diff --git "a/64812/metadata.json" "b/64812/metadata.json" new file mode 100644--- /dev/null +++ "b/64812/metadata.json" @@ -0,0 +1,19387 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "64812", + "quality_score": 0.8551, + "per_segment_quality_scores": [ + { + "start": 40.73, + "end": 46.18, + "probability": 0.2132 + }, + { + "start": 46.44, + "end": 53.32, + "probability": 0.0252 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.96, + "end": 128.28, + "probability": 0.3406 + }, + { + "start": 128.28, + "end": 132.16, + "probability": 0.9922 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 277.0, + "end": 277.0, + "probability": 0.0 + }, + { + "start": 301.7, + "end": 303.34, + "probability": 0.1297 + }, + { + "start": 306.48, + "end": 308.96, + "probability": 0.0246 + }, + { + "start": 309.86, + "end": 309.96, + "probability": 0.094 + }, + { + "start": 312.45, + "end": 314.29, + "probability": 0.0594 + }, + { + "start": 319.31, + "end": 326.48, + "probability": 0.0731 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 403.0, + "end": 403.0, + "probability": 0.0 + }, + { + "start": 404.08, + "end": 406.64, + "probability": 0.5037 + }, + { + "start": 406.78, + "end": 408.86, + "probability": 0.7461 + }, + { + "start": 409.4, + "end": 410.14, + "probability": 0.6248 + }, + { + "start": 411.16, + "end": 412.46, + "probability": 0.827 + }, + { + "start": 414.36, + "end": 417.72, + "probability": 0.9869 + }, + { + "start": 418.46, + "end": 422.14, + "probability": 0.8176 + }, + { + "start": 422.8, + "end": 427.86, + "probability": 0.8035 + }, + { + "start": 428.64, + "end": 436.48, + "probability": 0.9235 + }, + { + "start": 436.48, + "end": 442.46, + "probability": 0.9544 + }, + { + "start": 443.06, + "end": 445.84, + "probability": 0.9945 + }, + { + "start": 446.78, + "end": 448.11, + "probability": 0.9766 + }, + { + "start": 448.76, + "end": 450.82, + "probability": 0.95 + }, + { + "start": 451.58, + "end": 452.64, + "probability": 0.8843 + }, + { + "start": 453.22, + "end": 454.26, + "probability": 0.8516 + }, + { + "start": 456.38, + "end": 457.8, + "probability": 0.9105 + }, + { + "start": 458.96, + "end": 460.36, + "probability": 0.7551 + }, + { + "start": 460.5, + "end": 461.18, + "probability": 0.6416 + }, + { + "start": 461.26, + "end": 462.68, + "probability": 0.7975 + }, + { + "start": 463.42, + "end": 466.04, + "probability": 0.874 + }, + { + "start": 466.64, + "end": 469.53, + "probability": 0.9036 + }, + { + "start": 470.6, + "end": 476.04, + "probability": 0.9976 + }, + { + "start": 476.74, + "end": 481.78, + "probability": 0.9003 + }, + { + "start": 482.46, + "end": 487.66, + "probability": 0.9667 + }, + { + "start": 488.3, + "end": 490.78, + "probability": 0.9634 + }, + { + "start": 492.12, + "end": 495.56, + "probability": 0.9686 + }, + { + "start": 496.3, + "end": 498.86, + "probability": 0.7778 + }, + { + "start": 499.38, + "end": 500.96, + "probability": 0.796 + }, + { + "start": 501.44, + "end": 505.82, + "probability": 0.8017 + }, + { + "start": 506.24, + "end": 511.0, + "probability": 0.8904 + }, + { + "start": 511.2, + "end": 511.69, + "probability": 0.9667 + }, + { + "start": 511.96, + "end": 517.16, + "probability": 0.9695 + }, + { + "start": 517.74, + "end": 521.7, + "probability": 0.9958 + }, + { + "start": 522.24, + "end": 523.16, + "probability": 0.6782 + }, + { + "start": 523.46, + "end": 525.38, + "probability": 0.9712 + }, + { + "start": 525.78, + "end": 526.3, + "probability": 0.8988 + }, + { + "start": 526.48, + "end": 527.24, + "probability": 0.7409 + }, + { + "start": 527.32, + "end": 529.7, + "probability": 0.947 + }, + { + "start": 529.82, + "end": 530.1, + "probability": 0.8129 + }, + { + "start": 530.56, + "end": 532.26, + "probability": 0.8557 + }, + { + "start": 532.4, + "end": 534.94, + "probability": 0.5961 + }, + { + "start": 535.06, + "end": 537.42, + "probability": 0.8571 + }, + { + "start": 543.6, + "end": 544.32, + "probability": 0.5742 + }, + { + "start": 544.44, + "end": 545.26, + "probability": 0.6654 + }, + { + "start": 545.64, + "end": 551.64, + "probability": 0.8988 + }, + { + "start": 552.2, + "end": 553.38, + "probability": 0.6564 + }, + { + "start": 554.0, + "end": 555.5, + "probability": 0.9285 + }, + { + "start": 556.76, + "end": 556.86, + "probability": 0.9504 + }, + { + "start": 557.6, + "end": 558.2, + "probability": 0.9734 + }, + { + "start": 558.88, + "end": 564.14, + "probability": 0.9072 + }, + { + "start": 564.68, + "end": 568.28, + "probability": 0.9846 + }, + { + "start": 568.6, + "end": 570.4, + "probability": 0.8871 + }, + { + "start": 570.64, + "end": 575.44, + "probability": 0.8823 + }, + { + "start": 575.62, + "end": 576.68, + "probability": 0.6733 + }, + { + "start": 577.24, + "end": 578.96, + "probability": 0.9255 + }, + { + "start": 579.48, + "end": 581.08, + "probability": 0.6672 + }, + { + "start": 581.76, + "end": 583.0, + "probability": 0.8389 + }, + { + "start": 583.62, + "end": 589.92, + "probability": 0.9409 + }, + { + "start": 590.36, + "end": 592.54, + "probability": 0.5252 + }, + { + "start": 593.8, + "end": 599.38, + "probability": 0.0848 + }, + { + "start": 599.96, + "end": 600.14, + "probability": 0.4483 + }, + { + "start": 600.86, + "end": 603.46, + "probability": 0.5305 + }, + { + "start": 603.6, + "end": 606.0, + "probability": 0.6442 + }, + { + "start": 606.58, + "end": 610.34, + "probability": 0.7215 + }, + { + "start": 611.08, + "end": 611.9, + "probability": 0.6548 + }, + { + "start": 612.06, + "end": 612.66, + "probability": 0.6043 + }, + { + "start": 612.68, + "end": 613.52, + "probability": 0.6441 + }, + { + "start": 613.86, + "end": 614.68, + "probability": 0.7503 + }, + { + "start": 616.18, + "end": 622.52, + "probability": 0.7826 + }, + { + "start": 622.52, + "end": 625.5, + "probability": 0.9916 + }, + { + "start": 626.06, + "end": 626.84, + "probability": 0.303 + }, + { + "start": 627.72, + "end": 629.76, + "probability": 0.8725 + }, + { + "start": 630.14, + "end": 630.62, + "probability": 0.4758 + }, + { + "start": 630.68, + "end": 632.88, + "probability": 0.5984 + }, + { + "start": 632.92, + "end": 633.62, + "probability": 0.9022 + }, + { + "start": 634.34, + "end": 639.42, + "probability": 0.8903 + }, + { + "start": 640.54, + "end": 643.24, + "probability": 0.7589 + }, + { + "start": 643.52, + "end": 644.36, + "probability": 0.8057 + }, + { + "start": 645.6, + "end": 646.54, + "probability": 0.7891 + }, + { + "start": 646.72, + "end": 648.5, + "probability": 0.4595 + }, + { + "start": 648.8, + "end": 651.22, + "probability": 0.8372 + }, + { + "start": 651.22, + "end": 653.5, + "probability": 0.8606 + }, + { + "start": 654.06, + "end": 656.22, + "probability": 0.9569 + }, + { + "start": 656.8, + "end": 657.43, + "probability": 0.6919 + }, + { + "start": 657.68, + "end": 658.86, + "probability": 0.9235 + }, + { + "start": 658.96, + "end": 661.66, + "probability": 0.7187 + }, + { + "start": 662.6, + "end": 664.53, + "probability": 0.4806 + }, + { + "start": 665.8, + "end": 668.6, + "probability": 0.7644 + }, + { + "start": 669.18, + "end": 669.34, + "probability": 0.1984 + }, + { + "start": 669.46, + "end": 675.28, + "probability": 0.6805 + }, + { + "start": 675.52, + "end": 675.92, + "probability": 0.3572 + }, + { + "start": 676.66, + "end": 679.02, + "probability": 0.848 + }, + { + "start": 680.15, + "end": 682.66, + "probability": 0.8708 + }, + { + "start": 683.56, + "end": 685.98, + "probability": 0.8656 + }, + { + "start": 686.54, + "end": 691.16, + "probability": 0.972 + }, + { + "start": 691.34, + "end": 693.06, + "probability": 0.5128 + }, + { + "start": 693.28, + "end": 694.48, + "probability": 0.8986 + }, + { + "start": 694.76, + "end": 697.69, + "probability": 0.9797 + }, + { + "start": 698.42, + "end": 699.4, + "probability": 0.6683 + }, + { + "start": 699.56, + "end": 700.17, + "probability": 0.9028 + }, + { + "start": 700.84, + "end": 703.08, + "probability": 0.6901 + }, + { + "start": 703.72, + "end": 704.16, + "probability": 0.6393 + }, + { + "start": 704.2, + "end": 704.86, + "probability": 0.8665 + }, + { + "start": 705.16, + "end": 706.5, + "probability": 0.6077 + }, + { + "start": 706.66, + "end": 706.84, + "probability": 0.8042 + }, + { + "start": 706.9, + "end": 707.3, + "probability": 0.8909 + }, + { + "start": 707.5, + "end": 708.14, + "probability": 0.9177 + }, + { + "start": 708.64, + "end": 709.84, + "probability": 0.6881 + }, + { + "start": 710.52, + "end": 711.74, + "probability": 0.8101 + }, + { + "start": 711.8, + "end": 714.22, + "probability": 0.729 + }, + { + "start": 715.3, + "end": 719.76, + "probability": 0.682 + }, + { + "start": 720.06, + "end": 720.34, + "probability": 0.1362 + }, + { + "start": 720.8, + "end": 721.44, + "probability": 0.6717 + }, + { + "start": 722.12, + "end": 724.84, + "probability": 0.7626 + }, + { + "start": 725.5, + "end": 728.4, + "probability": 0.8814 + }, + { + "start": 729.01, + "end": 732.0, + "probability": 0.6627 + }, + { + "start": 733.34, + "end": 735.56, + "probability": 0.746 + }, + { + "start": 735.76, + "end": 738.36, + "probability": 0.7082 + }, + { + "start": 739.06, + "end": 740.52, + "probability": 0.8081 + }, + { + "start": 744.54, + "end": 745.28, + "probability": 0.196 + }, + { + "start": 745.34, + "end": 746.26, + "probability": 0.5681 + }, + { + "start": 747.16, + "end": 748.9, + "probability": 0.6207 + }, + { + "start": 751.28, + "end": 753.42, + "probability": 0.8694 + }, + { + "start": 753.54, + "end": 754.44, + "probability": 0.7542 + }, + { + "start": 754.64, + "end": 756.0, + "probability": 0.5689 + }, + { + "start": 756.06, + "end": 756.5, + "probability": 0.6727 + }, + { + "start": 756.88, + "end": 757.78, + "probability": 0.8843 + }, + { + "start": 757.94, + "end": 761.4, + "probability": 0.9519 + }, + { + "start": 761.82, + "end": 762.64, + "probability": 0.6027 + }, + { + "start": 763.12, + "end": 767.54, + "probability": 0.7191 + }, + { + "start": 767.7, + "end": 768.62, + "probability": 0.9182 + }, + { + "start": 769.68, + "end": 773.94, + "probability": 0.9731 + }, + { + "start": 775.0, + "end": 778.5, + "probability": 0.9237 + }, + { + "start": 779.06, + "end": 782.28, + "probability": 0.9745 + }, + { + "start": 783.44, + "end": 785.02, + "probability": 0.8152 + }, + { + "start": 786.02, + "end": 792.26, + "probability": 0.9309 + }, + { + "start": 792.52, + "end": 797.7, + "probability": 0.9819 + }, + { + "start": 799.82, + "end": 800.14, + "probability": 0.9505 + }, + { + "start": 801.4, + "end": 802.52, + "probability": 0.9973 + }, + { + "start": 802.64, + "end": 803.56, + "probability": 0.762 + }, + { + "start": 803.68, + "end": 805.86, + "probability": 0.9436 + }, + { + "start": 806.16, + "end": 809.14, + "probability": 0.9753 + }, + { + "start": 809.58, + "end": 812.24, + "probability": 0.9338 + }, + { + "start": 814.94, + "end": 815.62, + "probability": 0.6618 + }, + { + "start": 816.4, + "end": 819.96, + "probability": 0.814 + }, + { + "start": 820.8, + "end": 821.98, + "probability": 0.6637 + }, + { + "start": 822.42, + "end": 823.77, + "probability": 0.9858 + }, + { + "start": 823.98, + "end": 824.7, + "probability": 0.8345 + }, + { + "start": 825.32, + "end": 830.12, + "probability": 0.8613 + }, + { + "start": 830.24, + "end": 831.7, + "probability": 0.5506 + }, + { + "start": 831.84, + "end": 832.26, + "probability": 0.3216 + }, + { + "start": 832.4, + "end": 833.32, + "probability": 0.6043 + }, + { + "start": 833.8, + "end": 836.06, + "probability": 0.9741 + }, + { + "start": 836.34, + "end": 836.58, + "probability": 0.7149 + }, + { + "start": 836.84, + "end": 839.24, + "probability": 0.5694 + }, + { + "start": 839.24, + "end": 840.58, + "probability": 0.8533 + }, + { + "start": 840.74, + "end": 841.14, + "probability": 0.8348 + }, + { + "start": 841.2, + "end": 841.56, + "probability": 0.62 + }, + { + "start": 842.02, + "end": 842.74, + "probability": 0.7036 + }, + { + "start": 842.88, + "end": 844.1, + "probability": 0.9329 + }, + { + "start": 846.9, + "end": 848.22, + "probability": 0.6706 + }, + { + "start": 849.42, + "end": 852.12, + "probability": 0.8812 + }, + { + "start": 852.92, + "end": 855.12, + "probability": 0.988 + }, + { + "start": 856.5, + "end": 858.52, + "probability": 0.9897 + }, + { + "start": 858.88, + "end": 861.38, + "probability": 0.9958 + }, + { + "start": 861.46, + "end": 862.3, + "probability": 0.575 + }, + { + "start": 862.3, + "end": 862.94, + "probability": 0.5007 + }, + { + "start": 863.92, + "end": 868.2, + "probability": 0.9789 + }, + { + "start": 869.42, + "end": 872.72, + "probability": 0.9906 + }, + { + "start": 873.58, + "end": 876.3, + "probability": 0.9845 + }, + { + "start": 876.7, + "end": 881.16, + "probability": 0.9908 + }, + { + "start": 881.3, + "end": 882.32, + "probability": 0.4564 + }, + { + "start": 882.94, + "end": 883.88, + "probability": 0.9886 + }, + { + "start": 884.66, + "end": 889.52, + "probability": 0.978 + }, + { + "start": 890.2, + "end": 894.98, + "probability": 0.9648 + }, + { + "start": 895.54, + "end": 896.54, + "probability": 0.9668 + }, + { + "start": 897.92, + "end": 899.68, + "probability": 0.9976 + }, + { + "start": 900.32, + "end": 901.9, + "probability": 0.9924 + }, + { + "start": 902.82, + "end": 907.24, + "probability": 0.8953 + }, + { + "start": 907.88, + "end": 910.2, + "probability": 0.9449 + }, + { + "start": 910.82, + "end": 914.26, + "probability": 0.9705 + }, + { + "start": 914.98, + "end": 915.48, + "probability": 0.5256 + }, + { + "start": 915.7, + "end": 915.92, + "probability": 0.8218 + }, + { + "start": 916.02, + "end": 917.08, + "probability": 0.6262 + }, + { + "start": 917.12, + "end": 918.82, + "probability": 0.9322 + }, + { + "start": 919.36, + "end": 920.44, + "probability": 0.9393 + }, + { + "start": 921.02, + "end": 921.96, + "probability": 0.9768 + }, + { + "start": 922.6, + "end": 928.72, + "probability": 0.9918 + }, + { + "start": 929.32, + "end": 931.78, + "probability": 0.9615 + }, + { + "start": 933.92, + "end": 935.98, + "probability": 0.7676 + }, + { + "start": 936.5, + "end": 938.12, + "probability": 0.8143 + }, + { + "start": 938.18, + "end": 938.56, + "probability": 0.4112 + }, + { + "start": 938.62, + "end": 938.9, + "probability": 0.798 + }, + { + "start": 938.94, + "end": 939.46, + "probability": 0.5727 + }, + { + "start": 939.5, + "end": 940.34, + "probability": 0.8537 + }, + { + "start": 941.54, + "end": 944.22, + "probability": 0.6681 + }, + { + "start": 945.34, + "end": 947.76, + "probability": 0.9971 + }, + { + "start": 948.98, + "end": 952.98, + "probability": 0.8896 + }, + { + "start": 953.78, + "end": 954.92, + "probability": 0.6843 + }, + { + "start": 954.98, + "end": 956.0, + "probability": 0.7336 + }, + { + "start": 956.04, + "end": 961.34, + "probability": 0.9924 + }, + { + "start": 961.84, + "end": 961.84, + "probability": 0.4619 + }, + { + "start": 962.2, + "end": 966.38, + "probability": 0.9886 + }, + { + "start": 966.92, + "end": 972.64, + "probability": 0.9469 + }, + { + "start": 974.22, + "end": 977.24, + "probability": 0.9578 + }, + { + "start": 977.96, + "end": 979.78, + "probability": 0.884 + }, + { + "start": 981.06, + "end": 982.06, + "probability": 0.3021 + }, + { + "start": 982.32, + "end": 986.38, + "probability": 0.7456 + }, + { + "start": 986.5, + "end": 986.82, + "probability": 0.4906 + }, + { + "start": 987.94, + "end": 991.56, + "probability": 0.8247 + }, + { + "start": 992.48, + "end": 996.64, + "probability": 0.8573 + }, + { + "start": 996.96, + "end": 998.84, + "probability": 0.5862 + }, + { + "start": 999.6, + "end": 1001.34, + "probability": 0.6041 + }, + { + "start": 1001.46, + "end": 1002.36, + "probability": 0.758 + }, + { + "start": 1002.82, + "end": 1004.96, + "probability": 0.9963 + }, + { + "start": 1005.0, + "end": 1006.14, + "probability": 0.6186 + }, + { + "start": 1006.98, + "end": 1007.74, + "probability": 0.7673 + }, + { + "start": 1008.28, + "end": 1011.74, + "probability": 0.9941 + }, + { + "start": 1012.5, + "end": 1013.92, + "probability": 0.7801 + }, + { + "start": 1014.68, + "end": 1017.42, + "probability": 0.7339 + }, + { + "start": 1017.6, + "end": 1018.62, + "probability": 0.7117 + }, + { + "start": 1018.74, + "end": 1019.72, + "probability": 0.9766 + }, + { + "start": 1020.62, + "end": 1024.58, + "probability": 0.831 + }, + { + "start": 1025.26, + "end": 1027.78, + "probability": 0.9453 + }, + { + "start": 1028.56, + "end": 1030.92, + "probability": 0.9539 + }, + { + "start": 1031.56, + "end": 1033.24, + "probability": 0.5731 + }, + { + "start": 1034.5, + "end": 1037.52, + "probability": 0.2503 + }, + { + "start": 1037.64, + "end": 1040.28, + "probability": 0.5785 + }, + { + "start": 1040.32, + "end": 1044.02, + "probability": 0.9784 + }, + { + "start": 1044.14, + "end": 1044.94, + "probability": 0.9036 + }, + { + "start": 1044.98, + "end": 1045.44, + "probability": 0.9001 + }, + { + "start": 1045.9, + "end": 1046.62, + "probability": 0.9459 + }, + { + "start": 1046.68, + "end": 1050.08, + "probability": 0.9487 + }, + { + "start": 1050.16, + "end": 1050.38, + "probability": 0.8203 + }, + { + "start": 1051.78, + "end": 1053.96, + "probability": 0.616 + }, + { + "start": 1054.12, + "end": 1056.08, + "probability": 0.6227 + }, + { + "start": 1056.26, + "end": 1058.74, + "probability": 0.7484 + }, + { + "start": 1060.18, + "end": 1063.26, + "probability": 0.9829 + }, + { + "start": 1063.46, + "end": 1064.22, + "probability": 0.8925 + }, + { + "start": 1065.12, + "end": 1068.06, + "probability": 0.9194 + }, + { + "start": 1068.58, + "end": 1074.66, + "probability": 0.9755 + }, + { + "start": 1075.22, + "end": 1077.58, + "probability": 0.8306 + }, + { + "start": 1078.3, + "end": 1080.82, + "probability": 0.9668 + }, + { + "start": 1081.4, + "end": 1085.24, + "probability": 0.6871 + }, + { + "start": 1086.0, + "end": 1089.06, + "probability": 0.6892 + }, + { + "start": 1089.6, + "end": 1090.38, + "probability": 0.6688 + }, + { + "start": 1090.44, + "end": 1091.46, + "probability": 0.7578 + }, + { + "start": 1091.58, + "end": 1092.28, + "probability": 0.7852 + }, + { + "start": 1092.64, + "end": 1093.64, + "probability": 0.9919 + }, + { + "start": 1096.12, + "end": 1099.22, + "probability": 0.9958 + }, + { + "start": 1099.46, + "end": 1102.24, + "probability": 0.9971 + }, + { + "start": 1102.8, + "end": 1108.6, + "probability": 0.9606 + }, + { + "start": 1109.08, + "end": 1111.34, + "probability": 0.9769 + }, + { + "start": 1112.0, + "end": 1115.12, + "probability": 0.9861 + }, + { + "start": 1115.28, + "end": 1117.02, + "probability": 0.9863 + }, + { + "start": 1117.14, + "end": 1123.34, + "probability": 0.9833 + }, + { + "start": 1123.92, + "end": 1126.68, + "probability": 0.8667 + }, + { + "start": 1129.02, + "end": 1129.28, + "probability": 0.0314 + }, + { + "start": 1129.28, + "end": 1129.28, + "probability": 0.3333 + }, + { + "start": 1129.28, + "end": 1131.15, + "probability": 0.3003 + }, + { + "start": 1131.56, + "end": 1134.8, + "probability": 0.8767 + }, + { + "start": 1135.4, + "end": 1138.1, + "probability": 0.968 + }, + { + "start": 1138.1, + "end": 1141.84, + "probability": 0.9779 + }, + { + "start": 1142.26, + "end": 1144.54, + "probability": 0.9418 + }, + { + "start": 1144.82, + "end": 1147.82, + "probability": 0.9962 + }, + { + "start": 1148.26, + "end": 1150.06, + "probability": 0.9438 + }, + { + "start": 1150.08, + "end": 1150.46, + "probability": 0.6516 + }, + { + "start": 1150.5, + "end": 1151.12, + "probability": 0.7129 + }, + { + "start": 1151.84, + "end": 1153.14, + "probability": 0.5207 + }, + { + "start": 1153.36, + "end": 1154.84, + "probability": 0.8824 + }, + { + "start": 1155.04, + "end": 1157.82, + "probability": 0.8939 + }, + { + "start": 1157.9, + "end": 1159.3, + "probability": 0.9572 + }, + { + "start": 1159.44, + "end": 1160.22, + "probability": 0.9038 + }, + { + "start": 1160.34, + "end": 1163.38, + "probability": 0.9868 + }, + { + "start": 1163.52, + "end": 1163.66, + "probability": 0.585 + }, + { + "start": 1163.84, + "end": 1164.24, + "probability": 0.714 + }, + { + "start": 1164.4, + "end": 1165.28, + "probability": 0.9515 + }, + { + "start": 1165.7, + "end": 1169.04, + "probability": 0.9716 + }, + { + "start": 1169.14, + "end": 1169.48, + "probability": 0.8268 + }, + { + "start": 1170.66, + "end": 1173.02, + "probability": 0.6927 + }, + { + "start": 1173.16, + "end": 1175.18, + "probability": 0.6673 + }, + { + "start": 1175.4, + "end": 1177.3, + "probability": 0.7552 + }, + { + "start": 1182.28, + "end": 1183.12, + "probability": 0.6738 + }, + { + "start": 1184.22, + "end": 1186.24, + "probability": 0.9783 + }, + { + "start": 1188.4, + "end": 1190.26, + "probability": 0.9374 + }, + { + "start": 1191.0, + "end": 1193.92, + "probability": 0.9911 + }, + { + "start": 1194.46, + "end": 1195.52, + "probability": 0.9498 + }, + { + "start": 1195.56, + "end": 1203.27, + "probability": 0.9476 + }, + { + "start": 1203.76, + "end": 1207.92, + "probability": 0.9961 + }, + { + "start": 1208.12, + "end": 1212.2, + "probability": 0.9871 + }, + { + "start": 1212.54, + "end": 1216.5, + "probability": 0.9961 + }, + { + "start": 1216.7, + "end": 1222.2, + "probability": 0.9943 + }, + { + "start": 1224.76, + "end": 1226.98, + "probability": 0.7006 + }, + { + "start": 1227.14, + "end": 1232.52, + "probability": 0.9121 + }, + { + "start": 1232.86, + "end": 1233.88, + "probability": 0.9058 + }, + { + "start": 1234.24, + "end": 1234.86, + "probability": 0.7069 + }, + { + "start": 1234.92, + "end": 1240.14, + "probability": 0.9775 + }, + { + "start": 1240.62, + "end": 1242.52, + "probability": 0.7036 + }, + { + "start": 1242.82, + "end": 1244.08, + "probability": 0.9146 + }, + { + "start": 1244.68, + "end": 1247.52, + "probability": 0.9639 + }, + { + "start": 1247.8, + "end": 1250.96, + "probability": 0.8757 + }, + { + "start": 1251.06, + "end": 1255.48, + "probability": 0.9863 + }, + { + "start": 1255.68, + "end": 1256.1, + "probability": 0.4332 + }, + { + "start": 1256.26, + "end": 1261.8, + "probability": 0.9458 + }, + { + "start": 1261.96, + "end": 1263.44, + "probability": 0.9368 + }, + { + "start": 1263.52, + "end": 1267.66, + "probability": 0.9027 + }, + { + "start": 1267.74, + "end": 1269.56, + "probability": 0.8813 + }, + { + "start": 1269.94, + "end": 1274.58, + "probability": 0.9949 + }, + { + "start": 1275.1, + "end": 1277.22, + "probability": 0.9957 + }, + { + "start": 1277.52, + "end": 1278.94, + "probability": 0.9551 + }, + { + "start": 1279.36, + "end": 1280.32, + "probability": 0.9584 + }, + { + "start": 1280.44, + "end": 1281.88, + "probability": 0.9473 + }, + { + "start": 1281.96, + "end": 1283.14, + "probability": 0.9646 + }, + { + "start": 1283.78, + "end": 1286.96, + "probability": 0.9741 + }, + { + "start": 1287.36, + "end": 1289.06, + "probability": 0.9928 + }, + { + "start": 1290.14, + "end": 1294.54, + "probability": 0.9403 + }, + { + "start": 1294.74, + "end": 1301.4, + "probability": 0.8103 + }, + { + "start": 1302.82, + "end": 1305.72, + "probability": 0.5925 + }, + { + "start": 1306.72, + "end": 1308.3, + "probability": 0.6641 + }, + { + "start": 1314.34, + "end": 1314.56, + "probability": 0.3661 + }, + { + "start": 1314.66, + "end": 1315.2, + "probability": 0.5788 + }, + { + "start": 1316.78, + "end": 1317.52, + "probability": 0.5712 + }, + { + "start": 1319.42, + "end": 1321.86, + "probability": 0.9871 + }, + { + "start": 1323.12, + "end": 1324.74, + "probability": 0.9862 + }, + { + "start": 1325.74, + "end": 1328.79, + "probability": 0.9758 + }, + { + "start": 1330.04, + "end": 1330.68, + "probability": 0.8485 + }, + { + "start": 1331.62, + "end": 1336.94, + "probability": 0.9855 + }, + { + "start": 1337.04, + "end": 1337.62, + "probability": 0.762 + }, + { + "start": 1337.82, + "end": 1338.46, + "probability": 0.802 + }, + { + "start": 1339.16, + "end": 1341.58, + "probability": 0.9819 + }, + { + "start": 1341.58, + "end": 1345.08, + "probability": 0.9615 + }, + { + "start": 1346.04, + "end": 1346.54, + "probability": 0.6052 + }, + { + "start": 1347.34, + "end": 1348.74, + "probability": 0.9655 + }, + { + "start": 1348.92, + "end": 1350.51, + "probability": 0.987 + }, + { + "start": 1351.28, + "end": 1355.02, + "probability": 0.9926 + }, + { + "start": 1355.78, + "end": 1360.58, + "probability": 0.8448 + }, + { + "start": 1361.26, + "end": 1366.02, + "probability": 0.9033 + }, + { + "start": 1366.88, + "end": 1370.52, + "probability": 0.978 + }, + { + "start": 1371.86, + "end": 1375.1, + "probability": 0.998 + }, + { + "start": 1376.68, + "end": 1381.46, + "probability": 0.9507 + }, + { + "start": 1382.52, + "end": 1384.0, + "probability": 0.8599 + }, + { + "start": 1384.3, + "end": 1387.96, + "probability": 0.98 + }, + { + "start": 1388.58, + "end": 1390.82, + "probability": 0.9009 + }, + { + "start": 1391.68, + "end": 1392.88, + "probability": 0.6376 + }, + { + "start": 1393.1, + "end": 1395.16, + "probability": 0.9873 + }, + { + "start": 1395.64, + "end": 1397.46, + "probability": 0.9233 + }, + { + "start": 1398.1, + "end": 1398.68, + "probability": 0.8995 + }, + { + "start": 1398.74, + "end": 1400.3, + "probability": 0.9278 + }, + { + "start": 1400.8, + "end": 1404.32, + "probability": 0.9962 + }, + { + "start": 1404.36, + "end": 1408.98, + "probability": 0.9975 + }, + { + "start": 1410.36, + "end": 1412.7, + "probability": 0.9481 + }, + { + "start": 1412.78, + "end": 1413.88, + "probability": 0.6763 + }, + { + "start": 1414.02, + "end": 1416.14, + "probability": 0.7581 + }, + { + "start": 1416.54, + "end": 1419.1, + "probability": 0.8904 + }, + { + "start": 1420.78, + "end": 1423.2, + "probability": 0.864 + }, + { + "start": 1423.3, + "end": 1425.06, + "probability": 0.8523 + }, + { + "start": 1426.6, + "end": 1429.56, + "probability": 0.8734 + }, + { + "start": 1430.24, + "end": 1433.98, + "probability": 0.9312 + }, + { + "start": 1434.42, + "end": 1437.84, + "probability": 0.8245 + }, + { + "start": 1438.72, + "end": 1441.86, + "probability": 0.7532 + }, + { + "start": 1442.74, + "end": 1446.34, + "probability": 0.9949 + }, + { + "start": 1447.5, + "end": 1451.8, + "probability": 0.9938 + }, + { + "start": 1452.32, + "end": 1455.32, + "probability": 0.9821 + }, + { + "start": 1456.32, + "end": 1460.6, + "probability": 0.9507 + }, + { + "start": 1461.67, + "end": 1465.29, + "probability": 0.9465 + }, + { + "start": 1465.88, + "end": 1467.16, + "probability": 0.7611 + }, + { + "start": 1467.6, + "end": 1468.52, + "probability": 0.8428 + }, + { + "start": 1469.08, + "end": 1473.44, + "probability": 0.9951 + }, + { + "start": 1474.74, + "end": 1479.34, + "probability": 0.7491 + }, + { + "start": 1479.34, + "end": 1482.1, + "probability": 0.9526 + }, + { + "start": 1482.18, + "end": 1483.36, + "probability": 0.6746 + }, + { + "start": 1484.28, + "end": 1485.72, + "probability": 0.6065 + }, + { + "start": 1486.4, + "end": 1489.84, + "probability": 0.7109 + }, + { + "start": 1490.39, + "end": 1492.44, + "probability": 0.9976 + }, + { + "start": 1492.6, + "end": 1493.78, + "probability": 0.7651 + }, + { + "start": 1494.04, + "end": 1495.5, + "probability": 0.9628 + }, + { + "start": 1507.82, + "end": 1508.96, + "probability": 0.945 + }, + { + "start": 1509.64, + "end": 1513.28, + "probability": 0.9357 + }, + { + "start": 1521.68, + "end": 1521.68, + "probability": 0.0784 + }, + { + "start": 1521.68, + "end": 1523.76, + "probability": 0.6907 + }, + { + "start": 1524.58, + "end": 1527.0, + "probability": 0.9719 + }, + { + "start": 1527.0, + "end": 1529.94, + "probability": 0.9967 + }, + { + "start": 1530.62, + "end": 1532.78, + "probability": 0.9208 + }, + { + "start": 1533.76, + "end": 1537.34, + "probability": 0.9277 + }, + { + "start": 1537.8, + "end": 1542.38, + "probability": 0.7112 + }, + { + "start": 1543.16, + "end": 1548.82, + "probability": 0.8802 + }, + { + "start": 1548.84, + "end": 1550.34, + "probability": 0.9099 + }, + { + "start": 1550.88, + "end": 1551.56, + "probability": 0.6314 + }, + { + "start": 1551.9, + "end": 1552.36, + "probability": 0.6979 + }, + { + "start": 1552.42, + "end": 1553.8, + "probability": 0.978 + }, + { + "start": 1554.16, + "end": 1557.8, + "probability": 0.9282 + }, + { + "start": 1558.66, + "end": 1560.48, + "probability": 0.9713 + }, + { + "start": 1561.04, + "end": 1562.04, + "probability": 0.7032 + }, + { + "start": 1562.14, + "end": 1562.74, + "probability": 0.8748 + }, + { + "start": 1562.84, + "end": 1564.88, + "probability": 0.8393 + }, + { + "start": 1565.32, + "end": 1567.56, + "probability": 0.9578 + }, + { + "start": 1568.24, + "end": 1570.86, + "probability": 0.9742 + }, + { + "start": 1571.34, + "end": 1576.48, + "probability": 0.9904 + }, + { + "start": 1577.04, + "end": 1577.06, + "probability": 0.1407 + }, + { + "start": 1577.24, + "end": 1577.48, + "probability": 0.8768 + }, + { + "start": 1577.48, + "end": 1580.86, + "probability": 0.991 + }, + { + "start": 1581.82, + "end": 1586.28, + "probability": 0.9819 + }, + { + "start": 1586.74, + "end": 1591.28, + "probability": 0.9705 + }, + { + "start": 1591.58, + "end": 1593.26, + "probability": 0.0275 + }, + { + "start": 1594.18, + "end": 1597.9, + "probability": 0.9227 + }, + { + "start": 1599.16, + "end": 1604.96, + "probability": 0.9948 + }, + { + "start": 1605.48, + "end": 1606.42, + "probability": 0.8349 + }, + { + "start": 1607.16, + "end": 1610.18, + "probability": 0.9556 + }, + { + "start": 1611.02, + "end": 1613.36, + "probability": 0.9734 + }, + { + "start": 1613.38, + "end": 1614.06, + "probability": 0.6439 + }, + { + "start": 1614.46, + "end": 1615.88, + "probability": 0.932 + }, + { + "start": 1616.18, + "end": 1619.12, + "probability": 0.9899 + }, + { + "start": 1619.46, + "end": 1621.46, + "probability": 0.9945 + }, + { + "start": 1622.38, + "end": 1625.86, + "probability": 0.9583 + }, + { + "start": 1625.86, + "end": 1630.96, + "probability": 0.9971 + }, + { + "start": 1632.3, + "end": 1633.36, + "probability": 0.7134 + }, + { + "start": 1633.38, + "end": 1633.74, + "probability": 0.8203 + }, + { + "start": 1633.84, + "end": 1636.46, + "probability": 0.9953 + }, + { + "start": 1636.46, + "end": 1640.08, + "probability": 0.9979 + }, + { + "start": 1640.48, + "end": 1644.2, + "probability": 0.9889 + }, + { + "start": 1644.56, + "end": 1647.32, + "probability": 0.8947 + }, + { + "start": 1647.46, + "end": 1648.9, + "probability": 0.9872 + }, + { + "start": 1650.08, + "end": 1651.54, + "probability": 0.6965 + }, + { + "start": 1652.26, + "end": 1655.32, + "probability": 0.89 + }, + { + "start": 1655.88, + "end": 1659.28, + "probability": 0.9849 + }, + { + "start": 1659.28, + "end": 1661.42, + "probability": 0.8728 + }, + { + "start": 1662.08, + "end": 1665.04, + "probability": 0.9861 + }, + { + "start": 1665.66, + "end": 1666.24, + "probability": 0.8829 + }, + { + "start": 1666.84, + "end": 1671.54, + "probability": 0.8408 + }, + { + "start": 1672.34, + "end": 1675.3, + "probability": 0.8594 + }, + { + "start": 1675.3, + "end": 1677.72, + "probability": 0.9366 + }, + { + "start": 1678.36, + "end": 1680.16, + "probability": 0.7788 + }, + { + "start": 1680.92, + "end": 1681.28, + "probability": 0.5219 + }, + { + "start": 1681.96, + "end": 1682.9, + "probability": 0.9485 + }, + { + "start": 1683.44, + "end": 1685.86, + "probability": 0.9391 + }, + { + "start": 1686.02, + "end": 1692.12, + "probability": 0.9284 + }, + { + "start": 1692.44, + "end": 1694.64, + "probability": 0.9006 + }, + { + "start": 1695.6, + "end": 1696.26, + "probability": 0.6797 + }, + { + "start": 1696.64, + "end": 1700.44, + "probability": 0.8379 + }, + { + "start": 1700.9, + "end": 1701.7, + "probability": 0.8682 + }, + { + "start": 1702.02, + "end": 1702.64, + "probability": 0.9504 + }, + { + "start": 1702.78, + "end": 1704.72, + "probability": 0.7853 + }, + { + "start": 1705.06, + "end": 1705.26, + "probability": 0.8229 + }, + { + "start": 1705.66, + "end": 1706.78, + "probability": 0.6126 + }, + { + "start": 1706.92, + "end": 1708.6, + "probability": 0.5866 + }, + { + "start": 1708.82, + "end": 1708.82, + "probability": 0.144 + }, + { + "start": 1708.82, + "end": 1709.94, + "probability": 0.6782 + }, + { + "start": 1710.08, + "end": 1710.52, + "probability": 0.3519 + }, + { + "start": 1710.58, + "end": 1713.2, + "probability": 0.9613 + }, + { + "start": 1713.3, + "end": 1716.0, + "probability": 0.7802 + }, + { + "start": 1717.84, + "end": 1719.24, + "probability": 0.1148 + }, + { + "start": 1719.24, + "end": 1719.24, + "probability": 0.0335 + }, + { + "start": 1719.24, + "end": 1719.64, + "probability": 0.3159 + }, + { + "start": 1719.72, + "end": 1721.82, + "probability": 0.6846 + }, + { + "start": 1722.06, + "end": 1727.1, + "probability": 0.85 + }, + { + "start": 1727.26, + "end": 1732.46, + "probability": 0.7212 + }, + { + "start": 1732.54, + "end": 1733.68, + "probability": 0.9925 + }, + { + "start": 1734.42, + "end": 1737.68, + "probability": 0.9726 + }, + { + "start": 1737.76, + "end": 1737.92, + "probability": 0.2653 + }, + { + "start": 1738.0, + "end": 1742.6, + "probability": 0.9874 + }, + { + "start": 1746.02, + "end": 1746.46, + "probability": 0.0251 + }, + { + "start": 1746.46, + "end": 1746.46, + "probability": 0.0435 + }, + { + "start": 1746.46, + "end": 1746.52, + "probability": 0.0434 + }, + { + "start": 1746.52, + "end": 1750.52, + "probability": 0.4617 + }, + { + "start": 1750.58, + "end": 1751.06, + "probability": 0.2968 + }, + { + "start": 1751.18, + "end": 1752.52, + "probability": 0.9204 + }, + { + "start": 1753.12, + "end": 1755.6, + "probability": 0.8438 + }, + { + "start": 1755.86, + "end": 1755.96, + "probability": 0.1768 + }, + { + "start": 1756.02, + "end": 1757.6, + "probability": 0.7089 + }, + { + "start": 1758.16, + "end": 1761.68, + "probability": 0.3086 + }, + { + "start": 1762.0, + "end": 1766.16, + "probability": 0.9845 + }, + { + "start": 1766.42, + "end": 1769.74, + "probability": 0.989 + }, + { + "start": 1770.48, + "end": 1770.94, + "probability": 0.7929 + }, + { + "start": 1771.04, + "end": 1773.9, + "probability": 0.9773 + }, + { + "start": 1774.18, + "end": 1776.02, + "probability": 0.9664 + }, + { + "start": 1776.58, + "end": 1780.48, + "probability": 0.9949 + }, + { + "start": 1780.48, + "end": 1784.24, + "probability": 0.8599 + }, + { + "start": 1784.98, + "end": 1787.88, + "probability": 0.8783 + }, + { + "start": 1788.52, + "end": 1790.32, + "probability": 0.9871 + }, + { + "start": 1790.66, + "end": 1791.46, + "probability": 0.9536 + }, + { + "start": 1791.72, + "end": 1793.82, + "probability": 0.9303 + }, + { + "start": 1794.2, + "end": 1796.98, + "probability": 0.9914 + }, + { + "start": 1797.02, + "end": 1798.24, + "probability": 0.8655 + }, + { + "start": 1799.16, + "end": 1802.82, + "probability": 0.9092 + }, + { + "start": 1802.98, + "end": 1805.82, + "probability": 0.9085 + }, + { + "start": 1806.08, + "end": 1809.12, + "probability": 0.9709 + }, + { + "start": 1809.9, + "end": 1811.02, + "probability": 0.8887 + }, + { + "start": 1811.06, + "end": 1814.26, + "probability": 0.9922 + }, + { + "start": 1814.4, + "end": 1816.7, + "probability": 0.8319 + }, + { + "start": 1817.24, + "end": 1817.92, + "probability": 0.8418 + }, + { + "start": 1818.81, + "end": 1824.94, + "probability": 0.9803 + }, + { + "start": 1825.28, + "end": 1826.5, + "probability": 0.699 + }, + { + "start": 1826.64, + "end": 1828.36, + "probability": 0.9028 + }, + { + "start": 1828.72, + "end": 1834.84, + "probability": 0.9956 + }, + { + "start": 1834.94, + "end": 1837.3, + "probability": 0.9028 + }, + { + "start": 1837.82, + "end": 1841.66, + "probability": 0.444 + }, + { + "start": 1842.22, + "end": 1843.88, + "probability": 0.9589 + }, + { + "start": 1844.22, + "end": 1846.28, + "probability": 0.8667 + }, + { + "start": 1847.68, + "end": 1851.18, + "probability": 0.9353 + }, + { + "start": 1851.18, + "end": 1852.88, + "probability": 0.5813 + }, + { + "start": 1853.04, + "end": 1853.96, + "probability": 0.3314 + }, + { + "start": 1853.96, + "end": 1856.96, + "probability": 0.9027 + }, + { + "start": 1856.96, + "end": 1857.62, + "probability": 0.4096 + }, + { + "start": 1859.14, + "end": 1859.26, + "probability": 0.0037 + }, + { + "start": 1859.26, + "end": 1859.42, + "probability": 0.0342 + }, + { + "start": 1859.42, + "end": 1859.68, + "probability": 0.7915 + }, + { + "start": 1859.8, + "end": 1865.66, + "probability": 0.9778 + }, + { + "start": 1865.8, + "end": 1866.48, + "probability": 0.9384 + }, + { + "start": 1866.58, + "end": 1868.4, + "probability": 0.9683 + }, + { + "start": 1868.56, + "end": 1873.26, + "probability": 0.9951 + }, + { + "start": 1873.42, + "end": 1878.08, + "probability": 0.8721 + }, + { + "start": 1878.18, + "end": 1878.74, + "probability": 0.9846 + }, + { + "start": 1878.92, + "end": 1881.84, + "probability": 0.9663 + }, + { + "start": 1882.54, + "end": 1882.76, + "probability": 0.1027 + }, + { + "start": 1882.86, + "end": 1886.32, + "probability": 0.9735 + }, + { + "start": 1886.32, + "end": 1889.98, + "probability": 0.7557 + }, + { + "start": 1890.72, + "end": 1892.2, + "probability": 0.8324 + }, + { + "start": 1892.7, + "end": 1896.2, + "probability": 0.7216 + }, + { + "start": 1896.64, + "end": 1897.94, + "probability": 0.6801 + }, + { + "start": 1898.86, + "end": 1900.04, + "probability": 0.8984 + }, + { + "start": 1900.1, + "end": 1902.92, + "probability": 0.994 + }, + { + "start": 1903.0, + "end": 1906.74, + "probability": 0.976 + }, + { + "start": 1906.8, + "end": 1907.99, + "probability": 0.9924 + }, + { + "start": 1908.2, + "end": 1910.52, + "probability": 0.9924 + }, + { + "start": 1911.16, + "end": 1912.36, + "probability": 0.9619 + }, + { + "start": 1912.6, + "end": 1916.2, + "probability": 0.9692 + }, + { + "start": 1917.98, + "end": 1920.28, + "probability": 0.6652 + }, + { + "start": 1920.28, + "end": 1922.7, + "probability": 0.8564 + }, + { + "start": 1922.8, + "end": 1924.1, + "probability": 0.7778 + }, + { + "start": 1924.7, + "end": 1925.32, + "probability": 0.8748 + }, + { + "start": 1925.6, + "end": 1929.58, + "probability": 0.9419 + }, + { + "start": 1929.92, + "end": 1931.0, + "probability": 0.9639 + }, + { + "start": 1931.54, + "end": 1935.44, + "probability": 0.9943 + }, + { + "start": 1935.54, + "end": 1936.6, + "probability": 0.6849 + }, + { + "start": 1937.08, + "end": 1939.36, + "probability": 0.995 + }, + { + "start": 1939.68, + "end": 1940.92, + "probability": 0.9939 + }, + { + "start": 1941.68, + "end": 1943.62, + "probability": 0.9983 + }, + { + "start": 1943.68, + "end": 1944.6, + "probability": 0.8321 + }, + { + "start": 1945.02, + "end": 1946.16, + "probability": 0.7843 + }, + { + "start": 1946.18, + "end": 1946.84, + "probability": 0.5757 + }, + { + "start": 1947.3, + "end": 1948.5, + "probability": 0.8963 + }, + { + "start": 1948.62, + "end": 1949.7, + "probability": 0.5314 + }, + { + "start": 1949.94, + "end": 1952.06, + "probability": 0.8042 + }, + { + "start": 1952.22, + "end": 1959.3, + "probability": 0.9802 + }, + { + "start": 1959.96, + "end": 1962.46, + "probability": 0.7465 + }, + { + "start": 1962.9, + "end": 1964.08, + "probability": 0.789 + }, + { + "start": 1969.52, + "end": 1971.1, + "probability": 0.69 + }, + { + "start": 1971.78, + "end": 1975.22, + "probability": 0.9787 + }, + { + "start": 1976.66, + "end": 1979.64, + "probability": 0.9847 + }, + { + "start": 1980.74, + "end": 1981.92, + "probability": 0.7654 + }, + { + "start": 1983.12, + "end": 1984.32, + "probability": 0.9868 + }, + { + "start": 1985.16, + "end": 1990.52, + "probability": 0.9509 + }, + { + "start": 1991.94, + "end": 1992.88, + "probability": 0.9953 + }, + { + "start": 1993.1, + "end": 1995.02, + "probability": 0.8584 + }, + { + "start": 1995.74, + "end": 2001.9, + "probability": 0.9696 + }, + { + "start": 2002.04, + "end": 2002.54, + "probability": 0.7058 + }, + { + "start": 2003.42, + "end": 2007.26, + "probability": 0.9742 + }, + { + "start": 2008.64, + "end": 2015.06, + "probability": 0.996 + }, + { + "start": 2016.14, + "end": 2017.86, + "probability": 0.7288 + }, + { + "start": 2018.36, + "end": 2026.34, + "probability": 0.9959 + }, + { + "start": 2027.64, + "end": 2030.36, + "probability": 0.9556 + }, + { + "start": 2031.54, + "end": 2037.92, + "probability": 0.9927 + }, + { + "start": 2037.92, + "end": 2042.34, + "probability": 0.9902 + }, + { + "start": 2042.56, + "end": 2042.86, + "probability": 0.5994 + }, + { + "start": 2043.6, + "end": 2044.92, + "probability": 0.4634 + }, + { + "start": 2044.98, + "end": 2045.84, + "probability": 0.7344 + }, + { + "start": 2045.9, + "end": 2047.12, + "probability": 0.5941 + }, + { + "start": 2047.2, + "end": 2047.74, + "probability": 0.7654 + }, + { + "start": 2047.78, + "end": 2049.64, + "probability": 0.9243 + }, + { + "start": 2049.86, + "end": 2054.2, + "probability": 0.9692 + }, + { + "start": 2054.98, + "end": 2056.98, + "probability": 0.8638 + }, + { + "start": 2057.06, + "end": 2058.56, + "probability": 0.8687 + }, + { + "start": 2058.76, + "end": 2059.02, + "probability": 0.6432 + }, + { + "start": 2059.1, + "end": 2059.6, + "probability": 0.9789 + }, + { + "start": 2059.72, + "end": 2061.0, + "probability": 0.9663 + }, + { + "start": 2061.14, + "end": 2062.58, + "probability": 0.9657 + }, + { + "start": 2063.14, + "end": 2066.84, + "probability": 0.8333 + }, + { + "start": 2066.84, + "end": 2071.5, + "probability": 0.8274 + }, + { + "start": 2071.74, + "end": 2072.88, + "probability": 0.9891 + }, + { + "start": 2073.4, + "end": 2076.58, + "probability": 0.9947 + }, + { + "start": 2076.88, + "end": 2079.96, + "probability": 0.8719 + }, + { + "start": 2080.08, + "end": 2082.42, + "probability": 0.8133 + }, + { + "start": 2082.68, + "end": 2085.76, + "probability": 0.8613 + }, + { + "start": 2086.12, + "end": 2090.6, + "probability": 0.9951 + }, + { + "start": 2090.72, + "end": 2096.1, + "probability": 0.9198 + }, + { + "start": 2096.38, + "end": 2097.8, + "probability": 0.825 + }, + { + "start": 2097.98, + "end": 2102.38, + "probability": 0.9613 + }, + { + "start": 2102.48, + "end": 2107.62, + "probability": 0.9927 + }, + { + "start": 2107.72, + "end": 2112.8, + "probability": 0.9971 + }, + { + "start": 2112.84, + "end": 2115.46, + "probability": 0.8474 + }, + { + "start": 2115.62, + "end": 2116.35, + "probability": 0.7012 + }, + { + "start": 2117.0, + "end": 2120.14, + "probability": 0.9977 + }, + { + "start": 2120.14, + "end": 2124.5, + "probability": 0.96 + }, + { + "start": 2124.96, + "end": 2127.54, + "probability": 0.8748 + }, + { + "start": 2127.9, + "end": 2129.04, + "probability": 0.9399 + }, + { + "start": 2129.12, + "end": 2129.62, + "probability": 0.6855 + }, + { + "start": 2130.26, + "end": 2134.18, + "probability": 0.9276 + }, + { + "start": 2134.36, + "end": 2136.78, + "probability": 0.9873 + }, + { + "start": 2137.36, + "end": 2140.4, + "probability": 0.9639 + }, + { + "start": 2140.92, + "end": 2143.68, + "probability": 0.8775 + }, + { + "start": 2144.34, + "end": 2145.74, + "probability": 0.8568 + }, + { + "start": 2145.8, + "end": 2149.6, + "probability": 0.9629 + }, + { + "start": 2150.12, + "end": 2154.2, + "probability": 0.9792 + }, + { + "start": 2155.52, + "end": 2158.6, + "probability": 0.9899 + }, + { + "start": 2158.68, + "end": 2161.3, + "probability": 0.8131 + }, + { + "start": 2161.4, + "end": 2164.02, + "probability": 0.9834 + }, + { + "start": 2164.76, + "end": 2167.18, + "probability": 0.9886 + }, + { + "start": 2167.68, + "end": 2169.56, + "probability": 0.9876 + }, + { + "start": 2169.84, + "end": 2173.58, + "probability": 0.9932 + }, + { + "start": 2174.1, + "end": 2178.2, + "probability": 0.9872 + }, + { + "start": 2179.44, + "end": 2184.54, + "probability": 0.9951 + }, + { + "start": 2186.28, + "end": 2190.58, + "probability": 0.99 + }, + { + "start": 2191.18, + "end": 2191.64, + "probability": 0.6248 + }, + { + "start": 2191.74, + "end": 2192.0, + "probability": 0.6875 + }, + { + "start": 2192.16, + "end": 2192.86, + "probability": 0.8246 + }, + { + "start": 2193.2, + "end": 2194.72, + "probability": 0.9686 + }, + { + "start": 2194.84, + "end": 2194.96, + "probability": 0.7914 + }, + { + "start": 2195.02, + "end": 2195.62, + "probability": 0.8389 + }, + { + "start": 2195.72, + "end": 2197.0, + "probability": 0.5414 + }, + { + "start": 2197.0, + "end": 2201.14, + "probability": 0.9592 + }, + { + "start": 2201.64, + "end": 2206.98, + "probability": 0.9601 + }, + { + "start": 2207.48, + "end": 2207.74, + "probability": 0.6031 + }, + { + "start": 2208.4, + "end": 2209.74, + "probability": 0.581 + }, + { + "start": 2209.82, + "end": 2211.22, + "probability": 0.6839 + }, + { + "start": 2211.3, + "end": 2212.44, + "probability": 0.8867 + }, + { + "start": 2212.54, + "end": 2214.12, + "probability": 0.9749 + }, + { + "start": 2214.24, + "end": 2216.66, + "probability": 0.537 + }, + { + "start": 2217.24, + "end": 2219.14, + "probability": 0.9855 + }, + { + "start": 2219.66, + "end": 2221.12, + "probability": 0.9324 + }, + { + "start": 2221.3, + "end": 2223.62, + "probability": 0.9547 + }, + { + "start": 2223.64, + "end": 2224.34, + "probability": 0.7507 + }, + { + "start": 2224.44, + "end": 2226.48, + "probability": 0.8986 + }, + { + "start": 2226.56, + "end": 2228.7, + "probability": 0.9531 + }, + { + "start": 2229.5, + "end": 2230.72, + "probability": 0.3197 + }, + { + "start": 2230.86, + "end": 2235.62, + "probability": 0.9475 + }, + { + "start": 2235.68, + "end": 2237.4, + "probability": 0.9735 + }, + { + "start": 2237.66, + "end": 2238.98, + "probability": 0.4509 + }, + { + "start": 2239.08, + "end": 2239.12, + "probability": 0.0717 + }, + { + "start": 2239.12, + "end": 2241.37, + "probability": 0.3119 + }, + { + "start": 2241.82, + "end": 2241.96, + "probability": 0.7987 + }, + { + "start": 2243.6, + "end": 2244.32, + "probability": 0.1301 + }, + { + "start": 2244.38, + "end": 2245.44, + "probability": 0.1384 + }, + { + "start": 2245.84, + "end": 2246.94, + "probability": 0.6354 + }, + { + "start": 2247.54, + "end": 2248.44, + "probability": 0.6293 + }, + { + "start": 2248.54, + "end": 2251.82, + "probability": 0.9944 + }, + { + "start": 2251.82, + "end": 2253.04, + "probability": 0.8003 + }, + { + "start": 2253.06, + "end": 2254.96, + "probability": 0.8015 + }, + { + "start": 2255.06, + "end": 2258.18, + "probability": 0.8159 + }, + { + "start": 2258.22, + "end": 2260.64, + "probability": 0.9086 + }, + { + "start": 2261.38, + "end": 2265.72, + "probability": 0.9933 + }, + { + "start": 2266.06, + "end": 2266.96, + "probability": 0.8792 + }, + { + "start": 2267.02, + "end": 2268.58, + "probability": 0.9897 + }, + { + "start": 2268.7, + "end": 2269.28, + "probability": 0.8821 + }, + { + "start": 2269.82, + "end": 2271.36, + "probability": 0.8601 + }, + { + "start": 2271.54, + "end": 2274.08, + "probability": 0.7959 + }, + { + "start": 2274.2, + "end": 2274.92, + "probability": 0.7876 + }, + { + "start": 2275.14, + "end": 2275.52, + "probability": 0.717 + }, + { + "start": 2276.02, + "end": 2277.26, + "probability": 0.6372 + }, + { + "start": 2277.52, + "end": 2280.28, + "probability": 0.8303 + }, + { + "start": 2280.78, + "end": 2282.41, + "probability": 0.9622 + }, + { + "start": 2283.42, + "end": 2285.82, + "probability": 0.7458 + }, + { + "start": 2287.04, + "end": 2287.74, + "probability": 0.8033 + }, + { + "start": 2288.24, + "end": 2290.96, + "probability": 0.9897 + }, + { + "start": 2290.96, + "end": 2296.18, + "probability": 0.9978 + }, + { + "start": 2296.98, + "end": 2302.86, + "probability": 0.8678 + }, + { + "start": 2303.44, + "end": 2308.56, + "probability": 0.8656 + }, + { + "start": 2309.42, + "end": 2311.78, + "probability": 0.3678 + }, + { + "start": 2311.84, + "end": 2313.88, + "probability": 0.5756 + }, + { + "start": 2314.14, + "end": 2316.46, + "probability": 0.7567 + }, + { + "start": 2317.42, + "end": 2318.2, + "probability": 0.7135 + }, + { + "start": 2318.84, + "end": 2324.0, + "probability": 0.939 + }, + { + "start": 2324.45, + "end": 2327.11, + "probability": 0.1725 + }, + { + "start": 2328.2, + "end": 2331.62, + "probability": 0.9529 + }, + { + "start": 2331.96, + "end": 2334.66, + "probability": 0.852 + }, + { + "start": 2335.4, + "end": 2338.64, + "probability": 0.9973 + }, + { + "start": 2339.24, + "end": 2345.56, + "probability": 0.9921 + }, + { + "start": 2345.66, + "end": 2347.39, + "probability": 0.5864 + }, + { + "start": 2348.4, + "end": 2349.82, + "probability": 0.9788 + }, + { + "start": 2349.98, + "end": 2350.62, + "probability": 0.8827 + }, + { + "start": 2351.12, + "end": 2351.78, + "probability": 0.9565 + }, + { + "start": 2352.34, + "end": 2354.24, + "probability": 0.9702 + }, + { + "start": 2355.18, + "end": 2361.03, + "probability": 0.9911 + }, + { + "start": 2362.38, + "end": 2363.88, + "probability": 0.9715 + }, + { + "start": 2364.02, + "end": 2367.74, + "probability": 0.997 + }, + { + "start": 2368.56, + "end": 2369.24, + "probability": 0.7888 + }, + { + "start": 2369.46, + "end": 2370.98, + "probability": 0.6882 + }, + { + "start": 2371.08, + "end": 2372.14, + "probability": 0.7693 + }, + { + "start": 2372.8, + "end": 2376.74, + "probability": 0.9982 + }, + { + "start": 2377.44, + "end": 2387.56, + "probability": 0.9775 + }, + { + "start": 2388.12, + "end": 2390.71, + "probability": 0.9974 + }, + { + "start": 2391.8, + "end": 2396.38, + "probability": 0.9846 + }, + { + "start": 2396.54, + "end": 2400.06, + "probability": 0.9993 + }, + { + "start": 2400.42, + "end": 2402.98, + "probability": 0.9921 + }, + { + "start": 2403.64, + "end": 2407.12, + "probability": 0.9992 + }, + { + "start": 2407.62, + "end": 2408.67, + "probability": 0.8364 + }, + { + "start": 2409.46, + "end": 2411.2, + "probability": 0.9741 + }, + { + "start": 2411.97, + "end": 2414.52, + "probability": 0.9949 + }, + { + "start": 2414.94, + "end": 2421.76, + "probability": 0.9298 + }, + { + "start": 2422.44, + "end": 2422.78, + "probability": 0.3004 + }, + { + "start": 2422.84, + "end": 2423.58, + "probability": 0.6395 + }, + { + "start": 2424.04, + "end": 2424.9, + "probability": 0.8033 + }, + { + "start": 2424.98, + "end": 2428.14, + "probability": 0.7633 + }, + { + "start": 2428.34, + "end": 2429.38, + "probability": 0.6932 + }, + { + "start": 2429.44, + "end": 2430.3, + "probability": 0.8447 + }, + { + "start": 2430.54, + "end": 2431.34, + "probability": 0.9407 + }, + { + "start": 2432.52, + "end": 2433.66, + "probability": 0.9757 + }, + { + "start": 2434.38, + "end": 2436.6, + "probability": 0.9834 + }, + { + "start": 2437.16, + "end": 2439.8, + "probability": 0.8508 + }, + { + "start": 2440.46, + "end": 2441.78, + "probability": 0.6626 + }, + { + "start": 2442.1, + "end": 2442.62, + "probability": 0.8025 + }, + { + "start": 2442.74, + "end": 2443.98, + "probability": 0.8666 + }, + { + "start": 2444.44, + "end": 2445.78, + "probability": 0.3445 + }, + { + "start": 2445.98, + "end": 2446.62, + "probability": 0.7745 + }, + { + "start": 2446.66, + "end": 2450.5, + "probability": 0.9515 + }, + { + "start": 2451.0, + "end": 2452.1, + "probability": 0.5608 + }, + { + "start": 2452.3, + "end": 2454.0, + "probability": 0.9841 + }, + { + "start": 2454.76, + "end": 2456.02, + "probability": 0.7775 + }, + { + "start": 2456.08, + "end": 2457.16, + "probability": 0.8949 + }, + { + "start": 2457.38, + "end": 2459.76, + "probability": 0.9215 + }, + { + "start": 2460.04, + "end": 2463.22, + "probability": 0.9434 + }, + { + "start": 2463.32, + "end": 2464.54, + "probability": 0.8398 + }, + { + "start": 2464.62, + "end": 2465.58, + "probability": 0.9818 + }, + { + "start": 2466.1, + "end": 2468.5, + "probability": 0.8145 + }, + { + "start": 2468.56, + "end": 2468.72, + "probability": 0.376 + }, + { + "start": 2468.74, + "end": 2470.38, + "probability": 0.9826 + }, + { + "start": 2470.92, + "end": 2473.32, + "probability": 0.9517 + }, + { + "start": 2473.42, + "end": 2474.82, + "probability": 0.9431 + }, + { + "start": 2475.0, + "end": 2477.94, + "probability": 0.9964 + }, + { + "start": 2478.04, + "end": 2480.66, + "probability": 0.9186 + }, + { + "start": 2481.06, + "end": 2482.26, + "probability": 0.7143 + }, + { + "start": 2482.78, + "end": 2484.48, + "probability": 0.9104 + }, + { + "start": 2484.8, + "end": 2487.06, + "probability": 0.8314 + }, + { + "start": 2487.16, + "end": 2490.32, + "probability": 0.9648 + }, + { + "start": 2490.44, + "end": 2490.64, + "probability": 0.9237 + }, + { + "start": 2490.72, + "end": 2492.06, + "probability": 0.977 + }, + { + "start": 2492.1, + "end": 2493.71, + "probability": 0.6782 + }, + { + "start": 2494.06, + "end": 2498.1, + "probability": 0.9645 + }, + { + "start": 2499.68, + "end": 2499.68, + "probability": 0.2762 + }, + { + "start": 2499.68, + "end": 2504.16, + "probability": 0.9672 + }, + { + "start": 2504.32, + "end": 2508.3, + "probability": 0.9822 + }, + { + "start": 2509.2, + "end": 2509.52, + "probability": 0.7618 + }, + { + "start": 2509.7, + "end": 2514.68, + "probability": 0.9893 + }, + { + "start": 2514.68, + "end": 2518.74, + "probability": 0.9979 + }, + { + "start": 2518.9, + "end": 2520.6, + "probability": 0.7516 + }, + { + "start": 2521.32, + "end": 2527.02, + "probability": 0.9839 + }, + { + "start": 2527.02, + "end": 2532.56, + "probability": 0.9906 + }, + { + "start": 2533.08, + "end": 2535.96, + "probability": 0.9325 + }, + { + "start": 2536.04, + "end": 2537.84, + "probability": 0.8606 + }, + { + "start": 2538.38, + "end": 2541.9, + "probability": 0.9707 + }, + { + "start": 2542.56, + "end": 2543.04, + "probability": 0.7993 + }, + { + "start": 2543.66, + "end": 2546.5, + "probability": 0.9329 + }, + { + "start": 2546.62, + "end": 2549.38, + "probability": 0.9861 + }, + { + "start": 2549.38, + "end": 2552.22, + "probability": 0.9446 + }, + { + "start": 2552.7, + "end": 2556.36, + "probability": 0.8916 + }, + { + "start": 2556.62, + "end": 2558.6, + "probability": 0.8148 + }, + { + "start": 2559.25, + "end": 2562.84, + "probability": 0.9952 + }, + { + "start": 2563.28, + "end": 2565.9, + "probability": 0.9956 + }, + { + "start": 2566.52, + "end": 2570.36, + "probability": 0.9755 + }, + { + "start": 2571.02, + "end": 2574.4, + "probability": 0.9292 + }, + { + "start": 2574.54, + "end": 2576.91, + "probability": 0.9141 + }, + { + "start": 2577.24, + "end": 2580.18, + "probability": 0.9834 + }, + { + "start": 2580.6, + "end": 2583.26, + "probability": 0.9333 + }, + { + "start": 2583.44, + "end": 2584.16, + "probability": 0.987 + }, + { + "start": 2584.74, + "end": 2586.52, + "probability": 0.8213 + }, + { + "start": 2586.6, + "end": 2588.86, + "probability": 0.9015 + }, + { + "start": 2589.04, + "end": 2590.24, + "probability": 0.9606 + }, + { + "start": 2591.06, + "end": 2593.84, + "probability": 0.9884 + }, + { + "start": 2594.1, + "end": 2597.08, + "probability": 0.957 + }, + { + "start": 2597.6, + "end": 2600.82, + "probability": 0.8452 + }, + { + "start": 2600.92, + "end": 2601.94, + "probability": 0.9875 + }, + { + "start": 2602.68, + "end": 2606.04, + "probability": 0.4975 + }, + { + "start": 2606.66, + "end": 2611.78, + "probability": 0.9067 + }, + { + "start": 2612.34, + "end": 2616.45, + "probability": 0.9921 + }, + { + "start": 2616.64, + "end": 2619.5, + "probability": 0.9987 + }, + { + "start": 2619.74, + "end": 2622.7, + "probability": 0.9702 + }, + { + "start": 2622.82, + "end": 2628.64, + "probability": 0.9974 + }, + { + "start": 2629.34, + "end": 2630.1, + "probability": 0.4495 + }, + { + "start": 2630.84, + "end": 2634.26, + "probability": 0.9744 + }, + { + "start": 2636.24, + "end": 2636.34, + "probability": 0.0182 + }, + { + "start": 2636.34, + "end": 2636.34, + "probability": 0.0444 + }, + { + "start": 2636.34, + "end": 2636.86, + "probability": 0.6566 + }, + { + "start": 2637.02, + "end": 2638.68, + "probability": 0.912 + }, + { + "start": 2638.76, + "end": 2639.7, + "probability": 0.884 + }, + { + "start": 2639.78, + "end": 2640.52, + "probability": 0.9783 + }, + { + "start": 2640.62, + "end": 2644.1, + "probability": 0.8663 + }, + { + "start": 2644.26, + "end": 2649.76, + "probability": 0.8859 + }, + { + "start": 2649.88, + "end": 2651.58, + "probability": 0.9902 + }, + { + "start": 2651.96, + "end": 2653.44, + "probability": 0.7852 + }, + { + "start": 2653.52, + "end": 2654.22, + "probability": 0.9901 + }, + { + "start": 2654.3, + "end": 2654.94, + "probability": 0.9316 + }, + { + "start": 2655.02, + "end": 2657.3, + "probability": 0.9009 + }, + { + "start": 2657.92, + "end": 2659.96, + "probability": 0.9048 + }, + { + "start": 2660.48, + "end": 2660.83, + "probability": 0.4996 + }, + { + "start": 2661.74, + "end": 2661.76, + "probability": 0.4732 + }, + { + "start": 2661.76, + "end": 2662.32, + "probability": 0.5273 + }, + { + "start": 2662.52, + "end": 2663.06, + "probability": 0.6923 + }, + { + "start": 2663.14, + "end": 2666.24, + "probability": 0.9488 + }, + { + "start": 2666.66, + "end": 2667.0, + "probability": 0.9247 + }, + { + "start": 2667.9, + "end": 2671.4, + "probability": 0.8262 + }, + { + "start": 2671.74, + "end": 2672.34, + "probability": 0.6079 + }, + { + "start": 2672.36, + "end": 2674.38, + "probability": 0.9055 + }, + { + "start": 2674.62, + "end": 2679.22, + "probability": 0.8376 + }, + { + "start": 2679.28, + "end": 2681.84, + "probability": 0.979 + }, + { + "start": 2682.24, + "end": 2686.24, + "probability": 0.9204 + }, + { + "start": 2686.24, + "end": 2689.84, + "probability": 0.999 + }, + { + "start": 2690.5, + "end": 2692.14, + "probability": 0.9385 + }, + { + "start": 2692.28, + "end": 2695.6, + "probability": 0.9913 + }, + { + "start": 2695.66, + "end": 2698.52, + "probability": 0.9949 + }, + { + "start": 2698.52, + "end": 2702.28, + "probability": 0.9996 + }, + { + "start": 2702.36, + "end": 2703.58, + "probability": 0.7573 + }, + { + "start": 2704.0, + "end": 2707.16, + "probability": 0.995 + }, + { + "start": 2707.42, + "end": 2710.32, + "probability": 0.992 + }, + { + "start": 2711.12, + "end": 2712.16, + "probability": 0.6324 + }, + { + "start": 2712.4, + "end": 2713.72, + "probability": 0.6793 + }, + { + "start": 2713.8, + "end": 2714.18, + "probability": 0.7262 + }, + { + "start": 2714.2, + "end": 2714.38, + "probability": 0.6885 + }, + { + "start": 2714.44, + "end": 2715.72, + "probability": 0.9134 + }, + { + "start": 2719.84, + "end": 2720.56, + "probability": 0.706 + }, + { + "start": 2720.64, + "end": 2721.34, + "probability": 0.7688 + }, + { + "start": 2721.56, + "end": 2722.46, + "probability": 0.9639 + }, + { + "start": 2722.62, + "end": 2723.98, + "probability": 0.9229 + }, + { + "start": 2724.16, + "end": 2725.04, + "probability": 0.6724 + }, + { + "start": 2725.64, + "end": 2730.54, + "probability": 0.959 + }, + { + "start": 2731.08, + "end": 2732.34, + "probability": 0.6858 + }, + { + "start": 2732.5, + "end": 2734.64, + "probability": 0.8855 + }, + { + "start": 2734.96, + "end": 2737.36, + "probability": 0.9146 + }, + { + "start": 2738.14, + "end": 2738.92, + "probability": 0.5976 + }, + { + "start": 2739.22, + "end": 2741.8, + "probability": 0.9927 + }, + { + "start": 2742.84, + "end": 2743.36, + "probability": 0.3857 + }, + { + "start": 2744.69, + "end": 2745.92, + "probability": 0.6203 + }, + { + "start": 2746.48, + "end": 2752.56, + "probability": 0.9622 + }, + { + "start": 2753.54, + "end": 2755.58, + "probability": 0.9895 + }, + { + "start": 2756.48, + "end": 2759.68, + "probability": 0.9729 + }, + { + "start": 2760.26, + "end": 2764.22, + "probability": 0.9919 + }, + { + "start": 2764.78, + "end": 2765.92, + "probability": 0.849 + }, + { + "start": 2766.6, + "end": 2771.78, + "probability": 0.9253 + }, + { + "start": 2771.88, + "end": 2775.96, + "probability": 0.9255 + }, + { + "start": 2776.58, + "end": 2776.84, + "probability": 0.8982 + }, + { + "start": 2777.44, + "end": 2782.02, + "probability": 0.9984 + }, + { + "start": 2782.9, + "end": 2783.1, + "probability": 0.6175 + }, + { + "start": 2783.26, + "end": 2783.74, + "probability": 0.4585 + }, + { + "start": 2783.88, + "end": 2784.46, + "probability": 0.5165 + }, + { + "start": 2784.8, + "end": 2787.82, + "probability": 0.7217 + }, + { + "start": 2788.04, + "end": 2788.6, + "probability": 0.9822 + }, + { + "start": 2792.68, + "end": 2794.74, + "probability": 0.9312 + }, + { + "start": 2794.9, + "end": 2795.8, + "probability": 0.8055 + }, + { + "start": 2796.34, + "end": 2798.34, + "probability": 0.9951 + }, + { + "start": 2798.46, + "end": 2798.86, + "probability": 0.6444 + }, + { + "start": 2799.02, + "end": 2802.28, + "probability": 0.9182 + }, + { + "start": 2802.68, + "end": 2807.68, + "probability": 0.9885 + }, + { + "start": 2808.2, + "end": 2810.68, + "probability": 0.998 + }, + { + "start": 2811.14, + "end": 2814.98, + "probability": 0.6041 + }, + { + "start": 2815.08, + "end": 2816.02, + "probability": 0.915 + }, + { + "start": 2816.58, + "end": 2821.1, + "probability": 0.9891 + }, + { + "start": 2821.1, + "end": 2824.82, + "probability": 0.7844 + }, + { + "start": 2825.42, + "end": 2827.1, + "probability": 0.8344 + }, + { + "start": 2827.6, + "end": 2828.98, + "probability": 0.6888 + }, + { + "start": 2829.02, + "end": 2831.64, + "probability": 0.9717 + }, + { + "start": 2831.84, + "end": 2833.42, + "probability": 0.8895 + }, + { + "start": 2834.06, + "end": 2837.16, + "probability": 0.8316 + }, + { + "start": 2837.7, + "end": 2838.22, + "probability": 0.9912 + }, + { + "start": 2839.16, + "end": 2839.54, + "probability": 0.4722 + }, + { + "start": 2840.0, + "end": 2842.94, + "probability": 0.999 + }, + { + "start": 2842.94, + "end": 2845.68, + "probability": 0.9973 + }, + { + "start": 2845.76, + "end": 2846.84, + "probability": 0.8668 + }, + { + "start": 2847.84, + "end": 2850.52, + "probability": 0.9966 + }, + { + "start": 2851.12, + "end": 2853.6, + "probability": 0.9049 + }, + { + "start": 2853.86, + "end": 2856.76, + "probability": 0.9883 + }, + { + "start": 2857.36, + "end": 2861.02, + "probability": 0.9889 + }, + { + "start": 2861.06, + "end": 2861.76, + "probability": 0.7789 + }, + { + "start": 2861.92, + "end": 2865.56, + "probability": 0.9178 + }, + { + "start": 2865.76, + "end": 2868.86, + "probability": 0.9697 + }, + { + "start": 2868.92, + "end": 2871.44, + "probability": 0.9855 + }, + { + "start": 2871.8, + "end": 2874.48, + "probability": 0.8825 + }, + { + "start": 2874.48, + "end": 2877.3, + "probability": 0.984 + }, + { + "start": 2877.96, + "end": 2878.52, + "probability": 0.5972 + }, + { + "start": 2878.86, + "end": 2879.76, + "probability": 0.926 + }, + { + "start": 2880.3, + "end": 2882.06, + "probability": 0.9852 + }, + { + "start": 2882.2, + "end": 2883.76, + "probability": 0.9023 + }, + { + "start": 2884.0, + "end": 2886.42, + "probability": 0.9043 + }, + { + "start": 2886.94, + "end": 2889.44, + "probability": 0.9793 + }, + { + "start": 2890.32, + "end": 2892.0, + "probability": 0.9746 + }, + { + "start": 2892.8, + "end": 2895.18, + "probability": 0.8554 + }, + { + "start": 2895.72, + "end": 2899.3, + "probability": 0.9946 + }, + { + "start": 2899.82, + "end": 2902.4, + "probability": 0.6669 + }, + { + "start": 2903.04, + "end": 2903.24, + "probability": 0.4656 + }, + { + "start": 2903.5, + "end": 2905.08, + "probability": 0.911 + }, + { + "start": 2905.26, + "end": 2905.48, + "probability": 0.9128 + }, + { + "start": 2905.48, + "end": 2907.16, + "probability": 0.96 + }, + { + "start": 2907.7, + "end": 2910.9, + "probability": 0.9728 + }, + { + "start": 2911.24, + "end": 2912.1, + "probability": 0.6955 + }, + { + "start": 2912.78, + "end": 2912.88, + "probability": 0.7725 + }, + { + "start": 2913.04, + "end": 2913.94, + "probability": 0.9866 + }, + { + "start": 2914.16, + "end": 2916.98, + "probability": 0.9675 + }, + { + "start": 2917.46, + "end": 2920.38, + "probability": 0.9852 + }, + { + "start": 2920.46, + "end": 2922.62, + "probability": 0.9813 + }, + { + "start": 2923.1, + "end": 2925.66, + "probability": 0.9875 + }, + { + "start": 2926.22, + "end": 2930.64, + "probability": 0.9937 + }, + { + "start": 2930.94, + "end": 2932.94, + "probability": 0.8539 + }, + { + "start": 2933.94, + "end": 2936.52, + "probability": 0.9924 + }, + { + "start": 2936.72, + "end": 2938.78, + "probability": 0.9873 + }, + { + "start": 2938.9, + "end": 2939.82, + "probability": 0.7709 + }, + { + "start": 2940.52, + "end": 2943.04, + "probability": 0.9058 + }, + { + "start": 2943.16, + "end": 2944.36, + "probability": 0.9523 + }, + { + "start": 2944.38, + "end": 2945.16, + "probability": 0.3166 + }, + { + "start": 2945.3, + "end": 2945.72, + "probability": 0.5597 + }, + { + "start": 2945.8, + "end": 2946.56, + "probability": 0.835 + }, + { + "start": 2946.6, + "end": 2946.9, + "probability": 0.917 + }, + { + "start": 2947.52, + "end": 2950.12, + "probability": 0.9778 + }, + { + "start": 2951.36, + "end": 2952.6, + "probability": 0.7205 + }, + { + "start": 2952.68, + "end": 2956.4, + "probability": 0.8961 + }, + { + "start": 2956.56, + "end": 2957.16, + "probability": 0.6459 + }, + { + "start": 2957.86, + "end": 2960.6, + "probability": 0.9714 + }, + { + "start": 2960.9, + "end": 2962.02, + "probability": 0.0151 + }, + { + "start": 2962.58, + "end": 2963.18, + "probability": 0.8124 + }, + { + "start": 2964.8, + "end": 2969.54, + "probability": 0.9951 + }, + { + "start": 2969.82, + "end": 2972.4, + "probability": 0.9936 + }, + { + "start": 2973.04, + "end": 2974.02, + "probability": 0.8722 + }, + { + "start": 2974.12, + "end": 2975.52, + "probability": 0.9972 + }, + { + "start": 2975.9, + "end": 2978.06, + "probability": 0.9551 + }, + { + "start": 2978.16, + "end": 2981.78, + "probability": 0.7168 + }, + { + "start": 2982.28, + "end": 2983.02, + "probability": 0.9374 + }, + { + "start": 2983.18, + "end": 2984.5, + "probability": 0.9282 + }, + { + "start": 2984.98, + "end": 2985.4, + "probability": 0.4218 + }, + { + "start": 2985.84, + "end": 2989.26, + "probability": 0.9907 + }, + { + "start": 2989.34, + "end": 2993.84, + "probability": 0.9769 + }, + { + "start": 2993.92, + "end": 2994.9, + "probability": 0.9128 + }, + { + "start": 2995.12, + "end": 2997.42, + "probability": 0.9897 + }, + { + "start": 2997.78, + "end": 3002.08, + "probability": 0.9949 + }, + { + "start": 3002.84, + "end": 3003.8, + "probability": 0.4797 + }, + { + "start": 3004.0, + "end": 3004.88, + "probability": 0.7209 + }, + { + "start": 3005.44, + "end": 3006.0, + "probability": 0.8651 + }, + { + "start": 3006.1, + "end": 3009.38, + "probability": 0.7976 + }, + { + "start": 3009.48, + "end": 3010.7, + "probability": 0.7636 + }, + { + "start": 3012.0, + "end": 3016.72, + "probability": 0.6945 + }, + { + "start": 3018.62, + "end": 3019.96, + "probability": 0.7491 + }, + { + "start": 3024.72, + "end": 3026.5, + "probability": 0.793 + }, + { + "start": 3026.72, + "end": 3026.98, + "probability": 0.6354 + }, + { + "start": 3027.16, + "end": 3031.72, + "probability": 0.8852 + }, + { + "start": 3031.72, + "end": 3036.14, + "probability": 0.993 + }, + { + "start": 3036.78, + "end": 3039.42, + "probability": 0.958 + }, + { + "start": 3039.94, + "end": 3041.84, + "probability": 0.9919 + }, + { + "start": 3042.68, + "end": 3045.58, + "probability": 0.9875 + }, + { + "start": 3046.16, + "end": 3047.8, + "probability": 0.9784 + }, + { + "start": 3048.32, + "end": 3051.2, + "probability": 0.8704 + }, + { + "start": 3051.74, + "end": 3054.18, + "probability": 0.8152 + }, + { + "start": 3054.38, + "end": 3056.54, + "probability": 0.7535 + }, + { + "start": 3056.7, + "end": 3057.58, + "probability": 0.9394 + }, + { + "start": 3057.66, + "end": 3058.36, + "probability": 0.4468 + }, + { + "start": 3058.36, + "end": 3058.48, + "probability": 0.6148 + }, + { + "start": 3059.32, + "end": 3062.5, + "probability": 0.9384 + }, + { + "start": 3062.56, + "end": 3063.34, + "probability": 0.7559 + }, + { + "start": 3063.4, + "end": 3064.06, + "probability": 0.8364 + }, + { + "start": 3064.08, + "end": 3068.34, + "probability": 0.9907 + }, + { + "start": 3068.76, + "end": 3069.14, + "probability": 0.9783 + }, + { + "start": 3070.42, + "end": 3070.56, + "probability": 0.0985 + }, + { + "start": 3071.04, + "end": 3072.5, + "probability": 0.7352 + }, + { + "start": 3072.56, + "end": 3073.3, + "probability": 0.9316 + }, + { + "start": 3073.44, + "end": 3076.26, + "probability": 0.9793 + }, + { + "start": 3076.26, + "end": 3079.34, + "probability": 0.9966 + }, + { + "start": 3080.02, + "end": 3081.5, + "probability": 0.9915 + }, + { + "start": 3082.6, + "end": 3082.98, + "probability": 0.6117 + }, + { + "start": 3083.54, + "end": 3087.58, + "probability": 0.9951 + }, + { + "start": 3088.38, + "end": 3093.64, + "probability": 0.9917 + }, + { + "start": 3094.42, + "end": 3096.8, + "probability": 0.9866 + }, + { + "start": 3097.58, + "end": 3098.2, + "probability": 0.9963 + }, + { + "start": 3099.32, + "end": 3102.5, + "probability": 0.4455 + }, + { + "start": 3102.5, + "end": 3104.72, + "probability": 0.5264 + }, + { + "start": 3105.12, + "end": 3105.28, + "probability": 0.2643 + }, + { + "start": 3105.28, + "end": 3105.28, + "probability": 0.086 + }, + { + "start": 3105.34, + "end": 3106.24, + "probability": 0.7406 + }, + { + "start": 3106.24, + "end": 3106.7, + "probability": 0.7415 + }, + { + "start": 3106.9, + "end": 3107.34, + "probability": 0.7592 + }, + { + "start": 3108.22, + "end": 3108.98, + "probability": 0.9617 + }, + { + "start": 3109.04, + "end": 3113.6, + "probability": 0.9648 + }, + { + "start": 3113.88, + "end": 3114.88, + "probability": 0.7733 + }, + { + "start": 3116.26, + "end": 3117.66, + "probability": 0.9575 + }, + { + "start": 3117.78, + "end": 3118.8, + "probability": 0.7743 + }, + { + "start": 3118.84, + "end": 3119.74, + "probability": 0.8635 + }, + { + "start": 3119.9, + "end": 3124.22, + "probability": 0.9719 + }, + { + "start": 3124.44, + "end": 3127.68, + "probability": 0.993 + }, + { + "start": 3128.3, + "end": 3133.94, + "probability": 0.998 + }, + { + "start": 3134.46, + "end": 3136.02, + "probability": 0.6669 + }, + { + "start": 3136.34, + "end": 3138.86, + "probability": 0.978 + }, + { + "start": 3138.86, + "end": 3141.32, + "probability": 0.6747 + }, + { + "start": 3141.52, + "end": 3144.6, + "probability": 0.9943 + }, + { + "start": 3144.78, + "end": 3144.98, + "probability": 0.6513 + }, + { + "start": 3145.22, + "end": 3149.44, + "probability": 0.8853 + }, + { + "start": 3149.62, + "end": 3151.06, + "probability": 0.999 + }, + { + "start": 3151.66, + "end": 3155.36, + "probability": 0.9935 + }, + { + "start": 3155.58, + "end": 3158.32, + "probability": 0.8753 + }, + { + "start": 3159.04, + "end": 3159.64, + "probability": 0.682 + }, + { + "start": 3159.7, + "end": 3160.24, + "probability": 0.9596 + }, + { + "start": 3160.74, + "end": 3165.58, + "probability": 0.9773 + }, + { + "start": 3165.86, + "end": 3167.02, + "probability": 0.8469 + }, + { + "start": 3167.36, + "end": 3167.72, + "probability": 0.6831 + }, + { + "start": 3168.28, + "end": 3169.44, + "probability": 0.9072 + }, + { + "start": 3169.58, + "end": 3173.06, + "probability": 0.9372 + }, + { + "start": 3173.14, + "end": 3173.62, + "probability": 0.7351 + }, + { + "start": 3173.78, + "end": 3174.42, + "probability": 0.2151 + }, + { + "start": 3174.54, + "end": 3175.17, + "probability": 0.9062 + }, + { + "start": 3175.7, + "end": 3179.24, + "probability": 0.9927 + }, + { + "start": 3179.84, + "end": 3180.14, + "probability": 0.9435 + }, + { + "start": 3180.36, + "end": 3184.06, + "probability": 0.9401 + }, + { + "start": 3184.58, + "end": 3186.18, + "probability": 0.802 + }, + { + "start": 3186.34, + "end": 3187.52, + "probability": 0.6409 + }, + { + "start": 3188.0, + "end": 3188.98, + "probability": 0.8786 + }, + { + "start": 3189.2, + "end": 3191.76, + "probability": 0.9814 + }, + { + "start": 3192.62, + "end": 3195.58, + "probability": 0.9706 + }, + { + "start": 3196.12, + "end": 3197.86, + "probability": 0.877 + }, + { + "start": 3198.3, + "end": 3198.9, + "probability": 0.714 + }, + { + "start": 3199.2, + "end": 3203.18, + "probability": 0.9113 + }, + { + "start": 3203.54, + "end": 3205.58, + "probability": 0.9453 + }, + { + "start": 3205.76, + "end": 3209.56, + "probability": 0.8514 + }, + { + "start": 3209.58, + "end": 3212.9, + "probability": 0.999 + }, + { + "start": 3213.58, + "end": 3214.84, + "probability": 0.9819 + }, + { + "start": 3215.04, + "end": 3217.48, + "probability": 0.6561 + }, + { + "start": 3217.62, + "end": 3218.62, + "probability": 0.8144 + }, + { + "start": 3218.68, + "end": 3219.06, + "probability": 0.4911 + }, + { + "start": 3219.16, + "end": 3219.56, + "probability": 0.9412 + }, + { + "start": 3219.62, + "end": 3220.84, + "probability": 0.8595 + }, + { + "start": 3221.06, + "end": 3226.04, + "probability": 0.9884 + }, + { + "start": 3226.3, + "end": 3228.64, + "probability": 0.9819 + }, + { + "start": 3229.18, + "end": 3230.84, + "probability": 0.8711 + }, + { + "start": 3230.98, + "end": 3231.74, + "probability": 0.7011 + }, + { + "start": 3232.26, + "end": 3234.2, + "probability": 0.9834 + }, + { + "start": 3234.28, + "end": 3234.9, + "probability": 0.9535 + }, + { + "start": 3235.9, + "end": 3237.7, + "probability": 0.857 + }, + { + "start": 3238.2, + "end": 3238.9, + "probability": 0.6583 + }, + { + "start": 3239.14, + "end": 3239.54, + "probability": 0.8629 + }, + { + "start": 3239.66, + "end": 3240.5, + "probability": 0.9486 + }, + { + "start": 3240.56, + "end": 3242.42, + "probability": 0.9515 + }, + { + "start": 3242.88, + "end": 3246.64, + "probability": 0.9731 + }, + { + "start": 3247.62, + "end": 3250.1, + "probability": 0.8659 + }, + { + "start": 3250.14, + "end": 3256.56, + "probability": 0.9948 + }, + { + "start": 3256.62, + "end": 3261.8, + "probability": 0.9969 + }, + { + "start": 3262.32, + "end": 3264.3, + "probability": 0.9459 + }, + { + "start": 3264.48, + "end": 3266.14, + "probability": 0.9976 + }, + { + "start": 3266.64, + "end": 3268.38, + "probability": 0.9985 + }, + { + "start": 3268.54, + "end": 3270.48, + "probability": 0.9775 + }, + { + "start": 3270.6, + "end": 3272.16, + "probability": 0.9609 + }, + { + "start": 3272.32, + "end": 3277.0, + "probability": 0.9584 + }, + { + "start": 3277.88, + "end": 3278.46, + "probability": 0.267 + }, + { + "start": 3278.5, + "end": 3279.88, + "probability": 0.8877 + }, + { + "start": 3280.38, + "end": 3280.72, + "probability": 0.9157 + }, + { + "start": 3280.96, + "end": 3282.55, + "probability": 0.9033 + }, + { + "start": 3282.76, + "end": 3284.56, + "probability": 0.9623 + }, + { + "start": 3284.7, + "end": 3288.86, + "probability": 0.8994 + }, + { + "start": 3288.94, + "end": 3290.16, + "probability": 0.9647 + }, + { + "start": 3290.32, + "end": 3292.24, + "probability": 0.9751 + }, + { + "start": 3292.44, + "end": 3293.68, + "probability": 0.8763 + }, + { + "start": 3293.84, + "end": 3296.02, + "probability": 0.8255 + }, + { + "start": 3296.68, + "end": 3298.96, + "probability": 0.8491 + }, + { + "start": 3299.06, + "end": 3300.98, + "probability": 0.8188 + }, + { + "start": 3301.26, + "end": 3304.26, + "probability": 0.9873 + }, + { + "start": 3304.66, + "end": 3308.48, + "probability": 0.853 + }, + { + "start": 3308.6, + "end": 3311.62, + "probability": 0.9844 + }, + { + "start": 3311.84, + "end": 3313.18, + "probability": 0.8874 + }, + { + "start": 3313.6, + "end": 3314.9, + "probability": 0.763 + }, + { + "start": 3315.24, + "end": 3318.09, + "probability": 0.6672 + }, + { + "start": 3318.72, + "end": 3320.76, + "probability": 0.9836 + }, + { + "start": 3320.94, + "end": 3321.32, + "probability": 0.9652 + }, + { + "start": 3321.96, + "end": 3323.0, + "probability": 0.9622 + }, + { + "start": 3323.08, + "end": 3324.24, + "probability": 0.9092 + }, + { + "start": 3324.54, + "end": 3325.02, + "probability": 0.4781 + }, + { + "start": 3325.18, + "end": 3325.56, + "probability": 0.5877 + }, + { + "start": 3326.22, + "end": 3330.8, + "probability": 0.9248 + }, + { + "start": 3331.06, + "end": 3335.24, + "probability": 0.927 + }, + { + "start": 3335.58, + "end": 3336.18, + "probability": 0.777 + }, + { + "start": 3336.28, + "end": 3340.0, + "probability": 0.9935 + }, + { + "start": 3340.16, + "end": 3342.92, + "probability": 0.9995 + }, + { + "start": 3343.88, + "end": 3344.72, + "probability": 0.6558 + }, + { + "start": 3344.92, + "end": 3347.52, + "probability": 0.7941 + }, + { + "start": 3349.08, + "end": 3349.5, + "probability": 0.9396 + }, + { + "start": 3349.58, + "end": 3350.54, + "probability": 0.6903 + }, + { + "start": 3351.02, + "end": 3351.72, + "probability": 0.9594 + }, + { + "start": 3351.88, + "end": 3357.8, + "probability": 0.8985 + }, + { + "start": 3358.9, + "end": 3361.82, + "probability": 0.9578 + }, + { + "start": 3362.24, + "end": 3363.12, + "probability": 0.958 + }, + { + "start": 3363.3, + "end": 3364.7, + "probability": 0.719 + }, + { + "start": 3365.56, + "end": 3366.22, + "probability": 0.7604 + }, + { + "start": 3366.34, + "end": 3367.3, + "probability": 0.8759 + }, + { + "start": 3367.74, + "end": 3369.32, + "probability": 0.9663 + }, + { + "start": 3370.58, + "end": 3371.36, + "probability": 0.1781 + }, + { + "start": 3372.26, + "end": 3373.18, + "probability": 0.4928 + }, + { + "start": 3373.3, + "end": 3374.54, + "probability": 0.6626 + }, + { + "start": 3374.6, + "end": 3375.72, + "probability": 0.9419 + }, + { + "start": 3375.84, + "end": 3377.22, + "probability": 0.9407 + }, + { + "start": 3377.62, + "end": 3380.06, + "probability": 0.983 + }, + { + "start": 3380.2, + "end": 3381.24, + "probability": 0.7044 + }, + { + "start": 3381.28, + "end": 3382.88, + "probability": 0.7165 + }, + { + "start": 3383.54, + "end": 3385.94, + "probability": 0.9815 + }, + { + "start": 3385.94, + "end": 3388.4, + "probability": 0.9712 + }, + { + "start": 3388.6, + "end": 3388.88, + "probability": 0.8172 + }, + { + "start": 3388.98, + "end": 3389.46, + "probability": 0.8305 + }, + { + "start": 3389.54, + "end": 3390.02, + "probability": 0.9056 + }, + { + "start": 3390.48, + "end": 3391.0, + "probability": 0.8823 + }, + { + "start": 3391.02, + "end": 3392.62, + "probability": 0.9557 + }, + { + "start": 3393.5, + "end": 3394.22, + "probability": 0.897 + }, + { + "start": 3394.4, + "end": 3398.62, + "probability": 0.854 + }, + { + "start": 3398.62, + "end": 3402.9, + "probability": 0.9858 + }, + { + "start": 3403.02, + "end": 3404.58, + "probability": 0.971 + }, + { + "start": 3405.04, + "end": 3407.14, + "probability": 0.982 + }, + { + "start": 3407.28, + "end": 3410.3, + "probability": 0.8741 + }, + { + "start": 3410.64, + "end": 3413.26, + "probability": 0.9974 + }, + { + "start": 3413.38, + "end": 3415.22, + "probability": 0.9977 + }, + { + "start": 3415.22, + "end": 3418.84, + "probability": 0.9991 + }, + { + "start": 3419.02, + "end": 3422.44, + "probability": 0.9751 + }, + { + "start": 3423.04, + "end": 3423.52, + "probability": 0.6639 + }, + { + "start": 3423.62, + "end": 3426.52, + "probability": 0.5324 + }, + { + "start": 3426.56, + "end": 3430.02, + "probability": 0.994 + }, + { + "start": 3430.32, + "end": 3432.6, + "probability": 0.6915 + }, + { + "start": 3432.68, + "end": 3435.82, + "probability": 0.9919 + }, + { + "start": 3436.32, + "end": 3452.12, + "probability": 0.4462 + }, + { + "start": 3453.12, + "end": 3458.24, + "probability": 0.0949 + }, + { + "start": 3459.88, + "end": 3462.66, + "probability": 0.0243 + }, + { + "start": 3462.72, + "end": 3474.82, + "probability": 0.2467 + }, + { + "start": 3488.02, + "end": 3488.9, + "probability": 0.0344 + }, + { + "start": 3489.06, + "end": 3489.78, + "probability": 0.1052 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.0, + "end": 3550.0, + "probability": 0.0 + }, + { + "start": 3550.48, + "end": 3550.96, + "probability": 0.0054 + }, + { + "start": 3551.5, + "end": 3552.0, + "probability": 0.4862 + }, + { + "start": 3563.64, + "end": 3565.56, + "probability": 0.1665 + }, + { + "start": 3566.5, + "end": 3570.46, + "probability": 0.0769 + }, + { + "start": 3586.4, + "end": 3586.4, + "probability": 0.0185 + }, + { + "start": 3586.4, + "end": 3587.1, + "probability": 0.1217 + }, + { + "start": 3587.52, + "end": 3589.4, + "probability": 0.1455 + }, + { + "start": 3589.64, + "end": 3591.02, + "probability": 0.0874 + }, + { + "start": 3592.76, + "end": 3598.76, + "probability": 0.0355 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3680.0, + "end": 3680.0, + "probability": 0.0 + }, + { + "start": 3683.74, + "end": 3684.98, + "probability": 0.1077 + }, + { + "start": 3684.98, + "end": 3688.42, + "probability": 0.1268 + }, + { + "start": 3691.0, + "end": 3694.24, + "probability": 0.0982 + }, + { + "start": 3695.05, + "end": 3700.32, + "probability": 0.0252 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3815.0, + "end": 3815.0, + "probability": 0.0 + }, + { + "start": 3816.18, + "end": 3819.36, + "probability": 0.9927 + }, + { + "start": 3819.46, + "end": 3820.09, + "probability": 0.5304 + }, + { + "start": 3820.54, + "end": 3820.96, + "probability": 0.4081 + }, + { + "start": 3821.04, + "end": 3821.8, + "probability": 0.6146 + }, + { + "start": 3821.88, + "end": 3823.06, + "probability": 0.904 + }, + { + "start": 3823.12, + "end": 3823.62, + "probability": 0.8348 + }, + { + "start": 3823.78, + "end": 3826.16, + "probability": 0.9938 + }, + { + "start": 3826.16, + "end": 3829.38, + "probability": 0.9945 + }, + { + "start": 3829.92, + "end": 3834.62, + "probability": 0.8992 + }, + { + "start": 3835.02, + "end": 3836.1, + "probability": 0.8754 + }, + { + "start": 3836.64, + "end": 3840.56, + "probability": 0.9489 + }, + { + "start": 3840.84, + "end": 3844.22, + "probability": 0.9461 + }, + { + "start": 3844.56, + "end": 3850.46, + "probability": 0.9457 + }, + { + "start": 3850.46, + "end": 3856.36, + "probability": 0.9868 + }, + { + "start": 3856.44, + "end": 3857.24, + "probability": 0.1583 + }, + { + "start": 3857.84, + "end": 3859.28, + "probability": 0.2769 + }, + { + "start": 3859.28, + "end": 3861.32, + "probability": 0.7172 + }, + { + "start": 3862.36, + "end": 3864.9, + "probability": 0.9977 + }, + { + "start": 3864.9, + "end": 3867.98, + "probability": 0.9701 + }, + { + "start": 3868.02, + "end": 3871.02, + "probability": 0.9226 + }, + { + "start": 3871.74, + "end": 3872.52, + "probability": 0.4452 + }, + { + "start": 3873.0, + "end": 3877.58, + "probability": 0.9854 + }, + { + "start": 3878.4, + "end": 3882.42, + "probability": 0.9836 + }, + { + "start": 3882.64, + "end": 3886.78, + "probability": 0.9886 + }, + { + "start": 3887.02, + "end": 3888.44, + "probability": 0.6589 + }, + { + "start": 3889.12, + "end": 3891.3, + "probability": 0.7821 + }, + { + "start": 3892.06, + "end": 3894.08, + "probability": 0.9849 + }, + { + "start": 3894.6, + "end": 3897.6, + "probability": 0.9308 + }, + { + "start": 3898.62, + "end": 3900.46, + "probability": 0.9941 + }, + { + "start": 3900.64, + "end": 3901.54, + "probability": 0.9674 + }, + { + "start": 3901.68, + "end": 3902.88, + "probability": 0.8357 + }, + { + "start": 3903.02, + "end": 3904.78, + "probability": 0.8363 + }, + { + "start": 3904.9, + "end": 3906.04, + "probability": 0.9292 + }, + { + "start": 3906.5, + "end": 3908.35, + "probability": 0.8521 + }, + { + "start": 3908.88, + "end": 3910.42, + "probability": 0.8035 + }, + { + "start": 3910.72, + "end": 3912.88, + "probability": 0.6999 + }, + { + "start": 3912.94, + "end": 3914.8, + "probability": 0.9704 + }, + { + "start": 3914.84, + "end": 3916.2, + "probability": 0.9935 + }, + { + "start": 3917.22, + "end": 3917.64, + "probability": 0.3539 + }, + { + "start": 3917.86, + "end": 3921.32, + "probability": 0.9699 + }, + { + "start": 3921.4, + "end": 3923.78, + "probability": 0.9623 + }, + { + "start": 3923.8, + "end": 3924.38, + "probability": 0.7501 + }, + { + "start": 3924.52, + "end": 3925.22, + "probability": 0.9115 + }, + { + "start": 3925.34, + "end": 3926.22, + "probability": 0.9451 + }, + { + "start": 3926.32, + "end": 3929.72, + "probability": 0.965 + }, + { + "start": 3930.54, + "end": 3933.74, + "probability": 0.7879 + }, + { + "start": 3933.8, + "end": 3936.58, + "probability": 0.9922 + }, + { + "start": 3937.24, + "end": 3941.42, + "probability": 0.9973 + }, + { + "start": 3941.72, + "end": 3943.56, + "probability": 0.9088 + }, + { + "start": 3943.76, + "end": 3945.04, + "probability": 0.9775 + }, + { + "start": 3945.42, + "end": 3946.42, + "probability": 0.742 + }, + { + "start": 3946.6, + "end": 3950.64, + "probability": 0.8877 + }, + { + "start": 3951.16, + "end": 3953.9, + "probability": 0.9471 + }, + { + "start": 3954.5, + "end": 3955.54, + "probability": 0.3761 + }, + { + "start": 3955.54, + "end": 3957.52, + "probability": 0.6504 + }, + { + "start": 3957.6, + "end": 3959.94, + "probability": 0.8103 + }, + { + "start": 3960.08, + "end": 3963.48, + "probability": 0.9247 + }, + { + "start": 3963.5, + "end": 3964.0, + "probability": 0.4137 + }, + { + "start": 3964.04, + "end": 3965.38, + "probability": 0.8381 + }, + { + "start": 3966.07, + "end": 3969.78, + "probability": 0.8867 + }, + { + "start": 3969.78, + "end": 3972.64, + "probability": 0.9884 + }, + { + "start": 3973.34, + "end": 3974.78, + "probability": 0.9658 + }, + { + "start": 3975.28, + "end": 3976.46, + "probability": 0.5802 + }, + { + "start": 3976.56, + "end": 3978.02, + "probability": 0.9977 + }, + { + "start": 3978.28, + "end": 3982.48, + "probability": 0.9801 + }, + { + "start": 3983.08, + "end": 3986.18, + "probability": 0.9836 + }, + { + "start": 3986.66, + "end": 3988.96, + "probability": 0.9819 + }, + { + "start": 3989.12, + "end": 3990.08, + "probability": 0.8316 + }, + { + "start": 3990.56, + "end": 3995.22, + "probability": 0.8939 + }, + { + "start": 3996.28, + "end": 4000.24, + "probability": 0.8192 + }, + { + "start": 4000.24, + "end": 4004.82, + "probability": 0.9966 + }, + { + "start": 4005.2, + "end": 4006.4, + "probability": 0.9434 + }, + { + "start": 4006.52, + "end": 4008.04, + "probability": 0.9076 + }, + { + "start": 4008.36, + "end": 4010.2, + "probability": 0.962 + }, + { + "start": 4010.44, + "end": 4012.32, + "probability": 0.9828 + }, + { + "start": 4012.48, + "end": 4014.46, + "probability": 0.9776 + }, + { + "start": 4014.62, + "end": 4017.5, + "probability": 0.912 + }, + { + "start": 4017.68, + "end": 4019.9, + "probability": 0.8089 + }, + { + "start": 4020.12, + "end": 4021.62, + "probability": 0.9929 + }, + { + "start": 4021.7, + "end": 4025.72, + "probability": 0.9712 + }, + { + "start": 4025.8, + "end": 4027.68, + "probability": 0.7392 + }, + { + "start": 4027.8, + "end": 4029.46, + "probability": 0.9374 + }, + { + "start": 4029.64, + "end": 4030.66, + "probability": 0.8918 + }, + { + "start": 4031.5, + "end": 4032.02, + "probability": 0.4621 + }, + { + "start": 4032.1, + "end": 4032.52, + "probability": 0.5756 + }, + { + "start": 4032.72, + "end": 4036.16, + "probability": 0.9956 + }, + { + "start": 4036.42, + "end": 4040.5, + "probability": 0.8572 + }, + { + "start": 4040.56, + "end": 4041.12, + "probability": 0.5492 + }, + { + "start": 4041.22, + "end": 4042.7, + "probability": 0.9814 + }, + { + "start": 4042.82, + "end": 4042.92, + "probability": 0.4331 + }, + { + "start": 4043.14, + "end": 4045.2, + "probability": 0.8594 + }, + { + "start": 4046.05, + "end": 4049.42, + "probability": 0.9703 + }, + { + "start": 4049.54, + "end": 4050.82, + "probability": 0.9912 + }, + { + "start": 4051.18, + "end": 4054.86, + "probability": 0.9859 + }, + { + "start": 4054.86, + "end": 4056.82, + "probability": 0.9775 + }, + { + "start": 4057.02, + "end": 4059.06, + "probability": 0.9731 + }, + { + "start": 4059.94, + "end": 4061.5, + "probability": 0.9988 + }, + { + "start": 4062.04, + "end": 4062.14, + "probability": 0.9697 + }, + { + "start": 4062.72, + "end": 4065.66, + "probability": 0.9889 + }, + { + "start": 4066.16, + "end": 4069.6, + "probability": 0.9943 + }, + { + "start": 4069.7, + "end": 4073.51, + "probability": 0.9781 + }, + { + "start": 4074.14, + "end": 4076.0, + "probability": 0.999 + }, + { + "start": 4076.32, + "end": 4077.56, + "probability": 0.8981 + }, + { + "start": 4078.12, + "end": 4080.98, + "probability": 0.9924 + }, + { + "start": 4080.98, + "end": 4083.98, + "probability": 0.9785 + }, + { + "start": 4084.6, + "end": 4086.82, + "probability": 0.9922 + }, + { + "start": 4087.56, + "end": 4088.88, + "probability": 0.428 + }, + { + "start": 4089.42, + "end": 4090.58, + "probability": 0.4899 + }, + { + "start": 4091.76, + "end": 4094.36, + "probability": 0.6021 + }, + { + "start": 4095.0, + "end": 4096.7, + "probability": 0.7737 + }, + { + "start": 4098.5, + "end": 4100.44, + "probability": 0.7215 + }, + { + "start": 4102.12, + "end": 4104.92, + "probability": 0.8318 + }, + { + "start": 4105.54, + "end": 4109.98, + "probability": 0.2134 + }, + { + "start": 4111.8, + "end": 4117.58, + "probability": 0.8798 + }, + { + "start": 4118.14, + "end": 4122.38, + "probability": 0.9681 + }, + { + "start": 4122.62, + "end": 4124.12, + "probability": 0.7076 + }, + { + "start": 4124.2, + "end": 4125.34, + "probability": 0.2159 + }, + { + "start": 4125.54, + "end": 4126.88, + "probability": 0.6938 + }, + { + "start": 4128.04, + "end": 4128.96, + "probability": 0.7429 + }, + { + "start": 4129.0, + "end": 4130.6, + "probability": 0.7906 + }, + { + "start": 4130.78, + "end": 4131.46, + "probability": 0.8807 + }, + { + "start": 4131.6, + "end": 4132.66, + "probability": 0.9739 + }, + { + "start": 4132.76, + "end": 4134.32, + "probability": 0.8511 + }, + { + "start": 4134.84, + "end": 4137.92, + "probability": 0.8624 + }, + { + "start": 4138.56, + "end": 4139.42, + "probability": 0.5077 + }, + { + "start": 4139.72, + "end": 4143.8, + "probability": 0.9067 + }, + { + "start": 4144.68, + "end": 4148.44, + "probability": 0.9805 + }, + { + "start": 4148.44, + "end": 4152.6, + "probability": 0.9772 + }, + { + "start": 4152.6, + "end": 4156.6, + "probability": 0.9961 + }, + { + "start": 4157.14, + "end": 4160.5, + "probability": 0.9704 + }, + { + "start": 4161.12, + "end": 4163.98, + "probability": 0.9424 + }, + { + "start": 4164.58, + "end": 4167.38, + "probability": 0.9484 + }, + { + "start": 4167.38, + "end": 4170.58, + "probability": 0.8923 + }, + { + "start": 4172.2, + "end": 4172.62, + "probability": 0.2509 + }, + { + "start": 4172.62, + "end": 4174.65, + "probability": 0.7032 + }, + { + "start": 4175.54, + "end": 4178.76, + "probability": 0.8888 + }, + { + "start": 4178.96, + "end": 4180.56, + "probability": 0.9282 + }, + { + "start": 4180.76, + "end": 4181.28, + "probability": 0.6523 + }, + { + "start": 4181.78, + "end": 4184.4, + "probability": 0.9937 + }, + { + "start": 4184.86, + "end": 4185.68, + "probability": 0.5658 + }, + { + "start": 4186.14, + "end": 4189.82, + "probability": 0.9814 + }, + { + "start": 4190.34, + "end": 4192.12, + "probability": 0.7345 + }, + { + "start": 4192.26, + "end": 4193.56, + "probability": 0.9603 + }, + { + "start": 4193.64, + "end": 4194.66, + "probability": 0.8016 + }, + { + "start": 4195.12, + "end": 4197.26, + "probability": 0.9757 + }, + { + "start": 4197.78, + "end": 4199.8, + "probability": 0.9855 + }, + { + "start": 4199.8, + "end": 4202.6, + "probability": 0.9108 + }, + { + "start": 4203.86, + "end": 4205.74, + "probability": 0.9729 + }, + { + "start": 4205.78, + "end": 4207.24, + "probability": 0.6723 + }, + { + "start": 4207.32, + "end": 4213.42, + "probability": 0.9598 + }, + { + "start": 4213.86, + "end": 4218.28, + "probability": 0.9678 + }, + { + "start": 4218.28, + "end": 4222.66, + "probability": 0.9911 + }, + { + "start": 4223.52, + "end": 4224.26, + "probability": 0.7598 + }, + { + "start": 4224.46, + "end": 4230.28, + "probability": 0.9607 + }, + { + "start": 4230.46, + "end": 4231.3, + "probability": 0.7494 + }, + { + "start": 4231.76, + "end": 4232.96, + "probability": 0.9373 + }, + { + "start": 4233.34, + "end": 4235.96, + "probability": 0.8535 + }, + { + "start": 4235.96, + "end": 4239.36, + "probability": 0.8399 + }, + { + "start": 4239.7, + "end": 4244.52, + "probability": 0.9893 + }, + { + "start": 4244.86, + "end": 4249.24, + "probability": 0.9845 + }, + { + "start": 4249.68, + "end": 4252.28, + "probability": 0.9328 + }, + { + "start": 4253.4, + "end": 4255.06, + "probability": 0.6014 + }, + { + "start": 4255.14, + "end": 4255.54, + "probability": 0.3824 + }, + { + "start": 4255.62, + "end": 4256.96, + "probability": 0.8762 + }, + { + "start": 4257.3, + "end": 4257.46, + "probability": 0.2352 + }, + { + "start": 4257.48, + "end": 4258.7, + "probability": 0.8989 + }, + { + "start": 4258.78, + "end": 4259.0, + "probability": 0.7544 + }, + { + "start": 4259.42, + "end": 4260.34, + "probability": 0.5419 + }, + { + "start": 4260.34, + "end": 4261.04, + "probability": 0.6746 + }, + { + "start": 4262.72, + "end": 4263.18, + "probability": 0.9339 + }, + { + "start": 4263.54, + "end": 4264.58, + "probability": 0.7932 + }, + { + "start": 4264.66, + "end": 4266.42, + "probability": 0.7278 + }, + { + "start": 4266.64, + "end": 4272.46, + "probability": 0.9411 + }, + { + "start": 4272.94, + "end": 4273.68, + "probability": 0.8989 + }, + { + "start": 4274.64, + "end": 4276.94, + "probability": 0.8836 + }, + { + "start": 4277.52, + "end": 4278.32, + "probability": 0.8072 + }, + { + "start": 4278.9, + "end": 4279.26, + "probability": 0.8873 + }, + { + "start": 4280.08, + "end": 4283.76, + "probability": 0.9978 + }, + { + "start": 4283.8, + "end": 4287.08, + "probability": 0.867 + }, + { + "start": 4287.18, + "end": 4287.34, + "probability": 0.6945 + }, + { + "start": 4287.52, + "end": 4288.13, + "probability": 0.6828 + }, + { + "start": 4288.44, + "end": 4290.46, + "probability": 0.8707 + }, + { + "start": 4290.54, + "end": 4293.82, + "probability": 0.9608 + }, + { + "start": 4293.86, + "end": 4294.62, + "probability": 0.5301 + }, + { + "start": 4295.8, + "end": 4298.04, + "probability": 0.9697 + }, + { + "start": 4298.26, + "end": 4300.66, + "probability": 0.9822 + }, + { + "start": 4300.88, + "end": 4301.78, + "probability": 0.7229 + }, + { + "start": 4302.0, + "end": 4303.0, + "probability": 0.9268 + }, + { + "start": 4303.8, + "end": 4304.64, + "probability": 0.9092 + }, + { + "start": 4305.32, + "end": 4309.16, + "probability": 0.9791 + }, + { + "start": 4309.78, + "end": 4311.1, + "probability": 0.9293 + }, + { + "start": 4312.36, + "end": 4313.5, + "probability": 0.9942 + }, + { + "start": 4313.64, + "end": 4315.38, + "probability": 0.6531 + }, + { + "start": 4315.6, + "end": 4317.38, + "probability": 0.7362 + }, + { + "start": 4317.5, + "end": 4318.52, + "probability": 0.9438 + }, + { + "start": 4319.14, + "end": 4321.84, + "probability": 0.9533 + }, + { + "start": 4322.46, + "end": 4323.0, + "probability": 0.8258 + }, + { + "start": 4323.18, + "end": 4323.72, + "probability": 0.8271 + }, + { + "start": 4323.84, + "end": 4323.94, + "probability": 0.8674 + }, + { + "start": 4324.12, + "end": 4325.74, + "probability": 0.947 + }, + { + "start": 4326.38, + "end": 4329.02, + "probability": 0.9983 + }, + { + "start": 4329.72, + "end": 4332.08, + "probability": 0.8649 + }, + { + "start": 4332.08, + "end": 4334.46, + "probability": 0.9979 + }, + { + "start": 4334.96, + "end": 4338.96, + "probability": 0.9865 + }, + { + "start": 4339.84, + "end": 4342.0, + "probability": 0.9841 + }, + { + "start": 4342.14, + "end": 4345.08, + "probability": 0.8965 + }, + { + "start": 4345.26, + "end": 4346.12, + "probability": 0.8371 + }, + { + "start": 4346.28, + "end": 4346.8, + "probability": 0.8109 + }, + { + "start": 4346.9, + "end": 4347.3, + "probability": 0.7928 + }, + { + "start": 4347.45, + "end": 4349.28, + "probability": 0.6513 + }, + { + "start": 4349.9, + "end": 4352.02, + "probability": 0.8472 + }, + { + "start": 4352.9, + "end": 4355.66, + "probability": 0.7429 + }, + { + "start": 4355.74, + "end": 4356.58, + "probability": 0.7744 + }, + { + "start": 4356.8, + "end": 4358.62, + "probability": 0.8399 + }, + { + "start": 4359.38, + "end": 4359.82, + "probability": 0.6642 + }, + { + "start": 4359.92, + "end": 4362.02, + "probability": 0.7488 + }, + { + "start": 4363.06, + "end": 4365.58, + "probability": 0.979 + }, + { + "start": 4365.74, + "end": 4367.86, + "probability": 0.9473 + }, + { + "start": 4368.36, + "end": 4370.7, + "probability": 0.9033 + }, + { + "start": 4371.36, + "end": 4372.36, + "probability": 0.9315 + }, + { + "start": 4372.68, + "end": 4376.28, + "probability": 0.9743 + }, + { + "start": 4376.28, + "end": 4379.6, + "probability": 0.9689 + }, + { + "start": 4380.1, + "end": 4382.66, + "probability": 0.9847 + }, + { + "start": 4382.66, + "end": 4386.76, + "probability": 0.9967 + }, + { + "start": 4387.42, + "end": 4390.6, + "probability": 0.6872 + }, + { + "start": 4391.34, + "end": 4391.76, + "probability": 0.5914 + }, + { + "start": 4391.8, + "end": 4393.68, + "probability": 0.8606 + }, + { + "start": 4393.86, + "end": 4395.16, + "probability": 0.8338 + }, + { + "start": 4395.44, + "end": 4395.86, + "probability": 0.6081 + }, + { + "start": 4396.22, + "end": 4397.32, + "probability": 0.8813 + }, + { + "start": 4397.54, + "end": 4398.0, + "probability": 0.5661 + }, + { + "start": 4398.66, + "end": 4400.68, + "probability": 0.9441 + }, + { + "start": 4401.28, + "end": 4402.4, + "probability": 0.9092 + }, + { + "start": 4402.96, + "end": 4405.0, + "probability": 0.9591 + }, + { + "start": 4405.04, + "end": 4410.68, + "probability": 0.9884 + }, + { + "start": 4410.78, + "end": 4413.72, + "probability": 0.9064 + }, + { + "start": 4414.18, + "end": 4417.8, + "probability": 0.9291 + }, + { + "start": 4417.96, + "end": 4418.62, + "probability": 0.6599 + }, + { + "start": 4419.08, + "end": 4420.2, + "probability": 0.9863 + }, + { + "start": 4421.3, + "end": 4421.84, + "probability": 0.5651 + }, + { + "start": 4421.96, + "end": 4424.36, + "probability": 0.9319 + }, + { + "start": 4424.5, + "end": 4426.1, + "probability": 0.9756 + }, + { + "start": 4426.3, + "end": 4427.08, + "probability": 0.8881 + }, + { + "start": 4427.1, + "end": 4428.64, + "probability": 0.9917 + }, + { + "start": 4429.3, + "end": 4430.4, + "probability": 0.8377 + }, + { + "start": 4431.08, + "end": 4431.88, + "probability": 0.7106 + }, + { + "start": 4432.1, + "end": 4434.5, + "probability": 0.9397 + }, + { + "start": 4436.0, + "end": 4438.54, + "probability": 0.7955 + }, + { + "start": 4438.66, + "end": 4440.7, + "probability": 0.9805 + }, + { + "start": 4441.54, + "end": 4444.82, + "probability": 0.9966 + }, + { + "start": 4445.24, + "end": 4447.06, + "probability": 0.9539 + }, + { + "start": 4447.2, + "end": 4448.2, + "probability": 0.621 + }, + { + "start": 4448.82, + "end": 4451.2, + "probability": 0.9766 + }, + { + "start": 4451.3, + "end": 4455.2, + "probability": 0.9587 + }, + { + "start": 4456.12, + "end": 4458.32, + "probability": 0.9971 + }, + { + "start": 4458.74, + "end": 4462.04, + "probability": 0.9963 + }, + { + "start": 4462.42, + "end": 4463.34, + "probability": 0.9535 + }, + { + "start": 4463.38, + "end": 4466.76, + "probability": 0.9151 + }, + { + "start": 4467.2, + "end": 4468.86, + "probability": 0.8739 + }, + { + "start": 4469.12, + "end": 4472.86, + "probability": 0.9229 + }, + { + "start": 4472.88, + "end": 4474.7, + "probability": 0.6746 + }, + { + "start": 4474.86, + "end": 4474.96, + "probability": 0.1387 + }, + { + "start": 4474.96, + "end": 4475.1, + "probability": 0.04 + }, + { + "start": 4475.42, + "end": 4476.28, + "probability": 0.2963 + }, + { + "start": 4476.62, + "end": 4479.62, + "probability": 0.9983 + }, + { + "start": 4479.8, + "end": 4482.58, + "probability": 0.9763 + }, + { + "start": 4482.64, + "end": 4483.72, + "probability": 0.5345 + }, + { + "start": 4483.8, + "end": 4483.98, + "probability": 0.0716 + }, + { + "start": 4483.98, + "end": 4484.46, + "probability": 0.9688 + }, + { + "start": 4484.54, + "end": 4485.84, + "probability": 0.8826 + }, + { + "start": 4485.94, + "end": 4488.04, + "probability": 0.9656 + }, + { + "start": 4488.12, + "end": 4489.2, + "probability": 0.7466 + }, + { + "start": 4489.32, + "end": 4489.52, + "probability": 0.8717 + }, + { + "start": 4489.64, + "end": 4490.16, + "probability": 0.7132 + }, + { + "start": 4490.8, + "end": 4492.3, + "probability": 0.9899 + }, + { + "start": 4492.5, + "end": 4495.26, + "probability": 0.8564 + }, + { + "start": 4495.74, + "end": 4496.84, + "probability": 0.571 + }, + { + "start": 4497.08, + "end": 4497.74, + "probability": 0.5362 + }, + { + "start": 4498.2, + "end": 4499.62, + "probability": 0.9861 + }, + { + "start": 4499.86, + "end": 4501.3, + "probability": 0.9281 + }, + { + "start": 4501.34, + "end": 4502.78, + "probability": 0.5951 + }, + { + "start": 4503.26, + "end": 4503.92, + "probability": 0.7608 + }, + { + "start": 4504.0, + "end": 4506.06, + "probability": 0.9774 + }, + { + "start": 4507.04, + "end": 4507.7, + "probability": 0.7822 + }, + { + "start": 4508.0, + "end": 4509.27, + "probability": 0.8396 + }, + { + "start": 4509.42, + "end": 4510.64, + "probability": 0.7727 + }, + { + "start": 4510.72, + "end": 4512.1, + "probability": 0.7997 + }, + { + "start": 4512.14, + "end": 4512.76, + "probability": 0.8174 + }, + { + "start": 4512.8, + "end": 4513.62, + "probability": 0.9429 + }, + { + "start": 4514.1, + "end": 4514.4, + "probability": 0.7694 + }, + { + "start": 4514.54, + "end": 4516.86, + "probability": 0.9604 + }, + { + "start": 4517.0, + "end": 4519.12, + "probability": 0.9613 + }, + { + "start": 4519.3, + "end": 4521.34, + "probability": 0.9893 + }, + { + "start": 4521.46, + "end": 4522.2, + "probability": 0.7883 + }, + { + "start": 4522.36, + "end": 4522.64, + "probability": 0.406 + }, + { + "start": 4522.66, + "end": 4523.46, + "probability": 0.5917 + }, + { + "start": 4523.78, + "end": 4524.2, + "probability": 0.8068 + }, + { + "start": 4524.74, + "end": 4526.16, + "probability": 0.5736 + }, + { + "start": 4526.9, + "end": 4529.34, + "probability": 0.9175 + }, + { + "start": 4530.56, + "end": 4531.52, + "probability": 0.8104 + }, + { + "start": 4532.1, + "end": 4534.86, + "probability": 0.8038 + }, + { + "start": 4535.52, + "end": 4536.22, + "probability": 0.9758 + }, + { + "start": 4537.16, + "end": 4537.4, + "probability": 0.7608 + }, + { + "start": 4537.5, + "end": 4538.16, + "probability": 0.6637 + }, + { + "start": 4538.56, + "end": 4539.34, + "probability": 0.8618 + }, + { + "start": 4539.48, + "end": 4540.34, + "probability": 0.6718 + }, + { + "start": 4541.38, + "end": 4543.02, + "probability": 0.7735 + }, + { + "start": 4543.42, + "end": 4547.9, + "probability": 0.6755 + }, + { + "start": 4548.1, + "end": 4549.33, + "probability": 0.7003 + }, + { + "start": 4550.5, + "end": 4552.0, + "probability": 0.8038 + }, + { + "start": 4552.92, + "end": 4554.2, + "probability": 0.9452 + }, + { + "start": 4554.48, + "end": 4555.04, + "probability": 0.467 + }, + { + "start": 4555.42, + "end": 4556.48, + "probability": 0.7758 + }, + { + "start": 4556.98, + "end": 4560.28, + "probability": 0.886 + }, + { + "start": 4560.9, + "end": 4563.14, + "probability": 0.8536 + }, + { + "start": 4563.54, + "end": 4565.56, + "probability": 0.7103 + }, + { + "start": 4566.58, + "end": 4567.62, + "probability": 0.8708 + }, + { + "start": 4567.78, + "end": 4568.1, + "probability": 0.7893 + }, + { + "start": 4568.18, + "end": 4569.52, + "probability": 0.9456 + }, + { + "start": 4569.66, + "end": 4570.31, + "probability": 0.9272 + }, + { + "start": 4571.76, + "end": 4575.06, + "probability": 0.9153 + }, + { + "start": 4575.72, + "end": 4577.16, + "probability": 0.7019 + }, + { + "start": 4577.84, + "end": 4580.06, + "probability": 0.7569 + }, + { + "start": 4580.44, + "end": 4581.0, + "probability": 0.5613 + }, + { + "start": 4581.2, + "end": 4582.68, + "probability": 0.9092 + }, + { + "start": 4584.04, + "end": 4588.86, + "probability": 0.6517 + }, + { + "start": 4589.26, + "end": 4591.28, + "probability": 0.6719 + }, + { + "start": 4591.72, + "end": 4592.38, + "probability": 0.8832 + }, + { + "start": 4592.48, + "end": 4593.26, + "probability": 0.7399 + }, + { + "start": 4594.0, + "end": 4597.32, + "probability": 0.7036 + }, + { + "start": 4598.4, + "end": 4600.5, + "probability": 0.829 + }, + { + "start": 4600.54, + "end": 4603.38, + "probability": 0.4477 + }, + { + "start": 4603.5, + "end": 4607.14, + "probability": 0.8766 + }, + { + "start": 4608.14, + "end": 4609.38, + "probability": 0.6976 + }, + { + "start": 4610.82, + "end": 4612.12, + "probability": 0.2692 + }, + { + "start": 4612.52, + "end": 4613.88, + "probability": 0.6513 + }, + { + "start": 4614.66, + "end": 4616.94, + "probability": 0.8622 + }, + { + "start": 4617.54, + "end": 4619.18, + "probability": 0.9083 + }, + { + "start": 4619.3, + "end": 4620.38, + "probability": 0.6791 + }, + { + "start": 4620.44, + "end": 4624.38, + "probability": 0.8919 + }, + { + "start": 4625.16, + "end": 4625.9, + "probability": 0.4667 + }, + { + "start": 4625.98, + "end": 4626.9, + "probability": 0.6493 + }, + { + "start": 4627.46, + "end": 4628.32, + "probability": 0.7224 + }, + { + "start": 4628.42, + "end": 4628.92, + "probability": 0.7606 + }, + { + "start": 4628.98, + "end": 4633.76, + "probability": 0.6418 + }, + { + "start": 4633.8, + "end": 4634.48, + "probability": 0.6005 + }, + { + "start": 4634.58, + "end": 4635.76, + "probability": 0.9055 + }, + { + "start": 4636.3, + "end": 4639.82, + "probability": 0.9625 + }, + { + "start": 4640.16, + "end": 4641.2, + "probability": 0.9282 + }, + { + "start": 4641.3, + "end": 4643.26, + "probability": 0.9944 + }, + { + "start": 4643.74, + "end": 4645.16, + "probability": 0.5878 + }, + { + "start": 4645.28, + "end": 4648.18, + "probability": 0.9775 + }, + { + "start": 4649.7, + "end": 4652.28, + "probability": 0.9736 + }, + { + "start": 4652.56, + "end": 4656.1, + "probability": 0.9111 + }, + { + "start": 4656.1, + "end": 4659.5, + "probability": 0.9545 + }, + { + "start": 4659.94, + "end": 4661.08, + "probability": 0.6309 + }, + { + "start": 4661.2, + "end": 4662.36, + "probability": 0.9599 + }, + { + "start": 4662.5, + "end": 4663.68, + "probability": 0.6987 + }, + { + "start": 4664.56, + "end": 4668.78, + "probability": 0.9299 + }, + { + "start": 4668.94, + "end": 4669.34, + "probability": 0.6311 + }, + { + "start": 4669.36, + "end": 4670.08, + "probability": 0.8387 + }, + { + "start": 4670.36, + "end": 4674.12, + "probability": 0.9944 + }, + { + "start": 4675.16, + "end": 4678.82, + "probability": 0.9979 + }, + { + "start": 4679.54, + "end": 4680.56, + "probability": 0.9298 + }, + { + "start": 4680.78, + "end": 4685.32, + "probability": 0.9963 + }, + { + "start": 4685.5, + "end": 4688.34, + "probability": 0.979 + }, + { + "start": 4689.56, + "end": 4691.16, + "probability": 0.2396 + }, + { + "start": 4691.3, + "end": 4693.94, + "probability": 0.9883 + }, + { + "start": 4693.98, + "end": 4695.99, + "probability": 0.9033 + }, + { + "start": 4697.06, + "end": 4700.06, + "probability": 0.9938 + }, + { + "start": 4700.06, + "end": 4703.88, + "probability": 0.9834 + }, + { + "start": 4704.78, + "end": 4709.32, + "probability": 0.7852 + }, + { + "start": 4709.56, + "end": 4711.98, + "probability": 0.9254 + }, + { + "start": 4712.12, + "end": 4713.88, + "probability": 0.9458 + }, + { + "start": 4714.2, + "end": 4715.4, + "probability": 0.735 + }, + { + "start": 4715.52, + "end": 4716.72, + "probability": 0.8775 + }, + { + "start": 4716.88, + "end": 4718.72, + "probability": 0.9978 + }, + { + "start": 4719.2, + "end": 4725.3, + "probability": 0.9202 + }, + { + "start": 4725.48, + "end": 4726.7, + "probability": 0.6032 + }, + { + "start": 4727.64, + "end": 4730.54, + "probability": 0.7493 + }, + { + "start": 4731.24, + "end": 4733.1, + "probability": 0.7466 + }, + { + "start": 4733.72, + "end": 4735.72, + "probability": 0.9985 + }, + { + "start": 4736.62, + "end": 4738.34, + "probability": 0.9932 + }, + { + "start": 4738.84, + "end": 4740.02, + "probability": 0.9434 + }, + { + "start": 4740.56, + "end": 4741.64, + "probability": 0.9963 + }, + { + "start": 4742.28, + "end": 4746.48, + "probability": 0.7788 + }, + { + "start": 4748.57, + "end": 4752.86, + "probability": 0.9039 + }, + { + "start": 4752.96, + "end": 4753.62, + "probability": 0.7085 + }, + { + "start": 4754.32, + "end": 4756.1, + "probability": 0.7854 + }, + { + "start": 4756.24, + "end": 4760.88, + "probability": 0.9936 + }, + { + "start": 4761.02, + "end": 4762.18, + "probability": 0.7536 + }, + { + "start": 4762.3, + "end": 4763.58, + "probability": 0.9708 + }, + { + "start": 4763.68, + "end": 4763.94, + "probability": 0.4309 + }, + { + "start": 4764.18, + "end": 4766.2, + "probability": 0.9795 + }, + { + "start": 4766.32, + "end": 4769.98, + "probability": 0.9829 + }, + { + "start": 4770.86, + "end": 4773.54, + "probability": 0.9461 + }, + { + "start": 4773.64, + "end": 4775.52, + "probability": 0.9849 + }, + { + "start": 4775.98, + "end": 4779.22, + "probability": 0.9879 + }, + { + "start": 4779.62, + "end": 4781.54, + "probability": 0.8906 + }, + { + "start": 4781.9, + "end": 4784.36, + "probability": 0.8525 + }, + { + "start": 4785.22, + "end": 4786.38, + "probability": 0.6729 + }, + { + "start": 4786.44, + "end": 4787.74, + "probability": 0.8606 + }, + { + "start": 4788.2, + "end": 4790.02, + "probability": 0.6218 + }, + { + "start": 4790.48, + "end": 4793.28, + "probability": 0.9417 + }, + { + "start": 4793.4, + "end": 4795.08, + "probability": 0.9841 + }, + { + "start": 4795.22, + "end": 4796.24, + "probability": 0.8157 + }, + { + "start": 4796.86, + "end": 4798.34, + "probability": 0.987 + }, + { + "start": 4798.68, + "end": 4799.43, + "probability": 0.4487 + }, + { + "start": 4799.68, + "end": 4801.52, + "probability": 0.8031 + }, + { + "start": 4802.08, + "end": 4803.64, + "probability": 0.8958 + }, + { + "start": 4808.18, + "end": 4810.28, + "probability": 0.6567 + }, + { + "start": 4811.52, + "end": 4813.31, + "probability": 0.9624 + }, + { + "start": 4813.88, + "end": 4819.34, + "probability": 0.9111 + }, + { + "start": 4820.22, + "end": 4820.66, + "probability": 0.8872 + }, + { + "start": 4820.76, + "end": 4823.78, + "probability": 0.9954 + }, + { + "start": 4823.78, + "end": 4826.46, + "probability": 0.9966 + }, + { + "start": 4827.04, + "end": 4827.38, + "probability": 0.5844 + }, + { + "start": 4827.44, + "end": 4830.16, + "probability": 0.9678 + }, + { + "start": 4830.16, + "end": 4833.34, + "probability": 0.9886 + }, + { + "start": 4834.34, + "end": 4836.98, + "probability": 0.9788 + }, + { + "start": 4836.98, + "end": 4839.16, + "probability": 0.9995 + }, + { + "start": 4840.12, + "end": 4842.68, + "probability": 0.9848 + }, + { + "start": 4843.16, + "end": 4846.68, + "probability": 0.9645 + }, + { + "start": 4847.28, + "end": 4851.66, + "probability": 0.9872 + }, + { + "start": 4851.66, + "end": 4856.9, + "probability": 0.9926 + }, + { + "start": 4857.54, + "end": 4858.8, + "probability": 0.8359 + }, + { + "start": 4859.42, + "end": 4862.02, + "probability": 0.7522 + }, + { + "start": 4862.04, + "end": 4866.04, + "probability": 0.9967 + }, + { + "start": 4866.04, + "end": 4870.56, + "probability": 0.9572 + }, + { + "start": 4871.26, + "end": 4874.83, + "probability": 0.572 + }, + { + "start": 4875.64, + "end": 4878.44, + "probability": 0.9856 + }, + { + "start": 4879.06, + "end": 4881.24, + "probability": 0.8169 + }, + { + "start": 4882.2, + "end": 4885.5, + "probability": 0.907 + }, + { + "start": 4885.54, + "end": 4888.28, + "probability": 0.9959 + }, + { + "start": 4888.42, + "end": 4889.3, + "probability": 0.91 + }, + { + "start": 4889.88, + "end": 4892.54, + "probability": 0.9495 + }, + { + "start": 4893.28, + "end": 4896.02, + "probability": 0.9909 + }, + { + "start": 4896.02, + "end": 4899.0, + "probability": 0.8816 + }, + { + "start": 4899.78, + "end": 4903.06, + "probability": 0.867 + }, + { + "start": 4903.6, + "end": 4906.98, + "probability": 0.6877 + }, + { + "start": 4907.9, + "end": 4908.98, + "probability": 0.9875 + }, + { + "start": 4910.0, + "end": 4910.78, + "probability": 0.9607 + }, + { + "start": 4910.92, + "end": 4917.24, + "probability": 0.9922 + }, + { + "start": 4918.5, + "end": 4919.48, + "probability": 0.5998 + }, + { + "start": 4920.38, + "end": 4922.92, + "probability": 0.7716 + }, + { + "start": 4923.2, + "end": 4925.28, + "probability": 0.8873 + }, + { + "start": 4925.92, + "end": 4929.64, + "probability": 0.946 + }, + { + "start": 4930.46, + "end": 4932.02, + "probability": 0.9783 + }, + { + "start": 4932.12, + "end": 4932.8, + "probability": 0.441 + }, + { + "start": 4932.96, + "end": 4936.02, + "probability": 0.9185 + }, + { + "start": 4936.62, + "end": 4941.58, + "probability": 0.9948 + }, + { + "start": 4941.58, + "end": 4944.38, + "probability": 0.9933 + }, + { + "start": 4944.66, + "end": 4945.04, + "probability": 0.5947 + }, + { + "start": 4945.12, + "end": 4947.8, + "probability": 0.8517 + }, + { + "start": 4948.34, + "end": 4953.88, + "probability": 0.9983 + }, + { + "start": 4954.72, + "end": 4958.86, + "probability": 0.9917 + }, + { + "start": 4959.5, + "end": 4960.02, + "probability": 0.6464 + }, + { + "start": 4960.12, + "end": 4960.18, + "probability": 0.6919 + }, + { + "start": 4960.18, + "end": 4960.52, + "probability": 0.755 + }, + { + "start": 4960.76, + "end": 4961.14, + "probability": 0.7017 + }, + { + "start": 4961.2, + "end": 4962.5, + "probability": 0.7058 + }, + { + "start": 4962.66, + "end": 4963.84, + "probability": 0.748 + }, + { + "start": 4963.96, + "end": 4967.6, + "probability": 0.9946 + }, + { + "start": 4967.6, + "end": 4970.58, + "probability": 0.9912 + }, + { + "start": 4971.08, + "end": 4975.94, + "probability": 0.4557 + }, + { + "start": 4976.96, + "end": 4983.12, + "probability": 0.9919 + }, + { + "start": 4983.56, + "end": 4988.72, + "probability": 0.981 + }, + { + "start": 4988.78, + "end": 4991.13, + "probability": 0.9133 + }, + { + "start": 4991.3, + "end": 4994.22, + "probability": 0.9979 + }, + { + "start": 4995.44, + "end": 4996.04, + "probability": 0.3824 + }, + { + "start": 4996.4, + "end": 4996.9, + "probability": 0.8109 + }, + { + "start": 4996.98, + "end": 5000.02, + "probability": 0.944 + }, + { + "start": 5000.72, + "end": 5005.32, + "probability": 0.7678 + }, + { + "start": 5005.32, + "end": 5010.14, + "probability": 0.9829 + }, + { + "start": 5010.26, + "end": 5011.84, + "probability": 0.8867 + }, + { + "start": 5012.0, + "end": 5014.88, + "probability": 0.9829 + }, + { + "start": 5015.08, + "end": 5015.6, + "probability": 0.9173 + }, + { + "start": 5016.12, + "end": 5017.59, + "probability": 0.9973 + }, + { + "start": 5018.26, + "end": 5021.14, + "probability": 0.9603 + }, + { + "start": 5021.64, + "end": 5023.6, + "probability": 0.7334 + }, + { + "start": 5023.86, + "end": 5025.0, + "probability": 0.5081 + }, + { + "start": 5025.46, + "end": 5027.56, + "probability": 0.9756 + }, + { + "start": 5028.38, + "end": 5029.14, + "probability": 0.5285 + }, + { + "start": 5029.9, + "end": 5032.52, + "probability": 0.6214 + }, + { + "start": 5033.12, + "end": 5034.52, + "probability": 0.9758 + }, + { + "start": 5035.18, + "end": 5037.58, + "probability": 0.9196 + }, + { + "start": 5038.76, + "end": 5039.14, + "probability": 0.7517 + }, + { + "start": 5039.28, + "end": 5041.94, + "probability": 0.9961 + }, + { + "start": 5041.94, + "end": 5044.54, + "probability": 0.9961 + }, + { + "start": 5044.74, + "end": 5045.84, + "probability": 0.8538 + }, + { + "start": 5045.96, + "end": 5046.34, + "probability": 0.8403 + }, + { + "start": 5046.46, + "end": 5047.14, + "probability": 0.7391 + }, + { + "start": 5048.44, + "end": 5051.96, + "probability": 0.9424 + }, + { + "start": 5052.02, + "end": 5053.0, + "probability": 0.8863 + }, + { + "start": 5053.12, + "end": 5054.04, + "probability": 0.7651 + }, + { + "start": 5054.9, + "end": 5055.48, + "probability": 0.9312 + }, + { + "start": 5055.7, + "end": 5056.46, + "probability": 0.8322 + }, + { + "start": 5056.52, + "end": 5059.2, + "probability": 0.991 + }, + { + "start": 5059.32, + "end": 5061.64, + "probability": 0.9927 + }, + { + "start": 5061.78, + "end": 5062.0, + "probability": 0.4641 + }, + { + "start": 5062.16, + "end": 5066.47, + "probability": 0.9266 + }, + { + "start": 5066.8, + "end": 5069.62, + "probability": 0.9626 + }, + { + "start": 5069.72, + "end": 5070.52, + "probability": 0.7348 + }, + { + "start": 5070.62, + "end": 5070.98, + "probability": 0.9594 + }, + { + "start": 5071.46, + "end": 5073.02, + "probability": 0.9915 + }, + { + "start": 5073.66, + "end": 5076.3, + "probability": 0.9302 + }, + { + "start": 5077.08, + "end": 5078.54, + "probability": 0.9674 + }, + { + "start": 5078.64, + "end": 5083.48, + "probability": 0.9922 + }, + { + "start": 5083.92, + "end": 5086.48, + "probability": 0.9347 + }, + { + "start": 5086.7, + "end": 5087.72, + "probability": 0.9197 + }, + { + "start": 5087.94, + "end": 5089.02, + "probability": 0.9017 + }, + { + "start": 5089.46, + "end": 5092.22, + "probability": 0.9815 + }, + { + "start": 5092.4, + "end": 5096.32, + "probability": 0.9331 + }, + { + "start": 5096.38, + "end": 5098.84, + "probability": 0.9872 + }, + { + "start": 5098.9, + "end": 5102.03, + "probability": 0.9902 + }, + { + "start": 5102.96, + "end": 5106.46, + "probability": 0.8691 + }, + { + "start": 5107.08, + "end": 5109.69, + "probability": 0.9671 + }, + { + "start": 5110.02, + "end": 5112.96, + "probability": 0.9337 + }, + { + "start": 5113.06, + "end": 5116.02, + "probability": 0.4425 + }, + { + "start": 5116.2, + "end": 5116.62, + "probability": 0.8817 + }, + { + "start": 5117.24, + "end": 5118.32, + "probability": 0.9626 + }, + { + "start": 5118.34, + "end": 5122.62, + "probability": 0.9917 + }, + { + "start": 5124.2, + "end": 5124.3, + "probability": 0.0416 + }, + { + "start": 5124.3, + "end": 5125.52, + "probability": 0.6824 + }, + { + "start": 5126.04, + "end": 5127.74, + "probability": 0.3798 + }, + { + "start": 5127.88, + "end": 5128.3, + "probability": 0.8932 + }, + { + "start": 5128.5, + "end": 5130.34, + "probability": 0.995 + }, + { + "start": 5130.4, + "end": 5132.18, + "probability": 0.9915 + }, + { + "start": 5132.42, + "end": 5136.74, + "probability": 0.8131 + }, + { + "start": 5136.88, + "end": 5137.32, + "probability": 0.898 + }, + { + "start": 5137.42, + "end": 5138.28, + "probability": 0.9809 + }, + { + "start": 5138.84, + "end": 5141.84, + "probability": 0.8376 + }, + { + "start": 5142.52, + "end": 5145.34, + "probability": 0.8789 + }, + { + "start": 5145.42, + "end": 5149.04, + "probability": 0.8765 + }, + { + "start": 5149.14, + "end": 5151.1, + "probability": 0.5622 + }, + { + "start": 5151.86, + "end": 5153.08, + "probability": 0.9377 + }, + { + "start": 5153.44, + "end": 5153.9, + "probability": 0.4752 + }, + { + "start": 5154.08, + "end": 5156.86, + "probability": 0.8405 + }, + { + "start": 5158.0, + "end": 5158.3, + "probability": 0.2861 + }, + { + "start": 5158.48, + "end": 5159.72, + "probability": 0.9071 + }, + { + "start": 5160.22, + "end": 5161.42, + "probability": 0.9548 + }, + { + "start": 5161.54, + "end": 5164.7, + "probability": 0.8166 + }, + { + "start": 5164.76, + "end": 5168.42, + "probability": 0.9418 + }, + { + "start": 5168.52, + "end": 5168.52, + "probability": 0.2311 + }, + { + "start": 5168.52, + "end": 5170.2, + "probability": 0.9574 + }, + { + "start": 5170.32, + "end": 5171.8, + "probability": 0.9766 + }, + { + "start": 5171.98, + "end": 5173.22, + "probability": 0.8313 + }, + { + "start": 5173.42, + "end": 5177.06, + "probability": 0.986 + }, + { + "start": 5177.14, + "end": 5180.84, + "probability": 0.8822 + }, + { + "start": 5181.0, + "end": 5183.84, + "probability": 0.9411 + }, + { + "start": 5184.62, + "end": 5184.76, + "probability": 0.2752 + }, + { + "start": 5185.12, + "end": 5185.96, + "probability": 0.9099 + }, + { + "start": 5186.4, + "end": 5189.46, + "probability": 0.9629 + }, + { + "start": 5190.26, + "end": 5190.84, + "probability": 0.437 + }, + { + "start": 5191.14, + "end": 5193.74, + "probability": 0.9756 + }, + { + "start": 5193.78, + "end": 5194.66, + "probability": 0.7267 + }, + { + "start": 5194.7, + "end": 5196.36, + "probability": 0.6761 + }, + { + "start": 5196.74, + "end": 5198.76, + "probability": 0.9678 + }, + { + "start": 5198.86, + "end": 5200.12, + "probability": 0.822 + }, + { + "start": 5208.06, + "end": 5208.7, + "probability": 0.7313 + }, + { + "start": 5208.78, + "end": 5209.4, + "probability": 0.788 + }, + { + "start": 5209.66, + "end": 5213.34, + "probability": 0.9733 + }, + { + "start": 5213.44, + "end": 5214.6, + "probability": 0.7213 + }, + { + "start": 5215.62, + "end": 5224.12, + "probability": 0.8417 + }, + { + "start": 5224.12, + "end": 5225.58, + "probability": 0.4235 + }, + { + "start": 5226.56, + "end": 5229.22, + "probability": 0.9976 + }, + { + "start": 5229.22, + "end": 5230.28, + "probability": 0.8074 + }, + { + "start": 5230.38, + "end": 5230.58, + "probability": 0.6907 + }, + { + "start": 5230.74, + "end": 5236.88, + "probability": 0.9873 + }, + { + "start": 5237.34, + "end": 5238.12, + "probability": 0.3968 + }, + { + "start": 5238.2, + "end": 5238.68, + "probability": 0.5077 + }, + { + "start": 5238.78, + "end": 5239.92, + "probability": 0.918 + }, + { + "start": 5240.58, + "end": 5243.2, + "probability": 0.5828 + }, + { + "start": 5243.28, + "end": 5243.4, + "probability": 0.7294 + }, + { + "start": 5243.46, + "end": 5244.0, + "probability": 0.9503 + }, + { + "start": 5244.14, + "end": 5245.35, + "probability": 0.9851 + }, + { + "start": 5245.5, + "end": 5248.24, + "probability": 0.9899 + }, + { + "start": 5248.6, + "end": 5249.84, + "probability": 0.6648 + }, + { + "start": 5249.9, + "end": 5251.8, + "probability": 0.9158 + }, + { + "start": 5252.52, + "end": 5253.3, + "probability": 0.9115 + }, + { + "start": 5253.44, + "end": 5254.44, + "probability": 0.9387 + }, + { + "start": 5254.88, + "end": 5257.32, + "probability": 0.9905 + }, + { + "start": 5257.84, + "end": 5260.22, + "probability": 0.9906 + }, + { + "start": 5260.68, + "end": 5261.18, + "probability": 0.7595 + }, + { + "start": 5261.32, + "end": 5261.9, + "probability": 0.9322 + }, + { + "start": 5262.16, + "end": 5263.34, + "probability": 0.9712 + }, + { + "start": 5263.48, + "end": 5265.56, + "probability": 0.993 + }, + { + "start": 5265.96, + "end": 5266.7, + "probability": 0.7323 + }, + { + "start": 5266.84, + "end": 5266.96, + "probability": 0.9549 + }, + { + "start": 5267.06, + "end": 5268.12, + "probability": 0.9513 + }, + { + "start": 5268.5, + "end": 5271.14, + "probability": 0.8845 + }, + { + "start": 5271.18, + "end": 5273.7, + "probability": 0.9274 + }, + { + "start": 5273.74, + "end": 5273.98, + "probability": 0.689 + }, + { + "start": 5274.4, + "end": 5275.04, + "probability": 0.5254 + }, + { + "start": 5275.14, + "end": 5276.14, + "probability": 0.8729 + }, + { + "start": 5276.2, + "end": 5276.66, + "probability": 0.7533 + }, + { + "start": 5276.8, + "end": 5278.3, + "probability": 0.7865 + }, + { + "start": 5278.3, + "end": 5279.76, + "probability": 0.6721 + }, + { + "start": 5280.08, + "end": 5281.8, + "probability": 0.8618 + }, + { + "start": 5282.0, + "end": 5282.52, + "probability": 0.877 + }, + { + "start": 5282.72, + "end": 5287.14, + "probability": 0.7893 + }, + { + "start": 5287.2, + "end": 5287.84, + "probability": 0.7345 + }, + { + "start": 5288.06, + "end": 5293.44, + "probability": 0.9812 + }, + { + "start": 5293.76, + "end": 5296.98, + "probability": 0.9879 + }, + { + "start": 5297.14, + "end": 5297.76, + "probability": 0.5882 + }, + { + "start": 5298.06, + "end": 5298.34, + "probability": 0.685 + }, + { + "start": 5298.78, + "end": 5301.6, + "probability": 0.9354 + }, + { + "start": 5302.24, + "end": 5307.46, + "probability": 0.9883 + }, + { + "start": 5308.08, + "end": 5309.7, + "probability": 0.9937 + }, + { + "start": 5310.18, + "end": 5313.5, + "probability": 0.9959 + }, + { + "start": 5313.5, + "end": 5317.88, + "probability": 0.8772 + }, + { + "start": 5317.98, + "end": 5318.94, + "probability": 0.7007 + }, + { + "start": 5319.1, + "end": 5321.86, + "probability": 0.8009 + }, + { + "start": 5322.34, + "end": 5323.72, + "probability": 0.9855 + }, + { + "start": 5323.86, + "end": 5325.86, + "probability": 0.9907 + }, + { + "start": 5326.82, + "end": 5332.24, + "probability": 0.9076 + }, + { + "start": 5332.48, + "end": 5334.62, + "probability": 0.9839 + }, + { + "start": 5335.2, + "end": 5340.74, + "probability": 0.9327 + }, + { + "start": 5341.3, + "end": 5344.64, + "probability": 0.9832 + }, + { + "start": 5344.9, + "end": 5346.22, + "probability": 0.4354 + }, + { + "start": 5346.3, + "end": 5348.86, + "probability": 0.9039 + }, + { + "start": 5349.5, + "end": 5352.92, + "probability": 0.9812 + }, + { + "start": 5353.0, + "end": 5356.18, + "probability": 0.9973 + }, + { + "start": 5356.78, + "end": 5361.5, + "probability": 0.9979 + }, + { + "start": 5361.6, + "end": 5363.24, + "probability": 0.8452 + }, + { + "start": 5363.94, + "end": 5367.67, + "probability": 0.9141 + }, + { + "start": 5368.28, + "end": 5371.42, + "probability": 0.9751 + }, + { + "start": 5371.66, + "end": 5373.48, + "probability": 0.8759 + }, + { + "start": 5378.24, + "end": 5381.08, + "probability": 0.7485 + }, + { + "start": 5381.2, + "end": 5381.32, + "probability": 0.695 + }, + { + "start": 5381.62, + "end": 5381.98, + "probability": 0.7723 + }, + { + "start": 5382.24, + "end": 5385.22, + "probability": 0.4876 + }, + { + "start": 5385.36, + "end": 5386.12, + "probability": 0.1783 + }, + { + "start": 5386.18, + "end": 5387.02, + "probability": 0.5342 + }, + { + "start": 5387.12, + "end": 5390.0, + "probability": 0.8396 + }, + { + "start": 5390.04, + "end": 5390.52, + "probability": 0.6584 + }, + { + "start": 5390.6, + "end": 5393.68, + "probability": 0.9685 + }, + { + "start": 5393.88, + "end": 5394.76, + "probability": 0.6263 + }, + { + "start": 5394.86, + "end": 5395.76, + "probability": 0.9038 + }, + { + "start": 5396.06, + "end": 5396.58, + "probability": 0.6432 + }, + { + "start": 5396.86, + "end": 5397.44, + "probability": 0.9484 + }, + { + "start": 5397.6, + "end": 5399.4, + "probability": 0.8745 + }, + { + "start": 5399.9, + "end": 5402.8, + "probability": 0.986 + }, + { + "start": 5402.8, + "end": 5406.59, + "probability": 0.9889 + }, + { + "start": 5408.89, + "end": 5411.16, + "probability": 0.8482 + }, + { + "start": 5411.94, + "end": 5413.03, + "probability": 0.8737 + }, + { + "start": 5413.5, + "end": 5414.94, + "probability": 0.7014 + }, + { + "start": 5415.2, + "end": 5416.84, + "probability": 0.9597 + }, + { + "start": 5417.6, + "end": 5418.54, + "probability": 0.6938 + }, + { + "start": 5418.72, + "end": 5419.64, + "probability": 0.6581 + }, + { + "start": 5419.78, + "end": 5422.42, + "probability": 0.9575 + }, + { + "start": 5422.48, + "end": 5426.08, + "probability": 0.9047 + }, + { + "start": 5426.64, + "end": 5429.88, + "probability": 0.8794 + }, + { + "start": 5430.06, + "end": 5430.82, + "probability": 0.9417 + }, + { + "start": 5431.04, + "end": 5431.52, + "probability": 0.8606 + }, + { + "start": 5432.06, + "end": 5433.34, + "probability": 0.9258 + }, + { + "start": 5433.5, + "end": 5434.66, + "probability": 0.9919 + }, + { + "start": 5434.8, + "end": 5437.34, + "probability": 0.8638 + }, + { + "start": 5437.4, + "end": 5438.06, + "probability": 0.9353 + }, + { + "start": 5438.56, + "end": 5443.28, + "probability": 0.9115 + }, + { + "start": 5443.34, + "end": 5445.38, + "probability": 0.6858 + }, + { + "start": 5445.9, + "end": 5448.7, + "probability": 0.9058 + }, + { + "start": 5450.98, + "end": 5451.58, + "probability": 0.3143 + }, + { + "start": 5451.7, + "end": 5454.06, + "probability": 0.8816 + }, + { + "start": 5454.24, + "end": 5455.22, + "probability": 0.9639 + }, + { + "start": 5455.32, + "end": 5455.66, + "probability": 0.94 + }, + { + "start": 5455.76, + "end": 5456.74, + "probability": 0.8283 + }, + { + "start": 5456.86, + "end": 5458.32, + "probability": 0.9556 + }, + { + "start": 5458.42, + "end": 5462.02, + "probability": 0.8925 + }, + { + "start": 5462.22, + "end": 5464.68, + "probability": 0.983 + }, + { + "start": 5464.68, + "end": 5466.1, + "probability": 0.9243 + }, + { + "start": 5466.8, + "end": 5468.16, + "probability": 0.9977 + }, + { + "start": 5468.58, + "end": 5470.46, + "probability": 0.9879 + }, + { + "start": 5470.46, + "end": 5473.16, + "probability": 0.9816 + }, + { + "start": 5474.56, + "end": 5475.72, + "probability": 0.8857 + }, + { + "start": 5477.42, + "end": 5479.04, + "probability": 0.1693 + }, + { + "start": 5479.7, + "end": 5480.5, + "probability": 0.1164 + }, + { + "start": 5480.5, + "end": 5481.9, + "probability": 0.6128 + }, + { + "start": 5482.74, + "end": 5483.6, + "probability": 0.328 + }, + { + "start": 5484.78, + "end": 5488.34, + "probability": 0.8851 + }, + { + "start": 5489.18, + "end": 5491.68, + "probability": 0.9786 + }, + { + "start": 5495.0, + "end": 5499.74, + "probability": 0.097 + }, + { + "start": 5499.74, + "end": 5502.04, + "probability": 0.6539 + }, + { + "start": 5502.06, + "end": 5503.05, + "probability": 0.8027 + }, + { + "start": 5503.18, + "end": 5504.54, + "probability": 0.3993 + }, + { + "start": 5504.62, + "end": 5505.12, + "probability": 0.2288 + }, + { + "start": 5505.16, + "end": 5508.48, + "probability": 0.0877 + }, + { + "start": 5508.66, + "end": 5508.9, + "probability": 0.0486 + }, + { + "start": 5508.9, + "end": 5509.92, + "probability": 0.4569 + }, + { + "start": 5510.38, + "end": 5511.56, + "probability": 0.2091 + }, + { + "start": 5511.7, + "end": 5514.64, + "probability": 0.6537 + }, + { + "start": 5514.9, + "end": 5515.7, + "probability": 0.7194 + }, + { + "start": 5515.8, + "end": 5516.59, + "probability": 0.9453 + }, + { + "start": 5517.52, + "end": 5518.34, + "probability": 0.9917 + }, + { + "start": 5518.44, + "end": 5520.66, + "probability": 0.9747 + }, + { + "start": 5520.76, + "end": 5523.98, + "probability": 0.9601 + }, + { + "start": 5525.36, + "end": 5525.38, + "probability": 0.2366 + }, + { + "start": 5525.38, + "end": 5525.38, + "probability": 0.0983 + }, + { + "start": 5525.38, + "end": 5525.66, + "probability": 0.1232 + }, + { + "start": 5525.9, + "end": 5529.18, + "probability": 0.9614 + }, + { + "start": 5529.76, + "end": 5533.54, + "probability": 0.8362 + }, + { + "start": 5533.74, + "end": 5535.0, + "probability": 0.6104 + }, + { + "start": 5536.38, + "end": 5536.72, + "probability": 0.041 + }, + { + "start": 5536.72, + "end": 5536.92, + "probability": 0.0288 + }, + { + "start": 5536.92, + "end": 5537.6, + "probability": 0.5693 + }, + { + "start": 5537.76, + "end": 5538.46, + "probability": 0.4402 + }, + { + "start": 5538.54, + "end": 5542.42, + "probability": 0.979 + }, + { + "start": 5542.42, + "end": 5545.02, + "probability": 0.8132 + }, + { + "start": 5545.22, + "end": 5545.38, + "probability": 0.3501 + }, + { + "start": 5545.5, + "end": 5546.08, + "probability": 0.479 + }, + { + "start": 5546.34, + "end": 5547.66, + "probability": 0.4909 + }, + { + "start": 5547.66, + "end": 5549.76, + "probability": 0.6664 + }, + { + "start": 5550.9, + "end": 5553.56, + "probability": 0.3068 + }, + { + "start": 5553.76, + "end": 5553.88, + "probability": 0.5694 + }, + { + "start": 5554.06, + "end": 5554.54, + "probability": 0.793 + }, + { + "start": 5554.82, + "end": 5556.08, + "probability": 0.9475 + }, + { + "start": 5556.16, + "end": 5556.64, + "probability": 0.9604 + }, + { + "start": 5556.76, + "end": 5558.28, + "probability": 0.9722 + }, + { + "start": 5558.9, + "end": 5560.74, + "probability": 0.9307 + }, + { + "start": 5560.88, + "end": 5561.54, + "probability": 0.543 + }, + { + "start": 5570.36, + "end": 5571.48, + "probability": 0.6238 + }, + { + "start": 5572.12, + "end": 5575.76, + "probability": 0.9675 + }, + { + "start": 5576.94, + "end": 5579.06, + "probability": 0.9495 + }, + { + "start": 5579.26, + "end": 5582.32, + "probability": 0.8211 + }, + { + "start": 5583.16, + "end": 5587.02, + "probability": 0.7526 + }, + { + "start": 5587.82, + "end": 5590.02, + "probability": 0.984 + }, + { + "start": 5590.54, + "end": 5593.72, + "probability": 0.9297 + }, + { + "start": 5594.3, + "end": 5596.9, + "probability": 0.9963 + }, + { + "start": 5596.9, + "end": 5599.82, + "probability": 0.8677 + }, + { + "start": 5600.48, + "end": 5601.14, + "probability": 0.9767 + }, + { + "start": 5601.3, + "end": 5602.06, + "probability": 0.7424 + }, + { + "start": 5602.58, + "end": 5604.58, + "probability": 0.8214 + }, + { + "start": 5605.56, + "end": 5608.68, + "probability": 0.9463 + }, + { + "start": 5609.3, + "end": 5609.94, + "probability": 0.7505 + }, + { + "start": 5610.08, + "end": 5612.0, + "probability": 0.8669 + }, + { + "start": 5612.06, + "end": 5617.88, + "probability": 0.7075 + }, + { + "start": 5618.92, + "end": 5619.88, + "probability": 0.8586 + }, + { + "start": 5620.5, + "end": 5623.58, + "probability": 0.9771 + }, + { + "start": 5624.42, + "end": 5628.08, + "probability": 0.6792 + }, + { + "start": 5628.6, + "end": 5630.14, + "probability": 0.4424 + }, + { + "start": 5630.66, + "end": 5631.02, + "probability": 0.6681 + }, + { + "start": 5631.46, + "end": 5632.34, + "probability": 0.2941 + }, + { + "start": 5632.34, + "end": 5632.86, + "probability": 0.8356 + }, + { + "start": 5633.32, + "end": 5634.18, + "probability": 0.7959 + }, + { + "start": 5634.48, + "end": 5636.84, + "probability": 0.6375 + }, + { + "start": 5636.96, + "end": 5637.6, + "probability": 0.9914 + }, + { + "start": 5637.82, + "end": 5638.38, + "probability": 0.7495 + }, + { + "start": 5638.94, + "end": 5639.86, + "probability": 0.9566 + }, + { + "start": 5640.48, + "end": 5640.82, + "probability": 0.7539 + }, + { + "start": 5640.94, + "end": 5643.2, + "probability": 0.9502 + }, + { + "start": 5643.3, + "end": 5646.62, + "probability": 0.9133 + }, + { + "start": 5647.32, + "end": 5648.93, + "probability": 0.9877 + }, + { + "start": 5649.32, + "end": 5649.78, + "probability": 0.6585 + }, + { + "start": 5650.16, + "end": 5651.6, + "probability": 0.8552 + }, + { + "start": 5652.2, + "end": 5654.84, + "probability": 0.9891 + }, + { + "start": 5655.54, + "end": 5658.46, + "probability": 0.995 + }, + { + "start": 5658.68, + "end": 5660.68, + "probability": 0.9958 + }, + { + "start": 5660.78, + "end": 5660.86, + "probability": 0.0943 + }, + { + "start": 5660.92, + "end": 5662.12, + "probability": 0.9396 + }, + { + "start": 5662.24, + "end": 5663.74, + "probability": 0.909 + }, + { + "start": 5663.96, + "end": 5664.52, + "probability": 0.5993 + }, + { + "start": 5664.86, + "end": 5665.24, + "probability": 0.8555 + }, + { + "start": 5665.3, + "end": 5665.88, + "probability": 0.6424 + }, + { + "start": 5666.4, + "end": 5670.32, + "probability": 0.8683 + }, + { + "start": 5670.8, + "end": 5674.78, + "probability": 0.8198 + }, + { + "start": 5674.78, + "end": 5677.78, + "probability": 0.9985 + }, + { + "start": 5677.94, + "end": 5679.16, + "probability": 0.6255 + }, + { + "start": 5679.22, + "end": 5679.32, + "probability": 0.7702 + }, + { + "start": 5680.12, + "end": 5682.74, + "probability": 0.8956 + }, + { + "start": 5683.02, + "end": 5685.2, + "probability": 0.9634 + }, + { + "start": 5685.42, + "end": 5688.2, + "probability": 0.9984 + }, + { + "start": 5688.76, + "end": 5690.96, + "probability": 0.9988 + }, + { + "start": 5691.54, + "end": 5693.58, + "probability": 0.791 + }, + { + "start": 5694.06, + "end": 5697.44, + "probability": 0.9941 + }, + { + "start": 5697.54, + "end": 5698.18, + "probability": 0.8311 + }, + { + "start": 5699.1, + "end": 5700.88, + "probability": 0.9971 + }, + { + "start": 5701.02, + "end": 5705.92, + "probability": 0.9927 + }, + { + "start": 5706.16, + "end": 5707.82, + "probability": 0.7266 + }, + { + "start": 5707.98, + "end": 5709.62, + "probability": 0.9932 + }, + { + "start": 5709.82, + "end": 5710.6, + "probability": 0.9397 + }, + { + "start": 5711.0, + "end": 5712.7, + "probability": 0.9901 + }, + { + "start": 5713.22, + "end": 5714.9, + "probability": 0.4925 + }, + { + "start": 5716.97, + "end": 5722.44, + "probability": 0.8104 + }, + { + "start": 5723.22, + "end": 5726.16, + "probability": 0.9624 + }, + { + "start": 5726.9, + "end": 5727.96, + "probability": 0.609 + }, + { + "start": 5728.16, + "end": 5728.3, + "probability": 0.5625 + }, + { + "start": 5728.48, + "end": 5728.84, + "probability": 0.3257 + }, + { + "start": 5728.84, + "end": 5731.52, + "probability": 0.9868 + }, + { + "start": 5731.64, + "end": 5734.84, + "probability": 0.9833 + }, + { + "start": 5734.98, + "end": 5737.94, + "probability": 0.9915 + }, + { + "start": 5738.48, + "end": 5739.32, + "probability": 0.9407 + }, + { + "start": 5739.56, + "end": 5741.16, + "probability": 0.6601 + }, + { + "start": 5741.22, + "end": 5742.92, + "probability": 0.972 + }, + { + "start": 5743.06, + "end": 5745.1, + "probability": 0.8182 + }, + { + "start": 5745.6, + "end": 5745.96, + "probability": 0.6171 + }, + { + "start": 5746.04, + "end": 5746.32, + "probability": 0.7165 + }, + { + "start": 5746.4, + "end": 5748.06, + "probability": 0.7236 + }, + { + "start": 5748.2, + "end": 5751.44, + "probability": 0.9574 + }, + { + "start": 5752.22, + "end": 5755.54, + "probability": 0.9008 + }, + { + "start": 5755.58, + "end": 5757.98, + "probability": 0.9858 + }, + { + "start": 5757.98, + "end": 5761.9, + "probability": 0.91 + }, + { + "start": 5762.2, + "end": 5762.61, + "probability": 0.5936 + }, + { + "start": 5763.02, + "end": 5766.04, + "probability": 0.4915 + }, + { + "start": 5767.06, + "end": 5767.74, + "probability": 0.4923 + }, + { + "start": 5767.74, + "end": 5771.1, + "probability": 0.8563 + }, + { + "start": 5772.6, + "end": 5774.98, + "probability": 0.9325 + }, + { + "start": 5775.42, + "end": 5775.82, + "probability": 0.6504 + }, + { + "start": 5776.5, + "end": 5778.86, + "probability": 0.9023 + }, + { + "start": 5779.68, + "end": 5782.96, + "probability": 0.9306 + }, + { + "start": 5783.06, + "end": 5784.96, + "probability": 0.5578 + }, + { + "start": 5785.54, + "end": 5787.02, + "probability": 0.9973 + }, + { + "start": 5787.12, + "end": 5789.66, + "probability": 0.9016 + }, + { + "start": 5789.88, + "end": 5794.96, + "probability": 0.9965 + }, + { + "start": 5794.96, + "end": 5799.82, + "probability": 0.9956 + }, + { + "start": 5800.22, + "end": 5802.72, + "probability": 0.971 + }, + { + "start": 5802.72, + "end": 5804.9, + "probability": 0.9396 + }, + { + "start": 5806.18, + "end": 5810.42, + "probability": 0.9624 + }, + { + "start": 5810.82, + "end": 5813.0, + "probability": 0.4288 + }, + { + "start": 5813.54, + "end": 5815.44, + "probability": 0.9619 + }, + { + "start": 5815.7, + "end": 5816.9, + "probability": 0.8978 + }, + { + "start": 5817.16, + "end": 5819.16, + "probability": 0.8767 + }, + { + "start": 5819.38, + "end": 5821.18, + "probability": 0.9838 + }, + { + "start": 5821.48, + "end": 5823.16, + "probability": 0.7159 + }, + { + "start": 5823.4, + "end": 5824.98, + "probability": 0.9684 + }, + { + "start": 5825.66, + "end": 5825.92, + "probability": 0.7333 + }, + { + "start": 5826.16, + "end": 5826.4, + "probability": 0.3745 + }, + { + "start": 5826.78, + "end": 5829.2, + "probability": 0.7346 + }, + { + "start": 5829.24, + "end": 5833.18, + "probability": 0.8555 + }, + { + "start": 5833.56, + "end": 5836.16, + "probability": 0.9542 + }, + { + "start": 5836.86, + "end": 5839.1, + "probability": 0.7139 + }, + { + "start": 5839.18, + "end": 5841.9, + "probability": 0.7927 + }, + { + "start": 5842.02, + "end": 5844.72, + "probability": 0.963 + }, + { + "start": 5845.1, + "end": 5845.24, + "probability": 0.8332 + }, + { + "start": 5845.84, + "end": 5848.7, + "probability": 0.8179 + }, + { + "start": 5849.2, + "end": 5850.72, + "probability": 0.8315 + }, + { + "start": 5851.32, + "end": 5851.92, + "probability": 0.6205 + }, + { + "start": 5852.1, + "end": 5852.76, + "probability": 0.7431 + }, + { + "start": 5852.88, + "end": 5856.84, + "probability": 0.9902 + }, + { + "start": 5856.94, + "end": 5860.3, + "probability": 0.7053 + }, + { + "start": 5860.42, + "end": 5864.14, + "probability": 0.9127 + }, + { + "start": 5864.38, + "end": 5867.5, + "probability": 0.9873 + }, + { + "start": 5868.54, + "end": 5869.24, + "probability": 0.869 + }, + { + "start": 5869.34, + "end": 5871.56, + "probability": 0.9713 + }, + { + "start": 5871.66, + "end": 5874.96, + "probability": 0.9968 + }, + { + "start": 5875.72, + "end": 5877.14, + "probability": 0.372 + }, + { + "start": 5877.64, + "end": 5877.74, + "probability": 0.8745 + }, + { + "start": 5878.34, + "end": 5879.44, + "probability": 0.8598 + }, + { + "start": 5880.26, + "end": 5884.08, + "probability": 0.2617 + }, + { + "start": 5884.08, + "end": 5884.5, + "probability": 0.5088 + }, + { + "start": 5885.36, + "end": 5887.98, + "probability": 0.9781 + }, + { + "start": 5888.14, + "end": 5891.46, + "probability": 0.6269 + }, + { + "start": 5891.62, + "end": 5892.54, + "probability": 0.2493 + }, + { + "start": 5892.72, + "end": 5893.68, + "probability": 0.4278 + }, + { + "start": 5893.86, + "end": 5895.2, + "probability": 0.7181 + }, + { + "start": 5895.28, + "end": 5896.4, + "probability": 0.78 + }, + { + "start": 5896.48, + "end": 5900.5, + "probability": 0.9586 + }, + { + "start": 5900.68, + "end": 5903.18, + "probability": 0.5267 + }, + { + "start": 5903.4, + "end": 5904.9, + "probability": 0.4331 + }, + { + "start": 5904.96, + "end": 5906.34, + "probability": 0.9449 + }, + { + "start": 5906.46, + "end": 5907.56, + "probability": 0.9208 + }, + { + "start": 5907.56, + "end": 5909.62, + "probability": 0.9968 + }, + { + "start": 5912.48, + "end": 5912.94, + "probability": 0.5125 + }, + { + "start": 5913.64, + "end": 5914.46, + "probability": 0.545 + }, + { + "start": 5914.46, + "end": 5916.52, + "probability": 0.6707 + }, + { + "start": 5916.58, + "end": 5917.62, + "probability": 0.946 + }, + { + "start": 5917.94, + "end": 5918.98, + "probability": 0.642 + }, + { + "start": 5919.06, + "end": 5919.16, + "probability": 0.4655 + }, + { + "start": 5919.76, + "end": 5920.17, + "probability": 0.5928 + }, + { + "start": 5920.3, + "end": 5921.12, + "probability": 0.6972 + }, + { + "start": 5921.38, + "end": 5922.4, + "probability": 0.4675 + }, + { + "start": 5922.94, + "end": 5923.96, + "probability": 0.5843 + }, + { + "start": 5924.36, + "end": 5925.92, + "probability": 0.463 + }, + { + "start": 5926.14, + "end": 5930.34, + "probability": 0.9955 + }, + { + "start": 5930.34, + "end": 5931.98, + "probability": 0.182 + }, + { + "start": 5932.42, + "end": 5935.06, + "probability": 0.6038 + }, + { + "start": 5935.28, + "end": 5938.54, + "probability": 0.8852 + }, + { + "start": 5939.12, + "end": 5940.54, + "probability": 0.5315 + }, + { + "start": 5940.6, + "end": 5945.48, + "probability": 0.8296 + }, + { + "start": 5945.48, + "end": 5946.08, + "probability": 0.7338 + }, + { + "start": 5946.2, + "end": 5947.82, + "probability": 0.5174 + }, + { + "start": 5947.88, + "end": 5950.14, + "probability": 0.8405 + }, + { + "start": 5950.5, + "end": 5954.6, + "probability": 0.8691 + }, + { + "start": 5954.86, + "end": 5954.86, + "probability": 0.6367 + }, + { + "start": 5955.4, + "end": 5957.64, + "probability": 0.9523 + }, + { + "start": 5957.74, + "end": 5959.48, + "probability": 0.8906 + }, + { + "start": 5962.86, + "end": 5967.24, + "probability": 0.8528 + }, + { + "start": 5968.12, + "end": 5969.38, + "probability": 0.1361 + }, + { + "start": 5969.44, + "end": 5969.54, + "probability": 0.7761 + }, + { + "start": 5970.24, + "end": 5970.76, + "probability": 0.8206 + }, + { + "start": 5970.82, + "end": 5971.46, + "probability": 0.8254 + }, + { + "start": 5971.82, + "end": 5974.3, + "probability": 0.8075 + }, + { + "start": 5974.46, + "end": 5978.12, + "probability": 0.8755 + }, + { + "start": 5978.28, + "end": 5978.58, + "probability": 0.7636 + }, + { + "start": 5979.56, + "end": 5982.02, + "probability": 0.9983 + }, + { + "start": 5982.14, + "end": 5984.54, + "probability": 0.9888 + }, + { + "start": 5985.24, + "end": 5988.22, + "probability": 0.9946 + }, + { + "start": 5988.8, + "end": 5991.08, + "probability": 0.5534 + }, + { + "start": 5991.64, + "end": 5994.26, + "probability": 0.9868 + }, + { + "start": 5994.37, + "end": 5997.68, + "probability": 0.9998 + }, + { + "start": 5997.78, + "end": 5998.54, + "probability": 0.9704 + }, + { + "start": 5999.68, + "end": 6001.72, + "probability": 0.73 + }, + { + "start": 6002.06, + "end": 6017.82, + "probability": 0.9723 + }, + { + "start": 6026.36, + "end": 6028.12, + "probability": 0.1412 + }, + { + "start": 6031.78, + "end": 6032.0, + "probability": 0.0561 + }, + { + "start": 6033.59, + "end": 6034.7, + "probability": 0.1423 + }, + { + "start": 6034.7, + "end": 6034.7, + "probability": 0.2293 + }, + { + "start": 6034.7, + "end": 6038.77, + "probability": 0.6879 + }, + { + "start": 6040.44, + "end": 6046.38, + "probability": 0.0165 + }, + { + "start": 6047.0, + "end": 6049.68, + "probability": 0.1532 + }, + { + "start": 6054.04, + "end": 6060.36, + "probability": 0.3351 + }, + { + "start": 6061.12, + "end": 6064.92, + "probability": 0.2301 + }, + { + "start": 6064.92, + "end": 6069.28, + "probability": 0.024 + }, + { + "start": 6069.28, + "end": 6072.98, + "probability": 0.3082 + }, + { + "start": 6073.66, + "end": 6079.32, + "probability": 0.0464 + }, + { + "start": 6084.0, + "end": 6084.0, + "probability": 0.0 + }, + { + "start": 6084.0, + "end": 6084.0, + "probability": 0.0 + }, + { + "start": 6084.0, + "end": 6084.0, + "probability": 0.0 + }, + { + "start": 6084.0, + "end": 6084.0, + "probability": 0.0 + }, + { + "start": 6084.0, + "end": 6084.0, + "probability": 0.0 + }, + { + "start": 6084.0, + "end": 6084.0, + "probability": 0.0 + }, + { + "start": 6084.0, + "end": 6084.0, + "probability": 0.0 + }, + { + "start": 6084.0, + "end": 6084.0, + "probability": 0.0 + }, + { + "start": 6084.0, + "end": 6084.0, + "probability": 0.0 + }, + { + "start": 6084.0, + "end": 6084.0, + "probability": 0.0 + }, + { + "start": 6084.0, + "end": 6084.0, + "probability": 0.0 + }, + { + "start": 6084.0, + "end": 6084.0, + "probability": 0.0 + }, + { + "start": 6084.0, + "end": 6084.0, + "probability": 0.0 + }, + { + "start": 6084.0, + "end": 6084.0, + "probability": 0.0 + }, + { + "start": 6084.08, + "end": 6084.36, + "probability": 0.0498 + }, + { + "start": 6084.36, + "end": 6086.6, + "probability": 0.625 + }, + { + "start": 6088.06, + "end": 6089.92, + "probability": 0.9768 + }, + { + "start": 6089.92, + "end": 6092.98, + "probability": 0.2915 + }, + { + "start": 6094.1, + "end": 6096.44, + "probability": 0.9731 + }, + { + "start": 6096.5, + "end": 6097.74, + "probability": 0.5944 + }, + { + "start": 6097.78, + "end": 6099.96, + "probability": 0.6883 + }, + { + "start": 6100.1, + "end": 6100.38, + "probability": 0.4853 + }, + { + "start": 6100.48, + "end": 6100.76, + "probability": 0.95 + }, + { + "start": 6101.36, + "end": 6102.98, + "probability": 0.9014 + }, + { + "start": 6103.4, + "end": 6104.12, + "probability": 0.8159 + }, + { + "start": 6104.22, + "end": 6106.42, + "probability": 0.9402 + }, + { + "start": 6107.18, + "end": 6108.55, + "probability": 0.599 + }, + { + "start": 6109.96, + "end": 6111.76, + "probability": 0.5091 + }, + { + "start": 6111.82, + "end": 6115.82, + "probability": 0.7069 + }, + { + "start": 6116.08, + "end": 6117.44, + "probability": 0.5256 + }, + { + "start": 6117.52, + "end": 6118.08, + "probability": 0.6641 + }, + { + "start": 6118.28, + "end": 6119.94, + "probability": 0.9728 + }, + { + "start": 6120.53, + "end": 6123.42, + "probability": 0.8551 + }, + { + "start": 6123.56, + "end": 6126.02, + "probability": 0.8216 + }, + { + "start": 6126.22, + "end": 6132.18, + "probability": 0.8161 + }, + { + "start": 6132.36, + "end": 6135.8, + "probability": 0.9761 + }, + { + "start": 6136.42, + "end": 6139.78, + "probability": 0.7584 + }, + { + "start": 6139.88, + "end": 6142.28, + "probability": 0.989 + }, + { + "start": 6142.5, + "end": 6146.2, + "probability": 0.9722 + }, + { + "start": 6146.48, + "end": 6148.44, + "probability": 0.9873 + }, + { + "start": 6148.86, + "end": 6151.56, + "probability": 0.9739 + }, + { + "start": 6151.68, + "end": 6152.86, + "probability": 0.8875 + }, + { + "start": 6153.0, + "end": 6154.26, + "probability": 0.7361 + }, + { + "start": 6154.94, + "end": 6155.62, + "probability": 0.6866 + }, + { + "start": 6155.68, + "end": 6157.02, + "probability": 0.597 + }, + { + "start": 6157.36, + "end": 6159.62, + "probability": 0.6535 + }, + { + "start": 6160.02, + "end": 6161.06, + "probability": 0.903 + }, + { + "start": 6161.15, + "end": 6164.36, + "probability": 0.7529 + }, + { + "start": 6164.52, + "end": 6167.76, + "probability": 0.924 + }, + { + "start": 6168.12, + "end": 6169.0, + "probability": 0.8049 + }, + { + "start": 6169.0, + "end": 6172.6, + "probability": 0.9194 + }, + { + "start": 6173.12, + "end": 6174.8, + "probability": 0.4653 + }, + { + "start": 6175.12, + "end": 6177.06, + "probability": 0.8919 + }, + { + "start": 6177.46, + "end": 6178.32, + "probability": 0.9651 + }, + { + "start": 6178.74, + "end": 6178.92, + "probability": 0.7241 + }, + { + "start": 6179.24, + "end": 6179.82, + "probability": 0.4549 + }, + { + "start": 6179.84, + "end": 6180.54, + "probability": 0.4886 + }, + { + "start": 6180.62, + "end": 6183.2, + "probability": 0.9312 + }, + { + "start": 6183.38, + "end": 6187.06, + "probability": 0.9868 + }, + { + "start": 6187.22, + "end": 6187.36, + "probability": 0.4775 + }, + { + "start": 6187.48, + "end": 6190.16, + "probability": 0.9842 + }, + { + "start": 6190.4, + "end": 6191.15, + "probability": 0.8602 + }, + { + "start": 6191.52, + "end": 6195.14, + "probability": 0.9929 + }, + { + "start": 6195.26, + "end": 6198.52, + "probability": 0.2474 + }, + { + "start": 6198.52, + "end": 6199.84, + "probability": 0.869 + }, + { + "start": 6200.08, + "end": 6204.48, + "probability": 0.9961 + }, + { + "start": 6205.14, + "end": 6206.16, + "probability": 0.4607 + }, + { + "start": 6206.32, + "end": 6209.7, + "probability": 0.9945 + }, + { + "start": 6209.9, + "end": 6212.26, + "probability": 0.8133 + }, + { + "start": 6212.9, + "end": 6215.26, + "probability": 0.9702 + }, + { + "start": 6215.66, + "end": 6216.48, + "probability": 0.9498 + }, + { + "start": 6216.86, + "end": 6218.86, + "probability": 0.9211 + }, + { + "start": 6219.26, + "end": 6221.8, + "probability": 0.9967 + }, + { + "start": 6222.3, + "end": 6223.8, + "probability": 0.8958 + }, + { + "start": 6224.32, + "end": 6226.98, + "probability": 0.8403 + }, + { + "start": 6227.2, + "end": 6228.93, + "probability": 0.989 + }, + { + "start": 6229.3, + "end": 6229.9, + "probability": 0.7461 + }, + { + "start": 6230.46, + "end": 6234.78, + "probability": 0.7383 + }, + { + "start": 6234.98, + "end": 6240.14, + "probability": 0.9913 + }, + { + "start": 6240.64, + "end": 6243.6, + "probability": 0.7714 + }, + { + "start": 6243.8, + "end": 6244.32, + "probability": 0.4848 + }, + { + "start": 6244.66, + "end": 6246.14, + "probability": 0.7014 + }, + { + "start": 6246.32, + "end": 6247.42, + "probability": 0.775 + }, + { + "start": 6247.54, + "end": 6248.45, + "probability": 0.8909 + }, + { + "start": 6249.08, + "end": 6249.86, + "probability": 0.8434 + }, + { + "start": 6250.06, + "end": 6252.3, + "probability": 0.9548 + }, + { + "start": 6252.42, + "end": 6257.04, + "probability": 0.8364 + }, + { + "start": 6257.22, + "end": 6258.74, + "probability": 0.9657 + }, + { + "start": 6258.92, + "end": 6259.6, + "probability": 0.6089 + }, + { + "start": 6259.88, + "end": 6262.38, + "probability": 0.6772 + }, + { + "start": 6269.76, + "end": 6271.96, + "probability": 0.4475 + }, + { + "start": 6272.88, + "end": 6276.44, + "probability": 0.9694 + }, + { + "start": 6276.74, + "end": 6279.16, + "probability": 0.6856 + }, + { + "start": 6279.8, + "end": 6280.47, + "probability": 0.8506 + }, + { + "start": 6281.34, + "end": 6286.42, + "probability": 0.9303 + }, + { + "start": 6286.88, + "end": 6290.06, + "probability": 0.9865 + }, + { + "start": 6291.08, + "end": 6296.56, + "probability": 0.9851 + }, + { + "start": 6297.14, + "end": 6298.78, + "probability": 0.9826 + }, + { + "start": 6299.74, + "end": 6303.76, + "probability": 0.8487 + }, + { + "start": 6303.82, + "end": 6304.28, + "probability": 0.6591 + }, + { + "start": 6305.46, + "end": 6305.67, + "probability": 0.0686 + }, + { + "start": 6306.5, + "end": 6309.22, + "probability": 0.9347 + }, + { + "start": 6309.8, + "end": 6310.68, + "probability": 0.4825 + }, + { + "start": 6310.8, + "end": 6315.7, + "probability": 0.8765 + }, + { + "start": 6318.4, + "end": 6319.96, + "probability": 0.832 + }, + { + "start": 6320.1, + "end": 6323.54, + "probability": 0.9042 + }, + { + "start": 6324.26, + "end": 6324.76, + "probability": 0.7995 + }, + { + "start": 6324.86, + "end": 6325.16, + "probability": 0.7869 + }, + { + "start": 6325.32, + "end": 6329.56, + "probability": 0.8529 + }, + { + "start": 6329.72, + "end": 6334.56, + "probability": 0.6881 + }, + { + "start": 6334.96, + "end": 6336.82, + "probability": 0.8981 + }, + { + "start": 6337.36, + "end": 6338.66, + "probability": 0.7521 + }, + { + "start": 6338.94, + "end": 6343.16, + "probability": 0.8596 + }, + { + "start": 6343.2, + "end": 6346.56, + "probability": 0.9751 + }, + { + "start": 6347.42, + "end": 6349.94, + "probability": 0.9012 + }, + { + "start": 6350.1, + "end": 6352.58, + "probability": 0.6265 + }, + { + "start": 6352.76, + "end": 6353.76, + "probability": 0.8004 + }, + { + "start": 6354.72, + "end": 6357.6, + "probability": 0.9424 + }, + { + "start": 6357.6, + "end": 6361.7, + "probability": 0.802 + }, + { + "start": 6363.3, + "end": 6365.7, + "probability": 0.3299 + }, + { + "start": 6366.76, + "end": 6368.52, + "probability": 0.8407 + }, + { + "start": 6368.76, + "end": 6374.1, + "probability": 0.8547 + }, + { + "start": 6374.76, + "end": 6378.32, + "probability": 0.9931 + }, + { + "start": 6378.78, + "end": 6381.6, + "probability": 0.9912 + }, + { + "start": 6382.16, + "end": 6384.9, + "probability": 0.9967 + }, + { + "start": 6384.98, + "end": 6387.54, + "probability": 0.941 + }, + { + "start": 6387.66, + "end": 6390.74, + "probability": 0.8906 + }, + { + "start": 6391.32, + "end": 6393.94, + "probability": 0.9404 + }, + { + "start": 6393.94, + "end": 6395.98, + "probability": 0.7169 + }, + { + "start": 6396.22, + "end": 6397.18, + "probability": 0.7646 + }, + { + "start": 6397.72, + "end": 6398.32, + "probability": 0.8838 + }, + { + "start": 6398.48, + "end": 6400.32, + "probability": 0.8312 + }, + { + "start": 6400.34, + "end": 6402.2, + "probability": 0.8632 + }, + { + "start": 6402.3, + "end": 6402.82, + "probability": 0.562 + }, + { + "start": 6402.86, + "end": 6403.66, + "probability": 0.7825 + }, + { + "start": 6404.08, + "end": 6407.3, + "probability": 0.9921 + }, + { + "start": 6408.16, + "end": 6412.3, + "probability": 0.9478 + }, + { + "start": 6413.02, + "end": 6416.12, + "probability": 0.9777 + }, + { + "start": 6416.58, + "end": 6420.18, + "probability": 0.7763 + }, + { + "start": 6421.0, + "end": 6421.68, + "probability": 0.5413 + }, + { + "start": 6421.78, + "end": 6422.18, + "probability": 0.8467 + }, + { + "start": 6422.28, + "end": 6425.44, + "probability": 0.8703 + }, + { + "start": 6425.44, + "end": 6428.56, + "probability": 0.894 + }, + { + "start": 6429.88, + "end": 6430.72, + "probability": 0.8589 + }, + { + "start": 6430.96, + "end": 6434.18, + "probability": 0.9946 + }, + { + "start": 6434.32, + "end": 6435.6, + "probability": 0.8305 + }, + { + "start": 6436.3, + "end": 6441.0, + "probability": 0.9888 + }, + { + "start": 6441.5, + "end": 6444.06, + "probability": 0.9441 + }, + { + "start": 6444.32, + "end": 6449.38, + "probability": 0.9927 + }, + { + "start": 6449.46, + "end": 6451.76, + "probability": 0.9005 + }, + { + "start": 6451.84, + "end": 6452.08, + "probability": 0.7388 + }, + { + "start": 6452.24, + "end": 6452.82, + "probability": 0.8212 + }, + { + "start": 6453.06, + "end": 6455.22, + "probability": 0.9792 + }, + { + "start": 6455.44, + "end": 6456.66, + "probability": 0.8697 + }, + { + "start": 6457.38, + "end": 6462.58, + "probability": 0.9771 + }, + { + "start": 6462.58, + "end": 6466.42, + "probability": 0.9915 + }, + { + "start": 6466.54, + "end": 6467.72, + "probability": 0.6931 + }, + { + "start": 6467.86, + "end": 6468.38, + "probability": 0.7649 + }, + { + "start": 6468.94, + "end": 6472.08, + "probability": 0.9919 + }, + { + "start": 6473.16, + "end": 6475.52, + "probability": 0.9612 + }, + { + "start": 6476.14, + "end": 6478.42, + "probability": 0.9347 + }, + { + "start": 6478.61, + "end": 6482.54, + "probability": 0.8192 + }, + { + "start": 6483.12, + "end": 6485.5, + "probability": 0.9973 + }, + { + "start": 6485.98, + "end": 6489.02, + "probability": 0.9614 + }, + { + "start": 6489.02, + "end": 6492.54, + "probability": 0.9916 + }, + { + "start": 6493.14, + "end": 6496.06, + "probability": 0.9717 + }, + { + "start": 6496.18, + "end": 6500.44, + "probability": 0.9102 + }, + { + "start": 6500.44, + "end": 6505.7, + "probability": 0.8145 + }, + { + "start": 6506.3, + "end": 6509.24, + "probability": 0.9904 + }, + { + "start": 6509.24, + "end": 6514.2, + "probability": 0.9585 + }, + { + "start": 6514.32, + "end": 6516.24, + "probability": 0.9648 + }, + { + "start": 6517.46, + "end": 6520.82, + "probability": 0.7554 + }, + { + "start": 6521.02, + "end": 6525.72, + "probability": 0.9918 + }, + { + "start": 6526.32, + "end": 6529.06, + "probability": 0.961 + }, + { + "start": 6529.06, + "end": 6531.26, + "probability": 0.9989 + }, + { + "start": 6531.38, + "end": 6536.98, + "probability": 0.9849 + }, + { + "start": 6537.98, + "end": 6544.0, + "probability": 0.9675 + }, + { + "start": 6544.88, + "end": 6547.26, + "probability": 0.7803 + }, + { + "start": 6547.4, + "end": 6550.68, + "probability": 0.9973 + }, + { + "start": 6550.68, + "end": 6554.2, + "probability": 0.9131 + }, + { + "start": 6554.26, + "end": 6558.7, + "probability": 0.9326 + }, + { + "start": 6558.98, + "end": 6563.8, + "probability": 0.9932 + }, + { + "start": 6563.8, + "end": 6567.94, + "probability": 0.9988 + }, + { + "start": 6568.1, + "end": 6571.4, + "probability": 0.9512 + }, + { + "start": 6571.4, + "end": 6574.5, + "probability": 0.996 + }, + { + "start": 6574.72, + "end": 6577.34, + "probability": 0.9956 + }, + { + "start": 6577.38, + "end": 6577.94, + "probability": 0.8755 + }, + { + "start": 6578.14, + "end": 6578.78, + "probability": 0.8974 + }, + { + "start": 6579.42, + "end": 6581.98, + "probability": 0.9849 + }, + { + "start": 6582.0, + "end": 6585.02, + "probability": 0.9609 + }, + { + "start": 6586.04, + "end": 6590.36, + "probability": 0.7387 + }, + { + "start": 6590.52, + "end": 6591.98, + "probability": 0.7074 + }, + { + "start": 6592.5, + "end": 6596.4, + "probability": 0.8334 + }, + { + "start": 6596.44, + "end": 6596.98, + "probability": 0.6862 + }, + { + "start": 6597.56, + "end": 6598.68, + "probability": 0.5013 + }, + { + "start": 6598.84, + "end": 6602.08, + "probability": 0.9927 + }, + { + "start": 6602.86, + "end": 6603.54, + "probability": 0.5638 + }, + { + "start": 6604.16, + "end": 6607.92, + "probability": 0.9795 + }, + { + "start": 6608.06, + "end": 6611.14, + "probability": 0.8241 + }, + { + "start": 6611.14, + "end": 6615.26, + "probability": 0.7885 + }, + { + "start": 6615.84, + "end": 6619.96, + "probability": 0.949 + }, + { + "start": 6620.48, + "end": 6623.62, + "probability": 0.9333 + }, + { + "start": 6623.82, + "end": 6625.36, + "probability": 0.6696 + }, + { + "start": 6625.6, + "end": 6629.16, + "probability": 0.7665 + }, + { + "start": 6629.36, + "end": 6630.68, + "probability": 0.5854 + }, + { + "start": 6631.6, + "end": 6632.78, + "probability": 0.9147 + }, + { + "start": 6633.2, + "end": 6635.94, + "probability": 0.64 + }, + { + "start": 6636.44, + "end": 6637.66, + "probability": 0.9261 + }, + { + "start": 6638.54, + "end": 6638.86, + "probability": 0.785 + }, + { + "start": 6639.56, + "end": 6641.02, + "probability": 0.8413 + }, + { + "start": 6646.08, + "end": 6649.82, + "probability": 0.7192 + }, + { + "start": 6650.34, + "end": 6650.76, + "probability": 0.8259 + }, + { + "start": 6651.46, + "end": 6655.7, + "probability": 0.9795 + }, + { + "start": 6656.76, + "end": 6658.16, + "probability": 0.9965 + }, + { + "start": 6658.36, + "end": 6659.14, + "probability": 0.916 + }, + { + "start": 6659.32, + "end": 6662.58, + "probability": 0.9929 + }, + { + "start": 6663.28, + "end": 6665.08, + "probability": 0.8503 + }, + { + "start": 6665.28, + "end": 6666.2, + "probability": 0.8413 + }, + { + "start": 6666.64, + "end": 6675.34, + "probability": 0.9254 + }, + { + "start": 6675.84, + "end": 6680.56, + "probability": 0.8315 + }, + { + "start": 6681.18, + "end": 6686.42, + "probability": 0.9704 + }, + { + "start": 6686.98, + "end": 6692.26, + "probability": 0.9291 + }, + { + "start": 6692.36, + "end": 6695.5, + "probability": 0.9714 + }, + { + "start": 6696.74, + "end": 6697.38, + "probability": 0.629 + }, + { + "start": 6697.78, + "end": 6699.08, + "probability": 0.5286 + }, + { + "start": 6699.16, + "end": 6701.5, + "probability": 0.9568 + }, + { + "start": 6701.98, + "end": 6703.77, + "probability": 0.9614 + }, + { + "start": 6704.36, + "end": 6705.86, + "probability": 0.9457 + }, + { + "start": 6706.32, + "end": 6707.74, + "probability": 0.9587 + }, + { + "start": 6710.2, + "end": 6712.8, + "probability": 0.9828 + }, + { + "start": 6713.47, + "end": 6715.76, + "probability": 0.5251 + }, + { + "start": 6715.88, + "end": 6717.34, + "probability": 0.8948 + }, + { + "start": 6717.44, + "end": 6720.32, + "probability": 0.5142 + }, + { + "start": 6720.32, + "end": 6722.84, + "probability": 0.9835 + }, + { + "start": 6722.98, + "end": 6724.85, + "probability": 0.321 + }, + { + "start": 6725.1, + "end": 6726.16, + "probability": 0.8032 + }, + { + "start": 6726.34, + "end": 6729.34, + "probability": 0.9622 + }, + { + "start": 6729.42, + "end": 6730.54, + "probability": 0.9921 + }, + { + "start": 6731.5, + "end": 6735.82, + "probability": 0.7394 + }, + { + "start": 6735.86, + "end": 6736.46, + "probability": 0.7404 + }, + { + "start": 6736.54, + "end": 6740.84, + "probability": 0.7391 + }, + { + "start": 6740.92, + "end": 6741.7, + "probability": 0.7396 + }, + { + "start": 6741.86, + "end": 6743.42, + "probability": 0.9584 + }, + { + "start": 6743.7, + "end": 6747.1, + "probability": 0.8297 + }, + { + "start": 6747.26, + "end": 6750.32, + "probability": 0.9432 + }, + { + "start": 6750.74, + "end": 6751.12, + "probability": 0.4907 + }, + { + "start": 6751.18, + "end": 6752.42, + "probability": 0.5033 + }, + { + "start": 6752.56, + "end": 6753.14, + "probability": 0.9303 + }, + { + "start": 6753.24, + "end": 6754.74, + "probability": 0.9431 + }, + { + "start": 6755.76, + "end": 6757.0, + "probability": 0.9428 + }, + { + "start": 6757.38, + "end": 6757.74, + "probability": 0.4711 + }, + { + "start": 6758.06, + "end": 6758.76, + "probability": 0.9663 + }, + { + "start": 6758.82, + "end": 6759.9, + "probability": 0.976 + }, + { + "start": 6760.94, + "end": 6761.4, + "probability": 0.9587 + }, + { + "start": 6761.48, + "end": 6766.14, + "probability": 0.9109 + }, + { + "start": 6766.5, + "end": 6770.28, + "probability": 0.9463 + }, + { + "start": 6770.44, + "end": 6773.2, + "probability": 0.95 + }, + { + "start": 6773.54, + "end": 6776.28, + "probability": 0.9729 + }, + { + "start": 6777.9, + "end": 6780.82, + "probability": 0.9165 + }, + { + "start": 6780.94, + "end": 6781.98, + "probability": 0.7667 + }, + { + "start": 6782.0, + "end": 6783.16, + "probability": 0.8489 + }, + { + "start": 6784.92, + "end": 6787.46, + "probability": 0.7746 + }, + { + "start": 6789.62, + "end": 6795.86, + "probability": 0.6198 + }, + { + "start": 6796.52, + "end": 6798.32, + "probability": 0.9375 + }, + { + "start": 6798.62, + "end": 6802.2, + "probability": 0.99 + }, + { + "start": 6802.2, + "end": 6804.76, + "probability": 1.0 + }, + { + "start": 6804.96, + "end": 6806.68, + "probability": 0.9958 + }, + { + "start": 6806.9, + "end": 6807.4, + "probability": 0.9328 + }, + { + "start": 6807.98, + "end": 6809.48, + "probability": 0.8847 + }, + { + "start": 6809.68, + "end": 6811.01, + "probability": 0.9976 + }, + { + "start": 6811.7, + "end": 6815.1, + "probability": 0.9791 + }, + { + "start": 6815.34, + "end": 6815.76, + "probability": 0.359 + }, + { + "start": 6816.2, + "end": 6817.7, + "probability": 0.4993 + }, + { + "start": 6817.72, + "end": 6818.06, + "probability": 0.7588 + }, + { + "start": 6818.24, + "end": 6820.1, + "probability": 0.8806 + }, + { + "start": 6820.16, + "end": 6822.34, + "probability": 0.9173 + }, + { + "start": 6822.38, + "end": 6828.38, + "probability": 0.8113 + }, + { + "start": 6828.4, + "end": 6829.02, + "probability": 0.6873 + }, + { + "start": 6829.06, + "end": 6829.72, + "probability": 0.8058 + }, + { + "start": 6829.9, + "end": 6830.36, + "probability": 0.8728 + }, + { + "start": 6830.4, + "end": 6831.2, + "probability": 0.8649 + }, + { + "start": 6831.32, + "end": 6834.46, + "probability": 0.9695 + }, + { + "start": 6835.28, + "end": 6837.5, + "probability": 0.9213 + }, + { + "start": 6837.64, + "end": 6839.09, + "probability": 0.9919 + }, + { + "start": 6839.1, + "end": 6841.54, + "probability": 0.7477 + }, + { + "start": 6841.76, + "end": 6843.66, + "probability": 0.9773 + }, + { + "start": 6843.84, + "end": 6846.86, + "probability": 0.7002 + }, + { + "start": 6847.14, + "end": 6847.3, + "probability": 0.5703 + }, + { + "start": 6847.4, + "end": 6850.82, + "probability": 0.9841 + }, + { + "start": 6850.96, + "end": 6852.34, + "probability": 0.7528 + }, + { + "start": 6852.62, + "end": 6854.76, + "probability": 0.9836 + }, + { + "start": 6855.24, + "end": 6855.94, + "probability": 0.9073 + }, + { + "start": 6856.02, + "end": 6858.5, + "probability": 0.9766 + }, + { + "start": 6859.06, + "end": 6859.86, + "probability": 0.9242 + }, + { + "start": 6860.38, + "end": 6861.14, + "probability": 0.9585 + }, + { + "start": 6861.2, + "end": 6862.06, + "probability": 0.9155 + }, + { + "start": 6862.34, + "end": 6865.3, + "probability": 0.8728 + }, + { + "start": 6865.36, + "end": 6866.32, + "probability": 0.6634 + }, + { + "start": 6866.5, + "end": 6868.8, + "probability": 0.9841 + }, + { + "start": 6868.84, + "end": 6869.68, + "probability": 0.8677 + }, + { + "start": 6870.16, + "end": 6871.94, + "probability": 0.9881 + }, + { + "start": 6872.5, + "end": 6873.52, + "probability": 0.6305 + }, + { + "start": 6873.92, + "end": 6874.77, + "probability": 0.9077 + }, + { + "start": 6876.18, + "end": 6876.7, + "probability": 0.7837 + }, + { + "start": 6877.42, + "end": 6878.84, + "probability": 0.8335 + }, + { + "start": 6881.0, + "end": 6883.4, + "probability": 0.6685 + }, + { + "start": 6883.4, + "end": 6886.74, + "probability": 0.9753 + }, + { + "start": 6887.38, + "end": 6888.26, + "probability": 0.3669 + }, + { + "start": 6888.32, + "end": 6892.96, + "probability": 0.7462 + }, + { + "start": 6893.05, + "end": 6896.8, + "probability": 0.7022 + }, + { + "start": 6897.14, + "end": 6898.74, + "probability": 0.8494 + }, + { + "start": 6900.52, + "end": 6901.72, + "probability": 0.859 + }, + { + "start": 6902.76, + "end": 6903.26, + "probability": 0.886 + }, + { + "start": 6903.9, + "end": 6908.04, + "probability": 0.9614 + }, + { + "start": 6908.76, + "end": 6909.56, + "probability": 0.5371 + }, + { + "start": 6909.58, + "end": 6910.7, + "probability": 0.8486 + }, + { + "start": 6911.14, + "end": 6911.42, + "probability": 0.4923 + }, + { + "start": 6911.88, + "end": 6913.0, + "probability": 0.7944 + }, + { + "start": 6914.36, + "end": 6914.94, + "probability": 0.9242 + }, + { + "start": 6928.68, + "end": 6929.46, + "probability": 0.6504 + }, + { + "start": 6929.74, + "end": 6930.8, + "probability": 0.75 + }, + { + "start": 6930.96, + "end": 6931.74, + "probability": 0.7133 + }, + { + "start": 6931.96, + "end": 6932.7, + "probability": 0.6977 + }, + { + "start": 6932.8, + "end": 6933.14, + "probability": 0.2634 + }, + { + "start": 6933.28, + "end": 6933.46, + "probability": 0.8965 + }, + { + "start": 6933.54, + "end": 6935.02, + "probability": 0.8176 + }, + { + "start": 6935.28, + "end": 6937.14, + "probability": 0.9847 + }, + { + "start": 6938.44, + "end": 6940.24, + "probability": 0.6022 + }, + { + "start": 6942.07, + "end": 6946.04, + "probability": 0.9052 + }, + { + "start": 6948.2, + "end": 6952.5, + "probability": 0.4651 + }, + { + "start": 6953.04, + "end": 6955.74, + "probability": 0.9411 + }, + { + "start": 6955.84, + "end": 6957.52, + "probability": 0.8464 + }, + { + "start": 6958.4, + "end": 6958.94, + "probability": 0.8137 + }, + { + "start": 6959.04, + "end": 6960.08, + "probability": 0.9515 + }, + { + "start": 6960.18, + "end": 6961.32, + "probability": 0.6718 + }, + { + "start": 6961.42, + "end": 6962.22, + "probability": 0.9795 + }, + { + "start": 6962.34, + "end": 6964.26, + "probability": 0.8189 + }, + { + "start": 6964.78, + "end": 6967.06, + "probability": 0.8732 + }, + { + "start": 6967.06, + "end": 6969.86, + "probability": 0.7718 + }, + { + "start": 6970.28, + "end": 6974.12, + "probability": 0.9856 + }, + { + "start": 6974.56, + "end": 6977.98, + "probability": 0.9904 + }, + { + "start": 6978.48, + "end": 6980.28, + "probability": 0.9922 + }, + { + "start": 6980.64, + "end": 6981.14, + "probability": 0.9213 + }, + { + "start": 6982.02, + "end": 6982.7, + "probability": 0.9542 + }, + { + "start": 6983.46, + "end": 6988.24, + "probability": 0.9149 + }, + { + "start": 6989.92, + "end": 6991.0, + "probability": 0.9197 + }, + { + "start": 6991.08, + "end": 6992.86, + "probability": 0.9459 + }, + { + "start": 6992.92, + "end": 6993.62, + "probability": 0.7157 + }, + { + "start": 6994.8, + "end": 6996.02, + "probability": 0.9458 + }, + { + "start": 6996.66, + "end": 6996.8, + "probability": 0.0479 + }, + { + "start": 6996.8, + "end": 6999.68, + "probability": 0.9726 + }, + { + "start": 7000.34, + "end": 7000.98, + "probability": 0.9513 + }, + { + "start": 7002.32, + "end": 7003.08, + "probability": 0.3267 + }, + { + "start": 7003.08, + "end": 7003.26, + "probability": 0.424 + }, + { + "start": 7003.3, + "end": 7005.08, + "probability": 0.8735 + }, + { + "start": 7005.24, + "end": 7007.28, + "probability": 0.7636 + }, + { + "start": 7008.7, + "end": 7012.3, + "probability": 0.9419 + }, + { + "start": 7013.36, + "end": 7019.08, + "probability": 0.9655 + }, + { + "start": 7019.16, + "end": 7022.46, + "probability": 0.9958 + }, + { + "start": 7022.96, + "end": 7023.22, + "probability": 0.6821 + }, + { + "start": 7023.64, + "end": 7023.82, + "probability": 0.2044 + }, + { + "start": 7024.24, + "end": 7027.14, + "probability": 0.8288 + }, + { + "start": 7027.72, + "end": 7029.2, + "probability": 0.9845 + }, + { + "start": 7029.58, + "end": 7030.96, + "probability": 0.9846 + }, + { + "start": 7031.3, + "end": 7032.73, + "probability": 0.988 + }, + { + "start": 7033.12, + "end": 7034.3, + "probability": 0.9746 + }, + { + "start": 7035.3, + "end": 7036.24, + "probability": 0.9907 + }, + { + "start": 7036.9, + "end": 7037.98, + "probability": 0.9927 + }, + { + "start": 7042.22, + "end": 7043.74, + "probability": 0.872 + }, + { + "start": 7046.16, + "end": 7052.08, + "probability": 0.6911 + }, + { + "start": 7052.98, + "end": 7056.14, + "probability": 0.9906 + }, + { + "start": 7056.26, + "end": 7056.82, + "probability": 0.8066 + }, + { + "start": 7057.62, + "end": 7058.72, + "probability": 0.8424 + }, + { + "start": 7059.18, + "end": 7061.54, + "probability": 0.7642 + }, + { + "start": 7061.54, + "end": 7062.26, + "probability": 0.8337 + }, + { + "start": 7062.64, + "end": 7065.6, + "probability": 0.9596 + }, + { + "start": 7066.28, + "end": 7068.9, + "probability": 0.8804 + }, + { + "start": 7069.7, + "end": 7073.9, + "probability": 0.9384 + }, + { + "start": 7074.32, + "end": 7077.52, + "probability": 0.9758 + }, + { + "start": 7078.08, + "end": 7078.96, + "probability": 0.7819 + }, + { + "start": 7079.1, + "end": 7079.64, + "probability": 0.8751 + }, + { + "start": 7079.7, + "end": 7080.89, + "probability": 0.9927 + }, + { + "start": 7081.48, + "end": 7082.18, + "probability": 0.9234 + }, + { + "start": 7082.26, + "end": 7082.66, + "probability": 0.9585 + }, + { + "start": 7083.3, + "end": 7085.78, + "probability": 0.8477 + }, + { + "start": 7086.12, + "end": 7086.6, + "probability": 0.8564 + }, + { + "start": 7086.92, + "end": 7087.66, + "probability": 0.9014 + }, + { + "start": 7087.76, + "end": 7088.83, + "probability": 0.9785 + }, + { + "start": 7088.96, + "end": 7089.68, + "probability": 0.8525 + }, + { + "start": 7090.26, + "end": 7090.68, + "probability": 0.8789 + }, + { + "start": 7090.82, + "end": 7091.76, + "probability": 0.9132 + }, + { + "start": 7094.58, + "end": 7096.74, + "probability": 0.8893 + }, + { + "start": 7096.9, + "end": 7097.14, + "probability": 0.5486 + }, + { + "start": 7097.24, + "end": 7101.34, + "probability": 0.7927 + }, + { + "start": 7102.08, + "end": 7103.88, + "probability": 0.932 + }, + { + "start": 7104.34, + "end": 7105.56, + "probability": 0.946 + }, + { + "start": 7105.64, + "end": 7107.46, + "probability": 0.8205 + }, + { + "start": 7109.96, + "end": 7112.88, + "probability": 0.876 + }, + { + "start": 7113.42, + "end": 7118.1, + "probability": 0.998 + }, + { + "start": 7119.26, + "end": 7122.08, + "probability": 0.7429 + }, + { + "start": 7122.82, + "end": 7125.56, + "probability": 0.9135 + }, + { + "start": 7126.14, + "end": 7126.84, + "probability": 0.9243 + }, + { + "start": 7128.36, + "end": 7129.52, + "probability": 0.8348 + }, + { + "start": 7129.92, + "end": 7130.9, + "probability": 0.8747 + }, + { + "start": 7131.4, + "end": 7133.48, + "probability": 0.7261 + }, + { + "start": 7135.14, + "end": 7137.18, + "probability": 0.7695 + }, + { + "start": 7137.18, + "end": 7139.34, + "probability": 0.9955 + }, + { + "start": 7139.76, + "end": 7141.84, + "probability": 0.9114 + }, + { + "start": 7143.78, + "end": 7144.68, + "probability": 0.9858 + }, + { + "start": 7146.46, + "end": 7147.25, + "probability": 0.6958 + }, + { + "start": 7148.58, + "end": 7149.46, + "probability": 0.8738 + }, + { + "start": 7149.58, + "end": 7150.32, + "probability": 0.9301 + }, + { + "start": 7150.6, + "end": 7151.9, + "probability": 0.9897 + }, + { + "start": 7152.14, + "end": 7152.26, + "probability": 0.6498 + }, + { + "start": 7152.6, + "end": 7153.64, + "probability": 0.793 + }, + { + "start": 7154.06, + "end": 7156.32, + "probability": 0.894 + }, + { + "start": 7157.14, + "end": 7159.06, + "probability": 0.983 + }, + { + "start": 7159.46, + "end": 7160.48, + "probability": 0.9795 + }, + { + "start": 7161.12, + "end": 7163.78, + "probability": 0.9653 + }, + { + "start": 7163.98, + "end": 7164.59, + "probability": 0.7123 + }, + { + "start": 7165.12, + "end": 7166.71, + "probability": 0.7476 + }, + { + "start": 7166.9, + "end": 7168.02, + "probability": 0.8348 + }, + { + "start": 7169.04, + "end": 7169.88, + "probability": 0.7993 + }, + { + "start": 7169.96, + "end": 7171.31, + "probability": 0.9614 + }, + { + "start": 7171.88, + "end": 7175.78, + "probability": 0.9115 + }, + { + "start": 7176.08, + "end": 7178.0, + "probability": 0.9803 + }, + { + "start": 7178.2, + "end": 7178.86, + "probability": 0.8187 + }, + { + "start": 7178.96, + "end": 7184.48, + "probability": 0.9129 + }, + { + "start": 7186.48, + "end": 7191.38, + "probability": 0.7457 + }, + { + "start": 7191.94, + "end": 7195.5, + "probability": 0.8748 + }, + { + "start": 7195.52, + "end": 7197.14, + "probability": 0.8836 + }, + { + "start": 7197.2, + "end": 7198.1, + "probability": 0.9695 + }, + { + "start": 7198.74, + "end": 7199.28, + "probability": 0.9455 + }, + { + "start": 7199.4, + "end": 7202.44, + "probability": 0.7746 + }, + { + "start": 7202.72, + "end": 7204.42, + "probability": 0.9307 + }, + { + "start": 7205.32, + "end": 7207.32, + "probability": 0.9903 + }, + { + "start": 7207.6, + "end": 7208.96, + "probability": 0.9899 + }, + { + "start": 7210.08, + "end": 7214.72, + "probability": 0.9974 + }, + { + "start": 7215.24, + "end": 7216.7, + "probability": 0.999 + }, + { + "start": 7217.34, + "end": 7221.72, + "probability": 0.983 + }, + { + "start": 7221.84, + "end": 7222.58, + "probability": 0.9506 + }, + { + "start": 7223.48, + "end": 7225.38, + "probability": 0.8097 + }, + { + "start": 7226.18, + "end": 7228.84, + "probability": 0.7964 + }, + { + "start": 7229.38, + "end": 7231.14, + "probability": 0.9164 + }, + { + "start": 7231.24, + "end": 7232.26, + "probability": 0.9487 + }, + { + "start": 7232.28, + "end": 7233.88, + "probability": 0.9888 + }, + { + "start": 7234.52, + "end": 7234.86, + "probability": 0.8469 + }, + { + "start": 7234.96, + "end": 7236.26, + "probability": 0.9188 + }, + { + "start": 7236.48, + "end": 7237.22, + "probability": 0.8885 + }, + { + "start": 7237.7, + "end": 7238.2, + "probability": 0.3728 + }, + { + "start": 7238.76, + "end": 7241.54, + "probability": 0.9775 + }, + { + "start": 7241.96, + "end": 7243.7, + "probability": 0.8737 + }, + { + "start": 7244.3, + "end": 7247.14, + "probability": 0.8448 + }, + { + "start": 7248.56, + "end": 7249.5, + "probability": 0.9829 + }, + { + "start": 7250.54, + "end": 7253.5, + "probability": 0.9171 + }, + { + "start": 7253.98, + "end": 7256.96, + "probability": 0.9969 + }, + { + "start": 7257.58, + "end": 7260.96, + "probability": 0.9257 + }, + { + "start": 7261.24, + "end": 7263.34, + "probability": 0.9106 + }, + { + "start": 7263.64, + "end": 7265.14, + "probability": 0.7854 + }, + { + "start": 7265.26, + "end": 7267.82, + "probability": 0.8596 + }, + { + "start": 7268.84, + "end": 7271.68, + "probability": 0.7937 + }, + { + "start": 7289.82, + "end": 7292.24, + "probability": 0.6104 + }, + { + "start": 7293.38, + "end": 7297.92, + "probability": 0.8957 + }, + { + "start": 7299.88, + "end": 7303.14, + "probability": 0.806 + }, + { + "start": 7305.1, + "end": 7306.62, + "probability": 0.9752 + }, + { + "start": 7307.34, + "end": 7308.12, + "probability": 0.8478 + }, + { + "start": 7308.92, + "end": 7310.62, + "probability": 0.8917 + }, + { + "start": 7312.12, + "end": 7318.94, + "probability": 0.7173 + }, + { + "start": 7319.72, + "end": 7320.28, + "probability": 0.7531 + }, + { + "start": 7321.08, + "end": 7324.26, + "probability": 0.9326 + }, + { + "start": 7325.24, + "end": 7330.24, + "probability": 0.9373 + }, + { + "start": 7330.54, + "end": 7332.4, + "probability": 0.9104 + }, + { + "start": 7333.54, + "end": 7335.32, + "probability": 0.6349 + }, + { + "start": 7336.52, + "end": 7342.22, + "probability": 0.8552 + }, + { + "start": 7343.06, + "end": 7348.08, + "probability": 0.9396 + }, + { + "start": 7348.3, + "end": 7349.2, + "probability": 0.4071 + }, + { + "start": 7350.7, + "end": 7356.1, + "probability": 0.9873 + }, + { + "start": 7357.72, + "end": 7362.16, + "probability": 0.8291 + }, + { + "start": 7362.18, + "end": 7366.44, + "probability": 0.894 + }, + { + "start": 7366.86, + "end": 7370.54, + "probability": 0.7424 + }, + { + "start": 7370.54, + "end": 7373.54, + "probability": 0.7321 + }, + { + "start": 7374.16, + "end": 7377.94, + "probability": 0.9775 + }, + { + "start": 7377.94, + "end": 7382.34, + "probability": 0.988 + }, + { + "start": 7383.48, + "end": 7386.8, + "probability": 0.9573 + }, + { + "start": 7387.82, + "end": 7391.26, + "probability": 0.9551 + }, + { + "start": 7392.4, + "end": 7395.1, + "probability": 0.8611 + }, + { + "start": 7395.84, + "end": 7397.28, + "probability": 0.3345 + }, + { + "start": 7398.68, + "end": 7399.98, + "probability": 0.7599 + }, + { + "start": 7400.0, + "end": 7404.46, + "probability": 0.9843 + }, + { + "start": 7405.8, + "end": 7411.42, + "probability": 0.8304 + }, + { + "start": 7412.18, + "end": 7415.7, + "probability": 0.9898 + }, + { + "start": 7415.72, + "end": 7416.66, + "probability": 0.7377 + }, + { + "start": 7417.0, + "end": 7417.8, + "probability": 0.5269 + }, + { + "start": 7419.04, + "end": 7420.04, + "probability": 0.811 + }, + { + "start": 7420.28, + "end": 7423.2, + "probability": 0.9328 + }, + { + "start": 7423.22, + "end": 7425.6, + "probability": 0.6329 + }, + { + "start": 7425.82, + "end": 7426.54, + "probability": 0.7716 + }, + { + "start": 7427.44, + "end": 7429.68, + "probability": 0.7686 + }, + { + "start": 7430.8, + "end": 7432.96, + "probability": 0.7563 + }, + { + "start": 7433.04, + "end": 7435.82, + "probability": 0.9865 + }, + { + "start": 7436.36, + "end": 7436.84, + "probability": 0.4973 + }, + { + "start": 7437.52, + "end": 7442.74, + "probability": 0.9971 + }, + { + "start": 7443.7, + "end": 7449.07, + "probability": 0.9222 + }, + { + "start": 7449.98, + "end": 7451.54, + "probability": 0.7739 + }, + { + "start": 7451.64, + "end": 7452.3, + "probability": 0.8816 + }, + { + "start": 7452.42, + "end": 7457.06, + "probability": 0.962 + }, + { + "start": 7457.78, + "end": 7459.12, + "probability": 0.7652 + }, + { + "start": 7460.04, + "end": 7460.66, + "probability": 0.5684 + }, + { + "start": 7460.8, + "end": 7464.46, + "probability": 0.901 + }, + { + "start": 7465.36, + "end": 7465.64, + "probability": 0.8191 + }, + { + "start": 7465.7, + "end": 7468.78, + "probability": 0.9331 + }, + { + "start": 7468.78, + "end": 7472.94, + "probability": 0.9731 + }, + { + "start": 7474.2, + "end": 7475.84, + "probability": 0.8103 + }, + { + "start": 7475.92, + "end": 7479.48, + "probability": 0.9293 + }, + { + "start": 7479.68, + "end": 7483.24, + "probability": 0.9932 + }, + { + "start": 7484.32, + "end": 7485.5, + "probability": 0.5694 + }, + { + "start": 7486.2, + "end": 7487.66, + "probability": 0.992 + }, + { + "start": 7489.0, + "end": 7489.22, + "probability": 0.1304 + }, + { + "start": 7492.16, + "end": 7495.08, + "probability": 0.7582 + }, + { + "start": 7495.12, + "end": 7498.32, + "probability": 0.661 + }, + { + "start": 7499.12, + "end": 7505.18, + "probability": 0.9646 + }, + { + "start": 7505.76, + "end": 7509.85, + "probability": 0.7528 + }, + { + "start": 7510.68, + "end": 7511.54, + "probability": 0.5633 + }, + { + "start": 7531.1, + "end": 7535.28, + "probability": 0.8216 + }, + { + "start": 7536.54, + "end": 7537.54, + "probability": 0.9446 + }, + { + "start": 7537.66, + "end": 7539.68, + "probability": 0.7923 + }, + { + "start": 7539.78, + "end": 7541.68, + "probability": 0.7609 + }, + { + "start": 7542.52, + "end": 7543.82, + "probability": 0.6472 + }, + { + "start": 7544.4, + "end": 7545.96, + "probability": 0.8572 + }, + { + "start": 7546.72, + "end": 7548.86, + "probability": 0.7832 + }, + { + "start": 7549.68, + "end": 7551.04, + "probability": 0.7673 + }, + { + "start": 7551.66, + "end": 7556.86, + "probability": 0.8993 + }, + { + "start": 7557.38, + "end": 7558.42, + "probability": 0.98 + }, + { + "start": 7559.14, + "end": 7559.9, + "probability": 0.7627 + }, + { + "start": 7560.42, + "end": 7562.94, + "probability": 0.9414 + }, + { + "start": 7563.02, + "end": 7564.06, + "probability": 0.8307 + }, + { + "start": 7566.14, + "end": 7569.52, + "probability": 0.947 + }, + { + "start": 7569.62, + "end": 7574.2, + "probability": 0.6309 + }, + { + "start": 7574.84, + "end": 7575.48, + "probability": 0.5137 + }, + { + "start": 7575.54, + "end": 7579.3, + "probability": 0.9072 + }, + { + "start": 7580.12, + "end": 7583.86, + "probability": 0.9894 + }, + { + "start": 7584.94, + "end": 7587.08, + "probability": 0.9878 + }, + { + "start": 7587.56, + "end": 7589.1, + "probability": 0.662 + }, + { + "start": 7589.68, + "end": 7592.86, + "probability": 0.9709 + }, + { + "start": 7593.74, + "end": 7598.0, + "probability": 0.9364 + }, + { + "start": 7599.18, + "end": 7603.6, + "probability": 0.9583 + }, + { + "start": 7603.78, + "end": 7604.1, + "probability": 0.5952 + }, + { + "start": 7604.92, + "end": 7612.06, + "probability": 0.9673 + }, + { + "start": 7612.6, + "end": 7615.42, + "probability": 0.6101 + }, + { + "start": 7616.12, + "end": 7619.78, + "probability": 0.8967 + }, + { + "start": 7620.78, + "end": 7623.9, + "probability": 0.7768 + }, + { + "start": 7623.98, + "end": 7624.6, + "probability": 0.9044 + }, + { + "start": 7624.96, + "end": 7625.78, + "probability": 0.8348 + }, + { + "start": 7625.9, + "end": 7626.84, + "probability": 0.0695 + }, + { + "start": 7627.52, + "end": 7630.4, + "probability": 0.7672 + }, + { + "start": 7630.52, + "end": 7631.4, + "probability": 0.5586 + }, + { + "start": 7632.26, + "end": 7635.86, + "probability": 0.8126 + }, + { + "start": 7636.38, + "end": 7640.66, + "probability": 0.968 + }, + { + "start": 7641.48, + "end": 7644.94, + "probability": 0.7881 + }, + { + "start": 7645.96, + "end": 7650.76, + "probability": 0.8483 + }, + { + "start": 7650.76, + "end": 7653.64, + "probability": 0.924 + }, + { + "start": 7654.24, + "end": 7657.48, + "probability": 0.5211 + }, + { + "start": 7658.1, + "end": 7664.22, + "probability": 0.976 + }, + { + "start": 7664.4, + "end": 7669.08, + "probability": 0.6414 + }, + { + "start": 7670.22, + "end": 7675.62, + "probability": 0.4811 + }, + { + "start": 7676.36, + "end": 7679.94, + "probability": 0.7933 + }, + { + "start": 7679.94, + "end": 7683.16, + "probability": 0.873 + }, + { + "start": 7684.26, + "end": 7689.02, + "probability": 0.9196 + }, + { + "start": 7689.12, + "end": 7694.12, + "probability": 0.9271 + }, + { + "start": 7694.78, + "end": 7698.48, + "probability": 0.9299 + }, + { + "start": 7699.62, + "end": 7704.54, + "probability": 0.9746 + }, + { + "start": 7705.18, + "end": 7706.81, + "probability": 0.5156 + }, + { + "start": 7707.84, + "end": 7712.38, + "probability": 0.7979 + }, + { + "start": 7713.02, + "end": 7714.1, + "probability": 0.7593 + }, + { + "start": 7714.32, + "end": 7717.88, + "probability": 0.6866 + }, + { + "start": 7718.7, + "end": 7720.3, + "probability": 0.7604 + }, + { + "start": 7720.92, + "end": 7722.82, + "probability": 0.629 + }, + { + "start": 7724.02, + "end": 7730.28, + "probability": 0.7335 + }, + { + "start": 7730.4, + "end": 7735.32, + "probability": 0.9375 + }, + { + "start": 7736.58, + "end": 7739.58, + "probability": 0.9673 + }, + { + "start": 7739.58, + "end": 7742.0, + "probability": 0.7269 + }, + { + "start": 7742.08, + "end": 7743.28, + "probability": 0.7623 + }, + { + "start": 7744.06, + "end": 7746.18, + "probability": 0.9927 + }, + { + "start": 7747.0, + "end": 7749.24, + "probability": 0.8975 + }, + { + "start": 7750.02, + "end": 7752.08, + "probability": 0.8172 + }, + { + "start": 7753.24, + "end": 7755.78, + "probability": 0.943 + }, + { + "start": 7756.04, + "end": 7756.6, + "probability": 0.4139 + }, + { + "start": 7756.62, + "end": 7757.46, + "probability": 0.8566 + }, + { + "start": 7757.72, + "end": 7758.7, + "probability": 0.7288 + }, + { + "start": 7759.64, + "end": 7764.7, + "probability": 0.8849 + }, + { + "start": 7765.46, + "end": 7768.8, + "probability": 0.9762 + }, + { + "start": 7769.5, + "end": 7769.6, + "probability": 0.3813 + }, + { + "start": 7769.72, + "end": 7770.66, + "probability": 0.6151 + }, + { + "start": 7771.32, + "end": 7773.08, + "probability": 0.9229 + }, + { + "start": 7773.62, + "end": 7775.18, + "probability": 0.8484 + }, + { + "start": 7775.89, + "end": 7777.98, + "probability": 0.7719 + }, + { + "start": 7778.16, + "end": 7778.95, + "probability": 0.9375 + }, + { + "start": 7779.0, + "end": 7779.4, + "probability": 0.8708 + }, + { + "start": 7779.76, + "end": 7782.74, + "probability": 0.9514 + }, + { + "start": 7783.58, + "end": 7783.58, + "probability": 0.3723 + }, + { + "start": 7784.28, + "end": 7789.86, + "probability": 0.9888 + }, + { + "start": 7790.24, + "end": 7793.46, + "probability": 0.8401 + }, + { + "start": 7793.56, + "end": 7794.18, + "probability": 0.5821 + }, + { + "start": 7794.66, + "end": 7795.36, + "probability": 0.5021 + }, + { + "start": 7795.4, + "end": 7796.61, + "probability": 0.9907 + }, + { + "start": 7797.34, + "end": 7798.68, + "probability": 0.0004 + }, + { + "start": 7798.8, + "end": 7798.8, + "probability": 0.2385 + }, + { + "start": 7798.8, + "end": 7801.17, + "probability": 0.6974 + }, + { + "start": 7801.52, + "end": 7802.9, + "probability": 0.8549 + }, + { + "start": 7802.98, + "end": 7809.04, + "probability": 0.8986 + }, + { + "start": 7809.36, + "end": 7810.0, + "probability": 0.4557 + }, + { + "start": 7810.12, + "end": 7810.82, + "probability": 0.2425 + }, + { + "start": 7810.92, + "end": 7811.26, + "probability": 0.2243 + }, + { + "start": 7811.26, + "end": 7813.39, + "probability": 0.7454 + }, + { + "start": 7814.22, + "end": 7817.4, + "probability": 0.9781 + }, + { + "start": 7817.62, + "end": 7819.56, + "probability": 0.6874 + }, + { + "start": 7820.36, + "end": 7823.42, + "probability": 0.8176 + }, + { + "start": 7846.24, + "end": 7851.1, + "probability": 0.4192 + }, + { + "start": 7851.1, + "end": 7855.54, + "probability": 0.0245 + }, + { + "start": 7855.54, + "end": 7856.48, + "probability": 0.0289 + }, + { + "start": 7856.48, + "end": 7856.48, + "probability": 0.0833 + }, + { + "start": 7856.56, + "end": 7856.76, + "probability": 0.6845 + }, + { + "start": 7856.78, + "end": 7856.86, + "probability": 0.9231 + }, + { + "start": 7857.08, + "end": 7857.1, + "probability": 0.0307 + }, + { + "start": 7857.1, + "end": 7857.1, + "probability": 0.0422 + }, + { + "start": 7857.1, + "end": 7857.92, + "probability": 0.0736 + }, + { + "start": 7857.92, + "end": 7860.34, + "probability": 0.9192 + }, + { + "start": 7860.52, + "end": 7862.2, + "probability": 0.557 + }, + { + "start": 7862.78, + "end": 7864.54, + "probability": 0.794 + }, + { + "start": 7865.26, + "end": 7868.54, + "probability": 0.9917 + }, + { + "start": 7868.54, + "end": 7870.7, + "probability": 0.7046 + }, + { + "start": 7871.72, + "end": 7872.1, + "probability": 0.3461 + }, + { + "start": 7875.52, + "end": 7876.92, + "probability": 0.0774 + }, + { + "start": 7896.08, + "end": 7899.22, + "probability": 0.511 + }, + { + "start": 7899.84, + "end": 7901.12, + "probability": 0.9759 + }, + { + "start": 7902.16, + "end": 7905.92, + "probability": 0.873 + }, + { + "start": 7907.08, + "end": 7907.62, + "probability": 0.8118 + }, + { + "start": 7909.9, + "end": 7912.82, + "probability": 0.9926 + }, + { + "start": 7913.84, + "end": 7915.66, + "probability": 0.9525 + }, + { + "start": 7915.98, + "end": 7917.08, + "probability": 0.5462 + }, + { + "start": 7917.14, + "end": 7918.24, + "probability": 0.7887 + }, + { + "start": 7918.44, + "end": 7919.35, + "probability": 0.9566 + }, + { + "start": 7920.64, + "end": 7923.3, + "probability": 0.8363 + }, + { + "start": 7923.7, + "end": 7925.08, + "probability": 0.9009 + }, + { + "start": 7926.34, + "end": 7928.78, + "probability": 0.7551 + }, + { + "start": 7929.66, + "end": 7930.74, + "probability": 0.9275 + }, + { + "start": 7933.92, + "end": 7937.64, + "probability": 0.6417 + }, + { + "start": 7937.74, + "end": 7938.18, + "probability": 0.3648 + }, + { + "start": 7938.68, + "end": 7939.1, + "probability": 0.6592 + }, + { + "start": 7939.12, + "end": 7943.48, + "probability": 0.7812 + }, + { + "start": 7943.62, + "end": 7944.66, + "probability": 0.8128 + }, + { + "start": 7945.32, + "end": 7946.28, + "probability": 0.7629 + }, + { + "start": 7947.38, + "end": 7950.12, + "probability": 0.8603 + }, + { + "start": 7951.04, + "end": 7952.42, + "probability": 0.5624 + }, + { + "start": 7952.56, + "end": 7954.26, + "probability": 0.6606 + }, + { + "start": 7955.36, + "end": 7957.58, + "probability": 0.8456 + }, + { + "start": 7958.46, + "end": 7959.08, + "probability": 0.8471 + }, + { + "start": 7959.14, + "end": 7959.52, + "probability": 0.8112 + }, + { + "start": 7959.56, + "end": 7965.56, + "probability": 0.9334 + }, + { + "start": 7966.52, + "end": 7967.74, + "probability": 0.9109 + }, + { + "start": 7968.92, + "end": 7969.42, + "probability": 0.5529 + }, + { + "start": 7969.76, + "end": 7971.76, + "probability": 0.7916 + }, + { + "start": 7971.8, + "end": 7974.56, + "probability": 0.9971 + }, + { + "start": 7975.72, + "end": 7980.12, + "probability": 0.9327 + }, + { + "start": 7980.26, + "end": 7981.92, + "probability": 0.9287 + }, + { + "start": 7982.04, + "end": 7982.84, + "probability": 0.9541 + }, + { + "start": 7982.86, + "end": 7985.38, + "probability": 0.9926 + }, + { + "start": 7986.64, + "end": 7988.08, + "probability": 0.869 + }, + { + "start": 7988.26, + "end": 7992.7, + "probability": 0.9681 + }, + { + "start": 7993.48, + "end": 8002.95, + "probability": 0.8892 + }, + { + "start": 8004.4, + "end": 8005.7, + "probability": 0.9941 + }, + { + "start": 8006.56, + "end": 8009.4, + "probability": 0.9709 + }, + { + "start": 8010.22, + "end": 8016.66, + "probability": 0.9529 + }, + { + "start": 8017.3, + "end": 8018.84, + "probability": 0.9395 + }, + { + "start": 8019.18, + "end": 8025.0, + "probability": 0.9022 + }, + { + "start": 8025.0, + "end": 8028.5, + "probability": 0.9064 + }, + { + "start": 8029.32, + "end": 8034.28, + "probability": 0.9843 + }, + { + "start": 8034.78, + "end": 8037.6, + "probability": 0.9932 + }, + { + "start": 8038.18, + "end": 8041.12, + "probability": 0.8812 + }, + { + "start": 8042.18, + "end": 8047.66, + "probability": 0.9927 + }, + { + "start": 8048.36, + "end": 8051.3, + "probability": 0.9971 + }, + { + "start": 8052.42, + "end": 8054.72, + "probability": 0.9619 + }, + { + "start": 8055.18, + "end": 8057.04, + "probability": 0.6243 + }, + { + "start": 8057.3, + "end": 8058.4, + "probability": 0.939 + }, + { + "start": 8059.1, + "end": 8059.98, + "probability": 0.9289 + }, + { + "start": 8060.5, + "end": 8063.58, + "probability": 0.952 + }, + { + "start": 8063.76, + "end": 8065.32, + "probability": 0.829 + }, + { + "start": 8065.92, + "end": 8066.74, + "probability": 0.9462 + }, + { + "start": 8067.22, + "end": 8068.24, + "probability": 0.9771 + }, + { + "start": 8068.28, + "end": 8068.82, + "probability": 0.9002 + }, + { + "start": 8069.18, + "end": 8069.8, + "probability": 0.8326 + }, + { + "start": 8069.84, + "end": 8071.62, + "probability": 0.9902 + }, + { + "start": 8071.96, + "end": 8073.4, + "probability": 0.9772 + }, + { + "start": 8073.88, + "end": 8074.6, + "probability": 0.7154 + }, + { + "start": 8075.1, + "end": 8078.4, + "probability": 0.4964 + }, + { + "start": 8079.26, + "end": 8079.68, + "probability": 0.5112 + }, + { + "start": 8079.96, + "end": 8081.79, + "probability": 0.755 + }, + { + "start": 8082.98, + "end": 8086.4, + "probability": 0.9599 + }, + { + "start": 8086.88, + "end": 8087.76, + "probability": 0.5294 + }, + { + "start": 8088.02, + "end": 8090.94, + "probability": 0.8737 + }, + { + "start": 8091.96, + "end": 8093.51, + "probability": 0.856 + }, + { + "start": 8094.68, + "end": 8095.42, + "probability": 0.8064 + }, + { + "start": 8096.32, + "end": 8098.02, + "probability": 0.8374 + }, + { + "start": 8099.02, + "end": 8101.52, + "probability": 0.9251 + }, + { + "start": 8102.1, + "end": 8102.44, + "probability": 0.7846 + }, + { + "start": 8103.84, + "end": 8104.6, + "probability": 0.5376 + }, + { + "start": 8105.24, + "end": 8105.78, + "probability": 0.8453 + }, + { + "start": 8106.72, + "end": 8107.68, + "probability": 0.7101 + }, + { + "start": 8109.3, + "end": 8110.0, + "probability": 0.7493 + }, + { + "start": 8110.68, + "end": 8111.6, + "probability": 0.3961 + }, + { + "start": 8111.6, + "end": 8111.6, + "probability": 0.4577 + }, + { + "start": 8111.68, + "end": 8112.38, + "probability": 0.7903 + }, + { + "start": 8112.44, + "end": 8112.86, + "probability": 0.8407 + }, + { + "start": 8114.5, + "end": 8115.08, + "probability": 0.6102 + }, + { + "start": 8115.66, + "end": 8117.08, + "probability": 0.7461 + }, + { + "start": 8117.58, + "end": 8119.6, + "probability": 0.6948 + }, + { + "start": 8121.32, + "end": 8122.14, + "probability": 0.8979 + }, + { + "start": 8123.08, + "end": 8125.18, + "probability": 0.978 + }, + { + "start": 8125.18, + "end": 8127.48, + "probability": 0.9068 + }, + { + "start": 8127.66, + "end": 8133.04, + "probability": 0.7778 + }, + { + "start": 8133.74, + "end": 8135.8, + "probability": 0.5524 + }, + { + "start": 8136.1, + "end": 8136.64, + "probability": 0.7124 + }, + { + "start": 8150.94, + "end": 8151.6, + "probability": 0.0041 + }, + { + "start": 8151.6, + "end": 8153.28, + "probability": 0.333 + }, + { + "start": 8155.54, + "end": 8157.98, + "probability": 0.7535 + }, + { + "start": 8157.98, + "end": 8161.06, + "probability": 0.7979 + }, + { + "start": 8161.38, + "end": 8162.02, + "probability": 0.7784 + }, + { + "start": 8163.16, + "end": 8164.7, + "probability": 0.7863 + }, + { + "start": 8165.66, + "end": 8166.76, + "probability": 0.8263 + }, + { + "start": 8167.0, + "end": 8167.4, + "probability": 0.7504 + }, + { + "start": 8167.82, + "end": 8169.16, + "probability": 0.4809 + }, + { + "start": 8179.76, + "end": 8180.4, + "probability": 0.0431 + }, + { + "start": 8180.4, + "end": 8180.42, + "probability": 0.3487 + }, + { + "start": 8180.42, + "end": 8180.42, + "probability": 0.0899 + }, + { + "start": 8180.42, + "end": 8182.08, + "probability": 0.28 + }, + { + "start": 8182.18, + "end": 8186.06, + "probability": 0.8334 + }, + { + "start": 8186.82, + "end": 8188.5, + "probability": 0.5522 + }, + { + "start": 8189.04, + "end": 8190.14, + "probability": 0.9251 + }, + { + "start": 8190.2, + "end": 8194.0, + "probability": 0.9048 + }, + { + "start": 8194.74, + "end": 8200.36, + "probability": 0.9186 + }, + { + "start": 8200.96, + "end": 8204.32, + "probability": 0.8716 + }, + { + "start": 8204.6, + "end": 8205.36, + "probability": 0.5623 + }, + { + "start": 8205.66, + "end": 8206.18, + "probability": 0.5408 + }, + { + "start": 8206.8, + "end": 8206.98, + "probability": 0.5602 + }, + { + "start": 8206.98, + "end": 8207.74, + "probability": 0.5206 + }, + { + "start": 8207.74, + "end": 8207.74, + "probability": 0.3606 + }, + { + "start": 8208.26, + "end": 8209.46, + "probability": 0.6982 + }, + { + "start": 8210.5, + "end": 8212.48, + "probability": 0.6999 + }, + { + "start": 8213.56, + "end": 8214.96, + "probability": 0.9552 + }, + { + "start": 8215.08, + "end": 8215.7, + "probability": 0.6761 + }, + { + "start": 8216.14, + "end": 8216.86, + "probability": 0.3107 + }, + { + "start": 8216.9, + "end": 8220.3, + "probability": 0.8143 + }, + { + "start": 8220.4, + "end": 8221.5, + "probability": 0.8644 + }, + { + "start": 8222.06, + "end": 8222.88, + "probability": 0.938 + }, + { + "start": 8222.98, + "end": 8226.82, + "probability": 0.9709 + }, + { + "start": 8227.66, + "end": 8228.18, + "probability": 0.3749 + }, + { + "start": 8228.8, + "end": 8229.94, + "probability": 0.1204 + }, + { + "start": 8231.38, + "end": 8231.52, + "probability": 0.1669 + }, + { + "start": 8232.04, + "end": 8234.86, + "probability": 0.8152 + }, + { + "start": 8235.3, + "end": 8236.02, + "probability": 0.38 + }, + { + "start": 8237.1, + "end": 8237.34, + "probability": 0.7942 + }, + { + "start": 8237.5, + "end": 8240.84, + "probability": 0.6597 + }, + { + "start": 8241.14, + "end": 8242.18, + "probability": 0.4942 + }, + { + "start": 8242.24, + "end": 8243.27, + "probability": 0.9692 + }, + { + "start": 8244.44, + "end": 8246.02, + "probability": 0.8508 + }, + { + "start": 8246.34, + "end": 8250.36, + "probability": 0.8737 + }, + { + "start": 8250.66, + "end": 8252.88, + "probability": 0.8751 + }, + { + "start": 8253.46, + "end": 8256.78, + "probability": 0.9419 + }, + { + "start": 8257.56, + "end": 8257.9, + "probability": 0.3551 + }, + { + "start": 8257.9, + "end": 8258.18, + "probability": 0.8014 + }, + { + "start": 8258.44, + "end": 8259.7, + "probability": 0.6212 + }, + { + "start": 8259.82, + "end": 8261.9, + "probability": 0.9495 + }, + { + "start": 8262.48, + "end": 8264.56, + "probability": 0.725 + }, + { + "start": 8266.68, + "end": 8267.36, + "probability": 0.8377 + }, + { + "start": 8268.26, + "end": 8270.44, + "probability": 0.734 + }, + { + "start": 8271.36, + "end": 8273.04, + "probability": 0.981 + }, + { + "start": 8273.76, + "end": 8274.16, + "probability": 0.7722 + }, + { + "start": 8274.98, + "end": 8279.14, + "probability": 0.8203 + }, + { + "start": 8279.8, + "end": 8282.38, + "probability": 0.9814 + }, + { + "start": 8283.28, + "end": 8283.82, + "probability": 0.6838 + }, + { + "start": 8284.18, + "end": 8285.76, + "probability": 0.8048 + }, + { + "start": 8285.92, + "end": 8288.96, + "probability": 0.9974 + }, + { + "start": 8290.1, + "end": 8297.22, + "probability": 0.9926 + }, + { + "start": 8297.6, + "end": 8299.76, + "probability": 0.7788 + }, + { + "start": 8299.8, + "end": 8300.58, + "probability": 0.861 + }, + { + "start": 8300.8, + "end": 8305.49, + "probability": 0.8515 + }, + { + "start": 8306.72, + "end": 8311.96, + "probability": 0.9463 + }, + { + "start": 8312.34, + "end": 8312.68, + "probability": 0.6974 + }, + { + "start": 8312.94, + "end": 8313.87, + "probability": 0.6492 + }, + { + "start": 8314.18, + "end": 8314.42, + "probability": 0.4766 + }, + { + "start": 8314.46, + "end": 8315.38, + "probability": 0.8849 + }, + { + "start": 8315.82, + "end": 8318.7, + "probability": 0.9797 + }, + { + "start": 8318.86, + "end": 8319.62, + "probability": 0.6222 + }, + { + "start": 8319.76, + "end": 8320.84, + "probability": 0.8372 + }, + { + "start": 8324.26, + "end": 8324.75, + "probability": 0.0668 + }, + { + "start": 8325.4, + "end": 8326.4, + "probability": 0.2347 + }, + { + "start": 8327.12, + "end": 8329.89, + "probability": 0.3896 + }, + { + "start": 8330.3, + "end": 8330.8, + "probability": 0.6735 + }, + { + "start": 8330.9, + "end": 8334.06, + "probability": 0.8204 + }, + { + "start": 8335.32, + "end": 8335.32, + "probability": 0.0117 + }, + { + "start": 8335.32, + "end": 8335.32, + "probability": 0.2486 + }, + { + "start": 8335.32, + "end": 8335.98, + "probability": 0.6518 + }, + { + "start": 8335.98, + "end": 8336.3, + "probability": 0.537 + }, + { + "start": 8337.0, + "end": 8339.04, + "probability": 0.9182 + }, + { + "start": 8339.34, + "end": 8339.38, + "probability": 0.3564 + }, + { + "start": 8339.44, + "end": 8340.82, + "probability": 0.5334 + }, + { + "start": 8340.9, + "end": 8343.12, + "probability": 0.9595 + }, + { + "start": 8343.66, + "end": 8344.64, + "probability": 0.6497 + }, + { + "start": 8345.82, + "end": 8347.5, + "probability": 0.4193 + }, + { + "start": 8349.92, + "end": 8355.16, + "probability": 0.4785 + }, + { + "start": 8356.3, + "end": 8358.88, + "probability": 0.8311 + }, + { + "start": 8360.56, + "end": 8362.7, + "probability": 0.7178 + }, + { + "start": 8363.02, + "end": 8364.85, + "probability": 0.6211 + }, + { + "start": 8366.44, + "end": 8366.94, + "probability": 0.8701 + }, + { + "start": 8367.72, + "end": 8369.88, + "probability": 0.7715 + }, + { + "start": 8371.61, + "end": 8373.56, + "probability": 0.5146 + }, + { + "start": 8373.58, + "end": 8374.14, + "probability": 0.9283 + }, + { + "start": 8374.54, + "end": 8374.95, + "probability": 0.9599 + }, + { + "start": 8375.58, + "end": 8377.22, + "probability": 0.9196 + }, + { + "start": 8378.48, + "end": 8378.88, + "probability": 0.6466 + }, + { + "start": 8379.48, + "end": 8381.26, + "probability": 0.779 + }, + { + "start": 8381.98, + "end": 8384.44, + "probability": 0.7545 + }, + { + "start": 8385.4, + "end": 8388.72, + "probability": 0.9495 + }, + { + "start": 8389.58, + "end": 8390.0, + "probability": 0.4832 + }, + { + "start": 8390.6, + "end": 8392.52, + "probability": 0.9189 + }, + { + "start": 8393.98, + "end": 8396.7, + "probability": 0.9937 + }, + { + "start": 8397.42, + "end": 8400.28, + "probability": 0.6499 + }, + { + "start": 8401.1, + "end": 8402.7, + "probability": 0.9493 + }, + { + "start": 8403.56, + "end": 8405.07, + "probability": 0.9851 + }, + { + "start": 8405.28, + "end": 8406.1, + "probability": 0.9526 + }, + { + "start": 8406.34, + "end": 8409.58, + "probability": 0.9932 + }, + { + "start": 8410.2, + "end": 8413.6, + "probability": 0.612 + }, + { + "start": 8415.14, + "end": 8416.06, + "probability": 0.9932 + }, + { + "start": 8416.18, + "end": 8418.36, + "probability": 0.7597 + }, + { + "start": 8419.1, + "end": 8420.62, + "probability": 0.7627 + }, + { + "start": 8420.92, + "end": 8423.0, + "probability": 0.9989 + }, + { + "start": 8423.54, + "end": 8426.86, + "probability": 0.6942 + }, + { + "start": 8427.44, + "end": 8432.2, + "probability": 0.9822 + }, + { + "start": 8433.1, + "end": 8433.16, + "probability": 0.0116 + }, + { + "start": 8433.26, + "end": 8433.92, + "probability": 0.6969 + }, + { + "start": 8434.7, + "end": 8438.98, + "probability": 0.9969 + }, + { + "start": 8440.28, + "end": 8444.1, + "probability": 0.979 + }, + { + "start": 8444.32, + "end": 8445.52, + "probability": 0.9476 + }, + { + "start": 8445.96, + "end": 8449.17, + "probability": 0.8937 + }, + { + "start": 8450.06, + "end": 8453.06, + "probability": 0.8389 + }, + { + "start": 8453.16, + "end": 8453.44, + "probability": 0.6635 + }, + { + "start": 8453.5, + "end": 8454.44, + "probability": 0.6313 + }, + { + "start": 8454.6, + "end": 8456.32, + "probability": 0.9524 + }, + { + "start": 8458.62, + "end": 8459.94, + "probability": 0.8661 + }, + { + "start": 8460.0, + "end": 8465.62, + "probability": 0.9336 + }, + { + "start": 8465.7, + "end": 8466.54, + "probability": 0.8646 + }, + { + "start": 8466.72, + "end": 8467.3, + "probability": 0.58 + }, + { + "start": 8469.74, + "end": 8471.04, + "probability": 0.7318 + }, + { + "start": 8486.32, + "end": 8488.1, + "probability": 0.458 + }, + { + "start": 8489.94, + "end": 8490.6, + "probability": 0.0312 + }, + { + "start": 8493.06, + "end": 8498.26, + "probability": 0.0304 + }, + { + "start": 8498.28, + "end": 8499.4, + "probability": 0.0961 + }, + { + "start": 8500.0, + "end": 8500.56, + "probability": 0.1466 + }, + { + "start": 8503.86, + "end": 8505.62, + "probability": 0.0152 + }, + { + "start": 8506.35, + "end": 8506.42, + "probability": 0.1207 + }, + { + "start": 8507.38, + "end": 8509.24, + "probability": 0.0355 + }, + { + "start": 8516.4, + "end": 8516.88, + "probability": 0.0502 + }, + { + "start": 8517.06, + "end": 8518.24, + "probability": 0.0363 + }, + { + "start": 8519.48, + "end": 8519.79, + "probability": 0.0524 + }, + { + "start": 8520.06, + "end": 8520.06, + "probability": 0.0272 + }, + { + "start": 8520.06, + "end": 8520.24, + "probability": 0.1307 + }, + { + "start": 8525.1, + "end": 8527.68, + "probability": 0.1956 + }, + { + "start": 8527.84, + "end": 8528.56, + "probability": 0.3537 + }, + { + "start": 8531.32, + "end": 8532.1, + "probability": 0.6201 + }, + { + "start": 8532.2, + "end": 8533.3, + "probability": 0.8288 + }, + { + "start": 8533.46, + "end": 8537.74, + "probability": 0.9762 + }, + { + "start": 8538.46, + "end": 8542.68, + "probability": 0.995 + }, + { + "start": 8542.84, + "end": 8547.26, + "probability": 0.8319 + }, + { + "start": 8547.26, + "end": 8549.48, + "probability": 0.9983 + }, + { + "start": 8550.12, + "end": 8551.56, + "probability": 0.4215 + }, + { + "start": 8551.7, + "end": 8554.26, + "probability": 0.9858 + }, + { + "start": 8554.88, + "end": 8556.32, + "probability": 0.682 + }, + { + "start": 8557.3, + "end": 8560.94, + "probability": 0.9935 + }, + { + "start": 8561.08, + "end": 8563.64, + "probability": 0.9905 + }, + { + "start": 8563.64, + "end": 8566.0, + "probability": 0.9567 + }, + { + "start": 8566.58, + "end": 8568.52, + "probability": 0.924 + }, + { + "start": 8569.0, + "end": 8571.44, + "probability": 0.9849 + }, + { + "start": 8572.44, + "end": 8573.12, + "probability": 0.9326 + }, + { + "start": 8573.24, + "end": 8579.24, + "probability": 0.9852 + }, + { + "start": 8579.3, + "end": 8580.38, + "probability": 0.9653 + }, + { + "start": 8580.9, + "end": 8583.02, + "probability": 0.9633 + }, + { + "start": 8585.06, + "end": 8586.22, + "probability": 0.6662 + }, + { + "start": 8586.54, + "end": 8589.82, + "probability": 0.9521 + }, + { + "start": 8589.82, + "end": 8593.0, + "probability": 0.99 + }, + { + "start": 8594.32, + "end": 8599.28, + "probability": 0.9922 + }, + { + "start": 8600.04, + "end": 8603.2, + "probability": 0.8412 + }, + { + "start": 8603.32, + "end": 8605.12, + "probability": 0.7808 + }, + { + "start": 8605.68, + "end": 8609.24, + "probability": 0.9362 + }, + { + "start": 8609.38, + "end": 8610.54, + "probability": 0.9808 + }, + { + "start": 8612.02, + "end": 8615.16, + "probability": 0.9407 + }, + { + "start": 8615.74, + "end": 8618.16, + "probability": 0.8882 + }, + { + "start": 8618.28, + "end": 8621.06, + "probability": 0.8889 + }, + { + "start": 8622.04, + "end": 8624.35, + "probability": 0.9878 + }, + { + "start": 8624.86, + "end": 8626.46, + "probability": 0.6854 + }, + { + "start": 8627.78, + "end": 8629.62, + "probability": 0.9746 + }, + { + "start": 8633.62, + "end": 8633.62, + "probability": 0.0089 + }, + { + "start": 8633.62, + "end": 8635.44, + "probability": 0.6695 + }, + { + "start": 8635.48, + "end": 8636.22, + "probability": 0.373 + }, + { + "start": 8636.74, + "end": 8637.34, + "probability": 0.7604 + }, + { + "start": 8638.62, + "end": 8640.16, + "probability": 0.9578 + }, + { + "start": 8640.82, + "end": 8641.82, + "probability": 0.5549 + }, + { + "start": 8642.12, + "end": 8642.32, + "probability": 0.3625 + }, + { + "start": 8642.32, + "end": 8643.1, + "probability": 0.9571 + }, + { + "start": 8643.56, + "end": 8648.92, + "probability": 0.8893 + }, + { + "start": 8649.06, + "end": 8650.12, + "probability": 0.9747 + }, + { + "start": 8650.2, + "end": 8650.84, + "probability": 0.8294 + }, + { + "start": 8651.0, + "end": 8652.74, + "probability": 0.9078 + }, + { + "start": 8653.4, + "end": 8656.5, + "probability": 0.9834 + }, + { + "start": 8657.46, + "end": 8659.78, + "probability": 0.972 + }, + { + "start": 8660.62, + "end": 8662.5, + "probability": 0.9671 + }, + { + "start": 8662.66, + "end": 8665.74, + "probability": 0.9434 + }, + { + "start": 8665.9, + "end": 8669.12, + "probability": 0.9578 + }, + { + "start": 8669.12, + "end": 8672.14, + "probability": 0.995 + }, + { + "start": 8672.68, + "end": 8676.36, + "probability": 0.8542 + }, + { + "start": 8676.36, + "end": 8680.04, + "probability": 0.9921 + }, + { + "start": 8680.24, + "end": 8680.8, + "probability": 0.6387 + }, + { + "start": 8680.9, + "end": 8683.16, + "probability": 0.958 + }, + { + "start": 8684.36, + "end": 8685.68, + "probability": 0.8569 + }, + { + "start": 8685.78, + "end": 8686.56, + "probability": 0.9329 + }, + { + "start": 8686.78, + "end": 8690.3, + "probability": 0.9921 + }, + { + "start": 8690.4, + "end": 8693.84, + "probability": 0.9964 + }, + { + "start": 8693.84, + "end": 8696.92, + "probability": 0.991 + }, + { + "start": 8698.22, + "end": 8698.72, + "probability": 0.3523 + }, + { + "start": 8699.34, + "end": 8699.5, + "probability": 0.0657 + }, + { + "start": 8699.5, + "end": 8703.64, + "probability": 0.9209 + }, + { + "start": 8703.64, + "end": 8708.48, + "probability": 0.9753 + }, + { + "start": 8708.72, + "end": 8709.14, + "probability": 0.327 + }, + { + "start": 8709.84, + "end": 8714.12, + "probability": 0.9615 + }, + { + "start": 8714.12, + "end": 8717.86, + "probability": 0.9899 + }, + { + "start": 8718.8, + "end": 8722.12, + "probability": 0.9476 + }, + { + "start": 8722.12, + "end": 8726.72, + "probability": 0.9499 + }, + { + "start": 8727.46, + "end": 8729.76, + "probability": 0.8249 + }, + { + "start": 8729.88, + "end": 8732.56, + "probability": 0.7128 + }, + { + "start": 8734.13, + "end": 8738.38, + "probability": 0.8645 + }, + { + "start": 8739.66, + "end": 8742.58, + "probability": 0.7463 + }, + { + "start": 8742.68, + "end": 8746.9, + "probability": 0.9663 + }, + { + "start": 8746.9, + "end": 8750.92, + "probability": 0.9278 + }, + { + "start": 8751.04, + "end": 8754.2, + "probability": 0.9325 + }, + { + "start": 8754.2, + "end": 8757.36, + "probability": 0.9917 + }, + { + "start": 8758.3, + "end": 8760.02, + "probability": 0.3167 + }, + { + "start": 8760.94, + "end": 8765.16, + "probability": 0.9843 + }, + { + "start": 8765.7, + "end": 8769.9, + "probability": 0.8424 + }, + { + "start": 8770.42, + "end": 8773.2, + "probability": 0.9939 + }, + { + "start": 8773.8, + "end": 8776.56, + "probability": 0.9838 + }, + { + "start": 8776.56, + "end": 8779.9, + "probability": 0.9956 + }, + { + "start": 8780.5, + "end": 8785.88, + "probability": 0.9954 + }, + { + "start": 8788.02, + "end": 8788.64, + "probability": 0.9608 + }, + { + "start": 8788.64, + "end": 8788.64, + "probability": 0.004 + }, + { + "start": 8788.64, + "end": 8790.2, + "probability": 0.644 + }, + { + "start": 8790.38, + "end": 8791.6, + "probability": 0.9892 + }, + { + "start": 8791.66, + "end": 8792.72, + "probability": 0.9214 + }, + { + "start": 8793.6, + "end": 8794.72, + "probability": 0.9438 + }, + { + "start": 8794.88, + "end": 8796.22, + "probability": 0.6771 + }, + { + "start": 8796.56, + "end": 8797.14, + "probability": 0.2982 + }, + { + "start": 8797.74, + "end": 8798.9, + "probability": 0.4027 + }, + { + "start": 8799.02, + "end": 8801.92, + "probability": 0.465 + }, + { + "start": 8802.0, + "end": 8805.36, + "probability": 0.803 + }, + { + "start": 8805.44, + "end": 8805.46, + "probability": 0.0808 + }, + { + "start": 8805.46, + "end": 8805.64, + "probability": 0.0148 + }, + { + "start": 8806.16, + "end": 8809.68, + "probability": 0.5839 + }, + { + "start": 8810.4, + "end": 8813.38, + "probability": 0.9926 + }, + { + "start": 8813.38, + "end": 8817.18, + "probability": 0.9978 + }, + { + "start": 8817.24, + "end": 8820.77, + "probability": 0.9639 + }, + { + "start": 8821.08, + "end": 8823.58, + "probability": 0.8897 + }, + { + "start": 8823.76, + "end": 8826.08, + "probability": 0.9783 + }, + { + "start": 8826.46, + "end": 8827.59, + "probability": 0.4978 + }, + { + "start": 8829.02, + "end": 8830.86, + "probability": 0.6874 + }, + { + "start": 8831.1, + "end": 8834.26, + "probability": 0.6074 + }, + { + "start": 8834.34, + "end": 8836.41, + "probability": 0.4328 + }, + { + "start": 8837.86, + "end": 8839.0, + "probability": 0.8263 + }, + { + "start": 8839.2, + "end": 8840.42, + "probability": 0.4956 + }, + { + "start": 8840.46, + "end": 8842.26, + "probability": 0.918 + }, + { + "start": 8842.38, + "end": 8843.46, + "probability": 0.9409 + }, + { + "start": 8843.72, + "end": 8844.4, + "probability": 0.4076 + }, + { + "start": 8844.74, + "end": 8847.28, + "probability": 0.3344 + }, + { + "start": 8847.44, + "end": 8849.58, + "probability": 0.968 + }, + { + "start": 8849.66, + "end": 8850.56, + "probability": 0.2493 + }, + { + "start": 8850.86, + "end": 8851.02, + "probability": 0.2548 + }, + { + "start": 8852.02, + "end": 8859.0, + "probability": 0.9059 + }, + { + "start": 8859.26, + "end": 8859.9, + "probability": 0.6895 + }, + { + "start": 8860.38, + "end": 8864.1, + "probability": 0.995 + }, + { + "start": 8864.1, + "end": 8868.14, + "probability": 0.9975 + }, + { + "start": 8868.38, + "end": 8872.15, + "probability": 0.9967 + }, + { + "start": 8872.56, + "end": 8876.02, + "probability": 0.9641 + }, + { + "start": 8876.22, + "end": 8878.66, + "probability": 0.8592 + }, + { + "start": 8879.38, + "end": 8879.78, + "probability": 0.3752 + }, + { + "start": 8880.02, + "end": 8880.44, + "probability": 0.8158 + }, + { + "start": 8880.48, + "end": 8886.4, + "probability": 0.9807 + }, + { + "start": 8887.14, + "end": 8889.12, + "probability": 0.2034 + }, + { + "start": 8889.94, + "end": 8891.5, + "probability": 0.9773 + }, + { + "start": 8892.02, + "end": 8893.72, + "probability": 0.886 + }, + { + "start": 8894.16, + "end": 8899.88, + "probability": 0.8747 + }, + { + "start": 8900.02, + "end": 8900.3, + "probability": 0.5276 + }, + { + "start": 8900.6, + "end": 8902.14, + "probability": 0.2599 + }, + { + "start": 8902.22, + "end": 8903.06, + "probability": 0.5468 + }, + { + "start": 8903.06, + "end": 8903.5, + "probability": 0.5396 + }, + { + "start": 8903.72, + "end": 8904.42, + "probability": 0.174 + }, + { + "start": 8905.46, + "end": 8908.3, + "probability": 0.1537 + }, + { + "start": 8908.67, + "end": 8912.06, + "probability": 0.1063 + }, + { + "start": 8912.36, + "end": 8914.3, + "probability": 0.5443 + }, + { + "start": 8914.6, + "end": 8914.6, + "probability": 0.1422 + }, + { + "start": 8915.02, + "end": 8918.18, + "probability": 0.786 + }, + { + "start": 8920.24, + "end": 8922.74, + "probability": 0.0964 + }, + { + "start": 8923.76, + "end": 8924.78, + "probability": 0.825 + }, + { + "start": 8925.06, + "end": 8927.46, + "probability": 0.6294 + }, + { + "start": 8927.88, + "end": 8932.28, + "probability": 0.9495 + }, + { + "start": 8932.28, + "end": 8938.32, + "probability": 0.8886 + }, + { + "start": 8940.74, + "end": 8940.78, + "probability": 0.0346 + }, + { + "start": 8940.78, + "end": 8942.0, + "probability": 0.4738 + }, + { + "start": 8942.18, + "end": 8945.84, + "probability": 0.7082 + }, + { + "start": 8946.08, + "end": 8948.62, + "probability": 0.9795 + }, + { + "start": 8948.76, + "end": 8950.08, + "probability": 0.7656 + }, + { + "start": 8950.22, + "end": 8952.4, + "probability": 0.9966 + }, + { + "start": 8952.88, + "end": 8953.32, + "probability": 0.8599 + }, + { + "start": 8953.74, + "end": 8955.88, + "probability": 0.9927 + }, + { + "start": 8956.26, + "end": 8957.04, + "probability": 0.8495 + }, + { + "start": 8957.96, + "end": 8959.57, + "probability": 0.91 + }, + { + "start": 8959.82, + "end": 8961.04, + "probability": 0.5807 + }, + { + "start": 8961.16, + "end": 8961.86, + "probability": 0.7393 + }, + { + "start": 8961.92, + "end": 8964.34, + "probability": 0.9427 + }, + { + "start": 8964.48, + "end": 8965.6, + "probability": 0.9772 + }, + { + "start": 8966.44, + "end": 8968.32, + "probability": 0.8467 + }, + { + "start": 8968.32, + "end": 8969.62, + "probability": 0.3709 + }, + { + "start": 8970.48, + "end": 8973.64, + "probability": 0.6929 + }, + { + "start": 8974.0, + "end": 8976.64, + "probability": 0.1423 + }, + { + "start": 8976.74, + "end": 8977.28, + "probability": 0.6878 + }, + { + "start": 8977.32, + "end": 8979.6, + "probability": 0.5933 + }, + { + "start": 8979.64, + "end": 8980.42, + "probability": 0.7438 + }, + { + "start": 8981.26, + "end": 8984.16, + "probability": 0.9 + }, + { + "start": 8984.38, + "end": 8984.96, + "probability": 0.8336 + }, + { + "start": 8985.04, + "end": 8985.78, + "probability": 0.9548 + }, + { + "start": 8986.02, + "end": 8986.86, + "probability": 0.7612 + }, + { + "start": 8987.02, + "end": 8992.32, + "probability": 0.9897 + }, + { + "start": 8992.88, + "end": 8996.96, + "probability": 0.9966 + }, + { + "start": 8996.96, + "end": 8999.32, + "probability": 0.9686 + }, + { + "start": 9002.32, + "end": 9004.66, + "probability": 0.6362 + }, + { + "start": 9004.72, + "end": 9006.84, + "probability": 0.83 + }, + { + "start": 9006.9, + "end": 9008.96, + "probability": 0.7295 + }, + { + "start": 9008.96, + "end": 9010.7, + "probability": 0.8787 + }, + { + "start": 9010.92, + "end": 9015.46, + "probability": 0.9692 + }, + { + "start": 9015.46, + "end": 9019.6, + "probability": 0.9978 + }, + { + "start": 9020.16, + "end": 9020.86, + "probability": 0.7053 + }, + { + "start": 9020.98, + "end": 9024.22, + "probability": 0.9897 + }, + { + "start": 9024.32, + "end": 9026.64, + "probability": 0.9747 + }, + { + "start": 9027.2, + "end": 9030.96, + "probability": 0.9644 + }, + { + "start": 9031.14, + "end": 9031.64, + "probability": 0.7509 + }, + { + "start": 9031.9, + "end": 9032.88, + "probability": 0.5623 + }, + { + "start": 9032.98, + "end": 9033.28, + "probability": 0.7802 + }, + { + "start": 9033.34, + "end": 9034.18, + "probability": 0.9404 + }, + { + "start": 9034.62, + "end": 9036.02, + "probability": 0.9561 + }, + { + "start": 9036.48, + "end": 9037.96, + "probability": 0.8562 + }, + { + "start": 9039.48, + "end": 9041.34, + "probability": 0.5665 + }, + { + "start": 9041.72, + "end": 9041.72, + "probability": 0.2121 + }, + { + "start": 9041.72, + "end": 9042.04, + "probability": 0.8024 + }, + { + "start": 9042.26, + "end": 9043.0, + "probability": 0.8903 + }, + { + "start": 9043.42, + "end": 9043.78, + "probability": 0.8959 + }, + { + "start": 9043.92, + "end": 9044.94, + "probability": 0.6417 + }, + { + "start": 9045.7, + "end": 9048.28, + "probability": 0.965 + }, + { + "start": 9049.28, + "end": 9051.08, + "probability": 0.8618 + }, + { + "start": 9051.8, + "end": 9056.38, + "probability": 0.7583 + }, + { + "start": 9056.42, + "end": 9057.16, + "probability": 0.6636 + }, + { + "start": 9058.4, + "end": 9060.64, + "probability": 0.7819 + }, + { + "start": 9063.96, + "end": 9065.8, + "probability": 0.1994 + }, + { + "start": 9074.58, + "end": 9075.8, + "probability": 0.0782 + }, + { + "start": 9076.92, + "end": 9082.26, + "probability": 0.1223 + }, + { + "start": 9082.82, + "end": 9084.86, + "probability": 0.0799 + }, + { + "start": 9084.86, + "end": 9086.46, + "probability": 0.1002 + }, + { + "start": 9088.12, + "end": 9088.64, + "probability": 0.1226 + }, + { + "start": 9088.64, + "end": 9088.64, + "probability": 0.395 + }, + { + "start": 9088.64, + "end": 9088.64, + "probability": 0.0959 + }, + { + "start": 9088.68, + "end": 9090.5, + "probability": 0.8838 + }, + { + "start": 9093.14, + "end": 9093.7, + "probability": 0.213 + }, + { + "start": 9093.7, + "end": 9098.77, + "probability": 0.6138 + }, + { + "start": 9099.38, + "end": 9101.04, + "probability": 0.476 + }, + { + "start": 9101.2, + "end": 9102.32, + "probability": 0.6568 + }, + { + "start": 9102.94, + "end": 9106.4, + "probability": 0.8309 + }, + { + "start": 9107.54, + "end": 9108.8, + "probability": 0.9203 + }, + { + "start": 9114.32, + "end": 9116.9, + "probability": 0.6668 + }, + { + "start": 9117.78, + "end": 9119.72, + "probability": 0.9946 + }, + { + "start": 9119.78, + "end": 9120.78, + "probability": 0.9402 + }, + { + "start": 9121.92, + "end": 9122.32, + "probability": 0.6062 + }, + { + "start": 9122.38, + "end": 9124.26, + "probability": 0.9786 + }, + { + "start": 9124.38, + "end": 9126.62, + "probability": 0.8887 + }, + { + "start": 9127.24, + "end": 9128.8, + "probability": 0.9927 + }, + { + "start": 9129.4, + "end": 9132.5, + "probability": 0.9924 + }, + { + "start": 9132.5, + "end": 9136.2, + "probability": 0.9964 + }, + { + "start": 9136.42, + "end": 9138.14, + "probability": 0.9457 + }, + { + "start": 9139.32, + "end": 9143.32, + "probability": 0.9966 + }, + { + "start": 9143.34, + "end": 9145.0, + "probability": 0.7678 + }, + { + "start": 9145.68, + "end": 9149.66, + "probability": 0.9819 + }, + { + "start": 9150.34, + "end": 9151.04, + "probability": 0.8127 + }, + { + "start": 9151.98, + "end": 9154.04, + "probability": 0.9833 + }, + { + "start": 9154.14, + "end": 9159.18, + "probability": 0.931 + }, + { + "start": 9159.7, + "end": 9160.7, + "probability": 0.9654 + }, + { + "start": 9162.54, + "end": 9163.16, + "probability": 0.8391 + }, + { + "start": 9163.22, + "end": 9167.18, + "probability": 0.9194 + }, + { + "start": 9167.82, + "end": 9168.58, + "probability": 0.8695 + }, + { + "start": 9169.66, + "end": 9172.84, + "probability": 0.9915 + }, + { + "start": 9173.52, + "end": 9177.54, + "probability": 0.9474 + }, + { + "start": 9177.9, + "end": 9180.86, + "probability": 0.9453 + }, + { + "start": 9181.42, + "end": 9183.82, + "probability": 0.9896 + }, + { + "start": 9184.5, + "end": 9185.56, + "probability": 0.9074 + }, + { + "start": 9185.74, + "end": 9186.09, + "probability": 0.8474 + }, + { + "start": 9186.5, + "end": 9189.38, + "probability": 0.9981 + }, + { + "start": 9189.38, + "end": 9193.04, + "probability": 0.9984 + }, + { + "start": 9193.4, + "end": 9194.02, + "probability": 0.712 + }, + { + "start": 9194.76, + "end": 9196.14, + "probability": 0.9353 + }, + { + "start": 9196.66, + "end": 9200.54, + "probability": 0.9642 + }, + { + "start": 9201.06, + "end": 9203.62, + "probability": 0.6251 + }, + { + "start": 9204.36, + "end": 9205.62, + "probability": 0.9845 + }, + { + "start": 9205.94, + "end": 9208.34, + "probability": 0.9782 + }, + { + "start": 9209.82, + "end": 9211.28, + "probability": 0.9834 + }, + { + "start": 9211.42, + "end": 9213.26, + "probability": 0.8154 + }, + { + "start": 9213.4, + "end": 9214.14, + "probability": 0.877 + }, + { + "start": 9214.52, + "end": 9216.24, + "probability": 0.9902 + }, + { + "start": 9216.78, + "end": 9218.1, + "probability": 0.9998 + }, + { + "start": 9219.08, + "end": 9222.34, + "probability": 0.9969 + }, + { + "start": 9222.76, + "end": 9225.68, + "probability": 0.9956 + }, + { + "start": 9226.22, + "end": 9230.26, + "probability": 0.8555 + }, + { + "start": 9230.88, + "end": 9231.22, + "probability": 0.5171 + }, + { + "start": 9231.38, + "end": 9231.66, + "probability": 0.5374 + }, + { + "start": 9231.72, + "end": 9234.36, + "probability": 0.9282 + }, + { + "start": 9234.92, + "end": 9236.22, + "probability": 0.954 + }, + { + "start": 9237.06, + "end": 9238.6, + "probability": 0.4596 + }, + { + "start": 9239.08, + "end": 9240.58, + "probability": 0.9001 + }, + { + "start": 9240.6, + "end": 9241.8, + "probability": 0.9544 + }, + { + "start": 9241.86, + "end": 9244.96, + "probability": 0.9821 + }, + { + "start": 9245.62, + "end": 9250.2, + "probability": 0.9867 + }, + { + "start": 9250.78, + "end": 9253.84, + "probability": 0.9717 + }, + { + "start": 9254.22, + "end": 9256.46, + "probability": 0.9271 + }, + { + "start": 9257.0, + "end": 9257.86, + "probability": 0.9695 + }, + { + "start": 9258.14, + "end": 9259.34, + "probability": 0.4022 + }, + { + "start": 9259.78, + "end": 9262.18, + "probability": 0.9318 + }, + { + "start": 9262.6, + "end": 9266.06, + "probability": 0.9797 + }, + { + "start": 9266.78, + "end": 9268.38, + "probability": 0.9657 + }, + { + "start": 9269.1, + "end": 9274.0, + "probability": 0.9855 + }, + { + "start": 9274.58, + "end": 9275.38, + "probability": 0.3255 + }, + { + "start": 9275.88, + "end": 9276.76, + "probability": 0.5162 + }, + { + "start": 9277.04, + "end": 9279.04, + "probability": 0.7314 + }, + { + "start": 9279.68, + "end": 9280.44, + "probability": 0.6371 + }, + { + "start": 9281.86, + "end": 9283.5, + "probability": 0.9123 + }, + { + "start": 9283.56, + "end": 9284.48, + "probability": 0.5994 + }, + { + "start": 9285.82, + "end": 9286.34, + "probability": 0.7006 + }, + { + "start": 9287.02, + "end": 9287.72, + "probability": 0.9579 + }, + { + "start": 9290.0, + "end": 9290.55, + "probability": 0.4225 + }, + { + "start": 9292.02, + "end": 9292.24, + "probability": 0.3996 + }, + { + "start": 9293.18, + "end": 9294.04, + "probability": 0.698 + }, + { + "start": 9295.64, + "end": 9296.18, + "probability": 0.9519 + }, + { + "start": 9297.16, + "end": 9297.96, + "probability": 0.8535 + }, + { + "start": 9300.48, + "end": 9301.34, + "probability": 0.9097 + }, + { + "start": 9303.22, + "end": 9303.92, + "probability": 0.4407 + }, + { + "start": 9306.9, + "end": 9308.3, + "probability": 0.6793 + }, + { + "start": 9309.36, + "end": 9309.88, + "probability": 0.9616 + }, + { + "start": 9310.78, + "end": 9311.78, + "probability": 0.8948 + }, + { + "start": 9312.76, + "end": 9313.24, + "probability": 0.5649 + }, + { + "start": 9314.2, + "end": 9314.98, + "probability": 0.716 + }, + { + "start": 9315.5, + "end": 9316.0, + "probability": 0.8947 + }, + { + "start": 9316.8, + "end": 9318.26, + "probability": 0.8998 + }, + { + "start": 9319.44, + "end": 9320.24, + "probability": 0.7396 + }, + { + "start": 9322.14, + "end": 9322.64, + "probability": 0.6471 + }, + { + "start": 9323.98, + "end": 9324.64, + "probability": 0.8017 + }, + { + "start": 9325.26, + "end": 9327.0, + "probability": 0.6418 + }, + { + "start": 9327.7, + "end": 9328.56, + "probability": 0.3902 + }, + { + "start": 9329.32, + "end": 9332.62, + "probability": 0.8453 + }, + { + "start": 9333.52, + "end": 9335.5, + "probability": 0.8314 + }, + { + "start": 9337.04, + "end": 9338.58, + "probability": 0.8742 + }, + { + "start": 9340.4, + "end": 9341.94, + "probability": 0.9198 + }, + { + "start": 9342.92, + "end": 9343.66, + "probability": 0.2778 + }, + { + "start": 9344.32, + "end": 9346.76, + "probability": 0.4984 + }, + { + "start": 9348.42, + "end": 9349.02, + "probability": 0.1377 + }, + { + "start": 9349.02, + "end": 9349.4, + "probability": 0.522 + }, + { + "start": 9349.94, + "end": 9350.72, + "probability": 0.5714 + }, + { + "start": 9351.84, + "end": 9352.38, + "probability": 0.84 + }, + { + "start": 9352.98, + "end": 9353.68, + "probability": 0.6903 + }, + { + "start": 9354.86, + "end": 9356.74, + "probability": 0.7305 + }, + { + "start": 9357.44, + "end": 9358.16, + "probability": 0.1284 + }, + { + "start": 9359.06, + "end": 9360.16, + "probability": 0.959 + }, + { + "start": 9360.76, + "end": 9361.2, + "probability": 0.6153 + }, + { + "start": 9362.28, + "end": 9362.34, + "probability": 0.0257 + }, + { + "start": 9362.34, + "end": 9362.64, + "probability": 0.3715 + }, + { + "start": 9365.54, + "end": 9365.93, + "probability": 0.7041 + }, + { + "start": 9367.3, + "end": 9370.82, + "probability": 0.6292 + }, + { + "start": 9372.46, + "end": 9373.38, + "probability": 0.8185 + }, + { + "start": 9374.86, + "end": 9376.4, + "probability": 0.7934 + }, + { + "start": 9377.66, + "end": 9378.38, + "probability": 0.8884 + }, + { + "start": 9392.36, + "end": 9392.7, + "probability": 0.6398 + }, + { + "start": 9395.76, + "end": 9396.34, + "probability": 0.7175 + }, + { + "start": 9396.38, + "end": 9397.44, + "probability": 0.6563 + }, + { + "start": 9397.58, + "end": 9398.54, + "probability": 0.8172 + }, + { + "start": 9398.68, + "end": 9400.6, + "probability": 0.7064 + }, + { + "start": 9400.72, + "end": 9401.72, + "probability": 0.9061 + }, + { + "start": 9401.96, + "end": 9403.1, + "probability": 0.8663 + }, + { + "start": 9403.88, + "end": 9407.02, + "probability": 0.9611 + }, + { + "start": 9407.28, + "end": 9407.48, + "probability": 0.4247 + }, + { + "start": 9407.64, + "end": 9408.0, + "probability": 0.4431 + }, + { + "start": 9409.0, + "end": 9414.9, + "probability": 0.9528 + }, + { + "start": 9415.46, + "end": 9417.4, + "probability": 0.9515 + }, + { + "start": 9418.48, + "end": 9422.94, + "probability": 0.8779 + }, + { + "start": 9424.32, + "end": 9424.52, + "probability": 0.7332 + }, + { + "start": 9424.58, + "end": 9426.52, + "probability": 0.9084 + }, + { + "start": 9426.68, + "end": 9430.88, + "probability": 0.9456 + }, + { + "start": 9431.42, + "end": 9432.68, + "probability": 0.8096 + }, + { + "start": 9432.84, + "end": 9433.3, + "probability": 0.4429 + }, + { + "start": 9433.48, + "end": 9436.9, + "probability": 0.9858 + }, + { + "start": 9437.5, + "end": 9441.38, + "probability": 0.9797 + }, + { + "start": 9441.5, + "end": 9442.62, + "probability": 0.8322 + }, + { + "start": 9443.36, + "end": 9444.62, + "probability": 0.9912 + }, + { + "start": 9444.68, + "end": 9445.82, + "probability": 0.9207 + }, + { + "start": 9446.22, + "end": 9449.18, + "probability": 0.9927 + }, + { + "start": 9450.02, + "end": 9453.4, + "probability": 0.9874 + }, + { + "start": 9453.4, + "end": 9457.38, + "probability": 0.9971 + }, + { + "start": 9458.14, + "end": 9462.12, + "probability": 0.999 + }, + { + "start": 9462.76, + "end": 9463.98, + "probability": 0.943 + }, + { + "start": 9464.68, + "end": 9466.6, + "probability": 0.9598 + }, + { + "start": 9467.44, + "end": 9470.52, + "probability": 0.9719 + }, + { + "start": 9470.96, + "end": 9472.26, + "probability": 0.9556 + }, + { + "start": 9472.9, + "end": 9477.96, + "probability": 0.9946 + }, + { + "start": 9478.5, + "end": 9481.02, + "probability": 0.9126 + }, + { + "start": 9481.56, + "end": 9485.82, + "probability": 0.9526 + }, + { + "start": 9486.62, + "end": 9489.08, + "probability": 0.998 + }, + { + "start": 9489.12, + "end": 9493.82, + "probability": 0.979 + }, + { + "start": 9493.98, + "end": 9495.2, + "probability": 0.383 + }, + { + "start": 9495.22, + "end": 9495.54, + "probability": 0.3748 + }, + { + "start": 9496.22, + "end": 9498.22, + "probability": 0.7612 + }, + { + "start": 9508.1, + "end": 9509.7, + "probability": 0.692 + }, + { + "start": 9510.68, + "end": 9511.84, + "probability": 0.7611 + }, + { + "start": 9512.84, + "end": 9513.08, + "probability": 0.4416 + }, + { + "start": 9513.2, + "end": 9514.06, + "probability": 0.908 + }, + { + "start": 9514.14, + "end": 9515.2, + "probability": 0.8001 + }, + { + "start": 9515.36, + "end": 9518.98, + "probability": 0.7355 + }, + { + "start": 9519.04, + "end": 9519.48, + "probability": 0.7785 + }, + { + "start": 9520.12, + "end": 9526.1, + "probability": 0.9543 + }, + { + "start": 9527.16, + "end": 9530.64, + "probability": 0.9919 + }, + { + "start": 9531.22, + "end": 9533.44, + "probability": 0.9978 + }, + { + "start": 9534.66, + "end": 9537.62, + "probability": 0.9934 + }, + { + "start": 9538.56, + "end": 9542.22, + "probability": 0.8953 + }, + { + "start": 9543.0, + "end": 9547.22, + "probability": 0.9895 + }, + { + "start": 9547.32, + "end": 9552.54, + "probability": 0.8297 + }, + { + "start": 9553.06, + "end": 9555.22, + "probability": 0.9167 + }, + { + "start": 9557.4, + "end": 9559.08, + "probability": 0.7865 + }, + { + "start": 9559.8, + "end": 9561.98, + "probability": 0.9177 + }, + { + "start": 9563.32, + "end": 9565.38, + "probability": 0.9956 + }, + { + "start": 9566.14, + "end": 9570.9, + "probability": 0.9773 + }, + { + "start": 9570.9, + "end": 9574.8, + "probability": 0.9742 + }, + { + "start": 9575.96, + "end": 9577.08, + "probability": 0.8685 + }, + { + "start": 9577.28, + "end": 9580.74, + "probability": 0.995 + }, + { + "start": 9580.74, + "end": 9584.64, + "probability": 0.9978 + }, + { + "start": 9585.22, + "end": 9585.9, + "probability": 0.8381 + }, + { + "start": 9586.48, + "end": 9590.34, + "probability": 0.9736 + }, + { + "start": 9591.16, + "end": 9594.52, + "probability": 0.9976 + }, + { + "start": 9594.52, + "end": 9597.36, + "probability": 0.9983 + }, + { + "start": 9598.28, + "end": 9600.53, + "probability": 0.9108 + }, + { + "start": 9601.24, + "end": 9603.0, + "probability": 0.9778 + }, + { + "start": 9603.46, + "end": 9607.16, + "probability": 0.8319 + }, + { + "start": 9608.08, + "end": 9608.94, + "probability": 0.9324 + }, + { + "start": 9609.66, + "end": 9611.23, + "probability": 0.9637 + }, + { + "start": 9612.16, + "end": 9616.36, + "probability": 0.9966 + }, + { + "start": 9616.96, + "end": 9618.98, + "probability": 0.9667 + }, + { + "start": 9619.56, + "end": 9621.06, + "probability": 0.9238 + }, + { + "start": 9621.6, + "end": 9625.42, + "probability": 0.9945 + }, + { + "start": 9626.04, + "end": 9628.78, + "probability": 0.978 + }, + { + "start": 9629.62, + "end": 9631.38, + "probability": 0.9868 + }, + { + "start": 9632.32, + "end": 9634.46, + "probability": 0.9827 + }, + { + "start": 9635.04, + "end": 9638.56, + "probability": 0.928 + }, + { + "start": 9639.1, + "end": 9640.32, + "probability": 0.7193 + }, + { + "start": 9640.94, + "end": 9641.52, + "probability": 0.7766 + }, + { + "start": 9642.32, + "end": 9644.76, + "probability": 0.8906 + }, + { + "start": 9645.48, + "end": 9647.34, + "probability": 0.9644 + }, + { + "start": 9648.18, + "end": 9650.22, + "probability": 0.9929 + }, + { + "start": 9650.8, + "end": 9651.56, + "probability": 0.7858 + }, + { + "start": 9652.22, + "end": 9653.88, + "probability": 0.9544 + }, + { + "start": 9654.44, + "end": 9656.88, + "probability": 0.9746 + }, + { + "start": 9657.14, + "end": 9657.8, + "probability": 0.9469 + }, + { + "start": 9658.28, + "end": 9659.74, + "probability": 0.9415 + }, + { + "start": 9660.32, + "end": 9663.12, + "probability": 0.9805 + }, + { + "start": 9663.58, + "end": 9668.76, + "probability": 0.9871 + }, + { + "start": 9669.24, + "end": 9670.87, + "probability": 0.9934 + }, + { + "start": 9671.62, + "end": 9675.42, + "probability": 0.9293 + }, + { + "start": 9675.86, + "end": 9676.16, + "probability": 0.8562 + }, + { + "start": 9676.94, + "end": 9677.62, + "probability": 0.4002 + }, + { + "start": 9677.62, + "end": 9679.16, + "probability": 0.5724 + }, + { + "start": 9680.22, + "end": 9681.4, + "probability": 0.9114 + }, + { + "start": 9683.1, + "end": 9685.56, + "probability": 0.9896 + }, + { + "start": 9685.56, + "end": 9688.22, + "probability": 0.5971 + }, + { + "start": 9688.4, + "end": 9689.68, + "probability": 0.5023 + }, + { + "start": 9690.08, + "end": 9691.5, + "probability": 0.676 + }, + { + "start": 9691.56, + "end": 9691.98, + "probability": 0.9722 + }, + { + "start": 9694.56, + "end": 9695.6, + "probability": 0.4713 + }, + { + "start": 9697.2, + "end": 9699.38, + "probability": 0.9066 + }, + { + "start": 9699.62, + "end": 9700.04, + "probability": 0.499 + }, + { + "start": 9701.44, + "end": 9701.68, + "probability": 0.5068 + }, + { + "start": 9703.84, + "end": 9704.86, + "probability": 0.9134 + }, + { + "start": 9708.62, + "end": 9711.14, + "probability": 0.9083 + }, + { + "start": 9711.76, + "end": 9711.96, + "probability": 0.1956 + }, + { + "start": 9721.96, + "end": 9725.7, + "probability": 0.5769 + }, + { + "start": 9727.66, + "end": 9727.82, + "probability": 0.068 + }, + { + "start": 9727.82, + "end": 9727.9, + "probability": 0.0245 + }, + { + "start": 9728.16, + "end": 9729.58, + "probability": 0.5805 + }, + { + "start": 9729.68, + "end": 9731.86, + "probability": 0.7758 + }, + { + "start": 9731.86, + "end": 9737.28, + "probability": 0.1196 + }, + { + "start": 9738.32, + "end": 9740.09, + "probability": 0.0499 + }, + { + "start": 9740.76, + "end": 9746.18, + "probability": 0.0876 + }, + { + "start": 9746.18, + "end": 9746.36, + "probability": 0.086 + }, + { + "start": 9747.64, + "end": 9749.42, + "probability": 0.0533 + }, + { + "start": 9750.42, + "end": 9752.1, + "probability": 0.1406 + }, + { + "start": 9754.78, + "end": 9755.6, + "probability": 0.3746 + }, + { + "start": 9755.94, + "end": 9756.08, + "probability": 0.1423 + }, + { + "start": 9756.08, + "end": 9756.26, + "probability": 0.1444 + }, + { + "start": 9756.26, + "end": 9756.66, + "probability": 0.0798 + }, + { + "start": 9756.66, + "end": 9761.68, + "probability": 0.1096 + }, + { + "start": 9762.1, + "end": 9762.34, + "probability": 0.1068 + }, + { + "start": 9762.34, + "end": 9763.06, + "probability": 0.4397 + }, + { + "start": 9763.94, + "end": 9765.12, + "probability": 0.0733 + }, + { + "start": 9766.84, + "end": 9768.94, + "probability": 0.0169 + }, + { + "start": 9769.68, + "end": 9770.12, + "probability": 0.0003 + }, + { + "start": 9772.52, + "end": 9773.48, + "probability": 0.0266 + }, + { + "start": 9775.04, + "end": 9775.36, + "probability": 0.1247 + }, + { + "start": 9788.0, + "end": 9789.58, + "probability": 0.073 + }, + { + "start": 9789.58, + "end": 9789.58, + "probability": 0.03 + }, + { + "start": 9790.28, + "end": 9790.9, + "probability": 0.0782 + }, + { + "start": 9791.88, + "end": 9792.04, + "probability": 0.0243 + } + ], + "segments_count": 3874, + "words_count": 19378, + "avg_words_per_segment": 5.0021, + "avg_segment_duration": 1.8589, + "avg_words_per_minute": 117.4984, + "plenum_id": "64812", + "duration": 9895.28, + "title": null, + "plenum_date": "2017-06-19" +} \ No newline at end of file