diff --git "a/122858/metadata.json" "b/122858/metadata.json" new file mode 100644--- /dev/null +++ "b/122858/metadata.json" @@ -0,0 +1,28432 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "122858", + "quality_score": 0.9263, + "per_segment_quality_scores": [ + { + "start": 60.74, + "end": 64.82, + "probability": 0.0132 + }, + { + "start": 65.18, + "end": 68.62, + "probability": 0.0197 + }, + { + "start": 68.64, + "end": 71.08, + "probability": 0.0341 + }, + { + "start": 71.08, + "end": 71.48, + "probability": 0.0009 + }, + { + "start": 75.89, + "end": 76.1, + "probability": 0.0401 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 138.0, + "end": 138.0, + "probability": 0.0 + }, + { + "start": 165.78, + "end": 166.54, + "probability": 0.0491 + }, + { + "start": 166.54, + "end": 167.96, + "probability": 0.0435 + }, + { + "start": 167.96, + "end": 167.98, + "probability": 0.2502 + }, + { + "start": 167.98, + "end": 167.98, + "probability": 0.7673 + }, + { + "start": 167.98, + "end": 167.98, + "probability": 0.7923 + }, + { + "start": 187.08, + "end": 189.72, + "probability": 0.0822 + }, + { + "start": 189.72, + "end": 194.86, + "probability": 0.0161 + }, + { + "start": 194.86, + "end": 195.18, + "probability": 0.0875 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.24, + "end": 263.28, + "probability": 0.0318 + }, + { + "start": 263.28, + "end": 263.58, + "probability": 0.0678 + }, + { + "start": 263.78, + "end": 268.3, + "probability": 0.9824 + }, + { + "start": 268.44, + "end": 269.92, + "probability": 0.9721 + }, + { + "start": 270.96, + "end": 272.26, + "probability": 0.9572 + }, + { + "start": 273.18, + "end": 273.76, + "probability": 0.9841 + }, + { + "start": 274.26, + "end": 276.5, + "probability": 0.9937 + }, + { + "start": 276.5, + "end": 279.08, + "probability": 0.9995 + }, + { + "start": 279.82, + "end": 283.04, + "probability": 0.9893 + }, + { + "start": 283.5, + "end": 287.76, + "probability": 0.8325 + }, + { + "start": 288.28, + "end": 290.92, + "probability": 0.9976 + }, + { + "start": 291.14, + "end": 291.34, + "probability": 0.7521 + }, + { + "start": 292.16, + "end": 293.94, + "probability": 0.9853 + }, + { + "start": 294.18, + "end": 298.64, + "probability": 0.6407 + }, + { + "start": 301.38, + "end": 303.04, + "probability": 0.7349 + }, + { + "start": 313.64, + "end": 316.54, + "probability": 0.3975 + }, + { + "start": 316.92, + "end": 316.92, + "probability": 0.3791 + }, + { + "start": 316.92, + "end": 316.92, + "probability": 0.1217 + }, + { + "start": 316.92, + "end": 316.92, + "probability": 0.0268 + }, + { + "start": 316.92, + "end": 319.73, + "probability": 0.4661 + }, + { + "start": 321.74, + "end": 323.36, + "probability": 0.0398 + }, + { + "start": 323.88, + "end": 326.62, + "probability": 0.0061 + }, + { + "start": 327.26, + "end": 332.12, + "probability": 0.1068 + }, + { + "start": 332.46, + "end": 336.14, + "probability": 0.1156 + }, + { + "start": 336.14, + "end": 340.3, + "probability": 0.097 + }, + { + "start": 340.52, + "end": 341.0, + "probability": 0.0611 + }, + { + "start": 341.28, + "end": 341.34, + "probability": 0.0063 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.1, + "end": 383.38, + "probability": 0.019 + }, + { + "start": 383.38, + "end": 384.4, + "probability": 0.0891 + }, + { + "start": 384.62, + "end": 390.94, + "probability": 0.9138 + }, + { + "start": 390.94, + "end": 396.22, + "probability": 0.9777 + }, + { + "start": 396.8, + "end": 400.24, + "probability": 0.8985 + }, + { + "start": 400.62, + "end": 404.98, + "probability": 0.8954 + }, + { + "start": 405.56, + "end": 406.52, + "probability": 0.9614 + }, + { + "start": 406.58, + "end": 407.04, + "probability": 0.9715 + }, + { + "start": 407.08, + "end": 408.54, + "probability": 0.9713 + }, + { + "start": 409.0, + "end": 410.66, + "probability": 0.9836 + }, + { + "start": 410.88, + "end": 412.52, + "probability": 0.9832 + }, + { + "start": 413.46, + "end": 416.62, + "probability": 0.8753 + }, + { + "start": 417.22, + "end": 420.36, + "probability": 0.9936 + }, + { + "start": 420.82, + "end": 424.34, + "probability": 0.9922 + }, + { + "start": 424.38, + "end": 427.28, + "probability": 0.9956 + }, + { + "start": 427.36, + "end": 427.62, + "probability": 0.7231 + }, + { + "start": 427.96, + "end": 428.56, + "probability": 0.4478 + }, + { + "start": 430.0, + "end": 431.62, + "probability": 0.9331 + }, + { + "start": 431.66, + "end": 432.14, + "probability": 0.5734 + }, + { + "start": 432.16, + "end": 434.0, + "probability": 0.8351 + }, + { + "start": 434.06, + "end": 435.44, + "probability": 0.8794 + }, + { + "start": 437.14, + "end": 437.46, + "probability": 0.6833 + }, + { + "start": 437.8, + "end": 439.12, + "probability": 0.9514 + }, + { + "start": 439.22, + "end": 444.1, + "probability": 0.9919 + }, + { + "start": 444.82, + "end": 447.24, + "probability": 0.9958 + }, + { + "start": 448.22, + "end": 450.5, + "probability": 0.979 + }, + { + "start": 451.6, + "end": 455.26, + "probability": 0.9749 + }, + { + "start": 455.26, + "end": 458.18, + "probability": 0.9851 + }, + { + "start": 458.74, + "end": 462.54, + "probability": 0.9659 + }, + { + "start": 463.18, + "end": 466.32, + "probability": 0.8142 + }, + { + "start": 467.44, + "end": 472.64, + "probability": 0.9877 + }, + { + "start": 473.48, + "end": 478.56, + "probability": 0.9952 + }, + { + "start": 479.2, + "end": 482.14, + "probability": 0.9761 + }, + { + "start": 482.18, + "end": 483.1, + "probability": 0.9605 + }, + { + "start": 484.06, + "end": 488.04, + "probability": 0.9918 + }, + { + "start": 488.6, + "end": 491.52, + "probability": 0.998 + }, + { + "start": 492.1, + "end": 494.82, + "probability": 0.9753 + }, + { + "start": 495.0, + "end": 495.63, + "probability": 0.7888 + }, + { + "start": 496.4, + "end": 499.6, + "probability": 0.9655 + }, + { + "start": 500.16, + "end": 502.46, + "probability": 0.924 + }, + { + "start": 502.52, + "end": 505.86, + "probability": 0.9648 + }, + { + "start": 506.42, + "end": 509.72, + "probability": 0.9893 + }, + { + "start": 510.3, + "end": 514.48, + "probability": 0.9937 + }, + { + "start": 514.96, + "end": 516.12, + "probability": 0.98 + }, + { + "start": 516.3, + "end": 516.86, + "probability": 0.8733 + }, + { + "start": 517.4, + "end": 517.96, + "probability": 0.6191 + }, + { + "start": 517.98, + "end": 519.38, + "probability": 0.9366 + }, + { + "start": 519.42, + "end": 519.96, + "probability": 0.5642 + }, + { + "start": 520.0, + "end": 521.62, + "probability": 0.9916 + }, + { + "start": 528.62, + "end": 529.42, + "probability": 0.675 + }, + { + "start": 529.78, + "end": 532.42, + "probability": 0.9904 + }, + { + "start": 532.42, + "end": 535.6, + "probability": 0.9319 + }, + { + "start": 535.66, + "end": 537.4, + "probability": 0.6057 + }, + { + "start": 538.18, + "end": 539.34, + "probability": 0.8794 + }, + { + "start": 539.66, + "end": 541.28, + "probability": 0.9834 + }, + { + "start": 541.98, + "end": 543.46, + "probability": 0.7602 + }, + { + "start": 544.06, + "end": 545.6, + "probability": 0.6005 + }, + { + "start": 545.68, + "end": 548.8, + "probability": 0.8828 + }, + { + "start": 549.22, + "end": 550.72, + "probability": 0.6793 + }, + { + "start": 550.76, + "end": 552.5, + "probability": 0.9835 + }, + { + "start": 553.76, + "end": 554.84, + "probability": 0.7969 + }, + { + "start": 554.88, + "end": 559.4, + "probability": 0.9331 + }, + { + "start": 559.9, + "end": 562.28, + "probability": 0.9594 + }, + { + "start": 563.04, + "end": 566.02, + "probability": 0.9365 + }, + { + "start": 578.12, + "end": 581.06, + "probability": 0.0475 + }, + { + "start": 582.3, + "end": 584.1, + "probability": 0.0691 + }, + { + "start": 584.1, + "end": 588.48, + "probability": 0.1242 + }, + { + "start": 589.28, + "end": 592.3, + "probability": 0.0382 + }, + { + "start": 593.36, + "end": 593.42, + "probability": 0.038 + }, + { + "start": 593.42, + "end": 593.42, + "probability": 0.0057 + }, + { + "start": 593.42, + "end": 593.42, + "probability": 0.0438 + }, + { + "start": 593.42, + "end": 593.42, + "probability": 0.1216 + }, + { + "start": 593.42, + "end": 594.08, + "probability": 0.135 + }, + { + "start": 594.08, + "end": 598.22, + "probability": 0.3575 + }, + { + "start": 598.94, + "end": 602.02, + "probability": 0.9773 + }, + { + "start": 602.02, + "end": 605.46, + "probability": 0.9851 + }, + { + "start": 606.06, + "end": 609.44, + "probability": 0.989 + }, + { + "start": 610.32, + "end": 615.14, + "probability": 0.8399 + }, + { + "start": 615.66, + "end": 617.12, + "probability": 0.5268 + }, + { + "start": 617.56, + "end": 618.0, + "probability": 0.7645 + }, + { + "start": 618.3, + "end": 618.76, + "probability": 0.5351 + }, + { + "start": 618.84, + "end": 620.38, + "probability": 0.8301 + }, + { + "start": 620.46, + "end": 621.02, + "probability": 0.5649 + }, + { + "start": 621.06, + "end": 622.84, + "probability": 0.7635 + }, + { + "start": 627.06, + "end": 630.04, + "probability": 0.8034 + }, + { + "start": 630.9, + "end": 635.62, + "probability": 0.995 + }, + { + "start": 636.26, + "end": 639.44, + "probability": 0.9518 + }, + { + "start": 639.44, + "end": 644.5, + "probability": 0.7264 + }, + { + "start": 644.92, + "end": 647.84, + "probability": 0.8623 + }, + { + "start": 648.02, + "end": 650.56, + "probability": 0.9968 + }, + { + "start": 651.08, + "end": 653.44, + "probability": 0.8639 + }, + { + "start": 654.06, + "end": 656.44, + "probability": 0.9124 + }, + { + "start": 656.44, + "end": 658.96, + "probability": 0.9388 + }, + { + "start": 659.72, + "end": 662.7, + "probability": 0.9907 + }, + { + "start": 664.14, + "end": 667.58, + "probability": 0.9104 + }, + { + "start": 667.82, + "end": 669.94, + "probability": 0.6482 + }, + { + "start": 671.04, + "end": 671.98, + "probability": 0.7594 + }, + { + "start": 672.54, + "end": 674.78, + "probability": 0.597 + }, + { + "start": 674.8, + "end": 676.02, + "probability": 0.8602 + }, + { + "start": 676.38, + "end": 676.78, + "probability": 0.8683 + }, + { + "start": 677.3, + "end": 684.36, + "probability": 0.8729 + }, + { + "start": 684.44, + "end": 685.06, + "probability": 0.7742 + }, + { + "start": 685.12, + "end": 686.34, + "probability": 0.8193 + }, + { + "start": 687.74, + "end": 690.8, + "probability": 0.9571 + }, + { + "start": 690.8, + "end": 693.88, + "probability": 0.9963 + }, + { + "start": 694.06, + "end": 696.78, + "probability": 0.9757 + }, + { + "start": 697.22, + "end": 701.22, + "probability": 0.6507 + }, + { + "start": 701.28, + "end": 701.98, + "probability": 0.6492 + }, + { + "start": 703.06, + "end": 706.88, + "probability": 0.9105 + }, + { + "start": 706.94, + "end": 708.94, + "probability": 0.8313 + }, + { + "start": 709.36, + "end": 711.26, + "probability": 0.9938 + }, + { + "start": 712.68, + "end": 718.3, + "probability": 0.9187 + }, + { + "start": 719.02, + "end": 722.28, + "probability": 0.781 + }, + { + "start": 723.36, + "end": 726.04, + "probability": 0.8525 + }, + { + "start": 726.04, + "end": 728.7, + "probability": 0.9424 + }, + { + "start": 729.2, + "end": 731.56, + "probability": 0.8247 + }, + { + "start": 731.62, + "end": 734.2, + "probability": 0.8796 + }, + { + "start": 736.14, + "end": 746.64, + "probability": 0.9568 + }, + { + "start": 746.68, + "end": 746.9, + "probability": 0.6623 + }, + { + "start": 747.18, + "end": 747.56, + "probability": 0.5997 + }, + { + "start": 747.62, + "end": 749.52, + "probability": 0.6817 + }, + { + "start": 749.58, + "end": 751.72, + "probability": 0.483 + }, + { + "start": 757.22, + "end": 758.62, + "probability": 0.9145 + }, + { + "start": 760.54, + "end": 765.24, + "probability": 0.8742 + }, + { + "start": 766.16, + "end": 768.72, + "probability": 0.9187 + }, + { + "start": 769.54, + "end": 774.0, + "probability": 0.9834 + }, + { + "start": 774.88, + "end": 776.94, + "probability": 0.7605 + }, + { + "start": 777.94, + "end": 783.58, + "probability": 0.2623 + }, + { + "start": 783.78, + "end": 785.24, + "probability": 0.0413 + }, + { + "start": 785.24, + "end": 786.2, + "probability": 0.0482 + }, + { + "start": 786.98, + "end": 788.1, + "probability": 0.5719 + }, + { + "start": 788.34, + "end": 794.4, + "probability": 0.9659 + }, + { + "start": 794.92, + "end": 799.84, + "probability": 0.991 + }, + { + "start": 800.46, + "end": 803.1, + "probability": 0.9156 + }, + { + "start": 803.64, + "end": 806.16, + "probability": 0.9919 + }, + { + "start": 806.68, + "end": 812.56, + "probability": 0.9866 + }, + { + "start": 812.94, + "end": 813.78, + "probability": 0.8967 + }, + { + "start": 814.3, + "end": 816.5, + "probability": 0.8368 + }, + { + "start": 817.86, + "end": 820.32, + "probability": 0.5051 + }, + { + "start": 820.88, + "end": 822.42, + "probability": 0.8566 + }, + { + "start": 825.98, + "end": 827.0, + "probability": 0.3973 + }, + { + "start": 827.36, + "end": 832.14, + "probability": 0.9875 + }, + { + "start": 832.8, + "end": 836.08, + "probability": 0.8406 + }, + { + "start": 836.9, + "end": 843.18, + "probability": 0.9792 + }, + { + "start": 844.1, + "end": 848.84, + "probability": 0.9979 + }, + { + "start": 849.68, + "end": 852.88, + "probability": 0.9694 + }, + { + "start": 853.52, + "end": 857.2, + "probability": 0.5623 + }, + { + "start": 857.28, + "end": 861.9, + "probability": 0.8451 + }, + { + "start": 862.42, + "end": 864.48, + "probability": 0.6799 + }, + { + "start": 865.06, + "end": 870.46, + "probability": 0.9741 + }, + { + "start": 870.96, + "end": 871.3, + "probability": 0.3642 + }, + { + "start": 871.44, + "end": 872.98, + "probability": 0.9785 + }, + { + "start": 873.2, + "end": 875.02, + "probability": 0.8945 + }, + { + "start": 875.16, + "end": 876.54, + "probability": 0.8857 + }, + { + "start": 876.94, + "end": 882.42, + "probability": 0.9854 + }, + { + "start": 882.44, + "end": 884.76, + "probability": 0.9243 + }, + { + "start": 885.22, + "end": 889.76, + "probability": 0.98 + }, + { + "start": 889.86, + "end": 890.34, + "probability": 0.7579 + }, + { + "start": 890.64, + "end": 890.98, + "probability": 0.3173 + }, + { + "start": 891.0, + "end": 892.66, + "probability": 0.8982 + }, + { + "start": 892.68, + "end": 895.04, + "probability": 0.916 + }, + { + "start": 904.94, + "end": 907.36, + "probability": 0.7662 + }, + { + "start": 908.02, + "end": 913.22, + "probability": 0.9893 + }, + { + "start": 914.06, + "end": 916.22, + "probability": 0.8354 + }, + { + "start": 916.7, + "end": 919.38, + "probability": 0.9755 + }, + { + "start": 919.76, + "end": 920.65, + "probability": 0.9917 + }, + { + "start": 922.7, + "end": 925.88, + "probability": 0.3968 + }, + { + "start": 925.88, + "end": 927.76, + "probability": 0.8152 + }, + { + "start": 930.88, + "end": 934.86, + "probability": 0.9364 + }, + { + "start": 935.36, + "end": 936.78, + "probability": 0.9868 + }, + { + "start": 936.86, + "end": 938.0, + "probability": 0.959 + }, + { + "start": 938.4, + "end": 939.84, + "probability": 0.6838 + }, + { + "start": 939.96, + "end": 941.56, + "probability": 0.6261 + }, + { + "start": 942.42, + "end": 944.96, + "probability": 0.7755 + }, + { + "start": 945.52, + "end": 948.28, + "probability": 0.8498 + }, + { + "start": 949.2, + "end": 950.9, + "probability": 0.7773 + }, + { + "start": 951.92, + "end": 954.02, + "probability": 0.9406 + }, + { + "start": 954.4, + "end": 956.66, + "probability": 0.9676 + }, + { + "start": 957.16, + "end": 957.42, + "probability": 0.5639 + }, + { + "start": 958.2, + "end": 958.68, + "probability": 0.5857 + }, + { + "start": 958.78, + "end": 960.48, + "probability": 0.6611 + }, + { + "start": 960.52, + "end": 962.7, + "probability": 0.978 + }, + { + "start": 973.16, + "end": 974.88, + "probability": 0.7539 + }, + { + "start": 975.4, + "end": 982.02, + "probability": 0.9869 + }, + { + "start": 982.16, + "end": 982.74, + "probability": 0.9928 + }, + { + "start": 983.18, + "end": 983.5, + "probability": 0.9912 + }, + { + "start": 983.6, + "end": 984.02, + "probability": 0.9935 + }, + { + "start": 984.08, + "end": 984.46, + "probability": 0.9946 + }, + { + "start": 984.5, + "end": 985.04, + "probability": 0.732 + }, + { + "start": 985.62, + "end": 986.44, + "probability": 0.5586 + }, + { + "start": 987.04, + "end": 989.38, + "probability": 0.9978 + }, + { + "start": 989.5, + "end": 990.5, + "probability": 0.4422 + }, + { + "start": 990.5, + "end": 991.4, + "probability": 0.6362 + }, + { + "start": 991.56, + "end": 994.18, + "probability": 0.9946 + }, + { + "start": 994.76, + "end": 996.52, + "probability": 0.9971 + }, + { + "start": 996.58, + "end": 999.44, + "probability": 0.9925 + }, + { + "start": 999.72, + "end": 1000.18, + "probability": 0.7909 + }, + { + "start": 1000.36, + "end": 1000.74, + "probability": 0.9801 + }, + { + "start": 1000.94, + "end": 1001.4, + "probability": 0.8002 + }, + { + "start": 1002.08, + "end": 1002.64, + "probability": 0.5635 + }, + { + "start": 1002.78, + "end": 1004.12, + "probability": 0.7611 + }, + { + "start": 1004.32, + "end": 1006.52, + "probability": 0.951 + }, + { + "start": 1007.68, + "end": 1011.02, + "probability": 0.7343 + }, + { + "start": 1012.42, + "end": 1014.52, + "probability": 0.8991 + }, + { + "start": 1015.42, + "end": 1017.92, + "probability": 0.9907 + }, + { + "start": 1019.26, + "end": 1025.46, + "probability": 0.9795 + }, + { + "start": 1026.56, + "end": 1029.3, + "probability": 0.6964 + }, + { + "start": 1029.92, + "end": 1032.3, + "probability": 0.9825 + }, + { + "start": 1033.22, + "end": 1035.42, + "probability": 0.6518 + }, + { + "start": 1035.42, + "end": 1039.36, + "probability": 0.9554 + }, + { + "start": 1040.28, + "end": 1043.28, + "probability": 0.9849 + }, + { + "start": 1043.88, + "end": 1046.14, + "probability": 0.9891 + }, + { + "start": 1047.0, + "end": 1051.99, + "probability": 0.9833 + }, + { + "start": 1053.26, + "end": 1056.36, + "probability": 0.997 + }, + { + "start": 1056.96, + "end": 1059.3, + "probability": 0.9933 + }, + { + "start": 1060.16, + "end": 1061.68, + "probability": 0.7827 + }, + { + "start": 1062.32, + "end": 1067.46, + "probability": 0.8354 + }, + { + "start": 1068.16, + "end": 1071.36, + "probability": 0.983 + }, + { + "start": 1072.24, + "end": 1075.72, + "probability": 0.9473 + }, + { + "start": 1075.72, + "end": 1079.18, + "probability": 0.8738 + }, + { + "start": 1079.8, + "end": 1081.0, + "probability": 0.7942 + }, + { + "start": 1081.8, + "end": 1083.54, + "probability": 0.9011 + }, + { + "start": 1084.32, + "end": 1089.4, + "probability": 0.9597 + }, + { + "start": 1090.86, + "end": 1094.9, + "probability": 0.9974 + }, + { + "start": 1095.1, + "end": 1099.78, + "probability": 0.9432 + }, + { + "start": 1099.98, + "end": 1100.86, + "probability": 0.9661 + }, + { + "start": 1101.56, + "end": 1102.56, + "probability": 0.7817 + }, + { + "start": 1103.14, + "end": 1104.3, + "probability": 0.8682 + }, + { + "start": 1104.78, + "end": 1105.76, + "probability": 0.9591 + }, + { + "start": 1106.16, + "end": 1108.12, + "probability": 0.8842 + }, + { + "start": 1108.64, + "end": 1110.26, + "probability": 0.8918 + }, + { + "start": 1110.56, + "end": 1110.82, + "probability": 0.7472 + }, + { + "start": 1111.36, + "end": 1111.84, + "probability": 0.6133 + }, + { + "start": 1111.94, + "end": 1113.56, + "probability": 0.9694 + }, + { + "start": 1113.64, + "end": 1116.2, + "probability": 0.9722 + }, + { + "start": 1117.76, + "end": 1118.76, + "probability": 0.6283 + }, + { + "start": 1120.05, + "end": 1123.6, + "probability": 0.9946 + }, + { + "start": 1124.4, + "end": 1125.38, + "probability": 0.9688 + }, + { + "start": 1126.2, + "end": 1128.5, + "probability": 0.969 + }, + { + "start": 1129.44, + "end": 1132.14, + "probability": 0.9813 + }, + { + "start": 1132.22, + "end": 1133.3, + "probability": 0.9585 + }, + { + "start": 1133.74, + "end": 1137.14, + "probability": 0.9961 + }, + { + "start": 1137.26, + "end": 1138.8, + "probability": 0.9836 + }, + { + "start": 1139.52, + "end": 1139.92, + "probability": 0.5982 + }, + { + "start": 1140.1, + "end": 1141.88, + "probability": 0.8003 + }, + { + "start": 1141.96, + "end": 1143.49, + "probability": 0.9572 + }, + { + "start": 1144.14, + "end": 1146.6, + "probability": 0.9954 + }, + { + "start": 1147.14, + "end": 1148.86, + "probability": 0.9539 + }, + { + "start": 1149.38, + "end": 1150.94, + "probability": 0.9938 + }, + { + "start": 1151.04, + "end": 1153.26, + "probability": 0.9774 + }, + { + "start": 1153.64, + "end": 1156.36, + "probability": 0.9502 + }, + { + "start": 1156.42, + "end": 1157.84, + "probability": 0.9815 + }, + { + "start": 1158.06, + "end": 1159.36, + "probability": 0.9894 + }, + { + "start": 1160.14, + "end": 1164.3, + "probability": 0.9211 + }, + { + "start": 1164.38, + "end": 1165.02, + "probability": 0.8982 + }, + { + "start": 1165.66, + "end": 1168.98, + "probability": 0.9922 + }, + { + "start": 1169.5, + "end": 1172.22, + "probability": 0.9944 + }, + { + "start": 1172.7, + "end": 1173.16, + "probability": 0.8852 + }, + { + "start": 1174.22, + "end": 1176.12, + "probability": 0.9471 + }, + { + "start": 1176.56, + "end": 1179.02, + "probability": 0.8979 + }, + { + "start": 1179.64, + "end": 1182.74, + "probability": 0.9936 + }, + { + "start": 1182.98, + "end": 1183.22, + "probability": 0.7263 + }, + { + "start": 1183.32, + "end": 1185.2, + "probability": 0.9834 + }, + { + "start": 1185.68, + "end": 1188.62, + "probability": 0.9949 + }, + { + "start": 1189.18, + "end": 1190.58, + "probability": 0.9905 + }, + { + "start": 1191.02, + "end": 1192.64, + "probability": 0.996 + }, + { + "start": 1193.2, + "end": 1196.66, + "probability": 0.9955 + }, + { + "start": 1196.66, + "end": 1200.26, + "probability": 0.9792 + }, + { + "start": 1200.86, + "end": 1202.5, + "probability": 0.9152 + }, + { + "start": 1202.56, + "end": 1207.44, + "probability": 0.9901 + }, + { + "start": 1207.6, + "end": 1209.42, + "probability": 0.6528 + }, + { + "start": 1209.94, + "end": 1212.0, + "probability": 0.9927 + }, + { + "start": 1212.6, + "end": 1213.78, + "probability": 0.7466 + }, + { + "start": 1213.88, + "end": 1214.68, + "probability": 0.7037 + }, + { + "start": 1214.84, + "end": 1216.14, + "probability": 0.91 + }, + { + "start": 1216.68, + "end": 1218.18, + "probability": 0.8654 + }, + { + "start": 1218.58, + "end": 1218.8, + "probability": 0.7606 + }, + { + "start": 1219.32, + "end": 1219.52, + "probability": 0.5682 + }, + { + "start": 1219.56, + "end": 1221.1, + "probability": 0.7828 + }, + { + "start": 1221.26, + "end": 1223.52, + "probability": 0.736 + }, + { + "start": 1228.16, + "end": 1229.18, + "probability": 0.6171 + }, + { + "start": 1229.5, + "end": 1230.68, + "probability": 0.6086 + }, + { + "start": 1230.74, + "end": 1231.22, + "probability": 0.8585 + }, + { + "start": 1231.44, + "end": 1234.96, + "probability": 0.8445 + }, + { + "start": 1236.02, + "end": 1239.3, + "probability": 0.5018 + }, + { + "start": 1239.48, + "end": 1243.25, + "probability": 0.8506 + }, + { + "start": 1245.4, + "end": 1246.78, + "probability": 0.6802 + }, + { + "start": 1247.1, + "end": 1252.04, + "probability": 0.6299 + }, + { + "start": 1252.14, + "end": 1257.24, + "probability": 0.978 + }, + { + "start": 1257.4, + "end": 1262.62, + "probability": 0.8589 + }, + { + "start": 1262.74, + "end": 1266.22, + "probability": 0.7522 + }, + { + "start": 1266.74, + "end": 1271.14, + "probability": 0.9931 + }, + { + "start": 1271.2, + "end": 1272.34, + "probability": 0.9862 + }, + { + "start": 1272.58, + "end": 1273.78, + "probability": 0.9436 + }, + { + "start": 1273.96, + "end": 1274.94, + "probability": 0.7875 + }, + { + "start": 1275.66, + "end": 1276.96, + "probability": 0.7281 + }, + { + "start": 1277.98, + "end": 1278.88, + "probability": 0.9874 + }, + { + "start": 1279.66, + "end": 1285.8, + "probability": 0.8926 + }, + { + "start": 1286.56, + "end": 1289.64, + "probability": 0.9493 + }, + { + "start": 1290.42, + "end": 1293.94, + "probability": 0.9749 + }, + { + "start": 1294.76, + "end": 1299.94, + "probability": 0.9654 + }, + { + "start": 1300.16, + "end": 1301.96, + "probability": 0.7002 + }, + { + "start": 1302.84, + "end": 1307.48, + "probability": 0.9819 + }, + { + "start": 1307.52, + "end": 1311.24, + "probability": 0.8727 + }, + { + "start": 1312.08, + "end": 1312.74, + "probability": 0.6561 + }, + { + "start": 1312.86, + "end": 1314.56, + "probability": 0.7427 + }, + { + "start": 1314.7, + "end": 1318.9, + "probability": 0.6163 + }, + { + "start": 1319.18, + "end": 1322.94, + "probability": 0.9644 + }, + { + "start": 1323.66, + "end": 1327.24, + "probability": 0.9964 + }, + { + "start": 1327.36, + "end": 1328.54, + "probability": 0.8081 + }, + { + "start": 1328.7, + "end": 1331.8, + "probability": 0.8169 + }, + { + "start": 1332.32, + "end": 1336.5, + "probability": 0.9821 + }, + { + "start": 1336.68, + "end": 1337.18, + "probability": 0.8543 + }, + { + "start": 1337.62, + "end": 1337.98, + "probability": 0.2643 + }, + { + "start": 1338.3, + "end": 1339.6, + "probability": 0.6744 + }, + { + "start": 1339.68, + "end": 1340.26, + "probability": 0.4596 + }, + { + "start": 1340.36, + "end": 1341.82, + "probability": 0.9676 + }, + { + "start": 1341.94, + "end": 1343.4, + "probability": 0.8085 + }, + { + "start": 1343.92, + "end": 1344.96, + "probability": 0.9035 + }, + { + "start": 1345.5, + "end": 1345.86, + "probability": 0.6653 + }, + { + "start": 1346.08, + "end": 1347.04, + "probability": 0.8861 + }, + { + "start": 1347.86, + "end": 1349.94, + "probability": 0.9 + }, + { + "start": 1350.58, + "end": 1353.46, + "probability": 0.9497 + }, + { + "start": 1353.46, + "end": 1357.5, + "probability": 0.9562 + }, + { + "start": 1358.08, + "end": 1360.36, + "probability": 0.8882 + }, + { + "start": 1361.16, + "end": 1362.42, + "probability": 0.6765 + }, + { + "start": 1363.36, + "end": 1364.4, + "probability": 0.6233 + }, + { + "start": 1364.76, + "end": 1366.0, + "probability": 0.918 + }, + { + "start": 1366.5, + "end": 1370.2, + "probability": 0.837 + }, + { + "start": 1370.9, + "end": 1372.67, + "probability": 0.8663 + }, + { + "start": 1373.48, + "end": 1375.02, + "probability": 0.9974 + }, + { + "start": 1375.58, + "end": 1377.26, + "probability": 0.9888 + }, + { + "start": 1378.08, + "end": 1381.54, + "probability": 0.9441 + }, + { + "start": 1382.26, + "end": 1388.16, + "probability": 0.983 + }, + { + "start": 1389.2, + "end": 1393.8, + "probability": 0.9095 + }, + { + "start": 1394.46, + "end": 1395.58, + "probability": 0.7676 + }, + { + "start": 1396.56, + "end": 1397.98, + "probability": 0.9751 + }, + { + "start": 1398.62, + "end": 1400.12, + "probability": 0.8251 + }, + { + "start": 1400.72, + "end": 1401.94, + "probability": 0.988 + }, + { + "start": 1402.56, + "end": 1403.88, + "probability": 0.998 + }, + { + "start": 1404.7, + "end": 1407.0, + "probability": 0.7529 + }, + { + "start": 1407.16, + "end": 1410.08, + "probability": 0.8741 + }, + { + "start": 1410.7, + "end": 1416.12, + "probability": 0.9273 + }, + { + "start": 1417.04, + "end": 1418.18, + "probability": 0.9235 + }, + { + "start": 1419.2, + "end": 1422.76, + "probability": 0.9058 + }, + { + "start": 1423.32, + "end": 1427.8, + "probability": 0.8793 + }, + { + "start": 1428.5, + "end": 1430.42, + "probability": 0.7983 + }, + { + "start": 1431.14, + "end": 1435.18, + "probability": 0.9976 + }, + { + "start": 1436.14, + "end": 1437.36, + "probability": 0.8315 + }, + { + "start": 1437.94, + "end": 1440.84, + "probability": 0.8041 + }, + { + "start": 1441.6, + "end": 1443.18, + "probability": 0.9396 + }, + { + "start": 1443.82, + "end": 1447.5, + "probability": 0.9638 + }, + { + "start": 1448.64, + "end": 1451.7, + "probability": 0.8693 + }, + { + "start": 1452.56, + "end": 1455.18, + "probability": 0.9875 + }, + { + "start": 1455.92, + "end": 1458.08, + "probability": 0.986 + }, + { + "start": 1459.08, + "end": 1462.12, + "probability": 0.9121 + }, + { + "start": 1463.16, + "end": 1467.3, + "probability": 0.9653 + }, + { + "start": 1467.86, + "end": 1468.14, + "probability": 0.7988 + }, + { + "start": 1468.72, + "end": 1469.16, + "probability": 0.5439 + }, + { + "start": 1469.24, + "end": 1470.92, + "probability": 0.8156 + }, + { + "start": 1470.96, + "end": 1474.26, + "probability": 0.8962 + }, + { + "start": 1487.0, + "end": 1488.02, + "probability": 0.5737 + }, + { + "start": 1488.08, + "end": 1489.72, + "probability": 0.7679 + }, + { + "start": 1490.02, + "end": 1495.92, + "probability": 0.9226 + }, + { + "start": 1496.38, + "end": 1499.98, + "probability": 0.9181 + }, + { + "start": 1500.98, + "end": 1501.76, + "probability": 0.7372 + }, + { + "start": 1501.88, + "end": 1502.56, + "probability": 0.6344 + }, + { + "start": 1502.78, + "end": 1505.16, + "probability": 0.6838 + }, + { + "start": 1505.78, + "end": 1510.32, + "probability": 0.9967 + }, + { + "start": 1511.36, + "end": 1511.62, + "probability": 0.7073 + }, + { + "start": 1511.8, + "end": 1513.06, + "probability": 0.894 + }, + { + "start": 1513.1, + "end": 1516.2, + "probability": 0.7913 + }, + { + "start": 1516.76, + "end": 1519.04, + "probability": 0.9353 + }, + { + "start": 1520.04, + "end": 1521.84, + "probability": 0.9565 + }, + { + "start": 1522.02, + "end": 1524.22, + "probability": 0.8618 + }, + { + "start": 1524.92, + "end": 1528.74, + "probability": 0.9672 + }, + { + "start": 1529.48, + "end": 1531.25, + "probability": 0.7055 + }, + { + "start": 1531.88, + "end": 1534.48, + "probability": 0.9872 + }, + { + "start": 1535.1, + "end": 1536.82, + "probability": 0.8809 + }, + { + "start": 1536.98, + "end": 1540.62, + "probability": 0.9434 + }, + { + "start": 1540.68, + "end": 1541.42, + "probability": 0.7832 + }, + { + "start": 1541.98, + "end": 1545.2, + "probability": 0.9651 + }, + { + "start": 1545.66, + "end": 1546.44, + "probability": 0.9827 + }, + { + "start": 1546.7, + "end": 1547.18, + "probability": 0.8547 + }, + { + "start": 1547.54, + "end": 1549.3, + "probability": 0.8391 + }, + { + "start": 1549.34, + "end": 1552.18, + "probability": 0.9985 + }, + { + "start": 1552.62, + "end": 1555.2, + "probability": 0.9707 + }, + { + "start": 1555.2, + "end": 1560.2, + "probability": 0.997 + }, + { + "start": 1560.78, + "end": 1565.38, + "probability": 0.9125 + }, + { + "start": 1566.2, + "end": 1566.88, + "probability": 0.5579 + }, + { + "start": 1566.9, + "end": 1568.8, + "probability": 0.8608 + }, + { + "start": 1578.26, + "end": 1578.9, + "probability": 0.3956 + }, + { + "start": 1578.9, + "end": 1579.64, + "probability": 0.6368 + }, + { + "start": 1579.78, + "end": 1584.68, + "probability": 0.9585 + }, + { + "start": 1584.68, + "end": 1588.92, + "probability": 0.9902 + }, + { + "start": 1590.4, + "end": 1591.3, + "probability": 0.9062 + }, + { + "start": 1592.14, + "end": 1595.56, + "probability": 0.9586 + }, + { + "start": 1596.12, + "end": 1597.28, + "probability": 0.9971 + }, + { + "start": 1598.22, + "end": 1599.42, + "probability": 0.9982 + }, + { + "start": 1600.4, + "end": 1601.96, + "probability": 0.9928 + }, + { + "start": 1602.62, + "end": 1603.42, + "probability": 0.9845 + }, + { + "start": 1603.5, + "end": 1604.78, + "probability": 0.93 + }, + { + "start": 1604.9, + "end": 1606.94, + "probability": 0.9979 + }, + { + "start": 1607.1, + "end": 1608.36, + "probability": 0.9463 + }, + { + "start": 1609.2, + "end": 1612.54, + "probability": 0.9963 + }, + { + "start": 1613.08, + "end": 1616.4, + "probability": 0.9992 + }, + { + "start": 1616.54, + "end": 1618.94, + "probability": 0.8758 + }, + { + "start": 1620.02, + "end": 1623.64, + "probability": 0.9895 + }, + { + "start": 1623.74, + "end": 1626.32, + "probability": 0.9798 + }, + { + "start": 1626.82, + "end": 1628.12, + "probability": 0.9643 + }, + { + "start": 1628.92, + "end": 1630.04, + "probability": 0.8605 + }, + { + "start": 1630.94, + "end": 1632.88, + "probability": 0.9185 + }, + { + "start": 1633.88, + "end": 1636.52, + "probability": 0.8862 + }, + { + "start": 1636.62, + "end": 1637.12, + "probability": 0.7773 + }, + { + "start": 1637.64, + "end": 1638.52, + "probability": 0.3643 + }, + { + "start": 1639.42, + "end": 1641.04, + "probability": 0.9683 + }, + { + "start": 1641.66, + "end": 1643.74, + "probability": 0.996 + }, + { + "start": 1643.92, + "end": 1644.2, + "probability": 0.7534 + }, + { + "start": 1644.82, + "end": 1645.54, + "probability": 0.4835 + }, + { + "start": 1645.58, + "end": 1646.16, + "probability": 0.7563 + }, + { + "start": 1646.32, + "end": 1649.98, + "probability": 0.8341 + }, + { + "start": 1650.84, + "end": 1651.88, + "probability": 0.6213 + }, + { + "start": 1652.54, + "end": 1656.72, + "probability": 0.989 + }, + { + "start": 1657.38, + "end": 1661.34, + "probability": 0.9974 + }, + { + "start": 1661.9, + "end": 1663.96, + "probability": 0.9984 + }, + { + "start": 1664.5, + "end": 1666.04, + "probability": 0.8698 + }, + { + "start": 1666.58, + "end": 1668.88, + "probability": 0.9215 + }, + { + "start": 1670.08, + "end": 1672.24, + "probability": 0.6209 + }, + { + "start": 1672.56, + "end": 1674.35, + "probability": 0.9443 + }, + { + "start": 1674.91, + "end": 1679.2, + "probability": 0.9734 + }, + { + "start": 1679.28, + "end": 1681.42, + "probability": 0.9431 + }, + { + "start": 1681.92, + "end": 1685.48, + "probability": 0.6571 + }, + { + "start": 1685.7, + "end": 1686.14, + "probability": 0.8935 + }, + { + "start": 1686.6, + "end": 1688.26, + "probability": 0.9799 + }, + { + "start": 1688.9, + "end": 1689.36, + "probability": 0.7323 + }, + { + "start": 1689.84, + "end": 1691.89, + "probability": 0.984 + }, + { + "start": 1692.32, + "end": 1693.76, + "probability": 0.9164 + }, + { + "start": 1694.14, + "end": 1695.44, + "probability": 0.8386 + }, + { + "start": 1695.82, + "end": 1698.9, + "probability": 0.9621 + }, + { + "start": 1700.26, + "end": 1703.04, + "probability": 0.7963 + }, + { + "start": 1703.1, + "end": 1707.59, + "probability": 0.985 + }, + { + "start": 1708.46, + "end": 1713.2, + "probability": 0.9255 + }, + { + "start": 1713.72, + "end": 1720.08, + "probability": 0.9717 + }, + { + "start": 1720.84, + "end": 1723.26, + "probability": 0.9967 + }, + { + "start": 1723.3, + "end": 1724.86, + "probability": 0.8989 + }, + { + "start": 1724.94, + "end": 1725.78, + "probability": 0.656 + }, + { + "start": 1726.2, + "end": 1726.86, + "probability": 0.8232 + }, + { + "start": 1727.04, + "end": 1728.68, + "probability": 0.7409 + }, + { + "start": 1729.24, + "end": 1730.02, + "probability": 0.9244 + }, + { + "start": 1730.56, + "end": 1731.48, + "probability": 0.9237 + }, + { + "start": 1732.04, + "end": 1735.98, + "probability": 0.9525 + }, + { + "start": 1736.32, + "end": 1737.82, + "probability": 0.782 + }, + { + "start": 1738.5, + "end": 1740.68, + "probability": 0.8496 + }, + { + "start": 1741.04, + "end": 1743.46, + "probability": 0.9854 + }, + { + "start": 1743.72, + "end": 1746.08, + "probability": 0.9781 + }, + { + "start": 1746.32, + "end": 1747.36, + "probability": 0.9922 + }, + { + "start": 1747.58, + "end": 1750.74, + "probability": 0.9873 + }, + { + "start": 1751.14, + "end": 1751.88, + "probability": 0.5018 + }, + { + "start": 1752.26, + "end": 1755.02, + "probability": 0.9728 + }, + { + "start": 1755.5, + "end": 1757.63, + "probability": 0.998 + }, + { + "start": 1758.12, + "end": 1759.6, + "probability": 0.9849 + }, + { + "start": 1760.04, + "end": 1760.8, + "probability": 0.8801 + }, + { + "start": 1761.32, + "end": 1763.02, + "probability": 0.8154 + }, + { + "start": 1763.3, + "end": 1763.66, + "probability": 0.6282 + }, + { + "start": 1763.66, + "end": 1764.12, + "probability": 0.6149 + }, + { + "start": 1764.32, + "end": 1765.48, + "probability": 0.9392 + }, + { + "start": 1765.94, + "end": 1766.94, + "probability": 0.9482 + }, + { + "start": 1767.16, + "end": 1768.74, + "probability": 0.5657 + }, + { + "start": 1769.0, + "end": 1770.24, + "probability": 0.8502 + }, + { + "start": 1770.72, + "end": 1771.88, + "probability": 0.972 + }, + { + "start": 1772.26, + "end": 1775.94, + "probability": 0.9963 + }, + { + "start": 1776.34, + "end": 1778.68, + "probability": 0.9807 + }, + { + "start": 1779.02, + "end": 1779.92, + "probability": 0.9204 + }, + { + "start": 1780.88, + "end": 1782.31, + "probability": 0.8106 + }, + { + "start": 1783.34, + "end": 1787.32, + "probability": 0.9929 + }, + { + "start": 1787.76, + "end": 1788.58, + "probability": 0.8192 + }, + { + "start": 1788.74, + "end": 1790.14, + "probability": 0.9374 + }, + { + "start": 1790.2, + "end": 1791.32, + "probability": 0.9801 + }, + { + "start": 1791.66, + "end": 1794.32, + "probability": 0.984 + }, + { + "start": 1795.26, + "end": 1796.56, + "probability": 0.704 + }, + { + "start": 1797.18, + "end": 1798.44, + "probability": 0.871 + }, + { + "start": 1798.74, + "end": 1800.64, + "probability": 0.8654 + }, + { + "start": 1801.04, + "end": 1806.44, + "probability": 0.9969 + }, + { + "start": 1806.86, + "end": 1810.28, + "probability": 0.992 + }, + { + "start": 1810.84, + "end": 1811.8, + "probability": 0.8008 + }, + { + "start": 1812.4, + "end": 1813.64, + "probability": 0.9985 + }, + { + "start": 1814.24, + "end": 1815.64, + "probability": 0.7767 + }, + { + "start": 1816.02, + "end": 1817.06, + "probability": 0.9805 + }, + { + "start": 1817.14, + "end": 1817.7, + "probability": 0.9898 + }, + { + "start": 1818.12, + "end": 1818.7, + "probability": 0.9792 + }, + { + "start": 1818.76, + "end": 1819.42, + "probability": 0.9015 + }, + { + "start": 1819.98, + "end": 1821.08, + "probability": 0.9733 + }, + { + "start": 1821.38, + "end": 1827.36, + "probability": 0.9932 + }, + { + "start": 1827.98, + "end": 1828.7, + "probability": 0.7646 + }, + { + "start": 1828.82, + "end": 1830.02, + "probability": 0.7208 + }, + { + "start": 1830.16, + "end": 1832.68, + "probability": 0.1827 + }, + { + "start": 1833.14, + "end": 1835.99, + "probability": 0.8225 + }, + { + "start": 1836.84, + "end": 1837.4, + "probability": 0.7208 + }, + { + "start": 1837.48, + "end": 1842.38, + "probability": 0.7985 + }, + { + "start": 1842.88, + "end": 1843.3, + "probability": 0.9388 + }, + { + "start": 1843.86, + "end": 1847.94, + "probability": 0.9051 + }, + { + "start": 1848.04, + "end": 1849.43, + "probability": 0.9781 + }, + { + "start": 1850.42, + "end": 1851.5, + "probability": 0.6245 + }, + { + "start": 1852.36, + "end": 1856.1, + "probability": 0.9787 + }, + { + "start": 1856.64, + "end": 1858.42, + "probability": 0.8257 + }, + { + "start": 1859.26, + "end": 1862.76, + "probability": 0.9951 + }, + { + "start": 1863.32, + "end": 1865.28, + "probability": 0.9866 + }, + { + "start": 1865.66, + "end": 1867.66, + "probability": 0.9926 + }, + { + "start": 1868.0, + "end": 1872.44, + "probability": 0.9967 + }, + { + "start": 1872.88, + "end": 1872.88, + "probability": 0.0291 + }, + { + "start": 1872.88, + "end": 1875.43, + "probability": 0.9347 + }, + { + "start": 1875.78, + "end": 1876.52, + "probability": 0.702 + }, + { + "start": 1876.64, + "end": 1877.56, + "probability": 0.7835 + }, + { + "start": 1878.16, + "end": 1879.76, + "probability": 0.9697 + }, + { + "start": 1880.28, + "end": 1882.36, + "probability": 0.9858 + }, + { + "start": 1882.94, + "end": 1883.84, + "probability": 0.6196 + }, + { + "start": 1884.88, + "end": 1887.28, + "probability": 0.9334 + }, + { + "start": 1887.64, + "end": 1889.36, + "probability": 0.9084 + }, + { + "start": 1889.88, + "end": 1890.68, + "probability": 0.523 + }, + { + "start": 1890.72, + "end": 1891.54, + "probability": 0.7922 + }, + { + "start": 1891.8, + "end": 1892.64, + "probability": 0.9828 + }, + { + "start": 1893.36, + "end": 1895.3, + "probability": 0.9824 + }, + { + "start": 1895.66, + "end": 1899.0, + "probability": 0.9684 + }, + { + "start": 1899.28, + "end": 1900.2, + "probability": 0.9703 + }, + { + "start": 1900.52, + "end": 1901.16, + "probability": 0.977 + }, + { + "start": 1901.4, + "end": 1902.0, + "probability": 0.5605 + }, + { + "start": 1902.6, + "end": 1908.54, + "probability": 0.9932 + }, + { + "start": 1909.36, + "end": 1912.34, + "probability": 0.9968 + }, + { + "start": 1914.1, + "end": 1915.1, + "probability": 0.7644 + }, + { + "start": 1915.42, + "end": 1921.2, + "probability": 0.9884 + }, + { + "start": 1922.27, + "end": 1923.98, + "probability": 0.9519 + }, + { + "start": 1924.28, + "end": 1924.8, + "probability": 0.821 + }, + { + "start": 1925.02, + "end": 1925.72, + "probability": 0.9042 + }, + { + "start": 1925.84, + "end": 1930.22, + "probability": 0.9653 + }, + { + "start": 1930.52, + "end": 1930.84, + "probability": 0.7991 + }, + { + "start": 1930.86, + "end": 1934.76, + "probability": 0.89 + }, + { + "start": 1937.2, + "end": 1940.34, + "probability": 0.3299 + }, + { + "start": 1940.58, + "end": 1943.56, + "probability": 0.869 + }, + { + "start": 1944.18, + "end": 1948.54, + "probability": 0.49 + }, + { + "start": 1948.59, + "end": 1950.16, + "probability": 0.6864 + }, + { + "start": 1952.78, + "end": 1954.14, + "probability": 0.7386 + }, + { + "start": 1954.88, + "end": 1954.88, + "probability": 0.0767 + }, + { + "start": 1954.88, + "end": 1955.91, + "probability": 0.1781 + }, + { + "start": 1956.5, + "end": 1958.24, + "probability": 0.5876 + }, + { + "start": 1958.28, + "end": 1958.68, + "probability": 0.7588 + }, + { + "start": 1958.78, + "end": 1963.58, + "probability": 0.8964 + }, + { + "start": 1963.88, + "end": 1965.24, + "probability": 0.6192 + }, + { + "start": 1965.38, + "end": 1965.94, + "probability": 0.0606 + }, + { + "start": 1967.2, + "end": 1969.4, + "probability": 0.3269 + }, + { + "start": 1969.4, + "end": 1969.92, + "probability": 0.4568 + }, + { + "start": 1970.32, + "end": 1973.66, + "probability": 0.6302 + }, + { + "start": 1973.8, + "end": 1975.06, + "probability": 0.9167 + }, + { + "start": 1975.28, + "end": 1977.94, + "probability": 0.7283 + }, + { + "start": 1978.06, + "end": 1980.2, + "probability": 0.992 + }, + { + "start": 1980.68, + "end": 1984.26, + "probability": 0.9079 + }, + { + "start": 1985.79, + "end": 1988.46, + "probability": 0.9834 + }, + { + "start": 1989.2, + "end": 1990.0, + "probability": 0.4742 + }, + { + "start": 1990.3, + "end": 1990.72, + "probability": 0.6723 + }, + { + "start": 1990.9, + "end": 1992.5, + "probability": 0.9797 + }, + { + "start": 1992.66, + "end": 1992.9, + "probability": 0.8975 + }, + { + "start": 1993.4, + "end": 1995.2, + "probability": 0.97 + }, + { + "start": 1995.68, + "end": 1998.22, + "probability": 0.9819 + }, + { + "start": 1998.84, + "end": 2001.88, + "probability": 0.9775 + }, + { + "start": 2001.96, + "end": 2003.36, + "probability": 0.7835 + }, + { + "start": 2003.76, + "end": 2004.26, + "probability": 0.8129 + }, + { + "start": 2004.38, + "end": 2005.87, + "probability": 0.969 + }, + { + "start": 2006.26, + "end": 2007.4, + "probability": 0.9751 + }, + { + "start": 2008.0, + "end": 2008.06, + "probability": 0.1268 + }, + { + "start": 2008.06, + "end": 2009.02, + "probability": 0.6114 + }, + { + "start": 2009.66, + "end": 2013.68, + "probability": 0.9617 + }, + { + "start": 2014.9, + "end": 2020.46, + "probability": 0.618 + }, + { + "start": 2021.45, + "end": 2023.02, + "probability": 0.1078 + }, + { + "start": 2023.08, + "end": 2024.2, + "probability": 0.735 + }, + { + "start": 2024.24, + "end": 2026.3, + "probability": 0.9961 + }, + { + "start": 2027.24, + "end": 2033.88, + "probability": 0.8636 + }, + { + "start": 2034.56, + "end": 2034.56, + "probability": 0.3388 + }, + { + "start": 2034.56, + "end": 2037.6, + "probability": 0.559 + }, + { + "start": 2037.92, + "end": 2040.3, + "probability": 0.7067 + }, + { + "start": 2040.94, + "end": 2046.76, + "probability": 0.8647 + }, + { + "start": 2046.94, + "end": 2048.36, + "probability": 0.8211 + }, + { + "start": 2049.86, + "end": 2051.06, + "probability": 0.9189 + }, + { + "start": 2051.14, + "end": 2053.04, + "probability": 0.9391 + }, + { + "start": 2053.88, + "end": 2055.36, + "probability": 0.5542 + }, + { + "start": 2055.72, + "end": 2057.74, + "probability": 0.9261 + }, + { + "start": 2058.4, + "end": 2060.82, + "probability": 0.903 + }, + { + "start": 2061.52, + "end": 2067.12, + "probability": 0.8959 + }, + { + "start": 2067.84, + "end": 2068.96, + "probability": 0.2802 + }, + { + "start": 2070.02, + "end": 2070.68, + "probability": 0.1657 + }, + { + "start": 2070.72, + "end": 2071.68, + "probability": 0.1609 + }, + { + "start": 2072.3, + "end": 2073.12, + "probability": 0.0971 + }, + { + "start": 2073.68, + "end": 2075.9, + "probability": 0.8899 + }, + { + "start": 2076.0, + "end": 2079.3, + "probability": 0.7816 + }, + { + "start": 2079.64, + "end": 2080.72, + "probability": 0.9849 + }, + { + "start": 2081.34, + "end": 2081.84, + "probability": 0.6303 + }, + { + "start": 2083.7, + "end": 2085.08, + "probability": 0.9497 + }, + { + "start": 2085.2, + "end": 2088.38, + "probability": 0.9581 + }, + { + "start": 2088.44, + "end": 2089.24, + "probability": 0.9026 + }, + { + "start": 2089.64, + "end": 2094.22, + "probability": 0.9309 + }, + { + "start": 2094.74, + "end": 2096.16, + "probability": 0.9899 + }, + { + "start": 2096.62, + "end": 2097.1, + "probability": 0.8337 + }, + { + "start": 2097.38, + "end": 2097.98, + "probability": 0.9568 + }, + { + "start": 2098.42, + "end": 2101.3, + "probability": 0.9589 + }, + { + "start": 2102.0, + "end": 2105.76, + "probability": 0.7073 + }, + { + "start": 2106.56, + "end": 2106.94, + "probability": 0.1962 + }, + { + "start": 2106.94, + "end": 2108.24, + "probability": 0.3692 + }, + { + "start": 2108.32, + "end": 2109.22, + "probability": 0.1513 + }, + { + "start": 2109.24, + "end": 2113.32, + "probability": 0.1674 + }, + { + "start": 2113.32, + "end": 2113.32, + "probability": 0.0681 + }, + { + "start": 2113.32, + "end": 2114.92, + "probability": 0.6166 + }, + { + "start": 2115.14, + "end": 2116.04, + "probability": 0.6074 + }, + { + "start": 2117.44, + "end": 2118.92, + "probability": 0.8107 + }, + { + "start": 2119.6, + "end": 2121.16, + "probability": 0.0066 + }, + { + "start": 2121.18, + "end": 2122.9, + "probability": 0.1262 + }, + { + "start": 2128.0, + "end": 2128.16, + "probability": 0.0167 + }, + { + "start": 2128.16, + "end": 2128.16, + "probability": 0.299 + }, + { + "start": 2128.16, + "end": 2128.16, + "probability": 0.1214 + }, + { + "start": 2128.16, + "end": 2128.16, + "probability": 0.1195 + }, + { + "start": 2128.16, + "end": 2130.22, + "probability": 0.0602 + }, + { + "start": 2130.58, + "end": 2133.8, + "probability": 0.728 + }, + { + "start": 2133.86, + "end": 2134.77, + "probability": 0.5172 + }, + { + "start": 2135.06, + "end": 2136.3, + "probability": 0.3125 + }, + { + "start": 2137.04, + "end": 2137.94, + "probability": 0.5856 + }, + { + "start": 2138.12, + "end": 2140.54, + "probability": 0.9537 + }, + { + "start": 2140.64, + "end": 2140.64, + "probability": 0.6526 + }, + { + "start": 2140.64, + "end": 2141.36, + "probability": 0.5908 + }, + { + "start": 2141.9, + "end": 2146.9, + "probability": 0.8829 + }, + { + "start": 2147.4, + "end": 2149.94, + "probability": 0.9742 + }, + { + "start": 2150.7, + "end": 2154.48, + "probability": 0.5046 + }, + { + "start": 2154.52, + "end": 2154.68, + "probability": 0.3434 + }, + { + "start": 2158.58, + "end": 2160.04, + "probability": 0.4946 + }, + { + "start": 2160.3, + "end": 2161.24, + "probability": 0.222 + }, + { + "start": 2161.54, + "end": 2162.26, + "probability": 0.0267 + }, + { + "start": 2164.9, + "end": 2167.66, + "probability": 0.4038 + }, + { + "start": 2169.28, + "end": 2169.48, + "probability": 0.0547 + }, + { + "start": 2171.6, + "end": 2173.06, + "probability": 0.0903 + }, + { + "start": 2175.0, + "end": 2175.02, + "probability": 0.0818 + }, + { + "start": 2175.02, + "end": 2175.02, + "probability": 0.2733 + }, + { + "start": 2175.02, + "end": 2177.9, + "probability": 0.8747 + }, + { + "start": 2178.34, + "end": 2179.18, + "probability": 0.6499 + }, + { + "start": 2179.18, + "end": 2180.16, + "probability": 0.4819 + }, + { + "start": 2180.16, + "end": 2184.32, + "probability": 0.9968 + }, + { + "start": 2184.38, + "end": 2185.61, + "probability": 0.9648 + }, + { + "start": 2186.9, + "end": 2190.14, + "probability": 0.8882 + }, + { + "start": 2190.84, + "end": 2191.98, + "probability": 0.9362 + }, + { + "start": 2192.06, + "end": 2196.72, + "probability": 0.9906 + }, + { + "start": 2197.2, + "end": 2199.32, + "probability": 0.9623 + }, + { + "start": 2200.9, + "end": 2203.5, + "probability": 0.9971 + }, + { + "start": 2203.76, + "end": 2209.7, + "probability": 0.9966 + }, + { + "start": 2210.48, + "end": 2212.1, + "probability": 0.9941 + }, + { + "start": 2213.16, + "end": 2214.96, + "probability": 0.998 + }, + { + "start": 2215.04, + "end": 2217.38, + "probability": 0.9945 + }, + { + "start": 2218.06, + "end": 2218.9, + "probability": 0.9941 + }, + { + "start": 2219.68, + "end": 2221.76, + "probability": 0.9987 + }, + { + "start": 2222.28, + "end": 2225.5, + "probability": 0.9985 + }, + { + "start": 2225.6, + "end": 2227.06, + "probability": 0.7456 + }, + { + "start": 2228.44, + "end": 2231.68, + "probability": 0.954 + }, + { + "start": 2231.8, + "end": 2232.46, + "probability": 0.5835 + }, + { + "start": 2233.06, + "end": 2239.22, + "probability": 0.9964 + }, + { + "start": 2239.32, + "end": 2244.92, + "probability": 0.9945 + }, + { + "start": 2246.46, + "end": 2250.9, + "probability": 0.9976 + }, + { + "start": 2251.3, + "end": 2253.4, + "probability": 0.9977 + }, + { + "start": 2253.86, + "end": 2255.48, + "probability": 0.9341 + }, + { + "start": 2256.24, + "end": 2258.32, + "probability": 0.999 + }, + { + "start": 2259.18, + "end": 2262.1, + "probability": 0.9658 + }, + { + "start": 2262.1, + "end": 2266.86, + "probability": 0.9985 + }, + { + "start": 2268.72, + "end": 2270.88, + "probability": 0.9786 + }, + { + "start": 2272.62, + "end": 2273.96, + "probability": 0.9738 + }, + { + "start": 2274.9, + "end": 2277.68, + "probability": 0.9646 + }, + { + "start": 2278.9, + "end": 2281.2, + "probability": 0.9801 + }, + { + "start": 2282.58, + "end": 2287.98, + "probability": 0.9185 + }, + { + "start": 2289.36, + "end": 2290.38, + "probability": 0.7442 + }, + { + "start": 2291.08, + "end": 2292.56, + "probability": 0.8768 + }, + { + "start": 2292.66, + "end": 2293.96, + "probability": 0.9448 + }, + { + "start": 2295.28, + "end": 2296.62, + "probability": 0.4787 + }, + { + "start": 2296.74, + "end": 2298.52, + "probability": 0.9946 + }, + { + "start": 2298.6, + "end": 2303.68, + "probability": 0.999 + }, + { + "start": 2304.46, + "end": 2306.9, + "probability": 0.995 + }, + { + "start": 2307.26, + "end": 2309.46, + "probability": 0.7451 + }, + { + "start": 2311.26, + "end": 2311.88, + "probability": 0.9814 + }, + { + "start": 2312.78, + "end": 2315.22, + "probability": 0.5244 + }, + { + "start": 2316.4, + "end": 2317.56, + "probability": 0.9008 + }, + { + "start": 2318.82, + "end": 2320.34, + "probability": 0.8821 + }, + { + "start": 2320.44, + "end": 2322.66, + "probability": 0.9766 + }, + { + "start": 2323.12, + "end": 2325.56, + "probability": 0.9909 + }, + { + "start": 2326.32, + "end": 2328.64, + "probability": 0.8408 + }, + { + "start": 2329.7, + "end": 2330.74, + "probability": 0.7563 + }, + { + "start": 2330.94, + "end": 2333.64, + "probability": 0.894 + }, + { + "start": 2334.08, + "end": 2336.28, + "probability": 0.7792 + }, + { + "start": 2337.24, + "end": 2340.54, + "probability": 0.8887 + }, + { + "start": 2340.88, + "end": 2342.7, + "probability": 0.9758 + }, + { + "start": 2344.6, + "end": 2345.16, + "probability": 0.7666 + }, + { + "start": 2345.22, + "end": 2347.04, + "probability": 0.6941 + }, + { + "start": 2347.74, + "end": 2349.36, + "probability": 0.8227 + }, + { + "start": 2349.72, + "end": 2350.28, + "probability": 0.8096 + }, + { + "start": 2350.28, + "end": 2350.56, + "probability": 0.2844 + }, + { + "start": 2350.56, + "end": 2353.14, + "probability": 0.0282 + }, + { + "start": 2353.86, + "end": 2357.54, + "probability": 0.0186 + }, + { + "start": 2357.54, + "end": 2357.82, + "probability": 0.0311 + }, + { + "start": 2359.2, + "end": 2360.44, + "probability": 0.0119 + }, + { + "start": 2361.08, + "end": 2362.24, + "probability": 0.0049 + }, + { + "start": 2364.4, + "end": 2365.94, + "probability": 0.0758 + }, + { + "start": 2366.01, + "end": 2372.33, + "probability": 0.0174 + }, + { + "start": 2373.58, + "end": 2374.14, + "probability": 0.022 + }, + { + "start": 2374.24, + "end": 2376.08, + "probability": 0.0542 + }, + { + "start": 2376.08, + "end": 2376.24, + "probability": 0.1191 + }, + { + "start": 2380.22, + "end": 2381.98, + "probability": 0.0372 + }, + { + "start": 2384.78, + "end": 2392.04, + "probability": 0.0431 + }, + { + "start": 2393.1, + "end": 2395.26, + "probability": 0.1124 + }, + { + "start": 2395.66, + "end": 2396.88, + "probability": 0.113 + }, + { + "start": 2397.6, + "end": 2399.0, + "probability": 0.0283 + }, + { + "start": 2399.08, + "end": 2399.08, + "probability": 0.0513 + }, + { + "start": 2399.08, + "end": 2399.96, + "probability": 0.0758 + }, + { + "start": 2399.96, + "end": 2399.96, + "probability": 0.0474 + }, + { + "start": 2401.42, + "end": 2401.42, + "probability": 0.0834 + }, + { + "start": 2402.18, + "end": 2405.66, + "probability": 0.0815 + }, + { + "start": 2479.0, + "end": 2479.0, + "probability": 0.0 + }, + { + "start": 2479.0, + "end": 2479.0, + "probability": 0.0 + }, + { + "start": 2479.0, + "end": 2479.0, + "probability": 0.0 + }, + { + "start": 2479.0, + "end": 2479.0, + "probability": 0.0 + }, + { + "start": 2479.0, + "end": 2479.0, + "probability": 0.0 + }, + { + "start": 2479.0, + "end": 2479.0, + "probability": 0.0 + }, + { + "start": 2483.6, + "end": 2484.8, + "probability": 0.9976 + }, + { + "start": 2485.52, + "end": 2489.6, + "probability": 0.9929 + }, + { + "start": 2491.02, + "end": 2496.66, + "probability": 0.8667 + }, + { + "start": 2498.62, + "end": 2499.65, + "probability": 0.8962 + }, + { + "start": 2500.64, + "end": 2502.76, + "probability": 0.9967 + }, + { + "start": 2503.54, + "end": 2505.88, + "probability": 0.9382 + }, + { + "start": 2506.52, + "end": 2508.0, + "probability": 0.8013 + }, + { + "start": 2509.44, + "end": 2511.22, + "probability": 0.9589 + }, + { + "start": 2511.9, + "end": 2514.54, + "probability": 0.9741 + }, + { + "start": 2515.32, + "end": 2516.18, + "probability": 0.915 + }, + { + "start": 2516.96, + "end": 2518.64, + "probability": 0.9095 + }, + { + "start": 2520.06, + "end": 2523.4, + "probability": 0.8711 + }, + { + "start": 2524.06, + "end": 2526.74, + "probability": 0.9941 + }, + { + "start": 2527.34, + "end": 2529.72, + "probability": 0.9736 + }, + { + "start": 2530.42, + "end": 2531.82, + "probability": 0.7318 + }, + { + "start": 2532.66, + "end": 2535.24, + "probability": 0.9862 + }, + { + "start": 2535.64, + "end": 2537.26, + "probability": 0.8554 + }, + { + "start": 2537.58, + "end": 2537.92, + "probability": 0.8816 + }, + { + "start": 2537.96, + "end": 2540.0, + "probability": 0.9993 + }, + { + "start": 2540.0, + "end": 2541.14, + "probability": 0.9903 + }, + { + "start": 2541.56, + "end": 2542.66, + "probability": 0.7836 + }, + { + "start": 2543.42, + "end": 2544.68, + "probability": 0.5832 + }, + { + "start": 2545.28, + "end": 2549.1, + "probability": 0.9796 + }, + { + "start": 2549.34, + "end": 2552.36, + "probability": 0.8621 + }, + { + "start": 2553.44, + "end": 2555.22, + "probability": 0.9969 + }, + { + "start": 2556.28, + "end": 2557.58, + "probability": 0.8366 + }, + { + "start": 2558.12, + "end": 2560.94, + "probability": 0.9974 + }, + { + "start": 2561.94, + "end": 2563.42, + "probability": 0.877 + }, + { + "start": 2564.04, + "end": 2565.58, + "probability": 0.9924 + }, + { + "start": 2566.26, + "end": 2567.38, + "probability": 0.9399 + }, + { + "start": 2568.02, + "end": 2568.78, + "probability": 0.873 + }, + { + "start": 2570.04, + "end": 2570.8, + "probability": 0.9551 + }, + { + "start": 2572.78, + "end": 2573.48, + "probability": 0.7952 + }, + { + "start": 2573.92, + "end": 2576.48, + "probability": 0.9711 + }, + { + "start": 2585.98, + "end": 2587.6, + "probability": 0.9418 + }, + { + "start": 2590.46, + "end": 2591.3, + "probability": 0.7524 + }, + { + "start": 2591.36, + "end": 2592.98, + "probability": 0.7208 + }, + { + "start": 2593.16, + "end": 2593.5, + "probability": 0.8627 + }, + { + "start": 2593.6, + "end": 2595.0, + "probability": 0.643 + }, + { + "start": 2595.56, + "end": 2600.24, + "probability": 0.9698 + }, + { + "start": 2600.9, + "end": 2603.1, + "probability": 0.7913 + }, + { + "start": 2603.18, + "end": 2607.08, + "probability": 0.9093 + }, + { + "start": 2608.7, + "end": 2610.24, + "probability": 0.8269 + }, + { + "start": 2610.6, + "end": 2612.38, + "probability": 0.6832 + }, + { + "start": 2612.5, + "end": 2614.18, + "probability": 0.7976 + }, + { + "start": 2614.2, + "end": 2617.7, + "probability": 0.9955 + }, + { + "start": 2618.46, + "end": 2620.94, + "probability": 0.9891 + }, + { + "start": 2621.52, + "end": 2625.64, + "probability": 0.9982 + }, + { + "start": 2626.66, + "end": 2629.6, + "probability": 0.9815 + }, + { + "start": 2630.32, + "end": 2634.96, + "probability": 0.9949 + }, + { + "start": 2636.64, + "end": 2642.26, + "probability": 0.9632 + }, + { + "start": 2642.34, + "end": 2643.64, + "probability": 0.8596 + }, + { + "start": 2644.44, + "end": 2645.84, + "probability": 0.9457 + }, + { + "start": 2646.38, + "end": 2647.78, + "probability": 0.7957 + }, + { + "start": 2648.28, + "end": 2649.26, + "probability": 0.8669 + }, + { + "start": 2649.9, + "end": 2651.64, + "probability": 0.9868 + }, + { + "start": 2652.32, + "end": 2654.08, + "probability": 0.9577 + }, + { + "start": 2654.5, + "end": 2657.14, + "probability": 0.9628 + }, + { + "start": 2657.48, + "end": 2661.76, + "probability": 0.9894 + }, + { + "start": 2662.54, + "end": 2663.62, + "probability": 0.9307 + }, + { + "start": 2664.4, + "end": 2667.46, + "probability": 0.9915 + }, + { + "start": 2668.06, + "end": 2673.08, + "probability": 0.9687 + }, + { + "start": 2676.58, + "end": 2677.36, + "probability": 0.1007 + }, + { + "start": 2677.36, + "end": 2678.5, + "probability": 0.5275 + }, + { + "start": 2678.54, + "end": 2681.56, + "probability": 0.9722 + }, + { + "start": 2682.6, + "end": 2684.28, + "probability": 0.9102 + }, + { + "start": 2684.84, + "end": 2686.8, + "probability": 0.8335 + }, + { + "start": 2687.5, + "end": 2691.44, + "probability": 0.9921 + }, + { + "start": 2692.04, + "end": 2693.72, + "probability": 0.9989 + }, + { + "start": 2694.5, + "end": 2697.18, + "probability": 0.8848 + }, + { + "start": 2697.74, + "end": 2699.0, + "probability": 0.952 + }, + { + "start": 2699.68, + "end": 2701.62, + "probability": 0.9825 + }, + { + "start": 2702.38, + "end": 2705.94, + "probability": 0.9974 + }, + { + "start": 2706.58, + "end": 2709.4, + "probability": 0.9895 + }, + { + "start": 2709.7, + "end": 2710.02, + "probability": 0.8953 + }, + { + "start": 2710.82, + "end": 2711.08, + "probability": 0.4935 + }, + { + "start": 2711.14, + "end": 2713.78, + "probability": 0.8288 + }, + { + "start": 2733.02, + "end": 2735.66, + "probability": 0.765 + }, + { + "start": 2736.08, + "end": 2737.24, + "probability": 0.6687 + }, + { + "start": 2737.48, + "end": 2738.24, + "probability": 0.7245 + }, + { + "start": 2738.86, + "end": 2743.2, + "probability": 0.9764 + }, + { + "start": 2743.92, + "end": 2745.3, + "probability": 0.4875 + }, + { + "start": 2746.94, + "end": 2751.26, + "probability": 0.9967 + }, + { + "start": 2751.94, + "end": 2753.56, + "probability": 0.8594 + }, + { + "start": 2754.66, + "end": 2758.92, + "probability": 0.998 + }, + { + "start": 2759.5, + "end": 2761.98, + "probability": 0.9928 + }, + { + "start": 2763.34, + "end": 2763.84, + "probability": 0.9642 + }, + { + "start": 2764.12, + "end": 2766.88, + "probability": 0.9961 + }, + { + "start": 2767.34, + "end": 2769.52, + "probability": 0.9934 + }, + { + "start": 2771.04, + "end": 2772.28, + "probability": 0.7346 + }, + { + "start": 2772.94, + "end": 2774.36, + "probability": 0.8983 + }, + { + "start": 2774.92, + "end": 2777.3, + "probability": 0.9509 + }, + { + "start": 2778.38, + "end": 2780.92, + "probability": 0.9788 + }, + { + "start": 2781.96, + "end": 2784.24, + "probability": 0.9792 + }, + { + "start": 2785.28, + "end": 2788.4, + "probability": 0.9828 + }, + { + "start": 2789.46, + "end": 2791.3, + "probability": 0.9079 + }, + { + "start": 2791.96, + "end": 2793.78, + "probability": 0.9964 + }, + { + "start": 2795.1, + "end": 2803.16, + "probability": 0.9054 + }, + { + "start": 2803.56, + "end": 2804.54, + "probability": 0.9763 + }, + { + "start": 2805.6, + "end": 2811.32, + "probability": 0.9979 + }, + { + "start": 2812.18, + "end": 2816.74, + "probability": 0.9965 + }, + { + "start": 2817.12, + "end": 2818.34, + "probability": 0.9155 + }, + { + "start": 2819.9, + "end": 2823.02, + "probability": 0.9796 + }, + { + "start": 2823.52, + "end": 2827.02, + "probability": 0.9932 + }, + { + "start": 2828.06, + "end": 2833.04, + "probability": 0.9989 + }, + { + "start": 2833.3, + "end": 2834.32, + "probability": 0.6353 + }, + { + "start": 2835.06, + "end": 2837.78, + "probability": 0.9932 + }, + { + "start": 2838.34, + "end": 2843.78, + "probability": 0.9971 + }, + { + "start": 2844.92, + "end": 2846.94, + "probability": 0.9407 + }, + { + "start": 2847.42, + "end": 2849.22, + "probability": 0.9968 + }, + { + "start": 2850.68, + "end": 2853.6, + "probability": 0.9985 + }, + { + "start": 2854.72, + "end": 2860.22, + "probability": 0.9943 + }, + { + "start": 2861.58, + "end": 2866.96, + "probability": 0.999 + }, + { + "start": 2867.52, + "end": 2868.26, + "probability": 0.996 + }, + { + "start": 2869.16, + "end": 2870.98, + "probability": 0.987 + }, + { + "start": 2872.8, + "end": 2876.38, + "probability": 0.7959 + }, + { + "start": 2877.06, + "end": 2880.44, + "probability": 0.9978 + }, + { + "start": 2881.42, + "end": 2883.32, + "probability": 0.9647 + }, + { + "start": 2883.9, + "end": 2885.08, + "probability": 0.9485 + }, + { + "start": 2885.86, + "end": 2887.82, + "probability": 0.9738 + }, + { + "start": 2889.1, + "end": 2889.8, + "probability": 0.7142 + }, + { + "start": 2889.86, + "end": 2891.74, + "probability": 0.8925 + }, + { + "start": 2913.28, + "end": 2913.28, + "probability": 0.7428 + }, + { + "start": 2913.28, + "end": 2916.46, + "probability": 0.7391 + }, + { + "start": 2916.56, + "end": 2918.04, + "probability": 0.7261 + }, + { + "start": 2918.22, + "end": 2919.28, + "probability": 0.6562 + }, + { + "start": 2919.76, + "end": 2927.08, + "probability": 0.9583 + }, + { + "start": 2927.86, + "end": 2931.76, + "probability": 0.8428 + }, + { + "start": 2933.32, + "end": 2933.8, + "probability": 0.5457 + }, + { + "start": 2934.82, + "end": 2938.76, + "probability": 0.7973 + }, + { + "start": 2939.48, + "end": 2942.96, + "probability": 0.9751 + }, + { + "start": 2942.96, + "end": 2948.2, + "probability": 0.9941 + }, + { + "start": 2949.64, + "end": 2952.1, + "probability": 0.9939 + }, + { + "start": 2952.1, + "end": 2955.74, + "probability": 0.9926 + }, + { + "start": 2956.4, + "end": 2958.84, + "probability": 0.99 + }, + { + "start": 2959.44, + "end": 2963.52, + "probability": 0.9727 + }, + { + "start": 2964.88, + "end": 2968.48, + "probability": 0.989 + }, + { + "start": 2968.48, + "end": 2972.08, + "probability": 0.9913 + }, + { + "start": 2972.72, + "end": 2975.4, + "probability": 0.9919 + }, + { + "start": 2975.4, + "end": 2979.52, + "probability": 0.9899 + }, + { + "start": 2980.8, + "end": 2982.04, + "probability": 0.9901 + }, + { + "start": 2984.22, + "end": 2987.18, + "probability": 0.7469 + }, + { + "start": 2987.86, + "end": 2994.9, + "probability": 0.9863 + }, + { + "start": 2995.58, + "end": 2998.2, + "probability": 0.8701 + }, + { + "start": 2999.22, + "end": 3001.04, + "probability": 0.9902 + }, + { + "start": 3001.66, + "end": 3002.32, + "probability": 0.953 + }, + { + "start": 3002.78, + "end": 3005.64, + "probability": 0.9922 + }, + { + "start": 3005.94, + "end": 3009.06, + "probability": 0.9959 + }, + { + "start": 3010.12, + "end": 3014.04, + "probability": 0.9952 + }, + { + "start": 3014.8, + "end": 3018.86, + "probability": 0.9921 + }, + { + "start": 3018.86, + "end": 3023.4, + "probability": 0.9426 + }, + { + "start": 3024.44, + "end": 3027.2, + "probability": 0.7048 + }, + { + "start": 3028.64, + "end": 3031.1, + "probability": 0.8052 + }, + { + "start": 3032.48, + "end": 3037.28, + "probability": 0.9867 + }, + { + "start": 3037.84, + "end": 3038.9, + "probability": 0.8543 + }, + { + "start": 3039.42, + "end": 3041.12, + "probability": 0.9891 + }, + { + "start": 3041.28, + "end": 3047.24, + "probability": 0.8322 + }, + { + "start": 3047.88, + "end": 3049.76, + "probability": 0.8328 + }, + { + "start": 3050.46, + "end": 3052.12, + "probability": 0.9927 + }, + { + "start": 3054.02, + "end": 3060.32, + "probability": 0.9904 + }, + { + "start": 3060.92, + "end": 3063.36, + "probability": 0.9202 + }, + { + "start": 3064.52, + "end": 3072.32, + "probability": 0.986 + }, + { + "start": 3074.38, + "end": 3075.48, + "probability": 0.5302 + }, + { + "start": 3075.68, + "end": 3078.6, + "probability": 0.8682 + }, + { + "start": 3080.38, + "end": 3081.38, + "probability": 0.1173 + }, + { + "start": 3097.18, + "end": 3099.28, + "probability": 0.4952 + }, + { + "start": 3099.28, + "end": 3099.88, + "probability": 0.3845 + }, + { + "start": 3100.66, + "end": 3101.58, + "probability": 0.5263 + }, + { + "start": 3102.46, + "end": 3106.56, + "probability": 0.9934 + }, + { + "start": 3106.56, + "end": 3110.92, + "probability": 0.9919 + }, + { + "start": 3111.96, + "end": 3118.06, + "probability": 0.9683 + }, + { + "start": 3119.08, + "end": 3121.42, + "probability": 0.4956 + }, + { + "start": 3122.66, + "end": 3123.56, + "probability": 0.7401 + }, + { + "start": 3124.06, + "end": 3128.8, + "probability": 0.8814 + }, + { + "start": 3129.46, + "end": 3134.24, + "probability": 0.98 + }, + { + "start": 3135.36, + "end": 3137.54, + "probability": 0.892 + }, + { + "start": 3138.52, + "end": 3140.62, + "probability": 0.9756 + }, + { + "start": 3141.36, + "end": 3147.82, + "probability": 0.9953 + }, + { + "start": 3149.22, + "end": 3150.96, + "probability": 0.7325 + }, + { + "start": 3151.46, + "end": 3152.94, + "probability": 0.9867 + }, + { + "start": 3153.3, + "end": 3154.28, + "probability": 0.7868 + }, + { + "start": 3154.96, + "end": 3157.28, + "probability": 0.9753 + }, + { + "start": 3158.7, + "end": 3161.9, + "probability": 0.9893 + }, + { + "start": 3162.52, + "end": 3166.3, + "probability": 0.9964 + }, + { + "start": 3167.36, + "end": 3171.14, + "probability": 0.9877 + }, + { + "start": 3172.06, + "end": 3173.86, + "probability": 0.9907 + }, + { + "start": 3173.96, + "end": 3176.0, + "probability": 0.9402 + }, + { + "start": 3176.68, + "end": 3178.38, + "probability": 0.9014 + }, + { + "start": 3178.52, + "end": 3180.9, + "probability": 0.9504 + }, + { + "start": 3182.04, + "end": 3185.98, + "probability": 0.8537 + }, + { + "start": 3186.54, + "end": 3189.02, + "probability": 0.9974 + }, + { + "start": 3190.32, + "end": 3193.84, + "probability": 0.9831 + }, + { + "start": 3194.46, + "end": 3197.56, + "probability": 0.939 + }, + { + "start": 3197.74, + "end": 3199.48, + "probability": 0.9526 + }, + { + "start": 3199.56, + "end": 3200.38, + "probability": 0.7946 + }, + { + "start": 3200.66, + "end": 3201.58, + "probability": 0.9038 + }, + { + "start": 3201.96, + "end": 3207.68, + "probability": 0.9767 + }, + { + "start": 3208.4, + "end": 3210.13, + "probability": 0.9905 + }, + { + "start": 3210.76, + "end": 3216.68, + "probability": 0.9862 + }, + { + "start": 3216.68, + "end": 3222.28, + "probability": 0.9968 + }, + { + "start": 3222.88, + "end": 3225.74, + "probability": 0.9731 + }, + { + "start": 3226.32, + "end": 3226.96, + "probability": 0.4876 + }, + { + "start": 3227.78, + "end": 3232.54, + "probability": 0.9893 + }, + { + "start": 3232.54, + "end": 3237.44, + "probability": 0.9984 + }, + { + "start": 3237.86, + "end": 3239.06, + "probability": 0.9833 + }, + { + "start": 3239.16, + "end": 3244.52, + "probability": 0.9711 + }, + { + "start": 3245.06, + "end": 3246.88, + "probability": 0.9973 + }, + { + "start": 3247.64, + "end": 3250.22, + "probability": 0.9935 + }, + { + "start": 3250.34, + "end": 3253.14, + "probability": 0.9614 + }, + { + "start": 3253.3, + "end": 3257.12, + "probability": 0.765 + }, + { + "start": 3257.7, + "end": 3261.02, + "probability": 0.9892 + }, + { + "start": 3261.02, + "end": 3263.76, + "probability": 0.9888 + }, + { + "start": 3263.8, + "end": 3264.3, + "probability": 0.6221 + }, + { + "start": 3265.14, + "end": 3267.58, + "probability": 0.9937 + }, + { + "start": 3267.68, + "end": 3267.88, + "probability": 0.8866 + }, + { + "start": 3268.8, + "end": 3269.16, + "probability": 0.6138 + }, + { + "start": 3269.4, + "end": 3271.36, + "probability": 0.928 + }, + { + "start": 3280.86, + "end": 3282.34, + "probability": 0.6733 + }, + { + "start": 3282.58, + "end": 3287.0, + "probability": 0.8041 + }, + { + "start": 3288.68, + "end": 3290.64, + "probability": 0.9667 + }, + { + "start": 3292.32, + "end": 3295.1, + "probability": 0.8893 + }, + { + "start": 3295.1, + "end": 3298.24, + "probability": 0.9977 + }, + { + "start": 3298.9, + "end": 3299.36, + "probability": 0.6296 + }, + { + "start": 3299.5, + "end": 3302.46, + "probability": 0.9839 + }, + { + "start": 3304.23, + "end": 3305.38, + "probability": 0.6667 + }, + { + "start": 3305.5, + "end": 3309.28, + "probability": 0.9094 + }, + { + "start": 3309.9, + "end": 3311.04, + "probability": 0.728 + }, + { + "start": 3312.2, + "end": 3313.42, + "probability": 0.9342 + }, + { + "start": 3313.48, + "end": 3316.48, + "probability": 0.883 + }, + { + "start": 3316.56, + "end": 3319.82, + "probability": 0.9709 + }, + { + "start": 3320.66, + "end": 3322.1, + "probability": 0.8741 + }, + { + "start": 3322.48, + "end": 3325.14, + "probability": 0.9637 + }, + { + "start": 3325.14, + "end": 3329.04, + "probability": 0.9854 + }, + { + "start": 3330.08, + "end": 3333.46, + "probability": 0.8798 + }, + { + "start": 3333.72, + "end": 3334.78, + "probability": 0.7166 + }, + { + "start": 3334.84, + "end": 3336.69, + "probability": 0.9613 + }, + { + "start": 3336.92, + "end": 3339.02, + "probability": 0.7573 + }, + { + "start": 3339.52, + "end": 3339.8, + "probability": 0.5531 + }, + { + "start": 3340.12, + "end": 3340.94, + "probability": 0.8195 + }, + { + "start": 3341.16, + "end": 3341.78, + "probability": 0.9742 + }, + { + "start": 3342.46, + "end": 3345.48, + "probability": 0.9731 + }, + { + "start": 3345.54, + "end": 3349.12, + "probability": 0.9917 + }, + { + "start": 3349.92, + "end": 3351.48, + "probability": 0.8994 + }, + { + "start": 3351.52, + "end": 3354.18, + "probability": 0.9343 + }, + { + "start": 3354.48, + "end": 3357.76, + "probability": 0.9785 + }, + { + "start": 3358.52, + "end": 3361.18, + "probability": 0.8498 + }, + { + "start": 3361.58, + "end": 3363.8, + "probability": 0.9929 + }, + { + "start": 3364.0, + "end": 3365.66, + "probability": 0.9941 + }, + { + "start": 3366.26, + "end": 3369.98, + "probability": 0.9172 + }, + { + "start": 3370.22, + "end": 3371.36, + "probability": 0.841 + }, + { + "start": 3372.24, + "end": 3374.78, + "probability": 0.9986 + }, + { + "start": 3374.9, + "end": 3375.84, + "probability": 0.7954 + }, + { + "start": 3376.46, + "end": 3377.6, + "probability": 0.9385 + }, + { + "start": 3378.2, + "end": 3380.46, + "probability": 0.9423 + }, + { + "start": 3380.64, + "end": 3381.86, + "probability": 0.8911 + }, + { + "start": 3382.62, + "end": 3386.36, + "probability": 0.903 + }, + { + "start": 3386.92, + "end": 3388.78, + "probability": 0.9845 + }, + { + "start": 3389.0, + "end": 3390.08, + "probability": 0.7777 + }, + { + "start": 3390.16, + "end": 3390.92, + "probability": 0.777 + }, + { + "start": 3391.26, + "end": 3394.88, + "probability": 0.9946 + }, + { + "start": 3395.58, + "end": 3398.32, + "probability": 0.9468 + }, + { + "start": 3398.92, + "end": 3402.14, + "probability": 0.9827 + }, + { + "start": 3402.84, + "end": 3403.54, + "probability": 0.981 + }, + { + "start": 3404.14, + "end": 3408.5, + "probability": 0.9867 + }, + { + "start": 3409.02, + "end": 3409.52, + "probability": 0.595 + }, + { + "start": 3409.58, + "end": 3410.3, + "probability": 0.9454 + }, + { + "start": 3410.46, + "end": 3414.18, + "probability": 0.967 + }, + { + "start": 3414.86, + "end": 3418.52, + "probability": 0.9692 + }, + { + "start": 3419.14, + "end": 3423.88, + "probability": 0.958 + }, + { + "start": 3423.88, + "end": 3429.0, + "probability": 0.9899 + }, + { + "start": 3429.64, + "end": 3431.5, + "probability": 0.6673 + }, + { + "start": 3432.28, + "end": 3434.06, + "probability": 0.8382 + }, + { + "start": 3435.2, + "end": 3438.38, + "probability": 0.7129 + }, + { + "start": 3438.54, + "end": 3439.76, + "probability": 0.4814 + }, + { + "start": 3440.34, + "end": 3443.3, + "probability": 0.9051 + }, + { + "start": 3444.04, + "end": 3444.7, + "probability": 0.7197 + }, + { + "start": 3444.8, + "end": 3445.76, + "probability": 0.8857 + }, + { + "start": 3445.82, + "end": 3446.78, + "probability": 0.9335 + }, + { + "start": 3447.12, + "end": 3451.26, + "probability": 0.9646 + }, + { + "start": 3452.16, + "end": 3453.68, + "probability": 0.7851 + }, + { + "start": 3453.74, + "end": 3455.0, + "probability": 0.8791 + }, + { + "start": 3455.24, + "end": 3461.28, + "probability": 0.984 + }, + { + "start": 3461.38, + "end": 3461.78, + "probability": 0.7289 + }, + { + "start": 3462.32, + "end": 3462.76, + "probability": 0.6689 + }, + { + "start": 3462.94, + "end": 3465.44, + "probability": 0.9681 + }, + { + "start": 3466.38, + "end": 3468.42, + "probability": 0.0011 + }, + { + "start": 3492.92, + "end": 3496.48, + "probability": 0.998 + }, + { + "start": 3497.1, + "end": 3499.48, + "probability": 0.738 + }, + { + "start": 3500.4, + "end": 3507.58, + "probability": 0.9987 + }, + { + "start": 3508.08, + "end": 3508.72, + "probability": 0.6193 + }, + { + "start": 3508.74, + "end": 3509.84, + "probability": 0.8608 + }, + { + "start": 3510.56, + "end": 3519.08, + "probability": 0.9622 + }, + { + "start": 3519.46, + "end": 3519.78, + "probability": 0.4582 + }, + { + "start": 3519.82, + "end": 3520.18, + "probability": 0.7092 + }, + { + "start": 3523.02, + "end": 3525.28, + "probability": 0.7055 + }, + { + "start": 3525.6, + "end": 3528.5, + "probability": 0.9901 + }, + { + "start": 3528.64, + "end": 3531.54, + "probability": 0.9965 + }, + { + "start": 3532.12, + "end": 3533.2, + "probability": 0.7944 + }, + { + "start": 3534.0, + "end": 3534.3, + "probability": 0.7192 + }, + { + "start": 3534.68, + "end": 3536.14, + "probability": 0.9119 + }, + { + "start": 3536.54, + "end": 3540.46, + "probability": 0.8296 + }, + { + "start": 3541.04, + "end": 3544.1, + "probability": 0.9019 + }, + { + "start": 3545.54, + "end": 3547.98, + "probability": 0.9038 + }, + { + "start": 3548.96, + "end": 3551.58, + "probability": 0.9893 + }, + { + "start": 3552.16, + "end": 3555.96, + "probability": 0.96 + }, + { + "start": 3556.82, + "end": 3558.8, + "probability": 0.7337 + }, + { + "start": 3559.54, + "end": 3563.58, + "probability": 0.9899 + }, + { + "start": 3564.68, + "end": 3566.98, + "probability": 0.9987 + }, + { + "start": 3567.52, + "end": 3571.08, + "probability": 0.9929 + }, + { + "start": 3571.42, + "end": 3574.24, + "probability": 0.744 + }, + { + "start": 3574.9, + "end": 3578.14, + "probability": 0.9865 + }, + { + "start": 3578.76, + "end": 3579.54, + "probability": 0.8915 + }, + { + "start": 3580.06, + "end": 3580.78, + "probability": 0.9392 + }, + { + "start": 3581.04, + "end": 3582.66, + "probability": 0.9141 + }, + { + "start": 3583.16, + "end": 3585.8, + "probability": 0.998 + }, + { + "start": 3586.48, + "end": 3590.18, + "probability": 0.9988 + }, + { + "start": 3590.18, + "end": 3594.28, + "probability": 0.9941 + }, + { + "start": 3594.96, + "end": 3596.16, + "probability": 0.9589 + }, + { + "start": 3596.72, + "end": 3598.66, + "probability": 0.9118 + }, + { + "start": 3601.49, + "end": 3602.94, + "probability": 0.3941 + }, + { + "start": 3602.96, + "end": 3603.18, + "probability": 0.6344 + }, + { + "start": 3603.7, + "end": 3607.38, + "probability": 0.8199 + }, + { + "start": 3626.14, + "end": 3626.46, + "probability": 0.689 + }, + { + "start": 3627.36, + "end": 3633.12, + "probability": 0.9816 + }, + { + "start": 3633.4, + "end": 3635.1, + "probability": 0.8419 + }, + { + "start": 3635.68, + "end": 3643.1, + "probability": 0.9344 + }, + { + "start": 3645.05, + "end": 3647.12, + "probability": 0.9758 + }, + { + "start": 3648.66, + "end": 3652.06, + "probability": 0.9989 + }, + { + "start": 3652.6, + "end": 3655.24, + "probability": 0.8362 + }, + { + "start": 3656.02, + "end": 3657.58, + "probability": 0.9135 + }, + { + "start": 3658.06, + "end": 3663.06, + "probability": 0.997 + }, + { + "start": 3663.88, + "end": 3664.86, + "probability": 0.9521 + }, + { + "start": 3665.44, + "end": 3669.36, + "probability": 0.9849 + }, + { + "start": 3670.38, + "end": 3671.98, + "probability": 0.8729 + }, + { + "start": 3672.8, + "end": 3675.18, + "probability": 0.942 + }, + { + "start": 3675.54, + "end": 3680.52, + "probability": 0.9946 + }, + { + "start": 3681.28, + "end": 3683.3, + "probability": 0.9919 + }, + { + "start": 3683.92, + "end": 3688.3, + "probability": 0.9974 + }, + { + "start": 3689.24, + "end": 3694.3, + "probability": 0.9989 + }, + { + "start": 3695.12, + "end": 3697.62, + "probability": 0.9888 + }, + { + "start": 3698.5, + "end": 3700.28, + "probability": 0.9885 + }, + { + "start": 3700.4, + "end": 3701.32, + "probability": 0.9935 + }, + { + "start": 3701.38, + "end": 3702.24, + "probability": 0.7552 + }, + { + "start": 3702.62, + "end": 3707.46, + "probability": 0.9963 + }, + { + "start": 3708.36, + "end": 3708.7, + "probability": 0.0758 + }, + { + "start": 3708.72, + "end": 3709.1, + "probability": 0.4451 + }, + { + "start": 3709.24, + "end": 3709.84, + "probability": 0.9216 + }, + { + "start": 3710.32, + "end": 3712.68, + "probability": 0.9892 + }, + { + "start": 3713.02, + "end": 3715.12, + "probability": 0.8488 + }, + { + "start": 3715.68, + "end": 3718.06, + "probability": 0.9868 + }, + { + "start": 3718.72, + "end": 3721.9, + "probability": 0.9889 + }, + { + "start": 3722.66, + "end": 3723.06, + "probability": 0.9906 + }, + { + "start": 3724.12, + "end": 3727.34, + "probability": 0.9953 + }, + { + "start": 3727.34, + "end": 3731.28, + "probability": 0.9995 + }, + { + "start": 3732.18, + "end": 3736.26, + "probability": 0.9979 + }, + { + "start": 3737.42, + "end": 3740.14, + "probability": 0.9834 + }, + { + "start": 3740.78, + "end": 3743.9, + "probability": 0.7783 + }, + { + "start": 3744.54, + "end": 3748.26, + "probability": 0.9922 + }, + { + "start": 3748.96, + "end": 3749.2, + "probability": 0.8239 + }, + { + "start": 3751.32, + "end": 3751.86, + "probability": 0.6275 + }, + { + "start": 3758.34, + "end": 3760.78, + "probability": 0.8148 + }, + { + "start": 3761.36, + "end": 3763.14, + "probability": 0.7611 + }, + { + "start": 3766.22, + "end": 3766.86, + "probability": 0.3185 + }, + { + "start": 3776.92, + "end": 3781.04, + "probability": 0.9938 + }, + { + "start": 3782.1, + "end": 3785.26, + "probability": 0.9366 + }, + { + "start": 3786.42, + "end": 3787.94, + "probability": 0.9626 + }, + { + "start": 3788.6, + "end": 3791.5, + "probability": 0.9387 + }, + { + "start": 3792.56, + "end": 3793.52, + "probability": 0.9637 + }, + { + "start": 3794.88, + "end": 3799.18, + "probability": 0.6944 + }, + { + "start": 3801.42, + "end": 3802.02, + "probability": 0.9425 + }, + { + "start": 3805.46, + "end": 3807.2, + "probability": 0.9702 + }, + { + "start": 3808.9, + "end": 3812.36, + "probability": 0.9957 + }, + { + "start": 3813.16, + "end": 3814.26, + "probability": 0.9561 + }, + { + "start": 3815.26, + "end": 3821.08, + "probability": 0.9862 + }, + { + "start": 3822.4, + "end": 3825.96, + "probability": 0.9844 + }, + { + "start": 3826.6, + "end": 3828.3, + "probability": 0.9905 + }, + { + "start": 3830.34, + "end": 3836.15, + "probability": 0.9899 + }, + { + "start": 3836.28, + "end": 3839.34, + "probability": 0.9961 + }, + { + "start": 3840.04, + "end": 3842.3, + "probability": 0.9947 + }, + { + "start": 3843.24, + "end": 3845.08, + "probability": 0.6785 + }, + { + "start": 3846.14, + "end": 3849.1, + "probability": 0.9836 + }, + { + "start": 3851.26, + "end": 3859.58, + "probability": 0.9343 + }, + { + "start": 3861.54, + "end": 3863.98, + "probability": 0.9158 + }, + { + "start": 3865.0, + "end": 3868.64, + "probability": 0.9394 + }, + { + "start": 3869.74, + "end": 3872.5, + "probability": 0.9894 + }, + { + "start": 3872.5, + "end": 3876.91, + "probability": 0.9968 + }, + { + "start": 3878.14, + "end": 3880.4, + "probability": 0.9815 + }, + { + "start": 3881.36, + "end": 3883.4, + "probability": 0.8097 + }, + { + "start": 3883.96, + "end": 3885.8, + "probability": 0.9762 + }, + { + "start": 3886.98, + "end": 3890.34, + "probability": 0.9431 + }, + { + "start": 3891.22, + "end": 3892.7, + "probability": 0.9951 + }, + { + "start": 3893.96, + "end": 3896.98, + "probability": 0.8847 + }, + { + "start": 3897.96, + "end": 3901.04, + "probability": 0.993 + }, + { + "start": 3901.6, + "end": 3902.26, + "probability": 0.6362 + }, + { + "start": 3902.88, + "end": 3904.62, + "probability": 0.9957 + }, + { + "start": 3905.42, + "end": 3908.02, + "probability": 0.9973 + }, + { + "start": 3909.22, + "end": 3913.24, + "probability": 0.9971 + }, + { + "start": 3914.0, + "end": 3916.6, + "probability": 0.8948 + }, + { + "start": 3917.98, + "end": 3920.8, + "probability": 0.9871 + }, + { + "start": 3922.2, + "end": 3925.9, + "probability": 0.9916 + }, + { + "start": 3926.92, + "end": 3932.0, + "probability": 0.9932 + }, + { + "start": 3932.22, + "end": 3933.1, + "probability": 0.9498 + }, + { + "start": 3934.56, + "end": 3940.12, + "probability": 0.9954 + }, + { + "start": 3940.2, + "end": 3940.88, + "probability": 0.6948 + }, + { + "start": 3942.26, + "end": 3946.2, + "probability": 0.9894 + }, + { + "start": 3946.86, + "end": 3948.56, + "probability": 0.9827 + }, + { + "start": 3949.96, + "end": 3952.04, + "probability": 0.9876 + }, + { + "start": 3952.94, + "end": 3955.5, + "probability": 0.977 + }, + { + "start": 3956.46, + "end": 3960.48, + "probability": 0.9985 + }, + { + "start": 3961.72, + "end": 3965.88, + "probability": 0.9762 + }, + { + "start": 3967.5, + "end": 3970.84, + "probability": 0.9121 + }, + { + "start": 3971.58, + "end": 3974.4, + "probability": 0.902 + }, + { + "start": 3975.0, + "end": 3975.22, + "probability": 0.6471 + }, + { + "start": 3976.34, + "end": 3977.24, + "probability": 0.6727 + }, + { + "start": 3977.3, + "end": 3979.24, + "probability": 0.9198 + }, + { + "start": 3982.32, + "end": 3984.62, + "probability": 0.6603 + }, + { + "start": 3995.45, + "end": 3999.14, + "probability": 0.7986 + }, + { + "start": 3999.98, + "end": 4003.44, + "probability": 0.9575 + }, + { + "start": 4004.9, + "end": 4008.9, + "probability": 0.9929 + }, + { + "start": 4008.9, + "end": 4012.8, + "probability": 0.9943 + }, + { + "start": 4013.76, + "end": 4014.76, + "probability": 0.8126 + }, + { + "start": 4015.78, + "end": 4016.79, + "probability": 0.9917 + }, + { + "start": 4016.98, + "end": 4019.0, + "probability": 0.9943 + }, + { + "start": 4019.14, + "end": 4020.0, + "probability": 0.9185 + }, + { + "start": 4020.14, + "end": 4021.16, + "probability": 0.961 + }, + { + "start": 4022.06, + "end": 4023.34, + "probability": 0.9282 + }, + { + "start": 4023.78, + "end": 4024.68, + "probability": 0.9867 + }, + { + "start": 4024.78, + "end": 4026.28, + "probability": 0.9965 + }, + { + "start": 4026.72, + "end": 4028.32, + "probability": 0.9984 + }, + { + "start": 4028.8, + "end": 4030.9, + "probability": 0.9687 + }, + { + "start": 4031.36, + "end": 4033.79, + "probability": 0.9619 + }, + { + "start": 4034.12, + "end": 4035.74, + "probability": 0.2763 + }, + { + "start": 4035.84, + "end": 4038.64, + "probability": 0.9795 + }, + { + "start": 4039.06, + "end": 4042.0, + "probability": 0.8756 + }, + { + "start": 4042.44, + "end": 4043.22, + "probability": 0.7827 + }, + { + "start": 4043.38, + "end": 4044.08, + "probability": 0.9337 + }, + { + "start": 4044.64, + "end": 4046.8, + "probability": 0.9946 + }, + { + "start": 4046.88, + "end": 4049.08, + "probability": 0.9322 + }, + { + "start": 4049.76, + "end": 4052.02, + "probability": 0.8688 + }, + { + "start": 4052.24, + "end": 4052.78, + "probability": 0.8535 + }, + { + "start": 4053.02, + "end": 4054.26, + "probability": 0.9981 + }, + { + "start": 4054.5, + "end": 4055.46, + "probability": 0.9565 + }, + { + "start": 4055.84, + "end": 4056.32, + "probability": 0.7404 + }, + { + "start": 4056.98, + "end": 4058.4, + "probability": 0.8992 + }, + { + "start": 4058.58, + "end": 4059.11, + "probability": 0.9746 + }, + { + "start": 4059.28, + "end": 4060.12, + "probability": 0.7651 + }, + { + "start": 4060.26, + "end": 4060.62, + "probability": 0.884 + }, + { + "start": 4060.84, + "end": 4062.12, + "probability": 0.9727 + }, + { + "start": 4062.56, + "end": 4064.15, + "probability": 0.9695 + }, + { + "start": 4064.58, + "end": 4066.38, + "probability": 0.6876 + }, + { + "start": 4066.9, + "end": 4070.16, + "probability": 0.9666 + }, + { + "start": 4070.78, + "end": 4074.79, + "probability": 0.9856 + }, + { + "start": 4075.62, + "end": 4077.36, + "probability": 0.6651 + }, + { + "start": 4077.48, + "end": 4078.29, + "probability": 0.5615 + }, + { + "start": 4078.76, + "end": 4079.08, + "probability": 0.8279 + }, + { + "start": 4079.92, + "end": 4084.24, + "probability": 0.9935 + }, + { + "start": 4084.52, + "end": 4085.84, + "probability": 0.9631 + }, + { + "start": 4086.28, + "end": 4086.92, + "probability": 0.98 + }, + { + "start": 4087.28, + "end": 4088.12, + "probability": 0.9917 + }, + { + "start": 4088.48, + "end": 4089.4, + "probability": 0.9015 + }, + { + "start": 4089.96, + "end": 4090.96, + "probability": 0.901 + }, + { + "start": 4091.52, + "end": 4092.1, + "probability": 0.8889 + }, + { + "start": 4092.66, + "end": 4092.9, + "probability": 0.5421 + }, + { + "start": 4093.1, + "end": 4093.7, + "probability": 0.7488 + }, + { + "start": 4093.82, + "end": 4095.24, + "probability": 0.9902 + }, + { + "start": 4095.48, + "end": 4096.08, + "probability": 0.6274 + }, + { + "start": 4096.48, + "end": 4098.34, + "probability": 0.9538 + }, + { + "start": 4098.5, + "end": 4099.34, + "probability": 0.9778 + }, + { + "start": 4100.08, + "end": 4104.95, + "probability": 0.9914 + }, + { + "start": 4105.62, + "end": 4106.42, + "probability": 0.9992 + }, + { + "start": 4107.34, + "end": 4107.92, + "probability": 0.8863 + }, + { + "start": 4108.26, + "end": 4110.5, + "probability": 0.9966 + }, + { + "start": 4111.02, + "end": 4112.16, + "probability": 0.9448 + }, + { + "start": 4112.8, + "end": 4115.44, + "probability": 0.9722 + }, + { + "start": 4115.82, + "end": 4117.54, + "probability": 0.9921 + }, + { + "start": 4117.92, + "end": 4119.12, + "probability": 0.9928 + }, + { + "start": 4119.84, + "end": 4120.38, + "probability": 0.9465 + }, + { + "start": 4120.54, + "end": 4121.28, + "probability": 0.9788 + }, + { + "start": 4121.36, + "end": 4123.22, + "probability": 0.9419 + }, + { + "start": 4123.3, + "end": 4124.48, + "probability": 0.988 + }, + { + "start": 4124.86, + "end": 4128.04, + "probability": 0.9692 + }, + { + "start": 4128.42, + "end": 4128.86, + "probability": 0.654 + }, + { + "start": 4128.96, + "end": 4129.1, + "probability": 0.8203 + }, + { + "start": 4129.18, + "end": 4129.46, + "probability": 0.8223 + }, + { + "start": 4129.94, + "end": 4131.64, + "probability": 0.5996 + }, + { + "start": 4131.76, + "end": 4132.28, + "probability": 0.9207 + }, + { + "start": 4132.62, + "end": 4133.58, + "probability": 0.9822 + }, + { + "start": 4134.06, + "end": 4135.76, + "probability": 0.9504 + }, + { + "start": 4136.42, + "end": 4137.53, + "probability": 0.9856 + }, + { + "start": 4138.12, + "end": 4143.6, + "probability": 0.9877 + }, + { + "start": 4143.94, + "end": 4146.56, + "probability": 0.9972 + }, + { + "start": 4147.56, + "end": 4151.76, + "probability": 0.9635 + }, + { + "start": 4152.44, + "end": 4156.74, + "probability": 0.9864 + }, + { + "start": 4157.46, + "end": 4158.46, + "probability": 0.6841 + }, + { + "start": 4158.54, + "end": 4160.92, + "probability": 0.7764 + }, + { + "start": 4161.28, + "end": 4164.12, + "probability": 0.9655 + }, + { + "start": 4164.48, + "end": 4169.54, + "probability": 0.9932 + }, + { + "start": 4169.86, + "end": 4171.7, + "probability": 0.9537 + }, + { + "start": 4172.22, + "end": 4172.54, + "probability": 0.1634 + }, + { + "start": 4173.54, + "end": 4175.8, + "probability": 0.9842 + }, + { + "start": 4175.8, + "end": 4179.04, + "probability": 0.8629 + }, + { + "start": 4179.06, + "end": 4182.46, + "probability": 0.867 + }, + { + "start": 4183.38, + "end": 4184.7, + "probability": 0.6472 + }, + { + "start": 4185.08, + "end": 4186.23, + "probability": 0.5261 + }, + { + "start": 4186.48, + "end": 4191.04, + "probability": 0.9771 + }, + { + "start": 4191.34, + "end": 4193.14, + "probability": 0.8949 + }, + { + "start": 4193.76, + "end": 4198.88, + "probability": 0.9819 + }, + { + "start": 4198.88, + "end": 4203.26, + "probability": 0.8561 + }, + { + "start": 4203.58, + "end": 4204.78, + "probability": 0.9888 + }, + { + "start": 4204.84, + "end": 4205.62, + "probability": 0.5927 + }, + { + "start": 4210.72, + "end": 4211.74, + "probability": 0.6097 + }, + { + "start": 4213.88, + "end": 4216.78, + "probability": 0.9312 + }, + { + "start": 4218.1, + "end": 4218.5, + "probability": 0.1548 + }, + { + "start": 4221.28, + "end": 4224.72, + "probability": 0.1877 + }, + { + "start": 4225.76, + "end": 4226.74, + "probability": 0.0693 + }, + { + "start": 4250.08, + "end": 4252.12, + "probability": 0.5093 + }, + { + "start": 4252.92, + "end": 4255.72, + "probability": 0.9401 + }, + { + "start": 4256.36, + "end": 4263.22, + "probability": 0.9807 + }, + { + "start": 4264.14, + "end": 4266.5, + "probability": 0.819 + }, + { + "start": 4267.62, + "end": 4269.38, + "probability": 0.9847 + }, + { + "start": 4270.02, + "end": 4271.65, + "probability": 0.9967 + }, + { + "start": 4272.72, + "end": 4275.96, + "probability": 0.9859 + }, + { + "start": 4276.5, + "end": 4280.54, + "probability": 0.9922 + }, + { + "start": 4280.54, + "end": 4286.28, + "probability": 0.9916 + }, + { + "start": 4287.6, + "end": 4293.0, + "probability": 0.9605 + }, + { + "start": 4293.68, + "end": 4297.58, + "probability": 0.9962 + }, + { + "start": 4298.26, + "end": 4299.78, + "probability": 0.9807 + }, + { + "start": 4300.68, + "end": 4304.16, + "probability": 0.9946 + }, + { + "start": 4304.16, + "end": 4307.96, + "probability": 0.9879 + }, + { + "start": 4308.9, + "end": 4313.3, + "probability": 0.9352 + }, + { + "start": 4314.2, + "end": 4315.08, + "probability": 0.8024 + }, + { + "start": 4315.26, + "end": 4316.42, + "probability": 0.9169 + }, + { + "start": 4316.52, + "end": 4317.58, + "probability": 0.8398 + }, + { + "start": 4318.02, + "end": 4321.54, + "probability": 0.9529 + }, + { + "start": 4322.48, + "end": 4323.78, + "probability": 0.7441 + }, + { + "start": 4324.54, + "end": 4326.9, + "probability": 0.9702 + }, + { + "start": 4327.66, + "end": 4331.74, + "probability": 0.9979 + }, + { + "start": 4332.62, + "end": 4337.24, + "probability": 0.9163 + }, + { + "start": 4337.24, + "end": 4340.3, + "probability": 0.998 + }, + { + "start": 4341.22, + "end": 4347.88, + "probability": 0.969 + }, + { + "start": 4348.76, + "end": 4353.28, + "probability": 0.9884 + }, + { + "start": 4354.3, + "end": 4360.34, + "probability": 0.9758 + }, + { + "start": 4361.0, + "end": 4367.4, + "probability": 0.9897 + }, + { + "start": 4368.08, + "end": 4373.32, + "probability": 0.9991 + }, + { + "start": 4373.32, + "end": 4380.28, + "probability": 0.9992 + }, + { + "start": 4381.78, + "end": 4384.78, + "probability": 0.9974 + }, + { + "start": 4384.88, + "end": 4385.48, + "probability": 0.9631 + }, + { + "start": 4385.98, + "end": 4387.7, + "probability": 0.9777 + }, + { + "start": 4388.24, + "end": 4389.76, + "probability": 0.9586 + }, + { + "start": 4390.4, + "end": 4396.74, + "probability": 0.9947 + }, + { + "start": 4397.94, + "end": 4402.16, + "probability": 0.9597 + }, + { + "start": 4402.72, + "end": 4407.74, + "probability": 0.8985 + }, + { + "start": 4408.52, + "end": 4410.86, + "probability": 0.9935 + }, + { + "start": 4411.36, + "end": 4412.69, + "probability": 0.9645 + }, + { + "start": 4413.8, + "end": 4416.9, + "probability": 0.984 + }, + { + "start": 4417.54, + "end": 4422.12, + "probability": 0.995 + }, + { + "start": 4422.5, + "end": 4428.18, + "probability": 0.9722 + }, + { + "start": 4428.68, + "end": 4433.54, + "probability": 0.997 + }, + { + "start": 4434.32, + "end": 4436.98, + "probability": 0.993 + }, + { + "start": 4436.98, + "end": 4441.35, + "probability": 0.9832 + }, + { + "start": 4442.06, + "end": 4444.02, + "probability": 0.9813 + }, + { + "start": 4444.34, + "end": 4444.94, + "probability": 0.7021 + }, + { + "start": 4446.82, + "end": 4449.46, + "probability": 0.8758 + }, + { + "start": 4452.27, + "end": 4455.64, + "probability": 0.8136 + }, + { + "start": 4457.46, + "end": 4461.3, + "probability": 0.1216 + }, + { + "start": 4473.22, + "end": 4474.32, + "probability": 0.9172 + }, + { + "start": 4475.22, + "end": 4479.12, + "probability": 0.4927 + }, + { + "start": 4480.04, + "end": 4481.08, + "probability": 0.8404 + }, + { + "start": 4481.12, + "end": 4486.28, + "probability": 0.5869 + }, + { + "start": 4487.06, + "end": 4490.2, + "probability": 0.9854 + }, + { + "start": 4491.62, + "end": 4492.48, + "probability": 0.9829 + }, + { + "start": 4494.64, + "end": 4495.98, + "probability": 0.9029 + }, + { + "start": 4497.0, + "end": 4500.34, + "probability": 0.9877 + }, + { + "start": 4500.92, + "end": 4501.9, + "probability": 0.7992 + }, + { + "start": 4502.42, + "end": 4504.06, + "probability": 0.9375 + }, + { + "start": 4504.66, + "end": 4506.32, + "probability": 0.984 + }, + { + "start": 4506.9, + "end": 4512.22, + "probability": 0.9888 + }, + { + "start": 4515.42, + "end": 4515.42, + "probability": 0.2387 + }, + { + "start": 4515.44, + "end": 4515.56, + "probability": 0.1629 + }, + { + "start": 4516.02, + "end": 4516.44, + "probability": 0.6491 + }, + { + "start": 4517.9, + "end": 4521.64, + "probability": 0.8059 + }, + { + "start": 4524.36, + "end": 4527.28, + "probability": 0.884 + }, + { + "start": 4527.28, + "end": 4533.98, + "probability": 0.987 + }, + { + "start": 4534.76, + "end": 4542.62, + "probability": 0.9292 + }, + { + "start": 4543.12, + "end": 4546.92, + "probability": 0.9976 + }, + { + "start": 4547.62, + "end": 4548.06, + "probability": 0.6328 + }, + { + "start": 4548.76, + "end": 4552.32, + "probability": 0.7963 + }, + { + "start": 4554.42, + "end": 4557.7, + "probability": 0.8049 + }, + { + "start": 4558.22, + "end": 4559.82, + "probability": 0.7542 + }, + { + "start": 4560.46, + "end": 4562.34, + "probability": 0.9944 + }, + { + "start": 4563.7, + "end": 4564.48, + "probability": 0.9091 + }, + { + "start": 4565.62, + "end": 4569.92, + "probability": 0.9529 + }, + { + "start": 4570.44, + "end": 4571.46, + "probability": 0.7108 + }, + { + "start": 4572.12, + "end": 4576.74, + "probability": 0.8285 + }, + { + "start": 4578.35, + "end": 4582.82, + "probability": 0.9941 + }, + { + "start": 4582.82, + "end": 4585.36, + "probability": 0.9316 + }, + { + "start": 4587.0, + "end": 4588.06, + "probability": 0.8665 + }, + { + "start": 4589.2, + "end": 4594.11, + "probability": 0.9011 + }, + { + "start": 4595.66, + "end": 4596.8, + "probability": 0.994 + }, + { + "start": 4598.46, + "end": 4600.26, + "probability": 0.9868 + }, + { + "start": 4600.9, + "end": 4603.88, + "probability": 0.9946 + }, + { + "start": 4604.86, + "end": 4607.62, + "probability": 0.8673 + }, + { + "start": 4608.46, + "end": 4612.1, + "probability": 0.6796 + }, + { + "start": 4612.74, + "end": 4612.74, + "probability": 0.6226 + }, + { + "start": 4615.38, + "end": 4620.86, + "probability": 0.9795 + }, + { + "start": 4621.46, + "end": 4624.94, + "probability": 0.9981 + }, + { + "start": 4625.6, + "end": 4632.26, + "probability": 0.9985 + }, + { + "start": 4633.6, + "end": 4633.88, + "probability": 0.4189 + }, + { + "start": 4634.2, + "end": 4635.98, + "probability": 0.3753 + }, + { + "start": 4636.3, + "end": 4637.38, + "probability": 0.5905 + }, + { + "start": 4643.68, + "end": 4645.1, + "probability": 0.6972 + }, + { + "start": 4645.64, + "end": 4650.34, + "probability": 0.7466 + }, + { + "start": 4673.8, + "end": 4675.16, + "probability": 0.6613 + }, + { + "start": 4675.96, + "end": 4677.52, + "probability": 0.9231 + }, + { + "start": 4679.32, + "end": 4680.88, + "probability": 0.9959 + }, + { + "start": 4680.88, + "end": 4683.16, + "probability": 0.9879 + }, + { + "start": 4684.36, + "end": 4685.3, + "probability": 0.7588 + }, + { + "start": 4686.16, + "end": 4690.56, + "probability": 0.9126 + }, + { + "start": 4691.3, + "end": 4696.78, + "probability": 0.4812 + }, + { + "start": 4698.1, + "end": 4699.0, + "probability": 0.7428 + }, + { + "start": 4699.78, + "end": 4700.4, + "probability": 0.6977 + }, + { + "start": 4701.22, + "end": 4704.46, + "probability": 0.9944 + }, + { + "start": 4706.48, + "end": 4706.88, + "probability": 0.7689 + }, + { + "start": 4707.56, + "end": 4708.48, + "probability": 0.9627 + }, + { + "start": 4709.92, + "end": 4714.66, + "probability": 0.9613 + }, + { + "start": 4715.52, + "end": 4717.38, + "probability": 0.8847 + }, + { + "start": 4718.16, + "end": 4719.18, + "probability": 0.8208 + }, + { + "start": 4720.18, + "end": 4721.18, + "probability": 0.8647 + }, + { + "start": 4721.9, + "end": 4723.32, + "probability": 0.9381 + }, + { + "start": 4724.08, + "end": 4725.04, + "probability": 0.9313 + }, + { + "start": 4727.08, + "end": 4732.0, + "probability": 0.9969 + }, + { + "start": 4733.04, + "end": 4735.34, + "probability": 0.9689 + }, + { + "start": 4735.96, + "end": 4739.56, + "probability": 0.9976 + }, + { + "start": 4739.72, + "end": 4740.34, + "probability": 0.8003 + }, + { + "start": 4741.18, + "end": 4742.8, + "probability": 0.9511 + }, + { + "start": 4743.34, + "end": 4745.3, + "probability": 0.8953 + }, + { + "start": 4746.66, + "end": 4748.8, + "probability": 0.931 + }, + { + "start": 4750.08, + "end": 4754.56, + "probability": 0.998 + }, + { + "start": 4755.16, + "end": 4756.92, + "probability": 0.9974 + }, + { + "start": 4758.52, + "end": 4760.12, + "probability": 0.9853 + }, + { + "start": 4761.18, + "end": 4764.07, + "probability": 0.9717 + }, + { + "start": 4764.28, + "end": 4767.78, + "probability": 0.9583 + }, + { + "start": 4769.26, + "end": 4773.74, + "probability": 0.996 + }, + { + "start": 4774.5, + "end": 4776.74, + "probability": 0.925 + }, + { + "start": 4777.7, + "end": 4778.86, + "probability": 0.9468 + }, + { + "start": 4779.1, + "end": 4780.96, + "probability": 0.9917 + }, + { + "start": 4782.42, + "end": 4786.28, + "probability": 0.9412 + }, + { + "start": 4787.78, + "end": 4789.14, + "probability": 0.9316 + }, + { + "start": 4790.16, + "end": 4794.08, + "probability": 0.99 + }, + { + "start": 4794.14, + "end": 4794.74, + "probability": 0.8967 + }, + { + "start": 4795.58, + "end": 4797.14, + "probability": 0.9917 + }, + { + "start": 4798.18, + "end": 4799.26, + "probability": 0.7839 + }, + { + "start": 4799.78, + "end": 4800.94, + "probability": 0.9712 + }, + { + "start": 4801.98, + "end": 4804.84, + "probability": 0.9961 + }, + { + "start": 4805.5, + "end": 4806.44, + "probability": 0.9794 + }, + { + "start": 4807.06, + "end": 4810.56, + "probability": 0.981 + }, + { + "start": 4811.5, + "end": 4814.14, + "probability": 0.973 + }, + { + "start": 4814.76, + "end": 4816.66, + "probability": 0.9958 + }, + { + "start": 4817.74, + "end": 4818.7, + "probability": 0.9607 + }, + { + "start": 4819.62, + "end": 4819.98, + "probability": 0.5943 + }, + { + "start": 4821.12, + "end": 4822.24, + "probability": 0.9486 + }, + { + "start": 4823.26, + "end": 4826.72, + "probability": 0.9977 + }, + { + "start": 4827.52, + "end": 4834.48, + "probability": 0.9836 + }, + { + "start": 4836.0, + "end": 4837.2, + "probability": 0.7443 + }, + { + "start": 4838.48, + "end": 4839.58, + "probability": 0.9272 + }, + { + "start": 4840.96, + "end": 4842.94, + "probability": 0.9846 + }, + { + "start": 4844.1, + "end": 4847.74, + "probability": 0.9912 + }, + { + "start": 4848.48, + "end": 4851.96, + "probability": 0.9946 + }, + { + "start": 4852.38, + "end": 4856.02, + "probability": 0.9973 + }, + { + "start": 4856.72, + "end": 4858.98, + "probability": 0.9988 + }, + { + "start": 4859.0, + "end": 4860.13, + "probability": 0.9961 + }, + { + "start": 4860.72, + "end": 4861.52, + "probability": 0.9565 + }, + { + "start": 4861.62, + "end": 4861.88, + "probability": 0.7444 + }, + { + "start": 4862.44, + "end": 4863.66, + "probability": 0.9698 + }, + { + "start": 4864.2, + "end": 4865.06, + "probability": 0.9993 + }, + { + "start": 4865.62, + "end": 4868.06, + "probability": 0.9975 + }, + { + "start": 4868.58, + "end": 4869.74, + "probability": 0.8365 + }, + { + "start": 4870.1, + "end": 4870.76, + "probability": 0.4565 + }, + { + "start": 4870.76, + "end": 4872.9, + "probability": 0.7915 + }, + { + "start": 4873.68, + "end": 4876.58, + "probability": 0.5806 + }, + { + "start": 4891.04, + "end": 4891.78, + "probability": 0.6282 + }, + { + "start": 4891.9, + "end": 4893.84, + "probability": 0.8076 + }, + { + "start": 4893.9, + "end": 4897.7, + "probability": 0.9559 + }, + { + "start": 4899.16, + "end": 4902.86, + "probability": 0.8407 + }, + { + "start": 4905.26, + "end": 4909.04, + "probability": 0.7142 + }, + { + "start": 4909.62, + "end": 4911.34, + "probability": 0.9927 + }, + { + "start": 4912.98, + "end": 4915.38, + "probability": 0.7325 + }, + { + "start": 4916.96, + "end": 4917.7, + "probability": 0.7832 + }, + { + "start": 4917.86, + "end": 4919.04, + "probability": 0.9587 + }, + { + "start": 4919.24, + "end": 4922.74, + "probability": 0.9968 + }, + { + "start": 4923.72, + "end": 4927.04, + "probability": 0.9984 + }, + { + "start": 4927.74, + "end": 4930.24, + "probability": 0.999 + }, + { + "start": 4931.08, + "end": 4932.72, + "probability": 0.9003 + }, + { + "start": 4933.28, + "end": 4934.6, + "probability": 0.9863 + }, + { + "start": 4936.38, + "end": 4940.16, + "probability": 0.9939 + }, + { + "start": 4941.06, + "end": 4946.3, + "probability": 0.9946 + }, + { + "start": 4947.64, + "end": 4950.0, + "probability": 0.755 + }, + { + "start": 4950.16, + "end": 4953.5, + "probability": 0.7999 + }, + { + "start": 4954.72, + "end": 4955.92, + "probability": 0.9956 + }, + { + "start": 4956.56, + "end": 4960.62, + "probability": 0.9487 + }, + { + "start": 4961.9, + "end": 4966.98, + "probability": 0.9976 + }, + { + "start": 4967.78, + "end": 4971.98, + "probability": 0.967 + }, + { + "start": 4973.62, + "end": 4977.04, + "probability": 0.9971 + }, + { + "start": 4977.86, + "end": 4979.08, + "probability": 0.9919 + }, + { + "start": 4979.2, + "end": 4979.76, + "probability": 0.9662 + }, + { + "start": 4979.78, + "end": 4980.56, + "probability": 0.9924 + }, + { + "start": 4980.64, + "end": 4982.42, + "probability": 0.9932 + }, + { + "start": 4982.86, + "end": 4983.8, + "probability": 0.9663 + }, + { + "start": 4984.1, + "end": 4984.78, + "probability": 0.5746 + }, + { + "start": 4985.86, + "end": 4988.66, + "probability": 0.9961 + }, + { + "start": 4990.8, + "end": 4990.96, + "probability": 0.8665 + }, + { + "start": 4991.06, + "end": 4992.28, + "probability": 0.9786 + }, + { + "start": 4992.36, + "end": 4996.06, + "probability": 0.9714 + }, + { + "start": 4996.78, + "end": 4998.26, + "probability": 0.9871 + }, + { + "start": 4999.24, + "end": 5001.22, + "probability": 0.9915 + }, + { + "start": 5001.82, + "end": 5002.62, + "probability": 0.8913 + }, + { + "start": 5005.32, + "end": 5010.02, + "probability": 0.9976 + }, + { + "start": 5011.9, + "end": 5013.48, + "probability": 0.7992 + }, + { + "start": 5014.2, + "end": 5017.24, + "probability": 0.9982 + }, + { + "start": 5018.52, + "end": 5019.22, + "probability": 0.6955 + }, + { + "start": 5020.22, + "end": 5023.46, + "probability": 0.9919 + }, + { + "start": 5024.1, + "end": 5024.84, + "probability": 0.9487 + }, + { + "start": 5025.74, + "end": 5029.56, + "probability": 0.9948 + }, + { + "start": 5030.42, + "end": 5036.74, + "probability": 0.9932 + }, + { + "start": 5036.74, + "end": 5042.76, + "probability": 0.9983 + }, + { + "start": 5044.34, + "end": 5045.28, + "probability": 0.5054 + }, + { + "start": 5046.26, + "end": 5047.1, + "probability": 0.9303 + }, + { + "start": 5048.18, + "end": 5050.1, + "probability": 0.733 + }, + { + "start": 5051.0, + "end": 5053.44, + "probability": 0.9401 + }, + { + "start": 5064.02, + "end": 5065.78, + "probability": 0.8039 + }, + { + "start": 5066.92, + "end": 5068.06, + "probability": 0.6765 + }, + { + "start": 5070.58, + "end": 5075.78, + "probability": 0.9796 + }, + { + "start": 5077.16, + "end": 5079.94, + "probability": 0.9988 + }, + { + "start": 5081.0, + "end": 5086.32, + "probability": 0.1321 + }, + { + "start": 5088.72, + "end": 5090.16, + "probability": 0.0442 + }, + { + "start": 5092.36, + "end": 5093.0, + "probability": 0.8163 + }, + { + "start": 5093.92, + "end": 5095.54, + "probability": 0.9922 + }, + { + "start": 5096.16, + "end": 5099.14, + "probability": 0.9988 + }, + { + "start": 5101.1, + "end": 5102.32, + "probability": 0.9932 + }, + { + "start": 5102.96, + "end": 5105.98, + "probability": 0.9945 + }, + { + "start": 5106.88, + "end": 5113.88, + "probability": 0.9876 + }, + { + "start": 5114.64, + "end": 5118.56, + "probability": 0.9946 + }, + { + "start": 5119.2, + "end": 5125.6, + "probability": 0.9903 + }, + { + "start": 5125.6, + "end": 5130.58, + "probability": 0.9992 + }, + { + "start": 5131.3, + "end": 5135.26, + "probability": 0.9544 + }, + { + "start": 5136.02, + "end": 5136.48, + "probability": 0.7027 + }, + { + "start": 5137.0, + "end": 5138.26, + "probability": 0.6935 + }, + { + "start": 5138.96, + "end": 5143.68, + "probability": 0.9774 + }, + { + "start": 5144.26, + "end": 5145.26, + "probability": 0.0217 + }, + { + "start": 5146.0, + "end": 5152.44, + "probability": 0.9351 + }, + { + "start": 5152.96, + "end": 5157.74, + "probability": 0.9497 + }, + { + "start": 5158.26, + "end": 5162.48, + "probability": 0.9778 + }, + { + "start": 5163.38, + "end": 5170.14, + "probability": 0.8907 + }, + { + "start": 5171.08, + "end": 5176.16, + "probability": 0.7857 + }, + { + "start": 5177.22, + "end": 5181.91, + "probability": 0.9742 + }, + { + "start": 5182.6, + "end": 5187.56, + "probability": 0.9947 + }, + { + "start": 5188.88, + "end": 5190.88, + "probability": 0.7872 + }, + { + "start": 5192.42, + "end": 5196.34, + "probability": 0.6438 + }, + { + "start": 5197.06, + "end": 5202.46, + "probability": 0.9861 + }, + { + "start": 5203.9, + "end": 5216.56, + "probability": 0.9671 + }, + { + "start": 5216.96, + "end": 5217.74, + "probability": 0.5056 + }, + { + "start": 5218.34, + "end": 5219.67, + "probability": 0.9932 + }, + { + "start": 5220.44, + "end": 5222.04, + "probability": 0.8708 + }, + { + "start": 5222.56, + "end": 5230.92, + "probability": 0.9976 + }, + { + "start": 5230.92, + "end": 5236.84, + "probability": 0.9954 + }, + { + "start": 5237.68, + "end": 5245.96, + "probability": 0.9903 + }, + { + "start": 5246.0, + "end": 5248.52, + "probability": 0.9085 + }, + { + "start": 5249.02, + "end": 5249.78, + "probability": 0.8846 + }, + { + "start": 5250.24, + "end": 5251.42, + "probability": 0.5779 + }, + { + "start": 5251.6, + "end": 5255.12, + "probability": 0.8642 + }, + { + "start": 5256.36, + "end": 5258.68, + "probability": 0.9299 + }, + { + "start": 5294.42, + "end": 5296.72, + "probability": 0.6667 + }, + { + "start": 5298.8, + "end": 5301.52, + "probability": 0.904 + }, + { + "start": 5303.5, + "end": 5306.0, + "probability": 0.995 + }, + { + "start": 5307.34, + "end": 5309.14, + "probability": 0.6339 + }, + { + "start": 5310.12, + "end": 5314.28, + "probability": 0.718 + }, + { + "start": 5315.32, + "end": 5316.16, + "probability": 0.9006 + }, + { + "start": 5317.02, + "end": 5318.02, + "probability": 0.776 + }, + { + "start": 5318.68, + "end": 5319.24, + "probability": 0.7439 + }, + { + "start": 5320.62, + "end": 5322.0, + "probability": 0.6146 + }, + { + "start": 5323.52, + "end": 5327.18, + "probability": 0.8395 + }, + { + "start": 5328.1, + "end": 5329.44, + "probability": 0.9964 + }, + { + "start": 5330.3, + "end": 5333.02, + "probability": 0.968 + }, + { + "start": 5334.54, + "end": 5336.88, + "probability": 0.6274 + }, + { + "start": 5337.86, + "end": 5339.78, + "probability": 0.597 + }, + { + "start": 5340.76, + "end": 5341.95, + "probability": 0.919 + }, + { + "start": 5343.28, + "end": 5344.58, + "probability": 0.6492 + }, + { + "start": 5345.16, + "end": 5346.44, + "probability": 0.674 + }, + { + "start": 5348.6, + "end": 5354.52, + "probability": 0.884 + }, + { + "start": 5354.52, + "end": 5359.86, + "probability": 0.9875 + }, + { + "start": 5361.4, + "end": 5363.94, + "probability": 0.7933 + }, + { + "start": 5365.08, + "end": 5369.56, + "probability": 0.829 + }, + { + "start": 5370.1, + "end": 5371.42, + "probability": 0.9767 + }, + { + "start": 5372.82, + "end": 5375.92, + "probability": 0.9133 + }, + { + "start": 5376.96, + "end": 5377.62, + "probability": 0.5109 + }, + { + "start": 5378.46, + "end": 5379.18, + "probability": 0.9352 + }, + { + "start": 5379.84, + "end": 5381.86, + "probability": 0.9657 + }, + { + "start": 5382.42, + "end": 5391.62, + "probability": 0.996 + }, + { + "start": 5392.04, + "end": 5403.22, + "probability": 0.9529 + }, + { + "start": 5404.22, + "end": 5406.82, + "probability": 0.8128 + }, + { + "start": 5408.96, + "end": 5410.92, + "probability": 0.8874 + }, + { + "start": 5411.68, + "end": 5415.1, + "probability": 0.9092 + }, + { + "start": 5416.8, + "end": 5417.44, + "probability": 0.8776 + }, + { + "start": 5417.96, + "end": 5418.46, + "probability": 0.9225 + }, + { + "start": 5419.48, + "end": 5420.86, + "probability": 0.7721 + }, + { + "start": 5421.38, + "end": 5424.18, + "probability": 0.4986 + }, + { + "start": 5425.04, + "end": 5427.38, + "probability": 0.6538 + }, + { + "start": 5428.34, + "end": 5429.14, + "probability": 0.7767 + }, + { + "start": 5429.7, + "end": 5430.56, + "probability": 0.5994 + }, + { + "start": 5431.56, + "end": 5435.72, + "probability": 0.8566 + }, + { + "start": 5438.74, + "end": 5439.1, + "probability": 0.0754 + }, + { + "start": 5439.82, + "end": 5442.1, + "probability": 0.9521 + }, + { + "start": 5443.98, + "end": 5446.9, + "probability": 0.6542 + }, + { + "start": 5447.46, + "end": 5454.68, + "probability": 0.991 + }, + { + "start": 5455.32, + "end": 5455.76, + "probability": 0.8137 + }, + { + "start": 5457.16, + "end": 5458.28, + "probability": 0.8612 + }, + { + "start": 5459.48, + "end": 5460.36, + "probability": 0.068 + }, + { + "start": 5463.18, + "end": 5466.54, + "probability": 0.426 + }, + { + "start": 5467.16, + "end": 5473.4, + "probability": 0.9371 + }, + { + "start": 5473.4, + "end": 5480.26, + "probability": 0.5869 + }, + { + "start": 5481.7, + "end": 5483.2, + "probability": 0.9234 + }, + { + "start": 5483.72, + "end": 5484.92, + "probability": 0.5575 + }, + { + "start": 5486.12, + "end": 5487.36, + "probability": 0.8236 + }, + { + "start": 5487.94, + "end": 5492.16, + "probability": 0.6842 + }, + { + "start": 5493.08, + "end": 5493.92, + "probability": 0.8879 + }, + { + "start": 5494.16, + "end": 5499.32, + "probability": 0.7139 + }, + { + "start": 5500.18, + "end": 5505.18, + "probability": 0.9564 + }, + { + "start": 5505.68, + "end": 5511.04, + "probability": 0.9516 + }, + { + "start": 5511.48, + "end": 5514.36, + "probability": 0.6693 + }, + { + "start": 5514.62, + "end": 5516.96, + "probability": 0.4413 + }, + { + "start": 5517.12, + "end": 5517.8, + "probability": 0.267 + }, + { + "start": 5518.24, + "end": 5518.54, + "probability": 0.6122 + }, + { + "start": 5518.54, + "end": 5518.66, + "probability": 0.3661 + }, + { + "start": 5519.18, + "end": 5519.26, + "probability": 0.2784 + }, + { + "start": 5519.26, + "end": 5521.86, + "probability": 0.7571 + }, + { + "start": 5522.9, + "end": 5523.74, + "probability": 0.8697 + }, + { + "start": 5524.66, + "end": 5525.28, + "probability": 0.9494 + }, + { + "start": 5537.48, + "end": 5538.44, + "probability": 0.7035 + }, + { + "start": 5540.82, + "end": 5542.72, + "probability": 0.8853 + }, + { + "start": 5543.88, + "end": 5544.83, + "probability": 0.8694 + }, + { + "start": 5546.12, + "end": 5548.58, + "probability": 0.9212 + }, + { + "start": 5549.76, + "end": 5551.62, + "probability": 0.9907 + }, + { + "start": 5554.06, + "end": 5558.46, + "probability": 0.9338 + }, + { + "start": 5560.08, + "end": 5566.66, + "probability": 0.9738 + }, + { + "start": 5566.76, + "end": 5568.14, + "probability": 0.8703 + }, + { + "start": 5568.22, + "end": 5569.24, + "probability": 0.9844 + }, + { + "start": 5570.2, + "end": 5576.9, + "probability": 0.9814 + }, + { + "start": 5577.74, + "end": 5583.82, + "probability": 0.9092 + }, + { + "start": 5584.94, + "end": 5587.78, + "probability": 0.8352 + }, + { + "start": 5587.96, + "end": 5589.28, + "probability": 0.983 + }, + { + "start": 5589.32, + "end": 5590.68, + "probability": 0.8789 + }, + { + "start": 5592.36, + "end": 5594.92, + "probability": 0.7529 + }, + { + "start": 5596.02, + "end": 5597.58, + "probability": 0.9713 + }, + { + "start": 5599.32, + "end": 5600.48, + "probability": 0.9708 + }, + { + "start": 5602.62, + "end": 5603.76, + "probability": 0.9718 + }, + { + "start": 5605.38, + "end": 5606.94, + "probability": 0.9987 + }, + { + "start": 5609.9, + "end": 5610.66, + "probability": 0.6394 + }, + { + "start": 5613.7, + "end": 5619.36, + "probability": 0.589 + }, + { + "start": 5620.7, + "end": 5622.24, + "probability": 0.7308 + }, + { + "start": 5624.64, + "end": 5628.72, + "probability": 0.8271 + }, + { + "start": 5629.3, + "end": 5630.24, + "probability": 0.8878 + }, + { + "start": 5631.54, + "end": 5633.56, + "probability": 0.9941 + }, + { + "start": 5635.38, + "end": 5636.38, + "probability": 0.8867 + }, + { + "start": 5637.62, + "end": 5638.56, + "probability": 0.9961 + }, + { + "start": 5640.02, + "end": 5641.28, + "probability": 0.8917 + }, + { + "start": 5643.3, + "end": 5643.52, + "probability": 0.9116 + }, + { + "start": 5643.58, + "end": 5645.3, + "probability": 0.9767 + }, + { + "start": 5645.44, + "end": 5646.72, + "probability": 0.9977 + }, + { + "start": 5647.88, + "end": 5648.56, + "probability": 0.2 + }, + { + "start": 5649.84, + "end": 5651.6, + "probability": 0.9979 + }, + { + "start": 5653.9, + "end": 5655.92, + "probability": 0.929 + }, + { + "start": 5658.96, + "end": 5660.22, + "probability": 0.9395 + }, + { + "start": 5661.8, + "end": 5662.28, + "probability": 0.733 + }, + { + "start": 5663.56, + "end": 5667.12, + "probability": 0.9534 + }, + { + "start": 5667.2, + "end": 5669.34, + "probability": 0.9592 + }, + { + "start": 5669.86, + "end": 5672.02, + "probability": 0.582 + }, + { + "start": 5673.2, + "end": 5673.8, + "probability": 0.9014 + }, + { + "start": 5674.5, + "end": 5675.22, + "probability": 0.8698 + }, + { + "start": 5676.96, + "end": 5679.22, + "probability": 0.8719 + }, + { + "start": 5681.18, + "end": 5685.8, + "probability": 0.8141 + }, + { + "start": 5685.8, + "end": 5687.22, + "probability": 0.6522 + }, + { + "start": 5687.64, + "end": 5688.54, + "probability": 0.5592 + }, + { + "start": 5691.16, + "end": 5694.24, + "probability": 0.3504 + }, + { + "start": 5697.22, + "end": 5699.42, + "probability": 0.8344 + }, + { + "start": 5699.62, + "end": 5700.52, + "probability": 0.9506 + }, + { + "start": 5701.18, + "end": 5702.18, + "probability": 0.7888 + }, + { + "start": 5704.1, + "end": 5707.56, + "probability": 0.9794 + }, + { + "start": 5708.48, + "end": 5709.95, + "probability": 0.795 + }, + { + "start": 5711.32, + "end": 5714.6, + "probability": 0.9954 + }, + { + "start": 5716.68, + "end": 5717.32, + "probability": 0.9873 + }, + { + "start": 5719.44, + "end": 5720.68, + "probability": 0.9974 + }, + { + "start": 5721.58, + "end": 5722.66, + "probability": 0.5405 + }, + { + "start": 5724.06, + "end": 5727.96, + "probability": 0.9756 + }, + { + "start": 5728.02, + "end": 5731.92, + "probability": 0.9941 + }, + { + "start": 5732.44, + "end": 5732.88, + "probability": 0.2239 + }, + { + "start": 5732.88, + "end": 5734.18, + "probability": 0.4654 + }, + { + "start": 5734.58, + "end": 5737.42, + "probability": 0.6264 + }, + { + "start": 5737.94, + "end": 5739.02, + "probability": 0.7999 + }, + { + "start": 5739.16, + "end": 5739.6, + "probability": 0.5733 + }, + { + "start": 5739.64, + "end": 5739.92, + "probability": 0.5801 + }, + { + "start": 5739.98, + "end": 5740.36, + "probability": 0.8644 + }, + { + "start": 5740.38, + "end": 5740.88, + "probability": 0.9163 + }, + { + "start": 5740.9, + "end": 5743.66, + "probability": 0.9559 + }, + { + "start": 5744.08, + "end": 5744.76, + "probability": 0.5269 + }, + { + "start": 5744.82, + "end": 5745.32, + "probability": 0.8722 + }, + { + "start": 5745.8, + "end": 5747.58, + "probability": 0.9914 + }, + { + "start": 5747.78, + "end": 5748.44, + "probability": 0.5584 + }, + { + "start": 5748.46, + "end": 5748.98, + "probability": 0.9533 + }, + { + "start": 5749.8, + "end": 5751.36, + "probability": 0.7801 + }, + { + "start": 5753.82, + "end": 5755.02, + "probability": 0.3755 + }, + { + "start": 5755.02, + "end": 5755.02, + "probability": 0.1811 + }, + { + "start": 5755.02, + "end": 5755.02, + "probability": 0.0811 + }, + { + "start": 5755.02, + "end": 5757.76, + "probability": 0.3019 + }, + { + "start": 5757.76, + "end": 5758.1, + "probability": 0.1793 + }, + { + "start": 5758.46, + "end": 5759.0, + "probability": 0.6278 + }, + { + "start": 5759.0, + "end": 5759.2, + "probability": 0.388 + }, + { + "start": 5759.92, + "end": 5760.32, + "probability": 0.7285 + }, + { + "start": 5760.4, + "end": 5761.54, + "probability": 0.7246 + }, + { + "start": 5761.72, + "end": 5762.82, + "probability": 0.4974 + }, + { + "start": 5762.98, + "end": 5763.5, + "probability": 0.2462 + }, + { + "start": 5764.32, + "end": 5766.38, + "probability": 0.9924 + }, + { + "start": 5767.36, + "end": 5768.1, + "probability": 0.9086 + }, + { + "start": 5768.64, + "end": 5769.68, + "probability": 0.9326 + }, + { + "start": 5788.38, + "end": 5790.16, + "probability": 0.7238 + }, + { + "start": 5791.2, + "end": 5799.28, + "probability": 0.986 + }, + { + "start": 5800.4, + "end": 5804.26, + "probability": 0.9987 + }, + { + "start": 5804.88, + "end": 5808.68, + "probability": 0.9736 + }, + { + "start": 5809.74, + "end": 5812.05, + "probability": 0.9965 + }, + { + "start": 5812.9, + "end": 5819.32, + "probability": 0.939 + }, + { + "start": 5819.32, + "end": 5821.02, + "probability": 0.748 + }, + { + "start": 5821.02, + "end": 5821.94, + "probability": 0.9519 + }, + { + "start": 5825.08, + "end": 5828.28, + "probability": 0.9665 + }, + { + "start": 5829.26, + "end": 5830.14, + "probability": 0.8627 + }, + { + "start": 5833.62, + "end": 5835.4, + "probability": 0.5829 + }, + { + "start": 5835.58, + "end": 5837.44, + "probability": 0.5192 + }, + { + "start": 5838.82, + "end": 5845.66, + "probability": 0.8598 + }, + { + "start": 5847.06, + "end": 5849.33, + "probability": 0.9927 + }, + { + "start": 5850.64, + "end": 5853.46, + "probability": 0.857 + }, + { + "start": 5854.54, + "end": 5859.8, + "probability": 0.7786 + }, + { + "start": 5861.42, + "end": 5863.66, + "probability": 0.8291 + }, + { + "start": 5863.66, + "end": 5866.48, + "probability": 0.9929 + }, + { + "start": 5867.66, + "end": 5871.02, + "probability": 0.988 + }, + { + "start": 5871.5, + "end": 5873.06, + "probability": 0.958 + }, + { + "start": 5873.2, + "end": 5873.54, + "probability": 0.8645 + }, + { + "start": 5874.68, + "end": 5877.76, + "probability": 0.981 + }, + { + "start": 5877.76, + "end": 5881.46, + "probability": 0.9885 + }, + { + "start": 5883.38, + "end": 5884.76, + "probability": 0.9407 + }, + { + "start": 5885.9, + "end": 5890.14, + "probability": 0.9566 + }, + { + "start": 5891.52, + "end": 5892.92, + "probability": 0.6936 + }, + { + "start": 5893.06, + "end": 5895.78, + "probability": 0.8178 + }, + { + "start": 5896.9, + "end": 5898.84, + "probability": 0.9917 + }, + { + "start": 5899.62, + "end": 5900.46, + "probability": 0.9196 + }, + { + "start": 5901.08, + "end": 5902.3, + "probability": 0.9927 + }, + { + "start": 5902.36, + "end": 5903.8, + "probability": 0.6456 + }, + { + "start": 5904.2, + "end": 5908.86, + "probability": 0.9817 + }, + { + "start": 5909.42, + "end": 5913.82, + "probability": 0.618 + }, + { + "start": 5914.98, + "end": 5914.98, + "probability": 0.1392 + }, + { + "start": 5915.0, + "end": 5919.48, + "probability": 0.9958 + }, + { + "start": 5920.64, + "end": 5922.44, + "probability": 0.9653 + }, + { + "start": 5923.1, + "end": 5924.4, + "probability": 0.7965 + }, + { + "start": 5925.14, + "end": 5932.34, + "probability": 0.9895 + }, + { + "start": 5933.24, + "end": 5938.1, + "probability": 0.9851 + }, + { + "start": 5938.54, + "end": 5939.94, + "probability": 0.9899 + }, + { + "start": 5941.54, + "end": 5942.66, + "probability": 0.8164 + }, + { + "start": 5943.76, + "end": 5945.38, + "probability": 0.7363 + }, + { + "start": 5946.46, + "end": 5949.46, + "probability": 0.9988 + }, + { + "start": 5949.88, + "end": 5952.0, + "probability": 0.968 + }, + { + "start": 5952.5, + "end": 5953.41, + "probability": 0.9761 + }, + { + "start": 5954.16, + "end": 5956.24, + "probability": 0.9933 + }, + { + "start": 5958.88, + "end": 5962.96, + "probability": 0.9951 + }, + { + "start": 5963.6, + "end": 5968.0, + "probability": 0.999 + }, + { + "start": 5968.74, + "end": 5969.96, + "probability": 0.8334 + }, + { + "start": 5970.76, + "end": 5971.14, + "probability": 0.6042 + }, + { + "start": 5971.56, + "end": 5972.64, + "probability": 0.4079 + }, + { + "start": 5972.72, + "end": 5975.92, + "probability": 0.4552 + }, + { + "start": 5975.92, + "end": 5977.72, + "probability": 0.9753 + }, + { + "start": 5991.28, + "end": 5993.22, + "probability": 0.7364 + }, + { + "start": 5995.66, + "end": 5998.64, + "probability": 0.9542 + }, + { + "start": 5999.94, + "end": 6002.66, + "probability": 0.9591 + }, + { + "start": 6003.7, + "end": 6005.62, + "probability": 0.9763 + }, + { + "start": 6006.94, + "end": 6007.66, + "probability": 0.9902 + }, + { + "start": 6008.6, + "end": 6009.32, + "probability": 0.3264 + }, + { + "start": 6011.56, + "end": 6012.92, + "probability": 0.6627 + }, + { + "start": 6014.68, + "end": 6017.26, + "probability": 0.8815 + }, + { + "start": 6017.62, + "end": 6019.78, + "probability": 0.7174 + }, + { + "start": 6021.9, + "end": 6023.46, + "probability": 0.7891 + }, + { + "start": 6025.02, + "end": 6029.9, + "probability": 0.9683 + }, + { + "start": 6031.26, + "end": 6036.1, + "probability": 0.9915 + }, + { + "start": 6037.8, + "end": 6044.38, + "probability": 0.9893 + }, + { + "start": 6045.62, + "end": 6047.06, + "probability": 0.9617 + }, + { + "start": 6048.14, + "end": 6050.0, + "probability": 0.9889 + }, + { + "start": 6051.1, + "end": 6054.42, + "probability": 0.9952 + }, + { + "start": 6056.76, + "end": 6058.58, + "probability": 0.8721 + }, + { + "start": 6060.62, + "end": 6061.7, + "probability": 0.8568 + }, + { + "start": 6062.26, + "end": 6063.18, + "probability": 0.853 + }, + { + "start": 6064.7, + "end": 6066.4, + "probability": 0.8645 + }, + { + "start": 6067.6, + "end": 6073.68, + "probability": 0.9929 + }, + { + "start": 6075.46, + "end": 6075.98, + "probability": 0.8558 + }, + { + "start": 6076.72, + "end": 6078.78, + "probability": 0.7935 + }, + { + "start": 6080.14, + "end": 6083.28, + "probability": 0.9255 + }, + { + "start": 6084.88, + "end": 6087.5, + "probability": 0.9604 + }, + { + "start": 6088.52, + "end": 6091.58, + "probability": 0.7091 + }, + { + "start": 6092.52, + "end": 6099.48, + "probability": 0.6773 + }, + { + "start": 6099.62, + "end": 6102.08, + "probability": 0.8971 + }, + { + "start": 6103.34, + "end": 6103.76, + "probability": 0.3163 + }, + { + "start": 6105.68, + "end": 6109.44, + "probability": 0.9854 + }, + { + "start": 6110.04, + "end": 6111.12, + "probability": 0.889 + }, + { + "start": 6111.9, + "end": 6115.02, + "probability": 0.8767 + }, + { + "start": 6116.8, + "end": 6117.48, + "probability": 0.6204 + }, + { + "start": 6118.94, + "end": 6120.38, + "probability": 0.9952 + }, + { + "start": 6120.46, + "end": 6122.92, + "probability": 0.9719 + }, + { + "start": 6124.62, + "end": 6126.08, + "probability": 0.9446 + }, + { + "start": 6127.66, + "end": 6129.66, + "probability": 0.9951 + }, + { + "start": 6130.9, + "end": 6131.8, + "probability": 0.9146 + }, + { + "start": 6134.38, + "end": 6135.77, + "probability": 0.9896 + }, + { + "start": 6135.9, + "end": 6137.02, + "probability": 0.7841 + }, + { + "start": 6138.06, + "end": 6139.56, + "probability": 0.8418 + }, + { + "start": 6140.38, + "end": 6141.58, + "probability": 0.9946 + }, + { + "start": 6142.16, + "end": 6143.4, + "probability": 0.9672 + }, + { + "start": 6144.54, + "end": 6147.18, + "probability": 0.9615 + }, + { + "start": 6147.98, + "end": 6148.9, + "probability": 0.9894 + }, + { + "start": 6149.38, + "end": 6150.2, + "probability": 0.997 + }, + { + "start": 6151.22, + "end": 6152.64, + "probability": 0.991 + }, + { + "start": 6154.94, + "end": 6156.24, + "probability": 0.9915 + }, + { + "start": 6157.24, + "end": 6159.18, + "probability": 0.9995 + }, + { + "start": 6160.44, + "end": 6161.44, + "probability": 0.995 + }, + { + "start": 6163.12, + "end": 6166.62, + "probability": 0.9919 + }, + { + "start": 6169.38, + "end": 6172.7, + "probability": 0.9776 + }, + { + "start": 6173.36, + "end": 6174.64, + "probability": 0.9978 + }, + { + "start": 6175.18, + "end": 6177.6, + "probability": 0.8867 + }, + { + "start": 6178.56, + "end": 6179.4, + "probability": 0.8612 + }, + { + "start": 6179.94, + "end": 6181.56, + "probability": 0.9044 + }, + { + "start": 6182.18, + "end": 6182.98, + "probability": 0.8746 + }, + { + "start": 6183.36, + "end": 6184.04, + "probability": 0.9832 + }, + { + "start": 6184.46, + "end": 6184.8, + "probability": 0.6767 + }, + { + "start": 6185.34, + "end": 6187.5, + "probability": 0.9878 + }, + { + "start": 6187.54, + "end": 6189.42, + "probability": 0.6659 + }, + { + "start": 6189.52, + "end": 6189.82, + "probability": 0.8885 + }, + { + "start": 6190.22, + "end": 6191.18, + "probability": 0.4591 + }, + { + "start": 6191.8, + "end": 6193.36, + "probability": 0.9258 + }, + { + "start": 6194.25, + "end": 6196.68, + "probability": 0.7246 + }, + { + "start": 6203.68, + "end": 6204.89, + "probability": 0.6283 + }, + { + "start": 6206.28, + "end": 6209.26, + "probability": 0.9714 + }, + { + "start": 6209.5, + "end": 6211.0, + "probability": 0.8574 + }, + { + "start": 6211.88, + "end": 6213.4, + "probability": 0.8242 + }, + { + "start": 6214.58, + "end": 6218.0, + "probability": 0.9727 + }, + { + "start": 6220.24, + "end": 6222.62, + "probability": 0.924 + }, + { + "start": 6223.82, + "end": 6227.2, + "probability": 0.985 + }, + { + "start": 6228.5, + "end": 6235.12, + "probability": 0.9951 + }, + { + "start": 6236.48, + "end": 6237.68, + "probability": 0.9915 + }, + { + "start": 6238.34, + "end": 6243.18, + "probability": 0.7844 + }, + { + "start": 6243.18, + "end": 6247.04, + "probability": 0.9908 + }, + { + "start": 6247.16, + "end": 6247.94, + "probability": 0.6478 + }, + { + "start": 6248.98, + "end": 6251.62, + "probability": 0.9546 + }, + { + "start": 6252.32, + "end": 6255.7, + "probability": 0.9352 + }, + { + "start": 6256.42, + "end": 6258.58, + "probability": 0.5018 + }, + { + "start": 6259.28, + "end": 6265.42, + "probability": 0.9901 + }, + { + "start": 6266.06, + "end": 6267.66, + "probability": 0.7716 + }, + { + "start": 6268.48, + "end": 6271.56, + "probability": 0.8937 + }, + { + "start": 6272.3, + "end": 6275.2, + "probability": 0.9958 + }, + { + "start": 6275.8, + "end": 6277.22, + "probability": 0.9646 + }, + { + "start": 6279.08, + "end": 6280.36, + "probability": 0.908 + }, + { + "start": 6280.44, + "end": 6284.34, + "probability": 0.8034 + }, + { + "start": 6284.98, + "end": 6287.32, + "probability": 0.9798 + }, + { + "start": 6288.48, + "end": 6290.18, + "probability": 0.9677 + }, + { + "start": 6290.88, + "end": 6292.74, + "probability": 0.9949 + }, + { + "start": 6293.18, + "end": 6295.94, + "probability": 0.99 + }, + { + "start": 6296.76, + "end": 6299.98, + "probability": 0.998 + }, + { + "start": 6300.98, + "end": 6304.88, + "probability": 0.9678 + }, + { + "start": 6304.88, + "end": 6309.32, + "probability": 0.9989 + }, + { + "start": 6310.18, + "end": 6310.56, + "probability": 0.5643 + }, + { + "start": 6311.58, + "end": 6312.26, + "probability": 0.8016 + }, + { + "start": 6312.98, + "end": 6319.44, + "probability": 0.9971 + }, + { + "start": 6320.3, + "end": 6321.42, + "probability": 0.6003 + }, + { + "start": 6321.44, + "end": 6322.32, + "probability": 0.6091 + }, + { + "start": 6323.22, + "end": 6328.02, + "probability": 0.9519 + }, + { + "start": 6328.66, + "end": 6331.64, + "probability": 0.9377 + }, + { + "start": 6332.42, + "end": 6335.46, + "probability": 0.9909 + }, + { + "start": 6336.16, + "end": 6336.96, + "probability": 0.8393 + }, + { + "start": 6337.78, + "end": 6341.28, + "probability": 0.7736 + }, + { + "start": 6342.16, + "end": 6343.4, + "probability": 0.7866 + }, + { + "start": 6344.54, + "end": 6348.46, + "probability": 0.9567 + }, + { + "start": 6349.18, + "end": 6351.6, + "probability": 0.998 + }, + { + "start": 6352.38, + "end": 6353.96, + "probability": 0.9826 + }, + { + "start": 6354.58, + "end": 6357.02, + "probability": 0.9876 + }, + { + "start": 6357.8, + "end": 6360.18, + "probability": 0.8391 + }, + { + "start": 6360.92, + "end": 6366.48, + "probability": 0.9507 + }, + { + "start": 6367.06, + "end": 6370.96, + "probability": 0.972 + }, + { + "start": 6371.5, + "end": 6374.84, + "probability": 0.9932 + }, + { + "start": 6375.42, + "end": 6377.32, + "probability": 0.9556 + }, + { + "start": 6377.44, + "end": 6378.54, + "probability": 0.1292 + }, + { + "start": 6379.5, + "end": 6381.16, + "probability": 0.2524 + }, + { + "start": 6381.72, + "end": 6381.84, + "probability": 0.0714 + }, + { + "start": 6383.36, + "end": 6383.68, + "probability": 0.0272 + }, + { + "start": 6383.68, + "end": 6383.68, + "probability": 0.3054 + }, + { + "start": 6383.68, + "end": 6383.68, + "probability": 0.2734 + }, + { + "start": 6383.68, + "end": 6383.68, + "probability": 0.4759 + }, + { + "start": 6383.68, + "end": 6385.8, + "probability": 0.6784 + }, + { + "start": 6387.86, + "end": 6390.18, + "probability": 0.0417 + }, + { + "start": 6391.1, + "end": 6391.44, + "probability": 0.1202 + }, + { + "start": 6392.12, + "end": 6393.08, + "probability": 0.1334 + }, + { + "start": 6393.62, + "end": 6395.76, + "probability": 0.0859 + }, + { + "start": 6395.92, + "end": 6395.92, + "probability": 0.3481 + }, + { + "start": 6395.93, + "end": 6398.6, + "probability": 0.8244 + }, + { + "start": 6399.96, + "end": 6401.5, + "probability": 0.0651 + }, + { + "start": 6401.96, + "end": 6404.0, + "probability": 0.4247 + }, + { + "start": 6404.78, + "end": 6405.22, + "probability": 0.3496 + }, + { + "start": 6405.68, + "end": 6405.86, + "probability": 0.186 + }, + { + "start": 6405.86, + "end": 6408.68, + "probability": 0.0541 + }, + { + "start": 6409.74, + "end": 6410.82, + "probability": 0.2711 + }, + { + "start": 6411.08, + "end": 6414.42, + "probability": 0.0447 + }, + { + "start": 6414.42, + "end": 6415.86, + "probability": 0.382 + }, + { + "start": 6416.49, + "end": 6420.34, + "probability": 0.5511 + }, + { + "start": 6420.44, + "end": 6423.22, + "probability": 0.6776 + }, + { + "start": 6423.6, + "end": 6426.94, + "probability": 0.7175 + }, + { + "start": 6428.12, + "end": 6433.08, + "probability": 0.9772 + }, + { + "start": 6434.48, + "end": 6436.44, + "probability": 0.8141 + }, + { + "start": 6437.36, + "end": 6438.66, + "probability": 0.9729 + }, + { + "start": 6439.66, + "end": 6440.52, + "probability": 0.7896 + }, + { + "start": 6441.44, + "end": 6442.92, + "probability": 0.9899 + }, + { + "start": 6444.32, + "end": 6445.38, + "probability": 0.9157 + }, + { + "start": 6446.4, + "end": 6448.37, + "probability": 0.7601 + }, + { + "start": 6450.86, + "end": 6453.12, + "probability": 0.8654 + }, + { + "start": 6453.74, + "end": 6455.66, + "probability": 0.9535 + }, + { + "start": 6456.64, + "end": 6458.44, + "probability": 0.9349 + }, + { + "start": 6458.96, + "end": 6459.6, + "probability": 0.863 + }, + { + "start": 6461.94, + "end": 6463.02, + "probability": 0.9619 + }, + { + "start": 6464.7, + "end": 6465.88, + "probability": 0.1744 + }, + { + "start": 6467.24, + "end": 6470.28, + "probability": 0.9646 + }, + { + "start": 6471.66, + "end": 6474.22, + "probability": 0.9868 + }, + { + "start": 6475.24, + "end": 6476.1, + "probability": 0.95 + }, + { + "start": 6477.62, + "end": 6480.7, + "probability": 0.9614 + }, + { + "start": 6481.86, + "end": 6491.38, + "probability": 0.9972 + }, + { + "start": 6492.38, + "end": 6495.9, + "probability": 0.7444 + }, + { + "start": 6496.82, + "end": 6498.52, + "probability": 0.9472 + }, + { + "start": 6499.4, + "end": 6500.03, + "probability": 0.9777 + }, + { + "start": 6501.18, + "end": 6502.5, + "probability": 0.9944 + }, + { + "start": 6502.66, + "end": 6504.1, + "probability": 0.9858 + }, + { + "start": 6504.94, + "end": 6506.48, + "probability": 0.986 + }, + { + "start": 6507.48, + "end": 6511.36, + "probability": 0.8874 + }, + { + "start": 6512.0, + "end": 6514.98, + "probability": 0.8746 + }, + { + "start": 6515.9, + "end": 6516.92, + "probability": 0.9688 + }, + { + "start": 6517.66, + "end": 6518.12, + "probability": 0.495 + }, + { + "start": 6519.0, + "end": 6520.45, + "probability": 0.9619 + }, + { + "start": 6521.12, + "end": 6521.98, + "probability": 0.999 + }, + { + "start": 6523.18, + "end": 6524.46, + "probability": 0.8439 + }, + { + "start": 6524.96, + "end": 6528.38, + "probability": 0.9945 + }, + { + "start": 6528.38, + "end": 6532.36, + "probability": 0.9935 + }, + { + "start": 6533.32, + "end": 6535.12, + "probability": 0.7688 + }, + { + "start": 6536.4, + "end": 6539.0, + "probability": 0.7783 + }, + { + "start": 6539.7, + "end": 6540.78, + "probability": 0.8276 + }, + { + "start": 6541.88, + "end": 6543.76, + "probability": 0.9954 + }, + { + "start": 6544.58, + "end": 6545.54, + "probability": 0.9638 + }, + { + "start": 6546.24, + "end": 6547.86, + "probability": 0.9382 + }, + { + "start": 6549.18, + "end": 6552.84, + "probability": 0.9752 + }, + { + "start": 6553.54, + "end": 6554.38, + "probability": 0.805 + }, + { + "start": 6554.46, + "end": 6555.18, + "probability": 0.9421 + }, + { + "start": 6555.22, + "end": 6555.86, + "probability": 0.5881 + }, + { + "start": 6556.26, + "end": 6557.22, + "probability": 0.7748 + }, + { + "start": 6557.62, + "end": 6559.82, + "probability": 0.9699 + }, + { + "start": 6560.36, + "end": 6561.52, + "probability": 0.8737 + }, + { + "start": 6562.08, + "end": 6563.18, + "probability": 0.8083 + }, + { + "start": 6564.52, + "end": 6566.98, + "probability": 0.9268 + }, + { + "start": 6567.08, + "end": 6568.16, + "probability": 0.9707 + }, + { + "start": 6568.76, + "end": 6570.3, + "probability": 0.9746 + }, + { + "start": 6571.14, + "end": 6574.04, + "probability": 0.791 + }, + { + "start": 6574.7, + "end": 6576.72, + "probability": 0.6286 + }, + { + "start": 6577.64, + "end": 6578.46, + "probability": 0.6237 + }, + { + "start": 6579.64, + "end": 6580.96, + "probability": 0.8703 + }, + { + "start": 6581.02, + "end": 6584.6, + "probability": 0.9547 + }, + { + "start": 6584.96, + "end": 6586.66, + "probability": 0.9873 + }, + { + "start": 6587.1, + "end": 6588.44, + "probability": 0.9202 + }, + { + "start": 6589.1, + "end": 6594.14, + "probability": 0.8469 + }, + { + "start": 6594.44, + "end": 6597.22, + "probability": 0.7433 + }, + { + "start": 6597.56, + "end": 6600.24, + "probability": 0.8621 + }, + { + "start": 6601.42, + "end": 6602.18, + "probability": 0.4221 + }, + { + "start": 6602.18, + "end": 6603.9, + "probability": 0.5867 + }, + { + "start": 6607.5, + "end": 6608.72, + "probability": 0.497 + }, + { + "start": 6610.5, + "end": 6612.34, + "probability": 0.9854 + }, + { + "start": 6620.78, + "end": 6623.26, + "probability": 0.8595 + }, + { + "start": 6624.68, + "end": 6625.74, + "probability": 0.7124 + }, + { + "start": 6625.86, + "end": 6626.76, + "probability": 0.668 + }, + { + "start": 6628.74, + "end": 6632.18, + "probability": 0.9868 + }, + { + "start": 6632.34, + "end": 6634.52, + "probability": 0.9043 + }, + { + "start": 6635.02, + "end": 6636.34, + "probability": 0.8994 + }, + { + "start": 6637.96, + "end": 6642.14, + "probability": 0.9942 + }, + { + "start": 6642.7, + "end": 6643.52, + "probability": 0.9706 + }, + { + "start": 6645.0, + "end": 6647.92, + "probability": 0.9987 + }, + { + "start": 6648.58, + "end": 6650.46, + "probability": 0.9521 + }, + { + "start": 6651.24, + "end": 6654.72, + "probability": 0.9977 + }, + { + "start": 6654.82, + "end": 6656.06, + "probability": 0.9862 + }, + { + "start": 6657.02, + "end": 6657.34, + "probability": 0.776 + }, + { + "start": 6657.48, + "end": 6658.82, + "probability": 0.974 + }, + { + "start": 6659.6, + "end": 6661.1, + "probability": 0.8976 + }, + { + "start": 6662.66, + "end": 6668.98, + "probability": 0.9738 + }, + { + "start": 6669.24, + "end": 6669.88, + "probability": 0.9243 + }, + { + "start": 6670.76, + "end": 6671.8, + "probability": 0.9955 + }, + { + "start": 6672.62, + "end": 6673.4, + "probability": 0.6874 + }, + { + "start": 6674.34, + "end": 6678.74, + "probability": 0.994 + }, + { + "start": 6679.34, + "end": 6680.18, + "probability": 0.8052 + }, + { + "start": 6681.72, + "end": 6683.02, + "probability": 0.8508 + }, + { + "start": 6684.34, + "end": 6686.45, + "probability": 0.9261 + }, + { + "start": 6686.94, + "end": 6688.3, + "probability": 0.9868 + }, + { + "start": 6689.0, + "end": 6692.1, + "probability": 0.9946 + }, + { + "start": 6692.56, + "end": 6694.18, + "probability": 0.7506 + }, + { + "start": 6697.04, + "end": 6700.82, + "probability": 0.7155 + }, + { + "start": 6701.16, + "end": 6701.58, + "probability": 0.3725 + }, + { + "start": 6702.48, + "end": 6703.08, + "probability": 0.714 + }, + { + "start": 6703.22, + "end": 6705.52, + "probability": 0.9742 + }, + { + "start": 6706.1, + "end": 6707.92, + "probability": 0.9917 + }, + { + "start": 6709.56, + "end": 6710.52, + "probability": 0.7322 + }, + { + "start": 6711.04, + "end": 6713.66, + "probability": 0.9435 + }, + { + "start": 6714.8, + "end": 6719.46, + "probability": 0.9903 + }, + { + "start": 6720.38, + "end": 6723.36, + "probability": 0.9987 + }, + { + "start": 6724.22, + "end": 6731.16, + "probability": 0.9946 + }, + { + "start": 6731.86, + "end": 6733.9, + "probability": 0.9985 + }, + { + "start": 6734.9, + "end": 6738.62, + "probability": 0.9867 + }, + { + "start": 6740.26, + "end": 6741.32, + "probability": 0.9887 + }, + { + "start": 6742.44, + "end": 6745.7, + "probability": 0.9637 + }, + { + "start": 6747.5, + "end": 6749.34, + "probability": 0.9758 + }, + { + "start": 6750.32, + "end": 6753.06, + "probability": 0.9873 + }, + { + "start": 6754.72, + "end": 6758.98, + "probability": 0.9962 + }, + { + "start": 6759.62, + "end": 6762.02, + "probability": 0.9447 + }, + { + "start": 6762.96, + "end": 6763.42, + "probability": 0.789 + }, + { + "start": 6764.06, + "end": 6765.42, + "probability": 0.9921 + }, + { + "start": 6768.44, + "end": 6770.0, + "probability": 0.9986 + }, + { + "start": 6770.38, + "end": 6772.62, + "probability": 0.9857 + }, + { + "start": 6773.1, + "end": 6776.84, + "probability": 0.9815 + }, + { + "start": 6777.54, + "end": 6778.56, + "probability": 0.998 + }, + { + "start": 6779.32, + "end": 6782.14, + "probability": 0.9643 + }, + { + "start": 6783.38, + "end": 6786.24, + "probability": 0.9077 + }, + { + "start": 6787.9, + "end": 6791.84, + "probability": 0.9942 + }, + { + "start": 6792.54, + "end": 6794.42, + "probability": 0.7009 + }, + { + "start": 6794.64, + "end": 6796.72, + "probability": 0.4904 + }, + { + "start": 6797.12, + "end": 6801.06, + "probability": 0.987 + }, + { + "start": 6801.6, + "end": 6803.32, + "probability": 0.9619 + }, + { + "start": 6804.54, + "end": 6807.22, + "probability": 0.9956 + }, + { + "start": 6807.22, + "end": 6811.86, + "probability": 0.9712 + }, + { + "start": 6811.96, + "end": 6812.78, + "probability": 0.8501 + }, + { + "start": 6813.12, + "end": 6816.14, + "probability": 0.9834 + }, + { + "start": 6816.6, + "end": 6818.12, + "probability": 0.8881 + }, + { + "start": 6818.56, + "end": 6821.82, + "probability": 0.996 + }, + { + "start": 6821.92, + "end": 6825.4, + "probability": 0.9919 + }, + { + "start": 6825.64, + "end": 6826.58, + "probability": 0.5146 + }, + { + "start": 6826.74, + "end": 6828.32, + "probability": 0.7882 + }, + { + "start": 6830.36, + "end": 6830.54, + "probability": 0.4197 + }, + { + "start": 6831.34, + "end": 6832.24, + "probability": 0.2672 + }, + { + "start": 6832.82, + "end": 6834.6, + "probability": 0.6369 + }, + { + "start": 6836.47, + "end": 6839.06, + "probability": 0.9771 + }, + { + "start": 6859.28, + "end": 6861.28, + "probability": 0.7385 + }, + { + "start": 6862.3, + "end": 6863.92, + "probability": 0.8618 + }, + { + "start": 6864.58, + "end": 6865.4, + "probability": 0.9822 + }, + { + "start": 6866.7, + "end": 6869.58, + "probability": 0.993 + }, + { + "start": 6869.58, + "end": 6873.76, + "probability": 0.9896 + }, + { + "start": 6874.96, + "end": 6877.38, + "probability": 0.958 + }, + { + "start": 6877.48, + "end": 6878.62, + "probability": 0.974 + }, + { + "start": 6879.4, + "end": 6881.98, + "probability": 0.95 + }, + { + "start": 6883.46, + "end": 6885.38, + "probability": 0.9633 + }, + { + "start": 6886.22, + "end": 6887.92, + "probability": 0.9915 + }, + { + "start": 6888.58, + "end": 6892.74, + "probability": 0.9858 + }, + { + "start": 6893.8, + "end": 6896.2, + "probability": 0.5225 + }, + { + "start": 6896.9, + "end": 6899.06, + "probability": 0.9586 + }, + { + "start": 6900.04, + "end": 6905.72, + "probability": 0.9939 + }, + { + "start": 6906.26, + "end": 6908.64, + "probability": 0.9219 + }, + { + "start": 6909.4, + "end": 6912.64, + "probability": 0.9675 + }, + { + "start": 6913.32, + "end": 6914.46, + "probability": 0.9563 + }, + { + "start": 6915.36, + "end": 6917.62, + "probability": 0.9775 + }, + { + "start": 6917.84, + "end": 6923.98, + "probability": 0.9795 + }, + { + "start": 6924.86, + "end": 6927.06, + "probability": 0.9879 + }, + { + "start": 6927.26, + "end": 6928.28, + "probability": 0.76 + }, + { + "start": 6928.32, + "end": 6929.36, + "probability": 0.8707 + }, + { + "start": 6930.18, + "end": 6933.04, + "probability": 0.9948 + }, + { + "start": 6933.66, + "end": 6936.22, + "probability": 0.9919 + }, + { + "start": 6937.8, + "end": 6939.72, + "probability": 0.9768 + }, + { + "start": 6939.86, + "end": 6941.52, + "probability": 0.992 + }, + { + "start": 6942.22, + "end": 6944.68, + "probability": 0.9625 + }, + { + "start": 6945.44, + "end": 6946.58, + "probability": 0.9854 + }, + { + "start": 6947.4, + "end": 6950.34, + "probability": 0.9882 + }, + { + "start": 6950.88, + "end": 6952.13, + "probability": 0.9373 + }, + { + "start": 6952.92, + "end": 6953.86, + "probability": 0.9603 + }, + { + "start": 6954.78, + "end": 6957.68, + "probability": 0.9902 + }, + { + "start": 6958.32, + "end": 6960.96, + "probability": 0.8491 + }, + { + "start": 6961.64, + "end": 6963.32, + "probability": 0.8727 + }, + { + "start": 6964.0, + "end": 6965.96, + "probability": 0.9672 + }, + { + "start": 6966.36, + "end": 6971.16, + "probability": 0.9607 + }, + { + "start": 6972.66, + "end": 6975.18, + "probability": 0.9688 + }, + { + "start": 6976.44, + "end": 6980.62, + "probability": 0.8916 + }, + { + "start": 6981.42, + "end": 6983.58, + "probability": 0.9384 + }, + { + "start": 6984.14, + "end": 6986.62, + "probability": 0.9705 + }, + { + "start": 6986.88, + "end": 6988.62, + "probability": 0.9653 + }, + { + "start": 6989.46, + "end": 6992.24, + "probability": 0.9854 + }, + { + "start": 6993.1, + "end": 6994.24, + "probability": 0.9105 + }, + { + "start": 6994.9, + "end": 6995.7, + "probability": 0.8528 + }, + { + "start": 6996.58, + "end": 6997.64, + "probability": 0.9431 + }, + { + "start": 6998.38, + "end": 7003.58, + "probability": 0.9852 + }, + { + "start": 7003.78, + "end": 7004.46, + "probability": 0.5042 + }, + { + "start": 7004.46, + "end": 7005.38, + "probability": 0.8109 + }, + { + "start": 7006.02, + "end": 7012.1, + "probability": 0.7626 + }, + { + "start": 7013.02, + "end": 7013.24, + "probability": 0.1009 + }, + { + "start": 7013.24, + "end": 7016.3, + "probability": 0.8585 + }, + { + "start": 7017.22, + "end": 7017.86, + "probability": 0.9718 + }, + { + "start": 7019.3, + "end": 7020.32, + "probability": 0.9249 + }, + { + "start": 7021.02, + "end": 7022.52, + "probability": 0.659 + }, + { + "start": 7023.32, + "end": 7024.4, + "probability": 0.964 + }, + { + "start": 7025.22, + "end": 7028.84, + "probability": 0.9534 + }, + { + "start": 7029.74, + "end": 7031.28, + "probability": 0.9951 + }, + { + "start": 7031.88, + "end": 7034.88, + "probability": 0.9385 + }, + { + "start": 7035.18, + "end": 7035.64, + "probability": 0.744 + }, + { + "start": 7036.18, + "end": 7037.06, + "probability": 0.6426 + }, + { + "start": 7037.14, + "end": 7038.4, + "probability": 0.9654 + }, + { + "start": 7043.82, + "end": 7046.12, + "probability": 0.9756 + }, + { + "start": 7057.18, + "end": 7058.62, + "probability": 0.6485 + }, + { + "start": 7058.76, + "end": 7059.66, + "probability": 0.6412 + }, + { + "start": 7060.1, + "end": 7065.86, + "probability": 0.9696 + }, + { + "start": 7065.86, + "end": 7070.42, + "probability": 0.9615 + }, + { + "start": 7071.42, + "end": 7073.5, + "probability": 0.9808 + }, + { + "start": 7073.56, + "end": 7074.84, + "probability": 0.6689 + }, + { + "start": 7075.36, + "end": 7077.34, + "probability": 0.9802 + }, + { + "start": 7077.4, + "end": 7078.65, + "probability": 0.8514 + }, + { + "start": 7078.94, + "end": 7079.62, + "probability": 0.8106 + }, + { + "start": 7080.02, + "end": 7084.0, + "probability": 0.9919 + }, + { + "start": 7084.12, + "end": 7087.4, + "probability": 0.976 + }, + { + "start": 7087.64, + "end": 7091.0, + "probability": 0.9771 + }, + { + "start": 7092.14, + "end": 7096.84, + "probability": 0.9902 + }, + { + "start": 7096.84, + "end": 7100.88, + "probability": 0.9995 + }, + { + "start": 7101.96, + "end": 7103.6, + "probability": 0.8848 + }, + { + "start": 7105.66, + "end": 7106.7, + "probability": 0.9518 + }, + { + "start": 7107.2, + "end": 7110.16, + "probability": 0.9952 + }, + { + "start": 7110.42, + "end": 7110.96, + "probability": 0.297 + }, + { + "start": 7112.08, + "end": 7114.7, + "probability": 0.9168 + }, + { + "start": 7115.64, + "end": 7116.32, + "probability": 0.6115 + }, + { + "start": 7117.2, + "end": 7117.76, + "probability": 0.5309 + }, + { + "start": 7117.94, + "end": 7118.18, + "probability": 0.829 + }, + { + "start": 7118.28, + "end": 7120.7, + "probability": 0.9312 + }, + { + "start": 7121.1, + "end": 7125.2, + "probability": 0.9892 + }, + { + "start": 7125.82, + "end": 7128.38, + "probability": 0.8835 + }, + { + "start": 7128.98, + "end": 7130.66, + "probability": 0.9956 + }, + { + "start": 7131.3, + "end": 7132.82, + "probability": 0.9972 + }, + { + "start": 7132.96, + "end": 7135.66, + "probability": 0.9885 + }, + { + "start": 7135.98, + "end": 7138.64, + "probability": 0.9808 + }, + { + "start": 7138.74, + "end": 7139.58, + "probability": 0.9874 + }, + { + "start": 7140.14, + "end": 7140.3, + "probability": 0.2369 + }, + { + "start": 7140.3, + "end": 7142.12, + "probability": 0.9951 + }, + { + "start": 7142.26, + "end": 7144.68, + "probability": 0.9768 + }, + { + "start": 7145.08, + "end": 7146.56, + "probability": 0.9961 + }, + { + "start": 7146.68, + "end": 7148.32, + "probability": 0.9922 + }, + { + "start": 7148.6, + "end": 7151.62, + "probability": 0.9897 + }, + { + "start": 7151.76, + "end": 7154.38, + "probability": 0.6636 + }, + { + "start": 7155.72, + "end": 7162.33, + "probability": 0.9415 + }, + { + "start": 7163.3, + "end": 7164.23, + "probability": 0.9861 + }, + { + "start": 7164.62, + "end": 7165.36, + "probability": 0.4984 + }, + { + "start": 7166.16, + "end": 7170.4, + "probability": 0.816 + }, + { + "start": 7171.04, + "end": 7172.56, + "probability": 0.8382 + }, + { + "start": 7173.52, + "end": 7176.14, + "probability": 0.9893 + }, + { + "start": 7176.92, + "end": 7180.38, + "probability": 0.9598 + }, + { + "start": 7180.64, + "end": 7183.8, + "probability": 0.7977 + }, + { + "start": 7184.16, + "end": 7184.64, + "probability": 0.7657 + }, + { + "start": 7185.66, + "end": 7187.22, + "probability": 0.968 + }, + { + "start": 7187.5, + "end": 7190.42, + "probability": 0.9841 + }, + { + "start": 7190.54, + "end": 7192.42, + "probability": 0.9912 + }, + { + "start": 7193.4, + "end": 7196.46, + "probability": 0.9577 + }, + { + "start": 7197.38, + "end": 7199.68, + "probability": 0.994 + }, + { + "start": 7199.9, + "end": 7203.98, + "probability": 0.9532 + }, + { + "start": 7204.08, + "end": 7207.24, + "probability": 0.9559 + }, + { + "start": 7207.72, + "end": 7211.64, + "probability": 0.8845 + }, + { + "start": 7212.2, + "end": 7214.14, + "probability": 0.9871 + }, + { + "start": 7214.52, + "end": 7221.26, + "probability": 0.9668 + }, + { + "start": 7221.26, + "end": 7226.82, + "probability": 0.9445 + }, + { + "start": 7227.84, + "end": 7228.34, + "probability": 0.6645 + }, + { + "start": 7228.9, + "end": 7232.19, + "probability": 0.9301 + }, + { + "start": 7232.98, + "end": 7237.72, + "probability": 0.9838 + }, + { + "start": 7237.96, + "end": 7238.26, + "probability": 0.8408 + }, + { + "start": 7239.34, + "end": 7240.24, + "probability": 0.7108 + }, + { + "start": 7241.46, + "end": 7244.28, + "probability": 0.7809 + }, + { + "start": 7245.2, + "end": 7248.92, + "probability": 0.7723 + }, + { + "start": 7249.78, + "end": 7251.22, + "probability": 0.5547 + }, + { + "start": 7252.71, + "end": 7256.62, + "probability": 0.9966 + }, + { + "start": 7257.28, + "end": 7258.92, + "probability": 0.6877 + }, + { + "start": 7259.48, + "end": 7261.76, + "probability": 0.8631 + }, + { + "start": 7272.18, + "end": 7273.96, + "probability": 0.7154 + }, + { + "start": 7274.84, + "end": 7277.94, + "probability": 0.8209 + }, + { + "start": 7280.3, + "end": 7281.7, + "probability": 0.9715 + }, + { + "start": 7282.52, + "end": 7285.62, + "probability": 0.9934 + }, + { + "start": 7286.42, + "end": 7290.12, + "probability": 0.9594 + }, + { + "start": 7290.9, + "end": 7291.6, + "probability": 0.998 + }, + { + "start": 7293.78, + "end": 7294.36, + "probability": 0.944 + }, + { + "start": 7294.9, + "end": 7299.64, + "probability": 0.6745 + }, + { + "start": 7299.82, + "end": 7301.38, + "probability": 0.9985 + }, + { + "start": 7302.2, + "end": 7303.2, + "probability": 0.9919 + }, + { + "start": 7303.86, + "end": 7304.96, + "probability": 0.9343 + }, + { + "start": 7305.48, + "end": 7306.98, + "probability": 0.7629 + }, + { + "start": 7307.6, + "end": 7309.44, + "probability": 0.8093 + }, + { + "start": 7309.88, + "end": 7310.18, + "probability": 0.7469 + }, + { + "start": 7310.32, + "end": 7310.98, + "probability": 0.47 + }, + { + "start": 7310.98, + "end": 7314.04, + "probability": 0.747 + }, + { + "start": 7314.12, + "end": 7315.24, + "probability": 0.8175 + }, + { + "start": 7316.32, + "end": 7319.34, + "probability": 0.8413 + }, + { + "start": 7319.88, + "end": 7321.74, + "probability": 0.9122 + }, + { + "start": 7321.86, + "end": 7326.18, + "probability": 0.9497 + }, + { + "start": 7326.48, + "end": 7330.4, + "probability": 0.8164 + }, + { + "start": 7331.12, + "end": 7332.5, + "probability": 0.8826 + }, + { + "start": 7332.68, + "end": 7334.72, + "probability": 0.689 + }, + { + "start": 7336.22, + "end": 7338.24, + "probability": 0.8703 + }, + { + "start": 7338.78, + "end": 7339.46, + "probability": 0.1543 + }, + { + "start": 7340.12, + "end": 7341.44, + "probability": 0.7865 + }, + { + "start": 7342.2, + "end": 7344.64, + "probability": 0.9971 + }, + { + "start": 7345.76, + "end": 7346.37, + "probability": 0.8675 + }, + { + "start": 7347.44, + "end": 7350.4, + "probability": 0.9177 + }, + { + "start": 7352.2, + "end": 7353.0, + "probability": 0.5525 + }, + { + "start": 7354.24, + "end": 7354.88, + "probability": 0.9529 + }, + { + "start": 7355.02, + "end": 7356.88, + "probability": 0.7866 + }, + { + "start": 7358.44, + "end": 7360.56, + "probability": 0.3106 + }, + { + "start": 7361.96, + "end": 7363.36, + "probability": 0.6377 + }, + { + "start": 7363.54, + "end": 7364.07, + "probability": 0.97 + }, + { + "start": 7365.58, + "end": 7366.36, + "probability": 0.9507 + }, + { + "start": 7367.48, + "end": 7368.58, + "probability": 0.7839 + }, + { + "start": 7369.7, + "end": 7370.54, + "probability": 0.843 + }, + { + "start": 7370.68, + "end": 7371.58, + "probability": 0.7716 + }, + { + "start": 7371.76, + "end": 7374.34, + "probability": 0.7378 + }, + { + "start": 7374.72, + "end": 7376.03, + "probability": 0.9971 + }, + { + "start": 7376.86, + "end": 7380.86, + "probability": 0.9287 + }, + { + "start": 7381.42, + "end": 7384.62, + "probability": 0.641 + }, + { + "start": 7385.16, + "end": 7388.46, + "probability": 0.7884 + }, + { + "start": 7389.6, + "end": 7390.42, + "probability": 0.873 + }, + { + "start": 7392.96, + "end": 7393.04, + "probability": 0.1381 + }, + { + "start": 7393.04, + "end": 7393.76, + "probability": 0.8257 + }, + { + "start": 7393.92, + "end": 7397.06, + "probability": 0.962 + }, + { + "start": 7398.1, + "end": 7398.28, + "probability": 0.4293 + }, + { + "start": 7398.36, + "end": 7399.66, + "probability": 0.9185 + }, + { + "start": 7399.8, + "end": 7402.46, + "probability": 0.8608 + }, + { + "start": 7404.2, + "end": 7407.02, + "probability": 0.8337 + }, + { + "start": 7407.9, + "end": 7408.02, + "probability": 0.8677 + }, + { + "start": 7409.22, + "end": 7410.78, + "probability": 0.9882 + }, + { + "start": 7411.94, + "end": 7415.46, + "probability": 0.9629 + }, + { + "start": 7416.0, + "end": 7418.08, + "probability": 0.9782 + }, + { + "start": 7418.98, + "end": 7419.9, + "probability": 0.9662 + }, + { + "start": 7421.26, + "end": 7423.62, + "probability": 0.9455 + }, + { + "start": 7424.28, + "end": 7426.1, + "probability": 0.9959 + }, + { + "start": 7427.68, + "end": 7428.84, + "probability": 0.9847 + }, + { + "start": 7428.94, + "end": 7430.1, + "probability": 0.9885 + }, + { + "start": 7430.42, + "end": 7431.25, + "probability": 0.9185 + }, + { + "start": 7431.46, + "end": 7432.1, + "probability": 0.845 + }, + { + "start": 7432.7, + "end": 7433.82, + "probability": 0.7468 + }, + { + "start": 7433.9, + "end": 7434.33, + "probability": 0.9683 + }, + { + "start": 7434.82, + "end": 7438.06, + "probability": 0.9933 + }, + { + "start": 7438.16, + "end": 7438.86, + "probability": 0.9222 + }, + { + "start": 7438.96, + "end": 7439.6, + "probability": 0.6272 + }, + { + "start": 7439.74, + "end": 7440.98, + "probability": 0.9691 + }, + { + "start": 7441.78, + "end": 7444.56, + "probability": 0.9961 + }, + { + "start": 7445.12, + "end": 7447.19, + "probability": 0.9902 + }, + { + "start": 7447.22, + "end": 7449.2, + "probability": 0.9966 + }, + { + "start": 7449.26, + "end": 7451.68, + "probability": 0.9404 + }, + { + "start": 7451.68, + "end": 7454.08, + "probability": 0.9976 + }, + { + "start": 7454.66, + "end": 7457.38, + "probability": 0.9129 + }, + { + "start": 7458.32, + "end": 7459.82, + "probability": 0.0352 + }, + { + "start": 7459.82, + "end": 7462.26, + "probability": 0.9015 + }, + { + "start": 7462.84, + "end": 7463.9, + "probability": 0.1573 + }, + { + "start": 7464.58, + "end": 7464.96, + "probability": 0.0824 + }, + { + "start": 7465.14, + "end": 7465.14, + "probability": 0.0738 + }, + { + "start": 7465.14, + "end": 7467.3, + "probability": 0.6698 + }, + { + "start": 7467.48, + "end": 7470.48, + "probability": 0.9776 + }, + { + "start": 7471.1, + "end": 7475.04, + "probability": 0.8731 + }, + { + "start": 7475.58, + "end": 7476.02, + "probability": 0.787 + }, + { + "start": 7476.18, + "end": 7477.34, + "probability": 0.9339 + }, + { + "start": 7477.42, + "end": 7479.02, + "probability": 0.7465 + }, + { + "start": 7479.72, + "end": 7480.78, + "probability": 0.9695 + }, + { + "start": 7480.86, + "end": 7481.54, + "probability": 0.6663 + }, + { + "start": 7481.68, + "end": 7484.7, + "probability": 0.9725 + }, + { + "start": 7485.2, + "end": 7485.36, + "probability": 0.5778 + }, + { + "start": 7485.56, + "end": 7487.9, + "probability": 0.9131 + }, + { + "start": 7487.94, + "end": 7489.98, + "probability": 0.9882 + }, + { + "start": 7490.04, + "end": 7490.82, + "probability": 0.9758 + }, + { + "start": 7491.16, + "end": 7491.8, + "probability": 0.6648 + }, + { + "start": 7492.6, + "end": 7494.38, + "probability": 0.9359 + }, + { + "start": 7495.38, + "end": 7497.66, + "probability": 0.9047 + }, + { + "start": 7498.58, + "end": 7500.52, + "probability": 0.9826 + }, + { + "start": 7505.32, + "end": 7506.26, + "probability": 0.4014 + }, + { + "start": 7507.64, + "end": 7508.58, + "probability": 0.9734 + }, + { + "start": 7516.66, + "end": 7518.14, + "probability": 0.4531 + }, + { + "start": 7522.82, + "end": 7524.3, + "probability": 0.736 + }, + { + "start": 7525.02, + "end": 7532.96, + "probability": 0.9818 + }, + { + "start": 7534.44, + "end": 7537.96, + "probability": 0.9937 + }, + { + "start": 7538.82, + "end": 7541.35, + "probability": 0.9965 + }, + { + "start": 7542.58, + "end": 7548.92, + "probability": 0.7578 + }, + { + "start": 7549.68, + "end": 7550.74, + "probability": 0.8712 + }, + { + "start": 7552.66, + "end": 7559.1, + "probability": 0.9696 + }, + { + "start": 7559.38, + "end": 7563.28, + "probability": 0.7676 + }, + { + "start": 7564.08, + "end": 7564.76, + "probability": 0.8525 + }, + { + "start": 7567.38, + "end": 7568.14, + "probability": 0.5169 + }, + { + "start": 7568.3, + "end": 7570.62, + "probability": 0.7382 + }, + { + "start": 7570.86, + "end": 7573.02, + "probability": 0.9028 + }, + { + "start": 7574.64, + "end": 7575.32, + "probability": 0.8687 + }, + { + "start": 7576.28, + "end": 7578.28, + "probability": 0.9592 + }, + { + "start": 7581.18, + "end": 7584.44, + "probability": 0.5107 + }, + { + "start": 7586.42, + "end": 7588.82, + "probability": 0.9302 + }, + { + "start": 7589.28, + "end": 7592.28, + "probability": 0.9719 + }, + { + "start": 7592.88, + "end": 7596.7, + "probability": 0.9948 + }, + { + "start": 7597.48, + "end": 7599.8, + "probability": 0.932 + }, + { + "start": 7600.7, + "end": 7603.86, + "probability": 0.7642 + }, + { + "start": 7605.58, + "end": 7605.94, + "probability": 0.5305 + }, + { + "start": 7606.08, + "end": 7610.38, + "probability": 0.9572 + }, + { + "start": 7611.28, + "end": 7617.88, + "probability": 0.8441 + }, + { + "start": 7617.96, + "end": 7622.42, + "probability": 0.986 + }, + { + "start": 7623.58, + "end": 7629.78, + "probability": 0.9971 + }, + { + "start": 7631.82, + "end": 7636.96, + "probability": 0.9909 + }, + { + "start": 7637.9, + "end": 7638.66, + "probability": 0.8263 + }, + { + "start": 7639.28, + "end": 7642.8, + "probability": 0.8946 + }, + { + "start": 7643.36, + "end": 7645.14, + "probability": 0.9986 + }, + { + "start": 7646.92, + "end": 7649.84, + "probability": 0.7936 + }, + { + "start": 7651.78, + "end": 7653.66, + "probability": 0.48 + }, + { + "start": 7654.34, + "end": 7656.68, + "probability": 0.9511 + }, + { + "start": 7657.28, + "end": 7660.24, + "probability": 0.9773 + }, + { + "start": 7660.8, + "end": 7662.68, + "probability": 0.7949 + }, + { + "start": 7663.46, + "end": 7666.26, + "probability": 0.9347 + }, + { + "start": 7666.92, + "end": 7668.3, + "probability": 0.8129 + }, + { + "start": 7668.64, + "end": 7669.34, + "probability": 0.5619 + }, + { + "start": 7670.2, + "end": 7673.82, + "probability": 0.5812 + }, + { + "start": 7673.88, + "end": 7674.56, + "probability": 0.9481 + }, + { + "start": 7675.96, + "end": 7678.5, + "probability": 0.8908 + }, + { + "start": 7679.24, + "end": 7680.52, + "probability": 0.7245 + }, + { + "start": 7683.42, + "end": 7686.28, + "probability": 0.9857 + }, + { + "start": 7686.34, + "end": 7690.36, + "probability": 0.8138 + }, + { + "start": 7693.36, + "end": 7693.94, + "probability": 0.5698 + }, + { + "start": 7696.36, + "end": 7697.18, + "probability": 0.0766 + }, + { + "start": 7698.76, + "end": 7702.38, + "probability": 0.6595 + }, + { + "start": 7702.48, + "end": 7705.36, + "probability": 0.6264 + }, + { + "start": 7706.36, + "end": 7706.92, + "probability": 0.5554 + }, + { + "start": 7708.28, + "end": 7708.5, + "probability": 0.5602 + }, + { + "start": 7710.28, + "end": 7711.52, + "probability": 0.0212 + }, + { + "start": 7713.0, + "end": 7714.62, + "probability": 0.0447 + }, + { + "start": 7714.78, + "end": 7715.58, + "probability": 0.378 + }, + { + "start": 7715.7, + "end": 7715.94, + "probability": 0.6849 + }, + { + "start": 7716.72, + "end": 7717.2, + "probability": 0.6539 + }, + { + "start": 7718.32, + "end": 7719.5, + "probability": 0.7003 + }, + { + "start": 7721.6, + "end": 7722.1, + "probability": 0.6524 + }, + { + "start": 7722.94, + "end": 7723.56, + "probability": 0.8047 + }, + { + "start": 7726.6, + "end": 7727.94, + "probability": 0.1179 + }, + { + "start": 7730.0, + "end": 7732.14, + "probability": 0.0435 + }, + { + "start": 7732.84, + "end": 7733.08, + "probability": 0.0456 + }, + { + "start": 7733.64, + "end": 7735.84, + "probability": 0.0392 + }, + { + "start": 7737.67, + "end": 7738.54, + "probability": 0.0423 + }, + { + "start": 7742.66, + "end": 7744.58, + "probability": 0.2515 + }, + { + "start": 7771.21, + "end": 7774.6, + "probability": 0.8435 + }, + { + "start": 7775.49, + "end": 7782.27, + "probability": 0.9937 + }, + { + "start": 7783.85, + "end": 7785.75, + "probability": 0.9203 + }, + { + "start": 7787.19, + "end": 7788.37, + "probability": 0.518 + }, + { + "start": 7788.39, + "end": 7795.13, + "probability": 0.9916 + }, + { + "start": 7795.69, + "end": 7798.19, + "probability": 0.978 + }, + { + "start": 7798.83, + "end": 7799.29, + "probability": 0.8882 + }, + { + "start": 7800.65, + "end": 7802.33, + "probability": 0.9174 + }, + { + "start": 7802.45, + "end": 7807.77, + "probability": 0.9964 + }, + { + "start": 7808.65, + "end": 7810.35, + "probability": 0.7634 + }, + { + "start": 7811.23, + "end": 7814.85, + "probability": 0.9904 + }, + { + "start": 7815.85, + "end": 7816.51, + "probability": 0.5176 + }, + { + "start": 7816.57, + "end": 7817.61, + "probability": 0.6897 + }, + { + "start": 7817.67, + "end": 7825.57, + "probability": 0.9819 + }, + { + "start": 7826.41, + "end": 7833.13, + "probability": 0.7764 + }, + { + "start": 7833.13, + "end": 7836.19, + "probability": 0.9878 + }, + { + "start": 7837.53, + "end": 7838.85, + "probability": 0.7056 + }, + { + "start": 7840.15, + "end": 7843.83, + "probability": 0.9905 + }, + { + "start": 7845.17, + "end": 7846.91, + "probability": 0.7924 + }, + { + "start": 7847.41, + "end": 7849.17, + "probability": 0.9077 + }, + { + "start": 7849.63, + "end": 7850.67, + "probability": 0.3944 + }, + { + "start": 7851.23, + "end": 7855.17, + "probability": 0.9275 + }, + { + "start": 7855.17, + "end": 7860.45, + "probability": 0.9893 + }, + { + "start": 7861.33, + "end": 7864.87, + "probability": 0.8909 + }, + { + "start": 7865.55, + "end": 7870.73, + "probability": 0.8157 + }, + { + "start": 7871.61, + "end": 7883.35, + "probability": 0.9919 + }, + { + "start": 7883.81, + "end": 7883.81, + "probability": 0.1172 + }, + { + "start": 7883.81, + "end": 7883.81, + "probability": 0.0684 + }, + { + "start": 7883.81, + "end": 7886.37, + "probability": 0.2722 + }, + { + "start": 7886.83, + "end": 7887.39, + "probability": 0.9801 + }, + { + "start": 7888.03, + "end": 7889.27, + "probability": 0.8057 + }, + { + "start": 7890.33, + "end": 7890.79, + "probability": 0.6393 + }, + { + "start": 7890.97, + "end": 7891.69, + "probability": 0.8578 + }, + { + "start": 7891.81, + "end": 7892.73, + "probability": 0.9645 + }, + { + "start": 7893.07, + "end": 7896.95, + "probability": 0.9411 + }, + { + "start": 7897.99, + "end": 7899.97, + "probability": 0.9967 + }, + { + "start": 7900.33, + "end": 7901.53, + "probability": 0.7936 + }, + { + "start": 7902.11, + "end": 7908.65, + "probability": 0.9867 + }, + { + "start": 7908.83, + "end": 7912.31, + "probability": 0.7098 + }, + { + "start": 7913.01, + "end": 7914.21, + "probability": 0.9774 + }, + { + "start": 7914.89, + "end": 7919.55, + "probability": 0.8966 + }, + { + "start": 7920.21, + "end": 7922.43, + "probability": 0.5612 + }, + { + "start": 7922.81, + "end": 7927.83, + "probability": 0.9976 + }, + { + "start": 7928.19, + "end": 7928.77, + "probability": 0.9847 + }, + { + "start": 7929.29, + "end": 7929.95, + "probability": 0.937 + }, + { + "start": 7930.61, + "end": 7934.85, + "probability": 0.8057 + }, + { + "start": 7935.35, + "end": 7938.71, + "probability": 0.9052 + }, + { + "start": 7938.71, + "end": 7942.95, + "probability": 0.8716 + }, + { + "start": 7943.51, + "end": 7946.97, + "probability": 0.931 + }, + { + "start": 7948.27, + "end": 7948.79, + "probability": 0.6632 + }, + { + "start": 7949.03, + "end": 7951.91, + "probability": 0.9766 + }, + { + "start": 7951.91, + "end": 7952.25, + "probability": 0.4084 + }, + { + "start": 7952.31, + "end": 7952.51, + "probability": 0.4677 + }, + { + "start": 7952.59, + "end": 7953.37, + "probability": 0.9536 + }, + { + "start": 7953.81, + "end": 7954.25, + "probability": 0.6533 + }, + { + "start": 7954.33, + "end": 7954.75, + "probability": 0.8576 + }, + { + "start": 7955.21, + "end": 7955.79, + "probability": 0.8445 + }, + { + "start": 7956.23, + "end": 7958.55, + "probability": 0.998 + }, + { + "start": 7959.01, + "end": 7961.67, + "probability": 0.9765 + }, + { + "start": 7962.11, + "end": 7963.45, + "probability": 0.943 + }, + { + "start": 7963.57, + "end": 7963.83, + "probability": 0.6851 + }, + { + "start": 7964.61, + "end": 7966.45, + "probability": 0.6287 + }, + { + "start": 7966.97, + "end": 7969.63, + "probability": 0.9939 + }, + { + "start": 7969.63, + "end": 7972.49, + "probability": 0.9969 + }, + { + "start": 7973.01, + "end": 7976.23, + "probability": 0.917 + }, + { + "start": 7976.39, + "end": 7976.89, + "probability": 0.9272 + }, + { + "start": 7977.57, + "end": 7977.57, + "probability": 0.3442 + }, + { + "start": 7977.57, + "end": 7980.05, + "probability": 0.6824 + }, + { + "start": 7980.41, + "end": 7982.21, + "probability": 0.8162 + }, + { + "start": 7982.21, + "end": 7982.23, + "probability": 0.4153 + }, + { + "start": 7982.23, + "end": 7982.23, + "probability": 0.7732 + }, + { + "start": 7982.23, + "end": 7983.77, + "probability": 0.2041 + }, + { + "start": 7984.35, + "end": 7984.95, + "probability": 0.6559 + }, + { + "start": 7984.97, + "end": 7985.61, + "probability": 0.755 + }, + { + "start": 7986.31, + "end": 7991.53, + "probability": 0.9645 + }, + { + "start": 7992.03, + "end": 7993.85, + "probability": 0.8011 + }, + { + "start": 7994.31, + "end": 7997.87, + "probability": 0.7858 + }, + { + "start": 7998.09, + "end": 7998.09, + "probability": 0.0424 + }, + { + "start": 7998.09, + "end": 7998.71, + "probability": 0.0469 + }, + { + "start": 7999.79, + "end": 8002.47, + "probability": 0.6831 + }, + { + "start": 8002.57, + "end": 8004.39, + "probability": 0.8078 + }, + { + "start": 8004.83, + "end": 8005.97, + "probability": 0.8353 + }, + { + "start": 8006.25, + "end": 8008.39, + "probability": 0.4106 + }, + { + "start": 8008.49, + "end": 8008.59, + "probability": 0.0416 + }, + { + "start": 8009.43, + "end": 8014.63, + "probability": 0.9773 + }, + { + "start": 8015.65, + "end": 8016.21, + "probability": 0.8581 + }, + { + "start": 8016.73, + "end": 8017.53, + "probability": 0.9961 + }, + { + "start": 8018.19, + "end": 8018.73, + "probability": 0.8799 + }, + { + "start": 8020.01, + "end": 8022.33, + "probability": 0.8069 + }, + { + "start": 8023.23, + "end": 8024.43, + "probability": 0.7234 + }, + { + "start": 8025.79, + "end": 8027.61, + "probability": 0.1444 + }, + { + "start": 8028.07, + "end": 8028.73, + "probability": 0.4018 + }, + { + "start": 8029.09, + "end": 8029.09, + "probability": 0.2545 + }, + { + "start": 8029.09, + "end": 8029.09, + "probability": 0.0341 + }, + { + "start": 8029.09, + "end": 8033.11, + "probability": 0.8723 + }, + { + "start": 8034.25, + "end": 8036.25, + "probability": 0.9502 + }, + { + "start": 8036.51, + "end": 8038.07, + "probability": 0.9377 + }, + { + "start": 8038.07, + "end": 8040.17, + "probability": 0.9192 + }, + { + "start": 8040.23, + "end": 8040.79, + "probability": 0.6546 + }, + { + "start": 8041.57, + "end": 8041.98, + "probability": 0.5337 + }, + { + "start": 8042.69, + "end": 8044.11, + "probability": 0.1582 + }, + { + "start": 8044.91, + "end": 8045.33, + "probability": 0.0109 + }, + { + "start": 8045.45, + "end": 8046.43, + "probability": 0.2376 + }, + { + "start": 8046.53, + "end": 8047.95, + "probability": 0.0866 + }, + { + "start": 8048.11, + "end": 8050.17, + "probability": 0.6724 + }, + { + "start": 8050.21, + "end": 8053.17, + "probability": 0.4321 + }, + { + "start": 8053.23, + "end": 8054.43, + "probability": 0.9827 + }, + { + "start": 8055.89, + "end": 8058.67, + "probability": 0.9913 + }, + { + "start": 8058.85, + "end": 8059.17, + "probability": 0.717 + }, + { + "start": 8059.25, + "end": 8062.47, + "probability": 0.5519 + }, + { + "start": 8062.87, + "end": 8064.39, + "probability": 0.7926 + }, + { + "start": 8064.63, + "end": 8065.21, + "probability": 0.1486 + }, + { + "start": 8065.23, + "end": 8066.97, + "probability": 0.8432 + }, + { + "start": 8067.43, + "end": 8068.44, + "probability": 0.8777 + }, + { + "start": 8068.55, + "end": 8069.35, + "probability": 0.2734 + }, + { + "start": 8069.59, + "end": 8069.81, + "probability": 0.8104 + }, + { + "start": 8070.21, + "end": 8071.69, + "probability": 0.8302 + }, + { + "start": 8071.71, + "end": 8071.87, + "probability": 0.0189 + }, + { + "start": 8071.87, + "end": 8073.21, + "probability": 0.5016 + }, + { + "start": 8073.63, + "end": 8074.87, + "probability": 0.7901 + }, + { + "start": 8075.07, + "end": 8076.61, + "probability": 0.5065 + }, + { + "start": 8076.63, + "end": 8077.77, + "probability": 0.7559 + }, + { + "start": 8078.01, + "end": 8079.22, + "probability": 0.8965 + }, + { + "start": 8079.51, + "end": 8080.89, + "probability": 0.4949 + }, + { + "start": 8080.89, + "end": 8081.31, + "probability": 0.6751 + }, + { + "start": 8082.47, + "end": 8082.91, + "probability": 0.0201 + }, + { + "start": 8082.99, + "end": 8084.74, + "probability": 0.5643 + }, + { + "start": 8085.91, + "end": 8088.77, + "probability": 0.0034 + }, + { + "start": 8089.25, + "end": 8092.71, + "probability": 0.0643 + }, + { + "start": 8094.37, + "end": 8095.25, + "probability": 0.0914 + }, + { + "start": 8095.31, + "end": 8096.17, + "probability": 0.0279 + }, + { + "start": 8097.85, + "end": 8098.31, + "probability": 0.0126 + }, + { + "start": 8098.45, + "end": 8102.83, + "probability": 0.8887 + }, + { + "start": 8103.13, + "end": 8104.29, + "probability": 0.7601 + }, + { + "start": 8104.35, + "end": 8106.21, + "probability": 0.8546 + }, + { + "start": 8106.91, + "end": 8106.97, + "probability": 0.2462 + }, + { + "start": 8106.97, + "end": 8106.97, + "probability": 0.3424 + }, + { + "start": 8106.97, + "end": 8107.46, + "probability": 0.4737 + }, + { + "start": 8107.95, + "end": 8110.04, + "probability": 0.298 + }, + { + "start": 8110.25, + "end": 8114.45, + "probability": 0.7626 + }, + { + "start": 8115.89, + "end": 8118.75, + "probability": 0.998 + }, + { + "start": 8119.13, + "end": 8122.11, + "probability": 0.9634 + }, + { + "start": 8123.57, + "end": 8123.57, + "probability": 0.0542 + }, + { + "start": 8123.57, + "end": 8123.61, + "probability": 0.5345 + }, + { + "start": 8123.79, + "end": 8125.05, + "probability": 0.7831 + }, + { + "start": 8125.09, + "end": 8125.39, + "probability": 0.7034 + }, + { + "start": 8125.41, + "end": 8126.27, + "probability": 0.9778 + }, + { + "start": 8126.37, + "end": 8126.91, + "probability": 0.2641 + }, + { + "start": 8128.25, + "end": 8131.61, + "probability": 0.0065 + }, + { + "start": 8132.15, + "end": 8133.13, + "probability": 0.0562 + }, + { + "start": 8133.13, + "end": 8135.21, + "probability": 0.0937 + }, + { + "start": 8135.75, + "end": 8139.45, + "probability": 0.9847 + }, + { + "start": 8140.03, + "end": 8141.73, + "probability": 0.9701 + }, + { + "start": 8143.03, + "end": 8145.43, + "probability": 0.9937 + }, + { + "start": 8145.75, + "end": 8150.19, + "probability": 0.905 + }, + { + "start": 8150.29, + "end": 8152.45, + "probability": 0.9942 + }, + { + "start": 8152.89, + "end": 8154.39, + "probability": 0.9922 + }, + { + "start": 8154.53, + "end": 8155.15, + "probability": 0.9929 + }, + { + "start": 8155.87, + "end": 8161.71, + "probability": 0.9865 + }, + { + "start": 8162.01, + "end": 8162.83, + "probability": 0.1877 + }, + { + "start": 8162.83, + "end": 8163.15, + "probability": 0.1607 + }, + { + "start": 8164.53, + "end": 8166.01, + "probability": 0.8872 + }, + { + "start": 8166.15, + "end": 8169.35, + "probability": 0.9815 + }, + { + "start": 8169.43, + "end": 8172.35, + "probability": 0.8176 + }, + { + "start": 8172.59, + "end": 8175.29, + "probability": 0.7704 + }, + { + "start": 8175.85, + "end": 8176.37, + "probability": 0.3694 + }, + { + "start": 8179.35, + "end": 8182.09, + "probability": 0.561 + }, + { + "start": 8183.93, + "end": 8184.03, + "probability": 0.5195 + }, + { + "start": 8184.03, + "end": 8186.21, + "probability": 0.8615 + }, + { + "start": 8186.35, + "end": 8187.59, + "probability": 0.9438 + }, + { + "start": 8187.79, + "end": 8189.79, + "probability": 0.9857 + }, + { + "start": 8189.87, + "end": 8191.07, + "probability": 0.9788 + }, + { + "start": 8191.53, + "end": 8192.6, + "probability": 0.9775 + }, + { + "start": 8192.83, + "end": 8194.99, + "probability": 0.8672 + }, + { + "start": 8195.13, + "end": 8196.75, + "probability": 0.9026 + }, + { + "start": 8199.77, + "end": 8202.29, + "probability": 0.8464 + }, + { + "start": 8203.25, + "end": 8203.91, + "probability": 0.7027 + }, + { + "start": 8204.97, + "end": 8205.49, + "probability": 0.7884 + }, + { + "start": 8205.55, + "end": 8206.21, + "probability": 0.9772 + }, + { + "start": 8206.35, + "end": 8209.29, + "probability": 0.873 + }, + { + "start": 8209.31, + "end": 8216.35, + "probability": 0.9918 + }, + { + "start": 8216.43, + "end": 8219.91, + "probability": 0.9954 + }, + { + "start": 8220.37, + "end": 8222.09, + "probability": 0.9553 + }, + { + "start": 8223.53, + "end": 8228.09, + "probability": 0.7788 + }, + { + "start": 8228.63, + "end": 8228.73, + "probability": 0.1822 + }, + { + "start": 8229.69, + "end": 8233.43, + "probability": 0.9946 + }, + { + "start": 8233.63, + "end": 8237.59, + "probability": 0.9779 + }, + { + "start": 8239.93, + "end": 8240.61, + "probability": 0.097 + }, + { + "start": 8241.08, + "end": 8244.67, + "probability": 0.9736 + }, + { + "start": 8244.89, + "end": 8245.31, + "probability": 0.5057 + }, + { + "start": 8245.55, + "end": 8247.43, + "probability": 0.9095 + }, + { + "start": 8247.59, + "end": 8252.41, + "probability": 0.9723 + }, + { + "start": 8252.45, + "end": 8252.71, + "probability": 0.8179 + }, + { + "start": 8253.11, + "end": 8254.31, + "probability": 0.9364 + }, + { + "start": 8254.57, + "end": 8256.53, + "probability": 0.6652 + }, + { + "start": 8257.03, + "end": 8259.63, + "probability": 0.9813 + }, + { + "start": 8259.97, + "end": 8263.05, + "probability": 0.9282 + }, + { + "start": 8263.29, + "end": 8263.99, + "probability": 0.8139 + }, + { + "start": 8264.03, + "end": 8264.64, + "probability": 0.9418 + }, + { + "start": 8265.11, + "end": 8266.17, + "probability": 0.9587 + }, + { + "start": 8266.35, + "end": 8272.61, + "probability": 0.9858 + }, + { + "start": 8273.23, + "end": 8274.03, + "probability": 0.8191 + }, + { + "start": 8274.23, + "end": 8276.59, + "probability": 0.9548 + }, + { + "start": 8277.53, + "end": 8282.23, + "probability": 0.9647 + }, + { + "start": 8282.99, + "end": 8284.6, + "probability": 0.7305 + }, + { + "start": 8285.13, + "end": 8285.91, + "probability": 0.9976 + }, + { + "start": 8286.71, + "end": 8286.81, + "probability": 0.9838 + }, + { + "start": 8288.29, + "end": 8289.03, + "probability": 0.7429 + }, + { + "start": 8289.09, + "end": 8290.23, + "probability": 0.9353 + }, + { + "start": 8290.67, + "end": 8295.29, + "probability": 0.906 + }, + { + "start": 8295.55, + "end": 8296.11, + "probability": 0.7313 + }, + { + "start": 8296.81, + "end": 8299.13, + "probability": 0.696 + }, + { + "start": 8299.89, + "end": 8301.17, + "probability": 0.9937 + }, + { + "start": 8301.51, + "end": 8303.51, + "probability": 0.9248 + }, + { + "start": 8304.09, + "end": 8305.87, + "probability": 0.8018 + }, + { + "start": 8305.95, + "end": 8306.39, + "probability": 0.8339 + }, + { + "start": 8306.51, + "end": 8308.23, + "probability": 0.8792 + }, + { + "start": 8308.31, + "end": 8309.59, + "probability": 0.9958 + }, + { + "start": 8310.17, + "end": 8312.01, + "probability": 0.6538 + }, + { + "start": 8312.17, + "end": 8313.14, + "probability": 0.7695 + }, + { + "start": 8313.49, + "end": 8314.89, + "probability": 0.9761 + }, + { + "start": 8314.89, + "end": 8315.81, + "probability": 0.4896 + }, + { + "start": 8316.23, + "end": 8317.57, + "probability": 0.5185 + }, + { + "start": 8319.39, + "end": 8322.45, + "probability": 0.7277 + }, + { + "start": 8339.21, + "end": 8340.43, + "probability": 0.6807 + }, + { + "start": 8341.01, + "end": 8342.17, + "probability": 0.7915 + }, + { + "start": 8343.49, + "end": 8346.81, + "probability": 0.9825 + }, + { + "start": 8348.47, + "end": 8351.77, + "probability": 0.898 + }, + { + "start": 8353.43, + "end": 8356.35, + "probability": 0.9432 + }, + { + "start": 8357.95, + "end": 8362.27, + "probability": 0.9978 + }, + { + "start": 8363.31, + "end": 8364.77, + "probability": 0.9215 + }, + { + "start": 8365.65, + "end": 8368.33, + "probability": 0.9517 + }, + { + "start": 8369.49, + "end": 8374.99, + "probability": 0.9649 + }, + { + "start": 8375.93, + "end": 8379.21, + "probability": 0.9929 + }, + { + "start": 8380.75, + "end": 8390.59, + "probability": 0.8561 + }, + { + "start": 8391.61, + "end": 8400.53, + "probability": 0.663 + }, + { + "start": 8401.59, + "end": 8408.13, + "probability": 0.9873 + }, + { + "start": 8410.05, + "end": 8410.05, + "probability": 0.8052 + }, + { + "start": 8410.79, + "end": 8413.27, + "probability": 0.9119 + }, + { + "start": 8414.07, + "end": 8415.43, + "probability": 0.9172 + }, + { + "start": 8416.85, + "end": 8418.91, + "probability": 0.9831 + }, + { + "start": 8420.45, + "end": 8421.65, + "probability": 0.998 + }, + { + "start": 8422.53, + "end": 8427.59, + "probability": 0.9969 + }, + { + "start": 8429.69, + "end": 8430.45, + "probability": 0.5536 + }, + { + "start": 8431.99, + "end": 8438.81, + "probability": 0.834 + }, + { + "start": 8440.19, + "end": 8445.65, + "probability": 0.9825 + }, + { + "start": 8447.11, + "end": 8448.93, + "probability": 0.839 + }, + { + "start": 8450.15, + "end": 8455.53, + "probability": 0.9403 + }, + { + "start": 8456.37, + "end": 8462.35, + "probability": 0.8864 + }, + { + "start": 8462.63, + "end": 8463.51, + "probability": 0.7552 + }, + { + "start": 8464.39, + "end": 8468.95, + "probability": 0.9898 + }, + { + "start": 8470.23, + "end": 8475.51, + "probability": 0.9591 + }, + { + "start": 8477.53, + "end": 8478.75, + "probability": 0.4707 + }, + { + "start": 8479.55, + "end": 8482.57, + "probability": 0.9221 + }, + { + "start": 8483.43, + "end": 8488.25, + "probability": 0.9663 + }, + { + "start": 8489.21, + "end": 8493.43, + "probability": 0.963 + }, + { + "start": 8494.53, + "end": 8498.85, + "probability": 0.9928 + }, + { + "start": 8499.69, + "end": 8501.77, + "probability": 0.9977 + }, + { + "start": 8502.51, + "end": 8507.35, + "probability": 0.998 + }, + { + "start": 8508.91, + "end": 8515.57, + "probability": 0.8348 + }, + { + "start": 8516.61, + "end": 8519.93, + "probability": 0.8024 + }, + { + "start": 8520.89, + "end": 8523.23, + "probability": 0.6862 + }, + { + "start": 8523.35, + "end": 8527.23, + "probability": 0.9487 + }, + { + "start": 8527.95, + "end": 8534.11, + "probability": 0.9871 + }, + { + "start": 8534.11, + "end": 8534.61, + "probability": 0.5111 + }, + { + "start": 8535.05, + "end": 8535.71, + "probability": 0.6273 + }, + { + "start": 8535.73, + "end": 8536.77, + "probability": 0.9379 + }, + { + "start": 8550.99, + "end": 8552.31, + "probability": 0.4524 + }, + { + "start": 8553.09, + "end": 8556.47, + "probability": 0.8321 + }, + { + "start": 8557.27, + "end": 8558.39, + "probability": 0.934 + }, + { + "start": 8558.57, + "end": 8563.47, + "probability": 0.8508 + }, + { + "start": 8564.03, + "end": 8567.85, + "probability": 0.9862 + }, + { + "start": 8568.21, + "end": 8568.69, + "probability": 0.8481 + }, + { + "start": 8568.77, + "end": 8571.19, + "probability": 0.8731 + }, + { + "start": 8571.67, + "end": 8577.32, + "probability": 0.8143 + }, + { + "start": 8577.69, + "end": 8583.57, + "probability": 0.988 + }, + { + "start": 8584.41, + "end": 8587.45, + "probability": 0.881 + }, + { + "start": 8588.29, + "end": 8588.91, + "probability": 0.6663 + }, + { + "start": 8589.11, + "end": 8593.37, + "probability": 0.9982 + }, + { + "start": 8593.37, + "end": 8598.19, + "probability": 0.9958 + }, + { + "start": 8599.05, + "end": 8605.21, + "probability": 0.9981 + }, + { + "start": 8605.29, + "end": 8606.07, + "probability": 0.8155 + }, + { + "start": 8606.29, + "end": 8607.39, + "probability": 0.8663 + }, + { + "start": 8607.75, + "end": 8612.93, + "probability": 0.9426 + }, + { + "start": 8613.71, + "end": 8618.25, + "probability": 0.9963 + }, + { + "start": 8618.25, + "end": 8622.83, + "probability": 0.9951 + }, + { + "start": 8623.55, + "end": 8629.75, + "probability": 0.9985 + }, + { + "start": 8630.53, + "end": 8635.09, + "probability": 0.9961 + }, + { + "start": 8635.61, + "end": 8637.17, + "probability": 0.9797 + }, + { + "start": 8637.77, + "end": 8642.11, + "probability": 0.963 + }, + { + "start": 8642.31, + "end": 8646.95, + "probability": 0.9018 + }, + { + "start": 8647.79, + "end": 8650.15, + "probability": 0.9476 + }, + { + "start": 8650.87, + "end": 8655.03, + "probability": 0.9952 + }, + { + "start": 8655.03, + "end": 8658.77, + "probability": 0.9951 + }, + { + "start": 8659.77, + "end": 8660.71, + "probability": 0.9034 + }, + { + "start": 8661.11, + "end": 8664.75, + "probability": 0.8954 + }, + { + "start": 8665.13, + "end": 8666.05, + "probability": 0.9863 + }, + { + "start": 8666.43, + "end": 8674.23, + "probability": 0.9904 + }, + { + "start": 8674.55, + "end": 8677.88, + "probability": 0.5571 + }, + { + "start": 8678.65, + "end": 8680.2, + "probability": 0.9932 + }, + { + "start": 8680.59, + "end": 8686.45, + "probability": 0.9162 + }, + { + "start": 8686.45, + "end": 8692.07, + "probability": 0.9943 + }, + { + "start": 8692.07, + "end": 8697.61, + "probability": 0.9902 + }, + { + "start": 8699.09, + "end": 8705.29, + "probability": 0.7554 + }, + { + "start": 8705.59, + "end": 8708.03, + "probability": 0.6872 + }, + { + "start": 8709.17, + "end": 8711.01, + "probability": 0.9402 + }, + { + "start": 8712.05, + "end": 8713.99, + "probability": 0.813 + }, + { + "start": 8714.63, + "end": 8720.21, + "probability": 0.9891 + }, + { + "start": 8720.43, + "end": 8725.03, + "probability": 0.9986 + }, + { + "start": 8725.03, + "end": 8730.37, + "probability": 0.9995 + }, + { + "start": 8730.97, + "end": 8732.45, + "probability": 0.9976 + }, + { + "start": 8733.15, + "end": 8737.99, + "probability": 0.9988 + }, + { + "start": 8738.53, + "end": 8741.89, + "probability": 1.0 + }, + { + "start": 8742.39, + "end": 8748.37, + "probability": 0.9946 + }, + { + "start": 8748.93, + "end": 8748.93, + "probability": 0.3503 + }, + { + "start": 8749.83, + "end": 8750.05, + "probability": 0.3095 + }, + { + "start": 8750.05, + "end": 8750.05, + "probability": 0.3009 + }, + { + "start": 8750.05, + "end": 8753.39, + "probability": 0.9875 + }, + { + "start": 8753.69, + "end": 8754.87, + "probability": 0.9397 + }, + { + "start": 8755.55, + "end": 8757.71, + "probability": 0.6364 + }, + { + "start": 8758.55, + "end": 8761.01, + "probability": 0.9894 + }, + { + "start": 8761.13, + "end": 8761.21, + "probability": 0.5962 + }, + { + "start": 8761.21, + "end": 8761.85, + "probability": 0.5452 + }, + { + "start": 8762.03, + "end": 8763.59, + "probability": 0.6374 + }, + { + "start": 8764.93, + "end": 8767.29, + "probability": 0.9052 + }, + { + "start": 8768.45, + "end": 8769.27, + "probability": 0.7409 + }, + { + "start": 8769.29, + "end": 8771.67, + "probability": 0.9788 + }, + { + "start": 8786.65, + "end": 8788.99, + "probability": 0.6248 + }, + { + "start": 8790.31, + "end": 8794.73, + "probability": 0.9906 + }, + { + "start": 8795.73, + "end": 8799.57, + "probability": 0.9938 + }, + { + "start": 8799.57, + "end": 8802.95, + "probability": 0.9439 + }, + { + "start": 8804.83, + "end": 8808.63, + "probability": 0.9769 + }, + { + "start": 8809.61, + "end": 8811.11, + "probability": 0.7737 + }, + { + "start": 8811.29, + "end": 8814.51, + "probability": 0.993 + }, + { + "start": 8816.21, + "end": 8817.87, + "probability": 0.9916 + }, + { + "start": 8818.39, + "end": 8819.13, + "probability": 0.759 + }, + { + "start": 8820.17, + "end": 8823.03, + "probability": 0.9991 + }, + { + "start": 8824.11, + "end": 8825.64, + "probability": 0.9888 + }, + { + "start": 8825.99, + "end": 8828.47, + "probability": 0.9825 + }, + { + "start": 8829.17, + "end": 8831.11, + "probability": 0.9907 + }, + { + "start": 8833.37, + "end": 8836.23, + "probability": 0.9929 + }, + { + "start": 8836.45, + "end": 8842.85, + "probability": 0.9979 + }, + { + "start": 8843.79, + "end": 8848.79, + "probability": 0.9978 + }, + { + "start": 8848.79, + "end": 8852.41, + "probability": 0.9856 + }, + { + "start": 8853.73, + "end": 8855.43, + "probability": 0.9937 + }, + { + "start": 8857.03, + "end": 8857.71, + "probability": 0.6738 + }, + { + "start": 8857.77, + "end": 8858.55, + "probability": 0.7134 + }, + { + "start": 8858.67, + "end": 8858.91, + "probability": 0.7694 + }, + { + "start": 8858.97, + "end": 8863.07, + "probability": 0.9956 + }, + { + "start": 8863.21, + "end": 8867.77, + "probability": 0.9979 + }, + { + "start": 8869.35, + "end": 8874.31, + "probability": 0.9795 + }, + { + "start": 8875.59, + "end": 8878.09, + "probability": 0.9974 + }, + { + "start": 8879.11, + "end": 8881.85, + "probability": 0.9936 + }, + { + "start": 8882.81, + "end": 8886.15, + "probability": 0.9767 + }, + { + "start": 8886.93, + "end": 8888.79, + "probability": 0.7937 + }, + { + "start": 8889.75, + "end": 8891.75, + "probability": 0.7001 + }, + { + "start": 8893.11, + "end": 8894.51, + "probability": 0.7682 + }, + { + "start": 8897.03, + "end": 8899.07, + "probability": 0.9851 + }, + { + "start": 8899.07, + "end": 8902.75, + "probability": 0.9751 + }, + { + "start": 8903.33, + "end": 8907.05, + "probability": 0.998 + }, + { + "start": 8908.13, + "end": 8908.67, + "probability": 0.8237 + }, + { + "start": 8909.61, + "end": 8914.39, + "probability": 0.9979 + }, + { + "start": 8916.01, + "end": 8918.75, + "probability": 0.995 + }, + { + "start": 8919.61, + "end": 8922.55, + "probability": 0.9965 + }, + { + "start": 8923.43, + "end": 8925.67, + "probability": 0.9902 + }, + { + "start": 8928.31, + "end": 8930.79, + "probability": 0.9312 + }, + { + "start": 8931.63, + "end": 8932.85, + "probability": 0.867 + }, + { + "start": 8933.25, + "end": 8935.73, + "probability": 0.9703 + }, + { + "start": 8936.59, + "end": 8939.83, + "probability": 0.7573 + }, + { + "start": 8941.19, + "end": 8942.33, + "probability": 0.3158 + }, + { + "start": 8943.01, + "end": 8943.39, + "probability": 0.7947 + }, + { + "start": 8943.95, + "end": 8944.97, + "probability": 0.6267 + }, + { + "start": 8946.21, + "end": 8948.41, + "probability": 0.9492 + }, + { + "start": 8950.39, + "end": 8953.64, + "probability": 0.8795 + }, + { + "start": 8954.87, + "end": 8955.85, + "probability": 0.9164 + }, + { + "start": 8957.5, + "end": 8961.49, + "probability": 0.7679 + }, + { + "start": 8962.97, + "end": 8966.55, + "probability": 0.9981 + }, + { + "start": 8967.65, + "end": 8968.43, + "probability": 0.9844 + }, + { + "start": 8968.49, + "end": 8969.19, + "probability": 0.9598 + }, + { + "start": 8969.23, + "end": 8970.41, + "probability": 0.9588 + }, + { + "start": 8971.59, + "end": 8978.01, + "probability": 0.9849 + }, + { + "start": 8979.15, + "end": 8984.03, + "probability": 0.995 + }, + { + "start": 8984.03, + "end": 8988.37, + "probability": 0.9528 + }, + { + "start": 8989.25, + "end": 8992.21, + "probability": 0.989 + }, + { + "start": 8993.45, + "end": 8994.45, + "probability": 0.9239 + }, + { + "start": 8995.23, + "end": 8997.81, + "probability": 0.9806 + }, + { + "start": 8998.37, + "end": 9003.29, + "probability": 0.9162 + }, + { + "start": 9003.99, + "end": 9006.99, + "probability": 0.996 + }, + { + "start": 9007.65, + "end": 9009.13, + "probability": 0.9532 + }, + { + "start": 9009.97, + "end": 9011.07, + "probability": 0.7107 + }, + { + "start": 9012.29, + "end": 9019.11, + "probability": 0.9932 + }, + { + "start": 9019.19, + "end": 9022.49, + "probability": 0.9978 + }, + { + "start": 9023.45, + "end": 9026.45, + "probability": 0.9249 + }, + { + "start": 9028.11, + "end": 9029.93, + "probability": 0.9758 + }, + { + "start": 9030.33, + "end": 9034.03, + "probability": 0.9901 + }, + { + "start": 9034.53, + "end": 9035.03, + "probability": 0.8966 + }, + { + "start": 9035.13, + "end": 9035.67, + "probability": 0.8402 + }, + { + "start": 9035.93, + "end": 9036.69, + "probability": 0.8771 + }, + { + "start": 9036.77, + "end": 9037.31, + "probability": 0.9539 + }, + { + "start": 9037.35, + "end": 9037.91, + "probability": 0.9636 + }, + { + "start": 9038.29, + "end": 9039.37, + "probability": 0.6418 + }, + { + "start": 9040.41, + "end": 9041.13, + "probability": 0.9066 + }, + { + "start": 9041.99, + "end": 9046.23, + "probability": 0.9896 + }, + { + "start": 9047.25, + "end": 9049.73, + "probability": 0.9715 + }, + { + "start": 9050.33, + "end": 9051.03, + "probability": 0.9988 + }, + { + "start": 9052.03, + "end": 9054.35, + "probability": 0.9878 + }, + { + "start": 9055.57, + "end": 9058.25, + "probability": 0.9866 + }, + { + "start": 9059.29, + "end": 9062.61, + "probability": 0.9486 + }, + { + "start": 9063.19, + "end": 9065.15, + "probability": 0.724 + }, + { + "start": 9066.23, + "end": 9070.31, + "probability": 0.9715 + }, + { + "start": 9071.57, + "end": 9073.39, + "probability": 0.991 + }, + { + "start": 9073.47, + "end": 9076.53, + "probability": 0.957 + }, + { + "start": 9077.09, + "end": 9078.15, + "probability": 0.8396 + }, + { + "start": 9078.73, + "end": 9080.25, + "probability": 0.8284 + }, + { + "start": 9080.77, + "end": 9085.89, + "probability": 0.8641 + }, + { + "start": 9087.15, + "end": 9090.49, + "probability": 0.9958 + }, + { + "start": 9090.49, + "end": 9094.85, + "probability": 0.9911 + }, + { + "start": 9095.47, + "end": 9098.21, + "probability": 0.9247 + }, + { + "start": 9098.77, + "end": 9102.33, + "probability": 0.7016 + }, + { + "start": 9103.07, + "end": 9106.55, + "probability": 0.9665 + }, + { + "start": 9107.99, + "end": 9111.01, + "probability": 0.8825 + }, + { + "start": 9111.29, + "end": 9113.75, + "probability": 0.9644 + }, + { + "start": 9115.11, + "end": 9119.69, + "probability": 0.9993 + }, + { + "start": 9120.27, + "end": 9123.61, + "probability": 0.9883 + }, + { + "start": 9124.39, + "end": 9129.27, + "probability": 0.9976 + }, + { + "start": 9130.31, + "end": 9131.45, + "probability": 0.3433 + }, + { + "start": 9132.55, + "end": 9134.43, + "probability": 0.951 + }, + { + "start": 9135.05, + "end": 9139.33, + "probability": 0.9678 + }, + { + "start": 9139.33, + "end": 9143.69, + "probability": 0.9957 + }, + { + "start": 9144.47, + "end": 9145.71, + "probability": 0.9795 + }, + { + "start": 9146.77, + "end": 9146.77, + "probability": 0.5773 + }, + { + "start": 9146.77, + "end": 9148.21, + "probability": 0.7633 + }, + { + "start": 9148.95, + "end": 9150.41, + "probability": 0.9035 + }, + { + "start": 9150.97, + "end": 9152.95, + "probability": 0.9302 + }, + { + "start": 9153.67, + "end": 9154.85, + "probability": 0.8691 + }, + { + "start": 9156.25, + "end": 9156.79, + "probability": 0.9643 + }, + { + "start": 9156.97, + "end": 9157.93, + "probability": 0.786 + }, + { + "start": 9159.07, + "end": 9160.65, + "probability": 0.8937 + }, + { + "start": 9164.57, + "end": 9166.17, + "probability": 0.9909 + }, + { + "start": 9174.87, + "end": 9175.67, + "probability": 0.4848 + }, + { + "start": 9177.11, + "end": 9179.59, + "probability": 0.6364 + }, + { + "start": 9179.87, + "end": 9182.01, + "probability": 0.794 + }, + { + "start": 9183.01, + "end": 9185.85, + "probability": 0.7879 + }, + { + "start": 9185.93, + "end": 9188.23, + "probability": 0.835 + }, + { + "start": 9189.89, + "end": 9194.51, + "probability": 0.9853 + }, + { + "start": 9195.83, + "end": 9200.25, + "probability": 0.9947 + }, + { + "start": 9201.47, + "end": 9204.63, + "probability": 0.9878 + }, + { + "start": 9205.27, + "end": 9205.87, + "probability": 0.8562 + }, + { + "start": 9206.99, + "end": 9209.63, + "probability": 0.9333 + }, + { + "start": 9210.23, + "end": 9216.25, + "probability": 0.9915 + }, + { + "start": 9218.03, + "end": 9218.51, + "probability": 0.0674 + }, + { + "start": 9218.51, + "end": 9219.87, + "probability": 0.2741 + }, + { + "start": 9220.35, + "end": 9220.79, + "probability": 0.2888 + }, + { + "start": 9220.89, + "end": 9232.13, + "probability": 0.9683 + }, + { + "start": 9232.65, + "end": 9234.63, + "probability": 0.9976 + }, + { + "start": 9234.99, + "end": 9235.31, + "probability": 0.7433 + }, + { + "start": 9235.37, + "end": 9237.03, + "probability": 0.9706 + }, + { + "start": 9238.05, + "end": 9239.33, + "probability": 0.8187 + }, + { + "start": 9239.81, + "end": 9241.03, + "probability": 0.8125 + }, + { + "start": 9241.11, + "end": 9242.01, + "probability": 0.7362 + }, + { + "start": 9242.13, + "end": 9242.33, + "probability": 0.469 + }, + { + "start": 9242.69, + "end": 9246.41, + "probability": 0.9778 + }, + { + "start": 9247.29, + "end": 9253.57, + "probability": 0.9783 + }, + { + "start": 9253.95, + "end": 9254.61, + "probability": 0.9247 + }, + { + "start": 9255.05, + "end": 9255.83, + "probability": 0.4518 + }, + { + "start": 9256.37, + "end": 9261.05, + "probability": 0.9021 + }, + { + "start": 9261.55, + "end": 9262.69, + "probability": 0.889 + }, + { + "start": 9263.73, + "end": 9267.99, + "probability": 0.8975 + }, + { + "start": 9268.59, + "end": 9270.75, + "probability": 0.9498 + }, + { + "start": 9271.33, + "end": 9273.65, + "probability": 0.9966 + }, + { + "start": 9275.19, + "end": 9276.75, + "probability": 0.9653 + }, + { + "start": 9277.29, + "end": 9280.15, + "probability": 0.8513 + }, + { + "start": 9280.99, + "end": 9282.23, + "probability": 0.9608 + }, + { + "start": 9282.81, + "end": 9284.75, + "probability": 0.9496 + }, + { + "start": 9285.47, + "end": 9288.97, + "probability": 0.9862 + }, + { + "start": 9289.81, + "end": 9291.41, + "probability": 0.9902 + }, + { + "start": 9291.74, + "end": 9296.19, + "probability": 0.995 + }, + { + "start": 9296.25, + "end": 9297.09, + "probability": 0.5614 + }, + { + "start": 9297.21, + "end": 9303.33, + "probability": 0.9916 + }, + { + "start": 9303.73, + "end": 9306.27, + "probability": 0.9639 + }, + { + "start": 9307.71, + "end": 9309.81, + "probability": 0.9551 + }, + { + "start": 9310.43, + "end": 9312.67, + "probability": 0.924 + }, + { + "start": 9314.15, + "end": 9318.03, + "probability": 0.9919 + }, + { + "start": 9318.99, + "end": 9320.46, + "probability": 0.9961 + }, + { + "start": 9320.69, + "end": 9322.39, + "probability": 0.9762 + }, + { + "start": 9322.89, + "end": 9324.19, + "probability": 0.9882 + }, + { + "start": 9325.71, + "end": 9327.49, + "probability": 0.9821 + }, + { + "start": 9328.03, + "end": 9329.65, + "probability": 0.9908 + }, + { + "start": 9330.25, + "end": 9335.65, + "probability": 0.5329 + }, + { + "start": 9336.35, + "end": 9339.19, + "probability": 0.9907 + }, + { + "start": 9340.23, + "end": 9342.23, + "probability": 0.9607 + }, + { + "start": 9342.25, + "end": 9344.71, + "probability": 0.9102 + }, + { + "start": 9346.09, + "end": 9351.63, + "probability": 0.7787 + }, + { + "start": 9352.37, + "end": 9358.75, + "probability": 0.9871 + }, + { + "start": 9359.97, + "end": 9361.67, + "probability": 0.9983 + }, + { + "start": 9362.17, + "end": 9362.87, + "probability": 0.6958 + }, + { + "start": 9363.11, + "end": 9364.37, + "probability": 0.9486 + }, + { + "start": 9364.93, + "end": 9366.61, + "probability": 0.7402 + }, + { + "start": 9367.25, + "end": 9369.31, + "probability": 0.9625 + }, + { + "start": 9369.59, + "end": 9373.93, + "probability": 0.796 + }, + { + "start": 9374.71, + "end": 9380.09, + "probability": 0.8403 + }, + { + "start": 9380.57, + "end": 9380.57, + "probability": 0.3851 + }, + { + "start": 9380.57, + "end": 9382.51, + "probability": 0.6944 + }, + { + "start": 9382.51, + "end": 9383.47, + "probability": 0.5562 + }, + { + "start": 9384.35, + "end": 9387.15, + "probability": 0.9968 + }, + { + "start": 9388.33, + "end": 9390.85, + "probability": 0.7944 + }, + { + "start": 9390.85, + "end": 9393.85, + "probability": 0.9376 + }, + { + "start": 9394.49, + "end": 9394.69, + "probability": 0.3813 + }, + { + "start": 9394.87, + "end": 9395.15, + "probability": 0.7986 + }, + { + "start": 9396.61, + "end": 9399.73, + "probability": 0.9364 + }, + { + "start": 9400.13, + "end": 9400.91, + "probability": 0.647 + }, + { + "start": 9403.69, + "end": 9405.81, + "probability": 0.6938 + }, + { + "start": 9406.73, + "end": 9407.59, + "probability": 0.7625 + }, + { + "start": 9413.55, + "end": 9413.95, + "probability": 0.8087 + }, + { + "start": 9418.19, + "end": 9418.45, + "probability": 0.3643 + }, + { + "start": 9418.55, + "end": 9421.21, + "probability": 0.7556 + }, + { + "start": 9421.97, + "end": 9426.67, + "probability": 0.9892 + }, + { + "start": 9427.51, + "end": 9428.69, + "probability": 0.8723 + }, + { + "start": 9428.69, + "end": 9433.95, + "probability": 0.962 + }, + { + "start": 9434.99, + "end": 9438.51, + "probability": 0.8252 + }, + { + "start": 9439.31, + "end": 9441.67, + "probability": 0.9759 + }, + { + "start": 9442.71, + "end": 9445.35, + "probability": 0.9746 + }, + { + "start": 9446.03, + "end": 9448.61, + "probability": 0.942 + }, + { + "start": 9449.37, + "end": 9452.43, + "probability": 0.979 + }, + { + "start": 9453.57, + "end": 9454.69, + "probability": 0.8838 + }, + { + "start": 9454.89, + "end": 9458.41, + "probability": 0.8035 + }, + { + "start": 9458.93, + "end": 9459.77, + "probability": 0.9243 + }, + { + "start": 9460.37, + "end": 9463.25, + "probability": 0.5709 + }, + { + "start": 9465.37, + "end": 9465.49, + "probability": 0.015 + }, + { + "start": 9465.49, + "end": 9465.85, + "probability": 0.1312 + }, + { + "start": 9466.75, + "end": 9467.56, + "probability": 0.9765 + }, + { + "start": 9469.19, + "end": 9472.01, + "probability": 0.8345 + }, + { + "start": 9473.15, + "end": 9481.49, + "probability": 0.8934 + }, + { + "start": 9481.57, + "end": 9484.41, + "probability": 0.9202 + }, + { + "start": 9484.53, + "end": 9486.81, + "probability": 0.9968 + }, + { + "start": 9487.37, + "end": 9489.65, + "probability": 0.9963 + }, + { + "start": 9489.75, + "end": 9493.01, + "probability": 0.9896 + }, + { + "start": 9493.81, + "end": 9500.07, + "probability": 0.9884 + }, + { + "start": 9500.79, + "end": 9501.73, + "probability": 0.8096 + }, + { + "start": 9502.65, + "end": 9505.55, + "probability": 0.9763 + }, + { + "start": 9505.99, + "end": 9508.31, + "probability": 0.9246 + }, + { + "start": 9509.21, + "end": 9511.39, + "probability": 0.9253 + }, + { + "start": 9512.21, + "end": 9515.75, + "probability": 0.9022 + }, + { + "start": 9517.42, + "end": 9521.89, + "probability": 0.9921 + }, + { + "start": 9522.89, + "end": 9526.45, + "probability": 0.993 + }, + { + "start": 9526.51, + "end": 9527.37, + "probability": 0.7444 + }, + { + "start": 9528.33, + "end": 9529.21, + "probability": 0.9712 + }, + { + "start": 9529.61, + "end": 9534.73, + "probability": 0.9689 + }, + { + "start": 9535.67, + "end": 9536.27, + "probability": 0.8284 + }, + { + "start": 9536.87, + "end": 9537.87, + "probability": 0.8098 + }, + { + "start": 9538.79, + "end": 9540.25, + "probability": 0.9838 + }, + { + "start": 9540.59, + "end": 9541.63, + "probability": 0.986 + }, + { + "start": 9542.01, + "end": 9543.39, + "probability": 0.812 + }, + { + "start": 9544.59, + "end": 9546.89, + "probability": 0.9755 + }, + { + "start": 9546.89, + "end": 9551.57, + "probability": 0.9886 + }, + { + "start": 9552.09, + "end": 9554.37, + "probability": 0.9197 + }, + { + "start": 9554.45, + "end": 9557.19, + "probability": 0.8591 + }, + { + "start": 9558.11, + "end": 9559.31, + "probability": 0.6774 + }, + { + "start": 9560.17, + "end": 9561.45, + "probability": 0.8134 + }, + { + "start": 9562.43, + "end": 9567.55, + "probability": 0.9847 + }, + { + "start": 9567.67, + "end": 9573.35, + "probability": 0.9529 + }, + { + "start": 9574.49, + "end": 9575.19, + "probability": 0.7482 + }, + { + "start": 9575.31, + "end": 9576.35, + "probability": 0.5306 + }, + { + "start": 9576.39, + "end": 9578.19, + "probability": 0.8855 + }, + { + "start": 9578.19, + "end": 9580.85, + "probability": 0.9718 + }, + { + "start": 9582.17, + "end": 9583.53, + "probability": 0.252 + }, + { + "start": 9584.47, + "end": 9586.91, + "probability": 0.9315 + }, + { + "start": 9587.31, + "end": 9591.91, + "probability": 0.9644 + }, + { + "start": 9592.97, + "end": 9597.73, + "probability": 0.9697 + }, + { + "start": 9598.69, + "end": 9601.29, + "probability": 0.9961 + }, + { + "start": 9601.81, + "end": 9604.01, + "probability": 0.5613 + }, + { + "start": 9604.27, + "end": 9608.46, + "probability": 0.9045 + }, + { + "start": 9609.43, + "end": 9611.51, + "probability": 0.9712 + }, + { + "start": 9611.63, + "end": 9611.77, + "probability": 0.6571 + }, + { + "start": 9611.87, + "end": 9612.85, + "probability": 0.8854 + }, + { + "start": 9613.63, + "end": 9615.93, + "probability": 0.5388 + }, + { + "start": 9616.37, + "end": 9616.97, + "probability": 0.8552 + }, + { + "start": 9618.07, + "end": 9619.93, + "probability": 0.877 + }, + { + "start": 9622.29, + "end": 9623.25, + "probability": 0.6492 + }, + { + "start": 9623.71, + "end": 9625.73, + "probability": 0.875 + }, + { + "start": 9627.86, + "end": 9632.43, + "probability": 0.8799 + }, + { + "start": 9632.61, + "end": 9635.93, + "probability": 0.8623 + }, + { + "start": 9636.61, + "end": 9638.33, + "probability": 0.6892 + }, + { + "start": 9638.87, + "end": 9645.65, + "probability": 0.9604 + }, + { + "start": 9646.17, + "end": 9649.17, + "probability": 0.6356 + }, + { + "start": 9649.71, + "end": 9653.08, + "probability": 0.8465 + }, + { + "start": 9654.79, + "end": 9658.63, + "probability": 0.6038 + }, + { + "start": 9660.83, + "end": 9667.4, + "probability": 0.0152 + }, + { + "start": 9668.39, + "end": 9668.95, + "probability": 0.5509 + }, + { + "start": 9669.33, + "end": 9672.23, + "probability": 0.5551 + }, + { + "start": 9673.03, + "end": 9674.27, + "probability": 0.8439 + }, + { + "start": 9674.59, + "end": 9675.97, + "probability": 0.2749 + }, + { + "start": 9677.75, + "end": 9681.97, + "probability": 0.9099 + }, + { + "start": 9682.09, + "end": 9684.09, + "probability": 0.127 + }, + { + "start": 9684.81, + "end": 9685.53, + "probability": 0.8364 + }, + { + "start": 9686.77, + "end": 9687.13, + "probability": 0.7373 + }, + { + "start": 9687.97, + "end": 9688.93, + "probability": 0.6085 + }, + { + "start": 9689.03, + "end": 9690.29, + "probability": 0.4228 + }, + { + "start": 9690.33, + "end": 9693.69, + "probability": 0.8607 + }, + { + "start": 9693.69, + "end": 9695.85, + "probability": 0.9787 + }, + { + "start": 9695.85, + "end": 9698.71, + "probability": 0.9609 + }, + { + "start": 9699.63, + "end": 9701.91, + "probability": 0.8317 + }, + { + "start": 9702.83, + "end": 9704.39, + "probability": 0.954 + }, + { + "start": 9704.39, + "end": 9705.59, + "probability": 0.9489 + }, + { + "start": 9705.89, + "end": 9707.43, + "probability": 0.9626 + }, + { + "start": 9707.47, + "end": 9709.55, + "probability": 0.9505 + }, + { + "start": 9709.59, + "end": 9711.17, + "probability": 0.9767 + }, + { + "start": 9711.19, + "end": 9712.85, + "probability": 0.9593 + }, + { + "start": 9713.19, + "end": 9715.09, + "probability": 0.9603 + }, + { + "start": 9715.09, + "end": 9716.29, + "probability": 0.9759 + }, + { + "start": 9716.35, + "end": 9717.81, + "probability": 0.9478 + }, + { + "start": 9717.83, + "end": 9719.37, + "probability": 0.9649 + }, + { + "start": 9720.25, + "end": 9725.43, + "probability": 0.8057 + }, + { + "start": 9726.79, + "end": 9728.13, + "probability": 0.9509 + }, + { + "start": 9728.81, + "end": 9730.69, + "probability": 0.9562 + }, + { + "start": 9731.81, + "end": 9733.49, + "probability": 0.959 + }, + { + "start": 9735.59, + "end": 9736.51, + "probability": 0.3348 + }, + { + "start": 9737.05, + "end": 9737.77, + "probability": 0.1294 + }, + { + "start": 9737.77, + "end": 9739.59, + "probability": 0.854 + }, + { + "start": 9740.33, + "end": 9742.61, + "probability": 0.5289 + }, + { + "start": 9742.61, + "end": 9743.87, + "probability": 0.2769 + }, + { + "start": 9744.09, + "end": 9745.01, + "probability": 0.8644 + }, + { + "start": 9745.27, + "end": 9745.71, + "probability": 0.4979 + }, + { + "start": 9746.27, + "end": 9747.53, + "probability": 0.9777 + }, + { + "start": 9747.65, + "end": 9750.01, + "probability": 0.8509 + }, + { + "start": 9750.85, + "end": 9750.85, + "probability": 0.276 + }, + { + "start": 9750.85, + "end": 9753.45, + "probability": 0.8796 + }, + { + "start": 9753.45, + "end": 9758.09, + "probability": 0.9814 + }, + { + "start": 9759.43, + "end": 9761.99, + "probability": 0.2684 + }, + { + "start": 9762.41, + "end": 9763.23, + "probability": 0.3951 + }, + { + "start": 9763.33, + "end": 9765.63, + "probability": 0.6595 + }, + { + "start": 9766.23, + "end": 9767.29, + "probability": 0.7247 + }, + { + "start": 9767.41, + "end": 9772.23, + "probability": 0.8687 + }, + { + "start": 9772.23, + "end": 9775.59, + "probability": 0.6101 + }, + { + "start": 9776.07, + "end": 9781.53, + "probability": 0.9767 + }, + { + "start": 9781.67, + "end": 9782.25, + "probability": 0.9104 + }, + { + "start": 9783.21, + "end": 9784.65, + "probability": 0.7017 + }, + { + "start": 9784.71, + "end": 9786.79, + "probability": 0.8509 + }, + { + "start": 9786.89, + "end": 9788.71, + "probability": 0.8682 + }, + { + "start": 9788.93, + "end": 9789.71, + "probability": 0.5059 + }, + { + "start": 9789.77, + "end": 9790.27, + "probability": 0.6107 + }, + { + "start": 9790.27, + "end": 9793.49, + "probability": 0.811 + }, + { + "start": 9793.63, + "end": 9795.17, + "probability": 0.8203 + }, + { + "start": 9795.65, + "end": 9798.03, + "probability": 0.9924 + }, + { + "start": 9798.03, + "end": 9800.95, + "probability": 0.639 + }, + { + "start": 9801.41, + "end": 9802.67, + "probability": 0.4212 + }, + { + "start": 9802.77, + "end": 9804.37, + "probability": 0.9302 + }, + { + "start": 9806.23, + "end": 9808.49, + "probability": 0.3048 + }, + { + "start": 9809.07, + "end": 9811.25, + "probability": 0.769 + }, + { + "start": 9811.33, + "end": 9811.85, + "probability": 0.5386 + }, + { + "start": 9811.91, + "end": 9812.77, + "probability": 0.7574 + }, + { + "start": 9813.23, + "end": 9815.19, + "probability": 0.9572 + }, + { + "start": 9815.31, + "end": 9818.75, + "probability": 0.7934 + }, + { + "start": 9819.39, + "end": 9821.41, + "probability": 0.9346 + }, + { + "start": 9821.85, + "end": 9822.15, + "probability": 0.5978 + }, + { + "start": 9822.29, + "end": 9823.51, + "probability": 0.9897 + }, + { + "start": 9823.67, + "end": 9824.65, + "probability": 0.9438 + }, + { + "start": 9824.95, + "end": 9826.13, + "probability": 0.6696 + }, + { + "start": 9826.49, + "end": 9827.03, + "probability": 0.8836 + }, + { + "start": 9828.37, + "end": 9832.55, + "probability": 0.9944 + }, + { + "start": 9832.55, + "end": 9836.15, + "probability": 0.9601 + }, + { + "start": 9836.51, + "end": 9838.13, + "probability": 0.8181 + }, + { + "start": 9839.15, + "end": 9840.48, + "probability": 0.6152 + }, + { + "start": 9841.49, + "end": 9842.59, + "probability": 0.1909 + }, + { + "start": 9843.61, + "end": 9846.19, + "probability": 0.9634 + }, + { + "start": 9846.19, + "end": 9849.77, + "probability": 0.9911 + }, + { + "start": 9850.45, + "end": 9851.69, + "probability": 0.7519 + }, + { + "start": 9851.97, + "end": 9856.19, + "probability": 0.5698 + }, + { + "start": 9856.67, + "end": 9858.41, + "probability": 0.8343 + }, + { + "start": 9858.41, + "end": 9861.61, + "probability": 0.9886 + }, + { + "start": 9861.75, + "end": 9865.8, + "probability": 0.9727 + }, + { + "start": 9866.97, + "end": 9875.57, + "probability": 0.8685 + }, + { + "start": 9875.71, + "end": 9877.07, + "probability": 0.8243 + }, + { + "start": 9877.73, + "end": 9878.69, + "probability": 0.9047 + }, + { + "start": 9879.81, + "end": 9883.61, + "probability": 0.9919 + }, + { + "start": 9883.61, + "end": 9887.31, + "probability": 0.811 + }, + { + "start": 9887.83, + "end": 9892.21, + "probability": 0.9928 + }, + { + "start": 9892.75, + "end": 9894.83, + "probability": 0.6733 + }, + { + "start": 9895.43, + "end": 9897.07, + "probability": 0.9045 + }, + { + "start": 9897.53, + "end": 9899.19, + "probability": 0.9536 + }, + { + "start": 9899.79, + "end": 9905.23, + "probability": 0.6788 + }, + { + "start": 9905.99, + "end": 9906.71, + "probability": 0.9844 + }, + { + "start": 9908.25, + "end": 9911.15, + "probability": 0.9966 + }, + { + "start": 9911.89, + "end": 9912.73, + "probability": 0.7903 + }, + { + "start": 9913.21, + "end": 9917.55, + "probability": 0.95 + }, + { + "start": 9917.75, + "end": 9919.03, + "probability": 0.8846 + }, + { + "start": 9919.65, + "end": 9923.65, + "probability": 0.9773 + }, + { + "start": 9924.09, + "end": 9928.53, + "probability": 0.962 + }, + { + "start": 9929.61, + "end": 9932.99, + "probability": 0.9958 + }, + { + "start": 9933.59, + "end": 9934.79, + "probability": 0.9494 + }, + { + "start": 9935.55, + "end": 9942.19, + "probability": 0.998 + }, + { + "start": 9944.83, + "end": 9947.09, + "probability": 0.6058 + }, + { + "start": 9947.61, + "end": 9951.43, + "probability": 0.9672 + }, + { + "start": 9951.96, + "end": 9955.24, + "probability": 0.9729 + }, + { + "start": 9955.79, + "end": 9962.55, + "probability": 0.9945 + }, + { + "start": 9962.59, + "end": 9963.59, + "probability": 0.6376 + }, + { + "start": 9964.33, + "end": 9966.15, + "probability": 0.6747 + }, + { + "start": 9966.93, + "end": 9969.71, + "probability": 0.9881 + }, + { + "start": 9970.73, + "end": 9976.45, + "probability": 0.9808 + }, + { + "start": 9977.21, + "end": 9982.51, + "probability": 0.6795 + }, + { + "start": 9983.11, + "end": 9984.17, + "probability": 0.8631 + }, + { + "start": 9984.87, + "end": 9989.49, + "probability": 0.6125 + }, + { + "start": 9990.25, + "end": 9995.43, + "probability": 0.9828 + }, + { + "start": 9995.43, + "end": 10001.73, + "probability": 0.8128 + }, + { + "start": 10002.29, + "end": 10005.53, + "probability": 0.8988 + }, + { + "start": 10006.15, + "end": 10009.95, + "probability": 0.9751 + }, + { + "start": 10011.93, + "end": 10012.79, + "probability": 0.887 + }, + { + "start": 10012.85, + "end": 10013.45, + "probability": 0.6326 + }, + { + "start": 10013.55, + "end": 10015.21, + "probability": 0.9968 + }, + { + "start": 10016.07, + "end": 10018.41, + "probability": 0.9817 + }, + { + "start": 10019.09, + "end": 10019.83, + "probability": 0.7129 + }, + { + "start": 10019.95, + "end": 10020.53, + "probability": 0.4623 + }, + { + "start": 10020.59, + "end": 10023.39, + "probability": 0.8662 + }, + { + "start": 10023.39, + "end": 10027.09, + "probability": 0.9907 + }, + { + "start": 10027.65, + "end": 10030.27, + "probability": 0.9258 + }, + { + "start": 10030.93, + "end": 10032.66, + "probability": 0.8593 + }, + { + "start": 10033.43, + "end": 10037.35, + "probability": 0.9874 + }, + { + "start": 10038.03, + "end": 10042.15, + "probability": 0.9275 + }, + { + "start": 10042.15, + "end": 10046.05, + "probability": 0.9723 + }, + { + "start": 10047.11, + "end": 10048.23, + "probability": 0.8968 + }, + { + "start": 10049.35, + "end": 10052.43, + "probability": 0.9551 + }, + { + "start": 10052.97, + "end": 10056.63, + "probability": 0.8836 + }, + { + "start": 10057.17, + "end": 10059.41, + "probability": 0.8989 + }, + { + "start": 10060.31, + "end": 10064.23, + "probability": 0.9097 + }, + { + "start": 10064.43, + "end": 10064.85, + "probability": 0.8147 + }, + { + "start": 10065.27, + "end": 10066.33, + "probability": 0.8385 + }, + { + "start": 10066.81, + "end": 10068.87, + "probability": 0.9101 + }, + { + "start": 10069.15, + "end": 10070.49, + "probability": 0.8881 + }, + { + "start": 10071.01, + "end": 10073.85, + "probability": 0.9056 + }, + { + "start": 10074.61, + "end": 10078.67, + "probability": 0.9585 + }, + { + "start": 10079.21, + "end": 10079.82, + "probability": 0.8765 + }, + { + "start": 10081.75, + "end": 10083.71, + "probability": 0.9639 + }, + { + "start": 10083.71, + "end": 10088.67, + "probability": 0.9629 + }, + { + "start": 10089.07, + "end": 10090.41, + "probability": 0.5518 + }, + { + "start": 10091.09, + "end": 10095.23, + "probability": 0.93 + }, + { + "start": 10095.31, + "end": 10096.35, + "probability": 0.6897 + }, + { + "start": 10097.21, + "end": 10099.59, + "probability": 0.8869 + }, + { + "start": 10100.39, + "end": 10102.59, + "probability": 0.7787 + }, + { + "start": 10103.23, + "end": 10104.15, + "probability": 0.8463 + }, + { + "start": 10104.27, + "end": 10106.53, + "probability": 0.9608 + }, + { + "start": 10107.01, + "end": 10108.61, + "probability": 0.9692 + }, + { + "start": 10109.03, + "end": 10112.21, + "probability": 0.995 + }, + { + "start": 10112.37, + "end": 10113.23, + "probability": 0.6281 + }, + { + "start": 10113.87, + "end": 10117.73, + "probability": 0.9856 + }, + { + "start": 10117.73, + "end": 10122.19, + "probability": 0.9978 + }, + { + "start": 10122.79, + "end": 10129.99, + "probability": 0.848 + }, + { + "start": 10131.01, + "end": 10134.35, + "probability": 0.9329 + }, + { + "start": 10134.69, + "end": 10135.85, + "probability": 0.9915 + }, + { + "start": 10137.31, + "end": 10143.45, + "probability": 0.5519 + }, + { + "start": 10143.81, + "end": 10144.27, + "probability": 0.8034 + }, + { + "start": 10144.89, + "end": 10146.23, + "probability": 0.709 + }, + { + "start": 10147.07, + "end": 10152.39, + "probability": 0.9202 + }, + { + "start": 10153.17, + "end": 10154.35, + "probability": 0.8644 + }, + { + "start": 10154.45, + "end": 10154.87, + "probability": 0.639 + }, + { + "start": 10154.97, + "end": 10155.57, + "probability": 0.8721 + }, + { + "start": 10155.67, + "end": 10157.29, + "probability": 0.9384 + }, + { + "start": 10157.77, + "end": 10159.45, + "probability": 0.9443 + }, + { + "start": 10159.91, + "end": 10160.59, + "probability": 0.6768 + }, + { + "start": 10160.91, + "end": 10162.11, + "probability": 0.9785 + }, + { + "start": 10162.69, + "end": 10163.93, + "probability": 0.8775 + }, + { + "start": 10164.65, + "end": 10167.99, + "probability": 0.9751 + }, + { + "start": 10170.55, + "end": 10171.23, + "probability": 0.7531 + }, + { + "start": 10171.71, + "end": 10173.67, + "probability": 0.8955 + }, + { + "start": 10174.09, + "end": 10175.05, + "probability": 0.8558 + }, + { + "start": 10175.21, + "end": 10179.41, + "probability": 0.9423 + }, + { + "start": 10179.51, + "end": 10180.87, + "probability": 0.8815 + }, + { + "start": 10180.95, + "end": 10183.23, + "probability": 0.9854 + }, + { + "start": 10183.69, + "end": 10186.11, + "probability": 0.9943 + }, + { + "start": 10186.83, + "end": 10193.87, + "probability": 0.983 + }, + { + "start": 10194.83, + "end": 10198.59, + "probability": 0.9536 + }, + { + "start": 10199.23, + "end": 10201.57, + "probability": 0.9971 + }, + { + "start": 10202.21, + "end": 10203.29, + "probability": 0.5091 + }, + { + "start": 10203.91, + "end": 10204.95, + "probability": 0.9004 + }, + { + "start": 10205.05, + "end": 10210.55, + "probability": 0.9736 + }, + { + "start": 10211.05, + "end": 10213.47, + "probability": 0.994 + }, + { + "start": 10213.47, + "end": 10216.87, + "probability": 0.9849 + }, + { + "start": 10216.99, + "end": 10218.91, + "probability": 0.8257 + }, + { + "start": 10219.25, + "end": 10225.29, + "probability": 0.9797 + }, + { + "start": 10225.75, + "end": 10228.43, + "probability": 0.5667 + }, + { + "start": 10228.81, + "end": 10234.14, + "probability": 0.9936 + }, + { + "start": 10234.79, + "end": 10242.09, + "probability": 0.9827 + }, + { + "start": 10242.67, + "end": 10244.31, + "probability": 0.8794 + }, + { + "start": 10244.37, + "end": 10245.27, + "probability": 0.6722 + }, + { + "start": 10245.69, + "end": 10250.93, + "probability": 0.9634 + }, + { + "start": 10251.37, + "end": 10256.11, + "probability": 0.9857 + }, + { + "start": 10256.21, + "end": 10256.43, + "probability": 0.7782 + }, + { + "start": 10256.83, + "end": 10257.29, + "probability": 0.6721 + }, + { + "start": 10257.37, + "end": 10257.67, + "probability": 0.7664 + }, + { + "start": 10257.75, + "end": 10259.79, + "probability": 0.9869 + }, + { + "start": 10259.93, + "end": 10261.93, + "probability": 0.9168 + }, + { + "start": 10262.65, + "end": 10264.21, + "probability": 0.9632 + }, + { + "start": 10268.55, + "end": 10270.93, + "probability": 0.8525 + }, + { + "start": 10272.23, + "end": 10275.23, + "probability": 0.8902 + }, + { + "start": 10276.27, + "end": 10276.99, + "probability": 0.6492 + }, + { + "start": 10277.15, + "end": 10278.95, + "probability": 0.9957 + }, + { + "start": 10279.8, + "end": 10281.89, + "probability": 0.9081 + }, + { + "start": 10282.35, + "end": 10283.05, + "probability": 0.886 + }, + { + "start": 10283.49, + "end": 10284.27, + "probability": 0.1748 + }, + { + "start": 10295.57, + "end": 10295.67, + "probability": 0.1611 + }, + { + "start": 10323.5, + "end": 10325.27, + "probability": 0.5967 + }, + { + "start": 10326.61, + "end": 10334.25, + "probability": 0.9882 + }, + { + "start": 10337.81, + "end": 10338.47, + "probability": 0.4865 + }, + { + "start": 10343.75, + "end": 10346.05, + "probability": 0.4098 + }, + { + "start": 10346.76, + "end": 10349.83, + "probability": 0.6069 + }, + { + "start": 10351.03, + "end": 10352.05, + "probability": 0.9888 + }, + { + "start": 10353.27, + "end": 10357.51, + "probability": 0.9903 + }, + { + "start": 10359.27, + "end": 10363.89, + "probability": 0.89 + }, + { + "start": 10365.33, + "end": 10366.79, + "probability": 0.7869 + }, + { + "start": 10367.85, + "end": 10369.49, + "probability": 0.5226 + }, + { + "start": 10370.87, + "end": 10372.17, + "probability": 0.621 + }, + { + "start": 10372.99, + "end": 10376.29, + "probability": 0.7663 + }, + { + "start": 10378.91, + "end": 10379.77, + "probability": 0.7453 + }, + { + "start": 10381.71, + "end": 10385.49, + "probability": 0.9921 + }, + { + "start": 10386.19, + "end": 10388.85, + "probability": 0.9954 + }, + { + "start": 10390.85, + "end": 10394.45, + "probability": 0.9788 + }, + { + "start": 10396.07, + "end": 10399.43, + "probability": 0.7723 + }, + { + "start": 10400.03, + "end": 10401.67, + "probability": 0.6064 + }, + { + "start": 10402.09, + "end": 10404.67, + "probability": 0.9456 + }, + { + "start": 10405.79, + "end": 10410.41, + "probability": 0.7667 + }, + { + "start": 10411.93, + "end": 10415.85, + "probability": 0.7136 + }, + { + "start": 10416.15, + "end": 10417.03, + "probability": 0.4518 + }, + { + "start": 10417.03, + "end": 10417.67, + "probability": 0.9565 + }, + { + "start": 10417.67, + "end": 10419.25, + "probability": 0.92 + }, + { + "start": 10420.57, + "end": 10424.69, + "probability": 0.848 + }, + { + "start": 10425.25, + "end": 10426.27, + "probability": 0.9759 + }, + { + "start": 10427.77, + "end": 10432.44, + "probability": 0.9944 + }, + { + "start": 10432.91, + "end": 10435.27, + "probability": 0.9749 + }, + { + "start": 10437.71, + "end": 10437.97, + "probability": 0.8894 + }, + { + "start": 10438.11, + "end": 10439.29, + "probability": 0.8716 + }, + { + "start": 10439.41, + "end": 10440.51, + "probability": 0.6108 + }, + { + "start": 10441.11, + "end": 10444.71, + "probability": 0.9925 + }, + { + "start": 10446.49, + "end": 10449.39, + "probability": 0.996 + }, + { + "start": 10449.95, + "end": 10452.05, + "probability": 0.9846 + }, + { + "start": 10453.61, + "end": 10459.67, + "probability": 0.9932 + }, + { + "start": 10460.73, + "end": 10463.35, + "probability": 0.9715 + }, + { + "start": 10463.85, + "end": 10466.87, + "probability": 0.7837 + }, + { + "start": 10468.81, + "end": 10471.23, + "probability": 0.9989 + }, + { + "start": 10471.33, + "end": 10472.4, + "probability": 0.7522 + }, + { + "start": 10472.57, + "end": 10474.07, + "probability": 0.9871 + }, + { + "start": 10474.95, + "end": 10477.27, + "probability": 0.998 + }, + { + "start": 10478.61, + "end": 10481.29, + "probability": 0.9952 + }, + { + "start": 10482.47, + "end": 10483.29, + "probability": 0.9012 + }, + { + "start": 10483.57, + "end": 10484.43, + "probability": 0.9725 + }, + { + "start": 10484.91, + "end": 10486.81, + "probability": 0.9449 + }, + { + "start": 10487.59, + "end": 10489.91, + "probability": 0.9957 + }, + { + "start": 10490.77, + "end": 10494.31, + "probability": 0.9975 + }, + { + "start": 10495.07, + "end": 10499.97, + "probability": 0.9837 + }, + { + "start": 10499.97, + "end": 10504.25, + "probability": 0.9885 + }, + { + "start": 10505.91, + "end": 10507.31, + "probability": 0.999 + }, + { + "start": 10508.05, + "end": 10510.29, + "probability": 0.9941 + }, + { + "start": 10511.01, + "end": 10513.57, + "probability": 0.9045 + }, + { + "start": 10515.63, + "end": 10516.49, + "probability": 0.6249 + }, + { + "start": 10516.87, + "end": 10517.89, + "probability": 0.949 + }, + { + "start": 10518.35, + "end": 10521.39, + "probability": 0.9518 + }, + { + "start": 10522.13, + "end": 10522.85, + "probability": 0.931 + }, + { + "start": 10523.79, + "end": 10524.37, + "probability": 0.8782 + }, + { + "start": 10525.11, + "end": 10526.15, + "probability": 0.8852 + }, + { + "start": 10527.05, + "end": 10533.91, + "probability": 0.9771 + }, + { + "start": 10546.49, + "end": 10550.75, + "probability": 0.9215 + }, + { + "start": 10551.39, + "end": 10553.05, + "probability": 0.5172 + }, + { + "start": 10554.39, + "end": 10555.71, + "probability": 0.6837 + }, + { + "start": 10556.29, + "end": 10557.85, + "probability": 0.9704 + }, + { + "start": 10558.63, + "end": 10560.51, + "probability": 0.993 + }, + { + "start": 10561.27, + "end": 10562.97, + "probability": 0.9727 + }, + { + "start": 10564.13, + "end": 10566.89, + "probability": 0.972 + }, + { + "start": 10568.07, + "end": 10570.51, + "probability": 0.913 + }, + { + "start": 10571.65, + "end": 10572.71, + "probability": 0.8586 + }, + { + "start": 10573.77, + "end": 10576.61, + "probability": 0.938 + }, + { + "start": 10576.73, + "end": 10577.33, + "probability": 0.8558 + }, + { + "start": 10577.43, + "end": 10578.59, + "probability": 0.9435 + }, + { + "start": 10579.47, + "end": 10581.05, + "probability": 0.9838 + }, + { + "start": 10582.59, + "end": 10584.33, + "probability": 0.6128 + }, + { + "start": 10584.63, + "end": 10586.15, + "probability": 0.8807 + }, + { + "start": 10586.99, + "end": 10587.81, + "probability": 0.9084 + }, + { + "start": 10588.11, + "end": 10588.95, + "probability": 0.751 + }, + { + "start": 10588.99, + "end": 10592.21, + "probability": 0.5906 + }, + { + "start": 10592.71, + "end": 10595.09, + "probability": 0.9329 + }, + { + "start": 10613.7, + "end": 10618.35, + "probability": 0.7469 + }, + { + "start": 10618.95, + "end": 10621.75, + "probability": 0.9516 + }, + { + "start": 10622.55, + "end": 10626.63, + "probability": 0.9807 + }, + { + "start": 10627.55, + "end": 10629.83, + "probability": 0.9787 + }, + { + "start": 10630.45, + "end": 10634.79, + "probability": 0.9882 + }, + { + "start": 10635.65, + "end": 10636.25, + "probability": 0.7569 + }, + { + "start": 10636.87, + "end": 10638.01, + "probability": 0.7964 + }, + { + "start": 10639.29, + "end": 10640.09, + "probability": 0.7371 + }, + { + "start": 10640.25, + "end": 10642.74, + "probability": 0.9907 + }, + { + "start": 10643.25, + "end": 10644.85, + "probability": 0.8147 + }, + { + "start": 10645.25, + "end": 10646.03, + "probability": 0.959 + }, + { + "start": 10646.83, + "end": 10647.37, + "probability": 0.888 + }, + { + "start": 10648.03, + "end": 10650.19, + "probability": 0.9381 + }, + { + "start": 10651.09, + "end": 10654.09, + "probability": 0.9475 + }, + { + "start": 10654.95, + "end": 10657.39, + "probability": 0.8916 + }, + { + "start": 10658.59, + "end": 10661.93, + "probability": 0.9552 + }, + { + "start": 10662.39, + "end": 10665.39, + "probability": 0.9924 + }, + { + "start": 10665.99, + "end": 10670.79, + "probability": 0.8813 + }, + { + "start": 10671.67, + "end": 10671.99, + "probability": 0.8301 + }, + { + "start": 10672.93, + "end": 10673.89, + "probability": 0.9832 + }, + { + "start": 10674.51, + "end": 10678.19, + "probability": 0.9963 + }, + { + "start": 10678.69, + "end": 10682.35, + "probability": 0.8642 + }, + { + "start": 10682.53, + "end": 10685.63, + "probability": 0.8337 + }, + { + "start": 10686.43, + "end": 10690.11, + "probability": 0.9792 + }, + { + "start": 10690.11, + "end": 10693.29, + "probability": 0.9941 + }, + { + "start": 10694.21, + "end": 10698.11, + "probability": 0.9933 + }, + { + "start": 10698.87, + "end": 10700.79, + "probability": 0.7285 + }, + { + "start": 10701.21, + "end": 10703.79, + "probability": 0.8688 + }, + { + "start": 10704.73, + "end": 10708.29, + "probability": 0.904 + }, + { + "start": 10708.91, + "end": 10711.65, + "probability": 0.991 + }, + { + "start": 10712.33, + "end": 10715.69, + "probability": 0.9961 + }, + { + "start": 10716.65, + "end": 10718.56, + "probability": 0.9991 + }, + { + "start": 10719.27, + "end": 10721.35, + "probability": 0.9751 + }, + { + "start": 10721.63, + "end": 10723.33, + "probability": 0.7491 + }, + { + "start": 10724.35, + "end": 10725.35, + "probability": 0.6803 + }, + { + "start": 10725.75, + "end": 10729.63, + "probability": 0.8716 + }, + { + "start": 10730.53, + "end": 10731.83, + "probability": 0.758 + }, + { + "start": 10732.51, + "end": 10735.07, + "probability": 0.9303 + }, + { + "start": 10735.59, + "end": 10737.95, + "probability": 0.9246 + }, + { + "start": 10738.67, + "end": 10742.79, + "probability": 0.9944 + }, + { + "start": 10743.37, + "end": 10745.41, + "probability": 0.7695 + }, + { + "start": 10746.01, + "end": 10747.05, + "probability": 0.952 + }, + { + "start": 10747.63, + "end": 10751.95, + "probability": 0.9615 + }, + { + "start": 10752.63, + "end": 10753.6, + "probability": 0.9749 + }, + { + "start": 10754.09, + "end": 10756.57, + "probability": 0.9944 + }, + { + "start": 10757.23, + "end": 10759.33, + "probability": 0.9776 + }, + { + "start": 10759.73, + "end": 10765.59, + "probability": 0.9866 + }, + { + "start": 10766.33, + "end": 10770.01, + "probability": 0.9941 + }, + { + "start": 10771.31, + "end": 10772.05, + "probability": 0.7888 + }, + { + "start": 10772.61, + "end": 10773.65, + "probability": 0.9976 + }, + { + "start": 10774.45, + "end": 10775.95, + "probability": 0.9814 + }, + { + "start": 10776.51, + "end": 10778.57, + "probability": 0.8823 + }, + { + "start": 10779.47, + "end": 10782.43, + "probability": 0.8785 + }, + { + "start": 10782.83, + "end": 10785.41, + "probability": 0.8862 + }, + { + "start": 10786.23, + "end": 10789.93, + "probability": 0.9979 + }, + { + "start": 10790.93, + "end": 10791.99, + "probability": 0.9412 + }, + { + "start": 10792.27, + "end": 10797.87, + "probability": 0.9915 + }, + { + "start": 10798.49, + "end": 10799.67, + "probability": 0.9383 + }, + { + "start": 10800.63, + "end": 10803.05, + "probability": 0.9976 + }, + { + "start": 10803.85, + "end": 10808.21, + "probability": 0.9833 + }, + { + "start": 10808.99, + "end": 10811.43, + "probability": 0.9979 + }, + { + "start": 10811.91, + "end": 10815.19, + "probability": 0.9505 + }, + { + "start": 10815.77, + "end": 10818.29, + "probability": 0.9943 + }, + { + "start": 10819.09, + "end": 10819.83, + "probability": 0.7607 + }, + { + "start": 10820.57, + "end": 10821.07, + "probability": 0.4646 + }, + { + "start": 10821.79, + "end": 10823.65, + "probability": 0.9972 + }, + { + "start": 10824.33, + "end": 10825.33, + "probability": 0.9944 + }, + { + "start": 10826.29, + "end": 10827.55, + "probability": 0.927 + }, + { + "start": 10828.17, + "end": 10830.81, + "probability": 0.9515 + }, + { + "start": 10831.33, + "end": 10834.77, + "probability": 0.9071 + }, + { + "start": 10835.35, + "end": 10836.84, + "probability": 0.9961 + }, + { + "start": 10837.07, + "end": 10838.05, + "probability": 0.7018 + }, + { + "start": 10838.53, + "end": 10838.53, + "probability": 0.2262 + }, + { + "start": 10838.53, + "end": 10838.53, + "probability": 0.0562 + }, + { + "start": 10838.53, + "end": 10840.07, + "probability": 0.9377 + }, + { + "start": 10840.61, + "end": 10841.03, + "probability": 0.9139 + }, + { + "start": 10842.57, + "end": 10845.61, + "probability": 0.9496 + }, + { + "start": 10846.17, + "end": 10852.13, + "probability": 0.9967 + }, + { + "start": 10852.67, + "end": 10853.27, + "probability": 0.7199 + }, + { + "start": 10854.23, + "end": 10856.51, + "probability": 0.8651 + }, + { + "start": 10856.99, + "end": 10857.29, + "probability": 0.7479 + }, + { + "start": 10857.55, + "end": 10858.11, + "probability": 0.5236 + }, + { + "start": 10858.17, + "end": 10858.63, + "probability": 0.7336 + }, + { + "start": 10858.63, + "end": 10860.71, + "probability": 0.9076 + }, + { + "start": 10862.25, + "end": 10865.13, + "probability": 0.8869 + }, + { + "start": 10881.05, + "end": 10883.07, + "probability": 0.6786 + }, + { + "start": 10884.25, + "end": 10888.35, + "probability": 0.9972 + }, + { + "start": 10890.41, + "end": 10893.17, + "probability": 0.9996 + }, + { + "start": 10893.17, + "end": 10897.85, + "probability": 0.9978 + }, + { + "start": 10897.85, + "end": 10902.25, + "probability": 0.9995 + }, + { + "start": 10903.39, + "end": 10903.89, + "probability": 0.3479 + }, + { + "start": 10903.97, + "end": 10905.27, + "probability": 0.9866 + }, + { + "start": 10905.65, + "end": 10907.33, + "probability": 0.9381 + }, + { + "start": 10908.15, + "end": 10910.65, + "probability": 0.9912 + }, + { + "start": 10911.55, + "end": 10915.89, + "probability": 0.9979 + }, + { + "start": 10916.73, + "end": 10919.99, + "probability": 0.7868 + }, + { + "start": 10920.89, + "end": 10926.63, + "probability": 0.9982 + }, + { + "start": 10927.51, + "end": 10932.01, + "probability": 0.9966 + }, + { + "start": 10932.93, + "end": 10934.81, + "probability": 0.8623 + }, + { + "start": 10935.63, + "end": 10936.91, + "probability": 0.7461 + }, + { + "start": 10937.57, + "end": 10942.31, + "probability": 0.9953 + }, + { + "start": 10942.91, + "end": 10945.17, + "probability": 0.9915 + }, + { + "start": 10946.17, + "end": 10946.91, + "probability": 0.7732 + }, + { + "start": 10947.49, + "end": 10949.41, + "probability": 0.9028 + }, + { + "start": 10949.61, + "end": 10953.11, + "probability": 0.9725 + }, + { + "start": 10954.75, + "end": 10957.43, + "probability": 0.9941 + }, + { + "start": 10958.33, + "end": 10958.95, + "probability": 0.8112 + }, + { + "start": 10959.03, + "end": 10959.85, + "probability": 0.7827 + }, + { + "start": 10959.85, + "end": 10963.87, + "probability": 0.9697 + }, + { + "start": 10964.63, + "end": 10967.35, + "probability": 0.9818 + }, + { + "start": 10968.49, + "end": 10970.21, + "probability": 0.9136 + }, + { + "start": 10970.83, + "end": 10972.25, + "probability": 0.9849 + }, + { + "start": 10972.83, + "end": 10975.57, + "probability": 0.9646 + }, + { + "start": 10976.27, + "end": 10979.83, + "probability": 0.9973 + }, + { + "start": 10980.45, + "end": 10981.45, + "probability": 0.9184 + }, + { + "start": 10982.63, + "end": 10986.07, + "probability": 0.8054 + }, + { + "start": 10986.67, + "end": 10988.63, + "probability": 0.9465 + }, + { + "start": 10989.35, + "end": 10990.36, + "probability": 0.9711 + }, + { + "start": 10991.13, + "end": 10993.37, + "probability": 0.9803 + }, + { + "start": 10993.93, + "end": 10994.01, + "probability": 0.0434 + }, + { + "start": 10994.01, + "end": 10997.07, + "probability": 0.9922 + }, + { + "start": 10998.45, + "end": 11001.97, + "probability": 0.9305 + }, + { + "start": 11003.21, + "end": 11005.61, + "probability": 0.7104 + }, + { + "start": 11006.37, + "end": 11007.91, + "probability": 0.9175 + }, + { + "start": 11008.69, + "end": 11011.53, + "probability": 0.999 + }, + { + "start": 11011.53, + "end": 11015.15, + "probability": 0.9123 + }, + { + "start": 11016.31, + "end": 11019.79, + "probability": 0.9906 + }, + { + "start": 11019.89, + "end": 11020.39, + "probability": 0.5929 + }, + { + "start": 11021.17, + "end": 11022.85, + "probability": 0.9827 + }, + { + "start": 11023.55, + "end": 11024.09, + "probability": 0.9601 + }, + { + "start": 11024.79, + "end": 11027.11, + "probability": 0.913 + }, + { + "start": 11027.73, + "end": 11030.69, + "probability": 0.9665 + }, + { + "start": 11031.53, + "end": 11035.69, + "probability": 0.8325 + }, + { + "start": 11036.69, + "end": 11039.33, + "probability": 0.9951 + }, + { + "start": 11040.45, + "end": 11041.03, + "probability": 0.8926 + }, + { + "start": 11042.03, + "end": 11042.93, + "probability": 0.8087 + }, + { + "start": 11043.05, + "end": 11044.07, + "probability": 0.747 + }, + { + "start": 11044.55, + "end": 11048.27, + "probability": 0.9983 + }, + { + "start": 11048.95, + "end": 11051.37, + "probability": 0.9866 + }, + { + "start": 11052.29, + "end": 11055.97, + "probability": 0.9946 + }, + { + "start": 11057.73, + "end": 11062.31, + "probability": 0.9933 + }, + { + "start": 11063.41, + "end": 11065.25, + "probability": 0.9907 + }, + { + "start": 11065.87, + "end": 11067.57, + "probability": 0.9833 + }, + { + "start": 11068.65, + "end": 11070.81, + "probability": 0.883 + }, + { + "start": 11071.55, + "end": 11072.27, + "probability": 0.9592 + }, + { + "start": 11072.91, + "end": 11078.13, + "probability": 0.9841 + }, + { + "start": 11078.13, + "end": 11083.93, + "probability": 0.9986 + }, + { + "start": 11084.83, + "end": 11088.25, + "probability": 0.9995 + }, + { + "start": 11088.25, + "end": 11093.05, + "probability": 0.9744 + }, + { + "start": 11093.19, + "end": 11093.97, + "probability": 0.8871 + }, + { + "start": 11094.41, + "end": 11096.35, + "probability": 0.9049 + }, + { + "start": 11097.03, + "end": 11097.41, + "probability": 0.788 + }, + { + "start": 11097.41, + "end": 11097.51, + "probability": 0.733 + }, + { + "start": 11098.15, + "end": 11100.05, + "probability": 0.8873 + }, + { + "start": 11116.31, + "end": 11117.19, + "probability": 0.6485 + }, + { + "start": 11118.09, + "end": 11120.69, + "probability": 0.9034 + }, + { + "start": 11121.55, + "end": 11124.07, + "probability": 0.8224 + }, + { + "start": 11125.61, + "end": 11131.21, + "probability": 0.968 + }, + { + "start": 11132.05, + "end": 11134.87, + "probability": 0.9958 + }, + { + "start": 11135.99, + "end": 11137.17, + "probability": 0.8787 + }, + { + "start": 11137.93, + "end": 11138.97, + "probability": 0.9487 + }, + { + "start": 11139.61, + "end": 11140.95, + "probability": 0.7804 + }, + { + "start": 11143.05, + "end": 11146.15, + "probability": 0.8526 + }, + { + "start": 11147.13, + "end": 11151.21, + "probability": 0.8931 + }, + { + "start": 11152.13, + "end": 11155.83, + "probability": 0.9851 + }, + { + "start": 11156.43, + "end": 11158.57, + "probability": 0.785 + }, + { + "start": 11159.81, + "end": 11163.17, + "probability": 0.9956 + }, + { + "start": 11163.17, + "end": 11166.37, + "probability": 0.95 + }, + { + "start": 11167.37, + "end": 11171.97, + "probability": 0.9976 + }, + { + "start": 11172.83, + "end": 11176.67, + "probability": 0.997 + }, + { + "start": 11177.47, + "end": 11179.73, + "probability": 0.9979 + }, + { + "start": 11179.77, + "end": 11182.63, + "probability": 0.8415 + }, + { + "start": 11184.01, + "end": 11188.05, + "probability": 0.9481 + }, + { + "start": 11188.05, + "end": 11190.97, + "probability": 0.9911 + }, + { + "start": 11191.81, + "end": 11193.37, + "probability": 0.7295 + }, + { + "start": 11193.89, + "end": 11197.41, + "probability": 0.9908 + }, + { + "start": 11198.73, + "end": 11201.67, + "probability": 0.9424 + }, + { + "start": 11201.67, + "end": 11204.93, + "probability": 0.9977 + }, + { + "start": 11206.13, + "end": 11209.65, + "probability": 0.9826 + }, + { + "start": 11209.65, + "end": 11214.77, + "probability": 0.9719 + }, + { + "start": 11215.29, + "end": 11217.13, + "probability": 0.9987 + }, + { + "start": 11218.91, + "end": 11225.75, + "probability": 0.9986 + }, + { + "start": 11227.73, + "end": 11231.27, + "probability": 0.9852 + }, + { + "start": 11231.41, + "end": 11234.09, + "probability": 0.9762 + }, + { + "start": 11235.85, + "end": 11240.91, + "probability": 0.9954 + }, + { + "start": 11241.85, + "end": 11245.45, + "probability": 0.9186 + }, + { + "start": 11246.39, + "end": 11250.05, + "probability": 0.9868 + }, + { + "start": 11250.19, + "end": 11252.03, + "probability": 0.998 + }, + { + "start": 11252.79, + "end": 11253.79, + "probability": 0.82 + }, + { + "start": 11254.75, + "end": 11254.85, + "probability": 0.8274 + }, + { + "start": 11255.43, + "end": 11256.77, + "probability": 0.998 + }, + { + "start": 11257.49, + "end": 11258.49, + "probability": 0.0653 + }, + { + "start": 11259.17, + "end": 11263.33, + "probability": 0.988 + }, + { + "start": 11263.35, + "end": 11265.81, + "probability": 0.9995 + }, + { + "start": 11266.81, + "end": 11269.63, + "probability": 0.9718 + }, + { + "start": 11270.17, + "end": 11274.03, + "probability": 0.9878 + }, + { + "start": 11274.21, + "end": 11276.89, + "probability": 0.732 + }, + { + "start": 11278.09, + "end": 11282.67, + "probability": 0.9649 + }, + { + "start": 11282.67, + "end": 11287.42, + "probability": 0.9911 + }, + { + "start": 11287.63, + "end": 11292.51, + "probability": 0.9972 + }, + { + "start": 11293.93, + "end": 11296.83, + "probability": 0.9938 + }, + { + "start": 11297.29, + "end": 11300.31, + "probability": 0.9331 + }, + { + "start": 11301.85, + "end": 11305.19, + "probability": 0.9985 + }, + { + "start": 11305.63, + "end": 11308.61, + "probability": 0.9971 + }, + { + "start": 11308.61, + "end": 11311.55, + "probability": 0.9998 + }, + { + "start": 11312.09, + "end": 11313.89, + "probability": 0.9386 + }, + { + "start": 11314.01, + "end": 11316.73, + "probability": 0.8951 + }, + { + "start": 11317.41, + "end": 11317.85, + "probability": 0.8202 + }, + { + "start": 11318.47, + "end": 11324.19, + "probability": 0.9701 + }, + { + "start": 11324.87, + "end": 11326.71, + "probability": 0.9893 + }, + { + "start": 11327.23, + "end": 11329.49, + "probability": 0.8821 + }, + { + "start": 11330.31, + "end": 11331.51, + "probability": 0.4689 + }, + { + "start": 11331.69, + "end": 11332.03, + "probability": 0.7055 + }, + { + "start": 11332.07, + "end": 11333.53, + "probability": 0.9706 + }, + { + "start": 11333.73, + "end": 11335.99, + "probability": 0.9663 + }, + { + "start": 11336.73, + "end": 11338.49, + "probability": 0.9875 + }, + { + "start": 11339.41, + "end": 11340.19, + "probability": 0.7016 + }, + { + "start": 11340.59, + "end": 11342.25, + "probability": 0.9159 + }, + { + "start": 11343.69, + "end": 11345.77, + "probability": 0.1616 + }, + { + "start": 11348.83, + "end": 11349.85, + "probability": 0.1326 + }, + { + "start": 11352.19, + "end": 11352.97, + "probability": 0.1599 + }, + { + "start": 11358.57, + "end": 11360.27, + "probability": 0.0877 + }, + { + "start": 11369.07, + "end": 11370.35, + "probability": 0.6535 + }, + { + "start": 11379.31, + "end": 11379.99, + "probability": 0.3354 + }, + { + "start": 11381.09, + "end": 11408.65, + "probability": 0.5074 + }, + { + "start": 11410.57, + "end": 11411.57, + "probability": 0.6585 + }, + { + "start": 11412.15, + "end": 11412.79, + "probability": 0.8289 + }, + { + "start": 11413.57, + "end": 11414.91, + "probability": 0.7618 + }, + { + "start": 11415.85, + "end": 11420.19, + "probability": 0.9758 + }, + { + "start": 11421.13, + "end": 11421.93, + "probability": 0.8583 + }, + { + "start": 11422.63, + "end": 11425.23, + "probability": 0.6981 + }, + { + "start": 11426.73, + "end": 11432.49, + "probability": 0.9698 + }, + { + "start": 11433.67, + "end": 11438.23, + "probability": 0.6111 + }, + { + "start": 11438.71, + "end": 11440.34, + "probability": 0.75 + }, + { + "start": 11440.89, + "end": 11443.53, + "probability": 0.7953 + }, + { + "start": 11444.11, + "end": 11450.05, + "probability": 0.9844 + }, + { + "start": 11450.59, + "end": 11452.28, + "probability": 0.7406 + }, + { + "start": 11453.41, + "end": 11457.69, + "probability": 0.9427 + }, + { + "start": 11458.57, + "end": 11460.19, + "probability": 0.9816 + }, + { + "start": 11460.69, + "end": 11461.93, + "probability": 0.9877 + }, + { + "start": 11462.29, + "end": 11463.49, + "probability": 0.9938 + }, + { + "start": 11463.85, + "end": 11465.09, + "probability": 0.9839 + }, + { + "start": 11465.47, + "end": 11469.27, + "probability": 0.9915 + }, + { + "start": 11470.01, + "end": 11471.13, + "probability": 0.9859 + }, + { + "start": 11471.93, + "end": 11476.65, + "probability": 0.9922 + }, + { + "start": 11477.49, + "end": 11479.39, + "probability": 0.8713 + }, + { + "start": 11480.19, + "end": 11485.17, + "probability": 0.7339 + }, + { + "start": 11486.11, + "end": 11488.65, + "probability": 0.9383 + }, + { + "start": 11489.13, + "end": 11492.79, + "probability": 0.9132 + }, + { + "start": 11492.79, + "end": 11498.45, + "probability": 0.9827 + }, + { + "start": 11498.79, + "end": 11499.27, + "probability": 0.7843 + }, + { + "start": 11499.81, + "end": 11505.45, + "probability": 0.9951 + }, + { + "start": 11506.03, + "end": 11507.93, + "probability": 0.7321 + }, + { + "start": 11508.63, + "end": 11511.81, + "probability": 0.97 + }, + { + "start": 11512.27, + "end": 11513.39, + "probability": 0.8417 + }, + { + "start": 11514.09, + "end": 11517.99, + "probability": 0.8629 + }, + { + "start": 11518.51, + "end": 11519.65, + "probability": 0.9992 + }, + { + "start": 11520.59, + "end": 11521.41, + "probability": 0.6351 + }, + { + "start": 11522.15, + "end": 11522.89, + "probability": 0.5725 + }, + { + "start": 11523.63, + "end": 11526.17, + "probability": 0.2345 + }, + { + "start": 11526.17, + "end": 11527.65, + "probability": 0.7062 + }, + { + "start": 11528.37, + "end": 11532.07, + "probability": 0.7556 + }, + { + "start": 11532.59, + "end": 11535.15, + "probability": 0.9539 + }, + { + "start": 11535.45, + "end": 11540.61, + "probability": 0.8521 + }, + { + "start": 11541.41, + "end": 11544.39, + "probability": 0.6471 + }, + { + "start": 11544.99, + "end": 11548.65, + "probability": 0.9879 + }, + { + "start": 11549.27, + "end": 11550.63, + "probability": 0.604 + }, + { + "start": 11551.53, + "end": 11553.11, + "probability": 0.9233 + }, + { + "start": 11553.93, + "end": 11556.43, + "probability": 0.8408 + }, + { + "start": 11556.99, + "end": 11562.19, + "probability": 0.78 + }, + { + "start": 11562.39, + "end": 11562.59, + "probability": 0.5008 + }, + { + "start": 11562.59, + "end": 11563.05, + "probability": 0.7336 + }, + { + "start": 11563.51, + "end": 11564.99, + "probability": 0.971 + }, + { + "start": 11583.15, + "end": 11584.57, + "probability": 0.7537 + }, + { + "start": 11584.81, + "end": 11585.93, + "probability": 0.8185 + }, + { + "start": 11586.07, + "end": 11591.33, + "probability": 0.9973 + }, + { + "start": 11592.47, + "end": 11595.27, + "probability": 0.9927 + }, + { + "start": 11595.71, + "end": 11597.65, + "probability": 0.9202 + }, + { + "start": 11597.75, + "end": 11602.67, + "probability": 0.9932 + }, + { + "start": 11603.19, + "end": 11606.21, + "probability": 0.9552 + }, + { + "start": 11606.75, + "end": 11607.69, + "probability": 0.959 + }, + { + "start": 11607.89, + "end": 11609.79, + "probability": 0.8887 + }, + { + "start": 11610.43, + "end": 11610.99, + "probability": 0.5002 + }, + { + "start": 11611.07, + "end": 11614.99, + "probability": 0.7153 + }, + { + "start": 11615.15, + "end": 11616.55, + "probability": 0.995 + }, + { + "start": 11617.19, + "end": 11617.75, + "probability": 0.9815 + }, + { + "start": 11618.75, + "end": 11621.51, + "probability": 0.9983 + }, + { + "start": 11621.51, + "end": 11625.95, + "probability": 0.9839 + }, + { + "start": 11626.07, + "end": 11628.59, + "probability": 0.6904 + }, + { + "start": 11629.01, + "end": 11630.23, + "probability": 0.9963 + }, + { + "start": 11630.37, + "end": 11631.23, + "probability": 0.9175 + }, + { + "start": 11631.31, + "end": 11631.99, + "probability": 0.4533 + }, + { + "start": 11632.03, + "end": 11636.42, + "probability": 0.925 + }, + { + "start": 11637.03, + "end": 11639.09, + "probability": 0.998 + }, + { + "start": 11640.79, + "end": 11641.77, + "probability": 0.9061 + }, + { + "start": 11642.39, + "end": 11645.55, + "probability": 0.9958 + }, + { + "start": 11645.67, + "end": 11651.67, + "probability": 0.9827 + }, + { + "start": 11652.15, + "end": 11652.69, + "probability": 0.8469 + }, + { + "start": 11652.93, + "end": 11656.13, + "probability": 0.9913 + }, + { + "start": 11656.49, + "end": 11659.65, + "probability": 0.8988 + }, + { + "start": 11660.13, + "end": 11661.24, + "probability": 0.9863 + }, + { + "start": 11661.77, + "end": 11667.37, + "probability": 0.9976 + }, + { + "start": 11668.79, + "end": 11668.97, + "probability": 0.9178 + }, + { + "start": 11669.17, + "end": 11670.92, + "probability": 0.9777 + }, + { + "start": 11671.01, + "end": 11677.09, + "probability": 0.9975 + }, + { + "start": 11677.89, + "end": 11679.75, + "probability": 0.6724 + }, + { + "start": 11679.81, + "end": 11684.03, + "probability": 0.9996 + }, + { + "start": 11685.15, + "end": 11686.91, + "probability": 0.9407 + }, + { + "start": 11687.03, + "end": 11688.01, + "probability": 0.9907 + }, + { + "start": 11688.15, + "end": 11689.59, + "probability": 0.8615 + }, + { + "start": 11690.03, + "end": 11693.77, + "probability": 0.9879 + }, + { + "start": 11693.93, + "end": 11694.83, + "probability": 0.7265 + }, + { + "start": 11694.93, + "end": 11695.53, + "probability": 0.9532 + }, + { + "start": 11695.71, + "end": 11696.47, + "probability": 0.8466 + }, + { + "start": 11696.53, + "end": 11697.43, + "probability": 0.8977 + }, + { + "start": 11697.77, + "end": 11699.21, + "probability": 0.9076 + }, + { + "start": 11700.11, + "end": 11703.05, + "probability": 0.8035 + }, + { + "start": 11703.13, + "end": 11705.77, + "probability": 0.9936 + }, + { + "start": 11706.43, + "end": 11710.61, + "probability": 0.9414 + }, + { + "start": 11710.71, + "end": 11710.71, + "probability": 0.1989 + }, + { + "start": 11710.71, + "end": 11711.86, + "probability": 0.9917 + }, + { + "start": 11714.02, + "end": 11716.05, + "probability": 0.7161 + }, + { + "start": 11716.41, + "end": 11718.83, + "probability": 0.7379 + }, + { + "start": 11719.47, + "end": 11722.03, + "probability": 0.9363 + }, + { + "start": 11722.79, + "end": 11723.41, + "probability": 0.916 + }, + { + "start": 11723.95, + "end": 11725.13, + "probability": 0.9744 + }, + { + "start": 11726.15, + "end": 11729.37, + "probability": 0.9958 + }, + { + "start": 11729.37, + "end": 11732.41, + "probability": 0.9824 + }, + { + "start": 11732.57, + "end": 11737.43, + "probability": 0.9796 + }, + { + "start": 11737.49, + "end": 11740.61, + "probability": 0.9703 + }, + { + "start": 11740.65, + "end": 11741.81, + "probability": 0.9147 + }, + { + "start": 11742.75, + "end": 11746.41, + "probability": 0.9919 + }, + { + "start": 11746.73, + "end": 11751.95, + "probability": 0.9967 + }, + { + "start": 11752.87, + "end": 11753.51, + "probability": 0.8801 + }, + { + "start": 11754.11, + "end": 11756.13, + "probability": 0.933 + }, + { + "start": 11756.71, + "end": 11761.15, + "probability": 0.8566 + }, + { + "start": 11761.15, + "end": 11764.19, + "probability": 0.9766 + }, + { + "start": 11764.77, + "end": 11768.39, + "probability": 0.9963 + }, + { + "start": 11768.63, + "end": 11770.31, + "probability": 0.9991 + }, + { + "start": 11770.75, + "end": 11772.47, + "probability": 0.9399 + }, + { + "start": 11772.51, + "end": 11778.21, + "probability": 0.9883 + }, + { + "start": 11778.57, + "end": 11782.35, + "probability": 0.8369 + }, + { + "start": 11782.77, + "end": 11785.17, + "probability": 0.9147 + }, + { + "start": 11785.51, + "end": 11787.01, + "probability": 0.9807 + }, + { + "start": 11787.35, + "end": 11787.91, + "probability": 0.762 + }, + { + "start": 11788.49, + "end": 11789.19, + "probability": 0.6797 + }, + { + "start": 11789.33, + "end": 11792.11, + "probability": 0.8528 + }, + { + "start": 11806.52, + "end": 11808.25, + "probability": 0.3967 + }, + { + "start": 11808.25, + "end": 11808.25, + "probability": 0.025 + }, + { + "start": 11808.25, + "end": 11808.25, + "probability": 0.2081 + }, + { + "start": 11808.25, + "end": 11814.81, + "probability": 0.8898 + }, + { + "start": 11814.91, + "end": 11816.91, + "probability": 0.4023 + }, + { + "start": 11816.97, + "end": 11818.29, + "probability": 0.5356 + }, + { + "start": 11820.35, + "end": 11822.73, + "probability": 0.9961 + }, + { + "start": 11822.91, + "end": 11828.11, + "probability": 0.9317 + }, + { + "start": 11829.13, + "end": 11836.03, + "probability": 0.9899 + }, + { + "start": 11837.77, + "end": 11844.46, + "probability": 0.9572 + }, + { + "start": 11845.75, + "end": 11850.33, + "probability": 0.8071 + }, + { + "start": 11851.41, + "end": 11854.51, + "probability": 0.9457 + }, + { + "start": 11854.59, + "end": 11855.74, + "probability": 0.9895 + }, + { + "start": 11855.85, + "end": 11857.53, + "probability": 0.862 + }, + { + "start": 11857.55, + "end": 11859.67, + "probability": 0.9711 + }, + { + "start": 11860.17, + "end": 11863.15, + "probability": 0.9538 + }, + { + "start": 11863.85, + "end": 11865.73, + "probability": 0.5095 + }, + { + "start": 11866.91, + "end": 11870.43, + "probability": 0.9695 + }, + { + "start": 11870.87, + "end": 11872.09, + "probability": 0.9318 + }, + { + "start": 11872.77, + "end": 11875.73, + "probability": 0.9927 + }, + { + "start": 11876.53, + "end": 11877.61, + "probability": 0.8142 + }, + { + "start": 11878.31, + "end": 11880.01, + "probability": 0.9702 + }, + { + "start": 11880.79, + "end": 11885.45, + "probability": 0.9551 + }, + { + "start": 11885.45, + "end": 11890.23, + "probability": 0.9947 + }, + { + "start": 11890.85, + "end": 11891.95, + "probability": 0.9656 + }, + { + "start": 11892.05, + "end": 11892.69, + "probability": 0.5001 + }, + { + "start": 11892.77, + "end": 11898.05, + "probability": 0.9729 + }, + { + "start": 11898.25, + "end": 11899.45, + "probability": 0.9674 + }, + { + "start": 11899.77, + "end": 11900.96, + "probability": 0.973 + }, + { + "start": 11901.55, + "end": 11902.66, + "probability": 0.8284 + }, + { + "start": 11903.79, + "end": 11906.71, + "probability": 0.9966 + }, + { + "start": 11907.27, + "end": 11910.21, + "probability": 0.9362 + }, + { + "start": 11910.37, + "end": 11911.09, + "probability": 0.7675 + }, + { + "start": 11911.55, + "end": 11913.79, + "probability": 0.756 + }, + { + "start": 11914.59, + "end": 11920.17, + "probability": 0.9963 + }, + { + "start": 11920.27, + "end": 11920.79, + "probability": 0.8874 + }, + { + "start": 11921.07, + "end": 11922.41, + "probability": 0.8931 + }, + { + "start": 11923.01, + "end": 11923.53, + "probability": 0.9749 + }, + { + "start": 11924.23, + "end": 11927.63, + "probability": 0.9938 + }, + { + "start": 11927.91, + "end": 11928.83, + "probability": 0.921 + }, + { + "start": 11929.09, + "end": 11929.83, + "probability": 0.888 + }, + { + "start": 11930.25, + "end": 11932.31, + "probability": 0.9892 + }, + { + "start": 11932.61, + "end": 11933.47, + "probability": 0.8861 + }, + { + "start": 11933.91, + "end": 11936.63, + "probability": 0.9974 + }, + { + "start": 11936.63, + "end": 11939.43, + "probability": 0.9987 + }, + { + "start": 11940.65, + "end": 11944.71, + "probability": 0.9971 + }, + { + "start": 11945.49, + "end": 11949.62, + "probability": 0.9967 + }, + { + "start": 11950.89, + "end": 11954.73, + "probability": 0.946 + }, + { + "start": 11955.31, + "end": 11956.85, + "probability": 0.9912 + }, + { + "start": 11957.33, + "end": 11962.45, + "probability": 0.9977 + }, + { + "start": 11964.01, + "end": 11968.29, + "probability": 0.9971 + }, + { + "start": 11968.85, + "end": 11971.27, + "probability": 0.9669 + }, + { + "start": 11971.85, + "end": 11971.95, + "probability": 0.7501 + }, + { + "start": 11972.67, + "end": 11974.59, + "probability": 0.7942 + }, + { + "start": 11975.31, + "end": 11976.57, + "probability": 0.9392 + }, + { + "start": 11977.07, + "end": 11977.37, + "probability": 0.651 + }, + { + "start": 11977.69, + "end": 11978.41, + "probability": 0.6551 + }, + { + "start": 11978.97, + "end": 11983.25, + "probability": 0.8882 + }, + { + "start": 11983.69, + "end": 11984.73, + "probability": 0.9902 + }, + { + "start": 12004.47, + "end": 12006.81, + "probability": 0.6252 + }, + { + "start": 12008.13, + "end": 12009.91, + "probability": 0.8407 + }, + { + "start": 12013.03, + "end": 12017.77, + "probability": 0.9874 + }, + { + "start": 12018.53, + "end": 12021.61, + "probability": 0.9319 + }, + { + "start": 12022.53, + "end": 12025.11, + "probability": 0.9948 + }, + { + "start": 12025.81, + "end": 12029.75, + "probability": 0.9832 + }, + { + "start": 12031.05, + "end": 12033.51, + "probability": 0.9839 + }, + { + "start": 12034.41, + "end": 12036.03, + "probability": 0.6978 + }, + { + "start": 12038.05, + "end": 12042.43, + "probability": 0.9901 + }, + { + "start": 12043.51, + "end": 12045.47, + "probability": 0.991 + }, + { + "start": 12046.57, + "end": 12051.05, + "probability": 0.9917 + }, + { + "start": 12051.95, + "end": 12054.59, + "probability": 0.9986 + }, + { + "start": 12055.11, + "end": 12056.91, + "probability": 0.9731 + }, + { + "start": 12058.07, + "end": 12060.99, + "probability": 0.872 + }, + { + "start": 12061.87, + "end": 12062.41, + "probability": 0.8757 + }, + { + "start": 12063.01, + "end": 12064.29, + "probability": 0.9847 + }, + { + "start": 12065.87, + "end": 12073.67, + "probability": 0.9619 + }, + { + "start": 12074.17, + "end": 12075.59, + "probability": 0.7458 + }, + { + "start": 12076.45, + "end": 12080.51, + "probability": 0.9907 + }, + { + "start": 12081.33, + "end": 12083.83, + "probability": 0.9983 + }, + { + "start": 12084.53, + "end": 12087.53, + "probability": 0.9994 + }, + { + "start": 12088.37, + "end": 12091.45, + "probability": 0.998 + }, + { + "start": 12092.17, + "end": 12098.51, + "probability": 0.9967 + }, + { + "start": 12099.53, + "end": 12102.98, + "probability": 0.9465 + }, + { + "start": 12103.99, + "end": 12110.67, + "probability": 0.9968 + }, + { + "start": 12111.79, + "end": 12114.53, + "probability": 0.9976 + }, + { + "start": 12115.81, + "end": 12119.69, + "probability": 0.9794 + }, + { + "start": 12120.71, + "end": 12124.05, + "probability": 0.9412 + }, + { + "start": 12124.93, + "end": 12128.51, + "probability": 0.9976 + }, + { + "start": 12129.21, + "end": 12130.85, + "probability": 0.781 + }, + { + "start": 12131.65, + "end": 12134.91, + "probability": 0.9601 + }, + { + "start": 12136.03, + "end": 12138.07, + "probability": 0.8828 + }, + { + "start": 12139.17, + "end": 12141.19, + "probability": 0.9645 + }, + { + "start": 12142.21, + "end": 12145.05, + "probability": 0.7783 + }, + { + "start": 12145.77, + "end": 12148.95, + "probability": 0.9982 + }, + { + "start": 12149.49, + "end": 12155.03, + "probability": 0.9793 + }, + { + "start": 12155.13, + "end": 12155.63, + "probability": 0.5055 + }, + { + "start": 12156.61, + "end": 12160.96, + "probability": 0.8308 + }, + { + "start": 12161.63, + "end": 12162.35, + "probability": 0.4711 + }, + { + "start": 12162.83, + "end": 12164.05, + "probability": 0.8611 + }, + { + "start": 12165.13, + "end": 12166.93, + "probability": 0.9385 + }, + { + "start": 12167.17, + "end": 12168.12, + "probability": 0.9731 + }, + { + "start": 12168.93, + "end": 12170.09, + "probability": 0.8965 + }, + { + "start": 12171.27, + "end": 12175.51, + "probability": 0.9832 + }, + { + "start": 12176.63, + "end": 12178.03, + "probability": 0.981 + }, + { + "start": 12178.39, + "end": 12180.45, + "probability": 0.9646 + }, + { + "start": 12180.95, + "end": 12183.73, + "probability": 0.9966 + }, + { + "start": 12184.53, + "end": 12186.37, + "probability": 0.986 + }, + { + "start": 12186.79, + "end": 12187.25, + "probability": 0.8839 + }, + { + "start": 12187.37, + "end": 12187.69, + "probability": 0.3404 + }, + { + "start": 12187.69, + "end": 12188.01, + "probability": 0.7458 + }, + { + "start": 12188.61, + "end": 12191.57, + "probability": 0.7764 + }, + { + "start": 12191.71, + "end": 12192.81, + "probability": 0.862 + }, + { + "start": 12211.81, + "end": 12215.05, + "probability": 0.7823 + }, + { + "start": 12215.67, + "end": 12216.41, + "probability": 0.9248 + }, + { + "start": 12217.63, + "end": 12218.41, + "probability": 0.9178 + }, + { + "start": 12219.63, + "end": 12220.62, + "probability": 0.998 + }, + { + "start": 12221.55, + "end": 12227.73, + "probability": 0.7983 + }, + { + "start": 12228.49, + "end": 12230.05, + "probability": 0.9868 + }, + { + "start": 12231.75, + "end": 12232.91, + "probability": 0.5691 + }, + { + "start": 12234.01, + "end": 12236.79, + "probability": 0.6897 + }, + { + "start": 12238.17, + "end": 12238.55, + "probability": 0.5258 + }, + { + "start": 12238.75, + "end": 12239.17, + "probability": 0.8068 + }, + { + "start": 12239.39, + "end": 12242.11, + "probability": 0.9933 + }, + { + "start": 12243.51, + "end": 12246.32, + "probability": 0.9629 + }, + { + "start": 12246.87, + "end": 12248.55, + "probability": 0.9934 + }, + { + "start": 12248.67, + "end": 12251.01, + "probability": 0.9852 + }, + { + "start": 12251.01, + "end": 12254.11, + "probability": 0.995 + }, + { + "start": 12255.45, + "end": 12256.89, + "probability": 0.904 + }, + { + "start": 12259.51, + "end": 12261.47, + "probability": 0.9884 + }, + { + "start": 12262.33, + "end": 12266.03, + "probability": 0.9958 + }, + { + "start": 12267.69, + "end": 12268.57, + "probability": 0.587 + }, + { + "start": 12269.79, + "end": 12270.75, + "probability": 0.968 + }, + { + "start": 12271.63, + "end": 12272.81, + "probability": 0.9972 + }, + { + "start": 12273.47, + "end": 12275.07, + "probability": 0.9377 + }, + { + "start": 12276.07, + "end": 12276.99, + "probability": 0.8831 + }, + { + "start": 12277.57, + "end": 12280.25, + "probability": 0.9749 + }, + { + "start": 12281.11, + "end": 12285.39, + "probability": 0.9983 + }, + { + "start": 12285.49, + "end": 12286.53, + "probability": 0.5911 + }, + { + "start": 12287.07, + "end": 12288.17, + "probability": 0.7396 + }, + { + "start": 12288.17, + "end": 12290.55, + "probability": 0.937 + }, + { + "start": 12290.73, + "end": 12294.01, + "probability": 0.8853 + }, + { + "start": 12294.59, + "end": 12297.91, + "probability": 0.3107 + }, + { + "start": 12297.91, + "end": 12297.93, + "probability": 0.3359 + }, + { + "start": 12297.93, + "end": 12301.29, + "probability": 0.9794 + }, + { + "start": 12302.03, + "end": 12303.79, + "probability": 0.9531 + }, + { + "start": 12304.45, + "end": 12306.31, + "probability": 0.6438 + }, + { + "start": 12307.47, + "end": 12309.45, + "probability": 0.9339 + }, + { + "start": 12310.19, + "end": 12313.61, + "probability": 0.9791 + }, + { + "start": 12316.31, + "end": 12318.59, + "probability": 0.961 + }, + { + "start": 12318.65, + "end": 12319.71, + "probability": 0.9941 + }, + { + "start": 12320.73, + "end": 12321.53, + "probability": 0.9764 + }, + { + "start": 12322.11, + "end": 12323.97, + "probability": 0.9856 + }, + { + "start": 12326.79, + "end": 12330.33, + "probability": 0.9865 + }, + { + "start": 12330.41, + "end": 12332.09, + "probability": 0.9951 + }, + { + "start": 12332.23, + "end": 12333.95, + "probability": 0.8753 + }, + { + "start": 12334.09, + "end": 12334.15, + "probability": 0.1952 + }, + { + "start": 12334.71, + "end": 12334.99, + "probability": 0.8009 + }, + { + "start": 12336.11, + "end": 12336.11, + "probability": 0.3998 + }, + { + "start": 12338.41, + "end": 12341.09, + "probability": 0.7493 + }, + { + "start": 12341.16, + "end": 12343.63, + "probability": 0.9846 + }, + { + "start": 12345.81, + "end": 12347.89, + "probability": 0.9845 + }, + { + "start": 12348.41, + "end": 12349.45, + "probability": 0.7427 + }, + { + "start": 12350.91, + "end": 12354.65, + "probability": 0.9344 + }, + { + "start": 12356.17, + "end": 12358.35, + "probability": 0.8012 + }, + { + "start": 12359.99, + "end": 12360.47, + "probability": 0.91 + }, + { + "start": 12361.17, + "end": 12362.05, + "probability": 0.9493 + }, + { + "start": 12363.33, + "end": 12368.23, + "probability": 0.7483 + }, + { + "start": 12369.27, + "end": 12373.93, + "probability": 0.9885 + }, + { + "start": 12374.05, + "end": 12374.91, + "probability": 0.9487 + }, + { + "start": 12375.43, + "end": 12377.09, + "probability": 0.999 + }, + { + "start": 12377.79, + "end": 12378.97, + "probability": 0.9875 + }, + { + "start": 12379.89, + "end": 12380.57, + "probability": 0.884 + }, + { + "start": 12381.09, + "end": 12383.81, + "probability": 0.8941 + }, + { + "start": 12384.47, + "end": 12388.81, + "probability": 0.9625 + }, + { + "start": 12390.35, + "end": 12394.01, + "probability": 0.9917 + }, + { + "start": 12394.79, + "end": 12396.07, + "probability": 0.6989 + }, + { + "start": 12396.97, + "end": 12396.97, + "probability": 0.001 + }, + { + "start": 12397.49, + "end": 12398.27, + "probability": 0.0226 + }, + { + "start": 12398.81, + "end": 12399.63, + "probability": 0.371 + }, + { + "start": 12400.23, + "end": 12401.79, + "probability": 0.989 + }, + { + "start": 12402.33, + "end": 12403.83, + "probability": 0.9924 + }, + { + "start": 12404.83, + "end": 12406.01, + "probability": 0.9902 + }, + { + "start": 12406.03, + "end": 12407.45, + "probability": 0.9945 + }, + { + "start": 12408.25, + "end": 12411.17, + "probability": 0.998 + }, + { + "start": 12413.33, + "end": 12415.37, + "probability": 0.9976 + }, + { + "start": 12415.37, + "end": 12417.53, + "probability": 0.9954 + }, + { + "start": 12417.53, + "end": 12420.67, + "probability": 0.9292 + }, + { + "start": 12421.11, + "end": 12422.61, + "probability": 0.8642 + }, + { + "start": 12438.49, + "end": 12439.47, + "probability": 0.587 + }, + { + "start": 12441.15, + "end": 12448.87, + "probability": 0.942 + }, + { + "start": 12449.61, + "end": 12451.63, + "probability": 0.9952 + }, + { + "start": 12451.73, + "end": 12455.85, + "probability": 0.9889 + }, + { + "start": 12456.87, + "end": 12457.67, + "probability": 0.9772 + }, + { + "start": 12457.73, + "end": 12462.23, + "probability": 0.9346 + }, + { + "start": 12463.19, + "end": 12469.85, + "probability": 0.9296 + }, + { + "start": 12470.39, + "end": 12473.05, + "probability": 0.9971 + }, + { + "start": 12474.29, + "end": 12477.23, + "probability": 0.973 + }, + { + "start": 12477.37, + "end": 12480.17, + "probability": 0.9402 + }, + { + "start": 12480.85, + "end": 12482.97, + "probability": 0.8705 + }, + { + "start": 12483.15, + "end": 12483.91, + "probability": 0.9497 + }, + { + "start": 12484.37, + "end": 12487.25, + "probability": 0.9904 + }, + { + "start": 12487.99, + "end": 12492.01, + "probability": 0.9922 + }, + { + "start": 12492.59, + "end": 12495.01, + "probability": 0.9004 + }, + { + "start": 12495.59, + "end": 12502.31, + "probability": 0.9987 + }, + { + "start": 12502.57, + "end": 12503.67, + "probability": 0.9842 + }, + { + "start": 12505.57, + "end": 12508.95, + "probability": 0.9049 + }, + { + "start": 12511.18, + "end": 12516.65, + "probability": 0.9991 + }, + { + "start": 12518.31, + "end": 12520.19, + "probability": 0.9973 + }, + { + "start": 12520.23, + "end": 12521.49, + "probability": 0.7766 + }, + { + "start": 12521.97, + "end": 12524.57, + "probability": 0.7752 + }, + { + "start": 12524.95, + "end": 12528.13, + "probability": 0.9965 + }, + { + "start": 12529.27, + "end": 12533.51, + "probability": 0.9971 + }, + { + "start": 12534.81, + "end": 12538.73, + "probability": 0.9431 + }, + { + "start": 12539.79, + "end": 12540.51, + "probability": 0.3138 + }, + { + "start": 12542.78, + "end": 12547.87, + "probability": 0.9823 + }, + { + "start": 12548.45, + "end": 12549.85, + "probability": 0.5356 + }, + { + "start": 12550.11, + "end": 12553.47, + "probability": 0.9869 + }, + { + "start": 12553.65, + "end": 12555.49, + "probability": 0.9366 + }, + { + "start": 12556.09, + "end": 12557.35, + "probability": 0.9667 + }, + { + "start": 12557.67, + "end": 12564.01, + "probability": 0.9923 + }, + { + "start": 12564.73, + "end": 12566.57, + "probability": 0.5801 + }, + { + "start": 12567.43, + "end": 12569.39, + "probability": 0.9654 + }, + { + "start": 12569.59, + "end": 12574.95, + "probability": 0.8833 + }, + { + "start": 12575.19, + "end": 12576.33, + "probability": 0.8441 + }, + { + "start": 12577.39, + "end": 12580.07, + "probability": 0.999 + }, + { + "start": 12580.27, + "end": 12581.27, + "probability": 0.5049 + }, + { + "start": 12581.73, + "end": 12584.85, + "probability": 0.9113 + }, + { + "start": 12586.59, + "end": 12588.07, + "probability": 0.8077 + }, + { + "start": 12589.49, + "end": 12596.49, + "probability": 0.9605 + }, + { + "start": 12596.63, + "end": 12598.05, + "probability": 0.9651 + }, + { + "start": 12598.09, + "end": 12600.63, + "probability": 0.9879 + }, + { + "start": 12601.43, + "end": 12603.85, + "probability": 0.9921 + }, + { + "start": 12604.93, + "end": 12609.77, + "probability": 0.9922 + }, + { + "start": 12610.49, + "end": 12611.81, + "probability": 0.9957 + }, + { + "start": 12611.91, + "end": 12612.55, + "probability": 0.988 + }, + { + "start": 12612.65, + "end": 12615.85, + "probability": 0.9695 + }, + { + "start": 12616.35, + "end": 12619.35, + "probability": 0.9787 + }, + { + "start": 12620.23, + "end": 12623.11, + "probability": 0.9663 + }, + { + "start": 12623.17, + "end": 12626.49, + "probability": 0.959 + }, + { + "start": 12627.29, + "end": 12630.99, + "probability": 0.9604 + }, + { + "start": 12631.67, + "end": 12634.99, + "probability": 0.9976 + }, + { + "start": 12635.65, + "end": 12639.45, + "probability": 0.9922 + }, + { + "start": 12639.95, + "end": 12642.23, + "probability": 0.9961 + }, + { + "start": 12643.13, + "end": 12645.51, + "probability": 0.9983 + }, + { + "start": 12646.43, + "end": 12648.67, + "probability": 0.9986 + }, + { + "start": 12649.53, + "end": 12649.79, + "probability": 0.5941 + }, + { + "start": 12650.03, + "end": 12651.03, + "probability": 0.7181 + }, + { + "start": 12651.55, + "end": 12652.25, + "probability": 0.6452 + }, + { + "start": 12653.05, + "end": 12654.31, + "probability": 0.9602 + }, + { + "start": 12654.93, + "end": 12655.69, + "probability": 0.6917 + }, + { + "start": 12656.29, + "end": 12657.85, + "probability": 0.9947 + }, + { + "start": 12659.69, + "end": 12660.57, + "probability": 0.979 + }, + { + "start": 12660.99, + "end": 12662.45, + "probability": 0.9969 + }, + { + "start": 12662.77, + "end": 12663.49, + "probability": 0.8999 + }, + { + "start": 12663.89, + "end": 12667.11, + "probability": 0.671 + }, + { + "start": 12667.25, + "end": 12667.99, + "probability": 0.4017 + }, + { + "start": 12668.41, + "end": 12669.83, + "probability": 0.9592 + }, + { + "start": 12689.35, + "end": 12690.25, + "probability": 0.5266 + }, + { + "start": 12690.29, + "end": 12691.57, + "probability": 0.8835 + }, + { + "start": 12691.73, + "end": 12693.43, + "probability": 0.7834 + }, + { + "start": 12694.11, + "end": 12697.77, + "probability": 0.9907 + }, + { + "start": 12699.65, + "end": 12704.43, + "probability": 0.9544 + }, + { + "start": 12707.43, + "end": 12710.66, + "probability": 0.9906 + }, + { + "start": 12713.13, + "end": 12715.73, + "probability": 0.9566 + }, + { + "start": 12717.48, + "end": 12718.25, + "probability": 0.0843 + }, + { + "start": 12719.55, + "end": 12719.75, + "probability": 0.0131 + }, + { + "start": 12720.17, + "end": 12723.05, + "probability": 0.3603 + }, + { + "start": 12723.05, + "end": 12726.57, + "probability": 0.0631 + }, + { + "start": 12726.73, + "end": 12727.17, + "probability": 0.3821 + }, + { + "start": 12727.73, + "end": 12728.05, + "probability": 0.0853 + }, + { + "start": 12728.81, + "end": 12729.49, + "probability": 0.2436 + }, + { + "start": 12729.77, + "end": 12730.83, + "probability": 0.2839 + }, + { + "start": 12730.83, + "end": 12732.73, + "probability": 0.2532 + }, + { + "start": 12733.23, + "end": 12735.79, + "probability": 0.4354 + }, + { + "start": 12737.07, + "end": 12737.07, + "probability": 0.0116 + }, + { + "start": 12739.05, + "end": 12741.57, + "probability": 0.0526 + }, + { + "start": 12741.57, + "end": 12743.65, + "probability": 0.2321 + }, + { + "start": 12746.17, + "end": 12748.61, + "probability": 0.0886 + }, + { + "start": 12748.91, + "end": 12749.19, + "probability": 0.9673 + }, + { + "start": 12750.77, + "end": 12759.03, + "probability": 0.0283 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.0, + "end": 12864.0, + "probability": 0.0 + }, + { + "start": 12864.76, + "end": 12865.82, + "probability": 0.476 + }, + { + "start": 12869.42, + "end": 12870.88, + "probability": 0.1443 + }, + { + "start": 12871.26, + "end": 12872.18, + "probability": 0.0032 + }, + { + "start": 12873.5, + "end": 12876.18, + "probability": 0.0166 + }, + { + "start": 12876.56, + "end": 12883.54, + "probability": 0.037 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12991.0, + "end": 12991.0, + "probability": 0.0 + }, + { + "start": 12992.16, + "end": 12992.38, + "probability": 0.0274 + }, + { + "start": 12992.38, + "end": 12992.62, + "probability": 0.0303 + }, + { + "start": 12992.62, + "end": 12992.62, + "probability": 0.0173 + }, + { + "start": 12992.62, + "end": 12993.42, + "probability": 0.3428 + }, + { + "start": 12994.08, + "end": 12999.28, + "probability": 0.7976 + }, + { + "start": 12999.42, + "end": 13001.8, + "probability": 0.8513 + }, + { + "start": 13002.34, + "end": 13003.34, + "probability": 0.8043 + }, + { + "start": 13003.56, + "end": 13007.6, + "probability": 0.9951 + }, + { + "start": 13007.7, + "end": 13012.28, + "probability": 0.9976 + }, + { + "start": 13012.64, + "end": 13016.54, + "probability": 0.9925 + }, + { + "start": 13016.54, + "end": 13020.0, + "probability": 0.5248 + }, + { + "start": 13020.82, + "end": 13024.68, + "probability": 0.9979 + }, + { + "start": 13024.68, + "end": 13028.74, + "probability": 0.9974 + }, + { + "start": 13029.22, + "end": 13030.4, + "probability": 0.9466 + }, + { + "start": 13030.5, + "end": 13033.62, + "probability": 0.9852 + }, + { + "start": 13033.64, + "end": 13035.22, + "probability": 0.9986 + }, + { + "start": 13035.28, + "end": 13035.36, + "probability": 0.7099 + }, + { + "start": 13035.48, + "end": 13037.22, + "probability": 0.9244 + }, + { + "start": 13037.3, + "end": 13039.02, + "probability": 0.8879 + }, + { + "start": 13039.9, + "end": 13041.68, + "probability": 0.9967 + }, + { + "start": 13042.16, + "end": 13045.28, + "probability": 0.9484 + }, + { + "start": 13046.04, + "end": 13049.9, + "probability": 0.9878 + }, + { + "start": 13051.3, + "end": 13055.56, + "probability": 0.9851 + }, + { + "start": 13056.22, + "end": 13056.22, + "probability": 0.0003 + }, + { + "start": 13057.48, + "end": 13058.38, + "probability": 0.215 + }, + { + "start": 13059.16, + "end": 13059.16, + "probability": 0.0593 + }, + { + "start": 13059.28, + "end": 13060.14, + "probability": 0.5835 + }, + { + "start": 13060.2, + "end": 13060.82, + "probability": 0.7043 + }, + { + "start": 13060.82, + "end": 13061.34, + "probability": 0.7292 + }, + { + "start": 13061.42, + "end": 13064.88, + "probability": 0.9816 + }, + { + "start": 13065.32, + "end": 13068.04, + "probability": 0.9133 + }, + { + "start": 13068.42, + "end": 13073.2, + "probability": 0.9878 + }, + { + "start": 13073.22, + "end": 13073.76, + "probability": 0.8263 + }, + { + "start": 13074.02, + "end": 13075.02, + "probability": 0.6854 + }, + { + "start": 13075.64, + "end": 13077.28, + "probability": 0.6918 + }, + { + "start": 13097.28, + "end": 13098.54, + "probability": 0.5369 + }, + { + "start": 13100.62, + "end": 13101.24, + "probability": 0.7171 + }, + { + "start": 13103.5, + "end": 13105.94, + "probability": 0.5645 + }, + { + "start": 13108.0, + "end": 13109.38, + "probability": 0.9277 + }, + { + "start": 13110.8, + "end": 13113.36, + "probability": 0.8698 + }, + { + "start": 13115.18, + "end": 13118.08, + "probability": 0.991 + }, + { + "start": 13120.16, + "end": 13122.2, + "probability": 0.7665 + }, + { + "start": 13124.28, + "end": 13124.9, + "probability": 0.4817 + }, + { + "start": 13125.64, + "end": 13127.46, + "probability": 0.904 + }, + { + "start": 13130.2, + "end": 13131.38, + "probability": 0.8413 + }, + { + "start": 13133.36, + "end": 13135.28, + "probability": 0.9857 + }, + { + "start": 13136.5, + "end": 13138.04, + "probability": 0.9051 + }, + { + "start": 13139.52, + "end": 13141.04, + "probability": 0.9551 + }, + { + "start": 13142.82, + "end": 13146.24, + "probability": 0.9945 + }, + { + "start": 13149.6, + "end": 13152.44, + "probability": 0.9528 + }, + { + "start": 13154.58, + "end": 13160.4, + "probability": 0.9897 + }, + { + "start": 13161.36, + "end": 13166.84, + "probability": 0.9766 + }, + { + "start": 13168.2, + "end": 13174.56, + "probability": 0.9919 + }, + { + "start": 13177.1, + "end": 13178.4, + "probability": 0.4413 + }, + { + "start": 13181.14, + "end": 13184.1, + "probability": 0.9973 + }, + { + "start": 13185.3, + "end": 13186.32, + "probability": 0.2569 + }, + { + "start": 13188.86, + "end": 13189.98, + "probability": 0.8223 + }, + { + "start": 13190.88, + "end": 13192.46, + "probability": 0.958 + }, + { + "start": 13194.88, + "end": 13196.78, + "probability": 0.9942 + }, + { + "start": 13197.94, + "end": 13199.76, + "probability": 0.9989 + }, + { + "start": 13201.68, + "end": 13203.86, + "probability": 0.9781 + }, + { + "start": 13204.5, + "end": 13204.56, + "probability": 0.0235 + }, + { + "start": 13205.46, + "end": 13207.46, + "probability": 0.6528 + }, + { + "start": 13208.76, + "end": 13210.48, + "probability": 0.9608 + }, + { + "start": 13211.54, + "end": 13215.48, + "probability": 0.9865 + }, + { + "start": 13217.86, + "end": 13226.2, + "probability": 0.9968 + }, + { + "start": 13227.58, + "end": 13228.38, + "probability": 0.7213 + }, + { + "start": 13229.0, + "end": 13231.42, + "probability": 0.8936 + }, + { + "start": 13232.0, + "end": 13232.64, + "probability": 0.3804 + }, + { + "start": 13232.72, + "end": 13233.92, + "probability": 0.9148 + }, + { + "start": 13234.4, + "end": 13235.04, + "probability": 0.7744 + }, + { + "start": 13235.2, + "end": 13236.64, + "probability": 0.9877 + }, + { + "start": 13237.14, + "end": 13237.86, + "probability": 0.9799 + }, + { + "start": 13238.0, + "end": 13239.94, + "probability": 0.809 + }, + { + "start": 13240.42, + "end": 13241.28, + "probability": 0.9628 + }, + { + "start": 13241.36, + "end": 13242.76, + "probability": 0.982 + }, + { + "start": 13243.3, + "end": 13244.14, + "probability": 0.5533 + }, + { + "start": 13244.62, + "end": 13245.81, + "probability": 0.6598 + }, + { + "start": 13246.64, + "end": 13247.26, + "probability": 0.9435 + }, + { + "start": 13247.74, + "end": 13249.62, + "probability": 0.9946 + }, + { + "start": 13249.72, + "end": 13250.36, + "probability": 0.9234 + }, + { + "start": 13250.8, + "end": 13251.92, + "probability": 0.9754 + }, + { + "start": 13251.94, + "end": 13252.48, + "probability": 0.9593 + }, + { + "start": 13252.54, + "end": 13253.76, + "probability": 0.9207 + }, + { + "start": 13253.82, + "end": 13254.38, + "probability": 0.9765 + }, + { + "start": 13257.7, + "end": 13257.84, + "probability": 0.998 + }, + { + "start": 13258.78, + "end": 13258.92, + "probability": 0.0281 + }, + { + "start": 13258.92, + "end": 13262.1, + "probability": 0.5682 + }, + { + "start": 13263.26, + "end": 13263.26, + "probability": 0.1805 + }, + { + "start": 13263.42, + "end": 13264.24, + "probability": 0.708 + }, + { + "start": 13264.58, + "end": 13265.4, + "probability": 0.1777 + }, + { + "start": 13265.6, + "end": 13266.92, + "probability": 0.3535 + }, + { + "start": 13266.94, + "end": 13269.44, + "probability": 0.9966 + }, + { + "start": 13270.1, + "end": 13273.42, + "probability": 0.9468 + }, + { + "start": 13273.52, + "end": 13276.86, + "probability": 0.7441 + }, + { + "start": 13280.18, + "end": 13281.13, + "probability": 0.5733 + }, + { + "start": 13281.66, + "end": 13284.08, + "probability": 0.2807 + }, + { + "start": 13284.08, + "end": 13284.92, + "probability": 0.0678 + }, + { + "start": 13287.94, + "end": 13289.73, + "probability": 0.3293 + }, + { + "start": 13296.32, + "end": 13299.68, + "probability": 0.7345 + }, + { + "start": 13299.72, + "end": 13302.26, + "probability": 0.6151 + }, + { + "start": 13302.4, + "end": 13304.02, + "probability": 0.9055 + }, + { + "start": 13305.12, + "end": 13309.34, + "probability": 0.9701 + }, + { + "start": 13310.06, + "end": 13312.04, + "probability": 0.9718 + }, + { + "start": 13312.9, + "end": 13314.24, + "probability": 0.9868 + }, + { + "start": 13314.46, + "end": 13317.34, + "probability": 0.9219 + }, + { + "start": 13317.42, + "end": 13318.22, + "probability": 0.5 + }, + { + "start": 13318.8, + "end": 13320.58, + "probability": 0.9308 + }, + { + "start": 13321.14, + "end": 13323.24, + "probability": 0.9895 + }, + { + "start": 13323.88, + "end": 13326.56, + "probability": 0.9193 + }, + { + "start": 13327.34, + "end": 13329.57, + "probability": 0.9941 + }, + { + "start": 13329.76, + "end": 13331.5, + "probability": 0.9126 + }, + { + "start": 13332.18, + "end": 13335.68, + "probability": 0.8915 + }, + { + "start": 13336.58, + "end": 13339.98, + "probability": 0.9833 + }, + { + "start": 13341.14, + "end": 13343.36, + "probability": 0.9109 + }, + { + "start": 13343.92, + "end": 13348.0, + "probability": 0.9741 + }, + { + "start": 13348.46, + "end": 13349.37, + "probability": 0.9817 + }, + { + "start": 13349.98, + "end": 13353.04, + "probability": 0.9561 + }, + { + "start": 13353.52, + "end": 13358.04, + "probability": 0.9403 + }, + { + "start": 13358.86, + "end": 13361.22, + "probability": 0.9968 + }, + { + "start": 13361.22, + "end": 13364.06, + "probability": 0.9963 + }, + { + "start": 13364.06, + "end": 13364.88, + "probability": 0.4953 + }, + { + "start": 13365.56, + "end": 13369.58, + "probability": 0.9033 + }, + { + "start": 13370.48, + "end": 13373.38, + "probability": 0.9915 + }, + { + "start": 13373.9, + "end": 13375.06, + "probability": 0.9707 + }, + { + "start": 13375.58, + "end": 13378.74, + "probability": 0.9915 + }, + { + "start": 13379.26, + "end": 13380.92, + "probability": 0.9833 + }, + { + "start": 13381.64, + "end": 13383.58, + "probability": 0.933 + }, + { + "start": 13384.1, + "end": 13386.62, + "probability": 0.9699 + }, + { + "start": 13387.14, + "end": 13388.0, + "probability": 0.8579 + }, + { + "start": 13388.54, + "end": 13389.2, + "probability": 0.9974 + }, + { + "start": 13389.78, + "end": 13393.8, + "probability": 0.9897 + }, + { + "start": 13394.46, + "end": 13399.18, + "probability": 0.9613 + }, + { + "start": 13399.74, + "end": 13402.7, + "probability": 0.8253 + }, + { + "start": 13403.34, + "end": 13405.74, + "probability": 0.9677 + }, + { + "start": 13406.28, + "end": 13408.0, + "probability": 0.8644 + }, + { + "start": 13408.44, + "end": 13413.18, + "probability": 0.9476 + }, + { + "start": 13413.62, + "end": 13414.19, + "probability": 0.8457 + }, + { + "start": 13414.88, + "end": 13419.96, + "probability": 0.9949 + }, + { + "start": 13420.2, + "end": 13421.1, + "probability": 0.7514 + }, + { + "start": 13421.74, + "end": 13425.88, + "probability": 0.9787 + }, + { + "start": 13426.3, + "end": 13429.7, + "probability": 0.9949 + }, + { + "start": 13430.06, + "end": 13432.22, + "probability": 0.9473 + }, + { + "start": 13433.16, + "end": 13434.66, + "probability": 0.9981 + }, + { + "start": 13435.6, + "end": 13438.26, + "probability": 0.9912 + }, + { + "start": 13439.28, + "end": 13442.08, + "probability": 0.9801 + }, + { + "start": 13442.44, + "end": 13448.88, + "probability": 0.923 + }, + { + "start": 13449.44, + "end": 13452.08, + "probability": 0.9902 + }, + { + "start": 13452.5, + "end": 13454.24, + "probability": 0.8704 + }, + { + "start": 13454.76, + "end": 13461.02, + "probability": 0.7577 + }, + { + "start": 13461.68, + "end": 13462.7, + "probability": 0.0159 + }, + { + "start": 13462.7, + "end": 13462.7, + "probability": 0.103 + }, + { + "start": 13462.7, + "end": 13462.7, + "probability": 0.105 + }, + { + "start": 13462.7, + "end": 13462.7, + "probability": 0.0928 + }, + { + "start": 13462.7, + "end": 13462.96, + "probability": 0.0845 + }, + { + "start": 13463.06, + "end": 13465.32, + "probability": 0.8018 + }, + { + "start": 13465.68, + "end": 13468.2, + "probability": 0.8176 + }, + { + "start": 13468.2, + "end": 13471.74, + "probability": 0.9761 + }, + { + "start": 13473.02, + "end": 13476.63, + "probability": 0.9458 + }, + { + "start": 13476.96, + "end": 13481.66, + "probability": 0.9986 + }, + { + "start": 13481.66, + "end": 13486.02, + "probability": 0.9988 + }, + { + "start": 13486.56, + "end": 13489.54, + "probability": 0.9352 + }, + { + "start": 13490.1, + "end": 13491.88, + "probability": 0.9672 + }, + { + "start": 13492.22, + "end": 13494.18, + "probability": 0.9828 + }, + { + "start": 13494.38, + "end": 13495.2, + "probability": 0.8429 + }, + { + "start": 13495.96, + "end": 13497.62, + "probability": 0.819 + }, + { + "start": 13498.42, + "end": 13498.48, + "probability": 0.5557 + }, + { + "start": 13498.48, + "end": 13499.15, + "probability": 0.2695 + }, + { + "start": 13500.74, + "end": 13505.16, + "probability": 0.9844 + }, + { + "start": 13505.62, + "end": 13509.4, + "probability": 0.9914 + }, + { + "start": 13509.9, + "end": 13510.9, + "probability": 0.7429 + }, + { + "start": 13511.1, + "end": 13514.4, + "probability": 0.961 + }, + { + "start": 13515.08, + "end": 13516.74, + "probability": 0.916 + }, + { + "start": 13517.58, + "end": 13518.54, + "probability": 0.6603 + }, + { + "start": 13518.94, + "end": 13519.84, + "probability": 0.6118 + }, + { + "start": 13519.98, + "end": 13521.2, + "probability": 0.603 + }, + { + "start": 13521.74, + "end": 13524.98, + "probability": 0.9877 + }, + { + "start": 13524.98, + "end": 13528.34, + "probability": 0.9717 + }, + { + "start": 13528.82, + "end": 13531.54, + "probability": 0.9912 + }, + { + "start": 13532.06, + "end": 13535.92, + "probability": 0.9569 + }, + { + "start": 13536.18, + "end": 13536.18, + "probability": 0.7056 + }, + { + "start": 13536.24, + "end": 13536.38, + "probability": 0.359 + }, + { + "start": 13536.38, + "end": 13537.2, + "probability": 0.6112 + }, + { + "start": 13538.24, + "end": 13540.02, + "probability": 0.9878 + }, + { + "start": 13540.48, + "end": 13543.88, + "probability": 0.994 + }, + { + "start": 13544.36, + "end": 13545.78, + "probability": 0.59 + }, + { + "start": 13545.78, + "end": 13546.84, + "probability": 0.9888 + }, + { + "start": 13547.6, + "end": 13552.0, + "probability": 0.9929 + }, + { + "start": 13552.34, + "end": 13554.2, + "probability": 0.6982 + }, + { + "start": 13554.48, + "end": 13554.66, + "probability": 0.8105 + }, + { + "start": 13554.66, + "end": 13554.68, + "probability": 0.5391 + }, + { + "start": 13554.74, + "end": 13558.56, + "probability": 0.9264 + }, + { + "start": 13559.18, + "end": 13561.66, + "probability": 0.774 + }, + { + "start": 13562.2, + "end": 13565.18, + "probability": 0.6671 + }, + { + "start": 13565.58, + "end": 13568.46, + "probability": 0.9761 + }, + { + "start": 13568.7, + "end": 13569.62, + "probability": 0.9153 + }, + { + "start": 13569.64, + "end": 13570.44, + "probability": 0.1281 + }, + { + "start": 13574.16, + "end": 13574.24, + "probability": 0.0032 + }, + { + "start": 13574.78, + "end": 13576.32, + "probability": 0.0291 + }, + { + "start": 13577.18, + "end": 13577.42, + "probability": 0.1608 + }, + { + "start": 13577.42, + "end": 13577.42, + "probability": 0.4382 + }, + { + "start": 13577.42, + "end": 13578.22, + "probability": 0.3844 + }, + { + "start": 13578.22, + "end": 13579.28, + "probability": 0.0131 + }, + { + "start": 13579.78, + "end": 13580.78, + "probability": 0.6096 + }, + { + "start": 13581.4, + "end": 13582.5, + "probability": 0.8683 + }, + { + "start": 13582.9, + "end": 13584.08, + "probability": 0.5977 + }, + { + "start": 13584.18, + "end": 13584.25, + "probability": 0.0473 + }, + { + "start": 13584.7, + "end": 13585.92, + "probability": 0.2909 + }, + { + "start": 13586.06, + "end": 13587.5, + "probability": 0.2931 + }, + { + "start": 13587.64, + "end": 13588.48, + "probability": 0.1955 + }, + { + "start": 13588.48, + "end": 13591.36, + "probability": 0.8096 + }, + { + "start": 13591.98, + "end": 13593.56, + "probability": 0.9862 + }, + { + "start": 13594.06, + "end": 13596.26, + "probability": 0.981 + }, + { + "start": 13596.72, + "end": 13598.26, + "probability": 0.8264 + }, + { + "start": 13598.66, + "end": 13599.24, + "probability": 0.6196 + }, + { + "start": 13599.36, + "end": 13600.76, + "probability": 0.875 + }, + { + "start": 13601.02, + "end": 13601.72, + "probability": 0.9819 + }, + { + "start": 13602.24, + "end": 13604.18, + "probability": 0.9635 + }, + { + "start": 13604.7, + "end": 13605.2, + "probability": 0.5036 + }, + { + "start": 13605.2, + "end": 13608.3, + "probability": 0.8426 + }, + { + "start": 13608.52, + "end": 13610.02, + "probability": 0.9946 + }, + { + "start": 13610.36, + "end": 13611.16, + "probability": 0.4104 + }, + { + "start": 13611.26, + "end": 13611.9, + "probability": 0.6832 + }, + { + "start": 13612.89, + "end": 13615.44, + "probability": 0.7797 + }, + { + "start": 13615.96, + "end": 13620.0, + "probability": 0.9512 + }, + { + "start": 13620.12, + "end": 13620.8, + "probability": 0.8926 + }, + { + "start": 13620.96, + "end": 13623.26, + "probability": 0.9456 + }, + { + "start": 13623.42, + "end": 13626.48, + "probability": 0.8691 + }, + { + "start": 13626.62, + "end": 13627.88, + "probability": 0.4508 + }, + { + "start": 13627.9, + "end": 13628.34, + "probability": 0.3089 + }, + { + "start": 13628.96, + "end": 13630.9, + "probability": 0.9863 + }, + { + "start": 13631.38, + "end": 13633.72, + "probability": 0.9312 + }, + { + "start": 13634.52, + "end": 13635.14, + "probability": 0.5884 + }, + { + "start": 13635.14, + "end": 13637.48, + "probability": 0.7762 + }, + { + "start": 13638.38, + "end": 13641.92, + "probability": 0.9551 + }, + { + "start": 13642.5, + "end": 13649.52, + "probability": 0.9969 + }, + { + "start": 13649.82, + "end": 13652.72, + "probability": 0.9904 + }, + { + "start": 13652.86, + "end": 13655.1, + "probability": 0.8797 + }, + { + "start": 13655.2, + "end": 13656.74, + "probability": 0.5846 + }, + { + "start": 13657.42, + "end": 13662.26, + "probability": 0.9465 + }, + { + "start": 13662.8, + "end": 13663.54, + "probability": 0.5476 + }, + { + "start": 13663.92, + "end": 13667.66, + "probability": 0.9801 + }, + { + "start": 13667.92, + "end": 13668.66, + "probability": 0.7391 + }, + { + "start": 13668.76, + "end": 13668.94, + "probability": 0.634 + }, + { + "start": 13669.34, + "end": 13671.54, + "probability": 0.9859 + }, + { + "start": 13671.74, + "end": 13673.31, + "probability": 0.6359 + }, + { + "start": 13673.5, + "end": 13676.88, + "probability": 0.7388 + }, + { + "start": 13677.08, + "end": 13678.06, + "probability": 0.5899 + }, + { + "start": 13678.38, + "end": 13679.0, + "probability": 0.7856 + }, + { + "start": 13679.42, + "end": 13680.4, + "probability": 0.7483 + }, + { + "start": 13680.78, + "end": 13683.28, + "probability": 0.847 + }, + { + "start": 13684.5, + "end": 13687.86, + "probability": 0.9922 + }, + { + "start": 13687.86, + "end": 13690.58, + "probability": 0.9985 + }, + { + "start": 13690.7, + "end": 13691.86, + "probability": 0.9069 + }, + { + "start": 13692.3, + "end": 13693.34, + "probability": 0.5255 + }, + { + "start": 13693.46, + "end": 13693.72, + "probability": 0.2702 + }, + { + "start": 13693.78, + "end": 13694.82, + "probability": 0.8309 + }, + { + "start": 13695.04, + "end": 13696.34, + "probability": 0.9564 + }, + { + "start": 13696.64, + "end": 13698.54, + "probability": 0.9852 + }, + { + "start": 13698.74, + "end": 13700.98, + "probability": 0.9909 + }, + { + "start": 13701.36, + "end": 13703.26, + "probability": 0.8665 + }, + { + "start": 13703.44, + "end": 13704.14, + "probability": 0.8361 + }, + { + "start": 13704.44, + "end": 13706.34, + "probability": 0.8785 + }, + { + "start": 13706.64, + "end": 13707.8, + "probability": 0.7258 + }, + { + "start": 13707.94, + "end": 13710.18, + "probability": 0.9673 + }, + { + "start": 13710.18, + "end": 13712.78, + "probability": 0.9308 + }, + { + "start": 13713.16, + "end": 13715.76, + "probability": 0.9829 + }, + { + "start": 13715.9, + "end": 13718.21, + "probability": 0.9637 + }, + { + "start": 13718.4, + "end": 13720.32, + "probability": 0.9894 + }, + { + "start": 13720.68, + "end": 13722.32, + "probability": 0.9966 + }, + { + "start": 13722.82, + "end": 13726.4, + "probability": 0.9645 + }, + { + "start": 13727.06, + "end": 13732.06, + "probability": 0.9658 + }, + { + "start": 13732.16, + "end": 13735.08, + "probability": 0.9295 + }, + { + "start": 13735.4, + "end": 13736.8, + "probability": 0.9839 + }, + { + "start": 13737.08, + "end": 13739.04, + "probability": 0.9792 + }, + { + "start": 13739.44, + "end": 13741.44, + "probability": 0.9966 + }, + { + "start": 13741.62, + "end": 13743.54, + "probability": 0.9709 + }, + { + "start": 13743.78, + "end": 13747.14, + "probability": 0.9098 + }, + { + "start": 13747.76, + "end": 13750.28, + "probability": 0.9648 + }, + { + "start": 13750.34, + "end": 13751.9, + "probability": 0.9907 + }, + { + "start": 13752.26, + "end": 13753.68, + "probability": 0.9453 + }, + { + "start": 13754.1, + "end": 13755.96, + "probability": 0.1946 + }, + { + "start": 13756.0, + "end": 13756.84, + "probability": 0.9097 + }, + { + "start": 13757.0, + "end": 13757.82, + "probability": 0.7 + }, + { + "start": 13758.6, + "end": 13760.8, + "probability": 0.8802 + }, + { + "start": 13761.14, + "end": 13763.38, + "probability": 0.9926 + }, + { + "start": 13764.22, + "end": 13765.08, + "probability": 0.8369 + }, + { + "start": 13765.22, + "end": 13765.92, + "probability": 0.8599 + }, + { + "start": 13766.7, + "end": 13769.34, + "probability": 0.9946 + }, + { + "start": 13769.9, + "end": 13773.18, + "probability": 0.9077 + }, + { + "start": 13773.9, + "end": 13776.2, + "probability": 0.9275 + }, + { + "start": 13777.08, + "end": 13778.32, + "probability": 0.9392 + }, + { + "start": 13778.7, + "end": 13782.14, + "probability": 0.945 + }, + { + "start": 13783.2, + "end": 13783.62, + "probability": 0.7746 + }, + { + "start": 13783.62, + "end": 13783.78, + "probability": 0.7379 + }, + { + "start": 13784.18, + "end": 13786.2, + "probability": 0.9956 + }, + { + "start": 13786.34, + "end": 13787.0, + "probability": 0.9482 + }, + { + "start": 13787.06, + "end": 13789.58, + "probability": 0.9233 + }, + { + "start": 13789.6, + "end": 13790.38, + "probability": 0.6962 + }, + { + "start": 13791.16, + "end": 13794.76, + "probability": 0.7419 + }, + { + "start": 13795.57, + "end": 13797.69, + "probability": 0.9001 + }, + { + "start": 13798.48, + "end": 13799.62, + "probability": 0.9927 + }, + { + "start": 13799.8, + "end": 13800.8, + "probability": 0.969 + }, + { + "start": 13800.92, + "end": 13801.5, + "probability": 0.4844 + }, + { + "start": 13802.02, + "end": 13804.36, + "probability": 0.722 + }, + { + "start": 13804.62, + "end": 13806.42, + "probability": 0.929 + }, + { + "start": 13811.48, + "end": 13812.82, + "probability": 0.0524 + }, + { + "start": 13812.82, + "end": 13813.32, + "probability": 0.3141 + }, + { + "start": 13814.78, + "end": 13816.6, + "probability": 0.7413 + }, + { + "start": 13817.32, + "end": 13817.64, + "probability": 0.1612 + }, + { + "start": 13817.74, + "end": 13819.24, + "probability": 0.6771 + }, + { + "start": 13819.32, + "end": 13821.66, + "probability": 0.6694 + }, + { + "start": 13822.0, + "end": 13822.0, + "probability": 0.4195 + }, + { + "start": 13822.0, + "end": 13822.0, + "probability": 0.3628 + }, + { + "start": 13822.0, + "end": 13822.56, + "probability": 0.9061 + }, + { + "start": 13822.56, + "end": 13823.32, + "probability": 0.2226 + }, + { + "start": 13823.97, + "end": 13827.66, + "probability": 0.2387 + }, + { + "start": 13827.66, + "end": 13831.0, + "probability": 0.985 + }, + { + "start": 13831.12, + "end": 13833.58, + "probability": 0.8809 + }, + { + "start": 13834.98, + "end": 13837.18, + "probability": 0.9747 + }, + { + "start": 13838.04, + "end": 13840.3, + "probability": 0.9451 + }, + { + "start": 13843.11, + "end": 13844.23, + "probability": 0.2115 + }, + { + "start": 13844.96, + "end": 13845.3, + "probability": 0.5784 + }, + { + "start": 13846.06, + "end": 13847.84, + "probability": 0.8868 + }, + { + "start": 13848.46, + "end": 13853.22, + "probability": 0.9923 + }, + { + "start": 13854.5, + "end": 13856.92, + "probability": 0.9836 + }, + { + "start": 13858.02, + "end": 13858.78, + "probability": 0.9985 + }, + { + "start": 13859.88, + "end": 13860.36, + "probability": 0.6717 + }, + { + "start": 13860.4, + "end": 13861.08, + "probability": 0.8248 + }, + { + "start": 13861.16, + "end": 13861.84, + "probability": 0.9131 + }, + { + "start": 13862.3, + "end": 13864.36, + "probability": 0.9875 + }, + { + "start": 13865.82, + "end": 13867.78, + "probability": 0.8696 + }, + { + "start": 13867.9, + "end": 13869.41, + "probability": 0.9803 + }, + { + "start": 13869.84, + "end": 13870.72, + "probability": 0.9702 + }, + { + "start": 13871.5, + "end": 13872.36, + "probability": 0.9447 + }, + { + "start": 13872.9, + "end": 13876.14, + "probability": 0.9939 + }, + { + "start": 13877.32, + "end": 13878.9, + "probability": 0.9868 + }, + { + "start": 13879.34, + "end": 13880.76, + "probability": 0.9976 + }, + { + "start": 13881.74, + "end": 13884.58, + "probability": 0.9984 + }, + { + "start": 13885.96, + "end": 13888.7, + "probability": 0.9644 + }, + { + "start": 13889.24, + "end": 13891.9, + "probability": 0.9604 + }, + { + "start": 13892.92, + "end": 13896.56, + "probability": 0.9871 + }, + { + "start": 13897.78, + "end": 13899.4, + "probability": 0.9766 + }, + { + "start": 13900.2, + "end": 13901.22, + "probability": 0.9862 + }, + { + "start": 13901.46, + "end": 13902.38, + "probability": 0.9473 + }, + { + "start": 13902.64, + "end": 13904.62, + "probability": 0.9663 + }, + { + "start": 13905.02, + "end": 13905.48, + "probability": 0.8062 + }, + { + "start": 13906.5, + "end": 13907.7, + "probability": 0.7521 + }, + { + "start": 13907.84, + "end": 13909.74, + "probability": 0.9794 + }, + { + "start": 13911.1, + "end": 13912.88, + "probability": 0.9874 + }, + { + "start": 13913.56, + "end": 13916.14, + "probability": 0.7207 + }, + { + "start": 13916.64, + "end": 13919.88, + "probability": 0.981 + }, + { + "start": 13920.88, + "end": 13921.86, + "probability": 0.9966 + }, + { + "start": 13922.54, + "end": 13924.06, + "probability": 0.5186 + }, + { + "start": 13925.52, + "end": 13930.72, + "probability": 0.9802 + }, + { + "start": 13932.42, + "end": 13933.58, + "probability": 0.5211 + }, + { + "start": 13934.16, + "end": 13934.32, + "probability": 0.7677 + }, + { + "start": 13935.52, + "end": 13939.88, + "probability": 0.9735 + }, + { + "start": 13940.92, + "end": 13943.46, + "probability": 0.9938 + }, + { + "start": 13943.76, + "end": 13949.04, + "probability": 0.963 + }, + { + "start": 13950.66, + "end": 13951.5, + "probability": 0.6724 + }, + { + "start": 13951.56, + "end": 13952.46, + "probability": 0.7011 + }, + { + "start": 13952.58, + "end": 13954.68, + "probability": 0.9679 + }, + { + "start": 13959.9, + "end": 13960.82, + "probability": 0.5584 + }, + { + "start": 13966.24, + "end": 13968.04, + "probability": 0.6812 + }, + { + "start": 13968.64, + "end": 13969.78, + "probability": 0.6113 + }, + { + "start": 13970.71, + "end": 13975.12, + "probability": 0.9774 + }, + { + "start": 13975.44, + "end": 13977.86, + "probability": 0.5672 + }, + { + "start": 13977.86, + "end": 13980.38, + "probability": 0.8424 + }, + { + "start": 13980.56, + "end": 13983.06, + "probability": 0.9766 + }, + { + "start": 13984.54, + "end": 13986.94, + "probability": 0.897 + }, + { + "start": 13988.48, + "end": 13992.16, + "probability": 0.7141 + }, + { + "start": 13992.36, + "end": 13996.74, + "probability": 0.9486 + }, + { + "start": 13997.7, + "end": 13999.32, + "probability": 0.6308 + }, + { + "start": 14001.04, + "end": 14007.96, + "probability": 0.9567 + }, + { + "start": 14008.74, + "end": 14010.88, + "probability": 0.8431 + }, + { + "start": 14011.6, + "end": 14013.98, + "probability": 0.9839 + }, + { + "start": 14014.76, + "end": 14019.6, + "probability": 0.9677 + }, + { + "start": 14019.6, + "end": 14023.44, + "probability": 0.9927 + }, + { + "start": 14024.9, + "end": 14028.42, + "probability": 0.953 + }, + { + "start": 14029.66, + "end": 14033.82, + "probability": 0.9742 + }, + { + "start": 14034.54, + "end": 14038.52, + "probability": 0.9892 + }, + { + "start": 14038.68, + "end": 14040.12, + "probability": 0.8972 + }, + { + "start": 14041.36, + "end": 14044.16, + "probability": 0.8108 + }, + { + "start": 14044.22, + "end": 14045.42, + "probability": 0.9556 + }, + { + "start": 14045.7, + "end": 14046.56, + "probability": 0.6847 + }, + { + "start": 14047.14, + "end": 14049.26, + "probability": 0.9222 + }, + { + "start": 14050.34, + "end": 14053.08, + "probability": 0.9629 + }, + { + "start": 14054.18, + "end": 14056.12, + "probability": 0.9382 + }, + { + "start": 14057.14, + "end": 14058.0, + "probability": 0.959 + }, + { + "start": 14058.32, + "end": 14059.44, + "probability": 0.7878 + }, + { + "start": 14059.68, + "end": 14062.64, + "probability": 0.9976 + }, + { + "start": 14063.42, + "end": 14064.62, + "probability": 0.9865 + }, + { + "start": 14065.86, + "end": 14067.68, + "probability": 0.9563 + }, + { + "start": 14068.22, + "end": 14072.74, + "probability": 0.7653 + }, + { + "start": 14073.16, + "end": 14074.72, + "probability": 0.9671 + }, + { + "start": 14075.54, + "end": 14079.1, + "probability": 0.9705 + }, + { + "start": 14079.88, + "end": 14082.38, + "probability": 0.9971 + }, + { + "start": 14082.9, + "end": 14087.78, + "probability": 0.991 + }, + { + "start": 14088.52, + "end": 14091.94, + "probability": 0.9763 + }, + { + "start": 14092.52, + "end": 14093.7, + "probability": 0.8847 + }, + { + "start": 14094.26, + "end": 14096.46, + "probability": 0.9796 + }, + { + "start": 14097.26, + "end": 14098.96, + "probability": 0.8911 + }, + { + "start": 14099.04, + "end": 14100.48, + "probability": 0.993 + }, + { + "start": 14101.06, + "end": 14103.34, + "probability": 0.9973 + }, + { + "start": 14103.34, + "end": 14106.62, + "probability": 0.9836 + }, + { + "start": 14107.28, + "end": 14108.4, + "probability": 0.7967 + }, + { + "start": 14108.52, + "end": 14109.2, + "probability": 0.8918 + }, + { + "start": 14109.64, + "end": 14114.1, + "probability": 0.9805 + }, + { + "start": 14114.6, + "end": 14115.84, + "probability": 0.9873 + }, + { + "start": 14116.02, + "end": 14117.82, + "probability": 0.9292 + }, + { + "start": 14118.8, + "end": 14119.72, + "probability": 0.9483 + }, + { + "start": 14120.28, + "end": 14123.3, + "probability": 0.9796 + }, + { + "start": 14124.32, + "end": 14126.96, + "probability": 0.8853 + }, + { + "start": 14128.06, + "end": 14133.14, + "probability": 0.9769 + }, + { + "start": 14133.76, + "end": 14136.42, + "probability": 0.9958 + }, + { + "start": 14136.42, + "end": 14140.82, + "probability": 0.992 + }, + { + "start": 14141.4, + "end": 14143.22, + "probability": 0.9718 + }, + { + "start": 14143.94, + "end": 14146.94, + "probability": 0.9635 + }, + { + "start": 14146.94, + "end": 14150.02, + "probability": 0.9938 + }, + { + "start": 14150.62, + "end": 14156.08, + "probability": 0.9991 + }, + { + "start": 14156.82, + "end": 14157.84, + "probability": 0.3793 + }, + { + "start": 14157.96, + "end": 14162.36, + "probability": 0.9528 + }, + { + "start": 14163.1, + "end": 14166.72, + "probability": 0.9915 + }, + { + "start": 14167.38, + "end": 14170.18, + "probability": 0.996 + }, + { + "start": 14172.03, + "end": 14174.1, + "probability": 0.8213 + }, + { + "start": 14174.78, + "end": 14178.0, + "probability": 0.9917 + }, + { + "start": 14179.0, + "end": 14182.44, + "probability": 0.8483 + }, + { + "start": 14183.86, + "end": 14185.94, + "probability": 0.938 + }, + { + "start": 14186.46, + "end": 14188.62, + "probability": 0.5166 + }, + { + "start": 14189.1, + "end": 14193.94, + "probability": 0.9967 + }, + { + "start": 14193.94, + "end": 14198.44, + "probability": 0.9984 + }, + { + "start": 14198.7, + "end": 14198.92, + "probability": 0.7414 + }, + { + "start": 14199.04, + "end": 14202.42, + "probability": 0.9989 + }, + { + "start": 14202.86, + "end": 14203.92, + "probability": 0.7941 + }, + { + "start": 14204.98, + "end": 14207.64, + "probability": 0.6537 + }, + { + "start": 14207.72, + "end": 14212.69, + "probability": 0.9963 + }, + { + "start": 14212.98, + "end": 14218.56, + "probability": 0.9894 + }, + { + "start": 14218.96, + "end": 14223.64, + "probability": 0.2542 + }, + { + "start": 14223.7, + "end": 14224.64, + "probability": 0.7556 + }, + { + "start": 14225.0, + "end": 14226.78, + "probability": 0.8292 + }, + { + "start": 14227.74, + "end": 14228.16, + "probability": 0.7301 + }, + { + "start": 14241.78, + "end": 14247.1, + "probability": 0.5215 + }, + { + "start": 14253.54, + "end": 14259.12, + "probability": 0.2226 + }, + { + "start": 14259.12, + "end": 14260.98, + "probability": 0.0805 + }, + { + "start": 14262.64, + "end": 14263.26, + "probability": 0.7653 + }, + { + "start": 14264.12, + "end": 14266.52, + "probability": 0.0069 + }, + { + "start": 14277.44, + "end": 14281.62, + "probability": 0.0432 + }, + { + "start": 14282.96, + "end": 14284.12, + "probability": 0.0423 + }, + { + "start": 14284.38, + "end": 14292.98, + "probability": 0.0336 + }, + { + "start": 14293.0, + "end": 14293.0, + "probability": 0.0 + }, + { + "start": 14293.0, + "end": 14293.0, + "probability": 0.0 + }, + { + "start": 14293.0, + "end": 14293.0, + "probability": 0.0 + }, + { + "start": 14293.0, + "end": 14293.0, + "probability": 0.0 + }, + { + "start": 14293.0, + "end": 14293.0, + "probability": 0.0 + }, + { + "start": 14293.16, + "end": 14293.16, + "probability": 0.0194 + }, + { + "start": 14293.16, + "end": 14294.54, + "probability": 0.6128 + }, + { + "start": 14295.68, + "end": 14296.48, + "probability": 0.5465 + }, + { + "start": 14296.8, + "end": 14297.68, + "probability": 0.791 + }, + { + "start": 14298.24, + "end": 14299.7, + "probability": 0.618 + }, + { + "start": 14299.84, + "end": 14302.9, + "probability": 0.9682 + }, + { + "start": 14303.52, + "end": 14304.88, + "probability": 0.5976 + }, + { + "start": 14305.06, + "end": 14307.06, + "probability": 0.6744 + }, + { + "start": 14307.18, + "end": 14307.96, + "probability": 0.7918 + }, + { + "start": 14308.46, + "end": 14313.78, + "probability": 0.9985 + }, + { + "start": 14314.42, + "end": 14318.76, + "probability": 0.7647 + }, + { + "start": 14345.14, + "end": 14347.36, + "probability": 0.7445 + }, + { + "start": 14347.96, + "end": 14349.64, + "probability": 0.8123 + }, + { + "start": 14350.88, + "end": 14359.7, + "probability": 0.9924 + }, + { + "start": 14360.64, + "end": 14364.4, + "probability": 0.7649 + }, + { + "start": 14365.12, + "end": 14369.3, + "probability": 0.9442 + }, + { + "start": 14374.86, + "end": 14376.74, + "probability": 0.9984 + }, + { + "start": 14376.78, + "end": 14380.3, + "probability": 0.6459 + }, + { + "start": 14380.3, + "end": 14382.14, + "probability": 0.8694 + }, + { + "start": 14382.74, + "end": 14386.82, + "probability": 0.9029 + }, + { + "start": 14388.64, + "end": 14391.92, + "probability": 0.9954 + }, + { + "start": 14392.96, + "end": 14393.74, + "probability": 0.9058 + }, + { + "start": 14394.4, + "end": 14396.04, + "probability": 0.8333 + }, + { + "start": 14396.04, + "end": 14398.94, + "probability": 0.4031 + }, + { + "start": 14399.02, + "end": 14405.0, + "probability": 0.9497 + }, + { + "start": 14405.0, + "end": 14410.24, + "probability": 0.9972 + }, + { + "start": 14411.8, + "end": 14415.02, + "probability": 0.986 + }, + { + "start": 14415.34, + "end": 14417.7, + "probability": 0.9638 + }, + { + "start": 14418.3, + "end": 14420.12, + "probability": 0.1309 + }, + { + "start": 14420.14, + "end": 14422.34, + "probability": 0.9172 + }, + { + "start": 14423.1, + "end": 14427.38, + "probability": 0.9625 + }, + { + "start": 14427.52, + "end": 14430.84, + "probability": 0.8955 + }, + { + "start": 14431.0, + "end": 14433.68, + "probability": 0.7721 + }, + { + "start": 14434.16, + "end": 14436.12, + "probability": 0.2242 + }, + { + "start": 14436.16, + "end": 14439.82, + "probability": 0.7872 + }, + { + "start": 14441.03, + "end": 14443.48, + "probability": 0.3735 + }, + { + "start": 14444.12, + "end": 14449.42, + "probability": 0.6067 + }, + { + "start": 14449.94, + "end": 14454.74, + "probability": 0.9741 + }, + { + "start": 14455.32, + "end": 14458.64, + "probability": 0.9395 + }, + { + "start": 14459.22, + "end": 14466.14, + "probability": 0.9939 + }, + { + "start": 14466.72, + "end": 14469.96, + "probability": 0.9946 + }, + { + "start": 14470.56, + "end": 14473.2, + "probability": 0.995 + }, + { + "start": 14473.28, + "end": 14474.78, + "probability": 0.9552 + }, + { + "start": 14475.9, + "end": 14476.3, + "probability": 0.7427 + }, + { + "start": 14476.76, + "end": 14480.48, + "probability": 0.862 + }, + { + "start": 14482.2, + "end": 14484.02, + "probability": 0.9431 + }, + { + "start": 14484.02, + "end": 14486.34, + "probability": 0.9901 + }, + { + "start": 14487.06, + "end": 14490.74, + "probability": 0.6382 + }, + { + "start": 14490.82, + "end": 14493.0, + "probability": 0.7395 + }, + { + "start": 14493.38, + "end": 14494.94, + "probability": 0.8155 + }, + { + "start": 14495.42, + "end": 14499.9, + "probability": 0.9294 + }, + { + "start": 14499.9, + "end": 14504.18, + "probability": 0.9969 + }, + { + "start": 14504.6, + "end": 14510.12, + "probability": 0.78 + }, + { + "start": 14510.98, + "end": 14512.72, + "probability": 0.3618 + }, + { + "start": 14512.96, + "end": 14514.4, + "probability": 0.5593 + }, + { + "start": 14514.58, + "end": 14519.48, + "probability": 0.7778 + }, + { + "start": 14519.96, + "end": 14521.8, + "probability": 0.8613 + }, + { + "start": 14522.02, + "end": 14522.68, + "probability": 0.7028 + }, + { + "start": 14523.18, + "end": 14525.24, + "probability": 0.9792 + }, + { + "start": 14525.84, + "end": 14526.68, + "probability": 0.4273 + }, + { + "start": 14526.78, + "end": 14528.9, + "probability": 0.7561 + }, + { + "start": 14529.46, + "end": 14533.56, + "probability": 0.8327 + }, + { + "start": 14533.56, + "end": 14538.82, + "probability": 0.9591 + }, + { + "start": 14538.88, + "end": 14542.24, + "probability": 0.9647 + }, + { + "start": 14542.24, + "end": 14545.36, + "probability": 0.9893 + }, + { + "start": 14545.82, + "end": 14549.98, + "probability": 0.9054 + }, + { + "start": 14550.12, + "end": 14550.72, + "probability": 0.6663 + }, + { + "start": 14551.24, + "end": 14556.62, + "probability": 0.9755 + }, + { + "start": 14557.37, + "end": 14561.26, + "probability": 0.9796 + }, + { + "start": 14561.26, + "end": 14565.94, + "probability": 0.7752 + }, + { + "start": 14566.1, + "end": 14569.86, + "probability": 0.8884 + }, + { + "start": 14570.04, + "end": 14573.65, + "probability": 0.7824 + }, + { + "start": 14574.7, + "end": 14576.66, + "probability": 0.9458 + }, + { + "start": 14576.66, + "end": 14578.66, + "probability": 0.9627 + }, + { + "start": 14579.26, + "end": 14584.68, + "probability": 0.9878 + }, + { + "start": 14584.68, + "end": 14588.8, + "probability": 0.941 + }, + { + "start": 14588.82, + "end": 14593.78, + "probability": 0.8764 + }, + { + "start": 14593.86, + "end": 14594.22, + "probability": 0.7798 + }, + { + "start": 14594.5, + "end": 14596.24, + "probability": 0.9102 + }, + { + "start": 14597.06, + "end": 14598.52, + "probability": 0.7656 + }, + { + "start": 14599.2, + "end": 14600.64, + "probability": 0.7137 + }, + { + "start": 14600.8, + "end": 14600.8, + "probability": 0.1887 + }, + { + "start": 14600.8, + "end": 14605.32, + "probability": 0.9162 + }, + { + "start": 14605.32, + "end": 14608.58, + "probability": 0.8928 + }, + { + "start": 14609.4, + "end": 14612.92, + "probability": 0.5292 + }, + { + "start": 14613.74, + "end": 14614.24, + "probability": 0.8337 + }, + { + "start": 14614.58, + "end": 14616.94, + "probability": 0.673 + }, + { + "start": 14617.62, + "end": 14618.8, + "probability": 0.7497 + }, + { + "start": 14619.32, + "end": 14622.58, + "probability": 0.8997 + }, + { + "start": 14623.66, + "end": 14624.36, + "probability": 0.3332 + }, + { + "start": 14624.42, + "end": 14626.3, + "probability": 0.8064 + }, + { + "start": 14626.86, + "end": 14629.3, + "probability": 0.9851 + }, + { + "start": 14629.98, + "end": 14632.72, + "probability": 0.9072 + }, + { + "start": 14633.2, + "end": 14636.18, + "probability": 0.9865 + }, + { + "start": 14636.18, + "end": 14638.55, + "probability": 0.738 + }, + { + "start": 14639.88, + "end": 14640.46, + "probability": 0.6443 + }, + { + "start": 14640.5, + "end": 14640.88, + "probability": 0.7927 + }, + { + "start": 14641.18, + "end": 14643.2, + "probability": 0.9114 + }, + { + "start": 14644.14, + "end": 14645.52, + "probability": 0.9075 + }, + { + "start": 14645.78, + "end": 14649.06, + "probability": 0.9286 + }, + { + "start": 14658.86, + "end": 14661.06, + "probability": 0.9878 + }, + { + "start": 14672.26, + "end": 14675.9, + "probability": 0.9937 + }, + { + "start": 14675.9, + "end": 14677.88, + "probability": 0.9961 + }, + { + "start": 14679.6, + "end": 14680.6, + "probability": 0.9437 + }, + { + "start": 14680.64, + "end": 14682.36, + "probability": 0.9939 + }, + { + "start": 14682.78, + "end": 14687.62, + "probability": 0.9865 + }, + { + "start": 14688.34, + "end": 14693.1, + "probability": 0.9961 + }, + { + "start": 14694.2, + "end": 14697.58, + "probability": 0.9934 + }, + { + "start": 14697.58, + "end": 14701.38, + "probability": 0.9937 + }, + { + "start": 14702.06, + "end": 14705.0, + "probability": 0.9989 + }, + { + "start": 14705.0, + "end": 14708.44, + "probability": 0.9713 + }, + { + "start": 14709.2, + "end": 14710.14, + "probability": 0.96 + }, + { + "start": 14711.0, + "end": 14711.66, + "probability": 0.8147 + }, + { + "start": 14711.82, + "end": 14715.18, + "probability": 0.9302 + }, + { + "start": 14715.34, + "end": 14715.6, + "probability": 0.7947 + }, + { + "start": 14716.4, + "end": 14717.74, + "probability": 0.7384 + }, + { + "start": 14718.06, + "end": 14721.4, + "probability": 0.9653 + }, + { + "start": 14721.76, + "end": 14725.54, + "probability": 0.9854 + }, + { + "start": 14726.32, + "end": 14727.3, + "probability": 0.7043 + }, + { + "start": 14727.96, + "end": 14730.0, + "probability": 0.8917 + }, + { + "start": 14730.08, + "end": 14730.66, + "probability": 0.9741 + }, + { + "start": 14731.64, + "end": 14735.16, + "probability": 0.9673 + }, + { + "start": 14735.76, + "end": 14740.02, + "probability": 0.9972 + }, + { + "start": 14741.7, + "end": 14746.46, + "probability": 0.9272 + }, + { + "start": 14747.02, + "end": 14750.48, + "probability": 0.9246 + }, + { + "start": 14750.92, + "end": 14753.42, + "probability": 0.9076 + }, + { + "start": 14753.88, + "end": 14755.75, + "probability": 0.8442 + }, + { + "start": 14756.34, + "end": 14758.56, + "probability": 0.9928 + }, + { + "start": 14758.94, + "end": 14759.76, + "probability": 0.94 + }, + { + "start": 14760.44, + "end": 14765.58, + "probability": 0.9556 + }, + { + "start": 14766.28, + "end": 14767.06, + "probability": 0.9799 + }, + { + "start": 14767.44, + "end": 14772.04, + "probability": 0.8809 + }, + { + "start": 14772.4, + "end": 14772.9, + "probability": 0.4379 + }, + { + "start": 14773.18, + "end": 14775.34, + "probability": 0.9743 + }, + { + "start": 14775.34, + "end": 14775.41, + "probability": 0.7121 + }, + { + "start": 14776.26, + "end": 14779.16, + "probability": 0.5496 + }, + { + "start": 14779.18, + "end": 14780.18, + "probability": 0.9922 + }, + { + "start": 14780.2, + "end": 14784.92, + "probability": 0.9321 + }, + { + "start": 14784.92, + "end": 14785.48, + "probability": 0.0818 + }, + { + "start": 14786.1, + "end": 14788.64, + "probability": 0.8706 + }, + { + "start": 14789.0, + "end": 14793.16, + "probability": 0.811 + }, + { + "start": 14793.28, + "end": 14795.86, + "probability": 0.8363 + }, + { + "start": 14795.94, + "end": 14796.98, + "probability": 0.904 + }, + { + "start": 14797.4, + "end": 14798.66, + "probability": 0.7616 + }, + { + "start": 14799.0, + "end": 14799.24, + "probability": 0.8672 + }, + { + "start": 14799.44, + "end": 14800.68, + "probability": 0.9097 + }, + { + "start": 14801.36, + "end": 14803.62, + "probability": 0.9571 + }, + { + "start": 14803.94, + "end": 14806.7, + "probability": 0.8599 + }, + { + "start": 14807.46, + "end": 14809.12, + "probability": 0.9781 + }, + { + "start": 14809.2, + "end": 14810.38, + "probability": 0.8363 + }, + { + "start": 14810.42, + "end": 14811.5, + "probability": 0.2914 + }, + { + "start": 14811.5, + "end": 14814.64, + "probability": 0.9629 + }, + { + "start": 14814.98, + "end": 14818.12, + "probability": 0.9609 + }, + { + "start": 14818.16, + "end": 14820.28, + "probability": 0.8779 + }, + { + "start": 14821.94, + "end": 14821.94, + "probability": 0.128 + }, + { + "start": 14821.94, + "end": 14822.06, + "probability": 0.0854 + }, + { + "start": 14822.06, + "end": 14823.58, + "probability": 0.8127 + }, + { + "start": 14823.72, + "end": 14825.58, + "probability": 0.5234 + }, + { + "start": 14825.74, + "end": 14827.58, + "probability": 0.2193 + }, + { + "start": 14827.76, + "end": 14828.98, + "probability": 0.879 + }, + { + "start": 14829.6, + "end": 14830.32, + "probability": 0.5274 + }, + { + "start": 14831.46, + "end": 14836.96, + "probability": 0.9839 + }, + { + "start": 14837.16, + "end": 14838.62, + "probability": 0.9654 + }, + { + "start": 14839.02, + "end": 14840.24, + "probability": 0.9478 + }, + { + "start": 14840.38, + "end": 14843.72, + "probability": 0.9881 + }, + { + "start": 14844.12, + "end": 14849.2, + "probability": 0.787 + }, + { + "start": 14849.38, + "end": 14853.24, + "probability": 0.6397 + }, + { + "start": 14853.72, + "end": 14857.72, + "probability": 0.9836 + }, + { + "start": 14858.24, + "end": 14859.86, + "probability": 0.3148 + }, + { + "start": 14860.18, + "end": 14860.86, + "probability": 0.5121 + }, + { + "start": 14860.94, + "end": 14862.46, + "probability": 0.9297 + }, + { + "start": 14862.58, + "end": 14864.46, + "probability": 0.0427 + }, + { + "start": 14864.64, + "end": 14864.94, + "probability": 0.009 + }, + { + "start": 14864.94, + "end": 14865.22, + "probability": 0.0719 + }, + { + "start": 14865.8, + "end": 14866.92, + "probability": 0.1798 + }, + { + "start": 14867.24, + "end": 14869.48, + "probability": 0.3311 + }, + { + "start": 14869.7, + "end": 14870.28, + "probability": 0.3681 + }, + { + "start": 14870.32, + "end": 14870.66, + "probability": 0.5797 + }, + { + "start": 14870.76, + "end": 14871.28, + "probability": 0.5551 + }, + { + "start": 14871.64, + "end": 14872.52, + "probability": 0.9169 + }, + { + "start": 14872.6, + "end": 14874.7, + "probability": 0.8873 + }, + { + "start": 14874.72, + "end": 14875.48, + "probability": 0.96 + }, + { + "start": 14875.9, + "end": 14878.76, + "probability": 0.0161 + }, + { + "start": 14878.84, + "end": 14879.1, + "probability": 0.113 + }, + { + "start": 14879.46, + "end": 14879.7, + "probability": 0.0761 + }, + { + "start": 14880.12, + "end": 14880.12, + "probability": 0.1007 + }, + { + "start": 14880.39, + "end": 14881.52, + "probability": 0.0646 + }, + { + "start": 14881.72, + "end": 14881.72, + "probability": 0.1487 + }, + { + "start": 14881.72, + "end": 14882.66, + "probability": 0.4309 + }, + { + "start": 14882.66, + "end": 14884.0, + "probability": 0.4859 + }, + { + "start": 14884.14, + "end": 14885.75, + "probability": 0.9141 + }, + { + "start": 14886.02, + "end": 14887.7, + "probability": 0.0712 + }, + { + "start": 14890.09, + "end": 14893.14, + "probability": 0.0515 + }, + { + "start": 14893.14, + "end": 14896.44, + "probability": 0.0393 + }, + { + "start": 14897.08, + "end": 14898.34, + "probability": 0.1483 + }, + { + "start": 14898.82, + "end": 14899.98, + "probability": 0.2613 + }, + { + "start": 14899.98, + "end": 14899.98, + "probability": 0.0174 + }, + { + "start": 14901.32, + "end": 14904.54, + "probability": 0.1207 + }, + { + "start": 14905.02, + "end": 14905.48, + "probability": 0.1559 + }, + { + "start": 14905.48, + "end": 14908.54, + "probability": 0.5431 + }, + { + "start": 14909.16, + "end": 14910.3, + "probability": 0.512 + }, + { + "start": 14910.76, + "end": 14911.82, + "probability": 0.5491 + }, + { + "start": 14913.36, + "end": 14915.28, + "probability": 0.6646 + }, + { + "start": 14917.46, + "end": 14922.52, + "probability": 0.9971 + }, + { + "start": 14922.56, + "end": 14928.4, + "probability": 0.9983 + }, + { + "start": 14929.02, + "end": 14929.2, + "probability": 0.4919 + }, + { + "start": 14929.26, + "end": 14930.86, + "probability": 0.9858 + }, + { + "start": 14931.06, + "end": 14934.12, + "probability": 0.9974 + }, + { + "start": 14934.76, + "end": 14937.94, + "probability": 0.9863 + }, + { + "start": 14939.36, + "end": 14942.08, + "probability": 0.9995 + }, + { + "start": 14942.44, + "end": 14945.3, + "probability": 0.9919 + }, + { + "start": 14946.12, + "end": 14947.14, + "probability": 0.978 + }, + { + "start": 14947.16, + "end": 14949.68, + "probability": 0.9891 + }, + { + "start": 14950.2, + "end": 14952.74, + "probability": 0.9974 + }, + { + "start": 14953.26, + "end": 14957.72, + "probability": 0.9905 + }, + { + "start": 14958.38, + "end": 14959.6, + "probability": 0.7851 + }, + { + "start": 14960.06, + "end": 14960.96, + "probability": 0.9531 + }, + { + "start": 14961.0, + "end": 14964.84, + "probability": 0.9928 + }, + { + "start": 14965.72, + "end": 14966.72, + "probability": 0.8817 + }, + { + "start": 14967.2, + "end": 14970.04, + "probability": 0.9707 + }, + { + "start": 14970.46, + "end": 14973.04, + "probability": 0.9956 + }, + { + "start": 14973.2, + "end": 14974.33, + "probability": 0.6983 + }, + { + "start": 14974.68, + "end": 14976.26, + "probability": 0.659 + }, + { + "start": 14976.26, + "end": 14976.42, + "probability": 0.3615 + }, + { + "start": 14976.42, + "end": 14977.2, + "probability": 0.5984 + }, + { + "start": 14977.88, + "end": 14978.52, + "probability": 0.5253 + }, + { + "start": 14978.6, + "end": 14979.28, + "probability": 0.5022 + }, + { + "start": 14979.38, + "end": 14980.56, + "probability": 0.4205 + }, + { + "start": 14983.3, + "end": 14988.58, + "probability": 0.9964 + }, + { + "start": 14989.18, + "end": 14993.66, + "probability": 0.9983 + }, + { + "start": 14994.52, + "end": 14997.42, + "probability": 0.0784 + }, + { + "start": 14997.42, + "end": 14997.42, + "probability": 0.1079 + }, + { + "start": 14997.72, + "end": 14999.28, + "probability": 0.037 + }, + { + "start": 14999.94, + "end": 15000.22, + "probability": 0.0122 + }, + { + "start": 15000.22, + "end": 15000.8, + "probability": 0.0771 + }, + { + "start": 15000.8, + "end": 15000.86, + "probability": 0.0139 + }, + { + "start": 15000.86, + "end": 15002.1, + "probability": 0.0027 + }, + { + "start": 15005.35, + "end": 15007.67, + "probability": 0.0561 + }, + { + "start": 15007.82, + "end": 15007.84, + "probability": 0.0335 + }, + { + "start": 15009.26, + "end": 15009.58, + "probability": 0.0757 + }, + { + "start": 15012.18, + "end": 15013.0, + "probability": 0.1602 + }, + { + "start": 15014.6, + "end": 15015.2, + "probability": 0.3051 + }, + { + "start": 15018.68, + "end": 15018.68, + "probability": 0.0336 + }, + { + "start": 15018.68, + "end": 15018.68, + "probability": 0.0776 + }, + { + "start": 15018.68, + "end": 15018.68, + "probability": 0.0474 + }, + { + "start": 15018.68, + "end": 15020.12, + "probability": 0.0706 + }, + { + "start": 15020.16, + "end": 15020.18, + "probability": 0.0357 + }, + { + "start": 15020.18, + "end": 15020.18, + "probability": 0.0792 + }, + { + "start": 15021.14, + "end": 15021.48, + "probability": 0.4023 + }, + { + "start": 15039.38, + "end": 15040.72, + "probability": 0.0091 + }, + { + "start": 15041.15, + "end": 15042.16, + "probability": 0.0363 + }, + { + "start": 15044.59, + "end": 15047.21, + "probability": 0.0623 + }, + { + "start": 15048.48, + "end": 15051.12, + "probability": 0.0728 + }, + { + "start": 15052.3, + "end": 15054.06, + "probability": 0.0372 + }, + { + "start": 15054.12, + "end": 15054.65, + "probability": 0.0857 + }, + { + "start": 15055.2, + "end": 15056.66, + "probability": 0.2063 + }, + { + "start": 15057.6, + "end": 15058.96, + "probability": 0.0855 + }, + { + "start": 15059.0, + "end": 15059.0, + "probability": 0.0 + }, + { + "start": 15059.0, + "end": 15059.0, + "probability": 0.0 + }, + { + "start": 15059.0, + "end": 15059.0, + "probability": 0.0 + }, + { + "start": 15059.0, + "end": 15059.0, + "probability": 0.0 + }, + { + "start": 15059.0, + "end": 15059.0, + "probability": 0.0 + }, + { + "start": 15059.0, + "end": 15059.0, + "probability": 0.0 + }, + { + "start": 15059.22, + "end": 15060.38, + "probability": 0.0945 + }, + { + "start": 15062.1, + "end": 15064.1, + "probability": 0.5946 + }, + { + "start": 15064.98, + "end": 15065.98, + "probability": 0.8439 + }, + { + "start": 15066.88, + "end": 15067.56, + "probability": 0.6808 + }, + { + "start": 15067.64, + "end": 15068.98, + "probability": 0.8833 + }, + { + "start": 15069.2, + "end": 15069.76, + "probability": 0.6021 + }, + { + "start": 15069.94, + "end": 15071.38, + "probability": 0.9072 + }, + { + "start": 15072.14, + "end": 15075.46, + "probability": 0.7066 + }, + { + "start": 15076.1, + "end": 15079.84, + "probability": 0.7819 + }, + { + "start": 15080.34, + "end": 15081.68, + "probability": 0.9835 + }, + { + "start": 15098.64, + "end": 15100.56, + "probability": 0.7471 + }, + { + "start": 15101.58, + "end": 15104.1, + "probability": 0.9678 + }, + { + "start": 15104.82, + "end": 15106.26, + "probability": 0.9277 + }, + { + "start": 15107.08, + "end": 15109.58, + "probability": 0.9982 + }, + { + "start": 15110.26, + "end": 15113.98, + "probability": 0.9895 + }, + { + "start": 15115.0, + "end": 15117.32, + "probability": 0.8926 + }, + { + "start": 15118.16, + "end": 15121.96, + "probability": 0.972 + }, + { + "start": 15122.74, + "end": 15124.78, + "probability": 0.9795 + }, + { + "start": 15125.36, + "end": 15126.98, + "probability": 0.9902 + }, + { + "start": 15127.6, + "end": 15130.0, + "probability": 0.9857 + }, + { + "start": 15130.7, + "end": 15131.24, + "probability": 0.6075 + }, + { + "start": 15131.8, + "end": 15133.52, + "probability": 0.8697 + }, + { + "start": 15134.18, + "end": 15136.74, + "probability": 0.9062 + }, + { + "start": 15137.46, + "end": 15141.02, + "probability": 0.9958 + }, + { + "start": 15141.84, + "end": 15144.54, + "probability": 0.9866 + }, + { + "start": 15145.14, + "end": 15146.5, + "probability": 0.7466 + }, + { + "start": 15147.24, + "end": 15149.28, + "probability": 0.8599 + }, + { + "start": 15149.92, + "end": 15153.28, + "probability": 0.7507 + }, + { + "start": 15153.42, + "end": 15154.08, + "probability": 0.5477 + }, + { + "start": 15154.28, + "end": 15156.28, + "probability": 0.9814 + }, + { + "start": 15157.0, + "end": 15161.26, + "probability": 0.9703 + }, + { + "start": 15162.04, + "end": 15164.8, + "probability": 0.9946 + }, + { + "start": 15165.42, + "end": 15170.92, + "probability": 0.9885 + }, + { + "start": 15171.86, + "end": 15175.08, + "probability": 0.9954 + }, + { + "start": 15176.76, + "end": 15182.46, + "probability": 0.9869 + }, + { + "start": 15182.54, + "end": 15183.14, + "probability": 0.8706 + }, + { + "start": 15183.22, + "end": 15184.32, + "probability": 0.6506 + }, + { + "start": 15184.82, + "end": 15185.1, + "probability": 0.7156 + }, + { + "start": 15185.34, + "end": 15186.6, + "probability": 0.7422 + }, + { + "start": 15187.14, + "end": 15189.9, + "probability": 0.9851 + }, + { + "start": 15189.9, + "end": 15193.06, + "probability": 0.9876 + }, + { + "start": 15193.96, + "end": 15198.76, + "probability": 0.9868 + }, + { + "start": 15199.32, + "end": 15202.56, + "probability": 0.8415 + }, + { + "start": 15203.0, + "end": 15205.94, + "probability": 0.8127 + }, + { + "start": 15206.58, + "end": 15211.44, + "probability": 0.9937 + }, + { + "start": 15211.58, + "end": 15214.04, + "probability": 0.9883 + }, + { + "start": 15214.72, + "end": 15215.2, + "probability": 0.7989 + }, + { + "start": 15216.34, + "end": 15219.16, + "probability": 0.9971 + }, + { + "start": 15219.16, + "end": 15223.6, + "probability": 0.9864 + }, + { + "start": 15223.72, + "end": 15224.56, + "probability": 0.8993 + }, + { + "start": 15225.56, + "end": 15227.42, + "probability": 0.9833 + }, + { + "start": 15228.06, + "end": 15231.36, + "probability": 0.8895 + }, + { + "start": 15232.24, + "end": 15234.3, + "probability": 0.9939 + }, + { + "start": 15234.82, + "end": 15236.5, + "probability": 0.8354 + }, + { + "start": 15237.12, + "end": 15238.84, + "probability": 0.6994 + }, + { + "start": 15239.38, + "end": 15241.38, + "probability": 0.9097 + }, + { + "start": 15241.82, + "end": 15243.86, + "probability": 0.9948 + }, + { + "start": 15244.56, + "end": 15246.0, + "probability": 0.9984 + }, + { + "start": 15246.78, + "end": 15250.64, + "probability": 0.9811 + }, + { + "start": 15251.4, + "end": 15253.44, + "probability": 0.9868 + }, + { + "start": 15254.06, + "end": 15255.54, + "probability": 0.9839 + }, + { + "start": 15256.24, + "end": 15260.04, + "probability": 0.7824 + }, + { + "start": 15260.64, + "end": 15262.06, + "probability": 0.7456 + }, + { + "start": 15262.8, + "end": 15263.48, + "probability": 0.6484 + }, + { + "start": 15264.26, + "end": 15265.88, + "probability": 0.9631 + }, + { + "start": 15266.12, + "end": 15266.4, + "probability": 0.7275 + }, + { + "start": 15266.54, + "end": 15267.14, + "probability": 0.7021 + }, + { + "start": 15267.24, + "end": 15269.62, + "probability": 0.6621 + }, + { + "start": 15270.0, + "end": 15270.82, + "probability": 0.7672 + }, + { + "start": 15271.18, + "end": 15272.56, + "probability": 0.963 + }, + { + "start": 15272.7, + "end": 15273.28, + "probability": 0.6168 + }, + { + "start": 15273.62, + "end": 15275.18, + "probability": 0.5276 + }, + { + "start": 15275.58, + "end": 15276.1, + "probability": 0.975 + }, + { + "start": 15276.22, + "end": 15277.54, + "probability": 0.8394 + }, + { + "start": 15277.62, + "end": 15278.82, + "probability": 0.7074 + }, + { + "start": 15278.82, + "end": 15281.0, + "probability": 0.9381 + }, + { + "start": 15281.02, + "end": 15281.78, + "probability": 0.9486 + }, + { + "start": 15281.8, + "end": 15283.24, + "probability": 0.9583 + }, + { + "start": 15283.26, + "end": 15283.96, + "probability": 0.8635 + }, + { + "start": 15285.92, + "end": 15287.6, + "probability": 0.5006 + }, + { + "start": 15287.9, + "end": 15287.9, + "probability": 0.5055 + }, + { + "start": 15287.9, + "end": 15288.46, + "probability": 0.7223 + }, + { + "start": 15288.82, + "end": 15289.56, + "probability": 0.52 + }, + { + "start": 15289.96, + "end": 15291.12, + "probability": 0.9126 + }, + { + "start": 15291.88, + "end": 15293.44, + "probability": 0.0873 + }, + { + "start": 15303.86, + "end": 15306.1, + "probability": 0.4649 + }, + { + "start": 15306.34, + "end": 15308.32, + "probability": 0.3806 + }, + { + "start": 15308.32, + "end": 15309.14, + "probability": 0.6637 + }, + { + "start": 15309.3, + "end": 15310.26, + "probability": 0.2978 + }, + { + "start": 15317.22, + "end": 15318.36, + "probability": 0.5484 + }, + { + "start": 15318.68, + "end": 15320.57, + "probability": 0.9725 + }, + { + "start": 15320.72, + "end": 15322.22, + "probability": 0.6862 + }, + { + "start": 15322.64, + "end": 15323.0, + "probability": 0.8066 + }, + { + "start": 15323.62, + "end": 15327.04, + "probability": 0.9963 + }, + { + "start": 15327.24, + "end": 15329.42, + "probability": 0.991 + }, + { + "start": 15330.4, + "end": 15332.04, + "probability": 0.9896 + }, + { + "start": 15332.08, + "end": 15333.1, + "probability": 0.949 + }, + { + "start": 15333.16, + "end": 15334.6, + "probability": 0.6123 + }, + { + "start": 15335.1, + "end": 15336.8, + "probability": 0.9894 + }, + { + "start": 15337.16, + "end": 15337.52, + "probability": 0.7913 + }, + { + "start": 15337.6, + "end": 15339.61, + "probability": 0.9454 + }, + { + "start": 15339.8, + "end": 15340.14, + "probability": 0.5242 + }, + { + "start": 15340.22, + "end": 15342.52, + "probability": 0.9575 + }, + { + "start": 15343.26, + "end": 15343.76, + "probability": 0.718 + }, + { + "start": 15343.86, + "end": 15346.2, + "probability": 0.9508 + }, + { + "start": 15347.3, + "end": 15348.4, + "probability": 0.9335 + }, + { + "start": 15348.62, + "end": 15349.76, + "probability": 0.9625 + }, + { + "start": 15349.82, + "end": 15350.84, + "probability": 0.9674 + }, + { + "start": 15350.94, + "end": 15351.43, + "probability": 0.9421 + }, + { + "start": 15351.58, + "end": 15354.16, + "probability": 0.941 + }, + { + "start": 15354.78, + "end": 15356.66, + "probability": 0.8448 + }, + { + "start": 15356.7, + "end": 15359.22, + "probability": 0.9852 + }, + { + "start": 15360.1, + "end": 15362.52, + "probability": 0.9357 + }, + { + "start": 15363.16, + "end": 15363.92, + "probability": 0.967 + }, + { + "start": 15364.4, + "end": 15365.14, + "probability": 0.9163 + }, + { + "start": 15365.3, + "end": 15365.78, + "probability": 0.8235 + }, + { + "start": 15365.86, + "end": 15367.43, + "probability": 0.9811 + }, + { + "start": 15369.12, + "end": 15371.08, + "probability": 0.871 + }, + { + "start": 15372.02, + "end": 15372.96, + "probability": 0.9761 + }, + { + "start": 15373.06, + "end": 15373.87, + "probability": 0.6796 + }, + { + "start": 15374.02, + "end": 15375.78, + "probability": 0.9169 + }, + { + "start": 15376.08, + "end": 15378.14, + "probability": 0.9969 + }, + { + "start": 15378.64, + "end": 15380.62, + "probability": 0.97 + }, + { + "start": 15380.72, + "end": 15383.78, + "probability": 0.7902 + }, + { + "start": 15384.32, + "end": 15386.38, + "probability": 0.9292 + }, + { + "start": 15386.38, + "end": 15387.54, + "probability": 0.8813 + }, + { + "start": 15387.66, + "end": 15388.43, + "probability": 0.9817 + }, + { + "start": 15389.0, + "end": 15389.22, + "probability": 0.9626 + }, + { + "start": 15389.22, + "end": 15392.4, + "probability": 0.9873 + }, + { + "start": 15394.94, + "end": 15395.54, + "probability": 0.5841 + }, + { + "start": 15395.72, + "end": 15396.32, + "probability": 0.6555 + }, + { + "start": 15396.34, + "end": 15397.26, + "probability": 0.6145 + }, + { + "start": 15397.3, + "end": 15398.44, + "probability": 0.8563 + }, + { + "start": 15398.58, + "end": 15399.34, + "probability": 0.7974 + }, + { + "start": 15399.44, + "end": 15401.3, + "probability": 0.9917 + }, + { + "start": 15402.72, + "end": 15405.6, + "probability": 0.8439 + }, + { + "start": 15405.82, + "end": 15407.26, + "probability": 0.2595 + }, + { + "start": 15407.46, + "end": 15408.84, + "probability": 0.4844 + }, + { + "start": 15411.28, + "end": 15411.46, + "probability": 0.0374 + }, + { + "start": 15411.46, + "end": 15411.46, + "probability": 0.1883 + }, + { + "start": 15411.46, + "end": 15412.02, + "probability": 0.2957 + }, + { + "start": 15412.26, + "end": 15414.7, + "probability": 0.5031 + }, + { + "start": 15414.72, + "end": 15418.0, + "probability": 0.4564 + }, + { + "start": 15419.2, + "end": 15420.94, + "probability": 0.1894 + }, + { + "start": 15422.82, + "end": 15423.91, + "probability": 0.645 + }, + { + "start": 15425.26, + "end": 15429.82, + "probability": 0.6085 + }, + { + "start": 15430.12, + "end": 15431.42, + "probability": 0.9124 + }, + { + "start": 15431.54, + "end": 15433.52, + "probability": 0.6651 + }, + { + "start": 15434.34, + "end": 15437.26, + "probability": 0.9648 + }, + { + "start": 15438.4, + "end": 15439.44, + "probability": 0.5732 + }, + { + "start": 15439.64, + "end": 15442.3, + "probability": 0.7284 + }, + { + "start": 15442.36, + "end": 15444.38, + "probability": 0.5009 + }, + { + "start": 15444.66, + "end": 15446.04, + "probability": 0.9836 + }, + { + "start": 15446.06, + "end": 15446.72, + "probability": 0.908 + }, + { + "start": 15446.76, + "end": 15447.36, + "probability": 0.9039 + }, + { + "start": 15447.84, + "end": 15448.72, + "probability": 0.6841 + }, + { + "start": 15448.74, + "end": 15449.96, + "probability": 0.9492 + }, + { + "start": 15463.84, + "end": 15466.96, + "probability": 0.6087 + }, + { + "start": 15467.48, + "end": 15475.6, + "probability": 0.995 + }, + { + "start": 15476.42, + "end": 15478.32, + "probability": 0.9293 + }, + { + "start": 15479.36, + "end": 15484.98, + "probability": 0.9829 + }, + { + "start": 15485.66, + "end": 15487.94, + "probability": 0.5213 + }, + { + "start": 15488.58, + "end": 15490.64, + "probability": 0.6349 + }, + { + "start": 15491.24, + "end": 15495.83, + "probability": 0.9963 + }, + { + "start": 15496.14, + "end": 15500.34, + "probability": 0.9951 + }, + { + "start": 15501.02, + "end": 15506.0, + "probability": 0.9077 + }, + { + "start": 15507.2, + "end": 15509.52, + "probability": 0.9302 + }, + { + "start": 15510.52, + "end": 15519.6, + "probability": 0.9512 + }, + { + "start": 15520.2, + "end": 15525.82, + "probability": 0.9484 + }, + { + "start": 15525.82, + "end": 15530.98, + "probability": 0.9648 + }, + { + "start": 15531.04, + "end": 15533.0, + "probability": 0.6319 + }, + { + "start": 15533.12, + "end": 15536.46, + "probability": 0.86 + }, + { + "start": 15536.86, + "end": 15538.8, + "probability": 0.9956 + }, + { + "start": 15538.84, + "end": 15542.66, + "probability": 0.7987 + }, + { + "start": 15542.92, + "end": 15543.5, + "probability": 0.6523 + }, + { + "start": 15544.48, + "end": 15544.52, + "probability": 0.1039 + }, + { + "start": 15544.52, + "end": 15547.08, + "probability": 0.9819 + }, + { + "start": 15547.52, + "end": 15549.78, + "probability": 0.8156 + }, + { + "start": 15549.96, + "end": 15556.87, + "probability": 0.9244 + }, + { + "start": 15557.36, + "end": 15558.28, + "probability": 0.7621 + }, + { + "start": 15558.32, + "end": 15559.28, + "probability": 0.5011 + }, + { + "start": 15559.28, + "end": 15562.2, + "probability": 0.9658 + }, + { + "start": 15562.6, + "end": 15564.66, + "probability": 0.7927 + }, + { + "start": 15565.22, + "end": 15566.54, + "probability": 0.5677 + }, + { + "start": 15566.86, + "end": 15570.08, + "probability": 0.8472 + }, + { + "start": 15570.54, + "end": 15574.94, + "probability": 0.9957 + }, + { + "start": 15575.94, + "end": 15582.52, + "probability": 0.979 + }, + { + "start": 15583.46, + "end": 15586.34, + "probability": 0.8861 + }, + { + "start": 15586.76, + "end": 15587.78, + "probability": 0.718 + }, + { + "start": 15588.22, + "end": 15589.72, + "probability": 0.836 + }, + { + "start": 15589.78, + "end": 15590.7, + "probability": 0.7186 + }, + { + "start": 15591.8, + "end": 15594.26, + "probability": 0.8099 + }, + { + "start": 15594.88, + "end": 15597.4, + "probability": 0.957 + }, + { + "start": 15598.26, + "end": 15602.08, + "probability": 0.962 + }, + { + "start": 15602.6, + "end": 15604.1, + "probability": 0.9966 + }, + { + "start": 15604.54, + "end": 15605.56, + "probability": 0.6424 + }, + { + "start": 15606.04, + "end": 15609.42, + "probability": 0.9352 + }, + { + "start": 15610.02, + "end": 15611.24, + "probability": 0.9198 + }, + { + "start": 15611.32, + "end": 15612.5, + "probability": 0.8888 + }, + { + "start": 15612.92, + "end": 15614.1, + "probability": 0.9556 + }, + { + "start": 15614.32, + "end": 15616.36, + "probability": 0.7884 + }, + { + "start": 15617.1, + "end": 15619.12, + "probability": 0.9062 + }, + { + "start": 15619.2, + "end": 15619.56, + "probability": 0.8628 + }, + { + "start": 15619.86, + "end": 15620.62, + "probability": 0.7877 + }, + { + "start": 15621.08, + "end": 15623.54, + "probability": 0.5896 + }, + { + "start": 15624.18, + "end": 15625.6, + "probability": 0.9616 + }, + { + "start": 15626.04, + "end": 15626.84, + "probability": 0.8116 + }, + { + "start": 15627.2, + "end": 15628.76, + "probability": 0.984 + }, + { + "start": 15629.04, + "end": 15629.82, + "probability": 0.9182 + }, + { + "start": 15630.08, + "end": 15631.24, + "probability": 0.9939 + }, + { + "start": 15631.48, + "end": 15632.26, + "probability": 0.9006 + }, + { + "start": 15632.52, + "end": 15633.72, + "probability": 0.9489 + }, + { + "start": 15633.8, + "end": 15634.58, + "probability": 0.722 + }, + { + "start": 15635.02, + "end": 15636.62, + "probability": 0.6497 + }, + { + "start": 15636.66, + "end": 15637.52, + "probability": 0.7484 + }, + { + "start": 15637.84, + "end": 15638.88, + "probability": 0.9355 + }, + { + "start": 15639.02, + "end": 15639.78, + "probability": 0.769 + }, + { + "start": 15640.2, + "end": 15641.24, + "probability": 0.8841 + }, + { + "start": 15641.3, + "end": 15641.9, + "probability": 0.9247 + }, + { + "start": 15642.02, + "end": 15642.84, + "probability": 0.9791 + }, + { + "start": 15643.02, + "end": 15646.56, + "probability": 0.9395 + }, + { + "start": 15647.09, + "end": 15647.86, + "probability": 0.3725 + }, + { + "start": 15647.86, + "end": 15647.86, + "probability": 0.364 + }, + { + "start": 15647.86, + "end": 15648.49, + "probability": 0.7136 + }, + { + "start": 15648.96, + "end": 15649.64, + "probability": 0.904 + }, + { + "start": 15650.1, + "end": 15651.22, + "probability": 0.9632 + }, + { + "start": 15651.38, + "end": 15652.36, + "probability": 0.9401 + }, + { + "start": 15652.58, + "end": 15654.38, + "probability": 0.7391 + }, + { + "start": 15654.46, + "end": 15655.14, + "probability": 0.9671 + }, + { + "start": 15655.44, + "end": 15657.24, + "probability": 0.9582 + }, + { + "start": 15657.64, + "end": 15658.54, + "probability": 0.3752 + }, + { + "start": 15658.6, + "end": 15660.76, + "probability": 0.7521 + }, + { + "start": 15661.08, + "end": 15661.78, + "probability": 0.8377 + }, + { + "start": 15661.82, + "end": 15663.08, + "probability": 0.8131 + }, + { + "start": 15663.18, + "end": 15663.86, + "probability": 0.9073 + }, + { + "start": 15664.14, + "end": 15665.3, + "probability": 0.9585 + }, + { + "start": 15665.34, + "end": 15665.86, + "probability": 0.9196 + }, + { + "start": 15665.94, + "end": 15668.08, + "probability": 0.9329 + }, + { + "start": 15668.2, + "end": 15668.86, + "probability": 0.7446 + }, + { + "start": 15669.36, + "end": 15670.8, + "probability": 0.9511 + }, + { + "start": 15670.9, + "end": 15671.62, + "probability": 0.3085 + }, + { + "start": 15671.88, + "end": 15672.52, + "probability": 0.7586 + }, + { + "start": 15673.84, + "end": 15675.64, + "probability": 0.9679 + }, + { + "start": 15676.34, + "end": 15677.44, + "probability": 0.9235 + }, + { + "start": 15678.22, + "end": 15678.46, + "probability": 0.8243 + }, + { + "start": 15678.92, + "end": 15682.26, + "probability": 0.957 + }, + { + "start": 15682.48, + "end": 15682.62, + "probability": 0.0002 + }, + { + "start": 15683.8, + "end": 15683.94, + "probability": 0.2707 + }, + { + "start": 15683.94, + "end": 15684.2, + "probability": 0.3376 + }, + { + "start": 15685.96, + "end": 15686.82, + "probability": 0.7219 + }, + { + "start": 15686.9, + "end": 15689.52, + "probability": 0.9611 + }, + { + "start": 15689.52, + "end": 15692.88, + "probability": 0.5266 + }, + { + "start": 15693.06, + "end": 15694.16, + "probability": 0.721 + }, + { + "start": 15694.98, + "end": 15696.34, + "probability": 0.7486 + }, + { + "start": 15697.82, + "end": 15700.26, + "probability": 0.9932 + }, + { + "start": 15709.64, + "end": 15713.9, + "probability": 0.0568 + }, + { + "start": 15714.68, + "end": 15716.94, + "probability": 0.0101 + }, + { + "start": 15718.36, + "end": 15718.64, + "probability": 0.0373 + }, + { + "start": 15718.64, + "end": 15719.46, + "probability": 0.7333 + }, + { + "start": 15719.62, + "end": 15719.66, + "probability": 0.5809 + }, + { + "start": 15719.66, + "end": 15721.04, + "probability": 0.3994 + }, + { + "start": 15722.14, + "end": 15725.24, + "probability": 0.8334 + }, + { + "start": 15726.06, + "end": 15727.5, + "probability": 0.5035 + }, + { + "start": 15728.08, + "end": 15729.02, + "probability": 0.5985 + }, + { + "start": 15729.5, + "end": 15733.3, + "probability": 0.9655 + }, + { + "start": 15733.56, + "end": 15734.36, + "probability": 0.7557 + }, + { + "start": 15736.02, + "end": 15740.94, + "probability": 0.6416 + }, + { + "start": 15741.48, + "end": 15744.35, + "probability": 0.4493 + }, + { + "start": 15745.04, + "end": 15746.26, + "probability": 0.7333 + }, + { + "start": 15746.84, + "end": 15749.5, + "probability": 0.9932 + }, + { + "start": 15749.7, + "end": 15753.16, + "probability": 0.9723 + }, + { + "start": 15753.24, + "end": 15755.16, + "probability": 0.8796 + }, + { + "start": 15755.38, + "end": 15756.18, + "probability": 0.9506 + }, + { + "start": 15769.3, + "end": 15770.1, + "probability": 0.3434 + }, + { + "start": 15770.22, + "end": 15770.58, + "probability": 0.2475 + }, + { + "start": 15771.0, + "end": 15773.92, + "probability": 0.0181 + }, + { + "start": 15786.54, + "end": 15788.62, + "probability": 0.0228 + }, + { + "start": 15791.16, + "end": 15793.12, + "probability": 0.5282 + }, + { + "start": 15794.7, + "end": 15796.56, + "probability": 0.9376 + }, + { + "start": 15797.92, + "end": 15801.36, + "probability": 0.9758 + }, + { + "start": 15802.38, + "end": 15806.34, + "probability": 0.9256 + }, + { + "start": 15807.84, + "end": 15808.76, + "probability": 0.7804 + }, + { + "start": 15808.86, + "end": 15810.9, + "probability": 0.9962 + }, + { + "start": 15810.9, + "end": 15813.42, + "probability": 0.9799 + }, + { + "start": 15814.38, + "end": 15817.54, + "probability": 0.7026 + }, + { + "start": 15818.62, + "end": 15822.4, + "probability": 0.8124 + }, + { + "start": 15823.1, + "end": 15826.16, + "probability": 0.9714 + }, + { + "start": 15828.46, + "end": 15831.0, + "probability": 0.5995 + }, + { + "start": 15832.1, + "end": 15833.54, + "probability": 0.318 + }, + { + "start": 15836.38, + "end": 15838.24, + "probability": 0.9845 + }, + { + "start": 15838.32, + "end": 15841.16, + "probability": 0.887 + }, + { + "start": 15842.74, + "end": 15846.74, + "probability": 0.9443 + }, + { + "start": 15846.95, + "end": 15849.86, + "probability": 0.9916 + }, + { + "start": 15850.96, + "end": 15851.66, + "probability": 0.6128 + }, + { + "start": 15851.82, + "end": 15852.14, + "probability": 0.8636 + }, + { + "start": 15852.3, + "end": 15854.22, + "probability": 0.9268 + }, + { + "start": 15854.22, + "end": 15856.72, + "probability": 0.9541 + }, + { + "start": 15858.2, + "end": 15860.94, + "probability": 0.9042 + }, + { + "start": 15860.94, + "end": 15864.8, + "probability": 0.9584 + }, + { + "start": 15866.02, + "end": 15869.32, + "probability": 0.6556 + }, + { + "start": 15870.16, + "end": 15873.0, + "probability": 0.8156 + }, + { + "start": 15873.76, + "end": 15876.2, + "probability": 0.8897 + }, + { + "start": 15876.2, + "end": 15878.78, + "probability": 0.9224 + }, + { + "start": 15879.68, + "end": 15880.0, + "probability": 0.7573 + }, + { + "start": 15881.0, + "end": 15887.24, + "probability": 0.9932 + }, + { + "start": 15892.18, + "end": 15897.74, + "probability": 0.9801 + }, + { + "start": 15898.64, + "end": 15903.86, + "probability": 0.9003 + }, + { + "start": 15903.86, + "end": 15907.22, + "probability": 0.9265 + }, + { + "start": 15908.72, + "end": 15914.24, + "probability": 0.9943 + }, + { + "start": 15915.08, + "end": 15917.18, + "probability": 0.9846 + }, + { + "start": 15917.84, + "end": 15920.6, + "probability": 0.9691 + }, + { + "start": 15921.17, + "end": 15925.06, + "probability": 0.9881 + }, + { + "start": 15925.54, + "end": 15928.36, + "probability": 0.8797 + }, + { + "start": 15929.14, + "end": 15929.84, + "probability": 0.4634 + }, + { + "start": 15929.88, + "end": 15934.84, + "probability": 0.984 + }, + { + "start": 15935.62, + "end": 15939.01, + "probability": 0.9451 + }, + { + "start": 15939.42, + "end": 15944.08, + "probability": 0.98 + }, + { + "start": 15944.76, + "end": 15945.04, + "probability": 0.4738 + }, + { + "start": 15945.14, + "end": 15947.06, + "probability": 0.9757 + }, + { + "start": 15947.06, + "end": 15949.86, + "probability": 0.9945 + }, + { + "start": 15950.46, + "end": 15951.66, + "probability": 0.8725 + }, + { + "start": 15952.26, + "end": 15955.2, + "probability": 0.9616 + }, + { + "start": 15955.2, + "end": 15960.26, + "probability": 0.9238 + }, + { + "start": 15960.76, + "end": 15963.28, + "probability": 0.668 + }, + { + "start": 15964.2, + "end": 15965.24, + "probability": 0.4903 + }, + { + "start": 15965.48, + "end": 15967.26, + "probability": 0.9971 + }, + { + "start": 15967.96, + "end": 15969.78, + "probability": 0.9506 + }, + { + "start": 15969.9, + "end": 15972.26, + "probability": 0.8812 + }, + { + "start": 15972.28, + "end": 15972.84, + "probability": 0.9081 + }, + { + "start": 15973.94, + "end": 15978.44, + "probability": 0.9603 + }, + { + "start": 15978.6, + "end": 15981.08, + "probability": 0.98 + }, + { + "start": 15981.42, + "end": 15984.1, + "probability": 0.4747 + }, + { + "start": 15984.14, + "end": 15984.14, + "probability": 0.5011 + }, + { + "start": 15984.14, + "end": 15986.2, + "probability": 0.6788 + }, + { + "start": 15986.8, + "end": 15986.96, + "probability": 0.5758 + }, + { + "start": 15987.02, + "end": 15987.2, + "probability": 0.8975 + }, + { + "start": 15987.24, + "end": 15991.61, + "probability": 0.7505 + }, + { + "start": 15992.2, + "end": 15993.43, + "probability": 0.363 + }, + { + "start": 15993.92, + "end": 15994.28, + "probability": 0.8606 + }, + { + "start": 15994.32, + "end": 15994.96, + "probability": 0.9277 + }, + { + "start": 15995.04, + "end": 15999.36, + "probability": 0.9072 + }, + { + "start": 15999.36, + "end": 15999.82, + "probability": 0.8285 + }, + { + "start": 16002.16, + "end": 16002.36, + "probability": 0.0711 + }, + { + "start": 16002.66, + "end": 16003.44, + "probability": 0.0137 + }, + { + "start": 16003.44, + "end": 16004.12, + "probability": 0.6559 + }, + { + "start": 16004.42, + "end": 16007.02, + "probability": 0.7622 + }, + { + "start": 16007.06, + "end": 16009.38, + "probability": 0.6551 + }, + { + "start": 16010.62, + "end": 16011.38, + "probability": 0.0435 + }, + { + "start": 16019.56, + "end": 16019.64, + "probability": 0.0 + }, + { + "start": 16020.46, + "end": 16021.86, + "probability": 0.1379 + }, + { + "start": 16023.64, + "end": 16028.56, + "probability": 0.8011 + }, + { + "start": 16028.94, + "end": 16031.42, + "probability": 0.9867 + }, + { + "start": 16031.94, + "end": 16032.92, + "probability": 0.8424 + }, + { + "start": 16032.98, + "end": 16036.46, + "probability": 0.8511 + }, + { + "start": 16037.36, + "end": 16043.34, + "probability": 0.5366 + }, + { + "start": 16043.66, + "end": 16049.0, + "probability": 0.1445 + }, + { + "start": 16049.82, + "end": 16052.25, + "probability": 0.246 + }, + { + "start": 16057.28, + "end": 16060.9, + "probability": 0.8611 + }, + { + "start": 16061.4, + "end": 16063.84, + "probability": 0.7298 + }, + { + "start": 16063.84, + "end": 16064.8, + "probability": 0.6211 + }, + { + "start": 16065.04, + "end": 16066.94, + "probability": 0.8063 + }, + { + "start": 16067.0, + "end": 16070.04, + "probability": 0.9897 + }, + { + "start": 16071.46, + "end": 16074.48, + "probability": 0.7587 + }, + { + "start": 16075.0, + "end": 16077.6, + "probability": 0.9842 + }, + { + "start": 16077.72, + "end": 16080.66, + "probability": 0.621 + }, + { + "start": 16080.8, + "end": 16084.54, + "probability": 0.9652 + }, + { + "start": 16084.7, + "end": 16085.5, + "probability": 0.6515 + }, + { + "start": 16085.94, + "end": 16090.22, + "probability": 0.988 + }, + { + "start": 16090.28, + "end": 16091.04, + "probability": 0.4987 + }, + { + "start": 16091.44, + "end": 16094.14, + "probability": 0.9353 + }, + { + "start": 16094.68, + "end": 16095.2, + "probability": 0.6929 + }, + { + "start": 16108.48, + "end": 16113.68, + "probability": 0.7682 + }, + { + "start": 16114.52, + "end": 16115.44, + "probability": 0.87 + }, + { + "start": 16117.3, + "end": 16118.24, + "probability": 0.9444 + }, + { + "start": 16119.62, + "end": 16120.44, + "probability": 0.8024 + }, + { + "start": 16122.04, + "end": 16122.86, + "probability": 0.8136 + }, + { + "start": 16123.44, + "end": 16126.12, + "probability": 0.9144 + }, + { + "start": 16127.52, + "end": 16130.54, + "probability": 0.9334 + }, + { + "start": 16131.46, + "end": 16132.31, + "probability": 0.9565 + }, + { + "start": 16133.62, + "end": 16134.9, + "probability": 0.8061 + }, + { + "start": 16135.68, + "end": 16137.96, + "probability": 0.9404 + }, + { + "start": 16139.04, + "end": 16140.5, + "probability": 0.9763 + }, + { + "start": 16141.74, + "end": 16143.6, + "probability": 0.833 + }, + { + "start": 16145.14, + "end": 16146.18, + "probability": 0.8722 + }, + { + "start": 16147.8, + "end": 16148.34, + "probability": 0.9229 + }, + { + "start": 16149.46, + "end": 16150.11, + "probability": 0.9802 + }, + { + "start": 16150.8, + "end": 16152.54, + "probability": 0.9883 + }, + { + "start": 16152.74, + "end": 16153.56, + "probability": 0.7937 + }, + { + "start": 16154.34, + "end": 16157.56, + "probability": 0.9189 + }, + { + "start": 16158.34, + "end": 16161.36, + "probability": 0.8932 + }, + { + "start": 16161.92, + "end": 16168.24, + "probability": 0.9927 + }, + { + "start": 16169.0, + "end": 16170.36, + "probability": 0.9932 + }, + { + "start": 16171.04, + "end": 16173.3, + "probability": 0.994 + }, + { + "start": 16173.96, + "end": 16176.22, + "probability": 0.9797 + }, + { + "start": 16177.42, + "end": 16183.08, + "probability": 0.9741 + }, + { + "start": 16183.6, + "end": 16184.74, + "probability": 0.7725 + }, + { + "start": 16185.42, + "end": 16186.6, + "probability": 0.9523 + }, + { + "start": 16187.18, + "end": 16188.12, + "probability": 0.8293 + }, + { + "start": 16188.64, + "end": 16189.58, + "probability": 0.9039 + }, + { + "start": 16190.58, + "end": 16191.94, + "probability": 0.9766 + }, + { + "start": 16192.9, + "end": 16193.28, + "probability": 0.7543 + }, + { + "start": 16193.84, + "end": 16194.64, + "probability": 0.8756 + }, + { + "start": 16195.38, + "end": 16198.88, + "probability": 0.9743 + }, + { + "start": 16199.64, + "end": 16202.12, + "probability": 0.9401 + }, + { + "start": 16202.74, + "end": 16204.28, + "probability": 0.9447 + }, + { + "start": 16205.2, + "end": 16206.09, + "probability": 0.9839 + }, + { + "start": 16207.1, + "end": 16209.64, + "probability": 0.9693 + }, + { + "start": 16210.48, + "end": 16211.0, + "probability": 0.929 + }, + { + "start": 16212.4, + "end": 16214.7, + "probability": 0.763 + }, + { + "start": 16215.6, + "end": 16217.14, + "probability": 0.8997 + }, + { + "start": 16218.34, + "end": 16218.82, + "probability": 0.8303 + }, + { + "start": 16219.68, + "end": 16220.24, + "probability": 0.9012 + }, + { + "start": 16220.92, + "end": 16223.24, + "probability": 0.9932 + }, + { + "start": 16224.78, + "end": 16226.2, + "probability": 0.9933 + }, + { + "start": 16226.8, + "end": 16228.04, + "probability": 0.7903 + }, + { + "start": 16228.82, + "end": 16229.72, + "probability": 0.9377 + }, + { + "start": 16230.34, + "end": 16231.98, + "probability": 0.9937 + }, + { + "start": 16232.74, + "end": 16233.2, + "probability": 0.8673 + }, + { + "start": 16233.82, + "end": 16234.34, + "probability": 0.9058 + }, + { + "start": 16234.98, + "end": 16235.32, + "probability": 0.8175 + }, + { + "start": 16236.58, + "end": 16237.38, + "probability": 0.9861 + }, + { + "start": 16239.12, + "end": 16240.9, + "probability": 0.8342 + }, + { + "start": 16241.6, + "end": 16244.86, + "probability": 0.9945 + }, + { + "start": 16245.42, + "end": 16248.16, + "probability": 0.8334 + }, + { + "start": 16248.7, + "end": 16252.18, + "probability": 0.9896 + }, + { + "start": 16252.96, + "end": 16255.34, + "probability": 0.9937 + }, + { + "start": 16256.38, + "end": 16258.36, + "probability": 0.8306 + }, + { + "start": 16259.18, + "end": 16259.97, + "probability": 0.9175 + }, + { + "start": 16261.22, + "end": 16262.56, + "probability": 0.9635 + }, + { + "start": 16263.02, + "end": 16263.9, + "probability": 0.9873 + }, + { + "start": 16264.38, + "end": 16267.46, + "probability": 0.9531 + }, + { + "start": 16268.68, + "end": 16271.94, + "probability": 0.8534 + }, + { + "start": 16272.42, + "end": 16273.64, + "probability": 0.3493 + }, + { + "start": 16274.06, + "end": 16274.48, + "probability": 0.9598 + }, + { + "start": 16275.26, + "end": 16277.72, + "probability": 0.8765 + }, + { + "start": 16278.26, + "end": 16278.94, + "probability": 0.9583 + }, + { + "start": 16279.34, + "end": 16282.86, + "probability": 0.9883 + }, + { + "start": 16283.4, + "end": 16285.6, + "probability": 0.9771 + }, + { + "start": 16287.6, + "end": 16291.02, + "probability": 0.9393 + }, + { + "start": 16291.64, + "end": 16294.38, + "probability": 0.9916 + }, + { + "start": 16295.14, + "end": 16300.66, + "probability": 0.9541 + }, + { + "start": 16301.32, + "end": 16305.92, + "probability": 0.9945 + }, + { + "start": 16306.32, + "end": 16306.94, + "probability": 0.5458 + }, + { + "start": 16307.02, + "end": 16307.5, + "probability": 0.9282 + }, + { + "start": 16308.4, + "end": 16309.6, + "probability": 0.9219 + }, + { + "start": 16310.88, + "end": 16314.86, + "probability": 0.988 + }, + { + "start": 16317.84, + "end": 16321.76, + "probability": 0.5499 + }, + { + "start": 16322.46, + "end": 16323.58, + "probability": 0.0755 + }, + { + "start": 16324.16, + "end": 16326.38, + "probability": 0.9107 + }, + { + "start": 16327.02, + "end": 16328.16, + "probability": 0.7999 + }, + { + "start": 16329.0, + "end": 16331.28, + "probability": 0.9603 + }, + { + "start": 16331.76, + "end": 16334.32, + "probability": 0.9924 + }, + { + "start": 16336.24, + "end": 16337.46, + "probability": 0.8586 + }, + { + "start": 16337.96, + "end": 16341.3, + "probability": 0.89 + }, + { + "start": 16342.08, + "end": 16343.94, + "probability": 0.9057 + }, + { + "start": 16344.62, + "end": 16346.42, + "probability": 0.7935 + }, + { + "start": 16347.04, + "end": 16348.56, + "probability": 0.6475 + }, + { + "start": 16349.82, + "end": 16352.2, + "probability": 0.987 + }, + { + "start": 16352.84, + "end": 16353.33, + "probability": 0.9397 + }, + { + "start": 16354.24, + "end": 16355.2, + "probability": 0.9938 + }, + { + "start": 16355.8, + "end": 16358.48, + "probability": 0.9795 + }, + { + "start": 16359.16, + "end": 16361.36, + "probability": 0.9879 + }, + { + "start": 16362.28, + "end": 16363.72, + "probability": 0.9954 + }, + { + "start": 16364.54, + "end": 16365.82, + "probability": 0.9318 + }, + { + "start": 16366.54, + "end": 16368.38, + "probability": 0.8634 + }, + { + "start": 16369.02, + "end": 16369.46, + "probability": 0.8932 + }, + { + "start": 16369.98, + "end": 16370.54, + "probability": 0.8085 + }, + { + "start": 16371.58, + "end": 16375.74, + "probability": 0.9956 + }, + { + "start": 16376.42, + "end": 16378.08, + "probability": 0.9849 + }, + { + "start": 16379.48, + "end": 16381.22, + "probability": 0.9417 + }, + { + "start": 16382.08, + "end": 16385.58, + "probability": 0.9966 + }, + { + "start": 16385.96, + "end": 16386.5, + "probability": 0.4178 + }, + { + "start": 16387.24, + "end": 16390.8, + "probability": 0.9424 + }, + { + "start": 16391.34, + "end": 16394.22, + "probability": 0.987 + }, + { + "start": 16395.22, + "end": 16397.0, + "probability": 0.9961 + }, + { + "start": 16397.66, + "end": 16400.26, + "probability": 0.998 + }, + { + "start": 16400.66, + "end": 16403.26, + "probability": 0.998 + }, + { + "start": 16404.42, + "end": 16407.54, + "probability": 0.975 + }, + { + "start": 16408.0, + "end": 16409.94, + "probability": 0.8066 + }, + { + "start": 16411.06, + "end": 16415.72, + "probability": 0.9901 + }, + { + "start": 16416.9, + "end": 16420.66, + "probability": 0.9972 + }, + { + "start": 16421.36, + "end": 16423.52, + "probability": 0.9973 + }, + { + "start": 16423.52, + "end": 16427.22, + "probability": 0.95 + }, + { + "start": 16428.16, + "end": 16428.46, + "probability": 0.8007 + }, + { + "start": 16429.08, + "end": 16432.26, + "probability": 0.9925 + }, + { + "start": 16432.7, + "end": 16433.22, + "probability": 0.5066 + }, + { + "start": 16434.42, + "end": 16434.58, + "probability": 0.8467 + }, + { + "start": 16435.12, + "end": 16437.64, + "probability": 0.9937 + }, + { + "start": 16437.64, + "end": 16440.88, + "probability": 0.9708 + }, + { + "start": 16441.52, + "end": 16443.74, + "probability": 0.822 + }, + { + "start": 16444.4, + "end": 16448.4, + "probability": 0.9969 + }, + { + "start": 16449.18, + "end": 16450.64, + "probability": 0.8202 + }, + { + "start": 16451.12, + "end": 16453.38, + "probability": 0.8691 + }, + { + "start": 16453.38, + "end": 16455.84, + "probability": 0.9972 + }, + { + "start": 16456.42, + "end": 16458.94, + "probability": 0.9248 + }, + { + "start": 16459.52, + "end": 16463.36, + "probability": 0.9688 + }, + { + "start": 16463.8, + "end": 16466.74, + "probability": 0.7835 + }, + { + "start": 16468.28, + "end": 16468.82, + "probability": 0.6916 + }, + { + "start": 16469.7, + "end": 16475.58, + "probability": 0.9679 + }, + { + "start": 16476.32, + "end": 16480.54, + "probability": 0.9968 + }, + { + "start": 16481.72, + "end": 16482.64, + "probability": 0.8831 + }, + { + "start": 16483.78, + "end": 16484.46, + "probability": 0.3683 + }, + { + "start": 16485.12, + "end": 16486.14, + "probability": 0.9356 + }, + { + "start": 16486.88, + "end": 16488.98, + "probability": 0.9951 + }, + { + "start": 16490.56, + "end": 16494.68, + "probability": 0.7241 + }, + { + "start": 16494.68, + "end": 16499.58, + "probability": 0.9625 + }, + { + "start": 16499.7, + "end": 16505.02, + "probability": 0.9456 + }, + { + "start": 16505.62, + "end": 16510.98, + "probability": 0.9073 + }, + { + "start": 16511.46, + "end": 16515.32, + "probability": 0.9823 + }, + { + "start": 16516.26, + "end": 16520.14, + "probability": 0.9976 + }, + { + "start": 16521.7, + "end": 16525.34, + "probability": 0.9759 + }, + { + "start": 16525.34, + "end": 16528.8, + "probability": 0.999 + }, + { + "start": 16529.48, + "end": 16533.1, + "probability": 0.9985 + }, + { + "start": 16533.72, + "end": 16537.14, + "probability": 0.9927 + }, + { + "start": 16537.14, + "end": 16540.66, + "probability": 0.9978 + }, + { + "start": 16541.34, + "end": 16548.5, + "probability": 0.8182 + }, + { + "start": 16549.0, + "end": 16551.58, + "probability": 0.939 + }, + { + "start": 16552.26, + "end": 16555.54, + "probability": 0.979 + }, + { + "start": 16556.48, + "end": 16559.58, + "probability": 0.9642 + }, + { + "start": 16560.04, + "end": 16560.94, + "probability": 0.6125 + }, + { + "start": 16561.34, + "end": 16563.44, + "probability": 0.8797 + }, + { + "start": 16563.84, + "end": 16568.26, + "probability": 0.9943 + }, + { + "start": 16568.88, + "end": 16569.36, + "probability": 0.4565 + }, + { + "start": 16569.98, + "end": 16572.46, + "probability": 0.9537 + }, + { + "start": 16572.84, + "end": 16576.62, + "probability": 0.9836 + }, + { + "start": 16577.22, + "end": 16580.84, + "probability": 0.7678 + }, + { + "start": 16581.4, + "end": 16584.14, + "probability": 0.9678 + }, + { + "start": 16584.14, + "end": 16587.0, + "probability": 0.8006 + }, + { + "start": 16588.72, + "end": 16591.44, + "probability": 0.2472 + }, + { + "start": 16593.0, + "end": 16594.88, + "probability": 0.1115 + }, + { + "start": 16594.98, + "end": 16595.52, + "probability": 0.9408 + }, + { + "start": 16595.58, + "end": 16596.5, + "probability": 0.9557 + }, + { + "start": 16596.92, + "end": 16597.14, + "probability": 0.7173 + }, + { + "start": 16598.1, + "end": 16601.46, + "probability": 0.9753 + }, + { + "start": 16602.04, + "end": 16603.6, + "probability": 0.9932 + }, + { + "start": 16604.4, + "end": 16604.9, + "probability": 0.5538 + }, + { + "start": 16605.22, + "end": 16609.66, + "probability": 0.9963 + }, + { + "start": 16609.66, + "end": 16614.3, + "probability": 0.9958 + }, + { + "start": 16615.44, + "end": 16619.33, + "probability": 0.9412 + }, + { + "start": 16619.84, + "end": 16623.4, + "probability": 0.9809 + }, + { + "start": 16623.4, + "end": 16626.8, + "probability": 0.6985 + }, + { + "start": 16627.38, + "end": 16630.16, + "probability": 0.9624 + }, + { + "start": 16630.17, + "end": 16633.1, + "probability": 0.9072 + }, + { + "start": 16634.1, + "end": 16636.99, + "probability": 0.6935 + }, + { + "start": 16638.34, + "end": 16639.32, + "probability": 0.8845 + }, + { + "start": 16640.7, + "end": 16641.98, + "probability": 0.7827 + }, + { + "start": 16642.32, + "end": 16643.24, + "probability": 0.7298 + }, + { + "start": 16643.56, + "end": 16644.9, + "probability": 0.8056 + }, + { + "start": 16645.18, + "end": 16646.24, + "probability": 0.9607 + }, + { + "start": 16646.78, + "end": 16647.7, + "probability": 0.808 + }, + { + "start": 16648.22, + "end": 16651.32, + "probability": 0.6616 + }, + { + "start": 16651.92, + "end": 16656.0, + "probability": 0.8953 + }, + { + "start": 16657.04, + "end": 16659.38, + "probability": 0.9948 + }, + { + "start": 16659.38, + "end": 16661.18, + "probability": 0.9473 + }, + { + "start": 16661.78, + "end": 16663.14, + "probability": 0.833 + }, + { + "start": 16663.3, + "end": 16667.5, + "probability": 0.9055 + }, + { + "start": 16668.12, + "end": 16670.66, + "probability": 0.8496 + }, + { + "start": 16671.14, + "end": 16675.12, + "probability": 0.994 + }, + { + "start": 16675.86, + "end": 16676.2, + "probability": 0.8822 + }, + { + "start": 16676.72, + "end": 16677.5, + "probability": 0.7383 + }, + { + "start": 16678.22, + "end": 16678.76, + "probability": 0.7386 + }, + { + "start": 16679.93, + "end": 16682.24, + "probability": 0.7374 + }, + { + "start": 16682.26, + "end": 16683.55, + "probability": 0.67 + }, + { + "start": 16683.64, + "end": 16685.88, + "probability": 0.7227 + }, + { + "start": 16686.44, + "end": 16687.9, + "probability": 0.7979 + }, + { + "start": 16690.29, + "end": 16694.33, + "probability": 0.7817 + }, + { + "start": 16695.36, + "end": 16695.7, + "probability": 0.9547 + }, + { + "start": 16697.74, + "end": 16699.3, + "probability": 0.5041 + }, + { + "start": 16699.5, + "end": 16701.0, + "probability": 0.9368 + }, + { + "start": 16701.08, + "end": 16703.36, + "probability": 0.5898 + }, + { + "start": 16703.52, + "end": 16704.04, + "probability": 0.6142 + }, + { + "start": 16704.14, + "end": 16705.32, + "probability": 0.7177 + }, + { + "start": 16705.4, + "end": 16705.98, + "probability": 0.6731 + }, + { + "start": 16706.38, + "end": 16708.04, + "probability": 0.9699 + }, + { + "start": 16709.22, + "end": 16710.08, + "probability": 0.9246 + }, + { + "start": 16711.42, + "end": 16713.08, + "probability": 0.3505 + }, + { + "start": 16713.08, + "end": 16713.08, + "probability": 0.3587 + }, + { + "start": 16713.08, + "end": 16713.84, + "probability": 0.5987 + }, + { + "start": 16713.96, + "end": 16714.62, + "probability": 0.8903 + }, + { + "start": 16715.02, + "end": 16715.92, + "probability": 0.9795 + }, + { + "start": 16716.4, + "end": 16716.98, + "probability": 0.9542 + }, + { + "start": 16717.38, + "end": 16718.5, + "probability": 0.9083 + }, + { + "start": 16718.74, + "end": 16721.16, + "probability": 0.9205 + }, + { + "start": 16733.06, + "end": 16733.96, + "probability": 0.8835 + }, + { + "start": 16737.54, + "end": 16739.28, + "probability": 0.0759 + }, + { + "start": 16739.9, + "end": 16740.94, + "probability": 0.4072 + }, + { + "start": 16741.08, + "end": 16741.64, + "probability": 0.842 + }, + { + "start": 16741.98, + "end": 16743.0, + "probability": 0.4389 + }, + { + "start": 16743.3, + "end": 16743.98, + "probability": 0.6797 + }, + { + "start": 16744.4, + "end": 16745.76, + "probability": 0.5538 + }, + { + "start": 16746.48, + "end": 16750.79, + "probability": 0.7123 + }, + { + "start": 16751.62, + "end": 16753.12, + "probability": 0.6672 + }, + { + "start": 16755.64, + "end": 16756.28, + "probability": 0.0266 + }, + { + "start": 16756.4, + "end": 16757.26, + "probability": 0.3469 + }, + { + "start": 16757.56, + "end": 16760.13, + "probability": 0.067 + }, + { + "start": 16761.88, + "end": 16763.24, + "probability": 0.2628 + }, + { + "start": 16763.68, + "end": 16764.5, + "probability": 0.5858 + }, + { + "start": 16764.64, + "end": 16765.78, + "probability": 0.3739 + }, + { + "start": 16769.52, + "end": 16769.62, + "probability": 0.329 + }, + { + "start": 16773.1, + "end": 16775.38, + "probability": 0.5284 + }, + { + "start": 16777.84, + "end": 16778.26, + "probability": 0.2715 + }, + { + "start": 16778.26, + "end": 16778.26, + "probability": 0.2678 + }, + { + "start": 16778.26, + "end": 16780.86, + "probability": 0.2616 + }, + { + "start": 16781.1, + "end": 16784.08, + "probability": 0.2217 + }, + { + "start": 16785.74, + "end": 16790.02, + "probability": 0.3399 + }, + { + "start": 16790.9, + "end": 16793.64, + "probability": 0.2414 + }, + { + "start": 16794.22, + "end": 16795.6, + "probability": 0.3011 + }, + { + "start": 16800.44, + "end": 16805.82, + "probability": 0.0594 + }, + { + "start": 16806.62, + "end": 16808.16, + "probability": 0.1196 + }, + { + "start": 16808.22, + "end": 16808.76, + "probability": 0.243 + }, + { + "start": 16809.22, + "end": 16809.48, + "probability": 0.2066 + }, + { + "start": 16809.48, + "end": 16809.48, + "probability": 0.1315 + }, + { + "start": 16810.26, + "end": 16811.9, + "probability": 0.2408 + }, + { + "start": 16822.0, + "end": 16822.0, + "probability": 0.0 + }, + { + "start": 16822.0, + "end": 16822.0, + "probability": 0.0 + }, + { + "start": 16822.0, + "end": 16822.0, + "probability": 0.0 + }, + { + "start": 16822.0, + "end": 16822.0, + "probability": 0.0 + }, + { + "start": 16822.0, + "end": 16822.0, + "probability": 0.0 + }, + { + "start": 16822.0, + "end": 16822.0, + "probability": 0.0 + }, + { + "start": 16822.0, + "end": 16822.0, + "probability": 0.0 + }, + { + "start": 16822.0, + "end": 16822.0, + "probability": 0.0 + }, + { + "start": 16822.0, + "end": 16822.0, + "probability": 0.0 + }, + { + "start": 16822.0, + "end": 16822.0, + "probability": 0.0 + }, + { + "start": 16822.0, + "end": 16822.0, + "probability": 0.0 + }, + { + "start": 16822.0, + "end": 16822.0, + "probability": 0.0 + }, + { + "start": 16822.0, + "end": 16822.0, + "probability": 0.0 + }, + { + "start": 16822.0, + "end": 16822.0, + "probability": 0.0 + }, + { + "start": 16822.0, + "end": 16822.0, + "probability": 0.0 + }, + { + "start": 16822.0, + "end": 16822.0, + "probability": 0.0 + }, + { + "start": 16822.0, + "end": 16822.0, + "probability": 0.0 + }, + { + "start": 16822.0, + "end": 16822.0, + "probability": 0.0 + }, + { + "start": 16822.0, + "end": 16822.0, + "probability": 0.0 + }, + { + "start": 16822.0, + "end": 16822.0, + "probability": 0.0 + }, + { + "start": 16822.0, + "end": 16822.0, + "probability": 0.0 + }, + { + "start": 16822.0, + "end": 16822.0, + "probability": 0.0 + }, + { + "start": 16822.0, + "end": 16822.0, + "probability": 0.0 + }, + { + "start": 16822.62, + "end": 16825.14, + "probability": 0.1987 + }, + { + "start": 16825.82, + "end": 16826.46, + "probability": 0.6041 + }, + { + "start": 16826.62, + "end": 16828.07, + "probability": 0.4956 + }, + { + "start": 16828.46, + "end": 16830.77, + "probability": 0.874 + }, + { + "start": 16830.88, + "end": 16833.3, + "probability": 0.6187 + }, + { + "start": 16833.5, + "end": 16835.16, + "probability": 0.7515 + }, + { + "start": 16835.8, + "end": 16838.16, + "probability": 0.9971 + }, + { + "start": 16838.46, + "end": 16840.34, + "probability": 0.5577 + }, + { + "start": 16840.46, + "end": 16840.74, + "probability": 0.4929 + }, + { + "start": 16840.86, + "end": 16842.2, + "probability": 0.7461 + }, + { + "start": 16843.38, + "end": 16846.18, + "probability": 0.9919 + }, + { + "start": 16846.18, + "end": 16849.38, + "probability": 0.8898 + }, + { + "start": 16849.6, + "end": 16852.38, + "probability": 0.9714 + }, + { + "start": 16852.54, + "end": 16853.92, + "probability": 0.991 + }, + { + "start": 16854.46, + "end": 16857.62, + "probability": 0.0438 + }, + { + "start": 16857.88, + "end": 16858.1, + "probability": 0.0104 + }, + { + "start": 16858.1, + "end": 16858.56, + "probability": 0.5894 + }, + { + "start": 16858.62, + "end": 16860.72, + "probability": 0.6396 + }, + { + "start": 16861.32, + "end": 16862.2, + "probability": 0.3577 + }, + { + "start": 16862.44, + "end": 16865.44, + "probability": 0.9833 + }, + { + "start": 16867.26, + "end": 16869.22, + "probability": 0.907 + }, + { + "start": 16869.82, + "end": 16870.92, + "probability": 0.9968 + }, + { + "start": 16871.14, + "end": 16873.22, + "probability": 0.9437 + }, + { + "start": 16873.96, + "end": 16877.5, + "probability": 0.828 + }, + { + "start": 16877.66, + "end": 16882.02, + "probability": 0.9893 + }, + { + "start": 16882.68, + "end": 16883.48, + "probability": 0.4502 + }, + { + "start": 16883.66, + "end": 16885.15, + "probability": 0.8706 + }, + { + "start": 16885.66, + "end": 16891.13, + "probability": 0.7751 + }, + { + "start": 16892.02, + "end": 16895.3, + "probability": 0.9895 + }, + { + "start": 16895.76, + "end": 16897.48, + "probability": 0.689 + }, + { + "start": 16897.56, + "end": 16900.32, + "probability": 0.9346 + }, + { + "start": 16900.4, + "end": 16901.16, + "probability": 0.7878 + }, + { + "start": 16901.36, + "end": 16903.08, + "probability": 0.8228 + }, + { + "start": 16903.16, + "end": 16903.8, + "probability": 0.6988 + }, + { + "start": 16904.24, + "end": 16906.36, + "probability": 0.7842 + }, + { + "start": 16906.86, + "end": 16908.26, + "probability": 0.897 + }, + { + "start": 16909.18, + "end": 16910.38, + "probability": 0.6318 + }, + { + "start": 16910.5, + "end": 16912.22, + "probability": 0.9958 + }, + { + "start": 16912.72, + "end": 16913.36, + "probability": 0.7707 + }, + { + "start": 16914.44, + "end": 16917.86, + "probability": 0.9225 + }, + { + "start": 16918.06, + "end": 16918.86, + "probability": 0.9325 + }, + { + "start": 16919.02, + "end": 16922.86, + "probability": 0.9364 + }, + { + "start": 16923.46, + "end": 16924.62, + "probability": 0.5905 + }, + { + "start": 16924.76, + "end": 16927.94, + "probability": 0.9629 + }, + { + "start": 16931.7, + "end": 16932.36, + "probability": 0.2067 + }, + { + "start": 16932.36, + "end": 16933.28, + "probability": 0.7982 + }, + { + "start": 16933.62, + "end": 16938.7, + "probability": 0.3795 + }, + { + "start": 16938.92, + "end": 16940.3, + "probability": 0.631 + }, + { + "start": 16940.4, + "end": 16941.72, + "probability": 0.139 + }, + { + "start": 16945.98, + "end": 16949.08, + "probability": 0.7749 + }, + { + "start": 16949.2, + "end": 16951.82, + "probability": 0.951 + }, + { + "start": 16952.48, + "end": 16953.74, + "probability": 0.7001 + }, + { + "start": 16953.86, + "end": 16956.44, + "probability": 0.9166 + }, + { + "start": 16956.76, + "end": 16957.74, + "probability": 0.8038 + }, + { + "start": 16957.84, + "end": 16962.54, + "probability": 0.9875 + }, + { + "start": 16963.3, + "end": 16966.7, + "probability": 0.6028 + }, + { + "start": 16967.4, + "end": 16969.78, + "probability": 0.9538 + }, + { + "start": 16970.36, + "end": 16971.74, + "probability": 0.6111 + }, + { + "start": 16972.76, + "end": 16974.54, + "probability": 0.9661 + }, + { + "start": 16975.84, + "end": 16976.5, + "probability": 0.646 + }, + { + "start": 16976.58, + "end": 16979.34, + "probability": 0.9976 + }, + { + "start": 16979.96, + "end": 16982.74, + "probability": 0.8171 + }, + { + "start": 16992.82, + "end": 16994.1, + "probability": 0.7199 + }, + { + "start": 16995.24, + "end": 16996.84, + "probability": 0.8561 + }, + { + "start": 16997.9, + "end": 17000.24, + "probability": 0.9935 + }, + { + "start": 17000.24, + "end": 17002.31, + "probability": 0.8631 + }, + { + "start": 17002.5, + "end": 17010.7, + "probability": 0.9665 + }, + { + "start": 17010.7, + "end": 17017.54, + "probability": 0.9946 + }, + { + "start": 17018.38, + "end": 17020.48, + "probability": 0.9333 + }, + { + "start": 17021.58, + "end": 17024.76, + "probability": 0.9203 + }, + { + "start": 17025.76, + "end": 17029.83, + "probability": 0.9902 + }, + { + "start": 17031.12, + "end": 17034.56, + "probability": 0.9977 + }, + { + "start": 17035.18, + "end": 17037.3, + "probability": 0.9754 + }, + { + "start": 17038.3, + "end": 17039.26, + "probability": 0.9075 + }, + { + "start": 17039.92, + "end": 17044.42, + "probability": 0.9852 + }, + { + "start": 17045.62, + "end": 17047.94, + "probability": 0.9024 + }, + { + "start": 17048.82, + "end": 17051.6, + "probability": 0.9644 + }, + { + "start": 17052.78, + "end": 17053.96, + "probability": 0.9606 + }, + { + "start": 17054.38, + "end": 17055.56, + "probability": 0.9821 + }, + { + "start": 17055.7, + "end": 17057.36, + "probability": 0.9335 + }, + { + "start": 17058.18, + "end": 17060.84, + "probability": 0.9474 + }, + { + "start": 17061.1, + "end": 17064.74, + "probability": 0.7218 + }, + { + "start": 17065.9, + "end": 17067.4, + "probability": 0.984 + }, + { + "start": 17068.38, + "end": 17072.18, + "probability": 0.8506 + }, + { + "start": 17073.98, + "end": 17074.8, + "probability": 0.7114 + }, + { + "start": 17075.82, + "end": 17078.62, + "probability": 0.895 + }, + { + "start": 17079.3, + "end": 17083.32, + "probability": 0.9236 + }, + { + "start": 17084.24, + "end": 17087.4, + "probability": 0.8995 + }, + { + "start": 17087.5, + "end": 17088.38, + "probability": 0.7837 + }, + { + "start": 17088.8, + "end": 17090.0, + "probability": 0.9734 + }, + { + "start": 17090.14, + "end": 17092.1, + "probability": 0.7948 + }, + { + "start": 17092.56, + "end": 17094.48, + "probability": 0.9724 + }, + { + "start": 17094.98, + "end": 17096.9, + "probability": 0.8606 + }, + { + "start": 17097.8, + "end": 17101.72, + "probability": 0.9916 + }, + { + "start": 17103.02, + "end": 17105.72, + "probability": 0.9688 + }, + { + "start": 17106.26, + "end": 17108.22, + "probability": 0.993 + }, + { + "start": 17109.16, + "end": 17112.24, + "probability": 0.9701 + }, + { + "start": 17113.12, + "end": 17113.96, + "probability": 0.7912 + }, + { + "start": 17114.92, + "end": 17119.5, + "probability": 0.986 + }, + { + "start": 17120.0, + "end": 17124.56, + "probability": 0.9921 + }, + { + "start": 17124.74, + "end": 17125.86, + "probability": 0.9792 + }, + { + "start": 17125.94, + "end": 17126.7, + "probability": 0.9285 + }, + { + "start": 17126.8, + "end": 17128.11, + "probability": 0.9194 + }, + { + "start": 17128.2, + "end": 17132.74, + "probability": 0.9927 + }, + { + "start": 17133.28, + "end": 17134.04, + "probability": 0.9919 + }, + { + "start": 17135.24, + "end": 17139.09, + "probability": 0.9899 + }, + { + "start": 17139.18, + "end": 17139.82, + "probability": 0.8539 + }, + { + "start": 17139.9, + "end": 17141.66, + "probability": 0.8497 + }, + { + "start": 17142.64, + "end": 17144.5, + "probability": 0.995 + }, + { + "start": 17144.66, + "end": 17146.9, + "probability": 0.988 + }, + { + "start": 17149.0, + "end": 17153.02, + "probability": 0.9986 + }, + { + "start": 17153.58, + "end": 17155.0, + "probability": 0.9315 + }, + { + "start": 17155.92, + "end": 17156.36, + "probability": 0.6332 + }, + { + "start": 17157.28, + "end": 17160.0, + "probability": 0.9795 + }, + { + "start": 17160.38, + "end": 17162.0, + "probability": 0.9708 + }, + { + "start": 17162.88, + "end": 17166.26, + "probability": 0.9771 + }, + { + "start": 17166.94, + "end": 17170.96, + "probability": 0.9295 + }, + { + "start": 17172.02, + "end": 17175.48, + "probability": 0.9601 + }, + { + "start": 17176.64, + "end": 17181.52, + "probability": 0.9531 + }, + { + "start": 17181.78, + "end": 17182.54, + "probability": 0.2551 + }, + { + "start": 17183.52, + "end": 17186.16, + "probability": 0.8586 + }, + { + "start": 17186.16, + "end": 17191.0, + "probability": 0.9986 + }, + { + "start": 17191.22, + "end": 17192.14, + "probability": 0.8944 + }, + { + "start": 17193.24, + "end": 17195.92, + "probability": 0.9951 + }, + { + "start": 17196.64, + "end": 17199.74, + "probability": 0.8764 + }, + { + "start": 17200.62, + "end": 17205.8, + "probability": 0.9543 + }, + { + "start": 17205.8, + "end": 17209.96, + "probability": 0.9933 + }, + { + "start": 17210.16, + "end": 17212.3, + "probability": 0.9946 + }, + { + "start": 17213.34, + "end": 17217.22, + "probability": 0.9917 + }, + { + "start": 17217.22, + "end": 17223.04, + "probability": 0.9934 + }, + { + "start": 17223.92, + "end": 17224.54, + "probability": 0.7513 + }, + { + "start": 17225.02, + "end": 17228.66, + "probability": 0.6245 + }, + { + "start": 17228.66, + "end": 17231.56, + "probability": 0.9797 + }, + { + "start": 17231.76, + "end": 17233.3, + "probability": 0.8406 + }, + { + "start": 17233.36, + "end": 17234.86, + "probability": 0.8772 + }, + { + "start": 17235.02, + "end": 17235.5, + "probability": 0.978 + }, + { + "start": 17235.64, + "end": 17237.0, + "probability": 0.9159 + }, + { + "start": 17237.68, + "end": 17240.68, + "probability": 0.9792 + }, + { + "start": 17241.12, + "end": 17245.6, + "probability": 0.9919 + }, + { + "start": 17246.88, + "end": 17249.56, + "probability": 0.9971 + }, + { + "start": 17249.56, + "end": 17253.58, + "probability": 0.998 + }, + { + "start": 17254.46, + "end": 17254.96, + "probability": 0.6704 + }, + { + "start": 17255.44, + "end": 17259.68, + "probability": 0.9987 + }, + { + "start": 17260.8, + "end": 17265.18, + "probability": 0.9531 + }, + { + "start": 17265.18, + "end": 17270.66, + "probability": 0.9759 + }, + { + "start": 17271.34, + "end": 17274.08, + "probability": 0.9887 + }, + { + "start": 17275.52, + "end": 17280.48, + "probability": 0.9585 + }, + { + "start": 17281.1, + "end": 17283.86, + "probability": 0.9811 + }, + { + "start": 17284.7, + "end": 17290.54, + "probability": 0.9579 + }, + { + "start": 17290.58, + "end": 17291.7, + "probability": 0.8234 + }, + { + "start": 17292.24, + "end": 17293.0, + "probability": 0.6632 + }, + { + "start": 17293.08, + "end": 17293.6, + "probability": 0.9255 + }, + { + "start": 17293.88, + "end": 17295.8, + "probability": 0.9864 + }, + { + "start": 17297.1, + "end": 17298.74, + "probability": 0.75 + }, + { + "start": 17300.02, + "end": 17301.25, + "probability": 0.9902 + }, + { + "start": 17302.0, + "end": 17303.62, + "probability": 0.9929 + }, + { + "start": 17304.98, + "end": 17310.86, + "probability": 0.9838 + }, + { + "start": 17311.48, + "end": 17316.82, + "probability": 0.9946 + }, + { + "start": 17317.34, + "end": 17320.38, + "probability": 0.9985 + }, + { + "start": 17321.04, + "end": 17322.8, + "probability": 0.9641 + }, + { + "start": 17324.0, + "end": 17325.3, + "probability": 0.8031 + }, + { + "start": 17326.3, + "end": 17330.28, + "probability": 0.84 + }, + { + "start": 17330.78, + "end": 17334.14, + "probability": 0.9847 + }, + { + "start": 17335.1, + "end": 17340.92, + "probability": 0.8021 + }, + { + "start": 17341.46, + "end": 17347.68, + "probability": 0.9899 + }, + { + "start": 17347.8, + "end": 17348.56, + "probability": 0.9711 + }, + { + "start": 17349.08, + "end": 17350.68, + "probability": 0.957 + }, + { + "start": 17351.32, + "end": 17354.28, + "probability": 0.8621 + }, + { + "start": 17354.92, + "end": 17355.76, + "probability": 0.8226 + }, + { + "start": 17356.3, + "end": 17360.8, + "probability": 0.9526 + }, + { + "start": 17361.26, + "end": 17364.16, + "probability": 0.9894 + }, + { + "start": 17365.02, + "end": 17366.74, + "probability": 0.9431 + }, + { + "start": 17366.88, + "end": 17368.6, + "probability": 0.6949 + }, + { + "start": 17368.9, + "end": 17369.7, + "probability": 0.747 + }, + { + "start": 17370.14, + "end": 17370.84, + "probability": 0.4566 + }, + { + "start": 17370.86, + "end": 17371.98, + "probability": 0.7328 + }, + { + "start": 17372.38, + "end": 17372.68, + "probability": 0.1868 + }, + { + "start": 17372.68, + "end": 17373.72, + "probability": 0.8172 + }, + { + "start": 17373.8, + "end": 17374.58, + "probability": 0.9937 + }, + { + "start": 17374.62, + "end": 17377.44, + "probability": 0.83 + }, + { + "start": 17377.56, + "end": 17377.56, + "probability": 0.1112 + }, + { + "start": 17377.56, + "end": 17377.56, + "probability": 0.1321 + }, + { + "start": 17377.56, + "end": 17379.0, + "probability": 0.5668 + }, + { + "start": 17379.37, + "end": 17382.96, + "probability": 0.6459 + }, + { + "start": 17382.96, + "end": 17384.78, + "probability": 0.9507 + }, + { + "start": 17384.86, + "end": 17385.32, + "probability": 0.8154 + }, + { + "start": 17385.82, + "end": 17391.08, + "probability": 0.9352 + }, + { + "start": 17392.62, + "end": 17394.62, + "probability": 0.8093 + }, + { + "start": 17395.12, + "end": 17397.58, + "probability": 0.8497 + }, + { + "start": 17397.8, + "end": 17398.66, + "probability": 0.0869 + }, + { + "start": 17399.1, + "end": 17399.22, + "probability": 0.0206 + }, + { + "start": 17399.92, + "end": 17400.35, + "probability": 0.0294 + }, + { + "start": 17404.46, + "end": 17404.46, + "probability": 0.0 + }, + { + "start": 17410.46, + "end": 17412.42, + "probability": 0.0283 + }, + { + "start": 17412.52, + "end": 17412.84, + "probability": 0.0501 + }, + { + "start": 17413.42, + "end": 17415.24, + "probability": 0.6075 + }, + { + "start": 17415.32, + "end": 17415.82, + "probability": 0.261 + }, + { + "start": 17416.08, + "end": 17418.46, + "probability": 0.7348 + }, + { + "start": 17418.56, + "end": 17419.08, + "probability": 0.6176 + }, + { + "start": 17419.22, + "end": 17422.04, + "probability": 0.8569 + }, + { + "start": 17422.14, + "end": 17422.74, + "probability": 0.4004 + }, + { + "start": 17423.18, + "end": 17424.24, + "probability": 0.7759 + }, + { + "start": 17424.28, + "end": 17424.66, + "probability": 0.3805 + }, + { + "start": 17424.82, + "end": 17426.9, + "probability": 0.8195 + }, + { + "start": 17426.98, + "end": 17427.64, + "probability": 0.5779 + }, + { + "start": 17427.72, + "end": 17428.54, + "probability": 0.9554 + }, + { + "start": 17429.5, + "end": 17430.0, + "probability": 0.84 + }, + { + "start": 17430.14, + "end": 17431.38, + "probability": 0.9056 + }, + { + "start": 17431.44, + "end": 17431.86, + "probability": 0.849 + }, + { + "start": 17432.04, + "end": 17433.98, + "probability": 0.6046 + }, + { + "start": 17434.04, + "end": 17434.88, + "probability": 0.682 + }, + { + "start": 17435.02, + "end": 17436.82, + "probability": 0.8894 + }, + { + "start": 17437.32, + "end": 17437.9, + "probability": 0.8582 + }, + { + "start": 17437.92, + "end": 17439.02, + "probability": 0.8885 + }, + { + "start": 17439.1, + "end": 17439.7, + "probability": 0.741 + }, + { + "start": 17440.02, + "end": 17442.42, + "probability": 0.988 + }, + { + "start": 17444.64, + "end": 17445.12, + "probability": 0.5052 + }, + { + "start": 17445.12, + "end": 17445.12, + "probability": 0.3046 + }, + { + "start": 17445.12, + "end": 17445.82, + "probability": 0.884 + }, + { + "start": 17445.94, + "end": 17446.58, + "probability": 0.7618 + }, + { + "start": 17447.02, + "end": 17449.28, + "probability": 0.9788 + }, + { + "start": 17451.82, + "end": 17453.38, + "probability": 0.921 + }, + { + "start": 17454.02, + "end": 17454.84, + "probability": 0.6334 + }, + { + "start": 17456.06, + "end": 17457.76, + "probability": 0.7215 + }, + { + "start": 17457.86, + "end": 17458.56, + "probability": 0.5336 + }, + { + "start": 17458.96, + "end": 17459.86, + "probability": 0.9884 + }, + { + "start": 17460.24, + "end": 17460.86, + "probability": 0.8108 + }, + { + "start": 17460.9, + "end": 17461.82, + "probability": 0.9246 + }, + { + "start": 17462.26, + "end": 17462.64, + "probability": 0.6611 + }, + { + "start": 17462.78, + "end": 17463.9, + "probability": 0.9662 + }, + { + "start": 17464.16, + "end": 17466.88, + "probability": 0.9187 + }, + { + "start": 17466.96, + "end": 17467.56, + "probability": 0.5403 + }, + { + "start": 17467.56, + "end": 17467.56, + "probability": 0.2952 + }, + { + "start": 17467.56, + "end": 17467.77, + "probability": 0.8054 + }, + { + "start": 17468.02, + "end": 17468.42, + "probability": 0.759 + }, + { + "start": 17468.56, + "end": 17470.1, + "probability": 0.6315 + }, + { + "start": 17470.46, + "end": 17471.06, + "probability": 0.595 + }, + { + "start": 17471.18, + "end": 17472.5, + "probability": 0.9385 + }, + { + "start": 17472.98, + "end": 17473.76, + "probability": 0.9293 + }, + { + "start": 17474.16, + "end": 17475.78, + "probability": 0.8939 + }, + { + "start": 17475.88, + "end": 17478.76, + "probability": 0.6625 + }, + { + "start": 17478.84, + "end": 17479.36, + "probability": 0.2771 + }, + { + "start": 17479.36, + "end": 17479.36, + "probability": 0.5349 + }, + { + "start": 17479.36, + "end": 17479.99, + "probability": 0.7415 + }, + { + "start": 17480.48, + "end": 17480.94, + "probability": 0.8614 + }, + { + "start": 17481.04, + "end": 17482.36, + "probability": 0.8948 + }, + { + "start": 17482.44, + "end": 17484.42, + "probability": 0.8882 + }, + { + "start": 17484.66, + "end": 17485.22, + "probability": 0.957 + }, + { + "start": 17487.11, + "end": 17488.32, + "probability": 0.4849 + }, + { + "start": 17488.32, + "end": 17488.32, + "probability": 0.3434 + }, + { + "start": 17488.32, + "end": 17488.9, + "probability": 0.664 + }, + { + "start": 17489.6, + "end": 17490.22, + "probability": 0.8083 + }, + { + "start": 17490.22, + "end": 17491.78, + "probability": 0.7554 + }, + { + "start": 17492.32, + "end": 17496.06, + "probability": 0.9671 + }, + { + "start": 17500.12, + "end": 17500.86, + "probability": 0.0482 + }, + { + "start": 17500.86, + "end": 17500.86, + "probability": 0.3684 + }, + { + "start": 17500.86, + "end": 17500.86, + "probability": 0.032 + }, + { + "start": 17500.86, + "end": 17500.86, + "probability": 0.4307 + }, + { + "start": 17500.86, + "end": 17501.28, + "probability": 0.7587 + }, + { + "start": 17501.66, + "end": 17502.4, + "probability": 0.5131 + }, + { + "start": 17503.24, + "end": 17504.72, + "probability": 0.939 + }, + { + "start": 17505.7, + "end": 17507.62, + "probability": 0.5214 + }, + { + "start": 17507.72, + "end": 17510.6, + "probability": 0.9612 + }, + { + "start": 17511.02, + "end": 17512.36, + "probability": 0.5618 + }, + { + "start": 17512.56, + "end": 17513.66, + "probability": 0.6306 + }, + { + "start": 17513.76, + "end": 17514.74, + "probability": 0.7776 + }, + { + "start": 17516.64, + "end": 17517.94, + "probability": 0.8215 + }, + { + "start": 17526.92, + "end": 17526.92, + "probability": 0.3201 + }, + { + "start": 17529.3, + "end": 17530.3, + "probability": 0.0005 + }, + { + "start": 17531.28, + "end": 17536.3, + "probability": 0.6984 + }, + { + "start": 17536.88, + "end": 17538.22, + "probability": 0.5516 + }, + { + "start": 17540.88, + "end": 17543.3, + "probability": 0.54 + }, + { + "start": 17544.2, + "end": 17544.38, + "probability": 0.0296 + }, + { + "start": 17544.38, + "end": 17545.44, + "probability": 0.1131 + }, + { + "start": 17547.64, + "end": 17550.56, + "probability": 0.0217 + }, + { + "start": 17551.6, + "end": 17552.28, + "probability": 0.0153 + }, + { + "start": 17552.44, + "end": 17555.64, + "probability": 0.2046 + }, + { + "start": 17556.12, + "end": 17558.56, + "probability": 0.0324 + } + ], + "segments_count": 5683, + "words_count": 28823, + "avg_words_per_segment": 5.0718, + "avg_segment_duration": 2.1702, + "avg_words_per_minute": 98.4863, + "plenum_id": "122858", + "duration": 17559.6, + "title": null, + "plenum_date": "2024-01-01" +} \ No newline at end of file