "end": 11669.82, + "probability": 0.9893 + }, + { + "start": 11669.96, + "end": 11671.08, + "probability": 0.9811 + }, + { + "start": 11671.4, + "end": 11672.98, + "probability": 0.9077 + }, + { + "start": 11673.42, + "end": 11679.94, + "probability": 0.9855 + }, + { + "start": 11680.06, + "end": 11683.27, + "probability": 0.9288 + }, + { + "start": 11683.7, + "end": 11685.72, + "probability": 0.978 + }, + { + "start": 11686.5, + "end": 11687.44, + "probability": 0.5892 + }, + { + "start": 11688.44, + "end": 11692.52, + "probability": 0.8649 + }, + { + "start": 11693.48, + "end": 11698.06, + "probability": 0.677 + }, + { + "start": 11699.56, + "end": 11704.0, + "probability": 0.7287 + }, + { + "start": 11704.0, + "end": 11707.6, + "probability": 0.897 + }, + { + "start": 11708.16, + "end": 11716.16, + "probability": 0.9875 + }, + { + "start": 11716.36, + "end": 11717.5, + "probability": 0.8843 + }, + { + "start": 11718.24, + "end": 11723.6, + "probability": 0.9917 + }, + { + "start": 11723.72, + "end": 11724.68, + "probability": 0.7886 + }, + { + "start": 11725.28, + "end": 11726.48, + "probability": 0.853 + }, + { + "start": 11727.0, + "end": 11728.44, + "probability": 0.8267 + }, + { + "start": 11728.76, + "end": 11729.98, + "probability": 0.9895 + }, + { + "start": 11730.66, + "end": 11736.52, + "probability": 0.99 + }, + { + "start": 11737.74, + "end": 11739.36, + "probability": 0.9985 + }, + { + "start": 11739.82, + "end": 11740.42, + "probability": 0.5538 + }, + { + "start": 11740.76, + "end": 11741.25, + "probability": 0.8895 + }, + { + "start": 11741.7, + "end": 11742.8, + "probability": 0.9727 + }, + { + "start": 11743.8, + "end": 11746.9, + "probability": 0.9922 + }, + { + "start": 11747.32, + "end": 11748.5, + "probability": 0.9855 + }, + { + "start": 11748.88, + "end": 11750.26, + "probability": 0.8748 + }, + { + "start": 11750.7, + "end": 11751.81, + "probability": 0.9939 + }, + { + "start": 11753.44, + "end": 11754.42, + "probability": 0.7416 + }, + { + "start": 11756.22, + "end": 11759.38, + "probability": 0.5746 + }, + { + "start": 11760.5, + "end": 11763.32, + "probability": 0.9937 + }, + { + "start": 11764.66, + "end": 11768.2, + "probability": 0.9974 + }, + { + "start": 11769.72, + "end": 11771.05, + "probability": 0.9434 + }, + { + "start": 11772.38, + "end": 11774.42, + "probability": 0.9639 + }, + { + "start": 11774.5, + "end": 11775.96, + "probability": 0.9829 + }, + { + "start": 11776.32, + "end": 11777.98, + "probability": 0.9627 + }, + { + "start": 11778.08, + "end": 11779.34, + "probability": 0.9854 + }, + { + "start": 11779.84, + "end": 11780.99, + "probability": 0.9912 + }, + { + "start": 11781.74, + "end": 11782.38, + "probability": 0.6819 + }, + { + "start": 11783.78, + "end": 11785.22, + "probability": 0.9641 + }, + { + "start": 11786.24, + "end": 11787.66, + "probability": 0.9529 + }, + { + "start": 11787.96, + "end": 11788.3, + "probability": 0.7408 + }, + { + "start": 11788.54, + "end": 11791.23, + "probability": 0.9756 + }, + { + "start": 11793.5, + "end": 11795.16, + "probability": 0.9773 + }, + { + "start": 11795.7, + "end": 11797.4, + "probability": 0.9713 + }, + { + "start": 11798.4, + "end": 11804.36, + "probability": 0.9962 + }, + { + "start": 11805.72, + "end": 11806.68, + "probability": 0.8752 + }, + { + "start": 11806.74, + "end": 11807.72, + "probability": 0.7297 + }, + { + "start": 11808.16, + "end": 11811.58, + "probability": 0.9526 + }, + { + "start": 11811.72, + "end": 11812.33, + "probability": 0.9752 + }, + { + "start": 11813.02, + "end": 11815.08, + "probability": 0.9744 + }, + { + "start": 11818.54, + "end": 11819.44, + "probability": 0.7885 + }, + { + "start": 11820.76, + "end": 11824.84, + "probability": 0.9858 + }, + { + "start": 11827.14, + "end": 11830.8, + "probability": 0.9662 + }, + { + "start": 11831.88, + "end": 11835.54, + "probability": 0.983 + }, + { + "start": 11836.78, + "end": 11841.56, + "probability": 0.8675 + }, + { + "start": 11843.14, + "end": 11843.86, + "probability": 0.6549 + }, + { + "start": 11845.34, + "end": 11846.5, + "probability": 0.7437 + }, + { + "start": 11847.72, + "end": 11854.72, + "probability": 0.9246 + }, + { + "start": 11855.22, + "end": 11856.79, + "probability": 0.9956 + }, + { + "start": 11857.6, + "end": 11861.22, + "probability": 0.9906 + }, + { + "start": 11862.46, + "end": 11864.0, + "probability": 0.7794 + }, + { + "start": 11864.66, + "end": 11866.16, + "probability": 0.8538 + }, + { + "start": 11866.68, + "end": 11869.46, + "probability": 0.9523 + }, + { + "start": 11870.28, + "end": 11873.14, + "probability": 0.9534 + }, + { + "start": 11873.78, + "end": 11874.32, + "probability": 0.7842 + }, + { + "start": 11875.16, + "end": 11877.08, + "probability": 0.9133 + }, + { + "start": 11878.5, + "end": 11886.66, + "probability": 0.9497 + }, + { + "start": 11886.74, + "end": 11887.58, + "probability": 0.9065 + }, + { + "start": 11888.4, + "end": 11890.73, + "probability": 0.9912 + }, + { + "start": 11891.04, + "end": 11896.84, + "probability": 0.9542 + }, + { + "start": 11897.76, + "end": 11901.64, + "probability": 0.9958 + }, + { + "start": 11901.64, + "end": 11907.66, + "probability": 0.9975 + }, + { + "start": 11907.66, + "end": 11912.26, + "probability": 0.9982 + }, + { + "start": 11912.86, + "end": 11914.74, + "probability": 0.9775 + }, + { + "start": 11914.8, + "end": 11917.42, + "probability": 0.9896 + }, + { + "start": 11918.0, + "end": 11920.96, + "probability": 0.9253 + }, + { + "start": 11921.22, + "end": 11922.92, + "probability": 0.9313 + }, + { + "start": 11926.26, + "end": 11931.16, + "probability": 0.9785 + }, + { + "start": 11931.57, + "end": 11936.88, + "probability": 0.9694 + }, + { + "start": 11937.72, + "end": 11938.14, + "probability": 0.5397 + }, + { + "start": 11939.4, + "end": 11942.06, + "probability": 0.9463 + }, + { + "start": 11942.08, + "end": 11942.74, + "probability": 0.9421 + }, + { + "start": 11944.64, + "end": 11945.02, + "probability": 0.8365 + }, + { + "start": 11946.48, + "end": 11947.52, + "probability": 0.8044 + }, + { + "start": 11948.18, + "end": 11949.94, + "probability": 0.669 + }, + { + "start": 11950.82, + "end": 11951.6, + "probability": 0.9168 + }, + { + "start": 11953.3, + "end": 11958.4, + "probability": 0.9702 + }, + { + "start": 11958.88, + "end": 11963.02, + "probability": 0.849 + }, + { + "start": 11963.42, + "end": 11966.54, + "probability": 0.9556 + }, + { + "start": 11967.26, + "end": 11972.62, + "probability": 0.9882 + }, + { + "start": 11973.64, + "end": 11977.62, + "probability": 0.9185 + }, + { + "start": 11977.62, + "end": 11981.56, + "probability": 0.9829 + }, + { + "start": 11983.54, + "end": 11988.42, + "probability": 0.8441 + }, + { + "start": 11989.56, + "end": 11992.4, + "probability": 0.9706 + }, + { + "start": 11992.94, + "end": 11995.8, + "probability": 0.9912 + }, + { + "start": 11996.92, + "end": 11999.12, + "probability": 0.9866 + }, + { + "start": 12000.34, + "end": 12002.64, + "probability": 0.9598 + }, + { + "start": 12003.56, + "end": 12005.22, + "probability": 0.8326 + }, + { + "start": 12005.86, + "end": 12008.86, + "probability": 0.9683 + }, + { + "start": 12011.1, + "end": 12013.1, + "probability": 0.9941 + }, + { + "start": 12013.4, + "end": 12017.34, + "probability": 0.9951 + }, + { + "start": 12017.4, + "end": 12020.9, + "probability": 0.9742 + }, + { + "start": 12021.54, + "end": 12024.3, + "probability": 0.9077 + }, + { + "start": 12025.1, + "end": 12026.84, + "probability": 0.8466 + }, + { + "start": 12027.42, + "end": 12029.6, + "probability": 0.9893 + }, + { + "start": 12030.3, + "end": 12031.32, + "probability": 0.699 + }, + { + "start": 12032.26, + "end": 12034.1, + "probability": 0.9691 + }, + { + "start": 12035.98, + "end": 12039.38, + "probability": 0.9814 + }, + { + "start": 12039.92, + "end": 12039.94, + "probability": 0.0481 + }, + { + "start": 12040.04, + "end": 12044.7, + "probability": 0.8691 + }, + { + "start": 12045.82, + "end": 12051.02, + "probability": 0.8752 + }, + { + "start": 12051.1, + "end": 12052.8, + "probability": 0.917 + }, + { + "start": 12053.68, + "end": 12057.54, + "probability": 0.9915 + }, + { + "start": 12059.12, + "end": 12061.52, + "probability": 0.9819 + }, + { + "start": 12061.58, + "end": 12065.08, + "probability": 0.7425 + }, + { + "start": 12065.86, + "end": 12070.28, + "probability": 0.9886 + }, + { + "start": 12071.6, + "end": 12074.48, + "probability": 0.8026 + }, + { + "start": 12075.42, + "end": 12078.18, + "probability": 0.8329 + }, + { + "start": 12078.82, + "end": 12079.66, + "probability": 0.8973 + }, + { + "start": 12080.36, + "end": 12082.64, + "probability": 0.9886 + }, + { + "start": 12083.99, + "end": 12087.74, + "probability": 0.9781 + }, + { + "start": 12088.84, + "end": 12093.32, + "probability": 0.9976 + }, + { + "start": 12093.5, + "end": 12095.03, + "probability": 0.9673 + }, + { + "start": 12096.26, + "end": 12098.38, + "probability": 0.504 + }, + { + "start": 12098.46, + "end": 12103.06, + "probability": 0.9302 + }, + { + "start": 12103.6, + "end": 12105.02, + "probability": 0.9453 + }, + { + "start": 12105.72, + "end": 12108.76, + "probability": 0.9669 + }, + { + "start": 12109.5, + "end": 12110.24, + "probability": 0.9484 + }, + { + "start": 12110.94, + "end": 12112.16, + "probability": 0.5832 + }, + { + "start": 12113.0, + "end": 12114.24, + "probability": 0.8534 + }, + { + "start": 12114.62, + "end": 12116.04, + "probability": 0.5569 + }, + { + "start": 12116.74, + "end": 12119.49, + "probability": 0.984 + }, + { + "start": 12119.78, + "end": 12120.1, + "probability": 0.8594 + }, + { + "start": 12120.24, + "end": 12121.86, + "probability": 0.9416 + }, + { + "start": 12122.8, + "end": 12124.88, + "probability": 0.99 + }, + { + "start": 12125.48, + "end": 12126.52, + "probability": 0.18 + }, + { + "start": 12126.58, + "end": 12126.9, + "probability": 0.0576 + }, + { + "start": 12127.06, + "end": 12127.88, + "probability": 0.7225 + }, + { + "start": 12128.18, + "end": 12129.28, + "probability": 0.8801 + }, + { + "start": 12129.68, + "end": 12131.96, + "probability": 0.3637 + }, + { + "start": 12132.66, + "end": 12135.34, + "probability": 0.7553 + }, + { + "start": 12135.44, + "end": 12136.26, + "probability": 0.7709 + }, + { + "start": 12137.16, + "end": 12138.74, + "probability": 0.0345 + }, + { + "start": 12139.5, + "end": 12140.52, + "probability": 0.6466 + }, + { + "start": 12140.8, + "end": 12142.24, + "probability": 0.5669 + }, + { + "start": 12142.78, + "end": 12143.6, + "probability": 0.8165 + }, + { + "start": 12144.42, + "end": 12148.12, + "probability": 0.8209 + }, + { + "start": 12148.66, + "end": 12150.42, + "probability": 0.9888 + }, + { + "start": 12151.46, + "end": 12155.38, + "probability": 0.8697 + }, + { + "start": 12156.5, + "end": 12157.92, + "probability": 0.9877 + }, + { + "start": 12158.0, + "end": 12159.28, + "probability": 0.9839 + }, + { + "start": 12159.92, + "end": 12160.56, + "probability": 0.6542 + }, + { + "start": 12161.34, + "end": 12164.2, + "probability": 0.7368 + }, + { + "start": 12164.4, + "end": 12167.84, + "probability": 0.9001 + }, + { + "start": 12167.84, + "end": 12169.0, + "probability": 0.5305 + }, + { + "start": 12169.14, + "end": 12171.16, + "probability": 0.9636 + }, + { + "start": 12171.44, + "end": 12173.97, + "probability": 0.993 + }, + { + "start": 12174.78, + "end": 12176.78, + "probability": 0.866 + }, + { + "start": 12177.04, + "end": 12178.96, + "probability": 0.7629 + }, + { + "start": 12179.34, + "end": 12182.84, + "probability": 0.8797 + }, + { + "start": 12183.06, + "end": 12184.18, + "probability": 0.9238 + }, + { + "start": 12184.4, + "end": 12185.73, + "probability": 0.957 + }, + { + "start": 12186.0, + "end": 12188.03, + "probability": 0.9825 + }, + { + "start": 12189.82, + "end": 12193.98, + "probability": 0.0466 + }, + { + "start": 12194.2, + "end": 12198.28, + "probability": 0.661 + }, + { + "start": 12198.36, + "end": 12198.78, + "probability": 0.6766 + }, + { + "start": 12199.0, + "end": 12201.54, + "probability": 0.9904 + }, + { + "start": 12201.54, + "end": 12204.32, + "probability": 0.9907 + }, + { + "start": 12204.9, + "end": 12205.56, + "probability": 0.8381 + }, + { + "start": 12206.06, + "end": 12208.92, + "probability": 0.8457 + }, + { + "start": 12209.12, + "end": 12210.42, + "probability": 0.7451 + }, + { + "start": 12212.2, + "end": 12213.92, + "probability": 0.8975 + }, + { + "start": 12214.2, + "end": 12215.6, + "probability": 0.813 + }, + { + "start": 12216.18, + "end": 12217.36, + "probability": 0.6655 + }, + { + "start": 12217.36, + "end": 12219.73, + "probability": 0.7856 + }, + { + "start": 12219.82, + "end": 12221.08, + "probability": 0.4566 + }, + { + "start": 12221.24, + "end": 12222.94, + "probability": 0.4733 + }, + { + "start": 12223.34, + "end": 12224.3, + "probability": 0.9669 + }, + { + "start": 12225.16, + "end": 12227.88, + "probability": 0.0939 + }, + { + "start": 12229.78, + "end": 12232.52, + "probability": 0.9297 + }, + { + "start": 12234.22, + "end": 12237.46, + "probability": 0.2732 + }, + { + "start": 12237.6, + "end": 12240.6, + "probability": 0.9478 + }, + { + "start": 12241.46, + "end": 12243.76, + "probability": 0.9966 + }, + { + "start": 12244.4, + "end": 12248.6, + "probability": 0.9787 + }, + { + "start": 12249.16, + "end": 12250.56, + "probability": 0.9424 + }, + { + "start": 12251.18, + "end": 12253.26, + "probability": 0.9778 + }, + { + "start": 12253.78, + "end": 12256.68, + "probability": 0.991 + }, + { + "start": 12257.48, + "end": 12259.28, + "probability": 0.9185 + }, + { + "start": 12260.16, + "end": 12263.42, + "probability": 0.9955 + }, + { + "start": 12263.98, + "end": 12266.06, + "probability": 0.9581 + }, + { + "start": 12266.48, + "end": 12272.34, + "probability": 0.9862 + }, + { + "start": 12272.46, + "end": 12273.64, + "probability": 0.9408 + }, + { + "start": 12273.74, + "end": 12276.76, + "probability": 0.9937 + }, + { + "start": 12277.1, + "end": 12277.1, + "probability": 0.2646 + }, + { + "start": 12277.1, + "end": 12278.1, + "probability": 0.6161 + }, + { + "start": 12278.16, + "end": 12279.12, + "probability": 0.8831 + }, + { + "start": 12279.54, + "end": 12285.24, + "probability": 0.9855 + }, + { + "start": 12285.86, + "end": 12289.24, + "probability": 0.9633 + }, + { + "start": 12289.46, + "end": 12291.9, + "probability": 0.9929 + }, + { + "start": 12292.32, + "end": 12292.48, + "probability": 0.582 + }, + { + "start": 12292.6, + "end": 12294.44, + "probability": 0.8321 + }, + { + "start": 12294.54, + "end": 12297.4, + "probability": 0.9953 + }, + { + "start": 12297.48, + "end": 12299.14, + "probability": 0.8684 + }, + { + "start": 12300.56, + "end": 12302.95, + "probability": 0.8444 + }, + { + "start": 12303.74, + "end": 12305.96, + "probability": 0.8756 + }, + { + "start": 12306.04, + "end": 12306.88, + "probability": 0.6241 + }, + { + "start": 12307.59, + "end": 12310.3, + "probability": 0.9579 + }, + { + "start": 12310.38, + "end": 12311.64, + "probability": 0.6819 + }, + { + "start": 12313.57, + "end": 12316.18, + "probability": 0.0248 + }, + { + "start": 12317.66, + "end": 12320.94, + "probability": 0.364 + }, + { + "start": 12321.32, + "end": 12322.42, + "probability": 0.1508 + }, + { + "start": 12322.44, + "end": 12324.02, + "probability": 0.9146 + }, + { + "start": 12324.28, + "end": 12328.24, + "probability": 0.9648 + }, + { + "start": 12328.36, + "end": 12329.56, + "probability": 0.5574 + }, + { + "start": 12330.14, + "end": 12332.8, + "probability": 0.8649 + }, + { + "start": 12334.22, + "end": 12337.94, + "probability": 0.991 + }, + { + "start": 12338.48, + "end": 12342.68, + "probability": 0.9845 + }, + { + "start": 12343.46, + "end": 12345.5, + "probability": 0.9666 + }, + { + "start": 12346.34, + "end": 12349.8, + "probability": 0.9951 + }, + { + "start": 12350.26, + "end": 12353.46, + "probability": 0.9941 + }, + { + "start": 12353.84, + "end": 12354.68, + "probability": 0.777 + }, + { + "start": 12358.22, + "end": 12360.14, + "probability": 0.3797 + }, + { + "start": 12361.82, + "end": 12363.36, + "probability": 0.8667 + }, + { + "start": 12363.6, + "end": 12364.46, + "probability": 0.7811 + }, + { + "start": 12364.58, + "end": 12367.62, + "probability": 0.9079 + }, + { + "start": 12368.08, + "end": 12369.82, + "probability": 0.9963 + }, + { + "start": 12370.24, + "end": 12372.28, + "probability": 0.9775 + }, + { + "start": 12373.07, + "end": 12374.38, + "probability": 0.2338 + }, + { + "start": 12374.38, + "end": 12374.38, + "probability": 0.1174 + }, + { + "start": 12374.38, + "end": 12375.08, + "probability": 0.5598 + }, + { + "start": 12375.86, + "end": 12377.05, + "probability": 0.9331 + }, + { + "start": 12377.32, + "end": 12378.8, + "probability": 0.8413 + }, + { + "start": 12378.98, + "end": 12380.14, + "probability": 0.7198 + }, + { + "start": 12380.28, + "end": 12382.08, + "probability": 0.8202 + }, + { + "start": 12382.3, + "end": 12383.94, + "probability": 0.8573 + }, + { + "start": 12384.2, + "end": 12385.78, + "probability": 0.9631 + }, + { + "start": 12386.7, + "end": 12387.08, + "probability": 0.8882 + }, + { + "start": 12388.28, + "end": 12390.42, + "probability": 0.6521 + }, + { + "start": 12391.02, + "end": 12393.32, + "probability": 0.9795 + }, + { + "start": 12393.62, + "end": 12394.56, + "probability": 0.5433 + }, + { + "start": 12395.06, + "end": 12396.18, + "probability": 0.4048 + }, + { + "start": 12396.54, + "end": 12397.16, + "probability": 0.6464 + }, + { + "start": 12397.24, + "end": 12397.68, + "probability": 0.802 + }, + { + "start": 12397.76, + "end": 12399.96, + "probability": 0.7998 + }, + { + "start": 12400.26, + "end": 12402.71, + "probability": 0.9618 + }, + { + "start": 12403.1, + "end": 12405.4, + "probability": 0.9712 + }, + { + "start": 12406.04, + "end": 12407.02, + "probability": 0.9691 + }, + { + "start": 12407.06, + "end": 12408.15, + "probability": 0.8853 + }, + { + "start": 12408.4, + "end": 12410.2, + "probability": 0.9318 + }, + { + "start": 12410.56, + "end": 12411.5, + "probability": 0.6157 + }, + { + "start": 12412.18, + "end": 12416.36, + "probability": 0.8591 + }, + { + "start": 12416.94, + "end": 12419.26, + "probability": 0.6116 + }, + { + "start": 12420.14, + "end": 12422.9, + "probability": 0.9351 + }, + { + "start": 12424.57, + "end": 12429.28, + "probability": 0.5922 + }, + { + "start": 12429.58, + "end": 12432.14, + "probability": 0.5777 + }, + { + "start": 12432.62, + "end": 12434.62, + "probability": 0.6067 + }, + { + "start": 12434.86, + "end": 12437.86, + "probability": 0.9553 + }, + { + "start": 12444.26, + "end": 12447.28, + "probability": 0.755 + }, + { + "start": 12447.36, + "end": 12449.82, + "probability": 0.715 + }, + { + "start": 12450.5, + "end": 12453.33, + "probability": 0.9607 + }, + { + "start": 12453.62, + "end": 12457.0, + "probability": 0.9722 + }, + { + "start": 12457.44, + "end": 12459.36, + "probability": 0.9469 + }, + { + "start": 12459.84, + "end": 12460.46, + "probability": 0.7972 + }, + { + "start": 12460.7, + "end": 12465.46, + "probability": 0.6861 + }, + { + "start": 12465.52, + "end": 12466.57, + "probability": 0.9897 + }, + { + "start": 12466.92, + "end": 12467.9, + "probability": 0.9828 + }, + { + "start": 12467.92, + "end": 12470.08, + "probability": 0.8664 + }, + { + "start": 12470.34, + "end": 12472.22, + "probability": 0.9019 + }, + { + "start": 12472.36, + "end": 12473.16, + "probability": 0.8492 + }, + { + "start": 12473.28, + "end": 12473.84, + "probability": 0.6944 + }, + { + "start": 12474.4, + "end": 12476.18, + "probability": 0.0447 + }, + { + "start": 12477.66, + "end": 12477.94, + "probability": 0.0045 + }, + { + "start": 12477.94, + "end": 12478.54, + "probability": 0.4279 + }, + { + "start": 12478.6, + "end": 12480.28, + "probability": 0.6486 + }, + { + "start": 12480.58, + "end": 12483.82, + "probability": 0.6661 + }, + { + "start": 12484.52, + "end": 12487.32, + "probability": 0.8833 + }, + { + "start": 12487.4, + "end": 12487.93, + "probability": 0.3586 + }, + { + "start": 12488.22, + "end": 12491.36, + "probability": 0.7752 + }, + { + "start": 12491.36, + "end": 12494.54, + "probability": 0.9781 + }, + { + "start": 12494.64, + "end": 12495.76, + "probability": 0.6301 + }, + { + "start": 12495.98, + "end": 12497.1, + "probability": 0.8531 + }, + { + "start": 12497.68, + "end": 12498.98, + "probability": 0.8915 + }, + { + "start": 12499.1, + "end": 12500.94, + "probability": 0.9395 + }, + { + "start": 12501.18, + "end": 12501.96, + "probability": 0.8575 + }, + { + "start": 12504.0, + "end": 12509.4, + "probability": 0.046 + }, + { + "start": 12509.6, + "end": 12511.25, + "probability": 0.4183 + }, + { + "start": 12511.4, + "end": 12514.28, + "probability": 0.8396 + }, + { + "start": 12515.08, + "end": 12515.94, + "probability": 0.0139 + }, + { + "start": 12517.13, + "end": 12518.77, + "probability": 0.7621 + }, + { + "start": 12519.24, + "end": 12520.32, + "probability": 0.4712 + }, + { + "start": 12520.4, + "end": 12520.94, + "probability": 0.666 + }, + { + "start": 12521.14, + "end": 12522.86, + "probability": 0.4471 + }, + { + "start": 12522.92, + "end": 12526.78, + "probability": 0.9034 + }, + { + "start": 12526.88, + "end": 12529.38, + "probability": 0.8562 + }, + { + "start": 12529.46, + "end": 12531.02, + "probability": 0.3789 + }, + { + "start": 12531.22, + "end": 12532.06, + "probability": 0.7919 + }, + { + "start": 12532.81, + "end": 12534.16, + "probability": 0.7501 + }, + { + "start": 12534.92, + "end": 12534.92, + "probability": 0.0232 + }, + { + "start": 12534.92, + "end": 12537.44, + "probability": 0.1638 + }, + { + "start": 12537.44, + "end": 12541.68, + "probability": 0.9774 + }, + { + "start": 12541.96, + "end": 12544.14, + "probability": 0.9474 + }, + { + "start": 12544.32, + "end": 12550.62, + "probability": 0.9479 + }, + { + "start": 12551.16, + "end": 12556.38, + "probability": 0.8561 + }, + { + "start": 12556.66, + "end": 12557.79, + "probability": 0.9949 + }, + { + "start": 12558.58, + "end": 12558.66, + "probability": 0.4708 + }, + { + "start": 12558.72, + "end": 12559.38, + "probability": 0.6512 + }, + { + "start": 12559.64, + "end": 12562.86, + "probability": 0.9749 + }, + { + "start": 12563.4, + "end": 12569.22, + "probability": 0.9888 + }, + { + "start": 12569.98, + "end": 12571.04, + "probability": 0.6377 + }, + { + "start": 12571.2, + "end": 12572.7, + "probability": 0.9189 + }, + { + "start": 12572.88, + "end": 12576.36, + "probability": 0.9777 + }, + { + "start": 12576.7, + "end": 12578.52, + "probability": 0.9832 + }, + { + "start": 12578.94, + "end": 12580.2, + "probability": 0.8102 + }, + { + "start": 12580.78, + "end": 12583.86, + "probability": 0.6925 + }, + { + "start": 12584.3, + "end": 12586.72, + "probability": 0.8472 + }, + { + "start": 12586.96, + "end": 12589.88, + "probability": 0.8547 + }, + { + "start": 12590.16, + "end": 12591.28, + "probability": 0.6377 + }, + { + "start": 12591.38, + "end": 12593.06, + "probability": 0.7523 + }, + { + "start": 12593.36, + "end": 12594.46, + "probability": 0.7045 + }, + { + "start": 12594.66, + "end": 12596.82, + "probability": 0.988 + }, + { + "start": 12598.0, + "end": 12601.62, + "probability": 0.9832 + }, + { + "start": 12602.1, + "end": 12603.29, + "probability": 0.6686 + }, + { + "start": 12603.6, + "end": 12608.02, + "probability": 0.7464 + }, + { + "start": 12608.16, + "end": 12610.36, + "probability": 0.9092 + }, + { + "start": 12610.82, + "end": 12612.62, + "probability": 0.4448 + }, + { + "start": 12612.72, + "end": 12614.32, + "probability": 0.9844 + }, + { + "start": 12616.26, + "end": 12617.6, + "probability": 0.6308 + }, + { + "start": 12618.28, + "end": 12621.0, + "probability": 0.0514 + }, + { + "start": 12621.0, + "end": 12621.32, + "probability": 0.3256 + }, + { + "start": 12622.44, + "end": 12622.44, + "probability": 0.617 + }, + { + "start": 12622.44, + "end": 12623.28, + "probability": 0.9348 + }, + { + "start": 12623.5, + "end": 12626.92, + "probability": 0.8853 + }, + { + "start": 12627.68, + "end": 12627.98, + "probability": 0.6724 + }, + { + "start": 12628.3, + "end": 12630.0, + "probability": 0.9351 + }, + { + "start": 12630.34, + "end": 12631.88, + "probability": 0.9837 + }, + { + "start": 12632.02, + "end": 12632.66, + "probability": 0.4703 + }, + { + "start": 12633.3, + "end": 12634.28, + "probability": 0.0139 + }, + { + "start": 12634.62, + "end": 12635.38, + "probability": 0.6355 + }, + { + "start": 12636.04, + "end": 12636.84, + "probability": 0.7835 + }, + { + "start": 12637.66, + "end": 12638.68, + "probability": 0.7114 + }, + { + "start": 12638.86, + "end": 12641.46, + "probability": 0.9515 + }, + { + "start": 12641.84, + "end": 12642.28, + "probability": 0.8839 + }, + { + "start": 12642.38, + "end": 12643.6, + "probability": 0.5485 + }, + { + "start": 12643.74, + "end": 12647.26, + "probability": 0.7839 + }, + { + "start": 12648.0, + "end": 12651.2, + "probability": 0.5938 + }, + { + "start": 12651.36, + "end": 12655.14, + "probability": 0.7534 + }, + { + "start": 12655.38, + "end": 12658.84, + "probability": 0.9463 + }, + { + "start": 12659.14, + "end": 12660.72, + "probability": 0.978 + }, + { + "start": 12661.3, + "end": 12662.76, + "probability": 0.7668 + }, + { + "start": 12663.16, + "end": 12664.66, + "probability": 0.873 + }, + { + "start": 12665.1, + "end": 12669.54, + "probability": 0.9814 + }, + { + "start": 12669.94, + "end": 12672.74, + "probability": 0.9954 + }, + { + "start": 12673.24, + "end": 12674.86, + "probability": 0.8329 + }, + { + "start": 12676.2, + "end": 12677.78, + "probability": 0.3934 + }, + { + "start": 12678.12, + "end": 12678.9, + "probability": 0.5363 + }, + { + "start": 12679.3, + "end": 12680.78, + "probability": 0.2179 + }, + { + "start": 12686.3, + "end": 12686.46, + "probability": 0.0707 + }, + { + "start": 12687.18, + "end": 12689.44, + "probability": 0.7954 + }, + { + "start": 12690.02, + "end": 12693.1, + "probability": 0.9724 + }, + { + "start": 12693.34, + "end": 12694.53, + "probability": 0.8823 + }, + { + "start": 12695.24, + "end": 12698.64, + "probability": 0.8927 + }, + { + "start": 12699.34, + "end": 12700.58, + "probability": 0.6323 + }, + { + "start": 12701.44, + "end": 12703.52, + "probability": 0.7958 + }, + { + "start": 12703.98, + "end": 12705.9, + "probability": 0.8472 + }, + { + "start": 12706.04, + "end": 12707.0, + "probability": 0.5114 + }, + { + "start": 12707.7, + "end": 12710.76, + "probability": 0.8719 + }, + { + "start": 12710.76, + "end": 12713.78, + "probability": 0.9949 + }, + { + "start": 12714.36, + "end": 12717.04, + "probability": 0.8608 + }, + { + "start": 12717.66, + "end": 12719.16, + "probability": 0.0572 + }, + { + "start": 12719.94, + "end": 12720.12, + "probability": 0.0005 + }, + { + "start": 12720.12, + "end": 12720.74, + "probability": 0.0199 + }, + { + "start": 12721.52, + "end": 12724.52, + "probability": 0.7233 + }, + { + "start": 12724.86, + "end": 12726.31, + "probability": 0.7129 + }, + { + "start": 12726.96, + "end": 12730.18, + "probability": 0.841 + }, + { + "start": 12730.52, + "end": 12731.44, + "probability": 0.8643 + }, + { + "start": 12731.6, + "end": 12734.96, + "probability": 0.9802 + }, + { + "start": 12735.02, + "end": 12738.14, + "probability": 0.9768 + }, + { + "start": 12738.66, + "end": 12740.08, + "probability": 0.7034 + }, + { + "start": 12740.44, + "end": 12743.3, + "probability": 0.9497 + }, + { + "start": 12744.06, + "end": 12747.7, + "probability": 0.9283 + }, + { + "start": 12747.7, + "end": 12751.86, + "probability": 0.9092 + }, + { + "start": 12752.1, + "end": 12752.76, + "probability": 0.7593 + }, + { + "start": 12753.68, + "end": 12756.74, + "probability": 0.9176 + }, + { + "start": 12756.92, + "end": 12758.27, + "probability": 0.5307 + }, + { + "start": 12758.76, + "end": 12762.34, + "probability": 0.6492 + }, + { + "start": 12762.42, + "end": 12763.94, + "probability": 0.6659 + }, + { + "start": 12765.78, + "end": 12767.3, + "probability": 0.9282 + }, + { + "start": 12768.66, + "end": 12772.71, + "probability": 0.9601 + }, + { + "start": 12773.64, + "end": 12776.22, + "probability": 0.981 + }, + { + "start": 12776.76, + "end": 12780.74, + "probability": 0.9857 + }, + { + "start": 12780.74, + "end": 12785.64, + "probability": 0.9543 + }, + { + "start": 12785.72, + "end": 12788.1, + "probability": 0.5985 + }, + { + "start": 12788.32, + "end": 12791.42, + "probability": 0.9058 + }, + { + "start": 12791.48, + "end": 12792.5, + "probability": 0.7015 + }, + { + "start": 12792.7, + "end": 12794.96, + "probability": 0.9026 + }, + { + "start": 12795.06, + "end": 12799.56, + "probability": 0.7886 + }, + { + "start": 12799.56, + "end": 12804.46, + "probability": 0.9783 + }, + { + "start": 12804.88, + "end": 12807.36, + "probability": 0.7175 + }, + { + "start": 12807.48, + "end": 12811.8, + "probability": 0.9837 + }, + { + "start": 12812.64, + "end": 12815.19, + "probability": 0.8721 + }, + { + "start": 12815.92, + "end": 12818.86, + "probability": 0.6508 + }, + { + "start": 12818.92, + "end": 12824.72, + "probability": 0.5708 + }, + { + "start": 12825.46, + "end": 12828.36, + "probability": 0.7742 + }, + { + "start": 12828.46, + "end": 12829.12, + "probability": 0.7287 + }, + { + "start": 12829.16, + "end": 12830.1, + "probability": 0.8876 + }, + { + "start": 12833.74, + "end": 12834.3, + "probability": 0.8057 + }, + { + "start": 12845.42, + "end": 12845.5, + "probability": 0.058 + }, + { + "start": 12845.5, + "end": 12849.04, + "probability": 0.4677 + }, + { + "start": 12849.06, + "end": 12850.98, + "probability": 0.7009 + }, + { + "start": 12851.76, + "end": 12857.42, + "probability": 0.9365 + }, + { + "start": 12857.42, + "end": 12859.14, + "probability": 0.7057 + }, + { + "start": 12859.24, + "end": 12859.8, + "probability": 0.6113 + }, + { + "start": 12860.26, + "end": 12860.78, + "probability": 0.677 + }, + { + "start": 12860.86, + "end": 12861.76, + "probability": 0.7432 + }, + { + "start": 12862.5, + "end": 12865.18, + "probability": 0.8961 + }, + { + "start": 12865.22, + "end": 12866.16, + "probability": 0.8729 + }, + { + "start": 12866.42, + "end": 12867.12, + "probability": 0.879 + }, + { + "start": 12871.44, + "end": 12873.6, + "probability": 0.8118 + }, + { + "start": 12878.78, + "end": 12879.98, + "probability": 0.0085 + }, + { + "start": 12879.98, + "end": 12880.56, + "probability": 0.0617 + }, + { + "start": 12880.56, + "end": 12882.46, + "probability": 0.4965 + }, + { + "start": 12883.52, + "end": 12886.18, + "probability": 0.9521 + }, + { + "start": 12886.32, + "end": 12888.4, + "probability": 0.7321 + }, + { + "start": 12889.68, + "end": 12892.42, + "probability": 0.9541 + }, + { + "start": 12892.52, + "end": 12893.54, + "probability": 0.8042 + }, + { + "start": 12894.02, + "end": 12895.98, + "probability": 0.6424 + }, + { + "start": 12903.56, + "end": 12903.56, + "probability": 0.0985 + }, + { + "start": 12903.56, + "end": 12904.48, + "probability": 0.7214 + }, + { + "start": 12905.94, + "end": 12907.84, + "probability": 0.6865 + }, + { + "start": 12907.96, + "end": 12908.54, + "probability": 0.0983 + }, + { + "start": 12908.74, + "end": 12909.72, + "probability": 0.42 + }, + { + "start": 12909.72, + "end": 12910.32, + "probability": 0.394 + }, + { + "start": 12910.34, + "end": 12912.12, + "probability": 0.9091 + }, + { + "start": 12912.74, + "end": 12916.68, + "probability": 0.9376 + }, + { + "start": 12916.72, + "end": 12918.04, + "probability": 0.6923 + }, + { + "start": 12918.12, + "end": 12920.68, + "probability": 0.7478 + }, + { + "start": 12920.82, + "end": 12921.4, + "probability": 0.5604 + }, + { + "start": 12921.44, + "end": 12924.42, + "probability": 0.6573 + }, + { + "start": 12929.14, + "end": 12931.76, + "probability": 0.5412 + }, + { + "start": 12932.34, + "end": 12934.26, + "probability": 0.2532 + }, + { + "start": 12938.87, + "end": 12940.12, + "probability": 0.4387 + }, + { + "start": 12940.28, + "end": 12940.58, + "probability": 0.1868 + }, + { + "start": 12940.58, + "end": 12941.54, + "probability": 0.2781 + }, + { + "start": 12942.86, + "end": 12944.18, + "probability": 0.5435 + }, + { + "start": 12944.3, + "end": 12946.91, + "probability": 0.9551 + }, + { + "start": 12947.44, + "end": 12950.68, + "probability": 0.9072 + }, + { + "start": 12951.2, + "end": 12953.7, + "probability": 0.5841 + }, + { + "start": 12954.32, + "end": 12956.8, + "probability": 0.723 + }, + { + "start": 12956.92, + "end": 12957.5, + "probability": 0.6469 + }, + { + "start": 12957.56, + "end": 12958.54, + "probability": 0.7272 + }, + { + "start": 12958.66, + "end": 12959.96, + "probability": 0.7745 + }, + { + "start": 12969.2, + "end": 12970.52, + "probability": 0.1342 + }, + { + "start": 12973.06, + "end": 12974.62, + "probability": 0.0806 + }, + { + "start": 12974.72, + "end": 12977.82, + "probability": 0.601 + }, + { + "start": 12977.92, + "end": 12979.34, + "probability": 0.9302 + }, + { + "start": 12988.15, + "end": 12993.74, + "probability": 0.8821 + }, + { + "start": 12994.28, + "end": 12994.94, + "probability": 0.5706 + }, + { + "start": 12995.04, + "end": 12995.64, + "probability": 0.6811 + }, + { + "start": 12995.66, + "end": 12996.48, + "probability": 0.6449 + }, + { + "start": 12997.06, + "end": 12998.2, + "probability": 0.3355 + }, + { + "start": 13012.54, + "end": 13013.1, + "probability": 0.1262 + }, + { + "start": 13013.34, + "end": 13016.26, + "probability": 0.5146 + }, + { + "start": 13016.6, + "end": 13018.78, + "probability": 0.4697 + }, + { + "start": 13018.82, + "end": 13020.29, + "probability": 0.6647 + }, + { + "start": 13021.1, + "end": 13024.6, + "probability": 0.9263 + }, + { + "start": 13025.16, + "end": 13026.94, + "probability": 0.7607 + }, + { + "start": 13027.14, + "end": 13029.04, + "probability": 0.8486 + }, + { + "start": 13029.12, + "end": 13033.58, + "probability": 0.9884 + }, + { + "start": 13034.18, + "end": 13035.96, + "probability": 0.8301 + }, + { + "start": 13036.4, + "end": 13038.62, + "probability": 0.9926 + }, + { + "start": 13038.8, + "end": 13041.48, + "probability": 0.9546 + }, + { + "start": 13041.58, + "end": 13042.39, + "probability": 0.9351 + }, + { + "start": 13042.66, + "end": 13043.68, + "probability": 0.8354 + }, + { + "start": 13043.72, + "end": 13044.64, + "probability": 0.9677 + }, + { + "start": 13044.88, + "end": 13046.3, + "probability": 0.6915 + }, + { + "start": 13046.98, + "end": 13047.44, + "probability": 0.2377 + }, + { + "start": 13047.94, + "end": 13047.94, + "probability": 0.2175 + }, + { + "start": 13048.52, + "end": 13048.52, + "probability": 0.338 + }, + { + "start": 13048.52, + "end": 13049.34, + "probability": 0.6077 + }, + { + "start": 13049.38, + "end": 13049.78, + "probability": 0.6071 + }, + { + "start": 13049.78, + "end": 13053.38, + "probability": 0.6802 + }, + { + "start": 13053.56, + "end": 13053.78, + "probability": 0.2452 + }, + { + "start": 13054.62, + "end": 13057.9, + "probability": 0.824 + }, + { + "start": 13058.18, + "end": 13058.18, + "probability": 0.0198 + }, + { + "start": 13058.18, + "end": 13058.18, + "probability": 0.1207 + }, + { + "start": 13058.18, + "end": 13060.34, + "probability": 0.6196 + }, + { + "start": 13061.1, + "end": 13063.16, + "probability": 0.8833 + }, + { + "start": 13063.24, + "end": 13064.86, + "probability": 0.9926 + }, + { + "start": 13065.52, + "end": 13066.96, + "probability": 0.9914 + }, + { + "start": 13066.96, + "end": 13067.7, + "probability": 0.6628 + }, + { + "start": 13068.44, + "end": 13070.72, + "probability": 0.9749 + }, + { + "start": 13070.99, + "end": 13073.62, + "probability": 0.9854 + }, + { + "start": 13073.78, + "end": 13075.02, + "probability": 0.2283 + }, + { + "start": 13075.08, + "end": 13075.08, + "probability": 0.0029 + }, + { + "start": 13078.04, + "end": 13078.54, + "probability": 0.4153 + }, + { + "start": 13079.74, + "end": 13084.9, + "probability": 0.3023 + }, + { + "start": 13086.64, + "end": 13091.52, + "probability": 0.1671 + }, + { + "start": 13092.06, + "end": 13093.1, + "probability": 0.6525 + }, + { + "start": 13093.14, + "end": 13093.5, + "probability": 0.608 + }, + { + "start": 13093.62, + "end": 13094.6, + "probability": 0.684 + }, + { + "start": 13094.7, + "end": 13096.48, + "probability": 0.9116 + }, + { + "start": 13096.7, + "end": 13099.08, + "probability": 0.9899 + }, + { + "start": 13100.08, + "end": 13101.51, + "probability": 0.2856 + }, + { + "start": 13101.58, + "end": 13102.54, + "probability": 0.8364 + }, + { + "start": 13102.9, + "end": 13106.8, + "probability": 0.7722 + }, + { + "start": 13107.04, + "end": 13110.3, + "probability": 0.9175 + }, + { + "start": 13114.18, + "end": 13118.96, + "probability": 0.562 + }, + { + "start": 13119.02, + "end": 13123.06, + "probability": 0.9481 + }, + { + "start": 13123.42, + "end": 13125.0, + "probability": 0.8282 + }, + { + "start": 13125.32, + "end": 13131.58, + "probability": 0.9291 + }, + { + "start": 13132.18, + "end": 13133.08, + "probability": 0.4581 + }, + { + "start": 13133.26, + "end": 13135.84, + "probability": 0.6933 + }, + { + "start": 13135.92, + "end": 13136.44, + "probability": 0.5586 + }, + { + "start": 13136.46, + "end": 13137.28, + "probability": 0.6051 + }, + { + "start": 13143.02, + "end": 13143.08, + "probability": 0.2171 + }, + { + "start": 13143.86, + "end": 13148.36, + "probability": 0.0193 + }, + { + "start": 13149.72, + "end": 13149.98, + "probability": 0.0046 + }, + { + "start": 13150.52, + "end": 13150.9, + "probability": 0.0198 + }, + { + "start": 13151.82, + "end": 13151.82, + "probability": 0.0753 + }, + { + "start": 13151.82, + "end": 13153.42, + "probability": 0.1749 + }, + { + "start": 13154.08, + "end": 13156.4, + "probability": 0.583 + }, + { + "start": 13156.8, + "end": 13159.74, + "probability": 0.764 + }, + { + "start": 13160.82, + "end": 13160.82, + "probability": 0.0558 + }, + { + "start": 13160.82, + "end": 13163.62, + "probability": 0.7483 + }, + { + "start": 13169.76, + "end": 13173.08, + "probability": 0.8067 + }, + { + "start": 13173.14, + "end": 13173.6, + "probability": 0.9277 + }, + { + "start": 13174.22, + "end": 13176.52, + "probability": 0.9678 + }, + { + "start": 13176.52, + "end": 13180.26, + "probability": 0.8861 + }, + { + "start": 13181.8, + "end": 13183.04, + "probability": 0.8479 + }, + { + "start": 13184.16, + "end": 13188.0, + "probability": 0.9795 + }, + { + "start": 13188.82, + "end": 13191.12, + "probability": 0.9754 + }, + { + "start": 13191.28, + "end": 13191.56, + "probability": 0.755 + }, + { + "start": 13191.6, + "end": 13195.46, + "probability": 0.9857 + }, + { + "start": 13196.3, + "end": 13198.74, + "probability": 0.9302 + }, + { + "start": 13199.7, + "end": 13201.16, + "probability": 0.9961 + }, + { + "start": 13201.82, + "end": 13211.88, + "probability": 0.934 + }, + { + "start": 13211.88, + "end": 13219.28, + "probability": 0.9972 + }, + { + "start": 13219.82, + "end": 13223.5, + "probability": 0.6411 + }, + { + "start": 13223.56, + "end": 13226.38, + "probability": 0.502 + }, + { + "start": 13226.5, + "end": 13227.96, + "probability": 0.884 + }, + { + "start": 13228.28, + "end": 13230.12, + "probability": 0.9751 + }, + { + "start": 13230.5, + "end": 13235.18, + "probability": 0.759 + }, + { + "start": 13235.7, + "end": 13237.44, + "probability": 0.9218 + }, + { + "start": 13237.88, + "end": 13238.56, + "probability": 0.7903 + }, + { + "start": 13238.7, + "end": 13239.04, + "probability": 0.7684 + }, + { + "start": 13239.14, + "end": 13239.48, + "probability": 0.7527 + }, + { + "start": 13239.9, + "end": 13240.6, + "probability": 0.7781 + }, + { + "start": 13240.76, + "end": 13241.8, + "probability": 0.8467 + }, + { + "start": 13242.2, + "end": 13244.54, + "probability": 0.9482 + }, + { + "start": 13245.36, + "end": 13247.18, + "probability": 0.7 + }, + { + "start": 13247.82, + "end": 13249.76, + "probability": 0.9261 + }, + { + "start": 13250.6, + "end": 13252.3, + "probability": 0.8657 + }, + { + "start": 13253.08, + "end": 13254.02, + "probability": 0.8411 + }, + { + "start": 13254.74, + "end": 13260.08, + "probability": 0.6889 + }, + { + "start": 13260.82, + "end": 13264.96, + "probability": 0.984 + }, + { + "start": 13265.2, + "end": 13267.13, + "probability": 0.9971 + }, + { + "start": 13267.88, + "end": 13271.58, + "probability": 0.9254 + }, + { + "start": 13272.26, + "end": 13275.14, + "probability": 0.9321 + }, + { + "start": 13275.42, + "end": 13278.4, + "probability": 0.9697 + }, + { + "start": 13279.0, + "end": 13280.32, + "probability": 0.9127 + }, + { + "start": 13281.76, + "end": 13285.4, + "probability": 0.6597 + }, + { + "start": 13285.7, + "end": 13288.54, + "probability": 0.9088 + }, + { + "start": 13288.88, + "end": 13290.62, + "probability": 0.9822 + }, + { + "start": 13291.3, + "end": 13291.64, + "probability": 0.6509 + }, + { + "start": 13291.74, + "end": 13293.26, + "probability": 0.8312 + }, + { + "start": 13293.72, + "end": 13298.0, + "probability": 0.8558 + }, + { + "start": 13298.32, + "end": 13298.98, + "probability": 0.8575 + }, + { + "start": 13299.2, + "end": 13301.86, + "probability": 0.9468 + }, + { + "start": 13302.1, + "end": 13305.16, + "probability": 0.9751 + }, + { + "start": 13305.58, + "end": 13307.8, + "probability": 0.9217 + }, + { + "start": 13308.14, + "end": 13308.82, + "probability": 0.5347 + }, + { + "start": 13309.12, + "end": 13310.26, + "probability": 0.7963 + }, + { + "start": 13310.66, + "end": 13311.26, + "probability": 0.7266 + }, + { + "start": 13311.7, + "end": 13314.16, + "probability": 0.8434 + }, + { + "start": 13314.32, + "end": 13316.66, + "probability": 0.8509 + }, + { + "start": 13317.74, + "end": 13319.24, + "probability": 0.8824 + }, + { + "start": 13319.82, + "end": 13326.4, + "probability": 0.7375 + }, + { + "start": 13326.4, + "end": 13329.2, + "probability": 0.6007 + }, + { + "start": 13329.32, + "end": 13329.82, + "probability": 0.8091 + }, + { + "start": 13329.98, + "end": 13331.39, + "probability": 0.4683 + }, + { + "start": 13331.44, + "end": 13332.44, + "probability": 0.7715 + }, + { + "start": 13332.54, + "end": 13334.03, + "probability": 0.8235 + }, + { + "start": 13334.14, + "end": 13335.84, + "probability": 0.6739 + }, + { + "start": 13336.6, + "end": 13337.65, + "probability": 0.6289 + }, + { + "start": 13337.94, + "end": 13340.8, + "probability": 0.8057 + }, + { + "start": 13341.04, + "end": 13341.46, + "probability": 0.8466 + }, + { + "start": 13342.0, + "end": 13343.94, + "probability": 0.8916 + }, + { + "start": 13345.29, + "end": 13345.36, + "probability": 0.1065 + }, + { + "start": 13345.36, + "end": 13345.94, + "probability": 0.2677 + }, + { + "start": 13347.56, + "end": 13353.34, + "probability": 0.829 + }, + { + "start": 13354.2, + "end": 13356.69, + "probability": 0.3 + }, + { + "start": 13357.66, + "end": 13359.46, + "probability": 0.7412 + }, + { + "start": 13359.88, + "end": 13363.46, + "probability": 0.921 + }, + { + "start": 13364.06, + "end": 13365.38, + "probability": 0.7237 + }, + { + "start": 13365.44, + "end": 13365.94, + "probability": 0.7682 + }, + { + "start": 13367.34, + "end": 13369.44, + "probability": 0.9768 + }, + { + "start": 13377.02, + "end": 13377.84, + "probability": 0.267 + }, + { + "start": 13383.96, + "end": 13386.32, + "probability": 0.5607 + }, + { + "start": 13387.02, + "end": 13388.04, + "probability": 0.7739 + }, + { + "start": 13399.66, + "end": 13400.56, + "probability": 0.4677 + }, + { + "start": 13402.18, + "end": 13402.28, + "probability": 0.3663 + }, + { + "start": 13402.28, + "end": 13402.4, + "probability": 0.4606 + }, + { + "start": 13402.9, + "end": 13403.16, + "probability": 0.3006 + }, + { + "start": 13403.68, + "end": 13405.56, + "probability": 0.7072 + }, + { + "start": 13405.66, + "end": 13406.18, + "probability": 0.4519 + }, + { + "start": 13406.64, + "end": 13407.02, + "probability": 0.2733 + }, + { + "start": 13407.32, + "end": 13408.44, + "probability": 0.8036 + }, + { + "start": 13409.18, + "end": 13411.78, + "probability": 0.7767 + }, + { + "start": 13412.16, + "end": 13415.36, + "probability": 0.9569 + }, + { + "start": 13416.08, + "end": 13418.52, + "probability": 0.0794 + }, + { + "start": 13419.34, + "end": 13420.96, + "probability": 0.9427 + }, + { + "start": 13421.96, + "end": 13424.0, + "probability": 0.9287 + }, + { + "start": 13424.92, + "end": 13427.32, + "probability": 0.9863 + }, + { + "start": 13427.94, + "end": 13430.36, + "probability": 0.9961 + }, + { + "start": 13430.46, + "end": 13431.12, + "probability": 0.7952 + }, + { + "start": 13431.14, + "end": 13432.06, + "probability": 0.9112 + }, + { + "start": 13432.96, + "end": 13436.64, + "probability": 0.9484 + }, + { + "start": 13437.8, + "end": 13440.38, + "probability": 0.9852 + }, + { + "start": 13440.38, + "end": 13444.24, + "probability": 0.9932 + }, + { + "start": 13444.24, + "end": 13448.18, + "probability": 0.9291 + }, + { + "start": 13448.34, + "end": 13450.28, + "probability": 0.9877 + }, + { + "start": 13450.28, + "end": 13452.7, + "probability": 0.9978 + }, + { + "start": 13453.22, + "end": 13454.94, + "probability": 0.9896 + }, + { + "start": 13455.62, + "end": 13457.6, + "probability": 0.8539 + }, + { + "start": 13457.68, + "end": 13459.8, + "probability": 0.9854 + }, + { + "start": 13459.8, + "end": 13462.7, + "probability": 0.9547 + }, + { + "start": 13462.82, + "end": 13463.16, + "probability": 0.7502 + }, + { + "start": 13463.28, + "end": 13464.94, + "probability": 0.9967 + }, + { + "start": 13465.56, + "end": 13468.46, + "probability": 0.9907 + }, + { + "start": 13468.46, + "end": 13472.12, + "probability": 0.9966 + }, + { + "start": 13472.2, + "end": 13475.9, + "probability": 0.9858 + }, + { + "start": 13476.68, + "end": 13479.22, + "probability": 0.7461 + }, + { + "start": 13479.78, + "end": 13481.32, + "probability": 0.79 + }, + { + "start": 13481.92, + "end": 13484.22, + "probability": 0.8657 + }, + { + "start": 13485.28, + "end": 13487.5, + "probability": 0.874 + }, + { + "start": 13487.78, + "end": 13488.18, + "probability": 0.7552 + }, + { + "start": 13488.24, + "end": 13490.5, + "probability": 0.9932 + }, + { + "start": 13490.66, + "end": 13493.27, + "probability": 0.8696 + }, + { + "start": 13493.8, + "end": 13498.54, + "probability": 0.9974 + }, + { + "start": 13498.62, + "end": 13499.62, + "probability": 0.803 + }, + { + "start": 13499.74, + "end": 13502.82, + "probability": 0.918 + }, + { + "start": 13503.2, + "end": 13504.6, + "probability": 0.9951 + }, + { + "start": 13504.74, + "end": 13509.12, + "probability": 0.9962 + }, + { + "start": 13509.12, + "end": 13513.7, + "probability": 0.9049 + }, + { + "start": 13514.08, + "end": 13514.72, + "probability": 0.2435 + }, + { + "start": 13515.04, + "end": 13516.02, + "probability": 0.5607 + }, + { + "start": 13516.12, + "end": 13516.9, + "probability": 0.6565 + }, + { + "start": 13516.92, + "end": 13519.54, + "probability": 0.9319 + }, + { + "start": 13519.74, + "end": 13521.9, + "probability": 0.9875 + }, + { + "start": 13522.44, + "end": 13523.15, + "probability": 0.9101 + }, + { + "start": 13523.36, + "end": 13525.14, + "probability": 0.8258 + }, + { + "start": 13525.22, + "end": 13526.41, + "probability": 0.9476 + }, + { + "start": 13526.96, + "end": 13529.1, + "probability": 0.9838 + }, + { + "start": 13529.72, + "end": 13532.12, + "probability": 0.9806 + }, + { + "start": 13532.82, + "end": 13533.68, + "probability": 0.9821 + }, + { + "start": 13533.8, + "end": 13534.76, + "probability": 0.9707 + }, + { + "start": 13535.78, + "end": 13540.02, + "probability": 0.988 + }, + { + "start": 13540.12, + "end": 13544.54, + "probability": 0.7324 + }, + { + "start": 13544.54, + "end": 13546.74, + "probability": 0.4295 + }, + { + "start": 13546.74, + "end": 13547.3, + "probability": 0.532 + }, + { + "start": 13547.64, + "end": 13547.8, + "probability": 0.8574 + }, + { + "start": 13548.06, + "end": 13548.16, + "probability": 0.8052 + }, + { + "start": 13548.94, + "end": 13550.34, + "probability": 0.8934 + }, + { + "start": 13550.48, + "end": 13551.48, + "probability": 0.8903 + }, + { + "start": 13551.58, + "end": 13552.08, + "probability": 0.875 + }, + { + "start": 13553.2, + "end": 13555.06, + "probability": 0.5061 + }, + { + "start": 13555.06, + "end": 13557.22, + "probability": 0.7079 + }, + { + "start": 13557.32, + "end": 13559.48, + "probability": 0.8401 + }, + { + "start": 13559.48, + "end": 13561.68, + "probability": 0.9531 + }, + { + "start": 13562.38, + "end": 13565.08, + "probability": 0.6857 + }, + { + "start": 13565.08, + "end": 13567.82, + "probability": 0.874 + }, + { + "start": 13568.42, + "end": 13570.72, + "probability": 0.985 + }, + { + "start": 13570.84, + "end": 13571.96, + "probability": 0.7711 + }, + { + "start": 13572.04, + "end": 13575.08, + "probability": 0.8891 + }, + { + "start": 13575.1, + "end": 13579.48, + "probability": 0.8291 + }, + { + "start": 13580.02, + "end": 13583.16, + "probability": 0.9875 + }, + { + "start": 13583.16, + "end": 13587.28, + "probability": 0.9306 + }, + { + "start": 13587.38, + "end": 13590.26, + "probability": 0.9468 + }, + { + "start": 13590.68, + "end": 13592.7, + "probability": 0.9498 + }, + { + "start": 13592.88, + "end": 13594.7, + "probability": 0.8257 + }, + { + "start": 13595.4, + "end": 13595.72, + "probability": 0.5985 + }, + { + "start": 13595.86, + "end": 13597.62, + "probability": 0.9905 + }, + { + "start": 13597.62, + "end": 13600.58, + "probability": 0.8496 + }, + { + "start": 13600.74, + "end": 13601.72, + "probability": 0.8542 + }, + { + "start": 13601.86, + "end": 13605.5, + "probability": 0.9538 + }, + { + "start": 13605.6, + "end": 13610.44, + "probability": 0.9788 + }, + { + "start": 13610.58, + "end": 13614.64, + "probability": 0.8096 + }, + { + "start": 13614.8, + "end": 13617.62, + "probability": 0.7246 + }, + { + "start": 13619.14, + "end": 13623.34, + "probability": 0.9788 + }, + { + "start": 13623.8, + "end": 13626.06, + "probability": 0.9957 + }, + { + "start": 13626.06, + "end": 13629.32, + "probability": 0.9806 + }, + { + "start": 13629.88, + "end": 13632.54, + "probability": 0.8944 + }, + { + "start": 13633.14, + "end": 13635.74, + "probability": 0.9932 + }, + { + "start": 13635.74, + "end": 13638.68, + "probability": 0.8452 + }, + { + "start": 13639.22, + "end": 13644.62, + "probability": 0.9769 + }, + { + "start": 13644.7, + "end": 13647.94, + "probability": 0.9857 + }, + { + "start": 13648.56, + "end": 13651.48, + "probability": 0.9829 + }, + { + "start": 13651.56, + "end": 13652.18, + "probability": 0.937 + }, + { + "start": 13652.2, + "end": 13653.22, + "probability": 0.8187 + }, + { + "start": 13653.76, + "end": 13654.78, + "probability": 0.9628 + }, + { + "start": 13654.88, + "end": 13659.16, + "probability": 0.9535 + }, + { + "start": 13662.46, + "end": 13666.22, + "probability": 0.9952 + }, + { + "start": 13666.3, + "end": 13668.04, + "probability": 0.9548 + }, + { + "start": 13668.1, + "end": 13668.64, + "probability": 0.6623 + }, + { + "start": 13668.66, + "end": 13669.4, + "probability": 0.9293 + }, + { + "start": 13670.52, + "end": 13672.44, + "probability": 0.9636 + }, + { + "start": 13672.46, + "end": 13673.14, + "probability": 0.7888 + }, + { + "start": 13673.72, + "end": 13675.38, + "probability": 0.9304 + }, + { + "start": 13675.46, + "end": 13677.08, + "probability": 0.9899 + }, + { + "start": 13677.08, + "end": 13679.76, + "probability": 0.9946 + }, + { + "start": 13679.86, + "end": 13683.44, + "probability": 0.9893 + }, + { + "start": 13683.9, + "end": 13687.68, + "probability": 0.9947 + }, + { + "start": 13688.16, + "end": 13689.75, + "probability": 0.6061 + }, + { + "start": 13690.44, + "end": 13691.1, + "probability": 0.3626 + }, + { + "start": 13691.94, + "end": 13696.84, + "probability": 0.9873 + }, + { + "start": 13697.42, + "end": 13698.76, + "probability": 0.6745 + }, + { + "start": 13698.9, + "end": 13703.22, + "probability": 0.9652 + }, + { + "start": 13703.8, + "end": 13704.48, + "probability": 0.6151 + }, + { + "start": 13704.52, + "end": 13705.2, + "probability": 0.7225 + }, + { + "start": 13705.62, + "end": 13707.3, + "probability": 0.9468 + }, + { + "start": 13708.38, + "end": 13711.1, + "probability": 0.8403 + }, + { + "start": 13711.24, + "end": 13712.54, + "probability": 0.796 + }, + { + "start": 13712.8, + "end": 13717.56, + "probability": 0.9155 + }, + { + "start": 13718.08, + "end": 13724.16, + "probability": 0.6099 + }, + { + "start": 13724.62, + "end": 13725.42, + "probability": 0.5955 + }, + { + "start": 13725.42, + "end": 13726.72, + "probability": 0.8986 + }, + { + "start": 13741.62, + "end": 13742.08, + "probability": 0.0112 + }, + { + "start": 13742.08, + "end": 13742.74, + "probability": 0.2478 + }, + { + "start": 13742.86, + "end": 13743.84, + "probability": 0.885 + }, + { + "start": 13744.28, + "end": 13746.32, + "probability": 0.9711 + }, + { + "start": 13746.36, + "end": 13748.62, + "probability": 0.9656 + }, + { + "start": 13748.82, + "end": 13749.52, + "probability": 0.7758 + }, + { + "start": 13757.04, + "end": 13758.04, + "probability": 0.6157 + }, + { + "start": 13760.4, + "end": 13763.14, + "probability": 0.0145 + }, + { + "start": 13767.52, + "end": 13770.02, + "probability": 0.0687 + }, + { + "start": 13770.02, + "end": 13772.24, + "probability": 0.7364 + }, + { + "start": 13772.56, + "end": 13774.6, + "probability": 0.937 + }, + { + "start": 13775.16, + "end": 13775.88, + "probability": 0.9193 + }, + { + "start": 13777.28, + "end": 13781.96, + "probability": 0.7395 + }, + { + "start": 13782.5, + "end": 13784.78, + "probability": 0.2316 + }, + { + "start": 13785.34, + "end": 13786.78, + "probability": 0.7302 + }, + { + "start": 13787.44, + "end": 13789.9, + "probability": 0.9935 + }, + { + "start": 13790.4, + "end": 13792.2, + "probability": 0.8455 + }, + { + "start": 13792.28, + "end": 13792.4, + "probability": 0.9465 + }, + { + "start": 13798.96, + "end": 13801.32, + "probability": 0.5316 + }, + { + "start": 13801.4, + "end": 13803.64, + "probability": 0.9696 + }, + { + "start": 13803.74, + "end": 13804.59, + "probability": 0.7589 + }, + { + "start": 13805.24, + "end": 13806.24, + "probability": 0.5864 + }, + { + "start": 13806.82, + "end": 13809.08, + "probability": 0.9078 + }, + { + "start": 13810.02, + "end": 13810.9, + "probability": 0.9525 + }, + { + "start": 13812.12, + "end": 13812.88, + "probability": 0.8925 + }, + { + "start": 13814.2, + "end": 13819.74, + "probability": 0.9543 + }, + { + "start": 13820.0, + "end": 13821.78, + "probability": 0.1584 + }, + { + "start": 13823.02, + "end": 13824.8, + "probability": 0.9821 + }, + { + "start": 13825.98, + "end": 13831.52, + "probability": 0.9948 + }, + { + "start": 13831.52, + "end": 13839.02, + "probability": 0.9604 + }, + { + "start": 13840.38, + "end": 13842.74, + "probability": 0.2693 + }, + { + "start": 13843.64, + "end": 13844.14, + "probability": 0.7473 + }, + { + "start": 13844.92, + "end": 13845.96, + "probability": 0.9258 + }, + { + "start": 13847.4, + "end": 13850.18, + "probability": 0.9905 + }, + { + "start": 13850.96, + "end": 13853.46, + "probability": 0.6534 + }, + { + "start": 13854.4, + "end": 13856.04, + "probability": 0.986 + }, + { + "start": 13856.82, + "end": 13858.3, + "probability": 0.9106 + }, + { + "start": 13859.24, + "end": 13862.78, + "probability": 0.8483 + }, + { + "start": 13863.88, + "end": 13864.36, + "probability": 0.4985 + }, + { + "start": 13865.24, + "end": 13868.2, + "probability": 0.9936 + }, + { + "start": 13869.54, + "end": 13875.4, + "probability": 0.9943 + }, + { + "start": 13876.2, + "end": 13877.5, + "probability": 0.9893 + }, + { + "start": 13878.38, + "end": 13881.94, + "probability": 0.9836 + }, + { + "start": 13882.98, + "end": 13887.1, + "probability": 0.9692 + }, + { + "start": 13888.06, + "end": 13888.64, + "probability": 0.5145 + }, + { + "start": 13889.52, + "end": 13893.34, + "probability": 0.9817 + }, + { + "start": 13894.54, + "end": 13895.02, + "probability": 0.9454 + }, + { + "start": 13895.82, + "end": 13898.92, + "probability": 0.9739 + }, + { + "start": 13899.7, + "end": 13900.52, + "probability": 0.9706 + }, + { + "start": 13901.44, + "end": 13905.42, + "probability": 0.9771 + }, + { + "start": 13905.42, + "end": 13908.6, + "probability": 0.9921 + }, + { + "start": 13909.24, + "end": 13911.22, + "probability": 0.7248 + }, + { + "start": 13912.2, + "end": 13914.6, + "probability": 0.8647 + }, + { + "start": 13915.68, + "end": 13916.58, + "probability": 0.9928 + }, + { + "start": 13917.96, + "end": 13918.98, + "probability": 0.8888 + }, + { + "start": 13919.08, + "end": 13922.34, + "probability": 0.951 + }, + { + "start": 13923.12, + "end": 13927.68, + "probability": 0.9753 + }, + { + "start": 13928.7, + "end": 13932.34, + "probability": 0.9801 + }, + { + "start": 13933.36, + "end": 13939.78, + "probability": 0.9992 + }, + { + "start": 13940.8, + "end": 13943.3, + "probability": 0.8636 + }, + { + "start": 13944.06, + "end": 13950.18, + "probability": 0.9875 + }, + { + "start": 13951.72, + "end": 13958.8, + "probability": 0.9049 + }, + { + "start": 13959.66, + "end": 13963.84, + "probability": 0.9893 + }, + { + "start": 13964.76, + "end": 13965.56, + "probability": 0.6971 + }, + { + "start": 13966.72, + "end": 13967.84, + "probability": 0.7528 + }, + { + "start": 13968.7, + "end": 13971.72, + "probability": 0.9928 + }, + { + "start": 13972.92, + "end": 13980.96, + "probability": 0.9852 + }, + { + "start": 13982.3, + "end": 13982.78, + "probability": 0.905 + }, + { + "start": 13984.0, + "end": 13990.1, + "probability": 0.9653 + }, + { + "start": 13991.1, + "end": 13994.92, + "probability": 0.9347 + }, + { + "start": 13994.92, + "end": 14001.12, + "probability": 0.9851 + }, + { + "start": 14001.98, + "end": 14006.7, + "probability": 0.9699 + }, + { + "start": 14006.7, + "end": 14010.9, + "probability": 0.7482 + }, + { + "start": 14011.62, + "end": 14012.26, + "probability": 0.6802 + }, + { + "start": 14012.3, + "end": 14012.74, + "probability": 0.8719 + }, + { + "start": 14012.84, + "end": 14013.34, + "probability": 0.7146 + }, + { + "start": 14013.46, + "end": 14013.88, + "probability": 0.7713 + }, + { + "start": 14013.96, + "end": 14014.66, + "probability": 0.9824 + }, + { + "start": 14014.82, + "end": 14015.66, + "probability": 0.9171 + }, + { + "start": 14016.02, + "end": 14016.36, + "probability": 0.6877 + }, + { + "start": 14016.92, + "end": 14018.24, + "probability": 0.9823 + }, + { + "start": 14018.96, + "end": 14024.18, + "probability": 0.9607 + }, + { + "start": 14025.28, + "end": 14025.68, + "probability": 0.7365 + }, + { + "start": 14026.4, + "end": 14030.48, + "probability": 0.9878 + }, + { + "start": 14030.48, + "end": 14034.68, + "probability": 0.9977 + }, + { + "start": 14035.26, + "end": 14035.76, + "probability": 0.5993 + }, + { + "start": 14037.14, + "end": 14039.62, + "probability": 0.9965 + }, + { + "start": 14040.16, + "end": 14041.92, + "probability": 0.9948 + }, + { + "start": 14042.62, + "end": 14043.98, + "probability": 0.991 + }, + { + "start": 14044.72, + "end": 14047.02, + "probability": 0.9675 + }, + { + "start": 14048.28, + "end": 14052.9, + "probability": 0.9816 + }, + { + "start": 14053.78, + "end": 14056.24, + "probability": 0.8901 + }, + { + "start": 14056.42, + "end": 14057.34, + "probability": 0.8716 + }, + { + "start": 14058.38, + "end": 14060.06, + "probability": 0.9711 + }, + { + "start": 14060.98, + "end": 14064.72, + "probability": 0.9986 + }, + { + "start": 14065.34, + "end": 14072.02, + "probability": 0.9958 + }, + { + "start": 14072.7, + "end": 14075.02, + "probability": 0.8531 + }, + { + "start": 14076.32, + "end": 14077.46, + "probability": 0.7761 + }, + { + "start": 14078.34, + "end": 14079.56, + "probability": 0.9932 + }, + { + "start": 14080.28, + "end": 14084.9, + "probability": 0.996 + }, + { + "start": 14084.9, + "end": 14089.38, + "probability": 0.9992 + }, + { + "start": 14090.5, + "end": 14091.38, + "probability": 0.8158 + }, + { + "start": 14092.26, + "end": 14096.68, + "probability": 0.9893 + }, + { + "start": 14097.02, + "end": 14098.04, + "probability": 0.4816 + }, + { + "start": 14098.84, + "end": 14100.28, + "probability": 0.8551 + }, + { + "start": 14100.92, + "end": 14104.48, + "probability": 0.9703 + }, + { + "start": 14105.42, + "end": 14111.96, + "probability": 0.9755 + }, + { + "start": 14113.62, + "end": 14118.38, + "probability": 0.924 + }, + { + "start": 14119.02, + "end": 14120.92, + "probability": 0.9946 + }, + { + "start": 14121.56, + "end": 14122.36, + "probability": 0.9224 + }, + { + "start": 14123.56, + "end": 14126.48, + "probability": 0.9976 + }, + { + "start": 14126.56, + "end": 14127.22, + "probability": 0.8578 + }, + { + "start": 14127.42, + "end": 14130.02, + "probability": 0.9946 + }, + { + "start": 14130.96, + "end": 14132.98, + "probability": 0.8286 + }, + { + "start": 14133.9, + "end": 14137.18, + "probability": 0.9759 + }, + { + "start": 14137.18, + "end": 14141.1, + "probability": 0.9484 + }, + { + "start": 14142.14, + "end": 14146.56, + "probability": 0.6439 + }, + { + "start": 14147.44, + "end": 14149.78, + "probability": 0.9629 + }, + { + "start": 14150.9, + "end": 14153.76, + "probability": 0.9351 + }, + { + "start": 14154.96, + "end": 14157.62, + "probability": 0.9543 + }, + { + "start": 14157.62, + "end": 14162.13, + "probability": 0.9393 + }, + { + "start": 14162.48, + "end": 14164.96, + "probability": 0.9815 + }, + { + "start": 14164.96, + "end": 14168.62, + "probability": 0.9906 + }, + { + "start": 14169.34, + "end": 14172.3, + "probability": 0.7561 + }, + { + "start": 14173.04, + "end": 14175.16, + "probability": 0.9675 + }, + { + "start": 14176.28, + "end": 14176.72, + "probability": 0.8572 + }, + { + "start": 14176.88, + "end": 14180.09, + "probability": 0.8843 + }, + { + "start": 14180.76, + "end": 14182.14, + "probability": 0.9784 + }, + { + "start": 14183.18, + "end": 14185.52, + "probability": 0.9719 + }, + { + "start": 14186.38, + "end": 14188.12, + "probability": 0.9887 + }, + { + "start": 14188.8, + "end": 14190.22, + "probability": 0.9991 + }, + { + "start": 14190.82, + "end": 14191.7, + "probability": 0.997 + }, + { + "start": 14192.28, + "end": 14193.02, + "probability": 0.9872 + }, + { + "start": 14194.42, + "end": 14196.4, + "probability": 0.9337 + }, + { + "start": 14197.5, + "end": 14201.76, + "probability": 0.9931 + }, + { + "start": 14202.68, + "end": 14204.94, + "probability": 0.9377 + }, + { + "start": 14205.9, + "end": 14206.72, + "probability": 0.6749 + }, + { + "start": 14207.78, + "end": 14208.68, + "probability": 0.9665 + }, + { + "start": 14209.4, + "end": 14209.92, + "probability": 0.9321 + }, + { + "start": 14210.2, + "end": 14212.14, + "probability": 0.8737 + }, + { + "start": 14212.14, + "end": 14216.28, + "probability": 0.8248 + }, + { + "start": 14217.22, + "end": 14220.62, + "probability": 0.9326 + }, + { + "start": 14221.5, + "end": 14224.1, + "probability": 0.7872 + }, + { + "start": 14224.98, + "end": 14227.34, + "probability": 0.8811 + }, + { + "start": 14228.3, + "end": 14230.1, + "probability": 0.8554 + }, + { + "start": 14230.62, + "end": 14236.02, + "probability": 0.9343 + }, + { + "start": 14236.7, + "end": 14237.5, + "probability": 0.9572 + }, + { + "start": 14238.68, + "end": 14240.82, + "probability": 0.4994 + }, + { + "start": 14240.98, + "end": 14241.72, + "probability": 0.7989 + }, + { + "start": 14242.78, + "end": 14247.52, + "probability": 0.9379 + }, + { + "start": 14248.42, + "end": 14250.4, + "probability": 0.9903 + }, + { + "start": 14250.92, + "end": 14252.3, + "probability": 0.7391 + }, + { + "start": 14252.82, + "end": 14253.56, + "probability": 0.6694 + }, + { + "start": 14254.34, + "end": 14257.04, + "probability": 0.973 + }, + { + "start": 14257.74, + "end": 14260.52, + "probability": 0.9739 + }, + { + "start": 14262.78, + "end": 14265.64, + "probability": 0.9061 + }, + { + "start": 14265.64, + "end": 14271.0, + "probability": 0.9435 + }, + { + "start": 14272.36, + "end": 14275.9, + "probability": 0.527 + }, + { + "start": 14276.78, + "end": 14281.14, + "probability": 0.9845 + }, + { + "start": 14281.26, + "end": 14283.08, + "probability": 0.8679 + }, + { + "start": 14284.06, + "end": 14285.48, + "probability": 0.9537 + }, + { + "start": 14286.24, + "end": 14286.7, + "probability": 0.8298 + }, + { + "start": 14287.46, + "end": 14291.04, + "probability": 0.9855 + }, + { + "start": 14292.14, + "end": 14292.66, + "probability": 0.5543 + }, + { + "start": 14293.28, + "end": 14294.2, + "probability": 0.4517 + }, + { + "start": 14295.26, + "end": 14300.48, + "probability": 0.9072 + }, + { + "start": 14300.52, + "end": 14305.72, + "probability": 0.9922 + }, + { + "start": 14306.68, + "end": 14308.52, + "probability": 0.9723 + }, + { + "start": 14309.54, + "end": 14311.5, + "probability": 0.998 + }, + { + "start": 14312.42, + "end": 14315.12, + "probability": 0.7723 + }, + { + "start": 14315.88, + "end": 14318.98, + "probability": 0.9164 + }, + { + "start": 14320.02, + "end": 14324.62, + "probability": 0.782 + }, + { + "start": 14325.34, + "end": 14325.88, + "probability": 0.8995 + }, + { + "start": 14326.42, + "end": 14327.78, + "probability": 0.9598 + }, + { + "start": 14328.48, + "end": 14330.3, + "probability": 0.9579 + }, + { + "start": 14331.72, + "end": 14333.82, + "probability": 0.9328 + }, + { + "start": 14335.08, + "end": 14339.26, + "probability": 0.9839 + }, + { + "start": 14341.36, + "end": 14342.94, + "probability": 0.7189 + }, + { + "start": 14343.74, + "end": 14347.86, + "probability": 0.6664 + }, + { + "start": 14347.86, + "end": 14351.26, + "probability": 0.9769 + }, + { + "start": 14351.8, + "end": 14352.7, + "probability": 0.9961 + }, + { + "start": 14353.44, + "end": 14355.74, + "probability": 0.9763 + }, + { + "start": 14356.88, + "end": 14362.66, + "probability": 0.908 + }, + { + "start": 14363.52, + "end": 14364.94, + "probability": 0.9904 + }, + { + "start": 14365.0, + "end": 14365.58, + "probability": 0.8929 + }, + { + "start": 14365.96, + "end": 14369.56, + "probability": 0.9862 + }, + { + "start": 14371.08, + "end": 14372.78, + "probability": 0.9957 + }, + { + "start": 14373.58, + "end": 14376.28, + "probability": 0.9232 + }, + { + "start": 14377.7, + "end": 14378.56, + "probability": 0.7223 + }, + { + "start": 14379.54, + "end": 14384.34, + "probability": 0.8626 + }, + { + "start": 14385.3, + "end": 14391.5, + "probability": 0.9392 + }, + { + "start": 14392.24, + "end": 14393.16, + "probability": 0.6698 + }, + { + "start": 14393.9, + "end": 14398.46, + "probability": 0.9667 + }, + { + "start": 14399.06, + "end": 14401.0, + "probability": 0.9845 + }, + { + "start": 14401.66, + "end": 14402.12, + "probability": 0.5075 + }, + { + "start": 14402.94, + "end": 14406.68, + "probability": 0.9215 + }, + { + "start": 14406.68, + "end": 14410.52, + "probability": 0.9408 + }, + { + "start": 14411.52, + "end": 14413.46, + "probability": 0.621 + }, + { + "start": 14414.18, + "end": 14416.16, + "probability": 0.9751 + }, + { + "start": 14416.38, + "end": 14417.66, + "probability": 0.7953 + }, + { + "start": 14417.78, + "end": 14418.34, + "probability": 0.5245 + }, + { + "start": 14419.36, + "end": 14423.5, + "probability": 0.9716 + }, + { + "start": 14424.96, + "end": 14428.44, + "probability": 0.9849 + }, + { + "start": 14428.6, + "end": 14432.96, + "probability": 0.9611 + }, + { + "start": 14433.76, + "end": 14435.62, + "probability": 0.8977 + }, + { + "start": 14436.62, + "end": 14443.28, + "probability": 0.8119 + }, + { + "start": 14443.28, + "end": 14446.87, + "probability": 0.8203 + }, + { + "start": 14447.64, + "end": 14450.52, + "probability": 0.8503 + }, + { + "start": 14451.22, + "end": 14453.28, + "probability": 0.7912 + }, + { + "start": 14454.5, + "end": 14455.86, + "probability": 0.5386 + }, + { + "start": 14456.6, + "end": 14460.14, + "probability": 0.8906 + }, + { + "start": 14461.02, + "end": 14463.06, + "probability": 0.9718 + }, + { + "start": 14463.24, + "end": 14464.04, + "probability": 0.4973 + }, + { + "start": 14465.0, + "end": 14468.58, + "probability": 0.9478 + }, + { + "start": 14469.8, + "end": 14471.48, + "probability": 0.9943 + }, + { + "start": 14472.18, + "end": 14475.7, + "probability": 0.8308 + }, + { + "start": 14476.36, + "end": 14481.56, + "probability": 0.9751 + }, + { + "start": 14482.22, + "end": 14483.21, + "probability": 0.5297 + }, + { + "start": 14484.14, + "end": 14485.06, + "probability": 0.9842 + }, + { + "start": 14485.64, + "end": 14487.7, + "probability": 0.9004 + }, + { + "start": 14488.42, + "end": 14493.72, + "probability": 0.9917 + }, + { + "start": 14494.64, + "end": 14499.4, + "probability": 0.9853 + }, + { + "start": 14500.48, + "end": 14502.9, + "probability": 0.9279 + }, + { + "start": 14503.46, + "end": 14504.88, + "probability": 0.8692 + }, + { + "start": 14505.42, + "end": 14506.48, + "probability": 0.8543 + }, + { + "start": 14507.34, + "end": 14508.22, + "probability": 0.8896 + }, + { + "start": 14509.48, + "end": 14510.98, + "probability": 0.9463 + }, + { + "start": 14512.12, + "end": 14516.4, + "probability": 0.9235 + }, + { + "start": 14517.36, + "end": 14525.74, + "probability": 0.8013 + }, + { + "start": 14526.62, + "end": 14529.72, + "probability": 0.991 + }, + { + "start": 14529.89, + "end": 14535.54, + "probability": 0.8191 + }, + { + "start": 14537.1, + "end": 14538.2, + "probability": 0.8672 + }, + { + "start": 14539.72, + "end": 14542.22, + "probability": 0.9941 + }, + { + "start": 14543.02, + "end": 14545.52, + "probability": 0.9658 + }, + { + "start": 14546.44, + "end": 14548.28, + "probability": 0.9984 + }, + { + "start": 14548.28, + "end": 14551.72, + "probability": 0.9977 + }, + { + "start": 14552.56, + "end": 14555.6, + "probability": 0.9894 + }, + { + "start": 14556.44, + "end": 14556.56, + "probability": 0.073 + }, + { + "start": 14556.6, + "end": 14557.24, + "probability": 0.9321 + }, + { + "start": 14557.54, + "end": 14561.2, + "probability": 0.9873 + }, + { + "start": 14562.04, + "end": 14562.7, + "probability": 0.9429 + }, + { + "start": 14563.44, + "end": 14564.94, + "probability": 0.9878 + }, + { + "start": 14566.66, + "end": 14569.62, + "probability": 0.9865 + }, + { + "start": 14570.22, + "end": 14572.16, + "probability": 0.9972 + }, + { + "start": 14572.86, + "end": 14574.34, + "probability": 0.9154 + }, + { + "start": 14575.88, + "end": 14578.12, + "probability": 0.8301 + }, + { + "start": 14578.18, + "end": 14580.22, + "probability": 0.8237 + }, + { + "start": 14581.1, + "end": 14584.88, + "probability": 0.8954 + }, + { + "start": 14584.88, + "end": 14586.5, + "probability": 0.766 + }, + { + "start": 14588.06, + "end": 14589.86, + "probability": 0.9985 + }, + { + "start": 14591.32, + "end": 14593.06, + "probability": 0.9878 + }, + { + "start": 14594.08, + "end": 14595.8, + "probability": 0.9465 + }, + { + "start": 14597.18, + "end": 14599.8, + "probability": 0.94 + }, + { + "start": 14600.16, + "end": 14600.77, + "probability": 0.9827 + }, + { + "start": 14601.38, + "end": 14602.48, + "probability": 0.9642 + }, + { + "start": 14603.32, + "end": 14608.4, + "probability": 0.9876 + }, + { + "start": 14609.34, + "end": 14612.42, + "probability": 0.979 + }, + { + "start": 14613.48, + "end": 14614.9, + "probability": 0.6277 + }, + { + "start": 14617.2, + "end": 14619.74, + "probability": 0.8676 + }, + { + "start": 14620.88, + "end": 14621.78, + "probability": 0.9706 + }, + { + "start": 14622.46, + "end": 14624.48, + "probability": 0.963 + }, + { + "start": 14625.5, + "end": 14626.98, + "probability": 0.9346 + }, + { + "start": 14627.74, + "end": 14629.22, + "probability": 0.925 + }, + { + "start": 14629.86, + "end": 14634.68, + "probability": 0.9869 + }, + { + "start": 14635.58, + "end": 14637.02, + "probability": 0.998 + }, + { + "start": 14638.3, + "end": 14641.24, + "probability": 0.9031 + }, + { + "start": 14641.88, + "end": 14643.0, + "probability": 0.9902 + }, + { + "start": 14643.9, + "end": 14647.4, + "probability": 0.8221 + }, + { + "start": 14648.04, + "end": 14649.64, + "probability": 0.9845 + }, + { + "start": 14650.34, + "end": 14652.52, + "probability": 0.8484 + }, + { + "start": 14653.28, + "end": 14655.76, + "probability": 0.9385 + }, + { + "start": 14656.22, + "end": 14662.5, + "probability": 0.9799 + }, + { + "start": 14662.9, + "end": 14664.04, + "probability": 0.8231 + }, + { + "start": 14664.52, + "end": 14666.3, + "probability": 0.765 + }, + { + "start": 14666.92, + "end": 14669.12, + "probability": 0.97 + }, + { + "start": 14670.02, + "end": 14672.22, + "probability": 0.9456 + }, + { + "start": 14673.08, + "end": 14675.86, + "probability": 0.4579 + }, + { + "start": 14676.78, + "end": 14678.28, + "probability": 0.9967 + }, + { + "start": 14679.2, + "end": 14680.74, + "probability": 0.9155 + }, + { + "start": 14681.62, + "end": 14683.14, + "probability": 0.9871 + }, + { + "start": 14683.92, + "end": 14686.72, + "probability": 0.7725 + }, + { + "start": 14686.9, + "end": 14687.48, + "probability": 0.6075 + }, + { + "start": 14687.66, + "end": 14688.46, + "probability": 0.7072 + }, + { + "start": 14688.62, + "end": 14689.08, + "probability": 0.6287 + }, + { + "start": 14689.78, + "end": 14690.8, + "probability": 0.8219 + }, + { + "start": 14691.54, + "end": 14694.42, + "probability": 0.8249 + }, + { + "start": 14694.7, + "end": 14696.1, + "probability": 0.6976 + }, + { + "start": 14696.58, + "end": 14697.97, + "probability": 0.765 + }, + { + "start": 14698.34, + "end": 14699.66, + "probability": 0.9956 + }, + { + "start": 14700.26, + "end": 14704.04, + "probability": 0.8214 + }, + { + "start": 14704.84, + "end": 14706.2, + "probability": 0.9232 + }, + { + "start": 14707.0, + "end": 14709.96, + "probability": 0.9253 + }, + { + "start": 14710.56, + "end": 14711.66, + "probability": 0.9812 + }, + { + "start": 14712.46, + "end": 14714.16, + "probability": 0.9646 + }, + { + "start": 14714.74, + "end": 14715.53, + "probability": 0.8936 + }, + { + "start": 14715.74, + "end": 14716.66, + "probability": 0.9815 + }, + { + "start": 14717.08, + "end": 14721.36, + "probability": 0.9556 + }, + { + "start": 14721.9, + "end": 14723.6, + "probability": 0.9886 + }, + { + "start": 14723.88, + "end": 14724.1, + "probability": 0.7659 + }, + { + "start": 14725.24, + "end": 14727.72, + "probability": 0.8176 + }, + { + "start": 14728.1, + "end": 14729.66, + "probability": 0.805 + }, + { + "start": 14730.28, + "end": 14732.16, + "probability": 0.8062 + }, + { + "start": 14732.32, + "end": 14736.76, + "probability": 0.9134 + }, + { + "start": 14737.32, + "end": 14738.38, + "probability": 0.8129 + }, + { + "start": 14739.28, + "end": 14743.7, + "probability": 0.9988 + }, + { + "start": 14744.5, + "end": 14746.34, + "probability": 0.8367 + }, + { + "start": 14747.32, + "end": 14749.72, + "probability": 0.8476 + }, + { + "start": 14750.52, + "end": 14751.34, + "probability": 0.7684 + }, + { + "start": 14752.1, + "end": 14753.72, + "probability": 0.5351 + }, + { + "start": 14754.2, + "end": 14754.92, + "probability": 0.7263 + }, + { + "start": 14755.18, + "end": 14756.74, + "probability": 0.7306 + }, + { + "start": 14757.3, + "end": 14758.2, + "probability": 0.875 + }, + { + "start": 14758.32, + "end": 14759.74, + "probability": 0.9605 + }, + { + "start": 14760.22, + "end": 14761.1, + "probability": 0.9725 + }, + { + "start": 14761.6, + "end": 14763.08, + "probability": 0.9795 + }, + { + "start": 14763.82, + "end": 14764.7, + "probability": 0.7425 + }, + { + "start": 14765.06, + "end": 14767.9, + "probability": 0.7564 + }, + { + "start": 14768.56, + "end": 14769.86, + "probability": 0.9553 + }, + { + "start": 14770.34, + "end": 14771.86, + "probability": 0.913 + }, + { + "start": 14772.58, + "end": 14773.5, + "probability": 0.7415 + }, + { + "start": 14773.68, + "end": 14774.2, + "probability": 0.3936 + }, + { + "start": 14774.78, + "end": 14777.46, + "probability": 0.9743 + }, + { + "start": 14778.4, + "end": 14781.48, + "probability": 0.6347 + }, + { + "start": 14782.12, + "end": 14787.68, + "probability": 0.4238 + }, + { + "start": 14787.7, + "end": 14787.8, + "probability": 0.8842 + }, + { + "start": 14801.38, + "end": 14803.52, + "probability": 0.0026 + }, + { + "start": 14806.98, + "end": 14809.36, + "probability": 0.6117 + }, + { + "start": 14809.44, + "end": 14811.06, + "probability": 0.9095 + }, + { + "start": 14811.52, + "end": 14815.42, + "probability": 0.9562 + }, + { + "start": 14815.74, + "end": 14816.3, + "probability": 0.4866 + }, + { + "start": 14816.44, + "end": 14817.34, + "probability": 0.6708 + }, + { + "start": 14818.72, + "end": 14822.4, + "probability": 0.0085 + }, + { + "start": 14830.6, + "end": 14831.68, + "probability": 0.0086 + }, + { + "start": 14833.82, + "end": 14834.98, + "probability": 0.0596 + }, + { + "start": 14835.56, + "end": 14837.14, + "probability": 0.4231 + }, + { + "start": 14838.48, + "end": 14839.72, + "probability": 0.7913 + }, + { + "start": 14840.02, + "end": 14842.52, + "probability": 0.5068 + }, + { + "start": 14842.64, + "end": 14844.64, + "probability": 0.2829 + }, + { + "start": 14845.04, + "end": 14849.08, + "probability": 0.9616 + }, + { + "start": 14849.24, + "end": 14852.48, + "probability": 0.6263 + }, + { + "start": 14854.24, + "end": 14858.82, + "probability": 0.9407 + }, + { + "start": 14858.94, + "end": 14861.12, + "probability": 0.248 + }, + { + "start": 14861.62, + "end": 14862.68, + "probability": 0.6896 + }, + { + "start": 14863.16, + "end": 14867.36, + "probability": 0.998 + }, + { + "start": 14867.54, + "end": 14868.06, + "probability": 0.9153 + }, + { + "start": 14895.58, + "end": 14898.84, + "probability": 0.6724 + }, + { + "start": 14900.64, + "end": 14907.78, + "probability": 0.8395 + }, + { + "start": 14907.78, + "end": 14918.14, + "probability": 0.803 + }, + { + "start": 14919.7, + "end": 14926.9, + "probability": 0.8648 + }, + { + "start": 14928.6, + "end": 14930.98, + "probability": 0.7439 + }, + { + "start": 14931.36, + "end": 14935.02, + "probability": 0.4211 + }, + { + "start": 14935.86, + "end": 14937.42, + "probability": 0.8182 + }, + { + "start": 14939.16, + "end": 14943.36, + "probability": 0.833 + }, + { + "start": 14947.14, + "end": 14951.8, + "probability": 0.8266 + }, + { + "start": 14953.16, + "end": 14960.54, + "probability": 0.9714 + }, + { + "start": 14961.62, + "end": 14965.08, + "probability": 0.9889 + }, + { + "start": 14965.22, + "end": 14967.04, + "probability": 0.7181 + }, + { + "start": 14967.14, + "end": 14969.12, + "probability": 0.8573 + }, + { + "start": 14969.22, + "end": 14970.66, + "probability": 0.8452 + }, + { + "start": 14970.78, + "end": 14973.46, + "probability": 0.9688 + }, + { + "start": 14973.46, + "end": 14975.84, + "probability": 0.9838 + }, + { + "start": 14975.96, + "end": 14978.54, + "probability": 0.9179 + }, + { + "start": 14978.98, + "end": 14981.18, + "probability": 0.9857 + }, + { + "start": 14981.26, + "end": 14983.86, + "probability": 0.507 + }, + { + "start": 14983.86, + "end": 14984.22, + "probability": 0.8513 + }, + { + "start": 14984.32, + "end": 14985.12, + "probability": 0.7075 + }, + { + "start": 14985.56, + "end": 14988.62, + "probability": 0.9898 + }, + { + "start": 14988.62, + "end": 14991.86, + "probability": 0.9979 + }, + { + "start": 14992.68, + "end": 14994.56, + "probability": 0.612 + }, + { + "start": 14994.74, + "end": 14995.24, + "probability": 0.717 + }, + { + "start": 14995.3, + "end": 14996.52, + "probability": 0.8547 + }, + { + "start": 14996.68, + "end": 14997.7, + "probability": 0.8066 + }, + { + "start": 14997.84, + "end": 14999.88, + "probability": 0.8882 + }, + { + "start": 14999.88, + "end": 15001.58, + "probability": 0.9679 + }, + { + "start": 15002.74, + "end": 15009.04, + "probability": 0.9027 + }, + { + "start": 15010.16, + "end": 15014.2, + "probability": 0.6646 + }, + { + "start": 15014.8, + "end": 15015.84, + "probability": 0.8914 + }, + { + "start": 15016.58, + "end": 15022.26, + "probability": 0.767 + }, + { + "start": 15022.94, + "end": 15024.04, + "probability": 0.9668 + }, + { + "start": 15025.02, + "end": 15025.26, + "probability": 0.5154 + }, + { + "start": 15025.38, + "end": 15026.12, + "probability": 0.8905 + }, + { + "start": 15026.54, + "end": 15030.78, + "probability": 0.8998 + }, + { + "start": 15031.68, + "end": 15033.58, + "probability": 0.9889 + }, + { + "start": 15035.08, + "end": 15041.1, + "probability": 0.9867 + }, + { + "start": 15041.92, + "end": 15044.24, + "probability": 0.9421 + }, + { + "start": 15045.88, + "end": 15053.2, + "probability": 0.9888 + }, + { + "start": 15053.82, + "end": 15057.48, + "probability": 0.7501 + }, + { + "start": 15058.26, + "end": 15065.02, + "probability": 0.8272 + }, + { + "start": 15066.02, + "end": 15067.48, + "probability": 0.9277 + }, + { + "start": 15068.08, + "end": 15069.94, + "probability": 0.9568 + }, + { + "start": 15071.4, + "end": 15072.96, + "probability": 0.849 + }, + { + "start": 15073.64, + "end": 15077.48, + "probability": 0.8583 + }, + { + "start": 15077.52, + "end": 15079.2, + "probability": 0.8118 + }, + { + "start": 15079.32, + "end": 15081.94, + "probability": 0.7596 + }, + { + "start": 15081.94, + "end": 15086.72, + "probability": 0.9428 + }, + { + "start": 15087.6, + "end": 15090.5, + "probability": 0.9788 + }, + { + "start": 15091.06, + "end": 15096.16, + "probability": 0.9316 + }, + { + "start": 15096.8, + "end": 15099.58, + "probability": 0.8962 + }, + { + "start": 15099.88, + "end": 15101.74, + "probability": 0.9417 + }, + { + "start": 15102.38, + "end": 15103.46, + "probability": 0.7766 + }, + { + "start": 15103.72, + "end": 15104.6, + "probability": 0.4824 + }, + { + "start": 15105.24, + "end": 15105.72, + "probability": 0.8719 + }, + { + "start": 15107.36, + "end": 15109.34, + "probability": 0.6387 + }, + { + "start": 15110.18, + "end": 15115.86, + "probability": 0.9237 + }, + { + "start": 15116.62, + "end": 15119.08, + "probability": 0.9355 + }, + { + "start": 15119.26, + "end": 15123.24, + "probability": 0.9907 + }, + { + "start": 15123.98, + "end": 15125.86, + "probability": 0.7798 + }, + { + "start": 15127.0, + "end": 15131.7, + "probability": 0.9736 + }, + { + "start": 15131.78, + "end": 15137.86, + "probability": 0.9625 + }, + { + "start": 15140.9, + "end": 15142.96, + "probability": 0.9297 + }, + { + "start": 15143.04, + "end": 15144.64, + "probability": 0.8146 + }, + { + "start": 15144.7, + "end": 15145.06, + "probability": 0.6914 + }, + { + "start": 15145.12, + "end": 15148.16, + "probability": 0.9846 + }, + { + "start": 15149.0, + "end": 15156.4, + "probability": 0.9825 + }, + { + "start": 15156.84, + "end": 15157.22, + "probability": 0.75 + }, + { + "start": 15160.5, + "end": 15163.42, + "probability": 0.9045 + }, + { + "start": 15163.94, + "end": 15164.98, + "probability": 0.8731 + }, + { + "start": 15165.06, + "end": 15167.39, + "probability": 0.7959 + }, + { + "start": 15167.84, + "end": 15170.82, + "probability": 0.1493 + }, + { + "start": 15172.9, + "end": 15173.22, + "probability": 0.3867 + }, + { + "start": 15173.24, + "end": 15174.62, + "probability": 0.1619 + }, + { + "start": 15176.86, + "end": 15178.36, + "probability": 0.0247 + }, + { + "start": 15197.26, + "end": 15206.1, + "probability": 0.8963 + }, + { + "start": 15209.04, + "end": 15209.6, + "probability": 0.5039 + }, + { + "start": 15210.24, + "end": 15212.54, + "probability": 0.8666 + }, + { + "start": 15212.72, + "end": 15214.08, + "probability": 0.6853 + }, + { + "start": 15214.74, + "end": 15216.8, + "probability": 0.8535 + }, + { + "start": 15216.8, + "end": 15220.54, + "probability": 0.9705 + }, + { + "start": 15221.64, + "end": 15225.1, + "probability": 0.9682 + }, + { + "start": 15225.14, + "end": 15226.18, + "probability": 0.9372 + }, + { + "start": 15226.68, + "end": 15228.12, + "probability": 0.3707 + }, + { + "start": 15228.12, + "end": 15229.58, + "probability": 0.5263 + }, + { + "start": 15231.0, + "end": 15235.28, + "probability": 0.8374 + }, + { + "start": 15236.1, + "end": 15238.68, + "probability": 0.9849 + }, + { + "start": 15238.84, + "end": 15240.1, + "probability": 0.9454 + }, + { + "start": 15240.58, + "end": 15244.16, + "probability": 0.854 + }, + { + "start": 15244.38, + "end": 15246.67, + "probability": 0.9427 + }, + { + "start": 15247.4, + "end": 15248.7, + "probability": 0.9502 + }, + { + "start": 15248.8, + "end": 15250.82, + "probability": 0.9939 + }, + { + "start": 15251.56, + "end": 15254.58, + "probability": 0.9599 + }, + { + "start": 15254.58, + "end": 15259.18, + "probability": 0.9976 + }, + { + "start": 15259.98, + "end": 15265.2, + "probability": 0.9956 + }, + { + "start": 15265.2, + "end": 15268.86, + "probability": 0.996 + }, + { + "start": 15269.42, + "end": 15272.88, + "probability": 0.9858 + }, + { + "start": 15272.88, + "end": 15277.02, + "probability": 0.9888 + }, + { + "start": 15277.46, + "end": 15281.3, + "probability": 0.8633 + }, + { + "start": 15281.86, + "end": 15282.62, + "probability": 0.9172 + }, + { + "start": 15283.22, + "end": 15284.34, + "probability": 0.9681 + }, + { + "start": 15284.78, + "end": 15287.9, + "probability": 0.9839 + }, + { + "start": 15288.42, + "end": 15289.6, + "probability": 0.9868 + }, + { + "start": 15290.36, + "end": 15295.54, + "probability": 0.9904 + }, + { + "start": 15296.54, + "end": 15301.72, + "probability": 0.9247 + }, + { + "start": 15301.72, + "end": 15306.28, + "probability": 0.9761 + }, + { + "start": 15306.68, + "end": 15307.66, + "probability": 0.7944 + }, + { + "start": 15308.28, + "end": 15311.34, + "probability": 0.7371 + }, + { + "start": 15312.94, + "end": 15314.26, + "probability": 0.9632 + }, + { + "start": 15315.0, + "end": 15317.82, + "probability": 0.9856 + }, + { + "start": 15318.34, + "end": 15320.38, + "probability": 0.9907 + }, + { + "start": 15320.86, + "end": 15323.26, + "probability": 0.9421 + }, + { + "start": 15323.46, + "end": 15324.96, + "probability": 0.9378 + }, + { + "start": 15325.78, + "end": 15333.94, + "probability": 0.9954 + }, + { + "start": 15334.1, + "end": 15335.34, + "probability": 0.6712 + }, + { + "start": 15335.42, + "end": 15336.1, + "probability": 0.8642 + }, + { + "start": 15336.5, + "end": 15337.24, + "probability": 0.5979 + }, + { + "start": 15337.48, + "end": 15337.84, + "probability": 0.3759 + }, + { + "start": 15337.92, + "end": 15338.48, + "probability": 0.4945 + }, + { + "start": 15342.61, + "end": 15347.06, + "probability": 0.6082 + }, + { + "start": 15347.82, + "end": 15351.7, + "probability": 0.9637 + }, + { + "start": 15352.6, + "end": 15356.78, + "probability": 0.8029 + }, + { + "start": 15357.54, + "end": 15361.8, + "probability": 0.9937 + }, + { + "start": 15362.24, + "end": 15367.08, + "probability": 0.9883 + }, + { + "start": 15367.72, + "end": 15368.3, + "probability": 0.2598 + }, + { + "start": 15368.36, + "end": 15373.28, + "probability": 0.8519 + }, + { + "start": 15373.76, + "end": 15376.84, + "probability": 0.9717 + }, + { + "start": 15377.82, + "end": 15380.62, + "probability": 0.7914 + }, + { + "start": 15381.16, + "end": 15385.5, + "probability": 0.9673 + }, + { + "start": 15386.08, + "end": 15394.02, + "probability": 0.9802 + }, + { + "start": 15394.5, + "end": 15396.4, + "probability": 0.9648 + }, + { + "start": 15397.68, + "end": 15401.56, + "probability": 0.9957 + }, + { + "start": 15402.56, + "end": 15405.46, + "probability": 0.9561 + }, + { + "start": 15405.56, + "end": 15412.8, + "probability": 0.9948 + }, + { + "start": 15413.46, + "end": 15415.76, + "probability": 0.9675 + }, + { + "start": 15415.86, + "end": 15416.52, + "probability": 0.8942 + }, + { + "start": 15416.64, + "end": 15418.14, + "probability": 0.8708 + }, + { + "start": 15418.28, + "end": 15418.5, + "probability": 0.8096 + }, + { + "start": 15419.42, + "end": 15421.0, + "probability": 0.6545 + }, + { + "start": 15421.3, + "end": 15428.64, + "probability": 0.9104 + }, + { + "start": 15429.08, + "end": 15431.98, + "probability": 0.9899 + }, + { + "start": 15431.98, + "end": 15434.98, + "probability": 0.9919 + }, + { + "start": 15435.04, + "end": 15435.74, + "probability": 0.4112 + }, + { + "start": 15436.8, + "end": 15441.5, + "probability": 0.9958 + }, + { + "start": 15441.96, + "end": 15445.52, + "probability": 0.7915 + }, + { + "start": 15446.04, + "end": 15447.35, + "probability": 0.6503 + }, + { + "start": 15448.22, + "end": 15449.56, + "probability": 0.7649 + }, + { + "start": 15450.2, + "end": 15453.08, + "probability": 0.8363 + }, + { + "start": 15453.12, + "end": 15454.6, + "probability": 0.7994 + }, + { + "start": 15455.52, + "end": 15459.72, + "probability": 0.9385 + }, + { + "start": 15460.1, + "end": 15460.92, + "probability": 0.7383 + }, + { + "start": 15460.96, + "end": 15461.48, + "probability": 0.4276 + }, + { + "start": 15461.58, + "end": 15461.94, + "probability": 0.7186 + }, + { + "start": 15461.98, + "end": 15462.42, + "probability": 0.7664 + }, + { + "start": 15462.58, + "end": 15463.2, + "probability": 0.4805 + }, + { + "start": 15463.52, + "end": 15470.64, + "probability": 0.716 + }, + { + "start": 15471.16, + "end": 15472.94, + "probability": 0.9512 + }, + { + "start": 15474.02, + "end": 15476.18, + "probability": 0.8357 + }, + { + "start": 15478.86, + "end": 15482.2, + "probability": 0.9495 + }, + { + "start": 15482.92, + "end": 15486.12, + "probability": 0.9907 + }, + { + "start": 15486.94, + "end": 15489.68, + "probability": 0.9885 + }, + { + "start": 15489.84, + "end": 15490.94, + "probability": 0.9046 + }, + { + "start": 15491.82, + "end": 15493.98, + "probability": 0.9757 + }, + { + "start": 15495.04, + "end": 15498.66, + "probability": 0.8224 + }, + { + "start": 15498.66, + "end": 15501.06, + "probability": 0.9708 + }, + { + "start": 15503.06, + "end": 15508.08, + "probability": 0.9966 + }, + { + "start": 15508.08, + "end": 15512.9, + "probability": 0.9813 + }, + { + "start": 15514.28, + "end": 15518.24, + "probability": 0.9258 + }, + { + "start": 15519.24, + "end": 15521.06, + "probability": 0.4829 + }, + { + "start": 15522.62, + "end": 15523.59, + "probability": 0.8907 + }, + { + "start": 15525.02, + "end": 15527.12, + "probability": 0.943 + }, + { + "start": 15527.66, + "end": 15531.56, + "probability": 0.9878 + }, + { + "start": 15533.02, + "end": 15537.88, + "probability": 0.9702 + }, + { + "start": 15538.52, + "end": 15541.0, + "probability": 0.8028 + }, + { + "start": 15541.78, + "end": 15542.84, + "probability": 0.9028 + }, + { + "start": 15542.94, + "end": 15544.96, + "probability": 0.9688 + }, + { + "start": 15547.02, + "end": 15554.08, + "probability": 0.4427 + }, + { + "start": 15554.62, + "end": 15555.2, + "probability": 0.3722 + }, + { + "start": 15555.5, + "end": 15555.6, + "probability": 0.2906 + }, + { + "start": 15559.12, + "end": 15562.94, + "probability": 0.9152 + }, + { + "start": 15563.26, + "end": 15567.8, + "probability": 0.7551 + }, + { + "start": 15568.88, + "end": 15569.6, + "probability": 0.9623 + }, + { + "start": 15570.5, + "end": 15572.9, + "probability": 0.9786 + }, + { + "start": 15573.58, + "end": 15577.42, + "probability": 0.9081 + }, + { + "start": 15577.66, + "end": 15580.5, + "probability": 0.5327 + }, + { + "start": 15581.08, + "end": 15585.82, + "probability": 0.9903 + }, + { + "start": 15586.3, + "end": 15588.64, + "probability": 0.8228 + }, + { + "start": 15588.86, + "end": 15589.22, + "probability": 0.7673 + }, + { + "start": 15589.24, + "end": 15590.39, + "probability": 0.9895 + }, + { + "start": 15591.66, + "end": 15595.26, + "probability": 0.4085 + }, + { + "start": 15595.26, + "end": 15596.59, + "probability": 0.2666 + }, + { + "start": 15597.62, + "end": 15600.52, + "probability": 0.9901 + }, + { + "start": 15601.96, + "end": 15605.33, + "probability": 0.9025 + }, + { + "start": 15606.02, + "end": 15609.0, + "probability": 0.6436 + }, + { + "start": 15609.98, + "end": 15611.06, + "probability": 0.7456 + }, + { + "start": 15611.64, + "end": 15614.52, + "probability": 0.9956 + }, + { + "start": 15614.62, + "end": 15615.74, + "probability": 0.9657 + }, + { + "start": 15617.06, + "end": 15618.6, + "probability": 0.9478 + }, + { + "start": 15618.88, + "end": 15620.04, + "probability": 0.9952 + }, + { + "start": 15622.56, + "end": 15622.8, + "probability": 0.5274 + }, + { + "start": 15622.8, + "end": 15623.08, + "probability": 0.4105 + }, + { + "start": 15623.2, + "end": 15625.46, + "probability": 0.9647 + }, + { + "start": 15626.34, + "end": 15627.24, + "probability": 0.8728 + }, + { + "start": 15627.94, + "end": 15629.48, + "probability": 0.9971 + }, + { + "start": 15630.9, + "end": 15632.7, + "probability": 0.5498 + }, + { + "start": 15632.8, + "end": 15633.96, + "probability": 0.9949 + }, + { + "start": 15634.84, + "end": 15634.88, + "probability": 0.0953 + }, + { + "start": 15634.88, + "end": 15637.24, + "probability": 0.6786 + }, + { + "start": 15637.24, + "end": 15638.04, + "probability": 0.8904 + }, + { + "start": 15638.52, + "end": 15640.5, + "probability": 0.9755 + }, + { + "start": 15640.9, + "end": 15641.94, + "probability": 0.9647 + }, + { + "start": 15642.0, + "end": 15642.74, + "probability": 0.915 + }, + { + "start": 15642.84, + "end": 15644.1, + "probability": 0.8407 + }, + { + "start": 15644.9, + "end": 15645.18, + "probability": 0.9144 + }, + { + "start": 15648.16, + "end": 15648.42, + "probability": 0.5559 + }, + { + "start": 15648.5, + "end": 15651.0, + "probability": 0.8392 + }, + { + "start": 15651.6, + "end": 15652.25, + "probability": 0.8113 + }, + { + "start": 15652.42, + "end": 15653.33, + "probability": 0.915 + }, + { + "start": 15655.56, + "end": 15656.04, + "probability": 0.9319 + }, + { + "start": 15658.32, + "end": 15659.86, + "probability": 0.9983 + }, + { + "start": 15661.84, + "end": 15663.38, + "probability": 0.9854 + }, + { + "start": 15665.18, + "end": 15667.0, + "probability": 0.8261 + }, + { + "start": 15667.02, + "end": 15669.78, + "probability": 0.9604 + }, + { + "start": 15670.8, + "end": 15673.92, + "probability": 0.9804 + }, + { + "start": 15674.9, + "end": 15678.32, + "probability": 0.9875 + }, + { + "start": 15679.4, + "end": 15680.44, + "probability": 0.8057 + }, + { + "start": 15680.62, + "end": 15681.54, + "probability": 0.998 + }, + { + "start": 15682.5, + "end": 15683.36, + "probability": 0.8153 + }, + { + "start": 15684.56, + "end": 15685.14, + "probability": 0.5464 + }, + { + "start": 15685.98, + "end": 15686.44, + "probability": 0.7928 + }, + { + "start": 15687.32, + "end": 15689.06, + "probability": 0.9917 + }, + { + "start": 15690.94, + "end": 15693.84, + "probability": 0.8405 + }, + { + "start": 15695.6, + "end": 15696.9, + "probability": 0.9941 + }, + { + "start": 15697.58, + "end": 15699.36, + "probability": 0.991 + }, + { + "start": 15700.08, + "end": 15701.22, + "probability": 0.9832 + }, + { + "start": 15702.02, + "end": 15703.92, + "probability": 0.8124 + }, + { + "start": 15704.78, + "end": 15705.64, + "probability": 0.8898 + }, + { + "start": 15706.8, + "end": 15707.84, + "probability": 0.8281 + }, + { + "start": 15708.68, + "end": 15710.36, + "probability": 0.6299 + }, + { + "start": 15710.42, + "end": 15712.02, + "probability": 0.8625 + }, + { + "start": 15712.12, + "end": 15712.7, + "probability": 0.8281 + }, + { + "start": 15713.58, + "end": 15714.21, + "probability": 0.9715 + }, + { + "start": 15715.45, + "end": 15716.34, + "probability": 0.5185 + }, + { + "start": 15717.68, + "end": 15720.84, + "probability": 0.8642 + }, + { + "start": 15721.46, + "end": 15726.48, + "probability": 0.9365 + }, + { + "start": 15727.92, + "end": 15729.74, + "probability": 0.8344 + }, + { + "start": 15729.88, + "end": 15730.62, + "probability": 0.9435 + }, + { + "start": 15730.76, + "end": 15732.7, + "probability": 0.242 + }, + { + "start": 15733.6, + "end": 15734.84, + "probability": 0.8275 + }, + { + "start": 15735.0, + "end": 15737.78, + "probability": 0.9098 + }, + { + "start": 15739.32, + "end": 15740.82, + "probability": 0.9165 + }, + { + "start": 15741.92, + "end": 15742.78, + "probability": 0.7243 + }, + { + "start": 15744.12, + "end": 15748.22, + "probability": 0.9927 + }, + { + "start": 15749.08, + "end": 15753.12, + "probability": 0.9811 + }, + { + "start": 15754.18, + "end": 15755.68, + "probability": 0.9043 + }, + { + "start": 15756.7, + "end": 15757.58, + "probability": 0.9451 + }, + { + "start": 15759.2, + "end": 15760.28, + "probability": 0.9443 + }, + { + "start": 15760.4, + "end": 15767.56, + "probability": 0.9824 + }, + { + "start": 15768.58, + "end": 15770.42, + "probability": 0.8506 + }, + { + "start": 15770.52, + "end": 15771.56, + "probability": 0.8399 + }, + { + "start": 15771.7, + "end": 15774.46, + "probability": 0.8318 + }, + { + "start": 15775.48, + "end": 15778.02, + "probability": 0.9468 + }, + { + "start": 15779.16, + "end": 15785.78, + "probability": 0.946 + }, + { + "start": 15787.1, + "end": 15788.4, + "probability": 0.5434 + }, + { + "start": 15789.66, + "end": 15792.6, + "probability": 0.9787 + }, + { + "start": 15794.12, + "end": 15795.36, + "probability": 0.9423 + }, + { + "start": 15796.54, + "end": 15800.74, + "probability": 0.9193 + }, + { + "start": 15802.29, + "end": 15805.72, + "probability": 0.9331 + }, + { + "start": 15806.48, + "end": 15806.99, + "probability": 0.9363 + }, + { + "start": 15807.68, + "end": 15809.9, + "probability": 0.8917 + }, + { + "start": 15810.92, + "end": 15811.4, + "probability": 0.9479 + }, + { + "start": 15812.2, + "end": 15812.72, + "probability": 0.9346 + }, + { + "start": 15813.02, + "end": 15814.0, + "probability": 0.931 + }, + { + "start": 15814.26, + "end": 15816.24, + "probability": 0.8519 + }, + { + "start": 15816.34, + "end": 15819.02, + "probability": 0.9093 + }, + { + "start": 15820.54, + "end": 15821.28, + "probability": 0.477 + }, + { + "start": 15821.86, + "end": 15824.04, + "probability": 0.8486 + }, + { + "start": 15825.08, + "end": 15827.0, + "probability": 0.9741 + }, + { + "start": 15828.55, + "end": 15834.06, + "probability": 0.999 + }, + { + "start": 15837.72, + "end": 15839.02, + "probability": 0.9764 + }, + { + "start": 15839.32, + "end": 15841.88, + "probability": 0.896 + }, + { + "start": 15842.54, + "end": 15843.38, + "probability": 0.9253 + }, + { + "start": 15844.72, + "end": 15845.68, + "probability": 0.9107 + }, + { + "start": 15846.68, + "end": 15849.82, + "probability": 0.8969 + }, + { + "start": 15850.6, + "end": 15857.58, + "probability": 0.9832 + }, + { + "start": 15859.66, + "end": 15864.5, + "probability": 0.9953 + }, + { + "start": 15865.76, + "end": 15867.96, + "probability": 0.6243 + }, + { + "start": 15868.68, + "end": 15874.62, + "probability": 0.9928 + }, + { + "start": 15875.18, + "end": 15876.44, + "probability": 0.8902 + }, + { + "start": 15877.0, + "end": 15877.98, + "probability": 0.8283 + }, + { + "start": 15878.6, + "end": 15878.98, + "probability": 0.7545 + }, + { + "start": 15879.76, + "end": 15882.96, + "probability": 0.9105 + }, + { + "start": 15883.42, + "end": 15886.5, + "probability": 0.9712 + }, + { + "start": 15887.32, + "end": 15889.5, + "probability": 0.8684 + }, + { + "start": 15890.16, + "end": 15891.06, + "probability": 0.8886 + }, + { + "start": 15891.98, + "end": 15892.72, + "probability": 0.4269 + }, + { + "start": 15892.88, + "end": 15895.36, + "probability": 0.733 + }, + { + "start": 15896.22, + "end": 15897.94, + "probability": 0.9172 + }, + { + "start": 15907.88, + "end": 15909.9, + "probability": 0.6246 + }, + { + "start": 15910.18, + "end": 15913.8, + "probability": 0.9001 + }, + { + "start": 15913.9, + "end": 15914.3, + "probability": 0.8234 + }, + { + "start": 15914.4, + "end": 15914.6, + "probability": 0.9333 + }, + { + "start": 15915.34, + "end": 15918.18, + "probability": 0.9609 + }, + { + "start": 15919.44, + "end": 15922.24, + "probability": 0.9169 + }, + { + "start": 15923.66, + "end": 15924.94, + "probability": 0.9722 + }, + { + "start": 15926.72, + "end": 15926.72, + "probability": 0.0171 + }, + { + "start": 15926.72, + "end": 15928.54, + "probability": 0.288 + }, + { + "start": 15928.64, + "end": 15929.68, + "probability": 0.8958 + }, + { + "start": 15930.64, + "end": 15932.46, + "probability": 0.5892 + }, + { + "start": 15933.86, + "end": 15934.54, + "probability": 0.0356 + }, + { + "start": 15935.66, + "end": 15936.22, + "probability": 0.5775 + }, + { + "start": 15936.44, + "end": 15937.52, + "probability": 0.9709 + }, + { + "start": 15937.6, + "end": 15938.9, + "probability": 0.9288 + }, + { + "start": 15940.44, + "end": 15944.06, + "probability": 0.2791 + }, + { + "start": 15944.9, + "end": 15946.34, + "probability": 0.6912 + }, + { + "start": 15946.38, + "end": 15951.08, + "probability": 0.9498 + }, + { + "start": 15953.32, + "end": 15958.5, + "probability": 0.958 + }, + { + "start": 15959.34, + "end": 15959.8, + "probability": 0.8782 + }, + { + "start": 15961.76, + "end": 15965.3, + "probability": 0.8973 + }, + { + "start": 15967.12, + "end": 15970.84, + "probability": 0.9952 + }, + { + "start": 15972.82, + "end": 15973.4, + "probability": 0.7579 + }, + { + "start": 15974.24, + "end": 15975.84, + "probability": 0.6974 + }, + { + "start": 15977.28, + "end": 15978.36, + "probability": 0.7862 + }, + { + "start": 15980.32, + "end": 15984.7, + "probability": 0.9092 + }, + { + "start": 15985.32, + "end": 15989.26, + "probability": 0.9729 + }, + { + "start": 15990.4, + "end": 15991.96, + "probability": 0.8975 + }, + { + "start": 15992.22, + "end": 15992.68, + "probability": 0.3089 + }, + { + "start": 15993.96, + "end": 15995.38, + "probability": 0.9949 + }, + { + "start": 15996.26, + "end": 15998.5, + "probability": 0.9839 + }, + { + "start": 15998.94, + "end": 16004.6, + "probability": 0.9891 + }, + { + "start": 16005.7, + "end": 16007.42, + "probability": 0.8425 + }, + { + "start": 16007.9, + "end": 16008.44, + "probability": 0.6281 + }, + { + "start": 16008.54, + "end": 16009.66, + "probability": 0.9727 + }, + { + "start": 16009.76, + "end": 16010.6, + "probability": 0.7395 + }, + { + "start": 16011.34, + "end": 16011.34, + "probability": 0.2614 + }, + { + "start": 16012.42, + "end": 16014.36, + "probability": 0.8621 + }, + { + "start": 16015.14, + "end": 16016.42, + "probability": 0.8813 + }, + { + "start": 16017.18, + "end": 16018.7, + "probability": 0.7557 + }, + { + "start": 16019.9, + "end": 16023.24, + "probability": 0.9963 + }, + { + "start": 16023.3, + "end": 16027.18, + "probability": 0.9863 + }, + { + "start": 16027.64, + "end": 16030.0, + "probability": 0.9864 + }, + { + "start": 16034.3, + "end": 16034.54, + "probability": 0.1856 + }, + { + "start": 16034.54, + "end": 16036.7, + "probability": 0.7903 + }, + { + "start": 16037.3, + "end": 16038.62, + "probability": 0.9813 + }, + { + "start": 16039.34, + "end": 16039.44, + "probability": 0.6753 + }, + { + "start": 16041.06, + "end": 16043.04, + "probability": 0.7676 + }, + { + "start": 16044.1, + "end": 16044.86, + "probability": 0.7286 + }, + { + "start": 16044.98, + "end": 16045.32, + "probability": 0.3859 + }, + { + "start": 16045.38, + "end": 16048.04, + "probability": 0.9793 + }, + { + "start": 16048.26, + "end": 16049.48, + "probability": 0.9684 + }, + { + "start": 16050.04, + "end": 16052.24, + "probability": 0.9556 + }, + { + "start": 16052.64, + "end": 16053.04, + "probability": 0.8523 + }, + { + "start": 16053.52, + "end": 16055.94, + "probability": 0.9609 + }, + { + "start": 16056.4, + "end": 16057.88, + "probability": 0.8547 + }, + { + "start": 16059.24, + "end": 16059.97, + "probability": 0.7451 + }, + { + "start": 16060.7, + "end": 16062.2, + "probability": 0.8599 + }, + { + "start": 16062.66, + "end": 16063.84, + "probability": 0.9109 + }, + { + "start": 16064.24, + "end": 16066.16, + "probability": 0.7842 + }, + { + "start": 16066.84, + "end": 16068.9, + "probability": 0.7515 + }, + { + "start": 16069.94, + "end": 16071.66, + "probability": 0.9811 + }, + { + "start": 16072.2, + "end": 16076.88, + "probability": 0.8797 + }, + { + "start": 16077.74, + "end": 16080.4, + "probability": 0.8682 + }, + { + "start": 16080.76, + "end": 16083.32, + "probability": 0.9973 + }, + { + "start": 16084.86, + "end": 16088.44, + "probability": 0.9409 + }, + { + "start": 16088.48, + "end": 16089.76, + "probability": 0.8411 + }, + { + "start": 16090.52, + "end": 16092.18, + "probability": 0.9951 + }, + { + "start": 16092.68, + "end": 16097.68, + "probability": 0.9554 + }, + { + "start": 16098.72, + "end": 16102.24, + "probability": 0.8254 + }, + { + "start": 16103.16, + "end": 16105.42, + "probability": 0.9336 + }, + { + "start": 16105.98, + "end": 16107.06, + "probability": 0.829 + }, + { + "start": 16107.3, + "end": 16108.34, + "probability": 0.988 + }, + { + "start": 16108.76, + "end": 16111.76, + "probability": 0.9797 + }, + { + "start": 16112.02, + "end": 16112.64, + "probability": 0.5143 + }, + { + "start": 16112.68, + "end": 16113.08, + "probability": 0.753 + }, + { + "start": 16113.3, + "end": 16113.94, + "probability": 0.6826 + }, + { + "start": 16113.94, + "end": 16114.38, + "probability": 0.7821 + }, + { + "start": 16114.58, + "end": 16115.16, + "probability": 0.7181 + }, + { + "start": 16115.7, + "end": 16116.1, + "probability": 0.7888 + }, + { + "start": 16117.02, + "end": 16121.44, + "probability": 0.972 + }, + { + "start": 16121.44, + "end": 16126.9, + "probability": 0.9791 + }, + { + "start": 16127.26, + "end": 16131.28, + "probability": 0.8412 + }, + { + "start": 16131.72, + "end": 16137.44, + "probability": 0.9417 + }, + { + "start": 16137.78, + "end": 16140.78, + "probability": 0.9755 + }, + { + "start": 16141.24, + "end": 16143.28, + "probability": 0.9179 + }, + { + "start": 16143.5, + "end": 16143.66, + "probability": 0.6643 + }, + { + "start": 16143.88, + "end": 16147.02, + "probability": 0.895 + }, + { + "start": 16147.42, + "end": 16151.84, + "probability": 0.96 + }, + { + "start": 16152.08, + "end": 16152.24, + "probability": 0.3347 + }, + { + "start": 16152.38, + "end": 16152.48, + "probability": 0.3072 + }, + { + "start": 16152.48, + "end": 16154.54, + "probability": 0.8844 + }, + { + "start": 16154.64, + "end": 16156.08, + "probability": 0.8484 + }, + { + "start": 16156.62, + "end": 16159.38, + "probability": 0.8783 + }, + { + "start": 16160.1, + "end": 16162.76, + "probability": 0.9631 + }, + { + "start": 16164.2, + "end": 16166.9, + "probability": 0.9834 + }, + { + "start": 16167.6, + "end": 16169.92, + "probability": 0.9726 + }, + { + "start": 16170.84, + "end": 16173.22, + "probability": 0.9325 + }, + { + "start": 16174.62, + "end": 16177.06, + "probability": 0.795 + }, + { + "start": 16178.02, + "end": 16178.62, + "probability": 0.6879 + }, + { + "start": 16178.82, + "end": 16180.62, + "probability": 0.9568 + }, + { + "start": 16180.72, + "end": 16182.46, + "probability": 0.7973 + }, + { + "start": 16183.52, + "end": 16187.38, + "probability": 0.0257 + }, + { + "start": 16188.0, + "end": 16189.32, + "probability": 0.1361 + }, + { + "start": 16190.34, + "end": 16190.8, + "probability": 0.1169 + }, + { + "start": 16210.56, + "end": 16213.95, + "probability": 0.9774 + }, + { + "start": 16218.26, + "end": 16221.98, + "probability": 0.6229 + }, + { + "start": 16222.64, + "end": 16223.6, + "probability": 0.7929 + }, + { + "start": 16224.18, + "end": 16225.58, + "probability": 0.8186 + }, + { + "start": 16228.94, + "end": 16230.62, + "probability": 0.7781 + }, + { + "start": 16231.34, + "end": 16231.34, + "probability": 0.0004 + }, + { + "start": 16231.34, + "end": 16235.26, + "probability": 0.7148 + }, + { + "start": 16236.54, + "end": 16237.86, + "probability": 0.6873 + }, + { + "start": 16238.52, + "end": 16238.54, + "probability": 0.0156 + }, + { + "start": 16238.54, + "end": 16239.8, + "probability": 0.4222 + }, + { + "start": 16240.0, + "end": 16243.72, + "probability": 0.1859 + }, + { + "start": 16244.4, + "end": 16248.0, + "probability": 0.3833 + }, + { + "start": 16248.22, + "end": 16250.78, + "probability": 0.5879 + }, + { + "start": 16253.96, + "end": 16254.96, + "probability": 0.5285 + }, + { + "start": 16255.7, + "end": 16256.44, + "probability": 0.8633 + }, + { + "start": 16256.52, + "end": 16258.8, + "probability": 0.7264 + }, + { + "start": 16259.16, + "end": 16264.22, + "probability": 0.926 + }, + { + "start": 16265.02, + "end": 16269.02, + "probability": 0.6692 + }, + { + "start": 16269.38, + "end": 16272.58, + "probability": 0.7697 + }, + { + "start": 16272.62, + "end": 16275.94, + "probability": 0.7319 + }, + { + "start": 16276.1, + "end": 16278.0, + "probability": 0.8252 + }, + { + "start": 16278.08, + "end": 16279.57, + "probability": 0.9851 + }, + { + "start": 16280.26, + "end": 16281.24, + "probability": 0.5986 + }, + { + "start": 16281.52, + "end": 16284.86, + "probability": 0.9847 + }, + { + "start": 16285.5, + "end": 16289.74, + "probability": 0.9714 + }, + { + "start": 16289.98, + "end": 16292.26, + "probability": 0.9851 + }, + { + "start": 16293.18, + "end": 16295.44, + "probability": 0.3537 + }, + { + "start": 16298.12, + "end": 16302.28, + "probability": 0.9606 + }, + { + "start": 16302.28, + "end": 16306.24, + "probability": 0.9912 + }, + { + "start": 16306.68, + "end": 16309.16, + "probability": 0.9925 + }, + { + "start": 16309.92, + "end": 16311.04, + "probability": 0.9781 + }, + { + "start": 16311.6, + "end": 16319.08, + "probability": 0.926 + }, + { + "start": 16319.8, + "end": 16322.2, + "probability": 0.9039 + }, + { + "start": 16322.4, + "end": 16326.24, + "probability": 0.9662 + }, + { + "start": 16326.36, + "end": 16327.44, + "probability": 0.926 + }, + { + "start": 16328.0, + "end": 16332.84, + "probability": 0.8905 + }, + { + "start": 16333.24, + "end": 16337.32, + "probability": 0.9961 + }, + { + "start": 16337.82, + "end": 16341.72, + "probability": 0.9919 + }, + { + "start": 16342.78, + "end": 16345.78, + "probability": 0.6099 + }, + { + "start": 16345.9, + "end": 16347.4, + "probability": 0.9979 + }, + { + "start": 16347.52, + "end": 16348.1, + "probability": 0.4471 + }, + { + "start": 16348.7, + "end": 16350.74, + "probability": 0.9093 + }, + { + "start": 16351.64, + "end": 16359.14, + "probability": 0.9438 + }, + { + "start": 16359.66, + "end": 16364.44, + "probability": 0.9616 + }, + { + "start": 16364.44, + "end": 16367.16, + "probability": 0.8942 + }, + { + "start": 16367.62, + "end": 16373.62, + "probability": 0.8433 + }, + { + "start": 16373.62, + "end": 16378.46, + "probability": 0.9938 + }, + { + "start": 16379.18, + "end": 16382.86, + "probability": 0.7459 + }, + { + "start": 16383.48, + "end": 16386.8, + "probability": 0.5397 + }, + { + "start": 16387.26, + "end": 16389.48, + "probability": 0.5727 + }, + { + "start": 16390.2, + "end": 16392.92, + "probability": 0.6013 + }, + { + "start": 16393.06, + "end": 16399.52, + "probability": 0.8156 + }, + { + "start": 16400.14, + "end": 16402.74, + "probability": 0.6145 + }, + { + "start": 16402.88, + "end": 16405.46, + "probability": 0.6744 + }, + { + "start": 16405.96, + "end": 16408.4, + "probability": 0.9819 + }, + { + "start": 16408.58, + "end": 16408.78, + "probability": 0.5008 + }, + { + "start": 16409.36, + "end": 16411.42, + "probability": 0.8443 + }, + { + "start": 16411.48, + "end": 16414.84, + "probability": 0.8221 + }, + { + "start": 16414.9, + "end": 16415.0, + "probability": 0.8814 + }, + { + "start": 16425.16, + "end": 16426.68, + "probability": 0.6443 + }, + { + "start": 16430.32, + "end": 16433.7, + "probability": 0.6863 + }, + { + "start": 16434.94, + "end": 16440.32, + "probability": 0.9373 + }, + { + "start": 16441.0, + "end": 16442.74, + "probability": 0.931 + }, + { + "start": 16443.98, + "end": 16449.06, + "probability": 0.6947 + }, + { + "start": 16450.0, + "end": 16452.9, + "probability": 0.8801 + }, + { + "start": 16453.94, + "end": 16455.52, + "probability": 0.9919 + }, + { + "start": 16456.94, + "end": 16458.18, + "probability": 0.8835 + }, + { + "start": 16459.0, + "end": 16461.48, + "probability": 0.7236 + }, + { + "start": 16461.62, + "end": 16463.6, + "probability": 0.9102 + }, + { + "start": 16465.1, + "end": 16467.46, + "probability": 0.988 + }, + { + "start": 16468.1, + "end": 16469.7, + "probability": 0.9446 + }, + { + "start": 16470.42, + "end": 16472.12, + "probability": 0.9834 + }, + { + "start": 16472.32, + "end": 16474.94, + "probability": 0.9181 + }, + { + "start": 16475.46, + "end": 16476.56, + "probability": 0.8766 + }, + { + "start": 16478.06, + "end": 16482.32, + "probability": 0.9824 + }, + { + "start": 16482.4, + "end": 16483.18, + "probability": 0.9941 + }, + { + "start": 16483.28, + "end": 16484.1, + "probability": 0.9016 + }, + { + "start": 16484.68, + "end": 16489.7, + "probability": 0.9907 + }, + { + "start": 16490.98, + "end": 16493.01, + "probability": 0.957 + }, + { + "start": 16494.34, + "end": 16496.08, + "probability": 0.9657 + }, + { + "start": 16496.74, + "end": 16498.52, + "probability": 0.633 + }, + { + "start": 16499.0, + "end": 16500.66, + "probability": 0.9166 + }, + { + "start": 16501.4, + "end": 16502.06, + "probability": 0.9565 + }, + { + "start": 16502.18, + "end": 16505.29, + "probability": 0.9409 + }, + { + "start": 16505.54, + "end": 16508.16, + "probability": 0.7186 + }, + { + "start": 16509.1, + "end": 16511.37, + "probability": 0.9959 + }, + { + "start": 16511.56, + "end": 16512.92, + "probability": 0.823 + }, + { + "start": 16513.26, + "end": 16514.54, + "probability": 0.9297 + }, + { + "start": 16514.74, + "end": 16515.82, + "probability": 0.7004 + }, + { + "start": 16515.92, + "end": 16517.84, + "probability": 0.9364 + }, + { + "start": 16518.06, + "end": 16518.84, + "probability": 0.9581 + }, + { + "start": 16518.94, + "end": 16519.72, + "probability": 0.9473 + }, + { + "start": 16519.74, + "end": 16521.42, + "probability": 0.6199 + }, + { + "start": 16521.8, + "end": 16522.2, + "probability": 0.3808 + }, + { + "start": 16522.34, + "end": 16523.06, + "probability": 0.8011 + }, + { + "start": 16523.9, + "end": 16526.14, + "probability": 0.8472 + }, + { + "start": 16526.5, + "end": 16527.32, + "probability": 0.8377 + }, + { + "start": 16527.5, + "end": 16529.24, + "probability": 0.9888 + }, + { + "start": 16529.8, + "end": 16531.14, + "probability": 0.9722 + }, + { + "start": 16531.24, + "end": 16534.2, + "probability": 0.7953 + }, + { + "start": 16535.44, + "end": 16535.62, + "probability": 0.2965 + }, + { + "start": 16535.7, + "end": 16539.98, + "probability": 0.9179 + }, + { + "start": 16540.42, + "end": 16545.62, + "probability": 0.8679 + }, + { + "start": 16545.78, + "end": 16548.0, + "probability": 0.9275 + }, + { + "start": 16548.06, + "end": 16550.48, + "probability": 0.9731 + }, + { + "start": 16550.58, + "end": 16551.44, + "probability": 0.9135 + }, + { + "start": 16551.88, + "end": 16555.0, + "probability": 0.9565 + }, + { + "start": 16555.44, + "end": 16557.86, + "probability": 0.9966 + }, + { + "start": 16557.86, + "end": 16560.02, + "probability": 0.9956 + }, + { + "start": 16560.58, + "end": 16564.18, + "probability": 0.7412 + }, + { + "start": 16564.32, + "end": 16566.22, + "probability": 0.9233 + }, + { + "start": 16566.26, + "end": 16570.28, + "probability": 0.7631 + }, + { + "start": 16570.52, + "end": 16571.84, + "probability": 0.849 + }, + { + "start": 16571.94, + "end": 16572.22, + "probability": 0.8355 + }, + { + "start": 16572.84, + "end": 16574.56, + "probability": 0.6677 + }, + { + "start": 16574.78, + "end": 16575.64, + "probability": 0.9392 + }, + { + "start": 16575.72, + "end": 16578.48, + "probability": 0.8817 + }, + { + "start": 16578.54, + "end": 16580.1, + "probability": 0.9939 + }, + { + "start": 16580.46, + "end": 16581.4, + "probability": 0.5037 + }, + { + "start": 16581.6, + "end": 16583.92, + "probability": 0.988 + }, + { + "start": 16584.08, + "end": 16586.92, + "probability": 0.9896 + }, + { + "start": 16586.92, + "end": 16590.16, + "probability": 0.5836 + }, + { + "start": 16590.24, + "end": 16592.04, + "probability": 0.389 + }, + { + "start": 16592.88, + "end": 16594.34, + "probability": 0.7701 + }, + { + "start": 16594.74, + "end": 16596.02, + "probability": 0.7001 + }, + { + "start": 16596.24, + "end": 16596.82, + "probability": 0.941 + }, + { + "start": 16597.26, + "end": 16601.24, + "probability": 0.262 + }, + { + "start": 16612.92, + "end": 16613.73, + "probability": 0.002 + }, + { + "start": 16613.86, + "end": 16613.86, + "probability": 0.0592 + }, + { + "start": 16613.86, + "end": 16613.86, + "probability": 0.8348 + }, + { + "start": 16613.86, + "end": 16613.86, + "probability": 0.7295 + }, + { + "start": 16613.86, + "end": 16615.08, + "probability": 0.4977 + }, + { + "start": 16615.28, + "end": 16619.42, + "probability": 0.9246 + }, + { + "start": 16619.56, + "end": 16620.56, + "probability": 0.5941 + }, + { + "start": 16621.78, + "end": 16624.28, + "probability": 0.9943 + }, + { + "start": 16625.56, + "end": 16628.84, + "probability": 0.6664 + }, + { + "start": 16629.48, + "end": 16630.14, + "probability": 0.0339 + }, + { + "start": 16630.7, + "end": 16633.02, + "probability": 0.7325 + }, + { + "start": 16633.48, + "end": 16635.82, + "probability": 0.2318 + }, + { + "start": 16636.32, + "end": 16637.36, + "probability": 0.6594 + }, + { + "start": 16637.74, + "end": 16638.9, + "probability": 0.9992 + }, + { + "start": 16639.48, + "end": 16641.4, + "probability": 0.7338 + }, + { + "start": 16641.42, + "end": 16641.62, + "probability": 0.8494 + }, + { + "start": 16660.48, + "end": 16663.52, + "probability": 0.6519 + }, + { + "start": 16664.58, + "end": 16669.58, + "probability": 0.9803 + }, + { + "start": 16669.58, + "end": 16674.1, + "probability": 0.9967 + }, + { + "start": 16674.34, + "end": 16678.7, + "probability": 0.9967 + }, + { + "start": 16679.78, + "end": 16684.8, + "probability": 0.8069 + }, + { + "start": 16685.84, + "end": 16688.2, + "probability": 0.9618 + }, + { + "start": 16688.4, + "end": 16692.26, + "probability": 0.9597 + }, + { + "start": 16692.84, + "end": 16694.34, + "probability": 0.9976 + }, + { + "start": 16694.86, + "end": 16698.68, + "probability": 0.7968 + }, + { + "start": 16699.48, + "end": 16704.38, + "probability": 0.9963 + }, + { + "start": 16704.38, + "end": 16710.22, + "probability": 0.9951 + }, + { + "start": 16710.88, + "end": 16711.62, + "probability": 0.8771 + }, + { + "start": 16711.7, + "end": 16712.22, + "probability": 0.8549 + }, + { + "start": 16712.32, + "end": 16716.64, + "probability": 0.9932 + }, + { + "start": 16716.64, + "end": 16719.82, + "probability": 0.9976 + }, + { + "start": 16721.12, + "end": 16728.24, + "probability": 0.9909 + }, + { + "start": 16728.24, + "end": 16732.96, + "probability": 0.9918 + }, + { + "start": 16732.96, + "end": 16737.7, + "probability": 0.997 + }, + { + "start": 16738.64, + "end": 16744.54, + "probability": 0.9418 + }, + { + "start": 16745.08, + "end": 16747.18, + "probability": 0.7041 + }, + { + "start": 16747.86, + "end": 16750.4, + "probability": 0.8937 + }, + { + "start": 16750.6, + "end": 16752.32, + "probability": 0.9378 + }, + { + "start": 16753.22, + "end": 16757.84, + "probability": 0.9264 + }, + { + "start": 16757.96, + "end": 16762.1, + "probability": 0.994 + }, + { + "start": 16762.96, + "end": 16767.1, + "probability": 0.9922 + }, + { + "start": 16767.74, + "end": 16771.18, + "probability": 0.9753 + }, + { + "start": 16772.18, + "end": 16778.08, + "probability": 0.9979 + }, + { + "start": 16778.08, + "end": 16786.44, + "probability": 0.9989 + }, + { + "start": 16786.44, + "end": 16792.8, + "probability": 0.9985 + }, + { + "start": 16793.58, + "end": 16794.32, + "probability": 0.6444 + }, + { + "start": 16794.86, + "end": 16801.2, + "probability": 0.991 + }, + { + "start": 16801.58, + "end": 16803.28, + "probability": 0.9442 + }, + { + "start": 16804.0, + "end": 16806.48, + "probability": 0.9576 + }, + { + "start": 16806.62, + "end": 16808.44, + "probability": 0.9355 + }, + { + "start": 16808.74, + "end": 16812.44, + "probability": 0.993 + }, + { + "start": 16813.0, + "end": 16816.78, + "probability": 0.9883 + }, + { + "start": 16817.42, + "end": 16818.9, + "probability": 0.908 + }, + { + "start": 16819.1, + "end": 16823.28, + "probability": 0.9897 + }, + { + "start": 16823.42, + "end": 16824.12, + "probability": 0.9886 + }, + { + "start": 16824.64, + "end": 16827.34, + "probability": 0.9539 + }, + { + "start": 16828.4, + "end": 16829.06, + "probability": 0.9517 + }, + { + "start": 16829.4, + "end": 16834.06, + "probability": 0.9406 + }, + { + "start": 16834.06, + "end": 16839.26, + "probability": 0.9992 + }, + { + "start": 16839.26, + "end": 16842.76, + "probability": 0.9972 + }, + { + "start": 16843.9, + "end": 16847.3, + "probability": 0.9837 + }, + { + "start": 16848.46, + "end": 16852.2, + "probability": 0.9899 + }, + { + "start": 16853.08, + "end": 16854.98, + "probability": 0.8648 + }, + { + "start": 16856.88, + "end": 16857.88, + "probability": 0.9974 + }, + { + "start": 16858.42, + "end": 16860.16, + "probability": 0.7931 + }, + { + "start": 16860.24, + "end": 16862.42, + "probability": 0.9922 + }, + { + "start": 16862.42, + "end": 16865.92, + "probability": 0.9888 + }, + { + "start": 16866.5, + "end": 16868.06, + "probability": 0.9907 + }, + { + "start": 16868.12, + "end": 16868.92, + "probability": 0.8514 + }, + { + "start": 16868.98, + "end": 16874.6, + "probability": 0.938 + }, + { + "start": 16875.38, + "end": 16879.5, + "probability": 0.9216 + }, + { + "start": 16881.34, + "end": 16885.7, + "probability": 0.9831 + }, + { + "start": 16886.28, + "end": 16890.62, + "probability": 0.9426 + }, + { + "start": 16890.82, + "end": 16894.38, + "probability": 0.99 + }, + { + "start": 16895.0, + "end": 16895.92, + "probability": 0.9985 + }, + { + "start": 16896.86, + "end": 16902.62, + "probability": 0.983 + }, + { + "start": 16903.6, + "end": 16907.52, + "probability": 0.9889 + }, + { + "start": 16907.82, + "end": 16911.7, + "probability": 0.9777 + }, + { + "start": 16911.82, + "end": 16914.25, + "probability": 0.6781 + }, + { + "start": 16915.12, + "end": 16918.16, + "probability": 0.968 + }, + { + "start": 16919.28, + "end": 16920.98, + "probability": 0.9305 + }, + { + "start": 16921.42, + "end": 16925.26, + "probability": 0.9855 + }, + { + "start": 16925.86, + "end": 16930.34, + "probability": 0.9258 + }, + { + "start": 16930.92, + "end": 16932.02, + "probability": 0.6618 + }, + { + "start": 16932.1, + "end": 16935.88, + "probability": 0.9834 + }, + { + "start": 16936.0, + "end": 16937.04, + "probability": 0.1633 + }, + { + "start": 16937.58, + "end": 16940.96, + "probability": 0.8208 + }, + { + "start": 16942.53, + "end": 16946.4, + "probability": 0.8205 + }, + { + "start": 16946.4, + "end": 16950.28, + "probability": 0.9984 + }, + { + "start": 16950.88, + "end": 16955.38, + "probability": 0.9766 + }, + { + "start": 16956.02, + "end": 16957.98, + "probability": 0.9817 + }, + { + "start": 16957.98, + "end": 16962.28, + "probability": 0.9233 + }, + { + "start": 16963.44, + "end": 16964.36, + "probability": 0.5734 + }, + { + "start": 16964.52, + "end": 16968.66, + "probability": 0.8771 + }, + { + "start": 16969.26, + "end": 16974.06, + "probability": 0.9272 + }, + { + "start": 16974.96, + "end": 16978.26, + "probability": 0.9688 + }, + { + "start": 16978.82, + "end": 16982.78, + "probability": 0.9876 + }, + { + "start": 16985.26, + "end": 16987.66, + "probability": 0.843 + }, + { + "start": 16991.3, + "end": 16994.8, + "probability": 0.9068 + }, + { + "start": 16995.3, + "end": 16999.82, + "probability": 0.9949 + }, + { + "start": 17000.02, + "end": 17001.98, + "probability": 0.9925 + }, + { + "start": 17002.56, + "end": 17007.78, + "probability": 0.9914 + }, + { + "start": 17007.78, + "end": 17012.54, + "probability": 0.9917 + }, + { + "start": 17012.72, + "end": 17012.96, + "probability": 0.2758 + }, + { + "start": 17013.16, + "end": 17016.46, + "probability": 0.9551 + }, + { + "start": 17016.54, + "end": 17018.65, + "probability": 0.9806 + }, + { + "start": 17019.34, + "end": 17025.84, + "probability": 0.9377 + }, + { + "start": 17026.0, + "end": 17030.35, + "probability": 0.9525 + }, + { + "start": 17031.92, + "end": 17032.82, + "probability": 0.6807 + }, + { + "start": 17032.96, + "end": 17037.94, + "probability": 0.9956 + }, + { + "start": 17038.62, + "end": 17044.46, + "probability": 0.9819 + }, + { + "start": 17045.04, + "end": 17050.06, + "probability": 0.9639 + }, + { + "start": 17050.18, + "end": 17054.14, + "probability": 0.9347 + }, + { + "start": 17054.62, + "end": 17056.92, + "probability": 0.9578 + }, + { + "start": 17057.06, + "end": 17060.58, + "probability": 0.8539 + }, + { + "start": 17060.92, + "end": 17062.4, + "probability": 0.9749 + }, + { + "start": 17062.54, + "end": 17063.9, + "probability": 0.9684 + }, + { + "start": 17064.3, + "end": 17066.46, + "probability": 0.9248 + }, + { + "start": 17066.92, + "end": 17070.38, + "probability": 0.9932 + }, + { + "start": 17070.44, + "end": 17073.51, + "probability": 0.9589 + }, + { + "start": 17074.42, + "end": 17077.58, + "probability": 0.98 + }, + { + "start": 17078.02, + "end": 17083.62, + "probability": 0.9762 + }, + { + "start": 17083.74, + "end": 17084.44, + "probability": 0.5897 + }, + { + "start": 17084.64, + "end": 17090.26, + "probability": 0.8965 + }, + { + "start": 17090.8, + "end": 17092.64, + "probability": 0.9753 + }, + { + "start": 17092.7, + "end": 17093.88, + "probability": 0.9949 + }, + { + "start": 17094.04, + "end": 17095.36, + "probability": 0.9451 + }, + { + "start": 17095.82, + "end": 17099.04, + "probability": 0.9653 + }, + { + "start": 17099.7, + "end": 17104.84, + "probability": 0.9555 + }, + { + "start": 17105.58, + "end": 17107.42, + "probability": 0.9905 + }, + { + "start": 17107.5, + "end": 17110.38, + "probability": 0.7964 + }, + { + "start": 17111.32, + "end": 17116.13, + "probability": 0.9927 + }, + { + "start": 17117.84, + "end": 17123.1, + "probability": 0.9967 + }, + { + "start": 17123.68, + "end": 17128.16, + "probability": 0.9521 + }, + { + "start": 17128.92, + "end": 17132.46, + "probability": 0.9817 + }, + { + "start": 17132.78, + "end": 17139.22, + "probability": 0.9603 + }, + { + "start": 17139.4, + "end": 17139.92, + "probability": 0.6886 + }, + { + "start": 17140.58, + "end": 17144.22, + "probability": 0.9668 + }, + { + "start": 17144.22, + "end": 17148.92, + "probability": 0.9654 + }, + { + "start": 17149.06, + "end": 17149.28, + "probability": 0.7441 + }, + { + "start": 17150.02, + "end": 17152.68, + "probability": 0.9488 + }, + { + "start": 17153.46, + "end": 17156.78, + "probability": 0.9232 + }, + { + "start": 17157.32, + "end": 17157.84, + "probability": 0.6977 + }, + { + "start": 17158.16, + "end": 17160.16, + "probability": 0.9105 + }, + { + "start": 17163.36, + "end": 17165.24, + "probability": 0.7673 + }, + { + "start": 17165.7, + "end": 17167.35, + "probability": 0.0476 + }, + { + "start": 17168.94, + "end": 17169.04, + "probability": 0.5701 + }, + { + "start": 17169.76, + "end": 17170.18, + "probability": 0.0589 + }, + { + "start": 17171.16, + "end": 17171.92, + "probability": 0.6135 + }, + { + "start": 17171.92, + "end": 17171.92, + "probability": 0.4029 + }, + { + "start": 17172.06, + "end": 17172.78, + "probability": 0.3023 + }, + { + "start": 17173.28, + "end": 17174.36, + "probability": 0.7141 + }, + { + "start": 17176.38, + "end": 17178.88, + "probability": 0.3904 + }, + { + "start": 17179.42, + "end": 17181.19, + "probability": 0.8408 + }, + { + "start": 17182.48, + "end": 17182.88, + "probability": 0.8263 + }, + { + "start": 17183.0, + "end": 17183.4, + "probability": 0.876 + }, + { + "start": 17183.48, + "end": 17187.54, + "probability": 0.9398 + }, + { + "start": 17188.2, + "end": 17189.76, + "probability": 0.5571 + }, + { + "start": 17189.86, + "end": 17189.86, + "probability": 0.0347 + }, + { + "start": 17189.86, + "end": 17190.2, + "probability": 0.7478 + }, + { + "start": 17191.82, + "end": 17195.66, + "probability": 0.0691 + }, + { + "start": 17196.24, + "end": 17197.02, + "probability": 0.0535 + }, + { + "start": 17197.26, + "end": 17197.44, + "probability": 0.0738 + }, + { + "start": 17197.44, + "end": 17197.44, + "probability": 0.1258 + }, + { + "start": 17197.44, + "end": 17197.44, + "probability": 0.347 + }, + { + "start": 17197.44, + "end": 17201.1, + "probability": 0.2921 + }, + { + "start": 17201.34, + "end": 17202.4, + "probability": 0.6662 + }, + { + "start": 17202.96, + "end": 17204.24, + "probability": 0.9432 + }, + { + "start": 17204.75, + "end": 17209.41, + "probability": 0.4388 + }, + { + "start": 17209.86, + "end": 17209.98, + "probability": 0.6067 + }, + { + "start": 17210.06, + "end": 17212.14, + "probability": 0.7839 + }, + { + "start": 17212.2, + "end": 17215.54, + "probability": 0.9258 + }, + { + "start": 17215.58, + "end": 17216.34, + "probability": 0.7839 + }, + { + "start": 17216.46, + "end": 17217.82, + "probability": 0.4507 + }, + { + "start": 17217.82, + "end": 17221.68, + "probability": 0.6025 + }, + { + "start": 17222.08, + "end": 17224.0, + "probability": 0.3847 + }, + { + "start": 17224.12, + "end": 17226.92, + "probability": 0.9437 + }, + { + "start": 17227.24, + "end": 17227.54, + "probability": 0.6027 + }, + { + "start": 17227.58, + "end": 17234.87, + "probability": 0.9893 + }, + { + "start": 17235.38, + "end": 17236.32, + "probability": 0.558 + }, + { + "start": 17236.78, + "end": 17236.84, + "probability": 0.3764 + }, + { + "start": 17237.2, + "end": 17238.56, + "probability": 0.4258 + }, + { + "start": 17238.58, + "end": 17239.5, + "probability": 0.7705 + }, + { + "start": 17239.56, + "end": 17239.72, + "probability": 0.7222 + }, + { + "start": 17239.86, + "end": 17243.56, + "probability": 0.8821 + }, + { + "start": 17243.58, + "end": 17247.76, + "probability": 0.7096 + }, + { + "start": 17247.86, + "end": 17251.72, + "probability": 0.9873 + }, + { + "start": 17252.06, + "end": 17254.22, + "probability": 0.9935 + }, + { + "start": 17254.64, + "end": 17256.3, + "probability": 0.9961 + }, + { + "start": 17256.8, + "end": 17257.48, + "probability": 0.8716 + }, + { + "start": 17258.0, + "end": 17258.28, + "probability": 0.6788 + }, + { + "start": 17258.4, + "end": 17261.63, + "probability": 0.6362 + }, + { + "start": 17263.0, + "end": 17267.28, + "probability": 0.981 + }, + { + "start": 17267.72, + "end": 17272.32, + "probability": 0.8323 + }, + { + "start": 17272.68, + "end": 17273.28, + "probability": 0.7219 + }, + { + "start": 17274.56, + "end": 17275.28, + "probability": 0.1264 + }, + { + "start": 17275.28, + "end": 17277.14, + "probability": 0.387 + }, + { + "start": 17277.5, + "end": 17283.8, + "probability": 0.9404 + }, + { + "start": 17283.98, + "end": 17287.18, + "probability": 0.9443 + }, + { + "start": 17287.52, + "end": 17292.42, + "probability": 0.9917 + }, + { + "start": 17293.02, + "end": 17294.64, + "probability": 0.8602 + }, + { + "start": 17295.04, + "end": 17299.56, + "probability": 0.9244 + }, + { + "start": 17299.66, + "end": 17300.36, + "probability": 0.8667 + }, + { + "start": 17300.88, + "end": 17302.86, + "probability": 0.9578 + }, + { + "start": 17303.5, + "end": 17307.18, + "probability": 0.9948 + }, + { + "start": 17307.86, + "end": 17307.96, + "probability": 0.9253 + }, + { + "start": 17309.02, + "end": 17309.7, + "probability": 0.8084 + }, + { + "start": 17309.86, + "end": 17310.62, + "probability": 0.6391 + }, + { + "start": 17311.02, + "end": 17313.62, + "probability": 0.9182 + }, + { + "start": 17313.8, + "end": 17314.3, + "probability": 0.7609 + }, + { + "start": 17314.68, + "end": 17316.8, + "probability": 0.904 + }, + { + "start": 17317.84, + "end": 17320.62, + "probability": 0.9225 + }, + { + "start": 17321.06, + "end": 17322.6, + "probability": 0.9858 + }, + { + "start": 17323.18, + "end": 17324.96, + "probability": 0.6574 + }, + { + "start": 17329.54, + "end": 17331.3, + "probability": 0.8569 + }, + { + "start": 17341.34, + "end": 17345.3, + "probability": 0.5157 + }, + { + "start": 17346.22, + "end": 17348.48, + "probability": 0.9927 + }, + { + "start": 17348.58, + "end": 17354.04, + "probability": 0.9971 + }, + { + "start": 17354.04, + "end": 17359.28, + "probability": 0.8899 + }, + { + "start": 17360.0, + "end": 17361.74, + "probability": 0.864 + }, + { + "start": 17362.42, + "end": 17365.26, + "probability": 0.9907 + }, + { + "start": 17365.26, + "end": 17370.02, + "probability": 0.9856 + }, + { + "start": 17370.6, + "end": 17371.28, + "probability": 0.8795 + }, + { + "start": 17371.84, + "end": 17374.18, + "probability": 0.9903 + }, + { + "start": 17375.56, + "end": 17378.66, + "probability": 0.9422 + }, + { + "start": 17378.66, + "end": 17381.48, + "probability": 0.9979 + }, + { + "start": 17382.06, + "end": 17382.38, + "probability": 0.7432 + }, + { + "start": 17382.56, + "end": 17386.7, + "probability": 0.9865 + }, + { + "start": 17386.76, + "end": 17387.38, + "probability": 0.6227 + }, + { + "start": 17388.16, + "end": 17392.24, + "probability": 0.9902 + }, + { + "start": 17392.82, + "end": 17395.12, + "probability": 0.9621 + }, + { + "start": 17395.46, + "end": 17396.5, + "probability": 0.9108 + }, + { + "start": 17396.64, + "end": 17397.6, + "probability": 0.8986 + }, + { + "start": 17397.74, + "end": 17398.96, + "probability": 0.9115 + }, + { + "start": 17399.54, + "end": 17403.78, + "probability": 0.9811 + }, + { + "start": 17404.04, + "end": 17406.78, + "probability": 0.9968 + }, + { + "start": 17407.12, + "end": 17409.36, + "probability": 0.999 + }, + { + "start": 17409.56, + "end": 17413.0, + "probability": 0.8078 + }, + { + "start": 17413.34, + "end": 17416.6, + "probability": 0.975 + }, + { + "start": 17417.56, + "end": 17423.16, + "probability": 0.9937 + }, + { + "start": 17423.7, + "end": 17426.26, + "probability": 0.9915 + }, + { + "start": 17426.32, + "end": 17427.48, + "probability": 0.8841 + }, + { + "start": 17427.9, + "end": 17428.8, + "probability": 0.9517 + }, + { + "start": 17429.36, + "end": 17434.44, + "probability": 0.9532 + }, + { + "start": 17434.9, + "end": 17439.0, + "probability": 0.9908 + }, + { + "start": 17439.52, + "end": 17439.94, + "probability": 0.9464 + }, + { + "start": 17440.28, + "end": 17441.12, + "probability": 0.9505 + }, + { + "start": 17441.94, + "end": 17444.64, + "probability": 0.9355 + }, + { + "start": 17445.08, + "end": 17445.5, + "probability": 0.636 + }, + { + "start": 17445.56, + "end": 17447.9, + "probability": 0.9607 + }, + { + "start": 17448.24, + "end": 17448.52, + "probability": 0.8477 + }, + { + "start": 17449.62, + "end": 17453.07, + "probability": 0.9529 + }, + { + "start": 17453.9, + "end": 17456.36, + "probability": 0.9653 + }, + { + "start": 17456.52, + "end": 17458.06, + "probability": 0.8934 + }, + { + "start": 17458.16, + "end": 17459.3, + "probability": 0.9869 + }, + { + "start": 17459.34, + "end": 17461.26, + "probability": 0.9645 + }, + { + "start": 17461.34, + "end": 17463.4, + "probability": 0.9928 + }, + { + "start": 17463.84, + "end": 17464.22, + "probability": 0.6467 + }, + { + "start": 17464.94, + "end": 17469.43, + "probability": 0.9984 + }, + { + "start": 17469.64, + "end": 17471.82, + "probability": 0.9961 + }, + { + "start": 17471.88, + "end": 17472.16, + "probability": 0.2523 + }, + { + "start": 17472.36, + "end": 17478.4, + "probability": 0.9888 + }, + { + "start": 17478.62, + "end": 17478.8, + "probability": 0.8995 + }, + { + "start": 17478.88, + "end": 17479.74, + "probability": 0.8029 + }, + { + "start": 17479.84, + "end": 17480.3, + "probability": 0.8647 + }, + { + "start": 17480.46, + "end": 17480.99, + "probability": 0.9666 + }, + { + "start": 17481.12, + "end": 17481.74, + "probability": 0.907 + }, + { + "start": 17482.24, + "end": 17485.04, + "probability": 0.9842 + }, + { + "start": 17485.4, + "end": 17489.34, + "probability": 0.8961 + }, + { + "start": 17489.76, + "end": 17490.7, + "probability": 0.699 + }, + { + "start": 17490.78, + "end": 17491.34, + "probability": 0.8665 + }, + { + "start": 17491.82, + "end": 17494.2, + "probability": 0.935 + }, + { + "start": 17495.12, + "end": 17499.78, + "probability": 0.9819 + }, + { + "start": 17500.28, + "end": 17504.34, + "probability": 0.9897 + }, + { + "start": 17506.1, + "end": 17506.92, + "probability": 0.6205 + }, + { + "start": 17507.5, + "end": 17509.24, + "probability": 0.8786 + }, + { + "start": 17509.88, + "end": 17510.28, + "probability": 0.4305 + }, + { + "start": 17510.7, + "end": 17511.76, + "probability": 0.8506 + }, + { + "start": 17511.84, + "end": 17513.62, + "probability": 0.9692 + }, + { + "start": 17513.7, + "end": 17514.32, + "probability": 0.876 + }, + { + "start": 17514.68, + "end": 17518.7, + "probability": 0.9934 + }, + { + "start": 17518.7, + "end": 17520.48, + "probability": 0.9518 + }, + { + "start": 17520.86, + "end": 17522.76, + "probability": 0.9968 + }, + { + "start": 17522.86, + "end": 17523.74, + "probability": 0.7267 + }, + { + "start": 17524.24, + "end": 17524.82, + "probability": 0.8323 + }, + { + "start": 17524.9, + "end": 17525.94, + "probability": 0.9006 + }, + { + "start": 17525.98, + "end": 17527.18, + "probability": 0.9825 + }, + { + "start": 17527.46, + "end": 17531.82, + "probability": 0.9895 + }, + { + "start": 17531.84, + "end": 17536.82, + "probability": 0.9975 + }, + { + "start": 17537.14, + "end": 17538.84, + "probability": 0.9861 + }, + { + "start": 17539.18, + "end": 17539.54, + "probability": 0.2795 + }, + { + "start": 17539.54, + "end": 17541.3, + "probability": 0.8354 + }, + { + "start": 17541.78, + "end": 17544.26, + "probability": 0.8172 + }, + { + "start": 17544.78, + "end": 17546.74, + "probability": 0.8756 + }, + { + "start": 17549.62, + "end": 17551.12, + "probability": 0.8415 + }, + { + "start": 17551.92, + "end": 17552.54, + "probability": 0.521 + }, + { + "start": 17561.4, + "end": 17563.36, + "probability": 0.9601 + }, + { + "start": 17563.78, + "end": 17564.34, + "probability": 0.215 + }, + { + "start": 17564.36, + "end": 17564.76, + "probability": 0.8578 + }, + { + "start": 17566.06, + "end": 17568.04, + "probability": 0.7583 + }, + { + "start": 17569.24, + "end": 17572.24, + "probability": 0.6556 + }, + { + "start": 17572.34, + "end": 17577.6, + "probability": 0.9629 + }, + { + "start": 17577.8, + "end": 17578.26, + "probability": 0.8621 + }, + { + "start": 17578.28, + "end": 17579.94, + "probability": 0.9132 + }, + { + "start": 17580.02, + "end": 17581.74, + "probability": 0.996 + }, + { + "start": 17582.42, + "end": 17586.04, + "probability": 0.8313 + }, + { + "start": 17586.68, + "end": 17587.92, + "probability": 0.9214 + }, + { + "start": 17587.98, + "end": 17593.56, + "probability": 0.9817 + }, + { + "start": 17593.6, + "end": 17594.84, + "probability": 0.9593 + }, + { + "start": 17594.94, + "end": 17595.28, + "probability": 0.5273 + }, + { + "start": 17596.0, + "end": 17599.38, + "probability": 0.9821 + }, + { + "start": 17600.46, + "end": 17600.9, + "probability": 0.2298 + }, + { + "start": 17602.66, + "end": 17604.78, + "probability": 0.9036 + }, + { + "start": 17604.92, + "end": 17605.75, + "probability": 0.9681 + }, + { + "start": 17606.08, + "end": 17606.58, + "probability": 0.7226 + }, + { + "start": 17608.4, + "end": 17609.44, + "probability": 0.9761 + }, + { + "start": 17609.7, + "end": 17613.98, + "probability": 0.9979 + }, + { + "start": 17614.12, + "end": 17617.64, + "probability": 0.9942 + }, + { + "start": 17618.04, + "end": 17623.62, + "probability": 0.9888 + }, + { + "start": 17623.7, + "end": 17625.78, + "probability": 0.8861 + }, + { + "start": 17627.06, + "end": 17627.54, + "probability": 0.4901 + }, + { + "start": 17628.96, + "end": 17631.88, + "probability": 0.9341 + }, + { + "start": 17632.0, + "end": 17637.26, + "probability": 0.9907 + }, + { + "start": 17637.88, + "end": 17641.98, + "probability": 0.9822 + }, + { + "start": 17641.98, + "end": 17647.06, + "probability": 0.9809 + }, + { + "start": 17647.12, + "end": 17647.72, + "probability": 0.7098 + }, + { + "start": 17647.94, + "end": 17652.4, + "probability": 0.9891 + }, + { + "start": 17652.4, + "end": 17657.41, + "probability": 0.9966 + }, + { + "start": 17658.78, + "end": 17660.7, + "probability": 0.6143 + }, + { + "start": 17660.86, + "end": 17662.7, + "probability": 0.9597 + }, + { + "start": 17662.8, + "end": 17664.92, + "probability": 0.958 + }, + { + "start": 17665.0, + "end": 17666.98, + "probability": 0.9119 + }, + { + "start": 17667.06, + "end": 17669.84, + "probability": 0.9792 + }, + { + "start": 17670.42, + "end": 17676.02, + "probability": 0.9912 + }, + { + "start": 17677.24, + "end": 17681.72, + "probability": 0.9981 + }, + { + "start": 17682.0, + "end": 17684.18, + "probability": 0.8245 + }, + { + "start": 17684.98, + "end": 17685.92, + "probability": 0.7504 + }, + { + "start": 17686.5, + "end": 17690.59, + "probability": 0.9728 + }, + { + "start": 17690.66, + "end": 17692.74, + "probability": 0.9937 + }, + { + "start": 17693.14, + "end": 17693.54, + "probability": 0.74 + }, + { + "start": 17694.38, + "end": 17696.5, + "probability": 0.8495 + }, + { + "start": 17697.02, + "end": 17698.88, + "probability": 0.9462 + }, + { + "start": 17699.16, + "end": 17699.78, + "probability": 0.6724 + }, + { + "start": 17699.88, + "end": 17701.42, + "probability": 0.9814 + }, + { + "start": 17701.9, + "end": 17706.04, + "probability": 0.8279 + }, + { + "start": 17706.44, + "end": 17707.52, + "probability": 0.38 + }, + { + "start": 17707.52, + "end": 17707.52, + "probability": 0.6002 + }, + { + "start": 17707.52, + "end": 17707.93, + "probability": 0.6498 + }, + { + "start": 17708.84, + "end": 17709.48, + "probability": 0.6776 + }, + { + "start": 17709.86, + "end": 17713.34, + "probability": 0.9054 + }, + { + "start": 17722.94, + "end": 17723.46, + "probability": 0.4981 + }, + { + "start": 17723.46, + "end": 17724.2, + "probability": 0.2876 + }, + { + "start": 17724.28, + "end": 17725.04, + "probability": 0.7402 + }, + { + "start": 17725.14, + "end": 17726.16, + "probability": 0.8497 + }, + { + "start": 17726.94, + "end": 17729.36, + "probability": 0.761 + }, + { + "start": 17730.0, + "end": 17734.22, + "probability": 0.9382 + }, + { + "start": 17734.5, + "end": 17735.44, + "probability": 0.9539 + }, + { + "start": 17736.5, + "end": 17737.42, + "probability": 0.5024 + }, + { + "start": 17737.62, + "end": 17740.08, + "probability": 0.9937 + }, + { + "start": 17740.66, + "end": 17741.88, + "probability": 0.9634 + }, + { + "start": 17742.68, + "end": 17745.96, + "probability": 0.861 + }, + { + "start": 17746.56, + "end": 17747.75, + "probability": 0.9355 + }, + { + "start": 17752.52, + "end": 17754.72, + "probability": 0.9966 + }, + { + "start": 17755.62, + "end": 17757.06, + "probability": 0.8822 + }, + { + "start": 17757.32, + "end": 17759.92, + "probability": 0.9261 + }, + { + "start": 17760.54, + "end": 17761.46, + "probability": 0.8486 + }, + { + "start": 17761.76, + "end": 17763.3, + "probability": 0.9548 + }, + { + "start": 17763.54, + "end": 17763.8, + "probability": 0.7137 + }, + { + "start": 17763.9, + "end": 17764.02, + "probability": 0.9666 + }, + { + "start": 17764.16, + "end": 17764.88, + "probability": 0.886 + }, + { + "start": 17765.72, + "end": 17768.54, + "probability": 0.9797 + }, + { + "start": 17769.44, + "end": 17771.8, + "probability": 0.7775 + }, + { + "start": 17772.48, + "end": 17772.58, + "probability": 0.3145 + }, + { + "start": 17772.58, + "end": 17773.84, + "probability": 0.698 + }, + { + "start": 17773.96, + "end": 17775.34, + "probability": 0.8731 + }, + { + "start": 17775.86, + "end": 17778.5, + "probability": 0.9567 + }, + { + "start": 17779.4, + "end": 17783.16, + "probability": 0.9744 + }, + { + "start": 17784.32, + "end": 17789.58, + "probability": 0.9827 + }, + { + "start": 17792.31, + "end": 17795.49, + "probability": 0.9832 + }, + { + "start": 17796.4, + "end": 17799.32, + "probability": 0.9952 + }, + { + "start": 17800.1, + "end": 17800.76, + "probability": 0.5175 + }, + { + "start": 17800.92, + "end": 17804.86, + "probability": 0.9933 + }, + { + "start": 17805.56, + "end": 17807.36, + "probability": 0.9646 + }, + { + "start": 17808.36, + "end": 17811.12, + "probability": 0.938 + }, + { + "start": 17811.28, + "end": 17812.78, + "probability": 0.954 + }, + { + "start": 17812.8, + "end": 17814.92, + "probability": 0.999 + }, + { + "start": 17815.58, + "end": 17819.2, + "probability": 0.9949 + }, + { + "start": 17820.4, + "end": 17822.76, + "probability": 0.9934 + }, + { + "start": 17822.76, + "end": 17825.98, + "probability": 0.9851 + }, + { + "start": 17827.12, + "end": 17829.84, + "probability": 0.9139 + }, + { + "start": 17831.04, + "end": 17838.68, + "probability": 0.999 + }, + { + "start": 17838.68, + "end": 17844.7, + "probability": 0.9881 + }, + { + "start": 17845.34, + "end": 17852.76, + "probability": 0.7146 + }, + { + "start": 17852.76, + "end": 17854.76, + "probability": 0.8211 + }, + { + "start": 17855.84, + "end": 17861.08, + "probability": 0.9811 + }, + { + "start": 17861.6, + "end": 17865.06, + "probability": 0.971 + }, + { + "start": 17865.96, + "end": 17867.74, + "probability": 0.9212 + }, + { + "start": 17869.82, + "end": 17872.26, + "probability": 0.9991 + }, + { + "start": 17872.82, + "end": 17873.82, + "probability": 0.7629 + }, + { + "start": 17873.92, + "end": 17877.98, + "probability": 0.9972 + }, + { + "start": 17878.58, + "end": 17881.88, + "probability": 0.9925 + }, + { + "start": 17882.94, + "end": 17887.5, + "probability": 0.9821 + }, + { + "start": 17890.72, + "end": 17893.26, + "probability": 0.9698 + }, + { + "start": 17893.72, + "end": 17896.84, + "probability": 0.9305 + }, + { + "start": 17899.42, + "end": 17903.06, + "probability": 0.9985 + }, + { + "start": 17903.06, + "end": 17906.36, + "probability": 0.9985 + }, + { + "start": 17907.18, + "end": 17908.12, + "probability": 0.6751 + }, + { + "start": 17908.28, + "end": 17908.82, + "probability": 0.8555 + }, + { + "start": 17908.9, + "end": 17909.34, + "probability": 0.7595 + }, + { + "start": 17909.42, + "end": 17910.66, + "probability": 0.7902 + }, + { + "start": 17911.34, + "end": 17913.16, + "probability": 0.8779 + }, + { + "start": 17913.54, + "end": 17914.3, + "probability": 0.9784 + }, + { + "start": 17914.46, + "end": 17915.42, + "probability": 0.9216 + }, + { + "start": 17916.16, + "end": 17919.88, + "probability": 0.9607 + }, + { + "start": 17920.56, + "end": 17925.34, + "probability": 0.995 + }, + { + "start": 17925.66, + "end": 17927.08, + "probability": 0.9536 + }, + { + "start": 17927.18, + "end": 17933.2, + "probability": 0.8653 + }, + { + "start": 17934.22, + "end": 17935.56, + "probability": 0.9183 + }, + { + "start": 17936.32, + "end": 17936.66, + "probability": 0.693 + }, + { + "start": 17937.76, + "end": 17943.22, + "probability": 0.9846 + }, + { + "start": 17944.06, + "end": 17949.58, + "probability": 0.9897 + }, + { + "start": 17950.32, + "end": 17950.6, + "probability": 0.5808 + }, + { + "start": 17951.36, + "end": 17951.66, + "probability": 0.331 + }, + { + "start": 17952.42, + "end": 17954.19, + "probability": 0.9424 + }, + { + "start": 17954.72, + "end": 17958.52, + "probability": 0.985 + }, + { + "start": 17958.56, + "end": 17959.3, + "probability": 0.9079 + }, + { + "start": 17967.14, + "end": 17968.6, + "probability": 0.8497 + }, + { + "start": 17968.78, + "end": 17975.41, + "probability": 0.9093 + }, + { + "start": 17976.28, + "end": 17980.1, + "probability": 0.8208 + }, + { + "start": 17980.32, + "end": 17982.82, + "probability": 0.9875 + }, + { + "start": 17983.44, + "end": 17984.84, + "probability": 0.9513 + }, + { + "start": 17985.22, + "end": 17985.64, + "probability": 0.5848 + }, + { + "start": 17985.68, + "end": 17989.86, + "probability": 0.9843 + }, + { + "start": 17990.43, + "end": 17994.28, + "probability": 0.9984 + }, + { + "start": 17994.52, + "end": 17996.46, + "probability": 0.8167 + }, + { + "start": 17996.9, + "end": 17999.2, + "probability": 0.9937 + }, + { + "start": 17999.78, + "end": 18003.26, + "probability": 0.9891 + }, + { + "start": 18003.54, + "end": 18004.82, + "probability": 0.5222 + }, + { + "start": 18005.2, + "end": 18005.83, + "probability": 0.9349 + }, + { + "start": 18006.8, + "end": 18007.02, + "probability": 0.563 + }, + { + "start": 18007.26, + "end": 18007.92, + "probability": 0.587 + }, + { + "start": 18008.02, + "end": 18010.41, + "probability": 0.971 + }, + { + "start": 18010.86, + "end": 18012.1, + "probability": 0.7663 + }, + { + "start": 18012.18, + "end": 18013.22, + "probability": 0.9168 + }, + { + "start": 18013.26, + "end": 18013.92, + "probability": 0.8303 + }, + { + "start": 18014.4, + "end": 18016.06, + "probability": 0.9915 + }, + { + "start": 18016.24, + "end": 18017.72, + "probability": 0.9893 + }, + { + "start": 18018.26, + "end": 18021.86, + "probability": 0.9979 + }, + { + "start": 18022.12, + "end": 18022.68, + "probability": 0.8708 + }, + { + "start": 18023.44, + "end": 18023.44, + "probability": 0.1434 + }, + { + "start": 18023.44, + "end": 18023.44, + "probability": 0.3178 + }, + { + "start": 18023.44, + "end": 18026.26, + "probability": 0.4673 + }, + { + "start": 18026.26, + "end": 18029.96, + "probability": 0.6847 + }, + { + "start": 18030.56, + "end": 18032.08, + "probability": 0.7808 + }, + { + "start": 18032.68, + "end": 18035.0, + "probability": 0.8553 + }, + { + "start": 18035.76, + "end": 18040.68, + "probability": 0.9341 + }, + { + "start": 18040.84, + "end": 18041.48, + "probability": 0.1703 + }, + { + "start": 18041.48, + "end": 18042.6, + "probability": 0.6195 + }, + { + "start": 18042.64, + "end": 18044.92, + "probability": 0.764 + }, + { + "start": 18045.4, + "end": 18046.18, + "probability": 0.5141 + }, + { + "start": 18046.28, + "end": 18049.48, + "probability": 0.9819 + }, + { + "start": 18049.76, + "end": 18050.04, + "probability": 0.7814 + }, + { + "start": 18050.1, + "end": 18051.24, + "probability": 0.7206 + }, + { + "start": 18051.46, + "end": 18052.3, + "probability": 0.7928 + }, + { + "start": 18052.38, + "end": 18055.0, + "probability": 0.981 + }, + { + "start": 18055.26, + "end": 18056.18, + "probability": 0.9426 + }, + { + "start": 18056.26, + "end": 18060.05, + "probability": 0.9792 + }, + { + "start": 18060.32, + "end": 18063.48, + "probability": 0.9585 + }, + { + "start": 18063.68, + "end": 18063.82, + "probability": 0.5913 + }, + { + "start": 18063.9, + "end": 18064.22, + "probability": 0.8213 + }, + { + "start": 18064.3, + "end": 18067.7, + "probability": 0.9417 + }, + { + "start": 18068.04, + "end": 18071.94, + "probability": 0.9497 + }, + { + "start": 18072.02, + "end": 18072.74, + "probability": 0.8657 + }, + { + "start": 18073.24, + "end": 18075.1, + "probability": 0.9868 + }, + { + "start": 18075.42, + "end": 18079.1, + "probability": 0.8826 + }, + { + "start": 18079.42, + "end": 18080.6, + "probability": 0.5263 + }, + { + "start": 18080.66, + "end": 18081.22, + "probability": 0.9016 + }, + { + "start": 18082.08, + "end": 18083.04, + "probability": 0.9468 + }, + { + "start": 18084.02, + "end": 18085.02, + "probability": 0.7598 + }, + { + "start": 18085.14, + "end": 18086.04, + "probability": 0.8724 + }, + { + "start": 18086.22, + "end": 18088.26, + "probability": 0.9128 + }, + { + "start": 18088.68, + "end": 18092.66, + "probability": 0.8536 + }, + { + "start": 18093.58, + "end": 18098.12, + "probability": 0.8617 + }, + { + "start": 18098.66, + "end": 18098.66, + "probability": 0.1155 + }, + { + "start": 18098.66, + "end": 18098.66, + "probability": 0.078 + }, + { + "start": 18098.66, + "end": 18103.48, + "probability": 0.9473 + }, + { + "start": 18104.09, + "end": 18106.66, + "probability": 0.9956 + }, + { + "start": 18106.84, + "end": 18109.27, + "probability": 0.5482 + }, + { + "start": 18109.56, + "end": 18111.42, + "probability": 0.9628 + }, + { + "start": 18111.52, + "end": 18111.84, + "probability": 0.5472 + }, + { + "start": 18111.98, + "end": 18112.78, + "probability": 0.9838 + }, + { + "start": 18112.78, + "end": 18113.24, + "probability": 0.9202 + }, + { + "start": 18113.44, + "end": 18115.43, + "probability": 0.9658 + }, + { + "start": 18115.84, + "end": 18116.74, + "probability": 0.7403 + }, + { + "start": 18116.92, + "end": 18118.68, + "probability": 0.9741 + }, + { + "start": 18118.96, + "end": 18119.36, + "probability": 0.9243 + }, + { + "start": 18119.62, + "end": 18122.8, + "probability": 0.9177 + }, + { + "start": 18123.14, + "end": 18123.42, + "probability": 0.0475 + }, + { + "start": 18123.42, + "end": 18123.42, + "probability": 0.1395 + }, + { + "start": 18123.42, + "end": 18123.88, + "probability": 0.4557 + }, + { + "start": 18124.28, + "end": 18124.44, + "probability": 0.4993 + }, + { + "start": 18124.98, + "end": 18126.54, + "probability": 0.9797 + }, + { + "start": 18126.66, + "end": 18129.0, + "probability": 0.9834 + }, + { + "start": 18129.3, + "end": 18130.88, + "probability": 0.8718 + }, + { + "start": 18131.1, + "end": 18132.65, + "probability": 0.9858 + }, + { + "start": 18133.26, + "end": 18133.52, + "probability": 0.6102 + }, + { + "start": 18133.56, + "end": 18133.96, + "probability": 0.8613 + }, + { + "start": 18134.06, + "end": 18136.4, + "probability": 0.9149 + }, + { + "start": 18136.66, + "end": 18137.62, + "probability": 0.9763 + }, + { + "start": 18138.2, + "end": 18141.08, + "probability": 0.9943 + }, + { + "start": 18141.08, + "end": 18145.52, + "probability": 0.8713 + }, + { + "start": 18145.54, + "end": 18146.52, + "probability": 0.6463 + }, + { + "start": 18146.66, + "end": 18148.78, + "probability": 0.9978 + }, + { + "start": 18149.04, + "end": 18150.54, + "probability": 0.6927 + }, + { + "start": 18150.82, + "end": 18156.12, + "probability": 0.9974 + }, + { + "start": 18156.32, + "end": 18158.52, + "probability": 0.9727 + }, + { + "start": 18159.1, + "end": 18167.46, + "probability": 0.9968 + }, + { + "start": 18167.74, + "end": 18169.2, + "probability": 0.9765 + }, + { + "start": 18169.3, + "end": 18174.98, + "probability": 0.9881 + }, + { + "start": 18175.62, + "end": 18180.82, + "probability": 0.9939 + }, + { + "start": 18180.96, + "end": 18181.94, + "probability": 0.9515 + }, + { + "start": 18182.1, + "end": 18182.17, + "probability": 0.9453 + }, + { + "start": 18182.46, + "end": 18183.08, + "probability": 0.8365 + }, + { + "start": 18183.12, + "end": 18184.64, + "probability": 0.9762 + }, + { + "start": 18185.5, + "end": 18189.68, + "probability": 0.9872 + }, + { + "start": 18189.94, + "end": 18193.43, + "probability": 0.9943 + }, + { + "start": 18194.38, + "end": 18197.04, + "probability": 0.9519 + }, + { + "start": 18197.24, + "end": 18199.33, + "probability": 0.9677 + }, + { + "start": 18200.08, + "end": 18200.12, + "probability": 0.1858 + }, + { + "start": 18200.12, + "end": 18200.28, + "probability": 0.4971 + }, + { + "start": 18200.36, + "end": 18200.92, + "probability": 0.5067 + }, + { + "start": 18201.24, + "end": 18207.7, + "probability": 0.9796 + }, + { + "start": 18207.96, + "end": 18210.04, + "probability": 0.9982 + }, + { + "start": 18211.42, + "end": 18215.88, + "probability": 0.9915 + }, + { + "start": 18216.0, + "end": 18217.38, + "probability": 0.9463 + }, + { + "start": 18217.42, + "end": 18218.34, + "probability": 0.9052 + }, + { + "start": 18218.4, + "end": 18219.82, + "probability": 0.7444 + }, + { + "start": 18220.48, + "end": 18224.12, + "probability": 0.9087 + }, + { + "start": 18224.64, + "end": 18224.96, + "probability": 0.9403 + }, + { + "start": 18225.02, + "end": 18225.76, + "probability": 0.9749 + }, + { + "start": 18225.78, + "end": 18231.91, + "probability": 0.9512 + }, + { + "start": 18232.68, + "end": 18236.56, + "probability": 0.9963 + }, + { + "start": 18236.82, + "end": 18236.82, + "probability": 0.0463 + }, + { + "start": 18236.82, + "end": 18236.82, + "probability": 0.1604 + }, + { + "start": 18236.82, + "end": 18236.82, + "probability": 0.3603 + }, + { + "start": 18236.82, + "end": 18239.56, + "probability": 0.5966 + }, + { + "start": 18239.74, + "end": 18241.78, + "probability": 0.9694 + }, + { + "start": 18242.12, + "end": 18244.31, + "probability": 0.9894 + }, + { + "start": 18245.44, + "end": 18249.44, + "probability": 0.9862 + }, + { + "start": 18249.54, + "end": 18252.34, + "probability": 0.84 + }, + { + "start": 18252.58, + "end": 18252.74, + "probability": 0.4506 + }, + { + "start": 18252.74, + "end": 18254.22, + "probability": 0.9712 + }, + { + "start": 18254.62, + "end": 18259.3, + "probability": 0.9905 + }, + { + "start": 18259.3, + "end": 18262.08, + "probability": 0.7403 + }, + { + "start": 18262.86, + "end": 18265.6, + "probability": 0.7557 + }, + { + "start": 18265.86, + "end": 18270.38, + "probability": 0.407 + }, + { + "start": 18270.38, + "end": 18270.92, + "probability": 0.9052 + }, + { + "start": 18287.4, + "end": 18295.04, + "probability": 0.2 + }, + { + "start": 18299.44, + "end": 18303.26, + "probability": 0.5205 + }, + { + "start": 18304.29, + "end": 18306.6, + "probability": 0.0533 + }, + { + "start": 18306.72, + "end": 18309.46, + "probability": 0.0531 + }, + { + "start": 18309.62, + "end": 18310.06, + "probability": 0.3949 + }, + { + "start": 18312.52, + "end": 18312.84, + "probability": 0.0114 + }, + { + "start": 18313.52, + "end": 18313.66, + "probability": 0.1697 + }, + { + "start": 18319.56, + "end": 18320.3, + "probability": 0.1249 + }, + { + "start": 18320.3, + "end": 18327.96, + "probability": 0.0786 + }, + { + "start": 18375.0, + "end": 18375.0, + "probability": 0.0 + }, + { + "start": 18375.0, + "end": 18375.0, + "probability": 0.0 + }, + { + "start": 18375.0, + "end": 18375.0, + "probability": 0.0 + }, + { + "start": 18375.0, + "end": 18375.0, + "probability": 0.0 + }, + { + "start": 18375.0, + "end": 18375.0, + "probability": 0.0 + }, + { + "start": 18375.0, + "end": 18375.0, + "probability": 0.0 + }, + { + "start": 18375.0, + "end": 18375.0, + "probability": 0.0 + }, + { + "start": 18375.0, + "end": 18375.0, + "probability": 0.0 + }, + { + "start": 18375.0, + "end": 18375.0, + "probability": 0.0 + }, + { + "start": 18375.0, + "end": 18375.0, + "probability": 0.0 + }, + { + "start": 18375.0, + "end": 18375.0, + "probability": 0.0 + }, + { + "start": 18375.0, + "end": 18375.0, + "probability": 0.0 + }, + { + "start": 18375.0, + "end": 18375.0, + "probability": 0.0 + }, + { + "start": 18375.0, + "end": 18375.0, + "probability": 0.0 + }, + { + "start": 18375.0, + "end": 18375.0, + "probability": 0.0 + }, + { + "start": 18375.0, + "end": 18375.0, + "probability": 0.0 + }, + { + "start": 18375.0, + "end": 18375.0, + "probability": 0.0 + }, + { + "start": 18375.0, + "end": 18375.0, + "probability": 0.0 + }, + { + "start": 18375.0, + "end": 18375.0, + "probability": 0.0 + }, + { + "start": 18375.0, + "end": 18375.0, + "probability": 0.0 + }, + { + "start": 18375.0, + "end": 18375.0, + "probability": 0.0 + }, + { + "start": 18375.0, + "end": 18375.0, + "probability": 0.0 + }, + { + "start": 18375.0, + "end": 18375.0, + "probability": 0.0 + }, + { + "start": 18379.58, + "end": 18384.98, + "probability": 0.0428 + }, + { + "start": 18384.98, + "end": 18386.64, + "probability": 0.0772 + }, + { + "start": 18387.12, + "end": 18390.82, + "probability": 0.0682 + }, + { + "start": 18393.13, + "end": 18394.24, + "probability": 0.1044 + }, + { + "start": 18395.24, + "end": 18400.72, + "probability": 0.0919 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.0, + "end": 18509.0, + "probability": 0.0 + }, + { + "start": 18509.14, + "end": 18517.85, + "probability": 0.0699 + }, + { + "start": 18518.1, + "end": 18518.46, + "probability": 0.0524 + }, + { + "start": 18540.44, + "end": 18541.08, + "probability": 0.027 + }, + { + "start": 18541.94, + "end": 18545.82, + "probability": 0.3901 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.0, + "end": 18637.0, + "probability": 0.0 + }, + { + "start": 18637.12, + "end": 18640.52, + "probability": 0.1024 + }, + { + "start": 18640.94, + "end": 18643.76, + "probability": 0.0643 + }, + { + "start": 18644.12, + "end": 18644.9, + "probability": 0.0412 + }, + { + "start": 18645.37, + "end": 18652.58, + "probability": 0.037 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.0, + "end": 18764.0, + "probability": 0.0 + }, + { + "start": 18764.68, + "end": 18766.28, + "probability": 0.2365 + }, + { + "start": 18766.28, + "end": 18769.92, + "probability": 0.619 + }, + { + "start": 18770.2, + "end": 18770.66, + "probability": 0.5552 + }, + { + "start": 18770.8, + "end": 18771.12, + "probability": 0.8721 + }, + { + "start": 18771.24, + "end": 18772.98, + "probability": 0.6596 + }, + { + "start": 18773.34, + "end": 18774.44, + "probability": 0.9842 + }, + { + "start": 18774.54, + "end": 18776.9, + "probability": 0.979 + }, + { + "start": 18777.48, + "end": 18782.5, + "probability": 0.965 + }, + { + "start": 18782.6, + "end": 18784.8, + "probability": 0.9608 + }, + { + "start": 18785.1, + "end": 18789.2, + "probability": 0.7412 + }, + { + "start": 18789.48, + "end": 18794.42, + "probability": 0.9871 + }, + { + "start": 18794.84, + "end": 18798.32, + "probability": 0.9935 + }, + { + "start": 18798.32, + "end": 18801.58, + "probability": 0.9902 + }, + { + "start": 18801.76, + "end": 18801.96, + "probability": 0.5778 + }, + { + "start": 18802.72, + "end": 18804.64, + "probability": 0.9332 + }, + { + "start": 18804.9, + "end": 18808.26, + "probability": 0.9889 + }, + { + "start": 18808.26, + "end": 18811.22, + "probability": 0.5336 + }, + { + "start": 18811.8, + "end": 18815.24, + "probability": 0.5988 + }, + { + "start": 18815.66, + "end": 18816.84, + "probability": 0.8322 + }, + { + "start": 18816.9, + "end": 18817.6, + "probability": 0.6912 + }, + { + "start": 18819.42, + "end": 18819.5, + "probability": 0.4716 + }, + { + "start": 18835.22, + "end": 18839.34, + "probability": 0.0609 + }, + { + "start": 18839.4, + "end": 18839.98, + "probability": 0.0755 + }, + { + "start": 18839.98, + "end": 18842.5, + "probability": 0.5613 + }, + { + "start": 18842.5, + "end": 18844.28, + "probability": 0.2858 + }, + { + "start": 18844.98, + "end": 18844.98, + "probability": 0.4938 + }, + { + "start": 18845.0, + "end": 18848.9, + "probability": 0.548 + }, + { + "start": 18849.96, + "end": 18856.6, + "probability": 0.1959 + }, + { + "start": 18857.8, + "end": 18863.7, + "probability": 0.2477 + }, + { + "start": 18863.7, + "end": 18866.24, + "probability": 0.1946 + }, + { + "start": 18866.96, + "end": 18867.52, + "probability": 0.0841 + }, + { + "start": 18879.62, + "end": 18880.82, + "probability": 0.0157 + }, + { + "start": 18881.98, + "end": 18883.76, + "probability": 0.1145 + }, + { + "start": 18904.0, + "end": 18904.0, + "probability": 0.0 + }, + { + "start": 18904.0, + "end": 18904.0, + "probability": 0.0 + }, + { + "start": 18904.0, + "end": 18904.0, + "probability": 0.0 + }, + { + "start": 18904.0, + "end": 18904.0, + "probability": 0.0 + }, + { + "start": 18904.0, + "end": 18904.0, + "probability": 0.0 + }, + { + "start": 18904.0, + "end": 18904.0, + "probability": 0.0 + }, + { + "start": 18904.0, + "end": 18904.0, + "probability": 0.0 + }, + { + "start": 18904.0, + "end": 18904.0, + "probability": 0.0 + }, + { + "start": 18904.0, + "end": 18904.0, + "probability": 0.0 + }, + { + "start": 18904.0, + "end": 18904.0, + "probability": 0.0 + }, + { + "start": 18904.0, + "end": 18904.0, + "probability": 0.0 + }, + { + "start": 18904.0, + "end": 18904.0, + "probability": 0.0 + }, + { + "start": 18904.0, + "end": 18904.0, + "probability": 0.0 + }, + { + "start": 18904.0, + "end": 18904.0, + "probability": 0.0 + }, + { + "start": 18904.0, + "end": 18904.0, + "probability": 0.0 + }, + { + "start": 18904.0, + "end": 18904.0, + "probability": 0.0 + }, + { + "start": 18904.16, + "end": 18904.82, + "probability": 0.0679 + }, + { + "start": 18904.86, + "end": 18907.06, + "probability": 0.8745 + }, + { + "start": 18908.1, + "end": 18911.22, + "probability": 0.9929 + }, + { + "start": 18911.46, + "end": 18914.74, + "probability": 0.9523 + }, + { + "start": 18915.62, + "end": 18916.4, + "probability": 0.8351 + }, + { + "start": 18918.08, + "end": 18920.98, + "probability": 0.9469 + }, + { + "start": 18921.5, + "end": 18923.68, + "probability": 0.8402 + }, + { + "start": 18923.88, + "end": 18925.6, + "probability": 0.7464 + }, + { + "start": 18926.74, + "end": 18927.36, + "probability": 0.8247 + }, + { + "start": 18927.42, + "end": 18929.02, + "probability": 0.8676 + }, + { + "start": 18929.08, + "end": 18929.74, + "probability": 0.6887 + }, + { + "start": 18930.06, + "end": 18931.34, + "probability": 0.5536 + }, + { + "start": 18931.58, + "end": 18933.42, + "probability": 0.9149 + }, + { + "start": 18935.78, + "end": 18939.58, + "probability": 0.5257 + }, + { + "start": 18940.7, + "end": 18941.3, + "probability": 0.4515 + }, + { + "start": 18942.0, + "end": 18943.02, + "probability": 0.8513 + }, + { + "start": 18943.2, + "end": 18943.8, + "probability": 0.7542 + }, + { + "start": 18943.98, + "end": 18945.28, + "probability": 0.8705 + }, + { + "start": 18945.32, + "end": 18946.2, + "probability": 0.7909 + }, + { + "start": 18946.5, + "end": 18947.08, + "probability": 0.3756 + }, + { + "start": 18947.18, + "end": 18950.84, + "probability": 0.9915 + }, + { + "start": 18950.84, + "end": 18953.18, + "probability": 0.5996 + }, + { + "start": 18953.88, + "end": 18957.72, + "probability": 0.0547 + }, + { + "start": 18958.34, + "end": 18960.24, + "probability": 0.2704 + }, + { + "start": 18976.27, + "end": 18979.24, + "probability": 0.454 + }, + { + "start": 18981.8, + "end": 18982.08, + "probability": 0.0466 + }, + { + "start": 18982.08, + "end": 18982.2, + "probability": 0.091 + }, + { + "start": 18982.2, + "end": 18983.18, + "probability": 0.6272 + }, + { + "start": 18983.38, + "end": 18985.18, + "probability": 0.6507 + }, + { + "start": 18985.36, + "end": 18986.38, + "probability": 0.1723 + }, + { + "start": 18987.44, + "end": 18988.52, + "probability": 0.4049 + }, + { + "start": 18990.58, + "end": 18994.82, + "probability": 0.4598 + }, + { + "start": 19010.25, + "end": 19010.56, + "probability": 0.0438 + }, + { + "start": 19011.2, + "end": 19011.66, + "probability": 0.1385 + }, + { + "start": 19012.32, + "end": 19012.88, + "probability": 0.1186 + }, + { + "start": 19017.49, + "end": 19018.78, + "probability": 0.0131 + }, + { + "start": 19019.9, + "end": 19023.0, + "probability": 0.0446 + }, + { + "start": 19026.75, + "end": 19028.33, + "probability": 0.0205 + }, + { + "start": 19028.92, + "end": 19029.7, + "probability": 0.2028 + }, + { + "start": 19030.2, + "end": 19030.58, + "probability": 0.0171 + }, + { + "start": 19030.58, + "end": 19032.56, + "probability": 0.0909 + }, + { + "start": 19032.91, + "end": 19033.0, + "probability": 0.1457 + }, + { + "start": 19033.38, + "end": 19035.52, + "probability": 0.0467 + }, + { + "start": 19035.52, + "end": 19042.18, + "probability": 0.4008 + }, + { + "start": 19043.06, + "end": 19044.92, + "probability": 0.0294 + }, + { + "start": 19062.0, + "end": 19062.0, + "probability": 0.0 + }, + { + "start": 19062.0, + "end": 19062.0, + "probability": 0.0 + }, + { + "start": 19062.0, + "end": 19062.0, + "probability": 0.0 + }, + { + "start": 19062.0, + "end": 19062.0, + "probability": 0.0 + }, + { + "start": 19062.0, + "end": 19062.0, + "probability": 0.0 + }, + { + "start": 19062.0, + "end": 19062.0, + "probability": 0.0 + }, + { + "start": 19062.0, + "end": 19062.0, + "probability": 0.0 + }, + { + "start": 19062.0, + "end": 19062.0, + "probability": 0.0 + }, + { + "start": 19062.0, + "end": 19062.0, + "probability": 0.0 + }, + { + "start": 19062.16, + "end": 19068.08, + "probability": 0.9442 + }, + { + "start": 19068.08, + "end": 19075.22, + "probability": 0.9932 + }, + { + "start": 19076.52, + "end": 19080.48, + "probability": 0.9921 + }, + { + "start": 19080.48, + "end": 19084.66, + "probability": 0.9972 + }, + { + "start": 19085.02, + "end": 19090.78, + "probability": 0.8596 + }, + { + "start": 19090.78, + "end": 19098.18, + "probability": 0.8473 + }, + { + "start": 19098.86, + "end": 19101.3, + "probability": 0.8331 + }, + { + "start": 19101.88, + "end": 19105.46, + "probability": 0.9404 + }, + { + "start": 19106.02, + "end": 19108.16, + "probability": 0.8401 + }, + { + "start": 19108.4, + "end": 19116.74, + "probability": 0.8018 + }, + { + "start": 19116.74, + "end": 19122.7, + "probability": 0.9561 + }, + { + "start": 19122.82, + "end": 19125.36, + "probability": 0.9365 + }, + { + "start": 19125.82, + "end": 19129.7, + "probability": 0.9883 + }, + { + "start": 19130.26, + "end": 19131.26, + "probability": 0.8191 + }, + { + "start": 19132.14, + "end": 19135.64, + "probability": 0.9951 + }, + { + "start": 19135.64, + "end": 19139.22, + "probability": 0.9894 + }, + { + "start": 19139.7, + "end": 19143.26, + "probability": 0.6477 + }, + { + "start": 19143.6, + "end": 19147.88, + "probability": 0.9541 + }, + { + "start": 19148.06, + "end": 19153.94, + "probability": 0.9987 + }, + { + "start": 19153.94, + "end": 19160.3, + "probability": 0.9945 + }, + { + "start": 19160.3, + "end": 19166.18, + "probability": 0.9921 + }, + { + "start": 19166.5, + "end": 19168.88, + "probability": 0.9893 + }, + { + "start": 19169.3, + "end": 19175.12, + "probability": 0.9877 + }, + { + "start": 19176.0, + "end": 19179.56, + "probability": 0.8933 + }, + { + "start": 19179.66, + "end": 19181.22, + "probability": 0.8705 + }, + { + "start": 19181.5, + "end": 19184.22, + "probability": 0.9894 + }, + { + "start": 19184.56, + "end": 19186.42, + "probability": 0.8705 + }, + { + "start": 19187.64, + "end": 19188.42, + "probability": 0.3392 + }, + { + "start": 19188.48, + "end": 19191.54, + "probability": 0.3416 + }, + { + "start": 19191.66, + "end": 19194.18, + "probability": 0.2027 + }, + { + "start": 19194.3, + "end": 19195.02, + "probability": 0.0402 + }, + { + "start": 19212.22, + "end": 19212.64, + "probability": 0.0636 + }, + { + "start": 19212.64, + "end": 19214.58, + "probability": 0.589 + }, + { + "start": 19215.22, + "end": 19218.14, + "probability": 0.9743 + }, + { + "start": 19219.0, + "end": 19223.48, + "probability": 0.8528 + }, + { + "start": 19224.08, + "end": 19224.76, + "probability": 0.0201 + }, + { + "start": 19224.76, + "end": 19225.58, + "probability": 0.4927 + }, + { + "start": 19227.72, + "end": 19228.14, + "probability": 0.8026 + }, + { + "start": 19229.96, + "end": 19231.88, + "probability": 0.8513 + }, + { + "start": 19232.88, + "end": 19236.88, + "probability": 0.8794 + }, + { + "start": 19237.02, + "end": 19238.92, + "probability": 0.3326 + }, + { + "start": 19239.62, + "end": 19240.58, + "probability": 0.6801 + }, + { + "start": 19240.94, + "end": 19245.22, + "probability": 0.9832 + }, + { + "start": 19246.24, + "end": 19246.98, + "probability": 0.931 + }, + { + "start": 19264.56, + "end": 19265.72, + "probability": 0.6147 + }, + { + "start": 19266.54, + "end": 19267.5, + "probability": 0.7126 + }, + { + "start": 19268.24, + "end": 19272.26, + "probability": 0.9358 + }, + { + "start": 19272.94, + "end": 19275.34, + "probability": 0.9941 + }, + { + "start": 19275.44, + "end": 19276.14, + "probability": 0.6462 + }, + { + "start": 19276.26, + "end": 19277.72, + "probability": 0.7044 + }, + { + "start": 19277.82, + "end": 19284.08, + "probability": 0.9885 + }, + { + "start": 19285.2, + "end": 19287.62, + "probability": 0.9933 + }, + { + "start": 19287.72, + "end": 19289.78, + "probability": 0.9427 + }, + { + "start": 19289.92, + "end": 19293.34, + "probability": 0.994 + }, + { + "start": 19294.1, + "end": 19299.3, + "probability": 0.9524 + }, + { + "start": 19300.14, + "end": 19300.62, + "probability": 0.752 + }, + { + "start": 19300.78, + "end": 19304.02, + "probability": 0.8806 + }, + { + "start": 19304.9, + "end": 19308.04, + "probability": 0.9092 + }, + { + "start": 19308.1, + "end": 19309.68, + "probability": 0.9456 + }, + { + "start": 19309.74, + "end": 19311.94, + "probability": 0.9887 + }, + { + "start": 19312.9, + "end": 19317.5, + "probability": 0.9885 + }, + { + "start": 19317.54, + "end": 19319.96, + "probability": 0.839 + }, + { + "start": 19319.96, + "end": 19322.36, + "probability": 0.8322 + }, + { + "start": 19324.2, + "end": 19328.94, + "probability": 0.9033 + }, + { + "start": 19328.94, + "end": 19335.56, + "probability": 0.9284 + }, + { + "start": 19336.22, + "end": 19338.5, + "probability": 0.9971 + }, + { + "start": 19338.68, + "end": 19343.28, + "probability": 0.7499 + }, + { + "start": 19343.88, + "end": 19349.12, + "probability": 0.992 + }, + { + "start": 19349.75, + "end": 19354.1, + "probability": 0.9908 + }, + { + "start": 19354.12, + "end": 19359.4, + "probability": 0.9091 + }, + { + "start": 19359.64, + "end": 19360.08, + "probability": 0.7522 + }, + { + "start": 19360.9, + "end": 19363.32, + "probability": 0.9399 + }, + { + "start": 19363.64, + "end": 19365.18, + "probability": 0.9496 + }, + { + "start": 19365.22, + "end": 19368.24, + "probability": 0.9155 + }, + { + "start": 19368.6, + "end": 19370.74, + "probability": 0.9967 + }, + { + "start": 19371.26, + "end": 19376.06, + "probability": 0.7891 + }, + { + "start": 19376.28, + "end": 19377.92, + "probability": 0.1969 + }, + { + "start": 19378.06, + "end": 19378.78, + "probability": 0.8841 + }, + { + "start": 19378.96, + "end": 19379.5, + "probability": 0.6709 + }, + { + "start": 19379.64, + "end": 19380.34, + "probability": 0.8466 + }, + { + "start": 19402.66, + "end": 19404.12, + "probability": 0.2696 + }, + { + "start": 19404.16, + "end": 19406.42, + "probability": 0.3384 + }, + { + "start": 19406.42, + "end": 19407.02, + "probability": 0.0947 + }, + { + "start": 19407.02, + "end": 19407.82, + "probability": 0.3237 + }, + { + "start": 19408.44, + "end": 19410.71, + "probability": 0.2003 + }, + { + "start": 19412.74, + "end": 19413.12, + "probability": 0.4858 + }, + { + "start": 19417.92, + "end": 19420.72, + "probability": 0.2725 + }, + { + "start": 19422.3, + "end": 19424.64, + "probability": 0.0049 + }, + { + "start": 19426.04, + "end": 19426.08, + "probability": 0.1148 + }, + { + "start": 19426.18, + "end": 19426.94, + "probability": 0.1144 + }, + { + "start": 19429.11, + "end": 19430.3, + "probability": 0.1403 + }, + { + "start": 19433.86, + "end": 19435.66, + "probability": 0.0576 + }, + { + "start": 19437.52, + "end": 19439.52, + "probability": 0.089 + }, + { + "start": 19439.52, + "end": 19441.71, + "probability": 0.0696 + }, + { + "start": 19443.08, + "end": 19447.8, + "probability": 0.5413 + }, + { + "start": 19450.84, + "end": 19452.88, + "probability": 0.0657 + }, + { + "start": 19452.96, + "end": 19454.41, + "probability": 0.0288 + }, + { + "start": 19473.0, + "end": 19473.0, + "probability": 0.0 + }, + { + "start": 19473.0, + "end": 19473.0, + "probability": 0.0 + }, + { + "start": 19473.0, + "end": 19473.0, + "probability": 0.0 + }, + { + "start": 19473.0, + "end": 19473.0, + "probability": 0.0 + }, + { + "start": 19473.0, + "end": 19473.0, + "probability": 0.0 + }, + { + "start": 19473.0, + "end": 19473.0, + "probability": 0.0 + }, + { + "start": 19473.0, + "end": 19473.0, + "probability": 0.0 + }, + { + "start": 19473.0, + "end": 19473.0, + "probability": 0.0 + }, + { + "start": 19473.0, + "end": 19473.0, + "probability": 0.0 + }, + { + "start": 19473.0, + "end": 19473.0, + "probability": 0.0 + }, + { + "start": 19473.0, + "end": 19473.0, + "probability": 0.0 + }, + { + "start": 19473.0, + "end": 19473.0, + "probability": 0.0 + }, + { + "start": 19473.0, + "end": 19473.0, + "probability": 0.0 + }, + { + "start": 19473.16, + "end": 19473.16, + "probability": 0.0658 + }, + { + "start": 19473.16, + "end": 19473.6, + "probability": 0.1583 + }, + { + "start": 19474.26, + "end": 19477.04, + "probability": 0.8835 + }, + { + "start": 19477.14, + "end": 19478.72, + "probability": 0.814 + }, + { + "start": 19479.7, + "end": 19482.32, + "probability": 0.9727 + }, + { + "start": 19482.82, + "end": 19484.34, + "probability": 0.3411 + }, + { + "start": 19484.38, + "end": 19487.01, + "probability": 0.9961 + }, + { + "start": 19488.44, + "end": 19489.36, + "probability": 0.8205 + }, + { + "start": 19490.02, + "end": 19492.26, + "probability": 0.9587 + }, + { + "start": 19492.3, + "end": 19494.34, + "probability": 0.9664 + }, + { + "start": 19494.98, + "end": 19497.0, + "probability": 0.9655 + }, + { + "start": 19498.26, + "end": 19501.94, + "probability": 0.9447 + }, + { + "start": 19502.06, + "end": 19503.08, + "probability": 0.5215 + }, + { + "start": 19503.24, + "end": 19504.78, + "probability": 0.4882 + }, + { + "start": 19504.92, + "end": 19506.02, + "probability": 0.9895 + }, + { + "start": 19506.04, + "end": 19507.84, + "probability": 0.8504 + }, + { + "start": 19507.96, + "end": 19508.2, + "probability": 0.7193 + }, + { + "start": 19509.24, + "end": 19511.28, + "probability": 0.8083 + }, + { + "start": 19511.36, + "end": 19513.08, + "probability": 0.8826 + }, + { + "start": 19513.42, + "end": 19516.18, + "probability": 0.9773 + }, + { + "start": 19516.4, + "end": 19520.34, + "probability": 0.9817 + }, + { + "start": 19520.86, + "end": 19521.94, + "probability": 0.5085 + }, + { + "start": 19522.52, + "end": 19525.72, + "probability": 0.7895 + }, + { + "start": 19526.3, + "end": 19527.86, + "probability": 0.4314 + }, + { + "start": 19528.76, + "end": 19529.66, + "probability": 0.7402 + }, + { + "start": 19530.04, + "end": 19531.22, + "probability": 0.8693 + }, + { + "start": 19531.36, + "end": 19532.22, + "probability": 0.6796 + }, + { + "start": 19532.56, + "end": 19532.66, + "probability": 0.9257 + }, + { + "start": 19551.38, + "end": 19553.88, + "probability": 0.1381 + }, + { + "start": 19553.88, + "end": 19553.88, + "probability": 0.0103 + }, + { + "start": 19554.42, + "end": 19555.68, + "probability": 0.0342 + }, + { + "start": 19556.12, + "end": 19556.84, + "probability": 0.0265 + }, + { + "start": 19556.84, + "end": 19557.88, + "probability": 0.595 + }, + { + "start": 19558.34, + "end": 19559.26, + "probability": 0.4959 + }, + { + "start": 19560.02, + "end": 19563.12, + "probability": 0.0287 + }, + { + "start": 19563.72, + "end": 19564.14, + "probability": 0.0181 + }, + { + "start": 19564.14, + "end": 19564.14, + "probability": 0.0148 + }, + { + "start": 19567.48, + "end": 19567.64, + "probability": 0.0747 + }, + { + "start": 19567.64, + "end": 19567.64, + "probability": 0.0494 + }, + { + "start": 19567.64, + "end": 19569.66, + "probability": 0.3519 + }, + { + "start": 19569.66, + "end": 19569.66, + "probability": 0.2275 + }, + { + "start": 19569.66, + "end": 19569.66, + "probability": 0.6602 + }, + { + "start": 19569.66, + "end": 19569.66, + "probability": 0.072 + }, + { + "start": 19569.66, + "end": 19569.66, + "probability": 0.298 + }, + { + "start": 19569.66, + "end": 19571.1, + "probability": 0.712 + }, + { + "start": 19578.06, + "end": 19579.0, + "probability": 0.3992 + }, + { + "start": 19579.22, + "end": 19583.42, + "probability": 0.7773 + }, + { + "start": 19584.52, + "end": 19586.42, + "probability": 0.6295 + }, + { + "start": 19587.16, + "end": 19593.46, + "probability": 0.846 + }, + { + "start": 19593.96, + "end": 19595.84, + "probability": 0.9629 + }, + { + "start": 19596.3, + "end": 19597.09, + "probability": 0.2574 + }, + { + "start": 19600.14, + "end": 19602.22, + "probability": 0.7774 + }, + { + "start": 19603.14, + "end": 19605.24, + "probability": 0.5737 + }, + { + "start": 19606.3, + "end": 19607.5, + "probability": 0.9879 + }, + { + "start": 19608.44, + "end": 19610.14, + "probability": 0.8834 + }, + { + "start": 19610.54, + "end": 19612.36, + "probability": 0.8697 + }, + { + "start": 19613.58, + "end": 19613.58, + "probability": 0.0712 + }, + { + "start": 19613.62, + "end": 19616.4, + "probability": 0.9425 + }, + { + "start": 19617.5, + "end": 19622.08, + "probability": 0.9731 + }, + { + "start": 19624.18, + "end": 19626.72, + "probability": 0.7417 + }, + { + "start": 19627.28, + "end": 19630.88, + "probability": 0.8723 + }, + { + "start": 19630.88, + "end": 19635.44, + "probability": 0.877 + }, + { + "start": 19635.86, + "end": 19636.92, + "probability": 0.2192 + }, + { + "start": 19638.26, + "end": 19643.62, + "probability": 0.9643 + }, + { + "start": 19643.96, + "end": 19643.96, + "probability": 0.4197 + }, + { + "start": 19643.96, + "end": 19644.12, + "probability": 0.5806 + }, + { + "start": 19644.9, + "end": 19646.94, + "probability": 0.9822 + }, + { + "start": 19651.34, + "end": 19652.42, + "probability": 0.6402 + }, + { + "start": 19653.92, + "end": 19657.34, + "probability": 0.9837 + }, + { + "start": 19657.86, + "end": 19658.52, + "probability": 0.3376 + }, + { + "start": 19658.6, + "end": 19659.58, + "probability": 0.5233 + }, + { + "start": 19659.8, + "end": 19663.02, + "probability": 0.8278 + }, + { + "start": 19663.78, + "end": 19667.92, + "probability": 0.963 + }, + { + "start": 19668.88, + "end": 19670.79, + "probability": 0.8848 + }, + { + "start": 19671.18, + "end": 19671.46, + "probability": 0.4366 + }, + { + "start": 19671.52, + "end": 19678.42, + "probability": 0.965 + }, + { + "start": 19679.22, + "end": 19680.84, + "probability": 0.9045 + }, + { + "start": 19681.6, + "end": 19681.84, + "probability": 0.6206 + }, + { + "start": 19682.26, + "end": 19683.9, + "probability": 0.9442 + }, + { + "start": 19683.92, + "end": 19689.36, + "probability": 0.9092 + }, + { + "start": 19690.04, + "end": 19695.26, + "probability": 0.9834 + }, + { + "start": 19695.54, + "end": 19697.4, + "probability": 0.6281 + }, + { + "start": 19697.56, + "end": 19703.0, + "probability": 0.9018 + }, + { + "start": 19703.52, + "end": 19705.18, + "probability": 0.9902 + }, + { + "start": 19705.8, + "end": 19709.74, + "probability": 0.9811 + }, + { + "start": 19710.26, + "end": 19712.92, + "probability": 0.9961 + }, + { + "start": 19713.78, + "end": 19717.98, + "probability": 0.9968 + }, + { + "start": 19717.98, + "end": 19722.8, + "probability": 0.9839 + }, + { + "start": 19723.2, + "end": 19725.74, + "probability": 0.9889 + }, + { + "start": 19726.24, + "end": 19728.34, + "probability": 0.9946 + }, + { + "start": 19728.86, + "end": 19731.78, + "probability": 0.9788 + }, + { + "start": 19732.24, + "end": 19735.3, + "probability": 0.9984 + }, + { + "start": 19735.82, + "end": 19736.36, + "probability": 0.9782 + }, + { + "start": 19737.2, + "end": 19739.26, + "probability": 0.646 + }, + { + "start": 19739.5, + "end": 19742.1, + "probability": 0.979 + }, + { + "start": 19742.78, + "end": 19747.02, + "probability": 0.9893 + }, + { + "start": 19748.26, + "end": 19749.78, + "probability": 0.9119 + }, + { + "start": 19750.22, + "end": 19755.3, + "probability": 0.9674 + }, + { + "start": 19756.2, + "end": 19760.34, + "probability": 0.9433 + }, + { + "start": 19761.2, + "end": 19763.44, + "probability": 0.9983 + }, + { + "start": 19763.78, + "end": 19768.1, + "probability": 0.9882 + }, + { + "start": 19768.74, + "end": 19772.44, + "probability": 0.9855 + }, + { + "start": 19773.3, + "end": 19775.92, + "probability": 0.9674 + }, + { + "start": 19776.56, + "end": 19780.54, + "probability": 0.9987 + }, + { + "start": 19780.6, + "end": 19784.52, + "probability": 0.9958 + }, + { + "start": 19785.54, + "end": 19789.32, + "probability": 0.9989 + }, + { + "start": 19789.32, + "end": 19793.16, + "probability": 0.9824 + }, + { + "start": 19793.82, + "end": 19797.48, + "probability": 0.9896 + }, + { + "start": 19797.48, + "end": 19801.58, + "probability": 0.9991 + }, + { + "start": 19802.12, + "end": 19805.0, + "probability": 0.9966 + }, + { + "start": 19805.56, + "end": 19807.48, + "probability": 0.7093 + }, + { + "start": 19808.26, + "end": 19810.76, + "probability": 0.9966 + }, + { + "start": 19811.54, + "end": 19813.86, + "probability": 0.8615 + }, + { + "start": 19814.0, + "end": 19815.48, + "probability": 0.75 + }, + { + "start": 19815.96, + "end": 19818.96, + "probability": 0.9796 + }, + { + "start": 19819.68, + "end": 19824.44, + "probability": 0.9976 + }, + { + "start": 19825.34, + "end": 19826.78, + "probability": 0.7421 + }, + { + "start": 19827.24, + "end": 19832.78, + "probability": 0.9934 + }, + { + "start": 19833.34, + "end": 19834.28, + "probability": 0.9878 + }, + { + "start": 19834.92, + "end": 19835.3, + "probability": 0.6677 + }, + { + "start": 19835.8, + "end": 19838.28, + "probability": 0.9396 + }, + { + "start": 19838.36, + "end": 19840.04, + "probability": 0.8202 + }, + { + "start": 19840.92, + "end": 19843.46, + "probability": 0.985 + }, + { + "start": 19844.14, + "end": 19846.82, + "probability": 0.9909 + }, + { + "start": 19848.42, + "end": 19853.22, + "probability": 0.9574 + }, + { + "start": 19853.86, + "end": 19858.26, + "probability": 0.5899 + }, + { + "start": 19859.0, + "end": 19860.4, + "probability": 0.7984 + }, + { + "start": 19861.5, + "end": 19862.82, + "probability": 0.7906 + }, + { + "start": 19863.22, + "end": 19863.82, + "probability": 0.9256 + }, + { + "start": 19870.82, + "end": 19870.82, + "probability": 0.0312 + }, + { + "start": 19870.82, + "end": 19870.88, + "probability": 0.0785 + }, + { + "start": 19879.0, + "end": 19879.1, + "probability": 0.0409 + }, + { + "start": 19879.1, + "end": 19879.66, + "probability": 0.1387 + }, + { + "start": 19879.66, + "end": 19879.66, + "probability": 0.4554 + }, + { + "start": 19879.66, + "end": 19879.66, + "probability": 0.7222 + }, + { + "start": 19879.66, + "end": 19881.44, + "probability": 0.4632 + }, + { + "start": 19881.48, + "end": 19885.6, + "probability": 0.7197 + }, + { + "start": 19886.24, + "end": 19887.24, + "probability": 0.5791 + }, + { + "start": 19887.88, + "end": 19888.16, + "probability": 0.1216 + }, + { + "start": 19888.16, + "end": 19888.16, + "probability": 0.08 + }, + { + "start": 19888.16, + "end": 19889.86, + "probability": 0.4791 + }, + { + "start": 19890.4, + "end": 19891.06, + "probability": 0.7466 + }, + { + "start": 19892.06, + "end": 19894.88, + "probability": 0.7813 + }, + { + "start": 19895.42, + "end": 19898.18, + "probability": 0.9417 + }, + { + "start": 19899.06, + "end": 19902.78, + "probability": 0.4807 + }, + { + "start": 19903.44, + "end": 19905.26, + "probability": 0.1679 + }, + { + "start": 19905.74, + "end": 19910.56, + "probability": 0.9497 + }, + { + "start": 19910.82, + "end": 19910.82, + "probability": 0.402 + }, + { + "start": 19911.1, + "end": 19913.92, + "probability": 0.9081 + }, + { + "start": 19914.16, + "end": 19914.32, + "probability": 0.8624 + }, + { + "start": 19930.44, + "end": 19932.12, + "probability": 0.626 + }, + { + "start": 19933.92, + "end": 19938.6, + "probability": 0.9382 + }, + { + "start": 19939.16, + "end": 19939.38, + "probability": 0.8241 + }, + { + "start": 19940.7, + "end": 19940.84, + "probability": 0.0001 + }, + { + "start": 19943.72, + "end": 19943.9, + "probability": 0.088 + }, + { + "start": 19943.9, + "end": 19947.36, + "probability": 0.5512 + }, + { + "start": 19947.36, + "end": 19951.98, + "probability": 0.9814 + }, + { + "start": 19953.02, + "end": 19955.52, + "probability": 0.6738 + }, + { + "start": 19956.16, + "end": 19957.68, + "probability": 0.2984 + }, + { + "start": 19958.16, + "end": 19964.7, + "probability": 0.8306 + }, + { + "start": 19965.36, + "end": 19968.58, + "probability": 0.9866 + }, + { + "start": 19969.54, + "end": 19972.4, + "probability": 0.9987 + }, + { + "start": 19973.24, + "end": 19978.2, + "probability": 0.9381 + }, + { + "start": 19981.12, + "end": 19982.32, + "probability": 0.728 + }, + { + "start": 19982.92, + "end": 19985.26, + "probability": 0.9953 + }, + { + "start": 19985.72, + "end": 19987.62, + "probability": 0.7501 + }, + { + "start": 19988.12, + "end": 19992.7, + "probability": 0.9897 + }, + { + "start": 19994.08, + "end": 19996.08, + "probability": 0.9904 + }, + { + "start": 19996.24, + "end": 19997.64, + "probability": 0.8893 + }, + { + "start": 19997.74, + "end": 20003.0, + "probability": 0.9976 + }, + { + "start": 20003.84, + "end": 20008.44, + "probability": 0.7074 + }, + { + "start": 20009.16, + "end": 20011.32, + "probability": 0.9201 + }, + { + "start": 20011.42, + "end": 20013.28, + "probability": 0.1987 + }, + { + "start": 20013.38, + "end": 20014.36, + "probability": 0.782 + }, + { + "start": 20015.02, + "end": 20016.22, + "probability": 0.663 + }, + { + "start": 20016.4, + "end": 20016.94, + "probability": 0.8801 + }, + { + "start": 20021.44, + "end": 20021.58, + "probability": 0.6902 + }, + { + "start": 20035.82, + "end": 20039.06, + "probability": 0.0832 + }, + { + "start": 20039.88, + "end": 20040.32, + "probability": 0.0159 + }, + { + "start": 20040.32, + "end": 20040.32, + "probability": 0.1488 + }, + { + "start": 20040.32, + "end": 20041.28, + "probability": 0.5648 + }, + { + "start": 20041.46, + "end": 20044.66, + "probability": 0.5151 + }, + { + "start": 20057.6, + "end": 20060.8, + "probability": 0.3578 + }, + { + "start": 20061.94, + "end": 20062.98, + "probability": 0.0105 + }, + { + "start": 20071.18, + "end": 20072.12, + "probability": 0.0001 + }, + { + "start": 20073.38, + "end": 20073.72, + "probability": 0.0099 + }, + { + "start": 20074.72, + "end": 20074.72, + "probability": 0.1282 + }, + { + "start": 20074.72, + "end": 20074.72, + "probability": 0.0803 + }, + { + "start": 20074.72, + "end": 20074.72, + "probability": 0.0975 + }, + { + "start": 20074.72, + "end": 20074.72, + "probability": 0.0591 + }, + { + "start": 20074.72, + "end": 20075.09, + "probability": 0.0276 + }, + { + "start": 20075.09, + "end": 20075.09, + "probability": 0.0 + }, + { + "start": 20075.09, + "end": 20075.09, + "probability": 0.0 + }, + { + "start": 20075.09, + "end": 20075.09, + "probability": 0.0 + }, + { + "start": 20075.09, + "end": 20075.09, + "probability": 0.0 + } + ], + "segments_count": 6874, + "words_count": 34317, + "avg_words_per_segment": 4.9923, + "avg_segment_duration": 2.1439, + "avg_words_per_minute": 102.5659, + "plenum_id": "31718", + "duration": 20075.09, + "title": null, + "plenum_date": "2013-10-28" +} \ No newline at end of file