diff --git "a/12360/metadata.json" "b/12360/metadata.json" new file mode 100644--- /dev/null +++ "b/12360/metadata.json" @@ -0,0 +1,12167 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "12360", + "quality_score": 0.939, + "per_segment_quality_scores": [ + { + "start": 73.42, + "end": 73.64, + "probability": 0.0014 + }, + { + "start": 73.66, + "end": 74.33, + "probability": 0.0025 + }, + { + "start": 75.1, + "end": 76.7, + "probability": 0.7977 + }, + { + "start": 76.76, + "end": 77.82, + "probability": 0.5288 + }, + { + "start": 78.18, + "end": 79.13, + "probability": 0.9751 + }, + { + "start": 79.24, + "end": 80.18, + "probability": 0.8895 + }, + { + "start": 80.22, + "end": 80.98, + "probability": 0.8555 + }, + { + "start": 81.64, + "end": 82.33, + "probability": 0.6953 + }, + { + "start": 82.88, + "end": 86.08, + "probability": 0.739 + }, + { + "start": 86.86, + "end": 88.14, + "probability": 0.717 + }, + { + "start": 88.14, + "end": 89.32, + "probability": 0.5292 + }, + { + "start": 89.34, + "end": 91.22, + "probability": 0.8423 + }, + { + "start": 91.5, + "end": 91.96, + "probability": 0.616 + }, + { + "start": 92.06, + "end": 92.72, + "probability": 0.8079 + }, + { + "start": 92.9, + "end": 95.66, + "probability": 0.9928 + }, + { + "start": 95.66, + "end": 99.06, + "probability": 0.4172 + }, + { + "start": 99.32, + "end": 100.98, + "probability": 0.1757 + }, + { + "start": 101.18, + "end": 104.0, + "probability": 0.9733 + }, + { + "start": 104.42, + "end": 104.9, + "probability": 0.4987 + }, + { + "start": 104.92, + "end": 107.62, + "probability": 0.9671 + }, + { + "start": 107.62, + "end": 111.34, + "probability": 0.9811 + }, + { + "start": 111.34, + "end": 112.14, + "probability": 0.6352 + }, + { + "start": 112.56, + "end": 112.96, + "probability": 0.511 + }, + { + "start": 113.14, + "end": 113.2, + "probability": 0.0026 + }, + { + "start": 121.2, + "end": 121.62, + "probability": 0.0615 + }, + { + "start": 121.62, + "end": 121.62, + "probability": 0.0545 + }, + { + "start": 121.62, + "end": 121.62, + "probability": 0.0934 + }, + { + "start": 121.62, + "end": 121.62, + "probability": 0.0667 + }, + { + "start": 121.62, + "end": 121.62, + "probability": 0.0733 + }, + { + "start": 121.62, + "end": 123.7, + "probability": 0.5438 + }, + { + "start": 125.04, + "end": 125.66, + "probability": 0.6067 + }, + { + "start": 131.58, + "end": 132.64, + "probability": 0.7012 + }, + { + "start": 132.96, + "end": 133.86, + "probability": 0.7209 + }, + { + "start": 134.0, + "end": 138.02, + "probability": 0.669 + }, + { + "start": 138.56, + "end": 140.38, + "probability": 0.8362 + }, + { + "start": 140.56, + "end": 144.68, + "probability": 0.9751 + }, + { + "start": 145.52, + "end": 147.01, + "probability": 0.5473 + }, + { + "start": 147.18, + "end": 148.34, + "probability": 0.6931 + }, + { + "start": 148.62, + "end": 149.68, + "probability": 0.9734 + }, + { + "start": 149.84, + "end": 150.61, + "probability": 0.7632 + }, + { + "start": 151.18, + "end": 152.38, + "probability": 0.8872 + }, + { + "start": 152.94, + "end": 156.1, + "probability": 0.9742 + }, + { + "start": 156.5, + "end": 159.52, + "probability": 0.8683 + }, + { + "start": 160.84, + "end": 163.18, + "probability": 0.9641 + }, + { + "start": 163.62, + "end": 165.34, + "probability": 0.9922 + }, + { + "start": 165.52, + "end": 166.0, + "probability": 0.855 + }, + { + "start": 166.2, + "end": 166.6, + "probability": 0.8682 + }, + { + "start": 166.7, + "end": 167.32, + "probability": 0.717 + }, + { + "start": 167.62, + "end": 168.22, + "probability": 0.8606 + }, + { + "start": 168.6, + "end": 169.06, + "probability": 0.9854 + }, + { + "start": 169.28, + "end": 169.72, + "probability": 0.8395 + }, + { + "start": 169.84, + "end": 172.64, + "probability": 0.9783 + }, + { + "start": 173.52, + "end": 176.16, + "probability": 0.864 + }, + { + "start": 177.06, + "end": 178.51, + "probability": 0.9082 + }, + { + "start": 178.9, + "end": 180.1, + "probability": 0.2326 + }, + { + "start": 180.18, + "end": 181.96, + "probability": 0.9312 + }, + { + "start": 182.54, + "end": 186.41, + "probability": 0.5061 + }, + { + "start": 187.48, + "end": 191.52, + "probability": 0.489 + }, + { + "start": 191.64, + "end": 197.1, + "probability": 0.8481 + }, + { + "start": 197.48, + "end": 197.76, + "probability": 0.4214 + }, + { + "start": 198.16, + "end": 198.6, + "probability": 0.5198 + }, + { + "start": 198.68, + "end": 200.46, + "probability": 0.7218 + }, + { + "start": 201.28, + "end": 204.12, + "probability": 0.7126 + }, + { + "start": 204.86, + "end": 208.98, + "probability": 0.8374 + }, + { + "start": 209.44, + "end": 210.98, + "probability": 0.5894 + }, + { + "start": 211.66, + "end": 213.88, + "probability": 0.7897 + }, + { + "start": 214.44, + "end": 215.04, + "probability": 0.8797 + }, + { + "start": 215.2, + "end": 219.54, + "probability": 0.9886 + }, + { + "start": 219.54, + "end": 224.28, + "probability": 0.9552 + }, + { + "start": 225.06, + "end": 228.08, + "probability": 0.9775 + }, + { + "start": 228.42, + "end": 229.06, + "probability": 0.9227 + }, + { + "start": 229.18, + "end": 230.1, + "probability": 0.3216 + }, + { + "start": 230.26, + "end": 230.66, + "probability": 0.7834 + }, + { + "start": 230.94, + "end": 232.88, + "probability": 0.8727 + }, + { + "start": 232.96, + "end": 234.04, + "probability": 0.8447 + }, + { + "start": 234.7, + "end": 238.1, + "probability": 0.8442 + }, + { + "start": 238.1, + "end": 243.2, + "probability": 0.9981 + }, + { + "start": 243.64, + "end": 244.18, + "probability": 0.549 + }, + { + "start": 244.26, + "end": 248.94, + "probability": 0.9901 + }, + { + "start": 249.5, + "end": 254.18, + "probability": 0.7921 + }, + { + "start": 254.98, + "end": 257.7, + "probability": 0.9806 + }, + { + "start": 258.3, + "end": 258.98, + "probability": 0.7227 + }, + { + "start": 259.12, + "end": 260.88, + "probability": 0.9683 + }, + { + "start": 261.2, + "end": 262.12, + "probability": 0.6964 + }, + { + "start": 262.18, + "end": 263.36, + "probability": 0.969 + }, + { + "start": 263.82, + "end": 267.44, + "probability": 0.9721 + }, + { + "start": 267.6, + "end": 268.18, + "probability": 0.6743 + }, + { + "start": 268.4, + "end": 269.82, + "probability": 0.888 + }, + { + "start": 270.28, + "end": 272.4, + "probability": 0.9038 + }, + { + "start": 272.6, + "end": 275.08, + "probability": 0.9738 + }, + { + "start": 275.52, + "end": 275.52, + "probability": 0.0228 + }, + { + "start": 275.52, + "end": 276.0, + "probability": 0.8505 + }, + { + "start": 276.18, + "end": 279.9, + "probability": 0.9766 + }, + { + "start": 280.02, + "end": 284.32, + "probability": 0.9623 + }, + { + "start": 284.74, + "end": 287.24, + "probability": 0.9735 + }, + { + "start": 288.08, + "end": 291.24, + "probability": 0.6898 + }, + { + "start": 291.78, + "end": 293.44, + "probability": 0.0399 + }, + { + "start": 294.36, + "end": 294.5, + "probability": 0.2216 + }, + { + "start": 295.54, + "end": 296.82, + "probability": 0.6614 + }, + { + "start": 296.96, + "end": 300.38, + "probability": 0.9145 + }, + { + "start": 300.5, + "end": 301.24, + "probability": 0.781 + }, + { + "start": 301.4, + "end": 304.2, + "probability": 0.9937 + }, + { + "start": 304.7, + "end": 308.66, + "probability": 0.9862 + }, + { + "start": 309.2, + "end": 310.32, + "probability": 0.9502 + }, + { + "start": 310.46, + "end": 318.88, + "probability": 0.9918 + }, + { + "start": 319.46, + "end": 320.66, + "probability": 0.5646 + }, + { + "start": 320.82, + "end": 321.52, + "probability": 0.6007 + }, + { + "start": 321.62, + "end": 323.0, + "probability": 0.7415 + }, + { + "start": 323.22, + "end": 324.24, + "probability": 0.8823 + }, + { + "start": 324.66, + "end": 325.86, + "probability": 0.8652 + }, + { + "start": 325.94, + "end": 327.22, + "probability": 0.6641 + }, + { + "start": 328.76, + "end": 328.76, + "probability": 0.0771 + }, + { + "start": 328.76, + "end": 328.76, + "probability": 0.1848 + }, + { + "start": 328.76, + "end": 333.86, + "probability": 0.9808 + }, + { + "start": 334.22, + "end": 337.2, + "probability": 0.9912 + }, + { + "start": 338.24, + "end": 340.14, + "probability": 0.2357 + }, + { + "start": 340.8, + "end": 341.04, + "probability": 0.0273 + }, + { + "start": 341.04, + "end": 341.04, + "probability": 0.0224 + }, + { + "start": 341.04, + "end": 342.58, + "probability": 0.6348 + }, + { + "start": 342.78, + "end": 343.78, + "probability": 0.5455 + }, + { + "start": 343.86, + "end": 344.38, + "probability": 0.7776 + }, + { + "start": 344.64, + "end": 345.04, + "probability": 0.4204 + }, + { + "start": 345.06, + "end": 346.1, + "probability": 0.9338 + }, + { + "start": 349.2, + "end": 351.36, + "probability": 0.6262 + }, + { + "start": 352.84, + "end": 356.84, + "probability": 0.5146 + }, + { + "start": 357.72, + "end": 359.35, + "probability": 0.6961 + }, + { + "start": 362.16, + "end": 363.28, + "probability": 0.1433 + }, + { + "start": 364.46, + "end": 368.16, + "probability": 0.7958 + }, + { + "start": 369.34, + "end": 374.34, + "probability": 0.9655 + }, + { + "start": 374.86, + "end": 377.28, + "probability": 0.8902 + }, + { + "start": 378.82, + "end": 383.08, + "probability": 0.4144 + }, + { + "start": 383.18, + "end": 384.04, + "probability": 0.3021 + }, + { + "start": 384.12, + "end": 386.24, + "probability": 0.745 + }, + { + "start": 386.98, + "end": 392.56, + "probability": 0.9756 + }, + { + "start": 393.48, + "end": 398.16, + "probability": 0.9794 + }, + { + "start": 401.04, + "end": 403.92, + "probability": 0.8853 + }, + { + "start": 404.68, + "end": 412.46, + "probability": 0.8039 + }, + { + "start": 415.38, + "end": 418.5, + "probability": 0.982 + }, + { + "start": 419.2, + "end": 420.91, + "probability": 0.0344 + }, + { + "start": 423.28, + "end": 425.56, + "probability": 0.6942 + }, + { + "start": 425.56, + "end": 427.08, + "probability": 0.8221 + }, + { + "start": 427.72, + "end": 428.9, + "probability": 0.7222 + }, + { + "start": 429.0, + "end": 430.0, + "probability": 0.3945 + }, + { + "start": 430.12, + "end": 432.56, + "probability": 0.9975 + }, + { + "start": 433.52, + "end": 437.02, + "probability": 0.7375 + }, + { + "start": 440.04, + "end": 441.51, + "probability": 0.6376 + }, + { + "start": 441.72, + "end": 444.7, + "probability": 0.8333 + }, + { + "start": 444.78, + "end": 445.0, + "probability": 0.6949 + }, + { + "start": 445.06, + "end": 445.34, + "probability": 0.4598 + }, + { + "start": 445.42, + "end": 447.32, + "probability": 0.8269 + }, + { + "start": 447.76, + "end": 452.52, + "probability": 0.865 + }, + { + "start": 453.82, + "end": 456.32, + "probability": 0.8193 + }, + { + "start": 456.86, + "end": 461.46, + "probability": 0.9858 + }, + { + "start": 461.72, + "end": 462.18, + "probability": 0.522 + }, + { + "start": 462.94, + "end": 465.4, + "probability": 0.8937 + }, + { + "start": 466.0, + "end": 471.46, + "probability": 0.9736 + }, + { + "start": 471.98, + "end": 473.04, + "probability": 0.8242 + }, + { + "start": 473.18, + "end": 473.98, + "probability": 0.8314 + }, + { + "start": 474.46, + "end": 477.2, + "probability": 0.882 + }, + { + "start": 477.94, + "end": 482.12, + "probability": 0.8853 + }, + { + "start": 483.28, + "end": 483.54, + "probability": 0.1794 + }, + { + "start": 483.66, + "end": 484.18, + "probability": 0.3977 + }, + { + "start": 484.3, + "end": 485.26, + "probability": 0.8483 + }, + { + "start": 485.74, + "end": 488.06, + "probability": 0.9131 + }, + { + "start": 488.66, + "end": 490.1, + "probability": 0.985 + }, + { + "start": 490.24, + "end": 490.74, + "probability": 0.7915 + }, + { + "start": 491.22, + "end": 492.68, + "probability": 0.9206 + }, + { + "start": 493.02, + "end": 497.12, + "probability": 0.9971 + }, + { + "start": 497.12, + "end": 502.46, + "probability": 0.9932 + }, + { + "start": 503.06, + "end": 506.12, + "probability": 0.9897 + }, + { + "start": 506.68, + "end": 509.84, + "probability": 0.9382 + }, + { + "start": 510.32, + "end": 514.02, + "probability": 0.9948 + }, + { + "start": 514.3, + "end": 516.36, + "probability": 0.7059 + }, + { + "start": 516.94, + "end": 519.24, + "probability": 0.606 + }, + { + "start": 519.9, + "end": 521.64, + "probability": 0.988 + }, + { + "start": 522.16, + "end": 523.18, + "probability": 0.7363 + }, + { + "start": 523.56, + "end": 524.52, + "probability": 0.9831 + }, + { + "start": 524.78, + "end": 526.1, + "probability": 0.9847 + }, + { + "start": 526.32, + "end": 530.6, + "probability": 0.9846 + }, + { + "start": 530.84, + "end": 532.58, + "probability": 0.9705 + }, + { + "start": 533.46, + "end": 539.68, + "probability": 0.5734 + }, + { + "start": 540.32, + "end": 543.07, + "probability": 0.9548 + }, + { + "start": 544.92, + "end": 545.6, + "probability": 0.4898 + }, + { + "start": 545.74, + "end": 546.82, + "probability": 0.7696 + }, + { + "start": 546.82, + "end": 547.96, + "probability": 0.9528 + }, + { + "start": 548.06, + "end": 548.96, + "probability": 0.8927 + }, + { + "start": 549.1, + "end": 551.48, + "probability": 0.9832 + }, + { + "start": 551.58, + "end": 552.52, + "probability": 0.7723 + }, + { + "start": 552.98, + "end": 556.54, + "probability": 0.9741 + }, + { + "start": 557.0, + "end": 557.52, + "probability": 0.9324 + }, + { + "start": 558.54, + "end": 561.8, + "probability": 0.9561 + }, + { + "start": 561.96, + "end": 562.54, + "probability": 0.6483 + }, + { + "start": 563.1, + "end": 564.5, + "probability": 0.98 + }, + { + "start": 564.56, + "end": 566.34, + "probability": 0.983 + }, + { + "start": 566.4, + "end": 568.86, + "probability": 0.9865 + }, + { + "start": 569.06, + "end": 571.8, + "probability": 0.9402 + }, + { + "start": 571.92, + "end": 572.6, + "probability": 0.5272 + }, + { + "start": 572.68, + "end": 573.53, + "probability": 0.9541 + }, + { + "start": 574.02, + "end": 574.46, + "probability": 0.7769 + }, + { + "start": 574.52, + "end": 577.82, + "probability": 0.9764 + }, + { + "start": 577.96, + "end": 580.8, + "probability": 0.8525 + }, + { + "start": 581.34, + "end": 582.42, + "probability": 0.9597 + }, + { + "start": 582.94, + "end": 584.24, + "probability": 0.979 + }, + { + "start": 584.34, + "end": 587.98, + "probability": 0.6873 + }, + { + "start": 588.44, + "end": 589.16, + "probability": 0.9202 + }, + { + "start": 589.26, + "end": 592.26, + "probability": 0.9534 + }, + { + "start": 592.34, + "end": 595.16, + "probability": 0.9354 + }, + { + "start": 595.5, + "end": 597.64, + "probability": 0.871 + }, + { + "start": 597.88, + "end": 598.24, + "probability": 0.7611 + }, + { + "start": 598.48, + "end": 599.12, + "probability": 0.7208 + }, + { + "start": 599.36, + "end": 599.94, + "probability": 0.739 + }, + { + "start": 600.02, + "end": 600.52, + "probability": 0.5681 + }, + { + "start": 600.52, + "end": 602.1, + "probability": 0.7478 + }, + { + "start": 602.56, + "end": 603.5, + "probability": 0.6571 + }, + { + "start": 603.54, + "end": 605.34, + "probability": 0.939 + }, + { + "start": 607.74, + "end": 608.52, + "probability": 0.7011 + }, + { + "start": 608.58, + "end": 609.99, + "probability": 0.6763 + }, + { + "start": 610.38, + "end": 615.8, + "probability": 0.9803 + }, + { + "start": 615.8, + "end": 623.46, + "probability": 0.9532 + }, + { + "start": 624.22, + "end": 626.86, + "probability": 0.7676 + }, + { + "start": 627.54, + "end": 634.28, + "probability": 0.7039 + }, + { + "start": 634.4, + "end": 636.11, + "probability": 0.6355 + }, + { + "start": 636.4, + "end": 637.38, + "probability": 0.8311 + }, + { + "start": 638.32, + "end": 642.54, + "probability": 0.7614 + }, + { + "start": 642.62, + "end": 644.36, + "probability": 0.761 + }, + { + "start": 645.24, + "end": 650.97, + "probability": 0.915 + }, + { + "start": 651.52, + "end": 652.5, + "probability": 0.8081 + }, + { + "start": 653.74, + "end": 660.58, + "probability": 0.9606 + }, + { + "start": 661.26, + "end": 663.38, + "probability": 0.932 + }, + { + "start": 663.94, + "end": 664.28, + "probability": 0.4787 + }, + { + "start": 664.28, + "end": 665.72, + "probability": 0.8633 + }, + { + "start": 666.18, + "end": 667.38, + "probability": 0.8999 + }, + { + "start": 667.54, + "end": 669.33, + "probability": 0.8921 + }, + { + "start": 670.36, + "end": 676.5, + "probability": 0.9431 + }, + { + "start": 676.76, + "end": 677.12, + "probability": 0.4926 + }, + { + "start": 677.26, + "end": 677.8, + "probability": 0.81 + }, + { + "start": 678.36, + "end": 684.04, + "probability": 0.7417 + }, + { + "start": 688.62, + "end": 689.06, + "probability": 0.2645 + }, + { + "start": 689.1, + "end": 689.58, + "probability": 0.6609 + }, + { + "start": 689.58, + "end": 689.8, + "probability": 0.6916 + }, + { + "start": 689.8, + "end": 690.08, + "probability": 0.0714 + }, + { + "start": 691.52, + "end": 692.22, + "probability": 0.2269 + }, + { + "start": 692.28, + "end": 693.5, + "probability": 0.5328 + }, + { + "start": 695.84, + "end": 696.16, + "probability": 0.4219 + }, + { + "start": 696.16, + "end": 696.78, + "probability": 0.3897 + }, + { + "start": 696.86, + "end": 697.41, + "probability": 0.594 + }, + { + "start": 698.14, + "end": 699.3, + "probability": 0.6607 + }, + { + "start": 699.52, + "end": 701.0, + "probability": 0.818 + }, + { + "start": 703.78, + "end": 703.78, + "probability": 0.1348 + }, + { + "start": 703.78, + "end": 703.78, + "probability": 0.0738 + }, + { + "start": 703.78, + "end": 706.52, + "probability": 0.9568 + }, + { + "start": 706.62, + "end": 708.08, + "probability": 0.782 + }, + { + "start": 708.42, + "end": 712.64, + "probability": 0.9271 + }, + { + "start": 713.44, + "end": 714.98, + "probability": 0.8386 + }, + { + "start": 715.02, + "end": 716.4, + "probability": 0.9259 + }, + { + "start": 717.08, + "end": 720.54, + "probability": 0.9881 + }, + { + "start": 721.04, + "end": 725.44, + "probability": 0.9706 + }, + { + "start": 726.1, + "end": 728.58, + "probability": 0.9597 + }, + { + "start": 729.24, + "end": 732.82, + "probability": 0.6703 + }, + { + "start": 733.02, + "end": 736.2, + "probability": 0.8784 + }, + { + "start": 736.74, + "end": 739.94, + "probability": 0.906 + }, + { + "start": 740.3, + "end": 742.08, + "probability": 0.7663 + }, + { + "start": 742.2, + "end": 746.28, + "probability": 0.9849 + }, + { + "start": 746.28, + "end": 750.74, + "probability": 0.9221 + }, + { + "start": 750.92, + "end": 751.72, + "probability": 0.9263 + }, + { + "start": 752.32, + "end": 753.92, + "probability": 0.8032 + }, + { + "start": 754.1, + "end": 758.32, + "probability": 0.9675 + }, + { + "start": 758.64, + "end": 761.02, + "probability": 0.8279 + }, + { + "start": 761.6, + "end": 763.12, + "probability": 0.9326 + }, + { + "start": 763.46, + "end": 764.52, + "probability": 0.9613 + }, + { + "start": 765.14, + "end": 766.46, + "probability": 0.744 + }, + { + "start": 766.56, + "end": 767.98, + "probability": 0.9885 + }, + { + "start": 768.48, + "end": 772.18, + "probability": 0.9956 + }, + { + "start": 772.54, + "end": 775.14, + "probability": 0.9885 + }, + { + "start": 775.6, + "end": 778.56, + "probability": 0.9647 + }, + { + "start": 778.76, + "end": 781.68, + "probability": 0.9811 + }, + { + "start": 782.04, + "end": 784.44, + "probability": 0.9542 + }, + { + "start": 784.5, + "end": 785.65, + "probability": 0.6673 + }, + { + "start": 785.78, + "end": 787.56, + "probability": 0.9528 + }, + { + "start": 788.2, + "end": 790.86, + "probability": 0.9771 + }, + { + "start": 791.46, + "end": 794.22, + "probability": 0.6921 + }, + { + "start": 794.56, + "end": 794.98, + "probability": 0.944 + }, + { + "start": 795.16, + "end": 796.74, + "probability": 0.833 + }, + { + "start": 797.38, + "end": 797.6, + "probability": 0.5189 + }, + { + "start": 797.72, + "end": 799.78, + "probability": 0.9821 + }, + { + "start": 799.9, + "end": 803.82, + "probability": 0.9108 + }, + { + "start": 804.7, + "end": 806.86, + "probability": 0.9826 + }, + { + "start": 807.64, + "end": 808.44, + "probability": 0.999 + }, + { + "start": 809.22, + "end": 812.76, + "probability": 0.9878 + }, + { + "start": 813.12, + "end": 816.46, + "probability": 0.9988 + }, + { + "start": 817.28, + "end": 821.22, + "probability": 0.4964 + }, + { + "start": 821.32, + "end": 822.3, + "probability": 0.803 + }, + { + "start": 822.94, + "end": 826.16, + "probability": 0.7822 + }, + { + "start": 827.38, + "end": 831.68, + "probability": 0.8925 + }, + { + "start": 832.54, + "end": 834.38, + "probability": 0.953 + }, + { + "start": 834.9, + "end": 836.02, + "probability": 0.7874 + }, + { + "start": 836.58, + "end": 838.58, + "probability": 0.9258 + }, + { + "start": 839.14, + "end": 839.92, + "probability": 0.8097 + }, + { + "start": 840.58, + "end": 843.88, + "probability": 0.8594 + }, + { + "start": 844.46, + "end": 846.84, + "probability": 0.9277 + }, + { + "start": 847.7, + "end": 849.56, + "probability": 0.9672 + }, + { + "start": 849.64, + "end": 851.46, + "probability": 0.93 + }, + { + "start": 851.86, + "end": 857.92, + "probability": 0.9928 + }, + { + "start": 858.12, + "end": 863.08, + "probability": 0.995 + }, + { + "start": 864.32, + "end": 866.78, + "probability": 0.8882 + }, + { + "start": 867.54, + "end": 870.16, + "probability": 0.7261 + }, + { + "start": 870.68, + "end": 871.7, + "probability": 0.5609 + }, + { + "start": 871.88, + "end": 874.64, + "probability": 0.6117 + }, + { + "start": 875.32, + "end": 877.2, + "probability": 0.6212 + }, + { + "start": 877.72, + "end": 880.04, + "probability": 0.743 + }, + { + "start": 880.76, + "end": 884.58, + "probability": 0.995 + }, + { + "start": 884.58, + "end": 888.14, + "probability": 0.9939 + }, + { + "start": 888.7, + "end": 892.34, + "probability": 0.9269 + }, + { + "start": 892.54, + "end": 892.82, + "probability": 0.6451 + }, + { + "start": 893.38, + "end": 897.2, + "probability": 0.7548 + }, + { + "start": 897.68, + "end": 900.56, + "probability": 0.6734 + }, + { + "start": 901.38, + "end": 902.02, + "probability": 0.5817 + }, + { + "start": 902.64, + "end": 904.06, + "probability": 0.6174 + }, + { + "start": 904.8, + "end": 904.8, + "probability": 0.4539 + }, + { + "start": 904.8, + "end": 907.54, + "probability": 0.9207 + }, + { + "start": 907.66, + "end": 909.82, + "probability": 0.9782 + }, + { + "start": 910.02, + "end": 910.54, + "probability": 0.9772 + }, + { + "start": 910.56, + "end": 910.66, + "probability": 0.9026 + }, + { + "start": 912.02, + "end": 912.72, + "probability": 0.9072 + }, + { + "start": 912.8, + "end": 913.64, + "probability": 0.8251 + }, + { + "start": 913.76, + "end": 916.46, + "probability": 0.9801 + }, + { + "start": 917.22, + "end": 920.16, + "probability": 0.9721 + }, + { + "start": 921.0, + "end": 923.14, + "probability": 0.9978 + }, + { + "start": 923.14, + "end": 926.06, + "probability": 0.9935 + }, + { + "start": 926.62, + "end": 928.54, + "probability": 0.9984 + }, + { + "start": 928.54, + "end": 931.54, + "probability": 0.9915 + }, + { + "start": 932.1, + "end": 935.1, + "probability": 0.8439 + }, + { + "start": 935.76, + "end": 939.78, + "probability": 0.8804 + }, + { + "start": 939.9, + "end": 941.94, + "probability": 0.9984 + }, + { + "start": 941.94, + "end": 944.48, + "probability": 0.9985 + }, + { + "start": 944.84, + "end": 946.26, + "probability": 0.9278 + }, + { + "start": 946.78, + "end": 950.87, + "probability": 0.8061 + }, + { + "start": 951.9, + "end": 952.68, + "probability": 0.5721 + }, + { + "start": 953.08, + "end": 954.02, + "probability": 0.7101 + }, + { + "start": 954.06, + "end": 957.03, + "probability": 0.849 + }, + { + "start": 958.16, + "end": 962.04, + "probability": 0.9878 + }, + { + "start": 962.04, + "end": 967.02, + "probability": 0.984 + }, + { + "start": 967.16, + "end": 967.3, + "probability": 0.4732 + }, + { + "start": 967.3, + "end": 968.78, + "probability": 0.6184 + }, + { + "start": 969.04, + "end": 970.63, + "probability": 0.6755 + }, + { + "start": 976.2, + "end": 977.3, + "probability": 0.5746 + }, + { + "start": 978.16, + "end": 979.54, + "probability": 0.4905 + }, + { + "start": 980.54, + "end": 983.1, + "probability": 0.9908 + }, + { + "start": 983.12, + "end": 986.72, + "probability": 0.9181 + }, + { + "start": 987.6, + "end": 988.66, + "probability": 0.735 + }, + { + "start": 988.7, + "end": 990.08, + "probability": 0.9194 + }, + { + "start": 990.26, + "end": 992.44, + "probability": 0.9983 + }, + { + "start": 995.04, + "end": 995.24, + "probability": 0.0248 + }, + { + "start": 995.24, + "end": 995.54, + "probability": 0.4692 + }, + { + "start": 998.86, + "end": 1001.94, + "probability": 0.3238 + }, + { + "start": 1002.82, + "end": 1006.32, + "probability": 0.0995 + }, + { + "start": 1006.34, + "end": 1006.4, + "probability": 0.0373 + }, + { + "start": 1006.4, + "end": 1006.4, + "probability": 0.1201 + }, + { + "start": 1006.4, + "end": 1006.4, + "probability": 0.0369 + }, + { + "start": 1006.4, + "end": 1006.4, + "probability": 0.1261 + }, + { + "start": 1006.4, + "end": 1006.4, + "probability": 0.0348 + }, + { + "start": 1006.4, + "end": 1006.4, + "probability": 0.0229 + }, + { + "start": 1006.4, + "end": 1007.04, + "probability": 0.3072 + }, + { + "start": 1007.04, + "end": 1008.36, + "probability": 0.9797 + }, + { + "start": 1008.9, + "end": 1009.5, + "probability": 0.921 + }, + { + "start": 1010.18, + "end": 1011.68, + "probability": 0.7172 + }, + { + "start": 1011.88, + "end": 1013.16, + "probability": 0.9396 + }, + { + "start": 1013.24, + "end": 1015.14, + "probability": 0.9924 + }, + { + "start": 1015.28, + "end": 1018.44, + "probability": 0.793 + }, + { + "start": 1018.56, + "end": 1018.88, + "probability": 0.7493 + }, + { + "start": 1018.92, + "end": 1019.68, + "probability": 0.8344 + }, + { + "start": 1019.7, + "end": 1020.18, + "probability": 0.9497 + }, + { + "start": 1020.26, + "end": 1021.92, + "probability": 0.9293 + }, + { + "start": 1022.7, + "end": 1027.28, + "probability": 0.9578 + }, + { + "start": 1028.16, + "end": 1030.76, + "probability": 0.7249 + }, + { + "start": 1031.36, + "end": 1032.3, + "probability": 0.6784 + }, + { + "start": 1032.9, + "end": 1035.26, + "probability": 0.981 + }, + { + "start": 1035.7, + "end": 1038.88, + "probability": 0.97 + }, + { + "start": 1039.68, + "end": 1042.52, + "probability": 0.7762 + }, + { + "start": 1043.24, + "end": 1045.52, + "probability": 0.4258 + }, + { + "start": 1046.34, + "end": 1050.46, + "probability": 0.8218 + }, + { + "start": 1050.54, + "end": 1053.82, + "probability": 0.8464 + }, + { + "start": 1053.82, + "end": 1060.24, + "probability": 0.7446 + }, + { + "start": 1060.36, + "end": 1062.16, + "probability": 0.8313 + }, + { + "start": 1062.44, + "end": 1063.06, + "probability": 0.6971 + }, + { + "start": 1063.06, + "end": 1065.78, + "probability": 0.9924 + }, + { + "start": 1065.86, + "end": 1067.26, + "probability": 0.8432 + }, + { + "start": 1068.2, + "end": 1071.2, + "probability": 0.6679 + }, + { + "start": 1071.76, + "end": 1074.39, + "probability": 0.9854 + }, + { + "start": 1074.8, + "end": 1076.15, + "probability": 0.8292 + }, + { + "start": 1076.56, + "end": 1076.92, + "probability": 0.8617 + }, + { + "start": 1077.48, + "end": 1079.88, + "probability": 0.5411 + }, + { + "start": 1080.24, + "end": 1081.92, + "probability": 0.6402 + }, + { + "start": 1082.26, + "end": 1084.4, + "probability": 0.891 + }, + { + "start": 1090.32, + "end": 1091.0, + "probability": 0.5504 + }, + { + "start": 1091.3, + "end": 1094.44, + "probability": 0.7881 + }, + { + "start": 1095.04, + "end": 1095.88, + "probability": 0.8305 + }, + { + "start": 1096.54, + "end": 1097.88, + "probability": 0.8299 + }, + { + "start": 1098.44, + "end": 1100.12, + "probability": 0.9653 + }, + { + "start": 1100.64, + "end": 1101.88, + "probability": 0.7654 + }, + { + "start": 1103.08, + "end": 1103.64, + "probability": 0.8389 + }, + { + "start": 1104.34, + "end": 1105.42, + "probability": 0.1534 + }, + { + "start": 1106.06, + "end": 1106.68, + "probability": 0.451 + }, + { + "start": 1107.42, + "end": 1110.6, + "probability": 0.7475 + }, + { + "start": 1111.44, + "end": 1112.14, + "probability": 0.9135 + }, + { + "start": 1113.46, + "end": 1119.46, + "probability": 0.9435 + }, + { + "start": 1120.18, + "end": 1120.88, + "probability": 0.6467 + }, + { + "start": 1121.46, + "end": 1123.5, + "probability": 0.8082 + }, + { + "start": 1124.86, + "end": 1127.0, + "probability": 0.9622 + }, + { + "start": 1128.32, + "end": 1132.18, + "probability": 0.9769 + }, + { + "start": 1132.82, + "end": 1136.34, + "probability": 0.9161 + }, + { + "start": 1137.1, + "end": 1140.13, + "probability": 0.9664 + }, + { + "start": 1141.52, + "end": 1142.14, + "probability": 0.9152 + }, + { + "start": 1142.9, + "end": 1144.76, + "probability": 0.971 + }, + { + "start": 1146.0, + "end": 1148.76, + "probability": 0.7269 + }, + { + "start": 1149.38, + "end": 1151.9, + "probability": 0.9515 + }, + { + "start": 1153.12, + "end": 1155.22, + "probability": 0.9092 + }, + { + "start": 1155.96, + "end": 1156.62, + "probability": 0.7718 + }, + { + "start": 1158.34, + "end": 1160.12, + "probability": 0.9097 + }, + { + "start": 1160.28, + "end": 1161.02, + "probability": 0.9946 + }, + { + "start": 1161.14, + "end": 1164.92, + "probability": 0.8083 + }, + { + "start": 1176.53, + "end": 1177.08, + "probability": 0.6795 + }, + { + "start": 1177.08, + "end": 1177.08, + "probability": 0.228 + }, + { + "start": 1177.08, + "end": 1177.08, + "probability": 0.0598 + }, + { + "start": 1177.08, + "end": 1177.08, + "probability": 0.0686 + }, + { + "start": 1177.08, + "end": 1177.08, + "probability": 0.2515 + }, + { + "start": 1177.08, + "end": 1177.79, + "probability": 0.0913 + }, + { + "start": 1178.28, + "end": 1179.04, + "probability": 0.3176 + }, + { + "start": 1179.2, + "end": 1183.24, + "probability": 0.7237 + }, + { + "start": 1183.28, + "end": 1184.3, + "probability": 0.6916 + }, + { + "start": 1184.72, + "end": 1185.46, + "probability": 0.7133 + }, + { + "start": 1185.64, + "end": 1188.02, + "probability": 0.9548 + }, + { + "start": 1189.72, + "end": 1193.26, + "probability": 0.865 + }, + { + "start": 1193.5, + "end": 1194.06, + "probability": 0.5573 + }, + { + "start": 1194.12, + "end": 1194.92, + "probability": 0.2634 + }, + { + "start": 1195.58, + "end": 1196.84, + "probability": 0.8791 + }, + { + "start": 1197.48, + "end": 1199.36, + "probability": 0.6502 + }, + { + "start": 1199.66, + "end": 1200.9, + "probability": 0.9448 + }, + { + "start": 1201.06, + "end": 1203.26, + "probability": 0.881 + }, + { + "start": 1203.32, + "end": 1203.94, + "probability": 0.504 + }, + { + "start": 1204.08, + "end": 1204.76, + "probability": 0.5445 + }, + { + "start": 1204.76, + "end": 1205.28, + "probability": 0.449 + }, + { + "start": 1205.4, + "end": 1205.76, + "probability": 0.6328 + }, + { + "start": 1205.92, + "end": 1211.44, + "probability": 0.9459 + }, + { + "start": 1212.84, + "end": 1219.56, + "probability": 0.8726 + }, + { + "start": 1219.72, + "end": 1221.74, + "probability": 0.9963 + }, + { + "start": 1222.36, + "end": 1228.44, + "probability": 0.9742 + }, + { + "start": 1229.12, + "end": 1233.48, + "probability": 0.9918 + }, + { + "start": 1233.48, + "end": 1237.58, + "probability": 0.9962 + }, + { + "start": 1237.74, + "end": 1238.16, + "probability": 0.6051 + }, + { + "start": 1238.24, + "end": 1242.5, + "probability": 0.9543 + }, + { + "start": 1242.88, + "end": 1245.6, + "probability": 0.9989 + }, + { + "start": 1246.1, + "end": 1249.6, + "probability": 0.9943 + }, + { + "start": 1249.68, + "end": 1252.4, + "probability": 0.9638 + }, + { + "start": 1252.46, + "end": 1253.32, + "probability": 0.7693 + }, + { + "start": 1253.44, + "end": 1256.84, + "probability": 0.9915 + }, + { + "start": 1256.84, + "end": 1260.64, + "probability": 0.9961 + }, + { + "start": 1261.06, + "end": 1261.72, + "probability": 0.8784 + }, + { + "start": 1261.86, + "end": 1267.22, + "probability": 0.981 + }, + { + "start": 1267.62, + "end": 1271.44, + "probability": 0.9961 + }, + { + "start": 1271.78, + "end": 1272.22, + "probability": 0.4927 + }, + { + "start": 1272.22, + "end": 1272.24, + "probability": 0.4447 + }, + { + "start": 1272.32, + "end": 1273.8, + "probability": 0.6861 + }, + { + "start": 1274.4, + "end": 1275.04, + "probability": 0.5738 + }, + { + "start": 1275.1, + "end": 1278.28, + "probability": 0.8355 + }, + { + "start": 1280.62, + "end": 1282.87, + "probability": 0.7246 + }, + { + "start": 1283.66, + "end": 1285.86, + "probability": 0.867 + }, + { + "start": 1286.5, + "end": 1287.46, + "probability": 0.6882 + }, + { + "start": 1288.0, + "end": 1288.94, + "probability": 0.8703 + }, + { + "start": 1290.14, + "end": 1295.88, + "probability": 0.9319 + }, + { + "start": 1297.82, + "end": 1303.24, + "probability": 0.9706 + }, + { + "start": 1303.9, + "end": 1306.91, + "probability": 0.9902 + }, + { + "start": 1307.64, + "end": 1311.34, + "probability": 0.9915 + }, + { + "start": 1312.18, + "end": 1316.86, + "probability": 0.9797 + }, + { + "start": 1317.06, + "end": 1319.98, + "probability": 0.9637 + }, + { + "start": 1320.46, + "end": 1322.96, + "probability": 0.8259 + }, + { + "start": 1323.0, + "end": 1323.92, + "probability": 0.9698 + }, + { + "start": 1324.0, + "end": 1325.06, + "probability": 0.9451 + }, + { + "start": 1325.54, + "end": 1331.42, + "probability": 0.8179 + }, + { + "start": 1331.8, + "end": 1334.44, + "probability": 0.9902 + }, + { + "start": 1334.5, + "end": 1335.06, + "probability": 0.7477 + }, + { + "start": 1335.26, + "end": 1337.14, + "probability": 0.9284 + }, + { + "start": 1337.28, + "end": 1340.1, + "probability": 0.978 + }, + { + "start": 1341.04, + "end": 1342.06, + "probability": 0.5112 + }, + { + "start": 1345.42, + "end": 1346.5, + "probability": 0.6066 + }, + { + "start": 1347.48, + "end": 1348.76, + "probability": 0.7039 + }, + { + "start": 1349.8, + "end": 1354.5, + "probability": 0.9514 + }, + { + "start": 1356.34, + "end": 1358.52, + "probability": 0.6652 + }, + { + "start": 1359.04, + "end": 1361.08, + "probability": 0.9299 + }, + { + "start": 1361.98, + "end": 1362.48, + "probability": 0.4038 + }, + { + "start": 1363.02, + "end": 1364.66, + "probability": 0.4376 + }, + { + "start": 1365.24, + "end": 1365.94, + "probability": 0.5656 + }, + { + "start": 1367.6, + "end": 1369.42, + "probability": 0.5906 + }, + { + "start": 1370.34, + "end": 1371.22, + "probability": 0.4493 + }, + { + "start": 1371.86, + "end": 1372.66, + "probability": 0.5517 + }, + { + "start": 1373.78, + "end": 1375.86, + "probability": 0.8226 + }, + { + "start": 1376.88, + "end": 1380.52, + "probability": 0.9741 + }, + { + "start": 1381.76, + "end": 1383.02, + "probability": 0.6908 + }, + { + "start": 1384.76, + "end": 1388.4, + "probability": 0.9917 + }, + { + "start": 1388.7, + "end": 1389.62, + "probability": 0.6532 + }, + { + "start": 1389.74, + "end": 1391.82, + "probability": 0.9503 + }, + { + "start": 1393.22, + "end": 1397.38, + "probability": 0.4823 + }, + { + "start": 1397.7, + "end": 1398.8, + "probability": 0.4393 + }, + { + "start": 1398.98, + "end": 1402.74, + "probability": 0.8217 + }, + { + "start": 1403.24, + "end": 1408.28, + "probability": 0.5396 + }, + { + "start": 1408.38, + "end": 1409.18, + "probability": 0.6439 + }, + { + "start": 1409.64, + "end": 1410.62, + "probability": 0.6997 + }, + { + "start": 1411.42, + "end": 1413.64, + "probability": 0.9404 + }, + { + "start": 1414.32, + "end": 1415.28, + "probability": 0.9014 + }, + { + "start": 1417.28, + "end": 1418.8, + "probability": 0.5998 + }, + { + "start": 1418.88, + "end": 1425.34, + "probability": 0.6311 + }, + { + "start": 1425.84, + "end": 1427.16, + "probability": 0.8475 + }, + { + "start": 1428.01, + "end": 1430.58, + "probability": 0.4431 + }, + { + "start": 1430.58, + "end": 1432.48, + "probability": 0.8531 + }, + { + "start": 1433.7, + "end": 1435.98, + "probability": 0.4942 + }, + { + "start": 1436.24, + "end": 1437.02, + "probability": 0.6812 + }, + { + "start": 1437.12, + "end": 1438.61, + "probability": 0.6998 + }, + { + "start": 1438.86, + "end": 1439.24, + "probability": 0.4213 + }, + { + "start": 1439.3, + "end": 1441.84, + "probability": 0.9194 + }, + { + "start": 1442.28, + "end": 1444.58, + "probability": 0.5058 + }, + { + "start": 1444.72, + "end": 1447.4, + "probability": 0.8536 + }, + { + "start": 1448.48, + "end": 1450.34, + "probability": 0.9602 + }, + { + "start": 1450.54, + "end": 1454.34, + "probability": 0.8555 + }, + { + "start": 1455.02, + "end": 1456.9, + "probability": 0.7789 + }, + { + "start": 1458.0, + "end": 1459.34, + "probability": 0.9477 + }, + { + "start": 1460.12, + "end": 1460.8, + "probability": 0.7667 + }, + { + "start": 1460.92, + "end": 1461.66, + "probability": 0.8708 + }, + { + "start": 1461.72, + "end": 1464.34, + "probability": 0.9744 + }, + { + "start": 1464.34, + "end": 1467.74, + "probability": 0.9934 + }, + { + "start": 1467.88, + "end": 1469.48, + "probability": 0.7059 + }, + { + "start": 1469.86, + "end": 1471.28, + "probability": 0.677 + }, + { + "start": 1471.84, + "end": 1475.6, + "probability": 0.7847 + }, + { + "start": 1476.0, + "end": 1477.78, + "probability": 0.9197 + }, + { + "start": 1477.9, + "end": 1478.62, + "probability": 0.6763 + }, + { + "start": 1478.8, + "end": 1479.32, + "probability": 0.7862 + }, + { + "start": 1479.4, + "end": 1484.46, + "probability": 0.9727 + }, + { + "start": 1485.06, + "end": 1488.34, + "probability": 0.9773 + }, + { + "start": 1488.38, + "end": 1489.32, + "probability": 0.9528 + }, + { + "start": 1489.56, + "end": 1491.06, + "probability": 0.9395 + }, + { + "start": 1491.38, + "end": 1492.32, + "probability": 0.9714 + }, + { + "start": 1492.36, + "end": 1493.16, + "probability": 0.9849 + }, + { + "start": 1493.3, + "end": 1494.86, + "probability": 0.864 + }, + { + "start": 1494.96, + "end": 1495.57, + "probability": 0.9753 + }, + { + "start": 1497.14, + "end": 1498.68, + "probability": 0.8171 + }, + { + "start": 1498.96, + "end": 1499.98, + "probability": 0.9195 + }, + { + "start": 1500.6, + "end": 1503.6, + "probability": 0.8022 + }, + { + "start": 1503.64, + "end": 1505.24, + "probability": 0.9099 + }, + { + "start": 1505.44, + "end": 1506.14, + "probability": 0.8679 + }, + { + "start": 1506.54, + "end": 1509.44, + "probability": 0.9327 + }, + { + "start": 1509.54, + "end": 1512.04, + "probability": 0.7813 + }, + { + "start": 1512.28, + "end": 1514.76, + "probability": 0.901 + }, + { + "start": 1515.18, + "end": 1517.77, + "probability": 0.9644 + }, + { + "start": 1518.26, + "end": 1519.64, + "probability": 0.6614 + }, + { + "start": 1519.72, + "end": 1525.74, + "probability": 0.9298 + }, + { + "start": 1526.1, + "end": 1528.86, + "probability": 0.9888 + }, + { + "start": 1529.16, + "end": 1531.72, + "probability": 0.7751 + }, + { + "start": 1531.8, + "end": 1533.76, + "probability": 0.7889 + }, + { + "start": 1535.72, + "end": 1537.05, + "probability": 0.117 + }, + { + "start": 1538.48, + "end": 1542.16, + "probability": 0.9858 + }, + { + "start": 1542.26, + "end": 1544.18, + "probability": 0.9686 + }, + { + "start": 1544.9, + "end": 1546.0, + "probability": 0.6953 + }, + { + "start": 1546.24, + "end": 1548.24, + "probability": 0.8133 + }, + { + "start": 1548.4, + "end": 1549.56, + "probability": 0.7755 + }, + { + "start": 1549.8, + "end": 1551.78, + "probability": 0.6956 + }, + { + "start": 1552.24, + "end": 1552.54, + "probability": 0.4518 + }, + { + "start": 1552.66, + "end": 1554.86, + "probability": 0.8752 + }, + { + "start": 1556.92, + "end": 1560.76, + "probability": 0.8977 + }, + { + "start": 1561.76, + "end": 1565.36, + "probability": 0.8119 + }, + { + "start": 1565.58, + "end": 1566.02, + "probability": 0.345 + }, + { + "start": 1566.06, + "end": 1567.28, + "probability": 0.8638 + }, + { + "start": 1571.74, + "end": 1572.54, + "probability": 0.7078 + }, + { + "start": 1572.76, + "end": 1575.36, + "probability": 0.9729 + }, + { + "start": 1576.5, + "end": 1576.64, + "probability": 0.4431 + }, + { + "start": 1576.7, + "end": 1578.02, + "probability": 0.8425 + }, + { + "start": 1578.18, + "end": 1578.88, + "probability": 0.7104 + }, + { + "start": 1579.0, + "end": 1579.52, + "probability": 0.9672 + }, + { + "start": 1579.62, + "end": 1582.04, + "probability": 0.9944 + }, + { + "start": 1582.56, + "end": 1584.38, + "probability": 0.8168 + }, + { + "start": 1585.02, + "end": 1585.68, + "probability": 0.767 + }, + { + "start": 1585.78, + "end": 1588.16, + "probability": 0.9222 + }, + { + "start": 1588.42, + "end": 1589.86, + "probability": 0.8029 + }, + { + "start": 1589.9, + "end": 1592.5, + "probability": 0.6374 + }, + { + "start": 1592.7, + "end": 1595.28, + "probability": 0.9474 + }, + { + "start": 1595.58, + "end": 1599.82, + "probability": 0.973 + }, + { + "start": 1600.22, + "end": 1603.02, + "probability": 0.8753 + }, + { + "start": 1603.2, + "end": 1603.94, + "probability": 0.8982 + }, + { + "start": 1604.0, + "end": 1604.7, + "probability": 0.9272 + }, + { + "start": 1604.82, + "end": 1609.2, + "probability": 0.9645 + }, + { + "start": 1609.2, + "end": 1611.2, + "probability": 0.9895 + }, + { + "start": 1612.32, + "end": 1616.46, + "probability": 0.9968 + }, + { + "start": 1616.46, + "end": 1622.32, + "probability": 0.9457 + }, + { + "start": 1622.66, + "end": 1625.18, + "probability": 0.8069 + }, + { + "start": 1625.66, + "end": 1628.22, + "probability": 0.9946 + }, + { + "start": 1628.22, + "end": 1631.52, + "probability": 0.9346 + }, + { + "start": 1631.6, + "end": 1633.22, + "probability": 0.9869 + }, + { + "start": 1633.68, + "end": 1635.52, + "probability": 0.9865 + }, + { + "start": 1635.94, + "end": 1638.9, + "probability": 0.9403 + }, + { + "start": 1639.62, + "end": 1641.36, + "probability": 0.9544 + }, + { + "start": 1641.46, + "end": 1642.72, + "probability": 0.809 + }, + { + "start": 1643.56, + "end": 1644.74, + "probability": 0.4881 + }, + { + "start": 1645.42, + "end": 1645.5, + "probability": 0.3301 + }, + { + "start": 1645.5, + "end": 1645.56, + "probability": 0.1859 + }, + { + "start": 1645.78, + "end": 1646.9, + "probability": 0.7359 + }, + { + "start": 1647.08, + "end": 1648.96, + "probability": 0.8865 + }, + { + "start": 1649.12, + "end": 1650.36, + "probability": 0.9644 + }, + { + "start": 1650.96, + "end": 1652.62, + "probability": 0.7301 + }, + { + "start": 1652.7, + "end": 1654.84, + "probability": 0.9775 + }, + { + "start": 1655.82, + "end": 1661.54, + "probability": 0.9896 + }, + { + "start": 1661.64, + "end": 1662.9, + "probability": 0.8987 + }, + { + "start": 1663.52, + "end": 1665.86, + "probability": 0.8542 + }, + { + "start": 1666.38, + "end": 1669.55, + "probability": 0.9891 + }, + { + "start": 1669.68, + "end": 1673.82, + "probability": 0.9937 + }, + { + "start": 1674.36, + "end": 1677.82, + "probability": 0.8681 + }, + { + "start": 1678.62, + "end": 1682.18, + "probability": 0.8 + }, + { + "start": 1682.6, + "end": 1684.38, + "probability": 0.9368 + }, + { + "start": 1684.56, + "end": 1687.26, + "probability": 0.9232 + }, + { + "start": 1687.86, + "end": 1688.9, + "probability": 0.9937 + }, + { + "start": 1689.52, + "end": 1691.74, + "probability": 0.8915 + }, + { + "start": 1692.32, + "end": 1694.18, + "probability": 0.8439 + }, + { + "start": 1694.28, + "end": 1695.12, + "probability": 0.7401 + }, + { + "start": 1695.5, + "end": 1697.02, + "probability": 0.9734 + }, + { + "start": 1697.58, + "end": 1701.42, + "probability": 0.9627 + }, + { + "start": 1701.52, + "end": 1704.0, + "probability": 0.9738 + }, + { + "start": 1704.14, + "end": 1704.9, + "probability": 0.7584 + }, + { + "start": 1705.3, + "end": 1706.5, + "probability": 0.9705 + }, + { + "start": 1706.92, + "end": 1708.66, + "probability": 0.9749 + }, + { + "start": 1708.74, + "end": 1711.68, + "probability": 0.8826 + }, + { + "start": 1712.14, + "end": 1716.12, + "probability": 0.9664 + }, + { + "start": 1716.46, + "end": 1718.22, + "probability": 0.8447 + }, + { + "start": 1719.44, + "end": 1721.18, + "probability": 0.9736 + }, + { + "start": 1722.12, + "end": 1725.96, + "probability": 0.9856 + }, + { + "start": 1726.0, + "end": 1727.14, + "probability": 0.9644 + }, + { + "start": 1728.12, + "end": 1732.16, + "probability": 0.7396 + }, + { + "start": 1733.06, + "end": 1735.36, + "probability": 0.8728 + }, + { + "start": 1736.8, + "end": 1738.36, + "probability": 0.9312 + }, + { + "start": 1739.56, + "end": 1742.64, + "probability": 0.924 + }, + { + "start": 1743.7, + "end": 1746.66, + "probability": 0.9506 + }, + { + "start": 1747.8, + "end": 1751.36, + "probability": 0.8306 + }, + { + "start": 1752.52, + "end": 1755.24, + "probability": 0.9795 + }, + { + "start": 1756.22, + "end": 1759.04, + "probability": 0.9761 + }, + { + "start": 1759.7, + "end": 1760.46, + "probability": 0.5229 + }, + { + "start": 1760.62, + "end": 1762.74, + "probability": 0.9956 + }, + { + "start": 1762.74, + "end": 1763.06, + "probability": 0.1765 + }, + { + "start": 1764.18, + "end": 1766.72, + "probability": 0.9962 + }, + { + "start": 1768.12, + "end": 1769.84, + "probability": 0.9932 + }, + { + "start": 1770.0, + "end": 1772.26, + "probability": 0.5064 + }, + { + "start": 1772.26, + "end": 1773.52, + "probability": 0.6393 + }, + { + "start": 1774.14, + "end": 1777.18, + "probability": 0.9553 + }, + { + "start": 1778.18, + "end": 1780.92, + "probability": 0.9824 + }, + { + "start": 1781.2, + "end": 1786.22, + "probability": 0.8127 + }, + { + "start": 1786.22, + "end": 1789.7, + "probability": 0.7568 + }, + { + "start": 1790.64, + "end": 1791.24, + "probability": 0.8315 + }, + { + "start": 1791.92, + "end": 1793.96, + "probability": 0.9951 + }, + { + "start": 1794.9, + "end": 1797.32, + "probability": 0.9561 + }, + { + "start": 1798.04, + "end": 1799.48, + "probability": 0.7634 + }, + { + "start": 1800.46, + "end": 1801.88, + "probability": 0.7226 + }, + { + "start": 1801.94, + "end": 1804.58, + "probability": 0.9856 + }, + { + "start": 1804.78, + "end": 1805.2, + "probability": 0.7904 + }, + { + "start": 1805.92, + "end": 1807.9, + "probability": 0.7117 + }, + { + "start": 1807.96, + "end": 1814.56, + "probability": 0.9944 + }, + { + "start": 1815.48, + "end": 1819.72, + "probability": 0.9386 + }, + { + "start": 1820.88, + "end": 1825.14, + "probability": 0.839 + }, + { + "start": 1827.78, + "end": 1827.78, + "probability": 0.0583 + }, + { + "start": 1827.78, + "end": 1827.78, + "probability": 0.4396 + }, + { + "start": 1827.78, + "end": 1827.78, + "probability": 0.4441 + }, + { + "start": 1827.78, + "end": 1827.78, + "probability": 0.5143 + }, + { + "start": 1827.78, + "end": 1827.78, + "probability": 0.1721 + }, + { + "start": 1827.78, + "end": 1830.1, + "probability": 0.4845 + }, + { + "start": 1830.68, + "end": 1833.46, + "probability": 0.7262 + }, + { + "start": 1833.88, + "end": 1836.84, + "probability": 0.7557 + }, + { + "start": 1837.18, + "end": 1840.68, + "probability": 0.7981 + }, + { + "start": 1841.22, + "end": 1845.08, + "probability": 0.9603 + }, + { + "start": 1845.66, + "end": 1848.86, + "probability": 0.9224 + }, + { + "start": 1849.94, + "end": 1855.98, + "probability": 0.9764 + }, + { + "start": 1857.28, + "end": 1859.8, + "probability": 0.9608 + }, + { + "start": 1860.44, + "end": 1861.26, + "probability": 0.8489 + }, + { + "start": 1862.22, + "end": 1864.54, + "probability": 0.9525 + }, + { + "start": 1865.04, + "end": 1867.9, + "probability": 0.9367 + }, + { + "start": 1868.78, + "end": 1872.9, + "probability": 0.9861 + }, + { + "start": 1873.42, + "end": 1875.78, + "probability": 0.8714 + }, + { + "start": 1877.18, + "end": 1880.16, + "probability": 0.9557 + }, + { + "start": 1880.74, + "end": 1885.4, + "probability": 0.9749 + }, + { + "start": 1885.78, + "end": 1886.66, + "probability": 0.9409 + }, + { + "start": 1887.82, + "end": 1893.26, + "probability": 0.9868 + }, + { + "start": 1893.26, + "end": 1899.12, + "probability": 0.9836 + }, + { + "start": 1899.78, + "end": 1901.0, + "probability": 0.6891 + }, + { + "start": 1901.22, + "end": 1902.36, + "probability": 0.8677 + }, + { + "start": 1902.56, + "end": 1905.64, + "probability": 0.974 + }, + { + "start": 1906.5, + "end": 1906.92, + "probability": 0.9306 + }, + { + "start": 1907.62, + "end": 1911.92, + "probability": 0.9657 + }, + { + "start": 1911.92, + "end": 1915.38, + "probability": 0.999 + }, + { + "start": 1916.06, + "end": 1917.4, + "probability": 0.9995 + }, + { + "start": 1918.62, + "end": 1922.88, + "probability": 0.7896 + }, + { + "start": 1923.94, + "end": 1931.82, + "probability": 0.9873 + }, + { + "start": 1932.44, + "end": 1935.66, + "probability": 0.8531 + }, + { + "start": 1936.8, + "end": 1940.94, + "probability": 0.9927 + }, + { + "start": 1940.94, + "end": 1946.02, + "probability": 0.9855 + }, + { + "start": 1947.12, + "end": 1951.58, + "probability": 0.9315 + }, + { + "start": 1951.98, + "end": 1957.56, + "probability": 0.9991 + }, + { + "start": 1958.06, + "end": 1960.4, + "probability": 0.8255 + }, + { + "start": 1961.14, + "end": 1964.74, + "probability": 0.9449 + }, + { + "start": 1964.74, + "end": 1968.52, + "probability": 0.9969 + }, + { + "start": 1969.12, + "end": 1971.36, + "probability": 0.9824 + }, + { + "start": 1971.76, + "end": 1976.74, + "probability": 0.9814 + }, + { + "start": 1977.28, + "end": 1984.48, + "probability": 0.9278 + }, + { + "start": 1984.48, + "end": 1988.34, + "probability": 0.9841 + }, + { + "start": 1989.26, + "end": 1993.62, + "probability": 0.9647 + }, + { + "start": 1994.2, + "end": 1997.84, + "probability": 0.9604 + }, + { + "start": 1998.88, + "end": 2004.6, + "probability": 0.9792 + }, + { + "start": 2004.8, + "end": 2010.4, + "probability": 0.9741 + }, + { + "start": 2010.6, + "end": 2011.26, + "probability": 0.524 + }, + { + "start": 2011.78, + "end": 2013.64, + "probability": 0.9815 + }, + { + "start": 2014.74, + "end": 2021.12, + "probability": 0.9522 + }, + { + "start": 2021.6, + "end": 2026.92, + "probability": 0.9972 + }, + { + "start": 2027.52, + "end": 2028.94, + "probability": 0.9013 + }, + { + "start": 2029.0, + "end": 2029.92, + "probability": 0.8377 + }, + { + "start": 2030.32, + "end": 2036.84, + "probability": 0.9946 + }, + { + "start": 2037.6, + "end": 2039.4, + "probability": 0.7534 + }, + { + "start": 2039.5, + "end": 2041.86, + "probability": 0.7386 + }, + { + "start": 2041.98, + "end": 2042.6, + "probability": 0.6504 + }, + { + "start": 2043.42, + "end": 2045.24, + "probability": 0.9292 + }, + { + "start": 2046.82, + "end": 2049.32, + "probability": 0.7107 + }, + { + "start": 2050.2, + "end": 2050.96, + "probability": 0.3375 + }, + { + "start": 2059.28, + "end": 2059.78, + "probability": 0.6414 + }, + { + "start": 2067.57, + "end": 2071.1, + "probability": 0.9809 + }, + { + "start": 2071.3, + "end": 2072.8, + "probability": 0.9271 + }, + { + "start": 2073.78, + "end": 2077.08, + "probability": 0.8895 + }, + { + "start": 2078.66, + "end": 2080.36, + "probability": 0.6876 + }, + { + "start": 2081.92, + "end": 2085.26, + "probability": 0.9623 + }, + { + "start": 2086.48, + "end": 2089.34, + "probability": 0.9505 + }, + { + "start": 2090.42, + "end": 2094.36, + "probability": 0.984 + }, + { + "start": 2095.46, + "end": 2097.38, + "probability": 0.9859 + }, + { + "start": 2098.28, + "end": 2101.06, + "probability": 0.9988 + }, + { + "start": 2102.54, + "end": 2104.9, + "probability": 0.9285 + }, + { + "start": 2105.92, + "end": 2108.34, + "probability": 0.9479 + }, + { + "start": 2109.12, + "end": 2113.06, + "probability": 0.9951 + }, + { + "start": 2113.8, + "end": 2115.88, + "probability": 0.9554 + }, + { + "start": 2116.86, + "end": 2119.38, + "probability": 0.9338 + }, + { + "start": 2120.84, + "end": 2122.28, + "probability": 0.9274 + }, + { + "start": 2124.08, + "end": 2125.56, + "probability": 0.9259 + }, + { + "start": 2126.6, + "end": 2128.8, + "probability": 0.9543 + }, + { + "start": 2129.82, + "end": 2131.76, + "probability": 0.9692 + }, + { + "start": 2132.74, + "end": 2134.12, + "probability": 0.9944 + }, + { + "start": 2135.16, + "end": 2136.4, + "probability": 0.9909 + }, + { + "start": 2138.12, + "end": 2141.26, + "probability": 0.9731 + }, + { + "start": 2142.16, + "end": 2144.86, + "probability": 0.9889 + }, + { + "start": 2146.92, + "end": 2148.56, + "probability": 0.508 + }, + { + "start": 2149.88, + "end": 2150.6, + "probability": 0.6443 + }, + { + "start": 2152.14, + "end": 2154.22, + "probability": 0.9771 + }, + { + "start": 2155.14, + "end": 2155.86, + "probability": 0.9197 + }, + { + "start": 2158.46, + "end": 2161.88, + "probability": 0.9851 + }, + { + "start": 2163.0, + "end": 2164.06, + "probability": 0.7606 + }, + { + "start": 2165.14, + "end": 2166.05, + "probability": 0.8967 + }, + { + "start": 2167.4, + "end": 2171.98, + "probability": 0.9748 + }, + { + "start": 2172.64, + "end": 2173.8, + "probability": 0.9945 + }, + { + "start": 2175.26, + "end": 2182.96, + "probability": 0.9948 + }, + { + "start": 2184.58, + "end": 2188.56, + "probability": 0.9786 + }, + { + "start": 2189.96, + "end": 2192.6, + "probability": 0.9472 + }, + { + "start": 2194.22, + "end": 2196.86, + "probability": 0.9939 + }, + { + "start": 2198.0, + "end": 2200.64, + "probability": 0.9843 + }, + { + "start": 2202.18, + "end": 2204.62, + "probability": 0.6816 + }, + { + "start": 2205.84, + "end": 2212.06, + "probability": 0.8963 + }, + { + "start": 2213.3, + "end": 2214.56, + "probability": 0.9578 + }, + { + "start": 2215.66, + "end": 2223.72, + "probability": 0.9876 + }, + { + "start": 2224.7, + "end": 2226.24, + "probability": 0.8333 + }, + { + "start": 2227.46, + "end": 2229.58, + "probability": 0.9515 + }, + { + "start": 2230.82, + "end": 2235.36, + "probability": 0.9496 + }, + { + "start": 2236.38, + "end": 2238.22, + "probability": 0.9312 + }, + { + "start": 2240.3, + "end": 2242.92, + "probability": 0.9201 + }, + { + "start": 2244.2, + "end": 2246.04, + "probability": 0.9771 + }, + { + "start": 2246.92, + "end": 2247.82, + "probability": 0.837 + }, + { + "start": 2248.96, + "end": 2250.44, + "probability": 0.6622 + }, + { + "start": 2251.2, + "end": 2253.68, + "probability": 0.9971 + }, + { + "start": 2255.2, + "end": 2259.24, + "probability": 0.9305 + }, + { + "start": 2260.36, + "end": 2266.46, + "probability": 0.9746 + }, + { + "start": 2267.22, + "end": 2269.2, + "probability": 0.7479 + }, + { + "start": 2269.98, + "end": 2271.46, + "probability": 0.7573 + }, + { + "start": 2272.68, + "end": 2274.4, + "probability": 0.8291 + }, + { + "start": 2274.52, + "end": 2275.5, + "probability": 0.7917 + }, + { + "start": 2275.98, + "end": 2280.7, + "probability": 0.9425 + }, + { + "start": 2281.44, + "end": 2283.96, + "probability": 0.9101 + }, + { + "start": 2284.8, + "end": 2286.88, + "probability": 0.7548 + }, + { + "start": 2287.68, + "end": 2289.9, + "probability": 0.7968 + }, + { + "start": 2290.0, + "end": 2290.82, + "probability": 0.8045 + }, + { + "start": 2291.42, + "end": 2294.2, + "probability": 0.8216 + }, + { + "start": 2295.22, + "end": 2296.9, + "probability": 0.99 + }, + { + "start": 2297.54, + "end": 2299.66, + "probability": 0.9909 + }, + { + "start": 2300.32, + "end": 2302.4, + "probability": 0.901 + }, + { + "start": 2303.14, + "end": 2305.4, + "probability": 0.9141 + }, + { + "start": 2306.0, + "end": 2307.7, + "probability": 0.9434 + }, + { + "start": 2307.88, + "end": 2309.08, + "probability": 0.8645 + }, + { + "start": 2309.54, + "end": 2313.14, + "probability": 0.978 + }, + { + "start": 2313.14, + "end": 2316.32, + "probability": 0.9729 + }, + { + "start": 2317.22, + "end": 2320.34, + "probability": 0.6493 + }, + { + "start": 2321.26, + "end": 2323.52, + "probability": 0.9868 + }, + { + "start": 2324.46, + "end": 2327.44, + "probability": 0.9818 + }, + { + "start": 2328.36, + "end": 2335.2, + "probability": 0.9469 + }, + { + "start": 2335.8, + "end": 2338.28, + "probability": 0.6195 + }, + { + "start": 2338.88, + "end": 2340.95, + "probability": 0.9902 + }, + { + "start": 2341.16, + "end": 2343.06, + "probability": 0.999 + }, + { + "start": 2343.62, + "end": 2346.28, + "probability": 0.9946 + }, + { + "start": 2346.88, + "end": 2348.26, + "probability": 0.8305 + }, + { + "start": 2348.82, + "end": 2354.36, + "probability": 0.8757 + }, + { + "start": 2355.16, + "end": 2357.44, + "probability": 0.9201 + }, + { + "start": 2357.66, + "end": 2358.66, + "probability": 0.8228 + }, + { + "start": 2359.14, + "end": 2360.06, + "probability": 0.6363 + }, + { + "start": 2360.56, + "end": 2365.48, + "probability": 0.9855 + }, + { + "start": 2365.84, + "end": 2366.5, + "probability": 0.9507 + }, + { + "start": 2366.56, + "end": 2366.92, + "probability": 0.9339 + }, + { + "start": 2368.1, + "end": 2374.12, + "probability": 0.9966 + }, + { + "start": 2375.54, + "end": 2378.66, + "probability": 0.7642 + }, + { + "start": 2379.38, + "end": 2382.92, + "probability": 0.9492 + }, + { + "start": 2383.5, + "end": 2385.46, + "probability": 0.8655 + }, + { + "start": 2385.94, + "end": 2389.72, + "probability": 0.9738 + }, + { + "start": 2390.76, + "end": 2393.2, + "probability": 0.9969 + }, + { + "start": 2393.78, + "end": 2396.16, + "probability": 0.9959 + }, + { + "start": 2397.06, + "end": 2398.74, + "probability": 0.9622 + }, + { + "start": 2399.7, + "end": 2400.32, + "probability": 0.9102 + }, + { + "start": 2401.14, + "end": 2408.03, + "probability": 0.9857 + }, + { + "start": 2408.56, + "end": 2415.28, + "probability": 0.9712 + }, + { + "start": 2416.04, + "end": 2418.36, + "probability": 0.982 + }, + { + "start": 2418.88, + "end": 2427.24, + "probability": 0.9396 + }, + { + "start": 2427.66, + "end": 2429.99, + "probability": 0.9903 + }, + { + "start": 2430.72, + "end": 2432.82, + "probability": 0.8406 + }, + { + "start": 2433.72, + "end": 2435.52, + "probability": 0.9922 + }, + { + "start": 2435.68, + "end": 2437.08, + "probability": 0.8088 + }, + { + "start": 2437.66, + "end": 2441.02, + "probability": 0.9418 + }, + { + "start": 2441.5, + "end": 2444.7, + "probability": 0.9982 + }, + { + "start": 2444.7, + "end": 2448.4, + "probability": 0.9839 + }, + { + "start": 2449.92, + "end": 2452.36, + "probability": 0.9954 + }, + { + "start": 2453.38, + "end": 2455.96, + "probability": 0.9801 + }, + { + "start": 2456.9, + "end": 2457.84, + "probability": 0.7088 + }, + { + "start": 2458.34, + "end": 2464.0, + "probability": 0.9385 + }, + { + "start": 2464.66, + "end": 2468.54, + "probability": 0.9893 + }, + { + "start": 2470.32, + "end": 2473.32, + "probability": 0.9932 + }, + { + "start": 2474.16, + "end": 2474.26, + "probability": 0.4205 + }, + { + "start": 2474.34, + "end": 2480.28, + "probability": 0.9892 + }, + { + "start": 2481.04, + "end": 2483.0, + "probability": 0.9701 + }, + { + "start": 2484.02, + "end": 2489.46, + "probability": 0.9749 + }, + { + "start": 2490.98, + "end": 2492.7, + "probability": 0.8251 + }, + { + "start": 2493.78, + "end": 2496.54, + "probability": 0.8771 + }, + { + "start": 2497.14, + "end": 2499.22, + "probability": 0.9093 + }, + { + "start": 2500.5, + "end": 2505.82, + "probability": 0.8563 + }, + { + "start": 2506.62, + "end": 2508.18, + "probability": 0.8084 + }, + { + "start": 2508.76, + "end": 2511.06, + "probability": 0.7602 + }, + { + "start": 2512.12, + "end": 2515.5, + "probability": 0.942 + }, + { + "start": 2517.26, + "end": 2519.44, + "probability": 0.776 + }, + { + "start": 2521.24, + "end": 2523.14, + "probability": 0.9746 + }, + { + "start": 2524.28, + "end": 2526.18, + "probability": 0.774 + }, + { + "start": 2526.9, + "end": 2530.32, + "probability": 0.8519 + }, + { + "start": 2531.26, + "end": 2533.42, + "probability": 0.8816 + }, + { + "start": 2533.96, + "end": 2535.02, + "probability": 0.7978 + }, + { + "start": 2535.18, + "end": 2539.11, + "probability": 0.8351 + }, + { + "start": 2541.02, + "end": 2544.56, + "probability": 0.9628 + }, + { + "start": 2545.94, + "end": 2548.04, + "probability": 0.9604 + }, + { + "start": 2548.94, + "end": 2551.38, + "probability": 0.9795 + }, + { + "start": 2553.38, + "end": 2556.94, + "probability": 0.977 + }, + { + "start": 2557.66, + "end": 2561.2, + "probability": 0.9746 + }, + { + "start": 2561.78, + "end": 2563.14, + "probability": 0.9634 + }, + { + "start": 2563.86, + "end": 2566.9, + "probability": 0.9899 + }, + { + "start": 2567.56, + "end": 2569.26, + "probability": 0.9663 + }, + { + "start": 2570.04, + "end": 2572.34, + "probability": 0.9379 + }, + { + "start": 2573.06, + "end": 2577.28, + "probability": 0.9289 + }, + { + "start": 2577.88, + "end": 2581.28, + "probability": 0.9938 + }, + { + "start": 2581.62, + "end": 2585.02, + "probability": 0.9588 + }, + { + "start": 2585.86, + "end": 2587.28, + "probability": 0.9949 + }, + { + "start": 2589.32, + "end": 2590.66, + "probability": 0.6297 + }, + { + "start": 2591.62, + "end": 2591.62, + "probability": 0.3712 + }, + { + "start": 2591.62, + "end": 2593.14, + "probability": 0.9656 + }, + { + "start": 2593.22, + "end": 2597.45, + "probability": 0.985 + }, + { + "start": 2598.9, + "end": 2601.5, + "probability": 0.977 + }, + { + "start": 2602.62, + "end": 2609.32, + "probability": 0.989 + }, + { + "start": 2610.56, + "end": 2612.32, + "probability": 0.8837 + }, + { + "start": 2613.52, + "end": 2616.26, + "probability": 0.9951 + }, + { + "start": 2617.08, + "end": 2620.78, + "probability": 0.9937 + }, + { + "start": 2621.42, + "end": 2623.2, + "probability": 0.8861 + }, + { + "start": 2623.34, + "end": 2624.1, + "probability": 0.7173 + }, + { + "start": 2624.5, + "end": 2628.06, + "probability": 0.962 + }, + { + "start": 2629.54, + "end": 2629.61, + "probability": 0.0155 + }, + { + "start": 2630.2, + "end": 2632.58, + "probability": 0.9775 + }, + { + "start": 2635.2, + "end": 2637.38, + "probability": 0.9615 + }, + { + "start": 2638.18, + "end": 2639.94, + "probability": 0.9058 + }, + { + "start": 2640.84, + "end": 2642.96, + "probability": 0.6432 + }, + { + "start": 2644.0, + "end": 2649.12, + "probability": 0.9831 + }, + { + "start": 2649.94, + "end": 2652.76, + "probability": 0.9961 + }, + { + "start": 2653.22, + "end": 2656.38, + "probability": 0.9736 + }, + { + "start": 2657.06, + "end": 2663.38, + "probability": 0.9483 + }, + { + "start": 2664.34, + "end": 2665.64, + "probability": 0.9744 + }, + { + "start": 2666.32, + "end": 2671.0, + "probability": 0.9942 + }, + { + "start": 2671.34, + "end": 2674.26, + "probability": 0.9715 + }, + { + "start": 2675.02, + "end": 2676.58, + "probability": 0.7276 + }, + { + "start": 2676.88, + "end": 2681.04, + "probability": 0.9668 + }, + { + "start": 2681.62, + "end": 2687.42, + "probability": 0.9407 + }, + { + "start": 2687.42, + "end": 2690.74, + "probability": 0.9966 + }, + { + "start": 2691.48, + "end": 2693.47, + "probability": 0.9498 + }, + { + "start": 2693.82, + "end": 2694.57, + "probability": 0.9626 + }, + { + "start": 2694.9, + "end": 2695.46, + "probability": 0.644 + }, + { + "start": 2696.16, + "end": 2696.68, + "probability": 0.7454 + }, + { + "start": 2697.78, + "end": 2698.2, + "probability": 0.6543 + }, + { + "start": 2698.22, + "end": 2699.94, + "probability": 0.8689 + }, + { + "start": 2719.28, + "end": 2719.46, + "probability": 0.3783 + }, + { + "start": 2719.46, + "end": 2720.64, + "probability": 0.6072 + }, + { + "start": 2720.9, + "end": 2723.26, + "probability": 0.9783 + }, + { + "start": 2723.26, + "end": 2725.86, + "probability": 0.92 + }, + { + "start": 2726.98, + "end": 2727.54, + "probability": 0.0466 + }, + { + "start": 2727.78, + "end": 2730.24, + "probability": 0.9583 + }, + { + "start": 2731.3, + "end": 2733.38, + "probability": 0.9564 + }, + { + "start": 2735.2, + "end": 2735.76, + "probability": 0.5967 + }, + { + "start": 2737.72, + "end": 2739.4, + "probability": 0.1023 + }, + { + "start": 2739.4, + "end": 2739.4, + "probability": 0.3101 + }, + { + "start": 2739.4, + "end": 2742.12, + "probability": 0.8901 + }, + { + "start": 2742.26, + "end": 2744.64, + "probability": 0.9406 + }, + { + "start": 2745.8, + "end": 2746.52, + "probability": 0.6635 + }, + { + "start": 2746.84, + "end": 2747.72, + "probability": 0.8673 + }, + { + "start": 2748.1, + "end": 2749.3, + "probability": 0.8848 + }, + { + "start": 2749.54, + "end": 2750.74, + "probability": 0.8325 + }, + { + "start": 2750.84, + "end": 2752.12, + "probability": 0.9761 + }, + { + "start": 2752.26, + "end": 2753.2, + "probability": 0.9837 + }, + { + "start": 2753.78, + "end": 2758.5, + "probability": 0.9395 + }, + { + "start": 2759.04, + "end": 2761.08, + "probability": 0.93 + }, + { + "start": 2761.26, + "end": 2762.0, + "probability": 0.8385 + }, + { + "start": 2762.08, + "end": 2763.1, + "probability": 0.8805 + }, + { + "start": 2764.2, + "end": 2768.98, + "probability": 0.9008 + }, + { + "start": 2769.02, + "end": 2772.84, + "probability": 0.9954 + }, + { + "start": 2773.64, + "end": 2774.58, + "probability": 0.7284 + }, + { + "start": 2775.5, + "end": 2778.58, + "probability": 0.9969 + }, + { + "start": 2779.46, + "end": 2782.34, + "probability": 0.9946 + }, + { + "start": 2783.26, + "end": 2786.78, + "probability": 0.9919 + }, + { + "start": 2787.0, + "end": 2791.06, + "probability": 0.9954 + }, + { + "start": 2791.58, + "end": 2794.78, + "probability": 0.9865 + }, + { + "start": 2796.32, + "end": 2800.0, + "probability": 0.9927 + }, + { + "start": 2800.0, + "end": 2805.24, + "probability": 0.9992 + }, + { + "start": 2805.24, + "end": 2810.92, + "probability": 0.8926 + }, + { + "start": 2810.92, + "end": 2818.28, + "probability": 0.9817 + }, + { + "start": 2818.48, + "end": 2823.82, + "probability": 0.9935 + }, + { + "start": 2825.06, + "end": 2827.66, + "probability": 0.9932 + }, + { + "start": 2827.76, + "end": 2828.34, + "probability": 0.9302 + }, + { + "start": 2828.42, + "end": 2829.22, + "probability": 0.6092 + }, + { + "start": 2829.32, + "end": 2830.8, + "probability": 0.9298 + }, + { + "start": 2831.32, + "end": 2834.22, + "probability": 0.9868 + }, + { + "start": 2834.74, + "end": 2835.98, + "probability": 0.803 + }, + { + "start": 2836.14, + "end": 2838.5, + "probability": 0.9297 + }, + { + "start": 2838.66, + "end": 2842.94, + "probability": 0.987 + }, + { + "start": 2843.68, + "end": 2845.06, + "probability": 0.808 + }, + { + "start": 2845.6, + "end": 2846.74, + "probability": 0.7509 + }, + { + "start": 2847.5, + "end": 2850.0, + "probability": 0.9938 + }, + { + "start": 2850.0, + "end": 2852.8, + "probability": 0.9946 + }, + { + "start": 2853.0, + "end": 2855.42, + "probability": 0.8957 + }, + { + "start": 2856.14, + "end": 2859.72, + "probability": 0.9917 + }, + { + "start": 2859.72, + "end": 2864.66, + "probability": 0.9872 + }, + { + "start": 2864.66, + "end": 2868.7, + "probability": 0.9968 + }, + { + "start": 2869.84, + "end": 2874.04, + "probability": 0.9936 + }, + { + "start": 2874.04, + "end": 2878.28, + "probability": 0.9984 + }, + { + "start": 2878.28, + "end": 2881.78, + "probability": 0.9967 + }, + { + "start": 2882.52, + "end": 2882.76, + "probability": 0.5458 + }, + { + "start": 2882.82, + "end": 2884.38, + "probability": 0.9841 + }, + { + "start": 2884.86, + "end": 2887.18, + "probability": 0.9386 + }, + { + "start": 2887.6, + "end": 2891.0, + "probability": 0.988 + }, + { + "start": 2892.04, + "end": 2896.0, + "probability": 0.9817 + }, + { + "start": 2896.16, + "end": 2900.86, + "probability": 0.7026 + }, + { + "start": 2901.04, + "end": 2901.98, + "probability": 0.748 + }, + { + "start": 2902.86, + "end": 2903.86, + "probability": 0.5983 + }, + { + "start": 2904.56, + "end": 2909.02, + "probability": 0.5194 + }, + { + "start": 2911.0, + "end": 2911.12, + "probability": 0.0067 + }, + { + "start": 2911.12, + "end": 2912.14, + "probability": 0.3824 + }, + { + "start": 2912.16, + "end": 2917.68, + "probability": 0.9097 + }, + { + "start": 2917.72, + "end": 2919.74, + "probability": 0.7599 + }, + { + "start": 2919.86, + "end": 2924.64, + "probability": 0.9686 + }, + { + "start": 2925.08, + "end": 2926.18, + "probability": 0.689 + }, + { + "start": 2927.32, + "end": 2930.6, + "probability": 0.9069 + }, + { + "start": 2930.6, + "end": 2934.18, + "probability": 0.9916 + }, + { + "start": 2934.92, + "end": 2939.88, + "probability": 0.9037 + }, + { + "start": 2941.14, + "end": 2942.56, + "probability": 0.738 + }, + { + "start": 2943.24, + "end": 2944.4, + "probability": 0.9111 + }, + { + "start": 2944.56, + "end": 2947.8, + "probability": 0.9603 + }, + { + "start": 2948.42, + "end": 2948.9, + "probability": 0.6631 + }, + { + "start": 2948.96, + "end": 2949.6, + "probability": 0.9852 + }, + { + "start": 2949.7, + "end": 2954.8, + "probability": 0.9883 + }, + { + "start": 2955.62, + "end": 2956.48, + "probability": 0.7527 + }, + { + "start": 2957.16, + "end": 2959.8, + "probability": 0.991 + }, + { + "start": 2959.8, + "end": 2962.34, + "probability": 0.9894 + }, + { + "start": 2963.18, + "end": 2969.02, + "probability": 0.9625 + }, + { + "start": 2969.68, + "end": 2972.1, + "probability": 0.8129 + }, + { + "start": 2972.1, + "end": 2975.28, + "probability": 0.9968 + }, + { + "start": 2976.96, + "end": 2982.34, + "probability": 0.999 + }, + { + "start": 2983.08, + "end": 2985.6, + "probability": 0.9215 + }, + { + "start": 2986.92, + "end": 2987.7, + "probability": 0.6003 + }, + { + "start": 2987.84, + "end": 2988.44, + "probability": 0.7784 + }, + { + "start": 2988.64, + "end": 2992.96, + "probability": 0.9821 + }, + { + "start": 2993.02, + "end": 2994.72, + "probability": 0.8044 + }, + { + "start": 2994.96, + "end": 2995.78, + "probability": 0.6665 + }, + { + "start": 2995.86, + "end": 2997.17, + "probability": 0.9941 + }, + { + "start": 2998.06, + "end": 2998.54, + "probability": 0.9095 + }, + { + "start": 2999.2, + "end": 3000.44, + "probability": 0.6095 + }, + { + "start": 3000.74, + "end": 3001.46, + "probability": 0.5737 + }, + { + "start": 3003.1, + "end": 3004.62, + "probability": 0.4454 + }, + { + "start": 3004.92, + "end": 3006.7, + "probability": 0.609 + }, + { + "start": 3006.86, + "end": 3008.0, + "probability": 0.171 + }, + { + "start": 3008.3, + "end": 3009.64, + "probability": 0.0846 + }, + { + "start": 3010.34, + "end": 3010.9, + "probability": 0.474 + }, + { + "start": 3011.99, + "end": 3014.95, + "probability": 0.957 + }, + { + "start": 3016.1, + "end": 3018.18, + "probability": 0.5048 + }, + { + "start": 3018.26, + "end": 3018.44, + "probability": 0.1914 + }, + { + "start": 3018.44, + "end": 3022.16, + "probability": 0.8505 + }, + { + "start": 3022.3, + "end": 3024.02, + "probability": 0.7947 + }, + { + "start": 3024.16, + "end": 3027.28, + "probability": 0.9221 + }, + { + "start": 3027.48, + "end": 3031.1, + "probability": 0.9937 + }, + { + "start": 3031.2, + "end": 3033.12, + "probability": 0.8731 + }, + { + "start": 3033.2, + "end": 3033.94, + "probability": 0.3985 + }, + { + "start": 3034.06, + "end": 3034.9, + "probability": 0.9425 + }, + { + "start": 3035.84, + "end": 3039.7, + "probability": 0.9928 + }, + { + "start": 3039.88, + "end": 3041.44, + "probability": 0.9692 + }, + { + "start": 3041.78, + "end": 3044.58, + "probability": 0.9878 + }, + { + "start": 3044.58, + "end": 3046.84, + "probability": 0.8998 + }, + { + "start": 3047.76, + "end": 3049.04, + "probability": 0.8259 + }, + { + "start": 3049.18, + "end": 3051.46, + "probability": 0.9407 + }, + { + "start": 3051.52, + "end": 3052.68, + "probability": 0.7813 + }, + { + "start": 3053.3, + "end": 3055.38, + "probability": 0.9927 + }, + { + "start": 3056.08, + "end": 3057.68, + "probability": 0.5718 + }, + { + "start": 3057.82, + "end": 3060.62, + "probability": 0.9093 + }, + { + "start": 3061.22, + "end": 3062.24, + "probability": 0.7476 + }, + { + "start": 3062.34, + "end": 3066.0, + "probability": 0.9594 + }, + { + "start": 3066.54, + "end": 3069.6, + "probability": 0.8818 + }, + { + "start": 3069.68, + "end": 3070.66, + "probability": 0.8497 + }, + { + "start": 3071.12, + "end": 3074.58, + "probability": 0.9845 + }, + { + "start": 3075.24, + "end": 3081.56, + "probability": 0.9923 + }, + { + "start": 3081.56, + "end": 3087.78, + "probability": 0.9923 + }, + { + "start": 3088.58, + "end": 3092.26, + "probability": 0.8662 + }, + { + "start": 3092.36, + "end": 3093.74, + "probability": 0.9337 + }, + { + "start": 3093.84, + "end": 3094.79, + "probability": 0.9387 + }, + { + "start": 3095.72, + "end": 3098.64, + "probability": 0.9722 + }, + { + "start": 3099.18, + "end": 3100.61, + "probability": 0.6499 + }, + { + "start": 3100.74, + "end": 3101.72, + "probability": 0.7288 + }, + { + "start": 3101.82, + "end": 3104.6, + "probability": 0.7501 + }, + { + "start": 3105.5, + "end": 3107.97, + "probability": 0.9847 + }, + { + "start": 3108.68, + "end": 3112.24, + "probability": 0.8564 + }, + { + "start": 3112.82, + "end": 3114.06, + "probability": 0.6938 + }, + { + "start": 3114.12, + "end": 3117.08, + "probability": 0.7776 + }, + { + "start": 3117.92, + "end": 3121.5, + "probability": 0.9834 + }, + { + "start": 3122.06, + "end": 3126.84, + "probability": 0.8828 + }, + { + "start": 3127.74, + "end": 3130.58, + "probability": 0.9989 + }, + { + "start": 3131.64, + "end": 3132.46, + "probability": 0.5405 + }, + { + "start": 3132.7, + "end": 3133.78, + "probability": 0.947 + }, + { + "start": 3133.88, + "end": 3137.72, + "probability": 0.9708 + }, + { + "start": 3137.72, + "end": 3141.58, + "probability": 0.9725 + }, + { + "start": 3142.3, + "end": 3145.92, + "probability": 0.9944 + }, + { + "start": 3145.92, + "end": 3148.54, + "probability": 0.9915 + }, + { + "start": 3148.98, + "end": 3152.52, + "probability": 0.8843 + }, + { + "start": 3153.34, + "end": 3157.76, + "probability": 0.9863 + }, + { + "start": 3158.48, + "end": 3162.7, + "probability": 0.8486 + }, + { + "start": 3162.7, + "end": 3168.28, + "probability": 0.99 + }, + { + "start": 3168.8, + "end": 3171.16, + "probability": 0.9927 + }, + { + "start": 3171.26, + "end": 3173.98, + "probability": 0.9891 + }, + { + "start": 3174.6, + "end": 3175.64, + "probability": 0.6383 + }, + { + "start": 3176.0, + "end": 3177.88, + "probability": 0.9527 + }, + { + "start": 3178.3, + "end": 3181.28, + "probability": 0.9883 + }, + { + "start": 3181.5, + "end": 3183.42, + "probability": 0.9976 + }, + { + "start": 3184.0, + "end": 3187.2, + "probability": 0.9913 + }, + { + "start": 3187.8, + "end": 3190.3, + "probability": 0.9327 + }, + { + "start": 3190.92, + "end": 3197.04, + "probability": 0.9916 + }, + { + "start": 3197.92, + "end": 3198.5, + "probability": 0.8665 + }, + { + "start": 3198.7, + "end": 3201.7, + "probability": 0.9734 + }, + { + "start": 3201.7, + "end": 3205.86, + "probability": 0.9513 + }, + { + "start": 3206.38, + "end": 3209.84, + "probability": 0.948 + }, + { + "start": 3210.78, + "end": 3213.64, + "probability": 0.9714 + }, + { + "start": 3213.72, + "end": 3215.96, + "probability": 0.9736 + }, + { + "start": 3216.26, + "end": 3216.7, + "probability": 0.3886 + }, + { + "start": 3216.76, + "end": 3219.48, + "probability": 0.9038 + }, + { + "start": 3234.64, + "end": 3237.5, + "probability": 0.6844 + }, + { + "start": 3238.52, + "end": 3239.84, + "probability": 0.9552 + }, + { + "start": 3240.74, + "end": 3242.3, + "probability": 0.7197 + }, + { + "start": 3242.42, + "end": 3243.22, + "probability": 0.7593 + }, + { + "start": 3244.18, + "end": 3246.7, + "probability": 0.9478 + }, + { + "start": 3249.12, + "end": 3250.3, + "probability": 0.8372 + }, + { + "start": 3250.42, + "end": 3254.5, + "probability": 0.9961 + }, + { + "start": 3256.08, + "end": 3260.96, + "probability": 0.9652 + }, + { + "start": 3262.72, + "end": 3268.94, + "probability": 0.9722 + }, + { + "start": 3272.68, + "end": 3277.44, + "probability": 0.9946 + }, + { + "start": 3278.5, + "end": 3280.24, + "probability": 0.9761 + }, + { + "start": 3281.18, + "end": 3282.4, + "probability": 0.8864 + }, + { + "start": 3282.48, + "end": 3289.28, + "probability": 0.9948 + }, + { + "start": 3290.44, + "end": 3296.06, + "probability": 0.9224 + }, + { + "start": 3296.32, + "end": 3299.14, + "probability": 0.8312 + }, + { + "start": 3300.54, + "end": 3305.08, + "probability": 0.9141 + }, + { + "start": 3305.08, + "end": 3311.1, + "probability": 0.9894 + }, + { + "start": 3311.1, + "end": 3315.86, + "probability": 0.9806 + }, + { + "start": 3317.96, + "end": 3317.96, + "probability": 0.0858 + }, + { + "start": 3318.08, + "end": 3319.16, + "probability": 0.9218 + }, + { + "start": 3319.44, + "end": 3324.38, + "probability": 0.9365 + }, + { + "start": 3324.74, + "end": 3329.51, + "probability": 0.9894 + }, + { + "start": 3330.3, + "end": 3336.16, + "probability": 0.9796 + }, + { + "start": 3337.62, + "end": 3338.84, + "probability": 0.9068 + }, + { + "start": 3339.1, + "end": 3340.26, + "probability": 0.7651 + }, + { + "start": 3340.6, + "end": 3344.32, + "probability": 0.9898 + }, + { + "start": 3345.34, + "end": 3346.44, + "probability": 0.879 + }, + { + "start": 3346.76, + "end": 3348.2, + "probability": 0.626 + }, + { + "start": 3348.2, + "end": 3350.66, + "probability": 0.7776 + }, + { + "start": 3353.5, + "end": 3358.16, + "probability": 0.9725 + }, + { + "start": 3359.4, + "end": 3361.28, + "probability": 0.9842 + }, + { + "start": 3361.4, + "end": 3361.94, + "probability": 0.5945 + }, + { + "start": 3362.0, + "end": 3365.5, + "probability": 0.9855 + }, + { + "start": 3367.38, + "end": 3372.08, + "probability": 0.9946 + }, + { + "start": 3373.14, + "end": 3377.02, + "probability": 0.9955 + }, + { + "start": 3378.32, + "end": 3383.48, + "probability": 0.9948 + }, + { + "start": 3383.48, + "end": 3387.88, + "probability": 0.9997 + }, + { + "start": 3389.34, + "end": 3391.92, + "probability": 0.938 + }, + { + "start": 3393.76, + "end": 3396.54, + "probability": 0.9993 + }, + { + "start": 3396.54, + "end": 3399.3, + "probability": 0.9995 + }, + { + "start": 3400.12, + "end": 3401.98, + "probability": 0.7936 + }, + { + "start": 3402.66, + "end": 3410.1, + "probability": 0.9819 + }, + { + "start": 3411.48, + "end": 3416.08, + "probability": 0.9906 + }, + { + "start": 3416.92, + "end": 3422.24, + "probability": 0.99 + }, + { + "start": 3423.7, + "end": 3428.74, + "probability": 0.9945 + }, + { + "start": 3429.38, + "end": 3429.94, + "probability": 0.464 + }, + { + "start": 3430.8, + "end": 3436.4, + "probability": 0.9773 + }, + { + "start": 3440.28, + "end": 3443.5, + "probability": 0.8093 + }, + { + "start": 3443.58, + "end": 3445.3, + "probability": 0.9841 + }, + { + "start": 3445.6, + "end": 3450.16, + "probability": 0.996 + }, + { + "start": 3452.24, + "end": 3455.04, + "probability": 0.9917 + }, + { + "start": 3456.28, + "end": 3457.22, + "probability": 0.724 + }, + { + "start": 3457.46, + "end": 3466.66, + "probability": 0.9303 + }, + { + "start": 3467.76, + "end": 3468.98, + "probability": 0.7654 + }, + { + "start": 3469.84, + "end": 3475.26, + "probability": 0.9962 + }, + { + "start": 3475.46, + "end": 3477.14, + "probability": 0.9128 + }, + { + "start": 3478.34, + "end": 3482.44, + "probability": 0.9946 + }, + { + "start": 3482.44, + "end": 3485.92, + "probability": 0.997 + }, + { + "start": 3486.54, + "end": 3490.38, + "probability": 0.7657 + }, + { + "start": 3491.42, + "end": 3495.78, + "probability": 0.9736 + }, + { + "start": 3495.94, + "end": 3497.34, + "probability": 0.9409 + }, + { + "start": 3497.48, + "end": 3498.78, + "probability": 0.8949 + }, + { + "start": 3499.16, + "end": 3503.6, + "probability": 0.978 + }, + { + "start": 3503.66, + "end": 3505.2, + "probability": 0.9456 + }, + { + "start": 3505.6, + "end": 3506.4, + "probability": 0.5176 + }, + { + "start": 3506.66, + "end": 3507.34, + "probability": 0.791 + }, + { + "start": 3508.64, + "end": 3511.82, + "probability": 0.9839 + }, + { + "start": 3511.82, + "end": 3515.96, + "probability": 0.9923 + }, + { + "start": 3517.44, + "end": 3522.2, + "probability": 0.9784 + }, + { + "start": 3523.36, + "end": 3529.32, + "probability": 0.9972 + }, + { + "start": 3530.14, + "end": 3531.52, + "probability": 0.8818 + }, + { + "start": 3533.46, + "end": 3535.24, + "probability": 0.9919 + }, + { + "start": 3536.78, + "end": 3537.8, + "probability": 0.5009 + }, + { + "start": 3538.2, + "end": 3541.68, + "probability": 0.622 + }, + { + "start": 3542.26, + "end": 3548.02, + "probability": 0.8359 + }, + { + "start": 3548.12, + "end": 3549.08, + "probability": 0.5107 + }, + { + "start": 3549.26, + "end": 3550.18, + "probability": 0.4238 + }, + { + "start": 3550.9, + "end": 3553.5, + "probability": 0.7433 + }, + { + "start": 3554.76, + "end": 3559.26, + "probability": 0.9393 + }, + { + "start": 3559.46, + "end": 3562.12, + "probability": 0.9899 + }, + { + "start": 3562.58, + "end": 3562.86, + "probability": 0.6498 + }, + { + "start": 3562.92, + "end": 3564.64, + "probability": 0.9731 + }, + { + "start": 3564.68, + "end": 3565.24, + "probability": 0.7368 + }, + { + "start": 3565.74, + "end": 3568.14, + "probability": 0.9584 + }, + { + "start": 3569.12, + "end": 3571.0, + "probability": 0.8434 + }, + { + "start": 3571.58, + "end": 3574.04, + "probability": 0.8374 + }, + { + "start": 3574.42, + "end": 3575.36, + "probability": 0.5306 + }, + { + "start": 3575.83, + "end": 3578.54, + "probability": 0.9048 + }, + { + "start": 3579.3, + "end": 3585.34, + "probability": 0.998 + }, + { + "start": 3585.76, + "end": 3586.66, + "probability": 0.8895 + }, + { + "start": 3586.68, + "end": 3588.1, + "probability": 0.7199 + }, + { + "start": 3590.5, + "end": 3594.42, + "probability": 0.9634 + }, + { + "start": 3594.68, + "end": 3598.96, + "probability": 0.9929 + }, + { + "start": 3599.68, + "end": 3603.56, + "probability": 0.9881 + }, + { + "start": 3604.04, + "end": 3607.78, + "probability": 0.9703 + }, + { + "start": 3608.26, + "end": 3611.24, + "probability": 0.8786 + }, + { + "start": 3611.94, + "end": 3614.48, + "probability": 0.998 + }, + { + "start": 3614.8, + "end": 3616.7, + "probability": 0.9899 + }, + { + "start": 3616.8, + "end": 3622.68, + "probability": 0.998 + }, + { + "start": 3623.08, + "end": 3626.54, + "probability": 0.999 + }, + { + "start": 3628.2, + "end": 3632.54, + "probability": 0.998 + }, + { + "start": 3632.66, + "end": 3635.66, + "probability": 0.9396 + }, + { + "start": 3635.9, + "end": 3639.34, + "probability": 0.9885 + }, + { + "start": 3639.92, + "end": 3641.92, + "probability": 0.7123 + }, + { + "start": 3643.16, + "end": 3647.08, + "probability": 0.8741 + }, + { + "start": 3647.94, + "end": 3650.4, + "probability": 0.9939 + }, + { + "start": 3650.7, + "end": 3652.74, + "probability": 0.9609 + }, + { + "start": 3653.28, + "end": 3656.36, + "probability": 0.992 + }, + { + "start": 3657.02, + "end": 3661.42, + "probability": 0.9943 + }, + { + "start": 3662.42, + "end": 3666.32, + "probability": 0.9935 + }, + { + "start": 3666.94, + "end": 3670.4, + "probability": 0.9984 + }, + { + "start": 3671.6, + "end": 3675.34, + "probability": 0.9877 + }, + { + "start": 3675.34, + "end": 3678.96, + "probability": 0.8203 + }, + { + "start": 3679.45, + "end": 3684.08, + "probability": 0.9915 + }, + { + "start": 3685.24, + "end": 3687.12, + "probability": 0.9967 + }, + { + "start": 3687.12, + "end": 3689.52, + "probability": 0.9958 + }, + { + "start": 3689.84, + "end": 3693.92, + "probability": 0.9982 + }, + { + "start": 3694.5, + "end": 3696.14, + "probability": 0.9907 + }, + { + "start": 3696.3, + "end": 3697.7, + "probability": 0.9839 + }, + { + "start": 3698.9, + "end": 3702.48, + "probability": 0.6954 + }, + { + "start": 3703.4, + "end": 3705.73, + "probability": 0.9404 + }, + { + "start": 3706.84, + "end": 3710.38, + "probability": 0.9368 + }, + { + "start": 3711.32, + "end": 3714.52, + "probability": 0.9919 + }, + { + "start": 3714.52, + "end": 3717.52, + "probability": 0.9982 + }, + { + "start": 3718.26, + "end": 3721.82, + "probability": 0.7273 + }, + { + "start": 3722.18, + "end": 3724.02, + "probability": 0.9553 + }, + { + "start": 3724.04, + "end": 3725.02, + "probability": 0.7155 + }, + { + "start": 3725.64, + "end": 3726.56, + "probability": 0.9633 + }, + { + "start": 3727.48, + "end": 3732.36, + "probability": 0.8498 + }, + { + "start": 3732.56, + "end": 3736.53, + "probability": 0.9471 + }, + { + "start": 3736.72, + "end": 3738.58, + "probability": 0.7588 + }, + { + "start": 3738.64, + "end": 3740.06, + "probability": 0.7099 + }, + { + "start": 3740.54, + "end": 3743.33, + "probability": 0.9502 + }, + { + "start": 3744.12, + "end": 3745.14, + "probability": 0.9741 + }, + { + "start": 3747.34, + "end": 3749.72, + "probability": 0.0112 + }, + { + "start": 3750.66, + "end": 3751.52, + "probability": 0.0347 + }, + { + "start": 3751.52, + "end": 3752.4, + "probability": 0.1653 + }, + { + "start": 3754.18, + "end": 3755.68, + "probability": 0.7812 + }, + { + "start": 3756.28, + "end": 3758.66, + "probability": 0.9722 + }, + { + "start": 3758.78, + "end": 3761.42, + "probability": 0.9818 + }, + { + "start": 3762.44, + "end": 3766.12, + "probability": 0.995 + }, + { + "start": 3766.62, + "end": 3771.4, + "probability": 0.9971 + }, + { + "start": 3771.5, + "end": 3776.56, + "probability": 0.967 + }, + { + "start": 3778.08, + "end": 3779.06, + "probability": 0.9076 + }, + { + "start": 3779.28, + "end": 3782.94, + "probability": 0.9845 + }, + { + "start": 3783.1, + "end": 3784.66, + "probability": 0.8381 + }, + { + "start": 3785.72, + "end": 3789.5, + "probability": 0.7054 + }, + { + "start": 3789.5, + "end": 3793.72, + "probability": 0.9972 + }, + { + "start": 3794.56, + "end": 3796.64, + "probability": 0.9181 + }, + { + "start": 3797.32, + "end": 3798.58, + "probability": 0.8891 + }, + { + "start": 3799.06, + "end": 3801.6, + "probability": 0.9705 + }, + { + "start": 3802.28, + "end": 3805.58, + "probability": 0.9835 + }, + { + "start": 3805.58, + "end": 3810.1, + "probability": 0.9912 + }, + { + "start": 3810.86, + "end": 3813.4, + "probability": 0.9846 + }, + { + "start": 3813.68, + "end": 3816.73, + "probability": 0.9953 + }, + { + "start": 3817.18, + "end": 3821.54, + "probability": 0.9904 + }, + { + "start": 3821.54, + "end": 3827.68, + "probability": 0.9951 + }, + { + "start": 3829.54, + "end": 3831.18, + "probability": 0.696 + }, + { + "start": 3831.74, + "end": 3834.84, + "probability": 0.9921 + }, + { + "start": 3835.22, + "end": 3837.38, + "probability": 0.9931 + }, + { + "start": 3837.66, + "end": 3838.36, + "probability": 0.8611 + }, + { + "start": 3838.86, + "end": 3839.68, + "probability": 0.5277 + }, + { + "start": 3840.4, + "end": 3842.87, + "probability": 0.9367 + }, + { + "start": 3843.84, + "end": 3846.88, + "probability": 0.9706 + }, + { + "start": 3847.4, + "end": 3848.76, + "probability": 0.9451 + }, + { + "start": 3848.9, + "end": 3854.28, + "probability": 0.9339 + }, + { + "start": 3854.44, + "end": 3854.64, + "probability": 0.6144 + }, + { + "start": 3855.36, + "end": 3857.54, + "probability": 0.8162 + }, + { + "start": 3857.98, + "end": 3860.36, + "probability": 0.9798 + }, + { + "start": 3860.56, + "end": 3861.74, + "probability": 0.5239 + }, + { + "start": 3862.1, + "end": 3864.04, + "probability": 0.8992 + }, + { + "start": 3867.3, + "end": 3868.96, + "probability": 0.558 + }, + { + "start": 3874.94, + "end": 3875.98, + "probability": 0.6866 + }, + { + "start": 3876.52, + "end": 3878.14, + "probability": 0.9121 + }, + { + "start": 3893.44, + "end": 3898.48, + "probability": 0.6489 + }, + { + "start": 3899.08, + "end": 3901.18, + "probability": 0.728 + }, + { + "start": 3902.0, + "end": 3907.22, + "probability": 0.9165 + }, + { + "start": 3907.4, + "end": 3908.38, + "probability": 0.8545 + }, + { + "start": 3908.6, + "end": 3909.92, + "probability": 0.8779 + }, + { + "start": 3910.22, + "end": 3915.24, + "probability": 0.9564 + }, + { + "start": 3915.7, + "end": 3920.2, + "probability": 0.8984 + }, + { + "start": 3920.2, + "end": 3925.66, + "probability": 0.9461 + }, + { + "start": 3926.6, + "end": 3930.72, + "probability": 0.8113 + }, + { + "start": 3931.38, + "end": 3933.08, + "probability": 0.6094 + }, + { + "start": 3934.08, + "end": 3940.66, + "probability": 0.9869 + }, + { + "start": 3940.66, + "end": 3943.0, + "probability": 0.9888 + }, + { + "start": 3943.04, + "end": 3943.32, + "probability": 0.4544 + }, + { + "start": 3943.38, + "end": 3949.1, + "probability": 0.9805 + }, + { + "start": 3949.56, + "end": 3951.73, + "probability": 0.7998 + }, + { + "start": 3952.26, + "end": 3953.17, + "probability": 0.9146 + }, + { + "start": 3953.46, + "end": 3954.4, + "probability": 0.964 + }, + { + "start": 3954.62, + "end": 3960.64, + "probability": 0.9924 + }, + { + "start": 3961.38, + "end": 3966.2, + "probability": 0.9926 + }, + { + "start": 3968.48, + "end": 3970.56, + "probability": 0.9374 + }, + { + "start": 3971.12, + "end": 3972.42, + "probability": 0.9096 + }, + { + "start": 3972.82, + "end": 3978.26, + "probability": 0.9927 + }, + { + "start": 3978.78, + "end": 3983.42, + "probability": 0.8613 + }, + { + "start": 3983.84, + "end": 3985.2, + "probability": 0.8755 + }, + { + "start": 3985.78, + "end": 3991.52, + "probability": 0.9749 + }, + { + "start": 3991.52, + "end": 3995.76, + "probability": 0.9014 + }, + { + "start": 3996.28, + "end": 3999.84, + "probability": 0.969 + }, + { + "start": 4000.28, + "end": 4004.15, + "probability": 0.9982 + }, + { + "start": 4005.04, + "end": 4008.76, + "probability": 0.95 + }, + { + "start": 4009.7, + "end": 4013.66, + "probability": 0.9302 + }, + { + "start": 4013.96, + "end": 4017.7, + "probability": 0.6887 + }, + { + "start": 4017.86, + "end": 4020.98, + "probability": 0.6979 + }, + { + "start": 4021.24, + "end": 4022.7, + "probability": 0.7524 + }, + { + "start": 4023.24, + "end": 4025.2, + "probability": 0.9985 + }, + { + "start": 4025.84, + "end": 4028.48, + "probability": 0.8921 + }, + { + "start": 4028.62, + "end": 4030.83, + "probability": 0.9502 + }, + { + "start": 4031.3, + "end": 4033.0, + "probability": 0.8868 + }, + { + "start": 4033.06, + "end": 4034.24, + "probability": 0.9835 + }, + { + "start": 4034.3, + "end": 4035.08, + "probability": 0.853 + }, + { + "start": 4035.22, + "end": 4035.74, + "probability": 0.81 + }, + { + "start": 4037.0, + "end": 4041.34, + "probability": 0.994 + }, + { + "start": 4042.02, + "end": 4046.22, + "probability": 0.9978 + }, + { + "start": 4046.28, + "end": 4050.62, + "probability": 0.9944 + }, + { + "start": 4051.54, + "end": 4052.12, + "probability": 0.5204 + }, + { + "start": 4052.56, + "end": 4053.72, + "probability": 0.9397 + }, + { + "start": 4054.14, + "end": 4056.14, + "probability": 0.9529 + }, + { + "start": 4056.2, + "end": 4062.9, + "probability": 0.9678 + }, + { + "start": 4064.0, + "end": 4068.24, + "probability": 0.8484 + }, + { + "start": 4068.36, + "end": 4071.9, + "probability": 0.984 + }, + { + "start": 4071.9, + "end": 4075.3, + "probability": 0.9885 + }, + { + "start": 4075.62, + "end": 4077.18, + "probability": 0.8547 + }, + { + "start": 4077.58, + "end": 4079.22, + "probability": 0.9961 + }, + { + "start": 4079.46, + "end": 4081.08, + "probability": 0.5395 + }, + { + "start": 4081.46, + "end": 4083.26, + "probability": 0.9534 + }, + { + "start": 4083.38, + "end": 4087.04, + "probability": 0.9866 + }, + { + "start": 4087.44, + "end": 4092.18, + "probability": 0.9946 + }, + { + "start": 4092.18, + "end": 4097.26, + "probability": 0.8386 + }, + { + "start": 4097.56, + "end": 4097.9, + "probability": 0.4449 + }, + { + "start": 4097.94, + "end": 4099.6, + "probability": 0.8223 + }, + { + "start": 4099.84, + "end": 4102.82, + "probability": 0.9735 + }, + { + "start": 4103.32, + "end": 4106.22, + "probability": 0.0688 + }, + { + "start": 4106.74, + "end": 4108.24, + "probability": 0.3372 + }, + { + "start": 4110.02, + "end": 4114.86, + "probability": 0.9589 + }, + { + "start": 4115.32, + "end": 4117.98, + "probability": 0.0355 + }, + { + "start": 4117.98, + "end": 4119.0, + "probability": 0.7543 + }, + { + "start": 4119.5, + "end": 4122.44, + "probability": 0.1638 + }, + { + "start": 4137.0, + "end": 4137.9, + "probability": 0.0258 + }, + { + "start": 4137.9, + "end": 4140.06, + "probability": 0.1494 + }, + { + "start": 4140.38, + "end": 4141.28, + "probability": 0.7807 + }, + { + "start": 4141.38, + "end": 4144.48, + "probability": 0.9161 + }, + { + "start": 4144.88, + "end": 4146.66, + "probability": 0.9672 + }, + { + "start": 4148.2, + "end": 4149.3, + "probability": 0.8522 + }, + { + "start": 4149.88, + "end": 4157.24, + "probability": 0.912 + }, + { + "start": 4157.96, + "end": 4161.06, + "probability": 0.9816 + }, + { + "start": 4161.06, + "end": 4164.54, + "probability": 0.9542 + }, + { + "start": 4167.56, + "end": 4172.92, + "probability": 0.7591 + }, + { + "start": 4173.48, + "end": 4176.22, + "probability": 0.61 + }, + { + "start": 4176.94, + "end": 4180.2, + "probability": 0.6638 + }, + { + "start": 4180.72, + "end": 4185.36, + "probability": 0.9768 + }, + { + "start": 4185.36, + "end": 4191.3, + "probability": 0.9972 + }, + { + "start": 4191.78, + "end": 4194.3, + "probability": 0.5845 + }, + { + "start": 4194.58, + "end": 4196.76, + "probability": 0.6299 + }, + { + "start": 4197.12, + "end": 4200.12, + "probability": 0.9962 + }, + { + "start": 4200.12, + "end": 4205.44, + "probability": 0.992 + }, + { + "start": 4205.84, + "end": 4211.56, + "probability": 0.9906 + }, + { + "start": 4211.56, + "end": 4218.38, + "probability": 0.9973 + }, + { + "start": 4219.18, + "end": 4219.2, + "probability": 0.2658 + }, + { + "start": 4219.36, + "end": 4220.04, + "probability": 0.6636 + }, + { + "start": 4220.16, + "end": 4221.54, + "probability": 0.8952 + }, + { + "start": 4222.5, + "end": 4225.18, + "probability": 0.8218 + }, + { + "start": 4229.92, + "end": 4235.62, + "probability": 0.9795 + }, + { + "start": 4235.7, + "end": 4237.6, + "probability": 0.9788 + }, + { + "start": 4238.04, + "end": 4239.38, + "probability": 0.7181 + }, + { + "start": 4239.88, + "end": 4241.82, + "probability": 0.9977 + }, + { + "start": 4241.92, + "end": 4243.52, + "probability": 0.9216 + }, + { + "start": 4243.86, + "end": 4247.56, + "probability": 0.9902 + }, + { + "start": 4247.88, + "end": 4251.5, + "probability": 0.9955 + }, + { + "start": 4251.74, + "end": 4256.4, + "probability": 0.9582 + }, + { + "start": 4258.6, + "end": 4264.9, + "probability": 0.9714 + }, + { + "start": 4266.34, + "end": 4272.64, + "probability": 0.9694 + }, + { + "start": 4273.04, + "end": 4274.12, + "probability": 0.9155 + }, + { + "start": 4274.5, + "end": 4275.58, + "probability": 0.8661 + }, + { + "start": 4276.16, + "end": 4280.02, + "probability": 0.9687 + }, + { + "start": 4280.02, + "end": 4284.46, + "probability": 0.9987 + }, + { + "start": 4284.52, + "end": 4285.82, + "probability": 0.9079 + }, + { + "start": 4286.02, + "end": 4289.31, + "probability": 0.9893 + }, + { + "start": 4289.5, + "end": 4293.36, + "probability": 0.9868 + }, + { + "start": 4293.54, + "end": 4297.86, + "probability": 0.9985 + }, + { + "start": 4298.6, + "end": 4300.64, + "probability": 0.5874 + }, + { + "start": 4300.64, + "end": 4301.14, + "probability": 0.2032 + }, + { + "start": 4301.85, + "end": 4306.7, + "probability": 0.8057 + }, + { + "start": 4306.7, + "end": 4312.96, + "probability": 0.987 + }, + { + "start": 4313.44, + "end": 4313.82, + "probability": 0.8266 + }, + { + "start": 4313.98, + "end": 4317.6, + "probability": 0.78 + }, + { + "start": 4317.88, + "end": 4318.24, + "probability": 0.7768 + }, + { + "start": 4318.96, + "end": 4322.76, + "probability": 0.959 + }, + { + "start": 4324.12, + "end": 4324.86, + "probability": 0.9156 + }, + { + "start": 4325.14, + "end": 4329.9, + "probability": 0.9938 + }, + { + "start": 4330.06, + "end": 4333.7, + "probability": 0.9847 + }, + { + "start": 4334.22, + "end": 4340.54, + "probability": 0.9961 + }, + { + "start": 4340.86, + "end": 4341.38, + "probability": 0.7756 + }, + { + "start": 4341.4, + "end": 4343.56, + "probability": 0.8484 + }, + { + "start": 4343.64, + "end": 4347.52, + "probability": 0.9535 + }, + { + "start": 4347.98, + "end": 4350.9, + "probability": 0.9842 + }, + { + "start": 4351.18, + "end": 4353.22, + "probability": 0.9136 + }, + { + "start": 4353.64, + "end": 4355.42, + "probability": 0.9787 + }, + { + "start": 4355.82, + "end": 4357.52, + "probability": 0.9946 + }, + { + "start": 4357.86, + "end": 4358.54, + "probability": 0.9727 + }, + { + "start": 4359.52, + "end": 4360.08, + "probability": 0.9683 + }, + { + "start": 4360.24, + "end": 4363.7, + "probability": 0.9965 + }, + { + "start": 4364.06, + "end": 4371.72, + "probability": 0.9835 + }, + { + "start": 4371.8, + "end": 4378.5, + "probability": 0.9984 + }, + { + "start": 4379.26, + "end": 4383.04, + "probability": 0.9937 + }, + { + "start": 4383.04, + "end": 4385.84, + "probability": 0.999 + }, + { + "start": 4386.56, + "end": 4389.7, + "probability": 0.9839 + }, + { + "start": 4389.7, + "end": 4393.68, + "probability": 0.9424 + }, + { + "start": 4393.8, + "end": 4396.32, + "probability": 0.8353 + }, + { + "start": 4396.88, + "end": 4399.68, + "probability": 0.9172 + }, + { + "start": 4400.28, + "end": 4406.18, + "probability": 0.7637 + }, + { + "start": 4406.52, + "end": 4412.18, + "probability": 0.9738 + }, + { + "start": 4413.16, + "end": 4418.28, + "probability": 0.9641 + }, + { + "start": 4418.8, + "end": 4420.06, + "probability": 0.705 + }, + { + "start": 4420.28, + "end": 4423.52, + "probability": 0.9601 + }, + { + "start": 4423.68, + "end": 4427.64, + "probability": 0.9979 + }, + { + "start": 4427.82, + "end": 4428.66, + "probability": 0.7961 + }, + { + "start": 4429.44, + "end": 4433.74, + "probability": 0.9842 + }, + { + "start": 4434.14, + "end": 4436.46, + "probability": 0.9857 + }, + { + "start": 4436.9, + "end": 4440.64, + "probability": 0.9935 + }, + { + "start": 4441.46, + "end": 4443.06, + "probability": 0.7147 + }, + { + "start": 4443.66, + "end": 4446.44, + "probability": 0.7411 + }, + { + "start": 4446.5, + "end": 4452.74, + "probability": 0.8525 + }, + { + "start": 4454.24, + "end": 4456.2, + "probability": 0.9963 + }, + { + "start": 4456.2, + "end": 4458.68, + "probability": 0.9976 + }, + { + "start": 4460.44, + "end": 4460.88, + "probability": 0.6551 + }, + { + "start": 4461.54, + "end": 4462.38, + "probability": 0.8245 + }, + { + "start": 4462.42, + "end": 4463.9, + "probability": 0.6678 + }, + { + "start": 4476.48, + "end": 4477.58, + "probability": 0.7551 + }, + { + "start": 4478.14, + "end": 4478.91, + "probability": 0.8383 + }, + { + "start": 4480.64, + "end": 4481.66, + "probability": 0.7189 + }, + { + "start": 4483.62, + "end": 4485.94, + "probability": 0.8467 + }, + { + "start": 4487.26, + "end": 4492.26, + "probability": 0.9531 + }, + { + "start": 4494.38, + "end": 4495.32, + "probability": 0.5769 + }, + { + "start": 4496.74, + "end": 4497.6, + "probability": 0.9519 + }, + { + "start": 4499.46, + "end": 4503.58, + "probability": 0.9657 + }, + { + "start": 4504.78, + "end": 4509.36, + "probability": 0.9206 + }, + { + "start": 4510.22, + "end": 4513.64, + "probability": 0.7427 + }, + { + "start": 4514.94, + "end": 4517.92, + "probability": 0.9268 + }, + { + "start": 4517.92, + "end": 4522.74, + "probability": 0.9899 + }, + { + "start": 4523.98, + "end": 4525.46, + "probability": 0.9963 + }, + { + "start": 4527.52, + "end": 4531.78, + "probability": 0.9785 + }, + { + "start": 4534.2, + "end": 4541.06, + "probability": 0.9332 + }, + { + "start": 4542.42, + "end": 4543.08, + "probability": 0.6767 + }, + { + "start": 4544.88, + "end": 4548.9, + "probability": 0.9837 + }, + { + "start": 4550.72, + "end": 4552.24, + "probability": 0.9262 + }, + { + "start": 4552.3, + "end": 4553.52, + "probability": 0.8389 + }, + { + "start": 4553.68, + "end": 4555.16, + "probability": 0.9147 + }, + { + "start": 4555.34, + "end": 4556.26, + "probability": 0.6786 + }, + { + "start": 4557.92, + "end": 4562.08, + "probability": 0.9501 + }, + { + "start": 4562.86, + "end": 4564.74, + "probability": 0.6445 + }, + { + "start": 4565.92, + "end": 4568.56, + "probability": 0.7989 + }, + { + "start": 4570.3, + "end": 4573.7, + "probability": 0.9824 + }, + { + "start": 4574.4, + "end": 4578.06, + "probability": 0.8564 + }, + { + "start": 4578.82, + "end": 4582.06, + "probability": 0.9811 + }, + { + "start": 4582.52, + "end": 4585.44, + "probability": 0.9767 + }, + { + "start": 4586.02, + "end": 4589.54, + "probability": 0.9172 + }, + { + "start": 4590.42, + "end": 4592.1, + "probability": 0.9915 + }, + { + "start": 4593.76, + "end": 4594.54, + "probability": 0.7809 + }, + { + "start": 4594.62, + "end": 4596.14, + "probability": 0.628 + }, + { + "start": 4596.34, + "end": 4596.7, + "probability": 0.8977 + }, + { + "start": 4596.76, + "end": 4601.26, + "probability": 0.9888 + }, + { + "start": 4602.18, + "end": 4604.8, + "probability": 0.8975 + }, + { + "start": 4605.42, + "end": 4607.0, + "probability": 0.9707 + }, + { + "start": 4608.6, + "end": 4611.62, + "probability": 0.9332 + }, + { + "start": 4612.44, + "end": 4617.84, + "probability": 0.9927 + }, + { + "start": 4618.42, + "end": 4620.78, + "probability": 0.7097 + }, + { + "start": 4621.58, + "end": 4624.42, + "probability": 0.9957 + }, + { + "start": 4625.16, + "end": 4630.54, + "probability": 0.981 + }, + { + "start": 4631.12, + "end": 4633.38, + "probability": 0.8005 + }, + { + "start": 4634.64, + "end": 4639.34, + "probability": 0.9717 + }, + { + "start": 4639.34, + "end": 4641.52, + "probability": 0.9015 + }, + { + "start": 4642.5, + "end": 4643.86, + "probability": 0.9971 + }, + { + "start": 4644.0, + "end": 4645.68, + "probability": 0.9231 + }, + { + "start": 4646.42, + "end": 4649.5, + "probability": 0.9973 + }, + { + "start": 4649.5, + "end": 4653.92, + "probability": 0.992 + }, + { + "start": 4655.59, + "end": 4659.96, + "probability": 0.9704 + }, + { + "start": 4660.34, + "end": 4664.22, + "probability": 0.9966 + }, + { + "start": 4664.22, + "end": 4667.04, + "probability": 0.9992 + }, + { + "start": 4667.4, + "end": 4669.1, + "probability": 0.5428 + }, + { + "start": 4669.1, + "end": 4669.5, + "probability": 0.5165 + }, + { + "start": 4669.54, + "end": 4670.24, + "probability": 0.8939 + }, + { + "start": 4670.28, + "end": 4672.6, + "probability": 0.8179 + }, + { + "start": 4672.6, + "end": 4673.32, + "probability": 0.2172 + }, + { + "start": 4673.46, + "end": 4674.38, + "probability": 0.833 + }, + { + "start": 4674.54, + "end": 4675.6, + "probability": 0.7178 + }, + { + "start": 4675.64, + "end": 4677.32, + "probability": 0.9532 + }, + { + "start": 4677.78, + "end": 4679.32, + "probability": 0.7756 + }, + { + "start": 4679.5, + "end": 4681.68, + "probability": 0.9965 + }, + { + "start": 4682.04, + "end": 4684.22, + "probability": 0.9551 + }, + { + "start": 4684.78, + "end": 4687.34, + "probability": 0.9869 + }, + { + "start": 4687.78, + "end": 4689.28, + "probability": 0.995 + }, + { + "start": 4690.93, + "end": 4695.84, + "probability": 0.738 + }, + { + "start": 4696.36, + "end": 4698.98, + "probability": 0.4656 + }, + { + "start": 4699.18, + "end": 4699.9, + "probability": 0.1021 + }, + { + "start": 4700.04, + "end": 4702.72, + "probability": 0.6307 + }, + { + "start": 4702.72, + "end": 4703.54, + "probability": 0.3839 + }, + { + "start": 4703.54, + "end": 4705.26, + "probability": 0.7478 + }, + { + "start": 4705.36, + "end": 4705.84, + "probability": 0.5178 + }, + { + "start": 4705.88, + "end": 4706.44, + "probability": 0.9471 + }, + { + "start": 4706.6, + "end": 4709.16, + "probability": 0.9964 + }, + { + "start": 4709.16, + "end": 4712.84, + "probability": 0.9788 + }, + { + "start": 4712.9, + "end": 4717.36, + "probability": 0.9963 + }, + { + "start": 4717.56, + "end": 4718.97, + "probability": 0.9951 + }, + { + "start": 4719.46, + "end": 4721.28, + "probability": 0.9653 + }, + { + "start": 4721.46, + "end": 4723.7, + "probability": 0.9839 + }, + { + "start": 4723.88, + "end": 4726.66, + "probability": 0.5473 + }, + { + "start": 4726.66, + "end": 4728.2, + "probability": 0.3638 + }, + { + "start": 4728.24, + "end": 4732.26, + "probability": 0.7704 + }, + { + "start": 4732.94, + "end": 4733.5, + "probability": 0.753 + }, + { + "start": 4734.08, + "end": 4734.08, + "probability": 0.0047 + }, + { + "start": 4736.72, + "end": 4737.66, + "probability": 0.1444 + }, + { + "start": 4737.68, + "end": 4740.24, + "probability": 0.7332 + }, + { + "start": 4740.48, + "end": 4746.0, + "probability": 0.9731 + }, + { + "start": 4746.0, + "end": 4749.06, + "probability": 0.9691 + }, + { + "start": 4749.54, + "end": 4751.42, + "probability": 0.9875 + }, + { + "start": 4751.78, + "end": 4756.14, + "probability": 0.9869 + }, + { + "start": 4756.14, + "end": 4760.22, + "probability": 0.9676 + }, + { + "start": 4760.52, + "end": 4761.0, + "probability": 0.6868 + }, + { + "start": 4761.78, + "end": 4762.88, + "probability": 0.9028 + }, + { + "start": 4763.5, + "end": 4765.48, + "probability": 0.8643 + }, + { + "start": 4766.2, + "end": 4769.96, + "probability": 0.9806 + }, + { + "start": 4770.58, + "end": 4773.0, + "probability": 0.8933 + }, + { + "start": 4773.6, + "end": 4775.78, + "probability": 0.9859 + }, + { + "start": 4776.56, + "end": 4778.92, + "probability": 0.8694 + }, + { + "start": 4778.94, + "end": 4779.46, + "probability": 0.5841 + }, + { + "start": 4779.62, + "end": 4784.67, + "probability": 0.7498 + }, + { + "start": 4785.06, + "end": 4788.88, + "probability": 0.9035 + }, + { + "start": 4788.88, + "end": 4792.42, + "probability": 0.9761 + }, + { + "start": 4792.84, + "end": 4796.32, + "probability": 0.9961 + }, + { + "start": 4796.42, + "end": 4798.2, + "probability": 0.9907 + }, + { + "start": 4819.25, + "end": 4823.9, + "probability": 0.8086 + }, + { + "start": 4824.72, + "end": 4826.22, + "probability": 0.6756 + }, + { + "start": 4826.6, + "end": 4827.48, + "probability": 0.9955 + }, + { + "start": 4828.44, + "end": 4830.42, + "probability": 0.9678 + }, + { + "start": 4830.98, + "end": 4833.54, + "probability": 0.9762 + }, + { + "start": 4833.94, + "end": 4835.16, + "probability": 0.9979 + }, + { + "start": 4835.78, + "end": 4837.02, + "probability": 0.6426 + }, + { + "start": 4837.12, + "end": 4837.94, + "probability": 0.6725 + }, + { + "start": 4838.0, + "end": 4840.5, + "probability": 0.984 + }, + { + "start": 4840.52, + "end": 4841.34, + "probability": 0.7983 + }, + { + "start": 4841.42, + "end": 4846.06, + "probability": 0.7893 + }, + { + "start": 4846.12, + "end": 4848.36, + "probability": 0.7975 + }, + { + "start": 4848.38, + "end": 4852.96, + "probability": 0.9837 + }, + { + "start": 4853.44, + "end": 4854.38, + "probability": 0.8885 + }, + { + "start": 4854.46, + "end": 4855.18, + "probability": 0.7097 + }, + { + "start": 4855.58, + "end": 4859.36, + "probability": 0.9056 + }, + { + "start": 4860.08, + "end": 4865.54, + "probability": 0.9393 + }, + { + "start": 4865.54, + "end": 4869.94, + "probability": 0.9151 + }, + { + "start": 4870.1, + "end": 4871.58, + "probability": 0.9675 + }, + { + "start": 4871.96, + "end": 4875.32, + "probability": 0.8956 + }, + { + "start": 4876.14, + "end": 4876.84, + "probability": 0.7017 + }, + { + "start": 4877.74, + "end": 4881.8, + "probability": 0.9529 + }, + { + "start": 4881.86, + "end": 4884.94, + "probability": 0.8489 + }, + { + "start": 4885.6, + "end": 4891.46, + "probability": 0.9606 + }, + { + "start": 4891.64, + "end": 4893.2, + "probability": 0.9961 + }, + { + "start": 4894.3, + "end": 4894.3, + "probability": 0.77 + }, + { + "start": 4895.06, + "end": 4895.74, + "probability": 0.3069 + }, + { + "start": 4896.26, + "end": 4896.66, + "probability": 0.0343 + }, + { + "start": 4896.66, + "end": 4902.38, + "probability": 0.1896 + }, + { + "start": 4902.8, + "end": 4903.54, + "probability": 0.3897 + }, + { + "start": 4905.04, + "end": 4906.92, + "probability": 0.1405 + }, + { + "start": 4906.94, + "end": 4908.78, + "probability": 0.6219 + }, + { + "start": 4910.02, + "end": 4911.82, + "probability": 0.9949 + }, + { + "start": 4912.34, + "end": 4912.9, + "probability": 0.3198 + }, + { + "start": 4913.22, + "end": 4915.48, + "probability": 0.9216 + }, + { + "start": 4915.56, + "end": 4918.1, + "probability": 0.5522 + }, + { + "start": 4918.42, + "end": 4921.12, + "probability": 0.8018 + }, + { + "start": 4921.24, + "end": 4921.24, + "probability": 0.0058 + }, + { + "start": 4921.76, + "end": 4922.54, + "probability": 0.0931 + }, + { + "start": 4922.68, + "end": 4923.24, + "probability": 0.7152 + }, + { + "start": 4923.26, + "end": 4925.34, + "probability": 0.7399 + }, + { + "start": 4925.38, + "end": 4928.24, + "probability": 0.9784 + }, + { + "start": 4928.3, + "end": 4929.44, + "probability": 0.5426 + }, + { + "start": 4929.8, + "end": 4929.9, + "probability": 0.675 + }, + { + "start": 4930.66, + "end": 4931.1, + "probability": 0.8084 + }, + { + "start": 4931.44, + "end": 4932.76, + "probability": 0.7802 + }, + { + "start": 4933.68, + "end": 4936.0, + "probability": 0.7842 + }, + { + "start": 4937.02, + "end": 4937.92, + "probability": 0.7955 + }, + { + "start": 4937.98, + "end": 4941.52, + "probability": 0.9802 + }, + { + "start": 4941.56, + "end": 4942.24, + "probability": 0.513 + }, + { + "start": 4944.16, + "end": 4945.78, + "probability": 0.9408 + }, + { + "start": 4947.08, + "end": 4950.76, + "probability": 0.9935 + }, + { + "start": 4951.58, + "end": 4952.5, + "probability": 0.9062 + }, + { + "start": 4953.58, + "end": 4955.88, + "probability": 0.9842 + }, + { + "start": 4956.76, + "end": 4959.76, + "probability": 0.9937 + }, + { + "start": 4961.02, + "end": 4964.88, + "probability": 0.9365 + }, + { + "start": 4967.58, + "end": 4971.14, + "probability": 0.8057 + }, + { + "start": 4972.08, + "end": 4976.24, + "probability": 0.8163 + }, + { + "start": 4977.66, + "end": 4980.26, + "probability": 0.98 + }, + { + "start": 4981.18, + "end": 4984.04, + "probability": 0.8922 + }, + { + "start": 4985.04, + "end": 4989.42, + "probability": 0.899 + }, + { + "start": 4990.64, + "end": 4992.36, + "probability": 0.8761 + }, + { + "start": 4993.26, + "end": 4998.96, + "probability": 0.9841 + }, + { + "start": 5002.52, + "end": 5005.76, + "probability": 0.7192 + }, + { + "start": 5007.7, + "end": 5008.6, + "probability": 0.8624 + }, + { + "start": 5011.42, + "end": 5012.04, + "probability": 0.7461 + }, + { + "start": 5013.12, + "end": 5016.9, + "probability": 0.998 + }, + { + "start": 5018.68, + "end": 5021.12, + "probability": 0.9971 + }, + { + "start": 5021.78, + "end": 5025.5, + "probability": 0.994 + }, + { + "start": 5026.44, + "end": 5030.66, + "probability": 0.9845 + }, + { + "start": 5030.92, + "end": 5032.06, + "probability": 0.6606 + }, + { + "start": 5033.22, + "end": 5034.9, + "probability": 0.9474 + }, + { + "start": 5036.28, + "end": 5040.7, + "probability": 0.9849 + }, + { + "start": 5042.16, + "end": 5045.7, + "probability": 0.9927 + }, + { + "start": 5046.66, + "end": 5049.64, + "probability": 0.4973 + }, + { + "start": 5050.5, + "end": 5051.62, + "probability": 0.7533 + }, + { + "start": 5052.38, + "end": 5053.36, + "probability": 0.7801 + }, + { + "start": 5054.48, + "end": 5055.52, + "probability": 0.9045 + }, + { + "start": 5056.7, + "end": 5059.96, + "probability": 0.9598 + }, + { + "start": 5061.66, + "end": 5067.62, + "probability": 0.8932 + }, + { + "start": 5067.86, + "end": 5069.76, + "probability": 0.9738 + }, + { + "start": 5071.08, + "end": 5072.68, + "probability": 0.4769 + }, + { + "start": 5073.36, + "end": 5077.24, + "probability": 0.6421 + }, + { + "start": 5078.92, + "end": 5079.78, + "probability": 0.8612 + }, + { + "start": 5080.94, + "end": 5083.2, + "probability": 0.9868 + }, + { + "start": 5084.44, + "end": 5086.32, + "probability": 0.9221 + }, + { + "start": 5087.94, + "end": 5094.38, + "probability": 0.4395 + }, + { + "start": 5095.8, + "end": 5097.78, + "probability": 0.6666 + }, + { + "start": 5099.74, + "end": 5100.58, + "probability": 0.5148 + }, + { + "start": 5102.68, + "end": 5105.52, + "probability": 0.9882 + }, + { + "start": 5106.36, + "end": 5110.42, + "probability": 0.8833 + }, + { + "start": 5111.2, + "end": 5115.78, + "probability": 0.9973 + }, + { + "start": 5116.42, + "end": 5118.92, + "probability": 0.9669 + }, + { + "start": 5119.54, + "end": 5121.3, + "probability": 0.9779 + }, + { + "start": 5122.82, + "end": 5124.6, + "probability": 0.5488 + }, + { + "start": 5125.56, + "end": 5128.22, + "probability": 0.7821 + }, + { + "start": 5129.2, + "end": 5130.32, + "probability": 0.8908 + }, + { + "start": 5130.92, + "end": 5132.74, + "probability": 0.9851 + }, + { + "start": 5133.68, + "end": 5134.3, + "probability": 0.8502 + }, + { + "start": 5135.6, + "end": 5136.3, + "probability": 0.8944 + }, + { + "start": 5136.9, + "end": 5139.36, + "probability": 0.9846 + }, + { + "start": 5141.4, + "end": 5147.72, + "probability": 0.9868 + }, + { + "start": 5148.56, + "end": 5150.12, + "probability": 0.9678 + }, + { + "start": 5150.9, + "end": 5158.06, + "probability": 0.9663 + }, + { + "start": 5158.86, + "end": 5161.48, + "probability": 0.694 + }, + { + "start": 5161.84, + "end": 5165.84, + "probability": 0.98 + }, + { + "start": 5167.12, + "end": 5173.14, + "probability": 0.9831 + }, + { + "start": 5175.88, + "end": 5179.84, + "probability": 0.9982 + }, + { + "start": 5180.58, + "end": 5183.7, + "probability": 0.9995 + }, + { + "start": 5184.34, + "end": 5189.26, + "probability": 0.9838 + }, + { + "start": 5189.26, + "end": 5193.12, + "probability": 0.9819 + }, + { + "start": 5195.5, + "end": 5201.36, + "probability": 0.9889 + }, + { + "start": 5201.54, + "end": 5203.76, + "probability": 0.2121 + }, + { + "start": 5205.42, + "end": 5211.24, + "probability": 0.9799 + }, + { + "start": 5212.52, + "end": 5215.12, + "probability": 0.9861 + }, + { + "start": 5216.1, + "end": 5216.12, + "probability": 0.1654 + }, + { + "start": 5217.1, + "end": 5222.08, + "probability": 0.8509 + }, + { + "start": 5222.96, + "end": 5225.18, + "probability": 0.8061 + }, + { + "start": 5227.74, + "end": 5233.28, + "probability": 0.9645 + }, + { + "start": 5233.28, + "end": 5236.62, + "probability": 0.6824 + }, + { + "start": 5237.34, + "end": 5240.58, + "probability": 0.9946 + }, + { + "start": 5241.46, + "end": 5244.52, + "probability": 0.9862 + }, + { + "start": 5246.28, + "end": 5247.14, + "probability": 0.9333 + }, + { + "start": 5248.08, + "end": 5250.3, + "probability": 0.9958 + }, + { + "start": 5251.94, + "end": 5255.42, + "probability": 0.8496 + }, + { + "start": 5255.42, + "end": 5258.46, + "probability": 0.9862 + }, + { + "start": 5259.34, + "end": 5260.04, + "probability": 0.7282 + }, + { + "start": 5261.66, + "end": 5264.94, + "probability": 0.9417 + }, + { + "start": 5266.14, + "end": 5267.42, + "probability": 0.8008 + }, + { + "start": 5268.3, + "end": 5269.84, + "probability": 0.6008 + }, + { + "start": 5271.58, + "end": 5276.42, + "probability": 0.9957 + }, + { + "start": 5277.66, + "end": 5280.62, + "probability": 0.8236 + }, + { + "start": 5281.5, + "end": 5284.32, + "probability": 0.7884 + }, + { + "start": 5285.14, + "end": 5291.32, + "probability": 0.7741 + }, + { + "start": 5291.94, + "end": 5294.88, + "probability": 0.9831 + }, + { + "start": 5297.14, + "end": 5303.02, + "probability": 0.9092 + }, + { + "start": 5303.9, + "end": 5307.12, + "probability": 0.9944 + }, + { + "start": 5308.12, + "end": 5309.82, + "probability": 0.9149 + }, + { + "start": 5310.44, + "end": 5314.1, + "probability": 0.9953 + }, + { + "start": 5314.32, + "end": 5318.5, + "probability": 0.917 + }, + { + "start": 5319.76, + "end": 5324.94, + "probability": 0.8811 + }, + { + "start": 5325.94, + "end": 5327.28, + "probability": 0.9963 + }, + { + "start": 5328.02, + "end": 5331.42, + "probability": 0.8772 + }, + { + "start": 5332.08, + "end": 5336.48, + "probability": 0.9568 + }, + { + "start": 5337.88, + "end": 5340.72, + "probability": 0.9619 + }, + { + "start": 5342.34, + "end": 5349.04, + "probability": 0.9504 + }, + { + "start": 5350.98, + "end": 5353.8, + "probability": 0.4923 + }, + { + "start": 5355.1, + "end": 5358.36, + "probability": 0.9702 + }, + { + "start": 5359.26, + "end": 5362.76, + "probability": 0.9256 + }, + { + "start": 5363.42, + "end": 5365.6, + "probability": 0.9585 + }, + { + "start": 5366.96, + "end": 5369.02, + "probability": 0.5292 + }, + { + "start": 5369.32, + "end": 5379.48, + "probability": 0.9828 + }, + { + "start": 5381.4, + "end": 5387.81, + "probability": 0.9786 + }, + { + "start": 5388.6, + "end": 5392.43, + "probability": 0.9987 + }, + { + "start": 5396.52, + "end": 5399.02, + "probability": 0.8209 + }, + { + "start": 5400.34, + "end": 5403.5, + "probability": 0.8995 + }, + { + "start": 5403.92, + "end": 5407.88, + "probability": 0.9907 + }, + { + "start": 5408.62, + "end": 5410.6, + "probability": 0.8288 + }, + { + "start": 5411.1, + "end": 5416.02, + "probability": 0.9972 + }, + { + "start": 5418.16, + "end": 5419.38, + "probability": 0.6504 + }, + { + "start": 5419.9, + "end": 5420.8, + "probability": 0.8637 + }, + { + "start": 5421.78, + "end": 5427.08, + "probability": 0.8467 + }, + { + "start": 5428.36, + "end": 5430.94, + "probability": 0.9862 + }, + { + "start": 5432.02, + "end": 5433.58, + "probability": 0.9971 + }, + { + "start": 5434.3, + "end": 5437.44, + "probability": 0.9331 + }, + { + "start": 5439.94, + "end": 5441.46, + "probability": 0.954 + }, + { + "start": 5442.96, + "end": 5449.12, + "probability": 0.9762 + }, + { + "start": 5450.32, + "end": 5458.04, + "probability": 0.8932 + }, + { + "start": 5459.06, + "end": 5460.68, + "probability": 0.8998 + }, + { + "start": 5461.34, + "end": 5465.04, + "probability": 0.9613 + }, + { + "start": 5465.22, + "end": 5467.22, + "probability": 0.9835 + }, + { + "start": 5467.84, + "end": 5469.8, + "probability": 0.693 + }, + { + "start": 5470.38, + "end": 5473.2, + "probability": 0.8834 + }, + { + "start": 5473.78, + "end": 5479.32, + "probability": 0.8302 + }, + { + "start": 5480.14, + "end": 5485.24, + "probability": 0.8175 + }, + { + "start": 5485.84, + "end": 5487.16, + "probability": 0.9561 + }, + { + "start": 5487.22, + "end": 5488.8, + "probability": 0.9548 + }, + { + "start": 5488.82, + "end": 5493.24, + "probability": 0.916 + }, + { + "start": 5494.34, + "end": 5499.82, + "probability": 0.974 + }, + { + "start": 5500.3, + "end": 5502.82, + "probability": 0.9421 + }, + { + "start": 5504.36, + "end": 5506.64, + "probability": 0.8135 + }, + { + "start": 5506.74, + "end": 5507.22, + "probability": 0.9206 + }, + { + "start": 5507.62, + "end": 5511.48, + "probability": 0.9467 + }, + { + "start": 5511.48, + "end": 5511.96, + "probability": 0.4773 + }, + { + "start": 5512.04, + "end": 5513.44, + "probability": 0.76 + }, + { + "start": 5513.5, + "end": 5515.24, + "probability": 0.7518 + }, + { + "start": 5515.54, + "end": 5516.32, + "probability": 0.0261 + }, + { + "start": 5519.76, + "end": 5521.74, + "probability": 0.3601 + }, + { + "start": 5523.08, + "end": 5529.66, + "probability": 0.9967 + }, + { + "start": 5532.56, + "end": 5537.02, + "probability": 0.8917 + }, + { + "start": 5538.36, + "end": 5540.7, + "probability": 0.9021 + }, + { + "start": 5540.76, + "end": 5548.24, + "probability": 0.9946 + }, + { + "start": 5549.9, + "end": 5551.56, + "probability": 0.8247 + }, + { + "start": 5551.96, + "end": 5555.66, + "probability": 0.9259 + }, + { + "start": 5556.88, + "end": 5558.6, + "probability": 0.9944 + }, + { + "start": 5559.12, + "end": 5561.5, + "probability": 0.9798 + }, + { + "start": 5563.02, + "end": 5567.46, + "probability": 0.8772 + }, + { + "start": 5568.82, + "end": 5568.92, + "probability": 0.5839 + }, + { + "start": 5569.06, + "end": 5570.06, + "probability": 0.7419 + }, + { + "start": 5570.1, + "end": 5571.5, + "probability": 0.8368 + }, + { + "start": 5571.66, + "end": 5572.42, + "probability": 0.8595 + }, + { + "start": 5573.74, + "end": 5574.48, + "probability": 0.8323 + }, + { + "start": 5577.48, + "end": 5582.18, + "probability": 0.8716 + }, + { + "start": 5583.2, + "end": 5586.2, + "probability": 0.8686 + }, + { + "start": 5586.76, + "end": 5589.86, + "probability": 0.765 + }, + { + "start": 5591.06, + "end": 5591.56, + "probability": 0.9773 + }, + { + "start": 5592.22, + "end": 5593.46, + "probability": 0.7846 + }, + { + "start": 5594.78, + "end": 5598.6, + "probability": 0.9909 + }, + { + "start": 5599.64, + "end": 5608.12, + "probability": 0.8866 + }, + { + "start": 5608.32, + "end": 5609.16, + "probability": 0.9427 + }, + { + "start": 5610.52, + "end": 5617.38, + "probability": 0.9546 + }, + { + "start": 5618.5, + "end": 5619.29, + "probability": 0.6417 + }, + { + "start": 5620.34, + "end": 5621.06, + "probability": 0.9727 + }, + { + "start": 5621.58, + "end": 5624.1, + "probability": 0.9984 + }, + { + "start": 5624.94, + "end": 5627.96, + "probability": 0.9634 + }, + { + "start": 5628.02, + "end": 5631.26, + "probability": 0.7495 + }, + { + "start": 5632.12, + "end": 5632.9, + "probability": 0.7487 + }, + { + "start": 5633.06, + "end": 5633.86, + "probability": 0.6979 + }, + { + "start": 5634.0, + "end": 5634.06, + "probability": 0.4781 + }, + { + "start": 5634.06, + "end": 5639.42, + "probability": 0.6008 + }, + { + "start": 5640.06, + "end": 5641.74, + "probability": 0.9104 + }, + { + "start": 5642.22, + "end": 5643.74, + "probability": 0.728 + }, + { + "start": 5643.8, + "end": 5645.08, + "probability": 0.9592 + }, + { + "start": 5646.28, + "end": 5649.76, + "probability": 0.9499 + }, + { + "start": 5650.46, + "end": 5651.14, + "probability": 0.454 + }, + { + "start": 5654.5, + "end": 5656.96, + "probability": 0.5581 + }, + { + "start": 5657.78, + "end": 5659.82, + "probability": 0.8499 + }, + { + "start": 5660.0, + "end": 5661.22, + "probability": 0.7484 + }, + { + "start": 5661.54, + "end": 5663.18, + "probability": 0.9696 + }, + { + "start": 5663.76, + "end": 5666.48, + "probability": 0.9607 + }, + { + "start": 5668.04, + "end": 5671.62, + "probability": 0.8737 + }, + { + "start": 5673.04, + "end": 5676.22, + "probability": 0.8854 + }, + { + "start": 5676.74, + "end": 5680.32, + "probability": 0.9946 + }, + { + "start": 5680.32, + "end": 5683.3, + "probability": 0.7722 + }, + { + "start": 5684.14, + "end": 5690.08, + "probability": 0.9828 + }, + { + "start": 5691.04, + "end": 5694.28, + "probability": 0.8734 + }, + { + "start": 5694.96, + "end": 5695.64, + "probability": 0.9146 + }, + { + "start": 5696.76, + "end": 5702.62, + "probability": 0.9648 + }, + { + "start": 5703.78, + "end": 5708.0, + "probability": 0.7886 + }, + { + "start": 5709.36, + "end": 5711.06, + "probability": 0.9734 + }, + { + "start": 5711.84, + "end": 5717.7, + "probability": 0.989 + }, + { + "start": 5718.82, + "end": 5725.86, + "probability": 0.9921 + }, + { + "start": 5726.68, + "end": 5728.82, + "probability": 0.9673 + }, + { + "start": 5729.66, + "end": 5731.12, + "probability": 0.8589 + }, + { + "start": 5731.64, + "end": 5733.54, + "probability": 0.6511 + }, + { + "start": 5734.64, + "end": 5736.36, + "probability": 0.8819 + }, + { + "start": 5737.5, + "end": 5740.62, + "probability": 0.7633 + }, + { + "start": 5742.12, + "end": 5744.1, + "probability": 0.9882 + }, + { + "start": 5744.64, + "end": 5746.4, + "probability": 0.898 + }, + { + "start": 5748.16, + "end": 5750.21, + "probability": 0.0892 + }, + { + "start": 5750.9, + "end": 5754.82, + "probability": 0.9959 + }, + { + "start": 5755.94, + "end": 5756.4, + "probability": 0.8948 + }, + { + "start": 5756.98, + "end": 5760.04, + "probability": 0.9756 + }, + { + "start": 5761.32, + "end": 5765.18, + "probability": 0.9883 + }, + { + "start": 5765.28, + "end": 5767.38, + "probability": 0.8079 + }, + { + "start": 5767.64, + "end": 5768.78, + "probability": 0.7636 + }, + { + "start": 5769.02, + "end": 5771.5, + "probability": 0.7645 + }, + { + "start": 5772.34, + "end": 5776.48, + "probability": 0.9889 + }, + { + "start": 5776.56, + "end": 5777.22, + "probability": 0.7459 + }, + { + "start": 5777.26, + "end": 5778.28, + "probability": 0.871 + }, + { + "start": 5778.34, + "end": 5779.82, + "probability": 0.8321 + }, + { + "start": 5780.52, + "end": 5785.5, + "probability": 0.7604 + }, + { + "start": 5786.52, + "end": 5789.66, + "probability": 0.9695 + }, + { + "start": 5789.74, + "end": 5791.44, + "probability": 0.7126 + }, + { + "start": 5792.06, + "end": 5794.0, + "probability": 0.976 + }, + { + "start": 5794.48, + "end": 5795.34, + "probability": 0.8516 + }, + { + "start": 5795.46, + "end": 5795.96, + "probability": 0.7721 + }, + { + "start": 5796.4, + "end": 5798.74, + "probability": 0.9857 + }, + { + "start": 5799.7, + "end": 5800.54, + "probability": 0.6293 + }, + { + "start": 5800.7, + "end": 5805.38, + "probability": 0.9778 + }, + { + "start": 5805.8, + "end": 5806.53, + "probability": 0.6403 + }, + { + "start": 5807.38, + "end": 5809.51, + "probability": 0.9834 + }, + { + "start": 5809.78, + "end": 5810.35, + "probability": 0.8257 + }, + { + "start": 5811.14, + "end": 5813.08, + "probability": 0.9783 + }, + { + "start": 5813.12, + "end": 5814.02, + "probability": 0.8135 + }, + { + "start": 5814.44, + "end": 5815.51, + "probability": 0.9961 + }, + { + "start": 5815.74, + "end": 5816.32, + "probability": 0.6977 + }, + { + "start": 5817.18, + "end": 5819.7, + "probability": 0.9434 + }, + { + "start": 5820.14, + "end": 5821.9, + "probability": 0.8811 + }, + { + "start": 5822.04, + "end": 5822.97, + "probability": 0.969 + }, + { + "start": 5824.0, + "end": 5824.76, + "probability": 0.2598 + }, + { + "start": 5824.94, + "end": 5827.02, + "probability": 0.504 + }, + { + "start": 5827.22, + "end": 5829.98, + "probability": 0.7441 + }, + { + "start": 5831.0, + "end": 5831.54, + "probability": 0.5639 + }, + { + "start": 5831.58, + "end": 5833.0, + "probability": 0.7347 + }, + { + "start": 5833.28, + "end": 5835.22, + "probability": 0.8664 + }, + { + "start": 5835.94, + "end": 5839.4, + "probability": 0.5092 + }, + { + "start": 5839.56, + "end": 5841.78, + "probability": 0.6575 + }, + { + "start": 5841.78, + "end": 5843.45, + "probability": 0.4493 + }, + { + "start": 5844.16, + "end": 5847.3, + "probability": 0.9926 + }, + { + "start": 5847.38, + "end": 5854.84, + "probability": 0.9564 + }, + { + "start": 5855.88, + "end": 5858.9, + "probability": 0.8116 + }, + { + "start": 5859.74, + "end": 5864.4, + "probability": 0.899 + }, + { + "start": 5865.08, + "end": 5867.06, + "probability": 0.8431 + }, + { + "start": 5867.6, + "end": 5872.86, + "probability": 0.6663 + }, + { + "start": 5873.88, + "end": 5878.88, + "probability": 0.9551 + }, + { + "start": 5879.62, + "end": 5882.38, + "probability": 0.9939 + }, + { + "start": 5882.88, + "end": 5885.8, + "probability": 0.8636 + }, + { + "start": 5886.54, + "end": 5887.34, + "probability": 0.9471 + }, + { + "start": 5887.94, + "end": 5889.68, + "probability": 0.828 + }, + { + "start": 5889.86, + "end": 5890.3, + "probability": 0.9 + }, + { + "start": 5890.74, + "end": 5899.22, + "probability": 0.989 + }, + { + "start": 5899.92, + "end": 5905.98, + "probability": 0.9983 + }, + { + "start": 5906.84, + "end": 5908.64, + "probability": 0.6025 + }, + { + "start": 5909.24, + "end": 5911.18, + "probability": 0.8511 + }, + { + "start": 5911.6, + "end": 5914.5, + "probability": 0.9434 + }, + { + "start": 5914.74, + "end": 5915.32, + "probability": 0.2609 + }, + { + "start": 5915.62, + "end": 5916.5, + "probability": 0.7428 + }, + { + "start": 5916.6, + "end": 5919.56, + "probability": 0.817 + }, + { + "start": 5919.92, + "end": 5924.32, + "probability": 0.9491 + }, + { + "start": 5924.88, + "end": 5925.71, + "probability": 0.9124 + }, + { + "start": 5926.06, + "end": 5928.72, + "probability": 0.3027 + }, + { + "start": 5928.86, + "end": 5929.88, + "probability": 0.3599 + }, + { + "start": 5929.9, + "end": 5930.9, + "probability": 0.3109 + }, + { + "start": 5931.54, + "end": 5933.14, + "probability": 0.8298 + }, + { + "start": 5934.22, + "end": 5935.1, + "probability": 0.0917 + }, + { + "start": 6027.6, + "end": 6028.34, + "probability": 0.1272 + }, + { + "start": 6028.34, + "end": 6032.34, + "probability": 0.5626 + }, + { + "start": 6033.81, + "end": 6033.88, + "probability": 0.027 + }, + { + "start": 6033.88, + "end": 6034.95, + "probability": 0.2806 + }, + { + "start": 6035.8, + "end": 6037.96, + "probability": 0.5925 + }, + { + "start": 6039.62, + "end": 6041.48, + "probability": 0.7094 + }, + { + "start": 6062.32, + "end": 6064.14, + "probability": 0.491 + }, + { + "start": 6064.16, + "end": 6064.72, + "probability": 0.8333 + }, + { + "start": 6066.5, + "end": 6068.02, + "probability": 0.7715 + }, + { + "start": 6068.86, + "end": 6069.78, + "probability": 0.9304 + }, + { + "start": 6071.0, + "end": 6072.06, + "probability": 0.8851 + }, + { + "start": 6073.4, + "end": 6074.3, + "probability": 0.2699 + }, + { + "start": 6074.9, + "end": 6079.98, + "probability": 0.9259 + }, + { + "start": 6082.0, + "end": 6084.7, + "probability": 0.0686 + }, + { + "start": 6084.98, + "end": 6087.16, + "probability": 0.7533 + }, + { + "start": 6087.7, + "end": 6087.88, + "probability": 0.7268 + }, + { + "start": 6088.4, + "end": 6088.92, + "probability": 0.5954 + }, + { + "start": 6089.12, + "end": 6089.54, + "probability": 0.704 + }, + { + "start": 6090.36, + "end": 6093.8, + "probability": 0.912 + }, + { + "start": 6094.38, + "end": 6098.84, + "probability": 0.9924 + }, + { + "start": 6099.14, + "end": 6099.82, + "probability": 0.7706 + }, + { + "start": 6100.54, + "end": 6103.22, + "probability": 0.7386 + }, + { + "start": 6104.04, + "end": 6105.64, + "probability": 0.8966 + }, + { + "start": 6105.7, + "end": 6109.66, + "probability": 0.87 + }, + { + "start": 6109.96, + "end": 6111.0, + "probability": 0.3471 + }, + { + "start": 6111.12, + "end": 6114.94, + "probability": 0.7373 + }, + { + "start": 6116.32, + "end": 6117.28, + "probability": 0.9792 + }, + { + "start": 6118.2, + "end": 6123.54, + "probability": 0.9966 + }, + { + "start": 6124.94, + "end": 6125.24, + "probability": 0.8805 + }, + { + "start": 6125.28, + "end": 6126.98, + "probability": 0.9341 + }, + { + "start": 6127.06, + "end": 6127.86, + "probability": 0.8033 + }, + { + "start": 6128.0, + "end": 6128.26, + "probability": 0.8672 + }, + { + "start": 6128.36, + "end": 6131.6, + "probability": 0.9646 + }, + { + "start": 6131.6, + "end": 6134.0, + "probability": 0.747 + }, + { + "start": 6134.0, + "end": 6134.94, + "probability": 0.9243 + }, + { + "start": 6136.82, + "end": 6137.83, + "probability": 0.7965 + }, + { + "start": 6138.98, + "end": 6142.46, + "probability": 0.908 + }, + { + "start": 6143.55, + "end": 6146.8, + "probability": 0.9928 + }, + { + "start": 6146.8, + "end": 6149.4, + "probability": 0.8248 + }, + { + "start": 6149.72, + "end": 6151.39, + "probability": 0.9561 + }, + { + "start": 6154.16, + "end": 6156.94, + "probability": 0.9003 + }, + { + "start": 6157.94, + "end": 6159.24, + "probability": 0.8123 + }, + { + "start": 6160.2, + "end": 6163.12, + "probability": 0.6602 + }, + { + "start": 6163.82, + "end": 6164.8, + "probability": 0.7772 + }, + { + "start": 6164.94, + "end": 6168.1, + "probability": 0.6528 + }, + { + "start": 6169.0, + "end": 6174.56, + "probability": 0.4983 + }, + { + "start": 6174.94, + "end": 6176.72, + "probability": 0.9146 + }, + { + "start": 6178.38, + "end": 6182.6, + "probability": 0.5742 + }, + { + "start": 6185.04, + "end": 6185.98, + "probability": 0.8276 + }, + { + "start": 6187.16, + "end": 6189.14, + "probability": 0.6694 + }, + { + "start": 6189.96, + "end": 6193.72, + "probability": 0.9686 + }, + { + "start": 6195.44, + "end": 6196.76, + "probability": 0.9125 + }, + { + "start": 6196.84, + "end": 6198.78, + "probability": 0.9407 + }, + { + "start": 6199.28, + "end": 6204.32, + "probability": 0.96 + }, + { + "start": 6204.54, + "end": 6206.16, + "probability": 0.9883 + }, + { + "start": 6206.42, + "end": 6209.4, + "probability": 0.7817 + }, + { + "start": 6209.86, + "end": 6216.24, + "probability": 0.9919 + }, + { + "start": 6216.98, + "end": 6218.5, + "probability": 0.9834 + }, + { + "start": 6220.86, + "end": 6223.84, + "probability": 0.7222 + }, + { + "start": 6223.94, + "end": 6224.4, + "probability": 0.5779 + }, + { + "start": 6224.42, + "end": 6226.54, + "probability": 0.8258 + }, + { + "start": 6227.43, + "end": 6234.16, + "probability": 0.9816 + }, + { + "start": 6234.24, + "end": 6237.28, + "probability": 0.7856 + }, + { + "start": 6237.78, + "end": 6240.66, + "probability": 0.9551 + }, + { + "start": 6241.52, + "end": 6242.42, + "probability": 0.0208 + }, + { + "start": 6243.04, + "end": 6249.0, + "probability": 0.6217 + }, + { + "start": 6249.14, + "end": 6251.24, + "probability": 0.9462 + }, + { + "start": 6251.26, + "end": 6252.48, + "probability": 0.7851 + }, + { + "start": 6253.1, + "end": 6254.06, + "probability": 0.9952 + }, + { + "start": 6254.62, + "end": 6256.72, + "probability": 0.6248 + }, + { + "start": 6257.34, + "end": 6258.82, + "probability": 0.8486 + }, + { + "start": 6259.62, + "end": 6262.64, + "probability": 0.327 + }, + { + "start": 6262.64, + "end": 6266.0, + "probability": 0.8835 + }, + { + "start": 6266.54, + "end": 6271.02, + "probability": 0.9708 + }, + { + "start": 6271.02, + "end": 6276.46, + "probability": 0.8375 + }, + { + "start": 6277.48, + "end": 6278.16, + "probability": 0.6583 + }, + { + "start": 6278.18, + "end": 6278.82, + "probability": 0.7845 + }, + { + "start": 6278.92, + "end": 6281.36, + "probability": 0.7905 + }, + { + "start": 6281.6, + "end": 6281.7, + "probability": 0.7122 + }, + { + "start": 6281.82, + "end": 6284.36, + "probability": 0.9929 + }, + { + "start": 6285.24, + "end": 6291.02, + "probability": 0.9974 + }, + { + "start": 6292.52, + "end": 6293.3, + "probability": 0.7401 + }, + { + "start": 6293.4, + "end": 6294.78, + "probability": 0.8483 + }, + { + "start": 6295.12, + "end": 6299.34, + "probability": 0.9824 + }, + { + "start": 6299.34, + "end": 6304.06, + "probability": 0.9553 + }, + { + "start": 6305.4, + "end": 6308.18, + "probability": 0.8113 + }, + { + "start": 6309.02, + "end": 6311.34, + "probability": 0.9923 + }, + { + "start": 6312.1, + "end": 6316.58, + "probability": 0.9932 + }, + { + "start": 6317.16, + "end": 6318.86, + "probability": 0.9982 + }, + { + "start": 6320.44, + "end": 6322.72, + "probability": 0.9915 + }, + { + "start": 6323.62, + "end": 6327.0, + "probability": 0.9917 + }, + { + "start": 6327.32, + "end": 6330.94, + "probability": 0.764 + }, + { + "start": 6331.02, + "end": 6333.02, + "probability": 0.8615 + }, + { + "start": 6333.64, + "end": 6336.56, + "probability": 0.9932 + }, + { + "start": 6337.06, + "end": 6338.72, + "probability": 0.9869 + }, + { + "start": 6338.98, + "end": 6339.48, + "probability": 0.8033 + }, + { + "start": 6341.22, + "end": 6342.6, + "probability": 0.7138 + }, + { + "start": 6345.04, + "end": 6349.0, + "probability": 0.9772 + }, + { + "start": 6349.64, + "end": 6350.24, + "probability": 0.9258 + }, + { + "start": 6364.36, + "end": 6368.88, + "probability": 0.7738 + }, + { + "start": 6370.04, + "end": 6372.15, + "probability": 0.7476 + }, + { + "start": 6373.44, + "end": 6378.06, + "probability": 0.9121 + }, + { + "start": 6378.86, + "end": 6381.2, + "probability": 0.9924 + }, + { + "start": 6382.04, + "end": 6382.88, + "probability": 0.8629 + }, + { + "start": 6383.64, + "end": 6385.26, + "probability": 0.909 + }, + { + "start": 6386.58, + "end": 6389.92, + "probability": 0.6731 + }, + { + "start": 6390.9, + "end": 6394.3, + "probability": 0.9449 + }, + { + "start": 6395.16, + "end": 6399.66, + "probability": 0.9868 + }, + { + "start": 6399.72, + "end": 6403.08, + "probability": 0.9966 + }, + { + "start": 6403.7, + "end": 6406.6, + "probability": 0.8223 + }, + { + "start": 6407.18, + "end": 6407.72, + "probability": 0.4973 + }, + { + "start": 6408.0, + "end": 6410.68, + "probability": 0.9342 + }, + { + "start": 6411.24, + "end": 6413.64, + "probability": 0.751 + }, + { + "start": 6414.32, + "end": 6418.4, + "probability": 0.6046 + }, + { + "start": 6418.4, + "end": 6421.78, + "probability": 0.8976 + }, + { + "start": 6423.1, + "end": 6423.46, + "probability": 0.2557 + }, + { + "start": 6423.7, + "end": 6426.04, + "probability": 0.9873 + }, + { + "start": 6426.64, + "end": 6427.85, + "probability": 0.9396 + }, + { + "start": 6428.98, + "end": 6430.86, + "probability": 0.9442 + }, + { + "start": 6431.46, + "end": 6435.9, + "probability": 0.9862 + }, + { + "start": 6435.9, + "end": 6440.64, + "probability": 0.9474 + }, + { + "start": 6441.22, + "end": 6443.35, + "probability": 0.7892 + }, + { + "start": 6444.02, + "end": 6444.79, + "probability": 0.637 + }, + { + "start": 6445.26, + "end": 6450.98, + "probability": 0.9829 + }, + { + "start": 6451.66, + "end": 6456.36, + "probability": 0.9834 + }, + { + "start": 6457.06, + "end": 6457.96, + "probability": 0.9973 + }, + { + "start": 6459.12, + "end": 6465.14, + "probability": 0.9989 + }, + { + "start": 6466.6, + "end": 6468.28, + "probability": 0.504 + }, + { + "start": 6468.62, + "end": 6468.88, + "probability": 0.3802 + }, + { + "start": 6469.32, + "end": 6471.9, + "probability": 0.9744 + }, + { + "start": 6472.24, + "end": 6474.34, + "probability": 0.9488 + }, + { + "start": 6474.76, + "end": 6475.72, + "probability": 0.618 + }, + { + "start": 6475.86, + "end": 6479.58, + "probability": 0.9586 + }, + { + "start": 6480.08, + "end": 6483.22, + "probability": 0.8819 + }, + { + "start": 6483.3, + "end": 6485.58, + "probability": 0.6592 + }, + { + "start": 6486.06, + "end": 6487.82, + "probability": 0.8877 + }, + { + "start": 6488.82, + "end": 6492.82, + "probability": 0.8438 + }, + { + "start": 6492.82, + "end": 6497.48, + "probability": 0.9756 + }, + { + "start": 6498.36, + "end": 6502.38, + "probability": 0.9841 + }, + { + "start": 6502.78, + "end": 6504.7, + "probability": 0.7899 + }, + { + "start": 6505.28, + "end": 6512.14, + "probability": 0.9878 + }, + { + "start": 6512.68, + "end": 6513.89, + "probability": 0.9822 + }, + { + "start": 6514.22, + "end": 6515.18, + "probability": 0.8968 + }, + { + "start": 6515.6, + "end": 6517.48, + "probability": 0.9211 + }, + { + "start": 6519.28, + "end": 6524.18, + "probability": 0.5354 + }, + { + "start": 6524.22, + "end": 6530.18, + "probability": 0.951 + }, + { + "start": 6531.02, + "end": 6536.3, + "probability": 0.5439 + }, + { + "start": 6536.3, + "end": 6542.18, + "probability": 0.8601 + }, + { + "start": 6543.1, + "end": 6545.0, + "probability": 0.6961 + }, + { + "start": 6546.54, + "end": 6553.32, + "probability": 0.7431 + }, + { + "start": 6554.22, + "end": 6557.24, + "probability": 0.9934 + }, + { + "start": 6558.2, + "end": 6563.8, + "probability": 0.9214 + }, + { + "start": 6564.24, + "end": 6565.74, + "probability": 0.9838 + }, + { + "start": 6567.9, + "end": 6569.38, + "probability": 0.5298 + }, + { + "start": 6573.74, + "end": 6575.88, + "probability": 0.6016 + }, + { + "start": 6576.8, + "end": 6577.8, + "probability": 0.8001 + }, + { + "start": 6577.88, + "end": 6578.74, + "probability": 0.8612 + }, + { + "start": 6579.0, + "end": 6579.5, + "probability": 0.8585 + }, + { + "start": 6579.68, + "end": 6580.24, + "probability": 0.7787 + }, + { + "start": 6581.18, + "end": 6583.02, + "probability": 0.9901 + }, + { + "start": 6583.12, + "end": 6584.34, + "probability": 0.6621 + }, + { + "start": 6584.48, + "end": 6586.04, + "probability": 0.9879 + }, + { + "start": 6587.28, + "end": 6589.08, + "probability": 0.9919 + }, + { + "start": 6589.24, + "end": 6591.22, + "probability": 0.9978 + }, + { + "start": 6591.84, + "end": 6599.92, + "probability": 0.9881 + }, + { + "start": 6600.06, + "end": 6600.4, + "probability": 0.9638 + }, + { + "start": 6600.7, + "end": 6604.04, + "probability": 0.9971 + }, + { + "start": 6604.88, + "end": 6605.66, + "probability": 0.674 + }, + { + "start": 6605.74, + "end": 6606.32, + "probability": 0.8899 + }, + { + "start": 6606.42, + "end": 6607.26, + "probability": 0.8879 + }, + { + "start": 6607.52, + "end": 6608.16, + "probability": 0.9182 + }, + { + "start": 6608.26, + "end": 6610.5, + "probability": 0.9701 + }, + { + "start": 6611.04, + "end": 6613.16, + "probability": 0.9767 + }, + { + "start": 6614.34, + "end": 6615.88, + "probability": 0.9284 + }, + { + "start": 6616.34, + "end": 6617.1, + "probability": 0.9564 + }, + { + "start": 6617.44, + "end": 6624.2, + "probability": 0.9958 + }, + { + "start": 6624.72, + "end": 6626.72, + "probability": 0.9751 + }, + { + "start": 6627.2, + "end": 6631.86, + "probability": 0.9774 + }, + { + "start": 6632.44, + "end": 6634.84, + "probability": 0.9976 + }, + { + "start": 6634.88, + "end": 6637.94, + "probability": 0.9645 + }, + { + "start": 6638.64, + "end": 6640.42, + "probability": 0.8818 + }, + { + "start": 6641.32, + "end": 6646.36, + "probability": 0.9377 + }, + { + "start": 6647.86, + "end": 6651.04, + "probability": 0.9595 + }, + { + "start": 6651.46, + "end": 6652.2, + "probability": 0.8903 + }, + { + "start": 6652.82, + "end": 6653.52, + "probability": 0.6821 + }, + { + "start": 6654.1, + "end": 6654.8, + "probability": 0.0004 + }, + { + "start": 6655.94, + "end": 6657.78, + "probability": 0.4388 + }, + { + "start": 6657.84, + "end": 6658.12, + "probability": 0.7203 + }, + { + "start": 6658.58, + "end": 6660.62, + "probability": 0.6714 + }, + { + "start": 6661.5, + "end": 6664.54, + "probability": 0.9926 + }, + { + "start": 6664.7, + "end": 6670.63, + "probability": 0.9178 + }, + { + "start": 6671.72, + "end": 6673.57, + "probability": 0.9907 + }, + { + "start": 6673.98, + "end": 6675.72, + "probability": 0.8696 + }, + { + "start": 6675.82, + "end": 6676.36, + "probability": 0.5876 + }, + { + "start": 6676.44, + "end": 6678.04, + "probability": 0.9866 + }, + { + "start": 6678.04, + "end": 6679.0, + "probability": 0.9155 + }, + { + "start": 6679.24, + "end": 6681.76, + "probability": 0.9896 + }, + { + "start": 6682.78, + "end": 6685.78, + "probability": 0.9741 + }, + { + "start": 6686.08, + "end": 6687.72, + "probability": 0.998 + }, + { + "start": 6687.94, + "end": 6688.8, + "probability": 0.9836 + }, + { + "start": 6689.64, + "end": 6693.74, + "probability": 0.9176 + }, + { + "start": 6694.38, + "end": 6696.5, + "probability": 0.763 + }, + { + "start": 6697.48, + "end": 6698.84, + "probability": 0.7664 + }, + { + "start": 6698.9, + "end": 6699.76, + "probability": 0.8793 + }, + { + "start": 6699.98, + "end": 6702.18, + "probability": 0.8834 + }, + { + "start": 6702.3, + "end": 6705.26, + "probability": 0.9459 + }, + { + "start": 6706.08, + "end": 6709.76, + "probability": 0.9579 + }, + { + "start": 6710.26, + "end": 6715.78, + "probability": 0.9976 + }, + { + "start": 6716.44, + "end": 6718.44, + "probability": 0.9801 + }, + { + "start": 6719.08, + "end": 6719.89, + "probability": 0.989 + }, + { + "start": 6720.8, + "end": 6725.02, + "probability": 0.9965 + }, + { + "start": 6725.52, + "end": 6726.54, + "probability": 0.7285 + }, + { + "start": 6727.0, + "end": 6728.38, + "probability": 0.9913 + }, + { + "start": 6728.76, + "end": 6729.34, + "probability": 0.9177 + }, + { + "start": 6729.52, + "end": 6730.22, + "probability": 0.3837 + }, + { + "start": 6730.62, + "end": 6731.4, + "probability": 0.9262 + }, + { + "start": 6731.82, + "end": 6735.84, + "probability": 0.7579 + }, + { + "start": 6736.28, + "end": 6736.48, + "probability": 0.9231 + }, + { + "start": 6736.56, + "end": 6737.0, + "probability": 0.7488 + }, + { + "start": 6737.2, + "end": 6739.18, + "probability": 0.8602 + }, + { + "start": 6739.18, + "end": 6742.3, + "probability": 0.9603 + }, + { + "start": 6742.56, + "end": 6742.76, + "probability": 0.7385 + }, + { + "start": 6743.18, + "end": 6744.04, + "probability": 0.7474 + }, + { + "start": 6744.56, + "end": 6746.44, + "probability": 0.8767 + }, + { + "start": 6759.06, + "end": 6761.84, + "probability": 0.7548 + }, + { + "start": 6761.98, + "end": 6762.7, + "probability": 0.8054 + }, + { + "start": 6763.42, + "end": 6764.36, + "probability": 0.8271 + }, + { + "start": 6766.42, + "end": 6769.8, + "probability": 0.6467 + }, + { + "start": 6771.48, + "end": 6773.78, + "probability": 0.8347 + }, + { + "start": 6775.52, + "end": 6776.68, + "probability": 0.9806 + }, + { + "start": 6778.4, + "end": 6780.14, + "probability": 0.9805 + }, + { + "start": 6781.54, + "end": 6782.52, + "probability": 0.3015 + }, + { + "start": 6783.4, + "end": 6786.1, + "probability": 0.3989 + }, + { + "start": 6786.78, + "end": 6788.04, + "probability": 0.7153 + }, + { + "start": 6789.02, + "end": 6790.44, + "probability": 0.8358 + }, + { + "start": 6790.96, + "end": 6792.58, + "probability": 0.884 + }, + { + "start": 6793.38, + "end": 6795.8, + "probability": 0.5496 + }, + { + "start": 6796.56, + "end": 6797.16, + "probability": 0.6935 + }, + { + "start": 6797.68, + "end": 6798.96, + "probability": 0.7076 + }, + { + "start": 6800.6, + "end": 6802.02, + "probability": 0.9015 + }, + { + "start": 6803.48, + "end": 6805.12, + "probability": 0.9878 + }, + { + "start": 6806.82, + "end": 6811.16, + "probability": 0.9806 + }, + { + "start": 6812.1, + "end": 6817.84, + "probability": 0.9902 + }, + { + "start": 6817.84, + "end": 6819.86, + "probability": 0.9999 + }, + { + "start": 6820.8, + "end": 6824.54, + "probability": 0.9989 + }, + { + "start": 6825.5, + "end": 6827.46, + "probability": 0.9815 + }, + { + "start": 6828.12, + "end": 6829.46, + "probability": 0.9929 + }, + { + "start": 6832.68, + "end": 6835.61, + "probability": 0.9766 + }, + { + "start": 6837.12, + "end": 6838.02, + "probability": 0.9456 + }, + { + "start": 6838.72, + "end": 6840.6, + "probability": 0.9241 + }, + { + "start": 6841.84, + "end": 6843.1, + "probability": 0.1536 + }, + { + "start": 6843.4, + "end": 6844.56, + "probability": 0.7686 + }, + { + "start": 6844.62, + "end": 6847.96, + "probability": 0.9528 + }, + { + "start": 6849.42, + "end": 6852.52, + "probability": 0.9843 + }, + { + "start": 6853.22, + "end": 6856.96, + "probability": 0.984 + }, + { + "start": 6858.5, + "end": 6859.68, + "probability": 0.9525 + }, + { + "start": 6859.9, + "end": 6864.38, + "probability": 0.9958 + }, + { + "start": 6865.16, + "end": 6871.26, + "probability": 0.9823 + }, + { + "start": 6871.46, + "end": 6873.08, + "probability": 0.9078 + }, + { + "start": 6875.36, + "end": 6877.38, + "probability": 0.9963 + }, + { + "start": 6878.14, + "end": 6880.02, + "probability": 0.9934 + }, + { + "start": 6880.08, + "end": 6882.18, + "probability": 0.992 + }, + { + "start": 6882.92, + "end": 6885.82, + "probability": 0.9678 + }, + { + "start": 6886.76, + "end": 6891.04, + "probability": 0.8785 + }, + { + "start": 6891.8, + "end": 6893.54, + "probability": 0.9613 + }, + { + "start": 6894.26, + "end": 6895.74, + "probability": 0.9917 + }, + { + "start": 6897.0, + "end": 6898.3, + "probability": 0.999 + }, + { + "start": 6900.14, + "end": 6902.7, + "probability": 0.9977 + }, + { + "start": 6903.56, + "end": 6907.24, + "probability": 0.9922 + }, + { + "start": 6907.24, + "end": 6910.92, + "probability": 0.9949 + }, + { + "start": 6912.22, + "end": 6914.3, + "probability": 0.9998 + }, + { + "start": 6914.64, + "end": 6919.34, + "probability": 0.9884 + }, + { + "start": 6920.8, + "end": 6922.72, + "probability": 0.9908 + }, + { + "start": 6923.22, + "end": 6926.24, + "probability": 0.9935 + }, + { + "start": 6926.24, + "end": 6929.76, + "probability": 0.9987 + }, + { + "start": 6931.06, + "end": 6932.48, + "probability": 0.7272 + }, + { + "start": 6932.88, + "end": 6934.08, + "probability": 0.9264 + }, + { + "start": 6934.26, + "end": 6934.92, + "probability": 0.3261 + }, + { + "start": 6935.18, + "end": 6937.7, + "probability": 0.9335 + }, + { + "start": 6938.36, + "end": 6940.76, + "probability": 0.9056 + }, + { + "start": 6941.68, + "end": 6948.14, + "probability": 0.9793 + }, + { + "start": 6948.48, + "end": 6953.4, + "probability": 0.9841 + }, + { + "start": 6953.94, + "end": 6955.24, + "probability": 0.9094 + }, + { + "start": 6956.0, + "end": 6957.68, + "probability": 0.8933 + }, + { + "start": 6957.92, + "end": 6958.34, + "probability": 0.8036 + }, + { + "start": 6959.18, + "end": 6960.78, + "probability": 0.6946 + }, + { + "start": 6961.46, + "end": 6963.84, + "probability": 0.9102 + }, + { + "start": 6964.94, + "end": 6968.28, + "probability": 0.9832 + }, + { + "start": 6969.16, + "end": 6970.48, + "probability": 0.9561 + }, + { + "start": 6970.54, + "end": 6974.56, + "probability": 0.9979 + }, + { + "start": 6974.56, + "end": 6977.52, + "probability": 0.9979 + }, + { + "start": 6978.46, + "end": 6981.06, + "probability": 0.8984 + }, + { + "start": 6981.26, + "end": 6981.9, + "probability": 0.4652 + }, + { + "start": 6982.76, + "end": 6983.8, + "probability": 0.6852 + }, + { + "start": 6984.08, + "end": 6985.28, + "probability": 0.6545 + }, + { + "start": 6985.3, + "end": 6988.52, + "probability": 0.9277 + }, + { + "start": 6992.3, + "end": 6995.08, + "probability": 0.9823 + }, + { + "start": 6995.56, + "end": 6997.46, + "probability": 0.6892 + }, + { + "start": 6998.5, + "end": 6999.92, + "probability": 0.4588 + }, + { + "start": 6999.98, + "end": 6999.98, + "probability": 0.3733 + }, + { + "start": 7000.83, + "end": 7002.44, + "probability": 0.0678 + }, + { + "start": 7002.44, + "end": 7008.76, + "probability": 0.9272 + }, + { + "start": 7009.0, + "end": 7010.24, + "probability": 0.7708 + }, + { + "start": 7010.78, + "end": 7012.74, + "probability": 0.9355 + }, + { + "start": 7013.76, + "end": 7017.66, + "probability": 0.9805 + }, + { + "start": 7018.24, + "end": 7021.22, + "probability": 0.9928 + }, + { + "start": 7023.12, + "end": 7026.1, + "probability": 0.9068 + }, + { + "start": 7027.06, + "end": 7031.0, + "probability": 0.9946 + }, + { + "start": 7032.42, + "end": 7035.61, + "probability": 0.6828 + }, + { + "start": 7036.0, + "end": 7037.52, + "probability": 0.962 + }, + { + "start": 7038.36, + "end": 7039.64, + "probability": 0.9909 + }, + { + "start": 7040.58, + "end": 7042.88, + "probability": 0.9975 + }, + { + "start": 7044.12, + "end": 7047.44, + "probability": 0.9059 + }, + { + "start": 7048.6, + "end": 7052.94, + "probability": 0.8804 + }, + { + "start": 7053.8, + "end": 7056.3, + "probability": 0.9785 + }, + { + "start": 7056.38, + "end": 7058.72, + "probability": 0.8447 + }, + { + "start": 7058.88, + "end": 7061.76, + "probability": 0.9663 + }, + { + "start": 7061.76, + "end": 7067.14, + "probability": 0.9994 + }, + { + "start": 7069.2, + "end": 7071.3, + "probability": 0.9654 + }, + { + "start": 7072.82, + "end": 7073.8, + "probability": 0.463 + }, + { + "start": 7074.94, + "end": 7081.86, + "probability": 0.9479 + }, + { + "start": 7082.46, + "end": 7084.28, + "probability": 0.7812 + }, + { + "start": 7084.76, + "end": 7089.96, + "probability": 0.9929 + }, + { + "start": 7090.58, + "end": 7091.8, + "probability": 0.9989 + }, + { + "start": 7091.94, + "end": 7092.43, + "probability": 0.6572 + }, + { + "start": 7092.64, + "end": 7093.86, + "probability": 0.9959 + }, + { + "start": 7094.46, + "end": 7098.5, + "probability": 0.8145 + }, + { + "start": 7099.6, + "end": 7102.08, + "probability": 0.9882 + }, + { + "start": 7102.14, + "end": 7104.64, + "probability": 0.9963 + }, + { + "start": 7104.7, + "end": 7105.04, + "probability": 0.7445 + }, + { + "start": 7105.14, + "end": 7106.78, + "probability": 0.9948 + }, + { + "start": 7107.34, + "end": 7110.2, + "probability": 0.9219 + }, + { + "start": 7110.68, + "end": 7112.98, + "probability": 0.9739 + }, + { + "start": 7113.66, + "end": 7115.28, + "probability": 0.9976 + }, + { + "start": 7115.48, + "end": 7116.94, + "probability": 0.9956 + }, + { + "start": 7117.02, + "end": 7118.02, + "probability": 0.8601 + }, + { + "start": 7118.52, + "end": 7119.06, + "probability": 0.6014 + }, + { + "start": 7119.18, + "end": 7119.76, + "probability": 0.8332 + }, + { + "start": 7120.72, + "end": 7122.82, + "probability": 0.7981 + }, + { + "start": 7123.02, + "end": 7126.24, + "probability": 0.9263 + }, + { + "start": 7127.84, + "end": 7133.66, + "probability": 0.9808 + }, + { + "start": 7133.66, + "end": 7141.1, + "probability": 0.9912 + }, + { + "start": 7141.52, + "end": 7143.06, + "probability": 0.935 + }, + { + "start": 7143.48, + "end": 7145.04, + "probability": 0.8357 + }, + { + "start": 7145.1, + "end": 7147.24, + "probability": 0.8386 + }, + { + "start": 7147.5, + "end": 7152.78, + "probability": 0.9718 + }, + { + "start": 7153.12, + "end": 7155.9, + "probability": 0.9624 + }, + { + "start": 7155.92, + "end": 7159.68, + "probability": 0.988 + }, + { + "start": 7160.48, + "end": 7160.72, + "probability": 0.6184 + }, + { + "start": 7160.96, + "end": 7161.98, + "probability": 0.8723 + }, + { + "start": 7162.06, + "end": 7165.86, + "probability": 0.9875 + }, + { + "start": 7166.48, + "end": 7169.08, + "probability": 0.948 + }, + { + "start": 7169.54, + "end": 7172.0, + "probability": 0.9721 + }, + { + "start": 7172.06, + "end": 7173.06, + "probability": 0.7267 + }, + { + "start": 7173.2, + "end": 7176.28, + "probability": 0.9186 + }, + { + "start": 7176.28, + "end": 7177.76, + "probability": 0.2463 + }, + { + "start": 7177.8, + "end": 7177.88, + "probability": 0.2903 + }, + { + "start": 7177.88, + "end": 7178.28, + "probability": 0.3523 + }, + { + "start": 7178.28, + "end": 7181.04, + "probability": 0.9373 + }, + { + "start": 7181.08, + "end": 7184.76, + "probability": 0.9767 + }, + { + "start": 7185.1, + "end": 7186.76, + "probability": 0.8617 + }, + { + "start": 7186.8, + "end": 7187.26, + "probability": 0.8359 + }, + { + "start": 7187.68, + "end": 7188.22, + "probability": 0.859 + }, + { + "start": 7188.36, + "end": 7188.64, + "probability": 0.2542 + }, + { + "start": 7188.64, + "end": 7188.76, + "probability": 0.8114 + }, + { + "start": 7189.08, + "end": 7189.74, + "probability": 0.8373 + }, + { + "start": 7191.25, + "end": 7193.88, + "probability": 0.809 + }, + { + "start": 7194.78, + "end": 7197.36, + "probability": 0.6995 + }, + { + "start": 7206.38, + "end": 7206.78, + "probability": 0.8466 + }, + { + "start": 7207.88, + "end": 7209.94, + "probability": 0.8651 + }, + { + "start": 7211.12, + "end": 7218.1, + "probability": 0.9151 + }, + { + "start": 7218.24, + "end": 7220.18, + "probability": 0.824 + }, + { + "start": 7221.42, + "end": 7228.7, + "probability": 0.9685 + }, + { + "start": 7228.7, + "end": 7233.66, + "probability": 0.991 + }, + { + "start": 7234.28, + "end": 7238.78, + "probability": 0.956 + }, + { + "start": 7239.38, + "end": 7246.0, + "probability": 0.9464 + }, + { + "start": 7246.2, + "end": 7247.46, + "probability": 0.898 + }, + { + "start": 7248.22, + "end": 7251.06, + "probability": 0.8962 + }, + { + "start": 7251.28, + "end": 7251.56, + "probability": 0.5763 + }, + { + "start": 7251.66, + "end": 7254.92, + "probability": 0.9873 + }, + { + "start": 7255.1, + "end": 7260.04, + "probability": 0.899 + }, + { + "start": 7262.1, + "end": 7263.98, + "probability": 0.9031 + }, + { + "start": 7264.1, + "end": 7267.36, + "probability": 0.9754 + }, + { + "start": 7267.36, + "end": 7270.43, + "probability": 0.9932 + }, + { + "start": 7271.28, + "end": 7277.2, + "probability": 0.9347 + }, + { + "start": 7277.38, + "end": 7280.34, + "probability": 0.9731 + }, + { + "start": 7280.8, + "end": 7285.7, + "probability": 0.885 + }, + { + "start": 7286.24, + "end": 7286.68, + "probability": 0.6031 + }, + { + "start": 7286.74, + "end": 7287.72, + "probability": 0.7526 + }, + { + "start": 7287.76, + "end": 7295.44, + "probability": 0.9885 + }, + { + "start": 7295.54, + "end": 7297.16, + "probability": 0.5611 + }, + { + "start": 7297.76, + "end": 7301.64, + "probability": 0.9038 + }, + { + "start": 7302.26, + "end": 7305.95, + "probability": 0.9905 + }, + { + "start": 7306.88, + "end": 7309.1, + "probability": 0.9631 + }, + { + "start": 7309.68, + "end": 7311.16, + "probability": 0.8751 + }, + { + "start": 7311.94, + "end": 7315.74, + "probability": 0.84 + }, + { + "start": 7316.32, + "end": 7318.56, + "probability": 0.8691 + }, + { + "start": 7318.84, + "end": 7324.3, + "probability": 0.9858 + }, + { + "start": 7325.0, + "end": 7327.82, + "probability": 0.9858 + }, + { + "start": 7327.82, + "end": 7332.76, + "probability": 0.9959 + }, + { + "start": 7333.16, + "end": 7336.26, + "probability": 0.9627 + }, + { + "start": 7336.92, + "end": 7338.56, + "probability": 0.9084 + }, + { + "start": 7338.94, + "end": 7340.22, + "probability": 0.8501 + }, + { + "start": 7340.56, + "end": 7342.88, + "probability": 0.9963 + }, + { + "start": 7343.18, + "end": 7344.42, + "probability": 0.8545 + }, + { + "start": 7344.74, + "end": 7348.72, + "probability": 0.9642 + }, + { + "start": 7350.59, + "end": 7356.8, + "probability": 0.9744 + }, + { + "start": 7356.82, + "end": 7358.12, + "probability": 0.9137 + }, + { + "start": 7358.5, + "end": 7359.2, + "probability": 0.8542 + }, + { + "start": 7359.32, + "end": 7363.62, + "probability": 0.9631 + }, + { + "start": 7364.04, + "end": 7367.44, + "probability": 0.9754 + }, + { + "start": 7367.76, + "end": 7369.76, + "probability": 0.9912 + }, + { + "start": 7370.46, + "end": 7376.0, + "probability": 0.8407 + }, + { + "start": 7376.16, + "end": 7380.0, + "probability": 0.9339 + }, + { + "start": 7380.48, + "end": 7382.46, + "probability": 0.7495 + }, + { + "start": 7382.54, + "end": 7384.54, + "probability": 0.885 + }, + { + "start": 7384.84, + "end": 7385.94, + "probability": 0.8761 + }, + { + "start": 7386.26, + "end": 7388.06, + "probability": 0.6556 + }, + { + "start": 7388.46, + "end": 7396.4, + "probability": 0.8385 + }, + { + "start": 7396.7, + "end": 7398.74, + "probability": 0.9971 + }, + { + "start": 7399.6, + "end": 7404.52, + "probability": 0.9928 + }, + { + "start": 7404.52, + "end": 7411.6, + "probability": 0.9582 + }, + { + "start": 7411.62, + "end": 7412.08, + "probability": 0.7774 + }, + { + "start": 7413.0, + "end": 7413.52, + "probability": 0.5602 + }, + { + "start": 7413.6, + "end": 7415.94, + "probability": 0.7384 + }, + { + "start": 7428.04, + "end": 7429.08, + "probability": 0.702 + }, + { + "start": 7429.8, + "end": 7430.98, + "probability": 0.9225 + }, + { + "start": 7431.86, + "end": 7433.42, + "probability": 0.8361 + }, + { + "start": 7435.14, + "end": 7436.96, + "probability": 0.9988 + }, + { + "start": 7438.1, + "end": 7444.18, + "probability": 0.879 + }, + { + "start": 7445.08, + "end": 7446.98, + "probability": 0.7595 + }, + { + "start": 7448.24, + "end": 7449.44, + "probability": 0.9237 + }, + { + "start": 7450.2, + "end": 7451.24, + "probability": 0.9804 + }, + { + "start": 7452.36, + "end": 7456.78, + "probability": 0.9561 + }, + { + "start": 7456.92, + "end": 7460.26, + "probability": 0.9773 + }, + { + "start": 7461.18, + "end": 7463.54, + "probability": 0.6825 + }, + { + "start": 7464.96, + "end": 7469.48, + "probability": 0.991 + }, + { + "start": 7470.04, + "end": 7472.46, + "probability": 0.7643 + }, + { + "start": 7473.58, + "end": 7476.48, + "probability": 0.8142 + }, + { + "start": 7477.22, + "end": 7483.8, + "probability": 0.9878 + }, + { + "start": 7485.3, + "end": 7487.46, + "probability": 0.9305 + }, + { + "start": 7488.4, + "end": 7491.38, + "probability": 0.901 + }, + { + "start": 7492.14, + "end": 7494.72, + "probability": 0.9515 + }, + { + "start": 7495.6, + "end": 7497.38, + "probability": 0.9051 + }, + { + "start": 7498.34, + "end": 7501.4, + "probability": 0.7154 + }, + { + "start": 7501.62, + "end": 7504.18, + "probability": 0.644 + }, + { + "start": 7505.7, + "end": 7508.04, + "probability": 0.8677 + }, + { + "start": 7508.58, + "end": 7511.41, + "probability": 0.6597 + }, + { + "start": 7511.74, + "end": 7512.86, + "probability": 0.7815 + }, + { + "start": 7513.64, + "end": 7514.84, + "probability": 0.3142 + }, + { + "start": 7516.12, + "end": 7518.08, + "probability": 0.9506 + }, + { + "start": 7518.88, + "end": 7520.94, + "probability": 0.9924 + }, + { + "start": 7522.24, + "end": 7527.4, + "probability": 0.9896 + }, + { + "start": 7528.0, + "end": 7529.88, + "probability": 0.9224 + }, + { + "start": 7530.6, + "end": 7537.0, + "probability": 0.9888 + }, + { + "start": 7537.36, + "end": 7538.24, + "probability": 0.8125 + }, + { + "start": 7539.02, + "end": 7539.68, + "probability": 0.8994 + }, + { + "start": 7539.88, + "end": 7540.56, + "probability": 0.5087 + }, + { + "start": 7540.88, + "end": 7544.82, + "probability": 0.9702 + }, + { + "start": 7546.2, + "end": 7548.9, + "probability": 0.9882 + }, + { + "start": 7548.9, + "end": 7554.64, + "probability": 0.9844 + }, + { + "start": 7555.22, + "end": 7558.38, + "probability": 0.9744 + }, + { + "start": 7558.5, + "end": 7563.4, + "probability": 0.8672 + }, + { + "start": 7564.18, + "end": 7569.82, + "probability": 0.6478 + }, + { + "start": 7569.96, + "end": 7570.6, + "probability": 0.7249 + }, + { + "start": 7572.96, + "end": 7574.2, + "probability": 0.9641 + }, + { + "start": 7575.18, + "end": 7576.78, + "probability": 0.6852 + }, + { + "start": 7577.7, + "end": 7579.02, + "probability": 0.904 + }, + { + "start": 7579.84, + "end": 7586.78, + "probability": 0.9305 + }, + { + "start": 7588.04, + "end": 7590.28, + "probability": 0.9888 + }, + { + "start": 7590.28, + "end": 7593.2, + "probability": 0.9498 + }, + { + "start": 7593.92, + "end": 7595.76, + "probability": 0.9377 + }, + { + "start": 7597.26, + "end": 7601.04, + "probability": 0.8162 + }, + { + "start": 7601.84, + "end": 7603.12, + "probability": 0.5412 + }, + { + "start": 7603.2, + "end": 7609.94, + "probability": 0.9178 + }, + { + "start": 7610.92, + "end": 7614.7, + "probability": 0.9862 + }, + { + "start": 7615.26, + "end": 7620.48, + "probability": 0.9973 + }, + { + "start": 7620.66, + "end": 7621.6, + "probability": 0.6912 + }, + { + "start": 7622.56, + "end": 7623.7, + "probability": 0.72 + }, + { + "start": 7624.84, + "end": 7629.1, + "probability": 0.915 + }, + { + "start": 7630.3, + "end": 7632.5, + "probability": 0.7887 + }, + { + "start": 7633.76, + "end": 7635.08, + "probability": 0.9951 + }, + { + "start": 7636.08, + "end": 7639.92, + "probability": 0.6651 + }, + { + "start": 7640.48, + "end": 7642.94, + "probability": 0.9272 + }, + { + "start": 7644.06, + "end": 7645.66, + "probability": 0.8149 + }, + { + "start": 7646.24, + "end": 7651.02, + "probability": 0.8335 + }, + { + "start": 7652.32, + "end": 7653.98, + "probability": 0.9317 + }, + { + "start": 7654.92, + "end": 7656.23, + "probability": 0.9827 + }, + { + "start": 7657.18, + "end": 7659.82, + "probability": 0.9762 + }, + { + "start": 7660.52, + "end": 7662.56, + "probability": 0.9907 + }, + { + "start": 7663.48, + "end": 7666.24, + "probability": 0.9885 + }, + { + "start": 7666.5, + "end": 7667.14, + "probability": 0.8507 + }, + { + "start": 7667.3, + "end": 7670.16, + "probability": 0.9548 + }, + { + "start": 7671.34, + "end": 7674.56, + "probability": 0.972 + }, + { + "start": 7675.64, + "end": 7677.0, + "probability": 0.5781 + }, + { + "start": 7678.02, + "end": 7685.12, + "probability": 0.9376 + }, + { + "start": 7686.0, + "end": 7689.76, + "probability": 0.9331 + }, + { + "start": 7689.76, + "end": 7694.48, + "probability": 0.9597 + }, + { + "start": 7695.84, + "end": 7701.72, + "probability": 0.9678 + }, + { + "start": 7702.14, + "end": 7703.62, + "probability": 0.9927 + }, + { + "start": 7704.18, + "end": 7709.7, + "probability": 0.9917 + }, + { + "start": 7710.2, + "end": 7712.78, + "probability": 0.9519 + }, + { + "start": 7713.4, + "end": 7714.8, + "probability": 0.9255 + }, + { + "start": 7715.04, + "end": 7718.08, + "probability": 0.978 + }, + { + "start": 7718.38, + "end": 7719.58, + "probability": 0.96 + }, + { + "start": 7720.04, + "end": 7720.88, + "probability": 0.9443 + }, + { + "start": 7721.26, + "end": 7726.38, + "probability": 0.9854 + }, + { + "start": 7726.5, + "end": 7726.72, + "probability": 0.8373 + }, + { + "start": 7727.28, + "end": 7730.88, + "probability": 0.5827 + }, + { + "start": 7733.04, + "end": 7734.82, + "probability": 0.2936 + }, + { + "start": 7734.82, + "end": 7734.89, + "probability": 0.5408 + }, + { + "start": 7735.34, + "end": 7739.79, + "probability": 0.0864 + }, + { + "start": 7744.84, + "end": 7745.9, + "probability": 0.7993 + }, + { + "start": 7746.52, + "end": 7748.86, + "probability": 0.9585 + }, + { + "start": 7749.72, + "end": 7750.08, + "probability": 0.5174 + }, + { + "start": 7750.14, + "end": 7752.9, + "probability": 0.9005 + }, + { + "start": 7752.98, + "end": 7756.44, + "probability": 0.9372 + }, + { + "start": 7756.6, + "end": 7758.26, + "probability": 0.8882 + }, + { + "start": 7758.4, + "end": 7762.36, + "probability": 0.9718 + }, + { + "start": 7762.36, + "end": 7765.91, + "probability": 0.9564 + }, + { + "start": 7768.16, + "end": 7768.94, + "probability": 0.9572 + }, + { + "start": 7769.0, + "end": 7769.82, + "probability": 0.7387 + }, + { + "start": 7770.28, + "end": 7772.86, + "probability": 0.9038 + }, + { + "start": 7773.62, + "end": 7777.76, + "probability": 0.9169 + }, + { + "start": 7779.08, + "end": 7780.28, + "probability": 0.9087 + }, + { + "start": 7780.42, + "end": 7781.32, + "probability": 0.9722 + }, + { + "start": 7781.78, + "end": 7782.96, + "probability": 0.9536 + }, + { + "start": 7783.69, + "end": 7786.86, + "probability": 0.9646 + }, + { + "start": 7786.98, + "end": 7789.57, + "probability": 0.9951 + }, + { + "start": 7792.1, + "end": 7795.36, + "probability": 0.4599 + }, + { + "start": 7795.82, + "end": 7799.18, + "probability": 0.7831 + }, + { + "start": 7799.76, + "end": 7800.38, + "probability": 0.9414 + }, + { + "start": 7800.48, + "end": 7804.54, + "probability": 0.9873 + }, + { + "start": 7804.98, + "end": 7806.72, + "probability": 0.9698 + }, + { + "start": 7807.04, + "end": 7809.98, + "probability": 0.898 + }, + { + "start": 7810.13, + "end": 7814.1, + "probability": 0.75 + }, + { + "start": 7814.52, + "end": 7815.4, + "probability": 0.7737 + }, + { + "start": 7815.54, + "end": 7822.56, + "probability": 0.9687 + }, + { + "start": 7822.98, + "end": 7829.02, + "probability": 0.9969 + }, + { + "start": 7829.18, + "end": 7829.7, + "probability": 0.3465 + }, + { + "start": 7830.16, + "end": 7832.36, + "probability": 0.6014 + }, + { + "start": 7832.48, + "end": 7834.22, + "probability": 0.8418 + }, + { + "start": 7834.28, + "end": 7835.52, + "probability": 0.9297 + }, + { + "start": 7836.04, + "end": 7839.74, + "probability": 0.6011 + }, + { + "start": 7840.2, + "end": 7843.32, + "probability": 0.9579 + }, + { + "start": 7843.82, + "end": 7845.48, + "probability": 0.9795 + }, + { + "start": 7845.9, + "end": 7849.26, + "probability": 0.9456 + }, + { + "start": 7851.04, + "end": 7851.3, + "probability": 0.6206 + }, + { + "start": 7851.4, + "end": 7853.0, + "probability": 0.9538 + }, + { + "start": 7853.4, + "end": 7857.1, + "probability": 0.9687 + }, + { + "start": 7857.92, + "end": 7858.44, + "probability": 0.6797 + }, + { + "start": 7860.46, + "end": 7861.18, + "probability": 0.1024 + }, + { + "start": 7861.3, + "end": 7862.96, + "probability": 0.8818 + }, + { + "start": 7863.04, + "end": 7863.78, + "probability": 0.6356 + }, + { + "start": 7863.8, + "end": 7865.04, + "probability": 0.7616 + }, + { + "start": 7865.12, + "end": 7865.9, + "probability": 0.682 + }, + { + "start": 7866.0, + "end": 7868.4, + "probability": 0.9391 + }, + { + "start": 7868.48, + "end": 7870.48, + "probability": 0.9989 + }, + { + "start": 7870.74, + "end": 7872.1, + "probability": 0.6872 + }, + { + "start": 7872.12, + "end": 7878.46, + "probability": 0.9261 + }, + { + "start": 7879.31, + "end": 7884.98, + "probability": 0.9801 + }, + { + "start": 7885.76, + "end": 7888.44, + "probability": 0.6585 + }, + { + "start": 7888.44, + "end": 7891.64, + "probability": 0.9961 + }, + { + "start": 7891.76, + "end": 7893.22, + "probability": 0.9497 + }, + { + "start": 7893.84, + "end": 7898.58, + "probability": 0.9727 + }, + { + "start": 7898.76, + "end": 7900.02, + "probability": 0.9904 + }, + { + "start": 7900.1, + "end": 7902.4, + "probability": 0.9326 + }, + { + "start": 7903.1, + "end": 7907.98, + "probability": 0.9924 + }, + { + "start": 7908.56, + "end": 7912.34, + "probability": 0.9899 + }, + { + "start": 7913.24, + "end": 7913.98, + "probability": 0.8617 + }, + { + "start": 7914.24, + "end": 7917.34, + "probability": 0.9893 + }, + { + "start": 7917.66, + "end": 7918.78, + "probability": 0.5724 + }, + { + "start": 7919.34, + "end": 7921.32, + "probability": 0.9364 + }, + { + "start": 7921.9, + "end": 7925.0, + "probability": 0.9055 + }, + { + "start": 7925.06, + "end": 7927.52, + "probability": 0.9923 + }, + { + "start": 7927.6, + "end": 7928.5, + "probability": 0.9125 + }, + { + "start": 7928.86, + "end": 7929.86, + "probability": 0.6744 + }, + { + "start": 7930.26, + "end": 7932.04, + "probability": 0.9372 + }, + { + "start": 7932.44, + "end": 7933.52, + "probability": 0.9976 + }, + { + "start": 7933.72, + "end": 7934.82, + "probability": 0.7613 + }, + { + "start": 7934.96, + "end": 7935.96, + "probability": 0.8436 + }, + { + "start": 7936.38, + "end": 7939.14, + "probability": 0.7943 + }, + { + "start": 7939.62, + "end": 7940.7, + "probability": 0.9048 + }, + { + "start": 7941.28, + "end": 7943.0, + "probability": 0.9248 + }, + { + "start": 7943.02, + "end": 7946.78, + "probability": 0.9568 + }, + { + "start": 7946.86, + "end": 7947.34, + "probability": 0.8607 + }, + { + "start": 7949.1, + "end": 7950.3, + "probability": 0.95 + }, + { + "start": 7951.27, + "end": 7956.3, + "probability": 0.871 + }, + { + "start": 7957.98, + "end": 7958.5, + "probability": 0.0133 + }, + { + "start": 7958.66, + "end": 7962.64, + "probability": 0.1393 + }, + { + "start": 7963.22, + "end": 7964.02, + "probability": 0.7804 + }, + { + "start": 7967.6, + "end": 7971.6, + "probability": 0.887 + }, + { + "start": 7972.52, + "end": 7977.36, + "probability": 0.8104 + }, + { + "start": 7978.02, + "end": 7979.26, + "probability": 0.7148 + }, + { + "start": 7979.28, + "end": 7980.3, + "probability": 0.5437 + }, + { + "start": 7980.36, + "end": 7982.24, + "probability": 0.7837 + }, + { + "start": 7982.5, + "end": 7983.96, + "probability": 0.8603 + }, + { + "start": 7984.4, + "end": 7986.9, + "probability": 0.9744 + }, + { + "start": 7986.9, + "end": 7991.08, + "probability": 0.5256 + }, + { + "start": 7991.48, + "end": 7993.5, + "probability": 0.1695 + }, + { + "start": 7993.72, + "end": 7994.94, + "probability": 0.8975 + }, + { + "start": 7995.02, + "end": 7995.82, + "probability": 0.8674 + }, + { + "start": 7995.92, + "end": 7996.14, + "probability": 0.4915 + }, + { + "start": 7997.82, + "end": 8002.74, + "probability": 0.7085 + }, + { + "start": 8003.8, + "end": 8006.64, + "probability": 0.7436 + }, + { + "start": 8007.42, + "end": 8008.56, + "probability": 0.4629 + }, + { + "start": 8008.9, + "end": 8011.28, + "probability": 0.9674 + }, + { + "start": 8011.78, + "end": 8015.15, + "probability": 0.4777 + }, + { + "start": 8015.56, + "end": 8018.78, + "probability": 0.8938 + }, + { + "start": 8018.98, + "end": 8022.38, + "probability": 0.7078 + }, + { + "start": 8023.2, + "end": 8025.02, + "probability": 0.6292 + }, + { + "start": 8027.56, + "end": 8030.1, + "probability": 0.0097 + }, + { + "start": 8031.42, + "end": 8031.42, + "probability": 0.0 + } + ], + "segments_count": 2430, + "words_count": 12731, + "avg_words_per_segment": 5.2391, + "avg_segment_duration": 2.518, + "avg_words_per_minute": 95.109, + "plenum_id": "12360", + "duration": 8031.42, + "title": null, + "plenum_date": "2011-02-22" +} \ No newline at end of file