diff --git "a/40309/metadata.json" "b/40309/metadata.json" new file mode 100644--- /dev/null +++ "b/40309/metadata.json" @@ -0,0 +1,61917 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "40309", + "quality_score": 0.8637, + "per_segment_quality_scores": [ + { + "start": 102.08, + "end": 102.56, + "probability": 0.0299 + }, + { + "start": 102.56, + "end": 103.04, + "probability": 0.0272 + }, + { + "start": 103.04, + "end": 103.04, + "probability": 0.0376 + }, + { + "start": 103.04, + "end": 104.42, + "probability": 0.2827 + }, + { + "start": 134.0, + "end": 134.0, + "probability": 0.0 + }, + { + "start": 134.0, + "end": 134.0, + "probability": 0.0 + }, + { + "start": 134.0, + "end": 134.0, + "probability": 0.0 + }, + { + "start": 134.0, + "end": 134.0, + "probability": 0.0 + }, + { + "start": 134.0, + "end": 134.0, + "probability": 0.0 + }, + { + "start": 134.0, + "end": 134.0, + "probability": 0.0 + }, + { + "start": 134.0, + "end": 134.0, + "probability": 0.0 + }, + { + "start": 134.1, + "end": 134.59, + "probability": 0.4553 + }, + { + "start": 135.53, + "end": 136.44, + "probability": 0.2543 + }, + { + "start": 136.44, + "end": 136.44, + "probability": 0.032 + }, + { + "start": 136.44, + "end": 137.96, + "probability": 0.9414 + }, + { + "start": 138.44, + "end": 145.06, + "probability": 0.9511 + }, + { + "start": 146.56, + "end": 147.88, + "probability": 0.6765 + }, + { + "start": 148.04, + "end": 149.08, + "probability": 0.8152 + }, + { + "start": 149.9, + "end": 151.52, + "probability": 0.7933 + }, + { + "start": 153.36, + "end": 158.02, + "probability": 0.9911 + }, + { + "start": 158.02, + "end": 164.0, + "probability": 0.9968 + }, + { + "start": 164.36, + "end": 165.08, + "probability": 0.7749 + }, + { + "start": 165.3, + "end": 166.16, + "probability": 0.9897 + }, + { + "start": 166.84, + "end": 169.08, + "probability": 0.9904 + }, + { + "start": 170.04, + "end": 174.14, + "probability": 0.9958 + }, + { + "start": 174.66, + "end": 176.96, + "probability": 0.7958 + }, + { + "start": 177.54, + "end": 178.3, + "probability": 0.7746 + }, + { + "start": 179.0, + "end": 179.44, + "probability": 0.7238 + }, + { + "start": 179.56, + "end": 182.66, + "probability": 0.9592 + }, + { + "start": 183.42, + "end": 183.9, + "probability": 0.7019 + }, + { + "start": 184.06, + "end": 188.34, + "probability": 0.9867 + }, + { + "start": 189.56, + "end": 195.72, + "probability": 0.9692 + }, + { + "start": 195.72, + "end": 202.44, + "probability": 0.998 + }, + { + "start": 202.54, + "end": 203.6, + "probability": 0.7771 + }, + { + "start": 203.98, + "end": 204.94, + "probability": 0.8822 + }, + { + "start": 206.4, + "end": 208.06, + "probability": 0.9559 + }, + { + "start": 210.02, + "end": 211.28, + "probability": 0.9214 + }, + { + "start": 211.4, + "end": 211.94, + "probability": 0.8195 + }, + { + "start": 211.98, + "end": 212.9, + "probability": 0.7629 + }, + { + "start": 213.2, + "end": 218.6, + "probability": 0.7258 + }, + { + "start": 218.64, + "end": 219.64, + "probability": 0.7719 + }, + { + "start": 219.72, + "end": 220.22, + "probability": 0.9432 + }, + { + "start": 220.76, + "end": 223.84, + "probability": 0.9964 + }, + { + "start": 223.84, + "end": 228.38, + "probability": 0.9858 + }, + { + "start": 229.5, + "end": 234.19, + "probability": 0.9971 + }, + { + "start": 234.22, + "end": 239.14, + "probability": 0.9995 + }, + { + "start": 240.26, + "end": 243.02, + "probability": 0.9937 + }, + { + "start": 243.2, + "end": 244.14, + "probability": 0.7568 + }, + { + "start": 244.7, + "end": 247.34, + "probability": 0.9548 + }, + { + "start": 247.52, + "end": 248.2, + "probability": 0.6809 + }, + { + "start": 248.64, + "end": 249.6, + "probability": 0.8389 + }, + { + "start": 250.0, + "end": 252.08, + "probability": 0.9888 + }, + { + "start": 252.9, + "end": 257.18, + "probability": 0.9924 + }, + { + "start": 257.96, + "end": 259.94, + "probability": 0.7744 + }, + { + "start": 260.98, + "end": 264.62, + "probability": 0.9969 + }, + { + "start": 264.62, + "end": 267.14, + "probability": 0.9983 + }, + { + "start": 267.96, + "end": 272.44, + "probability": 0.6667 + }, + { + "start": 273.62, + "end": 276.14, + "probability": 0.906 + }, + { + "start": 276.3, + "end": 278.06, + "probability": 0.9391 + }, + { + "start": 281.14, + "end": 282.48, + "probability": 0.5952 + }, + { + "start": 282.54, + "end": 284.44, + "probability": 0.9714 + }, + { + "start": 284.54, + "end": 285.24, + "probability": 0.8504 + }, + { + "start": 285.36, + "end": 286.76, + "probability": 0.8036 + }, + { + "start": 286.84, + "end": 289.46, + "probability": 0.716 + }, + { + "start": 289.52, + "end": 290.96, + "probability": 0.9119 + }, + { + "start": 291.48, + "end": 294.38, + "probability": 0.8705 + }, + { + "start": 294.54, + "end": 295.4, + "probability": 0.5434 + }, + { + "start": 295.4, + "end": 296.46, + "probability": 0.5355 + }, + { + "start": 297.0, + "end": 300.14, + "probability": 0.951 + }, + { + "start": 300.96, + "end": 303.62, + "probability": 0.9875 + }, + { + "start": 303.7, + "end": 304.54, + "probability": 0.5062 + }, + { + "start": 304.54, + "end": 305.92, + "probability": 0.6638 + }, + { + "start": 306.16, + "end": 307.9, + "probability": 0.8991 + }, + { + "start": 308.5, + "end": 312.8, + "probability": 0.7772 + }, + { + "start": 312.86, + "end": 315.9, + "probability": 0.9614 + }, + { + "start": 316.04, + "end": 316.44, + "probability": 0.9224 + }, + { + "start": 316.5, + "end": 317.46, + "probability": 0.7651 + }, + { + "start": 317.9, + "end": 323.32, + "probability": 0.9983 + }, + { + "start": 323.92, + "end": 325.18, + "probability": 0.51 + }, + { + "start": 325.26, + "end": 326.12, + "probability": 0.7696 + }, + { + "start": 326.4, + "end": 327.86, + "probability": 0.8575 + }, + { + "start": 327.94, + "end": 329.12, + "probability": 0.8892 + }, + { + "start": 329.54, + "end": 333.2, + "probability": 0.9058 + }, + { + "start": 333.3, + "end": 334.22, + "probability": 0.9809 + }, + { + "start": 335.18, + "end": 336.52, + "probability": 0.9013 + }, + { + "start": 336.62, + "end": 341.72, + "probability": 0.9989 + }, + { + "start": 341.9, + "end": 342.58, + "probability": 0.8364 + }, + { + "start": 342.66, + "end": 343.78, + "probability": 0.8851 + }, + { + "start": 343.96, + "end": 345.4, + "probability": 0.9885 + }, + { + "start": 345.68, + "end": 347.24, + "probability": 0.9962 + }, + { + "start": 347.6, + "end": 351.06, + "probability": 0.978 + }, + { + "start": 351.12, + "end": 351.38, + "probability": 0.6414 + }, + { + "start": 352.02, + "end": 354.1, + "probability": 0.9038 + }, + { + "start": 354.26, + "end": 356.92, + "probability": 0.6449 + }, + { + "start": 357.02, + "end": 359.36, + "probability": 0.5926 + }, + { + "start": 360.06, + "end": 361.46, + "probability": 0.7609 + }, + { + "start": 361.82, + "end": 362.72, + "probability": 0.7353 + }, + { + "start": 362.82, + "end": 368.46, + "probability": 0.9303 + }, + { + "start": 369.02, + "end": 369.26, + "probability": 0.6959 + }, + { + "start": 369.42, + "end": 371.92, + "probability": 0.5492 + }, + { + "start": 371.92, + "end": 372.84, + "probability": 0.7268 + }, + { + "start": 372.88, + "end": 375.52, + "probability": 0.9803 + }, + { + "start": 375.98, + "end": 378.22, + "probability": 0.8323 + }, + { + "start": 378.78, + "end": 383.48, + "probability": 0.8748 + }, + { + "start": 383.52, + "end": 384.36, + "probability": 0.9509 + }, + { + "start": 384.46, + "end": 384.76, + "probability": 0.3451 + }, + { + "start": 384.8, + "end": 385.5, + "probability": 0.5407 + }, + { + "start": 385.8, + "end": 389.84, + "probability": 0.9871 + }, + { + "start": 390.04, + "end": 392.28, + "probability": 0.9399 + }, + { + "start": 392.34, + "end": 393.2, + "probability": 0.7816 + }, + { + "start": 393.28, + "end": 394.28, + "probability": 0.9268 + }, + { + "start": 394.36, + "end": 397.8, + "probability": 0.9916 + }, + { + "start": 398.1, + "end": 399.64, + "probability": 0.9518 + }, + { + "start": 399.84, + "end": 402.34, + "probability": 0.9944 + }, + { + "start": 402.44, + "end": 408.2, + "probability": 0.7158 + }, + { + "start": 408.5, + "end": 410.1, + "probability": 0.9426 + }, + { + "start": 410.62, + "end": 412.46, + "probability": 0.987 + }, + { + "start": 412.56, + "end": 413.48, + "probability": 0.7591 + }, + { + "start": 413.86, + "end": 416.68, + "probability": 0.9935 + }, + { + "start": 416.86, + "end": 421.42, + "probability": 0.9407 + }, + { + "start": 421.5, + "end": 421.88, + "probability": 0.6223 + }, + { + "start": 422.06, + "end": 422.28, + "probability": 0.7343 + }, + { + "start": 422.64, + "end": 424.74, + "probability": 0.6311 + }, + { + "start": 424.9, + "end": 427.04, + "probability": 0.6801 + }, + { + "start": 432.04, + "end": 434.86, + "probability": 0.7378 + }, + { + "start": 435.5, + "end": 436.82, + "probability": 0.945 + }, + { + "start": 436.96, + "end": 443.35, + "probability": 0.9951 + }, + { + "start": 444.38, + "end": 447.72, + "probability": 0.9631 + }, + { + "start": 448.46, + "end": 452.76, + "probability": 0.6646 + }, + { + "start": 454.33, + "end": 456.98, + "probability": 0.9541 + }, + { + "start": 457.64, + "end": 459.4, + "probability": 0.7383 + }, + { + "start": 459.96, + "end": 460.89, + "probability": 0.7185 + }, + { + "start": 461.04, + "end": 461.84, + "probability": 0.8469 + }, + { + "start": 461.92, + "end": 466.04, + "probability": 0.9933 + }, + { + "start": 466.12, + "end": 467.32, + "probability": 0.8396 + }, + { + "start": 467.66, + "end": 469.4, + "probability": 0.8843 + }, + { + "start": 469.92, + "end": 472.24, + "probability": 0.5961 + }, + { + "start": 473.04, + "end": 475.9, + "probability": 0.9751 + }, + { + "start": 475.96, + "end": 477.08, + "probability": 0.6815 + }, + { + "start": 477.72, + "end": 480.32, + "probability": 0.8641 + }, + { + "start": 481.0, + "end": 485.44, + "probability": 0.9309 + }, + { + "start": 487.68, + "end": 492.2, + "probability": 0.6968 + }, + { + "start": 492.26, + "end": 494.52, + "probability": 0.8281 + }, + { + "start": 494.74, + "end": 496.08, + "probability": 0.9652 + }, + { + "start": 496.22, + "end": 497.92, + "probability": 0.9963 + }, + { + "start": 498.02, + "end": 498.76, + "probability": 0.8691 + }, + { + "start": 501.44, + "end": 502.46, + "probability": 0.7875 + }, + { + "start": 504.14, + "end": 507.7, + "probability": 0.8272 + }, + { + "start": 508.48, + "end": 510.26, + "probability": 0.3156 + }, + { + "start": 511.88, + "end": 513.3, + "probability": 0.4955 + }, + { + "start": 514.22, + "end": 517.02, + "probability": 0.9805 + }, + { + "start": 518.02, + "end": 521.3, + "probability": 0.8943 + }, + { + "start": 521.52, + "end": 525.5, + "probability": 0.9158 + }, + { + "start": 525.64, + "end": 527.51, + "probability": 0.9854 + }, + { + "start": 527.68, + "end": 528.14, + "probability": 0.8551 + }, + { + "start": 528.84, + "end": 531.38, + "probability": 0.9759 + }, + { + "start": 531.92, + "end": 534.12, + "probability": 0.829 + }, + { + "start": 537.4, + "end": 538.6, + "probability": 0.4633 + }, + { + "start": 539.65, + "end": 543.77, + "probability": 0.471 + }, + { + "start": 546.34, + "end": 549.1, + "probability": 0.9219 + }, + { + "start": 549.86, + "end": 551.38, + "probability": 0.6686 + }, + { + "start": 551.58, + "end": 553.34, + "probability": 0.9959 + }, + { + "start": 553.46, + "end": 555.58, + "probability": 0.9836 + }, + { + "start": 556.22, + "end": 557.88, + "probability": 0.7762 + }, + { + "start": 558.64, + "end": 562.52, + "probability": 0.9975 + }, + { + "start": 563.2, + "end": 564.02, + "probability": 0.7682 + }, + { + "start": 566.11, + "end": 568.08, + "probability": 0.9305 + }, + { + "start": 568.18, + "end": 569.84, + "probability": 0.7865 + }, + { + "start": 569.84, + "end": 570.14, + "probability": 0.2465 + }, + { + "start": 570.14, + "end": 572.77, + "probability": 0.9239 + }, + { + "start": 573.1, + "end": 575.94, + "probability": 0.7611 + }, + { + "start": 576.06, + "end": 577.98, + "probability": 0.9695 + }, + { + "start": 578.52, + "end": 579.7, + "probability": 0.5602 + }, + { + "start": 579.84, + "end": 582.64, + "probability": 0.7285 + }, + { + "start": 582.82, + "end": 584.44, + "probability": 0.6478 + }, + { + "start": 584.46, + "end": 586.94, + "probability": 0.9006 + }, + { + "start": 587.38, + "end": 589.52, + "probability": 0.7725 + }, + { + "start": 589.78, + "end": 591.14, + "probability": 0.9567 + }, + { + "start": 591.96, + "end": 594.08, + "probability": 0.9873 + }, + { + "start": 594.64, + "end": 597.34, + "probability": 0.9855 + }, + { + "start": 598.58, + "end": 600.1, + "probability": 0.9824 + }, + { + "start": 600.56, + "end": 601.08, + "probability": 0.8601 + }, + { + "start": 601.58, + "end": 603.56, + "probability": 0.9935 + }, + { + "start": 604.28, + "end": 605.8, + "probability": 0.7194 + }, + { + "start": 606.0, + "end": 608.96, + "probability": 0.9969 + }, + { + "start": 609.46, + "end": 615.48, + "probability": 0.9717 + }, + { + "start": 615.54, + "end": 617.7, + "probability": 0.9776 + }, + { + "start": 618.5, + "end": 621.1, + "probability": 0.7476 + }, + { + "start": 621.58, + "end": 622.56, + "probability": 0.9628 + }, + { + "start": 622.7, + "end": 625.88, + "probability": 0.9985 + }, + { + "start": 626.02, + "end": 628.35, + "probability": 0.8347 + }, + { + "start": 629.18, + "end": 631.2, + "probability": 0.7096 + }, + { + "start": 631.78, + "end": 632.78, + "probability": 0.9258 + }, + { + "start": 632.8, + "end": 634.6, + "probability": 0.9894 + }, + { + "start": 634.64, + "end": 635.22, + "probability": 0.9372 + }, + { + "start": 635.4, + "end": 638.5, + "probability": 0.8435 + }, + { + "start": 638.96, + "end": 639.44, + "probability": 0.9514 + }, + { + "start": 639.52, + "end": 642.82, + "probability": 0.987 + }, + { + "start": 642.82, + "end": 647.24, + "probability": 0.7405 + }, + { + "start": 647.36, + "end": 647.74, + "probability": 0.7315 + }, + { + "start": 648.3, + "end": 649.38, + "probability": 0.7754 + }, + { + "start": 651.3, + "end": 653.24, + "probability": 0.856 + }, + { + "start": 653.9, + "end": 655.08, + "probability": 0.6832 + }, + { + "start": 655.32, + "end": 658.34, + "probability": 0.3809 + }, + { + "start": 658.48, + "end": 658.84, + "probability": 0.4233 + }, + { + "start": 659.02, + "end": 659.32, + "probability": 0.101 + }, + { + "start": 659.32, + "end": 659.42, + "probability": 0.1338 + }, + { + "start": 659.56, + "end": 663.0, + "probability": 0.2639 + }, + { + "start": 663.82, + "end": 666.28, + "probability": 0.3875 + }, + { + "start": 666.42, + "end": 670.78, + "probability": 0.1224 + }, + { + "start": 670.78, + "end": 671.2, + "probability": 0.404 + }, + { + "start": 671.2, + "end": 671.6, + "probability": 0.4762 + }, + { + "start": 673.5, + "end": 676.4, + "probability": 0.8763 + }, + { + "start": 677.36, + "end": 680.52, + "probability": 0.9519 + }, + { + "start": 681.18, + "end": 681.26, + "probability": 0.762 + }, + { + "start": 681.34, + "end": 682.62, + "probability": 0.9674 + }, + { + "start": 682.68, + "end": 685.84, + "probability": 0.6432 + }, + { + "start": 686.6, + "end": 687.76, + "probability": 0.7572 + }, + { + "start": 688.58, + "end": 691.92, + "probability": 0.5866 + }, + { + "start": 692.12, + "end": 693.18, + "probability": 0.0571 + }, + { + "start": 693.18, + "end": 694.0, + "probability": 0.0278 + }, + { + "start": 694.64, + "end": 696.8, + "probability": 0.1437 + }, + { + "start": 699.8, + "end": 701.08, + "probability": 0.0548 + }, + { + "start": 702.39, + "end": 707.28, + "probability": 0.073 + }, + { + "start": 707.44, + "end": 710.86, + "probability": 0.0057 + }, + { + "start": 716.64, + "end": 718.94, + "probability": 0.0087 + }, + { + "start": 718.94, + "end": 719.28, + "probability": 0.0191 + }, + { + "start": 720.3, + "end": 721.94, + "probability": 0.0486 + }, + { + "start": 722.87, + "end": 723.76, + "probability": 0.3332 + }, + { + "start": 726.74, + "end": 728.06, + "probability": 0.0627 + }, + { + "start": 728.06, + "end": 728.88, + "probability": 0.1436 + }, + { + "start": 729.32, + "end": 731.14, + "probability": 0.0718 + }, + { + "start": 731.14, + "end": 732.88, + "probability": 0.0383 + }, + { + "start": 733.86, + "end": 734.34, + "probability": 0.164 + }, + { + "start": 734.84, + "end": 735.04, + "probability": 0.4375 + }, + { + "start": 746.0, + "end": 746.0, + "probability": 0.0 + }, + { + "start": 746.0, + "end": 746.0, + "probability": 0.0 + }, + { + "start": 746.0, + "end": 746.0, + "probability": 0.0 + }, + { + "start": 746.0, + "end": 746.0, + "probability": 0.0 + }, + { + "start": 746.0, + "end": 746.0, + "probability": 0.0 + }, + { + "start": 746.0, + "end": 746.0, + "probability": 0.0 + }, + { + "start": 746.0, + "end": 746.0, + "probability": 0.0 + }, + { + "start": 746.0, + "end": 746.0, + "probability": 0.0 + }, + { + "start": 746.0, + "end": 746.0, + "probability": 0.0 + }, + { + "start": 746.0, + "end": 746.0, + "probability": 0.0 + }, + { + "start": 746.0, + "end": 746.0, + "probability": 0.0 + }, + { + "start": 746.0, + "end": 746.0, + "probability": 0.0 + }, + { + "start": 746.34, + "end": 746.48, + "probability": 0.1968 + }, + { + "start": 746.48, + "end": 746.92, + "probability": 0.0394 + }, + { + "start": 746.96, + "end": 750.28, + "probability": 0.723 + }, + { + "start": 750.44, + "end": 752.1, + "probability": 0.9956 + }, + { + "start": 753.04, + "end": 753.18, + "probability": 0.0845 + }, + { + "start": 753.18, + "end": 753.86, + "probability": 0.4181 + }, + { + "start": 754.72, + "end": 756.2, + "probability": 0.9366 + }, + { + "start": 756.96, + "end": 757.14, + "probability": 0.1788 + }, + { + "start": 757.32, + "end": 759.18, + "probability": 0.9053 + }, + { + "start": 759.46, + "end": 765.42, + "probability": 0.9829 + }, + { + "start": 766.22, + "end": 768.84, + "probability": 0.9357 + }, + { + "start": 769.38, + "end": 771.22, + "probability": 0.9893 + }, + { + "start": 771.42, + "end": 773.23, + "probability": 0.894 + }, + { + "start": 773.36, + "end": 773.74, + "probability": 0.666 + }, + { + "start": 773.96, + "end": 774.7, + "probability": 0.9351 + }, + { + "start": 775.52, + "end": 778.78, + "probability": 0.9658 + }, + { + "start": 779.26, + "end": 780.42, + "probability": 0.9985 + }, + { + "start": 780.5, + "end": 783.3, + "probability": 0.9458 + }, + { + "start": 783.36, + "end": 784.86, + "probability": 0.9313 + }, + { + "start": 785.94, + "end": 786.5, + "probability": 0.8386 + }, + { + "start": 787.54, + "end": 791.6, + "probability": 0.9593 + }, + { + "start": 792.7, + "end": 793.36, + "probability": 0.8687 + }, + { + "start": 793.42, + "end": 793.86, + "probability": 0.8139 + }, + { + "start": 793.92, + "end": 794.38, + "probability": 0.576 + }, + { + "start": 794.88, + "end": 797.36, + "probability": 0.9221 + }, + { + "start": 797.98, + "end": 800.94, + "probability": 0.9788 + }, + { + "start": 801.74, + "end": 803.16, + "probability": 0.9966 + }, + { + "start": 803.46, + "end": 805.26, + "probability": 0.9886 + }, + { + "start": 806.34, + "end": 807.52, + "probability": 0.976 + }, + { + "start": 807.7, + "end": 809.44, + "probability": 0.918 + }, + { + "start": 810.38, + "end": 812.22, + "probability": 0.84 + }, + { + "start": 812.56, + "end": 814.02, + "probability": 0.8781 + }, + { + "start": 814.72, + "end": 817.74, + "probability": 0.9894 + }, + { + "start": 817.74, + "end": 820.06, + "probability": 0.9951 + }, + { + "start": 820.86, + "end": 823.88, + "probability": 0.9443 + }, + { + "start": 825.38, + "end": 827.86, + "probability": 0.6975 + }, + { + "start": 828.2, + "end": 829.44, + "probability": 0.9429 + }, + { + "start": 829.74, + "end": 830.16, + "probability": 0.9494 + }, + { + "start": 832.06, + "end": 834.08, + "probability": 0.4845 + }, + { + "start": 834.42, + "end": 834.74, + "probability": 0.521 + }, + { + "start": 834.92, + "end": 835.4, + "probability": 0.4476 + }, + { + "start": 835.74, + "end": 840.4, + "probability": 0.391 + }, + { + "start": 840.94, + "end": 841.66, + "probability": 0.6524 + }, + { + "start": 841.68, + "end": 842.48, + "probability": 0.5648 + }, + { + "start": 842.56, + "end": 843.26, + "probability": 0.6333 + }, + { + "start": 843.31, + "end": 847.72, + "probability": 0.5423 + }, + { + "start": 847.9, + "end": 848.27, + "probability": 0.5694 + }, + { + "start": 848.42, + "end": 849.69, + "probability": 0.3774 + }, + { + "start": 849.82, + "end": 851.24, + "probability": 0.9397 + }, + { + "start": 851.6, + "end": 854.34, + "probability": 0.9084 + }, + { + "start": 854.76, + "end": 857.84, + "probability": 0.6555 + }, + { + "start": 858.92, + "end": 860.86, + "probability": 0.5829 + }, + { + "start": 860.9, + "end": 862.9, + "probability": 0.5886 + }, + { + "start": 864.4, + "end": 865.58, + "probability": 0.8782 + }, + { + "start": 866.1, + "end": 867.28, + "probability": 0.7397 + }, + { + "start": 867.4, + "end": 868.44, + "probability": 0.9883 + }, + { + "start": 868.96, + "end": 870.5, + "probability": 0.9615 + }, + { + "start": 871.0, + "end": 873.08, + "probability": 0.9049 + }, + { + "start": 873.48, + "end": 876.22, + "probability": 0.8846 + }, + { + "start": 876.38, + "end": 879.94, + "probability": 0.9757 + }, + { + "start": 880.04, + "end": 881.24, + "probability": 0.8972 + }, + { + "start": 881.72, + "end": 883.82, + "probability": 0.8891 + }, + { + "start": 884.34, + "end": 886.56, + "probability": 0.9697 + }, + { + "start": 886.7, + "end": 887.08, + "probability": 0.5873 + }, + { + "start": 887.34, + "end": 888.7, + "probability": 0.999 + }, + { + "start": 889.42, + "end": 890.6, + "probability": 0.9949 + }, + { + "start": 891.46, + "end": 896.62, + "probability": 0.9602 + }, + { + "start": 897.32, + "end": 901.9, + "probability": 0.9692 + }, + { + "start": 902.08, + "end": 908.2, + "probability": 0.7937 + }, + { + "start": 909.02, + "end": 911.28, + "probability": 0.6824 + }, + { + "start": 925.24, + "end": 926.0, + "probability": 0.509 + }, + { + "start": 926.0, + "end": 926.92, + "probability": 0.6492 + }, + { + "start": 928.0, + "end": 929.7, + "probability": 0.7918 + }, + { + "start": 930.58, + "end": 931.3, + "probability": 0.8092 + }, + { + "start": 932.86, + "end": 938.72, + "probability": 0.8784 + }, + { + "start": 940.04, + "end": 942.74, + "probability": 0.9772 + }, + { + "start": 944.0, + "end": 947.56, + "probability": 0.9365 + }, + { + "start": 948.88, + "end": 954.02, + "probability": 0.9342 + }, + { + "start": 955.46, + "end": 961.32, + "probability": 0.9551 + }, + { + "start": 961.32, + "end": 969.88, + "probability": 0.9134 + }, + { + "start": 972.84, + "end": 976.36, + "probability": 0.9869 + }, + { + "start": 977.18, + "end": 978.06, + "probability": 0.6581 + }, + { + "start": 979.48, + "end": 981.64, + "probability": 0.5641 + }, + { + "start": 983.46, + "end": 986.52, + "probability": 0.8305 + }, + { + "start": 987.82, + "end": 992.28, + "probability": 0.6715 + }, + { + "start": 993.16, + "end": 996.66, + "probability": 0.679 + }, + { + "start": 997.58, + "end": 1003.18, + "probability": 0.9517 + }, + { + "start": 1004.28, + "end": 1006.42, + "probability": 0.8051 + }, + { + "start": 1006.8, + "end": 1008.3, + "probability": 0.6841 + }, + { + "start": 1008.5, + "end": 1013.54, + "probability": 0.8802 + }, + { + "start": 1014.42, + "end": 1016.45, + "probability": 0.7409 + }, + { + "start": 1017.08, + "end": 1018.94, + "probability": 0.7667 + }, + { + "start": 1019.88, + "end": 1020.44, + "probability": 0.8218 + }, + { + "start": 1020.52, + "end": 1024.24, + "probability": 0.8079 + }, + { + "start": 1024.46, + "end": 1024.76, + "probability": 0.006 + }, + { + "start": 1024.76, + "end": 1026.6, + "probability": 0.9146 + }, + { + "start": 1026.74, + "end": 1029.94, + "probability": 0.9519 + }, + { + "start": 1030.86, + "end": 1033.8, + "probability": 0.9881 + }, + { + "start": 1035.42, + "end": 1037.2, + "probability": 0.1989 + }, + { + "start": 1037.84, + "end": 1040.74, + "probability": 0.811 + }, + { + "start": 1041.14, + "end": 1043.66, + "probability": 0.6999 + }, + { + "start": 1043.84, + "end": 1043.84, + "probability": 0.1093 + }, + { + "start": 1043.94, + "end": 1045.02, + "probability": 0.0445 + }, + { + "start": 1045.12, + "end": 1045.58, + "probability": 0.2496 + }, + { + "start": 1045.58, + "end": 1045.9, + "probability": 0.3668 + }, + { + "start": 1046.02, + "end": 1047.92, + "probability": 0.9223 + }, + { + "start": 1048.08, + "end": 1052.44, + "probability": 0.9006 + }, + { + "start": 1053.36, + "end": 1054.58, + "probability": 0.5006 + }, + { + "start": 1055.32, + "end": 1056.78, + "probability": 0.9268 + }, + { + "start": 1057.22, + "end": 1059.3, + "probability": 0.8346 + }, + { + "start": 1059.66, + "end": 1060.98, + "probability": 0.9525 + }, + { + "start": 1061.22, + "end": 1066.12, + "probability": 0.9644 + }, + { + "start": 1066.74, + "end": 1067.7, + "probability": 0.9294 + }, + { + "start": 1067.88, + "end": 1070.8, + "probability": 0.9016 + }, + { + "start": 1071.06, + "end": 1074.58, + "probability": 0.9878 + }, + { + "start": 1075.76, + "end": 1078.8, + "probability": 0.736 + }, + { + "start": 1078.8, + "end": 1081.66, + "probability": 0.9502 + }, + { + "start": 1082.48, + "end": 1086.2, + "probability": 0.9956 + }, + { + "start": 1086.88, + "end": 1089.42, + "probability": 0.9692 + }, + { + "start": 1089.96, + "end": 1098.3, + "probability": 0.9796 + }, + { + "start": 1098.92, + "end": 1103.52, + "probability": 0.9537 + }, + { + "start": 1104.08, + "end": 1107.72, + "probability": 0.957 + }, + { + "start": 1108.14, + "end": 1110.44, + "probability": 0.9941 + }, + { + "start": 1110.44, + "end": 1112.86, + "probability": 0.7225 + }, + { + "start": 1113.92, + "end": 1116.48, + "probability": 0.9888 + }, + { + "start": 1116.72, + "end": 1119.38, + "probability": 0.9766 + }, + { + "start": 1119.38, + "end": 1124.54, + "probability": 0.9865 + }, + { + "start": 1124.84, + "end": 1126.36, + "probability": 0.9211 + }, + { + "start": 1126.44, + "end": 1130.38, + "probability": 0.9886 + }, + { + "start": 1131.16, + "end": 1134.48, + "probability": 0.865 + }, + { + "start": 1135.04, + "end": 1137.94, + "probability": 0.9845 + }, + { + "start": 1138.12, + "end": 1141.52, + "probability": 0.9711 + }, + { + "start": 1142.78, + "end": 1144.76, + "probability": 0.9099 + }, + { + "start": 1146.38, + "end": 1148.2, + "probability": 0.5079 + }, + { + "start": 1148.3, + "end": 1150.2, + "probability": 0.9416 + }, + { + "start": 1150.84, + "end": 1154.68, + "probability": 0.8817 + }, + { + "start": 1154.76, + "end": 1156.36, + "probability": 0.8596 + }, + { + "start": 1157.2, + "end": 1158.98, + "probability": 0.9728 + }, + { + "start": 1160.1, + "end": 1161.58, + "probability": 0.9053 + }, + { + "start": 1161.62, + "end": 1166.94, + "probability": 0.9915 + }, + { + "start": 1168.08, + "end": 1170.94, + "probability": 0.9666 + }, + { + "start": 1171.82, + "end": 1172.6, + "probability": 0.9011 + }, + { + "start": 1172.72, + "end": 1177.6, + "probability": 0.994 + }, + { + "start": 1177.66, + "end": 1180.48, + "probability": 0.813 + }, + { + "start": 1181.44, + "end": 1182.66, + "probability": 0.7814 + }, + { + "start": 1182.76, + "end": 1183.48, + "probability": 0.822 + }, + { + "start": 1184.2, + "end": 1185.38, + "probability": 0.9661 + }, + { + "start": 1185.42, + "end": 1186.46, + "probability": 0.9292 + }, + { + "start": 1187.18, + "end": 1189.86, + "probability": 0.5891 + }, + { + "start": 1190.32, + "end": 1191.14, + "probability": 0.796 + }, + { + "start": 1191.38, + "end": 1193.38, + "probability": 0.8702 + }, + { + "start": 1193.4, + "end": 1194.43, + "probability": 0.9893 + }, + { + "start": 1195.38, + "end": 1198.04, + "probability": 0.9824 + }, + { + "start": 1199.08, + "end": 1201.04, + "probability": 0.8627 + }, + { + "start": 1201.62, + "end": 1203.08, + "probability": 0.7261 + }, + { + "start": 1203.8, + "end": 1209.14, + "probability": 0.6708 + }, + { + "start": 1209.22, + "end": 1209.22, + "probability": 0.264 + }, + { + "start": 1209.22, + "end": 1209.22, + "probability": 0.3901 + }, + { + "start": 1209.22, + "end": 1210.14, + "probability": 0.3948 + }, + { + "start": 1210.28, + "end": 1214.9, + "probability": 0.8295 + }, + { + "start": 1215.0, + "end": 1215.84, + "probability": 0.9805 + }, + { + "start": 1215.94, + "end": 1216.42, + "probability": 0.3367 + }, + { + "start": 1216.44, + "end": 1216.44, + "probability": 0.3857 + }, + { + "start": 1216.6, + "end": 1217.66, + "probability": 0.8351 + }, + { + "start": 1217.72, + "end": 1220.3, + "probability": 0.6141 + }, + { + "start": 1220.58, + "end": 1223.02, + "probability": 0.9901 + }, + { + "start": 1223.46, + "end": 1224.62, + "probability": 0.198 + }, + { + "start": 1225.06, + "end": 1225.57, + "probability": 0.9009 + }, + { + "start": 1226.32, + "end": 1226.66, + "probability": 0.529 + }, + { + "start": 1227.1, + "end": 1227.36, + "probability": 0.8461 + }, + { + "start": 1227.74, + "end": 1229.02, + "probability": 0.7343 + }, + { + "start": 1229.12, + "end": 1229.68, + "probability": 0.6433 + }, + { + "start": 1229.74, + "end": 1231.08, + "probability": 0.7609 + }, + { + "start": 1231.26, + "end": 1233.94, + "probability": 0.9415 + }, + { + "start": 1234.28, + "end": 1235.4, + "probability": 0.6913 + }, + { + "start": 1237.28, + "end": 1239.68, + "probability": 0.9905 + }, + { + "start": 1239.7, + "end": 1240.97, + "probability": 0.3142 + }, + { + "start": 1241.58, + "end": 1241.76, + "probability": 0.4491 + }, + { + "start": 1241.76, + "end": 1243.56, + "probability": 0.5363 + }, + { + "start": 1243.64, + "end": 1245.24, + "probability": 0.7782 + }, + { + "start": 1245.34, + "end": 1247.0, + "probability": 0.8852 + }, + { + "start": 1247.02, + "end": 1248.2, + "probability": 0.9822 + }, + { + "start": 1248.28, + "end": 1251.32, + "probability": 0.9447 + }, + { + "start": 1251.5, + "end": 1256.52, + "probability": 0.8748 + }, + { + "start": 1257.3, + "end": 1260.4, + "probability": 0.9938 + }, + { + "start": 1260.54, + "end": 1261.52, + "probability": 0.6129 + }, + { + "start": 1261.66, + "end": 1263.0, + "probability": 0.8575 + }, + { + "start": 1263.76, + "end": 1268.08, + "probability": 0.9045 + }, + { + "start": 1268.64, + "end": 1272.86, + "probability": 0.9783 + }, + { + "start": 1272.86, + "end": 1277.66, + "probability": 0.8942 + }, + { + "start": 1278.38, + "end": 1281.74, + "probability": 0.9861 + }, + { + "start": 1281.82, + "end": 1282.28, + "probability": 0.6589 + }, + { + "start": 1282.36, + "end": 1282.9, + "probability": 0.6899 + }, + { + "start": 1283.46, + "end": 1285.97, + "probability": 0.9443 + }, + { + "start": 1286.18, + "end": 1288.3, + "probability": 0.9035 + }, + { + "start": 1288.84, + "end": 1293.34, + "probability": 0.9935 + }, + { + "start": 1293.62, + "end": 1293.86, + "probability": 0.6238 + }, + { + "start": 1293.92, + "end": 1295.04, + "probability": 0.7129 + }, + { + "start": 1295.1, + "end": 1296.98, + "probability": 0.631 + }, + { + "start": 1302.88, + "end": 1305.94, + "probability": 0.7988 + }, + { + "start": 1306.54, + "end": 1313.86, + "probability": 0.9532 + }, + { + "start": 1313.86, + "end": 1321.04, + "probability": 0.9767 + }, + { + "start": 1321.12, + "end": 1327.54, + "probability": 0.8007 + }, + { + "start": 1327.7, + "end": 1328.56, + "probability": 0.7702 + }, + { + "start": 1328.68, + "end": 1329.56, + "probability": 0.6286 + }, + { + "start": 1329.98, + "end": 1330.56, + "probability": 0.59 + }, + { + "start": 1331.52, + "end": 1334.08, + "probability": 0.5832 + }, + { + "start": 1334.66, + "end": 1337.38, + "probability": 0.7999 + }, + { + "start": 1337.6, + "end": 1339.16, + "probability": 0.7077 + }, + { + "start": 1339.26, + "end": 1339.26, + "probability": 0.3245 + }, + { + "start": 1339.26, + "end": 1341.58, + "probability": 0.9368 + }, + { + "start": 1342.2, + "end": 1342.8, + "probability": 0.6298 + }, + { + "start": 1343.4, + "end": 1347.32, + "probability": 0.9196 + }, + { + "start": 1347.66, + "end": 1348.7, + "probability": 0.9044 + }, + { + "start": 1349.62, + "end": 1350.5, + "probability": 0.4513 + }, + { + "start": 1350.58, + "end": 1352.88, + "probability": 0.8954 + }, + { + "start": 1352.96, + "end": 1354.52, + "probability": 0.2776 + }, + { + "start": 1355.22, + "end": 1355.7, + "probability": 0.4946 + }, + { + "start": 1355.86, + "end": 1356.3, + "probability": 0.699 + }, + { + "start": 1356.44, + "end": 1359.66, + "probability": 0.7747 + }, + { + "start": 1361.22, + "end": 1362.78, + "probability": 0.7737 + }, + { + "start": 1362.92, + "end": 1364.06, + "probability": 0.748 + }, + { + "start": 1365.14, + "end": 1368.24, + "probability": 0.9669 + }, + { + "start": 1368.68, + "end": 1373.28, + "probability": 0.9834 + }, + { + "start": 1373.44, + "end": 1373.56, + "probability": 0.6678 + }, + { + "start": 1373.58, + "end": 1373.92, + "probability": 0.8117 + }, + { + "start": 1374.08, + "end": 1375.46, + "probability": 0.9088 + }, + { + "start": 1375.54, + "end": 1377.72, + "probability": 0.9889 + }, + { + "start": 1378.46, + "end": 1379.84, + "probability": 0.9987 + }, + { + "start": 1380.44, + "end": 1381.3, + "probability": 0.5746 + }, + { + "start": 1381.56, + "end": 1385.22, + "probability": 0.9948 + }, + { + "start": 1385.78, + "end": 1388.6, + "probability": 0.9751 + }, + { + "start": 1389.08, + "end": 1392.0, + "probability": 0.9718 + }, + { + "start": 1392.1, + "end": 1395.74, + "probability": 0.9951 + }, + { + "start": 1395.86, + "end": 1398.94, + "probability": 0.9318 + }, + { + "start": 1399.02, + "end": 1403.36, + "probability": 0.9835 + }, + { + "start": 1404.14, + "end": 1406.4, + "probability": 0.9956 + }, + { + "start": 1406.46, + "end": 1408.16, + "probability": 0.7732 + }, + { + "start": 1408.52, + "end": 1411.22, + "probability": 0.9777 + }, + { + "start": 1411.4, + "end": 1414.92, + "probability": 0.9745 + }, + { + "start": 1415.56, + "end": 1415.66, + "probability": 0.5486 + }, + { + "start": 1415.74, + "end": 1420.6, + "probability": 0.9533 + }, + { + "start": 1421.54, + "end": 1427.46, + "probability": 0.9191 + }, + { + "start": 1427.46, + "end": 1433.3, + "probability": 0.9867 + }, + { + "start": 1433.3, + "end": 1438.16, + "probability": 0.9449 + }, + { + "start": 1439.5, + "end": 1442.42, + "probability": 0.7476 + }, + { + "start": 1442.92, + "end": 1443.54, + "probability": 0.7346 + }, + { + "start": 1446.79, + "end": 1448.62, + "probability": 0.6812 + }, + { + "start": 1449.9, + "end": 1452.82, + "probability": 0.676 + }, + { + "start": 1452.94, + "end": 1457.7, + "probability": 0.9507 + }, + { + "start": 1457.7, + "end": 1461.2, + "probability": 0.9928 + }, + { + "start": 1461.98, + "end": 1465.32, + "probability": 0.9383 + }, + { + "start": 1465.46, + "end": 1466.36, + "probability": 0.9214 + }, + { + "start": 1466.86, + "end": 1469.38, + "probability": 0.8799 + }, + { + "start": 1470.04, + "end": 1483.48, + "probability": 0.2238 + }, + { + "start": 1486.48, + "end": 1487.02, + "probability": 0.1311 + }, + { + "start": 1487.02, + "end": 1487.02, + "probability": 0.1191 + }, + { + "start": 1487.02, + "end": 1487.02, + "probability": 0.198 + }, + { + "start": 1487.02, + "end": 1487.02, + "probability": 0.183 + }, + { + "start": 1487.02, + "end": 1487.02, + "probability": 0.2084 + }, + { + "start": 1487.02, + "end": 1487.61, + "probability": 0.3309 + }, + { + "start": 1490.4, + "end": 1490.62, + "probability": 0.0555 + }, + { + "start": 1490.62, + "end": 1490.62, + "probability": 0.0434 + }, + { + "start": 1490.62, + "end": 1490.62, + "probability": 0.2956 + }, + { + "start": 1490.62, + "end": 1490.62, + "probability": 0.2965 + }, + { + "start": 1490.62, + "end": 1495.86, + "probability": 0.874 + }, + { + "start": 1496.16, + "end": 1497.72, + "probability": 0.9976 + }, + { + "start": 1498.56, + "end": 1500.36, + "probability": 0.9832 + }, + { + "start": 1500.44, + "end": 1501.56, + "probability": 0.7355 + }, + { + "start": 1501.7, + "end": 1502.58, + "probability": 0.7632 + }, + { + "start": 1503.22, + "end": 1504.36, + "probability": 0.8895 + }, + { + "start": 1505.16, + "end": 1508.0, + "probability": 0.9357 + }, + { + "start": 1508.63, + "end": 1510.46, + "probability": 0.9456 + }, + { + "start": 1510.58, + "end": 1511.68, + "probability": 0.9919 + }, + { + "start": 1511.8, + "end": 1512.93, + "probability": 0.9681 + }, + { + "start": 1513.02, + "end": 1513.52, + "probability": 0.7 + }, + { + "start": 1514.46, + "end": 1516.24, + "probability": 0.7206 + }, + { + "start": 1517.12, + "end": 1520.28, + "probability": 0.8974 + }, + { + "start": 1521.22, + "end": 1526.18, + "probability": 0.9704 + }, + { + "start": 1527.08, + "end": 1529.32, + "probability": 0.6871 + }, + { + "start": 1529.76, + "end": 1530.38, + "probability": 0.7363 + }, + { + "start": 1530.54, + "end": 1530.94, + "probability": 0.9633 + }, + { + "start": 1531.06, + "end": 1532.14, + "probability": 0.98 + }, + { + "start": 1532.66, + "end": 1534.52, + "probability": 0.9853 + }, + { + "start": 1536.34, + "end": 1538.52, + "probability": 0.9576 + }, + { + "start": 1538.52, + "end": 1543.2, + "probability": 0.9151 + }, + { + "start": 1543.26, + "end": 1544.24, + "probability": 0.7318 + }, + { + "start": 1545.08, + "end": 1549.7, + "probability": 0.9767 + }, + { + "start": 1551.32, + "end": 1552.91, + "probability": 0.6274 + }, + { + "start": 1554.82, + "end": 1555.88, + "probability": 0.8413 + }, + { + "start": 1557.1, + "end": 1559.2, + "probability": 0.995 + }, + { + "start": 1559.2, + "end": 1563.98, + "probability": 0.9824 + }, + { + "start": 1564.04, + "end": 1564.5, + "probability": 0.8672 + }, + { + "start": 1564.7, + "end": 1565.28, + "probability": 0.7584 + }, + { + "start": 1565.82, + "end": 1568.08, + "probability": 0.7783 + }, + { + "start": 1569.36, + "end": 1571.46, + "probability": 0.928 + }, + { + "start": 1572.66, + "end": 1574.28, + "probability": 0.9707 + }, + { + "start": 1574.86, + "end": 1575.7, + "probability": 0.9976 + }, + { + "start": 1576.66, + "end": 1578.56, + "probability": 0.98 + }, + { + "start": 1579.2, + "end": 1583.12, + "probability": 0.4463 + }, + { + "start": 1585.66, + "end": 1586.32, + "probability": 0.9632 + }, + { + "start": 1587.3, + "end": 1589.24, + "probability": 0.5397 + }, + { + "start": 1590.1, + "end": 1594.28, + "probability": 0.946 + }, + { + "start": 1595.3, + "end": 1596.68, + "probability": 0.5399 + }, + { + "start": 1597.34, + "end": 1597.58, + "probability": 0.9348 + }, + { + "start": 1597.72, + "end": 1599.26, + "probability": 0.6027 + }, + { + "start": 1599.38, + "end": 1600.3, + "probability": 0.8204 + }, + { + "start": 1601.18, + "end": 1603.74, + "probability": 0.9886 + }, + { + "start": 1605.46, + "end": 1608.2, + "probability": 0.9029 + }, + { + "start": 1608.32, + "end": 1609.1, + "probability": 0.6042 + }, + { + "start": 1610.4, + "end": 1614.66, + "probability": 0.8198 + }, + { + "start": 1614.8, + "end": 1616.62, + "probability": 0.5096 + }, + { + "start": 1619.02, + "end": 1623.58, + "probability": 0.8407 + }, + { + "start": 1623.62, + "end": 1625.82, + "probability": 0.8738 + }, + { + "start": 1626.14, + "end": 1626.8, + "probability": 0.6214 + }, + { + "start": 1627.16, + "end": 1631.06, + "probability": 0.8746 + }, + { + "start": 1632.02, + "end": 1635.54, + "probability": 0.9927 + }, + { + "start": 1637.18, + "end": 1639.4, + "probability": 0.9779 + }, + { + "start": 1639.94, + "end": 1641.04, + "probability": 0.995 + }, + { + "start": 1641.58, + "end": 1643.14, + "probability": 0.9929 + }, + { + "start": 1643.66, + "end": 1646.22, + "probability": 0.7275 + }, + { + "start": 1646.24, + "end": 1647.94, + "probability": 0.9366 + }, + { + "start": 1649.78, + "end": 1653.36, + "probability": 0.9956 + }, + { + "start": 1654.26, + "end": 1656.32, + "probability": 0.7712 + }, + { + "start": 1656.94, + "end": 1662.84, + "probability": 0.9949 + }, + { + "start": 1663.54, + "end": 1666.54, + "probability": 0.9504 + }, + { + "start": 1667.12, + "end": 1669.6, + "probability": 0.9943 + }, + { + "start": 1670.26, + "end": 1672.14, + "probability": 0.9903 + }, + { + "start": 1673.22, + "end": 1674.16, + "probability": 0.6809 + }, + { + "start": 1674.26, + "end": 1675.58, + "probability": 0.9359 + }, + { + "start": 1675.92, + "end": 1677.0, + "probability": 0.9797 + }, + { + "start": 1677.38, + "end": 1678.24, + "probability": 0.9166 + }, + { + "start": 1678.52, + "end": 1681.07, + "probability": 0.9798 + }, + { + "start": 1682.3, + "end": 1686.76, + "probability": 0.9854 + }, + { + "start": 1687.56, + "end": 1693.2, + "probability": 0.9963 + }, + { + "start": 1693.48, + "end": 1694.94, + "probability": 0.9978 + }, + { + "start": 1695.26, + "end": 1696.64, + "probability": 0.4568 + }, + { + "start": 1697.24, + "end": 1698.6, + "probability": 0.9406 + }, + { + "start": 1699.28, + "end": 1699.63, + "probability": 0.9639 + }, + { + "start": 1700.6, + "end": 1702.44, + "probability": 0.817 + }, + { + "start": 1703.82, + "end": 1705.58, + "probability": 0.9749 + }, + { + "start": 1706.36, + "end": 1708.56, + "probability": 0.9687 + }, + { + "start": 1709.22, + "end": 1712.66, + "probability": 0.743 + }, + { + "start": 1713.48, + "end": 1715.8, + "probability": 0.967 + }, + { + "start": 1716.3, + "end": 1718.9, + "probability": 0.9314 + }, + { + "start": 1719.96, + "end": 1721.58, + "probability": 0.939 + }, + { + "start": 1722.42, + "end": 1723.16, + "probability": 0.3962 + }, + { + "start": 1723.24, + "end": 1724.06, + "probability": 0.6722 + }, + { + "start": 1724.06, + "end": 1725.4, + "probability": 0.7463 + }, + { + "start": 1725.5, + "end": 1729.48, + "probability": 0.771 + }, + { + "start": 1729.74, + "end": 1731.7, + "probability": 0.9829 + }, + { + "start": 1731.86, + "end": 1734.6, + "probability": 0.9955 + }, + { + "start": 1734.96, + "end": 1736.32, + "probability": 0.9902 + }, + { + "start": 1737.46, + "end": 1738.26, + "probability": 0.8654 + }, + { + "start": 1738.28, + "end": 1738.76, + "probability": 0.2057 + }, + { + "start": 1738.86, + "end": 1739.16, + "probability": 0.9021 + }, + { + "start": 1739.3, + "end": 1740.72, + "probability": 0.8768 + }, + { + "start": 1740.78, + "end": 1743.32, + "probability": 0.47 + }, + { + "start": 1743.82, + "end": 1745.62, + "probability": 0.3095 + }, + { + "start": 1745.68, + "end": 1746.92, + "probability": 0.5745 + }, + { + "start": 1746.92, + "end": 1747.34, + "probability": 0.4389 + }, + { + "start": 1747.48, + "end": 1748.85, + "probability": 0.0449 + }, + { + "start": 1752.2, + "end": 1755.72, + "probability": 0.6934 + }, + { + "start": 1757.92, + "end": 1759.6, + "probability": 0.7909 + }, + { + "start": 1760.54, + "end": 1763.68, + "probability": 0.8366 + }, + { + "start": 1764.76, + "end": 1767.2, + "probability": 0.9279 + }, + { + "start": 1767.88, + "end": 1770.22, + "probability": 0.9716 + }, + { + "start": 1770.72, + "end": 1774.44, + "probability": 0.9058 + }, + { + "start": 1774.7, + "end": 1775.66, + "probability": 0.8422 + }, + { + "start": 1776.38, + "end": 1782.76, + "probability": 0.9368 + }, + { + "start": 1782.86, + "end": 1784.02, + "probability": 0.8517 + }, + { + "start": 1784.54, + "end": 1785.73, + "probability": 0.7921 + }, + { + "start": 1786.26, + "end": 1788.7, + "probability": 0.7034 + }, + { + "start": 1789.14, + "end": 1792.48, + "probability": 0.9797 + }, + { + "start": 1793.04, + "end": 1796.02, + "probability": 0.9552 + }, + { + "start": 1796.12, + "end": 1797.02, + "probability": 0.8191 + }, + { + "start": 1797.96, + "end": 1798.3, + "probability": 0.18 + }, + { + "start": 1798.3, + "end": 1800.42, + "probability": 0.4128 + }, + { + "start": 1800.5, + "end": 1800.6, + "probability": 0.0009 + }, + { + "start": 1800.6, + "end": 1801.58, + "probability": 0.4444 + }, + { + "start": 1801.76, + "end": 1804.3, + "probability": 0.9663 + }, + { + "start": 1804.42, + "end": 1805.63, + "probability": 0.8569 + }, + { + "start": 1806.38, + "end": 1807.92, + "probability": 0.6665 + }, + { + "start": 1808.5, + "end": 1809.74, + "probability": 0.8383 + }, + { + "start": 1810.56, + "end": 1813.24, + "probability": 0.9657 + }, + { + "start": 1813.66, + "end": 1814.48, + "probability": 0.851 + }, + { + "start": 1815.5, + "end": 1817.36, + "probability": 0.9561 + }, + { + "start": 1817.44, + "end": 1818.88, + "probability": 0.9923 + }, + { + "start": 1819.54, + "end": 1820.12, + "probability": 0.5536 + }, + { + "start": 1820.26, + "end": 1821.04, + "probability": 0.9724 + }, + { + "start": 1821.16, + "end": 1821.98, + "probability": 0.9132 + }, + { + "start": 1822.06, + "end": 1823.74, + "probability": 0.889 + }, + { + "start": 1823.8, + "end": 1824.9, + "probability": 0.6249 + }, + { + "start": 1825.38, + "end": 1828.3, + "probability": 0.9797 + }, + { + "start": 1828.52, + "end": 1829.58, + "probability": 0.7676 + }, + { + "start": 1831.74, + "end": 1834.14, + "probability": 0.8813 + }, + { + "start": 1834.26, + "end": 1836.08, + "probability": 0.8073 + }, + { + "start": 1836.14, + "end": 1837.86, + "probability": 0.7363 + }, + { + "start": 1837.9, + "end": 1839.1, + "probability": 0.974 + }, + { + "start": 1839.1, + "end": 1841.3, + "probability": 0.9746 + }, + { + "start": 1841.52, + "end": 1843.54, + "probability": 0.8027 + }, + { + "start": 1843.54, + "end": 1845.13, + "probability": 0.8859 + }, + { + "start": 1845.96, + "end": 1846.56, + "probability": 0.5813 + }, + { + "start": 1846.62, + "end": 1851.02, + "probability": 0.9145 + }, + { + "start": 1851.1, + "end": 1851.64, + "probability": 0.4016 + }, + { + "start": 1852.5, + "end": 1856.62, + "probability": 0.7774 + }, + { + "start": 1856.98, + "end": 1857.91, + "probability": 0.8617 + }, + { + "start": 1858.26, + "end": 1862.52, + "probability": 0.9824 + }, + { + "start": 1862.58, + "end": 1864.06, + "probability": 0.6245 + }, + { + "start": 1864.38, + "end": 1865.48, + "probability": 0.8153 + }, + { + "start": 1865.54, + "end": 1868.76, + "probability": 0.6206 + }, + { + "start": 1869.22, + "end": 1872.58, + "probability": 0.9309 + }, + { + "start": 1873.22, + "end": 1874.66, + "probability": 0.6417 + }, + { + "start": 1874.74, + "end": 1878.34, + "probability": 0.946 + }, + { + "start": 1878.48, + "end": 1881.78, + "probability": 0.9648 + }, + { + "start": 1881.86, + "end": 1882.68, + "probability": 0.6113 + }, + { + "start": 1882.78, + "end": 1885.2, + "probability": 0.6579 + }, + { + "start": 1885.56, + "end": 1887.48, + "probability": 0.9537 + }, + { + "start": 1887.6, + "end": 1890.65, + "probability": 0.9237 + }, + { + "start": 1893.24, + "end": 1895.54, + "probability": 0.5004 + }, + { + "start": 1895.66, + "end": 1897.08, + "probability": 0.9471 + }, + { + "start": 1897.72, + "end": 1899.77, + "probability": 0.9651 + }, + { + "start": 1901.1, + "end": 1903.82, + "probability": 0.9878 + }, + { + "start": 1904.08, + "end": 1904.8, + "probability": 0.9412 + }, + { + "start": 1905.38, + "end": 1908.22, + "probability": 0.9966 + }, + { + "start": 1908.3, + "end": 1909.44, + "probability": 0.868 + }, + { + "start": 1911.68, + "end": 1914.94, + "probability": 0.9911 + }, + { + "start": 1914.94, + "end": 1915.8, + "probability": 0.775 + }, + { + "start": 1915.92, + "end": 1918.96, + "probability": 0.9766 + }, + { + "start": 1918.96, + "end": 1921.2, + "probability": 0.6341 + }, + { + "start": 1921.24, + "end": 1922.9, + "probability": 0.6306 + }, + { + "start": 1923.06, + "end": 1925.68, + "probability": 0.9604 + }, + { + "start": 1926.04, + "end": 1927.94, + "probability": 0.9944 + }, + { + "start": 1927.94, + "end": 1933.18, + "probability": 0.8818 + }, + { + "start": 1933.56, + "end": 1938.09, + "probability": 0.9827 + }, + { + "start": 1940.2, + "end": 1940.82, + "probability": 0.7801 + }, + { + "start": 1940.96, + "end": 1943.51, + "probability": 0.9929 + }, + { + "start": 1943.6, + "end": 1945.3, + "probability": 0.676 + }, + { + "start": 1945.3, + "end": 1945.38, + "probability": 0.3968 + }, + { + "start": 1945.38, + "end": 1945.38, + "probability": 0.5472 + }, + { + "start": 1945.38, + "end": 1945.38, + "probability": 0.5507 + }, + { + "start": 1945.38, + "end": 1947.2, + "probability": 0.8393 + }, + { + "start": 1947.28, + "end": 1948.92, + "probability": 0.4868 + }, + { + "start": 1948.92, + "end": 1951.1, + "probability": 0.9917 + }, + { + "start": 1951.32, + "end": 1951.97, + "probability": 0.8441 + }, + { + "start": 1952.18, + "end": 1952.74, + "probability": 0.773 + }, + { + "start": 1952.94, + "end": 1953.36, + "probability": 0.4211 + }, + { + "start": 1954.6, + "end": 1958.34, + "probability": 0.8781 + }, + { + "start": 1958.34, + "end": 1960.64, + "probability": 0.9561 + }, + { + "start": 1960.88, + "end": 1966.44, + "probability": 0.9954 + }, + { + "start": 1966.74, + "end": 1969.02, + "probability": 0.974 + }, + { + "start": 1969.14, + "end": 1969.7, + "probability": 0.6631 + }, + { + "start": 1970.12, + "end": 1970.42, + "probability": 0.7932 + }, + { + "start": 1970.5, + "end": 1970.98, + "probability": 0.8328 + }, + { + "start": 1971.02, + "end": 1972.34, + "probability": 0.7911 + }, + { + "start": 1972.4, + "end": 1973.06, + "probability": 0.8423 + }, + { + "start": 1973.08, + "end": 1975.2, + "probability": 0.9626 + }, + { + "start": 1975.76, + "end": 1977.92, + "probability": 0.6845 + }, + { + "start": 1978.1, + "end": 1980.18, + "probability": 0.6008 + }, + { + "start": 1980.94, + "end": 1982.58, + "probability": 0.7046 + }, + { + "start": 1983.28, + "end": 1985.04, + "probability": 0.7546 + }, + { + "start": 1985.6, + "end": 1991.2, + "probability": 0.986 + }, + { + "start": 1992.08, + "end": 1994.44, + "probability": 0.851 + }, + { + "start": 1995.0, + "end": 1997.5, + "probability": 0.7237 + }, + { + "start": 1999.18, + "end": 2003.2, + "probability": 0.8584 + }, + { + "start": 2003.2, + "end": 2007.82, + "probability": 0.6468 + }, + { + "start": 2008.4, + "end": 2010.86, + "probability": 0.7987 + }, + { + "start": 2011.44, + "end": 2012.84, + "probability": 0.7189 + }, + { + "start": 2013.24, + "end": 2015.44, + "probability": 0.9155 + }, + { + "start": 2015.52, + "end": 2019.34, + "probability": 0.792 + }, + { + "start": 2020.02, + "end": 2021.4, + "probability": 0.5298 + }, + { + "start": 2021.42, + "end": 2022.24, + "probability": 0.7362 + }, + { + "start": 2022.52, + "end": 2023.78, + "probability": 0.5897 + }, + { + "start": 2024.58, + "end": 2027.24, + "probability": 0.8984 + }, + { + "start": 2028.54, + "end": 2030.3, + "probability": 0.7967 + }, + { + "start": 2031.8, + "end": 2033.76, + "probability": 0.9593 + }, + { + "start": 2034.52, + "end": 2036.28, + "probability": 0.5629 + }, + { + "start": 2038.4, + "end": 2039.24, + "probability": 0.8009 + }, + { + "start": 2041.08, + "end": 2042.86, + "probability": 0.9882 + }, + { + "start": 2043.66, + "end": 2045.84, + "probability": 0.6833 + }, + { + "start": 2047.32, + "end": 2049.1, + "probability": 0.9795 + }, + { + "start": 2049.18, + "end": 2051.7, + "probability": 0.996 + }, + { + "start": 2052.08, + "end": 2053.66, + "probability": 0.9296 + }, + { + "start": 2055.86, + "end": 2057.64, + "probability": 0.9622 + }, + { + "start": 2058.8, + "end": 2060.38, + "probability": 0.9838 + }, + { + "start": 2061.02, + "end": 2061.04, + "probability": 0.9399 + }, + { + "start": 2062.16, + "end": 2066.88, + "probability": 0.9962 + }, + { + "start": 2067.8, + "end": 2068.36, + "probability": 0.7975 + }, + { + "start": 2068.78, + "end": 2069.18, + "probability": 0.4443 + }, + { + "start": 2069.3, + "end": 2070.68, + "probability": 0.8611 + }, + { + "start": 2071.06, + "end": 2074.78, + "probability": 0.9658 + }, + { + "start": 2075.46, + "end": 2076.38, + "probability": 0.5551 + }, + { + "start": 2077.18, + "end": 2077.56, + "probability": 0.0169 + }, + { + "start": 2078.08, + "end": 2078.08, + "probability": 0.0027 + }, + { + "start": 2078.08, + "end": 2083.02, + "probability": 0.3964 + }, + { + "start": 2083.04, + "end": 2084.96, + "probability": 0.8502 + }, + { + "start": 2085.18, + "end": 2086.94, + "probability": 0.9551 + }, + { + "start": 2087.3, + "end": 2091.22, + "probability": 0.9606 + }, + { + "start": 2091.52, + "end": 2092.5, + "probability": 0.7211 + }, + { + "start": 2092.62, + "end": 2094.0, + "probability": 0.4462 + }, + { + "start": 2094.84, + "end": 2096.86, + "probability": 0.9519 + }, + { + "start": 2097.52, + "end": 2098.44, + "probability": 0.8357 + }, + { + "start": 2099.16, + "end": 2099.98, + "probability": 0.9026 + }, + { + "start": 2101.02, + "end": 2103.84, + "probability": 0.9875 + }, + { + "start": 2104.76, + "end": 2106.0, + "probability": 0.9391 + }, + { + "start": 2106.08, + "end": 2106.98, + "probability": 0.7963 + }, + { + "start": 2107.02, + "end": 2108.3, + "probability": 0.9844 + }, + { + "start": 2109.02, + "end": 2111.8, + "probability": 0.9612 + }, + { + "start": 2111.8, + "end": 2113.12, + "probability": 0.9949 + }, + { + "start": 2113.48, + "end": 2113.98, + "probability": 0.3517 + }, + { + "start": 2115.36, + "end": 2117.72, + "probability": 0.9104 + }, + { + "start": 2120.78, + "end": 2123.62, + "probability": 0.9596 + }, + { + "start": 2124.56, + "end": 2125.26, + "probability": 0.2167 + }, + { + "start": 2125.26, + "end": 2127.52, + "probability": 0.9524 + }, + { + "start": 2127.58, + "end": 2128.66, + "probability": 0.896 + }, + { + "start": 2129.44, + "end": 2131.96, + "probability": 0.8595 + }, + { + "start": 2133.36, + "end": 2134.7, + "probability": 0.2395 + }, + { + "start": 2134.82, + "end": 2135.06, + "probability": 0.4792 + }, + { + "start": 2135.92, + "end": 2139.6, + "probability": 0.9873 + }, + { + "start": 2141.16, + "end": 2142.5, + "probability": 0.7937 + }, + { + "start": 2142.54, + "end": 2143.28, + "probability": 0.7168 + }, + { + "start": 2143.7, + "end": 2144.08, + "probability": 0.5646 + }, + { + "start": 2144.2, + "end": 2145.24, + "probability": 0.3621 + }, + { + "start": 2145.56, + "end": 2146.66, + "probability": 0.9583 + }, + { + "start": 2148.48, + "end": 2149.3, + "probability": 0.9307 + }, + { + "start": 2150.28, + "end": 2151.1, + "probability": 0.9836 + }, + { + "start": 2151.66, + "end": 2153.16, + "probability": 0.8306 + }, + { + "start": 2154.7, + "end": 2156.02, + "probability": 0.9715 + }, + { + "start": 2156.58, + "end": 2162.14, + "probability": 0.9561 + }, + { + "start": 2162.24, + "end": 2163.88, + "probability": 0.8723 + }, + { + "start": 2163.98, + "end": 2165.92, + "probability": 0.9595 + }, + { + "start": 2166.66, + "end": 2169.24, + "probability": 0.9878 + }, + { + "start": 2169.52, + "end": 2172.04, + "probability": 0.9834 + }, + { + "start": 2172.64, + "end": 2175.52, + "probability": 0.8694 + }, + { + "start": 2175.86, + "end": 2178.06, + "probability": 0.9889 + }, + { + "start": 2178.24, + "end": 2180.14, + "probability": 0.712 + }, + { + "start": 2180.24, + "end": 2181.38, + "probability": 0.9573 + }, + { + "start": 2181.92, + "end": 2183.92, + "probability": 0.938 + }, + { + "start": 2185.0, + "end": 2186.42, + "probability": 0.6547 + }, + { + "start": 2187.02, + "end": 2188.86, + "probability": 0.8864 + }, + { + "start": 2189.44, + "end": 2190.12, + "probability": 0.9185 + }, + { + "start": 2191.62, + "end": 2193.86, + "probability": 0.2902 + }, + { + "start": 2194.08, + "end": 2194.08, + "probability": 0.005 + }, + { + "start": 2194.08, + "end": 2194.6, + "probability": 0.4079 + }, + { + "start": 2194.96, + "end": 2200.14, + "probability": 0.9871 + }, + { + "start": 2200.14, + "end": 2204.46, + "probability": 0.9301 + }, + { + "start": 2204.48, + "end": 2204.66, + "probability": 0.4909 + }, + { + "start": 2204.74, + "end": 2205.3, + "probability": 0.9382 + }, + { + "start": 2205.36, + "end": 2206.2, + "probability": 0.9514 + }, + { + "start": 2206.46, + "end": 2207.34, + "probability": 0.0784 + }, + { + "start": 2208.1, + "end": 2209.22, + "probability": 0.6222 + }, + { + "start": 2209.5, + "end": 2212.7, + "probability": 0.8173 + }, + { + "start": 2212.76, + "end": 2215.56, + "probability": 0.8258 + }, + { + "start": 2215.58, + "end": 2216.96, + "probability": 0.7816 + }, + { + "start": 2217.12, + "end": 2220.86, + "probability": 0.7006 + }, + { + "start": 2220.92, + "end": 2222.68, + "probability": 0.9351 + }, + { + "start": 2222.76, + "end": 2223.7, + "probability": 0.8373 + }, + { + "start": 2224.04, + "end": 2228.46, + "probability": 0.8309 + }, + { + "start": 2229.74, + "end": 2232.92, + "probability": 0.9881 + }, + { + "start": 2234.34, + "end": 2236.28, + "probability": 0.9814 + }, + { + "start": 2236.86, + "end": 2238.86, + "probability": 0.9946 + }, + { + "start": 2239.98, + "end": 2241.4, + "probability": 0.9226 + }, + { + "start": 2241.84, + "end": 2245.62, + "probability": 0.9961 + }, + { + "start": 2246.32, + "end": 2250.0, + "probability": 0.8687 + }, + { + "start": 2250.5, + "end": 2252.38, + "probability": 0.993 + }, + { + "start": 2252.72, + "end": 2253.92, + "probability": 0.8226 + }, + { + "start": 2256.0, + "end": 2257.22, + "probability": 0.8795 + }, + { + "start": 2257.88, + "end": 2260.16, + "probability": 0.9314 + }, + { + "start": 2260.22, + "end": 2262.28, + "probability": 0.8125 + }, + { + "start": 2262.36, + "end": 2264.92, + "probability": 0.73 + }, + { + "start": 2265.1, + "end": 2269.4, + "probability": 0.9888 + }, + { + "start": 2271.4, + "end": 2274.62, + "probability": 0.9973 + }, + { + "start": 2274.62, + "end": 2280.66, + "probability": 0.6538 + }, + { + "start": 2281.88, + "end": 2285.44, + "probability": 0.841 + }, + { + "start": 2294.1, + "end": 2295.2, + "probability": 0.5698 + }, + { + "start": 2295.82, + "end": 2296.46, + "probability": 0.8205 + }, + { + "start": 2297.44, + "end": 2301.9, + "probability": 0.9771 + }, + { + "start": 2302.0, + "end": 2302.58, + "probability": 0.061 + }, + { + "start": 2302.58, + "end": 2303.24, + "probability": 0.654 + }, + { + "start": 2303.7, + "end": 2307.94, + "probability": 0.9894 + }, + { + "start": 2308.66, + "end": 2312.28, + "probability": 0.9929 + }, + { + "start": 2312.88, + "end": 2316.0, + "probability": 0.7106 + }, + { + "start": 2317.04, + "end": 2319.84, + "probability": 0.8777 + }, + { + "start": 2320.04, + "end": 2320.42, + "probability": 0.8601 + }, + { + "start": 2322.24, + "end": 2323.82, + "probability": 0.5217 + }, + { + "start": 2323.94, + "end": 2324.84, + "probability": 0.541 + }, + { + "start": 2325.86, + "end": 2327.9, + "probability": 0.6484 + }, + { + "start": 2330.02, + "end": 2333.46, + "probability": 0.8491 + }, + { + "start": 2333.46, + "end": 2338.3, + "probability": 0.9319 + }, + { + "start": 2339.42, + "end": 2341.26, + "probability": 0.9609 + }, + { + "start": 2341.42, + "end": 2342.08, + "probability": 0.804 + }, + { + "start": 2342.14, + "end": 2343.98, + "probability": 0.864 + }, + { + "start": 2345.16, + "end": 2348.44, + "probability": 0.9153 + }, + { + "start": 2348.44, + "end": 2350.96, + "probability": 0.9987 + }, + { + "start": 2352.66, + "end": 2354.88, + "probability": 0.7949 + }, + { + "start": 2355.0, + "end": 2356.98, + "probability": 0.8236 + }, + { + "start": 2357.66, + "end": 2358.78, + "probability": 0.3646 + }, + { + "start": 2359.28, + "end": 2360.4, + "probability": 0.7423 + }, + { + "start": 2360.56, + "end": 2366.92, + "probability": 0.7892 + }, + { + "start": 2368.52, + "end": 2368.64, + "probability": 0.5425 + }, + { + "start": 2368.64, + "end": 2373.82, + "probability": 0.8997 + }, + { + "start": 2375.42, + "end": 2381.1, + "probability": 0.9849 + }, + { + "start": 2381.53, + "end": 2385.62, + "probability": 0.6614 + }, + { + "start": 2386.44, + "end": 2388.22, + "probability": 0.8434 + }, + { + "start": 2389.7, + "end": 2390.7, + "probability": 0.41 + }, + { + "start": 2391.78, + "end": 2395.78, + "probability": 0.7944 + }, + { + "start": 2395.78, + "end": 2400.32, + "probability": 0.9032 + }, + { + "start": 2400.36, + "end": 2402.1, + "probability": 0.7094 + }, + { + "start": 2403.14, + "end": 2405.42, + "probability": 0.9435 + }, + { + "start": 2406.44, + "end": 2410.98, + "probability": 0.928 + }, + { + "start": 2410.98, + "end": 2414.1, + "probability": 0.9976 + }, + { + "start": 2415.3, + "end": 2419.18, + "probability": 0.9016 + }, + { + "start": 2420.16, + "end": 2424.78, + "probability": 0.9058 + }, + { + "start": 2425.84, + "end": 2428.34, + "probability": 0.895 + }, + { + "start": 2429.26, + "end": 2431.58, + "probability": 0.9883 + }, + { + "start": 2432.64, + "end": 2436.24, + "probability": 0.9821 + }, + { + "start": 2436.24, + "end": 2439.56, + "probability": 0.9959 + }, + { + "start": 2440.6, + "end": 2443.44, + "probability": 0.991 + }, + { + "start": 2444.34, + "end": 2447.42, + "probability": 0.9963 + }, + { + "start": 2448.22, + "end": 2451.34, + "probability": 0.9994 + }, + { + "start": 2451.34, + "end": 2455.22, + "probability": 0.9941 + }, + { + "start": 2455.88, + "end": 2459.08, + "probability": 0.9517 + }, + { + "start": 2459.98, + "end": 2463.28, + "probability": 0.9494 + }, + { + "start": 2463.82, + "end": 2466.46, + "probability": 0.9419 + }, + { + "start": 2467.34, + "end": 2468.28, + "probability": 0.611 + }, + { + "start": 2468.6, + "end": 2471.76, + "probability": 0.9644 + }, + { + "start": 2471.76, + "end": 2476.0, + "probability": 0.9604 + }, + { + "start": 2476.2, + "end": 2478.3, + "probability": 0.7886 + }, + { + "start": 2479.1, + "end": 2482.02, + "probability": 0.9243 + }, + { + "start": 2482.38, + "end": 2484.18, + "probability": 0.9943 + }, + { + "start": 2485.24, + "end": 2487.06, + "probability": 0.7502 + }, + { + "start": 2487.2, + "end": 2489.56, + "probability": 0.9945 + }, + { + "start": 2490.06, + "end": 2494.34, + "probability": 0.9785 + }, + { + "start": 2495.82, + "end": 2497.88, + "probability": 0.7066 + }, + { + "start": 2498.58, + "end": 2498.84, + "probability": 0.5229 + }, + { + "start": 2499.02, + "end": 2504.64, + "probability": 0.9448 + }, + { + "start": 2505.5, + "end": 2506.32, + "probability": 0.9423 + }, + { + "start": 2506.54, + "end": 2513.12, + "probability": 0.9953 + }, + { + "start": 2514.36, + "end": 2516.42, + "probability": 0.9928 + }, + { + "start": 2517.14, + "end": 2519.62, + "probability": 0.8441 + }, + { + "start": 2519.96, + "end": 2521.46, + "probability": 0.8799 + }, + { + "start": 2521.54, + "end": 2524.16, + "probability": 0.9717 + }, + { + "start": 2524.2, + "end": 2527.0, + "probability": 0.9909 + }, + { + "start": 2527.48, + "end": 2528.32, + "probability": 0.9797 + }, + { + "start": 2528.9, + "end": 2535.06, + "probability": 0.9185 + }, + { + "start": 2535.24, + "end": 2536.98, + "probability": 0.7228 + }, + { + "start": 2537.54, + "end": 2540.6, + "probability": 0.6705 + }, + { + "start": 2541.06, + "end": 2544.46, + "probability": 0.9514 + }, + { + "start": 2544.66, + "end": 2545.32, + "probability": 0.6912 + }, + { + "start": 2545.96, + "end": 2550.4, + "probability": 0.7925 + }, + { + "start": 2551.04, + "end": 2556.94, + "probability": 0.9937 + }, + { + "start": 2557.34, + "end": 2560.84, + "probability": 0.979 + }, + { + "start": 2561.08, + "end": 2563.32, + "probability": 0.8108 + }, + { + "start": 2563.76, + "end": 2567.6, + "probability": 0.9321 + }, + { + "start": 2568.22, + "end": 2572.92, + "probability": 0.849 + }, + { + "start": 2572.92, + "end": 2578.28, + "probability": 0.9597 + }, + { + "start": 2578.5, + "end": 2579.04, + "probability": 0.3343 + }, + { + "start": 2579.26, + "end": 2580.8, + "probability": 0.7955 + }, + { + "start": 2581.1, + "end": 2583.84, + "probability": 0.493 + }, + { + "start": 2583.88, + "end": 2586.02, + "probability": 0.9917 + }, + { + "start": 2586.16, + "end": 2586.42, + "probability": 0.8484 + }, + { + "start": 2586.64, + "end": 2588.32, + "probability": 0.8953 + }, + { + "start": 2588.42, + "end": 2590.04, + "probability": 0.7002 + }, + { + "start": 2591.04, + "end": 2594.74, + "probability": 0.8013 + }, + { + "start": 2594.9, + "end": 2595.68, + "probability": 0.6237 + }, + { + "start": 2596.56, + "end": 2597.52, + "probability": 0.5715 + }, + { + "start": 2597.52, + "end": 2599.03, + "probability": 0.873 + }, + { + "start": 2599.5, + "end": 2601.8, + "probability": 0.6829 + }, + { + "start": 2603.18, + "end": 2605.36, + "probability": 0.4803 + }, + { + "start": 2605.66, + "end": 2606.28, + "probability": 0.7913 + }, + { + "start": 2606.32, + "end": 2607.0, + "probability": 0.6182 + }, + { + "start": 2607.12, + "end": 2607.96, + "probability": 0.6732 + }, + { + "start": 2608.1, + "end": 2610.36, + "probability": 0.885 + }, + { + "start": 2610.36, + "end": 2613.18, + "probability": 0.7598 + }, + { + "start": 2615.84, + "end": 2616.42, + "probability": 0.0349 + }, + { + "start": 2616.42, + "end": 2617.59, + "probability": 0.2238 + }, + { + "start": 2617.78, + "end": 2618.84, + "probability": 0.5838 + }, + { + "start": 2619.2, + "end": 2619.2, + "probability": 0.0505 + }, + { + "start": 2619.2, + "end": 2622.04, + "probability": 0.6028 + }, + { + "start": 2622.04, + "end": 2626.64, + "probability": 0.7079 + }, + { + "start": 2627.06, + "end": 2631.14, + "probability": 0.9018 + }, + { + "start": 2631.5, + "end": 2635.78, + "probability": 0.9889 + }, + { + "start": 2636.3, + "end": 2640.4, + "probability": 0.9839 + }, + { + "start": 2640.9, + "end": 2644.18, + "probability": 0.9679 + }, + { + "start": 2644.34, + "end": 2645.42, + "probability": 0.5468 + }, + { + "start": 2645.7, + "end": 2648.04, + "probability": 0.9384 + }, + { + "start": 2648.12, + "end": 2648.96, + "probability": 0.9631 + }, + { + "start": 2649.12, + "end": 2650.0, + "probability": 0.9641 + }, + { + "start": 2650.18, + "end": 2651.36, + "probability": 0.8623 + }, + { + "start": 2651.74, + "end": 2653.88, + "probability": 0.9448 + }, + { + "start": 2654.14, + "end": 2656.92, + "probability": 0.8828 + }, + { + "start": 2657.12, + "end": 2659.24, + "probability": 0.5172 + }, + { + "start": 2659.28, + "end": 2660.5, + "probability": 0.7869 + }, + { + "start": 2660.8, + "end": 2662.28, + "probability": 0.6222 + }, + { + "start": 2662.36, + "end": 2662.92, + "probability": 0.9222 + }, + { + "start": 2663.18, + "end": 2664.42, + "probability": 0.9594 + }, + { + "start": 2664.76, + "end": 2666.6, + "probability": 0.8347 + }, + { + "start": 2666.6, + "end": 2667.64, + "probability": 0.9412 + }, + { + "start": 2667.96, + "end": 2668.66, + "probability": 0.2498 + }, + { + "start": 2669.12, + "end": 2669.88, + "probability": 0.5551 + }, + { + "start": 2670.16, + "end": 2673.78, + "probability": 0.6364 + }, + { + "start": 2674.26, + "end": 2675.68, + "probability": 0.7004 + }, + { + "start": 2675.76, + "end": 2676.82, + "probability": 0.7892 + }, + { + "start": 2676.92, + "end": 2678.58, + "probability": 0.9296 + }, + { + "start": 2678.66, + "end": 2679.52, + "probability": 0.9338 + }, + { + "start": 2679.82, + "end": 2682.42, + "probability": 0.9976 + }, + { + "start": 2682.42, + "end": 2685.84, + "probability": 0.9756 + }, + { + "start": 2686.93, + "end": 2691.74, + "probability": 0.9988 + }, + { + "start": 2691.94, + "end": 2693.06, + "probability": 0.7998 + }, + { + "start": 2693.1, + "end": 2694.98, + "probability": 0.9948 + }, + { + "start": 2695.34, + "end": 2695.72, + "probability": 0.9373 + }, + { + "start": 2696.06, + "end": 2697.54, + "probability": 0.2922 + }, + { + "start": 2697.76, + "end": 2700.68, + "probability": 0.6733 + }, + { + "start": 2706.8, + "end": 2707.16, + "probability": 0.736 + }, + { + "start": 2707.94, + "end": 2709.92, + "probability": 0.7137 + }, + { + "start": 2711.28, + "end": 2719.64, + "probability": 0.9911 + }, + { + "start": 2720.54, + "end": 2721.46, + "probability": 0.8955 + }, + { + "start": 2722.22, + "end": 2733.51, + "probability": 0.9905 + }, + { + "start": 2734.28, + "end": 2735.06, + "probability": 0.6022 + }, + { + "start": 2736.22, + "end": 2741.24, + "probability": 0.8265 + }, + { + "start": 2742.1, + "end": 2742.52, + "probability": 0.7183 + }, + { + "start": 2742.68, + "end": 2747.38, + "probability": 0.9954 + }, + { + "start": 2748.3, + "end": 2751.33, + "probability": 0.8869 + }, + { + "start": 2751.56, + "end": 2753.3, + "probability": 0.9736 + }, + { + "start": 2754.42, + "end": 2755.78, + "probability": 0.6591 + }, + { + "start": 2755.88, + "end": 2760.62, + "probability": 0.9718 + }, + { + "start": 2761.0, + "end": 2763.32, + "probability": 0.9697 + }, + { + "start": 2763.6, + "end": 2766.56, + "probability": 0.7228 + }, + { + "start": 2768.72, + "end": 2775.6, + "probability": 0.953 + }, + { + "start": 2775.94, + "end": 2776.54, + "probability": 0.708 + }, + { + "start": 2776.7, + "end": 2777.48, + "probability": 0.6847 + }, + { + "start": 2777.6, + "end": 2778.28, + "probability": 0.9274 + }, + { + "start": 2778.48, + "end": 2779.42, + "probability": 0.9685 + }, + { + "start": 2780.04, + "end": 2781.0, + "probability": 0.6182 + }, + { + "start": 2783.58, + "end": 2787.38, + "probability": 0.7588 + }, + { + "start": 2787.48, + "end": 2788.34, + "probability": 0.7503 + }, + { + "start": 2788.4, + "end": 2790.0, + "probability": 0.9532 + }, + { + "start": 2790.34, + "end": 2792.8, + "probability": 0.9539 + }, + { + "start": 2793.38, + "end": 2795.58, + "probability": 0.6729 + }, + { + "start": 2795.62, + "end": 2796.38, + "probability": 0.6746 + }, + { + "start": 2796.74, + "end": 2801.9, + "probability": 0.9778 + }, + { + "start": 2802.1, + "end": 2803.76, + "probability": 0.8999 + }, + { + "start": 2804.74, + "end": 2809.6, + "probability": 0.6969 + }, + { + "start": 2810.26, + "end": 2811.5, + "probability": 0.8921 + }, + { + "start": 2811.68, + "end": 2815.3, + "probability": 0.9839 + }, + { + "start": 2815.88, + "end": 2820.58, + "probability": 0.7607 + }, + { + "start": 2821.28, + "end": 2823.94, + "probability": 0.5641 + }, + { + "start": 2823.96, + "end": 2825.86, + "probability": 0.9148 + }, + { + "start": 2825.94, + "end": 2827.38, + "probability": 0.2207 + }, + { + "start": 2827.92, + "end": 2830.88, + "probability": 0.9198 + }, + { + "start": 2830.92, + "end": 2834.72, + "probability": 0.5624 + }, + { + "start": 2835.38, + "end": 2839.3, + "probability": 0.9681 + }, + { + "start": 2841.62, + "end": 2845.4, + "probability": 0.9469 + }, + { + "start": 2846.76, + "end": 2851.48, + "probability": 0.7149 + }, + { + "start": 2852.24, + "end": 2855.53, + "probability": 0.9882 + }, + { + "start": 2855.8, + "end": 2856.95, + "probability": 0.9968 + }, + { + "start": 2857.96, + "end": 2860.5, + "probability": 0.6021 + }, + { + "start": 2860.7, + "end": 2861.74, + "probability": 0.9176 + }, + { + "start": 2864.78, + "end": 2867.86, + "probability": 0.4975 + }, + { + "start": 2869.32, + "end": 2870.64, + "probability": 0.1237 + }, + { + "start": 2871.2, + "end": 2872.96, + "probability": 0.9779 + }, + { + "start": 2873.74, + "end": 2877.74, + "probability": 0.9907 + }, + { + "start": 2877.82, + "end": 2878.88, + "probability": 0.6721 + }, + { + "start": 2879.66, + "end": 2881.14, + "probability": 0.8329 + }, + { + "start": 2881.24, + "end": 2882.94, + "probability": 0.8606 + }, + { + "start": 2883.72, + "end": 2884.2, + "probability": 0.7509 + }, + { + "start": 2884.54, + "end": 2887.74, + "probability": 0.8212 + }, + { + "start": 2887.86, + "end": 2890.04, + "probability": 0.6806 + }, + { + "start": 2890.7, + "end": 2891.82, + "probability": 0.8112 + }, + { + "start": 2892.0, + "end": 2895.16, + "probability": 0.9679 + }, + { + "start": 2895.66, + "end": 2901.84, + "probability": 0.9897 + }, + { + "start": 2901.84, + "end": 2907.64, + "probability": 0.8892 + }, + { + "start": 2908.54, + "end": 2909.84, + "probability": 0.0397 + }, + { + "start": 2910.86, + "end": 2911.7, + "probability": 0.6867 + }, + { + "start": 2911.9, + "end": 2913.18, + "probability": 0.9269 + }, + { + "start": 2913.58, + "end": 2914.94, + "probability": 0.9379 + }, + { + "start": 2915.4, + "end": 2917.36, + "probability": 0.5767 + }, + { + "start": 2918.34, + "end": 2921.88, + "probability": 0.6812 + }, + { + "start": 2923.06, + "end": 2925.46, + "probability": 0.6664 + }, + { + "start": 2925.6, + "end": 2927.34, + "probability": 0.8775 + }, + { + "start": 2927.34, + "end": 2929.48, + "probability": 0.9434 + }, + { + "start": 2930.37, + "end": 2933.56, + "probability": 0.9858 + }, + { + "start": 2934.2, + "end": 2942.4, + "probability": 0.7115 + }, + { + "start": 2942.81, + "end": 2948.2, + "probability": 0.9888 + }, + { + "start": 2948.46, + "end": 2949.23, + "probability": 0.923 + }, + { + "start": 2950.16, + "end": 2951.08, + "probability": 0.5555 + }, + { + "start": 2951.22, + "end": 2951.76, + "probability": 0.7235 + }, + { + "start": 2951.92, + "end": 2953.42, + "probability": 0.9938 + }, + { + "start": 2954.52, + "end": 2957.32, + "probability": 0.8807 + }, + { + "start": 2957.44, + "end": 2959.56, + "probability": 0.9183 + }, + { + "start": 2959.93, + "end": 2962.36, + "probability": 0.9385 + }, + { + "start": 2962.48, + "end": 2963.75, + "probability": 0.9044 + }, + { + "start": 2963.82, + "end": 2964.36, + "probability": 0.918 + }, + { + "start": 2965.0, + "end": 2966.66, + "probability": 0.9917 + }, + { + "start": 2966.82, + "end": 2967.7, + "probability": 0.9434 + }, + { + "start": 2967.94, + "end": 2969.98, + "probability": 0.9717 + }, + { + "start": 2970.34, + "end": 2972.04, + "probability": 0.7648 + }, + { + "start": 2972.18, + "end": 2973.26, + "probability": 0.7399 + }, + { + "start": 2973.62, + "end": 2977.8, + "probability": 0.6487 + }, + { + "start": 2977.92, + "end": 2980.62, + "probability": 0.9961 + }, + { + "start": 2980.86, + "end": 2981.42, + "probability": 0.7726 + }, + { + "start": 2981.72, + "end": 2983.76, + "probability": 0.9712 + }, + { + "start": 2983.96, + "end": 2987.64, + "probability": 0.6471 + }, + { + "start": 2987.7, + "end": 2988.48, + "probability": 0.6216 + }, + { + "start": 2997.2, + "end": 3001.6, + "probability": 0.8922 + }, + { + "start": 3001.68, + "end": 3003.42, + "probability": 0.1637 + }, + { + "start": 3004.02, + "end": 3007.42, + "probability": 0.972 + }, + { + "start": 3007.98, + "end": 3008.9, + "probability": 0.7052 + }, + { + "start": 3014.38, + "end": 3014.86, + "probability": 0.4085 + }, + { + "start": 3019.4, + "end": 3021.48, + "probability": 0.8806 + }, + { + "start": 3022.1, + "end": 3024.98, + "probability": 0.814 + }, + { + "start": 3024.98, + "end": 3029.48, + "probability": 0.7245 + }, + { + "start": 3029.56, + "end": 3030.0, + "probability": 0.8004 + }, + { + "start": 3030.06, + "end": 3032.8, + "probability": 0.9318 + }, + { + "start": 3034.12, + "end": 3038.46, + "probability": 0.6236 + }, + { + "start": 3039.58, + "end": 3042.48, + "probability": 0.7806 + }, + { + "start": 3043.2, + "end": 3045.2, + "probability": 0.9387 + }, + { + "start": 3045.76, + "end": 3048.16, + "probability": 0.9372 + }, + { + "start": 3048.26, + "end": 3052.06, + "probability": 0.7888 + }, + { + "start": 3053.12, + "end": 3055.56, + "probability": 0.9869 + }, + { + "start": 3055.58, + "end": 3056.24, + "probability": 0.6915 + }, + { + "start": 3056.3, + "end": 3061.46, + "probability": 0.9609 + }, + { + "start": 3070.62, + "end": 3070.82, + "probability": 0.2763 + }, + { + "start": 3076.58, + "end": 3076.88, + "probability": 0.2078 + }, + { + "start": 3076.88, + "end": 3078.32, + "probability": 0.6326 + }, + { + "start": 3079.14, + "end": 3082.86, + "probability": 0.8527 + }, + { + "start": 3082.86, + "end": 3087.16, + "probability": 0.8689 + }, + { + "start": 3087.36, + "end": 3088.66, + "probability": 0.744 + }, + { + "start": 3089.4, + "end": 3092.54, + "probability": 0.9955 + }, + { + "start": 3092.54, + "end": 3099.56, + "probability": 0.9322 + }, + { + "start": 3099.64, + "end": 3102.62, + "probability": 0.7818 + }, + { + "start": 3102.66, + "end": 3105.8, + "probability": 0.8701 + }, + { + "start": 3106.2, + "end": 3109.12, + "probability": 0.9753 + }, + { + "start": 3109.74, + "end": 3110.72, + "probability": 0.5187 + }, + { + "start": 3110.9, + "end": 3114.14, + "probability": 0.9878 + }, + { + "start": 3114.2, + "end": 3116.18, + "probability": 0.6953 + }, + { + "start": 3116.68, + "end": 3118.8, + "probability": 0.9821 + }, + { + "start": 3118.92, + "end": 3119.7, + "probability": 0.6392 + }, + { + "start": 3120.34, + "end": 3124.92, + "probability": 0.9236 + }, + { + "start": 3125.02, + "end": 3126.13, + "probability": 0.7265 + }, + { + "start": 3126.66, + "end": 3131.82, + "probability": 0.9321 + }, + { + "start": 3132.16, + "end": 3132.44, + "probability": 0.6198 + }, + { + "start": 3132.6, + "end": 3134.04, + "probability": 0.8701 + }, + { + "start": 3134.76, + "end": 3137.24, + "probability": 0.7794 + }, + { + "start": 3137.72, + "end": 3139.22, + "probability": 0.9201 + }, + { + "start": 3139.74, + "end": 3142.52, + "probability": 0.8583 + }, + { + "start": 3143.38, + "end": 3146.8, + "probability": 0.9513 + }, + { + "start": 3146.92, + "end": 3150.1, + "probability": 0.6649 + }, + { + "start": 3150.1, + "end": 3153.94, + "probability": 0.9101 + }, + { + "start": 3154.64, + "end": 3155.28, + "probability": 0.7003 + }, + { + "start": 3155.42, + "end": 3156.82, + "probability": 0.9629 + }, + { + "start": 3157.02, + "end": 3158.12, + "probability": 0.9963 + }, + { + "start": 3158.18, + "end": 3159.22, + "probability": 0.998 + }, + { + "start": 3159.26, + "end": 3159.88, + "probability": 0.7398 + }, + { + "start": 3159.96, + "end": 3161.84, + "probability": 0.9534 + }, + { + "start": 3162.02, + "end": 3162.94, + "probability": 0.8673 + }, + { + "start": 3163.2, + "end": 3165.5, + "probability": 0.8034 + }, + { + "start": 3166.28, + "end": 3167.36, + "probability": 0.7971 + }, + { + "start": 3167.5, + "end": 3167.6, + "probability": 0.3429 + }, + { + "start": 3167.68, + "end": 3168.72, + "probability": 0.7724 + }, + { + "start": 3168.78, + "end": 3170.4, + "probability": 0.9221 + }, + { + "start": 3170.74, + "end": 3171.4, + "probability": 0.4867 + }, + { + "start": 3172.76, + "end": 3174.94, + "probability": 0.8695 + }, + { + "start": 3175.0, + "end": 3175.92, + "probability": 0.933 + }, + { + "start": 3175.96, + "end": 3179.32, + "probability": 0.0718 + }, + { + "start": 3179.32, + "end": 3181.08, + "probability": 0.8328 + }, + { + "start": 3181.22, + "end": 3183.11, + "probability": 0.6688 + }, + { + "start": 3183.46, + "end": 3189.24, + "probability": 0.9854 + }, + { + "start": 3189.24, + "end": 3192.1, + "probability": 0.9801 + }, + { + "start": 3192.2, + "end": 3193.0, + "probability": 0.8427 + }, + { + "start": 3193.12, + "end": 3194.3, + "probability": 0.8109 + }, + { + "start": 3194.44, + "end": 3195.32, + "probability": 0.7256 + }, + { + "start": 3195.42, + "end": 3196.2, + "probability": 0.7494 + }, + { + "start": 3196.3, + "end": 3197.56, + "probability": 0.8374 + }, + { + "start": 3197.77, + "end": 3200.2, + "probability": 0.888 + }, + { + "start": 3200.2, + "end": 3200.74, + "probability": 0.7661 + }, + { + "start": 3201.06, + "end": 3201.99, + "probability": 0.1157 + }, + { + "start": 3203.02, + "end": 3207.32, + "probability": 0.6801 + }, + { + "start": 3208.26, + "end": 3210.22, + "probability": 0.4271 + }, + { + "start": 3210.32, + "end": 3210.84, + "probability": 0.8999 + }, + { + "start": 3210.92, + "end": 3212.98, + "probability": 0.7877 + }, + { + "start": 3213.04, + "end": 3213.78, + "probability": 0.8461 + }, + { + "start": 3213.98, + "end": 3215.76, + "probability": 0.6053 + }, + { + "start": 3216.1, + "end": 3218.72, + "probability": 0.9643 + }, + { + "start": 3219.04, + "end": 3222.62, + "probability": 0.9762 + }, + { + "start": 3222.88, + "end": 3223.14, + "probability": 0.9532 + }, + { + "start": 3223.22, + "end": 3228.28, + "probability": 0.6942 + }, + { + "start": 3228.42, + "end": 3230.62, + "probability": 0.6058 + }, + { + "start": 3230.86, + "end": 3233.0, + "probability": 0.1483 + }, + { + "start": 3233.58, + "end": 3234.92, + "probability": 0.5369 + }, + { + "start": 3235.04, + "end": 3235.58, + "probability": 0.3817 + }, + { + "start": 3235.68, + "end": 3238.65, + "probability": 0.7111 + }, + { + "start": 3239.96, + "end": 3239.96, + "probability": 0.0172 + }, + { + "start": 3239.96, + "end": 3239.96, + "probability": 0.1323 + }, + { + "start": 3239.96, + "end": 3240.64, + "probability": 0.6284 + }, + { + "start": 3240.92, + "end": 3243.18, + "probability": 0.772 + }, + { + "start": 3243.26, + "end": 3243.52, + "probability": 0.7827 + }, + { + "start": 3243.6, + "end": 3244.39, + "probability": 0.9551 + }, + { + "start": 3244.6, + "end": 3246.56, + "probability": 0.6343 + }, + { + "start": 3246.9, + "end": 3247.7, + "probability": 0.9477 + }, + { + "start": 3247.78, + "end": 3250.94, + "probability": 0.9191 + }, + { + "start": 3251.06, + "end": 3252.21, + "probability": 0.9575 + }, + { + "start": 3252.54, + "end": 3255.6, + "probability": 0.9124 + }, + { + "start": 3255.72, + "end": 3257.82, + "probability": 0.2362 + }, + { + "start": 3258.44, + "end": 3260.82, + "probability": 0.9011 + }, + { + "start": 3260.92, + "end": 3262.18, + "probability": 0.8601 + }, + { + "start": 3262.3, + "end": 3262.92, + "probability": 0.5839 + }, + { + "start": 3262.98, + "end": 3263.58, + "probability": 0.5918 + }, + { + "start": 3263.64, + "end": 3264.32, + "probability": 0.735 + }, + { + "start": 3265.38, + "end": 3266.72, + "probability": 0.2004 + }, + { + "start": 3268.96, + "end": 3269.88, + "probability": 0.0604 + }, + { + "start": 3271.28, + "end": 3272.22, + "probability": 0.1568 + }, + { + "start": 3282.4, + "end": 3289.84, + "probability": 0.0978 + }, + { + "start": 3289.84, + "end": 3290.76, + "probability": 0.0627 + }, + { + "start": 3290.78, + "end": 3292.62, + "probability": 0.214 + }, + { + "start": 3292.68, + "end": 3295.89, + "probability": 0.5534 + }, + { + "start": 3298.2, + "end": 3298.2, + "probability": 0.8606 + }, + { + "start": 3298.2, + "end": 3301.06, + "probability": 0.7705 + }, + { + "start": 3303.22, + "end": 3304.14, + "probability": 0.0911 + }, + { + "start": 3304.16, + "end": 3307.44, + "probability": 0.0546 + }, + { + "start": 3307.46, + "end": 3309.9, + "probability": 0.0811 + }, + { + "start": 3310.88, + "end": 3313.58, + "probability": 0.2358 + }, + { + "start": 3338.0, + "end": 3338.0, + "probability": 0.0 + }, + { + "start": 3338.0, + "end": 3338.0, + "probability": 0.0 + }, + { + "start": 3338.0, + "end": 3338.0, + "probability": 0.0 + }, + { + "start": 3338.0, + "end": 3338.0, + "probability": 0.0 + }, + { + "start": 3338.0, + "end": 3338.0, + "probability": 0.0 + }, + { + "start": 3338.0, + "end": 3338.0, + "probability": 0.0 + }, + { + "start": 3338.0, + "end": 3338.0, + "probability": 0.0 + }, + { + "start": 3338.0, + "end": 3338.0, + "probability": 0.0 + }, + { + "start": 3338.0, + "end": 3338.0, + "probability": 0.0 + }, + { + "start": 3338.0, + "end": 3338.0, + "probability": 0.0 + }, + { + "start": 3338.0, + "end": 3338.0, + "probability": 0.0 + }, + { + "start": 3338.0, + "end": 3338.0, + "probability": 0.0 + }, + { + "start": 3338.0, + "end": 3338.0, + "probability": 0.0 + }, + { + "start": 3338.26, + "end": 3338.34, + "probability": 0.0888 + }, + { + "start": 3338.34, + "end": 3338.34, + "probability": 0.0723 + }, + { + "start": 3338.34, + "end": 3339.93, + "probability": 0.7013 + }, + { + "start": 3340.1, + "end": 3343.04, + "probability": 0.9872 + }, + { + "start": 3343.38, + "end": 3345.0, + "probability": 0.7903 + }, + { + "start": 3345.28, + "end": 3349.1, + "probability": 0.9932 + }, + { + "start": 3349.76, + "end": 3353.22, + "probability": 0.9955 + }, + { + "start": 3353.74, + "end": 3356.18, + "probability": 0.9435 + }, + { + "start": 3356.28, + "end": 3359.22, + "probability": 0.8628 + }, + { + "start": 3359.34, + "end": 3360.16, + "probability": 0.5118 + }, + { + "start": 3360.54, + "end": 3363.34, + "probability": 0.9911 + }, + { + "start": 3363.82, + "end": 3368.98, + "probability": 0.9225 + }, + { + "start": 3369.46, + "end": 3375.96, + "probability": 0.6069 + }, + { + "start": 3375.96, + "end": 3379.86, + "probability": 0.7948 + }, + { + "start": 3380.38, + "end": 3382.26, + "probability": 0.9668 + }, + { + "start": 3383.28, + "end": 3385.68, + "probability": 0.8198 + }, + { + "start": 3386.16, + "end": 3389.2, + "probability": 0.8213 + }, + { + "start": 3389.2, + "end": 3389.86, + "probability": 0.8287 + }, + { + "start": 3409.82, + "end": 3410.2, + "probability": 0.5011 + }, + { + "start": 3410.24, + "end": 3411.26, + "probability": 0.939 + }, + { + "start": 3411.4, + "end": 3413.62, + "probability": 0.9735 + }, + { + "start": 3413.96, + "end": 3415.2, + "probability": 0.6283 + }, + { + "start": 3415.78, + "end": 3419.65, + "probability": 0.9622 + }, + { + "start": 3421.02, + "end": 3423.6, + "probability": 0.4419 + }, + { + "start": 3424.18, + "end": 3425.14, + "probability": 0.6818 + }, + { + "start": 3425.14, + "end": 3425.32, + "probability": 0.0961 + }, + { + "start": 3425.38, + "end": 3428.62, + "probability": 0.7998 + }, + { + "start": 3429.86, + "end": 3432.56, + "probability": 0.9897 + }, + { + "start": 3432.56, + "end": 3436.86, + "probability": 0.9905 + }, + { + "start": 3437.6, + "end": 3439.2, + "probability": 0.9863 + }, + { + "start": 3439.26, + "end": 3441.01, + "probability": 0.9598 + }, + { + "start": 3441.57, + "end": 3444.24, + "probability": 0.9521 + }, + { + "start": 3444.66, + "end": 3449.52, + "probability": 0.9565 + }, + { + "start": 3449.66, + "end": 3455.46, + "probability": 0.9888 + }, + { + "start": 3455.64, + "end": 3456.44, + "probability": 0.7218 + }, + { + "start": 3457.38, + "end": 3458.98, + "probability": 0.7476 + }, + { + "start": 3459.12, + "end": 3462.12, + "probability": 0.6424 + }, + { + "start": 3462.32, + "end": 3463.22, + "probability": 0.6625 + }, + { + "start": 3463.78, + "end": 3465.6, + "probability": 0.5714 + }, + { + "start": 3465.8, + "end": 3469.38, + "probability": 0.8218 + }, + { + "start": 3470.24, + "end": 3474.7, + "probability": 0.9639 + }, + { + "start": 3474.7, + "end": 3476.98, + "probability": 0.9922 + }, + { + "start": 3476.98, + "end": 3480.86, + "probability": 0.9956 + }, + { + "start": 3481.04, + "end": 3484.18, + "probability": 0.6821 + }, + { + "start": 3484.36, + "end": 3486.6, + "probability": 0.6916 + }, + { + "start": 3487.34, + "end": 3491.14, + "probability": 0.967 + }, + { + "start": 3492.32, + "end": 3494.88, + "probability": 0.9302 + }, + { + "start": 3494.88, + "end": 3498.96, + "probability": 0.8348 + }, + { + "start": 3500.08, + "end": 3502.2, + "probability": 0.1492 + }, + { + "start": 3502.34, + "end": 3502.74, + "probability": 0.4271 + }, + { + "start": 3502.76, + "end": 3503.36, + "probability": 0.6466 + }, + { + "start": 3503.44, + "end": 3508.58, + "probability": 0.8392 + }, + { + "start": 3509.32, + "end": 3513.94, + "probability": 0.9162 + }, + { + "start": 3513.94, + "end": 3517.58, + "probability": 0.8398 + }, + { + "start": 3518.28, + "end": 3521.7, + "probability": 0.8785 + }, + { + "start": 3523.0, + "end": 3525.4, + "probability": 0.9921 + }, + { + "start": 3525.5, + "end": 3528.96, + "probability": 0.9197 + }, + { + "start": 3529.08, + "end": 3532.02, + "probability": 0.7035 + }, + { + "start": 3532.02, + "end": 3536.64, + "probability": 0.942 + }, + { + "start": 3536.74, + "end": 3540.36, + "probability": 0.9002 + }, + { + "start": 3541.02, + "end": 3541.62, + "probability": 0.6074 + }, + { + "start": 3541.7, + "end": 3543.12, + "probability": 0.9939 + }, + { + "start": 3543.18, + "end": 3545.62, + "probability": 0.9957 + }, + { + "start": 3546.34, + "end": 3550.48, + "probability": 0.9674 + }, + { + "start": 3550.7, + "end": 3553.46, + "probability": 0.8299 + }, + { + "start": 3554.06, + "end": 3554.98, + "probability": 0.5213 + }, + { + "start": 3555.14, + "end": 3556.14, + "probability": 0.8551 + }, + { + "start": 3556.2, + "end": 3556.72, + "probability": 0.6744 + }, + { + "start": 3556.76, + "end": 3558.27, + "probability": 0.9878 + }, + { + "start": 3559.64, + "end": 3563.84, + "probability": 0.9814 + }, + { + "start": 3563.84, + "end": 3568.24, + "probability": 0.9601 + }, + { + "start": 3569.04, + "end": 3571.38, + "probability": 0.8686 + }, + { + "start": 3571.9, + "end": 3574.04, + "probability": 0.7483 + }, + { + "start": 3574.6, + "end": 3577.6, + "probability": 0.9731 + }, + { + "start": 3578.14, + "end": 3583.68, + "probability": 0.959 + }, + { + "start": 3584.56, + "end": 3584.86, + "probability": 0.2573 + }, + { + "start": 3585.02, + "end": 3585.48, + "probability": 0.668 + }, + { + "start": 3585.58, + "end": 3589.98, + "probability": 0.9933 + }, + { + "start": 3590.52, + "end": 3593.56, + "probability": 0.9947 + }, + { + "start": 3593.56, + "end": 3595.44, + "probability": 0.9443 + }, + { + "start": 3595.84, + "end": 3596.4, + "probability": 0.755 + }, + { + "start": 3597.46, + "end": 3599.56, + "probability": 0.6931 + }, + { + "start": 3599.68, + "end": 3601.24, + "probability": 0.6491 + }, + { + "start": 3601.34, + "end": 3604.5, + "probability": 0.9749 + }, + { + "start": 3609.8, + "end": 3611.9, + "probability": 0.6898 + }, + { + "start": 3612.56, + "end": 3614.64, + "probability": 0.5996 + }, + { + "start": 3614.7, + "end": 3615.2, + "probability": 0.8818 + }, + { + "start": 3615.42, + "end": 3617.9, + "probability": 0.7764 + }, + { + "start": 3617.9, + "end": 3619.02, + "probability": 0.2487 + }, + { + "start": 3619.06, + "end": 3621.48, + "probability": 0.397 + }, + { + "start": 3621.62, + "end": 3622.26, + "probability": 0.7674 + }, + { + "start": 3622.46, + "end": 3623.34, + "probability": 0.9587 + }, + { + "start": 3623.54, + "end": 3624.82, + "probability": 0.5384 + }, + { + "start": 3624.84, + "end": 3627.88, + "probability": 0.4014 + }, + { + "start": 3627.96, + "end": 3630.82, + "probability": 0.7583 + }, + { + "start": 3630.82, + "end": 3633.06, + "probability": 0.8762 + }, + { + "start": 3633.06, + "end": 3635.7, + "probability": 0.5547 + }, + { + "start": 3635.82, + "end": 3637.96, + "probability": 0.3251 + }, + { + "start": 3637.96, + "end": 3639.04, + "probability": 0.2968 + }, + { + "start": 3639.46, + "end": 3640.36, + "probability": 0.6553 + }, + { + "start": 3640.62, + "end": 3640.7, + "probability": 0.1491 + }, + { + "start": 3640.7, + "end": 3642.29, + "probability": 0.5857 + }, + { + "start": 3642.54, + "end": 3643.04, + "probability": 0.0478 + }, + { + "start": 3643.06, + "end": 3644.86, + "probability": 0.3978 + }, + { + "start": 3644.86, + "end": 3645.65, + "probability": 0.1876 + }, + { + "start": 3647.62, + "end": 3649.62, + "probability": 0.0864 + }, + { + "start": 3649.7, + "end": 3651.66, + "probability": 0.9746 + }, + { + "start": 3651.78, + "end": 3653.07, + "probability": 0.9842 + }, + { + "start": 3653.18, + "end": 3654.16, + "probability": 0.6508 + }, + { + "start": 3654.8, + "end": 3655.32, + "probability": 0.1065 + }, + { + "start": 3656.08, + "end": 3657.06, + "probability": 0.4879 + }, + { + "start": 3657.14, + "end": 3657.74, + "probability": 0.414 + }, + { + "start": 3657.74, + "end": 3657.94, + "probability": 0.7087 + }, + { + "start": 3658.02, + "end": 3658.16, + "probability": 0.6846 + }, + { + "start": 3658.16, + "end": 3659.68, + "probability": 0.9185 + }, + { + "start": 3659.98, + "end": 3663.24, + "probability": 0.405 + }, + { + "start": 3663.5, + "end": 3663.54, + "probability": 0.1972 + }, + { + "start": 3663.54, + "end": 3663.86, + "probability": 0.4286 + }, + { + "start": 3663.86, + "end": 3666.02, + "probability": 0.2512 + }, + { + "start": 3666.02, + "end": 3666.86, + "probability": 0.0829 + }, + { + "start": 3668.06, + "end": 3668.66, + "probability": 0.6784 + }, + { + "start": 3668.86, + "end": 3668.86, + "probability": 0.1923 + }, + { + "start": 3668.86, + "end": 3672.34, + "probability": 0.444 + }, + { + "start": 3672.66, + "end": 3680.48, + "probability": 0.652 + }, + { + "start": 3682.54, + "end": 3682.88, + "probability": 0.4762 + }, + { + "start": 3683.0, + "end": 3684.72, + "probability": 0.6928 + }, + { + "start": 3684.72, + "end": 3690.5, + "probability": 0.6878 + }, + { + "start": 3690.96, + "end": 3695.02, + "probability": 0.9974 + }, + { + "start": 3695.34, + "end": 3698.08, + "probability": 0.9896 + }, + { + "start": 3698.63, + "end": 3703.18, + "probability": 0.9912 + }, + { + "start": 3704.16, + "end": 3705.48, + "probability": 0.8969 + }, + { + "start": 3706.48, + "end": 3707.82, + "probability": 0.8117 + }, + { + "start": 3708.12, + "end": 3712.26, + "probability": 0.9688 + }, + { + "start": 3712.82, + "end": 3714.42, + "probability": 0.9937 + }, + { + "start": 3714.72, + "end": 3716.34, + "probability": 0.8312 + }, + { + "start": 3717.06, + "end": 3719.1, + "probability": 0.6099 + }, + { + "start": 3719.18, + "end": 3720.29, + "probability": 0.8879 + }, + { + "start": 3720.94, + "end": 3722.12, + "probability": 0.6546 + }, + { + "start": 3722.84, + "end": 3726.38, + "probability": 0.8782 + }, + { + "start": 3727.14, + "end": 3728.0, + "probability": 0.9309 + }, + { + "start": 3728.9, + "end": 3732.46, + "probability": 0.9651 + }, + { + "start": 3732.46, + "end": 3735.06, + "probability": 0.97 + }, + { + "start": 3735.66, + "end": 3738.86, + "probability": 0.7505 + }, + { + "start": 3739.08, + "end": 3740.74, + "probability": 0.9844 + }, + { + "start": 3741.22, + "end": 3742.86, + "probability": 0.9976 + }, + { + "start": 3743.56, + "end": 3744.74, + "probability": 0.989 + }, + { + "start": 3746.82, + "end": 3749.32, + "probability": 0.7014 + }, + { + "start": 3749.66, + "end": 3751.92, + "probability": 0.614 + }, + { + "start": 3752.2, + "end": 3753.82, + "probability": 0.0393 + }, + { + "start": 3755.16, + "end": 3758.24, + "probability": 0.9908 + }, + { + "start": 3758.56, + "end": 3760.0, + "probability": 0.5389 + }, + { + "start": 3760.61, + "end": 3764.04, + "probability": 0.6059 + }, + { + "start": 3764.6, + "end": 3769.52, + "probability": 0.8292 + }, + { + "start": 3769.56, + "end": 3770.82, + "probability": 0.9956 + }, + { + "start": 3770.88, + "end": 3773.06, + "probability": 0.909 + }, + { + "start": 3773.78, + "end": 3774.44, + "probability": 0.7794 + }, + { + "start": 3774.7, + "end": 3776.94, + "probability": 0.9629 + }, + { + "start": 3777.14, + "end": 3781.22, + "probability": 0.7035 + }, + { + "start": 3781.62, + "end": 3782.5, + "probability": 0.6682 + }, + { + "start": 3782.98, + "end": 3784.96, + "probability": 0.9808 + }, + { + "start": 3785.54, + "end": 3786.88, + "probability": 0.7061 + }, + { + "start": 3787.1, + "end": 3788.84, + "probability": 0.7815 + }, + { + "start": 3788.94, + "end": 3795.46, + "probability": 0.9072 + }, + { + "start": 3796.0, + "end": 3797.91, + "probability": 0.8733 + }, + { + "start": 3798.58, + "end": 3802.74, + "probability": 0.9462 + }, + { + "start": 3802.82, + "end": 3803.94, + "probability": 0.9935 + }, + { + "start": 3803.94, + "end": 3806.3, + "probability": 0.9751 + }, + { + "start": 3806.34, + "end": 3807.26, + "probability": 0.827 + }, + { + "start": 3808.6, + "end": 3811.5, + "probability": 0.7057 + }, + { + "start": 3811.9, + "end": 3814.16, + "probability": 0.876 + }, + { + "start": 3814.58, + "end": 3817.7, + "probability": 0.993 + }, + { + "start": 3817.7, + "end": 3818.98, + "probability": 0.8085 + }, + { + "start": 3819.04, + "end": 3820.26, + "probability": 0.8209 + }, + { + "start": 3820.4, + "end": 3821.62, + "probability": 0.9274 + }, + { + "start": 3821.72, + "end": 3824.18, + "probability": 0.8501 + }, + { + "start": 3824.36, + "end": 3825.3, + "probability": 0.8835 + }, + { + "start": 3825.44, + "end": 3829.26, + "probability": 0.8988 + }, + { + "start": 3829.54, + "end": 3829.96, + "probability": 0.8777 + }, + { + "start": 3830.92, + "end": 3833.7, + "probability": 0.679 + }, + { + "start": 3834.52, + "end": 3835.18, + "probability": 0.8979 + }, + { + "start": 3835.28, + "end": 3838.68, + "probability": 0.9553 + }, + { + "start": 3838.88, + "end": 3841.76, + "probability": 0.9925 + }, + { + "start": 3842.46, + "end": 3843.52, + "probability": 0.7547 + }, + { + "start": 3843.58, + "end": 3847.8, + "probability": 0.931 + }, + { + "start": 3847.92, + "end": 3851.06, + "probability": 0.9481 + }, + { + "start": 3853.88, + "end": 3861.26, + "probability": 0.2039 + }, + { + "start": 3864.85, + "end": 3866.88, + "probability": 0.138 + }, + { + "start": 3867.68, + "end": 3868.0, + "probability": 0.2839 + }, + { + "start": 3869.7, + "end": 3873.52, + "probability": 0.0051 + }, + { + "start": 3874.06, + "end": 3875.02, + "probability": 0.0474 + }, + { + "start": 3878.3, + "end": 3878.36, + "probability": 0.028 + }, + { + "start": 3878.36, + "end": 3878.64, + "probability": 0.4358 + }, + { + "start": 3878.64, + "end": 3880.14, + "probability": 0.1473 + }, + { + "start": 3880.88, + "end": 3886.57, + "probability": 0.9271 + }, + { + "start": 3887.5, + "end": 3888.9, + "probability": 0.5082 + }, + { + "start": 3890.88, + "end": 3891.68, + "probability": 0.4996 + }, + { + "start": 3891.68, + "end": 3892.52, + "probability": 0.5046 + }, + { + "start": 3893.32, + "end": 3897.16, + "probability": 0.1823 + }, + { + "start": 3897.16, + "end": 3899.2, + "probability": 0.9011 + }, + { + "start": 3899.36, + "end": 3900.74, + "probability": 0.9873 + }, + { + "start": 3901.28, + "end": 3904.48, + "probability": 0.9331 + }, + { + "start": 3906.92, + "end": 3908.82, + "probability": 0.9205 + }, + { + "start": 3909.0, + "end": 3910.74, + "probability": 0.7577 + }, + { + "start": 3910.84, + "end": 3913.22, + "probability": 0.0477 + }, + { + "start": 3913.64, + "end": 3916.06, + "probability": 0.9729 + }, + { + "start": 3916.16, + "end": 3919.22, + "probability": 0.8854 + }, + { + "start": 3919.66, + "end": 3920.28, + "probability": 0.1879 + }, + { + "start": 3920.4, + "end": 3921.34, + "probability": 0.5203 + }, + { + "start": 3922.12, + "end": 3924.66, + "probability": 0.3293 + }, + { + "start": 3925.16, + "end": 3925.66, + "probability": 0.5711 + }, + { + "start": 3925.66, + "end": 3928.2, + "probability": 0.9453 + }, + { + "start": 3928.3, + "end": 3929.24, + "probability": 0.8598 + }, + { + "start": 3929.3, + "end": 3929.74, + "probability": 0.636 + }, + { + "start": 3929.86, + "end": 3931.08, + "probability": 0.9254 + }, + { + "start": 3931.5, + "end": 3937.3, + "probability": 0.9989 + }, + { + "start": 3937.3, + "end": 3944.64, + "probability": 0.998 + }, + { + "start": 3944.64, + "end": 3949.5, + "probability": 0.9926 + }, + { + "start": 3949.94, + "end": 3953.3, + "probability": 0.9933 + }, + { + "start": 3953.66, + "end": 3957.8, + "probability": 0.9709 + }, + { + "start": 3958.22, + "end": 3962.5, + "probability": 0.9701 + }, + { + "start": 3962.5, + "end": 3967.14, + "probability": 0.9874 + }, + { + "start": 3967.28, + "end": 3968.38, + "probability": 0.801 + }, + { + "start": 3971.04, + "end": 3971.86, + "probability": 0.7373 + }, + { + "start": 3972.16, + "end": 3972.82, + "probability": 0.9698 + }, + { + "start": 3972.9, + "end": 3979.86, + "probability": 0.9859 + }, + { + "start": 3980.18, + "end": 3980.64, + "probability": 0.7322 + }, + { + "start": 3980.72, + "end": 3985.52, + "probability": 0.9929 + }, + { + "start": 3985.94, + "end": 3990.06, + "probability": 0.892 + }, + { + "start": 3990.28, + "end": 3991.84, + "probability": 0.9464 + }, + { + "start": 3991.94, + "end": 3992.48, + "probability": 0.6852 + }, + { + "start": 3992.88, + "end": 3993.96, + "probability": 0.9789 + }, + { + "start": 3994.42, + "end": 3996.94, + "probability": 0.9686 + }, + { + "start": 3997.6, + "end": 3999.9, + "probability": 0.6013 + }, + { + "start": 4000.34, + "end": 4001.3, + "probability": 0.6886 + }, + { + "start": 4001.48, + "end": 4002.84, + "probability": 0.9815 + }, + { + "start": 4003.0, + "end": 4004.16, + "probability": 0.8888 + }, + { + "start": 4004.56, + "end": 4006.5, + "probability": 0.9736 + }, + { + "start": 4014.48, + "end": 4016.2, + "probability": 0.9956 + }, + { + "start": 4026.04, + "end": 4027.14, + "probability": 0.6105 + }, + { + "start": 4029.24, + "end": 4032.58, + "probability": 0.0251 + }, + { + "start": 4033.56, + "end": 4034.74, + "probability": 0.165 + }, + { + "start": 4036.64, + "end": 4039.62, + "probability": 0.7316 + }, + { + "start": 4041.78, + "end": 4043.4, + "probability": 0.7093 + }, + { + "start": 4061.74, + "end": 4063.3, + "probability": 0.891 + }, + { + "start": 4063.34, + "end": 4064.34, + "probability": 0.5357 + }, + { + "start": 4064.38, + "end": 4067.28, + "probability": 0.9295 + }, + { + "start": 4081.47, + "end": 4089.2, + "probability": 0.0415 + }, + { + "start": 4091.04, + "end": 4094.14, + "probability": 0.0622 + }, + { + "start": 4094.38, + "end": 4096.62, + "probability": 0.1066 + }, + { + "start": 4096.72, + "end": 4096.74, + "probability": 0.0241 + }, + { + "start": 4107.04, + "end": 4110.0, + "probability": 0.3053 + }, + { + "start": 4111.68, + "end": 4117.6, + "probability": 0.5865 + }, + { + "start": 4118.46, + "end": 4125.22, + "probability": 0.9486 + }, + { + "start": 4125.34, + "end": 4126.12, + "probability": 0.192 + }, + { + "start": 4129.6, + "end": 4131.06, + "probability": 0.5997 + }, + { + "start": 4134.33, + "end": 4137.32, + "probability": 0.7584 + }, + { + "start": 4137.48, + "end": 4138.74, + "probability": 0.7973 + }, + { + "start": 4138.8, + "end": 4141.0, + "probability": 0.0686 + }, + { + "start": 4141.44, + "end": 4143.94, + "probability": 0.8167 + }, + { + "start": 4144.04, + "end": 4146.84, + "probability": 0.9543 + }, + { + "start": 4147.16, + "end": 4148.5, + "probability": 0.8425 + }, + { + "start": 4148.62, + "end": 4149.26, + "probability": 0.536 + }, + { + "start": 4149.3, + "end": 4149.9, + "probability": 0.6427 + }, + { + "start": 4149.94, + "end": 4151.3, + "probability": 0.6346 + }, + { + "start": 4152.98, + "end": 4153.82, + "probability": 0.2392 + }, + { + "start": 4155.34, + "end": 4155.8, + "probability": 0.0001 + }, + { + "start": 4157.11, + "end": 4159.74, + "probability": 0.0576 + }, + { + "start": 4167.35, + "end": 4167.42, + "probability": 0.0605 + }, + { + "start": 4167.42, + "end": 4167.42, + "probability": 0.0897 + }, + { + "start": 4167.42, + "end": 4167.42, + "probability": 0.2286 + }, + { + "start": 4167.42, + "end": 4169.06, + "probability": 0.3658 + }, + { + "start": 4169.18, + "end": 4171.86, + "probability": 0.8995 + }, + { + "start": 4171.86, + "end": 4176.44, + "probability": 0.9595 + }, + { + "start": 4176.46, + "end": 4176.56, + "probability": 0.0965 + }, + { + "start": 4177.9, + "end": 4180.72, + "probability": 0.9912 + }, + { + "start": 4180.72, + "end": 4183.8, + "probability": 0.9719 + }, + { + "start": 4184.14, + "end": 4187.58, + "probability": 0.9254 + }, + { + "start": 4188.04, + "end": 4190.82, + "probability": 0.9015 + }, + { + "start": 4191.7, + "end": 4195.0, + "probability": 0.9934 + }, + { + "start": 4195.06, + "end": 4196.9, + "probability": 0.2436 + }, + { + "start": 4197.14, + "end": 4200.68, + "probability": 0.9276 + }, + { + "start": 4200.78, + "end": 4201.66, + "probability": 0.556 + }, + { + "start": 4202.1, + "end": 4204.32, + "probability": 0.9116 + }, + { + "start": 4215.16, + "end": 4216.38, + "probability": 0.6908 + }, + { + "start": 4218.22, + "end": 4224.0, + "probability": 0.9075 + }, + { + "start": 4225.72, + "end": 4227.1, + "probability": 0.9565 + }, + { + "start": 4227.64, + "end": 4228.72, + "probability": 0.6354 + }, + { + "start": 4229.08, + "end": 4231.76, + "probability": 0.8564 + }, + { + "start": 4232.24, + "end": 4235.0, + "probability": 0.0724 + }, + { + "start": 4238.46, + "end": 4238.94, + "probability": 0.3392 + }, + { + "start": 4239.12, + "end": 4241.2, + "probability": 0.6731 + }, + { + "start": 4242.4, + "end": 4242.64, + "probability": 0.6535 + }, + { + "start": 4246.08, + "end": 4250.6, + "probability": 0.8061 + }, + { + "start": 4251.16, + "end": 4252.68, + "probability": 0.9543 + }, + { + "start": 4253.18, + "end": 4254.74, + "probability": 0.8869 + }, + { + "start": 4255.0, + "end": 4256.88, + "probability": 0.9028 + }, + { + "start": 4257.54, + "end": 4259.92, + "probability": 0.9878 + }, + { + "start": 4260.48, + "end": 4267.78, + "probability": 0.9927 + }, + { + "start": 4269.44, + "end": 4273.6, + "probability": 0.9684 + }, + { + "start": 4273.6, + "end": 4277.54, + "probability": 0.9954 + }, + { + "start": 4278.56, + "end": 4282.16, + "probability": 0.9987 + }, + { + "start": 4282.88, + "end": 4285.02, + "probability": 0.8784 + }, + { + "start": 4286.56, + "end": 4289.34, + "probability": 0.9597 + }, + { + "start": 4290.0, + "end": 4291.08, + "probability": 0.9785 + }, + { + "start": 4291.82, + "end": 4295.1, + "probability": 0.9865 + }, + { + "start": 4296.26, + "end": 4303.16, + "probability": 0.9976 + }, + { + "start": 4303.96, + "end": 4308.06, + "probability": 0.9143 + }, + { + "start": 4309.54, + "end": 4314.5, + "probability": 0.9983 + }, + { + "start": 4315.4, + "end": 4317.82, + "probability": 0.9984 + }, + { + "start": 4319.26, + "end": 4322.02, + "probability": 0.996 + }, + { + "start": 4323.0, + "end": 4324.74, + "probability": 0.8072 + }, + { + "start": 4325.5, + "end": 4327.7, + "probability": 0.9056 + }, + { + "start": 4328.66, + "end": 4334.28, + "probability": 0.8966 + }, + { + "start": 4335.02, + "end": 4336.24, + "probability": 0.8027 + }, + { + "start": 4336.78, + "end": 4337.46, + "probability": 0.7044 + }, + { + "start": 4337.98, + "end": 4339.98, + "probability": 0.9424 + }, + { + "start": 4340.52, + "end": 4342.78, + "probability": 0.7673 + }, + { + "start": 4343.22, + "end": 4346.86, + "probability": 0.9917 + }, + { + "start": 4347.02, + "end": 4351.0, + "probability": 0.9727 + }, + { + "start": 4351.56, + "end": 4354.38, + "probability": 0.9425 + }, + { + "start": 4355.84, + "end": 4356.76, + "probability": 0.9684 + }, + { + "start": 4357.68, + "end": 4358.34, + "probability": 0.93 + }, + { + "start": 4359.26, + "end": 4361.52, + "probability": 0.8866 + }, + { + "start": 4362.1, + "end": 4367.52, + "probability": 0.9513 + }, + { + "start": 4368.3, + "end": 4369.66, + "probability": 0.7388 + }, + { + "start": 4370.36, + "end": 4374.26, + "probability": 0.9824 + }, + { + "start": 4374.58, + "end": 4377.1, + "probability": 0.9879 + }, + { + "start": 4378.2, + "end": 4383.76, + "probability": 0.9709 + }, + { + "start": 4384.94, + "end": 4387.8, + "probability": 0.8819 + }, + { + "start": 4388.64, + "end": 4394.56, + "probability": 0.9551 + }, + { + "start": 4395.0, + "end": 4401.46, + "probability": 0.9939 + }, + { + "start": 4402.58, + "end": 4406.9, + "probability": 0.98 + }, + { + "start": 4407.7, + "end": 4410.24, + "probability": 0.9907 + }, + { + "start": 4410.9, + "end": 4412.92, + "probability": 0.941 + }, + { + "start": 4413.96, + "end": 4418.24, + "probability": 0.9838 + }, + { + "start": 4418.66, + "end": 4420.8, + "probability": 0.7389 + }, + { + "start": 4422.36, + "end": 4426.42, + "probability": 0.998 + }, + { + "start": 4427.18, + "end": 4429.9, + "probability": 0.9913 + }, + { + "start": 4431.18, + "end": 4433.08, + "probability": 0.9409 + }, + { + "start": 4433.96, + "end": 4437.78, + "probability": 0.9965 + }, + { + "start": 4443.9, + "end": 4445.58, + "probability": 0.6832 + }, + { + "start": 4446.72, + "end": 4449.56, + "probability": 0.9905 + }, + { + "start": 4450.58, + "end": 4453.78, + "probability": 0.9684 + }, + { + "start": 4454.44, + "end": 4458.42, + "probability": 0.9972 + }, + { + "start": 4461.08, + "end": 4462.58, + "probability": 0.6418 + }, + { + "start": 4463.3, + "end": 4464.4, + "probability": 0.6101 + }, + { + "start": 4465.28, + "end": 4467.72, + "probability": 0.8273 + }, + { + "start": 4469.26, + "end": 4473.88, + "probability": 0.9966 + }, + { + "start": 4474.6, + "end": 4474.94, + "probability": 0.6414 + }, + { + "start": 4474.98, + "end": 4476.92, + "probability": 0.6677 + }, + { + "start": 4477.3, + "end": 4480.32, + "probability": 0.994 + }, + { + "start": 4481.1, + "end": 4485.5, + "probability": 0.9941 + }, + { + "start": 4486.18, + "end": 4490.84, + "probability": 0.9849 + }, + { + "start": 4491.44, + "end": 4494.6, + "probability": 0.8137 + }, + { + "start": 4495.2, + "end": 4497.84, + "probability": 0.8012 + }, + { + "start": 4499.06, + "end": 4500.62, + "probability": 0.906 + }, + { + "start": 4500.62, + "end": 4502.18, + "probability": 0.9256 + }, + { + "start": 4503.88, + "end": 4510.74, + "probability": 0.9956 + }, + { + "start": 4511.26, + "end": 4511.72, + "probability": 0.8193 + }, + { + "start": 4512.52, + "end": 4516.06, + "probability": 0.9965 + }, + { + "start": 4516.76, + "end": 4521.9, + "probability": 0.9971 + }, + { + "start": 4522.04, + "end": 4523.92, + "probability": 0.1166 + }, + { + "start": 4524.16, + "end": 4526.22, + "probability": 0.9733 + }, + { + "start": 4526.67, + "end": 4526.74, + "probability": 0.5017 + }, + { + "start": 4527.02, + "end": 4531.26, + "probability": 0.9873 + }, + { + "start": 4531.94, + "end": 4536.08, + "probability": 0.9948 + }, + { + "start": 4536.5, + "end": 4538.72, + "probability": 0.9478 + }, + { + "start": 4539.4, + "end": 4540.34, + "probability": 0.798 + }, + { + "start": 4541.28, + "end": 4544.04, + "probability": 0.9283 + }, + { + "start": 4544.5, + "end": 4545.98, + "probability": 0.9513 + }, + { + "start": 4546.1, + "end": 4548.2, + "probability": 0.9512 + }, + { + "start": 4548.54, + "end": 4552.68, + "probability": 0.8017 + }, + { + "start": 4553.18, + "end": 4553.9, + "probability": 0.6433 + }, + { + "start": 4554.08, + "end": 4556.74, + "probability": 0.9103 + }, + { + "start": 4557.02, + "end": 4557.8, + "probability": 0.8484 + }, + { + "start": 4558.18, + "end": 4559.25, + "probability": 0.9736 + }, + { + "start": 4560.16, + "end": 4564.34, + "probability": 0.896 + }, + { + "start": 4565.66, + "end": 4567.1, + "probability": 0.9368 + }, + { + "start": 4567.58, + "end": 4568.9, + "probability": 0.7362 + }, + { + "start": 4569.1, + "end": 4571.34, + "probability": 0.8542 + }, + { + "start": 4572.46, + "end": 4575.32, + "probability": 0.8918 + }, + { + "start": 4575.9, + "end": 4577.74, + "probability": 0.6885 + }, + { + "start": 4578.2, + "end": 4580.82, + "probability": 0.9648 + }, + { + "start": 4581.66, + "end": 4585.16, + "probability": 0.9316 + }, + { + "start": 4585.16, + "end": 4590.08, + "probability": 0.75 + }, + { + "start": 4595.9, + "end": 4596.08, + "probability": 0.2881 + }, + { + "start": 4596.16, + "end": 4597.04, + "probability": 0.6721 + }, + { + "start": 4597.08, + "end": 4601.42, + "probability": 0.9117 + }, + { + "start": 4602.84, + "end": 4605.88, + "probability": 0.9363 + }, + { + "start": 4606.66, + "end": 4610.94, + "probability": 0.8815 + }, + { + "start": 4611.7, + "end": 4614.88, + "probability": 0.9578 + }, + { + "start": 4615.68, + "end": 4617.67, + "probability": 0.9653 + }, + { + "start": 4618.3, + "end": 4619.76, + "probability": 0.9753 + }, + { + "start": 4620.92, + "end": 4624.58, + "probability": 0.9697 + }, + { + "start": 4625.08, + "end": 4627.18, + "probability": 0.9877 + }, + { + "start": 4627.84, + "end": 4632.88, + "probability": 0.9571 + }, + { + "start": 4633.12, + "end": 4633.88, + "probability": 0.2805 + }, + { + "start": 4635.24, + "end": 4639.14, + "probability": 0.9937 + }, + { + "start": 4639.14, + "end": 4642.28, + "probability": 0.9977 + }, + { + "start": 4643.04, + "end": 4647.14, + "probability": 0.9776 + }, + { + "start": 4648.58, + "end": 4649.04, + "probability": 0.6967 + }, + { + "start": 4649.94, + "end": 4653.4, + "probability": 0.9653 + }, + { + "start": 4654.22, + "end": 4656.94, + "probability": 0.9837 + }, + { + "start": 4657.28, + "end": 4657.82, + "probability": 0.6151 + }, + { + "start": 4658.86, + "end": 4659.86, + "probability": 0.6951 + }, + { + "start": 4660.12, + "end": 4664.02, + "probability": 0.9577 + }, + { + "start": 4664.2, + "end": 4666.48, + "probability": 0.7331 + }, + { + "start": 4666.9, + "end": 4669.58, + "probability": 0.7769 + }, + { + "start": 4670.34, + "end": 4671.36, + "probability": 0.8121 + }, + { + "start": 4671.42, + "end": 4673.0, + "probability": 0.7321 + }, + { + "start": 4673.28, + "end": 4675.06, + "probability": 0.9705 + }, + { + "start": 4675.38, + "end": 4678.14, + "probability": 0.8597 + }, + { + "start": 4678.58, + "end": 4682.22, + "probability": 0.9919 + }, + { + "start": 4682.76, + "end": 4688.2, + "probability": 0.9963 + }, + { + "start": 4688.76, + "end": 4693.7, + "probability": 0.917 + }, + { + "start": 4694.46, + "end": 4698.5, + "probability": 0.9866 + }, + { + "start": 4699.16, + "end": 4703.92, + "probability": 0.9895 + }, + { + "start": 4704.5, + "end": 4709.38, + "probability": 0.9525 + }, + { + "start": 4709.72, + "end": 4711.32, + "probability": 0.9961 + }, + { + "start": 4712.66, + "end": 4715.08, + "probability": 0.8747 + }, + { + "start": 4715.64, + "end": 4718.28, + "probability": 0.9464 + }, + { + "start": 4718.72, + "end": 4721.7, + "probability": 0.995 + }, + { + "start": 4722.22, + "end": 4723.76, + "probability": 0.7454 + }, + { + "start": 4724.16, + "end": 4727.02, + "probability": 0.9877 + }, + { + "start": 4727.46, + "end": 4730.56, + "probability": 0.9762 + }, + { + "start": 4730.82, + "end": 4731.56, + "probability": 0.9797 + }, + { + "start": 4731.84, + "end": 4732.68, + "probability": 0.7623 + }, + { + "start": 4732.78, + "end": 4733.98, + "probability": 0.8875 + }, + { + "start": 4734.16, + "end": 4736.58, + "probability": 0.9423 + }, + { + "start": 4737.22, + "end": 4738.24, + "probability": 0.7564 + }, + { + "start": 4738.52, + "end": 4743.96, + "probability": 0.9284 + }, + { + "start": 4744.28, + "end": 4747.98, + "probability": 0.9832 + }, + { + "start": 4748.44, + "end": 4749.88, + "probability": 0.6934 + }, + { + "start": 4749.96, + "end": 4752.06, + "probability": 0.9719 + }, + { + "start": 4753.38, + "end": 4753.86, + "probability": 0.2685 + }, + { + "start": 4754.36, + "end": 4756.7, + "probability": 0.8242 + }, + { + "start": 4757.04, + "end": 4758.28, + "probability": 0.963 + }, + { + "start": 4758.9, + "end": 4762.1, + "probability": 0.9113 + }, + { + "start": 4762.72, + "end": 4765.9, + "probability": 0.752 + }, + { + "start": 4765.9, + "end": 4769.9, + "probability": 0.9989 + }, + { + "start": 4771.34, + "end": 4775.92, + "probability": 0.6037 + }, + { + "start": 4775.94, + "end": 4777.44, + "probability": 0.9845 + }, + { + "start": 4778.0, + "end": 4780.14, + "probability": 0.9098 + }, + { + "start": 4780.52, + "end": 4782.44, + "probability": 0.6243 + }, + { + "start": 4783.46, + "end": 4787.12, + "probability": 0.9425 + }, + { + "start": 4788.8, + "end": 4791.3, + "probability": 0.8635 + }, + { + "start": 4791.96, + "end": 4795.44, + "probability": 0.9921 + }, + { + "start": 4796.4, + "end": 4799.02, + "probability": 0.7848 + }, + { + "start": 4800.08, + "end": 4800.76, + "probability": 0.8807 + }, + { + "start": 4801.32, + "end": 4802.44, + "probability": 0.5754 + }, + { + "start": 4803.6, + "end": 4807.16, + "probability": 0.986 + }, + { + "start": 4807.9, + "end": 4810.44, + "probability": 0.8457 + }, + { + "start": 4811.22, + "end": 4813.9, + "probability": 0.9983 + }, + { + "start": 4814.0, + "end": 4815.26, + "probability": 0.5653 + }, + { + "start": 4815.58, + "end": 4817.64, + "probability": 0.7534 + }, + { + "start": 4818.12, + "end": 4820.0, + "probability": 0.7243 + }, + { + "start": 4820.42, + "end": 4822.72, + "probability": 0.7707 + }, + { + "start": 4823.24, + "end": 4824.94, + "probability": 0.7729 + }, + { + "start": 4825.18, + "end": 4826.94, + "probability": 0.8794 + }, + { + "start": 4827.12, + "end": 4827.9, + "probability": 0.7944 + }, + { + "start": 4827.96, + "end": 4828.88, + "probability": 0.9064 + }, + { + "start": 4828.94, + "end": 4832.2, + "probability": 0.9945 + }, + { + "start": 4832.58, + "end": 4835.02, + "probability": 0.8394 + }, + { + "start": 4835.42, + "end": 4835.42, + "probability": 0.4184 + }, + { + "start": 4835.42, + "end": 4836.08, + "probability": 0.6031 + }, + { + "start": 4836.18, + "end": 4836.66, + "probability": 0.8047 + }, + { + "start": 4837.76, + "end": 4839.56, + "probability": 0.7475 + }, + { + "start": 4839.68, + "end": 4842.6, + "probability": 0.8308 + }, + { + "start": 4842.6, + "end": 4843.28, + "probability": 0.7044 + }, + { + "start": 4852.06, + "end": 4853.32, + "probability": 0.5281 + }, + { + "start": 4853.6, + "end": 4858.44, + "probability": 0.994 + }, + { + "start": 4859.24, + "end": 4861.52, + "probability": 0.9091 + }, + { + "start": 4862.28, + "end": 4863.98, + "probability": 0.9956 + }, + { + "start": 4865.72, + "end": 4869.8, + "probability": 0.98 + }, + { + "start": 4871.94, + "end": 4873.28, + "probability": 0.9283 + }, + { + "start": 4875.06, + "end": 4876.36, + "probability": 0.6851 + }, + { + "start": 4877.22, + "end": 4878.12, + "probability": 0.9854 + }, + { + "start": 4879.72, + "end": 4887.33, + "probability": 0.878 + }, + { + "start": 4887.8, + "end": 4888.8, + "probability": 0.9886 + }, + { + "start": 4888.88, + "end": 4892.46, + "probability": 0.9613 + }, + { + "start": 4893.68, + "end": 4894.98, + "probability": 0.9797 + }, + { + "start": 4897.08, + "end": 4898.08, + "probability": 0.9041 + }, + { + "start": 4898.18, + "end": 4899.38, + "probability": 0.8532 + }, + { + "start": 4899.44, + "end": 4900.44, + "probability": 0.8377 + }, + { + "start": 4901.1, + "end": 4903.66, + "probability": 0.976 + }, + { + "start": 4904.32, + "end": 4906.76, + "probability": 0.9902 + }, + { + "start": 4907.18, + "end": 4910.42, + "probability": 0.9702 + }, + { + "start": 4911.04, + "end": 4917.04, + "probability": 0.8936 + }, + { + "start": 4917.86, + "end": 4919.04, + "probability": 0.716 + }, + { + "start": 4920.16, + "end": 4921.38, + "probability": 0.8679 + }, + { + "start": 4923.28, + "end": 4929.2, + "probability": 0.9886 + }, + { + "start": 4930.82, + "end": 4934.16, + "probability": 0.9956 + }, + { + "start": 4934.38, + "end": 4941.1, + "probability": 0.9781 + }, + { + "start": 4942.16, + "end": 4945.92, + "probability": 0.7314 + }, + { + "start": 4946.78, + "end": 4950.84, + "probability": 0.9943 + }, + { + "start": 4951.42, + "end": 4953.18, + "probability": 0.9956 + }, + { + "start": 4953.96, + "end": 4957.14, + "probability": 0.998 + }, + { + "start": 4957.76, + "end": 4958.68, + "probability": 0.5744 + }, + { + "start": 4959.78, + "end": 4964.7, + "probability": 0.9885 + }, + { + "start": 4965.62, + "end": 4967.78, + "probability": 0.9455 + }, + { + "start": 4968.44, + "end": 4973.7, + "probability": 0.9715 + }, + { + "start": 4975.26, + "end": 4976.78, + "probability": 0.9821 + }, + { + "start": 4977.62, + "end": 4982.84, + "probability": 0.9739 + }, + { + "start": 4982.84, + "end": 4987.36, + "probability": 0.9954 + }, + { + "start": 4987.52, + "end": 4989.92, + "probability": 0.9423 + }, + { + "start": 4990.68, + "end": 4991.51, + "probability": 0.1509 + }, + { + "start": 4991.92, + "end": 4993.56, + "probability": 0.2615 + }, + { + "start": 4993.78, + "end": 4995.32, + "probability": 0.5953 + }, + { + "start": 4995.83, + "end": 4999.8, + "probability": 0.9839 + }, + { + "start": 4999.9, + "end": 5000.77, + "probability": 0.9543 + }, + { + "start": 5001.96, + "end": 5005.78, + "probability": 0.9751 + }, + { + "start": 5006.32, + "end": 5010.05, + "probability": 0.9859 + }, + { + "start": 5010.26, + "end": 5013.68, + "probability": 0.9903 + }, + { + "start": 5014.42, + "end": 5015.52, + "probability": 0.7637 + }, + { + "start": 5016.56, + "end": 5020.02, + "probability": 0.9476 + }, + { + "start": 5020.86, + "end": 5025.0, + "probability": 0.9074 + }, + { + "start": 5026.5, + "end": 5027.9, + "probability": 0.9227 + }, + { + "start": 5029.92, + "end": 5035.96, + "probability": 0.8452 + }, + { + "start": 5037.06, + "end": 5040.52, + "probability": 0.8617 + }, + { + "start": 5041.34, + "end": 5046.46, + "probability": 0.9244 + }, + { + "start": 5049.02, + "end": 5053.32, + "probability": 0.9941 + }, + { + "start": 5053.32, + "end": 5059.34, + "probability": 0.8267 + }, + { + "start": 5060.82, + "end": 5061.82, + "probability": 0.97 + }, + { + "start": 5061.92, + "end": 5065.38, + "probability": 0.9764 + }, + { + "start": 5068.3, + "end": 5073.98, + "probability": 0.9007 + }, + { + "start": 5075.4, + "end": 5076.2, + "probability": 0.5586 + }, + { + "start": 5076.2, + "end": 5077.0, + "probability": 0.8511 + }, + { + "start": 5077.1, + "end": 5081.02, + "probability": 0.7655 + }, + { + "start": 5081.02, + "end": 5081.56, + "probability": 0.6414 + }, + { + "start": 5081.7, + "end": 5083.3, + "probability": 0.7914 + }, + { + "start": 5084.22, + "end": 5086.7, + "probability": 0.9735 + }, + { + "start": 5087.82, + "end": 5090.62, + "probability": 0.9847 + }, + { + "start": 5091.34, + "end": 5092.28, + "probability": 0.7576 + }, + { + "start": 5093.62, + "end": 5094.7, + "probability": 0.909 + }, + { + "start": 5095.58, + "end": 5096.56, + "probability": 0.9476 + }, + { + "start": 5097.22, + "end": 5098.12, + "probability": 0.9407 + }, + { + "start": 5100.22, + "end": 5101.59, + "probability": 0.9333 + }, + { + "start": 5103.24, + "end": 5104.68, + "probability": 0.9878 + }, + { + "start": 5107.18, + "end": 5108.5, + "probability": 0.9897 + }, + { + "start": 5108.8, + "end": 5110.58, + "probability": 0.7621 + }, + { + "start": 5111.19, + "end": 5115.86, + "probability": 0.998 + }, + { + "start": 5116.36, + "end": 5119.6, + "probability": 0.9595 + }, + { + "start": 5120.42, + "end": 5122.58, + "probability": 0.9862 + }, + { + "start": 5122.64, + "end": 5125.96, + "probability": 0.9897 + }, + { + "start": 5127.16, + "end": 5131.06, + "probability": 0.8953 + }, + { + "start": 5132.26, + "end": 5137.24, + "probability": 0.9932 + }, + { + "start": 5138.04, + "end": 5139.9, + "probability": 0.9686 + }, + { + "start": 5141.12, + "end": 5147.44, + "probability": 0.98 + }, + { + "start": 5148.96, + "end": 5152.64, + "probability": 0.9863 + }, + { + "start": 5154.7, + "end": 5158.18, + "probability": 0.4462 + }, + { + "start": 5158.26, + "end": 5158.99, + "probability": 0.927 + }, + { + "start": 5159.06, + "end": 5160.42, + "probability": 0.9723 + }, + { + "start": 5160.8, + "end": 5163.14, + "probability": 0.8521 + }, + { + "start": 5163.28, + "end": 5163.96, + "probability": 0.8872 + }, + { + "start": 5165.8, + "end": 5166.56, + "probability": 0.8446 + }, + { + "start": 5169.18, + "end": 5172.98, + "probability": 0.9951 + }, + { + "start": 5174.32, + "end": 5176.0, + "probability": 0.3613 + }, + { + "start": 5176.1, + "end": 5176.1, + "probability": 0.5699 + }, + { + "start": 5176.1, + "end": 5176.52, + "probability": 0.6382 + }, + { + "start": 5177.24, + "end": 5178.56, + "probability": 0.7871 + }, + { + "start": 5179.58, + "end": 5182.42, + "probability": 0.8943 + }, + { + "start": 5183.4, + "end": 5184.54, + "probability": 0.9963 + }, + { + "start": 5184.64, + "end": 5186.64, + "probability": 0.8282 + }, + { + "start": 5186.72, + "end": 5187.2, + "probability": 0.6437 + }, + { + "start": 5187.28, + "end": 5189.45, + "probability": 0.934 + }, + { + "start": 5190.0, + "end": 5192.67, + "probability": 0.9619 + }, + { + "start": 5192.88, + "end": 5193.94, + "probability": 0.8071 + }, + { + "start": 5194.02, + "end": 5194.3, + "probability": 0.0316 + }, + { + "start": 5194.3, + "end": 5196.26, + "probability": 0.877 + }, + { + "start": 5197.0, + "end": 5199.9, + "probability": 0.5676 + }, + { + "start": 5201.2, + "end": 5202.32, + "probability": 0.0098 + }, + { + "start": 5202.32, + "end": 5203.92, + "probability": 0.006 + }, + { + "start": 5204.97, + "end": 5205.88, + "probability": 0.028 + }, + { + "start": 5206.16, + "end": 5208.36, + "probability": 0.3307 + }, + { + "start": 5208.36, + "end": 5211.06, + "probability": 0.0928 + }, + { + "start": 5211.24, + "end": 5213.08, + "probability": 0.0383 + }, + { + "start": 5213.08, + "end": 5213.08, + "probability": 0.2368 + }, + { + "start": 5213.08, + "end": 5213.08, + "probability": 0.0689 + }, + { + "start": 5213.08, + "end": 5213.92, + "probability": 0.188 + }, + { + "start": 5214.92, + "end": 5215.56, + "probability": 0.2542 + }, + { + "start": 5215.78, + "end": 5217.76, + "probability": 0.5482 + }, + { + "start": 5217.8, + "end": 5220.6, + "probability": 0.5502 + }, + { + "start": 5220.86, + "end": 5222.0, + "probability": 0.2279 + }, + { + "start": 5222.14, + "end": 5223.5, + "probability": 0.5489 + }, + { + "start": 5223.58, + "end": 5224.56, + "probability": 0.2648 + }, + { + "start": 5224.82, + "end": 5225.36, + "probability": 0.2725 + }, + { + "start": 5226.62, + "end": 5227.86, + "probability": 0.633 + }, + { + "start": 5228.36, + "end": 5232.9, + "probability": 0.7723 + }, + { + "start": 5235.02, + "end": 5237.1, + "probability": 0.8345 + }, + { + "start": 5237.88, + "end": 5239.88, + "probability": 0.9895 + }, + { + "start": 5240.14, + "end": 5242.17, + "probability": 0.9493 + }, + { + "start": 5242.36, + "end": 5243.88, + "probability": 0.9583 + }, + { + "start": 5244.16, + "end": 5246.36, + "probability": 0.929 + }, + { + "start": 5247.46, + "end": 5251.58, + "probability": 0.9895 + }, + { + "start": 5252.74, + "end": 5260.5, + "probability": 0.9915 + }, + { + "start": 5262.46, + "end": 5266.56, + "probability": 0.8197 + }, + { + "start": 5267.82, + "end": 5273.98, + "probability": 0.9922 + }, + { + "start": 5275.24, + "end": 5275.8, + "probability": 0.7287 + }, + { + "start": 5275.84, + "end": 5276.8, + "probability": 0.937 + }, + { + "start": 5276.88, + "end": 5278.38, + "probability": 0.9484 + }, + { + "start": 5278.58, + "end": 5279.11, + "probability": 0.9312 + }, + { + "start": 5281.52, + "end": 5283.72, + "probability": 0.9941 + }, + { + "start": 5285.2, + "end": 5291.0, + "probability": 0.9956 + }, + { + "start": 5291.12, + "end": 5291.96, + "probability": 0.834 + }, + { + "start": 5293.58, + "end": 5293.58, + "probability": 0.5531 + }, + { + "start": 5293.82, + "end": 5294.44, + "probability": 0.9044 + }, + { + "start": 5294.44, + "end": 5297.98, + "probability": 0.3198 + }, + { + "start": 5298.38, + "end": 5300.44, + "probability": 0.9237 + }, + { + "start": 5301.9, + "end": 5307.56, + "probability": 0.9949 + }, + { + "start": 5307.56, + "end": 5311.5, + "probability": 0.9816 + }, + { + "start": 5312.66, + "end": 5315.22, + "probability": 0.7906 + }, + { + "start": 5315.82, + "end": 5317.42, + "probability": 0.9462 + }, + { + "start": 5317.86, + "end": 5319.38, + "probability": 0.8209 + }, + { + "start": 5319.5, + "end": 5320.02, + "probability": 0.6796 + }, + { + "start": 5320.1, + "end": 5320.64, + "probability": 0.8788 + }, + { + "start": 5321.28, + "end": 5325.1, + "probability": 0.9881 + }, + { + "start": 5327.43, + "end": 5332.6, + "probability": 0.9709 + }, + { + "start": 5334.0, + "end": 5335.66, + "probability": 0.9823 + }, + { + "start": 5338.16, + "end": 5340.5, + "probability": 0.9541 + }, + { + "start": 5340.56, + "end": 5342.38, + "probability": 0.8745 + }, + { + "start": 5346.96, + "end": 5347.32, + "probability": 0.4326 + }, + { + "start": 5347.44, + "end": 5348.76, + "probability": 0.978 + }, + { + "start": 5348.92, + "end": 5350.55, + "probability": 0.9521 + }, + { + "start": 5351.58, + "end": 5353.5, + "probability": 0.9795 + }, + { + "start": 5353.64, + "end": 5354.8, + "probability": 0.9816 + }, + { + "start": 5354.9, + "end": 5355.74, + "probability": 0.887 + }, + { + "start": 5356.92, + "end": 5362.2, + "probability": 0.9075 + }, + { + "start": 5363.0, + "end": 5369.76, + "probability": 0.9609 + }, + { + "start": 5371.52, + "end": 5374.04, + "probability": 0.917 + }, + { + "start": 5374.96, + "end": 5375.7, + "probability": 0.6932 + }, + { + "start": 5377.46, + "end": 5380.12, + "probability": 0.972 + }, + { + "start": 5386.22, + "end": 5389.98, + "probability": 0.893 + }, + { + "start": 5391.38, + "end": 5394.16, + "probability": 0.9602 + }, + { + "start": 5395.52, + "end": 5398.06, + "probability": 0.9673 + }, + { + "start": 5399.56, + "end": 5402.64, + "probability": 0.9963 + }, + { + "start": 5403.54, + "end": 5406.18, + "probability": 0.887 + }, + { + "start": 5407.76, + "end": 5412.08, + "probability": 0.9163 + }, + { + "start": 5412.72, + "end": 5415.96, + "probability": 0.4785 + }, + { + "start": 5420.96, + "end": 5420.98, + "probability": 0.5481 + }, + { + "start": 5420.98, + "end": 5428.32, + "probability": 0.6397 + }, + { + "start": 5429.08, + "end": 5432.12, + "probability": 0.7617 + }, + { + "start": 5433.62, + "end": 5436.94, + "probability": 0.9438 + }, + { + "start": 5437.0, + "end": 5437.82, + "probability": 0.9084 + }, + { + "start": 5438.1, + "end": 5440.72, + "probability": 0.729 + }, + { + "start": 5443.02, + "end": 5445.48, + "probability": 0.9982 + }, + { + "start": 5446.38, + "end": 5449.16, + "probability": 0.9976 + }, + { + "start": 5450.38, + "end": 5453.8, + "probability": 0.9899 + }, + { + "start": 5455.24, + "end": 5457.58, + "probability": 0.6313 + }, + { + "start": 5458.72, + "end": 5462.12, + "probability": 0.968 + }, + { + "start": 5462.82, + "end": 5463.54, + "probability": 0.9438 + }, + { + "start": 5463.6, + "end": 5464.56, + "probability": 0.9554 + }, + { + "start": 5464.62, + "end": 5465.38, + "probability": 0.9418 + }, + { + "start": 5465.5, + "end": 5467.78, + "probability": 0.9456 + }, + { + "start": 5469.7, + "end": 5472.86, + "probability": 0.9233 + }, + { + "start": 5473.18, + "end": 5477.56, + "probability": 0.9176 + }, + { + "start": 5478.34, + "end": 5483.54, + "probability": 0.93 + }, + { + "start": 5483.58, + "end": 5485.58, + "probability": 0.8925 + }, + { + "start": 5485.76, + "end": 5486.7, + "probability": 0.6836 + }, + { + "start": 5487.64, + "end": 5490.02, + "probability": 0.9629 + }, + { + "start": 5490.7, + "end": 5493.02, + "probability": 0.981 + }, + { + "start": 5493.06, + "end": 5494.7, + "probability": 0.9512 + }, + { + "start": 5496.92, + "end": 5504.42, + "probability": 0.9744 + }, + { + "start": 5505.48, + "end": 5509.4, + "probability": 0.9982 + }, + { + "start": 5510.42, + "end": 5511.9, + "probability": 0.8862 + }, + { + "start": 5511.98, + "end": 5512.7, + "probability": 0.9419 + }, + { + "start": 5513.46, + "end": 5515.96, + "probability": 0.8338 + }, + { + "start": 5517.02, + "end": 5520.52, + "probability": 0.9319 + }, + { + "start": 5522.28, + "end": 5524.6, + "probability": 0.9351 + }, + { + "start": 5525.96, + "end": 5529.38, + "probability": 0.8817 + }, + { + "start": 5530.14, + "end": 5536.46, + "probability": 0.9873 + }, + { + "start": 5536.46, + "end": 5539.68, + "probability": 0.9586 + }, + { + "start": 5540.82, + "end": 5548.5, + "probability": 0.9857 + }, + { + "start": 5549.54, + "end": 5556.73, + "probability": 0.964 + }, + { + "start": 5557.78, + "end": 5558.84, + "probability": 0.9038 + }, + { + "start": 5559.98, + "end": 5564.56, + "probability": 0.9985 + }, + { + "start": 5565.42, + "end": 5566.34, + "probability": 0.9468 + }, + { + "start": 5566.5, + "end": 5567.3, + "probability": 0.8778 + }, + { + "start": 5567.4, + "end": 5568.26, + "probability": 0.9839 + }, + { + "start": 5569.9, + "end": 5571.5, + "probability": 0.2103 + }, + { + "start": 5571.56, + "end": 5572.52, + "probability": 0.6929 + }, + { + "start": 5572.86, + "end": 5574.04, + "probability": 0.2911 + }, + { + "start": 5574.18, + "end": 5575.96, + "probability": 0.9338 + }, + { + "start": 5576.2, + "end": 5580.14, + "probability": 0.9307 + }, + { + "start": 5580.28, + "end": 5582.62, + "probability": 0.8525 + }, + { + "start": 5584.16, + "end": 5587.44, + "probability": 0.9958 + }, + { + "start": 5588.02, + "end": 5590.32, + "probability": 0.9346 + }, + { + "start": 5593.09, + "end": 5595.76, + "probability": 0.9927 + }, + { + "start": 5601.04, + "end": 5602.86, + "probability": 0.9894 + }, + { + "start": 5604.02, + "end": 5606.86, + "probability": 0.803 + }, + { + "start": 5606.98, + "end": 5609.52, + "probability": 0.7841 + }, + { + "start": 5610.1, + "end": 5612.02, + "probability": 0.9604 + }, + { + "start": 5612.6, + "end": 5616.58, + "probability": 0.879 + }, + { + "start": 5617.06, + "end": 5620.94, + "probability": 0.8628 + }, + { + "start": 5621.84, + "end": 5624.28, + "probability": 0.7357 + }, + { + "start": 5625.46, + "end": 5625.72, + "probability": 0.7781 + }, + { + "start": 5625.78, + "end": 5626.2, + "probability": 0.9067 + }, + { + "start": 5626.28, + "end": 5629.08, + "probability": 0.8813 + }, + { + "start": 5629.22, + "end": 5630.5, + "probability": 0.7062 + }, + { + "start": 5630.72, + "end": 5632.22, + "probability": 0.9326 + }, + { + "start": 5632.26, + "end": 5633.22, + "probability": 0.7782 + }, + { + "start": 5633.28, + "end": 5633.84, + "probability": 0.8818 + }, + { + "start": 5635.34, + "end": 5641.38, + "probability": 0.9972 + }, + { + "start": 5641.38, + "end": 5645.76, + "probability": 0.9982 + }, + { + "start": 5646.52, + "end": 5651.18, + "probability": 0.985 + }, + { + "start": 5652.08, + "end": 5655.98, + "probability": 0.998 + }, + { + "start": 5657.16, + "end": 5657.16, + "probability": 0.0004 + }, + { + "start": 5660.5, + "end": 5663.72, + "probability": 0.9156 + }, + { + "start": 5664.58, + "end": 5666.9, + "probability": 0.8696 + }, + { + "start": 5668.72, + "end": 5672.78, + "probability": 0.9691 + }, + { + "start": 5674.04, + "end": 5677.54, + "probability": 0.9232 + }, + { + "start": 5678.22, + "end": 5681.4, + "probability": 0.9316 + }, + { + "start": 5684.42, + "end": 5686.34, + "probability": 0.9027 + }, + { + "start": 5686.76, + "end": 5689.3, + "probability": 0.9987 + }, + { + "start": 5690.48, + "end": 5696.32, + "probability": 0.9962 + }, + { + "start": 5696.35, + "end": 5703.64, + "probability": 0.983 + }, + { + "start": 5705.12, + "end": 5706.12, + "probability": 0.6183 + }, + { + "start": 5706.18, + "end": 5709.5, + "probability": 0.7214 + }, + { + "start": 5709.94, + "end": 5715.86, + "probability": 0.9442 + }, + { + "start": 5715.86, + "end": 5719.8, + "probability": 0.9905 + }, + { + "start": 5720.92, + "end": 5723.45, + "probability": 0.8989 + }, + { + "start": 5725.4, + "end": 5728.92, + "probability": 0.8916 + }, + { + "start": 5730.52, + "end": 5735.12, + "probability": 0.9966 + }, + { + "start": 5735.12, + "end": 5742.36, + "probability": 0.9997 + }, + { + "start": 5743.78, + "end": 5748.08, + "probability": 0.967 + }, + { + "start": 5748.92, + "end": 5749.62, + "probability": 0.8163 + }, + { + "start": 5750.7, + "end": 5753.5, + "probability": 0.7448 + }, + { + "start": 5753.5, + "end": 5755.66, + "probability": 0.9656 + }, + { + "start": 5755.7, + "end": 5758.2, + "probability": 0.986 + }, + { + "start": 5758.64, + "end": 5761.62, + "probability": 0.9505 + }, + { + "start": 5761.7, + "end": 5762.06, + "probability": 0.6586 + }, + { + "start": 5762.14, + "end": 5762.8, + "probability": 0.81 + }, + { + "start": 5766.38, + "end": 5766.38, + "probability": 0.0133 + }, + { + "start": 5766.38, + "end": 5766.76, + "probability": 0.8188 + }, + { + "start": 5767.74, + "end": 5771.22, + "probability": 0.2644 + }, + { + "start": 5772.48, + "end": 5775.48, + "probability": 0.0825 + }, + { + "start": 5775.48, + "end": 5780.06, + "probability": 0.2089 + }, + { + "start": 5780.1, + "end": 5781.29, + "probability": 0.4001 + }, + { + "start": 5782.52, + "end": 5785.47, + "probability": 0.1219 + }, + { + "start": 5785.96, + "end": 5786.78, + "probability": 0.2577 + }, + { + "start": 5786.92, + "end": 5787.3, + "probability": 0.1577 + }, + { + "start": 5787.3, + "end": 5787.96, + "probability": 0.7114 + }, + { + "start": 5788.14, + "end": 5789.74, + "probability": 0.6453 + }, + { + "start": 5790.4, + "end": 5795.26, + "probability": 0.982 + }, + { + "start": 5796.69, + "end": 5807.3, + "probability": 0.8879 + }, + { + "start": 5807.3, + "end": 5807.3, + "probability": 0.0418 + }, + { + "start": 5807.3, + "end": 5807.3, + "probability": 0.0853 + }, + { + "start": 5807.3, + "end": 5807.79, + "probability": 0.8521 + }, + { + "start": 5808.06, + "end": 5810.7, + "probability": 0.997 + }, + { + "start": 5810.92, + "end": 5816.2, + "probability": 0.9695 + }, + { + "start": 5816.46, + "end": 5817.58, + "probability": 0.8315 + }, + { + "start": 5817.72, + "end": 5824.24, + "probability": 0.9788 + }, + { + "start": 5824.72, + "end": 5825.28, + "probability": 0.8146 + }, + { + "start": 5826.64, + "end": 5828.94, + "probability": 0.9321 + }, + { + "start": 5829.64, + "end": 5834.02, + "probability": 0.9851 + }, + { + "start": 5834.26, + "end": 5836.31, + "probability": 0.9318 + }, + { + "start": 5836.54, + "end": 5839.14, + "probability": 0.985 + }, + { + "start": 5839.46, + "end": 5842.04, + "probability": 0.909 + }, + { + "start": 5843.14, + "end": 5845.52, + "probability": 0.9951 + }, + { + "start": 5845.58, + "end": 5846.52, + "probability": 0.8234 + }, + { + "start": 5846.64, + "end": 5847.78, + "probability": 0.7634 + }, + { + "start": 5848.22, + "end": 5850.63, + "probability": 0.8574 + }, + { + "start": 5851.26, + "end": 5852.68, + "probability": 0.9458 + }, + { + "start": 5852.78, + "end": 5855.32, + "probability": 0.9136 + }, + { + "start": 5855.92, + "end": 5857.12, + "probability": 0.9943 + }, + { + "start": 5857.36, + "end": 5858.5, + "probability": 0.9868 + }, + { + "start": 5860.81, + "end": 5863.66, + "probability": 0.9995 + }, + { + "start": 5863.66, + "end": 5865.78, + "probability": 0.9973 + }, + { + "start": 5866.0, + "end": 5867.28, + "probability": 0.6997 + }, + { + "start": 5867.3, + "end": 5868.38, + "probability": 0.8284 + }, + { + "start": 5868.6, + "end": 5870.32, + "probability": 0.8501 + }, + { + "start": 5870.74, + "end": 5872.92, + "probability": 0.9796 + }, + { + "start": 5873.1, + "end": 5876.98, + "probability": 0.982 + }, + { + "start": 5877.4, + "end": 5882.34, + "probability": 0.9843 + }, + { + "start": 5882.74, + "end": 5884.94, + "probability": 0.9531 + }, + { + "start": 5885.6, + "end": 5886.18, + "probability": 0.7621 + }, + { + "start": 5886.3, + "end": 5887.77, + "probability": 0.9849 + }, + { + "start": 5889.47, + "end": 5893.5, + "probability": 0.3699 + }, + { + "start": 5893.52, + "end": 5898.74, + "probability": 0.6917 + }, + { + "start": 5898.88, + "end": 5899.99, + "probability": 0.9804 + }, + { + "start": 5900.66, + "end": 5905.6, + "probability": 0.9258 + }, + { + "start": 5905.78, + "end": 5906.98, + "probability": 0.9844 + }, + { + "start": 5907.4, + "end": 5908.48, + "probability": 0.7006 + }, + { + "start": 5909.02, + "end": 5909.58, + "probability": 0.9438 + }, + { + "start": 5909.66, + "end": 5912.2, + "probability": 0.9512 + }, + { + "start": 5912.8, + "end": 5914.26, + "probability": 0.9508 + }, + { + "start": 5914.34, + "end": 5919.02, + "probability": 0.9372 + }, + { + "start": 5920.48, + "end": 5922.52, + "probability": 0.4338 + }, + { + "start": 5922.56, + "end": 5928.58, + "probability": 0.9907 + }, + { + "start": 5928.92, + "end": 5931.18, + "probability": 0.9971 + }, + { + "start": 5931.92, + "end": 5933.3, + "probability": 0.9461 + }, + { + "start": 5933.64, + "end": 5935.32, + "probability": 0.9863 + }, + { + "start": 5936.12, + "end": 5938.06, + "probability": 0.9709 + }, + { + "start": 5938.18, + "end": 5939.26, + "probability": 0.9854 + }, + { + "start": 5940.58, + "end": 5943.3, + "probability": 0.761 + }, + { + "start": 5943.32, + "end": 5944.52, + "probability": 0.9524 + }, + { + "start": 5945.04, + "end": 5947.7, + "probability": 0.0587 + }, + { + "start": 5948.14, + "end": 5948.88, + "probability": 0.4835 + }, + { + "start": 5949.0, + "end": 5950.04, + "probability": 0.8072 + }, + { + "start": 5950.06, + "end": 5951.42, + "probability": 0.6299 + }, + { + "start": 5951.52, + "end": 5951.94, + "probability": 0.6787 + }, + { + "start": 5952.54, + "end": 5954.16, + "probability": 0.7232 + }, + { + "start": 5954.34, + "end": 5955.94, + "probability": 0.8111 + }, + { + "start": 5956.58, + "end": 5958.04, + "probability": 0.966 + }, + { + "start": 5958.06, + "end": 5959.57, + "probability": 0.8915 + }, + { + "start": 5960.1, + "end": 5965.82, + "probability": 0.5297 + }, + { + "start": 5968.08, + "end": 5971.1, + "probability": 0.9624 + }, + { + "start": 5971.38, + "end": 5972.16, + "probability": 0.9018 + }, + { + "start": 5972.24, + "end": 5973.58, + "probability": 0.9216 + }, + { + "start": 5974.06, + "end": 5976.7, + "probability": 0.9823 + }, + { + "start": 5976.72, + "end": 5976.76, + "probability": 0.0357 + }, + { + "start": 5977.14, + "end": 5982.2, + "probability": 0.9901 + }, + { + "start": 5982.44, + "end": 5984.83, + "probability": 0.968 + }, + { + "start": 5985.0, + "end": 5985.76, + "probability": 0.8357 + }, + { + "start": 5985.8, + "end": 5986.8, + "probability": 0.8147 + }, + { + "start": 5986.88, + "end": 5988.26, + "probability": 0.8206 + }, + { + "start": 5988.38, + "end": 5989.76, + "probability": 0.9982 + }, + { + "start": 5991.1, + "end": 5993.04, + "probability": 0.859 + }, + { + "start": 5993.22, + "end": 5995.38, + "probability": 0.9385 + }, + { + "start": 5996.1, + "end": 5999.98, + "probability": 0.984 + }, + { + "start": 6000.84, + "end": 6001.18, + "probability": 0.7066 + }, + { + "start": 6002.18, + "end": 6004.28, + "probability": 0.3112 + }, + { + "start": 6004.28, + "end": 6007.88, + "probability": 0.5795 + }, + { + "start": 6008.18, + "end": 6011.46, + "probability": 0.9132 + }, + { + "start": 6013.22, + "end": 6016.8, + "probability": 0.9862 + }, + { + "start": 6016.84, + "end": 6018.96, + "probability": 0.3473 + }, + { + "start": 6019.94, + "end": 6023.0, + "probability": 0.9904 + }, + { + "start": 6023.1, + "end": 6024.72, + "probability": 0.6773 + }, + { + "start": 6024.98, + "end": 6025.74, + "probability": 0.7335 + }, + { + "start": 6026.16, + "end": 6027.34, + "probability": 0.7883 + }, + { + "start": 6027.64, + "end": 6029.06, + "probability": 0.6494 + }, + { + "start": 6029.14, + "end": 6030.86, + "probability": 0.976 + }, + { + "start": 6044.84, + "end": 6047.04, + "probability": 0.058 + }, + { + "start": 6047.04, + "end": 6047.04, + "probability": 0.0898 + }, + { + "start": 6047.04, + "end": 6047.04, + "probability": 0.0889 + }, + { + "start": 6047.2, + "end": 6048.14, + "probability": 0.6178 + }, + { + "start": 6048.62, + "end": 6049.9, + "probability": 0.4503 + }, + { + "start": 6049.96, + "end": 6051.22, + "probability": 0.7084 + }, + { + "start": 6051.46, + "end": 6052.22, + "probability": 0.7954 + }, + { + "start": 6052.34, + "end": 6053.4, + "probability": 0.6621 + }, + { + "start": 6054.08, + "end": 6057.74, + "probability": 0.9818 + }, + { + "start": 6057.74, + "end": 6063.66, + "probability": 0.9915 + }, + { + "start": 6064.06, + "end": 6065.14, + "probability": 0.7259 + }, + { + "start": 6066.12, + "end": 6069.04, + "probability": 0.3338 + }, + { + "start": 6069.04, + "end": 6069.04, + "probability": 0.1196 + }, + { + "start": 6069.04, + "end": 6069.04, + "probability": 0.4801 + }, + { + "start": 6069.04, + "end": 6069.04, + "probability": 0.144 + }, + { + "start": 6069.04, + "end": 6070.64, + "probability": 0.3584 + }, + { + "start": 6070.64, + "end": 6073.84, + "probability": 0.9908 + }, + { + "start": 6073.94, + "end": 6074.58, + "probability": 0.5942 + }, + { + "start": 6074.58, + "end": 6074.58, + "probability": 0.0193 + }, + { + "start": 6093.86, + "end": 6094.7, + "probability": 0.182 + }, + { + "start": 6095.2, + "end": 6096.76, + "probability": 0.5556 + }, + { + "start": 6096.96, + "end": 6099.24, + "probability": 0.8812 + }, + { + "start": 6099.42, + "end": 6101.2, + "probability": 0.6831 + }, + { + "start": 6101.68, + "end": 6102.8, + "probability": 0.8724 + }, + { + "start": 6102.84, + "end": 6105.16, + "probability": 0.1194 + }, + { + "start": 6105.36, + "end": 6109.78, + "probability": 0.9531 + }, + { + "start": 6110.32, + "end": 6112.74, + "probability": 0.9607 + }, + { + "start": 6112.8, + "end": 6113.62, + "probability": 0.7069 + }, + { + "start": 6132.36, + "end": 6134.4, + "probability": 0.9359 + }, + { + "start": 6134.58, + "end": 6136.34, + "probability": 0.8158 + }, + { + "start": 6136.6, + "end": 6137.72, + "probability": 0.887 + }, + { + "start": 6137.78, + "end": 6141.91, + "probability": 0.9714 + }, + { + "start": 6141.92, + "end": 6142.6, + "probability": 0.4715 + }, + { + "start": 6143.44, + "end": 6144.34, + "probability": 0.5495 + }, + { + "start": 6144.42, + "end": 6145.42, + "probability": 0.7844 + }, + { + "start": 6145.66, + "end": 6149.62, + "probability": 0.5226 + }, + { + "start": 6149.9, + "end": 6151.96, + "probability": 0.9883 + }, + { + "start": 6152.44, + "end": 6153.62, + "probability": 0.8964 + }, + { + "start": 6153.74, + "end": 6155.54, + "probability": 0.9452 + }, + { + "start": 6155.64, + "end": 6159.08, + "probability": 0.998 + }, + { + "start": 6159.08, + "end": 6161.88, + "probability": 0.9705 + }, + { + "start": 6162.52, + "end": 6164.46, + "probability": 0.8844 + }, + { + "start": 6164.6, + "end": 6169.0, + "probability": 0.9099 + }, + { + "start": 6169.5, + "end": 6172.6, + "probability": 0.9539 + }, + { + "start": 6172.6, + "end": 6176.14, + "probability": 0.9243 + }, + { + "start": 6176.4, + "end": 6181.06, + "probability": 0.9233 + }, + { + "start": 6181.84, + "end": 6182.18, + "probability": 0.6423 + }, + { + "start": 6182.48, + "end": 6184.64, + "probability": 0.9901 + }, + { + "start": 6184.64, + "end": 6187.78, + "probability": 0.9369 + }, + { + "start": 6188.14, + "end": 6188.62, + "probability": 0.822 + }, + { + "start": 6188.94, + "end": 6192.19, + "probability": 0.9643 + }, + { + "start": 6192.92, + "end": 6195.22, + "probability": 0.8531 + }, + { + "start": 6195.28, + "end": 6201.1, + "probability": 0.9423 + }, + { + "start": 6201.6, + "end": 6203.48, + "probability": 0.7612 + }, + { + "start": 6204.12, + "end": 6207.38, + "probability": 0.9515 + }, + { + "start": 6209.06, + "end": 6212.54, + "probability": 0.9332 + }, + { + "start": 6212.96, + "end": 6214.22, + "probability": 0.8991 + }, + { + "start": 6215.02, + "end": 6216.5, + "probability": 0.9277 + }, + { + "start": 6216.58, + "end": 6218.72, + "probability": 0.6217 + }, + { + "start": 6219.46, + "end": 6220.58, + "probability": 0.9102 + }, + { + "start": 6220.64, + "end": 6222.21, + "probability": 0.8009 + }, + { + "start": 6222.88, + "end": 6224.66, + "probability": 0.9793 + }, + { + "start": 6226.36, + "end": 6227.14, + "probability": 0.7771 + }, + { + "start": 6227.32, + "end": 6230.96, + "probability": 0.905 + }, + { + "start": 6231.34, + "end": 6233.9, + "probability": 0.9818 + }, + { + "start": 6234.26, + "end": 6235.76, + "probability": 0.933 + }, + { + "start": 6235.76, + "end": 6236.6, + "probability": 0.5185 + }, + { + "start": 6236.68, + "end": 6237.96, + "probability": 0.8279 + }, + { + "start": 6238.04, + "end": 6238.8, + "probability": 0.8214 + }, + { + "start": 6238.86, + "end": 6239.86, + "probability": 0.4891 + }, + { + "start": 6239.9, + "end": 6241.04, + "probability": 0.8385 + }, + { + "start": 6241.16, + "end": 6242.5, + "probability": 0.7133 + }, + { + "start": 6244.24, + "end": 6245.64, + "probability": 0.9795 + }, + { + "start": 6245.66, + "end": 6248.7, + "probability": 0.9908 + }, + { + "start": 6249.94, + "end": 6253.02, + "probability": 0.8734 + }, + { + "start": 6253.12, + "end": 6253.89, + "probability": 0.8708 + }, + { + "start": 6256.14, + "end": 6259.28, + "probability": 0.9839 + }, + { + "start": 6259.28, + "end": 6264.62, + "probability": 0.9652 + }, + { + "start": 6265.58, + "end": 6268.22, + "probability": 0.9982 + }, + { + "start": 6268.22, + "end": 6270.16, + "probability": 0.993 + }, + { + "start": 6271.62, + "end": 6276.56, + "probability": 0.9932 + }, + { + "start": 6277.06, + "end": 6278.76, + "probability": 0.9977 + }, + { + "start": 6279.28, + "end": 6282.32, + "probability": 0.9792 + }, + { + "start": 6282.66, + "end": 6284.14, + "probability": 0.9946 + }, + { + "start": 6284.44, + "end": 6289.8, + "probability": 0.7754 + }, + { + "start": 6290.24, + "end": 6293.58, + "probability": 0.9768 + }, + { + "start": 6294.32, + "end": 6298.04, + "probability": 0.9795 + }, + { + "start": 6298.04, + "end": 6301.7, + "probability": 0.994 + }, + { + "start": 6302.08, + "end": 6303.88, + "probability": 0.9661 + }, + { + "start": 6304.36, + "end": 6307.76, + "probability": 0.6669 + }, + { + "start": 6308.12, + "end": 6312.46, + "probability": 0.897 + }, + { + "start": 6312.46, + "end": 6316.56, + "probability": 0.9425 + }, + { + "start": 6316.66, + "end": 6317.32, + "probability": 0.8976 + }, + { + "start": 6317.66, + "end": 6319.3, + "probability": 0.7267 + }, + { + "start": 6319.88, + "end": 6323.18, + "probability": 0.9714 + }, + { + "start": 6323.18, + "end": 6326.2, + "probability": 0.9171 + }, + { + "start": 6326.76, + "end": 6329.08, + "probability": 0.8808 + }, + { + "start": 6329.08, + "end": 6332.32, + "probability": 0.9805 + }, + { + "start": 6332.66, + "end": 6334.54, + "probability": 0.8259 + }, + { + "start": 6334.82, + "end": 6336.56, + "probability": 0.8773 + }, + { + "start": 6336.98, + "end": 6340.82, + "probability": 0.9514 + }, + { + "start": 6341.32, + "end": 6341.96, + "probability": 0.4887 + }, + { + "start": 6342.08, + "end": 6346.08, + "probability": 0.9782 + }, + { + "start": 6346.08, + "end": 6350.36, + "probability": 0.9849 + }, + { + "start": 6351.18, + "end": 6353.72, + "probability": 0.9944 + }, + { + "start": 6353.98, + "end": 6355.54, + "probability": 0.9209 + }, + { + "start": 6355.76, + "end": 6358.26, + "probability": 0.9919 + }, + { + "start": 6358.48, + "end": 6362.6, + "probability": 0.9976 + }, + { + "start": 6363.54, + "end": 6366.22, + "probability": 0.9795 + }, + { + "start": 6366.22, + "end": 6369.68, + "probability": 0.9561 + }, + { + "start": 6370.58, + "end": 6373.48, + "probability": 0.9938 + }, + { + "start": 6373.64, + "end": 6375.84, + "probability": 0.764 + }, + { + "start": 6376.44, + "end": 6379.94, + "probability": 0.9838 + }, + { + "start": 6396.66, + "end": 6399.26, + "probability": 0.4064 + }, + { + "start": 6402.12, + "end": 6406.7, + "probability": 0.8272 + }, + { + "start": 6407.88, + "end": 6408.74, + "probability": 0.9105 + }, + { + "start": 6409.96, + "end": 6411.76, + "probability": 0.9329 + }, + { + "start": 6417.67, + "end": 6418.93, + "probability": 0.2028 + }, + { + "start": 6430.16, + "end": 6432.56, + "probability": 0.6922 + }, + { + "start": 6433.02, + "end": 6433.81, + "probability": 0.8328 + }, + { + "start": 6433.96, + "end": 6434.08, + "probability": 0.4063 + }, + { + "start": 6434.3, + "end": 6435.18, + "probability": 0.8702 + }, + { + "start": 6436.52, + "end": 6437.86, + "probability": 0.8217 + }, + { + "start": 6437.86, + "end": 6440.24, + "probability": 0.9664 + }, + { + "start": 6440.26, + "end": 6442.32, + "probability": 0.7846 + }, + { + "start": 6442.38, + "end": 6444.12, + "probability": 0.7915 + }, + { + "start": 6444.2, + "end": 6445.64, + "probability": 0.74 + }, + { + "start": 6446.54, + "end": 6449.46, + "probability": 0.9195 + }, + { + "start": 6449.52, + "end": 6453.28, + "probability": 0.9285 + }, + { + "start": 6454.0, + "end": 6456.44, + "probability": 0.6543 + }, + { + "start": 6457.12, + "end": 6459.02, + "probability": 0.675 + }, + { + "start": 6459.64, + "end": 6465.54, + "probability": 0.9868 + }, + { + "start": 6466.36, + "end": 6468.2, + "probability": 0.6072 + }, + { + "start": 6469.14, + "end": 6470.56, + "probability": 0.8945 + }, + { + "start": 6471.22, + "end": 6473.64, + "probability": 0.9438 + }, + { + "start": 6474.62, + "end": 6475.36, + "probability": 0.9211 + }, + { + "start": 6475.58, + "end": 6476.6, + "probability": 0.9847 + }, + { + "start": 6476.96, + "end": 6477.66, + "probability": 0.8539 + }, + { + "start": 6477.96, + "end": 6479.04, + "probability": 0.7454 + }, + { + "start": 6479.26, + "end": 6483.32, + "probability": 0.8641 + }, + { + "start": 6483.92, + "end": 6486.68, + "probability": 0.6889 + }, + { + "start": 6487.68, + "end": 6488.8, + "probability": 0.9116 + }, + { + "start": 6489.78, + "end": 6492.72, + "probability": 0.9839 + }, + { + "start": 6493.82, + "end": 6497.88, + "probability": 0.9653 + }, + { + "start": 6499.26, + "end": 6506.08, + "probability": 0.9912 + }, + { + "start": 6506.98, + "end": 6509.86, + "probability": 0.9097 + }, + { + "start": 6510.28, + "end": 6510.84, + "probability": 0.5352 + }, + { + "start": 6510.86, + "end": 6516.44, + "probability": 0.9907 + }, + { + "start": 6517.3, + "end": 6521.92, + "probability": 0.9976 + }, + { + "start": 6522.66, + "end": 6524.88, + "probability": 0.9893 + }, + { + "start": 6525.8, + "end": 6529.5, + "probability": 0.9288 + }, + { + "start": 6531.3, + "end": 6533.01, + "probability": 0.9913 + }, + { + "start": 6534.08, + "end": 6537.86, + "probability": 0.7596 + }, + { + "start": 6538.26, + "end": 6540.6, + "probability": 0.9016 + }, + { + "start": 6541.56, + "end": 6544.1, + "probability": 0.7667 + }, + { + "start": 6544.1, + "end": 6550.42, + "probability": 0.9333 + }, + { + "start": 6550.56, + "end": 6555.68, + "probability": 0.3647 + }, + { + "start": 6556.58, + "end": 6558.98, + "probability": 0.8733 + }, + { + "start": 6560.0, + "end": 6563.54, + "probability": 0.9625 + }, + { + "start": 6565.38, + "end": 6570.68, + "probability": 0.9937 + }, + { + "start": 6571.8, + "end": 6579.16, + "probability": 0.9901 + }, + { + "start": 6581.31, + "end": 6582.61, + "probability": 0.2214 + }, + { + "start": 6584.9, + "end": 6590.06, + "probability": 0.9282 + }, + { + "start": 6590.06, + "end": 6596.02, + "probability": 0.9342 + }, + { + "start": 6597.54, + "end": 6600.5, + "probability": 0.9832 + }, + { + "start": 6601.54, + "end": 6602.96, + "probability": 0.5078 + }, + { + "start": 6602.96, + "end": 6604.23, + "probability": 0.8188 + }, + { + "start": 6605.62, + "end": 6607.66, + "probability": 0.93 + }, + { + "start": 6607.88, + "end": 6610.16, + "probability": 0.6433 + }, + { + "start": 6610.96, + "end": 6616.68, + "probability": 0.8638 + }, + { + "start": 6617.3, + "end": 6622.86, + "probability": 0.7961 + }, + { + "start": 6623.78, + "end": 6625.56, + "probability": 0.9904 + }, + { + "start": 6626.26, + "end": 6629.04, + "probability": 0.9988 + }, + { + "start": 6630.06, + "end": 6631.57, + "probability": 0.9964 + }, + { + "start": 6632.98, + "end": 6635.62, + "probability": 0.9578 + }, + { + "start": 6636.22, + "end": 6636.76, + "probability": 0.6812 + }, + { + "start": 6637.52, + "end": 6640.14, + "probability": 0.8207 + }, + { + "start": 6640.84, + "end": 6643.2, + "probability": 0.5823 + }, + { + "start": 6643.26, + "end": 6645.64, + "probability": 0.9541 + }, + { + "start": 6646.34, + "end": 6650.36, + "probability": 0.9786 + }, + { + "start": 6650.36, + "end": 6655.9, + "probability": 0.8847 + }, + { + "start": 6657.52, + "end": 6664.44, + "probability": 0.9808 + }, + { + "start": 6665.44, + "end": 6667.26, + "probability": 0.9005 + }, + { + "start": 6667.54, + "end": 6668.08, + "probability": 0.7839 + }, + { + "start": 6668.2, + "end": 6673.34, + "probability": 0.9814 + }, + { + "start": 6674.32, + "end": 6682.22, + "probability": 0.9814 + }, + { + "start": 6682.62, + "end": 6687.5, + "probability": 0.9961 + }, + { + "start": 6687.5, + "end": 6692.06, + "probability": 0.996 + }, + { + "start": 6692.7, + "end": 6696.66, + "probability": 0.9866 + }, + { + "start": 6697.42, + "end": 6704.18, + "probability": 0.8614 + }, + { + "start": 6704.18, + "end": 6710.48, + "probability": 0.9961 + }, + { + "start": 6710.96, + "end": 6712.52, + "probability": 0.8554 + }, + { + "start": 6712.66, + "end": 6714.26, + "probability": 0.8448 + }, + { + "start": 6714.32, + "end": 6716.56, + "probability": 0.88 + }, + { + "start": 6717.4, + "end": 6723.46, + "probability": 0.979 + }, + { + "start": 6723.64, + "end": 6724.8, + "probability": 0.944 + }, + { + "start": 6725.14, + "end": 6726.42, + "probability": 0.6376 + }, + { + "start": 6726.42, + "end": 6727.28, + "probability": 0.9381 + }, + { + "start": 6727.92, + "end": 6728.82, + "probability": 0.8877 + }, + { + "start": 6729.16, + "end": 6730.26, + "probability": 0.9338 + }, + { + "start": 6730.32, + "end": 6732.0, + "probability": 0.9876 + }, + { + "start": 6732.62, + "end": 6733.34, + "probability": 0.907 + }, + { + "start": 6733.6, + "end": 6734.32, + "probability": 0.8106 + }, + { + "start": 6734.78, + "end": 6735.52, + "probability": 0.8445 + }, + { + "start": 6735.56, + "end": 6736.08, + "probability": 0.7816 + }, + { + "start": 6736.32, + "end": 6736.92, + "probability": 0.9633 + }, + { + "start": 6738.04, + "end": 6738.76, + "probability": 0.5346 + }, + { + "start": 6738.84, + "end": 6742.1, + "probability": 0.9562 + }, + { + "start": 6742.2, + "end": 6743.02, + "probability": 0.9527 + }, + { + "start": 6764.78, + "end": 6766.18, + "probability": 0.7523 + }, + { + "start": 6768.04, + "end": 6771.52, + "probability": 0.7885 + }, + { + "start": 6772.36, + "end": 6774.12, + "probability": 0.9412 + }, + { + "start": 6774.22, + "end": 6777.52, + "probability": 0.8783 + }, + { + "start": 6778.8, + "end": 6779.46, + "probability": 0.553 + }, + { + "start": 6779.95, + "end": 6784.4, + "probability": 0.9062 + }, + { + "start": 6784.58, + "end": 6786.38, + "probability": 0.6975 + }, + { + "start": 6786.56, + "end": 6787.44, + "probability": 0.7698 + }, + { + "start": 6788.24, + "end": 6792.52, + "probability": 0.9963 + }, + { + "start": 6792.52, + "end": 6796.66, + "probability": 0.9257 + }, + { + "start": 6796.82, + "end": 6802.08, + "probability": 0.6861 + }, + { + "start": 6803.14, + "end": 6810.64, + "probability": 0.9674 + }, + { + "start": 6810.86, + "end": 6819.4, + "probability": 0.9917 + }, + { + "start": 6820.16, + "end": 6820.36, + "probability": 0.537 + }, + { + "start": 6820.36, + "end": 6821.09, + "probability": 0.7407 + }, + { + "start": 6821.18, + "end": 6821.6, + "probability": 0.7299 + }, + { + "start": 6821.74, + "end": 6822.62, + "probability": 0.5406 + }, + { + "start": 6823.42, + "end": 6825.3, + "probability": 0.9487 + }, + { + "start": 6826.17, + "end": 6830.16, + "probability": 0.9935 + }, + { + "start": 6831.24, + "end": 6836.52, + "probability": 0.9622 + }, + { + "start": 6836.52, + "end": 6840.94, + "probability": 0.9758 + }, + { + "start": 6842.22, + "end": 6843.76, + "probability": 0.9907 + }, + { + "start": 6845.44, + "end": 6851.78, + "probability": 0.7998 + }, + { + "start": 6852.58, + "end": 6856.62, + "probability": 0.9146 + }, + { + "start": 6857.28, + "end": 6857.82, + "probability": 0.7667 + }, + { + "start": 6858.32, + "end": 6869.42, + "probability": 0.9663 + }, + { + "start": 6870.6, + "end": 6876.74, + "probability": 0.9893 + }, + { + "start": 6877.98, + "end": 6881.86, + "probability": 0.9861 + }, + { + "start": 6882.18, + "end": 6882.98, + "probability": 0.6835 + }, + { + "start": 6883.08, + "end": 6884.18, + "probability": 0.9411 + }, + { + "start": 6884.58, + "end": 6890.52, + "probability": 0.747 + }, + { + "start": 6890.56, + "end": 6893.28, + "probability": 0.9906 + }, + { + "start": 6894.68, + "end": 6902.8, + "probability": 0.9514 + }, + { + "start": 6903.78, + "end": 6904.44, + "probability": 0.9173 + }, + { + "start": 6904.98, + "end": 6908.31, + "probability": 0.9871 + }, + { + "start": 6909.16, + "end": 6911.46, + "probability": 0.7139 + }, + { + "start": 6913.08, + "end": 6914.6, + "probability": 0.9358 + }, + { + "start": 6915.72, + "end": 6918.58, + "probability": 0.9963 + }, + { + "start": 6918.92, + "end": 6920.04, + "probability": 0.9785 + }, + { + "start": 6923.16, + "end": 6923.68, + "probability": 0.0766 + }, + { + "start": 6923.78, + "end": 6924.56, + "probability": 0.6145 + }, + { + "start": 6924.74, + "end": 6925.46, + "probability": 0.8524 + }, + { + "start": 6925.56, + "end": 6926.18, + "probability": 0.6809 + }, + { + "start": 6926.3, + "end": 6929.34, + "probability": 0.9535 + }, + { + "start": 6929.34, + "end": 6931.0, + "probability": 0.9962 + }, + { + "start": 6931.6, + "end": 6931.94, + "probability": 0.049 + }, + { + "start": 6932.04, + "end": 6932.72, + "probability": 0.5066 + }, + { + "start": 6932.86, + "end": 6933.02, + "probability": 0.873 + }, + { + "start": 6933.6, + "end": 6935.36, + "probability": 0.5737 + }, + { + "start": 6935.4, + "end": 6936.16, + "probability": 0.5898 + }, + { + "start": 6937.7, + "end": 6937.74, + "probability": 0.0368 + }, + { + "start": 6937.74, + "end": 6937.78, + "probability": 0.5248 + }, + { + "start": 6937.94, + "end": 6939.02, + "probability": 0.7593 + }, + { + "start": 6939.28, + "end": 6942.32, + "probability": 0.8584 + }, + { + "start": 6942.74, + "end": 6943.66, + "probability": 0.6055 + }, + { + "start": 6943.72, + "end": 6944.86, + "probability": 0.7061 + }, + { + "start": 6945.34, + "end": 6948.86, + "probability": 0.9727 + }, + { + "start": 6948.92, + "end": 6951.96, + "probability": 0.9812 + }, + { + "start": 6953.92, + "end": 6957.94, + "probability": 0.6285 + }, + { + "start": 6958.3, + "end": 6961.4, + "probability": 0.9875 + }, + { + "start": 6962.72, + "end": 6964.8, + "probability": 0.5518 + }, + { + "start": 6965.82, + "end": 6966.94, + "probability": 0.8989 + }, + { + "start": 6967.94, + "end": 6975.5, + "probability": 0.9655 + }, + { + "start": 6977.6, + "end": 6979.3, + "probability": 0.995 + }, + { + "start": 6979.3, + "end": 6981.88, + "probability": 0.9449 + }, + { + "start": 6982.62, + "end": 6984.26, + "probability": 0.8687 + }, + { + "start": 6985.04, + "end": 6988.02, + "probability": 0.9043 + }, + { + "start": 6989.04, + "end": 6993.78, + "probability": 0.9934 + }, + { + "start": 6995.06, + "end": 7001.68, + "probability": 0.9839 + }, + { + "start": 7002.44, + "end": 7003.42, + "probability": 0.8745 + }, + { + "start": 7004.4, + "end": 7005.88, + "probability": 0.9903 + }, + { + "start": 7006.54, + "end": 7009.18, + "probability": 0.9858 + }, + { + "start": 7011.02, + "end": 7011.4, + "probability": 0.6915 + }, + { + "start": 7011.76, + "end": 7015.4, + "probability": 0.75 + }, + { + "start": 7017.5, + "end": 7020.5, + "probability": 0.9665 + }, + { + "start": 7020.58, + "end": 7023.56, + "probability": 0.8404 + }, + { + "start": 7024.52, + "end": 7026.54, + "probability": 0.9973 + }, + { + "start": 7027.18, + "end": 7029.18, + "probability": 0.9432 + }, + { + "start": 7029.3, + "end": 7029.79, + "probability": 0.2405 + }, + { + "start": 7030.04, + "end": 7032.1, + "probability": 0.9753 + }, + { + "start": 7032.56, + "end": 7034.58, + "probability": 0.5275 + }, + { + "start": 7034.58, + "end": 7036.9, + "probability": 0.8037 + }, + { + "start": 7038.18, + "end": 7040.46, + "probability": 0.9694 + }, + { + "start": 7041.7, + "end": 7043.86, + "probability": 0.9136 + }, + { + "start": 7044.02, + "end": 7045.45, + "probability": 0.9722 + }, + { + "start": 7046.18, + "end": 7046.26, + "probability": 0.495 + }, + { + "start": 7046.32, + "end": 7051.64, + "probability": 0.979 + }, + { + "start": 7051.74, + "end": 7051.92, + "probability": 0.2609 + }, + { + "start": 7052.88, + "end": 7061.48, + "probability": 0.9852 + }, + { + "start": 7062.52, + "end": 7063.78, + "probability": 0.7393 + }, + { + "start": 7064.44, + "end": 7066.62, + "probability": 0.8824 + }, + { + "start": 7066.74, + "end": 7068.36, + "probability": 0.6906 + }, + { + "start": 7069.62, + "end": 7071.7, + "probability": 0.5183 + }, + { + "start": 7072.04, + "end": 7074.36, + "probability": 0.979 + }, + { + "start": 7074.44, + "end": 7075.38, + "probability": 0.9797 + }, + { + "start": 7076.64, + "end": 7079.82, + "probability": 0.9878 + }, + { + "start": 7080.26, + "end": 7082.14, + "probability": 0.9908 + }, + { + "start": 7082.52, + "end": 7084.74, + "probability": 0.9893 + }, + { + "start": 7085.4, + "end": 7089.1, + "probability": 0.9766 + }, + { + "start": 7089.22, + "end": 7090.0, + "probability": 0.7116 + }, + { + "start": 7090.16, + "end": 7090.98, + "probability": 0.5322 + }, + { + "start": 7091.84, + "end": 7096.0, + "probability": 0.865 + }, + { + "start": 7097.32, + "end": 7099.46, + "probability": 0.9543 + }, + { + "start": 7099.5, + "end": 7101.22, + "probability": 0.9819 + }, + { + "start": 7101.5, + "end": 7103.06, + "probability": 0.9636 + }, + { + "start": 7103.84, + "end": 7108.5, + "probability": 0.9857 + }, + { + "start": 7108.6, + "end": 7111.06, + "probability": 0.9561 + }, + { + "start": 7111.44, + "end": 7115.58, + "probability": 0.7539 + }, + { + "start": 7117.76, + "end": 7119.62, + "probability": 0.9883 + }, + { + "start": 7120.94, + "end": 7125.34, + "probability": 0.6736 + }, + { + "start": 7126.74, + "end": 7128.57, + "probability": 0.9151 + }, + { + "start": 7129.52, + "end": 7133.04, + "probability": 0.8689 + }, + { + "start": 7133.88, + "end": 7135.86, + "probability": 0.9833 + }, + { + "start": 7136.44, + "end": 7137.94, + "probability": 0.7778 + }, + { + "start": 7140.2, + "end": 7146.66, + "probability": 0.9751 + }, + { + "start": 7147.98, + "end": 7153.0, + "probability": 0.9846 + }, + { + "start": 7153.1, + "end": 7154.58, + "probability": 0.9917 + }, + { + "start": 7156.02, + "end": 7162.34, + "probability": 0.6838 + }, + { + "start": 7162.92, + "end": 7163.96, + "probability": 0.8171 + }, + { + "start": 7164.02, + "end": 7165.18, + "probability": 0.8971 + }, + { + "start": 7165.48, + "end": 7167.02, + "probability": 0.7469 + }, + { + "start": 7168.68, + "end": 7171.14, + "probability": 0.9065 + }, + { + "start": 7172.98, + "end": 7178.14, + "probability": 0.9938 + }, + { + "start": 7179.98, + "end": 7185.74, + "probability": 0.9904 + }, + { + "start": 7185.74, + "end": 7190.48, + "probability": 0.9828 + }, + { + "start": 7190.56, + "end": 7191.62, + "probability": 0.7536 + }, + { + "start": 7192.2, + "end": 7196.68, + "probability": 0.9693 + }, + { + "start": 7198.14, + "end": 7201.08, + "probability": 0.9712 + }, + { + "start": 7201.18, + "end": 7202.7, + "probability": 0.6015 + }, + { + "start": 7202.78, + "end": 7204.9, + "probability": 0.8595 + }, + { + "start": 7205.98, + "end": 7208.6, + "probability": 0.8913 + }, + { + "start": 7208.88, + "end": 7211.54, + "probability": 0.991 + }, + { + "start": 7214.32, + "end": 7214.96, + "probability": 0.752 + }, + { + "start": 7215.34, + "end": 7216.06, + "probability": 0.9676 + }, + { + "start": 7216.14, + "end": 7217.96, + "probability": 0.969 + }, + { + "start": 7218.18, + "end": 7221.02, + "probability": 0.9727 + }, + { + "start": 7221.48, + "end": 7226.04, + "probability": 0.9486 + }, + { + "start": 7226.46, + "end": 7226.8, + "probability": 0.9146 + }, + { + "start": 7226.92, + "end": 7227.82, + "probability": 0.7505 + }, + { + "start": 7228.3, + "end": 7231.2, + "probability": 0.973 + }, + { + "start": 7232.56, + "end": 7233.38, + "probability": 0.6114 + }, + { + "start": 7234.3, + "end": 7239.04, + "probability": 0.9622 + }, + { + "start": 7240.06, + "end": 7240.48, + "probability": 0.7854 + }, + { + "start": 7241.58, + "end": 7242.6, + "probability": 0.4046 + }, + { + "start": 7242.78, + "end": 7245.18, + "probability": 0.9101 + }, + { + "start": 7245.24, + "end": 7245.74, + "probability": 0.9395 + }, + { + "start": 7250.96, + "end": 7251.44, + "probability": 0.0337 + }, + { + "start": 7255.3, + "end": 7255.36, + "probability": 0.0612 + }, + { + "start": 7255.36, + "end": 7255.42, + "probability": 0.2219 + }, + { + "start": 7255.42, + "end": 7255.84, + "probability": 0.2637 + }, + { + "start": 7266.22, + "end": 7266.32, + "probability": 0.1183 + }, + { + "start": 7266.32, + "end": 7267.84, + "probability": 0.714 + }, + { + "start": 7267.94, + "end": 7269.78, + "probability": 0.8027 + }, + { + "start": 7269.8, + "end": 7272.06, + "probability": 0.51 + }, + { + "start": 7272.16, + "end": 7273.07, + "probability": 0.8557 + }, + { + "start": 7273.36, + "end": 7274.61, + "probability": 0.8861 + }, + { + "start": 7274.76, + "end": 7275.22, + "probability": 0.162 + }, + { + "start": 7275.94, + "end": 7277.3, + "probability": 0.5956 + }, + { + "start": 7277.54, + "end": 7277.6, + "probability": 0.039 + }, + { + "start": 7277.6, + "end": 7277.6, + "probability": 0.0387 + }, + { + "start": 7277.62, + "end": 7279.02, + "probability": 0.8904 + }, + { + "start": 7279.12, + "end": 7279.4, + "probability": 0.3732 + }, + { + "start": 7280.16, + "end": 7282.3, + "probability": 0.2582 + }, + { + "start": 7282.32, + "end": 7283.24, + "probability": 0.7936 + }, + { + "start": 7283.24, + "end": 7286.06, + "probability": 0.7762 + }, + { + "start": 7286.06, + "end": 7286.9, + "probability": 0.6917 + }, + { + "start": 7287.1, + "end": 7287.2, + "probability": 0.5099 + }, + { + "start": 7287.4, + "end": 7287.94, + "probability": 0.5699 + }, + { + "start": 7289.18, + "end": 7289.18, + "probability": 0.4145 + }, + { + "start": 7289.18, + "end": 7289.18, + "probability": 0.4093 + }, + { + "start": 7289.18, + "end": 7291.5, + "probability": 0.8986 + }, + { + "start": 7292.24, + "end": 7293.0, + "probability": 0.8217 + }, + { + "start": 7293.06, + "end": 7297.5, + "probability": 0.7871 + }, + { + "start": 7298.58, + "end": 7302.18, + "probability": 0.9574 + }, + { + "start": 7303.12, + "end": 7307.74, + "probability": 0.858 + }, + { + "start": 7308.92, + "end": 7312.6, + "probability": 0.7565 + }, + { + "start": 7313.16, + "end": 7313.82, + "probability": 0.8329 + }, + { + "start": 7314.5, + "end": 7315.86, + "probability": 0.707 + }, + { + "start": 7316.8, + "end": 7321.18, + "probability": 0.86 + }, + { + "start": 7321.62, + "end": 7323.58, + "probability": 0.9768 + }, + { + "start": 7324.1, + "end": 7326.36, + "probability": 0.7959 + }, + { + "start": 7327.08, + "end": 7330.06, + "probability": 0.5058 + }, + { + "start": 7331.08, + "end": 7331.64, + "probability": 0.8638 + }, + { + "start": 7331.64, + "end": 7331.64, + "probability": 0.2697 + }, + { + "start": 7331.64, + "end": 7332.38, + "probability": 0.0361 + }, + { + "start": 7333.08, + "end": 7333.78, + "probability": 0.3614 + }, + { + "start": 7333.8, + "end": 7334.2, + "probability": 0.694 + }, + { + "start": 7334.46, + "end": 7334.72, + "probability": 0.6025 + }, + { + "start": 7334.74, + "end": 7335.06, + "probability": 0.5413 + }, + { + "start": 7335.3, + "end": 7337.66, + "probability": 0.916 + }, + { + "start": 7338.4, + "end": 7340.14, + "probability": 0.9303 + }, + { + "start": 7341.26, + "end": 7345.7, + "probability": 0.9833 + }, + { + "start": 7346.88, + "end": 7348.48, + "probability": 0.6716 + }, + { + "start": 7349.62, + "end": 7352.1, + "probability": 0.8767 + }, + { + "start": 7352.22, + "end": 7354.3, + "probability": 0.8882 + }, + { + "start": 7355.64, + "end": 7355.64, + "probability": 0.2613 + }, + { + "start": 7355.64, + "end": 7358.02, + "probability": 0.8977 + }, + { + "start": 7358.64, + "end": 7364.18, + "probability": 0.9736 + }, + { + "start": 7365.3, + "end": 7366.68, + "probability": 0.5298 + }, + { + "start": 7366.8, + "end": 7368.38, + "probability": 0.8447 + }, + { + "start": 7368.82, + "end": 7369.62, + "probability": 0.9233 + }, + { + "start": 7370.16, + "end": 7377.0, + "probability": 0.9949 + }, + { + "start": 7377.48, + "end": 7381.56, + "probability": 0.9482 + }, + { + "start": 7382.64, + "end": 7387.32, + "probability": 0.9282 + }, + { + "start": 7388.0, + "end": 7390.2, + "probability": 0.6628 + }, + { + "start": 7390.22, + "end": 7390.6, + "probability": 0.6355 + }, + { + "start": 7390.72, + "end": 7391.32, + "probability": 0.883 + }, + { + "start": 7391.34, + "end": 7392.06, + "probability": 0.8638 + }, + { + "start": 7392.6, + "end": 7396.06, + "probability": 0.9881 + }, + { + "start": 7396.52, + "end": 7399.22, + "probability": 0.9927 + }, + { + "start": 7399.72, + "end": 7401.54, + "probability": 0.5824 + }, + { + "start": 7402.32, + "end": 7402.74, + "probability": 0.4516 + }, + { + "start": 7403.74, + "end": 7405.9, + "probability": 0.8598 + }, + { + "start": 7406.5, + "end": 7408.0, + "probability": 0.7432 + }, + { + "start": 7409.06, + "end": 7413.02, + "probability": 0.9235 + }, + { + "start": 7413.36, + "end": 7415.42, + "probability": 0.8188 + }, + { + "start": 7415.74, + "end": 7417.24, + "probability": 0.9889 + }, + { + "start": 7417.56, + "end": 7418.58, + "probability": 0.7153 + }, + { + "start": 7420.02, + "end": 7421.02, + "probability": 0.7639 + }, + { + "start": 7421.54, + "end": 7427.0, + "probability": 0.8538 + }, + { + "start": 7427.42, + "end": 7428.56, + "probability": 0.7346 + }, + { + "start": 7428.92, + "end": 7431.74, + "probability": 0.9673 + }, + { + "start": 7432.16, + "end": 7433.02, + "probability": 0.9534 + }, + { + "start": 7433.62, + "end": 7435.34, + "probability": 0.9804 + }, + { + "start": 7435.86, + "end": 7437.86, + "probability": 0.9274 + }, + { + "start": 7438.42, + "end": 7442.3, + "probability": 0.6675 + }, + { + "start": 7442.82, + "end": 7444.28, + "probability": 0.7622 + }, + { + "start": 7444.62, + "end": 7445.08, + "probability": 0.6458 + }, + { + "start": 7445.8, + "end": 7447.92, + "probability": 0.8132 + }, + { + "start": 7448.0, + "end": 7449.12, + "probability": 0.9847 + }, + { + "start": 7449.64, + "end": 7450.48, + "probability": 0.794 + }, + { + "start": 7451.5, + "end": 7453.42, + "probability": 0.8723 + }, + { + "start": 7453.56, + "end": 7456.06, + "probability": 0.9821 + }, + { + "start": 7456.22, + "end": 7456.76, + "probability": 0.4649 + }, + { + "start": 7457.3, + "end": 7458.0, + "probability": 0.9565 + }, + { + "start": 7458.72, + "end": 7462.46, + "probability": 0.9837 + }, + { + "start": 7463.3, + "end": 7463.52, + "probability": 0.4686 + }, + { + "start": 7463.52, + "end": 7465.64, + "probability": 0.9263 + }, + { + "start": 7466.4, + "end": 7470.3, + "probability": 0.9678 + }, + { + "start": 7471.08, + "end": 7477.62, + "probability": 0.9614 + }, + { + "start": 7477.62, + "end": 7484.78, + "probability": 0.9899 + }, + { + "start": 7484.88, + "end": 7485.64, + "probability": 0.4948 + }, + { + "start": 7485.82, + "end": 7486.32, + "probability": 0.5057 + }, + { + "start": 7486.36, + "end": 7491.76, + "probability": 0.8788 + }, + { + "start": 7492.8, + "end": 7494.04, + "probability": 0.7051 + }, + { + "start": 7494.3, + "end": 7496.47, + "probability": 0.9055 + }, + { + "start": 7496.88, + "end": 7498.64, + "probability": 0.9838 + }, + { + "start": 7500.0, + "end": 7500.1, + "probability": 0.4734 + }, + { + "start": 7500.7, + "end": 7501.74, + "probability": 0.821 + }, + { + "start": 7503.22, + "end": 7507.78, + "probability": 0.9769 + }, + { + "start": 7507.78, + "end": 7509.52, + "probability": 0.1591 + }, + { + "start": 7512.66, + "end": 7513.08, + "probability": 0.0313 + }, + { + "start": 7513.08, + "end": 7513.08, + "probability": 0.1655 + }, + { + "start": 7513.08, + "end": 7514.24, + "probability": 0.2473 + }, + { + "start": 7523.6, + "end": 7524.98, + "probability": 0.0282 + }, + { + "start": 7525.72, + "end": 7528.7, + "probability": 0.0305 + }, + { + "start": 7529.94, + "end": 7531.0, + "probability": 0.0542 + }, + { + "start": 7531.0, + "end": 7531.02, + "probability": 0.1275 + }, + { + "start": 7531.8, + "end": 7532.68, + "probability": 0.2324 + }, + { + "start": 7534.08, + "end": 7538.78, + "probability": 0.0405 + }, + { + "start": 7542.16, + "end": 7544.24, + "probability": 0.1369 + }, + { + "start": 7548.22, + "end": 7552.46, + "probability": 0.0872 + }, + { + "start": 7553.96, + "end": 7556.2, + "probability": 0.1468 + }, + { + "start": 7556.2, + "end": 7557.02, + "probability": 0.2498 + }, + { + "start": 7558.22, + "end": 7558.74, + "probability": 0.109 + }, + { + "start": 7560.02, + "end": 7560.44, + "probability": 0.1205 + }, + { + "start": 7561.22, + "end": 7563.36, + "probability": 0.0327 + }, + { + "start": 7563.36, + "end": 7563.38, + "probability": 0.4515 + }, + { + "start": 7563.38, + "end": 7563.56, + "probability": 0.2766 + }, + { + "start": 7563.8, + "end": 7565.6, + "probability": 0.2408 + }, + { + "start": 7569.48, + "end": 7571.56, + "probability": 0.1277 + }, + { + "start": 7578.58, + "end": 7580.96, + "probability": 0.1254 + }, + { + "start": 7580.96, + "end": 7581.0, + "probability": 0.1057 + }, + { + "start": 7581.0, + "end": 7581.78, + "probability": 0.0324 + }, + { + "start": 7581.78, + "end": 7582.98, + "probability": 0.011 + }, + { + "start": 7583.0, + "end": 7583.0, + "probability": 0.0 + }, + { + "start": 7583.0, + "end": 7583.0, + "probability": 0.0 + }, + { + "start": 7583.0, + "end": 7583.0, + "probability": 0.0 + }, + { + "start": 7583.0, + "end": 7583.0, + "probability": 0.0 + }, + { + "start": 7583.0, + "end": 7583.0, + "probability": 0.0 + }, + { + "start": 7583.0, + "end": 7583.0, + "probability": 0.0 + }, + { + "start": 7583.0, + "end": 7583.0, + "probability": 0.0 + }, + { + "start": 7583.0, + "end": 7583.0, + "probability": 0.0 + }, + { + "start": 7583.0, + "end": 7583.0, + "probability": 0.0 + }, + { + "start": 7583.0, + "end": 7583.0, + "probability": 0.0 + }, + { + "start": 7583.0, + "end": 7583.0, + "probability": 0.0 + }, + { + "start": 7583.0, + "end": 7583.0, + "probability": 0.0 + }, + { + "start": 7583.0, + "end": 7583.0, + "probability": 0.0 + }, + { + "start": 7583.54, + "end": 7584.24, + "probability": 0.1207 + }, + { + "start": 7586.0, + "end": 7586.9, + "probability": 0.3022 + }, + { + "start": 7586.96, + "end": 7587.84, + "probability": 0.3602 + }, + { + "start": 7593.64, + "end": 7595.34, + "probability": 0.4837 + }, + { + "start": 7596.44, + "end": 7606.02, + "probability": 0.0946 + }, + { + "start": 7606.02, + "end": 7607.74, + "probability": 0.208 + }, + { + "start": 7607.74, + "end": 7607.74, + "probability": 0.0249 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.0, + "end": 7717.0, + "probability": 0.0 + }, + { + "start": 7717.28, + "end": 7717.28, + "probability": 0.0252 + }, + { + "start": 7717.28, + "end": 7717.28, + "probability": 0.2828 + }, + { + "start": 7717.28, + "end": 7717.28, + "probability": 0.0341 + }, + { + "start": 7717.28, + "end": 7717.28, + "probability": 0.0248 + }, + { + "start": 7717.28, + "end": 7719.82, + "probability": 0.1339 + }, + { + "start": 7721.02, + "end": 7721.7, + "probability": 0.2648 + }, + { + "start": 7721.72, + "end": 7724.14, + "probability": 0.7627 + }, + { + "start": 7724.52, + "end": 7725.72, + "probability": 0.875 + }, + { + "start": 7726.7, + "end": 7728.22, + "probability": 0.6234 + }, + { + "start": 7728.96, + "end": 7729.36, + "probability": 0.4144 + }, + { + "start": 7729.36, + "end": 7730.84, + "probability": 0.8354 + }, + { + "start": 7731.29, + "end": 7732.05, + "probability": 0.9775 + }, + { + "start": 7733.16, + "end": 7737.4, + "probability": 0.8359 + }, + { + "start": 7737.74, + "end": 7738.82, + "probability": 0.8704 + }, + { + "start": 7739.52, + "end": 7741.56, + "probability": 0.8259 + }, + { + "start": 7742.74, + "end": 7746.58, + "probability": 0.8058 + }, + { + "start": 7747.24, + "end": 7750.84, + "probability": 0.6566 + }, + { + "start": 7751.52, + "end": 7755.1, + "probability": 0.8375 + }, + { + "start": 7756.02, + "end": 7759.08, + "probability": 0.6695 + }, + { + "start": 7759.18, + "end": 7759.84, + "probability": 0.6681 + }, + { + "start": 7760.18, + "end": 7760.34, + "probability": 0.5752 + }, + { + "start": 7760.62, + "end": 7761.22, + "probability": 0.7296 + }, + { + "start": 7761.28, + "end": 7763.0, + "probability": 0.8146 + }, + { + "start": 7763.42, + "end": 7764.66, + "probability": 0.8589 + }, + { + "start": 7765.16, + "end": 7766.84, + "probability": 0.9402 + }, + { + "start": 7766.92, + "end": 7767.42, + "probability": 0.7461 + }, + { + "start": 7767.9, + "end": 7768.96, + "probability": 0.9263 + }, + { + "start": 7769.12, + "end": 7769.8, + "probability": 0.3891 + }, + { + "start": 7769.86, + "end": 7771.16, + "probability": 0.8573 + }, + { + "start": 7771.43, + "end": 7773.86, + "probability": 0.9873 + }, + { + "start": 7774.22, + "end": 7775.94, + "probability": 0.6245 + }, + { + "start": 7776.22, + "end": 7776.82, + "probability": 0.4563 + }, + { + "start": 7776.84, + "end": 7777.9, + "probability": 0.9146 + }, + { + "start": 7778.4, + "end": 7779.82, + "probability": 0.6559 + }, + { + "start": 7779.92, + "end": 7780.56, + "probability": 0.9756 + }, + { + "start": 7781.02, + "end": 7782.78, + "probability": 0.965 + }, + { + "start": 7783.54, + "end": 7784.74, + "probability": 0.8685 + }, + { + "start": 7784.92, + "end": 7785.02, + "probability": 0.0649 + }, + { + "start": 7785.1, + "end": 7785.56, + "probability": 0.8926 + }, + { + "start": 7785.7, + "end": 7786.76, + "probability": 0.8876 + }, + { + "start": 7787.0, + "end": 7788.2, + "probability": 0.945 + }, + { + "start": 7788.68, + "end": 7792.64, + "probability": 0.8588 + }, + { + "start": 7793.1, + "end": 7794.45, + "probability": 0.7562 + }, + { + "start": 7794.96, + "end": 7797.08, + "probability": 0.8827 + }, + { + "start": 7798.12, + "end": 7799.1, + "probability": 0.8159 + }, + { + "start": 7799.4, + "end": 7804.38, + "probability": 0.8404 + }, + { + "start": 7804.82, + "end": 7805.58, + "probability": 0.9448 + }, + { + "start": 7805.66, + "end": 7808.88, + "probability": 0.8968 + }, + { + "start": 7809.32, + "end": 7810.32, + "probability": 0.7741 + }, + { + "start": 7810.88, + "end": 7813.78, + "probability": 0.9313 + }, + { + "start": 7814.08, + "end": 7815.92, + "probability": 0.9851 + }, + { + "start": 7816.5, + "end": 7816.88, + "probability": 0.3423 + }, + { + "start": 7817.4, + "end": 7817.8, + "probability": 0.8912 + }, + { + "start": 7817.8, + "end": 7818.34, + "probability": 0.7037 + }, + { + "start": 7818.48, + "end": 7821.36, + "probability": 0.9739 + }, + { + "start": 7821.64, + "end": 7823.8, + "probability": 0.7174 + }, + { + "start": 7824.1, + "end": 7825.04, + "probability": 0.8429 + }, + { + "start": 7825.34, + "end": 7828.58, + "probability": 0.7164 + }, + { + "start": 7828.82, + "end": 7829.26, + "probability": 0.8355 + }, + { + "start": 7829.92, + "end": 7831.66, + "probability": 0.8411 + }, + { + "start": 7831.8, + "end": 7833.3, + "probability": 0.8894 + }, + { + "start": 7833.98, + "end": 7835.42, + "probability": 0.6504 + }, + { + "start": 7836.92, + "end": 7840.52, + "probability": 0.8719 + }, + { + "start": 7840.68, + "end": 7842.46, + "probability": 0.1191 + }, + { + "start": 7842.9, + "end": 7846.12, + "probability": 0.9517 + }, + { + "start": 7846.86, + "end": 7849.79, + "probability": 0.9608 + }, + { + "start": 7852.24, + "end": 7852.98, + "probability": 0.0519 + }, + { + "start": 7884.18, + "end": 7884.88, + "probability": 0.6967 + }, + { + "start": 7886.0, + "end": 7888.62, + "probability": 0.6737 + }, + { + "start": 7890.36, + "end": 7891.04, + "probability": 0.7182 + }, + { + "start": 7893.82, + "end": 7898.3, + "probability": 0.7704 + }, + { + "start": 7899.38, + "end": 7899.9, + "probability": 0.7088 + }, + { + "start": 7900.02, + "end": 7901.86, + "probability": 0.7367 + }, + { + "start": 7903.74, + "end": 7905.94, + "probability": 0.8353 + }, + { + "start": 7906.14, + "end": 7907.06, + "probability": 0.8991 + }, + { + "start": 7907.22, + "end": 7908.74, + "probability": 0.846 + }, + { + "start": 7909.74, + "end": 7911.46, + "probability": 0.8917 + }, + { + "start": 7912.82, + "end": 7918.4, + "probability": 0.7949 + }, + { + "start": 7920.06, + "end": 7920.76, + "probability": 0.3061 + }, + { + "start": 7921.38, + "end": 7924.0, + "probability": 0.7422 + }, + { + "start": 7924.14, + "end": 7928.0, + "probability": 0.9278 + }, + { + "start": 7928.2, + "end": 7931.12, + "probability": 0.9327 + }, + { + "start": 7931.2, + "end": 7932.1, + "probability": 0.8426 + }, + { + "start": 7932.22, + "end": 7933.28, + "probability": 0.6953 + }, + { + "start": 7934.82, + "end": 7936.8, + "probability": 0.9857 + }, + { + "start": 7937.66, + "end": 7941.96, + "probability": 0.7966 + }, + { + "start": 7942.96, + "end": 7943.75, + "probability": 0.9517 + }, + { + "start": 7944.46, + "end": 7945.98, + "probability": 0.8468 + }, + { + "start": 7946.16, + "end": 7947.42, + "probability": 0.896 + }, + { + "start": 7948.24, + "end": 7949.24, + "probability": 0.9829 + }, + { + "start": 7949.52, + "end": 7951.54, + "probability": 0.7836 + }, + { + "start": 7951.6, + "end": 7954.88, + "probability": 0.9365 + }, + { + "start": 7955.2, + "end": 7956.26, + "probability": 0.9702 + }, + { + "start": 7957.24, + "end": 7959.58, + "probability": 0.9589 + }, + { + "start": 7960.26, + "end": 7964.28, + "probability": 0.9816 + }, + { + "start": 7964.5, + "end": 7966.6, + "probability": 0.8174 + }, + { + "start": 7966.6, + "end": 7972.04, + "probability": 0.6739 + }, + { + "start": 7972.68, + "end": 7973.86, + "probability": 0.9361 + }, + { + "start": 7974.34, + "end": 7979.88, + "probability": 0.9967 + }, + { + "start": 7980.24, + "end": 7984.52, + "probability": 0.7084 + }, + { + "start": 7986.1, + "end": 7987.42, + "probability": 0.968 + }, + { + "start": 7988.28, + "end": 7989.84, + "probability": 0.9714 + }, + { + "start": 7990.36, + "end": 7992.42, + "probability": 0.9864 + }, + { + "start": 7992.42, + "end": 7994.72, + "probability": 0.9814 + }, + { + "start": 7995.88, + "end": 7998.38, + "probability": 0.9722 + }, + { + "start": 7999.2, + "end": 8000.9, + "probability": 0.5812 + }, + { + "start": 8001.46, + "end": 8003.84, + "probability": 0.7947 + }, + { + "start": 8004.86, + "end": 8005.46, + "probability": 0.9657 + }, + { + "start": 8007.98, + "end": 8011.44, + "probability": 0.9208 + }, + { + "start": 8012.3, + "end": 8014.64, + "probability": 0.887 + }, + { + "start": 8014.72, + "end": 8015.92, + "probability": 0.973 + }, + { + "start": 8015.98, + "end": 8019.7, + "probability": 0.9939 + }, + { + "start": 8019.88, + "end": 8020.6, + "probability": 0.9718 + }, + { + "start": 8020.76, + "end": 8021.58, + "probability": 0.9669 + }, + { + "start": 8022.12, + "end": 8022.94, + "probability": 0.8071 + }, + { + "start": 8023.26, + "end": 8023.88, + "probability": 0.6909 + }, + { + "start": 8023.96, + "end": 8028.28, + "probability": 0.9618 + }, + { + "start": 8028.5, + "end": 8030.8, + "probability": 0.9976 + }, + { + "start": 8031.34, + "end": 8033.06, + "probability": 0.8728 + }, + { + "start": 8034.0, + "end": 8036.56, + "probability": 0.8986 + }, + { + "start": 8036.62, + "end": 8040.76, + "probability": 0.7366 + }, + { + "start": 8041.04, + "end": 8041.54, + "probability": 0.5994 + }, + { + "start": 8042.22, + "end": 8046.74, + "probability": 0.9072 + }, + { + "start": 8046.74, + "end": 8049.72, + "probability": 0.9792 + }, + { + "start": 8049.92, + "end": 8054.68, + "probability": 0.8724 + }, + { + "start": 8054.72, + "end": 8056.43, + "probability": 0.4456 + }, + { + "start": 8056.58, + "end": 8060.04, + "probability": 0.9869 + }, + { + "start": 8060.34, + "end": 8062.54, + "probability": 0.8596 + }, + { + "start": 8062.9, + "end": 8063.53, + "probability": 0.6371 + }, + { + "start": 8063.8, + "end": 8067.98, + "probability": 0.9113 + }, + { + "start": 8068.1, + "end": 8071.08, + "probability": 0.9871 + }, + { + "start": 8071.18, + "end": 8076.04, + "probability": 0.9763 + }, + { + "start": 8077.1, + "end": 8080.12, + "probability": 0.7661 + }, + { + "start": 8080.96, + "end": 8083.78, + "probability": 0.5275 + }, + { + "start": 8085.36, + "end": 8086.85, + "probability": 0.793 + }, + { + "start": 8087.2, + "end": 8087.7, + "probability": 0.1143 + }, + { + "start": 8089.0, + "end": 8091.46, + "probability": 0.8601 + }, + { + "start": 8091.52, + "end": 8092.7, + "probability": 0.9507 + }, + { + "start": 8092.86, + "end": 8093.16, + "probability": 0.324 + }, + { + "start": 8093.58, + "end": 8096.76, + "probability": 0.8036 + }, + { + "start": 8097.5, + "end": 8097.99, + "probability": 0.8244 + }, + { + "start": 8098.6, + "end": 8101.84, + "probability": 0.6321 + }, + { + "start": 8102.2, + "end": 8105.6, + "probability": 0.9248 + }, + { + "start": 8105.88, + "end": 8109.02, + "probability": 0.9956 + }, + { + "start": 8110.04, + "end": 8111.76, + "probability": 0.9906 + }, + { + "start": 8112.42, + "end": 8115.82, + "probability": 0.9636 + }, + { + "start": 8116.82, + "end": 8118.74, + "probability": 0.8044 + }, + { + "start": 8119.18, + "end": 8119.7, + "probability": 0.8296 + }, + { + "start": 8120.18, + "end": 8123.8, + "probability": 0.7421 + }, + { + "start": 8124.52, + "end": 8126.08, + "probability": 0.952 + }, + { + "start": 8127.04, + "end": 8127.56, + "probability": 0.5789 + }, + { + "start": 8127.62, + "end": 8128.4, + "probability": 0.7813 + }, + { + "start": 8128.56, + "end": 8131.98, + "probability": 0.897 + }, + { + "start": 8132.66, + "end": 8134.8, + "probability": 0.981 + }, + { + "start": 8135.84, + "end": 8137.08, + "probability": 0.4326 + }, + { + "start": 8137.32, + "end": 8140.74, + "probability": 0.4998 + }, + { + "start": 8140.86, + "end": 8141.38, + "probability": 0.767 + }, + { + "start": 8141.42, + "end": 8144.5, + "probability": 0.6089 + }, + { + "start": 8144.6, + "end": 8145.35, + "probability": 0.9459 + }, + { + "start": 8146.28, + "end": 8147.34, + "probability": 0.5137 + }, + { + "start": 8147.4, + "end": 8148.78, + "probability": 0.659 + }, + { + "start": 8149.0, + "end": 8153.78, + "probability": 0.6521 + }, + { + "start": 8153.78, + "end": 8156.98, + "probability": 0.979 + }, + { + "start": 8157.14, + "end": 8157.4, + "probability": 0.2951 + }, + { + "start": 8157.4, + "end": 8158.1, + "probability": 0.7554 + }, + { + "start": 8158.42, + "end": 8159.4, + "probability": 0.7046 + }, + { + "start": 8159.66, + "end": 8160.22, + "probability": 0.8551 + }, + { + "start": 8160.42, + "end": 8161.56, + "probability": 0.9904 + }, + { + "start": 8161.62, + "end": 8162.42, + "probability": 0.9692 + }, + { + "start": 8162.42, + "end": 8164.44, + "probability": 0.9762 + }, + { + "start": 8164.86, + "end": 8166.32, + "probability": 0.9615 + }, + { + "start": 8166.86, + "end": 8172.0, + "probability": 0.9719 + }, + { + "start": 8172.7, + "end": 8175.08, + "probability": 0.7662 + }, + { + "start": 8175.2, + "end": 8179.46, + "probability": 0.9622 + }, + { + "start": 8179.56, + "end": 8179.76, + "probability": 0.7998 + }, + { + "start": 8181.6, + "end": 8183.94, + "probability": 0.6735 + }, + { + "start": 8184.18, + "end": 8186.96, + "probability": 0.8306 + }, + { + "start": 8203.8, + "end": 8207.42, + "probability": 0.7228 + }, + { + "start": 8208.52, + "end": 8210.78, + "probability": 0.8289 + }, + { + "start": 8212.34, + "end": 8214.94, + "probability": 0.9567 + }, + { + "start": 8216.52, + "end": 8221.04, + "probability": 0.9903 + }, + { + "start": 8221.94, + "end": 8223.56, + "probability": 0.9781 + }, + { + "start": 8224.48, + "end": 8229.86, + "probability": 0.9861 + }, + { + "start": 8230.7, + "end": 8232.92, + "probability": 0.9026 + }, + { + "start": 8233.52, + "end": 8242.42, + "probability": 0.9808 + }, + { + "start": 8243.22, + "end": 8245.0, + "probability": 0.8936 + }, + { + "start": 8246.04, + "end": 8248.74, + "probability": 0.8445 + }, + { + "start": 8249.6, + "end": 8254.94, + "probability": 0.9744 + }, + { + "start": 8255.7, + "end": 8257.44, + "probability": 0.8528 + }, + { + "start": 8258.6, + "end": 8261.92, + "probability": 0.9827 + }, + { + "start": 8263.16, + "end": 8269.28, + "probability": 0.9976 + }, + { + "start": 8270.0, + "end": 8275.1, + "probability": 0.5841 + }, + { + "start": 8276.0, + "end": 8276.0, + "probability": 0.0403 + }, + { + "start": 8276.0, + "end": 8278.16, + "probability": 0.3016 + }, + { + "start": 8278.98, + "end": 8280.02, + "probability": 0.6209 + }, + { + "start": 8280.68, + "end": 8281.42, + "probability": 0.8365 + }, + { + "start": 8282.4, + "end": 8285.18, + "probability": 0.832 + }, + { + "start": 8285.68, + "end": 8286.54, + "probability": 0.9521 + }, + { + "start": 8287.04, + "end": 8288.8, + "probability": 0.9479 + }, + { + "start": 8289.5, + "end": 8293.84, + "probability": 0.9805 + }, + { + "start": 8295.0, + "end": 8296.24, + "probability": 0.922 + }, + { + "start": 8296.76, + "end": 8303.96, + "probability": 0.9946 + }, + { + "start": 8305.14, + "end": 8307.02, + "probability": 0.8955 + }, + { + "start": 8308.12, + "end": 8308.68, + "probability": 0.9783 + }, + { + "start": 8309.7, + "end": 8311.28, + "probability": 0.7387 + }, + { + "start": 8312.34, + "end": 8314.34, + "probability": 0.9319 + }, + { + "start": 8315.32, + "end": 8320.08, + "probability": 0.8464 + }, + { + "start": 8320.08, + "end": 8323.66, + "probability": 0.9218 + }, + { + "start": 8324.4, + "end": 8331.36, + "probability": 0.9021 + }, + { + "start": 8332.16, + "end": 8333.5, + "probability": 0.8311 + }, + { + "start": 8333.86, + "end": 8337.08, + "probability": 0.9171 + }, + { + "start": 8337.56, + "end": 8338.0, + "probability": 0.502 + }, + { + "start": 8338.08, + "end": 8341.26, + "probability": 0.9686 + }, + { + "start": 8342.34, + "end": 8347.04, + "probability": 0.9857 + }, + { + "start": 8347.08, + "end": 8352.84, + "probability": 0.5991 + }, + { + "start": 8352.84, + "end": 8353.06, + "probability": 0.0006 + }, + { + "start": 8353.68, + "end": 8355.36, + "probability": 0.6471 + }, + { + "start": 8356.12, + "end": 8358.72, + "probability": 0.8447 + }, + { + "start": 8358.84, + "end": 8360.32, + "probability": 0.7248 + }, + { + "start": 8362.12, + "end": 8362.58, + "probability": 0.6807 + }, + { + "start": 8363.66, + "end": 8369.84, + "probability": 0.9552 + }, + { + "start": 8370.74, + "end": 8375.38, + "probability": 0.9956 + }, + { + "start": 8375.38, + "end": 8379.4, + "probability": 0.9634 + }, + { + "start": 8380.04, + "end": 8381.0, + "probability": 0.8888 + }, + { + "start": 8383.22, + "end": 8387.04, + "probability": 0.8996 + }, + { + "start": 8387.7, + "end": 8389.5, + "probability": 0.9741 + }, + { + "start": 8390.12, + "end": 8390.64, + "probability": 0.761 + }, + { + "start": 8390.72, + "end": 8393.04, + "probability": 0.8354 + }, + { + "start": 8393.4, + "end": 8393.98, + "probability": 0.3305 + }, + { + "start": 8394.0, + "end": 8397.46, + "probability": 0.9832 + }, + { + "start": 8397.74, + "end": 8403.02, + "probability": 0.9648 + }, + { + "start": 8404.0, + "end": 8406.52, + "probability": 0.8574 + }, + { + "start": 8407.36, + "end": 8411.6, + "probability": 0.7959 + }, + { + "start": 8411.6, + "end": 8416.48, + "probability": 0.9946 + }, + { + "start": 8417.26, + "end": 8418.6, + "probability": 0.9444 + }, + { + "start": 8419.62, + "end": 8425.04, + "probability": 0.8527 + }, + { + "start": 8425.62, + "end": 8431.78, + "probability": 0.985 + }, + { + "start": 8432.18, + "end": 8434.16, + "probability": 0.9187 + }, + { + "start": 8434.6, + "end": 8437.86, + "probability": 0.9591 + }, + { + "start": 8438.7, + "end": 8439.94, + "probability": 0.8463 + }, + { + "start": 8440.08, + "end": 8444.74, + "probability": 0.9324 + }, + { + "start": 8445.52, + "end": 8449.06, + "probability": 0.8694 + }, + { + "start": 8449.84, + "end": 8452.94, + "probability": 0.99 + }, + { + "start": 8453.64, + "end": 8455.22, + "probability": 0.8432 + }, + { + "start": 8455.54, + "end": 8458.08, + "probability": 0.6544 + }, + { + "start": 8458.38, + "end": 8461.56, + "probability": 0.4017 + }, + { + "start": 8461.6, + "end": 8469.46, + "probability": 0.8086 + }, + { + "start": 8469.6, + "end": 8470.42, + "probability": 0.6362 + }, + { + "start": 8471.24, + "end": 8474.06, + "probability": 0.9403 + }, + { + "start": 8474.6, + "end": 8483.78, + "probability": 0.924 + }, + { + "start": 8483.88, + "end": 8485.5, + "probability": 0.2066 + }, + { + "start": 8486.46, + "end": 8488.16, + "probability": 0.6108 + }, + { + "start": 8488.74, + "end": 8494.12, + "probability": 0.963 + }, + { + "start": 8494.44, + "end": 8496.24, + "probability": 0.9362 + }, + { + "start": 8496.74, + "end": 8497.02, + "probability": 0.5496 + }, + { + "start": 8497.92, + "end": 8500.74, + "probability": 0.9844 + }, + { + "start": 8500.96, + "end": 8505.14, + "probability": 0.9987 + }, + { + "start": 8505.68, + "end": 8511.04, + "probability": 0.9819 + }, + { + "start": 8511.82, + "end": 8513.44, + "probability": 0.8989 + }, + { + "start": 8514.14, + "end": 8516.78, + "probability": 0.8726 + }, + { + "start": 8517.24, + "end": 8521.7, + "probability": 0.7477 + }, + { + "start": 8522.14, + "end": 8522.93, + "probability": 0.965 + }, + { + "start": 8523.94, + "end": 8525.4, + "probability": 0.8537 + }, + { + "start": 8525.94, + "end": 8527.42, + "probability": 0.9613 + }, + { + "start": 8527.8, + "end": 8529.46, + "probability": 0.87 + }, + { + "start": 8529.58, + "end": 8531.7, + "probability": 0.9776 + }, + { + "start": 8532.36, + "end": 8533.94, + "probability": 0.985 + }, + { + "start": 8535.26, + "end": 8536.62, + "probability": 0.9514 + }, + { + "start": 8537.34, + "end": 8543.84, + "probability": 0.9961 + }, + { + "start": 8544.62, + "end": 8546.28, + "probability": 0.4573 + }, + { + "start": 8547.4, + "end": 8550.2, + "probability": 0.9693 + }, + { + "start": 8551.08, + "end": 8555.62, + "probability": 0.9816 + }, + { + "start": 8556.46, + "end": 8557.34, + "probability": 0.9109 + }, + { + "start": 8557.62, + "end": 8562.08, + "probability": 0.9529 + }, + { + "start": 8562.6, + "end": 8566.96, + "probability": 0.9954 + }, + { + "start": 8567.68, + "end": 8568.5, + "probability": 0.6837 + }, + { + "start": 8569.52, + "end": 8570.86, + "probability": 0.9666 + }, + { + "start": 8573.42, + "end": 8582.06, + "probability": 0.9716 + }, + { + "start": 8583.32, + "end": 8588.02, + "probability": 0.9992 + }, + { + "start": 8588.76, + "end": 8591.24, + "probability": 0.8516 + }, + { + "start": 8592.04, + "end": 8596.18, + "probability": 0.8953 + }, + { + "start": 8596.82, + "end": 8598.56, + "probability": 0.9711 + }, + { + "start": 8599.24, + "end": 8603.24, + "probability": 0.8988 + }, + { + "start": 8604.02, + "end": 8605.24, + "probability": 0.9655 + }, + { + "start": 8606.12, + "end": 8609.74, + "probability": 0.9874 + }, + { + "start": 8610.38, + "end": 8615.7, + "probability": 0.9271 + }, + { + "start": 8616.24, + "end": 8619.84, + "probability": 0.9773 + }, + { + "start": 8621.0, + "end": 8621.6, + "probability": 0.6093 + }, + { + "start": 8622.58, + "end": 8626.84, + "probability": 0.7883 + }, + { + "start": 8627.76, + "end": 8628.94, + "probability": 0.9147 + }, + { + "start": 8630.6, + "end": 8631.86, + "probability": 0.9673 + }, + { + "start": 8632.52, + "end": 8634.5, + "probability": 0.9775 + }, + { + "start": 8635.36, + "end": 8640.88, + "probability": 0.9912 + }, + { + "start": 8641.58, + "end": 8646.78, + "probability": 0.9152 + }, + { + "start": 8647.72, + "end": 8655.74, + "probability": 0.9902 + }, + { + "start": 8656.32, + "end": 8657.76, + "probability": 0.9461 + }, + { + "start": 8658.46, + "end": 8660.14, + "probability": 0.9958 + }, + { + "start": 8660.76, + "end": 8664.46, + "probability": 0.8931 + }, + { + "start": 8665.04, + "end": 8671.24, + "probability": 0.991 + }, + { + "start": 8672.16, + "end": 8682.08, + "probability": 0.9746 + }, + { + "start": 8682.58, + "end": 8686.86, + "probability": 0.9932 + }, + { + "start": 8686.99, + "end": 8693.14, + "probability": 0.9906 + }, + { + "start": 8693.88, + "end": 8698.08, + "probability": 0.9714 + }, + { + "start": 8698.96, + "end": 8700.52, + "probability": 0.9506 + }, + { + "start": 8701.08, + "end": 8703.52, + "probability": 0.9516 + }, + { + "start": 8704.22, + "end": 8707.5, + "probability": 0.9871 + }, + { + "start": 8707.88, + "end": 8712.28, + "probability": 0.993 + }, + { + "start": 8713.04, + "end": 8716.3, + "probability": 0.8253 + }, + { + "start": 8716.4, + "end": 8722.4, + "probability": 0.9852 + }, + { + "start": 8723.32, + "end": 8729.28, + "probability": 0.9421 + }, + { + "start": 8729.86, + "end": 8737.0, + "probability": 0.8911 + }, + { + "start": 8737.0, + "end": 8742.06, + "probability": 0.9985 + }, + { + "start": 8742.76, + "end": 8746.16, + "probability": 0.8531 + }, + { + "start": 8746.36, + "end": 8750.84, + "probability": 0.9451 + }, + { + "start": 8751.56, + "end": 8756.2, + "probability": 0.9919 + }, + { + "start": 8756.7, + "end": 8759.74, + "probability": 0.9966 + }, + { + "start": 8759.82, + "end": 8764.24, + "probability": 0.9992 + }, + { + "start": 8764.24, + "end": 8770.72, + "probability": 0.9935 + }, + { + "start": 8771.56, + "end": 8775.26, + "probability": 0.9204 + }, + { + "start": 8776.12, + "end": 8780.54, + "probability": 0.948 + }, + { + "start": 8781.08, + "end": 8786.26, + "probability": 0.9995 + }, + { + "start": 8787.28, + "end": 8788.78, + "probability": 0.9995 + }, + { + "start": 8789.1, + "end": 8790.62, + "probability": 0.8198 + }, + { + "start": 8791.24, + "end": 8793.02, + "probability": 0.9915 + }, + { + "start": 8793.26, + "end": 8795.44, + "probability": 0.9512 + }, + { + "start": 8796.1, + "end": 8798.34, + "probability": 0.9932 + }, + { + "start": 8799.18, + "end": 8801.52, + "probability": 0.9995 + }, + { + "start": 8802.26, + "end": 8804.64, + "probability": 0.9895 + }, + { + "start": 8805.64, + "end": 8806.5, + "probability": 0.9395 + }, + { + "start": 8807.5, + "end": 8809.1, + "probability": 0.9941 + }, + { + "start": 8809.82, + "end": 8811.0, + "probability": 0.9769 + }, + { + "start": 8811.82, + "end": 8813.24, + "probability": 0.9062 + }, + { + "start": 8813.7, + "end": 8818.6, + "probability": 0.9882 + }, + { + "start": 8818.6, + "end": 8822.08, + "probability": 0.9633 + }, + { + "start": 8822.5, + "end": 8826.44, + "probability": 0.9963 + }, + { + "start": 8826.98, + "end": 8829.44, + "probability": 0.9794 + }, + { + "start": 8829.94, + "end": 8830.68, + "probability": 0.9692 + }, + { + "start": 8831.84, + "end": 8840.34, + "probability": 0.9883 + }, + { + "start": 8841.0, + "end": 8844.78, + "probability": 0.9855 + }, + { + "start": 8845.32, + "end": 8847.08, + "probability": 0.9069 + }, + { + "start": 8847.84, + "end": 8851.98, + "probability": 0.9861 + }, + { + "start": 8852.32, + "end": 8853.49, + "probability": 0.8628 + }, + { + "start": 8853.68, + "end": 8855.54, + "probability": 0.9112 + }, + { + "start": 8855.72, + "end": 8858.5, + "probability": 0.9742 + }, + { + "start": 8858.6, + "end": 8860.72, + "probability": 0.981 + }, + { + "start": 8861.28, + "end": 8864.5, + "probability": 0.9724 + }, + { + "start": 8865.02, + "end": 8866.82, + "probability": 0.9478 + }, + { + "start": 8867.48, + "end": 8868.62, + "probability": 0.9781 + }, + { + "start": 8869.18, + "end": 8874.58, + "probability": 0.9903 + }, + { + "start": 8875.18, + "end": 8878.06, + "probability": 0.9868 + }, + { + "start": 8878.56, + "end": 8882.42, + "probability": 0.9772 + }, + { + "start": 8882.8, + "end": 8884.8, + "probability": 0.6232 + }, + { + "start": 8886.52, + "end": 8891.44, + "probability": 0.9954 + }, + { + "start": 8893.38, + "end": 8894.62, + "probability": 0.9551 + }, + { + "start": 8902.16, + "end": 8904.14, + "probability": 0.6688 + }, + { + "start": 8905.24, + "end": 8907.1, + "probability": 0.7295 + }, + { + "start": 8908.96, + "end": 8912.02, + "probability": 0.9536 + }, + { + "start": 8912.02, + "end": 8914.24, + "probability": 0.4528 + }, + { + "start": 8914.48, + "end": 8915.06, + "probability": 0.9521 + }, + { + "start": 8916.34, + "end": 8920.08, + "probability": 0.978 + }, + { + "start": 8920.2, + "end": 8920.66, + "probability": 0.2047 + }, + { + "start": 8920.82, + "end": 8921.06, + "probability": 0.1346 + }, + { + "start": 8921.06, + "end": 8923.98, + "probability": 0.7918 + }, + { + "start": 8925.54, + "end": 8929.6, + "probability": 0.9871 + }, + { + "start": 8930.86, + "end": 8933.48, + "probability": 0.8712 + }, + { + "start": 8934.28, + "end": 8941.38, + "probability": 0.6703 + }, + { + "start": 8941.64, + "end": 8943.48, + "probability": 0.7956 + }, + { + "start": 8943.56, + "end": 8945.54, + "probability": 0.9253 + }, + { + "start": 8945.62, + "end": 8946.18, + "probability": 0.3998 + }, + { + "start": 8947.46, + "end": 8952.2, + "probability": 0.8516 + }, + { + "start": 8952.2, + "end": 8955.6, + "probability": 0.9977 + }, + { + "start": 8956.6, + "end": 8959.0, + "probability": 0.8944 + }, + { + "start": 8959.58, + "end": 8962.02, + "probability": 0.2565 + }, + { + "start": 8962.2, + "end": 8962.6, + "probability": 0.6342 + }, + { + "start": 8962.6, + "end": 8964.2, + "probability": 0.895 + }, + { + "start": 8964.2, + "end": 8964.85, + "probability": 0.1234 + }, + { + "start": 8965.56, + "end": 8967.94, + "probability": 0.5713 + }, + { + "start": 8968.3, + "end": 8968.3, + "probability": 0.1516 + }, + { + "start": 8968.3, + "end": 8969.22, + "probability": 0.9336 + }, + { + "start": 8970.38, + "end": 8971.72, + "probability": 0.8931 + }, + { + "start": 8971.76, + "end": 8972.4, + "probability": 0.7889 + }, + { + "start": 8972.78, + "end": 8974.38, + "probability": 0.8693 + }, + { + "start": 8974.92, + "end": 8976.18, + "probability": 0.9815 + }, + { + "start": 8976.98, + "end": 8977.94, + "probability": 0.998 + }, + { + "start": 8979.14, + "end": 8982.84, + "probability": 0.9191 + }, + { + "start": 8983.3, + "end": 8987.04, + "probability": 0.9571 + }, + { + "start": 8987.18, + "end": 8988.22, + "probability": 0.8978 + }, + { + "start": 8988.4, + "end": 8989.84, + "probability": 0.9631 + }, + { + "start": 8990.26, + "end": 8990.66, + "probability": 0.5975 + }, + { + "start": 8991.12, + "end": 8992.02, + "probability": 0.9575 + }, + { + "start": 8992.18, + "end": 8995.04, + "probability": 0.9534 + }, + { + "start": 8995.04, + "end": 8997.74, + "probability": 0.7956 + }, + { + "start": 8998.1, + "end": 9000.82, + "probability": 0.2189 + }, + { + "start": 9000.94, + "end": 9001.94, + "probability": 0.4854 + }, + { + "start": 9002.36, + "end": 9007.38, + "probability": 0.9625 + }, + { + "start": 9008.26, + "end": 9008.52, + "probability": 0.9527 + }, + { + "start": 9009.88, + "end": 9012.2, + "probability": 0.4793 + }, + { + "start": 9013.5, + "end": 9018.84, + "probability": 0.9297 + }, + { + "start": 9018.88, + "end": 9019.64, + "probability": 0.8571 + }, + { + "start": 9020.9, + "end": 9022.68, + "probability": 0.6983 + }, + { + "start": 9024.69, + "end": 9031.42, + "probability": 0.5108 + }, + { + "start": 9031.56, + "end": 9033.6, + "probability": 0.5238 + }, + { + "start": 9033.8, + "end": 9040.58, + "probability": 0.9373 + }, + { + "start": 9040.58, + "end": 9044.76, + "probability": 0.9865 + }, + { + "start": 9045.34, + "end": 9048.7, + "probability": 0.4656 + }, + { + "start": 9048.86, + "end": 9052.34, + "probability": 0.661 + }, + { + "start": 9052.34, + "end": 9052.98, + "probability": 0.7046 + }, + { + "start": 9053.08, + "end": 9060.08, + "probability": 0.8036 + }, + { + "start": 9060.54, + "end": 9064.2, + "probability": 0.9525 + }, + { + "start": 9064.58, + "end": 9065.3, + "probability": 0.8235 + }, + { + "start": 9065.66, + "end": 9070.84, + "probability": 0.6662 + }, + { + "start": 9070.9, + "end": 9071.68, + "probability": 0.6201 + }, + { + "start": 9072.22, + "end": 9077.26, + "probability": 0.9282 + }, + { + "start": 9077.62, + "end": 9077.72, + "probability": 0.5282 + }, + { + "start": 9078.58, + "end": 9079.48, + "probability": 0.148 + }, + { + "start": 9079.72, + "end": 9081.24, + "probability": 0.9331 + }, + { + "start": 9081.32, + "end": 9084.18, + "probability": 0.7681 + }, + { + "start": 9084.3, + "end": 9085.38, + "probability": 0.5363 + }, + { + "start": 9085.42, + "end": 9085.74, + "probability": 0.4944 + }, + { + "start": 9085.78, + "end": 9086.44, + "probability": 0.5745 + }, + { + "start": 9086.48, + "end": 9091.6, + "probability": 0.9858 + }, + { + "start": 9092.2, + "end": 9094.14, + "probability": 0.7577 + }, + { + "start": 9094.28, + "end": 9095.02, + "probability": 0.3642 + }, + { + "start": 9095.3, + "end": 9096.66, + "probability": 0.8989 + }, + { + "start": 9096.92, + "end": 9097.3, + "probability": 0.7107 + }, + { + "start": 9098.36, + "end": 9100.8, + "probability": 0.7297 + }, + { + "start": 9101.78, + "end": 9102.86, + "probability": 0.981 + }, + { + "start": 9104.84, + "end": 9106.12, + "probability": 0.8874 + }, + { + "start": 9107.1, + "end": 9110.6, + "probability": 0.0192 + }, + { + "start": 9113.38, + "end": 9118.02, + "probability": 0.4562 + }, + { + "start": 9118.58, + "end": 9121.0, + "probability": 0.2006 + }, + { + "start": 9121.02, + "end": 9121.3, + "probability": 0.0027 + }, + { + "start": 9122.42, + "end": 9123.0, + "probability": 0.3529 + }, + { + "start": 9124.46, + "end": 9126.9, + "probability": 0.5209 + }, + { + "start": 9127.24, + "end": 9130.52, + "probability": 0.651 + }, + { + "start": 9130.72, + "end": 9132.74, + "probability": 0.096 + }, + { + "start": 9132.94, + "end": 9134.42, + "probability": 0.7587 + }, + { + "start": 9134.96, + "end": 9135.58, + "probability": 0.7406 + }, + { + "start": 9136.82, + "end": 9139.52, + "probability": 0.9611 + }, + { + "start": 9139.6, + "end": 9141.62, + "probability": 0.6448 + }, + { + "start": 9141.88, + "end": 9143.4, + "probability": 0.169 + }, + { + "start": 9144.06, + "end": 9147.26, + "probability": 0.9933 + }, + { + "start": 9148.06, + "end": 9151.1, + "probability": 0.9982 + }, + { + "start": 9165.64, + "end": 9166.98, + "probability": 0.9986 + }, + { + "start": 9167.5, + "end": 9170.16, + "probability": 0.9854 + }, + { + "start": 9173.46, + "end": 9175.7, + "probability": 0.4445 + }, + { + "start": 9184.4, + "end": 9185.92, + "probability": 0.5349 + }, + { + "start": 9192.12, + "end": 9193.1, + "probability": 0.5222 + }, + { + "start": 9193.22, + "end": 9193.74, + "probability": 0.8544 + }, + { + "start": 9195.92, + "end": 9197.16, + "probability": 0.6607 + }, + { + "start": 9199.04, + "end": 9201.08, + "probability": 0.8247 + }, + { + "start": 9202.84, + "end": 9207.02, + "probability": 0.9844 + }, + { + "start": 9207.02, + "end": 9210.09, + "probability": 0.998 + }, + { + "start": 9211.58, + "end": 9213.04, + "probability": 0.942 + }, + { + "start": 9214.32, + "end": 9215.4, + "probability": 0.7382 + }, + { + "start": 9216.1, + "end": 9217.12, + "probability": 0.6712 + }, + { + "start": 9217.28, + "end": 9219.02, + "probability": 0.5108 + }, + { + "start": 9219.06, + "end": 9223.7, + "probability": 0.8963 + }, + { + "start": 9224.94, + "end": 9227.3, + "probability": 0.9323 + }, + { + "start": 9228.16, + "end": 9229.22, + "probability": 0.6678 + }, + { + "start": 9229.76, + "end": 9231.88, + "probability": 0.9389 + }, + { + "start": 9232.0, + "end": 9238.88, + "probability": 0.993 + }, + { + "start": 9239.72, + "end": 9240.02, + "probability": 0.6333 + }, + { + "start": 9240.66, + "end": 9242.48, + "probability": 0.4121 + }, + { + "start": 9244.86, + "end": 9246.84, + "probability": 0.7009 + }, + { + "start": 9247.32, + "end": 9249.68, + "probability": 0.8922 + }, + { + "start": 9250.74, + "end": 9256.2, + "probability": 0.8091 + }, + { + "start": 9259.0, + "end": 9260.13, + "probability": 0.8319 + }, + { + "start": 9260.86, + "end": 9262.1, + "probability": 0.835 + }, + { + "start": 9263.42, + "end": 9266.58, + "probability": 0.7845 + }, + { + "start": 9266.66, + "end": 9267.16, + "probability": 0.8422 + }, + { + "start": 9267.28, + "end": 9267.98, + "probability": 0.8914 + }, + { + "start": 9268.06, + "end": 9268.68, + "probability": 0.7388 + }, + { + "start": 9269.9, + "end": 9271.4, + "probability": 0.831 + }, + { + "start": 9272.68, + "end": 9273.91, + "probability": 0.9116 + }, + { + "start": 9274.38, + "end": 9276.44, + "probability": 0.9437 + }, + { + "start": 9276.56, + "end": 9278.87, + "probability": 0.9976 + }, + { + "start": 9279.7, + "end": 9279.7, + "probability": 0.1586 + }, + { + "start": 9279.86, + "end": 9281.98, + "probability": 0.9889 + }, + { + "start": 9282.14, + "end": 9283.8, + "probability": 0.9384 + }, + { + "start": 9284.36, + "end": 9285.25, + "probability": 0.9596 + }, + { + "start": 9286.84, + "end": 9289.46, + "probability": 0.9195 + }, + { + "start": 9290.62, + "end": 9292.5, + "probability": 0.9296 + }, + { + "start": 9293.32, + "end": 9296.7, + "probability": 0.8494 + }, + { + "start": 9296.72, + "end": 9299.86, + "probability": 0.9158 + }, + { + "start": 9300.8, + "end": 9301.36, + "probability": 0.6642 + }, + { + "start": 9302.26, + "end": 9302.38, + "probability": 0.1153 + }, + { + "start": 9302.38, + "end": 9307.17, + "probability": 0.9608 + }, + { + "start": 9307.54, + "end": 9314.44, + "probability": 0.8054 + }, + { + "start": 9315.0, + "end": 9316.06, + "probability": 0.2843 + }, + { + "start": 9320.1, + "end": 9323.96, + "probability": 0.5486 + }, + { + "start": 9324.96, + "end": 9330.44, + "probability": 0.9249 + }, + { + "start": 9332.11, + "end": 9336.48, + "probability": 0.9538 + }, + { + "start": 9336.48, + "end": 9339.24, + "probability": 0.9398 + }, + { + "start": 9340.52, + "end": 9341.0, + "probability": 0.6995 + }, + { + "start": 9342.2, + "end": 9344.8, + "probability": 0.2566 + }, + { + "start": 9345.64, + "end": 9349.6, + "probability": 0.2725 + }, + { + "start": 9350.06, + "end": 9350.34, + "probability": 0.5716 + }, + { + "start": 9350.48, + "end": 9350.94, + "probability": 0.5977 + }, + { + "start": 9351.0, + "end": 9355.2, + "probability": 0.936 + }, + { + "start": 9355.39, + "end": 9356.98, + "probability": 0.3159 + }, + { + "start": 9357.04, + "end": 9358.5, + "probability": 0.9128 + }, + { + "start": 9358.86, + "end": 9362.58, + "probability": 0.9333 + }, + { + "start": 9362.58, + "end": 9367.12, + "probability": 0.9753 + }, + { + "start": 9369.35, + "end": 9370.86, + "probability": 0.9967 + }, + { + "start": 9371.68, + "end": 9373.96, + "probability": 0.5202 + }, + { + "start": 9375.52, + "end": 9379.58, + "probability": 0.9512 + }, + { + "start": 9379.68, + "end": 9382.08, + "probability": 0.8683 + }, + { + "start": 9382.42, + "end": 9385.7, + "probability": 0.9972 + }, + { + "start": 9386.12, + "end": 9386.38, + "probability": 0.4895 + }, + { + "start": 9386.52, + "end": 9387.68, + "probability": 0.8903 + }, + { + "start": 9388.46, + "end": 9389.6, + "probability": 0.7769 + }, + { + "start": 9390.64, + "end": 9394.04, + "probability": 0.9923 + }, + { + "start": 9394.04, + "end": 9396.84, + "probability": 0.9906 + }, + { + "start": 9397.2, + "end": 9398.74, + "probability": 0.9927 + }, + { + "start": 9400.66, + "end": 9406.66, + "probability": 0.9825 + }, + { + "start": 9407.38, + "end": 9410.5, + "probability": 0.8813 + }, + { + "start": 9411.44, + "end": 9413.64, + "probability": 0.7677 + }, + { + "start": 9413.76, + "end": 9413.9, + "probability": 0.4134 + }, + { + "start": 9413.96, + "end": 9414.6, + "probability": 0.6911 + }, + { + "start": 9414.92, + "end": 9418.18, + "probability": 0.8755 + }, + { + "start": 9418.74, + "end": 9420.2, + "probability": 0.9602 + }, + { + "start": 9422.24, + "end": 9423.32, + "probability": 0.8026 + }, + { + "start": 9423.4, + "end": 9424.98, + "probability": 0.8087 + }, + { + "start": 9425.78, + "end": 9427.06, + "probability": 0.8853 + }, + { + "start": 9427.56, + "end": 9430.32, + "probability": 0.9167 + }, + { + "start": 9430.62, + "end": 9432.22, + "probability": 0.7447 + }, + { + "start": 9432.36, + "end": 9432.6, + "probability": 0.7182 + }, + { + "start": 9433.66, + "end": 9435.18, + "probability": 0.751 + }, + { + "start": 9435.4, + "end": 9438.44, + "probability": 0.9592 + }, + { + "start": 9438.8, + "end": 9439.78, + "probability": 0.8931 + }, + { + "start": 9440.3, + "end": 9441.18, + "probability": 0.9308 + }, + { + "start": 9451.74, + "end": 9452.82, + "probability": 0.7809 + }, + { + "start": 9454.76, + "end": 9457.07, + "probability": 0.4157 + }, + { + "start": 9458.14, + "end": 9459.18, + "probability": 0.7755 + }, + { + "start": 9459.22, + "end": 9462.12, + "probability": 0.9529 + }, + { + "start": 9462.2, + "end": 9462.72, + "probability": 0.9501 + }, + { + "start": 9462.86, + "end": 9463.56, + "probability": 0.8316 + }, + { + "start": 9464.0, + "end": 9466.22, + "probability": 0.9689 + }, + { + "start": 9466.4, + "end": 9469.26, + "probability": 0.8655 + }, + { + "start": 9469.66, + "end": 9470.34, + "probability": 0.4942 + }, + { + "start": 9470.5, + "end": 9473.08, + "probability": 0.9689 + }, + { + "start": 9473.36, + "end": 9477.56, + "probability": 0.9982 + }, + { + "start": 9477.74, + "end": 9479.36, + "probability": 0.8864 + }, + { + "start": 9479.68, + "end": 9483.64, + "probability": 0.278 + }, + { + "start": 9484.2, + "end": 9489.6, + "probability": 0.9845 + }, + { + "start": 9490.02, + "end": 9491.66, + "probability": 0.9804 + }, + { + "start": 9491.8, + "end": 9493.58, + "probability": 0.7316 + }, + { + "start": 9494.26, + "end": 9496.92, + "probability": 0.8794 + }, + { + "start": 9497.62, + "end": 9503.0, + "probability": 0.9956 + }, + { + "start": 9503.6, + "end": 9508.04, + "probability": 0.9912 + }, + { + "start": 9508.18, + "end": 9509.94, + "probability": 0.8892 + }, + { + "start": 9510.2, + "end": 9515.52, + "probability": 0.9978 + }, + { + "start": 9515.96, + "end": 9519.26, + "probability": 0.9973 + }, + { + "start": 9519.26, + "end": 9522.64, + "probability": 0.9785 + }, + { + "start": 9523.08, + "end": 9523.92, + "probability": 0.9321 + }, + { + "start": 9524.26, + "end": 9524.84, + "probability": 0.9052 + }, + { + "start": 9524.94, + "end": 9526.57, + "probability": 0.9979 + }, + { + "start": 9527.12, + "end": 9529.44, + "probability": 0.8779 + }, + { + "start": 9530.16, + "end": 9531.06, + "probability": 0.8132 + }, + { + "start": 9531.52, + "end": 9533.98, + "probability": 0.9305 + }, + { + "start": 9534.34, + "end": 9535.48, + "probability": 0.6582 + }, + { + "start": 9535.9, + "end": 9538.36, + "probability": 0.9379 + }, + { + "start": 9539.5, + "end": 9540.43, + "probability": 0.4783 + }, + { + "start": 9541.74, + "end": 9542.3, + "probability": 0.4464 + }, + { + "start": 9542.3, + "end": 9542.8, + "probability": 0.828 + }, + { + "start": 9543.04, + "end": 9548.28, + "probability": 0.9835 + }, + { + "start": 9549.02, + "end": 9550.16, + "probability": 0.7998 + }, + { + "start": 9550.74, + "end": 9552.73, + "probability": 0.9618 + }, + { + "start": 9553.4, + "end": 9555.92, + "probability": 0.9985 + }, + { + "start": 9556.4, + "end": 9557.36, + "probability": 0.5007 + }, + { + "start": 9557.92, + "end": 9562.42, + "probability": 0.886 + }, + { + "start": 9563.22, + "end": 9564.3, + "probability": 0.7148 + }, + { + "start": 9564.4, + "end": 9565.73, + "probability": 0.9883 + }, + { + "start": 9566.12, + "end": 9568.74, + "probability": 0.9797 + }, + { + "start": 9569.4, + "end": 9574.67, + "probability": 0.9915 + }, + { + "start": 9574.8, + "end": 9575.92, + "probability": 0.8564 + }, + { + "start": 9576.22, + "end": 9579.52, + "probability": 0.9844 + }, + { + "start": 9579.86, + "end": 9581.74, + "probability": 0.9831 + }, + { + "start": 9582.08, + "end": 9584.2, + "probability": 0.9937 + }, + { + "start": 9584.78, + "end": 9585.52, + "probability": 0.9801 + }, + { + "start": 9585.62, + "end": 9586.34, + "probability": 0.926 + }, + { + "start": 9586.88, + "end": 9588.4, + "probability": 0.713 + }, + { + "start": 9588.48, + "end": 9591.16, + "probability": 0.9883 + }, + { + "start": 9591.42, + "end": 9595.9, + "probability": 0.998 + }, + { + "start": 9596.26, + "end": 9600.06, + "probability": 0.9935 + }, + { + "start": 9600.12, + "end": 9601.6, + "probability": 0.896 + }, + { + "start": 9601.94, + "end": 9605.16, + "probability": 0.9928 + }, + { + "start": 9605.46, + "end": 9609.14, + "probability": 0.9422 + }, + { + "start": 9609.96, + "end": 9611.78, + "probability": 0.9698 + }, + { + "start": 9612.18, + "end": 9615.46, + "probability": 0.9978 + }, + { + "start": 9615.84, + "end": 9616.4, + "probability": 0.874 + }, + { + "start": 9616.62, + "end": 9618.24, + "probability": 0.9028 + }, + { + "start": 9618.32, + "end": 9619.76, + "probability": 0.9923 + }, + { + "start": 9619.86, + "end": 9619.98, + "probability": 0.8409 + }, + { + "start": 9620.4, + "end": 9621.14, + "probability": 0.7468 + }, + { + "start": 9621.94, + "end": 9625.74, + "probability": 0.5972 + }, + { + "start": 9628.66, + "end": 9630.9, + "probability": 0.8879 + }, + { + "start": 9640.52, + "end": 9641.82, + "probability": 0.5765 + }, + { + "start": 9643.06, + "end": 9644.14, + "probability": 0.7419 + }, + { + "start": 9646.52, + "end": 9650.84, + "probability": 0.8761 + }, + { + "start": 9651.6, + "end": 9656.5, + "probability": 0.8517 + }, + { + "start": 9657.56, + "end": 9659.64, + "probability": 0.6029 + }, + { + "start": 9662.28, + "end": 9666.78, + "probability": 0.6718 + }, + { + "start": 9666.78, + "end": 9669.86, + "probability": 0.9794 + }, + { + "start": 9670.98, + "end": 9674.4, + "probability": 0.9552 + }, + { + "start": 9675.28, + "end": 9678.74, + "probability": 0.7265 + }, + { + "start": 9679.54, + "end": 9680.5, + "probability": 0.3271 + }, + { + "start": 9680.82, + "end": 9682.06, + "probability": 0.6605 + }, + { + "start": 9682.16, + "end": 9683.0, + "probability": 0.7772 + }, + { + "start": 9683.1, + "end": 9685.78, + "probability": 0.9288 + }, + { + "start": 9686.78, + "end": 9688.46, + "probability": 0.7783 + }, + { + "start": 9692.12, + "end": 9693.06, + "probability": 0.9761 + }, + { + "start": 9693.76, + "end": 9695.5, + "probability": 0.9817 + }, + { + "start": 9696.0, + "end": 9701.52, + "probability": 0.9893 + }, + { + "start": 9702.06, + "end": 9706.82, + "probability": 0.9909 + }, + { + "start": 9707.2, + "end": 9709.54, + "probability": 0.9939 + }, + { + "start": 9709.68, + "end": 9713.06, + "probability": 0.9814 + }, + { + "start": 9713.28, + "end": 9716.15, + "probability": 0.9395 + }, + { + "start": 9716.64, + "end": 9721.18, + "probability": 0.9562 + }, + { + "start": 9721.72, + "end": 9722.6, + "probability": 0.6046 + }, + { + "start": 9723.12, + "end": 9724.36, + "probability": 0.8606 + }, + { + "start": 9725.46, + "end": 9726.42, + "probability": 0.8464 + }, + { + "start": 9726.98, + "end": 9730.02, + "probability": 0.949 + }, + { + "start": 9730.88, + "end": 9734.84, + "probability": 0.689 + }, + { + "start": 9735.64, + "end": 9740.06, + "probability": 0.7326 + }, + { + "start": 9740.46, + "end": 9743.04, + "probability": 0.9813 + }, + { + "start": 9746.5, + "end": 9749.66, + "probability": 0.1114 + }, + { + "start": 9750.04, + "end": 9751.04, + "probability": 0.2898 + }, + { + "start": 9751.3, + "end": 9754.2, + "probability": 0.3414 + }, + { + "start": 9754.94, + "end": 9754.94, + "probability": 0.6569 + }, + { + "start": 9754.94, + "end": 9754.96, + "probability": 0.0896 + }, + { + "start": 9754.96, + "end": 9755.08, + "probability": 0.2692 + }, + { + "start": 9755.08, + "end": 9756.0, + "probability": 0.0592 + }, + { + "start": 9757.71, + "end": 9760.1, + "probability": 0.2157 + }, + { + "start": 9760.42, + "end": 9761.92, + "probability": 0.0419 + }, + { + "start": 9761.98, + "end": 9765.1, + "probability": 0.0815 + }, + { + "start": 9765.92, + "end": 9767.1, + "probability": 0.0238 + }, + { + "start": 9768.38, + "end": 9769.38, + "probability": 0.1513 + }, + { + "start": 9769.7, + "end": 9770.74, + "probability": 0.3099 + }, + { + "start": 9772.82, + "end": 9775.82, + "probability": 0.1333 + }, + { + "start": 9776.82, + "end": 9777.38, + "probability": 0.0025 + }, + { + "start": 9777.38, + "end": 9777.38, + "probability": 0.0704 + }, + { + "start": 9777.38, + "end": 9777.38, + "probability": 0.1178 + }, + { + "start": 9777.38, + "end": 9777.38, + "probability": 0.3805 + }, + { + "start": 9777.38, + "end": 9777.38, + "probability": 0.1445 + }, + { + "start": 9777.38, + "end": 9777.88, + "probability": 0.3036 + }, + { + "start": 9778.28, + "end": 9781.3, + "probability": 0.399 + }, + { + "start": 9784.2, + "end": 9787.48, + "probability": 0.7134 + }, + { + "start": 9789.44, + "end": 9790.16, + "probability": 0.4639 + }, + { + "start": 9790.21, + "end": 9792.42, + "probability": 0.5488 + }, + { + "start": 9792.74, + "end": 9795.76, + "probability": 0.8042 + }, + { + "start": 9796.16, + "end": 9799.9, + "probability": 0.6037 + }, + { + "start": 9809.8, + "end": 9810.99, + "probability": 0.678 + }, + { + "start": 9811.64, + "end": 9813.46, + "probability": 0.9977 + }, + { + "start": 9813.58, + "end": 9816.1, + "probability": 0.8245 + }, + { + "start": 9816.64, + "end": 9819.9, + "probability": 0.8106 + }, + { + "start": 9820.34, + "end": 9822.67, + "probability": 0.9137 + }, + { + "start": 9824.14, + "end": 9827.33, + "probability": 0.152 + }, + { + "start": 9829.78, + "end": 9830.98, + "probability": 0.7805 + }, + { + "start": 9831.14, + "end": 9832.09, + "probability": 0.0071 + }, + { + "start": 9832.22, + "end": 9835.64, + "probability": 0.9963 + }, + { + "start": 9835.72, + "end": 9838.1, + "probability": 0.8721 + }, + { + "start": 9838.22, + "end": 9840.44, + "probability": 0.889 + }, + { + "start": 9840.74, + "end": 9843.2, + "probability": 0.8765 + }, + { + "start": 9843.2, + "end": 9846.1, + "probability": 0.9878 + }, + { + "start": 9846.6, + "end": 9847.76, + "probability": 0.7932 + }, + { + "start": 9848.4, + "end": 9851.54, + "probability": 0.8641 + }, + { + "start": 9852.1, + "end": 9853.84, + "probability": 0.9521 + }, + { + "start": 9853.86, + "end": 9855.45, + "probability": 0.9971 + }, + { + "start": 9855.7, + "end": 9857.18, + "probability": 0.9355 + }, + { + "start": 9857.36, + "end": 9859.16, + "probability": 0.0321 + }, + { + "start": 9859.74, + "end": 9860.78, + "probability": 0.0535 + }, + { + "start": 9862.44, + "end": 9863.78, + "probability": 0.0139 + }, + { + "start": 9863.84, + "end": 9864.96, + "probability": 0.5645 + }, + { + "start": 9867.67, + "end": 9869.14, + "probability": 0.6154 + }, + { + "start": 9869.68, + "end": 9870.34, + "probability": 0.0668 + }, + { + "start": 9870.34, + "end": 9872.1, + "probability": 0.0852 + }, + { + "start": 9872.1, + "end": 9874.6, + "probability": 0.545 + }, + { + "start": 9877.9, + "end": 9878.54, + "probability": 0.3421 + }, + { + "start": 9879.68, + "end": 9882.6, + "probability": 0.4031 + }, + { + "start": 9885.76, + "end": 9892.46, + "probability": 0.2199 + }, + { + "start": 9893.9, + "end": 9897.04, + "probability": 0.0867 + }, + { + "start": 9897.16, + "end": 9898.54, + "probability": 0.6172 + }, + { + "start": 9898.96, + "end": 9898.96, + "probability": 0.0068 + }, + { + "start": 9898.96, + "end": 9898.96, + "probability": 0.2925 + }, + { + "start": 9898.96, + "end": 9899.76, + "probability": 0.8896 + }, + { + "start": 9900.24, + "end": 9901.9, + "probability": 0.2825 + }, + { + "start": 9901.9, + "end": 9902.47, + "probability": 0.0698 + }, + { + "start": 9906.22, + "end": 9906.58, + "probability": 0.1418 + }, + { + "start": 9906.64, + "end": 9907.2, + "probability": 0.4754 + }, + { + "start": 9907.2, + "end": 9908.9, + "probability": 0.1036 + }, + { + "start": 9911.98, + "end": 9912.94, + "probability": 0.2867 + }, + { + "start": 9912.98, + "end": 9913.32, + "probability": 0.5783 + }, + { + "start": 9913.78, + "end": 9919.0, + "probability": 0.2256 + }, + { + "start": 9919.0, + "end": 9919.0, + "probability": 0.1021 + }, + { + "start": 9919.0, + "end": 9919.0, + "probability": 0.1325 + }, + { + "start": 9919.0, + "end": 9919.0, + "probability": 0.2303 + }, + { + "start": 9919.0, + "end": 9919.0, + "probability": 0.1501 + }, + { + "start": 9919.0, + "end": 9919.0, + "probability": 0.1936 + }, + { + "start": 9919.0, + "end": 9919.0, + "probability": 0.1031 + }, + { + "start": 9919.0, + "end": 9920.38, + "probability": 0.5747 + }, + { + "start": 9920.66, + "end": 9922.36, + "probability": 0.8371 + }, + { + "start": 9923.28, + "end": 9925.26, + "probability": 0.7982 + }, + { + "start": 9925.38, + "end": 9926.91, + "probability": 0.9951 + }, + { + "start": 9927.36, + "end": 9930.62, + "probability": 0.915 + }, + { + "start": 9930.88, + "end": 9932.52, + "probability": 0.9771 + }, + { + "start": 9932.7, + "end": 9934.34, + "probability": 0.9646 + }, + { + "start": 9934.36, + "end": 9935.38, + "probability": 0.8501 + }, + { + "start": 9935.62, + "end": 9937.5, + "probability": 0.855 + }, + { + "start": 9937.64, + "end": 9941.56, + "probability": 0.9957 + }, + { + "start": 9941.92, + "end": 9943.44, + "probability": 0.877 + }, + { + "start": 9943.64, + "end": 9945.16, + "probability": 0.8397 + }, + { + "start": 9945.22, + "end": 9946.74, + "probability": 0.9895 + }, + { + "start": 9946.94, + "end": 9949.06, + "probability": 0.9978 + }, + { + "start": 9949.4, + "end": 9953.22, + "probability": 0.959 + }, + { + "start": 9953.58, + "end": 9954.5, + "probability": 0.8124 + }, + { + "start": 9954.52, + "end": 9955.54, + "probability": 0.8907 + }, + { + "start": 9955.82, + "end": 9957.26, + "probability": 0.7216 + }, + { + "start": 9957.32, + "end": 9958.52, + "probability": 0.8824 + }, + { + "start": 9958.72, + "end": 9960.56, + "probability": 0.9718 + }, + { + "start": 9960.92, + "end": 9965.5, + "probability": 0.9721 + }, + { + "start": 9965.96, + "end": 9966.54, + "probability": 0.7582 + }, + { + "start": 9967.1, + "end": 9968.66, + "probability": 0.9968 + }, + { + "start": 9968.92, + "end": 9970.94, + "probability": 0.9892 + }, + { + "start": 9971.14, + "end": 9973.8, + "probability": 0.9968 + }, + { + "start": 9973.8, + "end": 9976.74, + "probability": 0.9229 + }, + { + "start": 9977.16, + "end": 9977.16, + "probability": 0.2412 + }, + { + "start": 9977.16, + "end": 9978.04, + "probability": 0.3986 + }, + { + "start": 9978.16, + "end": 9980.36, + "probability": 0.3101 + }, + { + "start": 9980.36, + "end": 9981.62, + "probability": 0.4334 + }, + { + "start": 9982.14, + "end": 9982.22, + "probability": 0.0479 + }, + { + "start": 9982.22, + "end": 9982.7, + "probability": 0.4166 + }, + { + "start": 9984.1, + "end": 9987.04, + "probability": 0.8418 + }, + { + "start": 9987.76, + "end": 9988.06, + "probability": 0.5858 + }, + { + "start": 9988.2, + "end": 9989.7, + "probability": 0.8192 + }, + { + "start": 9993.54, + "end": 9997.86, + "probability": 0.8126 + }, + { + "start": 9998.46, + "end": 10000.36, + "probability": 0.8313 + }, + { + "start": 10000.62, + "end": 10003.0, + "probability": 0.7426 + }, + { + "start": 10003.2, + "end": 10006.32, + "probability": 0.4173 + }, + { + "start": 10014.74, + "end": 10014.92, + "probability": 0.289 + }, + { + "start": 10027.84, + "end": 10034.06, + "probability": 0.3011 + }, + { + "start": 10034.18, + "end": 10035.64, + "probability": 0.7425 + }, + { + "start": 10035.78, + "end": 10037.7, + "probability": 0.0446 + }, + { + "start": 10038.0, + "end": 10038.86, + "probability": 0.037 + }, + { + "start": 10042.86, + "end": 10043.38, + "probability": 0.0159 + }, + { + "start": 10045.88, + "end": 10046.54, + "probability": 0.1721 + }, + { + "start": 10049.58, + "end": 10052.2, + "probability": 0.2386 + }, + { + "start": 10064.02, + "end": 10068.52, + "probability": 0.5314 + }, + { + "start": 10068.72, + "end": 10074.3, + "probability": 0.3033 + }, + { + "start": 10074.3, + "end": 10075.0, + "probability": 0.0399 + }, + { + "start": 10075.66, + "end": 10077.26, + "probability": 0.0562 + }, + { + "start": 10077.86, + "end": 10079.42, + "probability": 0.6658 + }, + { + "start": 10080.96, + "end": 10083.84, + "probability": 0.1016 + }, + { + "start": 10083.84, + "end": 10083.84, + "probability": 0.2141 + }, + { + "start": 10085.92, + "end": 10086.66, + "probability": 0.1372 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10089.96, + "end": 10090.1, + "probability": 0.1579 + }, + { + "start": 10090.66, + "end": 10091.18, + "probability": 0.1354 + }, + { + "start": 10092.02, + "end": 10094.03, + "probability": 0.0101 + }, + { + "start": 10100.98, + "end": 10107.06, + "probability": 0.3548 + }, + { + "start": 10109.85, + "end": 10112.98, + "probability": 0.523 + }, + { + "start": 10113.08, + "end": 10114.0, + "probability": 0.7372 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.0, + "end": 10207.0, + "probability": 0.0 + }, + { + "start": 10207.92, + "end": 10211.04, + "probability": 0.9898 + }, + { + "start": 10211.28, + "end": 10212.83, + "probability": 0.4369 + }, + { + "start": 10213.34, + "end": 10214.32, + "probability": 0.8241 + }, + { + "start": 10214.5, + "end": 10215.92, + "probability": 0.95 + }, + { + "start": 10216.02, + "end": 10217.34, + "probability": 0.9917 + }, + { + "start": 10220.9, + "end": 10222.44, + "probability": 0.8427 + }, + { + "start": 10223.37, + "end": 10225.54, + "probability": 0.9924 + }, + { + "start": 10226.04, + "end": 10226.38, + "probability": 0.0676 + }, + { + "start": 10229.52, + "end": 10229.62, + "probability": 0.0112 + }, + { + "start": 10229.62, + "end": 10233.72, + "probability": 0.7349 + }, + { + "start": 10233.92, + "end": 10234.38, + "probability": 0.714 + }, + { + "start": 10236.06, + "end": 10239.68, + "probability": 0.665 + }, + { + "start": 10240.46, + "end": 10241.5, + "probability": 0.6048 + }, + { + "start": 10241.7, + "end": 10244.42, + "probability": 0.8921 + }, + { + "start": 10245.04, + "end": 10249.06, + "probability": 0.9382 + }, + { + "start": 10249.7, + "end": 10254.48, + "probability": 0.9598 + }, + { + "start": 10255.02, + "end": 10258.22, + "probability": 0.9921 + }, + { + "start": 10259.6, + "end": 10260.9, + "probability": 0.9383 + }, + { + "start": 10261.16, + "end": 10264.62, + "probability": 0.9897 + }, + { + "start": 10265.66, + "end": 10267.46, + "probability": 0.8217 + }, + { + "start": 10268.16, + "end": 10268.7, + "probability": 0.7176 + }, + { + "start": 10269.1, + "end": 10269.76, + "probability": 0.6965 + }, + { + "start": 10270.14, + "end": 10271.26, + "probability": 0.7377 + }, + { + "start": 10271.6, + "end": 10272.48, + "probability": 0.6882 + }, + { + "start": 10272.72, + "end": 10273.74, + "probability": 0.8089 + }, + { + "start": 10274.18, + "end": 10275.4, + "probability": 0.7898 + }, + { + "start": 10276.12, + "end": 10281.34, + "probability": 0.943 + }, + { + "start": 10281.66, + "end": 10282.56, + "probability": 0.1253 + }, + { + "start": 10283.42, + "end": 10287.26, + "probability": 0.9018 + }, + { + "start": 10289.24, + "end": 10293.08, + "probability": 0.8801 + }, + { + "start": 10293.66, + "end": 10297.56, + "probability": 0.9918 + }, + { + "start": 10297.56, + "end": 10301.86, + "probability": 0.997 + }, + { + "start": 10302.4, + "end": 10304.64, + "probability": 0.9635 + }, + { + "start": 10305.36, + "end": 10307.42, + "probability": 0.4955 + }, + { + "start": 10307.98, + "end": 10312.08, + "probability": 0.9918 + }, + { + "start": 10312.68, + "end": 10317.62, + "probability": 0.9956 + }, + { + "start": 10317.84, + "end": 10320.86, + "probability": 0.6695 + }, + { + "start": 10321.02, + "end": 10322.08, + "probability": 0.8794 + }, + { + "start": 10323.44, + "end": 10324.74, + "probability": 0.6587 + }, + { + "start": 10324.84, + "end": 10325.58, + "probability": 0.9451 + }, + { + "start": 10325.64, + "end": 10327.8, + "probability": 0.9832 + }, + { + "start": 10328.56, + "end": 10329.38, + "probability": 0.582 + }, + { + "start": 10330.16, + "end": 10331.74, + "probability": 0.7638 + }, + { + "start": 10332.54, + "end": 10335.08, + "probability": 0.9946 + }, + { + "start": 10335.66, + "end": 10339.82, + "probability": 0.9976 + }, + { + "start": 10339.82, + "end": 10343.7, + "probability": 0.9897 + }, + { + "start": 10344.72, + "end": 10347.08, + "probability": 0.596 + }, + { + "start": 10347.16, + "end": 10347.84, + "probability": 0.5934 + }, + { + "start": 10347.96, + "end": 10349.88, + "probability": 0.6844 + }, + { + "start": 10351.02, + "end": 10351.86, + "probability": 0.7847 + }, + { + "start": 10353.58, + "end": 10360.3, + "probability": 0.9747 + }, + { + "start": 10361.08, + "end": 10362.3, + "probability": 0.9535 + }, + { + "start": 10362.46, + "end": 10363.78, + "probability": 0.9705 + }, + { + "start": 10364.08, + "end": 10366.0, + "probability": 0.7844 + }, + { + "start": 10366.16, + "end": 10368.38, + "probability": 0.9932 + }, + { + "start": 10368.68, + "end": 10370.66, + "probability": 0.8882 + }, + { + "start": 10371.52, + "end": 10374.3, + "probability": 0.8218 + }, + { + "start": 10374.3, + "end": 10379.54, + "probability": 0.9775 + }, + { + "start": 10380.76, + "end": 10382.24, + "probability": 0.5997 + }, + { + "start": 10383.04, + "end": 10383.47, + "probability": 0.9626 + }, + { + "start": 10384.2, + "end": 10385.12, + "probability": 0.8296 + }, + { + "start": 10385.56, + "end": 10386.64, + "probability": 0.9414 + }, + { + "start": 10386.8, + "end": 10387.57, + "probability": 0.825 + }, + { + "start": 10388.02, + "end": 10391.08, + "probability": 0.9263 + }, + { + "start": 10391.78, + "end": 10394.56, + "probability": 0.9917 + }, + { + "start": 10395.22, + "end": 10397.86, + "probability": 0.9895 + }, + { + "start": 10397.86, + "end": 10400.7, + "probability": 0.6132 + }, + { + "start": 10401.16, + "end": 10405.1, + "probability": 0.7812 + }, + { + "start": 10405.1, + "end": 10408.64, + "probability": 0.8719 + }, + { + "start": 10409.16, + "end": 10410.66, + "probability": 0.7866 + }, + { + "start": 10410.72, + "end": 10414.8, + "probability": 0.9851 + }, + { + "start": 10415.0, + "end": 10418.28, + "probability": 0.7735 + }, + { + "start": 10418.66, + "end": 10421.04, + "probability": 0.9648 + }, + { + "start": 10423.21, + "end": 10426.94, + "probability": 0.9746 + }, + { + "start": 10427.76, + "end": 10430.2, + "probability": 0.9907 + }, + { + "start": 10430.36, + "end": 10432.68, + "probability": 0.936 + }, + { + "start": 10433.1, + "end": 10437.64, + "probability": 0.9732 + }, + { + "start": 10439.13, + "end": 10444.66, + "probability": 0.9933 + }, + { + "start": 10444.66, + "end": 10448.2, + "probability": 0.8688 + }, + { + "start": 10448.46, + "end": 10448.96, + "probability": 0.5692 + }, + { + "start": 10449.16, + "end": 10449.64, + "probability": 0.3395 + }, + { + "start": 10450.5, + "end": 10453.7, + "probability": 0.9713 + }, + { + "start": 10453.7, + "end": 10456.76, + "probability": 0.9981 + }, + { + "start": 10457.32, + "end": 10459.9, + "probability": 0.8927 + }, + { + "start": 10460.4, + "end": 10462.1, + "probability": 0.9012 + }, + { + "start": 10462.52, + "end": 10464.68, + "probability": 0.9935 + }, + { + "start": 10464.92, + "end": 10467.64, + "probability": 0.9895 + }, + { + "start": 10469.16, + "end": 10469.9, + "probability": 0.9165 + }, + { + "start": 10470.84, + "end": 10473.9, + "probability": 0.7698 + }, + { + "start": 10476.06, + "end": 10482.04, + "probability": 0.9912 + }, + { + "start": 10482.62, + "end": 10486.78, + "probability": 0.9972 + }, + { + "start": 10487.4, + "end": 10491.04, + "probability": 0.9989 + }, + { + "start": 10491.04, + "end": 10494.14, + "probability": 0.999 + }, + { + "start": 10494.28, + "end": 10496.18, + "probability": 0.9557 + }, + { + "start": 10496.26, + "end": 10496.88, + "probability": 0.6037 + }, + { + "start": 10497.52, + "end": 10500.66, + "probability": 0.9936 + }, + { + "start": 10501.14, + "end": 10506.68, + "probability": 0.9868 + }, + { + "start": 10506.94, + "end": 10509.36, + "probability": 0.5471 + }, + { + "start": 10509.5, + "end": 10510.36, + "probability": 0.6464 + }, + { + "start": 10512.86, + "end": 10515.74, + "probability": 0.739 + }, + { + "start": 10516.52, + "end": 10520.96, + "probability": 0.6862 + }, + { + "start": 10521.36, + "end": 10525.36, + "probability": 0.9844 + }, + { + "start": 10525.36, + "end": 10529.94, + "probability": 0.9559 + }, + { + "start": 10530.36, + "end": 10532.86, + "probability": 0.9884 + }, + { + "start": 10532.86, + "end": 10535.76, + "probability": 0.8596 + }, + { + "start": 10536.2, + "end": 10539.9, + "probability": 0.9256 + }, + { + "start": 10540.72, + "end": 10542.24, + "probability": 0.6903 + }, + { + "start": 10543.94, + "end": 10546.96, + "probability": 0.804 + }, + { + "start": 10548.05, + "end": 10552.06, + "probability": 0.8995 + }, + { + "start": 10552.54, + "end": 10555.62, + "probability": 0.9784 + }, + { + "start": 10555.62, + "end": 10558.2, + "probability": 0.9971 + }, + { + "start": 10558.54, + "end": 10559.22, + "probability": 0.8126 + }, + { + "start": 10559.54, + "end": 10560.02, + "probability": 0.9637 + }, + { + "start": 10560.16, + "end": 10560.54, + "probability": 0.902 + }, + { + "start": 10560.96, + "end": 10561.84, + "probability": 0.4659 + }, + { + "start": 10561.92, + "end": 10562.56, + "probability": 0.6117 + }, + { + "start": 10562.72, + "end": 10564.32, + "probability": 0.992 + }, + { + "start": 10564.6, + "end": 10566.64, + "probability": 0.7971 + }, + { + "start": 10566.86, + "end": 10571.16, + "probability": 0.8581 + }, + { + "start": 10571.26, + "end": 10572.26, + "probability": 0.9601 + }, + { + "start": 10572.34, + "end": 10574.9, + "probability": 0.9936 + }, + { + "start": 10575.36, + "end": 10577.64, + "probability": 0.9484 + }, + { + "start": 10577.9, + "end": 10579.3, + "probability": 0.8474 + }, + { + "start": 10582.36, + "end": 10588.72, + "probability": 0.9517 + }, + { + "start": 10589.04, + "end": 10593.16, + "probability": 0.8988 + }, + { + "start": 10593.68, + "end": 10593.82, + "probability": 0.0125 + }, + { + "start": 10593.94, + "end": 10596.26, + "probability": 0.982 + }, + { + "start": 10596.32, + "end": 10597.56, + "probability": 0.9927 + }, + { + "start": 10597.84, + "end": 10599.16, + "probability": 0.9907 + }, + { + "start": 10599.48, + "end": 10600.52, + "probability": 0.996 + }, + { + "start": 10600.68, + "end": 10602.86, + "probability": 0.9669 + }, + { + "start": 10603.62, + "end": 10604.12, + "probability": 0.0086 + }, + { + "start": 10604.32, + "end": 10606.12, + "probability": 0.8473 + }, + { + "start": 10606.18, + "end": 10608.16, + "probability": 0.7988 + }, + { + "start": 10608.38, + "end": 10611.02, + "probability": 0.9961 + }, + { + "start": 10611.44, + "end": 10616.54, + "probability": 0.7069 + }, + { + "start": 10617.4, + "end": 10617.64, + "probability": 0.7522 + }, + { + "start": 10617.72, + "end": 10620.12, + "probability": 0.9171 + }, + { + "start": 10620.58, + "end": 10622.56, + "probability": 0.7258 + }, + { + "start": 10622.88, + "end": 10624.56, + "probability": 0.9526 + }, + { + "start": 10625.46, + "end": 10626.72, + "probability": 0.9419 + }, + { + "start": 10626.88, + "end": 10627.46, + "probability": 0.7341 + }, + { + "start": 10627.7, + "end": 10632.46, + "probability": 0.9725 + }, + { + "start": 10632.92, + "end": 10635.32, + "probability": 0.8747 + }, + { + "start": 10635.34, + "end": 10638.38, + "probability": 0.9203 + }, + { + "start": 10638.78, + "end": 10640.88, + "probability": 0.7941 + }, + { + "start": 10640.96, + "end": 10643.84, + "probability": 0.9603 + }, + { + "start": 10643.84, + "end": 10645.72, + "probability": 0.9019 + }, + { + "start": 10646.0, + "end": 10650.08, + "probability": 0.9961 + }, + { + "start": 10650.54, + "end": 10652.04, + "probability": 0.8898 + }, + { + "start": 10652.1, + "end": 10653.64, + "probability": 0.7492 + }, + { + "start": 10653.68, + "end": 10654.94, + "probability": 0.9714 + }, + { + "start": 10655.26, + "end": 10659.8, + "probability": 0.8652 + }, + { + "start": 10659.86, + "end": 10661.64, + "probability": 0.9783 + }, + { + "start": 10661.78, + "end": 10662.98, + "probability": 0.967 + }, + { + "start": 10663.24, + "end": 10665.56, + "probability": 0.9885 + }, + { + "start": 10665.86, + "end": 10667.02, + "probability": 0.9713 + }, + { + "start": 10667.38, + "end": 10672.06, + "probability": 0.9216 + }, + { + "start": 10672.16, + "end": 10674.5, + "probability": 0.8263 + }, + { + "start": 10674.68, + "end": 10675.26, + "probability": 0.9408 + }, + { + "start": 10675.7, + "end": 10678.24, + "probability": 0.7658 + }, + { + "start": 10678.24, + "end": 10681.02, + "probability": 0.9577 + }, + { + "start": 10681.22, + "end": 10681.36, + "probability": 0.6675 + }, + { + "start": 10682.3, + "end": 10683.21, + "probability": 0.472 + }, + { + "start": 10683.9, + "end": 10687.82, + "probability": 0.8069 + }, + { + "start": 10700.7, + "end": 10703.5, + "probability": 0.8181 + }, + { + "start": 10705.66, + "end": 10708.48, + "probability": 0.8926 + }, + { + "start": 10709.06, + "end": 10709.72, + "probability": 0.8987 + }, + { + "start": 10710.9, + "end": 10715.54, + "probability": 0.9989 + }, + { + "start": 10716.52, + "end": 10718.08, + "probability": 0.7297 + }, + { + "start": 10718.94, + "end": 10720.82, + "probability": 0.9414 + }, + { + "start": 10722.08, + "end": 10725.26, + "probability": 0.9792 + }, + { + "start": 10725.26, + "end": 10727.96, + "probability": 0.9962 + }, + { + "start": 10730.78, + "end": 10731.74, + "probability": 0.9182 + }, + { + "start": 10733.34, + "end": 10735.52, + "probability": 0.7979 + }, + { + "start": 10736.8, + "end": 10738.42, + "probability": 0.726 + }, + { + "start": 10740.14, + "end": 10741.24, + "probability": 0.7695 + }, + { + "start": 10741.32, + "end": 10743.36, + "probability": 0.9949 + }, + { + "start": 10743.36, + "end": 10749.9, + "probability": 0.984 + }, + { + "start": 10752.04, + "end": 10752.84, + "probability": 0.5028 + }, + { + "start": 10754.46, + "end": 10755.34, + "probability": 0.9411 + }, + { + "start": 10755.44, + "end": 10758.98, + "probability": 0.9443 + }, + { + "start": 10760.24, + "end": 10761.82, + "probability": 0.8695 + }, + { + "start": 10762.6, + "end": 10768.37, + "probability": 0.9378 + }, + { + "start": 10769.24, + "end": 10772.78, + "probability": 0.922 + }, + { + "start": 10772.88, + "end": 10774.84, + "probability": 0.5849 + }, + { + "start": 10775.04, + "end": 10776.04, + "probability": 0.7775 + }, + { + "start": 10779.06, + "end": 10781.38, + "probability": 0.7532 + }, + { + "start": 10781.54, + "end": 10784.51, + "probability": 0.9919 + }, + { + "start": 10784.64, + "end": 10786.1, + "probability": 0.1932 + }, + { + "start": 10786.1, + "end": 10787.4, + "probability": 0.6625 + }, + { + "start": 10787.72, + "end": 10789.46, + "probability": 0.7468 + }, + { + "start": 10789.56, + "end": 10793.34, + "probability": 0.6705 + }, + { + "start": 10793.34, + "end": 10793.42, + "probability": 0.0655 + }, + { + "start": 10793.42, + "end": 10793.42, + "probability": 0.0059 + }, + { + "start": 10793.42, + "end": 10794.02, + "probability": 0.0806 + }, + { + "start": 10794.42, + "end": 10795.54, + "probability": 0.979 + }, + { + "start": 10795.58, + "end": 10796.86, + "probability": 0.7838 + }, + { + "start": 10797.44, + "end": 10798.0, + "probability": 0.9514 + }, + { + "start": 10798.14, + "end": 10798.6, + "probability": 0.256 + }, + { + "start": 10799.86, + "end": 10801.72, + "probability": 0.5548 + }, + { + "start": 10802.4, + "end": 10806.36, + "probability": 0.7855 + }, + { + "start": 10807.96, + "end": 10809.52, + "probability": 0.9892 + }, + { + "start": 10809.68, + "end": 10810.72, + "probability": 0.9873 + }, + { + "start": 10810.82, + "end": 10811.68, + "probability": 0.8356 + }, + { + "start": 10812.52, + "end": 10816.02, + "probability": 0.9969 + }, + { + "start": 10816.88, + "end": 10820.96, + "probability": 0.994 + }, + { + "start": 10821.04, + "end": 10822.42, + "probability": 0.9919 + }, + { + "start": 10823.04, + "end": 10825.78, + "probability": 0.9297 + }, + { + "start": 10828.88, + "end": 10831.02, + "probability": 0.9421 + }, + { + "start": 10831.14, + "end": 10832.1, + "probability": 0.6993 + }, + { + "start": 10832.16, + "end": 10835.26, + "probability": 0.7687 + }, + { + "start": 10836.28, + "end": 10837.62, + "probability": 0.9856 + }, + { + "start": 10838.72, + "end": 10839.58, + "probability": 0.7015 + }, + { + "start": 10839.82, + "end": 10842.6, + "probability": 0.9888 + }, + { + "start": 10842.6, + "end": 10846.5, + "probability": 0.9971 + }, + { + "start": 10847.2, + "end": 10850.06, + "probability": 0.9701 + }, + { + "start": 10850.8, + "end": 10852.24, + "probability": 0.9913 + }, + { + "start": 10852.3, + "end": 10855.3, + "probability": 0.9424 + }, + { + "start": 10857.08, + "end": 10857.7, + "probability": 0.7244 + }, + { + "start": 10858.76, + "end": 10861.64, + "probability": 0.9419 + }, + { + "start": 10861.64, + "end": 10864.6, + "probability": 0.9965 + }, + { + "start": 10865.24, + "end": 10871.86, + "probability": 0.8538 + }, + { + "start": 10872.56, + "end": 10874.56, + "probability": 0.7928 + }, + { + "start": 10874.98, + "end": 10880.84, + "probability": 0.7518 + }, + { + "start": 10882.28, + "end": 10884.82, + "probability": 0.9419 + }, + { + "start": 10886.02, + "end": 10886.14, + "probability": 0.0606 + }, + { + "start": 10886.22, + "end": 10887.04, + "probability": 0.9453 + }, + { + "start": 10887.14, + "end": 10889.5, + "probability": 0.8745 + }, + { + "start": 10889.56, + "end": 10893.88, + "probability": 0.967 + }, + { + "start": 10894.32, + "end": 10899.52, + "probability": 0.9956 + }, + { + "start": 10901.5, + "end": 10905.82, + "probability": 0.4962 + }, + { + "start": 10906.62, + "end": 10909.46, + "probability": 0.9858 + }, + { + "start": 10910.06, + "end": 10911.52, + "probability": 0.7839 + }, + { + "start": 10911.62, + "end": 10912.16, + "probability": 0.7189 + }, + { + "start": 10912.36, + "end": 10913.92, + "probability": 0.3051 + }, + { + "start": 10913.92, + "end": 10915.84, + "probability": 0.293 + }, + { + "start": 10916.2, + "end": 10917.92, + "probability": 0.6389 + }, + { + "start": 10918.55, + "end": 10922.2, + "probability": 0.9559 + }, + { + "start": 10922.74, + "end": 10925.26, + "probability": 0.9791 + }, + { + "start": 10925.4, + "end": 10926.77, + "probability": 0.9927 + }, + { + "start": 10927.26, + "end": 10931.46, + "probability": 0.9807 + }, + { + "start": 10931.64, + "end": 10932.28, + "probability": 0.8652 + }, + { + "start": 10933.03, + "end": 10934.91, + "probability": 0.745 + }, + { + "start": 10936.19, + "end": 10937.93, + "probability": 0.9902 + }, + { + "start": 10938.66, + "end": 10939.24, + "probability": 0.1323 + }, + { + "start": 10939.26, + "end": 10942.18, + "probability": 0.6988 + }, + { + "start": 10942.26, + "end": 10946.62, + "probability": 0.8648 + }, + { + "start": 10946.82, + "end": 10947.9, + "probability": 0.651 + }, + { + "start": 10948.32, + "end": 10951.04, + "probability": 0.9607 + }, + { + "start": 10951.64, + "end": 10955.48, + "probability": 0.8808 + }, + { + "start": 10957.14, + "end": 10960.2, + "probability": 0.8015 + }, + { + "start": 10961.44, + "end": 10962.42, + "probability": 0.7749 + }, + { + "start": 10963.88, + "end": 10968.96, + "probability": 0.9911 + }, + { + "start": 10969.2, + "end": 10972.8, + "probability": 0.8496 + }, + { + "start": 10973.06, + "end": 10976.76, + "probability": 0.9235 + }, + { + "start": 10977.44, + "end": 10977.82, + "probability": 0.0762 + }, + { + "start": 10978.5, + "end": 10979.49, + "probability": 0.4139 + }, + { + "start": 10979.64, + "end": 10982.53, + "probability": 0.8923 + }, + { + "start": 10982.84, + "end": 10984.36, + "probability": 0.79 + }, + { + "start": 10984.62, + "end": 10988.28, + "probability": 0.7705 + }, + { + "start": 10988.68, + "end": 10990.96, + "probability": 0.5961 + }, + { + "start": 10992.04, + "end": 10995.08, + "probability": 0.958 + }, + { + "start": 10995.14, + "end": 10996.7, + "probability": 0.9781 + }, + { + "start": 10997.24, + "end": 10997.64, + "probability": 0.5012 + }, + { + "start": 10998.24, + "end": 10999.76, + "probability": 0.9668 + }, + { + "start": 11000.36, + "end": 11002.4, + "probability": 0.8507 + }, + { + "start": 11002.78, + "end": 11003.78, + "probability": 0.9204 + }, + { + "start": 11004.24, + "end": 11006.56, + "probability": 0.9829 + }, + { + "start": 11006.86, + "end": 11008.96, + "probability": 0.9842 + }, + { + "start": 11011.88, + "end": 11012.86, + "probability": 0.7281 + }, + { + "start": 11012.92, + "end": 11013.9, + "probability": 0.9541 + }, + { + "start": 11014.38, + "end": 11018.98, + "probability": 0.9658 + }, + { + "start": 11020.26, + "end": 11022.3, + "probability": 0.6734 + }, + { + "start": 11022.72, + "end": 11024.64, + "probability": 0.8109 + }, + { + "start": 11025.2, + "end": 11026.24, + "probability": 0.9216 + }, + { + "start": 11028.08, + "end": 11032.66, + "probability": 0.9774 + }, + { + "start": 11033.44, + "end": 11033.96, + "probability": 0.8696 + }, + { + "start": 11034.06, + "end": 11038.38, + "probability": 0.9954 + }, + { + "start": 11039.2, + "end": 11043.04, + "probability": 0.965 + }, + { + "start": 11044.18, + "end": 11047.7, + "probability": 0.918 + }, + { + "start": 11048.76, + "end": 11052.36, + "probability": 0.9955 + }, + { + "start": 11053.64, + "end": 11056.66, + "probability": 0.8208 + }, + { + "start": 11057.56, + "end": 11059.96, + "probability": 0.9932 + }, + { + "start": 11061.66, + "end": 11064.3, + "probability": 0.743 + }, + { + "start": 11065.52, + "end": 11066.96, + "probability": 0.9639 + }, + { + "start": 11067.1, + "end": 11070.16, + "probability": 0.9924 + }, + { + "start": 11070.24, + "end": 11074.56, + "probability": 0.9427 + }, + { + "start": 11077.08, + "end": 11083.84, + "probability": 0.9899 + }, + { + "start": 11084.74, + "end": 11087.78, + "probability": 0.9852 + }, + { + "start": 11088.36, + "end": 11092.08, + "probability": 0.9839 + }, + { + "start": 11093.84, + "end": 11094.06, + "probability": 0.7636 + }, + { + "start": 11094.74, + "end": 11095.34, + "probability": 0.6588 + }, + { + "start": 11096.26, + "end": 11100.04, + "probability": 0.9963 + }, + { + "start": 11101.8, + "end": 11106.78, + "probability": 0.9902 + }, + { + "start": 11108.24, + "end": 11108.88, + "probability": 0.887 + }, + { + "start": 11109.5, + "end": 11111.16, + "probability": 0.9378 + }, + { + "start": 11112.02, + "end": 11112.9, + "probability": 0.9329 + }, + { + "start": 11113.0, + "end": 11119.06, + "probability": 0.9669 + }, + { + "start": 11119.2, + "end": 11123.7, + "probability": 0.981 + }, + { + "start": 11124.14, + "end": 11125.12, + "probability": 0.8531 + }, + { + "start": 11125.28, + "end": 11128.14, + "probability": 0.9934 + }, + { + "start": 11129.06, + "end": 11133.44, + "probability": 0.7514 + }, + { + "start": 11134.16, + "end": 11138.12, + "probability": 0.9706 + }, + { + "start": 11138.7, + "end": 11138.94, + "probability": 0.726 + }, + { + "start": 11139.0, + "end": 11141.68, + "probability": 0.936 + }, + { + "start": 11142.12, + "end": 11144.54, + "probability": 0.7013 + }, + { + "start": 11145.06, + "end": 11147.7, + "probability": 0.9118 + }, + { + "start": 11148.12, + "end": 11150.86, + "probability": 0.9231 + }, + { + "start": 11156.72, + "end": 11159.08, + "probability": 0.9976 + }, + { + "start": 11159.08, + "end": 11161.7, + "probability": 0.7493 + }, + { + "start": 11162.5, + "end": 11165.62, + "probability": 0.9684 + }, + { + "start": 11166.14, + "end": 11172.58, + "probability": 0.9891 + }, + { + "start": 11172.58, + "end": 11177.14, + "probability": 0.9873 + }, + { + "start": 11177.22, + "end": 11179.26, + "probability": 0.8973 + }, + { + "start": 11179.42, + "end": 11181.68, + "probability": 0.9114 + }, + { + "start": 11183.34, + "end": 11186.22, + "probability": 0.9322 + }, + { + "start": 11187.14, + "end": 11190.1, + "probability": 0.9713 + }, + { + "start": 11190.54, + "end": 11191.54, + "probability": 0.9893 + }, + { + "start": 11192.18, + "end": 11193.26, + "probability": 0.8374 + }, + { + "start": 11193.82, + "end": 11197.62, + "probability": 0.9775 + }, + { + "start": 11197.62, + "end": 11200.08, + "probability": 0.9777 + }, + { + "start": 11200.7, + "end": 11201.22, + "probability": 0.7671 + }, + { + "start": 11202.2, + "end": 11203.13, + "probability": 0.9316 + }, + { + "start": 11204.36, + "end": 11207.1, + "probability": 0.98 + }, + { + "start": 11207.1, + "end": 11211.12, + "probability": 0.9979 + }, + { + "start": 11219.5, + "end": 11220.44, + "probability": 0.874 + }, + { + "start": 11220.98, + "end": 11223.38, + "probability": 0.9055 + }, + { + "start": 11224.86, + "end": 11224.88, + "probability": 0.4753 + }, + { + "start": 11225.14, + "end": 11226.04, + "probability": 0.9438 + }, + { + "start": 11226.52, + "end": 11230.2, + "probability": 0.9827 + }, + { + "start": 11230.8, + "end": 11231.56, + "probability": 0.8686 + }, + { + "start": 11234.02, + "end": 11234.9, + "probability": 0.6183 + }, + { + "start": 11235.82, + "end": 11236.76, + "probability": 0.9124 + }, + { + "start": 11236.86, + "end": 11241.92, + "probability": 0.9915 + }, + { + "start": 11242.18, + "end": 11242.72, + "probability": 0.6523 + }, + { + "start": 11242.82, + "end": 11242.98, + "probability": 0.7775 + }, + { + "start": 11242.98, + "end": 11243.56, + "probability": 0.3791 + }, + { + "start": 11244.97, + "end": 11251.64, + "probability": 0.9927 + }, + { + "start": 11252.72, + "end": 11256.28, + "probability": 0.9921 + }, + { + "start": 11257.06, + "end": 11257.76, + "probability": 0.5437 + }, + { + "start": 11258.52, + "end": 11262.06, + "probability": 0.996 + }, + { + "start": 11262.06, + "end": 11265.16, + "probability": 0.7631 + }, + { + "start": 11265.76, + "end": 11271.18, + "probability": 0.8862 + }, + { + "start": 11271.74, + "end": 11275.48, + "probability": 0.9069 + }, + { + "start": 11276.1, + "end": 11277.66, + "probability": 0.8328 + }, + { + "start": 11279.9, + "end": 11280.64, + "probability": 0.607 + }, + { + "start": 11280.64, + "end": 11283.16, + "probability": 0.9462 + }, + { + "start": 11284.16, + "end": 11285.18, + "probability": 0.7645 + }, + { + "start": 11285.22, + "end": 11289.43, + "probability": 0.8315 + }, + { + "start": 11290.32, + "end": 11291.06, + "probability": 0.985 + }, + { + "start": 11291.18, + "end": 11292.06, + "probability": 0.7518 + }, + { + "start": 11293.66, + "end": 11302.86, + "probability": 0.7924 + }, + { + "start": 11304.78, + "end": 11305.78, + "probability": 0.9611 + }, + { + "start": 11306.44, + "end": 11307.24, + "probability": 0.7563 + }, + { + "start": 11307.9, + "end": 11310.8, + "probability": 0.9737 + }, + { + "start": 11313.3, + "end": 11314.4, + "probability": 0.7969 + }, + { + "start": 11315.2, + "end": 11316.24, + "probability": 0.9919 + }, + { + "start": 11318.3, + "end": 11318.92, + "probability": 0.9592 + }, + { + "start": 11319.34, + "end": 11320.34, + "probability": 0.9792 + }, + { + "start": 11320.52, + "end": 11321.52, + "probability": 0.9672 + }, + { + "start": 11321.62, + "end": 11322.6, + "probability": 0.9448 + }, + { + "start": 11323.5, + "end": 11324.79, + "probability": 0.8787 + }, + { + "start": 11325.94, + "end": 11326.66, + "probability": 0.8196 + }, + { + "start": 11327.02, + "end": 11327.86, + "probability": 0.8344 + }, + { + "start": 11328.28, + "end": 11329.61, + "probability": 0.9824 + }, + { + "start": 11329.88, + "end": 11330.58, + "probability": 0.7622 + }, + { + "start": 11330.84, + "end": 11332.77, + "probability": 0.3291 + }, + { + "start": 11336.62, + "end": 11338.48, + "probability": 0.9124 + }, + { + "start": 11338.96, + "end": 11340.0, + "probability": 0.7659 + }, + { + "start": 11340.54, + "end": 11341.62, + "probability": 0.2608 + }, + { + "start": 11349.86, + "end": 11352.06, + "probability": 0.5467 + }, + { + "start": 11352.18, + "end": 11352.64, + "probability": 0.7722 + }, + { + "start": 11353.16, + "end": 11354.4, + "probability": 0.5631 + }, + { + "start": 11355.96, + "end": 11360.26, + "probability": 0.6458 + }, + { + "start": 11360.66, + "end": 11361.8, + "probability": 0.765 + }, + { + "start": 11361.98, + "end": 11363.78, + "probability": 0.7542 + }, + { + "start": 11363.96, + "end": 11370.32, + "probability": 0.9551 + }, + { + "start": 11370.8, + "end": 11373.18, + "probability": 0.8865 + }, + { + "start": 11373.4, + "end": 11373.66, + "probability": 0.8958 + }, + { + "start": 11373.74, + "end": 11374.85, + "probability": 0.9209 + }, + { + "start": 11374.98, + "end": 11376.44, + "probability": 0.9589 + }, + { + "start": 11377.02, + "end": 11378.86, + "probability": 0.8284 + }, + { + "start": 11379.36, + "end": 11380.65, + "probability": 0.8481 + }, + { + "start": 11381.04, + "end": 11381.5, + "probability": 0.736 + }, + { + "start": 11381.56, + "end": 11382.44, + "probability": 0.8433 + }, + { + "start": 11382.46, + "end": 11383.1, + "probability": 0.8598 + }, + { + "start": 11383.38, + "end": 11385.64, + "probability": 0.6772 + }, + { + "start": 11386.32, + "end": 11390.84, + "probability": 0.9225 + }, + { + "start": 11391.06, + "end": 11393.74, + "probability": 0.6804 + }, + { + "start": 11393.9, + "end": 11396.18, + "probability": 0.9954 + }, + { + "start": 11396.18, + "end": 11398.48, + "probability": 0.907 + }, + { + "start": 11398.62, + "end": 11399.42, + "probability": 0.7614 + }, + { + "start": 11399.9, + "end": 11401.88, + "probability": 0.9757 + }, + { + "start": 11402.26, + "end": 11403.44, + "probability": 0.9839 + }, + { + "start": 11403.9, + "end": 11405.48, + "probability": 0.6981 + }, + { + "start": 11405.52, + "end": 11406.71, + "probability": 0.9832 + }, + { + "start": 11407.52, + "end": 11408.26, + "probability": 0.822 + }, + { + "start": 11408.82, + "end": 11414.62, + "probability": 0.8562 + }, + { + "start": 11414.62, + "end": 11417.58, + "probability": 0.7465 + }, + { + "start": 11417.9, + "end": 11418.96, + "probability": 0.8914 + }, + { + "start": 11419.18, + "end": 11420.32, + "probability": 0.8773 + }, + { + "start": 11420.48, + "end": 11421.98, + "probability": 0.777 + }, + { + "start": 11422.68, + "end": 11424.49, + "probability": 0.9027 + }, + { + "start": 11424.94, + "end": 11427.54, + "probability": 0.8185 + }, + { + "start": 11427.54, + "end": 11430.16, + "probability": 0.9915 + }, + { + "start": 11430.32, + "end": 11431.78, + "probability": 0.6547 + }, + { + "start": 11431.8, + "end": 11432.48, + "probability": 0.4361 + }, + { + "start": 11432.56, + "end": 11434.22, + "probability": 0.981 + }, + { + "start": 11434.36, + "end": 11435.16, + "probability": 0.9893 + }, + { + "start": 11436.08, + "end": 11436.86, + "probability": 0.8276 + }, + { + "start": 11437.0, + "end": 11437.96, + "probability": 0.4941 + }, + { + "start": 11438.24, + "end": 11438.26, + "probability": 0.3951 + }, + { + "start": 11438.26, + "end": 11438.68, + "probability": 0.9351 + }, + { + "start": 11438.94, + "end": 11440.62, + "probability": 0.7924 + }, + { + "start": 11440.72, + "end": 11441.2, + "probability": 0.4623 + }, + { + "start": 11441.24, + "end": 11441.82, + "probability": 0.3032 + }, + { + "start": 11442.3, + "end": 11445.9, + "probability": 0.9712 + }, + { + "start": 11446.44, + "end": 11448.94, + "probability": 0.7244 + }, + { + "start": 11449.2, + "end": 11450.88, + "probability": 0.9973 + }, + { + "start": 11451.48, + "end": 11454.2, + "probability": 0.9712 + }, + { + "start": 11454.6, + "end": 11455.38, + "probability": 0.9768 + }, + { + "start": 11455.52, + "end": 11456.8, + "probability": 0.936 + }, + { + "start": 11456.82, + "end": 11458.84, + "probability": 0.9905 + }, + { + "start": 11459.42, + "end": 11459.42, + "probability": 0.0057 + }, + { + "start": 11459.58, + "end": 11460.12, + "probability": 0.8421 + }, + { + "start": 11460.22, + "end": 11463.04, + "probability": 0.9808 + }, + { + "start": 11463.22, + "end": 11465.5, + "probability": 0.9447 + }, + { + "start": 11465.76, + "end": 11466.6, + "probability": 0.9122 + }, + { + "start": 11466.86, + "end": 11468.58, + "probability": 0.6204 + }, + { + "start": 11469.54, + "end": 11470.5, + "probability": 0.8522 + }, + { + "start": 11470.6, + "end": 11471.7, + "probability": 0.8324 + }, + { + "start": 11471.98, + "end": 11473.56, + "probability": 0.9302 + }, + { + "start": 11473.6, + "end": 11474.56, + "probability": 0.8982 + }, + { + "start": 11474.84, + "end": 11477.22, + "probability": 0.7576 + }, + { + "start": 11477.44, + "end": 11478.86, + "probability": 0.9212 + }, + { + "start": 11478.96, + "end": 11479.28, + "probability": 0.5137 + }, + { + "start": 11479.48, + "end": 11481.2, + "probability": 0.9893 + }, + { + "start": 11481.5, + "end": 11482.18, + "probability": 0.9263 + }, + { + "start": 11483.2, + "end": 11484.5, + "probability": 0.8394 + }, + { + "start": 11484.54, + "end": 11485.22, + "probability": 0.561 + }, + { + "start": 11485.4, + "end": 11486.54, + "probability": 0.9349 + }, + { + "start": 11486.64, + "end": 11488.66, + "probability": 0.9006 + }, + { + "start": 11489.28, + "end": 11489.8, + "probability": 0.629 + }, + { + "start": 11489.98, + "end": 11493.54, + "probability": 0.9188 + }, + { + "start": 11494.56, + "end": 11497.26, + "probability": 0.7592 + }, + { + "start": 11497.8, + "end": 11498.86, + "probability": 0.7622 + }, + { + "start": 11499.36, + "end": 11499.9, + "probability": 0.6529 + }, + { + "start": 11499.94, + "end": 11500.66, + "probability": 0.7038 + }, + { + "start": 11501.82, + "end": 11503.04, + "probability": 0.4009 + }, + { + "start": 11505.16, + "end": 11509.36, + "probability": 0.0106 + }, + { + "start": 11509.44, + "end": 11509.44, + "probability": 0.1513 + }, + { + "start": 11510.76, + "end": 11515.44, + "probability": 0.1145 + }, + { + "start": 11516.24, + "end": 11516.58, + "probability": 0.043 + }, + { + "start": 11521.0, + "end": 11523.2, + "probability": 0.0915 + }, + { + "start": 11523.2, + "end": 11528.06, + "probability": 0.7091 + }, + { + "start": 11528.42, + "end": 11529.82, + "probability": 0.9265 + }, + { + "start": 11530.78, + "end": 11534.06, + "probability": 0.1727 + }, + { + "start": 11547.88, + "end": 11551.3, + "probability": 0.7991 + }, + { + "start": 11551.3, + "end": 11551.3, + "probability": 0.0568 + }, + { + "start": 11551.3, + "end": 11553.86, + "probability": 0.6477 + }, + { + "start": 11553.96, + "end": 11555.7, + "probability": 0.5825 + }, + { + "start": 11556.06, + "end": 11560.28, + "probability": 0.911 + }, + { + "start": 11563.54, + "end": 11564.6, + "probability": 0.0302 + }, + { + "start": 11572.6, + "end": 11573.46, + "probability": 0.7172 + }, + { + "start": 11575.46, + "end": 11577.52, + "probability": 0.5532 + }, + { + "start": 11580.04, + "end": 11581.58, + "probability": 0.7289 + }, + { + "start": 11584.64, + "end": 11588.8, + "probability": 0.8603 + }, + { + "start": 11588.8, + "end": 11590.48, + "probability": 0.0216 + }, + { + "start": 11590.48, + "end": 11591.16, + "probability": 0.0691 + }, + { + "start": 11591.16, + "end": 11591.98, + "probability": 0.1762 + }, + { + "start": 11592.51, + "end": 11592.98, + "probability": 0.0999 + }, + { + "start": 11615.48, + "end": 11618.0, + "probability": 0.8232 + }, + { + "start": 11618.02, + "end": 11619.72, + "probability": 0.503 + }, + { + "start": 11620.64, + "end": 11625.28, + "probability": 0.9584 + }, + { + "start": 11626.4, + "end": 11628.58, + "probability": 0.9995 + }, + { + "start": 11629.13, + "end": 11633.86, + "probability": 0.9803 + }, + { + "start": 11634.44, + "end": 11635.9, + "probability": 0.9873 + }, + { + "start": 11636.76, + "end": 11640.7, + "probability": 0.9938 + }, + { + "start": 11641.44, + "end": 11642.46, + "probability": 0.9713 + }, + { + "start": 11643.46, + "end": 11646.0, + "probability": 0.9493 + }, + { + "start": 11646.74, + "end": 11648.18, + "probability": 0.9322 + }, + { + "start": 11649.28, + "end": 11650.18, + "probability": 0.781 + }, + { + "start": 11651.32, + "end": 11652.9, + "probability": 0.9366 + }, + { + "start": 11653.36, + "end": 11653.94, + "probability": 0.9461 + }, + { + "start": 11654.86, + "end": 11656.94, + "probability": 0.9697 + }, + { + "start": 11657.1, + "end": 11658.64, + "probability": 0.5168 + }, + { + "start": 11658.8, + "end": 11662.3, + "probability": 0.8567 + }, + { + "start": 11663.24, + "end": 11664.38, + "probability": 0.8846 + }, + { + "start": 11665.2, + "end": 11666.7, + "probability": 0.9634 + }, + { + "start": 11667.1, + "end": 11671.12, + "probability": 0.972 + }, + { + "start": 11672.64, + "end": 11675.86, + "probability": 0.8125 + }, + { + "start": 11676.06, + "end": 11676.7, + "probability": 0.4675 + }, + { + "start": 11677.0, + "end": 11678.92, + "probability": 0.9504 + }, + { + "start": 11680.44, + "end": 11681.44, + "probability": 0.9525 + }, + { + "start": 11682.6, + "end": 11683.52, + "probability": 0.998 + }, + { + "start": 11684.68, + "end": 11686.64, + "probability": 0.9917 + }, + { + "start": 11687.46, + "end": 11691.02, + "probability": 0.9833 + }, + { + "start": 11692.3, + "end": 11697.88, + "probability": 0.9986 + }, + { + "start": 11698.86, + "end": 11702.04, + "probability": 0.9842 + }, + { + "start": 11703.96, + "end": 11704.52, + "probability": 0.4708 + }, + { + "start": 11705.52, + "end": 11708.3, + "probability": 0.9924 + }, + { + "start": 11709.24, + "end": 11711.04, + "probability": 0.9874 + }, + { + "start": 11711.46, + "end": 11712.04, + "probability": 0.9104 + }, + { + "start": 11712.42, + "end": 11712.64, + "probability": 0.5118 + }, + { + "start": 11712.82, + "end": 11713.06, + "probability": 0.3764 + }, + { + "start": 11713.1, + "end": 11716.34, + "probability": 0.9832 + }, + { + "start": 11717.16, + "end": 11720.48, + "probability": 0.7856 + }, + { + "start": 11721.14, + "end": 11725.06, + "probability": 0.8103 + }, + { + "start": 11725.84, + "end": 11727.66, + "probability": 0.9517 + }, + { + "start": 11728.46, + "end": 11734.52, + "probability": 0.7339 + }, + { + "start": 11735.52, + "end": 11735.52, + "probability": 0.5995 + }, + { + "start": 11735.56, + "end": 11740.44, + "probability": 0.9523 + }, + { + "start": 11741.26, + "end": 11747.76, + "probability": 0.9821 + }, + { + "start": 11747.82, + "end": 11748.44, + "probability": 0.9543 + }, + { + "start": 11749.16, + "end": 11753.92, + "probability": 0.9993 + }, + { + "start": 11755.1, + "end": 11756.12, + "probability": 0.6293 + }, + { + "start": 11757.34, + "end": 11759.33, + "probability": 0.8887 + }, + { + "start": 11760.24, + "end": 11763.04, + "probability": 0.9208 + }, + { + "start": 11764.74, + "end": 11766.74, + "probability": 0.9462 + }, + { + "start": 11767.72, + "end": 11768.54, + "probability": 0.9416 + }, + { + "start": 11769.06, + "end": 11773.66, + "probability": 0.9917 + }, + { + "start": 11774.5, + "end": 11774.88, + "probability": 0.76 + }, + { + "start": 11774.92, + "end": 11778.92, + "probability": 0.9882 + }, + { + "start": 11780.22, + "end": 11782.28, + "probability": 0.9573 + }, + { + "start": 11783.04, + "end": 11787.58, + "probability": 0.9988 + }, + { + "start": 11788.08, + "end": 11790.62, + "probability": 0.9971 + }, + { + "start": 11791.36, + "end": 11792.92, + "probability": 0.9834 + }, + { + "start": 11794.74, + "end": 11800.08, + "probability": 0.9487 + }, + { + "start": 11800.6, + "end": 11801.54, + "probability": 0.5881 + }, + { + "start": 11802.62, + "end": 11806.73, + "probability": 0.9447 + }, + { + "start": 11807.48, + "end": 11808.12, + "probability": 0.9458 + }, + { + "start": 11808.24, + "end": 11810.66, + "probability": 0.9844 + }, + { + "start": 11811.86, + "end": 11813.64, + "probability": 0.9937 + }, + { + "start": 11814.32, + "end": 11815.78, + "probability": 0.98 + }, + { + "start": 11816.2, + "end": 11818.06, + "probability": 0.9893 + }, + { + "start": 11818.52, + "end": 11820.76, + "probability": 0.7666 + }, + { + "start": 11821.28, + "end": 11822.08, + "probability": 0.9484 + }, + { + "start": 11822.74, + "end": 11829.7, + "probability": 0.9893 + }, + { + "start": 11830.62, + "end": 11834.7, + "probability": 0.9702 + }, + { + "start": 11835.76, + "end": 11839.54, + "probability": 0.999 + }, + { + "start": 11840.2, + "end": 11841.02, + "probability": 0.9136 + }, + { + "start": 11842.12, + "end": 11845.56, + "probability": 0.9826 + }, + { + "start": 11845.56, + "end": 11848.64, + "probability": 0.9809 + }, + { + "start": 11849.5, + "end": 11850.09, + "probability": 0.8759 + }, + { + "start": 11851.04, + "end": 11854.54, + "probability": 0.691 + }, + { + "start": 11855.3, + "end": 11856.5, + "probability": 0.8855 + }, + { + "start": 11857.52, + "end": 11858.48, + "probability": 0.8875 + }, + { + "start": 11859.36, + "end": 11862.26, + "probability": 0.962 + }, + { + "start": 11863.28, + "end": 11866.88, + "probability": 0.9868 + }, + { + "start": 11866.88, + "end": 11870.8, + "probability": 0.9753 + }, + { + "start": 11873.9, + "end": 11877.43, + "probability": 0.9941 + }, + { + "start": 11879.36, + "end": 11883.84, + "probability": 0.9673 + }, + { + "start": 11885.78, + "end": 11893.04, + "probability": 0.9788 + }, + { + "start": 11893.12, + "end": 11894.86, + "probability": 0.8092 + }, + { + "start": 11896.48, + "end": 11900.18, + "probability": 0.9993 + }, + { + "start": 11901.14, + "end": 11903.74, + "probability": 0.7781 + }, + { + "start": 11905.08, + "end": 11906.14, + "probability": 0.9509 + }, + { + "start": 11907.74, + "end": 11908.72, + "probability": 0.831 + }, + { + "start": 11908.8, + "end": 11916.66, + "probability": 0.9856 + }, + { + "start": 11917.42, + "end": 11921.0, + "probability": 0.9978 + }, + { + "start": 11926.02, + "end": 11927.42, + "probability": 0.9875 + }, + { + "start": 11929.16, + "end": 11930.76, + "probability": 0.9155 + }, + { + "start": 11932.04, + "end": 11934.44, + "probability": 0.8444 + }, + { + "start": 11935.04, + "end": 11936.36, + "probability": 0.9587 + }, + { + "start": 11937.08, + "end": 11938.2, + "probability": 0.9932 + }, + { + "start": 11939.22, + "end": 11940.38, + "probability": 0.9313 + }, + { + "start": 11941.28, + "end": 11943.3, + "probability": 0.9889 + }, + { + "start": 11945.06, + "end": 11946.94, + "probability": 0.7925 + }, + { + "start": 11948.62, + "end": 11949.64, + "probability": 0.9893 + }, + { + "start": 11950.52, + "end": 11952.78, + "probability": 0.9842 + }, + { + "start": 11953.86, + "end": 11955.68, + "probability": 0.9888 + }, + { + "start": 11956.94, + "end": 11957.78, + "probability": 0.9448 + }, + { + "start": 11958.98, + "end": 11960.12, + "probability": 0.6663 + }, + { + "start": 11961.26, + "end": 11963.6, + "probability": 0.8907 + }, + { + "start": 11964.14, + "end": 11964.74, + "probability": 0.9858 + }, + { + "start": 11966.14, + "end": 11967.0, + "probability": 0.8105 + }, + { + "start": 11967.06, + "end": 11967.64, + "probability": 0.7129 + }, + { + "start": 11967.7, + "end": 11970.02, + "probability": 0.9575 + }, + { + "start": 11973.04, + "end": 11977.32, + "probability": 0.9716 + }, + { + "start": 11977.62, + "end": 11978.39, + "probability": 0.909 + }, + { + "start": 11979.46, + "end": 11980.84, + "probability": 0.9875 + }, + { + "start": 11981.38, + "end": 11986.32, + "probability": 0.9915 + }, + { + "start": 11986.86, + "end": 11988.36, + "probability": 0.9333 + }, + { + "start": 11989.14, + "end": 11991.84, + "probability": 0.9972 + }, + { + "start": 11993.2, + "end": 11994.12, + "probability": 0.8051 + }, + { + "start": 11994.2, + "end": 11997.04, + "probability": 0.994 + }, + { + "start": 11997.34, + "end": 11998.21, + "probability": 0.981 + }, + { + "start": 11999.42, + "end": 12001.34, + "probability": 0.9208 + }, + { + "start": 12001.92, + "end": 12004.78, + "probability": 0.9742 + }, + { + "start": 12005.48, + "end": 12007.24, + "probability": 0.9644 + }, + { + "start": 12007.86, + "end": 12009.44, + "probability": 0.748 + }, + { + "start": 12010.12, + "end": 12011.28, + "probability": 0.9243 + }, + { + "start": 12011.98, + "end": 12016.16, + "probability": 0.9894 + }, + { + "start": 12017.5, + "end": 12019.98, + "probability": 0.8659 + }, + { + "start": 12021.58, + "end": 12026.0, + "probability": 0.9943 + }, + { + "start": 12026.98, + "end": 12028.44, + "probability": 0.9375 + }, + { + "start": 12029.46, + "end": 12030.24, + "probability": 0.9131 + }, + { + "start": 12031.24, + "end": 12037.74, + "probability": 0.984 + }, + { + "start": 12038.12, + "end": 12041.4, + "probability": 0.9624 + }, + { + "start": 12042.52, + "end": 12043.9, + "probability": 0.9946 + }, + { + "start": 12047.58, + "end": 12050.96, + "probability": 0.9938 + }, + { + "start": 12051.28, + "end": 12052.42, + "probability": 0.7076 + }, + { + "start": 12053.06, + "end": 12059.72, + "probability": 0.8409 + }, + { + "start": 12059.84, + "end": 12064.02, + "probability": 0.9854 + }, + { + "start": 12064.16, + "end": 12066.56, + "probability": 0.9886 + }, + { + "start": 12067.74, + "end": 12068.86, + "probability": 0.8879 + }, + { + "start": 12069.94, + "end": 12073.66, + "probability": 0.1223 + }, + { + "start": 12073.76, + "end": 12075.56, + "probability": 0.7107 + }, + { + "start": 12076.14, + "end": 12080.72, + "probability": 0.5235 + }, + { + "start": 12080.72, + "end": 12084.04, + "probability": 0.8927 + }, + { + "start": 12084.6, + "end": 12088.12, + "probability": 0.969 + }, + { + "start": 12089.04, + "end": 12089.82, + "probability": 0.8604 + }, + { + "start": 12090.86, + "end": 12095.16, + "probability": 0.9745 + }, + { + "start": 12095.94, + "end": 12098.72, + "probability": 0.9666 + }, + { + "start": 12099.22, + "end": 12100.16, + "probability": 0.9859 + }, + { + "start": 12100.9, + "end": 12105.6, + "probability": 0.8696 + }, + { + "start": 12106.14, + "end": 12107.78, + "probability": 0.9466 + }, + { + "start": 12108.32, + "end": 12109.44, + "probability": 0.6709 + }, + { + "start": 12110.12, + "end": 12110.8, + "probability": 0.8789 + }, + { + "start": 12111.34, + "end": 12112.76, + "probability": 0.9944 + }, + { + "start": 12114.02, + "end": 12117.12, + "probability": 0.925 + }, + { + "start": 12117.78, + "end": 12118.38, + "probability": 0.5752 + }, + { + "start": 12118.56, + "end": 12120.08, + "probability": 0.9974 + }, + { + "start": 12120.84, + "end": 12121.86, + "probability": 0.9349 + }, + { + "start": 12122.52, + "end": 12123.5, + "probability": 0.9537 + }, + { + "start": 12124.12, + "end": 12126.26, + "probability": 0.8295 + }, + { + "start": 12127.1, + "end": 12128.64, + "probability": 0.9664 + }, + { + "start": 12129.36, + "end": 12132.84, + "probability": 0.9919 + }, + { + "start": 12133.6, + "end": 12134.36, + "probability": 0.4712 + }, + { + "start": 12136.68, + "end": 12138.96, + "probability": 0.8355 + }, + { + "start": 12139.04, + "end": 12140.46, + "probability": 0.3871 + }, + { + "start": 12140.58, + "end": 12144.16, + "probability": 0.7156 + }, + { + "start": 12147.14, + "end": 12148.52, + "probability": 0.6973 + }, + { + "start": 12149.42, + "end": 12153.56, + "probability": 0.9869 + }, + { + "start": 12154.58, + "end": 12156.48, + "probability": 0.9849 + }, + { + "start": 12157.08, + "end": 12163.22, + "probability": 0.9542 + }, + { + "start": 12164.0, + "end": 12170.02, + "probability": 0.9954 + }, + { + "start": 12170.02, + "end": 12175.76, + "probability": 0.9938 + }, + { + "start": 12175.9, + "end": 12176.24, + "probability": 0.7127 + }, + { + "start": 12176.68, + "end": 12177.56, + "probability": 0.8224 + }, + { + "start": 12178.54, + "end": 12180.04, + "probability": 0.9543 + }, + { + "start": 12181.62, + "end": 12181.98, + "probability": 0.9368 + }, + { + "start": 12183.22, + "end": 12187.82, + "probability": 0.9358 + }, + { + "start": 12189.58, + "end": 12192.04, + "probability": 0.8971 + }, + { + "start": 12193.2, + "end": 12198.26, + "probability": 0.988 + }, + { + "start": 12198.38, + "end": 12199.56, + "probability": 0.91 + }, + { + "start": 12200.54, + "end": 12205.2, + "probability": 0.856 + }, + { + "start": 12206.36, + "end": 12207.78, + "probability": 0.2676 + }, + { + "start": 12208.26, + "end": 12209.6, + "probability": 0.9245 + }, + { + "start": 12210.12, + "end": 12211.26, + "probability": 0.959 + }, + { + "start": 12211.96, + "end": 12214.18, + "probability": 0.818 + }, + { + "start": 12214.48, + "end": 12217.5, + "probability": 0.9421 + }, + { + "start": 12218.6, + "end": 12219.72, + "probability": 0.2258 + }, + { + "start": 12219.9, + "end": 12220.34, + "probability": 0.5236 + }, + { + "start": 12220.34, + "end": 12221.18, + "probability": 0.7359 + }, + { + "start": 12221.22, + "end": 12223.4, + "probability": 0.9808 + }, + { + "start": 12223.68, + "end": 12225.48, + "probability": 0.5643 + }, + { + "start": 12229.27, + "end": 12233.86, + "probability": 0.6965 + }, + { + "start": 12233.98, + "end": 12235.64, + "probability": 0.8998 + }, + { + "start": 12235.74, + "end": 12236.9, + "probability": 0.8605 + }, + { + "start": 12237.84, + "end": 12239.02, + "probability": 0.8229 + }, + { + "start": 12239.88, + "end": 12243.64, + "probability": 0.9972 + }, + { + "start": 12244.5, + "end": 12247.44, + "probability": 0.993 + }, + { + "start": 12248.12, + "end": 12249.62, + "probability": 0.9172 + }, + { + "start": 12250.16, + "end": 12251.82, + "probability": 0.999 + }, + { + "start": 12252.58, + "end": 12256.16, + "probability": 0.9272 + }, + { + "start": 12256.22, + "end": 12257.88, + "probability": 0.7838 + }, + { + "start": 12258.28, + "end": 12263.0, + "probability": 0.9863 + }, + { + "start": 12263.34, + "end": 12264.98, + "probability": 0.9866 + }, + { + "start": 12265.1, + "end": 12265.76, + "probability": 0.5318 + }, + { + "start": 12266.06, + "end": 12269.12, + "probability": 0.1293 + }, + { + "start": 12271.6, + "end": 12276.0, + "probability": 0.1622 + }, + { + "start": 12276.2, + "end": 12276.98, + "probability": 0.4362 + }, + { + "start": 12276.98, + "end": 12278.24, + "probability": 0.5791 + }, + { + "start": 12280.34, + "end": 12284.76, + "probability": 0.0791 + }, + { + "start": 12286.62, + "end": 12287.74, + "probability": 0.4351 + }, + { + "start": 12294.12, + "end": 12295.42, + "probability": 0.5957 + }, + { + "start": 12297.51, + "end": 12300.38, + "probability": 0.6495 + }, + { + "start": 12300.72, + "end": 12302.12, + "probability": 0.879 + }, + { + "start": 12312.56, + "end": 12315.44, + "probability": 0.6139 + }, + { + "start": 12316.5, + "end": 12317.84, + "probability": 0.8548 + }, + { + "start": 12320.0, + "end": 12330.2, + "probability": 0.864 + }, + { + "start": 12330.32, + "end": 12331.8, + "probability": 0.9047 + }, + { + "start": 12334.32, + "end": 12338.44, + "probability": 0.9939 + }, + { + "start": 12340.44, + "end": 12343.52, + "probability": 0.058 + }, + { + "start": 12345.04, + "end": 12347.4, + "probability": 0.9967 + }, + { + "start": 12350.12, + "end": 12352.15, + "probability": 0.9209 + }, + { + "start": 12355.0, + "end": 12358.32, + "probability": 0.9883 + }, + { + "start": 12360.0, + "end": 12365.68, + "probability": 0.9847 + }, + { + "start": 12366.34, + "end": 12370.28, + "probability": 0.8965 + }, + { + "start": 12370.74, + "end": 12374.34, + "probability": 0.9303 + }, + { + "start": 12375.12, + "end": 12376.07, + "probability": 0.9606 + }, + { + "start": 12377.98, + "end": 12378.06, + "probability": 0.1717 + }, + { + "start": 12378.18, + "end": 12381.52, + "probability": 0.9676 + }, + { + "start": 12381.62, + "end": 12382.32, + "probability": 0.7611 + }, + { + "start": 12384.38, + "end": 12385.78, + "probability": 0.7058 + }, + { + "start": 12386.34, + "end": 12388.06, + "probability": 0.9906 + }, + { + "start": 12390.92, + "end": 12392.22, + "probability": 0.6597 + }, + { + "start": 12393.94, + "end": 12397.36, + "probability": 0.6514 + }, + { + "start": 12398.2, + "end": 12400.66, + "probability": 0.7733 + }, + { + "start": 12401.6, + "end": 12402.64, + "probability": 0.8997 + }, + { + "start": 12407.28, + "end": 12409.5, + "probability": 0.6013 + }, + { + "start": 12409.6, + "end": 12411.58, + "probability": 0.9788 + }, + { + "start": 12413.12, + "end": 12413.36, + "probability": 0.6747 + }, + { + "start": 12413.4, + "end": 12417.76, + "probability": 0.5455 + }, + { + "start": 12418.88, + "end": 12419.84, + "probability": 0.3504 + }, + { + "start": 12421.02, + "end": 12422.24, + "probability": 0.6256 + }, + { + "start": 12422.7, + "end": 12424.44, + "probability": 0.9298 + }, + { + "start": 12429.84, + "end": 12431.66, + "probability": 0.6664 + }, + { + "start": 12432.96, + "end": 12434.78, + "probability": 0.8616 + }, + { + "start": 12434.86, + "end": 12436.86, + "probability": 0.9526 + }, + { + "start": 12443.1, + "end": 12445.64, + "probability": 0.9609 + }, + { + "start": 12448.0, + "end": 12454.58, + "probability": 0.8781 + }, + { + "start": 12456.26, + "end": 12458.42, + "probability": 0.9557 + }, + { + "start": 12458.68, + "end": 12460.5, + "probability": 0.8426 + }, + { + "start": 12460.66, + "end": 12463.26, + "probability": 0.9917 + }, + { + "start": 12464.14, + "end": 12467.3, + "probability": 0.8021 + }, + { + "start": 12468.4, + "end": 12470.5, + "probability": 0.8381 + }, + { + "start": 12470.6, + "end": 12474.28, + "probability": 0.8153 + }, + { + "start": 12474.28, + "end": 12479.08, + "probability": 0.8287 + }, + { + "start": 12484.18, + "end": 12485.74, + "probability": 0.9451 + }, + { + "start": 12487.38, + "end": 12488.0, + "probability": 0.563 + }, + { + "start": 12492.16, + "end": 12495.01, + "probability": 0.9415 + }, + { + "start": 12497.88, + "end": 12499.56, + "probability": 0.6939 + }, + { + "start": 12500.86, + "end": 12504.06, + "probability": 0.5446 + }, + { + "start": 12504.94, + "end": 12507.88, + "probability": 0.9583 + }, + { + "start": 12509.1, + "end": 12510.04, + "probability": 0.7589 + }, + { + "start": 12512.16, + "end": 12516.02, + "probability": 0.8741 + }, + { + "start": 12519.66, + "end": 12523.22, + "probability": 0.5934 + }, + { + "start": 12526.02, + "end": 12527.26, + "probability": 0.5695 + }, + { + "start": 12527.26, + "end": 12530.64, + "probability": 0.8124 + }, + { + "start": 12530.86, + "end": 12532.38, + "probability": 0.5537 + }, + { + "start": 12533.48, + "end": 12535.66, + "probability": 0.9655 + }, + { + "start": 12536.36, + "end": 12537.3, + "probability": 0.7724 + }, + { + "start": 12537.86, + "end": 12537.96, + "probability": 0.0074 + }, + { + "start": 12539.42, + "end": 12540.08, + "probability": 0.3241 + }, + { + "start": 12540.3, + "end": 12541.6, + "probability": 0.9434 + }, + { + "start": 12541.8, + "end": 12542.78, + "probability": 0.8761 + }, + { + "start": 12544.26, + "end": 12545.72, + "probability": 0.9397 + }, + { + "start": 12545.78, + "end": 12546.76, + "probability": 0.9556 + }, + { + "start": 12547.64, + "end": 12549.16, + "probability": 0.9908 + }, + { + "start": 12549.98, + "end": 12551.12, + "probability": 0.9478 + }, + { + "start": 12552.2, + "end": 12557.64, + "probability": 0.9913 + }, + { + "start": 12558.2, + "end": 12559.14, + "probability": 0.3368 + }, + { + "start": 12559.92, + "end": 12564.58, + "probability": 0.6733 + }, + { + "start": 12566.36, + "end": 12567.9, + "probability": 0.9165 + }, + { + "start": 12567.94, + "end": 12571.42, + "probability": 0.9168 + }, + { + "start": 12573.72, + "end": 12574.74, + "probability": 0.973 + }, + { + "start": 12576.36, + "end": 12580.8, + "probability": 0.8826 + }, + { + "start": 12584.66, + "end": 12586.96, + "probability": 0.9972 + }, + { + "start": 12588.59, + "end": 12592.72, + "probability": 0.8606 + }, + { + "start": 12593.84, + "end": 12596.46, + "probability": 0.6269 + }, + { + "start": 12597.46, + "end": 12598.64, + "probability": 0.9504 + }, + { + "start": 12599.78, + "end": 12602.16, + "probability": 0.9896 + }, + { + "start": 12602.22, + "end": 12603.5, + "probability": 0.7361 + }, + { + "start": 12604.1, + "end": 12606.12, + "probability": 0.9 + }, + { + "start": 12606.78, + "end": 12607.4, + "probability": 0.3784 + }, + { + "start": 12608.82, + "end": 12610.2, + "probability": 0.3962 + }, + { + "start": 12610.72, + "end": 12611.12, + "probability": 0.0746 + }, + { + "start": 12611.46, + "end": 12614.68, + "probability": 0.7183 + }, + { + "start": 12614.74, + "end": 12615.2, + "probability": 0.8378 + }, + { + "start": 12615.38, + "end": 12621.68, + "probability": 0.745 + }, + { + "start": 12621.92, + "end": 12625.34, + "probability": 0.9438 + }, + { + "start": 12625.56, + "end": 12626.56, + "probability": 0.6499 + }, + { + "start": 12627.38, + "end": 12627.66, + "probability": 0.2514 + }, + { + "start": 12627.72, + "end": 12629.98, + "probability": 0.8987 + }, + { + "start": 12630.14, + "end": 12631.08, + "probability": 0.9172 + }, + { + "start": 12631.28, + "end": 12632.64, + "probability": 0.3162 + }, + { + "start": 12632.7, + "end": 12633.04, + "probability": 0.6984 + }, + { + "start": 12633.12, + "end": 12633.4, + "probability": 0.783 + }, + { + "start": 12633.48, + "end": 12635.08, + "probability": 0.9373 + }, + { + "start": 12635.36, + "end": 12637.3, + "probability": 0.9172 + }, + { + "start": 12637.44, + "end": 12639.64, + "probability": 0.9904 + }, + { + "start": 12639.64, + "end": 12642.14, + "probability": 0.8864 + }, + { + "start": 12642.38, + "end": 12643.8, + "probability": 0.01 + }, + { + "start": 12644.82, + "end": 12646.63, + "probability": 0.1955 + }, + { + "start": 12647.02, + "end": 12654.44, + "probability": 0.6133 + }, + { + "start": 12654.44, + "end": 12657.48, + "probability": 0.0344 + }, + { + "start": 12657.48, + "end": 12657.94, + "probability": 0.0946 + }, + { + "start": 12657.94, + "end": 12659.81, + "probability": 0.5483 + }, + { + "start": 12660.3, + "end": 12662.48, + "probability": 0.7894 + }, + { + "start": 12662.78, + "end": 12664.03, + "probability": 0.312 + }, + { + "start": 12664.52, + "end": 12665.14, + "probability": 0.9603 + }, + { + "start": 12667.12, + "end": 12674.9, + "probability": 0.9566 + }, + { + "start": 12675.98, + "end": 12677.89, + "probability": 0.7425 + }, + { + "start": 12679.34, + "end": 12681.38, + "probability": 0.9589 + }, + { + "start": 12681.64, + "end": 12683.64, + "probability": 0.9985 + }, + { + "start": 12684.44, + "end": 12689.14, + "probability": 0.988 + }, + { + "start": 12689.88, + "end": 12695.1, + "probability": 0.9661 + }, + { + "start": 12695.2, + "end": 12699.42, + "probability": 0.9319 + }, + { + "start": 12699.94, + "end": 12700.84, + "probability": 0.9961 + }, + { + "start": 12701.58, + "end": 12702.96, + "probability": 0.808 + }, + { + "start": 12704.76, + "end": 12707.84, + "probability": 0.9902 + }, + { + "start": 12708.4, + "end": 12712.56, + "probability": 0.7494 + }, + { + "start": 12713.08, + "end": 12716.02, + "probability": 0.9637 + }, + { + "start": 12717.24, + "end": 12719.16, + "probability": 0.1038 + }, + { + "start": 12720.96, + "end": 12723.57, + "probability": 0.9805 + }, + { + "start": 12724.0, + "end": 12727.86, + "probability": 0.379 + }, + { + "start": 12728.56, + "end": 12728.88, + "probability": 0.4618 + }, + { + "start": 12729.0, + "end": 12731.6, + "probability": 0.847 + }, + { + "start": 12731.92, + "end": 12735.81, + "probability": 0.9653 + }, + { + "start": 12736.34, + "end": 12737.88, + "probability": 0.2761 + }, + { + "start": 12742.66, + "end": 12743.85, + "probability": 0.9717 + }, + { + "start": 12747.76, + "end": 12748.08, + "probability": 0.502 + }, + { + "start": 12749.1, + "end": 12751.6, + "probability": 0.8254 + }, + { + "start": 12754.12, + "end": 12755.22, + "probability": 0.5757 + }, + { + "start": 12755.36, + "end": 12757.24, + "probability": 0.9394 + }, + { + "start": 12757.4, + "end": 12759.32, + "probability": 0.9299 + }, + { + "start": 12759.86, + "end": 12763.58, + "probability": 0.9738 + }, + { + "start": 12763.58, + "end": 12767.68, + "probability": 0.9955 + }, + { + "start": 12768.6, + "end": 12771.46, + "probability": 0.9545 + }, + { + "start": 12772.32, + "end": 12773.06, + "probability": 0.7469 + }, + { + "start": 12773.24, + "end": 12778.08, + "probability": 0.9787 + }, + { + "start": 12779.1, + "end": 12782.18, + "probability": 0.6769 + }, + { + "start": 12782.58, + "end": 12783.78, + "probability": 0.7799 + }, + { + "start": 12784.32, + "end": 12786.02, + "probability": 0.9235 + }, + { + "start": 12786.68, + "end": 12788.34, + "probability": 0.8246 + }, + { + "start": 12789.66, + "end": 12792.94, + "probability": 0.2026 + }, + { + "start": 12794.16, + "end": 12795.36, + "probability": 0.6152 + }, + { + "start": 12799.36, + "end": 12801.9, + "probability": 0.7794 + }, + { + "start": 12803.92, + "end": 12808.82, + "probability": 0.682 + }, + { + "start": 12811.94, + "end": 12817.52, + "probability": 0.9897 + }, + { + "start": 12818.18, + "end": 12820.14, + "probability": 0.8953 + }, + { + "start": 12821.12, + "end": 12824.26, + "probability": 0.9147 + }, + { + "start": 12824.68, + "end": 12825.58, + "probability": 0.8548 + }, + { + "start": 12825.64, + "end": 12826.9, + "probability": 0.9343 + }, + { + "start": 12827.62, + "end": 12829.06, + "probability": 0.7999 + }, + { + "start": 12829.64, + "end": 12834.68, + "probability": 0.9646 + }, + { + "start": 12835.5, + "end": 12841.18, + "probability": 0.7639 + }, + { + "start": 12841.18, + "end": 12847.52, + "probability": 0.9549 + }, + { + "start": 12848.02, + "end": 12853.86, + "probability": 0.9387 + }, + { + "start": 12854.06, + "end": 12856.34, + "probability": 0.9819 + }, + { + "start": 12856.54, + "end": 12858.36, + "probability": 0.9787 + }, + { + "start": 12859.0, + "end": 12863.1, + "probability": 0.9901 + }, + { + "start": 12863.1, + "end": 12863.38, + "probability": 0.704 + }, + { + "start": 12864.38, + "end": 12865.1, + "probability": 0.6513 + }, + { + "start": 12865.34, + "end": 12866.82, + "probability": 0.7111 + }, + { + "start": 12866.86, + "end": 12868.32, + "probability": 0.6037 + }, + { + "start": 12870.2, + "end": 12872.38, + "probability": 0.908 + }, + { + "start": 12878.86, + "end": 12880.52, + "probability": 0.811 + }, + { + "start": 12881.32, + "end": 12882.96, + "probability": 0.4915 + }, + { + "start": 12882.98, + "end": 12883.84, + "probability": 0.7743 + }, + { + "start": 12883.88, + "end": 12886.37, + "probability": 0.9934 + }, + { + "start": 12887.62, + "end": 12889.08, + "probability": 0.0374 + }, + { + "start": 12889.28, + "end": 12891.24, + "probability": 0.8166 + }, + { + "start": 12891.62, + "end": 12892.34, + "probability": 0.0877 + }, + { + "start": 12892.68, + "end": 12894.42, + "probability": 0.6892 + }, + { + "start": 12894.64, + "end": 12897.56, + "probability": 0.9426 + }, + { + "start": 12898.0, + "end": 12901.34, + "probability": 0.9937 + }, + { + "start": 12901.34, + "end": 12905.62, + "probability": 0.9898 + }, + { + "start": 12906.66, + "end": 12909.04, + "probability": 0.9939 + }, + { + "start": 12909.44, + "end": 12910.8, + "probability": 0.9522 + }, + { + "start": 12911.4, + "end": 12911.64, + "probability": 0.9529 + }, + { + "start": 12911.7, + "end": 12917.35, + "probability": 0.7656 + }, + { + "start": 12917.54, + "end": 12918.29, + "probability": 0.9741 + }, + { + "start": 12919.5, + "end": 12919.86, + "probability": 0.8599 + }, + { + "start": 12921.32, + "end": 12922.46, + "probability": 0.6793 + }, + { + "start": 12923.02, + "end": 12926.76, + "probability": 0.797 + }, + { + "start": 12926.76, + "end": 12933.32, + "probability": 0.936 + }, + { + "start": 12933.4, + "end": 12934.34, + "probability": 0.6843 + }, + { + "start": 12934.82, + "end": 12936.32, + "probability": 0.8682 + }, + { + "start": 12936.74, + "end": 12938.57, + "probability": 0.7863 + }, + { + "start": 12940.2, + "end": 12945.5, + "probability": 0.9867 + }, + { + "start": 12945.8, + "end": 12946.98, + "probability": 0.8574 + }, + { + "start": 12947.26, + "end": 12948.86, + "probability": 0.8432 + }, + { + "start": 12949.84, + "end": 12957.28, + "probability": 0.9886 + }, + { + "start": 12957.78, + "end": 12959.8, + "probability": 0.998 + }, + { + "start": 12960.76, + "end": 12960.98, + "probability": 0.8511 + }, + { + "start": 12961.08, + "end": 12962.34, + "probability": 0.9775 + }, + { + "start": 12962.62, + "end": 12966.28, + "probability": 0.9189 + }, + { + "start": 12966.7, + "end": 12968.66, + "probability": 0.9976 + }, + { + "start": 12974.54, + "end": 12975.42, + "probability": 0.9968 + }, + { + "start": 12977.06, + "end": 12981.9, + "probability": 0.9934 + }, + { + "start": 12981.96, + "end": 12983.42, + "probability": 0.9042 + }, + { + "start": 12984.66, + "end": 12987.56, + "probability": 0.9435 + }, + { + "start": 12988.3, + "end": 12991.72, + "probability": 0.7553 + }, + { + "start": 12992.68, + "end": 12995.91, + "probability": 0.9712 + }, + { + "start": 12995.92, + "end": 12999.38, + "probability": 0.9951 + }, + { + "start": 12999.98, + "end": 13002.5, + "probability": 0.9907 + }, + { + "start": 13002.72, + "end": 13003.06, + "probability": 0.9673 + }, + { + "start": 13003.2, + "end": 13004.94, + "probability": 0.9803 + }, + { + "start": 13005.24, + "end": 13006.54, + "probability": 0.8728 + }, + { + "start": 13006.92, + "end": 13008.36, + "probability": 0.8287 + }, + { + "start": 13008.48, + "end": 13010.04, + "probability": 0.9589 + }, + { + "start": 13010.6, + "end": 13013.1, + "probability": 0.9834 + }, + { + "start": 13014.48, + "end": 13015.9, + "probability": 0.4571 + }, + { + "start": 13017.5, + "end": 13020.88, + "probability": 0.9669 + }, + { + "start": 13027.36, + "end": 13028.46, + "probability": 0.8007 + }, + { + "start": 13031.86, + "end": 13032.84, + "probability": 0.9966 + }, + { + "start": 13033.58, + "end": 13034.88, + "probability": 0.9628 + }, + { + "start": 13036.28, + "end": 13037.88, + "probability": 0.9891 + }, + { + "start": 13038.7, + "end": 13044.06, + "probability": 0.9959 + }, + { + "start": 13045.0, + "end": 13047.68, + "probability": 0.9133 + }, + { + "start": 13047.68, + "end": 13052.38, + "probability": 0.9771 + }, + { + "start": 13054.8, + "end": 13058.16, + "probability": 0.9976 + }, + { + "start": 13058.16, + "end": 13061.66, + "probability": 0.9924 + }, + { + "start": 13062.04, + "end": 13065.98, + "probability": 0.9629 + }, + { + "start": 13067.0, + "end": 13069.22, + "probability": 0.8923 + }, + { + "start": 13071.46, + "end": 13075.84, + "probability": 0.9967 + }, + { + "start": 13075.94, + "end": 13076.02, + "probability": 0.4838 + }, + { + "start": 13076.5, + "end": 13079.82, + "probability": 0.9867 + }, + { + "start": 13080.68, + "end": 13081.2, + "probability": 0.7406 + }, + { + "start": 13081.66, + "end": 13086.16, + "probability": 0.9185 + }, + { + "start": 13087.8, + "end": 13088.7, + "probability": 0.8175 + }, + { + "start": 13089.28, + "end": 13093.36, + "probability": 0.9864 + }, + { + "start": 13093.46, + "end": 13097.82, + "probability": 0.7305 + }, + { + "start": 13097.98, + "end": 13103.32, + "probability": 0.9541 + }, + { + "start": 13103.32, + "end": 13104.58, + "probability": 0.9366 + }, + { + "start": 13104.6, + "end": 13104.74, + "probability": 0.7168 + }, + { + "start": 13104.8, + "end": 13105.54, + "probability": 0.9834 + }, + { + "start": 13106.68, + "end": 13108.46, + "probability": 0.9549 + }, + { + "start": 13108.52, + "end": 13109.46, + "probability": 0.8223 + }, + { + "start": 13110.7, + "end": 13112.9, + "probability": 0.1409 + }, + { + "start": 13113.4, + "end": 13113.4, + "probability": 0.1134 + }, + { + "start": 13113.4, + "end": 13114.48, + "probability": 0.3468 + }, + { + "start": 13115.86, + "end": 13117.78, + "probability": 0.5982 + }, + { + "start": 13119.14, + "end": 13119.52, + "probability": 0.915 + }, + { + "start": 13120.16, + "end": 13121.34, + "probability": 0.6709 + }, + { + "start": 13122.34, + "end": 13124.26, + "probability": 0.6201 + }, + { + "start": 13124.98, + "end": 13126.72, + "probability": 0.9288 + }, + { + "start": 13128.04, + "end": 13129.78, + "probability": 0.9727 + }, + { + "start": 13131.52, + "end": 13132.0, + "probability": 0.9842 + }, + { + "start": 13133.7, + "end": 13134.58, + "probability": 0.8543 + }, + { + "start": 13135.76, + "end": 13137.42, + "probability": 0.9861 + }, + { + "start": 13138.68, + "end": 13140.42, + "probability": 0.8852 + }, + { + "start": 13142.16, + "end": 13142.68, + "probability": 0.988 + }, + { + "start": 13144.16, + "end": 13144.92, + "probability": 0.5026 + }, + { + "start": 13146.1, + "end": 13148.02, + "probability": 0.8038 + }, + { + "start": 13148.88, + "end": 13149.3, + "probability": 0.9469 + }, + { + "start": 13150.42, + "end": 13151.3, + "probability": 0.9078 + }, + { + "start": 13152.22, + "end": 13152.68, + "probability": 0.9728 + }, + { + "start": 13153.66, + "end": 13154.6, + "probability": 0.8868 + }, + { + "start": 13155.34, + "end": 13157.18, + "probability": 0.9794 + }, + { + "start": 13158.24, + "end": 13160.6, + "probability": 0.9594 + }, + { + "start": 13161.6, + "end": 13163.26, + "probability": 0.9482 + }, + { + "start": 13164.9, + "end": 13165.88, + "probability": 0.9924 + }, + { + "start": 13171.44, + "end": 13175.96, + "probability": 0.6746 + }, + { + "start": 13176.62, + "end": 13178.34, + "probability": 0.7062 + }, + { + "start": 13179.26, + "end": 13182.16, + "probability": 0.8984 + }, + { + "start": 13182.8, + "end": 13185.36, + "probability": 0.8186 + }, + { + "start": 13186.36, + "end": 13186.8, + "probability": 0.9182 + }, + { + "start": 13187.6, + "end": 13188.96, + "probability": 0.857 + }, + { + "start": 13189.86, + "end": 13191.98, + "probability": 0.9445 + }, + { + "start": 13193.1, + "end": 13194.68, + "probability": 0.7033 + }, + { + "start": 13195.66, + "end": 13197.92, + "probability": 0.6864 + }, + { + "start": 13199.36, + "end": 13201.26, + "probability": 0.9196 + }, + { + "start": 13202.08, + "end": 13205.12, + "probability": 0.76 + }, + { + "start": 13205.66, + "end": 13206.1, + "probability": 0.9324 + }, + { + "start": 13206.74, + "end": 13207.56, + "probability": 0.9163 + }, + { + "start": 13208.56, + "end": 13210.38, + "probability": 0.9336 + }, + { + "start": 13211.58, + "end": 13213.24, + "probability": 0.9335 + }, + { + "start": 13213.96, + "end": 13217.46, + "probability": 0.8645 + }, + { + "start": 13218.36, + "end": 13219.9, + "probability": 0.9415 + }, + { + "start": 13220.9, + "end": 13222.8, + "probability": 0.955 + }, + { + "start": 13223.8, + "end": 13224.22, + "probability": 0.9785 + }, + { + "start": 13226.06, + "end": 13227.04, + "probability": 0.9217 + }, + { + "start": 13228.58, + "end": 13230.14, + "probability": 0.9008 + }, + { + "start": 13231.22, + "end": 13231.66, + "probability": 0.9889 + }, + { + "start": 13232.62, + "end": 13234.1, + "probability": 0.9925 + }, + { + "start": 13234.84, + "end": 13236.4, + "probability": 0.9848 + }, + { + "start": 13237.62, + "end": 13239.44, + "probability": 0.8545 + }, + { + "start": 13240.8, + "end": 13242.24, + "probability": 0.8883 + }, + { + "start": 13243.5, + "end": 13243.94, + "probability": 0.7917 + }, + { + "start": 13245.88, + "end": 13246.9, + "probability": 0.8851 + }, + { + "start": 13248.38, + "end": 13250.6, + "probability": 0.9002 + }, + { + "start": 13251.42, + "end": 13252.96, + "probability": 0.9347 + }, + { + "start": 13253.64, + "end": 13254.14, + "probability": 0.7832 + }, + { + "start": 13255.12, + "end": 13256.0, + "probability": 0.9225 + }, + { + "start": 13257.02, + "end": 13257.46, + "probability": 0.9831 + }, + { + "start": 13258.42, + "end": 13259.18, + "probability": 0.8912 + }, + { + "start": 13260.14, + "end": 13260.54, + "probability": 0.6416 + }, + { + "start": 13261.36, + "end": 13262.28, + "probability": 0.5501 + }, + { + "start": 13263.42, + "end": 13265.34, + "probability": 0.7628 + }, + { + "start": 13266.6, + "end": 13267.0, + "probability": 0.9839 + }, + { + "start": 13268.58, + "end": 13269.38, + "probability": 0.963 + }, + { + "start": 13270.22, + "end": 13271.84, + "probability": 0.9573 + }, + { + "start": 13272.72, + "end": 13273.26, + "probability": 0.9824 + }, + { + "start": 13274.14, + "end": 13275.24, + "probability": 0.5532 + }, + { + "start": 13275.98, + "end": 13277.62, + "probability": 0.8784 + }, + { + "start": 13278.3, + "end": 13280.06, + "probability": 0.9199 + }, + { + "start": 13281.04, + "end": 13285.68, + "probability": 0.7733 + }, + { + "start": 13286.7, + "end": 13288.18, + "probability": 0.9052 + }, + { + "start": 13289.48, + "end": 13289.9, + "probability": 0.9043 + }, + { + "start": 13291.0, + "end": 13291.72, + "probability": 0.8152 + }, + { + "start": 13292.72, + "end": 13294.42, + "probability": 0.8409 + }, + { + "start": 13295.18, + "end": 13295.58, + "probability": 0.978 + }, + { + "start": 13296.44, + "end": 13297.14, + "probability": 0.9205 + }, + { + "start": 13298.16, + "end": 13299.88, + "probability": 0.9656 + }, + { + "start": 13301.04, + "end": 13301.46, + "probability": 0.993 + }, + { + "start": 13302.2, + "end": 13303.12, + "probability": 0.7256 + }, + { + "start": 13303.68, + "end": 13304.12, + "probability": 0.9884 + }, + { + "start": 13304.68, + "end": 13305.38, + "probability": 0.7872 + }, + { + "start": 13309.8, + "end": 13310.64, + "probability": 0.3935 + }, + { + "start": 13310.64, + "end": 13311.53, + "probability": 0.8254 + }, + { + "start": 13312.94, + "end": 13314.3, + "probability": 0.8209 + }, + { + "start": 13315.28, + "end": 13315.64, + "probability": 0.9648 + }, + { + "start": 13316.66, + "end": 13317.48, + "probability": 0.8481 + }, + { + "start": 13318.26, + "end": 13320.0, + "probability": 0.921 + }, + { + "start": 13321.08, + "end": 13323.22, + "probability": 0.9146 + }, + { + "start": 13324.02, + "end": 13324.54, + "probability": 0.9896 + }, + { + "start": 13325.98, + "end": 13326.88, + "probability": 0.8135 + }, + { + "start": 13327.6, + "end": 13328.44, + "probability": 0.9873 + }, + { + "start": 13329.04, + "end": 13330.0, + "probability": 0.8469 + }, + { + "start": 13331.82, + "end": 13333.42, + "probability": 0.8388 + }, + { + "start": 13335.04, + "end": 13337.34, + "probability": 0.8516 + }, + { + "start": 13338.46, + "end": 13339.96, + "probability": 0.9801 + }, + { + "start": 13341.26, + "end": 13343.36, + "probability": 0.984 + }, + { + "start": 13344.42, + "end": 13346.27, + "probability": 0.9123 + }, + { + "start": 13347.04, + "end": 13347.58, + "probability": 0.9862 + }, + { + "start": 13348.78, + "end": 13349.74, + "probability": 0.9213 + }, + { + "start": 13350.76, + "end": 13352.16, + "probability": 0.653 + }, + { + "start": 13353.04, + "end": 13353.46, + "probability": 0.8328 + }, + { + "start": 13356.7, + "end": 13357.72, + "probability": 0.6494 + }, + { + "start": 13359.06, + "end": 13360.58, + "probability": 0.9312 + }, + { + "start": 13361.64, + "end": 13362.7, + "probability": 0.7498 + }, + { + "start": 13363.54, + "end": 13364.06, + "probability": 0.9897 + }, + { + "start": 13364.84, + "end": 13365.7, + "probability": 0.833 + }, + { + "start": 13368.18, + "end": 13370.1, + "probability": 0.6184 + }, + { + "start": 13371.6, + "end": 13373.46, + "probability": 0.9504 + }, + { + "start": 13374.38, + "end": 13375.96, + "probability": 0.9349 + }, + { + "start": 13378.46, + "end": 13379.92, + "probability": 0.4446 + }, + { + "start": 13380.84, + "end": 13382.28, + "probability": 0.6735 + }, + { + "start": 13383.64, + "end": 13386.68, + "probability": 0.561 + }, + { + "start": 13389.44, + "end": 13393.0, + "probability": 0.9001 + }, + { + "start": 13393.64, + "end": 13395.4, + "probability": 0.7254 + }, + { + "start": 13396.62, + "end": 13398.4, + "probability": 0.8577 + }, + { + "start": 13399.56, + "end": 13399.98, + "probability": 0.8869 + }, + { + "start": 13401.28, + "end": 13402.16, + "probability": 0.8855 + }, + { + "start": 13403.4, + "end": 13405.38, + "probability": 0.945 + }, + { + "start": 13406.42, + "end": 13406.84, + "probability": 0.9959 + }, + { + "start": 13408.18, + "end": 13408.9, + "probability": 0.9051 + }, + { + "start": 13409.52, + "end": 13409.92, + "probability": 0.9818 + }, + { + "start": 13410.76, + "end": 13411.82, + "probability": 0.9185 + }, + { + "start": 13412.68, + "end": 13412.88, + "probability": 0.752 + }, + { + "start": 13413.64, + "end": 13414.28, + "probability": 0.7223 + }, + { + "start": 13415.02, + "end": 13416.78, + "probability": 0.7949 + }, + { + "start": 13417.36, + "end": 13418.72, + "probability": 0.9193 + }, + { + "start": 13419.76, + "end": 13420.14, + "probability": 0.9714 + }, + { + "start": 13420.72, + "end": 13421.54, + "probability": 0.8266 + }, + { + "start": 13422.28, + "end": 13423.04, + "probability": 0.854 + }, + { + "start": 13423.86, + "end": 13424.66, + "probability": 0.9397 + }, + { + "start": 13425.58, + "end": 13425.98, + "probability": 0.9891 + }, + { + "start": 13426.52, + "end": 13427.22, + "probability": 0.8897 + }, + { + "start": 13428.26, + "end": 13429.92, + "probability": 0.9466 + }, + { + "start": 13431.26, + "end": 13433.36, + "probability": 0.7581 + }, + { + "start": 13434.26, + "end": 13435.96, + "probability": 0.7914 + }, + { + "start": 13437.12, + "end": 13439.38, + "probability": 0.855 + }, + { + "start": 13441.42, + "end": 13445.98, + "probability": 0.9475 + }, + { + "start": 13446.6, + "end": 13447.02, + "probability": 0.9873 + }, + { + "start": 13448.06, + "end": 13448.8, + "probability": 0.9863 + }, + { + "start": 13449.8, + "end": 13451.54, + "probability": 0.9775 + }, + { + "start": 13452.06, + "end": 13453.08, + "probability": 0.9792 + }, + { + "start": 13453.86, + "end": 13454.68, + "probability": 0.8249 + }, + { + "start": 13456.0, + "end": 13457.62, + "probability": 0.8178 + }, + { + "start": 13458.68, + "end": 13459.08, + "probability": 0.9338 + }, + { + "start": 13460.0, + "end": 13460.9, + "probability": 0.8497 + }, + { + "start": 13461.52, + "end": 13461.96, + "probability": 0.9453 + }, + { + "start": 13462.76, + "end": 13463.66, + "probability": 0.9651 + }, + { + "start": 13464.64, + "end": 13466.96, + "probability": 0.9896 + }, + { + "start": 13468.02, + "end": 13470.06, + "probability": 0.9688 + }, + { + "start": 13470.86, + "end": 13471.3, + "probability": 0.9784 + }, + { + "start": 13471.94, + "end": 13472.86, + "probability": 0.9124 + }, + { + "start": 13473.98, + "end": 13476.02, + "probability": 0.9671 + }, + { + "start": 13477.14, + "end": 13477.52, + "probability": 0.9458 + }, + { + "start": 13478.36, + "end": 13479.32, + "probability": 0.7775 + }, + { + "start": 13480.02, + "end": 13481.72, + "probability": 0.8712 + }, + { + "start": 13483.0, + "end": 13484.92, + "probability": 0.9756 + }, + { + "start": 13485.68, + "end": 13486.08, + "probability": 0.7673 + }, + { + "start": 13487.32, + "end": 13488.14, + "probability": 0.9194 + }, + { + "start": 13489.4, + "end": 13491.44, + "probability": 0.9571 + }, + { + "start": 13492.18, + "end": 13492.66, + "probability": 0.8716 + }, + { + "start": 13493.74, + "end": 13494.58, + "probability": 0.9715 + }, + { + "start": 13495.46, + "end": 13497.38, + "probability": 0.7349 + }, + { + "start": 13498.7, + "end": 13502.45, + "probability": 0.0072 + }, + { + "start": 13514.64, + "end": 13514.74, + "probability": 0.0614 + }, + { + "start": 13520.16, + "end": 13525.8, + "probability": 0.7123 + }, + { + "start": 13526.22, + "end": 13529.66, + "probability": 0.9923 + }, + { + "start": 13531.6, + "end": 13534.82, + "probability": 0.4821 + }, + { + "start": 13535.82, + "end": 13536.36, + "probability": 0.9481 + }, + { + "start": 13536.88, + "end": 13537.75, + "probability": 0.6499 + }, + { + "start": 13539.18, + "end": 13541.14, + "probability": 0.6607 + }, + { + "start": 13541.64, + "end": 13543.46, + "probability": 0.8997 + }, + { + "start": 13544.78, + "end": 13546.94, + "probability": 0.8952 + }, + { + "start": 13548.16, + "end": 13550.02, + "probability": 0.9293 + }, + { + "start": 13550.92, + "end": 13552.5, + "probability": 0.726 + }, + { + "start": 13554.3, + "end": 13554.66, + "probability": 0.9554 + }, + { + "start": 13556.5, + "end": 13557.44, + "probability": 0.4313 + }, + { + "start": 13557.98, + "end": 13561.3, + "probability": 0.9744 + }, + { + "start": 13562.26, + "end": 13563.96, + "probability": 0.9697 + }, + { + "start": 13565.02, + "end": 13566.94, + "probability": 0.9648 + }, + { + "start": 13567.4, + "end": 13568.96, + "probability": 0.9594 + }, + { + "start": 13569.5, + "end": 13570.92, + "probability": 0.9847 + }, + { + "start": 13571.86, + "end": 13572.4, + "probability": 0.6212 + }, + { + "start": 13573.1, + "end": 13574.12, + "probability": 0.9159 + }, + { + "start": 13575.14, + "end": 13576.92, + "probability": 0.9304 + }, + { + "start": 13578.72, + "end": 13582.68, + "probability": 0.9421 + }, + { + "start": 13583.56, + "end": 13585.34, + "probability": 0.8697 + }, + { + "start": 13586.36, + "end": 13588.02, + "probability": 0.9223 + }, + { + "start": 13588.9, + "end": 13590.4, + "probability": 0.7869 + }, + { + "start": 13591.38, + "end": 13595.18, + "probability": 0.8386 + }, + { + "start": 13595.84, + "end": 13597.24, + "probability": 0.9412 + }, + { + "start": 13599.12, + "end": 13599.62, + "probability": 0.5414 + }, + { + "start": 13601.3, + "end": 13604.42, + "probability": 0.9801 + }, + { + "start": 13605.66, + "end": 13607.66, + "probability": 0.9619 + }, + { + "start": 13609.26, + "end": 13611.44, + "probability": 0.9709 + }, + { + "start": 13612.54, + "end": 13613.88, + "probability": 0.4986 + }, + { + "start": 13616.86, + "end": 13617.98, + "probability": 0.3396 + }, + { + "start": 13619.0, + "end": 13620.96, + "probability": 0.6391 + }, + { + "start": 13621.9, + "end": 13622.48, + "probability": 0.8776 + }, + { + "start": 13623.5, + "end": 13624.38, + "probability": 0.7976 + }, + { + "start": 13625.04, + "end": 13626.8, + "probability": 0.891 + }, + { + "start": 13627.48, + "end": 13629.7, + "probability": 0.8381 + }, + { + "start": 13630.14, + "end": 13631.56, + "probability": 0.8273 + }, + { + "start": 13631.72, + "end": 13633.32, + "probability": 0.757 + }, + { + "start": 13633.64, + "end": 13634.94, + "probability": 0.8261 + }, + { + "start": 13635.9, + "end": 13637.66, + "probability": 0.91 + }, + { + "start": 13638.52, + "end": 13639.62, + "probability": 0.9466 + }, + { + "start": 13640.76, + "end": 13642.1, + "probability": 0.9443 + }, + { + "start": 13643.2, + "end": 13644.02, + "probability": 0.9906 + }, + { + "start": 13644.66, + "end": 13645.42, + "probability": 0.7944 + }, + { + "start": 13646.26, + "end": 13648.2, + "probability": 0.9651 + }, + { + "start": 13655.74, + "end": 13656.98, + "probability": 0.3836 + }, + { + "start": 13657.98, + "end": 13658.76, + "probability": 0.6523 + }, + { + "start": 13660.0, + "end": 13662.02, + "probability": 0.9244 + }, + { + "start": 13663.3, + "end": 13664.04, + "probability": 0.958 + }, + { + "start": 13664.74, + "end": 13665.7, + "probability": 0.955 + }, + { + "start": 13666.98, + "end": 13668.92, + "probability": 0.5859 + }, + { + "start": 13670.36, + "end": 13671.44, + "probability": 0.8183 + }, + { + "start": 13672.68, + "end": 13673.48, + "probability": 0.9697 + }, + { + "start": 13674.26, + "end": 13676.64, + "probability": 0.9653 + }, + { + "start": 13678.18, + "end": 13678.96, + "probability": 0.964 + }, + { + "start": 13680.0, + "end": 13680.94, + "probability": 0.9454 + }, + { + "start": 13682.3, + "end": 13683.0, + "probability": 0.9948 + }, + { + "start": 13683.58, + "end": 13684.36, + "probability": 0.8503 + }, + { + "start": 13685.64, + "end": 13686.7, + "probability": 0.8602 + }, + { + "start": 13687.64, + "end": 13688.42, + "probability": 0.4485 + }, + { + "start": 13690.6, + "end": 13692.94, + "probability": 0.8222 + }, + { + "start": 13694.92, + "end": 13696.96, + "probability": 0.9084 + }, + { + "start": 13698.44, + "end": 13699.42, + "probability": 0.8293 + }, + { + "start": 13700.08, + "end": 13702.1, + "probability": 0.8867 + }, + { + "start": 13703.74, + "end": 13705.64, + "probability": 0.6024 + }, + { + "start": 13709.6, + "end": 13712.7, + "probability": 0.6924 + }, + { + "start": 13714.14, + "end": 13714.82, + "probability": 0.9863 + }, + { + "start": 13715.8, + "end": 13716.58, + "probability": 0.9429 + }, + { + "start": 13717.48, + "end": 13719.1, + "probability": 0.9585 + }, + { + "start": 13719.84, + "end": 13721.38, + "probability": 0.8886 + }, + { + "start": 13722.6, + "end": 13723.3, + "probability": 0.9874 + }, + { + "start": 13724.12, + "end": 13724.92, + "probability": 0.8478 + }, + { + "start": 13726.3, + "end": 13728.08, + "probability": 0.9719 + }, + { + "start": 13729.62, + "end": 13730.38, + "probability": 0.9893 + }, + { + "start": 13731.08, + "end": 13732.02, + "probability": 0.4541 + }, + { + "start": 13733.42, + "end": 13735.66, + "probability": 0.8529 + }, + { + "start": 13736.8, + "end": 13737.66, + "probability": 0.9729 + }, + { + "start": 13739.44, + "end": 13740.3, + "probability": 0.9513 + }, + { + "start": 13741.52, + "end": 13743.6, + "probability": 0.9812 + }, + { + "start": 13744.58, + "end": 13746.8, + "probability": 0.9879 + }, + { + "start": 13747.5, + "end": 13749.44, + "probability": 0.9882 + }, + { + "start": 13749.98, + "end": 13751.38, + "probability": 0.5089 + }, + { + "start": 13752.3, + "end": 13754.26, + "probability": 0.9631 + }, + { + "start": 13755.6, + "end": 13757.12, + "probability": 0.6282 + }, + { + "start": 13757.94, + "end": 13760.18, + "probability": 0.6651 + }, + { + "start": 13763.08, + "end": 13764.42, + "probability": 0.6672 + }, + { + "start": 13766.32, + "end": 13768.12, + "probability": 0.9656 + }, + { + "start": 13770.74, + "end": 13778.9, + "probability": 0.8871 + }, + { + "start": 13780.38, + "end": 13786.62, + "probability": 0.4277 + }, + { + "start": 13786.68, + "end": 13787.46, + "probability": 0.0615 + }, + { + "start": 13790.82, + "end": 13792.7, + "probability": 0.7695 + }, + { + "start": 13793.8, + "end": 13795.52, + "probability": 0.0947 + }, + { + "start": 13796.52, + "end": 13799.15, + "probability": 0.3031 + }, + { + "start": 13800.1, + "end": 13806.94, + "probability": 0.8398 + }, + { + "start": 13807.08, + "end": 13807.8, + "probability": 0.6503 + }, + { + "start": 13808.28, + "end": 13813.68, + "probability": 0.8154 + }, + { + "start": 13815.42, + "end": 13826.12, + "probability": 0.9789 + }, + { + "start": 13827.42, + "end": 13828.32, + "probability": 0.9937 + }, + { + "start": 13828.7, + "end": 13832.94, + "probability": 0.7839 + }, + { + "start": 13833.46, + "end": 13835.18, + "probability": 0.1351 + }, + { + "start": 13837.76, + "end": 13838.06, + "probability": 0.1018 + }, + { + "start": 13844.78, + "end": 13847.96, + "probability": 0.0772 + }, + { + "start": 13858.08, + "end": 13862.46, + "probability": 0.0515 + }, + { + "start": 13862.58, + "end": 13863.42, + "probability": 0.0162 + }, + { + "start": 13863.42, + "end": 13863.42, + "probability": 0.0925 + }, + { + "start": 13863.42, + "end": 13863.42, + "probability": 0.0215 + }, + { + "start": 13863.6, + "end": 13865.06, + "probability": 0.0106 + }, + { + "start": 13960.1, + "end": 13960.48, + "probability": 0.0048 + }, + { + "start": 13960.48, + "end": 13960.48, + "probability": 0.0352 + }, + { + "start": 13960.48, + "end": 13960.48, + "probability": 0.0803 + }, + { + "start": 13960.48, + "end": 13963.2, + "probability": 0.6652 + }, + { + "start": 13977.98, + "end": 13978.62, + "probability": 0.0175 + }, + { + "start": 13979.56, + "end": 13983.6, + "probability": 0.0483 + }, + { + "start": 14094.0, + "end": 14094.0, + "probability": 0.0 + }, + { + "start": 14094.0, + "end": 14094.0, + "probability": 0.0 + }, + { + "start": 14094.0, + "end": 14094.0, + "probability": 0.0 + }, + { + "start": 14094.0, + "end": 14094.0, + "probability": 0.0 + }, + { + "start": 14094.0, + "end": 14094.0, + "probability": 0.0 + }, + { + "start": 14094.0, + "end": 14094.0, + "probability": 0.0 + }, + { + "start": 14094.0, + "end": 14094.0, + "probability": 0.0 + }, + { + "start": 14094.0, + "end": 14094.0, + "probability": 0.0 + }, + { + "start": 14094.0, + "end": 14094.0, + "probability": 0.0 + }, + { + "start": 14094.0, + "end": 14094.0, + "probability": 0.0 + }, + { + "start": 14094.0, + "end": 14094.0, + "probability": 0.0 + }, + { + "start": 14094.0, + "end": 14094.0, + "probability": 0.0 + }, + { + "start": 14094.0, + "end": 14094.0, + "probability": 0.0 + }, + { + "start": 14094.0, + "end": 14094.0, + "probability": 0.0 + }, + { + "start": 14094.0, + "end": 14094.0, + "probability": 0.0 + }, + { + "start": 14094.0, + "end": 14094.0, + "probability": 0.0 + }, + { + "start": 14094.0, + "end": 14094.0, + "probability": 0.0 + }, + { + "start": 14094.0, + "end": 14094.0, + "probability": 0.0 + }, + { + "start": 14094.0, + "end": 14094.0, + "probability": 0.0 + }, + { + "start": 14094.0, + "end": 14094.0, + "probability": 0.0 + }, + { + "start": 14094.0, + "end": 14094.0, + "probability": 0.0 + }, + { + "start": 14094.0, + "end": 14094.0, + "probability": 0.0 + }, + { + "start": 14094.0, + "end": 14094.0, + "probability": 0.0 + }, + { + "start": 14094.62, + "end": 14094.62, + "probability": 0.0758 + }, + { + "start": 14094.62, + "end": 14094.62, + "probability": 0.0852 + }, + { + "start": 14094.62, + "end": 14094.62, + "probability": 0.0816 + }, + { + "start": 14094.62, + "end": 14095.2, + "probability": 0.1078 + }, + { + "start": 14095.22, + "end": 14097.12, + "probability": 0.4898 + }, + { + "start": 14098.0, + "end": 14100.21, + "probability": 0.9624 + }, + { + "start": 14101.16, + "end": 14102.14, + "probability": 0.4949 + }, + { + "start": 14103.98, + "end": 14105.5, + "probability": 0.7241 + }, + { + "start": 14105.54, + "end": 14108.86, + "probability": 0.9878 + }, + { + "start": 14108.92, + "end": 14112.34, + "probability": 0.9316 + }, + { + "start": 14112.52, + "end": 14116.32, + "probability": 0.8162 + }, + { + "start": 14117.44, + "end": 14119.08, + "probability": 0.9865 + }, + { + "start": 14120.68, + "end": 14121.62, + "probability": 0.974 + }, + { + "start": 14122.16, + "end": 14125.08, + "probability": 0.7854 + }, + { + "start": 14126.42, + "end": 14127.7, + "probability": 0.9612 + }, + { + "start": 14129.4, + "end": 14135.08, + "probability": 0.97 + }, + { + "start": 14136.74, + "end": 14137.58, + "probability": 0.7358 + }, + { + "start": 14137.72, + "end": 14139.56, + "probability": 0.7937 + }, + { + "start": 14140.18, + "end": 14140.28, + "probability": 0.3375 + }, + { + "start": 14141.58, + "end": 14143.4, + "probability": 0.9303 + }, + { + "start": 14143.44, + "end": 14147.7, + "probability": 0.8989 + }, + { + "start": 14150.96, + "end": 14151.52, + "probability": 0.8191 + }, + { + "start": 14153.42, + "end": 14156.72, + "probability": 0.9673 + }, + { + "start": 14157.94, + "end": 14160.3, + "probability": 0.9746 + }, + { + "start": 14160.38, + "end": 14161.12, + "probability": 0.9771 + }, + { + "start": 14162.54, + "end": 14164.84, + "probability": 0.8293 + }, + { + "start": 14166.74, + "end": 14169.98, + "probability": 0.9521 + }, + { + "start": 14170.48, + "end": 14172.0, + "probability": 0.9819 + }, + { + "start": 14173.36, + "end": 14174.68, + "probability": 0.9462 + }, + { + "start": 14174.72, + "end": 14176.56, + "probability": 0.7913 + }, + { + "start": 14176.62, + "end": 14178.54, + "probability": 0.9082 + }, + { + "start": 14178.56, + "end": 14179.3, + "probability": 0.9583 + }, + { + "start": 14181.14, + "end": 14183.86, + "probability": 0.7455 + }, + { + "start": 14185.2, + "end": 14186.88, + "probability": 0.9959 + }, + { + "start": 14188.08, + "end": 14190.08, + "probability": 0.9631 + }, + { + "start": 14193.24, + "end": 14193.54, + "probability": 0.4293 + }, + { + "start": 14193.56, + "end": 14194.18, + "probability": 0.777 + }, + { + "start": 14194.34, + "end": 14198.54, + "probability": 0.9854 + }, + { + "start": 14200.22, + "end": 14201.3, + "probability": 0.832 + }, + { + "start": 14201.48, + "end": 14203.86, + "probability": 0.9937 + }, + { + "start": 14204.14, + "end": 14207.46, + "probability": 0.9814 + }, + { + "start": 14208.92, + "end": 14209.69, + "probability": 0.8755 + }, + { + "start": 14211.46, + "end": 14215.34, + "probability": 0.8755 + }, + { + "start": 14215.4, + "end": 14217.08, + "probability": 0.9961 + }, + { + "start": 14218.82, + "end": 14220.18, + "probability": 0.9587 + }, + { + "start": 14220.42, + "end": 14222.32, + "probability": 0.9878 + }, + { + "start": 14223.32, + "end": 14226.28, + "probability": 0.9884 + }, + { + "start": 14226.32, + "end": 14227.0, + "probability": 0.8566 + }, + { + "start": 14227.04, + "end": 14227.82, + "probability": 0.7528 + }, + { + "start": 14228.5, + "end": 14230.04, + "probability": 0.6829 + }, + { + "start": 14231.24, + "end": 14231.9, + "probability": 0.9107 + }, + { + "start": 14233.78, + "end": 14237.8, + "probability": 0.9814 + }, + { + "start": 14241.12, + "end": 14244.74, + "probability": 0.7477 + }, + { + "start": 14247.2, + "end": 14248.04, + "probability": 0.8024 + }, + { + "start": 14250.12, + "end": 14251.68, + "probability": 0.4381 + }, + { + "start": 14252.06, + "end": 14254.79, + "probability": 0.8904 + }, + { + "start": 14256.24, + "end": 14257.4, + "probability": 0.9821 + }, + { + "start": 14257.8, + "end": 14262.88, + "probability": 0.9224 + }, + { + "start": 14263.2, + "end": 14265.96, + "probability": 0.6018 + }, + { + "start": 14266.06, + "end": 14266.68, + "probability": 0.2406 + }, + { + "start": 14266.68, + "end": 14267.38, + "probability": 0.9552 + }, + { + "start": 14267.72, + "end": 14268.18, + "probability": 0.702 + }, + { + "start": 14268.58, + "end": 14272.6, + "probability": 0.8688 + }, + { + "start": 14274.86, + "end": 14275.76, + "probability": 0.6177 + }, + { + "start": 14277.99, + "end": 14279.57, + "probability": 0.0673 + }, + { + "start": 14279.9, + "end": 14281.26, + "probability": 0.4754 + }, + { + "start": 14281.42, + "end": 14281.98, + "probability": 0.2933 + }, + { + "start": 14282.24, + "end": 14286.48, + "probability": 0.5496 + }, + { + "start": 14287.5, + "end": 14293.48, + "probability": 0.9832 + }, + { + "start": 14293.88, + "end": 14298.16, + "probability": 0.6352 + }, + { + "start": 14298.16, + "end": 14301.98, + "probability": 0.9691 + }, + { + "start": 14302.8, + "end": 14305.36, + "probability": 0.801 + }, + { + "start": 14305.52, + "end": 14306.66, + "probability": 0.8288 + }, + { + "start": 14307.18, + "end": 14308.92, + "probability": 0.7277 + }, + { + "start": 14309.6, + "end": 14310.66, + "probability": 0.9581 + }, + { + "start": 14311.38, + "end": 14312.22, + "probability": 0.9551 + }, + { + "start": 14314.34, + "end": 14315.68, + "probability": 0.7437 + }, + { + "start": 14317.06, + "end": 14320.72, + "probability": 0.8291 + }, + { + "start": 14322.22, + "end": 14324.76, + "probability": 0.9807 + }, + { + "start": 14324.92, + "end": 14327.64, + "probability": 0.8589 + }, + { + "start": 14329.24, + "end": 14329.8, + "probability": 0.9117 + }, + { + "start": 14330.2, + "end": 14331.34, + "probability": 0.9271 + }, + { + "start": 14331.4, + "end": 14332.38, + "probability": 0.6733 + }, + { + "start": 14332.64, + "end": 14335.3, + "probability": 0.9688 + }, + { + "start": 14337.24, + "end": 14338.6, + "probability": 0.9585 + }, + { + "start": 14339.22, + "end": 14342.52, + "probability": 0.9234 + }, + { + "start": 14343.46, + "end": 14346.78, + "probability": 0.9941 + }, + { + "start": 14347.82, + "end": 14350.2, + "probability": 0.8158 + }, + { + "start": 14350.72, + "end": 14351.94, + "probability": 0.8141 + }, + { + "start": 14352.28, + "end": 14355.88, + "probability": 0.9508 + }, + { + "start": 14356.04, + "end": 14357.9, + "probability": 0.8641 + }, + { + "start": 14357.92, + "end": 14358.24, + "probability": 0.31 + }, + { + "start": 14358.26, + "end": 14358.85, + "probability": 0.8202 + }, + { + "start": 14359.74, + "end": 14360.7, + "probability": 0.917 + }, + { + "start": 14360.94, + "end": 14361.6, + "probability": 0.8129 + }, + { + "start": 14361.76, + "end": 14367.0, + "probability": 0.8708 + }, + { + "start": 14368.22, + "end": 14370.48, + "probability": 0.7594 + }, + { + "start": 14372.68, + "end": 14374.92, + "probability": 0.9971 + }, + { + "start": 14375.0, + "end": 14377.24, + "probability": 0.798 + }, + { + "start": 14377.9, + "end": 14379.24, + "probability": 0.8851 + }, + { + "start": 14379.88, + "end": 14381.46, + "probability": 0.5828 + }, + { + "start": 14382.98, + "end": 14386.16, + "probability": 0.9282 + }, + { + "start": 14386.94, + "end": 14389.98, + "probability": 0.802 + }, + { + "start": 14390.24, + "end": 14391.18, + "probability": 0.5019 + }, + { + "start": 14391.3, + "end": 14393.37, + "probability": 0.9028 + }, + { + "start": 14394.82, + "end": 14398.18, + "probability": 0.9905 + }, + { + "start": 14398.28, + "end": 14399.19, + "probability": 0.9845 + }, + { + "start": 14399.22, + "end": 14400.06, + "probability": 0.933 + }, + { + "start": 14400.88, + "end": 14404.4, + "probability": 0.9776 + }, + { + "start": 14404.94, + "end": 14405.7, + "probability": 0.8561 + }, + { + "start": 14406.18, + "end": 14407.54, + "probability": 0.9583 + }, + { + "start": 14408.02, + "end": 14410.78, + "probability": 0.9702 + }, + { + "start": 14411.87, + "end": 14413.42, + "probability": 0.5425 + }, + { + "start": 14413.54, + "end": 14413.88, + "probability": 0.6857 + }, + { + "start": 14414.02, + "end": 14416.94, + "probability": 0.8408 + }, + { + "start": 14418.26, + "end": 14419.82, + "probability": 0.8011 + }, + { + "start": 14420.44, + "end": 14422.06, + "probability": 0.9969 + }, + { + "start": 14422.64, + "end": 14425.36, + "probability": 0.8618 + }, + { + "start": 14426.58, + "end": 14429.1, + "probability": 0.9028 + }, + { + "start": 14430.08, + "end": 14434.4, + "probability": 0.9966 + }, + { + "start": 14435.26, + "end": 14436.28, + "probability": 0.9788 + }, + { + "start": 14437.36, + "end": 14438.52, + "probability": 0.9031 + }, + { + "start": 14438.66, + "end": 14441.88, + "probability": 0.9762 + }, + { + "start": 14444.14, + "end": 14446.14, + "probability": 0.9965 + }, + { + "start": 14446.28, + "end": 14450.32, + "probability": 0.9592 + }, + { + "start": 14451.06, + "end": 14451.96, + "probability": 0.7411 + }, + { + "start": 14452.68, + "end": 14454.08, + "probability": 0.8993 + }, + { + "start": 14454.14, + "end": 14455.64, + "probability": 0.9185 + }, + { + "start": 14456.2, + "end": 14457.5, + "probability": 0.8774 + }, + { + "start": 14457.76, + "end": 14458.7, + "probability": 0.6214 + }, + { + "start": 14458.76, + "end": 14460.24, + "probability": 0.7275 + }, + { + "start": 14461.54, + "end": 14461.82, + "probability": 0.0156 + }, + { + "start": 14461.82, + "end": 14465.04, + "probability": 0.9506 + }, + { + "start": 14465.08, + "end": 14466.68, + "probability": 0.788 + }, + { + "start": 14466.74, + "end": 14467.14, + "probability": 0.6159 + }, + { + "start": 14467.7, + "end": 14469.98, + "probability": 0.8908 + }, + { + "start": 14470.5, + "end": 14472.56, + "probability": 0.9862 + }, + { + "start": 14472.56, + "end": 14475.4, + "probability": 0.843 + }, + { + "start": 14476.08, + "end": 14477.7, + "probability": 0.8127 + }, + { + "start": 14478.56, + "end": 14479.1, + "probability": 0.7785 + }, + { + "start": 14479.9, + "end": 14484.36, + "probability": 0.8334 + }, + { + "start": 14484.92, + "end": 14486.68, + "probability": 0.9433 + }, + { + "start": 14487.44, + "end": 14489.38, + "probability": 0.9496 + }, + { + "start": 14490.74, + "end": 14492.66, + "probability": 0.9283 + }, + { + "start": 14493.4, + "end": 14495.38, + "probability": 0.9941 + }, + { + "start": 14496.28, + "end": 14503.12, + "probability": 0.9971 + }, + { + "start": 14504.42, + "end": 14504.9, + "probability": 0.1534 + }, + { + "start": 14505.2, + "end": 14506.72, + "probability": 0.6153 + }, + { + "start": 14507.22, + "end": 14508.5, + "probability": 0.9956 + }, + { + "start": 14510.56, + "end": 14512.18, + "probability": 0.9919 + }, + { + "start": 14512.24, + "end": 14513.23, + "probability": 0.9951 + }, + { + "start": 14513.48, + "end": 14516.39, + "probability": 0.7646 + }, + { + "start": 14517.2, + "end": 14520.38, + "probability": 0.9875 + }, + { + "start": 14521.36, + "end": 14522.08, + "probability": 0.8975 + }, + { + "start": 14522.52, + "end": 14523.26, + "probability": 0.8868 + }, + { + "start": 14523.44, + "end": 14523.92, + "probability": 0.9183 + }, + { + "start": 14524.0, + "end": 14524.36, + "probability": 0.8082 + }, + { + "start": 14524.46, + "end": 14524.84, + "probability": 0.862 + }, + { + "start": 14525.1, + "end": 14525.64, + "probability": 0.8975 + }, + { + "start": 14525.64, + "end": 14526.02, + "probability": 0.7857 + }, + { + "start": 14526.04, + "end": 14526.64, + "probability": 0.8058 + }, + { + "start": 14526.82, + "end": 14527.48, + "probability": 0.9933 + }, + { + "start": 14527.6, + "end": 14531.66, + "probability": 0.7426 + }, + { + "start": 14531.66, + "end": 14532.06, + "probability": 0.7461 + }, + { + "start": 14532.6, + "end": 14534.3, + "probability": 0.9029 + }, + { + "start": 14535.28, + "end": 14536.62, + "probability": 0.5865 + }, + { + "start": 14539.22, + "end": 14540.12, + "probability": 0.4829 + }, + { + "start": 14540.2, + "end": 14547.08, + "probability": 0.9041 + }, + { + "start": 14547.58, + "end": 14547.58, + "probability": 0.0024 + }, + { + "start": 14547.58, + "end": 14549.2, + "probability": 0.5058 + }, + { + "start": 14550.06, + "end": 14554.82, + "probability": 0.9987 + }, + { + "start": 14555.62, + "end": 14556.9, + "probability": 0.9246 + }, + { + "start": 14557.5, + "end": 14561.78, + "probability": 0.9772 + }, + { + "start": 14562.82, + "end": 14564.56, + "probability": 0.9028 + }, + { + "start": 14565.16, + "end": 14566.38, + "probability": 0.8782 + }, + { + "start": 14566.42, + "end": 14567.76, + "probability": 0.9608 + }, + { + "start": 14567.78, + "end": 14568.54, + "probability": 0.8484 + }, + { + "start": 14569.62, + "end": 14574.22, + "probability": 0.9951 + }, + { + "start": 14574.24, + "end": 14574.66, + "probability": 0.6849 + }, + { + "start": 14575.5, + "end": 14575.94, + "probability": 0.3789 + }, + { + "start": 14577.24, + "end": 14580.4, + "probability": 0.9464 + }, + { + "start": 14581.54, + "end": 14588.98, + "probability": 0.9878 + }, + { + "start": 14591.74, + "end": 14592.74, + "probability": 0.9767 + }, + { + "start": 14593.28, + "end": 14594.42, + "probability": 0.9619 + }, + { + "start": 14596.2, + "end": 14601.3, + "probability": 0.9754 + }, + { + "start": 14601.36, + "end": 14603.12, + "probability": 0.9951 + }, + { + "start": 14604.08, + "end": 14606.02, + "probability": 0.999 + }, + { + "start": 14606.12, + "end": 14608.84, + "probability": 0.952 + }, + { + "start": 14608.88, + "end": 14611.78, + "probability": 0.9213 + }, + { + "start": 14612.32, + "end": 14613.88, + "probability": 0.9297 + }, + { + "start": 14614.3, + "end": 14617.46, + "probability": 0.9215 + }, + { + "start": 14617.58, + "end": 14621.86, + "probability": 0.9107 + }, + { + "start": 14622.98, + "end": 14623.0, + "probability": 0.1921 + }, + { + "start": 14623.0, + "end": 14623.86, + "probability": 0.7498 + }, + { + "start": 14624.7, + "end": 14625.44, + "probability": 0.5016 + }, + { + "start": 14625.58, + "end": 14629.76, + "probability": 0.9202 + }, + { + "start": 14629.8, + "end": 14630.2, + "probability": 0.8752 + }, + { + "start": 14634.44, + "end": 14635.56, + "probability": 0.5978 + }, + { + "start": 14635.92, + "end": 14635.92, + "probability": 0.6987 + }, + { + "start": 14635.92, + "end": 14635.92, + "probability": 0.5975 + }, + { + "start": 14635.92, + "end": 14637.7, + "probability": 0.0999 + }, + { + "start": 14638.2, + "end": 14638.62, + "probability": 0.2106 + }, + { + "start": 14638.76, + "end": 14640.04, + "probability": 0.2262 + }, + { + "start": 14640.04, + "end": 14641.16, + "probability": 0.0169 + }, + { + "start": 14644.0, + "end": 14647.44, + "probability": 0.5103 + }, + { + "start": 14647.58, + "end": 14648.52, + "probability": 0.0222 + }, + { + "start": 14649.1, + "end": 14650.32, + "probability": 0.8973 + }, + { + "start": 14650.48, + "end": 14652.74, + "probability": 0.993 + }, + { + "start": 14653.88, + "end": 14656.04, + "probability": 0.1148 + }, + { + "start": 14656.82, + "end": 14657.76, + "probability": 0.2456 + }, + { + "start": 14658.36, + "end": 14660.72, + "probability": 0.7933 + }, + { + "start": 14665.36, + "end": 14666.58, + "probability": 0.5264 + }, + { + "start": 14674.74, + "end": 14676.02, + "probability": 0.6437 + }, + { + "start": 14676.12, + "end": 14677.5, + "probability": 0.946 + }, + { + "start": 14677.6, + "end": 14679.16, + "probability": 0.8748 + }, + { + "start": 14679.28, + "end": 14684.52, + "probability": 0.9976 + }, + { + "start": 14684.96, + "end": 14687.6, + "probability": 0.2423 + }, + { + "start": 14687.92, + "end": 14689.34, + "probability": 0.7755 + }, + { + "start": 14691.78, + "end": 14693.7, + "probability": 0.8989 + }, + { + "start": 14693.78, + "end": 14695.34, + "probability": 0.116 + }, + { + "start": 14695.82, + "end": 14696.08, + "probability": 0.3737 + }, + { + "start": 14696.96, + "end": 14698.38, + "probability": 0.7703 + }, + { + "start": 14699.3, + "end": 14699.62, + "probability": 0.0711 + }, + { + "start": 14699.62, + "end": 14701.08, + "probability": 0.7124 + }, + { + "start": 14703.26, + "end": 14707.5, + "probability": 0.9545 + }, + { + "start": 14708.8, + "end": 14712.48, + "probability": 0.9951 + }, + { + "start": 14714.32, + "end": 14716.06, + "probability": 0.9874 + }, + { + "start": 14721.6, + "end": 14726.4, + "probability": 0.9933 + }, + { + "start": 14727.34, + "end": 14728.44, + "probability": 0.9218 + }, + { + "start": 14730.24, + "end": 14734.82, + "probability": 0.8955 + }, + { + "start": 14736.24, + "end": 14741.7, + "probability": 0.9899 + }, + { + "start": 14743.04, + "end": 14744.22, + "probability": 0.9545 + }, + { + "start": 14746.06, + "end": 14747.92, + "probability": 0.1327 + }, + { + "start": 14750.2, + "end": 14750.3, + "probability": 0.041 + }, + { + "start": 14750.3, + "end": 14752.61, + "probability": 0.7196 + }, + { + "start": 14754.48, + "end": 14754.56, + "probability": 0.1093 + }, + { + "start": 14754.56, + "end": 14754.56, + "probability": 0.3564 + }, + { + "start": 14754.56, + "end": 14759.8, + "probability": 0.8312 + }, + { + "start": 14761.36, + "end": 14762.23, + "probability": 0.8999 + }, + { + "start": 14764.61, + "end": 14767.72, + "probability": 0.1465 + }, + { + "start": 14769.42, + "end": 14770.36, + "probability": 0.5866 + }, + { + "start": 14770.36, + "end": 14774.31, + "probability": 0.9371 + }, + { + "start": 14775.0, + "end": 14780.98, + "probability": 0.7591 + }, + { + "start": 14782.26, + "end": 14782.76, + "probability": 0.6106 + }, + { + "start": 14783.8, + "end": 14785.86, + "probability": 0.0183 + }, + { + "start": 14787.98, + "end": 14790.22, + "probability": 0.1395 + }, + { + "start": 14790.6, + "end": 14791.34, + "probability": 0.1933 + }, + { + "start": 14791.48, + "end": 14793.58, + "probability": 0.3557 + }, + { + "start": 14793.58, + "end": 14796.72, + "probability": 0.2741 + }, + { + "start": 14796.8, + "end": 14800.28, + "probability": 0.0856 + }, + { + "start": 14800.7, + "end": 14806.7, + "probability": 0.8618 + }, + { + "start": 14807.92, + "end": 14813.3, + "probability": 0.9966 + }, + { + "start": 14813.42, + "end": 14814.64, + "probability": 0.9155 + }, + { + "start": 14815.1, + "end": 14816.54, + "probability": 0.983 + }, + { + "start": 14816.6, + "end": 14820.62, + "probability": 0.9607 + }, + { + "start": 14820.74, + "end": 14822.8, + "probability": 0.0478 + }, + { + "start": 14822.8, + "end": 14824.12, + "probability": 0.9094 + }, + { + "start": 14826.06, + "end": 14826.16, + "probability": 0.7232 + }, + { + "start": 14827.52, + "end": 14827.74, + "probability": 0.5537 + }, + { + "start": 14828.88, + "end": 14828.98, + "probability": 0.3593 + }, + { + "start": 14828.98, + "end": 14829.08, + "probability": 0.3337 + }, + { + "start": 14831.1, + "end": 14833.16, + "probability": 0.0298 + }, + { + "start": 14833.16, + "end": 14834.6, + "probability": 0.7389 + }, + { + "start": 14836.5, + "end": 14837.95, + "probability": 0.8427 + }, + { + "start": 14842.72, + "end": 14844.06, + "probability": 0.9971 + }, + { + "start": 14844.82, + "end": 14846.78, + "probability": 0.9963 + }, + { + "start": 14847.66, + "end": 14850.48, + "probability": 0.8396 + }, + { + "start": 14851.44, + "end": 14852.44, + "probability": 0.734 + }, + { + "start": 14853.08, + "end": 14860.34, + "probability": 0.9563 + }, + { + "start": 14862.86, + "end": 14863.54, + "probability": 0.6316 + }, + { + "start": 14866.4, + "end": 14873.02, + "probability": 0.9941 + }, + { + "start": 14873.02, + "end": 14880.82, + "probability": 0.9735 + }, + { + "start": 14882.0, + "end": 14883.86, + "probability": 0.9232 + }, + { + "start": 14884.98, + "end": 14886.15, + "probability": 0.583 + }, + { + "start": 14886.38, + "end": 14888.16, + "probability": 0.0342 + }, + { + "start": 14888.66, + "end": 14888.88, + "probability": 0.4425 + }, + { + "start": 14889.9, + "end": 14891.86, + "probability": 0.491 + }, + { + "start": 14891.88, + "end": 14892.94, + "probability": 0.0422 + }, + { + "start": 14893.28, + "end": 14897.24, + "probability": 0.6426 + }, + { + "start": 14897.26, + "end": 14898.2, + "probability": 0.751 + }, + { + "start": 14898.34, + "end": 14899.36, + "probability": 0.9562 + }, + { + "start": 14899.5, + "end": 14900.72, + "probability": 0.7227 + }, + { + "start": 14901.36, + "end": 14905.02, + "probability": 0.936 + }, + { + "start": 14905.16, + "end": 14909.28, + "probability": 0.8621 + }, + { + "start": 14910.16, + "end": 14911.18, + "probability": 0.9989 + }, + { + "start": 14911.8, + "end": 14912.64, + "probability": 0.9799 + }, + { + "start": 14913.74, + "end": 14915.94, + "probability": 0.7867 + }, + { + "start": 14916.02, + "end": 14916.22, + "probability": 0.5734 + }, + { + "start": 14916.26, + "end": 14916.98, + "probability": 0.9839 + }, + { + "start": 14917.22, + "end": 14919.72, + "probability": 0.9951 + }, + { + "start": 14919.84, + "end": 14921.76, + "probability": 0.9805 + }, + { + "start": 14924.23, + "end": 14927.84, + "probability": 0.1685 + }, + { + "start": 14928.7, + "end": 14934.1, + "probability": 0.5796 + }, + { + "start": 14934.96, + "end": 14937.36, + "probability": 0.3945 + }, + { + "start": 14937.5, + "end": 14938.24, + "probability": 0.8705 + }, + { + "start": 14938.9, + "end": 14942.53, + "probability": 0.2562 + }, + { + "start": 14945.08, + "end": 14945.44, + "probability": 0.4617 + }, + { + "start": 14946.12, + "end": 14946.88, + "probability": 0.0324 + }, + { + "start": 14947.16, + "end": 14947.34, + "probability": 0.1013 + }, + { + "start": 14947.34, + "end": 14949.6, + "probability": 0.6862 + }, + { + "start": 14950.42, + "end": 14951.94, + "probability": 0.8192 + }, + { + "start": 14951.98, + "end": 14953.8, + "probability": 0.7539 + }, + { + "start": 14954.06, + "end": 14956.46, + "probability": 0.7696 + }, + { + "start": 14956.82, + "end": 14958.28, + "probability": 0.9595 + }, + { + "start": 14958.54, + "end": 14959.32, + "probability": 0.2956 + }, + { + "start": 14959.66, + "end": 14964.2, + "probability": 0.4441 + }, + { + "start": 14964.35, + "end": 14969.15, + "probability": 0.2405 + }, + { + "start": 14969.18, + "end": 14969.5, + "probability": 0.0644 + }, + { + "start": 14970.36, + "end": 14972.74, + "probability": 0.5818 + }, + { + "start": 14972.88, + "end": 14976.8, + "probability": 0.5669 + }, + { + "start": 14977.3, + "end": 14978.48, + "probability": 0.026 + }, + { + "start": 14979.28, + "end": 14984.6, + "probability": 0.9863 + }, + { + "start": 14985.34, + "end": 14986.7, + "probability": 0.6349 + }, + { + "start": 14986.86, + "end": 14989.94, + "probability": 0.9883 + }, + { + "start": 14990.42, + "end": 14993.06, + "probability": 0.9174 + }, + { + "start": 14993.18, + "end": 14994.34, + "probability": 0.7587 + }, + { + "start": 14995.06, + "end": 15000.4, + "probability": 0.9829 + }, + { + "start": 15000.9, + "end": 15003.04, + "probability": 0.9287 + }, + { + "start": 15003.68, + "end": 15005.56, + "probability": 0.88 + }, + { + "start": 15005.66, + "end": 15006.88, + "probability": 0.9269 + }, + { + "start": 15007.34, + "end": 15009.3, + "probability": 0.9951 + }, + { + "start": 15009.36, + "end": 15010.7, + "probability": 0.9976 + }, + { + "start": 15011.3, + "end": 15011.96, + "probability": 0.8966 + }, + { + "start": 15012.5, + "end": 15019.0, + "probability": 0.9868 + }, + { + "start": 15020.64, + "end": 15022.08, + "probability": 0.974 + }, + { + "start": 15022.16, + "end": 15022.94, + "probability": 0.8542 + }, + { + "start": 15023.14, + "end": 15024.16, + "probability": 0.8193 + }, + { + "start": 15024.28, + "end": 15030.08, + "probability": 0.8418 + }, + { + "start": 15030.26, + "end": 15031.4, + "probability": 0.6589 + }, + { + "start": 15031.64, + "end": 15036.06, + "probability": 0.9609 + }, + { + "start": 15036.64, + "end": 15038.04, + "probability": 0.6377 + }, + { + "start": 15043.02, + "end": 15043.68, + "probability": 0.8649 + }, + { + "start": 15044.4, + "end": 15046.66, + "probability": 0.9277 + }, + { + "start": 15047.68, + "end": 15051.58, + "probability": 0.995 + }, + { + "start": 15052.8, + "end": 15055.18, + "probability": 0.9816 + }, + { + "start": 15056.54, + "end": 15059.31, + "probability": 0.7969 + }, + { + "start": 15060.6, + "end": 15061.68, + "probability": 0.8586 + }, + { + "start": 15062.62, + "end": 15063.82, + "probability": 0.9759 + }, + { + "start": 15064.48, + "end": 15066.62, + "probability": 0.9916 + }, + { + "start": 15066.98, + "end": 15068.38, + "probability": 0.9824 + }, + { + "start": 15069.1, + "end": 15070.92, + "probability": 0.5801 + }, + { + "start": 15071.9, + "end": 15073.24, + "probability": 0.6885 + }, + { + "start": 15074.56, + "end": 15074.82, + "probability": 0.1562 + }, + { + "start": 15074.82, + "end": 15075.02, + "probability": 0.556 + }, + { + "start": 15077.46, + "end": 15077.56, + "probability": 0.4167 + }, + { + "start": 15077.56, + "end": 15079.66, + "probability": 0.6075 + }, + { + "start": 15079.76, + "end": 15082.71, + "probability": 0.8308 + }, + { + "start": 15083.66, + "end": 15085.72, + "probability": 0.9658 + }, + { + "start": 15087.14, + "end": 15089.24, + "probability": 0.4528 + }, + { + "start": 15089.32, + "end": 15090.9, + "probability": 0.5497 + }, + { + "start": 15091.24, + "end": 15092.22, + "probability": 0.884 + }, + { + "start": 15092.28, + "end": 15093.08, + "probability": 0.7624 + }, + { + "start": 15093.12, + "end": 15094.22, + "probability": 0.9683 + }, + { + "start": 15094.42, + "end": 15096.24, + "probability": 0.7944 + }, + { + "start": 15096.92, + "end": 15103.42, + "probability": 0.7465 + }, + { + "start": 15104.48, + "end": 15107.16, + "probability": 0.6945 + }, + { + "start": 15109.1, + "end": 15112.44, + "probability": 0.9179 + }, + { + "start": 15113.58, + "end": 15116.26, + "probability": 0.9697 + }, + { + "start": 15116.26, + "end": 15119.92, + "probability": 0.9644 + }, + { + "start": 15120.9, + "end": 15122.32, + "probability": 0.5334 + }, + { + "start": 15122.84, + "end": 15125.78, + "probability": 0.9524 + }, + { + "start": 15128.86, + "end": 15134.54, + "probability": 0.9974 + }, + { + "start": 15135.16, + "end": 15136.45, + "probability": 0.906 + }, + { + "start": 15137.06, + "end": 15140.28, + "probability": 0.9848 + }, + { + "start": 15141.44, + "end": 15149.29, + "probability": 0.9239 + }, + { + "start": 15154.16, + "end": 15157.32, + "probability": 0.3451 + }, + { + "start": 15157.7, + "end": 15158.08, + "probability": 0.3078 + }, + { + "start": 15158.18, + "end": 15161.34, + "probability": 0.7754 + }, + { + "start": 15161.36, + "end": 15165.3, + "probability": 0.9858 + }, + { + "start": 15165.6, + "end": 15167.12, + "probability": 0.864 + }, + { + "start": 15168.08, + "end": 15169.78, + "probability": 0.998 + }, + { + "start": 15171.04, + "end": 15172.56, + "probability": 0.4484 + }, + { + "start": 15172.88, + "end": 15177.91, + "probability": 0.6585 + }, + { + "start": 15178.74, + "end": 15185.38, + "probability": 0.7511 + }, + { + "start": 15186.88, + "end": 15188.04, + "probability": 0.0681 + }, + { + "start": 15188.04, + "end": 15193.1, + "probability": 0.9735 + }, + { + "start": 15193.1, + "end": 15198.8, + "probability": 0.7491 + }, + { + "start": 15200.14, + "end": 15202.74, + "probability": 0.9027 + }, + { + "start": 15203.42, + "end": 15206.54, + "probability": 0.9868 + }, + { + "start": 15206.76, + "end": 15207.12, + "probability": 0.8073 + }, + { + "start": 15207.98, + "end": 15208.68, + "probability": 0.7465 + }, + { + "start": 15209.78, + "end": 15211.34, + "probability": 0.0962 + }, + { + "start": 15211.34, + "end": 15212.92, + "probability": 0.7439 + }, + { + "start": 15214.38, + "end": 15216.48, + "probability": 0.969 + }, + { + "start": 15218.08, + "end": 15220.55, + "probability": 0.6856 + }, + { + "start": 15220.94, + "end": 15223.64, + "probability": 0.6434 + }, + { + "start": 15223.72, + "end": 15224.54, + "probability": 0.7751 + }, + { + "start": 15226.7, + "end": 15227.8, + "probability": 0.8473 + }, + { + "start": 15228.83, + "end": 15234.02, + "probability": 0.0135 + }, + { + "start": 15240.58, + "end": 15241.46, + "probability": 0.0331 + }, + { + "start": 15241.46, + "end": 15242.22, + "probability": 0.3876 + }, + { + "start": 15242.98, + "end": 15245.66, + "probability": 0.8143 + }, + { + "start": 15246.42, + "end": 15247.54, + "probability": 0.367 + }, + { + "start": 15248.1, + "end": 15250.52, + "probability": 0.5122 + }, + { + "start": 15251.92, + "end": 15255.07, + "probability": 0.9839 + }, + { + "start": 15256.52, + "end": 15259.98, + "probability": 0.8726 + }, + { + "start": 15261.34, + "end": 15262.02, + "probability": 0.8851 + }, + { + "start": 15263.18, + "end": 15264.0, + "probability": 0.9707 + }, + { + "start": 15267.1, + "end": 15270.34, + "probability": 0.8336 + }, + { + "start": 15271.06, + "end": 15273.22, + "probability": 0.7922 + }, + { + "start": 15276.4, + "end": 15279.52, + "probability": 0.9084 + }, + { + "start": 15280.12, + "end": 15280.9, + "probability": 0.561 + }, + { + "start": 15281.66, + "end": 15283.0, + "probability": 0.9288 + }, + { + "start": 15288.48, + "end": 15290.28, + "probability": 0.7295 + }, + { + "start": 15291.34, + "end": 15292.7, + "probability": 0.7918 + }, + { + "start": 15294.74, + "end": 15299.54, + "probability": 0.9978 + }, + { + "start": 15301.86, + "end": 15308.88, + "probability": 0.9578 + }, + { + "start": 15309.24, + "end": 15310.66, + "probability": 0.8987 + }, + { + "start": 15313.36, + "end": 15315.28, + "probability": 0.7775 + }, + { + "start": 15316.72, + "end": 15320.0, + "probability": 0.9824 + }, + { + "start": 15321.42, + "end": 15322.5, + "probability": 0.8053 + }, + { + "start": 15322.72, + "end": 15327.1, + "probability": 0.8288 + }, + { + "start": 15327.5, + "end": 15331.68, + "probability": 0.0726 + }, + { + "start": 15332.36, + "end": 15337.5, + "probability": 0.2321 + }, + { + "start": 15338.32, + "end": 15338.34, + "probability": 0.026 + }, + { + "start": 15339.24, + "end": 15340.46, + "probability": 0.4773 + }, + { + "start": 15341.14, + "end": 15341.36, + "probability": 0.2895 + }, + { + "start": 15341.36, + "end": 15341.36, + "probability": 0.1286 + }, + { + "start": 15341.36, + "end": 15341.64, + "probability": 0.25 + }, + { + "start": 15341.64, + "end": 15341.64, + "probability": 0.0628 + }, + { + "start": 15341.64, + "end": 15342.66, + "probability": 0.2226 + }, + { + "start": 15343.24, + "end": 15348.3, + "probability": 0.9696 + }, + { + "start": 15348.64, + "end": 15349.14, + "probability": 0.6547 + }, + { + "start": 15349.14, + "end": 15353.28, + "probability": 0.666 + }, + { + "start": 15353.5, + "end": 15354.8, + "probability": 0.7324 + }, + { + "start": 15354.88, + "end": 15355.64, + "probability": 0.951 + }, + { + "start": 15356.26, + "end": 15357.1, + "probability": 0.7416 + }, + { + "start": 15357.64, + "end": 15362.72, + "probability": 0.9805 + }, + { + "start": 15364.48, + "end": 15364.98, + "probability": 0.4735 + }, + { + "start": 15364.98, + "end": 15367.8, + "probability": 0.9897 + }, + { + "start": 15368.1, + "end": 15371.54, + "probability": 0.8824 + }, + { + "start": 15375.32, + "end": 15380.94, + "probability": 0.8495 + }, + { + "start": 15381.04, + "end": 15383.26, + "probability": 0.711 + }, + { + "start": 15383.58, + "end": 15385.24, + "probability": 0.9528 + }, + { + "start": 15386.0, + "end": 15390.12, + "probability": 0.9905 + }, + { + "start": 15391.7, + "end": 15397.18, + "probability": 0.9961 + }, + { + "start": 15400.42, + "end": 15402.4, + "probability": 0.8565 + }, + { + "start": 15403.84, + "end": 15408.66, + "probability": 0.9864 + }, + { + "start": 15409.74, + "end": 15413.62, + "probability": 0.8148 + }, + { + "start": 15414.54, + "end": 15416.04, + "probability": 0.7822 + }, + { + "start": 15418.0, + "end": 15418.38, + "probability": 0.9385 + }, + { + "start": 15421.08, + "end": 15424.12, + "probability": 0.9039 + }, + { + "start": 15425.94, + "end": 15428.34, + "probability": 0.9886 + }, + { + "start": 15430.66, + "end": 15431.96, + "probability": 0.6005 + }, + { + "start": 15433.16, + "end": 15439.42, + "probability": 0.8668 + }, + { + "start": 15439.62, + "end": 15444.24, + "probability": 0.9444 + }, + { + "start": 15445.16, + "end": 15447.02, + "probability": 0.911 + }, + { + "start": 15448.32, + "end": 15450.46, + "probability": 0.6834 + }, + { + "start": 15451.24, + "end": 15454.6, + "probability": 0.9619 + }, + { + "start": 15455.82, + "end": 15459.24, + "probability": 0.6977 + }, + { + "start": 15460.3, + "end": 15466.36, + "probability": 0.9575 + }, + { + "start": 15467.9, + "end": 15470.24, + "probability": 0.91 + }, + { + "start": 15473.2, + "end": 15478.03, + "probability": 0.9072 + }, + { + "start": 15479.4, + "end": 15482.34, + "probability": 0.3378 + }, + { + "start": 15483.34, + "end": 15490.46, + "probability": 0.9976 + }, + { + "start": 15492.98, + "end": 15497.16, + "probability": 0.9921 + }, + { + "start": 15499.72, + "end": 15503.94, + "probability": 0.9985 + }, + { + "start": 15503.94, + "end": 15506.92, + "probability": 0.9987 + }, + { + "start": 15507.98, + "end": 15510.38, + "probability": 0.7168 + }, + { + "start": 15511.14, + "end": 15516.33, + "probability": 0.995 + }, + { + "start": 15516.62, + "end": 15520.78, + "probability": 0.9893 + }, + { + "start": 15521.84, + "end": 15528.02, + "probability": 0.9966 + }, + { + "start": 15529.87, + "end": 15532.38, + "probability": 0.9116 + }, + { + "start": 15533.22, + "end": 15534.06, + "probability": 0.784 + }, + { + "start": 15534.1, + "end": 15536.6, + "probability": 0.6276 + }, + { + "start": 15537.74, + "end": 15539.98, + "probability": 0.9849 + }, + { + "start": 15540.68, + "end": 15542.68, + "probability": 0.7682 + }, + { + "start": 15543.54, + "end": 15545.54, + "probability": 0.9102 + }, + { + "start": 15547.28, + "end": 15554.52, + "probability": 0.98 + }, + { + "start": 15555.04, + "end": 15555.62, + "probability": 0.8315 + }, + { + "start": 15555.98, + "end": 15561.98, + "probability": 0.9647 + }, + { + "start": 15562.58, + "end": 15564.08, + "probability": 0.9431 + }, + { + "start": 15565.24, + "end": 15566.08, + "probability": 0.7396 + }, + { + "start": 15566.24, + "end": 15569.03, + "probability": 0.9889 + }, + { + "start": 15570.64, + "end": 15572.42, + "probability": 0.9198 + }, + { + "start": 15573.66, + "end": 15578.42, + "probability": 0.8724 + }, + { + "start": 15578.8, + "end": 15580.54, + "probability": 0.9135 + }, + { + "start": 15583.3, + "end": 15586.36, + "probability": 0.5125 + }, + { + "start": 15586.44, + "end": 15589.12, + "probability": 0.9717 + }, + { + "start": 15589.2, + "end": 15590.08, + "probability": 0.6294 + }, + { + "start": 15590.66, + "end": 15592.56, + "probability": 0.9888 + }, + { + "start": 15593.4, + "end": 15599.54, + "probability": 0.9756 + }, + { + "start": 15599.74, + "end": 15600.9, + "probability": 0.536 + }, + { + "start": 15603.8, + "end": 15606.56, + "probability": 0.9955 + }, + { + "start": 15607.76, + "end": 15613.72, + "probability": 0.8695 + }, + { + "start": 15614.54, + "end": 15615.44, + "probability": 0.914 + }, + { + "start": 15617.52, + "end": 15619.84, + "probability": 0.9225 + }, + { + "start": 15621.96, + "end": 15626.2, + "probability": 0.9581 + }, + { + "start": 15629.34, + "end": 15630.14, + "probability": 0.8732 + }, + { + "start": 15631.02, + "end": 15632.01, + "probability": 0.9985 + }, + { + "start": 15632.94, + "end": 15636.68, + "probability": 0.9892 + }, + { + "start": 15638.04, + "end": 15639.22, + "probability": 0.9562 + }, + { + "start": 15639.5, + "end": 15640.66, + "probability": 0.7047 + }, + { + "start": 15641.54, + "end": 15643.72, + "probability": 0.6466 + }, + { + "start": 15644.44, + "end": 15647.44, + "probability": 0.9899 + }, + { + "start": 15648.8, + "end": 15654.76, + "probability": 0.9878 + }, + { + "start": 15657.08, + "end": 15662.92, + "probability": 0.9882 + }, + { + "start": 15663.62, + "end": 15666.12, + "probability": 0.8605 + }, + { + "start": 15669.02, + "end": 15670.64, + "probability": 0.9811 + }, + { + "start": 15673.34, + "end": 15677.04, + "probability": 0.9722 + }, + { + "start": 15677.3, + "end": 15680.12, + "probability": 0.9247 + }, + { + "start": 15682.64, + "end": 15685.92, + "probability": 0.985 + }, + { + "start": 15687.28, + "end": 15693.96, + "probability": 0.9688 + }, + { + "start": 15696.46, + "end": 15697.54, + "probability": 0.8947 + }, + { + "start": 15698.7, + "end": 15700.54, + "probability": 0.9258 + }, + { + "start": 15700.94, + "end": 15701.43, + "probability": 0.8062 + }, + { + "start": 15701.7, + "end": 15704.52, + "probability": 0.9956 + }, + { + "start": 15705.8, + "end": 15709.19, + "probability": 0.9841 + }, + { + "start": 15711.18, + "end": 15713.42, + "probability": 0.9308 + }, + { + "start": 15714.16, + "end": 15717.32, + "probability": 0.9939 + }, + { + "start": 15717.32, + "end": 15722.78, + "probability": 0.9048 + }, + { + "start": 15723.2, + "end": 15725.62, + "probability": 0.9682 + }, + { + "start": 15725.72, + "end": 15727.04, + "probability": 0.8456 + }, + { + "start": 15727.34, + "end": 15730.0, + "probability": 0.988 + }, + { + "start": 15730.54, + "end": 15732.56, + "probability": 0.1905 + }, + { + "start": 15733.02, + "end": 15736.84, + "probability": 0.7865 + }, + { + "start": 15738.88, + "end": 15740.16, + "probability": 0.8812 + }, + { + "start": 15740.16, + "end": 15742.92, + "probability": 0.9047 + }, + { + "start": 15743.84, + "end": 15744.36, + "probability": 0.9746 + }, + { + "start": 15745.04, + "end": 15751.52, + "probability": 0.8472 + }, + { + "start": 15753.82, + "end": 15755.42, + "probability": 0.9541 + }, + { + "start": 15758.92, + "end": 15759.32, + "probability": 0.6331 + }, + { + "start": 15760.0, + "end": 15760.84, + "probability": 0.92 + }, + { + "start": 15762.28, + "end": 15767.13, + "probability": 0.9951 + }, + { + "start": 15768.22, + "end": 15769.82, + "probability": 0.9595 + }, + { + "start": 15769.9, + "end": 15771.12, + "probability": 0.88 + }, + { + "start": 15771.2, + "end": 15774.54, + "probability": 0.9922 + }, + { + "start": 15776.18, + "end": 15781.02, + "probability": 0.9941 + }, + { + "start": 15781.36, + "end": 15782.69, + "probability": 0.9844 + }, + { + "start": 15783.36, + "end": 15785.0, + "probability": 0.938 + }, + { + "start": 15785.8, + "end": 15790.86, + "probability": 0.949 + }, + { + "start": 15791.42, + "end": 15794.74, + "probability": 0.9766 + }, + { + "start": 15795.72, + "end": 15799.36, + "probability": 0.9723 + }, + { + "start": 15799.9, + "end": 15804.98, + "probability": 0.8035 + }, + { + "start": 15809.68, + "end": 15810.94, + "probability": 0.7591 + }, + { + "start": 15813.52, + "end": 15817.58, + "probability": 0.9978 + }, + { + "start": 15818.08, + "end": 15819.56, + "probability": 0.9956 + }, + { + "start": 15821.42, + "end": 15823.68, + "probability": 0.8266 + }, + { + "start": 15824.44, + "end": 15825.54, + "probability": 0.9567 + }, + { + "start": 15825.64, + "end": 15826.1, + "probability": 0.8066 + }, + { + "start": 15826.22, + "end": 15828.04, + "probability": 0.937 + }, + { + "start": 15828.74, + "end": 15832.67, + "probability": 0.9817 + }, + { + "start": 15833.14, + "end": 15837.06, + "probability": 0.9985 + }, + { + "start": 15838.34, + "end": 15844.26, + "probability": 0.9797 + }, + { + "start": 15844.5, + "end": 15845.26, + "probability": 0.8561 + }, + { + "start": 15846.04, + "end": 15847.14, + "probability": 0.6023 + }, + { + "start": 15847.66, + "end": 15848.38, + "probability": 0.6851 + }, + { + "start": 15849.0, + "end": 15850.64, + "probability": 0.9956 + }, + { + "start": 15851.48, + "end": 15854.06, + "probability": 0.9426 + }, + { + "start": 15854.74, + "end": 15855.9, + "probability": 0.7006 + }, + { + "start": 15855.96, + "end": 15859.92, + "probability": 0.991 + }, + { + "start": 15860.07, + "end": 15864.28, + "probability": 0.9958 + }, + { + "start": 15865.96, + "end": 15871.34, + "probability": 0.967 + }, + { + "start": 15871.94, + "end": 15873.14, + "probability": 0.9138 + }, + { + "start": 15874.2, + "end": 15877.86, + "probability": 0.9662 + }, + { + "start": 15878.56, + "end": 15879.8, + "probability": 0.7639 + }, + { + "start": 15881.98, + "end": 15886.06, + "probability": 0.9641 + }, + { + "start": 15886.44, + "end": 15890.2, + "probability": 0.9731 + }, + { + "start": 15891.98, + "end": 15894.84, + "probability": 0.9966 + }, + { + "start": 15895.28, + "end": 15896.8, + "probability": 0.9596 + }, + { + "start": 15897.36, + "end": 15898.6, + "probability": 0.9984 + }, + { + "start": 15899.86, + "end": 15903.42, + "probability": 0.9914 + }, + { + "start": 15905.16, + "end": 15911.08, + "probability": 0.9826 + }, + { + "start": 15911.08, + "end": 15911.96, + "probability": 0.538 + }, + { + "start": 15913.0, + "end": 15918.12, + "probability": 0.981 + }, + { + "start": 15918.9, + "end": 15920.2, + "probability": 0.9983 + }, + { + "start": 15921.1, + "end": 15925.78, + "probability": 0.9915 + }, + { + "start": 15928.08, + "end": 15934.48, + "probability": 0.9686 + }, + { + "start": 15935.18, + "end": 15935.52, + "probability": 0.3388 + }, + { + "start": 15935.64, + "end": 15938.08, + "probability": 0.9724 + }, + { + "start": 15938.14, + "end": 15939.62, + "probability": 0.9361 + }, + { + "start": 15940.06, + "end": 15942.82, + "probability": 0.8021 + }, + { + "start": 15943.54, + "end": 15946.9, + "probability": 0.9824 + }, + { + "start": 15948.08, + "end": 15953.84, + "probability": 0.98 + }, + { + "start": 15954.16, + "end": 15956.28, + "probability": 0.9413 + }, + { + "start": 15956.54, + "end": 15956.82, + "probability": 0.7278 + }, + { + "start": 15957.84, + "end": 15958.22, + "probability": 0.4529 + }, + { + "start": 15958.3, + "end": 15960.76, + "probability": 0.6497 + }, + { + "start": 15960.8, + "end": 15961.46, + "probability": 0.9019 + }, + { + "start": 15975.68, + "end": 15978.44, + "probability": 0.0326 + }, + { + "start": 15979.38, + "end": 15979.48, + "probability": 0.0043 + }, + { + "start": 15980.99, + "end": 15984.68, + "probability": 0.3953 + }, + { + "start": 15987.99, + "end": 15990.42, + "probability": 0.6741 + }, + { + "start": 15991.74, + "end": 15997.67, + "probability": 0.9624 + }, + { + "start": 15997.93, + "end": 15998.79, + "probability": 0.8537 + }, + { + "start": 15999.86, + "end": 16003.69, + "probability": 0.9688 + }, + { + "start": 16004.82, + "end": 16006.07, + "probability": 0.9948 + }, + { + "start": 16008.1, + "end": 16010.25, + "probability": 0.4666 + }, + { + "start": 16012.01, + "end": 16014.41, + "probability": 0.8697 + }, + { + "start": 16015.95, + "end": 16018.75, + "probability": 0.9921 + }, + { + "start": 16019.67, + "end": 16022.03, + "probability": 0.9771 + }, + { + "start": 16022.89, + "end": 16025.97, + "probability": 0.8566 + }, + { + "start": 16027.21, + "end": 16030.67, + "probability": 0.9837 + }, + { + "start": 16031.69, + "end": 16033.15, + "probability": 0.8052 + }, + { + "start": 16034.67, + "end": 16038.13, + "probability": 0.6984 + }, + { + "start": 16039.01, + "end": 16042.57, + "probability": 0.9653 + }, + { + "start": 16043.79, + "end": 16045.95, + "probability": 0.8344 + }, + { + "start": 16046.11, + "end": 16047.23, + "probability": 0.7663 + }, + { + "start": 16047.37, + "end": 16053.77, + "probability": 0.9969 + }, + { + "start": 16054.93, + "end": 16058.11, + "probability": 0.9836 + }, + { + "start": 16058.93, + "end": 16061.13, + "probability": 0.9886 + }, + { + "start": 16061.71, + "end": 16064.75, + "probability": 0.89 + }, + { + "start": 16066.03, + "end": 16066.51, + "probability": 0.7342 + }, + { + "start": 16066.95, + "end": 16070.31, + "probability": 0.9929 + }, + { + "start": 16071.13, + "end": 16074.21, + "probability": 0.8111 + }, + { + "start": 16075.03, + "end": 16078.75, + "probability": 0.9624 + }, + { + "start": 16079.99, + "end": 16081.69, + "probability": 0.9775 + }, + { + "start": 16082.69, + "end": 16084.39, + "probability": 0.7076 + }, + { + "start": 16085.09, + "end": 16087.41, + "probability": 0.9409 + }, + { + "start": 16088.27, + "end": 16089.83, + "probability": 0.7529 + }, + { + "start": 16090.63, + "end": 16093.37, + "probability": 0.9832 + }, + { + "start": 16094.25, + "end": 16096.25, + "probability": 0.798 + }, + { + "start": 16096.79, + "end": 16097.77, + "probability": 0.978 + }, + { + "start": 16098.61, + "end": 16102.61, + "probability": 0.8589 + }, + { + "start": 16103.11, + "end": 16104.93, + "probability": 0.9622 + }, + { + "start": 16106.25, + "end": 16106.75, + "probability": 0.6628 + }, + { + "start": 16106.81, + "end": 16113.39, + "probability": 0.9792 + }, + { + "start": 16115.09, + "end": 16118.99, + "probability": 0.9788 + }, + { + "start": 16119.73, + "end": 16120.07, + "probability": 0.9675 + }, + { + "start": 16120.21, + "end": 16124.05, + "probability": 0.9851 + }, + { + "start": 16124.59, + "end": 16127.51, + "probability": 0.9937 + }, + { + "start": 16128.45, + "end": 16129.05, + "probability": 0.6858 + }, + { + "start": 16129.13, + "end": 16133.15, + "probability": 0.9099 + }, + { + "start": 16133.15, + "end": 16138.05, + "probability": 0.8741 + }, + { + "start": 16138.93, + "end": 16140.53, + "probability": 0.9405 + }, + { + "start": 16141.67, + "end": 16145.91, + "probability": 0.9708 + }, + { + "start": 16146.93, + "end": 16148.23, + "probability": 0.6608 + }, + { + "start": 16148.31, + "end": 16148.79, + "probability": 0.7352 + }, + { + "start": 16148.85, + "end": 16152.17, + "probability": 0.9767 + }, + { + "start": 16152.83, + "end": 16154.03, + "probability": 0.7949 + }, + { + "start": 16154.29, + "end": 16154.59, + "probability": 0.3773 + }, + { + "start": 16156.33, + "end": 16157.07, + "probability": 0.7558 + }, + { + "start": 16173.23, + "end": 16174.27, + "probability": 0.15 + }, + { + "start": 16174.27, + "end": 16176.27, + "probability": 0.6443 + }, + { + "start": 16176.81, + "end": 16179.35, + "probability": 0.9233 + }, + { + "start": 16179.45, + "end": 16183.43, + "probability": 0.9917 + }, + { + "start": 16183.55, + "end": 16186.67, + "probability": 0.8665 + }, + { + "start": 16187.69, + "end": 16191.43, + "probability": 0.8472 + }, + { + "start": 16191.93, + "end": 16193.95, + "probability": 0.5919 + }, + { + "start": 16194.01, + "end": 16195.93, + "probability": 0.8701 + }, + { + "start": 16196.17, + "end": 16197.37, + "probability": 0.8213 + }, + { + "start": 16198.27, + "end": 16200.73, + "probability": 0.986 + }, + { + "start": 16201.47, + "end": 16204.45, + "probability": 0.9639 + }, + { + "start": 16206.55, + "end": 16206.61, + "probability": 0.8394 + }, + { + "start": 16207.29, + "end": 16208.37, + "probability": 0.8921 + }, + { + "start": 16208.51, + "end": 16210.21, + "probability": 0.9081 + }, + { + "start": 16210.71, + "end": 16211.19, + "probability": 0.557 + }, + { + "start": 16211.29, + "end": 16212.17, + "probability": 0.9797 + }, + { + "start": 16212.71, + "end": 16217.39, + "probability": 0.8877 + }, + { + "start": 16217.43, + "end": 16217.91, + "probability": 0.8009 + }, + { + "start": 16218.77, + "end": 16220.53, + "probability": 0.9851 + }, + { + "start": 16221.21, + "end": 16223.05, + "probability": 0.5269 + }, + { + "start": 16223.43, + "end": 16229.19, + "probability": 0.9873 + }, + { + "start": 16229.29, + "end": 16230.35, + "probability": 0.8596 + }, + { + "start": 16230.81, + "end": 16238.62, + "probability": 0.9243 + }, + { + "start": 16239.99, + "end": 16241.03, + "probability": 0.9137 + }, + { + "start": 16241.09, + "end": 16242.53, + "probability": 0.9866 + }, + { + "start": 16242.63, + "end": 16245.11, + "probability": 0.9517 + }, + { + "start": 16245.37, + "end": 16246.65, + "probability": 0.8271 + }, + { + "start": 16247.11, + "end": 16249.47, + "probability": 0.8425 + }, + { + "start": 16250.07, + "end": 16254.18, + "probability": 0.9717 + }, + { + "start": 16254.99, + "end": 16256.29, + "probability": 0.7131 + }, + { + "start": 16256.69, + "end": 16262.07, + "probability": 0.9566 + }, + { + "start": 16263.47, + "end": 16269.92, + "probability": 0.9907 + }, + { + "start": 16270.1, + "end": 16275.5, + "probability": 0.9869 + }, + { + "start": 16276.84, + "end": 16276.84, + "probability": 0.6714 + }, + { + "start": 16278.72, + "end": 16279.63, + "probability": 0.8531 + }, + { + "start": 16280.34, + "end": 16282.03, + "probability": 0.7688 + }, + { + "start": 16282.11, + "end": 16283.95, + "probability": 0.9912 + }, + { + "start": 16284.13, + "end": 16284.71, + "probability": 0.8473 + }, + { + "start": 16284.79, + "end": 16289.05, + "probability": 0.9961 + }, + { + "start": 16289.51, + "end": 16292.63, + "probability": 0.7493 + }, + { + "start": 16293.11, + "end": 16295.45, + "probability": 0.9771 + }, + { + "start": 16295.81, + "end": 16296.87, + "probability": 0.7684 + }, + { + "start": 16296.99, + "end": 16298.15, + "probability": 0.9653 + }, + { + "start": 16298.39, + "end": 16300.99, + "probability": 0.9834 + }, + { + "start": 16302.27, + "end": 16303.11, + "probability": 0.9578 + }, + { + "start": 16304.01, + "end": 16305.85, + "probability": 0.8195 + }, + { + "start": 16308.11, + "end": 16310.07, + "probability": 0.7485 + }, + { + "start": 16310.77, + "end": 16311.55, + "probability": 0.6047 + }, + { + "start": 16311.67, + "end": 16313.47, + "probability": 0.7827 + }, + { + "start": 16318.31, + "end": 16323.53, + "probability": 0.0127 + }, + { + "start": 16323.53, + "end": 16328.17, + "probability": 0.0448 + }, + { + "start": 16328.17, + "end": 16328.82, + "probability": 0.1211 + }, + { + "start": 16331.33, + "end": 16331.83, + "probability": 0.0312 + }, + { + "start": 16332.77, + "end": 16333.25, + "probability": 0.2573 + }, + { + "start": 16333.25, + "end": 16334.69, + "probability": 0.0442 + }, + { + "start": 16334.81, + "end": 16335.37, + "probability": 0.7317 + }, + { + "start": 16336.11, + "end": 16340.21, + "probability": 0.0957 + }, + { + "start": 16343.53, + "end": 16344.19, + "probability": 0.1357 + }, + { + "start": 16347.15, + "end": 16350.89, + "probability": 0.491 + }, + { + "start": 16352.7, + "end": 16353.19, + "probability": 0.1076 + }, + { + "start": 16356.73, + "end": 16356.83, + "probability": 0.0744 + }, + { + "start": 16357.91, + "end": 16363.07, + "probability": 0.1296 + }, + { + "start": 16364.49, + "end": 16364.89, + "probability": 0.0358 + }, + { + "start": 16367.43, + "end": 16369.31, + "probability": 0.0403 + }, + { + "start": 16369.37, + "end": 16371.07, + "probability": 0.0097 + }, + { + "start": 16371.81, + "end": 16371.81, + "probability": 0.0 + }, + { + "start": 16405.0, + "end": 16405.0, + "probability": 0.0 + }, + { + "start": 16405.0, + "end": 16405.0, + "probability": 0.0 + }, + { + "start": 16405.0, + "end": 16405.0, + "probability": 0.0 + }, + { + "start": 16405.0, + "end": 16405.0, + "probability": 0.0 + }, + { + "start": 16405.0, + "end": 16405.0, + "probability": 0.0 + }, + { + "start": 16405.0, + "end": 16405.0, + "probability": 0.0 + }, + { + "start": 16405.0, + "end": 16405.0, + "probability": 0.0 + }, + { + "start": 16405.0, + "end": 16405.0, + "probability": 0.0 + }, + { + "start": 16405.0, + "end": 16405.0, + "probability": 0.0 + }, + { + "start": 16405.0, + "end": 16405.0, + "probability": 0.0 + }, + { + "start": 16405.0, + "end": 16405.0, + "probability": 0.0 + }, + { + "start": 16405.0, + "end": 16405.0, + "probability": 0.0 + }, + { + "start": 16405.0, + "end": 16405.0, + "probability": 0.0 + }, + { + "start": 16405.0, + "end": 16405.0, + "probability": 0.0 + }, + { + "start": 16405.0, + "end": 16405.0, + "probability": 0.0 + }, + { + "start": 16407.38, + "end": 16407.6, + "probability": 0.0764 + }, + { + "start": 16407.6, + "end": 16408.88, + "probability": 0.1124 + }, + { + "start": 16410.72, + "end": 16411.94, + "probability": 0.0192 + }, + { + "start": 16411.96, + "end": 16414.18, + "probability": 0.6371 + }, + { + "start": 16415.88, + "end": 16417.5, + "probability": 0.8108 + }, + { + "start": 16418.44, + "end": 16428.16, + "probability": 0.9984 + }, + { + "start": 16428.34, + "end": 16429.44, + "probability": 0.529 + }, + { + "start": 16429.48, + "end": 16432.56, + "probability": 0.8372 + }, + { + "start": 16433.9, + "end": 16438.2, + "probability": 0.96 + }, + { + "start": 16439.06, + "end": 16439.62, + "probability": 0.8792 + }, + { + "start": 16440.26, + "end": 16443.12, + "probability": 0.8736 + }, + { + "start": 16443.3, + "end": 16445.82, + "probability": 0.7899 + }, + { + "start": 16446.34, + "end": 16447.98, + "probability": 0.7937 + }, + { + "start": 16448.4, + "end": 16452.44, + "probability": 0.9819 + }, + { + "start": 16453.32, + "end": 16455.1, + "probability": 0.9568 + }, + { + "start": 16455.2, + "end": 16456.6, + "probability": 0.24 + }, + { + "start": 16456.6, + "end": 16457.44, + "probability": 0.3671 + }, + { + "start": 16457.98, + "end": 16460.64, + "probability": 0.8757 + }, + { + "start": 16461.54, + "end": 16465.32, + "probability": 0.9669 + }, + { + "start": 16468.16, + "end": 16473.0, + "probability": 0.9513 + }, + { + "start": 16473.62, + "end": 16474.7, + "probability": 0.9728 + }, + { + "start": 16475.84, + "end": 16476.64, + "probability": 0.6891 + }, + { + "start": 16477.4, + "end": 16485.5, + "probability": 0.9866 + }, + { + "start": 16486.74, + "end": 16488.1, + "probability": 0.9058 + }, + { + "start": 16488.7, + "end": 16490.38, + "probability": 0.6144 + }, + { + "start": 16491.96, + "end": 16496.0, + "probability": 0.9344 + }, + { + "start": 16497.36, + "end": 16497.96, + "probability": 0.1796 + }, + { + "start": 16497.96, + "end": 16504.14, + "probability": 0.9802 + }, + { + "start": 16504.84, + "end": 16507.44, + "probability": 0.9233 + }, + { + "start": 16508.72, + "end": 16513.74, + "probability": 0.8794 + }, + { + "start": 16514.36, + "end": 16519.62, + "probability": 0.9665 + }, + { + "start": 16520.22, + "end": 16521.66, + "probability": 0.7435 + }, + { + "start": 16522.38, + "end": 16530.14, + "probability": 0.9448 + }, + { + "start": 16531.02, + "end": 16532.1, + "probability": 0.8042 + }, + { + "start": 16533.22, + "end": 16536.08, + "probability": 0.7616 + }, + { + "start": 16537.0, + "end": 16538.0, + "probability": 0.0766 + }, + { + "start": 16540.68, + "end": 16544.1, + "probability": 0.9579 + }, + { + "start": 16546.61, + "end": 16547.6, + "probability": 0.0262 + }, + { + "start": 16547.68, + "end": 16548.18, + "probability": 0.0186 + }, + { + "start": 16548.18, + "end": 16548.66, + "probability": 0.3278 + }, + { + "start": 16548.74, + "end": 16551.22, + "probability": 0.4061 + }, + { + "start": 16551.32, + "end": 16552.47, + "probability": 0.3912 + }, + { + "start": 16552.72, + "end": 16553.04, + "probability": 0.4546 + }, + { + "start": 16554.8, + "end": 16556.44, + "probability": 0.0041 + }, + { + "start": 16556.44, + "end": 16556.44, + "probability": 0.0617 + }, + { + "start": 16556.44, + "end": 16557.0, + "probability": 0.072 + }, + { + "start": 16557.24, + "end": 16557.24, + "probability": 0.2751 + }, + { + "start": 16557.24, + "end": 16558.42, + "probability": 0.1674 + }, + { + "start": 16559.06, + "end": 16560.1, + "probability": 0.0844 + }, + { + "start": 16560.48, + "end": 16561.86, + "probability": 0.569 + }, + { + "start": 16561.98, + "end": 16562.6, + "probability": 0.5576 + }, + { + "start": 16562.6, + "end": 16564.83, + "probability": 0.7817 + }, + { + "start": 16565.62, + "end": 16566.48, + "probability": 0.3558 + }, + { + "start": 16566.86, + "end": 16569.86, + "probability": 0.9441 + }, + { + "start": 16570.44, + "end": 16572.48, + "probability": 0.2501 + }, + { + "start": 16572.56, + "end": 16575.4, + "probability": 0.9081 + }, + { + "start": 16575.96, + "end": 16578.68, + "probability": 0.7766 + }, + { + "start": 16578.84, + "end": 16580.66, + "probability": 0.3701 + }, + { + "start": 16580.82, + "end": 16581.38, + "probability": 0.1238 + }, + { + "start": 16581.84, + "end": 16581.94, + "probability": 0.2964 + }, + { + "start": 16581.94, + "end": 16581.94, + "probability": 0.1598 + }, + { + "start": 16581.94, + "end": 16583.13, + "probability": 0.1048 + }, + { + "start": 16584.96, + "end": 16585.96, + "probability": 0.7457 + }, + { + "start": 16586.3, + "end": 16590.42, + "probability": 0.9553 + }, + { + "start": 16590.68, + "end": 16591.24, + "probability": 0.5672 + }, + { + "start": 16592.36, + "end": 16593.5, + "probability": 0.6886 + }, + { + "start": 16593.6, + "end": 16595.02, + "probability": 0.8318 + }, + { + "start": 16595.02, + "end": 16599.14, + "probability": 0.9475 + }, + { + "start": 16599.28, + "end": 16601.48, + "probability": 0.6924 + }, + { + "start": 16602.16, + "end": 16606.7, + "probability": 0.8669 + }, + { + "start": 16607.0, + "end": 16608.54, + "probability": 0.9627 + }, + { + "start": 16610.28, + "end": 16614.0, + "probability": 0.9674 + }, + { + "start": 16614.76, + "end": 16619.8, + "probability": 0.9564 + }, + { + "start": 16621.02, + "end": 16622.54, + "probability": 0.9814 + }, + { + "start": 16623.44, + "end": 16623.7, + "probability": 0.8091 + }, + { + "start": 16624.24, + "end": 16625.22, + "probability": 0.6243 + }, + { + "start": 16625.78, + "end": 16631.48, + "probability": 0.921 + }, + { + "start": 16631.6, + "end": 16636.94, + "probability": 0.8851 + }, + { + "start": 16638.0, + "end": 16639.86, + "probability": 0.9437 + }, + { + "start": 16640.9, + "end": 16649.12, + "probability": 0.9332 + }, + { + "start": 16649.66, + "end": 16650.36, + "probability": 0.7614 + }, + { + "start": 16650.9, + "end": 16651.92, + "probability": 0.8114 + }, + { + "start": 16652.86, + "end": 16655.38, + "probability": 0.5278 + }, + { + "start": 16655.44, + "end": 16656.26, + "probability": 0.934 + }, + { + "start": 16656.46, + "end": 16660.28, + "probability": 0.9524 + }, + { + "start": 16660.28, + "end": 16664.04, + "probability": 0.9594 + }, + { + "start": 16665.1, + "end": 16669.14, + "probability": 0.8521 + }, + { + "start": 16671.46, + "end": 16673.28, + "probability": 0.7802 + }, + { + "start": 16673.58, + "end": 16678.08, + "probability": 0.9817 + }, + { + "start": 16679.38, + "end": 16682.82, + "probability": 0.8516 + }, + { + "start": 16683.88, + "end": 16686.98, + "probability": 0.912 + }, + { + "start": 16687.7, + "end": 16693.86, + "probability": 0.9938 + }, + { + "start": 16694.74, + "end": 16702.34, + "probability": 0.9856 + }, + { + "start": 16703.3, + "end": 16707.23, + "probability": 0.9883 + }, + { + "start": 16707.94, + "end": 16710.02, + "probability": 0.9412 + }, + { + "start": 16710.76, + "end": 16712.74, + "probability": 0.8796 + }, + { + "start": 16713.38, + "end": 16715.54, + "probability": 0.9062 + }, + { + "start": 16716.04, + "end": 16721.58, + "probability": 0.6516 + }, + { + "start": 16722.28, + "end": 16724.98, + "probability": 0.9641 + }, + { + "start": 16726.58, + "end": 16733.6, + "probability": 0.9635 + }, + { + "start": 16734.2, + "end": 16740.38, + "probability": 0.993 + }, + { + "start": 16741.2, + "end": 16745.64, + "probability": 0.752 + }, + { + "start": 16746.46, + "end": 16747.08, + "probability": 0.8072 + }, + { + "start": 16747.94, + "end": 16749.46, + "probability": 0.9254 + }, + { + "start": 16749.86, + "end": 16750.74, + "probability": 0.8765 + }, + { + "start": 16751.2, + "end": 16754.26, + "probability": 0.9915 + }, + { + "start": 16755.12, + "end": 16756.34, + "probability": 0.7793 + }, + { + "start": 16757.14, + "end": 16759.86, + "probability": 0.9367 + }, + { + "start": 16760.32, + "end": 16763.58, + "probability": 0.8555 + }, + { + "start": 16763.96, + "end": 16766.94, + "probability": 0.9507 + }, + { + "start": 16767.86, + "end": 16768.08, + "probability": 0.428 + }, + { + "start": 16768.26, + "end": 16773.54, + "probability": 0.8353 + }, + { + "start": 16774.0, + "end": 16781.24, + "probability": 0.9806 + }, + { + "start": 16781.52, + "end": 16782.0, + "probability": 0.0293 + }, + { + "start": 16783.54, + "end": 16785.82, + "probability": 0.401 + }, + { + "start": 16785.94, + "end": 16786.48, + "probability": 0.5439 + }, + { + "start": 16786.58, + "end": 16786.88, + "probability": 0.2787 + }, + { + "start": 16786.96, + "end": 16789.26, + "probability": 0.4814 + }, + { + "start": 16789.72, + "end": 16790.94, + "probability": 0.2058 + }, + { + "start": 16791.12, + "end": 16791.8, + "probability": 0.5957 + }, + { + "start": 16791.8, + "end": 16794.28, + "probability": 0.0301 + }, + { + "start": 16794.48, + "end": 16794.48, + "probability": 0.0818 + }, + { + "start": 16794.48, + "end": 16794.54, + "probability": 0.4167 + }, + { + "start": 16794.54, + "end": 16795.62, + "probability": 0.2131 + }, + { + "start": 16795.66, + "end": 16796.76, + "probability": 0.3665 + }, + { + "start": 16796.88, + "end": 16799.82, + "probability": 0.3896 + }, + { + "start": 16800.3, + "end": 16800.38, + "probability": 0.4798 + }, + { + "start": 16800.9, + "end": 16802.2, + "probability": 0.6066 + }, + { + "start": 16802.52, + "end": 16803.5, + "probability": 0.6513 + }, + { + "start": 16803.64, + "end": 16803.64, + "probability": 0.2291 + }, + { + "start": 16804.06, + "end": 16805.62, + "probability": 0.059 + }, + { + "start": 16805.62, + "end": 16813.22, + "probability": 0.8908 + }, + { + "start": 16813.36, + "end": 16815.28, + "probability": 0.8282 + }, + { + "start": 16815.8, + "end": 16819.48, + "probability": 0.8973 + }, + { + "start": 16820.56, + "end": 16825.8, + "probability": 0.9748 + }, + { + "start": 16826.2, + "end": 16827.5, + "probability": 0.9681 + }, + { + "start": 16828.16, + "end": 16829.36, + "probability": 0.7597 + }, + { + "start": 16829.4, + "end": 16835.24, + "probability": 0.8361 + }, + { + "start": 16836.36, + "end": 16837.36, + "probability": 0.943 + }, + { + "start": 16838.2, + "end": 16840.08, + "probability": 0.849 + }, + { + "start": 16840.12, + "end": 16843.38, + "probability": 0.8967 + }, + { + "start": 16844.04, + "end": 16845.56, + "probability": 0.6917 + }, + { + "start": 16846.26, + "end": 16846.96, + "probability": 0.8252 + }, + { + "start": 16847.99, + "end": 16851.16, + "probability": 0.8171 + }, + { + "start": 16852.3, + "end": 16854.28, + "probability": 0.9186 + }, + { + "start": 16854.92, + "end": 16861.54, + "probability": 0.9961 + }, + { + "start": 16862.28, + "end": 16870.16, + "probability": 0.774 + }, + { + "start": 16870.68, + "end": 16871.89, + "probability": 0.9678 + }, + { + "start": 16872.49, + "end": 16876.11, + "probability": 0.9934 + }, + { + "start": 16876.63, + "end": 16879.55, + "probability": 0.9977 + }, + { + "start": 16881.79, + "end": 16882.78, + "probability": 0.2239 + }, + { + "start": 16884.01, + "end": 16884.25, + "probability": 0.6323 + }, + { + "start": 16884.25, + "end": 16884.97, + "probability": 0.9725 + }, + { + "start": 16885.13, + "end": 16886.13, + "probability": 0.9419 + }, + { + "start": 16886.33, + "end": 16887.19, + "probability": 0.5736 + }, + { + "start": 16887.29, + "end": 16887.87, + "probability": 0.4189 + }, + { + "start": 16887.89, + "end": 16889.13, + "probability": 0.2856 + }, + { + "start": 16889.43, + "end": 16890.01, + "probability": 0.4652 + }, + { + "start": 16890.27, + "end": 16890.53, + "probability": 0.2974 + }, + { + "start": 16890.73, + "end": 16894.5, + "probability": 0.2103 + }, + { + "start": 16895.63, + "end": 16896.39, + "probability": 0.2586 + }, + { + "start": 16896.83, + "end": 16898.11, + "probability": 0.2852 + }, + { + "start": 16898.21, + "end": 16900.97, + "probability": 0.6198 + }, + { + "start": 16901.35, + "end": 16905.09, + "probability": 0.0786 + }, + { + "start": 16905.09, + "end": 16905.09, + "probability": 0.0815 + }, + { + "start": 16905.09, + "end": 16905.09, + "probability": 0.3451 + }, + { + "start": 16905.09, + "end": 16905.09, + "probability": 0.0873 + }, + { + "start": 16905.09, + "end": 16905.91, + "probability": 0.254 + }, + { + "start": 16906.83, + "end": 16906.87, + "probability": 0.081 + }, + { + "start": 16906.87, + "end": 16911.49, + "probability": 0.6572 + }, + { + "start": 16912.09, + "end": 16917.71, + "probability": 0.6326 + }, + { + "start": 16918.07, + "end": 16921.41, + "probability": 0.9873 + }, + { + "start": 16921.65, + "end": 16922.19, + "probability": 0.2979 + }, + { + "start": 16922.29, + "end": 16922.87, + "probability": 0.4513 + }, + { + "start": 16923.45, + "end": 16925.51, + "probability": 0.2026 + }, + { + "start": 16925.67, + "end": 16928.79, + "probability": 0.2579 + }, + { + "start": 16928.79, + "end": 16938.77, + "probability": 0.5748 + }, + { + "start": 16939.35, + "end": 16939.77, + "probability": 0.0375 + }, + { + "start": 16939.77, + "end": 16942.79, + "probability": 0.4566 + }, + { + "start": 16942.79, + "end": 16945.57, + "probability": 0.1069 + }, + { + "start": 16946.31, + "end": 16946.53, + "probability": 0.0433 + }, + { + "start": 16947.09, + "end": 16950.61, + "probability": 0.0297 + }, + { + "start": 16951.47, + "end": 16952.47, + "probability": 0.1346 + }, + { + "start": 16952.47, + "end": 16952.47, + "probability": 0.0219 + }, + { + "start": 16954.09, + "end": 16956.63, + "probability": 0.0693 + }, + { + "start": 16956.63, + "end": 16957.79, + "probability": 0.1705 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.14, + "end": 16997.9, + "probability": 0.3541 + }, + { + "start": 16999.18, + "end": 17002.66, + "probability": 0.8193 + }, + { + "start": 17004.02, + "end": 17011.34, + "probability": 0.9377 + }, + { + "start": 17011.34, + "end": 17016.84, + "probability": 0.9684 + }, + { + "start": 17017.96, + "end": 17022.6, + "probability": 0.9877 + }, + { + "start": 17022.66, + "end": 17026.19, + "probability": 0.6642 + }, + { + "start": 17026.36, + "end": 17026.82, + "probability": 0.3403 + }, + { + "start": 17026.92, + "end": 17027.38, + "probability": 0.6817 + }, + { + "start": 17027.58, + "end": 17029.02, + "probability": 0.6987 + }, + { + "start": 17030.42, + "end": 17030.42, + "probability": 0.0333 + }, + { + "start": 17030.42, + "end": 17031.38, + "probability": 0.4973 + }, + { + "start": 17031.5, + "end": 17035.14, + "probability": 0.6654 + }, + { + "start": 17035.84, + "end": 17038.92, + "probability": 0.9325 + }, + { + "start": 17039.28, + "end": 17043.46, + "probability": 0.8441 + }, + { + "start": 17043.62, + "end": 17048.02, + "probability": 0.821 + }, + { + "start": 17052.08, + "end": 17056.2, + "probability": 0.9416 + }, + { + "start": 17056.4, + "end": 17060.92, + "probability": 0.9976 + }, + { + "start": 17061.22, + "end": 17064.52, + "probability": 0.8542 + }, + { + "start": 17064.7, + "end": 17065.8, + "probability": 0.8678 + }, + { + "start": 17065.94, + "end": 17066.5, + "probability": 0.6384 + }, + { + "start": 17066.52, + "end": 17066.84, + "probability": 0.4043 + }, + { + "start": 17068.06, + "end": 17071.66, + "probability": 0.8303 + }, + { + "start": 17071.76, + "end": 17079.64, + "probability": 0.9082 + }, + { + "start": 17079.86, + "end": 17080.14, + "probability": 0.4569 + }, + { + "start": 17080.28, + "end": 17082.8, + "probability": 0.748 + }, + { + "start": 17082.8, + "end": 17087.98, + "probability": 0.994 + }, + { + "start": 17088.38, + "end": 17091.62, + "probability": 0.7716 + }, + { + "start": 17092.0, + "end": 17096.48, + "probability": 0.9938 + }, + { + "start": 17097.54, + "end": 17101.4, + "probability": 0.9437 + }, + { + "start": 17101.52, + "end": 17101.94, + "probability": 0.4572 + }, + { + "start": 17102.46, + "end": 17103.26, + "probability": 0.4431 + }, + { + "start": 17103.3, + "end": 17103.94, + "probability": 0.7939 + }, + { + "start": 17104.14, + "end": 17107.94, + "probability": 0.9841 + }, + { + "start": 17108.74, + "end": 17109.66, + "probability": 0.9767 + }, + { + "start": 17110.42, + "end": 17113.12, + "probability": 0.9714 + }, + { + "start": 17113.26, + "end": 17114.12, + "probability": 0.8998 + }, + { + "start": 17114.36, + "end": 17115.9, + "probability": 0.7453 + }, + { + "start": 17115.96, + "end": 17117.58, + "probability": 0.9653 + }, + { + "start": 17118.02, + "end": 17118.5, + "probability": 0.7552 + }, + { + "start": 17118.84, + "end": 17119.64, + "probability": 0.9006 + }, + { + "start": 17120.3, + "end": 17120.42, + "probability": 0.3486 + }, + { + "start": 17120.42, + "end": 17120.42, + "probability": 0.4296 + }, + { + "start": 17120.42, + "end": 17122.92, + "probability": 0.8071 + }, + { + "start": 17124.04, + "end": 17127.1, + "probability": 0.9329 + }, + { + "start": 17139.02, + "end": 17139.9, + "probability": 0.3366 + }, + { + "start": 17141.42, + "end": 17142.76, + "probability": 0.9478 + }, + { + "start": 17143.84, + "end": 17145.64, + "probability": 0.9432 + }, + { + "start": 17149.92, + "end": 17154.98, + "probability": 0.8088 + }, + { + "start": 17155.08, + "end": 17155.3, + "probability": 0.7597 + }, + { + "start": 17156.14, + "end": 17156.74, + "probability": 0.8043 + }, + { + "start": 17161.02, + "end": 17164.96, + "probability": 0.888 + }, + { + "start": 17166.5, + "end": 17170.1, + "probability": 0.9949 + }, + { + "start": 17170.98, + "end": 17172.6, + "probability": 0.9993 + }, + { + "start": 17173.64, + "end": 17176.48, + "probability": 0.9971 + }, + { + "start": 17177.1, + "end": 17178.92, + "probability": 0.9799 + }, + { + "start": 17179.5, + "end": 17182.02, + "probability": 0.9531 + }, + { + "start": 17183.18, + "end": 17184.22, + "probability": 0.8517 + }, + { + "start": 17184.32, + "end": 17185.92, + "probability": 0.8705 + }, + { + "start": 17186.02, + "end": 17186.34, + "probability": 0.589 + }, + { + "start": 17187.16, + "end": 17188.66, + "probability": 0.9939 + }, + { + "start": 17190.16, + "end": 17192.86, + "probability": 0.99 + }, + { + "start": 17193.42, + "end": 17198.1, + "probability": 0.9927 + }, + { + "start": 17199.06, + "end": 17200.18, + "probability": 0.7009 + }, + { + "start": 17200.74, + "end": 17202.36, + "probability": 0.8267 + }, + { + "start": 17203.14, + "end": 17205.28, + "probability": 0.9127 + }, + { + "start": 17205.28, + "end": 17208.84, + "probability": 0.9964 + }, + { + "start": 17209.74, + "end": 17211.7, + "probability": 0.6688 + }, + { + "start": 17212.34, + "end": 17216.88, + "probability": 0.995 + }, + { + "start": 17216.88, + "end": 17222.1, + "probability": 0.9884 + }, + { + "start": 17223.0, + "end": 17225.02, + "probability": 0.8113 + }, + { + "start": 17226.74, + "end": 17230.5, + "probability": 0.9927 + }, + { + "start": 17231.36, + "end": 17233.94, + "probability": 0.7331 + }, + { + "start": 17234.68, + "end": 17235.4, + "probability": 0.9525 + }, + { + "start": 17236.5, + "end": 17240.5, + "probability": 0.9941 + }, + { + "start": 17240.5, + "end": 17244.68, + "probability": 0.9972 + }, + { + "start": 17245.62, + "end": 17249.0, + "probability": 0.8759 + }, + { + "start": 17249.88, + "end": 17253.32, + "probability": 0.9049 + }, + { + "start": 17254.42, + "end": 17261.02, + "probability": 0.9926 + }, + { + "start": 17261.9, + "end": 17262.44, + "probability": 0.7167 + }, + { + "start": 17262.58, + "end": 17266.96, + "probability": 0.9961 + }, + { + "start": 17267.68, + "end": 17269.94, + "probability": 0.8083 + }, + { + "start": 17270.4, + "end": 17271.64, + "probability": 0.8901 + }, + { + "start": 17272.22, + "end": 17275.74, + "probability": 0.9837 + }, + { + "start": 17276.28, + "end": 17278.08, + "probability": 0.9803 + }, + { + "start": 17279.06, + "end": 17281.3, + "probability": 0.9397 + }, + { + "start": 17282.22, + "end": 17286.58, + "probability": 0.9862 + }, + { + "start": 17287.28, + "end": 17289.86, + "probability": 0.9849 + }, + { + "start": 17290.7, + "end": 17292.37, + "probability": 0.9663 + }, + { + "start": 17292.96, + "end": 17296.86, + "probability": 0.958 + }, + { + "start": 17297.4, + "end": 17299.0, + "probability": 0.9509 + }, + { + "start": 17299.86, + "end": 17300.58, + "probability": 0.8281 + }, + { + "start": 17301.1, + "end": 17303.06, + "probability": 0.8052 + }, + { + "start": 17304.36, + "end": 17305.14, + "probability": 0.7219 + }, + { + "start": 17305.82, + "end": 17307.44, + "probability": 0.8384 + }, + { + "start": 17310.54, + "end": 17312.59, + "probability": 0.9579 + }, + { + "start": 17313.54, + "end": 17316.18, + "probability": 0.9163 + }, + { + "start": 17316.2, + "end": 17317.36, + "probability": 0.9475 + }, + { + "start": 17321.6, + "end": 17322.52, + "probability": 0.2361 + }, + { + "start": 17323.84, + "end": 17327.96, + "probability": 0.0938 + }, + { + "start": 17328.34, + "end": 17330.42, + "probability": 0.0221 + }, + { + "start": 17333.56, + "end": 17333.56, + "probability": 0.1021 + }, + { + "start": 17333.56, + "end": 17340.68, + "probability": 0.7508 + }, + { + "start": 17341.32, + "end": 17342.56, + "probability": 0.8909 + }, + { + "start": 17343.78, + "end": 17346.8, + "probability": 0.6172 + }, + { + "start": 17351.72, + "end": 17356.38, + "probability": 0.9251 + }, + { + "start": 17356.9, + "end": 17359.18, + "probability": 0.9505 + }, + { + "start": 17362.36, + "end": 17363.48, + "probability": 0.0362 + }, + { + "start": 17363.78, + "end": 17363.78, + "probability": 0.4149 + }, + { + "start": 17363.8, + "end": 17368.68, + "probability": 0.8441 + }, + { + "start": 17368.84, + "end": 17373.56, + "probability": 0.9097 + }, + { + "start": 17373.96, + "end": 17374.98, + "probability": 0.9314 + }, + { + "start": 17375.44, + "end": 17376.26, + "probability": 0.6509 + }, + { + "start": 17378.16, + "end": 17378.52, + "probability": 0.7595 + }, + { + "start": 17379.92, + "end": 17383.71, + "probability": 0.9567 + }, + { + "start": 17386.2, + "end": 17387.0, + "probability": 0.8918 + }, + { + "start": 17388.44, + "end": 17391.48, + "probability": 0.7986 + }, + { + "start": 17392.34, + "end": 17397.56, + "probability": 0.9937 + }, + { + "start": 17397.56, + "end": 17405.38, + "probability": 0.9836 + }, + { + "start": 17405.44, + "end": 17407.28, + "probability": 0.8443 + }, + { + "start": 17408.12, + "end": 17411.46, + "probability": 0.9538 + }, + { + "start": 17412.2, + "end": 17420.12, + "probability": 0.9652 + }, + { + "start": 17420.22, + "end": 17421.3, + "probability": 0.7295 + }, + { + "start": 17421.3, + "end": 17421.34, + "probability": 0.4926 + }, + { + "start": 17421.46, + "end": 17424.64, + "probability": 0.9722 + }, + { + "start": 17425.14, + "end": 17425.5, + "probability": 0.7546 + }, + { + "start": 17427.42, + "end": 17432.04, + "probability": 0.9358 + }, + { + "start": 17432.04, + "end": 17432.56, + "probability": 0.8155 + }, + { + "start": 17432.8, + "end": 17433.32, + "probability": 0.5218 + }, + { + "start": 17433.68, + "end": 17434.52, + "probability": 0.9769 + }, + { + "start": 17435.26, + "end": 17440.68, + "probability": 0.9992 + }, + { + "start": 17441.44, + "end": 17447.44, + "probability": 0.9682 + }, + { + "start": 17448.18, + "end": 17457.42, + "probability": 0.9795 + }, + { + "start": 17458.0, + "end": 17462.26, + "probability": 0.9962 + }, + { + "start": 17464.06, + "end": 17470.2, + "probability": 0.9873 + }, + { + "start": 17470.48, + "end": 17474.44, + "probability": 0.8965 + }, + { + "start": 17474.66, + "end": 17477.6, + "probability": 0.9732 + }, + { + "start": 17477.72, + "end": 17480.32, + "probability": 0.9861 + }, + { + "start": 17480.38, + "end": 17485.28, + "probability": 0.9578 + }, + { + "start": 17485.68, + "end": 17492.18, + "probability": 0.9317 + }, + { + "start": 17492.46, + "end": 17492.9, + "probability": 0.6668 + }, + { + "start": 17493.1, + "end": 17497.12, + "probability": 0.9086 + }, + { + "start": 17497.4, + "end": 17498.84, + "probability": 0.7717 + }, + { + "start": 17499.4, + "end": 17503.16, + "probability": 0.5776 + }, + { + "start": 17504.04, + "end": 17508.78, + "probability": 0.8979 + }, + { + "start": 17508.82, + "end": 17513.74, + "probability": 0.9919 + }, + { + "start": 17514.04, + "end": 17521.7, + "probability": 0.7448 + }, + { + "start": 17522.04, + "end": 17522.04, + "probability": 0.0608 + }, + { + "start": 17522.04, + "end": 17523.4, + "probability": 0.8794 + }, + { + "start": 17524.08, + "end": 17525.78, + "probability": 0.9703 + }, + { + "start": 17526.64, + "end": 17530.06, + "probability": 0.9604 + }, + { + "start": 17530.32, + "end": 17532.82, + "probability": 0.9619 + }, + { + "start": 17533.32, + "end": 17538.32, + "probability": 0.9302 + }, + { + "start": 17538.32, + "end": 17542.56, + "probability": 0.9417 + }, + { + "start": 17542.86, + "end": 17546.7, + "probability": 0.8032 + }, + { + "start": 17547.82, + "end": 17550.14, + "probability": 0.759 + }, + { + "start": 17550.18, + "end": 17551.18, + "probability": 0.936 + }, + { + "start": 17551.36, + "end": 17555.06, + "probability": 0.9483 + }, + { + "start": 17555.5, + "end": 17560.0, + "probability": 0.7006 + }, + { + "start": 17560.0, + "end": 17563.7, + "probability": 0.9969 + }, + { + "start": 17563.82, + "end": 17566.98, + "probability": 0.9907 + }, + { + "start": 17567.36, + "end": 17568.06, + "probability": 0.4793 + }, + { + "start": 17568.16, + "end": 17572.5, + "probability": 0.9647 + }, + { + "start": 17573.32, + "end": 17582.14, + "probability": 0.9943 + }, + { + "start": 17582.84, + "end": 17585.32, + "probability": 0.9736 + }, + { + "start": 17585.68, + "end": 17587.3, + "probability": 0.958 + }, + { + "start": 17587.3, + "end": 17589.16, + "probability": 0.8523 + }, + { + "start": 17589.34, + "end": 17591.78, + "probability": 0.6723 + }, + { + "start": 17592.26, + "end": 17594.54, + "probability": 0.9753 + }, + { + "start": 17595.06, + "end": 17599.64, + "probability": 0.986 + }, + { + "start": 17600.32, + "end": 17604.64, + "probability": 0.631 + }, + { + "start": 17604.88, + "end": 17605.48, + "probability": 0.5862 + }, + { + "start": 17605.5, + "end": 17612.4, + "probability": 0.9814 + }, + { + "start": 17613.16, + "end": 17618.0, + "probability": 0.9557 + }, + { + "start": 17618.16, + "end": 17620.81, + "probability": 0.8462 + }, + { + "start": 17621.14, + "end": 17625.24, + "probability": 0.9963 + }, + { + "start": 17625.24, + "end": 17629.24, + "probability": 0.9992 + }, + { + "start": 17629.72, + "end": 17631.5, + "probability": 0.8276 + }, + { + "start": 17631.64, + "end": 17634.58, + "probability": 0.9842 + }, + { + "start": 17634.7, + "end": 17638.74, + "probability": 0.9451 + }, + { + "start": 17639.08, + "end": 17642.78, + "probability": 0.991 + }, + { + "start": 17643.02, + "end": 17643.84, + "probability": 0.9995 + }, + { + "start": 17645.81, + "end": 17648.98, + "probability": 0.9936 + }, + { + "start": 17649.18, + "end": 17651.24, + "probability": 0.4896 + }, + { + "start": 17651.36, + "end": 17652.58, + "probability": 0.5808 + }, + { + "start": 17652.66, + "end": 17654.08, + "probability": 0.9253 + }, + { + "start": 17654.2, + "end": 17657.84, + "probability": 0.9041 + }, + { + "start": 17658.16, + "end": 17662.88, + "probability": 0.8958 + }, + { + "start": 17663.02, + "end": 17669.62, + "probability": 0.8998 + }, + { + "start": 17669.62, + "end": 17677.04, + "probability": 0.9735 + }, + { + "start": 17677.6, + "end": 17680.08, + "probability": 0.8327 + }, + { + "start": 17680.74, + "end": 17681.84, + "probability": 0.7075 + }, + { + "start": 17682.2, + "end": 17682.76, + "probability": 0.8079 + }, + { + "start": 17683.2, + "end": 17687.3, + "probability": 0.9856 + }, + { + "start": 17689.58, + "end": 17689.94, + "probability": 0.2421 + }, + { + "start": 17689.94, + "end": 17694.88, + "probability": 0.6467 + }, + { + "start": 17695.0, + "end": 17695.94, + "probability": 0.8216 + }, + { + "start": 17696.88, + "end": 17702.24, + "probability": 0.9816 + }, + { + "start": 17702.62, + "end": 17704.62, + "probability": 0.969 + }, + { + "start": 17705.48, + "end": 17706.4, + "probability": 0.7289 + }, + { + "start": 17707.04, + "end": 17709.58, + "probability": 0.8577 + }, + { + "start": 17709.92, + "end": 17713.12, + "probability": 0.9635 + }, + { + "start": 17713.3, + "end": 17714.28, + "probability": 0.9868 + }, + { + "start": 17714.46, + "end": 17715.12, + "probability": 0.5028 + }, + { + "start": 17715.2, + "end": 17715.96, + "probability": 0.8761 + }, + { + "start": 17716.26, + "end": 17720.14, + "probability": 0.9559 + }, + { + "start": 17720.7, + "end": 17722.02, + "probability": 0.9896 + }, + { + "start": 17723.93, + "end": 17726.86, + "probability": 0.7967 + }, + { + "start": 17728.18, + "end": 17732.64, + "probability": 0.9781 + }, + { + "start": 17733.3, + "end": 17737.9, + "probability": 0.995 + }, + { + "start": 17737.9, + "end": 17744.52, + "probability": 0.9631 + }, + { + "start": 17747.0, + "end": 17752.6, + "probability": 0.9055 + }, + { + "start": 17752.6, + "end": 17755.58, + "probability": 0.9645 + }, + { + "start": 17756.06, + "end": 17757.2, + "probability": 0.7184 + }, + { + "start": 17757.74, + "end": 17758.82, + "probability": 0.9245 + }, + { + "start": 17758.96, + "end": 17767.08, + "probability": 0.9492 + }, + { + "start": 17767.6, + "end": 17770.64, + "probability": 0.9386 + }, + { + "start": 17770.74, + "end": 17771.66, + "probability": 0.8905 + }, + { + "start": 17771.74, + "end": 17774.9, + "probability": 0.9307 + }, + { + "start": 17774.96, + "end": 17777.78, + "probability": 0.8484 + }, + { + "start": 17778.96, + "end": 17784.68, + "probability": 0.9978 + }, + { + "start": 17784.84, + "end": 17786.3, + "probability": 0.9189 + }, + { + "start": 17787.0, + "end": 17792.0, + "probability": 0.9927 + }, + { + "start": 17792.36, + "end": 17797.3, + "probability": 0.8262 + }, + { + "start": 17798.08, + "end": 17798.88, + "probability": 0.5869 + }, + { + "start": 17799.56, + "end": 17801.88, + "probability": 0.9668 + }, + { + "start": 17802.5, + "end": 17805.86, + "probability": 0.9675 + }, + { + "start": 17806.32, + "end": 17810.48, + "probability": 0.949 + }, + { + "start": 17810.56, + "end": 17815.74, + "probability": 0.9971 + }, + { + "start": 17815.74, + "end": 17820.76, + "probability": 0.995 + }, + { + "start": 17821.38, + "end": 17824.92, + "probability": 0.9963 + }, + { + "start": 17825.26, + "end": 17829.37, + "probability": 0.9927 + }, + { + "start": 17829.6, + "end": 17830.74, + "probability": 0.9253 + }, + { + "start": 17831.1, + "end": 17833.2, + "probability": 0.6571 + }, + { + "start": 17833.2, + "end": 17843.44, + "probability": 0.9775 + }, + { + "start": 17843.7, + "end": 17845.72, + "probability": 0.9766 + }, + { + "start": 17845.86, + "end": 17848.52, + "probability": 0.6785 + }, + { + "start": 17848.82, + "end": 17850.42, + "probability": 0.9412 + }, + { + "start": 17850.52, + "end": 17851.18, + "probability": 0.522 + }, + { + "start": 17851.34, + "end": 17851.98, + "probability": 0.6017 + }, + { + "start": 17852.28, + "end": 17855.42, + "probability": 0.9585 + }, + { + "start": 17855.76, + "end": 17856.68, + "probability": 0.7755 + }, + { + "start": 17856.76, + "end": 17858.26, + "probability": 0.9437 + }, + { + "start": 17858.94, + "end": 17860.62, + "probability": 0.9927 + }, + { + "start": 17862.0, + "end": 17863.9, + "probability": 0.9219 + }, + { + "start": 17864.12, + "end": 17866.52, + "probability": 0.9937 + }, + { + "start": 17866.6, + "end": 17867.54, + "probability": 0.7605 + }, + { + "start": 17867.54, + "end": 17870.58, + "probability": 0.9858 + }, + { + "start": 17870.74, + "end": 17875.56, + "probability": 0.8529 + }, + { + "start": 17876.1, + "end": 17879.72, + "probability": 0.8606 + }, + { + "start": 17879.94, + "end": 17883.0, + "probability": 0.9958 + }, + { + "start": 17883.0, + "end": 17887.44, + "probability": 0.9326 + }, + { + "start": 17887.82, + "end": 17892.46, + "probability": 0.9922 + }, + { + "start": 17893.12, + "end": 17898.3, + "probability": 0.9653 + }, + { + "start": 17899.22, + "end": 17903.84, + "probability": 0.9585 + }, + { + "start": 17904.5, + "end": 17906.66, + "probability": 0.9212 + }, + { + "start": 17906.8, + "end": 17907.16, + "probability": 0.5154 + }, + { + "start": 17907.56, + "end": 17910.6, + "probability": 0.7283 + }, + { + "start": 17910.76, + "end": 17911.6, + "probability": 0.7693 + }, + { + "start": 17912.82, + "end": 17917.38, + "probability": 0.9832 + }, + { + "start": 17917.48, + "end": 17919.76, + "probability": 0.7927 + }, + { + "start": 17920.28, + "end": 17925.06, + "probability": 0.9925 + }, + { + "start": 17925.12, + "end": 17926.34, + "probability": 0.688 + }, + { + "start": 17927.0, + "end": 17933.2, + "probability": 0.9851 + }, + { + "start": 17933.3, + "end": 17936.98, + "probability": 0.995 + }, + { + "start": 17937.74, + "end": 17940.28, + "probability": 0.8831 + }, + { + "start": 17940.42, + "end": 17942.38, + "probability": 0.9767 + }, + { + "start": 17942.78, + "end": 17945.82, + "probability": 0.9675 + }, + { + "start": 17945.94, + "end": 17949.22, + "probability": 0.9884 + }, + { + "start": 17949.58, + "end": 17951.48, + "probability": 0.937 + }, + { + "start": 17951.66, + "end": 17954.62, + "probability": 0.9166 + }, + { + "start": 17958.08, + "end": 17960.22, + "probability": 0.1019 + }, + { + "start": 17960.22, + "end": 17961.06, + "probability": 0.1332 + }, + { + "start": 17961.06, + "end": 17962.22, + "probability": 0.1171 + }, + { + "start": 17962.28, + "end": 17963.9, + "probability": 0.2458 + }, + { + "start": 17965.64, + "end": 17965.74, + "probability": 0.2702 + }, + { + "start": 17965.84, + "end": 17966.84, + "probability": 0.2811 + }, + { + "start": 17966.86, + "end": 17967.21, + "probability": 0.2065 + }, + { + "start": 17968.34, + "end": 17968.94, + "probability": 0.7942 + }, + { + "start": 17969.54, + "end": 17970.54, + "probability": 0.9185 + }, + { + "start": 17970.58, + "end": 17972.22, + "probability": 0.7919 + }, + { + "start": 17972.5, + "end": 17973.58, + "probability": 0.9082 + }, + { + "start": 17973.7, + "end": 17974.7, + "probability": 0.8525 + }, + { + "start": 17974.82, + "end": 17976.76, + "probability": 0.9763 + }, + { + "start": 17977.1, + "end": 17977.66, + "probability": 0.7425 + }, + { + "start": 17978.7, + "end": 17979.46, + "probability": 0.2058 + }, + { + "start": 17979.46, + "end": 17979.46, + "probability": 0.0374 + }, + { + "start": 17979.46, + "end": 17981.66, + "probability": 0.8423 + }, + { + "start": 17981.82, + "end": 17983.34, + "probability": 0.0485 + }, + { + "start": 17983.34, + "end": 17985.98, + "probability": 0.6094 + }, + { + "start": 17986.08, + "end": 17989.54, + "probability": 0.7162 + }, + { + "start": 17989.78, + "end": 17990.38, + "probability": 0.8004 + }, + { + "start": 17990.46, + "end": 17991.38, + "probability": 0.9076 + }, + { + "start": 17991.8, + "end": 17992.5, + "probability": 0.8236 + }, + { + "start": 17992.5, + "end": 17997.32, + "probability": 0.9912 + }, + { + "start": 17997.64, + "end": 17999.26, + "probability": 0.9456 + }, + { + "start": 17999.34, + "end": 18003.12, + "probability": 0.8006 + }, + { + "start": 18003.26, + "end": 18004.3, + "probability": 0.8918 + }, + { + "start": 18004.7, + "end": 18006.94, + "probability": 0.9988 + }, + { + "start": 18007.46, + "end": 18007.82, + "probability": 0.5828 + }, + { + "start": 18008.02, + "end": 18009.49, + "probability": 0.8768 + }, + { + "start": 18010.02, + "end": 18011.58, + "probability": 0.9558 + }, + { + "start": 18011.84, + "end": 18014.14, + "probability": 0.9943 + }, + { + "start": 18014.16, + "end": 18015.05, + "probability": 0.4648 + }, + { + "start": 18015.74, + "end": 18021.82, + "probability": 0.5385 + }, + { + "start": 18021.92, + "end": 18022.9, + "probability": 0.741 + }, + { + "start": 18022.94, + "end": 18024.72, + "probability": 0.8283 + }, + { + "start": 18025.08, + "end": 18027.94, + "probability": 0.9845 + }, + { + "start": 18028.04, + "end": 18030.61, + "probability": 0.9385 + }, + { + "start": 18031.44, + "end": 18032.21, + "probability": 0.7178 + }, + { + "start": 18032.56, + "end": 18035.36, + "probability": 0.9071 + }, + { + "start": 18035.54, + "end": 18038.48, + "probability": 0.9951 + }, + { + "start": 18038.9, + "end": 18041.94, + "probability": 0.9989 + }, + { + "start": 18041.94, + "end": 18044.8, + "probability": 0.9976 + }, + { + "start": 18045.48, + "end": 18047.72, + "probability": 0.9785 + }, + { + "start": 18047.8, + "end": 18053.46, + "probability": 0.985 + }, + { + "start": 18053.8, + "end": 18060.82, + "probability": 0.9646 + }, + { + "start": 18061.06, + "end": 18062.94, + "probability": 0.5374 + }, + { + "start": 18063.08, + "end": 18067.82, + "probability": 0.8025 + }, + { + "start": 18068.08, + "end": 18071.74, + "probability": 0.934 + }, + { + "start": 18071.74, + "end": 18076.82, + "probability": 0.991 + }, + { + "start": 18076.96, + "end": 18077.42, + "probability": 0.7273 + }, + { + "start": 18077.7, + "end": 18079.36, + "probability": 0.4384 + }, + { + "start": 18079.38, + "end": 18081.6, + "probability": 0.9189 + }, + { + "start": 18083.2, + "end": 18084.34, + "probability": 0.2018 + }, + { + "start": 18084.74, + "end": 18085.37, + "probability": 0.0356 + }, + { + "start": 18085.6, + "end": 18086.26, + "probability": 0.0627 + }, + { + "start": 18086.58, + "end": 18089.86, + "probability": 0.0974 + }, + { + "start": 18094.62, + "end": 18095.48, + "probability": 0.0326 + }, + { + "start": 18122.06, + "end": 18122.86, + "probability": 0.3973 + }, + { + "start": 18123.6, + "end": 18126.64, + "probability": 0.9949 + }, + { + "start": 18126.86, + "end": 18129.86, + "probability": 0.9312 + }, + { + "start": 18130.24, + "end": 18134.02, + "probability": 0.9368 + }, + { + "start": 18134.48, + "end": 18136.78, + "probability": 0.9447 + }, + { + "start": 18136.9, + "end": 18137.28, + "probability": 0.7801 + }, + { + "start": 18138.58, + "end": 18141.22, + "probability": 0.4923 + }, + { + "start": 18141.28, + "end": 18142.06, + "probability": 0.7385 + }, + { + "start": 18142.18, + "end": 18142.96, + "probability": 0.1631 + }, + { + "start": 18143.2, + "end": 18143.22, + "probability": 0.0211 + }, + { + "start": 18143.22, + "end": 18145.58, + "probability": 0.7576 + }, + { + "start": 18145.84, + "end": 18148.22, + "probability": 0.1137 + }, + { + "start": 18149.86, + "end": 18152.06, + "probability": 0.6134 + }, + { + "start": 18152.12, + "end": 18152.4, + "probability": 0.4329 + }, + { + "start": 18152.54, + "end": 18156.18, + "probability": 0.7272 + }, + { + "start": 18156.98, + "end": 18158.46, + "probability": 0.9469 + }, + { + "start": 18159.3, + "end": 18159.82, + "probability": 0.5766 + }, + { + "start": 18159.94, + "end": 18160.4, + "probability": 0.7086 + }, + { + "start": 18160.44, + "end": 18161.74, + "probability": 0.7767 + }, + { + "start": 18162.22, + "end": 18163.18, + "probability": 0.2262 + }, + { + "start": 18163.34, + "end": 18163.68, + "probability": 0.8578 + }, + { + "start": 18164.38, + "end": 18166.42, + "probability": 0.9922 + }, + { + "start": 18166.42, + "end": 18169.7, + "probability": 0.407 + }, + { + "start": 18172.7, + "end": 18174.14, + "probability": 0.7912 + }, + { + "start": 18174.64, + "end": 18177.4, + "probability": 0.9553 + }, + { + "start": 18178.04, + "end": 18184.7, + "probability": 0.9935 + }, + { + "start": 18185.56, + "end": 18192.72, + "probability": 0.9986 + }, + { + "start": 18193.62, + "end": 18199.72, + "probability": 0.6742 + }, + { + "start": 18200.8, + "end": 18203.22, + "probability": 0.9873 + }, + { + "start": 18203.44, + "end": 18208.06, + "probability": 0.9851 + }, + { + "start": 18208.06, + "end": 18208.76, + "probability": 0.814 + }, + { + "start": 18209.94, + "end": 18211.78, + "probability": 0.4264 + }, + { + "start": 18211.82, + "end": 18214.56, + "probability": 0.8904 + }, + { + "start": 18214.62, + "end": 18216.01, + "probability": 0.8788 + }, + { + "start": 18216.22, + "end": 18219.16, + "probability": 0.9064 + }, + { + "start": 18219.2, + "end": 18219.38, + "probability": 0.9354 + }, + { + "start": 18225.78, + "end": 18226.36, + "probability": 0.6347 + }, + { + "start": 18226.46, + "end": 18230.16, + "probability": 0.8004 + }, + { + "start": 18230.32, + "end": 18232.14, + "probability": 0.5878 + }, + { + "start": 18232.76, + "end": 18233.14, + "probability": 0.8928 + }, + { + "start": 18234.62, + "end": 18236.64, + "probability": 0.8535 + }, + { + "start": 18237.06, + "end": 18239.3, + "probability": 0.6662 + }, + { + "start": 18239.84, + "end": 18240.98, + "probability": 0.8876 + }, + { + "start": 18241.12, + "end": 18243.08, + "probability": 0.989 + }, + { + "start": 18243.38, + "end": 18244.7, + "probability": 0.8878 + }, + { + "start": 18245.26, + "end": 18247.28, + "probability": 0.9771 + }, + { + "start": 18247.46, + "end": 18251.26, + "probability": 0.789 + }, + { + "start": 18251.78, + "end": 18253.76, + "probability": 0.8928 + }, + { + "start": 18253.84, + "end": 18255.14, + "probability": 0.7342 + }, + { + "start": 18255.26, + "end": 18256.94, + "probability": 0.7997 + }, + { + "start": 18257.32, + "end": 18258.24, + "probability": 0.9114 + }, + { + "start": 18258.42, + "end": 18261.7, + "probability": 0.9307 + }, + { + "start": 18261.74, + "end": 18266.42, + "probability": 0.9904 + }, + { + "start": 18266.92, + "end": 18268.14, + "probability": 0.9058 + }, + { + "start": 18268.98, + "end": 18270.06, + "probability": 0.9957 + }, + { + "start": 18270.24, + "end": 18270.59, + "probability": 0.8633 + }, + { + "start": 18271.22, + "end": 18272.56, + "probability": 0.9489 + }, + { + "start": 18273.28, + "end": 18273.92, + "probability": 0.7313 + }, + { + "start": 18274.02, + "end": 18275.26, + "probability": 0.9733 + }, + { + "start": 18275.5, + "end": 18276.86, + "probability": 0.9546 + }, + { + "start": 18277.0, + "end": 18280.3, + "probability": 0.5865 + }, + { + "start": 18281.42, + "end": 18283.1, + "probability": 0.7092 + }, + { + "start": 18283.22, + "end": 18284.48, + "probability": 0.687 + }, + { + "start": 18284.56, + "end": 18285.48, + "probability": 0.9004 + }, + { + "start": 18285.8, + "end": 18286.7, + "probability": 0.9893 + }, + { + "start": 18286.82, + "end": 18287.24, + "probability": 0.803 + }, + { + "start": 18287.88, + "end": 18288.04, + "probability": 0.1217 + }, + { + "start": 18288.04, + "end": 18289.26, + "probability": 0.6021 + }, + { + "start": 18289.6, + "end": 18290.64, + "probability": 0.9618 + }, + { + "start": 18291.12, + "end": 18294.26, + "probability": 0.6817 + }, + { + "start": 18294.46, + "end": 18295.38, + "probability": 0.6904 + }, + { + "start": 18295.58, + "end": 18297.5, + "probability": 0.9842 + }, + { + "start": 18297.88, + "end": 18299.22, + "probability": 0.765 + }, + { + "start": 18299.62, + "end": 18302.02, + "probability": 0.9941 + }, + { + "start": 18302.48, + "end": 18306.94, + "probability": 0.8627 + }, + { + "start": 18307.04, + "end": 18309.38, + "probability": 0.8815 + }, + { + "start": 18309.7, + "end": 18312.0, + "probability": 0.8904 + }, + { + "start": 18313.02, + "end": 18314.33, + "probability": 0.5521 + }, + { + "start": 18314.88, + "end": 18316.78, + "probability": 0.7023 + }, + { + "start": 18316.78, + "end": 18323.58, + "probability": 0.7506 + }, + { + "start": 18323.6, + "end": 18324.79, + "probability": 0.3674 + }, + { + "start": 18325.88, + "end": 18326.18, + "probability": 0.4955 + }, + { + "start": 18327.5, + "end": 18328.12, + "probability": 0.2582 + }, + { + "start": 18328.12, + "end": 18328.12, + "probability": 0.1211 + }, + { + "start": 18328.12, + "end": 18328.12, + "probability": 0.0077 + }, + { + "start": 18328.12, + "end": 18332.73, + "probability": 0.1084 + }, + { + "start": 18333.88, + "end": 18334.54, + "probability": 0.1278 + }, + { + "start": 18335.06, + "end": 18335.88, + "probability": 0.0248 + }, + { + "start": 18335.88, + "end": 18336.54, + "probability": 0.0496 + }, + { + "start": 18339.64, + "end": 18341.38, + "probability": 0.4336 + }, + { + "start": 18341.94, + "end": 18347.42, + "probability": 0.0257 + }, + { + "start": 18347.42, + "end": 18347.5, + "probability": 0.0354 + }, + { + "start": 18348.38, + "end": 18352.08, + "probability": 0.0321 + }, + { + "start": 18353.02, + "end": 18353.42, + "probability": 0.066 + }, + { + "start": 18353.42, + "end": 18353.42, + "probability": 0.0654 + }, + { + "start": 18353.42, + "end": 18356.22, + "probability": 0.2807 + }, + { + "start": 18356.22, + "end": 18358.52, + "probability": 0.6956 + }, + { + "start": 18360.46, + "end": 18363.12, + "probability": 0.6503 + }, + { + "start": 18363.18, + "end": 18363.74, + "probability": 0.7539 + }, + { + "start": 18364.44, + "end": 18366.16, + "probability": 0.4142 + }, + { + "start": 18366.88, + "end": 18369.9, + "probability": 0.4646 + }, + { + "start": 18370.2, + "end": 18372.4, + "probability": 0.5317 + }, + { + "start": 18373.42, + "end": 18376.7, + "probability": 0.9219 + }, + { + "start": 18376.78, + "end": 18381.38, + "probability": 0.7495 + }, + { + "start": 18382.82, + "end": 18384.64, + "probability": 0.0329 + }, + { + "start": 18385.8, + "end": 18386.97, + "probability": 0.0629 + }, + { + "start": 18387.38, + "end": 18387.78, + "probability": 0.4913 + }, + { + "start": 18387.88, + "end": 18393.18, + "probability": 0.8958 + }, + { + "start": 18393.3, + "end": 18394.49, + "probability": 0.7941 + }, + { + "start": 18395.4, + "end": 18397.12, + "probability": 0.1583 + }, + { + "start": 18398.72, + "end": 18398.82, + "probability": 0.3402 + }, + { + "start": 18398.86, + "end": 18399.92, + "probability": 0.5423 + }, + { + "start": 18400.2, + "end": 18400.2, + "probability": 0.2799 + }, + { + "start": 18400.2, + "end": 18402.1, + "probability": 0.2065 + }, + { + "start": 18402.12, + "end": 18402.48, + "probability": 0.6122 + }, + { + "start": 18402.62, + "end": 18403.85, + "probability": 0.9349 + }, + { + "start": 18404.7, + "end": 18415.58, + "probability": 0.8262 + }, + { + "start": 18419.44, + "end": 18420.26, + "probability": 0.612 + }, + { + "start": 18422.41, + "end": 18426.18, + "probability": 0.9881 + }, + { + "start": 18426.42, + "end": 18428.04, + "probability": 0.8267 + }, + { + "start": 18428.18, + "end": 18430.1, + "probability": 0.8241 + }, + { + "start": 18430.9, + "end": 18433.5, + "probability": 0.9162 + }, + { + "start": 18433.66, + "end": 18435.4, + "probability": 0.9294 + }, + { + "start": 18445.02, + "end": 18446.16, + "probability": 0.7153 + }, + { + "start": 18446.78, + "end": 18447.84, + "probability": 0.866 + }, + { + "start": 18448.0, + "end": 18448.82, + "probability": 0.8298 + }, + { + "start": 18451.43, + "end": 18453.84, + "probability": 0.9824 + }, + { + "start": 18457.18, + "end": 18458.14, + "probability": 0.8553 + }, + { + "start": 18458.3, + "end": 18458.9, + "probability": 0.8711 + }, + { + "start": 18458.96, + "end": 18459.82, + "probability": 0.4396 + }, + { + "start": 18459.82, + "end": 18460.32, + "probability": 0.5307 + }, + { + "start": 18461.34, + "end": 18466.32, + "probability": 0.7185 + }, + { + "start": 18468.78, + "end": 18470.08, + "probability": 0.8785 + }, + { + "start": 18472.3, + "end": 18476.74, + "probability": 0.1357 + }, + { + "start": 18477.0, + "end": 18477.88, + "probability": 0.3741 + }, + { + "start": 18478.2, + "end": 18481.62, + "probability": 0.9279 + }, + { + "start": 18482.8, + "end": 18483.82, + "probability": 0.8189 + }, + { + "start": 18483.82, + "end": 18486.34, + "probability": 0.9932 + }, + { + "start": 18487.92, + "end": 18489.22, + "probability": 0.9634 + }, + { + "start": 18490.28, + "end": 18492.88, + "probability": 0.9656 + }, + { + "start": 18493.56, + "end": 18497.14, + "probability": 0.5467 + }, + { + "start": 18498.52, + "end": 18501.28, + "probability": 0.8853 + }, + { + "start": 18501.8, + "end": 18504.45, + "probability": 0.9933 + }, + { + "start": 18504.68, + "end": 18505.82, + "probability": 0.9077 + }, + { + "start": 18507.6, + "end": 18508.04, + "probability": 0.3991 + }, + { + "start": 18508.04, + "end": 18508.04, + "probability": 0.032 + }, + { + "start": 18508.04, + "end": 18508.04, + "probability": 0.0476 + }, + { + "start": 18508.04, + "end": 18510.22, + "probability": 0.7224 + }, + { + "start": 18510.64, + "end": 18511.54, + "probability": 0.7759 + }, + { + "start": 18512.38, + "end": 18513.26, + "probability": 0.8163 + }, + { + "start": 18515.42, + "end": 18516.34, + "probability": 0.8877 + }, + { + "start": 18517.46, + "end": 18518.72, + "probability": 0.9778 + }, + { + "start": 18518.78, + "end": 18522.3, + "probability": 0.7603 + }, + { + "start": 18523.24, + "end": 18524.52, + "probability": 0.7058 + }, + { + "start": 18527.84, + "end": 18529.36, + "probability": 0.7073 + }, + { + "start": 18529.5, + "end": 18529.9, + "probability": 0.8472 + }, + { + "start": 18530.14, + "end": 18532.58, + "probability": 0.9787 + }, + { + "start": 18534.62, + "end": 18538.22, + "probability": 0.9466 + }, + { + "start": 18538.22, + "end": 18541.92, + "probability": 0.8446 + }, + { + "start": 18543.34, + "end": 18546.5, + "probability": 0.6696 + }, + { + "start": 18547.28, + "end": 18552.74, + "probability": 0.6802 + }, + { + "start": 18552.74, + "end": 18555.76, + "probability": 0.9972 + }, + { + "start": 18557.68, + "end": 18559.64, + "probability": 0.8185 + }, + { + "start": 18560.56, + "end": 18563.9, + "probability": 0.7281 + }, + { + "start": 18565.06, + "end": 18565.64, + "probability": 0.7869 + }, + { + "start": 18569.3, + "end": 18571.32, + "probability": 0.8647 + }, + { + "start": 18571.56, + "end": 18572.42, + "probability": 0.9756 + }, + { + "start": 18575.08, + "end": 18577.74, + "probability": 0.9753 + }, + { + "start": 18578.94, + "end": 18579.78, + "probability": 0.9747 + }, + { + "start": 18580.38, + "end": 18581.22, + "probability": 0.7318 + }, + { + "start": 18582.84, + "end": 18584.58, + "probability": 0.9956 + }, + { + "start": 18585.5, + "end": 18588.54, + "probability": 0.7349 + }, + { + "start": 18590.42, + "end": 18592.58, + "probability": 0.9951 + }, + { + "start": 18594.3, + "end": 18601.92, + "probability": 0.9939 + }, + { + "start": 18605.54, + "end": 18606.86, + "probability": 0.9995 + }, + { + "start": 18608.62, + "end": 18610.64, + "probability": 0.9908 + }, + { + "start": 18612.64, + "end": 18616.64, + "probability": 0.9821 + }, + { + "start": 18617.46, + "end": 18623.9, + "probability": 0.9942 + }, + { + "start": 18623.98, + "end": 18624.98, + "probability": 0.9984 + }, + { + "start": 18625.24, + "end": 18628.2, + "probability": 0.8965 + }, + { + "start": 18628.46, + "end": 18629.46, + "probability": 0.9888 + }, + { + "start": 18631.16, + "end": 18634.54, + "probability": 0.9897 + }, + { + "start": 18635.6, + "end": 18636.16, + "probability": 0.7031 + }, + { + "start": 18637.2, + "end": 18637.94, + "probability": 0.9268 + }, + { + "start": 18639.0, + "end": 18641.98, + "probability": 0.9722 + }, + { + "start": 18642.1, + "end": 18646.64, + "probability": 0.8401 + }, + { + "start": 18647.04, + "end": 18649.93, + "probability": 0.857 + }, + { + "start": 18650.8, + "end": 18652.66, + "probability": 0.9912 + }, + { + "start": 18653.58, + "end": 18656.52, + "probability": 0.9943 + }, + { + "start": 18658.42, + "end": 18661.0, + "probability": 0.9709 + }, + { + "start": 18662.22, + "end": 18664.84, + "probability": 0.937 + }, + { + "start": 18666.0, + "end": 18667.9, + "probability": 0.5714 + }, + { + "start": 18668.94, + "end": 18671.94, + "probability": 0.9761 + }, + { + "start": 18671.94, + "end": 18677.6, + "probability": 0.9896 + }, + { + "start": 18678.72, + "end": 18679.58, + "probability": 0.8562 + }, + { + "start": 18680.46, + "end": 18680.88, + "probability": 0.9324 + }, + { + "start": 18680.88, + "end": 18684.08, + "probability": 0.8713 + }, + { + "start": 18684.52, + "end": 18685.4, + "probability": 0.6728 + }, + { + "start": 18685.42, + "end": 18687.06, + "probability": 0.9883 + }, + { + "start": 18688.14, + "end": 18691.64, + "probability": 0.9492 + }, + { + "start": 18692.5, + "end": 18693.72, + "probability": 0.9335 + }, + { + "start": 18695.66, + "end": 18697.12, + "probability": 0.7911 + }, + { + "start": 18698.12, + "end": 18699.42, + "probability": 0.8937 + }, + { + "start": 18699.54, + "end": 18704.27, + "probability": 0.9764 + }, + { + "start": 18705.48, + "end": 18709.02, + "probability": 0.9976 + }, + { + "start": 18709.54, + "end": 18710.5, + "probability": 0.8618 + }, + { + "start": 18711.32, + "end": 18713.88, + "probability": 0.9938 + }, + { + "start": 18714.28, + "end": 18715.66, + "probability": 0.7249 + }, + { + "start": 18715.74, + "end": 18716.86, + "probability": 0.9537 + }, + { + "start": 18717.12, + "end": 18721.44, + "probability": 0.7053 + }, + { + "start": 18722.58, + "end": 18728.92, + "probability": 0.9573 + }, + { + "start": 18729.06, + "end": 18734.62, + "probability": 0.9946 + }, + { + "start": 18737.02, + "end": 18739.28, + "probability": 0.9312 + }, + { + "start": 18739.74, + "end": 18742.44, + "probability": 0.9773 + }, + { + "start": 18743.52, + "end": 18749.04, + "probability": 0.9909 + }, + { + "start": 18749.04, + "end": 18751.62, + "probability": 0.981 + }, + { + "start": 18754.42, + "end": 18755.12, + "probability": 0.8576 + }, + { + "start": 18755.22, + "end": 18755.98, + "probability": 0.6943 + }, + { + "start": 18756.08, + "end": 18761.12, + "probability": 0.9938 + }, + { + "start": 18763.52, + "end": 18765.84, + "probability": 0.5069 + }, + { + "start": 18766.08, + "end": 18768.44, + "probability": 0.9688 + }, + { + "start": 18770.16, + "end": 18771.38, + "probability": 0.823 + }, + { + "start": 18772.48, + "end": 18774.92, + "probability": 0.9946 + }, + { + "start": 18775.0, + "end": 18776.48, + "probability": 0.9229 + }, + { + "start": 18776.78, + "end": 18777.98, + "probability": 0.8431 + }, + { + "start": 18779.08, + "end": 18781.54, + "probability": 0.8652 + }, + { + "start": 18782.92, + "end": 18783.62, + "probability": 0.9713 + }, + { + "start": 18783.78, + "end": 18786.68, + "probability": 0.9969 + }, + { + "start": 18786.78, + "end": 18787.98, + "probability": 0.9956 + }, + { + "start": 18790.78, + "end": 18793.72, + "probability": 0.9937 + }, + { + "start": 18793.86, + "end": 18796.5, + "probability": 0.6962 + }, + { + "start": 18797.12, + "end": 18798.98, + "probability": 0.9445 + }, + { + "start": 18800.92, + "end": 18803.3, + "probability": 0.8988 + }, + { + "start": 18803.4, + "end": 18804.78, + "probability": 0.6427 + }, + { + "start": 18804.94, + "end": 18805.94, + "probability": 0.747 + }, + { + "start": 18806.3, + "end": 18806.82, + "probability": 0.5054 + }, + { + "start": 18806.96, + "end": 18807.38, + "probability": 0.4821 + }, + { + "start": 18808.76, + "end": 18809.46, + "probability": 0.7602 + }, + { + "start": 18810.92, + "end": 18812.01, + "probability": 0.71 + }, + { + "start": 18813.12, + "end": 18814.9, + "probability": 0.9105 + }, + { + "start": 18815.2, + "end": 18815.62, + "probability": 0.5659 + }, + { + "start": 18815.68, + "end": 18816.26, + "probability": 0.9492 + }, + { + "start": 18816.44, + "end": 18818.26, + "probability": 0.887 + }, + { + "start": 18818.98, + "end": 18822.52, + "probability": 0.8898 + }, + { + "start": 18824.1, + "end": 18826.54, + "probability": 0.9644 + }, + { + "start": 18826.66, + "end": 18827.28, + "probability": 0.5509 + }, + { + "start": 18827.6, + "end": 18829.06, + "probability": 0.8297 + }, + { + "start": 18830.86, + "end": 18835.44, + "probability": 0.9897 + }, + { + "start": 18837.28, + "end": 18839.34, + "probability": 0.9107 + }, + { + "start": 18839.52, + "end": 18841.12, + "probability": 0.7905 + }, + { + "start": 18841.42, + "end": 18845.8, + "probability": 0.9943 + }, + { + "start": 18850.18, + "end": 18855.06, + "probability": 0.9875 + }, + { + "start": 18855.62, + "end": 18856.66, + "probability": 0.9941 + }, + { + "start": 18857.86, + "end": 18861.54, + "probability": 0.9954 + }, + { + "start": 18862.32, + "end": 18868.82, + "probability": 0.9746 + }, + { + "start": 18869.48, + "end": 18872.26, + "probability": 0.9968 + }, + { + "start": 18873.4, + "end": 18874.12, + "probability": 0.8153 + }, + { + "start": 18874.96, + "end": 18878.49, + "probability": 0.9808 + }, + { + "start": 18878.96, + "end": 18879.64, + "probability": 0.7586 + }, + { + "start": 18879.7, + "end": 18882.12, + "probability": 0.7957 + }, + { + "start": 18883.22, + "end": 18885.31, + "probability": 0.9939 + }, + { + "start": 18887.12, + "end": 18887.8, + "probability": 0.8462 + }, + { + "start": 18887.94, + "end": 18888.46, + "probability": 0.8602 + }, + { + "start": 18888.78, + "end": 18889.44, + "probability": 0.5817 + }, + { + "start": 18889.52, + "end": 18890.06, + "probability": 0.4604 + }, + { + "start": 18890.1, + "end": 18894.28, + "probability": 0.8795 + }, + { + "start": 18895.68, + "end": 18901.36, + "probability": 0.9366 + }, + { + "start": 18901.42, + "end": 18902.34, + "probability": 0.5129 + }, + { + "start": 18902.36, + "end": 18904.14, + "probability": 0.9098 + }, + { + "start": 18904.26, + "end": 18904.38, + "probability": 0.7804 + }, + { + "start": 18904.48, + "end": 18906.42, + "probability": 0.8469 + }, + { + "start": 18907.12, + "end": 18909.1, + "probability": 0.9726 + }, + { + "start": 18909.38, + "end": 18912.76, + "probability": 0.8965 + }, + { + "start": 18913.82, + "end": 18914.84, + "probability": 0.916 + }, + { + "start": 18915.28, + "end": 18916.9, + "probability": 0.9965 + }, + { + "start": 18917.08, + "end": 18923.12, + "probability": 0.9604 + }, + { + "start": 18923.52, + "end": 18926.02, + "probability": 0.9782 + }, + { + "start": 18926.66, + "end": 18929.24, + "probability": 0.9899 + }, + { + "start": 18932.32, + "end": 18937.56, + "probability": 0.8898 + }, + { + "start": 18938.54, + "end": 18940.52, + "probability": 0.9779 + }, + { + "start": 18940.94, + "end": 18942.16, + "probability": 0.9026 + }, + { + "start": 18942.3, + "end": 18943.0, + "probability": 0.8584 + }, + { + "start": 18943.12, + "end": 18943.96, + "probability": 0.8432 + }, + { + "start": 18945.08, + "end": 18949.12, + "probability": 0.9904 + }, + { + "start": 18949.18, + "end": 18949.48, + "probability": 0.8394 + }, + { + "start": 18949.76, + "end": 18952.5, + "probability": 0.4673 + }, + { + "start": 18952.92, + "end": 18953.76, + "probability": 0.6491 + }, + { + "start": 18956.3, + "end": 18957.78, + "probability": 0.661 + }, + { + "start": 18957.88, + "end": 18959.22, + "probability": 0.9547 + }, + { + "start": 18965.74, + "end": 18966.4, + "probability": 0.7631 + }, + { + "start": 18983.94, + "end": 18984.04, + "probability": 0.3896 + }, + { + "start": 18984.92, + "end": 18985.12, + "probability": 0.6925 + }, + { + "start": 18987.34, + "end": 18988.64, + "probability": 0.7817 + }, + { + "start": 18988.72, + "end": 18989.46, + "probability": 0.7333 + }, + { + "start": 18989.58, + "end": 18991.7, + "probability": 0.6122 + }, + { + "start": 18993.54, + "end": 18993.54, + "probability": 0.1683 + }, + { + "start": 18993.54, + "end": 18993.76, + "probability": 0.4732 + }, + { + "start": 18993.92, + "end": 18998.84, + "probability": 0.9073 + }, + { + "start": 19000.9, + "end": 19004.32, + "probability": 0.9863 + }, + { + "start": 19005.24, + "end": 19007.52, + "probability": 0.9939 + }, + { + "start": 19008.52, + "end": 19012.06, + "probability": 0.8787 + }, + { + "start": 19012.78, + "end": 19014.94, + "probability": 0.9258 + }, + { + "start": 19015.92, + "end": 19019.46, + "probability": 0.9547 + }, + { + "start": 19019.62, + "end": 19020.64, + "probability": 0.7069 + }, + { + "start": 19021.78, + "end": 19024.44, + "probability": 0.7558 + }, + { + "start": 19025.02, + "end": 19028.84, + "probability": 0.9882 + }, + { + "start": 19030.34, + "end": 19035.02, + "probability": 0.9901 + }, + { + "start": 19036.28, + "end": 19040.18, + "probability": 0.8442 + }, + { + "start": 19040.25, + "end": 19043.5, + "probability": 0.9771 + }, + { + "start": 19044.36, + "end": 19046.48, + "probability": 0.9935 + }, + { + "start": 19046.7, + "end": 19047.52, + "probability": 0.9958 + }, + { + "start": 19048.5, + "end": 19050.28, + "probability": 0.9795 + }, + { + "start": 19050.34, + "end": 19051.82, + "probability": 0.8617 + }, + { + "start": 19052.94, + "end": 19055.66, + "probability": 0.9653 + }, + { + "start": 19056.34, + "end": 19058.7, + "probability": 0.8241 + }, + { + "start": 19059.34, + "end": 19060.72, + "probability": 0.7193 + }, + { + "start": 19061.58, + "end": 19064.08, + "probability": 0.8174 + }, + { + "start": 19065.38, + "end": 19069.62, + "probability": 0.9626 + }, + { + "start": 19070.94, + "end": 19074.42, + "probability": 0.9371 + }, + { + "start": 19075.16, + "end": 19078.12, + "probability": 0.9944 + }, + { + "start": 19078.12, + "end": 19080.84, + "probability": 0.7548 + }, + { + "start": 19081.42, + "end": 19083.24, + "probability": 0.9538 + }, + { + "start": 19084.2, + "end": 19086.72, + "probability": 0.877 + }, + { + "start": 19087.58, + "end": 19088.34, + "probability": 0.732 + }, + { + "start": 19088.46, + "end": 19090.64, + "probability": 0.7943 + }, + { + "start": 19091.9, + "end": 19092.46, + "probability": 0.6453 + }, + { + "start": 19092.62, + "end": 19093.92, + "probability": 0.5267 + }, + { + "start": 19093.94, + "end": 19099.56, + "probability": 0.9772 + }, + { + "start": 19100.42, + "end": 19103.1, + "probability": 0.9246 + }, + { + "start": 19105.26, + "end": 19109.63, + "probability": 0.8926 + }, + { + "start": 19110.04, + "end": 19118.54, + "probability": 0.9733 + }, + { + "start": 19118.78, + "end": 19119.94, + "probability": 0.998 + }, + { + "start": 19120.94, + "end": 19125.7, + "probability": 0.8765 + }, + { + "start": 19126.48, + "end": 19128.46, + "probability": 0.7797 + }, + { + "start": 19128.84, + "end": 19132.68, + "probability": 0.8555 + }, + { + "start": 19133.5, + "end": 19136.94, + "probability": 0.9938 + }, + { + "start": 19136.94, + "end": 19141.38, + "probability": 0.9813 + }, + { + "start": 19142.02, + "end": 19143.0, + "probability": 0.7819 + }, + { + "start": 19144.0, + "end": 19145.22, + "probability": 0.5463 + }, + { + "start": 19145.34, + "end": 19148.86, + "probability": 0.7314 + }, + { + "start": 19149.64, + "end": 19155.14, + "probability": 0.9917 + }, + { + "start": 19155.16, + "end": 19159.28, + "probability": 0.8358 + }, + { + "start": 19159.4, + "end": 19162.72, + "probability": 0.9878 + }, + { + "start": 19163.46, + "end": 19165.0, + "probability": 0.8352 + }, + { + "start": 19165.39, + "end": 19168.3, + "probability": 0.9003 + }, + { + "start": 19168.88, + "end": 19170.08, + "probability": 0.9833 + }, + { + "start": 19171.26, + "end": 19172.68, + "probability": 0.3974 + }, + { + "start": 19172.68, + "end": 19172.9, + "probability": 0.8202 + }, + { + "start": 19172.96, + "end": 19180.32, + "probability": 0.8823 + }, + { + "start": 19180.52, + "end": 19183.04, + "probability": 0.8301 + }, + { + "start": 19183.68, + "end": 19184.82, + "probability": 0.7338 + }, + { + "start": 19184.9, + "end": 19187.92, + "probability": 0.9384 + }, + { + "start": 19189.62, + "end": 19191.64, + "probability": 0.5846 + }, + { + "start": 19193.44, + "end": 19195.26, + "probability": 0.8293 + }, + { + "start": 19195.84, + "end": 19196.94, + "probability": 0.0186 + }, + { + "start": 19197.0, + "end": 19197.42, + "probability": 0.0161 + }, + { + "start": 19200.18, + "end": 19201.98, + "probability": 0.1297 + }, + { + "start": 19208.86, + "end": 19209.64, + "probability": 0.0619 + }, + { + "start": 19211.27, + "end": 19216.44, + "probability": 0.217 + }, + { + "start": 19216.46, + "end": 19219.32, + "probability": 0.0831 + }, + { + "start": 19219.5, + "end": 19220.02, + "probability": 0.0687 + }, + { + "start": 19221.62, + "end": 19224.84, + "probability": 0.639 + }, + { + "start": 19224.86, + "end": 19229.84, + "probability": 0.1877 + }, + { + "start": 19230.78, + "end": 19231.42, + "probability": 0.134 + }, + { + "start": 19234.34, + "end": 19234.9, + "probability": 0.0106 + }, + { + "start": 19235.62, + "end": 19235.66, + "probability": 0.0481 + }, + { + "start": 19235.66, + "end": 19235.7, + "probability": 0.1706 + }, + { + "start": 19235.7, + "end": 19238.88, + "probability": 0.9682 + }, + { + "start": 19239.14, + "end": 19240.1, + "probability": 0.8716 + }, + { + "start": 19240.24, + "end": 19241.62, + "probability": 0.6716 + }, + { + "start": 19242.08, + "end": 19246.14, + "probability": 0.6662 + }, + { + "start": 19246.24, + "end": 19247.86, + "probability": 0.9761 + }, + { + "start": 19247.9, + "end": 19249.06, + "probability": 0.7164 + }, + { + "start": 19249.1, + "end": 19252.36, + "probability": 0.4456 + }, + { + "start": 19252.36, + "end": 19253.12, + "probability": 0.6456 + }, + { + "start": 19253.14, + "end": 19258.04, + "probability": 0.9753 + }, + { + "start": 19258.08, + "end": 19258.3, + "probability": 0.6098 + }, + { + "start": 19259.76, + "end": 19260.34, + "probability": 0.3037 + }, + { + "start": 19260.76, + "end": 19263.08, + "probability": 0.9232 + }, + { + "start": 19264.14, + "end": 19266.32, + "probability": 0.6641 + }, + { + "start": 19267.12, + "end": 19269.8, + "probability": 0.708 + }, + { + "start": 19269.82, + "end": 19273.01, + "probability": 0.8398 + }, + { + "start": 19274.24, + "end": 19275.2, + "probability": 0.0419 + }, + { + "start": 19275.2, + "end": 19277.39, + "probability": 0.9131 + }, + { + "start": 19278.5, + "end": 19280.56, + "probability": 0.9335 + }, + { + "start": 19283.16, + "end": 19284.7, + "probability": 0.7329 + }, + { + "start": 19285.44, + "end": 19288.34, + "probability": 0.9951 + }, + { + "start": 19288.54, + "end": 19291.88, + "probability": 0.9881 + }, + { + "start": 19291.88, + "end": 19294.76, + "probability": 0.9957 + }, + { + "start": 19295.3, + "end": 19300.7, + "probability": 0.8723 + }, + { + "start": 19300.7, + "end": 19304.38, + "probability": 0.9792 + }, + { + "start": 19305.32, + "end": 19307.16, + "probability": 0.9935 + }, + { + "start": 19307.16, + "end": 19309.28, + "probability": 0.8826 + }, + { + "start": 19309.8, + "end": 19313.22, + "probability": 0.9929 + }, + { + "start": 19313.82, + "end": 19316.88, + "probability": 0.9882 + }, + { + "start": 19316.88, + "end": 19319.66, + "probability": 0.9585 + }, + { + "start": 19320.58, + "end": 19322.78, + "probability": 0.9656 + }, + { + "start": 19322.88, + "end": 19324.96, + "probability": 0.9939 + }, + { + "start": 19325.68, + "end": 19328.04, + "probability": 0.8729 + }, + { + "start": 19328.12, + "end": 19332.36, + "probability": 0.9731 + }, + { + "start": 19333.46, + "end": 19337.38, + "probability": 0.9968 + }, + { + "start": 19337.96, + "end": 19340.3, + "probability": 0.9291 + }, + { + "start": 19340.66, + "end": 19342.6, + "probability": 0.649 + }, + { + "start": 19343.26, + "end": 19345.28, + "probability": 0.9885 + }, + { + "start": 19345.28, + "end": 19347.42, + "probability": 0.9142 + }, + { + "start": 19348.0, + "end": 19350.92, + "probability": 0.976 + }, + { + "start": 19351.54, + "end": 19353.07, + "probability": 0.613 + }, + { + "start": 19354.42, + "end": 19355.12, + "probability": 0.3683 + }, + { + "start": 19355.46, + "end": 19355.56, + "probability": 0.3892 + }, + { + "start": 19355.56, + "end": 19357.36, + "probability": 0.7413 + }, + { + "start": 19357.38, + "end": 19357.48, + "probability": 0.8868 + }, + { + "start": 19371.14, + "end": 19371.82, + "probability": 0.5446 + }, + { + "start": 19371.92, + "end": 19372.98, + "probability": 0.7959 + }, + { + "start": 19373.08, + "end": 19375.72, + "probability": 0.8826 + }, + { + "start": 19377.64, + "end": 19381.82, + "probability": 0.9393 + }, + { + "start": 19383.16, + "end": 19386.16, + "probability": 0.7717 + }, + { + "start": 19386.16, + "end": 19388.72, + "probability": 0.8235 + }, + { + "start": 19388.72, + "end": 19392.96, + "probability": 0.9961 + }, + { + "start": 19394.0, + "end": 19398.04, + "probability": 0.9852 + }, + { + "start": 19398.84, + "end": 19401.9, + "probability": 0.9482 + }, + { + "start": 19402.14, + "end": 19405.14, + "probability": 0.9909 + }, + { + "start": 19405.86, + "end": 19407.32, + "probability": 0.8472 + }, + { + "start": 19407.9, + "end": 19410.42, + "probability": 0.9894 + }, + { + "start": 19412.36, + "end": 19417.14, + "probability": 0.9922 + }, + { + "start": 19418.32, + "end": 19422.12, + "probability": 0.9209 + }, + { + "start": 19423.12, + "end": 19426.88, + "probability": 0.8293 + }, + { + "start": 19426.88, + "end": 19431.02, + "probability": 0.9961 + }, + { + "start": 19431.54, + "end": 19434.24, + "probability": 0.8836 + }, + { + "start": 19435.2, + "end": 19435.3, + "probability": 0.0934 + }, + { + "start": 19435.3, + "end": 19438.28, + "probability": 0.9779 + }, + { + "start": 19438.28, + "end": 19440.8, + "probability": 0.9923 + }, + { + "start": 19441.4, + "end": 19444.74, + "probability": 0.9829 + }, + { + "start": 19445.26, + "end": 19446.6, + "probability": 0.9735 + }, + { + "start": 19447.36, + "end": 19450.16, + "probability": 0.9845 + }, + { + "start": 19451.04, + "end": 19452.76, + "probability": 0.6693 + }, + { + "start": 19453.74, + "end": 19454.08, + "probability": 0.6846 + }, + { + "start": 19454.16, + "end": 19457.76, + "probability": 0.9734 + }, + { + "start": 19458.26, + "end": 19458.78, + "probability": 0.8536 + }, + { + "start": 19459.78, + "end": 19463.0, + "probability": 0.987 + }, + { + "start": 19465.5, + "end": 19465.9, + "probability": 0.8028 + }, + { + "start": 19467.78, + "end": 19468.48, + "probability": 0.426 + }, + { + "start": 19468.54, + "end": 19468.96, + "probability": 0.7853 + }, + { + "start": 19469.48, + "end": 19470.82, + "probability": 0.8574 + }, + { + "start": 19474.16, + "end": 19475.46, + "probability": 0.9586 + }, + { + "start": 19480.6, + "end": 19481.26, + "probability": 0.576 + }, + { + "start": 19481.3, + "end": 19482.0, + "probability": 0.4957 + }, + { + "start": 19482.0, + "end": 19483.88, + "probability": 0.6738 + }, + { + "start": 19492.3, + "end": 19492.38, + "probability": 0.0466 + }, + { + "start": 19492.38, + "end": 19492.8, + "probability": 0.2475 + }, + { + "start": 19494.86, + "end": 19495.64, + "probability": 0.9875 + }, + { + "start": 19508.04, + "end": 19511.48, + "probability": 0.5071 + }, + { + "start": 19512.58, + "end": 19514.16, + "probability": 0.0981 + }, + { + "start": 19514.16, + "end": 19514.16, + "probability": 0.0265 + }, + { + "start": 19514.16, + "end": 19515.14, + "probability": 0.268 + }, + { + "start": 19523.32, + "end": 19523.64, + "probability": 0.0571 + }, + { + "start": 19523.88, + "end": 19524.72, + "probability": 0.052 + }, + { + "start": 19527.36, + "end": 19528.34, + "probability": 0.0037 + }, + { + "start": 19531.56, + "end": 19532.12, + "probability": 0.2047 + }, + { + "start": 19532.74, + "end": 19536.06, + "probability": 0.0709 + }, + { + "start": 19537.9, + "end": 19542.34, + "probability": 0.0456 + }, + { + "start": 19542.9, + "end": 19543.0, + "probability": 0.0208 + }, + { + "start": 19543.94, + "end": 19544.26, + "probability": 0.1363 + }, + { + "start": 19557.12, + "end": 19558.26, + "probability": 0.0543 + }, + { + "start": 19558.26, + "end": 19558.9, + "probability": 0.189 + }, + { + "start": 19558.9, + "end": 19560.4, + "probability": 0.0372 + }, + { + "start": 19560.4, + "end": 19560.78, + "probability": 0.1511 + }, + { + "start": 19560.78, + "end": 19560.94, + "probability": 0.013 + }, + { + "start": 19561.44, + "end": 19562.56, + "probability": 0.1984 + }, + { + "start": 19567.96, + "end": 19568.32, + "probability": 0.3196 + }, + { + "start": 19568.32, + "end": 19569.32, + "probability": 0.7601 + }, + { + "start": 19587.8, + "end": 19588.16, + "probability": 0.6186 + }, + { + "start": 19588.76, + "end": 19590.6, + "probability": 0.7788 + }, + { + "start": 19615.0, + "end": 19615.0, + "probability": 0.0 + }, + { + "start": 19615.0, + "end": 19615.0, + "probability": 0.0 + }, + { + "start": 19615.0, + "end": 19615.0, + "probability": 0.0 + }, + { + "start": 19615.0, + "end": 19615.0, + "probability": 0.0 + }, + { + "start": 19615.72, + "end": 19615.84, + "probability": 0.0092 + }, + { + "start": 19615.84, + "end": 19615.84, + "probability": 0.0658 + }, + { + "start": 19615.84, + "end": 19616.68, + "probability": 0.563 + }, + { + "start": 19617.72, + "end": 19618.68, + "probability": 0.4461 + }, + { + "start": 19618.7, + "end": 19623.58, + "probability": 0.9581 + }, + { + "start": 19625.1, + "end": 19631.12, + "probability": 0.9899 + }, + { + "start": 19631.74, + "end": 19633.42, + "probability": 0.8914 + }, + { + "start": 19634.08, + "end": 19638.2, + "probability": 0.9865 + }, + { + "start": 19639.82, + "end": 19641.12, + "probability": 0.7549 + }, + { + "start": 19642.04, + "end": 19645.26, + "probability": 0.9424 + }, + { + "start": 19646.4, + "end": 19650.28, + "probability": 0.9902 + }, + { + "start": 19651.1, + "end": 19652.38, + "probability": 0.8822 + }, + { + "start": 19653.3, + "end": 19655.54, + "probability": 0.9838 + }, + { + "start": 19656.54, + "end": 19657.02, + "probability": 0.4392 + }, + { + "start": 19657.88, + "end": 19661.0, + "probability": 0.9954 + }, + { + "start": 19661.0, + "end": 19664.72, + "probability": 0.9922 + }, + { + "start": 19666.18, + "end": 19669.12, + "probability": 0.9973 + }, + { + "start": 19669.12, + "end": 19672.3, + "probability": 0.995 + }, + { + "start": 19673.9, + "end": 19674.56, + "probability": 0.5895 + }, + { + "start": 19674.72, + "end": 19675.54, + "probability": 0.9332 + }, + { + "start": 19675.74, + "end": 19676.94, + "probability": 0.8994 + }, + { + "start": 19677.44, + "end": 19680.58, + "probability": 0.9631 + }, + { + "start": 19681.46, + "end": 19682.94, + "probability": 0.7813 + }, + { + "start": 19683.48, + "end": 19687.24, + "probability": 0.917 + }, + { + "start": 19688.64, + "end": 19690.68, + "probability": 0.9966 + }, + { + "start": 19690.74, + "end": 19694.08, + "probability": 0.9917 + }, + { + "start": 19694.08, + "end": 19697.22, + "probability": 0.9962 + }, + { + "start": 19698.62, + "end": 19699.16, + "probability": 0.6384 + }, + { + "start": 19699.88, + "end": 19701.32, + "probability": 0.8478 + }, + { + "start": 19701.42, + "end": 19703.24, + "probability": 0.9741 + }, + { + "start": 19704.28, + "end": 19707.26, + "probability": 0.9941 + }, + { + "start": 19707.26, + "end": 19711.66, + "probability": 0.9971 + }, + { + "start": 19712.88, + "end": 19714.34, + "probability": 0.9858 + }, + { + "start": 19714.96, + "end": 19716.56, + "probability": 0.9391 + }, + { + "start": 19717.08, + "end": 19719.08, + "probability": 0.9866 + }, + { + "start": 19720.46, + "end": 19723.94, + "probability": 0.997 + }, + { + "start": 19725.3, + "end": 19727.76, + "probability": 0.9717 + }, + { + "start": 19727.76, + "end": 19731.12, + "probability": 0.9906 + }, + { + "start": 19731.18, + "end": 19731.76, + "probability": 0.4384 + }, + { + "start": 19732.5, + "end": 19734.24, + "probability": 0.9199 + }, + { + "start": 19734.4, + "end": 19736.76, + "probability": 0.9548 + }, + { + "start": 19737.66, + "end": 19742.9, + "probability": 0.9958 + }, + { + "start": 19744.32, + "end": 19748.08, + "probability": 0.9961 + }, + { + "start": 19748.08, + "end": 19751.0, + "probability": 0.998 + }, + { + "start": 19751.54, + "end": 19752.82, + "probability": 0.9511 + }, + { + "start": 19753.46, + "end": 19755.58, + "probability": 0.9893 + }, + { + "start": 19755.58, + "end": 19758.72, + "probability": 0.9984 + }, + { + "start": 19759.42, + "end": 19763.96, + "probability": 0.8726 + }, + { + "start": 19766.22, + "end": 19768.94, + "probability": 0.7979 + }, + { + "start": 19769.82, + "end": 19771.24, + "probability": 0.8551 + }, + { + "start": 19771.6, + "end": 19775.38, + "probability": 0.476 + }, + { + "start": 19775.44, + "end": 19778.02, + "probability": 0.7424 + }, + { + "start": 19780.18, + "end": 19782.76, + "probability": 0.0455 + }, + { + "start": 19784.02, + "end": 19785.36, + "probability": 0.5888 + }, + { + "start": 19787.76, + "end": 19789.56, + "probability": 0.8654 + }, + { + "start": 19793.74, + "end": 19794.86, + "probability": 0.6562 + }, + { + "start": 19796.98, + "end": 19798.12, + "probability": 0.7306 + }, + { + "start": 19798.3, + "end": 19799.78, + "probability": 0.5608 + }, + { + "start": 19800.48, + "end": 19801.14, + "probability": 0.4758 + }, + { + "start": 19803.04, + "end": 19806.22, + "probability": 0.8148 + }, + { + "start": 19807.38, + "end": 19808.88, + "probability": 0.9895 + }, + { + "start": 19809.7, + "end": 19812.38, + "probability": 0.9852 + }, + { + "start": 19812.56, + "end": 19813.2, + "probability": 0.7421 + }, + { + "start": 19813.22, + "end": 19814.08, + "probability": 0.9159 + }, + { + "start": 19814.26, + "end": 19815.6, + "probability": 0.7952 + }, + { + "start": 19816.06, + "end": 19817.36, + "probability": 0.9907 + }, + { + "start": 19817.64, + "end": 19818.12, + "probability": 0.7444 + }, + { + "start": 19818.3, + "end": 19819.96, + "probability": 0.9612 + }, + { + "start": 19820.28, + "end": 19821.0, + "probability": 0.8412 + }, + { + "start": 19823.58, + "end": 19826.08, + "probability": 0.9303 + }, + { + "start": 19827.43, + "end": 19828.98, + "probability": 0.9508 + }, + { + "start": 19830.0, + "end": 19830.48, + "probability": 0.7618 + }, + { + "start": 19835.98, + "end": 19839.3, + "probability": 0.722 + }, + { + "start": 19839.7, + "end": 19842.78, + "probability": 0.989 + }, + { + "start": 19843.26, + "end": 19844.43, + "probability": 0.9382 + }, + { + "start": 19845.54, + "end": 19849.72, + "probability": 0.9828 + }, + { + "start": 19850.3, + "end": 19851.64, + "probability": 0.9552 + }, + { + "start": 19851.68, + "end": 19852.98, + "probability": 0.9622 + }, + { + "start": 19853.74, + "end": 19855.08, + "probability": 0.9546 + }, + { + "start": 19855.36, + "end": 19855.58, + "probability": 0.4699 + }, + { + "start": 19855.78, + "end": 19859.65, + "probability": 0.9341 + }, + { + "start": 19859.92, + "end": 19862.88, + "probability": 0.8833 + }, + { + "start": 19863.1, + "end": 19864.34, + "probability": 0.7092 + }, + { + "start": 19865.78, + "end": 19870.16, + "probability": 0.7623 + }, + { + "start": 19870.32, + "end": 19871.8, + "probability": 0.983 + }, + { + "start": 19872.18, + "end": 19873.72, + "probability": 0.9331 + }, + { + "start": 19873.94, + "end": 19875.78, + "probability": 0.7916 + }, + { + "start": 19875.98, + "end": 19878.4, + "probability": 0.9777 + }, + { + "start": 19878.84, + "end": 19880.3, + "probability": 0.6453 + }, + { + "start": 19881.24, + "end": 19882.36, + "probability": 0.9521 + }, + { + "start": 19883.5, + "end": 19885.16, + "probability": 0.9324 + }, + { + "start": 19885.62, + "end": 19887.72, + "probability": 0.984 + }, + { + "start": 19888.66, + "end": 19891.34, + "probability": 0.694 + }, + { + "start": 19892.0, + "end": 19893.52, + "probability": 0.9499 + }, + { + "start": 19894.14, + "end": 19895.36, + "probability": 0.756 + }, + { + "start": 19895.98, + "end": 19897.8, + "probability": 0.967 + }, + { + "start": 19898.76, + "end": 19901.2, + "probability": 0.9714 + }, + { + "start": 19902.36, + "end": 19905.56, + "probability": 0.9463 + }, + { + "start": 19906.28, + "end": 19907.28, + "probability": 0.5135 + }, + { + "start": 19907.98, + "end": 19912.44, + "probability": 0.9821 + }, + { + "start": 19913.34, + "end": 19916.2, + "probability": 0.8957 + }, + { + "start": 19916.2, + "end": 19919.52, + "probability": 0.9013 + }, + { + "start": 19920.28, + "end": 19923.62, + "probability": 0.9293 + }, + { + "start": 19924.32, + "end": 19926.94, + "probability": 0.9858 + }, + { + "start": 19927.14, + "end": 19932.48, + "probability": 0.9239 + }, + { + "start": 19932.54, + "end": 19933.84, + "probability": 0.7999 + }, + { + "start": 19934.1, + "end": 19937.86, + "probability": 0.8243 + }, + { + "start": 19938.2, + "end": 19942.54, + "probability": 0.8718 + }, + { + "start": 19942.62, + "end": 19944.13, + "probability": 0.7442 + }, + { + "start": 19946.04, + "end": 19948.6, + "probability": 0.8308 + }, + { + "start": 19950.18, + "end": 19951.8, + "probability": 0.7149 + }, + { + "start": 19952.22, + "end": 19955.58, + "probability": 0.5876 + }, + { + "start": 19956.1, + "end": 19956.32, + "probability": 0.7523 + }, + { + "start": 19956.76, + "end": 19958.61, + "probability": 0.512 + }, + { + "start": 19959.3, + "end": 19960.82, + "probability": 0.8802 + }, + { + "start": 19960.98, + "end": 19961.66, + "probability": 0.6331 + }, + { + "start": 19961.74, + "end": 19965.3, + "probability": 0.7351 + }, + { + "start": 19965.76, + "end": 19967.54, + "probability": 0.4895 + }, + { + "start": 19967.86, + "end": 19969.1, + "probability": 0.6214 + }, + { + "start": 19969.38, + "end": 19974.7, + "probability": 0.9427 + }, + { + "start": 19975.14, + "end": 19977.48, + "probability": 0.661 + }, + { + "start": 19978.54, + "end": 19980.52, + "probability": 0.573 + }, + { + "start": 19980.72, + "end": 19984.12, + "probability": 0.7419 + }, + { + "start": 19984.5, + "end": 19984.92, + "probability": 0.6305 + }, + { + "start": 19985.44, + "end": 19988.52, + "probability": 0.9736 + }, + { + "start": 19988.68, + "end": 19990.56, + "probability": 0.9886 + }, + { + "start": 19990.82, + "end": 19993.46, + "probability": 0.648 + }, + { + "start": 19994.84, + "end": 19996.34, + "probability": 0.9834 + }, + { + "start": 19997.14, + "end": 20002.78, + "probability": 0.7718 + }, + { + "start": 20003.58, + "end": 20005.18, + "probability": 0.8001 + }, + { + "start": 20006.98, + "end": 20008.41, + "probability": 0.7479 + }, + { + "start": 20009.4, + "end": 20011.33, + "probability": 0.6748 + }, + { + "start": 20011.88, + "end": 20013.54, + "probability": 0.6025 + }, + { + "start": 20013.84, + "end": 20016.94, + "probability": 0.9814 + }, + { + "start": 20017.48, + "end": 20020.62, + "probability": 0.333 + }, + { + "start": 20021.62, + "end": 20024.42, + "probability": 0.7575 + }, + { + "start": 20024.5, + "end": 20025.32, + "probability": 0.5126 + }, + { + "start": 20025.46, + "end": 20027.0, + "probability": 0.8966 + }, + { + "start": 20028.16, + "end": 20032.4, + "probability": 0.9055 + }, + { + "start": 20032.58, + "end": 20033.32, + "probability": 0.8701 + }, + { + "start": 20033.4, + "end": 20035.0, + "probability": 0.9771 + }, + { + "start": 20035.24, + "end": 20035.72, + "probability": 0.9228 + }, + { + "start": 20037.7, + "end": 20040.08, + "probability": 0.959 + }, + { + "start": 20041.44, + "end": 20042.2, + "probability": 0.8469 + }, + { + "start": 20043.36, + "end": 20043.66, + "probability": 0.6396 + }, + { + "start": 20043.78, + "end": 20044.78, + "probability": 0.792 + }, + { + "start": 20045.73, + "end": 20048.14, + "probability": 0.4754 + }, + { + "start": 20048.5, + "end": 20049.56, + "probability": 0.9674 + }, + { + "start": 20049.64, + "end": 20050.35, + "probability": 0.9924 + }, + { + "start": 20050.84, + "end": 20051.36, + "probability": 0.7105 + }, + { + "start": 20051.44, + "end": 20052.98, + "probability": 0.9694 + }, + { + "start": 20054.16, + "end": 20054.5, + "probability": 0.4094 + }, + { + "start": 20054.52, + "end": 20056.82, + "probability": 0.7924 + }, + { + "start": 20057.12, + "end": 20057.64, + "probability": 0.6224 + }, + { + "start": 20057.7, + "end": 20058.8, + "probability": 0.7588 + }, + { + "start": 20058.9, + "end": 20059.92, + "probability": 0.7895 + }, + { + "start": 20060.14, + "end": 20061.68, + "probability": 0.9189 + }, + { + "start": 20061.76, + "end": 20062.56, + "probability": 0.9321 + }, + { + "start": 20062.66, + "end": 20064.76, + "probability": 0.9883 + }, + { + "start": 20065.02, + "end": 20066.88, + "probability": 0.6542 + }, + { + "start": 20067.14, + "end": 20070.78, + "probability": 0.9847 + }, + { + "start": 20071.48, + "end": 20074.24, + "probability": 0.7298 + }, + { + "start": 20075.06, + "end": 20076.02, + "probability": 0.8593 + }, + { + "start": 20076.12, + "end": 20081.02, + "probability": 0.9532 + }, + { + "start": 20083.44, + "end": 20085.98, + "probability": 0.7582 + }, + { + "start": 20086.34, + "end": 20088.26, + "probability": 0.9795 + }, + { + "start": 20088.56, + "end": 20089.15, + "probability": 0.8306 + }, + { + "start": 20089.34, + "end": 20092.48, + "probability": 0.9619 + }, + { + "start": 20093.12, + "end": 20095.88, + "probability": 0.9806 + }, + { + "start": 20096.58, + "end": 20099.12, + "probability": 0.7875 + }, + { + "start": 20099.96, + "end": 20100.65, + "probability": 0.7345 + }, + { + "start": 20101.36, + "end": 20106.3, + "probability": 0.9893 + }, + { + "start": 20107.14, + "end": 20112.36, + "probability": 0.9607 + }, + { + "start": 20113.26, + "end": 20114.84, + "probability": 0.8382 + }, + { + "start": 20115.3, + "end": 20116.22, + "probability": 0.9042 + }, + { + "start": 20116.42, + "end": 20117.96, + "probability": 0.9457 + }, + { + "start": 20118.3, + "end": 20120.78, + "probability": 0.9801 + }, + { + "start": 20122.08, + "end": 20125.44, + "probability": 0.993 + }, + { + "start": 20125.9, + "end": 20126.52, + "probability": 0.398 + }, + { + "start": 20126.6, + "end": 20129.56, + "probability": 0.989 + }, + { + "start": 20131.45, + "end": 20135.1, + "probability": 0.9761 + }, + { + "start": 20136.16, + "end": 20136.9, + "probability": 0.7473 + }, + { + "start": 20136.96, + "end": 20138.22, + "probability": 0.9841 + }, + { + "start": 20138.32, + "end": 20139.5, + "probability": 0.9558 + }, + { + "start": 20139.54, + "end": 20140.76, + "probability": 0.9888 + }, + { + "start": 20141.4, + "end": 20142.56, + "probability": 0.9493 + }, + { + "start": 20143.04, + "end": 20144.1, + "probability": 0.9284 + }, + { + "start": 20144.26, + "end": 20144.86, + "probability": 0.7266 + }, + { + "start": 20145.1, + "end": 20145.9, + "probability": 0.7953 + }, + { + "start": 20146.04, + "end": 20148.64, + "probability": 0.9625 + }, + { + "start": 20148.98, + "end": 20150.16, + "probability": 0.7516 + }, + { + "start": 20150.52, + "end": 20153.2, + "probability": 0.9768 + }, + { + "start": 20153.52, + "end": 20158.9, + "probability": 0.9896 + }, + { + "start": 20159.32, + "end": 20161.44, + "probability": 0.8642 + }, + { + "start": 20161.66, + "end": 20163.66, + "probability": 0.8989 + }, + { + "start": 20163.9, + "end": 20165.06, + "probability": 0.6415 + }, + { + "start": 20165.5, + "end": 20166.67, + "probability": 0.9731 + }, + { + "start": 20168.16, + "end": 20170.38, + "probability": 0.9915 + }, + { + "start": 20170.5, + "end": 20174.0, + "probability": 0.9896 + }, + { + "start": 20174.52, + "end": 20176.8, + "probability": 0.9863 + }, + { + "start": 20177.18, + "end": 20180.0, + "probability": 0.9475 + }, + { + "start": 20181.2, + "end": 20186.64, + "probability": 0.9946 + }, + { + "start": 20187.22, + "end": 20187.8, + "probability": 0.6851 + }, + { + "start": 20188.16, + "end": 20190.0, + "probability": 0.9573 + }, + { + "start": 20191.38, + "end": 20192.33, + "probability": 0.9915 + }, + { + "start": 20192.94, + "end": 20194.0, + "probability": 0.4747 + }, + { + "start": 20194.0, + "end": 20194.16, + "probability": 0.6549 + }, + { + "start": 20194.34, + "end": 20194.54, + "probability": 0.7694 + }, + { + "start": 20198.18, + "end": 20200.64, + "probability": 0.8325 + }, + { + "start": 20201.88, + "end": 20202.76, + "probability": 0.9189 + }, + { + "start": 20203.18, + "end": 20205.08, + "probability": 0.1579 + }, + { + "start": 20208.46, + "end": 20210.38, + "probability": 0.17 + }, + { + "start": 20223.12, + "end": 20224.08, + "probability": 0.5401 + }, + { + "start": 20225.52, + "end": 20228.32, + "probability": 0.9768 + }, + { + "start": 20229.86, + "end": 20233.36, + "probability": 0.9653 + }, + { + "start": 20233.44, + "end": 20234.62, + "probability": 0.888 + }, + { + "start": 20235.29, + "end": 20237.18, + "probability": 0.4327 + }, + { + "start": 20238.22, + "end": 20244.86, + "probability": 0.8829 + }, + { + "start": 20244.86, + "end": 20249.96, + "probability": 0.9736 + }, + { + "start": 20250.5, + "end": 20253.06, + "probability": 0.9224 + }, + { + "start": 20255.16, + "end": 20258.92, + "probability": 0.9931 + }, + { + "start": 20259.1, + "end": 20259.92, + "probability": 0.8922 + }, + { + "start": 20260.74, + "end": 20262.24, + "probability": 0.8112 + }, + { + "start": 20264.48, + "end": 20267.02, + "probability": 0.7968 + }, + { + "start": 20267.92, + "end": 20269.9, + "probability": 0.967 + }, + { + "start": 20272.38, + "end": 20273.08, + "probability": 0.4169 + }, + { + "start": 20273.12, + "end": 20277.68, + "probability": 0.8916 + }, + { + "start": 20281.26, + "end": 20281.94, + "probability": 0.0572 + }, + { + "start": 20281.94, + "end": 20282.74, + "probability": 0.1336 + }, + { + "start": 20282.74, + "end": 20283.12, + "probability": 0.0181 + }, + { + "start": 20283.54, + "end": 20284.98, + "probability": 0.8535 + }, + { + "start": 20285.08, + "end": 20290.4, + "probability": 0.8782 + }, + { + "start": 20293.96, + "end": 20296.52, + "probability": 0.4622 + }, + { + "start": 20296.62, + "end": 20297.16, + "probability": 0.6507 + }, + { + "start": 20297.18, + "end": 20297.76, + "probability": 0.7778 + }, + { + "start": 20317.9, + "end": 20320.78, + "probability": 0.2275 + }, + { + "start": 20320.78, + "end": 20321.3, + "probability": 0.1622 + }, + { + "start": 20321.3, + "end": 20324.94, + "probability": 0.0164 + }, + { + "start": 20327.28, + "end": 20330.0, + "probability": 0.1723 + }, + { + "start": 20333.22, + "end": 20333.32, + "probability": 0.0888 + }, + { + "start": 20334.68, + "end": 20336.8, + "probability": 0.0694 + }, + { + "start": 20336.8, + "end": 20337.32, + "probability": 0.714 + }, + { + "start": 20341.73, + "end": 20342.08, + "probability": 0.0594 + }, + { + "start": 20342.08, + "end": 20342.9, + "probability": 0.1469 + }, + { + "start": 20344.09, + "end": 20348.1, + "probability": 0.0344 + }, + { + "start": 20349.32, + "end": 20350.62, + "probability": 0.1191 + }, + { + "start": 20351.22, + "end": 20354.5, + "probability": 0.0232 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.2, + "end": 20376.22, + "probability": 0.0218 + }, + { + "start": 20376.22, + "end": 20379.38, + "probability": 0.8585 + }, + { + "start": 20379.9, + "end": 20382.44, + "probability": 0.9419 + }, + { + "start": 20382.44, + "end": 20385.1, + "probability": 0.8394 + }, + { + "start": 20385.16, + "end": 20386.98, + "probability": 0.7073 + }, + { + "start": 20387.58, + "end": 20390.74, + "probability": 0.8859 + }, + { + "start": 20390.74, + "end": 20394.44, + "probability": 0.9858 + }, + { + "start": 20394.94, + "end": 20397.68, + "probability": 0.971 + }, + { + "start": 20397.82, + "end": 20398.1, + "probability": 0.7334 + }, + { + "start": 20399.08, + "end": 20400.38, + "probability": 0.4149 + }, + { + "start": 20401.08, + "end": 20402.36, + "probability": 0.5377 + }, + { + "start": 20402.48, + "end": 20406.51, + "probability": 0.9463 + }, + { + "start": 20421.4, + "end": 20421.98, + "probability": 0.2484 + }, + { + "start": 20422.1, + "end": 20423.06, + "probability": 0.7937 + }, + { + "start": 20423.56, + "end": 20426.0, + "probability": 0.9915 + }, + { + "start": 20427.6, + "end": 20429.36, + "probability": 0.8208 + }, + { + "start": 20430.4, + "end": 20433.78, + "probability": 0.7883 + }, + { + "start": 20434.68, + "end": 20438.5, + "probability": 0.9954 + }, + { + "start": 20438.5, + "end": 20442.54, + "probability": 0.8643 + }, + { + "start": 20443.22, + "end": 20446.1, + "probability": 0.7137 + }, + { + "start": 20446.96, + "end": 20448.92, + "probability": 0.8372 + }, + { + "start": 20449.56, + "end": 20450.92, + "probability": 0.9892 + }, + { + "start": 20452.58, + "end": 20456.9, + "probability": 0.9808 + }, + { + "start": 20456.9, + "end": 20460.66, + "probability": 0.9919 + }, + { + "start": 20460.9, + "end": 20462.32, + "probability": 0.9333 + }, + { + "start": 20463.28, + "end": 20465.82, + "probability": 0.8096 + }, + { + "start": 20466.58, + "end": 20468.04, + "probability": 0.9728 + }, + { + "start": 20468.86, + "end": 20470.9, + "probability": 0.9454 + }, + { + "start": 20471.82, + "end": 20474.34, + "probability": 0.9942 + }, + { + "start": 20474.34, + "end": 20477.66, + "probability": 0.9972 + }, + { + "start": 20478.2, + "end": 20482.62, + "probability": 0.9894 + }, + { + "start": 20483.66, + "end": 20486.24, + "probability": 0.6598 + }, + { + "start": 20487.18, + "end": 20487.38, + "probability": 0.5646 + }, + { + "start": 20487.48, + "end": 20488.08, + "probability": 0.8394 + }, + { + "start": 20488.16, + "end": 20491.88, + "probability": 0.9628 + }, + { + "start": 20491.92, + "end": 20495.8, + "probability": 0.9766 + }, + { + "start": 20496.72, + "end": 20497.16, + "probability": 0.8234 + }, + { + "start": 20497.18, + "end": 20500.22, + "probability": 0.9962 + }, + { + "start": 20500.28, + "end": 20503.94, + "probability": 0.9837 + }, + { + "start": 20504.84, + "end": 20507.5, + "probability": 0.7612 + }, + { + "start": 20508.32, + "end": 20512.22, + "probability": 0.7895 + }, + { + "start": 20512.22, + "end": 20515.4, + "probability": 0.9825 + }, + { + "start": 20516.54, + "end": 20517.92, + "probability": 0.8486 + }, + { + "start": 20518.84, + "end": 20520.86, + "probability": 0.9447 + }, + { + "start": 20521.56, + "end": 20528.42, + "probability": 0.9885 + }, + { + "start": 20529.14, + "end": 20530.64, + "probability": 0.7913 + }, + { + "start": 20531.28, + "end": 20537.48, + "probability": 0.9559 + }, + { + "start": 20538.52, + "end": 20543.1, + "probability": 0.979 + }, + { + "start": 20543.9, + "end": 20545.66, + "probability": 0.2587 + }, + { + "start": 20545.74, + "end": 20546.2, + "probability": 0.4382 + }, + { + "start": 20547.36, + "end": 20549.03, + "probability": 0.4802 + }, + { + "start": 20549.04, + "end": 20549.04, + "probability": 0.0026 + }, + { + "start": 20549.14, + "end": 20550.51, + "probability": 0.7583 + }, + { + "start": 20550.92, + "end": 20551.88, + "probability": 0.981 + }, + { + "start": 20552.64, + "end": 20553.08, + "probability": 0.2094 + }, + { + "start": 20553.08, + "end": 20554.59, + "probability": 0.2571 + }, + { + "start": 20555.88, + "end": 20560.8, + "probability": 0.99 + }, + { + "start": 20560.8, + "end": 20566.16, + "probability": 0.6812 + }, + { + "start": 20568.23, + "end": 20570.02, + "probability": 0.6628 + }, + { + "start": 20570.02, + "end": 20571.44, + "probability": 0.8904 + }, + { + "start": 20573.0, + "end": 20573.86, + "probability": 0.41 + }, + { + "start": 20574.68, + "end": 20575.12, + "probability": 0.5396 + }, + { + "start": 20575.42, + "end": 20579.46, + "probability": 0.9075 + }, + { + "start": 20580.02, + "end": 20581.28, + "probability": 0.3512 + }, + { + "start": 20581.28, + "end": 20582.52, + "probability": 0.8371 + }, + { + "start": 20583.5, + "end": 20583.6, + "probability": 0.5049 + }, + { + "start": 20589.06, + "end": 20592.95, + "probability": 0.9813 + }, + { + "start": 20604.14, + "end": 20604.38, + "probability": 0.0962 + }, + { + "start": 20605.44, + "end": 20605.64, + "probability": 0.0513 + }, + { + "start": 20610.27, + "end": 20615.99, + "probability": 0.2375 + }, + { + "start": 20616.32, + "end": 20616.94, + "probability": 0.3679 + }, + { + "start": 20617.66, + "end": 20618.88, + "probability": 0.0213 + }, + { + "start": 20618.88, + "end": 20619.58, + "probability": 0.241 + }, + { + "start": 20619.78, + "end": 20620.92, + "probability": 0.4941 + }, + { + "start": 20623.86, + "end": 20624.28, + "probability": 0.0117 + }, + { + "start": 20624.28, + "end": 20624.58, + "probability": 0.0742 + }, + { + "start": 20624.58, + "end": 20624.66, + "probability": 0.0995 + }, + { + "start": 20624.66, + "end": 20624.66, + "probability": 0.1638 + }, + { + "start": 20624.66, + "end": 20627.36, + "probability": 0.0232 + }, + { + "start": 20627.36, + "end": 20627.36, + "probability": 0.0856 + }, + { + "start": 20628.92, + "end": 20631.56, + "probability": 0.1474 + }, + { + "start": 20632.78, + "end": 20634.06, + "probability": 0.0144 + }, + { + "start": 20634.18, + "end": 20634.68, + "probability": 0.0782 + }, + { + "start": 20634.68, + "end": 20635.5, + "probability": 0.0747 + }, + { + "start": 20635.82, + "end": 20635.82, + "probability": 0.1116 + }, + { + "start": 20635.82, + "end": 20636.64, + "probability": 0.4991 + }, + { + "start": 20640.8, + "end": 20646.84, + "probability": 0.3933 + }, + { + "start": 20660.0, + "end": 20660.0, + "probability": 0.0 + }, + { + "start": 20660.0, + "end": 20660.0, + "probability": 0.0 + }, + { + "start": 20660.0, + "end": 20660.0, + "probability": 0.0 + }, + { + "start": 20660.0, + "end": 20660.0, + "probability": 0.0 + }, + { + "start": 20660.0, + "end": 20660.0, + "probability": 0.0 + }, + { + "start": 20660.0, + "end": 20660.0, + "probability": 0.0 + }, + { + "start": 20660.0, + "end": 20660.0, + "probability": 0.0 + }, + { + "start": 20660.0, + "end": 20660.0, + "probability": 0.0 + }, + { + "start": 20660.0, + "end": 20660.0, + "probability": 0.0 + }, + { + "start": 20660.0, + "end": 20660.0, + "probability": 0.0 + }, + { + "start": 20660.0, + "end": 20660.0, + "probability": 0.0 + }, + { + "start": 20660.0, + "end": 20660.0, + "probability": 0.0 + }, + { + "start": 20660.0, + "end": 20660.1, + "probability": 0.058 + }, + { + "start": 20660.1, + "end": 20661.69, + "probability": 0.6767 + }, + { + "start": 20662.74, + "end": 20665.44, + "probability": 0.7975 + }, + { + "start": 20666.38, + "end": 20669.68, + "probability": 0.0402 + }, + { + "start": 20670.32, + "end": 20671.2, + "probability": 0.7443 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.26, + "end": 20780.26, + "probability": 0.0492 + }, + { + "start": 20780.26, + "end": 20783.32, + "probability": 0.8395 + }, + { + "start": 20783.58, + "end": 20785.98, + "probability": 0.9245 + }, + { + "start": 20786.14, + "end": 20787.28, + "probability": 0.9138 + }, + { + "start": 20788.22, + "end": 20790.94, + "probability": 0.9754 + }, + { + "start": 20791.34, + "end": 20793.38, + "probability": 0.7739 + }, + { + "start": 20793.62, + "end": 20793.84, + "probability": 0.6658 + }, + { + "start": 20794.8, + "end": 20795.82, + "probability": 0.4071 + }, + { + "start": 20796.62, + "end": 20798.44, + "probability": 0.8012 + }, + { + "start": 20809.46, + "end": 20811.62, + "probability": 0.6752 + }, + { + "start": 20812.7, + "end": 20816.88, + "probability": 0.8535 + }, + { + "start": 20817.04, + "end": 20820.7, + "probability": 0.9614 + }, + { + "start": 20822.18, + "end": 20825.02, + "probability": 0.9866 + }, + { + "start": 20826.0, + "end": 20830.08, + "probability": 0.9687 + }, + { + "start": 20830.82, + "end": 20833.82, + "probability": 0.9642 + }, + { + "start": 20834.6, + "end": 20835.54, + "probability": 0.9969 + }, + { + "start": 20836.6, + "end": 20841.7, + "probability": 0.9767 + }, + { + "start": 20842.48, + "end": 20845.68, + "probability": 0.7856 + }, + { + "start": 20846.6, + "end": 20849.28, + "probability": 0.968 + }, + { + "start": 20849.92, + "end": 20851.44, + "probability": 0.8901 + }, + { + "start": 20851.62, + "end": 20855.26, + "probability": 0.9236 + }, + { + "start": 20856.16, + "end": 20856.4, + "probability": 0.3702 + }, + { + "start": 20856.42, + "end": 20858.92, + "probability": 0.9374 + }, + { + "start": 20859.66, + "end": 20861.52, + "probability": 0.9029 + }, + { + "start": 20862.32, + "end": 20867.12, + "probability": 0.9294 + }, + { + "start": 20867.98, + "end": 20870.42, + "probability": 0.9287 + }, + { + "start": 20871.33, + "end": 20874.24, + "probability": 0.7368 + }, + { + "start": 20874.24, + "end": 20877.14, + "probability": 0.9451 + }, + { + "start": 20877.74, + "end": 20880.12, + "probability": 0.9661 + }, + { + "start": 20881.08, + "end": 20883.54, + "probability": 0.9901 + }, + { + "start": 20883.86, + "end": 20888.08, + "probability": 0.8657 + }, + { + "start": 20888.72, + "end": 20890.54, + "probability": 0.9875 + }, + { + "start": 20891.36, + "end": 20893.88, + "probability": 0.9751 + }, + { + "start": 20894.72, + "end": 20897.32, + "probability": 0.9899 + }, + { + "start": 20898.02, + "end": 20899.14, + "probability": 0.6659 + }, + { + "start": 20899.66, + "end": 20903.4, + "probability": 0.9699 + }, + { + "start": 20903.56, + "end": 20907.92, + "probability": 0.9977 + }, + { + "start": 20909.02, + "end": 20912.1, + "probability": 0.9954 + }, + { + "start": 20913.1, + "end": 20917.84, + "probability": 0.7253 + }, + { + "start": 20918.66, + "end": 20923.86, + "probability": 0.9831 + }, + { + "start": 20924.86, + "end": 20927.24, + "probability": 0.3396 + }, + { + "start": 20927.32, + "end": 20928.47, + "probability": 0.9469 + }, + { + "start": 20931.52, + "end": 20934.62, + "probability": 0.9795 + }, + { + "start": 20935.16, + "end": 20935.34, + "probability": 0.0274 + }, + { + "start": 20935.34, + "end": 20936.21, + "probability": 0.3834 + }, + { + "start": 20937.6, + "end": 20938.38, + "probability": 0.3679 + }, + { + "start": 20938.38, + "end": 20938.88, + "probability": 0.4755 + }, + { + "start": 20938.88, + "end": 20939.0, + "probability": 0.2842 + }, + { + "start": 20955.96, + "end": 20957.78, + "probability": 0.1394 + }, + { + "start": 20961.76, + "end": 20963.26, + "probability": 0.1793 + }, + { + "start": 20976.5, + "end": 20980.64, + "probability": 0.1862 + }, + { + "start": 20981.26, + "end": 20982.18, + "probability": 0.0319 + }, + { + "start": 20982.18, + "end": 20982.92, + "probability": 0.0351 + }, + { + "start": 20982.92, + "end": 20983.71, + "probability": 0.1154 + }, + { + "start": 20986.68, + "end": 20987.54, + "probability": 0.1833 + }, + { + "start": 20987.54, + "end": 20988.28, + "probability": 0.8699 + }, + { + "start": 20988.72, + "end": 20992.46, + "probability": 0.0547 + }, + { + "start": 20994.04, + "end": 20994.2, + "probability": 0.0093 + }, + { + "start": 20996.26, + "end": 20999.8, + "probability": 0.06 + }, + { + "start": 21001.4, + "end": 21001.98, + "probability": 0.1671 + }, + { + "start": 21005.5, + "end": 21006.68, + "probability": 0.0369 + }, + { + "start": 21006.74, + "end": 21007.96, + "probability": 0.0093 + }, + { + "start": 21007.96, + "end": 21007.96, + "probability": 0.0439 + }, + { + "start": 21007.96, + "end": 21007.98, + "probability": 0.0583 + }, + { + "start": 21008.0, + "end": 21008.0, + "probability": 0.0 + }, + { + "start": 21008.0, + "end": 21008.0, + "probability": 0.0 + }, + { + "start": 21008.0, + "end": 21008.0, + "probability": 0.0 + }, + { + "start": 21008.0, + "end": 21008.0, + "probability": 0.0 + }, + { + "start": 21008.0, + "end": 21008.0, + "probability": 0.0 + }, + { + "start": 21008.0, + "end": 21008.0, + "probability": 0.0 + }, + { + "start": 21008.0, + "end": 21008.0, + "probability": 0.0 + }, + { + "start": 21008.0, + "end": 21008.0, + "probability": 0.0 + }, + { + "start": 21008.0, + "end": 21008.0, + "probability": 0.0 + }, + { + "start": 21008.0, + "end": 21008.0, + "probability": 0.0 + }, + { + "start": 21008.0, + "end": 21008.0, + "probability": 0.0 + }, + { + "start": 21008.0, + "end": 21008.0, + "probability": 0.0 + }, + { + "start": 21008.0, + "end": 21008.0, + "probability": 0.0 + }, + { + "start": 21008.0, + "end": 21008.0, + "probability": 0.0 + }, + { + "start": 21008.0, + "end": 21008.0, + "probability": 0.0 + }, + { + "start": 21008.0, + "end": 21008.0, + "probability": 0.0 + }, + { + "start": 21008.94, + "end": 21009.8, + "probability": 0.2911 + }, + { + "start": 21010.2, + "end": 21010.44, + "probability": 0.0288 + }, + { + "start": 21010.56, + "end": 21013.83, + "probability": 0.212 + }, + { + "start": 21015.33, + "end": 21017.94, + "probability": 0.2022 + }, + { + "start": 21018.02, + "end": 21020.78, + "probability": 0.2633 + }, + { + "start": 21021.64, + "end": 21024.08, + "probability": 0.5478 + }, + { + "start": 21024.6, + "end": 21025.18, + "probability": 0.6931 + }, + { + "start": 21025.68, + "end": 21031.1, + "probability": 0.8596 + }, + { + "start": 21031.1, + "end": 21037.18, + "probability": 0.856 + }, + { + "start": 21038.74, + "end": 21038.74, + "probability": 0.0299 + }, + { + "start": 21038.74, + "end": 21041.16, + "probability": 0.5633 + }, + { + "start": 21041.36, + "end": 21043.88, + "probability": 0.9818 + }, + { + "start": 21045.02, + "end": 21046.67, + "probability": 0.9199 + }, + { + "start": 21050.24, + "end": 21051.7, + "probability": 0.5239 + }, + { + "start": 21051.8, + "end": 21051.8, + "probability": 0.5486 + }, + { + "start": 21051.8, + "end": 21052.52, + "probability": 0.3062 + }, + { + "start": 21052.64, + "end": 21053.56, + "probability": 0.5818 + }, + { + "start": 21053.62, + "end": 21059.16, + "probability": 0.9049 + }, + { + "start": 21059.66, + "end": 21064.82, + "probability": 0.7993 + }, + { + "start": 21066.3, + "end": 21072.88, + "probability": 0.9733 + }, + { + "start": 21072.94, + "end": 21077.94, + "probability": 0.8457 + }, + { + "start": 21078.36, + "end": 21079.44, + "probability": 0.8889 + }, + { + "start": 21079.6, + "end": 21082.6, + "probability": 0.9886 + }, + { + "start": 21083.04, + "end": 21084.14, + "probability": 0.8193 + }, + { + "start": 21084.4, + "end": 21085.66, + "probability": 0.8991 + }, + { + "start": 21086.0, + "end": 21088.48, + "probability": 0.9787 + }, + { + "start": 21088.78, + "end": 21090.38, + "probability": 0.7934 + }, + { + "start": 21090.42, + "end": 21091.1, + "probability": 0.9748 + }, + { + "start": 21091.16, + "end": 21091.62, + "probability": 0.8847 + }, + { + "start": 21091.66, + "end": 21092.42, + "probability": 0.7565 + }, + { + "start": 21092.86, + "end": 21096.2, + "probability": 0.8522 + }, + { + "start": 21096.68, + "end": 21099.2, + "probability": 0.9824 + }, + { + "start": 21099.34, + "end": 21100.0, + "probability": 0.9142 + }, + { + "start": 21100.12, + "end": 21101.64, + "probability": 0.8356 + }, + { + "start": 21102.13, + "end": 21103.9, + "probability": 0.9727 + }, + { + "start": 21104.32, + "end": 21107.94, + "probability": 0.8396 + }, + { + "start": 21107.98, + "end": 21111.66, + "probability": 0.9328 + }, + { + "start": 21111.66, + "end": 21114.28, + "probability": 0.9692 + }, + { + "start": 21114.46, + "end": 21118.84, + "probability": 0.9066 + }, + { + "start": 21119.14, + "end": 21122.06, + "probability": 0.9687 + }, + { + "start": 21122.16, + "end": 21122.56, + "probability": 0.7757 + }, + { + "start": 21123.94, + "end": 21126.36, + "probability": 0.6954 + }, + { + "start": 21126.46, + "end": 21128.06, + "probability": 0.9337 + }, + { + "start": 21133.58, + "end": 21133.98, + "probability": 0.5945 + }, + { + "start": 21133.98, + "end": 21136.12, + "probability": 0.6119 + }, + { + "start": 21136.86, + "end": 21139.3, + "probability": 0.9761 + }, + { + "start": 21139.74, + "end": 21142.5, + "probability": 0.9875 + }, + { + "start": 21142.5, + "end": 21146.5, + "probability": 0.7083 + }, + { + "start": 21146.84, + "end": 21148.62, + "probability": 0.7918 + }, + { + "start": 21148.92, + "end": 21149.16, + "probability": 0.754 + }, + { + "start": 21150.34, + "end": 21151.83, + "probability": 0.5298 + }, + { + "start": 21152.48, + "end": 21154.88, + "probability": 0.7979 + }, + { + "start": 21154.96, + "end": 21155.2, + "probability": 0.8961 + }, + { + "start": 21160.48, + "end": 21161.3, + "probability": 0.811 + }, + { + "start": 21161.38, + "end": 21163.06, + "probability": 0.8463 + }, + { + "start": 21163.22, + "end": 21167.17, + "probability": 0.927 + }, + { + "start": 21167.42, + "end": 21169.53, + "probability": 0.9573 + }, + { + "start": 21170.34, + "end": 21175.7, + "probability": 0.9557 + }, + { + "start": 21177.3, + "end": 21182.3, + "probability": 0.9839 + }, + { + "start": 21182.76, + "end": 21185.24, + "probability": 0.9784 + }, + { + "start": 21186.06, + "end": 21188.1, + "probability": 0.6529 + }, + { + "start": 21190.42, + "end": 21194.64, + "probability": 0.908 + }, + { + "start": 21195.16, + "end": 21197.54, + "probability": 0.9528 + }, + { + "start": 21197.54, + "end": 21200.84, + "probability": 0.9404 + }, + { + "start": 21201.72, + "end": 21205.46, + "probability": 0.8872 + }, + { + "start": 21205.78, + "end": 21210.42, + "probability": 0.9945 + }, + { + "start": 21210.8, + "end": 21215.44, + "probability": 0.9785 + }, + { + "start": 21216.06, + "end": 21219.78, + "probability": 0.5909 + }, + { + "start": 21219.82, + "end": 21222.6, + "probability": 0.933 + }, + { + "start": 21223.42, + "end": 21224.06, + "probability": 0.6608 + }, + { + "start": 21224.2, + "end": 21224.78, + "probability": 0.7051 + }, + { + "start": 21224.86, + "end": 21227.02, + "probability": 0.926 + }, + { + "start": 21227.4, + "end": 21230.86, + "probability": 0.9741 + }, + { + "start": 21231.46, + "end": 21235.04, + "probability": 0.9689 + }, + { + "start": 21235.28, + "end": 21239.88, + "probability": 0.9727 + }, + { + "start": 21239.88, + "end": 21243.04, + "probability": 0.9969 + }, + { + "start": 21244.04, + "end": 21246.84, + "probability": 0.9958 + }, + { + "start": 21247.4, + "end": 21250.86, + "probability": 0.9625 + }, + { + "start": 21251.89, + "end": 21252.46, + "probability": 0.2424 + }, + { + "start": 21252.46, + "end": 21256.68, + "probability": 0.9824 + }, + { + "start": 21257.28, + "end": 21259.62, + "probability": 0.9925 + }, + { + "start": 21259.62, + "end": 21263.14, + "probability": 0.9053 + }, + { + "start": 21264.0, + "end": 21265.24, + "probability": 0.8736 + }, + { + "start": 21265.44, + "end": 21267.76, + "probability": 0.9927 + }, + { + "start": 21268.28, + "end": 21270.22, + "probability": 0.9958 + }, + { + "start": 21271.64, + "end": 21275.1, + "probability": 0.9508 + }, + { + "start": 21275.58, + "end": 21276.1, + "probability": 0.8956 + }, + { + "start": 21278.18, + "end": 21279.06, + "probability": 0.6401 + }, + { + "start": 21279.28, + "end": 21281.76, + "probability": 0.668 + }, + { + "start": 21285.96, + "end": 21286.72, + "probability": 0.4465 + }, + { + "start": 21286.72, + "end": 21287.72, + "probability": 0.6453 + }, + { + "start": 21289.36, + "end": 21291.74, + "probability": 0.3475 + }, + { + "start": 21291.84, + "end": 21293.58, + "probability": 0.3883 + }, + { + "start": 21293.58, + "end": 21293.62, + "probability": 0.139 + }, + { + "start": 21293.64, + "end": 21296.21, + "probability": 0.1199 + }, + { + "start": 21297.08, + "end": 21298.22, + "probability": 0.5291 + }, + { + "start": 21298.48, + "end": 21298.58, + "probability": 0.5671 + }, + { + "start": 21298.78, + "end": 21299.1, + "probability": 0.4881 + }, + { + "start": 21304.02, + "end": 21305.98, + "probability": 0.4957 + }, + { + "start": 21306.28, + "end": 21306.28, + "probability": 0.1285 + }, + { + "start": 21306.36, + "end": 21306.92, + "probability": 0.905 + }, + { + "start": 21316.7, + "end": 21317.58, + "probability": 0.6406 + }, + { + "start": 21318.82, + "end": 21319.46, + "probability": 0.8752 + }, + { + "start": 21319.82, + "end": 21324.1, + "probability": 0.9946 + }, + { + "start": 21325.08, + "end": 21327.65, + "probability": 0.9912 + }, + { + "start": 21328.48, + "end": 21329.66, + "probability": 0.9424 + }, + { + "start": 21329.74, + "end": 21330.86, + "probability": 0.9037 + }, + { + "start": 21331.96, + "end": 21334.9, + "probability": 0.9523 + }, + { + "start": 21334.98, + "end": 21336.03, + "probability": 0.8846 + }, + { + "start": 21336.16, + "end": 21337.06, + "probability": 0.739 + }, + { + "start": 21337.6, + "end": 21338.58, + "probability": 0.9873 + }, + { + "start": 21338.64, + "end": 21339.78, + "probability": 0.9505 + }, + { + "start": 21339.84, + "end": 21341.22, + "probability": 0.9422 + }, + { + "start": 21341.74, + "end": 21342.62, + "probability": 0.9933 + }, + { + "start": 21346.1, + "end": 21346.18, + "probability": 0.0867 + }, + { + "start": 21346.18, + "end": 21347.4, + "probability": 0.7375 + }, + { + "start": 21347.58, + "end": 21347.58, + "probability": 0.2977 + }, + { + "start": 21347.58, + "end": 21347.58, + "probability": 0.0376 + }, + { + "start": 21347.58, + "end": 21347.58, + "probability": 0.2962 + }, + { + "start": 21347.58, + "end": 21349.52, + "probability": 0.9816 + }, + { + "start": 21351.28, + "end": 21353.52, + "probability": 0.9534 + }, + { + "start": 21354.48, + "end": 21356.26, + "probability": 0.6994 + }, + { + "start": 21357.16, + "end": 21358.9, + "probability": 0.9281 + }, + { + "start": 21359.58, + "end": 21360.56, + "probability": 0.6459 + }, + { + "start": 21361.36, + "end": 21363.8, + "probability": 0.1021 + }, + { + "start": 21365.42, + "end": 21366.72, + "probability": 0.7603 + }, + { + "start": 21368.16, + "end": 21369.14, + "probability": 0.4182 + }, + { + "start": 21369.8, + "end": 21374.2, + "probability": 0.2262 + }, + { + "start": 21374.2, + "end": 21374.92, + "probability": 0.1414 + }, + { + "start": 21375.4, + "end": 21377.93, + "probability": 0.2508 + }, + { + "start": 21381.05, + "end": 21383.81, + "probability": 0.3422 + }, + { + "start": 21384.76, + "end": 21384.76, + "probability": 0.0356 + }, + { + "start": 21384.76, + "end": 21386.4, + "probability": 0.4828 + }, + { + "start": 21386.4, + "end": 21386.52, + "probability": 0.0696 + }, + { + "start": 21386.7, + "end": 21388.3, + "probability": 0.1608 + }, + { + "start": 21388.6, + "end": 21389.6, + "probability": 0.0405 + }, + { + "start": 21389.6, + "end": 21389.82, + "probability": 0.1237 + }, + { + "start": 21391.2, + "end": 21392.04, + "probability": 0.0286 + }, + { + "start": 21392.04, + "end": 21392.08, + "probability": 0.0372 + }, + { + "start": 21392.08, + "end": 21392.08, + "probability": 0.0853 + }, + { + "start": 21392.08, + "end": 21392.08, + "probability": 0.0842 + }, + { + "start": 21392.08, + "end": 21392.9, + "probability": 0.0512 + }, + { + "start": 21393.06, + "end": 21396.42, + "probability": 0.4514 + }, + { + "start": 21397.4, + "end": 21397.52, + "probability": 0.1414 + }, + { + "start": 21397.52, + "end": 21397.52, + "probability": 0.064 + }, + { + "start": 21397.52, + "end": 21397.52, + "probability": 0.0424 + }, + { + "start": 21397.52, + "end": 21397.52, + "probability": 0.1619 + }, + { + "start": 21397.52, + "end": 21397.52, + "probability": 0.0707 + }, + { + "start": 21397.52, + "end": 21398.16, + "probability": 0.446 + }, + { + "start": 21398.16, + "end": 21399.62, + "probability": 0.6983 + }, + { + "start": 21400.36, + "end": 21401.18, + "probability": 0.5735 + }, + { + "start": 21402.32, + "end": 21402.66, + "probability": 0.5929 + }, + { + "start": 21402.92, + "end": 21404.0, + "probability": 0.7316 + }, + { + "start": 21404.1, + "end": 21405.38, + "probability": 0.7105 + }, + { + "start": 21406.26, + "end": 21407.96, + "probability": 0.6952 + }, + { + "start": 21408.24, + "end": 21410.16, + "probability": 0.9639 + }, + { + "start": 21411.28, + "end": 21412.52, + "probability": 0.9692 + }, + { + "start": 21413.18, + "end": 21413.92, + "probability": 0.5854 + }, + { + "start": 21414.06, + "end": 21415.02, + "probability": 0.7108 + }, + { + "start": 21415.7, + "end": 21419.06, + "probability": 0.8702 + }, + { + "start": 21419.62, + "end": 21421.12, + "probability": 0.927 + }, + { + "start": 21421.98, + "end": 21424.52, + "probability": 0.9937 + }, + { + "start": 21425.56, + "end": 21427.88, + "probability": 0.9951 + }, + { + "start": 21428.74, + "end": 21432.78, + "probability": 0.9672 + }, + { + "start": 21433.64, + "end": 21435.14, + "probability": 0.9739 + }, + { + "start": 21435.24, + "end": 21437.22, + "probability": 0.8412 + }, + { + "start": 21437.94, + "end": 21441.04, + "probability": 0.9495 + }, + { + "start": 21441.04, + "end": 21443.48, + "probability": 0.9946 + }, + { + "start": 21444.0, + "end": 21445.28, + "probability": 0.9293 + }, + { + "start": 21445.94, + "end": 21449.38, + "probability": 0.9543 + }, + { + "start": 21450.46, + "end": 21452.28, + "probability": 0.8232 + }, + { + "start": 21453.16, + "end": 21458.2, + "probability": 0.8181 + }, + { + "start": 21458.2, + "end": 21460.36, + "probability": 0.8075 + }, + { + "start": 21460.44, + "end": 21461.18, + "probability": 0.9102 + }, + { + "start": 21461.24, + "end": 21463.74, + "probability": 0.8902 + }, + { + "start": 21463.8, + "end": 21465.28, + "probability": 0.9021 + }, + { + "start": 21465.74, + "end": 21466.18, + "probability": 0.9674 + }, + { + "start": 21466.58, + "end": 21467.42, + "probability": 0.9021 + }, + { + "start": 21468.56, + "end": 21470.52, + "probability": 0.6783 + }, + { + "start": 21471.08, + "end": 21475.49, + "probability": 0.8872 + }, + { + "start": 21476.08, + "end": 21477.28, + "probability": 0.6817 + }, + { + "start": 21477.58, + "end": 21479.35, + "probability": 0.9967 + }, + { + "start": 21479.86, + "end": 21481.36, + "probability": 0.8185 + }, + { + "start": 21481.46, + "end": 21485.8, + "probability": 0.9832 + }, + { + "start": 21485.92, + "end": 21486.98, + "probability": 0.8892 + }, + { + "start": 21487.06, + "end": 21488.34, + "probability": 0.5595 + }, + { + "start": 21488.94, + "end": 21492.38, + "probability": 0.8143 + }, + { + "start": 21492.82, + "end": 21494.8, + "probability": 0.7627 + }, + { + "start": 21495.4, + "end": 21499.6, + "probability": 0.6759 + }, + { + "start": 21501.66, + "end": 21503.14, + "probability": 0.8817 + }, + { + "start": 21504.12, + "end": 21507.5, + "probability": 0.2772 + }, + { + "start": 21508.12, + "end": 21509.92, + "probability": 0.6601 + }, + { + "start": 21510.08, + "end": 21512.14, + "probability": 0.5946 + }, + { + "start": 21512.2, + "end": 21515.32, + "probability": 0.7946 + }, + { + "start": 21515.44, + "end": 21517.16, + "probability": 0.571 + }, + { + "start": 21518.3, + "end": 21526.28, + "probability": 0.0119 + }, + { + "start": 21526.88, + "end": 21528.24, + "probability": 0.0109 + }, + { + "start": 21530.02, + "end": 21531.88, + "probability": 0.0463 + }, + { + "start": 21531.88, + "end": 21531.88, + "probability": 0.1389 + }, + { + "start": 21532.34, + "end": 21532.62, + "probability": 0.2383 + }, + { + "start": 21532.62, + "end": 21535.24, + "probability": 0.6024 + }, + { + "start": 21535.72, + "end": 21536.5, + "probability": 0.2779 + }, + { + "start": 21537.04, + "end": 21538.68, + "probability": 0.7684 + }, + { + "start": 21539.36, + "end": 21540.54, + "probability": 0.7747 + }, + { + "start": 21540.64, + "end": 21541.48, + "probability": 0.2492 + }, + { + "start": 21541.66, + "end": 21542.3, + "probability": 0.9395 + }, + { + "start": 21542.32, + "end": 21544.38, + "probability": 0.8099 + }, + { + "start": 21544.48, + "end": 21547.7, + "probability": 0.9913 + }, + { + "start": 21547.8, + "end": 21549.08, + "probability": 0.9626 + }, + { + "start": 21549.58, + "end": 21551.42, + "probability": 0.7848 + }, + { + "start": 21552.12, + "end": 21555.08, + "probability": 0.9633 + }, + { + "start": 21556.02, + "end": 21556.74, + "probability": 0.9733 + }, + { + "start": 21556.96, + "end": 21558.38, + "probability": 0.8923 + }, + { + "start": 21558.76, + "end": 21561.46, + "probability": 0.7785 + }, + { + "start": 21561.6, + "end": 21562.44, + "probability": 0.7505 + }, + { + "start": 21562.82, + "end": 21563.66, + "probability": 0.8712 + }, + { + "start": 21564.0, + "end": 21564.62, + "probability": 0.9403 + }, + { + "start": 21564.68, + "end": 21565.32, + "probability": 0.8168 + }, + { + "start": 21565.42, + "end": 21566.02, + "probability": 0.9556 + }, + { + "start": 21566.28, + "end": 21566.96, + "probability": 0.7535 + }, + { + "start": 21567.06, + "end": 21571.3, + "probability": 0.2157 + }, + { + "start": 21571.3, + "end": 21572.14, + "probability": 0.2972 + }, + { + "start": 21572.14, + "end": 21572.2, + "probability": 0.0396 + }, + { + "start": 21572.2, + "end": 21572.2, + "probability": 0.1042 + }, + { + "start": 21572.2, + "end": 21575.86, + "probability": 0.8525 + }, + { + "start": 21576.3, + "end": 21578.44, + "probability": 0.9956 + }, + { + "start": 21578.58, + "end": 21579.7, + "probability": 0.9017 + }, + { + "start": 21580.38, + "end": 21581.56, + "probability": 0.8608 + }, + { + "start": 21581.7, + "end": 21583.16, + "probability": 0.7502 + }, + { + "start": 21583.84, + "end": 21585.36, + "probability": 0.927 + }, + { + "start": 21585.4, + "end": 21587.95, + "probability": 0.8773 + }, + { + "start": 21588.96, + "end": 21589.84, + "probability": 0.6347 + }, + { + "start": 21589.84, + "end": 21589.86, + "probability": 0.0081 + }, + { + "start": 21589.86, + "end": 21591.8, + "probability": 0.4869 + }, + { + "start": 21592.1, + "end": 21592.84, + "probability": 0.414 + }, + { + "start": 21593.28, + "end": 21597.98, + "probability": 0.6968 + }, + { + "start": 21598.14, + "end": 21601.38, + "probability": 0.2662 + }, + { + "start": 21601.38, + "end": 21602.32, + "probability": 0.177 + }, + { + "start": 21602.54, + "end": 21604.5, + "probability": 0.9604 + }, + { + "start": 21604.92, + "end": 21609.44, + "probability": 0.8219 + }, + { + "start": 21609.52, + "end": 21610.16, + "probability": 0.8402 + }, + { + "start": 21610.16, + "end": 21612.48, + "probability": 0.9573 + }, + { + "start": 21613.24, + "end": 21614.0, + "probability": 0.3953 + }, + { + "start": 21614.54, + "end": 21615.46, + "probability": 0.7117 + }, + { + "start": 21615.52, + "end": 21616.92, + "probability": 0.9209 + }, + { + "start": 21617.18, + "end": 21620.06, + "probability": 0.9531 + }, + { + "start": 21620.22, + "end": 21622.48, + "probability": 0.8286 + }, + { + "start": 21623.14, + "end": 21624.1, + "probability": 0.9948 + }, + { + "start": 21624.24, + "end": 21626.2, + "probability": 0.9139 + }, + { + "start": 21626.36, + "end": 21627.52, + "probability": 0.8442 + }, + { + "start": 21627.96, + "end": 21630.06, + "probability": 0.9316 + }, + { + "start": 21630.22, + "end": 21631.1, + "probability": 0.8116 + }, + { + "start": 21631.48, + "end": 21632.48, + "probability": 0.988 + }, + { + "start": 21632.88, + "end": 21637.41, + "probability": 0.9733 + }, + { + "start": 21638.72, + "end": 21638.72, + "probability": 0.0321 + }, + { + "start": 21638.72, + "end": 21638.72, + "probability": 0.0184 + }, + { + "start": 21638.72, + "end": 21641.72, + "probability": 0.9183 + }, + { + "start": 21642.04, + "end": 21644.46, + "probability": 0.9958 + }, + { + "start": 21645.6, + "end": 21646.62, + "probability": 0.639 + }, + { + "start": 21647.16, + "end": 21648.36, + "probability": 0.8955 + }, + { + "start": 21648.52, + "end": 21649.24, + "probability": 0.3587 + }, + { + "start": 21649.4, + "end": 21650.12, + "probability": 0.5206 + }, + { + "start": 21650.2, + "end": 21651.8, + "probability": 0.9683 + }, + { + "start": 21652.44, + "end": 21658.78, + "probability": 0.9886 + }, + { + "start": 21659.6, + "end": 21660.2, + "probability": 0.4023 + }, + { + "start": 21660.34, + "end": 21663.34, + "probability": 0.8809 + }, + { + "start": 21663.68, + "end": 21666.5, + "probability": 0.9377 + }, + { + "start": 21666.52, + "end": 21667.39, + "probability": 0.7778 + }, + { + "start": 21667.72, + "end": 21670.5, + "probability": 0.9614 + }, + { + "start": 21670.66, + "end": 21671.78, + "probability": 0.7759 + }, + { + "start": 21671.96, + "end": 21673.0, + "probability": 0.7492 + }, + { + "start": 21673.14, + "end": 21675.22, + "probability": 0.9817 + }, + { + "start": 21675.66, + "end": 21678.64, + "probability": 0.9955 + }, + { + "start": 21679.08, + "end": 21682.52, + "probability": 0.7769 + }, + { + "start": 21683.52, + "end": 21684.26, + "probability": 0.0358 + }, + { + "start": 21690.88, + "end": 21693.0, + "probability": 0.7019 + }, + { + "start": 21694.22, + "end": 21695.2, + "probability": 0.491 + }, + { + "start": 21695.2, + "end": 21695.28, + "probability": 0.0198 + }, + { + "start": 21695.32, + "end": 21696.36, + "probability": 0.0428 + }, + { + "start": 21696.36, + "end": 21696.54, + "probability": 0.5573 + }, + { + "start": 21696.54, + "end": 21696.54, + "probability": 0.8055 + }, + { + "start": 21696.54, + "end": 21698.7, + "probability": 0.3328 + }, + { + "start": 21699.06, + "end": 21699.7, + "probability": 0.4905 + }, + { + "start": 21700.58, + "end": 21701.04, + "probability": 0.0403 + }, + { + "start": 21701.04, + "end": 21702.06, + "probability": 0.5616 + }, + { + "start": 21702.24, + "end": 21707.6, + "probability": 0.8511 + }, + { + "start": 21707.6, + "end": 21709.28, + "probability": 0.5092 + }, + { + "start": 21709.46, + "end": 21709.78, + "probability": 0.0247 + }, + { + "start": 21709.96, + "end": 21710.68, + "probability": 0.3544 + }, + { + "start": 21712.44, + "end": 21713.2, + "probability": 0.0411 + }, + { + "start": 21713.36, + "end": 21715.02, + "probability": 0.3521 + }, + { + "start": 21715.02, + "end": 21715.26, + "probability": 0.3166 + }, + { + "start": 21715.26, + "end": 21716.42, + "probability": 0.3939 + }, + { + "start": 21716.42, + "end": 21719.3, + "probability": 0.2267 + }, + { + "start": 21721.0, + "end": 21723.46, + "probability": 0.0442 + }, + { + "start": 21724.0, + "end": 21725.36, + "probability": 0.2281 + }, + { + "start": 21725.5, + "end": 21725.5, + "probability": 0.0649 + }, + { + "start": 21725.5, + "end": 21725.54, + "probability": 0.1647 + }, + { + "start": 21727.54, + "end": 21728.62, + "probability": 0.8379 + }, + { + "start": 21736.56, + "end": 21738.28, + "probability": 0.5231 + }, + { + "start": 21738.5, + "end": 21741.7, + "probability": 0.8377 + }, + { + "start": 21741.82, + "end": 21742.6, + "probability": 0.5363 + }, + { + "start": 21742.72, + "end": 21743.2, + "probability": 0.0388 + }, + { + "start": 21743.2, + "end": 21745.16, + "probability": 0.2937 + }, + { + "start": 21745.16, + "end": 21747.98, + "probability": 0.2407 + }, + { + "start": 21748.12, + "end": 21749.96, + "probability": 0.6088 + }, + { + "start": 21751.29, + "end": 21754.66, + "probability": 0.5824 + }, + { + "start": 21754.74, + "end": 21756.9, + "probability": 0.8195 + }, + { + "start": 21757.06, + "end": 21759.19, + "probability": 0.7924 + }, + { + "start": 21759.29, + "end": 21760.89, + "probability": 0.9805 + }, + { + "start": 21761.03, + "end": 21764.41, + "probability": 0.9528 + }, + { + "start": 21764.41, + "end": 21771.09, + "probability": 0.5819 + }, + { + "start": 21771.13, + "end": 21772.87, + "probability": 0.7617 + }, + { + "start": 21772.95, + "end": 21774.15, + "probability": 0.8903 + }, + { + "start": 21774.39, + "end": 21777.47, + "probability": 0.8537 + }, + { + "start": 21777.73, + "end": 21780.51, + "probability": 0.9922 + }, + { + "start": 21780.81, + "end": 21782.21, + "probability": 0.9878 + }, + { + "start": 21782.47, + "end": 21784.61, + "probability": 0.9907 + }, + { + "start": 21785.17, + "end": 21790.75, + "probability": 0.9605 + }, + { + "start": 21790.99, + "end": 21791.74, + "probability": 0.7317 + }, + { + "start": 21792.81, + "end": 21793.23, + "probability": 0.4914 + }, + { + "start": 21793.53, + "end": 21793.75, + "probability": 0.7772 + }, + { + "start": 21794.07, + "end": 21794.07, + "probability": 0.237 + }, + { + "start": 21794.07, + "end": 21794.07, + "probability": 0.0651 + }, + { + "start": 21794.07, + "end": 21796.97, + "probability": 0.8097 + }, + { + "start": 21797.35, + "end": 21800.83, + "probability": 0.834 + }, + { + "start": 21800.83, + "end": 21804.46, + "probability": 0.7627 + }, + { + "start": 21806.39, + "end": 21806.39, + "probability": 0.0208 + }, + { + "start": 21806.39, + "end": 21807.07, + "probability": 0.0707 + }, + { + "start": 21807.29, + "end": 21809.91, + "probability": 0.9478 + }, + { + "start": 21810.31, + "end": 21816.67, + "probability": 0.1202 + }, + { + "start": 21816.97, + "end": 21820.89, + "probability": 0.2645 + }, + { + "start": 21822.01, + "end": 21824.46, + "probability": 0.1698 + }, + { + "start": 21833.17, + "end": 21835.47, + "probability": 0.0606 + }, + { + "start": 21835.47, + "end": 21836.02, + "probability": 0.0388 + }, + { + "start": 21836.53, + "end": 21836.83, + "probability": 0.3194 + }, + { + "start": 21836.83, + "end": 21839.27, + "probability": 0.1551 + }, + { + "start": 21839.27, + "end": 21839.39, + "probability": 0.0869 + }, + { + "start": 21839.39, + "end": 21843.99, + "probability": 0.0728 + }, + { + "start": 21844.81, + "end": 21846.89, + "probability": 0.124 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.0, + "end": 21909.0, + "probability": 0.0 + }, + { + "start": 21909.38, + "end": 21911.08, + "probability": 0.1133 + }, + { + "start": 21915.72, + "end": 21919.56, + "probability": 0.3796 + }, + { + "start": 21920.08, + "end": 21921.6, + "probability": 0.219 + }, + { + "start": 21922.64, + "end": 21924.74, + "probability": 0.1959 + }, + { + "start": 21926.12, + "end": 21930.37, + "probability": 0.208 + }, + { + "start": 21932.72, + "end": 21933.06, + "probability": 0.1155 + }, + { + "start": 21938.42, + "end": 21939.36, + "probability": 0.2199 + }, + { + "start": 21939.65, + "end": 21941.55, + "probability": 0.2619 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22046.0, + "end": 22046.0, + "probability": 0.0 + }, + { + "start": 22060.89, + "end": 22069.34, + "probability": 0.0549 + }, + { + "start": 22069.34, + "end": 22071.66, + "probability": 0.0742 + }, + { + "start": 22071.66, + "end": 22072.52, + "probability": 0.0398 + }, + { + "start": 22072.84, + "end": 22073.48, + "probability": 0.2739 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.54, + "end": 22186.06, + "probability": 0.142 + }, + { + "start": 22186.06, + "end": 22186.06, + "probability": 0.1094 + }, + { + "start": 22186.06, + "end": 22186.06, + "probability": 0.17 + }, + { + "start": 22186.06, + "end": 22188.22, + "probability": 0.1359 + }, + { + "start": 22189.4, + "end": 22191.58, + "probability": 0.66 + }, + { + "start": 22191.7, + "end": 22192.74, + "probability": 0.6633 + }, + { + "start": 22192.76, + "end": 22194.22, + "probability": 0.8724 + }, + { + "start": 22196.8, + "end": 22202.18, + "probability": 0.9987 + }, + { + "start": 22203.3, + "end": 22210.8, + "probability": 0.9818 + }, + { + "start": 22211.52, + "end": 22211.52, + "probability": 0.2523 + }, + { + "start": 22211.52, + "end": 22212.15, + "probability": 0.5744 + }, + { + "start": 22213.62, + "end": 22218.36, + "probability": 0.8987 + }, + { + "start": 22218.86, + "end": 22220.42, + "probability": 0.9858 + }, + { + "start": 22221.2, + "end": 22222.6, + "probability": 0.8261 + }, + { + "start": 22224.34, + "end": 22225.32, + "probability": 0.7792 + }, + { + "start": 22226.42, + "end": 22235.44, + "probability": 0.9735 + }, + { + "start": 22236.58, + "end": 22238.62, + "probability": 0.922 + }, + { + "start": 22240.06, + "end": 22241.88, + "probability": 0.9535 + }, + { + "start": 22242.0, + "end": 22246.06, + "probability": 0.9803 + }, + { + "start": 22247.24, + "end": 22248.42, + "probability": 0.9955 + }, + { + "start": 22249.32, + "end": 22249.98, + "probability": 0.8928 + }, + { + "start": 22250.74, + "end": 22252.82, + "probability": 0.8846 + }, + { + "start": 22254.04, + "end": 22256.52, + "probability": 0.7761 + }, + { + "start": 22257.98, + "end": 22262.88, + "probability": 0.9894 + }, + { + "start": 22263.74, + "end": 22268.58, + "probability": 0.937 + }, + { + "start": 22269.96, + "end": 22274.96, + "probability": 0.5727 + }, + { + "start": 22276.9, + "end": 22278.86, + "probability": 0.9114 + }, + { + "start": 22279.62, + "end": 22286.22, + "probability": 0.9758 + }, + { + "start": 22286.22, + "end": 22291.52, + "probability": 0.9958 + }, + { + "start": 22292.72, + "end": 22295.74, + "probability": 0.9979 + }, + { + "start": 22298.0, + "end": 22302.32, + "probability": 0.8663 + }, + { + "start": 22304.12, + "end": 22305.6, + "probability": 0.712 + }, + { + "start": 22307.16, + "end": 22307.64, + "probability": 0.6871 + }, + { + "start": 22308.68, + "end": 22313.51, + "probability": 0.8739 + }, + { + "start": 22314.68, + "end": 22319.12, + "probability": 0.9561 + }, + { + "start": 22320.26, + "end": 22322.7, + "probability": 0.9858 + }, + { + "start": 22323.86, + "end": 22331.52, + "probability": 0.965 + }, + { + "start": 22333.5, + "end": 22336.24, + "probability": 0.322 + }, + { + "start": 22337.7, + "end": 22340.76, + "probability": 0.7839 + }, + { + "start": 22341.44, + "end": 22343.94, + "probability": 0.9438 + }, + { + "start": 22344.1, + "end": 22344.56, + "probability": 0.5579 + }, + { + "start": 22344.76, + "end": 22346.04, + "probability": 0.8586 + }, + { + "start": 22347.24, + "end": 22350.18, + "probability": 0.9924 + }, + { + "start": 22351.22, + "end": 22352.64, + "probability": 0.8918 + }, + { + "start": 22354.24, + "end": 22356.84, + "probability": 0.9476 + }, + { + "start": 22357.74, + "end": 22362.4, + "probability": 0.9169 + }, + { + "start": 22363.48, + "end": 22370.48, + "probability": 0.9164 + }, + { + "start": 22371.28, + "end": 22377.98, + "probability": 0.9575 + }, + { + "start": 22379.66, + "end": 22389.06, + "probability": 0.9922 + }, + { + "start": 22390.14, + "end": 22394.46, + "probability": 0.9347 + }, + { + "start": 22395.14, + "end": 22401.98, + "probability": 0.9663 + }, + { + "start": 22404.18, + "end": 22410.7, + "probability": 0.9145 + }, + { + "start": 22412.52, + "end": 22414.2, + "probability": 0.7915 + }, + { + "start": 22414.46, + "end": 22418.6, + "probability": 0.8826 + }, + { + "start": 22418.68, + "end": 22421.54, + "probability": 0.8861 + }, + { + "start": 22421.86, + "end": 22423.32, + "probability": 0.857 + }, + { + "start": 22423.7, + "end": 22426.24, + "probability": 0.8781 + }, + { + "start": 22427.42, + "end": 22428.1, + "probability": 0.6321 + }, + { + "start": 22428.32, + "end": 22436.12, + "probability": 0.8141 + }, + { + "start": 22436.88, + "end": 22437.88, + "probability": 0.8299 + }, + { + "start": 22438.88, + "end": 22443.48, + "probability": 0.6007 + }, + { + "start": 22444.0, + "end": 22446.68, + "probability": 0.6369 + }, + { + "start": 22447.68, + "end": 22449.16, + "probability": 0.9783 + }, + { + "start": 22450.98, + "end": 22456.96, + "probability": 0.7769 + }, + { + "start": 22458.14, + "end": 22461.42, + "probability": 0.6856 + }, + { + "start": 22462.68, + "end": 22466.78, + "probability": 0.9755 + }, + { + "start": 22467.78, + "end": 22469.1, + "probability": 0.9924 + }, + { + "start": 22470.2, + "end": 22471.56, + "probability": 0.9813 + }, + { + "start": 22472.64, + "end": 22473.56, + "probability": 0.939 + }, + { + "start": 22474.28, + "end": 22476.12, + "probability": 0.6877 + }, + { + "start": 22476.44, + "end": 22480.82, + "probability": 0.8354 + }, + { + "start": 22481.22, + "end": 22481.98, + "probability": 0.4389 + }, + { + "start": 22482.98, + "end": 22486.76, + "probability": 0.966 + }, + { + "start": 22487.66, + "end": 22494.3, + "probability": 0.966 + }, + { + "start": 22494.64, + "end": 22496.52, + "probability": 0.884 + }, + { + "start": 22496.98, + "end": 22499.16, + "probability": 0.9988 + }, + { + "start": 22500.24, + "end": 22503.9, + "probability": 0.6807 + }, + { + "start": 22504.04, + "end": 22505.14, + "probability": 0.0504 + }, + { + "start": 22505.18, + "end": 22505.48, + "probability": 0.3915 + }, + { + "start": 22505.7, + "end": 22506.78, + "probability": 0.7029 + }, + { + "start": 22507.02, + "end": 22509.18, + "probability": 0.4965 + }, + { + "start": 22509.86, + "end": 22513.32, + "probability": 0.293 + }, + { + "start": 22513.9, + "end": 22515.34, + "probability": 0.3349 + }, + { + "start": 22515.44, + "end": 22518.16, + "probability": 0.7549 + }, + { + "start": 22518.38, + "end": 22519.18, + "probability": 0.244 + }, + { + "start": 22519.28, + "end": 22523.34, + "probability": 0.8061 + }, + { + "start": 22523.58, + "end": 22524.66, + "probability": 0.4128 + }, + { + "start": 22524.9, + "end": 22524.9, + "probability": 0.8577 + }, + { + "start": 22525.42, + "end": 22526.7, + "probability": 0.7811 + }, + { + "start": 22527.04, + "end": 22530.36, + "probability": 0.7968 + }, + { + "start": 22530.52, + "end": 22531.6, + "probability": 0.9154 + }, + { + "start": 22532.1, + "end": 22533.4, + "probability": 0.9255 + }, + { + "start": 22533.94, + "end": 22534.46, + "probability": 0.002 + }, + { + "start": 22534.62, + "end": 22535.05, + "probability": 0.1778 + }, + { + "start": 22535.64, + "end": 22537.0, + "probability": 0.5564 + }, + { + "start": 22537.12, + "end": 22538.48, + "probability": 0.446 + }, + { + "start": 22538.76, + "end": 22540.72, + "probability": 0.9409 + }, + { + "start": 22541.02, + "end": 22542.8, + "probability": 0.9397 + }, + { + "start": 22543.43, + "end": 22546.09, + "probability": 0.033 + }, + { + "start": 22546.64, + "end": 22548.72, + "probability": 0.773 + }, + { + "start": 22548.86, + "end": 22549.04, + "probability": 0.0462 + }, + { + "start": 22549.04, + "end": 22551.7, + "probability": 0.7959 + }, + { + "start": 22552.16, + "end": 22557.42, + "probability": 0.9758 + }, + { + "start": 22558.14, + "end": 22561.42, + "probability": 0.8677 + }, + { + "start": 22562.34, + "end": 22564.24, + "probability": 0.7514 + }, + { + "start": 22564.74, + "end": 22566.36, + "probability": 0.7715 + }, + { + "start": 22566.86, + "end": 22568.52, + "probability": 0.9072 + }, + { + "start": 22569.0, + "end": 22571.0, + "probability": 0.9833 + }, + { + "start": 22571.82, + "end": 22574.14, + "probability": 0.8319 + }, + { + "start": 22574.34, + "end": 22576.02, + "probability": 0.7912 + }, + { + "start": 22576.84, + "end": 22578.9, + "probability": 0.8713 + }, + { + "start": 22578.96, + "end": 22580.96, + "probability": 0.9424 + }, + { + "start": 22582.32, + "end": 22588.29, + "probability": 0.7024 + }, + { + "start": 22592.18, + "end": 22599.92, + "probability": 0.9702 + }, + { + "start": 22599.92, + "end": 22603.82, + "probability": 0.732 + }, + { + "start": 22604.02, + "end": 22608.88, + "probability": 0.7541 + }, + { + "start": 22610.4, + "end": 22615.5, + "probability": 0.9569 + }, + { + "start": 22615.72, + "end": 22624.24, + "probability": 0.9831 + }, + { + "start": 22624.46, + "end": 22629.16, + "probability": 0.8494 + }, + { + "start": 22629.6, + "end": 22630.7, + "probability": 0.7592 + }, + { + "start": 22631.24, + "end": 22633.42, + "probability": 0.6507 + }, + { + "start": 22633.74, + "end": 22634.86, + "probability": 0.9181 + }, + { + "start": 22635.94, + "end": 22636.84, + "probability": 0.5953 + }, + { + "start": 22637.0, + "end": 22638.2, + "probability": 0.6693 + }, + { + "start": 22638.42, + "end": 22646.02, + "probability": 0.9666 + }, + { + "start": 22646.94, + "end": 22650.24, + "probability": 0.9541 + }, + { + "start": 22651.24, + "end": 22653.34, + "probability": 0.748 + }, + { + "start": 22653.6, + "end": 22654.19, + "probability": 0.9604 + }, + { + "start": 22655.0, + "end": 22658.68, + "probability": 0.972 + }, + { + "start": 22658.82, + "end": 22659.66, + "probability": 0.9824 + }, + { + "start": 22660.54, + "end": 22661.31, + "probability": 0.965 + }, + { + "start": 22662.98, + "end": 22663.36, + "probability": 0.8191 + }, + { + "start": 22663.48, + "end": 22664.12, + "probability": 0.9469 + }, + { + "start": 22664.22, + "end": 22672.31, + "probability": 0.9393 + }, + { + "start": 22673.74, + "end": 22683.32, + "probability": 0.9924 + }, + { + "start": 22683.74, + "end": 22689.7, + "probability": 0.7953 + }, + { + "start": 22690.12, + "end": 22691.16, + "probability": 0.8852 + }, + { + "start": 22691.42, + "end": 22692.96, + "probability": 0.8916 + }, + { + "start": 22694.48, + "end": 22696.56, + "probability": 0.959 + }, + { + "start": 22696.64, + "end": 22697.6, + "probability": 0.8112 + }, + { + "start": 22698.12, + "end": 22701.84, + "probability": 0.8867 + }, + { + "start": 22702.56, + "end": 22706.42, + "probability": 0.6476 + }, + { + "start": 22707.7, + "end": 22708.74, + "probability": 0.8967 + }, + { + "start": 22708.8, + "end": 22713.48, + "probability": 0.9937 + }, + { + "start": 22713.96, + "end": 22719.48, + "probability": 0.8143 + }, + { + "start": 22720.9, + "end": 22724.1, + "probability": 0.9043 + }, + { + "start": 22725.38, + "end": 22730.8, + "probability": 0.9688 + }, + { + "start": 22730.86, + "end": 22732.12, + "probability": 0.5166 + }, + { + "start": 22732.24, + "end": 22732.81, + "probability": 0.949 + }, + { + "start": 22733.94, + "end": 22737.78, + "probability": 0.9586 + }, + { + "start": 22738.36, + "end": 22740.46, + "probability": 0.9848 + }, + { + "start": 22740.68, + "end": 22743.16, + "probability": 0.9515 + }, + { + "start": 22743.86, + "end": 22747.18, + "probability": 0.9624 + }, + { + "start": 22747.84, + "end": 22748.84, + "probability": 0.0803 + }, + { + "start": 22752.24, + "end": 22754.82, + "probability": 0.1145 + }, + { + "start": 22754.96, + "end": 22755.08, + "probability": 0.0735 + }, + { + "start": 22755.08, + "end": 22755.44, + "probability": 0.6656 + }, + { + "start": 22755.6, + "end": 22755.6, + "probability": 0.7852 + }, + { + "start": 22755.6, + "end": 22755.98, + "probability": 0.785 + }, + { + "start": 22755.98, + "end": 22757.38, + "probability": 0.2095 + }, + { + "start": 22757.42, + "end": 22757.42, + "probability": 0.3021 + }, + { + "start": 22757.44, + "end": 22758.66, + "probability": 0.7785 + }, + { + "start": 22759.84, + "end": 22762.32, + "probability": 0.9412 + }, + { + "start": 22767.38, + "end": 22772.56, + "probability": 0.253 + }, + { + "start": 22772.56, + "end": 22772.56, + "probability": 0.4631 + }, + { + "start": 22772.56, + "end": 22774.43, + "probability": 0.3473 + }, + { + "start": 22775.5, + "end": 22781.6, + "probability": 0.8241 + }, + { + "start": 22782.28, + "end": 22786.26, + "probability": 0.8489 + }, + { + "start": 22786.6, + "end": 22790.78, + "probability": 0.9047 + }, + { + "start": 22791.4, + "end": 22797.42, + "probability": 0.9497 + }, + { + "start": 22797.6, + "end": 22797.84, + "probability": 0.2764 + }, + { + "start": 22797.88, + "end": 22802.24, + "probability": 0.9749 + }, + { + "start": 22802.36, + "end": 22803.75, + "probability": 0.9838 + }, + { + "start": 22804.44, + "end": 22805.58, + "probability": 0.8392 + }, + { + "start": 22806.0, + "end": 22809.5, + "probability": 0.935 + }, + { + "start": 22809.86, + "end": 22813.02, + "probability": 0.9858 + }, + { + "start": 22813.4, + "end": 22817.56, + "probability": 0.9794 + }, + { + "start": 22817.82, + "end": 22817.98, + "probability": 0.2224 + }, + { + "start": 22817.98, + "end": 22818.14, + "probability": 0.4822 + }, + { + "start": 22818.14, + "end": 22819.14, + "probability": 0.6035 + }, + { + "start": 22819.5, + "end": 22826.74, + "probability": 0.9836 + }, + { + "start": 22827.05, + "end": 22828.24, + "probability": 0.7716 + }, + { + "start": 22828.64, + "end": 22830.2, + "probability": 0.8033 + }, + { + "start": 22830.46, + "end": 22830.78, + "probability": 0.4002 + }, + { + "start": 22833.91, + "end": 22835.16, + "probability": 0.8894 + }, + { + "start": 22848.54, + "end": 22853.44, + "probability": 0.7212 + }, + { + "start": 22859.96, + "end": 22860.56, + "probability": 0.6004 + }, + { + "start": 22865.1, + "end": 22866.96, + "probability": 0.375 + }, + { + "start": 22868.1, + "end": 22869.26, + "probability": 0.9349 + }, + { + "start": 22871.32, + "end": 22873.88, + "probability": 0.9954 + }, + { + "start": 22875.06, + "end": 22877.98, + "probability": 0.9925 + }, + { + "start": 22879.0, + "end": 22886.82, + "probability": 0.9047 + }, + { + "start": 22888.42, + "end": 22890.42, + "probability": 0.734 + }, + { + "start": 22890.84, + "end": 22892.96, + "probability": 0.841 + }, + { + "start": 22894.14, + "end": 22895.6, + "probability": 0.9555 + }, + { + "start": 22895.72, + "end": 22896.58, + "probability": 0.938 + }, + { + "start": 22896.7, + "end": 22898.7, + "probability": 0.8845 + }, + { + "start": 22898.78, + "end": 22899.42, + "probability": 0.4108 + }, + { + "start": 22900.52, + "end": 22902.42, + "probability": 0.9102 + }, + { + "start": 22902.5, + "end": 22903.64, + "probability": 0.9582 + }, + { + "start": 22903.7, + "end": 22909.34, + "probability": 0.9825 + }, + { + "start": 22910.51, + "end": 22910.86, + "probability": 0.4064 + }, + { + "start": 22910.86, + "end": 22911.58, + "probability": 0.6566 + }, + { + "start": 22914.16, + "end": 22916.06, + "probability": 0.9884 + }, + { + "start": 22917.52, + "end": 22921.96, + "probability": 0.995 + }, + { + "start": 22922.68, + "end": 22923.9, + "probability": 0.7403 + }, + { + "start": 22925.5, + "end": 22926.72, + "probability": 0.9825 + }, + { + "start": 22928.22, + "end": 22931.42, + "probability": 0.9824 + }, + { + "start": 22932.94, + "end": 22937.14, + "probability": 0.7451 + }, + { + "start": 22939.64, + "end": 22943.4, + "probability": 0.9604 + }, + { + "start": 22944.74, + "end": 22950.06, + "probability": 0.9747 + }, + { + "start": 22950.8, + "end": 22952.14, + "probability": 0.6181 + }, + { + "start": 22953.74, + "end": 22954.56, + "probability": 0.774 + }, + { + "start": 22955.3, + "end": 22956.2, + "probability": 0.9478 + }, + { + "start": 22957.16, + "end": 22959.7, + "probability": 0.7573 + }, + { + "start": 22960.44, + "end": 22961.18, + "probability": 0.7468 + }, + { + "start": 22961.7, + "end": 22962.78, + "probability": 0.8594 + }, + { + "start": 22963.2, + "end": 22964.14, + "probability": 0.765 + }, + { + "start": 22964.56, + "end": 22965.42, + "probability": 0.7264 + }, + { + "start": 22965.88, + "end": 22966.86, + "probability": 0.758 + }, + { + "start": 22967.3, + "end": 22968.32, + "probability": 0.744 + }, + { + "start": 22968.78, + "end": 22969.86, + "probability": 0.7279 + }, + { + "start": 22970.64, + "end": 22971.62, + "probability": 0.7674 + }, + { + "start": 22973.36, + "end": 22975.86, + "probability": 0.8592 + }, + { + "start": 22976.42, + "end": 22979.32, + "probability": 0.7342 + }, + { + "start": 22979.86, + "end": 22983.68, + "probability": 0.7799 + }, + { + "start": 22984.48, + "end": 22985.58, + "probability": 0.8955 + }, + { + "start": 22985.84, + "end": 22987.0, + "probability": 0.921 + }, + { + "start": 22987.32, + "end": 22988.34, + "probability": 0.806 + }, + { + "start": 22988.66, + "end": 22989.7, + "probability": 0.8755 + }, + { + "start": 22990.2, + "end": 22991.16, + "probability": 0.4994 + }, + { + "start": 22991.7, + "end": 22992.66, + "probability": 0.724 + }, + { + "start": 22993.3, + "end": 22994.28, + "probability": 0.92 + }, + { + "start": 22994.64, + "end": 22995.94, + "probability": 0.8733 + }, + { + "start": 22996.32, + "end": 22997.34, + "probability": 0.8725 + }, + { + "start": 22997.78, + "end": 22998.82, + "probability": 0.9119 + }, + { + "start": 22999.3, + "end": 23000.24, + "probability": 0.7427 + }, + { + "start": 23000.74, + "end": 23001.6, + "probability": 0.6593 + }, + { + "start": 23001.92, + "end": 23002.94, + "probability": 0.4967 + }, + { + "start": 23003.34, + "end": 23004.4, + "probability": 0.6609 + }, + { + "start": 23004.92, + "end": 23005.78, + "probability": 0.8256 + }, + { + "start": 23006.26, + "end": 23007.2, + "probability": 0.9601 + }, + { + "start": 23007.7, + "end": 23008.7, + "probability": 0.9141 + }, + { + "start": 23009.04, + "end": 23010.2, + "probability": 0.8162 + }, + { + "start": 23010.6, + "end": 23011.72, + "probability": 0.7265 + }, + { + "start": 23012.08, + "end": 23013.4, + "probability": 0.8831 + }, + { + "start": 23013.68, + "end": 23014.62, + "probability": 0.7392 + }, + { + "start": 23014.98, + "end": 23016.16, + "probability": 0.8216 + }, + { + "start": 23016.64, + "end": 23017.76, + "probability": 0.6623 + }, + { + "start": 23018.26, + "end": 23019.36, + "probability": 0.5711 + }, + { + "start": 23019.78, + "end": 23020.94, + "probability": 0.577 + }, + { + "start": 23021.32, + "end": 23022.4, + "probability": 0.7806 + }, + { + "start": 23022.94, + "end": 23024.06, + "probability": 0.8626 + }, + { + "start": 23024.58, + "end": 23025.56, + "probability": 0.7444 + }, + { + "start": 23026.26, + "end": 23028.58, + "probability": 0.5733 + }, + { + "start": 23028.6, + "end": 23029.06, + "probability": 0.7939 + }, + { + "start": 23030.84, + "end": 23036.9, + "probability": 0.0327 + }, + { + "start": 23037.06, + "end": 23037.24, + "probability": 0.0237 + }, + { + "start": 23037.72, + "end": 23037.72, + "probability": 0.3097 + }, + { + "start": 23037.72, + "end": 23037.86, + "probability": 0.0165 + }, + { + "start": 23040.32, + "end": 23042.12, + "probability": 0.1292 + }, + { + "start": 23042.12, + "end": 23042.16, + "probability": 0.1076 + }, + { + "start": 23042.16, + "end": 23043.88, + "probability": 0.0158 + }, + { + "start": 23045.0, + "end": 23047.54, + "probability": 0.2388 + }, + { + "start": 23048.86, + "end": 23048.86, + "probability": 0.4552 + }, + { + "start": 23048.86, + "end": 23049.04, + "probability": 0.0864 + }, + { + "start": 23049.04, + "end": 23050.16, + "probability": 0.1012 + }, + { + "start": 23051.27, + "end": 23052.99, + "probability": 0.1814 + }, + { + "start": 23053.3, + "end": 23053.7, + "probability": 0.2624 + }, + { + "start": 23053.7, + "end": 23053.9, + "probability": 0.2152 + }, + { + "start": 23053.9, + "end": 23056.56, + "probability": 0.0974 + }, + { + "start": 23058.82, + "end": 23059.94, + "probability": 0.5377 + }, + { + "start": 23060.92, + "end": 23062.23, + "probability": 0.4428 + }, + { + "start": 23063.58, + "end": 23067.28, + "probability": 0.0666 + }, + { + "start": 23068.32, + "end": 23069.35, + "probability": 0.0594 + }, + { + "start": 23071.72, + "end": 23073.62, + "probability": 0.1672 + }, + { + "start": 23073.62, + "end": 23073.68, + "probability": 0.0617 + }, + { + "start": 23074.64, + "end": 23075.98, + "probability": 0.1714 + }, + { + "start": 23076.54, + "end": 23078.68, + "probability": 0.0743 + }, + { + "start": 23079.48, + "end": 23079.48, + "probability": 0.0189 + }, + { + "start": 23083.64, + "end": 23085.74, + "probability": 0.1499 + }, + { + "start": 23085.74, + "end": 23088.92, + "probability": 0.132 + }, + { + "start": 23089.04, + "end": 23091.56, + "probability": 0.124 + }, + { + "start": 23091.8, + "end": 23091.96, + "probability": 0.0187 + }, + { + "start": 23091.96, + "end": 23093.06, + "probability": 0.3616 + }, + { + "start": 23095.07, + "end": 23095.9, + "probability": 0.4795 + }, + { + "start": 23096.0, + "end": 23096.0, + "probability": 0.0 + }, + { + "start": 23096.0, + "end": 23096.0, + "probability": 0.0 + }, + { + "start": 23096.0, + "end": 23096.0, + "probability": 0.0 + }, + { + "start": 23096.0, + "end": 23096.0, + "probability": 0.0 + }, + { + "start": 23096.0, + "end": 23096.0, + "probability": 0.0 + }, + { + "start": 23096.0, + "end": 23096.0, + "probability": 0.0 + }, + { + "start": 23096.0, + "end": 23096.0, + "probability": 0.0 + }, + { + "start": 23096.0, + "end": 23096.0, + "probability": 0.0 + }, + { + "start": 23096.0, + "end": 23096.0, + "probability": 0.0 + }, + { + "start": 23096.0, + "end": 23096.0, + "probability": 0.0 + }, + { + "start": 23096.0, + "end": 23096.0, + "probability": 0.0 + }, + { + "start": 23096.0, + "end": 23096.0, + "probability": 0.0 + }, + { + "start": 23096.0, + "end": 23096.0, + "probability": 0.0 + }, + { + "start": 23096.0, + "end": 23096.0, + "probability": 0.0 + }, + { + "start": 23096.0, + "end": 23096.0, + "probability": 0.0 + }, + { + "start": 23096.0, + "end": 23096.0, + "probability": 0.0 + }, + { + "start": 23096.0, + "end": 23096.0, + "probability": 0.0 + }, + { + "start": 23096.0, + "end": 23096.0, + "probability": 0.0 + }, + { + "start": 23096.0, + "end": 23096.0, + "probability": 0.0 + }, + { + "start": 23096.0, + "end": 23096.0, + "probability": 0.0 + }, + { + "start": 23096.0, + "end": 23096.0, + "probability": 0.0 + }, + { + "start": 23096.0, + "end": 23096.0, + "probability": 0.0 + }, + { + "start": 23096.0, + "end": 23096.0, + "probability": 0.0 + }, + { + "start": 23096.0, + "end": 23096.0, + "probability": 0.0 + }, + { + "start": 23096.0, + "end": 23096.0, + "probability": 0.0 + }, + { + "start": 23096.24, + "end": 23096.24, + "probability": 0.0478 + }, + { + "start": 23096.24, + "end": 23097.06, + "probability": 0.1207 + }, + { + "start": 23097.06, + "end": 23097.62, + "probability": 0.2214 + }, + { + "start": 23097.72, + "end": 23098.44, + "probability": 0.3477 + }, + { + "start": 23100.62, + "end": 23102.13, + "probability": 0.6652 + }, + { + "start": 23103.34, + "end": 23104.48, + "probability": 0.3657 + }, + { + "start": 23105.74, + "end": 23106.66, + "probability": 0.215 + }, + { + "start": 23107.3, + "end": 23108.14, + "probability": 0.5509 + }, + { + "start": 23108.58, + "end": 23109.68, + "probability": 0.1756 + }, + { + "start": 23109.9, + "end": 23110.25, + "probability": 0.0914 + }, + { + "start": 23110.66, + "end": 23111.59, + "probability": 0.0805 + }, + { + "start": 23112.72, + "end": 23113.36, + "probability": 0.6169 + }, + { + "start": 23114.2, + "end": 23116.16, + "probability": 0.3311 + }, + { + "start": 23116.28, + "end": 23116.34, + "probability": 0.4373 + }, + { + "start": 23116.34, + "end": 23118.44, + "probability": 0.7014 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.0, + "end": 23216.0, + "probability": 0.0 + }, + { + "start": 23216.28, + "end": 23216.96, + "probability": 0.2257 + }, + { + "start": 23217.48, + "end": 23218.3, + "probability": 0.0919 + }, + { + "start": 23218.64, + "end": 23219.98, + "probability": 0.0554 + }, + { + "start": 23220.92, + "end": 23223.78, + "probability": 0.7227 + }, + { + "start": 23224.12, + "end": 23225.36, + "probability": 0.2838 + }, + { + "start": 23225.74, + "end": 23226.76, + "probability": 0.6056 + }, + { + "start": 23227.34, + "end": 23227.72, + "probability": 0.0369 + }, + { + "start": 23231.52, + "end": 23233.36, + "probability": 0.0221 + }, + { + "start": 23233.36, + "end": 23235.12, + "probability": 0.1368 + }, + { + "start": 23235.12, + "end": 23235.48, + "probability": 0.1871 + }, + { + "start": 23235.64, + "end": 23235.98, + "probability": 0.1284 + }, + { + "start": 23237.65, + "end": 23244.91, + "probability": 0.0503 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.0, + "end": 23338.0, + "probability": 0.0 + }, + { + "start": 23338.4, + "end": 23338.4, + "probability": 0.018 + }, + { + "start": 23338.4, + "end": 23340.02, + "probability": 0.5331 + }, + { + "start": 23340.06, + "end": 23340.82, + "probability": 0.8466 + }, + { + "start": 23340.86, + "end": 23341.3, + "probability": 0.9259 + }, + { + "start": 23341.34, + "end": 23343.32, + "probability": 0.9444 + }, + { + "start": 23343.82, + "end": 23345.34, + "probability": 0.7817 + }, + { + "start": 23346.4, + "end": 23348.7, + "probability": 0.8816 + }, + { + "start": 23349.68, + "end": 23350.4, + "probability": 0.6017 + }, + { + "start": 23352.06, + "end": 23353.9, + "probability": 0.8895 + }, + { + "start": 23354.06, + "end": 23357.34, + "probability": 0.8573 + }, + { + "start": 23359.98, + "end": 23363.48, + "probability": 0.7433 + }, + { + "start": 23364.34, + "end": 23366.06, + "probability": 0.9636 + }, + { + "start": 23367.14, + "end": 23370.26, + "probability": 0.9097 + }, + { + "start": 23370.4, + "end": 23373.18, + "probability": 0.9362 + }, + { + "start": 23373.6, + "end": 23375.36, + "probability": 0.7852 + }, + { + "start": 23375.56, + "end": 23376.66, + "probability": 0.8052 + }, + { + "start": 23376.78, + "end": 23378.62, + "probability": 0.8384 + }, + { + "start": 23379.36, + "end": 23380.26, + "probability": 0.6315 + }, + { + "start": 23380.38, + "end": 23381.16, + "probability": 0.7379 + }, + { + "start": 23382.34, + "end": 23384.42, + "probability": 0.6977 + }, + { + "start": 23385.82, + "end": 23386.9, + "probability": 0.9749 + }, + { + "start": 23388.26, + "end": 23389.24, + "probability": 0.7693 + }, + { + "start": 23391.0, + "end": 23392.02, + "probability": 0.8731 + }, + { + "start": 23392.64, + "end": 23394.3, + "probability": 0.8741 + }, + { + "start": 23394.74, + "end": 23395.58, + "probability": 0.041 + }, + { + "start": 23395.58, + "end": 23395.72, + "probability": 0.0287 + }, + { + "start": 23396.06, + "end": 23396.58, + "probability": 0.1097 + }, + { + "start": 23396.58, + "end": 23398.14, + "probability": 0.9623 + }, + { + "start": 23398.16, + "end": 23399.5, + "probability": 0.8818 + }, + { + "start": 23399.72, + "end": 23401.72, + "probability": 0.964 + }, + { + "start": 23402.44, + "end": 23404.52, + "probability": 0.798 + }, + { + "start": 23405.74, + "end": 23410.26, + "probability": 0.6496 + }, + { + "start": 23410.88, + "end": 23413.48, + "probability": 0.7283 + }, + { + "start": 23413.54, + "end": 23415.35, + "probability": 0.4966 + }, + { + "start": 23415.98, + "end": 23419.08, + "probability": 0.6943 + }, + { + "start": 23420.54, + "end": 23426.4, + "probability": 0.4798 + }, + { + "start": 23426.44, + "end": 23427.4, + "probability": 0.9898 + }, + { + "start": 23428.92, + "end": 23431.4, + "probability": 0.8914 + }, + { + "start": 23431.5, + "end": 23432.49, + "probability": 0.8888 + }, + { + "start": 23433.3, + "end": 23433.87, + "probability": 0.9642 + }, + { + "start": 23434.78, + "end": 23435.1, + "probability": 0.0979 + }, + { + "start": 23435.1, + "end": 23435.84, + "probability": 0.4664 + }, + { + "start": 23435.92, + "end": 23435.96, + "probability": 0.4736 + }, + { + "start": 23436.2, + "end": 23436.68, + "probability": 0.5186 + }, + { + "start": 23436.82, + "end": 23437.64, + "probability": 0.2294 + }, + { + "start": 23438.64, + "end": 23439.67, + "probability": 0.0933 + }, + { + "start": 23439.84, + "end": 23440.33, + "probability": 0.772 + }, + { + "start": 23441.24, + "end": 23441.76, + "probability": 0.4998 + }, + { + "start": 23441.82, + "end": 23442.83, + "probability": 0.9004 + }, + { + "start": 23443.16, + "end": 23443.61, + "probability": 0.946 + }, + { + "start": 23444.46, + "end": 23450.4, + "probability": 0.8068 + }, + { + "start": 23451.27, + "end": 23452.72, + "probability": 0.8418 + }, + { + "start": 23452.8, + "end": 23453.56, + "probability": 0.9639 + }, + { + "start": 23453.7, + "end": 23453.88, + "probability": 0.7219 + }, + { + "start": 23454.04, + "end": 23454.88, + "probability": 0.6808 + }, + { + "start": 23454.96, + "end": 23455.48, + "probability": 0.1044 + }, + { + "start": 23455.48, + "end": 23458.16, + "probability": 0.8541 + }, + { + "start": 23458.28, + "end": 23459.68, + "probability": 0.8934 + }, + { + "start": 23460.86, + "end": 23463.08, + "probability": 0.9522 + }, + { + "start": 23463.14, + "end": 23464.14, + "probability": 0.9311 + }, + { + "start": 23464.16, + "end": 23466.66, + "probability": 0.9978 + }, + { + "start": 23467.1, + "end": 23468.56, + "probability": 0.7004 + }, + { + "start": 23468.58, + "end": 23471.36, + "probability": 0.8916 + }, + { + "start": 23471.44, + "end": 23473.66, + "probability": 0.8486 + }, + { + "start": 23473.76, + "end": 23475.08, + "probability": 0.8254 + }, + { + "start": 23475.34, + "end": 23476.82, + "probability": 0.856 + }, + { + "start": 23477.38, + "end": 23478.42, + "probability": 0.4997 + }, + { + "start": 23478.52, + "end": 23478.7, + "probability": 0.3929 + }, + { + "start": 23478.82, + "end": 23478.96, + "probability": 0.1666 + }, + { + "start": 23478.96, + "end": 23479.82, + "probability": 0.7123 + }, + { + "start": 23480.1, + "end": 23480.44, + "probability": 0.8177 + }, + { + "start": 23481.28, + "end": 23483.96, + "probability": 0.7727 + }, + { + "start": 23485.22, + "end": 23486.0, + "probability": 0.0458 + }, + { + "start": 23486.1, + "end": 23487.32, + "probability": 0.0699 + }, + { + "start": 23487.6, + "end": 23488.8, + "probability": 0.9034 + }, + { + "start": 23488.8, + "end": 23489.14, + "probability": 0.608 + }, + { + "start": 23489.22, + "end": 23491.54, + "probability": 0.6416 + }, + { + "start": 23491.58, + "end": 23491.96, + "probability": 0.5454 + }, + { + "start": 23493.04, + "end": 23494.08, + "probability": 0.5721 + }, + { + "start": 23495.4, + "end": 23495.8, + "probability": 0.0855 + }, + { + "start": 23496.32, + "end": 23498.02, + "probability": 0.2276 + }, + { + "start": 23498.02, + "end": 23503.1, + "probability": 0.3698 + }, + { + "start": 23503.22, + "end": 23504.2, + "probability": 0.0687 + }, + { + "start": 23505.9, + "end": 23506.28, + "probability": 0.008 + }, + { + "start": 23512.1, + "end": 23512.58, + "probability": 0.1018 + }, + { + "start": 23513.7, + "end": 23514.87, + "probability": 0.025 + }, + { + "start": 23514.92, + "end": 23516.14, + "probability": 0.0097 + }, + { + "start": 23517.04, + "end": 23520.14, + "probability": 0.0845 + }, + { + "start": 23520.14, + "end": 23520.14, + "probability": 0.2507 + }, + { + "start": 23520.14, + "end": 23520.14, + "probability": 0.2171 + }, + { + "start": 23520.14, + "end": 23520.14, + "probability": 0.0733 + }, + { + "start": 23520.14, + "end": 23520.14, + "probability": 0.0284 + }, + { + "start": 23520.14, + "end": 23524.2, + "probability": 0.3005 + }, + { + "start": 23525.2, + "end": 23526.66, + "probability": 0.4726 + }, + { + "start": 23528.36, + "end": 23533.76, + "probability": 0.9487 + }, + { + "start": 23535.12, + "end": 23539.86, + "probability": 0.8046 + }, + { + "start": 23540.74, + "end": 23545.24, + "probability": 0.9814 + }, + { + "start": 23546.36, + "end": 23550.56, + "probability": 0.9722 + }, + { + "start": 23551.06, + "end": 23555.78, + "probability": 0.9653 + }, + { + "start": 23556.26, + "end": 23558.66, + "probability": 0.9292 + }, + { + "start": 23559.08, + "end": 23560.94, + "probability": 0.9494 + }, + { + "start": 23561.78, + "end": 23565.42, + "probability": 0.8394 + }, + { + "start": 23565.58, + "end": 23570.12, + "probability": 0.9817 + }, + { + "start": 23570.12, + "end": 23574.42, + "probability": 0.9832 + }, + { + "start": 23575.02, + "end": 23581.12, + "probability": 0.9971 + }, + { + "start": 23581.7, + "end": 23587.98, + "probability": 0.9598 + }, + { + "start": 23588.68, + "end": 23589.93, + "probability": 0.7847 + }, + { + "start": 23591.42, + "end": 23595.06, + "probability": 0.8276 + }, + { + "start": 23595.7, + "end": 23598.86, + "probability": 0.9425 + }, + { + "start": 23599.16, + "end": 23601.64, + "probability": 0.8561 + }, + { + "start": 23601.88, + "end": 23603.8, + "probability": 0.8959 + }, + { + "start": 23604.26, + "end": 23606.14, + "probability": 0.9859 + }, + { + "start": 23607.04, + "end": 23613.86, + "probability": 0.8774 + }, + { + "start": 23614.08, + "end": 23618.4, + "probability": 0.9375 + }, + { + "start": 23619.12, + "end": 23619.58, + "probability": 0.5024 + }, + { + "start": 23620.74, + "end": 23623.1, + "probability": 0.9259 + }, + { + "start": 23623.4, + "end": 23625.72, + "probability": 0.7182 + }, + { + "start": 23625.84, + "end": 23626.26, + "probability": 0.6325 + }, + { + "start": 23626.66, + "end": 23630.2, + "probability": 0.91 + }, + { + "start": 23630.56, + "end": 23633.56, + "probability": 0.6556 + }, + { + "start": 23633.82, + "end": 23635.38, + "probability": 0.9787 + }, + { + "start": 23635.46, + "end": 23639.28, + "probability": 0.5777 + }, + { + "start": 23639.38, + "end": 23642.5, + "probability": 0.8545 + }, + { + "start": 23642.64, + "end": 23643.06, + "probability": 0.8438 + }, + { + "start": 23645.74, + "end": 23646.95, + "probability": 0.1354 + }, + { + "start": 23647.8, + "end": 23648.14, + "probability": 0.0591 + }, + { + "start": 23648.14, + "end": 23648.14, + "probability": 0.6513 + }, + { + "start": 23648.14, + "end": 23648.14, + "probability": 0.1039 + }, + { + "start": 23648.14, + "end": 23649.56, + "probability": 0.8675 + }, + { + "start": 23649.56, + "end": 23649.68, + "probability": 0.1556 + }, + { + "start": 23649.68, + "end": 23650.31, + "probability": 0.3959 + }, + { + "start": 23652.96, + "end": 23654.61, + "probability": 0.2036 + }, + { + "start": 23657.26, + "end": 23657.42, + "probability": 0.1105 + }, + { + "start": 23657.42, + "end": 23657.42, + "probability": 0.023 + }, + { + "start": 23657.42, + "end": 23658.62, + "probability": 0.1616 + }, + { + "start": 23658.62, + "end": 23659.36, + "probability": 0.5425 + }, + { + "start": 23659.36, + "end": 23660.44, + "probability": 0.4607 + }, + { + "start": 23660.44, + "end": 23660.58, + "probability": 0.281 + }, + { + "start": 23661.46, + "end": 23661.86, + "probability": 0.2293 + }, + { + "start": 23661.86, + "end": 23662.38, + "probability": 0.6603 + }, + { + "start": 23662.7, + "end": 23666.5, + "probability": 0.8259 + }, + { + "start": 23666.92, + "end": 23666.92, + "probability": 0.4306 + }, + { + "start": 23666.92, + "end": 23668.02, + "probability": 0.714 + }, + { + "start": 23668.02, + "end": 23668.7, + "probability": 0.5143 + }, + { + "start": 23668.88, + "end": 23670.26, + "probability": 0.3453 + }, + { + "start": 23670.26, + "end": 23670.9, + "probability": 0.3515 + }, + { + "start": 23670.9, + "end": 23672.1, + "probability": 0.4873 + }, + { + "start": 23672.1, + "end": 23672.26, + "probability": 0.5666 + }, + { + "start": 23673.2, + "end": 23673.83, + "probability": 0.9111 + }, + { + "start": 23674.02, + "end": 23674.88, + "probability": 0.579 + }, + { + "start": 23675.32, + "end": 23675.72, + "probability": 0.6259 + }, + { + "start": 23675.8, + "end": 23675.82, + "probability": 0.6251 + }, + { + "start": 23675.82, + "end": 23676.8, + "probability": 0.7853 + }, + { + "start": 23677.02, + "end": 23677.12, + "probability": 0.5286 + }, + { + "start": 23677.22, + "end": 23678.74, + "probability": 0.3871 + }, + { + "start": 23678.92, + "end": 23680.71, + "probability": 0.9438 + }, + { + "start": 23680.98, + "end": 23681.18, + "probability": 0.465 + }, + { + "start": 23681.34, + "end": 23681.98, + "probability": 0.8135 + }, + { + "start": 23681.98, + "end": 23682.24, + "probability": 0.1081 + }, + { + "start": 23682.24, + "end": 23682.54, + "probability": 0.5291 + }, + { + "start": 23682.72, + "end": 23684.7, + "probability": 0.3675 + }, + { + "start": 23684.7, + "end": 23685.48, + "probability": 0.1553 + }, + { + "start": 23685.56, + "end": 23686.31, + "probability": 0.5539 + }, + { + "start": 23686.52, + "end": 23688.96, + "probability": 0.9424 + }, + { + "start": 23689.04, + "end": 23693.84, + "probability": 0.9707 + }, + { + "start": 23693.84, + "end": 23694.08, + "probability": 0.0038 + }, + { + "start": 23694.08, + "end": 23694.34, + "probability": 0.2287 + }, + { + "start": 23696.06, + "end": 23696.28, + "probability": 0.0156 + }, + { + "start": 23696.28, + "end": 23696.28, + "probability": 0.078 + }, + { + "start": 23696.28, + "end": 23698.78, + "probability": 0.2831 + }, + { + "start": 23699.06, + "end": 23699.56, + "probability": 0.5123 + }, + { + "start": 23699.56, + "end": 23699.56, + "probability": 0.2942 + }, + { + "start": 23699.56, + "end": 23700.7, + "probability": 0.3479 + }, + { + "start": 23700.9, + "end": 23701.54, + "probability": 0.8698 + }, + { + "start": 23701.54, + "end": 23702.02, + "probability": 0.3586 + }, + { + "start": 23702.22, + "end": 23703.34, + "probability": 0.7253 + }, + { + "start": 23703.44, + "end": 23704.54, + "probability": 0.2327 + }, + { + "start": 23704.58, + "end": 23706.34, + "probability": 0.6652 + }, + { + "start": 23706.52, + "end": 23706.58, + "probability": 0.1986 + }, + { + "start": 23706.58, + "end": 23706.6, + "probability": 0.2621 + }, + { + "start": 23706.6, + "end": 23707.18, + "probability": 0.5891 + }, + { + "start": 23707.32, + "end": 23708.1, + "probability": 0.4914 + }, + { + "start": 23709.5, + "end": 23711.96, + "probability": 0.5326 + }, + { + "start": 23711.98, + "end": 23712.44, + "probability": 0.9461 + }, + { + "start": 23725.5, + "end": 23726.22, + "probability": 0.7101 + }, + { + "start": 23726.26, + "end": 23727.4, + "probability": 0.6989 + }, + { + "start": 23727.56, + "end": 23729.8, + "probability": 0.9857 + }, + { + "start": 23730.98, + "end": 23736.58, + "probability": 0.8171 + }, + { + "start": 23737.22, + "end": 23740.32, + "probability": 0.8575 + }, + { + "start": 23740.78, + "end": 23742.94, + "probability": 0.9718 + }, + { + "start": 23743.06, + "end": 23744.55, + "probability": 0.9897 + }, + { + "start": 23745.28, + "end": 23747.66, + "probability": 0.8255 + }, + { + "start": 23747.96, + "end": 23751.52, + "probability": 0.9813 + }, + { + "start": 23751.76, + "end": 23752.3, + "probability": 0.7556 + }, + { + "start": 23752.36, + "end": 23753.43, + "probability": 0.9863 + }, + { + "start": 23754.28, + "end": 23756.04, + "probability": 0.9678 + }, + { + "start": 23756.38, + "end": 23759.3, + "probability": 0.9919 + }, + { + "start": 23759.38, + "end": 23761.16, + "probability": 0.78 + }, + { + "start": 23761.46, + "end": 23762.84, + "probability": 0.8811 + }, + { + "start": 23762.88, + "end": 23763.96, + "probability": 0.8354 + }, + { + "start": 23764.28, + "end": 23767.24, + "probability": 0.9799 + }, + { + "start": 23767.84, + "end": 23770.12, + "probability": 0.9384 + }, + { + "start": 23770.98, + "end": 23771.19, + "probability": 0.1951 + }, + { + "start": 23771.74, + "end": 23774.88, + "probability": 0.6882 + }, + { + "start": 23775.14, + "end": 23777.02, + "probability": 0.9265 + }, + { + "start": 23777.22, + "end": 23781.36, + "probability": 0.8225 + }, + { + "start": 23781.44, + "end": 23781.76, + "probability": 0.0738 + }, + { + "start": 23782.36, + "end": 23783.04, + "probability": 0.0247 + }, + { + "start": 23783.06, + "end": 23784.33, + "probability": 0.0294 + }, + { + "start": 23784.56, + "end": 23787.36, + "probability": 0.1235 + }, + { + "start": 23787.36, + "end": 23789.26, + "probability": 0.4755 + }, + { + "start": 23796.88, + "end": 23800.7, + "probability": 0.7413 + }, + { + "start": 23800.98, + "end": 23802.8, + "probability": 0.9961 + }, + { + "start": 23804.0, + "end": 23806.26, + "probability": 0.8525 + }, + { + "start": 23807.18, + "end": 23808.06, + "probability": 0.5215 + }, + { + "start": 23809.16, + "end": 23811.0, + "probability": 0.8571 + }, + { + "start": 23811.62, + "end": 23815.1, + "probability": 0.9041 + }, + { + "start": 23815.96, + "end": 23820.4, + "probability": 0.9745 + }, + { + "start": 23821.24, + "end": 23821.82, + "probability": 0.6733 + }, + { + "start": 23821.9, + "end": 23822.72, + "probability": 0.6369 + }, + { + "start": 23822.92, + "end": 23825.34, + "probability": 0.7724 + }, + { + "start": 23826.42, + "end": 23832.52, + "probability": 0.9986 + }, + { + "start": 23832.66, + "end": 23835.22, + "probability": 0.5153 + }, + { + "start": 23836.26, + "end": 23837.08, + "probability": 0.4216 + }, + { + "start": 23837.34, + "end": 23837.8, + "probability": 0.4286 + }, + { + "start": 23837.8, + "end": 23838.66, + "probability": 0.9043 + }, + { + "start": 23838.72, + "end": 23839.56, + "probability": 0.8318 + }, + { + "start": 23840.12, + "end": 23845.2, + "probability": 0.9969 + }, + { + "start": 23846.0, + "end": 23850.2, + "probability": 0.5563 + }, + { + "start": 23850.2, + "end": 23850.34, + "probability": 0.0516 + }, + { + "start": 23851.28, + "end": 23852.44, + "probability": 0.6856 + }, + { + "start": 23852.66, + "end": 23852.76, + "probability": 0.338 + }, + { + "start": 23853.76, + "end": 23854.97, + "probability": 0.8791 + }, + { + "start": 23856.14, + "end": 23860.29, + "probability": 0.8809 + }, + { + "start": 23861.74, + "end": 23864.16, + "probability": 0.8637 + }, + { + "start": 23864.36, + "end": 23865.2, + "probability": 0.7631 + }, + { + "start": 23865.28, + "end": 23869.12, + "probability": 0.8796 + }, + { + "start": 23869.12, + "end": 23872.5, + "probability": 0.9937 + }, + { + "start": 23873.98, + "end": 23877.74, + "probability": 0.9571 + }, + { + "start": 23877.74, + "end": 23882.28, + "probability": 0.9997 + }, + { + "start": 23883.32, + "end": 23885.58, + "probability": 0.9133 + }, + { + "start": 23886.38, + "end": 23888.6, + "probability": 0.9883 + }, + { + "start": 23888.66, + "end": 23889.2, + "probability": 0.6265 + }, + { + "start": 23889.24, + "end": 23892.82, + "probability": 0.967 + }, + { + "start": 23893.54, + "end": 23893.75, + "probability": 0.3751 + }, + { + "start": 23894.84, + "end": 23897.04, + "probability": 0.9237 + }, + { + "start": 23897.84, + "end": 23900.42, + "probability": 0.9589 + }, + { + "start": 23901.62, + "end": 23906.36, + "probability": 0.9394 + }, + { + "start": 23906.54, + "end": 23908.58, + "probability": 0.9931 + }, + { + "start": 23909.58, + "end": 23911.04, + "probability": 0.9795 + }, + { + "start": 23911.1, + "end": 23911.72, + "probability": 0.6629 + }, + { + "start": 23911.8, + "end": 23918.42, + "probability": 0.9432 + }, + { + "start": 23918.6, + "end": 23919.92, + "probability": 0.5747 + }, + { + "start": 23920.56, + "end": 23921.5, + "probability": 0.1563 + }, + { + "start": 23923.14, + "end": 23923.56, + "probability": 0.1177 + }, + { + "start": 23923.84, + "end": 23925.02, + "probability": 0.3698 + }, + { + "start": 23925.02, + "end": 23925.18, + "probability": 0.455 + }, + { + "start": 23925.18, + "end": 23925.18, + "probability": 0.4258 + }, + { + "start": 23925.18, + "end": 23925.18, + "probability": 0.4199 + }, + { + "start": 23925.18, + "end": 23927.0, + "probability": 0.2706 + }, + { + "start": 23927.0, + "end": 23927.9, + "probability": 0.5002 + }, + { + "start": 23928.44, + "end": 23929.54, + "probability": 0.2694 + }, + { + "start": 23931.8, + "end": 23932.44, + "probability": 0.0156 + }, + { + "start": 23932.44, + "end": 23932.44, + "probability": 0.081 + }, + { + "start": 23932.44, + "end": 23932.44, + "probability": 0.3348 + }, + { + "start": 23932.44, + "end": 23932.44, + "probability": 0.078 + }, + { + "start": 23932.44, + "end": 23932.86, + "probability": 0.3637 + }, + { + "start": 23933.12, + "end": 23934.86, + "probability": 0.9409 + }, + { + "start": 23934.86, + "end": 23937.29, + "probability": 0.924 + }, + { + "start": 23937.78, + "end": 23940.9, + "probability": 0.8576 + }, + { + "start": 23941.58, + "end": 23943.6, + "probability": 0.8826 + }, + { + "start": 23944.28, + "end": 23944.48, + "probability": 0.3057 + }, + { + "start": 23944.56, + "end": 23945.3, + "probability": 0.6315 + }, + { + "start": 23945.48, + "end": 23949.24, + "probability": 0.9765 + }, + { + "start": 23950.3, + "end": 23953.09, + "probability": 0.6727 + }, + { + "start": 23955.3, + "end": 23955.54, + "probability": 0.0301 + }, + { + "start": 23955.54, + "end": 23955.54, + "probability": 0.0768 + }, + { + "start": 23955.54, + "end": 23958.12, + "probability": 0.7097 + }, + { + "start": 23958.48, + "end": 23959.44, + "probability": 0.4516 + }, + { + "start": 23959.44, + "end": 23960.54, + "probability": 0.345 + }, + { + "start": 23960.62, + "end": 23961.14, + "probability": 0.4211 + }, + { + "start": 23961.28, + "end": 23961.34, + "probability": 0.0046 + }, + { + "start": 23961.34, + "end": 23961.98, + "probability": 0.0315 + }, + { + "start": 23961.98, + "end": 23962.0, + "probability": 0.1302 + }, + { + "start": 23962.38, + "end": 23963.32, + "probability": 0.9182 + }, + { + "start": 23963.44, + "end": 23965.08, + "probability": 0.8958 + }, + { + "start": 23965.52, + "end": 23968.11, + "probability": 0.8761 + }, + { + "start": 23968.38, + "end": 23969.64, + "probability": 0.7901 + }, + { + "start": 23970.34, + "end": 23971.9, + "probability": 0.9875 + }, + { + "start": 23972.18, + "end": 23973.02, + "probability": 0.5874 + }, + { + "start": 23973.88, + "end": 23975.18, + "probability": 0.0095 + }, + { + "start": 23975.26, + "end": 23975.46, + "probability": 0.2715 + }, + { + "start": 23975.46, + "end": 23976.94, + "probability": 0.9156 + }, + { + "start": 23977.04, + "end": 23978.18, + "probability": 0.564 + }, + { + "start": 23979.76, + "end": 23982.08, + "probability": 0.6693 + }, + { + "start": 23982.08, + "end": 23982.52, + "probability": 0.9578 + }, + { + "start": 23983.78, + "end": 23986.36, + "probability": 0.8023 + }, + { + "start": 23986.52, + "end": 23989.66, + "probability": 0.7696 + }, + { + "start": 23990.42, + "end": 23992.7, + "probability": 0.9041 + }, + { + "start": 23993.04, + "end": 23997.2, + "probability": 0.8055 + }, + { + "start": 23997.2, + "end": 24001.38, + "probability": 0.8841 + }, + { + "start": 24001.38, + "end": 24004.86, + "probability": 0.8708 + }, + { + "start": 24004.92, + "end": 24007.38, + "probability": 0.6258 + }, + { + "start": 24008.02, + "end": 24009.21, + "probability": 0.6633 + }, + { + "start": 24010.08, + "end": 24013.19, + "probability": 0.8855 + }, + { + "start": 24014.2, + "end": 24016.79, + "probability": 0.9165 + }, + { + "start": 24017.0, + "end": 24021.46, + "probability": 0.9754 + }, + { + "start": 24021.46, + "end": 24026.24, + "probability": 0.939 + }, + { + "start": 24027.16, + "end": 24030.02, + "probability": 0.7708 + }, + { + "start": 24030.66, + "end": 24033.72, + "probability": 0.868 + }, + { + "start": 24033.82, + "end": 24034.58, + "probability": 0.7967 + }, + { + "start": 24034.74, + "end": 24036.6, + "probability": 0.9049 + }, + { + "start": 24037.02, + "end": 24037.84, + "probability": 0.6347 + }, + { + "start": 24037.94, + "end": 24039.74, + "probability": 0.8826 + }, + { + "start": 24041.16, + "end": 24044.98, + "probability": 0.8871 + }, + { + "start": 24045.04, + "end": 24046.09, + "probability": 0.9355 + }, + { + "start": 24046.88, + "end": 24051.26, + "probability": 0.8329 + }, + { + "start": 24052.44, + "end": 24055.2, + "probability": 0.9758 + }, + { + "start": 24055.88, + "end": 24056.46, + "probability": 0.7439 + }, + { + "start": 24056.94, + "end": 24060.88, + "probability": 0.9726 + }, + { + "start": 24061.36, + "end": 24062.1, + "probability": 0.9466 + }, + { + "start": 24062.18, + "end": 24062.92, + "probability": 0.9419 + }, + { + "start": 24063.1, + "end": 24064.34, + "probability": 0.9883 + }, + { + "start": 24065.04, + "end": 24068.4, + "probability": 0.8096 + }, + { + "start": 24068.44, + "end": 24070.52, + "probability": 0.9922 + }, + { + "start": 24071.16, + "end": 24073.54, + "probability": 0.9749 + }, + { + "start": 24073.66, + "end": 24076.58, + "probability": 0.9072 + }, + { + "start": 24076.6, + "end": 24076.82, + "probability": 0.3512 + }, + { + "start": 24077.76, + "end": 24079.98, + "probability": 0.9055 + }, + { + "start": 24080.02, + "end": 24081.32, + "probability": 0.918 + }, + { + "start": 24081.9, + "end": 24087.06, + "probability": 0.8282 + }, + { + "start": 24087.28, + "end": 24088.54, + "probability": 0.8793 + }, + { + "start": 24089.2, + "end": 24090.86, + "probability": 0.9346 + }, + { + "start": 24091.46, + "end": 24094.4, + "probability": 0.951 + }, + { + "start": 24094.52, + "end": 24097.88, + "probability": 0.811 + }, + { + "start": 24098.42, + "end": 24102.46, + "probability": 0.8277 + }, + { + "start": 24104.78, + "end": 24106.34, + "probability": 0.994 + }, + { + "start": 24106.48, + "end": 24108.54, + "probability": 0.8944 + }, + { + "start": 24108.68, + "end": 24109.28, + "probability": 0.3486 + }, + { + "start": 24109.84, + "end": 24113.38, + "probability": 0.9532 + }, + { + "start": 24113.88, + "end": 24113.9, + "probability": 0.2049 + }, + { + "start": 24113.9, + "end": 24115.24, + "probability": 0.6696 + }, + { + "start": 24115.44, + "end": 24117.76, + "probability": 0.7583 + }, + { + "start": 24118.92, + "end": 24120.04, + "probability": 0.3333 + }, + { + "start": 24120.32, + "end": 24121.18, + "probability": 0.5156 + }, + { + "start": 24121.36, + "end": 24123.46, + "probability": 0.9074 + }, + { + "start": 24123.52, + "end": 24124.57, + "probability": 0.9426 + }, + { + "start": 24124.68, + "end": 24126.05, + "probability": 0.5266 + }, + { + "start": 24126.36, + "end": 24129.58, + "probability": 0.3422 + }, + { + "start": 24129.58, + "end": 24132.88, + "probability": 0.866 + }, + { + "start": 24133.0, + "end": 24135.64, + "probability": 0.5245 + }, + { + "start": 24135.66, + "end": 24135.74, + "probability": 0.1013 + }, + { + "start": 24135.74, + "end": 24136.52, + "probability": 0.0751 + }, + { + "start": 24136.62, + "end": 24138.23, + "probability": 0.8402 + }, + { + "start": 24138.68, + "end": 24139.68, + "probability": 0.2789 + }, + { + "start": 24139.68, + "end": 24140.46, + "probability": 0.0883 + }, + { + "start": 24140.58, + "end": 24142.1, + "probability": 0.6071 + }, + { + "start": 24142.64, + "end": 24143.04, + "probability": 0.7442 + }, + { + "start": 24143.04, + "end": 24144.44, + "probability": 0.6921 + }, + { + "start": 24144.58, + "end": 24145.96, + "probability": 0.8839 + }, + { + "start": 24146.04, + "end": 24150.74, + "probability": 0.7824 + }, + { + "start": 24151.52, + "end": 24154.2, + "probability": 0.549 + }, + { + "start": 24155.2, + "end": 24156.42, + "probability": 0.8316 + }, + { + "start": 24158.04, + "end": 24161.48, + "probability": 0.676 + }, + { + "start": 24161.52, + "end": 24162.7, + "probability": 0.9414 + }, + { + "start": 24162.88, + "end": 24163.96, + "probability": 0.984 + }, + { + "start": 24164.1, + "end": 24165.04, + "probability": 0.9406 + }, + { + "start": 24165.64, + "end": 24168.46, + "probability": 0.9913 + }, + { + "start": 24168.54, + "end": 24169.11, + "probability": 0.9912 + }, + { + "start": 24170.28, + "end": 24171.34, + "probability": 0.7952 + }, + { + "start": 24171.94, + "end": 24176.16, + "probability": 0.9787 + }, + { + "start": 24176.7, + "end": 24180.38, + "probability": 0.9619 + }, + { + "start": 24181.46, + "end": 24182.56, + "probability": 0.7263 + }, + { + "start": 24183.24, + "end": 24183.36, + "probability": 0.0743 + }, + { + "start": 24183.36, + "end": 24186.48, + "probability": 0.884 + }, + { + "start": 24186.68, + "end": 24187.36, + "probability": 0.8094 + }, + { + "start": 24187.48, + "end": 24188.42, + "probability": 0.55 + }, + { + "start": 24188.86, + "end": 24190.74, + "probability": 0.9909 + }, + { + "start": 24190.84, + "end": 24191.64, + "probability": 0.8909 + }, + { + "start": 24191.7, + "end": 24192.52, + "probability": 0.9741 + }, + { + "start": 24192.86, + "end": 24194.44, + "probability": 0.85 + }, + { + "start": 24194.82, + "end": 24196.65, + "probability": 0.9871 + }, + { + "start": 24197.58, + "end": 24199.46, + "probability": 0.8438 + }, + { + "start": 24199.98, + "end": 24202.54, + "probability": 0.6734 + }, + { + "start": 24202.96, + "end": 24204.7, + "probability": 0.9948 + }, + { + "start": 24205.24, + "end": 24207.02, + "probability": 0.9991 + }, + { + "start": 24207.52, + "end": 24210.24, + "probability": 0.4197 + }, + { + "start": 24210.84, + "end": 24214.36, + "probability": 0.9783 + }, + { + "start": 24215.24, + "end": 24217.64, + "probability": 0.8169 + }, + { + "start": 24218.14, + "end": 24220.6, + "probability": 0.925 + }, + { + "start": 24220.68, + "end": 24224.04, + "probability": 0.3538 + }, + { + "start": 24224.04, + "end": 24225.81, + "probability": 0.8984 + }, + { + "start": 24226.42, + "end": 24230.1, + "probability": 0.9892 + }, + { + "start": 24230.82, + "end": 24233.68, + "probability": 0.8975 + }, + { + "start": 24233.98, + "end": 24235.16, + "probability": 0.9319 + }, + { + "start": 24236.54, + "end": 24239.52, + "probability": 0.8098 + }, + { + "start": 24240.22, + "end": 24243.18, + "probability": 0.9412 + }, + { + "start": 24243.3, + "end": 24244.02, + "probability": 0.7065 + }, + { + "start": 24244.06, + "end": 24246.85, + "probability": 0.7446 + }, + { + "start": 24247.62, + "end": 24248.88, + "probability": 0.4373 + }, + { + "start": 24248.94, + "end": 24250.3, + "probability": 0.6714 + }, + { + "start": 24250.62, + "end": 24252.38, + "probability": 0.9873 + }, + { + "start": 24252.46, + "end": 24253.66, + "probability": 0.9832 + }, + { + "start": 24253.94, + "end": 24260.32, + "probability": 0.5224 + }, + { + "start": 24260.98, + "end": 24263.7, + "probability": 0.8321 + }, + { + "start": 24263.76, + "end": 24266.22, + "probability": 0.8521 + }, + { + "start": 24266.88, + "end": 24272.2, + "probability": 0.428 + }, + { + "start": 24272.36, + "end": 24272.42, + "probability": 0.509 + }, + { + "start": 24272.56, + "end": 24274.18, + "probability": 0.8289 + }, + { + "start": 24274.18, + "end": 24277.22, + "probability": 0.5987 + }, + { + "start": 24277.52, + "end": 24280.22, + "probability": 0.7422 + }, + { + "start": 24280.96, + "end": 24282.11, + "probability": 0.0434 + }, + { + "start": 24283.68, + "end": 24283.68, + "probability": 0.0094 + }, + { + "start": 24284.58, + "end": 24285.22, + "probability": 0.1754 + }, + { + "start": 24285.22, + "end": 24286.06, + "probability": 0.1332 + }, + { + "start": 24286.62, + "end": 24288.36, + "probability": 0.2867 + }, + { + "start": 24291.54, + "end": 24291.9, + "probability": 0.2485 + }, + { + "start": 24295.44, + "end": 24297.06, + "probability": 0.352 + }, + { + "start": 24297.22, + "end": 24297.82, + "probability": 0.238 + }, + { + "start": 24297.82, + "end": 24298.12, + "probability": 0.1214 + }, + { + "start": 24298.12, + "end": 24298.98, + "probability": 0.2116 + }, + { + "start": 24298.98, + "end": 24299.88, + "probability": 0.1211 + }, + { + "start": 24299.96, + "end": 24300.02, + "probability": 0.1062 + }, + { + "start": 24300.02, + "end": 24300.66, + "probability": 0.1182 + }, + { + "start": 24300.72, + "end": 24303.33, + "probability": 0.2563 + }, + { + "start": 24306.52, + "end": 24307.04, + "probability": 0.0024 + }, + { + "start": 24307.06, + "end": 24307.06, + "probability": 0.0355 + }, + { + "start": 24307.06, + "end": 24309.41, + "probability": 0.0694 + }, + { + "start": 24310.1, + "end": 24314.56, + "probability": 0.4356 + }, + { + "start": 24314.82, + "end": 24315.52, + "probability": 0.2573 + }, + { + "start": 24315.52, + "end": 24319.82, + "probability": 0.3089 + }, + { + "start": 24321.18, + "end": 24323.76, + "probability": 0.4132 + }, + { + "start": 24325.1, + "end": 24327.84, + "probability": 0.0098 + }, + { + "start": 24327.84, + "end": 24327.84, + "probability": 0.1674 + }, + { + "start": 24327.84, + "end": 24328.22, + "probability": 0.3277 + }, + { + "start": 24328.22, + "end": 24328.3, + "probability": 0.0602 + }, + { + "start": 24328.56, + "end": 24329.02, + "probability": 0.1135 + }, + { + "start": 24329.02, + "end": 24329.42, + "probability": 0.0656 + }, + { + "start": 24330.22, + "end": 24331.04, + "probability": 0.3667 + }, + { + "start": 24331.04, + "end": 24332.04, + "probability": 0.009 + }, + { + "start": 24333.04, + "end": 24333.96, + "probability": 0.0947 + }, + { + "start": 24333.96, + "end": 24333.96, + "probability": 0.0893 + }, + { + "start": 24333.96, + "end": 24333.96, + "probability": 0.0614 + }, + { + "start": 24333.96, + "end": 24333.96, + "probability": 0.098 + }, + { + "start": 24333.96, + "end": 24333.96, + "probability": 0.0275 + }, + { + "start": 24333.96, + "end": 24334.12, + "probability": 0.0874 + }, + { + "start": 24334.12, + "end": 24334.12, + "probability": 0.4282 + }, + { + "start": 24334.12, + "end": 24334.82, + "probability": 0.0171 + }, + { + "start": 24335.08, + "end": 24337.97, + "probability": 0.7881 + }, + { + "start": 24338.74, + "end": 24340.16, + "probability": 0.6305 + }, + { + "start": 24344.0, + "end": 24344.0, + "probability": 0.0 + }, + { + "start": 24344.22, + "end": 24344.64, + "probability": 0.0082 + }, + { + "start": 24344.64, + "end": 24344.72, + "probability": 0.0257 + }, + { + "start": 24344.82, + "end": 24348.8, + "probability": 0.9922 + }, + { + "start": 24349.12, + "end": 24351.82, + "probability": 0.9573 + }, + { + "start": 24352.18, + "end": 24353.94, + "probability": 0.6025 + }, + { + "start": 24354.02, + "end": 24354.92, + "probability": 0.7983 + }, + { + "start": 24355.1, + "end": 24358.53, + "probability": 0.428 + }, + { + "start": 24359.34, + "end": 24361.82, + "probability": 0.0666 + }, + { + "start": 24362.8, + "end": 24363.5, + "probability": 0.3449 + }, + { + "start": 24363.54, + "end": 24364.0, + "probability": 0.8964 + }, + { + "start": 24364.2, + "end": 24365.24, + "probability": 0.8459 + }, + { + "start": 24365.34, + "end": 24367.0, + "probability": 0.1304 + }, + { + "start": 24369.76, + "end": 24371.6, + "probability": 0.5477 + }, + { + "start": 24371.96, + "end": 24374.46, + "probability": 0.9779 + }, + { + "start": 24375.54, + "end": 24376.26, + "probability": 0.7723 + }, + { + "start": 24377.32, + "end": 24379.48, + "probability": 0.9106 + }, + { + "start": 24380.02, + "end": 24381.9, + "probability": 0.7946 + }, + { + "start": 24382.48, + "end": 24383.56, + "probability": 0.9314 + }, + { + "start": 24384.46, + "end": 24385.16, + "probability": 0.7519 + }, + { + "start": 24385.16, + "end": 24385.72, + "probability": 0.5814 + }, + { + "start": 24385.8, + "end": 24387.68, + "probability": 0.8711 + }, + { + "start": 24388.14, + "end": 24389.3, + "probability": 0.6728 + }, + { + "start": 24389.3, + "end": 24391.52, + "probability": 0.9614 + }, + { + "start": 24391.54, + "end": 24392.0, + "probability": 0.7271 + }, + { + "start": 24392.7, + "end": 24394.76, + "probability": 0.4728 + }, + { + "start": 24394.82, + "end": 24398.74, + "probability": 0.9061 + }, + { + "start": 24398.94, + "end": 24401.8, + "probability": 0.8245 + }, + { + "start": 24404.74, + "end": 24406.92, + "probability": 0.6016 + }, + { + "start": 24406.96, + "end": 24407.5, + "probability": 0.7533 + }, + { + "start": 24407.58, + "end": 24408.08, + "probability": 0.7483 + }, + { + "start": 24408.22, + "end": 24410.22, + "probability": 0.9746 + }, + { + "start": 24410.86, + "end": 24413.24, + "probability": 0.8725 + }, + { + "start": 24414.0, + "end": 24416.28, + "probability": 0.7675 + }, + { + "start": 24417.2, + "end": 24420.22, + "probability": 0.986 + }, + { + "start": 24420.82, + "end": 24426.5, + "probability": 0.9538 + }, + { + "start": 24426.78, + "end": 24428.16, + "probability": 0.8759 + }, + { + "start": 24428.26, + "end": 24428.7, + "probability": 0.3791 + }, + { + "start": 24429.18, + "end": 24429.62, + "probability": 0.0338 + }, + { + "start": 24430.36, + "end": 24431.7, + "probability": 0.8002 + }, + { + "start": 24431.92, + "end": 24434.26, + "probability": 0.7043 + }, + { + "start": 24434.82, + "end": 24438.62, + "probability": 0.9642 + }, + { + "start": 24439.04, + "end": 24439.78, + "probability": 0.655 + }, + { + "start": 24439.98, + "end": 24441.84, + "probability": 0.896 + }, + { + "start": 24442.12, + "end": 24443.54, + "probability": 0.8689 + }, + { + "start": 24443.7, + "end": 24444.2, + "probability": 0.1608 + }, + { + "start": 24444.36, + "end": 24445.98, + "probability": 0.8093 + }, + { + "start": 24446.4, + "end": 24447.88, + "probability": 0.691 + }, + { + "start": 24448.04, + "end": 24448.78, + "probability": 0.7051 + }, + { + "start": 24449.0, + "end": 24450.46, + "probability": 0.759 + }, + { + "start": 24450.7, + "end": 24451.76, + "probability": 0.6807 + }, + { + "start": 24452.02, + "end": 24452.9, + "probability": 0.9478 + }, + { + "start": 24453.46, + "end": 24454.2, + "probability": 0.2953 + }, + { + "start": 24454.44, + "end": 24455.54, + "probability": 0.5381 + }, + { + "start": 24455.7, + "end": 24456.34, + "probability": 0.4279 + }, + { + "start": 24456.38, + "end": 24457.64, + "probability": 0.4466 + }, + { + "start": 24457.76, + "end": 24459.28, + "probability": 0.8288 + }, + { + "start": 24459.44, + "end": 24459.98, + "probability": 0.6018 + }, + { + "start": 24460.26, + "end": 24463.12, + "probability": 0.2878 + }, + { + "start": 24465.22, + "end": 24468.24, + "probability": 0.8467 + }, + { + "start": 24469.62, + "end": 24470.58, + "probability": 0.9559 + }, + { + "start": 24470.74, + "end": 24471.4, + "probability": 0.9224 + }, + { + "start": 24472.16, + "end": 24473.64, + "probability": 0.3436 + }, + { + "start": 24473.7, + "end": 24474.3, + "probability": 0.6892 + }, + { + "start": 24474.38, + "end": 24476.08, + "probability": 0.7201 + }, + { + "start": 24476.26, + "end": 24477.26, + "probability": 0.583 + }, + { + "start": 24477.34, + "end": 24477.96, + "probability": 0.672 + }, + { + "start": 24478.84, + "end": 24481.44, + "probability": 0.5918 + }, + { + "start": 24483.34, + "end": 24484.86, + "probability": 0.104 + }, + { + "start": 24485.74, + "end": 24486.62, + "probability": 0.4377 + }, + { + "start": 24489.52, + "end": 24493.24, + "probability": 0.6253 + }, + { + "start": 24494.28, + "end": 24497.14, + "probability": 0.9327 + }, + { + "start": 24498.14, + "end": 24499.94, + "probability": 0.9161 + }, + { + "start": 24500.0, + "end": 24502.0, + "probability": 0.9731 + }, + { + "start": 24502.22, + "end": 24507.62, + "probability": 0.9993 + }, + { + "start": 24508.44, + "end": 24510.58, + "probability": 0.9966 + }, + { + "start": 24511.3, + "end": 24515.46, + "probability": 0.9922 + }, + { + "start": 24516.14, + "end": 24519.76, + "probability": 0.9938 + }, + { + "start": 24520.2, + "end": 24521.3, + "probability": 0.9229 + }, + { + "start": 24521.74, + "end": 24523.26, + "probability": 0.9736 + }, + { + "start": 24523.42, + "end": 24524.8, + "probability": 0.8968 + }, + { + "start": 24525.36, + "end": 24526.7, + "probability": 0.9733 + }, + { + "start": 24527.46, + "end": 24531.0, + "probability": 0.9484 + }, + { + "start": 24531.2, + "end": 24534.02, + "probability": 0.9224 + }, + { + "start": 24534.12, + "end": 24535.58, + "probability": 0.985 + }, + { + "start": 24536.3, + "end": 24537.64, + "probability": 0.9452 + }, + { + "start": 24538.3, + "end": 24539.0, + "probability": 0.9918 + }, + { + "start": 24539.76, + "end": 24540.44, + "probability": 0.4233 + }, + { + "start": 24541.34, + "end": 24545.66, + "probability": 0.9917 + }, + { + "start": 24546.24, + "end": 24551.22, + "probability": 0.9904 + }, + { + "start": 24551.76, + "end": 24553.12, + "probability": 0.9769 + }, + { + "start": 24553.24, + "end": 24554.14, + "probability": 0.9691 + }, + { + "start": 24554.98, + "end": 24556.54, + "probability": 0.8932 + }, + { + "start": 24556.84, + "end": 24558.54, + "probability": 0.6278 + }, + { + "start": 24558.7, + "end": 24559.06, + "probability": 0.6505 + }, + { + "start": 24559.18, + "end": 24563.1, + "probability": 0.9984 + }, + { + "start": 24563.8, + "end": 24565.98, + "probability": 0.6654 + }, + { + "start": 24565.98, + "end": 24567.08, + "probability": 0.0333 + }, + { + "start": 24569.92, + "end": 24573.1, + "probability": 0.076 + }, + { + "start": 24574.22, + "end": 24577.68, + "probability": 0.6257 + }, + { + "start": 24579.08, + "end": 24582.18, + "probability": 0.73 + }, + { + "start": 24583.2, + "end": 24585.52, + "probability": 0.502 + }, + { + "start": 24586.14, + "end": 24586.34, + "probability": 0.1154 + }, + { + "start": 24586.34, + "end": 24586.34, + "probability": 0.3157 + }, + { + "start": 24586.34, + "end": 24586.82, + "probability": 0.5262 + }, + { + "start": 24587.1, + "end": 24587.52, + "probability": 0.5202 + }, + { + "start": 24587.52, + "end": 24588.28, + "probability": 0.6 + }, + { + "start": 24588.34, + "end": 24590.82, + "probability": 0.5621 + }, + { + "start": 24601.51, + "end": 24604.74, + "probability": 0.2285 + }, + { + "start": 24606.42, + "end": 24609.16, + "probability": 0.4636 + }, + { + "start": 24609.36, + "end": 24611.98, + "probability": 0.8088 + }, + { + "start": 24612.16, + "end": 24616.99, + "probability": 0.9465 + }, + { + "start": 24618.0, + "end": 24622.56, + "probability": 0.7502 + }, + { + "start": 24623.3, + "end": 24624.41, + "probability": 0.2844 + }, + { + "start": 24625.2, + "end": 24625.24, + "probability": 0.0802 + }, + { + "start": 24625.24, + "end": 24626.57, + "probability": 0.8925 + }, + { + "start": 24627.54, + "end": 24629.14, + "probability": 0.8957 + }, + { + "start": 24629.5, + "end": 24629.88, + "probability": 0.0555 + }, + { + "start": 24630.24, + "end": 24631.92, + "probability": 0.0188 + }, + { + "start": 24631.92, + "end": 24632.86, + "probability": 0.7701 + }, + { + "start": 24633.1, + "end": 24635.34, + "probability": 0.9582 + }, + { + "start": 24635.44, + "end": 24636.2, + "probability": 0.9195 + }, + { + "start": 24636.54, + "end": 24639.06, + "probability": 0.9846 + }, + { + "start": 24639.16, + "end": 24640.87, + "probability": 0.7584 + }, + { + "start": 24641.86, + "end": 24642.78, + "probability": 0.382 + }, + { + "start": 24642.78, + "end": 24648.24, + "probability": 0.7499 + }, + { + "start": 24649.31, + "end": 24650.46, + "probability": 0.0355 + }, + { + "start": 24650.46, + "end": 24650.46, + "probability": 0.2241 + }, + { + "start": 24650.46, + "end": 24650.46, + "probability": 0.2192 + }, + { + "start": 24650.46, + "end": 24650.46, + "probability": 0.0375 + }, + { + "start": 24650.46, + "end": 24651.46, + "probability": 0.3486 + }, + { + "start": 24656.98, + "end": 24658.24, + "probability": 0.8687 + }, + { + "start": 24665.14, + "end": 24668.72, + "probability": 0.7482 + }, + { + "start": 24670.0, + "end": 24673.3, + "probability": 0.993 + }, + { + "start": 24675.08, + "end": 24675.63, + "probability": 0.9341 + }, + { + "start": 24675.88, + "end": 24677.34, + "probability": 0.9971 + }, + { + "start": 24678.84, + "end": 24682.18, + "probability": 0.8831 + }, + { + "start": 24682.76, + "end": 24684.86, + "probability": 0.7879 + }, + { + "start": 24684.88, + "end": 24685.52, + "probability": 0.8203 + }, + { + "start": 24686.8, + "end": 24690.48, + "probability": 0.676 + }, + { + "start": 24690.98, + "end": 24690.98, + "probability": 0.0769 + }, + { + "start": 24690.98, + "end": 24692.32, + "probability": 0.4466 + }, + { + "start": 24693.54, + "end": 24694.32, + "probability": 0.9543 + }, + { + "start": 24694.78, + "end": 24700.0, + "probability": 0.9844 + }, + { + "start": 24701.1, + "end": 24702.02, + "probability": 0.2062 + }, + { + "start": 24702.54, + "end": 24705.1, + "probability": 0.8163 + }, + { + "start": 24705.9, + "end": 24708.32, + "probability": 0.6556 + }, + { + "start": 24709.06, + "end": 24710.2, + "probability": 0.9492 + }, + { + "start": 24711.9, + "end": 24713.16, + "probability": 0.9414 + }, + { + "start": 24713.6, + "end": 24715.18, + "probability": 0.8092 + }, + { + "start": 24715.82, + "end": 24721.24, + "probability": 0.939 + }, + { + "start": 24721.34, + "end": 24722.24, + "probability": 0.5301 + }, + { + "start": 24722.48, + "end": 24723.52, + "probability": 0.5624 + }, + { + "start": 24724.34, + "end": 24726.86, + "probability": 0.6074 + }, + { + "start": 24728.36, + "end": 24733.02, + "probability": 0.9665 + }, + { + "start": 24733.62, + "end": 24734.08, + "probability": 0.8644 + }, + { + "start": 24734.24, + "end": 24736.1, + "probability": 0.9765 + }, + { + "start": 24736.16, + "end": 24736.98, + "probability": 0.9712 + }, + { + "start": 24737.98, + "end": 24738.68, + "probability": 0.6605 + }, + { + "start": 24739.52, + "end": 24740.9, + "probability": 0.6328 + }, + { + "start": 24741.72, + "end": 24742.77, + "probability": 0.9272 + }, + { + "start": 24743.06, + "end": 24745.62, + "probability": 0.8623 + }, + { + "start": 24746.0, + "end": 24749.42, + "probability": 0.9752 + }, + { + "start": 24749.94, + "end": 24751.4, + "probability": 0.7837 + }, + { + "start": 24753.38, + "end": 24753.8, + "probability": 0.252 + }, + { + "start": 24753.8, + "end": 24754.72, + "probability": 0.9601 + }, + { + "start": 24754.98, + "end": 24755.7, + "probability": 0.9809 + }, + { + "start": 24755.78, + "end": 24759.57, + "probability": 0.9401 + }, + { + "start": 24760.0, + "end": 24760.54, + "probability": 0.6869 + }, + { + "start": 24761.52, + "end": 24763.64, + "probability": 0.9338 + }, + { + "start": 24763.96, + "end": 24764.48, + "probability": 0.9507 + }, + { + "start": 24765.46, + "end": 24766.48, + "probability": 0.8031 + }, + { + "start": 24767.54, + "end": 24771.22, + "probability": 0.9438 + }, + { + "start": 24771.54, + "end": 24772.04, + "probability": 0.7669 + }, + { + "start": 24772.1, + "end": 24772.58, + "probability": 0.9851 + }, + { + "start": 24772.94, + "end": 24777.18, + "probability": 0.9733 + }, + { + "start": 24777.32, + "end": 24779.14, + "probability": 0.8569 + }, + { + "start": 24780.52, + "end": 24783.56, + "probability": 0.9923 + }, + { + "start": 24784.48, + "end": 24788.08, + "probability": 0.8326 + }, + { + "start": 24790.56, + "end": 24792.4, + "probability": 0.9282 + }, + { + "start": 24793.64, + "end": 24795.24, + "probability": 0.9844 + }, + { + "start": 24796.26, + "end": 24796.68, + "probability": 0.9893 + }, + { + "start": 24797.7, + "end": 24799.32, + "probability": 0.9404 + }, + { + "start": 24799.42, + "end": 24800.72, + "probability": 0.9893 + }, + { + "start": 24801.08, + "end": 24802.66, + "probability": 0.7059 + }, + { + "start": 24804.04, + "end": 24805.16, + "probability": 0.9939 + }, + { + "start": 24805.4, + "end": 24806.28, + "probability": 0.8324 + }, + { + "start": 24806.68, + "end": 24809.32, + "probability": 0.9988 + }, + { + "start": 24809.32, + "end": 24812.08, + "probability": 0.9977 + }, + { + "start": 24814.04, + "end": 24814.64, + "probability": 0.6527 + }, + { + "start": 24815.34, + "end": 24816.44, + "probability": 0.9883 + }, + { + "start": 24816.52, + "end": 24817.31, + "probability": 0.7376 + }, + { + "start": 24818.06, + "end": 24820.3, + "probability": 0.8098 + }, + { + "start": 24820.52, + "end": 24823.02, + "probability": 0.8592 + }, + { + "start": 24823.14, + "end": 24824.46, + "probability": 0.9755 + }, + { + "start": 24824.48, + "end": 24825.92, + "probability": 0.8502 + }, + { + "start": 24826.76, + "end": 24829.64, + "probability": 0.9951 + }, + { + "start": 24830.28, + "end": 24830.28, + "probability": 0.0126 + }, + { + "start": 24830.28, + "end": 24832.32, + "probability": 0.7732 + }, + { + "start": 24833.64, + "end": 24835.96, + "probability": 0.9446 + }, + { + "start": 24836.1, + "end": 24839.48, + "probability": 0.9685 + }, + { + "start": 24839.68, + "end": 24843.84, + "probability": 0.6566 + }, + { + "start": 24844.08, + "end": 24848.38, + "probability": 0.8297 + }, + { + "start": 24848.56, + "end": 24850.96, + "probability": 0.9985 + }, + { + "start": 24851.56, + "end": 24853.36, + "probability": 0.9946 + }, + { + "start": 24853.7, + "end": 24855.72, + "probability": 0.9851 + }, + { + "start": 24856.34, + "end": 24857.16, + "probability": 0.986 + }, + { + "start": 24857.54, + "end": 24861.84, + "probability": 0.9169 + }, + { + "start": 24861.94, + "end": 24865.3, + "probability": 0.854 + }, + { + "start": 24865.74, + "end": 24869.24, + "probability": 0.9968 + }, + { + "start": 24869.86, + "end": 24874.66, + "probability": 0.9779 + }, + { + "start": 24874.98, + "end": 24875.44, + "probability": 0.4856 + }, + { + "start": 24875.52, + "end": 24876.46, + "probability": 0.9765 + }, + { + "start": 24876.8, + "end": 24878.04, + "probability": 0.98 + }, + { + "start": 24878.44, + "end": 24878.92, + "probability": 0.652 + }, + { + "start": 24878.92, + "end": 24880.26, + "probability": 0.885 + }, + { + "start": 24881.48, + "end": 24883.98, + "probability": 0.9653 + }, + { + "start": 24890.92, + "end": 24891.24, + "probability": 0.4991 + }, + { + "start": 24905.06, + "end": 24905.28, + "probability": 0.0717 + }, + { + "start": 24905.28, + "end": 24907.64, + "probability": 0.6052 + }, + { + "start": 24908.58, + "end": 24910.42, + "probability": 0.9184 + }, + { + "start": 24911.32, + "end": 24914.24, + "probability": 0.7334 + }, + { + "start": 24914.72, + "end": 24917.92, + "probability": 0.9522 + }, + { + "start": 24918.54, + "end": 24919.68, + "probability": 0.9852 + }, + { + "start": 24920.46, + "end": 24923.34, + "probability": 0.9481 + }, + { + "start": 24924.58, + "end": 24925.7, + "probability": 0.9437 + }, + { + "start": 24926.46, + "end": 24931.36, + "probability": 0.9657 + }, + { + "start": 24931.46, + "end": 24933.44, + "probability": 0.9805 + }, + { + "start": 24933.98, + "end": 24935.98, + "probability": 0.9431 + }, + { + "start": 24936.54, + "end": 24940.34, + "probability": 0.9741 + }, + { + "start": 24940.5, + "end": 24941.5, + "probability": 0.794 + }, + { + "start": 24942.16, + "end": 24944.24, + "probability": 0.8833 + }, + { + "start": 24944.84, + "end": 24945.68, + "probability": 0.5583 + }, + { + "start": 24945.78, + "end": 24947.72, + "probability": 0.9818 + }, + { + "start": 24948.08, + "end": 24949.26, + "probability": 0.9803 + }, + { + "start": 24949.48, + "end": 24950.8, + "probability": 0.992 + }, + { + "start": 24951.3, + "end": 24954.16, + "probability": 0.9917 + }, + { + "start": 24954.8, + "end": 24956.18, + "probability": 0.7365 + }, + { + "start": 24956.26, + "end": 24956.58, + "probability": 0.7356 + }, + { + "start": 24956.72, + "end": 24957.06, + "probability": 0.9044 + }, + { + "start": 24957.14, + "end": 24958.48, + "probability": 0.8844 + }, + { + "start": 24958.78, + "end": 24963.04, + "probability": 0.9586 + }, + { + "start": 24963.18, + "end": 24966.2, + "probability": 0.9862 + }, + { + "start": 24966.44, + "end": 24969.08, + "probability": 0.9583 + }, + { + "start": 24969.3, + "end": 24970.82, + "probability": 0.9016 + }, + { + "start": 24970.92, + "end": 24972.12, + "probability": 0.7802 + }, + { + "start": 24972.24, + "end": 24974.4, + "probability": 0.9083 + }, + { + "start": 24976.74, + "end": 24977.96, + "probability": 0.8697 + }, + { + "start": 24978.04, + "end": 24978.55, + "probability": 0.8466 + }, + { + "start": 24979.32, + "end": 24981.88, + "probability": 0.8446 + }, + { + "start": 24982.16, + "end": 24984.54, + "probability": 0.9683 + }, + { + "start": 24984.84, + "end": 24986.44, + "probability": 0.9578 + }, + { + "start": 24987.76, + "end": 24989.54, + "probability": 0.7383 + }, + { + "start": 24990.62, + "end": 24992.14, + "probability": 0.7277 + }, + { + "start": 24992.78, + "end": 24995.84, + "probability": 0.9897 + }, + { + "start": 24996.24, + "end": 24999.46, + "probability": 0.9209 + }, + { + "start": 24999.68, + "end": 25001.88, + "probability": 0.8647 + }, + { + "start": 25002.8, + "end": 25003.8, + "probability": 0.9347 + }, + { + "start": 25005.08, + "end": 25008.68, + "probability": 0.9764 + }, + { + "start": 25009.28, + "end": 25012.42, + "probability": 0.9928 + }, + { + "start": 25012.58, + "end": 25014.2, + "probability": 0.7703 + }, + { + "start": 25014.3, + "end": 25019.12, + "probability": 0.9922 + }, + { + "start": 25019.5, + "end": 25020.47, + "probability": 0.6558 + }, + { + "start": 25020.76, + "end": 25021.92, + "probability": 0.8526 + }, + { + "start": 25022.2, + "end": 25023.8, + "probability": 0.8832 + }, + { + "start": 25024.1, + "end": 25024.92, + "probability": 0.9225 + }, + { + "start": 25025.52, + "end": 25028.02, + "probability": 0.9932 + }, + { + "start": 25028.7, + "end": 25030.33, + "probability": 0.9224 + }, + { + "start": 25030.88, + "end": 25033.44, + "probability": 0.9762 + }, + { + "start": 25033.74, + "end": 25034.94, + "probability": 0.839 + }, + { + "start": 25035.02, + "end": 25035.42, + "probability": 0.7342 + }, + { + "start": 25036.02, + "end": 25037.68, + "probability": 0.9376 + }, + { + "start": 25038.04, + "end": 25041.16, + "probability": 0.9797 + }, + { + "start": 25041.3, + "end": 25043.54, + "probability": 0.9803 + }, + { + "start": 25043.64, + "end": 25044.58, + "probability": 0.9167 + }, + { + "start": 25045.1, + "end": 25046.1, + "probability": 0.8335 + }, + { + "start": 25046.34, + "end": 25048.8, + "probability": 0.9775 + }, + { + "start": 25048.9, + "end": 25051.34, + "probability": 0.9916 + }, + { + "start": 25051.34, + "end": 25054.78, + "probability": 0.9902 + }, + { + "start": 25055.62, + "end": 25059.78, + "probability": 0.9932 + }, + { + "start": 25060.26, + "end": 25063.24, + "probability": 0.938 + }, + { + "start": 25063.8, + "end": 25064.84, + "probability": 0.7732 + }, + { + "start": 25065.04, + "end": 25065.82, + "probability": 0.9265 + }, + { + "start": 25066.18, + "end": 25067.68, + "probability": 0.9173 + }, + { + "start": 25068.02, + "end": 25073.84, + "probability": 0.9766 + }, + { + "start": 25074.18, + "end": 25074.78, + "probability": 0.8498 + }, + { + "start": 25075.32, + "end": 25076.13, + "probability": 0.99 + }, + { + "start": 25077.24, + "end": 25079.1, + "probability": 0.9924 + }, + { + "start": 25079.32, + "end": 25080.94, + "probability": 0.998 + }, + { + "start": 25081.74, + "end": 25083.0, + "probability": 0.9946 + }, + { + "start": 25084.04, + "end": 25085.46, + "probability": 0.9474 + }, + { + "start": 25086.02, + "end": 25087.06, + "probability": 0.9881 + }, + { + "start": 25087.8, + "end": 25088.22, + "probability": 0.8834 + }, + { + "start": 25088.56, + "end": 25090.58, + "probability": 0.8734 + }, + { + "start": 25091.32, + "end": 25092.51, + "probability": 0.0192 + }, + { + "start": 25094.82, + "end": 25095.54, + "probability": 0.0211 + }, + { + "start": 25095.62, + "end": 25097.0, + "probability": 0.2757 + }, + { + "start": 25120.68, + "end": 25120.68, + "probability": 0.3956 + }, + { + "start": 25120.68, + "end": 25120.68, + "probability": 0.065 + }, + { + "start": 25120.72, + "end": 25123.82, + "probability": 0.5972 + }, + { + "start": 25127.16, + "end": 25128.16, + "probability": 0.7009 + }, + { + "start": 25129.36, + "end": 25132.56, + "probability": 0.8196 + }, + { + "start": 25135.56, + "end": 25137.28, + "probability": 0.9536 + }, + { + "start": 25137.52, + "end": 25138.8, + "probability": 0.1034 + }, + { + "start": 25138.8, + "end": 25139.24, + "probability": 0.0486 + }, + { + "start": 25139.66, + "end": 25140.62, + "probability": 0.993 + }, + { + "start": 25142.28, + "end": 25147.06, + "probability": 0.967 + }, + { + "start": 25148.38, + "end": 25152.82, + "probability": 0.9902 + }, + { + "start": 25154.48, + "end": 25158.7, + "probability": 0.7778 + }, + { + "start": 25158.92, + "end": 25164.72, + "probability": 0.9907 + }, + { + "start": 25164.72, + "end": 25166.64, + "probability": 0.9847 + }, + { + "start": 25168.52, + "end": 25175.02, + "probability": 0.9978 + }, + { + "start": 25175.1, + "end": 25175.45, + "probability": 0.9893 + }, + { + "start": 25176.36, + "end": 25177.84, + "probability": 0.9978 + }, + { + "start": 25178.7, + "end": 25180.26, + "probability": 0.5506 + }, + { + "start": 25182.97, + "end": 25185.28, + "probability": 0.9702 + }, + { + "start": 25185.56, + "end": 25189.64, + "probability": 0.9915 + }, + { + "start": 25190.68, + "end": 25192.56, + "probability": 0.9683 + }, + { + "start": 25193.32, + "end": 25194.94, + "probability": 0.9955 + }, + { + "start": 25195.84, + "end": 25198.74, + "probability": 0.9746 + }, + { + "start": 25199.54, + "end": 25203.08, + "probability": 0.8137 + }, + { + "start": 25204.04, + "end": 25204.7, + "probability": 0.408 + }, + { + "start": 25205.04, + "end": 25206.64, + "probability": 0.7191 + }, + { + "start": 25206.7, + "end": 25206.92, + "probability": 0.534 + }, + { + "start": 25207.04, + "end": 25207.96, + "probability": 0.9651 + }, + { + "start": 25208.04, + "end": 25210.52, + "probability": 0.9453 + }, + { + "start": 25210.68, + "end": 25212.92, + "probability": 0.9351 + }, + { + "start": 25214.4, + "end": 25217.98, + "probability": 0.8117 + }, + { + "start": 25219.08, + "end": 25224.04, + "probability": 0.9714 + }, + { + "start": 25224.58, + "end": 25225.36, + "probability": 0.7491 + }, + { + "start": 25225.56, + "end": 25227.62, + "probability": 0.9351 + }, + { + "start": 25228.7, + "end": 25230.44, + "probability": 0.9263 + }, + { + "start": 25230.62, + "end": 25231.0, + "probability": 0.7766 + }, + { + "start": 25231.16, + "end": 25236.02, + "probability": 0.9513 + }, + { + "start": 25236.42, + "end": 25237.42, + "probability": 0.6821 + }, + { + "start": 25238.14, + "end": 25244.3, + "probability": 0.9778 + }, + { + "start": 25244.4, + "end": 25245.4, + "probability": 0.6799 + }, + { + "start": 25246.54, + "end": 25251.54, + "probability": 0.8547 + }, + { + "start": 25251.64, + "end": 25254.64, + "probability": 0.7763 + }, + { + "start": 25255.2, + "end": 25258.92, + "probability": 0.7519 + }, + { + "start": 25259.44, + "end": 25259.8, + "probability": 0.5314 + }, + { + "start": 25259.92, + "end": 25261.98, + "probability": 0.4999 + }, + { + "start": 25262.06, + "end": 25263.22, + "probability": 0.637 + }, + { + "start": 25263.96, + "end": 25265.42, + "probability": 0.9292 + }, + { + "start": 25265.48, + "end": 25267.52, + "probability": 0.9473 + }, + { + "start": 25268.08, + "end": 25271.22, + "probability": 0.8915 + }, + { + "start": 25271.8, + "end": 25272.54, + "probability": 0.5018 + }, + { + "start": 25272.6, + "end": 25273.86, + "probability": 0.8751 + }, + { + "start": 25273.92, + "end": 25279.48, + "probability": 0.9609 + }, + { + "start": 25279.98, + "end": 25280.76, + "probability": 0.8251 + }, + { + "start": 25281.14, + "end": 25282.08, + "probability": 0.926 + }, + { + "start": 25282.7, + "end": 25286.8, + "probability": 0.8792 + }, + { + "start": 25287.44, + "end": 25288.42, + "probability": 0.7842 + }, + { + "start": 25288.58, + "end": 25292.42, + "probability": 0.7865 + }, + { + "start": 25293.08, + "end": 25295.05, + "probability": 0.6724 + }, + { + "start": 25295.98, + "end": 25297.56, + "probability": 0.8013 + }, + { + "start": 25297.56, + "end": 25298.3, + "probability": 0.7382 + }, + { + "start": 25298.72, + "end": 25301.28, + "probability": 0.7494 + }, + { + "start": 25301.66, + "end": 25304.36, + "probability": 0.7509 + }, + { + "start": 25304.38, + "end": 25306.16, + "probability": 0.9642 + }, + { + "start": 25306.54, + "end": 25307.8, + "probability": 0.9235 + }, + { + "start": 25308.12, + "end": 25309.92, + "probability": 0.9706 + }, + { + "start": 25310.2, + "end": 25311.72, + "probability": 0.7406 + }, + { + "start": 25312.0, + "end": 25313.92, + "probability": 0.9683 + }, + { + "start": 25314.54, + "end": 25317.22, + "probability": 0.8633 + }, + { + "start": 25317.66, + "end": 25319.44, + "probability": 0.9737 + }, + { + "start": 25319.76, + "end": 25322.54, + "probability": 0.9138 + }, + { + "start": 25323.52, + "end": 25324.72, + "probability": 0.711 + }, + { + "start": 25325.28, + "end": 25327.04, + "probability": 0.7335 + }, + { + "start": 25328.74, + "end": 25329.82, + "probability": 0.7146 + }, + { + "start": 25330.32, + "end": 25331.82, + "probability": 0.9258 + }, + { + "start": 25358.32, + "end": 25358.78, + "probability": 0.3302 + }, + { + "start": 25359.58, + "end": 25361.58, + "probability": 0.7759 + }, + { + "start": 25362.22, + "end": 25368.64, + "probability": 0.908 + }, + { + "start": 25369.06, + "end": 25371.94, + "probability": 0.9921 + }, + { + "start": 25372.7, + "end": 25373.76, + "probability": 0.9963 + }, + { + "start": 25377.34, + "end": 25381.86, + "probability": 0.9948 + }, + { + "start": 25383.78, + "end": 25387.78, + "probability": 0.9988 + }, + { + "start": 25388.02, + "end": 25390.74, + "probability": 0.8988 + }, + { + "start": 25390.82, + "end": 25395.08, + "probability": 0.9941 + }, + { + "start": 25395.76, + "end": 25398.3, + "probability": 0.9944 + }, + { + "start": 25398.52, + "end": 25400.12, + "probability": 0.9966 + }, + { + "start": 25400.62, + "end": 25407.3, + "probability": 0.8267 + }, + { + "start": 25408.48, + "end": 25411.28, + "probability": 0.9666 + }, + { + "start": 25411.44, + "end": 25413.45, + "probability": 0.7986 + }, + { + "start": 25414.52, + "end": 25414.82, + "probability": 0.9426 + }, + { + "start": 25415.78, + "end": 25424.32, + "probability": 0.9994 + }, + { + "start": 25425.19, + "end": 25431.46, + "probability": 0.9944 + }, + { + "start": 25432.06, + "end": 25433.54, + "probability": 0.9969 + }, + { + "start": 25433.64, + "end": 25434.98, + "probability": 0.7575 + }, + { + "start": 25435.38, + "end": 25439.61, + "probability": 0.8629 + }, + { + "start": 25440.16, + "end": 25443.62, + "probability": 0.9991 + }, + { + "start": 25445.22, + "end": 25450.97, + "probability": 0.6683 + }, + { + "start": 25451.7, + "end": 25455.66, + "probability": 0.6659 + }, + { + "start": 25456.72, + "end": 25457.32, + "probability": 0.8949 + }, + { + "start": 25458.38, + "end": 25458.92, + "probability": 0.5605 + }, + { + "start": 25459.76, + "end": 25463.28, + "probability": 0.9732 + }, + { + "start": 25466.62, + "end": 25469.06, + "probability": 0.9961 + }, + { + "start": 25469.6, + "end": 25472.8, + "probability": 0.9882 + }, + { + "start": 25474.02, + "end": 25474.86, + "probability": 0.7696 + }, + { + "start": 25475.32, + "end": 25476.42, + "probability": 0.7282 + }, + { + "start": 25476.52, + "end": 25477.54, + "probability": 0.8571 + }, + { + "start": 25477.76, + "end": 25480.02, + "probability": 0.8635 + }, + { + "start": 25480.12, + "end": 25486.62, + "probability": 0.952 + }, + { + "start": 25488.44, + "end": 25490.78, + "probability": 0.8596 + }, + { + "start": 25490.98, + "end": 25497.86, + "probability": 0.9937 + }, + { + "start": 25498.38, + "end": 25499.1, + "probability": 0.9826 + }, + { + "start": 25501.66, + "end": 25504.56, + "probability": 0.9 + }, + { + "start": 25504.6, + "end": 25508.13, + "probability": 0.9086 + }, + { + "start": 25509.96, + "end": 25512.1, + "probability": 0.9296 + }, + { + "start": 25513.28, + "end": 25514.7, + "probability": 0.9875 + }, + { + "start": 25515.12, + "end": 25521.24, + "probability": 0.9769 + }, + { + "start": 25522.32, + "end": 25528.6, + "probability": 0.9754 + }, + { + "start": 25529.14, + "end": 25532.82, + "probability": 0.9436 + }, + { + "start": 25538.12, + "end": 25538.82, + "probability": 0.2673 + }, + { + "start": 25538.82, + "end": 25540.82, + "probability": 0.9653 + }, + { + "start": 25541.54, + "end": 25544.28, + "probability": 0.7046 + }, + { + "start": 25544.34, + "end": 25545.12, + "probability": 0.8804 + }, + { + "start": 25547.86, + "end": 25548.56, + "probability": 0.0426 + }, + { + "start": 25549.18, + "end": 25552.52, + "probability": 0.0266 + }, + { + "start": 25581.7, + "end": 25584.54, + "probability": 0.526 + }, + { + "start": 25585.12, + "end": 25586.68, + "probability": 0.5558 + }, + { + "start": 25587.84, + "end": 25591.94, + "probability": 0.9854 + }, + { + "start": 25593.8, + "end": 25594.22, + "probability": 0.0634 + }, + { + "start": 25595.46, + "end": 25596.14, + "probability": 0.358 + }, + { + "start": 25596.8, + "end": 25598.27, + "probability": 0.9307 + }, + { + "start": 25598.78, + "end": 25606.34, + "probability": 0.2919 + }, + { + "start": 25606.86, + "end": 25611.82, + "probability": 0.5529 + }, + { + "start": 25612.06, + "end": 25612.06, + "probability": 0.1167 + }, + { + "start": 25612.06, + "end": 25612.06, + "probability": 0.1745 + }, + { + "start": 25612.06, + "end": 25612.06, + "probability": 0.1729 + }, + { + "start": 25612.06, + "end": 25617.28, + "probability": 0.6524 + }, + { + "start": 25618.46, + "end": 25621.4, + "probability": 0.9062 + }, + { + "start": 25621.5, + "end": 25623.84, + "probability": 0.5568 + }, + { + "start": 25624.1, + "end": 25624.74, + "probability": 0.5011 + }, + { + "start": 25624.86, + "end": 25626.89, + "probability": 0.5776 + }, + { + "start": 25627.56, + "end": 25628.12, + "probability": 0.0998 + }, + { + "start": 25628.12, + "end": 25628.82, + "probability": 0.2159 + }, + { + "start": 25629.06, + "end": 25632.9, + "probability": 0.5239 + }, + { + "start": 25632.98, + "end": 25633.9, + "probability": 0.8244 + }, + { + "start": 25634.06, + "end": 25634.52, + "probability": 0.2638 + }, + { + "start": 25634.52, + "end": 25634.8, + "probability": 0.1107 + }, + { + "start": 25634.8, + "end": 25637.9, + "probability": 0.8986 + }, + { + "start": 25638.02, + "end": 25639.21, + "probability": 0.6678 + }, + { + "start": 25640.34, + "end": 25643.54, + "probability": 0.6717 + }, + { + "start": 25643.54, + "end": 25646.8, + "probability": 0.9565 + }, + { + "start": 25646.9, + "end": 25649.1, + "probability": 0.9855 + }, + { + "start": 25649.24, + "end": 25653.86, + "probability": 0.8693 + }, + { + "start": 25654.02, + "end": 25655.4, + "probability": 0.9526 + }, + { + "start": 25655.62, + "end": 25656.8, + "probability": 0.9119 + }, + { + "start": 25657.0, + "end": 25660.96, + "probability": 0.9424 + }, + { + "start": 25661.02, + "end": 25662.16, + "probability": 0.9183 + }, + { + "start": 25662.4, + "end": 25663.92, + "probability": 0.9014 + }, + { + "start": 25665.58, + "end": 25668.42, + "probability": 0.9349 + }, + { + "start": 25668.8, + "end": 25670.6, + "probability": 0.9412 + }, + { + "start": 25670.66, + "end": 25671.88, + "probability": 0.937 + }, + { + "start": 25672.7, + "end": 25673.84, + "probability": 0.8476 + }, + { + "start": 25674.62, + "end": 25679.8, + "probability": 0.9808 + }, + { + "start": 25680.28, + "end": 25685.92, + "probability": 0.9235 + }, + { + "start": 25687.04, + "end": 25689.48, + "probability": 0.9716 + }, + { + "start": 25689.7, + "end": 25692.04, + "probability": 0.8972 + }, + { + "start": 25692.8, + "end": 25694.32, + "probability": 0.7672 + }, + { + "start": 25695.84, + "end": 25698.58, + "probability": 0.8872 + }, + { + "start": 25699.26, + "end": 25703.22, + "probability": 0.9736 + }, + { + "start": 25704.12, + "end": 25707.1, + "probability": 0.9341 + }, + { + "start": 25708.76, + "end": 25711.42, + "probability": 0.9707 + }, + { + "start": 25711.58, + "end": 25712.68, + "probability": 0.8093 + }, + { + "start": 25712.78, + "end": 25714.42, + "probability": 0.6994 + }, + { + "start": 25715.36, + "end": 25716.44, + "probability": 0.9496 + }, + { + "start": 25717.18, + "end": 25721.74, + "probability": 0.9819 + }, + { + "start": 25722.0, + "end": 25725.48, + "probability": 0.9963 + }, + { + "start": 25726.16, + "end": 25728.34, + "probability": 0.9697 + }, + { + "start": 25729.2, + "end": 25730.94, + "probability": 0.8363 + }, + { + "start": 25731.8, + "end": 25734.12, + "probability": 0.9322 + }, + { + "start": 25735.14, + "end": 25739.1, + "probability": 0.7493 + }, + { + "start": 25739.26, + "end": 25742.32, + "probability": 0.9924 + }, + { + "start": 25742.84, + "end": 25744.6, + "probability": 0.9679 + }, + { + "start": 25745.68, + "end": 25747.3, + "probability": 0.7567 + }, + { + "start": 25747.4, + "end": 25748.8, + "probability": 0.9738 + }, + { + "start": 25749.06, + "end": 25750.74, + "probability": 0.9825 + }, + { + "start": 25751.02, + "end": 25752.0, + "probability": 0.8038 + }, + { + "start": 25753.18, + "end": 25754.74, + "probability": 0.8097 + }, + { + "start": 25755.18, + "end": 25757.66, + "probability": 0.9445 + }, + { + "start": 25758.2, + "end": 25759.66, + "probability": 0.9024 + }, + { + "start": 25760.52, + "end": 25763.2, + "probability": 0.9304 + }, + { + "start": 25763.64, + "end": 25766.54, + "probability": 0.9717 + }, + { + "start": 25769.06, + "end": 25769.16, + "probability": 0.3526 + }, + { + "start": 25769.16, + "end": 25770.22, + "probability": 0.724 + }, + { + "start": 25771.22, + "end": 25775.02, + "probability": 0.9954 + }, + { + "start": 25776.26, + "end": 25780.02, + "probability": 0.9919 + }, + { + "start": 25780.48, + "end": 25782.38, + "probability": 0.9493 + }, + { + "start": 25782.68, + "end": 25784.3, + "probability": 0.963 + }, + { + "start": 25784.4, + "end": 25785.9, + "probability": 0.8805 + }, + { + "start": 25786.38, + "end": 25790.08, + "probability": 0.9678 + }, + { + "start": 25790.26, + "end": 25791.82, + "probability": 0.965 + }, + { + "start": 25793.54, + "end": 25797.84, + "probability": 0.7921 + }, + { + "start": 25797.84, + "end": 25801.58, + "probability": 0.8288 + }, + { + "start": 25801.76, + "end": 25808.32, + "probability": 0.979 + }, + { + "start": 25808.96, + "end": 25810.12, + "probability": 0.7746 + }, + { + "start": 25810.28, + "end": 25814.18, + "probability": 0.9912 + }, + { + "start": 25815.56, + "end": 25819.6, + "probability": 0.9131 + }, + { + "start": 25820.16, + "end": 25822.29, + "probability": 0.9418 + }, + { + "start": 25824.14, + "end": 25825.42, + "probability": 0.901 + }, + { + "start": 25826.62, + "end": 25830.84, + "probability": 0.9839 + }, + { + "start": 25830.96, + "end": 25831.82, + "probability": 0.7042 + }, + { + "start": 25831.82, + "end": 25832.86, + "probability": 0.6992 + }, + { + "start": 25832.94, + "end": 25833.62, + "probability": 0.5923 + }, + { + "start": 25834.48, + "end": 25836.92, + "probability": 0.9584 + }, + { + "start": 25837.6, + "end": 25841.32, + "probability": 0.9357 + }, + { + "start": 25842.14, + "end": 25847.14, + "probability": 0.9574 + }, + { + "start": 25847.28, + "end": 25851.72, + "probability": 0.9814 + }, + { + "start": 25853.1, + "end": 25854.08, + "probability": 0.7813 + }, + { + "start": 25854.7, + "end": 25858.82, + "probability": 0.9208 + }, + { + "start": 25858.94, + "end": 25859.36, + "probability": 0.5934 + }, + { + "start": 25859.36, + "end": 25862.48, + "probability": 0.8448 + }, + { + "start": 25862.56, + "end": 25865.1, + "probability": 0.9531 + }, + { + "start": 25865.18, + "end": 25866.1, + "probability": 0.6566 + }, + { + "start": 25867.12, + "end": 25870.08, + "probability": 0.9889 + }, + { + "start": 25870.66, + "end": 25872.34, + "probability": 0.7772 + }, + { + "start": 25873.98, + "end": 25875.42, + "probability": 0.9931 + }, + { + "start": 25875.52, + "end": 25876.15, + "probability": 0.8801 + }, + { + "start": 25876.52, + "end": 25880.72, + "probability": 0.9775 + }, + { + "start": 25881.0, + "end": 25885.0, + "probability": 0.9731 + }, + { + "start": 25885.0, + "end": 25890.68, + "probability": 0.967 + }, + { + "start": 25891.2, + "end": 25892.52, + "probability": 0.8539 + }, + { + "start": 25893.5, + "end": 25895.04, + "probability": 0.8275 + }, + { + "start": 25895.28, + "end": 25897.08, + "probability": 0.7092 + }, + { + "start": 25897.2, + "end": 25898.24, + "probability": 0.8216 + }, + { + "start": 25899.22, + "end": 25901.84, + "probability": 0.9814 + }, + { + "start": 25902.24, + "end": 25908.46, + "probability": 0.9904 + }, + { + "start": 25909.7, + "end": 25913.02, + "probability": 0.9597 + }, + { + "start": 25913.26, + "end": 25916.4, + "probability": 0.7985 + }, + { + "start": 25916.72, + "end": 25917.38, + "probability": 0.5713 + }, + { + "start": 25917.46, + "end": 25920.12, + "probability": 0.9542 + }, + { + "start": 25920.34, + "end": 25921.44, + "probability": 0.7521 + }, + { + "start": 25922.08, + "end": 25926.06, + "probability": 0.7691 + }, + { + "start": 25926.7, + "end": 25931.74, + "probability": 0.8061 + }, + { + "start": 25931.78, + "end": 25932.04, + "probability": 0.9365 + }, + { + "start": 25935.1, + "end": 25937.0, + "probability": 0.9545 + }, + { + "start": 25937.0, + "end": 25939.76, + "probability": 0.8023 + }, + { + "start": 25939.86, + "end": 25940.84, + "probability": 0.582 + }, + { + "start": 25941.1, + "end": 25942.2, + "probability": 0.5571 + }, + { + "start": 25942.26, + "end": 25943.44, + "probability": 0.9375 + }, + { + "start": 25943.66, + "end": 25944.62, + "probability": 0.8238 + }, + { + "start": 25944.72, + "end": 25949.72, + "probability": 0.9497 + }, + { + "start": 25951.48, + "end": 25953.14, + "probability": 0.7063 + }, + { + "start": 25953.44, + "end": 25954.04, + "probability": 0.6389 + }, + { + "start": 25954.16, + "end": 25958.3, + "probability": 0.6903 + }, + { + "start": 25958.74, + "end": 25959.76, + "probability": 0.5476 + }, + { + "start": 25960.44, + "end": 25963.08, + "probability": 0.9928 + }, + { + "start": 25963.78, + "end": 25966.46, + "probability": 0.8992 + }, + { + "start": 25966.6, + "end": 25970.78, + "probability": 0.8243 + }, + { + "start": 25970.92, + "end": 25975.38, + "probability": 0.9702 + }, + { + "start": 25977.71, + "end": 25981.62, + "probability": 0.7147 + }, + { + "start": 25982.42, + "end": 25983.58, + "probability": 0.9174 + }, + { + "start": 25983.6, + "end": 25986.84, + "probability": 0.9535 + }, + { + "start": 25986.84, + "end": 25990.68, + "probability": 0.9979 + }, + { + "start": 25991.38, + "end": 25996.58, + "probability": 0.9937 + }, + { + "start": 25997.76, + "end": 26001.4, + "probability": 0.9966 + }, + { + "start": 26001.54, + "end": 26002.68, + "probability": 0.8123 + }, + { + "start": 26003.12, + "end": 26005.48, + "probability": 0.7126 + }, + { + "start": 26006.48, + "end": 26007.02, + "probability": 0.2882 + }, + { + "start": 26007.44, + "end": 26008.84, + "probability": 0.195 + }, + { + "start": 26009.0, + "end": 26011.05, + "probability": 0.8538 + }, + { + "start": 26012.12, + "end": 26014.0, + "probability": 0.9692 + }, + { + "start": 26014.6, + "end": 26015.08, + "probability": 0.4231 + }, + { + "start": 26015.64, + "end": 26016.3, + "probability": 0.9379 + }, + { + "start": 26016.72, + "end": 26018.28, + "probability": 0.8869 + }, + { + "start": 26018.94, + "end": 26022.14, + "probability": 0.9478 + }, + { + "start": 26023.54, + "end": 26023.66, + "probability": 0.405 + }, + { + "start": 26024.24, + "end": 26026.92, + "probability": 0.8857 + }, + { + "start": 26027.68, + "end": 26034.26, + "probability": 0.9333 + }, + { + "start": 26034.4, + "end": 26039.6, + "probability": 0.9009 + }, + { + "start": 26040.44, + "end": 26042.72, + "probability": 0.2524 + }, + { + "start": 26042.9, + "end": 26043.64, + "probability": 0.184 + }, + { + "start": 26044.2, + "end": 26045.12, + "probability": 0.7422 + }, + { + "start": 26045.6, + "end": 26045.6, + "probability": 0.0628 + }, + { + "start": 26045.6, + "end": 26048.88, + "probability": 0.954 + }, + { + "start": 26049.52, + "end": 26051.6, + "probability": 0.9928 + }, + { + "start": 26052.0, + "end": 26057.36, + "probability": 0.9902 + }, + { + "start": 26058.06, + "end": 26059.74, + "probability": 0.9989 + }, + { + "start": 26059.86, + "end": 26063.44, + "probability": 0.9398 + }, + { + "start": 26063.58, + "end": 26065.42, + "probability": 0.8811 + }, + { + "start": 26066.44, + "end": 26069.6, + "probability": 0.9966 + }, + { + "start": 26069.66, + "end": 26073.28, + "probability": 0.9958 + }, + { + "start": 26073.28, + "end": 26077.7, + "probability": 0.9883 + }, + { + "start": 26077.78, + "end": 26078.9, + "probability": 0.5358 + }, + { + "start": 26079.28, + "end": 26080.1, + "probability": 0.9628 + }, + { + "start": 26080.66, + "end": 26083.56, + "probability": 0.9935 + }, + { + "start": 26083.9, + "end": 26088.8, + "probability": 0.9917 + }, + { + "start": 26089.36, + "end": 26092.42, + "probability": 0.9549 + }, + { + "start": 26092.94, + "end": 26096.76, + "probability": 0.9903 + }, + { + "start": 26096.88, + "end": 26097.36, + "probability": 0.8104 + }, + { + "start": 26097.52, + "end": 26098.24, + "probability": 0.7542 + }, + { + "start": 26098.26, + "end": 26099.74, + "probability": 0.7736 + }, + { + "start": 26100.16, + "end": 26103.77, + "probability": 0.9536 + }, + { + "start": 26104.58, + "end": 26106.04, + "probability": 0.23 + }, + { + "start": 26106.32, + "end": 26108.0, + "probability": 0.5199 + }, + { + "start": 26109.42, + "end": 26111.32, + "probability": 0.097 + }, + { + "start": 26111.46, + "end": 26111.53, + "probability": 0.0538 + }, + { + "start": 26112.38, + "end": 26112.96, + "probability": 0.1248 + }, + { + "start": 26113.24, + "end": 26117.3, + "probability": 0.0743 + }, + { + "start": 26117.38, + "end": 26117.7, + "probability": 0.4983 + }, + { + "start": 26117.92, + "end": 26126.32, + "probability": 0.4843 + }, + { + "start": 26126.98, + "end": 26128.36, + "probability": 0.2736 + }, + { + "start": 26128.68, + "end": 26129.58, + "probability": 0.9159 + }, + { + "start": 26129.72, + "end": 26131.58, + "probability": 0.9414 + }, + { + "start": 26132.14, + "end": 26133.76, + "probability": 0.9846 + }, + { + "start": 26133.84, + "end": 26135.76, + "probability": 0.9817 + }, + { + "start": 26136.7, + "end": 26142.86, + "probability": 0.9707 + }, + { + "start": 26143.44, + "end": 26144.1, + "probability": 0.0708 + }, + { + "start": 26149.22, + "end": 26157.52, + "probability": 0.7656 + }, + { + "start": 26158.38, + "end": 26160.6, + "probability": 0.6888 + }, + { + "start": 26161.74, + "end": 26166.54, + "probability": 0.9232 + }, + { + "start": 26166.7, + "end": 26167.46, + "probability": 0.569 + }, + { + "start": 26167.6, + "end": 26168.1, + "probability": 0.851 + }, + { + "start": 26168.18, + "end": 26168.82, + "probability": 0.9884 + }, + { + "start": 26168.92, + "end": 26169.64, + "probability": 0.9904 + }, + { + "start": 26170.0, + "end": 26170.76, + "probability": 0.911 + }, + { + "start": 26171.46, + "end": 26173.68, + "probability": 0.9979 + }, + { + "start": 26173.96, + "end": 26175.86, + "probability": 0.9971 + }, + { + "start": 26176.5, + "end": 26177.18, + "probability": 0.8686 + }, + { + "start": 26177.22, + "end": 26182.02, + "probability": 0.9852 + }, + { + "start": 26182.48, + "end": 26182.92, + "probability": 0.8619 + }, + { + "start": 26183.68, + "end": 26184.88, + "probability": 0.6713 + }, + { + "start": 26185.22, + "end": 26186.14, + "probability": 0.4915 + }, + { + "start": 26187.36, + "end": 26189.26, + "probability": 0.4916 + }, + { + "start": 26189.28, + "end": 26190.96, + "probability": 0.8741 + }, + { + "start": 26191.08, + "end": 26191.82, + "probability": 0.8978 + }, + { + "start": 26191.82, + "end": 26193.18, + "probability": 0.0686 + }, + { + "start": 26193.36, + "end": 26194.69, + "probability": 0.9469 + }, + { + "start": 26195.5, + "end": 26199.32, + "probability": 0.797 + }, + { + "start": 26200.24, + "end": 26201.84, + "probability": 0.288 + }, + { + "start": 26202.68, + "end": 26203.72, + "probability": 0.7512 + }, + { + "start": 26204.26, + "end": 26207.34, + "probability": 0.7855 + }, + { + "start": 26209.4, + "end": 26211.02, + "probability": 0.976 + }, + { + "start": 26211.2, + "end": 26213.88, + "probability": 0.8027 + }, + { + "start": 26213.92, + "end": 26214.54, + "probability": 0.6413 + }, + { + "start": 26219.26, + "end": 26220.68, + "probability": 0.9219 + }, + { + "start": 26220.76, + "end": 26221.88, + "probability": 0.9299 + }, + { + "start": 26221.96, + "end": 26223.64, + "probability": 0.905 + }, + { + "start": 26224.52, + "end": 26229.46, + "probability": 0.9658 + }, + { + "start": 26229.54, + "end": 26230.03, + "probability": 0.9683 + }, + { + "start": 26230.26, + "end": 26230.46, + "probability": 0.9318 + }, + { + "start": 26230.52, + "end": 26231.16, + "probability": 0.9754 + }, + { + "start": 26231.96, + "end": 26232.88, + "probability": 0.9958 + }, + { + "start": 26233.5, + "end": 26234.18, + "probability": 0.9916 + }, + { + "start": 26235.1, + "end": 26237.56, + "probability": 0.6517 + }, + { + "start": 26238.36, + "end": 26241.74, + "probability": 0.6368 + }, + { + "start": 26242.3, + "end": 26244.48, + "probability": 0.9467 + }, + { + "start": 26244.98, + "end": 26245.02, + "probability": 0.5451 + }, + { + "start": 26245.02, + "end": 26250.82, + "probability": 0.9723 + }, + { + "start": 26250.9, + "end": 26252.18, + "probability": 0.9888 + }, + { + "start": 26253.06, + "end": 26255.32, + "probability": 0.9844 + }, + { + "start": 26255.86, + "end": 26256.4, + "probability": 0.979 + }, + { + "start": 26256.44, + "end": 26257.48, + "probability": 0.7408 + }, + { + "start": 26257.86, + "end": 26260.08, + "probability": 0.7606 + }, + { + "start": 26261.46, + "end": 26263.56, + "probability": 0.9861 + }, + { + "start": 26264.3, + "end": 26265.04, + "probability": 0.9538 + }, + { + "start": 26267.04, + "end": 26268.18, + "probability": 0.1308 + }, + { + "start": 26268.8, + "end": 26270.2, + "probability": 0.6427 + }, + { + "start": 26270.72, + "end": 26272.42, + "probability": 0.9823 + }, + { + "start": 26272.5, + "end": 26275.92, + "probability": 0.9514 + }, + { + "start": 26276.54, + "end": 26278.38, + "probability": 0.8934 + }, + { + "start": 26278.86, + "end": 26279.38, + "probability": 0.8547 + }, + { + "start": 26279.54, + "end": 26282.42, + "probability": 0.9868 + }, + { + "start": 26282.54, + "end": 26283.46, + "probability": 0.9984 + }, + { + "start": 26283.72, + "end": 26286.18, + "probability": 0.9878 + }, + { + "start": 26286.68, + "end": 26289.7, + "probability": 0.9642 + }, + { + "start": 26289.76, + "end": 26291.7, + "probability": 0.9896 + }, + { + "start": 26291.88, + "end": 26292.16, + "probability": 0.7966 + }, + { + "start": 26292.8, + "end": 26296.32, + "probability": 0.9569 + }, + { + "start": 26296.32, + "end": 26300.46, + "probability": 0.9987 + }, + { + "start": 26300.68, + "end": 26301.0, + "probability": 0.521 + }, + { + "start": 26301.08, + "end": 26302.04, + "probability": 0.8707 + }, + { + "start": 26302.36, + "end": 26303.88, + "probability": 0.797 + }, + { + "start": 26304.1, + "end": 26305.04, + "probability": 0.9736 + }, + { + "start": 26305.18, + "end": 26307.46, + "probability": 0.9854 + }, + { + "start": 26307.6, + "end": 26308.58, + "probability": 0.689 + }, + { + "start": 26308.94, + "end": 26309.72, + "probability": 0.9653 + }, + { + "start": 26309.84, + "end": 26312.66, + "probability": 0.9948 + }, + { + "start": 26312.66, + "end": 26315.04, + "probability": 0.5988 + }, + { + "start": 26315.04, + "end": 26317.34, + "probability": 0.8783 + }, + { + "start": 26317.5, + "end": 26319.42, + "probability": 0.7168 + }, + { + "start": 26319.56, + "end": 26321.08, + "probability": 0.5148 + }, + { + "start": 26326.68, + "end": 26328.84, + "probability": 0.6947 + }, + { + "start": 26329.4, + "end": 26332.36, + "probability": 0.98 + }, + { + "start": 26334.96, + "end": 26336.34, + "probability": 0.5894 + }, + { + "start": 26337.04, + "end": 26339.7, + "probability": 0.9353 + }, + { + "start": 26340.34, + "end": 26346.14, + "probability": 0.9818 + }, + { + "start": 26346.68, + "end": 26347.99, + "probability": 0.938 + }, + { + "start": 26348.56, + "end": 26351.86, + "probability": 0.9946 + }, + { + "start": 26352.0, + "end": 26352.3, + "probability": 0.8095 + }, + { + "start": 26352.8, + "end": 26355.8, + "probability": 0.7623 + }, + { + "start": 26356.5, + "end": 26361.34, + "probability": 0.8796 + }, + { + "start": 26361.54, + "end": 26365.04, + "probability": 0.4641 + }, + { + "start": 26365.1, + "end": 26366.9, + "probability": 0.9891 + }, + { + "start": 26367.54, + "end": 26368.44, + "probability": 0.3521 + }, + { + "start": 26368.64, + "end": 26374.38, + "probability": 0.9042 + }, + { + "start": 26374.46, + "end": 26376.06, + "probability": 0.9968 + }, + { + "start": 26377.64, + "end": 26380.62, + "probability": 0.822 + }, + { + "start": 26381.26, + "end": 26384.54, + "probability": 0.8997 + }, + { + "start": 26384.9, + "end": 26386.24, + "probability": 0.6567 + }, + { + "start": 26386.58, + "end": 26387.84, + "probability": 0.9202 + }, + { + "start": 26388.22, + "end": 26389.04, + "probability": 0.9468 + }, + { + "start": 26389.26, + "end": 26390.38, + "probability": 0.9622 + }, + { + "start": 26390.54, + "end": 26395.36, + "probability": 0.9862 + }, + { + "start": 26395.84, + "end": 26395.9, + "probability": 0.4479 + }, + { + "start": 26396.18, + "end": 26396.66, + "probability": 0.8175 + }, + { + "start": 26396.78, + "end": 26401.96, + "probability": 0.9783 + }, + { + "start": 26402.36, + "end": 26407.32, + "probability": 0.9924 + }, + { + "start": 26407.68, + "end": 26409.54, + "probability": 0.8221 + }, + { + "start": 26409.58, + "end": 26410.7, + "probability": 0.9683 + }, + { + "start": 26411.68, + "end": 26413.36, + "probability": 0.8639 + }, + { + "start": 26413.58, + "end": 26417.02, + "probability": 0.4937 + }, + { + "start": 26418.26, + "end": 26420.96, + "probability": 0.9533 + }, + { + "start": 26421.64, + "end": 26423.26, + "probability": 0.8035 + }, + { + "start": 26427.16, + "end": 26429.88, + "probability": 0.2427 + }, + { + "start": 26431.78, + "end": 26438.06, + "probability": 0.1547 + }, + { + "start": 26438.9, + "end": 26441.06, + "probability": 0.5556 + }, + { + "start": 26442.16, + "end": 26445.98, + "probability": 0.761 + }, + { + "start": 26446.06, + "end": 26447.3, + "probability": 0.9635 + }, + { + "start": 26447.92, + "end": 26453.12, + "probability": 0.9963 + }, + { + "start": 26453.4, + "end": 26454.1, + "probability": 0.051 + }, + { + "start": 26454.62, + "end": 26454.62, + "probability": 0.2207 + }, + { + "start": 26455.3, + "end": 26456.0, + "probability": 0.3052 + }, + { + "start": 26457.08, + "end": 26458.46, + "probability": 0.014 + }, + { + "start": 26472.52, + "end": 26472.52, + "probability": 0.0798 + }, + { + "start": 26472.52, + "end": 26472.66, + "probability": 0.0521 + }, + { + "start": 26472.66, + "end": 26473.1, + "probability": 0.0326 + }, + { + "start": 26473.16, + "end": 26473.48, + "probability": 0.4726 + }, + { + "start": 26475.76, + "end": 26478.84, + "probability": 0.3659 + }, + { + "start": 26481.6, + "end": 26486.08, + "probability": 0.7424 + }, + { + "start": 26487.28, + "end": 26490.36, + "probability": 0.9841 + }, + { + "start": 26491.04, + "end": 26491.99, + "probability": 0.9844 + }, + { + "start": 26493.48, + "end": 26493.98, + "probability": 0.9549 + }, + { + "start": 26494.58, + "end": 26495.44, + "probability": 0.6816 + }, + { + "start": 26496.14, + "end": 26500.66, + "probability": 0.9751 + }, + { + "start": 26501.44, + "end": 26503.24, + "probability": 0.9587 + }, + { + "start": 26503.54, + "end": 26504.9, + "probability": 0.9548 + }, + { + "start": 26505.02, + "end": 26506.67, + "probability": 0.9964 + }, + { + "start": 26507.0, + "end": 26509.56, + "probability": 0.9883 + }, + { + "start": 26510.8, + "end": 26511.36, + "probability": 0.9355 + }, + { + "start": 26512.34, + "end": 26513.38, + "probability": 0.9022 + }, + { + "start": 26514.04, + "end": 26515.06, + "probability": 0.9365 + }, + { + "start": 26515.66, + "end": 26516.74, + "probability": 0.96 + }, + { + "start": 26517.36, + "end": 26518.08, + "probability": 0.8651 + }, + { + "start": 26518.66, + "end": 26523.6, + "probability": 0.7583 + }, + { + "start": 26524.06, + "end": 26524.6, + "probability": 0.7869 + }, + { + "start": 26526.02, + "end": 26529.86, + "probability": 0.7454 + }, + { + "start": 26529.9, + "end": 26531.12, + "probability": 0.7823 + }, + { + "start": 26531.22, + "end": 26532.14, + "probability": 0.9756 + }, + { + "start": 26532.48, + "end": 26534.08, + "probability": 0.8319 + }, + { + "start": 26535.36, + "end": 26538.72, + "probability": 0.9842 + }, + { + "start": 26540.1, + "end": 26544.88, + "probability": 0.9655 + }, + { + "start": 26545.54, + "end": 26547.74, + "probability": 0.8968 + }, + { + "start": 26548.04, + "end": 26548.96, + "probability": 0.8575 + }, + { + "start": 26549.0, + "end": 26549.94, + "probability": 0.7753 + }, + { + "start": 26550.06, + "end": 26551.54, + "probability": 0.1669 + }, + { + "start": 26552.66, + "end": 26554.98, + "probability": 0.9976 + }, + { + "start": 26555.44, + "end": 26556.44, + "probability": 0.8285 + }, + { + "start": 26556.94, + "end": 26558.48, + "probability": 0.9613 + }, + { + "start": 26559.28, + "end": 26561.2, + "probability": 0.6938 + }, + { + "start": 26562.08, + "end": 26564.64, + "probability": 0.9889 + }, + { + "start": 26564.8, + "end": 26566.56, + "probability": 0.9987 + }, + { + "start": 26567.84, + "end": 26570.96, + "probability": 0.9288 + }, + { + "start": 26571.02, + "end": 26571.44, + "probability": 0.904 + }, + { + "start": 26571.54, + "end": 26572.12, + "probability": 0.8424 + }, + { + "start": 26572.44, + "end": 26573.42, + "probability": 0.7846 + }, + { + "start": 26573.9, + "end": 26575.78, + "probability": 0.9165 + }, + { + "start": 26575.98, + "end": 26579.94, + "probability": 0.9883 + }, + { + "start": 26580.36, + "end": 26581.5, + "probability": 0.9245 + }, + { + "start": 26581.66, + "end": 26582.12, + "probability": 0.3538 + }, + { + "start": 26582.22, + "end": 26582.62, + "probability": 0.7725 + }, + { + "start": 26582.68, + "end": 26583.16, + "probability": 0.8577 + }, + { + "start": 26583.46, + "end": 26584.96, + "probability": 0.8407 + }, + { + "start": 26585.7, + "end": 26588.32, + "probability": 0.9961 + }, + { + "start": 26590.02, + "end": 26594.34, + "probability": 0.9774 + }, + { + "start": 26596.22, + "end": 26601.62, + "probability": 0.9941 + }, + { + "start": 26601.76, + "end": 26603.08, + "probability": 0.3931 + }, + { + "start": 26603.32, + "end": 26605.3, + "probability": 0.9736 + }, + { + "start": 26606.4, + "end": 26608.38, + "probability": 0.9844 + }, + { + "start": 26608.96, + "end": 26610.76, + "probability": 0.9814 + }, + { + "start": 26611.22, + "end": 26611.86, + "probability": 0.8528 + }, + { + "start": 26612.1, + "end": 26614.54, + "probability": 0.9877 + }, + { + "start": 26615.04, + "end": 26621.04, + "probability": 0.999 + }, + { + "start": 26622.16, + "end": 26624.52, + "probability": 0.9896 + }, + { + "start": 26624.92, + "end": 26627.94, + "probability": 0.9672 + }, + { + "start": 26628.08, + "end": 26630.1, + "probability": 0.9615 + }, + { + "start": 26630.46, + "end": 26631.28, + "probability": 0.8578 + }, + { + "start": 26631.44, + "end": 26632.14, + "probability": 0.6924 + }, + { + "start": 26632.22, + "end": 26633.14, + "probability": 0.8273 + }, + { + "start": 26633.24, + "end": 26635.02, + "probability": 0.7566 + }, + { + "start": 26635.58, + "end": 26639.5, + "probability": 0.8811 + }, + { + "start": 26639.5, + "end": 26640.08, + "probability": 0.9412 + }, + { + "start": 26640.14, + "end": 26640.48, + "probability": 0.8137 + }, + { + "start": 26640.54, + "end": 26641.1, + "probability": 0.5873 + }, + { + "start": 26641.18, + "end": 26642.22, + "probability": 0.9634 + }, + { + "start": 26642.62, + "end": 26644.62, + "probability": 0.9648 + }, + { + "start": 26644.94, + "end": 26648.52, + "probability": 0.9956 + }, + { + "start": 26648.86, + "end": 26650.14, + "probability": 0.8829 + }, + { + "start": 26650.46, + "end": 26653.14, + "probability": 0.9535 + }, + { + "start": 26653.54, + "end": 26653.82, + "probability": 0.8891 + }, + { + "start": 26655.42, + "end": 26657.84, + "probability": 0.9711 + }, + { + "start": 26658.2, + "end": 26661.96, + "probability": 0.9251 + }, + { + "start": 26662.94, + "end": 26666.2, + "probability": 0.8506 + }, + { + "start": 26668.3, + "end": 26671.0, + "probability": 0.8221 + }, + { + "start": 26679.2, + "end": 26680.38, + "probability": 0.6911 + }, + { + "start": 26680.92, + "end": 26682.82, + "probability": 0.7577 + }, + { + "start": 26684.86, + "end": 26685.4, + "probability": 0.6708 + }, + { + "start": 26686.36, + "end": 26689.04, + "probability": 0.8671 + }, + { + "start": 26690.46, + "end": 26691.96, + "probability": 0.8214 + }, + { + "start": 26692.84, + "end": 26696.56, + "probability": 0.8488 + }, + { + "start": 26701.36, + "end": 26703.9, + "probability": 0.8721 + }, + { + "start": 26705.96, + "end": 26711.16, + "probability": 0.9922 + }, + { + "start": 26712.72, + "end": 26714.73, + "probability": 0.7705 + }, + { + "start": 26716.22, + "end": 26717.9, + "probability": 0.9902 + }, + { + "start": 26718.48, + "end": 26719.58, + "probability": 0.7506 + }, + { + "start": 26721.72, + "end": 26722.34, + "probability": 0.9829 + }, + { + "start": 26724.98, + "end": 26726.48, + "probability": 0.7791 + }, + { + "start": 26727.78, + "end": 26729.92, + "probability": 0.8267 + }, + { + "start": 26731.36, + "end": 26732.7, + "probability": 0.9641 + }, + { + "start": 26734.56, + "end": 26735.74, + "probability": 0.9543 + }, + { + "start": 26737.94, + "end": 26738.6, + "probability": 0.9875 + }, + { + "start": 26740.78, + "end": 26741.74, + "probability": 0.9664 + }, + { + "start": 26743.8, + "end": 26744.3, + "probability": 0.0332 + }, + { + "start": 26746.16, + "end": 26747.94, + "probability": 0.3485 + }, + { + "start": 26748.0, + "end": 26748.06, + "probability": 0.1064 + }, + { + "start": 26748.06, + "end": 26749.92, + "probability": 0.8479 + }, + { + "start": 26750.38, + "end": 26750.7, + "probability": 0.5079 + }, + { + "start": 26750.78, + "end": 26751.46, + "probability": 0.9532 + }, + { + "start": 26751.98, + "end": 26753.28, + "probability": 0.8854 + }, + { + "start": 26754.24, + "end": 26755.52, + "probability": 0.9915 + }, + { + "start": 26759.3, + "end": 26760.04, + "probability": 0.6445 + }, + { + "start": 26764.72, + "end": 26766.22, + "probability": 0.7334 + }, + { + "start": 26767.0, + "end": 26770.06, + "probability": 0.9658 + }, + { + "start": 26771.54, + "end": 26774.44, + "probability": 0.9984 + }, + { + "start": 26775.18, + "end": 26776.3, + "probability": 0.9181 + }, + { + "start": 26777.48, + "end": 26779.04, + "probability": 0.969 + }, + { + "start": 26781.26, + "end": 26782.58, + "probability": 0.8605 + }, + { + "start": 26783.52, + "end": 26784.0, + "probability": 0.7999 + }, + { + "start": 26785.02, + "end": 26786.68, + "probability": 0.798 + }, + { + "start": 26787.32, + "end": 26788.02, + "probability": 0.9109 + }, + { + "start": 26789.48, + "end": 26792.36, + "probability": 0.8871 + }, + { + "start": 26793.12, + "end": 26793.49, + "probability": 0.9966 + }, + { + "start": 26795.54, + "end": 26801.08, + "probability": 0.9512 + }, + { + "start": 26801.58, + "end": 26804.18, + "probability": 0.8718 + }, + { + "start": 26805.6, + "end": 26805.86, + "probability": 0.9238 + }, + { + "start": 26806.84, + "end": 26809.34, + "probability": 0.9819 + }, + { + "start": 26809.4, + "end": 26810.76, + "probability": 0.9925 + }, + { + "start": 26811.94, + "end": 26812.34, + "probability": 0.6981 + }, + { + "start": 26812.38, + "end": 26816.52, + "probability": 0.9713 + }, + { + "start": 26819.54, + "end": 26820.52, + "probability": 0.7829 + }, + { + "start": 26821.36, + "end": 26822.28, + "probability": 0.8652 + }, + { + "start": 26823.8, + "end": 26825.36, + "probability": 0.6691 + }, + { + "start": 26825.9, + "end": 26826.68, + "probability": 0.7549 + }, + { + "start": 26826.72, + "end": 26827.64, + "probability": 0.9357 + }, + { + "start": 26829.3, + "end": 26830.24, + "probability": 0.9446 + }, + { + "start": 26830.92, + "end": 26831.35, + "probability": 0.6342 + }, + { + "start": 26832.2, + "end": 26834.12, + "probability": 0.97 + }, + { + "start": 26835.64, + "end": 26836.04, + "probability": 0.9485 + }, + { + "start": 26837.84, + "end": 26840.78, + "probability": 0.958 + }, + { + "start": 26842.16, + "end": 26842.82, + "probability": 0.854 + }, + { + "start": 26843.98, + "end": 26846.84, + "probability": 0.6706 + }, + { + "start": 26847.44, + "end": 26848.38, + "probability": 0.9879 + }, + { + "start": 26849.02, + "end": 26850.84, + "probability": 0.769 + }, + { + "start": 26852.35, + "end": 26855.78, + "probability": 0.953 + }, + { + "start": 26856.12, + "end": 26858.06, + "probability": 0.8343 + }, + { + "start": 26858.46, + "end": 26858.83, + "probability": 0.9041 + }, + { + "start": 26859.08, + "end": 26861.48, + "probability": 0.9026 + }, + { + "start": 26861.48, + "end": 26864.08, + "probability": 0.9972 + }, + { + "start": 26864.16, + "end": 26864.82, + "probability": 0.1271 + }, + { + "start": 26866.22, + "end": 26868.08, + "probability": 0.5663 + }, + { + "start": 26868.8, + "end": 26869.3, + "probability": 0.2895 + }, + { + "start": 26870.18, + "end": 26874.3, + "probability": 0.9833 + }, + { + "start": 26874.62, + "end": 26876.1, + "probability": 0.8557 + }, + { + "start": 26878.6, + "end": 26880.64, + "probability": 0.9618 + }, + { + "start": 26880.78, + "end": 26882.16, + "probability": 0.7179 + }, + { + "start": 26882.26, + "end": 26882.88, + "probability": 0.8 + }, + { + "start": 26882.92, + "end": 26883.44, + "probability": 0.5795 + }, + { + "start": 26883.5, + "end": 26885.04, + "probability": 0.7223 + }, + { + "start": 26888.12, + "end": 26890.48, + "probability": 0.8262 + }, + { + "start": 26891.36, + "end": 26893.56, + "probability": 0.6374 + }, + { + "start": 26894.34, + "end": 26894.92, + "probability": 0.5499 + }, + { + "start": 26896.84, + "end": 26898.48, + "probability": 0.8267 + }, + { + "start": 26900.52, + "end": 26903.28, + "probability": 0.9924 + }, + { + "start": 26903.86, + "end": 26906.5, + "probability": 0.9462 + }, + { + "start": 26908.26, + "end": 26909.84, + "probability": 0.776 + }, + { + "start": 26910.82, + "end": 26915.24, + "probability": 0.6372 + }, + { + "start": 26915.94, + "end": 26920.6, + "probability": 0.7234 + }, + { + "start": 26922.4, + "end": 26927.54, + "probability": 0.8433 + }, + { + "start": 26928.68, + "end": 26931.08, + "probability": 0.6839 + }, + { + "start": 26932.62, + "end": 26936.82, + "probability": 0.9574 + }, + { + "start": 26938.04, + "end": 26940.28, + "probability": 0.7874 + }, + { + "start": 26941.28, + "end": 26942.58, + "probability": 0.8931 + }, + { + "start": 26943.28, + "end": 26944.58, + "probability": 0.709 + }, + { + "start": 26945.76, + "end": 26946.74, + "probability": 0.887 + }, + { + "start": 26948.6, + "end": 26954.08, + "probability": 0.9928 + }, + { + "start": 26955.16, + "end": 26958.16, + "probability": 0.836 + }, + { + "start": 26960.29, + "end": 26966.36, + "probability": 0.8176 + }, + { + "start": 26966.58, + "end": 26967.98, + "probability": 0.8769 + }, + { + "start": 26968.9, + "end": 26970.6, + "probability": 0.988 + }, + { + "start": 26972.2, + "end": 26973.8, + "probability": 0.6196 + }, + { + "start": 26974.76, + "end": 26979.8, + "probability": 0.8831 + }, + { + "start": 26981.04, + "end": 26986.78, + "probability": 0.5772 + }, + { + "start": 26987.74, + "end": 26989.24, + "probability": 0.6566 + }, + { + "start": 26990.36, + "end": 26992.28, + "probability": 0.9394 + }, + { + "start": 26992.7, + "end": 26993.62, + "probability": 0.6668 + }, + { + "start": 26993.7, + "end": 26994.38, + "probability": 0.6583 + }, + { + "start": 26994.7, + "end": 26996.26, + "probability": 0.9236 + }, + { + "start": 26998.16, + "end": 27003.14, + "probability": 0.9939 + }, + { + "start": 27003.14, + "end": 27009.78, + "probability": 0.9413 + }, + { + "start": 27011.94, + "end": 27012.4, + "probability": 0.3885 + }, + { + "start": 27013.2, + "end": 27014.42, + "probability": 0.7488 + }, + { + "start": 27015.88, + "end": 27019.4, + "probability": 0.6594 + }, + { + "start": 27021.12, + "end": 27021.56, + "probability": 0.7933 + }, + { + "start": 27021.62, + "end": 27024.76, + "probability": 0.9565 + }, + { + "start": 27024.84, + "end": 27025.38, + "probability": 0.7202 + }, + { + "start": 27025.48, + "end": 27026.28, + "probability": 0.7012 + }, + { + "start": 27026.8, + "end": 27027.82, + "probability": 0.8862 + }, + { + "start": 27028.86, + "end": 27034.1, + "probability": 0.5653 + }, + { + "start": 27035.58, + "end": 27035.58, + "probability": 0.0442 + }, + { + "start": 27035.58, + "end": 27037.6, + "probability": 0.4591 + }, + { + "start": 27038.34, + "end": 27039.54, + "probability": 0.8865 + }, + { + "start": 27040.9, + "end": 27044.42, + "probability": 0.683 + }, + { + "start": 27045.14, + "end": 27046.84, + "probability": 0.6514 + }, + { + "start": 27047.88, + "end": 27048.6, + "probability": 0.7189 + }, + { + "start": 27049.18, + "end": 27050.38, + "probability": 0.7655 + }, + { + "start": 27051.83, + "end": 27052.32, + "probability": 0.0489 + }, + { + "start": 27052.4, + "end": 27053.23, + "probability": 0.6133 + }, + { + "start": 27053.32, + "end": 27055.58, + "probability": 0.6516 + }, + { + "start": 27056.18, + "end": 27057.22, + "probability": 0.6551 + }, + { + "start": 27058.72, + "end": 27065.62, + "probability": 0.7593 + }, + { + "start": 27066.1, + "end": 27067.48, + "probability": 0.9693 + }, + { + "start": 27068.34, + "end": 27075.14, + "probability": 0.9265 + }, + { + "start": 27076.24, + "end": 27077.78, + "probability": 0.5647 + }, + { + "start": 27078.76, + "end": 27081.62, + "probability": 0.7281 + }, + { + "start": 27082.16, + "end": 27087.24, + "probability": 0.9263 + }, + { + "start": 27088.3, + "end": 27089.62, + "probability": 0.8428 + }, + { + "start": 27089.92, + "end": 27093.66, + "probability": 0.8043 + }, + { + "start": 27093.88, + "end": 27095.26, + "probability": 0.5361 + }, + { + "start": 27096.08, + "end": 27098.74, + "probability": 0.9127 + }, + { + "start": 27099.18, + "end": 27100.04, + "probability": 0.8071 + }, + { + "start": 27100.3, + "end": 27101.68, + "probability": 0.3884 + }, + { + "start": 27101.82, + "end": 27103.36, + "probability": 0.9233 + }, + { + "start": 27103.8, + "end": 27104.3, + "probability": 0.7746 + }, + { + "start": 27105.22, + "end": 27106.58, + "probability": 0.8442 + }, + { + "start": 27107.68, + "end": 27111.4, + "probability": 0.8446 + }, + { + "start": 27112.5, + "end": 27114.4, + "probability": 0.3813 + }, + { + "start": 27114.46, + "end": 27116.18, + "probability": 0.9047 + }, + { + "start": 27116.56, + "end": 27118.52, + "probability": 0.833 + }, + { + "start": 27119.22, + "end": 27125.54, + "probability": 0.7316 + }, + { + "start": 27125.72, + "end": 27128.8, + "probability": 0.2427 + }, + { + "start": 27129.66, + "end": 27134.62, + "probability": 0.8549 + }, + { + "start": 27134.92, + "end": 27135.84, + "probability": 0.6631 + }, + { + "start": 27136.1, + "end": 27138.34, + "probability": 0.8714 + }, + { + "start": 27138.72, + "end": 27139.78, + "probability": 0.3659 + }, + { + "start": 27140.98, + "end": 27143.86, + "probability": 0.697 + }, + { + "start": 27144.06, + "end": 27154.78, + "probability": 0.902 + }, + { + "start": 27155.32, + "end": 27156.52, + "probability": 0.8625 + }, + { + "start": 27157.42, + "end": 27162.3, + "probability": 0.9608 + }, + { + "start": 27162.64, + "end": 27164.2, + "probability": 0.6852 + }, + { + "start": 27164.8, + "end": 27165.43, + "probability": 0.7824 + }, + { + "start": 27166.4, + "end": 27168.08, + "probability": 0.9509 + }, + { + "start": 27168.64, + "end": 27170.0, + "probability": 0.8696 + }, + { + "start": 27170.68, + "end": 27172.38, + "probability": 0.9156 + }, + { + "start": 27172.92, + "end": 27177.56, + "probability": 0.6035 + }, + { + "start": 27178.36, + "end": 27178.82, + "probability": 0.9692 + }, + { + "start": 27180.06, + "end": 27182.22, + "probability": 0.6553 + }, + { + "start": 27182.38, + "end": 27183.6, + "probability": 0.7107 + }, + { + "start": 27183.7, + "end": 27184.44, + "probability": 0.5716 + }, + { + "start": 27184.86, + "end": 27185.48, + "probability": 0.614 + }, + { + "start": 27185.52, + "end": 27187.02, + "probability": 0.9647 + }, + { + "start": 27188.8, + "end": 27190.62, + "probability": 0.8533 + }, + { + "start": 27194.08, + "end": 27195.18, + "probability": 0.6717 + }, + { + "start": 27195.48, + "end": 27196.24, + "probability": 0.8199 + }, + { + "start": 27196.42, + "end": 27197.07, + "probability": 0.9539 + }, + { + "start": 27197.7, + "end": 27197.9, + "probability": 0.4348 + }, + { + "start": 27198.5, + "end": 27198.86, + "probability": 0.861 + }, + { + "start": 27199.48, + "end": 27201.18, + "probability": 0.824 + }, + { + "start": 27203.25, + "end": 27214.0, + "probability": 0.9878 + }, + { + "start": 27215.44, + "end": 27215.9, + "probability": 0.7347 + }, + { + "start": 27218.51, + "end": 27221.16, + "probability": 0.9958 + }, + { + "start": 27222.22, + "end": 27224.38, + "probability": 0.981 + }, + { + "start": 27226.2, + "end": 27227.4, + "probability": 0.9193 + }, + { + "start": 27228.88, + "end": 27232.1, + "probability": 0.9733 + }, + { + "start": 27232.82, + "end": 27236.64, + "probability": 0.9946 + }, + { + "start": 27237.36, + "end": 27245.04, + "probability": 0.7125 + }, + { + "start": 27245.58, + "end": 27252.1, + "probability": 0.9957 + }, + { + "start": 27254.14, + "end": 27256.62, + "probability": 0.9781 + }, + { + "start": 27257.8, + "end": 27260.98, + "probability": 0.9938 + }, + { + "start": 27261.7, + "end": 27264.88, + "probability": 0.9763 + }, + { + "start": 27265.54, + "end": 27267.78, + "probability": 0.9479 + }, + { + "start": 27268.66, + "end": 27270.91, + "probability": 0.9863 + }, + { + "start": 27271.72, + "end": 27274.0, + "probability": 0.9497 + }, + { + "start": 27275.22, + "end": 27276.44, + "probability": 0.957 + }, + { + "start": 27276.5, + "end": 27277.54, + "probability": 0.6651 + }, + { + "start": 27277.62, + "end": 27281.56, + "probability": 0.9645 + }, + { + "start": 27282.48, + "end": 27286.24, + "probability": 0.874 + }, + { + "start": 27286.24, + "end": 27289.7, + "probability": 0.9989 + }, + { + "start": 27290.12, + "end": 27291.38, + "probability": 0.8971 + }, + { + "start": 27292.5, + "end": 27293.94, + "probability": 0.9528 + }, + { + "start": 27294.18, + "end": 27297.24, + "probability": 0.8711 + }, + { + "start": 27297.38, + "end": 27299.22, + "probability": 0.9966 + }, + { + "start": 27299.94, + "end": 27304.28, + "probability": 0.8972 + }, + { + "start": 27305.14, + "end": 27307.28, + "probability": 0.8223 + }, + { + "start": 27308.2, + "end": 27311.31, + "probability": 0.8944 + }, + { + "start": 27311.86, + "end": 27312.98, + "probability": 0.3646 + }, + { + "start": 27313.46, + "end": 27318.34, + "probability": 0.979 + }, + { + "start": 27319.78, + "end": 27324.76, + "probability": 0.9781 + }, + { + "start": 27326.06, + "end": 27329.22, + "probability": 0.9151 + }, + { + "start": 27329.34, + "end": 27332.04, + "probability": 0.8389 + }, + { + "start": 27332.88, + "end": 27339.12, + "probability": 0.717 + }, + { + "start": 27341.38, + "end": 27347.62, + "probability": 0.9536 + }, + { + "start": 27348.26, + "end": 27352.5, + "probability": 0.816 + }, + { + "start": 27352.98, + "end": 27355.33, + "probability": 0.878 + }, + { + "start": 27356.22, + "end": 27358.02, + "probability": 0.6595 + }, + { + "start": 27359.52, + "end": 27362.08, + "probability": 0.8526 + }, + { + "start": 27362.32, + "end": 27366.76, + "probability": 0.9748 + }, + { + "start": 27367.22, + "end": 27373.02, + "probability": 0.959 + }, + { + "start": 27373.92, + "end": 27375.76, + "probability": 0.9968 + }, + { + "start": 27375.9, + "end": 27377.21, + "probability": 0.8897 + }, + { + "start": 27378.28, + "end": 27380.6, + "probability": 0.9702 + }, + { + "start": 27381.6, + "end": 27383.96, + "probability": 0.9976 + }, + { + "start": 27383.96, + "end": 27386.86, + "probability": 0.9977 + }, + { + "start": 27387.28, + "end": 27392.6, + "probability": 0.995 + }, + { + "start": 27393.06, + "end": 27395.16, + "probability": 0.9708 + }, + { + "start": 27396.04, + "end": 27398.38, + "probability": 0.7084 + }, + { + "start": 27398.48, + "end": 27398.92, + "probability": 0.7881 + }, + { + "start": 27399.28, + "end": 27400.3, + "probability": 0.7357 + }, + { + "start": 27400.48, + "end": 27401.72, + "probability": 0.8654 + }, + { + "start": 27402.04, + "end": 27403.64, + "probability": 0.8735 + }, + { + "start": 27404.78, + "end": 27411.76, + "probability": 0.9604 + }, + { + "start": 27412.72, + "end": 27416.0, + "probability": 0.4712 + }, + { + "start": 27416.0, + "end": 27417.38, + "probability": 0.7415 + }, + { + "start": 27417.52, + "end": 27418.24, + "probability": 0.5413 + }, + { + "start": 27419.26, + "end": 27422.3, + "probability": 0.9561 + }, + { + "start": 27422.54, + "end": 27424.68, + "probability": 0.9692 + }, + { + "start": 27425.04, + "end": 27426.02, + "probability": 0.7246 + }, + { + "start": 27426.3, + "end": 27427.86, + "probability": 0.5781 + }, + { + "start": 27427.9, + "end": 27429.78, + "probability": 0.7529 + }, + { + "start": 27429.88, + "end": 27432.14, + "probability": 0.6655 + }, + { + "start": 27432.84, + "end": 27433.62, + "probability": 0.554 + }, + { + "start": 27433.8, + "end": 27437.96, + "probability": 0.8117 + }, + { + "start": 27442.32, + "end": 27444.92, + "probability": 0.7928 + }, + { + "start": 27446.48, + "end": 27447.44, + "probability": 0.871 + }, + { + "start": 27449.2, + "end": 27451.06, + "probability": 0.4875 + }, + { + "start": 27452.28, + "end": 27454.38, + "probability": 0.6821 + }, + { + "start": 27455.74, + "end": 27459.18, + "probability": 0.9906 + }, + { + "start": 27460.16, + "end": 27463.94, + "probability": 0.9944 + }, + { + "start": 27465.36, + "end": 27465.89, + "probability": 0.8062 + }, + { + "start": 27467.52, + "end": 27472.26, + "probability": 0.7932 + }, + { + "start": 27472.98, + "end": 27475.42, + "probability": 0.9858 + }, + { + "start": 27477.66, + "end": 27478.46, + "probability": 0.9635 + }, + { + "start": 27479.38, + "end": 27482.88, + "probability": 0.9584 + }, + { + "start": 27483.44, + "end": 27486.94, + "probability": 0.9895 + }, + { + "start": 27487.72, + "end": 27488.82, + "probability": 0.8691 + }, + { + "start": 27489.94, + "end": 27491.72, + "probability": 0.9956 + }, + { + "start": 27492.58, + "end": 27493.94, + "probability": 0.9917 + }, + { + "start": 27494.66, + "end": 27498.16, + "probability": 0.6267 + }, + { + "start": 27498.48, + "end": 27500.4, + "probability": 0.8474 + }, + { + "start": 27500.46, + "end": 27501.22, + "probability": 0.666 + }, + { + "start": 27502.04, + "end": 27502.75, + "probability": 0.9905 + }, + { + "start": 27503.2, + "end": 27505.4, + "probability": 0.9937 + }, + { + "start": 27506.76, + "end": 27509.2, + "probability": 0.9788 + }, + { + "start": 27509.98, + "end": 27511.18, + "probability": 0.9883 + }, + { + "start": 27511.74, + "end": 27513.32, + "probability": 0.7098 + }, + { + "start": 27514.08, + "end": 27515.28, + "probability": 0.9321 + }, + { + "start": 27516.82, + "end": 27519.18, + "probability": 0.9867 + }, + { + "start": 27519.36, + "end": 27520.72, + "probability": 0.6953 + }, + { + "start": 27520.86, + "end": 27522.22, + "probability": 0.9613 + }, + { + "start": 27522.76, + "end": 27523.52, + "probability": 0.819 + }, + { + "start": 27525.34, + "end": 27526.86, + "probability": 0.9362 + }, + { + "start": 27527.38, + "end": 27528.16, + "probability": 0.9506 + }, + { + "start": 27528.78, + "end": 27529.72, + "probability": 0.8317 + }, + { + "start": 27529.76, + "end": 27530.66, + "probability": 0.6329 + }, + { + "start": 27530.94, + "end": 27533.84, + "probability": 0.9641 + }, + { + "start": 27533.96, + "end": 27536.04, + "probability": 0.7448 + }, + { + "start": 27536.14, + "end": 27540.26, + "probability": 0.8253 + }, + { + "start": 27540.6, + "end": 27542.42, + "probability": 0.9361 + }, + { + "start": 27542.48, + "end": 27543.64, + "probability": 0.9392 + }, + { + "start": 27545.04, + "end": 27548.16, + "probability": 0.8579 + }, + { + "start": 27548.3, + "end": 27549.7, + "probability": 0.592 + }, + { + "start": 27550.62, + "end": 27552.26, + "probability": 0.2377 + }, + { + "start": 27552.82, + "end": 27554.14, + "probability": 0.6385 + }, + { + "start": 27554.54, + "end": 27555.22, + "probability": 0.9292 + }, + { + "start": 27555.4, + "end": 27556.86, + "probability": 0.8644 + }, + { + "start": 27557.02, + "end": 27558.14, + "probability": 0.505 + }, + { + "start": 27558.38, + "end": 27559.88, + "probability": 0.9753 + }, + { + "start": 27560.38, + "end": 27561.88, + "probability": 0.8719 + }, + { + "start": 27562.12, + "end": 27568.02, + "probability": 0.7267 + }, + { + "start": 27568.62, + "end": 27572.72, + "probability": 0.7957 + }, + { + "start": 27574.3, + "end": 27576.78, + "probability": 0.8941 + }, + { + "start": 27577.4, + "end": 27578.38, + "probability": 0.623 + }, + { + "start": 27578.82, + "end": 27580.74, + "probability": 0.8865 + }, + { + "start": 27580.84, + "end": 27583.02, + "probability": 0.646 + }, + { + "start": 27583.08, + "end": 27583.98, + "probability": 0.9927 + }, + { + "start": 27584.48, + "end": 27586.76, + "probability": 0.6233 + }, + { + "start": 27586.8, + "end": 27587.78, + "probability": 0.9723 + }, + { + "start": 27588.1, + "end": 27591.3, + "probability": 0.9598 + }, + { + "start": 27591.76, + "end": 27594.82, + "probability": 0.9407 + }, + { + "start": 27594.9, + "end": 27596.08, + "probability": 0.769 + }, + { + "start": 27597.06, + "end": 27597.06, + "probability": 0.0327 + }, + { + "start": 27598.02, + "end": 27602.96, + "probability": 0.4993 + }, + { + "start": 27603.08, + "end": 27604.92, + "probability": 0.3064 + }, + { + "start": 27605.38, + "end": 27611.14, + "probability": 0.6539 + }, + { + "start": 27611.28, + "end": 27612.18, + "probability": 0.6143 + }, + { + "start": 27613.56, + "end": 27614.72, + "probability": 0.4209 + }, + { + "start": 27615.84, + "end": 27618.36, + "probability": 0.76 + }, + { + "start": 27618.4, + "end": 27619.1, + "probability": 0.8093 + }, + { + "start": 27619.18, + "end": 27620.82, + "probability": 0.8691 + }, + { + "start": 27620.82, + "end": 27622.16, + "probability": 0.6113 + }, + { + "start": 27622.6, + "end": 27626.98, + "probability": 0.9307 + }, + { + "start": 27627.78, + "end": 27628.54, + "probability": 0.7369 + }, + { + "start": 27628.64, + "end": 27629.7, + "probability": 0.822 + }, + { + "start": 27630.34, + "end": 27634.66, + "probability": 0.9601 + }, + { + "start": 27634.92, + "end": 27636.58, + "probability": 0.9758 + }, + { + "start": 27636.64, + "end": 27637.22, + "probability": 0.3166 + }, + { + "start": 27637.78, + "end": 27638.9, + "probability": 0.136 + }, + { + "start": 27638.9, + "end": 27639.8, + "probability": 0.5294 + }, + { + "start": 27640.06, + "end": 27645.76, + "probability": 0.6181 + }, + { + "start": 27645.82, + "end": 27647.94, + "probability": 0.9697 + }, + { + "start": 27648.36, + "end": 27650.58, + "probability": 0.5372 + }, + { + "start": 27650.9, + "end": 27652.22, + "probability": 0.73 + }, + { + "start": 27652.54, + "end": 27653.54, + "probability": 0.4954 + }, + { + "start": 27653.88, + "end": 27655.94, + "probability": 0.9761 + }, + { + "start": 27656.08, + "end": 27656.61, + "probability": 0.3992 + }, + { + "start": 27656.82, + "end": 27657.92, + "probability": 0.3969 + }, + { + "start": 27658.08, + "end": 27658.24, + "probability": 0.6885 + }, + { + "start": 27658.26, + "end": 27658.6, + "probability": 0.8218 + }, + { + "start": 27658.64, + "end": 27659.1, + "probability": 0.4221 + }, + { + "start": 27659.32, + "end": 27660.82, + "probability": 0.8071 + }, + { + "start": 27661.14, + "end": 27662.58, + "probability": 0.895 + }, + { + "start": 27663.3, + "end": 27666.64, + "probability": 0.974 + }, + { + "start": 27666.78, + "end": 27667.69, + "probability": 0.5221 + }, + { + "start": 27668.12, + "end": 27669.06, + "probability": 0.7738 + }, + { + "start": 27669.18, + "end": 27669.72, + "probability": 0.4097 + }, + { + "start": 27669.92, + "end": 27670.88, + "probability": 0.9026 + }, + { + "start": 27671.0, + "end": 27671.86, + "probability": 0.769 + }, + { + "start": 27672.02, + "end": 27674.02, + "probability": 0.929 + }, + { + "start": 27674.42, + "end": 27674.92, + "probability": 0.7365 + }, + { + "start": 27675.1, + "end": 27677.2, + "probability": 0.8176 + }, + { + "start": 27677.46, + "end": 27678.84, + "probability": 0.6648 + }, + { + "start": 27678.86, + "end": 27680.31, + "probability": 0.3462 + }, + { + "start": 27680.78, + "end": 27681.8, + "probability": 0.5342 + }, + { + "start": 27682.06, + "end": 27682.52, + "probability": 0.5999 + }, + { + "start": 27682.58, + "end": 27682.95, + "probability": 0.7268 + }, + { + "start": 27683.72, + "end": 27684.58, + "probability": 0.521 + }, + { + "start": 27684.88, + "end": 27686.68, + "probability": 0.4684 + }, + { + "start": 27687.74, + "end": 27688.54, + "probability": 0.8977 + }, + { + "start": 27688.68, + "end": 27690.82, + "probability": 0.8549 + }, + { + "start": 27691.96, + "end": 27692.6, + "probability": 0.6108 + }, + { + "start": 27692.64, + "end": 27693.14, + "probability": 0.6614 + }, + { + "start": 27693.7, + "end": 27696.02, + "probability": 0.8511 + }, + { + "start": 27696.06, + "end": 27697.18, + "probability": 0.706 + }, + { + "start": 27697.28, + "end": 27701.72, + "probability": 0.8423 + }, + { + "start": 27701.72, + "end": 27703.7, + "probability": 0.927 + }, + { + "start": 27703.82, + "end": 27704.46, + "probability": 0.7093 + }, + { + "start": 27704.98, + "end": 27707.46, + "probability": 0.9058 + }, + { + "start": 27707.5, + "end": 27708.8, + "probability": 0.1258 + }, + { + "start": 27709.74, + "end": 27711.74, + "probability": 0.9128 + }, + { + "start": 27711.94, + "end": 27714.1, + "probability": 0.7448 + }, + { + "start": 27714.36, + "end": 27715.54, + "probability": 0.8241 + }, + { + "start": 27715.62, + "end": 27718.18, + "probability": 0.8359 + }, + { + "start": 27718.54, + "end": 27719.2, + "probability": 0.6104 + }, + { + "start": 27719.34, + "end": 27721.48, + "probability": 0.159 + }, + { + "start": 27721.48, + "end": 27722.72, + "probability": 0.2518 + }, + { + "start": 27722.72, + "end": 27723.48, + "probability": 0.307 + }, + { + "start": 27723.72, + "end": 27726.5, + "probability": 0.4465 + }, + { + "start": 27727.86, + "end": 27730.42, + "probability": 0.8714 + }, + { + "start": 27731.3, + "end": 27735.68, + "probability": 0.8869 + }, + { + "start": 27737.1, + "end": 27737.82, + "probability": 0.2142 + }, + { + "start": 27741.36, + "end": 27743.64, + "probability": 0.3718 + }, + { + "start": 27744.66, + "end": 27748.78, + "probability": 0.1085 + }, + { + "start": 27752.86, + "end": 27752.94, + "probability": 0.0909 + }, + { + "start": 27752.94, + "end": 27755.96, + "probability": 0.0409 + }, + { + "start": 27757.6, + "end": 27758.4, + "probability": 0.1274 + }, + { + "start": 27758.4, + "end": 27758.5, + "probability": 0.232 + }, + { + "start": 27759.7, + "end": 27760.32, + "probability": 0.014 + }, + { + "start": 27771.12, + "end": 27771.66, + "probability": 0.2072 + }, + { + "start": 27782.28, + "end": 27785.04, + "probability": 0.2563 + }, + { + "start": 27787.38, + "end": 27788.46, + "probability": 0.5431 + }, + { + "start": 27788.52, + "end": 27792.0, + "probability": 0.791 + }, + { + "start": 27793.36, + "end": 27798.87, + "probability": 0.7988 + }, + { + "start": 27799.64, + "end": 27801.9, + "probability": 0.9651 + }, + { + "start": 27802.0, + "end": 27803.02, + "probability": 0.8608 + }, + { + "start": 27804.2, + "end": 27806.6, + "probability": 0.9985 + }, + { + "start": 27806.6, + "end": 27809.08, + "probability": 0.9624 + }, + { + "start": 27811.04, + "end": 27812.06, + "probability": 0.6775 + }, + { + "start": 27812.7, + "end": 27813.26, + "probability": 0.5478 + }, + { + "start": 27813.28, + "end": 27818.66, + "probability": 0.9873 + }, + { + "start": 27818.74, + "end": 27820.28, + "probability": 0.9701 + }, + { + "start": 27822.34, + "end": 27826.26, + "probability": 0.9961 + }, + { + "start": 27826.4, + "end": 27827.03, + "probability": 0.9877 + }, + { + "start": 27827.18, + "end": 27827.74, + "probability": 0.9205 + }, + { + "start": 27827.86, + "end": 27829.02, + "probability": 0.976 + }, + { + "start": 27829.12, + "end": 27830.22, + "probability": 0.8803 + }, + { + "start": 27830.48, + "end": 27831.64, + "probability": 0.639 + }, + { + "start": 27832.52, + "end": 27833.1, + "probability": 0.9431 + }, + { + "start": 27833.26, + "end": 27836.7, + "probability": 0.887 + }, + { + "start": 27837.94, + "end": 27839.1, + "probability": 0.7009 + }, + { + "start": 27842.44, + "end": 27845.72, + "probability": 0.6671 + }, + { + "start": 27845.84, + "end": 27850.54, + "probability": 0.8446 + }, + { + "start": 27850.54, + "end": 27854.93, + "probability": 0.9834 + }, + { + "start": 27855.36, + "end": 27855.46, + "probability": 0.3131 + }, + { + "start": 27855.64, + "end": 27861.02, + "probability": 0.9727 + }, + { + "start": 27865.36, + "end": 27867.46, + "probability": 0.4838 + }, + { + "start": 27868.08, + "end": 27869.31, + "probability": 0.9111 + }, + { + "start": 27869.86, + "end": 27870.52, + "probability": 0.0555 + }, + { + "start": 27872.5, + "end": 27874.72, + "probability": 0.6962 + }, + { + "start": 27874.82, + "end": 27876.54, + "probability": 0.974 + }, + { + "start": 27879.06, + "end": 27879.68, + "probability": 0.9125 + }, + { + "start": 27879.82, + "end": 27880.58, + "probability": 0.7227 + }, + { + "start": 27880.7, + "end": 27884.02, + "probability": 0.9976 + }, + { + "start": 27884.72, + "end": 27887.42, + "probability": 0.777 + }, + { + "start": 27888.12, + "end": 27890.24, + "probability": 0.9661 + }, + { + "start": 27892.05, + "end": 27895.9, + "probability": 0.9796 + }, + { + "start": 27896.7, + "end": 27902.06, + "probability": 0.9863 + }, + { + "start": 27902.06, + "end": 27905.16, + "probability": 0.9704 + }, + { + "start": 27906.86, + "end": 27908.68, + "probability": 0.9924 + }, + { + "start": 27908.72, + "end": 27914.42, + "probability": 0.9984 + }, + { + "start": 27914.58, + "end": 27917.76, + "probability": 0.8559 + }, + { + "start": 27919.58, + "end": 27920.16, + "probability": 0.8269 + }, + { + "start": 27920.28, + "end": 27923.34, + "probability": 0.8573 + }, + { + "start": 27923.44, + "end": 27930.22, + "probability": 0.9767 + }, + { + "start": 27931.5, + "end": 27931.72, + "probability": 0.9053 + }, + { + "start": 27931.86, + "end": 27934.88, + "probability": 0.9974 + }, + { + "start": 27934.88, + "end": 27939.66, + "probability": 0.9921 + }, + { + "start": 27939.92, + "end": 27940.64, + "probability": 0.4032 + }, + { + "start": 27941.8, + "end": 27944.02, + "probability": 0.9971 + }, + { + "start": 27944.02, + "end": 27947.86, + "probability": 0.8576 + }, + { + "start": 27948.62, + "end": 27952.28, + "probability": 0.9939 + }, + { + "start": 27954.06, + "end": 27960.12, + "probability": 0.5374 + }, + { + "start": 27960.56, + "end": 27963.24, + "probability": 0.7041 + }, + { + "start": 27963.32, + "end": 27967.52, + "probability": 0.5331 + }, + { + "start": 27968.26, + "end": 27971.1, + "probability": 0.9469 + }, + { + "start": 27971.32, + "end": 27976.44, + "probability": 0.9824 + }, + { + "start": 27976.68, + "end": 27979.73, + "probability": 0.9804 + }, + { + "start": 27981.0, + "end": 27982.32, + "probability": 0.7917 + }, + { + "start": 27982.48, + "end": 27985.4, + "probability": 0.9515 + }, + { + "start": 27986.18, + "end": 27989.18, + "probability": 0.9946 + }, + { + "start": 27989.38, + "end": 27997.96, + "probability": 0.9963 + }, + { + "start": 27998.62, + "end": 28002.82, + "probability": 0.6753 + }, + { + "start": 28003.82, + "end": 28009.0, + "probability": 0.9641 + }, + { + "start": 28009.0, + "end": 28012.6, + "probability": 0.946 + }, + { + "start": 28013.52, + "end": 28015.16, + "probability": 0.8426 + }, + { + "start": 28015.9, + "end": 28017.18, + "probability": 0.9963 + }, + { + "start": 28017.28, + "end": 28018.48, + "probability": 0.7949 + }, + { + "start": 28019.18, + "end": 28020.64, + "probability": 0.8886 + }, + { + "start": 28020.98, + "end": 28028.82, + "probability": 0.978 + }, + { + "start": 28029.34, + "end": 28031.44, + "probability": 0.8312 + }, + { + "start": 28031.66, + "end": 28037.0, + "probability": 0.9362 + }, + { + "start": 28037.32, + "end": 28040.1, + "probability": 0.7069 + }, + { + "start": 28040.32, + "end": 28044.08, + "probability": 0.8949 + }, + { + "start": 28045.78, + "end": 28048.66, + "probability": 0.783 + }, + { + "start": 28048.74, + "end": 28049.22, + "probability": 0.6335 + }, + { + "start": 28050.18, + "end": 28053.58, + "probability": 0.89 + }, + { + "start": 28055.48, + "end": 28058.52, + "probability": 0.9814 + }, + { + "start": 28060.48, + "end": 28061.88, + "probability": 0.946 + }, + { + "start": 28062.6, + "end": 28063.5, + "probability": 0.9087 + }, + { + "start": 28064.58, + "end": 28068.0, + "probability": 0.96 + }, + { + "start": 28068.04, + "end": 28068.68, + "probability": 0.7912 + }, + { + "start": 28069.3, + "end": 28073.0, + "probability": 0.8099 + }, + { + "start": 28074.36, + "end": 28075.58, + "probability": 0.7049 + }, + { + "start": 28075.58, + "end": 28077.76, + "probability": 0.9712 + }, + { + "start": 28078.04, + "end": 28078.72, + "probability": 0.4623 + }, + { + "start": 28079.13, + "end": 28082.23, + "probability": 0.9468 + }, + { + "start": 28083.18, + "end": 28085.34, + "probability": 0.8533 + }, + { + "start": 28085.35, + "end": 28088.08, + "probability": 0.9764 + }, + { + "start": 28089.1, + "end": 28090.54, + "probability": 0.8862 + }, + { + "start": 28091.24, + "end": 28093.44, + "probability": 0.9402 + }, + { + "start": 28095.98, + "end": 28097.28, + "probability": 0.9009 + }, + { + "start": 28097.52, + "end": 28098.98, + "probability": 0.8508 + }, + { + "start": 28100.22, + "end": 28102.92, + "probability": 0.9782 + }, + { + "start": 28104.26, + "end": 28105.96, + "probability": 0.0401 + }, + { + "start": 28105.96, + "end": 28106.28, + "probability": 0.1858 + }, + { + "start": 28106.28, + "end": 28107.27, + "probability": 0.1835 + }, + { + "start": 28108.22, + "end": 28108.98, + "probability": 0.5389 + }, + { + "start": 28109.06, + "end": 28109.56, + "probability": 0.7928 + }, + { + "start": 28109.68, + "end": 28110.62, + "probability": 0.7733 + }, + { + "start": 28110.7, + "end": 28111.76, + "probability": 0.5092 + }, + { + "start": 28111.98, + "end": 28112.9, + "probability": 0.5227 + }, + { + "start": 28113.3, + "end": 28113.98, + "probability": 0.6509 + }, + { + "start": 28114.18, + "end": 28118.04, + "probability": 0.9152 + }, + { + "start": 28118.52, + "end": 28121.12, + "probability": 0.9379 + }, + { + "start": 28122.68, + "end": 28124.66, + "probability": 0.8162 + }, + { + "start": 28125.24, + "end": 28126.34, + "probability": 0.8535 + }, + { + "start": 28126.58, + "end": 28128.58, + "probability": 0.9877 + }, + { + "start": 28128.58, + "end": 28131.72, + "probability": 0.9658 + }, + { + "start": 28131.78, + "end": 28133.08, + "probability": 0.9626 + }, + { + "start": 28134.0, + "end": 28135.48, + "probability": 0.6306 + }, + { + "start": 28136.78, + "end": 28138.94, + "probability": 0.2274 + }, + { + "start": 28139.28, + "end": 28141.1, + "probability": 0.3711 + }, + { + "start": 28141.36, + "end": 28142.64, + "probability": 0.6748 + }, + { + "start": 28143.58, + "end": 28144.72, + "probability": 0.957 + }, + { + "start": 28145.04, + "end": 28147.38, + "probability": 0.9669 + }, + { + "start": 28147.4, + "end": 28148.28, + "probability": 0.8483 + }, + { + "start": 28148.42, + "end": 28152.32, + "probability": 0.959 + }, + { + "start": 28153.44, + "end": 28155.3, + "probability": 0.7614 + }, + { + "start": 28156.3, + "end": 28157.54, + "probability": 0.8983 + }, + { + "start": 28157.7, + "end": 28158.97, + "probability": 0.8037 + }, + { + "start": 28159.42, + "end": 28163.8, + "probability": 0.883 + }, + { + "start": 28164.26, + "end": 28166.46, + "probability": 0.8845 + }, + { + "start": 28167.42, + "end": 28170.02, + "probability": 0.9695 + }, + { + "start": 28170.18, + "end": 28174.04, + "probability": 0.9087 + }, + { + "start": 28176.73, + "end": 28179.6, + "probability": 0.951 + }, + { + "start": 28180.6, + "end": 28182.78, + "probability": 0.9961 + }, + { + "start": 28182.86, + "end": 28184.58, + "probability": 0.9951 + }, + { + "start": 28184.58, + "end": 28186.08, + "probability": 0.9947 + }, + { + "start": 28188.34, + "end": 28189.54, + "probability": 0.9755 + }, + { + "start": 28190.94, + "end": 28192.14, + "probability": 0.8999 + }, + { + "start": 28192.4, + "end": 28196.5, + "probability": 0.9328 + }, + { + "start": 28197.44, + "end": 28199.6, + "probability": 0.987 + }, + { + "start": 28200.6, + "end": 28201.46, + "probability": 0.8806 + }, + { + "start": 28201.6, + "end": 28202.68, + "probability": 0.9436 + }, + { + "start": 28202.92, + "end": 28204.86, + "probability": 0.9939 + }, + { + "start": 28204.86, + "end": 28207.48, + "probability": 0.8143 + }, + { + "start": 28208.52, + "end": 28209.46, + "probability": 0.6732 + }, + { + "start": 28211.1, + "end": 28215.74, + "probability": 0.8826 + }, + { + "start": 28216.66, + "end": 28218.92, + "probability": 0.9883 + }, + { + "start": 28220.16, + "end": 28225.14, + "probability": 0.9958 + }, + { + "start": 28226.84, + "end": 28227.62, + "probability": 0.7243 + }, + { + "start": 28228.22, + "end": 28229.1, + "probability": 0.8317 + }, + { + "start": 28229.64, + "end": 28231.82, + "probability": 0.9734 + }, + { + "start": 28232.74, + "end": 28233.44, + "probability": 0.0186 + }, + { + "start": 28235.48, + "end": 28237.3, + "probability": 0.1829 + }, + { + "start": 28238.04, + "end": 28238.04, + "probability": 0.0868 + }, + { + "start": 28238.04, + "end": 28239.98, + "probability": 0.257 + }, + { + "start": 28239.98, + "end": 28241.72, + "probability": 0.9902 + }, + { + "start": 28242.02, + "end": 28243.62, + "probability": 0.6127 + }, + { + "start": 28244.3, + "end": 28245.26, + "probability": 0.7218 + }, + { + "start": 28246.22, + "end": 28248.06, + "probability": 0.5071 + }, + { + "start": 28248.06, + "end": 28249.5, + "probability": 0.8978 + }, + { + "start": 28249.5, + "end": 28251.78, + "probability": 0.7076 + }, + { + "start": 28251.84, + "end": 28255.22, + "probability": 0.6677 + }, + { + "start": 28255.22, + "end": 28257.14, + "probability": 0.1279 + }, + { + "start": 28257.38, + "end": 28258.94, + "probability": 0.2226 + }, + { + "start": 28260.88, + "end": 28261.36, + "probability": 0.3277 + }, + { + "start": 28261.36, + "end": 28261.36, + "probability": 0.2977 + }, + { + "start": 28261.36, + "end": 28261.36, + "probability": 0.1435 + }, + { + "start": 28261.36, + "end": 28261.36, + "probability": 0.1682 + }, + { + "start": 28261.36, + "end": 28261.36, + "probability": 0.0928 + }, + { + "start": 28261.36, + "end": 28263.46, + "probability": 0.6064 + }, + { + "start": 28263.76, + "end": 28264.38, + "probability": 0.8051 + }, + { + "start": 28264.84, + "end": 28265.3, + "probability": 0.5042 + }, + { + "start": 28268.28, + "end": 28268.42, + "probability": 0.3128 + }, + { + "start": 28268.42, + "end": 28269.06, + "probability": 0.314 + }, + { + "start": 28269.2, + "end": 28270.36, + "probability": 0.477 + }, + { + "start": 28270.46, + "end": 28270.88, + "probability": 0.0441 + }, + { + "start": 28271.86, + "end": 28272.02, + "probability": 0.4643 + }, + { + "start": 28272.02, + "end": 28273.68, + "probability": 0.4982 + }, + { + "start": 28274.42, + "end": 28276.2, + "probability": 0.8403 + }, + { + "start": 28276.86, + "end": 28277.8, + "probability": 0.4044 + }, + { + "start": 28277.96, + "end": 28279.86, + "probability": 0.3431 + }, + { + "start": 28280.32, + "end": 28281.22, + "probability": 0.07 + }, + { + "start": 28281.56, + "end": 28282.3, + "probability": 0.4841 + }, + { + "start": 28282.3, + "end": 28282.32, + "probability": 0.355 + }, + { + "start": 28282.5, + "end": 28285.22, + "probability": 0.8494 + }, + { + "start": 28285.28, + "end": 28287.54, + "probability": 0.885 + }, + { + "start": 28290.22, + "end": 28293.02, + "probability": 0.6787 + }, + { + "start": 28294.1, + "end": 28295.22, + "probability": 0.6498 + }, + { + "start": 28295.48, + "end": 28297.02, + "probability": 0.5997 + }, + { + "start": 28297.82, + "end": 28299.4, + "probability": 0.978 + }, + { + "start": 28299.52, + "end": 28301.68, + "probability": 0.9726 + }, + { + "start": 28301.78, + "end": 28302.92, + "probability": 0.9507 + }, + { + "start": 28303.36, + "end": 28305.84, + "probability": 0.7542 + }, + { + "start": 28306.08, + "end": 28306.2, + "probability": 0.0519 + }, + { + "start": 28306.34, + "end": 28307.42, + "probability": 0.428 + }, + { + "start": 28307.46, + "end": 28309.94, + "probability": 0.83 + }, + { + "start": 28309.96, + "end": 28310.48, + "probability": 0.8131 + }, + { + "start": 28311.26, + "end": 28315.18, + "probability": 0.929 + }, + { + "start": 28315.24, + "end": 28316.62, + "probability": 0.8573 + }, + { + "start": 28316.68, + "end": 28318.28, + "probability": 0.9389 + }, + { + "start": 28318.52, + "end": 28319.74, + "probability": 0.862 + }, + { + "start": 28319.82, + "end": 28320.76, + "probability": 0.9144 + }, + { + "start": 28320.84, + "end": 28321.5, + "probability": 0.7264 + }, + { + "start": 28321.58, + "end": 28322.3, + "probability": 0.7567 + }, + { + "start": 28322.72, + "end": 28324.08, + "probability": 0.5808 + }, + { + "start": 28324.92, + "end": 28325.02, + "probability": 0.0627 + }, + { + "start": 28325.4, + "end": 28328.3, + "probability": 0.9418 + }, + { + "start": 28328.42, + "end": 28333.2, + "probability": 0.8579 + }, + { + "start": 28333.2, + "end": 28333.74, + "probability": 0.3416 + }, + { + "start": 28334.86, + "end": 28336.6, + "probability": 0.8636 + }, + { + "start": 28337.12, + "end": 28339.88, + "probability": 0.9027 + }, + { + "start": 28340.7, + "end": 28344.0, + "probability": 0.8383 + }, + { + "start": 28344.86, + "end": 28345.64, + "probability": 0.9686 + }, + { + "start": 28346.28, + "end": 28348.76, + "probability": 0.9951 + }, + { + "start": 28348.76, + "end": 28351.8, + "probability": 0.988 + }, + { + "start": 28353.04, + "end": 28354.8, + "probability": 0.7957 + }, + { + "start": 28354.9, + "end": 28357.03, + "probability": 0.7766 + }, + { + "start": 28357.8, + "end": 28364.02, + "probability": 0.9727 + }, + { + "start": 28364.64, + "end": 28365.98, + "probability": 0.9799 + }, + { + "start": 28366.82, + "end": 28369.26, + "probability": 0.9567 + }, + { + "start": 28369.32, + "end": 28371.74, + "probability": 0.8815 + }, + { + "start": 28371.82, + "end": 28372.88, + "probability": 0.6848 + }, + { + "start": 28374.26, + "end": 28376.5, + "probability": 0.9429 + }, + { + "start": 28377.24, + "end": 28382.5, + "probability": 0.9012 + }, + { + "start": 28382.62, + "end": 28384.04, + "probability": 0.9867 + }, + { + "start": 28384.68, + "end": 28385.98, + "probability": 0.98 + }, + { + "start": 28386.36, + "end": 28388.28, + "probability": 0.9312 + }, + { + "start": 28388.34, + "end": 28389.14, + "probability": 0.6406 + }, + { + "start": 28389.56, + "end": 28391.56, + "probability": 0.9768 + }, + { + "start": 28392.76, + "end": 28396.26, + "probability": 0.9715 + }, + { + "start": 28397.04, + "end": 28400.66, + "probability": 0.7783 + }, + { + "start": 28401.2, + "end": 28404.08, + "probability": 0.7223 + }, + { + "start": 28404.82, + "end": 28406.96, + "probability": 0.9352 + }, + { + "start": 28408.24, + "end": 28411.34, + "probability": 0.9811 + }, + { + "start": 28412.14, + "end": 28414.64, + "probability": 0.8689 + }, + { + "start": 28415.56, + "end": 28417.52, + "probability": 0.9276 + }, + { + "start": 28418.44, + "end": 28420.08, + "probability": 0.4038 + }, + { + "start": 28421.0, + "end": 28421.12, + "probability": 0.3105 + }, + { + "start": 28421.46, + "end": 28423.8, + "probability": 0.9578 + }, + { + "start": 28423.98, + "end": 28425.36, + "probability": 0.9753 + }, + { + "start": 28425.5, + "end": 28427.18, + "probability": 0.9484 + }, + { + "start": 28427.96, + "end": 28429.5, + "probability": 0.9664 + }, + { + "start": 28429.68, + "end": 28432.36, + "probability": 0.9948 + }, + { + "start": 28434.32, + "end": 28438.56, + "probability": 0.9934 + }, + { + "start": 28438.62, + "end": 28439.86, + "probability": 0.7852 + }, + { + "start": 28439.9, + "end": 28441.16, + "probability": 0.9784 + }, + { + "start": 28441.28, + "end": 28442.32, + "probability": 0.8999 + }, + { + "start": 28443.0, + "end": 28444.5, + "probability": 0.9685 + }, + { + "start": 28445.34, + "end": 28450.9, + "probability": 0.9907 + }, + { + "start": 28451.56, + "end": 28453.9, + "probability": 0.9821 + }, + { + "start": 28453.9, + "end": 28456.4, + "probability": 0.9945 + }, + { + "start": 28456.44, + "end": 28460.18, + "probability": 0.999 + }, + { + "start": 28460.34, + "end": 28464.04, + "probability": 0.9917 + }, + { + "start": 28465.14, + "end": 28466.38, + "probability": 0.9976 + }, + { + "start": 28466.46, + "end": 28468.89, + "probability": 0.9336 + }, + { + "start": 28469.32, + "end": 28470.08, + "probability": 0.7161 + }, + { + "start": 28471.0, + "end": 28472.46, + "probability": 0.8229 + }, + { + "start": 28473.08, + "end": 28476.22, + "probability": 0.9108 + }, + { + "start": 28476.22, + "end": 28480.34, + "probability": 0.8445 + }, + { + "start": 28480.44, + "end": 28480.86, + "probability": 0.9061 + }, + { + "start": 28481.52, + "end": 28483.76, + "probability": 0.9697 + }, + { + "start": 28484.7, + "end": 28486.6, + "probability": 0.9603 + }, + { + "start": 28487.82, + "end": 28491.86, + "probability": 0.9196 + }, + { + "start": 28492.38, + "end": 28494.64, + "probability": 0.9705 + }, + { + "start": 28494.74, + "end": 28496.32, + "probability": 0.1537 + }, + { + "start": 28496.58, + "end": 28497.28, + "probability": 0.2317 + }, + { + "start": 28500.6, + "end": 28500.6, + "probability": 0.2632 + }, + { + "start": 28500.6, + "end": 28501.5, + "probability": 0.0264 + }, + { + "start": 28501.5, + "end": 28506.2, + "probability": 0.9392 + }, + { + "start": 28506.2, + "end": 28509.54, + "probability": 0.7847 + }, + { + "start": 28509.54, + "end": 28511.26, + "probability": 0.1576 + }, + { + "start": 28511.32, + "end": 28511.9, + "probability": 0.5836 + }, + { + "start": 28526.0, + "end": 28526.3, + "probability": 0.6187 + }, + { + "start": 28526.98, + "end": 28527.76, + "probability": 0.1477 + }, + { + "start": 28527.76, + "end": 28527.86, + "probability": 0.1833 + }, + { + "start": 28527.86, + "end": 28527.86, + "probability": 0.2867 + }, + { + "start": 28528.04, + "end": 28529.22, + "probability": 0.1371 + }, + { + "start": 28529.9, + "end": 28530.65, + "probability": 0.2219 + }, + { + "start": 28544.26, + "end": 28547.44, + "probability": 0.0491 + }, + { + "start": 28547.78, + "end": 28548.0, + "probability": 0.0595 + }, + { + "start": 28548.0, + "end": 28549.98, + "probability": 0.1426 + }, + { + "start": 28549.98, + "end": 28549.98, + "probability": 0.5062 + }, + { + "start": 28552.9, + "end": 28557.11, + "probability": 0.0421 + }, + { + "start": 28557.84, + "end": 28558.04, + "probability": 0.2664 + }, + { + "start": 28558.04, + "end": 28558.04, + "probability": 0.0262 + }, + { + "start": 28558.04, + "end": 28558.12, + "probability": 0.5676 + }, + { + "start": 28558.12, + "end": 28558.96, + "probability": 0.2898 + }, + { + "start": 28560.56, + "end": 28562.54, + "probability": 0.0207 + }, + { + "start": 28562.54, + "end": 28563.26, + "probability": 0.1041 + }, + { + "start": 28567.74, + "end": 28568.84, + "probability": 0.1001 + }, + { + "start": 28569.16, + "end": 28569.86, + "probability": 0.0101 + }, + { + "start": 28569.86, + "end": 28570.68, + "probability": 0.036 + }, + { + "start": 28570.68, + "end": 28572.72, + "probability": 0.0205 + }, + { + "start": 28572.72, + "end": 28574.02, + "probability": 0.2613 + }, + { + "start": 28574.34, + "end": 28574.7, + "probability": 0.0087 + }, + { + "start": 28576.69, + "end": 28578.64, + "probability": 0.039 + }, + { + "start": 28578.64, + "end": 28579.22, + "probability": 0.0847 + }, + { + "start": 28579.22, + "end": 28579.96, + "probability": 0.0121 + }, + { + "start": 28580.04, + "end": 28585.34, + "probability": 0.0444 + }, + { + "start": 28585.34, + "end": 28586.98, + "probability": 0.0889 + }, + { + "start": 28587.0, + "end": 28587.0, + "probability": 0.0 + }, + { + "start": 28587.0, + "end": 28587.0, + "probability": 0.0 + }, + { + "start": 28587.0, + "end": 28587.0, + "probability": 0.0 + }, + { + "start": 28587.0, + "end": 28587.0, + "probability": 0.0 + }, + { + "start": 28587.0, + "end": 28587.0, + "probability": 0.0 + }, + { + "start": 28587.0, + "end": 28587.0, + "probability": 0.0 + }, + { + "start": 28587.0, + "end": 28587.0, + "probability": 0.0 + }, + { + "start": 28587.0, + "end": 28587.0, + "probability": 0.0 + }, + { + "start": 28587.0, + "end": 28587.0, + "probability": 0.0 + }, + { + "start": 28587.0, + "end": 28587.0, + "probability": 0.0 + }, + { + "start": 28587.0, + "end": 28587.0, + "probability": 0.0 + }, + { + "start": 28587.0, + "end": 28587.0, + "probability": 0.0 + }, + { + "start": 28587.0, + "end": 28587.0, + "probability": 0.0 + }, + { + "start": 28587.14, + "end": 28587.18, + "probability": 0.0688 + }, + { + "start": 28587.18, + "end": 28587.18, + "probability": 0.3425 + }, + { + "start": 28587.18, + "end": 28587.18, + "probability": 0.1446 + }, + { + "start": 28587.18, + "end": 28587.74, + "probability": 0.0619 + }, + { + "start": 28587.8, + "end": 28588.54, + "probability": 0.6251 + }, + { + "start": 28588.84, + "end": 28591.06, + "probability": 0.9598 + }, + { + "start": 28591.68, + "end": 28592.42, + "probability": 0.8873 + }, + { + "start": 28593.22, + "end": 28595.9, + "probability": 0.9824 + }, + { + "start": 28596.0, + "end": 28597.6, + "probability": 0.9821 + }, + { + "start": 28597.82, + "end": 28599.64, + "probability": 0.9418 + }, + { + "start": 28599.64, + "end": 28602.54, + "probability": 0.8403 + }, + { + "start": 28602.6, + "end": 28603.28, + "probability": 0.8692 + }, + { + "start": 28603.62, + "end": 28605.7, + "probability": 0.6781 + }, + { + "start": 28607.02, + "end": 28608.98, + "probability": 0.5665 + }, + { + "start": 28609.14, + "end": 28610.24, + "probability": 0.5073 + }, + { + "start": 28610.26, + "end": 28610.36, + "probability": 0.2709 + }, + { + "start": 28610.48, + "end": 28611.32, + "probability": 0.805 + }, + { + "start": 28611.46, + "end": 28612.54, + "probability": 0.5294 + }, + { + "start": 28613.69, + "end": 28617.28, + "probability": 0.2998 + }, + { + "start": 28618.28, + "end": 28619.58, + "probability": 0.5561 + }, + { + "start": 28619.64, + "end": 28621.62, + "probability": 0.4263 + }, + { + "start": 28621.83, + "end": 28624.46, + "probability": 0.5562 + }, + { + "start": 28624.54, + "end": 28624.62, + "probability": 0.9294 + }, + { + "start": 28624.7, + "end": 28627.64, + "probability": 0.9926 + }, + { + "start": 28627.64, + "end": 28631.3, + "probability": 0.7968 + }, + { + "start": 28631.96, + "end": 28633.72, + "probability": 0.9467 + }, + { + "start": 28633.94, + "end": 28635.32, + "probability": 0.9399 + }, + { + "start": 28635.82, + "end": 28639.78, + "probability": 0.7539 + }, + { + "start": 28640.32, + "end": 28643.02, + "probability": 0.7349 + }, + { + "start": 28643.02, + "end": 28644.0, + "probability": 0.8007 + }, + { + "start": 28644.18, + "end": 28644.38, + "probability": 0.0369 + }, + { + "start": 28644.38, + "end": 28645.36, + "probability": 0.5908 + }, + { + "start": 28646.86, + "end": 28648.12, + "probability": 0.9054 + }, + { + "start": 28648.95, + "end": 28654.6, + "probability": 0.7362 + }, + { + "start": 28654.62, + "end": 28657.83, + "probability": 0.917 + }, + { + "start": 28669.24, + "end": 28673.4, + "probability": 0.8037 + }, + { + "start": 28674.0, + "end": 28674.59, + "probability": 0.0439 + }, + { + "start": 28674.84, + "end": 28678.86, + "probability": 0.0926 + }, + { + "start": 28678.86, + "end": 28678.86, + "probability": 0.099 + }, + { + "start": 28678.86, + "end": 28681.44, + "probability": 0.011 + }, + { + "start": 28682.14, + "end": 28683.5, + "probability": 0.0873 + }, + { + "start": 28683.56, + "end": 28684.79, + "probability": 0.119 + }, + { + "start": 28685.56, + "end": 28686.5, + "probability": 0.0486 + }, + { + "start": 28686.5, + "end": 28686.74, + "probability": 0.0746 + }, + { + "start": 28686.74, + "end": 28686.74, + "probability": 0.1401 + }, + { + "start": 28686.74, + "end": 28686.74, + "probability": 0.2057 + }, + { + "start": 28686.74, + "end": 28686.74, + "probability": 0.0848 + }, + { + "start": 28686.74, + "end": 28689.72, + "probability": 0.5928 + }, + { + "start": 28690.28, + "end": 28691.56, + "probability": 0.6696 + }, + { + "start": 28692.22, + "end": 28695.06, + "probability": 0.9185 + }, + { + "start": 28696.2, + "end": 28699.34, + "probability": 0.7699 + }, + { + "start": 28699.94, + "end": 28700.22, + "probability": 0.8608 + }, + { + "start": 28701.02, + "end": 28702.72, + "probability": 0.3259 + }, + { + "start": 28703.52, + "end": 28705.12, + "probability": 0.4067 + }, + { + "start": 28705.66, + "end": 28709.44, + "probability": 0.8062 + }, + { + "start": 28710.08, + "end": 28714.08, + "probability": 0.8044 + }, + { + "start": 28714.86, + "end": 28715.68, + "probability": 0.8301 + }, + { + "start": 28716.24, + "end": 28722.88, + "probability": 0.7539 + }, + { + "start": 28723.12, + "end": 28723.88, + "probability": 0.9756 + }, + { + "start": 28724.72, + "end": 28728.6, + "probability": 0.8605 + }, + { + "start": 28729.28, + "end": 28732.27, + "probability": 0.8952 + }, + { + "start": 28732.98, + "end": 28734.1, + "probability": 0.409 + }, + { + "start": 28734.7, + "end": 28736.1, + "probability": 0.9536 + }, + { + "start": 28736.28, + "end": 28738.96, + "probability": 0.7944 + }, + { + "start": 28739.02, + "end": 28740.88, + "probability": 0.826 + }, + { + "start": 28741.32, + "end": 28743.88, + "probability": 0.5827 + }, + { + "start": 28744.1, + "end": 28745.46, + "probability": 0.9453 + }, + { + "start": 28745.62, + "end": 28748.08, + "probability": 0.8601 + }, + { + "start": 28748.36, + "end": 28751.2, + "probability": 0.9277 + }, + { + "start": 28752.07, + "end": 28755.84, + "probability": 0.7563 + }, + { + "start": 28755.94, + "end": 28757.31, + "probability": 0.6984 + }, + { + "start": 28757.8, + "end": 28762.48, + "probability": 0.9037 + }, + { + "start": 28762.84, + "end": 28766.22, + "probability": 0.9409 + }, + { + "start": 28766.56, + "end": 28766.82, + "probability": 0.3028 + }, + { + "start": 28766.82, + "end": 28768.52, + "probability": 0.6572 + }, + { + "start": 28768.98, + "end": 28770.86, + "probability": 0.9845 + }, + { + "start": 28771.5, + "end": 28773.39, + "probability": 0.6779 + }, + { + "start": 28774.8, + "end": 28776.1, + "probability": 0.8984 + }, + { + "start": 28778.04, + "end": 28780.66, + "probability": 0.9883 + }, + { + "start": 28781.02, + "end": 28783.64, + "probability": 0.4108 + }, + { + "start": 28783.94, + "end": 28784.8, + "probability": 0.6474 + }, + { + "start": 28784.8, + "end": 28785.64, + "probability": 0.9842 + }, + { + "start": 28785.76, + "end": 28786.96, + "probability": 0.073 + }, + { + "start": 28788.6, + "end": 28789.48, + "probability": 0.3085 + }, + { + "start": 28789.66, + "end": 28789.84, + "probability": 0.8013 + }, + { + "start": 28789.88, + "end": 28791.02, + "probability": 0.9498 + }, + { + "start": 28791.22, + "end": 28792.66, + "probability": 0.6733 + }, + { + "start": 28792.74, + "end": 28793.98, + "probability": 0.8728 + }, + { + "start": 28794.78, + "end": 28795.7, + "probability": 0.294 + }, + { + "start": 28795.9, + "end": 28797.14, + "probability": 0.4044 + }, + { + "start": 28797.72, + "end": 28798.56, + "probability": 0.5814 + }, + { + "start": 28798.72, + "end": 28799.4, + "probability": 0.0741 + }, + { + "start": 28801.2, + "end": 28803.86, + "probability": 0.8651 + }, + { + "start": 28804.33, + "end": 28807.66, + "probability": 0.8914 + }, + { + "start": 28808.08, + "end": 28811.22, + "probability": 0.4871 + }, + { + "start": 28812.16, + "end": 28812.46, + "probability": 0.4217 + }, + { + "start": 28824.76, + "end": 28827.92, + "probability": 0.2436 + }, + { + "start": 28827.92, + "end": 28829.88, + "probability": 0.6261 + }, + { + "start": 28830.48, + "end": 28833.52, + "probability": 0.9062 + }, + { + "start": 28833.52, + "end": 28836.3, + "probability": 0.9903 + }, + { + "start": 28837.04, + "end": 28838.82, + "probability": 0.7697 + }, + { + "start": 28839.58, + "end": 28840.1, + "probability": 0.0633 + }, + { + "start": 28840.1, + "end": 28841.53, + "probability": 0.3603 + }, + { + "start": 28842.0, + "end": 28843.88, + "probability": 0.6677 + }, + { + "start": 28844.26, + "end": 28847.74, + "probability": 0.9039 + }, + { + "start": 28848.36, + "end": 28850.12, + "probability": 0.6777 + }, + { + "start": 28852.24, + "end": 28853.54, + "probability": 0.5028 + }, + { + "start": 28854.56, + "end": 28856.3, + "probability": 0.8533 + }, + { + "start": 28875.52, + "end": 28876.46, + "probability": 0.3565 + }, + { + "start": 28877.14, + "end": 28878.22, + "probability": 0.4188 + }, + { + "start": 28879.08, + "end": 28879.72, + "probability": 0.7777 + }, + { + "start": 28880.84, + "end": 28882.0, + "probability": 0.887 + }, + { + "start": 28882.3, + "end": 28885.58, + "probability": 0.64 + }, + { + "start": 28886.98, + "end": 28891.7, + "probability": 0.939 + }, + { + "start": 28892.24, + "end": 28893.36, + "probability": 0.9561 + }, + { + "start": 28895.62, + "end": 28896.94, + "probability": 0.8761 + }, + { + "start": 28898.02, + "end": 28898.96, + "probability": 0.7891 + }, + { + "start": 28899.54, + "end": 28902.32, + "probability": 0.8856 + }, + { + "start": 28903.28, + "end": 28903.68, + "probability": 0.7294 + }, + { + "start": 28903.88, + "end": 28905.76, + "probability": 0.9022 + }, + { + "start": 28906.16, + "end": 28907.24, + "probability": 0.9838 + }, + { + "start": 28907.66, + "end": 28909.49, + "probability": 0.9829 + }, + { + "start": 28909.86, + "end": 28912.9, + "probability": 0.1224 + }, + { + "start": 28912.9, + "end": 28912.9, + "probability": 0.3887 + }, + { + "start": 28912.98, + "end": 28913.16, + "probability": 0.6752 + }, + { + "start": 28913.26, + "end": 28913.88, + "probability": 0.8807 + }, + { + "start": 28913.98, + "end": 28916.06, + "probability": 0.5842 + }, + { + "start": 28916.12, + "end": 28917.58, + "probability": 0.9331 + }, + { + "start": 28918.18, + "end": 28921.62, + "probability": 0.878 + }, + { + "start": 28922.7, + "end": 28924.22, + "probability": 0.9671 + }, + { + "start": 28924.82, + "end": 28925.26, + "probability": 0.7292 + }, + { + "start": 28926.04, + "end": 28927.2, + "probability": 0.8878 + }, + { + "start": 28927.88, + "end": 28928.38, + "probability": 0.9531 + }, + { + "start": 28929.0, + "end": 28929.88, + "probability": 0.8833 + }, + { + "start": 28929.88, + "end": 28931.46, + "probability": 0.3022 + }, + { + "start": 28931.6, + "end": 28932.24, + "probability": 0.0746 + }, + { + "start": 28932.62, + "end": 28934.38, + "probability": 0.6304 + }, + { + "start": 28934.38, + "end": 28940.14, + "probability": 0.4058 + }, + { + "start": 28940.14, + "end": 28940.14, + "probability": 0.0041 + }, + { + "start": 28941.12, + "end": 28942.76, + "probability": 0.0403 + }, + { + "start": 28943.76, + "end": 28944.68, + "probability": 0.432 + }, + { + "start": 28946.02, + "end": 28952.16, + "probability": 0.0181 + }, + { + "start": 28952.22, + "end": 28955.26, + "probability": 0.1114 + }, + { + "start": 28956.68, + "end": 28963.16, + "probability": 0.0994 + }, + { + "start": 28964.12, + "end": 28965.2, + "probability": 0.2558 + }, + { + "start": 28977.42, + "end": 28978.72, + "probability": 0.1535 + }, + { + "start": 28978.72, + "end": 28978.72, + "probability": 0.1653 + }, + { + "start": 28978.72, + "end": 28979.3, + "probability": 0.3757 + }, + { + "start": 28980.63, + "end": 28981.88, + "probability": 0.017 + }, + { + "start": 28983.74, + "end": 28984.1, + "probability": 0.0254 + }, + { + "start": 28985.02, + "end": 28986.72, + "probability": 0.067 + }, + { + "start": 28987.57, + "end": 28989.52, + "probability": 0.0638 + }, + { + "start": 28989.71, + "end": 28989.92, + "probability": 0.0139 + }, + { + "start": 28990.3, + "end": 28991.36, + "probability": 0.2391 + }, + { + "start": 28993.66, + "end": 28994.32, + "probability": 0.182 + }, + { + "start": 28995.22, + "end": 28999.16, + "probability": 0.0192 + }, + { + "start": 28999.72, + "end": 28999.76, + "probability": 0.1457 + }, + { + "start": 28999.76, + "end": 29000.52, + "probability": 0.0768 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29018.0, + "end": 29018.0, + "probability": 0.0 + }, + { + "start": 29019.45, + "end": 29020.06, + "probability": 0.7173 + }, + { + "start": 29021.62, + "end": 29023.68, + "probability": 0.9569 + }, + { + "start": 29023.8, + "end": 29025.04, + "probability": 0.7846 + }, + { + "start": 29025.96, + "end": 29029.16, + "probability": 0.9302 + }, + { + "start": 29029.72, + "end": 29032.78, + "probability": 0.8397 + }, + { + "start": 29032.84, + "end": 29034.22, + "probability": 0.889 + }, + { + "start": 29034.8, + "end": 29036.34, + "probability": 0.9912 + }, + { + "start": 29037.24, + "end": 29038.54, + "probability": 0.6756 + }, + { + "start": 29039.02, + "end": 29042.56, + "probability": 0.9769 + }, + { + "start": 29044.1, + "end": 29046.34, + "probability": 0.9454 + }, + { + "start": 29048.58, + "end": 29050.54, + "probability": 0.9901 + }, + { + "start": 29050.74, + "end": 29053.26, + "probability": 0.9568 + }, + { + "start": 29055.2, + "end": 29058.66, + "probability": 0.821 + }, + { + "start": 29060.16, + "end": 29062.66, + "probability": 0.5726 + }, + { + "start": 29064.1, + "end": 29065.42, + "probability": 0.5726 + }, + { + "start": 29066.24, + "end": 29067.55, + "probability": 0.7477 + }, + { + "start": 29069.02, + "end": 29072.38, + "probability": 0.7748 + }, + { + "start": 29072.48, + "end": 29075.38, + "probability": 0.934 + }, + { + "start": 29075.46, + "end": 29076.2, + "probability": 0.8395 + }, + { + "start": 29076.84, + "end": 29077.84, + "probability": 0.9951 + }, + { + "start": 29079.28, + "end": 29081.41, + "probability": 0.9612 + }, + { + "start": 29082.44, + "end": 29084.96, + "probability": 0.8517 + }, + { + "start": 29086.48, + "end": 29087.54, + "probability": 0.9067 + }, + { + "start": 29087.94, + "end": 29088.6, + "probability": 0.3537 + }, + { + "start": 29088.86, + "end": 29089.3, + "probability": 0.5544 + }, + { + "start": 29090.12, + "end": 29091.42, + "probability": 0.9527 + }, + { + "start": 29091.8, + "end": 29092.38, + "probability": 0.2569 + }, + { + "start": 29092.38, + "end": 29092.86, + "probability": 0.1163 + }, + { + "start": 29093.04, + "end": 29093.24, + "probability": 0.1659 + }, + { + "start": 29093.26, + "end": 29094.12, + "probability": 0.5489 + }, + { + "start": 29094.4, + "end": 29095.98, + "probability": 0.4868 + }, + { + "start": 29095.98, + "end": 29097.42, + "probability": 0.2652 + }, + { + "start": 29097.42, + "end": 29098.4, + "probability": 0.1874 + }, + { + "start": 29098.5, + "end": 29099.07, + "probability": 0.4487 + }, + { + "start": 29099.22, + "end": 29101.4, + "probability": 0.8866 + }, + { + "start": 29101.88, + "end": 29105.24, + "probability": 0.9678 + }, + { + "start": 29105.24, + "end": 29108.72, + "probability": 0.9974 + }, + { + "start": 29108.76, + "end": 29109.28, + "probability": 0.6811 + }, + { + "start": 29109.78, + "end": 29110.94, + "probability": 0.9814 + }, + { + "start": 29111.04, + "end": 29112.8, + "probability": 0.8731 + }, + { + "start": 29113.38, + "end": 29115.24, + "probability": 0.7952 + }, + { + "start": 29115.3, + "end": 29115.9, + "probability": 0.3228 + }, + { + "start": 29115.98, + "end": 29118.17, + "probability": 0.931 + }, + { + "start": 29119.48, + "end": 29122.28, + "probability": 0.9721 + }, + { + "start": 29122.4, + "end": 29123.0, + "probability": 0.8512 + }, + { + "start": 29123.72, + "end": 29125.3, + "probability": 0.8231 + }, + { + "start": 29125.48, + "end": 29127.1, + "probability": 0.938 + }, + { + "start": 29129.1, + "end": 29131.9, + "probability": 0.9548 + }, + { + "start": 29133.04, + "end": 29133.56, + "probability": 0.8037 + }, + { + "start": 29135.98, + "end": 29136.9, + "probability": 0.6409 + }, + { + "start": 29138.38, + "end": 29139.6, + "probability": 0.8583 + }, + { + "start": 29140.26, + "end": 29142.78, + "probability": 0.9226 + }, + { + "start": 29143.38, + "end": 29145.58, + "probability": 0.9752 + }, + { + "start": 29146.02, + "end": 29147.42, + "probability": 0.9741 + }, + { + "start": 29148.1, + "end": 29149.14, + "probability": 0.8027 + }, + { + "start": 29150.3, + "end": 29153.16, + "probability": 0.7842 + }, + { + "start": 29153.64, + "end": 29159.38, + "probability": 0.8973 + }, + { + "start": 29160.04, + "end": 29161.88, + "probability": 0.7731 + }, + { + "start": 29162.52, + "end": 29163.32, + "probability": 0.9343 + }, + { + "start": 29164.26, + "end": 29170.62, + "probability": 0.9834 + }, + { + "start": 29171.02, + "end": 29172.1, + "probability": 0.6241 + }, + { + "start": 29172.36, + "end": 29172.94, + "probability": 0.6426 + }, + { + "start": 29173.1, + "end": 29174.96, + "probability": 0.5688 + }, + { + "start": 29175.46, + "end": 29176.36, + "probability": 0.8953 + }, + { + "start": 29176.42, + "end": 29179.06, + "probability": 0.9589 + }, + { + "start": 29181.14, + "end": 29187.5, + "probability": 0.8745 + }, + { + "start": 29187.58, + "end": 29188.73, + "probability": 0.4941 + }, + { + "start": 29189.94, + "end": 29191.9, + "probability": 0.8708 + }, + { + "start": 29192.42, + "end": 29194.22, + "probability": 0.8892 + }, + { + "start": 29195.74, + "end": 29196.99, + "probability": 0.5809 + }, + { + "start": 29197.56, + "end": 29198.96, + "probability": 0.7607 + }, + { + "start": 29200.84, + "end": 29201.88, + "probability": 0.7294 + }, + { + "start": 29203.1, + "end": 29203.52, + "probability": 0.1902 + }, + { + "start": 29203.52, + "end": 29204.6, + "probability": 0.7476 + }, + { + "start": 29205.56, + "end": 29207.96, + "probability": 0.9888 + }, + { + "start": 29208.2, + "end": 29209.08, + "probability": 0.9785 + }, + { + "start": 29209.34, + "end": 29213.04, + "probability": 0.9513 + }, + { + "start": 29215.12, + "end": 29218.9, + "probability": 0.9677 + }, + { + "start": 29220.45, + "end": 29224.34, + "probability": 0.9261 + }, + { + "start": 29224.76, + "end": 29225.28, + "probability": 0.5931 + }, + { + "start": 29225.64, + "end": 29227.46, + "probability": 0.9756 + }, + { + "start": 29227.6, + "end": 29229.52, + "probability": 0.9687 + }, + { + "start": 29231.1, + "end": 29233.1, + "probability": 0.5762 + }, + { + "start": 29253.16, + "end": 29254.6, + "probability": 0.5031 + }, + { + "start": 29255.26, + "end": 29256.08, + "probability": 0.7491 + }, + { + "start": 29256.8, + "end": 29258.66, + "probability": 0.8051 + }, + { + "start": 29260.04, + "end": 29262.84, + "probability": 0.9884 + }, + { + "start": 29264.24, + "end": 29266.28, + "probability": 0.9337 + }, + { + "start": 29270.08, + "end": 29271.96, + "probability": 0.7909 + }, + { + "start": 29273.34, + "end": 29276.42, + "probability": 0.7637 + }, + { + "start": 29277.2, + "end": 29278.9, + "probability": 0.9508 + }, + { + "start": 29279.54, + "end": 29282.48, + "probability": 0.9659 + }, + { + "start": 29283.6, + "end": 29285.59, + "probability": 0.9023 + }, + { + "start": 29286.72, + "end": 29288.22, + "probability": 0.9815 + }, + { + "start": 29292.56, + "end": 29293.1, + "probability": 0.4232 + }, + { + "start": 29293.1, + "end": 29294.68, + "probability": 0.7514 + }, + { + "start": 29295.0, + "end": 29296.78, + "probability": 0.926 + }, + { + "start": 29297.84, + "end": 29300.81, + "probability": 0.9421 + }, + { + "start": 29301.94, + "end": 29303.26, + "probability": 0.8235 + }, + { + "start": 29304.4, + "end": 29306.86, + "probability": 0.9906 + }, + { + "start": 29308.24, + "end": 29310.84, + "probability": 0.9952 + }, + { + "start": 29312.0, + "end": 29314.55, + "probability": 0.9861 + }, + { + "start": 29315.24, + "end": 29317.24, + "probability": 0.9967 + }, + { + "start": 29318.24, + "end": 29321.92, + "probability": 0.9965 + }, + { + "start": 29322.66, + "end": 29323.32, + "probability": 0.8082 + }, + { + "start": 29323.34, + "end": 29324.8, + "probability": 0.8964 + }, + { + "start": 29326.18, + "end": 29328.62, + "probability": 0.8676 + }, + { + "start": 29330.18, + "end": 29335.36, + "probability": 0.9212 + }, + { + "start": 29336.64, + "end": 29336.96, + "probability": 0.9885 + }, + { + "start": 29338.68, + "end": 29340.58, + "probability": 0.9707 + }, + { + "start": 29340.96, + "end": 29342.82, + "probability": 0.7264 + }, + { + "start": 29342.98, + "end": 29343.37, + "probability": 0.9742 + }, + { + "start": 29345.66, + "end": 29347.08, + "probability": 0.6095 + }, + { + "start": 29347.22, + "end": 29348.62, + "probability": 0.7784 + }, + { + "start": 29349.36, + "end": 29350.5, + "probability": 0.9947 + }, + { + "start": 29351.84, + "end": 29352.8, + "probability": 0.8739 + }, + { + "start": 29354.92, + "end": 29357.32, + "probability": 0.517 + }, + { + "start": 29357.32, + "end": 29358.86, + "probability": 0.3868 + }, + { + "start": 29359.04, + "end": 29359.66, + "probability": 0.47 + }, + { + "start": 29359.68, + "end": 29359.72, + "probability": 0.5988 + }, + { + "start": 29359.72, + "end": 29359.74, + "probability": 0.134 + }, + { + "start": 29359.74, + "end": 29359.74, + "probability": 0.1152 + }, + { + "start": 29359.74, + "end": 29361.2, + "probability": 0.9535 + }, + { + "start": 29361.94, + "end": 29362.26, + "probability": 0.9234 + }, + { + "start": 29362.68, + "end": 29363.54, + "probability": 0.797 + }, + { + "start": 29364.9, + "end": 29365.82, + "probability": 0.8169 + }, + { + "start": 29366.66, + "end": 29368.35, + "probability": 0.9725 + }, + { + "start": 29369.8, + "end": 29370.84, + "probability": 0.898 + }, + { + "start": 29371.34, + "end": 29372.58, + "probability": 0.831 + }, + { + "start": 29373.3, + "end": 29374.82, + "probability": 0.0343 + }, + { + "start": 29374.82, + "end": 29377.62, + "probability": 0.2495 + }, + { + "start": 29377.62, + "end": 29378.4, + "probability": 0.5605 + }, + { + "start": 29378.48, + "end": 29383.9, + "probability": 0.9902 + }, + { + "start": 29383.98, + "end": 29384.32, + "probability": 0.8961 + }, + { + "start": 29384.4, + "end": 29384.65, + "probability": 0.8499 + }, + { + "start": 29385.92, + "end": 29386.66, + "probability": 0.6463 + }, + { + "start": 29387.6, + "end": 29391.82, + "probability": 0.9944 + }, + { + "start": 29392.38, + "end": 29393.36, + "probability": 0.7234 + }, + { + "start": 29393.42, + "end": 29393.76, + "probability": 0.8108 + }, + { + "start": 29393.86, + "end": 29394.54, + "probability": 0.8815 + }, + { + "start": 29395.18, + "end": 29395.66, + "probability": 0.7987 + }, + { + "start": 29395.72, + "end": 29396.38, + "probability": 0.9524 + }, + { + "start": 29397.24, + "end": 29397.9, + "probability": 0.8517 + }, + { + "start": 29398.3, + "end": 29400.64, + "probability": 0.9456 + }, + { + "start": 29401.1, + "end": 29402.88, + "probability": 0.7753 + }, + { + "start": 29403.86, + "end": 29406.28, + "probability": 0.96 + }, + { + "start": 29406.94, + "end": 29407.54, + "probability": 0.9473 + }, + { + "start": 29408.76, + "end": 29410.72, + "probability": 0.8963 + }, + { + "start": 29411.22, + "end": 29412.28, + "probability": 0.9846 + }, + { + "start": 29412.34, + "end": 29414.9, + "probability": 0.9509 + }, + { + "start": 29415.72, + "end": 29419.67, + "probability": 0.6266 + }, + { + "start": 29420.9, + "end": 29422.38, + "probability": 0.845 + }, + { + "start": 29423.02, + "end": 29425.42, + "probability": 0.8173 + }, + { + "start": 29426.2, + "end": 29426.7, + "probability": 0.8081 + }, + { + "start": 29427.62, + "end": 29428.5, + "probability": 0.1956 + }, + { + "start": 29428.74, + "end": 29429.36, + "probability": 0.4542 + }, + { + "start": 29429.54, + "end": 29430.38, + "probability": 0.5975 + }, + { + "start": 29432.0, + "end": 29432.22, + "probability": 0.8074 + }, + { + "start": 29433.53, + "end": 29435.36, + "probability": 0.6925 + }, + { + "start": 29435.7, + "end": 29436.26, + "probability": 0.6878 + }, + { + "start": 29436.34, + "end": 29438.24, + "probability": 0.7946 + }, + { + "start": 29439.22, + "end": 29439.52, + "probability": 0.0566 + }, + { + "start": 29439.64, + "end": 29441.96, + "probability": 0.7685 + }, + { + "start": 29441.98, + "end": 29443.32, + "probability": 0.7293 + }, + { + "start": 29443.62, + "end": 29444.88, + "probability": 0.2222 + }, + { + "start": 29444.98, + "end": 29445.42, + "probability": 0.5338 + }, + { + "start": 29447.3, + "end": 29447.66, + "probability": 0.6406 + }, + { + "start": 29447.74, + "end": 29449.02, + "probability": 0.9763 + }, + { + "start": 29449.08, + "end": 29450.19, + "probability": 0.993 + }, + { + "start": 29450.94, + "end": 29452.8, + "probability": 0.9601 + }, + { + "start": 29452.88, + "end": 29455.0, + "probability": 0.4723 + }, + { + "start": 29455.74, + "end": 29456.96, + "probability": 0.7561 + }, + { + "start": 29459.42, + "end": 29460.24, + "probability": 0.2521 + }, + { + "start": 29461.24, + "end": 29461.7, + "probability": 0.5207 + }, + { + "start": 29462.3, + "end": 29464.46, + "probability": 0.8046 + }, + { + "start": 29466.22, + "end": 29468.3, + "probability": 0.9843 + }, + { + "start": 29469.8, + "end": 29472.1, + "probability": 0.9683 + }, + { + "start": 29472.26, + "end": 29473.32, + "probability": 0.9497 + }, + { + "start": 29473.36, + "end": 29473.68, + "probability": 0.7514 + }, + { + "start": 29473.8, + "end": 29474.46, + "probability": 0.9605 + }, + { + "start": 29477.07, + "end": 29482.59, + "probability": 0.9525 + }, + { + "start": 29482.78, + "end": 29483.0, + "probability": 0.3069 + }, + { + "start": 29483.14, + "end": 29483.6, + "probability": 0.922 + }, + { + "start": 29483.66, + "end": 29484.34, + "probability": 0.4918 + }, + { + "start": 29484.4, + "end": 29485.6, + "probability": 0.8774 + }, + { + "start": 29485.7, + "end": 29486.27, + "probability": 0.8237 + }, + { + "start": 29487.7, + "end": 29489.58, + "probability": 0.8945 + }, + { + "start": 29490.46, + "end": 29493.6, + "probability": 0.9812 + }, + { + "start": 29493.64, + "end": 29495.0, + "probability": 0.9792 + }, + { + "start": 29495.12, + "end": 29495.77, + "probability": 0.9902 + }, + { + "start": 29496.4, + "end": 29497.26, + "probability": 0.9961 + }, + { + "start": 29497.76, + "end": 29498.48, + "probability": 0.9556 + }, + { + "start": 29498.56, + "end": 29499.36, + "probability": 0.5299 + }, + { + "start": 29499.82, + "end": 29500.66, + "probability": 0.9105 + }, + { + "start": 29500.78, + "end": 29501.36, + "probability": 0.6707 + }, + { + "start": 29501.48, + "end": 29501.84, + "probability": 0.8905 + }, + { + "start": 29501.88, + "end": 29502.56, + "probability": 0.5752 + }, + { + "start": 29502.8, + "end": 29505.28, + "probability": 0.9527 + }, + { + "start": 29506.62, + "end": 29508.58, + "probability": 0.9587 + }, + { + "start": 29508.58, + "end": 29510.32, + "probability": 0.9854 + }, + { + "start": 29511.2, + "end": 29511.28, + "probability": 0.4357 + }, + { + "start": 29511.38, + "end": 29515.2, + "probability": 0.974 + }, + { + "start": 29515.68, + "end": 29517.78, + "probability": 0.9984 + }, + { + "start": 29518.74, + "end": 29524.08, + "probability": 0.9954 + }, + { + "start": 29524.4, + "end": 29524.56, + "probability": 0.835 + }, + { + "start": 29525.54, + "end": 29525.8, + "probability": 0.1678 + }, + { + "start": 29526.88, + "end": 29527.14, + "probability": 0.1033 + }, + { + "start": 29527.2, + "end": 29527.5, + "probability": 0.0554 + }, + { + "start": 29527.5, + "end": 29531.1, + "probability": 0.7197 + }, + { + "start": 29532.22, + "end": 29532.52, + "probability": 0.739 + }, + { + "start": 29534.16, + "end": 29537.74, + "probability": 0.4878 + }, + { + "start": 29537.94, + "end": 29539.14, + "probability": 0.749 + }, + { + "start": 29539.18, + "end": 29539.88, + "probability": 0.3639 + }, + { + "start": 29540.22, + "end": 29541.78, + "probability": 0.1101 + }, + { + "start": 29542.28, + "end": 29543.16, + "probability": 0.6174 + }, + { + "start": 29543.38, + "end": 29545.84, + "probability": 0.9841 + }, + { + "start": 29546.32, + "end": 29547.16, + "probability": 0.7611 + }, + { + "start": 29547.24, + "end": 29550.12, + "probability": 0.5766 + }, + { + "start": 29551.02, + "end": 29552.36, + "probability": 0.7974 + }, + { + "start": 29553.3, + "end": 29554.32, + "probability": 0.835 + }, + { + "start": 29554.38, + "end": 29554.96, + "probability": 0.9788 + }, + { + "start": 29555.12, + "end": 29556.12, + "probability": 0.7161 + }, + { + "start": 29556.52, + "end": 29558.02, + "probability": 0.9924 + }, + { + "start": 29558.56, + "end": 29560.2, + "probability": 0.9553 + }, + { + "start": 29561.14, + "end": 29562.84, + "probability": 0.7366 + }, + { + "start": 29563.08, + "end": 29566.01, + "probability": 0.7189 + }, + { + "start": 29566.58, + "end": 29567.78, + "probability": 0.9104 + }, + { + "start": 29568.08, + "end": 29570.18, + "probability": 0.9927 + }, + { + "start": 29570.36, + "end": 29571.14, + "probability": 0.7253 + }, + { + "start": 29571.26, + "end": 29573.02, + "probability": 0.7629 + }, + { + "start": 29574.14, + "end": 29577.1, + "probability": 0.963 + }, + { + "start": 29577.54, + "end": 29578.98, + "probability": 0.9412 + }, + { + "start": 29579.66, + "end": 29580.56, + "probability": 0.7344 + }, + { + "start": 29580.66, + "end": 29581.98, + "probability": 0.8902 + }, + { + "start": 29582.04, + "end": 29583.22, + "probability": 0.8784 + }, + { + "start": 29584.2, + "end": 29586.16, + "probability": 0.9231 + }, + { + "start": 29587.02, + "end": 29588.54, + "probability": 0.7294 + }, + { + "start": 29589.6, + "end": 29591.09, + "probability": 0.5259 + }, + { + "start": 29591.98, + "end": 29593.86, + "probability": 0.9934 + }, + { + "start": 29594.72, + "end": 29595.82, + "probability": 0.6121 + }, + { + "start": 29595.88, + "end": 29596.66, + "probability": 0.7748 + }, + { + "start": 29596.8, + "end": 29599.52, + "probability": 0.9929 + }, + { + "start": 29599.62, + "end": 29600.24, + "probability": 0.6089 + }, + { + "start": 29600.44, + "end": 29600.82, + "probability": 0.496 + }, + { + "start": 29601.72, + "end": 29603.62, + "probability": 0.9843 + }, + { + "start": 29603.82, + "end": 29604.9, + "probability": 0.4814 + }, + { + "start": 29606.46, + "end": 29608.98, + "probability": 0.9766 + }, + { + "start": 29610.26, + "end": 29610.52, + "probability": 0.5358 + }, + { + "start": 29610.54, + "end": 29612.16, + "probability": 0.9032 + }, + { + "start": 29612.22, + "end": 29613.36, + "probability": 0.9426 + }, + { + "start": 29614.26, + "end": 29616.26, + "probability": 0.8912 + }, + { + "start": 29616.36, + "end": 29618.02, + "probability": 0.7757 + }, + { + "start": 29618.46, + "end": 29621.82, + "probability": 0.8446 + }, + { + "start": 29625.28, + "end": 29626.86, + "probability": 0.6257 + }, + { + "start": 29627.84, + "end": 29628.74, + "probability": 0.5765 + }, + { + "start": 29628.84, + "end": 29630.88, + "probability": 0.7138 + }, + { + "start": 29630.96, + "end": 29632.0, + "probability": 0.8387 + }, + { + "start": 29632.46, + "end": 29632.64, + "probability": 0.543 + }, + { + "start": 29632.64, + "end": 29633.26, + "probability": 0.1382 + }, + { + "start": 29637.28, + "end": 29639.78, + "probability": 0.5572 + }, + { + "start": 29640.56, + "end": 29642.9, + "probability": 0.9004 + }, + { + "start": 29643.42, + "end": 29645.1, + "probability": 0.6796 + }, + { + "start": 29645.26, + "end": 29648.68, + "probability": 0.7905 + }, + { + "start": 29649.64, + "end": 29653.92, + "probability": 0.9658 + }, + { + "start": 29655.18, + "end": 29658.42, + "probability": 0.7763 + }, + { + "start": 29660.26, + "end": 29667.24, + "probability": 0.9003 + }, + { + "start": 29667.28, + "end": 29668.82, + "probability": 0.9043 + }, + { + "start": 29669.04, + "end": 29669.88, + "probability": 0.5117 + }, + { + "start": 29671.1, + "end": 29673.36, + "probability": 0.9146 + }, + { + "start": 29674.16, + "end": 29675.1, + "probability": 0.9795 + }, + { + "start": 29675.86, + "end": 29679.98, + "probability": 0.9658 + }, + { + "start": 29681.44, + "end": 29683.1, + "probability": 0.9411 + }, + { + "start": 29684.38, + "end": 29686.52, + "probability": 0.9723 + }, + { + "start": 29687.04, + "end": 29689.26, + "probability": 0.9943 + }, + { + "start": 29689.62, + "end": 29695.6, + "probability": 0.9858 + }, + { + "start": 29696.82, + "end": 29698.0, + "probability": 0.7253 + }, + { + "start": 29698.38, + "end": 29700.28, + "probability": 0.7561 + }, + { + "start": 29700.62, + "end": 29702.82, + "probability": 0.8567 + }, + { + "start": 29703.92, + "end": 29705.96, + "probability": 0.9447 + }, + { + "start": 29706.88, + "end": 29708.62, + "probability": 0.9211 + }, + { + "start": 29708.74, + "end": 29709.38, + "probability": 0.7543 + }, + { + "start": 29709.48, + "end": 29710.71, + "probability": 0.4473 + }, + { + "start": 29711.56, + "end": 29716.76, + "probability": 0.9819 + }, + { + "start": 29717.86, + "end": 29721.54, + "probability": 0.5958 + }, + { + "start": 29723.44, + "end": 29724.9, + "probability": 0.4124 + }, + { + "start": 29724.98, + "end": 29725.42, + "probability": 0.8142 + }, + { + "start": 29725.84, + "end": 29727.72, + "probability": 0.9811 + }, + { + "start": 29728.02, + "end": 29730.66, + "probability": 0.7076 + }, + { + "start": 29730.92, + "end": 29731.8, + "probability": 0.7126 + }, + { + "start": 29732.16, + "end": 29732.66, + "probability": 0.3196 + }, + { + "start": 29732.7, + "end": 29733.42, + "probability": 0.7086 + }, + { + "start": 29734.42, + "end": 29735.66, + "probability": 0.7468 + }, + { + "start": 29736.36, + "end": 29740.68, + "probability": 0.9558 + }, + { + "start": 29741.1, + "end": 29743.22, + "probability": 0.8889 + }, + { + "start": 29743.8, + "end": 29749.2, + "probability": 0.9902 + }, + { + "start": 29750.36, + "end": 29751.34, + "probability": 0.7613 + }, + { + "start": 29751.96, + "end": 29753.56, + "probability": 0.845 + }, + { + "start": 29753.9, + "end": 29754.44, + "probability": 0.5318 + }, + { + "start": 29754.58, + "end": 29760.82, + "probability": 0.9536 + }, + { + "start": 29761.08, + "end": 29764.1, + "probability": 0.6242 + }, + { + "start": 29765.3, + "end": 29768.04, + "probability": 0.8367 + }, + { + "start": 29768.76, + "end": 29773.38, + "probability": 0.9606 + }, + { + "start": 29773.62, + "end": 29775.74, + "probability": 0.9213 + }, + { + "start": 29776.1, + "end": 29777.44, + "probability": 0.9528 + }, + { + "start": 29777.76, + "end": 29778.76, + "probability": 0.8485 + }, + { + "start": 29779.14, + "end": 29781.06, + "probability": 0.9642 + }, + { + "start": 29781.16, + "end": 29782.6, + "probability": 0.6266 + }, + { + "start": 29782.86, + "end": 29783.82, + "probability": 0.463 + }, + { + "start": 29784.46, + "end": 29786.56, + "probability": 0.9761 + }, + { + "start": 29787.7, + "end": 29791.86, + "probability": 0.9872 + }, + { + "start": 29792.5, + "end": 29796.74, + "probability": 0.852 + }, + { + "start": 29797.32, + "end": 29801.8, + "probability": 0.8538 + }, + { + "start": 29802.32, + "end": 29804.64, + "probability": 0.8506 + }, + { + "start": 29804.72, + "end": 29807.98, + "probability": 0.9922 + }, + { + "start": 29807.98, + "end": 29811.52, + "probability": 0.9889 + }, + { + "start": 29811.98, + "end": 29812.24, + "probability": 0.7613 + }, + { + "start": 29812.36, + "end": 29812.86, + "probability": 0.8601 + }, + { + "start": 29812.96, + "end": 29818.2, + "probability": 0.9835 + }, + { + "start": 29818.94, + "end": 29824.46, + "probability": 0.9813 + }, + { + "start": 29825.88, + "end": 29828.1, + "probability": 0.9025 + }, + { + "start": 29828.52, + "end": 29828.7, + "probability": 0.8075 + }, + { + "start": 29830.22, + "end": 29832.26, + "probability": 0.7726 + }, + { + "start": 29832.34, + "end": 29836.06, + "probability": 0.895 + }, + { + "start": 29836.08, + "end": 29836.18, + "probability": 0.7636 + }, + { + "start": 29839.3, + "end": 29844.06, + "probability": 0.9396 + }, + { + "start": 29844.8, + "end": 29846.44, + "probability": 0.8197 + }, + { + "start": 29847.42, + "end": 29848.78, + "probability": 0.1172 + }, + { + "start": 29850.1, + "end": 29850.58, + "probability": 0.5257 + }, + { + "start": 29850.68, + "end": 29851.28, + "probability": 0.9792 + }, + { + "start": 29852.2, + "end": 29853.72, + "probability": 0.7617 + }, + { + "start": 29855.46, + "end": 29857.02, + "probability": 0.7028 + }, + { + "start": 29858.34, + "end": 29862.52, + "probability": 0.7396 + }, + { + "start": 29865.19, + "end": 29869.38, + "probability": 0.5612 + }, + { + "start": 29870.52, + "end": 29873.03, + "probability": 0.4489 + }, + { + "start": 29873.5, + "end": 29873.94, + "probability": 0.6586 + }, + { + "start": 29875.0, + "end": 29876.5, + "probability": 0.6687 + }, + { + "start": 29876.52, + "end": 29880.76, + "probability": 0.8772 + }, + { + "start": 29881.32, + "end": 29884.6, + "probability": 0.9959 + }, + { + "start": 29885.16, + "end": 29888.42, + "probability": 0.976 + }, + { + "start": 29888.96, + "end": 29890.96, + "probability": 0.9188 + }, + { + "start": 29891.32, + "end": 29892.84, + "probability": 0.9236 + }, + { + "start": 29893.36, + "end": 29893.84, + "probability": 0.0047 + }, + { + "start": 29893.84, + "end": 29894.78, + "probability": 0.3699 + }, + { + "start": 29895.18, + "end": 29896.48, + "probability": 0.6416 + }, + { + "start": 29896.56, + "end": 29898.24, + "probability": 0.8687 + }, + { + "start": 29898.88, + "end": 29903.5, + "probability": 0.0845 + }, + { + "start": 29904.08, + "end": 29904.48, + "probability": 0.0888 + }, + { + "start": 29904.48, + "end": 29904.69, + "probability": 0.0615 + }, + { + "start": 29904.72, + "end": 29904.72, + "probability": 0.394 + }, + { + "start": 29904.72, + "end": 29904.8, + "probability": 0.0444 + }, + { + "start": 29904.8, + "end": 29905.54, + "probability": 0.3915 + }, + { + "start": 29905.84, + "end": 29907.64, + "probability": 0.7845 + }, + { + "start": 29907.64, + "end": 29911.48, + "probability": 0.9815 + }, + { + "start": 29911.7, + "end": 29914.78, + "probability": 0.808 + }, + { + "start": 29915.16, + "end": 29916.56, + "probability": 0.9989 + }, + { + "start": 29916.94, + "end": 29919.88, + "probability": 0.8379 + }, + { + "start": 29919.98, + "end": 29920.94, + "probability": 0.8804 + }, + { + "start": 29921.02, + "end": 29922.14, + "probability": 0.9424 + }, + { + "start": 29922.3, + "end": 29923.36, + "probability": 0.9685 + }, + { + "start": 29923.62, + "end": 29924.78, + "probability": 0.9246 + }, + { + "start": 29924.82, + "end": 29926.18, + "probability": 0.2368 + }, + { + "start": 29926.18, + "end": 29928.24, + "probability": 0.4417 + }, + { + "start": 29928.24, + "end": 29929.04, + "probability": 0.466 + }, + { + "start": 29929.52, + "end": 29935.36, + "probability": 0.8029 + }, + { + "start": 29935.6, + "end": 29938.06, + "probability": 0.0147 + }, + { + "start": 29938.06, + "end": 29938.06, + "probability": 0.1185 + }, + { + "start": 29938.06, + "end": 29938.42, + "probability": 0.0186 + }, + { + "start": 29938.48, + "end": 29942.77, + "probability": 0.2529 + }, + { + "start": 29942.82, + "end": 29945.08, + "probability": 0.3193 + }, + { + "start": 29945.1, + "end": 29946.0, + "probability": 0.6213 + }, + { + "start": 29946.56, + "end": 29951.76, + "probability": 0.3684 + }, + { + "start": 29951.98, + "end": 29956.24, + "probability": 0.5778 + }, + { + "start": 29956.54, + "end": 29959.78, + "probability": 0.9677 + }, + { + "start": 29959.96, + "end": 29962.34, + "probability": 0.8103 + }, + { + "start": 29962.84, + "end": 29964.94, + "probability": 0.4337 + }, + { + "start": 29964.94, + "end": 29965.16, + "probability": 0.6986 + }, + { + "start": 29965.38, + "end": 29965.82, + "probability": 0.5785 + }, + { + "start": 29965.88, + "end": 29968.54, + "probability": 0.9896 + }, + { + "start": 29968.64, + "end": 29971.16, + "probability": 0.6121 + }, + { + "start": 29974.5, + "end": 29975.76, + "probability": 0.1149 + }, + { + "start": 29975.76, + "end": 29976.6, + "probability": 0.017 + }, + { + "start": 29976.6, + "end": 29978.6, + "probability": 0.6055 + }, + { + "start": 29978.78, + "end": 29978.78, + "probability": 0.3118 + }, + { + "start": 29978.78, + "end": 29979.58, + "probability": 0.4779 + }, + { + "start": 29979.78, + "end": 29979.78, + "probability": 0.5336 + }, + { + "start": 29979.78, + "end": 29981.18, + "probability": 0.7893 + }, + { + "start": 29981.32, + "end": 29981.7, + "probability": 0.6298 + }, + { + "start": 29981.84, + "end": 29982.2, + "probability": 0.727 + }, + { + "start": 29984.06, + "end": 29984.62, + "probability": 0.0884 + }, + { + "start": 29984.92, + "end": 29986.1, + "probability": 0.6845 + }, + { + "start": 29986.18, + "end": 29987.14, + "probability": 0.7341 + }, + { + "start": 29987.28, + "end": 29988.22, + "probability": 0.6908 + }, + { + "start": 29988.26, + "end": 29988.72, + "probability": 0.2343 + }, + { + "start": 29988.72, + "end": 29992.96, + "probability": 0.901 + }, + { + "start": 29993.04, + "end": 29995.7, + "probability": 0.9521 + }, + { + "start": 29995.76, + "end": 29998.42, + "probability": 0.9298 + }, + { + "start": 29998.42, + "end": 29999.56, + "probability": 0.0977 + }, + { + "start": 29999.74, + "end": 30000.18, + "probability": 0.3973 + }, + { + "start": 30000.18, + "end": 30001.08, + "probability": 0.3003 + }, + { + "start": 30001.18, + "end": 30001.64, + "probability": 0.6144 + }, + { + "start": 30001.64, + "end": 30002.61, + "probability": 0.0967 + }, + { + "start": 30003.3, + "end": 30005.14, + "probability": 0.8253 + }, + { + "start": 30005.5, + "end": 30007.56, + "probability": 0.7009 + }, + { + "start": 30007.66, + "end": 30010.22, + "probability": 0.8401 + }, + { + "start": 30010.38, + "end": 30010.42, + "probability": 0.0446 + }, + { + "start": 30010.42, + "end": 30011.64, + "probability": 0.4937 + }, + { + "start": 30011.84, + "end": 30013.08, + "probability": 0.1005 + }, + { + "start": 30013.14, + "end": 30013.32, + "probability": 0.101 + }, + { + "start": 30013.32, + "end": 30014.16, + "probability": 0.073 + }, + { + "start": 30018.28, + "end": 30018.28, + "probability": 0.2788 + }, + { + "start": 30019.1, + "end": 30020.22, + "probability": 0.0772 + }, + { + "start": 30020.22, + "end": 30020.22, + "probability": 0.1182 + }, + { + "start": 30020.22, + "end": 30020.98, + "probability": 0.2909 + }, + { + "start": 30021.04, + "end": 30021.92, + "probability": 0.492 + }, + { + "start": 30022.08, + "end": 30025.44, + "probability": 0.7044 + }, + { + "start": 30025.48, + "end": 30026.09, + "probability": 0.8717 + }, + { + "start": 30027.42, + "end": 30029.0, + "probability": 0.9683 + }, + { + "start": 30029.02, + "end": 30030.6, + "probability": 0.8481 + }, + { + "start": 30030.62, + "end": 30031.08, + "probability": 0.4074 + }, + { + "start": 30031.08, + "end": 30031.58, + "probability": 0.2394 + }, + { + "start": 30031.58, + "end": 30032.68, + "probability": 0.2939 + }, + { + "start": 30033.02, + "end": 30034.5, + "probability": 0.3898 + }, + { + "start": 30034.5, + "end": 30035.27, + "probability": 0.3921 + }, + { + "start": 30035.48, + "end": 30036.62, + "probability": 0.369 + }, + { + "start": 30038.64, + "end": 30039.88, + "probability": 0.1824 + }, + { + "start": 30040.12, + "end": 30043.1, + "probability": 0.7738 + }, + { + "start": 30043.76, + "end": 30043.76, + "probability": 0.0449 + }, + { + "start": 30043.76, + "end": 30045.28, + "probability": 0.5234 + }, + { + "start": 30046.58, + "end": 30049.56, + "probability": 0.0831 + }, + { + "start": 30049.58, + "end": 30049.88, + "probability": 0.4305 + }, + { + "start": 30050.26, + "end": 30052.5, + "probability": 0.3484 + }, + { + "start": 30052.5, + "end": 30055.36, + "probability": 0.4725 + }, + { + "start": 30057.06, + "end": 30059.78, + "probability": 0.2803 + }, + { + "start": 30060.33, + "end": 30062.3, + "probability": 0.225 + }, + { + "start": 30062.44, + "end": 30063.54, + "probability": 0.2463 + }, + { + "start": 30063.96, + "end": 30065.08, + "probability": 0.2507 + }, + { + "start": 30065.78, + "end": 30066.88, + "probability": 0.0978 + }, + { + "start": 30066.88, + "end": 30067.18, + "probability": 0.1297 + }, + { + "start": 30067.18, + "end": 30068.06, + "probability": 0.0504 + }, + { + "start": 30068.52, + "end": 30070.14, + "probability": 0.1746 + }, + { + "start": 30070.6, + "end": 30071.56, + "probability": 0.5303 + }, + { + "start": 30071.56, + "end": 30074.3, + "probability": 0.9154 + }, + { + "start": 30075.14, + "end": 30081.66, + "probability": 0.8481 + }, + { + "start": 30082.64, + "end": 30084.68, + "probability": 0.7628 + }, + { + "start": 30084.8, + "end": 30087.08, + "probability": 0.7542 + }, + { + "start": 30087.66, + "end": 30088.42, + "probability": 0.8121 + }, + { + "start": 30089.04, + "end": 30091.78, + "probability": 0.9137 + }, + { + "start": 30091.84, + "end": 30092.98, + "probability": 0.9159 + }, + { + "start": 30093.36, + "end": 30095.18, + "probability": 0.8732 + }, + { + "start": 30095.68, + "end": 30095.68, + "probability": 0.2053 + }, + { + "start": 30095.68, + "end": 30098.34, + "probability": 0.7776 + }, + { + "start": 30099.04, + "end": 30099.5, + "probability": 0.0714 + }, + { + "start": 30099.56, + "end": 30101.32, + "probability": 0.8125 + }, + { + "start": 30101.92, + "end": 30104.94, + "probability": 0.9247 + }, + { + "start": 30105.5, + "end": 30107.42, + "probability": 0.9897 + }, + { + "start": 30107.86, + "end": 30111.08, + "probability": 0.886 + }, + { + "start": 30111.1, + "end": 30112.34, + "probability": 0.4234 + }, + { + "start": 30112.46, + "end": 30114.1, + "probability": 0.755 + }, + { + "start": 30114.38, + "end": 30118.34, + "probability": 0.9437 + }, + { + "start": 30118.34, + "end": 30118.34, + "probability": 0.3872 + }, + { + "start": 30118.38, + "end": 30119.17, + "probability": 0.5276 + }, + { + "start": 30122.07, + "end": 30122.16, + "probability": 0.6421 + }, + { + "start": 30122.2, + "end": 30123.18, + "probability": 0.7933 + }, + { + "start": 30123.38, + "end": 30124.02, + "probability": 0.0508 + }, + { + "start": 30124.14, + "end": 30124.9, + "probability": 0.5657 + }, + { + "start": 30125.36, + "end": 30125.94, + "probability": 0.0109 + }, + { + "start": 30125.94, + "end": 30126.7, + "probability": 0.4881 + }, + { + "start": 30126.7, + "end": 30127.58, + "probability": 0.6566 + }, + { + "start": 30127.98, + "end": 30129.7, + "probability": 0.9307 + }, + { + "start": 30129.78, + "end": 30130.74, + "probability": 0.7535 + }, + { + "start": 30130.78, + "end": 30131.3, + "probability": 0.8877 + }, + { + "start": 30131.64, + "end": 30132.5, + "probability": 0.8303 + }, + { + "start": 30132.74, + "end": 30133.22, + "probability": 0.844 + }, + { + "start": 30134.2, + "end": 30134.56, + "probability": 0.676 + }, + { + "start": 30134.58, + "end": 30135.8, + "probability": 0.8052 + }, + { + "start": 30135.92, + "end": 30136.9, + "probability": 0.8231 + }, + { + "start": 30136.9, + "end": 30145.9, + "probability": 0.8773 + }, + { + "start": 30146.78, + "end": 30147.08, + "probability": 0.6472 + }, + { + "start": 30147.16, + "end": 30148.92, + "probability": 0.9945 + }, + { + "start": 30149.06, + "end": 30149.92, + "probability": 0.9688 + }, + { + "start": 30149.96, + "end": 30150.62, + "probability": 0.8627 + }, + { + "start": 30151.64, + "end": 30152.13, + "probability": 0.9697 + }, + { + "start": 30152.68, + "end": 30153.7, + "probability": 0.9335 + }, + { + "start": 30154.18, + "end": 30157.5, + "probability": 0.9861 + }, + { + "start": 30157.6, + "end": 30158.72, + "probability": 0.7301 + }, + { + "start": 30158.78, + "end": 30159.58, + "probability": 0.926 + }, + { + "start": 30160.06, + "end": 30161.42, + "probability": 0.6806 + }, + { + "start": 30161.5, + "end": 30162.32, + "probability": 0.7775 + }, + { + "start": 30162.88, + "end": 30167.14, + "probability": 0.6775 + }, + { + "start": 30168.32, + "end": 30168.32, + "probability": 0.0706 + }, + { + "start": 30168.32, + "end": 30168.32, + "probability": 0.5019 + }, + { + "start": 30168.32, + "end": 30172.88, + "probability": 0.7468 + }, + { + "start": 30173.5, + "end": 30176.1, + "probability": 0.7564 + }, + { + "start": 30176.64, + "end": 30178.62, + "probability": 0.8381 + }, + { + "start": 30179.67, + "end": 30179.92, + "probability": 0.5969 + }, + { + "start": 30180.0, + "end": 30180.5, + "probability": 0.7643 + }, + { + "start": 30180.58, + "end": 30182.6, + "probability": 0.9448 + }, + { + "start": 30182.68, + "end": 30183.5, + "probability": 0.8393 + }, + { + "start": 30183.92, + "end": 30185.12, + "probability": 0.9203 + }, + { + "start": 30185.28, + "end": 30185.38, + "probability": 0.0136 + }, + { + "start": 30185.92, + "end": 30191.52, + "probability": 0.9814 + }, + { + "start": 30192.46, + "end": 30192.78, + "probability": 0.3582 + }, + { + "start": 30193.56, + "end": 30194.18, + "probability": 0.2224 + }, + { + "start": 30195.44, + "end": 30195.64, + "probability": 0.0452 + }, + { + "start": 30195.64, + "end": 30197.24, + "probability": 0.1935 + }, + { + "start": 30197.28, + "end": 30198.8, + "probability": 0.8457 + }, + { + "start": 30200.22, + "end": 30201.68, + "probability": 0.7158 + }, + { + "start": 30201.84, + "end": 30202.28, + "probability": 0.46 + }, + { + "start": 30202.34, + "end": 30206.38, + "probability": 0.9863 + }, + { + "start": 30206.5, + "end": 30207.22, + "probability": 0.5568 + }, + { + "start": 30207.8, + "end": 30208.42, + "probability": 0.703 + }, + { + "start": 30208.46, + "end": 30209.18, + "probability": 0.014 + }, + { + "start": 30209.45, + "end": 30211.88, + "probability": 0.252 + }, + { + "start": 30212.28, + "end": 30216.0, + "probability": 0.727 + }, + { + "start": 30216.1, + "end": 30216.5, + "probability": 0.7392 + }, + { + "start": 30217.38, + "end": 30219.32, + "probability": 0.8984 + }, + { + "start": 30219.4, + "end": 30222.88, + "probability": 0.9607 + }, + { + "start": 30224.16, + "end": 30225.98, + "probability": 0.9907 + }, + { + "start": 30226.82, + "end": 30229.54, + "probability": 0.5967 + }, + { + "start": 30229.54, + "end": 30230.68, + "probability": 0.7385 + }, + { + "start": 30230.72, + "end": 30231.58, + "probability": 0.6587 + }, + { + "start": 30231.7, + "end": 30231.94, + "probability": 0.3891 + }, + { + "start": 30232.1, + "end": 30232.89, + "probability": 0.9595 + }, + { + "start": 30233.04, + "end": 30234.36, + "probability": 0.9159 + }, + { + "start": 30234.84, + "end": 30235.43, + "probability": 0.881 + }, + { + "start": 30236.72, + "end": 30239.98, + "probability": 0.015 + }, + { + "start": 30250.76, + "end": 30254.18, + "probability": 0.0275 + }, + { + "start": 30256.53, + "end": 30259.93, + "probability": 0.1309 + }, + { + "start": 30260.58, + "end": 30261.84, + "probability": 0.1161 + }, + { + "start": 30268.32, + "end": 30270.68, + "probability": 0.18 + }, + { + "start": 30273.3, + "end": 30277.44, + "probability": 0.0176 + }, + { + "start": 30277.44, + "end": 30282.62, + "probability": 0.1322 + }, + { + "start": 30282.64, + "end": 30285.08, + "probability": 0.0774 + }, + { + "start": 30285.08, + "end": 30285.18, + "probability": 0.145 + }, + { + "start": 30285.82, + "end": 30289.24, + "probability": 0.4216 + }, + { + "start": 30292.33, + "end": 30295.26, + "probability": 0.0249 + }, + { + "start": 30295.4, + "end": 30297.4, + "probability": 0.1542 + }, + { + "start": 30306.0, + "end": 30306.0, + "probability": 0.0 + }, + { + "start": 30306.0, + "end": 30306.0, + "probability": 0.0 + }, + { + "start": 30306.0, + "end": 30306.0, + "probability": 0.0 + }, + { + "start": 30306.0, + "end": 30306.0, + "probability": 0.0 + }, + { + "start": 30306.0, + "end": 30306.0, + "probability": 0.0 + }, + { + "start": 30306.0, + "end": 30306.0, + "probability": 0.0 + }, + { + "start": 30306.0, + "end": 30306.0, + "probability": 0.0 + }, + { + "start": 30306.0, + "end": 30306.0, + "probability": 0.0 + }, + { + "start": 30306.0, + "end": 30306.0, + "probability": 0.0 + }, + { + "start": 30306.0, + "end": 30306.0, + "probability": 0.0 + }, + { + "start": 30306.0, + "end": 30306.0, + "probability": 0.0 + }, + { + "start": 30306.0, + "end": 30306.0, + "probability": 0.0 + }, + { + "start": 30306.0, + "end": 30306.0, + "probability": 0.0 + }, + { + "start": 30306.0, + "end": 30306.0, + "probability": 0.0 + }, + { + "start": 30306.0, + "end": 30306.0, + "probability": 0.0 + }, + { + "start": 30306.0, + "end": 30306.0, + "probability": 0.0 + }, + { + "start": 30306.0, + "end": 30306.0, + "probability": 0.0 + }, + { + "start": 30306.0, + "end": 30306.0, + "probability": 0.0 + }, + { + "start": 30306.0, + "end": 30306.0, + "probability": 0.0 + }, + { + "start": 30306.0, + "end": 30306.0, + "probability": 0.0 + }, + { + "start": 30306.0, + "end": 30306.0, + "probability": 0.0 + }, + { + "start": 30306.08, + "end": 30306.22, + "probability": 0.0908 + }, + { + "start": 30306.22, + "end": 30306.56, + "probability": 0.1913 + }, + { + "start": 30307.26, + "end": 30309.98, + "probability": 0.9021 + }, + { + "start": 30310.66, + "end": 30315.3, + "probability": 0.6761 + }, + { + "start": 30315.88, + "end": 30318.16, + "probability": 0.9655 + }, + { + "start": 30318.56, + "end": 30321.29, + "probability": 0.9199 + }, + { + "start": 30321.7, + "end": 30322.68, + "probability": 0.9116 + }, + { + "start": 30322.78, + "end": 30326.82, + "probability": 0.8301 + }, + { + "start": 30326.96, + "end": 30328.66, + "probability": 0.9901 + }, + { + "start": 30328.76, + "end": 30329.38, + "probability": 0.932 + }, + { + "start": 30329.72, + "end": 30330.98, + "probability": 0.9451 + }, + { + "start": 30331.04, + "end": 30331.8, + "probability": 0.5138 + }, + { + "start": 30331.88, + "end": 30334.12, + "probability": 0.9053 + }, + { + "start": 30334.2, + "end": 30336.61, + "probability": 0.8998 + }, + { + "start": 30337.14, + "end": 30337.18, + "probability": 0.0189 + }, + { + "start": 30337.18, + "end": 30338.46, + "probability": 0.6669 + }, + { + "start": 30338.52, + "end": 30339.4, + "probability": 0.9938 + }, + { + "start": 30340.2, + "end": 30340.62, + "probability": 0.4704 + }, + { + "start": 30340.7, + "end": 30343.44, + "probability": 0.8385 + }, + { + "start": 30344.46, + "end": 30345.34, + "probability": 0.0732 + }, + { + "start": 30345.34, + "end": 30348.22, + "probability": 0.404 + }, + { + "start": 30348.42, + "end": 30349.44, + "probability": 0.938 + }, + { + "start": 30349.46, + "end": 30350.04, + "probability": 0.9518 + }, + { + "start": 30350.1, + "end": 30350.82, + "probability": 0.9659 + }, + { + "start": 30351.32, + "end": 30352.62, + "probability": 0.7861 + }, + { + "start": 30352.78, + "end": 30353.82, + "probability": 0.6702 + }, + { + "start": 30354.34, + "end": 30357.16, + "probability": 0.9956 + }, + { + "start": 30357.16, + "end": 30359.84, + "probability": 0.9885 + }, + { + "start": 30359.84, + "end": 30361.54, + "probability": 0.9041 + }, + { + "start": 30361.92, + "end": 30363.22, + "probability": 0.6962 + }, + { + "start": 30363.92, + "end": 30365.84, + "probability": 0.2402 + }, + { + "start": 30365.84, + "end": 30365.84, + "probability": 0.4121 + }, + { + "start": 30365.84, + "end": 30366.8, + "probability": 0.5667 + }, + { + "start": 30366.98, + "end": 30368.44, + "probability": 0.9781 + }, + { + "start": 30368.52, + "end": 30369.34, + "probability": 0.7309 + }, + { + "start": 30369.82, + "end": 30370.4, + "probability": 0.128 + }, + { + "start": 30370.4, + "end": 30371.61, + "probability": 0.6637 + }, + { + "start": 30374.37, + "end": 30377.06, + "probability": 0.3165 + }, + { + "start": 30377.06, + "end": 30377.08, + "probability": 0.0733 + }, + { + "start": 30377.08, + "end": 30377.08, + "probability": 0.2976 + }, + { + "start": 30377.08, + "end": 30377.08, + "probability": 0.141 + }, + { + "start": 30377.08, + "end": 30377.08, + "probability": 0.1047 + }, + { + "start": 30377.18, + "end": 30378.2, + "probability": 0.8521 + }, + { + "start": 30378.24, + "end": 30378.74, + "probability": 0.3009 + }, + { + "start": 30378.74, + "end": 30381.21, + "probability": 0.1919 + }, + { + "start": 30381.46, + "end": 30382.5, + "probability": 0.8169 + }, + { + "start": 30383.12, + "end": 30384.63, + "probability": 0.2946 + }, + { + "start": 30384.64, + "end": 30385.88, + "probability": 0.8315 + }, + { + "start": 30386.04, + "end": 30388.84, + "probability": 0.8162 + }, + { + "start": 30389.3, + "end": 30391.62, + "probability": 0.0148 + }, + { + "start": 30391.62, + "end": 30392.64, + "probability": 0.0768 + }, + { + "start": 30392.64, + "end": 30392.64, + "probability": 0.2187 + }, + { + "start": 30392.64, + "end": 30396.74, + "probability": 0.6401 + }, + { + "start": 30396.84, + "end": 30399.24, + "probability": 0.8226 + }, + { + "start": 30399.28, + "end": 30399.44, + "probability": 0.1205 + }, + { + "start": 30399.84, + "end": 30400.02, + "probability": 0.0364 + }, + { + "start": 30400.02, + "end": 30402.08, + "probability": 0.8818 + }, + { + "start": 30402.22, + "end": 30402.44, + "probability": 0.0486 + }, + { + "start": 30402.44, + "end": 30404.56, + "probability": 0.8785 + }, + { + "start": 30405.56, + "end": 30408.3, + "probability": 0.9038 + }, + { + "start": 30409.18, + "end": 30409.38, + "probability": 0.3996 + }, + { + "start": 30409.38, + "end": 30410.52, + "probability": 0.6738 + }, + { + "start": 30410.52, + "end": 30411.46, + "probability": 0.1132 + }, + { + "start": 30412.0, + "end": 30413.1, + "probability": 0.3159 + }, + { + "start": 30413.16, + "end": 30413.64, + "probability": 0.3059 + }, + { + "start": 30414.12, + "end": 30415.54, + "probability": 0.3086 + }, + { + "start": 30415.94, + "end": 30419.04, + "probability": 0.9427 + }, + { + "start": 30419.32, + "end": 30420.18, + "probability": 0.8456 + }, + { + "start": 30420.2, + "end": 30421.56, + "probability": 0.979 + }, + { + "start": 30421.72, + "end": 30423.49, + "probability": 0.7334 + }, + { + "start": 30423.98, + "end": 30424.32, + "probability": 0.8916 + }, + { + "start": 30424.38, + "end": 30425.9, + "probability": 0.9714 + }, + { + "start": 30426.24, + "end": 30427.1, + "probability": 0.9644 + }, + { + "start": 30427.44, + "end": 30427.92, + "probability": 0.7134 + }, + { + "start": 30428.46, + "end": 30428.72, + "probability": 0.6065 + }, + { + "start": 30428.72, + "end": 30429.42, + "probability": 0.7565 + }, + { + "start": 30429.54, + "end": 30431.28, + "probability": 0.6248 + }, + { + "start": 30431.48, + "end": 30432.72, + "probability": 0.9325 + }, + { + "start": 30432.9, + "end": 30433.66, + "probability": 0.9267 + }, + { + "start": 30433.66, + "end": 30434.44, + "probability": 0.7373 + }, + { + "start": 30434.64, + "end": 30435.9, + "probability": 0.7839 + }, + { + "start": 30436.22, + "end": 30437.08, + "probability": 0.6494 + }, + { + "start": 30437.18, + "end": 30438.96, + "probability": 0.9873 + }, + { + "start": 30439.08, + "end": 30440.38, + "probability": 0.6148 + }, + { + "start": 30440.74, + "end": 30442.62, + "probability": 0.9661 + }, + { + "start": 30444.84, + "end": 30448.0, + "probability": 0.9923 + }, + { + "start": 30448.56, + "end": 30448.6, + "probability": 0.0222 + }, + { + "start": 30448.6, + "end": 30448.6, + "probability": 0.2401 + }, + { + "start": 30448.6, + "end": 30448.6, + "probability": 0.1113 + }, + { + "start": 30448.6, + "end": 30448.6, + "probability": 0.2364 + }, + { + "start": 30448.6, + "end": 30453.84, + "probability": 0.9631 + }, + { + "start": 30453.94, + "end": 30454.5, + "probability": 0.4694 + }, + { + "start": 30454.62, + "end": 30455.96, + "probability": 0.7941 + }, + { + "start": 30456.38, + "end": 30458.06, + "probability": 0.7472 + }, + { + "start": 30458.08, + "end": 30458.8, + "probability": 0.8311 + }, + { + "start": 30459.42, + "end": 30460.14, + "probability": 0.951 + }, + { + "start": 30460.24, + "end": 30460.38, + "probability": 0.1015 + }, + { + "start": 30460.56, + "end": 30462.14, + "probability": 0.6909 + }, + { + "start": 30462.24, + "end": 30465.64, + "probability": 0.5823 + }, + { + "start": 30465.82, + "end": 30465.96, + "probability": 0.8625 + }, + { + "start": 30466.12, + "end": 30466.9, + "probability": 0.8108 + }, + { + "start": 30467.72, + "end": 30468.24, + "probability": 0.477 + }, + { + "start": 30468.36, + "end": 30472.24, + "probability": 0.8113 + }, + { + "start": 30472.36, + "end": 30476.84, + "probability": 0.8383 + }, + { + "start": 30477.42, + "end": 30478.1, + "probability": 0.9702 + }, + { + "start": 30478.78, + "end": 30478.98, + "probability": 0.0315 + }, + { + "start": 30478.98, + "end": 30481.58, + "probability": 0.8326 + }, + { + "start": 30481.92, + "end": 30484.64, + "probability": 0.8779 + }, + { + "start": 30484.78, + "end": 30486.26, + "probability": 0.3092 + }, + { + "start": 30486.28, + "end": 30486.74, + "probability": 0.1601 + }, + { + "start": 30487.02, + "end": 30491.42, + "probability": 0.0345 + }, + { + "start": 30491.56, + "end": 30491.82, + "probability": 0.2605 + }, + { + "start": 30491.92, + "end": 30495.26, + "probability": 0.8354 + }, + { + "start": 30496.14, + "end": 30501.34, + "probability": 0.7451 + }, + { + "start": 30501.76, + "end": 30503.21, + "probability": 0.8345 + }, + { + "start": 30503.42, + "end": 30503.82, + "probability": 0.0947 + }, + { + "start": 30503.88, + "end": 30504.02, + "probability": 0.1067 + }, + { + "start": 30504.02, + "end": 30507.28, + "probability": 0.3764 + }, + { + "start": 30507.76, + "end": 30510.02, + "probability": 0.6733 + }, + { + "start": 30510.2, + "end": 30512.94, + "probability": 0.5113 + }, + { + "start": 30513.1, + "end": 30514.0, + "probability": 0.4833 + }, + { + "start": 30514.14, + "end": 30517.4, + "probability": 0.1567 + }, + { + "start": 30517.4, + "end": 30517.44, + "probability": 0.2845 + }, + { + "start": 30517.6, + "end": 30519.48, + "probability": 0.5057 + }, + { + "start": 30519.64, + "end": 30524.42, + "probability": 0.7007 + }, + { + "start": 30524.64, + "end": 30526.62, + "probability": 0.3528 + }, + { + "start": 30526.9, + "end": 30529.42, + "probability": 0.823 + }, + { + "start": 30529.5, + "end": 30530.36, + "probability": 0.5303 + }, + { + "start": 30530.42, + "end": 30532.34, + "probability": 0.8056 + }, + { + "start": 30532.4, + "end": 30533.16, + "probability": 0.1277 + }, + { + "start": 30533.16, + "end": 30534.31, + "probability": 0.6328 + }, + { + "start": 30534.44, + "end": 30535.7, + "probability": 0.196 + }, + { + "start": 30536.02, + "end": 30536.58, + "probability": 0.4983 + }, + { + "start": 30536.76, + "end": 30537.7, + "probability": 0.4491 + }, + { + "start": 30538.12, + "end": 30538.96, + "probability": 0.2047 + }, + { + "start": 30538.98, + "end": 30540.68, + "probability": 0.4567 + }, + { + "start": 30540.86, + "end": 30541.7, + "probability": 0.1811 + }, + { + "start": 30542.12, + "end": 30546.06, + "probability": 0.1693 + }, + { + "start": 30546.32, + "end": 30548.08, + "probability": 0.1291 + }, + { + "start": 30549.72, + "end": 30550.46, + "probability": 0.1689 + }, + { + "start": 30550.46, + "end": 30551.74, + "probability": 0.0165 + }, + { + "start": 30551.82, + "end": 30552.06, + "probability": 0.164 + }, + { + "start": 30552.06, + "end": 30557.32, + "probability": 0.7179 + }, + { + "start": 30557.9, + "end": 30563.46, + "probability": 0.9763 + }, + { + "start": 30563.92, + "end": 30567.58, + "probability": 0.9844 + }, + { + "start": 30568.22, + "end": 30570.92, + "probability": 0.9732 + }, + { + "start": 30571.28, + "end": 30575.16, + "probability": 0.9944 + }, + { + "start": 30575.54, + "end": 30578.18, + "probability": 0.9966 + }, + { + "start": 30578.18, + "end": 30581.84, + "probability": 0.9937 + }, + { + "start": 30582.36, + "end": 30583.26, + "probability": 0.9874 + }, + { + "start": 30583.8, + "end": 30585.96, + "probability": 0.8776 + }, + { + "start": 30586.82, + "end": 30590.16, + "probability": 0.9929 + }, + { + "start": 30590.26, + "end": 30590.79, + "probability": 0.9219 + }, + { + "start": 30591.6, + "end": 30594.84, + "probability": 0.9905 + }, + { + "start": 30595.4, + "end": 30599.78, + "probability": 0.9958 + }, + { + "start": 30599.78, + "end": 30604.38, + "probability": 0.9988 + }, + { + "start": 30604.74, + "end": 30606.72, + "probability": 0.9958 + }, + { + "start": 30607.4, + "end": 30608.16, + "probability": 0.8398 + }, + { + "start": 30608.7, + "end": 30609.06, + "probability": 0.7333 + }, + { + "start": 30609.2, + "end": 30614.86, + "probability": 0.9856 + }, + { + "start": 30615.54, + "end": 30616.6, + "probability": 0.0094 + }, + { + "start": 30616.6, + "end": 30618.34, + "probability": 0.6459 + }, + { + "start": 30618.48, + "end": 30620.76, + "probability": 0.4365 + }, + { + "start": 30620.9, + "end": 30621.76, + "probability": 0.0643 + }, + { + "start": 30621.76, + "end": 30625.9, + "probability": 0.9365 + }, + { + "start": 30626.56, + "end": 30630.8, + "probability": 0.9951 + }, + { + "start": 30631.36, + "end": 30632.86, + "probability": 0.9609 + }, + { + "start": 30632.94, + "end": 30634.32, + "probability": 0.7963 + }, + { + "start": 30634.76, + "end": 30636.2, + "probability": 0.9982 + }, + { + "start": 30636.8, + "end": 30639.28, + "probability": 0.9563 + }, + { + "start": 30639.66, + "end": 30640.76, + "probability": 0.8978 + }, + { + "start": 30640.78, + "end": 30642.52, + "probability": 0.7755 + }, + { + "start": 30644.3, + "end": 30649.62, + "probability": 0.9539 + }, + { + "start": 30651.24, + "end": 30652.48, + "probability": 0.8135 + }, + { + "start": 30652.54, + "end": 30654.36, + "probability": 0.8931 + }, + { + "start": 30654.5, + "end": 30656.1, + "probability": 0.9736 + }, + { + "start": 30656.24, + "end": 30656.61, + "probability": 0.6982 + }, + { + "start": 30657.46, + "end": 30658.38, + "probability": 0.9615 + }, + { + "start": 30658.44, + "end": 30658.88, + "probability": 0.6918 + }, + { + "start": 30659.16, + "end": 30663.56, + "probability": 0.8766 + }, + { + "start": 30663.9, + "end": 30665.16, + "probability": 0.886 + }, + { + "start": 30667.12, + "end": 30667.82, + "probability": 0.0022 + }, + { + "start": 30669.04, + "end": 30669.42, + "probability": 0.1056 + }, + { + "start": 30669.42, + "end": 30669.42, + "probability": 0.032 + }, + { + "start": 30669.42, + "end": 30671.6, + "probability": 0.2877 + }, + { + "start": 30671.68, + "end": 30672.56, + "probability": 0.7401 + }, + { + "start": 30672.72, + "end": 30674.44, + "probability": 0.9794 + }, + { + "start": 30674.58, + "end": 30675.76, + "probability": 0.9055 + }, + { + "start": 30676.26, + "end": 30677.24, + "probability": 0.7701 + }, + { + "start": 30677.3, + "end": 30678.16, + "probability": 0.8477 + }, + { + "start": 30678.8, + "end": 30681.72, + "probability": 0.1905 + }, + { + "start": 30682.32, + "end": 30684.32, + "probability": 0.1856 + }, + { + "start": 30684.82, + "end": 30685.88, + "probability": 0.1488 + }, + { + "start": 30685.88, + "end": 30692.56, + "probability": 0.8369 + }, + { + "start": 30694.29, + "end": 30694.84, + "probability": 0.0672 + }, + { + "start": 30694.92, + "end": 30695.22, + "probability": 0.6102 + }, + { + "start": 30695.22, + "end": 30695.22, + "probability": 0.0442 + }, + { + "start": 30695.22, + "end": 30699.2, + "probability": 0.8882 + }, + { + "start": 30699.52, + "end": 30701.18, + "probability": 0.7808 + }, + { + "start": 30701.3, + "end": 30702.16, + "probability": 0.8685 + }, + { + "start": 30703.44, + "end": 30708.36, + "probability": 0.9012 + }, + { + "start": 30708.7, + "end": 30709.6, + "probability": 0.6824 + }, + { + "start": 30709.78, + "end": 30712.6, + "probability": 0.979 + }, + { + "start": 30713.02, + "end": 30714.06, + "probability": 0.7536 + }, + { + "start": 30714.14, + "end": 30716.1, + "probability": 0.9972 + }, + { + "start": 30716.14, + "end": 30717.96, + "probability": 0.7865 + }, + { + "start": 30717.98, + "end": 30719.36, + "probability": 0.9601 + }, + { + "start": 30720.04, + "end": 30720.62, + "probability": 0.9508 + }, + { + "start": 30721.16, + "end": 30721.76, + "probability": 0.9732 + }, + { + "start": 30722.46, + "end": 30724.69, + "probability": 0.9851 + }, + { + "start": 30725.28, + "end": 30728.32, + "probability": 0.9883 + }, + { + "start": 30728.36, + "end": 30728.9, + "probability": 0.901 + }, + { + "start": 30731.44, + "end": 30731.93, + "probability": 0.9144 + }, + { + "start": 30732.3, + "end": 30732.82, + "probability": 0.2952 + }, + { + "start": 30732.86, + "end": 30735.16, + "probability": 0.5646 + }, + { + "start": 30735.32, + "end": 30736.66, + "probability": 0.778 + }, + { + "start": 30736.72, + "end": 30738.84, + "probability": 0.8447 + }, + { + "start": 30739.16, + "end": 30741.82, + "probability": 0.9498 + }, + { + "start": 30742.54, + "end": 30742.62, + "probability": 0.0528 + }, + { + "start": 30742.62, + "end": 30745.48, + "probability": 0.685 + }, + { + "start": 30745.8, + "end": 30747.76, + "probability": 0.8938 + }, + { + "start": 30747.9, + "end": 30749.7, + "probability": 0.6748 + }, + { + "start": 30749.7, + "end": 30751.06, + "probability": 0.9397 + }, + { + "start": 30751.3, + "end": 30753.02, + "probability": 0.9559 + }, + { + "start": 30753.8, + "end": 30756.66, + "probability": 0.7932 + }, + { + "start": 30756.86, + "end": 30757.48, + "probability": 0.3762 + }, + { + "start": 30757.65, + "end": 30759.48, + "probability": 0.6855 + }, + { + "start": 30759.84, + "end": 30765.48, + "probability": 0.608 + }, + { + "start": 30765.48, + "end": 30766.52, + "probability": 0.738 + }, + { + "start": 30767.22, + "end": 30767.68, + "probability": 0.1531 + }, + { + "start": 30768.32, + "end": 30771.51, + "probability": 0.8921 + }, + { + "start": 30771.84, + "end": 30772.1, + "probability": 0.5626 + }, + { + "start": 30772.26, + "end": 30773.7, + "probability": 0.8683 + }, + { + "start": 30773.74, + "end": 30775.82, + "probability": 0.6499 + }, + { + "start": 30775.84, + "end": 30776.8, + "probability": 0.6413 + }, + { + "start": 30777.16, + "end": 30777.56, + "probability": 0.278 + }, + { + "start": 30778.1, + "end": 30778.6, + "probability": 0.7888 + }, + { + "start": 30778.6, + "end": 30779.32, + "probability": 0.724 + }, + { + "start": 30779.66, + "end": 30783.78, + "probability": 0.9113 + }, + { + "start": 30783.78, + "end": 30785.3, + "probability": 0.9434 + }, + { + "start": 30785.34, + "end": 30786.72, + "probability": 0.9619 + }, + { + "start": 30786.78, + "end": 30787.44, + "probability": 0.6011 + }, + { + "start": 30788.18, + "end": 30789.82, + "probability": 0.1166 + }, + { + "start": 30789.96, + "end": 30790.96, + "probability": 0.6514 + }, + { + "start": 30791.04, + "end": 30793.07, + "probability": 0.6202 + }, + { + "start": 30793.84, + "end": 30796.27, + "probability": 0.9154 + }, + { + "start": 30799.4, + "end": 30800.48, + "probability": 0.6057 + }, + { + "start": 30800.6, + "end": 30800.72, + "probability": 0.7439 + }, + { + "start": 30800.88, + "end": 30801.86, + "probability": 0.4296 + }, + { + "start": 30802.0, + "end": 30802.74, + "probability": 0.117 + }, + { + "start": 30802.8, + "end": 30805.45, + "probability": 0.5685 + }, + { + "start": 30805.52, + "end": 30808.18, + "probability": 0.9991 + }, + { + "start": 30808.22, + "end": 30811.82, + "probability": 0.6875 + }, + { + "start": 30812.04, + "end": 30812.32, + "probability": 0.6298 + }, + { + "start": 30812.36, + "end": 30813.12, + "probability": 0.7733 + }, + { + "start": 30813.14, + "end": 30815.92, + "probability": 0.9934 + }, + { + "start": 30816.0, + "end": 30817.4, + "probability": 0.9945 + }, + { + "start": 30817.64, + "end": 30821.02, + "probability": 0.9053 + }, + { + "start": 30821.12, + "end": 30824.06, + "probability": 0.9168 + }, + { + "start": 30824.34, + "end": 30825.26, + "probability": 0.6908 + }, + { + "start": 30825.34, + "end": 30829.14, + "probability": 0.877 + }, + { + "start": 30829.14, + "end": 30835.38, + "probability": 0.9408 + }, + { + "start": 30836.22, + "end": 30836.52, + "probability": 0.4996 + }, + { + "start": 30837.12, + "end": 30838.4, + "probability": 0.7577 + }, + { + "start": 30839.12, + "end": 30844.7, + "probability": 0.6717 + }, + { + "start": 30845.24, + "end": 30849.24, + "probability": 0.852 + }, + { + "start": 30849.24, + "end": 30852.0, + "probability": 0.8731 + }, + { + "start": 30852.0, + "end": 30852.88, + "probability": 0.9147 + }, + { + "start": 30853.42, + "end": 30856.38, + "probability": 0.9706 + }, + { + "start": 30857.04, + "end": 30858.16, + "probability": 0.9162 + }, + { + "start": 30858.26, + "end": 30861.5, + "probability": 0.9222 + }, + { + "start": 30862.06, + "end": 30863.76, + "probability": 0.9913 + }, + { + "start": 30864.08, + "end": 30867.76, + "probability": 0.9938 + }, + { + "start": 30868.22, + "end": 30869.78, + "probability": 0.7435 + }, + { + "start": 30870.44, + "end": 30873.02, + "probability": 0.9949 + }, + { + "start": 30873.2, + "end": 30873.54, + "probability": 0.6083 + }, + { + "start": 30873.94, + "end": 30875.8, + "probability": 0.9566 + }, + { + "start": 30876.56, + "end": 30880.54, + "probability": 0.8278 + }, + { + "start": 30880.62, + "end": 30882.52, + "probability": 0.995 + }, + { + "start": 30883.0, + "end": 30887.84, + "probability": 0.9742 + }, + { + "start": 30889.36, + "end": 30891.88, + "probability": 0.9709 + }, + { + "start": 30892.12, + "end": 30897.16, + "probability": 0.9854 + }, + { + "start": 30897.82, + "end": 30904.02, + "probability": 0.8923 + }, + { + "start": 30904.4, + "end": 30905.92, + "probability": 0.802 + }, + { + "start": 30906.52, + "end": 30907.32, + "probability": 0.9543 + }, + { + "start": 30907.76, + "end": 30911.28, + "probability": 0.9854 + }, + { + "start": 30911.28, + "end": 30914.82, + "probability": 0.9864 + }, + { + "start": 30914.88, + "end": 30916.98, + "probability": 0.993 + }, + { + "start": 30918.14, + "end": 30918.14, + "probability": 0.8013 + }, + { + "start": 30918.78, + "end": 30920.4, + "probability": 0.9965 + }, + { + "start": 30921.22, + "end": 30922.02, + "probability": 0.6144 + }, + { + "start": 30922.28, + "end": 30922.74, + "probability": 0.7951 + }, + { + "start": 30922.84, + "end": 30924.78, + "probability": 0.8204 + }, + { + "start": 30925.56, + "end": 30929.08, + "probability": 0.9918 + }, + { + "start": 30929.7, + "end": 30931.38, + "probability": 0.5546 + }, + { + "start": 30931.72, + "end": 30932.3, + "probability": 0.4517 + }, + { + "start": 30932.78, + "end": 30933.26, + "probability": 0.7979 + }, + { + "start": 30933.42, + "end": 30934.68, + "probability": 0.8889 + }, + { + "start": 30934.8, + "end": 30940.02, + "probability": 0.9974 + }, + { + "start": 30940.18, + "end": 30940.18, + "probability": 0.6136 + }, + { + "start": 30940.46, + "end": 30941.94, + "probability": 0.9929 + }, + { + "start": 30942.74, + "end": 30946.18, + "probability": 0.9953 + }, + { + "start": 30946.78, + "end": 30948.86, + "probability": 0.9535 + }, + { + "start": 30949.54, + "end": 30953.96, + "probability": 0.9907 + }, + { + "start": 30954.94, + "end": 30958.06, + "probability": 0.5922 + }, + { + "start": 30958.78, + "end": 30963.74, + "probability": 0.9947 + }, + { + "start": 30963.84, + "end": 30964.04, + "probability": 0.7538 + }, + { + "start": 30964.86, + "end": 30965.6, + "probability": 0.0862 + }, + { + "start": 30966.02, + "end": 30967.82, + "probability": 0.7184 + }, + { + "start": 30968.22, + "end": 30970.46, + "probability": 0.4915 + }, + { + "start": 30970.48, + "end": 30970.56, + "probability": 0.1867 + }, + { + "start": 30970.56, + "end": 30971.78, + "probability": 0.0973 + }, + { + "start": 30972.82, + "end": 30974.16, + "probability": 0.0378 + }, + { + "start": 30974.5, + "end": 30975.08, + "probability": 0.1221 + }, + { + "start": 30976.26, + "end": 30979.9, + "probability": 0.2242 + }, + { + "start": 30980.29, + "end": 30983.54, + "probability": 0.386 + }, + { + "start": 30985.06, + "end": 30985.68, + "probability": 0.2712 + }, + { + "start": 30985.68, + "end": 30985.68, + "probability": 0.3629 + }, + { + "start": 30985.68, + "end": 30986.44, + "probability": 0.1043 + }, + { + "start": 30986.64, + "end": 30991.68, + "probability": 0.7505 + }, + { + "start": 30991.96, + "end": 30994.16, + "probability": 0.2536 + }, + { + "start": 30994.96, + "end": 30997.06, + "probability": 0.948 + }, + { + "start": 31001.42, + "end": 31003.9, + "probability": 0.6654 + }, + { + "start": 31004.0, + "end": 31004.94, + "probability": 0.7438 + }, + { + "start": 31005.18, + "end": 31011.08, + "probability": 0.8605 + }, + { + "start": 31011.48, + "end": 31013.39, + "probability": 0.6509 + }, + { + "start": 31014.42, + "end": 31015.17, + "probability": 0.8657 + }, + { + "start": 31015.3, + "end": 31016.4, + "probability": 0.5507 + }, + { + "start": 31016.74, + "end": 31021.3, + "probability": 0.991 + }, + { + "start": 31021.36, + "end": 31024.54, + "probability": 0.785 + }, + { + "start": 31025.16, + "end": 31026.0, + "probability": 0.9811 + }, + { + "start": 31026.06, + "end": 31026.32, + "probability": 0.5589 + }, + { + "start": 31026.38, + "end": 31027.54, + "probability": 0.9886 + }, + { + "start": 31027.92, + "end": 31032.92, + "probability": 0.9967 + }, + { + "start": 31033.1, + "end": 31034.04, + "probability": 0.6316 + }, + { + "start": 31034.46, + "end": 31035.83, + "probability": 0.5172 + }, + { + "start": 31036.4, + "end": 31038.06, + "probability": 0.9917 + }, + { + "start": 31038.4, + "end": 31039.48, + "probability": 0.4673 + }, + { + "start": 31042.14, + "end": 31042.36, + "probability": 0.3528 + }, + { + "start": 31042.52, + "end": 31043.8, + "probability": 0.9646 + }, + { + "start": 31043.88, + "end": 31045.88, + "probability": 0.8281 + }, + { + "start": 31046.68, + "end": 31047.88, + "probability": 0.8785 + }, + { + "start": 31047.98, + "end": 31048.55, + "probability": 0.9827 + }, + { + "start": 31048.74, + "end": 31051.24, + "probability": 0.8061 + }, + { + "start": 31051.58, + "end": 31052.9, + "probability": 0.8746 + }, + { + "start": 31052.98, + "end": 31055.24, + "probability": 0.8132 + }, + { + "start": 31055.8, + "end": 31061.2, + "probability": 0.8857 + }, + { + "start": 31061.48, + "end": 31062.96, + "probability": 0.8405 + }, + { + "start": 31063.14, + "end": 31065.42, + "probability": 0.978 + }, + { + "start": 31065.84, + "end": 31066.78, + "probability": 0.8607 + }, + { + "start": 31066.78, + "end": 31069.74, + "probability": 0.8492 + }, + { + "start": 31070.0, + "end": 31070.22, + "probability": 0.6138 + }, + { + "start": 31070.26, + "end": 31071.98, + "probability": 0.9454 + }, + { + "start": 31073.54, + "end": 31076.38, + "probability": 0.8536 + }, + { + "start": 31076.8, + "end": 31079.32, + "probability": 0.566 + }, + { + "start": 31079.38, + "end": 31079.98, + "probability": 0.8196 + }, + { + "start": 31080.5, + "end": 31084.86, + "probability": 0.9929 + }, + { + "start": 31085.64, + "end": 31087.36, + "probability": 0.9926 + }, + { + "start": 31087.68, + "end": 31088.49, + "probability": 0.9893 + }, + { + "start": 31089.0, + "end": 31089.96, + "probability": 0.9058 + }, + { + "start": 31090.66, + "end": 31092.74, + "probability": 0.9744 + }, + { + "start": 31093.32, + "end": 31096.56, + "probability": 0.9526 + }, + { + "start": 31097.0, + "end": 31099.04, + "probability": 0.9644 + }, + { + "start": 31099.74, + "end": 31100.38, + "probability": 0.6631 + }, + { + "start": 31100.72, + "end": 31102.04, + "probability": 0.9449 + }, + { + "start": 31102.88, + "end": 31104.28, + "probability": 0.9897 + }, + { + "start": 31105.6, + "end": 31106.16, + "probability": 0.4743 + }, + { + "start": 31106.22, + "end": 31106.22, + "probability": 0.6009 + }, + { + "start": 31106.36, + "end": 31111.44, + "probability": 0.8926 + }, + { + "start": 31112.7, + "end": 31115.36, + "probability": 0.7778 + }, + { + "start": 31116.34, + "end": 31116.76, + "probability": 0.7469 + }, + { + "start": 31117.9, + "end": 31118.54, + "probability": 0.9691 + }, + { + "start": 31120.8, + "end": 31121.32, + "probability": 0.0304 + }, + { + "start": 31123.45, + "end": 31124.44, + "probability": 0.3483 + }, + { + "start": 31124.44, + "end": 31124.44, + "probability": 0.0559 + }, + { + "start": 31125.52, + "end": 31128.88, + "probability": 0.5874 + }, + { + "start": 31129.02, + "end": 31130.68, + "probability": 0.9281 + }, + { + "start": 31130.76, + "end": 31131.7, + "probability": 0.569 + }, + { + "start": 31131.76, + "end": 31132.48, + "probability": 0.899 + }, + { + "start": 31132.56, + "end": 31133.06, + "probability": 0.6525 + }, + { + "start": 31133.1, + "end": 31133.64, + "probability": 0.7211 + }, + { + "start": 31134.22, + "end": 31135.4, + "probability": 0.9871 + }, + { + "start": 31136.6, + "end": 31136.72, + "probability": 0.021 + }, + { + "start": 31136.72, + "end": 31137.24, + "probability": 0.4681 + }, + { + "start": 31137.24, + "end": 31137.72, + "probability": 0.4297 + }, + { + "start": 31138.42, + "end": 31141.58, + "probability": 0.9108 + }, + { + "start": 31141.58, + "end": 31142.04, + "probability": 0.417 + }, + { + "start": 31142.1, + "end": 31142.42, + "probability": 0.7685 + }, + { + "start": 31142.52, + "end": 31143.78, + "probability": 0.8167 + }, + { + "start": 31144.16, + "end": 31145.32, + "probability": 0.847 + }, + { + "start": 31145.42, + "end": 31147.96, + "probability": 0.9781 + }, + { + "start": 31149.19, + "end": 31152.22, + "probability": 0.8192 + }, + { + "start": 31153.1, + "end": 31156.26, + "probability": 0.996 + }, + { + "start": 31156.68, + "end": 31159.52, + "probability": 0.7874 + }, + { + "start": 31160.28, + "end": 31161.18, + "probability": 0.6027 + }, + { + "start": 31162.3, + "end": 31168.78, + "probability": 0.9462 + }, + { + "start": 31169.64, + "end": 31171.2, + "probability": 0.6995 + }, + { + "start": 31172.46, + "end": 31173.68, + "probability": 0.6901 + }, + { + "start": 31173.82, + "end": 31174.94, + "probability": 0.7317 + }, + { + "start": 31175.26, + "end": 31176.62, + "probability": 0.7177 + }, + { + "start": 31176.74, + "end": 31178.24, + "probability": 0.9463 + }, + { + "start": 31180.4, + "end": 31181.34, + "probability": 0.9253 + }, + { + "start": 31181.42, + "end": 31183.74, + "probability": 0.8562 + }, + { + "start": 31184.64, + "end": 31186.18, + "probability": 0.6714 + }, + { + "start": 31186.42, + "end": 31189.32, + "probability": 0.9751 + }, + { + "start": 31190.18, + "end": 31193.18, + "probability": 0.8264 + }, + { + "start": 31194.26, + "end": 31198.3, + "probability": 0.9839 + }, + { + "start": 31198.3, + "end": 31204.32, + "probability": 0.8737 + }, + { + "start": 31204.94, + "end": 31209.08, + "probability": 0.9634 + }, + { + "start": 31209.96, + "end": 31211.55, + "probability": 0.5723 + }, + { + "start": 31212.3, + "end": 31216.82, + "probability": 0.7047 + }, + { + "start": 31217.7, + "end": 31219.06, + "probability": 0.7285 + }, + { + "start": 31219.58, + "end": 31224.12, + "probability": 0.9201 + }, + { + "start": 31224.98, + "end": 31226.7, + "probability": 0.9797 + }, + { + "start": 31228.26, + "end": 31231.58, + "probability": 0.6819 + }, + { + "start": 31232.44, + "end": 31233.84, + "probability": 0.3568 + }, + { + "start": 31235.1, + "end": 31235.6, + "probability": 0.837 + }, + { + "start": 31235.8, + "end": 31236.84, + "probability": 0.8892 + }, + { + "start": 31236.96, + "end": 31241.49, + "probability": 0.9653 + }, + { + "start": 31242.64, + "end": 31244.5, + "probability": 0.788 + }, + { + "start": 31245.2, + "end": 31247.7, + "probability": 0.9616 + }, + { + "start": 31248.2, + "end": 31251.57, + "probability": 0.9849 + }, + { + "start": 31251.6, + "end": 31256.3, + "probability": 0.9957 + }, + { + "start": 31258.5, + "end": 31259.58, + "probability": 0.8608 + }, + { + "start": 31261.18, + "end": 31265.44, + "probability": 0.9438 + }, + { + "start": 31266.08, + "end": 31267.3, + "probability": 0.2428 + }, + { + "start": 31267.98, + "end": 31272.26, + "probability": 0.9724 + }, + { + "start": 31273.4, + "end": 31273.6, + "probability": 0.1333 + }, + { + "start": 31274.4, + "end": 31274.4, + "probability": 0.0473 + }, + { + "start": 31274.4, + "end": 31276.36, + "probability": 0.1644 + }, + { + "start": 31276.82, + "end": 31278.12, + "probability": 0.2411 + }, + { + "start": 31278.96, + "end": 31279.76, + "probability": 0.2765 + }, + { + "start": 31279.9, + "end": 31280.54, + "probability": 0.1417 + }, + { + "start": 31280.7, + "end": 31281.77, + "probability": 0.0384 + }, + { + "start": 31282.0, + "end": 31282.62, + "probability": 0.6995 + }, + { + "start": 31283.82, + "end": 31287.12, + "probability": 0.7076 + }, + { + "start": 31287.76, + "end": 31290.66, + "probability": 0.5887 + }, + { + "start": 31291.26, + "end": 31291.98, + "probability": 0.8517 + }, + { + "start": 31292.04, + "end": 31297.92, + "probability": 0.9585 + }, + { + "start": 31298.9, + "end": 31299.58, + "probability": 0.7683 + }, + { + "start": 31300.58, + "end": 31303.5, + "probability": 0.955 + }, + { + "start": 31304.16, + "end": 31304.8, + "probability": 0.7853 + }, + { + "start": 31304.9, + "end": 31307.08, + "probability": 0.9847 + }, + { + "start": 31307.56, + "end": 31312.74, + "probability": 0.97 + }, + { + "start": 31313.82, + "end": 31317.94, + "probability": 0.9577 + }, + { + "start": 31319.08, + "end": 31322.66, + "probability": 0.9026 + }, + { + "start": 31323.36, + "end": 31325.7, + "probability": 0.916 + }, + { + "start": 31330.0, + "end": 31335.12, + "probability": 0.845 + }, + { + "start": 31335.3, + "end": 31336.76, + "probability": 0.8478 + }, + { + "start": 31337.44, + "end": 31340.0, + "probability": 0.9189 + }, + { + "start": 31340.64, + "end": 31342.95, + "probability": 0.8669 + }, + { + "start": 31343.32, + "end": 31345.14, + "probability": 0.9883 + }, + { + "start": 31347.78, + "end": 31350.72, + "probability": 0.9765 + }, + { + "start": 31351.62, + "end": 31353.65, + "probability": 0.74 + }, + { + "start": 31354.56, + "end": 31356.88, + "probability": 0.9586 + }, + { + "start": 31357.46, + "end": 31360.28, + "probability": 0.9949 + }, + { + "start": 31360.72, + "end": 31362.26, + "probability": 0.9351 + }, + { + "start": 31362.68, + "end": 31364.68, + "probability": 0.9891 + }, + { + "start": 31364.96, + "end": 31368.77, + "probability": 0.793 + }, + { + "start": 31370.5, + "end": 31371.54, + "probability": 0.7122 + }, + { + "start": 31371.72, + "end": 31375.4, + "probability": 0.9291 + }, + { + "start": 31379.44, + "end": 31384.46, + "probability": 0.9334 + }, + { + "start": 31384.46, + "end": 31387.7, + "probability": 0.7922 + }, + { + "start": 31388.8, + "end": 31392.14, + "probability": 0.9768 + }, + { + "start": 31393.02, + "end": 31395.19, + "probability": 0.7429 + }, + { + "start": 31395.94, + "end": 31397.8, + "probability": 0.8477 + }, + { + "start": 31398.44, + "end": 31401.06, + "probability": 0.9831 + }, + { + "start": 31401.74, + "end": 31402.24, + "probability": 0.7593 + }, + { + "start": 31403.3, + "end": 31406.18, + "probability": 0.6482 + }, + { + "start": 31407.36, + "end": 31410.32, + "probability": 0.4229 + }, + { + "start": 31411.1, + "end": 31411.68, + "probability": 0.923 + }, + { + "start": 31411.7, + "end": 31413.24, + "probability": 0.8898 + }, + { + "start": 31413.34, + "end": 31413.54, + "probability": 0.4155 + }, + { + "start": 31413.58, + "end": 31414.12, + "probability": 0.8776 + }, + { + "start": 31414.14, + "end": 31415.24, + "probability": 0.7206 + }, + { + "start": 31416.08, + "end": 31419.84, + "probability": 0.7756 + }, + { + "start": 31419.9, + "end": 31423.56, + "probability": 0.9143 + }, + { + "start": 31423.57, + "end": 31426.88, + "probability": 0.5596 + }, + { + "start": 31427.28, + "end": 31428.92, + "probability": 0.6203 + }, + { + "start": 31429.36, + "end": 31433.18, + "probability": 0.8832 + }, + { + "start": 31434.24, + "end": 31437.42, + "probability": 0.539 + }, + { + "start": 31437.52, + "end": 31438.74, + "probability": 0.7837 + }, + { + "start": 31438.82, + "end": 31440.11, + "probability": 0.6842 + }, + { + "start": 31440.68, + "end": 31443.36, + "probability": 0.9776 + }, + { + "start": 31443.5, + "end": 31444.16, + "probability": 0.8687 + }, + { + "start": 31444.46, + "end": 31445.52, + "probability": 0.5646 + }, + { + "start": 31445.8, + "end": 31445.8, + "probability": 0.0094 + }, + { + "start": 31445.8, + "end": 31446.06, + "probability": 0.5877 + }, + { + "start": 31446.14, + "end": 31450.94, + "probability": 0.9637 + }, + { + "start": 31451.1, + "end": 31451.52, + "probability": 0.9664 + }, + { + "start": 31452.18, + "end": 31452.54, + "probability": 0.7036 + }, + { + "start": 31452.68, + "end": 31452.94, + "probability": 0.9355 + }, + { + "start": 31453.9, + "end": 31457.01, + "probability": 0.9094 + }, + { + "start": 31458.22, + "end": 31460.3, + "probability": 0.8901 + }, + { + "start": 31460.44, + "end": 31461.06, + "probability": 0.7488 + }, + { + "start": 31462.5, + "end": 31464.46, + "probability": 0.9862 + }, + { + "start": 31464.7, + "end": 31465.74, + "probability": 0.9095 + }, + { + "start": 31466.86, + "end": 31467.36, + "probability": 0.6807 + }, + { + "start": 31468.4, + "end": 31470.62, + "probability": 0.8088 + }, + { + "start": 31471.54, + "end": 31474.04, + "probability": 0.9193 + }, + { + "start": 31474.66, + "end": 31475.8, + "probability": 0.9736 + }, + { + "start": 31476.04, + "end": 31477.02, + "probability": 0.9234 + }, + { + "start": 31480.38, + "end": 31481.66, + "probability": 0.6873 + }, + { + "start": 31482.62, + "end": 31483.68, + "probability": 0.6538 + }, + { + "start": 31484.48, + "end": 31485.16, + "probability": 0.5031 + }, + { + "start": 31486.8, + "end": 31489.16, + "probability": 0.8688 + }, + { + "start": 31489.7, + "end": 31493.52, + "probability": 0.8951 + }, + { + "start": 31494.06, + "end": 31494.92, + "probability": 0.7143 + }, + { + "start": 31495.2, + "end": 31495.9, + "probability": 0.7225 + }, + { + "start": 31496.7, + "end": 31496.7, + "probability": 0.0767 + }, + { + "start": 31496.7, + "end": 31497.37, + "probability": 0.6431 + }, + { + "start": 31497.98, + "end": 31498.06, + "probability": 0.0767 + }, + { + "start": 31498.06, + "end": 31498.8, + "probability": 0.0663 + }, + { + "start": 31499.18, + "end": 31500.69, + "probability": 0.6191 + }, + { + "start": 31500.9, + "end": 31501.96, + "probability": 0.3929 + }, + { + "start": 31502.5, + "end": 31502.7, + "probability": 0.0998 + }, + { + "start": 31502.7, + "end": 31503.0, + "probability": 0.2192 + }, + { + "start": 31503.08, + "end": 31503.96, + "probability": 0.5239 + }, + { + "start": 31504.04, + "end": 31506.6, + "probability": 0.7149 + }, + { + "start": 31506.72, + "end": 31507.22, + "probability": 0.0518 + }, + { + "start": 31507.36, + "end": 31507.52, + "probability": 0.2095 + }, + { + "start": 31507.74, + "end": 31507.94, + "probability": 0.4525 + }, + { + "start": 31508.1, + "end": 31510.64, + "probability": 0.7363 + }, + { + "start": 31510.94, + "end": 31512.69, + "probability": 0.9612 + }, + { + "start": 31512.9, + "end": 31513.66, + "probability": 0.6983 + }, + { + "start": 31514.12, + "end": 31516.08, + "probability": 0.0869 + }, + { + "start": 31516.28, + "end": 31517.19, + "probability": 0.2921 + }, + { + "start": 31520.04, + "end": 31520.04, + "probability": 0.342 + }, + { + "start": 31520.04, + "end": 31522.42, + "probability": 0.0196 + }, + { + "start": 31522.68, + "end": 31522.86, + "probability": 0.0174 + }, + { + "start": 31522.86, + "end": 31522.86, + "probability": 0.052 + }, + { + "start": 31522.86, + "end": 31522.86, + "probability": 0.055 + }, + { + "start": 31522.86, + "end": 31522.86, + "probability": 0.3616 + }, + { + "start": 31522.86, + "end": 31522.86, + "probability": 0.1135 + }, + { + "start": 31522.86, + "end": 31525.63, + "probability": 0.3566 + }, + { + "start": 31525.76, + "end": 31525.86, + "probability": 0.387 + }, + { + "start": 31525.98, + "end": 31529.36, + "probability": 0.2871 + }, + { + "start": 31529.86, + "end": 31530.62, + "probability": 0.0448 + }, + { + "start": 31530.62, + "end": 31530.62, + "probability": 0.0053 + }, + { + "start": 31530.62, + "end": 31530.62, + "probability": 0.4412 + }, + { + "start": 31530.62, + "end": 31530.62, + "probability": 0.5074 + }, + { + "start": 31530.62, + "end": 31532.82, + "probability": 0.8339 + }, + { + "start": 31534.0, + "end": 31537.46, + "probability": 0.7048 + }, + { + "start": 31537.46, + "end": 31540.64, + "probability": 0.9842 + }, + { + "start": 31540.74, + "end": 31542.22, + "probability": 0.8475 + }, + { + "start": 31542.34, + "end": 31542.86, + "probability": 0.7595 + }, + { + "start": 31542.96, + "end": 31543.38, + "probability": 0.6506 + }, + { + "start": 31543.42, + "end": 31544.2, + "probability": 0.7354 + }, + { + "start": 31545.8, + "end": 31549.66, + "probability": 0.9061 + }, + { + "start": 31549.74, + "end": 31556.88, + "probability": 0.9939 + }, + { + "start": 31558.8, + "end": 31560.92, + "probability": 0.9718 + }, + { + "start": 31561.26, + "end": 31566.46, + "probability": 0.9961 + }, + { + "start": 31566.56, + "end": 31567.36, + "probability": 0.8179 + }, + { + "start": 31568.88, + "end": 31569.51, + "probability": 0.9749 + }, + { + "start": 31570.1, + "end": 31570.96, + "probability": 0.8975 + }, + { + "start": 31571.04, + "end": 31572.78, + "probability": 0.9418 + }, + { + "start": 31573.58, + "end": 31574.64, + "probability": 0.5508 + }, + { + "start": 31575.44, + "end": 31576.44, + "probability": 0.9019 + }, + { + "start": 31576.96, + "end": 31577.44, + "probability": 0.6738 + }, + { + "start": 31577.5, + "end": 31579.18, + "probability": 0.9912 + }, + { + "start": 31579.26, + "end": 31583.2, + "probability": 0.9938 + }, + { + "start": 31584.38, + "end": 31585.4, + "probability": 0.9617 + }, + { + "start": 31586.4, + "end": 31590.06, + "probability": 0.9811 + }, + { + "start": 31591.02, + "end": 31593.12, + "probability": 0.9958 + }, + { + "start": 31594.3, + "end": 31598.96, + "probability": 0.9988 + }, + { + "start": 31599.84, + "end": 31601.0, + "probability": 0.9306 + }, + { + "start": 31601.1, + "end": 31601.86, + "probability": 0.5689 + }, + { + "start": 31601.96, + "end": 31602.56, + "probability": 0.8736 + }, + { + "start": 31602.7, + "end": 31603.34, + "probability": 0.6472 + }, + { + "start": 31603.5, + "end": 31604.62, + "probability": 0.8948 + }, + { + "start": 31604.92, + "end": 31605.68, + "probability": 0.0665 + }, + { + "start": 31605.7, + "end": 31608.04, + "probability": 0.9885 + }, + { + "start": 31608.08, + "end": 31608.84, + "probability": 0.7637 + }, + { + "start": 31609.32, + "end": 31611.86, + "probability": 0.9766 + }, + { + "start": 31612.52, + "end": 31616.04, + "probability": 0.8623 + }, + { + "start": 31616.68, + "end": 31619.98, + "probability": 0.9977 + }, + { + "start": 31620.46, + "end": 31623.96, + "probability": 0.9199 + }, + { + "start": 31624.66, + "end": 31625.02, + "probability": 0.4998 + }, + { + "start": 31628.74, + "end": 31629.48, + "probability": 0.5698 + }, + { + "start": 31630.38, + "end": 31633.36, + "probability": 0.9431 + }, + { + "start": 31633.44, + "end": 31636.14, + "probability": 0.999 + }, + { + "start": 31636.8, + "end": 31639.14, + "probability": 0.9791 + }, + { + "start": 31639.68, + "end": 31641.14, + "probability": 0.8665 + }, + { + "start": 31641.36, + "end": 31644.56, + "probability": 0.9894 + }, + { + "start": 31644.56, + "end": 31648.2, + "probability": 0.9996 + }, + { + "start": 31649.44, + "end": 31652.66, + "probability": 0.9944 + }, + { + "start": 31653.12, + "end": 31653.6, + "probability": 0.9798 + }, + { + "start": 31653.66, + "end": 31655.22, + "probability": 0.9144 + }, + { + "start": 31655.72, + "end": 31659.39, + "probability": 0.8708 + }, + { + "start": 31659.68, + "end": 31660.22, + "probability": 0.885 + }, + { + "start": 31660.32, + "end": 31663.44, + "probability": 0.9972 + }, + { + "start": 31664.06, + "end": 31664.68, + "probability": 0.6751 + }, + { + "start": 31664.8, + "end": 31668.82, + "probability": 0.9276 + }, + { + "start": 31668.88, + "end": 31670.22, + "probability": 0.9882 + }, + { + "start": 31671.5, + "end": 31678.04, + "probability": 0.5779 + }, + { + "start": 31678.26, + "end": 31682.97, + "probability": 0.9855 + }, + { + "start": 31683.32, + "end": 31689.27, + "probability": 0.9399 + }, + { + "start": 31689.42, + "end": 31693.84, + "probability": 0.8976 + }, + { + "start": 31696.2, + "end": 31699.54, + "probability": 0.9686 + }, + { + "start": 31700.34, + "end": 31705.14, + "probability": 0.9586 + }, + { + "start": 31705.82, + "end": 31709.56, + "probability": 0.998 + }, + { + "start": 31710.52, + "end": 31711.92, + "probability": 0.7242 + }, + { + "start": 31712.04, + "end": 31712.46, + "probability": 0.9299 + }, + { + "start": 31712.76, + "end": 31713.12, + "probability": 0.5745 + }, + { + "start": 31713.18, + "end": 31713.94, + "probability": 0.8461 + }, + { + "start": 31714.4, + "end": 31715.18, + "probability": 0.8274 + }, + { + "start": 31715.3, + "end": 31715.72, + "probability": 0.9547 + }, + { + "start": 31715.96, + "end": 31719.4, + "probability": 0.9705 + }, + { + "start": 31719.52, + "end": 31720.4, + "probability": 0.9352 + }, + { + "start": 31720.5, + "end": 31721.94, + "probability": 0.9002 + }, + { + "start": 31722.52, + "end": 31726.82, + "probability": 0.9919 + }, + { + "start": 31727.26, + "end": 31731.52, + "probability": 0.995 + }, + { + "start": 31732.58, + "end": 31736.68, + "probability": 0.9954 + }, + { + "start": 31737.02, + "end": 31738.82, + "probability": 0.9964 + }, + { + "start": 31740.32, + "end": 31743.24, + "probability": 0.8776 + }, + { + "start": 31743.94, + "end": 31746.06, + "probability": 0.7309 + }, + { + "start": 31746.06, + "end": 31749.04, + "probability": 0.9844 + }, + { + "start": 31749.26, + "end": 31752.46, + "probability": 0.991 + }, + { + "start": 31752.56, + "end": 31753.14, + "probability": 0.9482 + }, + { + "start": 31753.22, + "end": 31753.86, + "probability": 0.7305 + }, + { + "start": 31755.78, + "end": 31757.56, + "probability": 0.9868 + }, + { + "start": 31757.7, + "end": 31758.86, + "probability": 0.8725 + }, + { + "start": 31758.96, + "end": 31759.64, + "probability": 0.8175 + }, + { + "start": 31759.68, + "end": 31760.2, + "probability": 0.7098 + }, + { + "start": 31760.22, + "end": 31761.04, + "probability": 0.5796 + }, + { + "start": 31761.08, + "end": 31762.04, + "probability": 0.9078 + }, + { + "start": 31762.18, + "end": 31762.78, + "probability": 0.539 + }, + { + "start": 31763.66, + "end": 31767.24, + "probability": 0.9649 + }, + { + "start": 31767.24, + "end": 31772.32, + "probability": 0.9907 + }, + { + "start": 31772.48, + "end": 31774.34, + "probability": 0.9292 + }, + { + "start": 31775.28, + "end": 31776.12, + "probability": 0.8388 + }, + { + "start": 31777.04, + "end": 31780.08, + "probability": 0.9886 + }, + { + "start": 31781.16, + "end": 31783.94, + "probability": 0.7217 + }, + { + "start": 31785.36, + "end": 31785.36, + "probability": 0.1185 + }, + { + "start": 31785.36, + "end": 31787.04, + "probability": 0.7801 + }, + { + "start": 31787.72, + "end": 31790.74, + "probability": 0.9775 + }, + { + "start": 31791.64, + "end": 31795.24, + "probability": 0.9734 + }, + { + "start": 31796.02, + "end": 31796.9, + "probability": 0.6859 + }, + { + "start": 31797.44, + "end": 31800.14, + "probability": 0.9575 + }, + { + "start": 31800.74, + "end": 31804.14, + "probability": 0.9512 + }, + { + "start": 31804.98, + "end": 31805.7, + "probability": 0.8685 + }, + { + "start": 31806.36, + "end": 31809.44, + "probability": 0.9861 + }, + { + "start": 31810.12, + "end": 31813.08, + "probability": 0.9561 + }, + { + "start": 31813.98, + "end": 31814.24, + "probability": 0.8677 + }, + { + "start": 31814.32, + "end": 31814.86, + "probability": 0.8791 + }, + { + "start": 31814.94, + "end": 31818.95, + "probability": 0.926 + }, + { + "start": 31820.08, + "end": 31822.92, + "probability": 0.9409 + }, + { + "start": 31823.0, + "end": 31827.26, + "probability": 0.9871 + }, + { + "start": 31827.46, + "end": 31828.74, + "probability": 0.7756 + }, + { + "start": 31829.22, + "end": 31829.72, + "probability": 0.8858 + }, + { + "start": 31829.84, + "end": 31833.78, + "probability": 0.9329 + }, + { + "start": 31833.78, + "end": 31836.68, + "probability": 0.7138 + }, + { + "start": 31836.8, + "end": 31837.4, + "probability": 0.9818 + }, + { + "start": 31838.32, + "end": 31839.52, + "probability": 0.5744 + }, + { + "start": 31845.64, + "end": 31847.68, + "probability": 0.8191 + }, + { + "start": 31847.86, + "end": 31850.0, + "probability": 0.9093 + }, + { + "start": 31850.54, + "end": 31854.96, + "probability": 0.9575 + }, + { + "start": 31854.96, + "end": 31859.24, + "probability": 0.9943 + }, + { + "start": 31860.44, + "end": 31863.36, + "probability": 0.8386 + }, + { + "start": 31863.52, + "end": 31870.14, + "probability": 0.9574 + }, + { + "start": 31871.4, + "end": 31874.4, + "probability": 0.9972 + }, + { + "start": 31875.36, + "end": 31878.92, + "probability": 0.8133 + }, + { + "start": 31880.28, + "end": 31884.38, + "probability": 0.9979 + }, + { + "start": 31884.88, + "end": 31887.36, + "probability": 0.9527 + }, + { + "start": 31887.86, + "end": 31889.74, + "probability": 0.9812 + }, + { + "start": 31890.68, + "end": 31892.06, + "probability": 0.5021 + }, + { + "start": 31892.08, + "end": 31893.56, + "probability": 0.8618 + }, + { + "start": 31894.0, + "end": 31896.74, + "probability": 0.9867 + }, + { + "start": 31897.04, + "end": 31900.21, + "probability": 0.9863 + }, + { + "start": 31901.3, + "end": 31904.6, + "probability": 0.9915 + }, + { + "start": 31905.16, + "end": 31908.22, + "probability": 0.9546 + }, + { + "start": 31908.68, + "end": 31908.94, + "probability": 0.709 + }, + { + "start": 31909.14, + "end": 31911.3, + "probability": 0.9587 + }, + { + "start": 31911.88, + "end": 31913.42, + "probability": 0.8762 + }, + { + "start": 31915.44, + "end": 31915.56, + "probability": 0.6885 + }, + { + "start": 31919.76, + "end": 31922.98, + "probability": 0.7991 + }, + { + "start": 31924.3, + "end": 31927.98, + "probability": 0.4433 + }, + { + "start": 31928.12, + "end": 31929.24, + "probability": 0.7881 + }, + { + "start": 31929.3, + "end": 31930.3, + "probability": 0.6559 + }, + { + "start": 31930.3, + "end": 31933.78, + "probability": 0.9661 + }, + { + "start": 31933.86, + "end": 31935.9, + "probability": 0.9895 + }, + { + "start": 31936.66, + "end": 31940.08, + "probability": 0.9863 + }, + { + "start": 31941.05, + "end": 31943.08, + "probability": 0.7375 + }, + { + "start": 31943.68, + "end": 31945.2, + "probability": 0.8321 + }, + { + "start": 31945.54, + "end": 31946.22, + "probability": 0.648 + }, + { + "start": 31946.38, + "end": 31947.01, + "probability": 0.5925 + }, + { + "start": 31948.82, + "end": 31951.28, + "probability": 0.8075 + }, + { + "start": 31951.86, + "end": 31954.38, + "probability": 0.9548 + }, + { + "start": 31954.84, + "end": 31956.02, + "probability": 0.8645 + }, + { + "start": 31956.3, + "end": 31958.48, + "probability": 0.8994 + }, + { + "start": 31959.26, + "end": 31961.54, + "probability": 0.3219 + }, + { + "start": 31961.64, + "end": 31966.12, + "probability": 0.6046 + }, + { + "start": 31966.36, + "end": 31968.73, + "probability": 0.9731 + }, + { + "start": 31969.54, + "end": 31970.12, + "probability": 0.5667 + }, + { + "start": 31970.32, + "end": 31971.44, + "probability": 0.8022 + }, + { + "start": 31971.78, + "end": 31974.46, + "probability": 0.8489 + }, + { + "start": 31974.54, + "end": 31975.5, + "probability": 0.7214 + }, + { + "start": 31976.04, + "end": 31977.2, + "probability": 0.7469 + }, + { + "start": 31977.92, + "end": 31978.46, + "probability": 0.8339 + }, + { + "start": 31979.04, + "end": 31980.7, + "probability": 0.9877 + }, + { + "start": 31981.36, + "end": 31983.46, + "probability": 0.9123 + }, + { + "start": 31984.78, + "end": 31987.64, + "probability": 0.9943 + }, + { + "start": 31988.64, + "end": 31988.86, + "probability": 0.0964 + }, + { + "start": 31988.94, + "end": 31989.88, + "probability": 0.9047 + }, + { + "start": 31990.32, + "end": 31993.84, + "probability": 0.9667 + }, + { + "start": 31994.42, + "end": 31995.88, + "probability": 0.6322 + }, + { + "start": 31995.9, + "end": 31999.32, + "probability": 0.881 + }, + { + "start": 31999.4, + "end": 32001.16, + "probability": 0.9912 + }, + { + "start": 32001.69, + "end": 32003.05, + "probability": 0.9902 + }, + { + "start": 32003.74, + "end": 32005.08, + "probability": 0.9238 + }, + { + "start": 32005.28, + "end": 32008.4, + "probability": 0.9962 + }, + { + "start": 32009.2, + "end": 32011.14, + "probability": 0.9114 + }, + { + "start": 32011.68, + "end": 32014.26, + "probability": 0.9458 + }, + { + "start": 32015.18, + "end": 32018.2, + "probability": 0.938 + }, + { + "start": 32018.94, + "end": 32022.2, + "probability": 0.9481 + }, + { + "start": 32022.86, + "end": 32024.12, + "probability": 0.8319 + }, + { + "start": 32024.2, + "end": 32026.28, + "probability": 0.7666 + }, + { + "start": 32026.46, + "end": 32027.4, + "probability": 0.936 + }, + { + "start": 32028.2, + "end": 32028.72, + "probability": 0.9604 + }, + { + "start": 32028.86, + "end": 32029.14, + "probability": 0.9555 + }, + { + "start": 32029.22, + "end": 32029.88, + "probability": 0.5582 + }, + { + "start": 32030.3, + "end": 32031.4, + "probability": 0.6464 + }, + { + "start": 32031.48, + "end": 32031.93, + "probability": 0.9577 + }, + { + "start": 32033.18, + "end": 32034.04, + "probability": 0.9985 + }, + { + "start": 32034.14, + "end": 32036.24, + "probability": 0.9559 + }, + { + "start": 32036.94, + "end": 32037.48, + "probability": 0.8782 + }, + { + "start": 32038.58, + "end": 32040.62, + "probability": 0.9089 + }, + { + "start": 32041.56, + "end": 32045.88, + "probability": 0.8011 + }, + { + "start": 32047.12, + "end": 32049.34, + "probability": 0.9285 + }, + { + "start": 32049.42, + "end": 32050.44, + "probability": 0.9955 + }, + { + "start": 32051.76, + "end": 32051.82, + "probability": 0.1156 + }, + { + "start": 32051.82, + "end": 32052.88, + "probability": 0.9922 + }, + { + "start": 32053.3, + "end": 32055.94, + "probability": 0.9862 + }, + { + "start": 32055.94, + "end": 32059.16, + "probability": 0.853 + }, + { + "start": 32059.56, + "end": 32060.56, + "probability": 0.9761 + }, + { + "start": 32061.3, + "end": 32062.72, + "probability": 0.7686 + }, + { + "start": 32062.74, + "end": 32063.22, + "probability": 0.7937 + }, + { + "start": 32063.38, + "end": 32064.44, + "probability": 0.8204 + }, + { + "start": 32064.84, + "end": 32068.02, + "probability": 0.9597 + }, + { + "start": 32068.06, + "end": 32070.34, + "probability": 0.9778 + }, + { + "start": 32070.82, + "end": 32071.4, + "probability": 0.7863 + }, + { + "start": 32071.92, + "end": 32074.54, + "probability": 0.9158 + }, + { + "start": 32074.64, + "end": 32075.0, + "probability": 0.8806 + }, + { + "start": 32075.6, + "end": 32077.0, + "probability": 0.8465 + }, + { + "start": 32077.78, + "end": 32081.46, + "probability": 0.7344 + }, + { + "start": 32090.54, + "end": 32090.54, + "probability": 0.302 + }, + { + "start": 32090.54, + "end": 32091.78, + "probability": 0.468 + }, + { + "start": 32093.3, + "end": 32096.54, + "probability": 0.4899 + }, + { + "start": 32097.06, + "end": 32098.8, + "probability": 0.8591 + }, + { + "start": 32100.44, + "end": 32100.98, + "probability": 0.6126 + }, + { + "start": 32101.04, + "end": 32103.16, + "probability": 0.9972 + }, + { + "start": 32103.64, + "end": 32107.52, + "probability": 0.951 + }, + { + "start": 32107.52, + "end": 32109.08, + "probability": 0.81 + }, + { + "start": 32109.56, + "end": 32113.02, + "probability": 0.8237 + }, + { + "start": 32113.18, + "end": 32113.56, + "probability": 0.2354 + }, + { + "start": 32113.56, + "end": 32117.34, + "probability": 0.9803 + }, + { + "start": 32118.18, + "end": 32120.14, + "probability": 0.7345 + }, + { + "start": 32121.04, + "end": 32125.62, + "probability": 0.8489 + }, + { + "start": 32126.84, + "end": 32129.52, + "probability": 0.6837 + }, + { + "start": 32138.72, + "end": 32141.76, + "probability": 0.7703 + }, + { + "start": 32143.18, + "end": 32145.46, + "probability": 0.8901 + }, + { + "start": 32146.82, + "end": 32150.22, + "probability": 0.9928 + }, + { + "start": 32151.66, + "end": 32155.2, + "probability": 0.9346 + }, + { + "start": 32156.62, + "end": 32161.48, + "probability": 0.9183 + }, + { + "start": 32162.56, + "end": 32164.74, + "probability": 0.9822 + }, + { + "start": 32164.86, + "end": 32168.88, + "probability": 0.9719 + }, + { + "start": 32168.96, + "end": 32169.84, + "probability": 0.9344 + }, + { + "start": 32171.08, + "end": 32172.7, + "probability": 0.5768 + }, + { + "start": 32173.06, + "end": 32175.64, + "probability": 0.9714 + }, + { + "start": 32175.8, + "end": 32176.2, + "probability": 0.8563 + }, + { + "start": 32176.3, + "end": 32177.36, + "probability": 0.9794 + }, + { + "start": 32179.14, + "end": 32181.34, + "probability": 0.8329 + }, + { + "start": 32182.2, + "end": 32184.66, + "probability": 0.9293 + }, + { + "start": 32185.64, + "end": 32186.68, + "probability": 0.7371 + }, + { + "start": 32188.44, + "end": 32189.42, + "probability": 0.9985 + }, + { + "start": 32191.5, + "end": 32194.14, + "probability": 0.9811 + }, + { + "start": 32194.22, + "end": 32194.74, + "probability": 0.7322 + }, + { + "start": 32194.84, + "end": 32197.22, + "probability": 0.9609 + }, + { + "start": 32197.26, + "end": 32197.72, + "probability": 0.9368 + }, + { + "start": 32198.88, + "end": 32199.94, + "probability": 0.9676 + }, + { + "start": 32200.82, + "end": 32202.02, + "probability": 0.5738 + }, + { + "start": 32203.18, + "end": 32205.18, + "probability": 0.9941 + }, + { + "start": 32205.3, + "end": 32205.62, + "probability": 0.4797 + }, + { + "start": 32205.66, + "end": 32206.68, + "probability": 0.9278 + }, + { + "start": 32208.34, + "end": 32209.28, + "probability": 0.8673 + }, + { + "start": 32209.72, + "end": 32211.6, + "probability": 0.7432 + }, + { + "start": 32213.12, + "end": 32213.86, + "probability": 0.9505 + }, + { + "start": 32213.92, + "end": 32216.98, + "probability": 0.8284 + }, + { + "start": 32216.98, + "end": 32220.28, + "probability": 0.8837 + }, + { + "start": 32221.28, + "end": 32222.06, + "probability": 0.7558 + }, + { + "start": 32223.18, + "end": 32225.5, + "probability": 0.6731 + }, + { + "start": 32226.14, + "end": 32227.88, + "probability": 0.9781 + }, + { + "start": 32227.96, + "end": 32231.08, + "probability": 0.8655 + }, + { + "start": 32232.34, + "end": 32233.52, + "probability": 0.9809 + }, + { + "start": 32234.08, + "end": 32235.42, + "probability": 0.9917 + }, + { + "start": 32236.52, + "end": 32237.78, + "probability": 0.7872 + }, + { + "start": 32237.84, + "end": 32238.38, + "probability": 0.5644 + }, + { + "start": 32238.6, + "end": 32239.09, + "probability": 0.7974 + }, + { + "start": 32239.32, + "end": 32240.4, + "probability": 0.8196 + }, + { + "start": 32243.34, + "end": 32245.08, + "probability": 0.9485 + }, + { + "start": 32245.62, + "end": 32246.68, + "probability": 0.8884 + }, + { + "start": 32246.72, + "end": 32247.62, + "probability": 0.9028 + }, + { + "start": 32247.66, + "end": 32249.06, + "probability": 0.8693 + }, + { + "start": 32250.22, + "end": 32252.32, + "probability": 0.8471 + }, + { + "start": 32253.3, + "end": 32254.18, + "probability": 0.6939 + }, + { + "start": 32255.58, + "end": 32256.76, + "probability": 0.8248 + }, + { + "start": 32257.5, + "end": 32258.1, + "probability": 0.8914 + }, + { + "start": 32258.2, + "end": 32260.2, + "probability": 0.7998 + }, + { + "start": 32261.08, + "end": 32262.4, + "probability": 0.9637 + }, + { + "start": 32262.98, + "end": 32264.02, + "probability": 0.8122 + }, + { + "start": 32265.5, + "end": 32267.9, + "probability": 0.6928 + }, + { + "start": 32267.98, + "end": 32269.56, + "probability": 0.9667 + }, + { + "start": 32269.66, + "end": 32271.28, + "probability": 0.9952 + }, + { + "start": 32271.44, + "end": 32271.68, + "probability": 0.7315 + }, + { + "start": 32272.0, + "end": 32272.54, + "probability": 0.8567 + }, + { + "start": 32272.58, + "end": 32274.94, + "probability": 0.6694 + }, + { + "start": 32275.02, + "end": 32275.78, + "probability": 0.938 + }, + { + "start": 32275.9, + "end": 32276.96, + "probability": 0.6074 + }, + { + "start": 32278.76, + "end": 32279.44, + "probability": 0.4971 + }, + { + "start": 32281.1, + "end": 32283.1, + "probability": 0.6412 + }, + { + "start": 32284.02, + "end": 32286.8, + "probability": 0.7008 + }, + { + "start": 32287.92, + "end": 32289.74, + "probability": 0.7943 + }, + { + "start": 32289.86, + "end": 32290.7, + "probability": 0.822 + }, + { + "start": 32290.88, + "end": 32291.64, + "probability": 0.6011 + }, + { + "start": 32291.72, + "end": 32296.66, + "probability": 0.8243 + }, + { + "start": 32296.84, + "end": 32297.4, + "probability": 0.0337 + }, + { + "start": 32298.18, + "end": 32298.84, + "probability": 0.0586 + }, + { + "start": 32298.84, + "end": 32300.28, + "probability": 0.252 + }, + { + "start": 32300.3, + "end": 32301.28, + "probability": 0.7832 + }, + { + "start": 32301.38, + "end": 32303.88, + "probability": 0.9825 + }, + { + "start": 32303.94, + "end": 32306.5, + "probability": 0.7437 + }, + { + "start": 32306.68, + "end": 32307.48, + "probability": 0.4481 + }, + { + "start": 32307.48, + "end": 32308.06, + "probability": 0.2093 + }, + { + "start": 32309.4, + "end": 32313.04, + "probability": 0.3319 + }, + { + "start": 32313.04, + "end": 32313.04, + "probability": 0.0258 + }, + { + "start": 32313.04, + "end": 32313.04, + "probability": 0.0842 + }, + { + "start": 32313.04, + "end": 32314.11, + "probability": 0.7372 + }, + { + "start": 32315.64, + "end": 32318.7, + "probability": 0.6301 + }, + { + "start": 32318.82, + "end": 32323.76, + "probability": 0.5892 + }, + { + "start": 32324.84, + "end": 32324.84, + "probability": 0.1888 + }, + { + "start": 32324.84, + "end": 32324.84, + "probability": 0.1319 + }, + { + "start": 32324.84, + "end": 32325.36, + "probability": 0.3926 + }, + { + "start": 32326.8, + "end": 32329.08, + "probability": 0.5534 + }, + { + "start": 32329.16, + "end": 32330.02, + "probability": 0.8269 + }, + { + "start": 32330.18, + "end": 32331.06, + "probability": 0.7759 + }, + { + "start": 32331.36, + "end": 32335.7, + "probability": 0.7762 + }, + { + "start": 32335.78, + "end": 32337.26, + "probability": 0.9646 + }, + { + "start": 32338.36, + "end": 32340.24, + "probability": 0.9951 + }, + { + "start": 32341.48, + "end": 32341.76, + "probability": 0.894 + }, + { + "start": 32342.14, + "end": 32344.1, + "probability": 0.2172 + }, + { + "start": 32344.12, + "end": 32345.0, + "probability": 0.4425 + }, + { + "start": 32345.0, + "end": 32346.62, + "probability": 0.2972 + }, + { + "start": 32346.74, + "end": 32346.92, + "probability": 0.2606 + }, + { + "start": 32347.34, + "end": 32349.7, + "probability": 0.5859 + }, + { + "start": 32350.18, + "end": 32351.82, + "probability": 0.9866 + }, + { + "start": 32351.92, + "end": 32352.72, + "probability": 0.939 + }, + { + "start": 32352.76, + "end": 32355.06, + "probability": 0.8059 + }, + { + "start": 32355.1, + "end": 32356.24, + "probability": 0.8994 + }, + { + "start": 32356.74, + "end": 32358.06, + "probability": 0.7495 + }, + { + "start": 32359.04, + "end": 32362.18, + "probability": 0.9836 + }, + { + "start": 32363.0, + "end": 32364.26, + "probability": 0.9832 + }, + { + "start": 32365.14, + "end": 32367.28, + "probability": 0.7914 + }, + { + "start": 32367.84, + "end": 32369.48, + "probability": 0.9956 + }, + { + "start": 32369.58, + "end": 32371.12, + "probability": 0.9324 + }, + { + "start": 32371.6, + "end": 32373.02, + "probability": 0.9189 + }, + { + "start": 32373.18, + "end": 32374.36, + "probability": 0.8754 + }, + { + "start": 32374.98, + "end": 32376.22, + "probability": 0.9745 + }, + { + "start": 32376.28, + "end": 32377.76, + "probability": 0.9971 + }, + { + "start": 32377.86, + "end": 32380.06, + "probability": 0.7166 + }, + { + "start": 32380.26, + "end": 32382.84, + "probability": 0.3707 + }, + { + "start": 32382.88, + "end": 32383.62, + "probability": 0.5361 + }, + { + "start": 32383.74, + "end": 32384.4, + "probability": 0.8052 + }, + { + "start": 32384.64, + "end": 32385.76, + "probability": 0.1849 + }, + { + "start": 32385.86, + "end": 32387.02, + "probability": 0.7426 + }, + { + "start": 32387.04, + "end": 32387.5, + "probability": 0.588 + }, + { + "start": 32387.5, + "end": 32387.96, + "probability": 0.1495 + }, + { + "start": 32387.96, + "end": 32388.52, + "probability": 0.0026 + }, + { + "start": 32389.2, + "end": 32394.38, + "probability": 0.6235 + }, + { + "start": 32394.92, + "end": 32396.32, + "probability": 0.4288 + }, + { + "start": 32398.79, + "end": 32401.61, + "probability": 0.7826 + }, + { + "start": 32403.18, + "end": 32405.12, + "probability": 0.9936 + }, + { + "start": 32405.88, + "end": 32406.59, + "probability": 0.7676 + }, + { + "start": 32407.76, + "end": 32410.28, + "probability": 0.9832 + }, + { + "start": 32411.02, + "end": 32412.76, + "probability": 0.6403 + }, + { + "start": 32413.16, + "end": 32414.12, + "probability": 0.7048 + }, + { + "start": 32415.14, + "end": 32416.84, + "probability": 0.7686 + }, + { + "start": 32417.92, + "end": 32420.56, + "probability": 0.9656 + }, + { + "start": 32420.68, + "end": 32422.36, + "probability": 0.9891 + }, + { + "start": 32422.36, + "end": 32423.97, + "probability": 0.9053 + }, + { + "start": 32424.98, + "end": 32425.42, + "probability": 0.4609 + }, + { + "start": 32426.32, + "end": 32428.18, + "probability": 0.9972 + }, + { + "start": 32429.52, + "end": 32430.66, + "probability": 0.9369 + }, + { + "start": 32430.74, + "end": 32431.86, + "probability": 0.9669 + }, + { + "start": 32431.96, + "end": 32432.9, + "probability": 0.8452 + }, + { + "start": 32433.54, + "end": 32435.34, + "probability": 0.9917 + }, + { + "start": 32436.42, + "end": 32439.62, + "probability": 0.998 + }, + { + "start": 32439.62, + "end": 32442.54, + "probability": 0.9951 + }, + { + "start": 32443.42, + "end": 32444.06, + "probability": 0.9938 + }, + { + "start": 32445.12, + "end": 32445.5, + "probability": 0.8296 + }, + { + "start": 32446.22, + "end": 32446.84, + "probability": 0.9658 + }, + { + "start": 32447.94, + "end": 32448.98, + "probability": 0.9053 + }, + { + "start": 32450.12, + "end": 32453.42, + "probability": 0.9839 + }, + { + "start": 32454.46, + "end": 32455.9, + "probability": 0.9966 + }, + { + "start": 32456.62, + "end": 32461.74, + "probability": 0.9981 + }, + { + "start": 32462.54, + "end": 32462.92, + "probability": 0.4687 + }, + { + "start": 32464.32, + "end": 32466.66, + "probability": 0.9946 + }, + { + "start": 32466.74, + "end": 32469.22, + "probability": 0.991 + }, + { + "start": 32469.32, + "end": 32469.8, + "probability": 0.7291 + }, + { + "start": 32470.18, + "end": 32471.24, + "probability": 0.9824 + }, + { + "start": 32471.3, + "end": 32473.08, + "probability": 0.9922 + }, + { + "start": 32473.98, + "end": 32475.9, + "probability": 0.9019 + }, + { + "start": 32476.06, + "end": 32477.18, + "probability": 0.9381 + }, + { + "start": 32477.86, + "end": 32480.36, + "probability": 0.9775 + }, + { + "start": 32481.08, + "end": 32481.38, + "probability": 0.7855 + }, + { + "start": 32482.14, + "end": 32482.84, + "probability": 0.7565 + }, + { + "start": 32483.0, + "end": 32488.1, + "probability": 0.8448 + }, + { + "start": 32491.44, + "end": 32492.96, + "probability": 0.9559 + }, + { + "start": 32493.68, + "end": 32496.6, + "probability": 0.0453 + }, + { + "start": 32496.6, + "end": 32497.18, + "probability": 0.4525 + }, + { + "start": 32497.66, + "end": 32498.54, + "probability": 0.3948 + }, + { + "start": 32498.64, + "end": 32499.06, + "probability": 0.2089 + }, + { + "start": 32499.06, + "end": 32500.12, + "probability": 0.3027 + }, + { + "start": 32500.14, + "end": 32500.84, + "probability": 0.0315 + }, + { + "start": 32501.6, + "end": 32503.89, + "probability": 0.8769 + }, + { + "start": 32504.38, + "end": 32504.62, + "probability": 0.4263 + }, + { + "start": 32505.8, + "end": 32508.08, + "probability": 0.3994 + }, + { + "start": 32508.08, + "end": 32508.34, + "probability": 0.2494 + }, + { + "start": 32508.34, + "end": 32509.18, + "probability": 0.0125 + }, + { + "start": 32509.18, + "end": 32509.3, + "probability": 0.1733 + }, + { + "start": 32509.3, + "end": 32509.76, + "probability": 0.064 + }, + { + "start": 32509.76, + "end": 32510.32, + "probability": 0.2829 + }, + { + "start": 32511.14, + "end": 32512.18, + "probability": 0.1576 + }, + { + "start": 32512.3, + "end": 32514.18, + "probability": 0.7634 + }, + { + "start": 32514.28, + "end": 32516.36, + "probability": 0.2502 + }, + { + "start": 32516.66, + "end": 32517.26, + "probability": 0.081 + }, + { + "start": 32517.64, + "end": 32520.7, + "probability": 0.5265 + }, + { + "start": 32521.57, + "end": 32523.7, + "probability": 0.6765 + }, + { + "start": 32524.47, + "end": 32525.3, + "probability": 0.6274 + }, + { + "start": 32527.44, + "end": 32528.6, + "probability": 0.4126 + }, + { + "start": 32528.98, + "end": 32531.55, + "probability": 0.6135 + }, + { + "start": 32533.22, + "end": 32534.88, + "probability": 0.8782 + }, + { + "start": 32535.0, + "end": 32537.52, + "probability": 0.5932 + }, + { + "start": 32537.68, + "end": 32538.3, + "probability": 0.5833 + }, + { + "start": 32538.3, + "end": 32538.3, + "probability": 0.5732 + }, + { + "start": 32538.34, + "end": 32539.28, + "probability": 0.3965 + }, + { + "start": 32539.3, + "end": 32540.9, + "probability": 0.5681 + }, + { + "start": 32541.02, + "end": 32542.32, + "probability": 0.7299 + }, + { + "start": 32544.74, + "end": 32544.86, + "probability": 0.1422 + }, + { + "start": 32544.92, + "end": 32546.42, + "probability": 0.9951 + }, + { + "start": 32546.72, + "end": 32547.18, + "probability": 0.8586 + }, + { + "start": 32547.92, + "end": 32548.62, + "probability": 0.6187 + }, + { + "start": 32549.36, + "end": 32551.46, + "probability": 0.9409 + }, + { + "start": 32551.56, + "end": 32556.66, + "probability": 0.9624 + }, + { + "start": 32557.94, + "end": 32562.64, + "probability": 0.9907 + }, + { + "start": 32562.64, + "end": 32567.98, + "probability": 0.9712 + }, + { + "start": 32568.26, + "end": 32569.02, + "probability": 0.9567 + }, + { + "start": 32569.82, + "end": 32573.2, + "probability": 0.972 + }, + { + "start": 32573.2, + "end": 32576.5, + "probability": 0.984 + }, + { + "start": 32577.48, + "end": 32579.88, + "probability": 0.9854 + }, + { + "start": 32579.88, + "end": 32583.04, + "probability": 0.9954 + }, + { + "start": 32583.82, + "end": 32589.58, + "probability": 0.9884 + }, + { + "start": 32590.24, + "end": 32595.38, + "probability": 0.7339 + }, + { + "start": 32596.44, + "end": 32599.58, + "probability": 0.9777 + }, + { + "start": 32600.28, + "end": 32602.7, + "probability": 0.8242 + }, + { + "start": 32602.72, + "end": 32608.36, + "probability": 0.958 + }, + { + "start": 32609.3, + "end": 32611.8, + "probability": 0.9495 + }, + { + "start": 32611.98, + "end": 32616.08, + "probability": 0.8964 + }, + { + "start": 32616.96, + "end": 32622.06, + "probability": 0.878 + }, + { + "start": 32622.18, + "end": 32627.6, + "probability": 0.9798 + }, + { + "start": 32628.5, + "end": 32631.06, + "probability": 0.9772 + }, + { + "start": 32631.62, + "end": 32636.16, + "probability": 0.9803 + }, + { + "start": 32636.68, + "end": 32642.52, + "probability": 0.9845 + }, + { + "start": 32643.48, + "end": 32647.12, + "probability": 0.9598 + }, + { + "start": 32647.84, + "end": 32651.72, + "probability": 0.9421 + }, + { + "start": 32652.02, + "end": 32658.64, + "probability": 0.8342 + }, + { + "start": 32659.2, + "end": 32660.98, + "probability": 0.9575 + }, + { + "start": 32661.84, + "end": 32664.2, + "probability": 0.7755 + }, + { + "start": 32664.56, + "end": 32664.92, + "probability": 0.9006 + }, + { + "start": 32665.62, + "end": 32666.8, + "probability": 0.9818 + }, + { + "start": 32667.6, + "end": 32668.36, + "probability": 0.727 + }, + { + "start": 32669.76, + "end": 32672.6, + "probability": 0.9943 + }, + { + "start": 32673.56, + "end": 32678.18, + "probability": 0.9556 + }, + { + "start": 32678.84, + "end": 32682.68, + "probability": 0.9922 + }, + { + "start": 32683.82, + "end": 32686.38, + "probability": 0.9036 + }, + { + "start": 32687.0, + "end": 32687.84, + "probability": 0.9033 + }, + { + "start": 32688.52, + "end": 32689.22, + "probability": 0.821 + }, + { + "start": 32690.24, + "end": 32691.56, + "probability": 0.6337 + }, + { + "start": 32692.12, + "end": 32693.44, + "probability": 0.6981 + }, + { + "start": 32694.1, + "end": 32695.84, + "probability": 0.7114 + }, + { + "start": 32695.94, + "end": 32698.4, + "probability": 0.8574 + }, + { + "start": 32700.12, + "end": 32704.66, + "probability": 0.9925 + }, + { + "start": 32705.28, + "end": 32706.42, + "probability": 0.8371 + }, + { + "start": 32706.6, + "end": 32707.26, + "probability": 0.5315 + }, + { + "start": 32707.4, + "end": 32707.9, + "probability": 0.8686 + }, + { + "start": 32708.0, + "end": 32709.5, + "probability": 0.358 + }, + { + "start": 32709.52, + "end": 32711.78, + "probability": 0.7059 + }, + { + "start": 32712.34, + "end": 32715.48, + "probability": 0.8136 + }, + { + "start": 32716.1, + "end": 32717.18, + "probability": 0.9703 + }, + { + "start": 32717.52, + "end": 32718.52, + "probability": 0.8972 + }, + { + "start": 32718.78, + "end": 32719.5, + "probability": 0.8698 + }, + { + "start": 32719.54, + "end": 32720.8, + "probability": 0.6595 + }, + { + "start": 32721.9, + "end": 32723.88, + "probability": 0.6699 + }, + { + "start": 32724.06, + "end": 32724.62, + "probability": 0.8473 + }, + { + "start": 32724.98, + "end": 32727.32, + "probability": 0.9795 + }, + { + "start": 32727.86, + "end": 32730.56, + "probability": 0.9466 + }, + { + "start": 32731.44, + "end": 32735.38, + "probability": 0.9542 + }, + { + "start": 32735.9, + "end": 32737.04, + "probability": 0.6284 + }, + { + "start": 32737.72, + "end": 32739.82, + "probability": 0.9886 + }, + { + "start": 32739.88, + "end": 32742.06, + "probability": 0.3796 + }, + { + "start": 32742.98, + "end": 32744.72, + "probability": 0.509 + }, + { + "start": 32744.78, + "end": 32745.74, + "probability": 0.7346 + }, + { + "start": 32745.88, + "end": 32747.86, + "probability": 0.9794 + }, + { + "start": 32748.28, + "end": 32748.96, + "probability": 0.9226 + }, + { + "start": 32749.3, + "end": 32751.98, + "probability": 0.7444 + }, + { + "start": 32752.64, + "end": 32753.04, + "probability": 0.3379 + }, + { + "start": 32753.04, + "end": 32754.82, + "probability": 0.8169 + }, + { + "start": 32755.12, + "end": 32757.02, + "probability": 0.8602 + }, + { + "start": 32758.0, + "end": 32762.4, + "probability": 0.3237 + }, + { + "start": 32763.14, + "end": 32763.82, + "probability": 0.9069 + }, + { + "start": 32764.34, + "end": 32768.18, + "probability": 0.777 + }, + { + "start": 32768.38, + "end": 32769.51, + "probability": 0.0638 + }, + { + "start": 32769.98, + "end": 32771.1, + "probability": 0.0293 + }, + { + "start": 32771.1, + "end": 32771.1, + "probability": 0.1083 + }, + { + "start": 32771.1, + "end": 32772.3, + "probability": 0.7987 + }, + { + "start": 32772.48, + "end": 32773.7, + "probability": 0.9604 + }, + { + "start": 32774.18, + "end": 32775.46, + "probability": 0.4965 + }, + { + "start": 32775.62, + "end": 32776.02, + "probability": 0.4914 + }, + { + "start": 32776.02, + "end": 32776.52, + "probability": 0.8701 + }, + { + "start": 32777.38, + "end": 32780.08, + "probability": 0.9948 + }, + { + "start": 32780.74, + "end": 32782.26, + "probability": 0.9695 + }, + { + "start": 32782.52, + "end": 32784.96, + "probability": 0.9845 + }, + { + "start": 32785.06, + "end": 32786.83, + "probability": 0.8252 + }, + { + "start": 32787.4, + "end": 32789.38, + "probability": 0.9381 + }, + { + "start": 32789.58, + "end": 32791.98, + "probability": 0.5107 + }, + { + "start": 32792.58, + "end": 32793.0, + "probability": 0.6238 + }, + { + "start": 32793.54, + "end": 32793.78, + "probability": 0.6977 + }, + { + "start": 32794.26, + "end": 32797.35, + "probability": 0.853 + }, + { + "start": 32798.6, + "end": 32798.96, + "probability": 0.039 + }, + { + "start": 32798.96, + "end": 32799.22, + "probability": 0.5335 + }, + { + "start": 32799.52, + "end": 32803.5, + "probability": 0.6553 + }, + { + "start": 32803.62, + "end": 32805.02, + "probability": 0.991 + }, + { + "start": 32806.38, + "end": 32809.96, + "probability": 0.9657 + }, + { + "start": 32810.56, + "end": 32810.93, + "probability": 0.1816 + }, + { + "start": 32811.2, + "end": 32811.94, + "probability": 0.7395 + }, + { + "start": 32812.06, + "end": 32813.2, + "probability": 0.418 + }, + { + "start": 32813.2, + "end": 32816.46, + "probability": 0.8718 + }, + { + "start": 32817.28, + "end": 32819.74, + "probability": 0.988 + }, + { + "start": 32820.26, + "end": 32823.62, + "probability": 0.9929 + }, + { + "start": 32824.42, + "end": 32829.3, + "probability": 0.89 + }, + { + "start": 32829.48, + "end": 32833.38, + "probability": 0.8563 + }, + { + "start": 32834.38, + "end": 32836.16, + "probability": 0.9292 + }, + { + "start": 32837.02, + "end": 32837.78, + "probability": 0.8751 + }, + { + "start": 32838.5, + "end": 32839.42, + "probability": 0.325 + }, + { + "start": 32839.78, + "end": 32839.78, + "probability": 0.0412 + }, + { + "start": 32839.94, + "end": 32841.77, + "probability": 0.5063 + }, + { + "start": 32842.28, + "end": 32843.66, + "probability": 0.6045 + }, + { + "start": 32844.36, + "end": 32846.35, + "probability": 0.7607 + }, + { + "start": 32846.98, + "end": 32850.42, + "probability": 0.8809 + }, + { + "start": 32850.72, + "end": 32854.34, + "probability": 0.9915 + }, + { + "start": 32854.34, + "end": 32859.94, + "probability": 0.9986 + }, + { + "start": 32860.8, + "end": 32861.74, + "probability": 0.7378 + }, + { + "start": 32862.44, + "end": 32864.03, + "probability": 0.999 + }, + { + "start": 32864.64, + "end": 32867.1, + "probability": 0.9695 + }, + { + "start": 32867.5, + "end": 32869.38, + "probability": 0.9493 + }, + { + "start": 32870.16, + "end": 32871.3, + "probability": 0.1766 + }, + { + "start": 32871.7, + "end": 32873.5, + "probability": 0.9731 + }, + { + "start": 32873.8, + "end": 32878.3, + "probability": 0.9943 + }, + { + "start": 32878.3, + "end": 32880.56, + "probability": 0.9462 + }, + { + "start": 32880.56, + "end": 32882.48, + "probability": 0.1213 + }, + { + "start": 32882.52, + "end": 32884.26, + "probability": 0.7808 + }, + { + "start": 32884.32, + "end": 32886.2, + "probability": 0.4667 + }, + { + "start": 32886.2, + "end": 32886.38, + "probability": 0.4188 + }, + { + "start": 32886.64, + "end": 32889.1, + "probability": 0.0799 + }, + { + "start": 32889.48, + "end": 32890.1, + "probability": 0.6623 + }, + { + "start": 32890.1, + "end": 32894.34, + "probability": 0.9892 + }, + { + "start": 32895.2, + "end": 32901.38, + "probability": 0.7453 + }, + { + "start": 32901.58, + "end": 32902.04, + "probability": 0.8254 + }, + { + "start": 32904.08, + "end": 32908.9, + "probability": 0.8362 + }, + { + "start": 32908.9, + "end": 32916.22, + "probability": 0.9907 + }, + { + "start": 32916.8, + "end": 32921.86, + "probability": 0.9513 + }, + { + "start": 32921.86, + "end": 32928.34, + "probability": 0.9962 + }, + { + "start": 32928.34, + "end": 32934.58, + "probability": 0.9973 + }, + { + "start": 32935.28, + "end": 32935.9, + "probability": 0.585 + }, + { + "start": 32936.44, + "end": 32938.22, + "probability": 0.548 + }, + { + "start": 32938.32, + "end": 32942.2, + "probability": 0.9832 + }, + { + "start": 32942.82, + "end": 32949.06, + "probability": 0.9866 + }, + { + "start": 32949.06, + "end": 32954.06, + "probability": 0.9506 + }, + { + "start": 32955.28, + "end": 32963.8, + "probability": 0.8613 + }, + { + "start": 32963.86, + "end": 32969.14, + "probability": 0.9974 + }, + { + "start": 32969.46, + "end": 32972.04, + "probability": 0.9849 + }, + { + "start": 32972.6, + "end": 32976.72, + "probability": 0.9968 + }, + { + "start": 32977.54, + "end": 32978.16, + "probability": 0.8391 + }, + { + "start": 32979.36, + "end": 32982.74, + "probability": 0.9374 + }, + { + "start": 32983.54, + "end": 32985.54, + "probability": 0.9628 + }, + { + "start": 32985.7, + "end": 32988.62, + "probability": 0.9949 + }, + { + "start": 32988.7, + "end": 32989.12, + "probability": 0.1939 + }, + { + "start": 32989.41, + "end": 32990.24, + "probability": 0.233 + }, + { + "start": 32990.6, + "end": 32995.78, + "probability": 0.9339 + }, + { + "start": 32996.1, + "end": 32997.52, + "probability": 0.8446 + }, + { + "start": 32997.74, + "end": 32999.08, + "probability": 0.4099 + }, + { + "start": 32999.72, + "end": 33003.48, + "probability": 0.7635 + }, + { + "start": 33004.38, + "end": 33006.34, + "probability": 0.1169 + }, + { + "start": 33007.04, + "end": 33007.84, + "probability": 0.2245 + }, + { + "start": 33007.86, + "end": 33009.3, + "probability": 0.7051 + }, + { + "start": 33009.58, + "end": 33011.24, + "probability": 0.4215 + }, + { + "start": 33011.26, + "end": 33011.62, + "probability": 0.132 + }, + { + "start": 33012.22, + "end": 33012.72, + "probability": 0.9492 + }, + { + "start": 33014.84, + "end": 33018.64, + "probability": 0.5106 + }, + { + "start": 33019.52, + "end": 33020.12, + "probability": 0.0155 + }, + { + "start": 33020.12, + "end": 33020.12, + "probability": 0.045 + }, + { + "start": 33020.12, + "end": 33024.22, + "probability": 0.7852 + }, + { + "start": 33024.22, + "end": 33028.34, + "probability": 0.8691 + }, + { + "start": 33028.52, + "end": 33033.3, + "probability": 0.9423 + }, + { + "start": 33033.7, + "end": 33038.1, + "probability": 0.927 + }, + { + "start": 33038.6, + "end": 33038.9, + "probability": 0.5019 + }, + { + "start": 33039.42, + "end": 33043.96, + "probability": 0.9968 + }, + { + "start": 33044.37, + "end": 33049.88, + "probability": 0.9561 + }, + { + "start": 33051.3, + "end": 33054.76, + "probability": 0.996 + }, + { + "start": 33055.46, + "end": 33061.14, + "probability": 0.994 + }, + { + "start": 33061.76, + "end": 33065.42, + "probability": 0.9893 + }, + { + "start": 33067.18, + "end": 33071.28, + "probability": 0.9434 + }, + { + "start": 33071.32, + "end": 33078.4, + "probability": 0.9851 + }, + { + "start": 33079.18, + "end": 33082.3, + "probability": 0.7839 + }, + { + "start": 33082.98, + "end": 33084.38, + "probability": 0.9705 + }, + { + "start": 33084.92, + "end": 33087.56, + "probability": 0.9016 + }, + { + "start": 33088.42, + "end": 33094.4, + "probability": 0.9928 + }, + { + "start": 33095.06, + "end": 33097.44, + "probability": 0.9263 + }, + { + "start": 33099.08, + "end": 33101.16, + "probability": 0.6562 + }, + { + "start": 33102.22, + "end": 33104.3, + "probability": 0.8862 + }, + { + "start": 33105.06, + "end": 33106.44, + "probability": 0.8063 + }, + { + "start": 33107.18, + "end": 33109.46, + "probability": 0.8431 + }, + { + "start": 33112.9, + "end": 33113.16, + "probability": 0.4578 + }, + { + "start": 33114.08, + "end": 33115.64, + "probability": 0.8975 + }, + { + "start": 33116.36, + "end": 33121.52, + "probability": 0.7567 + }, + { + "start": 33123.02, + "end": 33126.54, + "probability": 0.9675 + }, + { + "start": 33127.02, + "end": 33130.26, + "probability": 0.9591 + }, + { + "start": 33130.98, + "end": 33137.04, + "probability": 0.9884 + }, + { + "start": 33137.28, + "end": 33138.92, + "probability": 0.9092 + }, + { + "start": 33140.56, + "end": 33141.9, + "probability": 0.9468 + }, + { + "start": 33142.46, + "end": 33143.52, + "probability": 0.9644 + }, + { + "start": 33144.12, + "end": 33147.4, + "probability": 0.6261 + }, + { + "start": 33148.1, + "end": 33151.48, + "probability": 0.8504 + }, + { + "start": 33152.26, + "end": 33156.42, + "probability": 0.9914 + }, + { + "start": 33156.86, + "end": 33159.36, + "probability": 0.9829 + }, + { + "start": 33160.58, + "end": 33161.6, + "probability": 0.0309 + }, + { + "start": 33162.85, + "end": 33163.76, + "probability": 0.0211 + }, + { + "start": 33163.76, + "end": 33164.39, + "probability": 0.289 + }, + { + "start": 33165.04, + "end": 33166.18, + "probability": 0.6874 + }, + { + "start": 33166.2, + "end": 33167.42, + "probability": 0.139 + }, + { + "start": 33167.54, + "end": 33169.46, + "probability": 0.0591 + }, + { + "start": 33169.86, + "end": 33171.68, + "probability": 0.2995 + }, + { + "start": 33172.09, + "end": 33174.52, + "probability": 0.1171 + }, + { + "start": 33174.94, + "end": 33177.35, + "probability": 0.2524 + }, + { + "start": 33177.66, + "end": 33177.94, + "probability": 0.4042 + }, + { + "start": 33178.02, + "end": 33178.94, + "probability": 0.1604 + }, + { + "start": 33179.02, + "end": 33180.56, + "probability": 0.8879 + }, + { + "start": 33180.78, + "end": 33181.9, + "probability": 0.2188 + }, + { + "start": 33182.14, + "end": 33185.44, + "probability": 0.732 + }, + { + "start": 33185.44, + "end": 33186.86, + "probability": 0.4997 + }, + { + "start": 33187.98, + "end": 33188.52, + "probability": 0.0911 + }, + { + "start": 33188.52, + "end": 33188.52, + "probability": 0.0038 + }, + { + "start": 33188.52, + "end": 33188.52, + "probability": 0.023 + }, + { + "start": 33188.52, + "end": 33189.43, + "probability": 0.1616 + }, + { + "start": 33189.88, + "end": 33190.8, + "probability": 0.7291 + }, + { + "start": 33191.06, + "end": 33193.18, + "probability": 0.8698 + }, + { + "start": 33193.32, + "end": 33193.54, + "probability": 0.2635 + }, + { + "start": 33194.14, + "end": 33195.12, + "probability": 0.4887 + }, + { + "start": 33195.16, + "end": 33199.84, + "probability": 0.5206 + }, + { + "start": 33199.96, + "end": 33200.64, + "probability": 0.6446 + }, + { + "start": 33201.44, + "end": 33201.66, + "probability": 0.4931 + }, + { + "start": 33203.1, + "end": 33203.12, + "probability": 0.3416 + }, + { + "start": 33203.12, + "end": 33206.38, + "probability": 0.9663 + }, + { + "start": 33211.46, + "end": 33212.66, + "probability": 0.7298 + }, + { + "start": 33213.28, + "end": 33218.96, + "probability": 0.7665 + }, + { + "start": 33222.74, + "end": 33222.74, + "probability": 0.116 + }, + { + "start": 33222.74, + "end": 33224.5, + "probability": 0.0473 + }, + { + "start": 33224.5, + "end": 33225.13, + "probability": 0.1638 + }, + { + "start": 33225.44, + "end": 33226.4, + "probability": 0.7188 + }, + { + "start": 33227.08, + "end": 33227.64, + "probability": 0.8268 + }, + { + "start": 33228.08, + "end": 33228.64, + "probability": 0.738 + }, + { + "start": 33228.7, + "end": 33231.62, + "probability": 0.3201 + }, + { + "start": 33232.44, + "end": 33235.58, + "probability": 0.9473 + }, + { + "start": 33235.7, + "end": 33238.92, + "probability": 0.5592 + }, + { + "start": 33239.08, + "end": 33243.98, + "probability": 0.7856 + }, + { + "start": 33245.06, + "end": 33246.56, + "probability": 0.4283 + }, + { + "start": 33246.86, + "end": 33248.26, + "probability": 0.7944 + }, + { + "start": 33248.96, + "end": 33249.8, + "probability": 0.5402 + }, + { + "start": 33250.34, + "end": 33251.28, + "probability": 0.7018 + }, + { + "start": 33254.63, + "end": 33257.3, + "probability": 0.7141 + }, + { + "start": 33258.1, + "end": 33258.92, + "probability": 0.8715 + }, + { + "start": 33259.92, + "end": 33260.4, + "probability": 0.8372 + }, + { + "start": 33260.52, + "end": 33263.3, + "probability": 0.7407 + }, + { + "start": 33264.54, + "end": 33266.78, + "probability": 0.9241 + }, + { + "start": 33267.72, + "end": 33272.54, + "probability": 0.995 + }, + { + "start": 33273.24, + "end": 33274.26, + "probability": 0.9688 + }, + { + "start": 33275.76, + "end": 33278.46, + "probability": 0.563 + }, + { + "start": 33278.6, + "end": 33279.12, + "probability": 0.9596 + }, + { + "start": 33280.46, + "end": 33281.74, + "probability": 0.8467 + }, + { + "start": 33282.42, + "end": 33284.32, + "probability": 0.9697 + }, + { + "start": 33284.92, + "end": 33286.12, + "probability": 0.9031 + }, + { + "start": 33286.68, + "end": 33288.42, + "probability": 0.5239 + }, + { + "start": 33289.14, + "end": 33290.22, + "probability": 0.7177 + }, + { + "start": 33290.88, + "end": 33294.72, + "probability": 0.975 + }, + { + "start": 33294.72, + "end": 33298.92, + "probability": 0.8723 + }, + { + "start": 33299.94, + "end": 33304.6, + "probability": 0.9758 + }, + { + "start": 33305.16, + "end": 33308.22, + "probability": 0.9624 + }, + { + "start": 33308.56, + "end": 33310.1, + "probability": 0.9685 + }, + { + "start": 33311.32, + "end": 33314.04, + "probability": 0.7014 + }, + { + "start": 33314.84, + "end": 33317.49, + "probability": 0.5849 + }, + { + "start": 33318.46, + "end": 33321.06, + "probability": 0.6984 + }, + { + "start": 33322.3, + "end": 33325.1, + "probability": 0.8621 + }, + { + "start": 33325.7, + "end": 33327.9, + "probability": 0.6685 + }, + { + "start": 33328.4, + "end": 33333.14, + "probability": 0.9832 + }, + { + "start": 33334.02, + "end": 33338.4, + "probability": 0.9847 + }, + { + "start": 33339.14, + "end": 33339.93, + "probability": 0.9347 + }, + { + "start": 33340.4, + "end": 33341.7, + "probability": 0.6922 + }, + { + "start": 33341.74, + "end": 33342.38, + "probability": 0.5759 + }, + { + "start": 33342.54, + "end": 33343.16, + "probability": 0.906 + }, + { + "start": 33343.72, + "end": 33346.52, + "probability": 0.6944 + }, + { + "start": 33346.68, + "end": 33349.72, + "probability": 0.9524 + }, + { + "start": 33350.96, + "end": 33354.22, + "probability": 0.9939 + }, + { + "start": 33355.04, + "end": 33357.02, + "probability": 0.733 + }, + { + "start": 33357.66, + "end": 33359.88, + "probability": 0.8779 + }, + { + "start": 33360.4, + "end": 33363.74, + "probability": 0.9884 + }, + { + "start": 33364.44, + "end": 33367.26, + "probability": 0.9863 + }, + { + "start": 33367.32, + "end": 33370.38, + "probability": 0.9911 + }, + { + "start": 33370.52, + "end": 33371.48, + "probability": 0.7523 + }, + { + "start": 33372.18, + "end": 33375.12, + "probability": 0.9595 + }, + { + "start": 33375.74, + "end": 33379.5, + "probability": 0.9724 + }, + { + "start": 33380.08, + "end": 33383.3, + "probability": 0.804 + }, + { + "start": 33383.3, + "end": 33386.86, + "probability": 0.9894 + }, + { + "start": 33387.44, + "end": 33390.92, + "probability": 0.9963 + }, + { + "start": 33390.92, + "end": 33394.76, + "probability": 0.9163 + }, + { + "start": 33394.86, + "end": 33398.44, + "probability": 0.9507 + }, + { + "start": 33398.7, + "end": 33401.82, + "probability": 0.9904 + }, + { + "start": 33402.2, + "end": 33404.4, + "probability": 0.9858 + }, + { + "start": 33405.42, + "end": 33406.18, + "probability": 0.9779 + }, + { + "start": 33406.9, + "end": 33407.7, + "probability": 0.5373 + }, + { + "start": 33407.94, + "end": 33412.5, + "probability": 0.9414 + }, + { + "start": 33413.16, + "end": 33416.9, + "probability": 0.8869 + }, + { + "start": 33417.9, + "end": 33419.11, + "probability": 0.9849 + }, + { + "start": 33419.96, + "end": 33421.8, + "probability": 0.8055 + }, + { + "start": 33421.88, + "end": 33422.3, + "probability": 0.7904 + }, + { + "start": 33422.38, + "end": 33422.68, + "probability": 0.6243 + }, + { + "start": 33423.78, + "end": 33424.74, + "probability": 0.8003 + }, + { + "start": 33425.36, + "end": 33427.96, + "probability": 0.708 + }, + { + "start": 33428.82, + "end": 33430.7, + "probability": 0.8773 + }, + { + "start": 33431.46, + "end": 33433.46, + "probability": 0.9945 + }, + { + "start": 33434.24, + "end": 33436.24, + "probability": 0.9989 + }, + { + "start": 33436.84, + "end": 33441.84, + "probability": 0.9622 + }, + { + "start": 33442.68, + "end": 33445.72, + "probability": 0.9843 + }, + { + "start": 33446.36, + "end": 33449.68, + "probability": 0.9953 + }, + { + "start": 33450.54, + "end": 33454.02, + "probability": 0.9917 + }, + { + "start": 33454.02, + "end": 33456.52, + "probability": 0.9164 + }, + { + "start": 33457.24, + "end": 33461.38, + "probability": 0.956 + }, + { + "start": 33461.98, + "end": 33467.1, + "probability": 0.9331 + }, + { + "start": 33467.9, + "end": 33469.38, + "probability": 0.8733 + }, + { + "start": 33469.94, + "end": 33473.98, + "probability": 0.9961 + }, + { + "start": 33474.58, + "end": 33480.6, + "probability": 0.9955 + }, + { + "start": 33481.0, + "end": 33483.32, + "probability": 0.819 + }, + { + "start": 33483.38, + "end": 33483.84, + "probability": 0.4936 + }, + { + "start": 33483.88, + "end": 33484.0, + "probability": 0.8019 + }, + { + "start": 33484.7, + "end": 33485.26, + "probability": 0.555 + }, + { + "start": 33485.3, + "end": 33486.36, + "probability": 0.8167 + }, + { + "start": 33486.4, + "end": 33489.76, + "probability": 0.6549 + }, + { + "start": 33504.2, + "end": 33504.96, + "probability": 0.4833 + }, + { + "start": 33505.52, + "end": 33506.78, + "probability": 0.6714 + }, + { + "start": 33507.4, + "end": 33510.34, + "probability": 0.916 + }, + { + "start": 33510.9, + "end": 33512.74, + "probability": 0.9634 + }, + { + "start": 33512.76, + "end": 33516.24, + "probability": 0.9546 + }, + { + "start": 33516.24, + "end": 33520.8, + "probability": 0.8446 + }, + { + "start": 33520.88, + "end": 33521.4, + "probability": 0.8391 + }, + { + "start": 33521.68, + "end": 33522.66, + "probability": 0.8316 + }, + { + "start": 33523.48, + "end": 33523.86, + "probability": 0.9092 + }, + { + "start": 33524.18, + "end": 33527.54, + "probability": 0.9673 + }, + { + "start": 33527.94, + "end": 33532.26, + "probability": 0.9961 + }, + { + "start": 33532.66, + "end": 33534.84, + "probability": 0.9762 + }, + { + "start": 33535.06, + "end": 33537.46, + "probability": 0.809 + }, + { + "start": 33537.88, + "end": 33542.28, + "probability": 0.9287 + }, + { + "start": 33543.22, + "end": 33547.7, + "probability": 0.9863 + }, + { + "start": 33547.8, + "end": 33548.8, + "probability": 0.748 + }, + { + "start": 33549.16, + "end": 33550.44, + "probability": 0.9604 + }, + { + "start": 33550.52, + "end": 33553.94, + "probability": 0.998 + }, + { + "start": 33554.34, + "end": 33555.2, + "probability": 0.7201 + }, + { + "start": 33555.34, + "end": 33556.8, + "probability": 0.9772 + }, + { + "start": 33557.12, + "end": 33558.2, + "probability": 0.9566 + }, + { + "start": 33558.62, + "end": 33562.12, + "probability": 0.9736 + }, + { + "start": 33562.22, + "end": 33566.98, + "probability": 0.9489 + }, + { + "start": 33567.88, + "end": 33573.32, + "probability": 0.9956 + }, + { + "start": 33573.32, + "end": 33577.38, + "probability": 0.989 + }, + { + "start": 33577.84, + "end": 33579.2, + "probability": 0.9969 + }, + { + "start": 33579.32, + "end": 33582.34, + "probability": 0.9976 + }, + { + "start": 33583.14, + "end": 33586.02, + "probability": 0.9888 + }, + { + "start": 33586.84, + "end": 33592.88, + "probability": 0.9547 + }, + { + "start": 33593.54, + "end": 33595.94, + "probability": 0.7363 + }, + { + "start": 33596.4, + "end": 33597.92, + "probability": 0.7383 + }, + { + "start": 33598.2, + "end": 33602.34, + "probability": 0.9935 + }, + { + "start": 33602.44, + "end": 33603.84, + "probability": 0.7243 + }, + { + "start": 33603.92, + "end": 33610.08, + "probability": 0.9768 + }, + { + "start": 33611.04, + "end": 33614.8, + "probability": 0.9598 + }, + { + "start": 33616.02, + "end": 33616.28, + "probability": 0.0452 + }, + { + "start": 33616.7, + "end": 33617.59, + "probability": 0.8979 + }, + { + "start": 33618.1, + "end": 33619.54, + "probability": 0.6884 + }, + { + "start": 33620.24, + "end": 33623.68, + "probability": 0.9256 + }, + { + "start": 33624.36, + "end": 33627.96, + "probability": 0.993 + }, + { + "start": 33628.04, + "end": 33633.08, + "probability": 0.983 + }, + { + "start": 33633.2, + "end": 33635.56, + "probability": 0.8871 + }, + { + "start": 33636.0, + "end": 33638.26, + "probability": 0.9243 + }, + { + "start": 33638.9, + "end": 33641.56, + "probability": 0.9891 + }, + { + "start": 33641.56, + "end": 33644.44, + "probability": 0.8664 + }, + { + "start": 33644.9, + "end": 33649.98, + "probability": 0.7515 + }, + { + "start": 33651.08, + "end": 33653.36, + "probability": 0.6844 + }, + { + "start": 33654.9, + "end": 33658.7, + "probability": 0.9013 + }, + { + "start": 33659.58, + "end": 33662.29, + "probability": 0.9707 + }, + { + "start": 33663.02, + "end": 33666.5, + "probability": 0.785 + }, + { + "start": 33666.66, + "end": 33669.24, + "probability": 0.8973 + }, + { + "start": 33669.66, + "end": 33673.72, + "probability": 0.9214 + }, + { + "start": 33673.72, + "end": 33678.12, + "probability": 0.9878 + }, + { + "start": 33678.62, + "end": 33683.46, + "probability": 0.9672 + }, + { + "start": 33684.12, + "end": 33685.3, + "probability": 0.887 + }, + { + "start": 33685.64, + "end": 33686.46, + "probability": 0.83 + }, + { + "start": 33686.82, + "end": 33688.6, + "probability": 0.9972 + }, + { + "start": 33688.68, + "end": 33693.32, + "probability": 0.9558 + }, + { + "start": 33693.86, + "end": 33698.04, + "probability": 0.8641 + }, + { + "start": 33698.62, + "end": 33703.02, + "probability": 0.8699 + }, + { + "start": 33703.72, + "end": 33705.84, + "probability": 0.9734 + }, + { + "start": 33706.42, + "end": 33707.8, + "probability": 0.9759 + }, + { + "start": 33708.36, + "end": 33708.7, + "probability": 0.7254 + }, + { + "start": 33708.86, + "end": 33709.83, + "probability": 0.4812 + }, + { + "start": 33710.32, + "end": 33710.67, + "probability": 0.5026 + }, + { + "start": 33713.5, + "end": 33715.26, + "probability": 0.97 + }, + { + "start": 33716.14, + "end": 33716.26, + "probability": 0.0123 + }, + { + "start": 33718.12, + "end": 33719.54, + "probability": 0.3623 + }, + { + "start": 33720.06, + "end": 33720.6, + "probability": 0.4479 + }, + { + "start": 33722.56, + "end": 33723.22, + "probability": 0.0649 + }, + { + "start": 33723.22, + "end": 33728.58, + "probability": 0.6726 + }, + { + "start": 33728.98, + "end": 33732.76, + "probability": 0.2749 + }, + { + "start": 33733.1, + "end": 33734.84, + "probability": 0.2415 + }, + { + "start": 33735.16, + "end": 33736.24, + "probability": 0.2728 + }, + { + "start": 33748.7, + "end": 33752.14, + "probability": 0.4841 + }, + { + "start": 33753.1, + "end": 33753.1, + "probability": 0.1596 + }, + { + "start": 33753.1, + "end": 33755.46, + "probability": 0.7702 + }, + { + "start": 33755.52, + "end": 33758.84, + "probability": 0.8832 + }, + { + "start": 33759.6, + "end": 33760.94, + "probability": 0.9781 + }, + { + "start": 33761.1, + "end": 33765.25, + "probability": 0.834 + }, + { + "start": 33766.06, + "end": 33766.88, + "probability": 0.0401 + }, + { + "start": 33766.88, + "end": 33768.66, + "probability": 0.8656 + }, + { + "start": 33768.8, + "end": 33770.84, + "probability": 0.9908 + }, + { + "start": 33772.1, + "end": 33774.14, + "probability": 0.9626 + }, + { + "start": 33775.36, + "end": 33775.84, + "probability": 0.7719 + }, + { + "start": 33777.61, + "end": 33780.8, + "probability": 0.4614 + }, + { + "start": 33781.76, + "end": 33782.56, + "probability": 0.6299 + }, + { + "start": 33784.66, + "end": 33786.04, + "probability": 0.8336 + }, + { + "start": 33786.18, + "end": 33787.34, + "probability": 0.8289 + }, + { + "start": 33787.38, + "end": 33788.08, + "probability": 0.779 + }, + { + "start": 33788.18, + "end": 33792.58, + "probability": 0.9746 + }, + { + "start": 33793.38, + "end": 33797.4, + "probability": 0.9773 + }, + { + "start": 33798.06, + "end": 33799.94, + "probability": 0.9579 + }, + { + "start": 33800.9, + "end": 33803.1, + "probability": 0.5234 + }, + { + "start": 33803.82, + "end": 33806.56, + "probability": 0.9614 + }, + { + "start": 33807.9, + "end": 33809.86, + "probability": 0.929 + }, + { + "start": 33810.24, + "end": 33811.14, + "probability": 0.7238 + }, + { + "start": 33811.84, + "end": 33815.14, + "probability": 0.932 + }, + { + "start": 33816.1, + "end": 33818.66, + "probability": 0.985 + }, + { + "start": 33819.48, + "end": 33822.74, + "probability": 0.84 + }, + { + "start": 33823.56, + "end": 33825.62, + "probability": 0.9626 + }, + { + "start": 33825.7, + "end": 33829.52, + "probability": 0.9884 + }, + { + "start": 33830.08, + "end": 33833.5, + "probability": 0.774 + }, + { + "start": 33834.3, + "end": 33837.86, + "probability": 0.6662 + }, + { + "start": 33838.82, + "end": 33841.6, + "probability": 0.7769 + }, + { + "start": 33842.8, + "end": 33843.54, + "probability": 0.9846 + }, + { + "start": 33843.68, + "end": 33845.08, + "probability": 0.634 + }, + { + "start": 33845.58, + "end": 33849.9, + "probability": 0.9279 + }, + { + "start": 33849.9, + "end": 33853.13, + "probability": 0.9937 + }, + { + "start": 33853.6, + "end": 33854.4, + "probability": 0.9805 + }, + { + "start": 33854.52, + "end": 33855.56, + "probability": 0.6866 + }, + { + "start": 33859.42, + "end": 33862.34, + "probability": 0.8085 + }, + { + "start": 33863.28, + "end": 33867.38, + "probability": 0.9028 + }, + { + "start": 33868.28, + "end": 33869.24, + "probability": 0.8331 + }, + { + "start": 33871.7, + "end": 33872.74, + "probability": 0.5235 + }, + { + "start": 33872.78, + "end": 33876.46, + "probability": 0.8713 + }, + { + "start": 33877.78, + "end": 33883.24, + "probability": 0.7634 + }, + { + "start": 33883.62, + "end": 33885.54, + "probability": 0.5937 + }, + { + "start": 33886.0, + "end": 33886.14, + "probability": 0.6756 + }, + { + "start": 33886.14, + "end": 33888.12, + "probability": 0.4281 + }, + { + "start": 33888.62, + "end": 33889.62, + "probability": 0.9304 + }, + { + "start": 33890.52, + "end": 33893.48, + "probability": 0.82 + }, + { + "start": 33894.24, + "end": 33901.56, + "probability": 0.7362 + }, + { + "start": 33901.68, + "end": 33902.8, + "probability": 0.9949 + }, + { + "start": 33902.9, + "end": 33907.02, + "probability": 0.9259 + }, + { + "start": 33907.72, + "end": 33909.66, + "probability": 0.908 + }, + { + "start": 33910.32, + "end": 33915.74, + "probability": 0.7649 + }, + { + "start": 33916.36, + "end": 33919.1, + "probability": 0.5162 + }, + { + "start": 33920.74, + "end": 33921.26, + "probability": 0.7236 + }, + { + "start": 33921.36, + "end": 33924.68, + "probability": 0.5151 + }, + { + "start": 33924.76, + "end": 33925.7, + "probability": 0.8796 + }, + { + "start": 33925.8, + "end": 33926.78, + "probability": 0.9726 + }, + { + "start": 33927.36, + "end": 33928.44, + "probability": 0.7374 + }, + { + "start": 33928.58, + "end": 33929.06, + "probability": 0.7991 + }, + { + "start": 33929.12, + "end": 33929.7, + "probability": 0.9329 + }, + { + "start": 33929.74, + "end": 33930.3, + "probability": 0.9852 + }, + { + "start": 33930.38, + "end": 33930.74, + "probability": 0.9115 + }, + { + "start": 33931.12, + "end": 33931.98, + "probability": 0.6779 + }, + { + "start": 33932.04, + "end": 33932.74, + "probability": 0.8426 + }, + { + "start": 33933.2, + "end": 33935.5, + "probability": 0.6713 + }, + { + "start": 33935.54, + "end": 33938.82, + "probability": 0.7904 + }, + { + "start": 33939.46, + "end": 33940.66, + "probability": 0.7895 + }, + { + "start": 33940.82, + "end": 33941.86, + "probability": 0.4079 + }, + { + "start": 33942.06, + "end": 33943.0, + "probability": 0.6351 + }, + { + "start": 33943.08, + "end": 33944.32, + "probability": 0.8694 + }, + { + "start": 33945.18, + "end": 33948.36, + "probability": 0.9073 + }, + { + "start": 33949.28, + "end": 33953.28, + "probability": 0.9881 + }, + { + "start": 33954.22, + "end": 33958.12, + "probability": 0.7442 + }, + { + "start": 33958.88, + "end": 33960.48, + "probability": 0.8955 + }, + { + "start": 33960.6, + "end": 33961.6, + "probability": 0.7114 + }, + { + "start": 33962.94, + "end": 33966.64, + "probability": 0.9637 + }, + { + "start": 33967.46, + "end": 33970.54, + "probability": 0.8684 + }, + { + "start": 33971.28, + "end": 33975.46, + "probability": 0.7929 + }, + { + "start": 33976.86, + "end": 33980.5, + "probability": 0.9852 + }, + { + "start": 33980.5, + "end": 33983.8, + "probability": 0.9917 + }, + { + "start": 33984.26, + "end": 33984.63, + "probability": 0.4995 + }, + { + "start": 33984.84, + "end": 33986.3, + "probability": 0.8392 + }, + { + "start": 33986.5, + "end": 33988.6, + "probability": 0.993 + }, + { + "start": 33988.66, + "end": 33993.08, + "probability": 0.9932 + }, + { + "start": 33993.08, + "end": 33998.32, + "probability": 0.9826 + }, + { + "start": 33998.32, + "end": 34002.02, + "probability": 0.8629 + }, + { + "start": 34002.22, + "end": 34003.68, + "probability": 0.6949 + }, + { + "start": 34003.94, + "end": 34007.92, + "probability": 0.6926 + }, + { + "start": 34008.66, + "end": 34013.0, + "probability": 0.9953 + }, + { + "start": 34013.66, + "end": 34014.4, + "probability": 0.537 + }, + { + "start": 34015.06, + "end": 34017.78, + "probability": 0.9873 + }, + { + "start": 34018.22, + "end": 34018.68, + "probability": 0.7723 + }, + { + "start": 34018.74, + "end": 34021.42, + "probability": 0.9895 + }, + { + "start": 34022.7, + "end": 34027.8, + "probability": 0.8185 + }, + { + "start": 34028.36, + "end": 34029.64, + "probability": 0.9695 + }, + { + "start": 34029.8, + "end": 34030.46, + "probability": 0.4839 + }, + { + "start": 34030.5, + "end": 34033.98, + "probability": 0.5254 + }, + { + "start": 34034.94, + "end": 34035.78, + "probability": 0.9492 + }, + { + "start": 34036.46, + "end": 34038.52, + "probability": 0.5075 + }, + { + "start": 34038.72, + "end": 34042.24, + "probability": 0.8727 + }, + { + "start": 34042.46, + "end": 34042.7, + "probability": 0.6609 + }, + { + "start": 34043.32, + "end": 34048.2, + "probability": 0.4944 + }, + { + "start": 34048.34, + "end": 34049.24, + "probability": 0.9198 + }, + { + "start": 34049.9, + "end": 34050.28, + "probability": 0.7882 + }, + { + "start": 34050.8, + "end": 34051.6, + "probability": 0.8404 + }, + { + "start": 34051.68, + "end": 34056.68, + "probability": 0.9473 + }, + { + "start": 34059.2, + "end": 34060.24, + "probability": 0.3213 + }, + { + "start": 34060.24, + "end": 34062.32, + "probability": 0.6326 + }, + { + "start": 34063.42, + "end": 34067.4, + "probability": 0.5783 + }, + { + "start": 34067.48, + "end": 34068.32, + "probability": 0.6967 + }, + { + "start": 34069.28, + "end": 34070.98, + "probability": 0.7289 + }, + { + "start": 34071.5, + "end": 34074.22, + "probability": 0.8134 + }, + { + "start": 34074.94, + "end": 34077.22, + "probability": 0.9503 + }, + { + "start": 34077.76, + "end": 34080.4, + "probability": 0.9854 + }, + { + "start": 34080.42, + "end": 34081.19, + "probability": 0.9363 + }, + { + "start": 34081.8, + "end": 34083.22, + "probability": 0.9734 + }, + { + "start": 34083.48, + "end": 34084.26, + "probability": 0.7096 + }, + { + "start": 34086.16, + "end": 34086.64, + "probability": 0.3073 + }, + { + "start": 34087.54, + "end": 34088.77, + "probability": 0.54 + }, + { + "start": 34089.4, + "end": 34090.06, + "probability": 0.6521 + }, + { + "start": 34090.32, + "end": 34092.58, + "probability": 0.8482 + }, + { + "start": 34096.9, + "end": 34100.04, + "probability": 0.9172 + }, + { + "start": 34100.88, + "end": 34103.34, + "probability": 0.9722 + }, + { + "start": 34103.48, + "end": 34103.8, + "probability": 0.2686 + }, + { + "start": 34104.06, + "end": 34107.38, + "probability": 0.7377 + }, + { + "start": 34107.46, + "end": 34113.46, + "probability": 0.9122 + }, + { + "start": 34114.5, + "end": 34115.78, + "probability": 0.8319 + }, + { + "start": 34118.86, + "end": 34120.28, + "probability": 0.3427 + }, + { + "start": 34120.36, + "end": 34122.94, + "probability": 0.6545 + }, + { + "start": 34124.34, + "end": 34128.86, + "probability": 0.8008 + }, + { + "start": 34129.0, + "end": 34130.08, + "probability": 0.517 + }, + { + "start": 34130.12, + "end": 34130.56, + "probability": 0.7466 + }, + { + "start": 34130.84, + "end": 34131.24, + "probability": 0.7114 + }, + { + "start": 34131.68, + "end": 34134.42, + "probability": 0.6373 + }, + { + "start": 34135.7, + "end": 34137.3, + "probability": 0.0533 + }, + { + "start": 34137.3, + "end": 34138.72, + "probability": 0.614 + }, + { + "start": 34138.84, + "end": 34140.78, + "probability": 0.8232 + }, + { + "start": 34140.92, + "end": 34143.28, + "probability": 0.8324 + }, + { + "start": 34143.38, + "end": 34147.75, + "probability": 0.926 + }, + { + "start": 34148.35, + "end": 34148.56, + "probability": 0.0563 + }, + { + "start": 34148.56, + "end": 34150.66, + "probability": 0.4333 + }, + { + "start": 34151.04, + "end": 34153.78, + "probability": 0.6208 + }, + { + "start": 34154.58, + "end": 34154.92, + "probability": 0.4327 + }, + { + "start": 34156.0, + "end": 34157.92, + "probability": 0.0289 + }, + { + "start": 34158.6, + "end": 34161.5, + "probability": 0.7391 + }, + { + "start": 34163.52, + "end": 34163.72, + "probability": 0.0578 + }, + { + "start": 34163.72, + "end": 34164.32, + "probability": 0.3079 + }, + { + "start": 34165.06, + "end": 34167.06, + "probability": 0.9364 + }, + { + "start": 34167.14, + "end": 34168.32, + "probability": 0.9011 + }, + { + "start": 34169.86, + "end": 34170.74, + "probability": 0.7035 + }, + { + "start": 34170.88, + "end": 34171.56, + "probability": 0.5868 + }, + { + "start": 34171.86, + "end": 34172.98, + "probability": 0.7024 + }, + { + "start": 34172.98, + "end": 34173.88, + "probability": 0.1878 + }, + { + "start": 34173.88, + "end": 34174.1, + "probability": 0.262 + }, + { + "start": 34174.58, + "end": 34175.58, + "probability": 0.3354 + }, + { + "start": 34176.81, + "end": 34180.62, + "probability": 0.8322 + }, + { + "start": 34181.22, + "end": 34182.7, + "probability": 0.5933 + }, + { + "start": 34182.88, + "end": 34185.28, + "probability": 0.6392 + }, + { + "start": 34186.6, + "end": 34186.86, + "probability": 0.1165 + }, + { + "start": 34187.12, + "end": 34188.94, + "probability": 0.6403 + }, + { + "start": 34189.78, + "end": 34192.11, + "probability": 0.7378 + }, + { + "start": 34192.78, + "end": 34193.76, + "probability": 0.1452 + }, + { + "start": 34194.12, + "end": 34194.7, + "probability": 0.7497 + }, + { + "start": 34194.84, + "end": 34196.53, + "probability": 0.823 + }, + { + "start": 34198.52, + "end": 34202.76, + "probability": 0.9656 + }, + { + "start": 34202.76, + "end": 34205.38, + "probability": 0.9847 + }, + { + "start": 34206.34, + "end": 34208.78, + "probability": 0.97 + }, + { + "start": 34208.78, + "end": 34211.0, + "probability": 0.9795 + }, + { + "start": 34213.3, + "end": 34215.9, + "probability": 0.8671 + }, + { + "start": 34216.0, + "end": 34216.34, + "probability": 0.5094 + }, + { + "start": 34216.36, + "end": 34217.32, + "probability": 0.95 + }, + { + "start": 34218.1, + "end": 34219.48, + "probability": 0.8032 + }, + { + "start": 34220.84, + "end": 34222.12, + "probability": 0.4764 + }, + { + "start": 34222.32, + "end": 34223.16, + "probability": 0.8761 + }, + { + "start": 34223.22, + "end": 34223.62, + "probability": 0.8766 + }, + { + "start": 34223.68, + "end": 34224.24, + "probability": 0.9832 + }, + { + "start": 34224.34, + "end": 34224.64, + "probability": 0.8384 + }, + { + "start": 34225.5, + "end": 34227.54, + "probability": 0.9575 + }, + { + "start": 34227.8, + "end": 34228.26, + "probability": 0.9483 + }, + { + "start": 34228.42, + "end": 34228.88, + "probability": 0.9012 + }, + { + "start": 34229.04, + "end": 34230.5, + "probability": 0.9036 + }, + { + "start": 34233.06, + "end": 34235.62, + "probability": 0.5606 + }, + { + "start": 34236.52, + "end": 34238.86, + "probability": 0.989 + }, + { + "start": 34238.86, + "end": 34240.74, + "probability": 0.9379 + }, + { + "start": 34240.84, + "end": 34241.68, + "probability": 0.7237 + }, + { + "start": 34241.72, + "end": 34243.9, + "probability": 0.8687 + }, + { + "start": 34244.66, + "end": 34246.36, + "probability": 0.9345 + }, + { + "start": 34247.68, + "end": 34248.58, + "probability": 0.8337 + }, + { + "start": 34248.98, + "end": 34251.9, + "probability": 0.9608 + }, + { + "start": 34252.4, + "end": 34253.77, + "probability": 0.9967 + }, + { + "start": 34254.28, + "end": 34258.2, + "probability": 0.6981 + }, + { + "start": 34258.2, + "end": 34258.2, + "probability": 0.525 + }, + { + "start": 34258.78, + "end": 34259.82, + "probability": 0.51 + }, + { + "start": 34259.92, + "end": 34263.51, + "probability": 0.9717 + }, + { + "start": 34264.06, + "end": 34267.16, + "probability": 0.9354 + }, + { + "start": 34267.84, + "end": 34270.18, + "probability": 0.8311 + }, + { + "start": 34270.88, + "end": 34272.82, + "probability": 0.9972 + }, + { + "start": 34273.1, + "end": 34275.84, + "probability": 0.9365 + }, + { + "start": 34277.38, + "end": 34279.0, + "probability": 0.9837 + }, + { + "start": 34279.94, + "end": 34282.2, + "probability": 0.993 + }, + { + "start": 34282.48, + "end": 34285.34, + "probability": 0.9628 + }, + { + "start": 34285.88, + "end": 34287.24, + "probability": 0.7894 + }, + { + "start": 34287.88, + "end": 34289.5, + "probability": 0.8397 + }, + { + "start": 34290.06, + "end": 34290.46, + "probability": 0.2543 + }, + { + "start": 34290.46, + "end": 34293.16, + "probability": 0.9739 + }, + { + "start": 34293.96, + "end": 34296.92, + "probability": 0.9448 + }, + { + "start": 34298.36, + "end": 34298.58, + "probability": 0.5187 + }, + { + "start": 34298.6, + "end": 34299.5, + "probability": 0.7163 + }, + { + "start": 34299.7, + "end": 34300.42, + "probability": 0.563 + }, + { + "start": 34300.9, + "end": 34301.84, + "probability": 0.9716 + }, + { + "start": 34301.98, + "end": 34302.72, + "probability": 0.8943 + }, + { + "start": 34302.84, + "end": 34305.76, + "probability": 0.9724 + }, + { + "start": 34306.26, + "end": 34307.68, + "probability": 0.9083 + }, + { + "start": 34308.24, + "end": 34309.78, + "probability": 0.786 + }, + { + "start": 34311.24, + "end": 34311.64, + "probability": 0.8674 + }, + { + "start": 34312.2, + "end": 34312.94, + "probability": 0.6647 + }, + { + "start": 34313.06, + "end": 34314.28, + "probability": 0.8803 + }, + { + "start": 34314.36, + "end": 34315.99, + "probability": 0.288 + }, + { + "start": 34316.2, + "end": 34316.38, + "probability": 0.694 + }, + { + "start": 34317.54, + "end": 34320.62, + "probability": 0.9578 + }, + { + "start": 34321.18, + "end": 34325.06, + "probability": 0.8731 + }, + { + "start": 34327.34, + "end": 34329.06, + "probability": 0.8761 + }, + { + "start": 34329.28, + "end": 34332.3, + "probability": 0.8719 + }, + { + "start": 34333.16, + "end": 34333.28, + "probability": 0.6968 + }, + { + "start": 34336.64, + "end": 34339.36, + "probability": 0.8653 + }, + { + "start": 34339.98, + "end": 34343.1, + "probability": 0.9708 + }, + { + "start": 34343.72, + "end": 34347.26, + "probability": 0.8541 + }, + { + "start": 34348.62, + "end": 34351.8, + "probability": 0.7013 + }, + { + "start": 34352.5, + "end": 34354.6, + "probability": 0.9418 + }, + { + "start": 34355.18, + "end": 34356.1, + "probability": 0.9956 + }, + { + "start": 34356.74, + "end": 34358.1, + "probability": 0.811 + }, + { + "start": 34358.72, + "end": 34361.48, + "probability": 0.9621 + }, + { + "start": 34362.5, + "end": 34364.31, + "probability": 0.86 + }, + { + "start": 34365.6, + "end": 34368.58, + "probability": 0.8903 + }, + { + "start": 34369.48, + "end": 34371.54, + "probability": 0.6206 + }, + { + "start": 34371.86, + "end": 34374.9, + "probability": 0.9814 + }, + { + "start": 34374.9, + "end": 34376.77, + "probability": 0.5156 + }, + { + "start": 34376.92, + "end": 34379.3, + "probability": 0.5646 + }, + { + "start": 34379.38, + "end": 34379.73, + "probability": 0.4523 + }, + { + "start": 34380.38, + "end": 34383.16, + "probability": 0.9836 + }, + { + "start": 34383.86, + "end": 34385.84, + "probability": 0.959 + }, + { + "start": 34386.68, + "end": 34390.02, + "probability": 0.8905 + }, + { + "start": 34390.82, + "end": 34391.34, + "probability": 0.5595 + }, + { + "start": 34391.86, + "end": 34393.62, + "probability": 0.9181 + }, + { + "start": 34394.58, + "end": 34395.49, + "probability": 0.9802 + }, + { + "start": 34397.3, + "end": 34399.52, + "probability": 0.9214 + }, + { + "start": 34400.44, + "end": 34402.58, + "probability": 0.8144 + }, + { + "start": 34402.58, + "end": 34405.06, + "probability": 0.9362 + }, + { + "start": 34405.72, + "end": 34410.26, + "probability": 0.9637 + }, + { + "start": 34410.26, + "end": 34412.38, + "probability": 0.9315 + }, + { + "start": 34412.96, + "end": 34415.7, + "probability": 0.9165 + }, + { + "start": 34416.4, + "end": 34418.26, + "probability": 0.9154 + }, + { + "start": 34419.26, + "end": 34420.52, + "probability": 0.956 + }, + { + "start": 34421.06, + "end": 34421.24, + "probability": 0.1565 + }, + { + "start": 34421.74, + "end": 34424.0, + "probability": 0.6821 + }, + { + "start": 34424.95, + "end": 34428.23, + "probability": 0.3625 + }, + { + "start": 34429.22, + "end": 34429.42, + "probability": 0.5434 + }, + { + "start": 34429.54, + "end": 34431.86, + "probability": 0.9624 + }, + { + "start": 34431.98, + "end": 34432.4, + "probability": 0.6703 + }, + { + "start": 34433.14, + "end": 34434.38, + "probability": 0.909 + }, + { + "start": 34434.66, + "end": 34435.68, + "probability": 0.8775 + }, + { + "start": 34435.98, + "end": 34438.74, + "probability": 0.0574 + }, + { + "start": 34438.74, + "end": 34441.54, + "probability": 0.8577 + }, + { + "start": 34442.1, + "end": 34443.64, + "probability": 0.6093 + }, + { + "start": 34444.2, + "end": 34447.22, + "probability": 0.9869 + }, + { + "start": 34447.22, + "end": 34450.44, + "probability": 0.834 + }, + { + "start": 34450.52, + "end": 34453.36, + "probability": 0.9705 + }, + { + "start": 34453.82, + "end": 34455.16, + "probability": 0.8672 + }, + { + "start": 34455.92, + "end": 34456.7, + "probability": 0.9934 + }, + { + "start": 34457.64, + "end": 34459.32, + "probability": 0.7084 + }, + { + "start": 34460.92, + "end": 34464.75, + "probability": 0.9854 + }, + { + "start": 34465.48, + "end": 34470.16, + "probability": 0.997 + }, + { + "start": 34470.56, + "end": 34470.88, + "probability": 0.6254 + }, + { + "start": 34470.96, + "end": 34471.26, + "probability": 0.9038 + }, + { + "start": 34471.32, + "end": 34471.94, + "probability": 0.9553 + }, + { + "start": 34472.52, + "end": 34473.02, + "probability": 0.614 + }, + { + "start": 34473.12, + "end": 34473.32, + "probability": 0.633 + }, + { + "start": 34473.42, + "end": 34474.8, + "probability": 0.6994 + }, + { + "start": 34475.38, + "end": 34477.3, + "probability": 0.9339 + }, + { + "start": 34477.44, + "end": 34478.01, + "probability": 0.9548 + }, + { + "start": 34479.26, + "end": 34481.4, + "probability": 0.9396 + }, + { + "start": 34481.4, + "end": 34483.46, + "probability": 0.7993 + }, + { + "start": 34484.08, + "end": 34484.85, + "probability": 0.9885 + }, + { + "start": 34485.26, + "end": 34485.82, + "probability": 0.858 + }, + { + "start": 34486.3, + "end": 34488.4, + "probability": 0.8866 + }, + { + "start": 34488.62, + "end": 34490.26, + "probability": 0.7326 + }, + { + "start": 34490.86, + "end": 34495.66, + "probability": 0.8049 + }, + { + "start": 34495.82, + "end": 34495.84, + "probability": 0.3478 + }, + { + "start": 34495.96, + "end": 34496.78, + "probability": 0.9364 + }, + { + "start": 34497.22, + "end": 34497.66, + "probability": 0.7306 + }, + { + "start": 34497.86, + "end": 34498.2, + "probability": 0.2335 + }, + { + "start": 34499.38, + "end": 34503.06, + "probability": 0.9531 + }, + { + "start": 34503.32, + "end": 34505.4, + "probability": 0.9924 + }, + { + "start": 34505.64, + "end": 34506.48, + "probability": 0.5645 + }, + { + "start": 34506.64, + "end": 34507.25, + "probability": 0.8556 + }, + { + "start": 34507.86, + "end": 34508.42, + "probability": 0.8341 + }, + { + "start": 34508.8, + "end": 34509.58, + "probability": 0.6774 + }, + { + "start": 34509.92, + "end": 34510.82, + "probability": 0.8399 + }, + { + "start": 34510.86, + "end": 34511.8, + "probability": 0.2756 + }, + { + "start": 34511.8, + "end": 34513.26, + "probability": 0.7414 + }, + { + "start": 34513.94, + "end": 34515.36, + "probability": 0.93 + }, + { + "start": 34515.4, + "end": 34515.62, + "probability": 0.4477 + }, + { + "start": 34515.68, + "end": 34516.96, + "probability": 0.1185 + }, + { + "start": 34517.74, + "end": 34520.34, + "probability": 0.6772 + }, + { + "start": 34520.82, + "end": 34522.38, + "probability": 0.7489 + }, + { + "start": 34523.0, + "end": 34525.28, + "probability": 0.6718 + }, + { + "start": 34525.86, + "end": 34530.68, + "probability": 0.625 + }, + { + "start": 34531.16, + "end": 34534.96, + "probability": 0.9224 + }, + { + "start": 34535.78, + "end": 34537.04, + "probability": 0.6348 + }, + { + "start": 34537.72, + "end": 34538.64, + "probability": 0.7414 + }, + { + "start": 34538.72, + "end": 34539.26, + "probability": 0.9493 + }, + { + "start": 34539.7, + "end": 34540.14, + "probability": 0.83 + }, + { + "start": 34540.2, + "end": 34540.64, + "probability": 0.9056 + }, + { + "start": 34540.72, + "end": 34541.08, + "probability": 0.9137 + }, + { + "start": 34541.18, + "end": 34541.28, + "probability": 0.9918 + }, + { + "start": 34541.6, + "end": 34542.04, + "probability": 0.9929 + }, + { + "start": 34542.34, + "end": 34542.72, + "probability": 0.9849 + }, + { + "start": 34542.8, + "end": 34543.24, + "probability": 0.9256 + }, + { + "start": 34543.62, + "end": 34547.76, + "probability": 0.9873 + }, + { + "start": 34547.96, + "end": 34548.36, + "probability": 0.8735 + }, + { + "start": 34548.44, + "end": 34548.8, + "probability": 0.8971 + }, + { + "start": 34548.92, + "end": 34549.28, + "probability": 0.9683 + }, + { + "start": 34549.32, + "end": 34549.78, + "probability": 0.9362 + }, + { + "start": 34549.86, + "end": 34550.34, + "probability": 0.9878 + }, + { + "start": 34550.6, + "end": 34550.98, + "probability": 0.8301 + }, + { + "start": 34551.04, + "end": 34551.6, + "probability": 0.9871 + }, + { + "start": 34551.76, + "end": 34553.18, + "probability": 0.8529 + }, + { + "start": 34553.34, + "end": 34555.28, + "probability": 0.9949 + }, + { + "start": 34555.7, + "end": 34556.76, + "probability": 0.9197 + }, + { + "start": 34557.46, + "end": 34558.42, + "probability": 0.8801 + }, + { + "start": 34559.26, + "end": 34563.2, + "probability": 0.8731 + }, + { + "start": 34563.64, + "end": 34566.86, + "probability": 0.9578 + }, + { + "start": 34567.1, + "end": 34570.26, + "probability": 0.8877 + }, + { + "start": 34571.12, + "end": 34575.8, + "probability": 0.5938 + }, + { + "start": 34577.04, + "end": 34581.0, + "probability": 0.9869 + }, + { + "start": 34581.46, + "end": 34584.0, + "probability": 0.8292 + }, + { + "start": 34584.12, + "end": 34587.0, + "probability": 0.9899 + }, + { + "start": 34587.36, + "end": 34589.08, + "probability": 0.9819 + }, + { + "start": 34589.36, + "end": 34592.44, + "probability": 0.9507 + }, + { + "start": 34592.84, + "end": 34593.9, + "probability": 0.8572 + }, + { + "start": 34593.98, + "end": 34595.12, + "probability": 0.9521 + }, + { + "start": 34595.14, + "end": 34595.82, + "probability": 0.9616 + }, + { + "start": 34596.72, + "end": 34599.7, + "probability": 0.7097 + }, + { + "start": 34600.7, + "end": 34601.83, + "probability": 0.8258 + }, + { + "start": 34602.28, + "end": 34604.04, + "probability": 0.937 + }, + { + "start": 34604.82, + "end": 34606.84, + "probability": 0.9029 + }, + { + "start": 34606.96, + "end": 34610.26, + "probability": 0.9908 + }, + { + "start": 34610.42, + "end": 34616.1, + "probability": 0.9321 + }, + { + "start": 34616.14, + "end": 34617.28, + "probability": 0.9769 + }, + { + "start": 34617.28, + "end": 34618.72, + "probability": 0.9933 + }, + { + "start": 34620.39, + "end": 34622.54, + "probability": 0.9819 + }, + { + "start": 34622.54, + "end": 34625.34, + "probability": 0.9811 + }, + { + "start": 34625.68, + "end": 34626.94, + "probability": 0.9353 + }, + { + "start": 34626.98, + "end": 34629.45, + "probability": 0.8003 + }, + { + "start": 34629.62, + "end": 34631.37, + "probability": 0.9162 + }, + { + "start": 34632.04, + "end": 34633.2, + "probability": 0.9772 + }, + { + "start": 34633.32, + "end": 34633.68, + "probability": 0.9419 + }, + { + "start": 34633.94, + "end": 34634.55, + "probability": 0.8809 + }, + { + "start": 34635.04, + "end": 34635.44, + "probability": 0.6926 + }, + { + "start": 34635.82, + "end": 34636.32, + "probability": 0.9792 + }, + { + "start": 34637.04, + "end": 34640.64, + "probability": 0.9292 + }, + { + "start": 34640.94, + "end": 34643.26, + "probability": 0.9932 + }, + { + "start": 34643.26, + "end": 34647.48, + "probability": 0.8652 + }, + { + "start": 34648.66, + "end": 34649.2, + "probability": 0.7553 + }, + { + "start": 34649.78, + "end": 34653.04, + "probability": 0.9901 + }, + { + "start": 34653.22, + "end": 34653.36, + "probability": 0.6109 + }, + { + "start": 34653.44, + "end": 34654.64, + "probability": 0.7958 + }, + { + "start": 34654.7, + "end": 34654.94, + "probability": 0.769 + }, + { + "start": 34654.96, + "end": 34655.44, + "probability": 0.5594 + }, + { + "start": 34656.12, + "end": 34657.45, + "probability": 0.9311 + }, + { + "start": 34658.04, + "end": 34661.5, + "probability": 0.9701 + }, + { + "start": 34663.18, + "end": 34666.32, + "probability": 0.9033 + }, + { + "start": 34666.6, + "end": 34667.26, + "probability": 0.9773 + }, + { + "start": 34667.66, + "end": 34670.54, + "probability": 0.9099 + }, + { + "start": 34670.72, + "end": 34671.91, + "probability": 0.4685 + }, + { + "start": 34673.56, + "end": 34676.44, + "probability": 0.993 + }, + { + "start": 34676.74, + "end": 34679.88, + "probability": 0.9683 + }, + { + "start": 34679.88, + "end": 34682.76, + "probability": 0.9611 + }, + { + "start": 34683.16, + "end": 34684.52, + "probability": 0.9764 + }, + { + "start": 34685.32, + "end": 34688.14, + "probability": 0.9841 + }, + { + "start": 34689.38, + "end": 34689.7, + "probability": 0.7538 + }, + { + "start": 34690.5, + "end": 34691.78, + "probability": 0.9941 + }, + { + "start": 34692.88, + "end": 34693.94, + "probability": 0.9038 + }, + { + "start": 34694.32, + "end": 34698.28, + "probability": 0.7654 + }, + { + "start": 34698.96, + "end": 34701.32, + "probability": 0.9906 + }, + { + "start": 34701.32, + "end": 34703.44, + "probability": 0.9953 + }, + { + "start": 34704.2, + "end": 34705.22, + "probability": 0.9254 + }, + { + "start": 34705.62, + "end": 34709.26, + "probability": 0.896 + }, + { + "start": 34710.38, + "end": 34713.52, + "probability": 0.9759 + }, + { + "start": 34713.7, + "end": 34715.46, + "probability": 0.9862 + }, + { + "start": 34716.6, + "end": 34718.18, + "probability": 0.7763 + }, + { + "start": 34718.18, + "end": 34721.08, + "probability": 0.9784 + }, + { + "start": 34721.4, + "end": 34722.74, + "probability": 0.9751 + }, + { + "start": 34722.74, + "end": 34725.88, + "probability": 0.9274 + }, + { + "start": 34726.58, + "end": 34730.04, + "probability": 0.9949 + }, + { + "start": 34730.74, + "end": 34732.36, + "probability": 0.9655 + }, + { + "start": 34733.64, + "end": 34736.66, + "probability": 0.9934 + }, + { + "start": 34737.04, + "end": 34740.68, + "probability": 0.9933 + }, + { + "start": 34740.68, + "end": 34742.86, + "probability": 0.9648 + }, + { + "start": 34743.0, + "end": 34744.64, + "probability": 0.9495 + }, + { + "start": 34744.88, + "end": 34746.14, + "probability": 0.8726 + }, + { + "start": 34746.34, + "end": 34748.51, + "probability": 0.9987 + }, + { + "start": 34749.18, + "end": 34751.5, + "probability": 0.9177 + }, + { + "start": 34751.6, + "end": 34753.26, + "probability": 0.7089 + }, + { + "start": 34754.08, + "end": 34755.62, + "probability": 0.9792 + }, + { + "start": 34756.2, + "end": 34758.8, + "probability": 0.7308 + }, + { + "start": 34759.18, + "end": 34761.82, + "probability": 0.7848 + }, + { + "start": 34762.34, + "end": 34764.3, + "probability": 0.7844 + }, + { + "start": 34764.38, + "end": 34767.08, + "probability": 0.9155 + }, + { + "start": 34767.8, + "end": 34769.44, + "probability": 0.9274 + }, + { + "start": 34769.52, + "end": 34772.66, + "probability": 0.9893 + }, + { + "start": 34773.16, + "end": 34773.4, + "probability": 0.8137 + }, + { + "start": 34774.21, + "end": 34775.84, + "probability": 0.9927 + }, + { + "start": 34776.34, + "end": 34777.12, + "probability": 0.9562 + }, + { + "start": 34777.6, + "end": 34777.86, + "probability": 0.8237 + }, + { + "start": 34778.52, + "end": 34778.6, + "probability": 0.7171 + }, + { + "start": 34778.68, + "end": 34780.49, + "probability": 0.9976 + }, + { + "start": 34780.88, + "end": 34782.54, + "probability": 0.9917 + }, + { + "start": 34782.92, + "end": 34783.38, + "probability": 0.7374 + }, + { + "start": 34783.48, + "end": 34784.96, + "probability": 0.9802 + }, + { + "start": 34785.12, + "end": 34786.73, + "probability": 0.7765 + }, + { + "start": 34787.34, + "end": 34789.84, + "probability": 0.9841 + }, + { + "start": 34789.94, + "end": 34790.78, + "probability": 0.7275 + }, + { + "start": 34791.12, + "end": 34791.98, + "probability": 0.9715 + }, + { + "start": 34792.1, + "end": 34792.44, + "probability": 0.5267 + }, + { + "start": 34792.6, + "end": 34793.2, + "probability": 0.8443 + }, + { + "start": 34794.04, + "end": 34795.34, + "probability": 0.8727 + }, + { + "start": 34795.42, + "end": 34796.1, + "probability": 0.9685 + }, + { + "start": 34796.58, + "end": 34797.27, + "probability": 0.9504 + }, + { + "start": 34798.14, + "end": 34799.2, + "probability": 0.7687 + }, + { + "start": 34799.32, + "end": 34799.86, + "probability": 0.904 + }, + { + "start": 34800.02, + "end": 34800.32, + "probability": 0.823 + }, + { + "start": 34800.58, + "end": 34800.8, + "probability": 0.9374 + }, + { + "start": 34800.9, + "end": 34803.7, + "probability": 0.8044 + }, + { + "start": 34804.1, + "end": 34806.82, + "probability": 0.912 + }, + { + "start": 34806.84, + "end": 34810.58, + "probability": 0.9814 + }, + { + "start": 34810.7, + "end": 34810.9, + "probability": 0.8363 + }, + { + "start": 34810.96, + "end": 34814.28, + "probability": 0.9912 + }, + { + "start": 34816.06, + "end": 34818.92, + "probability": 0.9424 + }, + { + "start": 34819.66, + "end": 34820.38, + "probability": 0.9869 + }, + { + "start": 34821.34, + "end": 34824.2, + "probability": 0.9753 + }, + { + "start": 34824.48, + "end": 34827.28, + "probability": 0.858 + }, + { + "start": 34827.64, + "end": 34830.66, + "probability": 0.937 + }, + { + "start": 34831.22, + "end": 34832.98, + "probability": 0.1501 + }, + { + "start": 34833.72, + "end": 34833.98, + "probability": 0.4158 + }, + { + "start": 34833.98, + "end": 34834.74, + "probability": 0.6669 + }, + { + "start": 34835.36, + "end": 34837.24, + "probability": 0.7671 + }, + { + "start": 34837.83, + "end": 34841.44, + "probability": 0.9414 + }, + { + "start": 34841.44, + "end": 34844.06, + "probability": 0.8496 + }, + { + "start": 34845.04, + "end": 34847.16, + "probability": 0.8898 + }, + { + "start": 34847.3, + "end": 34849.86, + "probability": 0.9695 + }, + { + "start": 34850.38, + "end": 34851.5, + "probability": 0.5024 + }, + { + "start": 34851.56, + "end": 34852.71, + "probability": 0.9941 + }, + { + "start": 34853.38, + "end": 34853.74, + "probability": 0.7427 + }, + { + "start": 34853.92, + "end": 34854.74, + "probability": 0.8618 + }, + { + "start": 34855.62, + "end": 34856.72, + "probability": 0.9924 + }, + { + "start": 34857.26, + "end": 34860.48, + "probability": 0.8892 + }, + { + "start": 34861.04, + "end": 34862.46, + "probability": 0.9714 + }, + { + "start": 34863.14, + "end": 34865.66, + "probability": 0.9901 + }, + { + "start": 34865.66, + "end": 34868.26, + "probability": 0.7715 + }, + { + "start": 34868.9, + "end": 34870.78, + "probability": 0.9811 + }, + { + "start": 34871.32, + "end": 34872.18, + "probability": 0.9922 + }, + { + "start": 34873.26, + "end": 34877.86, + "probability": 0.7354 + }, + { + "start": 34878.58, + "end": 34879.14, + "probability": 0.1028 + }, + { + "start": 34879.88, + "end": 34882.24, + "probability": 0.4 + }, + { + "start": 34882.98, + "end": 34884.86, + "probability": 0.7741 + }, + { + "start": 34885.1, + "end": 34886.48, + "probability": 0.9949 + }, + { + "start": 34887.08, + "end": 34889.06, + "probability": 0.9422 + }, + { + "start": 34890.02, + "end": 34891.18, + "probability": 0.9061 + }, + { + "start": 34891.32, + "end": 34891.98, + "probability": 0.8293 + }, + { + "start": 34892.46, + "end": 34893.02, + "probability": 0.8688 + }, + { + "start": 34893.2, + "end": 34894.24, + "probability": 0.6122 + }, + { + "start": 34895.67, + "end": 34896.44, + "probability": 0.6683 + }, + { + "start": 34896.88, + "end": 34899.52, + "probability": 0.9334 + }, + { + "start": 34900.02, + "end": 34901.85, + "probability": 0.9634 + }, + { + "start": 34902.72, + "end": 34904.1, + "probability": 0.976 + }, + { + "start": 34904.22, + "end": 34905.24, + "probability": 0.4906 + }, + { + "start": 34905.78, + "end": 34907.08, + "probability": 0.9839 + }, + { + "start": 34908.0, + "end": 34908.54, + "probability": 0.8986 + }, + { + "start": 34908.6, + "end": 34908.9, + "probability": 0.72 + }, + { + "start": 34908.98, + "end": 34910.44, + "probability": 0.957 + }, + { + "start": 34910.62, + "end": 34911.96, + "probability": 0.7788 + }, + { + "start": 34912.2, + "end": 34914.52, + "probability": 0.8455 + }, + { + "start": 34915.0, + "end": 34918.08, + "probability": 0.9904 + }, + { + "start": 34918.34, + "end": 34920.2, + "probability": 0.9736 + }, + { + "start": 34920.56, + "end": 34922.62, + "probability": 0.9848 + }, + { + "start": 34923.42, + "end": 34924.8, + "probability": 0.9741 + }, + { + "start": 34924.82, + "end": 34928.75, + "probability": 0.8379 + }, + { + "start": 34929.38, + "end": 34930.82, + "probability": 0.8238 + }, + { + "start": 34931.08, + "end": 34932.28, + "probability": 0.8642 + }, + { + "start": 34932.58, + "end": 34935.2, + "probability": 0.7899 + }, + { + "start": 34935.64, + "end": 34936.02, + "probability": 0.6311 + }, + { + "start": 34936.12, + "end": 34937.08, + "probability": 0.985 + }, + { + "start": 34937.64, + "end": 34939.34, + "probability": 0.9216 + }, + { + "start": 34939.76, + "end": 34941.76, + "probability": 0.9766 + }, + { + "start": 34941.96, + "end": 34943.18, + "probability": 0.5013 + }, + { + "start": 34943.86, + "end": 34945.27, + "probability": 0.4512 + }, + { + "start": 34945.44, + "end": 34946.5, + "probability": 0.6133 + }, + { + "start": 34946.64, + "end": 34949.12, + "probability": 0.9843 + }, + { + "start": 34950.08, + "end": 34953.58, + "probability": 0.9419 + }, + { + "start": 34954.14, + "end": 34956.88, + "probability": 0.6321 + }, + { + "start": 34957.02, + "end": 34957.84, + "probability": 0.7839 + }, + { + "start": 34958.3, + "end": 34960.1, + "probability": 0.9121 + }, + { + "start": 34960.86, + "end": 34961.62, + "probability": 0.9021 + }, + { + "start": 34962.12, + "end": 34962.88, + "probability": 0.3649 + }, + { + "start": 34963.12, + "end": 34964.36, + "probability": 0.9893 + }, + { + "start": 34964.78, + "end": 34964.94, + "probability": 0.2944 + }, + { + "start": 34965.46, + "end": 34969.18, + "probability": 0.9869 + }, + { + "start": 34970.08, + "end": 34974.14, + "probability": 0.6634 + }, + { + "start": 34974.14, + "end": 34974.91, + "probability": 0.7325 + }, + { + "start": 34975.56, + "end": 34976.28, + "probability": 0.9149 + }, + { + "start": 34976.42, + "end": 34979.98, + "probability": 0.6453 + }, + { + "start": 34980.42, + "end": 34980.84, + "probability": 0.424 + }, + { + "start": 34981.16, + "end": 34981.56, + "probability": 0.4099 + }, + { + "start": 34981.62, + "end": 34981.84, + "probability": 0.6518 + }, + { + "start": 34981.84, + "end": 34982.6, + "probability": 0.5653 + }, + { + "start": 34982.78, + "end": 34985.9, + "probability": 0.7397 + }, + { + "start": 34986.5, + "end": 34992.52, + "probability": 0.9206 + }, + { + "start": 34993.14, + "end": 34997.46, + "probability": 0.8223 + }, + { + "start": 34997.46, + "end": 35000.34, + "probability": 0.9962 + }, + { + "start": 35000.56, + "end": 35006.28, + "probability": 0.9949 + }, + { + "start": 35006.9, + "end": 35009.68, + "probability": 0.9845 + }, + { + "start": 35009.72, + "end": 35011.42, + "probability": 0.9927 + }, + { + "start": 35011.56, + "end": 35012.22, + "probability": 0.7876 + }, + { + "start": 35012.32, + "end": 35013.34, + "probability": 0.7237 + }, + { + "start": 35013.8, + "end": 35014.04, + "probability": 0.8323 + }, + { + "start": 35014.18, + "end": 35015.32, + "probability": 0.9779 + }, + { + "start": 35015.82, + "end": 35016.54, + "probability": 0.935 + }, + { + "start": 35016.9, + "end": 35019.8, + "probability": 0.9819 + }, + { + "start": 35020.58, + "end": 35023.44, + "probability": 0.9043 + }, + { + "start": 35024.06, + "end": 35025.8, + "probability": 0.5897 + }, + { + "start": 35026.02, + "end": 35029.36, + "probability": 0.876 + }, + { + "start": 35029.36, + "end": 35032.5, + "probability": 0.9353 + }, + { + "start": 35032.7, + "end": 35034.1, + "probability": 0.948 + }, + { + "start": 35034.3, + "end": 35035.42, + "probability": 0.6863 + }, + { + "start": 35036.12, + "end": 35039.5, + "probability": 0.7792 + }, + { + "start": 35039.58, + "end": 35046.88, + "probability": 0.9285 + }, + { + "start": 35047.46, + "end": 35048.46, + "probability": 0.4854 + }, + { + "start": 35049.49, + "end": 35052.28, + "probability": 0.8167 + }, + { + "start": 35052.82, + "end": 35053.88, + "probability": 0.9496 + }, + { + "start": 35054.66, + "end": 35057.78, + "probability": 0.5851 + }, + { + "start": 35059.83, + "end": 35063.26, + "probability": 0.9268 + }, + { + "start": 35063.46, + "end": 35068.58, + "probability": 0.7888 + }, + { + "start": 35069.0, + "end": 35070.78, + "probability": 0.9394 + }, + { + "start": 35070.86, + "end": 35078.62, + "probability": 0.7768 + }, + { + "start": 35078.62, + "end": 35082.7, + "probability": 0.9757 + }, + { + "start": 35083.34, + "end": 35086.62, + "probability": 0.8242 + }, + { + "start": 35087.18, + "end": 35087.52, + "probability": 0.567 + }, + { + "start": 35087.62, + "end": 35089.04, + "probability": 0.9736 + }, + { + "start": 35089.12, + "end": 35090.65, + "probability": 0.7983 + }, + { + "start": 35090.76, + "end": 35092.08, + "probability": 0.936 + }, + { + "start": 35092.48, + "end": 35093.87, + "probability": 0.9034 + }, + { + "start": 35094.62, + "end": 35097.2, + "probability": 0.3967 + }, + { + "start": 35098.02, + "end": 35098.56, + "probability": 0.2344 + }, + { + "start": 35098.8, + "end": 35100.5, + "probability": 0.5377 + }, + { + "start": 35101.36, + "end": 35102.14, + "probability": 0.5471 + }, + { + "start": 35102.72, + "end": 35104.16, + "probability": 0.9462 + }, + { + "start": 35107.88, + "end": 35111.02, + "probability": 0.3786 + }, + { + "start": 35111.18, + "end": 35114.22, + "probability": 0.981 + }, + { + "start": 35114.5, + "end": 35118.22, + "probability": 0.6412 + }, + { + "start": 35118.6, + "end": 35119.86, + "probability": 0.6628 + }, + { + "start": 35120.3, + "end": 35125.48, + "probability": 0.9668 + }, + { + "start": 35125.68, + "end": 35128.18, + "probability": 0.9147 + }, + { + "start": 35129.14, + "end": 35132.6, + "probability": 0.9839 + }, + { + "start": 35132.6, + "end": 35137.86, + "probability": 0.7424 + }, + { + "start": 35138.3, + "end": 35142.24, + "probability": 0.8911 + }, + { + "start": 35143.12, + "end": 35146.6, + "probability": 0.978 + }, + { + "start": 35146.7, + "end": 35148.58, + "probability": 0.9407 + }, + { + "start": 35149.14, + "end": 35150.18, + "probability": 0.9387 + }, + { + "start": 35150.32, + "end": 35151.04, + "probability": 0.854 + }, + { + "start": 35151.32, + "end": 35152.01, + "probability": 0.9843 + }, + { + "start": 35152.42, + "end": 35154.33, + "probability": 0.6635 + }, + { + "start": 35154.94, + "end": 35159.6, + "probability": 0.9886 + }, + { + "start": 35159.6, + "end": 35164.84, + "probability": 0.9106 + }, + { + "start": 35166.54, + "end": 35168.38, + "probability": 0.9756 + }, + { + "start": 35169.02, + "end": 35172.42, + "probability": 0.9738 + }, + { + "start": 35172.94, + "end": 35174.12, + "probability": 0.924 + }, + { + "start": 35174.48, + "end": 35180.06, + "probability": 0.9976 + }, + { + "start": 35180.56, + "end": 35181.77, + "probability": 0.9312 + }, + { + "start": 35182.28, + "end": 35183.42, + "probability": 0.9255 + }, + { + "start": 35183.46, + "end": 35184.74, + "probability": 0.9863 + }, + { + "start": 35184.92, + "end": 35191.58, + "probability": 0.9974 + }, + { + "start": 35192.68, + "end": 35194.1, + "probability": 0.4994 + }, + { + "start": 35194.2, + "end": 35197.78, + "probability": 0.9126 + }, + { + "start": 35197.94, + "end": 35200.02, + "probability": 0.9412 + }, + { + "start": 35200.22, + "end": 35204.5, + "probability": 0.9878 + }, + { + "start": 35204.6, + "end": 35206.36, + "probability": 0.644 + }, + { + "start": 35206.56, + "end": 35210.06, + "probability": 0.8896 + }, + { + "start": 35210.14, + "end": 35213.84, + "probability": 0.9606 + }, + { + "start": 35213.94, + "end": 35216.78, + "probability": 0.957 + }, + { + "start": 35217.2, + "end": 35222.68, + "probability": 0.9939 + }, + { + "start": 35223.34, + "end": 35225.28, + "probability": 0.6091 + }, + { + "start": 35225.76, + "end": 35227.94, + "probability": 0.9568 + }, + { + "start": 35228.3, + "end": 35232.27, + "probability": 0.9901 + }, + { + "start": 35232.56, + "end": 35234.98, + "probability": 0.9904 + }, + { + "start": 35235.38, + "end": 35239.74, + "probability": 0.9783 + }, + { + "start": 35240.12, + "end": 35243.32, + "probability": 0.2974 + }, + { + "start": 35243.32, + "end": 35250.0, + "probability": 0.9961 + }, + { + "start": 35250.46, + "end": 35252.6, + "probability": 0.7018 + }, + { + "start": 35252.88, + "end": 35255.08, + "probability": 0.6583 + }, + { + "start": 35255.62, + "end": 35258.04, + "probability": 0.9901 + }, + { + "start": 35258.3, + "end": 35260.44, + "probability": 0.8729 + }, + { + "start": 35260.86, + "end": 35263.18, + "probability": 0.9832 + }, + { + "start": 35263.94, + "end": 35265.72, + "probability": 0.8396 + }, + { + "start": 35266.52, + "end": 35270.67, + "probability": 0.9269 + }, + { + "start": 35270.74, + "end": 35273.16, + "probability": 0.9792 + }, + { + "start": 35274.44, + "end": 35275.22, + "probability": 0.1309 + }, + { + "start": 35275.22, + "end": 35275.22, + "probability": 0.1299 + }, + { + "start": 35275.22, + "end": 35275.59, + "probability": 0.6235 + }, + { + "start": 35276.06, + "end": 35276.7, + "probability": 0.7131 + }, + { + "start": 35277.0, + "end": 35278.32, + "probability": 0.8671 + }, + { + "start": 35278.32, + "end": 35278.72, + "probability": 0.4754 + }, + { + "start": 35278.78, + "end": 35280.08, + "probability": 0.5546 + }, + { + "start": 35280.58, + "end": 35282.3, + "probability": 0.8193 + }, + { + "start": 35282.32, + "end": 35283.35, + "probability": 0.4215 + }, + { + "start": 35284.34, + "end": 35285.9, + "probability": 0.5802 + }, + { + "start": 35286.7, + "end": 35291.12, + "probability": 0.5861 + }, + { + "start": 35291.18, + "end": 35291.64, + "probability": 0.4456 + }, + { + "start": 35291.76, + "end": 35292.52, + "probability": 0.7572 + }, + { + "start": 35292.56, + "end": 35293.46, + "probability": 0.9925 + }, + { + "start": 35293.54, + "end": 35294.06, + "probability": 0.8584 + }, + { + "start": 35294.3, + "end": 35294.42, + "probability": 0.0159 + }, + { + "start": 35294.76, + "end": 35295.24, + "probability": 0.5093 + }, + { + "start": 35295.3, + "end": 35297.36, + "probability": 0.8705 + }, + { + "start": 35297.44, + "end": 35298.74, + "probability": 0.9213 + }, + { + "start": 35299.02, + "end": 35301.48, + "probability": 0.8603 + }, + { + "start": 35301.74, + "end": 35304.48, + "probability": 0.9863 + }, + { + "start": 35304.56, + "end": 35305.2, + "probability": 0.4473 + }, + { + "start": 35305.32, + "end": 35305.95, + "probability": 0.6731 + }, + { + "start": 35306.56, + "end": 35307.22, + "probability": 0.3601 + }, + { + "start": 35307.3, + "end": 35308.7, + "probability": 0.8397 + }, + { + "start": 35308.88, + "end": 35310.66, + "probability": 0.4122 + }, + { + "start": 35310.98, + "end": 35312.6, + "probability": 0.688 + }, + { + "start": 35312.94, + "end": 35314.56, + "probability": 0.8743 + }, + { + "start": 35315.4, + "end": 35316.55, + "probability": 0.9825 + }, + { + "start": 35317.46, + "end": 35318.16, + "probability": 0.7087 + }, + { + "start": 35319.24, + "end": 35320.14, + "probability": 0.0278 + } + ], + "segments_count": 12380, + "words_count": 60296, + "avg_words_per_segment": 4.8704, + "avg_segment_duration": 2.0386, + "avg_words_per_minute": 102.4146, + "plenum_id": "40309", + "duration": 35324.66, + "title": null, + "plenum_date": "2014-11-12" +} \ No newline at end of file