diff --git "a/19652/metadata.json" "b/19652/metadata.json" new file mode 100644--- /dev/null +++ "b/19652/metadata.json" @@ -0,0 +1,30792 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "19652", + "quality_score": 0.9072, + "per_segment_quality_scores": [ + { + "start": 6.48, + "end": 9.76, + "probability": 0.8322 + }, + { + "start": 10.74, + "end": 13.66, + "probability": 0.8238 + }, + { + "start": 14.54, + "end": 16.84, + "probability": 0.9379 + }, + { + "start": 17.76, + "end": 21.24, + "probability": 0.5396 + }, + { + "start": 21.92, + "end": 23.92, + "probability": 0.5247 + }, + { + "start": 24.72, + "end": 27.6, + "probability": 0.9883 + }, + { + "start": 28.54, + "end": 31.91, + "probability": 0.6845 + }, + { + "start": 32.6, + "end": 34.7, + "probability": 0.9902 + }, + { + "start": 35.26, + "end": 36.4, + "probability": 0.9785 + }, + { + "start": 38.6, + "end": 41.2, + "probability": 0.73 + }, + { + "start": 42.14, + "end": 43.84, + "probability": 0.9289 + }, + { + "start": 44.24, + "end": 45.82, + "probability": 0.9886 + }, + { + "start": 46.58, + "end": 48.04, + "probability": 0.9954 + }, + { + "start": 48.64, + "end": 50.02, + "probability": 0.3612 + }, + { + "start": 50.32, + "end": 51.9, + "probability": 0.2049 + }, + { + "start": 52.4, + "end": 53.56, + "probability": 0.9915 + }, + { + "start": 53.7, + "end": 54.02, + "probability": 0.7366 + }, + { + "start": 54.98, + "end": 58.94, + "probability": 0.9219 + }, + { + "start": 59.48, + "end": 61.06, + "probability": 0.84 + }, + { + "start": 61.9, + "end": 65.36, + "probability": 0.9905 + }, + { + "start": 65.44, + "end": 66.0, + "probability": 0.8073 + }, + { + "start": 66.74, + "end": 68.42, + "probability": 0.6679 + }, + { + "start": 69.14, + "end": 71.14, + "probability": 0.9968 + }, + { + "start": 72.36, + "end": 75.32, + "probability": 0.5178 + }, + { + "start": 76.12, + "end": 80.24, + "probability": 0.7452 + }, + { + "start": 81.58, + "end": 84.34, + "probability": 0.425 + }, + { + "start": 85.16, + "end": 85.8, + "probability": 0.6654 + }, + { + "start": 85.8, + "end": 88.24, + "probability": 0.8171 + }, + { + "start": 89.38, + "end": 90.7, + "probability": 0.66 + }, + { + "start": 91.24, + "end": 92.94, + "probability": 0.1269 + }, + { + "start": 93.56, + "end": 95.6, + "probability": 0.584 + }, + { + "start": 96.52, + "end": 98.06, + "probability": 0.821 + }, + { + "start": 103.6, + "end": 105.92, + "probability": 0.0405 + }, + { + "start": 106.42, + "end": 107.32, + "probability": 0.0531 + }, + { + "start": 107.56, + "end": 110.46, + "probability": 0.0589 + }, + { + "start": 111.4, + "end": 112.86, + "probability": 0.085 + }, + { + "start": 113.28, + "end": 114.38, + "probability": 0.0616 + }, + { + "start": 114.48, + "end": 115.68, + "probability": 0.2176 + }, + { + "start": 115.68, + "end": 116.64, + "probability": 0.1942 + }, + { + "start": 118.16, + "end": 119.3, + "probability": 0.0391 + }, + { + "start": 131.9, + "end": 132.42, + "probability": 0.0374 + }, + { + "start": 133.83, + "end": 135.43, + "probability": 0.0929 + }, + { + "start": 135.48, + "end": 137.26, + "probability": 0.0789 + }, + { + "start": 137.66, + "end": 139.52, + "probability": 0.0147 + }, + { + "start": 148.66, + "end": 155.84, + "probability": 0.1621 + }, + { + "start": 156.42, + "end": 156.96, + "probability": 0.0924 + }, + { + "start": 156.96, + "end": 156.96, + "probability": 0.0468 + }, + { + "start": 156.96, + "end": 156.96, + "probability": 0.064 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 157.0, + "end": 157.0, + "probability": 0.0 + }, + { + "start": 159.6, + "end": 160.84, + "probability": 0.0177 + }, + { + "start": 161.38, + "end": 162.3, + "probability": 0.0263 + }, + { + "start": 162.92, + "end": 164.6, + "probability": 0.1801 + }, + { + "start": 164.7, + "end": 168.94, + "probability": 0.5015 + }, + { + "start": 169.58, + "end": 172.24, + "probability": 0.0435 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.0, + "end": 279.0, + "probability": 0.0 + }, + { + "start": 279.79, + "end": 282.84, + "probability": 0.3053 + }, + { + "start": 283.4, + "end": 289.22, + "probability": 0.985 + }, + { + "start": 289.76, + "end": 291.48, + "probability": 0.9981 + }, + { + "start": 292.06, + "end": 297.44, + "probability": 0.9854 + }, + { + "start": 297.59, + "end": 303.22, + "probability": 0.9686 + }, + { + "start": 304.02, + "end": 308.68, + "probability": 0.8081 + }, + { + "start": 309.32, + "end": 312.36, + "probability": 0.8225 + }, + { + "start": 312.46, + "end": 313.98, + "probability": 0.6383 + }, + { + "start": 314.1, + "end": 314.1, + "probability": 0.6277 + }, + { + "start": 314.1, + "end": 315.54, + "probability": 0.7451 + }, + { + "start": 315.7, + "end": 316.78, + "probability": 0.8745 + }, + { + "start": 317.54, + "end": 320.48, + "probability": 0.9683 + }, + { + "start": 321.12, + "end": 321.68, + "probability": 0.705 + }, + { + "start": 321.94, + "end": 326.86, + "probability": 0.9497 + }, + { + "start": 327.64, + "end": 330.62, + "probability": 0.9453 + }, + { + "start": 331.6, + "end": 333.2, + "probability": 0.9919 + }, + { + "start": 333.42, + "end": 334.0, + "probability": 0.6402 + }, + { + "start": 334.5, + "end": 334.93, + "probability": 0.571 + }, + { + "start": 336.36, + "end": 338.18, + "probability": 0.8767 + }, + { + "start": 338.3, + "end": 341.28, + "probability": 0.9875 + }, + { + "start": 342.04, + "end": 344.92, + "probability": 0.9486 + }, + { + "start": 346.0, + "end": 347.86, + "probability": 0.8968 + }, + { + "start": 347.94, + "end": 350.58, + "probability": 0.9963 + }, + { + "start": 350.58, + "end": 355.26, + "probability": 0.9963 + }, + { + "start": 356.36, + "end": 359.16, + "probability": 0.9963 + }, + { + "start": 359.62, + "end": 363.22, + "probability": 0.9844 + }, + { + "start": 364.04, + "end": 368.38, + "probability": 0.9971 + }, + { + "start": 368.94, + "end": 372.52, + "probability": 0.9578 + }, + { + "start": 372.98, + "end": 374.08, + "probability": 0.8297 + }, + { + "start": 374.2, + "end": 374.62, + "probability": 0.8609 + }, + { + "start": 375.0, + "end": 379.8, + "probability": 0.9862 + }, + { + "start": 379.96, + "end": 381.42, + "probability": 0.9758 + }, + { + "start": 381.98, + "end": 384.76, + "probability": 0.9275 + }, + { + "start": 385.48, + "end": 386.32, + "probability": 0.8357 + }, + { + "start": 386.78, + "end": 392.3, + "probability": 0.9829 + }, + { + "start": 392.44, + "end": 392.98, + "probability": 0.898 + }, + { + "start": 393.68, + "end": 396.54, + "probability": 0.6501 + }, + { + "start": 396.98, + "end": 398.48, + "probability": 0.9894 + }, + { + "start": 399.1, + "end": 401.18, + "probability": 0.9888 + }, + { + "start": 401.58, + "end": 402.98, + "probability": 0.9371 + }, + { + "start": 403.38, + "end": 405.52, + "probability": 0.986 + }, + { + "start": 406.72, + "end": 410.5, + "probability": 0.9849 + }, + { + "start": 411.54, + "end": 414.37, + "probability": 0.9826 + }, + { + "start": 414.76, + "end": 416.08, + "probability": 0.9661 + }, + { + "start": 417.22, + "end": 418.52, + "probability": 0.9895 + }, + { + "start": 419.72, + "end": 423.38, + "probability": 0.9647 + }, + { + "start": 424.2, + "end": 427.34, + "probability": 0.9153 + }, + { + "start": 428.22, + "end": 429.65, + "probability": 0.8644 + }, + { + "start": 430.7, + "end": 434.24, + "probability": 0.9716 + }, + { + "start": 435.36, + "end": 436.36, + "probability": 0.9911 + }, + { + "start": 436.52, + "end": 437.7, + "probability": 0.909 + }, + { + "start": 438.14, + "end": 442.52, + "probability": 0.9512 + }, + { + "start": 443.08, + "end": 446.16, + "probability": 0.9794 + }, + { + "start": 446.32, + "end": 448.43, + "probability": 0.8741 + }, + { + "start": 449.56, + "end": 451.54, + "probability": 0.8749 + }, + { + "start": 453.24, + "end": 453.82, + "probability": 0.8703 + }, + { + "start": 454.08, + "end": 457.64, + "probability": 0.9697 + }, + { + "start": 457.64, + "end": 461.2, + "probability": 0.9971 + }, + { + "start": 461.7, + "end": 463.28, + "probability": 0.8531 + }, + { + "start": 463.7, + "end": 463.86, + "probability": 0.0534 + }, + { + "start": 463.86, + "end": 466.83, + "probability": 0.9937 + }, + { + "start": 467.76, + "end": 471.1, + "probability": 0.958 + }, + { + "start": 471.3, + "end": 472.54, + "probability": 0.9545 + }, + { + "start": 473.0, + "end": 476.18, + "probability": 0.993 + }, + { + "start": 476.7, + "end": 477.56, + "probability": 0.7974 + }, + { + "start": 478.9, + "end": 478.92, + "probability": 0.624 + }, + { + "start": 480.0, + "end": 480.62, + "probability": 0.5994 + }, + { + "start": 481.28, + "end": 482.36, + "probability": 0.8069 + }, + { + "start": 483.68, + "end": 484.74, + "probability": 0.9828 + }, + { + "start": 485.02, + "end": 485.38, + "probability": 0.497 + }, + { + "start": 485.4, + "end": 486.12, + "probability": 0.8517 + }, + { + "start": 486.6, + "end": 488.38, + "probability": 0.978 + }, + { + "start": 488.74, + "end": 489.78, + "probability": 0.835 + }, + { + "start": 490.42, + "end": 492.16, + "probability": 0.9757 + }, + { + "start": 493.08, + "end": 493.84, + "probability": 0.6215 + }, + { + "start": 494.0, + "end": 495.62, + "probability": 0.9917 + }, + { + "start": 496.02, + "end": 497.66, + "probability": 0.9902 + }, + { + "start": 498.86, + "end": 499.62, + "probability": 0.7518 + }, + { + "start": 501.38, + "end": 501.38, + "probability": 0.4496 + }, + { + "start": 501.38, + "end": 501.38, + "probability": 0.1033 + }, + { + "start": 501.38, + "end": 502.08, + "probability": 0.7722 + }, + { + "start": 502.7, + "end": 504.58, + "probability": 0.9793 + }, + { + "start": 505.82, + "end": 506.66, + "probability": 0.9651 + }, + { + "start": 506.8, + "end": 507.76, + "probability": 0.9995 + }, + { + "start": 508.6, + "end": 510.4, + "probability": 0.9958 + }, + { + "start": 510.9, + "end": 513.6, + "probability": 0.9729 + }, + { + "start": 514.06, + "end": 514.92, + "probability": 0.8908 + }, + { + "start": 515.54, + "end": 515.96, + "probability": 0.8398 + }, + { + "start": 516.84, + "end": 517.74, + "probability": 0.9966 + }, + { + "start": 518.36, + "end": 520.74, + "probability": 0.9707 + }, + { + "start": 520.9, + "end": 521.58, + "probability": 0.9607 + }, + { + "start": 521.92, + "end": 522.92, + "probability": 0.9685 + }, + { + "start": 523.3, + "end": 524.12, + "probability": 0.9817 + }, + { + "start": 524.6, + "end": 525.36, + "probability": 0.8053 + }, + { + "start": 526.26, + "end": 528.88, + "probability": 0.9976 + }, + { + "start": 528.92, + "end": 529.88, + "probability": 0.7511 + }, + { + "start": 530.44, + "end": 533.1, + "probability": 0.9615 + }, + { + "start": 533.28, + "end": 533.73, + "probability": 0.9614 + }, + { + "start": 534.0, + "end": 535.96, + "probability": 0.9932 + }, + { + "start": 536.08, + "end": 538.94, + "probability": 0.9685 + }, + { + "start": 539.38, + "end": 539.92, + "probability": 0.9216 + }, + { + "start": 540.1, + "end": 541.02, + "probability": 0.7084 + }, + { + "start": 541.18, + "end": 542.16, + "probability": 0.8647 + }, + { + "start": 542.66, + "end": 543.56, + "probability": 0.9632 + }, + { + "start": 543.72, + "end": 544.42, + "probability": 0.9114 + }, + { + "start": 544.8, + "end": 545.48, + "probability": 0.9871 + }, + { + "start": 545.88, + "end": 546.8, + "probability": 0.8509 + }, + { + "start": 547.4, + "end": 548.7, + "probability": 0.9763 + }, + { + "start": 549.14, + "end": 552.22, + "probability": 0.9707 + }, + { + "start": 552.88, + "end": 554.16, + "probability": 0.921 + }, + { + "start": 554.94, + "end": 557.62, + "probability": 0.9963 + }, + { + "start": 558.3, + "end": 563.5, + "probability": 0.9907 + }, + { + "start": 564.3, + "end": 566.78, + "probability": 0.9941 + }, + { + "start": 567.32, + "end": 568.3, + "probability": 0.9797 + }, + { + "start": 569.28, + "end": 569.8, + "probability": 0.7848 + }, + { + "start": 570.5, + "end": 573.9, + "probability": 0.9982 + }, + { + "start": 574.42, + "end": 575.26, + "probability": 0.9871 + }, + { + "start": 575.42, + "end": 579.0, + "probability": 0.9218 + }, + { + "start": 579.4, + "end": 580.36, + "probability": 0.8597 + }, + { + "start": 581.18, + "end": 584.08, + "probability": 0.0384 + }, + { + "start": 584.92, + "end": 584.92, + "probability": 0.0342 + }, + { + "start": 585.32, + "end": 589.16, + "probability": 0.0241 + }, + { + "start": 604.82, + "end": 606.22, + "probability": 0.1251 + }, + { + "start": 608.44, + "end": 610.36, + "probability": 0.9801 + }, + { + "start": 610.8, + "end": 612.36, + "probability": 0.9569 + }, + { + "start": 613.24, + "end": 613.98, + "probability": 0.8367 + }, + { + "start": 614.66, + "end": 618.06, + "probability": 0.9917 + }, + { + "start": 618.36, + "end": 620.28, + "probability": 0.9244 + }, + { + "start": 620.82, + "end": 623.22, + "probability": 0.9902 + }, + { + "start": 623.98, + "end": 627.94, + "probability": 0.9773 + }, + { + "start": 628.36, + "end": 631.54, + "probability": 0.9548 + }, + { + "start": 632.1, + "end": 634.86, + "probability": 0.9547 + }, + { + "start": 635.88, + "end": 639.04, + "probability": 0.8864 + }, + { + "start": 639.54, + "end": 640.34, + "probability": 0.6949 + }, + { + "start": 641.06, + "end": 642.6, + "probability": 0.703 + }, + { + "start": 642.62, + "end": 645.36, + "probability": 0.809 + }, + { + "start": 645.96, + "end": 646.78, + "probability": 0.5612 + }, + { + "start": 647.46, + "end": 648.38, + "probability": 0.9976 + }, + { + "start": 649.54, + "end": 652.29, + "probability": 0.8506 + }, + { + "start": 652.96, + "end": 655.38, + "probability": 0.9587 + }, + { + "start": 655.9, + "end": 656.56, + "probability": 0.9849 + }, + { + "start": 657.38, + "end": 658.12, + "probability": 0.5957 + }, + { + "start": 658.44, + "end": 660.09, + "probability": 0.9813 + }, + { + "start": 660.8, + "end": 664.04, + "probability": 0.989 + }, + { + "start": 664.6, + "end": 666.1, + "probability": 0.9983 + }, + { + "start": 666.64, + "end": 670.68, + "probability": 0.9742 + }, + { + "start": 671.12, + "end": 674.1, + "probability": 0.9773 + }, + { + "start": 674.46, + "end": 676.14, + "probability": 0.9282 + }, + { + "start": 676.6, + "end": 678.98, + "probability": 0.9587 + }, + { + "start": 679.56, + "end": 683.6, + "probability": 0.9978 + }, + { + "start": 684.36, + "end": 687.58, + "probability": 0.9795 + }, + { + "start": 688.18, + "end": 691.66, + "probability": 0.9941 + }, + { + "start": 692.22, + "end": 693.2, + "probability": 0.8616 + }, + { + "start": 693.6, + "end": 698.1, + "probability": 0.9818 + }, + { + "start": 698.5, + "end": 702.3, + "probability": 0.9989 + }, + { + "start": 702.74, + "end": 704.66, + "probability": 0.9526 + }, + { + "start": 705.72, + "end": 708.24, + "probability": 0.9883 + }, + { + "start": 708.76, + "end": 711.7, + "probability": 0.9973 + }, + { + "start": 712.74, + "end": 716.1, + "probability": 0.9949 + }, + { + "start": 716.6, + "end": 721.76, + "probability": 0.8281 + }, + { + "start": 722.24, + "end": 725.42, + "probability": 0.7466 + }, + { + "start": 726.38, + "end": 728.08, + "probability": 0.8518 + }, + { + "start": 729.14, + "end": 731.48, + "probability": 0.993 + }, + { + "start": 732.12, + "end": 734.56, + "probability": 0.9812 + }, + { + "start": 734.74, + "end": 735.62, + "probability": 0.9634 + }, + { + "start": 736.25, + "end": 738.78, + "probability": 0.9838 + }, + { + "start": 739.24, + "end": 740.14, + "probability": 0.6948 + }, + { + "start": 740.6, + "end": 745.58, + "probability": 0.9378 + }, + { + "start": 746.2, + "end": 747.06, + "probability": 0.7702 + }, + { + "start": 747.36, + "end": 748.48, + "probability": 0.8804 + }, + { + "start": 748.86, + "end": 749.32, + "probability": 0.4749 + }, + { + "start": 749.74, + "end": 750.3, + "probability": 0.6217 + }, + { + "start": 750.54, + "end": 751.8, + "probability": 0.818 + }, + { + "start": 752.44, + "end": 754.88, + "probability": 0.9903 + }, + { + "start": 755.26, + "end": 755.99, + "probability": 0.8647 + }, + { + "start": 756.48, + "end": 758.16, + "probability": 0.3154 + }, + { + "start": 758.5, + "end": 760.08, + "probability": 0.6677 + }, + { + "start": 761.02, + "end": 761.84, + "probability": 0.2021 + }, + { + "start": 761.84, + "end": 761.88, + "probability": 0.4061 + }, + { + "start": 761.94, + "end": 765.98, + "probability": 0.9319 + }, + { + "start": 768.3, + "end": 768.62, + "probability": 0.4951 + }, + { + "start": 771.7, + "end": 774.86, + "probability": 0.9 + }, + { + "start": 774.96, + "end": 778.92, + "probability": 0.9159 + }, + { + "start": 779.52, + "end": 782.13, + "probability": 0.7153 + }, + { + "start": 783.02, + "end": 785.26, + "probability": 0.8545 + }, + { + "start": 785.34, + "end": 785.92, + "probability": 0.6002 + }, + { + "start": 786.1, + "end": 789.84, + "probability": 0.7552 + }, + { + "start": 789.9, + "end": 790.46, + "probability": 0.7059 + }, + { + "start": 790.58, + "end": 794.34, + "probability": 0.9754 + }, + { + "start": 794.42, + "end": 797.02, + "probability": 0.751 + }, + { + "start": 797.2, + "end": 801.06, + "probability": 0.9146 + }, + { + "start": 802.96, + "end": 805.48, + "probability": 0.6094 + }, + { + "start": 805.6, + "end": 808.6, + "probability": 0.9823 + }, + { + "start": 808.7, + "end": 809.84, + "probability": 0.7464 + }, + { + "start": 810.94, + "end": 814.16, + "probability": 0.4023 + }, + { + "start": 814.78, + "end": 815.46, + "probability": 0.2337 + }, + { + "start": 815.5, + "end": 817.02, + "probability": 0.8845 + }, + { + "start": 817.92, + "end": 819.36, + "probability": 0.9233 + }, + { + "start": 819.5, + "end": 822.0, + "probability": 0.9781 + }, + { + "start": 822.0, + "end": 824.42, + "probability": 0.9798 + }, + { + "start": 824.84, + "end": 825.55, + "probability": 0.9556 + }, + { + "start": 826.72, + "end": 828.78, + "probability": 0.8902 + }, + { + "start": 828.86, + "end": 832.06, + "probability": 0.9828 + }, + { + "start": 832.7, + "end": 836.96, + "probability": 0.9917 + }, + { + "start": 837.34, + "end": 838.27, + "probability": 0.8944 + }, + { + "start": 838.8, + "end": 841.4, + "probability": 0.9862 + }, + { + "start": 841.8, + "end": 846.3, + "probability": 0.9885 + }, + { + "start": 846.84, + "end": 847.88, + "probability": 0.9738 + }, + { + "start": 848.48, + "end": 849.64, + "probability": 0.9338 + }, + { + "start": 850.04, + "end": 850.98, + "probability": 0.9896 + }, + { + "start": 851.4, + "end": 852.68, + "probability": 0.9894 + }, + { + "start": 852.98, + "end": 854.69, + "probability": 0.9923 + }, + { + "start": 855.4, + "end": 857.92, + "probability": 0.9771 + }, + { + "start": 858.48, + "end": 860.56, + "probability": 0.7832 + }, + { + "start": 860.76, + "end": 864.14, + "probability": 0.9535 + }, + { + "start": 864.6, + "end": 868.18, + "probability": 0.7709 + }, + { + "start": 868.58, + "end": 870.1, + "probability": 0.9619 + }, + { + "start": 870.7, + "end": 872.18, + "probability": 0.9512 + }, + { + "start": 872.74, + "end": 875.2, + "probability": 0.9607 + }, + { + "start": 875.56, + "end": 876.24, + "probability": 0.9371 + }, + { + "start": 876.54, + "end": 879.9, + "probability": 0.9257 + }, + { + "start": 880.26, + "end": 882.66, + "probability": 0.9958 + }, + { + "start": 883.1, + "end": 886.52, + "probability": 0.9615 + }, + { + "start": 887.16, + "end": 888.86, + "probability": 0.8759 + }, + { + "start": 889.38, + "end": 890.8, + "probability": 0.8689 + }, + { + "start": 891.24, + "end": 891.86, + "probability": 0.8951 + }, + { + "start": 892.0, + "end": 892.94, + "probability": 0.8985 + }, + { + "start": 893.44, + "end": 894.92, + "probability": 0.8837 + }, + { + "start": 895.34, + "end": 896.86, + "probability": 0.943 + }, + { + "start": 897.66, + "end": 900.42, + "probability": 0.9366 + }, + { + "start": 901.04, + "end": 903.2, + "probability": 0.9826 + }, + { + "start": 903.64, + "end": 904.56, + "probability": 0.7283 + }, + { + "start": 904.78, + "end": 906.14, + "probability": 0.9885 + }, + { + "start": 906.94, + "end": 907.58, + "probability": 0.876 + }, + { + "start": 908.22, + "end": 908.94, + "probability": 0.738 + }, + { + "start": 909.32, + "end": 911.64, + "probability": 0.9548 + }, + { + "start": 911.68, + "end": 914.58, + "probability": 0.8755 + }, + { + "start": 915.02, + "end": 917.38, + "probability": 0.9121 + }, + { + "start": 917.86, + "end": 920.38, + "probability": 0.8543 + }, + { + "start": 921.0, + "end": 923.08, + "probability": 0.721 + }, + { + "start": 923.42, + "end": 928.34, + "probability": 0.9956 + }, + { + "start": 928.68, + "end": 931.76, + "probability": 0.9986 + }, + { + "start": 931.98, + "end": 933.22, + "probability": 0.7935 + }, + { + "start": 933.64, + "end": 934.68, + "probability": 0.7736 + }, + { + "start": 935.26, + "end": 942.8, + "probability": 0.9758 + }, + { + "start": 943.56, + "end": 944.42, + "probability": 0.8151 + }, + { + "start": 944.8, + "end": 947.48, + "probability": 0.837 + }, + { + "start": 947.86, + "end": 949.02, + "probability": 0.6819 + }, + { + "start": 949.12, + "end": 949.78, + "probability": 0.7497 + }, + { + "start": 949.96, + "end": 950.96, + "probability": 0.8663 + }, + { + "start": 951.4, + "end": 951.82, + "probability": 0.7489 + }, + { + "start": 952.56, + "end": 954.32, + "probability": 0.7146 + }, + { + "start": 954.84, + "end": 960.7, + "probability": 0.9948 + }, + { + "start": 961.1, + "end": 962.5, + "probability": 0.7759 + }, + { + "start": 962.8, + "end": 964.54, + "probability": 0.8042 + }, + { + "start": 964.74, + "end": 965.44, + "probability": 0.9584 + }, + { + "start": 965.85, + "end": 970.82, + "probability": 0.986 + }, + { + "start": 971.32, + "end": 972.9, + "probability": 0.7991 + }, + { + "start": 973.52, + "end": 977.5, + "probability": 0.9973 + }, + { + "start": 978.14, + "end": 979.06, + "probability": 0.9511 + }, + { + "start": 979.3, + "end": 980.66, + "probability": 0.8464 + }, + { + "start": 982.08, + "end": 987.02, + "probability": 0.9676 + }, + { + "start": 987.44, + "end": 988.82, + "probability": 0.996 + }, + { + "start": 989.26, + "end": 990.34, + "probability": 0.6435 + }, + { + "start": 990.78, + "end": 992.28, + "probability": 0.9557 + }, + { + "start": 992.9, + "end": 993.48, + "probability": 0.7301 + }, + { + "start": 994.04, + "end": 995.84, + "probability": 0.9848 + }, + { + "start": 996.96, + "end": 1001.68, + "probability": 0.9634 + }, + { + "start": 1002.62, + "end": 1004.16, + "probability": 0.8936 + }, + { + "start": 1004.58, + "end": 1005.9, + "probability": 0.7385 + }, + { + "start": 1006.28, + "end": 1014.16, + "probability": 0.6661 + }, + { + "start": 1014.62, + "end": 1015.0, + "probability": 0.6829 + }, + { + "start": 1015.1, + "end": 1020.94, + "probability": 0.9805 + }, + { + "start": 1021.4, + "end": 1026.58, + "probability": 0.9872 + }, + { + "start": 1027.32, + "end": 1028.68, + "probability": 0.8169 + }, + { + "start": 1029.2, + "end": 1033.94, + "probability": 0.9417 + }, + { + "start": 1035.12, + "end": 1037.8, + "probability": 0.9461 + }, + { + "start": 1038.38, + "end": 1043.66, + "probability": 0.9587 + }, + { + "start": 1044.12, + "end": 1048.06, + "probability": 0.9976 + }, + { + "start": 1048.84, + "end": 1052.52, + "probability": 0.9025 + }, + { + "start": 1052.98, + "end": 1054.87, + "probability": 0.736 + }, + { + "start": 1055.5, + "end": 1056.72, + "probability": 0.884 + }, + { + "start": 1057.44, + "end": 1058.36, + "probability": 0.9602 + }, + { + "start": 1058.86, + "end": 1062.12, + "probability": 0.9918 + }, + { + "start": 1062.5, + "end": 1066.5, + "probability": 0.9951 + }, + { + "start": 1067.2, + "end": 1070.44, + "probability": 0.998 + }, + { + "start": 1071.16, + "end": 1071.88, + "probability": 0.8102 + }, + { + "start": 1072.04, + "end": 1075.96, + "probability": 0.9978 + }, + { + "start": 1076.32, + "end": 1078.7, + "probability": 0.9976 + }, + { + "start": 1079.38, + "end": 1080.26, + "probability": 0.9215 + }, + { + "start": 1081.02, + "end": 1082.26, + "probability": 0.9637 + }, + { + "start": 1083.06, + "end": 1084.3, + "probability": 0.8773 + }, + { + "start": 1085.0, + "end": 1085.5, + "probability": 0.7389 + }, + { + "start": 1085.96, + "end": 1087.92, + "probability": 0.9899 + }, + { + "start": 1087.92, + "end": 1090.86, + "probability": 0.9495 + }, + { + "start": 1091.36, + "end": 1094.36, + "probability": 0.966 + }, + { + "start": 1094.36, + "end": 1097.66, + "probability": 0.9039 + }, + { + "start": 1098.12, + "end": 1099.2, + "probability": 0.9189 + }, + { + "start": 1099.38, + "end": 1101.4, + "probability": 0.9793 + }, + { + "start": 1101.9, + "end": 1102.94, + "probability": 0.7806 + }, + { + "start": 1103.52, + "end": 1104.98, + "probability": 0.9759 + }, + { + "start": 1105.4, + "end": 1107.56, + "probability": 0.9611 + }, + { + "start": 1108.08, + "end": 1109.66, + "probability": 0.7658 + }, + { + "start": 1110.24, + "end": 1111.16, + "probability": 0.8497 + }, + { + "start": 1111.88, + "end": 1118.06, + "probability": 0.9873 + }, + { + "start": 1118.48, + "end": 1119.94, + "probability": 0.7882 + }, + { + "start": 1120.32, + "end": 1123.28, + "probability": 0.6768 + }, + { + "start": 1123.66, + "end": 1127.64, + "probability": 0.9126 + }, + { + "start": 1128.46, + "end": 1131.68, + "probability": 0.9867 + }, + { + "start": 1131.78, + "end": 1133.4, + "probability": 0.5964 + }, + { + "start": 1133.9, + "end": 1137.78, + "probability": 0.893 + }, + { + "start": 1138.42, + "end": 1139.16, + "probability": 0.7943 + }, + { + "start": 1139.6, + "end": 1140.36, + "probability": 0.8565 + }, + { + "start": 1140.44, + "end": 1142.26, + "probability": 0.9346 + }, + { + "start": 1142.78, + "end": 1144.9, + "probability": 0.9939 + }, + { + "start": 1145.42, + "end": 1146.42, + "probability": 0.9836 + }, + { + "start": 1146.94, + "end": 1148.88, + "probability": 0.9925 + }, + { + "start": 1149.04, + "end": 1151.16, + "probability": 0.791 + }, + { + "start": 1151.56, + "end": 1153.5, + "probability": 0.9885 + }, + { + "start": 1153.84, + "end": 1154.98, + "probability": 0.9606 + }, + { + "start": 1155.44, + "end": 1157.66, + "probability": 0.9297 + }, + { + "start": 1158.12, + "end": 1162.92, + "probability": 0.9773 + }, + { + "start": 1163.38, + "end": 1164.28, + "probability": 0.5938 + }, + { + "start": 1164.72, + "end": 1167.22, + "probability": 0.969 + }, + { + "start": 1167.52, + "end": 1168.94, + "probability": 0.9745 + }, + { + "start": 1169.1, + "end": 1171.16, + "probability": 0.9937 + }, + { + "start": 1171.59, + "end": 1173.76, + "probability": 0.9753 + }, + { + "start": 1174.28, + "end": 1179.26, + "probability": 0.9902 + }, + { + "start": 1179.72, + "end": 1181.58, + "probability": 0.9813 + }, + { + "start": 1181.96, + "end": 1183.7, + "probability": 0.9608 + }, + { + "start": 1184.08, + "end": 1188.42, + "probability": 0.9989 + }, + { + "start": 1188.78, + "end": 1192.34, + "probability": 0.9714 + }, + { + "start": 1192.54, + "end": 1192.76, + "probability": 0.8463 + }, + { + "start": 1193.5, + "end": 1194.08, + "probability": 0.9817 + }, + { + "start": 1194.64, + "end": 1194.96, + "probability": 0.8978 + }, + { + "start": 1195.82, + "end": 1196.82, + "probability": 0.9229 + }, + { + "start": 1197.38, + "end": 1199.11, + "probability": 0.9044 + }, + { + "start": 1199.72, + "end": 1204.48, + "probability": 0.817 + }, + { + "start": 1205.06, + "end": 1208.72, + "probability": 0.83 + }, + { + "start": 1209.3, + "end": 1210.14, + "probability": 0.8091 + }, + { + "start": 1211.24, + "end": 1214.86, + "probability": 0.961 + }, + { + "start": 1215.54, + "end": 1216.92, + "probability": 0.9988 + }, + { + "start": 1217.98, + "end": 1219.32, + "probability": 0.7415 + }, + { + "start": 1220.06, + "end": 1221.76, + "probability": 0.9546 + }, + { + "start": 1222.34, + "end": 1225.52, + "probability": 0.9709 + }, + { + "start": 1225.92, + "end": 1227.16, + "probability": 0.8726 + }, + { + "start": 1227.78, + "end": 1229.36, + "probability": 0.607 + }, + { + "start": 1230.7, + "end": 1231.6, + "probability": 0.5311 + }, + { + "start": 1232.2, + "end": 1234.04, + "probability": 0.8174 + }, + { + "start": 1234.76, + "end": 1235.76, + "probability": 0.8792 + }, + { + "start": 1236.48, + "end": 1238.5, + "probability": 0.973 + }, + { + "start": 1238.52, + "end": 1238.88, + "probability": 0.9033 + }, + { + "start": 1238.9, + "end": 1240.04, + "probability": 0.7818 + }, + { + "start": 1240.04, + "end": 1243.16, + "probability": 0.8721 + }, + { + "start": 1243.22, + "end": 1243.42, + "probability": 0.8331 + }, + { + "start": 1244.36, + "end": 1246.8, + "probability": 0.9932 + }, + { + "start": 1248.4, + "end": 1253.36, + "probability": 0.8971 + }, + { + "start": 1254.3, + "end": 1257.72, + "probability": 0.9783 + }, + { + "start": 1258.38, + "end": 1262.5, + "probability": 0.9822 + }, + { + "start": 1263.68, + "end": 1266.62, + "probability": 0.9782 + }, + { + "start": 1267.18, + "end": 1271.5, + "probability": 0.9729 + }, + { + "start": 1273.24, + "end": 1274.8, + "probability": 0.9221 + }, + { + "start": 1275.44, + "end": 1276.38, + "probability": 0.7782 + }, + { + "start": 1276.42, + "end": 1278.02, + "probability": 0.999 + }, + { + "start": 1278.5, + "end": 1280.26, + "probability": 0.5735 + }, + { + "start": 1281.08, + "end": 1287.22, + "probability": 0.9948 + }, + { + "start": 1287.74, + "end": 1289.7, + "probability": 0.9977 + }, + { + "start": 1290.22, + "end": 1294.54, + "probability": 0.9997 + }, + { + "start": 1295.44, + "end": 1300.34, + "probability": 0.9834 + }, + { + "start": 1301.7, + "end": 1306.18, + "probability": 0.9883 + }, + { + "start": 1306.66, + "end": 1307.88, + "probability": 0.8531 + }, + { + "start": 1310.54, + "end": 1310.54, + "probability": 0.038 + }, + { + "start": 1310.54, + "end": 1312.06, + "probability": 0.8447 + }, + { + "start": 1312.46, + "end": 1315.42, + "probability": 0.9298 + }, + { + "start": 1315.42, + "end": 1317.07, + "probability": 0.8746 + }, + { + "start": 1317.54, + "end": 1320.72, + "probability": 0.7866 + }, + { + "start": 1320.96, + "end": 1328.6, + "probability": 0.8792 + }, + { + "start": 1328.7, + "end": 1330.84, + "probability": 0.9083 + }, + { + "start": 1331.46, + "end": 1334.39, + "probability": 0.9246 + }, + { + "start": 1335.04, + "end": 1335.14, + "probability": 0.5806 + }, + { + "start": 1335.26, + "end": 1336.48, + "probability": 0.9797 + }, + { + "start": 1336.56, + "end": 1340.52, + "probability": 0.9575 + }, + { + "start": 1341.5, + "end": 1342.34, + "probability": 0.5568 + }, + { + "start": 1343.52, + "end": 1344.78, + "probability": 0.6177 + }, + { + "start": 1345.46, + "end": 1346.58, + "probability": 0.828 + }, + { + "start": 1347.12, + "end": 1348.18, + "probability": 0.9592 + }, + { + "start": 1348.72, + "end": 1349.36, + "probability": 0.6941 + }, + { + "start": 1349.68, + "end": 1351.94, + "probability": 0.9967 + }, + { + "start": 1352.32, + "end": 1353.06, + "probability": 0.8396 + }, + { + "start": 1353.1, + "end": 1356.62, + "probability": 0.9884 + }, + { + "start": 1356.78, + "end": 1357.22, + "probability": 0.3907 + }, + { + "start": 1357.84, + "end": 1360.2, + "probability": 0.8526 + }, + { + "start": 1360.8, + "end": 1361.47, + "probability": 0.8442 + }, + { + "start": 1362.32, + "end": 1363.52, + "probability": 0.9814 + }, + { + "start": 1363.7, + "end": 1364.86, + "probability": 0.9822 + }, + { + "start": 1365.28, + "end": 1368.82, + "probability": 0.9909 + }, + { + "start": 1369.4, + "end": 1372.4, + "probability": 0.9706 + }, + { + "start": 1373.2, + "end": 1374.82, + "probability": 0.9945 + }, + { + "start": 1375.24, + "end": 1377.36, + "probability": 0.9292 + }, + { + "start": 1377.84, + "end": 1382.42, + "probability": 0.9839 + }, + { + "start": 1382.78, + "end": 1383.72, + "probability": 0.9807 + }, + { + "start": 1384.56, + "end": 1386.36, + "probability": 0.7889 + }, + { + "start": 1388.0, + "end": 1388.26, + "probability": 0.1434 + }, + { + "start": 1389.04, + "end": 1389.32, + "probability": 0.9602 + }, + { + "start": 1390.28, + "end": 1391.4, + "probability": 0.9413 + }, + { + "start": 1392.28, + "end": 1393.74, + "probability": 0.687 + }, + { + "start": 1394.28, + "end": 1397.98, + "probability": 0.991 + }, + { + "start": 1398.54, + "end": 1400.48, + "probability": 0.9934 + }, + { + "start": 1400.48, + "end": 1403.74, + "probability": 0.9974 + }, + { + "start": 1404.36, + "end": 1406.66, + "probability": 0.9946 + }, + { + "start": 1407.64, + "end": 1407.96, + "probability": 0.5869 + }, + { + "start": 1408.76, + "end": 1409.48, + "probability": 0.9673 + }, + { + "start": 1410.66, + "end": 1413.22, + "probability": 0.9616 + }, + { + "start": 1413.68, + "end": 1414.9, + "probability": 0.9111 + }, + { + "start": 1415.28, + "end": 1419.92, + "probability": 0.9244 + }, + { + "start": 1420.42, + "end": 1421.36, + "probability": 0.697 + }, + { + "start": 1423.28, + "end": 1426.68, + "probability": 0.7063 + }, + { + "start": 1427.5, + "end": 1428.88, + "probability": 0.9347 + }, + { + "start": 1429.3, + "end": 1432.94, + "probability": 0.7893 + }, + { + "start": 1433.26, + "end": 1434.78, + "probability": 0.8704 + }, + { + "start": 1435.36, + "end": 1436.62, + "probability": 0.9935 + }, + { + "start": 1437.22, + "end": 1438.88, + "probability": 0.9193 + }, + { + "start": 1439.22, + "end": 1443.16, + "probability": 0.9956 + }, + { + "start": 1443.92, + "end": 1445.3, + "probability": 0.9577 + }, + { + "start": 1446.26, + "end": 1446.54, + "probability": 0.8648 + }, + { + "start": 1447.58, + "end": 1448.82, + "probability": 0.8542 + }, + { + "start": 1449.98, + "end": 1451.18, + "probability": 0.6888 + }, + { + "start": 1452.0, + "end": 1454.14, + "probability": 0.8038 + }, + { + "start": 1454.42, + "end": 1455.66, + "probability": 0.8885 + }, + { + "start": 1455.7, + "end": 1457.84, + "probability": 0.8878 + }, + { + "start": 1458.28, + "end": 1459.59, + "probability": 0.8381 + }, + { + "start": 1460.28, + "end": 1461.04, + "probability": 0.995 + }, + { + "start": 1461.12, + "end": 1461.9, + "probability": 0.949 + }, + { + "start": 1462.34, + "end": 1463.11, + "probability": 0.3384 + }, + { + "start": 1463.88, + "end": 1466.0, + "probability": 0.7633 + }, + { + "start": 1466.96, + "end": 1471.04, + "probability": 0.9371 + }, + { + "start": 1471.36, + "end": 1472.84, + "probability": 0.9453 + }, + { + "start": 1472.9, + "end": 1474.94, + "probability": 0.9531 + }, + { + "start": 1475.62, + "end": 1478.18, + "probability": 0.6626 + }, + { + "start": 1478.94, + "end": 1481.85, + "probability": 0.9951 + }, + { + "start": 1482.74, + "end": 1484.4, + "probability": 0.9736 + }, + { + "start": 1485.12, + "end": 1485.84, + "probability": 0.9104 + }, + { + "start": 1486.22, + "end": 1486.72, + "probability": 0.9484 + }, + { + "start": 1487.06, + "end": 1487.66, + "probability": 0.8212 + }, + { + "start": 1487.78, + "end": 1489.26, + "probability": 0.936 + }, + { + "start": 1489.68, + "end": 1490.46, + "probability": 0.93 + }, + { + "start": 1491.18, + "end": 1492.1, + "probability": 0.988 + }, + { + "start": 1492.32, + "end": 1494.0, + "probability": 0.9989 + }, + { + "start": 1494.28, + "end": 1494.66, + "probability": 0.6584 + }, + { + "start": 1495.04, + "end": 1495.68, + "probability": 0.7819 + }, + { + "start": 1496.18, + "end": 1496.86, + "probability": 0.6906 + }, + { + "start": 1497.82, + "end": 1498.56, + "probability": 0.8848 + }, + { + "start": 1498.7, + "end": 1500.64, + "probability": 0.9754 + }, + { + "start": 1500.94, + "end": 1502.1, + "probability": 0.9889 + }, + { + "start": 1502.72, + "end": 1503.38, + "probability": 0.8206 + }, + { + "start": 1503.96, + "end": 1506.78, + "probability": 0.9954 + }, + { + "start": 1507.56, + "end": 1509.3, + "probability": 0.7692 + }, + { + "start": 1509.9, + "end": 1511.26, + "probability": 0.946 + }, + { + "start": 1512.24, + "end": 1515.82, + "probability": 0.9962 + }, + { + "start": 1516.26, + "end": 1520.78, + "probability": 0.9964 + }, + { + "start": 1520.98, + "end": 1522.04, + "probability": 0.9912 + }, + { + "start": 1522.82, + "end": 1525.88, + "probability": 0.9915 + }, + { + "start": 1526.18, + "end": 1528.78, + "probability": 0.9976 + }, + { + "start": 1529.16, + "end": 1536.7, + "probability": 0.038 + }, + { + "start": 1536.7, + "end": 1537.26, + "probability": 0.1099 + }, + { + "start": 1537.26, + "end": 1539.96, + "probability": 0.698 + }, + { + "start": 1540.38, + "end": 1541.26, + "probability": 0.8387 + }, + { + "start": 1541.78, + "end": 1543.54, + "probability": 0.6628 + }, + { + "start": 1543.78, + "end": 1545.42, + "probability": 0.917 + }, + { + "start": 1546.2, + "end": 1546.63, + "probability": 0.9556 + }, + { + "start": 1546.68, + "end": 1548.31, + "probability": 0.9771 + }, + { + "start": 1548.8, + "end": 1551.22, + "probability": 0.9858 + }, + { + "start": 1553.76, + "end": 1557.04, + "probability": 0.9662 + }, + { + "start": 1557.12, + "end": 1557.36, + "probability": 0.8806 + }, + { + "start": 1557.52, + "end": 1560.32, + "probability": 0.9402 + }, + { + "start": 1560.52, + "end": 1561.85, + "probability": 0.9841 + }, + { + "start": 1562.36, + "end": 1563.82, + "probability": 0.9967 + }, + { + "start": 1564.24, + "end": 1566.0, + "probability": 0.9901 + }, + { + "start": 1566.3, + "end": 1567.16, + "probability": 0.993 + }, + { + "start": 1567.42, + "end": 1568.16, + "probability": 0.9945 + }, + { + "start": 1568.52, + "end": 1569.5, + "probability": 0.9599 + }, + { + "start": 1569.6, + "end": 1570.54, + "probability": 0.9724 + }, + { + "start": 1570.76, + "end": 1571.7, + "probability": 0.9894 + }, + { + "start": 1571.82, + "end": 1572.52, + "probability": 0.7358 + }, + { + "start": 1572.68, + "end": 1573.52, + "probability": 0.9813 + }, + { + "start": 1573.58, + "end": 1574.28, + "probability": 0.7986 + }, + { + "start": 1575.08, + "end": 1575.4, + "probability": 0.9257 + }, + { + "start": 1576.64, + "end": 1576.76, + "probability": 0.7384 + }, + { + "start": 1578.36, + "end": 1581.74, + "probability": 0.7996 + }, + { + "start": 1581.94, + "end": 1587.78, + "probability": 0.5111 + }, + { + "start": 1592.3, + "end": 1593.64, + "probability": 0.3415 + }, + { + "start": 1593.86, + "end": 1594.86, + "probability": 0.2059 + }, + { + "start": 1595.14, + "end": 1598.16, + "probability": 0.3815 + }, + { + "start": 1598.62, + "end": 1599.9, + "probability": 0.9087 + }, + { + "start": 1602.78, + "end": 1603.46, + "probability": 0.6424 + }, + { + "start": 1605.06, + "end": 1605.34, + "probability": 0.9648 + }, + { + "start": 1606.18, + "end": 1609.72, + "probability": 0.9683 + }, + { + "start": 1610.74, + "end": 1610.92, + "probability": 0.9258 + }, + { + "start": 1614.02, + "end": 1614.42, + "probability": 0.7482 + }, + { + "start": 1615.44, + "end": 1617.92, + "probability": 0.8416 + }, + { + "start": 1618.6, + "end": 1623.02, + "probability": 0.9095 + }, + { + "start": 1624.3, + "end": 1628.78, + "probability": 0.9878 + }, + { + "start": 1629.28, + "end": 1630.5, + "probability": 0.9705 + }, + { + "start": 1632.1, + "end": 1632.98, + "probability": 0.5666 + }, + { + "start": 1633.88, + "end": 1634.42, + "probability": 0.3849 + }, + { + "start": 1635.32, + "end": 1635.66, + "probability": 0.8939 + }, + { + "start": 1637.02, + "end": 1637.62, + "probability": 0.95 + }, + { + "start": 1638.06, + "end": 1639.22, + "probability": 0.9797 + }, + { + "start": 1639.74, + "end": 1641.04, + "probability": 0.8414 + }, + { + "start": 1641.16, + "end": 1642.23, + "probability": 0.7888 + }, + { + "start": 1645.06, + "end": 1645.06, + "probability": 0.9707 + }, + { + "start": 1645.72, + "end": 1645.98, + "probability": 0.0306 + }, + { + "start": 1645.98, + "end": 1647.18, + "probability": 0.3351 + }, + { + "start": 1647.98, + "end": 1648.12, + "probability": 0.5777 + }, + { + "start": 1649.04, + "end": 1649.68, + "probability": 0.7475 + }, + { + "start": 1649.92, + "end": 1650.46, + "probability": 0.6078 + }, + { + "start": 1650.96, + "end": 1651.7, + "probability": 0.6852 + }, + { + "start": 1652.22, + "end": 1654.14, + "probability": 0.9156 + }, + { + "start": 1654.24, + "end": 1654.74, + "probability": 0.691 + }, + { + "start": 1656.02, + "end": 1660.0, + "probability": 0.9772 + }, + { + "start": 1660.0, + "end": 1663.7, + "probability": 0.8619 + }, + { + "start": 1664.24, + "end": 1664.74, + "probability": 0.7122 + }, + { + "start": 1665.44, + "end": 1667.95, + "probability": 0.9411 + }, + { + "start": 1668.9, + "end": 1671.0, + "probability": 0.4923 + }, + { + "start": 1671.64, + "end": 1672.58, + "probability": 0.5581 + }, + { + "start": 1672.74, + "end": 1673.16, + "probability": 0.8528 + }, + { + "start": 1673.68, + "end": 1674.6, + "probability": 0.3659 + }, + { + "start": 1674.8, + "end": 1675.1, + "probability": 0.486 + }, + { + "start": 1675.48, + "end": 1675.62, + "probability": 0.8592 + }, + { + "start": 1677.66, + "end": 1678.2, + "probability": 0.8937 + }, + { + "start": 1678.8, + "end": 1679.5, + "probability": 0.8416 + }, + { + "start": 1680.86, + "end": 1682.96, + "probability": 0.8188 + }, + { + "start": 1683.94, + "end": 1687.24, + "probability": 0.9756 + }, + { + "start": 1688.26, + "end": 1689.26, + "probability": 0.9182 + }, + { + "start": 1690.32, + "end": 1691.78, + "probability": 0.9873 + }, + { + "start": 1692.9, + "end": 1693.28, + "probability": 0.8273 + }, + { + "start": 1693.36, + "end": 1697.0, + "probability": 0.9342 + }, + { + "start": 1697.1, + "end": 1697.38, + "probability": 0.2857 + }, + { + "start": 1697.48, + "end": 1698.06, + "probability": 0.9502 + }, + { + "start": 1698.42, + "end": 1698.74, + "probability": 0.4333 + }, + { + "start": 1699.74, + "end": 1703.82, + "probability": 0.9636 + }, + { + "start": 1706.1, + "end": 1706.76, + "probability": 0.8958 + }, + { + "start": 1707.82, + "end": 1710.44, + "probability": 0.7174 + }, + { + "start": 1711.28, + "end": 1712.26, + "probability": 0.9688 + }, + { + "start": 1713.32, + "end": 1716.36, + "probability": 0.9941 + }, + { + "start": 1716.92, + "end": 1718.93, + "probability": 0.9281 + }, + { + "start": 1719.24, + "end": 1719.76, + "probability": 0.8706 + }, + { + "start": 1719.86, + "end": 1720.66, + "probability": 0.829 + }, + { + "start": 1720.98, + "end": 1722.12, + "probability": 0.9829 + }, + { + "start": 1722.2, + "end": 1722.48, + "probability": 0.948 + }, + { + "start": 1723.24, + "end": 1723.72, + "probability": 0.5018 + }, + { + "start": 1724.38, + "end": 1724.78, + "probability": 0.5204 + }, + { + "start": 1725.58, + "end": 1727.2, + "probability": 0.9943 + }, + { + "start": 1728.46, + "end": 1730.68, + "probability": 0.9827 + }, + { + "start": 1731.54, + "end": 1732.04, + "probability": 0.7366 + }, + { + "start": 1732.4, + "end": 1733.0, + "probability": 0.7611 + }, + { + "start": 1733.14, + "end": 1733.92, + "probability": 0.9281 + }, + { + "start": 1734.22, + "end": 1735.56, + "probability": 0.9911 + }, + { + "start": 1736.12, + "end": 1736.68, + "probability": 0.9897 + }, + { + "start": 1739.38, + "end": 1740.62, + "probability": 0.5776 + }, + { + "start": 1740.66, + "end": 1740.96, + "probability": 0.819 + }, + { + "start": 1741.04, + "end": 1743.06, + "probability": 0.936 + }, + { + "start": 1743.34, + "end": 1744.62, + "probability": 0.7679 + }, + { + "start": 1745.42, + "end": 1748.68, + "probability": 0.9974 + }, + { + "start": 1749.38, + "end": 1749.76, + "probability": 0.7986 + }, + { + "start": 1751.22, + "end": 1753.46, + "probability": 0.6615 + }, + { + "start": 1754.22, + "end": 1758.88, + "probability": 0.9981 + }, + { + "start": 1759.3, + "end": 1763.9, + "probability": 0.9371 + }, + { + "start": 1764.46, + "end": 1765.96, + "probability": 0.9979 + }, + { + "start": 1766.08, + "end": 1766.54, + "probability": 0.6796 + }, + { + "start": 1766.64, + "end": 1769.6, + "probability": 0.9858 + }, + { + "start": 1769.84, + "end": 1770.1, + "probability": 0.8349 + }, + { + "start": 1770.16, + "end": 1770.58, + "probability": 0.5612 + }, + { + "start": 1770.66, + "end": 1773.32, + "probability": 0.8972 + }, + { + "start": 1773.92, + "end": 1775.9, + "probability": 0.9316 + }, + { + "start": 1777.12, + "end": 1777.76, + "probability": 0.5858 + }, + { + "start": 1778.82, + "end": 1779.88, + "probability": 0.939 + }, + { + "start": 1780.04, + "end": 1781.1, + "probability": 0.9941 + }, + { + "start": 1781.32, + "end": 1782.12, + "probability": 0.9651 + }, + { + "start": 1783.88, + "end": 1784.76, + "probability": 0.9143 + }, + { + "start": 1785.78, + "end": 1786.12, + "probability": 0.9006 + }, + { + "start": 1787.44, + "end": 1787.94, + "probability": 0.7768 + }, + { + "start": 1788.82, + "end": 1790.08, + "probability": 0.8363 + }, + { + "start": 1790.3, + "end": 1791.04, + "probability": 0.8387 + }, + { + "start": 1791.1, + "end": 1792.08, + "probability": 0.9005 + }, + { + "start": 1792.4, + "end": 1795.44, + "probability": 0.9731 + }, + { + "start": 1796.28, + "end": 1797.3, + "probability": 0.9873 + }, + { + "start": 1797.44, + "end": 1799.64, + "probability": 0.9923 + }, + { + "start": 1800.22, + "end": 1802.1, + "probability": 0.7651 + }, + { + "start": 1805.1, + "end": 1806.52, + "probability": 0.999 + }, + { + "start": 1807.94, + "end": 1809.1, + "probability": 0.9631 + }, + { + "start": 1809.92, + "end": 1810.84, + "probability": 0.9834 + }, + { + "start": 1812.6, + "end": 1813.18, + "probability": 0.9209 + }, + { + "start": 1814.06, + "end": 1815.42, + "probability": 0.9755 + }, + { + "start": 1817.42, + "end": 1820.84, + "probability": 0.9069 + }, + { + "start": 1820.84, + "end": 1823.98, + "probability": 0.9615 + }, + { + "start": 1824.04, + "end": 1825.16, + "probability": 0.9168 + }, + { + "start": 1825.56, + "end": 1827.68, + "probability": 0.8846 + }, + { + "start": 1828.12, + "end": 1829.62, + "probability": 0.8601 + }, + { + "start": 1830.48, + "end": 1833.16, + "probability": 0.9524 + }, + { + "start": 1834.08, + "end": 1835.12, + "probability": 0.8676 + }, + { + "start": 1836.22, + "end": 1836.84, + "probability": 0.7589 + }, + { + "start": 1837.86, + "end": 1838.6, + "probability": 0.7715 + }, + { + "start": 1838.62, + "end": 1838.72, + "probability": 0.8704 + }, + { + "start": 1839.2, + "end": 1846.3, + "probability": 0.9906 + }, + { + "start": 1846.8, + "end": 1847.84, + "probability": 0.8107 + }, + { + "start": 1847.92, + "end": 1848.22, + "probability": 0.6479 + }, + { + "start": 1848.26, + "end": 1850.9, + "probability": 0.9951 + }, + { + "start": 1850.96, + "end": 1853.3, + "probability": 0.9899 + }, + { + "start": 1854.2, + "end": 1857.46, + "probability": 0.9941 + }, + { + "start": 1858.08, + "end": 1858.9, + "probability": 0.8109 + }, + { + "start": 1859.5, + "end": 1860.76, + "probability": 0.8543 + }, + { + "start": 1861.34, + "end": 1864.16, + "probability": 0.8148 + }, + { + "start": 1865.66, + "end": 1867.1, + "probability": 0.989 + }, + { + "start": 1867.86, + "end": 1874.32, + "probability": 0.9948 + }, + { + "start": 1874.4, + "end": 1875.58, + "probability": 0.8941 + }, + { + "start": 1875.98, + "end": 1876.44, + "probability": 0.9382 + }, + { + "start": 1876.82, + "end": 1877.56, + "probability": 0.5451 + }, + { + "start": 1878.34, + "end": 1879.34, + "probability": 0.6707 + }, + { + "start": 1879.36, + "end": 1880.54, + "probability": 0.8481 + }, + { + "start": 1881.96, + "end": 1883.3, + "probability": 0.9276 + }, + { + "start": 1883.68, + "end": 1888.16, + "probability": 0.9026 + }, + { + "start": 1888.82, + "end": 1892.38, + "probability": 0.9684 + }, + { + "start": 1893.05, + "end": 1896.68, + "probability": 0.9964 + }, + { + "start": 1897.32, + "end": 1898.26, + "probability": 0.6552 + }, + { + "start": 1898.96, + "end": 1900.12, + "probability": 0.8963 + }, + { + "start": 1900.24, + "end": 1900.76, + "probability": 0.9421 + }, + { + "start": 1900.82, + "end": 1902.94, + "probability": 0.9858 + }, + { + "start": 1903.52, + "end": 1905.78, + "probability": 0.8921 + }, + { + "start": 1906.56, + "end": 1910.42, + "probability": 0.9847 + }, + { + "start": 1911.26, + "end": 1913.24, + "probability": 0.8496 + }, + { + "start": 1913.52, + "end": 1915.24, + "probability": 0.9377 + }, + { + "start": 1916.04, + "end": 1917.92, + "probability": 0.9937 + }, + { + "start": 1918.9, + "end": 1919.64, + "probability": 0.9976 + }, + { + "start": 1920.36, + "end": 1921.64, + "probability": 0.5986 + }, + { + "start": 1922.56, + "end": 1924.8, + "probability": 0.993 + }, + { + "start": 1925.34, + "end": 1927.16, + "probability": 0.6848 + }, + { + "start": 1927.68, + "end": 1930.34, + "probability": 0.8379 + }, + { + "start": 1932.26, + "end": 1933.16, + "probability": 0.9924 + }, + { + "start": 1933.9, + "end": 1934.78, + "probability": 0.9574 + }, + { + "start": 1934.84, + "end": 1936.34, + "probability": 0.9932 + }, + { + "start": 1936.82, + "end": 1938.6, + "probability": 0.8559 + }, + { + "start": 1938.94, + "end": 1941.1, + "probability": 0.9981 + }, + { + "start": 1941.5, + "end": 1942.78, + "probability": 0.9971 + }, + { + "start": 1942.86, + "end": 1943.98, + "probability": 0.9883 + }, + { + "start": 1944.46, + "end": 1945.84, + "probability": 0.9932 + }, + { + "start": 1946.04, + "end": 1947.5, + "probability": 0.959 + }, + { + "start": 1947.64, + "end": 1948.14, + "probability": 0.6107 + }, + { + "start": 1948.7, + "end": 1950.64, + "probability": 0.9778 + }, + { + "start": 1951.88, + "end": 1952.7, + "probability": 0.7694 + }, + { + "start": 1953.72, + "end": 1955.86, + "probability": 0.9291 + }, + { + "start": 1956.38, + "end": 1959.64, + "probability": 0.6867 + }, + { + "start": 1960.08, + "end": 1960.28, + "probability": 0.8537 + }, + { + "start": 1960.94, + "end": 1963.38, + "probability": 0.9956 + }, + { + "start": 1963.82, + "end": 1966.1, + "probability": 0.9722 + }, + { + "start": 1966.28, + "end": 1968.44, + "probability": 0.6293 + }, + { + "start": 1968.84, + "end": 1969.68, + "probability": 0.8543 + }, + { + "start": 1970.14, + "end": 1971.54, + "probability": 0.846 + }, + { + "start": 1972.02, + "end": 1974.78, + "probability": 0.9344 + }, + { + "start": 1975.54, + "end": 1975.74, + "probability": 0.9152 + }, + { + "start": 1976.74, + "end": 1977.32, + "probability": 0.5851 + }, + { + "start": 1977.66, + "end": 1978.46, + "probability": 0.7741 + }, + { + "start": 1979.2, + "end": 1980.66, + "probability": 0.8784 + }, + { + "start": 1981.04, + "end": 1984.32, + "probability": 0.9871 + }, + { + "start": 1985.26, + "end": 1986.32, + "probability": 0.8646 + }, + { + "start": 1986.42, + "end": 1989.96, + "probability": 0.9691 + }, + { + "start": 1990.86, + "end": 1993.8, + "probability": 0.6866 + }, + { + "start": 1994.56, + "end": 1995.68, + "probability": 0.7042 + }, + { + "start": 1996.58, + "end": 2001.06, + "probability": 0.9693 + }, + { + "start": 2001.46, + "end": 2005.12, + "probability": 0.997 + }, + { + "start": 2005.74, + "end": 2006.96, + "probability": 0.9598 + }, + { + "start": 2007.88, + "end": 2010.64, + "probability": 0.9766 + }, + { + "start": 2010.86, + "end": 2011.88, + "probability": 0.6817 + }, + { + "start": 2013.92, + "end": 2014.56, + "probability": 0.5999 + }, + { + "start": 2015.0, + "end": 2015.0, + "probability": 0.8037 + }, + { + "start": 2015.0, + "end": 2016.0, + "probability": 0.8113 + }, + { + "start": 2016.14, + "end": 2017.7, + "probability": 0.746 + }, + { + "start": 2019.64, + "end": 2020.66, + "probability": 0.9969 + }, + { + "start": 2021.46, + "end": 2024.42, + "probability": 0.9951 + }, + { + "start": 2025.9, + "end": 2027.36, + "probability": 0.957 + }, + { + "start": 2028.0, + "end": 2029.38, + "probability": 0.9943 + }, + { + "start": 2031.0, + "end": 2031.9, + "probability": 0.9983 + }, + { + "start": 2032.84, + "end": 2036.74, + "probability": 0.9993 + }, + { + "start": 2038.24, + "end": 2040.16, + "probability": 0.9691 + }, + { + "start": 2040.76, + "end": 2041.96, + "probability": 0.9664 + }, + { + "start": 2042.8, + "end": 2045.74, + "probability": 0.9423 + }, + { + "start": 2046.34, + "end": 2049.68, + "probability": 0.7364 + }, + { + "start": 2050.68, + "end": 2052.26, + "probability": 0.9124 + }, + { + "start": 2053.52, + "end": 2055.04, + "probability": 0.8265 + }, + { + "start": 2055.74, + "end": 2059.64, + "probability": 0.8372 + }, + { + "start": 2060.3, + "end": 2061.56, + "probability": 0.9698 + }, + { + "start": 2062.54, + "end": 2063.28, + "probability": 0.9514 + }, + { + "start": 2064.32, + "end": 2066.42, + "probability": 0.8468 + }, + { + "start": 2069.76, + "end": 2071.86, + "probability": 0.9962 + }, + { + "start": 2072.8, + "end": 2077.24, + "probability": 0.9869 + }, + { + "start": 2078.68, + "end": 2083.92, + "probability": 0.9976 + }, + { + "start": 2084.46, + "end": 2085.46, + "probability": 0.9795 + }, + { + "start": 2087.1, + "end": 2090.34, + "probability": 0.92 + }, + { + "start": 2091.26, + "end": 2093.76, + "probability": 0.9755 + }, + { + "start": 2095.02, + "end": 2097.78, + "probability": 0.9917 + }, + { + "start": 2099.34, + "end": 2106.34, + "probability": 0.9774 + }, + { + "start": 2106.34, + "end": 2111.94, + "probability": 0.9735 + }, + { + "start": 2112.66, + "end": 2115.18, + "probability": 0.869 + }, + { + "start": 2116.2, + "end": 2117.66, + "probability": 0.9928 + }, + { + "start": 2118.28, + "end": 2123.06, + "probability": 0.9808 + }, + { + "start": 2123.68, + "end": 2126.08, + "probability": 0.7901 + }, + { + "start": 2127.54, + "end": 2130.26, + "probability": 0.8167 + }, + { + "start": 2132.6, + "end": 2134.78, + "probability": 0.8264 + }, + { + "start": 2135.56, + "end": 2138.52, + "probability": 0.9857 + }, + { + "start": 2139.42, + "end": 2140.18, + "probability": 0.8062 + }, + { + "start": 2142.72, + "end": 2143.98, + "probability": 0.876 + }, + { + "start": 2144.16, + "end": 2145.24, + "probability": 0.6357 + }, + { + "start": 2145.3, + "end": 2152.62, + "probability": 0.9375 + }, + { + "start": 2152.82, + "end": 2156.3, + "probability": 0.9917 + }, + { + "start": 2157.1, + "end": 2160.74, + "probability": 0.9953 + }, + { + "start": 2160.96, + "end": 2161.58, + "probability": 0.5009 + }, + { + "start": 2161.7, + "end": 2162.49, + "probability": 0.9943 + }, + { + "start": 2162.62, + "end": 2166.2, + "probability": 0.8907 + }, + { + "start": 2167.78, + "end": 2172.14, + "probability": 0.9905 + }, + { + "start": 2172.86, + "end": 2173.28, + "probability": 0.6309 + }, + { + "start": 2173.3, + "end": 2175.24, + "probability": 0.9663 + }, + { + "start": 2175.36, + "end": 2176.38, + "probability": 0.7477 + }, + { + "start": 2176.64, + "end": 2178.0, + "probability": 0.8956 + }, + { + "start": 2178.86, + "end": 2180.62, + "probability": 0.9922 + }, + { + "start": 2181.5, + "end": 2181.76, + "probability": 0.4719 + }, + { + "start": 2182.76, + "end": 2184.74, + "probability": 0.9529 + }, + { + "start": 2184.82, + "end": 2186.46, + "probability": 0.9927 + }, + { + "start": 2186.58, + "end": 2187.56, + "probability": 0.9871 + }, + { + "start": 2187.74, + "end": 2188.1, + "probability": 0.9622 + }, + { + "start": 2188.26, + "end": 2191.6, + "probability": 0.9963 + }, + { + "start": 2192.76, + "end": 2193.04, + "probability": 0.7135 + }, + { + "start": 2193.62, + "end": 2194.78, + "probability": 0.9762 + }, + { + "start": 2194.88, + "end": 2195.72, + "probability": 0.9797 + }, + { + "start": 2195.9, + "end": 2198.68, + "probability": 0.9912 + }, + { + "start": 2201.98, + "end": 2206.06, + "probability": 0.977 + }, + { + "start": 2206.06, + "end": 2209.74, + "probability": 0.9928 + }, + { + "start": 2210.82, + "end": 2212.5, + "probability": 0.9985 + }, + { + "start": 2212.94, + "end": 2214.72, + "probability": 0.9913 + }, + { + "start": 2214.88, + "end": 2216.08, + "probability": 0.9399 + }, + { + "start": 2216.9, + "end": 2217.26, + "probability": 0.8687 + }, + { + "start": 2217.8, + "end": 2220.74, + "probability": 0.9766 + }, + { + "start": 2221.72, + "end": 2226.7, + "probability": 0.98 + }, + { + "start": 2228.4, + "end": 2232.72, + "probability": 0.9959 + }, + { + "start": 2232.94, + "end": 2235.8, + "probability": 0.9684 + }, + { + "start": 2236.52, + "end": 2240.46, + "probability": 0.9939 + }, + { + "start": 2240.71, + "end": 2242.86, + "probability": 0.9746 + }, + { + "start": 2244.58, + "end": 2248.4, + "probability": 0.9693 + }, + { + "start": 2248.48, + "end": 2249.22, + "probability": 0.9891 + }, + { + "start": 2249.38, + "end": 2250.04, + "probability": 0.9204 + }, + { + "start": 2251.28, + "end": 2252.37, + "probability": 0.9878 + }, + { + "start": 2253.32, + "end": 2253.62, + "probability": 0.4929 + }, + { + "start": 2253.66, + "end": 2254.44, + "probability": 0.7112 + }, + { + "start": 2254.7, + "end": 2256.98, + "probability": 0.9485 + }, + { + "start": 2258.02, + "end": 2260.8, + "probability": 0.998 + }, + { + "start": 2260.94, + "end": 2262.18, + "probability": 0.998 + }, + { + "start": 2262.36, + "end": 2262.74, + "probability": 0.7482 + }, + { + "start": 2263.66, + "end": 2265.8, + "probability": 0.8975 + }, + { + "start": 2267.06, + "end": 2268.76, + "probability": 0.0188 + }, + { + "start": 2269.1, + "end": 2269.44, + "probability": 0.0375 + }, + { + "start": 2272.94, + "end": 2274.76, + "probability": 0.9972 + }, + { + "start": 2274.92, + "end": 2276.1, + "probability": 0.4499 + }, + { + "start": 2276.36, + "end": 2278.12, + "probability": 0.8153 + }, + { + "start": 2278.2, + "end": 2281.34, + "probability": 0.9807 + }, + { + "start": 2281.46, + "end": 2282.52, + "probability": 0.9846 + }, + { + "start": 2283.62, + "end": 2287.5, + "probability": 0.9952 + }, + { + "start": 2288.02, + "end": 2290.72, + "probability": 0.9965 + }, + { + "start": 2291.18, + "end": 2292.06, + "probability": 0.5864 + }, + { + "start": 2292.14, + "end": 2293.12, + "probability": 0.9836 + }, + { + "start": 2294.54, + "end": 2295.04, + "probability": 0.6848 + }, + { + "start": 2295.28, + "end": 2295.86, + "probability": 0.9641 + }, + { + "start": 2296.06, + "end": 2300.36, + "probability": 0.9746 + }, + { + "start": 2301.32, + "end": 2307.22, + "probability": 0.996 + }, + { + "start": 2307.82, + "end": 2308.5, + "probability": 0.8326 + }, + { + "start": 2308.56, + "end": 2309.26, + "probability": 0.9299 + }, + { + "start": 2309.74, + "end": 2310.46, + "probability": 0.9038 + }, + { + "start": 2310.54, + "end": 2311.16, + "probability": 0.7916 + }, + { + "start": 2311.54, + "end": 2312.36, + "probability": 0.9099 + }, + { + "start": 2315.16, + "end": 2315.84, + "probability": 0.7469 + }, + { + "start": 2316.68, + "end": 2317.84, + "probability": 0.7137 + }, + { + "start": 2318.26, + "end": 2319.72, + "probability": 0.9464 + }, + { + "start": 2320.06, + "end": 2322.36, + "probability": 0.9941 + }, + { + "start": 2322.36, + "end": 2325.1, + "probability": 0.947 + }, + { + "start": 2326.76, + "end": 2327.53, + "probability": 0.9472 + }, + { + "start": 2327.9, + "end": 2331.0, + "probability": 0.985 + }, + { + "start": 2332.02, + "end": 2334.72, + "probability": 0.9985 + }, + { + "start": 2334.82, + "end": 2335.37, + "probability": 0.9243 + }, + { + "start": 2336.44, + "end": 2336.74, + "probability": 0.7707 + }, + { + "start": 2336.82, + "end": 2337.86, + "probability": 0.7307 + }, + { + "start": 2337.88, + "end": 2340.34, + "probability": 0.963 + }, + { + "start": 2341.24, + "end": 2345.66, + "probability": 0.9948 + }, + { + "start": 2348.78, + "end": 2351.1, + "probability": 0.8895 + }, + { + "start": 2351.38, + "end": 2351.88, + "probability": 0.8155 + }, + { + "start": 2351.96, + "end": 2352.9, + "probability": 0.9988 + }, + { + "start": 2353.66, + "end": 2356.58, + "probability": 0.9966 + }, + { + "start": 2358.12, + "end": 2359.54, + "probability": 0.8295 + }, + { + "start": 2360.56, + "end": 2361.57, + "probability": 0.9971 + }, + { + "start": 2362.06, + "end": 2364.16, + "probability": 0.7227 + }, + { + "start": 2365.22, + "end": 2366.02, + "probability": 0.6766 + }, + { + "start": 2366.3, + "end": 2369.1, + "probability": 0.9913 + }, + { + "start": 2369.9, + "end": 2372.74, + "probability": 0.9935 + }, + { + "start": 2372.96, + "end": 2374.52, + "probability": 0.9242 + }, + { + "start": 2374.66, + "end": 2377.3, + "probability": 0.9783 + }, + { + "start": 2379.27, + "end": 2384.08, + "probability": 0.9902 + }, + { + "start": 2384.84, + "end": 2387.2, + "probability": 0.992 + }, + { + "start": 2387.2, + "end": 2390.08, + "probability": 0.9993 + }, + { + "start": 2390.16, + "end": 2391.92, + "probability": 0.5504 + }, + { + "start": 2392.62, + "end": 2392.62, + "probability": 0.4526 + }, + { + "start": 2392.74, + "end": 2393.4, + "probability": 0.9284 + }, + { + "start": 2393.5, + "end": 2395.83, + "probability": 0.979 + }, + { + "start": 2396.0, + "end": 2397.51, + "probability": 0.9768 + }, + { + "start": 2398.66, + "end": 2403.76, + "probability": 0.981 + }, + { + "start": 2404.3, + "end": 2407.62, + "probability": 0.9936 + }, + { + "start": 2409.15, + "end": 2410.66, + "probability": 0.7787 + }, + { + "start": 2412.06, + "end": 2413.88, + "probability": 0.9917 + }, + { + "start": 2414.78, + "end": 2416.7, + "probability": 0.9971 + }, + { + "start": 2416.76, + "end": 2419.08, + "probability": 0.9912 + }, + { + "start": 2419.62, + "end": 2421.87, + "probability": 0.9919 + }, + { + "start": 2423.2, + "end": 2424.14, + "probability": 0.7713 + }, + { + "start": 2425.14, + "end": 2427.5, + "probability": 0.9875 + }, + { + "start": 2428.2, + "end": 2429.3, + "probability": 0.8617 + }, + { + "start": 2429.56, + "end": 2431.48, + "probability": 0.9736 + }, + { + "start": 2432.32, + "end": 2433.78, + "probability": 0.9376 + }, + { + "start": 2433.92, + "end": 2437.16, + "probability": 0.9933 + }, + { + "start": 2437.78, + "end": 2441.98, + "probability": 0.9954 + }, + { + "start": 2442.4, + "end": 2444.34, + "probability": 0.8667 + }, + { + "start": 2444.84, + "end": 2446.74, + "probability": 0.9961 + }, + { + "start": 2447.44, + "end": 2449.32, + "probability": 0.9691 + }, + { + "start": 2451.54, + "end": 2454.86, + "probability": 0.9081 + }, + { + "start": 2455.04, + "end": 2455.76, + "probability": 0.7644 + }, + { + "start": 2456.8, + "end": 2459.98, + "probability": 0.9941 + }, + { + "start": 2460.74, + "end": 2461.92, + "probability": 0.9459 + }, + { + "start": 2462.06, + "end": 2465.34, + "probability": 0.8892 + }, + { + "start": 2466.04, + "end": 2468.72, + "probability": 0.6996 + }, + { + "start": 2469.16, + "end": 2471.14, + "probability": 0.8388 + }, + { + "start": 2471.68, + "end": 2475.4, + "probability": 0.9943 + }, + { + "start": 2476.08, + "end": 2479.14, + "probability": 0.996 + }, + { + "start": 2480.16, + "end": 2482.28, + "probability": 0.8892 + }, + { + "start": 2483.4, + "end": 2485.42, + "probability": 0.9927 + }, + { + "start": 2485.82, + "end": 2486.74, + "probability": 0.9819 + }, + { + "start": 2487.4, + "end": 2492.1, + "probability": 0.9808 + }, + { + "start": 2492.7, + "end": 2496.1, + "probability": 0.9442 + }, + { + "start": 2496.8, + "end": 2498.02, + "probability": 0.6851 + }, + { + "start": 2498.72, + "end": 2500.88, + "probability": 0.9456 + }, + { + "start": 2502.04, + "end": 2504.06, + "probability": 0.9923 + }, + { + "start": 2504.26, + "end": 2504.64, + "probability": 0.4441 + }, + { + "start": 2504.7, + "end": 2505.19, + "probability": 0.9564 + }, + { + "start": 2505.52, + "end": 2506.58, + "probability": 0.9753 + }, + { + "start": 2507.4, + "end": 2510.22, + "probability": 0.9961 + }, + { + "start": 2510.92, + "end": 2514.72, + "probability": 0.7303 + }, + { + "start": 2515.4, + "end": 2516.28, + "probability": 0.9346 + }, + { + "start": 2516.5, + "end": 2518.24, + "probability": 0.9782 + }, + { + "start": 2519.02, + "end": 2519.24, + "probability": 0.8153 + }, + { + "start": 2519.64, + "end": 2520.58, + "probability": 0.9482 + }, + { + "start": 2521.12, + "end": 2522.68, + "probability": 0.8502 + }, + { + "start": 2523.34, + "end": 2524.26, + "probability": 0.8607 + }, + { + "start": 2524.92, + "end": 2526.06, + "probability": 0.9108 + }, + { + "start": 2526.72, + "end": 2529.02, + "probability": 0.7974 + }, + { + "start": 2529.58, + "end": 2530.92, + "probability": 0.9781 + }, + { + "start": 2532.48, + "end": 2536.38, + "probability": 0.9626 + }, + { + "start": 2537.5, + "end": 2540.68, + "probability": 0.8714 + }, + { + "start": 2542.42, + "end": 2545.96, + "probability": 0.9785 + }, + { + "start": 2545.96, + "end": 2548.96, + "probability": 0.9943 + }, + { + "start": 2549.92, + "end": 2550.64, + "probability": 0.8384 + }, + { + "start": 2551.26, + "end": 2555.84, + "probability": 0.9967 + }, + { + "start": 2556.36, + "end": 2559.12, + "probability": 0.9976 + }, + { + "start": 2560.58, + "end": 2562.18, + "probability": 0.9774 + }, + { + "start": 2562.78, + "end": 2564.48, + "probability": 0.9985 + }, + { + "start": 2565.02, + "end": 2566.82, + "probability": 0.9995 + }, + { + "start": 2568.14, + "end": 2568.6, + "probability": 0.7908 + }, + { + "start": 2568.7, + "end": 2569.62, + "probability": 0.9715 + }, + { + "start": 2570.12, + "end": 2571.88, + "probability": 0.965 + }, + { + "start": 2573.02, + "end": 2573.74, + "probability": 0.7483 + }, + { + "start": 2574.4, + "end": 2577.28, + "probability": 0.9801 + }, + { + "start": 2578.32, + "end": 2583.04, + "probability": 0.9677 + }, + { + "start": 2583.5, + "end": 2585.08, + "probability": 0.9058 + }, + { + "start": 2586.1, + "end": 2590.44, + "probability": 0.9822 + }, + { + "start": 2591.12, + "end": 2595.22, + "probability": 0.8849 + }, + { + "start": 2596.62, + "end": 2597.76, + "probability": 0.8577 + }, + { + "start": 2597.9, + "end": 2598.88, + "probability": 0.9485 + }, + { + "start": 2599.04, + "end": 2600.94, + "probability": 0.8405 + }, + { + "start": 2601.96, + "end": 2606.42, + "probability": 0.891 + }, + { + "start": 2607.84, + "end": 2608.56, + "probability": 0.9412 + }, + { + "start": 2609.26, + "end": 2611.08, + "probability": 0.9888 + }, + { + "start": 2612.0, + "end": 2612.62, + "probability": 0.916 + }, + { + "start": 2613.18, + "end": 2613.76, + "probability": 0.7535 + }, + { + "start": 2615.32, + "end": 2616.48, + "probability": 0.993 + }, + { + "start": 2617.38, + "end": 2619.82, + "probability": 0.9403 + }, + { + "start": 2620.52, + "end": 2623.14, + "probability": 0.9897 + }, + { + "start": 2623.18, + "end": 2624.66, + "probability": 0.9337 + }, + { + "start": 2625.08, + "end": 2627.18, + "probability": 0.9893 + }, + { + "start": 2627.8, + "end": 2629.52, + "probability": 0.8914 + }, + { + "start": 2630.59, + "end": 2632.43, + "probability": 0.9871 + }, + { + "start": 2633.14, + "end": 2633.98, + "probability": 0.7414 + }, + { + "start": 2635.62, + "end": 2636.6, + "probability": 0.8114 + }, + { + "start": 2637.18, + "end": 2640.02, + "probability": 0.8178 + }, + { + "start": 2640.68, + "end": 2641.08, + "probability": 0.9678 + }, + { + "start": 2641.62, + "end": 2645.08, + "probability": 0.979 + }, + { + "start": 2646.16, + "end": 2651.66, + "probability": 0.9917 + }, + { + "start": 2652.72, + "end": 2655.08, + "probability": 0.99 + }, + { + "start": 2655.8, + "end": 2659.06, + "probability": 0.9361 + }, + { + "start": 2660.18, + "end": 2660.5, + "probability": 0.8699 + }, + { + "start": 2661.64, + "end": 2665.34, + "probability": 0.9614 + }, + { + "start": 2665.34, + "end": 2670.22, + "probability": 0.9778 + }, + { + "start": 2671.68, + "end": 2677.68, + "probability": 0.9938 + }, + { + "start": 2678.34, + "end": 2681.52, + "probability": 0.3755 + }, + { + "start": 2682.2, + "end": 2683.42, + "probability": 0.9225 + }, + { + "start": 2684.42, + "end": 2685.45, + "probability": 0.9906 + }, + { + "start": 2686.22, + "end": 2687.16, + "probability": 0.9358 + }, + { + "start": 2688.84, + "end": 2690.0, + "probability": 0.9238 + }, + { + "start": 2690.9, + "end": 2692.92, + "probability": 0.8968 + }, + { + "start": 2694.28, + "end": 2698.64, + "probability": 0.9821 + }, + { + "start": 2699.52, + "end": 2703.1, + "probability": 0.9915 + }, + { + "start": 2703.54, + "end": 2704.14, + "probability": 0.8007 + }, + { + "start": 2705.08, + "end": 2708.0, + "probability": 0.9161 + }, + { + "start": 2710.78, + "end": 2710.84, + "probability": 0.2204 + }, + { + "start": 2710.84, + "end": 2712.09, + "probability": 0.6603 + }, + { + "start": 2712.76, + "end": 2714.7, + "probability": 0.9075 + }, + { + "start": 2715.04, + "end": 2716.88, + "probability": 0.9706 + }, + { + "start": 2717.38, + "end": 2720.96, + "probability": 0.9233 + }, + { + "start": 2722.0, + "end": 2723.34, + "probability": 0.9233 + }, + { + "start": 2723.88, + "end": 2725.28, + "probability": 0.9832 + }, + { + "start": 2726.06, + "end": 2730.08, + "probability": 0.943 + }, + { + "start": 2730.3, + "end": 2732.69, + "probability": 0.996 + }, + { + "start": 2733.46, + "end": 2737.36, + "probability": 0.9931 + }, + { + "start": 2738.3, + "end": 2742.92, + "probability": 0.9893 + }, + { + "start": 2743.84, + "end": 2746.08, + "probability": 0.9966 + }, + { + "start": 2746.2, + "end": 2747.28, + "probability": 0.7305 + }, + { + "start": 2747.64, + "end": 2750.0, + "probability": 0.8552 + }, + { + "start": 2750.04, + "end": 2751.22, + "probability": 0.9911 + }, + { + "start": 2751.76, + "end": 2754.42, + "probability": 0.9902 + }, + { + "start": 2754.94, + "end": 2755.3, + "probability": 0.9882 + }, + { + "start": 2756.32, + "end": 2759.46, + "probability": 0.9928 + }, + { + "start": 2759.9, + "end": 2763.04, + "probability": 0.9686 + }, + { + "start": 2763.8, + "end": 2764.26, + "probability": 0.6076 + }, + { + "start": 2764.62, + "end": 2765.42, + "probability": 0.4576 + }, + { + "start": 2766.04, + "end": 2767.8, + "probability": 0.9877 + }, + { + "start": 2767.96, + "end": 2768.56, + "probability": 0.814 + }, + { + "start": 2768.62, + "end": 2769.34, + "probability": 0.9365 + }, + { + "start": 2769.9, + "end": 2771.58, + "probability": 0.9275 + }, + { + "start": 2771.94, + "end": 2774.92, + "probability": 0.9791 + }, + { + "start": 2778.0, + "end": 2782.82, + "probability": 0.9613 + }, + { + "start": 2783.68, + "end": 2785.76, + "probability": 0.8541 + }, + { + "start": 2786.28, + "end": 2787.28, + "probability": 0.7574 + }, + { + "start": 2788.14, + "end": 2791.16, + "probability": 0.9204 + }, + { + "start": 2791.78, + "end": 2792.38, + "probability": 0.9932 + }, + { + "start": 2792.78, + "end": 2793.4, + "probability": 0.9763 + }, + { + "start": 2793.8, + "end": 2794.43, + "probability": 0.9692 + }, + { + "start": 2795.02, + "end": 2796.06, + "probability": 0.9839 + }, + { + "start": 2796.82, + "end": 2797.94, + "probability": 0.96 + }, + { + "start": 2798.48, + "end": 2800.02, + "probability": 0.373 + }, + { + "start": 2800.32, + "end": 2801.28, + "probability": 0.6155 + }, + { + "start": 2801.28, + "end": 2801.76, + "probability": 0.3268 + }, + { + "start": 2802.04, + "end": 2802.92, + "probability": 0.6962 + }, + { + "start": 2802.94, + "end": 2803.4, + "probability": 0.6659 + }, + { + "start": 2803.68, + "end": 2805.06, + "probability": 0.9482 + }, + { + "start": 2805.54, + "end": 2806.5, + "probability": 0.9237 + }, + { + "start": 2807.02, + "end": 2808.6, + "probability": 0.9779 + }, + { + "start": 2809.64, + "end": 2811.22, + "probability": 0.9038 + }, + { + "start": 2812.1, + "end": 2814.54, + "probability": 0.9188 + }, + { + "start": 2815.44, + "end": 2817.86, + "probability": 0.942 + }, + { + "start": 2818.14, + "end": 2821.1, + "probability": 0.7548 + }, + { + "start": 2821.18, + "end": 2823.34, + "probability": 0.6735 + }, + { + "start": 2823.76, + "end": 2824.68, + "probability": 0.1176 + }, + { + "start": 2824.94, + "end": 2825.18, + "probability": 0.0655 + }, + { + "start": 2825.7, + "end": 2832.14, + "probability": 0.9645 + }, + { + "start": 2833.66, + "end": 2838.96, + "probability": 0.9989 + }, + { + "start": 2839.68, + "end": 2840.4, + "probability": 0.8555 + }, + { + "start": 2842.48, + "end": 2843.3, + "probability": 0.7903 + }, + { + "start": 2844.0, + "end": 2845.26, + "probability": 0.8344 + }, + { + "start": 2845.32, + "end": 2846.34, + "probability": 0.5 + }, + { + "start": 2846.34, + "end": 2848.0, + "probability": 0.834 + }, + { + "start": 2848.24, + "end": 2849.06, + "probability": 0.7626 + }, + { + "start": 2849.6, + "end": 2852.4, + "probability": 0.9282 + }, + { + "start": 2852.62, + "end": 2853.92, + "probability": 0.5366 + }, + { + "start": 2854.98, + "end": 2857.35, + "probability": 0.8132 + }, + { + "start": 2858.14, + "end": 2861.08, + "probability": 0.9657 + }, + { + "start": 2861.56, + "end": 2864.64, + "probability": 0.8995 + }, + { + "start": 2865.14, + "end": 2865.5, + "probability": 0.8298 + }, + { + "start": 2866.16, + "end": 2866.58, + "probability": 0.0525 + }, + { + "start": 2872.8, + "end": 2873.06, + "probability": 0.0707 + }, + { + "start": 2873.06, + "end": 2873.06, + "probability": 0.0207 + }, + { + "start": 2873.06, + "end": 2873.5, + "probability": 0.1072 + }, + { + "start": 2873.5, + "end": 2873.58, + "probability": 0.0828 + }, + { + "start": 2873.68, + "end": 2875.06, + "probability": 0.2661 + }, + { + "start": 2876.16, + "end": 2877.37, + "probability": 0.8411 + }, + { + "start": 2877.84, + "end": 2879.5, + "probability": 0.7021 + }, + { + "start": 2879.74, + "end": 2880.02, + "probability": 0.1632 + }, + { + "start": 2880.22, + "end": 2880.92, + "probability": 0.2703 + }, + { + "start": 2881.42, + "end": 2885.6, + "probability": 0.9527 + }, + { + "start": 2889.9, + "end": 2892.98, + "probability": 0.9876 + }, + { + "start": 2893.74, + "end": 2896.04, + "probability": 0.9199 + }, + { + "start": 2897.26, + "end": 2900.58, + "probability": 0.9733 + }, + { + "start": 2902.16, + "end": 2905.18, + "probability": 0.9983 + }, + { + "start": 2906.56, + "end": 2909.8, + "probability": 0.7382 + }, + { + "start": 2911.06, + "end": 2912.08, + "probability": 0.9013 + }, + { + "start": 2914.36, + "end": 2920.8, + "probability": 0.9914 + }, + { + "start": 2921.44, + "end": 2923.76, + "probability": 0.9802 + }, + { + "start": 2924.2, + "end": 2929.04, + "probability": 0.9975 + }, + { + "start": 2930.0, + "end": 2930.96, + "probability": 0.757 + }, + { + "start": 2931.52, + "end": 2932.48, + "probability": 0.9935 + }, + { + "start": 2934.2, + "end": 2935.46, + "probability": 0.7856 + }, + { + "start": 2936.12, + "end": 2937.52, + "probability": 0.8903 + }, + { + "start": 2938.14, + "end": 2939.34, + "probability": 0.7967 + }, + { + "start": 2941.26, + "end": 2949.04, + "probability": 0.9598 + }, + { + "start": 2949.78, + "end": 2951.94, + "probability": 0.9019 + }, + { + "start": 2953.22, + "end": 2957.1, + "probability": 0.9574 + }, + { + "start": 2957.72, + "end": 2959.08, + "probability": 0.9066 + }, + { + "start": 2959.68, + "end": 2961.08, + "probability": 0.7666 + }, + { + "start": 2962.24, + "end": 2963.86, + "probability": 0.8555 + }, + { + "start": 2965.66, + "end": 2966.88, + "probability": 0.8564 + }, + { + "start": 2967.9, + "end": 2971.58, + "probability": 0.9826 + }, + { + "start": 2972.18, + "end": 2976.44, + "probability": 0.9831 + }, + { + "start": 2977.46, + "end": 2981.22, + "probability": 0.9954 + }, + { + "start": 2981.78, + "end": 2982.98, + "probability": 0.7761 + }, + { + "start": 2983.7, + "end": 2985.2, + "probability": 0.9303 + }, + { + "start": 2986.18, + "end": 2987.06, + "probability": 0.9252 + }, + { + "start": 2987.9, + "end": 2991.04, + "probability": 0.9951 + }, + { + "start": 2991.7, + "end": 2999.12, + "probability": 0.9639 + }, + { + "start": 3001.32, + "end": 3003.6, + "probability": 0.9321 + }, + { + "start": 3004.72, + "end": 3005.64, + "probability": 0.9693 + }, + { + "start": 3006.26, + "end": 3008.86, + "probability": 0.9821 + }, + { + "start": 3010.06, + "end": 3015.46, + "probability": 0.9974 + }, + { + "start": 3016.72, + "end": 3020.42, + "probability": 0.9904 + }, + { + "start": 3021.02, + "end": 3023.02, + "probability": 0.8914 + }, + { + "start": 3023.78, + "end": 3027.8, + "probability": 0.9714 + }, + { + "start": 3027.94, + "end": 3028.9, + "probability": 0.832 + }, + { + "start": 3029.56, + "end": 3030.02, + "probability": 0.7092 + }, + { + "start": 3030.7, + "end": 3032.8, + "probability": 0.5542 + }, + { + "start": 3032.98, + "end": 3037.54, + "probability": 0.9224 + }, + { + "start": 3038.14, + "end": 3039.2, + "probability": 0.9937 + }, + { + "start": 3039.96, + "end": 3042.3, + "probability": 0.9552 + }, + { + "start": 3043.18, + "end": 3044.52, + "probability": 0.9525 + }, + { + "start": 3045.04, + "end": 3048.12, + "probability": 0.903 + }, + { + "start": 3048.74, + "end": 3052.56, + "probability": 0.9743 + }, + { + "start": 3053.54, + "end": 3063.2, + "probability": 0.9888 + }, + { + "start": 3064.2, + "end": 3067.46, + "probability": 0.8879 + }, + { + "start": 3069.32, + "end": 3073.48, + "probability": 0.9714 + }, + { + "start": 3074.22, + "end": 3075.68, + "probability": 0.9374 + }, + { + "start": 3076.3, + "end": 3079.04, + "probability": 0.9383 + }, + { + "start": 3079.78, + "end": 3081.78, + "probability": 0.932 + }, + { + "start": 3083.04, + "end": 3084.43, + "probability": 0.9609 + }, + { + "start": 3085.46, + "end": 3089.38, + "probability": 0.9707 + }, + { + "start": 3090.06, + "end": 3093.8, + "probability": 0.993 + }, + { + "start": 3094.38, + "end": 3095.98, + "probability": 0.8672 + }, + { + "start": 3096.5, + "end": 3097.9, + "probability": 0.7465 + }, + { + "start": 3098.54, + "end": 3101.58, + "probability": 0.9965 + }, + { + "start": 3104.32, + "end": 3104.82, + "probability": 0.9402 + }, + { + "start": 3105.38, + "end": 3106.94, + "probability": 0.98 + }, + { + "start": 3108.2, + "end": 3114.74, + "probability": 0.9932 + }, + { + "start": 3114.74, + "end": 3120.72, + "probability": 0.9961 + }, + { + "start": 3121.46, + "end": 3125.4, + "probability": 0.966 + }, + { + "start": 3126.26, + "end": 3128.87, + "probability": 0.9741 + }, + { + "start": 3130.06, + "end": 3135.02, + "probability": 0.9268 + }, + { + "start": 3135.98, + "end": 3138.31, + "probability": 0.9434 + }, + { + "start": 3139.5, + "end": 3141.52, + "probability": 0.6408 + }, + { + "start": 3142.9, + "end": 3143.18, + "probability": 0.8364 + }, + { + "start": 3143.82, + "end": 3145.7, + "probability": 0.9597 + }, + { + "start": 3146.54, + "end": 3150.0, + "probability": 0.9684 + }, + { + "start": 3150.7, + "end": 3151.56, + "probability": 0.9545 + }, + { + "start": 3151.82, + "end": 3152.94, + "probability": 0.853 + }, + { + "start": 3153.44, + "end": 3155.96, + "probability": 0.9832 + }, + { + "start": 3157.22, + "end": 3161.7, + "probability": 0.9923 + }, + { + "start": 3163.08, + "end": 3163.82, + "probability": 0.8369 + }, + { + "start": 3164.74, + "end": 3167.14, + "probability": 0.5807 + }, + { + "start": 3168.0, + "end": 3169.42, + "probability": 0.5612 + }, + { + "start": 3169.9, + "end": 3173.36, + "probability": 0.917 + }, + { + "start": 3174.1, + "end": 3174.94, + "probability": 0.6422 + }, + { + "start": 3175.54, + "end": 3176.16, + "probability": 0.6139 + }, + { + "start": 3177.48, + "end": 3179.12, + "probability": 0.7612 + }, + { + "start": 3180.12, + "end": 3181.22, + "probability": 0.97 + }, + { + "start": 3181.42, + "end": 3182.24, + "probability": 0.9019 + }, + { + "start": 3182.52, + "end": 3185.32, + "probability": 0.9533 + }, + { + "start": 3185.5, + "end": 3187.04, + "probability": 0.9878 + }, + { + "start": 3188.14, + "end": 3191.8, + "probability": 0.9893 + }, + { + "start": 3192.12, + "end": 3193.2, + "probability": 0.3767 + }, + { + "start": 3193.26, + "end": 3198.94, + "probability": 0.9734 + }, + { + "start": 3199.1, + "end": 3200.16, + "probability": 0.8599 + }, + { + "start": 3201.46, + "end": 3204.44, + "probability": 0.9715 + }, + { + "start": 3207.16, + "end": 3208.84, + "probability": 0.9849 + }, + { + "start": 3209.6, + "end": 3210.2, + "probability": 0.8417 + }, + { + "start": 3212.0, + "end": 3212.12, + "probability": 0.2885 + }, + { + "start": 3212.38, + "end": 3214.52, + "probability": 0.9712 + }, + { + "start": 3216.2, + "end": 3220.96, + "probability": 0.9912 + }, + { + "start": 3221.38, + "end": 3224.68, + "probability": 0.9288 + }, + { + "start": 3227.14, + "end": 3228.52, + "probability": 0.9546 + }, + { + "start": 3228.6, + "end": 3232.54, + "probability": 0.998 + }, + { + "start": 3234.8, + "end": 3237.62, + "probability": 0.8795 + }, + { + "start": 3239.38, + "end": 3240.44, + "probability": 0.6891 + }, + { + "start": 3241.46, + "end": 3245.58, + "probability": 0.8971 + }, + { + "start": 3246.54, + "end": 3249.44, + "probability": 0.8754 + }, + { + "start": 3251.94, + "end": 3252.52, + "probability": 0.0152 + }, + { + "start": 3252.52, + "end": 3258.84, + "probability": 0.8508 + }, + { + "start": 3259.32, + "end": 3264.77, + "probability": 0.9961 + }, + { + "start": 3267.78, + "end": 3268.62, + "probability": 0.0529 + }, + { + "start": 3268.62, + "end": 3268.8, + "probability": 0.0669 + }, + { + "start": 3269.26, + "end": 3273.4, + "probability": 0.9462 + }, + { + "start": 3275.9, + "end": 3277.98, + "probability": 0.8833 + }, + { + "start": 3278.58, + "end": 3281.42, + "probability": 0.7677 + }, + { + "start": 3281.96, + "end": 3284.1, + "probability": 0.8751 + }, + { + "start": 3284.94, + "end": 3287.8, + "probability": 0.876 + }, + { + "start": 3289.28, + "end": 3290.1, + "probability": 0.8996 + }, + { + "start": 3290.62, + "end": 3295.38, + "probability": 0.9937 + }, + { + "start": 3295.48, + "end": 3297.88, + "probability": 0.9861 + }, + { + "start": 3298.48, + "end": 3300.14, + "probability": 0.9501 + }, + { + "start": 3301.44, + "end": 3304.42, + "probability": 0.958 + }, + { + "start": 3304.94, + "end": 3306.94, + "probability": 0.756 + }, + { + "start": 3307.46, + "end": 3308.48, + "probability": 0.7914 + }, + { + "start": 3308.7, + "end": 3310.08, + "probability": 0.7802 + }, + { + "start": 3310.54, + "end": 3311.54, + "probability": 0.6519 + }, + { + "start": 3311.68, + "end": 3312.86, + "probability": 0.8938 + }, + { + "start": 3313.46, + "end": 3316.9, + "probability": 0.9525 + }, + { + "start": 3317.6, + "end": 3318.42, + "probability": 0.7874 + }, + { + "start": 3319.66, + "end": 3323.68, + "probability": 0.8979 + }, + { + "start": 3324.5, + "end": 3326.2, + "probability": 0.7982 + }, + { + "start": 3327.18, + "end": 3328.16, + "probability": 0.8817 + }, + { + "start": 3328.28, + "end": 3330.78, + "probability": 0.9697 + }, + { + "start": 3330.98, + "end": 3332.0, + "probability": 0.9619 + }, + { + "start": 3332.18, + "end": 3333.26, + "probability": 0.9795 + }, + { + "start": 3333.54, + "end": 3334.62, + "probability": 0.9971 + }, + { + "start": 3336.96, + "end": 3342.0, + "probability": 0.9918 + }, + { + "start": 3342.9, + "end": 3348.36, + "probability": 0.9943 + }, + { + "start": 3348.86, + "end": 3349.76, + "probability": 0.8135 + }, + { + "start": 3351.48, + "end": 3353.64, + "probability": 0.7617 + }, + { + "start": 3354.64, + "end": 3357.7, + "probability": 0.9893 + }, + { + "start": 3360.56, + "end": 3361.3, + "probability": 0.8426 + }, + { + "start": 3361.74, + "end": 3363.76, + "probability": 0.9112 + }, + { + "start": 3364.42, + "end": 3366.22, + "probability": 0.9297 + }, + { + "start": 3366.32, + "end": 3367.16, + "probability": 0.6788 + }, + { + "start": 3367.62, + "end": 3372.28, + "probability": 0.967 + }, + { + "start": 3373.82, + "end": 3376.12, + "probability": 0.9831 + }, + { + "start": 3378.26, + "end": 3379.54, + "probability": 0.6691 + }, + { + "start": 3380.2, + "end": 3383.2, + "probability": 0.3927 + }, + { + "start": 3383.88, + "end": 3385.18, + "probability": 0.1801 + }, + { + "start": 3386.06, + "end": 3387.86, + "probability": 0.8483 + }, + { + "start": 3388.94, + "end": 3391.3, + "probability": 0.5371 + }, + { + "start": 3391.58, + "end": 3392.21, + "probability": 0.5988 + }, + { + "start": 3393.04, + "end": 3393.97, + "probability": 0.5858 + }, + { + "start": 3396.22, + "end": 3398.88, + "probability": 0.8466 + }, + { + "start": 3399.02, + "end": 3404.88, + "probability": 0.9946 + }, + { + "start": 3406.16, + "end": 3406.26, + "probability": 0.5033 + }, + { + "start": 3407.64, + "end": 3408.86, + "probability": 0.7505 + }, + { + "start": 3410.22, + "end": 3411.38, + "probability": 0.9939 + }, + { + "start": 3412.86, + "end": 3414.94, + "probability": 0.8946 + }, + { + "start": 3415.76, + "end": 3418.3, + "probability": 0.9369 + }, + { + "start": 3419.14, + "end": 3421.8, + "probability": 0.9933 + }, + { + "start": 3421.84, + "end": 3422.94, + "probability": 0.8503 + }, + { + "start": 3423.46, + "end": 3426.96, + "probability": 0.7391 + }, + { + "start": 3427.18, + "end": 3429.2, + "probability": 0.9438 + }, + { + "start": 3430.04, + "end": 3433.8, + "probability": 0.9824 + }, + { + "start": 3434.48, + "end": 3438.8, + "probability": 0.959 + }, + { + "start": 3439.5, + "end": 3443.38, + "probability": 0.9289 + }, + { + "start": 3443.72, + "end": 3445.6, + "probability": 0.3715 + }, + { + "start": 3445.94, + "end": 3447.18, + "probability": 0.1701 + }, + { + "start": 3447.5, + "end": 3449.68, + "probability": 0.9039 + }, + { + "start": 3450.52, + "end": 3452.68, + "probability": 0.2531 + }, + { + "start": 3453.38, + "end": 3455.64, + "probability": 0.8748 + }, + { + "start": 3456.92, + "end": 3456.92, + "probability": 0.3724 + }, + { + "start": 3456.92, + "end": 3459.6, + "probability": 0.8305 + }, + { + "start": 3460.32, + "end": 3461.3, + "probability": 0.9946 + }, + { + "start": 3462.6, + "end": 3463.96, + "probability": 0.999 + }, + { + "start": 3465.1, + "end": 3466.9, + "probability": 0.663 + }, + { + "start": 3467.44, + "end": 3468.17, + "probability": 0.5407 + }, + { + "start": 3469.3, + "end": 3470.68, + "probability": 0.7212 + }, + { + "start": 3471.44, + "end": 3471.94, + "probability": 0.4295 + }, + { + "start": 3471.98, + "end": 3475.46, + "probability": 0.9348 + }, + { + "start": 3475.56, + "end": 3476.52, + "probability": 0.866 + }, + { + "start": 3476.72, + "end": 3478.2, + "probability": 0.955 + }, + { + "start": 3479.22, + "end": 3480.5, + "probability": 0.774 + }, + { + "start": 3480.86, + "end": 3482.06, + "probability": 0.9989 + }, + { + "start": 3482.88, + "end": 3485.42, + "probability": 0.9946 + }, + { + "start": 3485.98, + "end": 3489.06, + "probability": 0.9792 + }, + { + "start": 3489.26, + "end": 3492.84, + "probability": 0.7253 + }, + { + "start": 3493.46, + "end": 3495.78, + "probability": 0.9562 + }, + { + "start": 3496.5, + "end": 3499.04, + "probability": 0.9836 + }, + { + "start": 3499.6, + "end": 3500.74, + "probability": 0.6672 + }, + { + "start": 3501.8, + "end": 3503.48, + "probability": 0.6569 + }, + { + "start": 3504.22, + "end": 3506.7, + "probability": 0.8694 + }, + { + "start": 3507.34, + "end": 3509.22, + "probability": 0.9619 + }, + { + "start": 3509.34, + "end": 3509.88, + "probability": 0.582 + }, + { + "start": 3509.88, + "end": 3512.08, + "probability": 0.8182 + }, + { + "start": 3512.58, + "end": 3513.88, + "probability": 0.9545 + }, + { + "start": 3514.04, + "end": 3515.56, + "probability": 0.9873 + }, + { + "start": 3515.68, + "end": 3516.6, + "probability": 0.749 + }, + { + "start": 3516.74, + "end": 3516.84, + "probability": 0.8268 + }, + { + "start": 3517.74, + "end": 3520.8, + "probability": 0.9292 + }, + { + "start": 3525.1, + "end": 3531.6, + "probability": 0.9979 + }, + { + "start": 3532.06, + "end": 3533.5, + "probability": 0.8158 + }, + { + "start": 3534.1, + "end": 3536.32, + "probability": 0.8965 + }, + { + "start": 3537.08, + "end": 3538.32, + "probability": 0.7783 + }, + { + "start": 3538.62, + "end": 3542.78, + "probability": 0.9951 + }, + { + "start": 3543.3, + "end": 3545.24, + "probability": 0.5059 + }, + { + "start": 3545.9, + "end": 3548.86, + "probability": 0.9698 + }, + { + "start": 3549.66, + "end": 3555.26, + "probability": 0.9858 + }, + { + "start": 3555.94, + "end": 3557.18, + "probability": 0.9967 + }, + { + "start": 3557.84, + "end": 3564.48, + "probability": 0.9924 + }, + { + "start": 3564.92, + "end": 3571.14, + "probability": 0.9852 + }, + { + "start": 3571.7, + "end": 3572.14, + "probability": 0.8275 + }, + { + "start": 3572.26, + "end": 3573.5, + "probability": 0.7325 + }, + { + "start": 3574.22, + "end": 3576.42, + "probability": 0.7605 + }, + { + "start": 3576.94, + "end": 3578.02, + "probability": 0.8736 + }, + { + "start": 3578.7, + "end": 3580.18, + "probability": 0.9565 + }, + { + "start": 3580.82, + "end": 3581.26, + "probability": 0.7769 + }, + { + "start": 3581.42, + "end": 3584.02, + "probability": 0.5476 + }, + { + "start": 3584.02, + "end": 3587.94, + "probability": 0.9297 + }, + { + "start": 3589.76, + "end": 3590.96, + "probability": 0.8935 + }, + { + "start": 3592.38, + "end": 3594.86, + "probability": 0.5265 + }, + { + "start": 3595.5, + "end": 3600.62, + "probability": 0.994 + }, + { + "start": 3601.6, + "end": 3602.02, + "probability": 0.7624 + }, + { + "start": 3602.78, + "end": 3605.74, + "probability": 0.8044 + }, + { + "start": 3606.38, + "end": 3607.88, + "probability": 0.8916 + }, + { + "start": 3608.9, + "end": 3610.27, + "probability": 0.9897 + }, + { + "start": 3610.62, + "end": 3616.8, + "probability": 0.9907 + }, + { + "start": 3617.22, + "end": 3618.42, + "probability": 0.9971 + }, + { + "start": 3619.5, + "end": 3622.22, + "probability": 0.9791 + }, + { + "start": 3623.32, + "end": 3624.66, + "probability": 0.993 + }, + { + "start": 3626.02, + "end": 3629.08, + "probability": 0.9935 + }, + { + "start": 3629.54, + "end": 3630.79, + "probability": 0.9932 + }, + { + "start": 3631.6, + "end": 3632.88, + "probability": 0.8409 + }, + { + "start": 3633.5, + "end": 3634.68, + "probability": 0.9834 + }, + { + "start": 3635.08, + "end": 3639.2, + "probability": 0.9062 + }, + { + "start": 3640.46, + "end": 3643.54, + "probability": 0.9862 + }, + { + "start": 3643.98, + "end": 3645.66, + "probability": 0.9817 + }, + { + "start": 3646.34, + "end": 3647.68, + "probability": 0.842 + }, + { + "start": 3648.38, + "end": 3652.42, + "probability": 0.9929 + }, + { + "start": 3652.42, + "end": 3658.0, + "probability": 0.9976 + }, + { + "start": 3659.86, + "end": 3664.1, + "probability": 0.7925 + }, + { + "start": 3664.3, + "end": 3666.24, + "probability": 0.9879 + }, + { + "start": 3667.2, + "end": 3670.38, + "probability": 0.9905 + }, + { + "start": 3671.64, + "end": 3675.46, + "probability": 0.9701 + }, + { + "start": 3675.54, + "end": 3682.64, + "probability": 0.9834 + }, + { + "start": 3682.82, + "end": 3683.78, + "probability": 0.7673 + }, + { + "start": 3683.86, + "end": 3684.56, + "probability": 0.6283 + }, + { + "start": 3686.4, + "end": 3691.44, + "probability": 0.9841 + }, + { + "start": 3692.24, + "end": 3694.32, + "probability": 0.9761 + }, + { + "start": 3695.1, + "end": 3696.72, + "probability": 0.7755 + }, + { + "start": 3697.68, + "end": 3701.78, + "probability": 0.9932 + }, + { + "start": 3702.3, + "end": 3703.24, + "probability": 0.7441 + }, + { + "start": 3704.2, + "end": 3706.98, + "probability": 0.9267 + }, + { + "start": 3707.28, + "end": 3708.18, + "probability": 0.772 + }, + { + "start": 3708.9, + "end": 3711.46, + "probability": 0.8584 + }, + { + "start": 3712.24, + "end": 3712.86, + "probability": 0.8264 + }, + { + "start": 3713.5, + "end": 3714.88, + "probability": 0.9808 + }, + { + "start": 3716.04, + "end": 3720.6, + "probability": 0.9701 + }, + { + "start": 3723.62, + "end": 3726.48, + "probability": 0.9992 + }, + { + "start": 3727.96, + "end": 3731.88, + "probability": 0.9915 + }, + { + "start": 3732.7, + "end": 3733.78, + "probability": 0.8906 + }, + { + "start": 3735.92, + "end": 3741.94, + "probability": 0.9964 + }, + { + "start": 3742.48, + "end": 3744.62, + "probability": 0.9897 + }, + { + "start": 3746.78, + "end": 3747.82, + "probability": 0.9824 + }, + { + "start": 3748.52, + "end": 3750.68, + "probability": 0.9976 + }, + { + "start": 3751.3, + "end": 3754.04, + "probability": 0.9988 + }, + { + "start": 3754.84, + "end": 3756.63, + "probability": 0.9858 + }, + { + "start": 3757.08, + "end": 3760.34, + "probability": 0.9929 + }, + { + "start": 3761.86, + "end": 3764.92, + "probability": 0.9892 + }, + { + "start": 3765.16, + "end": 3766.2, + "probability": 0.9644 + }, + { + "start": 3767.1, + "end": 3768.86, + "probability": 0.9383 + }, + { + "start": 3769.56, + "end": 3770.5, + "probability": 0.7038 + }, + { + "start": 3770.98, + "end": 3773.76, + "probability": 0.9026 + }, + { + "start": 3773.76, + "end": 3778.28, + "probability": 0.9943 + }, + { + "start": 3779.44, + "end": 3783.38, + "probability": 0.9957 + }, + { + "start": 3783.94, + "end": 3787.62, + "probability": 0.9903 + }, + { + "start": 3788.35, + "end": 3790.3, + "probability": 0.7057 + }, + { + "start": 3790.92, + "end": 3793.69, + "probability": 0.7048 + }, + { + "start": 3794.46, + "end": 3800.2, + "probability": 0.9868 + }, + { + "start": 3800.4, + "end": 3803.96, + "probability": 0.9275 + }, + { + "start": 3804.46, + "end": 3813.28, + "probability": 0.8853 + }, + { + "start": 3813.84, + "end": 3814.3, + "probability": 0.7246 + }, + { + "start": 3815.44, + "end": 3819.0, + "probability": 0.9884 + }, + { + "start": 3820.12, + "end": 3824.4, + "probability": 0.9507 + }, + { + "start": 3825.1, + "end": 3827.46, + "probability": 0.9788 + }, + { + "start": 3828.12, + "end": 3829.36, + "probability": 0.8069 + }, + { + "start": 3830.58, + "end": 3831.34, + "probability": 0.5181 + }, + { + "start": 3831.96, + "end": 3834.54, + "probability": 0.9907 + }, + { + "start": 3834.62, + "end": 3835.11, + "probability": 0.9912 + }, + { + "start": 3835.76, + "end": 3838.18, + "probability": 0.9686 + }, + { + "start": 3838.78, + "end": 3843.38, + "probability": 0.9103 + }, + { + "start": 3843.9, + "end": 3845.32, + "probability": 0.9832 + }, + { + "start": 3845.64, + "end": 3851.41, + "probability": 0.9553 + }, + { + "start": 3853.02, + "end": 3854.78, + "probability": 0.7681 + }, + { + "start": 3855.4, + "end": 3862.42, + "probability": 0.9799 + }, + { + "start": 3863.12, + "end": 3865.78, + "probability": 0.9977 + }, + { + "start": 3867.18, + "end": 3869.23, + "probability": 0.8821 + }, + { + "start": 3870.9, + "end": 3875.14, + "probability": 0.9539 + }, + { + "start": 3876.28, + "end": 3876.82, + "probability": 0.6715 + }, + { + "start": 3877.48, + "end": 3879.23, + "probability": 0.9961 + }, + { + "start": 3879.98, + "end": 3884.14, + "probability": 0.9689 + }, + { + "start": 3884.84, + "end": 3892.72, + "probability": 0.9756 + }, + { + "start": 3894.62, + "end": 3899.28, + "probability": 0.874 + }, + { + "start": 3900.06, + "end": 3901.78, + "probability": 0.9065 + }, + { + "start": 3902.2, + "end": 3908.06, + "probability": 0.9818 + }, + { + "start": 3908.18, + "end": 3909.2, + "probability": 0.9375 + }, + { + "start": 3910.24, + "end": 3912.76, + "probability": 0.959 + }, + { + "start": 3913.24, + "end": 3919.75, + "probability": 0.9897 + }, + { + "start": 3920.84, + "end": 3924.28, + "probability": 0.9857 + }, + { + "start": 3924.42, + "end": 3927.56, + "probability": 0.9723 + }, + { + "start": 3928.2, + "end": 3928.8, + "probability": 0.787 + }, + { + "start": 3929.32, + "end": 3933.92, + "probability": 0.9955 + }, + { + "start": 3934.18, + "end": 3936.78, + "probability": 0.9801 + }, + { + "start": 3937.22, + "end": 3938.7, + "probability": 0.9946 + }, + { + "start": 3939.34, + "end": 3940.48, + "probability": 0.9763 + }, + { + "start": 3940.52, + "end": 3942.1, + "probability": 0.8118 + }, + { + "start": 3942.18, + "end": 3943.42, + "probability": 0.908 + }, + { + "start": 3944.04, + "end": 3946.36, + "probability": 0.7465 + }, + { + "start": 3946.94, + "end": 3949.82, + "probability": 0.9938 + }, + { + "start": 3950.18, + "end": 3952.65, + "probability": 0.9943 + }, + { + "start": 3953.12, + "end": 3954.2, + "probability": 0.9881 + }, + { + "start": 3955.04, + "end": 3956.09, + "probability": 0.8491 + }, + { + "start": 3958.0, + "end": 3958.7, + "probability": 0.4554 + }, + { + "start": 3959.36, + "end": 3967.76, + "probability": 0.9742 + }, + { + "start": 3968.84, + "end": 3973.62, + "probability": 0.9268 + }, + { + "start": 3973.9, + "end": 3974.82, + "probability": 0.9946 + }, + { + "start": 3975.72, + "end": 3979.5, + "probability": 0.9959 + }, + { + "start": 3980.98, + "end": 3981.84, + "probability": 0.9482 + }, + { + "start": 3982.64, + "end": 3984.5, + "probability": 0.9714 + }, + { + "start": 3985.5, + "end": 3986.96, + "probability": 0.8854 + }, + { + "start": 3987.6, + "end": 3990.08, + "probability": 0.8562 + }, + { + "start": 3990.08, + "end": 3990.5, + "probability": 0.4247 + }, + { + "start": 3990.86, + "end": 3991.5, + "probability": 0.782 + }, + { + "start": 3991.64, + "end": 3994.42, + "probability": 0.7446 + }, + { + "start": 3996.04, + "end": 3996.38, + "probability": 0.15 + }, + { + "start": 3997.12, + "end": 3998.43, + "probability": 0.8146 + }, + { + "start": 3999.28, + "end": 4001.06, + "probability": 0.8179 + }, + { + "start": 4001.4, + "end": 4003.68, + "probability": 0.9945 + }, + { + "start": 4004.4, + "end": 4007.64, + "probability": 0.9495 + }, + { + "start": 4008.1, + "end": 4009.47, + "probability": 0.9557 + }, + { + "start": 4009.78, + "end": 4010.34, + "probability": 0.9544 + }, + { + "start": 4010.84, + "end": 4012.91, + "probability": 0.9854 + }, + { + "start": 4013.6, + "end": 4015.38, + "probability": 0.9134 + }, + { + "start": 4016.1, + "end": 4018.64, + "probability": 0.9601 + }, + { + "start": 4018.72, + "end": 4021.3, + "probability": 0.7961 + }, + { + "start": 4021.86, + "end": 4026.08, + "probability": 0.8351 + }, + { + "start": 4026.64, + "end": 4026.92, + "probability": 0.9673 + }, + { + "start": 4027.5, + "end": 4030.92, + "probability": 0.9924 + }, + { + "start": 4031.68, + "end": 4033.92, + "probability": 0.7309 + }, + { + "start": 4034.38, + "end": 4038.78, + "probability": 0.9603 + }, + { + "start": 4038.88, + "end": 4042.28, + "probability": 0.915 + }, + { + "start": 4042.42, + "end": 4043.04, + "probability": 0.8061 + }, + { + "start": 4043.46, + "end": 4045.7, + "probability": 0.9392 + }, + { + "start": 4046.2, + "end": 4048.62, + "probability": 0.9818 + }, + { + "start": 4048.76, + "end": 4049.96, + "probability": 0.8501 + }, + { + "start": 4050.9, + "end": 4054.92, + "probability": 0.9272 + }, + { + "start": 4055.04, + "end": 4056.0, + "probability": 0.8893 + }, + { + "start": 4056.36, + "end": 4057.28, + "probability": 0.9648 + }, + { + "start": 4057.66, + "end": 4062.6, + "probability": 0.9366 + }, + { + "start": 4063.32, + "end": 4064.5, + "probability": 0.8671 + }, + { + "start": 4065.34, + "end": 4070.86, + "probability": 0.9403 + }, + { + "start": 4071.3, + "end": 4075.37, + "probability": 0.6791 + }, + { + "start": 4077.12, + "end": 4077.6, + "probability": 0.0353 + }, + { + "start": 4077.6, + "end": 4080.66, + "probability": 0.6621 + }, + { + "start": 4080.8, + "end": 4084.6, + "probability": 0.999 + }, + { + "start": 4085.18, + "end": 4087.1, + "probability": 0.9849 + }, + { + "start": 4088.46, + "end": 4091.36, + "probability": 0.9451 + }, + { + "start": 4091.94, + "end": 4094.14, + "probability": 0.7845 + }, + { + "start": 4094.6, + "end": 4095.63, + "probability": 0.8558 + }, + { + "start": 4095.82, + "end": 4096.7, + "probability": 0.9541 + }, + { + "start": 4097.28, + "end": 4102.16, + "probability": 0.714 + }, + { + "start": 4102.78, + "end": 4105.62, + "probability": 0.9021 + }, + { + "start": 4105.78, + "end": 4108.82, + "probability": 0.9369 + }, + { + "start": 4109.3, + "end": 4110.78, + "probability": 0.9805 + }, + { + "start": 4111.42, + "end": 4114.67, + "probability": 0.9091 + }, + { + "start": 4115.22, + "end": 4118.08, + "probability": 0.9737 + }, + { + "start": 4118.86, + "end": 4123.4, + "probability": 0.9917 + }, + { + "start": 4123.64, + "end": 4124.52, + "probability": 0.9213 + }, + { + "start": 4125.24, + "end": 4129.28, + "probability": 0.9416 + }, + { + "start": 4129.86, + "end": 4133.42, + "probability": 0.9395 + }, + { + "start": 4133.42, + "end": 4137.72, + "probability": 0.998 + }, + { + "start": 4138.48, + "end": 4141.68, + "probability": 0.9292 + }, + { + "start": 4142.18, + "end": 4149.3, + "probability": 0.9813 + }, + { + "start": 4149.88, + "end": 4154.44, + "probability": 0.9631 + }, + { + "start": 4155.64, + "end": 4159.1, + "probability": 0.9615 + }, + { + "start": 4159.64, + "end": 4163.46, + "probability": 0.8871 + }, + { + "start": 4163.88, + "end": 4165.94, + "probability": 0.9814 + }, + { + "start": 4166.02, + "end": 4173.18, + "probability": 0.9919 + }, + { + "start": 4173.26, + "end": 4176.7, + "probability": 0.9813 + }, + { + "start": 4177.24, + "end": 4179.02, + "probability": 0.713 + }, + { + "start": 4179.18, + "end": 4180.66, + "probability": 0.8612 + }, + { + "start": 4181.56, + "end": 4182.42, + "probability": 0.1505 + }, + { + "start": 4183.36, + "end": 4185.5, + "probability": 0.4066 + }, + { + "start": 4186.46, + "end": 4189.74, + "probability": 0.4051 + }, + { + "start": 4190.9, + "end": 4191.18, + "probability": 0.3209 + }, + { + "start": 4191.38, + "end": 4193.04, + "probability": 0.3763 + }, + { + "start": 4193.42, + "end": 4195.14, + "probability": 0.0571 + }, + { + "start": 4195.16, + "end": 4197.48, + "probability": 0.3066 + }, + { + "start": 4197.68, + "end": 4199.72, + "probability": 0.7082 + }, + { + "start": 4200.08, + "end": 4205.26, + "probability": 0.8452 + }, + { + "start": 4206.7, + "end": 4211.26, + "probability": 0.984 + }, + { + "start": 4211.86, + "end": 4212.7, + "probability": 0.9857 + }, + { + "start": 4212.98, + "end": 4216.7, + "probability": 0.9183 + }, + { + "start": 4217.51, + "end": 4220.06, + "probability": 0.1678 + }, + { + "start": 4220.74, + "end": 4222.0, + "probability": 0.4045 + }, + { + "start": 4222.54, + "end": 4225.46, + "probability": 0.6314 + }, + { + "start": 4226.26, + "end": 4227.96, + "probability": 0.7101 + }, + { + "start": 4228.54, + "end": 4229.34, + "probability": 0.6956 + }, + { + "start": 4230.04, + "end": 4231.36, + "probability": 0.525 + }, + { + "start": 4232.47, + "end": 4235.4, + "probability": 0.2785 + }, + { + "start": 4235.4, + "end": 4236.74, + "probability": 0.5551 + }, + { + "start": 4236.84, + "end": 4238.98, + "probability": 0.9441 + }, + { + "start": 4240.46, + "end": 4245.24, + "probability": 0.9988 + }, + { + "start": 4245.24, + "end": 4249.32, + "probability": 0.9938 + }, + { + "start": 4249.76, + "end": 4249.94, + "probability": 0.0121 + }, + { + "start": 4250.06, + "end": 4252.12, + "probability": 0.5414 + }, + { + "start": 4252.18, + "end": 4254.0, + "probability": 0.8511 + }, + { + "start": 4254.46, + "end": 4255.61, + "probability": 0.2283 + }, + { + "start": 4255.8, + "end": 4256.32, + "probability": 0.6736 + }, + { + "start": 4256.84, + "end": 4258.72, + "probability": 0.4185 + }, + { + "start": 4259.16, + "end": 4263.0, + "probability": 0.4598 + }, + { + "start": 4263.74, + "end": 4265.26, + "probability": 0.2931 + }, + { + "start": 4265.82, + "end": 4265.94, + "probability": 0.2153 + }, + { + "start": 4266.14, + "end": 4266.9, + "probability": 0.7621 + }, + { + "start": 4266.98, + "end": 4269.22, + "probability": 0.9897 + }, + { + "start": 4269.78, + "end": 4270.36, + "probability": 0.4887 + }, + { + "start": 4270.46, + "end": 4270.48, + "probability": 0.0984 + }, + { + "start": 4270.58, + "end": 4271.52, + "probability": 0.806 + }, + { + "start": 4271.72, + "end": 4272.3, + "probability": 0.7997 + }, + { + "start": 4272.8, + "end": 4273.04, + "probability": 0.5567 + }, + { + "start": 4273.12, + "end": 4273.7, + "probability": 0.8149 + }, + { + "start": 4274.01, + "end": 4275.24, + "probability": 0.7035 + }, + { + "start": 4275.74, + "end": 4276.72, + "probability": 0.811 + }, + { + "start": 4277.4, + "end": 4278.98, + "probability": 0.8587 + }, + { + "start": 4279.1, + "end": 4280.22, + "probability": 0.9884 + }, + { + "start": 4280.38, + "end": 4281.28, + "probability": 0.6878 + }, + { + "start": 4281.9, + "end": 4287.08, + "probability": 0.998 + }, + { + "start": 4287.98, + "end": 4290.58, + "probability": 0.9869 + }, + { + "start": 4291.16, + "end": 4292.46, + "probability": 0.9951 + }, + { + "start": 4293.38, + "end": 4294.74, + "probability": 0.8849 + }, + { + "start": 4295.64, + "end": 4297.92, + "probability": 0.9666 + }, + { + "start": 4298.1, + "end": 4300.36, + "probability": 0.8798 + }, + { + "start": 4301.34, + "end": 4303.04, + "probability": 0.5414 + }, + { + "start": 4303.6, + "end": 4306.66, + "probability": 0.9841 + }, + { + "start": 4307.2, + "end": 4308.82, + "probability": 0.9656 + }, + { + "start": 4309.3, + "end": 4312.6, + "probability": 0.7877 + }, + { + "start": 4312.9, + "end": 4314.42, + "probability": 0.9145 + }, + { + "start": 4315.18, + "end": 4316.14, + "probability": 0.84 + }, + { + "start": 4316.82, + "end": 4317.76, + "probability": 0.8303 + }, + { + "start": 4318.28, + "end": 4319.02, + "probability": 0.8994 + }, + { + "start": 4319.7, + "end": 4321.46, + "probability": 0.9868 + }, + { + "start": 4322.58, + "end": 4324.53, + "probability": 0.9927 + }, + { + "start": 4325.66, + "end": 4326.7, + "probability": 0.765 + }, + { + "start": 4326.9, + "end": 4328.16, + "probability": 0.9093 + }, + { + "start": 4328.28, + "end": 4329.22, + "probability": 0.7601 + }, + { + "start": 4330.28, + "end": 4332.32, + "probability": 0.6986 + }, + { + "start": 4332.64, + "end": 4334.82, + "probability": 0.9952 + }, + { + "start": 4335.22, + "end": 4336.12, + "probability": 0.9507 + }, + { + "start": 4337.44, + "end": 4337.44, + "probability": 0.1029 + }, + { + "start": 4337.5, + "end": 4340.62, + "probability": 0.8746 + }, + { + "start": 4341.2, + "end": 4341.9, + "probability": 0.0085 + }, + { + "start": 4342.08, + "end": 4346.7, + "probability": 0.9725 + }, + { + "start": 4347.0, + "end": 4349.14, + "probability": 0.4861 + }, + { + "start": 4349.14, + "end": 4349.78, + "probability": 0.5114 + }, + { + "start": 4349.94, + "end": 4352.44, + "probability": 0.8485 + }, + { + "start": 4352.92, + "end": 4356.32, + "probability": 0.953 + }, + { + "start": 4357.26, + "end": 4360.32, + "probability": 0.8051 + }, + { + "start": 4361.04, + "end": 4364.84, + "probability": 0.4746 + }, + { + "start": 4365.52, + "end": 4370.12, + "probability": 0.9935 + }, + { + "start": 4370.98, + "end": 4374.68, + "probability": 0.9878 + }, + { + "start": 4374.68, + "end": 4377.92, + "probability": 0.9941 + }, + { + "start": 4378.54, + "end": 4379.42, + "probability": 0.9479 + }, + { + "start": 4380.54, + "end": 4381.82, + "probability": 0.1433 + }, + { + "start": 4383.46, + "end": 4385.7, + "probability": 0.7315 + }, + { + "start": 4385.72, + "end": 4389.28, + "probability": 0.2898 + }, + { + "start": 4389.46, + "end": 4391.2, + "probability": 0.9987 + }, + { + "start": 4391.72, + "end": 4394.3, + "probability": 0.9729 + }, + { + "start": 4395.04, + "end": 4396.22, + "probability": 0.9951 + }, + { + "start": 4396.68, + "end": 4397.94, + "probability": 0.9623 + }, + { + "start": 4398.92, + "end": 4399.54, + "probability": 0.6304 + }, + { + "start": 4399.66, + "end": 4402.68, + "probability": 0.849 + }, + { + "start": 4403.12, + "end": 4404.46, + "probability": 0.967 + }, + { + "start": 4404.78, + "end": 4405.94, + "probability": 0.9816 + }, + { + "start": 4406.08, + "end": 4407.22, + "probability": 0.4966 + }, + { + "start": 4407.66, + "end": 4410.22, + "probability": 0.9345 + }, + { + "start": 4411.24, + "end": 4413.82, + "probability": 0.9904 + }, + { + "start": 4413.94, + "end": 4414.76, + "probability": 0.9648 + }, + { + "start": 4415.18, + "end": 4416.6, + "probability": 0.8843 + }, + { + "start": 4416.7, + "end": 4417.5, + "probability": 0.4207 + }, + { + "start": 4418.02, + "end": 4418.84, + "probability": 0.9211 + }, + { + "start": 4419.42, + "end": 4424.92, + "probability": 0.9844 + }, + { + "start": 4424.92, + "end": 4429.14, + "probability": 0.9929 + }, + { + "start": 4429.74, + "end": 4431.4, + "probability": 0.9679 + }, + { + "start": 4431.84, + "end": 4432.68, + "probability": 0.7307 + }, + { + "start": 4433.08, + "end": 4434.63, + "probability": 0.2629 + }, + { + "start": 4435.36, + "end": 4436.98, + "probability": 0.9645 + }, + { + "start": 4437.86, + "end": 4438.4, + "probability": 0.4497 + }, + { + "start": 4438.64, + "end": 4439.24, + "probability": 0.6719 + }, + { + "start": 4439.32, + "end": 4441.48, + "probability": 0.7106 + }, + { + "start": 4441.56, + "end": 4443.64, + "probability": 0.9266 + }, + { + "start": 4443.7, + "end": 4447.32, + "probability": 0.9553 + }, + { + "start": 4447.8, + "end": 4448.34, + "probability": 0.3261 + }, + { + "start": 4448.62, + "end": 4451.36, + "probability": 0.95 + }, + { + "start": 4451.92, + "end": 4453.28, + "probability": 0.9338 + }, + { + "start": 4453.68, + "end": 4457.58, + "probability": 0.937 + }, + { + "start": 4457.66, + "end": 4459.88, + "probability": 0.9928 + }, + { + "start": 4460.76, + "end": 4461.99, + "probability": 0.978 + }, + { + "start": 4462.28, + "end": 4463.91, + "probability": 0.9734 + }, + { + "start": 4464.12, + "end": 4468.68, + "probability": 0.9056 + }, + { + "start": 4468.68, + "end": 4473.56, + "probability": 0.9561 + }, + { + "start": 4474.21, + "end": 4479.4, + "probability": 0.9442 + }, + { + "start": 4480.62, + "end": 4480.94, + "probability": 0.3918 + }, + { + "start": 4480.94, + "end": 4481.22, + "probability": 0.3054 + }, + { + "start": 4481.38, + "end": 4481.54, + "probability": 0.2387 + }, + { + "start": 4481.54, + "end": 4483.52, + "probability": 0.4434 + }, + { + "start": 4483.52, + "end": 4484.08, + "probability": 0.5067 + }, + { + "start": 4484.24, + "end": 4484.38, + "probability": 0.0196 + }, + { + "start": 4484.62, + "end": 4486.22, + "probability": 0.6336 + }, + { + "start": 4488.82, + "end": 4494.06, + "probability": 0.9922 + }, + { + "start": 4494.86, + "end": 4498.62, + "probability": 0.9938 + }, + { + "start": 4500.6, + "end": 4504.14, + "probability": 0.9775 + }, + { + "start": 4504.34, + "end": 4506.28, + "probability": 0.9743 + }, + { + "start": 4507.0, + "end": 4509.48, + "probability": 0.999 + }, + { + "start": 4510.38, + "end": 4515.94, + "probability": 0.9877 + }, + { + "start": 4516.6, + "end": 4519.38, + "probability": 0.995 + }, + { + "start": 4520.0, + "end": 4522.54, + "probability": 0.992 + }, + { + "start": 4523.26, + "end": 4526.54, + "probability": 0.9941 + }, + { + "start": 4527.2, + "end": 4529.66, + "probability": 0.9026 + }, + { + "start": 4530.06, + "end": 4537.04, + "probability": 0.987 + }, + { + "start": 4537.9, + "end": 4539.18, + "probability": 0.7432 + }, + { + "start": 4540.06, + "end": 4542.92, + "probability": 0.7734 + }, + { + "start": 4543.46, + "end": 4545.1, + "probability": 0.9789 + }, + { + "start": 4547.58, + "end": 4552.02, + "probability": 0.9973 + }, + { + "start": 4552.02, + "end": 4557.46, + "probability": 0.9943 + }, + { + "start": 4558.14, + "end": 4560.46, + "probability": 0.9659 + }, + { + "start": 4561.24, + "end": 4564.52, + "probability": 0.7024 + }, + { + "start": 4565.1, + "end": 4566.26, + "probability": 0.78 + }, + { + "start": 4567.12, + "end": 4570.44, + "probability": 0.98 + }, + { + "start": 4570.98, + "end": 4576.08, + "probability": 0.9956 + }, + { + "start": 4576.72, + "end": 4580.64, + "probability": 0.9985 + }, + { + "start": 4581.54, + "end": 4583.94, + "probability": 0.9717 + }, + { + "start": 4584.52, + "end": 4588.48, + "probability": 0.9636 + }, + { + "start": 4589.96, + "end": 4592.44, + "probability": 0.8976 + }, + { + "start": 4593.12, + "end": 4594.78, + "probability": 0.7742 + }, + { + "start": 4596.28, + "end": 4596.86, + "probability": 0.4323 + }, + { + "start": 4598.62, + "end": 4599.46, + "probability": 0.6341 + }, + { + "start": 4600.06, + "end": 4601.3, + "probability": 0.7582 + }, + { + "start": 4602.14, + "end": 4604.26, + "probability": 0.9954 + }, + { + "start": 4605.0, + "end": 4606.46, + "probability": 0.9932 + }, + { + "start": 4607.38, + "end": 4609.58, + "probability": 0.8946 + }, + { + "start": 4610.54, + "end": 4616.64, + "probability": 0.9624 + }, + { + "start": 4617.52, + "end": 4624.64, + "probability": 0.8159 + }, + { + "start": 4624.64, + "end": 4628.92, + "probability": 0.9956 + }, + { + "start": 4629.62, + "end": 4632.08, + "probability": 0.9389 + }, + { + "start": 4633.22, + "end": 4638.72, + "probability": 0.9473 + }, + { + "start": 4641.1, + "end": 4643.2, + "probability": 0.8035 + }, + { + "start": 4643.94, + "end": 4645.08, + "probability": 0.7704 + }, + { + "start": 4645.8, + "end": 4649.4, + "probability": 0.9871 + }, + { + "start": 4649.94, + "end": 4651.94, + "probability": 0.7935 + }, + { + "start": 4652.82, + "end": 4653.86, + "probability": 0.7271 + }, + { + "start": 4654.28, + "end": 4655.74, + "probability": 0.6983 + }, + { + "start": 4656.02, + "end": 4658.72, + "probability": 0.9866 + }, + { + "start": 4659.88, + "end": 4660.2, + "probability": 0.7185 + }, + { + "start": 4660.36, + "end": 4661.04, + "probability": 0.9321 + }, + { + "start": 4661.12, + "end": 4661.74, + "probability": 0.658 + }, + { + "start": 4661.74, + "end": 4662.22, + "probability": 0.7399 + }, + { + "start": 4662.3, + "end": 4664.52, + "probability": 0.9888 + }, + { + "start": 4664.7, + "end": 4665.34, + "probability": 0.4634 + }, + { + "start": 4665.52, + "end": 4666.06, + "probability": 0.3783 + }, + { + "start": 4668.06, + "end": 4668.86, + "probability": 0.7654 + }, + { + "start": 4670.48, + "end": 4670.6, + "probability": 0.0951 + }, + { + "start": 4670.6, + "end": 4670.72, + "probability": 0.8806 + }, + { + "start": 4671.54, + "end": 4673.54, + "probability": 0.7568 + }, + { + "start": 4673.66, + "end": 4675.86, + "probability": 0.4357 + }, + { + "start": 4677.3, + "end": 4679.24, + "probability": 0.9647 + }, + { + "start": 4679.8, + "end": 4684.65, + "probability": 0.8511 + }, + { + "start": 4685.58, + "end": 4689.48, + "probability": 0.902 + }, + { + "start": 4689.98, + "end": 4692.56, + "probability": 0.9238 + }, + { + "start": 4693.16, + "end": 4694.24, + "probability": 0.9266 + }, + { + "start": 4695.12, + "end": 4696.72, + "probability": 0.6405 + }, + { + "start": 4696.88, + "end": 4698.66, + "probability": 0.8659 + }, + { + "start": 4699.52, + "end": 4700.14, + "probability": 0.9801 + }, + { + "start": 4700.64, + "end": 4701.67, + "probability": 0.154 + }, + { + "start": 4702.88, + "end": 4704.08, + "probability": 0.1501 + }, + { + "start": 4713.42, + "end": 4713.98, + "probability": 0.0977 + }, + { + "start": 4714.16, + "end": 4717.02, + "probability": 0.6115 + }, + { + "start": 4717.56, + "end": 4719.4, + "probability": 0.2106 + }, + { + "start": 4719.84, + "end": 4719.84, + "probability": 0.6587 + }, + { + "start": 4719.84, + "end": 4720.98, + "probability": 0.684 + }, + { + "start": 4721.46, + "end": 4722.44, + "probability": 0.7744 + }, + { + "start": 4723.44, + "end": 4726.3, + "probability": 0.8644 + }, + { + "start": 4726.92, + "end": 4727.42, + "probability": 0.6936 + }, + { + "start": 4727.62, + "end": 4728.12, + "probability": 0.8017 + }, + { + "start": 4729.04, + "end": 4729.98, + "probability": 0.9228 + }, + { + "start": 4730.08, + "end": 4731.14, + "probability": 0.9299 + }, + { + "start": 4731.22, + "end": 4732.92, + "probability": 0.9227 + }, + { + "start": 4734.14, + "end": 4736.36, + "probability": 0.961 + }, + { + "start": 4736.8, + "end": 4737.32, + "probability": 0.9855 + }, + { + "start": 4738.44, + "end": 4740.68, + "probability": 0.998 + }, + { + "start": 4743.67, + "end": 4744.84, + "probability": 0.9963 + }, + { + "start": 4744.88, + "end": 4745.7, + "probability": 0.9932 + }, + { + "start": 4746.82, + "end": 4748.84, + "probability": 0.9673 + }, + { + "start": 4749.68, + "end": 4751.09, + "probability": 0.9915 + }, + { + "start": 4752.48, + "end": 4756.0, + "probability": 0.9968 + }, + { + "start": 4757.24, + "end": 4758.92, + "probability": 0.9966 + }, + { + "start": 4759.84, + "end": 4762.5, + "probability": 0.9948 + }, + { + "start": 4763.06, + "end": 4765.02, + "probability": 0.9795 + }, + { + "start": 4765.44, + "end": 4769.14, + "probability": 0.941 + }, + { + "start": 4770.1, + "end": 4772.04, + "probability": 0.841 + }, + { + "start": 4772.82, + "end": 4772.9, + "probability": 0.0536 + }, + { + "start": 4773.88, + "end": 4774.8, + "probability": 0.3375 + }, + { + "start": 4775.04, + "end": 4777.08, + "probability": 0.2988 + }, + { + "start": 4777.24, + "end": 4778.3, + "probability": 0.4726 + }, + { + "start": 4778.42, + "end": 4779.16, + "probability": 0.75 + }, + { + "start": 4779.24, + "end": 4780.62, + "probability": 0.8687 + }, + { + "start": 4781.34, + "end": 4781.36, + "probability": 0.0786 + }, + { + "start": 4781.36, + "end": 4783.6, + "probability": 0.8075 + }, + { + "start": 4783.86, + "end": 4784.52, + "probability": 0.6531 + }, + { + "start": 4784.54, + "end": 4785.92, + "probability": 0.396 + }, + { + "start": 4786.08, + "end": 4786.66, + "probability": 0.9531 + }, + { + "start": 4786.84, + "end": 4790.9, + "probability": 0.941 + }, + { + "start": 4791.12, + "end": 4796.12, + "probability": 0.9923 + }, + { + "start": 4796.48, + "end": 4798.32, + "probability": 0.9833 + }, + { + "start": 4798.72, + "end": 4803.14, + "probability": 0.9993 + }, + { + "start": 4803.14, + "end": 4807.64, + "probability": 0.9995 + }, + { + "start": 4808.42, + "end": 4809.06, + "probability": 0.5783 + }, + { + "start": 4810.08, + "end": 4812.5, + "probability": 0.9727 + }, + { + "start": 4812.68, + "end": 4814.8, + "probability": 0.9829 + }, + { + "start": 4815.66, + "end": 4819.76, + "probability": 0.9565 + }, + { + "start": 4820.16, + "end": 4821.9, + "probability": 0.8851 + }, + { + "start": 4822.08, + "end": 4825.89, + "probability": 0.9926 + }, + { + "start": 4826.5, + "end": 4827.06, + "probability": 0.8244 + }, + { + "start": 4827.16, + "end": 4833.18, + "probability": 0.9822 + }, + { + "start": 4833.74, + "end": 4835.32, + "probability": 0.9967 + }, + { + "start": 4835.64, + "end": 4836.36, + "probability": 0.6982 + }, + { + "start": 4836.4, + "end": 4841.38, + "probability": 0.9636 + }, + { + "start": 4841.92, + "end": 4847.14, + "probability": 0.9961 + }, + { + "start": 4847.8, + "end": 4850.58, + "probability": 0.9714 + }, + { + "start": 4851.06, + "end": 4852.78, + "probability": 0.9749 + }, + { + "start": 4853.26, + "end": 4855.36, + "probability": 0.8022 + }, + { + "start": 4855.86, + "end": 4861.76, + "probability": 0.9553 + }, + { + "start": 4861.82, + "end": 4863.72, + "probability": 0.9617 + }, + { + "start": 4864.08, + "end": 4865.08, + "probability": 0.8876 + }, + { + "start": 4865.2, + "end": 4866.43, + "probability": 0.9866 + }, + { + "start": 4867.46, + "end": 4871.52, + "probability": 0.9899 + }, + { + "start": 4871.52, + "end": 4876.14, + "probability": 0.9996 + }, + { + "start": 4876.24, + "end": 4876.56, + "probability": 0.5057 + }, + { + "start": 4876.8, + "end": 4879.52, + "probability": 0.9937 + }, + { + "start": 4880.04, + "end": 4884.76, + "probability": 0.6301 + }, + { + "start": 4885.4, + "end": 4889.2, + "probability": 0.999 + }, + { + "start": 4889.56, + "end": 4891.58, + "probability": 0.9406 + }, + { + "start": 4892.0, + "end": 4893.48, + "probability": 0.9907 + }, + { + "start": 4894.08, + "end": 4896.08, + "probability": 0.9348 + }, + { + "start": 4896.48, + "end": 4898.22, + "probability": 0.6872 + }, + { + "start": 4898.22, + "end": 4898.58, + "probability": 0.3429 + }, + { + "start": 4899.02, + "end": 4900.8, + "probability": 0.807 + }, + { + "start": 4901.24, + "end": 4901.72, + "probability": 0.7831 + }, + { + "start": 4901.9, + "end": 4906.82, + "probability": 0.8058 + }, + { + "start": 4908.0, + "end": 4913.68, + "probability": 0.981 + }, + { + "start": 4945.66, + "end": 4946.36, + "probability": 0.29 + }, + { + "start": 4947.46, + "end": 4948.22, + "probability": 0.1735 + }, + { + "start": 4948.6, + "end": 4949.48, + "probability": 0.4206 + }, + { + "start": 4952.54, + "end": 4954.5, + "probability": 0.6941 + }, + { + "start": 4955.72, + "end": 4959.79, + "probability": 0.6754 + }, + { + "start": 4960.54, + "end": 4963.08, + "probability": 0.6615 + }, + { + "start": 4963.92, + "end": 4969.02, + "probability": 0.8862 + }, + { + "start": 4969.7, + "end": 4970.82, + "probability": 0.9945 + }, + { + "start": 4971.92, + "end": 4973.26, + "probability": 0.6593 + }, + { + "start": 4974.82, + "end": 4975.85, + "probability": 0.9656 + }, + { + "start": 4976.88, + "end": 4977.45, + "probability": 0.9722 + }, + { + "start": 4978.56, + "end": 4979.6, + "probability": 0.896 + }, + { + "start": 4980.48, + "end": 4983.1, + "probability": 0.8771 + }, + { + "start": 4983.96, + "end": 4985.2, + "probability": 0.9854 + }, + { + "start": 4986.42, + "end": 4988.05, + "probability": 0.9868 + }, + { + "start": 4990.22, + "end": 4991.84, + "probability": 0.899 + }, + { + "start": 4992.68, + "end": 4994.44, + "probability": 0.9149 + }, + { + "start": 4995.52, + "end": 4997.2, + "probability": 0.8488 + }, + { + "start": 4997.96, + "end": 4999.5, + "probability": 0.9154 + }, + { + "start": 4999.88, + "end": 5001.2, + "probability": 0.9956 + }, + { + "start": 5001.82, + "end": 5005.02, + "probability": 0.8905 + }, + { + "start": 5007.02, + "end": 5010.44, + "probability": 0.9661 + }, + { + "start": 5011.14, + "end": 5012.52, + "probability": 0.9983 + }, + { + "start": 5013.62, + "end": 5014.64, + "probability": 0.8646 + }, + { + "start": 5014.76, + "end": 5015.85, + "probability": 0.9204 + }, + { + "start": 5016.64, + "end": 5017.62, + "probability": 0.9296 + }, + { + "start": 5018.34, + "end": 5020.56, + "probability": 0.8863 + }, + { + "start": 5021.28, + "end": 5022.94, + "probability": 0.6506 + }, + { + "start": 5023.54, + "end": 5025.64, + "probability": 0.8116 + }, + { + "start": 5027.04, + "end": 5028.34, + "probability": 0.9548 + }, + { + "start": 5029.18, + "end": 5031.02, + "probability": 0.855 + }, + { + "start": 5031.8, + "end": 5035.38, + "probability": 0.9915 + }, + { + "start": 5036.36, + "end": 5040.32, + "probability": 0.9717 + }, + { + "start": 5041.24, + "end": 5042.96, + "probability": 0.9976 + }, + { + "start": 5043.98, + "end": 5046.42, + "probability": 0.775 + }, + { + "start": 5047.86, + "end": 5048.62, + "probability": 0.8703 + }, + { + "start": 5049.3, + "end": 5050.24, + "probability": 0.9474 + }, + { + "start": 5051.72, + "end": 5052.82, + "probability": 0.9617 + }, + { + "start": 5053.92, + "end": 5058.18, + "probability": 0.9919 + }, + { + "start": 5059.06, + "end": 5060.36, + "probability": 0.918 + }, + { + "start": 5062.06, + "end": 5064.26, + "probability": 0.8664 + }, + { + "start": 5065.18, + "end": 5067.4, + "probability": 0.9133 + }, + { + "start": 5068.02, + "end": 5069.3, + "probability": 0.8879 + }, + { + "start": 5070.36, + "end": 5072.34, + "probability": 0.9954 + }, + { + "start": 5073.02, + "end": 5074.88, + "probability": 0.9668 + }, + { + "start": 5075.3, + "end": 5077.2, + "probability": 0.9273 + }, + { + "start": 5079.04, + "end": 5081.54, + "probability": 0.9897 + }, + { + "start": 5083.32, + "end": 5086.92, + "probability": 0.9963 + }, + { + "start": 5087.8, + "end": 5091.76, + "probability": 0.9743 + }, + { + "start": 5091.86, + "end": 5092.92, + "probability": 0.8102 + }, + { + "start": 5093.9, + "end": 5095.6, + "probability": 0.9743 + }, + { + "start": 5096.5, + "end": 5098.62, + "probability": 0.9958 + }, + { + "start": 5099.18, + "end": 5100.26, + "probability": 0.9173 + }, + { + "start": 5101.12, + "end": 5102.8, + "probability": 0.8007 + }, + { + "start": 5102.92, + "end": 5103.56, + "probability": 0.5093 + }, + { + "start": 5104.64, + "end": 5106.4, + "probability": 0.4541 + }, + { + "start": 5107.32, + "end": 5107.7, + "probability": 0.9578 + }, + { + "start": 5108.46, + "end": 5110.96, + "probability": 0.8171 + }, + { + "start": 5111.7, + "end": 5113.92, + "probability": 0.9751 + }, + { + "start": 5114.5, + "end": 5115.13, + "probability": 0.9876 + }, + { + "start": 5115.98, + "end": 5116.47, + "probability": 0.9859 + }, + { + "start": 5117.18, + "end": 5118.36, + "probability": 0.9105 + }, + { + "start": 5118.98, + "end": 5120.11, + "probability": 0.8677 + }, + { + "start": 5120.94, + "end": 5124.26, + "probability": 0.8644 + }, + { + "start": 5125.06, + "end": 5126.88, + "probability": 0.9961 + }, + { + "start": 5127.5, + "end": 5129.6, + "probability": 0.9797 + }, + { + "start": 5130.34, + "end": 5135.82, + "probability": 0.8898 + }, + { + "start": 5136.94, + "end": 5139.24, + "probability": 0.9843 + }, + { + "start": 5139.7, + "end": 5142.5, + "probability": 0.9309 + }, + { + "start": 5143.02, + "end": 5146.26, + "probability": 0.886 + }, + { + "start": 5146.72, + "end": 5147.78, + "probability": 0.7139 + }, + { + "start": 5148.92, + "end": 5149.54, + "probability": 0.7957 + }, + { + "start": 5150.52, + "end": 5154.04, + "probability": 0.9322 + }, + { + "start": 5154.68, + "end": 5155.3, + "probability": 0.9526 + }, + { + "start": 5156.14, + "end": 5159.56, + "probability": 0.9901 + }, + { + "start": 5160.08, + "end": 5163.26, + "probability": 0.9972 + }, + { + "start": 5163.72, + "end": 5164.68, + "probability": 0.4369 + }, + { + "start": 5165.26, + "end": 5165.6, + "probability": 0.7403 + }, + { + "start": 5165.74, + "end": 5166.32, + "probability": 0.6077 + }, + { + "start": 5166.76, + "end": 5168.52, + "probability": 0.7894 + }, + { + "start": 5169.58, + "end": 5172.58, + "probability": 0.9448 + }, + { + "start": 5173.12, + "end": 5173.54, + "probability": 0.9209 + }, + { + "start": 5173.7, + "end": 5177.26, + "probability": 0.9368 + }, + { + "start": 5177.74, + "end": 5179.18, + "probability": 0.8704 + }, + { + "start": 5179.7, + "end": 5183.06, + "probability": 0.677 + }, + { + "start": 5183.36, + "end": 5186.32, + "probability": 0.9727 + }, + { + "start": 5186.72, + "end": 5188.66, + "probability": 0.9929 + }, + { + "start": 5189.12, + "end": 5193.0, + "probability": 0.9774 + }, + { + "start": 5193.56, + "end": 5193.56, + "probability": 0.0706 + }, + { + "start": 5193.56, + "end": 5196.78, + "probability": 0.8593 + }, + { + "start": 5197.06, + "end": 5198.24, + "probability": 0.9131 + }, + { + "start": 5199.22, + "end": 5201.58, + "probability": 0.7418 + }, + { + "start": 5201.72, + "end": 5203.14, + "probability": 0.863 + }, + { + "start": 5203.2, + "end": 5204.3, + "probability": 0.8993 + }, + { + "start": 5204.34, + "end": 5205.42, + "probability": 0.7877 + }, + { + "start": 5205.8, + "end": 5206.6, + "probability": 0.7386 + }, + { + "start": 5218.74, + "end": 5219.48, + "probability": 0.5957 + }, + { + "start": 5219.64, + "end": 5220.14, + "probability": 0.8156 + }, + { + "start": 5220.28, + "end": 5221.28, + "probability": 0.8486 + }, + { + "start": 5221.58, + "end": 5222.3, + "probability": 0.5727 + }, + { + "start": 5222.48, + "end": 5223.6, + "probability": 0.9243 + }, + { + "start": 5224.42, + "end": 5226.0, + "probability": 0.7161 + }, + { + "start": 5226.1, + "end": 5227.0, + "probability": 0.9644 + }, + { + "start": 5227.5, + "end": 5229.3, + "probability": 0.9714 + }, + { + "start": 5230.34, + "end": 5230.98, + "probability": 0.6995 + }, + { + "start": 5231.52, + "end": 5231.94, + "probability": 0.7435 + }, + { + "start": 5232.82, + "end": 5235.4, + "probability": 0.9965 + }, + { + "start": 5236.7, + "end": 5237.0, + "probability": 0.6914 + }, + { + "start": 5238.06, + "end": 5239.14, + "probability": 0.9998 + }, + { + "start": 5239.98, + "end": 5243.14, + "probability": 0.9221 + }, + { + "start": 5244.22, + "end": 5245.92, + "probability": 0.7897 + }, + { + "start": 5246.74, + "end": 5248.86, + "probability": 0.7095 + }, + { + "start": 5250.36, + "end": 5251.74, + "probability": 0.6866 + }, + { + "start": 5251.76, + "end": 5252.74, + "probability": 0.8553 + }, + { + "start": 5252.92, + "end": 5253.24, + "probability": 0.6309 + }, + { + "start": 5254.12, + "end": 5255.14, + "probability": 0.9945 + }, + { + "start": 5255.9, + "end": 5258.78, + "probability": 0.9766 + }, + { + "start": 5258.78, + "end": 5262.52, + "probability": 0.998 + }, + { + "start": 5262.6, + "end": 5263.34, + "probability": 0.8083 + }, + { + "start": 5265.42, + "end": 5265.84, + "probability": 0.5496 + }, + { + "start": 5266.48, + "end": 5267.75, + "probability": 0.7695 + }, + { + "start": 5268.76, + "end": 5272.26, + "probability": 0.9735 + }, + { + "start": 5274.28, + "end": 5276.18, + "probability": 0.912 + }, + { + "start": 5278.24, + "end": 5279.32, + "probability": 0.6512 + }, + { + "start": 5279.98, + "end": 5280.18, + "probability": 0.3628 + }, + { + "start": 5280.18, + "end": 5280.98, + "probability": 0.8631 + }, + { + "start": 5281.34, + "end": 5286.14, + "probability": 0.9392 + }, + { + "start": 5288.09, + "end": 5291.44, + "probability": 0.9919 + }, + { + "start": 5291.6, + "end": 5293.36, + "probability": 0.8867 + }, + { + "start": 5293.8, + "end": 5295.74, + "probability": 0.9792 + }, + { + "start": 5296.96, + "end": 5300.7, + "probability": 0.8655 + }, + { + "start": 5300.74, + "end": 5301.84, + "probability": 0.9902 + }, + { + "start": 5302.46, + "end": 5303.08, + "probability": 0.9109 + }, + { + "start": 5303.4, + "end": 5305.94, + "probability": 0.9956 + }, + { + "start": 5306.8, + "end": 5307.94, + "probability": 0.771 + }, + { + "start": 5309.98, + "end": 5310.88, + "probability": 0.9445 + }, + { + "start": 5311.4, + "end": 5311.66, + "probability": 0.8609 + }, + { + "start": 5312.28, + "end": 5316.84, + "probability": 0.9988 + }, + { + "start": 5317.84, + "end": 5318.9, + "probability": 0.7558 + }, + { + "start": 5320.08, + "end": 5321.42, + "probability": 0.8147 + }, + { + "start": 5321.46, + "end": 5325.48, + "probability": 0.7344 + }, + { + "start": 5325.52, + "end": 5326.94, + "probability": 0.7007 + }, + { + "start": 5326.98, + "end": 5327.2, + "probability": 0.5627 + }, + { + "start": 5327.32, + "end": 5328.0, + "probability": 0.1602 + }, + { + "start": 5328.08, + "end": 5328.88, + "probability": 0.5624 + }, + { + "start": 5329.42, + "end": 5330.64, + "probability": 0.9844 + }, + { + "start": 5331.7, + "end": 5333.52, + "probability": 0.8466 + }, + { + "start": 5334.46, + "end": 5335.22, + "probability": 0.7967 + }, + { + "start": 5336.46, + "end": 5338.82, + "probability": 0.9909 + }, + { + "start": 5339.26, + "end": 5343.8, + "probability": 0.9902 + }, + { + "start": 5344.48, + "end": 5345.84, + "probability": 0.9262 + }, + { + "start": 5348.12, + "end": 5350.72, + "probability": 0.9673 + }, + { + "start": 5352.18, + "end": 5355.06, + "probability": 0.9815 + }, + { + "start": 5355.86, + "end": 5357.04, + "probability": 0.9946 + }, + { + "start": 5358.82, + "end": 5360.02, + "probability": 0.9416 + }, + { + "start": 5360.7, + "end": 5364.98, + "probability": 0.9939 + }, + { + "start": 5367.26, + "end": 5372.74, + "probability": 0.9969 + }, + { + "start": 5376.46, + "end": 5377.06, + "probability": 0.9954 + }, + { + "start": 5377.68, + "end": 5378.68, + "probability": 0.9057 + }, + { + "start": 5379.18, + "end": 5381.46, + "probability": 0.717 + }, + { + "start": 5381.46, + "end": 5382.12, + "probability": 0.5971 + }, + { + "start": 5382.18, + "end": 5382.98, + "probability": 0.7419 + }, + { + "start": 5384.64, + "end": 5385.22, + "probability": 0.7589 + }, + { + "start": 5386.62, + "end": 5390.92, + "probability": 0.9513 + }, + { + "start": 5391.64, + "end": 5392.4, + "probability": 0.9823 + }, + { + "start": 5393.12, + "end": 5393.76, + "probability": 0.4482 + }, + { + "start": 5394.4, + "end": 5396.3, + "probability": 0.9958 + }, + { + "start": 5396.64, + "end": 5398.1, + "probability": 0.4036 + }, + { + "start": 5399.98, + "end": 5401.58, + "probability": 0.783 + }, + { + "start": 5403.64, + "end": 5405.74, + "probability": 0.793 + }, + { + "start": 5407.9, + "end": 5409.02, + "probability": 0.9314 + }, + { + "start": 5410.26, + "end": 5410.4, + "probability": 0.0066 + }, + { + "start": 5410.4, + "end": 5411.28, + "probability": 0.6678 + }, + { + "start": 5413.74, + "end": 5414.88, + "probability": 0.8905 + }, + { + "start": 5415.7, + "end": 5418.0, + "probability": 0.9351 + }, + { + "start": 5419.16, + "end": 5419.96, + "probability": 0.2661 + }, + { + "start": 5419.96, + "end": 5423.28, + "probability": 0.5797 + }, + { + "start": 5423.58, + "end": 5423.86, + "probability": 0.0246 + }, + { + "start": 5423.86, + "end": 5423.86, + "probability": 0.3832 + }, + { + "start": 5423.86, + "end": 5428.88, + "probability": 0.8364 + }, + { + "start": 5429.98, + "end": 5430.46, + "probability": 0.8411 + }, + { + "start": 5431.3, + "end": 5431.72, + "probability": 0.842 + }, + { + "start": 5432.42, + "end": 5435.2, + "probability": 0.9744 + }, + { + "start": 5435.96, + "end": 5441.42, + "probability": 0.5756 + }, + { + "start": 5442.02, + "end": 5444.0, + "probability": 0.6023 + }, + { + "start": 5444.56, + "end": 5445.26, + "probability": 0.1595 + }, + { + "start": 5445.46, + "end": 5445.82, + "probability": 0.9193 + }, + { + "start": 5446.04, + "end": 5446.48, + "probability": 0.7002 + }, + { + "start": 5446.7, + "end": 5449.94, + "probability": 0.3579 + }, + { + "start": 5450.14, + "end": 5450.68, + "probability": 0.0013 + }, + { + "start": 5450.88, + "end": 5451.06, + "probability": 0.0225 + }, + { + "start": 5451.06, + "end": 5451.06, + "probability": 0.2196 + }, + { + "start": 5451.06, + "end": 5451.24, + "probability": 0.2283 + }, + { + "start": 5451.24, + "end": 5451.24, + "probability": 0.0286 + }, + { + "start": 5452.12, + "end": 5454.46, + "probability": 0.6154 + }, + { + "start": 5454.96, + "end": 5456.78, + "probability": 0.3294 + }, + { + "start": 5456.82, + "end": 5460.46, + "probability": 0.8915 + }, + { + "start": 5460.82, + "end": 5461.62, + "probability": 0.8113 + }, + { + "start": 5461.68, + "end": 5463.76, + "probability": 0.9126 + }, + { + "start": 5464.3, + "end": 5467.74, + "probability": 0.8079 + }, + { + "start": 5467.82, + "end": 5468.92, + "probability": 0.4942 + }, + { + "start": 5471.14, + "end": 5471.22, + "probability": 0.0063 + }, + { + "start": 5471.22, + "end": 5471.48, + "probability": 0.3629 + }, + { + "start": 5471.48, + "end": 5471.48, + "probability": 0.3266 + }, + { + "start": 5471.48, + "end": 5471.48, + "probability": 0.0968 + }, + { + "start": 5471.48, + "end": 5472.38, + "probability": 0.4844 + }, + { + "start": 5472.48, + "end": 5473.54, + "probability": 0.6615 + }, + { + "start": 5474.78, + "end": 5475.44, + "probability": 0.8729 + }, + { + "start": 5475.54, + "end": 5476.4, + "probability": 0.8401 + }, + { + "start": 5476.7, + "end": 5478.1, + "probability": 0.9316 + }, + { + "start": 5478.76, + "end": 5479.62, + "probability": 0.2099 + }, + { + "start": 5480.12, + "end": 5481.5, + "probability": 0.6167 + }, + { + "start": 5482.6, + "end": 5483.14, + "probability": 0.7275 + }, + { + "start": 5484.94, + "end": 5485.8, + "probability": 0.8193 + }, + { + "start": 5486.48, + "end": 5488.66, + "probability": 0.5925 + }, + { + "start": 5489.28, + "end": 5491.94, + "probability": 0.7732 + }, + { + "start": 5493.0, + "end": 5495.7, + "probability": 0.9674 + }, + { + "start": 5496.48, + "end": 5497.74, + "probability": 0.9919 + }, + { + "start": 5498.68, + "end": 5499.68, + "probability": 0.7278 + }, + { + "start": 5501.08, + "end": 5504.2, + "probability": 0.6655 + }, + { + "start": 5504.9, + "end": 5507.86, + "probability": 0.8709 + }, + { + "start": 5508.62, + "end": 5512.46, + "probability": 0.9875 + }, + { + "start": 5513.74, + "end": 5515.85, + "probability": 0.9961 + }, + { + "start": 5516.88, + "end": 5520.12, + "probability": 0.9934 + }, + { + "start": 5521.44, + "end": 5524.3, + "probability": 0.9055 + }, + { + "start": 5525.04, + "end": 5527.34, + "probability": 0.9395 + }, + { + "start": 5529.52, + "end": 5532.04, + "probability": 0.9823 + }, + { + "start": 5533.14, + "end": 5535.72, + "probability": 0.9536 + }, + { + "start": 5536.8, + "end": 5538.46, + "probability": 0.9912 + }, + { + "start": 5539.32, + "end": 5540.44, + "probability": 0.9785 + }, + { + "start": 5541.08, + "end": 5546.33, + "probability": 0.7987 + }, + { + "start": 5547.32, + "end": 5548.94, + "probability": 0.875 + }, + { + "start": 5549.96, + "end": 5551.92, + "probability": 0.9709 + }, + { + "start": 5552.52, + "end": 5557.3, + "probability": 0.9805 + }, + { + "start": 5557.9, + "end": 5558.92, + "probability": 0.9258 + }, + { + "start": 5559.8, + "end": 5564.34, + "probability": 0.9878 + }, + { + "start": 5565.02, + "end": 5568.12, + "probability": 0.4956 + }, + { + "start": 5569.37, + "end": 5573.22, + "probability": 0.9736 + }, + { + "start": 5573.74, + "end": 5578.5, + "probability": 0.6512 + }, + { + "start": 5579.48, + "end": 5580.96, + "probability": 0.6565 + }, + { + "start": 5581.76, + "end": 5584.88, + "probability": 0.9805 + }, + { + "start": 5586.9, + "end": 5588.64, + "probability": 0.9483 + }, + { + "start": 5589.44, + "end": 5591.81, + "probability": 0.9888 + }, + { + "start": 5593.8, + "end": 5596.82, + "probability": 0.6121 + }, + { + "start": 5596.96, + "end": 5598.14, + "probability": 0.8442 + }, + { + "start": 5598.72, + "end": 5599.92, + "probability": 0.976 + }, + { + "start": 5600.8, + "end": 5601.58, + "probability": 0.8507 + }, + { + "start": 5603.36, + "end": 5606.32, + "probability": 0.8224 + }, + { + "start": 5606.94, + "end": 5609.38, + "probability": 0.44 + }, + { + "start": 5610.2, + "end": 5613.66, + "probability": 0.9233 + }, + { + "start": 5615.0, + "end": 5617.9, + "probability": 0.9836 + }, + { + "start": 5618.52, + "end": 5619.88, + "probability": 0.348 + }, + { + "start": 5620.4, + "end": 5622.08, + "probability": 0.926 + }, + { + "start": 5623.18, + "end": 5624.62, + "probability": 0.9315 + }, + { + "start": 5624.86, + "end": 5630.7, + "probability": 0.9846 + }, + { + "start": 5632.24, + "end": 5632.62, + "probability": 0.8162 + }, + { + "start": 5633.62, + "end": 5634.7, + "probability": 0.6517 + }, + { + "start": 5635.98, + "end": 5639.7, + "probability": 0.9962 + }, + { + "start": 5640.16, + "end": 5642.18, + "probability": 0.6859 + }, + { + "start": 5642.56, + "end": 5645.02, + "probability": 0.833 + }, + { + "start": 5645.46, + "end": 5645.46, + "probability": 0.1751 + }, + { + "start": 5645.46, + "end": 5646.24, + "probability": 0.5217 + }, + { + "start": 5646.38, + "end": 5647.7, + "probability": 0.8322 + }, + { + "start": 5647.96, + "end": 5649.5, + "probability": 0.6928 + }, + { + "start": 5649.88, + "end": 5650.02, + "probability": 0.184 + }, + { + "start": 5650.02, + "end": 5650.88, + "probability": 0.8109 + }, + { + "start": 5651.84, + "end": 5652.18, + "probability": 0.7156 + }, + { + "start": 5652.28, + "end": 5652.74, + "probability": 0.4795 + }, + { + "start": 5653.06, + "end": 5653.94, + "probability": 0.931 + }, + { + "start": 5654.94, + "end": 5657.27, + "probability": 0.9803 + }, + { + "start": 5659.1, + "end": 5660.02, + "probability": 0.9114 + }, + { + "start": 5661.66, + "end": 5662.42, + "probability": 0.0323 + }, + { + "start": 5663.04, + "end": 5666.18, + "probability": 0.1705 + }, + { + "start": 5666.46, + "end": 5667.34, + "probability": 0.0951 + }, + { + "start": 5667.52, + "end": 5668.68, + "probability": 0.2934 + }, + { + "start": 5668.7, + "end": 5671.14, + "probability": 0.4987 + }, + { + "start": 5671.28, + "end": 5671.38, + "probability": 0.0013 + }, + { + "start": 5672.7, + "end": 5673.04, + "probability": 0.0846 + }, + { + "start": 5673.04, + "end": 5673.18, + "probability": 0.0178 + }, + { + "start": 5673.18, + "end": 5673.18, + "probability": 0.2534 + }, + { + "start": 5673.18, + "end": 5673.18, + "probability": 0.0094 + }, + { + "start": 5673.18, + "end": 5673.82, + "probability": 0.0291 + }, + { + "start": 5674.34, + "end": 5677.56, + "probability": 0.1997 + }, + { + "start": 5678.18, + "end": 5678.18, + "probability": 0.0521 + }, + { + "start": 5678.18, + "end": 5678.24, + "probability": 0.0783 + }, + { + "start": 5678.24, + "end": 5678.59, + "probability": 0.4423 + }, + { + "start": 5678.8, + "end": 5680.92, + "probability": 0.88 + }, + { + "start": 5681.16, + "end": 5682.54, + "probability": 0.2935 + }, + { + "start": 5682.82, + "end": 5683.26, + "probability": 0.3319 + }, + { + "start": 5683.44, + "end": 5684.94, + "probability": 0.8912 + }, + { + "start": 5685.08, + "end": 5685.99, + "probability": 0.7123 + }, + { + "start": 5686.68, + "end": 5687.72, + "probability": 0.7477 + }, + { + "start": 5688.28, + "end": 5688.94, + "probability": 0.9117 + }, + { + "start": 5689.14, + "end": 5689.54, + "probability": 0.3912 + }, + { + "start": 5689.56, + "end": 5689.88, + "probability": 0.9045 + }, + { + "start": 5690.1, + "end": 5692.68, + "probability": 0.9767 + }, + { + "start": 5693.6, + "end": 5694.68, + "probability": 0.6651 + }, + { + "start": 5695.36, + "end": 5696.78, + "probability": 0.8998 + }, + { + "start": 5696.86, + "end": 5698.94, + "probability": 0.905 + }, + { + "start": 5699.06, + "end": 5700.38, + "probability": 0.5246 + }, + { + "start": 5700.76, + "end": 5703.94, + "probability": 0.8074 + }, + { + "start": 5704.52, + "end": 5705.68, + "probability": 0.5721 + }, + { + "start": 5706.02, + "end": 5706.92, + "probability": 0.8521 + }, + { + "start": 5707.74, + "end": 5710.02, + "probability": 0.7784 + }, + { + "start": 5710.08, + "end": 5711.06, + "probability": 0.7928 + }, + { + "start": 5711.52, + "end": 5713.34, + "probability": 0.8173 + }, + { + "start": 5713.5, + "end": 5715.44, + "probability": 0.939 + }, + { + "start": 5715.96, + "end": 5718.36, + "probability": 0.9962 + }, + { + "start": 5719.0, + "end": 5719.12, + "probability": 0.1782 + }, + { + "start": 5720.1, + "end": 5720.34, + "probability": 0.4845 + }, + { + "start": 5721.32, + "end": 5721.5, + "probability": 0.365 + }, + { + "start": 5722.16, + "end": 5723.18, + "probability": 0.9618 + }, + { + "start": 5723.42, + "end": 5723.72, + "probability": 0.6881 + }, + { + "start": 5723.98, + "end": 5724.78, + "probability": 0.7734 + }, + { + "start": 5725.78, + "end": 5728.78, + "probability": 0.2608 + }, + { + "start": 5729.36, + "end": 5731.92, + "probability": 0.8059 + }, + { + "start": 5732.84, + "end": 5736.16, + "probability": 0.9187 + }, + { + "start": 5755.48, + "end": 5757.1, + "probability": 0.4893 + }, + { + "start": 5759.44, + "end": 5761.54, + "probability": 0.9973 + }, + { + "start": 5763.1, + "end": 5766.14, + "probability": 0.9907 + }, + { + "start": 5768.6, + "end": 5771.1, + "probability": 0.9945 + }, + { + "start": 5771.1, + "end": 5774.42, + "probability": 0.9438 + }, + { + "start": 5775.24, + "end": 5778.04, + "probability": 0.9972 + }, + { + "start": 5778.04, + "end": 5781.94, + "probability": 0.8446 + }, + { + "start": 5782.64, + "end": 5783.1, + "probability": 0.4931 + }, + { + "start": 5783.26, + "end": 5786.78, + "probability": 0.9804 + }, + { + "start": 5787.74, + "end": 5789.08, + "probability": 0.8684 + }, + { + "start": 5789.24, + "end": 5789.82, + "probability": 0.5257 + }, + { + "start": 5789.88, + "end": 5790.42, + "probability": 0.731 + }, + { + "start": 5790.52, + "end": 5790.9, + "probability": 0.8821 + }, + { + "start": 5790.98, + "end": 5791.62, + "probability": 0.9657 + }, + { + "start": 5791.86, + "end": 5792.66, + "probability": 0.9881 + }, + { + "start": 5792.66, + "end": 5793.28, + "probability": 0.825 + }, + { + "start": 5794.36, + "end": 5797.0, + "probability": 0.9431 + }, + { + "start": 5797.96, + "end": 5799.84, + "probability": 0.9694 + }, + { + "start": 5801.44, + "end": 5807.28, + "probability": 0.984 + }, + { + "start": 5808.18, + "end": 5811.42, + "probability": 0.9841 + }, + { + "start": 5812.08, + "end": 5815.78, + "probability": 0.7146 + }, + { + "start": 5816.56, + "end": 5818.48, + "probability": 0.9642 + }, + { + "start": 5818.62, + "end": 5819.5, + "probability": 0.9162 + }, + { + "start": 5819.61, + "end": 5820.06, + "probability": 0.9798 + }, + { + "start": 5820.18, + "end": 5821.4, + "probability": 0.9627 + }, + { + "start": 5822.14, + "end": 5822.84, + "probability": 0.4059 + }, + { + "start": 5823.48, + "end": 5826.36, + "probability": 0.9779 + }, + { + "start": 5827.48, + "end": 5830.84, + "probability": 0.9814 + }, + { + "start": 5831.52, + "end": 5834.16, + "probability": 0.9331 + }, + { + "start": 5834.7, + "end": 5837.44, + "probability": 0.9558 + }, + { + "start": 5837.84, + "end": 5838.64, + "probability": 0.9307 + }, + { + "start": 5839.6, + "end": 5839.84, + "probability": 0.309 + }, + { + "start": 5839.94, + "end": 5841.66, + "probability": 0.9502 + }, + { + "start": 5842.04, + "end": 5844.0, + "probability": 0.8891 + }, + { + "start": 5844.22, + "end": 5848.88, + "probability": 0.9751 + }, + { + "start": 5849.14, + "end": 5850.28, + "probability": 0.9435 + }, + { + "start": 5850.94, + "end": 5856.54, + "probability": 0.9688 + }, + { + "start": 5857.02, + "end": 5857.92, + "probability": 0.8344 + }, + { + "start": 5858.48, + "end": 5860.08, + "probability": 0.8063 + }, + { + "start": 5860.92, + "end": 5864.5, + "probability": 0.7236 + }, + { + "start": 5865.46, + "end": 5870.18, + "probability": 0.9974 + }, + { + "start": 5870.8, + "end": 5871.62, + "probability": 0.6281 + }, + { + "start": 5871.78, + "end": 5874.0, + "probability": 0.8779 + }, + { + "start": 5874.16, + "end": 5874.84, + "probability": 0.7026 + }, + { + "start": 5874.92, + "end": 5875.18, + "probability": 0.8394 + }, + { + "start": 5875.54, + "end": 5877.22, + "probability": 0.6286 + }, + { + "start": 5877.98, + "end": 5878.82, + "probability": 0.8842 + }, + { + "start": 5879.52, + "end": 5880.3, + "probability": 0.9224 + }, + { + "start": 5881.22, + "end": 5884.3, + "probability": 0.9303 + }, + { + "start": 5884.92, + "end": 5887.9, + "probability": 0.9731 + }, + { + "start": 5888.54, + "end": 5890.08, + "probability": 0.7683 + }, + { + "start": 5891.16, + "end": 5895.48, + "probability": 0.9441 + }, + { + "start": 5895.9, + "end": 5900.36, + "probability": 0.7989 + }, + { + "start": 5901.24, + "end": 5907.56, + "probability": 0.9609 + }, + { + "start": 5908.3, + "end": 5910.52, + "probability": 0.9884 + }, + { + "start": 5911.04, + "end": 5914.14, + "probability": 0.9934 + }, + { + "start": 5914.9, + "end": 5916.75, + "probability": 0.9988 + }, + { + "start": 5918.48, + "end": 5920.14, + "probability": 0.8763 + }, + { + "start": 5920.16, + "end": 5921.24, + "probability": 0.8708 + }, + { + "start": 5921.42, + "end": 5924.2, + "probability": 0.9375 + }, + { + "start": 5924.2, + "end": 5928.0, + "probability": 0.9697 + }, + { + "start": 5928.38, + "end": 5930.48, + "probability": 0.9846 + }, + { + "start": 5931.18, + "end": 5933.02, + "probability": 0.8338 + }, + { + "start": 5933.84, + "end": 5935.6, + "probability": 0.812 + }, + { + "start": 5935.98, + "end": 5937.66, + "probability": 0.992 + }, + { + "start": 5937.86, + "end": 5938.66, + "probability": 0.9641 + }, + { + "start": 5938.78, + "end": 5939.58, + "probability": 0.928 + }, + { + "start": 5939.72, + "end": 5940.24, + "probability": 0.8037 + }, + { + "start": 5940.32, + "end": 5940.68, + "probability": 0.8357 + }, + { + "start": 5940.76, + "end": 5941.66, + "probability": 0.9696 + }, + { + "start": 5942.32, + "end": 5944.56, + "probability": 0.7378 + }, + { + "start": 5945.14, + "end": 5949.98, + "probability": 0.9699 + }, + { + "start": 5950.06, + "end": 5950.9, + "probability": 0.9966 + }, + { + "start": 5951.42, + "end": 5953.74, + "probability": 0.9893 + }, + { + "start": 5954.42, + "end": 5960.16, + "probability": 0.9911 + }, + { + "start": 5960.66, + "end": 5962.17, + "probability": 0.9892 + }, + { + "start": 5962.54, + "end": 5966.42, + "probability": 0.995 + }, + { + "start": 5966.9, + "end": 5967.83, + "probability": 0.8992 + }, + { + "start": 5968.34, + "end": 5972.02, + "probability": 0.858 + }, + { + "start": 5972.48, + "end": 5973.52, + "probability": 0.8154 + }, + { + "start": 5974.0, + "end": 5974.94, + "probability": 0.8644 + }, + { + "start": 5975.36, + "end": 5976.62, + "probability": 0.9739 + }, + { + "start": 5976.98, + "end": 5977.86, + "probability": 0.9009 + }, + { + "start": 5977.96, + "end": 5978.88, + "probability": 0.7854 + }, + { + "start": 5979.16, + "end": 5982.44, + "probability": 0.98 + }, + { + "start": 5982.8, + "end": 5984.58, + "probability": 0.9961 + }, + { + "start": 5984.62, + "end": 5985.44, + "probability": 0.604 + }, + { + "start": 5985.86, + "end": 5987.4, + "probability": 0.8982 + }, + { + "start": 5988.12, + "end": 5988.87, + "probability": 0.9829 + }, + { + "start": 5989.68, + "end": 5992.4, + "probability": 0.9942 + }, + { + "start": 5992.7, + "end": 5995.04, + "probability": 0.9964 + }, + { + "start": 5995.1, + "end": 5995.3, + "probability": 0.8215 + }, + { + "start": 5995.9, + "end": 5997.75, + "probability": 0.8406 + }, + { + "start": 5998.38, + "end": 6002.18, + "probability": 0.7658 + }, + { + "start": 6002.74, + "end": 6002.96, + "probability": 0.8211 + }, + { + "start": 6022.7, + "end": 6025.66, + "probability": 0.7093 + }, + { + "start": 6025.98, + "end": 6027.38, + "probability": 0.523 + }, + { + "start": 6027.64, + "end": 6027.64, + "probability": 0.276 + }, + { + "start": 6027.7, + "end": 6028.66, + "probability": 0.5867 + }, + { + "start": 6028.76, + "end": 6029.28, + "probability": 0.8437 + }, + { + "start": 6029.54, + "end": 6030.2, + "probability": 0.7031 + }, + { + "start": 6030.66, + "end": 6031.46, + "probability": 0.9334 + }, + { + "start": 6031.58, + "end": 6034.14, + "probability": 0.9456 + }, + { + "start": 6034.44, + "end": 6035.54, + "probability": 0.7751 + }, + { + "start": 6036.64, + "end": 6038.66, + "probability": 0.932 + }, + { + "start": 6039.18, + "end": 6041.42, + "probability": 0.8387 + }, + { + "start": 6041.62, + "end": 6042.2, + "probability": 0.8612 + }, + { + "start": 6042.66, + "end": 6048.72, + "probability": 0.9915 + }, + { + "start": 6048.84, + "end": 6050.1, + "probability": 0.9886 + }, + { + "start": 6050.58, + "end": 6053.82, + "probability": 0.9245 + }, + { + "start": 6054.14, + "end": 6055.06, + "probability": 0.3331 + }, + { + "start": 6055.16, + "end": 6055.78, + "probability": 0.9062 + }, + { + "start": 6056.74, + "end": 6057.48, + "probability": 0.5659 + }, + { + "start": 6057.84, + "end": 6058.44, + "probability": 0.9854 + }, + { + "start": 6059.0, + "end": 6062.22, + "probability": 0.7933 + }, + { + "start": 6063.04, + "end": 6065.62, + "probability": 0.8629 + }, + { + "start": 6065.74, + "end": 6067.1, + "probability": 0.9475 + }, + { + "start": 6067.54, + "end": 6072.98, + "probability": 0.9388 + }, + { + "start": 6073.56, + "end": 6078.34, + "probability": 0.8289 + }, + { + "start": 6079.08, + "end": 6079.48, + "probability": 0.6772 + }, + { + "start": 6079.54, + "end": 6080.54, + "probability": 0.4295 + }, + { + "start": 6080.98, + "end": 6084.0, + "probability": 0.9598 + }, + { + "start": 6084.16, + "end": 6084.94, + "probability": 0.8755 + }, + { + "start": 6086.1, + "end": 6090.68, + "probability": 0.972 + }, + { + "start": 6091.22, + "end": 6094.3, + "probability": 0.8783 + }, + { + "start": 6094.64, + "end": 6095.24, + "probability": 0.9567 + }, + { + "start": 6095.54, + "end": 6096.02, + "probability": 0.8494 + }, + { + "start": 6096.16, + "end": 6097.92, + "probability": 0.9595 + }, + { + "start": 6098.26, + "end": 6099.68, + "probability": 0.9916 + }, + { + "start": 6099.96, + "end": 6101.86, + "probability": 0.7378 + }, + { + "start": 6102.62, + "end": 6103.42, + "probability": 0.582 + }, + { + "start": 6103.56, + "end": 6104.37, + "probability": 0.87 + }, + { + "start": 6104.9, + "end": 6107.8, + "probability": 0.9583 + }, + { + "start": 6108.26, + "end": 6109.2, + "probability": 0.85 + }, + { + "start": 6109.52, + "end": 6112.56, + "probability": 0.9223 + }, + { + "start": 6114.36, + "end": 6115.44, + "probability": 0.9285 + }, + { + "start": 6115.62, + "end": 6116.97, + "probability": 0.7891 + }, + { + "start": 6117.8, + "end": 6120.94, + "probability": 0.8848 + }, + { + "start": 6121.5, + "end": 6123.27, + "probability": 0.9048 + }, + { + "start": 6123.72, + "end": 6124.83, + "probability": 0.999 + }, + { + "start": 6125.84, + "end": 6130.9, + "probability": 0.9651 + }, + { + "start": 6131.22, + "end": 6133.38, + "probability": 0.9769 + }, + { + "start": 6134.28, + "end": 6134.87, + "probability": 0.6422 + }, + { + "start": 6135.14, + "end": 6135.94, + "probability": 0.6095 + }, + { + "start": 6137.16, + "end": 6141.9, + "probability": 0.7765 + }, + { + "start": 6142.46, + "end": 6143.34, + "probability": 0.7583 + }, + { + "start": 6143.64, + "end": 6147.26, + "probability": 0.8798 + }, + { + "start": 6148.08, + "end": 6148.64, + "probability": 0.9271 + }, + { + "start": 6149.38, + "end": 6151.1, + "probability": 0.927 + }, + { + "start": 6152.04, + "end": 6153.69, + "probability": 0.9713 + }, + { + "start": 6154.56, + "end": 6157.02, + "probability": 0.7822 + }, + { + "start": 6158.12, + "end": 6162.3, + "probability": 0.9961 + }, + { + "start": 6162.8, + "end": 6166.96, + "probability": 0.9183 + }, + { + "start": 6167.56, + "end": 6169.82, + "probability": 0.8416 + }, + { + "start": 6170.06, + "end": 6171.34, + "probability": 0.8022 + }, + { + "start": 6172.48, + "end": 6176.72, + "probability": 0.9957 + }, + { + "start": 6177.5, + "end": 6183.88, + "probability": 0.9924 + }, + { + "start": 6184.6, + "end": 6187.4, + "probability": 0.9519 + }, + { + "start": 6187.74, + "end": 6188.26, + "probability": 0.5661 + }, + { + "start": 6188.62, + "end": 6189.06, + "probability": 0.8619 + }, + { + "start": 6189.54, + "end": 6193.3, + "probability": 0.9879 + }, + { + "start": 6193.3, + "end": 6196.9, + "probability": 0.9725 + }, + { + "start": 6197.22, + "end": 6198.18, + "probability": 0.5383 + }, + { + "start": 6198.84, + "end": 6200.74, + "probability": 0.9922 + }, + { + "start": 6201.16, + "end": 6202.4, + "probability": 0.9659 + }, + { + "start": 6202.56, + "end": 6203.18, + "probability": 0.7695 + }, + { + "start": 6203.6, + "end": 6206.6, + "probability": 0.9473 + }, + { + "start": 6207.04, + "end": 6209.4, + "probability": 0.5518 + }, + { + "start": 6209.62, + "end": 6210.94, + "probability": 0.9111 + }, + { + "start": 6211.5, + "end": 6212.06, + "probability": 0.9691 + }, + { + "start": 6212.96, + "end": 6215.84, + "probability": 0.7857 + }, + { + "start": 6216.46, + "end": 6217.54, + "probability": 0.7534 + }, + { + "start": 6218.06, + "end": 6221.54, + "probability": 0.7557 + }, + { + "start": 6222.18, + "end": 6222.36, + "probability": 0.652 + }, + { + "start": 6222.62, + "end": 6224.14, + "probability": 0.529 + }, + { + "start": 6224.5, + "end": 6225.8, + "probability": 0.9096 + }, + { + "start": 6225.9, + "end": 6227.28, + "probability": 0.9623 + }, + { + "start": 6227.42, + "end": 6228.96, + "probability": 0.8603 + }, + { + "start": 6229.82, + "end": 6232.5, + "probability": 0.8123 + }, + { + "start": 6233.04, + "end": 6233.32, + "probability": 0.6647 + }, + { + "start": 6249.88, + "end": 6250.23, + "probability": 0.012 + }, + { + "start": 6250.36, + "end": 6251.28, + "probability": 0.4156 + }, + { + "start": 6251.5, + "end": 6254.28, + "probability": 0.6383 + }, + { + "start": 6255.12, + "end": 6257.0, + "probability": 0.9015 + }, + { + "start": 6258.18, + "end": 6260.44, + "probability": 0.9806 + }, + { + "start": 6261.18, + "end": 6263.48, + "probability": 0.9526 + }, + { + "start": 6263.48, + "end": 6266.24, + "probability": 0.8544 + }, + { + "start": 6267.18, + "end": 6270.82, + "probability": 0.9653 + }, + { + "start": 6271.06, + "end": 6272.2, + "probability": 0.7177 + }, + { + "start": 6272.4, + "end": 6273.62, + "probability": 0.8057 + }, + { + "start": 6275.22, + "end": 6277.15, + "probability": 0.8557 + }, + { + "start": 6280.0, + "end": 6284.8, + "probability": 0.9888 + }, + { + "start": 6285.18, + "end": 6285.98, + "probability": 0.7234 + }, + { + "start": 6286.78, + "end": 6289.4, + "probability": 0.8881 + }, + { + "start": 6290.84, + "end": 6294.78, + "probability": 0.8989 + }, + { + "start": 6294.78, + "end": 6296.84, + "probability": 0.9995 + }, + { + "start": 6297.5, + "end": 6298.28, + "probability": 0.826 + }, + { + "start": 6298.42, + "end": 6299.49, + "probability": 0.7361 + }, + { + "start": 6299.96, + "end": 6304.44, + "probability": 0.8948 + }, + { + "start": 6304.72, + "end": 6307.38, + "probability": 0.9309 + }, + { + "start": 6308.24, + "end": 6309.8, + "probability": 0.8009 + }, + { + "start": 6309.96, + "end": 6311.14, + "probability": 0.6143 + }, + { + "start": 6311.28, + "end": 6311.76, + "probability": 0.7159 + }, + { + "start": 6311.92, + "end": 6312.16, + "probability": 0.7959 + }, + { + "start": 6312.86, + "end": 6316.4, + "probability": 0.5628 + }, + { + "start": 6317.8, + "end": 6318.36, + "probability": 0.4392 + }, + { + "start": 6318.54, + "end": 6318.68, + "probability": 0.8923 + }, + { + "start": 6318.7, + "end": 6320.68, + "probability": 0.7485 + }, + { + "start": 6320.8, + "end": 6324.32, + "probability": 0.717 + }, + { + "start": 6324.34, + "end": 6325.94, + "probability": 0.9513 + }, + { + "start": 6326.44, + "end": 6328.58, + "probability": 0.9485 + }, + { + "start": 6328.64, + "end": 6329.44, + "probability": 0.9268 + }, + { + "start": 6330.04, + "end": 6331.46, + "probability": 0.8984 + }, + { + "start": 6332.18, + "end": 6334.16, + "probability": 0.7655 + }, + { + "start": 6334.28, + "end": 6335.78, + "probability": 0.9857 + }, + { + "start": 6335.94, + "end": 6337.04, + "probability": 0.95 + }, + { + "start": 6337.1, + "end": 6340.82, + "probability": 0.6844 + }, + { + "start": 6341.2, + "end": 6342.42, + "probability": 0.8872 + }, + { + "start": 6342.5, + "end": 6343.81, + "probability": 0.9757 + }, + { + "start": 6345.2, + "end": 6353.74, + "probability": 0.7806 + }, + { + "start": 6354.62, + "end": 6355.2, + "probability": 0.9818 + }, + { + "start": 6355.28, + "end": 6358.58, + "probability": 0.8427 + }, + { + "start": 6358.7, + "end": 6360.38, + "probability": 0.8719 + }, + { + "start": 6361.36, + "end": 6361.8, + "probability": 0.5305 + }, + { + "start": 6362.52, + "end": 6365.92, + "probability": 0.9651 + }, + { + "start": 6365.92, + "end": 6370.78, + "probability": 0.9487 + }, + { + "start": 6371.58, + "end": 6372.32, + "probability": 0.8997 + }, + { + "start": 6372.72, + "end": 6378.32, + "probability": 0.9105 + }, + { + "start": 6378.46, + "end": 6381.2, + "probability": 0.5874 + }, + { + "start": 6381.36, + "end": 6385.8, + "probability": 0.6413 + }, + { + "start": 6386.1, + "end": 6391.02, + "probability": 0.6155 + }, + { + "start": 6391.6, + "end": 6396.16, + "probability": 0.8843 + }, + { + "start": 6396.16, + "end": 6399.4, + "probability": 0.9832 + }, + { + "start": 6399.6, + "end": 6404.24, + "probability": 0.6633 + }, + { + "start": 6404.24, + "end": 6407.92, + "probability": 0.9938 + }, + { + "start": 6408.82, + "end": 6411.46, + "probability": 0.9901 + }, + { + "start": 6412.06, + "end": 6415.7, + "probability": 0.8667 + }, + { + "start": 6416.3, + "end": 6420.22, + "probability": 0.9848 + }, + { + "start": 6420.22, + "end": 6424.22, + "probability": 0.9856 + }, + { + "start": 6425.86, + "end": 6428.12, + "probability": 0.9248 + }, + { + "start": 6428.32, + "end": 6430.48, + "probability": 0.8539 + }, + { + "start": 6430.48, + "end": 6433.3, + "probability": 0.7148 + }, + { + "start": 6433.58, + "end": 6434.46, + "probability": 0.9255 + }, + { + "start": 6435.06, + "end": 6436.36, + "probability": 0.7404 + }, + { + "start": 6436.46, + "end": 6439.2, + "probability": 0.9964 + }, + { + "start": 6439.72, + "end": 6440.54, + "probability": 0.8801 + }, + { + "start": 6441.02, + "end": 6443.4, + "probability": 0.9276 + }, + { + "start": 6444.28, + "end": 6444.34, + "probability": 0.3568 + }, + { + "start": 6444.66, + "end": 6447.59, + "probability": 0.9617 + }, + { + "start": 6448.14, + "end": 6451.7, + "probability": 0.8912 + }, + { + "start": 6451.7, + "end": 6457.34, + "probability": 0.8788 + }, + { + "start": 6458.2, + "end": 6459.88, + "probability": 0.8633 + }, + { + "start": 6460.4, + "end": 6461.24, + "probability": 0.2306 + }, + { + "start": 6461.46, + "end": 6462.06, + "probability": 0.7797 + }, + { + "start": 6462.34, + "end": 6466.98, + "probability": 0.7296 + }, + { + "start": 6467.12, + "end": 6470.92, + "probability": 0.9941 + }, + { + "start": 6471.08, + "end": 6473.12, + "probability": 0.9681 + }, + { + "start": 6473.12, + "end": 6475.8, + "probability": 0.9963 + }, + { + "start": 6477.22, + "end": 6477.62, + "probability": 0.4157 + }, + { + "start": 6477.62, + "end": 6479.4, + "probability": 0.9909 + }, + { + "start": 6479.4, + "end": 6479.96, + "probability": 0.8606 + }, + { + "start": 6480.04, + "end": 6484.22, + "probability": 0.937 + }, + { + "start": 6484.72, + "end": 6486.04, + "probability": 0.8234 + }, + { + "start": 6486.14, + "end": 6486.74, + "probability": 0.9001 + }, + { + "start": 6486.96, + "end": 6487.78, + "probability": 0.9797 + }, + { + "start": 6489.2, + "end": 6490.22, + "probability": 0.8566 + }, + { + "start": 6490.4, + "end": 6492.64, + "probability": 0.9395 + }, + { + "start": 6492.76, + "end": 6493.12, + "probability": 0.776 + }, + { + "start": 6493.72, + "end": 6494.24, + "probability": 0.6261 + }, + { + "start": 6494.32, + "end": 6495.02, + "probability": 0.5887 + }, + { + "start": 6495.38, + "end": 6498.42, + "probability": 0.7039 + }, + { + "start": 6498.56, + "end": 6502.96, + "probability": 0.9932 + }, + { + "start": 6503.66, + "end": 6504.64, + "probability": 0.9731 + }, + { + "start": 6504.86, + "end": 6507.46, + "probability": 0.9151 + }, + { + "start": 6507.6, + "end": 6512.96, + "probability": 0.7773 + }, + { + "start": 6513.04, + "end": 6517.52, + "probability": 0.984 + }, + { + "start": 6517.84, + "end": 6519.96, + "probability": 0.9848 + }, + { + "start": 6520.06, + "end": 6522.28, + "probability": 0.9906 + }, + { + "start": 6522.78, + "end": 6524.38, + "probability": 0.9987 + }, + { + "start": 6524.58, + "end": 6524.84, + "probability": 0.8427 + }, + { + "start": 6525.82, + "end": 6528.04, + "probability": 0.6638 + }, + { + "start": 6528.22, + "end": 6531.25, + "probability": 0.9548 + }, + { + "start": 6533.2, + "end": 6534.06, + "probability": 0.4715 + }, + { + "start": 6534.34, + "end": 6535.36, + "probability": 0.8127 + }, + { + "start": 6536.06, + "end": 6536.89, + "probability": 0.9113 + }, + { + "start": 6537.18, + "end": 6540.8, + "probability": 0.9634 + }, + { + "start": 6541.42, + "end": 6545.92, + "probability": 0.9879 + }, + { + "start": 6547.1, + "end": 6547.46, + "probability": 0.6261 + }, + { + "start": 6548.58, + "end": 6550.85, + "probability": 0.96 + }, + { + "start": 6551.22, + "end": 6553.18, + "probability": 0.3128 + }, + { + "start": 6553.22, + "end": 6554.4, + "probability": 0.2149 + }, + { + "start": 6556.12, + "end": 6559.92, + "probability": 0.58 + }, + { + "start": 6560.06, + "end": 6561.66, + "probability": 0.0058 + }, + { + "start": 6562.88, + "end": 6567.14, + "probability": 0.1031 + }, + { + "start": 6567.54, + "end": 6567.9, + "probability": 0.0624 + }, + { + "start": 6567.9, + "end": 6568.9, + "probability": 0.0811 + }, + { + "start": 6569.94, + "end": 6573.72, + "probability": 0.5717 + }, + { + "start": 6573.78, + "end": 6575.33, + "probability": 0.4759 + }, + { + "start": 6576.34, + "end": 6577.0, + "probability": 0.2529 + }, + { + "start": 6577.08, + "end": 6579.44, + "probability": 0.1754 + }, + { + "start": 6580.3, + "end": 6582.46, + "probability": 0.5012 + }, + { + "start": 6583.06, + "end": 6583.68, + "probability": 0.6363 + }, + { + "start": 6583.8, + "end": 6584.18, + "probability": 0.8981 + }, + { + "start": 6584.54, + "end": 6584.88, + "probability": 0.2506 + }, + { + "start": 6585.66, + "end": 6585.86, + "probability": 0.0312 + }, + { + "start": 6587.06, + "end": 6588.28, + "probability": 0.1403 + }, + { + "start": 6588.28, + "end": 6590.06, + "probability": 0.1425 + }, + { + "start": 6599.78, + "end": 6605.08, + "probability": 0.0815 + }, + { + "start": 6630.52, + "end": 6636.3, + "probability": 0.7791 + }, + { + "start": 6637.2, + "end": 6637.54, + "probability": 0.0587 + }, + { + "start": 6637.54, + "end": 6638.44, + "probability": 0.0967 + }, + { + "start": 6639.04, + "end": 6640.36, + "probability": 0.5816 + }, + { + "start": 6640.98, + "end": 6642.1, + "probability": 0.586 + }, + { + "start": 6642.2, + "end": 6644.68, + "probability": 0.8665 + }, + { + "start": 6645.64, + "end": 6646.28, + "probability": 0.7737 + }, + { + "start": 6646.3, + "end": 6647.67, + "probability": 0.676 + }, + { + "start": 6647.82, + "end": 6649.56, + "probability": 0.7625 + }, + { + "start": 6649.88, + "end": 6651.26, + "probability": 0.8309 + }, + { + "start": 6651.72, + "end": 6653.09, + "probability": 0.9904 + }, + { + "start": 6654.32, + "end": 6654.86, + "probability": 0.8789 + }, + { + "start": 6655.3, + "end": 6658.4, + "probability": 0.7647 + }, + { + "start": 6659.18, + "end": 6662.64, + "probability": 0.776 + }, + { + "start": 6663.14, + "end": 6666.98, + "probability": 0.7314 + }, + { + "start": 6667.8, + "end": 6669.34, + "probability": 0.9795 + }, + { + "start": 6670.86, + "end": 6671.14, + "probability": 0.6716 + }, + { + "start": 6671.7, + "end": 6673.72, + "probability": 0.9291 + }, + { + "start": 6674.4, + "end": 6674.74, + "probability": 0.9683 + }, + { + "start": 6676.38, + "end": 6677.76, + "probability": 0.7827 + }, + { + "start": 6678.02, + "end": 6678.94, + "probability": 0.7371 + }, + { + "start": 6679.02, + "end": 6680.52, + "probability": 0.8283 + }, + { + "start": 6680.52, + "end": 6682.4, + "probability": 0.9155 + }, + { + "start": 6682.52, + "end": 6682.8, + "probability": 0.808 + }, + { + "start": 6683.04, + "end": 6684.42, + "probability": 0.4137 + }, + { + "start": 6685.26, + "end": 6685.38, + "probability": 0.9111 + }, + { + "start": 6686.1, + "end": 6687.38, + "probability": 0.0602 + }, + { + "start": 6687.44, + "end": 6689.96, + "probability": 0.9639 + }, + { + "start": 6690.46, + "end": 6696.16, + "probability": 0.9283 + }, + { + "start": 6696.28, + "end": 6697.2, + "probability": 0.9102 + }, + { + "start": 6697.92, + "end": 6699.04, + "probability": 0.928 + }, + { + "start": 6699.8, + "end": 6704.86, + "probability": 0.9841 + }, + { + "start": 6705.58, + "end": 6708.02, + "probability": 0.2969 + }, + { + "start": 6708.52, + "end": 6709.44, + "probability": 0.7539 + }, + { + "start": 6709.72, + "end": 6710.78, + "probability": 0.9763 + }, + { + "start": 6711.08, + "end": 6714.24, + "probability": 0.988 + }, + { + "start": 6714.38, + "end": 6714.94, + "probability": 0.9364 + }, + { + "start": 6715.66, + "end": 6716.56, + "probability": 0.9775 + }, + { + "start": 6716.9, + "end": 6718.06, + "probability": 0.8028 + }, + { + "start": 6718.14, + "end": 6722.68, + "probability": 0.9505 + }, + { + "start": 6724.02, + "end": 6724.96, + "probability": 0.6646 + }, + { + "start": 6725.7, + "end": 6729.96, + "probability": 0.9313 + }, + { + "start": 6731.66, + "end": 6734.76, + "probability": 0.9823 + }, + { + "start": 6735.24, + "end": 6738.57, + "probability": 0.9993 + }, + { + "start": 6739.72, + "end": 6740.32, + "probability": 0.9644 + }, + { + "start": 6740.66, + "end": 6744.02, + "probability": 0.8423 + }, + { + "start": 6744.64, + "end": 6746.02, + "probability": 0.9167 + }, + { + "start": 6746.24, + "end": 6749.04, + "probability": 0.9053 + }, + { + "start": 6749.74, + "end": 6750.36, + "probability": 0.9355 + }, + { + "start": 6750.7, + "end": 6754.54, + "probability": 0.9724 + }, + { + "start": 6754.58, + "end": 6755.48, + "probability": 0.7372 + }, + { + "start": 6755.56, + "end": 6756.4, + "probability": 0.7346 + }, + { + "start": 6756.42, + "end": 6756.86, + "probability": 0.7645 + }, + { + "start": 6757.3, + "end": 6758.94, + "probability": 0.6224 + }, + { + "start": 6759.56, + "end": 6764.32, + "probability": 0.8862 + }, + { + "start": 6764.4, + "end": 6764.54, + "probability": 0.3893 + }, + { + "start": 6765.04, + "end": 6769.72, + "probability": 0.9937 + }, + { + "start": 6770.48, + "end": 6773.0, + "probability": 0.968 + }, + { + "start": 6773.36, + "end": 6773.36, + "probability": 0.5136 + }, + { + "start": 6773.36, + "end": 6776.0, + "probability": 0.7981 + }, + { + "start": 6776.38, + "end": 6777.03, + "probability": 0.8447 + }, + { + "start": 6777.44, + "end": 6780.42, + "probability": 0.5665 + }, + { + "start": 6780.44, + "end": 6780.5, + "probability": 0.4968 + }, + { + "start": 6780.5, + "end": 6781.12, + "probability": 0.6941 + }, + { + "start": 6781.18, + "end": 6781.8, + "probability": 0.6007 + }, + { + "start": 6781.82, + "end": 6782.52, + "probability": 0.8387 + }, + { + "start": 6782.66, + "end": 6783.58, + "probability": 0.9581 + }, + { + "start": 6783.94, + "end": 6786.76, + "probability": 0.8953 + }, + { + "start": 6787.14, + "end": 6787.32, + "probability": 0.8546 + }, + { + "start": 6787.4, + "end": 6787.78, + "probability": 0.7615 + }, + { + "start": 6788.04, + "end": 6789.02, + "probability": 0.5031 + }, + { + "start": 6789.24, + "end": 6790.66, + "probability": 0.6259 + }, + { + "start": 6790.86, + "end": 6793.22, + "probability": 0.8747 + }, + { + "start": 6793.74, + "end": 6794.52, + "probability": 0.9885 + }, + { + "start": 6795.18, + "end": 6796.56, + "probability": 0.6195 + }, + { + "start": 6796.62, + "end": 6797.8, + "probability": 0.9636 + }, + { + "start": 6797.94, + "end": 6798.7, + "probability": 0.7062 + }, + { + "start": 6798.8, + "end": 6799.76, + "probability": 0.7553 + }, + { + "start": 6803.54, + "end": 6806.16, + "probability": 0.729 + }, + { + "start": 6806.48, + "end": 6809.0, + "probability": 0.7328 + }, + { + "start": 6809.66, + "end": 6816.02, + "probability": 0.9781 + }, + { + "start": 6816.78, + "end": 6821.24, + "probability": 0.9313 + }, + { + "start": 6822.24, + "end": 6825.12, + "probability": 0.6888 + }, + { + "start": 6825.7, + "end": 6833.32, + "probability": 0.9667 + }, + { + "start": 6833.42, + "end": 6839.05, + "probability": 0.9543 + }, + { + "start": 6839.42, + "end": 6840.78, + "probability": 0.7568 + }, + { + "start": 6840.88, + "end": 6844.48, + "probability": 0.9806 + }, + { + "start": 6845.52, + "end": 6846.42, + "probability": 0.9535 + }, + { + "start": 6847.14, + "end": 6853.36, + "probability": 0.9397 + }, + { + "start": 6853.4, + "end": 6855.84, + "probability": 0.9949 + }, + { + "start": 6855.84, + "end": 6859.96, + "probability": 0.999 + }, + { + "start": 6860.56, + "end": 6865.18, + "probability": 0.9965 + }, + { + "start": 6865.28, + "end": 6865.82, + "probability": 0.4737 + }, + { + "start": 6866.16, + "end": 6867.28, + "probability": 0.9478 + }, + { + "start": 6867.5, + "end": 6869.86, + "probability": 0.9849 + }, + { + "start": 6870.38, + "end": 6873.16, + "probability": 0.9698 + }, + { + "start": 6873.24, + "end": 6876.14, + "probability": 0.9747 + }, + { + "start": 6876.6, + "end": 6879.92, + "probability": 0.9747 + }, + { + "start": 6880.42, + "end": 6881.72, + "probability": 0.9384 + }, + { + "start": 6881.8, + "end": 6883.4, + "probability": 0.9774 + }, + { + "start": 6883.86, + "end": 6885.3, + "probability": 0.8791 + }, + { + "start": 6885.44, + "end": 6887.02, + "probability": 0.9067 + }, + { + "start": 6887.14, + "end": 6887.9, + "probability": 0.5556 + }, + { + "start": 6888.28, + "end": 6890.62, + "probability": 0.5801 + }, + { + "start": 6891.0, + "end": 6891.76, + "probability": 0.5 + }, + { + "start": 6892.34, + "end": 6894.82, + "probability": 0.873 + }, + { + "start": 6895.44, + "end": 6896.66, + "probability": 0.948 + }, + { + "start": 6896.74, + "end": 6900.4, + "probability": 0.9917 + }, + { + "start": 6901.14, + "end": 6901.14, + "probability": 0.0619 + }, + { + "start": 6901.14, + "end": 6902.4, + "probability": 0.9497 + }, + { + "start": 6903.38, + "end": 6907.14, + "probability": 0.673 + }, + { + "start": 6907.24, + "end": 6911.58, + "probability": 0.7531 + }, + { + "start": 6912.78, + "end": 6918.2, + "probability": 0.9408 + }, + { + "start": 6918.96, + "end": 6919.4, + "probability": 0.7156 + }, + { + "start": 6919.88, + "end": 6921.3, + "probability": 0.6281 + }, + { + "start": 6921.5, + "end": 6922.4, + "probability": 0.8145 + }, + { + "start": 6922.66, + "end": 6925.94, + "probability": 0.9271 + }, + { + "start": 6926.38, + "end": 6929.04, + "probability": 0.9971 + }, + { + "start": 6929.12, + "end": 6929.52, + "probability": 0.631 + }, + { + "start": 6929.64, + "end": 6930.38, + "probability": 0.7757 + }, + { + "start": 6930.86, + "end": 6931.82, + "probability": 0.9915 + }, + { + "start": 6932.64, + "end": 6935.93, + "probability": 0.9945 + }, + { + "start": 6936.74, + "end": 6938.2, + "probability": 0.91 + }, + { + "start": 6938.92, + "end": 6940.02, + "probability": 0.7065 + }, + { + "start": 6940.22, + "end": 6944.5, + "probability": 0.9525 + }, + { + "start": 6944.96, + "end": 6948.4, + "probability": 0.8433 + }, + { + "start": 6948.8, + "end": 6950.28, + "probability": 0.99 + }, + { + "start": 6950.78, + "end": 6951.22, + "probability": 0.7375 + }, + { + "start": 6951.64, + "end": 6954.48, + "probability": 0.9665 + }, + { + "start": 6954.58, + "end": 6955.92, + "probability": 0.9711 + }, + { + "start": 6956.52, + "end": 6957.84, + "probability": 0.9501 + }, + { + "start": 6957.92, + "end": 6960.06, + "probability": 0.9764 + }, + { + "start": 6960.48, + "end": 6964.82, + "probability": 0.9482 + }, + { + "start": 6965.06, + "end": 6966.76, + "probability": 0.7064 + }, + { + "start": 6967.32, + "end": 6969.76, + "probability": 0.8854 + }, + { + "start": 6970.52, + "end": 6973.22, + "probability": 0.5234 + }, + { + "start": 6974.18, + "end": 6975.26, + "probability": 0.599 + }, + { + "start": 6975.44, + "end": 6977.86, + "probability": 0.8799 + }, + { + "start": 6978.62, + "end": 6980.24, + "probability": 0.9931 + }, + { + "start": 6980.84, + "end": 6984.14, + "probability": 0.9868 + }, + { + "start": 6984.56, + "end": 6985.46, + "probability": 0.9214 + }, + { + "start": 6985.76, + "end": 6986.64, + "probability": 0.6401 + }, + { + "start": 6987.3, + "end": 6989.5, + "probability": 0.9288 + }, + { + "start": 6989.84, + "end": 6991.22, + "probability": 0.9629 + }, + { + "start": 6991.56, + "end": 6994.8, + "probability": 0.9922 + }, + { + "start": 6994.96, + "end": 6995.42, + "probability": 0.8596 + }, + { + "start": 6995.9, + "end": 6998.4, + "probability": 0.5855 + }, + { + "start": 6998.94, + "end": 7000.18, + "probability": 0.9412 + }, + { + "start": 7000.28, + "end": 7001.34, + "probability": 0.8768 + }, + { + "start": 7001.52, + "end": 7001.98, + "probability": 0.9756 + }, + { + "start": 7002.46, + "end": 7002.68, + "probability": 0.5279 + }, + { + "start": 7003.78, + "end": 7004.76, + "probability": 0.6976 + }, + { + "start": 7004.9, + "end": 7006.0, + "probability": 0.7326 + }, + { + "start": 7006.38, + "end": 7007.32, + "probability": 0.8066 + }, + { + "start": 7008.22, + "end": 7023.24, + "probability": 0.8659 + }, + { + "start": 7023.84, + "end": 7024.16, + "probability": 0.4622 + }, + { + "start": 7024.16, + "end": 7025.44, + "probability": 0.8188 + }, + { + "start": 7025.98, + "end": 7026.9, + "probability": 0.4227 + }, + { + "start": 7028.78, + "end": 7029.61, + "probability": 0.8508 + }, + { + "start": 7031.86, + "end": 7033.42, + "probability": 0.6919 + }, + { + "start": 7036.34, + "end": 7037.6, + "probability": 0.9513 + }, + { + "start": 7039.14, + "end": 7041.76, + "probability": 0.9941 + }, + { + "start": 7043.86, + "end": 7049.16, + "probability": 0.998 + }, + { + "start": 7049.78, + "end": 7050.96, + "probability": 0.8768 + }, + { + "start": 7052.24, + "end": 7057.76, + "probability": 0.9951 + }, + { + "start": 7058.58, + "end": 7063.48, + "probability": 0.995 + }, + { + "start": 7063.54, + "end": 7064.92, + "probability": 0.9963 + }, + { + "start": 7065.98, + "end": 7067.08, + "probability": 0.9386 + }, + { + "start": 7067.18, + "end": 7071.26, + "probability": 0.9738 + }, + { + "start": 7071.76, + "end": 7072.42, + "probability": 0.7947 + }, + { + "start": 7072.5, + "end": 7073.56, + "probability": 0.9645 + }, + { + "start": 7074.34, + "end": 7075.94, + "probability": 0.9846 + }, + { + "start": 7077.18, + "end": 7081.0, + "probability": 0.9727 + }, + { + "start": 7081.96, + "end": 7084.2, + "probability": 0.8296 + }, + { + "start": 7084.92, + "end": 7085.88, + "probability": 0.6182 + }, + { + "start": 7086.32, + "end": 7090.76, + "probability": 0.9863 + }, + { + "start": 7091.44, + "end": 7094.32, + "probability": 0.978 + }, + { + "start": 7095.32, + "end": 7097.38, + "probability": 0.9435 + }, + { + "start": 7098.86, + "end": 7102.74, + "probability": 0.9106 + }, + { + "start": 7102.74, + "end": 7106.78, + "probability": 0.9985 + }, + { + "start": 7106.9, + "end": 7109.31, + "probability": 0.9806 + }, + { + "start": 7110.78, + "end": 7111.44, + "probability": 0.6589 + }, + { + "start": 7112.32, + "end": 7116.74, + "probability": 0.858 + }, + { + "start": 7116.94, + "end": 7118.76, + "probability": 0.9931 + }, + { + "start": 7120.02, + "end": 7121.46, + "probability": 0.8768 + }, + { + "start": 7122.12, + "end": 7122.72, + "probability": 0.9831 + }, + { + "start": 7123.42, + "end": 7125.62, + "probability": 0.9364 + }, + { + "start": 7126.74, + "end": 7129.8, + "probability": 0.9722 + }, + { + "start": 7130.66, + "end": 7133.52, + "probability": 0.963 + }, + { + "start": 7134.14, + "end": 7136.66, + "probability": 0.8452 + }, + { + "start": 7137.2, + "end": 7139.82, + "probability": 0.9224 + }, + { + "start": 7140.28, + "end": 7141.32, + "probability": 0.7798 + }, + { + "start": 7142.86, + "end": 7145.94, + "probability": 0.9609 + }, + { + "start": 7146.24, + "end": 7148.98, + "probability": 0.8551 + }, + { + "start": 7149.1, + "end": 7152.12, + "probability": 0.5041 + }, + { + "start": 7152.84, + "end": 7157.22, + "probability": 0.9049 + }, + { + "start": 7157.76, + "end": 7158.72, + "probability": 0.9202 + }, + { + "start": 7160.14, + "end": 7163.14, + "probability": 0.8916 + }, + { + "start": 7163.9, + "end": 7166.94, + "probability": 0.5241 + }, + { + "start": 7167.04, + "end": 7170.0, + "probability": 0.9312 + }, + { + "start": 7171.5, + "end": 7173.42, + "probability": 0.963 + }, + { + "start": 7173.54, + "end": 7174.37, + "probability": 0.9932 + }, + { + "start": 7175.3, + "end": 7179.48, + "probability": 0.9841 + }, + { + "start": 7180.32, + "end": 7182.28, + "probability": 0.4541 + }, + { + "start": 7183.4, + "end": 7186.28, + "probability": 0.5825 + }, + { + "start": 7187.4, + "end": 7189.96, + "probability": 0.8293 + }, + { + "start": 7190.3, + "end": 7191.45, + "probability": 0.815 + }, + { + "start": 7193.5, + "end": 7196.26, + "probability": 0.8205 + }, + { + "start": 7197.78, + "end": 7199.64, + "probability": 0.9469 + }, + { + "start": 7201.1, + "end": 7202.68, + "probability": 0.7299 + }, + { + "start": 7204.24, + "end": 7207.24, + "probability": 0.993 + }, + { + "start": 7207.78, + "end": 7209.9, + "probability": 0.9359 + }, + { + "start": 7210.86, + "end": 7213.04, + "probability": 0.9987 + }, + { + "start": 7214.14, + "end": 7216.98, + "probability": 0.7648 + }, + { + "start": 7217.32, + "end": 7219.46, + "probability": 0.912 + }, + { + "start": 7220.0, + "end": 7220.56, + "probability": 0.9609 + }, + { + "start": 7221.1, + "end": 7223.52, + "probability": 0.9858 + }, + { + "start": 7224.18, + "end": 7228.54, + "probability": 0.9595 + }, + { + "start": 7228.78, + "end": 7230.95, + "probability": 0.9987 + }, + { + "start": 7232.26, + "end": 7234.28, + "probability": 0.8851 + }, + { + "start": 7234.76, + "end": 7236.94, + "probability": 0.9871 + }, + { + "start": 7237.42, + "end": 7239.74, + "probability": 0.7839 + }, + { + "start": 7240.64, + "end": 7241.06, + "probability": 0.5124 + }, + { + "start": 7241.32, + "end": 7242.38, + "probability": 0.6621 + }, + { + "start": 7242.58, + "end": 7244.72, + "probability": 0.851 + }, + { + "start": 7245.16, + "end": 7245.54, + "probability": 0.7532 + }, + { + "start": 7245.92, + "end": 7246.94, + "probability": 0.7896 + }, + { + "start": 7247.04, + "end": 7248.06, + "probability": 0.7305 + }, + { + "start": 7248.16, + "end": 7251.8, + "probability": 0.8271 + }, + { + "start": 7252.44, + "end": 7257.62, + "probability": 0.9895 + }, + { + "start": 7258.76, + "end": 7260.46, + "probability": 0.8085 + }, + { + "start": 7261.12, + "end": 7263.12, + "probability": 0.7428 + }, + { + "start": 7263.34, + "end": 7265.12, + "probability": 0.6765 + }, + { + "start": 7265.16, + "end": 7266.34, + "probability": 0.857 + }, + { + "start": 7274.39, + "end": 7276.36, + "probability": 0.8636 + }, + { + "start": 7278.28, + "end": 7281.1, + "probability": 0.5531 + }, + { + "start": 7281.98, + "end": 7284.6, + "probability": 0.993 + }, + { + "start": 7285.74, + "end": 7291.66, + "probability": 0.9776 + }, + { + "start": 7291.76, + "end": 7292.48, + "probability": 0.8628 + }, + { + "start": 7293.0, + "end": 7293.64, + "probability": 0.8682 + }, + { + "start": 7295.24, + "end": 7297.18, + "probability": 0.7874 + }, + { + "start": 7298.2, + "end": 7300.08, + "probability": 0.8955 + }, + { + "start": 7300.64, + "end": 7301.34, + "probability": 0.7744 + }, + { + "start": 7302.08, + "end": 7303.36, + "probability": 0.988 + }, + { + "start": 7304.22, + "end": 7304.84, + "probability": 0.4793 + }, + { + "start": 7305.96, + "end": 7311.01, + "probability": 0.9091 + }, + { + "start": 7313.3, + "end": 7314.76, + "probability": 0.9717 + }, + { + "start": 7315.44, + "end": 7317.82, + "probability": 0.9797 + }, + { + "start": 7317.82, + "end": 7318.4, + "probability": 0.8347 + }, + { + "start": 7318.9, + "end": 7322.58, + "probability": 0.9871 + }, + { + "start": 7323.54, + "end": 7325.22, + "probability": 0.9789 + }, + { + "start": 7325.96, + "end": 7326.08, + "probability": 0.6215 + }, + { + "start": 7327.04, + "end": 7327.62, + "probability": 0.5251 + }, + { + "start": 7328.61, + "end": 7331.36, + "probability": 0.9646 + }, + { + "start": 7331.98, + "end": 7333.36, + "probability": 0.9674 + }, + { + "start": 7333.9, + "end": 7337.54, + "probability": 0.9912 + }, + { + "start": 7338.58, + "end": 7342.32, + "probability": 0.9882 + }, + { + "start": 7343.0, + "end": 7343.52, + "probability": 0.4566 + }, + { + "start": 7344.62, + "end": 7347.22, + "probability": 0.9868 + }, + { + "start": 7347.22, + "end": 7350.62, + "probability": 0.9759 + }, + { + "start": 7350.7, + "end": 7353.36, + "probability": 0.9485 + }, + { + "start": 7354.38, + "end": 7355.48, + "probability": 0.9692 + }, + { + "start": 7355.54, + "end": 7356.54, + "probability": 0.9376 + }, + { + "start": 7356.64, + "end": 7357.3, + "probability": 0.6215 + }, + { + "start": 7358.28, + "end": 7362.14, + "probability": 0.9327 + }, + { + "start": 7362.9, + "end": 7363.52, + "probability": 0.3115 + }, + { + "start": 7364.14, + "end": 7365.26, + "probability": 0.952 + }, + { + "start": 7365.38, + "end": 7370.9, + "probability": 0.9865 + }, + { + "start": 7371.14, + "end": 7374.76, + "probability": 0.9912 + }, + { + "start": 7375.18, + "end": 7377.18, + "probability": 0.9357 + }, + { + "start": 7377.82, + "end": 7379.92, + "probability": 0.9969 + }, + { + "start": 7381.22, + "end": 7383.58, + "probability": 0.9859 + }, + { + "start": 7385.3, + "end": 7388.16, + "probability": 0.9858 + }, + { + "start": 7388.34, + "end": 7389.3, + "probability": 0.7994 + }, + { + "start": 7389.66, + "end": 7390.84, + "probability": 0.7758 + }, + { + "start": 7391.52, + "end": 7393.06, + "probability": 0.9288 + }, + { + "start": 7393.5, + "end": 7396.22, + "probability": 0.9862 + }, + { + "start": 7396.3, + "end": 7397.6, + "probability": 0.9902 + }, + { + "start": 7399.06, + "end": 7400.28, + "probability": 0.9626 + }, + { + "start": 7401.26, + "end": 7402.3, + "probability": 0.3986 + }, + { + "start": 7402.38, + "end": 7406.8, + "probability": 0.965 + }, + { + "start": 7407.58, + "end": 7409.88, + "probability": 0.9349 + }, + { + "start": 7410.94, + "end": 7412.84, + "probability": 0.6856 + }, + { + "start": 7413.06, + "end": 7417.22, + "probability": 0.802 + }, + { + "start": 7417.82, + "end": 7418.92, + "probability": 0.8663 + }, + { + "start": 7419.1, + "end": 7421.34, + "probability": 0.8931 + }, + { + "start": 7422.1, + "end": 7424.12, + "probability": 0.9847 + }, + { + "start": 7425.64, + "end": 7426.73, + "probability": 0.8859 + }, + { + "start": 7427.76, + "end": 7430.86, + "probability": 0.7173 + }, + { + "start": 7431.66, + "end": 7431.76, + "probability": 0.0039 + }, + { + "start": 7431.76, + "end": 7432.34, + "probability": 0.5473 + }, + { + "start": 7433.22, + "end": 7433.92, + "probability": 0.4948 + }, + { + "start": 7434.52, + "end": 7435.1, + "probability": 0.7234 + }, + { + "start": 7436.68, + "end": 7437.56, + "probability": 0.9788 + }, + { + "start": 7438.76, + "end": 7441.64, + "probability": 0.9272 + }, + { + "start": 7442.22, + "end": 7444.08, + "probability": 0.9681 + }, + { + "start": 7445.26, + "end": 7449.0, + "probability": 0.9854 + }, + { + "start": 7449.0, + "end": 7453.26, + "probability": 0.9985 + }, + { + "start": 7455.56, + "end": 7457.3, + "probability": 0.7119 + }, + { + "start": 7457.4, + "end": 7459.48, + "probability": 0.6508 + }, + { + "start": 7460.12, + "end": 7461.7, + "probability": 0.9064 + }, + { + "start": 7462.56, + "end": 7464.62, + "probability": 0.5726 + }, + { + "start": 7466.06, + "end": 7466.4, + "probability": 0.773 + }, + { + "start": 7467.1, + "end": 7468.28, + "probability": 0.6292 + }, + { + "start": 7468.96, + "end": 7469.64, + "probability": 0.9336 + }, + { + "start": 7469.8, + "end": 7470.86, + "probability": 0.9268 + }, + { + "start": 7471.0, + "end": 7472.34, + "probability": 0.1764 + }, + { + "start": 7472.46, + "end": 7474.92, + "probability": 0.9479 + }, + { + "start": 7475.74, + "end": 7477.2, + "probability": 0.9249 + }, + { + "start": 7477.72, + "end": 7480.1, + "probability": 0.1562 + }, + { + "start": 7480.1, + "end": 7481.14, + "probability": 0.0509 + }, + { + "start": 7481.14, + "end": 7481.64, + "probability": 0.2457 + }, + { + "start": 7481.88, + "end": 7484.1, + "probability": 0.8966 + }, + { + "start": 7484.56, + "end": 7486.98, + "probability": 0.9446 + }, + { + "start": 7487.04, + "end": 7488.86, + "probability": 0.855 + }, + { + "start": 7489.0, + "end": 7489.61, + "probability": 0.9149 + }, + { + "start": 7491.96, + "end": 7492.22, + "probability": 0.0007 + }, + { + "start": 7492.82, + "end": 7492.82, + "probability": 0.3195 + }, + { + "start": 7492.82, + "end": 7492.82, + "probability": 0.2374 + }, + { + "start": 7492.82, + "end": 7492.82, + "probability": 0.126 + }, + { + "start": 7492.82, + "end": 7493.74, + "probability": 0.758 + }, + { + "start": 7493.8, + "end": 7494.54, + "probability": 0.8195 + }, + { + "start": 7494.68, + "end": 7495.83, + "probability": 0.9219 + }, + { + "start": 7496.2, + "end": 7499.78, + "probability": 0.8103 + }, + { + "start": 7499.84, + "end": 7500.42, + "probability": 0.7836 + }, + { + "start": 7500.56, + "end": 7501.78, + "probability": 0.9868 + }, + { + "start": 7502.0, + "end": 7502.72, + "probability": 0.9886 + }, + { + "start": 7503.06, + "end": 7503.96, + "probability": 0.8594 + }, + { + "start": 7504.7, + "end": 7505.98, + "probability": 0.6814 + }, + { + "start": 7507.06, + "end": 7510.5, + "probability": 0.9229 + }, + { + "start": 7510.64, + "end": 7511.6, + "probability": 0.6785 + }, + { + "start": 7511.82, + "end": 7512.5, + "probability": 0.6076 + }, + { + "start": 7512.6, + "end": 7513.4, + "probability": 0.3341 + }, + { + "start": 7513.5, + "end": 7517.42, + "probability": 0.9933 + }, + { + "start": 7517.74, + "end": 7517.82, + "probability": 0.5137 + }, + { + "start": 7517.86, + "end": 7519.3, + "probability": 0.9961 + }, + { + "start": 7519.8, + "end": 7520.54, + "probability": 0.8879 + }, + { + "start": 7520.6, + "end": 7523.4, + "probability": 0.9963 + }, + { + "start": 7523.76, + "end": 7524.64, + "probability": 0.9508 + }, + { + "start": 7526.14, + "end": 7528.92, + "probability": 0.9397 + }, + { + "start": 7529.52, + "end": 7532.32, + "probability": 0.6466 + }, + { + "start": 7533.8, + "end": 7535.88, + "probability": 0.9187 + }, + { + "start": 7537.26, + "end": 7538.56, + "probability": 0.9846 + }, + { + "start": 7540.48, + "end": 7541.12, + "probability": 0.6069 + }, + { + "start": 7541.2, + "end": 7542.06, + "probability": 0.7849 + }, + { + "start": 7542.14, + "end": 7545.08, + "probability": 0.9965 + }, + { + "start": 7546.26, + "end": 7549.2, + "probability": 0.9956 + }, + { + "start": 7549.52, + "end": 7550.66, + "probability": 0.8491 + }, + { + "start": 7551.02, + "end": 7552.08, + "probability": 0.9763 + }, + { + "start": 7552.7, + "end": 7555.2, + "probability": 0.913 + }, + { + "start": 7556.14, + "end": 7556.96, + "probability": 0.9644 + }, + { + "start": 7556.96, + "end": 7559.06, + "probability": 0.9792 + }, + { + "start": 7559.14, + "end": 7559.74, + "probability": 0.7361 + }, + { + "start": 7559.78, + "end": 7561.42, + "probability": 0.9883 + }, + { + "start": 7561.54, + "end": 7562.78, + "probability": 0.8279 + }, + { + "start": 7562.92, + "end": 7563.26, + "probability": 0.8585 + }, + { + "start": 7563.86, + "end": 7566.62, + "probability": 0.9688 + }, + { + "start": 7566.96, + "end": 7567.76, + "probability": 0.9146 + }, + { + "start": 7567.78, + "end": 7568.36, + "probability": 0.7096 + }, + { + "start": 7568.84, + "end": 7571.42, + "probability": 0.9919 + }, + { + "start": 7572.12, + "end": 7572.6, + "probability": 0.5466 + }, + { + "start": 7572.94, + "end": 7574.02, + "probability": 0.9902 + }, + { + "start": 7574.36, + "end": 7575.02, + "probability": 0.6495 + }, + { + "start": 7575.22, + "end": 7575.52, + "probability": 0.8979 + }, + { + "start": 7575.58, + "end": 7575.84, + "probability": 0.5646 + }, + { + "start": 7575.9, + "end": 7576.38, + "probability": 0.9026 + }, + { + "start": 7576.78, + "end": 7580.5, + "probability": 0.9894 + }, + { + "start": 7580.68, + "end": 7582.54, + "probability": 0.8418 + }, + { + "start": 7582.7, + "end": 7584.2, + "probability": 0.958 + }, + { + "start": 7584.58, + "end": 7587.96, + "probability": 0.8369 + }, + { + "start": 7588.5, + "end": 7589.16, + "probability": 0.7924 + }, + { + "start": 7589.46, + "end": 7589.94, + "probability": 0.7298 + }, + { + "start": 7590.68, + "end": 7594.52, + "probability": 0.9314 + }, + { + "start": 7595.06, + "end": 7597.8, + "probability": 0.8354 + }, + { + "start": 7597.8, + "end": 7602.38, + "probability": 0.9771 + }, + { + "start": 7602.84, + "end": 7606.06, + "probability": 0.998 + }, + { + "start": 7606.76, + "end": 7607.96, + "probability": 0.662 + }, + { + "start": 7609.52, + "end": 7610.42, + "probability": 0.3864 + }, + { + "start": 7610.88, + "end": 7614.18, + "probability": 0.7769 + }, + { + "start": 7614.86, + "end": 7615.66, + "probability": 0.9592 + }, + { + "start": 7615.72, + "end": 7616.6, + "probability": 0.9181 + }, + { + "start": 7623.28, + "end": 7623.88, + "probability": 0.7977 + }, + { + "start": 7624.84, + "end": 7628.08, + "probability": 0.1736 + }, + { + "start": 7629.04, + "end": 7631.02, + "probability": 0.2366 + }, + { + "start": 7631.58, + "end": 7633.6, + "probability": 0.2758 + }, + { + "start": 7634.38, + "end": 7635.52, + "probability": 0.3933 + }, + { + "start": 7636.06, + "end": 7636.38, + "probability": 0.7174 + }, + { + "start": 7638.88, + "end": 7645.18, + "probability": 0.5345 + }, + { + "start": 7649.7, + "end": 7652.92, + "probability": 0.8861 + }, + { + "start": 7655.58, + "end": 7656.3, + "probability": 0.9214 + }, + { + "start": 7657.6, + "end": 7663.04, + "probability": 0.9945 + }, + { + "start": 7663.24, + "end": 7663.34, + "probability": 0.0583 + }, + { + "start": 7663.52, + "end": 7664.96, + "probability": 0.8167 + }, + { + "start": 7665.12, + "end": 7666.42, + "probability": 0.0939 + }, + { + "start": 7667.54, + "end": 7667.54, + "probability": 0.0041 + }, + { + "start": 7667.96, + "end": 7668.16, + "probability": 0.1253 + }, + { + "start": 7668.32, + "end": 7670.81, + "probability": 0.1556 + }, + { + "start": 7671.4, + "end": 7674.78, + "probability": 0.8208 + }, + { + "start": 7675.42, + "end": 7676.74, + "probability": 0.7676 + }, + { + "start": 7677.48, + "end": 7680.63, + "probability": 0.9922 + }, + { + "start": 7683.78, + "end": 7685.91, + "probability": 0.8129 + }, + { + "start": 7686.98, + "end": 7692.88, + "probability": 0.9653 + }, + { + "start": 7693.38, + "end": 7694.48, + "probability": 0.8842 + }, + { + "start": 7695.14, + "end": 7699.56, + "probability": 0.9762 + }, + { + "start": 7699.98, + "end": 7703.28, + "probability": 0.974 + }, + { + "start": 7703.84, + "end": 7707.06, + "probability": 0.9634 + }, + { + "start": 7707.56, + "end": 7712.67, + "probability": 0.9424 + }, + { + "start": 7713.56, + "end": 7714.34, + "probability": 0.6649 + }, + { + "start": 7714.58, + "end": 7717.22, + "probability": 0.9556 + }, + { + "start": 7718.12, + "end": 7721.3, + "probability": 0.997 + }, + { + "start": 7727.22, + "end": 7730.42, + "probability": 0.9733 + }, + { + "start": 7730.56, + "end": 7732.76, + "probability": 0.9126 + }, + { + "start": 7734.6, + "end": 7736.58, + "probability": 0.7022 + }, + { + "start": 7737.7, + "end": 7739.14, + "probability": 0.8508 + }, + { + "start": 7740.16, + "end": 7741.24, + "probability": 0.9535 + }, + { + "start": 7742.56, + "end": 7745.62, + "probability": 0.8201 + }, + { + "start": 7745.92, + "end": 7752.44, + "probability": 0.9877 + }, + { + "start": 7752.48, + "end": 7753.52, + "probability": 0.9 + }, + { + "start": 7754.54, + "end": 7757.0, + "probability": 0.8057 + }, + { + "start": 7758.18, + "end": 7759.24, + "probability": 0.7759 + }, + { + "start": 7761.16, + "end": 7764.42, + "probability": 0.6411 + }, + { + "start": 7765.02, + "end": 7765.58, + "probability": 0.7839 + }, + { + "start": 7766.94, + "end": 7769.98, + "probability": 0.6235 + }, + { + "start": 7770.96, + "end": 7772.5, + "probability": 0.9976 + }, + { + "start": 7773.82, + "end": 7774.56, + "probability": 0.9849 + }, + { + "start": 7776.92, + "end": 7777.54, + "probability": 0.9725 + }, + { + "start": 7778.6, + "end": 7783.8, + "probability": 0.9836 + }, + { + "start": 7784.62, + "end": 7788.74, + "probability": 0.9856 + }, + { + "start": 7789.38, + "end": 7790.96, + "probability": 0.4851 + }, + { + "start": 7791.72, + "end": 7792.5, + "probability": 0.8298 + }, + { + "start": 7794.64, + "end": 7795.86, + "probability": 0.9249 + }, + { + "start": 7797.74, + "end": 7799.58, + "probability": 0.9069 + }, + { + "start": 7800.72, + "end": 7808.88, + "probability": 0.943 + }, + { + "start": 7810.1, + "end": 7814.0, + "probability": 0.8701 + }, + { + "start": 7814.64, + "end": 7816.2, + "probability": 0.7947 + }, + { + "start": 7817.02, + "end": 7821.56, + "probability": 0.989 + }, + { + "start": 7821.56, + "end": 7827.02, + "probability": 0.9964 + }, + { + "start": 7829.54, + "end": 7833.98, + "probability": 0.9897 + }, + { + "start": 7835.5, + "end": 7836.94, + "probability": 0.9712 + }, + { + "start": 7837.78, + "end": 7839.54, + "probability": 0.9261 + }, + { + "start": 7840.98, + "end": 7842.96, + "probability": 0.8587 + }, + { + "start": 7844.0, + "end": 7845.04, + "probability": 0.9857 + }, + { + "start": 7846.26, + "end": 7848.88, + "probability": 0.9905 + }, + { + "start": 7850.06, + "end": 7856.4, + "probability": 0.8614 + }, + { + "start": 7857.46, + "end": 7859.64, + "probability": 0.99 + }, + { + "start": 7860.18, + "end": 7860.9, + "probability": 0.9844 + }, + { + "start": 7864.5, + "end": 7865.1, + "probability": 0.9766 + }, + { + "start": 7866.94, + "end": 7868.8, + "probability": 0.7408 + }, + { + "start": 7871.08, + "end": 7872.28, + "probability": 0.8268 + }, + { + "start": 7874.17, + "end": 7877.44, + "probability": 0.998 + }, + { + "start": 7879.04, + "end": 7879.5, + "probability": 0.4325 + }, + { + "start": 7880.16, + "end": 7886.06, + "probability": 0.7801 + }, + { + "start": 7887.04, + "end": 7888.1, + "probability": 0.9378 + }, + { + "start": 7891.36, + "end": 7891.62, + "probability": 0.6598 + }, + { + "start": 7891.7, + "end": 7895.88, + "probability": 0.8955 + }, + { + "start": 7897.3, + "end": 7899.66, + "probability": 0.958 + }, + { + "start": 7900.18, + "end": 7905.24, + "probability": 0.9973 + }, + { + "start": 7906.52, + "end": 7907.1, + "probability": 0.6528 + }, + { + "start": 7908.06, + "end": 7909.4, + "probability": 0.8586 + }, + { + "start": 7910.74, + "end": 7912.12, + "probability": 0.8056 + }, + { + "start": 7913.94, + "end": 7915.24, + "probability": 0.9379 + }, + { + "start": 7916.06, + "end": 7917.58, + "probability": 0.8036 + }, + { + "start": 7918.24, + "end": 7919.08, + "probability": 0.7708 + }, + { + "start": 7920.82, + "end": 7921.86, + "probability": 0.9798 + }, + { + "start": 7922.92, + "end": 7925.62, + "probability": 0.9683 + }, + { + "start": 7926.3, + "end": 7930.26, + "probability": 0.4531 + }, + { + "start": 7931.08, + "end": 7933.9, + "probability": 0.9375 + }, + { + "start": 7936.42, + "end": 7942.14, + "probability": 0.9373 + }, + { + "start": 7942.86, + "end": 7943.34, + "probability": 0.8721 + }, + { + "start": 7943.92, + "end": 7945.3, + "probability": 0.841 + }, + { + "start": 7946.64, + "end": 7947.06, + "probability": 0.4585 + }, + { + "start": 7947.76, + "end": 7953.28, + "probability": 0.9492 + }, + { + "start": 7955.04, + "end": 7956.34, + "probability": 0.9912 + }, + { + "start": 7957.6, + "end": 7960.86, + "probability": 0.8677 + }, + { + "start": 7963.1, + "end": 7966.98, + "probability": 0.9449 + }, + { + "start": 7967.7, + "end": 7972.6, + "probability": 0.9738 + }, + { + "start": 7972.76, + "end": 7973.36, + "probability": 0.7781 + }, + { + "start": 7973.72, + "end": 7974.84, + "probability": 0.8815 + }, + { + "start": 7975.08, + "end": 7977.1, + "probability": 0.7663 + }, + { + "start": 7977.26, + "end": 7980.72, + "probability": 0.8528 + }, + { + "start": 7980.72, + "end": 7981.04, + "probability": 0.4427 + }, + { + "start": 7981.12, + "end": 7986.2, + "probability": 0.9452 + }, + { + "start": 7986.56, + "end": 7988.4, + "probability": 0.9895 + }, + { + "start": 7990.4, + "end": 7991.08, + "probability": 0.7159 + }, + { + "start": 7992.3, + "end": 7993.4, + "probability": 0.734 + }, + { + "start": 7994.22, + "end": 7995.94, + "probability": 0.5357 + }, + { + "start": 7997.0, + "end": 7997.68, + "probability": 0.8172 + }, + { + "start": 7998.4, + "end": 7999.38, + "probability": 0.8556 + }, + { + "start": 8000.38, + "end": 8000.98, + "probability": 0.9868 + }, + { + "start": 8002.58, + "end": 8003.26, + "probability": 0.8922 + }, + { + "start": 8004.16, + "end": 8005.38, + "probability": 0.9506 + }, + { + "start": 8006.3, + "end": 8008.2, + "probability": 0.6683 + }, + { + "start": 8008.92, + "end": 8009.86, + "probability": 0.8389 + }, + { + "start": 8010.68, + "end": 8014.2, + "probability": 0.9343 + }, + { + "start": 8015.26, + "end": 8019.64, + "probability": 0.8295 + }, + { + "start": 8021.08, + "end": 8021.84, + "probability": 0.3642 + }, + { + "start": 8023.46, + "end": 8024.1, + "probability": 0.9648 + }, + { + "start": 8026.6, + "end": 8028.16, + "probability": 0.9596 + }, + { + "start": 8029.46, + "end": 8031.12, + "probability": 0.9437 + }, + { + "start": 8031.78, + "end": 8033.92, + "probability": 0.9422 + }, + { + "start": 8036.62, + "end": 8037.7, + "probability": 0.6511 + }, + { + "start": 8038.82, + "end": 8039.82, + "probability": 0.9553 + }, + { + "start": 8042.22, + "end": 8043.6, + "probability": 0.4092 + }, + { + "start": 8044.4, + "end": 8045.48, + "probability": 0.9833 + }, + { + "start": 8047.22, + "end": 8050.86, + "probability": 0.9858 + }, + { + "start": 8050.86, + "end": 8054.94, + "probability": 0.9572 + }, + { + "start": 8055.76, + "end": 8058.02, + "probability": 0.995 + }, + { + "start": 8061.94, + "end": 8062.42, + "probability": 0.8464 + }, + { + "start": 8063.32, + "end": 8064.9, + "probability": 0.9314 + }, + { + "start": 8066.38, + "end": 8070.2, + "probability": 0.9585 + }, + { + "start": 8071.7, + "end": 8072.49, + "probability": 0.9567 + }, + { + "start": 8073.76, + "end": 8076.72, + "probability": 0.9521 + }, + { + "start": 8077.52, + "end": 8079.84, + "probability": 0.981 + }, + { + "start": 8080.42, + "end": 8082.08, + "probability": 0.9508 + }, + { + "start": 8083.0, + "end": 8083.6, + "probability": 0.847 + }, + { + "start": 8084.66, + "end": 8085.18, + "probability": 0.9928 + }, + { + "start": 8085.84, + "end": 8090.74, + "probability": 0.9978 + }, + { + "start": 8090.94, + "end": 8091.72, + "probability": 0.7512 + }, + { + "start": 8093.96, + "end": 8097.08, + "probability": 0.8719 + }, + { + "start": 8098.36, + "end": 8100.9, + "probability": 0.994 + }, + { + "start": 8101.72, + "end": 8102.51, + "probability": 0.9171 + }, + { + "start": 8104.04, + "end": 8105.38, + "probability": 0.9473 + }, + { + "start": 8106.44, + "end": 8107.64, + "probability": 0.959 + }, + { + "start": 8108.42, + "end": 8111.82, + "probability": 0.939 + }, + { + "start": 8113.02, + "end": 8118.56, + "probability": 0.9883 + }, + { + "start": 8120.08, + "end": 8123.8, + "probability": 0.9966 + }, + { + "start": 8123.98, + "end": 8125.3, + "probability": 0.8256 + }, + { + "start": 8126.06, + "end": 8132.12, + "probability": 0.8817 + }, + { + "start": 8132.12, + "end": 8136.8, + "probability": 0.7585 + }, + { + "start": 8137.22, + "end": 8140.32, + "probability": 0.8583 + }, + { + "start": 8140.4, + "end": 8143.6, + "probability": 0.8962 + }, + { + "start": 8148.18, + "end": 8151.16, + "probability": 0.0282 + }, + { + "start": 8154.72, + "end": 8158.4, + "probability": 0.1218 + }, + { + "start": 8159.78, + "end": 8165.4, + "probability": 0.109 + }, + { + "start": 8165.4, + "end": 8167.74, + "probability": 0.0169 + }, + { + "start": 8168.5, + "end": 8169.77, + "probability": 0.5376 + }, + { + "start": 8177.6, + "end": 8180.44, + "probability": 0.9912 + }, + { + "start": 8181.18, + "end": 8184.1, + "probability": 0.9829 + }, + { + "start": 8184.88, + "end": 8185.46, + "probability": 0.6063 + }, + { + "start": 8185.54, + "end": 8186.16, + "probability": 0.6461 + }, + { + "start": 8186.28, + "end": 8187.12, + "probability": 0.877 + }, + { + "start": 8187.5, + "end": 8189.92, + "probability": 0.9737 + }, + { + "start": 8191.34, + "end": 8191.94, + "probability": 0.9601 + }, + { + "start": 8193.9, + "end": 8197.06, + "probability": 0.5737 + }, + { + "start": 8198.6, + "end": 8199.3, + "probability": 0.875 + }, + { + "start": 8199.9, + "end": 8200.66, + "probability": 0.8619 + }, + { + "start": 8201.64, + "end": 8204.27, + "probability": 0.9561 + }, + { + "start": 8205.12, + "end": 8207.54, + "probability": 0.8574 + }, + { + "start": 8208.58, + "end": 8210.06, + "probability": 0.9917 + }, + { + "start": 8210.76, + "end": 8212.16, + "probability": 0.7551 + }, + { + "start": 8212.78, + "end": 8217.8, + "probability": 0.9873 + }, + { + "start": 8217.94, + "end": 8219.26, + "probability": 0.8607 + }, + { + "start": 8219.74, + "end": 8220.74, + "probability": 0.8552 + }, + { + "start": 8221.36, + "end": 8222.88, + "probability": 0.9824 + }, + { + "start": 8223.66, + "end": 8224.66, + "probability": 0.8276 + }, + { + "start": 8225.84, + "end": 8229.28, + "probability": 0.7321 + }, + { + "start": 8229.98, + "end": 8232.0, + "probability": 0.9727 + }, + { + "start": 8233.14, + "end": 8234.24, + "probability": 0.7357 + }, + { + "start": 8236.4, + "end": 8237.48, + "probability": 0.9105 + }, + { + "start": 8238.68, + "end": 8241.42, + "probability": 0.6442 + }, + { + "start": 8242.1, + "end": 8244.42, + "probability": 0.9876 + }, + { + "start": 8245.36, + "end": 8245.86, + "probability": 0.7063 + }, + { + "start": 8246.76, + "end": 8247.62, + "probability": 0.0576 + }, + { + "start": 8247.62, + "end": 8249.68, + "probability": 0.3519 + }, + { + "start": 8249.94, + "end": 8253.02, + "probability": 0.1315 + }, + { + "start": 8253.02, + "end": 8256.1, + "probability": 0.7413 + }, + { + "start": 8256.94, + "end": 8260.28, + "probability": 0.322 + }, + { + "start": 8260.72, + "end": 8261.54, + "probability": 0.0821 + }, + { + "start": 8261.68, + "end": 8262.94, + "probability": 0.1179 + }, + { + "start": 8262.94, + "end": 8264.42, + "probability": 0.1985 + }, + { + "start": 8264.62, + "end": 8267.74, + "probability": 0.2668 + }, + { + "start": 8267.74, + "end": 8270.52, + "probability": 0.1305 + }, + { + "start": 8270.58, + "end": 8270.72, + "probability": 0.2583 + }, + { + "start": 8271.8, + "end": 8272.7, + "probability": 0.0468 + }, + { + "start": 8272.84, + "end": 8274.14, + "probability": 0.7841 + }, + { + "start": 8274.24, + "end": 8274.82, + "probability": 0.4972 + }, + { + "start": 8275.44, + "end": 8277.76, + "probability": 0.5954 + }, + { + "start": 8278.22, + "end": 8281.18, + "probability": 0.9037 + }, + { + "start": 8281.22, + "end": 8282.36, + "probability": 0.9537 + }, + { + "start": 8282.48, + "end": 8282.86, + "probability": 0.3525 + }, + { + "start": 8282.86, + "end": 8285.76, + "probability": 0.7212 + }, + { + "start": 8286.66, + "end": 8294.0, + "probability": 0.4153 + }, + { + "start": 8294.56, + "end": 8295.92, + "probability": 0.8889 + }, + { + "start": 8296.76, + "end": 8298.6, + "probability": 0.9323 + }, + { + "start": 8299.56, + "end": 8306.06, + "probability": 0.9956 + }, + { + "start": 8306.76, + "end": 8310.3, + "probability": 0.915 + }, + { + "start": 8311.28, + "end": 8315.04, + "probability": 0.7686 + }, + { + "start": 8315.64, + "end": 8319.14, + "probability": 0.8337 + }, + { + "start": 8319.7, + "end": 8330.66, + "probability": 0.9442 + }, + { + "start": 8332.0, + "end": 8333.6, + "probability": 0.9585 + }, + { + "start": 8334.28, + "end": 8335.42, + "probability": 0.9858 + }, + { + "start": 8336.22, + "end": 8342.16, + "probability": 0.9666 + }, + { + "start": 8344.52, + "end": 8347.48, + "probability": 0.9294 + }, + { + "start": 8348.04, + "end": 8349.04, + "probability": 0.6346 + }, + { + "start": 8349.16, + "end": 8350.34, + "probability": 0.9891 + }, + { + "start": 8350.74, + "end": 8351.84, + "probability": 0.9701 + }, + { + "start": 8352.92, + "end": 8354.0, + "probability": 0.9486 + }, + { + "start": 8354.8, + "end": 8358.14, + "probability": 0.9979 + }, + { + "start": 8358.14, + "end": 8362.66, + "probability": 0.9984 + }, + { + "start": 8363.24, + "end": 8364.48, + "probability": 0.9984 + }, + { + "start": 8366.1, + "end": 8367.12, + "probability": 0.7932 + }, + { + "start": 8367.82, + "end": 8373.16, + "probability": 0.9343 + }, + { + "start": 8373.16, + "end": 8375.82, + "probability": 0.9989 + }, + { + "start": 8376.62, + "end": 8380.84, + "probability": 0.9685 + }, + { + "start": 8381.88, + "end": 8382.34, + "probability": 0.724 + }, + { + "start": 8382.92, + "end": 8385.14, + "probability": 0.869 + }, + { + "start": 8385.84, + "end": 8387.46, + "probability": 0.9683 + }, + { + "start": 8388.0, + "end": 8391.8, + "probability": 0.9903 + }, + { + "start": 8392.2, + "end": 8394.22, + "probability": 0.9932 + }, + { + "start": 8394.3, + "end": 8394.9, + "probability": 0.7349 + }, + { + "start": 8396.24, + "end": 8398.06, + "probability": 0.7618 + }, + { + "start": 8398.64, + "end": 8403.78, + "probability": 0.9136 + }, + { + "start": 8404.18, + "end": 8406.64, + "probability": 0.9526 + }, + { + "start": 8406.92, + "end": 8409.94, + "probability": 0.9489 + }, + { + "start": 8411.2, + "end": 8414.12, + "probability": 0.738 + }, + { + "start": 8415.78, + "end": 8417.1, + "probability": 0.8698 + }, + { + "start": 8417.34, + "end": 8422.02, + "probability": 0.9285 + }, + { + "start": 8422.86, + "end": 8425.74, + "probability": 0.8975 + }, + { + "start": 8426.34, + "end": 8432.78, + "probability": 0.9637 + }, + { + "start": 8432.78, + "end": 8438.74, + "probability": 0.8009 + }, + { + "start": 8439.4, + "end": 8441.18, + "probability": 0.9941 + }, + { + "start": 8441.76, + "end": 8443.38, + "probability": 0.9756 + }, + { + "start": 8443.9, + "end": 8447.52, + "probability": 0.5443 + }, + { + "start": 8448.28, + "end": 8451.86, + "probability": 0.9859 + }, + { + "start": 8452.54, + "end": 8453.16, + "probability": 0.8306 + }, + { + "start": 8453.7, + "end": 8459.46, + "probability": 0.958 + }, + { + "start": 8460.06, + "end": 8462.18, + "probability": 0.8649 + }, + { + "start": 8462.74, + "end": 8463.98, + "probability": 0.9224 + }, + { + "start": 8464.38, + "end": 8464.92, + "probability": 0.637 + }, + { + "start": 8465.04, + "end": 8469.66, + "probability": 0.9199 + }, + { + "start": 8470.85, + "end": 8472.5, + "probability": 0.8879 + }, + { + "start": 8472.76, + "end": 8474.76, + "probability": 0.9863 + }, + { + "start": 8475.02, + "end": 8476.26, + "probability": 0.9188 + }, + { + "start": 8476.78, + "end": 8479.73, + "probability": 0.9871 + }, + { + "start": 8480.6, + "end": 8483.28, + "probability": 0.983 + }, + { + "start": 8484.02, + "end": 8485.28, + "probability": 0.8489 + }, + { + "start": 8485.8, + "end": 8487.1, + "probability": 0.8705 + }, + { + "start": 8487.66, + "end": 8488.92, + "probability": 0.9392 + }, + { + "start": 8490.7, + "end": 8493.3, + "probability": 0.9011 + }, + { + "start": 8494.22, + "end": 8495.26, + "probability": 0.99 + }, + { + "start": 8495.96, + "end": 8497.88, + "probability": 0.9818 + }, + { + "start": 8499.14, + "end": 8502.13, + "probability": 0.8726 + }, + { + "start": 8503.14, + "end": 8504.44, + "probability": 0.9964 + }, + { + "start": 8505.0, + "end": 8507.62, + "probability": 0.8761 + }, + { + "start": 8511.26, + "end": 8511.84, + "probability": 0.855 + }, + { + "start": 8514.22, + "end": 8515.28, + "probability": 0.7904 + }, + { + "start": 8516.62, + "end": 8517.58, + "probability": 0.7637 + }, + { + "start": 8518.92, + "end": 8519.68, + "probability": 0.8702 + }, + { + "start": 8520.24, + "end": 8520.8, + "probability": 0.6932 + }, + { + "start": 8521.82, + "end": 8523.44, + "probability": 0.8829 + }, + { + "start": 8525.44, + "end": 8526.28, + "probability": 0.9979 + }, + { + "start": 8528.64, + "end": 8529.42, + "probability": 0.4776 + }, + { + "start": 8530.18, + "end": 8531.24, + "probability": 0.9244 + }, + { + "start": 8531.9, + "end": 8532.3, + "probability": 0.5651 + }, + { + "start": 8533.08, + "end": 8535.54, + "probability": 0.92 + }, + { + "start": 8536.44, + "end": 8539.42, + "probability": 0.9102 + }, + { + "start": 8540.1, + "end": 8541.8, + "probability": 0.929 + }, + { + "start": 8542.46, + "end": 8544.3, + "probability": 0.972 + }, + { + "start": 8545.54, + "end": 8551.94, + "probability": 0.9219 + }, + { + "start": 8554.14, + "end": 8554.66, + "probability": 0.5598 + }, + { + "start": 8555.64, + "end": 8556.48, + "probability": 0.7245 + }, + { + "start": 8557.22, + "end": 8559.98, + "probability": 0.7774 + }, + { + "start": 8560.02, + "end": 8562.84, + "probability": 0.9717 + }, + { + "start": 8563.16, + "end": 8564.1, + "probability": 0.8946 + }, + { + "start": 8564.2, + "end": 8564.92, + "probability": 0.8016 + }, + { + "start": 8565.1, + "end": 8567.18, + "probability": 0.8564 + }, + { + "start": 8569.52, + "end": 8571.98, + "probability": 0.3293 + }, + { + "start": 8571.98, + "end": 8573.42, + "probability": 0.8309 + }, + { + "start": 8573.9, + "end": 8576.06, + "probability": 0.161 + }, + { + "start": 8576.18, + "end": 8576.66, + "probability": 0.1292 + }, + { + "start": 8576.66, + "end": 8576.82, + "probability": 0.3175 + }, + { + "start": 8577.06, + "end": 8577.97, + "probability": 0.4345 + }, + { + "start": 8579.08, + "end": 8581.14, + "probability": 0.7878 + }, + { + "start": 8581.18, + "end": 8582.21, + "probability": 0.8673 + }, + { + "start": 8582.84, + "end": 8584.32, + "probability": 0.9483 + }, + { + "start": 8586.04, + "end": 8586.48, + "probability": 0.6916 + }, + { + "start": 8586.5, + "end": 8588.6, + "probability": 0.9941 + }, + { + "start": 8588.66, + "end": 8589.6, + "probability": 0.8408 + }, + { + "start": 8590.3, + "end": 8590.9, + "probability": 0.2582 + }, + { + "start": 8591.68, + "end": 8593.42, + "probability": 0.6648 + }, + { + "start": 8593.42, + "end": 8594.34, + "probability": 0.8486 + }, + { + "start": 8594.36, + "end": 8596.4, + "probability": 0.4542 + }, + { + "start": 8596.86, + "end": 8599.22, + "probability": 0.9528 + }, + { + "start": 8599.3, + "end": 8600.26, + "probability": 0.7143 + }, + { + "start": 8601.02, + "end": 8603.5, + "probability": 0.9777 + }, + { + "start": 8603.56, + "end": 8604.68, + "probability": 0.9072 + }, + { + "start": 8604.72, + "end": 8606.14, + "probability": 0.9941 + }, + { + "start": 8606.76, + "end": 8608.7, + "probability": 0.9935 + }, + { + "start": 8608.9, + "end": 8610.06, + "probability": 0.4836 + }, + { + "start": 8610.16, + "end": 8610.94, + "probability": 0.8827 + }, + { + "start": 8611.08, + "end": 8613.74, + "probability": 0.9869 + }, + { + "start": 8614.3, + "end": 8616.75, + "probability": 0.8577 + }, + { + "start": 8617.32, + "end": 8618.38, + "probability": 0.9351 + }, + { + "start": 8618.5, + "end": 8620.28, + "probability": 0.9354 + }, + { + "start": 8620.82, + "end": 8622.54, + "probability": 0.7987 + }, + { + "start": 8623.08, + "end": 8623.92, + "probability": 0.7621 + }, + { + "start": 8624.44, + "end": 8626.96, + "probability": 0.953 + }, + { + "start": 8627.58, + "end": 8632.04, + "probability": 0.853 + }, + { + "start": 8632.26, + "end": 8633.74, + "probability": 0.7717 + }, + { + "start": 8634.46, + "end": 8635.52, + "probability": 0.9663 + }, + { + "start": 8636.28, + "end": 8639.6, + "probability": 0.6547 + }, + { + "start": 8639.78, + "end": 8640.12, + "probability": 0.445 + }, + { + "start": 8640.78, + "end": 8642.4, + "probability": 0.6118 + }, + { + "start": 8643.12, + "end": 8646.42, + "probability": 0.958 + }, + { + "start": 8646.9, + "end": 8647.79, + "probability": 0.9746 + }, + { + "start": 8648.52, + "end": 8648.88, + "probability": 0.6765 + }, + { + "start": 8649.94, + "end": 8650.96, + "probability": 0.8094 + }, + { + "start": 8651.82, + "end": 8653.27, + "probability": 0.6459 + }, + { + "start": 8653.82, + "end": 8655.48, + "probability": 0.8809 + }, + { + "start": 8656.14, + "end": 8657.6, + "probability": 0.9714 + }, + { + "start": 8658.54, + "end": 8660.12, + "probability": 0.9941 + }, + { + "start": 8661.32, + "end": 8662.2, + "probability": 0.8693 + }, + { + "start": 8663.64, + "end": 8664.6, + "probability": 0.8446 + }, + { + "start": 8667.48, + "end": 8668.86, + "probability": 0.9977 + }, + { + "start": 8670.36, + "end": 8673.34, + "probability": 0.9947 + }, + { + "start": 8676.22, + "end": 8679.04, + "probability": 0.8725 + }, + { + "start": 8680.52, + "end": 8685.36, + "probability": 0.8837 + }, + { + "start": 8685.96, + "end": 8689.74, + "probability": 0.8179 + }, + { + "start": 8692.26, + "end": 8695.14, + "probability": 0.9057 + }, + { + "start": 8695.78, + "end": 8698.8, + "probability": 0.9951 + }, + { + "start": 8699.34, + "end": 8700.7, + "probability": 0.9409 + }, + { + "start": 8701.92, + "end": 8702.64, + "probability": 0.5339 + }, + { + "start": 8703.78, + "end": 8709.94, + "probability": 0.9718 + }, + { + "start": 8710.96, + "end": 8716.84, + "probability": 0.9971 + }, + { + "start": 8717.78, + "end": 8718.56, + "probability": 0.8189 + }, + { + "start": 8719.4, + "end": 8720.14, + "probability": 0.8289 + }, + { + "start": 8720.9, + "end": 8722.16, + "probability": 0.8129 + }, + { + "start": 8722.88, + "end": 8726.14, + "probability": 0.9337 + }, + { + "start": 8726.98, + "end": 8729.87, + "probability": 0.7977 + }, + { + "start": 8730.62, + "end": 8734.08, + "probability": 0.8797 + }, + { + "start": 8734.6, + "end": 8740.42, + "probability": 0.9176 + }, + { + "start": 8741.8, + "end": 8744.23, + "probability": 0.9784 + }, + { + "start": 8745.16, + "end": 8749.2, + "probability": 0.7549 + }, + { + "start": 8749.86, + "end": 8750.77, + "probability": 0.8821 + }, + { + "start": 8751.14, + "end": 8753.54, + "probability": 0.949 + }, + { + "start": 8753.98, + "end": 8758.3, + "probability": 0.6708 + }, + { + "start": 8758.76, + "end": 8761.98, + "probability": 0.9125 + }, + { + "start": 8761.98, + "end": 8765.64, + "probability": 0.9984 + }, + { + "start": 8766.02, + "end": 8766.8, + "probability": 0.4906 + }, + { + "start": 8766.86, + "end": 8769.88, + "probability": 0.6923 + }, + { + "start": 8770.5, + "end": 8772.4, + "probability": 0.9309 + }, + { + "start": 8772.74, + "end": 8773.74, + "probability": 0.9431 + }, + { + "start": 8774.6, + "end": 8780.64, + "probability": 0.9785 + }, + { + "start": 8781.04, + "end": 8782.62, + "probability": 0.9709 + }, + { + "start": 8783.22, + "end": 8784.86, + "probability": 0.9421 + }, + { + "start": 8784.96, + "end": 8785.66, + "probability": 0.8947 + }, + { + "start": 8785.88, + "end": 8786.78, + "probability": 0.7576 + }, + { + "start": 8787.2, + "end": 8788.4, + "probability": 0.7598 + }, + { + "start": 8789.2, + "end": 8789.77, + "probability": 0.8926 + }, + { + "start": 8790.86, + "end": 8791.66, + "probability": 0.9839 + }, + { + "start": 8792.46, + "end": 8794.02, + "probability": 0.9976 + }, + { + "start": 8794.62, + "end": 8798.34, + "probability": 0.9981 + }, + { + "start": 8798.88, + "end": 8803.48, + "probability": 0.6337 + }, + { + "start": 8804.02, + "end": 8805.58, + "probability": 0.9858 + }, + { + "start": 8806.34, + "end": 8806.98, + "probability": 0.5712 + }, + { + "start": 8807.82, + "end": 8811.32, + "probability": 0.9927 + }, + { + "start": 8811.32, + "end": 8816.64, + "probability": 0.965 + }, + { + "start": 8817.9, + "end": 8821.46, + "probability": 0.8334 + }, + { + "start": 8822.1, + "end": 8827.68, + "probability": 0.9098 + }, + { + "start": 8828.92, + "end": 8834.28, + "probability": 0.9731 + }, + { + "start": 8835.64, + "end": 8838.52, + "probability": 0.7518 + }, + { + "start": 8839.42, + "end": 8842.62, + "probability": 0.9288 + }, + { + "start": 8842.62, + "end": 8846.82, + "probability": 0.9945 + }, + { + "start": 8847.58, + "end": 8851.64, + "probability": 0.9728 + }, + { + "start": 8852.86, + "end": 8854.14, + "probability": 0.7637 + }, + { + "start": 8855.28, + "end": 8856.52, + "probability": 0.7347 + }, + { + "start": 8858.04, + "end": 8862.54, + "probability": 0.9115 + }, + { + "start": 8863.52, + "end": 8865.62, + "probability": 0.7979 + }, + { + "start": 8866.54, + "end": 8867.3, + "probability": 0.9559 + }, + { + "start": 8868.22, + "end": 8869.2, + "probability": 0.9665 + }, + { + "start": 8870.12, + "end": 8871.58, + "probability": 0.8505 + }, + { + "start": 8872.24, + "end": 8877.46, + "probability": 0.9042 + }, + { + "start": 8878.26, + "end": 8884.12, + "probability": 0.9579 + }, + { + "start": 8885.58, + "end": 8886.3, + "probability": 0.5657 + }, + { + "start": 8887.1, + "end": 8887.96, + "probability": 0.9689 + }, + { + "start": 8888.72, + "end": 8889.74, + "probability": 0.9329 + }, + { + "start": 8890.88, + "end": 8891.92, + "probability": 0.7451 + }, + { + "start": 8892.7, + "end": 8897.98, + "probability": 0.8616 + }, + { + "start": 8898.12, + "end": 8899.08, + "probability": 0.866 + }, + { + "start": 8899.34, + "end": 8900.38, + "probability": 0.7023 + }, + { + "start": 8904.13, + "end": 8904.99, + "probability": 0.2571 + }, + { + "start": 8905.12, + "end": 8909.04, + "probability": 0.7798 + }, + { + "start": 8909.7, + "end": 8913.38, + "probability": 0.9738 + }, + { + "start": 8914.04, + "end": 8914.74, + "probability": 0.9337 + }, + { + "start": 8915.42, + "end": 8916.72, + "probability": 0.6097 + }, + { + "start": 8917.38, + "end": 8918.74, + "probability": 0.9113 + }, + { + "start": 8919.26, + "end": 8919.9, + "probability": 0.95 + }, + { + "start": 8920.84, + "end": 8922.42, + "probability": 0.5278 + }, + { + "start": 8922.78, + "end": 8924.1, + "probability": 0.856 + }, + { + "start": 8924.74, + "end": 8927.46, + "probability": 0.8765 + }, + { + "start": 8928.96, + "end": 8933.2, + "probability": 0.9773 + }, + { + "start": 8934.16, + "end": 8936.4, + "probability": 0.9816 + }, + { + "start": 8937.3, + "end": 8938.97, + "probability": 0.9941 + }, + { + "start": 8940.46, + "end": 8942.46, + "probability": 0.7645 + }, + { + "start": 8943.58, + "end": 8947.32, + "probability": 0.8618 + }, + { + "start": 8948.1, + "end": 8952.8, + "probability": 0.8066 + }, + { + "start": 8953.66, + "end": 8955.32, + "probability": 0.9692 + }, + { + "start": 8956.28, + "end": 8957.38, + "probability": 0.7808 + }, + { + "start": 8958.08, + "end": 8959.02, + "probability": 0.9222 + }, + { + "start": 8959.82, + "end": 8960.92, + "probability": 0.8752 + }, + { + "start": 8961.64, + "end": 8967.68, + "probability": 0.9404 + }, + { + "start": 8968.82, + "end": 8969.96, + "probability": 0.9795 + }, + { + "start": 8971.04, + "end": 8973.48, + "probability": 0.9565 + }, + { + "start": 8974.42, + "end": 8976.26, + "probability": 0.9861 + }, + { + "start": 8977.28, + "end": 8979.36, + "probability": 0.662 + }, + { + "start": 8979.94, + "end": 8983.02, + "probability": 0.9045 + }, + { + "start": 8983.88, + "end": 8984.91, + "probability": 0.9318 + }, + { + "start": 8985.58, + "end": 8988.66, + "probability": 0.9597 + }, + { + "start": 8989.58, + "end": 8992.42, + "probability": 0.8906 + }, + { + "start": 8993.72, + "end": 8995.22, + "probability": 0.9844 + }, + { + "start": 8995.82, + "end": 8998.44, + "probability": 0.9827 + }, + { + "start": 8998.96, + "end": 8999.44, + "probability": 0.8982 + }, + { + "start": 8999.9, + "end": 9003.04, + "probability": 0.9722 + }, + { + "start": 9003.7, + "end": 9005.26, + "probability": 0.6561 + }, + { + "start": 9005.54, + "end": 9008.7, + "probability": 0.9714 + }, + { + "start": 9009.18, + "end": 9010.74, + "probability": 0.9417 + }, + { + "start": 9011.04, + "end": 9014.3, + "probability": 0.9517 + }, + { + "start": 9015.64, + "end": 9020.08, + "probability": 0.9351 + }, + { + "start": 9021.06, + "end": 9021.86, + "probability": 0.6025 + }, + { + "start": 9023.32, + "end": 9029.06, + "probability": 0.9932 + }, + { + "start": 9029.06, + "end": 9036.98, + "probability": 0.9918 + }, + { + "start": 9037.34, + "end": 9038.3, + "probability": 0.8161 + }, + { + "start": 9038.74, + "end": 9042.2, + "probability": 0.9089 + }, + { + "start": 9042.82, + "end": 9043.08, + "probability": 0.7123 + }, + { + "start": 9043.76, + "end": 9047.58, + "probability": 0.9802 + }, + { + "start": 9048.14, + "end": 9050.6, + "probability": 0.9972 + }, + { + "start": 9050.6, + "end": 9054.48, + "probability": 0.8836 + }, + { + "start": 9055.14, + "end": 9056.78, + "probability": 0.9791 + }, + { + "start": 9057.4, + "end": 9062.88, + "probability": 0.987 + }, + { + "start": 9063.22, + "end": 9064.04, + "probability": 0.8462 + }, + { + "start": 9065.06, + "end": 9068.24, + "probability": 0.9956 + }, + { + "start": 9068.68, + "end": 9069.82, + "probability": 0.6342 + }, + { + "start": 9070.28, + "end": 9073.08, + "probability": 0.8182 + }, + { + "start": 9073.5, + "end": 9077.18, + "probability": 0.972 + }, + { + "start": 9077.74, + "end": 9079.36, + "probability": 0.0703 + }, + { + "start": 9080.36, + "end": 9084.18, + "probability": 0.4576 + }, + { + "start": 9084.32, + "end": 9086.28, + "probability": 0.7861 + }, + { + "start": 9086.4, + "end": 9088.28, + "probability": 0.5084 + }, + { + "start": 9088.74, + "end": 9089.96, + "probability": 0.0278 + }, + { + "start": 9091.32, + "end": 9094.42, + "probability": 0.7014 + }, + { + "start": 9094.42, + "end": 9095.98, + "probability": 0.8359 + }, + { + "start": 9096.38, + "end": 9098.66, + "probability": 0.9893 + }, + { + "start": 9099.02, + "end": 9099.82, + "probability": 0.5212 + }, + { + "start": 9099.96, + "end": 9102.66, + "probability": 0.9854 + }, + { + "start": 9103.1, + "end": 9105.58, + "probability": 0.9355 + }, + { + "start": 9106.08, + "end": 9109.56, + "probability": 0.9859 + }, + { + "start": 9110.62, + "end": 9112.91, + "probability": 0.6082 + }, + { + "start": 9113.44, + "end": 9117.28, + "probability": 0.9865 + }, + { + "start": 9118.42, + "end": 9119.1, + "probability": 0.6025 + }, + { + "start": 9120.36, + "end": 9122.06, + "probability": 0.9858 + }, + { + "start": 9123.18, + "end": 9124.56, + "probability": 0.9806 + }, + { + "start": 9125.46, + "end": 9126.88, + "probability": 0.7592 + }, + { + "start": 9128.68, + "end": 9129.56, + "probability": 0.7366 + }, + { + "start": 9130.26, + "end": 9132.6, + "probability": 0.9659 + }, + { + "start": 9133.34, + "end": 9134.34, + "probability": 0.9374 + }, + { + "start": 9135.18, + "end": 9137.74, + "probability": 0.9652 + }, + { + "start": 9138.98, + "end": 9142.24, + "probability": 0.9976 + }, + { + "start": 9143.4, + "end": 9150.08, + "probability": 0.9992 + }, + { + "start": 9151.36, + "end": 9157.36, + "probability": 0.9922 + }, + { + "start": 9158.74, + "end": 9160.28, + "probability": 0.944 + }, + { + "start": 9160.8, + "end": 9162.2, + "probability": 0.904 + }, + { + "start": 9162.74, + "end": 9164.98, + "probability": 0.9774 + }, + { + "start": 9165.52, + "end": 9168.64, + "probability": 0.999 + }, + { + "start": 9169.98, + "end": 9171.38, + "probability": 0.9211 + }, + { + "start": 9172.14, + "end": 9174.96, + "probability": 0.8555 + }, + { + "start": 9176.7, + "end": 9178.32, + "probability": 0.9823 + }, + { + "start": 9178.84, + "end": 9182.56, + "probability": 0.9952 + }, + { + "start": 9183.44, + "end": 9188.52, + "probability": 0.9026 + }, + { + "start": 9189.7, + "end": 9190.3, + "probability": 0.8972 + }, + { + "start": 9190.84, + "end": 9192.28, + "probability": 0.922 + }, + { + "start": 9192.9, + "end": 9193.5, + "probability": 0.7532 + }, + { + "start": 9194.22, + "end": 9198.1, + "probability": 0.9253 + }, + { + "start": 9198.78, + "end": 9201.26, + "probability": 0.8748 + }, + { + "start": 9203.56, + "end": 9204.7, + "probability": 0.9338 + }, + { + "start": 9205.38, + "end": 9206.2, + "probability": 0.7409 + }, + { + "start": 9207.9, + "end": 9208.84, + "probability": 0.9987 + }, + { + "start": 9210.28, + "end": 9211.38, + "probability": 0.9731 + }, + { + "start": 9213.12, + "end": 9214.18, + "probability": 0.9726 + }, + { + "start": 9216.4, + "end": 9216.52, + "probability": 0.9497 + }, + { + "start": 9218.5, + "end": 9219.26, + "probability": 0.7997 + }, + { + "start": 9220.48, + "end": 9222.24, + "probability": 0.9968 + }, + { + "start": 9223.44, + "end": 9225.82, + "probability": 0.9828 + }, + { + "start": 9226.58, + "end": 9228.66, + "probability": 0.9742 + }, + { + "start": 9229.48, + "end": 9232.48, + "probability": 0.9492 + }, + { + "start": 9234.34, + "end": 9235.6, + "probability": 0.7725 + }, + { + "start": 9236.36, + "end": 9237.68, + "probability": 0.5322 + }, + { + "start": 9238.22, + "end": 9241.16, + "probability": 0.9921 + }, + { + "start": 9242.28, + "end": 9243.7, + "probability": 0.9824 + }, + { + "start": 9245.04, + "end": 9245.58, + "probability": 0.6229 + }, + { + "start": 9246.32, + "end": 9246.9, + "probability": 0.9198 + }, + { + "start": 9247.8, + "end": 9249.38, + "probability": 0.771 + }, + { + "start": 9250.22, + "end": 9254.54, + "probability": 0.9858 + }, + { + "start": 9254.9, + "end": 9255.94, + "probability": 0.6562 + }, + { + "start": 9257.1, + "end": 9257.84, + "probability": 0.915 + }, + { + "start": 9259.26, + "end": 9261.14, + "probability": 0.812 + }, + { + "start": 9262.02, + "end": 9263.28, + "probability": 0.5772 + }, + { + "start": 9264.16, + "end": 9264.9, + "probability": 0.8511 + }, + { + "start": 9265.88, + "end": 9267.51, + "probability": 0.3299 + }, + { + "start": 9270.14, + "end": 9272.18, + "probability": 0.9445 + }, + { + "start": 9273.18, + "end": 9273.98, + "probability": 0.9633 + }, + { + "start": 9275.14, + "end": 9279.84, + "probability": 0.9016 + }, + { + "start": 9280.32, + "end": 9283.94, + "probability": 0.9922 + }, + { + "start": 9284.46, + "end": 9286.6, + "probability": 0.9059 + }, + { + "start": 9287.3, + "end": 9288.8, + "probability": 0.7005 + }, + { + "start": 9289.32, + "end": 9290.48, + "probability": 0.6458 + }, + { + "start": 9291.02, + "end": 9291.88, + "probability": 0.8648 + }, + { + "start": 9291.98, + "end": 9292.46, + "probability": 0.7343 + }, + { + "start": 9292.86, + "end": 9293.4, + "probability": 0.7454 + }, + { + "start": 9293.7, + "end": 9294.16, + "probability": 0.9734 + }, + { + "start": 9294.64, + "end": 9295.27, + "probability": 0.5136 + }, + { + "start": 9295.84, + "end": 9299.74, + "probability": 0.9914 + }, + { + "start": 9300.1, + "end": 9300.28, + "probability": 0.8108 + }, + { + "start": 9300.86, + "end": 9301.64, + "probability": 0.6908 + }, + { + "start": 9302.46, + "end": 9305.04, + "probability": 0.9838 + }, + { + "start": 9305.58, + "end": 9307.1, + "probability": 0.8608 + }, + { + "start": 9307.22, + "end": 9308.5, + "probability": 0.861 + }, + { + "start": 9308.8, + "end": 9310.72, + "probability": 0.0639 + }, + { + "start": 9310.72, + "end": 9317.12, + "probability": 0.9159 + }, + { + "start": 9317.5, + "end": 9319.04, + "probability": 0.9742 + }, + { + "start": 9319.66, + "end": 9322.5, + "probability": 0.8767 + }, + { + "start": 9323.12, + "end": 9327.54, + "probability": 0.7714 + }, + { + "start": 9328.38, + "end": 9331.92, + "probability": 0.9965 + }, + { + "start": 9332.06, + "end": 9335.56, + "probability": 0.9971 + }, + { + "start": 9336.6, + "end": 9339.28, + "probability": 0.7742 + }, + { + "start": 9339.94, + "end": 9345.94, + "probability": 0.8579 + }, + { + "start": 9346.5, + "end": 9347.12, + "probability": 0.5442 + }, + { + "start": 9347.32, + "end": 9347.76, + "probability": 0.5323 + }, + { + "start": 9347.78, + "end": 9348.44, + "probability": 0.492 + }, + { + "start": 9348.44, + "end": 9349.14, + "probability": 0.2976 + }, + { + "start": 9353.58, + "end": 9355.56, + "probability": 0.0511 + }, + { + "start": 9358.04, + "end": 9359.56, + "probability": 0.0175 + }, + { + "start": 9361.24, + "end": 9365.38, + "probability": 0.3418 + }, + { + "start": 9365.92, + "end": 9369.54, + "probability": 0.6937 + }, + { + "start": 9369.98, + "end": 9372.6, + "probability": 0.946 + }, + { + "start": 9373.08, + "end": 9374.26, + "probability": 0.9616 + }, + { + "start": 9374.46, + "end": 9379.26, + "probability": 0.9372 + }, + { + "start": 9379.82, + "end": 9383.86, + "probability": 0.8226 + }, + { + "start": 9384.46, + "end": 9384.94, + "probability": 0.5688 + }, + { + "start": 9385.9, + "end": 9392.48, + "probability": 0.7627 + }, + { + "start": 9392.87, + "end": 9399.96, + "probability": 0.9762 + }, + { + "start": 9400.34, + "end": 9401.94, + "probability": 0.8242 + }, + { + "start": 9402.36, + "end": 9404.12, + "probability": 0.7316 + }, + { + "start": 9404.54, + "end": 9405.94, + "probability": 0.6105 + }, + { + "start": 9406.1, + "end": 9406.68, + "probability": 0.6852 + }, + { + "start": 9407.06, + "end": 9407.68, + "probability": 0.8369 + }, + { + "start": 9407.74, + "end": 9408.64, + "probability": 0.8395 + }, + { + "start": 9410.22, + "end": 9411.36, + "probability": 0.1381 + }, + { + "start": 9413.38, + "end": 9417.21, + "probability": 0.3091 + }, + { + "start": 9419.78, + "end": 9420.82, + "probability": 0.2418 + }, + { + "start": 9421.76, + "end": 9424.3, + "probability": 0.8586 + }, + { + "start": 9424.92, + "end": 9427.04, + "probability": 0.5624 + }, + { + "start": 9427.2, + "end": 9431.02, + "probability": 0.8011 + }, + { + "start": 9431.82, + "end": 9433.38, + "probability": 0.7676 + }, + { + "start": 9434.46, + "end": 9436.04, + "probability": 0.8309 + }, + { + "start": 9436.26, + "end": 9440.3, + "probability": 0.7656 + }, + { + "start": 9440.48, + "end": 9441.56, + "probability": 0.6313 + }, + { + "start": 9442.5, + "end": 9447.26, + "probability": 0.9956 + }, + { + "start": 9447.86, + "end": 9449.16, + "probability": 0.7592 + }, + { + "start": 9449.36, + "end": 9451.9, + "probability": 0.9808 + }, + { + "start": 9452.36, + "end": 9457.16, + "probability": 0.7662 + }, + { + "start": 9457.24, + "end": 9458.34, + "probability": 0.613 + }, + { + "start": 9458.78, + "end": 9459.32, + "probability": 0.6357 + }, + { + "start": 9459.4, + "end": 9459.88, + "probability": 0.7378 + }, + { + "start": 9459.96, + "end": 9460.62, + "probability": 0.7331 + }, + { + "start": 9475.22, + "end": 9475.62, + "probability": 0.3542 + }, + { + "start": 9475.62, + "end": 9478.38, + "probability": 0.7264 + }, + { + "start": 9478.9, + "end": 9482.48, + "probability": 0.7646 + }, + { + "start": 9484.3, + "end": 9486.9, + "probability": 0.8067 + }, + { + "start": 9488.02, + "end": 9488.68, + "probability": 0.5617 + }, + { + "start": 9488.96, + "end": 9490.54, + "probability": 0.8945 + }, + { + "start": 9492.8, + "end": 9493.72, + "probability": 0.8567 + }, + { + "start": 9493.76, + "end": 9495.22, + "probability": 0.51 + }, + { + "start": 9495.42, + "end": 9500.22, + "probability": 0.9243 + }, + { + "start": 9500.28, + "end": 9501.42, + "probability": 0.8785 + }, + { + "start": 9502.0, + "end": 9506.62, + "probability": 0.9764 + }, + { + "start": 9507.22, + "end": 9513.3, + "probability": 0.9923 + }, + { + "start": 9514.04, + "end": 9514.64, + "probability": 0.6285 + }, + { + "start": 9514.86, + "end": 9516.14, + "probability": 0.9312 + }, + { + "start": 9518.82, + "end": 9523.7, + "probability": 0.858 + }, + { + "start": 9524.26, + "end": 9525.56, + "probability": 0.2545 + }, + { + "start": 9526.38, + "end": 9528.12, + "probability": 0.2098 + }, + { + "start": 9530.16, + "end": 9532.0, + "probability": 0.8656 + }, + { + "start": 9532.08, + "end": 9533.74, + "probability": 0.9452 + }, + { + "start": 9533.8, + "end": 9534.74, + "probability": 0.8979 + }, + { + "start": 9540.58, + "end": 9541.36, + "probability": 0.4551 + }, + { + "start": 9543.4, + "end": 9544.2, + "probability": 0.8341 + }, + { + "start": 9544.82, + "end": 9545.48, + "probability": 0.6471 + }, + { + "start": 9546.02, + "end": 9546.76, + "probability": 0.9016 + }, + { + "start": 9548.1, + "end": 9551.08, + "probability": 0.9956 + }, + { + "start": 9551.9, + "end": 9554.34, + "probability": 0.5287 + }, + { + "start": 9554.42, + "end": 9555.46, + "probability": 0.965 + }, + { + "start": 9556.7, + "end": 9559.32, + "probability": 0.9639 + }, + { + "start": 9559.34, + "end": 9563.16, + "probability": 0.9972 + }, + { + "start": 9564.24, + "end": 9566.78, + "probability": 0.9821 + }, + { + "start": 9566.88, + "end": 9569.42, + "probability": 0.996 + }, + { + "start": 9570.08, + "end": 9573.34, + "probability": 0.9948 + }, + { + "start": 9573.4, + "end": 9576.72, + "probability": 0.9978 + }, + { + "start": 9577.52, + "end": 9578.32, + "probability": 0.8274 + }, + { + "start": 9578.56, + "end": 9581.1, + "probability": 0.9977 + }, + { + "start": 9581.1, + "end": 9583.78, + "probability": 0.9938 + }, + { + "start": 9584.6, + "end": 9587.18, + "probability": 0.9727 + }, + { + "start": 9587.26, + "end": 9588.04, + "probability": 0.7203 + }, + { + "start": 9588.58, + "end": 9590.02, + "probability": 0.9679 + }, + { + "start": 9590.08, + "end": 9592.3, + "probability": 0.9985 + }, + { + "start": 9592.74, + "end": 9595.04, + "probability": 0.9563 + }, + { + "start": 9595.7, + "end": 9597.84, + "probability": 0.7063 + }, + { + "start": 9597.84, + "end": 9600.58, + "probability": 0.9638 + }, + { + "start": 9601.22, + "end": 9603.88, + "probability": 0.8818 + }, + { + "start": 9604.42, + "end": 9607.2, + "probability": 0.993 + }, + { + "start": 9608.16, + "end": 9611.44, + "probability": 0.9886 + }, + { + "start": 9611.44, + "end": 9615.8, + "probability": 0.9802 + }, + { + "start": 9615.8, + "end": 9620.84, + "probability": 0.9838 + }, + { + "start": 9621.62, + "end": 9623.28, + "probability": 0.8619 + }, + { + "start": 9623.76, + "end": 9627.34, + "probability": 0.9909 + }, + { + "start": 9628.02, + "end": 9631.66, + "probability": 0.9016 + }, + { + "start": 9631.74, + "end": 9633.0, + "probability": 0.7024 + }, + { + "start": 9633.16, + "end": 9633.94, + "probability": 0.5652 + }, + { + "start": 9634.2, + "end": 9635.86, + "probability": 0.9541 + }, + { + "start": 9636.2, + "end": 9636.46, + "probability": 0.8427 + }, + { + "start": 9637.24, + "end": 9638.1, + "probability": 0.8324 + }, + { + "start": 9638.18, + "end": 9640.42, + "probability": 0.9873 + }, + { + "start": 9641.4, + "end": 9642.2, + "probability": 0.7036 + }, + { + "start": 9642.3, + "end": 9643.02, + "probability": 0.9592 + }, + { + "start": 9643.36, + "end": 9644.07, + "probability": 0.8127 + }, + { + "start": 9644.3, + "end": 9644.98, + "probability": 0.6291 + }, + { + "start": 9644.98, + "end": 9646.02, + "probability": 0.9473 + }, + { + "start": 9646.88, + "end": 9648.88, + "probability": 0.9656 + }, + { + "start": 9648.9, + "end": 9649.56, + "probability": 0.6848 + }, + { + "start": 9649.58, + "end": 9651.58, + "probability": 0.9578 + }, + { + "start": 9651.9, + "end": 9652.76, + "probability": 0.6462 + }, + { + "start": 9653.04, + "end": 9654.91, + "probability": 0.8002 + }, + { + "start": 9655.1, + "end": 9656.96, + "probability": 0.777 + }, + { + "start": 9657.52, + "end": 9661.2, + "probability": 0.9749 + }, + { + "start": 9661.32, + "end": 9663.08, + "probability": 0.1934 + }, + { + "start": 9663.7, + "end": 9664.88, + "probability": 0.8515 + }, + { + "start": 9664.96, + "end": 9666.44, + "probability": 0.8035 + }, + { + "start": 9669.02, + "end": 9670.92, + "probability": 0.6334 + }, + { + "start": 9671.32, + "end": 9671.8, + "probability": 0.0022 + }, + { + "start": 9679.44, + "end": 9679.58, + "probability": 0.0355 + }, + { + "start": 9679.77, + "end": 9682.72, + "probability": 0.6609 + }, + { + "start": 9683.06, + "end": 9683.46, + "probability": 0.4133 + }, + { + "start": 9683.56, + "end": 9683.68, + "probability": 0.318 + }, + { + "start": 9684.06, + "end": 9684.42, + "probability": 0.3281 + }, + { + "start": 9684.48, + "end": 9686.71, + "probability": 0.9898 + }, + { + "start": 9686.98, + "end": 9687.64, + "probability": 0.6657 + }, + { + "start": 9687.74, + "end": 9688.78, + "probability": 0.7129 + }, + { + "start": 9689.04, + "end": 9692.78, + "probability": 0.965 + }, + { + "start": 9693.94, + "end": 9698.1, + "probability": 0.9917 + }, + { + "start": 9698.62, + "end": 9698.76, + "probability": 0.5165 + }, + { + "start": 9700.16, + "end": 9700.86, + "probability": 0.7482 + }, + { + "start": 9712.46, + "end": 9712.46, + "probability": 0.4344 + }, + { + "start": 9712.46, + "end": 9712.46, + "probability": 0.0708 + }, + { + "start": 9712.46, + "end": 9712.46, + "probability": 0.1116 + }, + { + "start": 9712.46, + "end": 9713.84, + "probability": 0.6401 + }, + { + "start": 9715.92, + "end": 9718.02, + "probability": 0.5913 + }, + { + "start": 9718.02, + "end": 9718.12, + "probability": 0.3043 + }, + { + "start": 9718.7, + "end": 9719.4, + "probability": 0.666 + }, + { + "start": 9719.7, + "end": 9721.88, + "probability": 0.8209 + }, + { + "start": 9721.96, + "end": 9724.2, + "probability": 0.5049 + }, + { + "start": 9724.48, + "end": 9727.34, + "probability": 0.7162 + }, + { + "start": 9727.94, + "end": 9729.22, + "probability": 0.8772 + }, + { + "start": 9729.86, + "end": 9729.94, + "probability": 0.2101 + }, + { + "start": 9730.22, + "end": 9731.24, + "probability": 0.1292 + }, + { + "start": 9731.46, + "end": 9734.8, + "probability": 0.9836 + }, + { + "start": 9735.0, + "end": 9736.49, + "probability": 0.9971 + }, + { + "start": 9737.62, + "end": 9738.54, + "probability": 0.6961 + }, + { + "start": 9738.78, + "end": 9740.46, + "probability": 0.7419 + }, + { + "start": 9740.76, + "end": 9743.82, + "probability": 0.978 + }, + { + "start": 9743.94, + "end": 9744.54, + "probability": 0.6191 + }, + { + "start": 9744.62, + "end": 9744.8, + "probability": 0.6433 + }, + { + "start": 9745.18, + "end": 9745.48, + "probability": 0.9014 + }, + { + "start": 9746.02, + "end": 9747.02, + "probability": 0.377 + }, + { + "start": 9747.68, + "end": 9747.88, + "probability": 0.8643 + }, + { + "start": 9748.5, + "end": 9749.1, + "probability": 0.7617 + }, + { + "start": 9750.16, + "end": 9753.01, + "probability": 0.5782 + }, + { + "start": 9753.7, + "end": 9755.12, + "probability": 0.7664 + }, + { + "start": 9755.24, + "end": 9756.86, + "probability": 0.884 + }, + { + "start": 9756.98, + "end": 9757.94, + "probability": 0.7229 + }, + { + "start": 9758.52, + "end": 9759.62, + "probability": 0.9175 + }, + { + "start": 9759.7, + "end": 9764.84, + "probability": 0.838 + }, + { + "start": 9764.92, + "end": 9767.48, + "probability": 0.4151 + }, + { + "start": 9767.76, + "end": 9768.66, + "probability": 0.4411 + }, + { + "start": 9768.98, + "end": 9769.28, + "probability": 0.4146 + }, + { + "start": 9769.4, + "end": 9773.5, + "probability": 0.6863 + }, + { + "start": 9774.24, + "end": 9775.16, + "probability": 0.1902 + }, + { + "start": 9775.24, + "end": 9777.88, + "probability": 0.911 + }, + { + "start": 9778.1, + "end": 9780.5, + "probability": 0.8189 + }, + { + "start": 9780.7, + "end": 9782.64, + "probability": 0.7616 + }, + { + "start": 9783.14, + "end": 9784.68, + "probability": 0.8405 + }, + { + "start": 9785.2, + "end": 9786.54, + "probability": 0.7306 + }, + { + "start": 9787.6, + "end": 9789.88, + "probability": 0.8175 + }, + { + "start": 9790.16, + "end": 9791.1, + "probability": 0.6687 + }, + { + "start": 9792.34, + "end": 9795.48, + "probability": 0.7606 + }, + { + "start": 9796.6, + "end": 9796.8, + "probability": 0.8178 + }, + { + "start": 9797.22, + "end": 9798.04, + "probability": 0.6472 + }, + { + "start": 9798.2, + "end": 9798.84, + "probability": 0.8426 + }, + { + "start": 9799.06, + "end": 9799.56, + "probability": 0.8191 + }, + { + "start": 9799.64, + "end": 9800.55, + "probability": 0.8493 + }, + { + "start": 9801.3, + "end": 9802.3, + "probability": 0.9673 + }, + { + "start": 9802.44, + "end": 9804.25, + "probability": 0.9543 + }, + { + "start": 9804.38, + "end": 9807.65, + "probability": 0.9808 + }, + { + "start": 9809.34, + "end": 9811.58, + "probability": 0.813 + }, + { + "start": 9811.6, + "end": 9815.2, + "probability": 0.8597 + }, + { + "start": 9815.52, + "end": 9819.5, + "probability": 0.2672 + }, + { + "start": 9821.9, + "end": 9824.12, + "probability": 0.9676 + }, + { + "start": 9828.66, + "end": 9829.4, + "probability": 0.8721 + }, + { + "start": 9829.66, + "end": 9830.18, + "probability": 0.4859 + }, + { + "start": 9830.86, + "end": 9831.28, + "probability": 0.8007 + }, + { + "start": 9853.0, + "end": 9857.86, + "probability": 0.5974 + }, + { + "start": 9858.12, + "end": 9859.38, + "probability": 0.1379 + }, + { + "start": 9860.34, + "end": 9860.74, + "probability": 0.0977 + }, + { + "start": 9861.84, + "end": 9867.64, + "probability": 0.1063 + }, + { + "start": 9868.58, + "end": 9872.26, + "probability": 0.0776 + }, + { + "start": 9872.26, + "end": 9872.26, + "probability": 0.0833 + }, + { + "start": 9872.26, + "end": 9872.36, + "probability": 0.1238 + }, + { + "start": 9872.58, + "end": 9875.58, + "probability": 0.0137 + }, + { + "start": 9877.28, + "end": 9880.06, + "probability": 0.0475 + }, + { + "start": 9880.82, + "end": 9883.24, + "probability": 0.0137 + }, + { + "start": 9919.0, + "end": 9919.0, + "probability": 0.0 + }, + { + "start": 9919.0, + "end": 9919.0, + "probability": 0.0 + }, + { + "start": 9919.0, + "end": 9919.0, + "probability": 0.0 + }, + { + "start": 9919.0, + "end": 9919.0, + "probability": 0.0 + }, + { + "start": 9919.0, + "end": 9919.0, + "probability": 0.0 + }, + { + "start": 9919.0, + "end": 9919.0, + "probability": 0.0 + }, + { + "start": 9919.0, + "end": 9919.0, + "probability": 0.0 + }, + { + "start": 9919.0, + "end": 9919.0, + "probability": 0.0 + }, + { + "start": 9919.0, + "end": 9919.0, + "probability": 0.0 + }, + { + "start": 9919.0, + "end": 9919.0, + "probability": 0.0 + }, + { + "start": 9919.0, + "end": 9919.0, + "probability": 0.0 + }, + { + "start": 9919.0, + "end": 9919.0, + "probability": 0.0 + }, + { + "start": 9919.0, + "end": 9919.0, + "probability": 0.0 + }, + { + "start": 9919.0, + "end": 9919.0, + "probability": 0.0 + }, + { + "start": 9919.0, + "end": 9919.0, + "probability": 0.0 + }, + { + "start": 9919.0, + "end": 9919.0, + "probability": 0.0 + }, + { + "start": 9919.0, + "end": 9919.0, + "probability": 0.0 + }, + { + "start": 9919.0, + "end": 9919.0, + "probability": 0.0 + }, + { + "start": 9919.0, + "end": 9919.0, + "probability": 0.0 + }, + { + "start": 9919.28, + "end": 9919.54, + "probability": 0.1027 + }, + { + "start": 9919.54, + "end": 9920.76, + "probability": 0.0485 + }, + { + "start": 9920.76, + "end": 9922.18, + "probability": 0.4476 + }, + { + "start": 9922.78, + "end": 9926.34, + "probability": 0.9443 + }, + { + "start": 9927.62, + "end": 9928.96, + "probability": 0.9076 + }, + { + "start": 9929.52, + "end": 9935.68, + "probability": 0.9953 + }, + { + "start": 9936.12, + "end": 9939.86, + "probability": 0.9973 + }, + { + "start": 9940.04, + "end": 9944.68, + "probability": 0.9889 + }, + { + "start": 9945.24, + "end": 9947.54, + "probability": 0.74 + }, + { + "start": 9948.08, + "end": 9948.46, + "probability": 0.7349 + }, + { + "start": 9949.1, + "end": 9951.8, + "probability": 0.9939 + }, + { + "start": 9953.16, + "end": 9955.32, + "probability": 0.9912 + }, + { + "start": 9955.52, + "end": 9956.88, + "probability": 0.9547 + }, + { + "start": 9956.88, + "end": 9957.36, + "probability": 0.6733 + }, + { + "start": 9959.34, + "end": 9961.76, + "probability": 0.9826 + }, + { + "start": 9962.3, + "end": 9963.24, + "probability": 0.876 + }, + { + "start": 9963.76, + "end": 9965.9, + "probability": 0.9877 + }, + { + "start": 9966.44, + "end": 9968.54, + "probability": 0.9743 + }, + { + "start": 9969.16, + "end": 9972.76, + "probability": 0.9875 + }, + { + "start": 9973.36, + "end": 9974.38, + "probability": 0.999 + }, + { + "start": 9975.44, + "end": 9977.36, + "probability": 0.999 + }, + { + "start": 9978.24, + "end": 9979.46, + "probability": 0.8303 + }, + { + "start": 9980.38, + "end": 9983.6, + "probability": 0.9455 + }, + { + "start": 9983.6, + "end": 9987.16, + "probability": 0.996 + }, + { + "start": 9987.72, + "end": 9987.96, + "probability": 0.9577 + }, + { + "start": 9989.66, + "end": 9992.24, + "probability": 0.988 + }, + { + "start": 9992.78, + "end": 9997.48, + "probability": 0.9787 + }, + { + "start": 9998.18, + "end": 9999.54, + "probability": 0.9982 + }, + { + "start": 10000.06, + "end": 10001.76, + "probability": 0.8363 + }, + { + "start": 10002.36, + "end": 10003.76, + "probability": 0.9785 + }, + { + "start": 10004.28, + "end": 10005.68, + "probability": 0.9188 + }, + { + "start": 10006.48, + "end": 10006.68, + "probability": 0.7486 + }, + { + "start": 10007.38, + "end": 10009.1, + "probability": 0.9237 + }, + { + "start": 10010.14, + "end": 10011.06, + "probability": 0.8255 + }, + { + "start": 10011.3, + "end": 10012.0, + "probability": 0.4742 + }, + { + "start": 10012.48, + "end": 10013.36, + "probability": 0.9271 + }, + { + "start": 10013.76, + "end": 10014.34, + "probability": 0.3547 + }, + { + "start": 10014.58, + "end": 10015.58, + "probability": 0.6769 + }, + { + "start": 10015.58, + "end": 10015.66, + "probability": 0.2883 + }, + { + "start": 10015.78, + "end": 10017.68, + "probability": 0.6114 + }, + { + "start": 10017.96, + "end": 10019.68, + "probability": 0.791 + }, + { + "start": 10020.0, + "end": 10020.62, + "probability": 0.9773 + }, + { + "start": 10021.4, + "end": 10021.92, + "probability": 0.5826 + }, + { + "start": 10022.24, + "end": 10023.34, + "probability": 0.486 + }, + { + "start": 10023.64, + "end": 10023.64, + "probability": 0.8691 + }, + { + "start": 10023.64, + "end": 10027.5, + "probability": 0.9658 + }, + { + "start": 10027.96, + "end": 10032.16, + "probability": 0.7916 + }, + { + "start": 10032.74, + "end": 10032.94, + "probability": 0.1015 + }, + { + "start": 10033.74, + "end": 10036.16, + "probability": 0.8136 + }, + { + "start": 10036.68, + "end": 10039.52, + "probability": 0.9399 + }, + { + "start": 10039.96, + "end": 10045.16, + "probability": 0.9541 + }, + { + "start": 10045.76, + "end": 10049.26, + "probability": 0.9911 + }, + { + "start": 10049.86, + "end": 10050.96, + "probability": 0.9492 + }, + { + "start": 10051.52, + "end": 10054.86, + "probability": 0.9517 + }, + { + "start": 10055.38, + "end": 10057.38, + "probability": 0.8934 + }, + { + "start": 10058.14, + "end": 10060.24, + "probability": 0.9752 + }, + { + "start": 10060.78, + "end": 10064.22, + "probability": 0.9683 + }, + { + "start": 10064.86, + "end": 10064.96, + "probability": 0.0811 + }, + { + "start": 10066.7, + "end": 10071.46, + "probability": 0.9972 + }, + { + "start": 10072.04, + "end": 10076.46, + "probability": 0.9917 + }, + { + "start": 10077.06, + "end": 10081.58, + "probability": 0.9896 + }, + { + "start": 10081.94, + "end": 10084.62, + "probability": 0.9906 + }, + { + "start": 10085.16, + "end": 10086.98, + "probability": 0.9719 + }, + { + "start": 10088.22, + "end": 10089.24, + "probability": 0.9668 + }, + { + "start": 10089.34, + "end": 10091.44, + "probability": 0.8088 + }, + { + "start": 10091.66, + "end": 10093.62, + "probability": 0.6197 + }, + { + "start": 10093.62, + "end": 10093.92, + "probability": 0.8401 + }, + { + "start": 10094.94, + "end": 10099.22, + "probability": 0.9542 + }, + { + "start": 10099.74, + "end": 10101.86, + "probability": 0.9966 + }, + { + "start": 10101.86, + "end": 10104.46, + "probability": 0.9384 + }, + { + "start": 10105.34, + "end": 10105.56, + "probability": 0.007 + }, + { + "start": 10106.32, + "end": 10109.4, + "probability": 0.9919 + }, + { + "start": 10109.56, + "end": 10110.96, + "probability": 0.9532 + }, + { + "start": 10111.54, + "end": 10115.44, + "probability": 0.992 + }, + { + "start": 10116.0, + "end": 10117.6, + "probability": 0.8906 + }, + { + "start": 10119.16, + "end": 10122.7, + "probability": 0.8746 + }, + { + "start": 10122.7, + "end": 10125.94, + "probability": 0.9804 + }, + { + "start": 10126.02, + "end": 10128.48, + "probability": 0.9094 + }, + { + "start": 10128.48, + "end": 10132.52, + "probability": 0.9982 + }, + { + "start": 10133.04, + "end": 10133.58, + "probability": 0.9935 + }, + { + "start": 10134.5, + "end": 10137.3, + "probability": 0.817 + }, + { + "start": 10138.26, + "end": 10140.84, + "probability": 0.983 + }, + { + "start": 10141.38, + "end": 10143.66, + "probability": 0.9059 + }, + { + "start": 10144.26, + "end": 10149.44, + "probability": 0.9746 + }, + { + "start": 10149.98, + "end": 10154.94, + "probability": 0.9922 + }, + { + "start": 10155.54, + "end": 10160.08, + "probability": 0.9937 + }, + { + "start": 10160.7, + "end": 10165.0, + "probability": 0.999 + }, + { + "start": 10165.58, + "end": 10166.72, + "probability": 0.9491 + }, + { + "start": 10167.36, + "end": 10169.04, + "probability": 0.9807 + }, + { + "start": 10169.79, + "end": 10171.96, + "probability": 0.9774 + }, + { + "start": 10172.7, + "end": 10173.06, + "probability": 0.8629 + }, + { + "start": 10173.72, + "end": 10175.08, + "probability": 0.7214 + }, + { + "start": 10176.38, + "end": 10180.54, + "probability": 0.9514 + }, + { + "start": 10181.2, + "end": 10182.27, + "probability": 0.7661 + }, + { + "start": 10182.4, + "end": 10184.65, + "probability": 0.7725 + }, + { + "start": 10185.38, + "end": 10186.22, + "probability": 0.5405 + }, + { + "start": 10186.22, + "end": 10186.34, + "probability": 0.4011 + }, + { + "start": 10186.46, + "end": 10186.96, + "probability": 0.8167 + }, + { + "start": 10188.48, + "end": 10191.84, + "probability": 0.9863 + }, + { + "start": 10191.84, + "end": 10195.0, + "probability": 0.8513 + }, + { + "start": 10195.6, + "end": 10196.72, + "probability": 0.9677 + }, + { + "start": 10197.3, + "end": 10200.02, + "probability": 0.9937 + }, + { + "start": 10200.6, + "end": 10205.54, + "probability": 0.932 + }, + { + "start": 10206.4, + "end": 10208.56, + "probability": 0.994 + }, + { + "start": 10209.08, + "end": 10209.84, + "probability": 0.9608 + }, + { + "start": 10210.5, + "end": 10211.72, + "probability": 0.6472 + }, + { + "start": 10212.28, + "end": 10217.1, + "probability": 0.996 + }, + { + "start": 10217.52, + "end": 10222.18, + "probability": 0.9792 + }, + { + "start": 10222.74, + "end": 10226.18, + "probability": 0.9897 + }, + { + "start": 10226.32, + "end": 10228.94, + "probability": 0.9634 + }, + { + "start": 10228.94, + "end": 10231.86, + "probability": 0.978 + }, + { + "start": 10232.54, + "end": 10236.86, + "probability": 0.9891 + }, + { + "start": 10238.95, + "end": 10242.24, + "probability": 0.8905 + }, + { + "start": 10242.88, + "end": 10244.86, + "probability": 0.8749 + }, + { + "start": 10245.6, + "end": 10250.54, + "probability": 0.9259 + }, + { + "start": 10251.06, + "end": 10252.38, + "probability": 0.9591 + }, + { + "start": 10252.9, + "end": 10254.6, + "probability": 0.9966 + }, + { + "start": 10255.08, + "end": 10257.02, + "probability": 0.8437 + }, + { + "start": 10257.6, + "end": 10258.14, + "probability": 0.757 + }, + { + "start": 10259.1, + "end": 10261.9, + "probability": 0.977 + }, + { + "start": 10262.46, + "end": 10263.9, + "probability": 0.4948 + }, + { + "start": 10264.06, + "end": 10266.66, + "probability": 0.8284 + }, + { + "start": 10266.74, + "end": 10269.92, + "probability": 0.9902 + }, + { + "start": 10270.44, + "end": 10272.78, + "probability": 0.9837 + }, + { + "start": 10273.56, + "end": 10275.7, + "probability": 0.8123 + }, + { + "start": 10275.84, + "end": 10277.42, + "probability": 0.6613 + }, + { + "start": 10277.64, + "end": 10277.98, + "probability": 0.3027 + }, + { + "start": 10277.98, + "end": 10279.3, + "probability": 0.6423 + }, + { + "start": 10279.84, + "end": 10281.52, + "probability": 0.7117 + }, + { + "start": 10281.6, + "end": 10284.84, + "probability": 0.8295 + }, + { + "start": 10285.78, + "end": 10288.94, + "probability": 0.9845 + }, + { + "start": 10289.48, + "end": 10291.94, + "probability": 0.9915 + }, + { + "start": 10292.48, + "end": 10295.62, + "probability": 0.787 + }, + { + "start": 10296.18, + "end": 10301.82, + "probability": 0.9751 + }, + { + "start": 10302.76, + "end": 10304.32, + "probability": 0.9861 + }, + { + "start": 10305.08, + "end": 10308.74, + "probability": 0.9204 + }, + { + "start": 10309.32, + "end": 10315.3, + "probability": 0.7882 + }, + { + "start": 10316.08, + "end": 10319.6, + "probability": 0.9575 + }, + { + "start": 10320.42, + "end": 10322.2, + "probability": 0.9132 + }, + { + "start": 10323.0, + "end": 10324.36, + "probability": 0.7956 + }, + { + "start": 10325.04, + "end": 10330.44, + "probability": 0.9116 + }, + { + "start": 10330.98, + "end": 10331.94, + "probability": 0.9949 + }, + { + "start": 10332.7, + "end": 10334.3, + "probability": 0.916 + }, + { + "start": 10334.82, + "end": 10337.46, + "probability": 0.9914 + }, + { + "start": 10338.02, + "end": 10340.62, + "probability": 0.9888 + }, + { + "start": 10341.78, + "end": 10343.14, + "probability": 0.9042 + }, + { + "start": 10343.84, + "end": 10346.5, + "probability": 0.9943 + }, + { + "start": 10347.36, + "end": 10350.12, + "probability": 0.777 + }, + { + "start": 10351.12, + "end": 10355.12, + "probability": 0.9851 + }, + { + "start": 10355.72, + "end": 10362.24, + "probability": 0.9954 + }, + { + "start": 10362.24, + "end": 10368.28, + "probability": 0.9954 + }, + { + "start": 10368.98, + "end": 10370.96, + "probability": 0.9994 + }, + { + "start": 10371.86, + "end": 10374.2, + "probability": 0.9941 + }, + { + "start": 10374.68, + "end": 10378.39, + "probability": 0.9487 + }, + { + "start": 10379.9, + "end": 10383.45, + "probability": 0.9986 + }, + { + "start": 10384.44, + "end": 10386.48, + "probability": 0.8532 + }, + { + "start": 10387.1, + "end": 10389.58, + "probability": 0.9478 + }, + { + "start": 10390.22, + "end": 10391.42, + "probability": 0.7264 + }, + { + "start": 10391.6, + "end": 10392.22, + "probability": 0.6856 + }, + { + "start": 10392.62, + "end": 10395.58, + "probability": 0.7653 + }, + { + "start": 10395.96, + "end": 10398.54, + "probability": 0.9901 + }, + { + "start": 10399.04, + "end": 10400.89, + "probability": 0.9014 + }, + { + "start": 10401.5, + "end": 10404.88, + "probability": 0.7152 + }, + { + "start": 10405.76, + "end": 10406.02, + "probability": 0.7475 + }, + { + "start": 10406.68, + "end": 10407.32, + "probability": 0.7775 + }, + { + "start": 10407.42, + "end": 10408.62, + "probability": 0.9497 + }, + { + "start": 10408.76, + "end": 10411.36, + "probability": 0.8095 + }, + { + "start": 10411.4, + "end": 10413.77, + "probability": 0.9922 + }, + { + "start": 10414.92, + "end": 10420.04, + "probability": 0.8736 + }, + { + "start": 10420.38, + "end": 10420.88, + "probability": 0.2001 + }, + { + "start": 10421.4, + "end": 10422.92, + "probability": 0.6004 + }, + { + "start": 10423.14, + "end": 10424.08, + "probability": 0.8831 + }, + { + "start": 10424.74, + "end": 10425.04, + "probability": 0.0526 + }, + { + "start": 10425.04, + "end": 10428.28, + "probability": 0.7806 + }, + { + "start": 10429.62, + "end": 10431.9, + "probability": 0.3038 + }, + { + "start": 10432.58, + "end": 10435.8, + "probability": 0.3514 + }, + { + "start": 10435.84, + "end": 10437.06, + "probability": 0.6732 + }, + { + "start": 10454.48, + "end": 10454.88, + "probability": 0.7974 + }, + { + "start": 10454.88, + "end": 10454.88, + "probability": 0.0027 + }, + { + "start": 10454.88, + "end": 10456.64, + "probability": 0.4659 + }, + { + "start": 10456.88, + "end": 10457.24, + "probability": 0.2277 + }, + { + "start": 10457.32, + "end": 10457.52, + "probability": 0.3494 + }, + { + "start": 10457.68, + "end": 10459.36, + "probability": 0.9564 + }, + { + "start": 10459.52, + "end": 10461.86, + "probability": 0.6801 + }, + { + "start": 10462.64, + "end": 10462.9, + "probability": 0.0487 + }, + { + "start": 10462.9, + "end": 10465.44, + "probability": 0.7026 + }, + { + "start": 10465.58, + "end": 10466.14, + "probability": 0.9111 + }, + { + "start": 10477.92, + "end": 10479.42, + "probability": 0.1631 + }, + { + "start": 10480.18, + "end": 10482.98, + "probability": 0.0896 + }, + { + "start": 10487.06, + "end": 10489.06, + "probability": 0.2894 + }, + { + "start": 10489.22, + "end": 10492.94, + "probability": 0.6439 + }, + { + "start": 10493.16, + "end": 10494.6, + "probability": 0.1203 + }, + { + "start": 10495.04, + "end": 10497.8, + "probability": 0.9323 + }, + { + "start": 10497.96, + "end": 10500.86, + "probability": 0.9551 + }, + { + "start": 10500.94, + "end": 10502.1, + "probability": 0.948 + }, + { + "start": 10502.26, + "end": 10503.14, + "probability": 0.9477 + }, + { + "start": 10503.68, + "end": 10506.2, + "probability": 0.9906 + }, + { + "start": 10506.36, + "end": 10508.46, + "probability": 0.2719 + }, + { + "start": 10508.66, + "end": 10509.54, + "probability": 0.8739 + }, + { + "start": 10509.92, + "end": 10511.56, + "probability": 0.9293 + }, + { + "start": 10515.32, + "end": 10515.52, + "probability": 0.674 + }, + { + "start": 10516.36, + "end": 10516.66, + "probability": 0.5459 + }, + { + "start": 10517.06, + "end": 10517.52, + "probability": 0.8465 + }, + { + "start": 10519.04, + "end": 10520.76, + "probability": 0.5777 + }, + { + "start": 10522.08, + "end": 10525.04, + "probability": 0.9872 + }, + { + "start": 10525.64, + "end": 10526.92, + "probability": 0.9909 + }, + { + "start": 10527.5, + "end": 10528.96, + "probability": 0.4786 + }, + { + "start": 10529.6, + "end": 10532.04, + "probability": 0.7377 + }, + { + "start": 10533.1, + "end": 10536.98, + "probability": 0.6766 + }, + { + "start": 10537.52, + "end": 10542.66, + "probability": 0.4811 + }, + { + "start": 10543.9, + "end": 10549.64, + "probability": 0.9933 + }, + { + "start": 10549.64, + "end": 10555.7, + "probability": 0.9981 + }, + { + "start": 10556.86, + "end": 10557.84, + "probability": 0.8278 + }, + { + "start": 10558.56, + "end": 10561.8, + "probability": 0.8621 + }, + { + "start": 10561.8, + "end": 10565.54, + "probability": 0.9446 + }, + { + "start": 10566.34, + "end": 10570.82, + "probability": 0.8966 + }, + { + "start": 10571.24, + "end": 10572.62, + "probability": 0.9948 + }, + { + "start": 10573.2, + "end": 10578.24, + "probability": 0.9967 + }, + { + "start": 10579.04, + "end": 10581.56, + "probability": 0.9362 + }, + { + "start": 10581.56, + "end": 10585.04, + "probability": 0.9982 + }, + { + "start": 10585.82, + "end": 10588.52, + "probability": 0.9261 + }, + { + "start": 10589.14, + "end": 10595.1, + "probability": 0.9961 + }, + { + "start": 10595.84, + "end": 10596.96, + "probability": 0.6373 + }, + { + "start": 10597.7, + "end": 10598.9, + "probability": 0.9959 + }, + { + "start": 10599.52, + "end": 10603.62, + "probability": 0.9873 + }, + { + "start": 10605.68, + "end": 10606.32, + "probability": 0.9038 + }, + { + "start": 10607.36, + "end": 10611.88, + "probability": 0.9695 + }, + { + "start": 10613.08, + "end": 10616.2, + "probability": 0.9897 + }, + { + "start": 10616.72, + "end": 10622.12, + "probability": 0.9933 + }, + { + "start": 10622.98, + "end": 10626.32, + "probability": 0.9822 + }, + { + "start": 10627.06, + "end": 10628.64, + "probability": 0.7922 + }, + { + "start": 10629.0, + "end": 10629.8, + "probability": 0.7838 + }, + { + "start": 10630.4, + "end": 10632.8, + "probability": 0.9957 + }, + { + "start": 10633.46, + "end": 10635.66, + "probability": 0.985 + }, + { + "start": 10637.28, + "end": 10639.68, + "probability": 0.409 + }, + { + "start": 10640.6, + "end": 10646.82, + "probability": 0.9926 + }, + { + "start": 10646.82, + "end": 10651.38, + "probability": 0.9932 + }, + { + "start": 10651.98, + "end": 10654.14, + "probability": 0.9358 + }, + { + "start": 10654.78, + "end": 10660.94, + "probability": 0.9959 + }, + { + "start": 10661.68, + "end": 10664.08, + "probability": 0.9976 + }, + { + "start": 10664.8, + "end": 10666.44, + "probability": 0.9968 + }, + { + "start": 10666.96, + "end": 10669.44, + "probability": 0.9938 + }, + { + "start": 10670.0, + "end": 10670.96, + "probability": 0.6175 + }, + { + "start": 10671.54, + "end": 10672.08, + "probability": 0.9337 + }, + { + "start": 10673.3, + "end": 10677.06, + "probability": 0.9941 + }, + { + "start": 10677.68, + "end": 10681.32, + "probability": 0.9932 + }, + { + "start": 10681.94, + "end": 10683.74, + "probability": 0.9956 + }, + { + "start": 10684.38, + "end": 10685.98, + "probability": 0.9969 + }, + { + "start": 10686.66, + "end": 10688.9, + "probability": 0.9861 + }, + { + "start": 10689.66, + "end": 10696.96, + "probability": 0.9761 + }, + { + "start": 10697.58, + "end": 10701.04, + "probability": 0.992 + }, + { + "start": 10702.04, + "end": 10704.18, + "probability": 0.9852 + }, + { + "start": 10705.46, + "end": 10705.82, + "probability": 0.9873 + }, + { + "start": 10706.56, + "end": 10709.66, + "probability": 0.9921 + }, + { + "start": 10710.6, + "end": 10712.18, + "probability": 0.9927 + }, + { + "start": 10712.76, + "end": 10714.88, + "probability": 0.8934 + }, + { + "start": 10715.88, + "end": 10717.96, + "probability": 0.9183 + }, + { + "start": 10718.58, + "end": 10722.38, + "probability": 0.9651 + }, + { + "start": 10723.38, + "end": 10727.54, + "probability": 0.986 + }, + { + "start": 10727.98, + "end": 10728.94, + "probability": 0.9401 + }, + { + "start": 10729.42, + "end": 10729.52, + "probability": 0.5385 + }, + { + "start": 10730.38, + "end": 10730.82, + "probability": 0.5716 + }, + { + "start": 10731.08, + "end": 10731.42, + "probability": 0.4978 + }, + { + "start": 10731.42, + "end": 10733.22, + "probability": 0.873 + }, + { + "start": 10735.1, + "end": 10739.64, + "probability": 0.8282 + }, + { + "start": 10739.64, + "end": 10743.8, + "probability": 0.9761 + }, + { + "start": 10744.32, + "end": 10745.74, + "probability": 0.9865 + }, + { + "start": 10747.0, + "end": 10750.66, + "probability": 0.7556 + }, + { + "start": 10751.66, + "end": 10753.14, + "probability": 0.9656 + }, + { + "start": 10753.74, + "end": 10755.36, + "probability": 0.9636 + }, + { + "start": 10756.1, + "end": 10757.09, + "probability": 0.9581 + }, + { + "start": 10757.76, + "end": 10762.96, + "probability": 0.9806 + }, + { + "start": 10763.48, + "end": 10767.9, + "probability": 0.922 + }, + { + "start": 10768.84, + "end": 10769.46, + "probability": 0.7963 + }, + { + "start": 10769.98, + "end": 10770.22, + "probability": 0.7086 + }, + { + "start": 10772.26, + "end": 10775.72, + "probability": 0.9927 + }, + { + "start": 10776.42, + "end": 10778.2, + "probability": 0.9726 + }, + { + "start": 10778.72, + "end": 10781.68, + "probability": 0.9971 + }, + { + "start": 10782.5, + "end": 10784.2, + "probability": 0.932 + }, + { + "start": 10784.88, + "end": 10787.68, + "probability": 0.9359 + }, + { + "start": 10788.22, + "end": 10790.2, + "probability": 0.8765 + }, + { + "start": 10791.02, + "end": 10793.5, + "probability": 0.8486 + }, + { + "start": 10794.64, + "end": 10799.08, + "probability": 0.9804 + }, + { + "start": 10800.12, + "end": 10802.42, + "probability": 0.8844 + }, + { + "start": 10802.96, + "end": 10804.3, + "probability": 0.7845 + }, + { + "start": 10804.72, + "end": 10805.64, + "probability": 0.9288 + }, + { + "start": 10806.64, + "end": 10808.43, + "probability": 0.9902 + }, + { + "start": 10808.98, + "end": 10810.34, + "probability": 0.8505 + }, + { + "start": 10810.88, + "end": 10813.18, + "probability": 0.8159 + }, + { + "start": 10813.98, + "end": 10814.28, + "probability": 0.9162 + }, + { + "start": 10814.9, + "end": 10814.9, + "probability": 0.6361 + }, + { + "start": 10815.18, + "end": 10818.42, + "probability": 0.9768 + }, + { + "start": 10819.02, + "end": 10823.1, + "probability": 0.9517 + }, + { + "start": 10823.3, + "end": 10824.8, + "probability": 0.9906 + }, + { + "start": 10824.9, + "end": 10827.08, + "probability": 0.9951 + }, + { + "start": 10828.8, + "end": 10832.54, + "probability": 0.9412 + }, + { + "start": 10833.22, + "end": 10836.62, + "probability": 0.3802 + }, + { + "start": 10836.64, + "end": 10837.4, + "probability": 0.6284 + }, + { + "start": 10837.94, + "end": 10838.52, + "probability": 0.8011 + }, + { + "start": 10840.04, + "end": 10840.54, + "probability": 0.0019 + }, + { + "start": 10844.26, + "end": 10845.46, + "probability": 0.0545 + }, + { + "start": 10847.78, + "end": 10848.54, + "probability": 0.6968 + }, + { + "start": 10851.88, + "end": 10855.22, + "probability": 0.4236 + }, + { + "start": 10855.3, + "end": 10857.38, + "probability": 0.7931 + }, + { + "start": 10857.52, + "end": 10857.96, + "probability": 0.881 + }, + { + "start": 10858.24, + "end": 10858.82, + "probability": 0.7668 + }, + { + "start": 10859.06, + "end": 10861.02, + "probability": 0.9518 + }, + { + "start": 10862.0, + "end": 10862.34, + "probability": 0.538 + }, + { + "start": 10864.88, + "end": 10868.93, + "probability": 0.0053 + }, + { + "start": 10870.06, + "end": 10872.42, + "probability": 0.075 + }, + { + "start": 10873.2, + "end": 10873.2, + "probability": 0.1304 + }, + { + "start": 10873.26, + "end": 10873.98, + "probability": 0.6684 + }, + { + "start": 10875.44, + "end": 10875.44, + "probability": 0.0687 + }, + { + "start": 10877.82, + "end": 10877.94, + "probability": 0.5778 + }, + { + "start": 10879.24, + "end": 10882.5, + "probability": 0.7473 + }, + { + "start": 10882.74, + "end": 10884.5, + "probability": 0.4398 + }, + { + "start": 10884.52, + "end": 10884.52, + "probability": 0.2874 + }, + { + "start": 10884.56, + "end": 10885.58, + "probability": 0.2839 + }, + { + "start": 10885.68, + "end": 10887.48, + "probability": 0.5284 + }, + { + "start": 10887.62, + "end": 10887.94, + "probability": 0.2308 + }, + { + "start": 10888.04, + "end": 10888.48, + "probability": 0.2457 + }, + { + "start": 10888.56, + "end": 10889.2, + "probability": 0.4533 + }, + { + "start": 10890.18, + "end": 10893.66, + "probability": 0.2203 + }, + { + "start": 10894.18, + "end": 10895.38, + "probability": 0.0854 + }, + { + "start": 10897.73, + "end": 10898.66, + "probability": 0.2076 + }, + { + "start": 10898.66, + "end": 10901.68, + "probability": 0.6342 + }, + { + "start": 10901.84, + "end": 10902.68, + "probability": 0.3348 + }, + { + "start": 10903.26, + "end": 10907.2, + "probability": 0.942 + }, + { + "start": 10910.36, + "end": 10911.18, + "probability": 0.744 + }, + { + "start": 10911.78, + "end": 10915.14, + "probability": 0.8014 + }, + { + "start": 10915.26, + "end": 10918.22, + "probability": 0.8757 + }, + { + "start": 10918.4, + "end": 10920.74, + "probability": 0.9845 + }, + { + "start": 10920.82, + "end": 10921.94, + "probability": 0.9282 + }, + { + "start": 10930.16, + "end": 10933.12, + "probability": 0.6638 + }, + { + "start": 10933.96, + "end": 10934.76, + "probability": 0.8531 + }, + { + "start": 10934.86, + "end": 10936.98, + "probability": 0.9762 + }, + { + "start": 10936.98, + "end": 10940.46, + "probability": 0.7797 + }, + { + "start": 10941.58, + "end": 10943.28, + "probability": 0.3303 + }, + { + "start": 10944.16, + "end": 10946.62, + "probability": 0.8036 + }, + { + "start": 10946.94, + "end": 10950.94, + "probability": 0.0955 + }, + { + "start": 10951.48, + "end": 10956.88, + "probability": 0.8966 + }, + { + "start": 10957.2, + "end": 10960.54, + "probability": 0.9632 + }, + { + "start": 10960.64, + "end": 10962.84, + "probability": 0.851 + }, + { + "start": 10963.26, + "end": 10965.28, + "probability": 0.8203 + }, + { + "start": 10965.88, + "end": 10968.08, + "probability": 0.7927 + }, + { + "start": 10968.32, + "end": 10970.32, + "probability": 0.8227 + }, + { + "start": 10970.74, + "end": 10975.44, + "probability": 0.9495 + }, + { + "start": 10976.28, + "end": 10979.0, + "probability": 0.6719 + }, + { + "start": 10979.12, + "end": 10981.12, + "probability": 0.9332 + }, + { + "start": 10982.44, + "end": 10985.26, + "probability": 0.8196 + }, + { + "start": 10985.6, + "end": 10986.32, + "probability": 0.7589 + }, + { + "start": 10986.62, + "end": 10988.46, + "probability": 0.965 + }, + { + "start": 10988.86, + "end": 10993.52, + "probability": 0.9231 + }, + { + "start": 10993.52, + "end": 10997.58, + "probability": 0.968 + }, + { + "start": 10998.18, + "end": 11001.84, + "probability": 0.9958 + }, + { + "start": 11001.84, + "end": 11004.66, + "probability": 0.9606 + }, + { + "start": 11005.56, + "end": 11012.04, + "probability": 0.9775 + }, + { + "start": 11012.5, + "end": 11013.12, + "probability": 0.7324 + }, + { + "start": 11013.82, + "end": 11016.54, + "probability": 0.9627 + }, + { + "start": 11016.54, + "end": 11019.12, + "probability": 0.9913 + }, + { + "start": 11020.04, + "end": 11023.04, + "probability": 0.9656 + }, + { + "start": 11023.04, + "end": 11025.74, + "probability": 0.8404 + }, + { + "start": 11026.22, + "end": 11031.38, + "probability": 0.9025 + }, + { + "start": 11031.9, + "end": 11034.82, + "probability": 0.7441 + }, + { + "start": 11035.64, + "end": 11039.42, + "probability": 0.9385 + }, + { + "start": 11040.0, + "end": 11043.2, + "probability": 0.9718 + }, + { + "start": 11043.2, + "end": 11047.12, + "probability": 0.9049 + }, + { + "start": 11048.96, + "end": 11052.86, + "probability": 0.863 + }, + { + "start": 11052.86, + "end": 11057.52, + "probability": 0.988 + }, + { + "start": 11057.52, + "end": 11062.4, + "probability": 0.9899 + }, + { + "start": 11063.04, + "end": 11067.52, + "probability": 0.9462 + }, + { + "start": 11067.52, + "end": 11072.64, + "probability": 0.9971 + }, + { + "start": 11073.02, + "end": 11076.58, + "probability": 0.9948 + }, + { + "start": 11076.58, + "end": 11080.52, + "probability": 0.8737 + }, + { + "start": 11081.02, + "end": 11085.96, + "probability": 0.9281 + }, + { + "start": 11085.96, + "end": 11089.96, + "probability": 0.8287 + }, + { + "start": 11090.56, + "end": 11093.98, + "probability": 0.8171 + }, + { + "start": 11093.98, + "end": 11098.28, + "probability": 0.9654 + }, + { + "start": 11098.41, + "end": 11103.0, + "probability": 0.963 + }, + { + "start": 11103.62, + "end": 11106.23, + "probability": 0.9107 + }, + { + "start": 11107.16, + "end": 11112.06, + "probability": 0.9684 + }, + { + "start": 11112.5, + "end": 11115.08, + "probability": 0.8423 + }, + { + "start": 11115.6, + "end": 11119.34, + "probability": 0.9767 + }, + { + "start": 11119.34, + "end": 11122.36, + "probability": 0.6219 + }, + { + "start": 11123.08, + "end": 11123.58, + "probability": 0.6624 + }, + { + "start": 11123.66, + "end": 11125.84, + "probability": 0.9801 + }, + { + "start": 11126.34, + "end": 11129.32, + "probability": 0.79 + }, + { + "start": 11129.72, + "end": 11133.56, + "probability": 0.9939 + }, + { + "start": 11133.94, + "end": 11135.78, + "probability": 0.9951 + }, + { + "start": 11136.3, + "end": 11139.32, + "probability": 0.9917 + }, + { + "start": 11139.76, + "end": 11143.8, + "probability": 0.9716 + }, + { + "start": 11144.42, + "end": 11146.32, + "probability": 0.8354 + }, + { + "start": 11146.84, + "end": 11150.76, + "probability": 0.9655 + }, + { + "start": 11151.2, + "end": 11153.28, + "probability": 0.9537 + }, + { + "start": 11153.92, + "end": 11155.54, + "probability": 0.5989 + }, + { + "start": 11156.54, + "end": 11157.5, + "probability": 0.7443 + }, + { + "start": 11157.74, + "end": 11160.26, + "probability": 0.8044 + }, + { + "start": 11160.74, + "end": 11163.66, + "probability": 0.8407 + }, + { + "start": 11164.12, + "end": 11165.92, + "probability": 0.9821 + }, + { + "start": 11166.44, + "end": 11168.66, + "probability": 0.837 + }, + { + "start": 11169.24, + "end": 11171.18, + "probability": 0.9951 + }, + { + "start": 11171.74, + "end": 11172.74, + "probability": 0.9775 + }, + { + "start": 11173.46, + "end": 11174.12, + "probability": 0.513 + }, + { + "start": 11174.18, + "end": 11179.88, + "probability": 0.903 + }, + { + "start": 11183.18, + "end": 11183.64, + "probability": 0.4708 + }, + { + "start": 11184.14, + "end": 11185.5, + "probability": 0.7305 + }, + { + "start": 11187.26, + "end": 11188.06, + "probability": 0.307 + }, + { + "start": 11188.84, + "end": 11190.96, + "probability": 0.7153 + }, + { + "start": 11190.96, + "end": 11193.6, + "probability": 0.4167 + }, + { + "start": 11193.7, + "end": 11197.56, + "probability": 0.561 + }, + { + "start": 11199.32, + "end": 11201.22, + "probability": 0.0004 + }, + { + "start": 11215.52, + "end": 11215.82, + "probability": 0.0713 + }, + { + "start": 11215.82, + "end": 11217.9, + "probability": 0.2174 + }, + { + "start": 11218.1, + "end": 11220.5, + "probability": 0.4405 + }, + { + "start": 11220.64, + "end": 11222.84, + "probability": 0.2333 + }, + { + "start": 11223.1, + "end": 11225.4, + "probability": 0.9323 + }, + { + "start": 11225.52, + "end": 11228.38, + "probability": 0.6681 + }, + { + "start": 11229.1, + "end": 11229.48, + "probability": 0.3808 + }, + { + "start": 11229.48, + "end": 11230.16, + "probability": 0.2693 + }, + { + "start": 11230.16, + "end": 11231.02, + "probability": 0.5125 + }, + { + "start": 11251.76, + "end": 11257.46, + "probability": 0.2036 + }, + { + "start": 11258.24, + "end": 11261.16, + "probability": 0.089 + }, + { + "start": 11262.86, + "end": 11266.12, + "probability": 0.1572 + }, + { + "start": 11266.96, + "end": 11269.8, + "probability": 0.4493 + }, + { + "start": 11271.64, + "end": 11271.92, + "probability": 0.6184 + }, + { + "start": 11272.5, + "end": 11272.5, + "probability": 0.2595 + }, + { + "start": 11272.5, + "end": 11272.5, + "probability": 0.1077 + }, + { + "start": 11272.5, + "end": 11272.5, + "probability": 0.0505 + }, + { + "start": 11272.5, + "end": 11272.5, + "probability": 0.2691 + }, + { + "start": 11272.5, + "end": 11272.5, + "probability": 0.3524 + }, + { + "start": 11272.5, + "end": 11272.5, + "probability": 0.3721 + }, + { + "start": 11272.5, + "end": 11272.5, + "probability": 0.3883 + }, + { + "start": 11272.5, + "end": 11274.9, + "probability": 0.5681 + }, + { + "start": 11275.9, + "end": 11276.82, + "probability": 0.6672 + }, + { + "start": 11278.34, + "end": 11282.38, + "probability": 0.5814 + }, + { + "start": 11283.22, + "end": 11284.64, + "probability": 0.5865 + }, + { + "start": 11287.46, + "end": 11289.04, + "probability": 0.2187 + }, + { + "start": 11289.58, + "end": 11290.56, + "probability": 0.7298 + }, + { + "start": 11291.48, + "end": 11296.26, + "probability": 0.9199 + }, + { + "start": 11296.66, + "end": 11297.98, + "probability": 0.5261 + }, + { + "start": 11298.06, + "end": 11299.2, + "probability": 0.8176 + }, + { + "start": 11299.8, + "end": 11302.79, + "probability": 0.828 + }, + { + "start": 11303.88, + "end": 11306.58, + "probability": 0.5385 + }, + { + "start": 11306.76, + "end": 11307.57, + "probability": 0.7126 + }, + { + "start": 11308.08, + "end": 11309.02, + "probability": 0.7152 + }, + { + "start": 11309.16, + "end": 11309.52, + "probability": 0.2435 + }, + { + "start": 11314.88, + "end": 11319.56, + "probability": 0.9978 + }, + { + "start": 11319.85, + "end": 11324.18, + "probability": 0.9226 + }, + { + "start": 11324.7, + "end": 11324.92, + "probability": 0.9998 + }, + { + "start": 11325.84, + "end": 11329.72, + "probability": 0.9858 + }, + { + "start": 11331.3, + "end": 11334.28, + "probability": 0.9841 + }, + { + "start": 11334.52, + "end": 11334.74, + "probability": 0.2748 + }, + { + "start": 11334.94, + "end": 11335.51, + "probability": 0.8972 + }, + { + "start": 11335.74, + "end": 11336.04, + "probability": 0.7616 + }, + { + "start": 11336.8, + "end": 11337.86, + "probability": 0.9855 + }, + { + "start": 11338.02, + "end": 11339.66, + "probability": 0.9267 + }, + { + "start": 11341.16, + "end": 11342.18, + "probability": 0.5244 + }, + { + "start": 11342.42, + "end": 11343.0, + "probability": 0.7991 + }, + { + "start": 11345.0, + "end": 11349.54, + "probability": 0.9986 + }, + { + "start": 11350.04, + "end": 11353.28, + "probability": 0.9972 + }, + { + "start": 11353.36, + "end": 11354.62, + "probability": 0.7867 + }, + { + "start": 11355.26, + "end": 11356.74, + "probability": 0.9945 + }, + { + "start": 11357.46, + "end": 11360.5, + "probability": 0.9991 + }, + { + "start": 11360.58, + "end": 11361.62, + "probability": 0.9771 + }, + { + "start": 11362.16, + "end": 11368.86, + "probability": 0.9866 + }, + { + "start": 11369.82, + "end": 11372.24, + "probability": 0.9206 + }, + { + "start": 11372.78, + "end": 11374.22, + "probability": 0.9824 + }, + { + "start": 11375.18, + "end": 11377.76, + "probability": 0.562 + }, + { + "start": 11378.32, + "end": 11380.74, + "probability": 0.9608 + }, + { + "start": 11381.22, + "end": 11383.58, + "probability": 0.992 + }, + { + "start": 11384.24, + "end": 11384.78, + "probability": 0.6846 + }, + { + "start": 11386.28, + "end": 11387.08, + "probability": 0.9637 + }, + { + "start": 11387.76, + "end": 11390.88, + "probability": 0.9351 + }, + { + "start": 11391.56, + "end": 11394.24, + "probability": 0.9745 + }, + { + "start": 11394.24, + "end": 11398.12, + "probability": 0.9629 + }, + { + "start": 11399.02, + "end": 11400.04, + "probability": 0.9966 + }, + { + "start": 11400.56, + "end": 11401.86, + "probability": 0.9961 + }, + { + "start": 11402.82, + "end": 11407.1, + "probability": 0.8555 + }, + { + "start": 11407.32, + "end": 11410.52, + "probability": 0.9308 + }, + { + "start": 11411.28, + "end": 11413.96, + "probability": 0.8088 + }, + { + "start": 11414.1, + "end": 11415.68, + "probability": 0.7356 + }, + { + "start": 11416.0, + "end": 11418.68, + "probability": 0.8861 + }, + { + "start": 11418.72, + "end": 11419.08, + "probability": 0.6717 + }, + { + "start": 11419.98, + "end": 11421.88, + "probability": 0.9357 + }, + { + "start": 11422.0, + "end": 11422.42, + "probability": 0.6774 + }, + { + "start": 11422.58, + "end": 11425.76, + "probability": 0.8932 + }, + { + "start": 11426.62, + "end": 11428.4, + "probability": 0.9781 + }, + { + "start": 11428.96, + "end": 11431.78, + "probability": 0.9901 + }, + { + "start": 11432.02, + "end": 11434.08, + "probability": 0.994 + }, + { + "start": 11434.92, + "end": 11438.28, + "probability": 0.9659 + }, + { + "start": 11439.0, + "end": 11440.44, + "probability": 0.9566 + }, + { + "start": 11440.56, + "end": 11442.68, + "probability": 0.9423 + }, + { + "start": 11442.88, + "end": 11444.22, + "probability": 0.9657 + }, + { + "start": 11445.7, + "end": 11448.52, + "probability": 0.9979 + }, + { + "start": 11448.52, + "end": 11451.04, + "probability": 0.9976 + }, + { + "start": 11451.58, + "end": 11455.48, + "probability": 0.8909 + }, + { + "start": 11456.48, + "end": 11461.86, + "probability": 0.9985 + }, + { + "start": 11463.16, + "end": 11464.16, + "probability": 0.9784 + }, + { + "start": 11465.6, + "end": 11466.78, + "probability": 0.9947 + }, + { + "start": 11467.84, + "end": 11469.22, + "probability": 0.811 + }, + { + "start": 11469.26, + "end": 11470.72, + "probability": 0.2579 + }, + { + "start": 11471.1, + "end": 11471.94, + "probability": 0.5331 + }, + { + "start": 11472.6, + "end": 11473.7, + "probability": 0.5851 + }, + { + "start": 11473.98, + "end": 11474.42, + "probability": 0.9211 + }, + { + "start": 11476.76, + "end": 11480.32, + "probability": 0.9333 + }, + { + "start": 11480.7, + "end": 11484.96, + "probability": 0.7392 + }, + { + "start": 11486.26, + "end": 11489.08, + "probability": 0.9795 + }, + { + "start": 11489.24, + "end": 11489.92, + "probability": 0.6555 + }, + { + "start": 11491.22, + "end": 11493.5, + "probability": 0.912 + }, + { + "start": 11496.04, + "end": 11498.44, + "probability": 0.8394 + }, + { + "start": 11499.2, + "end": 11499.6, + "probability": 0.9023 + }, + { + "start": 11499.92, + "end": 11502.04, + "probability": 0.9268 + }, + { + "start": 11502.7, + "end": 11503.96, + "probability": 0.7563 + }, + { + "start": 11506.48, + "end": 11509.36, + "probability": 0.7352 + }, + { + "start": 11510.12, + "end": 11510.74, + "probability": 0.8459 + }, + { + "start": 11511.46, + "end": 11512.72, + "probability": 0.9611 + }, + { + "start": 11513.1, + "end": 11513.96, + "probability": 0.8702 + }, + { + "start": 11514.16, + "end": 11517.34, + "probability": 0.9069 + }, + { + "start": 11518.68, + "end": 11522.34, + "probability": 0.9968 + }, + { + "start": 11523.74, + "end": 11529.24, + "probability": 0.9932 + }, + { + "start": 11529.34, + "end": 11531.56, + "probability": 0.9872 + }, + { + "start": 11532.3, + "end": 11537.88, + "probability": 0.9631 + }, + { + "start": 11538.92, + "end": 11542.6, + "probability": 0.9324 + }, + { + "start": 11543.32, + "end": 11544.56, + "probability": 0.6569 + }, + { + "start": 11545.4, + "end": 11548.64, + "probability": 0.998 + }, + { + "start": 11549.5, + "end": 11554.18, + "probability": 0.9984 + }, + { + "start": 11554.2, + "end": 11558.84, + "probability": 0.9946 + }, + { + "start": 11559.76, + "end": 11560.36, + "probability": 0.911 + }, + { + "start": 11561.42, + "end": 11564.08, + "probability": 0.8897 + }, + { + "start": 11565.36, + "end": 11566.33, + "probability": 0.7088 + }, + { + "start": 11567.74, + "end": 11570.78, + "probability": 0.9821 + }, + { + "start": 11570.98, + "end": 11574.0, + "probability": 0.9727 + }, + { + "start": 11574.48, + "end": 11577.06, + "probability": 0.9194 + }, + { + "start": 11578.48, + "end": 11578.82, + "probability": 0.826 + }, + { + "start": 11580.22, + "end": 11584.16, + "probability": 0.997 + }, + { + "start": 11585.42, + "end": 11586.49, + "probability": 0.998 + }, + { + "start": 11587.52, + "end": 11590.24, + "probability": 0.9823 + }, + { + "start": 11591.0, + "end": 11591.62, + "probability": 0.6777 + }, + { + "start": 11592.16, + "end": 11593.48, + "probability": 0.7415 + }, + { + "start": 11593.9, + "end": 11594.49, + "probability": 0.7387 + }, + { + "start": 11594.7, + "end": 11595.18, + "probability": 0.7542 + }, + { + "start": 11595.22, + "end": 11598.44, + "probability": 0.5795 + }, + { + "start": 11599.2, + "end": 11599.98, + "probability": 0.9454 + }, + { + "start": 11600.74, + "end": 11604.1, + "probability": 0.994 + }, + { + "start": 11605.18, + "end": 11606.17, + "probability": 0.8538 + }, + { + "start": 11606.48, + "end": 11606.86, + "probability": 0.4801 + }, + { + "start": 11606.94, + "end": 11611.06, + "probability": 0.8015 + }, + { + "start": 11611.6, + "end": 11612.53, + "probability": 0.6745 + }, + { + "start": 11613.34, + "end": 11619.36, + "probability": 0.7413 + }, + { + "start": 11620.38, + "end": 11623.46, + "probability": 0.8418 + }, + { + "start": 11623.46, + "end": 11626.06, + "probability": 0.9629 + }, + { + "start": 11627.16, + "end": 11628.98, + "probability": 0.9966 + }, + { + "start": 11629.66, + "end": 11635.44, + "probability": 0.9489 + }, + { + "start": 11636.04, + "end": 11640.46, + "probability": 0.9653 + }, + { + "start": 11641.06, + "end": 11643.06, + "probability": 0.7164 + }, + { + "start": 11643.96, + "end": 11648.8, + "probability": 0.8345 + }, + { + "start": 11649.88, + "end": 11651.78, + "probability": 0.84 + }, + { + "start": 11652.72, + "end": 11655.32, + "probability": 0.995 + }, + { + "start": 11655.94, + "end": 11657.56, + "probability": 0.5716 + }, + { + "start": 11658.16, + "end": 11659.74, + "probability": 0.6501 + }, + { + "start": 11660.24, + "end": 11662.08, + "probability": 0.8831 + }, + { + "start": 11662.7, + "end": 11664.5, + "probability": 0.8941 + }, + { + "start": 11665.3, + "end": 11666.62, + "probability": 0.6961 + }, + { + "start": 11666.72, + "end": 11669.18, + "probability": 0.9851 + }, + { + "start": 11670.5, + "end": 11670.8, + "probability": 0.7476 + }, + { + "start": 11670.84, + "end": 11671.48, + "probability": 0.9533 + }, + { + "start": 11671.54, + "end": 11673.58, + "probability": 0.9415 + }, + { + "start": 11674.34, + "end": 11676.64, + "probability": 0.9874 + }, + { + "start": 11677.28, + "end": 11680.34, + "probability": 0.9116 + }, + { + "start": 11680.9, + "end": 11681.06, + "probability": 0.4426 + }, + { + "start": 11681.34, + "end": 11682.1, + "probability": 0.653 + }, + { + "start": 11682.45, + "end": 11686.52, + "probability": 0.9683 + }, + { + "start": 11686.52, + "end": 11689.28, + "probability": 0.9528 + }, + { + "start": 11689.74, + "end": 11695.1, + "probability": 0.9745 + }, + { + "start": 11695.64, + "end": 11697.16, + "probability": 0.7111 + }, + { + "start": 11698.84, + "end": 11701.32, + "probability": 0.9624 + }, + { + "start": 11702.32, + "end": 11702.98, + "probability": 0.7511 + }, + { + "start": 11704.43, + "end": 11711.84, + "probability": 0.9844 + }, + { + "start": 11712.32, + "end": 11716.74, + "probability": 0.7965 + }, + { + "start": 11717.34, + "end": 11719.42, + "probability": 0.7135 + }, + { + "start": 11719.82, + "end": 11722.98, + "probability": 0.9934 + }, + { + "start": 11723.52, + "end": 11725.7, + "probability": 0.901 + }, + { + "start": 11726.76, + "end": 11729.08, + "probability": 0.9906 + }, + { + "start": 11729.66, + "end": 11730.32, + "probability": 0.8755 + }, + { + "start": 11730.46, + "end": 11730.84, + "probability": 0.7201 + }, + { + "start": 11731.14, + "end": 11732.26, + "probability": 0.5156 + }, + { + "start": 11732.5, + "end": 11734.7, + "probability": 0.7879 + }, + { + "start": 11734.8, + "end": 11735.94, + "probability": 0.31 + }, + { + "start": 11736.34, + "end": 11736.78, + "probability": 0.4555 + }, + { + "start": 11736.86, + "end": 11737.54, + "probability": 0.5472 + }, + { + "start": 11737.64, + "end": 11742.02, + "probability": 0.8486 + }, + { + "start": 11742.64, + "end": 11747.18, + "probability": 0.9858 + }, + { + "start": 11747.54, + "end": 11751.52, + "probability": 0.9471 + }, + { + "start": 11751.96, + "end": 11753.24, + "probability": 0.914 + }, + { + "start": 11753.68, + "end": 11755.26, + "probability": 0.8397 + }, + { + "start": 11755.54, + "end": 11757.7, + "probability": 0.992 + }, + { + "start": 11757.8, + "end": 11758.0, + "probability": 0.5755 + }, + { + "start": 11758.12, + "end": 11759.12, + "probability": 0.4818 + }, + { + "start": 11759.92, + "end": 11761.68, + "probability": 0.8666 + }, + { + "start": 11767.68, + "end": 11768.66, + "probability": 0.704 + }, + { + "start": 11769.02, + "end": 11770.24, + "probability": 0.8603 + }, + { + "start": 11770.38, + "end": 11775.5, + "probability": 0.9335 + }, + { + "start": 11775.8, + "end": 11775.92, + "probability": 0.0813 + }, + { + "start": 11776.84, + "end": 11779.76, + "probability": 0.2464 + }, + { + "start": 11780.4, + "end": 11782.06, + "probability": 0.6366 + }, + { + "start": 11784.26, + "end": 11787.42, + "probability": 0.8776 + }, + { + "start": 11788.34, + "end": 11791.18, + "probability": 0.7031 + }, + { + "start": 11791.52, + "end": 11792.02, + "probability": 0.6235 + }, + { + "start": 11795.76, + "end": 11796.1, + "probability": 0.3273 + }, + { + "start": 11796.1, + "end": 11796.54, + "probability": 0.712 + }, + { + "start": 11796.86, + "end": 11798.54, + "probability": 0.9701 + }, + { + "start": 11798.68, + "end": 11799.58, + "probability": 0.9717 + }, + { + "start": 11800.18, + "end": 11800.18, + "probability": 0.8335 + }, + { + "start": 11800.88, + "end": 11802.4, + "probability": 0.9785 + }, + { + "start": 11803.34, + "end": 11804.0, + "probability": 0.9238 + }, + { + "start": 11804.26, + "end": 11804.98, + "probability": 0.964 + }, + { + "start": 11805.38, + "end": 11806.74, + "probability": 0.9958 + }, + { + "start": 11808.0, + "end": 11809.62, + "probability": 0.939 + }, + { + "start": 11810.42, + "end": 11811.06, + "probability": 0.5066 + }, + { + "start": 11812.94, + "end": 11817.2, + "probability": 0.9202 + }, + { + "start": 11817.34, + "end": 11818.08, + "probability": 0.4819 + }, + { + "start": 11819.6, + "end": 11821.3, + "probability": 0.8254 + }, + { + "start": 11823.22, + "end": 11825.66, + "probability": 0.9725 + }, + { + "start": 11826.46, + "end": 11830.2, + "probability": 0.9941 + }, + { + "start": 11830.32, + "end": 11831.36, + "probability": 0.1656 + }, + { + "start": 11832.2, + "end": 11833.77, + "probability": 0.9756 + }, + { + "start": 11834.58, + "end": 11835.56, + "probability": 0.7108 + }, + { + "start": 11836.66, + "end": 11840.46, + "probability": 0.8208 + }, + { + "start": 11840.7, + "end": 11841.04, + "probability": 0.0358 + }, + { + "start": 11841.04, + "end": 11842.0, + "probability": 0.9315 + }, + { + "start": 11842.18, + "end": 11844.02, + "probability": 0.9824 + }, + { + "start": 11844.78, + "end": 11845.18, + "probability": 0.6704 + }, + { + "start": 11845.42, + "end": 11850.42, + "probability": 0.9705 + }, + { + "start": 11851.46, + "end": 11854.6, + "probability": 0.9409 + }, + { + "start": 11854.72, + "end": 11858.4, + "probability": 0.8099 + }, + { + "start": 11859.04, + "end": 11861.52, + "probability": 0.8184 + }, + { + "start": 11862.2, + "end": 11863.0, + "probability": 0.9478 + }, + { + "start": 11863.54, + "end": 11866.14, + "probability": 0.9951 + }, + { + "start": 11867.08, + "end": 11869.42, + "probability": 0.5565 + }, + { + "start": 11870.4, + "end": 11872.16, + "probability": 0.9975 + }, + { + "start": 11872.68, + "end": 11876.36, + "probability": 0.9673 + }, + { + "start": 11876.36, + "end": 11880.74, + "probability": 0.9724 + }, + { + "start": 11881.12, + "end": 11881.63, + "probability": 0.896 + }, + { + "start": 11882.34, + "end": 11885.8, + "probability": 0.9863 + }, + { + "start": 11886.36, + "end": 11886.94, + "probability": 0.3799 + }, + { + "start": 11888.08, + "end": 11889.12, + "probability": 0.9963 + }, + { + "start": 11889.24, + "end": 11889.94, + "probability": 0.8574 + }, + { + "start": 11890.68, + "end": 11892.1, + "probability": 0.9296 + }, + { + "start": 11892.22, + "end": 11893.11, + "probability": 0.9718 + }, + { + "start": 11893.8, + "end": 11896.4, + "probability": 0.9312 + }, + { + "start": 11896.4, + "end": 11899.64, + "probability": 0.967 + }, + { + "start": 11899.66, + "end": 11900.26, + "probability": 0.6719 + }, + { + "start": 11900.28, + "end": 11900.48, + "probability": 0.2007 + }, + { + "start": 11900.78, + "end": 11902.56, + "probability": 0.9076 + }, + { + "start": 11903.32, + "end": 11904.78, + "probability": 0.9807 + }, + { + "start": 11904.92, + "end": 11906.24, + "probability": 0.4804 + }, + { + "start": 11906.42, + "end": 11908.71, + "probability": 0.8195 + }, + { + "start": 11909.16, + "end": 11909.86, + "probability": 0.4878 + }, + { + "start": 11910.57, + "end": 11913.69, + "probability": 0.7775 + }, + { + "start": 11914.78, + "end": 11917.61, + "probability": 0.7607 + }, + { + "start": 11919.18, + "end": 11923.14, + "probability": 0.6318 + }, + { + "start": 11923.3, + "end": 11924.56, + "probability": 0.5844 + }, + { + "start": 11924.7, + "end": 11926.74, + "probability": 0.1777 + }, + { + "start": 11926.86, + "end": 11927.06, + "probability": 0.3328 + }, + { + "start": 11927.06, + "end": 11927.06, + "probability": 0.7473 + }, + { + "start": 11927.06, + "end": 11927.6, + "probability": 0.5542 + }, + { + "start": 11928.66, + "end": 11929.86, + "probability": 0.8274 + }, + { + "start": 11930.9, + "end": 11931.78, + "probability": 0.7284 + }, + { + "start": 11931.8, + "end": 11933.88, + "probability": 0.5434 + }, + { + "start": 11934.14, + "end": 11934.56, + "probability": 0.5396 + }, + { + "start": 11934.62, + "end": 11936.1, + "probability": 0.1418 + }, + { + "start": 11937.46, + "end": 11937.52, + "probability": 0.0274 + }, + { + "start": 11937.52, + "end": 11937.52, + "probability": 0.216 + }, + { + "start": 11937.52, + "end": 11939.08, + "probability": 0.6922 + }, + { + "start": 11939.08, + "end": 11939.4, + "probability": 0.7352 + }, + { + "start": 11939.52, + "end": 11941.58, + "probability": 0.8792 + }, + { + "start": 11942.0, + "end": 11943.04, + "probability": 0.7915 + }, + { + "start": 11943.6, + "end": 11944.34, + "probability": 0.9689 + }, + { + "start": 11945.02, + "end": 11945.68, + "probability": 0.7868 + }, + { + "start": 11946.28, + "end": 11948.68, + "probability": 0.8644 + }, + { + "start": 11948.9, + "end": 11949.39, + "probability": 0.9985 + }, + { + "start": 11950.04, + "end": 11951.72, + "probability": 0.3752 + }, + { + "start": 11951.94, + "end": 11955.28, + "probability": 0.6038 + }, + { + "start": 11955.28, + "end": 11959.8, + "probability": 0.5808 + }, + { + "start": 11959.98, + "end": 11961.36, + "probability": 0.4722 + }, + { + "start": 11962.32, + "end": 11962.54, + "probability": 0.667 + }, + { + "start": 11962.8, + "end": 11966.56, + "probability": 0.8427 + }, + { + "start": 11966.62, + "end": 11969.68, + "probability": 0.981 + }, + { + "start": 11970.06, + "end": 11971.32, + "probability": 0.77 + }, + { + "start": 11971.68, + "end": 11972.94, + "probability": 0.8344 + }, + { + "start": 11973.02, + "end": 11974.34, + "probability": 0.8686 + }, + { + "start": 11974.44, + "end": 11975.76, + "probability": 0.8189 + }, + { + "start": 11976.06, + "end": 11978.61, + "probability": 0.582 + }, + { + "start": 11979.14, + "end": 11980.38, + "probability": 0.0127 + }, + { + "start": 11982.38, + "end": 11982.58, + "probability": 0.2331 + }, + { + "start": 11983.06, + "end": 11984.56, + "probability": 0.5074 + }, + { + "start": 11985.14, + "end": 11985.14, + "probability": 0.316 + }, + { + "start": 11985.14, + "end": 11987.2, + "probability": 0.614 + }, + { + "start": 11987.52, + "end": 11988.38, + "probability": 0.5775 + }, + { + "start": 11989.66, + "end": 11991.44, + "probability": 0.9416 + }, + { + "start": 11992.28, + "end": 11992.7, + "probability": 0.8245 + }, + { + "start": 12012.02, + "end": 12014.7, + "probability": 0.5721 + }, + { + "start": 12015.58, + "end": 12017.58, + "probability": 0.8423 + }, + { + "start": 12018.36, + "end": 12019.9, + "probability": 0.9636 + }, + { + "start": 12020.0, + "end": 12020.76, + "probability": 0.9982 + }, + { + "start": 12021.4, + "end": 12023.94, + "probability": 0.9832 + }, + { + "start": 12024.4, + "end": 12025.2, + "probability": 0.9847 + }, + { + "start": 12025.4, + "end": 12029.42, + "probability": 0.7901 + }, + { + "start": 12029.64, + "end": 12032.54, + "probability": 0.8862 + }, + { + "start": 12033.32, + "end": 12037.14, + "probability": 0.9954 + }, + { + "start": 12037.32, + "end": 12039.26, + "probability": 0.9821 + }, + { + "start": 12039.9, + "end": 12040.94, + "probability": 0.9973 + }, + { + "start": 12041.58, + "end": 12044.76, + "probability": 0.908 + }, + { + "start": 12047.64, + "end": 12050.38, + "probability": 0.9937 + }, + { + "start": 12051.84, + "end": 12055.16, + "probability": 0.9914 + }, + { + "start": 12057.02, + "end": 12059.28, + "probability": 0.9768 + }, + { + "start": 12059.38, + "end": 12060.04, + "probability": 0.8313 + }, + { + "start": 12062.08, + "end": 12067.82, + "probability": 0.9551 + }, + { + "start": 12068.42, + "end": 12071.18, + "probability": 0.414 + }, + { + "start": 12071.18, + "end": 12072.92, + "probability": 0.949 + }, + { + "start": 12073.88, + "end": 12075.16, + "probability": 0.9493 + }, + { + "start": 12075.74, + "end": 12077.08, + "probability": 0.7147 + }, + { + "start": 12078.28, + "end": 12080.88, + "probability": 0.8258 + }, + { + "start": 12082.14, + "end": 12084.16, + "probability": 0.9373 + }, + { + "start": 12084.68, + "end": 12085.56, + "probability": 0.9535 + }, + { + "start": 12086.28, + "end": 12087.7, + "probability": 0.9305 + }, + { + "start": 12088.52, + "end": 12090.08, + "probability": 0.9844 + }, + { + "start": 12090.14, + "end": 12091.12, + "probability": 0.9917 + }, + { + "start": 12092.72, + "end": 12093.3, + "probability": 0.7114 + }, + { + "start": 12094.36, + "end": 12096.24, + "probability": 0.8629 + }, + { + "start": 12096.36, + "end": 12097.54, + "probability": 0.7511 + }, + { + "start": 12097.6, + "end": 12100.6, + "probability": 0.8563 + }, + { + "start": 12101.38, + "end": 12102.2, + "probability": 0.306 + }, + { + "start": 12103.4, + "end": 12103.72, + "probability": 0.9536 + }, + { + "start": 12106.2, + "end": 12108.0, + "probability": 0.8434 + }, + { + "start": 12110.08, + "end": 12111.88, + "probability": 0.9254 + }, + { + "start": 12113.76, + "end": 12115.01, + "probability": 0.9875 + }, + { + "start": 12116.2, + "end": 12117.96, + "probability": 0.7472 + }, + { + "start": 12118.82, + "end": 12120.6, + "probability": 0.7468 + }, + { + "start": 12120.7, + "end": 12121.7, + "probability": 0.8286 + }, + { + "start": 12123.1, + "end": 12126.0, + "probability": 0.9082 + }, + { + "start": 12126.92, + "end": 12129.72, + "probability": 0.9695 + }, + { + "start": 12130.86, + "end": 12132.72, + "probability": 0.896 + }, + { + "start": 12133.44, + "end": 12134.12, + "probability": 0.6403 + }, + { + "start": 12134.98, + "end": 12135.96, + "probability": 0.7339 + }, + { + "start": 12136.48, + "end": 12137.6, + "probability": 0.6743 + }, + { + "start": 12138.98, + "end": 12141.5, + "probability": 0.7094 + }, + { + "start": 12142.3, + "end": 12146.72, + "probability": 0.9922 + }, + { + "start": 12147.28, + "end": 12147.72, + "probability": 0.8066 + }, + { + "start": 12147.98, + "end": 12151.46, + "probability": 0.9664 + }, + { + "start": 12151.46, + "end": 12155.28, + "probability": 0.8704 + }, + { + "start": 12156.06, + "end": 12157.94, + "probability": 0.7564 + }, + { + "start": 12158.5, + "end": 12159.98, + "probability": 0.5272 + }, + { + "start": 12160.68, + "end": 12161.08, + "probability": 0.5523 + }, + { + "start": 12162.04, + "end": 12162.9, + "probability": 0.9703 + }, + { + "start": 12163.84, + "end": 12166.08, + "probability": 0.5681 + }, + { + "start": 12167.07, + "end": 12170.74, + "probability": 0.8171 + }, + { + "start": 12171.06, + "end": 12172.59, + "probability": 0.9678 + }, + { + "start": 12172.65, + "end": 12173.37, + "probability": 0.5995 + }, + { + "start": 12173.91, + "end": 12176.03, + "probability": 0.8926 + }, + { + "start": 12176.13, + "end": 12177.13, + "probability": 0.9053 + }, + { + "start": 12179.15, + "end": 12181.47, + "probability": 0.9972 + }, + { + "start": 12182.47, + "end": 12183.05, + "probability": 0.9677 + }, + { + "start": 12183.93, + "end": 12185.27, + "probability": 0.98 + }, + { + "start": 12185.39, + "end": 12188.15, + "probability": 0.9605 + }, + { + "start": 12189.33, + "end": 12191.49, + "probability": 0.9968 + }, + { + "start": 12192.09, + "end": 12195.39, + "probability": 0.8292 + }, + { + "start": 12195.99, + "end": 12196.33, + "probability": 0.86 + }, + { + "start": 12196.33, + "end": 12196.67, + "probability": 0.732 + }, + { + "start": 12196.75, + "end": 12199.27, + "probability": 0.9573 + }, + { + "start": 12199.93, + "end": 12201.15, + "probability": 0.9713 + }, + { + "start": 12201.49, + "end": 12203.13, + "probability": 0.9429 + }, + { + "start": 12203.29, + "end": 12203.91, + "probability": 0.9324 + }, + { + "start": 12204.05, + "end": 12205.08, + "probability": 0.9919 + }, + { + "start": 12205.53, + "end": 12206.95, + "probability": 0.844 + }, + { + "start": 12207.51, + "end": 12208.47, + "probability": 0.9202 + }, + { + "start": 12209.37, + "end": 12210.55, + "probability": 0.5941 + }, + { + "start": 12210.73, + "end": 12211.33, + "probability": 0.744 + }, + { + "start": 12211.47, + "end": 12212.59, + "probability": 0.7158 + }, + { + "start": 12212.59, + "end": 12213.69, + "probability": 0.7681 + }, + { + "start": 12214.03, + "end": 12214.85, + "probability": 0.6549 + }, + { + "start": 12214.93, + "end": 12215.21, + "probability": 0.8648 + }, + { + "start": 12215.47, + "end": 12215.75, + "probability": 0.5251 + }, + { + "start": 12215.83, + "end": 12216.97, + "probability": 0.7202 + }, + { + "start": 12217.87, + "end": 12219.63, + "probability": 0.9018 + }, + { + "start": 12221.55, + "end": 12224.59, + "probability": 0.8269 + }, + { + "start": 12227.79, + "end": 12229.45, + "probability": 0.6077 + }, + { + "start": 12230.53, + "end": 12231.63, + "probability": 0.5953 + }, + { + "start": 12245.95, + "end": 12250.05, + "probability": 0.2565 + }, + { + "start": 12250.33, + "end": 12251.01, + "probability": 0.2595 + }, + { + "start": 12252.85, + "end": 12261.21, + "probability": 0.1958 + }, + { + "start": 12263.63, + "end": 12265.87, + "probability": 0.25 + }, + { + "start": 12266.63, + "end": 12269.47, + "probability": 0.1224 + }, + { + "start": 12272.23, + "end": 12275.71, + "probability": 0.066 + }, + { + "start": 12276.55, + "end": 12280.41, + "probability": 0.2482 + }, + { + "start": 12280.99, + "end": 12282.83, + "probability": 0.2727 + }, + { + "start": 12289.4, + "end": 12290.05, + "probability": 0.1009 + }, + { + "start": 12292.67, + "end": 12296.61, + "probability": 0.4157 + }, + { + "start": 12296.65, + "end": 12298.15, + "probability": 0.0527 + }, + { + "start": 12299.38, + "end": 12300.43, + "probability": 0.0524 + }, + { + "start": 12303.91, + "end": 12305.87, + "probability": 0.0656 + }, + { + "start": 12308.0, + "end": 12308.0, + "probability": 0.0 + }, + { + "start": 12308.0, + "end": 12308.0, + "probability": 0.0 + }, + { + "start": 12308.0, + "end": 12308.0, + "probability": 0.0 + }, + { + "start": 12308.0, + "end": 12308.0, + "probability": 0.0 + }, + { + "start": 12308.0, + "end": 12308.0, + "probability": 0.0 + }, + { + "start": 12308.0, + "end": 12308.0, + "probability": 0.0 + }, + { + "start": 12308.0, + "end": 12308.0, + "probability": 0.0 + }, + { + "start": 12308.0, + "end": 12308.0, + "probability": 0.0 + }, + { + "start": 12308.0, + "end": 12308.0, + "probability": 0.0 + }, + { + "start": 12308.0, + "end": 12308.0, + "probability": 0.0 + }, + { + "start": 12308.0, + "end": 12308.0, + "probability": 0.0 + }, + { + "start": 12310.66, + "end": 12311.52, + "probability": 0.546 + }, + { + "start": 12312.36, + "end": 12313.94, + "probability": 0.5813 + }, + { + "start": 12314.84, + "end": 12318.14, + "probability": 0.9971 + }, + { + "start": 12318.82, + "end": 12322.0, + "probability": 0.9984 + }, + { + "start": 12323.18, + "end": 12328.24, + "probability": 0.9951 + }, + { + "start": 12328.36, + "end": 12333.54, + "probability": 0.9954 + }, + { + "start": 12334.68, + "end": 12339.06, + "probability": 0.9953 + }, + { + "start": 12339.06, + "end": 12343.2, + "probability": 0.9985 + }, + { + "start": 12344.1, + "end": 12346.62, + "probability": 0.9943 + }, + { + "start": 12347.86, + "end": 12349.8, + "probability": 0.7676 + }, + { + "start": 12350.52, + "end": 12354.64, + "probability": 0.999 + }, + { + "start": 12355.32, + "end": 12356.42, + "probability": 0.9233 + }, + { + "start": 12356.76, + "end": 12359.72, + "probability": 0.9584 + }, + { + "start": 12360.46, + "end": 12363.1, + "probability": 0.9901 + }, + { + "start": 12363.1, + "end": 12366.76, + "probability": 0.9993 + }, + { + "start": 12367.58, + "end": 12368.2, + "probability": 0.8137 + }, + { + "start": 12368.96, + "end": 12372.74, + "probability": 0.9986 + }, + { + "start": 12373.38, + "end": 12375.06, + "probability": 0.9973 + }, + { + "start": 12375.6, + "end": 12378.7, + "probability": 0.9971 + }, + { + "start": 12379.96, + "end": 12381.76, + "probability": 0.9344 + }, + { + "start": 12382.4, + "end": 12385.7, + "probability": 0.999 + }, + { + "start": 12386.42, + "end": 12391.26, + "probability": 0.9092 + }, + { + "start": 12392.54, + "end": 12396.14, + "probability": 0.9639 + }, + { + "start": 12396.8, + "end": 12401.12, + "probability": 0.9928 + }, + { + "start": 12402.12, + "end": 12404.54, + "probability": 0.9886 + }, + { + "start": 12405.1, + "end": 12406.98, + "probability": 0.7157 + }, + { + "start": 12407.64, + "end": 12409.76, + "probability": 0.9901 + }, + { + "start": 12411.24, + "end": 12416.69, + "probability": 0.9961 + }, + { + "start": 12416.92, + "end": 12422.44, + "probability": 0.9943 + }, + { + "start": 12423.5, + "end": 12429.64, + "probability": 0.9864 + }, + { + "start": 12430.3, + "end": 12434.2, + "probability": 0.9946 + }, + { + "start": 12435.18, + "end": 12440.04, + "probability": 0.9921 + }, + { + "start": 12441.12, + "end": 12446.32, + "probability": 0.9835 + }, + { + "start": 12447.16, + "end": 12447.3, + "probability": 0.7759 + }, + { + "start": 12448.18, + "end": 12450.12, + "probability": 0.7125 + }, + { + "start": 12451.5, + "end": 12454.42, + "probability": 0.9935 + }, + { + "start": 12454.42, + "end": 12459.12, + "probability": 0.9567 + }, + { + "start": 12459.9, + "end": 12463.54, + "probability": 0.9884 + }, + { + "start": 12464.16, + "end": 12465.74, + "probability": 0.962 + }, + { + "start": 12467.58, + "end": 12472.94, + "probability": 0.9938 + }, + { + "start": 12472.94, + "end": 12477.44, + "probability": 0.9993 + }, + { + "start": 12477.72, + "end": 12478.3, + "probability": 0.8455 + }, + { + "start": 12478.36, + "end": 12479.56, + "probability": 0.8042 + }, + { + "start": 12480.98, + "end": 12483.12, + "probability": 0.9507 + }, + { + "start": 12483.9, + "end": 12485.67, + "probability": 0.1742 + }, + { + "start": 12486.3, + "end": 12487.52, + "probability": 0.9668 + }, + { + "start": 12488.38, + "end": 12492.68, + "probability": 0.9963 + }, + { + "start": 12492.68, + "end": 12498.7, + "probability": 0.9978 + }, + { + "start": 12499.4, + "end": 12500.56, + "probability": 0.7629 + }, + { + "start": 12501.42, + "end": 12503.02, + "probability": 0.514 + }, + { + "start": 12504.22, + "end": 12504.62, + "probability": 0.3093 + }, + { + "start": 12504.62, + "end": 12510.25, + "probability": 0.7106 + }, + { + "start": 12511.08, + "end": 12514.02, + "probability": 0.9599 + }, + { + "start": 12515.46, + "end": 12516.7, + "probability": 0.7323 + }, + { + "start": 12517.62, + "end": 12520.8, + "probability": 0.9493 + }, + { + "start": 12521.56, + "end": 12525.38, + "probability": 0.9336 + }, + { + "start": 12526.4, + "end": 12529.76, + "probability": 0.9905 + }, + { + "start": 12530.44, + "end": 12533.3, + "probability": 0.9865 + }, + { + "start": 12534.74, + "end": 12538.38, + "probability": 0.9966 + }, + { + "start": 12539.06, + "end": 12544.84, + "probability": 0.9822 + }, + { + "start": 12546.1, + "end": 12547.3, + "probability": 0.9478 + }, + { + "start": 12547.84, + "end": 12549.12, + "probability": 0.9512 + }, + { + "start": 12550.64, + "end": 12556.02, + "probability": 0.9956 + }, + { + "start": 12556.74, + "end": 12558.4, + "probability": 0.8422 + }, + { + "start": 12559.14, + "end": 12560.36, + "probability": 0.9963 + }, + { + "start": 12561.3, + "end": 12561.98, + "probability": 0.7862 + }, + { + "start": 12562.74, + "end": 12566.26, + "probability": 0.9417 + }, + { + "start": 12567.38, + "end": 12570.0, + "probability": 0.8214 + }, + { + "start": 12571.16, + "end": 12575.16, + "probability": 0.9973 + }, + { + "start": 12575.72, + "end": 12576.56, + "probability": 0.8813 + }, + { + "start": 12577.18, + "end": 12579.92, + "probability": 0.9963 + }, + { + "start": 12580.76, + "end": 12581.2, + "probability": 0.74 + }, + { + "start": 12582.2, + "end": 12584.4, + "probability": 0.9964 + }, + { + "start": 12585.08, + "end": 12588.18, + "probability": 0.9957 + }, + { + "start": 12588.72, + "end": 12589.44, + "probability": 0.9964 + }, + { + "start": 12589.98, + "end": 12592.68, + "probability": 0.9666 + }, + { + "start": 12593.58, + "end": 12594.1, + "probability": 0.9777 + }, + { + "start": 12594.7, + "end": 12596.8, + "probability": 0.9989 + }, + { + "start": 12597.72, + "end": 12601.02, + "probability": 0.9625 + }, + { + "start": 12602.56, + "end": 12606.78, + "probability": 0.9788 + }, + { + "start": 12606.84, + "end": 12610.96, + "probability": 0.9967 + }, + { + "start": 12611.6, + "end": 12613.52, + "probability": 0.9948 + }, + { + "start": 12614.16, + "end": 12615.44, + "probability": 0.9914 + }, + { + "start": 12615.88, + "end": 12616.1, + "probability": 0.6055 + }, + { + "start": 12616.42, + "end": 12617.88, + "probability": 0.7023 + }, + { + "start": 12618.76, + "end": 12620.74, + "probability": 0.854 + }, + { + "start": 12621.3, + "end": 12623.62, + "probability": 0.8573 + }, + { + "start": 12624.52, + "end": 12627.12, + "probability": 0.981 + }, + { + "start": 12627.44, + "end": 12628.32, + "probability": 0.4804 + }, + { + "start": 12628.4, + "end": 12629.86, + "probability": 0.9131 + }, + { + "start": 12630.7, + "end": 12633.46, + "probability": 0.7201 + }, + { + "start": 12633.68, + "end": 12634.36, + "probability": 0.854 + }, + { + "start": 12635.68, + "end": 12637.12, + "probability": 0.7965 + }, + { + "start": 12646.46, + "end": 12647.26, + "probability": 0.6347 + }, + { + "start": 12647.66, + "end": 12648.22, + "probability": 0.8351 + }, + { + "start": 12648.62, + "end": 12652.48, + "probability": 0.9763 + }, + { + "start": 12654.22, + "end": 12655.8, + "probability": 0.8454 + }, + { + "start": 12657.0, + "end": 12660.5, + "probability": 0.9942 + }, + { + "start": 12661.84, + "end": 12663.88, + "probability": 0.9297 + }, + { + "start": 12664.58, + "end": 12668.0, + "probability": 0.9865 + }, + { + "start": 12668.68, + "end": 12669.68, + "probability": 0.5159 + }, + { + "start": 12669.86, + "end": 12670.88, + "probability": 0.8598 + }, + { + "start": 12670.98, + "end": 12672.64, + "probability": 0.9932 + }, + { + "start": 12673.48, + "end": 12674.98, + "probability": 0.9802 + }, + { + "start": 12676.46, + "end": 12676.76, + "probability": 0.0362 + }, + { + "start": 12678.44, + "end": 12678.86, + "probability": 0.1892 + }, + { + "start": 12679.18, + "end": 12679.6, + "probability": 0.711 + }, + { + "start": 12680.58, + "end": 12681.26, + "probability": 0.5368 + }, + { + "start": 12681.5, + "end": 12681.94, + "probability": 0.0818 + }, + { + "start": 12683.78, + "end": 12686.64, + "probability": 0.5674 + }, + { + "start": 12687.3, + "end": 12688.34, + "probability": 0.6265 + }, + { + "start": 12688.5, + "end": 12691.02, + "probability": 0.652 + }, + { + "start": 12691.32, + "end": 12693.48, + "probability": 0.7737 + }, + { + "start": 12695.16, + "end": 12697.92, + "probability": 0.5063 + }, + { + "start": 12698.34, + "end": 12701.9, + "probability": 0.5146 + }, + { + "start": 12702.1, + "end": 12704.46, + "probability": 0.3091 + }, + { + "start": 12704.54, + "end": 12709.04, + "probability": 0.5822 + }, + { + "start": 12709.48, + "end": 12710.01, + "probability": 0.1522 + }, + { + "start": 12710.5, + "end": 12711.41, + "probability": 0.9663 + }, + { + "start": 12711.62, + "end": 12712.3, + "probability": 0.8704 + }, + { + "start": 12712.92, + "end": 12717.44, + "probability": 0.6211 + }, + { + "start": 12718.34, + "end": 12718.82, + "probability": 0.7178 + }, + { + "start": 12719.14, + "end": 12722.16, + "probability": 0.817 + }, + { + "start": 12722.3, + "end": 12723.68, + "probability": 0.9956 + }, + { + "start": 12724.98, + "end": 12726.9, + "probability": 0.363 + }, + { + "start": 12727.66, + "end": 12730.44, + "probability": 0.5535 + }, + { + "start": 12730.86, + "end": 12734.18, + "probability": 0.5975 + }, + { + "start": 12734.18, + "end": 12734.2, + "probability": 0.347 + }, + { + "start": 12734.28, + "end": 12734.62, + "probability": 0.4601 + }, + { + "start": 12734.72, + "end": 12737.84, + "probability": 0.9229 + }, + { + "start": 12738.42, + "end": 12741.74, + "probability": 0.9598 + }, + { + "start": 12742.12, + "end": 12745.74, + "probability": 0.9739 + }, + { + "start": 12746.2, + "end": 12747.58, + "probability": 0.6838 + }, + { + "start": 12747.66, + "end": 12749.66, + "probability": 0.1385 + }, + { + "start": 12749.66, + "end": 12749.66, + "probability": 0.0357 + }, + { + "start": 12749.66, + "end": 12751.69, + "probability": 0.577 + }, + { + "start": 12752.18, + "end": 12753.56, + "probability": 0.6719 + }, + { + "start": 12753.66, + "end": 12754.6, + "probability": 0.6357 + }, + { + "start": 12755.26, + "end": 12755.54, + "probability": 0.1715 + }, + { + "start": 12755.96, + "end": 12757.7, + "probability": 0.4308 + }, + { + "start": 12757.92, + "end": 12758.1, + "probability": 0.1231 + }, + { + "start": 12758.1, + "end": 12758.1, + "probability": 0.0457 + }, + { + "start": 12758.22, + "end": 12758.22, + "probability": 0.1253 + }, + { + "start": 12758.48, + "end": 12760.06, + "probability": 0.2956 + }, + { + "start": 12760.06, + "end": 12763.5, + "probability": 0.2136 + }, + { + "start": 12763.52, + "end": 12765.5, + "probability": 0.3903 + }, + { + "start": 12765.58, + "end": 12766.28, + "probability": 0.2868 + }, + { + "start": 12766.36, + "end": 12767.18, + "probability": 0.4423 + }, + { + "start": 12768.18, + "end": 12769.06, + "probability": 0.6846 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.0, + "end": 12866.0, + "probability": 0.0 + }, + { + "start": 12866.95, + "end": 12869.06, + "probability": 0.9544 + }, + { + "start": 12869.56, + "end": 12870.4, + "probability": 0.6178 + }, + { + "start": 12870.8, + "end": 12872.5, + "probability": 0.9629 + }, + { + "start": 12872.84, + "end": 12876.6, + "probability": 0.9947 + }, + { + "start": 12876.9, + "end": 12880.1, + "probability": 0.9449 + }, + { + "start": 12880.52, + "end": 12880.64, + "probability": 0.594 + }, + { + "start": 12880.92, + "end": 12881.14, + "probability": 0.8347 + }, + { + "start": 12881.78, + "end": 12883.22, + "probability": 0.7943 + }, + { + "start": 12883.64, + "end": 12888.02, + "probability": 0.9294 + }, + { + "start": 12888.12, + "end": 12892.54, + "probability": 0.891 + }, + { + "start": 12893.06, + "end": 12897.1, + "probability": 0.9863 + }, + { + "start": 12897.1, + "end": 12901.82, + "probability": 0.6206 + }, + { + "start": 12901.94, + "end": 12902.34, + "probability": 0.7164 + }, + { + "start": 12902.36, + "end": 12903.12, + "probability": 0.5644 + }, + { + "start": 12903.2, + "end": 12903.48, + "probability": 0.7988 + }, + { + "start": 12903.52, + "end": 12905.76, + "probability": 0.8 + }, + { + "start": 12905.98, + "end": 12906.08, + "probability": 0.0414 + }, + { + "start": 12907.18, + "end": 12909.04, + "probability": 0.7264 + }, + { + "start": 12909.4, + "end": 12910.52, + "probability": 0.6917 + }, + { + "start": 12910.66, + "end": 12913.14, + "probability": 0.6059 + }, + { + "start": 12913.2, + "end": 12914.4, + "probability": 0.9702 + }, + { + "start": 12914.84, + "end": 12915.58, + "probability": 0.619 + }, + { + "start": 12916.12, + "end": 12916.4, + "probability": 0.4915 + }, + { + "start": 12916.48, + "end": 12916.94, + "probability": 0.8354 + }, + { + "start": 12917.44, + "end": 12918.76, + "probability": 0.4974 + }, + { + "start": 12918.88, + "end": 12920.16, + "probability": 0.6171 + }, + { + "start": 12920.4, + "end": 12921.64, + "probability": 0.8881 + }, + { + "start": 12925.92, + "end": 12928.92, + "probability": 0.2715 + }, + { + "start": 12929.08, + "end": 12930.6, + "probability": 0.7793 + }, + { + "start": 12930.82, + "end": 12932.64, + "probability": 0.5933 + }, + { + "start": 12933.22, + "end": 12934.16, + "probability": 0.7852 + }, + { + "start": 12934.24, + "end": 12934.84, + "probability": 0.9402 + }, + { + "start": 12939.94, + "end": 12940.66, + "probability": 0.2007 + }, + { + "start": 12946.04, + "end": 12946.22, + "probability": 0.6408 + }, + { + "start": 12946.22, + "end": 12947.26, + "probability": 0.8025 + }, + { + "start": 12947.48, + "end": 12948.34, + "probability": 0.9244 + }, + { + "start": 12948.56, + "end": 12949.12, + "probability": 0.0996 + }, + { + "start": 12949.12, + "end": 12949.34, + "probability": 0.8542 + }, + { + "start": 12949.42, + "end": 12949.5, + "probability": 0.5009 + }, + { + "start": 12949.6, + "end": 12951.0, + "probability": 0.875 + }, + { + "start": 12951.0, + "end": 12951.3, + "probability": 0.0474 + }, + { + "start": 12951.4, + "end": 12953.25, + "probability": 0.909 + }, + { + "start": 12953.7, + "end": 12956.96, + "probability": 0.9272 + }, + { + "start": 12957.6, + "end": 12958.02, + "probability": 0.6221 + }, + { + "start": 12958.6, + "end": 12959.78, + "probability": 0.994 + }, + { + "start": 12960.4, + "end": 12961.54, + "probability": 0.9841 + }, + { + "start": 12961.8, + "end": 12965.64, + "probability": 0.9702 + }, + { + "start": 12966.36, + "end": 12967.68, + "probability": 0.79 + }, + { + "start": 12967.76, + "end": 12968.76, + "probability": 0.5359 + }, + { + "start": 12968.82, + "end": 12969.92, + "probability": 0.8082 + }, + { + "start": 12970.02, + "end": 12970.95, + "probability": 0.8208 + }, + { + "start": 12971.38, + "end": 12971.96, + "probability": 0.3979 + }, + { + "start": 12972.5, + "end": 12972.5, + "probability": 0.0157 + }, + { + "start": 12973.52, + "end": 12974.3, + "probability": 0.3853 + }, + { + "start": 12974.46, + "end": 12974.48, + "probability": 0.448 + }, + { + "start": 12974.64, + "end": 12974.64, + "probability": 0.4337 + }, + { + "start": 12974.76, + "end": 12975.2, + "probability": 0.4847 + }, + { + "start": 12975.28, + "end": 12975.5, + "probability": 0.626 + }, + { + "start": 12975.6, + "end": 12977.16, + "probability": 0.8221 + }, + { + "start": 12977.76, + "end": 12980.08, + "probability": 0.9946 + }, + { + "start": 12980.86, + "end": 12983.82, + "probability": 0.8789 + }, + { + "start": 12984.64, + "end": 12986.26, + "probability": 0.9907 + }, + { + "start": 12986.26, + "end": 12988.0, + "probability": 0.9897 + }, + { + "start": 12988.08, + "end": 12991.86, + "probability": 0.9902 + }, + { + "start": 12993.74, + "end": 12999.26, + "probability": 0.9775 + }, + { + "start": 13000.02, + "end": 13001.12, + "probability": 0.8279 + }, + { + "start": 13001.92, + "end": 13002.44, + "probability": 0.9148 + }, + { + "start": 13003.14, + "end": 13006.68, + "probability": 0.8729 + }, + { + "start": 13007.8, + "end": 13009.38, + "probability": 0.8402 + }, + { + "start": 13009.64, + "end": 13011.38, + "probability": 0.9967 + }, + { + "start": 13011.98, + "end": 13013.08, + "probability": 0.9332 + }, + { + "start": 13013.22, + "end": 13014.9, + "probability": 0.8282 + }, + { + "start": 13014.96, + "end": 13016.28, + "probability": 0.9948 + }, + { + "start": 13017.2, + "end": 13017.7, + "probability": 0.8215 + }, + { + "start": 13018.32, + "end": 13018.76, + "probability": 0.7978 + }, + { + "start": 13019.44, + "end": 13023.1, + "probability": 0.7144 + }, + { + "start": 13023.44, + "end": 13028.0, + "probability": 0.7686 + }, + { + "start": 13028.08, + "end": 13028.45, + "probability": 0.8955 + }, + { + "start": 13029.18, + "end": 13032.0, + "probability": 0.9596 + }, + { + "start": 13032.04, + "end": 13033.14, + "probability": 0.6196 + }, + { + "start": 13033.74, + "end": 13036.56, + "probability": 0.8157 + }, + { + "start": 13036.98, + "end": 13039.6, + "probability": 0.6045 + }, + { + "start": 13040.34, + "end": 13042.28, + "probability": 0.8311 + }, + { + "start": 13042.86, + "end": 13044.27, + "probability": 0.8435 + }, + { + "start": 13044.78, + "end": 13045.08, + "probability": 0.7476 + }, + { + "start": 13045.64, + "end": 13046.42, + "probability": 0.9867 + }, + { + "start": 13046.56, + "end": 13048.62, + "probability": 0.9 + }, + { + "start": 13049.26, + "end": 13050.92, + "probability": 0.8057 + }, + { + "start": 13051.98, + "end": 13054.08, + "probability": 0.9832 + }, + { + "start": 13054.94, + "end": 13055.84, + "probability": 0.6512 + }, + { + "start": 13056.02, + "end": 13057.18, + "probability": 0.788 + }, + { + "start": 13057.46, + "end": 13059.22, + "probability": 0.805 + }, + { + "start": 13059.96, + "end": 13061.88, + "probability": 0.9932 + }, + { + "start": 13064.48, + "end": 13065.82, + "probability": 0.9978 + }, + { + "start": 13066.98, + "end": 13070.57, + "probability": 0.6665 + }, + { + "start": 13072.52, + "end": 13073.32, + "probability": 0.9827 + }, + { + "start": 13073.4, + "end": 13075.18, + "probability": 0.9929 + }, + { + "start": 13076.48, + "end": 13078.79, + "probability": 0.8564 + }, + { + "start": 13079.62, + "end": 13080.9, + "probability": 0.975 + }, + { + "start": 13081.66, + "end": 13082.52, + "probability": 0.8967 + }, + { + "start": 13082.62, + "end": 13083.4, + "probability": 0.978 + }, + { + "start": 13083.56, + "end": 13086.08, + "probability": 0.9554 + }, + { + "start": 13087.22, + "end": 13091.06, + "probability": 0.9875 + }, + { + "start": 13092.64, + "end": 13094.66, + "probability": 0.8979 + }, + { + "start": 13094.88, + "end": 13096.56, + "probability": 0.9219 + }, + { + "start": 13097.24, + "end": 13100.48, + "probability": 0.9816 + }, + { + "start": 13100.98, + "end": 13101.77, + "probability": 0.7147 + }, + { + "start": 13102.68, + "end": 13104.38, + "probability": 0.8682 + }, + { + "start": 13104.56, + "end": 13105.22, + "probability": 0.6851 + }, + { + "start": 13106.56, + "end": 13107.84, + "probability": 0.4933 + }, + { + "start": 13108.68, + "end": 13110.56, + "probability": 0.9695 + }, + { + "start": 13112.83, + "end": 13114.6, + "probability": 0.4224 + }, + { + "start": 13114.6, + "end": 13114.98, + "probability": 0.8173 + }, + { + "start": 13115.6, + "end": 13121.4, + "probability": 0.9756 + }, + { + "start": 13121.7, + "end": 13124.22, + "probability": 0.9858 + }, + { + "start": 13124.34, + "end": 13127.06, + "probability": 0.9956 + }, + { + "start": 13127.66, + "end": 13130.9, + "probability": 0.999 + }, + { + "start": 13130.9, + "end": 13131.92, + "probability": 0.5352 + }, + { + "start": 13132.74, + "end": 13134.76, + "probability": 0.9291 + }, + { + "start": 13134.96, + "end": 13136.1, + "probability": 0.9656 + }, + { + "start": 13136.84, + "end": 13139.36, + "probability": 0.9897 + }, + { + "start": 13139.92, + "end": 13143.36, + "probability": 0.9703 + }, + { + "start": 13143.96, + "end": 13145.5, + "probability": 0.9939 + }, + { + "start": 13145.84, + "end": 13148.06, + "probability": 0.996 + }, + { + "start": 13148.22, + "end": 13149.04, + "probability": 0.255 + }, + { + "start": 13149.26, + "end": 13149.88, + "probability": 0.6533 + }, + { + "start": 13150.18, + "end": 13151.9, + "probability": 0.8371 + }, + { + "start": 13152.44, + "end": 13155.9, + "probability": 0.9752 + }, + { + "start": 13156.4, + "end": 13159.22, + "probability": 0.958 + }, + { + "start": 13163.0, + "end": 13166.84, + "probability": 0.9956 + }, + { + "start": 13167.36, + "end": 13168.64, + "probability": 0.6651 + }, + { + "start": 13168.7, + "end": 13169.5, + "probability": 0.746 + }, + { + "start": 13170.2, + "end": 13171.9, + "probability": 0.9968 + }, + { + "start": 13172.72, + "end": 13177.32, + "probability": 0.859 + }, + { + "start": 13178.44, + "end": 13179.62, + "probability": 0.9428 + }, + { + "start": 13180.16, + "end": 13181.28, + "probability": 0.9667 + }, + { + "start": 13181.98, + "end": 13184.48, + "probability": 0.8015 + }, + { + "start": 13184.64, + "end": 13185.58, + "probability": 0.8701 + }, + { + "start": 13185.72, + "end": 13186.62, + "probability": 0.9464 + }, + { + "start": 13186.86, + "end": 13192.86, + "probability": 0.9192 + }, + { + "start": 13192.92, + "end": 13193.78, + "probability": 0.7519 + }, + { + "start": 13193.94, + "end": 13196.54, + "probability": 0.6731 + }, + { + "start": 13197.46, + "end": 13199.46, + "probability": 0.9924 + }, + { + "start": 13199.58, + "end": 13200.16, + "probability": 0.9521 + }, + { + "start": 13200.88, + "end": 13203.57, + "probability": 0.8817 + }, + { + "start": 13204.12, + "end": 13205.05, + "probability": 0.615 + }, + { + "start": 13206.22, + "end": 13207.74, + "probability": 0.9723 + }, + { + "start": 13208.42, + "end": 13209.5, + "probability": 0.951 + }, + { + "start": 13209.58, + "end": 13211.22, + "probability": 0.7026 + }, + { + "start": 13211.68, + "end": 13213.26, + "probability": 0.9774 + }, + { + "start": 13213.88, + "end": 13215.58, + "probability": 0.981 + }, + { + "start": 13215.96, + "end": 13216.98, + "probability": 0.9365 + }, + { + "start": 13217.3, + "end": 13218.6, + "probability": 0.8094 + }, + { + "start": 13218.7, + "end": 13219.76, + "probability": 0.8339 + }, + { + "start": 13220.1, + "end": 13222.42, + "probability": 0.6842 + }, + { + "start": 13222.56, + "end": 13223.84, + "probability": 0.5327 + }, + { + "start": 13224.72, + "end": 13225.82, + "probability": 0.5452 + }, + { + "start": 13225.88, + "end": 13228.32, + "probability": 0.724 + }, + { + "start": 13228.58, + "end": 13229.03, + "probability": 0.7198 + }, + { + "start": 13231.26, + "end": 13231.26, + "probability": 0.0169 + }, + { + "start": 13231.26, + "end": 13233.16, + "probability": 0.8683 + }, + { + "start": 13233.3, + "end": 13233.96, + "probability": 0.3852 + }, + { + "start": 13234.08, + "end": 13234.68, + "probability": 0.6119 + }, + { + "start": 13234.74, + "end": 13235.26, + "probability": 0.6191 + }, + { + "start": 13235.88, + "end": 13237.34, + "probability": 0.8817 + }, + { + "start": 13237.64, + "end": 13238.76, + "probability": 0.883 + }, + { + "start": 13239.18, + "end": 13239.94, + "probability": 0.977 + }, + { + "start": 13240.18, + "end": 13241.06, + "probability": 0.8555 + }, + { + "start": 13242.16, + "end": 13243.14, + "probability": 0.4176 + }, + { + "start": 13243.96, + "end": 13245.4, + "probability": 0.6378 + }, + { + "start": 13246.34, + "end": 13246.96, + "probability": 0.0357 + }, + { + "start": 13246.96, + "end": 13247.16, + "probability": 0.3735 + }, + { + "start": 13247.48, + "end": 13251.58, + "probability": 0.4469 + }, + { + "start": 13251.74, + "end": 13252.46, + "probability": 0.4172 + }, + { + "start": 13252.82, + "end": 13254.85, + "probability": 0.7032 + }, + { + "start": 13256.74, + "end": 13257.48, + "probability": 0.0884 + }, + { + "start": 13257.48, + "end": 13259.46, + "probability": 0.8577 + }, + { + "start": 13259.46, + "end": 13261.22, + "probability": 0.7649 + }, + { + "start": 13261.26, + "end": 13262.12, + "probability": 0.9271 + }, + { + "start": 13263.32, + "end": 13266.18, + "probability": 0.9038 + }, + { + "start": 13266.6, + "end": 13267.23, + "probability": 0.811 + }, + { + "start": 13268.0, + "end": 13271.06, + "probability": 0.8798 + }, + { + "start": 13271.1, + "end": 13273.58, + "probability": 0.7755 + }, + { + "start": 13274.2, + "end": 13275.18, + "probability": 0.9826 + }, + { + "start": 13275.66, + "end": 13275.9, + "probability": 0.7704 + }, + { + "start": 13276.38, + "end": 13276.98, + "probability": 0.644 + }, + { + "start": 13277.12, + "end": 13277.46, + "probability": 0.87 + }, + { + "start": 13277.46, + "end": 13278.78, + "probability": 0.9626 + }, + { + "start": 13278.8, + "end": 13282.42, + "probability": 0.9861 + }, + { + "start": 13283.36, + "end": 13284.38, + "probability": 0.557 + }, + { + "start": 13285.06, + "end": 13286.5, + "probability": 0.995 + }, + { + "start": 13286.9, + "end": 13288.7, + "probability": 0.8484 + }, + { + "start": 13288.78, + "end": 13289.98, + "probability": 0.7374 + }, + { + "start": 13290.54, + "end": 13291.82, + "probability": 0.88 + }, + { + "start": 13292.1, + "end": 13292.96, + "probability": 0.7172 + }, + { + "start": 13292.98, + "end": 13294.02, + "probability": 0.9783 + }, + { + "start": 13294.5, + "end": 13295.57, + "probability": 0.7747 + }, + { + "start": 13296.14, + "end": 13301.68, + "probability": 0.5107 + }, + { + "start": 13301.74, + "end": 13302.16, + "probability": 0.4835 + }, + { + "start": 13302.16, + "end": 13302.62, + "probability": 0.3569 + }, + { + "start": 13302.78, + "end": 13306.26, + "probability": 0.4854 + }, + { + "start": 13307.34, + "end": 13313.28, + "probability": 0.7091 + }, + { + "start": 13313.36, + "end": 13313.9, + "probability": 0.57 + }, + { + "start": 13314.12, + "end": 13316.02, + "probability": 0.832 + }, + { + "start": 13317.52, + "end": 13320.18, + "probability": 0.9408 + }, + { + "start": 13320.7, + "end": 13321.92, + "probability": 0.9873 + }, + { + "start": 13322.02, + "end": 13322.7, + "probability": 0.9082 + }, + { + "start": 13322.86, + "end": 13323.66, + "probability": 0.8492 + }, + { + "start": 13324.52, + "end": 13326.58, + "probability": 0.8159 + }, + { + "start": 13327.2, + "end": 13333.36, + "probability": 0.981 + }, + { + "start": 13334.66, + "end": 13335.32, + "probability": 0.3815 + }, + { + "start": 13335.32, + "end": 13335.32, + "probability": 0.2638 + }, + { + "start": 13335.32, + "end": 13335.32, + "probability": 0.6441 + }, + { + "start": 13335.38, + "end": 13336.94, + "probability": 0.9274 + }, + { + "start": 13337.34, + "end": 13338.56, + "probability": 0.7983 + }, + { + "start": 13339.04, + "end": 13339.06, + "probability": 0.3559 + }, + { + "start": 13339.06, + "end": 13341.62, + "probability": 0.4977 + }, + { + "start": 13341.92, + "end": 13343.86, + "probability": 0.9956 + }, + { + "start": 13344.12, + "end": 13345.46, + "probability": 0.605 + }, + { + "start": 13345.52, + "end": 13349.0, + "probability": 0.7193 + }, + { + "start": 13349.1, + "end": 13349.42, + "probability": 0.7222 + }, + { + "start": 13349.48, + "end": 13350.42, + "probability": 0.646 + }, + { + "start": 13350.6, + "end": 13352.14, + "probability": 0.8701 + }, + { + "start": 13353.9, + "end": 13356.42, + "probability": 0.9483 + }, + { + "start": 13357.16, + "end": 13359.14, + "probability": 0.8459 + }, + { + "start": 13360.54, + "end": 13361.82, + "probability": 0.6529 + }, + { + "start": 13361.9, + "end": 13363.92, + "probability": 0.9736 + }, + { + "start": 13364.96, + "end": 13366.74, + "probability": 0.8615 + }, + { + "start": 13367.88, + "end": 13368.64, + "probability": 0.4926 + }, + { + "start": 13368.76, + "end": 13369.38, + "probability": 0.5098 + }, + { + "start": 13369.92, + "end": 13372.58, + "probability": 0.6094 + }, + { + "start": 13374.62, + "end": 13377.0, + "probability": 0.8838 + }, + { + "start": 13378.6, + "end": 13381.5, + "probability": 0.9342 + }, + { + "start": 13382.18, + "end": 13384.6, + "probability": 0.7334 + }, + { + "start": 13385.86, + "end": 13388.06, + "probability": 0.8173 + }, + { + "start": 13389.38, + "end": 13391.34, + "probability": 0.9745 + }, + { + "start": 13392.08, + "end": 13393.24, + "probability": 0.8325 + }, + { + "start": 13394.8, + "end": 13397.4, + "probability": 0.7539 + }, + { + "start": 13399.0, + "end": 13400.6, + "probability": 0.8566 + }, + { + "start": 13401.9, + "end": 13403.38, + "probability": 0.7379 + }, + { + "start": 13404.12, + "end": 13407.38, + "probability": 0.8452 + }, + { + "start": 13408.92, + "end": 13411.1, + "probability": 0.9709 + }, + { + "start": 13412.22, + "end": 13415.24, + "probability": 0.7512 + }, + { + "start": 13417.16, + "end": 13418.38, + "probability": 0.9783 + }, + { + "start": 13418.56, + "end": 13420.64, + "probability": 0.8965 + }, + { + "start": 13420.96, + "end": 13423.3, + "probability": 0.8865 + }, + { + "start": 13424.04, + "end": 13425.6, + "probability": 0.9862 + }, + { + "start": 13426.7, + "end": 13428.4, + "probability": 0.9524 + }, + { + "start": 13429.18, + "end": 13429.56, + "probability": 0.7779 + }, + { + "start": 13430.58, + "end": 13431.16, + "probability": 0.6139 + }, + { + "start": 13431.78, + "end": 13433.94, + "probability": 0.8661 + }, + { + "start": 13435.92, + "end": 13437.88, + "probability": 0.8058 + }, + { + "start": 13439.6, + "end": 13441.6, + "probability": 0.9457 + }, + { + "start": 13442.7, + "end": 13445.28, + "probability": 0.899 + }, + { + "start": 13446.32, + "end": 13449.64, + "probability": 0.9992 + }, + { + "start": 13449.8, + "end": 13450.14, + "probability": 0.5413 + }, + { + "start": 13450.66, + "end": 13452.4, + "probability": 0.751 + }, + { + "start": 13453.1, + "end": 13453.86, + "probability": 0.9704 + }, + { + "start": 13454.04, + "end": 13454.65, + "probability": 0.8506 + }, + { + "start": 13455.48, + "end": 13456.83, + "probability": 0.9949 + }, + { + "start": 13458.28, + "end": 13461.8, + "probability": 0.9648 + }, + { + "start": 13462.76, + "end": 13465.42, + "probability": 0.9851 + }, + { + "start": 13466.14, + "end": 13468.34, + "probability": 0.9932 + }, + { + "start": 13469.0, + "end": 13470.3, + "probability": 0.9719 + }, + { + "start": 13470.94, + "end": 13471.68, + "probability": 0.71 + }, + { + "start": 13474.04, + "end": 13476.32, + "probability": 0.9922 + }, + { + "start": 13477.06, + "end": 13480.5, + "probability": 0.9965 + }, + { + "start": 13482.32, + "end": 13483.4, + "probability": 0.811 + }, + { + "start": 13484.42, + "end": 13485.7, + "probability": 0.7087 + }, + { + "start": 13486.42, + "end": 13486.88, + "probability": 0.7071 + }, + { + "start": 13487.52, + "end": 13489.24, + "probability": 0.8424 + }, + { + "start": 13489.9, + "end": 13494.1, + "probability": 0.822 + }, + { + "start": 13494.62, + "end": 13498.14, + "probability": 0.9917 + }, + { + "start": 13499.0, + "end": 13499.04, + "probability": 0.3825 + }, + { + "start": 13499.04, + "end": 13499.04, + "probability": 0.33 + }, + { + "start": 13499.04, + "end": 13501.38, + "probability": 0.6729 + }, + { + "start": 13503.88, + "end": 13506.86, + "probability": 0.7384 + }, + { + "start": 13507.52, + "end": 13507.72, + "probability": 0.6129 + }, + { + "start": 13508.6, + "end": 13510.04, + "probability": 0.8699 + }, + { + "start": 13511.46, + "end": 13513.2, + "probability": 0.2476 + }, + { + "start": 13514.06, + "end": 13514.86, + "probability": 0.8029 + }, + { + "start": 13515.98, + "end": 13517.96, + "probability": 0.7476 + }, + { + "start": 13519.26, + "end": 13520.34, + "probability": 0.9407 + }, + { + "start": 13520.4, + "end": 13521.24, + "probability": 0.7505 + }, + { + "start": 13522.0, + "end": 13523.02, + "probability": 0.9255 + }, + { + "start": 13523.54, + "end": 13525.2, + "probability": 0.541 + }, + { + "start": 13525.92, + "end": 13529.32, + "probability": 0.7987 + }, + { + "start": 13529.82, + "end": 13532.32, + "probability": 0.8428 + }, + { + "start": 13532.32, + "end": 13536.02, + "probability": 0.2929 + }, + { + "start": 13538.44, + "end": 13538.6, + "probability": 0.5076 + }, + { + "start": 13539.0, + "end": 13539.0, + "probability": 0.0792 + }, + { + "start": 13539.0, + "end": 13539.0, + "probability": 0.0398 + }, + { + "start": 13539.0, + "end": 13539.58, + "probability": 0.6126 + }, + { + "start": 13539.76, + "end": 13541.18, + "probability": 0.9546 + }, + { + "start": 13541.64, + "end": 13543.41, + "probability": 0.9142 + }, + { + "start": 13543.72, + "end": 13546.54, + "probability": 0.6452 + }, + { + "start": 13546.68, + "end": 13548.96, + "probability": 0.8481 + }, + { + "start": 13549.62, + "end": 13552.5, + "probability": 0.9272 + }, + { + "start": 13552.58, + "end": 13553.54, + "probability": 0.9207 + }, + { + "start": 13554.24, + "end": 13555.6, + "probability": 0.6829 + }, + { + "start": 13555.6, + "end": 13559.1, + "probability": 0.9762 + }, + { + "start": 13559.1, + "end": 13559.6, + "probability": 0.7712 + }, + { + "start": 13565.12, + "end": 13566.9, + "probability": 0.9204 + }, + { + "start": 13582.94, + "end": 13583.26, + "probability": 0.7533 + }, + { + "start": 13583.94, + "end": 13584.48, + "probability": 0.6928 + }, + { + "start": 13584.98, + "end": 13587.72, + "probability": 0.6133 + }, + { + "start": 13589.06, + "end": 13592.38, + "probability": 0.9899 + }, + { + "start": 13592.84, + "end": 13593.26, + "probability": 0.1577 + }, + { + "start": 13593.32, + "end": 13597.18, + "probability": 0.6111 + }, + { + "start": 13598.02, + "end": 13598.28, + "probability": 0.2396 + }, + { + "start": 13598.32, + "end": 13600.3, + "probability": 0.708 + }, + { + "start": 13600.84, + "end": 13605.46, + "probability": 0.9728 + }, + { + "start": 13605.92, + "end": 13607.78, + "probability": 0.9371 + }, + { + "start": 13608.9, + "end": 13610.74, + "probability": 0.9541 + }, + { + "start": 13612.62, + "end": 13615.48, + "probability": 0.7834 + }, + { + "start": 13617.84, + "end": 13620.5, + "probability": 0.9072 + }, + { + "start": 13621.62, + "end": 13623.84, + "probability": 0.998 + }, + { + "start": 13624.54, + "end": 13625.03, + "probability": 0.9697 + }, + { + "start": 13626.02, + "end": 13628.84, + "probability": 0.9417 + }, + { + "start": 13630.36, + "end": 13633.04, + "probability": 0.9702 + }, + { + "start": 13634.6, + "end": 13640.42, + "probability": 0.9664 + }, + { + "start": 13640.66, + "end": 13642.16, + "probability": 0.9539 + }, + { + "start": 13644.28, + "end": 13645.2, + "probability": 0.9817 + }, + { + "start": 13646.34, + "end": 13648.56, + "probability": 0.6749 + }, + { + "start": 13650.0, + "end": 13650.41, + "probability": 0.8047 + }, + { + "start": 13651.12, + "end": 13654.68, + "probability": 0.9946 + }, + { + "start": 13655.3, + "end": 13656.18, + "probability": 0.458 + }, + { + "start": 13657.54, + "end": 13660.72, + "probability": 0.9953 + }, + { + "start": 13660.82, + "end": 13661.88, + "probability": 0.954 + }, + { + "start": 13662.04, + "end": 13663.4, + "probability": 0.9283 + }, + { + "start": 13665.74, + "end": 13669.14, + "probability": 0.8656 + }, + { + "start": 13669.24, + "end": 13670.62, + "probability": 0.9883 + }, + { + "start": 13671.84, + "end": 13672.5, + "probability": 0.8649 + }, + { + "start": 13673.98, + "end": 13674.48, + "probability": 0.9719 + }, + { + "start": 13677.14, + "end": 13678.36, + "probability": 0.9351 + }, + { + "start": 13679.4, + "end": 13680.06, + "probability": 0.7761 + }, + { + "start": 13683.2, + "end": 13684.28, + "probability": 0.9414 + }, + { + "start": 13686.46, + "end": 13689.38, + "probability": 0.9564 + }, + { + "start": 13690.34, + "end": 13691.96, + "probability": 0.881 + }, + { + "start": 13693.84, + "end": 13694.44, + "probability": 0.9555 + }, + { + "start": 13694.52, + "end": 13695.36, + "probability": 0.9351 + }, + { + "start": 13695.4, + "end": 13697.28, + "probability": 0.9158 + }, + { + "start": 13698.84, + "end": 13699.9, + "probability": 0.797 + }, + { + "start": 13700.5, + "end": 13701.5, + "probability": 0.6985 + }, + { + "start": 13703.3, + "end": 13704.4, + "probability": 0.2587 + }, + { + "start": 13704.5, + "end": 13707.7, + "probability": 0.9595 + }, + { + "start": 13708.74, + "end": 13709.82, + "probability": 0.8505 + }, + { + "start": 13710.84, + "end": 13711.8, + "probability": 0.998 + }, + { + "start": 13712.72, + "end": 13714.2, + "probability": 0.8276 + }, + { + "start": 13715.58, + "end": 13716.7, + "probability": 0.9318 + }, + { + "start": 13718.1, + "end": 13719.36, + "probability": 0.9264 + }, + { + "start": 13719.9, + "end": 13722.48, + "probability": 0.8608 + }, + { + "start": 13724.54, + "end": 13728.86, + "probability": 0.9481 + }, + { + "start": 13729.8, + "end": 13731.18, + "probability": 0.6776 + }, + { + "start": 13731.42, + "end": 13734.96, + "probability": 0.995 + }, + { + "start": 13735.4, + "end": 13736.08, + "probability": 0.7466 + }, + { + "start": 13737.22, + "end": 13738.72, + "probability": 0.9548 + }, + { + "start": 13739.44, + "end": 13741.52, + "probability": 0.9974 + }, + { + "start": 13741.58, + "end": 13742.96, + "probability": 0.9013 + }, + { + "start": 13743.38, + "end": 13744.2, + "probability": 0.0363 + }, + { + "start": 13744.3, + "end": 13744.58, + "probability": 0.3667 + }, + { + "start": 13744.58, + "end": 13745.44, + "probability": 0.7572 + }, + { + "start": 13745.56, + "end": 13747.12, + "probability": 0.4011 + }, + { + "start": 13747.3, + "end": 13748.26, + "probability": 0.686 + }, + { + "start": 13748.78, + "end": 13749.21, + "probability": 0.8868 + }, + { + "start": 13751.32, + "end": 13755.38, + "probability": 0.92 + }, + { + "start": 13755.84, + "end": 13757.12, + "probability": 0.9292 + }, + { + "start": 13758.04, + "end": 13759.6, + "probability": 0.9488 + }, + { + "start": 13759.74, + "end": 13763.96, + "probability": 0.8074 + }, + { + "start": 13765.08, + "end": 13767.3, + "probability": 0.9796 + }, + { + "start": 13767.9, + "end": 13768.98, + "probability": 0.9985 + }, + { + "start": 13770.08, + "end": 13772.18, + "probability": 0.9979 + }, + { + "start": 13773.1, + "end": 13774.36, + "probability": 0.9963 + }, + { + "start": 13774.68, + "end": 13775.5, + "probability": 0.9899 + }, + { + "start": 13775.88, + "end": 13777.22, + "probability": 0.9842 + }, + { + "start": 13777.62, + "end": 13779.2, + "probability": 0.9694 + }, + { + "start": 13779.3, + "end": 13780.98, + "probability": 0.9761 + }, + { + "start": 13781.42, + "end": 13783.71, + "probability": 0.8167 + }, + { + "start": 13784.16, + "end": 13787.78, + "probability": 0.5727 + }, + { + "start": 13787.98, + "end": 13788.14, + "probability": 0.1011 + }, + { + "start": 13788.14, + "end": 13788.14, + "probability": 0.3039 + }, + { + "start": 13788.14, + "end": 13788.14, + "probability": 0.383 + }, + { + "start": 13788.14, + "end": 13788.7, + "probability": 0.5056 + }, + { + "start": 13789.6, + "end": 13791.76, + "probability": 0.3477 + }, + { + "start": 13803.08, + "end": 13803.82, + "probability": 0.3545 + }, + { + "start": 13803.82, + "end": 13804.32, + "probability": 0.8137 + }, + { + "start": 13820.76, + "end": 13823.66, + "probability": 0.4217 + }, + { + "start": 13824.38, + "end": 13824.66, + "probability": 0.2184 + }, + { + "start": 13825.32, + "end": 13830.16, + "probability": 0.8679 + }, + { + "start": 13830.6, + "end": 13830.92, + "probability": 0.2597 + }, + { + "start": 13834.58, + "end": 13840.49, + "probability": 0.546 + }, + { + "start": 13840.6, + "end": 13842.88, + "probability": 0.096 + }, + { + "start": 13845.72, + "end": 13845.94, + "probability": 0.109 + }, + { + "start": 13846.7, + "end": 13849.68, + "probability": 0.438 + }, + { + "start": 13850.52, + "end": 13851.52, + "probability": 0.0247 + }, + { + "start": 13853.45, + "end": 13854.75, + "probability": 0.0496 + }, + { + "start": 13857.88, + "end": 13860.31, + "probability": 0.0515 + }, + { + "start": 13862.06, + "end": 13863.32, + "probability": 0.0853 + }, + { + "start": 13864.3, + "end": 13864.78, + "probability": 0.0283 + }, + { + "start": 13864.78, + "end": 13865.64, + "probability": 0.2957 + }, + { + "start": 13882.76, + "end": 13884.66, + "probability": 0.1059 + }, + { + "start": 13885.42, + "end": 13890.46, + "probability": 0.1216 + }, + { + "start": 13894.0, + "end": 13894.0, + "probability": 0.0 + }, + { + "start": 13894.0, + "end": 13894.0, + "probability": 0.0 + }, + { + "start": 13894.0, + "end": 13894.0, + "probability": 0.0 + }, + { + "start": 13894.0, + "end": 13894.0, + "probability": 0.0 + }, + { + "start": 13894.0, + "end": 13894.0, + "probability": 0.0 + }, + { + "start": 13894.0, + "end": 13894.0, + "probability": 0.0 + }, + { + "start": 13894.0, + "end": 13894.0, + "probability": 0.0 + }, + { + "start": 13894.0, + "end": 13894.0, + "probability": 0.0 + }, + { + "start": 13894.0, + "end": 13894.0, + "probability": 0.0 + }, + { + "start": 13894.0, + "end": 13894.0, + "probability": 0.0 + }, + { + "start": 13894.0, + "end": 13894.0, + "probability": 0.0 + }, + { + "start": 13894.0, + "end": 13894.0, + "probability": 0.0 + }, + { + "start": 13894.0, + "end": 13894.0, + "probability": 0.0 + }, + { + "start": 13894.0, + "end": 13894.0, + "probability": 0.0 + }, + { + "start": 13894.0, + "end": 13894.0, + "probability": 0.0 + }, + { + "start": 13894.0, + "end": 13894.0, + "probability": 0.0 + }, + { + "start": 13894.0, + "end": 13894.0, + "probability": 0.0 + }, + { + "start": 13894.0, + "end": 13894.0, + "probability": 0.0 + }, + { + "start": 13894.9, + "end": 13895.64, + "probability": 0.479 + }, + { + "start": 13896.74, + "end": 13898.96, + "probability": 0.9884 + }, + { + "start": 13899.54, + "end": 13902.12, + "probability": 0.7614 + }, + { + "start": 13903.4, + "end": 13906.08, + "probability": 0.9601 + }, + { + "start": 13906.72, + "end": 13908.82, + "probability": 0.9874 + }, + { + "start": 13909.48, + "end": 13912.36, + "probability": 0.917 + }, + { + "start": 13913.32, + "end": 13916.28, + "probability": 0.8555 + }, + { + "start": 13917.14, + "end": 13920.44, + "probability": 0.9808 + }, + { + "start": 13921.84, + "end": 13924.22, + "probability": 0.9555 + }, + { + "start": 13925.28, + "end": 13927.74, + "probability": 0.9912 + }, + { + "start": 13928.3, + "end": 13933.04, + "probability": 0.9959 + }, + { + "start": 13934.84, + "end": 13939.86, + "probability": 0.9616 + }, + { + "start": 13939.86, + "end": 13943.82, + "probability": 0.9987 + }, + { + "start": 13944.46, + "end": 13950.04, + "probability": 0.9891 + }, + { + "start": 13950.6, + "end": 13951.36, + "probability": 0.9817 + }, + { + "start": 13952.24, + "end": 13954.02, + "probability": 0.9674 + }, + { + "start": 13954.7, + "end": 13958.51, + "probability": 0.9989 + }, + { + "start": 13960.0, + "end": 13965.02, + "probability": 0.9943 + }, + { + "start": 13965.16, + "end": 13968.98, + "probability": 0.9985 + }, + { + "start": 13969.62, + "end": 13975.22, + "probability": 0.9971 + }, + { + "start": 13976.1, + "end": 13979.7, + "probability": 0.9883 + }, + { + "start": 13979.72, + "end": 13983.96, + "probability": 0.9994 + }, + { + "start": 13984.56, + "end": 13988.44, + "probability": 0.9766 + }, + { + "start": 13989.08, + "end": 13992.12, + "probability": 0.9971 + }, + { + "start": 13993.08, + "end": 13995.38, + "probability": 0.9631 + }, + { + "start": 13996.12, + "end": 13997.58, + "probability": 0.8528 + }, + { + "start": 13998.26, + "end": 13999.56, + "probability": 0.7741 + }, + { + "start": 14000.1, + "end": 14002.04, + "probability": 0.993 + }, + { + "start": 14002.74, + "end": 14004.38, + "probability": 0.9865 + }, + { + "start": 14005.2, + "end": 14010.0, + "probability": 0.9927 + }, + { + "start": 14010.44, + "end": 14013.24, + "probability": 0.9993 + }, + { + "start": 14014.84, + "end": 14018.84, + "probability": 0.9956 + }, + { + "start": 14019.36, + "end": 14021.72, + "probability": 0.9931 + }, + { + "start": 14022.24, + "end": 14023.08, + "probability": 0.8791 + }, + { + "start": 14023.68, + "end": 14024.52, + "probability": 0.9265 + }, + { + "start": 14025.94, + "end": 14031.08, + "probability": 0.8885 + }, + { + "start": 14031.08, + "end": 14034.6, + "probability": 0.8364 + }, + { + "start": 14034.84, + "end": 14039.9, + "probability": 0.9839 + }, + { + "start": 14040.94, + "end": 14046.72, + "probability": 0.9699 + }, + { + "start": 14047.2, + "end": 14048.02, + "probability": 0.9607 + }, + { + "start": 14048.7, + "end": 14050.78, + "probability": 0.999 + }, + { + "start": 14052.48, + "end": 14053.44, + "probability": 0.6873 + }, + { + "start": 14053.8, + "end": 14059.76, + "probability": 0.9446 + }, + { + "start": 14061.04, + "end": 14064.26, + "probability": 0.9448 + }, + { + "start": 14064.88, + "end": 14066.72, + "probability": 0.9932 + }, + { + "start": 14067.6, + "end": 14072.32, + "probability": 0.9818 + }, + { + "start": 14073.02, + "end": 14075.44, + "probability": 0.9963 + }, + { + "start": 14076.02, + "end": 14080.38, + "probability": 0.9833 + }, + { + "start": 14081.38, + "end": 14084.06, + "probability": 0.9706 + }, + { + "start": 14084.72, + "end": 14089.6, + "probability": 0.9948 + }, + { + "start": 14090.18, + "end": 14090.64, + "probability": 0.9807 + }, + { + "start": 14091.74, + "end": 14094.94, + "probability": 0.996 + }, + { + "start": 14095.6, + "end": 14098.66, + "probability": 0.8621 + }, + { + "start": 14099.36, + "end": 14101.54, + "probability": 0.8971 + }, + { + "start": 14102.54, + "end": 14103.64, + "probability": 0.465 + }, + { + "start": 14104.26, + "end": 14104.74, + "probability": 0.9132 + }, + { + "start": 14105.34, + "end": 14106.98, + "probability": 0.7407 + }, + { + "start": 14107.82, + "end": 14114.98, + "probability": 0.9548 + }, + { + "start": 14115.54, + "end": 14118.14, + "probability": 0.7589 + }, + { + "start": 14119.04, + "end": 14126.86, + "probability": 0.9642 + }, + { + "start": 14126.94, + "end": 14129.28, + "probability": 0.9932 + }, + { + "start": 14130.0, + "end": 14130.56, + "probability": 0.9362 + }, + { + "start": 14131.36, + "end": 14133.4, + "probability": 0.9973 + }, + { + "start": 14133.4, + "end": 14137.06, + "probability": 0.9722 + }, + { + "start": 14137.24, + "end": 14137.78, + "probability": 0.5761 + }, + { + "start": 14138.32, + "end": 14141.14, + "probability": 0.8699 + }, + { + "start": 14141.62, + "end": 14144.66, + "probability": 0.9954 + }, + { + "start": 14146.35, + "end": 14149.86, + "probability": 0.998 + }, + { + "start": 14150.6, + "end": 14156.86, + "probability": 0.9978 + }, + { + "start": 14158.44, + "end": 14159.7, + "probability": 0.7909 + }, + { + "start": 14161.84, + "end": 14162.38, + "probability": 0.9843 + }, + { + "start": 14162.9, + "end": 14163.28, + "probability": 0.9992 + }, + { + "start": 14163.84, + "end": 14164.64, + "probability": 0.759 + }, + { + "start": 14165.79, + "end": 14169.7, + "probability": 0.9128 + }, + { + "start": 14170.66, + "end": 14174.96, + "probability": 0.9363 + }, + { + "start": 14175.6, + "end": 14176.36, + "probability": 0.9888 + }, + { + "start": 14177.3, + "end": 14179.9, + "probability": 0.8727 + }, + { + "start": 14181.3, + "end": 14182.98, + "probability": 0.986 + }, + { + "start": 14184.2, + "end": 14186.3, + "probability": 0.9172 + }, + { + "start": 14186.84, + "end": 14187.92, + "probability": 0.895 + }, + { + "start": 14188.44, + "end": 14189.24, + "probability": 0.8094 + }, + { + "start": 14190.36, + "end": 14193.0, + "probability": 0.9868 + }, + { + "start": 14194.02, + "end": 14195.12, + "probability": 0.9617 + }, + { + "start": 14195.68, + "end": 14198.14, + "probability": 0.9993 + }, + { + "start": 14199.08, + "end": 14203.56, + "probability": 0.8886 + }, + { + "start": 14205.5, + "end": 14207.72, + "probability": 0.9249 + }, + { + "start": 14208.32, + "end": 14210.6, + "probability": 0.6263 + }, + { + "start": 14211.56, + "end": 14213.88, + "probability": 0.8816 + }, + { + "start": 14214.47, + "end": 14217.99, + "probability": 0.9094 + }, + { + "start": 14218.56, + "end": 14220.58, + "probability": 0.9775 + }, + { + "start": 14220.84, + "end": 14221.34, + "probability": 0.7737 + }, + { + "start": 14221.7, + "end": 14224.36, + "probability": 0.9878 + }, + { + "start": 14224.38, + "end": 14226.12, + "probability": 0.9906 + }, + { + "start": 14226.74, + "end": 14227.06, + "probability": 0.4677 + }, + { + "start": 14227.06, + "end": 14227.88, + "probability": 0.5925 + }, + { + "start": 14228.0, + "end": 14228.74, + "probability": 0.5216 + }, + { + "start": 14228.82, + "end": 14230.79, + "probability": 0.978 + }, + { + "start": 14231.24, + "end": 14231.85, + "probability": 0.6068 + }, + { + "start": 14233.16, + "end": 14233.4, + "probability": 0.9524 + }, + { + "start": 14234.06, + "end": 14234.86, + "probability": 0.5625 + }, + { + "start": 14237.72, + "end": 14239.84, + "probability": 0.9199 + }, + { + "start": 14240.14, + "end": 14240.77, + "probability": 0.4966 + }, + { + "start": 14241.12, + "end": 14241.55, + "probability": 0.2617 + }, + { + "start": 14242.32, + "end": 14242.76, + "probability": 0.9532 + }, + { + "start": 14243.44, + "end": 14244.9, + "probability": 0.762 + }, + { + "start": 14246.86, + "end": 14247.54, + "probability": 0.0645 + }, + { + "start": 14247.54, + "end": 14248.8, + "probability": 0.537 + }, + { + "start": 14249.88, + "end": 14251.86, + "probability": 0.8187 + }, + { + "start": 14252.94, + "end": 14253.84, + "probability": 0.0029 + }, + { + "start": 14267.8, + "end": 14267.96, + "probability": 0.028 + }, + { + "start": 14267.96, + "end": 14269.63, + "probability": 0.2762 + }, + { + "start": 14270.32, + "end": 14273.36, + "probability": 0.5969 + }, + { + "start": 14273.72, + "end": 14275.34, + "probability": 0.2395 + }, + { + "start": 14275.92, + "end": 14277.82, + "probability": 0.9563 + }, + { + "start": 14278.42, + "end": 14280.96, + "probability": 0.8492 + }, + { + "start": 14281.82, + "end": 14283.24, + "probability": 0.0613 + }, + { + "start": 14284.7, + "end": 14285.44, + "probability": 0.1587 + }, + { + "start": 14286.02, + "end": 14286.84, + "probability": 0.6906 + }, + { + "start": 14289.8, + "end": 14290.48, + "probability": 0.3338 + }, + { + "start": 14290.48, + "end": 14291.1, + "probability": 0.8195 + }, + { + "start": 14294.51, + "end": 14296.88, + "probability": 0.208 + }, + { + "start": 14297.02, + "end": 14297.86, + "probability": 0.0046 + }, + { + "start": 14300.14, + "end": 14300.98, + "probability": 0.0324 + }, + { + "start": 14301.94, + "end": 14302.22, + "probability": 0.0548 + }, + { + "start": 14302.4, + "end": 14309.24, + "probability": 0.5674 + }, + { + "start": 14309.32, + "end": 14311.9, + "probability": 0.397 + }, + { + "start": 14312.06, + "end": 14312.66, + "probability": 0.0492 + }, + { + "start": 14312.66, + "end": 14315.38, + "probability": 0.6545 + }, + { + "start": 14315.78, + "end": 14319.22, + "probability": 0.998 + }, + { + "start": 14319.74, + "end": 14322.38, + "probability": 0.9114 + }, + { + "start": 14322.76, + "end": 14324.68, + "probability": 0.6262 + }, + { + "start": 14325.34, + "end": 14327.48, + "probability": 0.5947 + }, + { + "start": 14328.22, + "end": 14328.58, + "probability": 0.4992 + }, + { + "start": 14329.46, + "end": 14330.12, + "probability": 0.6768 + }, + { + "start": 14331.78, + "end": 14332.1, + "probability": 0.7608 + }, + { + "start": 14332.9, + "end": 14333.86, + "probability": 0.4653 + }, + { + "start": 14334.5, + "end": 14334.62, + "probability": 0.42 + }, + { + "start": 14335.8, + "end": 14336.18, + "probability": 0.6307 + }, + { + "start": 14336.44, + "end": 14337.1, + "probability": 0.918 + }, + { + "start": 14337.14, + "end": 14338.88, + "probability": 0.666 + }, + { + "start": 14339.18, + "end": 14339.18, + "probability": 0.2888 + }, + { + "start": 14339.18, + "end": 14341.2, + "probability": 0.5572 + }, + { + "start": 14342.92, + "end": 14346.4, + "probability": 0.6804 + }, + { + "start": 14347.22, + "end": 14348.55, + "probability": 0.6626 + }, + { + "start": 14349.44, + "end": 14352.96, + "probability": 0.9951 + }, + { + "start": 14353.54, + "end": 14356.7, + "probability": 0.8498 + }, + { + "start": 14356.9, + "end": 14358.89, + "probability": 0.7007 + }, + { + "start": 14359.44, + "end": 14364.42, + "probability": 0.9473 + }, + { + "start": 14365.08, + "end": 14368.48, + "probability": 0.9531 + }, + { + "start": 14369.32, + "end": 14370.46, + "probability": 0.9948 + }, + { + "start": 14371.36, + "end": 14373.04, + "probability": 0.7758 + }, + { + "start": 14373.82, + "end": 14376.84, + "probability": 0.9304 + }, + { + "start": 14377.42, + "end": 14377.98, + "probability": 0.6152 + }, + { + "start": 14379.08, + "end": 14382.04, + "probability": 0.0759 + }, + { + "start": 14382.48, + "end": 14382.74, + "probability": 0.4722 + }, + { + "start": 14382.92, + "end": 14384.08, + "probability": 0.702 + }, + { + "start": 14384.8, + "end": 14385.5, + "probability": 0.2093 + }, + { + "start": 14385.96, + "end": 14388.28, + "probability": 0.1228 + }, + { + "start": 14389.1, + "end": 14392.88, + "probability": 0.4757 + }, + { + "start": 14393.48, + "end": 14394.06, + "probability": 0.7129 + }, + { + "start": 14395.36, + "end": 14397.38, + "probability": 0.9775 + }, + { + "start": 14397.92, + "end": 14398.56, + "probability": 0.5319 + }, + { + "start": 14398.76, + "end": 14400.82, + "probability": 0.8547 + }, + { + "start": 14401.16, + "end": 14404.36, + "probability": 0.8137 + }, + { + "start": 14404.9, + "end": 14408.56, + "probability": 0.8228 + }, + { + "start": 14409.08, + "end": 14411.88, + "probability": 0.9961 + }, + { + "start": 14412.38, + "end": 14418.02, + "probability": 0.9919 + }, + { + "start": 14418.6, + "end": 14419.02, + "probability": 0.7577 + }, + { + "start": 14419.56, + "end": 14421.7, + "probability": 0.844 + }, + { + "start": 14422.48, + "end": 14423.44, + "probability": 0.7138 + }, + { + "start": 14423.98, + "end": 14424.96, + "probability": 0.9215 + }, + { + "start": 14425.82, + "end": 14426.48, + "probability": 0.9195 + }, + { + "start": 14427.24, + "end": 14427.76, + "probability": 0.7467 + }, + { + "start": 14428.34, + "end": 14430.24, + "probability": 0.859 + }, + { + "start": 14430.84, + "end": 14431.36, + "probability": 0.6943 + }, + { + "start": 14432.08, + "end": 14433.68, + "probability": 0.8432 + }, + { + "start": 14434.4, + "end": 14435.44, + "probability": 0.9355 + }, + { + "start": 14436.2, + "end": 14440.88, + "probability": 0.8274 + }, + { + "start": 14441.14, + "end": 14441.68, + "probability": 0.5662 + }, + { + "start": 14442.42, + "end": 14444.38, + "probability": 0.8101 + }, + { + "start": 14444.56, + "end": 14446.22, + "probability": 0.4327 + }, + { + "start": 14446.22, + "end": 14446.92, + "probability": 0.3459 + }, + { + "start": 14447.5, + "end": 14450.8, + "probability": 0.8455 + }, + { + "start": 14451.14, + "end": 14452.12, + "probability": 0.8146 + }, + { + "start": 14453.3, + "end": 14454.8, + "probability": 0.0205 + }, + { + "start": 14454.8, + "end": 14455.42, + "probability": 0.4688 + }, + { + "start": 14455.66, + "end": 14455.9, + "probability": 0.671 + }, + { + "start": 14455.94, + "end": 14457.3, + "probability": 0.7784 + }, + { + "start": 14457.36, + "end": 14461.56, + "probability": 0.603 + }, + { + "start": 14461.6, + "end": 14463.44, + "probability": 0.9565 + }, + { + "start": 14465.44, + "end": 14467.64, + "probability": 0.8578 + }, + { + "start": 14467.82, + "end": 14469.98, + "probability": 0.9595 + }, + { + "start": 14470.52, + "end": 14471.06, + "probability": 0.5465 + }, + { + "start": 14472.58, + "end": 14474.1, + "probability": 0.3532 + }, + { + "start": 14474.72, + "end": 14476.28, + "probability": 0.3025 + }, + { + "start": 14476.56, + "end": 14480.14, + "probability": 0.8205 + }, + { + "start": 14480.16, + "end": 14483.8, + "probability": 0.9308 + }, + { + "start": 14484.18, + "end": 14485.52, + "probability": 0.8982 + }, + { + "start": 14486.28, + "end": 14489.96, + "probability": 0.9692 + }, + { + "start": 14490.02, + "end": 14493.42, + "probability": 0.975 + }, + { + "start": 14494.18, + "end": 14496.26, + "probability": 0.8215 + }, + { + "start": 14496.86, + "end": 14500.04, + "probability": 0.7604 + }, + { + "start": 14500.82, + "end": 14501.74, + "probability": 0.8553 + }, + { + "start": 14502.32, + "end": 14504.22, + "probability": 0.8978 + }, + { + "start": 14505.04, + "end": 14506.3, + "probability": 0.7141 + }, + { + "start": 14506.94, + "end": 14509.16, + "probability": 0.9628 + }, + { + "start": 14510.06, + "end": 14512.14, + "probability": 0.6069 + }, + { + "start": 14512.14, + "end": 14513.0, + "probability": 0.8794 + }, + { + "start": 14513.34, + "end": 14513.82, + "probability": 0.5853 + }, + { + "start": 14514.22, + "end": 14514.8, + "probability": 0.6749 + }, + { + "start": 14514.9, + "end": 14517.66, + "probability": 0.8222 + }, + { + "start": 14518.0, + "end": 14522.74, + "probability": 0.9935 + }, + { + "start": 14523.82, + "end": 14526.42, + "probability": 0.9233 + }, + { + "start": 14526.86, + "end": 14531.54, + "probability": 0.9971 + }, + { + "start": 14532.12, + "end": 14533.08, + "probability": 0.9906 + }, + { + "start": 14533.36, + "end": 14535.8, + "probability": 0.9965 + }, + { + "start": 14536.14, + "end": 14539.54, + "probability": 0.8691 + }, + { + "start": 14539.98, + "end": 14542.02, + "probability": 0.6856 + }, + { + "start": 14542.4, + "end": 14543.5, + "probability": 0.7414 + }, + { + "start": 14543.78, + "end": 14545.08, + "probability": 0.8047 + }, + { + "start": 14545.78, + "end": 14549.15, + "probability": 0.8685 + }, + { + "start": 14551.46, + "end": 14552.3, + "probability": 0.8508 + }, + { + "start": 14553.32, + "end": 14556.31, + "probability": 0.9873 + }, + { + "start": 14557.04, + "end": 14558.06, + "probability": 0.9608 + }, + { + "start": 14558.74, + "end": 14562.0, + "probability": 0.9639 + }, + { + "start": 14562.62, + "end": 14567.52, + "probability": 0.9405 + }, + { + "start": 14568.06, + "end": 14573.0, + "probability": 0.9442 + }, + { + "start": 14573.7, + "end": 14573.88, + "probability": 0.7327 + }, + { + "start": 14574.34, + "end": 14575.78, + "probability": 0.6416 + }, + { + "start": 14575.82, + "end": 14580.92, + "probability": 0.9659 + }, + { + "start": 14581.28, + "end": 14583.24, + "probability": 0.7268 + }, + { + "start": 14583.62, + "end": 14584.68, + "probability": 0.8866 + }, + { + "start": 14585.38, + "end": 14586.26, + "probability": 0.7472 + }, + { + "start": 14586.92, + "end": 14587.86, + "probability": 0.8811 + }, + { + "start": 14588.66, + "end": 14591.26, + "probability": 0.9341 + }, + { + "start": 14591.78, + "end": 14592.96, + "probability": 0.5507 + }, + { + "start": 14593.08, + "end": 14593.92, + "probability": 0.83 + }, + { + "start": 14594.42, + "end": 14596.64, + "probability": 0.9725 + }, + { + "start": 14597.14, + "end": 14597.78, + "probability": 0.5689 + }, + { + "start": 14597.88, + "end": 14598.35, + "probability": 0.7708 + }, + { + "start": 14599.14, + "end": 14600.04, + "probability": 0.8472 + }, + { + "start": 14600.16, + "end": 14600.72, + "probability": 0.6387 + }, + { + "start": 14601.24, + "end": 14601.58, + "probability": 0.9049 + }, + { + "start": 14601.64, + "end": 14603.74, + "probability": 0.8434 + }, + { + "start": 14604.1, + "end": 14606.62, + "probability": 0.9766 + }, + { + "start": 14607.2, + "end": 14607.62, + "probability": 0.7747 + }, + { + "start": 14608.0, + "end": 14609.27, + "probability": 0.8671 + }, + { + "start": 14609.78, + "end": 14612.78, + "probability": 0.9172 + }, + { + "start": 14613.4, + "end": 14616.2, + "probability": 0.9794 + }, + { + "start": 14616.9, + "end": 14617.22, + "probability": 0.4862 + }, + { + "start": 14617.28, + "end": 14618.72, + "probability": 0.9674 + }, + { + "start": 14618.82, + "end": 14619.88, + "probability": 0.6876 + }, + { + "start": 14620.22, + "end": 14621.42, + "probability": 0.67 + }, + { + "start": 14621.94, + "end": 14624.02, + "probability": 0.8762 + }, + { + "start": 14624.36, + "end": 14627.0, + "probability": 0.7956 + }, + { + "start": 14627.34, + "end": 14628.82, + "probability": 0.8722 + }, + { + "start": 14629.3, + "end": 14630.24, + "probability": 0.7218 + }, + { + "start": 14630.82, + "end": 14633.4, + "probability": 0.9397 + }, + { + "start": 14633.9, + "end": 14635.68, + "probability": 0.6069 + }, + { + "start": 14636.0, + "end": 14636.5, + "probability": 0.6419 + }, + { + "start": 14637.16, + "end": 14638.82, + "probability": 0.8574 + }, + { + "start": 14638.84, + "end": 14639.52, + "probability": 0.8222 + }, + { + "start": 14639.98, + "end": 14644.56, + "probability": 0.9744 + }, + { + "start": 14644.88, + "end": 14645.64, + "probability": 0.7538 + }, + { + "start": 14646.04, + "end": 14647.56, + "probability": 0.8841 + }, + { + "start": 14647.62, + "end": 14648.5, + "probability": 0.7137 + }, + { + "start": 14648.98, + "end": 14649.68, + "probability": 0.5035 + }, + { + "start": 14649.76, + "end": 14650.3, + "probability": 0.9424 + }, + { + "start": 14650.54, + "end": 14650.9, + "probability": 0.9215 + }, + { + "start": 14651.08, + "end": 14651.28, + "probability": 0.7007 + }, + { + "start": 14651.42, + "end": 14652.08, + "probability": 0.8747 + }, + { + "start": 14652.16, + "end": 14652.72, + "probability": 0.504 + }, + { + "start": 14653.38, + "end": 14655.46, + "probability": 0.7774 + }, + { + "start": 14655.76, + "end": 14658.98, + "probability": 0.9828 + }, + { + "start": 14659.66, + "end": 14660.1, + "probability": 0.2771 + }, + { + "start": 14660.14, + "end": 14665.42, + "probability": 0.9546 + }, + { + "start": 14665.92, + "end": 14668.44, + "probability": 0.8022 + }, + { + "start": 14668.58, + "end": 14672.16, + "probability": 0.928 + }, + { + "start": 14672.2, + "end": 14674.2, + "probability": 0.8515 + }, + { + "start": 14674.68, + "end": 14675.82, + "probability": 0.9106 + }, + { + "start": 14676.22, + "end": 14679.27, + "probability": 0.9181 + }, + { + "start": 14680.06, + "end": 14680.96, + "probability": 0.7308 + }, + { + "start": 14681.16, + "end": 14682.88, + "probability": 0.9951 + }, + { + "start": 14683.18, + "end": 14683.7, + "probability": 0.5719 + }, + { + "start": 14684.54, + "end": 14686.1, + "probability": 0.9824 + }, + { + "start": 14686.14, + "end": 14690.3, + "probability": 0.499 + }, + { + "start": 14691.53, + "end": 14696.12, + "probability": 0.6582 + }, + { + "start": 14696.52, + "end": 14698.04, + "probability": 0.7393 + }, + { + "start": 14698.28, + "end": 14698.74, + "probability": 0.719 + }, + { + "start": 14698.78, + "end": 14699.34, + "probability": 0.8167 + }, + { + "start": 14700.56, + "end": 14701.52, + "probability": 0.7066 + }, + { + "start": 14702.52, + "end": 14704.76, + "probability": 0.9139 + }, + { + "start": 14706.68, + "end": 14708.76, + "probability": 0.984 + }, + { + "start": 14708.9, + "end": 14710.36, + "probability": 0.9985 + }, + { + "start": 14711.48, + "end": 14712.3, + "probability": 0.8143 + }, + { + "start": 14713.08, + "end": 14715.32, + "probability": 0.9825 + }, + { + "start": 14715.96, + "end": 14719.56, + "probability": 0.9744 + }, + { + "start": 14720.02, + "end": 14721.74, + "probability": 0.9945 + }, + { + "start": 14722.66, + "end": 14726.9, + "probability": 0.7832 + }, + { + "start": 14727.54, + "end": 14728.16, + "probability": 0.8485 + }, + { + "start": 14728.72, + "end": 14730.11, + "probability": 0.7542 + }, + { + "start": 14730.94, + "end": 14733.56, + "probability": 0.9661 + }, + { + "start": 14734.26, + "end": 14737.38, + "probability": 0.959 + }, + { + "start": 14737.7, + "end": 14740.4, + "probability": 0.7627 + }, + { + "start": 14740.7, + "end": 14743.1, + "probability": 0.8947 + }, + { + "start": 14743.6, + "end": 14745.84, + "probability": 0.9108 + }, + { + "start": 14746.18, + "end": 14747.66, + "probability": 0.9563 + }, + { + "start": 14748.46, + "end": 14750.6, + "probability": 0.8214 + }, + { + "start": 14751.3, + "end": 14751.78, + "probability": 0.5326 + }, + { + "start": 14753.04, + "end": 14753.36, + "probability": 0.9828 + }, + { + "start": 14754.02, + "end": 14754.52, + "probability": 0.8506 + }, + { + "start": 14755.28, + "end": 14755.88, + "probability": 0.9749 + }, + { + "start": 14756.54, + "end": 14758.82, + "probability": 0.7031 + }, + { + "start": 14759.54, + "end": 14759.9, + "probability": 0.8336 + }, + { + "start": 14761.22, + "end": 14768.26, + "probability": 0.9976 + }, + { + "start": 14768.9, + "end": 14771.26, + "probability": 0.9934 + }, + { + "start": 14771.84, + "end": 14772.94, + "probability": 0.9108 + }, + { + "start": 14774.2, + "end": 14776.32, + "probability": 0.7755 + }, + { + "start": 14776.9, + "end": 14777.12, + "probability": 0.9868 + }, + { + "start": 14777.72, + "end": 14783.16, + "probability": 0.984 + }, + { + "start": 14783.6, + "end": 14787.8, + "probability": 0.9833 + }, + { + "start": 14788.16, + "end": 14790.98, + "probability": 0.8943 + }, + { + "start": 14791.42, + "end": 14792.3, + "probability": 0.9123 + }, + { + "start": 14792.74, + "end": 14793.6, + "probability": 0.8591 + }, + { + "start": 14794.0, + "end": 14797.0, + "probability": 0.9863 + }, + { + "start": 14797.62, + "end": 14798.28, + "probability": 0.9358 + }, + { + "start": 14798.64, + "end": 14799.24, + "probability": 0.672 + }, + { + "start": 14799.42, + "end": 14802.64, + "probability": 0.9711 + }, + { + "start": 14803.42, + "end": 14806.62, + "probability": 0.9299 + }, + { + "start": 14807.16, + "end": 14810.1, + "probability": 0.9561 + }, + { + "start": 14810.58, + "end": 14815.06, + "probability": 0.974 + }, + { + "start": 14816.34, + "end": 14816.84, + "probability": 0.7257 + }, + { + "start": 14816.92, + "end": 14820.08, + "probability": 0.9479 + }, + { + "start": 14820.54, + "end": 14820.94, + "probability": 0.8557 + }, + { + "start": 14821.0, + "end": 14822.2, + "probability": 0.9667 + }, + { + "start": 14822.9, + "end": 14824.08, + "probability": 0.955 + }, + { + "start": 14824.66, + "end": 14826.26, + "probability": 0.9513 + }, + { + "start": 14827.22, + "end": 14831.12, + "probability": 0.6666 + }, + { + "start": 14831.88, + "end": 14832.88, + "probability": 0.9156 + }, + { + "start": 14833.2, + "end": 14835.54, + "probability": 0.9836 + }, + { + "start": 14836.2, + "end": 14839.12, + "probability": 0.9868 + }, + { + "start": 14839.52, + "end": 14842.08, + "probability": 0.8328 + }, + { + "start": 14842.68, + "end": 14848.38, + "probability": 0.9834 + }, + { + "start": 14849.2, + "end": 14855.24, + "probability": 0.9232 + }, + { + "start": 14855.24, + "end": 14859.2, + "probability": 0.9214 + }, + { + "start": 14860.28, + "end": 14865.66, + "probability": 0.9712 + }, + { + "start": 14866.18, + "end": 14869.3, + "probability": 0.9711 + }, + { + "start": 14869.92, + "end": 14873.56, + "probability": 0.9616 + }, + { + "start": 14873.8, + "end": 14877.3, + "probability": 0.9956 + }, + { + "start": 14877.82, + "end": 14882.46, + "probability": 0.9871 + }, + { + "start": 14883.0, + "end": 14884.86, + "probability": 0.8983 + }, + { + "start": 14885.7, + "end": 14886.3, + "probability": 0.7307 + }, + { + "start": 14886.3, + "end": 14886.54, + "probability": 0.3189 + }, + { + "start": 14886.64, + "end": 14891.84, + "probability": 0.9184 + }, + { + "start": 14892.32, + "end": 14895.06, + "probability": 0.9429 + }, + { + "start": 14895.58, + "end": 14896.48, + "probability": 0.873 + }, + { + "start": 14896.94, + "end": 14897.37, + "probability": 0.8813 + }, + { + "start": 14898.34, + "end": 14898.96, + "probability": 0.9523 + }, + { + "start": 14908.62, + "end": 14908.98, + "probability": 0.3747 + }, + { + "start": 14909.78, + "end": 14911.86, + "probability": 0.608 + }, + { + "start": 14912.08, + "end": 14915.92, + "probability": 0.9539 + }, + { + "start": 14916.96, + "end": 14917.68, + "probability": 0.7407 + }, + { + "start": 14917.82, + "end": 14921.48, + "probability": 0.9861 + }, + { + "start": 14921.96, + "end": 14923.8, + "probability": 0.8967 + }, + { + "start": 14923.96, + "end": 14924.0, + "probability": 0.7296 + }, + { + "start": 14924.0, + "end": 14925.68, + "probability": 0.9778 + }, + { + "start": 14925.8, + "end": 14926.26, + "probability": 0.719 + }, + { + "start": 14926.26, + "end": 14927.74, + "probability": 0.812 + }, + { + "start": 14930.28, + "end": 14932.38, + "probability": 0.9458 + }, + { + "start": 14932.58, + "end": 14933.46, + "probability": 0.5524 + }, + { + "start": 14933.76, + "end": 14936.46, + "probability": 0.9499 + }, + { + "start": 14936.46, + "end": 14939.32, + "probability": 0.9584 + }, + { + "start": 14939.56, + "end": 14941.0, + "probability": 0.8891 + }, + { + "start": 14941.46, + "end": 14943.58, + "probability": 0.9762 + }, + { + "start": 14943.84, + "end": 14945.82, + "probability": 0.9565 + }, + { + "start": 14946.24, + "end": 14946.78, + "probability": 0.4413 + }, + { + "start": 14947.92, + "end": 14952.14, + "probability": 0.9578 + }, + { + "start": 14952.62, + "end": 14954.06, + "probability": 0.959 + }, + { + "start": 14955.0, + "end": 14960.32, + "probability": 0.907 + }, + { + "start": 14960.32, + "end": 14963.84, + "probability": 0.8222 + }, + { + "start": 14964.12, + "end": 14965.38, + "probability": 0.9348 + }, + { + "start": 14965.86, + "end": 14967.23, + "probability": 0.8232 + }, + { + "start": 14968.04, + "end": 14970.76, + "probability": 0.9952 + }, + { + "start": 14971.96, + "end": 14973.44, + "probability": 0.8646 + }, + { + "start": 14973.5, + "end": 14975.72, + "probability": 0.8875 + }, + { + "start": 14975.78, + "end": 14976.26, + "probability": 0.7218 + }, + { + "start": 14976.88, + "end": 14981.98, + "probability": 0.8975 + }, + { + "start": 14982.68, + "end": 14985.74, + "probability": 0.7068 + }, + { + "start": 14986.06, + "end": 14988.16, + "probability": 0.882 + }, + { + "start": 14988.2, + "end": 14990.44, + "probability": 0.9595 + }, + { + "start": 14990.5, + "end": 14991.26, + "probability": 0.9512 + }, + { + "start": 14991.9, + "end": 14994.48, + "probability": 0.9649 + }, + { + "start": 14994.94, + "end": 14997.24, + "probability": 0.9799 + }, + { + "start": 14997.76, + "end": 15000.0, + "probability": 0.9252 + }, + { + "start": 15000.58, + "end": 15002.3, + "probability": 0.6356 + }, + { + "start": 15002.46, + "end": 15003.92, + "probability": 0.8479 + }, + { + "start": 15004.5, + "end": 15005.64, + "probability": 0.7782 + }, + { + "start": 15005.74, + "end": 15008.62, + "probability": 0.9736 + }, + { + "start": 15009.16, + "end": 15009.54, + "probability": 0.5806 + }, + { + "start": 15009.7, + "end": 15011.46, + "probability": 0.6845 + }, + { + "start": 15011.92, + "end": 15013.36, + "probability": 0.9927 + }, + { + "start": 15014.06, + "end": 15017.08, + "probability": 0.9401 + }, + { + "start": 15017.26, + "end": 15018.14, + "probability": 0.5744 + }, + { + "start": 15018.58, + "end": 15019.56, + "probability": 0.5601 + }, + { + "start": 15019.76, + "end": 15020.18, + "probability": 0.8193 + }, + { + "start": 15020.62, + "end": 15021.68, + "probability": 0.9181 + }, + { + "start": 15021.78, + "end": 15023.34, + "probability": 0.8762 + }, + { + "start": 15023.72, + "end": 15024.68, + "probability": 0.8867 + }, + { + "start": 15024.72, + "end": 15025.56, + "probability": 0.9467 + }, + { + "start": 15026.0, + "end": 15029.68, + "probability": 0.9863 + }, + { + "start": 15030.22, + "end": 15034.61, + "probability": 0.7585 + }, + { + "start": 15035.2, + "end": 15037.42, + "probability": 0.9259 + }, + { + "start": 15038.28, + "end": 15039.94, + "probability": 0.7762 + }, + { + "start": 15040.5, + "end": 15044.86, + "probability": 0.8089 + }, + { + "start": 15044.94, + "end": 15047.36, + "probability": 0.9503 + }, + { + "start": 15047.46, + "end": 15047.64, + "probability": 0.7984 + }, + { + "start": 15048.0, + "end": 15049.12, + "probability": 0.6543 + }, + { + "start": 15050.28, + "end": 15054.08, + "probability": 0.9462 + }, + { + "start": 15054.2, + "end": 15057.82, + "probability": 0.684 + }, + { + "start": 15058.42, + "end": 15058.74, + "probability": 0.0648 + }, + { + "start": 15059.32, + "end": 15063.78, + "probability": 0.8659 + }, + { + "start": 15064.88, + "end": 15067.26, + "probability": 0.2234 + }, + { + "start": 15067.94, + "end": 15068.96, + "probability": 0.6093 + }, + { + "start": 15069.46, + "end": 15074.84, + "probability": 0.9299 + }, + { + "start": 15074.88, + "end": 15075.76, + "probability": 0.5929 + }, + { + "start": 15079.36, + "end": 15081.2, + "probability": 0.638 + }, + { + "start": 15081.56, + "end": 15083.67, + "probability": 0.8271 + }, + { + "start": 15084.06, + "end": 15084.9, + "probability": 0.8889 + }, + { + "start": 15086.2, + "end": 15086.6, + "probability": 0.7579 + }, + { + "start": 15087.46, + "end": 15087.9, + "probability": 0.9653 + }, + { + "start": 15091.8, + "end": 15093.22, + "probability": 0.9595 + }, + { + "start": 15094.14, + "end": 15094.52, + "probability": 0.9727 + }, + { + "start": 15096.22, + "end": 15097.78, + "probability": 0.7146 + }, + { + "start": 15099.6, + "end": 15101.53, + "probability": 0.8972 + }, + { + "start": 15102.94, + "end": 15103.98, + "probability": 0.1703 + }, + { + "start": 15105.66, + "end": 15109.24, + "probability": 0.9976 + }, + { + "start": 15109.24, + "end": 15114.74, + "probability": 0.9889 + }, + { + "start": 15115.36, + "end": 15116.22, + "probability": 0.8361 + }, + { + "start": 15117.8, + "end": 15121.52, + "probability": 0.7422 + }, + { + "start": 15122.64, + "end": 15127.66, + "probability": 0.9962 + }, + { + "start": 15127.66, + "end": 15133.9, + "probability": 0.9878 + }, + { + "start": 15134.64, + "end": 15138.5, + "probability": 0.821 + }, + { + "start": 15139.88, + "end": 15140.82, + "probability": 0.856 + }, + { + "start": 15141.4, + "end": 15145.1, + "probability": 0.9518 + }, + { + "start": 15145.62, + "end": 15147.14, + "probability": 0.8951 + }, + { + "start": 15147.8, + "end": 15150.08, + "probability": 0.9955 + }, + { + "start": 15150.64, + "end": 15154.96, + "probability": 0.9879 + }, + { + "start": 15155.28, + "end": 15158.86, + "probability": 0.9812 + }, + { + "start": 15159.46, + "end": 15165.02, + "probability": 0.9904 + }, + { + "start": 15166.28, + "end": 15168.2, + "probability": 0.9968 + }, + { + "start": 15169.04, + "end": 15174.08, + "probability": 0.8208 + }, + { + "start": 15175.1, + "end": 15177.84, + "probability": 0.9863 + }, + { + "start": 15178.42, + "end": 15182.84, + "probability": 0.9984 + }, + { + "start": 15182.84, + "end": 15185.94, + "probability": 0.9961 + }, + { + "start": 15186.7, + "end": 15188.22, + "probability": 0.9012 + }, + { + "start": 15188.74, + "end": 15190.4, + "probability": 0.9983 + }, + { + "start": 15191.08, + "end": 15195.86, + "probability": 0.9836 + }, + { + "start": 15196.7, + "end": 15201.8, + "probability": 0.8677 + }, + { + "start": 15201.8, + "end": 15205.0, + "probability": 0.9893 + }, + { + "start": 15206.62, + "end": 15209.94, + "probability": 0.7036 + }, + { + "start": 15210.56, + "end": 15212.68, + "probability": 0.9833 + }, + { + "start": 15213.38, + "end": 15217.68, + "probability": 0.9946 + }, + { + "start": 15217.68, + "end": 15222.94, + "probability": 0.9882 + }, + { + "start": 15224.02, + "end": 15229.2, + "probability": 0.9946 + }, + { + "start": 15229.86, + "end": 15232.36, + "probability": 0.9829 + }, + { + "start": 15232.96, + "end": 15234.24, + "probability": 0.9649 + }, + { + "start": 15234.84, + "end": 15236.9, + "probability": 0.9957 + }, + { + "start": 15237.44, + "end": 15241.76, + "probability": 0.9969 + }, + { + "start": 15242.42, + "end": 15246.84, + "probability": 0.9889 + }, + { + "start": 15247.36, + "end": 15247.58, + "probability": 0.9856 + }, + { + "start": 15249.38, + "end": 15252.7, + "probability": 0.982 + }, + { + "start": 15253.34, + "end": 15257.32, + "probability": 0.9948 + }, + { + "start": 15257.74, + "end": 15261.36, + "probability": 0.9773 + }, + { + "start": 15262.16, + "end": 15262.52, + "probability": 0.7385 + }, + { + "start": 15263.24, + "end": 15264.28, + "probability": 0.7777 + }, + { + "start": 15264.83, + "end": 15266.73, + "probability": 0.8271 + }, + { + "start": 15268.3, + "end": 15271.32, + "probability": 0.8952 + }, + { + "start": 15271.74, + "end": 15273.84, + "probability": 0.7751 + }, + { + "start": 15275.04, + "end": 15277.88, + "probability": 0.5523 + }, + { + "start": 15277.94, + "end": 15279.78, + "probability": 0.8182 + }, + { + "start": 15280.44, + "end": 15283.06, + "probability": 0.8944 + }, + { + "start": 15284.96, + "end": 15287.36, + "probability": 0.8645 + }, + { + "start": 15288.66, + "end": 15289.62, + "probability": 0.8741 + }, + { + "start": 15290.64, + "end": 15291.06, + "probability": 0.7369 + }, + { + "start": 15296.34, + "end": 15297.56, + "probability": 0.5732 + }, + { + "start": 15297.56, + "end": 15299.0, + "probability": 0.6433 + }, + { + "start": 15299.12, + "end": 15302.74, + "probability": 0.9864 + }, + { + "start": 15303.97, + "end": 15307.63, + "probability": 0.9906 + }, + { + "start": 15308.92, + "end": 15311.52, + "probability": 0.631 + }, + { + "start": 15312.46, + "end": 15316.18, + "probability": 0.6234 + }, + { + "start": 15317.12, + "end": 15319.64, + "probability": 0.9912 + }, + { + "start": 15320.12, + "end": 15321.77, + "probability": 0.9869 + }, + { + "start": 15322.0, + "end": 15325.96, + "probability": 0.9957 + }, + { + "start": 15326.76, + "end": 15328.18, + "probability": 0.9848 + }, + { + "start": 15328.78, + "end": 15330.07, + "probability": 0.9791 + }, + { + "start": 15330.32, + "end": 15333.88, + "probability": 0.9662 + }, + { + "start": 15333.96, + "end": 15336.08, + "probability": 0.9192 + }, + { + "start": 15336.74, + "end": 15338.34, + "probability": 0.8376 + }, + { + "start": 15339.22, + "end": 15341.22, + "probability": 0.5388 + }, + { + "start": 15341.94, + "end": 15343.04, + "probability": 0.8843 + }, + { + "start": 15343.94, + "end": 15345.48, + "probability": 0.973 + }, + { + "start": 15345.84, + "end": 15346.7, + "probability": 0.9347 + }, + { + "start": 15346.86, + "end": 15350.1, + "probability": 0.9963 + }, + { + "start": 15350.16, + "end": 15351.06, + "probability": 0.8435 + }, + { + "start": 15351.56, + "end": 15352.02, + "probability": 0.6093 + }, + { + "start": 15352.28, + "end": 15352.78, + "probability": 0.8275 + }, + { + "start": 15353.24, + "end": 15358.36, + "probability": 0.8359 + }, + { + "start": 15358.48, + "end": 15359.18, + "probability": 0.9395 + }, + { + "start": 15359.24, + "end": 15360.56, + "probability": 0.9771 + }, + { + "start": 15360.6, + "end": 15361.22, + "probability": 0.8813 + }, + { + "start": 15361.28, + "end": 15362.38, + "probability": 0.9829 + }, + { + "start": 15362.6, + "end": 15364.66, + "probability": 0.9556 + }, + { + "start": 15364.76, + "end": 15366.51, + "probability": 0.8731 + }, + { + "start": 15367.16, + "end": 15367.42, + "probability": 0.6749 + }, + { + "start": 15367.46, + "end": 15369.64, + "probability": 0.8956 + }, + { + "start": 15370.2, + "end": 15370.42, + "probability": 0.5101 + }, + { + "start": 15371.74, + "end": 15373.3, + "probability": 0.2081 + }, + { + "start": 15374.98, + "end": 15376.48, + "probability": 0.9719 + }, + { + "start": 15376.6, + "end": 15377.46, + "probability": 0.6554 + }, + { + "start": 15378.72, + "end": 15380.84, + "probability": 0.9401 + }, + { + "start": 15381.72, + "end": 15383.44, + "probability": 0.9614 + }, + { + "start": 15383.98, + "end": 15385.6, + "probability": 0.9744 + }, + { + "start": 15385.72, + "end": 15389.28, + "probability": 0.9917 + }, + { + "start": 15389.76, + "end": 15391.6, + "probability": 0.9881 + }, + { + "start": 15392.28, + "end": 15394.34, + "probability": 0.6946 + }, + { + "start": 15394.86, + "end": 15396.42, + "probability": 0.9937 + }, + { + "start": 15396.92, + "end": 15398.93, + "probability": 0.9922 + }, + { + "start": 15399.72, + "end": 15402.46, + "probability": 0.9529 + }, + { + "start": 15403.04, + "end": 15404.58, + "probability": 0.9839 + }, + { + "start": 15404.7, + "end": 15408.42, + "probability": 0.9277 + }, + { + "start": 15408.52, + "end": 15409.16, + "probability": 0.7899 + }, + { + "start": 15409.66, + "end": 15410.8, + "probability": 0.8305 + }, + { + "start": 15411.46, + "end": 15417.69, + "probability": 0.9515 + }, + { + "start": 15418.66, + "end": 15418.98, + "probability": 0.7213 + }, + { + "start": 15419.16, + "end": 15419.36, + "probability": 0.7129 + }, + { + "start": 15419.62, + "end": 15421.14, + "probability": 0.9581 + }, + { + "start": 15421.26, + "end": 15423.35, + "probability": 0.9426 + }, + { + "start": 15424.46, + "end": 15427.78, + "probability": 0.9349 + }, + { + "start": 15428.26, + "end": 15429.44, + "probability": 0.9408 + }, + { + "start": 15430.88, + "end": 15434.76, + "probability": 0.4538 + }, + { + "start": 15435.12, + "end": 15436.16, + "probability": 0.9014 + }, + { + "start": 15436.46, + "end": 15438.62, + "probability": 0.8389 + }, + { + "start": 15439.0, + "end": 15442.08, + "probability": 0.9942 + }, + { + "start": 15442.74, + "end": 15443.86, + "probability": 0.9091 + }, + { + "start": 15444.4, + "end": 15445.94, + "probability": 0.8806 + }, + { + "start": 15446.68, + "end": 15448.22, + "probability": 0.7784 + }, + { + "start": 15448.34, + "end": 15449.78, + "probability": 0.8984 + }, + { + "start": 15450.32, + "end": 15452.64, + "probability": 0.9568 + }, + { + "start": 15453.22, + "end": 15456.1, + "probability": 0.6415 + }, + { + "start": 15456.4, + "end": 15457.7, + "probability": 0.6556 + }, + { + "start": 15458.28, + "end": 15460.78, + "probability": 0.8468 + }, + { + "start": 15461.9, + "end": 15462.7, + "probability": 0.4874 + }, + { + "start": 15462.74, + "end": 15464.96, + "probability": 0.9935 + }, + { + "start": 15465.32, + "end": 15467.09, + "probability": 0.9896 + }, + { + "start": 15467.47, + "end": 15472.31, + "probability": 0.9993 + }, + { + "start": 15472.81, + "end": 15474.19, + "probability": 0.7357 + }, + { + "start": 15474.59, + "end": 15475.65, + "probability": 0.9442 + }, + { + "start": 15476.09, + "end": 15477.67, + "probability": 0.9782 + }, + { + "start": 15478.03, + "end": 15480.09, + "probability": 0.9888 + }, + { + "start": 15480.51, + "end": 15480.85, + "probability": 0.7867 + }, + { + "start": 15481.33, + "end": 15482.47, + "probability": 0.5745 + }, + { + "start": 15482.75, + "end": 15488.71, + "probability": 0.9165 + }, + { + "start": 15491.21, + "end": 15491.83, + "probability": 0.4532 + }, + { + "start": 15491.85, + "end": 15493.85, + "probability": 0.7125 + }, + { + "start": 15494.17, + "end": 15495.55, + "probability": 0.361 + }, + { + "start": 15508.17, + "end": 15512.67, + "probability": 0.5024 + }, + { + "start": 15513.19, + "end": 15513.45, + "probability": 0.182 + }, + { + "start": 15513.99, + "end": 15518.29, + "probability": 0.7373 + }, + { + "start": 15518.97, + "end": 15520.71, + "probability": 0.2374 + }, + { + "start": 15521.69, + "end": 15527.57, + "probability": 0.5842 + }, + { + "start": 15528.45, + "end": 15529.13, + "probability": 0.0402 + }, + { + "start": 15543.23, + "end": 15543.75, + "probability": 0.1033 + }, + { + "start": 15546.67, + "end": 15551.91, + "probability": 0.0392 + }, + { + "start": 15552.47, + "end": 15556.02, + "probability": 0.1267 + }, + { + "start": 15556.79, + "end": 15558.79, + "probability": 0.1197 + }, + { + "start": 15559.33, + "end": 15561.65, + "probability": 0.1019 + }, + { + "start": 15562.33, + "end": 15563.28, + "probability": 0.0268 + }, + { + "start": 15565.17, + "end": 15566.05, + "probability": 0.0471 + }, + { + "start": 15566.05, + "end": 15566.57, + "probability": 0.1362 + }, + { + "start": 15566.99, + "end": 15566.99, + "probability": 0.3473 + }, + { + "start": 15567.26, + "end": 15567.79, + "probability": 0.1096 + }, + { + "start": 15567.79, + "end": 15568.77, + "probability": 0.043 + }, + { + "start": 15568.99, + "end": 15568.99, + "probability": 0.0117 + }, + { + "start": 15571.62, + "end": 15571.83, + "probability": 0.0173 + }, + { + "start": 15572.23, + "end": 15573.29, + "probability": 0.2996 + }, + { + "start": 15573.29, + "end": 15574.51, + "probability": 0.1412 + }, + { + "start": 15582.27, + "end": 15583.45, + "probability": 0.1313 + }, + { + "start": 15597.0, + "end": 15597.0, + "probability": 0.0 + }, + { + "start": 15597.0, + "end": 15597.0, + "probability": 0.0 + }, + { + "start": 15597.0, + "end": 15597.0, + "probability": 0.0 + }, + { + "start": 15597.0, + "end": 15597.0, + "probability": 0.0 + }, + { + "start": 15597.0, + "end": 15597.0, + "probability": 0.0 + }, + { + "start": 15597.0, + "end": 15597.0, + "probability": 0.0 + }, + { + "start": 15597.0, + "end": 15597.0, + "probability": 0.0 + }, + { + "start": 15597.0, + "end": 15597.0, + "probability": 0.0 + }, + { + "start": 15597.0, + "end": 15597.0, + "probability": 0.0 + }, + { + "start": 15597.0, + "end": 15597.0, + "probability": 0.0 + }, + { + "start": 15597.22, + "end": 15597.22, + "probability": 0.0081 + }, + { + "start": 15597.22, + "end": 15597.22, + "probability": 0.1635 + }, + { + "start": 15597.22, + "end": 15597.22, + "probability": 0.1347 + }, + { + "start": 15597.22, + "end": 15597.22, + "probability": 0.0529 + }, + { + "start": 15597.22, + "end": 15600.52, + "probability": 0.6616 + }, + { + "start": 15600.96, + "end": 15605.92, + "probability": 0.5293 + }, + { + "start": 15607.02, + "end": 15613.24, + "probability": 0.9897 + }, + { + "start": 15613.36, + "end": 15618.9, + "probability": 0.9996 + }, + { + "start": 15620.4, + "end": 15623.54, + "probability": 0.995 + }, + { + "start": 15624.24, + "end": 15627.74, + "probability": 0.919 + }, + { + "start": 15628.12, + "end": 15628.96, + "probability": 0.9894 + }, + { + "start": 15629.56, + "end": 15631.72, + "probability": 0.9926 + }, + { + "start": 15632.56, + "end": 15632.92, + "probability": 0.9905 + }, + { + "start": 15634.08, + "end": 15638.6, + "probability": 0.9806 + }, + { + "start": 15639.82, + "end": 15641.68, + "probability": 0.6232 + }, + { + "start": 15642.64, + "end": 15645.06, + "probability": 0.731 + }, + { + "start": 15646.04, + "end": 15650.6, + "probability": 0.7363 + }, + { + "start": 15651.44, + "end": 15655.92, + "probability": 0.9899 + }, + { + "start": 15656.82, + "end": 15660.42, + "probability": 0.9971 + }, + { + "start": 15660.42, + "end": 15663.62, + "probability": 0.9906 + }, + { + "start": 15664.92, + "end": 15665.36, + "probability": 0.6269 + }, + { + "start": 15666.22, + "end": 15668.78, + "probability": 0.999 + }, + { + "start": 15669.36, + "end": 15673.28, + "probability": 0.9935 + }, + { + "start": 15674.06, + "end": 15679.38, + "probability": 0.9683 + }, + { + "start": 15679.98, + "end": 15682.66, + "probability": 0.9972 + }, + { + "start": 15683.32, + "end": 15687.74, + "probability": 0.9962 + }, + { + "start": 15688.7, + "end": 15689.54, + "probability": 0.6876 + }, + { + "start": 15690.12, + "end": 15694.57, + "probability": 0.9625 + }, + { + "start": 15694.74, + "end": 15700.34, + "probability": 0.9309 + }, + { + "start": 15700.48, + "end": 15700.58, + "probability": 0.7037 + }, + { + "start": 15701.66, + "end": 15702.74, + "probability": 0.6919 + }, + { + "start": 15703.92, + "end": 15707.18, + "probability": 0.799 + }, + { + "start": 15708.14, + "end": 15708.82, + "probability": 0.7783 + }, + { + "start": 15708.92, + "end": 15710.41, + "probability": 0.9957 + }, + { + "start": 15710.76, + "end": 15711.26, + "probability": 0.8121 + }, + { + "start": 15711.74, + "end": 15712.68, + "probability": 0.7487 + }, + { + "start": 15713.38, + "end": 15715.74, + "probability": 0.5442 + }, + { + "start": 15715.8, + "end": 15716.18, + "probability": 0.6346 + }, + { + "start": 15716.32, + "end": 15717.46, + "probability": 0.767 + }, + { + "start": 15717.56, + "end": 15717.96, + "probability": 0.6062 + }, + { + "start": 15718.64, + "end": 15722.94, + "probability": 0.8775 + }, + { + "start": 15723.06, + "end": 15723.6, + "probability": 0.8813 + }, + { + "start": 15737.62, + "end": 15738.18, + "probability": 0.3589 + }, + { + "start": 15738.3, + "end": 15739.34, + "probability": 0.7477 + }, + { + "start": 15740.02, + "end": 15741.72, + "probability": 0.6196 + }, + { + "start": 15743.1, + "end": 15746.23, + "probability": 0.9902 + }, + { + "start": 15747.86, + "end": 15748.32, + "probability": 0.3765 + }, + { + "start": 15748.32, + "end": 15748.42, + "probability": 0.6384 + }, + { + "start": 15750.6, + "end": 15753.56, + "probability": 0.9905 + }, + { + "start": 15754.82, + "end": 15756.78, + "probability": 0.7719 + }, + { + "start": 15757.82, + "end": 15759.6, + "probability": 0.8569 + }, + { + "start": 15759.74, + "end": 15761.1, + "probability": 0.9711 + }, + { + "start": 15762.22, + "end": 15766.22, + "probability": 0.7391 + }, + { + "start": 15767.4, + "end": 15769.0, + "probability": 0.7949 + }, + { + "start": 15769.06, + "end": 15769.4, + "probability": 0.3209 + }, + { + "start": 15770.6, + "end": 15776.22, + "probability": 0.9771 + }, + { + "start": 15777.32, + "end": 15782.34, + "probability": 0.8778 + }, + { + "start": 15783.46, + "end": 15786.86, + "probability": 0.704 + }, + { + "start": 15788.75, + "end": 15792.32, + "probability": 0.863 + }, + { + "start": 15793.08, + "end": 15794.34, + "probability": 0.6832 + }, + { + "start": 15795.3, + "end": 15798.2, + "probability": 0.8616 + }, + { + "start": 15798.3, + "end": 15798.98, + "probability": 0.9207 + }, + { + "start": 15799.9, + "end": 15801.58, + "probability": 0.9606 + }, + { + "start": 15801.7, + "end": 15803.42, + "probability": 0.7882 + }, + { + "start": 15804.92, + "end": 15807.07, + "probability": 0.8618 + }, + { + "start": 15808.3, + "end": 15810.95, + "probability": 0.6105 + }, + { + "start": 15812.47, + "end": 15815.32, + "probability": 0.9358 + }, + { + "start": 15816.44, + "end": 15820.54, + "probability": 0.9923 + }, + { + "start": 15820.78, + "end": 15821.84, + "probability": 0.8935 + }, + { + "start": 15822.14, + "end": 15823.0, + "probability": 0.9676 + }, + { + "start": 15823.96, + "end": 15827.3, + "probability": 0.6907 + }, + { + "start": 15828.12, + "end": 15831.64, + "probability": 0.9968 + }, + { + "start": 15832.36, + "end": 15833.52, + "probability": 0.7151 + }, + { + "start": 15833.62, + "end": 15834.1, + "probability": 0.6788 + }, + { + "start": 15834.9, + "end": 15835.92, + "probability": 0.9783 + }, + { + "start": 15836.16, + "end": 15836.5, + "probability": 0.8984 + }, + { + "start": 15837.42, + "end": 15839.48, + "probability": 0.97 + }, + { + "start": 15840.94, + "end": 15844.44, + "probability": 0.9661 + }, + { + "start": 15845.2, + "end": 15845.78, + "probability": 0.5238 + }, + { + "start": 15845.92, + "end": 15852.18, + "probability": 0.9707 + }, + { + "start": 15852.92, + "end": 15854.86, + "probability": 0.8082 + }, + { + "start": 15856.14, + "end": 15857.76, + "probability": 0.9614 + }, + { + "start": 15858.52, + "end": 15860.0, + "probability": 0.9857 + }, + { + "start": 15861.04, + "end": 15861.86, + "probability": 0.5659 + }, + { + "start": 15862.02, + "end": 15864.4, + "probability": 0.9907 + }, + { + "start": 15866.12, + "end": 15868.72, + "probability": 0.9839 + }, + { + "start": 15869.46, + "end": 15874.38, + "probability": 0.4312 + }, + { + "start": 15874.92, + "end": 15876.3, + "probability": 0.5532 + }, + { + "start": 15877.24, + "end": 15880.16, + "probability": 0.6808 + }, + { + "start": 15880.98, + "end": 15881.2, + "probability": 0.581 + }, + { + "start": 15881.2, + "end": 15883.64, + "probability": 0.9922 + }, + { + "start": 15884.06, + "end": 15885.66, + "probability": 0.9827 + }, + { + "start": 15886.38, + "end": 15888.54, + "probability": 0.6232 + }, + { + "start": 15889.44, + "end": 15890.07, + "probability": 0.3352 + }, + { + "start": 15890.44, + "end": 15891.92, + "probability": 0.9548 + }, + { + "start": 15892.94, + "end": 15897.7, + "probability": 0.897 + }, + { + "start": 15898.46, + "end": 15900.12, + "probability": 0.9966 + }, + { + "start": 15901.12, + "end": 15906.58, + "probability": 0.8266 + }, + { + "start": 15907.9, + "end": 15910.14, + "probability": 0.9402 + }, + { + "start": 15911.0, + "end": 15913.42, + "probability": 0.9971 + }, + { + "start": 15914.14, + "end": 15917.34, + "probability": 0.8893 + }, + { + "start": 15917.96, + "end": 15921.0, + "probability": 0.9954 + }, + { + "start": 15921.06, + "end": 15922.36, + "probability": 0.959 + }, + { + "start": 15922.96, + "end": 15925.17, + "probability": 0.9879 + }, + { + "start": 15926.28, + "end": 15927.0, + "probability": 0.8931 + }, + { + "start": 15927.18, + "end": 15928.38, + "probability": 0.7964 + }, + { + "start": 15928.74, + "end": 15929.04, + "probability": 0.5015 + }, + { + "start": 15929.3, + "end": 15930.08, + "probability": 0.5838 + }, + { + "start": 15930.56, + "end": 15934.28, + "probability": 0.8671 + }, + { + "start": 15935.2, + "end": 15937.38, + "probability": 0.6643 + }, + { + "start": 15938.12, + "end": 15938.76, + "probability": 0.6137 + }, + { + "start": 15938.78, + "end": 15939.38, + "probability": 0.5843 + }, + { + "start": 15953.06, + "end": 15957.48, + "probability": 0.577 + }, + { + "start": 15957.48, + "end": 15962.06, + "probability": 0.7531 + }, + { + "start": 15962.24, + "end": 15962.92, + "probability": 0.3681 + }, + { + "start": 15968.36, + "end": 15968.98, + "probability": 0.0448 + }, + { + "start": 15971.78, + "end": 15976.9, + "probability": 0.2099 + }, + { + "start": 15977.64, + "end": 15981.12, + "probability": 0.0713 + }, + { + "start": 15983.07, + "end": 15987.24, + "probability": 0.0286 + }, + { + "start": 15991.86, + "end": 15993.92, + "probability": 0.0834 + }, + { + "start": 16001.38, + "end": 16004.22, + "probability": 0.0384 + }, + { + "start": 16004.96, + "end": 16006.2, + "probability": 0.049 + }, + { + "start": 16006.36, + "end": 16011.02, + "probability": 0.1056 + }, + { + "start": 16012.1, + "end": 16012.94, + "probability": 0.2853 + }, + { + "start": 16012.94, + "end": 16013.42, + "probability": 0.2863 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.24, + "end": 16035.24, + "probability": 0.2008 + }, + { + "start": 16035.24, + "end": 16035.24, + "probability": 0.249 + }, + { + "start": 16035.24, + "end": 16035.24, + "probability": 0.1439 + }, + { + "start": 16035.24, + "end": 16035.24, + "probability": 0.1238 + }, + { + "start": 16035.24, + "end": 16036.98, + "probability": 0.3145 + }, + { + "start": 16036.98, + "end": 16039.62, + "probability": 0.3428 + }, + { + "start": 16039.78, + "end": 16041.58, + "probability": 0.1456 + }, + { + "start": 16042.3, + "end": 16043.96, + "probability": 0.8615 + }, + { + "start": 16044.46, + "end": 16048.94, + "probability": 0.985 + }, + { + "start": 16049.28, + "end": 16051.7, + "probability": 0.9712 + }, + { + "start": 16052.3, + "end": 16053.6, + "probability": 0.8039 + }, + { + "start": 16054.12, + "end": 16057.12, + "probability": 0.9868 + }, + { + "start": 16057.74, + "end": 16060.9, + "probability": 0.9917 + }, + { + "start": 16060.96, + "end": 16062.54, + "probability": 0.9716 + }, + { + "start": 16062.64, + "end": 16063.28, + "probability": 0.6383 + }, + { + "start": 16063.32, + "end": 16063.88, + "probability": 0.9105 + }, + { + "start": 16064.0, + "end": 16064.8, + "probability": 0.815 + }, + { + "start": 16065.56, + "end": 16066.12, + "probability": 0.8663 + }, + { + "start": 16066.22, + "end": 16066.98, + "probability": 0.958 + }, + { + "start": 16067.06, + "end": 16067.7, + "probability": 0.9865 + }, + { + "start": 16067.8, + "end": 16068.94, + "probability": 0.9471 + }, + { + "start": 16070.16, + "end": 16071.52, + "probability": 0.9213 + }, + { + "start": 16071.52, + "end": 16074.02, + "probability": 0.9228 + }, + { + "start": 16074.2, + "end": 16078.18, + "probability": 0.9933 + }, + { + "start": 16078.72, + "end": 16081.78, + "probability": 0.905 + }, + { + "start": 16083.14, + "end": 16084.04, + "probability": 0.7388 + }, + { + "start": 16084.12, + "end": 16087.42, + "probability": 0.9888 + }, + { + "start": 16087.52, + "end": 16089.96, + "probability": 0.9386 + }, + { + "start": 16090.5, + "end": 16091.98, + "probability": 0.9954 + }, + { + "start": 16092.52, + "end": 16095.86, + "probability": 0.9895 + }, + { + "start": 16095.94, + "end": 16097.6, + "probability": 0.8908 + }, + { + "start": 16097.66, + "end": 16101.28, + "probability": 0.9958 + }, + { + "start": 16102.4, + "end": 16102.86, + "probability": 0.8173 + }, + { + "start": 16102.98, + "end": 16105.36, + "probability": 0.9791 + }, + { + "start": 16105.36, + "end": 16107.4, + "probability": 0.9608 + }, + { + "start": 16107.56, + "end": 16109.58, + "probability": 0.8928 + }, + { + "start": 16109.74, + "end": 16110.62, + "probability": 0.6942 + }, + { + "start": 16111.18, + "end": 16113.94, + "probability": 0.957 + }, + { + "start": 16113.94, + "end": 16116.22, + "probability": 0.9851 + }, + { + "start": 16116.96, + "end": 16117.34, + "probability": 0.7808 + }, + { + "start": 16117.64, + "end": 16118.6, + "probability": 0.8667 + }, + { + "start": 16119.02, + "end": 16120.94, + "probability": 0.9072 + }, + { + "start": 16121.1, + "end": 16125.16, + "probability": 0.9867 + }, + { + "start": 16125.34, + "end": 16126.78, + "probability": 0.8214 + }, + { + "start": 16126.86, + "end": 16130.16, + "probability": 0.985 + }, + { + "start": 16131.08, + "end": 16133.84, + "probability": 0.9958 + }, + { + "start": 16133.9, + "end": 16135.9, + "probability": 0.9522 + }, + { + "start": 16136.64, + "end": 16138.64, + "probability": 0.9873 + }, + { + "start": 16138.64, + "end": 16140.7, + "probability": 0.9794 + }, + { + "start": 16141.36, + "end": 16145.14, + "probability": 0.9984 + }, + { + "start": 16145.18, + "end": 16148.56, + "probability": 0.9979 + }, + { + "start": 16148.66, + "end": 16149.5, + "probability": 0.4855 + }, + { + "start": 16149.62, + "end": 16150.98, + "probability": 0.9392 + }, + { + "start": 16152.36, + "end": 16158.6, + "probability": 0.9653 + }, + { + "start": 16159.16, + "end": 16161.2, + "probability": 0.9323 + }, + { + "start": 16161.36, + "end": 16161.46, + "probability": 0.2707 + }, + { + "start": 16161.68, + "end": 16164.7, + "probability": 0.9424 + }, + { + "start": 16164.88, + "end": 16165.92, + "probability": 0.541 + }, + { + "start": 16165.98, + "end": 16166.62, + "probability": 0.8902 + }, + { + "start": 16167.38, + "end": 16169.66, + "probability": 0.9974 + }, + { + "start": 16170.28, + "end": 16174.78, + "probability": 0.9958 + }, + { + "start": 16174.86, + "end": 16180.38, + "probability": 0.9932 + }, + { + "start": 16180.54, + "end": 16180.64, + "probability": 0.5444 + }, + { + "start": 16181.1, + "end": 16184.92, + "probability": 0.9791 + }, + { + "start": 16185.42, + "end": 16188.26, + "probability": 0.9618 + }, + { + "start": 16188.72, + "end": 16191.4, + "probability": 0.9752 + }, + { + "start": 16192.28, + "end": 16195.7, + "probability": 0.905 + }, + { + "start": 16195.72, + "end": 16198.98, + "probability": 0.979 + }, + { + "start": 16199.5, + "end": 16203.16, + "probability": 0.9255 + }, + { + "start": 16203.68, + "end": 16204.14, + "probability": 0.8255 + }, + { + "start": 16204.54, + "end": 16208.38, + "probability": 0.9784 + }, + { + "start": 16208.94, + "end": 16210.04, + "probability": 0.7979 + }, + { + "start": 16210.18, + "end": 16211.52, + "probability": 0.5539 + }, + { + "start": 16211.66, + "end": 16212.45, + "probability": 0.7397 + }, + { + "start": 16212.58, + "end": 16213.57, + "probability": 0.9035 + }, + { + "start": 16213.92, + "end": 16214.46, + "probability": 0.6244 + }, + { + "start": 16214.58, + "end": 16215.5, + "probability": 0.6453 + }, + { + "start": 16216.4, + "end": 16219.64, + "probability": 0.9596 + }, + { + "start": 16219.74, + "end": 16222.7, + "probability": 0.8266 + }, + { + "start": 16223.42, + "end": 16228.28, + "probability": 0.8997 + }, + { + "start": 16228.28, + "end": 16231.34, + "probability": 0.9531 + }, + { + "start": 16231.74, + "end": 16233.9, + "probability": 0.8888 + }, + { + "start": 16235.06, + "end": 16243.3, + "probability": 0.9775 + }, + { + "start": 16243.74, + "end": 16247.2, + "probability": 0.9954 + }, + { + "start": 16247.84, + "end": 16250.38, + "probability": 0.9905 + }, + { + "start": 16250.54, + "end": 16254.06, + "probability": 0.9974 + }, + { + "start": 16254.14, + "end": 16255.72, + "probability": 0.9644 + }, + { + "start": 16256.24, + "end": 16258.2, + "probability": 0.917 + }, + { + "start": 16258.7, + "end": 16264.1, + "probability": 0.9641 + }, + { + "start": 16264.44, + "end": 16264.54, + "probability": 0.7506 + }, + { + "start": 16265.2, + "end": 16266.0, + "probability": 0.6515 + }, + { + "start": 16266.14, + "end": 16268.4, + "probability": 0.9196 + }, + { + "start": 16268.6, + "end": 16269.69, + "probability": 0.6095 + }, + { + "start": 16273.02, + "end": 16275.06, + "probability": 0.701 + }, + { + "start": 16276.74, + "end": 16276.92, + "probability": 0.3312 + }, + { + "start": 16277.82, + "end": 16279.82, + "probability": 0.9707 + }, + { + "start": 16280.8, + "end": 16281.2, + "probability": 0.0022 + }, + { + "start": 16294.5, + "end": 16294.64, + "probability": 0.0064 + }, + { + "start": 16294.64, + "end": 16296.44, + "probability": 0.5149 + }, + { + "start": 16296.56, + "end": 16299.18, + "probability": 0.506 + }, + { + "start": 16299.3, + "end": 16300.92, + "probability": 0.1747 + }, + { + "start": 16301.68, + "end": 16303.56, + "probability": 0.9726 + }, + { + "start": 16303.68, + "end": 16305.58, + "probability": 0.7885 + }, + { + "start": 16306.24, + "end": 16306.38, + "probability": 0.0202 + }, + { + "start": 16306.54, + "end": 16306.72, + "probability": 0.104 + }, + { + "start": 16306.72, + "end": 16309.74, + "probability": 0.3514 + }, + { + "start": 16309.76, + "end": 16309.86, + "probability": 0.7558 + }, + { + "start": 16326.92, + "end": 16331.48, + "probability": 0.1025 + }, + { + "start": 16332.48, + "end": 16333.4, + "probability": 0.0849 + }, + { + "start": 16333.4, + "end": 16339.18, + "probability": 0.1637 + }, + { + "start": 16339.88, + "end": 16340.48, + "probability": 0.4822 + }, + { + "start": 16341.04, + "end": 16341.14, + "probability": 0.1258 + }, + { + "start": 16342.38, + "end": 16343.08, + "probability": 0.6322 + }, + { + "start": 16360.82, + "end": 16362.0, + "probability": 0.2024 + }, + { + "start": 16362.78, + "end": 16365.98, + "probability": 0.0335 + }, + { + "start": 16366.04, + "end": 16366.04, + "probability": 0.1916 + }, + { + "start": 16366.32, + "end": 16367.14, + "probability": 0.2906 + }, + { + "start": 16368.54, + "end": 16368.58, + "probability": 0.0802 + }, + { + "start": 16368.58, + "end": 16368.62, + "probability": 0.1277 + }, + { + "start": 16370.74, + "end": 16371.96, + "probability": 0.2957 + }, + { + "start": 16375.0, + "end": 16375.0, + "probability": 0.0 + }, + { + "start": 16375.0, + "end": 16375.0, + "probability": 0.0 + }, + { + "start": 16375.0, + "end": 16375.0, + "probability": 0.0 + }, + { + "start": 16375.0, + "end": 16375.0, + "probability": 0.0 + }, + { + "start": 16375.0, + "end": 16375.0, + "probability": 0.0 + }, + { + "start": 16375.0, + "end": 16375.0, + "probability": 0.0 + }, + { + "start": 16375.0, + "end": 16375.0, + "probability": 0.0 + }, + { + "start": 16375.0, + "end": 16375.0, + "probability": 0.0 + }, + { + "start": 16375.0, + "end": 16375.0, + "probability": 0.0 + }, + { + "start": 16375.0, + "end": 16375.0, + "probability": 0.0 + }, + { + "start": 16375.0, + "end": 16375.0, + "probability": 0.0 + }, + { + "start": 16375.0, + "end": 16375.0, + "probability": 0.0 + }, + { + "start": 16375.0, + "end": 16375.0, + "probability": 0.0 + }, + { + "start": 16375.0, + "end": 16375.0, + "probability": 0.0 + }, + { + "start": 16375.0, + "end": 16375.0, + "probability": 0.0 + }, + { + "start": 16375.1, + "end": 16375.59, + "probability": 0.6719 + }, + { + "start": 16376.2, + "end": 16377.74, + "probability": 0.4428 + }, + { + "start": 16379.94, + "end": 16381.34, + "probability": 0.8696 + }, + { + "start": 16383.12, + "end": 16384.32, + "probability": 0.5996 + }, + { + "start": 16384.88, + "end": 16387.38, + "probability": 0.622 + }, + { + "start": 16388.1, + "end": 16391.26, + "probability": 0.9633 + }, + { + "start": 16391.44, + "end": 16392.4, + "probability": 0.7814 + }, + { + "start": 16392.58, + "end": 16397.72, + "probability": 0.9908 + }, + { + "start": 16397.96, + "end": 16399.96, + "probability": 0.3803 + }, + { + "start": 16400.72, + "end": 16402.46, + "probability": 0.9777 + }, + { + "start": 16404.0, + "end": 16406.74, + "probability": 0.9092 + }, + { + "start": 16407.26, + "end": 16408.26, + "probability": 0.7349 + }, + { + "start": 16408.84, + "end": 16412.62, + "probability": 0.8818 + }, + { + "start": 16412.76, + "end": 16414.66, + "probability": 0.3553 + }, + { + "start": 16415.7, + "end": 16418.0, + "probability": 0.8378 + }, + { + "start": 16418.56, + "end": 16423.32, + "probability": 0.9725 + }, + { + "start": 16423.9, + "end": 16425.76, + "probability": 0.8259 + }, + { + "start": 16425.8, + "end": 16428.6, + "probability": 0.9536 + }, + { + "start": 16429.04, + "end": 16432.42, + "probability": 0.9497 + }, + { + "start": 16432.9, + "end": 16438.1, + "probability": 0.877 + }, + { + "start": 16438.1, + "end": 16442.18, + "probability": 0.9868 + }, + { + "start": 16442.88, + "end": 16448.24, + "probability": 0.9743 + }, + { + "start": 16448.64, + "end": 16453.78, + "probability": 0.9892 + }, + { + "start": 16454.24, + "end": 16457.84, + "probability": 0.9789 + }, + { + "start": 16458.36, + "end": 16458.6, + "probability": 0.7295 + }, + { + "start": 16459.36, + "end": 16462.62, + "probability": 0.8016 + }, + { + "start": 16462.98, + "end": 16465.84, + "probability": 0.9787 + }, + { + "start": 16466.74, + "end": 16470.7, + "probability": 0.9839 + }, + { + "start": 16471.2, + "end": 16472.22, + "probability": 0.7485 + }, + { + "start": 16472.72, + "end": 16473.22, + "probability": 0.9036 + }, + { + "start": 16473.98, + "end": 16476.44, + "probability": 0.9829 + }, + { + "start": 16477.0, + "end": 16479.0, + "probability": 0.9731 + }, + { + "start": 16479.48, + "end": 16483.04, + "probability": 0.9762 + }, + { + "start": 16483.04, + "end": 16486.96, + "probability": 0.9675 + }, + { + "start": 16487.24, + "end": 16487.46, + "probability": 0.6724 + }, + { + "start": 16487.82, + "end": 16488.7, + "probability": 0.6797 + }, + { + "start": 16489.3, + "end": 16492.12, + "probability": 0.8176 + }, + { + "start": 16492.98, + "end": 16494.5, + "probability": 0.8052 + }, + { + "start": 16496.42, + "end": 16499.22, + "probability": 0.0292 + }, + { + "start": 16512.72, + "end": 16512.88, + "probability": 0.0412 + }, + { + "start": 16512.88, + "end": 16515.28, + "probability": 0.5214 + }, + { + "start": 16515.42, + "end": 16516.0, + "probability": 0.9111 + }, + { + "start": 16516.52, + "end": 16518.28, + "probability": 0.8836 + }, + { + "start": 16519.06, + "end": 16521.68, + "probability": 0.8073 + }, + { + "start": 16522.4, + "end": 16523.96, + "probability": 0.7219 + }, + { + "start": 16525.3, + "end": 16525.44, + "probability": 0.3204 + }, + { + "start": 16525.44, + "end": 16526.16, + "probability": 0.7625 + }, + { + "start": 16545.67, + "end": 16548.98, + "probability": 0.1633 + }, + { + "start": 16549.64, + "end": 16552.3, + "probability": 0.1046 + }, + { + "start": 16554.06, + "end": 16554.65, + "probability": 0.3813 + }, + { + "start": 16556.6, + "end": 16556.6, + "probability": 0.0133 + }, + { + "start": 16556.6, + "end": 16556.6, + "probability": 0.025 + }, + { + "start": 16556.6, + "end": 16556.6, + "probability": 0.0578 + }, + { + "start": 16556.6, + "end": 16558.36, + "probability": 0.5993 + }, + { + "start": 16558.88, + "end": 16561.88, + "probability": 0.7763 + }, + { + "start": 16562.42, + "end": 16563.06, + "probability": 0.5562 + }, + { + "start": 16563.37, + "end": 16564.36, + "probability": 0.5887 + }, + { + "start": 16565.38, + "end": 16565.84, + "probability": 0.781 + }, + { + "start": 16566.4, + "end": 16567.14, + "probability": 0.9666 + }, + { + "start": 16567.22, + "end": 16567.68, + "probability": 0.9528 + }, + { + "start": 16568.84, + "end": 16569.1, + "probability": 0.8616 + }, + { + "start": 16569.1, + "end": 16574.24, + "probability": 0.9402 + }, + { + "start": 16574.3, + "end": 16575.38, + "probability": 0.7424 + }, + { + "start": 16575.48, + "end": 16576.36, + "probability": 0.797 + }, + { + "start": 16577.1, + "end": 16579.54, + "probability": 0.9939 + }, + { + "start": 16579.62, + "end": 16580.4, + "probability": 0.7729 + }, + { + "start": 16581.78, + "end": 16585.62, + "probability": 0.9844 + }, + { + "start": 16585.62, + "end": 16591.34, + "probability": 0.9575 + }, + { + "start": 16591.34, + "end": 16592.72, + "probability": 0.8949 + }, + { + "start": 16593.62, + "end": 16595.56, + "probability": 0.7721 + }, + { + "start": 16595.6, + "end": 16599.56, + "probability": 0.9936 + }, + { + "start": 16600.66, + "end": 16602.16, + "probability": 0.8536 + }, + { + "start": 16602.6, + "end": 16604.92, + "probability": 0.9854 + }, + { + "start": 16605.02, + "end": 16607.08, + "probability": 0.9484 + }, + { + "start": 16607.6, + "end": 16612.32, + "probability": 0.9866 + }, + { + "start": 16612.48, + "end": 16614.46, + "probability": 0.8152 + }, + { + "start": 16614.96, + "end": 16617.88, + "probability": 0.9688 + }, + { + "start": 16617.92, + "end": 16618.06, + "probability": 0.4223 + }, + { + "start": 16618.24, + "end": 16624.6, + "probability": 0.9551 + }, + { + "start": 16624.68, + "end": 16627.0, + "probability": 0.9901 + }, + { + "start": 16627.12, + "end": 16629.62, + "probability": 0.9652 + }, + { + "start": 16629.72, + "end": 16630.02, + "probability": 0.6169 + }, + { + "start": 16630.4, + "end": 16635.72, + "probability": 0.9612 + }, + { + "start": 16635.94, + "end": 16638.44, + "probability": 0.6653 + }, + { + "start": 16638.56, + "end": 16640.6, + "probability": 0.8321 + }, + { + "start": 16640.7, + "end": 16640.8, + "probability": 0.6973 + }, + { + "start": 16641.28, + "end": 16642.0, + "probability": 0.7793 + }, + { + "start": 16642.04, + "end": 16644.78, + "probability": 0.8911 + }, + { + "start": 16645.58, + "end": 16648.36, + "probability": 0.9833 + }, + { + "start": 16649.54, + "end": 16653.22, + "probability": 0.7568 + }, + { + "start": 16654.06, + "end": 16655.28, + "probability": 0.4827 + }, + { + "start": 16655.84, + "end": 16660.44, + "probability": 0.5573 + }, + { + "start": 16660.68, + "end": 16661.9, + "probability": 0.9959 + }, + { + "start": 16662.56, + "end": 16664.22, + "probability": 0.9517 + }, + { + "start": 16664.72, + "end": 16665.6, + "probability": 0.7767 + }, + { + "start": 16666.54, + "end": 16667.66, + "probability": 0.7469 + }, + { + "start": 16668.52, + "end": 16670.92, + "probability": 0.9479 + }, + { + "start": 16673.1, + "end": 16673.76, + "probability": 0.4976 + }, + { + "start": 16673.96, + "end": 16675.86, + "probability": 0.3398 + }, + { + "start": 16676.56, + "end": 16677.46, + "probability": 0.9402 + }, + { + "start": 16679.15, + "end": 16681.57, + "probability": 0.7083 + }, + { + "start": 16682.46, + "end": 16684.92, + "probability": 0.827 + }, + { + "start": 16685.08, + "end": 16686.04, + "probability": 0.9478 + }, + { + "start": 16686.84, + "end": 16687.58, + "probability": 0.5926 + }, + { + "start": 16688.7, + "end": 16689.2, + "probability": 0.1136 + }, + { + "start": 16690.16, + "end": 16694.92, + "probability": 0.7116 + }, + { + "start": 16695.24, + "end": 16702.2, + "probability": 0.7812 + }, + { + "start": 16703.98, + "end": 16706.22, + "probability": 0.9976 + }, + { + "start": 16706.82, + "end": 16709.51, + "probability": 0.9096 + }, + { + "start": 16710.3, + "end": 16710.93, + "probability": 0.9951 + }, + { + "start": 16711.16, + "end": 16716.86, + "probability": 0.9659 + }, + { + "start": 16717.0, + "end": 16720.63, + "probability": 0.9163 + }, + { + "start": 16721.44, + "end": 16724.86, + "probability": 0.7902 + }, + { + "start": 16725.42, + "end": 16730.7, + "probability": 0.964 + }, + { + "start": 16732.83, + "end": 16737.98, + "probability": 0.9754 + }, + { + "start": 16738.54, + "end": 16739.44, + "probability": 0.5343 + }, + { + "start": 16739.62, + "end": 16740.14, + "probability": 0.8845 + }, + { + "start": 16740.64, + "end": 16742.88, + "probability": 0.9815 + }, + { + "start": 16743.02, + "end": 16744.12, + "probability": 0.8505 + }, + { + "start": 16744.52, + "end": 16746.1, + "probability": 0.973 + }, + { + "start": 16746.38, + "end": 16749.7, + "probability": 0.8616 + }, + { + "start": 16750.72, + "end": 16756.08, + "probability": 0.6827 + }, + { + "start": 16757.5, + "end": 16758.06, + "probability": 0.4098 + }, + { + "start": 16758.78, + "end": 16761.94, + "probability": 0.8787 + }, + { + "start": 16762.52, + "end": 16768.46, + "probability": 0.7645 + }, + { + "start": 16769.1, + "end": 16770.9, + "probability": 0.7571 + }, + { + "start": 16771.32, + "end": 16771.82, + "probability": 0.5538 + }, + { + "start": 16772.22, + "end": 16772.6, + "probability": 0.0313 + }, + { + "start": 16772.6, + "end": 16776.82, + "probability": 0.8677 + }, + { + "start": 16777.14, + "end": 16778.66, + "probability": 0.8845 + }, + { + "start": 16780.5, + "end": 16785.1, + "probability": 0.755 + }, + { + "start": 16785.16, + "end": 16786.68, + "probability": 0.6426 + }, + { + "start": 16786.9, + "end": 16787.9, + "probability": 0.95 + }, + { + "start": 16788.38, + "end": 16789.64, + "probability": 0.6309 + }, + { + "start": 16789.88, + "end": 16792.46, + "probability": 0.9752 + }, + { + "start": 16793.0, + "end": 16794.66, + "probability": 0.9562 + }, + { + "start": 16795.8, + "end": 16797.25, + "probability": 0.8564 + }, + { + "start": 16798.7, + "end": 16802.0, + "probability": 0.7439 + }, + { + "start": 16802.0, + "end": 16804.9, + "probability": 0.7781 + }, + { + "start": 16805.26, + "end": 16809.12, + "probability": 0.8882 + }, + { + "start": 16809.9, + "end": 16815.26, + "probability": 0.7499 + }, + { + "start": 16816.9, + "end": 16817.52, + "probability": 0.5827 + }, + { + "start": 16818.04, + "end": 16819.92, + "probability": 0.8439 + }, + { + "start": 16820.18, + "end": 16823.44, + "probability": 0.9184 + }, + { + "start": 16823.62, + "end": 16824.36, + "probability": 0.9587 + }, + { + "start": 16824.86, + "end": 16829.83, + "probability": 0.8528 + }, + { + "start": 16830.4, + "end": 16831.18, + "probability": 0.8598 + }, + { + "start": 16831.84, + "end": 16834.0, + "probability": 0.9971 + }, + { + "start": 16834.06, + "end": 16834.82, + "probability": 0.9302 + }, + { + "start": 16834.94, + "end": 16836.04, + "probability": 0.9058 + }, + { + "start": 16836.08, + "end": 16838.66, + "probability": 0.6726 + }, + { + "start": 16838.82, + "end": 16840.32, + "probability": 0.9893 + }, + { + "start": 16841.06, + "end": 16841.58, + "probability": 0.5546 + }, + { + "start": 16842.26, + "end": 16844.56, + "probability": 0.9383 + }, + { + "start": 16845.64, + "end": 16846.86, + "probability": 0.9591 + }, + { + "start": 16847.16, + "end": 16849.12, + "probability": 0.9663 + }, + { + "start": 16849.26, + "end": 16852.68, + "probability": 0.8258 + }, + { + "start": 16853.5, + "end": 16856.72, + "probability": 0.7181 + }, + { + "start": 16857.04, + "end": 16857.86, + "probability": 0.2944 + }, + { + "start": 16857.98, + "end": 16858.26, + "probability": 0.653 + }, + { + "start": 16858.3, + "end": 16859.16, + "probability": 0.9873 + }, + { + "start": 16859.46, + "end": 16860.36, + "probability": 0.9451 + }, + { + "start": 16860.42, + "end": 16861.14, + "probability": 0.9894 + }, + { + "start": 16861.22, + "end": 16863.18, + "probability": 0.9897 + }, + { + "start": 16863.6, + "end": 16866.58, + "probability": 0.9707 + }, + { + "start": 16866.74, + "end": 16867.54, + "probability": 0.6374 + }, + { + "start": 16868.36, + "end": 16871.28, + "probability": 0.8783 + }, + { + "start": 16871.8, + "end": 16874.66, + "probability": 0.63 + }, + { + "start": 16874.86, + "end": 16875.47, + "probability": 0.7436 + }, + { + "start": 16875.72, + "end": 16877.6, + "probability": 0.5847 + }, + { + "start": 16877.66, + "end": 16878.36, + "probability": 0.8972 + }, + { + "start": 16878.84, + "end": 16880.52, + "probability": 0.6604 + }, + { + "start": 16880.7, + "end": 16883.66, + "probability": 0.9827 + }, + { + "start": 16884.62, + "end": 16886.36, + "probability": 0.9219 + }, + { + "start": 16887.0, + "end": 16888.42, + "probability": 0.4458 + }, + { + "start": 16889.1, + "end": 16890.94, + "probability": 0.984 + }, + { + "start": 16891.43, + "end": 16895.04, + "probability": 0.9454 + }, + { + "start": 16895.5, + "end": 16896.94, + "probability": 0.9924 + }, + { + "start": 16897.1, + "end": 16897.5, + "probability": 0.6548 + }, + { + "start": 16897.74, + "end": 16900.22, + "probability": 0.8773 + }, + { + "start": 16900.52, + "end": 16901.03, + "probability": 0.5153 + }, + { + "start": 16901.2, + "end": 16901.7, + "probability": 0.6376 + }, + { + "start": 16901.72, + "end": 16903.18, + "probability": 0.9487 + }, + { + "start": 16903.66, + "end": 16905.2, + "probability": 0.9709 + }, + { + "start": 16906.2, + "end": 16909.22, + "probability": 0.4952 + }, + { + "start": 16909.54, + "end": 16910.1, + "probability": 0.8462 + }, + { + "start": 16910.16, + "end": 16912.34, + "probability": 0.862 + }, + { + "start": 16912.44, + "end": 16914.15, + "probability": 0.7926 + }, + { + "start": 16914.26, + "end": 16916.76, + "probability": 0.7229 + }, + { + "start": 16920.56, + "end": 16921.14, + "probability": 0.0241 + }, + { + "start": 16921.14, + "end": 16921.14, + "probability": 0.2343 + }, + { + "start": 16921.14, + "end": 16923.07, + "probability": 0.5643 + }, + { + "start": 16924.02, + "end": 16925.46, + "probability": 0.2542 + }, + { + "start": 16925.54, + "end": 16926.88, + "probability": 0.8927 + }, + { + "start": 16927.08, + "end": 16928.34, + "probability": 0.8454 + }, + { + "start": 16928.44, + "end": 16929.04, + "probability": 0.2397 + }, + { + "start": 16929.16, + "end": 16929.56, + "probability": 0.6632 + }, + { + "start": 16929.92, + "end": 16932.64, + "probability": 0.9717 + }, + { + "start": 16933.14, + "end": 16933.52, + "probability": 0.5427 + }, + { + "start": 16934.95, + "end": 16940.5, + "probability": 0.7562 + }, + { + "start": 16940.82, + "end": 16944.89, + "probability": 0.8747 + }, + { + "start": 16945.8, + "end": 16946.78, + "probability": 0.9735 + }, + { + "start": 16947.06, + "end": 16949.92, + "probability": 0.9961 + }, + { + "start": 16950.42, + "end": 16952.84, + "probability": 0.8893 + }, + { + "start": 16953.14, + "end": 16956.22, + "probability": 0.9293 + }, + { + "start": 16956.36, + "end": 16960.44, + "probability": 0.9827 + }, + { + "start": 16960.96, + "end": 16962.5, + "probability": 0.9448 + }, + { + "start": 16963.83, + "end": 16966.6, + "probability": 0.9199 + }, + { + "start": 16967.56, + "end": 16970.68, + "probability": 0.9571 + }, + { + "start": 16971.0, + "end": 16971.18, + "probability": 0.7925 + }, + { + "start": 16971.4, + "end": 16972.72, + "probability": 0.6103 + }, + { + "start": 16973.22, + "end": 16976.14, + "probability": 0.9253 + }, + { + "start": 16978.19, + "end": 16978.58, + "probability": 0.1457 + }, + { + "start": 16978.58, + "end": 16984.4, + "probability": 0.9685 + }, + { + "start": 16984.86, + "end": 16986.06, + "probability": 0.6157 + }, + { + "start": 16986.36, + "end": 16986.9, + "probability": 0.6866 + }, + { + "start": 16988.18, + "end": 16988.34, + "probability": 0.4448 + }, + { + "start": 17006.42, + "end": 17007.08, + "probability": 0.0379 + }, + { + "start": 17007.08, + "end": 17008.5, + "probability": 0.1669 + }, + { + "start": 17008.52, + "end": 17013.0, + "probability": 0.7383 + }, + { + "start": 17013.68, + "end": 17014.34, + "probability": 0.386 + }, + { + "start": 17021.62, + "end": 17025.58, + "probability": 0.1764 + }, + { + "start": 17025.68, + "end": 17027.5, + "probability": 0.0952 + }, + { + "start": 17027.5, + "end": 17027.8, + "probability": 0.0354 + }, + { + "start": 17032.89, + "end": 17035.44, + "probability": 0.0212 + }, + { + "start": 17036.48, + "end": 17038.7, + "probability": 0.1461 + }, + { + "start": 17039.54, + "end": 17047.12, + "probability": 0.0535 + }, + { + "start": 17047.14, + "end": 17047.99, + "probability": 0.1359 + } + ], + "segments_count": 6155, + "words_count": 29913, + "avg_words_per_segment": 4.86, + "avg_segment_duration": 1.9871, + "avg_words_per_minute": 104.8875, + "plenum_id": "19652", + "duration": 17111.48, + "title": null, + "plenum_date": "2012-02-27" +} \ No newline at end of file