diff --git "a/104477/metadata.json" "b/104477/metadata.json" new file mode 100644--- /dev/null +++ "b/104477/metadata.json" @@ -0,0 +1,7867 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "104477", + "quality_score": 0.9448, + "per_segment_quality_scores": [ + { + "start": 81.81, + "end": 84.92, + "probability": 0.6889 + }, + { + "start": 85.38, + "end": 86.76, + "probability": 0.7589 + }, + { + "start": 87.06, + "end": 89.06, + "probability": 0.8642 + }, + { + "start": 89.72, + "end": 92.72, + "probability": 0.994 + }, + { + "start": 92.72, + "end": 97.26, + "probability": 0.8548 + }, + { + "start": 98.06, + "end": 99.3, + "probability": 0.0806 + }, + { + "start": 99.86, + "end": 104.2, + "probability": 0.9126 + }, + { + "start": 104.32, + "end": 104.54, + "probability": 0.7224 + }, + { + "start": 105.7, + "end": 106.44, + "probability": 0.2785 + }, + { + "start": 107.92, + "end": 110.5, + "probability": 0.7549 + }, + { + "start": 110.7, + "end": 114.3, + "probability": 0.7071 + }, + { + "start": 135.26, + "end": 137.08, + "probability": 0.4894 + }, + { + "start": 137.38, + "end": 139.34, + "probability": 0.85 + }, + { + "start": 139.4, + "end": 139.8, + "probability": 0.9622 + }, + { + "start": 147.66, + "end": 149.0, + "probability": 0.7442 + }, + { + "start": 149.96, + "end": 152.04, + "probability": 0.686 + }, + { + "start": 152.5, + "end": 154.32, + "probability": 0.4847 + }, + { + "start": 154.44, + "end": 157.08, + "probability": 0.9684 + }, + { + "start": 158.3, + "end": 160.38, + "probability": 0.9631 + }, + { + "start": 161.16, + "end": 164.36, + "probability": 0.9986 + }, + { + "start": 164.92, + "end": 166.56, + "probability": 0.9965 + }, + { + "start": 167.26, + "end": 170.4, + "probability": 0.7895 + }, + { + "start": 171.08, + "end": 173.44, + "probability": 0.9663 + }, + { + "start": 173.92, + "end": 176.18, + "probability": 0.9811 + }, + { + "start": 176.72, + "end": 180.6, + "probability": 0.8714 + }, + { + "start": 181.2, + "end": 183.62, + "probability": 0.922 + }, + { + "start": 184.48, + "end": 185.6, + "probability": 0.7398 + }, + { + "start": 186.54, + "end": 187.64, + "probability": 0.9831 + }, + { + "start": 188.1, + "end": 189.5, + "probability": 0.9773 + }, + { + "start": 189.94, + "end": 193.16, + "probability": 0.9901 + }, + { + "start": 193.96, + "end": 195.78, + "probability": 0.9888 + }, + { + "start": 196.48, + "end": 196.98, + "probability": 0.9657 + }, + { + "start": 197.72, + "end": 199.06, + "probability": 0.9788 + }, + { + "start": 199.46, + "end": 201.54, + "probability": 0.9853 + }, + { + "start": 201.96, + "end": 204.5, + "probability": 0.98 + }, + { + "start": 205.0, + "end": 209.0, + "probability": 0.9957 + }, + { + "start": 209.68, + "end": 214.76, + "probability": 0.967 + }, + { + "start": 215.48, + "end": 220.52, + "probability": 0.8393 + }, + { + "start": 220.52, + "end": 225.9, + "probability": 0.9982 + }, + { + "start": 226.42, + "end": 230.36, + "probability": 0.9976 + }, + { + "start": 230.48, + "end": 230.78, + "probability": 0.6667 + }, + { + "start": 232.08, + "end": 232.92, + "probability": 0.6637 + }, + { + "start": 233.18, + "end": 235.0, + "probability": 0.9038 + }, + { + "start": 241.25, + "end": 244.22, + "probability": 0.8387 + }, + { + "start": 245.68, + "end": 248.46, + "probability": 0.9751 + }, + { + "start": 249.18, + "end": 250.2, + "probability": 0.8465 + }, + { + "start": 251.34, + "end": 252.76, + "probability": 0.9659 + }, + { + "start": 253.14, + "end": 257.86, + "probability": 0.9939 + }, + { + "start": 258.74, + "end": 259.58, + "probability": 0.6712 + }, + { + "start": 260.42, + "end": 263.32, + "probability": 0.9944 + }, + { + "start": 264.1, + "end": 266.34, + "probability": 0.9844 + }, + { + "start": 266.98, + "end": 267.85, + "probability": 0.9432 + }, + { + "start": 268.34, + "end": 270.64, + "probability": 0.6631 + }, + { + "start": 271.42, + "end": 272.32, + "probability": 0.7631 + }, + { + "start": 273.18, + "end": 276.34, + "probability": 0.9448 + }, + { + "start": 276.84, + "end": 278.02, + "probability": 0.8438 + }, + { + "start": 278.98, + "end": 281.28, + "probability": 0.876 + }, + { + "start": 282.26, + "end": 283.82, + "probability": 0.9255 + }, + { + "start": 284.8, + "end": 287.0, + "probability": 0.9873 + }, + { + "start": 287.2, + "end": 287.5, + "probability": 0.5392 + }, + { + "start": 287.58, + "end": 288.14, + "probability": 0.784 + }, + { + "start": 288.84, + "end": 289.43, + "probability": 0.4675 + }, + { + "start": 290.2, + "end": 290.86, + "probability": 0.617 + }, + { + "start": 291.56, + "end": 292.26, + "probability": 0.789 + }, + { + "start": 293.12, + "end": 294.52, + "probability": 0.9257 + }, + { + "start": 295.34, + "end": 296.28, + "probability": 0.7785 + }, + { + "start": 296.38, + "end": 300.08, + "probability": 0.8597 + }, + { + "start": 300.24, + "end": 300.56, + "probability": 0.8362 + }, + { + "start": 300.62, + "end": 301.92, + "probability": 0.9817 + }, + { + "start": 303.4, + "end": 304.68, + "probability": 0.8233 + }, + { + "start": 305.16, + "end": 307.64, + "probability": 0.9856 + }, + { + "start": 307.8, + "end": 308.82, + "probability": 0.9897 + }, + { + "start": 309.7, + "end": 310.84, + "probability": 0.9788 + }, + { + "start": 311.84, + "end": 314.24, + "probability": 0.9712 + }, + { + "start": 314.82, + "end": 315.78, + "probability": 0.9692 + }, + { + "start": 316.44, + "end": 318.4, + "probability": 0.809 + }, + { + "start": 319.04, + "end": 322.36, + "probability": 0.9788 + }, + { + "start": 322.94, + "end": 324.26, + "probability": 0.6709 + }, + { + "start": 324.96, + "end": 327.7, + "probability": 0.9888 + }, + { + "start": 328.56, + "end": 329.74, + "probability": 0.9059 + }, + { + "start": 330.56, + "end": 332.16, + "probability": 0.9858 + }, + { + "start": 332.82, + "end": 334.96, + "probability": 0.9429 + }, + { + "start": 335.6, + "end": 337.4, + "probability": 0.9713 + }, + { + "start": 338.04, + "end": 339.1, + "probability": 0.9683 + }, + { + "start": 339.64, + "end": 340.76, + "probability": 0.5 + }, + { + "start": 344.37, + "end": 344.94, + "probability": 0.251 + }, + { + "start": 344.94, + "end": 345.26, + "probability": 0.2312 + }, + { + "start": 345.74, + "end": 346.2, + "probability": 0.5734 + }, + { + "start": 347.24, + "end": 347.72, + "probability": 0.5048 + }, + { + "start": 347.72, + "end": 349.45, + "probability": 0.9702 + }, + { + "start": 350.62, + "end": 352.38, + "probability": 0.8838 + }, + { + "start": 358.76, + "end": 359.82, + "probability": 0.7999 + }, + { + "start": 361.02, + "end": 363.82, + "probability": 0.6691 + }, + { + "start": 364.92, + "end": 368.86, + "probability": 0.8329 + }, + { + "start": 368.86, + "end": 372.72, + "probability": 0.9321 + }, + { + "start": 374.22, + "end": 377.68, + "probability": 0.9923 + }, + { + "start": 379.08, + "end": 380.65, + "probability": 0.9792 + }, + { + "start": 381.9, + "end": 383.98, + "probability": 0.9985 + }, + { + "start": 385.2, + "end": 387.64, + "probability": 0.9663 + }, + { + "start": 389.32, + "end": 390.26, + "probability": 0.7398 + }, + { + "start": 391.48, + "end": 397.0, + "probability": 0.9962 + }, + { + "start": 397.78, + "end": 399.22, + "probability": 0.7287 + }, + { + "start": 399.82, + "end": 400.56, + "probability": 0.184 + }, + { + "start": 401.2, + "end": 402.38, + "probability": 0.9458 + }, + { + "start": 402.98, + "end": 406.56, + "probability": 0.8891 + }, + { + "start": 407.16, + "end": 409.16, + "probability": 0.7246 + }, + { + "start": 409.44, + "end": 410.31, + "probability": 0.99 + }, + { + "start": 410.9, + "end": 412.45, + "probability": 0.9961 + }, + { + "start": 412.96, + "end": 414.26, + "probability": 0.9961 + }, + { + "start": 415.48, + "end": 416.6, + "probability": 0.9052 + }, + { + "start": 416.68, + "end": 416.86, + "probability": 0.3419 + }, + { + "start": 417.14, + "end": 418.14, + "probability": 0.2077 + }, + { + "start": 418.52, + "end": 420.82, + "probability": 0.8855 + }, + { + "start": 421.52, + "end": 423.49, + "probability": 0.9534 + }, + { + "start": 424.58, + "end": 425.7, + "probability": 0.8529 + }, + { + "start": 426.22, + "end": 428.26, + "probability": 0.9138 + }, + { + "start": 428.36, + "end": 430.52, + "probability": 0.8982 + }, + { + "start": 430.92, + "end": 431.5, + "probability": 0.8708 + }, + { + "start": 431.66, + "end": 433.66, + "probability": 0.9102 + }, + { + "start": 433.92, + "end": 435.48, + "probability": 0.9967 + }, + { + "start": 435.94, + "end": 436.52, + "probability": 0.5205 + }, + { + "start": 436.58, + "end": 437.06, + "probability": 0.8013 + }, + { + "start": 437.96, + "end": 438.94, + "probability": 0.9254 + }, + { + "start": 440.42, + "end": 441.64, + "probability": 0.9585 + }, + { + "start": 442.44, + "end": 443.26, + "probability": 0.8524 + }, + { + "start": 443.88, + "end": 445.02, + "probability": 0.8271 + }, + { + "start": 445.7, + "end": 447.08, + "probability": 0.5391 + }, + { + "start": 448.0, + "end": 449.5, + "probability": 0.9902 + }, + { + "start": 450.18, + "end": 451.98, + "probability": 0.9186 + }, + { + "start": 452.72, + "end": 454.48, + "probability": 0.9961 + }, + { + "start": 455.22, + "end": 456.8, + "probability": 0.8923 + }, + { + "start": 457.58, + "end": 458.6, + "probability": 0.9344 + }, + { + "start": 459.26, + "end": 460.1, + "probability": 0.854 + }, + { + "start": 460.9, + "end": 463.54, + "probability": 0.7994 + }, + { + "start": 464.74, + "end": 465.22, + "probability": 0.5534 + }, + { + "start": 465.36, + "end": 467.36, + "probability": 0.8404 + }, + { + "start": 467.4, + "end": 468.72, + "probability": 0.9579 + }, + { + "start": 475.04, + "end": 476.18, + "probability": 0.6321 + }, + { + "start": 476.74, + "end": 479.4, + "probability": 0.7996 + }, + { + "start": 481.28, + "end": 484.0, + "probability": 0.7398 + }, + { + "start": 484.0, + "end": 487.3, + "probability": 0.9714 + }, + { + "start": 488.16, + "end": 492.36, + "probability": 0.8748 + }, + { + "start": 492.92, + "end": 494.08, + "probability": 0.94 + }, + { + "start": 495.3, + "end": 501.14, + "probability": 0.8745 + }, + { + "start": 501.8, + "end": 501.82, + "probability": 0.8848 + }, + { + "start": 502.54, + "end": 504.26, + "probability": 0.9849 + }, + { + "start": 504.78, + "end": 508.14, + "probability": 0.9962 + }, + { + "start": 508.14, + "end": 512.0, + "probability": 0.973 + }, + { + "start": 512.7, + "end": 517.42, + "probability": 0.8928 + }, + { + "start": 518.98, + "end": 520.8, + "probability": 0.2742 + }, + { + "start": 521.36, + "end": 523.7, + "probability": 0.8313 + }, + { + "start": 524.32, + "end": 528.38, + "probability": 0.9163 + }, + { + "start": 528.76, + "end": 531.1, + "probability": 0.9471 + }, + { + "start": 531.6, + "end": 532.04, + "probability": 0.8578 + }, + { + "start": 533.34, + "end": 533.8, + "probability": 0.6698 + }, + { + "start": 533.8, + "end": 535.76, + "probability": 0.8672 + }, + { + "start": 535.8, + "end": 537.78, + "probability": 0.9303 + }, + { + "start": 548.4, + "end": 549.06, + "probability": 0.5278 + }, + { + "start": 550.4, + "end": 551.34, + "probability": 0.6492 + }, + { + "start": 552.44, + "end": 556.18, + "probability": 0.9955 + }, + { + "start": 556.96, + "end": 566.1, + "probability": 0.9971 + }, + { + "start": 566.98, + "end": 568.52, + "probability": 0.7871 + }, + { + "start": 569.54, + "end": 570.1, + "probability": 0.7496 + }, + { + "start": 571.22, + "end": 575.08, + "probability": 0.9993 + }, + { + "start": 575.9, + "end": 579.14, + "probability": 0.9969 + }, + { + "start": 579.58, + "end": 583.36, + "probability": 0.9927 + }, + { + "start": 585.1, + "end": 590.48, + "probability": 0.9333 + }, + { + "start": 591.2, + "end": 592.84, + "probability": 0.9088 + }, + { + "start": 593.48, + "end": 595.36, + "probability": 0.8693 + }, + { + "start": 595.54, + "end": 599.22, + "probability": 0.9469 + }, + { + "start": 599.76, + "end": 605.18, + "probability": 0.9956 + }, + { + "start": 605.86, + "end": 608.76, + "probability": 0.8374 + }, + { + "start": 609.72, + "end": 611.58, + "probability": 0.9929 + }, + { + "start": 612.64, + "end": 615.56, + "probability": 0.9929 + }, + { + "start": 616.52, + "end": 623.38, + "probability": 0.9939 + }, + { + "start": 624.16, + "end": 628.1, + "probability": 0.9967 + }, + { + "start": 628.7, + "end": 631.82, + "probability": 0.9892 + }, + { + "start": 632.36, + "end": 635.68, + "probability": 0.9992 + }, + { + "start": 635.68, + "end": 640.22, + "probability": 0.9971 + }, + { + "start": 640.26, + "end": 644.76, + "probability": 0.9858 + }, + { + "start": 644.88, + "end": 648.8, + "probability": 0.9989 + }, + { + "start": 649.42, + "end": 650.38, + "probability": 0.9559 + }, + { + "start": 650.84, + "end": 651.88, + "probability": 0.9111 + }, + { + "start": 652.34, + "end": 653.48, + "probability": 0.9292 + }, + { + "start": 653.88, + "end": 654.86, + "probability": 0.9851 + }, + { + "start": 654.94, + "end": 659.52, + "probability": 0.9969 + }, + { + "start": 659.94, + "end": 660.8, + "probability": 0.9426 + }, + { + "start": 661.42, + "end": 662.44, + "probability": 0.8869 + }, + { + "start": 663.08, + "end": 665.28, + "probability": 0.9754 + }, + { + "start": 665.82, + "end": 670.1, + "probability": 0.9936 + }, + { + "start": 670.56, + "end": 673.12, + "probability": 0.8859 + }, + { + "start": 673.64, + "end": 676.64, + "probability": 0.9987 + }, + { + "start": 677.0, + "end": 678.16, + "probability": 0.9207 + }, + { + "start": 678.6, + "end": 679.82, + "probability": 0.9606 + }, + { + "start": 680.2, + "end": 682.82, + "probability": 0.998 + }, + { + "start": 683.9, + "end": 684.44, + "probability": 0.6155 + }, + { + "start": 684.68, + "end": 686.52, + "probability": 0.8606 + }, + { + "start": 687.94, + "end": 688.22, + "probability": 0.2805 + }, + { + "start": 688.96, + "end": 691.76, + "probability": 0.8696 + }, + { + "start": 700.62, + "end": 702.1, + "probability": 0.6525 + }, + { + "start": 704.26, + "end": 707.1, + "probability": 0.793 + }, + { + "start": 707.72, + "end": 708.14, + "probability": 0.6087 + }, + { + "start": 708.38, + "end": 711.9, + "probability": 0.983 + }, + { + "start": 712.32, + "end": 713.28, + "probability": 0.9629 + }, + { + "start": 713.38, + "end": 717.22, + "probability": 0.9977 + }, + { + "start": 717.22, + "end": 721.24, + "probability": 0.9976 + }, + { + "start": 722.14, + "end": 725.4, + "probability": 0.9928 + }, + { + "start": 725.4, + "end": 728.92, + "probability": 0.9989 + }, + { + "start": 729.4, + "end": 733.3, + "probability": 0.9662 + }, + { + "start": 733.94, + "end": 736.62, + "probability": 0.9863 + }, + { + "start": 736.62, + "end": 740.1, + "probability": 0.9783 + }, + { + "start": 740.88, + "end": 744.42, + "probability": 0.9941 + }, + { + "start": 744.42, + "end": 747.48, + "probability": 0.9995 + }, + { + "start": 747.98, + "end": 752.9, + "probability": 0.9974 + }, + { + "start": 753.32, + "end": 755.66, + "probability": 0.9403 + }, + { + "start": 756.24, + "end": 757.74, + "probability": 0.9088 + }, + { + "start": 758.02, + "end": 762.88, + "probability": 0.988 + }, + { + "start": 763.4, + "end": 767.28, + "probability": 0.9658 + }, + { + "start": 767.28, + "end": 771.32, + "probability": 0.9969 + }, + { + "start": 771.78, + "end": 775.32, + "probability": 0.979 + }, + { + "start": 775.4, + "end": 779.72, + "probability": 0.989 + }, + { + "start": 779.72, + "end": 784.64, + "probability": 0.9856 + }, + { + "start": 785.0, + "end": 785.52, + "probability": 0.7333 + }, + { + "start": 786.2, + "end": 786.68, + "probability": 0.5985 + }, + { + "start": 786.7, + "end": 788.98, + "probability": 0.7837 + }, + { + "start": 789.98, + "end": 793.8, + "probability": 0.9855 + }, + { + "start": 793.92, + "end": 795.8, + "probability": 0.9417 + }, + { + "start": 796.02, + "end": 796.4, + "probability": 0.7729 + }, + { + "start": 796.82, + "end": 797.62, + "probability": 0.6959 + }, + { + "start": 804.33, + "end": 805.8, + "probability": 0.884 + }, + { + "start": 806.86, + "end": 808.16, + "probability": 0.9429 + }, + { + "start": 810.24, + "end": 810.44, + "probability": 0.6787 + }, + { + "start": 811.83, + "end": 812.04, + "probability": 0.0655 + }, + { + "start": 812.04, + "end": 812.8, + "probability": 0.0679 + }, + { + "start": 814.8, + "end": 817.32, + "probability": 0.7103 + }, + { + "start": 818.3, + "end": 822.06, + "probability": 0.9866 + }, + { + "start": 823.12, + "end": 828.32, + "probability": 0.9991 + }, + { + "start": 828.94, + "end": 833.0, + "probability": 0.97 + }, + { + "start": 834.3, + "end": 836.92, + "probability": 0.9945 + }, + { + "start": 837.02, + "end": 838.4, + "probability": 0.9941 + }, + { + "start": 838.52, + "end": 840.12, + "probability": 0.9536 + }, + { + "start": 840.66, + "end": 842.98, + "probability": 0.993 + }, + { + "start": 844.46, + "end": 848.24, + "probability": 0.9965 + }, + { + "start": 848.24, + "end": 852.42, + "probability": 0.9951 + }, + { + "start": 853.14, + "end": 855.2, + "probability": 0.9955 + }, + { + "start": 855.54, + "end": 856.96, + "probability": 0.8547 + }, + { + "start": 857.52, + "end": 860.36, + "probability": 0.9523 + }, + { + "start": 861.48, + "end": 861.76, + "probability": 0.3854 + }, + { + "start": 862.4, + "end": 866.66, + "probability": 0.9581 + }, + { + "start": 867.7, + "end": 871.68, + "probability": 0.9648 + }, + { + "start": 872.3, + "end": 875.66, + "probability": 0.9875 + }, + { + "start": 876.6, + "end": 878.0, + "probability": 0.8541 + }, + { + "start": 878.98, + "end": 883.94, + "probability": 0.9836 + }, + { + "start": 884.72, + "end": 887.36, + "probability": 0.9676 + }, + { + "start": 888.4, + "end": 892.4, + "probability": 0.9948 + }, + { + "start": 892.4, + "end": 897.94, + "probability": 0.9945 + }, + { + "start": 898.32, + "end": 898.5, + "probability": 0.4224 + }, + { + "start": 898.64, + "end": 901.36, + "probability": 0.9789 + }, + { + "start": 902.42, + "end": 906.34, + "probability": 0.9976 + }, + { + "start": 906.88, + "end": 909.64, + "probability": 0.8712 + }, + { + "start": 910.2, + "end": 913.64, + "probability": 0.9888 + }, + { + "start": 914.2, + "end": 917.66, + "probability": 0.9878 + }, + { + "start": 917.96, + "end": 918.2, + "probability": 0.9147 + }, + { + "start": 919.6, + "end": 920.14, + "probability": 0.7209 + }, + { + "start": 920.28, + "end": 924.2, + "probability": 0.9839 + }, + { + "start": 924.88, + "end": 928.4, + "probability": 0.969 + }, + { + "start": 929.0, + "end": 929.66, + "probability": 0.2579 + }, + { + "start": 930.4, + "end": 936.06, + "probability": 0.2762 + }, + { + "start": 936.7, + "end": 940.72, + "probability": 0.8862 + }, + { + "start": 940.82, + "end": 941.52, + "probability": 0.8879 + }, + { + "start": 966.68, + "end": 967.4, + "probability": 0.7113 + }, + { + "start": 967.58, + "end": 968.82, + "probability": 0.8378 + }, + { + "start": 969.02, + "end": 969.34, + "probability": 0.7017 + }, + { + "start": 969.48, + "end": 971.03, + "probability": 0.9966 + }, + { + "start": 972.06, + "end": 974.16, + "probability": 0.9708 + }, + { + "start": 974.68, + "end": 976.96, + "probability": 0.9066 + }, + { + "start": 977.72, + "end": 979.77, + "probability": 0.993 + }, + { + "start": 980.42, + "end": 982.88, + "probability": 0.986 + }, + { + "start": 983.74, + "end": 986.91, + "probability": 0.972 + }, + { + "start": 987.18, + "end": 987.58, + "probability": 0.8704 + }, + { + "start": 987.78, + "end": 988.2, + "probability": 0.6195 + }, + { + "start": 988.42, + "end": 992.62, + "probability": 0.9959 + }, + { + "start": 993.34, + "end": 995.02, + "probability": 0.9627 + }, + { + "start": 995.22, + "end": 1001.48, + "probability": 0.9378 + }, + { + "start": 1002.08, + "end": 1002.56, + "probability": 0.5704 + }, + { + "start": 1002.8, + "end": 1007.4, + "probability": 0.9699 + }, + { + "start": 1007.4, + "end": 1010.34, + "probability": 0.9969 + }, + { + "start": 1011.16, + "end": 1012.6, + "probability": 0.9829 + }, + { + "start": 1012.64, + "end": 1013.64, + "probability": 0.852 + }, + { + "start": 1014.08, + "end": 1019.08, + "probability": 0.9917 + }, + { + "start": 1019.98, + "end": 1021.0, + "probability": 0.8663 + }, + { + "start": 1021.06, + "end": 1022.1, + "probability": 0.8681 + }, + { + "start": 1022.16, + "end": 1022.88, + "probability": 0.8495 + }, + { + "start": 1023.1, + "end": 1024.66, + "probability": 0.9446 + }, + { + "start": 1026.24, + "end": 1031.42, + "probability": 0.9316 + }, + { + "start": 1031.54, + "end": 1032.68, + "probability": 0.9458 + }, + { + "start": 1033.1, + "end": 1033.42, + "probability": 0.728 + }, + { + "start": 1033.5, + "end": 1037.68, + "probability": 0.9544 + }, + { + "start": 1037.88, + "end": 1039.56, + "probability": 0.9861 + }, + { + "start": 1040.36, + "end": 1044.28, + "probability": 0.8677 + }, + { + "start": 1044.44, + "end": 1045.04, + "probability": 0.7943 + }, + { + "start": 1045.16, + "end": 1045.64, + "probability": 0.8169 + }, + { + "start": 1045.84, + "end": 1046.26, + "probability": 0.7578 + }, + { + "start": 1046.36, + "end": 1047.32, + "probability": 0.9357 + }, + { + "start": 1047.44, + "end": 1048.0, + "probability": 0.6991 + }, + { + "start": 1049.0, + "end": 1050.0, + "probability": 0.8134 + }, + { + "start": 1050.06, + "end": 1050.52, + "probability": 0.8889 + }, + { + "start": 1050.58, + "end": 1053.08, + "probability": 0.937 + }, + { + "start": 1054.16, + "end": 1055.3, + "probability": 0.8625 + }, + { + "start": 1055.9, + "end": 1057.96, + "probability": 0.8199 + }, + { + "start": 1058.5, + "end": 1061.24, + "probability": 0.8389 + }, + { + "start": 1061.42, + "end": 1062.42, + "probability": 0.8089 + }, + { + "start": 1062.68, + "end": 1063.84, + "probability": 0.7764 + }, + { + "start": 1064.17, + "end": 1067.8, + "probability": 0.8331 + }, + { + "start": 1068.42, + "end": 1069.92, + "probability": 0.9813 + }, + { + "start": 1070.34, + "end": 1071.2, + "probability": 0.9772 + }, + { + "start": 1071.84, + "end": 1073.72, + "probability": 0.9694 + }, + { + "start": 1073.88, + "end": 1077.9, + "probability": 0.9626 + }, + { + "start": 1078.1, + "end": 1079.38, + "probability": 0.6835 + }, + { + "start": 1080.1, + "end": 1081.32, + "probability": 0.8051 + }, + { + "start": 1081.68, + "end": 1083.06, + "probability": 0.8605 + }, + { + "start": 1083.24, + "end": 1085.22, + "probability": 0.9294 + }, + { + "start": 1085.42, + "end": 1089.2, + "probability": 0.7777 + }, + { + "start": 1089.76, + "end": 1090.24, + "probability": 0.4396 + }, + { + "start": 1090.64, + "end": 1092.42, + "probability": 0.9971 + }, + { + "start": 1092.7, + "end": 1097.2, + "probability": 0.9891 + }, + { + "start": 1097.52, + "end": 1098.46, + "probability": 0.9232 + }, + { + "start": 1099.08, + "end": 1099.66, + "probability": 0.7866 + }, + { + "start": 1099.74, + "end": 1100.34, + "probability": 0.5849 + }, + { + "start": 1100.5, + "end": 1101.1, + "probability": 0.6746 + }, + { + "start": 1101.58, + "end": 1103.12, + "probability": 0.9832 + }, + { + "start": 1103.24, + "end": 1104.52, + "probability": 0.9575 + }, + { + "start": 1104.6, + "end": 1107.58, + "probability": 0.9961 + }, + { + "start": 1108.18, + "end": 1109.9, + "probability": 0.9491 + }, + { + "start": 1110.04, + "end": 1112.0, + "probability": 0.9128 + }, + { + "start": 1112.26, + "end": 1112.68, + "probability": 0.4492 + }, + { + "start": 1113.16, + "end": 1113.98, + "probability": 0.9504 + }, + { + "start": 1114.9, + "end": 1115.26, + "probability": 0.4189 + }, + { + "start": 1116.56, + "end": 1116.98, + "probability": 0.0888 + }, + { + "start": 1116.98, + "end": 1116.98, + "probability": 0.0558 + }, + { + "start": 1116.98, + "end": 1121.52, + "probability": 0.7484 + }, + { + "start": 1122.86, + "end": 1123.42, + "probability": 0.9136 + }, + { + "start": 1125.3, + "end": 1129.58, + "probability": 0.957 + }, + { + "start": 1130.72, + "end": 1131.21, + "probability": 0.696 + }, + { + "start": 1131.64, + "end": 1132.28, + "probability": 0.9397 + }, + { + "start": 1132.56, + "end": 1135.16, + "probability": 0.9827 + }, + { + "start": 1135.7, + "end": 1138.9, + "probability": 0.7705 + }, + { + "start": 1139.0, + "end": 1143.4, + "probability": 0.3483 + }, + { + "start": 1143.94, + "end": 1148.8, + "probability": 0.9766 + }, + { + "start": 1148.9, + "end": 1154.36, + "probability": 0.9959 + }, + { + "start": 1154.9, + "end": 1158.94, + "probability": 0.9842 + }, + { + "start": 1159.58, + "end": 1162.28, + "probability": 0.7833 + }, + { + "start": 1163.1, + "end": 1164.4, + "probability": 0.9161 + }, + { + "start": 1164.68, + "end": 1165.56, + "probability": 0.7842 + }, + { + "start": 1166.02, + "end": 1169.96, + "probability": 0.9925 + }, + { + "start": 1170.42, + "end": 1173.82, + "probability": 0.9813 + }, + { + "start": 1174.3, + "end": 1175.84, + "probability": 0.9955 + }, + { + "start": 1176.26, + "end": 1180.4, + "probability": 0.9974 + }, + { + "start": 1181.0, + "end": 1184.46, + "probability": 0.9947 + }, + { + "start": 1185.08, + "end": 1189.4, + "probability": 0.9966 + }, + { + "start": 1189.4, + "end": 1193.24, + "probability": 0.9974 + }, + { + "start": 1193.88, + "end": 1197.46, + "probability": 0.9836 + }, + { + "start": 1197.46, + "end": 1202.28, + "probability": 0.9502 + }, + { + "start": 1203.26, + "end": 1203.72, + "probability": 0.6428 + }, + { + "start": 1205.42, + "end": 1206.74, + "probability": 0.7258 + }, + { + "start": 1208.16, + "end": 1210.6, + "probability": 0.9041 + }, + { + "start": 1210.74, + "end": 1210.98, + "probability": 0.5354 + }, + { + "start": 1211.1, + "end": 1212.1, + "probability": 0.9692 + }, + { + "start": 1212.16, + "end": 1212.38, + "probability": 0.6201 + }, + { + "start": 1212.46, + "end": 1213.48, + "probability": 0.9968 + }, + { + "start": 1213.6, + "end": 1213.82, + "probability": 0.6971 + }, + { + "start": 1214.8, + "end": 1216.98, + "probability": 0.9845 + }, + { + "start": 1217.04, + "end": 1217.38, + "probability": 0.5317 + }, + { + "start": 1217.46, + "end": 1218.14, + "probability": 0.9512 + }, + { + "start": 1218.14, + "end": 1218.14, + "probability": 0.82 + }, + { + "start": 1218.14, + "end": 1218.49, + "probability": 0.9401 + }, + { + "start": 1219.82, + "end": 1220.44, + "probability": 0.9238 + }, + { + "start": 1221.12, + "end": 1222.28, + "probability": 0.9912 + }, + { + "start": 1222.8, + "end": 1223.16, + "probability": 0.9751 + }, + { + "start": 1223.72, + "end": 1224.84, + "probability": 0.9966 + }, + { + "start": 1226.3, + "end": 1227.56, + "probability": 0.9822 + }, + { + "start": 1228.14, + "end": 1229.36, + "probability": 0.9493 + }, + { + "start": 1229.88, + "end": 1230.39, + "probability": 0.5335 + }, + { + "start": 1230.66, + "end": 1230.9, + "probability": 0.7345 + }, + { + "start": 1231.12, + "end": 1232.08, + "probability": 0.8213 + }, + { + "start": 1232.22, + "end": 1232.32, + "probability": 0.7477 + }, + { + "start": 1232.44, + "end": 1233.2, + "probability": 0.8366 + }, + { + "start": 1233.58, + "end": 1233.74, + "probability": 0.6486 + }, + { + "start": 1234.44, + "end": 1235.52, + "probability": 0.9941 + }, + { + "start": 1235.56, + "end": 1235.9, + "probability": 0.8197 + }, + { + "start": 1235.98, + "end": 1237.06, + "probability": 0.9954 + }, + { + "start": 1237.34, + "end": 1239.52, + "probability": 0.8136 + }, + { + "start": 1239.88, + "end": 1241.3, + "probability": 0.994 + }, + { + "start": 1241.38, + "end": 1241.48, + "probability": 0.8309 + }, + { + "start": 1242.08, + "end": 1242.84, + "probability": 0.3819 + }, + { + "start": 1242.84, + "end": 1243.1, + "probability": 0.1852 + }, + { + "start": 1245.2, + "end": 1245.62, + "probability": 0.4618 + }, + { + "start": 1246.7, + "end": 1247.08, + "probability": 0.4064 + }, + { + "start": 1247.14, + "end": 1247.48, + "probability": 0.3851 + }, + { + "start": 1247.58, + "end": 1248.7, + "probability": 0.7803 + }, + { + "start": 1252.8, + "end": 1253.8, + "probability": 0.8004 + }, + { + "start": 1278.3, + "end": 1279.04, + "probability": 0.0257 + }, + { + "start": 1279.3, + "end": 1282.08, + "probability": 0.951 + }, + { + "start": 1282.44, + "end": 1285.0, + "probability": 0.9468 + }, + { + "start": 1285.85, + "end": 1287.56, + "probability": 0.8361 + }, + { + "start": 1287.76, + "end": 1290.36, + "probability": 0.5874 + }, + { + "start": 1291.34, + "end": 1292.08, + "probability": 0.5001 + }, + { + "start": 1292.26, + "end": 1293.86, + "probability": 0.9331 + }, + { + "start": 1294.0, + "end": 1296.18, + "probability": 0.9766 + }, + { + "start": 1297.2, + "end": 1299.64, + "probability": 0.9979 + }, + { + "start": 1301.04, + "end": 1304.02, + "probability": 0.9681 + }, + { + "start": 1304.32, + "end": 1307.2, + "probability": 0.8266 + }, + { + "start": 1307.98, + "end": 1309.9, + "probability": 0.9352 + }, + { + "start": 1310.12, + "end": 1312.12, + "probability": 0.9932 + }, + { + "start": 1312.78, + "end": 1314.56, + "probability": 0.7954 + }, + { + "start": 1316.04, + "end": 1316.82, + "probability": 0.9046 + }, + { + "start": 1317.26, + "end": 1317.98, + "probability": 0.8046 + }, + { + "start": 1318.12, + "end": 1319.04, + "probability": 0.6747 + }, + { + "start": 1319.08, + "end": 1320.15, + "probability": 0.805 + }, + { + "start": 1322.02, + "end": 1329.58, + "probability": 0.9619 + }, + { + "start": 1329.64, + "end": 1336.42, + "probability": 0.9755 + }, + { + "start": 1336.52, + "end": 1338.04, + "probability": 0.8247 + }, + { + "start": 1338.14, + "end": 1338.83, + "probability": 0.8296 + }, + { + "start": 1339.28, + "end": 1341.98, + "probability": 0.9152 + }, + { + "start": 1345.36, + "end": 1346.26, + "probability": 0.8847 + }, + { + "start": 1348.92, + "end": 1356.34, + "probability": 0.7535 + }, + { + "start": 1356.5, + "end": 1356.76, + "probability": 0.361 + }, + { + "start": 1356.82, + "end": 1357.98, + "probability": 0.9917 + }, + { + "start": 1358.14, + "end": 1359.78, + "probability": 0.9054 + }, + { + "start": 1360.52, + "end": 1361.64, + "probability": 0.9756 + }, + { + "start": 1363.22, + "end": 1365.84, + "probability": 0.7102 + }, + { + "start": 1368.68, + "end": 1371.7, + "probability": 0.9952 + }, + { + "start": 1371.7, + "end": 1375.9, + "probability": 0.9993 + }, + { + "start": 1376.1, + "end": 1380.99, + "probability": 0.9658 + }, + { + "start": 1381.16, + "end": 1381.82, + "probability": 0.7299 + }, + { + "start": 1381.9, + "end": 1385.24, + "probability": 0.9847 + }, + { + "start": 1385.6, + "end": 1387.6, + "probability": 0.8198 + }, + { + "start": 1388.12, + "end": 1389.88, + "probability": 0.5537 + }, + { + "start": 1390.18, + "end": 1391.3, + "probability": 0.6667 + }, + { + "start": 1391.5, + "end": 1394.84, + "probability": 0.9784 + }, + { + "start": 1394.84, + "end": 1399.89, + "probability": 0.9819 + }, + { + "start": 1400.02, + "end": 1402.54, + "probability": 0.542 + }, + { + "start": 1403.81, + "end": 1407.02, + "probability": 0.7682 + }, + { + "start": 1408.2, + "end": 1409.88, + "probability": 0.9336 + }, + { + "start": 1411.1, + "end": 1413.44, + "probability": 0.8366 + }, + { + "start": 1413.72, + "end": 1414.84, + "probability": 0.9961 + }, + { + "start": 1414.88, + "end": 1417.56, + "probability": 0.5915 + }, + { + "start": 1418.56, + "end": 1421.78, + "probability": 0.976 + }, + { + "start": 1422.28, + "end": 1423.12, + "probability": 0.5807 + }, + { + "start": 1423.44, + "end": 1424.1, + "probability": 0.1102 + }, + { + "start": 1425.04, + "end": 1427.02, + "probability": 0.9945 + }, + { + "start": 1428.06, + "end": 1433.06, + "probability": 0.993 + }, + { + "start": 1433.64, + "end": 1436.84, + "probability": 0.8095 + }, + { + "start": 1437.66, + "end": 1439.2, + "probability": 0.7735 + }, + { + "start": 1439.48, + "end": 1441.54, + "probability": 0.9915 + }, + { + "start": 1442.43, + "end": 1445.5, + "probability": 0.857 + }, + { + "start": 1445.6, + "end": 1451.74, + "probability": 0.8659 + }, + { + "start": 1452.35, + "end": 1455.06, + "probability": 0.1408 + }, + { + "start": 1455.06, + "end": 1455.06, + "probability": 0.269 + }, + { + "start": 1455.06, + "end": 1461.54, + "probability": 0.9324 + }, + { + "start": 1462.18, + "end": 1463.38, + "probability": 0.9734 + }, + { + "start": 1463.46, + "end": 1463.97, + "probability": 0.9624 + }, + { + "start": 1464.38, + "end": 1465.22, + "probability": 0.8354 + }, + { + "start": 1466.32, + "end": 1466.86, + "probability": 0.9707 + }, + { + "start": 1467.88, + "end": 1468.84, + "probability": 0.6266 + }, + { + "start": 1468.88, + "end": 1470.18, + "probability": 0.8679 + }, + { + "start": 1470.22, + "end": 1474.36, + "probability": 0.8561 + }, + { + "start": 1474.54, + "end": 1476.72, + "probability": 0.9842 + }, + { + "start": 1476.76, + "end": 1479.08, + "probability": 0.9798 + }, + { + "start": 1480.02, + "end": 1486.18, + "probability": 0.916 + }, + { + "start": 1486.62, + "end": 1488.14, + "probability": 0.8745 + }, + { + "start": 1489.08, + "end": 1494.0, + "probability": 0.9971 + }, + { + "start": 1494.0, + "end": 1497.56, + "probability": 0.9896 + }, + { + "start": 1497.64, + "end": 1499.0, + "probability": 0.8542 + }, + { + "start": 1499.52, + "end": 1500.72, + "probability": 0.9865 + }, + { + "start": 1500.76, + "end": 1502.18, + "probability": 0.9565 + }, + { + "start": 1503.24, + "end": 1506.24, + "probability": 0.995 + }, + { + "start": 1506.24, + "end": 1507.32, + "probability": 0.5017 + }, + { + "start": 1508.44, + "end": 1511.28, + "probability": 0.9772 + }, + { + "start": 1513.3, + "end": 1514.1, + "probability": 0.7244 + }, + { + "start": 1515.46, + "end": 1516.82, + "probability": 0.7169 + }, + { + "start": 1517.22, + "end": 1518.44, + "probability": 0.8525 + }, + { + "start": 1536.56, + "end": 1538.34, + "probability": 0.656 + }, + { + "start": 1538.42, + "end": 1539.06, + "probability": 0.5447 + }, + { + "start": 1539.2, + "end": 1540.42, + "probability": 0.5898 + }, + { + "start": 1540.66, + "end": 1546.82, + "probability": 0.8661 + }, + { + "start": 1547.46, + "end": 1551.32, + "probability": 0.9432 + }, + { + "start": 1552.66, + "end": 1556.06, + "probability": 0.9619 + }, + { + "start": 1556.62, + "end": 1562.24, + "probability": 0.995 + }, + { + "start": 1562.36, + "end": 1565.94, + "probability": 0.9819 + }, + { + "start": 1566.38, + "end": 1567.14, + "probability": 0.8435 + }, + { + "start": 1567.36, + "end": 1570.78, + "probability": 0.9849 + }, + { + "start": 1570.9, + "end": 1571.4, + "probability": 0.6643 + }, + { + "start": 1571.44, + "end": 1574.88, + "probability": 0.9898 + }, + { + "start": 1574.88, + "end": 1579.04, + "probability": 0.9955 + }, + { + "start": 1580.1, + "end": 1580.94, + "probability": 0.3368 + }, + { + "start": 1581.58, + "end": 1584.68, + "probability": 0.9956 + }, + { + "start": 1584.68, + "end": 1588.82, + "probability": 0.9837 + }, + { + "start": 1591.24, + "end": 1598.06, + "probability": 0.9641 + }, + { + "start": 1598.12, + "end": 1598.78, + "probability": 0.5065 + }, + { + "start": 1598.94, + "end": 1602.2, + "probability": 0.9922 + }, + { + "start": 1602.72, + "end": 1604.24, + "probability": 0.9888 + }, + { + "start": 1604.38, + "end": 1606.96, + "probability": 0.9851 + }, + { + "start": 1607.18, + "end": 1612.56, + "probability": 0.9892 + }, + { + "start": 1612.72, + "end": 1614.18, + "probability": 0.6332 + }, + { + "start": 1614.22, + "end": 1614.92, + "probability": 0.8542 + }, + { + "start": 1615.12, + "end": 1618.78, + "probability": 0.7392 + }, + { + "start": 1618.84, + "end": 1619.72, + "probability": 0.9816 + }, + { + "start": 1619.78, + "end": 1621.74, + "probability": 0.9183 + }, + { + "start": 1621.74, + "end": 1624.72, + "probability": 0.6729 + }, + { + "start": 1624.84, + "end": 1628.78, + "probability": 0.9965 + }, + { + "start": 1628.78, + "end": 1632.62, + "probability": 0.9871 + }, + { + "start": 1632.74, + "end": 1633.66, + "probability": 0.9411 + }, + { + "start": 1634.36, + "end": 1636.16, + "probability": 0.9877 + }, + { + "start": 1637.58, + "end": 1640.08, + "probability": 0.9951 + }, + { + "start": 1640.38, + "end": 1643.46, + "probability": 0.9986 + }, + { + "start": 1644.26, + "end": 1647.06, + "probability": 0.9995 + }, + { + "start": 1647.2, + "end": 1651.18, + "probability": 0.9798 + }, + { + "start": 1651.26, + "end": 1653.14, + "probability": 0.9795 + }, + { + "start": 1653.8, + "end": 1657.28, + "probability": 0.9949 + }, + { + "start": 1657.52, + "end": 1661.32, + "probability": 0.9966 + }, + { + "start": 1661.32, + "end": 1664.94, + "probability": 0.9976 + }, + { + "start": 1666.04, + "end": 1670.46, + "probability": 0.9941 + }, + { + "start": 1670.46, + "end": 1674.86, + "probability": 0.9966 + }, + { + "start": 1675.06, + "end": 1675.26, + "probability": 0.4954 + }, + { + "start": 1677.24, + "end": 1677.98, + "probability": 0.8147 + }, + { + "start": 1678.46, + "end": 1680.0, + "probability": 0.9184 + }, + { + "start": 1680.06, + "end": 1680.28, + "probability": 0.54 + }, + { + "start": 1680.38, + "end": 1681.38, + "probability": 0.9854 + }, + { + "start": 1681.46, + "end": 1681.74, + "probability": 0.8644 + }, + { + "start": 1681.82, + "end": 1682.84, + "probability": 0.9939 + }, + { + "start": 1683.58, + "end": 1686.16, + "probability": 0.8289 + }, + { + "start": 1686.36, + "end": 1687.86, + "probability": 0.8437 + }, + { + "start": 1717.44, + "end": 1719.38, + "probability": 0.6925 + }, + { + "start": 1721.64, + "end": 1725.72, + "probability": 0.9712 + }, + { + "start": 1725.76, + "end": 1727.26, + "probability": 0.9749 + }, + { + "start": 1728.02, + "end": 1732.5, + "probability": 0.9946 + }, + { + "start": 1734.47, + "end": 1742.7, + "probability": 0.9965 + }, + { + "start": 1743.57, + "end": 1748.48, + "probability": 0.9803 + }, + { + "start": 1749.28, + "end": 1754.82, + "probability": 0.9976 + }, + { + "start": 1755.68, + "end": 1757.92, + "probability": 0.8533 + }, + { + "start": 1758.66, + "end": 1761.8, + "probability": 0.8778 + }, + { + "start": 1762.4, + "end": 1763.38, + "probability": 0.7609 + }, + { + "start": 1764.2, + "end": 1766.9, + "probability": 0.9692 + }, + { + "start": 1767.78, + "end": 1772.78, + "probability": 0.9836 + }, + { + "start": 1774.0, + "end": 1778.92, + "probability": 0.9964 + }, + { + "start": 1779.0, + "end": 1783.32, + "probability": 0.9917 + }, + { + "start": 1784.14, + "end": 1788.62, + "probability": 0.9599 + }, + { + "start": 1789.42, + "end": 1790.26, + "probability": 0.7098 + }, + { + "start": 1792.08, + "end": 1795.68, + "probability": 0.8608 + }, + { + "start": 1796.4, + "end": 1799.64, + "probability": 0.9934 + }, + { + "start": 1799.64, + "end": 1805.2, + "probability": 0.9849 + }, + { + "start": 1806.54, + "end": 1811.4, + "probability": 0.9955 + }, + { + "start": 1812.04, + "end": 1812.92, + "probability": 0.9747 + }, + { + "start": 1814.08, + "end": 1816.38, + "probability": 0.8147 + }, + { + "start": 1816.66, + "end": 1821.36, + "probability": 0.7742 + }, + { + "start": 1821.44, + "end": 1823.7, + "probability": 0.9948 + }, + { + "start": 1824.18, + "end": 1825.88, + "probability": 0.9775 + }, + { + "start": 1826.84, + "end": 1831.46, + "probability": 0.98 + }, + { + "start": 1832.06, + "end": 1834.82, + "probability": 0.8261 + }, + { + "start": 1835.66, + "end": 1836.2, + "probability": 0.6899 + }, + { + "start": 1836.38, + "end": 1838.54, + "probability": 0.99 + }, + { + "start": 1839.2, + "end": 1840.28, + "probability": 0.8747 + }, + { + "start": 1840.36, + "end": 1842.89, + "probability": 0.9646 + }, + { + "start": 1845.1, + "end": 1848.06, + "probability": 0.9834 + }, + { + "start": 1848.56, + "end": 1850.1, + "probability": 0.9415 + }, + { + "start": 1851.52, + "end": 1854.24, + "probability": 0.8017 + }, + { + "start": 1855.04, + "end": 1860.88, + "probability": 0.9967 + }, + { + "start": 1861.74, + "end": 1865.68, + "probability": 0.9932 + }, + { + "start": 1865.74, + "end": 1866.54, + "probability": 0.8223 + }, + { + "start": 1867.66, + "end": 1870.22, + "probability": 0.8033 + }, + { + "start": 1871.2, + "end": 1874.4, + "probability": 0.8394 + }, + { + "start": 1875.38, + "end": 1876.88, + "probability": 0.8828 + }, + { + "start": 1877.02, + "end": 1879.82, + "probability": 0.7183 + }, + { + "start": 1880.32, + "end": 1886.6, + "probability": 0.9783 + }, + { + "start": 1887.24, + "end": 1888.23, + "probability": 0.7715 + }, + { + "start": 1889.04, + "end": 1891.9, + "probability": 0.9678 + }, + { + "start": 1892.5, + "end": 1897.28, + "probability": 0.9945 + }, + { + "start": 1897.9, + "end": 1902.48, + "probability": 0.9667 + }, + { + "start": 1903.12, + "end": 1904.06, + "probability": 0.9837 + }, + { + "start": 1904.74, + "end": 1905.2, + "probability": 0.8438 + }, + { + "start": 1905.94, + "end": 1909.72, + "probability": 0.96 + }, + { + "start": 1910.76, + "end": 1914.3, + "probability": 0.9335 + }, + { + "start": 1914.66, + "end": 1914.9, + "probability": 0.7147 + }, + { + "start": 1915.42, + "end": 1915.52, + "probability": 0.9445 + }, + { + "start": 1916.92, + "end": 1926.22, + "probability": 0.9561 + }, + { + "start": 1927.72, + "end": 1931.92, + "probability": 0.9819 + }, + { + "start": 1932.9, + "end": 1935.26, + "probability": 0.8979 + }, + { + "start": 1935.3, + "end": 1936.06, + "probability": 0.5915 + }, + { + "start": 1936.16, + "end": 1936.88, + "probability": 0.9762 + }, + { + "start": 1936.94, + "end": 1937.82, + "probability": 0.9466 + }, + { + "start": 1938.3, + "end": 1939.55, + "probability": 0.9848 + }, + { + "start": 1939.64, + "end": 1941.92, + "probability": 0.9897 + }, + { + "start": 1943.4, + "end": 1944.0, + "probability": 0.3837 + }, + { + "start": 1945.02, + "end": 1947.52, + "probability": 0.6797 + }, + { + "start": 1948.06, + "end": 1950.9, + "probability": 0.8102 + }, + { + "start": 1951.56, + "end": 1955.51, + "probability": 0.9575 + }, + { + "start": 1958.22, + "end": 1958.92, + "probability": 0.863 + }, + { + "start": 1958.92, + "end": 1958.92, + "probability": 0.7125 + }, + { + "start": 1958.92, + "end": 1958.92, + "probability": 0.9612 + }, + { + "start": 1958.92, + "end": 1958.92, + "probability": 0.7017 + }, + { + "start": 1958.92, + "end": 1959.24, + "probability": 0.9612 + }, + { + "start": 1959.34, + "end": 1959.52, + "probability": 0.7569 + }, + { + "start": 1960.04, + "end": 1961.4, + "probability": 0.7168 + }, + { + "start": 1962.22, + "end": 1963.48, + "probability": 0.8401 + }, + { + "start": 1963.74, + "end": 1964.76, + "probability": 0.9734 + }, + { + "start": 1966.28, + "end": 1967.6, + "probability": 0.9951 + }, + { + "start": 1967.6, + "end": 1967.84, + "probability": 0.6152 + }, + { + "start": 1968.5, + "end": 1969.72, + "probability": 0.9016 + }, + { + "start": 1992.04, + "end": 1992.04, + "probability": 0.1721 + }, + { + "start": 1998.64, + "end": 1999.86, + "probability": 0.4474 + }, + { + "start": 2000.38, + "end": 2001.88, + "probability": 0.7343 + }, + { + "start": 2003.1, + "end": 2008.06, + "probability": 0.8987 + }, + { + "start": 2008.52, + "end": 2009.98, + "probability": 0.1932 + }, + { + "start": 2010.14, + "end": 2010.28, + "probability": 0.4177 + }, + { + "start": 2010.36, + "end": 2010.7, + "probability": 0.2281 + }, + { + "start": 2011.84, + "end": 2012.14, + "probability": 0.4993 + }, + { + "start": 2012.2, + "end": 2013.28, + "probability": 0.6726 + }, + { + "start": 2013.48, + "end": 2017.56, + "probability": 0.7997 + }, + { + "start": 2017.72, + "end": 2018.38, + "probability": 0.0135 + }, + { + "start": 2019.3, + "end": 2020.18, + "probability": 0.1732 + }, + { + "start": 2021.8, + "end": 2024.86, + "probability": 0.0781 + }, + { + "start": 2025.88, + "end": 2026.44, + "probability": 0.1213 + }, + { + "start": 2026.44, + "end": 2028.6, + "probability": 0.3571 + }, + { + "start": 2028.6, + "end": 2029.22, + "probability": 0.1103 + }, + { + "start": 2030.96, + "end": 2031.8, + "probability": 0.1701 + }, + { + "start": 2033.12, + "end": 2034.26, + "probability": 0.2163 + }, + { + "start": 2035.6, + "end": 2038.08, + "probability": 0.956 + }, + { + "start": 2038.22, + "end": 2038.78, + "probability": 0.7234 + }, + { + "start": 2039.0, + "end": 2042.72, + "probability": 0.9909 + }, + { + "start": 2042.96, + "end": 2045.04, + "probability": 0.986 + }, + { + "start": 2046.76, + "end": 2051.28, + "probability": 0.9778 + }, + { + "start": 2052.78, + "end": 2053.62, + "probability": 0.9563 + }, + { + "start": 2054.2, + "end": 2055.06, + "probability": 0.897 + }, + { + "start": 2055.84, + "end": 2056.6, + "probability": 0.7791 + }, + { + "start": 2057.96, + "end": 2062.5, + "probability": 0.8856 + }, + { + "start": 2062.64, + "end": 2063.4, + "probability": 0.5924 + }, + { + "start": 2064.02, + "end": 2065.04, + "probability": 0.5859 + }, + { + "start": 2065.94, + "end": 2068.86, + "probability": 0.999 + }, + { + "start": 2069.6, + "end": 2073.12, + "probability": 0.7251 + }, + { + "start": 2073.24, + "end": 2073.84, + "probability": 0.6997 + }, + { + "start": 2076.68, + "end": 2076.78, + "probability": 0.1065 + }, + { + "start": 2076.78, + "end": 2076.78, + "probability": 0.038 + }, + { + "start": 2076.78, + "end": 2077.06, + "probability": 0.2681 + }, + { + "start": 2079.82, + "end": 2081.52, + "probability": 0.8464 + }, + { + "start": 2081.72, + "end": 2085.76, + "probability": 0.7397 + }, + { + "start": 2086.66, + "end": 2087.38, + "probability": 0.3573 + }, + { + "start": 2087.44, + "end": 2088.48, + "probability": 0.9601 + }, + { + "start": 2089.5, + "end": 2092.38, + "probability": 0.9878 + }, + { + "start": 2092.38, + "end": 2094.68, + "probability": 0.6764 + }, + { + "start": 2095.32, + "end": 2096.9, + "probability": 0.8557 + }, + { + "start": 2097.66, + "end": 2101.42, + "probability": 0.9413 + }, + { + "start": 2102.2, + "end": 2104.28, + "probability": 0.9777 + }, + { + "start": 2105.14, + "end": 2108.26, + "probability": 0.9966 + }, + { + "start": 2108.44, + "end": 2109.15, + "probability": 0.9678 + }, + { + "start": 2109.98, + "end": 2110.74, + "probability": 0.6218 + }, + { + "start": 2111.48, + "end": 2111.78, + "probability": 0.7327 + }, + { + "start": 2111.82, + "end": 2118.52, + "probability": 0.9851 + }, + { + "start": 2118.98, + "end": 2120.5, + "probability": 0.8397 + }, + { + "start": 2120.68, + "end": 2121.16, + "probability": 0.9034 + }, + { + "start": 2121.56, + "end": 2122.32, + "probability": 0.7911 + }, + { + "start": 2122.44, + "end": 2122.98, + "probability": 0.7905 + }, + { + "start": 2123.38, + "end": 2127.5, + "probability": 0.8142 + }, + { + "start": 2127.54, + "end": 2128.52, + "probability": 0.9993 + }, + { + "start": 2129.08, + "end": 2134.96, + "probability": 0.952 + }, + { + "start": 2135.26, + "end": 2137.7, + "probability": 0.9369 + }, + { + "start": 2139.64, + "end": 2144.84, + "probability": 0.82 + }, + { + "start": 2145.18, + "end": 2145.7, + "probability": 0.864 + }, + { + "start": 2146.48, + "end": 2147.42, + "probability": 0.9795 + }, + { + "start": 2148.24, + "end": 2150.4, + "probability": 0.5798 + }, + { + "start": 2151.44, + "end": 2154.22, + "probability": 0.7591 + }, + { + "start": 2155.6, + "end": 2156.38, + "probability": 0.925 + }, + { + "start": 2157.5, + "end": 2159.86, + "probability": 0.6496 + }, + { + "start": 2160.62, + "end": 2166.04, + "probability": 0.7474 + }, + { + "start": 2166.9, + "end": 2167.48, + "probability": 0.5791 + }, + { + "start": 2167.62, + "end": 2169.06, + "probability": 0.9156 + }, + { + "start": 2169.42, + "end": 2171.0, + "probability": 0.8579 + }, + { + "start": 2173.38, + "end": 2175.4, + "probability": 0.7347 + }, + { + "start": 2176.08, + "end": 2177.12, + "probability": 0.6799 + }, + { + "start": 2177.88, + "end": 2182.9, + "probability": 0.9967 + }, + { + "start": 2183.78, + "end": 2185.72, + "probability": 0.9176 + }, + { + "start": 2187.02, + "end": 2188.67, + "probability": 0.9901 + }, + { + "start": 2189.74, + "end": 2190.34, + "probability": 0.5947 + }, + { + "start": 2190.98, + "end": 2193.64, + "probability": 0.7938 + }, + { + "start": 2194.48, + "end": 2195.98, + "probability": 0.978 + }, + { + "start": 2196.74, + "end": 2201.1, + "probability": 0.9746 + }, + { + "start": 2201.1, + "end": 2205.06, + "probability": 0.9885 + }, + { + "start": 2205.9, + "end": 2206.64, + "probability": 0.7585 + }, + { + "start": 2207.2, + "end": 2209.42, + "probability": 0.9775 + }, + { + "start": 2209.46, + "end": 2213.54, + "probability": 0.9869 + }, + { + "start": 2214.28, + "end": 2217.5, + "probability": 0.9949 + }, + { + "start": 2218.1, + "end": 2222.52, + "probability": 0.9788 + }, + { + "start": 2222.94, + "end": 2225.62, + "probability": 0.9681 + }, + { + "start": 2226.2, + "end": 2227.04, + "probability": 0.8668 + }, + { + "start": 2227.6, + "end": 2230.58, + "probability": 0.9509 + }, + { + "start": 2231.68, + "end": 2234.0, + "probability": 0.7518 + }, + { + "start": 2234.62, + "end": 2238.82, + "probability": 0.9805 + }, + { + "start": 2239.16, + "end": 2243.6, + "probability": 0.9548 + }, + { + "start": 2245.42, + "end": 2247.88, + "probability": 0.923 + }, + { + "start": 2248.82, + "end": 2249.5, + "probability": 0.675 + }, + { + "start": 2250.94, + "end": 2253.14, + "probability": 0.7165 + }, + { + "start": 2253.62, + "end": 2254.04, + "probability": 0.5491 + }, + { + "start": 2254.78, + "end": 2257.88, + "probability": 0.7942 + }, + { + "start": 2261.7, + "end": 2262.46, + "probability": 0.9604 + }, + { + "start": 2268.74, + "end": 2269.2, + "probability": 0.6681 + }, + { + "start": 2270.14, + "end": 2270.3, + "probability": 0.0309 + }, + { + "start": 2270.3, + "end": 2270.82, + "probability": 0.0286 + }, + { + "start": 2290.34, + "end": 2290.34, + "probability": 0.1078 + }, + { + "start": 2290.34, + "end": 2291.32, + "probability": 0.407 + }, + { + "start": 2292.02, + "end": 2294.58, + "probability": 0.6896 + }, + { + "start": 2294.7, + "end": 2296.74, + "probability": 0.7221 + }, + { + "start": 2297.6, + "end": 2303.36, + "probability": 0.5319 + }, + { + "start": 2303.74, + "end": 2305.66, + "probability": 0.2027 + }, + { + "start": 2306.16, + "end": 2307.6, + "probability": 0.9066 + }, + { + "start": 2308.2, + "end": 2312.96, + "probability": 0.8108 + }, + { + "start": 2314.88, + "end": 2315.44, + "probability": 0.5716 + }, + { + "start": 2315.6, + "end": 2317.96, + "probability": 0.9482 + }, + { + "start": 2319.14, + "end": 2320.3, + "probability": 0.6874 + }, + { + "start": 2321.18, + "end": 2323.8, + "probability": 0.7491 + }, + { + "start": 2324.44, + "end": 2324.86, + "probability": 0.4035 + }, + { + "start": 2329.4, + "end": 2330.64, + "probability": 0.9888 + }, + { + "start": 2334.46, + "end": 2335.16, + "probability": 0.7603 + }, + { + "start": 2336.74, + "end": 2336.98, + "probability": 0.3257 + }, + { + "start": 2338.16, + "end": 2338.54, + "probability": 0.8619 + }, + { + "start": 2339.24, + "end": 2340.5, + "probability": 0.0116 + }, + { + "start": 2341.7, + "end": 2342.48, + "probability": 0.0415 + }, + { + "start": 2348.29, + "end": 2350.44, + "probability": 0.5355 + }, + { + "start": 2350.52, + "end": 2351.98, + "probability": 0.8986 + }, + { + "start": 2352.42, + "end": 2355.26, + "probability": 0.8057 + }, + { + "start": 2356.08, + "end": 2356.44, + "probability": 0.6474 + }, + { + "start": 2357.06, + "end": 2357.78, + "probability": 0.9718 + }, + { + "start": 2363.02, + "end": 2367.3, + "probability": 0.6084 + }, + { + "start": 2368.04, + "end": 2368.88, + "probability": 0.7396 + }, + { + "start": 2379.3, + "end": 2380.9, + "probability": 0.483 + }, + { + "start": 2382.66, + "end": 2386.52, + "probability": 0.7701 + }, + { + "start": 2391.52, + "end": 2394.32, + "probability": 0.6847 + }, + { + "start": 2394.46, + "end": 2396.74, + "probability": 0.7315 + }, + { + "start": 2397.38, + "end": 2398.96, + "probability": 0.8246 + }, + { + "start": 2399.56, + "end": 2402.12, + "probability": 0.7671 + }, + { + "start": 2402.12, + "end": 2406.66, + "probability": 0.6223 + }, + { + "start": 2407.56, + "end": 2410.02, + "probability": 0.6675 + }, + { + "start": 2410.24, + "end": 2413.92, + "probability": 0.9472 + }, + { + "start": 2414.26, + "end": 2414.78, + "probability": 0.8965 + }, + { + "start": 2415.04, + "end": 2418.94, + "probability": 0.8648 + }, + { + "start": 2418.94, + "end": 2420.16, + "probability": 0.97 + }, + { + "start": 2420.46, + "end": 2426.02, + "probability": 0.9797 + }, + { + "start": 2426.02, + "end": 2429.98, + "probability": 0.9829 + }, + { + "start": 2432.26, + "end": 2432.76, + "probability": 0.5328 + }, + { + "start": 2432.76, + "end": 2433.16, + "probability": 0.8843 + }, + { + "start": 2433.22, + "end": 2435.14, + "probability": 0.9357 + }, + { + "start": 2436.64, + "end": 2440.04, + "probability": 0.9912 + }, + { + "start": 2440.94, + "end": 2444.68, + "probability": 0.9868 + }, + { + "start": 2445.22, + "end": 2449.75, + "probability": 0.9902 + }, + { + "start": 2450.18, + "end": 2452.28, + "probability": 0.9607 + }, + { + "start": 2453.48, + "end": 2456.18, + "probability": 0.9937 + }, + { + "start": 2456.38, + "end": 2458.06, + "probability": 0.9783 + }, + { + "start": 2461.4, + "end": 2463.94, + "probability": 0.9801 + }, + { + "start": 2464.46, + "end": 2467.68, + "probability": 0.994 + }, + { + "start": 2467.81, + "end": 2472.04, + "probability": 0.9733 + }, + { + "start": 2472.54, + "end": 2475.34, + "probability": 0.948 + }, + { + "start": 2476.44, + "end": 2477.6, + "probability": 0.7662 + }, + { + "start": 2478.14, + "end": 2479.24, + "probability": 0.9448 + }, + { + "start": 2479.34, + "end": 2482.5, + "probability": 0.8889 + }, + { + "start": 2483.22, + "end": 2487.64, + "probability": 0.9713 + }, + { + "start": 2487.64, + "end": 2490.74, + "probability": 0.9829 + }, + { + "start": 2491.04, + "end": 2491.18, + "probability": 0.0855 + }, + { + "start": 2491.34, + "end": 2493.62, + "probability": 0.9983 + }, + { + "start": 2494.14, + "end": 2497.38, + "probability": 0.994 + }, + { + "start": 2497.44, + "end": 2499.38, + "probability": 0.9044 + }, + { + "start": 2500.5, + "end": 2506.2, + "probability": 0.9964 + }, + { + "start": 2506.22, + "end": 2506.6, + "probability": 0.5397 + }, + { + "start": 2506.66, + "end": 2507.96, + "probability": 0.9381 + }, + { + "start": 2508.24, + "end": 2510.68, + "probability": 0.9962 + }, + { + "start": 2515.6, + "end": 2518.26, + "probability": 0.6712 + }, + { + "start": 2522.58, + "end": 2525.82, + "probability": 0.7453 + }, + { + "start": 2526.66, + "end": 2528.68, + "probability": 0.3238 + }, + { + "start": 2528.68, + "end": 2529.38, + "probability": 0.9282 + }, + { + "start": 2529.76, + "end": 2531.42, + "probability": 0.9457 + }, + { + "start": 2534.7, + "end": 2535.98, + "probability": 0.8058 + }, + { + "start": 2537.34, + "end": 2538.8, + "probability": 0.9827 + }, + { + "start": 2540.34, + "end": 2542.9, + "probability": 0.7363 + }, + { + "start": 2543.64, + "end": 2545.92, + "probability": 0.9541 + }, + { + "start": 2546.02, + "end": 2546.88, + "probability": 0.9891 + }, + { + "start": 2546.98, + "end": 2548.14, + "probability": 0.9902 + }, + { + "start": 2548.3, + "end": 2548.94, + "probability": 0.6591 + }, + { + "start": 2549.82, + "end": 2551.7, + "probability": 0.7806 + }, + { + "start": 2557.18, + "end": 2559.45, + "probability": 0.8666 + }, + { + "start": 2559.76, + "end": 2561.53, + "probability": 0.993 + }, + { + "start": 2562.56, + "end": 2563.44, + "probability": 0.4973 + }, + { + "start": 2564.52, + "end": 2567.92, + "probability": 0.5482 + }, + { + "start": 2568.3, + "end": 2572.04, + "probability": 0.8771 + }, + { + "start": 2572.5, + "end": 2574.18, + "probability": 0.4993 + }, + { + "start": 2574.36, + "end": 2577.02, + "probability": 0.9375 + }, + { + "start": 2577.3, + "end": 2578.0, + "probability": 0.3508 + }, + { + "start": 2578.3, + "end": 2580.12, + "probability": 0.9819 + }, + { + "start": 2580.62, + "end": 2583.42, + "probability": 0.9443 + }, + { + "start": 2584.34, + "end": 2586.4, + "probability": 0.4962 + }, + { + "start": 2586.76, + "end": 2589.42, + "probability": 0.9878 + }, + { + "start": 2590.34, + "end": 2592.32, + "probability": 0.646 + }, + { + "start": 2592.6, + "end": 2599.24, + "probability": 0.9914 + }, + { + "start": 2599.4, + "end": 2603.78, + "probability": 0.9967 + }, + { + "start": 2604.24, + "end": 2608.82, + "probability": 0.9893 + }, + { + "start": 2608.88, + "end": 2611.14, + "probability": 0.1266 + }, + { + "start": 2611.64, + "end": 2612.54, + "probability": 0.7935 + }, + { + "start": 2612.68, + "end": 2616.82, + "probability": 0.8038 + }, + { + "start": 2616.96, + "end": 2623.34, + "probability": 0.9985 + }, + { + "start": 2624.26, + "end": 2632.88, + "probability": 0.9985 + }, + { + "start": 2633.02, + "end": 2635.1, + "probability": 0.9907 + }, + { + "start": 2635.26, + "end": 2635.52, + "probability": 0.6924 + }, + { + "start": 2635.66, + "end": 2641.32, + "probability": 0.9993 + }, + { + "start": 2641.96, + "end": 2644.1, + "probability": 0.9908 + }, + { + "start": 2644.98, + "end": 2649.32, + "probability": 0.9961 + }, + { + "start": 2650.9, + "end": 2653.68, + "probability": 0.9948 + }, + { + "start": 2653.98, + "end": 2656.2, + "probability": 0.9926 + }, + { + "start": 2656.84, + "end": 2657.0, + "probability": 0.6749 + }, + { + "start": 2658.25, + "end": 2658.92, + "probability": 0.9673 + }, + { + "start": 2659.34, + "end": 2660.44, + "probability": 0.8132 + }, + { + "start": 2660.88, + "end": 2661.76, + "probability": 0.7277 + }, + { + "start": 2668.7, + "end": 2670.56, + "probability": 0.6068 + }, + { + "start": 2673.04, + "end": 2674.42, + "probability": 0.7641 + }, + { + "start": 2676.08, + "end": 2676.5, + "probability": 0.767 + }, + { + "start": 2677.74, + "end": 2679.82, + "probability": 0.6786 + }, + { + "start": 2680.76, + "end": 2682.06, + "probability": 0.0521 + }, + { + "start": 2683.46, + "end": 2684.32, + "probability": 0.7827 + }, + { + "start": 2693.16, + "end": 2695.04, + "probability": 0.7318 + }, + { + "start": 2695.92, + "end": 2701.0, + "probability": 0.6848 + }, + { + "start": 2701.74, + "end": 2707.1, + "probability": 0.9702 + }, + { + "start": 2708.06, + "end": 2714.44, + "probability": 0.9533 + }, + { + "start": 2714.58, + "end": 2718.26, + "probability": 0.9905 + }, + { + "start": 2718.58, + "end": 2719.24, + "probability": 0.653 + }, + { + "start": 2720.0, + "end": 2723.18, + "probability": 0.9891 + }, + { + "start": 2723.74, + "end": 2725.48, + "probability": 0.876 + }, + { + "start": 2727.16, + "end": 2727.46, + "probability": 0.7958 + }, + { + "start": 2727.96, + "end": 2733.06, + "probability": 0.9722 + }, + { + "start": 2733.06, + "end": 2737.46, + "probability": 0.9958 + }, + { + "start": 2738.02, + "end": 2738.32, + "probability": 0.6208 + }, + { + "start": 2738.38, + "end": 2739.72, + "probability": 0.7978 + }, + { + "start": 2739.78, + "end": 2742.28, + "probability": 0.9912 + }, + { + "start": 2742.7, + "end": 2745.46, + "probability": 0.9934 + }, + { + "start": 2745.92, + "end": 2748.08, + "probability": 0.8938 + }, + { + "start": 2748.08, + "end": 2751.2, + "probability": 0.9117 + }, + { + "start": 2751.7, + "end": 2754.0, + "probability": 0.9907 + }, + { + "start": 2754.1, + "end": 2754.5, + "probability": 0.8455 + }, + { + "start": 2754.54, + "end": 2756.02, + "probability": 0.5267 + }, + { + "start": 2756.26, + "end": 2760.16, + "probability": 0.9377 + }, + { + "start": 2760.54, + "end": 2761.24, + "probability": 0.6724 + }, + { + "start": 2761.52, + "end": 2763.7, + "probability": 0.9678 + }, + { + "start": 2765.42, + "end": 2769.52, + "probability": 0.999 + }, + { + "start": 2769.98, + "end": 2772.32, + "probability": 0.9918 + }, + { + "start": 2772.56, + "end": 2776.48, + "probability": 0.9806 + }, + { + "start": 2777.1, + "end": 2780.8, + "probability": 0.9876 + }, + { + "start": 2780.88, + "end": 2784.66, + "probability": 0.9982 + }, + { + "start": 2785.68, + "end": 2786.24, + "probability": 0.942 + }, + { + "start": 2786.4, + "end": 2789.68, + "probability": 0.9978 + }, + { + "start": 2789.68, + "end": 2793.28, + "probability": 0.9443 + }, + { + "start": 2793.36, + "end": 2794.2, + "probability": 0.6417 + }, + { + "start": 2795.04, + "end": 2798.58, + "probability": 0.9957 + }, + { + "start": 2798.58, + "end": 2802.04, + "probability": 0.9984 + }, + { + "start": 2802.4, + "end": 2806.06, + "probability": 0.9194 + }, + { + "start": 2806.7, + "end": 2809.78, + "probability": 0.9939 + }, + { + "start": 2809.78, + "end": 2812.2, + "probability": 0.9824 + }, + { + "start": 2813.8, + "end": 2816.82, + "probability": 0.9968 + }, + { + "start": 2816.88, + "end": 2818.94, + "probability": 0.8514 + }, + { + "start": 2819.36, + "end": 2822.3, + "probability": 0.9883 + }, + { + "start": 2822.3, + "end": 2825.52, + "probability": 0.9855 + }, + { + "start": 2826.06, + "end": 2830.44, + "probability": 0.9935 + }, + { + "start": 2830.44, + "end": 2835.58, + "probability": 0.9984 + }, + { + "start": 2835.64, + "end": 2837.64, + "probability": 0.9793 + }, + { + "start": 2838.96, + "end": 2840.78, + "probability": 0.8937 + }, + { + "start": 2840.92, + "end": 2845.12, + "probability": 0.9808 + }, + { + "start": 2845.74, + "end": 2847.64, + "probability": 0.9089 + }, + { + "start": 2848.06, + "end": 2853.06, + "probability": 0.9937 + }, + { + "start": 2853.52, + "end": 2855.76, + "probability": 0.9905 + }, + { + "start": 2856.28, + "end": 2859.5, + "probability": 0.9967 + }, + { + "start": 2860.32, + "end": 2863.42, + "probability": 0.8903 + }, + { + "start": 2863.42, + "end": 2866.44, + "probability": 0.9985 + }, + { + "start": 2866.98, + "end": 2870.88, + "probability": 0.9481 + }, + { + "start": 2871.34, + "end": 2876.12, + "probability": 0.9283 + }, + { + "start": 2876.72, + "end": 2878.84, + "probability": 0.9713 + }, + { + "start": 2879.64, + "end": 2882.58, + "probability": 0.8346 + }, + { + "start": 2882.58, + "end": 2885.34, + "probability": 0.9915 + }, + { + "start": 2885.9, + "end": 2891.14, + "probability": 0.997 + }, + { + "start": 2891.4, + "end": 2892.44, + "probability": 0.923 + }, + { + "start": 2892.52, + "end": 2894.13, + "probability": 0.9956 + }, + { + "start": 2894.32, + "end": 2897.44, + "probability": 0.9975 + }, + { + "start": 2898.08, + "end": 2900.46, + "probability": 0.9949 + }, + { + "start": 2900.66, + "end": 2903.16, + "probability": 0.9932 + }, + { + "start": 2903.28, + "end": 2905.48, + "probability": 0.9623 + }, + { + "start": 2905.58, + "end": 2906.18, + "probability": 0.8491 + }, + { + "start": 2906.26, + "end": 2910.5, + "probability": 0.7858 + }, + { + "start": 2910.5, + "end": 2915.04, + "probability": 0.9784 + }, + { + "start": 2915.96, + "end": 2919.78, + "probability": 0.9279 + }, + { + "start": 2919.86, + "end": 2922.82, + "probability": 0.9939 + }, + { + "start": 2922.96, + "end": 2925.62, + "probability": 0.9946 + }, + { + "start": 2925.68, + "end": 2930.62, + "probability": 0.9829 + }, + { + "start": 2931.96, + "end": 2932.7, + "probability": 0.0502 + }, + { + "start": 2932.7, + "end": 2934.7, + "probability": 0.7893 + }, + { + "start": 2934.94, + "end": 2935.22, + "probability": 0.7864 + }, + { + "start": 2935.34, + "end": 2936.0, + "probability": 0.8071 + }, + { + "start": 2936.46, + "end": 2937.68, + "probability": 0.9296 + }, + { + "start": 2937.8, + "end": 2942.32, + "probability": 0.9807 + }, + { + "start": 2942.54, + "end": 2943.98, + "probability": 0.9284 + }, + { + "start": 2944.62, + "end": 2948.5, + "probability": 0.9959 + }, + { + "start": 2948.5, + "end": 2953.8, + "probability": 0.9974 + }, + { + "start": 2953.82, + "end": 2959.62, + "probability": 0.9697 + }, + { + "start": 2960.14, + "end": 2961.84, + "probability": 0.915 + }, + { + "start": 2961.94, + "end": 2963.98, + "probability": 0.9924 + }, + { + "start": 2965.32, + "end": 2967.32, + "probability": 0.721 + }, + { + "start": 2968.5, + "end": 2969.42, + "probability": 0.8311 + }, + { + "start": 2969.48, + "end": 2969.84, + "probability": 0.9709 + }, + { + "start": 2969.92, + "end": 2973.0, + "probability": 0.9974 + }, + { + "start": 2973.2, + "end": 2980.04, + "probability": 0.995 + }, + { + "start": 2980.22, + "end": 2981.8, + "probability": 0.983 + }, + { + "start": 2991.8, + "end": 2996.28, + "probability": 0.6216 + }, + { + "start": 2997.34, + "end": 3000.88, + "probability": 0.8113 + }, + { + "start": 3001.06, + "end": 3004.78, + "probability": 0.9509 + }, + { + "start": 3005.08, + "end": 3005.44, + "probability": 0.7056 + }, + { + "start": 3005.46, + "end": 3008.44, + "probability": 0.8357 + }, + { + "start": 3008.54, + "end": 3014.66, + "probability": 0.6949 + }, + { + "start": 3014.72, + "end": 3019.47, + "probability": 0.8477 + }, + { + "start": 3021.0, + "end": 3026.82, + "probability": 0.8632 + }, + { + "start": 3026.88, + "end": 3037.66, + "probability": 0.9071 + }, + { + "start": 3037.74, + "end": 3038.22, + "probability": 0.8037 + }, + { + "start": 3038.22, + "end": 3043.88, + "probability": 0.7376 + }, + { + "start": 3043.96, + "end": 3045.67, + "probability": 0.981 + }, + { + "start": 3047.64, + "end": 3049.78, + "probability": 0.8946 + }, + { + "start": 3050.38, + "end": 3052.56, + "probability": 0.4703 + }, + { + "start": 3053.26, + "end": 3056.78, + "probability": 0.9934 + }, + { + "start": 3057.0, + "end": 3061.76, + "probability": 0.9841 + }, + { + "start": 3062.58, + "end": 3063.02, + "probability": 0.6622 + }, + { + "start": 3063.36, + "end": 3063.7, + "probability": 0.4814 + }, + { + "start": 3063.76, + "end": 3064.72, + "probability": 0.9576 + }, + { + "start": 3065.34, + "end": 3066.02, + "probability": 0.7939 + }, + { + "start": 3066.16, + "end": 3066.82, + "probability": 0.5644 + }, + { + "start": 3066.82, + "end": 3067.78, + "probability": 0.6134 + }, + { + "start": 3067.84, + "end": 3071.8, + "probability": 0.9051 + }, + { + "start": 3071.98, + "end": 3072.46, + "probability": 0.7738 + }, + { + "start": 3088.28, + "end": 3090.08, + "probability": 0.6618 + }, + { + "start": 3090.1, + "end": 3091.32, + "probability": 0.7697 + }, + { + "start": 3091.52, + "end": 3095.4, + "probability": 0.8388 + }, + { + "start": 3095.5, + "end": 3096.74, + "probability": 0.3752 + }, + { + "start": 3097.7, + "end": 3100.1, + "probability": 0.9961 + }, + { + "start": 3100.1, + "end": 3103.1, + "probability": 0.9941 + }, + { + "start": 3103.84, + "end": 3107.86, + "probability": 0.9291 + }, + { + "start": 3108.54, + "end": 3112.48, + "probability": 0.9447 + }, + { + "start": 3112.54, + "end": 3112.96, + "probability": 0.7459 + }, + { + "start": 3113.02, + "end": 3114.5, + "probability": 0.9289 + }, + { + "start": 3116.58, + "end": 3118.04, + "probability": 0.6973 + }, + { + "start": 3118.14, + "end": 3120.5, + "probability": 0.9429 + }, + { + "start": 3120.58, + "end": 3123.88, + "probability": 0.9919 + }, + { + "start": 3124.62, + "end": 3128.46, + "probability": 0.91 + }, + { + "start": 3128.78, + "end": 3130.06, + "probability": 0.4638 + }, + { + "start": 3130.66, + "end": 3132.82, + "probability": 0.991 + }, + { + "start": 3134.1, + "end": 3137.9, + "probability": 0.9878 + }, + { + "start": 3137.9, + "end": 3141.26, + "probability": 0.9297 + }, + { + "start": 3141.94, + "end": 3144.6, + "probability": 0.9899 + }, + { + "start": 3144.9, + "end": 3146.96, + "probability": 0.9509 + }, + { + "start": 3147.46, + "end": 3151.46, + "probability": 0.9878 + }, + { + "start": 3151.46, + "end": 3154.54, + "probability": 0.9983 + }, + { + "start": 3154.54, + "end": 3158.78, + "probability": 0.9706 + }, + { + "start": 3159.36, + "end": 3161.38, + "probability": 0.9958 + }, + { + "start": 3161.38, + "end": 3163.52, + "probability": 0.9946 + }, + { + "start": 3164.1, + "end": 3168.1, + "probability": 0.9766 + }, + { + "start": 3168.1, + "end": 3173.3, + "probability": 0.9972 + }, + { + "start": 3173.3, + "end": 3174.54, + "probability": 0.8785 + }, + { + "start": 3176.36, + "end": 3178.84, + "probability": 0.8249 + }, + { + "start": 3178.84, + "end": 3182.26, + "probability": 0.9858 + }, + { + "start": 3182.92, + "end": 3185.94, + "probability": 0.8817 + }, + { + "start": 3186.44, + "end": 3188.46, + "probability": 0.9779 + }, + { + "start": 3188.82, + "end": 3189.9, + "probability": 0.9939 + }, + { + "start": 3190.02, + "end": 3192.52, + "probability": 0.9961 + }, + { + "start": 3192.52, + "end": 3195.8, + "probability": 0.9953 + }, + { + "start": 3196.32, + "end": 3200.22, + "probability": 0.9749 + }, + { + "start": 3200.82, + "end": 3202.67, + "probability": 0.6951 + }, + { + "start": 3203.38, + "end": 3207.32, + "probability": 0.9561 + }, + { + "start": 3208.04, + "end": 3214.66, + "probability": 0.8872 + }, + { + "start": 3216.2, + "end": 3218.24, + "probability": 0.9224 + }, + { + "start": 3218.86, + "end": 3223.22, + "probability": 0.9657 + }, + { + "start": 3223.32, + "end": 3223.72, + "probability": 0.8386 + }, + { + "start": 3223.78, + "end": 3224.24, + "probability": 0.9438 + }, + { + "start": 3224.36, + "end": 3225.02, + "probability": 0.9026 + }, + { + "start": 3225.06, + "end": 3225.78, + "probability": 0.7612 + }, + { + "start": 3226.82, + "end": 3229.3, + "probability": 0.7526 + }, + { + "start": 3229.9, + "end": 3234.35, + "probability": 0.9956 + }, + { + "start": 3234.72, + "end": 3235.22, + "probability": 0.2873 + }, + { + "start": 3235.3, + "end": 3236.24, + "probability": 0.8665 + }, + { + "start": 3236.72, + "end": 3238.02, + "probability": 0.8732 + }, + { + "start": 3238.42, + "end": 3241.14, + "probability": 0.9678 + }, + { + "start": 3241.2, + "end": 3241.36, + "probability": 0.6247 + }, + { + "start": 3241.36, + "end": 3243.67, + "probability": 0.7633 + }, + { + "start": 3244.82, + "end": 3251.44, + "probability": 0.6157 + }, + { + "start": 3251.48, + "end": 3253.18, + "probability": 0.7586 + }, + { + "start": 3253.28, + "end": 3255.3, + "probability": 0.9225 + }, + { + "start": 3255.9, + "end": 3260.76, + "probability": 0.9572 + }, + { + "start": 3261.52, + "end": 3262.54, + "probability": 0.8102 + }, + { + "start": 3263.06, + "end": 3264.06, + "probability": 0.7722 + }, + { + "start": 3264.46, + "end": 3265.64, + "probability": 0.8462 + }, + { + "start": 3265.74, + "end": 3270.14, + "probability": 0.9821 + }, + { + "start": 3271.2, + "end": 3273.7, + "probability": 0.8495 + }, + { + "start": 3274.42, + "end": 3279.2, + "probability": 0.887 + }, + { + "start": 3283.66, + "end": 3284.42, + "probability": 0.7777 + }, + { + "start": 3285.02, + "end": 3287.2, + "probability": 0.9982 + }, + { + "start": 3287.3, + "end": 3288.56, + "probability": 0.9569 + }, + { + "start": 3288.94, + "end": 3290.54, + "probability": 0.9608 + }, + { + "start": 3292.46, + "end": 3292.78, + "probability": 0.4712 + }, + { + "start": 3297.54, + "end": 3299.7, + "probability": 0.7929 + }, + { + "start": 3301.28, + "end": 3304.24, + "probability": 0.9423 + }, + { + "start": 3304.24, + "end": 3307.68, + "probability": 0.9702 + }, + { + "start": 3307.8, + "end": 3309.22, + "probability": 0.7702 + }, + { + "start": 3309.66, + "end": 3316.54, + "probability": 0.61 + }, + { + "start": 3318.36, + "end": 3319.88, + "probability": 0.5959 + }, + { + "start": 3319.92, + "end": 3320.68, + "probability": 0.7543 + }, + { + "start": 3320.84, + "end": 3322.38, + "probability": 0.783 + }, + { + "start": 3322.38, + "end": 3324.58, + "probability": 0.8075 + }, + { + "start": 3324.96, + "end": 3327.1, + "probability": 0.5208 + }, + { + "start": 3327.14, + "end": 3327.3, + "probability": 0.2685 + }, + { + "start": 3327.3, + "end": 3327.44, + "probability": 0.5842 + }, + { + "start": 3327.46, + "end": 3327.9, + "probability": 0.8607 + }, + { + "start": 3328.66, + "end": 3330.28, + "probability": 0.9048 + }, + { + "start": 3330.28, + "end": 3330.94, + "probability": 0.82 + }, + { + "start": 3331.2, + "end": 3332.76, + "probability": 0.4948 + }, + { + "start": 3333.84, + "end": 3336.88, + "probability": 0.5741 + }, + { + "start": 3337.9, + "end": 3338.54, + "probability": 0.5408 + }, + { + "start": 3338.54, + "end": 3343.34, + "probability": 0.9922 + }, + { + "start": 3344.02, + "end": 3349.16, + "probability": 0.9937 + }, + { + "start": 3350.08, + "end": 3354.78, + "probability": 0.9877 + }, + { + "start": 3354.92, + "end": 3357.12, + "probability": 0.9771 + }, + { + "start": 3357.24, + "end": 3360.02, + "probability": 0.9812 + }, + { + "start": 3360.08, + "end": 3364.66, + "probability": 0.9765 + }, + { + "start": 3365.7, + "end": 3368.82, + "probability": 0.9976 + }, + { + "start": 3368.84, + "end": 3371.08, + "probability": 0.9946 + }, + { + "start": 3371.2, + "end": 3372.0, + "probability": 0.7585 + }, + { + "start": 3372.14, + "end": 3372.92, + "probability": 0.4538 + }, + { + "start": 3373.02, + "end": 3374.14, + "probability": 0.9824 + }, + { + "start": 3375.22, + "end": 3380.7, + "probability": 0.9596 + }, + { + "start": 3380.84, + "end": 3384.6, + "probability": 0.8057 + }, + { + "start": 3386.58, + "end": 3391.04, + "probability": 0.6931 + }, + { + "start": 3391.24, + "end": 3394.77, + "probability": 0.9795 + }, + { + "start": 3394.96, + "end": 3395.4, + "probability": 0.2496 + }, + { + "start": 3397.14, + "end": 3398.68, + "probability": 0.9454 + }, + { + "start": 3398.72, + "end": 3400.3, + "probability": 0.9927 + }, + { + "start": 3400.8, + "end": 3406.26, + "probability": 0.9679 + }, + { + "start": 3407.1, + "end": 3407.74, + "probability": 0.2942 + }, + { + "start": 3407.82, + "end": 3408.82, + "probability": 0.5991 + }, + { + "start": 3409.04, + "end": 3413.02, + "probability": 0.9744 + }, + { + "start": 3413.14, + "end": 3416.26, + "probability": 0.9912 + }, + { + "start": 3416.78, + "end": 3420.34, + "probability": 0.7924 + }, + { + "start": 3420.44, + "end": 3420.88, + "probability": 0.5216 + }, + { + "start": 3420.92, + "end": 3425.22, + "probability": 0.8207 + }, + { + "start": 3425.26, + "end": 3428.78, + "probability": 0.9888 + }, + { + "start": 3428.98, + "end": 3432.6, + "probability": 0.9991 + }, + { + "start": 3432.68, + "end": 3435.88, + "probability": 0.9923 + }, + { + "start": 3436.98, + "end": 3441.02, + "probability": 0.9987 + }, + { + "start": 3441.02, + "end": 3444.42, + "probability": 0.993 + }, + { + "start": 3444.9, + "end": 3448.76, + "probability": 0.9985 + }, + { + "start": 3448.76, + "end": 3454.04, + "probability": 0.9847 + }, + { + "start": 3454.12, + "end": 3455.76, + "probability": 0.6766 + }, + { + "start": 3456.06, + "end": 3456.58, + "probability": 0.5056 + }, + { + "start": 3457.06, + "end": 3459.84, + "probability": 0.8566 + }, + { + "start": 3459.92, + "end": 3461.48, + "probability": 0.9957 + }, + { + "start": 3462.44, + "end": 3466.3, + "probability": 0.9954 + }, + { + "start": 3466.6, + "end": 3467.78, + "probability": 0.7141 + }, + { + "start": 3467.9, + "end": 3472.02, + "probability": 0.7733 + }, + { + "start": 3472.7, + "end": 3475.89, + "probability": 0.988 + }, + { + "start": 3476.64, + "end": 3478.52, + "probability": 0.8183 + }, + { + "start": 3478.62, + "end": 3480.34, + "probability": 0.9105 + }, + { + "start": 3480.42, + "end": 3485.14, + "probability": 0.8184 + }, + { + "start": 3485.72, + "end": 3486.98, + "probability": 0.5682 + }, + { + "start": 3487.42, + "end": 3489.14, + "probability": 0.9434 + }, + { + "start": 3489.82, + "end": 3492.0, + "probability": 0.8188 + }, + { + "start": 3492.22, + "end": 3493.08, + "probability": 0.9692 + }, + { + "start": 3493.16, + "end": 3495.28, + "probability": 0.9503 + }, + { + "start": 3495.28, + "end": 3497.16, + "probability": 0.9728 + }, + { + "start": 3497.64, + "end": 3498.42, + "probability": 0.6757 + }, + { + "start": 3498.64, + "end": 3500.08, + "probability": 0.9889 + }, + { + "start": 3500.4, + "end": 3503.52, + "probability": 0.9699 + }, + { + "start": 3503.64, + "end": 3506.04, + "probability": 0.9917 + }, + { + "start": 3506.12, + "end": 3509.36, + "probability": 0.9966 + }, + { + "start": 3509.76, + "end": 3512.96, + "probability": 0.9006 + }, + { + "start": 3513.72, + "end": 3516.8, + "probability": 0.8247 + }, + { + "start": 3517.5, + "end": 3517.5, + "probability": 0.025 + }, + { + "start": 3517.7, + "end": 3520.46, + "probability": 0.9648 + }, + { + "start": 3520.74, + "end": 3521.86, + "probability": 0.8022 + }, + { + "start": 3521.94, + "end": 3522.66, + "probability": 0.9798 + }, + { + "start": 3522.9, + "end": 3524.26, + "probability": 0.8908 + }, + { + "start": 3524.34, + "end": 3528.21, + "probability": 0.9927 + }, + { + "start": 3529.88, + "end": 3534.16, + "probability": 0.9882 + }, + { + "start": 3534.24, + "end": 3541.2, + "probability": 0.9662 + }, + { + "start": 3542.6, + "end": 3543.18, + "probability": 0.619 + }, + { + "start": 3543.28, + "end": 3546.34, + "probability": 0.9585 + }, + { + "start": 3546.94, + "end": 3550.36, + "probability": 0.7097 + }, + { + "start": 3550.42, + "end": 3550.58, + "probability": 0.8682 + }, + { + "start": 3552.1, + "end": 3553.7, + "probability": 0.6657 + }, + { + "start": 3554.06, + "end": 3554.68, + "probability": 0.7598 + }, + { + "start": 3554.78, + "end": 3558.96, + "probability": 0.9953 + }, + { + "start": 3558.96, + "end": 3562.58, + "probability": 0.9899 + }, + { + "start": 3563.48, + "end": 3565.46, + "probability": 0.7549 + }, + { + "start": 3565.54, + "end": 3570.04, + "probability": 0.9961 + }, + { + "start": 3570.64, + "end": 3573.62, + "probability": 0.9036 + }, + { + "start": 3573.74, + "end": 3577.08, + "probability": 0.9578 + }, + { + "start": 3578.12, + "end": 3579.79, + "probability": 0.868 + }, + { + "start": 3579.9, + "end": 3581.1, + "probability": 0.9626 + }, + { + "start": 3581.14, + "end": 3586.62, + "probability": 0.9785 + }, + { + "start": 3588.02, + "end": 3588.7, + "probability": 0.5209 + }, + { + "start": 3591.25, + "end": 3595.04, + "probability": 0.9937 + }, + { + "start": 3595.72, + "end": 3597.1, + "probability": 0.9941 + }, + { + "start": 3597.48, + "end": 3599.04, + "probability": 0.9812 + }, + { + "start": 3599.34, + "end": 3603.3, + "probability": 0.9943 + }, + { + "start": 3604.0, + "end": 3607.94, + "probability": 0.9388 + }, + { + "start": 3608.08, + "end": 3609.46, + "probability": 0.8703 + }, + { + "start": 3609.98, + "end": 3614.66, + "probability": 0.9781 + }, + { + "start": 3614.82, + "end": 3616.46, + "probability": 0.8907 + }, + { + "start": 3617.32, + "end": 3620.74, + "probability": 0.7988 + }, + { + "start": 3621.22, + "end": 3624.7, + "probability": 0.9495 + }, + { + "start": 3624.7, + "end": 3628.98, + "probability": 0.9742 + }, + { + "start": 3629.82, + "end": 3632.66, + "probability": 0.9169 + }, + { + "start": 3633.14, + "end": 3637.2, + "probability": 0.9199 + }, + { + "start": 3637.2, + "end": 3640.76, + "probability": 0.9909 + }, + { + "start": 3641.4, + "end": 3647.66, + "probability": 0.9884 + }, + { + "start": 3648.56, + "end": 3652.72, + "probability": 0.9152 + }, + { + "start": 3652.72, + "end": 3656.06, + "probability": 0.9735 + }, + { + "start": 3657.8, + "end": 3660.36, + "probability": 0.9987 + }, + { + "start": 3660.66, + "end": 3663.3, + "probability": 0.9869 + }, + { + "start": 3663.7, + "end": 3667.12, + "probability": 0.9902 + }, + { + "start": 3667.76, + "end": 3668.14, + "probability": 0.6777 + }, + { + "start": 3668.28, + "end": 3672.14, + "probability": 0.9755 + }, + { + "start": 3672.14, + "end": 3675.58, + "probability": 0.9551 + }, + { + "start": 3675.98, + "end": 3678.42, + "probability": 0.9865 + }, + { + "start": 3679.1, + "end": 3681.7, + "probability": 0.939 + }, + { + "start": 3681.7, + "end": 3684.7, + "probability": 0.9865 + }, + { + "start": 3685.3, + "end": 3689.08, + "probability": 0.9097 + }, + { + "start": 3689.08, + "end": 3691.96, + "probability": 0.9774 + }, + { + "start": 3692.68, + "end": 3698.28, + "probability": 0.9789 + }, + { + "start": 3698.8, + "end": 3699.94, + "probability": 0.8479 + }, + { + "start": 3700.9, + "end": 3703.72, + "probability": 0.996 + }, + { + "start": 3703.74, + "end": 3706.58, + "probability": 0.9876 + }, + { + "start": 3707.14, + "end": 3709.96, + "probability": 0.9856 + }, + { + "start": 3709.96, + "end": 3712.9, + "probability": 0.9909 + }, + { + "start": 3713.26, + "end": 3715.8, + "probability": 0.9937 + }, + { + "start": 3715.92, + "end": 3718.46, + "probability": 0.9363 + }, + { + "start": 3719.26, + "end": 3719.56, + "probability": 0.31 + }, + { + "start": 3720.16, + "end": 3724.08, + "probability": 0.8362 + }, + { + "start": 3724.6, + "end": 3727.54, + "probability": 0.9778 + }, + { + "start": 3727.62, + "end": 3730.54, + "probability": 0.9865 + }, + { + "start": 3730.62, + "end": 3730.94, + "probability": 0.4181 + }, + { + "start": 3731.04, + "end": 3735.94, + "probability": 0.9619 + }, + { + "start": 3737.36, + "end": 3740.22, + "probability": 0.9676 + }, + { + "start": 3740.52, + "end": 3743.42, + "probability": 0.981 + }, + { + "start": 3743.42, + "end": 3747.52, + "probability": 0.9863 + }, + { + "start": 3748.56, + "end": 3748.82, + "probability": 0.3656 + }, + { + "start": 3748.9, + "end": 3753.26, + "probability": 0.9623 + }, + { + "start": 3753.62, + "end": 3755.66, + "probability": 0.9963 + }, + { + "start": 3756.62, + "end": 3759.2, + "probability": 0.9889 + }, + { + "start": 3759.46, + "end": 3763.88, + "probability": 0.9982 + }, + { + "start": 3763.88, + "end": 3767.64, + "probability": 0.9954 + }, + { + "start": 3767.64, + "end": 3772.78, + "probability": 0.9425 + }, + { + "start": 3772.9, + "end": 3776.7, + "probability": 0.9961 + }, + { + "start": 3776.7, + "end": 3780.98, + "probability": 0.994 + }, + { + "start": 3780.98, + "end": 3783.98, + "probability": 0.9815 + }, + { + "start": 3784.48, + "end": 3789.06, + "probability": 0.9966 + }, + { + "start": 3789.18, + "end": 3792.38, + "probability": 0.9963 + }, + { + "start": 3792.78, + "end": 3794.64, + "probability": 0.9858 + }, + { + "start": 3798.76, + "end": 3800.96, + "probability": 0.6217 + }, + { + "start": 3801.5, + "end": 3802.24, + "probability": 0.6416 + }, + { + "start": 3802.32, + "end": 3802.72, + "probability": 0.7059 + }, + { + "start": 3802.78, + "end": 3806.98, + "probability": 0.9695 + }, + { + "start": 3807.1, + "end": 3811.54, + "probability": 0.9596 + }, + { + "start": 3813.0, + "end": 3814.6, + "probability": 0.9939 + }, + { + "start": 3816.08, + "end": 3816.72, + "probability": 0.7682 + }, + { + "start": 3816.82, + "end": 3816.92, + "probability": 0.7063 + }, + { + "start": 3816.92, + "end": 3817.44, + "probability": 0.8475 + }, + { + "start": 3817.74, + "end": 3819.94, + "probability": 0.9744 + }, + { + "start": 3820.04, + "end": 3820.84, + "probability": 0.524 + }, + { + "start": 3821.34, + "end": 3824.14, + "probability": 0.9239 + }, + { + "start": 3824.26, + "end": 3828.2, + "probability": 0.9601 + }, + { + "start": 3828.92, + "end": 3831.08, + "probability": 0.7993 + }, + { + "start": 3832.23, + "end": 3835.34, + "probability": 0.977 + }, + { + "start": 3836.36, + "end": 3840.92, + "probability": 0.968 + }, + { + "start": 3840.92, + "end": 3844.86, + "probability": 0.9933 + }, + { + "start": 3844.9, + "end": 3846.09, + "probability": 0.96 + }, + { + "start": 3846.34, + "end": 3847.42, + "probability": 0.9355 + }, + { + "start": 3848.52, + "end": 3851.54, + "probability": 0.991 + }, + { + "start": 3851.62, + "end": 3856.25, + "probability": 0.98 + }, + { + "start": 3856.58, + "end": 3860.56, + "probability": 0.9054 + }, + { + "start": 3860.56, + "end": 3864.5, + "probability": 0.9985 + }, + { + "start": 3864.58, + "end": 3866.62, + "probability": 0.7812 + }, + { + "start": 3867.2, + "end": 3871.48, + "probability": 0.9161 + }, + { + "start": 3872.28, + "end": 3875.0, + "probability": 0.9878 + }, + { + "start": 3875.14, + "end": 3878.64, + "probability": 0.9834 + }, + { + "start": 3878.64, + "end": 3881.76, + "probability": 0.9962 + }, + { + "start": 3882.54, + "end": 3885.16, + "probability": 0.7554 + }, + { + "start": 3885.74, + "end": 3891.06, + "probability": 0.9696 + }, + { + "start": 3891.38, + "end": 3894.88, + "probability": 0.9514 + }, + { + "start": 3895.4, + "end": 3899.52, + "probability": 0.9821 + }, + { + "start": 3899.52, + "end": 3903.92, + "probability": 0.9852 + }, + { + "start": 3904.98, + "end": 3908.33, + "probability": 0.9976 + }, + { + "start": 3909.12, + "end": 3915.44, + "probability": 0.9919 + }, + { + "start": 3915.44, + "end": 3919.82, + "probability": 0.9959 + }, + { + "start": 3920.66, + "end": 3921.4, + "probability": 0.6405 + }, + { + "start": 3921.48, + "end": 3922.42, + "probability": 0.9409 + }, + { + "start": 3922.48, + "end": 3923.72, + "probability": 0.8221 + }, + { + "start": 3924.52, + "end": 3928.92, + "probability": 0.9941 + }, + { + "start": 3929.08, + "end": 3929.48, + "probability": 0.6697 + }, + { + "start": 3930.44, + "end": 3931.28, + "probability": 0.4372 + }, + { + "start": 3931.48, + "end": 3931.78, + "probability": 0.7808 + }, + { + "start": 3931.84, + "end": 3933.56, + "probability": 0.7571 + }, + { + "start": 3933.72, + "end": 3935.5, + "probability": 0.9883 + }, + { + "start": 3935.6, + "end": 3936.24, + "probability": 0.8136 + }, + { + "start": 3937.1, + "end": 3941.62, + "probability": 0.9128 + }, + { + "start": 3941.62, + "end": 3945.92, + "probability": 0.9829 + }, + { + "start": 3946.2, + "end": 3949.16, + "probability": 0.9365 + }, + { + "start": 3949.16, + "end": 3951.56, + "probability": 0.9899 + }, + { + "start": 3951.72, + "end": 3952.76, + "probability": 0.4305 + }, + { + "start": 3953.46, + "end": 3957.72, + "probability": 0.9795 + }, + { + "start": 3958.24, + "end": 3959.2, + "probability": 0.7788 + }, + { + "start": 3959.34, + "end": 3960.18, + "probability": 0.6828 + }, + { + "start": 3960.26, + "end": 3962.78, + "probability": 0.7622 + }, + { + "start": 3962.78, + "end": 3965.92, + "probability": 0.9297 + }, + { + "start": 3966.38, + "end": 3968.75, + "probability": 0.9958 + }, + { + "start": 3969.48, + "end": 3971.12, + "probability": 0.9966 + }, + { + "start": 3971.2, + "end": 3974.22, + "probability": 0.9788 + }, + { + "start": 3974.34, + "end": 3978.91, + "probability": 0.9608 + }, + { + "start": 3979.16, + "end": 3982.66, + "probability": 0.9719 + }, + { + "start": 3983.46, + "end": 3985.94, + "probability": 0.979 + }, + { + "start": 3986.04, + "end": 3990.34, + "probability": 0.9974 + }, + { + "start": 3991.24, + "end": 3993.28, + "probability": 0.9894 + }, + { + "start": 3993.46, + "end": 3999.78, + "probability": 0.9993 + }, + { + "start": 3999.78, + "end": 4005.7, + "probability": 0.9657 + }, + { + "start": 4005.76, + "end": 4009.1, + "probability": 0.9959 + }, + { + "start": 4009.64, + "end": 4010.94, + "probability": 0.9644 + }, + { + "start": 4011.94, + "end": 4013.98, + "probability": 0.9126 + }, + { + "start": 4014.08, + "end": 4015.72, + "probability": 0.9946 + }, + { + "start": 4015.88, + "end": 4017.66, + "probability": 0.9249 + }, + { + "start": 4019.63, + "end": 4022.88, + "probability": 0.8252 + }, + { + "start": 4023.5, + "end": 4026.94, + "probability": 0.9955 + }, + { + "start": 4027.24, + "end": 4031.68, + "probability": 0.9924 + }, + { + "start": 4032.95, + "end": 4034.94, + "probability": 0.6862 + }, + { + "start": 4035.1, + "end": 4036.64, + "probability": 0.9435 + }, + { + "start": 4037.2, + "end": 4041.96, + "probability": 0.9752 + }, + { + "start": 4041.96, + "end": 4045.22, + "probability": 0.9944 + }, + { + "start": 4045.58, + "end": 4047.06, + "probability": 0.7503 + }, + { + "start": 4047.08, + "end": 4049.68, + "probability": 0.901 + }, + { + "start": 4051.0, + "end": 4056.96, + "probability": 0.9988 + }, + { + "start": 4057.16, + "end": 4058.24, + "probability": 0.8481 + }, + { + "start": 4058.34, + "end": 4058.6, + "probability": 0.5712 + }, + { + "start": 4058.68, + "end": 4060.3, + "probability": 0.9941 + }, + { + "start": 4060.88, + "end": 4062.86, + "probability": 0.839 + }, + { + "start": 4063.98, + "end": 4065.4, + "probability": 0.9877 + }, + { + "start": 4066.1, + "end": 4069.12, + "probability": 0.9973 + }, + { + "start": 4069.24, + "end": 4074.03, + "probability": 0.9942 + }, + { + "start": 4074.24, + "end": 4074.96, + "probability": 0.4505 + }, + { + "start": 4075.34, + "end": 4078.16, + "probability": 0.9613 + }, + { + "start": 4078.82, + "end": 4083.32, + "probability": 0.9897 + }, + { + "start": 4083.88, + "end": 4085.02, + "probability": 0.989 + }, + { + "start": 4085.56, + "end": 4086.36, + "probability": 0.8342 + }, + { + "start": 4086.4, + "end": 4087.46, + "probability": 0.9407 + }, + { + "start": 4087.94, + "end": 4090.51, + "probability": 0.8421 + }, + { + "start": 4090.72, + "end": 4091.6, + "probability": 0.8232 + }, + { + "start": 4091.66, + "end": 4092.22, + "probability": 0.9715 + }, + { + "start": 4092.3, + "end": 4093.64, + "probability": 0.9921 + }, + { + "start": 4094.34, + "end": 4099.46, + "probability": 0.9897 + }, + { + "start": 4099.88, + "end": 4100.5, + "probability": 0.8053 + }, + { + "start": 4100.64, + "end": 4104.48, + "probability": 0.9932 + }, + { + "start": 4104.8, + "end": 4108.22, + "probability": 0.7369 + }, + { + "start": 4108.7, + "end": 4111.5, + "probability": 0.9634 + }, + { + "start": 4111.93, + "end": 4115.64, + "probability": 0.9739 + }, + { + "start": 4116.92, + "end": 4120.22, + "probability": 0.991 + }, + { + "start": 4120.38, + "end": 4124.28, + "probability": 0.9023 + }, + { + "start": 4125.18, + "end": 4130.24, + "probability": 0.9284 + }, + { + "start": 4131.02, + "end": 4133.56, + "probability": 0.8598 + }, + { + "start": 4133.66, + "end": 4134.98, + "probability": 0.8586 + }, + { + "start": 4135.12, + "end": 4136.3, + "probability": 0.9872 + }, + { + "start": 4136.68, + "end": 4139.96, + "probability": 0.9839 + }, + { + "start": 4140.3, + "end": 4143.7, + "probability": 0.9819 + }, + { + "start": 4144.28, + "end": 4144.28, + "probability": 0.4809 + }, + { + "start": 4145.18, + "end": 4148.05, + "probability": 0.9541 + }, + { + "start": 4150.26, + "end": 4150.34, + "probability": 0.135 + }, + { + "start": 4150.34, + "end": 4152.3, + "probability": 0.7446 + }, + { + "start": 4152.5, + "end": 4156.12, + "probability": 0.9912 + }, + { + "start": 4156.34, + "end": 4158.06, + "probability": 0.9066 + }, + { + "start": 4158.1, + "end": 4161.1, + "probability": 0.8942 + }, + { + "start": 4161.62, + "end": 4162.28, + "probability": 0.0036 + }, + { + "start": 4162.82, + "end": 4167.96, + "probability": 0.9945 + }, + { + "start": 4168.16, + "end": 4168.92, + "probability": 0.9023 + }, + { + "start": 4168.92, + "end": 4169.68, + "probability": 0.8844 + }, + { + "start": 4169.78, + "end": 4170.56, + "probability": 0.9103 + }, + { + "start": 4170.74, + "end": 4171.76, + "probability": 0.9645 + }, + { + "start": 4171.9, + "end": 4173.02, + "probability": 0.9883 + }, + { + "start": 4174.76, + "end": 4175.08, + "probability": 0.8226 + }, + { + "start": 4177.06, + "end": 4178.32, + "probability": 0.0774 + }, + { + "start": 4178.48, + "end": 4178.48, + "probability": 0.5122 + }, + { + "start": 4178.48, + "end": 4184.36, + "probability": 0.7341 + }, + { + "start": 4184.98, + "end": 4187.56, + "probability": 0.7905 + }, + { + "start": 4187.92, + "end": 4194.5, + "probability": 0.8534 + }, + { + "start": 4194.86, + "end": 4197.22, + "probability": 0.9917 + }, + { + "start": 4197.68, + "end": 4198.2, + "probability": 0.6557 + }, + { + "start": 4198.68, + "end": 4200.72, + "probability": 0.8825 + }, + { + "start": 4200.98, + "end": 4201.64, + "probability": 0.568 + }, + { + "start": 4201.76, + "end": 4202.12, + "probability": 0.4893 + }, + { + "start": 4202.56, + "end": 4206.32, + "probability": 0.9494 + }, + { + "start": 4206.88, + "end": 4208.94, + "probability": 0.8632 + }, + { + "start": 4209.02, + "end": 4210.06, + "probability": 0.8843 + }, + { + "start": 4210.54, + "end": 4211.58, + "probability": 0.7166 + }, + { + "start": 4212.3, + "end": 4212.64, + "probability": 0.2642 + }, + { + "start": 4212.68, + "end": 4216.64, + "probability": 0.9289 + }, + { + "start": 4217.18, + "end": 4219.6, + "probability": 0.9824 + }, + { + "start": 4219.68, + "end": 4220.0, + "probability": 0.8726 + }, + { + "start": 4220.9, + "end": 4221.76, + "probability": 0.6015 + }, + { + "start": 4221.88, + "end": 4225.64, + "probability": 0.7554 + }, + { + "start": 4225.64, + "end": 4228.83, + "probability": 0.9673 + }, + { + "start": 4229.36, + "end": 4231.14, + "probability": 0.6855 + }, + { + "start": 4231.2, + "end": 4232.68, + "probability": 0.976 + }, + { + "start": 4232.8, + "end": 4236.76, + "probability": 0.6528 + }, + { + "start": 4237.42, + "end": 4240.62, + "probability": 0.9366 + }, + { + "start": 4241.06, + "end": 4244.4, + "probability": 0.9197 + }, + { + "start": 4244.5, + "end": 4249.1, + "probability": 0.979 + }, + { + "start": 4249.1, + "end": 4255.72, + "probability": 0.9884 + }, + { + "start": 4256.26, + "end": 4259.88, + "probability": 0.6685 + }, + { + "start": 4259.96, + "end": 4260.26, + "probability": 0.8452 + }, + { + "start": 4260.42, + "end": 4261.86, + "probability": 0.9492 + }, + { + "start": 4261.98, + "end": 4265.36, + "probability": 0.915 + }, + { + "start": 4265.56, + "end": 4268.02, + "probability": 0.9219 + }, + { + "start": 4268.42, + "end": 4271.36, + "probability": 0.9325 + }, + { + "start": 4271.72, + "end": 4273.74, + "probability": 0.9827 + }, + { + "start": 4273.94, + "end": 4276.57, + "probability": 0.6507 + }, + { + "start": 4277.68, + "end": 4279.29, + "probability": 0.5339 + }, + { + "start": 4279.88, + "end": 4283.58, + "probability": 0.9372 + }, + { + "start": 4285.46, + "end": 4287.66, + "probability": 0.4963 + }, + { + "start": 4288.32, + "end": 4291.16, + "probability": 0.4003 + }, + { + "start": 4291.58, + "end": 4296.8, + "probability": 0.9564 + }, + { + "start": 4296.92, + "end": 4297.3, + "probability": 0.9244 + }, + { + "start": 4297.38, + "end": 4298.22, + "probability": 0.784 + }, + { + "start": 4298.34, + "end": 4299.7, + "probability": 0.8153 + }, + { + "start": 4299.76, + "end": 4300.7, + "probability": 0.6152 + }, + { + "start": 4301.56, + "end": 4304.24, + "probability": 0.918 + }, + { + "start": 4304.24, + "end": 4307.58, + "probability": 0.9886 + }, + { + "start": 4308.16, + "end": 4311.46, + "probability": 0.8918 + }, + { + "start": 4311.46, + "end": 4315.86, + "probability": 0.9934 + }, + { + "start": 4317.44, + "end": 4317.76, + "probability": 0.0809 + }, + { + "start": 4318.46, + "end": 4322.16, + "probability": 0.9415 + }, + { + "start": 4322.16, + "end": 4326.6, + "probability": 0.9381 + }, + { + "start": 4326.74, + "end": 4328.68, + "probability": 0.9878 + }, + { + "start": 4329.48, + "end": 4332.52, + "probability": 0.8404 + }, + { + "start": 4333.38, + "end": 4334.58, + "probability": 0.7446 + }, + { + "start": 4334.7, + "end": 4335.25, + "probability": 0.906 + }, + { + "start": 4335.72, + "end": 4342.54, + "probability": 0.9582 + }, + { + "start": 4342.66, + "end": 4346.62, + "probability": 0.9395 + }, + { + "start": 4347.24, + "end": 4349.76, + "probability": 0.875 + }, + { + "start": 4350.42, + "end": 4353.34, + "probability": 0.9617 + }, + { + "start": 4353.34, + "end": 4356.44, + "probability": 0.9357 + }, + { + "start": 4356.52, + "end": 4360.44, + "probability": 0.7434 + }, + { + "start": 4360.62, + "end": 4365.14, + "probability": 0.8262 + }, + { + "start": 4365.44, + "end": 4367.96, + "probability": 0.9783 + }, + { + "start": 4368.5, + "end": 4372.56, + "probability": 0.9625 + }, + { + "start": 4373.18, + "end": 4375.24, + "probability": 0.4904 + }, + { + "start": 4375.88, + "end": 4377.7, + "probability": 0.342 + }, + { + "start": 4378.16, + "end": 4379.74, + "probability": 0.7035 + }, + { + "start": 4380.14, + "end": 4384.66, + "probability": 0.9932 + }, + { + "start": 4384.78, + "end": 4388.36, + "probability": 0.8792 + }, + { + "start": 4388.38, + "end": 4391.36, + "probability": 0.9938 + }, + { + "start": 4391.9, + "end": 4395.18, + "probability": 0.8756 + }, + { + "start": 4395.7, + "end": 4397.18, + "probability": 0.9946 + }, + { + "start": 4397.82, + "end": 4399.44, + "probability": 0.9946 + }, + { + "start": 4400.04, + "end": 4401.76, + "probability": 0.9883 + }, + { + "start": 4402.02, + "end": 4405.46, + "probability": 0.9497 + }, + { + "start": 4405.48, + "end": 4409.5, + "probability": 0.9972 + }, + { + "start": 4410.34, + "end": 4412.1, + "probability": 0.8983 + }, + { + "start": 4413.26, + "end": 4415.86, + "probability": 0.7299 + }, + { + "start": 4416.58, + "end": 4418.24, + "probability": 0.9345 + }, + { + "start": 4418.46, + "end": 4421.8, + "probability": 0.8264 + }, + { + "start": 4421.92, + "end": 4425.08, + "probability": 0.9017 + }, + { + "start": 4425.28, + "end": 4426.52, + "probability": 0.9958 + }, + { + "start": 4427.1, + "end": 4429.78, + "probability": 0.948 + }, + { + "start": 4429.94, + "end": 4430.34, + "probability": 0.6554 + }, + { + "start": 4430.84, + "end": 4431.2, + "probability": 0.622 + }, + { + "start": 4431.48, + "end": 4433.13, + "probability": 0.7534 + }, + { + "start": 4434.54, + "end": 4435.78, + "probability": 0.9757 + }, + { + "start": 4436.32, + "end": 4439.38, + "probability": 0.8931 + }, + { + "start": 4439.74, + "end": 4441.72, + "probability": 0.9439 + }, + { + "start": 4465.7, + "end": 4466.36, + "probability": 0.5283 + }, + { + "start": 4466.58, + "end": 4467.44, + "probability": 0.6594 + }, + { + "start": 4467.66, + "end": 4468.8, + "probability": 0.6915 + }, + { + "start": 4470.8, + "end": 4472.12, + "probability": 0.9978 + }, + { + "start": 4473.26, + "end": 4474.94, + "probability": 0.9182 + }, + { + "start": 4476.2, + "end": 4478.04, + "probability": 0.9912 + }, + { + "start": 4479.32, + "end": 4481.64, + "probability": 0.9547 + }, + { + "start": 4482.64, + "end": 4484.4, + "probability": 0.9271 + }, + { + "start": 4485.54, + "end": 4486.62, + "probability": 0.7033 + }, + { + "start": 4488.26, + "end": 4490.54, + "probability": 0.9977 + }, + { + "start": 4492.46, + "end": 4496.5, + "probability": 0.9767 + }, + { + "start": 4497.16, + "end": 4502.42, + "probability": 0.9972 + }, + { + "start": 4503.7, + "end": 4504.32, + "probability": 0.9326 + }, + { + "start": 4504.96, + "end": 4507.58, + "probability": 0.668 + }, + { + "start": 4507.66, + "end": 4508.08, + "probability": 0.845 + }, + { + "start": 4509.2, + "end": 4510.38, + "probability": 0.9065 + }, + { + "start": 4510.62, + "end": 4513.2, + "probability": 0.9857 + }, + { + "start": 4513.8, + "end": 4514.9, + "probability": 0.9648 + }, + { + "start": 4516.5, + "end": 4521.28, + "probability": 0.9702 + }, + { + "start": 4522.74, + "end": 4526.5, + "probability": 0.9953 + }, + { + "start": 4527.42, + "end": 4528.74, + "probability": 0.8877 + }, + { + "start": 4528.8, + "end": 4533.72, + "probability": 0.9188 + }, + { + "start": 4534.4, + "end": 4535.48, + "probability": 0.9668 + }, + { + "start": 4536.12, + "end": 4538.42, + "probability": 0.9818 + }, + { + "start": 4539.64, + "end": 4544.46, + "probability": 0.9357 + }, + { + "start": 4545.04, + "end": 4546.42, + "probability": 0.9052 + }, + { + "start": 4546.54, + "end": 4547.48, + "probability": 0.8299 + }, + { + "start": 4548.44, + "end": 4551.46, + "probability": 0.7241 + }, + { + "start": 4551.54, + "end": 4552.64, + "probability": 0.9194 + }, + { + "start": 4552.64, + "end": 4554.1, + "probability": 0.667 + }, + { + "start": 4554.36, + "end": 4555.78, + "probability": 0.5871 + }, + { + "start": 4556.82, + "end": 4559.34, + "probability": 0.6291 + }, + { + "start": 4560.28, + "end": 4562.58, + "probability": 0.9065 + }, + { + "start": 4562.72, + "end": 4563.42, + "probability": 0.8997 + }, + { + "start": 4563.86, + "end": 4564.8, + "probability": 0.8328 + }, + { + "start": 4564.86, + "end": 4565.48, + "probability": 0.9799 + }, + { + "start": 4565.86, + "end": 4567.18, + "probability": 0.9771 + }, + { + "start": 4567.38, + "end": 4568.22, + "probability": 0.9893 + }, + { + "start": 4568.36, + "end": 4569.78, + "probability": 0.9028 + }, + { + "start": 4570.26, + "end": 4573.47, + "probability": 0.9976 + }, + { + "start": 4573.66, + "end": 4574.42, + "probability": 0.9963 + }, + { + "start": 4575.68, + "end": 4579.54, + "probability": 0.8744 + }, + { + "start": 4580.16, + "end": 4581.04, + "probability": 0.4359 + }, + { + "start": 4581.12, + "end": 4584.68, + "probability": 0.9507 + }, + { + "start": 4585.12, + "end": 4587.22, + "probability": 0.993 + }, + { + "start": 4588.1, + "end": 4590.56, + "probability": 0.7147 + }, + { + "start": 4591.16, + "end": 4591.84, + "probability": 0.843 + }, + { + "start": 4592.4, + "end": 4595.2, + "probability": 0.9408 + }, + { + "start": 4596.02, + "end": 4598.54, + "probability": 0.6328 + }, + { + "start": 4599.44, + "end": 4600.56, + "probability": 0.6312 + }, + { + "start": 4601.28, + "end": 4604.94, + "probability": 0.6745 + }, + { + "start": 4606.06, + "end": 4607.36, + "probability": 0.9787 + }, + { + "start": 4608.02, + "end": 4609.54, + "probability": 0.9865 + }, + { + "start": 4610.9, + "end": 4614.74, + "probability": 0.5213 + }, + { + "start": 4615.44, + "end": 4621.02, + "probability": 0.9875 + }, + { + "start": 4621.24, + "end": 4621.91, + "probability": 0.9938 + }, + { + "start": 4623.12, + "end": 4626.8, + "probability": 0.9076 + }, + { + "start": 4627.6, + "end": 4628.42, + "probability": 0.9058 + }, + { + "start": 4628.94, + "end": 4631.06, + "probability": 0.1279 + }, + { + "start": 4632.08, + "end": 4635.74, + "probability": 0.9862 + }, + { + "start": 4636.06, + "end": 4636.44, + "probability": 0.8116 + }, + { + "start": 4637.66, + "end": 4638.38, + "probability": 0.7621 + }, + { + "start": 4641.62, + "end": 4645.76, + "probability": 0.9444 + }, + { + "start": 4646.38, + "end": 4648.08, + "probability": 0.9639 + }, + { + "start": 4648.78, + "end": 4649.48, + "probability": 0.9101 + }, + { + "start": 4650.02, + "end": 4651.46, + "probability": 0.5448 + }, + { + "start": 4652.32, + "end": 4653.4, + "probability": 0.7077 + }, + { + "start": 4654.32, + "end": 4654.42, + "probability": 0.4362 + }, + { + "start": 4657.36, + "end": 4660.1, + "probability": 0.8146 + }, + { + "start": 4660.72, + "end": 4661.1, + "probability": 0.7227 + }, + { + "start": 4663.58, + "end": 4665.22, + "probability": 0.9402 + }, + { + "start": 4667.18, + "end": 4667.88, + "probability": 0.8786 + }, + { + "start": 4667.9, + "end": 4668.5, + "probability": 0.8327 + }, + { + "start": 4668.5, + "end": 4668.92, + "probability": 0.7746 + }, + { + "start": 4668.98, + "end": 4669.6, + "probability": 0.8818 + }, + { + "start": 4669.72, + "end": 4670.08, + "probability": 0.5741 + }, + { + "start": 4670.3, + "end": 4670.7, + "probability": 0.7384 + }, + { + "start": 4671.04, + "end": 4671.66, + "probability": 0.704 + }, + { + "start": 4671.86, + "end": 4672.18, + "probability": 0.6975 + }, + { + "start": 4672.38, + "end": 4672.72, + "probability": 0.9845 + }, + { + "start": 4673.32, + "end": 4676.8, + "probability": 0.9541 + }, + { + "start": 4677.44, + "end": 4680.92, + "probability": 0.9608 + }, + { + "start": 4682.04, + "end": 4687.38, + "probability": 0.8877 + }, + { + "start": 4687.38, + "end": 4687.86, + "probability": 0.595 + }, + { + "start": 4703.22, + "end": 4704.04, + "probability": 0.6251 + }, + { + "start": 4704.9, + "end": 4705.5, + "probability": 0.6016 + }, + { + "start": 4706.76, + "end": 4708.92, + "probability": 0.6788 + }, + { + "start": 4708.98, + "end": 4709.52, + "probability": 0.6466 + }, + { + "start": 4710.24, + "end": 4712.34, + "probability": 0.8586 + }, + { + "start": 4713.04, + "end": 4715.48, + "probability": 0.7 + }, + { + "start": 4715.54, + "end": 4718.7, + "probability": 0.7798 + }, + { + "start": 4719.48, + "end": 4720.58, + "probability": 0.8306 + }, + { + "start": 4721.16, + "end": 4722.94, + "probability": 0.9482 + }, + { + "start": 4726.56, + "end": 4728.88, + "probability": 0.6387 + }, + { + "start": 4730.22, + "end": 4732.16, + "probability": 0.6057 + }, + { + "start": 4732.2, + "end": 4734.86, + "probability": 0.705 + }, + { + "start": 4734.98, + "end": 4735.9, + "probability": 0.9325 + }, + { + "start": 4735.98, + "end": 4737.14, + "probability": 0.6317 + }, + { + "start": 4738.84, + "end": 4740.96, + "probability": 0.9412 + }, + { + "start": 4741.08, + "end": 4741.98, + "probability": 0.5946 + }, + { + "start": 4742.6, + "end": 4744.52, + "probability": 0.602 + }, + { + "start": 4744.66, + "end": 4745.54, + "probability": 0.8919 + }, + { + "start": 4745.76, + "end": 4745.9, + "probability": 0.2023 + }, + { + "start": 4745.94, + "end": 4746.57, + "probability": 0.2351 + }, + { + "start": 4746.96, + "end": 4749.02, + "probability": 0.4008 + }, + { + "start": 4749.28, + "end": 4750.54, + "probability": 0.4773 + }, + { + "start": 4752.79, + "end": 4754.42, + "probability": 0.3216 + }, + { + "start": 4754.98, + "end": 4755.4, + "probability": 0.4106 + }, + { + "start": 4755.5, + "end": 4757.64, + "probability": 0.8142 + }, + { + "start": 4757.74, + "end": 4759.7, + "probability": 0.6308 + }, + { + "start": 4760.24, + "end": 4766.84, + "probability": 0.5178 + }, + { + "start": 4767.08, + "end": 4768.86, + "probability": 0.5307 + }, + { + "start": 4769.12, + "end": 4770.16, + "probability": 0.1187 + }, + { + "start": 4770.7, + "end": 4771.04, + "probability": 0.4348 + }, + { + "start": 4771.48, + "end": 4775.06, + "probability": 0.6898 + }, + { + "start": 4775.64, + "end": 4779.42, + "probability": 0.8301 + }, + { + "start": 4779.52, + "end": 4779.74, + "probability": 0.6293 + }, + { + "start": 4780.56, + "end": 4781.16, + "probability": 0.3169 + }, + { + "start": 4781.8, + "end": 4784.24, + "probability": 0.9243 + }, + { + "start": 4784.42, + "end": 4785.82, + "probability": 0.9039 + }, + { + "start": 4785.84, + "end": 4786.97, + "probability": 0.2068 + }, + { + "start": 4787.8, + "end": 4790.2, + "probability": 0.3674 + }, + { + "start": 4790.3, + "end": 4793.8, + "probability": 0.7444 + }, + { + "start": 4794.62, + "end": 4795.82, + "probability": 0.8671 + }, + { + "start": 4796.84, + "end": 4798.3, + "probability": 0.7381 + }, + { + "start": 4798.48, + "end": 4799.64, + "probability": 0.7137 + }, + { + "start": 4799.72, + "end": 4800.06, + "probability": 0.6142 + }, + { + "start": 4800.44, + "end": 4801.82, + "probability": 0.893 + }, + { + "start": 4801.9, + "end": 4802.11, + "probability": 0.5018 + }, + { + "start": 4802.54, + "end": 4804.86, + "probability": 0.9315 + }, + { + "start": 4805.7, + "end": 4807.46, + "probability": 0.7923 + }, + { + "start": 4807.6, + "end": 4810.38, + "probability": 0.8446 + }, + { + "start": 4810.46, + "end": 4811.9, + "probability": 0.7586 + }, + { + "start": 4812.0, + "end": 4813.08, + "probability": 0.8602 + }, + { + "start": 4813.24, + "end": 4813.86, + "probability": 0.8501 + }, + { + "start": 4813.9, + "end": 4814.72, + "probability": 0.666 + }, + { + "start": 4814.72, + "end": 4815.18, + "probability": 0.656 + }, + { + "start": 4816.52, + "end": 4817.56, + "probability": 0.8442 + }, + { + "start": 4817.64, + "end": 4817.92, + "probability": 0.8111 + }, + { + "start": 4818.14, + "end": 4819.52, + "probability": 0.9631 + }, + { + "start": 4819.66, + "end": 4820.9, + "probability": 0.866 + }, + { + "start": 4821.0, + "end": 4821.58, + "probability": 0.9396 + }, + { + "start": 4822.18, + "end": 4822.92, + "probability": 0.7475 + }, + { + "start": 4823.04, + "end": 4824.32, + "probability": 0.9629 + }, + { + "start": 4825.12, + "end": 4828.6, + "probability": 0.6647 + }, + { + "start": 4828.68, + "end": 4829.3, + "probability": 0.7663 + }, + { + "start": 4829.78, + "end": 4830.12, + "probability": 0.4952 + }, + { + "start": 4830.16, + "end": 4831.87, + "probability": 0.8843 + }, + { + "start": 4831.94, + "end": 4835.1, + "probability": 0.993 + }, + { + "start": 4835.52, + "end": 4837.3, + "probability": 0.9416 + }, + { + "start": 4839.32, + "end": 4841.12, + "probability": 0.6841 + }, + { + "start": 4841.24, + "end": 4841.96, + "probability": 0.7722 + }, + { + "start": 4845.1, + "end": 4852.5, + "probability": 0.6436 + }, + { + "start": 4852.54, + "end": 4853.84, + "probability": 0.6313 + }, + { + "start": 4858.5, + "end": 4860.62, + "probability": 0.8025 + }, + { + "start": 4880.34, + "end": 4885.16, + "probability": 0.2847 + }, + { + "start": 4885.16, + "end": 4888.04, + "probability": 0.3134 + }, + { + "start": 4888.16, + "end": 4888.86, + "probability": 0.4919 + }, + { + "start": 4889.5, + "end": 4891.78, + "probability": 0.0576 + }, + { + "start": 4892.72, + "end": 4898.46, + "probability": 0.095 + }, + { + "start": 4903.56, + "end": 4903.7, + "probability": 0.0274 + }, + { + "start": 4904.4, + "end": 4907.54, + "probability": 0.1587 + }, + { + "start": 4909.36, + "end": 4910.26, + "probability": 0.2366 + }, + { + "start": 4910.89, + "end": 4914.84, + "probability": 0.1356 + }, + { + "start": 4915.84, + "end": 4916.14, + "probability": 0.0236 + }, + { + "start": 4916.14, + "end": 4916.7, + "probability": 0.0353 + }, + { + "start": 4916.7, + "end": 4918.22, + "probability": 0.0517 + }, + { + "start": 4918.46, + "end": 4918.64, + "probability": 0.0223 + }, + { + "start": 4923.08, + "end": 4925.18, + "probability": 0.08 + }, + { + "start": 4925.18, + "end": 4925.5, + "probability": 0.0189 + }, + { + "start": 4925.5, + "end": 4925.5, + "probability": 0.1358 + }, + { + "start": 4925.5, + "end": 4925.56, + "probability": 0.0479 + }, + { + "start": 4925.76, + "end": 4926.53, + "probability": 0.0392 + }, + { + "start": 4928.55, + "end": 4929.42, + "probability": 0.0642 + }, + { + "start": 4934.0, + "end": 4934.0, + "probability": 0.0 + }, + { + "start": 4934.0, + "end": 4934.0, + "probability": 0.0 + }, + { + "start": 4934.0, + "end": 4934.0, + "probability": 0.0 + }, + { + "start": 4934.0, + "end": 4934.0, + "probability": 0.0 + }, + { + "start": 4934.0, + "end": 4934.0, + "probability": 0.0 + }, + { + "start": 4934.0, + "end": 4934.0, + "probability": 0.0 + }, + { + "start": 4934.0, + "end": 4934.0, + "probability": 0.0 + }, + { + "start": 4934.16, + "end": 4937.1, + "probability": 0.8139 + }, + { + "start": 4937.36, + "end": 4937.46, + "probability": 0.8166 + }, + { + "start": 4938.68, + "end": 4939.78, + "probability": 0.9632 + }, + { + "start": 4941.0, + "end": 4942.0, + "probability": 0.5764 + }, + { + "start": 4942.14, + "end": 4944.36, + "probability": 0.9811 + }, + { + "start": 4944.58, + "end": 4945.4, + "probability": 0.7841 + }, + { + "start": 4945.72, + "end": 4948.62, + "probability": 0.3695 + }, + { + "start": 4948.86, + "end": 4951.44, + "probability": 0.9062 + }, + { + "start": 4952.16, + "end": 4955.18, + "probability": 0.7701 + }, + { + "start": 4955.68, + "end": 4955.78, + "probability": 0.1901 + } + ], + "segments_count": 1570, + "words_count": 8214, + "avg_words_per_segment": 5.2318, + "avg_segment_duration": 2.307, + "avg_words_per_minute": 99.1032, + "plenum_id": "104477", + "duration": 4973.0, + "title": null, + "plenum_date": "2022-01-18" +} \ No newline at end of file