diff --git "a/33882/metadata.json" "b/33882/metadata.json" new file mode 100644--- /dev/null +++ "b/33882/metadata.json" @@ -0,0 +1,34702 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "33882", + "quality_score": 0.8595, + "per_segment_quality_scores": [ + { + "start": 45.3, + "end": 46.2, + "probability": 0.1666 + }, + { + "start": 46.54, + "end": 46.68, + "probability": 0.1235 + }, + { + "start": 46.68, + "end": 47.86, + "probability": 0.1239 + }, + { + "start": 48.2, + "end": 48.46, + "probability": 0.1871 + }, + { + "start": 64.84, + "end": 65.74, + "probability": 0.0508 + }, + { + "start": 66.38, + "end": 68.1, + "probability": 0.6419 + }, + { + "start": 68.7, + "end": 68.84, + "probability": 0.0644 + }, + { + "start": 69.4, + "end": 73.26, + "probability": 0.8182 + }, + { + "start": 73.9, + "end": 75.56, + "probability": 0.6709 + }, + { + "start": 76.08, + "end": 79.08, + "probability": 0.9661 + }, + { + "start": 79.46, + "end": 81.04, + "probability": 0.455 + }, + { + "start": 81.46, + "end": 84.0, + "probability": 0.5626 + }, + { + "start": 84.1, + "end": 84.94, + "probability": 0.7402 + }, + { + "start": 85.62, + "end": 90.54, + "probability": 0.8519 + }, + { + "start": 90.66, + "end": 91.94, + "probability": 0.639 + }, + { + "start": 92.08, + "end": 93.1, + "probability": 0.8758 + }, + { + "start": 94.12, + "end": 96.0, + "probability": 0.9978 + }, + { + "start": 96.0, + "end": 99.48, + "probability": 0.5292 + }, + { + "start": 100.04, + "end": 102.8, + "probability": 0.9761 + }, + { + "start": 103.26, + "end": 104.2, + "probability": 0.7703 + }, + { + "start": 104.72, + "end": 111.22, + "probability": 0.9722 + }, + { + "start": 114.04, + "end": 116.72, + "probability": 0.4044 + }, + { + "start": 117.52, + "end": 117.62, + "probability": 0.1112 + }, + { + "start": 117.62, + "end": 117.84, + "probability": 0.0956 + }, + { + "start": 119.2, + "end": 122.58, + "probability": 0.2044 + }, + { + "start": 122.7, + "end": 124.6, + "probability": 0.3533 + }, + { + "start": 125.78, + "end": 128.58, + "probability": 0.0774 + }, + { + "start": 147.96, + "end": 148.92, + "probability": 0.017 + }, + { + "start": 151.62, + "end": 155.22, + "probability": 0.0213 + }, + { + "start": 155.58, + "end": 155.93, + "probability": 0.0328 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.0, + "end": 217.0, + "probability": 0.0 + }, + { + "start": 217.1, + "end": 220.6, + "probability": 0.1216 + }, + { + "start": 221.12, + "end": 222.92, + "probability": 0.9951 + }, + { + "start": 224.58, + "end": 226.94, + "probability": 0.9873 + }, + { + "start": 227.8, + "end": 231.32, + "probability": 0.9927 + }, + { + "start": 232.16, + "end": 232.97, + "probability": 0.9499 + }, + { + "start": 234.22, + "end": 235.72, + "probability": 0.9343 + }, + { + "start": 236.62, + "end": 238.04, + "probability": 0.962 + }, + { + "start": 238.72, + "end": 239.66, + "probability": 0.9986 + }, + { + "start": 239.82, + "end": 240.99, + "probability": 0.9417 + }, + { + "start": 242.38, + "end": 244.26, + "probability": 0.9048 + }, + { + "start": 245.7, + "end": 249.86, + "probability": 0.9877 + }, + { + "start": 250.6, + "end": 253.04, + "probability": 0.9551 + }, + { + "start": 253.58, + "end": 253.86, + "probability": 0.511 + }, + { + "start": 254.7, + "end": 257.68, + "probability": 0.9862 + }, + { + "start": 259.1, + "end": 261.5, + "probability": 0.97 + }, + { + "start": 262.6, + "end": 266.12, + "probability": 0.7548 + }, + { + "start": 266.94, + "end": 268.92, + "probability": 0.9527 + }, + { + "start": 269.0, + "end": 272.2, + "probability": 0.9746 + }, + { + "start": 272.88, + "end": 275.96, + "probability": 0.9969 + }, + { + "start": 276.52, + "end": 279.46, + "probability": 0.9452 + }, + { + "start": 280.86, + "end": 282.38, + "probability": 0.8133 + }, + { + "start": 282.9, + "end": 285.12, + "probability": 0.9238 + }, + { + "start": 285.82, + "end": 287.06, + "probability": 0.9281 + }, + { + "start": 288.48, + "end": 291.0, + "probability": 0.8869 + }, + { + "start": 291.74, + "end": 291.9, + "probability": 0.7007 + }, + { + "start": 292.92, + "end": 296.58, + "probability": 0.9636 + }, + { + "start": 297.22, + "end": 298.64, + "probability": 0.9255 + }, + { + "start": 300.3, + "end": 302.52, + "probability": 0.9382 + }, + { + "start": 303.0, + "end": 303.4, + "probability": 0.9042 + }, + { + "start": 303.54, + "end": 304.06, + "probability": 0.6572 + }, + { + "start": 305.18, + "end": 308.64, + "probability": 0.995 + }, + { + "start": 309.04, + "end": 310.0, + "probability": 0.7868 + }, + { + "start": 310.4, + "end": 311.84, + "probability": 0.963 + }, + { + "start": 312.94, + "end": 316.08, + "probability": 0.9659 + }, + { + "start": 316.68, + "end": 317.66, + "probability": 0.9799 + }, + { + "start": 318.28, + "end": 322.24, + "probability": 0.939 + }, + { + "start": 323.16, + "end": 323.52, + "probability": 0.6903 + }, + { + "start": 323.64, + "end": 328.37, + "probability": 0.9623 + }, + { + "start": 330.32, + "end": 332.6, + "probability": 0.8093 + }, + { + "start": 333.58, + "end": 334.54, + "probability": 0.9188 + }, + { + "start": 335.04, + "end": 336.46, + "probability": 0.8832 + }, + { + "start": 336.62, + "end": 337.58, + "probability": 0.7524 + }, + { + "start": 338.1, + "end": 339.12, + "probability": 0.7412 + }, + { + "start": 339.84, + "end": 342.42, + "probability": 0.7584 + }, + { + "start": 343.0, + "end": 345.18, + "probability": 0.9441 + }, + { + "start": 345.32, + "end": 346.2, + "probability": 0.5952 + }, + { + "start": 346.6, + "end": 347.78, + "probability": 0.8358 + }, + { + "start": 348.28, + "end": 348.76, + "probability": 0.8373 + }, + { + "start": 350.1, + "end": 350.48, + "probability": 0.483 + }, + { + "start": 351.14, + "end": 351.52, + "probability": 0.5907 + }, + { + "start": 352.12, + "end": 354.44, + "probability": 0.8036 + }, + { + "start": 354.94, + "end": 356.14, + "probability": 0.9537 + }, + { + "start": 357.0, + "end": 362.04, + "probability": 0.9137 + }, + { + "start": 362.08, + "end": 364.5, + "probability": 0.7883 + }, + { + "start": 364.56, + "end": 369.74, + "probability": 0.9846 + }, + { + "start": 371.32, + "end": 373.72, + "probability": 0.9944 + }, + { + "start": 374.2, + "end": 374.72, + "probability": 0.7567 + }, + { + "start": 376.4, + "end": 378.26, + "probability": 0.9785 + }, + { + "start": 378.48, + "end": 379.84, + "probability": 0.9949 + }, + { + "start": 380.0, + "end": 380.87, + "probability": 0.7992 + }, + { + "start": 381.32, + "end": 383.22, + "probability": 0.7863 + }, + { + "start": 383.82, + "end": 389.74, + "probability": 0.8907 + }, + { + "start": 390.5, + "end": 394.98, + "probability": 0.6375 + }, + { + "start": 395.62, + "end": 397.76, + "probability": 0.9543 + }, + { + "start": 398.36, + "end": 398.8, + "probability": 0.6234 + }, + { + "start": 399.44, + "end": 400.58, + "probability": 0.9776 + }, + { + "start": 402.6, + "end": 403.22, + "probability": 0.8121 + }, + { + "start": 403.92, + "end": 404.48, + "probability": 0.548 + }, + { + "start": 404.66, + "end": 406.7, + "probability": 0.9814 + }, + { + "start": 407.5, + "end": 408.08, + "probability": 0.744 + }, + { + "start": 408.38, + "end": 409.1, + "probability": 0.8223 + }, + { + "start": 409.64, + "end": 412.36, + "probability": 0.967 + }, + { + "start": 413.44, + "end": 417.08, + "probability": 0.993 + }, + { + "start": 418.5, + "end": 419.23, + "probability": 0.899 + }, + { + "start": 419.7, + "end": 420.26, + "probability": 0.8379 + }, + { + "start": 421.84, + "end": 424.04, + "probability": 0.9821 + }, + { + "start": 424.66, + "end": 426.04, + "probability": 0.9327 + }, + { + "start": 427.14, + "end": 430.6, + "probability": 0.9958 + }, + { + "start": 431.3, + "end": 434.26, + "probability": 0.9858 + }, + { + "start": 434.8, + "end": 436.94, + "probability": 0.8986 + }, + { + "start": 438.74, + "end": 440.16, + "probability": 0.8399 + }, + { + "start": 440.78, + "end": 441.64, + "probability": 0.5402 + }, + { + "start": 442.16, + "end": 443.26, + "probability": 0.9888 + }, + { + "start": 444.4, + "end": 445.4, + "probability": 0.9305 + }, + { + "start": 446.52, + "end": 448.14, + "probability": 0.9751 + }, + { + "start": 448.74, + "end": 450.52, + "probability": 0.9697 + }, + { + "start": 451.42, + "end": 453.12, + "probability": 0.9417 + }, + { + "start": 453.22, + "end": 454.82, + "probability": 0.9943 + }, + { + "start": 455.3, + "end": 459.68, + "probability": 0.9895 + }, + { + "start": 461.16, + "end": 462.86, + "probability": 0.9664 + }, + { + "start": 465.94, + "end": 467.58, + "probability": 0.8683 + }, + { + "start": 469.1, + "end": 473.36, + "probability": 0.9644 + }, + { + "start": 473.66, + "end": 475.13, + "probability": 0.9946 + }, + { + "start": 477.28, + "end": 479.18, + "probability": 0.9261 + }, + { + "start": 479.28, + "end": 480.56, + "probability": 0.9187 + }, + { + "start": 481.3, + "end": 483.32, + "probability": 0.7499 + }, + { + "start": 483.4, + "end": 484.82, + "probability": 0.9969 + }, + { + "start": 485.56, + "end": 488.42, + "probability": 0.9895 + }, + { + "start": 488.74, + "end": 492.66, + "probability": 0.9926 + }, + { + "start": 494.62, + "end": 495.41, + "probability": 0.3937 + }, + { + "start": 500.56, + "end": 503.18, + "probability": 0.8017 + }, + { + "start": 503.92, + "end": 506.28, + "probability": 0.9984 + }, + { + "start": 507.7, + "end": 511.96, + "probability": 0.991 + }, + { + "start": 512.4, + "end": 513.34, + "probability": 0.9683 + }, + { + "start": 513.7, + "end": 517.04, + "probability": 0.8821 + }, + { + "start": 517.82, + "end": 522.16, + "probability": 0.8479 + }, + { + "start": 522.72, + "end": 525.2, + "probability": 0.7694 + }, + { + "start": 525.66, + "end": 528.44, + "probability": 0.9185 + }, + { + "start": 528.78, + "end": 531.32, + "probability": 0.8464 + }, + { + "start": 532.04, + "end": 533.2, + "probability": 0.8816 + }, + { + "start": 533.86, + "end": 534.48, + "probability": 0.9346 + }, + { + "start": 534.88, + "end": 535.31, + "probability": 0.9832 + }, + { + "start": 535.84, + "end": 536.25, + "probability": 0.981 + }, + { + "start": 536.68, + "end": 537.33, + "probability": 0.8082 + }, + { + "start": 538.2, + "end": 539.07, + "probability": 0.9548 + }, + { + "start": 539.62, + "end": 540.78, + "probability": 0.9665 + }, + { + "start": 541.2, + "end": 542.4, + "probability": 0.9283 + }, + { + "start": 542.8, + "end": 543.58, + "probability": 0.7847 + }, + { + "start": 544.16, + "end": 546.24, + "probability": 0.8262 + }, + { + "start": 547.26, + "end": 548.24, + "probability": 0.8106 + }, + { + "start": 550.14, + "end": 552.42, + "probability": 0.9485 + }, + { + "start": 553.42, + "end": 555.4, + "probability": 0.9771 + }, + { + "start": 555.54, + "end": 557.56, + "probability": 0.7134 + }, + { + "start": 557.72, + "end": 558.8, + "probability": 0.9669 + }, + { + "start": 559.82, + "end": 560.52, + "probability": 0.9547 + }, + { + "start": 562.08, + "end": 563.12, + "probability": 0.7943 + }, + { + "start": 565.26, + "end": 566.34, + "probability": 0.9438 + }, + { + "start": 568.56, + "end": 570.4, + "probability": 0.9982 + }, + { + "start": 571.18, + "end": 574.48, + "probability": 0.978 + }, + { + "start": 574.92, + "end": 576.39, + "probability": 0.8645 + }, + { + "start": 577.1, + "end": 578.24, + "probability": 0.93 + }, + { + "start": 579.84, + "end": 581.16, + "probability": 0.8945 + }, + { + "start": 582.14, + "end": 583.58, + "probability": 0.8646 + }, + { + "start": 583.62, + "end": 585.96, + "probability": 0.9817 + }, + { + "start": 587.24, + "end": 590.42, + "probability": 0.9977 + }, + { + "start": 591.36, + "end": 592.28, + "probability": 0.9279 + }, + { + "start": 592.68, + "end": 595.14, + "probability": 0.9486 + }, + { + "start": 595.26, + "end": 595.52, + "probability": 0.93 + }, + { + "start": 595.88, + "end": 596.26, + "probability": 0.4611 + }, + { + "start": 597.18, + "end": 597.72, + "probability": 0.9419 + }, + { + "start": 598.64, + "end": 601.7, + "probability": 0.9951 + }, + { + "start": 602.68, + "end": 603.3, + "probability": 0.988 + }, + { + "start": 603.34, + "end": 603.9, + "probability": 0.8559 + }, + { + "start": 605.72, + "end": 609.78, + "probability": 0.9956 + }, + { + "start": 610.38, + "end": 613.4, + "probability": 0.9941 + }, + { + "start": 613.96, + "end": 616.4, + "probability": 0.9896 + }, + { + "start": 617.24, + "end": 619.48, + "probability": 0.9621 + }, + { + "start": 621.96, + "end": 625.36, + "probability": 0.9964 + }, + { + "start": 626.18, + "end": 628.84, + "probability": 0.9985 + }, + { + "start": 629.26, + "end": 632.66, + "probability": 0.9839 + }, + { + "start": 633.58, + "end": 635.24, + "probability": 0.9869 + }, + { + "start": 636.24, + "end": 637.65, + "probability": 0.9559 + }, + { + "start": 638.44, + "end": 642.2, + "probability": 0.98 + }, + { + "start": 642.82, + "end": 643.98, + "probability": 0.7339 + }, + { + "start": 644.14, + "end": 645.52, + "probability": 0.9823 + }, + { + "start": 646.92, + "end": 648.44, + "probability": 0.9399 + }, + { + "start": 649.48, + "end": 650.72, + "probability": 0.9574 + }, + { + "start": 650.82, + "end": 651.7, + "probability": 0.7983 + }, + { + "start": 652.02, + "end": 652.88, + "probability": 0.9648 + }, + { + "start": 653.7, + "end": 655.28, + "probability": 0.7502 + }, + { + "start": 656.32, + "end": 658.4, + "probability": 0.8168 + }, + { + "start": 659.48, + "end": 664.5, + "probability": 0.9229 + }, + { + "start": 664.6, + "end": 665.42, + "probability": 0.7907 + }, + { + "start": 665.82, + "end": 667.04, + "probability": 0.9953 + }, + { + "start": 668.0, + "end": 670.68, + "probability": 0.8911 + }, + { + "start": 671.62, + "end": 673.9, + "probability": 0.6774 + }, + { + "start": 674.76, + "end": 677.08, + "probability": 0.9677 + }, + { + "start": 678.44, + "end": 679.86, + "probability": 0.9907 + }, + { + "start": 680.96, + "end": 681.22, + "probability": 0.6067 + }, + { + "start": 681.4, + "end": 681.74, + "probability": 0.9204 + }, + { + "start": 681.78, + "end": 682.47, + "probability": 0.9827 + }, + { + "start": 682.64, + "end": 684.18, + "probability": 0.9678 + }, + { + "start": 684.54, + "end": 687.94, + "probability": 0.7499 + }, + { + "start": 688.56, + "end": 690.46, + "probability": 0.8854 + }, + { + "start": 693.44, + "end": 696.72, + "probability": 0.9815 + }, + { + "start": 697.38, + "end": 698.98, + "probability": 0.9272 + }, + { + "start": 699.06, + "end": 701.44, + "probability": 0.9521 + }, + { + "start": 702.6, + "end": 704.2, + "probability": 0.6506 + }, + { + "start": 705.02, + "end": 706.52, + "probability": 0.9293 + }, + { + "start": 707.02, + "end": 708.08, + "probability": 0.899 + }, + { + "start": 709.36, + "end": 710.5, + "probability": 0.8739 + }, + { + "start": 710.58, + "end": 710.78, + "probability": 0.7989 + }, + { + "start": 710.84, + "end": 711.4, + "probability": 0.7821 + }, + { + "start": 712.34, + "end": 715.8, + "probability": 0.8808 + }, + { + "start": 716.22, + "end": 721.34, + "probability": 0.9062 + }, + { + "start": 721.34, + "end": 724.12, + "probability": 0.9701 + }, + { + "start": 724.78, + "end": 727.06, + "probability": 0.9639 + }, + { + "start": 727.7, + "end": 729.14, + "probability": 0.971 + }, + { + "start": 729.5, + "end": 730.7, + "probability": 0.8973 + }, + { + "start": 731.06, + "end": 733.7, + "probability": 0.9862 + }, + { + "start": 733.7, + "end": 736.24, + "probability": 0.955 + }, + { + "start": 736.62, + "end": 737.38, + "probability": 0.8772 + }, + { + "start": 738.22, + "end": 738.72, + "probability": 0.8234 + }, + { + "start": 739.86, + "end": 740.6, + "probability": 0.9839 + }, + { + "start": 741.58, + "end": 743.03, + "probability": 0.8576 + }, + { + "start": 743.68, + "end": 744.68, + "probability": 0.7446 + }, + { + "start": 744.74, + "end": 746.36, + "probability": 0.9167 + }, + { + "start": 746.68, + "end": 747.88, + "probability": 0.9835 + }, + { + "start": 748.96, + "end": 752.2, + "probability": 0.9791 + }, + { + "start": 752.6, + "end": 755.1, + "probability": 0.9884 + }, + { + "start": 756.2, + "end": 758.2, + "probability": 0.9756 + }, + { + "start": 758.88, + "end": 763.26, + "probability": 0.9951 + }, + { + "start": 763.66, + "end": 767.06, + "probability": 0.9794 + }, + { + "start": 767.6, + "end": 768.02, + "probability": 0.8125 + }, + { + "start": 768.18, + "end": 770.84, + "probability": 0.9923 + }, + { + "start": 770.84, + "end": 773.66, + "probability": 0.9954 + }, + { + "start": 774.16, + "end": 775.2, + "probability": 0.8358 + }, + { + "start": 775.98, + "end": 776.68, + "probability": 0.9376 + }, + { + "start": 777.2, + "end": 779.56, + "probability": 0.9608 + }, + { + "start": 780.04, + "end": 782.12, + "probability": 0.9961 + }, + { + "start": 782.6, + "end": 783.32, + "probability": 0.972 + }, + { + "start": 783.58, + "end": 784.88, + "probability": 0.7417 + }, + { + "start": 786.06, + "end": 787.48, + "probability": 0.86 + }, + { + "start": 787.62, + "end": 789.13, + "probability": 0.9736 + }, + { + "start": 789.32, + "end": 791.56, + "probability": 0.9175 + }, + { + "start": 791.92, + "end": 793.62, + "probability": 0.9103 + }, + { + "start": 793.92, + "end": 795.78, + "probability": 0.8989 + }, + { + "start": 796.26, + "end": 797.04, + "probability": 0.9083 + }, + { + "start": 797.36, + "end": 802.38, + "probability": 0.9935 + }, + { + "start": 803.62, + "end": 804.5, + "probability": 0.8221 + }, + { + "start": 804.92, + "end": 805.36, + "probability": 0.8834 + }, + { + "start": 807.12, + "end": 808.03, + "probability": 0.5569 + }, + { + "start": 808.34, + "end": 809.0, + "probability": 0.74 + }, + { + "start": 809.18, + "end": 810.48, + "probability": 0.9731 + }, + { + "start": 810.5, + "end": 811.44, + "probability": 0.6505 + }, + { + "start": 811.54, + "end": 812.24, + "probability": 0.9162 + }, + { + "start": 812.3, + "end": 813.02, + "probability": 0.7977 + }, + { + "start": 813.68, + "end": 813.98, + "probability": 0.7594 + }, + { + "start": 814.0, + "end": 814.64, + "probability": 0.9502 + }, + { + "start": 814.74, + "end": 817.0, + "probability": 0.9251 + }, + { + "start": 817.34, + "end": 818.18, + "probability": 0.8233 + }, + { + "start": 818.22, + "end": 821.82, + "probability": 0.9437 + }, + { + "start": 822.44, + "end": 828.38, + "probability": 0.6968 + }, + { + "start": 829.44, + "end": 830.7, + "probability": 0.8994 + }, + { + "start": 832.1, + "end": 832.78, + "probability": 0.4998 + }, + { + "start": 833.84, + "end": 835.32, + "probability": 0.8738 + }, + { + "start": 835.42, + "end": 837.13, + "probability": 0.9813 + }, + { + "start": 838.02, + "end": 840.08, + "probability": 0.9832 + }, + { + "start": 840.68, + "end": 846.82, + "probability": 0.9695 + }, + { + "start": 847.34, + "end": 848.58, + "probability": 0.9889 + }, + { + "start": 849.24, + "end": 852.32, + "probability": 0.9899 + }, + { + "start": 852.7, + "end": 856.02, + "probability": 0.9868 + }, + { + "start": 856.02, + "end": 860.22, + "probability": 0.9972 + }, + { + "start": 860.5, + "end": 861.84, + "probability": 0.999 + }, + { + "start": 862.4, + "end": 864.7, + "probability": 0.8399 + }, + { + "start": 864.78, + "end": 867.92, + "probability": 0.989 + }, + { + "start": 867.92, + "end": 870.36, + "probability": 0.9388 + }, + { + "start": 870.56, + "end": 870.84, + "probability": 0.48 + }, + { + "start": 871.82, + "end": 873.98, + "probability": 0.9733 + }, + { + "start": 874.22, + "end": 876.96, + "probability": 0.4837 + }, + { + "start": 877.88, + "end": 878.96, + "probability": 0.8204 + }, + { + "start": 879.1, + "end": 880.62, + "probability": 0.9739 + }, + { + "start": 880.76, + "end": 884.94, + "probability": 0.949 + }, + { + "start": 884.94, + "end": 889.14, + "probability": 0.9398 + }, + { + "start": 889.58, + "end": 889.92, + "probability": 0.1421 + }, + { + "start": 889.98, + "end": 890.84, + "probability": 0.5903 + }, + { + "start": 890.92, + "end": 894.28, + "probability": 0.7991 + }, + { + "start": 894.54, + "end": 898.4, + "probability": 0.9852 + }, + { + "start": 899.88, + "end": 900.98, + "probability": 0.5867 + }, + { + "start": 901.06, + "end": 902.36, + "probability": 0.9616 + }, + { + "start": 904.38, + "end": 907.72, + "probability": 0.6296 + }, + { + "start": 909.7, + "end": 910.86, + "probability": 0.7247 + }, + { + "start": 912.66, + "end": 915.9, + "probability": 0.9565 + }, + { + "start": 917.56, + "end": 918.22, + "probability": 0.416 + }, + { + "start": 918.38, + "end": 919.52, + "probability": 0.9271 + }, + { + "start": 920.36, + "end": 922.44, + "probability": 0.8445 + }, + { + "start": 922.92, + "end": 924.86, + "probability": 0.7976 + }, + { + "start": 926.82, + "end": 927.52, + "probability": 0.8888 + }, + { + "start": 929.38, + "end": 934.16, + "probability": 0.9224 + }, + { + "start": 935.7, + "end": 936.22, + "probability": 0.9387 + }, + { + "start": 936.26, + "end": 936.46, + "probability": 0.9309 + }, + { + "start": 936.58, + "end": 940.12, + "probability": 0.9358 + }, + { + "start": 940.2, + "end": 940.96, + "probability": 0.9272 + }, + { + "start": 942.12, + "end": 943.6, + "probability": 0.8289 + }, + { + "start": 945.4, + "end": 946.08, + "probability": 0.9266 + }, + { + "start": 946.08, + "end": 949.6, + "probability": 0.9851 + }, + { + "start": 949.68, + "end": 950.76, + "probability": 0.9124 + }, + { + "start": 951.16, + "end": 953.68, + "probability": 0.8179 + }, + { + "start": 954.96, + "end": 955.96, + "probability": 0.9863 + }, + { + "start": 956.34, + "end": 958.84, + "probability": 0.4912 + }, + { + "start": 959.86, + "end": 961.7, + "probability": 0.8669 + }, + { + "start": 962.34, + "end": 962.78, + "probability": 0.8179 + }, + { + "start": 962.84, + "end": 964.72, + "probability": 0.8882 + }, + { + "start": 964.72, + "end": 968.82, + "probability": 0.9245 + }, + { + "start": 969.76, + "end": 971.24, + "probability": 0.986 + }, + { + "start": 972.38, + "end": 973.56, + "probability": 0.8866 + }, + { + "start": 973.83, + "end": 977.2, + "probability": 0.6358 + }, + { + "start": 977.34, + "end": 978.18, + "probability": 0.812 + }, + { + "start": 979.94, + "end": 981.06, + "probability": 0.6527 + }, + { + "start": 982.22, + "end": 984.2, + "probability": 0.9225 + }, + { + "start": 984.28, + "end": 986.54, + "probability": 0.9935 + }, + { + "start": 987.72, + "end": 988.32, + "probability": 0.893 + }, + { + "start": 988.5, + "end": 989.6, + "probability": 0.7146 + }, + { + "start": 990.23, + "end": 994.28, + "probability": 0.845 + }, + { + "start": 995.14, + "end": 997.32, + "probability": 0.9805 + }, + { + "start": 997.38, + "end": 999.92, + "probability": 0.9802 + }, + { + "start": 1000.62, + "end": 1005.12, + "probability": 0.9967 + }, + { + "start": 1006.94, + "end": 1009.24, + "probability": 0.8674 + }, + { + "start": 1009.32, + "end": 1012.96, + "probability": 0.7027 + }, + { + "start": 1014.26, + "end": 1015.1, + "probability": 0.611 + }, + { + "start": 1018.22, + "end": 1020.53, + "probability": 0.6701 + }, + { + "start": 1022.0, + "end": 1023.2, + "probability": 0.8523 + }, + { + "start": 1023.36, + "end": 1024.78, + "probability": 0.9674 + }, + { + "start": 1024.9, + "end": 1031.46, + "probability": 0.9858 + }, + { + "start": 1031.52, + "end": 1034.04, + "probability": 0.6412 + }, + { + "start": 1034.18, + "end": 1035.58, + "probability": 0.7598 + }, + { + "start": 1036.38, + "end": 1037.2, + "probability": 0.8536 + }, + { + "start": 1037.86, + "end": 1039.24, + "probability": 0.6997 + }, + { + "start": 1040.84, + "end": 1042.48, + "probability": 0.8447 + }, + { + "start": 1042.78, + "end": 1046.9, + "probability": 0.8313 + }, + { + "start": 1046.92, + "end": 1051.05, + "probability": 0.8987 + }, + { + "start": 1052.14, + "end": 1052.98, + "probability": 0.9634 + }, + { + "start": 1054.12, + "end": 1054.88, + "probability": 0.8646 + }, + { + "start": 1056.14, + "end": 1057.17, + "probability": 0.9253 + }, + { + "start": 1057.32, + "end": 1058.32, + "probability": 0.8185 + }, + { + "start": 1058.38, + "end": 1059.8, + "probability": 0.9422 + }, + { + "start": 1060.78, + "end": 1062.56, + "probability": 0.7446 + }, + { + "start": 1064.56, + "end": 1066.16, + "probability": 0.9624 + }, + { + "start": 1066.36, + "end": 1069.98, + "probability": 0.1943 + }, + { + "start": 1069.98, + "end": 1071.96, + "probability": 0.554 + }, + { + "start": 1072.38, + "end": 1072.78, + "probability": 0.6941 + }, + { + "start": 1073.86, + "end": 1076.02, + "probability": 0.6993 + }, + { + "start": 1077.14, + "end": 1079.33, + "probability": 0.998 + }, + { + "start": 1080.38, + "end": 1082.24, + "probability": 0.3662 + }, + { + "start": 1082.92, + "end": 1084.88, + "probability": 0.8809 + }, + { + "start": 1086.2, + "end": 1089.7, + "probability": 0.939 + }, + { + "start": 1091.32, + "end": 1093.29, + "probability": 0.8137 + }, + { + "start": 1093.7, + "end": 1094.54, + "probability": 0.9485 + }, + { + "start": 1095.0, + "end": 1095.94, + "probability": 0.6117 + }, + { + "start": 1096.04, + "end": 1096.66, + "probability": 0.8936 + }, + { + "start": 1096.78, + "end": 1099.08, + "probability": 0.9384 + }, + { + "start": 1099.14, + "end": 1101.28, + "probability": 0.9313 + }, + { + "start": 1102.68, + "end": 1105.8, + "probability": 0.5033 + }, + { + "start": 1105.92, + "end": 1106.62, + "probability": 0.8058 + }, + { + "start": 1107.9, + "end": 1110.46, + "probability": 0.9326 + }, + { + "start": 1111.6, + "end": 1114.7, + "probability": 0.9706 + }, + { + "start": 1115.72, + "end": 1118.36, + "probability": 0.9419 + }, + { + "start": 1119.02, + "end": 1120.88, + "probability": 0.7544 + }, + { + "start": 1122.08, + "end": 1124.48, + "probability": 0.9805 + }, + { + "start": 1126.22, + "end": 1129.74, + "probability": 0.9725 + }, + { + "start": 1131.08, + "end": 1133.5, + "probability": 0.9966 + }, + { + "start": 1134.28, + "end": 1135.46, + "probability": 0.9297 + }, + { + "start": 1136.0, + "end": 1136.97, + "probability": 0.9482 + }, + { + "start": 1137.8, + "end": 1139.64, + "probability": 0.8164 + }, + { + "start": 1139.72, + "end": 1142.22, + "probability": 0.9343 + }, + { + "start": 1143.66, + "end": 1147.76, + "probability": 0.9818 + }, + { + "start": 1147.86, + "end": 1148.94, + "probability": 0.6251 + }, + { + "start": 1148.98, + "end": 1149.52, + "probability": 0.5958 + }, + { + "start": 1149.64, + "end": 1152.7, + "probability": 0.7964 + }, + { + "start": 1152.76, + "end": 1153.14, + "probability": 0.5192 + }, + { + "start": 1153.2, + "end": 1153.8, + "probability": 0.8563 + }, + { + "start": 1154.2, + "end": 1156.34, + "probability": 0.8416 + }, + { + "start": 1156.84, + "end": 1158.06, + "probability": 0.9697 + }, + { + "start": 1158.82, + "end": 1161.72, + "probability": 0.9717 + }, + { + "start": 1161.9, + "end": 1162.54, + "probability": 0.7977 + }, + { + "start": 1163.1, + "end": 1163.3, + "probability": 0.6454 + }, + { + "start": 1163.62, + "end": 1164.76, + "probability": 0.9712 + }, + { + "start": 1164.94, + "end": 1167.5, + "probability": 0.9448 + }, + { + "start": 1167.54, + "end": 1169.22, + "probability": 0.7248 + }, + { + "start": 1169.6, + "end": 1170.68, + "probability": 0.7219 + }, + { + "start": 1171.52, + "end": 1172.52, + "probability": 0.7165 + }, + { + "start": 1173.48, + "end": 1174.24, + "probability": 0.6578 + }, + { + "start": 1174.36, + "end": 1175.34, + "probability": 0.8992 + }, + { + "start": 1175.4, + "end": 1177.78, + "probability": 0.7328 + }, + { + "start": 1177.82, + "end": 1179.24, + "probability": 0.9481 + }, + { + "start": 1180.82, + "end": 1182.16, + "probability": 0.5795 + }, + { + "start": 1183.56, + "end": 1187.24, + "probability": 0.7651 + }, + { + "start": 1187.3, + "end": 1190.07, + "probability": 0.9613 + }, + { + "start": 1191.04, + "end": 1195.18, + "probability": 0.998 + }, + { + "start": 1195.18, + "end": 1199.54, + "probability": 0.747 + }, + { + "start": 1200.44, + "end": 1204.12, + "probability": 0.8731 + }, + { + "start": 1204.22, + "end": 1207.08, + "probability": 0.7769 + }, + { + "start": 1207.9, + "end": 1208.92, + "probability": 0.876 + }, + { + "start": 1209.62, + "end": 1210.54, + "probability": 0.9696 + }, + { + "start": 1211.44, + "end": 1215.4, + "probability": 0.9429 + }, + { + "start": 1215.96, + "end": 1217.45, + "probability": 0.7808 + }, + { + "start": 1217.96, + "end": 1220.8, + "probability": 0.7854 + }, + { + "start": 1220.88, + "end": 1223.88, + "probability": 0.9639 + }, + { + "start": 1224.66, + "end": 1225.72, + "probability": 0.3171 + }, + { + "start": 1225.84, + "end": 1227.9, + "probability": 0.9956 + }, + { + "start": 1228.02, + "end": 1228.9, + "probability": 0.9949 + }, + { + "start": 1229.48, + "end": 1232.5, + "probability": 0.9737 + }, + { + "start": 1233.08, + "end": 1234.48, + "probability": 0.8527 + }, + { + "start": 1235.66, + "end": 1236.9, + "probability": 0.544 + }, + { + "start": 1237.74, + "end": 1238.88, + "probability": 0.7421 + }, + { + "start": 1239.7, + "end": 1242.2, + "probability": 0.9565 + }, + { + "start": 1244.08, + "end": 1247.7, + "probability": 0.9001 + }, + { + "start": 1248.38, + "end": 1250.5, + "probability": 0.9612 + }, + { + "start": 1251.52, + "end": 1253.36, + "probability": 0.8237 + }, + { + "start": 1254.36, + "end": 1256.86, + "probability": 0.9704 + }, + { + "start": 1257.38, + "end": 1257.93, + "probability": 0.9375 + }, + { + "start": 1259.64, + "end": 1262.22, + "probability": 0.8972 + }, + { + "start": 1262.32, + "end": 1262.68, + "probability": 0.3977 + }, + { + "start": 1262.76, + "end": 1266.52, + "probability": 0.9949 + }, + { + "start": 1266.58, + "end": 1266.88, + "probability": 0.6332 + }, + { + "start": 1267.72, + "end": 1268.96, + "probability": 0.9727 + }, + { + "start": 1270.04, + "end": 1272.2, + "probability": 0.9946 + }, + { + "start": 1273.28, + "end": 1275.66, + "probability": 0.9116 + }, + { + "start": 1275.86, + "end": 1277.54, + "probability": 0.9558 + }, + { + "start": 1277.64, + "end": 1278.09, + "probability": 0.5131 + }, + { + "start": 1280.56, + "end": 1281.76, + "probability": 0.895 + }, + { + "start": 1282.02, + "end": 1283.04, + "probability": 0.838 + }, + { + "start": 1283.08, + "end": 1283.8, + "probability": 0.6532 + }, + { + "start": 1283.88, + "end": 1285.9, + "probability": 0.8395 + }, + { + "start": 1286.02, + "end": 1292.17, + "probability": 0.9775 + }, + { + "start": 1292.88, + "end": 1293.26, + "probability": 0.3669 + }, + { + "start": 1295.54, + "end": 1297.94, + "probability": 0.7614 + }, + { + "start": 1299.06, + "end": 1302.62, + "probability": 0.9163 + }, + { + "start": 1302.88, + "end": 1304.84, + "probability": 0.9844 + }, + { + "start": 1306.9, + "end": 1309.44, + "probability": 0.7192 + }, + { + "start": 1309.48, + "end": 1311.74, + "probability": 0.8341 + }, + { + "start": 1311.8, + "end": 1313.12, + "probability": 0.5099 + }, + { + "start": 1313.18, + "end": 1314.76, + "probability": 0.8356 + }, + { + "start": 1316.22, + "end": 1319.18, + "probability": 0.9959 + }, + { + "start": 1320.0, + "end": 1321.94, + "probability": 0.9902 + }, + { + "start": 1322.98, + "end": 1323.61, + "probability": 0.9556 + }, + { + "start": 1325.22, + "end": 1326.16, + "probability": 0.9712 + }, + { + "start": 1327.86, + "end": 1329.14, + "probability": 0.5363 + }, + { + "start": 1330.28, + "end": 1332.04, + "probability": 0.6506 + }, + { + "start": 1333.46, + "end": 1336.16, + "probability": 0.843 + }, + { + "start": 1337.6, + "end": 1339.06, + "probability": 0.9043 + }, + { + "start": 1339.48, + "end": 1341.3, + "probability": 0.9939 + }, + { + "start": 1342.7, + "end": 1344.62, + "probability": 0.6708 + }, + { + "start": 1345.3, + "end": 1350.14, + "probability": 0.9917 + }, + { + "start": 1350.32, + "end": 1351.02, + "probability": 0.7216 + }, + { + "start": 1351.08, + "end": 1353.9, + "probability": 0.8034 + }, + { + "start": 1354.96, + "end": 1356.3, + "probability": 0.8904 + }, + { + "start": 1356.58, + "end": 1358.54, + "probability": 0.9622 + }, + { + "start": 1358.96, + "end": 1359.86, + "probability": 0.8706 + }, + { + "start": 1359.96, + "end": 1363.72, + "probability": 0.9908 + }, + { + "start": 1363.72, + "end": 1364.02, + "probability": 0.7012 + }, + { + "start": 1364.68, + "end": 1367.94, + "probability": 0.9879 + }, + { + "start": 1368.28, + "end": 1368.82, + "probability": 0.7595 + }, + { + "start": 1368.88, + "end": 1369.96, + "probability": 0.9371 + }, + { + "start": 1370.5, + "end": 1372.1, + "probability": 0.9646 + }, + { + "start": 1372.14, + "end": 1375.16, + "probability": 0.762 + }, + { + "start": 1375.24, + "end": 1378.0, + "probability": 0.9937 + }, + { + "start": 1378.14, + "end": 1380.33, + "probability": 0.9766 + }, + { + "start": 1381.58, + "end": 1385.72, + "probability": 0.9379 + }, + { + "start": 1386.7, + "end": 1387.84, + "probability": 0.9453 + }, + { + "start": 1388.78, + "end": 1389.36, + "probability": 0.6932 + }, + { + "start": 1389.54, + "end": 1392.9, + "probability": 0.9135 + }, + { + "start": 1394.08, + "end": 1395.1, + "probability": 0.9371 + }, + { + "start": 1396.26, + "end": 1397.72, + "probability": 0.9646 + }, + { + "start": 1398.78, + "end": 1400.44, + "probability": 0.9419 + }, + { + "start": 1400.62, + "end": 1401.36, + "probability": 0.6857 + }, + { + "start": 1401.58, + "end": 1403.96, + "probability": 0.9132 + }, + { + "start": 1404.82, + "end": 1407.2, + "probability": 0.7854 + }, + { + "start": 1407.98, + "end": 1409.7, + "probability": 0.8624 + }, + { + "start": 1411.34, + "end": 1412.26, + "probability": 0.7193 + }, + { + "start": 1412.36, + "end": 1413.04, + "probability": 0.5091 + }, + { + "start": 1413.14, + "end": 1413.64, + "probability": 0.22 + }, + { + "start": 1413.76, + "end": 1414.84, + "probability": 0.7809 + }, + { + "start": 1415.2, + "end": 1415.77, + "probability": 0.7751 + }, + { + "start": 1416.28, + "end": 1418.12, + "probability": 0.7646 + }, + { + "start": 1418.24, + "end": 1418.86, + "probability": 0.5785 + }, + { + "start": 1419.38, + "end": 1420.28, + "probability": 0.7431 + }, + { + "start": 1420.42, + "end": 1421.72, + "probability": 0.9325 + }, + { + "start": 1423.68, + "end": 1428.8, + "probability": 0.9895 + }, + { + "start": 1428.8, + "end": 1432.12, + "probability": 0.9891 + }, + { + "start": 1433.06, + "end": 1433.36, + "probability": 0.6604 + }, + { + "start": 1433.42, + "end": 1433.96, + "probability": 0.8792 + }, + { + "start": 1434.02, + "end": 1435.86, + "probability": 0.9463 + }, + { + "start": 1436.0, + "end": 1437.04, + "probability": 0.7719 + }, + { + "start": 1437.16, + "end": 1440.88, + "probability": 0.9846 + }, + { + "start": 1441.08, + "end": 1442.44, + "probability": 0.9976 + }, + { + "start": 1442.9, + "end": 1445.86, + "probability": 0.9979 + }, + { + "start": 1447.16, + "end": 1448.04, + "probability": 0.8208 + }, + { + "start": 1448.36, + "end": 1451.38, + "probability": 0.8303 + }, + { + "start": 1452.16, + "end": 1452.7, + "probability": 0.7478 + }, + { + "start": 1454.78, + "end": 1458.62, + "probability": 0.9721 + }, + { + "start": 1460.04, + "end": 1461.48, + "probability": 0.8967 + }, + { + "start": 1461.68, + "end": 1462.7, + "probability": 0.9951 + }, + { + "start": 1463.72, + "end": 1469.6, + "probability": 0.9703 + }, + { + "start": 1469.7, + "end": 1470.68, + "probability": 0.5026 + }, + { + "start": 1471.46, + "end": 1472.94, + "probability": 0.8506 + }, + { + "start": 1473.68, + "end": 1477.86, + "probability": 0.9977 + }, + { + "start": 1478.5, + "end": 1480.96, + "probability": 0.9818 + }, + { + "start": 1481.44, + "end": 1484.22, + "probability": 0.803 + }, + { + "start": 1484.9, + "end": 1486.48, + "probability": 0.9946 + }, + { + "start": 1487.16, + "end": 1490.58, + "probability": 0.9346 + }, + { + "start": 1490.66, + "end": 1491.88, + "probability": 0.9497 + }, + { + "start": 1493.08, + "end": 1493.52, + "probability": 0.9658 + }, + { + "start": 1494.4, + "end": 1496.44, + "probability": 0.9624 + }, + { + "start": 1497.96, + "end": 1499.42, + "probability": 0.8877 + }, + { + "start": 1500.38, + "end": 1501.88, + "probability": 0.9678 + }, + { + "start": 1503.3, + "end": 1505.96, + "probability": 0.7335 + }, + { + "start": 1506.5, + "end": 1508.8, + "probability": 0.9879 + }, + { + "start": 1508.8, + "end": 1511.74, + "probability": 0.9828 + }, + { + "start": 1513.02, + "end": 1514.24, + "probability": 0.7551 + }, + { + "start": 1515.68, + "end": 1516.38, + "probability": 0.9727 + }, + { + "start": 1517.66, + "end": 1520.94, + "probability": 0.9985 + }, + { + "start": 1522.68, + "end": 1523.66, + "probability": 0.6721 + }, + { + "start": 1523.8, + "end": 1524.34, + "probability": 0.4991 + }, + { + "start": 1524.4, + "end": 1525.48, + "probability": 0.8231 + }, + { + "start": 1525.52, + "end": 1526.66, + "probability": 0.9643 + }, + { + "start": 1526.74, + "end": 1527.14, + "probability": 0.3864 + }, + { + "start": 1528.56, + "end": 1530.32, + "probability": 0.7925 + }, + { + "start": 1531.36, + "end": 1532.54, + "probability": 0.9517 + }, + { + "start": 1533.16, + "end": 1534.94, + "probability": 0.7886 + }, + { + "start": 1535.28, + "end": 1535.48, + "probability": 0.8156 + }, + { + "start": 1536.98, + "end": 1537.46, + "probability": 0.4155 + }, + { + "start": 1537.58, + "end": 1538.87, + "probability": 0.7754 + }, + { + "start": 1539.02, + "end": 1540.48, + "probability": 0.4801 + }, + { + "start": 1540.54, + "end": 1541.04, + "probability": 0.5769 + }, + { + "start": 1541.1, + "end": 1544.24, + "probability": 0.6592 + }, + { + "start": 1545.1, + "end": 1551.3, + "probability": 0.9458 + }, + { + "start": 1551.9, + "end": 1558.16, + "probability": 0.9598 + }, + { + "start": 1564.16, + "end": 1564.6, + "probability": 0.5343 + }, + { + "start": 1564.9, + "end": 1566.39, + "probability": 0.8012 + }, + { + "start": 1567.08, + "end": 1568.08, + "probability": 0.8009 + }, + { + "start": 1569.56, + "end": 1570.32, + "probability": 0.8887 + }, + { + "start": 1570.9, + "end": 1572.52, + "probability": 0.8522 + }, + { + "start": 1573.72, + "end": 1580.46, + "probability": 0.9677 + }, + { + "start": 1581.88, + "end": 1583.16, + "probability": 0.961 + }, + { + "start": 1585.08, + "end": 1593.38, + "probability": 0.7904 + }, + { + "start": 1594.2, + "end": 1596.42, + "probability": 0.8757 + }, + { + "start": 1597.92, + "end": 1603.44, + "probability": 0.9091 + }, + { + "start": 1604.72, + "end": 1605.7, + "probability": 0.8608 + }, + { + "start": 1605.74, + "end": 1606.52, + "probability": 0.9224 + }, + { + "start": 1606.7, + "end": 1607.38, + "probability": 0.6198 + }, + { + "start": 1607.48, + "end": 1608.34, + "probability": 0.9479 + }, + { + "start": 1608.94, + "end": 1609.86, + "probability": 0.9889 + }, + { + "start": 1610.44, + "end": 1611.5, + "probability": 0.8384 + }, + { + "start": 1611.62, + "end": 1611.94, + "probability": 0.7062 + }, + { + "start": 1611.94, + "end": 1613.28, + "probability": 0.7944 + }, + { + "start": 1614.3, + "end": 1619.26, + "probability": 0.9395 + }, + { + "start": 1620.1, + "end": 1622.82, + "probability": 0.9305 + }, + { + "start": 1623.72, + "end": 1626.14, + "probability": 0.9814 + }, + { + "start": 1626.96, + "end": 1627.74, + "probability": 0.6875 + }, + { + "start": 1627.86, + "end": 1628.72, + "probability": 0.9281 + }, + { + "start": 1628.8, + "end": 1629.6, + "probability": 0.7373 + }, + { + "start": 1629.98, + "end": 1631.78, + "probability": 0.7075 + }, + { + "start": 1632.76, + "end": 1634.82, + "probability": 0.9604 + }, + { + "start": 1634.96, + "end": 1636.58, + "probability": 0.8818 + }, + { + "start": 1637.26, + "end": 1638.76, + "probability": 0.7946 + }, + { + "start": 1639.82, + "end": 1641.54, + "probability": 0.7793 + }, + { + "start": 1642.38, + "end": 1648.04, + "probability": 0.9803 + }, + { + "start": 1649.4, + "end": 1651.02, + "probability": 0.9575 + }, + { + "start": 1651.08, + "end": 1653.56, + "probability": 0.8163 + }, + { + "start": 1655.14, + "end": 1656.88, + "probability": 0.8679 + }, + { + "start": 1656.96, + "end": 1657.56, + "probability": 0.8918 + }, + { + "start": 1658.02, + "end": 1659.24, + "probability": 0.2592 + }, + { + "start": 1659.34, + "end": 1660.94, + "probability": 0.9881 + }, + { + "start": 1661.88, + "end": 1663.98, + "probability": 0.9719 + }, + { + "start": 1664.24, + "end": 1664.88, + "probability": 0.9282 + }, + { + "start": 1665.34, + "end": 1666.06, + "probability": 0.7469 + }, + { + "start": 1666.18, + "end": 1666.9, + "probability": 0.981 + }, + { + "start": 1667.44, + "end": 1668.22, + "probability": 0.5929 + }, + { + "start": 1668.84, + "end": 1672.04, + "probability": 0.8748 + }, + { + "start": 1673.32, + "end": 1674.48, + "probability": 0.68 + }, + { + "start": 1674.68, + "end": 1676.12, + "probability": 0.8662 + }, + { + "start": 1677.24, + "end": 1679.42, + "probability": 0.8574 + }, + { + "start": 1680.44, + "end": 1683.66, + "probability": 0.9501 + }, + { + "start": 1684.8, + "end": 1685.44, + "probability": 0.8286 + }, + { + "start": 1685.84, + "end": 1686.62, + "probability": 0.9818 + }, + { + "start": 1687.04, + "end": 1687.63, + "probability": 0.9767 + }, + { + "start": 1688.26, + "end": 1689.61, + "probability": 0.9148 + }, + { + "start": 1690.4, + "end": 1694.02, + "probability": 0.8864 + }, + { + "start": 1694.58, + "end": 1697.5, + "probability": 0.9869 + }, + { + "start": 1699.46, + "end": 1700.28, + "probability": 0.6247 + }, + { + "start": 1700.36, + "end": 1703.06, + "probability": 0.7601 + }, + { + "start": 1703.62, + "end": 1705.76, + "probability": 0.7535 + }, + { + "start": 1705.82, + "end": 1706.9, + "probability": 0.9748 + }, + { + "start": 1707.5, + "end": 1708.92, + "probability": 0.8928 + }, + { + "start": 1709.42, + "end": 1712.28, + "probability": 0.9905 + }, + { + "start": 1712.86, + "end": 1716.64, + "probability": 0.673 + }, + { + "start": 1717.82, + "end": 1718.76, + "probability": 0.5114 + }, + { + "start": 1718.84, + "end": 1719.9, + "probability": 0.8317 + }, + { + "start": 1720.14, + "end": 1721.25, + "probability": 0.8727 + }, + { + "start": 1721.78, + "end": 1723.78, + "probability": 0.9652 + }, + { + "start": 1723.9, + "end": 1724.62, + "probability": 0.9693 + }, + { + "start": 1724.74, + "end": 1725.22, + "probability": 0.8664 + }, + { + "start": 1725.28, + "end": 1726.16, + "probability": 0.9872 + }, + { + "start": 1727.7, + "end": 1730.22, + "probability": 0.9512 + }, + { + "start": 1730.32, + "end": 1732.66, + "probability": 0.929 + }, + { + "start": 1733.66, + "end": 1735.42, + "probability": 0.9611 + }, + { + "start": 1735.62, + "end": 1736.36, + "probability": 0.9678 + }, + { + "start": 1736.4, + "end": 1739.12, + "probability": 0.8911 + }, + { + "start": 1739.92, + "end": 1741.12, + "probability": 0.8519 + }, + { + "start": 1741.24, + "end": 1743.78, + "probability": 0.6956 + }, + { + "start": 1744.42, + "end": 1745.86, + "probability": 0.0719 + }, + { + "start": 1746.4, + "end": 1747.51, + "probability": 0.7355 + }, + { + "start": 1748.04, + "end": 1749.36, + "probability": 0.7509 + }, + { + "start": 1749.5, + "end": 1750.28, + "probability": 0.9199 + }, + { + "start": 1750.38, + "end": 1751.3, + "probability": 0.8794 + }, + { + "start": 1751.8, + "end": 1753.78, + "probability": 0.8686 + }, + { + "start": 1753.98, + "end": 1754.52, + "probability": 0.4002 + }, + { + "start": 1755.18, + "end": 1756.76, + "probability": 0.9746 + }, + { + "start": 1757.14, + "end": 1757.76, + "probability": 0.6296 + }, + { + "start": 1757.84, + "end": 1758.48, + "probability": 0.8339 + }, + { + "start": 1759.02, + "end": 1760.16, + "probability": 0.9526 + }, + { + "start": 1760.46, + "end": 1763.26, + "probability": 0.9764 + }, + { + "start": 1763.84, + "end": 1765.64, + "probability": 0.8613 + }, + { + "start": 1765.66, + "end": 1766.54, + "probability": 0.5945 + }, + { + "start": 1767.12, + "end": 1767.43, + "probability": 0.7049 + }, + { + "start": 1768.2, + "end": 1769.94, + "probability": 0.963 + }, + { + "start": 1770.04, + "end": 1770.98, + "probability": 0.6613 + }, + { + "start": 1771.56, + "end": 1774.46, + "probability": 0.9031 + }, + { + "start": 1774.9, + "end": 1775.27, + "probability": 0.1043 + }, + { + "start": 1777.02, + "end": 1777.38, + "probability": 0.7327 + }, + { + "start": 1777.5, + "end": 1780.02, + "probability": 0.5537 + }, + { + "start": 1780.08, + "end": 1782.14, + "probability": 0.7857 + }, + { + "start": 1782.18, + "end": 1784.42, + "probability": 0.9922 + }, + { + "start": 1785.11, + "end": 1787.26, + "probability": 0.8906 + }, + { + "start": 1787.3, + "end": 1789.68, + "probability": 0.3789 + }, + { + "start": 1789.9, + "end": 1790.5, + "probability": 0.5662 + }, + { + "start": 1791.06, + "end": 1792.56, + "probability": 0.6334 + }, + { + "start": 1792.56, + "end": 1795.07, + "probability": 0.6357 + }, + { + "start": 1795.88, + "end": 1797.1, + "probability": 0.6225 + }, + { + "start": 1799.56, + "end": 1799.86, + "probability": 0.0402 + }, + { + "start": 1799.86, + "end": 1800.02, + "probability": 0.2181 + }, + { + "start": 1800.44, + "end": 1802.94, + "probability": 0.8394 + }, + { + "start": 1803.52, + "end": 1806.74, + "probability": 0.8915 + }, + { + "start": 1807.06, + "end": 1810.16, + "probability": 0.7709 + }, + { + "start": 1810.62, + "end": 1812.9, + "probability": 0.6992 + }, + { + "start": 1813.16, + "end": 1814.78, + "probability": 0.8781 + }, + { + "start": 1815.12, + "end": 1816.76, + "probability": 0.8171 + }, + { + "start": 1816.8, + "end": 1817.54, + "probability": 0.5608 + }, + { + "start": 1817.86, + "end": 1819.0, + "probability": 0.896 + }, + { + "start": 1819.58, + "end": 1819.86, + "probability": 0.4111 + }, + { + "start": 1819.98, + "end": 1820.24, + "probability": 0.7184 + }, + { + "start": 1820.32, + "end": 1821.36, + "probability": 0.7161 + }, + { + "start": 1821.68, + "end": 1822.5, + "probability": 0.8779 + }, + { + "start": 1822.64, + "end": 1824.0, + "probability": 0.7849 + }, + { + "start": 1824.74, + "end": 1824.86, + "probability": 0.0979 + }, + { + "start": 1824.92, + "end": 1825.96, + "probability": 0.8303 + }, + { + "start": 1825.98, + "end": 1832.66, + "probability": 0.8778 + }, + { + "start": 1833.56, + "end": 1837.18, + "probability": 0.8716 + }, + { + "start": 1838.08, + "end": 1841.7, + "probability": 0.7809 + }, + { + "start": 1841.8, + "end": 1842.78, + "probability": 0.644 + }, + { + "start": 1843.02, + "end": 1849.06, + "probability": 0.8149 + }, + { + "start": 1849.5, + "end": 1854.88, + "probability": 0.9095 + }, + { + "start": 1855.54, + "end": 1857.0, + "probability": 0.6857 + }, + { + "start": 1857.14, + "end": 1858.18, + "probability": 0.5999 + }, + { + "start": 1858.3, + "end": 1859.08, + "probability": 0.6052 + }, + { + "start": 1859.34, + "end": 1861.12, + "probability": 0.9901 + }, + { + "start": 1861.34, + "end": 1864.0, + "probability": 0.8848 + }, + { + "start": 1864.28, + "end": 1864.96, + "probability": 0.9069 + }, + { + "start": 1865.02, + "end": 1865.94, + "probability": 0.7832 + }, + { + "start": 1866.22, + "end": 1866.98, + "probability": 0.8672 + }, + { + "start": 1867.74, + "end": 1872.84, + "probability": 0.9765 + }, + { + "start": 1874.28, + "end": 1875.62, + "probability": 0.5352 + }, + { + "start": 1877.84, + "end": 1879.86, + "probability": 0.7572 + }, + { + "start": 1879.98, + "end": 1881.84, + "probability": 0.6593 + }, + { + "start": 1882.02, + "end": 1882.3, + "probability": 0.4269 + }, + { + "start": 1882.36, + "end": 1883.59, + "probability": 0.8606 + }, + { + "start": 1884.32, + "end": 1885.36, + "probability": 0.7699 + }, + { + "start": 1885.62, + "end": 1886.4, + "probability": 0.9756 + }, + { + "start": 1887.0, + "end": 1888.74, + "probability": 0.9038 + }, + { + "start": 1889.76, + "end": 1892.68, + "probability": 0.9407 + }, + { + "start": 1892.96, + "end": 1893.85, + "probability": 0.6599 + }, + { + "start": 1894.4, + "end": 1895.72, + "probability": 0.7066 + }, + { + "start": 1896.3, + "end": 1900.44, + "probability": 0.6402 + }, + { + "start": 1900.86, + "end": 1901.84, + "probability": 0.5517 + }, + { + "start": 1901.9, + "end": 1904.98, + "probability": 0.9243 + }, + { + "start": 1906.52, + "end": 1906.79, + "probability": 0.6344 + }, + { + "start": 1908.38, + "end": 1909.8, + "probability": 0.9462 + }, + { + "start": 1911.87, + "end": 1912.56, + "probability": 0.021 + }, + { + "start": 1912.56, + "end": 1913.7, + "probability": 0.2636 + }, + { + "start": 1913.7, + "end": 1915.72, + "probability": 0.3492 + }, + { + "start": 1916.04, + "end": 1916.88, + "probability": 0.7562 + }, + { + "start": 1917.18, + "end": 1918.66, + "probability": 0.8838 + }, + { + "start": 1918.98, + "end": 1920.96, + "probability": 0.7607 + }, + { + "start": 1921.4, + "end": 1924.74, + "probability": 0.9643 + }, + { + "start": 1927.54, + "end": 1929.36, + "probability": 0.2749 + }, + { + "start": 1929.46, + "end": 1930.08, + "probability": 0.5675 + }, + { + "start": 1930.52, + "end": 1931.62, + "probability": 0.4786 + }, + { + "start": 1932.74, + "end": 1933.16, + "probability": 0.4765 + }, + { + "start": 1933.26, + "end": 1933.5, + "probability": 0.6871 + }, + { + "start": 1933.7, + "end": 1936.38, + "probability": 0.8401 + }, + { + "start": 1936.8, + "end": 1939.26, + "probability": 0.9401 + }, + { + "start": 1939.3, + "end": 1940.24, + "probability": 0.859 + }, + { + "start": 1940.34, + "end": 1940.94, + "probability": 0.7836 + }, + { + "start": 1941.6, + "end": 1942.34, + "probability": 0.8102 + }, + { + "start": 1943.66, + "end": 1944.66, + "probability": 0.3464 + }, + { + "start": 1944.66, + "end": 1945.72, + "probability": 0.5154 + }, + { + "start": 1945.82, + "end": 1946.54, + "probability": 0.6059 + }, + { + "start": 1947.08, + "end": 1947.52, + "probability": 0.7097 + }, + { + "start": 1947.52, + "end": 1949.46, + "probability": 0.624 + }, + { + "start": 1949.52, + "end": 1950.72, + "probability": 0.7545 + }, + { + "start": 1951.22, + "end": 1952.42, + "probability": 0.713 + }, + { + "start": 1952.54, + "end": 1956.42, + "probability": 0.795 + }, + { + "start": 1956.58, + "end": 1958.2, + "probability": 0.9902 + }, + { + "start": 1958.72, + "end": 1960.49, + "probability": 0.9686 + }, + { + "start": 1961.64, + "end": 1963.55, + "probability": 0.8837 + }, + { + "start": 1964.28, + "end": 1966.26, + "probability": 0.9651 + }, + { + "start": 1966.86, + "end": 1969.84, + "probability": 0.9639 + }, + { + "start": 1970.5, + "end": 1971.62, + "probability": 0.6992 + }, + { + "start": 1972.12, + "end": 1973.2, + "probability": 0.7492 + }, + { + "start": 1973.64, + "end": 1974.98, + "probability": 0.7769 + }, + { + "start": 1975.52, + "end": 1979.16, + "probability": 0.9834 + }, + { + "start": 1979.46, + "end": 1984.02, + "probability": 0.7202 + }, + { + "start": 1984.36, + "end": 1986.22, + "probability": 0.9342 + }, + { + "start": 1986.64, + "end": 1987.4, + "probability": 0.9072 + }, + { + "start": 1987.55, + "end": 1989.32, + "probability": 0.8403 + }, + { + "start": 1989.66, + "end": 1990.86, + "probability": 0.5641 + }, + { + "start": 1991.22, + "end": 1992.82, + "probability": 0.9273 + }, + { + "start": 1993.1, + "end": 1996.26, + "probability": 0.9014 + }, + { + "start": 1996.58, + "end": 2000.56, + "probability": 0.7469 + }, + { + "start": 2001.16, + "end": 2004.36, + "probability": 0.6051 + }, + { + "start": 2005.2, + "end": 2005.68, + "probability": 0.0111 + }, + { + "start": 2005.68, + "end": 2009.07, + "probability": 0.9565 + }, + { + "start": 2009.9, + "end": 2011.12, + "probability": 0.6739 + }, + { + "start": 2011.2, + "end": 2013.48, + "probability": 0.8986 + }, + { + "start": 2013.72, + "end": 2018.6, + "probability": 0.7214 + }, + { + "start": 2018.86, + "end": 2019.96, + "probability": 0.854 + }, + { + "start": 2020.48, + "end": 2022.5, + "probability": 0.8999 + }, + { + "start": 2023.02, + "end": 2026.72, + "probability": 0.8894 + }, + { + "start": 2027.32, + "end": 2031.7, + "probability": 0.828 + }, + { + "start": 2032.24, + "end": 2036.18, + "probability": 0.8683 + }, + { + "start": 2037.24, + "end": 2040.8, + "probability": 0.9251 + }, + { + "start": 2041.14, + "end": 2041.84, + "probability": 0.8926 + }, + { + "start": 2042.36, + "end": 2043.62, + "probability": 0.9194 + }, + { + "start": 2044.1, + "end": 2046.16, + "probability": 0.7301 + }, + { + "start": 2046.66, + "end": 2047.02, + "probability": 0.366 + }, + { + "start": 2047.12, + "end": 2047.9, + "probability": 0.9353 + }, + { + "start": 2048.28, + "end": 2049.28, + "probability": 0.9585 + }, + { + "start": 2049.76, + "end": 2051.42, + "probability": 0.9867 + }, + { + "start": 2051.52, + "end": 2052.62, + "probability": 0.6 + }, + { + "start": 2053.02, + "end": 2057.04, + "probability": 0.9509 + }, + { + "start": 2057.38, + "end": 2059.12, + "probability": 0.9115 + }, + { + "start": 2059.4, + "end": 2060.88, + "probability": 0.9816 + }, + { + "start": 2061.34, + "end": 2064.64, + "probability": 0.932 + }, + { + "start": 2065.24, + "end": 2067.2, + "probability": 0.7891 + }, + { + "start": 2067.68, + "end": 2070.56, + "probability": 0.7961 + }, + { + "start": 2070.68, + "end": 2071.94, + "probability": 0.9917 + }, + { + "start": 2072.42, + "end": 2075.34, + "probability": 0.469 + }, + { + "start": 2076.4, + "end": 2078.08, + "probability": 0.7148 + }, + { + "start": 2078.72, + "end": 2079.72, + "probability": 0.7046 + }, + { + "start": 2079.76, + "end": 2080.22, + "probability": 0.9296 + }, + { + "start": 2080.32, + "end": 2085.4, + "probability": 0.745 + }, + { + "start": 2086.02, + "end": 2087.92, + "probability": 0.7104 + }, + { + "start": 2088.36, + "end": 2089.76, + "probability": 0.815 + }, + { + "start": 2090.26, + "end": 2094.32, + "probability": 0.9239 + }, + { + "start": 2094.54, + "end": 2095.28, + "probability": 0.9134 + }, + { + "start": 2095.56, + "end": 2096.63, + "probability": 0.5128 + }, + { + "start": 2097.26, + "end": 2098.54, + "probability": 0.8975 + }, + { + "start": 2098.78, + "end": 2099.48, + "probability": 0.7162 + }, + { + "start": 2099.86, + "end": 2101.36, + "probability": 0.9881 + }, + { + "start": 2101.84, + "end": 2103.06, + "probability": 0.6805 + }, + { + "start": 2103.44, + "end": 2106.22, + "probability": 0.9766 + }, + { + "start": 2106.5, + "end": 2107.58, + "probability": 0.9282 + }, + { + "start": 2107.94, + "end": 2108.67, + "probability": 0.917 + }, + { + "start": 2109.02, + "end": 2112.12, + "probability": 0.773 + }, + { + "start": 2112.16, + "end": 2112.52, + "probability": 0.2687 + }, + { + "start": 2113.24, + "end": 2114.13, + "probability": 0.6685 + }, + { + "start": 2114.28, + "end": 2117.36, + "probability": 0.9648 + }, + { + "start": 2117.7, + "end": 2121.38, + "probability": 0.9385 + }, + { + "start": 2121.84, + "end": 2123.6, + "probability": 0.5265 + }, + { + "start": 2124.4, + "end": 2126.2, + "probability": 0.5506 + }, + { + "start": 2127.38, + "end": 2134.14, + "probability": 0.9099 + }, + { + "start": 2134.28, + "end": 2135.08, + "probability": 0.6909 + }, + { + "start": 2135.36, + "end": 2137.88, + "probability": 0.9526 + }, + { + "start": 2138.68, + "end": 2139.44, + "probability": 0.9396 + }, + { + "start": 2140.64, + "end": 2142.56, + "probability": 0.9927 + }, + { + "start": 2142.68, + "end": 2143.47, + "probability": 0.9941 + }, + { + "start": 2144.0, + "end": 2144.38, + "probability": 0.7279 + }, + { + "start": 2144.42, + "end": 2148.22, + "probability": 0.9772 + }, + { + "start": 2148.68, + "end": 2149.86, + "probability": 0.8806 + }, + { + "start": 2150.4, + "end": 2152.46, + "probability": 0.939 + }, + { + "start": 2152.46, + "end": 2154.38, + "probability": 0.5786 + }, + { + "start": 2154.84, + "end": 2157.82, + "probability": 0.9305 + }, + { + "start": 2158.42, + "end": 2161.83, + "probability": 0.807 + }, + { + "start": 2162.64, + "end": 2165.42, + "probability": 0.9614 + }, + { + "start": 2165.56, + "end": 2167.56, + "probability": 0.3684 + }, + { + "start": 2167.96, + "end": 2170.06, + "probability": 0.8321 + }, + { + "start": 2170.62, + "end": 2172.35, + "probability": 0.991 + }, + { + "start": 2173.08, + "end": 2173.95, + "probability": 0.9705 + }, + { + "start": 2174.8, + "end": 2177.66, + "probability": 0.9932 + }, + { + "start": 2178.24, + "end": 2180.14, + "probability": 0.9661 + }, + { + "start": 2180.66, + "end": 2182.72, + "probability": 0.9612 + }, + { + "start": 2183.12, + "end": 2183.98, + "probability": 0.7537 + }, + { + "start": 2184.38, + "end": 2187.46, + "probability": 0.9775 + }, + { + "start": 2187.58, + "end": 2188.84, + "probability": 0.8663 + }, + { + "start": 2189.84, + "end": 2190.7, + "probability": 0.7685 + }, + { + "start": 2191.06, + "end": 2191.18, + "probability": 0.4069 + }, + { + "start": 2191.36, + "end": 2192.34, + "probability": 0.8173 + }, + { + "start": 2193.62, + "end": 2194.84, + "probability": 0.9923 + }, + { + "start": 2194.84, + "end": 2195.94, + "probability": 0.7527 + }, + { + "start": 2196.28, + "end": 2196.68, + "probability": 0.9257 + }, + { + "start": 2197.78, + "end": 2200.0, + "probability": 0.6043 + }, + { + "start": 2201.38, + "end": 2203.22, + "probability": 0.9066 + }, + { + "start": 2204.14, + "end": 2205.44, + "probability": 0.6512 + }, + { + "start": 2205.96, + "end": 2209.42, + "probability": 0.8859 + }, + { + "start": 2209.54, + "end": 2210.9, + "probability": 0.6968 + }, + { + "start": 2211.76, + "end": 2212.36, + "probability": 0.3185 + }, + { + "start": 2212.46, + "end": 2216.44, + "probability": 0.6359 + }, + { + "start": 2217.34, + "end": 2221.56, + "probability": 0.973 + }, + { + "start": 2222.56, + "end": 2224.86, + "probability": 0.9376 + }, + { + "start": 2225.12, + "end": 2229.64, + "probability": 0.8999 + }, + { + "start": 2252.6, + "end": 2253.9, + "probability": 0.7695 + }, + { + "start": 2254.46, + "end": 2255.38, + "probability": 0.8046 + }, + { + "start": 2257.38, + "end": 2259.72, + "probability": 0.9922 + }, + { + "start": 2260.08, + "end": 2265.24, + "probability": 0.9247 + }, + { + "start": 2266.92, + "end": 2269.44, + "probability": 0.9324 + }, + { + "start": 2270.74, + "end": 2275.09, + "probability": 0.9841 + }, + { + "start": 2275.3, + "end": 2279.12, + "probability": 0.95 + }, + { + "start": 2280.32, + "end": 2285.6, + "probability": 0.9498 + }, + { + "start": 2286.9, + "end": 2288.54, + "probability": 0.8767 + }, + { + "start": 2289.6, + "end": 2291.16, + "probability": 0.801 + }, + { + "start": 2294.44, + "end": 2294.6, + "probability": 0.0022 + }, + { + "start": 2294.6, + "end": 2295.74, + "probability": 0.5012 + }, + { + "start": 2295.74, + "end": 2300.28, + "probability": 0.8708 + }, + { + "start": 2300.42, + "end": 2301.12, + "probability": 0.3585 + }, + { + "start": 2303.26, + "end": 2307.68, + "probability": 0.9806 + }, + { + "start": 2308.02, + "end": 2310.25, + "probability": 0.0316 + }, + { + "start": 2311.16, + "end": 2312.16, + "probability": 0.0709 + }, + { + "start": 2312.16, + "end": 2313.21, + "probability": 0.3877 + }, + { + "start": 2313.68, + "end": 2313.68, + "probability": 0.0925 + }, + { + "start": 2313.68, + "end": 2316.4, + "probability": 0.8066 + }, + { + "start": 2316.76, + "end": 2320.82, + "probability": 0.6858 + }, + { + "start": 2320.82, + "end": 2321.86, + "probability": 0.6716 + }, + { + "start": 2322.0, + "end": 2323.04, + "probability": 0.7025 + }, + { + "start": 2323.34, + "end": 2323.44, + "probability": 0.0116 + }, + { + "start": 2323.44, + "end": 2323.86, + "probability": 0.2093 + }, + { + "start": 2324.04, + "end": 2325.72, + "probability": 0.7747 + }, + { + "start": 2325.78, + "end": 2329.64, + "probability": 0.9709 + }, + { + "start": 2330.34, + "end": 2332.08, + "probability": 0.7612 + }, + { + "start": 2332.82, + "end": 2335.42, + "probability": 0.9787 + }, + { + "start": 2335.6, + "end": 2343.62, + "probability": 0.9637 + }, + { + "start": 2346.12, + "end": 2347.84, + "probability": 0.7421 + }, + { + "start": 2348.4, + "end": 2349.44, + "probability": 0.799 + }, + { + "start": 2350.1, + "end": 2353.55, + "probability": 0.9748 + }, + { + "start": 2355.82, + "end": 2359.0, + "probability": 0.9681 + }, + { + "start": 2359.86, + "end": 2362.82, + "probability": 0.9795 + }, + { + "start": 2363.74, + "end": 2369.74, + "probability": 0.986 + }, + { + "start": 2370.68, + "end": 2371.81, + "probability": 0.966 + }, + { + "start": 2374.56, + "end": 2375.91, + "probability": 0.9827 + }, + { + "start": 2376.82, + "end": 2380.82, + "probability": 0.9875 + }, + { + "start": 2381.56, + "end": 2384.88, + "probability": 0.6447 + }, + { + "start": 2385.3, + "end": 2388.92, + "probability": 0.9032 + }, + { + "start": 2391.14, + "end": 2394.14, + "probability": 0.6592 + }, + { + "start": 2394.68, + "end": 2399.52, + "probability": 0.9065 + }, + { + "start": 2400.68, + "end": 2401.3, + "probability": 0.6482 + }, + { + "start": 2401.78, + "end": 2404.12, + "probability": 0.9462 + }, + { + "start": 2404.42, + "end": 2405.64, + "probability": 0.6456 + }, + { + "start": 2407.1, + "end": 2408.78, + "probability": 0.8454 + }, + { + "start": 2409.98, + "end": 2411.72, + "probability": 0.8281 + }, + { + "start": 2413.24, + "end": 2415.44, + "probability": 0.9563 + }, + { + "start": 2416.18, + "end": 2418.46, + "probability": 0.9984 + }, + { + "start": 2418.98, + "end": 2421.86, + "probability": 0.9077 + }, + { + "start": 2423.22, + "end": 2428.2, + "probability": 0.1036 + }, + { + "start": 2428.2, + "end": 2428.2, + "probability": 0.0891 + }, + { + "start": 2428.2, + "end": 2433.92, + "probability": 0.9954 + }, + { + "start": 2435.08, + "end": 2435.78, + "probability": 0.8703 + }, + { + "start": 2435.86, + "end": 2440.82, + "probability": 0.974 + }, + { + "start": 2442.3, + "end": 2443.6, + "probability": 0.9546 + }, + { + "start": 2445.9, + "end": 2446.55, + "probability": 0.1766 + }, + { + "start": 2446.84, + "end": 2449.74, + "probability": 0.5681 + }, + { + "start": 2455.32, + "end": 2456.44, + "probability": 0.0612 + }, + { + "start": 2456.44, + "end": 2456.44, + "probability": 0.0201 + }, + { + "start": 2456.44, + "end": 2456.76, + "probability": 0.0228 + }, + { + "start": 2456.88, + "end": 2459.5, + "probability": 0.753 + }, + { + "start": 2459.68, + "end": 2460.94, + "probability": 0.7023 + }, + { + "start": 2461.24, + "end": 2462.76, + "probability": 0.1276 + }, + { + "start": 2463.56, + "end": 2464.74, + "probability": 0.1368 + }, + { + "start": 2464.96, + "end": 2468.0, + "probability": 0.7122 + }, + { + "start": 2468.88, + "end": 2471.9, + "probability": 0.8892 + }, + { + "start": 2473.02, + "end": 2476.02, + "probability": 0.9937 + }, + { + "start": 2477.12, + "end": 2477.3, + "probability": 0.802 + }, + { + "start": 2477.38, + "end": 2478.32, + "probability": 0.657 + }, + { + "start": 2478.38, + "end": 2479.12, + "probability": 0.8667 + }, + { + "start": 2479.5, + "end": 2480.28, + "probability": 0.9316 + }, + { + "start": 2481.1, + "end": 2482.82, + "probability": 0.672 + }, + { + "start": 2487.01, + "end": 2494.19, + "probability": 0.7669 + }, + { + "start": 2494.69, + "end": 2494.85, + "probability": 0.3821 + }, + { + "start": 2494.91, + "end": 2498.17, + "probability": 0.6093 + }, + { + "start": 2498.25, + "end": 2499.02, + "probability": 0.1097 + }, + { + "start": 2500.09, + "end": 2501.19, + "probability": 0.9005 + }, + { + "start": 2501.55, + "end": 2504.58, + "probability": 0.6439 + }, + { + "start": 2505.71, + "end": 2511.05, + "probability": 0.6016 + }, + { + "start": 2511.05, + "end": 2511.05, + "probability": 0.0369 + }, + { + "start": 2511.05, + "end": 2512.53, + "probability": 0.3652 + }, + { + "start": 2512.82, + "end": 2515.19, + "probability": 0.2612 + }, + { + "start": 2515.41, + "end": 2517.03, + "probability": 0.4127 + }, + { + "start": 2517.03, + "end": 2517.73, + "probability": 0.2737 + }, + { + "start": 2517.77, + "end": 2518.49, + "probability": 0.8353 + }, + { + "start": 2518.73, + "end": 2520.15, + "probability": 0.0888 + }, + { + "start": 2520.15, + "end": 2521.19, + "probability": 0.6796 + }, + { + "start": 2521.25, + "end": 2522.95, + "probability": 0.8715 + }, + { + "start": 2523.03, + "end": 2523.73, + "probability": 0.2877 + }, + { + "start": 2524.13, + "end": 2529.41, + "probability": 0.9949 + }, + { + "start": 2530.33, + "end": 2530.95, + "probability": 0.3193 + }, + { + "start": 2531.07, + "end": 2534.41, + "probability": 0.9648 + }, + { + "start": 2534.75, + "end": 2537.88, + "probability": 0.9962 + }, + { + "start": 2538.65, + "end": 2538.89, + "probability": 0.1112 + }, + { + "start": 2539.05, + "end": 2540.25, + "probability": 0.6323 + }, + { + "start": 2540.97, + "end": 2547.35, + "probability": 0.9885 + }, + { + "start": 2548.11, + "end": 2549.13, + "probability": 0.8585 + }, + { + "start": 2549.9, + "end": 2552.55, + "probability": 0.2191 + }, + { + "start": 2552.55, + "end": 2556.73, + "probability": 0.9789 + }, + { + "start": 2557.53, + "end": 2559.03, + "probability": 0.8618 + }, + { + "start": 2560.13, + "end": 2563.87, + "probability": 0.7397 + }, + { + "start": 2564.57, + "end": 2567.45, + "probability": 0.9229 + }, + { + "start": 2567.79, + "end": 2568.87, + "probability": 0.8931 + }, + { + "start": 2569.61, + "end": 2572.45, + "probability": 0.8623 + }, + { + "start": 2572.89, + "end": 2574.62, + "probability": 0.9059 + }, + { + "start": 2575.55, + "end": 2580.85, + "probability": 0.7418 + }, + { + "start": 2581.89, + "end": 2588.05, + "probability": 0.9967 + }, + { + "start": 2588.87, + "end": 2590.33, + "probability": 0.8297 + }, + { + "start": 2591.27, + "end": 2593.75, + "probability": 0.9819 + }, + { + "start": 2594.73, + "end": 2596.34, + "probability": 0.9937 + }, + { + "start": 2596.61, + "end": 2596.71, + "probability": 0.0554 + }, + { + "start": 2597.41, + "end": 2597.63, + "probability": 0.0473 + }, + { + "start": 2597.63, + "end": 2598.87, + "probability": 0.4969 + }, + { + "start": 2598.97, + "end": 2601.09, + "probability": 0.5229 + }, + { + "start": 2601.23, + "end": 2602.69, + "probability": 0.395 + }, + { + "start": 2603.11, + "end": 2606.37, + "probability": 0.9956 + }, + { + "start": 2606.97, + "end": 2611.21, + "probability": 0.9855 + }, + { + "start": 2611.43, + "end": 2614.07, + "probability": 0.9402 + }, + { + "start": 2614.61, + "end": 2616.55, + "probability": 0.843 + }, + { + "start": 2618.07, + "end": 2618.29, + "probability": 0.7834 + }, + { + "start": 2618.39, + "end": 2627.33, + "probability": 0.9846 + }, + { + "start": 2632.09, + "end": 2633.57, + "probability": 0.2298 + }, + { + "start": 2635.27, + "end": 2636.53, + "probability": 0.2349 + }, + { + "start": 2636.77, + "end": 2637.47, + "probability": 0.8774 + }, + { + "start": 2637.83, + "end": 2638.97, + "probability": 0.3812 + }, + { + "start": 2639.31, + "end": 2640.23, + "probability": 0.7838 + }, + { + "start": 2640.43, + "end": 2643.11, + "probability": 0.7604 + }, + { + "start": 2647.35, + "end": 2649.25, + "probability": 0.5027 + }, + { + "start": 2649.39, + "end": 2650.47, + "probability": 0.4449 + }, + { + "start": 2650.59, + "end": 2652.83, + "probability": 0.3316 + }, + { + "start": 2652.97, + "end": 2653.13, + "probability": 0.4518 + }, + { + "start": 2653.17, + "end": 2654.51, + "probability": 0.915 + }, + { + "start": 2656.21, + "end": 2659.47, + "probability": 0.9503 + }, + { + "start": 2660.39, + "end": 2662.01, + "probability": 0.9114 + }, + { + "start": 2662.27, + "end": 2663.69, + "probability": 0.7418 + }, + { + "start": 2664.19, + "end": 2665.35, + "probability": 0.9742 + }, + { + "start": 2665.39, + "end": 2667.38, + "probability": 0.9872 + }, + { + "start": 2667.79, + "end": 2669.31, + "probability": 0.7156 + }, + { + "start": 2670.03, + "end": 2670.57, + "probability": 0.5336 + }, + { + "start": 2670.67, + "end": 2677.77, + "probability": 0.9927 + }, + { + "start": 2678.35, + "end": 2680.97, + "probability": 0.415 + }, + { + "start": 2682.63, + "end": 2686.47, + "probability": 0.4482 + }, + { + "start": 2686.79, + "end": 2688.07, + "probability": 0.7645 + }, + { + "start": 2688.07, + "end": 2691.49, + "probability": 0.8683 + }, + { + "start": 2691.67, + "end": 2695.59, + "probability": 0.303 + }, + { + "start": 2698.53, + "end": 2699.81, + "probability": 0.5674 + }, + { + "start": 2702.32, + "end": 2702.55, + "probability": 0.5699 + }, + { + "start": 2702.55, + "end": 2703.87, + "probability": 0.922 + }, + { + "start": 2704.25, + "end": 2704.71, + "probability": 0.0397 + }, + { + "start": 2704.71, + "end": 2704.71, + "probability": 0.1285 + }, + { + "start": 2704.71, + "end": 2704.71, + "probability": 0.1159 + }, + { + "start": 2704.71, + "end": 2704.71, + "probability": 0.0665 + }, + { + "start": 2704.71, + "end": 2704.71, + "probability": 0.2005 + }, + { + "start": 2704.71, + "end": 2706.35, + "probability": 0.1897 + }, + { + "start": 2707.53, + "end": 2708.13, + "probability": 0.3306 + }, + { + "start": 2708.27, + "end": 2712.59, + "probability": 0.9348 + }, + { + "start": 2712.75, + "end": 2714.79, + "probability": 0.8915 + }, + { + "start": 2715.45, + "end": 2716.13, + "probability": 0.6183 + }, + { + "start": 2716.99, + "end": 2720.19, + "probability": 0.938 + }, + { + "start": 2720.75, + "end": 2722.97, + "probability": 0.9478 + }, + { + "start": 2723.65, + "end": 2727.15, + "probability": 0.846 + }, + { + "start": 2727.85, + "end": 2735.25, + "probability": 0.9535 + }, + { + "start": 2735.97, + "end": 2737.63, + "probability": 0.7313 + }, + { + "start": 2738.49, + "end": 2739.99, + "probability": 0.7982 + }, + { + "start": 2742.29, + "end": 2743.75, + "probability": 0.4763 + }, + { + "start": 2743.83, + "end": 2745.41, + "probability": 0.9163 + }, + { + "start": 2745.61, + "end": 2746.89, + "probability": 0.7688 + }, + { + "start": 2747.15, + "end": 2748.35, + "probability": 0.9875 + }, + { + "start": 2748.49, + "end": 2748.98, + "probability": 0.8684 + }, + { + "start": 2749.29, + "end": 2751.15, + "probability": 0.8989 + }, + { + "start": 2751.37, + "end": 2752.63, + "probability": 0.023 + }, + { + "start": 2752.63, + "end": 2752.73, + "probability": 0.2021 + }, + { + "start": 2752.77, + "end": 2754.43, + "probability": 0.2827 + }, + { + "start": 2754.43, + "end": 2758.69, + "probability": 0.1928 + }, + { + "start": 2759.13, + "end": 2760.73, + "probability": 0.6281 + }, + { + "start": 2760.87, + "end": 2761.59, + "probability": 0.548 + }, + { + "start": 2761.87, + "end": 2763.71, + "probability": 0.174 + }, + { + "start": 2763.71, + "end": 2764.41, + "probability": 0.0138 + }, + { + "start": 2765.61, + "end": 2765.61, + "probability": 0.0 + }, + { + "start": 2765.71, + "end": 2765.97, + "probability": 0.3621 + }, + { + "start": 2765.97, + "end": 2766.36, + "probability": 0.7686 + }, + { + "start": 2766.83, + "end": 2768.83, + "probability": 0.8333 + }, + { + "start": 2769.25, + "end": 2769.97, + "probability": 0.8434 + }, + { + "start": 2770.47, + "end": 2776.91, + "probability": 0.9137 + }, + { + "start": 2777.03, + "end": 2777.64, + "probability": 0.8698 + }, + { + "start": 2778.85, + "end": 2783.07, + "probability": 0.9974 + }, + { + "start": 2783.07, + "end": 2789.37, + "probability": 0.9892 + }, + { + "start": 2790.37, + "end": 2794.01, + "probability": 0.8616 + }, + { + "start": 2795.01, + "end": 2798.11, + "probability": 0.8823 + }, + { + "start": 2799.05, + "end": 2802.15, + "probability": 0.8426 + }, + { + "start": 2802.97, + "end": 2807.59, + "probability": 0.9917 + }, + { + "start": 2808.27, + "end": 2811.49, + "probability": 0.8553 + }, + { + "start": 2812.11, + "end": 2814.93, + "probability": 0.622 + }, + { + "start": 2815.37, + "end": 2818.57, + "probability": 0.6552 + }, + { + "start": 2818.95, + "end": 2820.47, + "probability": 0.6998 + }, + { + "start": 2827.03, + "end": 2828.93, + "probability": 0.5559 + }, + { + "start": 2830.01, + "end": 2830.59, + "probability": 0.7057 + }, + { + "start": 2831.27, + "end": 2834.85, + "probability": 0.9878 + }, + { + "start": 2835.71, + "end": 2838.95, + "probability": 0.9289 + }, + { + "start": 2839.39, + "end": 2845.03, + "probability": 0.9481 + }, + { + "start": 2845.93, + "end": 2849.23, + "probability": 0.9774 + }, + { + "start": 2850.23, + "end": 2854.31, + "probability": 0.9847 + }, + { + "start": 2855.11, + "end": 2857.75, + "probability": 0.993 + }, + { + "start": 2857.75, + "end": 2862.21, + "probability": 0.7839 + }, + { + "start": 2863.03, + "end": 2865.87, + "probability": 0.8844 + }, + { + "start": 2866.69, + "end": 2872.75, + "probability": 0.9774 + }, + { + "start": 2873.33, + "end": 2878.73, + "probability": 0.9682 + }, + { + "start": 2879.43, + "end": 2882.53, + "probability": 0.9927 + }, + { + "start": 2883.71, + "end": 2885.93, + "probability": 0.7866 + }, + { + "start": 2886.81, + "end": 2886.81, + "probability": 0.1723 + }, + { + "start": 2886.81, + "end": 2888.03, + "probability": 0.7727 + }, + { + "start": 2888.99, + "end": 2894.91, + "probability": 0.9236 + }, + { + "start": 2895.27, + "end": 2896.75, + "probability": 0.9619 + }, + { + "start": 2897.61, + "end": 2904.79, + "probability": 0.9731 + }, + { + "start": 2905.59, + "end": 2905.63, + "probability": 0.0368 + }, + { + "start": 2905.63, + "end": 2908.83, + "probability": 0.7246 + }, + { + "start": 2909.33, + "end": 2912.69, + "probability": 0.9847 + }, + { + "start": 2913.25, + "end": 2918.51, + "probability": 0.9527 + }, + { + "start": 2919.47, + "end": 2920.93, + "probability": 0.6427 + }, + { + "start": 2921.51, + "end": 2924.27, + "probability": 0.8137 + }, + { + "start": 2924.83, + "end": 2929.01, + "probability": 0.986 + }, + { + "start": 2929.61, + "end": 2932.49, + "probability": 0.9915 + }, + { + "start": 2932.89, + "end": 2936.31, + "probability": 0.9942 + }, + { + "start": 2937.01, + "end": 2938.21, + "probability": 0.722 + }, + { + "start": 2938.87, + "end": 2939.25, + "probability": 0.9344 + }, + { + "start": 2941.15, + "end": 2943.77, + "probability": 0.9894 + }, + { + "start": 2943.89, + "end": 2944.45, + "probability": 0.7327 + }, + { + "start": 2946.13, + "end": 2949.53, + "probability": 0.931 + }, + { + "start": 2950.07, + "end": 2952.85, + "probability": 0.9686 + }, + { + "start": 2954.51, + "end": 2957.77, + "probability": 0.4869 + }, + { + "start": 2958.41, + "end": 2963.27, + "probability": 0.9926 + }, + { + "start": 2964.47, + "end": 2968.53, + "probability": 0.9824 + }, + { + "start": 2969.09, + "end": 2972.63, + "probability": 0.9224 + }, + { + "start": 2973.83, + "end": 2975.81, + "probability": 0.9683 + }, + { + "start": 2975.83, + "end": 2978.05, + "probability": 0.9925 + }, + { + "start": 2978.63, + "end": 2982.67, + "probability": 0.6893 + }, + { + "start": 2983.37, + "end": 2988.01, + "probability": 0.9482 + }, + { + "start": 2988.27, + "end": 2989.63, + "probability": 0.9863 + }, + { + "start": 2989.63, + "end": 2990.63, + "probability": 0.6968 + }, + { + "start": 2990.77, + "end": 2993.13, + "probability": 0.8018 + }, + { + "start": 2994.75, + "end": 2994.99, + "probability": 0.5561 + }, + { + "start": 2995.53, + "end": 2996.25, + "probability": 0.1327 + }, + { + "start": 2998.09, + "end": 2999.11, + "probability": 0.7795 + }, + { + "start": 3000.07, + "end": 3007.43, + "probability": 0.9854 + }, + { + "start": 3008.85, + "end": 3010.03, + "probability": 0.9797 + }, + { + "start": 3010.09, + "end": 3013.85, + "probability": 0.9841 + }, + { + "start": 3016.65, + "end": 3018.31, + "probability": 0.8543 + }, + { + "start": 3019.59, + "end": 3020.69, + "probability": 0.7533 + }, + { + "start": 3022.51, + "end": 3023.69, + "probability": 0.772 + }, + { + "start": 3027.27, + "end": 3027.99, + "probability": 0.6965 + }, + { + "start": 3028.53, + "end": 3029.71, + "probability": 0.9328 + }, + { + "start": 3030.81, + "end": 3031.33, + "probability": 0.7913 + }, + { + "start": 3032.65, + "end": 3033.69, + "probability": 0.9557 + }, + { + "start": 3035.39, + "end": 3037.59, + "probability": 0.9096 + }, + { + "start": 3037.73, + "end": 3039.91, + "probability": 0.9524 + }, + { + "start": 3043.25, + "end": 3047.27, + "probability": 0.9378 + }, + { + "start": 3050.77, + "end": 3051.63, + "probability": 0.8832 + }, + { + "start": 3053.29, + "end": 3057.91, + "probability": 0.9959 + }, + { + "start": 3059.47, + "end": 3062.53, + "probability": 0.9731 + }, + { + "start": 3065.41, + "end": 3066.43, + "probability": 0.7984 + }, + { + "start": 3067.83, + "end": 3069.59, + "probability": 0.7322 + }, + { + "start": 3071.61, + "end": 3074.57, + "probability": 0.9545 + }, + { + "start": 3075.31, + "end": 3077.07, + "probability": 0.9478 + }, + { + "start": 3077.91, + "end": 3078.97, + "probability": 0.8654 + }, + { + "start": 3079.49, + "end": 3080.51, + "probability": 0.7872 + }, + { + "start": 3081.73, + "end": 3082.55, + "probability": 0.6903 + }, + { + "start": 3083.99, + "end": 3087.23, + "probability": 0.9773 + }, + { + "start": 3088.03, + "end": 3089.19, + "probability": 0.9853 + }, + { + "start": 3090.01, + "end": 3091.07, + "probability": 0.979 + }, + { + "start": 3091.89, + "end": 3093.79, + "probability": 0.982 + }, + { + "start": 3095.05, + "end": 3099.23, + "probability": 0.9843 + }, + { + "start": 3100.99, + "end": 3105.55, + "probability": 0.937 + }, + { + "start": 3107.35, + "end": 3108.19, + "probability": 0.89 + }, + { + "start": 3108.93, + "end": 3109.95, + "probability": 0.963 + }, + { + "start": 3112.43, + "end": 3113.33, + "probability": 0.8129 + }, + { + "start": 3113.49, + "end": 3117.55, + "probability": 0.9597 + }, + { + "start": 3118.4, + "end": 3122.25, + "probability": 0.9883 + }, + { + "start": 3124.09, + "end": 3127.27, + "probability": 0.9575 + }, + { + "start": 3127.27, + "end": 3129.91, + "probability": 0.9816 + }, + { + "start": 3130.81, + "end": 3132.61, + "probability": 0.9866 + }, + { + "start": 3135.45, + "end": 3141.29, + "probability": 0.9645 + }, + { + "start": 3141.29, + "end": 3145.61, + "probability": 0.9141 + }, + { + "start": 3147.97, + "end": 3151.13, + "probability": 0.6948 + }, + { + "start": 3151.83, + "end": 3154.33, + "probability": 0.9932 + }, + { + "start": 3155.05, + "end": 3155.87, + "probability": 0.776 + }, + { + "start": 3157.13, + "end": 3157.99, + "probability": 0.8964 + }, + { + "start": 3158.07, + "end": 3158.59, + "probability": 0.9036 + }, + { + "start": 3158.71, + "end": 3160.11, + "probability": 0.7407 + }, + { + "start": 3160.55, + "end": 3163.37, + "probability": 0.9932 + }, + { + "start": 3167.53, + "end": 3169.19, + "probability": 0.8932 + }, + { + "start": 3170.41, + "end": 3174.23, + "probability": 0.8773 + }, + { + "start": 3176.31, + "end": 3177.73, + "probability": 0.9115 + }, + { + "start": 3179.19, + "end": 3181.35, + "probability": 0.5261 + }, + { + "start": 3182.07, + "end": 3184.05, + "probability": 0.9012 + }, + { + "start": 3185.27, + "end": 3186.35, + "probability": 0.5 + }, + { + "start": 3187.95, + "end": 3189.13, + "probability": 0.8211 + }, + { + "start": 3190.39, + "end": 3191.69, + "probability": 0.7292 + }, + { + "start": 3194.57, + "end": 3198.89, + "probability": 0.8334 + }, + { + "start": 3199.87, + "end": 3202.35, + "probability": 0.8899 + }, + { + "start": 3202.53, + "end": 3203.1, + "probability": 0.7987 + }, + { + "start": 3203.65, + "end": 3205.29, + "probability": 0.9567 + }, + { + "start": 3209.41, + "end": 3211.15, + "probability": 0.9703 + }, + { + "start": 3212.61, + "end": 3213.19, + "probability": 0.8268 + }, + { + "start": 3213.31, + "end": 3217.19, + "probability": 0.7729 + }, + { + "start": 3218.17, + "end": 3220.29, + "probability": 0.8051 + }, + { + "start": 3220.33, + "end": 3222.13, + "probability": 0.9878 + }, + { + "start": 3223.05, + "end": 3227.87, + "probability": 0.8325 + }, + { + "start": 3229.13, + "end": 3229.87, + "probability": 0.4962 + }, + { + "start": 3230.69, + "end": 3233.47, + "probability": 0.9328 + }, + { + "start": 3236.63, + "end": 3239.43, + "probability": 0.9467 + }, + { + "start": 3240.95, + "end": 3241.13, + "probability": 0.5879 + }, + { + "start": 3243.29, + "end": 3246.53, + "probability": 0.8765 + }, + { + "start": 3247.71, + "end": 3250.11, + "probability": 0.9502 + }, + { + "start": 3250.99, + "end": 3252.27, + "probability": 0.827 + }, + { + "start": 3255.73, + "end": 3262.91, + "probability": 0.9846 + }, + { + "start": 3263.23, + "end": 3265.15, + "probability": 0.9387 + }, + { + "start": 3265.85, + "end": 3270.45, + "probability": 0.8702 + }, + { + "start": 3270.97, + "end": 3273.59, + "probability": 0.9756 + }, + { + "start": 3274.53, + "end": 3275.97, + "probability": 0.9783 + }, + { + "start": 3277.13, + "end": 3278.99, + "probability": 0.9801 + }, + { + "start": 3280.35, + "end": 3283.69, + "probability": 0.9729 + }, + { + "start": 3284.39, + "end": 3284.77, + "probability": 0.9049 + }, + { + "start": 3284.89, + "end": 3286.31, + "probability": 0.9631 + }, + { + "start": 3286.47, + "end": 3287.55, + "probability": 0.4877 + }, + { + "start": 3287.67, + "end": 3289.72, + "probability": 0.6429 + }, + { + "start": 3290.75, + "end": 3293.77, + "probability": 0.8938 + }, + { + "start": 3294.65, + "end": 3298.57, + "probability": 0.9771 + }, + { + "start": 3298.97, + "end": 3300.49, + "probability": 0.8967 + }, + { + "start": 3302.25, + "end": 3307.55, + "probability": 0.9664 + }, + { + "start": 3307.55, + "end": 3310.61, + "probability": 0.8368 + }, + { + "start": 3314.93, + "end": 3320.93, + "probability": 0.9768 + }, + { + "start": 3320.93, + "end": 3327.39, + "probability": 0.9942 + }, + { + "start": 3328.91, + "end": 3330.61, + "probability": 0.814 + }, + { + "start": 3332.05, + "end": 3334.17, + "probability": 0.7806 + }, + { + "start": 3335.01, + "end": 3337.27, + "probability": 0.9846 + }, + { + "start": 3338.87, + "end": 3339.87, + "probability": 0.9692 + }, + { + "start": 3341.75, + "end": 3342.17, + "probability": 0.684 + }, + { + "start": 3342.19, + "end": 3347.19, + "probability": 0.7628 + }, + { + "start": 3347.31, + "end": 3351.53, + "probability": 0.9611 + }, + { + "start": 3351.59, + "end": 3352.47, + "probability": 0.8418 + }, + { + "start": 3353.57, + "end": 3355.61, + "probability": 0.9951 + }, + { + "start": 3355.91, + "end": 3360.23, + "probability": 0.8254 + }, + { + "start": 3362.15, + "end": 3364.93, + "probability": 0.9843 + }, + { + "start": 3367.07, + "end": 3369.83, + "probability": 0.7856 + }, + { + "start": 3371.75, + "end": 3373.11, + "probability": 0.8551 + }, + { + "start": 3373.99, + "end": 3377.69, + "probability": 0.9938 + }, + { + "start": 3379.31, + "end": 3381.45, + "probability": 0.9551 + }, + { + "start": 3382.31, + "end": 3385.01, + "probability": 0.7237 + }, + { + "start": 3385.63, + "end": 3389.25, + "probability": 0.8777 + }, + { + "start": 3389.79, + "end": 3390.19, + "probability": 0.6645 + }, + { + "start": 3391.87, + "end": 3395.67, + "probability": 0.8124 + }, + { + "start": 3396.77, + "end": 3400.61, + "probability": 0.6507 + }, + { + "start": 3402.45, + "end": 3402.95, + "probability": 0.9701 + }, + { + "start": 3405.15, + "end": 3409.03, + "probability": 0.7173 + }, + { + "start": 3411.25, + "end": 3413.37, + "probability": 0.9034 + }, + { + "start": 3415.79, + "end": 3418.63, + "probability": 0.9824 + }, + { + "start": 3419.87, + "end": 3422.87, + "probability": 0.9113 + }, + { + "start": 3424.51, + "end": 3425.51, + "probability": 0.66 + }, + { + "start": 3426.75, + "end": 3428.11, + "probability": 0.9875 + }, + { + "start": 3428.99, + "end": 3430.65, + "probability": 0.9692 + }, + { + "start": 3431.59, + "end": 3434.43, + "probability": 0.9701 + }, + { + "start": 3434.99, + "end": 3438.39, + "probability": 0.8567 + }, + { + "start": 3441.95, + "end": 3442.99, + "probability": 0.555 + }, + { + "start": 3444.79, + "end": 3448.21, + "probability": 0.9607 + }, + { + "start": 3452.47, + "end": 3457.05, + "probability": 0.6252 + }, + { + "start": 3457.17, + "end": 3457.43, + "probability": 0.4351 + }, + { + "start": 3457.57, + "end": 3460.73, + "probability": 0.8388 + }, + { + "start": 3461.55, + "end": 3463.03, + "probability": 0.8419 + }, + { + "start": 3463.85, + "end": 3468.07, + "probability": 0.8724 + }, + { + "start": 3468.85, + "end": 3470.47, + "probability": 0.7499 + }, + { + "start": 3471.25, + "end": 3472.35, + "probability": 0.6806 + }, + { + "start": 3473.09, + "end": 3474.97, + "probability": 0.9313 + }, + { + "start": 3476.11, + "end": 3477.22, + "probability": 0.7675 + }, + { + "start": 3477.67, + "end": 3484.15, + "probability": 0.9699 + }, + { + "start": 3487.23, + "end": 3488.63, + "probability": 0.9402 + }, + { + "start": 3492.19, + "end": 3495.47, + "probability": 0.972 + }, + { + "start": 3495.55, + "end": 3495.99, + "probability": 0.8357 + }, + { + "start": 3496.11, + "end": 3496.37, + "probability": 0.8215 + }, + { + "start": 3496.47, + "end": 3496.93, + "probability": 0.5967 + }, + { + "start": 3498.05, + "end": 3500.19, + "probability": 0.9714 + }, + { + "start": 3503.17, + "end": 3509.23, + "probability": 0.9766 + }, + { + "start": 3509.23, + "end": 3509.58, + "probability": 0.4671 + }, + { + "start": 3510.17, + "end": 3511.25, + "probability": 0.7852 + }, + { + "start": 3511.39, + "end": 3513.73, + "probability": 0.809 + }, + { + "start": 3514.07, + "end": 3518.37, + "probability": 0.9565 + }, + { + "start": 3519.51, + "end": 3523.59, + "probability": 0.9557 + }, + { + "start": 3524.97, + "end": 3526.75, + "probability": 0.9744 + }, + { + "start": 3533.79, + "end": 3535.47, + "probability": 0.9258 + }, + { + "start": 3536.07, + "end": 3539.23, + "probability": 0.8373 + }, + { + "start": 3539.23, + "end": 3543.27, + "probability": 0.9689 + }, + { + "start": 3544.57, + "end": 3547.71, + "probability": 0.757 + }, + { + "start": 3549.21, + "end": 3551.09, + "probability": 0.9321 + }, + { + "start": 3551.99, + "end": 3555.33, + "probability": 0.8748 + }, + { + "start": 3555.97, + "end": 3559.09, + "probability": 0.9921 + }, + { + "start": 3559.93, + "end": 3562.19, + "probability": 0.996 + }, + { + "start": 3563.17, + "end": 3564.41, + "probability": 0.9976 + }, + { + "start": 3565.77, + "end": 3566.99, + "probability": 0.64 + }, + { + "start": 3568.25, + "end": 3569.89, + "probability": 0.7792 + }, + { + "start": 3570.81, + "end": 3574.07, + "probability": 0.7565 + }, + { + "start": 3574.27, + "end": 3575.59, + "probability": 0.913 + }, + { + "start": 3575.91, + "end": 3577.81, + "probability": 0.8537 + }, + { + "start": 3579.11, + "end": 3580.75, + "probability": 0.5772 + }, + { + "start": 3582.29, + "end": 3583.55, + "probability": 0.9951 + }, + { + "start": 3584.45, + "end": 3588.35, + "probability": 0.9748 + }, + { + "start": 3589.11, + "end": 3590.01, + "probability": 0.547 + }, + { + "start": 3590.33, + "end": 3595.37, + "probability": 0.9878 + }, + { + "start": 3595.41, + "end": 3595.81, + "probability": 0.4127 + }, + { + "start": 3595.89, + "end": 3598.57, + "probability": 0.9683 + }, + { + "start": 3598.79, + "end": 3602.63, + "probability": 0.986 + }, + { + "start": 3603.21, + "end": 3604.93, + "probability": 0.3675 + }, + { + "start": 3604.93, + "end": 3605.31, + "probability": 0.8089 + }, + { + "start": 3605.45, + "end": 3607.85, + "probability": 0.6015 + }, + { + "start": 3607.85, + "end": 3610.87, + "probability": 0.9811 + }, + { + "start": 3611.31, + "end": 3612.65, + "probability": 0.5207 + }, + { + "start": 3612.69, + "end": 3614.5, + "probability": 0.9966 + }, + { + "start": 3614.97, + "end": 3615.53, + "probability": 0.0232 + }, + { + "start": 3615.55, + "end": 3618.67, + "probability": 0.6945 + }, + { + "start": 3618.67, + "end": 3618.69, + "probability": 0.6531 + }, + { + "start": 3618.75, + "end": 3619.61, + "probability": 0.6572 + }, + { + "start": 3619.93, + "end": 3620.49, + "probability": 0.7969 + }, + { + "start": 3620.59, + "end": 3623.49, + "probability": 0.9221 + }, + { + "start": 3623.61, + "end": 3625.95, + "probability": 0.1653 + }, + { + "start": 3626.13, + "end": 3628.95, + "probability": 0.9219 + }, + { + "start": 3629.13, + "end": 3629.61, + "probability": 0.9805 + }, + { + "start": 3630.73, + "end": 3631.45, + "probability": 0.6232 + }, + { + "start": 3632.75, + "end": 3634.41, + "probability": 0.3626 + }, + { + "start": 3634.41, + "end": 3635.23, + "probability": 0.3726 + }, + { + "start": 3635.39, + "end": 3638.25, + "probability": 0.8876 + }, + { + "start": 3639.23, + "end": 3641.25, + "probability": 0.7987 + }, + { + "start": 3641.35, + "end": 3643.19, + "probability": 0.6651 + }, + { + "start": 3643.29, + "end": 3643.87, + "probability": 0.4188 + }, + { + "start": 3644.18, + "end": 3646.71, + "probability": 0.6316 + }, + { + "start": 3646.71, + "end": 3646.79, + "probability": 0.3338 + }, + { + "start": 3646.79, + "end": 3646.79, + "probability": 0.1681 + }, + { + "start": 3646.79, + "end": 3648.11, + "probability": 0.1854 + }, + { + "start": 3648.37, + "end": 3650.61, + "probability": 0.5596 + }, + { + "start": 3651.13, + "end": 3654.47, + "probability": 0.454 + }, + { + "start": 3656.07, + "end": 3657.23, + "probability": 0.0063 + }, + { + "start": 3657.43, + "end": 3657.91, + "probability": 0.4594 + }, + { + "start": 3657.91, + "end": 3658.45, + "probability": 0.19 + }, + { + "start": 3658.49, + "end": 3660.45, + "probability": 0.5097 + }, + { + "start": 3662.41, + "end": 3663.11, + "probability": 0.0212 + }, + { + "start": 3663.93, + "end": 3664.93, + "probability": 0.2729 + }, + { + "start": 3665.11, + "end": 3666.23, + "probability": 0.4065 + }, + { + "start": 3666.23, + "end": 3667.28, + "probability": 0.0142 + }, + { + "start": 3669.43, + "end": 3670.65, + "probability": 0.6805 + }, + { + "start": 3671.11, + "end": 3672.91, + "probability": 0.7053 + }, + { + "start": 3672.95, + "end": 3674.77, + "probability": 0.7893 + }, + { + "start": 3674.83, + "end": 3676.55, + "probability": 0.866 + }, + { + "start": 3676.63, + "end": 3677.09, + "probability": 0.918 + }, + { + "start": 3677.41, + "end": 3679.52, + "probability": 0.7058 + }, + { + "start": 3679.89, + "end": 3681.22, + "probability": 0.832 + }, + { + "start": 3681.37, + "end": 3684.7, + "probability": 0.688 + }, + { + "start": 3686.53, + "end": 3687.21, + "probability": 0.161 + }, + { + "start": 3688.23, + "end": 3688.43, + "probability": 0.0551 + }, + { + "start": 3688.43, + "end": 3688.63, + "probability": 0.049 + }, + { + "start": 3688.63, + "end": 3690.19, + "probability": 0.2284 + }, + { + "start": 3690.67, + "end": 3690.67, + "probability": 0.1817 + }, + { + "start": 3690.89, + "end": 3693.67, + "probability": 0.6092 + }, + { + "start": 3694.05, + "end": 3694.85, + "probability": 0.6571 + }, + { + "start": 3695.49, + "end": 3696.65, + "probability": 0.9239 + }, + { + "start": 3696.79, + "end": 3697.57, + "probability": 0.5209 + }, + { + "start": 3697.93, + "end": 3699.09, + "probability": 0.6394 + }, + { + "start": 3699.27, + "end": 3699.71, + "probability": 0.633 + }, + { + "start": 3699.85, + "end": 3701.89, + "probability": 0.8319 + }, + { + "start": 3702.33, + "end": 3705.41, + "probability": 0.901 + }, + { + "start": 3705.55, + "end": 3708.89, + "probability": 0.7793 + }, + { + "start": 3708.89, + "end": 3710.61, + "probability": 0.1126 + }, + { + "start": 3713.43, + "end": 3713.71, + "probability": 0.0804 + }, + { + "start": 3713.71, + "end": 3713.71, + "probability": 0.1861 + }, + { + "start": 3713.71, + "end": 3713.71, + "probability": 0.0776 + }, + { + "start": 3713.71, + "end": 3713.71, + "probability": 0.1653 + }, + { + "start": 3713.71, + "end": 3715.19, + "probability": 0.2133 + }, + { + "start": 3715.41, + "end": 3716.45, + "probability": 0.2524 + }, + { + "start": 3716.65, + "end": 3717.65, + "probability": 0.3989 + }, + { + "start": 3717.85, + "end": 3718.81, + "probability": 0.2285 + }, + { + "start": 3718.99, + "end": 3723.37, + "probability": 0.8354 + }, + { + "start": 3723.99, + "end": 3724.45, + "probability": 0.5986 + }, + { + "start": 3725.03, + "end": 3725.59, + "probability": 0.3639 + }, + { + "start": 3725.73, + "end": 3727.13, + "probability": 0.515 + }, + { + "start": 3727.47, + "end": 3728.07, + "probability": 0.0896 + }, + { + "start": 3728.25, + "end": 3728.25, + "probability": 0.1816 + }, + { + "start": 3728.25, + "end": 3730.19, + "probability": 0.6469 + }, + { + "start": 3730.31, + "end": 3734.29, + "probability": 0.7262 + }, + { + "start": 3734.33, + "end": 3734.93, + "probability": 0.8483 + }, + { + "start": 3736.71, + "end": 3737.89, + "probability": 0.6216 + }, + { + "start": 3738.05, + "end": 3740.85, + "probability": 0.4984 + }, + { + "start": 3745.31, + "end": 3746.67, + "probability": 0.3567 + }, + { + "start": 3746.93, + "end": 3748.05, + "probability": 0.8368 + }, + { + "start": 3748.49, + "end": 3749.61, + "probability": 0.9053 + }, + { + "start": 3749.87, + "end": 3751.61, + "probability": 0.9431 + }, + { + "start": 3751.85, + "end": 3752.43, + "probability": 0.9207 + }, + { + "start": 3752.57, + "end": 3757.57, + "probability": 0.986 + }, + { + "start": 3758.37, + "end": 3760.47, + "probability": 0.9913 + }, + { + "start": 3760.85, + "end": 3761.69, + "probability": 0.8967 + }, + { + "start": 3762.37, + "end": 3763.41, + "probability": 0.8598 + }, + { + "start": 3763.93, + "end": 3766.77, + "probability": 0.6191 + }, + { + "start": 3767.43, + "end": 3767.53, + "probability": 0.6519 + }, + { + "start": 3767.53, + "end": 3770.31, + "probability": 0.9912 + }, + { + "start": 3771.52, + "end": 3773.75, + "probability": 0.9114 + }, + { + "start": 3774.11, + "end": 3774.51, + "probability": 0.9163 + }, + { + "start": 3777.63, + "end": 3778.55, + "probability": 0.4421 + }, + { + "start": 3779.67, + "end": 3780.28, + "probability": 0.7719 + }, + { + "start": 3781.57, + "end": 3782.45, + "probability": 0.8635 + }, + { + "start": 3782.55, + "end": 3787.71, + "probability": 0.9834 + }, + { + "start": 3788.57, + "end": 3789.93, + "probability": 0.8733 + }, + { + "start": 3789.99, + "end": 3791.71, + "probability": 0.9663 + }, + { + "start": 3791.75, + "end": 3794.21, + "probability": 0.9932 + }, + { + "start": 3795.57, + "end": 3797.09, + "probability": 0.7526 + }, + { + "start": 3797.81, + "end": 3799.67, + "probability": 0.8429 + }, + { + "start": 3799.87, + "end": 3804.57, + "probability": 0.8055 + }, + { + "start": 3805.42, + "end": 3810.79, + "probability": 0.9946 + }, + { + "start": 3812.29, + "end": 3812.45, + "probability": 0.4031 + }, + { + "start": 3812.45, + "end": 3813.47, + "probability": 0.938 + }, + { + "start": 3813.81, + "end": 3815.49, + "probability": 0.8196 + }, + { + "start": 3815.99, + "end": 3816.39, + "probability": 0.4438 + }, + { + "start": 3816.51, + "end": 3817.81, + "probability": 0.8479 + }, + { + "start": 3818.27, + "end": 3820.59, + "probability": 0.9771 + }, + { + "start": 3821.03, + "end": 3821.89, + "probability": 0.525 + }, + { + "start": 3822.23, + "end": 3822.47, + "probability": 0.4845 + }, + { + "start": 3822.53, + "end": 3822.91, + "probability": 0.5518 + }, + { + "start": 3823.01, + "end": 3824.63, + "probability": 0.748 + }, + { + "start": 3824.77, + "end": 3828.09, + "probability": 0.9939 + }, + { + "start": 3828.51, + "end": 3830.13, + "probability": 0.9837 + }, + { + "start": 3830.45, + "end": 3832.03, + "probability": 0.8527 + }, + { + "start": 3832.05, + "end": 3832.43, + "probability": 0.8289 + }, + { + "start": 3832.51, + "end": 3834.87, + "probability": 0.8118 + }, + { + "start": 3835.23, + "end": 3835.93, + "probability": 0.4113 + }, + { + "start": 3836.07, + "end": 3837.45, + "probability": 0.9493 + }, + { + "start": 3837.61, + "end": 3838.97, + "probability": 0.2362 + }, + { + "start": 3838.97, + "end": 3839.07, + "probability": 0.2816 + }, + { + "start": 3839.07, + "end": 3840.11, + "probability": 0.6697 + }, + { + "start": 3840.25, + "end": 3840.71, + "probability": 0.7405 + }, + { + "start": 3840.83, + "end": 3841.81, + "probability": 0.709 + }, + { + "start": 3841.91, + "end": 3842.91, + "probability": 0.7554 + }, + { + "start": 3843.11, + "end": 3849.33, + "probability": 0.972 + }, + { + "start": 3849.91, + "end": 3850.47, + "probability": 0.8358 + }, + { + "start": 3850.65, + "end": 3851.79, + "probability": 0.8793 + }, + { + "start": 3851.89, + "end": 3853.47, + "probability": 0.7677 + }, + { + "start": 3854.71, + "end": 3856.45, + "probability": 0.9557 + }, + { + "start": 3857.07, + "end": 3857.31, + "probability": 0.8812 + }, + { + "start": 3857.43, + "end": 3858.27, + "probability": 0.745 + }, + { + "start": 3858.65, + "end": 3860.49, + "probability": 0.9505 + }, + { + "start": 3860.73, + "end": 3863.77, + "probability": 0.9193 + }, + { + "start": 3864.17, + "end": 3865.85, + "probability": 0.7906 + }, + { + "start": 3865.95, + "end": 3868.75, + "probability": 0.9008 + }, + { + "start": 3869.05, + "end": 3869.94, + "probability": 0.963 + }, + { + "start": 3870.53, + "end": 3872.35, + "probability": 0.9896 + }, + { + "start": 3872.61, + "end": 3873.47, + "probability": 0.7771 + }, + { + "start": 3873.57, + "end": 3875.75, + "probability": 0.7161 + }, + { + "start": 3875.87, + "end": 3877.31, + "probability": 0.999 + }, + { + "start": 3877.75, + "end": 3878.79, + "probability": 0.9917 + }, + { + "start": 3879.01, + "end": 3880.49, + "probability": 0.9993 + }, + { + "start": 3880.99, + "end": 3881.83, + "probability": 0.1039 + }, + { + "start": 3881.83, + "end": 3882.55, + "probability": 0.656 + }, + { + "start": 3882.69, + "end": 3887.01, + "probability": 0.9232 + }, + { + "start": 3887.19, + "end": 3891.99, + "probability": 0.9343 + }, + { + "start": 3892.49, + "end": 3896.57, + "probability": 0.9307 + }, + { + "start": 3896.85, + "end": 3897.99, + "probability": 0.7653 + }, + { + "start": 3898.21, + "end": 3898.83, + "probability": 0.8433 + }, + { + "start": 3898.99, + "end": 3899.93, + "probability": 0.7995 + }, + { + "start": 3900.11, + "end": 3901.21, + "probability": 0.9211 + }, + { + "start": 3901.51, + "end": 3905.55, + "probability": 0.9409 + }, + { + "start": 3905.65, + "end": 3907.54, + "probability": 0.9412 + }, + { + "start": 3909.12, + "end": 3910.69, + "probability": 0.703 + }, + { + "start": 3910.71, + "end": 3911.77, + "probability": 0.949 + }, + { + "start": 3912.19, + "end": 3913.79, + "probability": 0.9483 + }, + { + "start": 3913.91, + "end": 3916.27, + "probability": 0.8443 + }, + { + "start": 3916.45, + "end": 3918.07, + "probability": 0.9678 + }, + { + "start": 3918.47, + "end": 3920.09, + "probability": 0.9414 + }, + { + "start": 3920.98, + "end": 3921.61, + "probability": 0.0122 + }, + { + "start": 3921.61, + "end": 3922.03, + "probability": 0.4103 + }, + { + "start": 3922.29, + "end": 3922.83, + "probability": 0.5542 + }, + { + "start": 3923.27, + "end": 3924.51, + "probability": 0.9004 + }, + { + "start": 3925.15, + "end": 3926.07, + "probability": 0.9221 + }, + { + "start": 3926.75, + "end": 3929.83, + "probability": 0.8903 + }, + { + "start": 3930.97, + "end": 3934.71, + "probability": 0.9949 + }, + { + "start": 3934.71, + "end": 3938.37, + "probability": 0.8869 + }, + { + "start": 3939.13, + "end": 3940.13, + "probability": 0.7358 + }, + { + "start": 3940.29, + "end": 3944.57, + "probability": 0.8888 + }, + { + "start": 3945.03, + "end": 3948.51, + "probability": 0.983 + }, + { + "start": 3949.39, + "end": 3950.13, + "probability": 0.9468 + }, + { + "start": 3951.07, + "end": 3952.79, + "probability": 0.992 + }, + { + "start": 3952.85, + "end": 3953.79, + "probability": 0.8621 + }, + { + "start": 3953.93, + "end": 3955.99, + "probability": 0.9311 + }, + { + "start": 3956.39, + "end": 3957.65, + "probability": 0.7953 + }, + { + "start": 3958.07, + "end": 3960.53, + "probability": 0.9292 + }, + { + "start": 3960.79, + "end": 3964.13, + "probability": 0.8979 + }, + { + "start": 3964.65, + "end": 3968.25, + "probability": 0.9917 + }, + { + "start": 3968.41, + "end": 3969.69, + "probability": 0.8097 + }, + { + "start": 3969.95, + "end": 3970.99, + "probability": 0.7939 + }, + { + "start": 3971.17, + "end": 3974.09, + "probability": 0.8622 + }, + { + "start": 3974.69, + "end": 3978.05, + "probability": 0.967 + }, + { + "start": 3978.31, + "end": 3980.38, + "probability": 0.7547 + }, + { + "start": 3981.01, + "end": 3982.03, + "probability": 0.9655 + }, + { + "start": 3982.19, + "end": 3983.19, + "probability": 0.8813 + }, + { + "start": 3983.99, + "end": 3984.47, + "probability": 0.7013 + }, + { + "start": 3984.47, + "end": 3985.73, + "probability": 0.3386 + }, + { + "start": 3987.03, + "end": 3988.27, + "probability": 0.3407 + }, + { + "start": 3988.27, + "end": 3990.97, + "probability": 0.6787 + }, + { + "start": 3991.07, + "end": 3991.63, + "probability": 0.6677 + }, + { + "start": 3991.69, + "end": 3992.05, + "probability": 0.5978 + }, + { + "start": 3992.09, + "end": 3994.71, + "probability": 0.6629 + }, + { + "start": 3994.77, + "end": 3997.99, + "probability": 0.7767 + }, + { + "start": 3998.55, + "end": 4001.65, + "probability": 0.8282 + }, + { + "start": 4001.71, + "end": 4004.13, + "probability": 0.6573 + }, + { + "start": 4004.17, + "end": 4004.95, + "probability": 0.4673 + }, + { + "start": 4004.99, + "end": 4005.67, + "probability": 0.8523 + }, + { + "start": 4005.93, + "end": 4006.21, + "probability": 0.4926 + }, + { + "start": 4006.23, + "end": 4007.05, + "probability": 0.939 + }, + { + "start": 4007.15, + "end": 4008.07, + "probability": 0.9148 + }, + { + "start": 4008.15, + "end": 4009.29, + "probability": 0.995 + }, + { + "start": 4009.71, + "end": 4010.75, + "probability": 0.9763 + }, + { + "start": 4010.99, + "end": 4012.25, + "probability": 0.8401 + }, + { + "start": 4012.49, + "end": 4013.85, + "probability": 0.9804 + }, + { + "start": 4014.23, + "end": 4016.43, + "probability": 0.9348 + }, + { + "start": 4016.77, + "end": 4017.71, + "probability": 0.8992 + }, + { + "start": 4017.87, + "end": 4019.46, + "probability": 0.978 + }, + { + "start": 4019.99, + "end": 4021.69, + "probability": 0.8883 + }, + { + "start": 4022.07, + "end": 4023.1, + "probability": 0.8643 + }, + { + "start": 4023.29, + "end": 4023.91, + "probability": 0.8349 + }, + { + "start": 4023.99, + "end": 4024.78, + "probability": 0.9736 + }, + { + "start": 4024.93, + "end": 4026.01, + "probability": 0.6877 + }, + { + "start": 4026.09, + "end": 4027.11, + "probability": 0.7014 + }, + { + "start": 4027.39, + "end": 4029.01, + "probability": 0.2474 + }, + { + "start": 4029.21, + "end": 4030.19, + "probability": 0.4125 + }, + { + "start": 4030.25, + "end": 4030.75, + "probability": 0.9139 + }, + { + "start": 4030.87, + "end": 4032.97, + "probability": 0.6637 + }, + { + "start": 4033.05, + "end": 4034.91, + "probability": 0.9923 + }, + { + "start": 4036.11, + "end": 4038.27, + "probability": 0.9331 + }, + { + "start": 4038.33, + "end": 4041.05, + "probability": 0.8292 + }, + { + "start": 4041.47, + "end": 4042.34, + "probability": 0.9433 + }, + { + "start": 4042.65, + "end": 4046.21, + "probability": 0.9565 + }, + { + "start": 4046.39, + "end": 4047.49, + "probability": 0.9686 + }, + { + "start": 4047.69, + "end": 4049.89, + "probability": 0.9956 + }, + { + "start": 4049.95, + "end": 4050.55, + "probability": 0.8259 + }, + { + "start": 4050.61, + "end": 4054.51, + "probability": 0.9526 + }, + { + "start": 4055.09, + "end": 4056.91, + "probability": 0.9943 + }, + { + "start": 4057.01, + "end": 4058.48, + "probability": 0.9339 + }, + { + "start": 4058.67, + "end": 4060.25, + "probability": 0.9448 + }, + { + "start": 4060.43, + "end": 4061.11, + "probability": 0.8945 + }, + { + "start": 4061.43, + "end": 4063.33, + "probability": 0.9436 + }, + { + "start": 4063.63, + "end": 4065.33, + "probability": 0.9726 + }, + { + "start": 4066.39, + "end": 4068.09, + "probability": 0.6324 + }, + { + "start": 4069.49, + "end": 4069.49, + "probability": 0.048 + }, + { + "start": 4069.49, + "end": 4069.81, + "probability": 0.4391 + }, + { + "start": 4069.91, + "end": 4070.57, + "probability": 0.0719 + }, + { + "start": 4070.65, + "end": 4071.47, + "probability": 0.465 + }, + { + "start": 4071.53, + "end": 4077.15, + "probability": 0.9327 + }, + { + "start": 4077.57, + "end": 4081.07, + "probability": 0.8502 + }, + { + "start": 4081.27, + "end": 4083.03, + "probability": 0.991 + }, + { + "start": 4083.15, + "end": 4085.19, + "probability": 0.9775 + }, + { + "start": 4085.35, + "end": 4086.11, + "probability": 0.7707 + }, + { + "start": 4086.35, + "end": 4087.67, + "probability": 0.848 + }, + { + "start": 4087.79, + "end": 4088.87, + "probability": 0.7931 + }, + { + "start": 4089.35, + "end": 4090.65, + "probability": 0.7639 + }, + { + "start": 4090.83, + "end": 4092.29, + "probability": 0.9441 + }, + { + "start": 4092.57, + "end": 4093.47, + "probability": 0.5234 + }, + { + "start": 4093.59, + "end": 4095.21, + "probability": 0.8736 + }, + { + "start": 4095.43, + "end": 4100.53, + "probability": 0.9461 + }, + { + "start": 4100.93, + "end": 4101.47, + "probability": 0.6194 + }, + { + "start": 4101.67, + "end": 4102.31, + "probability": 0.7216 + }, + { + "start": 4102.65, + "end": 4103.02, + "probability": 0.7794 + }, + { + "start": 4103.27, + "end": 4104.09, + "probability": 0.9209 + }, + { + "start": 4104.19, + "end": 4106.37, + "probability": 0.6832 + }, + { + "start": 4106.51, + "end": 4107.59, + "probability": 0.7252 + }, + { + "start": 4107.77, + "end": 4110.29, + "probability": 0.7299 + }, + { + "start": 4110.81, + "end": 4112.69, + "probability": 0.9629 + }, + { + "start": 4112.87, + "end": 4113.66, + "probability": 0.5257 + }, + { + "start": 4113.99, + "end": 4114.59, + "probability": 0.7253 + }, + { + "start": 4114.85, + "end": 4116.12, + "probability": 0.8865 + }, + { + "start": 4116.73, + "end": 4117.17, + "probability": 0.6075 + }, + { + "start": 4117.35, + "end": 4117.61, + "probability": 0.849 + }, + { + "start": 4117.73, + "end": 4120.87, + "probability": 0.9316 + }, + { + "start": 4121.09, + "end": 4123.13, + "probability": 0.7583 + }, + { + "start": 4124.05, + "end": 4124.83, + "probability": 0.8407 + }, + { + "start": 4124.91, + "end": 4126.07, + "probability": 0.9019 + }, + { + "start": 4126.35, + "end": 4127.79, + "probability": 0.9832 + }, + { + "start": 4127.97, + "end": 4130.55, + "probability": 0.8678 + }, + { + "start": 4130.65, + "end": 4131.31, + "probability": 0.9338 + }, + { + "start": 4131.41, + "end": 4132.17, + "probability": 0.9163 + }, + { + "start": 4132.45, + "end": 4133.87, + "probability": 0.965 + }, + { + "start": 4134.39, + "end": 4136.19, + "probability": 0.8718 + }, + { + "start": 4136.71, + "end": 4138.21, + "probability": 0.9557 + }, + { + "start": 4138.27, + "end": 4140.47, + "probability": 0.9827 + }, + { + "start": 4140.65, + "end": 4141.75, + "probability": 0.8342 + }, + { + "start": 4142.25, + "end": 4143.47, + "probability": 0.6444 + }, + { + "start": 4143.63, + "end": 4147.79, + "probability": 0.9667 + }, + { + "start": 4148.07, + "end": 4149.27, + "probability": 0.9829 + }, + { + "start": 4149.37, + "end": 4150.43, + "probability": 0.7308 + }, + { + "start": 4150.63, + "end": 4152.41, + "probability": 0.972 + }, + { + "start": 4152.53, + "end": 4154.01, + "probability": 0.9561 + }, + { + "start": 4154.27, + "end": 4155.11, + "probability": 0.8323 + }, + { + "start": 4155.37, + "end": 4156.95, + "probability": 0.8873 + }, + { + "start": 4156.99, + "end": 4157.51, + "probability": 0.8188 + }, + { + "start": 4157.59, + "end": 4158.17, + "probability": 0.8638 + }, + { + "start": 4158.77, + "end": 4159.77, + "probability": 0.8821 + }, + { + "start": 4159.87, + "end": 4163.71, + "probability": 0.9754 + }, + { + "start": 4164.19, + "end": 4167.73, + "probability": 0.9442 + }, + { + "start": 4168.07, + "end": 4169.17, + "probability": 0.8117 + }, + { + "start": 4172.12, + "end": 4176.39, + "probability": 0.2596 + }, + { + "start": 4176.67, + "end": 4177.41, + "probability": 0.8472 + }, + { + "start": 4177.55, + "end": 4179.11, + "probability": 0.698 + }, + { + "start": 4179.11, + "end": 4180.51, + "probability": 0.8435 + }, + { + "start": 4180.59, + "end": 4184.67, + "probability": 0.9375 + }, + { + "start": 4184.83, + "end": 4187.39, + "probability": 0.9934 + }, + { + "start": 4187.87, + "end": 4189.61, + "probability": 0.9197 + }, + { + "start": 4189.87, + "end": 4191.29, + "probability": 0.9233 + }, + { + "start": 4191.57, + "end": 4195.17, + "probability": 0.9551 + }, + { + "start": 4195.23, + "end": 4195.63, + "probability": 0.7598 + }, + { + "start": 4195.93, + "end": 4197.73, + "probability": 0.7949 + }, + { + "start": 4198.07, + "end": 4199.43, + "probability": 0.8771 + }, + { + "start": 4199.59, + "end": 4200.45, + "probability": 0.5917 + }, + { + "start": 4200.65, + "end": 4202.49, + "probability": 0.7897 + }, + { + "start": 4202.71, + "end": 4203.95, + "probability": 0.8413 + }, + { + "start": 4204.03, + "end": 4204.35, + "probability": 0.8028 + }, + { + "start": 4205.67, + "end": 4208.39, + "probability": 0.9358 + }, + { + "start": 4209.07, + "end": 4210.03, + "probability": 0.7748 + }, + { + "start": 4213.87, + "end": 4214.75, + "probability": 0.7723 + }, + { + "start": 4214.89, + "end": 4215.15, + "probability": 0.6692 + }, + { + "start": 4215.27, + "end": 4217.83, + "probability": 0.8896 + }, + { + "start": 4217.99, + "end": 4218.61, + "probability": 0.8016 + }, + { + "start": 4219.35, + "end": 4224.53, + "probability": 0.897 + }, + { + "start": 4224.61, + "end": 4226.47, + "probability": 0.7925 + }, + { + "start": 4227.13, + "end": 4231.63, + "probability": 0.9692 + }, + { + "start": 4231.77, + "end": 4232.76, + "probability": 0.9565 + }, + { + "start": 4233.27, + "end": 4234.81, + "probability": 0.999 + }, + { + "start": 4234.91, + "end": 4236.99, + "probability": 0.8348 + }, + { + "start": 4237.03, + "end": 4238.33, + "probability": 0.8789 + }, + { + "start": 4239.05, + "end": 4241.65, + "probability": 0.9306 + }, + { + "start": 4242.25, + "end": 4246.07, + "probability": 0.9451 + }, + { + "start": 4246.23, + "end": 4249.23, + "probability": 0.9284 + }, + { + "start": 4250.27, + "end": 4252.45, + "probability": 0.7273 + }, + { + "start": 4252.59, + "end": 4253.77, + "probability": 0.7119 + }, + { + "start": 4254.21, + "end": 4254.61, + "probability": 0.7435 + }, + { + "start": 4254.71, + "end": 4255.41, + "probability": 0.7819 + }, + { + "start": 4255.63, + "end": 4256.59, + "probability": 0.9883 + }, + { + "start": 4256.65, + "end": 4256.93, + "probability": 0.6786 + }, + { + "start": 4257.25, + "end": 4257.85, + "probability": 0.9736 + }, + { + "start": 4258.01, + "end": 4258.35, + "probability": 0.9192 + }, + { + "start": 4258.39, + "end": 4258.87, + "probability": 0.9147 + }, + { + "start": 4259.01, + "end": 4260.09, + "probability": 0.9961 + }, + { + "start": 4260.57, + "end": 4261.53, + "probability": 0.8065 + }, + { + "start": 4262.09, + "end": 4263.09, + "probability": 0.5271 + }, + { + "start": 4263.15, + "end": 4266.51, + "probability": 0.7978 + }, + { + "start": 4267.01, + "end": 4267.83, + "probability": 0.4441 + }, + { + "start": 4267.93, + "end": 4272.39, + "probability": 0.67 + }, + { + "start": 4272.39, + "end": 4272.39, + "probability": 0.2311 + }, + { + "start": 4272.39, + "end": 4272.39, + "probability": 0.4941 + }, + { + "start": 4272.39, + "end": 4273.39, + "probability": 0.5452 + }, + { + "start": 4273.57, + "end": 4276.13, + "probability": 0.9003 + }, + { + "start": 4277.91, + "end": 4285.07, + "probability": 0.7629 + }, + { + "start": 4285.55, + "end": 4285.83, + "probability": 0.4521 + }, + { + "start": 4285.93, + "end": 4286.79, + "probability": 0.8442 + }, + { + "start": 4286.95, + "end": 4287.49, + "probability": 0.6616 + }, + { + "start": 4287.57, + "end": 4288.77, + "probability": 0.7491 + }, + { + "start": 4289.19, + "end": 4291.85, + "probability": 0.822 + }, + { + "start": 4291.97, + "end": 4295.45, + "probability": 0.9421 + }, + { + "start": 4295.91, + "end": 4296.97, + "probability": 0.7416 + }, + { + "start": 4297.75, + "end": 4301.11, + "probability": 0.8225 + }, + { + "start": 4301.61, + "end": 4303.89, + "probability": 0.6458 + }, + { + "start": 4304.89, + "end": 4305.83, + "probability": 0.9727 + }, + { + "start": 4306.43, + "end": 4309.77, + "probability": 0.979 + }, + { + "start": 4310.35, + "end": 4312.43, + "probability": 0.8227 + }, + { + "start": 4312.83, + "end": 4314.73, + "probability": 0.9142 + }, + { + "start": 4314.87, + "end": 4316.81, + "probability": 0.8818 + }, + { + "start": 4317.01, + "end": 4319.85, + "probability": 0.5407 + }, + { + "start": 4319.93, + "end": 4321.6, + "probability": 0.925 + }, + { + "start": 4321.71, + "end": 4323.09, + "probability": 0.7246 + }, + { + "start": 4323.23, + "end": 4325.49, + "probability": 0.9949 + }, + { + "start": 4325.69, + "end": 4325.95, + "probability": 0.0846 + }, + { + "start": 4326.55, + "end": 4328.07, + "probability": 0.9214 + }, + { + "start": 4328.79, + "end": 4330.57, + "probability": 0.8677 + }, + { + "start": 4331.03, + "end": 4331.91, + "probability": 0.5317 + }, + { + "start": 4332.31, + "end": 4333.81, + "probability": 0.9732 + }, + { + "start": 4333.89, + "end": 4335.09, + "probability": 0.8206 + }, + { + "start": 4335.39, + "end": 4337.11, + "probability": 0.9505 + }, + { + "start": 4337.51, + "end": 4338.48, + "probability": 0.948 + }, + { + "start": 4339.05, + "end": 4342.45, + "probability": 0.799 + }, + { + "start": 4342.45, + "end": 4343.11, + "probability": 0.4778 + }, + { + "start": 4343.41, + "end": 4345.21, + "probability": 0.9697 + }, + { + "start": 4345.21, + "end": 4347.29, + "probability": 0.7252 + }, + { + "start": 4347.31, + "end": 4348.59, + "probability": 0.8738 + }, + { + "start": 4348.85, + "end": 4350.74, + "probability": 0.8677 + }, + { + "start": 4352.91, + "end": 4354.33, + "probability": 0.8917 + }, + { + "start": 4355.05, + "end": 4356.77, + "probability": 0.6967 + }, + { + "start": 4356.79, + "end": 4360.19, + "probability": 0.816 + }, + { + "start": 4360.19, + "end": 4360.75, + "probability": 0.5899 + }, + { + "start": 4360.85, + "end": 4363.01, + "probability": 0.4892 + }, + { + "start": 4363.51, + "end": 4365.97, + "probability": 0.9782 + }, + { + "start": 4367.65, + "end": 4369.27, + "probability": 0.6646 + }, + { + "start": 4369.41, + "end": 4371.16, + "probability": 0.897 + }, + { + "start": 4371.63, + "end": 4373.06, + "probability": 0.6847 + }, + { + "start": 4373.29, + "end": 4378.45, + "probability": 0.6442 + }, + { + "start": 4378.69, + "end": 4379.58, + "probability": 0.4342 + }, + { + "start": 4379.79, + "end": 4381.17, + "probability": 0.3054 + }, + { + "start": 4381.23, + "end": 4382.25, + "probability": 0.1438 + }, + { + "start": 4383.89, + "end": 4386.93, + "probability": 0.0804 + }, + { + "start": 4387.07, + "end": 4390.21, + "probability": 0.5016 + }, + { + "start": 4390.51, + "end": 4392.19, + "probability": 0.0631 + }, + { + "start": 4392.19, + "end": 4392.63, + "probability": 0.4233 + }, + { + "start": 4392.69, + "end": 4396.87, + "probability": 0.7692 + }, + { + "start": 4397.03, + "end": 4399.27, + "probability": 0.9177 + }, + { + "start": 4399.27, + "end": 4400.49, + "probability": 0.6716 + }, + { + "start": 4400.95, + "end": 4402.49, + "probability": 0.6886 + }, + { + "start": 4402.91, + "end": 4403.81, + "probability": 0.7062 + }, + { + "start": 4403.93, + "end": 4406.05, + "probability": 0.7506 + }, + { + "start": 4406.17, + "end": 4406.33, + "probability": 0.4471 + }, + { + "start": 4406.37, + "end": 4410.41, + "probability": 0.5233 + }, + { + "start": 4410.41, + "end": 4411.35, + "probability": 0.6042 + }, + { + "start": 4412.04, + "end": 4416.53, + "probability": 0.783 + }, + { + "start": 4416.77, + "end": 4417.21, + "probability": 0.9153 + }, + { + "start": 4417.29, + "end": 4417.59, + "probability": 0.7081 + }, + { + "start": 4417.69, + "end": 4418.87, + "probability": 0.8113 + }, + { + "start": 4418.91, + "end": 4420.29, + "probability": 0.8921 + }, + { + "start": 4420.67, + "end": 4421.43, + "probability": 0.8638 + }, + { + "start": 4421.47, + "end": 4421.71, + "probability": 0.9382 + }, + { + "start": 4421.83, + "end": 4423.13, + "probability": 0.9961 + }, + { + "start": 4423.41, + "end": 4424.16, + "probability": 0.6064 + }, + { + "start": 4424.77, + "end": 4426.41, + "probability": 0.9948 + }, + { + "start": 4426.41, + "end": 4426.65, + "probability": 0.3172 + }, + { + "start": 4426.77, + "end": 4428.79, + "probability": 0.9902 + }, + { + "start": 4429.29, + "end": 4430.21, + "probability": 0.9604 + }, + { + "start": 4430.47, + "end": 4434.26, + "probability": 0.9732 + }, + { + "start": 4434.39, + "end": 4437.05, + "probability": 0.9454 + }, + { + "start": 4437.43, + "end": 4438.55, + "probability": 0.7933 + }, + { + "start": 4438.67, + "end": 4439.79, + "probability": 0.9782 + }, + { + "start": 4439.85, + "end": 4440.53, + "probability": 0.9097 + }, + { + "start": 4440.67, + "end": 4441.85, + "probability": 0.9165 + }, + { + "start": 4441.95, + "end": 4442.81, + "probability": 0.9314 + }, + { + "start": 4443.15, + "end": 4443.75, + "probability": 0.5663 + }, + { + "start": 4443.81, + "end": 4444.51, + "probability": 0.902 + }, + { + "start": 4444.93, + "end": 4446.25, + "probability": 0.9618 + }, + { + "start": 4446.49, + "end": 4449.19, + "probability": 0.9932 + }, + { + "start": 4449.19, + "end": 4453.61, + "probability": 0.9451 + }, + { + "start": 4453.89, + "end": 4456.37, + "probability": 0.8818 + }, + { + "start": 4456.47, + "end": 4458.36, + "probability": 0.5122 + }, + { + "start": 4458.73, + "end": 4460.29, + "probability": 0.9374 + }, + { + "start": 4460.61, + "end": 4461.25, + "probability": 0.8024 + }, + { + "start": 4461.35, + "end": 4464.67, + "probability": 0.9856 + }, + { + "start": 4464.73, + "end": 4465.51, + "probability": 0.2965 + }, + { + "start": 4465.51, + "end": 4465.85, + "probability": 0.3584 + }, + { + "start": 4465.95, + "end": 4467.89, + "probability": 0.7866 + }, + { + "start": 4467.95, + "end": 4471.03, + "probability": 0.9947 + }, + { + "start": 4471.21, + "end": 4474.19, + "probability": 0.9478 + }, + { + "start": 4475.06, + "end": 4475.19, + "probability": 0.2008 + }, + { + "start": 4475.21, + "end": 4476.07, + "probability": 0.6401 + }, + { + "start": 4476.11, + "end": 4478.49, + "probability": 0.7241 + }, + { + "start": 4485.75, + "end": 4487.37, + "probability": 0.3687 + }, + { + "start": 4489.77, + "end": 4491.31, + "probability": 0.7948 + }, + { + "start": 4491.47, + "end": 4497.37, + "probability": 0.7236 + }, + { + "start": 4497.45, + "end": 4499.53, + "probability": 0.4441 + }, + { + "start": 4499.59, + "end": 4502.07, + "probability": 0.0213 + }, + { + "start": 4507.73, + "end": 4508.57, + "probability": 0.3207 + }, + { + "start": 4508.67, + "end": 4509.35, + "probability": 0.59 + }, + { + "start": 4509.43, + "end": 4512.59, + "probability": 0.5607 + }, + { + "start": 4513.79, + "end": 4514.89, + "probability": 0.9512 + }, + { + "start": 4516.43, + "end": 4518.01, + "probability": 0.8903 + }, + { + "start": 4519.59, + "end": 4520.13, + "probability": 0.6257 + }, + { + "start": 4520.23, + "end": 4520.89, + "probability": 0.8599 + }, + { + "start": 4520.91, + "end": 4522.49, + "probability": 0.9916 + }, + { + "start": 4522.55, + "end": 4523.33, + "probability": 0.9242 + }, + { + "start": 4524.05, + "end": 4526.31, + "probability": 0.7297 + }, + { + "start": 4527.23, + "end": 4529.57, + "probability": 0.9687 + }, + { + "start": 4530.35, + "end": 4533.25, + "probability": 0.9576 + }, + { + "start": 4533.77, + "end": 4534.85, + "probability": 0.9604 + }, + { + "start": 4535.27, + "end": 4539.73, + "probability": 0.9741 + }, + { + "start": 4541.17, + "end": 4541.67, + "probability": 0.3856 + }, + { + "start": 4541.81, + "end": 4543.13, + "probability": 0.8734 + }, + { + "start": 4543.21, + "end": 4544.65, + "probability": 0.7244 + }, + { + "start": 4544.65, + "end": 4545.21, + "probability": 0.2211 + }, + { + "start": 4545.33, + "end": 4547.27, + "probability": 0.4405 + }, + { + "start": 4548.23, + "end": 4549.93, + "probability": 0.8452 + }, + { + "start": 4549.95, + "end": 4552.07, + "probability": 0.7495 + }, + { + "start": 4552.13, + "end": 4552.71, + "probability": 0.7778 + }, + { + "start": 4552.75, + "end": 4553.35, + "probability": 0.9292 + }, + { + "start": 4554.29, + "end": 4556.57, + "probability": 0.6624 + }, + { + "start": 4558.39, + "end": 4560.59, + "probability": 0.9573 + }, + { + "start": 4560.69, + "end": 4562.33, + "probability": 0.7252 + }, + { + "start": 4563.01, + "end": 4564.87, + "probability": 0.8959 + }, + { + "start": 4565.97, + "end": 4570.11, + "probability": 0.2897 + }, + { + "start": 4570.65, + "end": 4571.98, + "probability": 0.9109 + }, + { + "start": 4572.85, + "end": 4575.72, + "probability": 0.1638 + }, + { + "start": 4576.11, + "end": 4577.89, + "probability": 0.0381 + }, + { + "start": 4578.13, + "end": 4582.09, + "probability": 0.9852 + }, + { + "start": 4583.13, + "end": 4584.95, + "probability": 0.99 + }, + { + "start": 4585.93, + "end": 4587.81, + "probability": 0.868 + }, + { + "start": 4587.97, + "end": 4589.73, + "probability": 0.9827 + }, + { + "start": 4590.31, + "end": 4591.57, + "probability": 0.8446 + }, + { + "start": 4591.77, + "end": 4593.67, + "probability": 0.8501 + }, + { + "start": 4594.33, + "end": 4595.05, + "probability": 0.7819 + }, + { + "start": 4595.77, + "end": 4597.09, + "probability": 0.7803 + }, + { + "start": 4597.77, + "end": 4598.97, + "probability": 0.8141 + }, + { + "start": 4599.53, + "end": 4605.67, + "probability": 0.9865 + }, + { + "start": 4605.67, + "end": 4610.49, + "probability": 0.8621 + }, + { + "start": 4610.61, + "end": 4611.19, + "probability": 0.3761 + }, + { + "start": 4613.39, + "end": 4615.99, + "probability": 0.9071 + }, + { + "start": 4616.51, + "end": 4616.89, + "probability": 0.3458 + }, + { + "start": 4618.05, + "end": 4625.01, + "probability": 0.7281 + }, + { + "start": 4626.63, + "end": 4630.53, + "probability": 0.9806 + }, + { + "start": 4631.25, + "end": 4633.51, + "probability": 0.8955 + }, + { + "start": 4635.09, + "end": 4636.45, + "probability": 0.8965 + }, + { + "start": 4637.21, + "end": 4638.47, + "probability": 0.9724 + }, + { + "start": 4640.25, + "end": 4643.95, + "probability": 0.7492 + }, + { + "start": 4645.47, + "end": 4651.97, + "probability": 0.8278 + }, + { + "start": 4652.13, + "end": 4655.05, + "probability": 0.8251 + }, + { + "start": 4655.25, + "end": 4656.79, + "probability": 0.8443 + }, + { + "start": 4657.57, + "end": 4660.41, + "probability": 0.7714 + }, + { + "start": 4661.05, + "end": 4663.77, + "probability": 0.9741 + }, + { + "start": 4664.77, + "end": 4668.13, + "probability": 0.6791 + }, + { + "start": 4669.41, + "end": 4677.53, + "probability": 0.9877 + }, + { + "start": 4677.97, + "end": 4678.58, + "probability": 0.8831 + }, + { + "start": 4679.59, + "end": 4683.9, + "probability": 0.8206 + }, + { + "start": 4684.91, + "end": 4689.71, + "probability": 0.8288 + }, + { + "start": 4690.87, + "end": 4692.77, + "probability": 0.6611 + }, + { + "start": 4693.59, + "end": 4695.27, + "probability": 0.9971 + }, + { + "start": 4696.33, + "end": 4699.72, + "probability": 0.9484 + }, + { + "start": 4700.39, + "end": 4701.89, + "probability": 0.7688 + }, + { + "start": 4702.45, + "end": 4703.09, + "probability": 0.2553 + }, + { + "start": 4703.27, + "end": 4704.04, + "probability": 0.5961 + }, + { + "start": 4705.05, + "end": 4706.31, + "probability": 0.6765 + }, + { + "start": 4707.41, + "end": 4713.53, + "probability": 0.9789 + }, + { + "start": 4714.05, + "end": 4715.73, + "probability": 0.9815 + }, + { + "start": 4716.37, + "end": 4719.57, + "probability": 0.8895 + }, + { + "start": 4721.19, + "end": 4722.37, + "probability": 0.1335 + }, + { + "start": 4722.37, + "end": 4729.43, + "probability": 0.9557 + }, + { + "start": 4729.91, + "end": 4733.09, + "probability": 0.7783 + }, + { + "start": 4733.39, + "end": 4735.05, + "probability": 0.6755 + }, + { + "start": 4735.23, + "end": 4735.69, + "probability": 0.8725 + }, + { + "start": 4735.73, + "end": 4737.37, + "probability": 0.8697 + }, + { + "start": 4737.87, + "end": 4738.47, + "probability": 0.5121 + }, + { + "start": 4738.49, + "end": 4740.05, + "probability": 0.6542 + }, + { + "start": 4747.21, + "end": 4747.33, + "probability": 0.0193 + }, + { + "start": 4766.09, + "end": 4766.53, + "probability": 0.6916 + }, + { + "start": 4769.19, + "end": 4770.79, + "probability": 0.9917 + }, + { + "start": 4771.91, + "end": 4773.07, + "probability": 0.7527 + }, + { + "start": 4774.61, + "end": 4777.5, + "probability": 0.9831 + }, + { + "start": 4778.77, + "end": 4780.93, + "probability": 0.986 + }, + { + "start": 4780.93, + "end": 4783.59, + "probability": 0.9486 + }, + { + "start": 4785.27, + "end": 4787.39, + "probability": 0.932 + }, + { + "start": 4789.39, + "end": 4790.69, + "probability": 0.6829 + }, + { + "start": 4792.21, + "end": 4792.55, + "probability": 0.5508 + }, + { + "start": 4793.67, + "end": 4794.67, + "probability": 0.9256 + }, + { + "start": 4794.79, + "end": 4798.33, + "probability": 0.9868 + }, + { + "start": 4805.23, + "end": 4808.75, + "probability": 0.7821 + }, + { + "start": 4810.43, + "end": 4811.95, + "probability": 0.7375 + }, + { + "start": 4812.21, + "end": 4813.55, + "probability": 0.9492 + }, + { + "start": 4813.67, + "end": 4815.07, + "probability": 0.8905 + }, + { + "start": 4815.89, + "end": 4817.27, + "probability": 0.983 + }, + { + "start": 4817.83, + "end": 4818.71, + "probability": 0.7588 + }, + { + "start": 4820.65, + "end": 4823.07, + "probability": 0.941 + }, + { + "start": 4824.19, + "end": 4826.43, + "probability": 0.9914 + }, + { + "start": 4828.61, + "end": 4830.65, + "probability": 0.9658 + }, + { + "start": 4830.71, + "end": 4831.87, + "probability": 0.9949 + }, + { + "start": 4833.09, + "end": 4837.05, + "probability": 0.8636 + }, + { + "start": 4838.31, + "end": 4840.73, + "probability": 0.9896 + }, + { + "start": 4842.11, + "end": 4847.07, + "probability": 0.8711 + }, + { + "start": 4848.01, + "end": 4849.59, + "probability": 0.8954 + }, + { + "start": 4849.73, + "end": 4850.01, + "probability": 0.4287 + }, + { + "start": 4850.35, + "end": 4853.15, + "probability": 0.9941 + }, + { + "start": 4853.73, + "end": 4856.53, + "probability": 0.9603 + }, + { + "start": 4857.83, + "end": 4862.03, + "probability": 0.96 + }, + { + "start": 4863.15, + "end": 4863.47, + "probability": 0.7097 + }, + { + "start": 4864.29, + "end": 4868.51, + "probability": 0.9925 + }, + { + "start": 4868.57, + "end": 4869.45, + "probability": 0.4713 + }, + { + "start": 4870.05, + "end": 4873.47, + "probability": 0.8435 + }, + { + "start": 4874.93, + "end": 4876.37, + "probability": 0.8306 + }, + { + "start": 4876.97, + "end": 4878.89, + "probability": 0.9768 + }, + { + "start": 4879.69, + "end": 4881.19, + "probability": 0.9695 + }, + { + "start": 4882.35, + "end": 4885.86, + "probability": 0.9862 + }, + { + "start": 4886.33, + "end": 4887.67, + "probability": 0.9262 + }, + { + "start": 4887.75, + "end": 4890.53, + "probability": 0.9705 + }, + { + "start": 4891.31, + "end": 4894.43, + "probability": 0.9936 + }, + { + "start": 4895.55, + "end": 4898.38, + "probability": 0.9609 + }, + { + "start": 4899.27, + "end": 4902.23, + "probability": 0.7027 + }, + { + "start": 4904.01, + "end": 4907.31, + "probability": 0.8678 + }, + { + "start": 4908.45, + "end": 4910.27, + "probability": 0.6532 + }, + { + "start": 4911.03, + "end": 4913.95, + "probability": 0.8266 + }, + { + "start": 4914.91, + "end": 4917.95, + "probability": 0.9688 + }, + { + "start": 4918.57, + "end": 4919.51, + "probability": 0.8184 + }, + { + "start": 4919.61, + "end": 4920.25, + "probability": 0.8813 + }, + { + "start": 4920.99, + "end": 4922.63, + "probability": 0.9758 + }, + { + "start": 4923.59, + "end": 4924.65, + "probability": 0.9644 + }, + { + "start": 4925.65, + "end": 4926.87, + "probability": 0.8564 + }, + { + "start": 4926.95, + "end": 4927.95, + "probability": 0.9584 + }, + { + "start": 4928.11, + "end": 4931.87, + "probability": 0.915 + }, + { + "start": 4932.01, + "end": 4932.91, + "probability": 0.8787 + }, + { + "start": 4932.99, + "end": 4933.67, + "probability": 0.9342 + }, + { + "start": 4933.77, + "end": 4934.53, + "probability": 0.6511 + }, + { + "start": 4934.93, + "end": 4939.15, + "probability": 0.9753 + }, + { + "start": 4940.27, + "end": 4941.87, + "probability": 0.8432 + }, + { + "start": 4941.99, + "end": 4944.35, + "probability": 0.9057 + }, + { + "start": 4945.53, + "end": 4946.01, + "probability": 0.6384 + }, + { + "start": 4965.85, + "end": 4967.55, + "probability": 0.4883 + }, + { + "start": 4968.77, + "end": 4969.25, + "probability": 0.8395 + }, + { + "start": 4970.43, + "end": 4971.67, + "probability": 0.8928 + }, + { + "start": 4973.47, + "end": 4980.71, + "probability": 0.9511 + }, + { + "start": 4982.73, + "end": 4985.81, + "probability": 0.9708 + }, + { + "start": 4987.27, + "end": 4988.29, + "probability": 0.667 + }, + { + "start": 4991.71, + "end": 4994.87, + "probability": 0.996 + }, + { + "start": 4996.79, + "end": 5000.05, + "probability": 0.9878 + }, + { + "start": 5000.87, + "end": 5003.29, + "probability": 0.8568 + }, + { + "start": 5004.49, + "end": 5007.29, + "probability": 0.9004 + }, + { + "start": 5008.11, + "end": 5011.29, + "probability": 0.9473 + }, + { + "start": 5012.47, + "end": 5014.93, + "probability": 0.9065 + }, + { + "start": 5015.11, + "end": 5016.73, + "probability": 0.7279 + }, + { + "start": 5017.77, + "end": 5018.87, + "probability": 0.6314 + }, + { + "start": 5020.37, + "end": 5023.57, + "probability": 0.8188 + }, + { + "start": 5025.03, + "end": 5030.47, + "probability": 0.9506 + }, + { + "start": 5031.91, + "end": 5035.63, + "probability": 0.8677 + }, + { + "start": 5035.69, + "end": 5039.89, + "probability": 0.6938 + }, + { + "start": 5040.31, + "end": 5041.87, + "probability": 0.5838 + }, + { + "start": 5042.07, + "end": 5042.61, + "probability": 0.0802 + }, + { + "start": 5042.85, + "end": 5043.47, + "probability": 0.0057 + }, + { + "start": 5044.57, + "end": 5045.13, + "probability": 0.1114 + }, + { + "start": 5045.19, + "end": 5047.25, + "probability": 0.387 + }, + { + "start": 5047.33, + "end": 5048.35, + "probability": 0.249 + }, + { + "start": 5048.51, + "end": 5049.29, + "probability": 0.9277 + }, + { + "start": 5049.97, + "end": 5050.83, + "probability": 0.869 + }, + { + "start": 5051.84, + "end": 5055.19, + "probability": 0.5101 + }, + { + "start": 5055.71, + "end": 5057.41, + "probability": 0.8156 + }, + { + "start": 5057.81, + "end": 5064.61, + "probability": 0.9857 + }, + { + "start": 5065.29, + "end": 5066.91, + "probability": 0.8381 + }, + { + "start": 5067.51, + "end": 5069.55, + "probability": 0.7814 + }, + { + "start": 5070.35, + "end": 5076.0, + "probability": 0.7781 + }, + { + "start": 5077.05, + "end": 5079.15, + "probability": 0.6678 + }, + { + "start": 5079.95, + "end": 5081.09, + "probability": 0.7519 + }, + { + "start": 5081.69, + "end": 5084.29, + "probability": 0.7972 + }, + { + "start": 5084.69, + "end": 5085.37, + "probability": 0.7119 + }, + { + "start": 5085.89, + "end": 5086.99, + "probability": 0.731 + }, + { + "start": 5087.29, + "end": 5090.15, + "probability": 0.676 + }, + { + "start": 5091.13, + "end": 5094.13, + "probability": 0.4789 + }, + { + "start": 5095.11, + "end": 5096.53, + "probability": 0.6312 + }, + { + "start": 5096.77, + "end": 5097.89, + "probability": 0.8236 + }, + { + "start": 5098.55, + "end": 5101.61, + "probability": 0.6615 + }, + { + "start": 5101.71, + "end": 5106.91, + "probability": 0.8121 + }, + { + "start": 5107.13, + "end": 5109.89, + "probability": 0.602 + }, + { + "start": 5110.51, + "end": 5111.87, + "probability": 0.7105 + }, + { + "start": 5111.87, + "end": 5112.43, + "probability": 0.491 + }, + { + "start": 5112.43, + "end": 5112.45, + "probability": 0.5177 + }, + { + "start": 5112.45, + "end": 5114.57, + "probability": 0.6484 + }, + { + "start": 5114.69, + "end": 5115.35, + "probability": 0.6286 + }, + { + "start": 5115.47, + "end": 5116.39, + "probability": 0.7316 + }, + { + "start": 5116.83, + "end": 5123.41, + "probability": 0.9302 + }, + { + "start": 5123.59, + "end": 5124.65, + "probability": 0.9377 + }, + { + "start": 5124.99, + "end": 5128.55, + "probability": 0.9031 + }, + { + "start": 5129.11, + "end": 5134.93, + "probability": 0.8882 + }, + { + "start": 5135.63, + "end": 5137.05, + "probability": 0.666 + }, + { + "start": 5137.69, + "end": 5140.71, + "probability": 0.5265 + }, + { + "start": 5141.03, + "end": 5141.75, + "probability": 0.6014 + }, + { + "start": 5141.95, + "end": 5143.19, + "probability": 0.8074 + }, + { + "start": 5143.73, + "end": 5146.57, + "probability": 0.985 + }, + { + "start": 5147.71, + "end": 5148.91, + "probability": 0.6433 + }, + { + "start": 5149.43, + "end": 5150.85, + "probability": 0.6685 + }, + { + "start": 5151.63, + "end": 5153.17, + "probability": 0.5575 + }, + { + "start": 5153.99, + "end": 5155.21, + "probability": 0.8857 + }, + { + "start": 5155.53, + "end": 5157.75, + "probability": 0.7546 + }, + { + "start": 5158.15, + "end": 5159.05, + "probability": 0.9354 + }, + { + "start": 5159.59, + "end": 5161.51, + "probability": 0.9658 + }, + { + "start": 5162.45, + "end": 5166.45, + "probability": 0.9768 + }, + { + "start": 5167.29, + "end": 5172.83, + "probability": 0.9409 + }, + { + "start": 5173.65, + "end": 5174.83, + "probability": 0.8495 + }, + { + "start": 5175.63, + "end": 5181.95, + "probability": 0.9896 + }, + { + "start": 5182.03, + "end": 5189.03, + "probability": 0.9993 + }, + { + "start": 5189.55, + "end": 5193.63, + "probability": 0.9946 + }, + { + "start": 5194.03, + "end": 5197.61, + "probability": 0.988 + }, + { + "start": 5198.15, + "end": 5199.15, + "probability": 0.827 + }, + { + "start": 5199.87, + "end": 5204.33, + "probability": 0.9461 + }, + { + "start": 5205.27, + "end": 5207.15, + "probability": 0.9082 + }, + { + "start": 5207.49, + "end": 5213.99, + "probability": 0.9675 + }, + { + "start": 5214.73, + "end": 5215.76, + "probability": 0.7106 + }, + { + "start": 5215.89, + "end": 5217.49, + "probability": 0.7622 + }, + { + "start": 5217.53, + "end": 5219.13, + "probability": 0.8031 + }, + { + "start": 5219.21, + "end": 5220.67, + "probability": 0.8739 + }, + { + "start": 5220.87, + "end": 5222.65, + "probability": 0.7476 + }, + { + "start": 5223.25, + "end": 5224.86, + "probability": 0.5479 + }, + { + "start": 5225.97, + "end": 5229.31, + "probability": 0.9639 + }, + { + "start": 5229.39, + "end": 5230.21, + "probability": 0.5051 + }, + { + "start": 5230.27, + "end": 5231.61, + "probability": 0.9011 + }, + { + "start": 5231.65, + "end": 5233.43, + "probability": 0.7813 + }, + { + "start": 5233.69, + "end": 5235.13, + "probability": 0.9639 + }, + { + "start": 5235.35, + "end": 5236.73, + "probability": 0.8286 + }, + { + "start": 5236.83, + "end": 5239.43, + "probability": 0.6139 + }, + { + "start": 5246.69, + "end": 5246.69, + "probability": 0.018 + }, + { + "start": 5246.69, + "end": 5246.69, + "probability": 0.1526 + }, + { + "start": 5246.69, + "end": 5247.09, + "probability": 0.0373 + }, + { + "start": 5247.09, + "end": 5247.41, + "probability": 0.0174 + }, + { + "start": 5247.41, + "end": 5247.41, + "probability": 0.0238 + }, + { + "start": 5272.25, + "end": 5276.97, + "probability": 0.9517 + }, + { + "start": 5277.11, + "end": 5278.85, + "probability": 0.252 + }, + { + "start": 5279.59, + "end": 5282.33, + "probability": 0.8569 + }, + { + "start": 5282.75, + "end": 5288.87, + "probability": 0.8265 + }, + { + "start": 5289.21, + "end": 5290.58, + "probability": 0.8682 + }, + { + "start": 5291.09, + "end": 5293.72, + "probability": 0.9684 + }, + { + "start": 5293.81, + "end": 5296.35, + "probability": 0.743 + }, + { + "start": 5296.67, + "end": 5297.95, + "probability": 0.8269 + }, + { + "start": 5298.07, + "end": 5299.29, + "probability": 0.682 + }, + { + "start": 5299.61, + "end": 5301.21, + "probability": 0.7543 + }, + { + "start": 5301.63, + "end": 5302.43, + "probability": 0.8562 + }, + { + "start": 5302.71, + "end": 5303.13, + "probability": 0.2917 + }, + { + "start": 5303.21, + "end": 5303.73, + "probability": 0.8796 + }, + { + "start": 5304.05, + "end": 5304.55, + "probability": 0.6574 + }, + { + "start": 5304.89, + "end": 5306.55, + "probability": 0.6254 + }, + { + "start": 5306.55, + "end": 5308.73, + "probability": 0.8549 + }, + { + "start": 5308.99, + "end": 5310.51, + "probability": 0.7898 + }, + { + "start": 5310.61, + "end": 5311.83, + "probability": 0.6788 + }, + { + "start": 5312.11, + "end": 5313.77, + "probability": 0.2751 + }, + { + "start": 5313.93, + "end": 5317.05, + "probability": 0.8555 + }, + { + "start": 5317.05, + "end": 5319.71, + "probability": 0.999 + }, + { + "start": 5321.15, + "end": 5321.73, + "probability": 0.9204 + }, + { + "start": 5322.25, + "end": 5325.87, + "probability": 0.9911 + }, + { + "start": 5326.29, + "end": 5327.79, + "probability": 0.8398 + }, + { + "start": 5327.83, + "end": 5328.93, + "probability": 0.4126 + }, + { + "start": 5329.07, + "end": 5329.83, + "probability": 0.7681 + }, + { + "start": 5330.11, + "end": 5330.25, + "probability": 0.2404 + }, + { + "start": 5330.63, + "end": 5331.71, + "probability": 0.2476 + }, + { + "start": 5331.71, + "end": 5332.29, + "probability": 0.6692 + }, + { + "start": 5332.69, + "end": 5333.57, + "probability": 0.7827 + }, + { + "start": 5333.75, + "end": 5334.35, + "probability": 0.3587 + }, + { + "start": 5334.45, + "end": 5335.56, + "probability": 0.0235 + }, + { + "start": 5337.61, + "end": 5342.95, + "probability": 0.2416 + }, + { + "start": 5343.49, + "end": 5346.81, + "probability": 0.2453 + }, + { + "start": 5348.65, + "end": 5350.73, + "probability": 0.2575 + }, + { + "start": 5350.91, + "end": 5353.31, + "probability": 0.8468 + }, + { + "start": 5353.37, + "end": 5354.07, + "probability": 0.5912 + }, + { + "start": 5354.93, + "end": 5359.49, + "probability": 0.927 + }, + { + "start": 5360.98, + "end": 5367.15, + "probability": 0.67 + }, + { + "start": 5367.97, + "end": 5375.41, + "probability": 0.7552 + }, + { + "start": 5375.91, + "end": 5378.15, + "probability": 0.9717 + }, + { + "start": 5378.23, + "end": 5380.31, + "probability": 0.917 + }, + { + "start": 5380.63, + "end": 5382.73, + "probability": 0.8064 + }, + { + "start": 5383.01, + "end": 5384.19, + "probability": 0.9476 + }, + { + "start": 5384.53, + "end": 5387.09, + "probability": 0.6063 + }, + { + "start": 5387.43, + "end": 5391.83, + "probability": 0.9209 + }, + { + "start": 5392.27, + "end": 5396.45, + "probability": 0.9573 + }, + { + "start": 5396.45, + "end": 5400.11, + "probability": 0.7759 + }, + { + "start": 5400.21, + "end": 5403.79, + "probability": 0.8267 + }, + { + "start": 5404.03, + "end": 5405.01, + "probability": 0.7335 + }, + { + "start": 5405.09, + "end": 5406.29, + "probability": 0.8659 + }, + { + "start": 5406.55, + "end": 5411.35, + "probability": 0.9675 + }, + { + "start": 5411.67, + "end": 5412.73, + "probability": 0.3042 + }, + { + "start": 5414.73, + "end": 5414.73, + "probability": 0.1419 + }, + { + "start": 5414.73, + "end": 5415.25, + "probability": 0.4883 + }, + { + "start": 5415.33, + "end": 5418.19, + "probability": 0.4841 + }, + { + "start": 5418.19, + "end": 5418.51, + "probability": 0.8151 + }, + { + "start": 5418.69, + "end": 5420.73, + "probability": 0.917 + }, + { + "start": 5420.75, + "end": 5422.45, + "probability": 0.7678 + }, + { + "start": 5422.79, + "end": 5423.69, + "probability": 0.6674 + }, + { + "start": 5424.09, + "end": 5424.69, + "probability": 0.8855 + }, + { + "start": 5424.81, + "end": 5425.49, + "probability": 0.8093 + }, + { + "start": 5426.47, + "end": 5427.75, + "probability": 0.6325 + }, + { + "start": 5428.03, + "end": 5431.07, + "probability": 0.8616 + }, + { + "start": 5431.41, + "end": 5435.09, + "probability": 0.9654 + }, + { + "start": 5435.35, + "end": 5439.77, + "probability": 0.9902 + }, + { + "start": 5439.99, + "end": 5441.05, + "probability": 0.9882 + }, + { + "start": 5441.61, + "end": 5443.55, + "probability": 0.9771 + }, + { + "start": 5444.09, + "end": 5446.47, + "probability": 0.8189 + }, + { + "start": 5447.01, + "end": 5448.25, + "probability": 0.6863 + }, + { + "start": 5448.33, + "end": 5448.91, + "probability": 0.5836 + }, + { + "start": 5449.39, + "end": 5450.03, + "probability": 0.8588 + }, + { + "start": 5450.07, + "end": 5450.43, + "probability": 0.7963 + }, + { + "start": 5450.55, + "end": 5453.05, + "probability": 0.8987 + }, + { + "start": 5453.43, + "end": 5456.91, + "probability": 0.5469 + }, + { + "start": 5457.33, + "end": 5459.65, + "probability": 0.8971 + }, + { + "start": 5459.77, + "end": 5459.81, + "probability": 0.1727 + }, + { + "start": 5459.81, + "end": 5462.21, + "probability": 0.8531 + }, + { + "start": 5462.47, + "end": 5464.51, + "probability": 0.9447 + }, + { + "start": 5464.73, + "end": 5464.93, + "probability": 0.7119 + }, + { + "start": 5464.95, + "end": 5466.57, + "probability": 0.6737 + }, + { + "start": 5466.77, + "end": 5467.43, + "probability": 0.7067 + }, + { + "start": 5467.51, + "end": 5468.79, + "probability": 0.8934 + }, + { + "start": 5468.89, + "end": 5469.49, + "probability": 0.5188 + }, + { + "start": 5469.51, + "end": 5471.11, + "probability": 0.8166 + }, + { + "start": 5483.81, + "end": 5484.33, + "probability": 0.5081 + }, + { + "start": 5484.43, + "end": 5484.53, + "probability": 0.8632 + }, + { + "start": 5489.33, + "end": 5492.43, + "probability": 0.6925 + }, + { + "start": 5493.73, + "end": 5497.71, + "probability": 0.9375 + }, + { + "start": 5499.01, + "end": 5502.15, + "probability": 0.9948 + }, + { + "start": 5502.15, + "end": 5505.99, + "probability": 0.9584 + }, + { + "start": 5507.15, + "end": 5509.83, + "probability": 0.9649 + }, + { + "start": 5510.37, + "end": 5514.41, + "probability": 0.9845 + }, + { + "start": 5514.93, + "end": 5517.75, + "probability": 0.985 + }, + { + "start": 5518.01, + "end": 5519.63, + "probability": 0.9788 + }, + { + "start": 5520.09, + "end": 5521.75, + "probability": 0.9779 + }, + { + "start": 5521.99, + "end": 5522.95, + "probability": 0.6658 + }, + { + "start": 5523.59, + "end": 5525.85, + "probability": 0.9057 + }, + { + "start": 5526.47, + "end": 5531.61, + "probability": 0.9467 + }, + { + "start": 5532.11, + "end": 5533.59, + "probability": 0.9658 + }, + { + "start": 5533.75, + "end": 5534.27, + "probability": 0.9561 + }, + { + "start": 5534.43, + "end": 5535.41, + "probability": 0.7075 + }, + { + "start": 5536.11, + "end": 5540.65, + "probability": 0.9792 + }, + { + "start": 5541.03, + "end": 5542.67, + "probability": 0.9734 + }, + { + "start": 5543.19, + "end": 5548.6, + "probability": 0.9956 + }, + { + "start": 5548.63, + "end": 5554.25, + "probability": 0.9972 + }, + { + "start": 5555.11, + "end": 5558.15, + "probability": 0.9048 + }, + { + "start": 5558.37, + "end": 5560.63, + "probability": 0.8736 + }, + { + "start": 5561.25, + "end": 5564.67, + "probability": 0.8415 + }, + { + "start": 5564.97, + "end": 5566.49, + "probability": 0.8597 + }, + { + "start": 5566.59, + "end": 5567.69, + "probability": 0.7019 + }, + { + "start": 5567.75, + "end": 5568.93, + "probability": 0.9983 + }, + { + "start": 5569.71, + "end": 5576.43, + "probability": 0.9575 + }, + { + "start": 5577.01, + "end": 5580.37, + "probability": 0.7476 + }, + { + "start": 5581.11, + "end": 5585.57, + "probability": 0.8961 + }, + { + "start": 5586.69, + "end": 5590.77, + "probability": 0.9434 + }, + { + "start": 5591.25, + "end": 5595.23, + "probability": 0.9448 + }, + { + "start": 5596.13, + "end": 5599.63, + "probability": 0.9973 + }, + { + "start": 5600.25, + "end": 5602.33, + "probability": 0.9648 + }, + { + "start": 5602.81, + "end": 5604.07, + "probability": 0.9937 + }, + { + "start": 5604.47, + "end": 5605.81, + "probability": 0.9963 + }, + { + "start": 5606.31, + "end": 5610.37, + "probability": 0.9968 + }, + { + "start": 5610.79, + "end": 5612.91, + "probability": 0.9294 + }, + { + "start": 5613.23, + "end": 5614.17, + "probability": 0.9616 + }, + { + "start": 5614.53, + "end": 5618.29, + "probability": 0.995 + }, + { + "start": 5620.25, + "end": 5621.59, + "probability": 0.8966 + }, + { + "start": 5622.51, + "end": 5624.95, + "probability": 0.8804 + }, + { + "start": 5625.77, + "end": 5628.19, + "probability": 0.9429 + }, + { + "start": 5628.33, + "end": 5633.33, + "probability": 0.9756 + }, + { + "start": 5634.07, + "end": 5637.83, + "probability": 0.8698 + }, + { + "start": 5637.99, + "end": 5638.77, + "probability": 0.7612 + }, + { + "start": 5639.15, + "end": 5644.97, + "probability": 0.9894 + }, + { + "start": 5646.09, + "end": 5646.73, + "probability": 0.873 + }, + { + "start": 5648.13, + "end": 5651.31, + "probability": 0.7989 + }, + { + "start": 5652.23, + "end": 5657.77, + "probability": 0.9778 + }, + { + "start": 5658.27, + "end": 5662.55, + "probability": 0.9459 + }, + { + "start": 5664.65, + "end": 5665.55, + "probability": 0.8284 + }, + { + "start": 5665.73, + "end": 5666.25, + "probability": 0.8353 + }, + { + "start": 5666.35, + "end": 5668.71, + "probability": 0.9858 + }, + { + "start": 5669.09, + "end": 5672.25, + "probability": 0.9948 + }, + { + "start": 5672.43, + "end": 5673.73, + "probability": 0.9958 + }, + { + "start": 5673.85, + "end": 5674.59, + "probability": 0.5344 + }, + { + "start": 5674.71, + "end": 5675.33, + "probability": 0.3757 + }, + { + "start": 5675.33, + "end": 5675.33, + "probability": 0.728 + }, + { + "start": 5675.43, + "end": 5676.59, + "probability": 0.6943 + }, + { + "start": 5676.79, + "end": 5679.95, + "probability": 0.9812 + }, + { + "start": 5680.27, + "end": 5680.95, + "probability": 0.7728 + }, + { + "start": 5681.41, + "end": 5686.11, + "probability": 0.9887 + }, + { + "start": 5686.47, + "end": 5689.03, + "probability": 0.9829 + }, + { + "start": 5689.11, + "end": 5689.61, + "probability": 0.766 + }, + { + "start": 5689.77, + "end": 5691.13, + "probability": 0.7702 + }, + { + "start": 5691.35, + "end": 5693.83, + "probability": 0.6697 + }, + { + "start": 5695.21, + "end": 5697.75, + "probability": 0.7966 + }, + { + "start": 5705.95, + "end": 5707.79, + "probability": 0.5484 + }, + { + "start": 5710.63, + "end": 5712.35, + "probability": 0.8246 + }, + { + "start": 5715.83, + "end": 5716.85, + "probability": 0.7625 + }, + { + "start": 5717.37, + "end": 5717.57, + "probability": 0.8199 + }, + { + "start": 5719.69, + "end": 5720.97, + "probability": 0.9785 + }, + { + "start": 5722.63, + "end": 5724.25, + "probability": 0.8531 + }, + { + "start": 5725.79, + "end": 5727.11, + "probability": 0.9976 + }, + { + "start": 5728.57, + "end": 5733.33, + "probability": 0.9932 + }, + { + "start": 5735.07, + "end": 5737.19, + "probability": 0.8081 + }, + { + "start": 5738.61, + "end": 5738.95, + "probability": 0.9772 + }, + { + "start": 5741.69, + "end": 5745.23, + "probability": 0.9785 + }, + { + "start": 5746.27, + "end": 5751.17, + "probability": 0.9641 + }, + { + "start": 5752.49, + "end": 5753.37, + "probability": 0.8568 + }, + { + "start": 5754.91, + "end": 5760.37, + "probability": 0.8191 + }, + { + "start": 5762.01, + "end": 5764.31, + "probability": 0.9901 + }, + { + "start": 5765.61, + "end": 5766.81, + "probability": 0.8315 + }, + { + "start": 5770.41, + "end": 5772.59, + "probability": 0.7795 + }, + { + "start": 5774.71, + "end": 5775.45, + "probability": 0.922 + }, + { + "start": 5776.97, + "end": 5779.83, + "probability": 0.9866 + }, + { + "start": 5780.73, + "end": 5782.21, + "probability": 0.9465 + }, + { + "start": 5783.01, + "end": 5784.65, + "probability": 0.9005 + }, + { + "start": 5786.01, + "end": 5789.59, + "probability": 0.9635 + }, + { + "start": 5791.41, + "end": 5792.71, + "probability": 0.9958 + }, + { + "start": 5793.81, + "end": 5795.39, + "probability": 0.9143 + }, + { + "start": 5796.29, + "end": 5799.31, + "probability": 0.3518 + }, + { + "start": 5800.41, + "end": 5801.51, + "probability": 0.9731 + }, + { + "start": 5802.15, + "end": 5807.13, + "probability": 0.9646 + }, + { + "start": 5807.79, + "end": 5808.97, + "probability": 0.9656 + }, + { + "start": 5809.59, + "end": 5810.34, + "probability": 0.7594 + }, + { + "start": 5810.69, + "end": 5812.87, + "probability": 0.6905 + }, + { + "start": 5812.97, + "end": 5814.37, + "probability": 0.7544 + }, + { + "start": 5815.11, + "end": 5817.05, + "probability": 0.9989 + }, + { + "start": 5817.15, + "end": 5819.09, + "probability": 0.9174 + }, + { + "start": 5820.11, + "end": 5820.95, + "probability": 0.8021 + }, + { + "start": 5821.77, + "end": 5826.15, + "probability": 0.9907 + }, + { + "start": 5826.23, + "end": 5827.49, + "probability": 0.77 + }, + { + "start": 5827.95, + "end": 5830.35, + "probability": 0.9902 + }, + { + "start": 5834.73, + "end": 5840.81, + "probability": 0.9906 + }, + { + "start": 5841.45, + "end": 5843.07, + "probability": 0.9807 + }, + { + "start": 5843.59, + "end": 5846.81, + "probability": 0.9751 + }, + { + "start": 5847.39, + "end": 5849.65, + "probability": 0.9866 + }, + { + "start": 5853.25, + "end": 5854.01, + "probability": 0.9124 + }, + { + "start": 5855.13, + "end": 5856.23, + "probability": 0.9976 + }, + { + "start": 5857.05, + "end": 5858.31, + "probability": 0.9644 + }, + { + "start": 5859.19, + "end": 5860.49, + "probability": 0.8246 + }, + { + "start": 5861.15, + "end": 5864.99, + "probability": 0.9016 + }, + { + "start": 5866.55, + "end": 5869.17, + "probability": 0.8414 + }, + { + "start": 5869.83, + "end": 5871.07, + "probability": 0.7142 + }, + { + "start": 5871.95, + "end": 5874.01, + "probability": 0.7815 + }, + { + "start": 5874.11, + "end": 5875.51, + "probability": 0.8704 + }, + { + "start": 5876.83, + "end": 5878.63, + "probability": 0.968 + }, + { + "start": 5879.27, + "end": 5882.17, + "probability": 0.9819 + }, + { + "start": 5882.37, + "end": 5888.01, + "probability": 0.9556 + }, + { + "start": 5889.37, + "end": 5890.59, + "probability": 0.7887 + }, + { + "start": 5891.73, + "end": 5893.81, + "probability": 0.9727 + }, + { + "start": 5894.35, + "end": 5895.45, + "probability": 0.9575 + }, + { + "start": 5895.91, + "end": 5897.37, + "probability": 0.964 + }, + { + "start": 5897.99, + "end": 5901.45, + "probability": 0.941 + }, + { + "start": 5902.11, + "end": 5903.13, + "probability": 0.7259 + }, + { + "start": 5903.91, + "end": 5907.45, + "probability": 0.9849 + }, + { + "start": 5907.53, + "end": 5908.67, + "probability": 0.8921 + }, + { + "start": 5908.81, + "end": 5910.21, + "probability": 0.6902 + }, + { + "start": 5910.33, + "end": 5913.13, + "probability": 0.9497 + }, + { + "start": 5913.41, + "end": 5915.15, + "probability": 0.5011 + }, + { + "start": 5915.19, + "end": 5915.27, + "probability": 0.053 + }, + { + "start": 5915.27, + "end": 5918.75, + "probability": 0.873 + }, + { + "start": 5918.81, + "end": 5919.23, + "probability": 0.9638 + }, + { + "start": 5919.39, + "end": 5921.05, + "probability": 0.838 + }, + { + "start": 5921.43, + "end": 5922.01, + "probability": 0.7807 + }, + { + "start": 5922.07, + "end": 5923.57, + "probability": 0.963 + }, + { + "start": 5923.93, + "end": 5926.89, + "probability": 0.5206 + }, + { + "start": 5926.95, + "end": 5928.57, + "probability": 0.9729 + }, + { + "start": 5931.71, + "end": 5931.75, + "probability": 0.0152 + }, + { + "start": 5950.39, + "end": 5952.41, + "probability": 0.1882 + }, + { + "start": 5952.41, + "end": 5956.97, + "probability": 0.7821 + }, + { + "start": 5957.67, + "end": 5961.93, + "probability": 0.9846 + }, + { + "start": 5962.59, + "end": 5966.51, + "probability": 0.1313 + }, + { + "start": 5966.71, + "end": 5968.69, + "probability": 0.7987 + }, + { + "start": 5969.13, + "end": 5969.15, + "probability": 0.2121 + }, + { + "start": 5969.25, + "end": 5969.25, + "probability": 0.2319 + }, + { + "start": 5969.29, + "end": 5972.3, + "probability": 0.9922 + }, + { + "start": 5972.85, + "end": 5976.03, + "probability": 0.9835 + }, + { + "start": 5976.79, + "end": 5980.97, + "probability": 0.7219 + }, + { + "start": 5981.87, + "end": 5983.45, + "probability": 0.9685 + }, + { + "start": 5983.53, + "end": 5984.03, + "probability": 0.8763 + }, + { + "start": 5984.09, + "end": 5985.39, + "probability": 0.8694 + }, + { + "start": 5985.75, + "end": 5986.23, + "probability": 0.8314 + }, + { + "start": 5986.35, + "end": 5989.65, + "probability": 0.9316 + }, + { + "start": 5990.21, + "end": 5991.33, + "probability": 0.9961 + }, + { + "start": 5991.51, + "end": 5992.13, + "probability": 0.5706 + }, + { + "start": 5992.56, + "end": 5994.43, + "probability": 0.5844 + }, + { + "start": 5994.51, + "end": 5994.77, + "probability": 0.446 + }, + { + "start": 5994.79, + "end": 5995.05, + "probability": 0.8535 + }, + { + "start": 5995.13, + "end": 5995.83, + "probability": 0.6743 + }, + { + "start": 5996.97, + "end": 5998.66, + "probability": 0.7267 + }, + { + "start": 5999.37, + "end": 6002.41, + "probability": 0.9692 + }, + { + "start": 6002.57, + "end": 6002.91, + "probability": 0.8959 + }, + { + "start": 6003.01, + "end": 6006.25, + "probability": 0.8984 + }, + { + "start": 6007.17, + "end": 6011.41, + "probability": 0.9835 + }, + { + "start": 6011.49, + "end": 6012.48, + "probability": 0.9238 + }, + { + "start": 6013.27, + "end": 6017.55, + "probability": 0.5068 + }, + { + "start": 6017.75, + "end": 6019.77, + "probability": 0.7941 + }, + { + "start": 6020.39, + "end": 6022.57, + "probability": 0.8359 + }, + { + "start": 6023.51, + "end": 6025.17, + "probability": 0.2795 + }, + { + "start": 6025.81, + "end": 6033.23, + "probability": 0.9128 + }, + { + "start": 6034.31, + "end": 6038.75, + "probability": 0.8967 + }, + { + "start": 6039.31, + "end": 6043.9, + "probability": 0.9231 + }, + { + "start": 6044.17, + "end": 6046.47, + "probability": 0.8901 + }, + { + "start": 6046.71, + "end": 6047.37, + "probability": 0.8456 + }, + { + "start": 6047.43, + "end": 6052.13, + "probability": 0.9968 + }, + { + "start": 6052.13, + "end": 6055.99, + "probability": 0.9371 + }, + { + "start": 6056.31, + "end": 6058.15, + "probability": 0.9639 + }, + { + "start": 6058.37, + "end": 6059.53, + "probability": 0.5526 + }, + { + "start": 6059.59, + "end": 6060.19, + "probability": 0.8625 + }, + { + "start": 6060.29, + "end": 6062.33, + "probability": 0.9855 + }, + { + "start": 6062.81, + "end": 6063.49, + "probability": 0.8669 + }, + { + "start": 6063.61, + "end": 6065.83, + "probability": 0.2846 + }, + { + "start": 6066.05, + "end": 6066.65, + "probability": 0.3398 + }, + { + "start": 6067.73, + "end": 6071.23, + "probability": 0.9448 + }, + { + "start": 6071.25, + "end": 6074.45, + "probability": 0.9919 + }, + { + "start": 6074.45, + "end": 6077.91, + "probability": 0.7561 + }, + { + "start": 6079.19, + "end": 6082.25, + "probability": 0.9374 + }, + { + "start": 6082.99, + "end": 6085.03, + "probability": 0.9984 + }, + { + "start": 6085.03, + "end": 6089.19, + "probability": 0.9978 + }, + { + "start": 6089.45, + "end": 6090.29, + "probability": 0.9128 + }, + { + "start": 6090.83, + "end": 6091.59, + "probability": 0.5319 + }, + { + "start": 6092.39, + "end": 6095.45, + "probability": 0.9895 + }, + { + "start": 6096.11, + "end": 6100.31, + "probability": 0.9398 + }, + { + "start": 6100.51, + "end": 6103.33, + "probability": 0.9969 + }, + { + "start": 6103.75, + "end": 6107.45, + "probability": 0.9893 + }, + { + "start": 6107.95, + "end": 6107.95, + "probability": 0.391 + }, + { + "start": 6108.51, + "end": 6110.0, + "probability": 0.4785 + }, + { + "start": 6110.41, + "end": 6112.35, + "probability": 0.8907 + }, + { + "start": 6114.61, + "end": 6116.81, + "probability": 0.589 + }, + { + "start": 6117.01, + "end": 6118.08, + "probability": 0.4031 + }, + { + "start": 6118.49, + "end": 6120.31, + "probability": 0.9526 + }, + { + "start": 6120.75, + "end": 6121.97, + "probability": 0.802 + }, + { + "start": 6122.49, + "end": 6124.41, + "probability": 0.9846 + }, + { + "start": 6124.47, + "end": 6126.83, + "probability": 0.9884 + }, + { + "start": 6126.95, + "end": 6130.89, + "probability": 0.9712 + }, + { + "start": 6130.97, + "end": 6135.41, + "probability": 0.9959 + }, + { + "start": 6135.41, + "end": 6139.63, + "probability": 0.9914 + }, + { + "start": 6139.77, + "end": 6143.67, + "probability": 0.4556 + }, + { + "start": 6143.67, + "end": 6145.35, + "probability": 0.7222 + }, + { + "start": 6145.79, + "end": 6147.89, + "probability": 0.9357 + }, + { + "start": 6147.97, + "end": 6149.81, + "probability": 0.9264 + }, + { + "start": 6149.85, + "end": 6150.47, + "probability": 0.6549 + }, + { + "start": 6150.95, + "end": 6151.79, + "probability": 0.9441 + }, + { + "start": 6152.09, + "end": 6153.07, + "probability": 0.7644 + }, + { + "start": 6153.51, + "end": 6154.61, + "probability": 0.4693 + }, + { + "start": 6155.17, + "end": 6155.31, + "probability": 0.019 + }, + { + "start": 6155.31, + "end": 6157.34, + "probability": 0.6082 + }, + { + "start": 6158.45, + "end": 6161.29, + "probability": 0.8831 + }, + { + "start": 6162.55, + "end": 6167.51, + "probability": 0.9079 + }, + { + "start": 6168.97, + "end": 6170.61, + "probability": 0.8723 + }, + { + "start": 6171.09, + "end": 6173.57, + "probability": 0.6341 + }, + { + "start": 6174.15, + "end": 6175.71, + "probability": 0.7038 + }, + { + "start": 6175.71, + "end": 6177.31, + "probability": 0.3568 + }, + { + "start": 6178.13, + "end": 6181.41, + "probability": 0.9773 + }, + { + "start": 6182.11, + "end": 6184.39, + "probability": 0.9349 + }, + { + "start": 6185.17, + "end": 6187.85, + "probability": 0.9551 + }, + { + "start": 6188.17, + "end": 6188.91, + "probability": 0.9443 + }, + { + "start": 6190.09, + "end": 6195.15, + "probability": 0.8322 + }, + { + "start": 6196.39, + "end": 6202.49, + "probability": 0.9761 + }, + { + "start": 6202.91, + "end": 6205.39, + "probability": 0.9815 + }, + { + "start": 6205.79, + "end": 6212.57, + "probability": 0.959 + }, + { + "start": 6213.39, + "end": 6217.89, + "probability": 0.9954 + }, + { + "start": 6219.05, + "end": 6221.79, + "probability": 0.9411 + }, + { + "start": 6222.57, + "end": 6225.49, + "probability": 0.9809 + }, + { + "start": 6225.63, + "end": 6226.91, + "probability": 0.9248 + }, + { + "start": 6226.95, + "end": 6229.17, + "probability": 0.9966 + }, + { + "start": 6229.87, + "end": 6231.73, + "probability": 0.7038 + }, + { + "start": 6232.69, + "end": 6233.77, + "probability": 0.8446 + }, + { + "start": 6233.87, + "end": 6234.71, + "probability": 0.8797 + }, + { + "start": 6234.89, + "end": 6237.49, + "probability": 0.9829 + }, + { + "start": 6238.33, + "end": 6241.09, + "probability": 0.993 + }, + { + "start": 6241.35, + "end": 6242.53, + "probability": 0.9607 + }, + { + "start": 6242.63, + "end": 6243.83, + "probability": 0.9004 + }, + { + "start": 6244.01, + "end": 6246.67, + "probability": 0.9056 + }, + { + "start": 6247.39, + "end": 6251.63, + "probability": 0.9954 + }, + { + "start": 6251.73, + "end": 6257.55, + "probability": 0.985 + }, + { + "start": 6258.55, + "end": 6259.63, + "probability": 0.7499 + }, + { + "start": 6260.31, + "end": 6261.43, + "probability": 0.9225 + }, + { + "start": 6262.23, + "end": 6264.81, + "probability": 0.8649 + }, + { + "start": 6265.65, + "end": 6267.08, + "probability": 0.6003 + }, + { + "start": 6267.41, + "end": 6269.87, + "probability": 0.575 + }, + { + "start": 6269.87, + "end": 6270.73, + "probability": 0.2591 + }, + { + "start": 6271.83, + "end": 6273.47, + "probability": 0.7991 + }, + { + "start": 6274.23, + "end": 6275.75, + "probability": 0.8857 + }, + { + "start": 6276.53, + "end": 6277.49, + "probability": 0.6025 + }, + { + "start": 6277.51, + "end": 6279.13, + "probability": 0.7764 + }, + { + "start": 6279.15, + "end": 6285.57, + "probability": 0.8789 + }, + { + "start": 6286.19, + "end": 6288.58, + "probability": 0.9985 + }, + { + "start": 6289.21, + "end": 6291.95, + "probability": 0.6768 + }, + { + "start": 6292.81, + "end": 6292.89, + "probability": 0.2785 + }, + { + "start": 6292.89, + "end": 6295.33, + "probability": 0.9495 + }, + { + "start": 6295.33, + "end": 6297.11, + "probability": 0.0078 + }, + { + "start": 6297.29, + "end": 6297.53, + "probability": 0.0195 + }, + { + "start": 6297.77, + "end": 6298.95, + "probability": 0.6111 + }, + { + "start": 6299.29, + "end": 6304.67, + "probability": 0.9719 + }, + { + "start": 6304.93, + "end": 6306.91, + "probability": 0.1068 + }, + { + "start": 6306.93, + "end": 6309.15, + "probability": 0.8979 + }, + { + "start": 6310.37, + "end": 6315.55, + "probability": 0.9562 + }, + { + "start": 6316.31, + "end": 6318.51, + "probability": 0.7887 + }, + { + "start": 6319.75, + "end": 6324.07, + "probability": 0.983 + }, + { + "start": 6324.63, + "end": 6327.47, + "probability": 0.9462 + }, + { + "start": 6328.23, + "end": 6332.21, + "probability": 0.8313 + }, + { + "start": 6332.21, + "end": 6337.13, + "probability": 0.9492 + }, + { + "start": 6337.77, + "end": 6337.77, + "probability": 0.0198 + }, + { + "start": 6337.77, + "end": 6342.67, + "probability": 0.9974 + }, + { + "start": 6343.03, + "end": 6344.49, + "probability": 0.1241 + }, + { + "start": 6344.49, + "end": 6346.57, + "probability": 0.0665 + }, + { + "start": 6346.89, + "end": 6348.63, + "probability": 0.6235 + }, + { + "start": 6349.01, + "end": 6355.05, + "probability": 0.9733 + }, + { + "start": 6355.27, + "end": 6357.71, + "probability": 0.6424 + }, + { + "start": 6358.15, + "end": 6359.13, + "probability": 0.007 + }, + { + "start": 6359.13, + "end": 6360.13, + "probability": 0.7248 + }, + { + "start": 6361.27, + "end": 6362.11, + "probability": 0.5512 + }, + { + "start": 6362.11, + "end": 6366.79, + "probability": 0.6374 + }, + { + "start": 6367.27, + "end": 6367.71, + "probability": 0.1357 + }, + { + "start": 6367.71, + "end": 6367.71, + "probability": 0.4181 + }, + { + "start": 6367.71, + "end": 6369.39, + "probability": 0.1074 + }, + { + "start": 6369.39, + "end": 6371.07, + "probability": 0.3809 + }, + { + "start": 6371.91, + "end": 6376.21, + "probability": 0.9908 + }, + { + "start": 6376.37, + "end": 6377.07, + "probability": 0.7113 + }, + { + "start": 6377.07, + "end": 6377.41, + "probability": 0.793 + }, + { + "start": 6377.65, + "end": 6378.97, + "probability": 0.6297 + }, + { + "start": 6378.99, + "end": 6381.21, + "probability": 0.0964 + }, + { + "start": 6381.21, + "end": 6381.73, + "probability": 0.3783 + }, + { + "start": 6381.83, + "end": 6384.85, + "probability": 0.8444 + }, + { + "start": 6384.85, + "end": 6385.49, + "probability": 0.8285 + }, + { + "start": 6395.49, + "end": 6398.89, + "probability": 0.5043 + }, + { + "start": 6399.17, + "end": 6399.17, + "probability": 0.535 + }, + { + "start": 6399.17, + "end": 6400.09, + "probability": 0.6289 + }, + { + "start": 6400.49, + "end": 6406.13, + "probability": 0.9583 + }, + { + "start": 6406.13, + "end": 6413.41, + "probability": 0.9902 + }, + { + "start": 6414.61, + "end": 6419.25, + "probability": 0.981 + }, + { + "start": 6420.07, + "end": 6421.57, + "probability": 0.5552 + }, + { + "start": 6421.79, + "end": 6422.91, + "probability": 0.8379 + }, + { + "start": 6423.03, + "end": 6425.39, + "probability": 0.9689 + }, + { + "start": 6425.81, + "end": 6426.77, + "probability": 0.9423 + }, + { + "start": 6426.87, + "end": 6428.09, + "probability": 0.8948 + }, + { + "start": 6428.51, + "end": 6432.69, + "probability": 0.9946 + }, + { + "start": 6433.37, + "end": 6434.57, + "probability": 0.6121 + }, + { + "start": 6434.73, + "end": 6435.86, + "probability": 0.8363 + }, + { + "start": 6436.33, + "end": 6437.45, + "probability": 0.7661 + }, + { + "start": 6437.51, + "end": 6438.59, + "probability": 0.8699 + }, + { + "start": 6439.07, + "end": 6439.29, + "probability": 0.0181 + }, + { + "start": 6439.29, + "end": 6440.37, + "probability": 0.9432 + }, + { + "start": 6441.19, + "end": 6445.13, + "probability": 0.9433 + }, + { + "start": 6445.39, + "end": 6446.79, + "probability": 0.9625 + }, + { + "start": 6446.91, + "end": 6453.17, + "probability": 0.9574 + }, + { + "start": 6453.37, + "end": 6454.75, + "probability": 0.8523 + }, + { + "start": 6455.15, + "end": 6456.69, + "probability": 0.9727 + }, + { + "start": 6457.13, + "end": 6458.84, + "probability": 0.9587 + }, + { + "start": 6459.11, + "end": 6461.05, + "probability": 0.9488 + }, + { + "start": 6461.17, + "end": 6461.75, + "probability": 0.9403 + }, + { + "start": 6461.87, + "end": 6462.81, + "probability": 0.8116 + }, + { + "start": 6462.93, + "end": 6464.89, + "probability": 0.969 + }, + { + "start": 6465.43, + "end": 6467.49, + "probability": 0.9987 + }, + { + "start": 6467.97, + "end": 6470.52, + "probability": 0.9924 + }, + { + "start": 6471.11, + "end": 6471.77, + "probability": 0.9154 + }, + { + "start": 6471.89, + "end": 6472.05, + "probability": 0.8386 + }, + { + "start": 6472.09, + "end": 6473.41, + "probability": 0.9142 + }, + { + "start": 6473.41, + "end": 6475.43, + "probability": 0.9862 + }, + { + "start": 6475.79, + "end": 6476.95, + "probability": 0.8447 + }, + { + "start": 6477.35, + "end": 6480.25, + "probability": 0.8759 + }, + { + "start": 6480.33, + "end": 6482.37, + "probability": 0.9981 + }, + { + "start": 6483.07, + "end": 6484.67, + "probability": 0.9425 + }, + { + "start": 6485.11, + "end": 6486.93, + "probability": 0.936 + }, + { + "start": 6487.35, + "end": 6492.39, + "probability": 0.9378 + }, + { + "start": 6493.13, + "end": 6497.75, + "probability": 0.9312 + }, + { + "start": 6498.21, + "end": 6498.95, + "probability": 0.6813 + }, + { + "start": 6498.95, + "end": 6499.61, + "probability": 0.2965 + }, + { + "start": 6499.61, + "end": 6500.71, + "probability": 0.6623 + }, + { + "start": 6500.81, + "end": 6500.81, + "probability": 0.6593 + }, + { + "start": 6500.85, + "end": 6501.73, + "probability": 0.4699 + }, + { + "start": 6501.99, + "end": 6503.75, + "probability": 0.2487 + }, + { + "start": 6504.45, + "end": 6507.01, + "probability": 0.2794 + }, + { + "start": 6508.15, + "end": 6508.15, + "probability": 0.1871 + }, + { + "start": 6508.15, + "end": 6508.63, + "probability": 0.033 + }, + { + "start": 6508.63, + "end": 6508.63, + "probability": 0.0526 + }, + { + "start": 6508.63, + "end": 6509.49, + "probability": 0.719 + }, + { + "start": 6510.13, + "end": 6512.71, + "probability": 0.9829 + }, + { + "start": 6512.99, + "end": 6514.55, + "probability": 0.7929 + }, + { + "start": 6514.79, + "end": 6516.53, + "probability": 0.5412 + }, + { + "start": 6516.53, + "end": 6517.05, + "probability": 0.7546 + }, + { + "start": 6517.09, + "end": 6518.15, + "probability": 0.809 + }, + { + "start": 6518.33, + "end": 6519.71, + "probability": 0.8087 + }, + { + "start": 6519.85, + "end": 6522.03, + "probability": 0.9659 + }, + { + "start": 6522.35, + "end": 6525.31, + "probability": 0.9842 + }, + { + "start": 6525.61, + "end": 6526.03, + "probability": 0.6732 + }, + { + "start": 6526.11, + "end": 6528.03, + "probability": 0.9043 + }, + { + "start": 6528.37, + "end": 6529.27, + "probability": 0.9643 + }, + { + "start": 6529.69, + "end": 6533.67, + "probability": 0.4508 + }, + { + "start": 6533.69, + "end": 6534.23, + "probability": 0.0462 + }, + { + "start": 6534.47, + "end": 6535.81, + "probability": 0.0064 + }, + { + "start": 6537.19, + "end": 6539.43, + "probability": 0.0622 + }, + { + "start": 6539.43, + "end": 6540.93, + "probability": 0.1653 + }, + { + "start": 6541.11, + "end": 6544.45, + "probability": 0.286 + }, + { + "start": 6547.03, + "end": 6548.43, + "probability": 0.2103 + }, + { + "start": 6548.43, + "end": 6548.43, + "probability": 0.0253 + }, + { + "start": 6548.43, + "end": 6548.43, + "probability": 0.0086 + }, + { + "start": 6548.43, + "end": 6549.41, + "probability": 0.1402 + }, + { + "start": 6549.41, + "end": 6550.11, + "probability": 0.7453 + }, + { + "start": 6550.65, + "end": 6551.73, + "probability": 0.8972 + }, + { + "start": 6552.55, + "end": 6558.45, + "probability": 0.4317 + }, + { + "start": 6558.45, + "end": 6558.45, + "probability": 0.489 + }, + { + "start": 6558.45, + "end": 6559.81, + "probability": 0.6401 + }, + { + "start": 6560.49, + "end": 6560.49, + "probability": 0.3091 + }, + { + "start": 6560.49, + "end": 6564.67, + "probability": 0.8093 + }, + { + "start": 6566.23, + "end": 6571.89, + "probability": 0.5797 + }, + { + "start": 6573.69, + "end": 6574.25, + "probability": 0.0827 + }, + { + "start": 6574.25, + "end": 6574.25, + "probability": 0.0549 + }, + { + "start": 6574.25, + "end": 6574.25, + "probability": 0.1061 + }, + { + "start": 6574.25, + "end": 6575.07, + "probability": 0.3658 + }, + { + "start": 6575.45, + "end": 6575.45, + "probability": 0.1054 + }, + { + "start": 6575.45, + "end": 6576.34, + "probability": 0.1403 + }, + { + "start": 6577.67, + "end": 6580.91, + "probability": 0.0463 + }, + { + "start": 6583.97, + "end": 6584.53, + "probability": 0.0357 + }, + { + "start": 6584.53, + "end": 6584.53, + "probability": 0.0192 + }, + { + "start": 6584.53, + "end": 6584.65, + "probability": 0.0671 + }, + { + "start": 6584.65, + "end": 6584.87, + "probability": 0.2017 + }, + { + "start": 6584.87, + "end": 6584.87, + "probability": 0.0594 + }, + { + "start": 6584.87, + "end": 6585.71, + "probability": 0.4078 + }, + { + "start": 6586.07, + "end": 6587.47, + "probability": 0.5847 + }, + { + "start": 6587.89, + "end": 6589.55, + "probability": 0.2045 + }, + { + "start": 6591.71, + "end": 6591.71, + "probability": 0.0 + }, + { + "start": 6591.71, + "end": 6591.71, + "probability": 0.0391 + }, + { + "start": 6591.71, + "end": 6591.71, + "probability": 0.0809 + }, + { + "start": 6591.71, + "end": 6592.63, + "probability": 0.4968 + }, + { + "start": 6593.43, + "end": 6594.48, + "probability": 0.817 + }, + { + "start": 6594.55, + "end": 6596.38, + "probability": 0.9381 + }, + { + "start": 6598.57, + "end": 6601.07, + "probability": 0.0354 + }, + { + "start": 6601.07, + "end": 6603.23, + "probability": 0.5757 + }, + { + "start": 6603.31, + "end": 6606.47, + "probability": 0.7886 + }, + { + "start": 6606.83, + "end": 6608.38, + "probability": 0.7252 + }, + { + "start": 6608.85, + "end": 6610.4, + "probability": 0.9907 + }, + { + "start": 6610.77, + "end": 6613.41, + "probability": 0.9806 + }, + { + "start": 6613.91, + "end": 6615.15, + "probability": 0.8688 + }, + { + "start": 6615.33, + "end": 6616.31, + "probability": 0.867 + }, + { + "start": 6616.69, + "end": 6616.83, + "probability": 0.1586 + }, + { + "start": 6616.83, + "end": 6618.69, + "probability": 0.831 + }, + { + "start": 6618.69, + "end": 6622.99, + "probability": 0.8556 + }, + { + "start": 6623.11, + "end": 6623.21, + "probability": 0.2822 + }, + { + "start": 6623.21, + "end": 6623.21, + "probability": 0.0904 + }, + { + "start": 6623.21, + "end": 6624.49, + "probability": 0.2461 + }, + { + "start": 6624.85, + "end": 6626.97, + "probability": 0.9843 + }, + { + "start": 6627.63, + "end": 6631.1, + "probability": 0.8367 + }, + { + "start": 6631.81, + "end": 6632.17, + "probability": 0.1606 + }, + { + "start": 6632.17, + "end": 6632.17, + "probability": 0.0235 + }, + { + "start": 6632.17, + "end": 6632.87, + "probability": 0.6263 + }, + { + "start": 6632.95, + "end": 6635.95, + "probability": 0.9409 + }, + { + "start": 6636.05, + "end": 6638.95, + "probability": 0.7733 + }, + { + "start": 6639.49, + "end": 6639.49, + "probability": 0.0768 + }, + { + "start": 6639.49, + "end": 6641.75, + "probability": 0.8216 + }, + { + "start": 6642.39, + "end": 6643.11, + "probability": 0.5619 + }, + { + "start": 6643.21, + "end": 6646.77, + "probability": 0.9683 + }, + { + "start": 6647.44, + "end": 6648.77, + "probability": 0.0214 + }, + { + "start": 6648.77, + "end": 6649.67, + "probability": 0.6432 + }, + { + "start": 6649.85, + "end": 6650.67, + "probability": 0.6209 + }, + { + "start": 6650.85, + "end": 6650.95, + "probability": 0.6033 + }, + { + "start": 6650.95, + "end": 6651.23, + "probability": 0.3876 + }, + { + "start": 6651.25, + "end": 6651.75, + "probability": 0.3622 + }, + { + "start": 6651.75, + "end": 6653.01, + "probability": 0.9319 + }, + { + "start": 6653.09, + "end": 6653.29, + "probability": 0.4086 + }, + { + "start": 6653.33, + "end": 6654.71, + "probability": 0.9725 + }, + { + "start": 6654.95, + "end": 6657.29, + "probability": 0.6488 + }, + { + "start": 6658.87, + "end": 6659.43, + "probability": 0.5195 + }, + { + "start": 6660.23, + "end": 6660.99, + "probability": 0.1242 + }, + { + "start": 6660.99, + "end": 6660.99, + "probability": 0.1531 + }, + { + "start": 6660.99, + "end": 6664.59, + "probability": 0.4949 + }, + { + "start": 6665.17, + "end": 6669.51, + "probability": 0.9039 + }, + { + "start": 6671.03, + "end": 6671.41, + "probability": 0.3222 + }, + { + "start": 6671.99, + "end": 6676.29, + "probability": 0.5815 + }, + { + "start": 6676.83, + "end": 6677.69, + "probability": 0.6788 + }, + { + "start": 6678.35, + "end": 6678.67, + "probability": 0.0414 + }, + { + "start": 6678.67, + "end": 6679.29, + "probability": 0.4811 + }, + { + "start": 6679.77, + "end": 6682.25, + "probability": 0.9492 + }, + { + "start": 6682.29, + "end": 6682.71, + "probability": 0.9055 + }, + { + "start": 6682.95, + "end": 6684.23, + "probability": 0.8855 + }, + { + "start": 6684.23, + "end": 6685.51, + "probability": 0.438 + }, + { + "start": 6685.81, + "end": 6689.53, + "probability": 0.9355 + }, + { + "start": 6689.75, + "end": 6690.97, + "probability": 0.9082 + }, + { + "start": 6691.47, + "end": 6693.99, + "probability": 0.9961 + }, + { + "start": 6694.29, + "end": 6696.55, + "probability": 0.9914 + }, + { + "start": 6697.05, + "end": 6697.11, + "probability": 0.1001 + }, + { + "start": 6697.11, + "end": 6698.35, + "probability": 0.5208 + }, + { + "start": 6698.71, + "end": 6699.15, + "probability": 0.3247 + }, + { + "start": 6699.65, + "end": 6700.63, + "probability": 0.9585 + }, + { + "start": 6701.35, + "end": 6704.49, + "probability": 0.7619 + }, + { + "start": 6704.49, + "end": 6704.89, + "probability": 0.3971 + }, + { + "start": 6704.99, + "end": 6707.17, + "probability": 0.0956 + }, + { + "start": 6707.17, + "end": 6708.23, + "probability": 0.3666 + }, + { + "start": 6708.45, + "end": 6709.11, + "probability": 0.8672 + }, + { + "start": 6709.77, + "end": 6710.87, + "probability": 0.4093 + }, + { + "start": 6710.97, + "end": 6711.15, + "probability": 0.3935 + }, + { + "start": 6711.21, + "end": 6712.01, + "probability": 0.9165 + }, + { + "start": 6712.03, + "end": 6713.23, + "probability": 0.9438 + }, + { + "start": 6713.49, + "end": 6718.37, + "probability": 0.7555 + }, + { + "start": 6718.37, + "end": 6724.65, + "probability": 0.9791 + }, + { + "start": 6725.0, + "end": 6727.61, + "probability": 0.154 + }, + { + "start": 6727.61, + "end": 6727.61, + "probability": 0.722 + }, + { + "start": 6727.61, + "end": 6729.06, + "probability": 0.6331 + }, + { + "start": 6729.23, + "end": 6731.95, + "probability": 0.8599 + }, + { + "start": 6732.33, + "end": 6733.31, + "probability": 0.5473 + }, + { + "start": 6733.37, + "end": 6734.69, + "probability": 0.4612 + }, + { + "start": 6734.93, + "end": 6738.95, + "probability": 0.0713 + }, + { + "start": 6738.99, + "end": 6738.99, + "probability": 0.1299 + }, + { + "start": 6738.99, + "end": 6738.99, + "probability": 0.235 + }, + { + "start": 6738.99, + "end": 6739.05, + "probability": 0.1141 + }, + { + "start": 6739.11, + "end": 6740.63, + "probability": 0.5108 + }, + { + "start": 6740.95, + "end": 6748.01, + "probability": 0.1261 + }, + { + "start": 6748.57, + "end": 6751.41, + "probability": 0.0178 + }, + { + "start": 6751.41, + "end": 6751.41, + "probability": 0.2715 + }, + { + "start": 6751.41, + "end": 6751.41, + "probability": 0.1615 + }, + { + "start": 6751.41, + "end": 6751.41, + "probability": 0.0518 + }, + { + "start": 6751.41, + "end": 6753.35, + "probability": 0.6646 + }, + { + "start": 6753.75, + "end": 6754.19, + "probability": 0.7852 + }, + { + "start": 6754.27, + "end": 6755.31, + "probability": 0.7775 + }, + { + "start": 6756.15, + "end": 6760.5, + "probability": 0.8202 + }, + { + "start": 6760.95, + "end": 6764.83, + "probability": 0.8712 + }, + { + "start": 6765.01, + "end": 6769.53, + "probability": 0.7778 + }, + { + "start": 6769.79, + "end": 6770.63, + "probability": 0.6791 + }, + { + "start": 6770.71, + "end": 6771.67, + "probability": 0.9334 + }, + { + "start": 6772.07, + "end": 6774.05, + "probability": 0.8852 + }, + { + "start": 6774.35, + "end": 6775.53, + "probability": 0.9657 + }, + { + "start": 6775.91, + "end": 6778.63, + "probability": 0.9492 + }, + { + "start": 6778.99, + "end": 6781.77, + "probability": 0.7566 + }, + { + "start": 6782.17, + "end": 6783.21, + "probability": 0.8777 + }, + { + "start": 6783.93, + "end": 6787.55, + "probability": 0.7593 + }, + { + "start": 6789.48, + "end": 6794.67, + "probability": 0.0217 + }, + { + "start": 6795.43, + "end": 6795.61, + "probability": 0.0168 + }, + { + "start": 6795.61, + "end": 6795.73, + "probability": 0.0641 + }, + { + "start": 6795.73, + "end": 6795.73, + "probability": 0.0746 + }, + { + "start": 6795.73, + "end": 6795.73, + "probability": 0.0835 + }, + { + "start": 6795.73, + "end": 6795.73, + "probability": 0.0239 + }, + { + "start": 6795.73, + "end": 6797.23, + "probability": 0.3448 + }, + { + "start": 6797.41, + "end": 6797.67, + "probability": 0.0505 + }, + { + "start": 6797.87, + "end": 6798.97, + "probability": 0.4939 + }, + { + "start": 6799.13, + "end": 6802.75, + "probability": 0.7961 + }, + { + "start": 6803.13, + "end": 6808.51, + "probability": 0.9542 + }, + { + "start": 6808.61, + "end": 6808.69, + "probability": 0.1628 + }, + { + "start": 6808.69, + "end": 6809.41, + "probability": 0.7325 + }, + { + "start": 6810.43, + "end": 6812.41, + "probability": 0.9928 + }, + { + "start": 6812.87, + "end": 6813.35, + "probability": 0.0147 + }, + { + "start": 6813.35, + "end": 6814.27, + "probability": 0.8037 + }, + { + "start": 6814.27, + "end": 6815.97, + "probability": 0.9132 + }, + { + "start": 6816.09, + "end": 6817.23, + "probability": 0.6069 + }, + { + "start": 6817.33, + "end": 6821.27, + "probability": 0.9941 + }, + { + "start": 6821.27, + "end": 6826.13, + "probability": 0.9966 + }, + { + "start": 6828.19, + "end": 6828.87, + "probability": 0.8926 + }, + { + "start": 6828.87, + "end": 6830.09, + "probability": 0.6011 + }, + { + "start": 6830.17, + "end": 6831.69, + "probability": 0.8232 + }, + { + "start": 6831.89, + "end": 6834.71, + "probability": 0.4021 + }, + { + "start": 6834.71, + "end": 6834.73, + "probability": 0.4724 + }, + { + "start": 6834.81, + "end": 6835.95, + "probability": 0.8286 + }, + { + "start": 6836.45, + "end": 6838.15, + "probability": 0.7283 + }, + { + "start": 6838.31, + "end": 6841.59, + "probability": 0.1385 + }, + { + "start": 6841.59, + "end": 6841.59, + "probability": 0.3347 + }, + { + "start": 6841.59, + "end": 6841.59, + "probability": 0.2502 + }, + { + "start": 6841.59, + "end": 6841.59, + "probability": 0.4468 + }, + { + "start": 6841.59, + "end": 6842.51, + "probability": 0.737 + }, + { + "start": 6842.55, + "end": 6847.78, + "probability": 0.9893 + }, + { + "start": 6847.99, + "end": 6850.85, + "probability": 0.9196 + }, + { + "start": 6851.49, + "end": 6851.87, + "probability": 0.1269 + }, + { + "start": 6851.87, + "end": 6854.35, + "probability": 0.8921 + }, + { + "start": 6854.97, + "end": 6858.37, + "probability": 0.9387 + }, + { + "start": 6858.59, + "end": 6860.19, + "probability": 0.9763 + }, + { + "start": 6860.39, + "end": 6862.25, + "probability": 0.9777 + }, + { + "start": 6862.57, + "end": 6863.69, + "probability": 0.6858 + }, + { + "start": 6864.01, + "end": 6864.71, + "probability": 0.7172 + }, + { + "start": 6864.77, + "end": 6865.5, + "probability": 0.7337 + }, + { + "start": 6865.91, + "end": 6866.82, + "probability": 0.8723 + }, + { + "start": 6867.13, + "end": 6869.49, + "probability": 0.9695 + }, + { + "start": 6869.75, + "end": 6873.59, + "probability": 0.8328 + }, + { + "start": 6873.59, + "end": 6878.45, + "probability": 0.9868 + }, + { + "start": 6879.68, + "end": 6882.79, + "probability": 0.9575 + }, + { + "start": 6882.93, + "end": 6884.67, + "probability": 0.6755 + }, + { + "start": 6888.59, + "end": 6889.41, + "probability": 0.581 + }, + { + "start": 6890.27, + "end": 6893.25, + "probability": 0.6711 + }, + { + "start": 6893.25, + "end": 6897.41, + "probability": 0.8669 + }, + { + "start": 6897.97, + "end": 6901.05, + "probability": 0.9829 + }, + { + "start": 6901.19, + "end": 6903.07, + "probability": 0.5727 + }, + { + "start": 6903.35, + "end": 6904.39, + "probability": 0.6701 + }, + { + "start": 6917.0, + "end": 6920.09, + "probability": 0.3 + }, + { + "start": 6920.09, + "end": 6924.61, + "probability": 0.7177 + }, + { + "start": 6924.85, + "end": 6928.19, + "probability": 0.9595 + }, + { + "start": 6929.49, + "end": 6934.21, + "probability": 0.9827 + }, + { + "start": 6934.29, + "end": 6934.49, + "probability": 0.1714 + }, + { + "start": 6934.59, + "end": 6935.45, + "probability": 0.6114 + }, + { + "start": 6935.89, + "end": 6939.65, + "probability": 0.9676 + }, + { + "start": 6940.27, + "end": 6941.79, + "probability": 0.5429 + }, + { + "start": 6941.83, + "end": 6943.27, + "probability": 0.7023 + }, + { + "start": 6943.47, + "end": 6943.99, + "probability": 0.0032 + }, + { + "start": 6947.93, + "end": 6949.21, + "probability": 0.075 + }, + { + "start": 6954.37, + "end": 6954.87, + "probability": 0.6626 + }, + { + "start": 6960.07, + "end": 6961.23, + "probability": 0.0184 + }, + { + "start": 6961.23, + "end": 6963.39, + "probability": 0.3484 + }, + { + "start": 6963.47, + "end": 6966.11, + "probability": 0.7739 + }, + { + "start": 6967.61, + "end": 6972.93, + "probability": 0.952 + }, + { + "start": 6973.39, + "end": 6973.77, + "probability": 0.4431 + }, + { + "start": 6973.85, + "end": 6977.01, + "probability": 0.9932 + }, + { + "start": 6977.43, + "end": 6978.65, + "probability": 0.5303 + }, + { + "start": 6978.65, + "end": 6979.95, + "probability": 0.593 + }, + { + "start": 6982.31, + "end": 6983.37, + "probability": 0.3052 + }, + { + "start": 6985.51, + "end": 6985.77, + "probability": 0.0147 + }, + { + "start": 6990.61, + "end": 6990.71, + "probability": 0.1621 + }, + { + "start": 6990.71, + "end": 6991.91, + "probability": 0.6136 + }, + { + "start": 6993.93, + "end": 6997.29, + "probability": 0.6702 + }, + { + "start": 6997.51, + "end": 6999.39, + "probability": 0.8741 + }, + { + "start": 7000.11, + "end": 7002.43, + "probability": 0.562 + }, + { + "start": 7002.47, + "end": 7005.95, + "probability": 0.9407 + }, + { + "start": 7005.95, + "end": 7008.99, + "probability": 0.9972 + }, + { + "start": 7009.45, + "end": 7012.41, + "probability": 0.9675 + }, + { + "start": 7013.05, + "end": 7014.43, + "probability": 0.5464 + }, + { + "start": 7014.47, + "end": 7015.61, + "probability": 0.6967 + }, + { + "start": 7017.27, + "end": 7023.81, + "probability": 0.2135 + }, + { + "start": 7025.13, + "end": 7030.13, + "probability": 0.0275 + }, + { + "start": 7030.13, + "end": 7030.79, + "probability": 0.2106 + }, + { + "start": 7031.37, + "end": 7033.57, + "probability": 0.7021 + }, + { + "start": 7034.11, + "end": 7037.21, + "probability": 0.7398 + }, + { + "start": 7038.03, + "end": 7039.79, + "probability": 0.782 + }, + { + "start": 7039.91, + "end": 7042.61, + "probability": 0.8608 + }, + { + "start": 7043.07, + "end": 7046.85, + "probability": 0.9651 + }, + { + "start": 7047.33, + "end": 7049.19, + "probability": 0.916 + }, + { + "start": 7053.11, + "end": 7056.34, + "probability": 0.0517 + }, + { + "start": 7056.67, + "end": 7057.53, + "probability": 0.5561 + }, + { + "start": 7059.15, + "end": 7060.73, + "probability": 0.6359 + }, + { + "start": 7061.37, + "end": 7063.81, + "probability": 0.4952 + }, + { + "start": 7063.83, + "end": 7065.05, + "probability": 0.4528 + }, + { + "start": 7065.05, + "end": 7065.77, + "probability": 0.4414 + }, + { + "start": 7065.79, + "end": 7068.17, + "probability": 0.72 + }, + { + "start": 7069.55, + "end": 7073.15, + "probability": 0.949 + }, + { + "start": 7073.63, + "end": 7075.09, + "probability": 0.9956 + }, + { + "start": 7075.49, + "end": 7078.11, + "probability": 0.9837 + }, + { + "start": 7078.81, + "end": 7080.43, + "probability": 0.998 + }, + { + "start": 7080.53, + "end": 7082.91, + "probability": 0.9955 + }, + { + "start": 7083.37, + "end": 7083.51, + "probability": 0.0428 + }, + { + "start": 7083.51, + "end": 7083.93, + "probability": 0.1699 + }, + { + "start": 7084.19, + "end": 7084.71, + "probability": 0.3554 + }, + { + "start": 7084.79, + "end": 7085.71, + "probability": 0.5734 + }, + { + "start": 7086.17, + "end": 7087.69, + "probability": 0.5737 + }, + { + "start": 7087.93, + "end": 7088.83, + "probability": 0.3325 + }, + { + "start": 7089.17, + "end": 7091.05, + "probability": 0.8833 + }, + { + "start": 7091.63, + "end": 7093.61, + "probability": 0.9529 + }, + { + "start": 7093.67, + "end": 7095.61, + "probability": 0.7763 + }, + { + "start": 7095.87, + "end": 7096.53, + "probability": 0.2615 + }, + { + "start": 7096.69, + "end": 7098.01, + "probability": 0.0798 + }, + { + "start": 7098.01, + "end": 7099.01, + "probability": 0.0266 + }, + { + "start": 7099.01, + "end": 7099.22, + "probability": 0.6743 + }, + { + "start": 7099.83, + "end": 7100.95, + "probability": 0.8526 + }, + { + "start": 7101.43, + "end": 7102.91, + "probability": 0.8227 + }, + { + "start": 7103.13, + "end": 7105.79, + "probability": 0.5781 + }, + { + "start": 7106.49, + "end": 7107.33, + "probability": 0.0009 + }, + { + "start": 7109.65, + "end": 7110.91, + "probability": 0.0187 + }, + { + "start": 7111.01, + "end": 7111.05, + "probability": 0.4911 + }, + { + "start": 7111.05, + "end": 7112.33, + "probability": 0.2746 + }, + { + "start": 7112.35, + "end": 7113.09, + "probability": 0.2178 + }, + { + "start": 7113.11, + "end": 7114.37, + "probability": 0.0277 + }, + { + "start": 7114.43, + "end": 7117.45, + "probability": 0.0851 + }, + { + "start": 7117.47, + "end": 7119.47, + "probability": 0.1405 + }, + { + "start": 7119.47, + "end": 7120.21, + "probability": 0.1893 + }, + { + "start": 7120.21, + "end": 7121.97, + "probability": 0.2059 + }, + { + "start": 7122.19, + "end": 7122.49, + "probability": 0.3911 + }, + { + "start": 7122.49, + "end": 7126.01, + "probability": 0.9772 + }, + { + "start": 7126.05, + "end": 7126.09, + "probability": 0.1787 + }, + { + "start": 7126.09, + "end": 7130.41, + "probability": 0.8145 + }, + { + "start": 7131.15, + "end": 7132.13, + "probability": 0.9067 + }, + { + "start": 7132.31, + "end": 7136.09, + "probability": 0.8621 + }, + { + "start": 7136.31, + "end": 7141.37, + "probability": 0.9983 + }, + { + "start": 7141.89, + "end": 7143.67, + "probability": 0.7548 + }, + { + "start": 7143.71, + "end": 7145.04, + "probability": 0.5748 + }, + { + "start": 7145.39, + "end": 7147.63, + "probability": 0.9958 + }, + { + "start": 7147.71, + "end": 7148.21, + "probability": 0.8813 + }, + { + "start": 7148.27, + "end": 7150.81, + "probability": 0.8828 + }, + { + "start": 7151.13, + "end": 7152.53, + "probability": 0.9116 + }, + { + "start": 7152.83, + "end": 7154.65, + "probability": 0.8512 + }, + { + "start": 7154.91, + "end": 7158.65, + "probability": 0.6343 + }, + { + "start": 7158.93, + "end": 7164.47, + "probability": 0.7928 + }, + { + "start": 7164.77, + "end": 7166.13, + "probability": 0.8874 + }, + { + "start": 7166.33, + "end": 7169.63, + "probability": 0.98 + }, + { + "start": 7170.11, + "end": 7172.85, + "probability": 0.9884 + }, + { + "start": 7172.89, + "end": 7173.21, + "probability": 0.4763 + }, + { + "start": 7173.21, + "end": 7173.95, + "probability": 0.9562 + }, + { + "start": 7174.31, + "end": 7176.93, + "probability": 0.9814 + }, + { + "start": 7177.59, + "end": 7178.36, + "probability": 0.7327 + }, + { + "start": 7178.73, + "end": 7181.69, + "probability": 0.9648 + }, + { + "start": 7181.87, + "end": 7183.19, + "probability": 0.9632 + }, + { + "start": 7183.37, + "end": 7186.83, + "probability": 0.9316 + }, + { + "start": 7186.89, + "end": 7189.39, + "probability": 0.9673 + }, + { + "start": 7189.81, + "end": 7190.95, + "probability": 0.9259 + }, + { + "start": 7191.15, + "end": 7194.81, + "probability": 0.9915 + }, + { + "start": 7194.99, + "end": 7196.83, + "probability": 0.9821 + }, + { + "start": 7197.03, + "end": 7197.91, + "probability": 0.9763 + }, + { + "start": 7197.99, + "end": 7199.03, + "probability": 0.7672 + }, + { + "start": 7199.29, + "end": 7200.22, + "probability": 0.9875 + }, + { + "start": 7200.97, + "end": 7203.53, + "probability": 0.9979 + }, + { + "start": 7204.47, + "end": 7206.65, + "probability": 0.294 + }, + { + "start": 7206.65, + "end": 7208.41, + "probability": 0.3167 + }, + { + "start": 7209.21, + "end": 7212.97, + "probability": 0.0756 + }, + { + "start": 7214.39, + "end": 7214.71, + "probability": 0.0097 + }, + { + "start": 7214.71, + "end": 7214.71, + "probability": 0.0761 + }, + { + "start": 7214.71, + "end": 7216.81, + "probability": 0.2131 + }, + { + "start": 7216.89, + "end": 7217.75, + "probability": 0.5721 + }, + { + "start": 7218.03, + "end": 7220.45, + "probability": 0.9851 + }, + { + "start": 7220.49, + "end": 7223.05, + "probability": 0.9185 + }, + { + "start": 7223.27, + "end": 7224.95, + "probability": 0.9978 + }, + { + "start": 7225.31, + "end": 7228.13, + "probability": 0.9689 + }, + { + "start": 7228.75, + "end": 7229.35, + "probability": 0.7161 + }, + { + "start": 7229.61, + "end": 7230.19, + "probability": 0.7529 + }, + { + "start": 7232.31, + "end": 7234.79, + "probability": 0.824 + }, + { + "start": 7235.73, + "end": 7238.77, + "probability": 0.9844 + }, + { + "start": 7238.89, + "end": 7238.93, + "probability": 0.5795 + }, + { + "start": 7239.13, + "end": 7243.45, + "probability": 0.8696 + }, + { + "start": 7243.71, + "end": 7249.49, + "probability": 0.0265 + }, + { + "start": 7250.43, + "end": 7252.44, + "probability": 0.1319 + }, + { + "start": 7261.93, + "end": 7266.75, + "probability": 0.0296 + }, + { + "start": 7267.81, + "end": 7269.25, + "probability": 0.0829 + }, + { + "start": 7269.39, + "end": 7269.99, + "probability": 0.0708 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.0, + "end": 7346.0, + "probability": 0.0 + }, + { + "start": 7346.36, + "end": 7347.22, + "probability": 0.4697 + }, + { + "start": 7347.7, + "end": 7349.88, + "probability": 0.7598 + }, + { + "start": 7350.02, + "end": 7351.64, + "probability": 0.5413 + }, + { + "start": 7351.74, + "end": 7352.22, + "probability": 0.4973 + }, + { + "start": 7352.4, + "end": 7354.2, + "probability": 0.5545 + }, + { + "start": 7354.74, + "end": 7355.58, + "probability": 0.6322 + }, + { + "start": 7356.82, + "end": 7357.2, + "probability": 0.0553 + }, + { + "start": 7358.18, + "end": 7358.94, + "probability": 0.0781 + }, + { + "start": 7358.94, + "end": 7361.68, + "probability": 0.0522 + }, + { + "start": 7361.68, + "end": 7362.16, + "probability": 0.0885 + }, + { + "start": 7362.16, + "end": 7362.56, + "probability": 0.1535 + }, + { + "start": 7362.56, + "end": 7362.56, + "probability": 0.0961 + }, + { + "start": 7362.56, + "end": 7365.14, + "probability": 0.3378 + }, + { + "start": 7365.94, + "end": 7367.16, + "probability": 0.3705 + }, + { + "start": 7367.32, + "end": 7369.02, + "probability": 0.1978 + }, + { + "start": 7369.84, + "end": 7370.5, + "probability": 0.1761 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.0, + "end": 7472.0, + "probability": 0.0 + }, + { + "start": 7472.26, + "end": 7475.26, + "probability": 0.1877 + }, + { + "start": 7476.64, + "end": 7480.36, + "probability": 0.0138 + }, + { + "start": 7480.36, + "end": 7481.12, + "probability": 0.0182 + }, + { + "start": 7482.2, + "end": 7486.86, + "probability": 0.0178 + }, + { + "start": 7487.3, + "end": 7493.88, + "probability": 0.0446 + }, + { + "start": 7592.0, + "end": 7592.0, + "probability": 0.0 + }, + { + "start": 7592.0, + "end": 7592.0, + "probability": 0.0 + }, + { + "start": 7592.0, + "end": 7592.0, + "probability": 0.0 + }, + { + "start": 7592.0, + "end": 7592.0, + "probability": 0.0 + }, + { + "start": 7592.0, + "end": 7592.0, + "probability": 0.0 + }, + { + "start": 7592.0, + "end": 7592.0, + "probability": 0.0 + }, + { + "start": 7592.0, + "end": 7592.0, + "probability": 0.0 + }, + { + "start": 7592.0, + "end": 7592.0, + "probability": 0.0 + }, + { + "start": 7592.0, + "end": 7592.0, + "probability": 0.0 + }, + { + "start": 7592.0, + "end": 7592.0, + "probability": 0.0 + }, + { + "start": 7592.0, + "end": 7592.0, + "probability": 0.0 + }, + { + "start": 7592.0, + "end": 7592.0, + "probability": 0.0 + }, + { + "start": 7592.0, + "end": 7592.0, + "probability": 0.0 + }, + { + "start": 7592.0, + "end": 7592.0, + "probability": 0.0 + }, + { + "start": 7592.0, + "end": 7592.0, + "probability": 0.0 + }, + { + "start": 7592.0, + "end": 7592.0, + "probability": 0.0 + }, + { + "start": 7592.0, + "end": 7592.0, + "probability": 0.0 + }, + { + "start": 7592.0, + "end": 7592.0, + "probability": 0.0 + }, + { + "start": 7592.0, + "end": 7592.0, + "probability": 0.0 + }, + { + "start": 7592.0, + "end": 7592.0, + "probability": 0.0 + }, + { + "start": 7592.0, + "end": 7592.0, + "probability": 0.0 + }, + { + "start": 7592.0, + "end": 7592.0, + "probability": 0.0 + }, + { + "start": 7592.0, + "end": 7592.0, + "probability": 0.0 + }, + { + "start": 7592.0, + "end": 7592.0, + "probability": 0.0 + }, + { + "start": 7592.0, + "end": 7592.0, + "probability": 0.0 + }, + { + "start": 7592.0, + "end": 7592.0, + "probability": 0.0 + }, + { + "start": 7592.0, + "end": 7592.0, + "probability": 0.0 + }, + { + "start": 7592.16, + "end": 7593.04, + "probability": 0.0735 + }, + { + "start": 7593.88, + "end": 7598.58, + "probability": 0.6337 + }, + { + "start": 7598.7, + "end": 7602.3, + "probability": 0.9955 + }, + { + "start": 7602.4, + "end": 7603.68, + "probability": 0.8051 + }, + { + "start": 7604.06, + "end": 7608.22, + "probability": 0.9978 + }, + { + "start": 7608.22, + "end": 7611.86, + "probability": 0.9993 + }, + { + "start": 7612.4, + "end": 7615.12, + "probability": 0.9769 + }, + { + "start": 7615.68, + "end": 7620.68, + "probability": 0.9572 + }, + { + "start": 7620.68, + "end": 7625.88, + "probability": 0.9939 + }, + { + "start": 7626.5, + "end": 7631.52, + "probability": 0.9897 + }, + { + "start": 7632.52, + "end": 7636.64, + "probability": 0.981 + }, + { + "start": 7636.64, + "end": 7640.72, + "probability": 0.9974 + }, + { + "start": 7641.74, + "end": 7645.26, + "probability": 0.9955 + }, + { + "start": 7645.94, + "end": 7649.78, + "probability": 0.9968 + }, + { + "start": 7650.64, + "end": 7655.74, + "probability": 0.8495 + }, + { + "start": 7656.68, + "end": 7660.18, + "probability": 0.9956 + }, + { + "start": 7660.58, + "end": 7661.92, + "probability": 0.7048 + }, + { + "start": 7663.46, + "end": 7668.38, + "probability": 0.9993 + }, + { + "start": 7668.38, + "end": 7675.08, + "probability": 0.9884 + }, + { + "start": 7675.08, + "end": 7682.04, + "probability": 0.9841 + }, + { + "start": 7682.9, + "end": 7684.86, + "probability": 0.9156 + }, + { + "start": 7684.98, + "end": 7688.02, + "probability": 0.7328 + }, + { + "start": 7688.52, + "end": 7693.68, + "probability": 0.9655 + }, + { + "start": 7693.86, + "end": 7697.18, + "probability": 0.8665 + }, + { + "start": 7697.36, + "end": 7697.66, + "probability": 0.5178 + }, + { + "start": 7698.22, + "end": 7700.76, + "probability": 0.8568 + }, + { + "start": 7701.14, + "end": 7704.42, + "probability": 0.707 + }, + { + "start": 7704.86, + "end": 7705.26, + "probability": 0.67 + }, + { + "start": 7705.32, + "end": 7710.09, + "probability": 0.981 + }, + { + "start": 7710.86, + "end": 7713.46, + "probability": 0.794 + }, + { + "start": 7713.68, + "end": 7718.32, + "probability": 0.5295 + }, + { + "start": 7718.68, + "end": 7720.68, + "probability": 0.6226 + }, + { + "start": 7720.78, + "end": 7721.58, + "probability": 0.9057 + }, + { + "start": 7721.64, + "end": 7722.42, + "probability": 0.3243 + }, + { + "start": 7722.78, + "end": 7723.4, + "probability": 0.5981 + }, + { + "start": 7723.44, + "end": 7724.02, + "probability": 0.6311 + }, + { + "start": 7728.18, + "end": 7728.34, + "probability": 0.0087 + }, + { + "start": 7741.38, + "end": 7741.92, + "probability": 0.0703 + }, + { + "start": 7741.92, + "end": 7743.38, + "probability": 0.4161 + }, + { + "start": 7744.0, + "end": 7745.8, + "probability": 0.8855 + }, + { + "start": 7745.84, + "end": 7749.52, + "probability": 0.8251 + }, + { + "start": 7751.0, + "end": 7752.26, + "probability": 0.7015 + }, + { + "start": 7752.38, + "end": 7752.96, + "probability": 0.6286 + }, + { + "start": 7778.14, + "end": 7781.42, + "probability": 0.0586 + }, + { + "start": 7781.5, + "end": 7783.2, + "probability": 0.3011 + }, + { + "start": 7785.62, + "end": 7786.64, + "probability": 0.1139 + }, + { + "start": 7790.52, + "end": 7790.52, + "probability": 0.6024 + }, + { + "start": 7790.52, + "end": 7791.5, + "probability": 0.4502 + }, + { + "start": 7791.84, + "end": 7792.32, + "probability": 0.7096 + }, + { + "start": 7792.36, + "end": 7795.86, + "probability": 0.6451 + }, + { + "start": 7795.88, + "end": 7797.56, + "probability": 0.4982 + }, + { + "start": 7797.9, + "end": 7805.28, + "probability": 0.2016 + }, + { + "start": 7805.42, + "end": 7808.3, + "probability": 0.187 + }, + { + "start": 7814.5, + "end": 7814.6, + "probability": 0.4329 + }, + { + "start": 7816.96, + "end": 7818.32, + "probability": 0.0181 + }, + { + "start": 7819.26, + "end": 7820.26, + "probability": 0.0107 + }, + { + "start": 7820.36, + "end": 7821.64, + "probability": 0.0629 + }, + { + "start": 7821.68, + "end": 7823.3, + "probability": 0.1579 + }, + { + "start": 7823.3, + "end": 7823.8, + "probability": 0.0539 + }, + { + "start": 7825.26, + "end": 7827.87, + "probability": 0.1498 + }, + { + "start": 7831.0, + "end": 7831.0, + "probability": 0.0 + }, + { + "start": 7831.0, + "end": 7831.0, + "probability": 0.0 + }, + { + "start": 7831.0, + "end": 7831.0, + "probability": 0.0 + }, + { + "start": 7831.0, + "end": 7831.0, + "probability": 0.0 + }, + { + "start": 7831.08, + "end": 7832.7, + "probability": 0.4978 + }, + { + "start": 7833.28, + "end": 7836.26, + "probability": 0.7337 + }, + { + "start": 7836.88, + "end": 7841.5, + "probability": 0.9415 + }, + { + "start": 7841.72, + "end": 7848.71, + "probability": 0.9808 + }, + { + "start": 7850.68, + "end": 7851.13, + "probability": 0.6208 + }, + { + "start": 7864.8, + "end": 7865.98, + "probability": 0.7042 + }, + { + "start": 7867.1, + "end": 7869.62, + "probability": 0.8486 + }, + { + "start": 7870.78, + "end": 7874.58, + "probability": 0.9902 + }, + { + "start": 7875.76, + "end": 7877.44, + "probability": 0.3807 + }, + { + "start": 7878.36, + "end": 7881.66, + "probability": 0.4145 + }, + { + "start": 7882.44, + "end": 7883.36, + "probability": 0.8289 + }, + { + "start": 7884.78, + "end": 7890.3, + "probability": 0.9845 + }, + { + "start": 7891.68, + "end": 7898.6, + "probability": 0.9836 + }, + { + "start": 7899.82, + "end": 7902.48, + "probability": 0.9969 + }, + { + "start": 7903.4, + "end": 7904.16, + "probability": 0.7734 + }, + { + "start": 7904.9, + "end": 7909.78, + "probability": 0.9481 + }, + { + "start": 7910.94, + "end": 7912.06, + "probability": 0.2023 + }, + { + "start": 7912.44, + "end": 7918.26, + "probability": 0.8742 + }, + { + "start": 7918.34, + "end": 7919.68, + "probability": 0.9839 + }, + { + "start": 7920.06, + "end": 7920.88, + "probability": 0.7182 + }, + { + "start": 7920.96, + "end": 7921.9, + "probability": 0.9548 + }, + { + "start": 7922.9, + "end": 7927.68, + "probability": 0.8038 + }, + { + "start": 7928.42, + "end": 7933.16, + "probability": 0.8461 + }, + { + "start": 7934.22, + "end": 7938.0, + "probability": 0.8094 + }, + { + "start": 7938.68, + "end": 7944.9, + "probability": 0.9537 + }, + { + "start": 7945.92, + "end": 7946.52, + "probability": 0.6898 + }, + { + "start": 7946.58, + "end": 7951.48, + "probability": 0.9816 + }, + { + "start": 7952.38, + "end": 7954.26, + "probability": 0.7991 + }, + { + "start": 7955.08, + "end": 7957.04, + "probability": 0.007 + }, + { + "start": 7958.4, + "end": 7963.18, + "probability": 0.9819 + }, + { + "start": 7963.18, + "end": 7969.12, + "probability": 0.9884 + }, + { + "start": 7969.88, + "end": 7970.64, + "probability": 0.487 + }, + { + "start": 7972.1, + "end": 7973.36, + "probability": 0.9213 + }, + { + "start": 7973.54, + "end": 7976.16, + "probability": 0.9799 + }, + { + "start": 7976.22, + "end": 7977.22, + "probability": 0.9062 + }, + { + "start": 7977.98, + "end": 7982.78, + "probability": 0.9589 + }, + { + "start": 7983.74, + "end": 7986.62, + "probability": 0.9947 + }, + { + "start": 7987.52, + "end": 7990.32, + "probability": 0.7401 + }, + { + "start": 7991.24, + "end": 7994.78, + "probability": 0.9616 + }, + { + "start": 7995.68, + "end": 7996.9, + "probability": 0.6428 + }, + { + "start": 7997.4, + "end": 7998.52, + "probability": 0.8955 + }, + { + "start": 7999.7, + "end": 8000.52, + "probability": 0.8738 + }, + { + "start": 8001.22, + "end": 8002.18, + "probability": 0.6008 + }, + { + "start": 8002.84, + "end": 8004.48, + "probability": 0.8838 + }, + { + "start": 8005.42, + "end": 8006.84, + "probability": 0.9672 + }, + { + "start": 8007.52, + "end": 8010.82, + "probability": 0.8347 + }, + { + "start": 8010.82, + "end": 8013.14, + "probability": 0.9133 + }, + { + "start": 8013.88, + "end": 8018.88, + "probability": 0.972 + }, + { + "start": 8019.04, + "end": 8019.84, + "probability": 0.5346 + }, + { + "start": 8020.78, + "end": 8022.72, + "probability": 0.8138 + }, + { + "start": 8023.68, + "end": 8029.44, + "probability": 0.8047 + }, + { + "start": 8029.44, + "end": 8033.34, + "probability": 0.9414 + }, + { + "start": 8034.18, + "end": 8037.74, + "probability": 0.9477 + }, + { + "start": 8038.98, + "end": 8040.52, + "probability": 0.8651 + }, + { + "start": 8041.7, + "end": 8043.08, + "probability": 0.7212 + }, + { + "start": 8043.78, + "end": 8048.3, + "probability": 0.9768 + }, + { + "start": 8048.84, + "end": 8049.68, + "probability": 0.9932 + }, + { + "start": 8050.36, + "end": 8056.44, + "probability": 0.9643 + }, + { + "start": 8057.58, + "end": 8066.38, + "probability": 0.9583 + }, + { + "start": 8067.32, + "end": 8071.5, + "probability": 0.9902 + }, + { + "start": 8072.24, + "end": 8073.12, + "probability": 0.665 + }, + { + "start": 8073.84, + "end": 8074.5, + "probability": 0.517 + }, + { + "start": 8074.58, + "end": 8079.28, + "probability": 0.9055 + }, + { + "start": 8080.04, + "end": 8080.48, + "probability": 0.9819 + }, + { + "start": 8081.42, + "end": 8083.02, + "probability": 0.8105 + }, + { + "start": 8083.02, + "end": 8087.74, + "probability": 0.9873 + }, + { + "start": 8089.06, + "end": 8092.44, + "probability": 0.71 + }, + { + "start": 8093.06, + "end": 8094.04, + "probability": 0.7205 + }, + { + "start": 8095.0, + "end": 8099.21, + "probability": 0.9951 + }, + { + "start": 8100.48, + "end": 8104.04, + "probability": 0.9723 + }, + { + "start": 8104.04, + "end": 8108.26, + "probability": 0.9801 + }, + { + "start": 8108.94, + "end": 8111.2, + "probability": 0.9888 + }, + { + "start": 8112.16, + "end": 8115.48, + "probability": 0.9762 + }, + { + "start": 8116.18, + "end": 8121.8, + "probability": 0.9902 + }, + { + "start": 8121.8, + "end": 8128.22, + "probability": 0.9973 + }, + { + "start": 8129.54, + "end": 8130.3, + "probability": 0.7702 + }, + { + "start": 8131.04, + "end": 8136.86, + "probability": 0.9624 + }, + { + "start": 8137.78, + "end": 8144.1, + "probability": 0.9542 + }, + { + "start": 8145.12, + "end": 8149.06, + "probability": 0.9885 + }, + { + "start": 8149.18, + "end": 8153.88, + "probability": 0.9149 + }, + { + "start": 8154.68, + "end": 8159.56, + "probability": 0.9723 + }, + { + "start": 8160.26, + "end": 8161.98, + "probability": 0.9424 + }, + { + "start": 8163.08, + "end": 8166.7, + "probability": 0.9766 + }, + { + "start": 8167.76, + "end": 8172.08, + "probability": 0.8638 + }, + { + "start": 8172.94, + "end": 8175.3, + "probability": 0.793 + }, + { + "start": 8176.24, + "end": 8176.62, + "probability": 0.2672 + }, + { + "start": 8176.66, + "end": 8182.88, + "probability": 0.9364 + }, + { + "start": 8182.88, + "end": 8188.18, + "probability": 0.9445 + }, + { + "start": 8188.18, + "end": 8194.02, + "probability": 0.9857 + }, + { + "start": 8195.28, + "end": 8200.06, + "probability": 0.9727 + }, + { + "start": 8202.08, + "end": 8206.82, + "probability": 0.9215 + }, + { + "start": 8207.7, + "end": 8210.16, + "probability": 0.9868 + }, + { + "start": 8211.26, + "end": 8211.92, + "probability": 0.7627 + }, + { + "start": 8212.98, + "end": 8216.08, + "probability": 0.9588 + }, + { + "start": 8217.14, + "end": 8219.92, + "probability": 0.7399 + }, + { + "start": 8220.64, + "end": 8222.56, + "probability": 0.9814 + }, + { + "start": 8223.36, + "end": 8227.24, + "probability": 0.9494 + }, + { + "start": 8228.1, + "end": 8230.16, + "probability": 0.9291 + }, + { + "start": 8231.08, + "end": 8231.92, + "probability": 0.7181 + }, + { + "start": 8232.86, + "end": 8233.84, + "probability": 0.9644 + }, + { + "start": 8235.08, + "end": 8239.96, + "probability": 0.9771 + }, + { + "start": 8240.94, + "end": 8244.1, + "probability": 0.9976 + }, + { + "start": 8244.1, + "end": 8248.54, + "probability": 0.9888 + }, + { + "start": 8248.68, + "end": 8251.9, + "probability": 0.6716 + }, + { + "start": 8251.98, + "end": 8252.32, + "probability": 0.631 + }, + { + "start": 8253.74, + "end": 8257.68, + "probability": 0.9238 + }, + { + "start": 8257.68, + "end": 8262.12, + "probability": 0.9637 + }, + { + "start": 8264.74, + "end": 8265.44, + "probability": 0.9222 + }, + { + "start": 8265.5, + "end": 8266.18, + "probability": 0.7167 + }, + { + "start": 8266.4, + "end": 8269.3, + "probability": 0.888 + }, + { + "start": 8270.04, + "end": 8271.18, + "probability": 0.8659 + }, + { + "start": 8271.6, + "end": 8274.06, + "probability": 0.9758 + }, + { + "start": 8274.52, + "end": 8277.52, + "probability": 0.9662 + }, + { + "start": 8278.38, + "end": 8280.02, + "probability": 0.9422 + }, + { + "start": 8280.7, + "end": 8281.46, + "probability": 0.935 + }, + { + "start": 8282.48, + "end": 8283.96, + "probability": 0.5696 + }, + { + "start": 8284.06, + "end": 8284.74, + "probability": 0.9452 + }, + { + "start": 8284.92, + "end": 8285.14, + "probability": 0.7235 + }, + { + "start": 8285.24, + "end": 8285.92, + "probability": 0.9495 + }, + { + "start": 8286.64, + "end": 8287.42, + "probability": 0.9345 + }, + { + "start": 8287.52, + "end": 8292.5, + "probability": 0.9202 + }, + { + "start": 8293.38, + "end": 8294.53, + "probability": 0.4713 + }, + { + "start": 8295.66, + "end": 8300.92, + "probability": 0.9868 + }, + { + "start": 8301.46, + "end": 8303.04, + "probability": 0.7941 + }, + { + "start": 8303.44, + "end": 8304.0, + "probability": 0.6135 + }, + { + "start": 8305.6, + "end": 8310.92, + "probability": 0.979 + }, + { + "start": 8312.02, + "end": 8315.36, + "probability": 0.9692 + }, + { + "start": 8316.04, + "end": 8318.1, + "probability": 0.9823 + }, + { + "start": 8319.4, + "end": 8320.16, + "probability": 0.7507 + }, + { + "start": 8320.92, + "end": 8325.01, + "probability": 0.9514 + }, + { + "start": 8325.18, + "end": 8330.24, + "probability": 0.9925 + }, + { + "start": 8331.2, + "end": 8334.36, + "probability": 0.9409 + }, + { + "start": 8334.96, + "end": 8336.68, + "probability": 0.8205 + }, + { + "start": 8336.76, + "end": 8340.4, + "probability": 0.4956 + }, + { + "start": 8340.42, + "end": 8341.24, + "probability": 0.6023 + }, + { + "start": 8341.86, + "end": 8344.1, + "probability": 0.8644 + }, + { + "start": 8344.56, + "end": 8345.96, + "probability": 0.7531 + }, + { + "start": 8345.98, + "end": 8347.04, + "probability": 0.6662 + }, + { + "start": 8347.44, + "end": 8349.76, + "probability": 0.9734 + }, + { + "start": 8349.94, + "end": 8351.56, + "probability": 0.6249 + }, + { + "start": 8351.84, + "end": 8352.68, + "probability": 0.7987 + }, + { + "start": 8353.3, + "end": 8354.0, + "probability": 0.7079 + }, + { + "start": 8354.22, + "end": 8354.62, + "probability": 0.9351 + }, + { + "start": 8355.16, + "end": 8358.0, + "probability": 0.8032 + }, + { + "start": 8358.16, + "end": 8360.48, + "probability": 0.9681 + }, + { + "start": 8360.76, + "end": 8361.04, + "probability": 0.4922 + }, + { + "start": 8361.04, + "end": 8361.7, + "probability": 0.7772 + }, + { + "start": 8361.92, + "end": 8362.88, + "probability": 0.9325 + }, + { + "start": 8363.12, + "end": 8365.32, + "probability": 0.8529 + }, + { + "start": 8365.44, + "end": 8366.66, + "probability": 0.8468 + }, + { + "start": 8367.22, + "end": 8369.04, + "probability": 0.6783 + }, + { + "start": 8369.72, + "end": 8373.16, + "probability": 0.8962 + }, + { + "start": 8373.74, + "end": 8377.18, + "probability": 0.5935 + }, + { + "start": 8377.7, + "end": 8378.6, + "probability": 0.7251 + }, + { + "start": 8378.84, + "end": 8379.44, + "probability": 0.696 + }, + { + "start": 8383.26, + "end": 8385.14, + "probability": 0.0001 + }, + { + "start": 8388.78, + "end": 8390.3, + "probability": 0.0782 + }, + { + "start": 8396.0, + "end": 8397.94, + "probability": 0.5525 + }, + { + "start": 8398.76, + "end": 8400.36, + "probability": 0.855 + }, + { + "start": 8400.5, + "end": 8402.66, + "probability": 0.9578 + }, + { + "start": 8402.76, + "end": 8407.3, + "probability": 0.8345 + }, + { + "start": 8407.98, + "end": 8410.44, + "probability": 0.6811 + }, + { + "start": 8410.44, + "end": 8411.8, + "probability": 0.0635 + }, + { + "start": 8414.44, + "end": 8415.28, + "probability": 0.2464 + }, + { + "start": 8415.76, + "end": 8416.32, + "probability": 0.2431 + }, + { + "start": 8418.09, + "end": 8419.26, + "probability": 0.0099 + }, + { + "start": 8429.16, + "end": 8429.44, + "probability": 0.0288 + }, + { + "start": 8429.44, + "end": 8430.1, + "probability": 0.304 + }, + { + "start": 8430.9, + "end": 8432.62, + "probability": 0.8142 + }, + { + "start": 8432.72, + "end": 8437.54, + "probability": 0.9954 + }, + { + "start": 8437.76, + "end": 8439.92, + "probability": 0.9938 + }, + { + "start": 8440.66, + "end": 8442.68, + "probability": 0.9483 + }, + { + "start": 8443.28, + "end": 8453.02, + "probability": 0.976 + }, + { + "start": 8463.56, + "end": 8465.54, + "probability": 0.694 + }, + { + "start": 8466.22, + "end": 8466.42, + "probability": 0.6365 + }, + { + "start": 8466.54, + "end": 8469.2, + "probability": 0.9913 + }, + { + "start": 8469.32, + "end": 8470.04, + "probability": 0.936 + }, + { + "start": 8470.4, + "end": 8471.84, + "probability": 0.6808 + }, + { + "start": 8471.92, + "end": 8474.7, + "probability": 0.9702 + }, + { + "start": 8474.82, + "end": 8475.2, + "probability": 0.1635 + }, + { + "start": 8475.22, + "end": 8480.37, + "probability": 0.9902 + }, + { + "start": 8481.3, + "end": 8484.88, + "probability": 0.7499 + }, + { + "start": 8484.88, + "end": 8488.56, + "probability": 0.995 + }, + { + "start": 8488.72, + "end": 8489.88, + "probability": 0.9626 + }, + { + "start": 8490.28, + "end": 8491.2, + "probability": 0.5473 + }, + { + "start": 8491.3, + "end": 8493.0, + "probability": 0.8738 + }, + { + "start": 8493.82, + "end": 8496.97, + "probability": 0.8267 + }, + { + "start": 8498.12, + "end": 8499.62, + "probability": 0.8722 + }, + { + "start": 8499.68, + "end": 8500.42, + "probability": 0.6328 + }, + { + "start": 8500.56, + "end": 8501.16, + "probability": 0.5532 + }, + { + "start": 8501.24, + "end": 8503.56, + "probability": 0.7986 + }, + { + "start": 8504.06, + "end": 8504.76, + "probability": 0.8049 + }, + { + "start": 8504.82, + "end": 8506.53, + "probability": 0.9324 + }, + { + "start": 8507.1, + "end": 8509.16, + "probability": 0.9486 + }, + { + "start": 8509.62, + "end": 8512.72, + "probability": 0.9595 + }, + { + "start": 8512.9, + "end": 8516.18, + "probability": 0.9808 + }, + { + "start": 8516.54, + "end": 8518.06, + "probability": 0.9968 + }, + { + "start": 8518.46, + "end": 8520.92, + "probability": 0.9251 + }, + { + "start": 8521.42, + "end": 8527.36, + "probability": 0.9375 + }, + { + "start": 8527.82, + "end": 8528.92, + "probability": 0.8488 + }, + { + "start": 8529.06, + "end": 8530.72, + "probability": 0.9571 + }, + { + "start": 8530.9, + "end": 8533.12, + "probability": 0.7314 + }, + { + "start": 8533.64, + "end": 8534.24, + "probability": 0.6565 + }, + { + "start": 8534.32, + "end": 8536.64, + "probability": 0.8711 + }, + { + "start": 8536.96, + "end": 8539.88, + "probability": 0.9282 + }, + { + "start": 8540.1, + "end": 8540.98, + "probability": 0.951 + }, + { + "start": 8541.3, + "end": 8542.3, + "probability": 0.8271 + }, + { + "start": 8543.08, + "end": 8543.68, + "probability": 0.9702 + }, + { + "start": 8543.84, + "end": 8545.64, + "probability": 0.9941 + }, + { + "start": 8546.1, + "end": 8548.32, + "probability": 0.7747 + }, + { + "start": 8548.8, + "end": 8549.38, + "probability": 0.8591 + }, + { + "start": 8549.44, + "end": 8550.32, + "probability": 0.9145 + }, + { + "start": 8550.5, + "end": 8552.4, + "probability": 0.5974 + }, + { + "start": 8552.5, + "end": 8553.76, + "probability": 0.9569 + }, + { + "start": 8554.29, + "end": 8558.72, + "probability": 0.7077 + }, + { + "start": 8559.28, + "end": 8561.44, + "probability": 0.9381 + }, + { + "start": 8561.64, + "end": 8562.1, + "probability": 0.8083 + }, + { + "start": 8562.42, + "end": 8564.55, + "probability": 0.8826 + }, + { + "start": 8564.94, + "end": 8565.22, + "probability": 0.5843 + }, + { + "start": 8565.28, + "end": 8566.0, + "probability": 0.8593 + }, + { + "start": 8566.1, + "end": 8571.32, + "probability": 0.8896 + }, + { + "start": 8571.54, + "end": 8573.42, + "probability": 0.6781 + }, + { + "start": 8573.72, + "end": 8575.72, + "probability": 0.974 + }, + { + "start": 8576.12, + "end": 8581.02, + "probability": 0.9545 + }, + { + "start": 8581.18, + "end": 8583.32, + "probability": 0.9262 + }, + { + "start": 8587.1, + "end": 8588.64, + "probability": 0.6053 + }, + { + "start": 8591.18, + "end": 8593.8, + "probability": 0.7473 + }, + { + "start": 8593.88, + "end": 8595.76, + "probability": 0.7093 + }, + { + "start": 8595.94, + "end": 8596.76, + "probability": 0.9214 + }, + { + "start": 8596.96, + "end": 8600.72, + "probability": 0.9844 + }, + { + "start": 8600.72, + "end": 8605.02, + "probability": 0.9757 + }, + { + "start": 8605.62, + "end": 8605.74, + "probability": 0.014 + }, + { + "start": 8606.54, + "end": 8612.02, + "probability": 0.6734 + }, + { + "start": 8612.02, + "end": 8617.86, + "probability": 0.9762 + }, + { + "start": 8618.32, + "end": 8619.46, + "probability": 0.9019 + }, + { + "start": 8619.52, + "end": 8621.56, + "probability": 0.7457 + }, + { + "start": 8621.82, + "end": 8622.5, + "probability": 0.5649 + }, + { + "start": 8622.64, + "end": 8628.1, + "probability": 0.9922 + }, + { + "start": 8628.14, + "end": 8629.56, + "probability": 0.6992 + }, + { + "start": 8629.7, + "end": 8631.1, + "probability": 0.8749 + }, + { + "start": 8631.78, + "end": 8635.16, + "probability": 0.6749 + }, + { + "start": 8635.16, + "end": 8639.12, + "probability": 0.965 + }, + { + "start": 8639.64, + "end": 8641.7, + "probability": 0.8508 + }, + { + "start": 8642.12, + "end": 8645.66, + "probability": 0.9933 + }, + { + "start": 8646.32, + "end": 8649.28, + "probability": 0.9933 + }, + { + "start": 8649.28, + "end": 8652.18, + "probability": 0.9714 + }, + { + "start": 8652.64, + "end": 8656.26, + "probability": 0.9565 + }, + { + "start": 8656.9, + "end": 8663.7, + "probability": 0.9486 + }, + { + "start": 8664.54, + "end": 8665.4, + "probability": 0.7267 + }, + { + "start": 8665.72, + "end": 8669.14, + "probability": 0.9868 + }, + { + "start": 8669.66, + "end": 8671.54, + "probability": 0.9681 + }, + { + "start": 8672.1, + "end": 8678.1, + "probability": 0.9819 + }, + { + "start": 8678.72, + "end": 8682.32, + "probability": 0.9956 + }, + { + "start": 8682.78, + "end": 8683.46, + "probability": 0.9357 + }, + { + "start": 8683.94, + "end": 8686.4, + "probability": 0.8813 + }, + { + "start": 8686.88, + "end": 8689.74, + "probability": 0.9752 + }, + { + "start": 8690.32, + "end": 8691.64, + "probability": 0.9535 + }, + { + "start": 8691.8, + "end": 8693.32, + "probability": 0.947 + }, + { + "start": 8693.7, + "end": 8695.62, + "probability": 0.8157 + }, + { + "start": 8696.22, + "end": 8701.08, + "probability": 0.9911 + }, + { + "start": 8701.86, + "end": 8708.36, + "probability": 0.9937 + }, + { + "start": 8708.74, + "end": 8711.84, + "probability": 0.995 + }, + { + "start": 8712.24, + "end": 8715.6, + "probability": 0.905 + }, + { + "start": 8715.6, + "end": 8719.24, + "probability": 0.9986 + }, + { + "start": 8720.2, + "end": 8724.84, + "probability": 0.9877 + }, + { + "start": 8725.06, + "end": 8726.74, + "probability": 0.9824 + }, + { + "start": 8727.12, + "end": 8728.3, + "probability": 0.9391 + }, + { + "start": 8728.52, + "end": 8729.68, + "probability": 0.8166 + }, + { + "start": 8729.8, + "end": 8731.3, + "probability": 0.7356 + }, + { + "start": 8731.74, + "end": 8733.78, + "probability": 0.9744 + }, + { + "start": 8733.84, + "end": 8735.3, + "probability": 0.9364 + }, + { + "start": 8735.46, + "end": 8736.3, + "probability": 0.9705 + }, + { + "start": 8736.58, + "end": 8737.98, + "probability": 0.9691 + }, + { + "start": 8738.46, + "end": 8744.0, + "probability": 0.9856 + }, + { + "start": 8744.74, + "end": 8747.5, + "probability": 0.9832 + }, + { + "start": 8747.5, + "end": 8751.5, + "probability": 0.87 + }, + { + "start": 8752.14, + "end": 8753.96, + "probability": 0.6939 + }, + { + "start": 8755.46, + "end": 8760.7, + "probability": 0.955 + }, + { + "start": 8761.1, + "end": 8763.04, + "probability": 0.6654 + }, + { + "start": 8763.56, + "end": 8766.6, + "probability": 0.9862 + }, + { + "start": 8766.6, + "end": 8770.06, + "probability": 0.9993 + }, + { + "start": 8770.66, + "end": 8774.94, + "probability": 0.9933 + }, + { + "start": 8774.94, + "end": 8779.24, + "probability": 0.9961 + }, + { + "start": 8779.84, + "end": 8784.1, + "probability": 0.9961 + }, + { + "start": 8784.1, + "end": 8789.52, + "probability": 0.9858 + }, + { + "start": 8790.34, + "end": 8796.84, + "probability": 0.9919 + }, + { + "start": 8797.58, + "end": 8801.74, + "probability": 0.9934 + }, + { + "start": 8802.38, + "end": 8806.8, + "probability": 0.9846 + }, + { + "start": 8807.42, + "end": 8809.52, + "probability": 0.8915 + }, + { + "start": 8809.98, + "end": 8812.6, + "probability": 0.9828 + }, + { + "start": 8812.92, + "end": 8815.34, + "probability": 0.9765 + }, + { + "start": 8815.88, + "end": 8818.42, + "probability": 0.8148 + }, + { + "start": 8818.98, + "end": 8822.74, + "probability": 0.9707 + }, + { + "start": 8823.82, + "end": 8831.02, + "probability": 0.9549 + }, + { + "start": 8832.54, + "end": 8837.94, + "probability": 0.748 + }, + { + "start": 8838.66, + "end": 8841.82, + "probability": 0.5393 + }, + { + "start": 8841.86, + "end": 8846.38, + "probability": 0.9338 + }, + { + "start": 8846.38, + "end": 8849.72, + "probability": 0.9936 + }, + { + "start": 8849.8, + "end": 8850.52, + "probability": 0.3676 + }, + { + "start": 8850.52, + "end": 8852.02, + "probability": 0.9409 + }, + { + "start": 8853.48, + "end": 8854.12, + "probability": 0.3103 + }, + { + "start": 8854.12, + "end": 8856.07, + "probability": 0.3867 + }, + { + "start": 8856.3, + "end": 8860.56, + "probability": 0.6719 + }, + { + "start": 8861.4, + "end": 8864.88, + "probability": 0.9889 + }, + { + "start": 8865.14, + "end": 8867.3, + "probability": 0.9908 + }, + { + "start": 8867.3, + "end": 8871.78, + "probability": 0.9844 + }, + { + "start": 8872.36, + "end": 8875.52, + "probability": 0.7852 + }, + { + "start": 8875.72, + "end": 8877.24, + "probability": 0.6355 + }, + { + "start": 8877.6, + "end": 8879.92, + "probability": 0.9466 + }, + { + "start": 8880.18, + "end": 8881.0, + "probability": 0.9219 + }, + { + "start": 8881.26, + "end": 8885.4, + "probability": 0.9862 + }, + { + "start": 8885.66, + "end": 8887.76, + "probability": 0.9785 + }, + { + "start": 8888.2, + "end": 8891.12, + "probability": 0.9482 + }, + { + "start": 8891.12, + "end": 8896.38, + "probability": 0.9985 + }, + { + "start": 8897.0, + "end": 8900.12, + "probability": 0.8414 + }, + { + "start": 8900.12, + "end": 8904.2, + "probability": 0.9972 + }, + { + "start": 8904.96, + "end": 8909.76, + "probability": 0.9865 + }, + { + "start": 8910.18, + "end": 8913.84, + "probability": 0.8303 + }, + { + "start": 8913.84, + "end": 8917.26, + "probability": 0.9856 + }, + { + "start": 8917.9, + "end": 8919.8, + "probability": 0.9887 + }, + { + "start": 8920.38, + "end": 8920.86, + "probability": 0.9129 + }, + { + "start": 8921.68, + "end": 8925.94, + "probability": 0.9949 + }, + { + "start": 8926.4, + "end": 8932.36, + "probability": 0.9941 + }, + { + "start": 8932.36, + "end": 8937.54, + "probability": 0.9967 + }, + { + "start": 8938.48, + "end": 8943.42, + "probability": 0.9756 + }, + { + "start": 8943.88, + "end": 8948.3, + "probability": 0.9774 + }, + { + "start": 8948.96, + "end": 8949.82, + "probability": 0.6501 + }, + { + "start": 8950.18, + "end": 8954.8, + "probability": 0.9626 + }, + { + "start": 8954.8, + "end": 8959.54, + "probability": 0.9257 + }, + { + "start": 8960.0, + "end": 8964.02, + "probability": 0.9362 + }, + { + "start": 8965.42, + "end": 8969.64, + "probability": 0.8656 + }, + { + "start": 8970.18, + "end": 8970.74, + "probability": 0.7298 + }, + { + "start": 8971.22, + "end": 8974.36, + "probability": 0.9884 + }, + { + "start": 8974.36, + "end": 8978.96, + "probability": 0.9515 + }, + { + "start": 8979.76, + "end": 8980.36, + "probability": 0.6804 + }, + { + "start": 8980.5, + "end": 8981.83, + "probability": 0.7973 + }, + { + "start": 8982.02, + "end": 8982.9, + "probability": 0.8352 + }, + { + "start": 8982.94, + "end": 8984.02, + "probability": 0.6853 + }, + { + "start": 8984.06, + "end": 8988.38, + "probability": 0.9736 + }, + { + "start": 8988.82, + "end": 8989.68, + "probability": 0.95 + }, + { + "start": 8990.26, + "end": 8995.14, + "probability": 0.9585 + }, + { + "start": 8995.86, + "end": 8998.8, + "probability": 0.7542 + }, + { + "start": 8998.88, + "end": 9000.38, + "probability": 0.8246 + }, + { + "start": 9000.44, + "end": 9004.32, + "probability": 0.9002 + }, + { + "start": 9004.84, + "end": 9006.86, + "probability": 0.9457 + }, + { + "start": 9009.62, + "end": 9010.08, + "probability": 0.2085 + }, + { + "start": 9010.16, + "end": 9011.98, + "probability": 0.7778 + }, + { + "start": 9012.1, + "end": 9014.32, + "probability": 0.5499 + }, + { + "start": 9014.36, + "end": 9015.58, + "probability": 0.9003 + }, + { + "start": 9015.64, + "end": 9016.88, + "probability": 0.7547 + }, + { + "start": 9016.98, + "end": 9019.36, + "probability": 0.7686 + }, + { + "start": 9019.42, + "end": 9022.04, + "probability": 0.8021 + }, + { + "start": 9022.72, + "end": 9024.74, + "probability": 0.7116 + }, + { + "start": 9025.36, + "end": 9026.38, + "probability": 0.7009 + }, + { + "start": 9027.12, + "end": 9033.1, + "probability": 0.8605 + }, + { + "start": 9033.2, + "end": 9034.18, + "probability": 0.9497 + }, + { + "start": 9034.72, + "end": 9035.28, + "probability": 0.4493 + }, + { + "start": 9035.34, + "end": 9038.0, + "probability": 0.828 + }, + { + "start": 9038.66, + "end": 9040.84, + "probability": 0.9795 + }, + { + "start": 9041.66, + "end": 9044.2, + "probability": 0.9084 + }, + { + "start": 9044.84, + "end": 9048.6, + "probability": 0.5607 + }, + { + "start": 9048.6, + "end": 9050.5, + "probability": 0.4437 + }, + { + "start": 9054.89, + "end": 9056.6, + "probability": 0.0198 + }, + { + "start": 9066.96, + "end": 9067.68, + "probability": 0.1139 + }, + { + "start": 9067.68, + "end": 9068.9, + "probability": 0.3623 + }, + { + "start": 9069.54, + "end": 9071.18, + "probability": 0.7513 + }, + { + "start": 9071.3, + "end": 9073.52, + "probability": 0.9807 + }, + { + "start": 9073.52, + "end": 9076.6, + "probability": 0.8023 + }, + { + "start": 9076.98, + "end": 9078.92, + "probability": 0.537 + }, + { + "start": 9079.38, + "end": 9079.42, + "probability": 0.007 + }, + { + "start": 9094.78, + "end": 9095.75, + "probability": 0.0106 + }, + { + "start": 9095.9, + "end": 9096.36, + "probability": 0.0532 + }, + { + "start": 9096.36, + "end": 9096.36, + "probability": 0.2265 + }, + { + "start": 9096.36, + "end": 9097.2, + "probability": 0.2084 + }, + { + "start": 9097.82, + "end": 9099.88, + "probability": 0.6484 + }, + { + "start": 9099.88, + "end": 9103.78, + "probability": 0.7262 + }, + { + "start": 9104.44, + "end": 9106.62, + "probability": 0.8392 + }, + { + "start": 9106.8, + "end": 9108.66, + "probability": 0.9905 + }, + { + "start": 9109.34, + "end": 9112.66, + "probability": 0.8579 + }, + { + "start": 9114.76, + "end": 9116.3, + "probability": 0.2426 + }, + { + "start": 9119.42, + "end": 9120.14, + "probability": 0.0225 + }, + { + "start": 9120.14, + "end": 9120.64, + "probability": 0.2118 + }, + { + "start": 9120.86, + "end": 9121.92, + "probability": 0.6269 + }, + { + "start": 9122.8, + "end": 9126.08, + "probability": 0.9979 + }, + { + "start": 9126.2, + "end": 9130.7, + "probability": 0.993 + }, + { + "start": 9130.7, + "end": 9134.74, + "probability": 0.8867 + }, + { + "start": 9135.16, + "end": 9138.76, + "probability": 0.9071 + }, + { + "start": 9139.06, + "end": 9141.24, + "probability": 0.9966 + }, + { + "start": 9141.62, + "end": 9142.4, + "probability": 0.7779 + }, + { + "start": 9142.58, + "end": 9144.82, + "probability": 0.9969 + }, + { + "start": 9145.32, + "end": 9150.26, + "probability": 0.9966 + }, + { + "start": 9150.36, + "end": 9151.94, + "probability": 0.8315 + }, + { + "start": 9153.04, + "end": 9158.96, + "probability": 0.9644 + }, + { + "start": 9159.66, + "end": 9162.04, + "probability": 0.7769 + }, + { + "start": 9162.46, + "end": 9167.24, + "probability": 0.9978 + }, + { + "start": 9167.8, + "end": 9170.24, + "probability": 0.9374 + }, + { + "start": 9171.31, + "end": 9174.2, + "probability": 0.9895 + }, + { + "start": 9174.2, + "end": 9178.04, + "probability": 0.9979 + }, + { + "start": 9178.22, + "end": 9178.84, + "probability": 0.6006 + }, + { + "start": 9178.86, + "end": 9181.7, + "probability": 0.8354 + }, + { + "start": 9182.34, + "end": 9182.98, + "probability": 0.4234 + }, + { + "start": 9183.14, + "end": 9183.94, + "probability": 0.9168 + }, + { + "start": 9184.48, + "end": 9188.98, + "probability": 0.9412 + }, + { + "start": 9188.98, + "end": 9194.66, + "probability": 0.9579 + }, + { + "start": 9195.26, + "end": 9195.98, + "probability": 0.9041 + }, + { + "start": 9196.1, + "end": 9199.22, + "probability": 0.9878 + }, + { + "start": 9199.52, + "end": 9201.14, + "probability": 0.7301 + }, + { + "start": 9201.5, + "end": 9204.48, + "probability": 0.7023 + }, + { + "start": 9204.84, + "end": 9205.58, + "probability": 0.7297 + }, + { + "start": 9205.68, + "end": 9207.72, + "probability": 0.8913 + }, + { + "start": 9208.04, + "end": 9209.46, + "probability": 0.9507 + }, + { + "start": 9209.46, + "end": 9211.15, + "probability": 0.9867 + }, + { + "start": 9211.48, + "end": 9216.72, + "probability": 0.7982 + }, + { + "start": 9217.18, + "end": 9217.58, + "probability": 0.6481 + }, + { + "start": 9217.7, + "end": 9219.38, + "probability": 0.8531 + }, + { + "start": 9219.46, + "end": 9221.76, + "probability": 0.405 + }, + { + "start": 9222.08, + "end": 9224.45, + "probability": 0.9967 + }, + { + "start": 9224.62, + "end": 9226.72, + "probability": 0.9968 + }, + { + "start": 9226.9, + "end": 9227.42, + "probability": 0.8037 + }, + { + "start": 9227.7, + "end": 9228.36, + "probability": 0.3421 + }, + { + "start": 9228.86, + "end": 9231.96, + "probability": 0.6643 + }, + { + "start": 9232.74, + "end": 9235.26, + "probability": 0.9954 + }, + { + "start": 9236.34, + "end": 9239.6, + "probability": 0.9015 + }, + { + "start": 9239.64, + "end": 9241.64, + "probability": 0.9855 + }, + { + "start": 9241.64, + "end": 9244.06, + "probability": 0.9965 + }, + { + "start": 9244.2, + "end": 9245.53, + "probability": 0.9958 + }, + { + "start": 9246.4, + "end": 9247.44, + "probability": 0.5254 + }, + { + "start": 9247.58, + "end": 9249.88, + "probability": 0.9556 + }, + { + "start": 9250.26, + "end": 9251.16, + "probability": 0.549 + }, + { + "start": 9251.24, + "end": 9253.3, + "probability": 0.9362 + }, + { + "start": 9253.62, + "end": 9255.0, + "probability": 0.844 + }, + { + "start": 9256.44, + "end": 9259.22, + "probability": 0.7378 + }, + { + "start": 9259.76, + "end": 9260.9, + "probability": 0.7358 + }, + { + "start": 9261.04, + "end": 9262.74, + "probability": 0.9756 + }, + { + "start": 9263.62, + "end": 9266.38, + "probability": 0.7088 + }, + { + "start": 9266.5, + "end": 9268.12, + "probability": 0.5552 + }, + { + "start": 9268.48, + "end": 9269.34, + "probability": 0.7478 + }, + { + "start": 9269.58, + "end": 9273.5, + "probability": 0.9053 + }, + { + "start": 9274.26, + "end": 9276.8, + "probability": 0.9888 + }, + { + "start": 9277.24, + "end": 9279.68, + "probability": 0.7871 + }, + { + "start": 9292.58, + "end": 9293.14, + "probability": 0.4047 + }, + { + "start": 9294.36, + "end": 9298.22, + "probability": 0.4914 + }, + { + "start": 9298.22, + "end": 9299.5, + "probability": 0.7441 + }, + { + "start": 9300.32, + "end": 9300.88, + "probability": 0.8123 + }, + { + "start": 9301.4, + "end": 9304.06, + "probability": 0.9458 + }, + { + "start": 9305.64, + "end": 9306.08, + "probability": 0.6168 + }, + { + "start": 9309.78, + "end": 9310.7, + "probability": 0.15 + }, + { + "start": 9312.16, + "end": 9315.02, + "probability": 0.3494 + }, + { + "start": 9316.56, + "end": 9318.6, + "probability": 0.7364 + }, + { + "start": 9319.82, + "end": 9325.54, + "probability": 0.9648 + }, + { + "start": 9325.54, + "end": 9332.5, + "probability": 0.9658 + }, + { + "start": 9333.82, + "end": 9338.57, + "probability": 0.9673 + }, + { + "start": 9338.8, + "end": 9344.18, + "probability": 0.9592 + }, + { + "start": 9344.9, + "end": 9349.24, + "probability": 0.9967 + }, + { + "start": 9349.86, + "end": 9357.12, + "probability": 0.9692 + }, + { + "start": 9358.44, + "end": 9369.52, + "probability": 0.9664 + }, + { + "start": 9369.52, + "end": 9379.08, + "probability": 0.9893 + }, + { + "start": 9379.66, + "end": 9383.32, + "probability": 0.9912 + }, + { + "start": 9383.84, + "end": 9388.76, + "probability": 0.9348 + }, + { + "start": 9389.76, + "end": 9390.32, + "probability": 0.6878 + }, + { + "start": 9390.94, + "end": 9394.68, + "probability": 0.9739 + }, + { + "start": 9395.76, + "end": 9402.48, + "probability": 0.9931 + }, + { + "start": 9403.02, + "end": 9410.6, + "probability": 0.9639 + }, + { + "start": 9411.78, + "end": 9419.11, + "probability": 0.9923 + }, + { + "start": 9420.36, + "end": 9424.22, + "probability": 0.9619 + }, + { + "start": 9424.94, + "end": 9429.66, + "probability": 0.978 + }, + { + "start": 9430.18, + "end": 9436.7, + "probability": 0.9866 + }, + { + "start": 9436.7, + "end": 9443.06, + "probability": 0.9964 + }, + { + "start": 9444.0, + "end": 9445.98, + "probability": 0.4082 + }, + { + "start": 9446.9, + "end": 9449.72, + "probability": 0.8551 + }, + { + "start": 9450.32, + "end": 9454.78, + "probability": 0.9771 + }, + { + "start": 9455.06, + "end": 9459.96, + "probability": 0.9945 + }, + { + "start": 9459.96, + "end": 9460.52, + "probability": 0.844 + }, + { + "start": 9461.92, + "end": 9465.22, + "probability": 0.9897 + }, + { + "start": 9465.46, + "end": 9467.58, + "probability": 0.9926 + }, + { + "start": 9467.72, + "end": 9468.54, + "probability": 0.4416 + }, + { + "start": 9470.5, + "end": 9471.44, + "probability": 0.8623 + }, + { + "start": 9471.58, + "end": 9473.54, + "probability": 0.7902 + }, + { + "start": 9473.98, + "end": 9474.66, + "probability": 0.6563 + }, + { + "start": 9474.7, + "end": 9476.7, + "probability": 0.991 + }, + { + "start": 9481.1, + "end": 9486.02, + "probability": 0.978 + }, + { + "start": 9492.16, + "end": 9492.82, + "probability": 0.5492 + }, + { + "start": 9493.12, + "end": 9496.12, + "probability": 0.9917 + }, + { + "start": 9497.1, + "end": 9500.14, + "probability": 0.8652 + }, + { + "start": 9501.56, + "end": 9506.64, + "probability": 0.0415 + }, + { + "start": 9508.24, + "end": 9511.32, + "probability": 0.7113 + }, + { + "start": 9513.54, + "end": 9522.62, + "probability": 0.9009 + }, + { + "start": 9525.08, + "end": 9528.64, + "probability": 0.9971 + }, + { + "start": 9529.36, + "end": 9530.92, + "probability": 0.8912 + }, + { + "start": 9532.42, + "end": 9533.36, + "probability": 0.9324 + }, + { + "start": 9537.36, + "end": 9540.76, + "probability": 0.9905 + }, + { + "start": 9540.76, + "end": 9543.96, + "probability": 0.9336 + }, + { + "start": 9544.1, + "end": 9545.66, + "probability": 0.6699 + }, + { + "start": 9546.08, + "end": 9550.12, + "probability": 0.7535 + }, + { + "start": 9551.48, + "end": 9555.42, + "probability": 0.7335 + }, + { + "start": 9558.18, + "end": 9562.3, + "probability": 0.8875 + }, + { + "start": 9564.12, + "end": 9566.64, + "probability": 0.9531 + }, + { + "start": 9567.54, + "end": 9575.26, + "probability": 0.9111 + }, + { + "start": 9576.6, + "end": 9578.0, + "probability": 0.6545 + }, + { + "start": 9579.28, + "end": 9580.76, + "probability": 0.7688 + }, + { + "start": 9582.16, + "end": 9583.34, + "probability": 0.8595 + }, + { + "start": 9583.34, + "end": 9584.52, + "probability": 0.9407 + }, + { + "start": 9586.58, + "end": 9590.22, + "probability": 0.9693 + }, + { + "start": 9594.76, + "end": 9599.8, + "probability": 0.4782 + }, + { + "start": 9601.68, + "end": 9604.98, + "probability": 0.8315 + }, + { + "start": 9605.6, + "end": 9614.82, + "probability": 0.8056 + }, + { + "start": 9614.92, + "end": 9617.94, + "probability": 0.5772 + }, + { + "start": 9618.04, + "end": 9619.24, + "probability": 0.9526 + }, + { + "start": 9619.82, + "end": 9621.34, + "probability": 0.6967 + }, + { + "start": 9621.38, + "end": 9622.72, + "probability": 0.7113 + }, + { + "start": 9623.12, + "end": 9623.6, + "probability": 0.4856 + }, + { + "start": 9623.6, + "end": 9623.62, + "probability": 0.1385 + }, + { + "start": 9623.86, + "end": 9624.06, + "probability": 0.5343 + }, + { + "start": 9624.06, + "end": 9624.83, + "probability": 0.5228 + }, + { + "start": 9625.4, + "end": 9632.38, + "probability": 0.9786 + }, + { + "start": 9633.22, + "end": 9637.36, + "probability": 0.8199 + }, + { + "start": 9637.8, + "end": 9644.62, + "probability": 0.8754 + }, + { + "start": 9645.1, + "end": 9647.3, + "probability": 0.9863 + }, + { + "start": 9647.3, + "end": 9648.84, + "probability": 0.8945 + }, + { + "start": 9649.14, + "end": 9649.9, + "probability": 0.7026 + }, + { + "start": 9649.98, + "end": 9650.48, + "probability": 0.9597 + }, + { + "start": 9650.84, + "end": 9657.82, + "probability": 0.9922 + }, + { + "start": 9658.94, + "end": 9660.7, + "probability": 0.9119 + }, + { + "start": 9661.42, + "end": 9663.64, + "probability": 0.9493 + }, + { + "start": 9663.64, + "end": 9666.48, + "probability": 0.9685 + }, + { + "start": 9667.12, + "end": 9669.92, + "probability": 0.7788 + }, + { + "start": 9670.06, + "end": 9673.68, + "probability": 0.8436 + }, + { + "start": 9674.92, + "end": 9676.92, + "probability": 0.9674 + }, + { + "start": 9681.84, + "end": 9682.68, + "probability": 0.6393 + }, + { + "start": 9683.5, + "end": 9684.24, + "probability": 0.8405 + }, + { + "start": 9685.5, + "end": 9686.76, + "probability": 0.6188 + }, + { + "start": 9687.04, + "end": 9687.84, + "probability": 0.4754 + }, + { + "start": 9688.06, + "end": 9688.82, + "probability": 0.8355 + }, + { + "start": 9689.14, + "end": 9690.12, + "probability": 0.6959 + }, + { + "start": 9691.04, + "end": 9695.34, + "probability": 0.9141 + }, + { + "start": 9696.24, + "end": 9696.86, + "probability": 0.999 + }, + { + "start": 9697.42, + "end": 9701.92, + "probability": 0.9951 + }, + { + "start": 9702.78, + "end": 9704.54, + "probability": 0.5209 + }, + { + "start": 9708.16, + "end": 9710.16, + "probability": 0.6612 + }, + { + "start": 9711.22, + "end": 9712.1, + "probability": 0.7252 + }, + { + "start": 9712.22, + "end": 9713.88, + "probability": 0.9259 + }, + { + "start": 9714.5, + "end": 9717.36, + "probability": 0.9952 + }, + { + "start": 9718.04, + "end": 9722.54, + "probability": 0.9267 + }, + { + "start": 9723.98, + "end": 9725.4, + "probability": 0.5045 + }, + { + "start": 9725.94, + "end": 9730.12, + "probability": 0.5475 + }, + { + "start": 9730.88, + "end": 9733.2, + "probability": 0.9563 + }, + { + "start": 9733.8, + "end": 9735.7, + "probability": 0.9963 + }, + { + "start": 9737.72, + "end": 9738.9, + "probability": 0.8601 + }, + { + "start": 9738.98, + "end": 9739.22, + "probability": 0.5868 + }, + { + "start": 9739.34, + "end": 9741.38, + "probability": 0.9851 + }, + { + "start": 9741.96, + "end": 9746.78, + "probability": 0.9115 + }, + { + "start": 9747.24, + "end": 9748.41, + "probability": 0.9927 + }, + { + "start": 9749.6, + "end": 9753.9, + "probability": 0.9961 + }, + { + "start": 9754.9, + "end": 9755.62, + "probability": 0.6434 + }, + { + "start": 9757.0, + "end": 9758.18, + "probability": 0.738 + }, + { + "start": 9758.34, + "end": 9759.46, + "probability": 0.8862 + }, + { + "start": 9760.18, + "end": 9763.16, + "probability": 0.9867 + }, + { + "start": 9763.94, + "end": 9765.88, + "probability": 0.8136 + }, + { + "start": 9767.04, + "end": 9768.56, + "probability": 0.6222 + }, + { + "start": 9769.88, + "end": 9770.5, + "probability": 0.1454 + }, + { + "start": 9770.5, + "end": 9772.46, + "probability": 0.7127 + }, + { + "start": 9773.22, + "end": 9777.82, + "probability": 0.8588 + }, + { + "start": 9779.74, + "end": 9783.22, + "probability": 0.7502 + }, + { + "start": 9784.4, + "end": 9784.96, + "probability": 0.1021 + }, + { + "start": 9785.48, + "end": 9793.2, + "probability": 0.1475 + }, + { + "start": 9793.9, + "end": 9795.16, + "probability": 0.0771 + }, + { + "start": 9796.56, + "end": 9801.74, + "probability": 0.0543 + }, + { + "start": 9801.74, + "end": 9802.4, + "probability": 0.0799 + }, + { + "start": 9805.06, + "end": 9810.22, + "probability": 0.0245 + }, + { + "start": 9810.22, + "end": 9812.76, + "probability": 0.0651 + }, + { + "start": 9814.26, + "end": 9817.28, + "probability": 0.0854 + }, + { + "start": 9818.5, + "end": 9822.84, + "probability": 0.2074 + }, + { + "start": 9822.92, + "end": 9824.48, + "probability": 0.0925 + }, + { + "start": 9824.48, + "end": 9824.48, + "probability": 0.1176 + }, + { + "start": 9824.48, + "end": 9824.48, + "probability": 0.3875 + }, + { + "start": 9824.48, + "end": 9825.64, + "probability": 0.5469 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.0, + "end": 9862.0, + "probability": 0.0 + }, + { + "start": 9862.94, + "end": 9862.96, + "probability": 0.1723 + }, + { + "start": 9862.96, + "end": 9862.96, + "probability": 0.1431 + }, + { + "start": 9862.96, + "end": 9863.55, + "probability": 0.7651 + }, + { + "start": 9864.14, + "end": 9865.5, + "probability": 0.6237 + }, + { + "start": 9867.21, + "end": 9868.94, + "probability": 0.8737 + }, + { + "start": 9869.06, + "end": 9871.65, + "probability": 0.9016 + }, + { + "start": 9872.1, + "end": 9874.48, + "probability": 0.1037 + }, + { + "start": 9874.88, + "end": 9877.68, + "probability": 0.0254 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.0, + "end": 9993.0, + "probability": 0.0 + }, + { + "start": 9993.14, + "end": 9993.3, + "probability": 0.0453 + }, + { + "start": 9993.3, + "end": 9993.3, + "probability": 0.0549 + }, + { + "start": 9993.3, + "end": 9994.38, + "probability": 0.0844 + }, + { + "start": 9994.68, + "end": 9996.04, + "probability": 0.1735 + }, + { + "start": 9996.28, + "end": 9999.78, + "probability": 0.6553 + }, + { + "start": 9999.86, + "end": 10002.92, + "probability": 0.9396 + }, + { + "start": 10003.36, + "end": 10004.7, + "probability": 0.9853 + }, + { + "start": 10005.9, + "end": 10008.68, + "probability": 0.9272 + }, + { + "start": 10008.78, + "end": 10012.12, + "probability": 0.8938 + }, + { + "start": 10012.26, + "end": 10014.4, + "probability": 0.958 + }, + { + "start": 10014.98, + "end": 10015.7, + "probability": 0.6904 + }, + { + "start": 10017.4, + "end": 10018.86, + "probability": 0.7617 + }, + { + "start": 10019.72, + "end": 10022.36, + "probability": 0.5978 + }, + { + "start": 10022.68, + "end": 10023.78, + "probability": 0.7196 + }, + { + "start": 10025.98, + "end": 10029.28, + "probability": 0.2957 + }, + { + "start": 10029.6, + "end": 10030.04, + "probability": 0.3503 + }, + { + "start": 10030.6, + "end": 10032.08, + "probability": 0.048 + }, + { + "start": 10037.22, + "end": 10037.86, + "probability": 0.6772 + }, + { + "start": 10038.0, + "end": 10038.84, + "probability": 0.6498 + }, + { + "start": 10038.86, + "end": 10039.7, + "probability": 0.4911 + }, + { + "start": 10039.92, + "end": 10040.28, + "probability": 0.5319 + }, + { + "start": 10040.38, + "end": 10041.26, + "probability": 0.9506 + }, + { + "start": 10041.36, + "end": 10041.87, + "probability": 0.7559 + }, + { + "start": 10042.28, + "end": 10043.5, + "probability": 0.816 + }, + { + "start": 10043.72, + "end": 10044.46, + "probability": 0.7737 + }, + { + "start": 10044.46, + "end": 10048.14, + "probability": 0.9574 + }, + { + "start": 10048.74, + "end": 10051.04, + "probability": 0.9537 + }, + { + "start": 10052.16, + "end": 10052.92, + "probability": 0.6929 + }, + { + "start": 10052.94, + "end": 10054.27, + "probability": 0.8996 + }, + { + "start": 10056.12, + "end": 10058.94, + "probability": 0.9932 + }, + { + "start": 10059.88, + "end": 10063.68, + "probability": 0.7983 + }, + { + "start": 10063.8, + "end": 10064.38, + "probability": 0.3557 + }, + { + "start": 10065.98, + "end": 10067.1, + "probability": 0.7938 + }, + { + "start": 10068.06, + "end": 10069.12, + "probability": 0.8664 + }, + { + "start": 10069.6, + "end": 10070.36, + "probability": 0.636 + }, + { + "start": 10070.4, + "end": 10070.68, + "probability": 0.6674 + }, + { + "start": 10070.78, + "end": 10071.56, + "probability": 0.674 + }, + { + "start": 10071.72, + "end": 10072.94, + "probability": 0.7129 + }, + { + "start": 10073.0, + "end": 10073.48, + "probability": 0.8961 + }, + { + "start": 10073.52, + "end": 10074.14, + "probability": 0.6425 + }, + { + "start": 10074.32, + "end": 10075.36, + "probability": 0.9688 + }, + { + "start": 10076.0, + "end": 10077.18, + "probability": 0.8835 + }, + { + "start": 10077.5, + "end": 10078.5, + "probability": 0.8836 + }, + { + "start": 10078.72, + "end": 10079.8, + "probability": 0.434 + }, + { + "start": 10080.88, + "end": 10082.28, + "probability": 0.011 + }, + { + "start": 10082.32, + "end": 10082.32, + "probability": 0.0898 + }, + { + "start": 10082.32, + "end": 10083.06, + "probability": 0.2664 + }, + { + "start": 10084.77, + "end": 10087.08, + "probability": 0.9399 + }, + { + "start": 10087.16, + "end": 10091.52, + "probability": 0.7625 + }, + { + "start": 10092.6, + "end": 10093.8, + "probability": 0.8611 + }, + { + "start": 10093.92, + "end": 10094.76, + "probability": 0.3988 + }, + { + "start": 10095.24, + "end": 10100.3, + "probability": 0.92 + }, + { + "start": 10101.36, + "end": 10103.6, + "probability": 0.8148 + }, + { + "start": 10103.7, + "end": 10104.2, + "probability": 0.7029 + }, + { + "start": 10105.7, + "end": 10107.61, + "probability": 0.9781 + }, + { + "start": 10108.36, + "end": 10109.94, + "probability": 0.929 + }, + { + "start": 10110.54, + "end": 10112.22, + "probability": 0.8616 + }, + { + "start": 10112.22, + "end": 10115.76, + "probability": 0.7571 + }, + { + "start": 10116.16, + "end": 10117.18, + "probability": 0.8673 + }, + { + "start": 10117.5, + "end": 10118.34, + "probability": 0.5811 + }, + { + "start": 10118.46, + "end": 10119.57, + "probability": 0.3923 + }, + { + "start": 10121.85, + "end": 10123.19, + "probability": 0.6543 + }, + { + "start": 10124.02, + "end": 10124.44, + "probability": 0.2049 + }, + { + "start": 10124.6, + "end": 10124.72, + "probability": 0.032 + }, + { + "start": 10124.72, + "end": 10125.35, + "probability": 0.6029 + }, + { + "start": 10125.52, + "end": 10125.68, + "probability": 0.6697 + }, + { + "start": 10125.78, + "end": 10126.83, + "probability": 0.3372 + }, + { + "start": 10127.84, + "end": 10128.54, + "probability": 0.342 + }, + { + "start": 10129.18, + "end": 10131.0, + "probability": 0.0506 + }, + { + "start": 10131.88, + "end": 10131.88, + "probability": 0.1682 + }, + { + "start": 10131.88, + "end": 10131.88, + "probability": 0.1238 + }, + { + "start": 10131.88, + "end": 10131.88, + "probability": 0.0278 + }, + { + "start": 10131.88, + "end": 10131.88, + "probability": 0.0165 + }, + { + "start": 10131.88, + "end": 10132.3, + "probability": 0.2969 + }, + { + "start": 10132.42, + "end": 10134.5, + "probability": 0.2293 + }, + { + "start": 10134.66, + "end": 10137.26, + "probability": 0.3262 + }, + { + "start": 10138.14, + "end": 10138.56, + "probability": 0.4574 + }, + { + "start": 10139.14, + "end": 10145.64, + "probability": 0.9048 + }, + { + "start": 10146.3, + "end": 10148.34, + "probability": 0.9389 + }, + { + "start": 10149.3, + "end": 10150.06, + "probability": 0.7488 + }, + { + "start": 10150.66, + "end": 10152.8, + "probability": 0.9694 + }, + { + "start": 10153.88, + "end": 10154.75, + "probability": 0.7166 + }, + { + "start": 10156.7, + "end": 10159.06, + "probability": 0.9875 + }, + { + "start": 10159.3, + "end": 10160.48, + "probability": 0.4597 + }, + { + "start": 10160.96, + "end": 10163.52, + "probability": 0.9478 + }, + { + "start": 10163.64, + "end": 10164.7, + "probability": 0.5664 + }, + { + "start": 10164.78, + "end": 10165.3, + "probability": 0.3795 + }, + { + "start": 10165.8, + "end": 10167.86, + "probability": 0.9067 + }, + { + "start": 10167.86, + "end": 10171.14, + "probability": 0.4857 + }, + { + "start": 10171.92, + "end": 10177.6, + "probability": 0.7365 + }, + { + "start": 10178.28, + "end": 10181.32, + "probability": 0.9927 + }, + { + "start": 10181.46, + "end": 10183.86, + "probability": 0.984 + }, + { + "start": 10184.12, + "end": 10185.84, + "probability": 0.9083 + }, + { + "start": 10185.98, + "end": 10187.54, + "probability": 0.6476 + }, + { + "start": 10187.96, + "end": 10189.18, + "probability": 0.6869 + }, + { + "start": 10189.26, + "end": 10192.5, + "probability": 0.7494 + }, + { + "start": 10193.18, + "end": 10195.76, + "probability": 0.6735 + }, + { + "start": 10196.42, + "end": 10199.3, + "probability": 0.8875 + }, + { + "start": 10200.24, + "end": 10202.54, + "probability": 0.6245 + }, + { + "start": 10203.06, + "end": 10204.48, + "probability": 0.9248 + }, + { + "start": 10205.84, + "end": 10209.62, + "probability": 0.9838 + }, + { + "start": 10210.1, + "end": 10211.74, + "probability": 0.7773 + }, + { + "start": 10211.94, + "end": 10212.74, + "probability": 0.668 + }, + { + "start": 10212.84, + "end": 10215.1, + "probability": 0.5887 + }, + { + "start": 10216.16, + "end": 10217.6, + "probability": 0.0024 + }, + { + "start": 10217.84, + "end": 10219.76, + "probability": 0.4263 + }, + { + "start": 10219.78, + "end": 10224.8, + "probability": 0.5731 + }, + { + "start": 10224.82, + "end": 10224.84, + "probability": 0.7346 + }, + { + "start": 10225.7, + "end": 10227.36, + "probability": 0.0802 + }, + { + "start": 10227.44, + "end": 10227.64, + "probability": 0.066 + }, + { + "start": 10227.72, + "end": 10228.44, + "probability": 0.4126 + }, + { + "start": 10228.56, + "end": 10229.84, + "probability": 0.7022 + }, + { + "start": 10230.22, + "end": 10232.12, + "probability": 0.2891 + }, + { + "start": 10232.14, + "end": 10233.24, + "probability": 0.7146 + }, + { + "start": 10233.72, + "end": 10235.92, + "probability": 0.2583 + }, + { + "start": 10237.86, + "end": 10238.28, + "probability": 0.6182 + }, + { + "start": 10238.42, + "end": 10241.76, + "probability": 0.5249 + }, + { + "start": 10242.82, + "end": 10244.12, + "probability": 0.9144 + }, + { + "start": 10244.2, + "end": 10246.08, + "probability": 0.7782 + }, + { + "start": 10246.24, + "end": 10249.7, + "probability": 0.9636 + }, + { + "start": 10249.98, + "end": 10253.24, + "probability": 0.9533 + }, + { + "start": 10253.48, + "end": 10253.83, + "probability": 0.7949 + }, + { + "start": 10254.28, + "end": 10254.76, + "probability": 0.6024 + }, + { + "start": 10255.92, + "end": 10260.2, + "probability": 0.5464 + }, + { + "start": 10260.4, + "end": 10260.88, + "probability": 0.9677 + }, + { + "start": 10261.22, + "end": 10261.86, + "probability": 0.7969 + }, + { + "start": 10263.04, + "end": 10265.34, + "probability": 0.4693 + }, + { + "start": 10266.6, + "end": 10268.4, + "probability": 0.3818 + }, + { + "start": 10269.72, + "end": 10270.4, + "probability": 0.4255 + }, + { + "start": 10270.96, + "end": 10273.3, + "probability": 0.1038 + }, + { + "start": 10274.12, + "end": 10275.6, + "probability": 0.0996 + }, + { + "start": 10276.74, + "end": 10277.42, + "probability": 0.1747 + }, + { + "start": 10277.94, + "end": 10282.12, + "probability": 0.0559 + }, + { + "start": 10282.12, + "end": 10283.74, + "probability": 0.5895 + }, + { + "start": 10283.82, + "end": 10284.92, + "probability": 0.2396 + }, + { + "start": 10285.1, + "end": 10285.92, + "probability": 0.4226 + }, + { + "start": 10286.36, + "end": 10292.02, + "probability": 0.2823 + }, + { + "start": 10295.02, + "end": 10297.88, + "probability": 0.6749 + }, + { + "start": 10299.04, + "end": 10300.88, + "probability": 0.1083 + }, + { + "start": 10302.02, + "end": 10304.5, + "probability": 0.1451 + }, + { + "start": 10329.0, + "end": 10329.0, + "probability": 0.0 + }, + { + "start": 10329.0, + "end": 10329.0, + "probability": 0.0 + }, + { + "start": 10329.0, + "end": 10329.0, + "probability": 0.0 + }, + { + "start": 10329.12, + "end": 10329.68, + "probability": 0.1724 + }, + { + "start": 10329.68, + "end": 10330.84, + "probability": 0.1225 + }, + { + "start": 10331.96, + "end": 10333.3, + "probability": 0.1622 + }, + { + "start": 10333.32, + "end": 10334.23, + "probability": 0.6702 + }, + { + "start": 10334.32, + "end": 10334.42, + "probability": 0.502 + }, + { + "start": 10334.42, + "end": 10336.58, + "probability": 0.7402 + }, + { + "start": 10337.92, + "end": 10340.06, + "probability": 0.573 + }, + { + "start": 10341.52, + "end": 10343.46, + "probability": 0.4322 + }, + { + "start": 10346.12, + "end": 10348.5, + "probability": 0.9162 + }, + { + "start": 10349.6, + "end": 10351.48, + "probability": 0.9941 + }, + { + "start": 10352.82, + "end": 10354.36, + "probability": 0.7308 + }, + { + "start": 10355.5, + "end": 10357.12, + "probability": 0.9398 + }, + { + "start": 10358.2, + "end": 10359.26, + "probability": 0.9951 + }, + { + "start": 10360.24, + "end": 10361.22, + "probability": 0.7445 + }, + { + "start": 10362.34, + "end": 10365.04, + "probability": 0.9915 + }, + { + "start": 10366.18, + "end": 10367.84, + "probability": 0.8203 + }, + { + "start": 10369.06, + "end": 10369.84, + "probability": 0.9765 + }, + { + "start": 10373.26, + "end": 10376.56, + "probability": 0.701 + }, + { + "start": 10377.28, + "end": 10379.24, + "probability": 0.9875 + }, + { + "start": 10379.82, + "end": 10382.34, + "probability": 0.6809 + }, + { + "start": 10384.66, + "end": 10385.18, + "probability": 0.9216 + }, + { + "start": 10387.14, + "end": 10391.52, + "probability": 0.8445 + }, + { + "start": 10391.52, + "end": 10392.88, + "probability": 0.9544 + }, + { + "start": 10393.2, + "end": 10394.82, + "probability": 0.508 + }, + { + "start": 10395.6, + "end": 10398.24, + "probability": 0.9803 + }, + { + "start": 10399.2, + "end": 10399.88, + "probability": 0.7831 + }, + { + "start": 10400.02, + "end": 10404.12, + "probability": 0.9463 + }, + { + "start": 10404.58, + "end": 10406.28, + "probability": 0.9526 + }, + { + "start": 10407.6, + "end": 10408.64, + "probability": 0.3793 + }, + { + "start": 10409.58, + "end": 10410.7, + "probability": 0.8357 + }, + { + "start": 10411.32, + "end": 10412.14, + "probability": 0.3431 + }, + { + "start": 10413.1, + "end": 10414.2, + "probability": 0.5958 + }, + { + "start": 10415.44, + "end": 10419.12, + "probability": 0.9015 + }, + { + "start": 10420.3, + "end": 10424.7, + "probability": 0.9126 + }, + { + "start": 10425.24, + "end": 10427.0, + "probability": 0.92 + }, + { + "start": 10427.5, + "end": 10431.08, + "probability": 0.6562 + }, + { + "start": 10432.02, + "end": 10434.06, + "probability": 0.6329 + }, + { + "start": 10434.08, + "end": 10434.38, + "probability": 0.6481 + }, + { + "start": 10434.38, + "end": 10436.7, + "probability": 0.8403 + }, + { + "start": 10437.26, + "end": 10439.39, + "probability": 0.5641 + }, + { + "start": 10440.58, + "end": 10441.98, + "probability": 0.8932 + }, + { + "start": 10443.3, + "end": 10446.46, + "probability": 0.7137 + }, + { + "start": 10447.04, + "end": 10448.18, + "probability": 0.7913 + }, + { + "start": 10449.58, + "end": 10452.84, + "probability": 0.7239 + }, + { + "start": 10454.24, + "end": 10456.44, + "probability": 0.6077 + }, + { + "start": 10457.44, + "end": 10457.98, + "probability": 0.2257 + }, + { + "start": 10458.7, + "end": 10460.02, + "probability": 0.6932 + }, + { + "start": 10460.4, + "end": 10461.56, + "probability": 0.9048 + }, + { + "start": 10461.76, + "end": 10463.45, + "probability": 0.6108 + }, + { + "start": 10464.54, + "end": 10465.91, + "probability": 0.9711 + }, + { + "start": 10466.8, + "end": 10469.08, + "probability": 0.8615 + }, + { + "start": 10469.92, + "end": 10471.46, + "probability": 0.4595 + }, + { + "start": 10471.7, + "end": 10472.8, + "probability": 0.7485 + }, + { + "start": 10472.8, + "end": 10473.03, + "probability": 0.7224 + }, + { + "start": 10473.96, + "end": 10474.65, + "probability": 0.8897 + }, + { + "start": 10475.22, + "end": 10476.18, + "probability": 0.4578 + }, + { + "start": 10476.34, + "end": 10478.0, + "probability": 0.972 + }, + { + "start": 10478.24, + "end": 10480.36, + "probability": 0.9823 + }, + { + "start": 10480.82, + "end": 10484.06, + "probability": 0.9961 + }, + { + "start": 10484.48, + "end": 10486.88, + "probability": 0.8285 + }, + { + "start": 10487.16, + "end": 10489.34, + "probability": 0.7364 + }, + { + "start": 10490.14, + "end": 10490.9, + "probability": 0.2501 + }, + { + "start": 10491.36, + "end": 10495.5, + "probability": 0.9853 + }, + { + "start": 10495.8, + "end": 10498.92, + "probability": 0.6698 + }, + { + "start": 10499.36, + "end": 10501.9, + "probability": 0.7684 + }, + { + "start": 10502.58, + "end": 10505.24, + "probability": 0.8119 + }, + { + "start": 10506.38, + "end": 10507.9, + "probability": 0.9167 + }, + { + "start": 10508.42, + "end": 10510.62, + "probability": 0.5785 + }, + { + "start": 10510.84, + "end": 10513.16, + "probability": 0.6513 + }, + { + "start": 10513.78, + "end": 10514.78, + "probability": 0.9317 + }, + { + "start": 10514.9, + "end": 10515.56, + "probability": 0.7532 + }, + { + "start": 10515.72, + "end": 10516.8, + "probability": 0.8424 + }, + { + "start": 10517.08, + "end": 10517.8, + "probability": 0.7789 + }, + { + "start": 10517.8, + "end": 10518.74, + "probability": 0.8501 + }, + { + "start": 10518.74, + "end": 10519.62, + "probability": 0.2453 + }, + { + "start": 10519.86, + "end": 10521.28, + "probability": 0.2062 + }, + { + "start": 10521.34, + "end": 10521.68, + "probability": 0.4461 + }, + { + "start": 10521.82, + "end": 10522.74, + "probability": 0.877 + }, + { + "start": 10522.94, + "end": 10525.31, + "probability": 0.8252 + }, + { + "start": 10525.92, + "end": 10527.59, + "probability": 0.5424 + }, + { + "start": 10528.16, + "end": 10529.7, + "probability": 0.8111 + }, + { + "start": 10529.98, + "end": 10532.3, + "probability": 0.6959 + }, + { + "start": 10532.78, + "end": 10532.78, + "probability": 0.2133 + }, + { + "start": 10532.78, + "end": 10534.6, + "probability": 0.6168 + }, + { + "start": 10534.8, + "end": 10536.26, + "probability": 0.6894 + }, + { + "start": 10536.5, + "end": 10537.58, + "probability": 0.2078 + }, + { + "start": 10537.92, + "end": 10539.44, + "probability": 0.5793 + }, + { + "start": 10539.58, + "end": 10540.52, + "probability": 0.4074 + }, + { + "start": 10540.76, + "end": 10543.36, + "probability": 0.3649 + }, + { + "start": 10543.58, + "end": 10544.94, + "probability": 0.5093 + }, + { + "start": 10545.28, + "end": 10546.6, + "probability": 0.5185 + }, + { + "start": 10546.78, + "end": 10548.16, + "probability": 0.2711 + }, + { + "start": 10551.5, + "end": 10552.3, + "probability": 0.3129 + }, + { + "start": 10552.3, + "end": 10552.3, + "probability": 0.4478 + }, + { + "start": 10552.3, + "end": 10553.38, + "probability": 0.6334 + }, + { + "start": 10553.4, + "end": 10554.02, + "probability": 0.5964 + }, + { + "start": 10554.06, + "end": 10555.36, + "probability": 0.76 + }, + { + "start": 10558.02, + "end": 10561.38, + "probability": 0.8918 + }, + { + "start": 10566.96, + "end": 10570.4, + "probability": 0.7674 + }, + { + "start": 10571.38, + "end": 10575.28, + "probability": 0.7389 + }, + { + "start": 10575.28, + "end": 10576.42, + "probability": 0.8374 + }, + { + "start": 10579.84, + "end": 10581.18, + "probability": 0.9766 + }, + { + "start": 10582.08, + "end": 10584.62, + "probability": 0.9966 + }, + { + "start": 10585.38, + "end": 10585.98, + "probability": 0.6058 + }, + { + "start": 10587.1, + "end": 10589.04, + "probability": 0.793 + }, + { + "start": 10589.06, + "end": 10591.66, + "probability": 0.6374 + }, + { + "start": 10595.0, + "end": 10598.04, + "probability": 0.9972 + }, + { + "start": 10598.76, + "end": 10602.28, + "probability": 0.9646 + }, + { + "start": 10602.68, + "end": 10604.88, + "probability": 0.8841 + }, + { + "start": 10604.88, + "end": 10607.76, + "probability": 0.9614 + }, + { + "start": 10608.76, + "end": 10609.02, + "probability": 0.1075 + }, + { + "start": 10610.02, + "end": 10612.74, + "probability": 0.4327 + }, + { + "start": 10613.3, + "end": 10615.96, + "probability": 0.8986 + }, + { + "start": 10615.96, + "end": 10617.4, + "probability": 0.629 + }, + { + "start": 10619.12, + "end": 10619.78, + "probability": 0.1944 + }, + { + "start": 10620.68, + "end": 10621.68, + "probability": 0.8364 + }, + { + "start": 10622.8, + "end": 10625.08, + "probability": 0.8921 + }, + { + "start": 10626.06, + "end": 10626.48, + "probability": 0.9469 + }, + { + "start": 10626.56, + "end": 10628.31, + "probability": 0.9564 + }, + { + "start": 10629.94, + "end": 10630.96, + "probability": 0.8514 + }, + { + "start": 10631.26, + "end": 10632.68, + "probability": 0.8882 + }, + { + "start": 10633.44, + "end": 10634.96, + "probability": 0.446 + }, + { + "start": 10635.58, + "end": 10640.66, + "probability": 0.9056 + }, + { + "start": 10640.98, + "end": 10641.48, + "probability": 0.4557 + }, + { + "start": 10641.84, + "end": 10643.18, + "probability": 0.8558 + }, + { + "start": 10643.76, + "end": 10647.78, + "probability": 0.9567 + }, + { + "start": 10648.98, + "end": 10649.6, + "probability": 0.8372 + }, + { + "start": 10650.02, + "end": 10650.98, + "probability": 0.9651 + }, + { + "start": 10651.3, + "end": 10653.1, + "probability": 0.7123 + }, + { + "start": 10653.34, + "end": 10654.06, + "probability": 0.1199 + }, + { + "start": 10654.64, + "end": 10655.76, + "probability": 0.8501 + }, + { + "start": 10656.2, + "end": 10660.7, + "probability": 0.9089 + }, + { + "start": 10660.94, + "end": 10664.32, + "probability": 0.8916 + }, + { + "start": 10666.36, + "end": 10670.96, + "probability": 0.9842 + }, + { + "start": 10671.78, + "end": 10675.7, + "probability": 0.8766 + }, + { + "start": 10675.7, + "end": 10679.72, + "probability": 0.9814 + }, + { + "start": 10680.28, + "end": 10682.89, + "probability": 0.6871 + }, + { + "start": 10683.82, + "end": 10684.02, + "probability": 0.0008 + }, + { + "start": 10684.02, + "end": 10684.02, + "probability": 0.087 + }, + { + "start": 10684.02, + "end": 10687.44, + "probability": 0.5692 + }, + { + "start": 10687.66, + "end": 10690.38, + "probability": 0.3186 + }, + { + "start": 10691.66, + "end": 10695.52, + "probability": 0.5758 + }, + { + "start": 10695.6, + "end": 10698.62, + "probability": 0.8033 + }, + { + "start": 10699.34, + "end": 10701.8, + "probability": 0.8156 + }, + { + "start": 10702.65, + "end": 10704.11, + "probability": 0.5769 + }, + { + "start": 10705.07, + "end": 10708.62, + "probability": 0.6671 + }, + { + "start": 10708.62, + "end": 10709.42, + "probability": 0.6816 + }, + { + "start": 10709.48, + "end": 10709.48, + "probability": 0.1272 + }, + { + "start": 10709.48, + "end": 10709.82, + "probability": 0.5948 + }, + { + "start": 10710.24, + "end": 10711.94, + "probability": 0.8518 + }, + { + "start": 10712.5, + "end": 10717.92, + "probability": 0.9034 + }, + { + "start": 10718.86, + "end": 10724.66, + "probability": 0.9488 + }, + { + "start": 10726.34, + "end": 10732.6, + "probability": 0.908 + }, + { + "start": 10733.68, + "end": 10735.06, + "probability": 0.8809 + }, + { + "start": 10736.12, + "end": 10738.9, + "probability": 0.9502 + }, + { + "start": 10739.36, + "end": 10743.46, + "probability": 0.6382 + }, + { + "start": 10743.8, + "end": 10744.52, + "probability": 0.9105 + }, + { + "start": 10744.68, + "end": 10745.96, + "probability": 0.7675 + }, + { + "start": 10746.42, + "end": 10747.26, + "probability": 0.9223 + }, + { + "start": 10747.64, + "end": 10750.28, + "probability": 0.9824 + }, + { + "start": 10750.72, + "end": 10754.1, + "probability": 0.9777 + }, + { + "start": 10754.62, + "end": 10755.58, + "probability": 0.9688 + }, + { + "start": 10756.16, + "end": 10757.46, + "probability": 0.8564 + }, + { + "start": 10758.22, + "end": 10758.34, + "probability": 0.2401 + }, + { + "start": 10758.34, + "end": 10759.3, + "probability": 0.3816 + }, + { + "start": 10759.42, + "end": 10762.04, + "probability": 0.9201 + }, + { + "start": 10762.06, + "end": 10762.96, + "probability": 0.8708 + }, + { + "start": 10763.16, + "end": 10765.26, + "probability": 0.7572 + }, + { + "start": 10765.6, + "end": 10767.12, + "probability": 0.9597 + }, + { + "start": 10767.44, + "end": 10769.58, + "probability": 0.9758 + }, + { + "start": 10769.7, + "end": 10773.7, + "probability": 0.5941 + }, + { + "start": 10774.92, + "end": 10776.96, + "probability": 0.8081 + }, + { + "start": 10796.58, + "end": 10797.64, + "probability": 0.937 + }, + { + "start": 10800.76, + "end": 10803.26, + "probability": 0.5181 + }, + { + "start": 10804.1, + "end": 10805.51, + "probability": 0.6334 + }, + { + "start": 10807.54, + "end": 10813.84, + "probability": 0.9932 + }, + { + "start": 10814.42, + "end": 10817.68, + "probability": 0.9495 + }, + { + "start": 10818.68, + "end": 10820.97, + "probability": 0.8118 + }, + { + "start": 10821.22, + "end": 10821.78, + "probability": 0.8649 + }, + { + "start": 10822.74, + "end": 10823.82, + "probability": 0.8258 + }, + { + "start": 10824.22, + "end": 10827.52, + "probability": 0.8833 + }, + { + "start": 10827.68, + "end": 10827.92, + "probability": 0.4871 + }, + { + "start": 10828.9, + "end": 10831.96, + "probability": 0.9624 + }, + { + "start": 10832.88, + "end": 10834.64, + "probability": 0.9707 + }, + { + "start": 10835.82, + "end": 10836.52, + "probability": 0.9102 + }, + { + "start": 10837.42, + "end": 10837.62, + "probability": 0.8534 + }, + { + "start": 10838.98, + "end": 10839.08, + "probability": 0.0794 + }, + { + "start": 10839.08, + "end": 10840.12, + "probability": 0.9089 + }, + { + "start": 10840.26, + "end": 10840.96, + "probability": 0.429 + }, + { + "start": 10841.48, + "end": 10842.68, + "probability": 0.9861 + }, + { + "start": 10843.9, + "end": 10846.02, + "probability": 0.8652 + }, + { + "start": 10846.6, + "end": 10848.36, + "probability": 0.8471 + }, + { + "start": 10849.06, + "end": 10850.04, + "probability": 0.8011 + }, + { + "start": 10850.62, + "end": 10852.36, + "probability": 0.8151 + }, + { + "start": 10852.56, + "end": 10853.33, + "probability": 0.9302 + }, + { + "start": 10854.34, + "end": 10857.28, + "probability": 0.8662 + }, + { + "start": 10857.82, + "end": 10859.02, + "probability": 0.9246 + }, + { + "start": 10859.96, + "end": 10863.66, + "probability": 0.9567 + }, + { + "start": 10864.46, + "end": 10868.64, + "probability": 0.9802 + }, + { + "start": 10869.34, + "end": 10871.26, + "probability": 0.6492 + }, + { + "start": 10871.3, + "end": 10871.7, + "probability": 0.8703 + }, + { + "start": 10871.76, + "end": 10872.76, + "probability": 0.8019 + }, + { + "start": 10873.24, + "end": 10874.36, + "probability": 0.8135 + }, + { + "start": 10875.5, + "end": 10876.36, + "probability": 0.8091 + }, + { + "start": 10878.56, + "end": 10883.9, + "probability": 0.9824 + }, + { + "start": 10884.44, + "end": 10886.54, + "probability": 0.9863 + }, + { + "start": 10887.3, + "end": 10887.76, + "probability": 0.5287 + }, + { + "start": 10887.82, + "end": 10890.46, + "probability": 0.9862 + }, + { + "start": 10890.68, + "end": 10890.98, + "probability": 0.4467 + }, + { + "start": 10891.78, + "end": 10893.06, + "probability": 0.8294 + }, + { + "start": 10893.78, + "end": 10895.26, + "probability": 0.9504 + }, + { + "start": 10895.44, + "end": 10897.44, + "probability": 0.9114 + }, + { + "start": 10897.6, + "end": 10899.42, + "probability": 0.7899 + }, + { + "start": 10900.24, + "end": 10902.17, + "probability": 0.8693 + }, + { + "start": 10902.52, + "end": 10908.26, + "probability": 0.7067 + }, + { + "start": 10908.42, + "end": 10910.05, + "probability": 0.9143 + }, + { + "start": 10913.52, + "end": 10914.74, + "probability": 0.9758 + }, + { + "start": 10914.94, + "end": 10920.6, + "probability": 0.9661 + }, + { + "start": 10921.34, + "end": 10928.66, + "probability": 0.8244 + }, + { + "start": 10929.24, + "end": 10933.32, + "probability": 0.963 + }, + { + "start": 10933.82, + "end": 10935.52, + "probability": 0.8773 + }, + { + "start": 10935.6, + "end": 10938.9, + "probability": 0.9381 + }, + { + "start": 10939.0, + "end": 10939.66, + "probability": 0.8235 + }, + { + "start": 10940.48, + "end": 10941.71, + "probability": 0.9443 + }, + { + "start": 10942.52, + "end": 10944.94, + "probability": 0.9529 + }, + { + "start": 10945.58, + "end": 10946.9, + "probability": 0.9626 + }, + { + "start": 10947.94, + "end": 10954.14, + "probability": 0.9128 + }, + { + "start": 10954.98, + "end": 10957.36, + "probability": 0.9446 + }, + { + "start": 10958.08, + "end": 10959.47, + "probability": 0.9805 + }, + { + "start": 10960.5, + "end": 10961.11, + "probability": 0.9971 + }, + { + "start": 10962.22, + "end": 10965.8, + "probability": 0.9839 + }, + { + "start": 10967.84, + "end": 10972.2, + "probability": 0.9118 + }, + { + "start": 10972.94, + "end": 10979.64, + "probability": 0.974 + }, + { + "start": 10980.82, + "end": 10984.62, + "probability": 0.9462 + }, + { + "start": 10985.18, + "end": 10986.48, + "probability": 0.9882 + }, + { + "start": 10987.24, + "end": 10990.06, + "probability": 0.9282 + }, + { + "start": 10990.86, + "end": 10992.48, + "probability": 0.8565 + }, + { + "start": 10993.2, + "end": 10997.04, + "probability": 0.9963 + }, + { + "start": 10997.8, + "end": 10998.2, + "probability": 0.7822 + }, + { + "start": 10998.98, + "end": 11000.3, + "probability": 0.6061 + }, + { + "start": 11000.82, + "end": 11001.1, + "probability": 0.7859 + }, + { + "start": 11001.12, + "end": 11003.65, + "probability": 0.8275 + }, + { + "start": 11003.92, + "end": 11006.74, + "probability": 0.5932 + }, + { + "start": 11007.32, + "end": 11008.78, + "probability": 0.7784 + }, + { + "start": 11009.42, + "end": 11012.25, + "probability": 0.9427 + }, + { + "start": 11012.76, + "end": 11016.12, + "probability": 0.96 + }, + { + "start": 11016.4, + "end": 11018.0, + "probability": 0.8298 + }, + { + "start": 11018.82, + "end": 11022.62, + "probability": 0.9639 + }, + { + "start": 11022.92, + "end": 11023.46, + "probability": 0.4714 + }, + { + "start": 11023.84, + "end": 11024.82, + "probability": 0.8481 + }, + { + "start": 11026.12, + "end": 11030.2, + "probability": 0.8034 + }, + { + "start": 11030.78, + "end": 11037.1, + "probability": 0.8335 + }, + { + "start": 11039.74, + "end": 11043.54, + "probability": 0.868 + }, + { + "start": 11044.08, + "end": 11045.8, + "probability": 0.9373 + }, + { + "start": 11046.64, + "end": 11050.9, + "probability": 0.7372 + }, + { + "start": 11050.96, + "end": 11051.8, + "probability": 0.6817 + }, + { + "start": 11052.04, + "end": 11054.16, + "probability": 0.8182 + }, + { + "start": 11054.24, + "end": 11055.64, + "probability": 0.5283 + }, + { + "start": 11055.7, + "end": 11056.42, + "probability": 0.8969 + }, + { + "start": 11071.78, + "end": 11073.24, + "probability": 0.8204 + }, + { + "start": 11074.96, + "end": 11076.88, + "probability": 0.6459 + }, + { + "start": 11077.04, + "end": 11077.04, + "probability": 0.1767 + }, + { + "start": 11077.04, + "end": 11077.82, + "probability": 0.7965 + }, + { + "start": 11077.88, + "end": 11078.84, + "probability": 0.6146 + }, + { + "start": 11079.74, + "end": 11083.62, + "probability": 0.9922 + }, + { + "start": 11083.62, + "end": 11086.94, + "probability": 0.9977 + }, + { + "start": 11088.12, + "end": 11089.98, + "probability": 0.9907 + }, + { + "start": 11090.42, + "end": 11094.26, + "probability": 0.8032 + }, + { + "start": 11094.26, + "end": 11097.12, + "probability": 0.9885 + }, + { + "start": 11097.86, + "end": 11102.14, + "probability": 0.997 + }, + { + "start": 11102.14, + "end": 11105.08, + "probability": 0.9915 + }, + { + "start": 11105.7, + "end": 11107.57, + "probability": 0.9966 + }, + { + "start": 11108.56, + "end": 11110.44, + "probability": 0.9092 + }, + { + "start": 11110.5, + "end": 11111.27, + "probability": 0.9355 + }, + { + "start": 11112.18, + "end": 11115.14, + "probability": 0.9884 + }, + { + "start": 11116.08, + "end": 11121.46, + "probability": 0.9878 + }, + { + "start": 11121.46, + "end": 11125.68, + "probability": 0.9834 + }, + { + "start": 11125.86, + "end": 11129.68, + "probability": 0.9961 + }, + { + "start": 11129.92, + "end": 11131.82, + "probability": 0.9976 + }, + { + "start": 11132.08, + "end": 11135.52, + "probability": 0.974 + }, + { + "start": 11135.6, + "end": 11138.64, + "probability": 0.9795 + }, + { + "start": 11138.8, + "end": 11139.12, + "probability": 0.7661 + }, + { + "start": 11139.38, + "end": 11140.28, + "probability": 0.4521 + }, + { + "start": 11140.34, + "end": 11145.28, + "probability": 0.9919 + }, + { + "start": 11146.94, + "end": 11147.58, + "probability": 0.8763 + }, + { + "start": 11147.76, + "end": 11148.34, + "probability": 0.6042 + }, + { + "start": 11148.76, + "end": 11153.3, + "probability": 0.9927 + }, + { + "start": 11153.84, + "end": 11154.98, + "probability": 0.9155 + }, + { + "start": 11155.1, + "end": 11155.84, + "probability": 0.9158 + }, + { + "start": 11156.02, + "end": 11158.42, + "probability": 0.9956 + }, + { + "start": 11158.42, + "end": 11160.64, + "probability": 0.9501 + }, + { + "start": 11161.0, + "end": 11162.32, + "probability": 0.9969 + }, + { + "start": 11162.4, + "end": 11164.24, + "probability": 0.9971 + }, + { + "start": 11164.66, + "end": 11168.58, + "probability": 0.9906 + }, + { + "start": 11169.18, + "end": 11172.02, + "probability": 0.9946 + }, + { + "start": 11172.02, + "end": 11174.4, + "probability": 0.994 + }, + { + "start": 11175.24, + "end": 11179.76, + "probability": 0.9985 + }, + { + "start": 11180.7, + "end": 11182.06, + "probability": 0.8494 + }, + { + "start": 11182.46, + "end": 11186.36, + "probability": 0.9786 + }, + { + "start": 11187.22, + "end": 11187.7, + "probability": 0.805 + }, + { + "start": 11187.8, + "end": 11188.92, + "probability": 0.8491 + }, + { + "start": 11188.94, + "end": 11189.4, + "probability": 0.8767 + }, + { + "start": 11189.5, + "end": 11192.58, + "probability": 0.9814 + }, + { + "start": 11192.72, + "end": 11195.16, + "probability": 0.8377 + }, + { + "start": 11195.24, + "end": 11196.4, + "probability": 0.9883 + }, + { + "start": 11196.5, + "end": 11198.06, + "probability": 0.9741 + }, + { + "start": 11198.12, + "end": 11201.4, + "probability": 0.998 + }, + { + "start": 11202.1, + "end": 11205.14, + "probability": 0.9837 + }, + { + "start": 11205.36, + "end": 11207.2, + "probability": 0.9787 + }, + { + "start": 11207.32, + "end": 11208.42, + "probability": 0.5556 + }, + { + "start": 11208.46, + "end": 11208.86, + "probability": 0.9662 + }, + { + "start": 11208.96, + "end": 11214.26, + "probability": 0.9985 + }, + { + "start": 11214.34, + "end": 11215.42, + "probability": 0.9541 + }, + { + "start": 11216.08, + "end": 11217.56, + "probability": 0.7917 + }, + { + "start": 11219.54, + "end": 11221.84, + "probability": 0.9505 + }, + { + "start": 11222.26, + "end": 11227.64, + "probability": 0.9869 + }, + { + "start": 11228.32, + "end": 11229.85, + "probability": 0.7748 + }, + { + "start": 11230.32, + "end": 11232.54, + "probability": 0.9693 + }, + { + "start": 11232.66, + "end": 11233.98, + "probability": 0.988 + }, + { + "start": 11234.12, + "end": 11235.46, + "probability": 0.9915 + }, + { + "start": 11235.68, + "end": 11237.7, + "probability": 0.9973 + }, + { + "start": 11238.04, + "end": 11239.68, + "probability": 0.9984 + }, + { + "start": 11240.06, + "end": 11244.26, + "probability": 0.9958 + }, + { + "start": 11244.26, + "end": 11247.4, + "probability": 0.9995 + }, + { + "start": 11247.94, + "end": 11248.22, + "probability": 0.504 + }, + { + "start": 11248.34, + "end": 11249.3, + "probability": 0.7599 + }, + { + "start": 11249.42, + "end": 11250.96, + "probability": 0.9882 + }, + { + "start": 11251.04, + "end": 11252.1, + "probability": 0.9572 + }, + { + "start": 11252.6, + "end": 11253.12, + "probability": 0.8218 + }, + { + "start": 11253.16, + "end": 11255.0, + "probability": 0.9938 + }, + { + "start": 11255.38, + "end": 11258.58, + "probability": 0.9829 + }, + { + "start": 11259.0, + "end": 11262.1, + "probability": 0.9888 + }, + { + "start": 11262.2, + "end": 11263.6, + "probability": 0.6749 + }, + { + "start": 11263.98, + "end": 11267.74, + "probability": 0.8647 + }, + { + "start": 11268.04, + "end": 11268.62, + "probability": 0.8153 + }, + { + "start": 11268.82, + "end": 11270.64, + "probability": 0.8533 + }, + { + "start": 11270.78, + "end": 11272.36, + "probability": 0.8853 + }, + { + "start": 11272.46, + "end": 11273.06, + "probability": 0.8179 + }, + { + "start": 11285.8, + "end": 11287.48, + "probability": 0.714 + }, + { + "start": 11288.12, + "end": 11290.4, + "probability": 0.463 + }, + { + "start": 11291.2, + "end": 11294.6, + "probability": 0.9868 + }, + { + "start": 11295.98, + "end": 11299.16, + "probability": 0.9941 + }, + { + "start": 11299.66, + "end": 11301.92, + "probability": 0.9628 + }, + { + "start": 11302.06, + "end": 11304.1, + "probability": 0.9868 + }, + { + "start": 11304.82, + "end": 11305.95, + "probability": 0.9901 + }, + { + "start": 11306.16, + "end": 11308.66, + "probability": 0.9824 + }, + { + "start": 11309.32, + "end": 11310.74, + "probability": 0.9617 + }, + { + "start": 11311.02, + "end": 11312.32, + "probability": 0.9634 + }, + { + "start": 11312.62, + "end": 11313.78, + "probability": 0.9861 + }, + { + "start": 11314.4, + "end": 11320.68, + "probability": 0.9941 + }, + { + "start": 11321.42, + "end": 11323.9, + "probability": 0.9514 + }, + { + "start": 11324.28, + "end": 11325.1, + "probability": 0.6512 + }, + { + "start": 11325.22, + "end": 11327.1, + "probability": 0.9528 + }, + { + "start": 11327.56, + "end": 11331.76, + "probability": 0.8967 + }, + { + "start": 11332.08, + "end": 11332.96, + "probability": 0.8539 + }, + { + "start": 11333.12, + "end": 11334.0, + "probability": 0.95 + }, + { + "start": 11334.76, + "end": 11336.9, + "probability": 0.8828 + }, + { + "start": 11336.94, + "end": 11341.18, + "probability": 0.9924 + }, + { + "start": 11341.34, + "end": 11342.1, + "probability": 0.698 + }, + { + "start": 11342.2, + "end": 11343.92, + "probability": 0.7769 + }, + { + "start": 11344.12, + "end": 11345.14, + "probability": 0.9021 + }, + { + "start": 11345.24, + "end": 11347.56, + "probability": 0.9042 + }, + { + "start": 11347.62, + "end": 11347.92, + "probability": 0.4793 + }, + { + "start": 11348.52, + "end": 11354.02, + "probability": 0.9329 + }, + { + "start": 11354.02, + "end": 11357.9, + "probability": 0.9767 + }, + { + "start": 11358.02, + "end": 11360.56, + "probability": 0.9893 + }, + { + "start": 11360.88, + "end": 11363.39, + "probability": 0.9944 + }, + { + "start": 11364.02, + "end": 11366.56, + "probability": 0.2904 + }, + { + "start": 11366.84, + "end": 11369.52, + "probability": 0.9865 + }, + { + "start": 11370.1, + "end": 11374.82, + "probability": 0.9476 + }, + { + "start": 11375.52, + "end": 11378.34, + "probability": 0.811 + }, + { + "start": 11378.44, + "end": 11380.24, + "probability": 0.9197 + }, + { + "start": 11380.46, + "end": 11382.88, + "probability": 0.9747 + }, + { + "start": 11383.38, + "end": 11386.24, + "probability": 0.9681 + }, + { + "start": 11386.76, + "end": 11388.48, + "probability": 0.9354 + }, + { + "start": 11389.38, + "end": 11391.32, + "probability": 0.8872 + }, + { + "start": 11392.0, + "end": 11394.64, + "probability": 0.9945 + }, + { + "start": 11395.08, + "end": 11397.26, + "probability": 0.9897 + }, + { + "start": 11397.7, + "end": 11403.16, + "probability": 0.9936 + }, + { + "start": 11403.16, + "end": 11407.92, + "probability": 0.9941 + }, + { + "start": 11408.38, + "end": 11409.04, + "probability": 0.8208 + }, + { + "start": 11409.38, + "end": 11410.2, + "probability": 0.9316 + }, + { + "start": 11410.32, + "end": 11410.84, + "probability": 0.8588 + }, + { + "start": 11410.9, + "end": 11413.34, + "probability": 0.8194 + }, + { + "start": 11413.52, + "end": 11415.36, + "probability": 0.9988 + }, + { + "start": 11416.08, + "end": 11420.68, + "probability": 0.6476 + }, + { + "start": 11421.14, + "end": 11424.16, + "probability": 0.9796 + }, + { + "start": 11424.32, + "end": 11424.84, + "probability": 0.9695 + }, + { + "start": 11425.56, + "end": 11426.2, + "probability": 0.9849 + }, + { + "start": 11426.74, + "end": 11431.38, + "probability": 0.9546 + }, + { + "start": 11431.92, + "end": 11435.14, + "probability": 0.988 + }, + { + "start": 11435.28, + "end": 11438.96, + "probability": 0.9719 + }, + { + "start": 11439.3, + "end": 11441.71, + "probability": 0.9949 + }, + { + "start": 11442.1, + "end": 11443.92, + "probability": 0.9881 + }, + { + "start": 11444.1, + "end": 11446.04, + "probability": 0.9958 + }, + { + "start": 11446.5, + "end": 11448.06, + "probability": 0.5349 + }, + { + "start": 11448.36, + "end": 11449.8, + "probability": 0.9442 + }, + { + "start": 11450.14, + "end": 11451.64, + "probability": 0.7685 + }, + { + "start": 11451.76, + "end": 11454.92, + "probability": 0.9517 + }, + { + "start": 11454.94, + "end": 11455.98, + "probability": 0.9282 + }, + { + "start": 11456.36, + "end": 11458.52, + "probability": 0.8737 + }, + { + "start": 11458.62, + "end": 11462.05, + "probability": 0.9276 + }, + { + "start": 11462.52, + "end": 11463.46, + "probability": 0.9293 + }, + { + "start": 11464.28, + "end": 11468.36, + "probability": 0.8005 + }, + { + "start": 11468.5, + "end": 11473.44, + "probability": 0.8374 + }, + { + "start": 11474.08, + "end": 11478.24, + "probability": 0.989 + }, + { + "start": 11478.36, + "end": 11479.06, + "probability": 0.8698 + }, + { + "start": 11479.42, + "end": 11485.44, + "probability": 0.9899 + }, + { + "start": 11485.48, + "end": 11485.68, + "probability": 0.6666 + }, + { + "start": 11486.0, + "end": 11488.18, + "probability": 0.9687 + }, + { + "start": 11488.4, + "end": 11490.22, + "probability": 0.7981 + }, + { + "start": 11490.34, + "end": 11491.8, + "probability": 0.8718 + }, + { + "start": 11491.86, + "end": 11492.6, + "probability": 0.715 + }, + { + "start": 11494.06, + "end": 11497.8, + "probability": 0.8794 + }, + { + "start": 11501.64, + "end": 11503.9, + "probability": 0.9495 + }, + { + "start": 11509.37, + "end": 11511.9, + "probability": 0.6183 + }, + { + "start": 11511.94, + "end": 11513.04, + "probability": 0.8365 + }, + { + "start": 11521.36, + "end": 11522.22, + "probability": 0.3918 + }, + { + "start": 11523.83, + "end": 11527.4, + "probability": 0.952 + }, + { + "start": 11527.96, + "end": 11529.26, + "probability": 0.9327 + }, + { + "start": 11530.28, + "end": 11532.22, + "probability": 0.9834 + }, + { + "start": 11533.96, + "end": 11536.22, + "probability": 0.957 + }, + { + "start": 11536.92, + "end": 11537.4, + "probability": 0.7975 + }, + { + "start": 11538.46, + "end": 11540.14, + "probability": 0.6848 + }, + { + "start": 11541.12, + "end": 11542.02, + "probability": 0.8004 + }, + { + "start": 11542.3, + "end": 11543.16, + "probability": 0.9424 + }, + { + "start": 11544.0, + "end": 11545.38, + "probability": 0.9852 + }, + { + "start": 11545.48, + "end": 11546.46, + "probability": 0.9918 + }, + { + "start": 11546.86, + "end": 11547.46, + "probability": 0.0192 + }, + { + "start": 11548.94, + "end": 11551.42, + "probability": 0.6918 + }, + { + "start": 11556.42, + "end": 11557.96, + "probability": 0.5038 + }, + { + "start": 11558.06, + "end": 11559.38, + "probability": 0.8694 + }, + { + "start": 11559.52, + "end": 11560.34, + "probability": 0.6156 + }, + { + "start": 11560.64, + "end": 11565.08, + "probability": 0.8459 + }, + { + "start": 11565.28, + "end": 11566.08, + "probability": 0.9258 + }, + { + "start": 11568.1, + "end": 11569.16, + "probability": 0.9922 + }, + { + "start": 11569.8, + "end": 11571.14, + "probability": 0.9787 + }, + { + "start": 11571.44, + "end": 11573.94, + "probability": 0.8318 + }, + { + "start": 11575.82, + "end": 11576.7, + "probability": 0.9702 + }, + { + "start": 11577.98, + "end": 11579.62, + "probability": 0.9912 + }, + { + "start": 11580.84, + "end": 11581.18, + "probability": 0.5229 + }, + { + "start": 11581.4, + "end": 11582.14, + "probability": 0.9531 + }, + { + "start": 11584.58, + "end": 11586.94, + "probability": 0.7282 + }, + { + "start": 11588.04, + "end": 11590.8, + "probability": 0.9126 + }, + { + "start": 11590.9, + "end": 11593.88, + "probability": 0.9927 + }, + { + "start": 11595.12, + "end": 11597.04, + "probability": 0.7245 + }, + { + "start": 11597.22, + "end": 11597.98, + "probability": 0.3337 + }, + { + "start": 11598.2, + "end": 11598.65, + "probability": 0.8452 + }, + { + "start": 11598.86, + "end": 11600.21, + "probability": 0.8242 + }, + { + "start": 11600.36, + "end": 11603.12, + "probability": 0.9686 + }, + { + "start": 11604.48, + "end": 11605.82, + "probability": 0.0688 + }, + { + "start": 11606.02, + "end": 11606.06, + "probability": 0.0378 + }, + { + "start": 11606.08, + "end": 11608.28, + "probability": 0.1798 + }, + { + "start": 11608.44, + "end": 11609.1, + "probability": 0.6351 + }, + { + "start": 11609.86, + "end": 11613.88, + "probability": 0.9638 + }, + { + "start": 11614.24, + "end": 11615.58, + "probability": 0.9765 + }, + { + "start": 11616.34, + "end": 11619.0, + "probability": 0.9458 + }, + { + "start": 11619.6, + "end": 11622.5, + "probability": 0.8115 + }, + { + "start": 11623.8, + "end": 11625.7, + "probability": 0.8312 + }, + { + "start": 11625.72, + "end": 11626.44, + "probability": 0.8677 + }, + { + "start": 11627.02, + "end": 11628.96, + "probability": 0.9556 + }, + { + "start": 11629.6, + "end": 11631.34, + "probability": 0.9282 + }, + { + "start": 11631.42, + "end": 11631.94, + "probability": 0.546 + }, + { + "start": 11632.06, + "end": 11632.22, + "probability": 0.8643 + }, + { + "start": 11632.34, + "end": 11633.26, + "probability": 0.8911 + }, + { + "start": 11633.4, + "end": 11634.02, + "probability": 0.9562 + }, + { + "start": 11634.32, + "end": 11634.64, + "probability": 0.3467 + }, + { + "start": 11634.68, + "end": 11636.03, + "probability": 0.8027 + }, + { + "start": 11637.0, + "end": 11639.38, + "probability": 0.907 + }, + { + "start": 11639.44, + "end": 11641.72, + "probability": 0.6298 + }, + { + "start": 11641.78, + "end": 11643.14, + "probability": 0.5906 + }, + { + "start": 11643.64, + "end": 11644.3, + "probability": 0.7472 + }, + { + "start": 11644.4, + "end": 11646.9, + "probability": 0.9878 + }, + { + "start": 11647.02, + "end": 11647.61, + "probability": 0.3888 + }, + { + "start": 11649.2, + "end": 11649.8, + "probability": 0.8302 + }, + { + "start": 11649.94, + "end": 11651.08, + "probability": 0.9634 + }, + { + "start": 11651.16, + "end": 11652.88, + "probability": 0.6945 + }, + { + "start": 11653.04, + "end": 11653.98, + "probability": 0.5875 + }, + { + "start": 11655.48, + "end": 11658.22, + "probability": 0.9595 + }, + { + "start": 11658.72, + "end": 11659.28, + "probability": 0.9077 + }, + { + "start": 11660.22, + "end": 11662.04, + "probability": 0.7457 + }, + { + "start": 11662.86, + "end": 11664.98, + "probability": 0.9759 + }, + { + "start": 11665.18, + "end": 11669.36, + "probability": 0.8674 + }, + { + "start": 11669.36, + "end": 11671.86, + "probability": 0.9002 + }, + { + "start": 11673.72, + "end": 11676.66, + "probability": 0.7533 + }, + { + "start": 11677.04, + "end": 11679.38, + "probability": 0.8889 + }, + { + "start": 11679.38, + "end": 11682.48, + "probability": 0.878 + }, + { + "start": 11682.48, + "end": 11684.6, + "probability": 0.7316 + }, + { + "start": 11686.0, + "end": 11686.12, + "probability": 0.5414 + }, + { + "start": 11686.26, + "end": 11690.4, + "probability": 0.921 + }, + { + "start": 11691.14, + "end": 11692.52, + "probability": 0.9213 + }, + { + "start": 11693.16, + "end": 11694.42, + "probability": 0.7969 + }, + { + "start": 11695.78, + "end": 11698.33, + "probability": 0.5112 + }, + { + "start": 11698.6, + "end": 11704.72, + "probability": 0.1991 + }, + { + "start": 11709.48, + "end": 11711.44, + "probability": 0.639 + }, + { + "start": 11711.44, + "end": 11711.8, + "probability": 0.4323 + }, + { + "start": 11712.18, + "end": 11712.6, + "probability": 0.4034 + }, + { + "start": 11713.5, + "end": 11716.94, + "probability": 0.8799 + }, + { + "start": 11717.08, + "end": 11718.34, + "probability": 0.9067 + }, + { + "start": 11718.44, + "end": 11719.41, + "probability": 0.0864 + }, + { + "start": 11719.92, + "end": 11720.56, + "probability": 0.0983 + }, + { + "start": 11720.56, + "end": 11723.32, + "probability": 0.5967 + }, + { + "start": 11725.0, + "end": 11727.0, + "probability": 0.5793 + }, + { + "start": 11727.08, + "end": 11730.12, + "probability": 0.8643 + }, + { + "start": 11730.2, + "end": 11731.13, + "probability": 0.8038 + }, + { + "start": 11731.14, + "end": 11733.26, + "probability": 0.7028 + }, + { + "start": 11733.86, + "end": 11735.58, + "probability": 0.4078 + }, + { + "start": 11735.66, + "end": 11736.44, + "probability": 0.7515 + }, + { + "start": 11736.54, + "end": 11737.38, + "probability": 0.6455 + }, + { + "start": 11737.52, + "end": 11739.04, + "probability": 0.8247 + }, + { + "start": 11739.56, + "end": 11740.86, + "probability": 0.8209 + }, + { + "start": 11740.96, + "end": 11742.94, + "probability": 0.9515 + }, + { + "start": 11743.48, + "end": 11746.96, + "probability": 0.6881 + }, + { + "start": 11747.32, + "end": 11749.38, + "probability": 0.979 + }, + { + "start": 11749.88, + "end": 11751.62, + "probability": 0.5017 + }, + { + "start": 11751.74, + "end": 11753.22, + "probability": 0.8621 + }, + { + "start": 11754.04, + "end": 11758.52, + "probability": 0.9373 + }, + { + "start": 11758.94, + "end": 11761.12, + "probability": 0.8939 + }, + { + "start": 11761.5, + "end": 11764.6, + "probability": 0.8861 + }, + { + "start": 11765.22, + "end": 11768.52, + "probability": 0.9586 + }, + { + "start": 11768.7, + "end": 11770.82, + "probability": 0.9735 + }, + { + "start": 11770.96, + "end": 11771.34, + "probability": 0.6005 + }, + { + "start": 11771.64, + "end": 11773.04, + "probability": 0.0778 + }, + { + "start": 11773.48, + "end": 11773.82, + "probability": 0.5182 + }, + { + "start": 11774.14, + "end": 11775.05, + "probability": 0.4445 + }, + { + "start": 11792.42, + "end": 11793.62, + "probability": 0.6104 + }, + { + "start": 11795.64, + "end": 11796.9, + "probability": 0.6595 + }, + { + "start": 11797.62, + "end": 11800.28, + "probability": 0.8398 + }, + { + "start": 11800.82, + "end": 11801.9, + "probability": 0.8301 + }, + { + "start": 11802.46, + "end": 11804.0, + "probability": 0.9308 + }, + { + "start": 11806.86, + "end": 11808.82, + "probability": 0.9624 + }, + { + "start": 11810.46, + "end": 11812.0, + "probability": 0.7383 + }, + { + "start": 11812.1, + "end": 11814.1, + "probability": 0.6606 + }, + { + "start": 11815.24, + "end": 11816.88, + "probability": 0.0316 + }, + { + "start": 11817.76, + "end": 11820.72, + "probability": 0.2876 + }, + { + "start": 11821.32, + "end": 11822.25, + "probability": 0.3018 + }, + { + "start": 11824.92, + "end": 11827.14, + "probability": 0.9854 + }, + { + "start": 11828.06, + "end": 11830.58, + "probability": 0.99 + }, + { + "start": 11832.36, + "end": 11836.9, + "probability": 0.9873 + }, + { + "start": 11837.84, + "end": 11840.9, + "probability": 0.917 + }, + { + "start": 11842.4, + "end": 11845.86, + "probability": 0.0087 + }, + { + "start": 11845.86, + "end": 11846.02, + "probability": 0.1853 + }, + { + "start": 11846.7, + "end": 11850.22, + "probability": 0.8187 + }, + { + "start": 11851.08, + "end": 11854.9, + "probability": 0.9881 + }, + { + "start": 11855.52, + "end": 11859.78, + "probability": 0.9971 + }, + { + "start": 11860.28, + "end": 11861.74, + "probability": 0.8911 + }, + { + "start": 11862.18, + "end": 11864.68, + "probability": 0.8607 + }, + { + "start": 11865.32, + "end": 11866.22, + "probability": 0.8887 + }, + { + "start": 11867.18, + "end": 11870.06, + "probability": 0.9448 + }, + { + "start": 11870.14, + "end": 11878.46, + "probability": 0.9697 + }, + { + "start": 11879.3, + "end": 11880.24, + "probability": 0.7432 + }, + { + "start": 11880.86, + "end": 11886.2, + "probability": 0.9159 + }, + { + "start": 11886.62, + "end": 11893.2, + "probability": 0.9927 + }, + { + "start": 11893.96, + "end": 11895.86, + "probability": 0.9316 + }, + { + "start": 11896.4, + "end": 11896.4, + "probability": 0.1662 + }, + { + "start": 11896.4, + "end": 11898.57, + "probability": 0.5417 + }, + { + "start": 11899.14, + "end": 11901.54, + "probability": 0.2382 + }, + { + "start": 11902.66, + "end": 11907.94, + "probability": 0.8018 + }, + { + "start": 11908.32, + "end": 11909.58, + "probability": 0.7202 + }, + { + "start": 11909.76, + "end": 11911.02, + "probability": 0.8716 + }, + { + "start": 11911.46, + "end": 11915.36, + "probability": 0.9618 + }, + { + "start": 11915.4, + "end": 11916.48, + "probability": 0.9436 + }, + { + "start": 11916.84, + "end": 11918.77, + "probability": 0.8926 + }, + { + "start": 11919.92, + "end": 11922.86, + "probability": 0.9882 + }, + { + "start": 11922.92, + "end": 11924.04, + "probability": 0.7995 + }, + { + "start": 11924.44, + "end": 11925.66, + "probability": 0.1368 + }, + { + "start": 11926.42, + "end": 11927.64, + "probability": 0.135 + }, + { + "start": 11927.64, + "end": 11931.38, + "probability": 0.6403 + }, + { + "start": 11933.06, + "end": 11934.34, + "probability": 0.4883 + }, + { + "start": 11936.26, + "end": 11939.22, + "probability": 0.7321 + }, + { + "start": 11939.3, + "end": 11940.08, + "probability": 0.878 + }, + { + "start": 11940.24, + "end": 11944.17, + "probability": 0.7286 + }, + { + "start": 11944.84, + "end": 11946.59, + "probability": 0.9816 + }, + { + "start": 11947.24, + "end": 11948.32, + "probability": 0.4138 + }, + { + "start": 11948.88, + "end": 11953.26, + "probability": 0.9939 + }, + { + "start": 11953.84, + "end": 11956.96, + "probability": 0.9873 + }, + { + "start": 11957.04, + "end": 11958.66, + "probability": 0.7623 + }, + { + "start": 11959.02, + "end": 11962.5, + "probability": 0.9508 + }, + { + "start": 11962.76, + "end": 11964.16, + "probability": 0.7402 + }, + { + "start": 11964.6, + "end": 11965.76, + "probability": 0.2235 + }, + { + "start": 11966.55, + "end": 11974.24, + "probability": 0.6987 + }, + { + "start": 11974.76, + "end": 11976.85, + "probability": 0.6558 + }, + { + "start": 11978.86, + "end": 11984.18, + "probability": 0.7788 + }, + { + "start": 11984.92, + "end": 11986.2, + "probability": 0.9905 + }, + { + "start": 11987.42, + "end": 11994.88, + "probability": 0.8446 + }, + { + "start": 11995.5, + "end": 11999.02, + "probability": 0.873 + }, + { + "start": 11999.38, + "end": 12000.3, + "probability": 0.6941 + }, + { + "start": 12000.54, + "end": 12001.6, + "probability": 0.4293 + }, + { + "start": 12001.66, + "end": 12002.8, + "probability": 0.8384 + }, + { + "start": 12003.42, + "end": 12004.7, + "probability": 0.9966 + }, + { + "start": 12005.46, + "end": 12010.96, + "probability": 0.9078 + }, + { + "start": 12011.94, + "end": 12014.22, + "probability": 0.9972 + }, + { + "start": 12015.14, + "end": 12015.9, + "probability": 0.1046 + }, + { + "start": 12015.9, + "end": 12017.26, + "probability": 0.2827 + }, + { + "start": 12017.26, + "end": 12019.64, + "probability": 0.7732 + }, + { + "start": 12019.66, + "end": 12020.04, + "probability": 0.3187 + }, + { + "start": 12020.2, + "end": 12021.86, + "probability": 0.8442 + }, + { + "start": 12022.52, + "end": 12026.26, + "probability": 0.9043 + }, + { + "start": 12026.78, + "end": 12029.14, + "probability": 0.6912 + }, + { + "start": 12029.34, + "end": 12031.28, + "probability": 0.5451 + }, + { + "start": 12031.4, + "end": 12032.58, + "probability": 0.5155 + }, + { + "start": 12032.68, + "end": 12034.06, + "probability": 0.8406 + }, + { + "start": 12035.44, + "end": 12037.42, + "probability": 0.9556 + }, + { + "start": 12038.56, + "end": 12041.88, + "probability": 0.9406 + }, + { + "start": 12042.26, + "end": 12043.88, + "probability": 0.6652 + }, + { + "start": 12044.16, + "end": 12045.06, + "probability": 0.9033 + }, + { + "start": 12045.84, + "end": 12046.14, + "probability": 0.5975 + }, + { + "start": 12046.72, + "end": 12047.8, + "probability": 0.8758 + }, + { + "start": 12048.24, + "end": 12049.82, + "probability": 0.962 + }, + { + "start": 12050.38, + "end": 12052.62, + "probability": 0.7443 + }, + { + "start": 12053.2, + "end": 12055.38, + "probability": 0.9568 + }, + { + "start": 12055.92, + "end": 12064.16, + "probability": 0.8919 + }, + { + "start": 12064.24, + "end": 12066.06, + "probability": 0.998 + }, + { + "start": 12066.52, + "end": 12069.7, + "probability": 0.9851 + }, + { + "start": 12070.82, + "end": 12070.84, + "probability": 0.0145 + }, + { + "start": 12070.84, + "end": 12070.84, + "probability": 0.3514 + }, + { + "start": 12070.84, + "end": 12075.16, + "probability": 0.7218 + }, + { + "start": 12076.02, + "end": 12076.92, + "probability": 0.0044 + }, + { + "start": 12077.14, + "end": 12078.12, + "probability": 0.4953 + }, + { + "start": 12081.72, + "end": 12083.8, + "probability": 0.0093 + }, + { + "start": 12083.8, + "end": 12084.28, + "probability": 0.1426 + }, + { + "start": 12084.28, + "end": 12084.42, + "probability": 0.0082 + }, + { + "start": 12084.46, + "end": 12084.8, + "probability": 0.2189 + }, + { + "start": 12084.8, + "end": 12084.8, + "probability": 0.3132 + }, + { + "start": 12084.8, + "end": 12085.2, + "probability": 0.2021 + }, + { + "start": 12085.3, + "end": 12086.32, + "probability": 0.8269 + }, + { + "start": 12086.46, + "end": 12090.1, + "probability": 0.9587 + }, + { + "start": 12090.18, + "end": 12091.52, + "probability": 0.3437 + }, + { + "start": 12092.98, + "end": 12097.4, + "probability": 0.9404 + }, + { + "start": 12098.14, + "end": 12100.0, + "probability": 0.8184 + }, + { + "start": 12100.88, + "end": 12103.04, + "probability": 0.9193 + }, + { + "start": 12103.08, + "end": 12103.8, + "probability": 0.6293 + }, + { + "start": 12104.16, + "end": 12107.18, + "probability": 0.9365 + }, + { + "start": 12107.24, + "end": 12111.16, + "probability": 0.9707 + }, + { + "start": 12112.02, + "end": 12112.92, + "probability": 0.8554 + }, + { + "start": 12113.0, + "end": 12115.44, + "probability": 0.6561 + }, + { + "start": 12115.44, + "end": 12120.72, + "probability": 0.7559 + }, + { + "start": 12121.58, + "end": 12122.7, + "probability": 0.1185 + }, + { + "start": 12122.9, + "end": 12127.6, + "probability": 0.7573 + }, + { + "start": 12128.14, + "end": 12133.32, + "probability": 0.959 + }, + { + "start": 12133.5, + "end": 12133.86, + "probability": 0.1801 + }, + { + "start": 12135.44, + "end": 12135.84, + "probability": 0.0116 + }, + { + "start": 12135.84, + "end": 12139.6, + "probability": 0.1264 + }, + { + "start": 12139.7, + "end": 12139.8, + "probability": 0.1255 + }, + { + "start": 12139.84, + "end": 12141.91, + "probability": 0.1165 + }, + { + "start": 12143.3, + "end": 12149.02, + "probability": 0.9917 + }, + { + "start": 12149.76, + "end": 12149.94, + "probability": 0.1198 + }, + { + "start": 12149.94, + "end": 12153.62, + "probability": 0.5827 + }, + { + "start": 12153.62, + "end": 12154.1, + "probability": 0.5478 + }, + { + "start": 12154.94, + "end": 12159.26, + "probability": 0.3033 + }, + { + "start": 12160.88, + "end": 12165.38, + "probability": 0.9942 + }, + { + "start": 12165.38, + "end": 12169.08, + "probability": 0.9173 + }, + { + "start": 12169.66, + "end": 12169.96, + "probability": 0.3546 + }, + { + "start": 12170.52, + "end": 12175.2, + "probability": 0.7011 + }, + { + "start": 12175.24, + "end": 12177.62, + "probability": 0.9538 + }, + { + "start": 12177.96, + "end": 12180.02, + "probability": 0.8635 + }, + { + "start": 12181.48, + "end": 12187.02, + "probability": 0.0513 + }, + { + "start": 12190.64, + "end": 12194.2, + "probability": 0.056 + }, + { + "start": 12195.04, + "end": 12195.04, + "probability": 0.1663 + }, + { + "start": 12196.44, + "end": 12196.66, + "probability": 0.1093 + }, + { + "start": 12196.68, + "end": 12199.44, + "probability": 0.3597 + }, + { + "start": 12199.9, + "end": 12205.14, + "probability": 0.6172 + }, + { + "start": 12205.14, + "end": 12205.46, + "probability": 0.2381 + }, + { + "start": 12205.46, + "end": 12207.3, + "probability": 0.7836 + }, + { + "start": 12208.16, + "end": 12209.04, + "probability": 0.6347 + }, + { + "start": 12209.04, + "end": 12211.76, + "probability": 0.6489 + }, + { + "start": 12211.78, + "end": 12213.98, + "probability": 0.9584 + }, + { + "start": 12216.34, + "end": 12216.34, + "probability": 0.0307 + }, + { + "start": 12225.98, + "end": 12228.26, + "probability": 0.972 + }, + { + "start": 12228.32, + "end": 12232.46, + "probability": 0.6808 + }, + { + "start": 12232.64, + "end": 12234.82, + "probability": 0.4749 + }, + { + "start": 12235.06, + "end": 12236.58, + "probability": 0.7523 + }, + { + "start": 12236.78, + "end": 12241.52, + "probability": 0.9907 + }, + { + "start": 12241.58, + "end": 12242.44, + "probability": 0.8987 + }, + { + "start": 12242.94, + "end": 12247.14, + "probability": 0.9958 + }, + { + "start": 12247.55, + "end": 12252.82, + "probability": 0.9099 + }, + { + "start": 12253.66, + "end": 12254.08, + "probability": 0.4359 + }, + { + "start": 12254.32, + "end": 12254.7, + "probability": 0.4755 + }, + { + "start": 12255.96, + "end": 12257.86, + "probability": 0.8499 + }, + { + "start": 12261.56, + "end": 12264.92, + "probability": 0.665 + }, + { + "start": 12268.6, + "end": 12271.24, + "probability": 0.6744 + }, + { + "start": 12271.42, + "end": 12271.8, + "probability": 0.4649 + }, + { + "start": 12271.86, + "end": 12273.32, + "probability": 0.936 + }, + { + "start": 12273.38, + "end": 12274.16, + "probability": 0.8526 + }, + { + "start": 12274.2, + "end": 12276.76, + "probability": 0.9335 + }, + { + "start": 12278.2, + "end": 12280.52, + "probability": 0.9393 + }, + { + "start": 12280.52, + "end": 12283.48, + "probability": 0.83 + }, + { + "start": 12284.62, + "end": 12287.58, + "probability": 0.9983 + }, + { + "start": 12287.58, + "end": 12290.18, + "probability": 0.9967 + }, + { + "start": 12290.52, + "end": 12292.44, + "probability": 0.9213 + }, + { + "start": 12293.48, + "end": 12298.7, + "probability": 0.9707 + }, + { + "start": 12298.76, + "end": 12301.42, + "probability": 0.6582 + }, + { + "start": 12302.8, + "end": 12306.32, + "probability": 0.8822 + }, + { + "start": 12306.32, + "end": 12311.04, + "probability": 0.9787 + }, + { + "start": 12311.38, + "end": 12314.14, + "probability": 0.9885 + }, + { + "start": 12314.14, + "end": 12317.1, + "probability": 0.9968 + }, + { + "start": 12317.5, + "end": 12320.08, + "probability": 0.925 + }, + { + "start": 12320.14, + "end": 12324.54, + "probability": 0.9922 + }, + { + "start": 12325.24, + "end": 12325.86, + "probability": 0.6313 + }, + { + "start": 12325.94, + "end": 12329.77, + "probability": 0.7939 + }, + { + "start": 12331.06, + "end": 12334.77, + "probability": 0.9714 + }, + { + "start": 12336.28, + "end": 12338.92, + "probability": 0.9941 + }, + { + "start": 12338.92, + "end": 12344.2, + "probability": 0.966 + }, + { + "start": 12346.66, + "end": 12350.22, + "probability": 0.8938 + }, + { + "start": 12350.22, + "end": 12353.04, + "probability": 0.8634 + }, + { + "start": 12353.38, + "end": 12356.5, + "probability": 0.9933 + }, + { + "start": 12357.4, + "end": 12359.72, + "probability": 0.9373 + }, + { + "start": 12360.44, + "end": 12365.18, + "probability": 0.9932 + }, + { + "start": 12365.8, + "end": 12367.95, + "probability": 0.9593 + }, + { + "start": 12368.6, + "end": 12372.96, + "probability": 0.9956 + }, + { + "start": 12372.98, + "end": 12378.14, + "probability": 0.9841 + }, + { + "start": 12378.58, + "end": 12384.12, + "probability": 0.9765 + }, + { + "start": 12384.12, + "end": 12391.22, + "probability": 0.9985 + }, + { + "start": 12391.74, + "end": 12396.56, + "probability": 0.865 + }, + { + "start": 12397.02, + "end": 12398.44, + "probability": 0.9589 + }, + { + "start": 12400.18, + "end": 12401.54, + "probability": 0.755 + }, + { + "start": 12403.0, + "end": 12404.12, + "probability": 0.4594 + }, + { + "start": 12405.16, + "end": 12406.98, + "probability": 0.8975 + }, + { + "start": 12409.24, + "end": 12410.92, + "probability": 0.8472 + }, + { + "start": 12411.14, + "end": 12412.28, + "probability": 0.9733 + }, + { + "start": 12412.7, + "end": 12415.6, + "probability": 0.7849 + }, + { + "start": 12419.76, + "end": 12420.74, + "probability": 0.5932 + }, + { + "start": 12421.46, + "end": 12422.1, + "probability": 0.3085 + }, + { + "start": 12422.14, + "end": 12426.6, + "probability": 0.7705 + }, + { + "start": 12427.16, + "end": 12429.36, + "probability": 0.9951 + }, + { + "start": 12429.4, + "end": 12432.2, + "probability": 0.9955 + }, + { + "start": 12433.06, + "end": 12438.26, + "probability": 0.9788 + }, + { + "start": 12438.26, + "end": 12441.3, + "probability": 0.9971 + }, + { + "start": 12443.22, + "end": 12446.88, + "probability": 0.8673 + }, + { + "start": 12448.2, + "end": 12450.88, + "probability": 0.9694 + }, + { + "start": 12452.2, + "end": 12453.2, + "probability": 0.8692 + }, + { + "start": 12453.84, + "end": 12461.8, + "probability": 0.9822 + }, + { + "start": 12462.8, + "end": 12462.88, + "probability": 0.6007 + }, + { + "start": 12462.98, + "end": 12463.78, + "probability": 0.7372 + }, + { + "start": 12463.84, + "end": 12468.7, + "probability": 0.9377 + }, + { + "start": 12469.74, + "end": 12474.86, + "probability": 0.972 + }, + { + "start": 12476.42, + "end": 12479.36, + "probability": 0.9583 + }, + { + "start": 12480.64, + "end": 12485.76, + "probability": 0.958 + }, + { + "start": 12486.32, + "end": 12487.82, + "probability": 0.9437 + }, + { + "start": 12488.02, + "end": 12490.6, + "probability": 0.9983 + }, + { + "start": 12491.46, + "end": 12498.38, + "probability": 0.9308 + }, + { + "start": 12498.8, + "end": 12499.44, + "probability": 0.8784 + }, + { + "start": 12500.16, + "end": 12501.24, + "probability": 0.9109 + }, + { + "start": 12502.64, + "end": 12503.72, + "probability": 0.9207 + }, + { + "start": 12503.88, + "end": 12506.1, + "probability": 0.9973 + }, + { + "start": 12507.38, + "end": 12508.06, + "probability": 0.0487 + }, + { + "start": 12508.06, + "end": 12508.74, + "probability": 0.973 + }, + { + "start": 12510.16, + "end": 12512.5, + "probability": 0.9811 + }, + { + "start": 12513.78, + "end": 12519.58, + "probability": 0.9682 + }, + { + "start": 12520.88, + "end": 12525.82, + "probability": 0.9974 + }, + { + "start": 12525.94, + "end": 12527.14, + "probability": 0.9692 + }, + { + "start": 12530.06, + "end": 12534.88, + "probability": 0.9938 + }, + { + "start": 12537.04, + "end": 12541.28, + "probability": 0.9275 + }, + { + "start": 12541.54, + "end": 12542.86, + "probability": 0.77 + }, + { + "start": 12543.2, + "end": 12544.06, + "probability": 0.5497 + }, + { + "start": 12544.14, + "end": 12545.54, + "probability": 0.9305 + }, + { + "start": 12545.7, + "end": 12546.82, + "probability": 0.2871 + }, + { + "start": 12546.94, + "end": 12549.02, + "probability": 0.4397 + }, + { + "start": 12549.26, + "end": 12551.08, + "probability": 0.9933 + }, + { + "start": 12552.4, + "end": 12555.76, + "probability": 0.9879 + }, + { + "start": 12556.42, + "end": 12557.58, + "probability": 0.9646 + }, + { + "start": 12557.8, + "end": 12558.68, + "probability": 0.9976 + }, + { + "start": 12559.28, + "end": 12561.5, + "probability": 0.9291 + }, + { + "start": 12562.62, + "end": 12566.28, + "probability": 0.9465 + }, + { + "start": 12567.38, + "end": 12568.76, + "probability": 0.8418 + }, + { + "start": 12569.4, + "end": 12570.7, + "probability": 0.7433 + }, + { + "start": 12570.82, + "end": 12571.18, + "probability": 0.6106 + }, + { + "start": 12571.68, + "end": 12572.78, + "probability": 0.991 + }, + { + "start": 12575.76, + "end": 12581.68, + "probability": 0.9682 + }, + { + "start": 12582.16, + "end": 12583.54, + "probability": 0.5521 + }, + { + "start": 12583.78, + "end": 12584.46, + "probability": 0.7147 + }, + { + "start": 12584.64, + "end": 12588.48, + "probability": 0.9182 + }, + { + "start": 12589.3, + "end": 12590.28, + "probability": 0.9463 + }, + { + "start": 12591.02, + "end": 12593.52, + "probability": 0.8409 + }, + { + "start": 12595.02, + "end": 12596.16, + "probability": 0.9438 + }, + { + "start": 12598.84, + "end": 12600.2, + "probability": 0.9412 + }, + { + "start": 12600.66, + "end": 12601.96, + "probability": 0.969 + }, + { + "start": 12602.04, + "end": 12604.76, + "probability": 0.5646 + }, + { + "start": 12604.98, + "end": 12606.36, + "probability": 0.8646 + }, + { + "start": 12606.88, + "end": 12610.4, + "probability": 0.9639 + }, + { + "start": 12611.52, + "end": 12613.7, + "probability": 0.9907 + }, + { + "start": 12613.7, + "end": 12616.68, + "probability": 0.8118 + }, + { + "start": 12617.44, + "end": 12618.04, + "probability": 0.942 + }, + { + "start": 12619.06, + "end": 12622.58, + "probability": 0.8948 + }, + { + "start": 12623.06, + "end": 12623.16, + "probability": 0.1432 + }, + { + "start": 12623.16, + "end": 12623.16, + "probability": 0.2559 + }, + { + "start": 12623.16, + "end": 12625.28, + "probability": 0.9239 + }, + { + "start": 12625.72, + "end": 12629.16, + "probability": 0.8618 + }, + { + "start": 12631.58, + "end": 12634.36, + "probability": 0.6111 + }, + { + "start": 12635.12, + "end": 12637.94, + "probability": 0.8817 + }, + { + "start": 12639.04, + "end": 12640.6, + "probability": 0.9128 + }, + { + "start": 12641.54, + "end": 12642.46, + "probability": 0.9446 + }, + { + "start": 12642.98, + "end": 12644.56, + "probability": 0.9378 + }, + { + "start": 12652.12, + "end": 12654.16, + "probability": 0.8153 + }, + { + "start": 12655.76, + "end": 12656.92, + "probability": 0.7137 + }, + { + "start": 12658.04, + "end": 12660.08, + "probability": 0.9635 + }, + { + "start": 12660.64, + "end": 12661.9, + "probability": 0.9579 + }, + { + "start": 12663.2, + "end": 12664.28, + "probability": 0.9499 + }, + { + "start": 12664.46, + "end": 12670.36, + "probability": 0.9618 + }, + { + "start": 12674.1, + "end": 12676.82, + "probability": 0.6314 + }, + { + "start": 12677.84, + "end": 12678.28, + "probability": 0.4404 + }, + { + "start": 12678.28, + "end": 12680.05, + "probability": 0.6652 + }, + { + "start": 12680.9, + "end": 12682.38, + "probability": 0.9275 + }, + { + "start": 12682.52, + "end": 12686.0, + "probability": 0.9696 + }, + { + "start": 12686.86, + "end": 12693.04, + "probability": 0.9479 + }, + { + "start": 12693.56, + "end": 12695.06, + "probability": 0.8484 + }, + { + "start": 12695.84, + "end": 12698.62, + "probability": 0.8499 + }, + { + "start": 12699.98, + "end": 12701.78, + "probability": 0.9362 + }, + { + "start": 12701.84, + "end": 12704.26, + "probability": 0.9351 + }, + { + "start": 12704.3, + "end": 12705.36, + "probability": 0.9056 + }, + { + "start": 12705.72, + "end": 12707.06, + "probability": 0.7561 + }, + { + "start": 12707.22, + "end": 12710.74, + "probability": 0.9554 + }, + { + "start": 12712.2, + "end": 12718.02, + "probability": 0.9789 + }, + { + "start": 12718.62, + "end": 12719.58, + "probability": 0.6239 + }, + { + "start": 12719.98, + "end": 12726.2, + "probability": 0.8678 + }, + { + "start": 12727.42, + "end": 12732.78, + "probability": 0.9886 + }, + { + "start": 12732.88, + "end": 12735.04, + "probability": 0.9335 + }, + { + "start": 12735.72, + "end": 12740.66, + "probability": 0.9729 + }, + { + "start": 12741.0, + "end": 12743.38, + "probability": 0.8787 + }, + { + "start": 12744.28, + "end": 12749.78, + "probability": 0.9937 + }, + { + "start": 12750.2, + "end": 12752.2, + "probability": 0.9739 + }, + { + "start": 12752.54, + "end": 12755.64, + "probability": 0.9255 + }, + { + "start": 12757.74, + "end": 12762.46, + "probability": 0.9103 + }, + { + "start": 12762.78, + "end": 12764.08, + "probability": 0.9518 + }, + { + "start": 12764.32, + "end": 12768.78, + "probability": 0.8828 + }, + { + "start": 12768.96, + "end": 12769.34, + "probability": 0.2833 + }, + { + "start": 12769.4, + "end": 12770.94, + "probability": 0.9697 + }, + { + "start": 12771.96, + "end": 12773.16, + "probability": 0.7387 + }, + { + "start": 12773.38, + "end": 12775.55, + "probability": 0.8831 + }, + { + "start": 12776.12, + "end": 12778.46, + "probability": 0.9498 + }, + { + "start": 12778.7, + "end": 12780.22, + "probability": 0.9777 + }, + { + "start": 12780.64, + "end": 12786.08, + "probability": 0.9903 + }, + { + "start": 12787.98, + "end": 12789.74, + "probability": 0.9932 + }, + { + "start": 12790.76, + "end": 12794.82, + "probability": 0.9347 + }, + { + "start": 12795.18, + "end": 12797.5, + "probability": 0.9005 + }, + { + "start": 12798.14, + "end": 12801.86, + "probability": 0.7739 + }, + { + "start": 12802.84, + "end": 12812.14, + "probability": 0.932 + }, + { + "start": 12813.24, + "end": 12819.76, + "probability": 0.9315 + }, + { + "start": 12820.66, + "end": 12824.56, + "probability": 0.9761 + }, + { + "start": 12826.12, + "end": 12830.42, + "probability": 0.9285 + }, + { + "start": 12830.6, + "end": 12831.98, + "probability": 0.9683 + }, + { + "start": 12832.72, + "end": 12838.74, + "probability": 0.9944 + }, + { + "start": 12839.46, + "end": 12842.72, + "probability": 0.2147 + }, + { + "start": 12842.94, + "end": 12845.64, + "probability": 0.4984 + }, + { + "start": 12846.44, + "end": 12847.56, + "probability": 0.373 + }, + { + "start": 12847.58, + "end": 12848.68, + "probability": 0.6706 + }, + { + "start": 12849.0, + "end": 12850.46, + "probability": 0.8883 + }, + { + "start": 12850.7, + "end": 12855.32, + "probability": 0.9912 + }, + { + "start": 12855.82, + "end": 12858.0, + "probability": 0.9656 + }, + { + "start": 12858.38, + "end": 12863.2, + "probability": 0.8602 + }, + { + "start": 12863.2, + "end": 12867.16, + "probability": 0.9968 + }, + { + "start": 12867.32, + "end": 12869.88, + "probability": 0.8492 + }, + { + "start": 12870.16, + "end": 12870.44, + "probability": 0.6768 + }, + { + "start": 12870.44, + "end": 12872.12, + "probability": 0.8557 + }, + { + "start": 12872.32, + "end": 12873.96, + "probability": 0.9954 + }, + { + "start": 12874.08, + "end": 12876.02, + "probability": 0.9437 + }, + { + "start": 12877.12, + "end": 12878.96, + "probability": 0.933 + }, + { + "start": 12879.74, + "end": 12880.68, + "probability": 0.652 + }, + { + "start": 12881.78, + "end": 12883.44, + "probability": 0.9837 + }, + { + "start": 12884.68, + "end": 12885.48, + "probability": 0.9558 + }, + { + "start": 12886.2, + "end": 12887.5, + "probability": 0.9897 + }, + { + "start": 12888.58, + "end": 12889.5, + "probability": 0.9895 + }, + { + "start": 12890.06, + "end": 12891.74, + "probability": 0.9951 + }, + { + "start": 12892.96, + "end": 12893.88, + "probability": 0.5907 + }, + { + "start": 12894.4, + "end": 12895.94, + "probability": 0.8902 + }, + { + "start": 12897.22, + "end": 12898.04, + "probability": 0.9642 + }, + { + "start": 12898.62, + "end": 12900.4, + "probability": 0.9945 + }, + { + "start": 12901.6, + "end": 12902.38, + "probability": 0.748 + }, + { + "start": 12903.32, + "end": 12905.26, + "probability": 0.7604 + }, + { + "start": 12906.0, + "end": 12906.66, + "probability": 0.0653 + }, + { + "start": 12907.1, + "end": 12907.52, + "probability": 0.5717 + }, + { + "start": 12907.78, + "end": 12908.58, + "probability": 0.9602 + }, + { + "start": 12909.28, + "end": 12911.1, + "probability": 0.9276 + }, + { + "start": 12911.64, + "end": 12913.84, + "probability": 0.7679 + }, + { + "start": 12914.58, + "end": 12915.46, + "probability": 0.7934 + }, + { + "start": 12916.16, + "end": 12918.3, + "probability": 0.8346 + }, + { + "start": 12919.18, + "end": 12920.02, + "probability": 0.9713 + }, + { + "start": 12920.8, + "end": 12922.52, + "probability": 0.9371 + }, + { + "start": 12923.3, + "end": 12926.4, + "probability": 0.9512 + }, + { + "start": 12927.6, + "end": 12927.7, + "probability": 0.4394 + }, + { + "start": 12931.82, + "end": 12934.78, + "probability": 0.631 + }, + { + "start": 12935.3, + "end": 12936.9, + "probability": 0.726 + }, + { + "start": 12937.32, + "end": 12938.88, + "probability": 0.9221 + }, + { + "start": 12940.58, + "end": 12942.08, + "probability": 0.5538 + }, + { + "start": 12942.44, + "end": 12944.18, + "probability": 0.8475 + }, + { + "start": 12953.7, + "end": 12955.81, + "probability": 0.5389 + }, + { + "start": 12957.08, + "end": 12958.14, + "probability": 0.8713 + }, + { + "start": 12966.32, + "end": 12968.98, + "probability": 0.6313 + }, + { + "start": 12969.62, + "end": 12970.58, + "probability": 0.2065 + }, + { + "start": 12972.86, + "end": 12975.22, + "probability": 0.8376 + }, + { + "start": 12976.54, + "end": 12978.12, + "probability": 0.9941 + }, + { + "start": 12979.52, + "end": 12981.0, + "probability": 0.9205 + }, + { + "start": 12983.62, + "end": 12983.62, + "probability": 0.014 + }, + { + "start": 12983.62, + "end": 12984.9, + "probability": 0.7152 + }, + { + "start": 12985.36, + "end": 12986.06, + "probability": 0.7815 + }, + { + "start": 12986.16, + "end": 12989.4, + "probability": 0.989 + }, + { + "start": 12990.52, + "end": 12992.3, + "probability": 0.7678 + }, + { + "start": 12993.44, + "end": 12995.79, + "probability": 0.946 + }, + { + "start": 12996.56, + "end": 12998.84, + "probability": 0.9839 + }, + { + "start": 13000.2, + "end": 13006.02, + "probability": 0.9429 + }, + { + "start": 13008.08, + "end": 13013.36, + "probability": 0.6538 + }, + { + "start": 13014.74, + "end": 13019.38, + "probability": 0.9962 + }, + { + "start": 13019.56, + "end": 13020.32, + "probability": 0.8079 + }, + { + "start": 13020.72, + "end": 13021.7, + "probability": 0.4959 + }, + { + "start": 13022.16, + "end": 13024.58, + "probability": 0.4811 + }, + { + "start": 13025.42, + "end": 13026.72, + "probability": 0.8842 + }, + { + "start": 13027.42, + "end": 13030.36, + "probability": 0.8716 + }, + { + "start": 13031.14, + "end": 13032.92, + "probability": 0.9823 + }, + { + "start": 13033.56, + "end": 13038.6, + "probability": 0.9736 + }, + { + "start": 13039.98, + "end": 13043.46, + "probability": 0.9872 + }, + { + "start": 13045.22, + "end": 13047.34, + "probability": 0.9958 + }, + { + "start": 13047.42, + "end": 13049.12, + "probability": 0.7269 + }, + { + "start": 13049.64, + "end": 13051.12, + "probability": 0.9365 + }, + { + "start": 13051.18, + "end": 13051.98, + "probability": 0.9943 + }, + { + "start": 13053.78, + "end": 13057.7, + "probability": 0.7767 + }, + { + "start": 13057.7, + "end": 13058.62, + "probability": 0.4356 + }, + { + "start": 13058.84, + "end": 13059.86, + "probability": 0.8774 + }, + { + "start": 13060.0, + "end": 13062.3, + "probability": 0.2096 + }, + { + "start": 13062.3, + "end": 13063.17, + "probability": 0.9598 + }, + { + "start": 13063.22, + "end": 13064.22, + "probability": 0.9101 + }, + { + "start": 13064.26, + "end": 13066.78, + "probability": 0.7075 + }, + { + "start": 13067.54, + "end": 13069.02, + "probability": 0.9272 + }, + { + "start": 13069.02, + "end": 13069.76, + "probability": 0.6722 + }, + { + "start": 13069.84, + "end": 13070.84, + "probability": 0.9022 + }, + { + "start": 13071.58, + "end": 13073.26, + "probability": 0.4988 + }, + { + "start": 13074.7, + "end": 13076.02, + "probability": 0.7445 + }, + { + "start": 13077.18, + "end": 13078.08, + "probability": 0.817 + }, + { + "start": 13078.86, + "end": 13079.88, + "probability": 0.8391 + }, + { + "start": 13080.94, + "end": 13082.78, + "probability": 0.9792 + }, + { + "start": 13082.9, + "end": 13084.42, + "probability": 0.9976 + }, + { + "start": 13085.82, + "end": 13087.48, + "probability": 0.5532 + }, + { + "start": 13087.64, + "end": 13091.86, + "probability": 0.9594 + }, + { + "start": 13092.2, + "end": 13093.6, + "probability": 0.8488 + }, + { + "start": 13094.96, + "end": 13100.76, + "probability": 0.7773 + }, + { + "start": 13100.92, + "end": 13103.42, + "probability": 0.8748 + }, + { + "start": 13104.28, + "end": 13105.28, + "probability": 0.9003 + }, + { + "start": 13105.82, + "end": 13109.16, + "probability": 0.7817 + }, + { + "start": 13109.24, + "end": 13112.94, + "probability": 0.9412 + }, + { + "start": 13114.4, + "end": 13115.28, + "probability": 0.913 + }, + { + "start": 13115.36, + "end": 13116.26, + "probability": 0.7228 + }, + { + "start": 13116.44, + "end": 13122.1, + "probability": 0.9644 + }, + { + "start": 13123.88, + "end": 13126.12, + "probability": 0.8589 + }, + { + "start": 13126.62, + "end": 13129.66, + "probability": 0.9827 + }, + { + "start": 13130.16, + "end": 13134.76, + "probability": 0.8113 + }, + { + "start": 13136.22, + "end": 13136.3, + "probability": 0.3515 + }, + { + "start": 13136.4, + "end": 13137.52, + "probability": 0.9606 + }, + { + "start": 13137.92, + "end": 13138.27, + "probability": 0.649 + }, + { + "start": 13139.1, + "end": 13139.68, + "probability": 0.7237 + }, + { + "start": 13139.8, + "end": 13140.86, + "probability": 0.9297 + }, + { + "start": 13141.2, + "end": 13142.24, + "probability": 0.8086 + }, + { + "start": 13142.78, + "end": 13145.7, + "probability": 0.7607 + }, + { + "start": 13145.7, + "end": 13149.84, + "probability": 0.7986 + }, + { + "start": 13150.42, + "end": 13151.76, + "probability": 0.4252 + }, + { + "start": 13152.18, + "end": 13152.18, + "probability": 0.7246 + }, + { + "start": 13152.3, + "end": 13153.12, + "probability": 0.9493 + }, + { + "start": 13153.22, + "end": 13153.8, + "probability": 0.9405 + }, + { + "start": 13154.0, + "end": 13154.91, + "probability": 0.9424 + }, + { + "start": 13157.32, + "end": 13157.52, + "probability": 0.6916 + }, + { + "start": 13157.52, + "end": 13159.14, + "probability": 0.6406 + }, + { + "start": 13159.4, + "end": 13160.18, + "probability": 0.7043 + }, + { + "start": 13160.3, + "end": 13161.12, + "probability": 0.571 + }, + { + "start": 13161.48, + "end": 13162.72, + "probability": 0.7582 + }, + { + "start": 13163.44, + "end": 13165.96, + "probability": 0.6371 + }, + { + "start": 13165.96, + "end": 13167.78, + "probability": 0.8069 + }, + { + "start": 13168.28, + "end": 13170.78, + "probability": 0.7668 + }, + { + "start": 13170.78, + "end": 13175.74, + "probability": 0.6728 + }, + { + "start": 13176.3, + "end": 13179.86, + "probability": 0.9697 + }, + { + "start": 13180.46, + "end": 13181.02, + "probability": 0.9648 + }, + { + "start": 13181.2, + "end": 13184.32, + "probability": 0.7967 + }, + { + "start": 13184.36, + "end": 13185.16, + "probability": 0.729 + }, + { + "start": 13185.6, + "end": 13187.92, + "probability": 0.8395 + }, + { + "start": 13188.93, + "end": 13191.96, + "probability": 0.9493 + }, + { + "start": 13192.06, + "end": 13194.0, + "probability": 0.9088 + }, + { + "start": 13194.44, + "end": 13195.61, + "probability": 0.9288 + }, + { + "start": 13196.18, + "end": 13198.36, + "probability": 0.8603 + }, + { + "start": 13199.12, + "end": 13199.66, + "probability": 0.6365 + }, + { + "start": 13199.72, + "end": 13200.32, + "probability": 0.5211 + }, + { + "start": 13200.36, + "end": 13200.5, + "probability": 0.8079 + }, + { + "start": 13200.62, + "end": 13206.8, + "probability": 0.9678 + }, + { + "start": 13207.3, + "end": 13211.42, + "probability": 0.9852 + }, + { + "start": 13211.5, + "end": 13211.96, + "probability": 0.2447 + }, + { + "start": 13212.02, + "end": 13214.58, + "probability": 0.8236 + }, + { + "start": 13215.04, + "end": 13216.38, + "probability": 0.9839 + }, + { + "start": 13216.9, + "end": 13218.04, + "probability": 0.8138 + }, + { + "start": 13218.28, + "end": 13219.44, + "probability": 0.8864 + }, + { + "start": 13219.52, + "end": 13220.24, + "probability": 0.9028 + }, + { + "start": 13220.32, + "end": 13221.26, + "probability": 0.9743 + }, + { + "start": 13221.48, + "end": 13223.86, + "probability": 0.9375 + }, + { + "start": 13223.92, + "end": 13226.44, + "probability": 0.9561 + }, + { + "start": 13226.6, + "end": 13228.9, + "probability": 0.979 + }, + { + "start": 13229.14, + "end": 13230.04, + "probability": 0.9226 + }, + { + "start": 13230.34, + "end": 13232.36, + "probability": 0.6696 + }, + { + "start": 13233.22, + "end": 13235.36, + "probability": 0.751 + }, + { + "start": 13235.42, + "end": 13237.64, + "probability": 0.6599 + }, + { + "start": 13238.28, + "end": 13240.02, + "probability": 0.6929 + }, + { + "start": 13240.12, + "end": 13242.36, + "probability": 0.2686 + }, + { + "start": 13244.22, + "end": 13246.72, + "probability": 0.7684 + }, + { + "start": 13247.02, + "end": 13250.36, + "probability": 0.0941 + }, + { + "start": 13250.36, + "end": 13250.36, + "probability": 0.0187 + }, + { + "start": 13250.36, + "end": 13250.95, + "probability": 0.1914 + }, + { + "start": 13251.46, + "end": 13253.06, + "probability": 0.4996 + }, + { + "start": 13260.54, + "end": 13262.22, + "probability": 0.5503 + }, + { + "start": 13262.28, + "end": 13262.8, + "probability": 0.8174 + }, + { + "start": 13262.88, + "end": 13265.38, + "probability": 0.8936 + }, + { + "start": 13265.92, + "end": 13269.97, + "probability": 0.9904 + }, + { + "start": 13270.66, + "end": 13271.94, + "probability": 0.9779 + }, + { + "start": 13272.08, + "end": 13276.7, + "probability": 0.9849 + }, + { + "start": 13276.7, + "end": 13280.02, + "probability": 0.9795 + }, + { + "start": 13280.38, + "end": 13283.12, + "probability": 0.9821 + }, + { + "start": 13283.82, + "end": 13288.06, + "probability": 0.9088 + }, + { + "start": 13288.28, + "end": 13290.36, + "probability": 0.9964 + }, + { + "start": 13291.62, + "end": 13294.62, + "probability": 0.9702 + }, + { + "start": 13295.18, + "end": 13299.08, + "probability": 0.9951 + }, + { + "start": 13299.48, + "end": 13301.17, + "probability": 0.9963 + }, + { + "start": 13301.8, + "end": 13305.02, + "probability": 0.9717 + }, + { + "start": 13305.16, + "end": 13308.8, + "probability": 0.9754 + }, + { + "start": 13309.22, + "end": 13310.74, + "probability": 0.8279 + }, + { + "start": 13310.84, + "end": 13313.86, + "probability": 0.9748 + }, + { + "start": 13314.26, + "end": 13315.38, + "probability": 0.8519 + }, + { + "start": 13315.56, + "end": 13315.84, + "probability": 0.5161 + }, + { + "start": 13315.98, + "end": 13318.96, + "probability": 0.7852 + }, + { + "start": 13319.22, + "end": 13322.04, + "probability": 0.7841 + }, + { + "start": 13322.6, + "end": 13325.1, + "probability": 0.9823 + }, + { + "start": 13325.46, + "end": 13331.38, + "probability": 0.9803 + }, + { + "start": 13331.5, + "end": 13336.29, + "probability": 0.9768 + }, + { + "start": 13336.46, + "end": 13342.24, + "probability": 0.9496 + }, + { + "start": 13342.34, + "end": 13347.92, + "probability": 0.8678 + }, + { + "start": 13348.14, + "end": 13351.98, + "probability": 0.993 + }, + { + "start": 13352.28, + "end": 13355.0, + "probability": 0.9925 + }, + { + "start": 13355.28, + "end": 13363.52, + "probability": 0.8582 + }, + { + "start": 13363.9, + "end": 13366.22, + "probability": 0.9666 + }, + { + "start": 13369.9, + "end": 13371.78, + "probability": 0.6615 + }, + { + "start": 13372.18, + "end": 13375.04, + "probability": 0.7878 + }, + { + "start": 13375.5, + "end": 13376.8, + "probability": 0.753 + }, + { + "start": 13377.1, + "end": 13377.62, + "probability": 0.6312 + }, + { + "start": 13377.8, + "end": 13380.48, + "probability": 0.9785 + }, + { + "start": 13380.78, + "end": 13384.74, + "probability": 0.8295 + }, + { + "start": 13384.88, + "end": 13385.44, + "probability": 0.5009 + }, + { + "start": 13385.76, + "end": 13392.48, + "probability": 0.9175 + }, + { + "start": 13392.7, + "end": 13395.98, + "probability": 0.8379 + }, + { + "start": 13396.54, + "end": 13399.18, + "probability": 0.8813 + }, + { + "start": 13399.82, + "end": 13404.62, + "probability": 0.7977 + }, + { + "start": 13405.02, + "end": 13406.32, + "probability": 0.7703 + }, + { + "start": 13406.66, + "end": 13409.12, + "probability": 0.9666 + }, + { + "start": 13409.34, + "end": 13412.84, + "probability": 0.9973 + }, + { + "start": 13413.52, + "end": 13415.04, + "probability": 0.9966 + }, + { + "start": 13415.32, + "end": 13415.7, + "probability": 0.453 + }, + { + "start": 13415.78, + "end": 13416.46, + "probability": 0.7148 + }, + { + "start": 13416.78, + "end": 13420.44, + "probability": 0.9346 + }, + { + "start": 13420.54, + "end": 13421.78, + "probability": 0.9363 + }, + { + "start": 13422.26, + "end": 13423.18, + "probability": 0.9054 + }, + { + "start": 13423.46, + "end": 13424.38, + "probability": 0.9883 + }, + { + "start": 13424.52, + "end": 13426.2, + "probability": 0.9959 + }, + { + "start": 13426.76, + "end": 13430.62, + "probability": 0.9608 + }, + { + "start": 13430.92, + "end": 13434.52, + "probability": 0.9937 + }, + { + "start": 13434.84, + "end": 13436.46, + "probability": 0.9965 + }, + { + "start": 13436.78, + "end": 13441.42, + "probability": 0.9959 + }, + { + "start": 13441.74, + "end": 13446.3, + "probability": 0.9684 + }, + { + "start": 13446.74, + "end": 13451.44, + "probability": 0.9902 + }, + { + "start": 13451.68, + "end": 13455.58, + "probability": 0.9836 + }, + { + "start": 13455.68, + "end": 13459.54, + "probability": 0.751 + }, + { + "start": 13460.04, + "end": 13465.72, + "probability": 0.8351 + }, + { + "start": 13466.26, + "end": 13466.52, + "probability": 0.4856 + }, + { + "start": 13466.64, + "end": 13467.16, + "probability": 0.9452 + }, + { + "start": 13467.24, + "end": 13470.18, + "probability": 0.6637 + }, + { + "start": 13470.88, + "end": 13474.1, + "probability": 0.8249 + }, + { + "start": 13474.98, + "end": 13480.02, + "probability": 0.854 + }, + { + "start": 13480.52, + "end": 13481.3, + "probability": 0.692 + }, + { + "start": 13481.38, + "end": 13486.38, + "probability": 0.9951 + }, + { + "start": 13486.52, + "end": 13491.84, + "probability": 0.9387 + }, + { + "start": 13492.42, + "end": 13493.66, + "probability": 0.6151 + }, + { + "start": 13494.36, + "end": 13499.07, + "probability": 0.8151 + }, + { + "start": 13499.4, + "end": 13502.86, + "probability": 0.944 + }, + { + "start": 13502.86, + "end": 13507.2, + "probability": 0.9758 + }, + { + "start": 13507.36, + "end": 13507.68, + "probability": 0.5826 + }, + { + "start": 13508.58, + "end": 13511.9, + "probability": 0.7703 + }, + { + "start": 13513.16, + "end": 13518.22, + "probability": 0.9961 + }, + { + "start": 13518.44, + "end": 13521.38, + "probability": 0.1715 + }, + { + "start": 13521.48, + "end": 13522.66, + "probability": 0.6673 + }, + { + "start": 13523.24, + "end": 13524.98, + "probability": 0.763 + }, + { + "start": 13544.28, + "end": 13544.52, + "probability": 0.1387 + }, + { + "start": 13545.71, + "end": 13546.74, + "probability": 0.0272 + }, + { + "start": 13548.96, + "end": 13550.04, + "probability": 0.0478 + }, + { + "start": 13550.04, + "end": 13551.06, + "probability": 0.5921 + }, + { + "start": 13551.22, + "end": 13553.96, + "probability": 0.777 + }, + { + "start": 13556.88, + "end": 13558.9, + "probability": 0.0286 + }, + { + "start": 13559.58, + "end": 13560.2, + "probability": 0.3624 + }, + { + "start": 13561.76, + "end": 13564.08, + "probability": 0.0 + }, + { + "start": 13565.88, + "end": 13566.36, + "probability": 0.0494 + }, + { + "start": 13567.84, + "end": 13569.2, + "probability": 0.0706 + }, + { + "start": 13569.2, + "end": 13573.08, + "probability": 0.0511 + }, + { + "start": 13573.08, + "end": 13573.38, + "probability": 0.4623 + }, + { + "start": 13574.64, + "end": 13576.9, + "probability": 0.0144 + }, + { + "start": 13584.68, + "end": 13585.12, + "probability": 0.0651 + }, + { + "start": 13586.52, + "end": 13588.26, + "probability": 0.1123 + }, + { + "start": 13588.28, + "end": 13588.28, + "probability": 0.0643 + }, + { + "start": 13592.72, + "end": 13593.74, + "probability": 0.1199 + }, + { + "start": 13595.12, + "end": 13599.54, + "probability": 0.0314 + }, + { + "start": 13601.06, + "end": 13603.18, + "probability": 0.0566 + }, + { + "start": 13603.18, + "end": 13605.12, + "probability": 0.0971 + }, + { + "start": 13605.26, + "end": 13606.28, + "probability": 0.0678 + }, + { + "start": 13606.28, + "end": 13610.12, + "probability": 0.0397 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.14, + "end": 13615.0, + "probability": 0.0358 + }, + { + "start": 13615.0, + "end": 13615.0, + "probability": 0.0427 + }, + { + "start": 13615.0, + "end": 13615.0, + "probability": 0.0573 + }, + { + "start": 13615.0, + "end": 13615.0, + "probability": 0.0958 + }, + { + "start": 13615.0, + "end": 13616.72, + "probability": 0.0626 + }, + { + "start": 13616.72, + "end": 13617.52, + "probability": 0.1549 + }, + { + "start": 13618.86, + "end": 13620.74, + "probability": 0.0705 + }, + { + "start": 13621.32, + "end": 13628.62, + "probability": 0.9493 + }, + { + "start": 13628.74, + "end": 13631.93, + "probability": 0.8892 + }, + { + "start": 13632.7, + "end": 13634.06, + "probability": 0.8931 + }, + { + "start": 13634.78, + "end": 13635.56, + "probability": 0.5276 + }, + { + "start": 13636.22, + "end": 13638.12, + "probability": 0.9947 + }, + { + "start": 13639.54, + "end": 13641.44, + "probability": 0.9961 + }, + { + "start": 13643.62, + "end": 13646.08, + "probability": 0.4275 + }, + { + "start": 13646.78, + "end": 13647.44, + "probability": 0.6655 + }, + { + "start": 13648.42, + "end": 13652.16, + "probability": 0.8516 + }, + { + "start": 13653.3, + "end": 13655.06, + "probability": 0.8069 + }, + { + "start": 13655.12, + "end": 13657.36, + "probability": 0.8212 + }, + { + "start": 13658.14, + "end": 13660.62, + "probability": 0.7719 + }, + { + "start": 13661.32, + "end": 13662.36, + "probability": 0.866 + }, + { + "start": 13662.82, + "end": 13664.71, + "probability": 0.9932 + }, + { + "start": 13665.04, + "end": 13666.3, + "probability": 0.8158 + }, + { + "start": 13667.68, + "end": 13669.52, + "probability": 0.9026 + }, + { + "start": 13670.24, + "end": 13674.9, + "probability": 0.9836 + }, + { + "start": 13675.74, + "end": 13677.88, + "probability": 0.9542 + }, + { + "start": 13678.84, + "end": 13680.23, + "probability": 0.9907 + }, + { + "start": 13680.5, + "end": 13682.26, + "probability": 0.9549 + }, + { + "start": 13683.12, + "end": 13684.77, + "probability": 0.9438 + }, + { + "start": 13686.28, + "end": 13687.48, + "probability": 0.6785 + }, + { + "start": 13687.52, + "end": 13689.66, + "probability": 0.578 + }, + { + "start": 13690.06, + "end": 13692.74, + "probability": 0.6259 + }, + { + "start": 13692.9, + "end": 13694.33, + "probability": 0.9346 + }, + { + "start": 13696.38, + "end": 13697.6, + "probability": 0.8919 + }, + { + "start": 13702.02, + "end": 13704.04, + "probability": 0.7806 + }, + { + "start": 13704.18, + "end": 13707.02, + "probability": 0.981 + }, + { + "start": 13707.22, + "end": 13707.74, + "probability": 0.9314 + }, + { + "start": 13708.58, + "end": 13710.62, + "probability": 0.8802 + }, + { + "start": 13711.38, + "end": 13713.06, + "probability": 0.9873 + }, + { + "start": 13713.78, + "end": 13715.62, + "probability": 0.9546 + }, + { + "start": 13716.34, + "end": 13719.96, + "probability": 0.9689 + }, + { + "start": 13720.74, + "end": 13727.62, + "probability": 0.79 + }, + { + "start": 13728.64, + "end": 13734.06, + "probability": 0.8428 + }, + { + "start": 13735.5, + "end": 13738.44, + "probability": 0.9771 + }, + { + "start": 13738.92, + "end": 13740.86, + "probability": 0.6973 + }, + { + "start": 13741.42, + "end": 13745.92, + "probability": 0.8018 + }, + { + "start": 13746.52, + "end": 13748.94, + "probability": 0.9407 + }, + { + "start": 13749.36, + "end": 13750.96, + "probability": 0.6282 + }, + { + "start": 13751.48, + "end": 13756.72, + "probability": 0.9926 + }, + { + "start": 13757.66, + "end": 13759.64, + "probability": 0.996 + }, + { + "start": 13760.28, + "end": 13762.94, + "probability": 0.9336 + }, + { + "start": 13763.62, + "end": 13765.06, + "probability": 0.7155 + }, + { + "start": 13766.22, + "end": 13769.22, + "probability": 0.9857 + }, + { + "start": 13770.48, + "end": 13775.28, + "probability": 0.8594 + }, + { + "start": 13776.04, + "end": 13778.34, + "probability": 0.9263 + }, + { + "start": 13779.44, + "end": 13785.26, + "probability": 0.9321 + }, + { + "start": 13786.46, + "end": 13787.24, + "probability": 0.9565 + }, + { + "start": 13788.53, + "end": 13791.58, + "probability": 0.9592 + }, + { + "start": 13792.76, + "end": 13797.1, + "probability": 0.9833 + }, + { + "start": 13798.44, + "end": 13803.76, + "probability": 0.9811 + }, + { + "start": 13804.74, + "end": 13804.74, + "probability": 0.6917 + }, + { + "start": 13805.32, + "end": 13807.74, + "probability": 0.7736 + }, + { + "start": 13808.4, + "end": 13811.94, + "probability": 0.9471 + }, + { + "start": 13813.28, + "end": 13815.62, + "probability": 0.9316 + }, + { + "start": 13817.14, + "end": 13820.04, + "probability": 0.8728 + }, + { + "start": 13820.72, + "end": 13822.92, + "probability": 0.8604 + }, + { + "start": 13823.52, + "end": 13828.96, + "probability": 0.7453 + }, + { + "start": 13829.58, + "end": 13833.16, + "probability": 0.7235 + }, + { + "start": 13834.12, + "end": 13836.64, + "probability": 0.6721 + }, + { + "start": 13837.32, + "end": 13839.34, + "probability": 0.9592 + }, + { + "start": 13839.88, + "end": 13841.76, + "probability": 0.688 + }, + { + "start": 13842.18, + "end": 13843.22, + "probability": 0.8075 + }, + { + "start": 13843.38, + "end": 13848.44, + "probability": 0.9885 + }, + { + "start": 13849.14, + "end": 13850.68, + "probability": 0.6879 + }, + { + "start": 13851.3, + "end": 13852.56, + "probability": 0.9474 + }, + { + "start": 13852.68, + "end": 13854.94, + "probability": 0.7747 + }, + { + "start": 13855.0, + "end": 13856.12, + "probability": 0.5369 + }, + { + "start": 13856.82, + "end": 13860.64, + "probability": 0.6913 + }, + { + "start": 13861.88, + "end": 13864.78, + "probability": 0.5863 + }, + { + "start": 13865.46, + "end": 13869.38, + "probability": 0.9163 + }, + { + "start": 13869.82, + "end": 13872.46, + "probability": 0.9498 + }, + { + "start": 13873.26, + "end": 13875.37, + "probability": 0.7149 + }, + { + "start": 13876.32, + "end": 13878.4, + "probability": 0.6119 + }, + { + "start": 13878.48, + "end": 13881.86, + "probability": 0.9695 + }, + { + "start": 13882.86, + "end": 13886.12, + "probability": 0.6663 + }, + { + "start": 13886.62, + "end": 13889.42, + "probability": 0.9567 + }, + { + "start": 13890.0, + "end": 13890.76, + "probability": 0.5869 + }, + { + "start": 13891.12, + "end": 13892.7, + "probability": 0.7688 + }, + { + "start": 13893.24, + "end": 13895.0, + "probability": 0.9189 + }, + { + "start": 13895.42, + "end": 13897.5, + "probability": 0.9172 + }, + { + "start": 13897.92, + "end": 13899.16, + "probability": 0.5787 + }, + { + "start": 13900.08, + "end": 13905.46, + "probability": 0.9973 + }, + { + "start": 13905.9, + "end": 13907.7, + "probability": 0.8292 + }, + { + "start": 13908.7, + "end": 13915.06, + "probability": 0.9873 + }, + { + "start": 13915.72, + "end": 13917.45, + "probability": 0.9531 + }, + { + "start": 13917.66, + "end": 13921.56, + "probability": 0.6422 + }, + { + "start": 13922.04, + "end": 13925.58, + "probability": 0.9836 + }, + { + "start": 13925.58, + "end": 13930.98, + "probability": 0.9565 + }, + { + "start": 13931.24, + "end": 13932.08, + "probability": 0.3986 + }, + { + "start": 13932.44, + "end": 13938.34, + "probability": 0.9954 + }, + { + "start": 13939.6, + "end": 13943.72, + "probability": 0.9934 + }, + { + "start": 13943.82, + "end": 13944.7, + "probability": 0.9153 + }, + { + "start": 13945.12, + "end": 13945.68, + "probability": 0.9186 + }, + { + "start": 13946.0, + "end": 13949.08, + "probability": 0.8905 + }, + { + "start": 13949.78, + "end": 13951.54, + "probability": 0.8867 + }, + { + "start": 13951.78, + "end": 13953.32, + "probability": 0.9361 + }, + { + "start": 13953.78, + "end": 13956.75, + "probability": 0.985 + }, + { + "start": 13957.32, + "end": 13959.1, + "probability": 0.3556 + }, + { + "start": 13959.24, + "end": 13959.96, + "probability": 0.582 + }, + { + "start": 13960.58, + "end": 13964.62, + "probability": 0.9554 + }, + { + "start": 13964.94, + "end": 13965.12, + "probability": 0.9282 + }, + { + "start": 13969.68, + "end": 13971.16, + "probability": 0.4998 + }, + { + "start": 13971.92, + "end": 13975.17, + "probability": 0.8071 + }, + { + "start": 13976.86, + "end": 13978.56, + "probability": 0.7535 + }, + { + "start": 13982.26, + "end": 13983.36, + "probability": 0.1232 + }, + { + "start": 13984.2, + "end": 13986.2, + "probability": 0.9842 + }, + { + "start": 13986.28, + "end": 13987.22, + "probability": 0.9136 + }, + { + "start": 13987.24, + "end": 13989.86, + "probability": 0.9535 + }, + { + "start": 13989.94, + "end": 13997.08, + "probability": 0.8811 + }, + { + "start": 13998.04, + "end": 13999.1, + "probability": 0.965 + }, + { + "start": 13999.3, + "end": 13999.98, + "probability": 0.9059 + }, + { + "start": 14000.16, + "end": 14000.84, + "probability": 0.8943 + }, + { + "start": 14001.08, + "end": 14001.9, + "probability": 0.749 + }, + { + "start": 14002.48, + "end": 14004.08, + "probability": 0.8619 + }, + { + "start": 14004.98, + "end": 14009.92, + "probability": 0.915 + }, + { + "start": 14010.16, + "end": 14011.18, + "probability": 0.9427 + }, + { + "start": 14011.84, + "end": 14015.14, + "probability": 0.9148 + }, + { + "start": 14016.6, + "end": 14020.3, + "probability": 0.9966 + }, + { + "start": 14020.84, + "end": 14027.42, + "probability": 0.9974 + }, + { + "start": 14027.94, + "end": 14031.5, + "probability": 0.6872 + }, + { + "start": 14031.86, + "end": 14032.82, + "probability": 0.725 + }, + { + "start": 14033.88, + "end": 14035.1, + "probability": 0.7153 + }, + { + "start": 14036.16, + "end": 14038.9, + "probability": 0.9112 + }, + { + "start": 14040.22, + "end": 14041.58, + "probability": 0.8926 + }, + { + "start": 14041.66, + "end": 14043.44, + "probability": 0.967 + }, + { + "start": 14043.6, + "end": 14045.64, + "probability": 0.7995 + }, + { + "start": 14045.8, + "end": 14049.56, + "probability": 0.9851 + }, + { + "start": 14050.48, + "end": 14050.48, + "probability": 0.2749 + }, + { + "start": 14050.72, + "end": 14051.9, + "probability": 0.9186 + }, + { + "start": 14052.08, + "end": 14058.68, + "probability": 0.9966 + }, + { + "start": 14060.08, + "end": 14061.42, + "probability": 0.5287 + }, + { + "start": 14061.96, + "end": 14063.0, + "probability": 0.7998 + }, + { + "start": 14064.28, + "end": 14066.42, + "probability": 0.9884 + }, + { + "start": 14066.78, + "end": 14070.86, + "probability": 0.9766 + }, + { + "start": 14071.04, + "end": 14071.78, + "probability": 0.7829 + }, + { + "start": 14072.76, + "end": 14075.96, + "probability": 0.9795 + }, + { + "start": 14077.4, + "end": 14080.26, + "probability": 0.9692 + }, + { + "start": 14080.98, + "end": 14082.52, + "probability": 0.7218 + }, + { + "start": 14085.36, + "end": 14089.08, + "probability": 0.9418 + }, + { + "start": 14091.36, + "end": 14093.86, + "probability": 0.9971 + }, + { + "start": 14093.86, + "end": 14096.64, + "probability": 0.8239 + }, + { + "start": 14098.32, + "end": 14102.12, + "probability": 0.962 + }, + { + "start": 14102.12, + "end": 14108.02, + "probability": 0.9963 + }, + { + "start": 14110.56, + "end": 14113.74, + "probability": 0.938 + }, + { + "start": 14114.36, + "end": 14115.42, + "probability": 0.9495 + }, + { + "start": 14117.64, + "end": 14118.24, + "probability": 0.7062 + }, + { + "start": 14119.24, + "end": 14121.76, + "probability": 0.9963 + }, + { + "start": 14121.76, + "end": 14124.26, + "probability": 0.9957 + }, + { + "start": 14125.58, + "end": 14126.44, + "probability": 0.9761 + }, + { + "start": 14128.98, + "end": 14136.26, + "probability": 0.1426 + }, + { + "start": 14136.46, + "end": 14136.74, + "probability": 0.7479 + }, + { + "start": 14136.84, + "end": 14138.0, + "probability": 0.4338 + }, + { + "start": 14138.26, + "end": 14139.22, + "probability": 0.3561 + }, + { + "start": 14139.28, + "end": 14141.94, + "probability": 0.7474 + }, + { + "start": 14142.06, + "end": 14143.3, + "probability": 0.9844 + }, + { + "start": 14144.06, + "end": 14146.16, + "probability": 0.8206 + }, + { + "start": 14147.26, + "end": 14149.26, + "probability": 0.9719 + }, + { + "start": 14150.14, + "end": 14152.28, + "probability": 0.9592 + }, + { + "start": 14152.46, + "end": 14156.88, + "probability": 0.9969 + }, + { + "start": 14157.22, + "end": 14158.16, + "probability": 0.9965 + }, + { + "start": 14158.24, + "end": 14159.14, + "probability": 0.5931 + }, + { + "start": 14160.28, + "end": 14161.42, + "probability": 0.9469 + }, + { + "start": 14161.48, + "end": 14164.38, + "probability": 0.936 + }, + { + "start": 14164.72, + "end": 14166.24, + "probability": 0.9945 + }, + { + "start": 14167.52, + "end": 14169.04, + "probability": 0.7744 + }, + { + "start": 14171.72, + "end": 14173.29, + "probability": 0.9814 + }, + { + "start": 14175.36, + "end": 14176.26, + "probability": 0.4036 + }, + { + "start": 14176.46, + "end": 14178.52, + "probability": 0.9951 + }, + { + "start": 14178.98, + "end": 14180.41, + "probability": 0.8188 + }, + { + "start": 14180.68, + "end": 14181.92, + "probability": 0.8677 + }, + { + "start": 14182.5, + "end": 14183.81, + "probability": 0.6309 + }, + { + "start": 14184.64, + "end": 14185.22, + "probability": 0.9419 + }, + { + "start": 14188.18, + "end": 14190.24, + "probability": 0.9586 + }, + { + "start": 14190.9, + "end": 14193.34, + "probability": 0.9092 + }, + { + "start": 14193.38, + "end": 14194.44, + "probability": 0.9956 + }, + { + "start": 14194.74, + "end": 14195.6, + "probability": 0.7134 + }, + { + "start": 14195.64, + "end": 14196.18, + "probability": 0.8947 + }, + { + "start": 14196.9, + "end": 14199.3, + "probability": 0.8565 + }, + { + "start": 14199.96, + "end": 14203.04, + "probability": 0.9909 + }, + { + "start": 14203.66, + "end": 14205.04, + "probability": 0.9417 + }, + { + "start": 14207.54, + "end": 14208.8, + "probability": 0.9521 + }, + { + "start": 14208.86, + "end": 14209.7, + "probability": 0.0494 + }, + { + "start": 14210.18, + "end": 14211.2, + "probability": 0.9275 + }, + { + "start": 14212.68, + "end": 14214.94, + "probability": 0.9922 + }, + { + "start": 14215.3, + "end": 14215.84, + "probability": 0.9219 + }, + { + "start": 14220.34, + "end": 14220.78, + "probability": 0.4921 + }, + { + "start": 14220.78, + "end": 14221.86, + "probability": 0.7573 + }, + { + "start": 14221.96, + "end": 14223.82, + "probability": 0.9899 + }, + { + "start": 14225.18, + "end": 14230.18, + "probability": 0.6452 + }, + { + "start": 14230.3, + "end": 14232.0, + "probability": 0.98 + }, + { + "start": 14232.76, + "end": 14236.22, + "probability": 0.9956 + }, + { + "start": 14236.22, + "end": 14239.66, + "probability": 0.9519 + }, + { + "start": 14239.88, + "end": 14242.8, + "probability": 0.9982 + }, + { + "start": 14242.8, + "end": 14245.08, + "probability": 0.997 + }, + { + "start": 14245.9, + "end": 14249.5, + "probability": 0.994 + }, + { + "start": 14249.5, + "end": 14252.84, + "probability": 0.8627 + }, + { + "start": 14253.48, + "end": 14254.22, + "probability": 0.5233 + }, + { + "start": 14254.74, + "end": 14255.82, + "probability": 0.2611 + }, + { + "start": 14256.3, + "end": 14258.74, + "probability": 0.9904 + }, + { + "start": 14259.22, + "end": 14259.68, + "probability": 0.4649 + }, + { + "start": 14260.1, + "end": 14264.76, + "probability": 0.9512 + }, + { + "start": 14264.76, + "end": 14269.14, + "probability": 0.9863 + }, + { + "start": 14269.28, + "end": 14275.24, + "probability": 0.9833 + }, + { + "start": 14275.24, + "end": 14280.14, + "probability": 0.9973 + }, + { + "start": 14280.14, + "end": 14283.18, + "probability": 0.9838 + }, + { + "start": 14284.02, + "end": 14286.7, + "probability": 0.9377 + }, + { + "start": 14286.78, + "end": 14287.08, + "probability": 0.7604 + }, + { + "start": 14287.78, + "end": 14290.86, + "probability": 0.873 + }, + { + "start": 14291.12, + "end": 14292.82, + "probability": 0.9127 + }, + { + "start": 14293.2, + "end": 14295.26, + "probability": 0.7539 + }, + { + "start": 14295.28, + "end": 14295.68, + "probability": 0.5714 + }, + { + "start": 14295.8, + "end": 14298.12, + "probability": 0.7827 + }, + { + "start": 14298.76, + "end": 14301.58, + "probability": 0.7208 + }, + { + "start": 14302.26, + "end": 14303.77, + "probability": 0.9338 + }, + { + "start": 14304.34, + "end": 14305.08, + "probability": 0.9684 + }, + { + "start": 14305.22, + "end": 14306.5, + "probability": 0.8691 + }, + { + "start": 14307.48, + "end": 14310.98, + "probability": 0.6134 + }, + { + "start": 14311.82, + "end": 14312.62, + "probability": 0.9633 + }, + { + "start": 14313.22, + "end": 14315.22, + "probability": 0.9939 + }, + { + "start": 14315.84, + "end": 14316.64, + "probability": 0.7556 + }, + { + "start": 14317.46, + "end": 14318.76, + "probability": 0.9889 + }, + { + "start": 14329.16, + "end": 14331.06, + "probability": 0.6617 + }, + { + "start": 14331.28, + "end": 14332.28, + "probability": 0.3283 + }, + { + "start": 14332.3, + "end": 14333.18, + "probability": 0.4317 + }, + { + "start": 14333.2, + "end": 14333.84, + "probability": 0.5532 + }, + { + "start": 14333.94, + "end": 14337.82, + "probability": 0.9913 + }, + { + "start": 14338.64, + "end": 14341.1, + "probability": 0.9625 + }, + { + "start": 14342.55, + "end": 14344.91, + "probability": 0.6782 + }, + { + "start": 14345.64, + "end": 14348.42, + "probability": 0.9846 + }, + { + "start": 14349.14, + "end": 14350.98, + "probability": 0.9685 + }, + { + "start": 14352.04, + "end": 14355.14, + "probability": 0.9763 + }, + { + "start": 14355.86, + "end": 14359.62, + "probability": 0.9925 + }, + { + "start": 14360.4, + "end": 14364.12, + "probability": 0.9019 + }, + { + "start": 14364.88, + "end": 14367.72, + "probability": 0.9761 + }, + { + "start": 14368.5, + "end": 14369.32, + "probability": 0.9408 + }, + { + "start": 14370.22, + "end": 14372.1, + "probability": 0.984 + }, + { + "start": 14372.48, + "end": 14373.14, + "probability": 0.7452 + }, + { + "start": 14373.18, + "end": 14374.42, + "probability": 0.9941 + }, + { + "start": 14374.48, + "end": 14375.5, + "probability": 0.8832 + }, + { + "start": 14376.46, + "end": 14377.64, + "probability": 0.9507 + }, + { + "start": 14377.74, + "end": 14379.84, + "probability": 0.8171 + }, + { + "start": 14380.58, + "end": 14383.84, + "probability": 0.9928 + }, + { + "start": 14384.74, + "end": 14387.72, + "probability": 0.8929 + }, + { + "start": 14387.78, + "end": 14388.56, + "probability": 0.951 + }, + { + "start": 14388.7, + "end": 14389.9, + "probability": 0.6421 + }, + { + "start": 14390.84, + "end": 14394.5, + "probability": 0.9972 + }, + { + "start": 14394.6, + "end": 14395.86, + "probability": 0.642 + }, + { + "start": 14396.46, + "end": 14397.56, + "probability": 0.8888 + }, + { + "start": 14398.38, + "end": 14403.08, + "probability": 0.9095 + }, + { + "start": 14404.8, + "end": 14407.24, + "probability": 0.9058 + }, + { + "start": 14407.8, + "end": 14412.16, + "probability": 0.9906 + }, + { + "start": 14413.44, + "end": 14419.04, + "probability": 0.8258 + }, + { + "start": 14419.16, + "end": 14420.42, + "probability": 0.916 + }, + { + "start": 14420.76, + "end": 14422.28, + "probability": 0.6901 + }, + { + "start": 14422.72, + "end": 14424.2, + "probability": 0.9587 + }, + { + "start": 14424.52, + "end": 14426.3, + "probability": 0.7889 + }, + { + "start": 14427.16, + "end": 14428.52, + "probability": 0.9685 + }, + { + "start": 14428.88, + "end": 14429.95, + "probability": 0.9849 + }, + { + "start": 14430.38, + "end": 14432.12, + "probability": 0.7074 + }, + { + "start": 14432.62, + "end": 14435.2, + "probability": 0.8752 + }, + { + "start": 14435.4, + "end": 14437.88, + "probability": 0.9041 + }, + { + "start": 14438.48, + "end": 14440.88, + "probability": 0.8887 + }, + { + "start": 14441.14, + "end": 14441.42, + "probability": 0.8739 + }, + { + "start": 14441.56, + "end": 14442.44, + "probability": 0.9268 + }, + { + "start": 14442.8, + "end": 14444.38, + "probability": 0.9948 + }, + { + "start": 14444.62, + "end": 14447.3, + "probability": 0.9968 + }, + { + "start": 14448.2, + "end": 14451.04, + "probability": 0.9116 + }, + { + "start": 14451.98, + "end": 14454.9, + "probability": 0.9727 + }, + { + "start": 14454.98, + "end": 14455.98, + "probability": 0.9627 + }, + { + "start": 14456.02, + "end": 14456.64, + "probability": 0.7344 + }, + { + "start": 14457.46, + "end": 14460.2, + "probability": 0.9262 + }, + { + "start": 14460.34, + "end": 14461.74, + "probability": 0.9951 + }, + { + "start": 14461.8, + "end": 14463.66, + "probability": 0.8647 + }, + { + "start": 14464.1, + "end": 14466.28, + "probability": 0.9966 + }, + { + "start": 14466.66, + "end": 14467.94, + "probability": 0.9985 + }, + { + "start": 14468.06, + "end": 14469.6, + "probability": 0.9987 + }, + { + "start": 14469.96, + "end": 14471.36, + "probability": 0.9668 + }, + { + "start": 14471.78, + "end": 14475.04, + "probability": 0.9813 + }, + { + "start": 14475.36, + "end": 14477.74, + "probability": 0.8005 + }, + { + "start": 14478.12, + "end": 14480.44, + "probability": 0.8118 + }, + { + "start": 14481.18, + "end": 14483.72, + "probability": 0.9676 + }, + { + "start": 14484.62, + "end": 14485.22, + "probability": 0.768 + }, + { + "start": 14485.42, + "end": 14487.38, + "probability": 0.9964 + }, + { + "start": 14494.3, + "end": 14496.46, + "probability": 0.8718 + }, + { + "start": 14502.04, + "end": 14502.22, + "probability": 0.7092 + }, + { + "start": 14502.72, + "end": 14503.16, + "probability": 0.5016 + }, + { + "start": 14503.16, + "end": 14506.58, + "probability": 0.5651 + }, + { + "start": 14507.78, + "end": 14512.72, + "probability": 0.9172 + }, + { + "start": 14514.24, + "end": 14516.4, + "probability": 0.8312 + }, + { + "start": 14516.66, + "end": 14517.32, + "probability": 0.6413 + }, + { + "start": 14517.34, + "end": 14518.92, + "probability": 0.9215 + }, + { + "start": 14519.8, + "end": 14520.9, + "probability": 0.9008 + }, + { + "start": 14521.56, + "end": 14522.92, + "probability": 0.9586 + }, + { + "start": 14523.32, + "end": 14525.92, + "probability": 0.8991 + }, + { + "start": 14526.96, + "end": 14530.36, + "probability": 0.9642 + }, + { + "start": 14531.82, + "end": 14537.46, + "probability": 0.9816 + }, + { + "start": 14537.84, + "end": 14543.78, + "probability": 0.999 + }, + { + "start": 14544.5, + "end": 14545.14, + "probability": 0.9628 + }, + { + "start": 14546.08, + "end": 14547.34, + "probability": 0.9152 + }, + { + "start": 14547.94, + "end": 14548.76, + "probability": 0.9702 + }, + { + "start": 14549.58, + "end": 14551.32, + "probability": 0.9854 + }, + { + "start": 14551.72, + "end": 14554.86, + "probability": 0.9819 + }, + { + "start": 14556.44, + "end": 14557.97, + "probability": 0.9971 + }, + { + "start": 14558.5, + "end": 14559.86, + "probability": 0.976 + }, + { + "start": 14559.94, + "end": 14560.6, + "probability": 0.5894 + }, + { + "start": 14560.64, + "end": 14565.26, + "probability": 0.9893 + }, + { + "start": 14565.26, + "end": 14569.4, + "probability": 0.9985 + }, + { + "start": 14569.46, + "end": 14570.54, + "probability": 0.8914 + }, + { + "start": 14571.0, + "end": 14573.66, + "probability": 0.9985 + }, + { + "start": 14574.66, + "end": 14576.7, + "probability": 0.9978 + }, + { + "start": 14576.7, + "end": 14579.68, + "probability": 0.9919 + }, + { + "start": 14579.92, + "end": 14580.78, + "probability": 0.6576 + }, + { + "start": 14581.0, + "end": 14583.04, + "probability": 0.9795 + }, + { + "start": 14584.04, + "end": 14586.12, + "probability": 0.9812 + }, + { + "start": 14586.14, + "end": 14586.96, + "probability": 0.8091 + }, + { + "start": 14587.04, + "end": 14588.2, + "probability": 0.8696 + }, + { + "start": 14588.94, + "end": 14589.74, + "probability": 0.8252 + }, + { + "start": 14589.76, + "end": 14592.14, + "probability": 0.988 + }, + { + "start": 14592.68, + "end": 14595.24, + "probability": 0.993 + }, + { + "start": 14595.5, + "end": 14596.72, + "probability": 0.9884 + }, + { + "start": 14597.1, + "end": 14599.96, + "probability": 0.9907 + }, + { + "start": 14600.6, + "end": 14602.82, + "probability": 0.8669 + }, + { + "start": 14603.18, + "end": 14605.78, + "probability": 0.832 + }, + { + "start": 14606.32, + "end": 14607.68, + "probability": 0.9821 + }, + { + "start": 14607.82, + "end": 14611.02, + "probability": 0.9922 + }, + { + "start": 14611.34, + "end": 14612.3, + "probability": 0.9941 + }, + { + "start": 14613.06, + "end": 14613.94, + "probability": 0.998 + }, + { + "start": 14615.2, + "end": 14617.34, + "probability": 0.9974 + }, + { + "start": 14618.28, + "end": 14619.42, + "probability": 0.9742 + }, + { + "start": 14619.52, + "end": 14620.36, + "probability": 0.7111 + }, + { + "start": 14620.52, + "end": 14620.94, + "probability": 0.8762 + }, + { + "start": 14620.96, + "end": 14624.6, + "probability": 0.9626 + }, + { + "start": 14624.64, + "end": 14625.68, + "probability": 0.9909 + }, + { + "start": 14625.78, + "end": 14626.84, + "probability": 0.9514 + }, + { + "start": 14627.3, + "end": 14628.08, + "probability": 0.8842 + }, + { + "start": 14628.8, + "end": 14629.62, + "probability": 0.8333 + }, + { + "start": 14629.68, + "end": 14630.78, + "probability": 0.7601 + }, + { + "start": 14631.02, + "end": 14634.5, + "probability": 0.8505 + }, + { + "start": 14635.0, + "end": 14636.24, + "probability": 0.9929 + }, + { + "start": 14636.62, + "end": 14639.98, + "probability": 0.9886 + }, + { + "start": 14640.56, + "end": 14642.5, + "probability": 0.998 + }, + { + "start": 14642.86, + "end": 14644.38, + "probability": 0.9375 + }, + { + "start": 14644.46, + "end": 14645.74, + "probability": 0.6151 + }, + { + "start": 14645.82, + "end": 14646.8, + "probability": 0.7474 + }, + { + "start": 14647.24, + "end": 14648.9, + "probability": 0.8223 + }, + { + "start": 14649.22, + "end": 14650.0, + "probability": 0.9678 + }, + { + "start": 14650.1, + "end": 14654.48, + "probability": 0.9924 + }, + { + "start": 14654.87, + "end": 14660.6, + "probability": 0.769 + }, + { + "start": 14660.72, + "end": 14661.06, + "probability": 0.3379 + }, + { + "start": 14661.18, + "end": 14663.66, + "probability": 0.9975 + }, + { + "start": 14663.66, + "end": 14666.2, + "probability": 0.9928 + }, + { + "start": 14666.56, + "end": 14668.0, + "probability": 0.9832 + }, + { + "start": 14669.24, + "end": 14669.24, + "probability": 0.4468 + }, + { + "start": 14669.44, + "end": 14670.24, + "probability": 0.8678 + }, + { + "start": 14670.32, + "end": 14674.34, + "probability": 0.9884 + }, + { + "start": 14674.68, + "end": 14676.76, + "probability": 0.9022 + }, + { + "start": 14676.94, + "end": 14680.66, + "probability": 0.995 + }, + { + "start": 14682.04, + "end": 14684.64, + "probability": 0.9495 + }, + { + "start": 14684.7, + "end": 14685.26, + "probability": 0.9528 + }, + { + "start": 14685.36, + "end": 14686.34, + "probability": 0.9497 + }, + { + "start": 14686.94, + "end": 14690.66, + "probability": 0.7488 + }, + { + "start": 14691.08, + "end": 14693.34, + "probability": 0.9658 + }, + { + "start": 14694.1, + "end": 14698.52, + "probability": 0.9592 + }, + { + "start": 14698.6, + "end": 14700.86, + "probability": 0.9932 + }, + { + "start": 14701.0, + "end": 14701.42, + "probability": 0.4627 + }, + { + "start": 14701.5, + "end": 14702.56, + "probability": 0.895 + }, + { + "start": 14702.94, + "end": 14703.32, + "probability": 0.8066 + }, + { + "start": 14705.24, + "end": 14707.2, + "probability": 0.9447 + }, + { + "start": 14707.6, + "end": 14710.3, + "probability": 0.8932 + }, + { + "start": 14710.56, + "end": 14712.4, + "probability": 0.9209 + }, + { + "start": 14715.26, + "end": 14717.12, + "probability": 0.7681 + }, + { + "start": 14722.22, + "end": 14726.14, + "probability": 0.9218 + }, + { + "start": 14728.84, + "end": 14730.68, + "probability": 0.858 + }, + { + "start": 14730.76, + "end": 14731.08, + "probability": 0.343 + }, + { + "start": 14731.14, + "end": 14732.0, + "probability": 0.7826 + }, + { + "start": 14732.14, + "end": 14733.74, + "probability": 0.9723 + }, + { + "start": 14733.88, + "end": 14737.75, + "probability": 0.928 + }, + { + "start": 14738.22, + "end": 14743.78, + "probability": 0.8647 + }, + { + "start": 14744.7, + "end": 14746.42, + "probability": 0.8495 + }, + { + "start": 14746.96, + "end": 14748.62, + "probability": 0.9951 + }, + { + "start": 14749.22, + "end": 14753.92, + "probability": 0.9868 + }, + { + "start": 14754.8, + "end": 14758.06, + "probability": 0.9975 + }, + { + "start": 14758.82, + "end": 14760.3, + "probability": 0.7409 + }, + { + "start": 14760.42, + "end": 14761.25, + "probability": 0.998 + }, + { + "start": 14761.74, + "end": 14763.58, + "probability": 0.9891 + }, + { + "start": 14764.28, + "end": 14766.25, + "probability": 0.8342 + }, + { + "start": 14766.48, + "end": 14768.32, + "probability": 0.803 + }, + { + "start": 14769.32, + "end": 14771.52, + "probability": 0.9243 + }, + { + "start": 14771.64, + "end": 14776.46, + "probability": 0.9854 + }, + { + "start": 14777.26, + "end": 14780.62, + "probability": 0.9651 + }, + { + "start": 14780.7, + "end": 14783.36, + "probability": 0.7356 + }, + { + "start": 14783.88, + "end": 14785.79, + "probability": 0.9471 + }, + { + "start": 14786.62, + "end": 14787.42, + "probability": 0.9399 + }, + { + "start": 14787.64, + "end": 14791.46, + "probability": 0.3308 + }, + { + "start": 14792.22, + "end": 14794.78, + "probability": 0.9972 + }, + { + "start": 14794.88, + "end": 14796.16, + "probability": 0.9912 + }, + { + "start": 14796.26, + "end": 14798.13, + "probability": 0.9922 + }, + { + "start": 14798.78, + "end": 14800.6, + "probability": 0.9943 + }, + { + "start": 14801.6, + "end": 14807.32, + "probability": 0.999 + }, + { + "start": 14808.0, + "end": 14812.96, + "probability": 0.9971 + }, + { + "start": 14813.06, + "end": 14814.0, + "probability": 0.9988 + }, + { + "start": 14814.4, + "end": 14815.4, + "probability": 0.992 + }, + { + "start": 14816.08, + "end": 14819.48, + "probability": 0.886 + }, + { + "start": 14820.42, + "end": 14821.96, + "probability": 0.9925 + }, + { + "start": 14822.1, + "end": 14823.18, + "probability": 0.8071 + }, + { + "start": 14823.26, + "end": 14825.58, + "probability": 0.9886 + }, + { + "start": 14826.12, + "end": 14829.72, + "probability": 0.9938 + }, + { + "start": 14830.38, + "end": 14831.53, + "probability": 0.6757 + }, + { + "start": 14831.7, + "end": 14834.82, + "probability": 0.9583 + }, + { + "start": 14835.32, + "end": 14837.5, + "probability": 0.9928 + }, + { + "start": 14837.7, + "end": 14839.7, + "probability": 0.9266 + }, + { + "start": 14840.04, + "end": 14844.2, + "probability": 0.9913 + }, + { + "start": 14844.46, + "end": 14848.54, + "probability": 0.98 + }, + { + "start": 14848.94, + "end": 14851.32, + "probability": 0.9473 + }, + { + "start": 14851.92, + "end": 14853.42, + "probability": 0.9772 + }, + { + "start": 14853.5, + "end": 14853.84, + "probability": 0.8574 + }, + { + "start": 14854.42, + "end": 14856.68, + "probability": 0.8455 + }, + { + "start": 14857.14, + "end": 14859.1, + "probability": 0.9371 + }, + { + "start": 14859.4, + "end": 14860.14, + "probability": 0.477 + }, + { + "start": 14860.22, + "end": 14861.72, + "probability": 0.8298 + }, + { + "start": 14862.16, + "end": 14863.06, + "probability": 0.8637 + }, + { + "start": 14864.04, + "end": 14866.12, + "probability": 0.9847 + }, + { + "start": 14866.68, + "end": 14867.52, + "probability": 0.9703 + }, + { + "start": 14868.1, + "end": 14870.08, + "probability": 0.8116 + }, + { + "start": 14870.58, + "end": 14871.64, + "probability": 0.9843 + }, + { + "start": 14872.06, + "end": 14874.02, + "probability": 0.9472 + }, + { + "start": 14874.76, + "end": 14877.54, + "probability": 0.8058 + }, + { + "start": 14878.3, + "end": 14881.02, + "probability": 0.9375 + }, + { + "start": 14882.6, + "end": 14883.82, + "probability": 0.5379 + }, + { + "start": 14884.18, + "end": 14885.84, + "probability": 0.8158 + }, + { + "start": 14885.92, + "end": 14889.82, + "probability": 0.9927 + }, + { + "start": 14891.56, + "end": 14892.62, + "probability": 0.0424 + }, + { + "start": 14904.36, + "end": 14907.9, + "probability": 0.7563 + }, + { + "start": 14910.18, + "end": 14912.68, + "probability": 0.9382 + }, + { + "start": 14913.76, + "end": 14914.9, + "probability": 0.8556 + }, + { + "start": 14915.6, + "end": 14919.8, + "probability": 0.7114 + }, + { + "start": 14921.18, + "end": 14922.16, + "probability": 0.9803 + }, + { + "start": 14922.24, + "end": 14922.98, + "probability": 0.952 + }, + { + "start": 14923.06, + "end": 14924.66, + "probability": 0.9858 + }, + { + "start": 14925.62, + "end": 14926.92, + "probability": 0.9189 + }, + { + "start": 14928.08, + "end": 14929.94, + "probability": 0.9148 + }, + { + "start": 14930.88, + "end": 14931.52, + "probability": 0.9082 + }, + { + "start": 14931.66, + "end": 14935.38, + "probability": 0.9767 + }, + { + "start": 14936.02, + "end": 14938.06, + "probability": 0.9382 + }, + { + "start": 14938.8, + "end": 14939.72, + "probability": 0.7484 + }, + { + "start": 14939.82, + "end": 14946.62, + "probability": 0.9609 + }, + { + "start": 14946.68, + "end": 14948.8, + "probability": 0.8611 + }, + { + "start": 14950.1, + "end": 14952.08, + "probability": 0.9907 + }, + { + "start": 14953.52, + "end": 14953.96, + "probability": 0.6523 + }, + { + "start": 14954.04, + "end": 14954.61, + "probability": 0.7628 + }, + { + "start": 14955.78, + "end": 14956.82, + "probability": 0.9644 + }, + { + "start": 14957.44, + "end": 14958.36, + "probability": 0.7812 + }, + { + "start": 14959.14, + "end": 14960.8, + "probability": 0.7763 + }, + { + "start": 14961.42, + "end": 14962.68, + "probability": 0.8662 + }, + { + "start": 14964.04, + "end": 14967.13, + "probability": 0.8174 + }, + { + "start": 14967.4, + "end": 14969.66, + "probability": 0.9669 + }, + { + "start": 14970.76, + "end": 14972.22, + "probability": 0.5594 + }, + { + "start": 14972.38, + "end": 14973.87, + "probability": 0.9434 + }, + { + "start": 14974.94, + "end": 14979.35, + "probability": 0.9053 + }, + { + "start": 14980.06, + "end": 14984.32, + "probability": 0.8418 + }, + { + "start": 14985.74, + "end": 14987.74, + "probability": 0.7434 + }, + { + "start": 14988.42, + "end": 14992.2, + "probability": 0.921 + }, + { + "start": 14992.36, + "end": 14994.74, + "probability": 0.9847 + }, + { + "start": 14995.22, + "end": 14999.96, + "probability": 0.9823 + }, + { + "start": 15000.22, + "end": 15004.99, + "probability": 0.9504 + }, + { + "start": 15005.74, + "end": 15008.48, + "probability": 0.9142 + }, + { + "start": 15009.1, + "end": 15012.44, + "probability": 0.5917 + }, + { + "start": 15012.68, + "end": 15014.98, + "probability": 0.7363 + }, + { + "start": 15015.16, + "end": 15015.96, + "probability": 0.5347 + }, + { + "start": 15016.02, + "end": 15018.26, + "probability": 0.4905 + }, + { + "start": 15018.38, + "end": 15022.64, + "probability": 0.9722 + }, + { + "start": 15023.14, + "end": 15027.24, + "probability": 0.9834 + }, + { + "start": 15027.34, + "end": 15028.64, + "probability": 0.721 + }, + { + "start": 15029.86, + "end": 15035.78, + "probability": 0.9785 + }, + { + "start": 15036.98, + "end": 15037.82, + "probability": 0.9155 + }, + { + "start": 15038.34, + "end": 15039.43, + "probability": 0.986 + }, + { + "start": 15041.2, + "end": 15044.86, + "probability": 0.6147 + }, + { + "start": 15045.16, + "end": 15046.4, + "probability": 0.7507 + }, + { + "start": 15047.68, + "end": 15050.94, + "probability": 0.9933 + }, + { + "start": 15051.6, + "end": 15054.42, + "probability": 0.6988 + }, + { + "start": 15055.08, + "end": 15058.56, + "probability": 0.7049 + }, + { + "start": 15059.54, + "end": 15060.8, + "probability": 0.9749 + }, + { + "start": 15061.42, + "end": 15062.18, + "probability": 0.8941 + }, + { + "start": 15063.24, + "end": 15066.18, + "probability": 0.9919 + }, + { + "start": 15066.94, + "end": 15068.06, + "probability": 0.8582 + }, + { + "start": 15068.44, + "end": 15071.97, + "probability": 0.9557 + }, + { + "start": 15072.76, + "end": 15074.5, + "probability": 0.989 + }, + { + "start": 15075.62, + "end": 15080.14, + "probability": 0.9861 + }, + { + "start": 15080.98, + "end": 15084.56, + "probability": 0.9163 + }, + { + "start": 15085.64, + "end": 15086.18, + "probability": 0.9761 + }, + { + "start": 15086.26, + "end": 15086.92, + "probability": 0.7233 + }, + { + "start": 15087.02, + "end": 15092.88, + "probability": 0.9946 + }, + { + "start": 15093.38, + "end": 15095.9, + "probability": 0.9747 + }, + { + "start": 15096.14, + "end": 15097.12, + "probability": 0.9141 + }, + { + "start": 15097.38, + "end": 15100.34, + "probability": 0.995 + }, + { + "start": 15101.34, + "end": 15104.2, + "probability": 0.9855 + }, + { + "start": 15105.0, + "end": 15108.16, + "probability": 0.9707 + }, + { + "start": 15108.16, + "end": 15113.14, + "probability": 0.9901 + }, + { + "start": 15114.18, + "end": 15115.36, + "probability": 0.7078 + }, + { + "start": 15115.44, + "end": 15116.58, + "probability": 0.9113 + }, + { + "start": 15116.78, + "end": 15117.94, + "probability": 0.9102 + }, + { + "start": 15118.26, + "end": 15121.98, + "probability": 0.9811 + }, + { + "start": 15122.88, + "end": 15124.78, + "probability": 0.5032 + }, + { + "start": 15125.04, + "end": 15126.24, + "probability": 0.8201 + }, + { + "start": 15126.56, + "end": 15127.44, + "probability": 0.7418 + }, + { + "start": 15127.82, + "end": 15131.1, + "probability": 0.9747 + }, + { + "start": 15131.64, + "end": 15134.78, + "probability": 0.9675 + }, + { + "start": 15135.04, + "end": 15136.61, + "probability": 0.8238 + }, + { + "start": 15137.3, + "end": 15140.16, + "probability": 0.986 + }, + { + "start": 15140.54, + "end": 15144.05, + "probability": 0.5636 + }, + { + "start": 15144.96, + "end": 15146.2, + "probability": 0.9265 + }, + { + "start": 15147.56, + "end": 15147.92, + "probability": 0.4266 + }, + { + "start": 15149.18, + "end": 15150.18, + "probability": 0.7902 + }, + { + "start": 15150.72, + "end": 15153.54, + "probability": 0.9574 + }, + { + "start": 15153.78, + "end": 15157.7, + "probability": 0.7436 + }, + { + "start": 15158.62, + "end": 15160.4, + "probability": 0.9957 + }, + { + "start": 15161.12, + "end": 15165.94, + "probability": 0.8059 + }, + { + "start": 15165.94, + "end": 15170.74, + "probability": 0.9686 + }, + { + "start": 15171.16, + "end": 15171.34, + "probability": 0.6276 + }, + { + "start": 15171.48, + "end": 15172.94, + "probability": 0.6457 + }, + { + "start": 15173.44, + "end": 15174.66, + "probability": 0.9194 + }, + { + "start": 15175.44, + "end": 15176.4, + "probability": 0.6591 + }, + { + "start": 15177.32, + "end": 15177.44, + "probability": 0.3181 + }, + { + "start": 15178.46, + "end": 15181.12, + "probability": 0.7936 + }, + { + "start": 15181.74, + "end": 15182.04, + "probability": 0.627 + }, + { + "start": 15182.19, + "end": 15182.38, + "probability": 0.8 + }, + { + "start": 15182.38, + "end": 15183.08, + "probability": 0.972 + }, + { + "start": 15184.28, + "end": 15187.6, + "probability": 0.6797 + }, + { + "start": 15188.36, + "end": 15191.12, + "probability": 0.9531 + }, + { + "start": 15191.12, + "end": 15192.14, + "probability": 0.5876 + }, + { + "start": 15194.9, + "end": 15195.9, + "probability": 0.6894 + }, + { + "start": 15201.54, + "end": 15204.02, + "probability": 0.9531 + }, + { + "start": 15204.8, + "end": 15205.74, + "probability": 0.6259 + }, + { + "start": 15207.88, + "end": 15209.62, + "probability": 0.7238 + }, + { + "start": 15211.42, + "end": 15211.82, + "probability": 0.5916 + }, + { + "start": 15211.94, + "end": 15212.86, + "probability": 0.2538 + }, + { + "start": 15213.38, + "end": 15214.04, + "probability": 0.9086 + }, + { + "start": 15214.58, + "end": 15216.54, + "probability": 0.9058 + }, + { + "start": 15217.26, + "end": 15219.2, + "probability": 0.9956 + }, + { + "start": 15219.78, + "end": 15220.98, + "probability": 0.9834 + }, + { + "start": 15221.04, + "end": 15221.82, + "probability": 0.9948 + }, + { + "start": 15221.92, + "end": 15222.5, + "probability": 0.8718 + }, + { + "start": 15222.5, + "end": 15224.04, + "probability": 0.8076 + }, + { + "start": 15224.94, + "end": 15225.62, + "probability": 0.8056 + }, + { + "start": 15226.44, + "end": 15227.5, + "probability": 0.8078 + }, + { + "start": 15227.96, + "end": 15229.54, + "probability": 0.9385 + }, + { + "start": 15229.7, + "end": 15232.58, + "probability": 0.9022 + }, + { + "start": 15232.58, + "end": 15236.98, + "probability": 0.9292 + }, + { + "start": 15237.44, + "end": 15238.94, + "probability": 0.6699 + }, + { + "start": 15239.88, + "end": 15243.98, + "probability": 0.6809 + }, + { + "start": 15244.1, + "end": 15246.84, + "probability": 0.9889 + }, + { + "start": 15247.48, + "end": 15252.0, + "probability": 0.9938 + }, + { + "start": 15252.68, + "end": 15253.28, + "probability": 0.665 + }, + { + "start": 15253.83, + "end": 15258.14, + "probability": 0.9705 + }, + { + "start": 15258.42, + "end": 15259.74, + "probability": 0.8114 + }, + { + "start": 15259.84, + "end": 15261.24, + "probability": 0.8341 + }, + { + "start": 15261.68, + "end": 15263.92, + "probability": 0.6743 + }, + { + "start": 15264.91, + "end": 15268.02, + "probability": 0.6875 + }, + { + "start": 15268.2, + "end": 15269.28, + "probability": 0.7673 + }, + { + "start": 15269.42, + "end": 15270.59, + "probability": 0.7688 + }, + { + "start": 15271.34, + "end": 15274.08, + "probability": 0.9529 + }, + { + "start": 15274.12, + "end": 15275.56, + "probability": 0.6685 + }, + { + "start": 15275.66, + "end": 15276.48, + "probability": 0.6339 + }, + { + "start": 15277.0, + "end": 15279.85, + "probability": 0.7557 + }, + { + "start": 15280.28, + "end": 15280.6, + "probability": 0.4071 + }, + { + "start": 15280.66, + "end": 15281.34, + "probability": 0.6937 + }, + { + "start": 15281.56, + "end": 15282.38, + "probability": 0.8909 + }, + { + "start": 15282.96, + "end": 15286.38, + "probability": 0.9679 + }, + { + "start": 15287.0, + "end": 15290.12, + "probability": 0.8139 + }, + { + "start": 15290.52, + "end": 15294.1, + "probability": 0.9396 + }, + { + "start": 15294.58, + "end": 15296.56, + "probability": 0.9891 + }, + { + "start": 15296.66, + "end": 15297.96, + "probability": 0.9176 + }, + { + "start": 15298.08, + "end": 15300.16, + "probability": 0.9987 + }, + { + "start": 15300.5, + "end": 15302.8, + "probability": 0.9631 + }, + { + "start": 15303.58, + "end": 15305.2, + "probability": 0.7452 + }, + { + "start": 15305.76, + "end": 15307.02, + "probability": 0.9822 + }, + { + "start": 15307.42, + "end": 15308.98, + "probability": 0.9248 + }, + { + "start": 15309.54, + "end": 15310.6, + "probability": 0.93 + }, + { + "start": 15311.46, + "end": 15313.42, + "probability": 0.6193 + }, + { + "start": 15313.42, + "end": 15313.91, + "probability": 0.5823 + }, + { + "start": 15314.28, + "end": 15316.36, + "probability": 0.987 + }, + { + "start": 15317.02, + "end": 15321.28, + "probability": 0.8931 + }, + { + "start": 15321.6, + "end": 15323.0, + "probability": 0.9549 + }, + { + "start": 15323.84, + "end": 15324.9, + "probability": 0.7331 + }, + { + "start": 15325.56, + "end": 15327.3, + "probability": 0.6637 + }, + { + "start": 15327.4, + "end": 15328.6, + "probability": 0.2931 + }, + { + "start": 15328.64, + "end": 15328.68, + "probability": 0.2951 + }, + { + "start": 15328.8, + "end": 15331.28, + "probability": 0.9738 + }, + { + "start": 15331.28, + "end": 15332.36, + "probability": 0.4785 + }, + { + "start": 15333.16, + "end": 15335.88, + "probability": 0.6588 + }, + { + "start": 15340.84, + "end": 15341.16, + "probability": 0.0505 + }, + { + "start": 15341.18, + "end": 15341.2, + "probability": 0.1138 + }, + { + "start": 15341.2, + "end": 15342.6, + "probability": 0.6687 + }, + { + "start": 15342.86, + "end": 15345.0, + "probability": 0.8612 + }, + { + "start": 15345.16, + "end": 15346.56, + "probability": 0.9829 + }, + { + "start": 15346.66, + "end": 15346.98, + "probability": 0.5047 + }, + { + "start": 15347.04, + "end": 15350.26, + "probability": 0.9072 + }, + { + "start": 15350.32, + "end": 15353.22, + "probability": 0.9693 + }, + { + "start": 15353.32, + "end": 15354.1, + "probability": 0.8811 + }, + { + "start": 15354.58, + "end": 15355.38, + "probability": 0.8839 + }, + { + "start": 15355.38, + "end": 15356.12, + "probability": 0.8789 + }, + { + "start": 15356.18, + "end": 15357.14, + "probability": 0.9054 + }, + { + "start": 15357.24, + "end": 15359.76, + "probability": 0.9113 + }, + { + "start": 15359.82, + "end": 15360.45, + "probability": 0.2616 + }, + { + "start": 15360.48, + "end": 15361.88, + "probability": 0.7076 + }, + { + "start": 15362.04, + "end": 15362.72, + "probability": 0.8395 + }, + { + "start": 15363.04, + "end": 15367.56, + "probability": 0.7512 + }, + { + "start": 15367.62, + "end": 15370.08, + "probability": 0.9961 + }, + { + "start": 15370.28, + "end": 15371.08, + "probability": 0.7949 + }, + { + "start": 15371.38, + "end": 15372.14, + "probability": 0.9284 + }, + { + "start": 15372.52, + "end": 15374.06, + "probability": 0.9902 + }, + { + "start": 15374.4, + "end": 15374.91, + "probability": 0.5162 + }, + { + "start": 15375.0, + "end": 15377.5, + "probability": 0.9789 + }, + { + "start": 15378.12, + "end": 15380.58, + "probability": 0.8817 + }, + { + "start": 15380.7, + "end": 15381.32, + "probability": 0.7423 + }, + { + "start": 15381.42, + "end": 15382.54, + "probability": 0.7443 + }, + { + "start": 15383.26, + "end": 15388.4, + "probability": 0.6596 + }, + { + "start": 15388.5, + "end": 15390.24, + "probability": 0.9924 + }, + { + "start": 15390.64, + "end": 15392.9, + "probability": 0.9033 + }, + { + "start": 15393.08, + "end": 15394.66, + "probability": 0.6979 + }, + { + "start": 15395.0, + "end": 15396.85, + "probability": 0.9741 + }, + { + "start": 15397.62, + "end": 15399.12, + "probability": 0.7728 + }, + { + "start": 15399.5, + "end": 15401.32, + "probability": 0.584 + }, + { + "start": 15401.4, + "end": 15402.52, + "probability": 0.6827 + }, + { + "start": 15402.62, + "end": 15404.74, + "probability": 0.8662 + }, + { + "start": 15404.78, + "end": 15405.6, + "probability": 0.4986 + }, + { + "start": 15406.14, + "end": 15407.0, + "probability": 0.7629 + }, + { + "start": 15407.52, + "end": 15408.48, + "probability": 0.8131 + }, + { + "start": 15408.5, + "end": 15409.76, + "probability": 0.7513 + }, + { + "start": 15409.76, + "end": 15410.84, + "probability": 0.9515 + }, + { + "start": 15410.98, + "end": 15412.66, + "probability": 0.9785 + }, + { + "start": 15413.16, + "end": 15414.44, + "probability": 0.7586 + }, + { + "start": 15414.54, + "end": 15415.78, + "probability": 0.9258 + }, + { + "start": 15415.86, + "end": 15416.9, + "probability": 0.3505 + }, + { + "start": 15416.92, + "end": 15418.22, + "probability": 0.6394 + }, + { + "start": 15418.28, + "end": 15419.74, + "probability": 0.8446 + }, + { + "start": 15421.52, + "end": 15421.52, + "probability": 0.0761 + }, + { + "start": 15421.52, + "end": 15421.92, + "probability": 0.5748 + }, + { + "start": 15422.06, + "end": 15422.6, + "probability": 0.2014 + }, + { + "start": 15422.66, + "end": 15424.1, + "probability": 0.5757 + }, + { + "start": 15424.18, + "end": 15425.41, + "probability": 0.768 + }, + { + "start": 15425.84, + "end": 15426.34, + "probability": 0.6455 + }, + { + "start": 15426.44, + "end": 15427.86, + "probability": 0.4809 + }, + { + "start": 15428.1, + "end": 15428.32, + "probability": 0.2328 + }, + { + "start": 15428.36, + "end": 15430.94, + "probability": 0.6091 + }, + { + "start": 15431.18, + "end": 15432.6, + "probability": 0.503 + }, + { + "start": 15432.92, + "end": 15435.78, + "probability": 0.9976 + }, + { + "start": 15435.98, + "end": 15439.2, + "probability": 0.901 + }, + { + "start": 15439.2, + "end": 15440.02, + "probability": 0.7693 + }, + { + "start": 15440.18, + "end": 15441.1, + "probability": 0.4683 + }, + { + "start": 15441.14, + "end": 15442.67, + "probability": 0.4163 + }, + { + "start": 15442.76, + "end": 15442.78, + "probability": 0.2839 + }, + { + "start": 15442.82, + "end": 15443.4, + "probability": 0.5158 + }, + { + "start": 15443.4, + "end": 15446.08, + "probability": 0.8076 + }, + { + "start": 15446.54, + "end": 15449.6, + "probability": 0.9897 + }, + { + "start": 15449.68, + "end": 15453.84, + "probability": 0.9763 + }, + { + "start": 15453.92, + "end": 15456.54, + "probability": 0.7776 + }, + { + "start": 15456.68, + "end": 15457.1, + "probability": 0.8862 + }, + { + "start": 15457.2, + "end": 15458.96, + "probability": 0.9428 + }, + { + "start": 15459.12, + "end": 15461.24, + "probability": 0.9105 + }, + { + "start": 15462.08, + "end": 15462.82, + "probability": 0.3228 + }, + { + "start": 15464.32, + "end": 15467.34, + "probability": 0.7669 + }, + { + "start": 15468.52, + "end": 15470.42, + "probability": 0.3155 + }, + { + "start": 15470.82, + "end": 15471.6, + "probability": 0.6601 + }, + { + "start": 15471.64, + "end": 15472.32, + "probability": 0.8427 + }, + { + "start": 15473.13, + "end": 15476.52, + "probability": 0.0901 + }, + { + "start": 15482.62, + "end": 15483.94, + "probability": 0.0002 + }, + { + "start": 15486.68, + "end": 15486.98, + "probability": 0.034 + }, + { + "start": 15486.98, + "end": 15486.98, + "probability": 0.676 + }, + { + "start": 15486.98, + "end": 15486.98, + "probability": 0.8172 + }, + { + "start": 15486.98, + "end": 15488.57, + "probability": 0.4861 + }, + { + "start": 15489.08, + "end": 15494.36, + "probability": 0.8297 + }, + { + "start": 15494.42, + "end": 15497.34, + "probability": 0.8639 + }, + { + "start": 15498.26, + "end": 15501.86, + "probability": 0.4268 + }, + { + "start": 15501.96, + "end": 15503.02, + "probability": 0.7059 + }, + { + "start": 15503.39, + "end": 15508.0, + "probability": 0.1648 + }, + { + "start": 15508.32, + "end": 15511.72, + "probability": 0.0784 + }, + { + "start": 15512.1, + "end": 15512.66, + "probability": 0.2801 + }, + { + "start": 15512.66, + "end": 15512.66, + "probability": 0.0145 + }, + { + "start": 15512.66, + "end": 15512.76, + "probability": 0.0897 + }, + { + "start": 15512.9, + "end": 15513.86, + "probability": 0.5115 + }, + { + "start": 15514.32, + "end": 15519.26, + "probability": 0.9545 + }, + { + "start": 15519.36, + "end": 15519.98, + "probability": 0.8549 + }, + { + "start": 15521.9, + "end": 15525.55, + "probability": 0.7969 + }, + { + "start": 15526.0, + "end": 15527.37, + "probability": 0.7596 + }, + { + "start": 15528.1, + "end": 15530.14, + "probability": 0.9535 + }, + { + "start": 15530.92, + "end": 15532.28, + "probability": 0.9086 + }, + { + "start": 15533.46, + "end": 15533.98, + "probability": 0.7382 + }, + { + "start": 15534.7, + "end": 15537.72, + "probability": 0.7418 + }, + { + "start": 15539.2, + "end": 15544.78, + "probability": 0.7408 + }, + { + "start": 15545.62, + "end": 15550.3, + "probability": 0.979 + }, + { + "start": 15550.84, + "end": 15552.83, + "probability": 0.8721 + }, + { + "start": 15553.8, + "end": 15555.38, + "probability": 0.669 + }, + { + "start": 15557.86, + "end": 15560.06, + "probability": 0.9363 + }, + { + "start": 15561.16, + "end": 15566.92, + "probability": 0.9761 + }, + { + "start": 15567.5, + "end": 15570.14, + "probability": 0.8182 + }, + { + "start": 15571.28, + "end": 15573.1, + "probability": 0.6574 + }, + { + "start": 15574.18, + "end": 15579.7, + "probability": 0.9814 + }, + { + "start": 15579.7, + "end": 15586.42, + "probability": 0.8704 + }, + { + "start": 15591.0, + "end": 15595.8, + "probability": 0.9609 + }, + { + "start": 15596.66, + "end": 15600.38, + "probability": 0.5766 + }, + { + "start": 15600.38, + "end": 15604.5, + "probability": 0.9816 + }, + { + "start": 15604.86, + "end": 15607.1, + "probability": 0.9871 + }, + { + "start": 15607.68, + "end": 15613.38, + "probability": 0.9174 + }, + { + "start": 15614.22, + "end": 15615.94, + "probability": 0.3577 + }, + { + "start": 15616.94, + "end": 15624.94, + "probability": 0.7948 + }, + { + "start": 15626.76, + "end": 15632.42, + "probability": 0.7492 + }, + { + "start": 15632.66, + "end": 15635.42, + "probability": 0.8543 + }, + { + "start": 15635.88, + "end": 15640.14, + "probability": 0.7961 + }, + { + "start": 15641.82, + "end": 15645.84, + "probability": 0.7456 + }, + { + "start": 15646.66, + "end": 15650.22, + "probability": 0.7784 + }, + { + "start": 15650.84, + "end": 15652.96, + "probability": 0.7026 + }, + { + "start": 15653.2, + "end": 15655.11, + "probability": 0.5798 + }, + { + "start": 15655.56, + "end": 15660.6, + "probability": 0.87 + }, + { + "start": 15661.74, + "end": 15663.58, + "probability": 0.8162 + }, + { + "start": 15666.44, + "end": 15671.82, + "probability": 0.7882 + }, + { + "start": 15672.02, + "end": 15673.68, + "probability": 0.1852 + }, + { + "start": 15673.86, + "end": 15675.26, + "probability": 0.3817 + }, + { + "start": 15676.32, + "end": 15677.7, + "probability": 0.5192 + }, + { + "start": 15677.8, + "end": 15680.64, + "probability": 0.779 + }, + { + "start": 15680.7, + "end": 15682.58, + "probability": 0.7405 + }, + { + "start": 15683.44, + "end": 15685.02, + "probability": 0.9746 + }, + { + "start": 15685.3, + "end": 15687.66, + "probability": 0.9467 + }, + { + "start": 15687.86, + "end": 15690.34, + "probability": 0.9772 + }, + { + "start": 15690.96, + "end": 15693.66, + "probability": 0.8096 + }, + { + "start": 15694.56, + "end": 15697.54, + "probability": 0.9667 + }, + { + "start": 15697.76, + "end": 15703.9, + "probability": 0.9888 + }, + { + "start": 15704.04, + "end": 15709.92, + "probability": 0.9863 + }, + { + "start": 15710.44, + "end": 15711.74, + "probability": 0.6663 + }, + { + "start": 15711.94, + "end": 15714.24, + "probability": 0.9555 + }, + { + "start": 15715.24, + "end": 15717.74, + "probability": 0.9352 + }, + { + "start": 15717.84, + "end": 15719.82, + "probability": 0.9613 + }, + { + "start": 15720.12, + "end": 15724.32, + "probability": 0.9871 + }, + { + "start": 15724.78, + "end": 15726.02, + "probability": 0.9699 + }, + { + "start": 15727.16, + "end": 15727.88, + "probability": 0.7576 + }, + { + "start": 15729.14, + "end": 15732.14, + "probability": 0.9236 + }, + { + "start": 15732.9, + "end": 15737.34, + "probability": 0.981 + }, + { + "start": 15738.02, + "end": 15741.86, + "probability": 0.9961 + }, + { + "start": 15741.94, + "end": 15743.94, + "probability": 0.83 + }, + { + "start": 15744.2, + "end": 15746.7, + "probability": 0.9872 + }, + { + "start": 15746.78, + "end": 15751.18, + "probability": 0.9541 + }, + { + "start": 15751.9, + "end": 15756.04, + "probability": 0.9886 + }, + { + "start": 15756.5, + "end": 15762.2, + "probability": 0.9849 + }, + { + "start": 15763.44, + "end": 15765.0, + "probability": 0.8306 + }, + { + "start": 15765.58, + "end": 15771.54, + "probability": 0.8174 + }, + { + "start": 15772.38, + "end": 15772.58, + "probability": 0.2908 + }, + { + "start": 15772.7, + "end": 15773.74, + "probability": 0.8041 + }, + { + "start": 15773.9, + "end": 15777.04, + "probability": 0.9916 + }, + { + "start": 15778.24, + "end": 15779.92, + "probability": 0.8505 + }, + { + "start": 15780.32, + "end": 15784.86, + "probability": 0.9942 + }, + { + "start": 15785.4, + "end": 15788.64, + "probability": 0.9153 + }, + { + "start": 15788.7, + "end": 15789.34, + "probability": 0.7955 + }, + { + "start": 15789.5, + "end": 15789.7, + "probability": 0.8152 + }, + { + "start": 15789.8, + "end": 15793.2, + "probability": 0.6633 + }, + { + "start": 15794.62, + "end": 15802.02, + "probability": 0.9244 + }, + { + "start": 15802.02, + "end": 15807.58, + "probability": 0.9968 + }, + { + "start": 15807.7, + "end": 15812.51, + "probability": 0.6803 + }, + { + "start": 15813.21, + "end": 15815.6, + "probability": 0.9891 + }, + { + "start": 15816.4, + "end": 15820.88, + "probability": 0.9644 + }, + { + "start": 15820.88, + "end": 15826.08, + "probability": 0.9592 + }, + { + "start": 15827.08, + "end": 15829.9, + "probability": 0.9846 + }, + { + "start": 15829.9, + "end": 15833.3, + "probability": 0.9849 + }, + { + "start": 15833.44, + "end": 15838.15, + "probability": 0.931 + }, + { + "start": 15840.3, + "end": 15841.28, + "probability": 0.3341 + }, + { + "start": 15841.56, + "end": 15842.48, + "probability": 0.8042 + }, + { + "start": 15842.7, + "end": 15848.96, + "probability": 0.979 + }, + { + "start": 15849.7, + "end": 15851.3, + "probability": 0.9486 + }, + { + "start": 15851.98, + "end": 15855.64, + "probability": 0.9318 + }, + { + "start": 15855.72, + "end": 15856.72, + "probability": 0.7031 + }, + { + "start": 15857.26, + "end": 15859.4, + "probability": 0.8875 + }, + { + "start": 15860.22, + "end": 15861.06, + "probability": 0.7398 + }, + { + "start": 15861.16, + "end": 15865.88, + "probability": 0.9922 + }, + { + "start": 15866.58, + "end": 15867.7, + "probability": 0.7842 + }, + { + "start": 15868.0, + "end": 15869.1, + "probability": 0.7463 + }, + { + "start": 15869.58, + "end": 15874.24, + "probability": 0.9588 + }, + { + "start": 15874.46, + "end": 15876.56, + "probability": 0.581 + }, + { + "start": 15877.1, + "end": 15877.96, + "probability": 0.6363 + }, + { + "start": 15878.46, + "end": 15879.78, + "probability": 0.9932 + }, + { + "start": 15879.8, + "end": 15881.8, + "probability": 0.6938 + }, + { + "start": 15882.04, + "end": 15886.06, + "probability": 0.9691 + }, + { + "start": 15886.7, + "end": 15889.82, + "probability": 0.9474 + }, + { + "start": 15890.68, + "end": 15894.38, + "probability": 0.8969 + }, + { + "start": 15894.38, + "end": 15896.68, + "probability": 0.8606 + }, + { + "start": 15897.12, + "end": 15903.44, + "probability": 0.9188 + }, + { + "start": 15903.6, + "end": 15903.94, + "probability": 0.2607 + }, + { + "start": 15904.14, + "end": 15905.06, + "probability": 0.8776 + }, + { + "start": 15905.22, + "end": 15907.9, + "probability": 0.996 + }, + { + "start": 15907.9, + "end": 15909.28, + "probability": 0.8204 + }, + { + "start": 15909.72, + "end": 15913.68, + "probability": 0.9933 + }, + { + "start": 15914.06, + "end": 15917.88, + "probability": 0.9884 + }, + { + "start": 15918.12, + "end": 15918.64, + "probability": 0.7946 + }, + { + "start": 15918.82, + "end": 15920.82, + "probability": 0.8127 + }, + { + "start": 15920.98, + "end": 15922.86, + "probability": 0.9171 + }, + { + "start": 15923.54, + "end": 15925.82, + "probability": 0.7856 + }, + { + "start": 15926.26, + "end": 15928.28, + "probability": 0.9053 + }, + { + "start": 15928.38, + "end": 15929.69, + "probability": 0.934 + }, + { + "start": 15931.76, + "end": 15933.24, + "probability": 0.8565 + }, + { + "start": 15933.32, + "end": 15934.7, + "probability": 0.9923 + }, + { + "start": 15935.28, + "end": 15937.7, + "probability": 0.8671 + }, + { + "start": 15938.56, + "end": 15941.56, + "probability": 0.9262 + }, + { + "start": 15942.48, + "end": 15945.96, + "probability": 0.9279 + }, + { + "start": 15946.36, + "end": 15948.1, + "probability": 0.8648 + }, + { + "start": 15948.48, + "end": 15950.58, + "probability": 0.2981 + }, + { + "start": 15951.32, + "end": 15951.5, + "probability": 0.4943 + }, + { + "start": 15951.52, + "end": 15951.8, + "probability": 0.2814 + }, + { + "start": 15951.82, + "end": 15953.29, + "probability": 0.7797 + }, + { + "start": 15953.62, + "end": 15955.64, + "probability": 0.607 + }, + { + "start": 15955.82, + "end": 15957.02, + "probability": 0.5588 + }, + { + "start": 15957.18, + "end": 15957.8, + "probability": 0.4308 + }, + { + "start": 15958.44, + "end": 15960.5, + "probability": 0.7722 + }, + { + "start": 15961.4, + "end": 15964.3, + "probability": 0.6965 + }, + { + "start": 15964.58, + "end": 15966.84, + "probability": 0.5499 + }, + { + "start": 15967.4, + "end": 15967.84, + "probability": 0.5886 + }, + { + "start": 15968.8, + "end": 15971.0, + "probability": 0.6758 + }, + { + "start": 15972.04, + "end": 15974.22, + "probability": 0.9927 + }, + { + "start": 15975.06, + "end": 15975.06, + "probability": 0.1543 + }, + { + "start": 15975.06, + "end": 15976.72, + "probability": 0.8416 + }, + { + "start": 15976.96, + "end": 15979.22, + "probability": 0.5984 + }, + { + "start": 15980.44, + "end": 15984.08, + "probability": 0.7116 + }, + { + "start": 15985.38, + "end": 15993.32, + "probability": 0.978 + }, + { + "start": 15994.58, + "end": 16002.54, + "probability": 0.9631 + }, + { + "start": 16003.38, + "end": 16006.98, + "probability": 0.915 + }, + { + "start": 16007.7, + "end": 16008.27, + "probability": 0.0623 + }, + { + "start": 16009.66, + "end": 16018.22, + "probability": 0.9171 + }, + { + "start": 16018.5, + "end": 16022.52, + "probability": 0.8696 + }, + { + "start": 16023.28, + "end": 16024.93, + "probability": 0.9946 + }, + { + "start": 16025.74, + "end": 16026.96, + "probability": 0.9933 + }, + { + "start": 16028.28, + "end": 16029.92, + "probability": 0.597 + }, + { + "start": 16030.08, + "end": 16030.18, + "probability": 0.7336 + }, + { + "start": 16031.14, + "end": 16034.14, + "probability": 0.8101 + }, + { + "start": 16034.84, + "end": 16042.64, + "probability": 0.8346 + }, + { + "start": 16042.72, + "end": 16043.3, + "probability": 0.8522 + }, + { + "start": 16044.48, + "end": 16049.56, + "probability": 0.8804 + }, + { + "start": 16049.82, + "end": 16054.8, + "probability": 0.9907 + }, + { + "start": 16055.48, + "end": 16057.42, + "probability": 0.9043 + }, + { + "start": 16058.5, + "end": 16063.52, + "probability": 0.8765 + }, + { + "start": 16064.7, + "end": 16065.96, + "probability": 0.9773 + }, + { + "start": 16066.98, + "end": 16069.32, + "probability": 0.9899 + }, + { + "start": 16070.5, + "end": 16071.84, + "probability": 0.7478 + }, + { + "start": 16072.98, + "end": 16074.16, + "probability": 0.8652 + }, + { + "start": 16074.4, + "end": 16075.78, + "probability": 0.659 + }, + { + "start": 16076.6, + "end": 16078.72, + "probability": 0.991 + }, + { + "start": 16078.78, + "end": 16080.16, + "probability": 0.9937 + }, + { + "start": 16081.24, + "end": 16088.84, + "probability": 0.9757 + }, + { + "start": 16089.62, + "end": 16091.98, + "probability": 0.9821 + }, + { + "start": 16092.82, + "end": 16094.3, + "probability": 0.8735 + }, + { + "start": 16096.34, + "end": 16099.86, + "probability": 0.981 + }, + { + "start": 16100.8, + "end": 16106.44, + "probability": 0.9028 + }, + { + "start": 16107.48, + "end": 16113.76, + "probability": 0.9699 + }, + { + "start": 16114.28, + "end": 16115.62, + "probability": 0.524 + }, + { + "start": 16116.58, + "end": 16121.92, + "probability": 0.9779 + }, + { + "start": 16122.0, + "end": 16123.54, + "probability": 0.9584 + }, + { + "start": 16124.08, + "end": 16127.3, + "probability": 0.6497 + }, + { + "start": 16127.9, + "end": 16129.91, + "probability": 0.842 + }, + { + "start": 16130.7, + "end": 16134.3, + "probability": 0.9537 + }, + { + "start": 16134.74, + "end": 16135.82, + "probability": 0.9785 + }, + { + "start": 16136.56, + "end": 16138.0, + "probability": 0.9979 + }, + { + "start": 16138.64, + "end": 16140.82, + "probability": 0.7151 + }, + { + "start": 16141.22, + "end": 16143.43, + "probability": 0.9978 + }, + { + "start": 16144.82, + "end": 16145.78, + "probability": 0.9767 + }, + { + "start": 16145.84, + "end": 16149.3, + "probability": 0.9463 + }, + { + "start": 16149.44, + "end": 16150.48, + "probability": 0.5454 + }, + { + "start": 16151.16, + "end": 16155.58, + "probability": 0.9876 + }, + { + "start": 16155.58, + "end": 16159.64, + "probability": 0.9351 + }, + { + "start": 16159.96, + "end": 16162.44, + "probability": 0.988 + }, + { + "start": 16162.46, + "end": 16166.04, + "probability": 0.8828 + }, + { + "start": 16166.42, + "end": 16168.16, + "probability": 0.8226 + }, + { + "start": 16168.26, + "end": 16170.22, + "probability": 0.9175 + }, + { + "start": 16173.04, + "end": 16174.34, + "probability": 0.0257 + }, + { + "start": 16174.58, + "end": 16175.5, + "probability": 0.0679 + }, + { + "start": 16190.44, + "end": 16191.1, + "probability": 0.0207 + }, + { + "start": 16191.1, + "end": 16193.0, + "probability": 0.1371 + }, + { + "start": 16194.2, + "end": 16196.3, + "probability": 0.8158 + }, + { + "start": 16197.08, + "end": 16201.34, + "probability": 0.915 + }, + { + "start": 16201.98, + "end": 16203.56, + "probability": 0.9967 + }, + { + "start": 16204.08, + "end": 16207.32, + "probability": 0.9171 + }, + { + "start": 16208.38, + "end": 16210.1, + "probability": 0.7926 + }, + { + "start": 16210.78, + "end": 16212.52, + "probability": 0.812 + }, + { + "start": 16212.98, + "end": 16215.74, + "probability": 0.9976 + }, + { + "start": 16216.4, + "end": 16216.86, + "probability": 0.4787 + }, + { + "start": 16216.94, + "end": 16218.04, + "probability": 0.7608 + }, + { + "start": 16218.1, + "end": 16219.12, + "probability": 0.8336 + }, + { + "start": 16219.42, + "end": 16220.8, + "probability": 0.9929 + }, + { + "start": 16221.38, + "end": 16222.24, + "probability": 0.9131 + }, + { + "start": 16223.24, + "end": 16226.26, + "probability": 0.9715 + }, + { + "start": 16226.98, + "end": 16233.18, + "probability": 0.7363 + }, + { + "start": 16233.94, + "end": 16235.84, + "probability": 0.9227 + }, + { + "start": 16236.02, + "end": 16241.06, + "probability": 0.8969 + }, + { + "start": 16241.48, + "end": 16249.14, + "probability": 0.9941 + }, + { + "start": 16249.78, + "end": 16254.4, + "probability": 0.9868 + }, + { + "start": 16254.82, + "end": 16260.22, + "probability": 0.676 + }, + { + "start": 16260.5, + "end": 16260.76, + "probability": 0.8054 + }, + { + "start": 16260.9, + "end": 16261.28, + "probability": 0.6321 + }, + { + "start": 16261.44, + "end": 16262.02, + "probability": 0.9529 + }, + { + "start": 16262.2, + "end": 16263.38, + "probability": 0.7102 + }, + { + "start": 16263.74, + "end": 16264.37, + "probability": 0.932 + }, + { + "start": 16265.0, + "end": 16266.6, + "probability": 0.817 + }, + { + "start": 16267.1, + "end": 16269.0, + "probability": 0.9943 + }, + { + "start": 16269.22, + "end": 16269.78, + "probability": 0.9709 + }, + { + "start": 16269.94, + "end": 16274.9, + "probability": 0.9521 + }, + { + "start": 16275.36, + "end": 16278.64, + "probability": 0.8503 + }, + { + "start": 16279.24, + "end": 16283.92, + "probability": 0.975 + }, + { + "start": 16284.2, + "end": 16287.96, + "probability": 0.9849 + }, + { + "start": 16288.34, + "end": 16291.68, + "probability": 0.9795 + }, + { + "start": 16292.0, + "end": 16292.7, + "probability": 0.8086 + }, + { + "start": 16293.68, + "end": 16297.32, + "probability": 0.8567 + }, + { + "start": 16297.84, + "end": 16303.66, + "probability": 0.9948 + }, + { + "start": 16304.08, + "end": 16304.32, + "probability": 0.4272 + }, + { + "start": 16304.44, + "end": 16309.1, + "probability": 0.9563 + }, + { + "start": 16309.26, + "end": 16312.46, + "probability": 0.8822 + }, + { + "start": 16313.14, + "end": 16317.76, + "probability": 0.9739 + }, + { + "start": 16318.12, + "end": 16320.12, + "probability": 0.7477 + }, + { + "start": 16320.5, + "end": 16322.0, + "probability": 0.7587 + }, + { + "start": 16322.32, + "end": 16328.1, + "probability": 0.9741 + }, + { + "start": 16328.24, + "end": 16328.8, + "probability": 0.674 + }, + { + "start": 16329.14, + "end": 16330.98, + "probability": 0.9684 + }, + { + "start": 16331.2, + "end": 16333.42, + "probability": 0.8525 + }, + { + "start": 16334.44, + "end": 16336.28, + "probability": 0.8166 + }, + { + "start": 16336.38, + "end": 16336.82, + "probability": 0.2655 + }, + { + "start": 16336.84, + "end": 16338.8, + "probability": 0.8515 + }, + { + "start": 16339.34, + "end": 16340.62, + "probability": 0.7369 + }, + { + "start": 16341.82, + "end": 16343.54, + "probability": 0.8063 + }, + { + "start": 16343.54, + "end": 16346.22, + "probability": 0.64 + }, + { + "start": 16346.66, + "end": 16348.18, + "probability": 0.2235 + }, + { + "start": 16348.74, + "end": 16349.68, + "probability": 0.7938 + }, + { + "start": 16349.74, + "end": 16350.2, + "probability": 0.9395 + }, + { + "start": 16350.84, + "end": 16352.94, + "probability": 0.1012 + }, + { + "start": 16365.84, + "end": 16366.06, + "probability": 0.02 + }, + { + "start": 16366.64, + "end": 16370.32, + "probability": 0.1138 + }, + { + "start": 16370.34, + "end": 16370.68, + "probability": 0.0489 + }, + { + "start": 16370.68, + "end": 16371.5, + "probability": 0.714 + }, + { + "start": 16371.62, + "end": 16373.46, + "probability": 0.8198 + }, + { + "start": 16376.3, + "end": 16380.04, + "probability": 0.7949 + }, + { + "start": 16380.36, + "end": 16383.7, + "probability": 0.9813 + }, + { + "start": 16384.0, + "end": 16384.7, + "probability": 0.1282 + }, + { + "start": 16384.7, + "end": 16386.54, + "probability": 0.0574 + }, + { + "start": 16387.02, + "end": 16387.12, + "probability": 0.045 + }, + { + "start": 16387.12, + "end": 16387.12, + "probability": 0.0942 + }, + { + "start": 16387.12, + "end": 16388.68, + "probability": 0.1821 + }, + { + "start": 16388.68, + "end": 16388.68, + "probability": 0.0621 + }, + { + "start": 16388.68, + "end": 16388.68, + "probability": 0.0217 + }, + { + "start": 16388.68, + "end": 16388.68, + "probability": 0.0137 + }, + { + "start": 16388.68, + "end": 16389.88, + "probability": 0.7344 + }, + { + "start": 16396.44, + "end": 16398.36, + "probability": 0.0414 + }, + { + "start": 16411.24, + "end": 16411.38, + "probability": 0.0938 + }, + { + "start": 16411.38, + "end": 16411.72, + "probability": 0.0283 + }, + { + "start": 16411.72, + "end": 16411.72, + "probability": 0.1988 + }, + { + "start": 16411.72, + "end": 16411.72, + "probability": 0.4456 + }, + { + "start": 16411.72, + "end": 16413.16, + "probability": 0.6927 + }, + { + "start": 16413.4, + "end": 16415.74, + "probability": 0.9631 + }, + { + "start": 16415.76, + "end": 16417.06, + "probability": 0.6707 + }, + { + "start": 16417.16, + "end": 16420.88, + "probability": 0.9541 + }, + { + "start": 16421.92, + "end": 16424.2, + "probability": 0.9841 + }, + { + "start": 16425.2, + "end": 16428.16, + "probability": 0.6088 + }, + { + "start": 16428.16, + "end": 16430.82, + "probability": 0.9763 + }, + { + "start": 16431.44, + "end": 16434.22, + "probability": 0.5914 + }, + { + "start": 16435.44, + "end": 16438.07, + "probability": 0.9717 + }, + { + "start": 16439.32, + "end": 16440.82, + "probability": 0.7845 + }, + { + "start": 16446.16, + "end": 16448.36, + "probability": 0.0745 + }, + { + "start": 16449.22, + "end": 16450.54, + "probability": 0.6429 + }, + { + "start": 16450.62, + "end": 16452.99, + "probability": 0.7759 + }, + { + "start": 16481.18, + "end": 16482.14, + "probability": 0.4771 + }, + { + "start": 16482.66, + "end": 16483.6, + "probability": 0.7523 + }, + { + "start": 16483.82, + "end": 16486.4, + "probability": 0.8598 + }, + { + "start": 16486.74, + "end": 16488.06, + "probability": 0.5414 + }, + { + "start": 16488.58, + "end": 16491.5, + "probability": 0.9015 + }, + { + "start": 16492.98, + "end": 16495.98, + "probability": 0.6347 + }, + { + "start": 16496.16, + "end": 16500.4, + "probability": 0.9761 + }, + { + "start": 16501.98, + "end": 16502.78, + "probability": 0.9688 + }, + { + "start": 16503.38, + "end": 16509.22, + "probability": 0.936 + }, + { + "start": 16509.22, + "end": 16515.96, + "probability": 0.913 + }, + { + "start": 16516.42, + "end": 16521.56, + "probability": 0.9433 + }, + { + "start": 16521.58, + "end": 16528.3, + "probability": 0.8338 + }, + { + "start": 16534.26, + "end": 16534.4, + "probability": 0.0004 + }, + { + "start": 16535.74, + "end": 16540.16, + "probability": 0.9819 + }, + { + "start": 16540.18, + "end": 16544.72, + "probability": 0.9452 + }, + { + "start": 16545.34, + "end": 16549.98, + "probability": 0.7172 + }, + { + "start": 16549.98, + "end": 16555.98, + "probability": 0.5827 + }, + { + "start": 16557.62, + "end": 16558.36, + "probability": 0.0103 + }, + { + "start": 16558.44, + "end": 16562.84, + "probability": 0.804 + }, + { + "start": 16562.98, + "end": 16565.2, + "probability": 0.986 + }, + { + "start": 16567.02, + "end": 16569.6, + "probability": 0.5921 + }, + { + "start": 16569.8, + "end": 16570.44, + "probability": 0.552 + }, + { + "start": 16570.64, + "end": 16571.64, + "probability": 0.7868 + }, + { + "start": 16571.82, + "end": 16572.66, + "probability": 0.6414 + }, + { + "start": 16572.76, + "end": 16575.4, + "probability": 0.7014 + }, + { + "start": 16575.58, + "end": 16576.32, + "probability": 0.7766 + }, + { + "start": 16576.54, + "end": 16577.31, + "probability": 0.9191 + }, + { + "start": 16578.74, + "end": 16581.12, + "probability": 0.833 + }, + { + "start": 16582.0, + "end": 16584.26, + "probability": 0.9124 + }, + { + "start": 16584.82, + "end": 16585.44, + "probability": 0.3106 + }, + { + "start": 16585.96, + "end": 16587.64, + "probability": 0.802 + }, + { + "start": 16588.12, + "end": 16588.92, + "probability": 0.6944 + }, + { + "start": 16589.02, + "end": 16590.36, + "probability": 0.9435 + }, + { + "start": 16590.98, + "end": 16593.14, + "probability": 0.976 + }, + { + "start": 16593.8, + "end": 16596.16, + "probability": 0.9769 + }, + { + "start": 16597.04, + "end": 16598.7, + "probability": 0.8528 + }, + { + "start": 16600.02, + "end": 16600.78, + "probability": 0.5994 + }, + { + "start": 16601.32, + "end": 16602.78, + "probability": 0.9895 + }, + { + "start": 16603.54, + "end": 16605.82, + "probability": 0.9042 + }, + { + "start": 16606.62, + "end": 16610.12, + "probability": 0.9558 + }, + { + "start": 16614.46, + "end": 16614.66, + "probability": 0.2254 + }, + { + "start": 16614.66, + "end": 16614.66, + "probability": 0.5303 + }, + { + "start": 16614.66, + "end": 16615.74, + "probability": 0.766 + }, + { + "start": 16616.26, + "end": 16618.68, + "probability": 0.5941 + }, + { + "start": 16619.38, + "end": 16621.83, + "probability": 0.961 + }, + { + "start": 16622.52, + "end": 16625.1, + "probability": 0.8891 + }, + { + "start": 16625.92, + "end": 16628.43, + "probability": 0.7981 + }, + { + "start": 16629.12, + "end": 16631.4, + "probability": 0.9603 + }, + { + "start": 16632.04, + "end": 16632.9, + "probability": 0.9439 + }, + { + "start": 16633.46, + "end": 16636.16, + "probability": 0.9746 + }, + { + "start": 16636.76, + "end": 16638.74, + "probability": 0.9963 + }, + { + "start": 16639.42, + "end": 16640.24, + "probability": 0.9875 + }, + { + "start": 16641.04, + "end": 16643.44, + "probability": 0.7575 + }, + { + "start": 16644.62, + "end": 16645.9, + "probability": 0.8935 + }, + { + "start": 16647.72, + "end": 16648.88, + "probability": 0.7172 + }, + { + "start": 16650.46, + "end": 16655.0, + "probability": 0.905 + }, + { + "start": 16655.88, + "end": 16656.44, + "probability": 0.7012 + }, + { + "start": 16656.58, + "end": 16657.8, + "probability": 0.9522 + }, + { + "start": 16658.4, + "end": 16658.96, + "probability": 0.7183 + }, + { + "start": 16659.08, + "end": 16660.9, + "probability": 0.903 + }, + { + "start": 16661.6, + "end": 16662.6, + "probability": 0.6296 + }, + { + "start": 16663.56, + "end": 16665.66, + "probability": 0.7686 + }, + { + "start": 16665.86, + "end": 16667.76, + "probability": 0.6673 + }, + { + "start": 16667.78, + "end": 16670.01, + "probability": 0.5912 + }, + { + "start": 16670.84, + "end": 16672.54, + "probability": 0.5416 + }, + { + "start": 16672.66, + "end": 16674.1, + "probability": 0.8243 + }, + { + "start": 16676.08, + "end": 16679.24, + "probability": 0.5958 + }, + { + "start": 16685.22, + "end": 16686.76, + "probability": 0.3075 + }, + { + "start": 16687.56, + "end": 16687.56, + "probability": 0.1516 + }, + { + "start": 16687.58, + "end": 16688.5, + "probability": 0.7559 + }, + { + "start": 16688.56, + "end": 16690.87, + "probability": 0.9795 + }, + { + "start": 16692.68, + "end": 16694.88, + "probability": 0.8989 + }, + { + "start": 16696.18, + "end": 16697.42, + "probability": 0.9497 + }, + { + "start": 16698.58, + "end": 16701.14, + "probability": 0.995 + }, + { + "start": 16703.0, + "end": 16706.66, + "probability": 0.8594 + }, + { + "start": 16707.34, + "end": 16708.98, + "probability": 0.6906 + }, + { + "start": 16710.26, + "end": 16713.5, + "probability": 0.9376 + }, + { + "start": 16714.24, + "end": 16717.94, + "probability": 0.8596 + }, + { + "start": 16718.32, + "end": 16719.14, + "probability": 0.8697 + }, + { + "start": 16721.04, + "end": 16722.86, + "probability": 0.8862 + }, + { + "start": 16723.1, + "end": 16723.78, + "probability": 0.9028 + }, + { + "start": 16723.92, + "end": 16725.16, + "probability": 0.9919 + }, + { + "start": 16725.7, + "end": 16727.32, + "probability": 0.9033 + }, + { + "start": 16728.32, + "end": 16729.56, + "probability": 0.899 + }, + { + "start": 16730.48, + "end": 16733.42, + "probability": 0.9927 + }, + { + "start": 16734.08, + "end": 16735.6, + "probability": 0.8711 + }, + { + "start": 16736.56, + "end": 16737.74, + "probability": 0.883 + }, + { + "start": 16738.28, + "end": 16739.16, + "probability": 0.9912 + }, + { + "start": 16740.14, + "end": 16741.4, + "probability": 0.9276 + }, + { + "start": 16742.26, + "end": 16743.88, + "probability": 0.9807 + }, + { + "start": 16744.52, + "end": 16745.7, + "probability": 0.9845 + }, + { + "start": 16746.5, + "end": 16750.18, + "probability": 0.7621 + }, + { + "start": 16750.78, + "end": 16752.18, + "probability": 0.6741 + }, + { + "start": 16752.28, + "end": 16754.26, + "probability": 0.5893 + }, + { + "start": 16754.62, + "end": 16754.84, + "probability": 0.8887 + }, + { + "start": 16755.44, + "end": 16756.56, + "probability": 0.724 + }, + { + "start": 16757.58, + "end": 16759.96, + "probability": 0.4973 + }, + { + "start": 16760.62, + "end": 16761.78, + "probability": 0.6357 + }, + { + "start": 16762.34, + "end": 16764.5, + "probability": 0.837 + }, + { + "start": 16765.48, + "end": 16767.26, + "probability": 0.9559 + }, + { + "start": 16768.88, + "end": 16769.6, + "probability": 0.9835 + }, + { + "start": 16770.72, + "end": 16772.26, + "probability": 0.8289 + }, + { + "start": 16772.96, + "end": 16775.92, + "probability": 0.9318 + }, + { + "start": 16776.96, + "end": 16777.8, + "probability": 0.7581 + }, + { + "start": 16777.92, + "end": 16782.02, + "probability": 0.7122 + }, + { + "start": 16783.4, + "end": 16785.06, + "probability": 0.9045 + }, + { + "start": 16786.04, + "end": 16786.48, + "probability": 0.7756 + }, + { + "start": 16787.04, + "end": 16789.38, + "probability": 0.8962 + }, + { + "start": 16790.02, + "end": 16791.64, + "probability": 0.9395 + }, + { + "start": 16792.46, + "end": 16794.76, + "probability": 0.7354 + }, + { + "start": 16794.94, + "end": 16795.42, + "probability": 0.0889 + }, + { + "start": 16795.66, + "end": 16796.0, + "probability": 0.7385 + }, + { + "start": 16797.47, + "end": 16801.99, + "probability": 0.8025 + }, + { + "start": 16802.36, + "end": 16805.52, + "probability": 0.6341 + }, + { + "start": 16805.52, + "end": 16805.52, + "probability": 0.574 + }, + { + "start": 16805.52, + "end": 16805.59, + "probability": 0.2188 + }, + { + "start": 16806.04, + "end": 16808.28, + "probability": 0.6002 + }, + { + "start": 16808.4, + "end": 16810.7, + "probability": 0.6799 + }, + { + "start": 16810.84, + "end": 16810.84, + "probability": 0.0057 + }, + { + "start": 16810.9, + "end": 16811.34, + "probability": 0.473 + }, + { + "start": 16811.56, + "end": 16813.51, + "probability": 0.9533 + }, + { + "start": 16813.74, + "end": 16814.1, + "probability": 0.1004 + }, + { + "start": 16814.94, + "end": 16815.12, + "probability": 0.8586 + }, + { + "start": 16815.14, + "end": 16816.8, + "probability": 0.9424 + }, + { + "start": 16816.86, + "end": 16818.02, + "probability": 0.9084 + }, + { + "start": 16818.98, + "end": 16821.54, + "probability": 0.7099 + }, + { + "start": 16822.25, + "end": 16822.94, + "probability": 0.113 + }, + { + "start": 16823.02, + "end": 16823.57, + "probability": 0.5463 + }, + { + "start": 16823.78, + "end": 16824.96, + "probability": 0.5347 + }, + { + "start": 16825.08, + "end": 16828.66, + "probability": 0.4648 + }, + { + "start": 16828.76, + "end": 16829.96, + "probability": 0.21 + }, + { + "start": 16830.22, + "end": 16830.54, + "probability": 0.1674 + }, + { + "start": 16830.54, + "end": 16831.76, + "probability": 0.4033 + }, + { + "start": 16832.0, + "end": 16833.56, + "probability": 0.5013 + }, + { + "start": 16833.68, + "end": 16834.7, + "probability": 0.9055 + }, + { + "start": 16834.82, + "end": 16835.66, + "probability": 0.3849 + }, + { + "start": 16835.66, + "end": 16836.24, + "probability": 0.8206 + }, + { + "start": 16836.42, + "end": 16838.24, + "probability": 0.74 + }, + { + "start": 16838.36, + "end": 16838.36, + "probability": 0.2334 + }, + { + "start": 16838.36, + "end": 16840.42, + "probability": 0.9742 + }, + { + "start": 16840.56, + "end": 16840.92, + "probability": 0.4737 + }, + { + "start": 16840.94, + "end": 16841.66, + "probability": 0.789 + }, + { + "start": 16841.74, + "end": 16842.42, + "probability": 0.7218 + }, + { + "start": 16843.32, + "end": 16848.22, + "probability": 0.9925 + }, + { + "start": 16848.7, + "end": 16851.13, + "probability": 0.9969 + }, + { + "start": 16851.8, + "end": 16853.7, + "probability": 0.8425 + }, + { + "start": 16854.26, + "end": 16859.55, + "probability": 0.9901 + }, + { + "start": 16860.09, + "end": 16862.59, + "probability": 0.9941 + }, + { + "start": 16863.13, + "end": 16864.41, + "probability": 0.9129 + }, + { + "start": 16864.47, + "end": 16865.45, + "probability": 0.9863 + }, + { + "start": 16866.67, + "end": 16868.05, + "probability": 0.8878 + }, + { + "start": 16868.43, + "end": 16874.57, + "probability": 0.957 + }, + { + "start": 16874.91, + "end": 16876.65, + "probability": 0.7033 + }, + { + "start": 16877.05, + "end": 16882.09, + "probability": 0.9332 + }, + { + "start": 16882.09, + "end": 16886.91, + "probability": 0.9976 + }, + { + "start": 16887.15, + "end": 16887.95, + "probability": 0.062 + }, + { + "start": 16888.59, + "end": 16889.33, + "probability": 0.8604 + }, + { + "start": 16889.77, + "end": 16894.41, + "probability": 0.0637 + }, + { + "start": 16903.03, + "end": 16905.46, + "probability": 0.5709 + }, + { + "start": 16906.22, + "end": 16908.23, + "probability": 0.0509 + }, + { + "start": 16908.23, + "end": 16908.57, + "probability": 0.0206 + }, + { + "start": 16908.67, + "end": 16909.05, + "probability": 0.0667 + }, + { + "start": 16909.05, + "end": 16910.93, + "probability": 0.1262 + }, + { + "start": 16912.03, + "end": 16916.41, + "probability": 0.0897 + }, + { + "start": 16924.17, + "end": 16925.11, + "probability": 0.3619 + }, + { + "start": 16926.15, + "end": 16926.27, + "probability": 0.0367 + }, + { + "start": 16932.71, + "end": 16933.03, + "probability": 0.0039 + }, + { + "start": 16940.13, + "end": 16942.83, + "probability": 0.0269 + }, + { + "start": 16953.39, + "end": 16956.85, + "probability": 0.1264 + }, + { + "start": 16956.85, + "end": 16961.13, + "probability": 0.0846 + }, + { + "start": 16965.63, + "end": 16965.63, + "probability": 0.0001 + }, + { + "start": 16974.32, + "end": 16976.65, + "probability": 0.0411 + }, + { + "start": 16976.65, + "end": 16980.91, + "probability": 0.0321 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.0, + "end": 16994.0, + "probability": 0.0 + }, + { + "start": 16994.36, + "end": 16995.0, + "probability": 0.2226 + }, + { + "start": 16995.0, + "end": 16998.32, + "probability": 0.1984 + }, + { + "start": 16998.32, + "end": 16998.36, + "probability": 0.0698 + }, + { + "start": 16998.38, + "end": 17002.28, + "probability": 0.0707 + }, + { + "start": 17003.92, + "end": 17009.22, + "probability": 0.2794 + }, + { + "start": 17009.84, + "end": 17010.02, + "probability": 0.3455 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17117.0, + "end": 17117.0, + "probability": 0.0 + }, + { + "start": 17118.06, + "end": 17120.6, + "probability": 0.8025 + }, + { + "start": 17120.96, + "end": 17123.54, + "probability": 0.9854 + }, + { + "start": 17123.54, + "end": 17127.26, + "probability": 0.9863 + }, + { + "start": 17127.66, + "end": 17130.54, + "probability": 0.9334 + }, + { + "start": 17130.6, + "end": 17134.58, + "probability": 0.9628 + }, + { + "start": 17135.5, + "end": 17138.7, + "probability": 0.9282 + }, + { + "start": 17138.7, + "end": 17141.84, + "probability": 0.9915 + }, + { + "start": 17141.96, + "end": 17142.34, + "probability": 0.4979 + }, + { + "start": 17142.48, + "end": 17143.92, + "probability": 0.3642 + }, + { + "start": 17144.4, + "end": 17145.4, + "probability": 0.8535 + }, + { + "start": 17145.76, + "end": 17148.68, + "probability": 0.9131 + }, + { + "start": 17148.68, + "end": 17152.6, + "probability": 0.9257 + }, + { + "start": 17153.1, + "end": 17156.5, + "probability": 0.9127 + }, + { + "start": 17157.2, + "end": 17160.76, + "probability": 0.98 + }, + { + "start": 17160.92, + "end": 17163.56, + "probability": 0.9795 + }, + { + "start": 17163.56, + "end": 17166.84, + "probability": 0.9898 + }, + { + "start": 17167.54, + "end": 17168.06, + "probability": 0.9586 + }, + { + "start": 17168.66, + "end": 17170.94, + "probability": 0.9828 + }, + { + "start": 17171.42, + "end": 17175.24, + "probability": 0.9932 + }, + { + "start": 17176.08, + "end": 17180.66, + "probability": 0.9377 + }, + { + "start": 17180.66, + "end": 17184.44, + "probability": 0.9062 + }, + { + "start": 17185.18, + "end": 17188.76, + "probability": 0.8409 + }, + { + "start": 17189.24, + "end": 17191.74, + "probability": 0.9925 + }, + { + "start": 17191.74, + "end": 17197.66, + "probability": 0.9847 + }, + { + "start": 17197.94, + "end": 17198.26, + "probability": 0.7613 + }, + { + "start": 17200.79, + "end": 17201.28, + "probability": 0.0118 + }, + { + "start": 17201.28, + "end": 17203.36, + "probability": 0.7864 + }, + { + "start": 17203.7, + "end": 17206.24, + "probability": 0.9121 + }, + { + "start": 17206.68, + "end": 17208.96, + "probability": 0.9267 + }, + { + "start": 17209.08, + "end": 17209.74, + "probability": 0.8194 + }, + { + "start": 17209.86, + "end": 17210.38, + "probability": 0.6405 + }, + { + "start": 17210.46, + "end": 17211.8, + "probability": 0.7207 + }, + { + "start": 17211.86, + "end": 17212.6, + "probability": 0.8668 + }, + { + "start": 17212.68, + "end": 17214.31, + "probability": 0.9644 + }, + { + "start": 17214.84, + "end": 17217.22, + "probability": 0.9588 + }, + { + "start": 17217.74, + "end": 17221.12, + "probability": 0.9169 + }, + { + "start": 17235.82, + "end": 17237.66, + "probability": 0.9321 + }, + { + "start": 17237.66, + "end": 17238.52, + "probability": 0.4305 + }, + { + "start": 17238.52, + "end": 17241.96, + "probability": 0.3413 + }, + { + "start": 17242.5, + "end": 17245.52, + "probability": 0.3792 + }, + { + "start": 17246.37, + "end": 17248.51, + "probability": 0.2146 + }, + { + "start": 17249.06, + "end": 17250.08, + "probability": 0.3411 + }, + { + "start": 17250.44, + "end": 17255.82, + "probability": 0.2003 + }, + { + "start": 17257.48, + "end": 17259.26, + "probability": 0.548 + }, + { + "start": 17260.63, + "end": 17262.79, + "probability": 0.0396 + }, + { + "start": 17266.55, + "end": 17269.67, + "probability": 0.1729 + }, + { + "start": 17270.52, + "end": 17272.48, + "probability": 0.2064 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.0, + "end": 17347.0, + "probability": 0.0 + }, + { + "start": 17347.24, + "end": 17350.06, + "probability": 0.991 + }, + { + "start": 17350.88, + "end": 17353.55, + "probability": 0.3774 + }, + { + "start": 17354.66, + "end": 17357.32, + "probability": 0.2847 + }, + { + "start": 17358.08, + "end": 17359.42, + "probability": 0.6828 + }, + { + "start": 17359.5, + "end": 17360.1, + "probability": 0.9294 + }, + { + "start": 17360.18, + "end": 17360.8, + "probability": 0.6549 + }, + { + "start": 17361.2, + "end": 17362.32, + "probability": 0.7291 + }, + { + "start": 17362.42, + "end": 17364.17, + "probability": 0.9221 + }, + { + "start": 17365.16, + "end": 17365.92, + "probability": 0.8495 + }, + { + "start": 17371.2, + "end": 17371.2, + "probability": 0.4636 + }, + { + "start": 17371.2, + "end": 17372.32, + "probability": 0.2405 + }, + { + "start": 17374.1, + "end": 17376.14, + "probability": 0.9417 + }, + { + "start": 17383.96, + "end": 17385.56, + "probability": 0.4983 + }, + { + "start": 17385.98, + "end": 17386.84, + "probability": 0.7142 + }, + { + "start": 17386.9, + "end": 17388.12, + "probability": 0.787 + }, + { + "start": 17388.88, + "end": 17389.39, + "probability": 0.7637 + }, + { + "start": 17390.94, + "end": 17391.46, + "probability": 0.0356 + }, + { + "start": 17394.98, + "end": 17395.32, + "probability": 0.2744 + }, + { + "start": 17395.42, + "end": 17395.66, + "probability": 0.1572 + }, + { + "start": 17395.74, + "end": 17396.12, + "probability": 0.8726 + }, + { + "start": 17396.12, + "end": 17399.08, + "probability": 0.9779 + }, + { + "start": 17399.08, + "end": 17402.5, + "probability": 0.9941 + }, + { + "start": 17403.7, + "end": 17407.9, + "probability": 0.9936 + }, + { + "start": 17407.9, + "end": 17413.38, + "probability": 0.9977 + }, + { + "start": 17414.16, + "end": 17415.18, + "probability": 0.7465 + }, + { + "start": 17415.34, + "end": 17419.04, + "probability": 0.9992 + }, + { + "start": 17419.04, + "end": 17422.9, + "probability": 0.9961 + }, + { + "start": 17424.1, + "end": 17427.52, + "probability": 0.8389 + }, + { + "start": 17427.76, + "end": 17428.56, + "probability": 0.7915 + }, + { + "start": 17428.68, + "end": 17431.26, + "probability": 0.9917 + }, + { + "start": 17431.38, + "end": 17432.24, + "probability": 0.9958 + }, + { + "start": 17432.36, + "end": 17433.38, + "probability": 0.7941 + }, + { + "start": 17433.84, + "end": 17436.56, + "probability": 0.9219 + }, + { + "start": 17437.32, + "end": 17441.04, + "probability": 0.9116 + }, + { + "start": 17441.78, + "end": 17446.46, + "probability": 0.9237 + }, + { + "start": 17447.1, + "end": 17447.82, + "probability": 0.965 + }, + { + "start": 17448.86, + "end": 17449.68, + "probability": 0.9249 + }, + { + "start": 17449.94, + "end": 17450.78, + "probability": 0.9526 + }, + { + "start": 17451.04, + "end": 17452.08, + "probability": 0.6965 + }, + { + "start": 17452.22, + "end": 17454.22, + "probability": 0.9495 + }, + { + "start": 17455.78, + "end": 17458.9, + "probability": 0.9014 + }, + { + "start": 17460.12, + "end": 17464.86, + "probability": 0.9501 + }, + { + "start": 17465.76, + "end": 17469.0, + "probability": 0.9387 + }, + { + "start": 17469.0, + "end": 17472.06, + "probability": 0.9919 + }, + { + "start": 17472.58, + "end": 17473.44, + "probability": 0.7198 + }, + { + "start": 17474.08, + "end": 17476.44, + "probability": 0.9897 + }, + { + "start": 17477.54, + "end": 17480.97, + "probability": 0.9941 + }, + { + "start": 17481.54, + "end": 17484.56, + "probability": 0.9793 + }, + { + "start": 17485.56, + "end": 17485.92, + "probability": 0.8618 + }, + { + "start": 17486.26, + "end": 17487.42, + "probability": 0.9728 + }, + { + "start": 17487.7, + "end": 17493.48, + "probability": 0.9062 + }, + { + "start": 17494.26, + "end": 17495.74, + "probability": 0.9911 + }, + { + "start": 17496.26, + "end": 17502.48, + "probability": 0.9385 + }, + { + "start": 17503.22, + "end": 17503.24, + "probability": 0.6069 + }, + { + "start": 17505.9, + "end": 17513.12, + "probability": 0.9838 + }, + { + "start": 17513.32, + "end": 17517.34, + "probability": 0.9482 + }, + { + "start": 17518.04, + "end": 17520.88, + "probability": 0.9312 + }, + { + "start": 17521.54, + "end": 17526.06, + "probability": 0.9802 + }, + { + "start": 17526.32, + "end": 17530.72, + "probability": 0.9922 + }, + { + "start": 17532.42, + "end": 17536.82, + "probability": 0.9945 + }, + { + "start": 17537.86, + "end": 17544.32, + "probability": 0.9648 + }, + { + "start": 17544.9, + "end": 17550.34, + "probability": 0.9962 + }, + { + "start": 17550.34, + "end": 17555.98, + "probability": 0.9854 + }, + { + "start": 17556.6, + "end": 17559.44, + "probability": 0.9961 + }, + { + "start": 17560.12, + "end": 17561.56, + "probability": 0.8317 + }, + { + "start": 17562.44, + "end": 17562.64, + "probability": 0.6901 + }, + { + "start": 17562.74, + "end": 17567.44, + "probability": 0.9918 + }, + { + "start": 17568.12, + "end": 17569.02, + "probability": 0.9143 + }, + { + "start": 17569.1, + "end": 17573.52, + "probability": 0.9989 + }, + { + "start": 17574.52, + "end": 17578.78, + "probability": 0.9985 + }, + { + "start": 17579.38, + "end": 17581.92, + "probability": 0.9969 + }, + { + "start": 17582.56, + "end": 17583.8, + "probability": 0.5321 + }, + { + "start": 17584.6, + "end": 17585.5, + "probability": 0.9705 + }, + { + "start": 17586.02, + "end": 17586.88, + "probability": 0.9915 + }, + { + "start": 17587.54, + "end": 17588.84, + "probability": 0.9983 + }, + { + "start": 17589.44, + "end": 17594.14, + "probability": 0.998 + }, + { + "start": 17594.96, + "end": 17597.02, + "probability": 0.9946 + }, + { + "start": 17597.08, + "end": 17599.5, + "probability": 0.8988 + }, + { + "start": 17600.44, + "end": 17601.3, + "probability": 0.9269 + }, + { + "start": 17602.64, + "end": 17607.32, + "probability": 0.968 + }, + { + "start": 17607.86, + "end": 17609.04, + "probability": 0.9653 + }, + { + "start": 17609.64, + "end": 17613.26, + "probability": 0.934 + }, + { + "start": 17613.96, + "end": 17619.34, + "probability": 0.9943 + }, + { + "start": 17620.02, + "end": 17624.68, + "probability": 0.9891 + }, + { + "start": 17625.24, + "end": 17629.76, + "probability": 0.9842 + }, + { + "start": 17629.76, + "end": 17633.56, + "probability": 0.9943 + }, + { + "start": 17634.04, + "end": 17636.54, + "probability": 0.9579 + }, + { + "start": 17637.38, + "end": 17638.46, + "probability": 0.8594 + }, + { + "start": 17639.06, + "end": 17644.84, + "probability": 0.9979 + }, + { + "start": 17646.02, + "end": 17647.62, + "probability": 0.7445 + }, + { + "start": 17648.18, + "end": 17657.62, + "probability": 0.9923 + }, + { + "start": 17658.52, + "end": 17661.94, + "probability": 0.986 + }, + { + "start": 17662.62, + "end": 17664.0, + "probability": 0.9904 + }, + { + "start": 17664.68, + "end": 17668.22, + "probability": 0.9954 + }, + { + "start": 17669.0, + "end": 17670.84, + "probability": 0.9795 + }, + { + "start": 17671.84, + "end": 17673.02, + "probability": 0.8903 + }, + { + "start": 17673.6, + "end": 17674.52, + "probability": 0.9273 + }, + { + "start": 17675.06, + "end": 17676.72, + "probability": 0.9304 + }, + { + "start": 17677.84, + "end": 17687.38, + "probability": 0.9913 + }, + { + "start": 17687.98, + "end": 17692.6, + "probability": 0.9942 + }, + { + "start": 17693.42, + "end": 17699.02, + "probability": 0.9922 + }, + { + "start": 17699.32, + "end": 17700.7, + "probability": 0.8269 + }, + { + "start": 17701.18, + "end": 17704.92, + "probability": 0.9908 + }, + { + "start": 17704.92, + "end": 17710.6, + "probability": 0.9973 + }, + { + "start": 17711.14, + "end": 17716.1, + "probability": 0.937 + }, + { + "start": 17716.84, + "end": 17717.28, + "probability": 0.8564 + }, + { + "start": 17717.94, + "end": 17721.7, + "probability": 0.9733 + }, + { + "start": 17722.6, + "end": 17723.58, + "probability": 0.7076 + }, + { + "start": 17723.62, + "end": 17726.88, + "probability": 0.9741 + }, + { + "start": 17726.98, + "end": 17730.94, + "probability": 0.9995 + }, + { + "start": 17732.04, + "end": 17734.16, + "probability": 0.9988 + }, + { + "start": 17735.24, + "end": 17739.54, + "probability": 0.9908 + }, + { + "start": 17740.34, + "end": 17741.12, + "probability": 0.8418 + }, + { + "start": 17741.38, + "end": 17747.14, + "probability": 0.9951 + }, + { + "start": 17747.14, + "end": 17751.2, + "probability": 0.9978 + }, + { + "start": 17751.88, + "end": 17753.52, + "probability": 0.9606 + }, + { + "start": 17754.28, + "end": 17757.28, + "probability": 0.9578 + }, + { + "start": 17757.66, + "end": 17758.72, + "probability": 0.9403 + }, + { + "start": 17759.18, + "end": 17763.04, + "probability": 0.9319 + }, + { + "start": 17763.12, + "end": 17763.9, + "probability": 0.8337 + }, + { + "start": 17764.02, + "end": 17764.76, + "probability": 0.8082 + }, + { + "start": 17765.16, + "end": 17765.84, + "probability": 0.811 + }, + { + "start": 17766.6, + "end": 17769.14, + "probability": 0.9839 + }, + { + "start": 17769.14, + "end": 17775.02, + "probability": 0.9616 + }, + { + "start": 17775.94, + "end": 17778.28, + "probability": 0.9987 + }, + { + "start": 17779.46, + "end": 17780.26, + "probability": 0.7361 + }, + { + "start": 17781.46, + "end": 17787.4, + "probability": 0.9957 + }, + { + "start": 17787.4, + "end": 17792.53, + "probability": 0.9894 + }, + { + "start": 17794.04, + "end": 17797.04, + "probability": 0.8711 + }, + { + "start": 17798.14, + "end": 17801.68, + "probability": 0.8697 + }, + { + "start": 17802.32, + "end": 17803.04, + "probability": 0.8282 + }, + { + "start": 17803.78, + "end": 17804.96, + "probability": 0.9705 + }, + { + "start": 17807.4, + "end": 17811.3, + "probability": 0.9434 + }, + { + "start": 17811.3, + "end": 17813.92, + "probability": 0.9463 + }, + { + "start": 17814.16, + "end": 17815.08, + "probability": 0.6303 + }, + { + "start": 17815.22, + "end": 17819.18, + "probability": 0.8723 + }, + { + "start": 17819.32, + "end": 17823.56, + "probability": 0.988 + }, + { + "start": 17824.96, + "end": 17827.64, + "probability": 0.6626 + }, + { + "start": 17827.64, + "end": 17832.7, + "probability": 0.9777 + }, + { + "start": 17833.46, + "end": 17834.9, + "probability": 0.9731 + }, + { + "start": 17835.94, + "end": 17837.42, + "probability": 0.63 + }, + { + "start": 17838.32, + "end": 17841.49, + "probability": 0.9912 + }, + { + "start": 17842.06, + "end": 17846.14, + "probability": 0.9912 + }, + { + "start": 17847.38, + "end": 17855.5, + "probability": 0.9362 + }, + { + "start": 17856.34, + "end": 17857.52, + "probability": 0.8065 + }, + { + "start": 17857.64, + "end": 17861.78, + "probability": 0.9583 + }, + { + "start": 17863.24, + "end": 17864.92, + "probability": 0.8743 + }, + { + "start": 17865.46, + "end": 17866.4, + "probability": 0.9983 + }, + { + "start": 17867.56, + "end": 17871.36, + "probability": 0.8083 + }, + { + "start": 17872.5, + "end": 17879.1, + "probability": 0.9719 + }, + { + "start": 17879.84, + "end": 17881.53, + "probability": 0.9083 + }, + { + "start": 17882.98, + "end": 17883.84, + "probability": 0.9435 + }, + { + "start": 17884.42, + "end": 17886.04, + "probability": 0.8818 + }, + { + "start": 17886.88, + "end": 17890.4, + "probability": 0.9855 + }, + { + "start": 17891.26, + "end": 17892.08, + "probability": 0.8734 + }, + { + "start": 17892.8, + "end": 17894.12, + "probability": 0.5547 + }, + { + "start": 17894.72, + "end": 17896.38, + "probability": 0.9612 + }, + { + "start": 17897.06, + "end": 17901.28, + "probability": 0.7252 + }, + { + "start": 17902.68, + "end": 17902.68, + "probability": 0.4213 + }, + { + "start": 17902.9, + "end": 17904.0, + "probability": 0.9006 + }, + { + "start": 17904.02, + "end": 17908.28, + "probability": 0.8465 + }, + { + "start": 17908.9, + "end": 17910.38, + "probability": 0.9932 + }, + { + "start": 17911.08, + "end": 17911.96, + "probability": 0.7787 + }, + { + "start": 17912.76, + "end": 17914.72, + "probability": 0.7487 + }, + { + "start": 17915.82, + "end": 17920.7, + "probability": 0.9896 + }, + { + "start": 17921.62, + "end": 17922.26, + "probability": 0.943 + }, + { + "start": 17922.84, + "end": 17922.94, + "probability": 0.7388 + }, + { + "start": 17924.06, + "end": 17927.86, + "probability": 0.9834 + }, + { + "start": 17928.66, + "end": 17934.68, + "probability": 0.8743 + }, + { + "start": 17935.86, + "end": 17941.62, + "probability": 0.8643 + }, + { + "start": 17942.32, + "end": 17943.18, + "probability": 0.827 + }, + { + "start": 17943.22, + "end": 17945.82, + "probability": 0.995 + }, + { + "start": 17946.9, + "end": 17955.74, + "probability": 0.9867 + }, + { + "start": 17955.78, + "end": 17957.26, + "probability": 0.9852 + }, + { + "start": 17958.26, + "end": 17960.18, + "probability": 0.7264 + }, + { + "start": 17960.78, + "end": 17965.98, + "probability": 0.9443 + }, + { + "start": 17968.75, + "end": 17972.86, + "probability": 0.8272 + }, + { + "start": 17973.86, + "end": 17976.7, + "probability": 0.2731 + }, + { + "start": 17978.18, + "end": 17980.48, + "probability": 0.9474 + }, + { + "start": 17981.38, + "end": 17986.78, + "probability": 0.9692 + }, + { + "start": 17988.66, + "end": 17988.8, + "probability": 0.4257 + }, + { + "start": 17989.04, + "end": 17990.0, + "probability": 0.5188 + }, + { + "start": 17990.12, + "end": 17993.18, + "probability": 0.9966 + }, + { + "start": 17993.7, + "end": 17999.12, + "probability": 0.9771 + }, + { + "start": 17999.62, + "end": 18005.4, + "probability": 0.9846 + }, + { + "start": 18005.86, + "end": 18006.72, + "probability": 0.9044 + }, + { + "start": 18007.89, + "end": 18012.8, + "probability": 0.9517 + }, + { + "start": 18013.4, + "end": 18015.28, + "probability": 0.7965 + }, + { + "start": 18015.4, + "end": 18016.32, + "probability": 0.8991 + }, + { + "start": 18016.42, + "end": 18021.6, + "probability": 0.9955 + }, + { + "start": 18022.12, + "end": 18024.1, + "probability": 0.9705 + }, + { + "start": 18025.06, + "end": 18027.02, + "probability": 0.8283 + }, + { + "start": 18027.36, + "end": 18028.3, + "probability": 0.9539 + }, + { + "start": 18028.54, + "end": 18031.26, + "probability": 0.9386 + }, + { + "start": 18031.7, + "end": 18033.22, + "probability": 0.9811 + }, + { + "start": 18034.2, + "end": 18036.46, + "probability": 0.9955 + }, + { + "start": 18037.0, + "end": 18041.04, + "probability": 0.969 + }, + { + "start": 18041.94, + "end": 18047.48, + "probability": 0.9818 + }, + { + "start": 18048.08, + "end": 18051.2, + "probability": 0.8527 + }, + { + "start": 18052.08, + "end": 18057.84, + "probability": 0.9883 + }, + { + "start": 18058.88, + "end": 18061.52, + "probability": 0.7659 + }, + { + "start": 18062.62, + "end": 18065.26, + "probability": 0.8969 + }, + { + "start": 18066.38, + "end": 18070.26, + "probability": 0.9679 + }, + { + "start": 18070.36, + "end": 18070.9, + "probability": 0.9014 + }, + { + "start": 18070.92, + "end": 18074.36, + "probability": 0.8233 + }, + { + "start": 18074.78, + "end": 18076.76, + "probability": 0.9959 + }, + { + "start": 18077.54, + "end": 18079.86, + "probability": 0.9557 + }, + { + "start": 18080.42, + "end": 18082.3, + "probability": 0.9297 + }, + { + "start": 18082.82, + "end": 18084.94, + "probability": 0.9775 + }, + { + "start": 18085.76, + "end": 18088.53, + "probability": 0.7961 + }, + { + "start": 18088.68, + "end": 18089.96, + "probability": 0.6288 + }, + { + "start": 18090.74, + "end": 18094.88, + "probability": 0.9827 + }, + { + "start": 18095.48, + "end": 18100.4, + "probability": 0.9849 + }, + { + "start": 18101.12, + "end": 18101.9, + "probability": 0.9714 + }, + { + "start": 18102.76, + "end": 18103.42, + "probability": 0.9955 + }, + { + "start": 18106.32, + "end": 18109.05, + "probability": 0.8947 + }, + { + "start": 18110.42, + "end": 18113.14, + "probability": 0.962 + }, + { + "start": 18113.3, + "end": 18115.96, + "probability": 0.9855 + }, + { + "start": 18117.56, + "end": 18124.28, + "probability": 0.8454 + }, + { + "start": 18125.04, + "end": 18125.04, + "probability": 0.1318 + }, + { + "start": 18125.04, + "end": 18129.88, + "probability": 0.9542 + }, + { + "start": 18130.0, + "end": 18131.05, + "probability": 0.4558 + }, + { + "start": 18132.9, + "end": 18134.86, + "probability": 0.8221 + }, + { + "start": 18136.16, + "end": 18141.3, + "probability": 0.9737 + }, + { + "start": 18141.38, + "end": 18145.02, + "probability": 0.969 + }, + { + "start": 18145.02, + "end": 18148.76, + "probability": 0.9384 + }, + { + "start": 18153.56, + "end": 18162.92, + "probability": 0.8521 + }, + { + "start": 18162.92, + "end": 18170.96, + "probability": 0.9859 + }, + { + "start": 18171.02, + "end": 18172.82, + "probability": 0.8805 + }, + { + "start": 18173.78, + "end": 18176.22, + "probability": 0.9072 + }, + { + "start": 18176.82, + "end": 18176.96, + "probability": 0.1189 + }, + { + "start": 18176.98, + "end": 18179.82, + "probability": 0.9928 + }, + { + "start": 18179.82, + "end": 18182.52, + "probability": 0.8982 + }, + { + "start": 18183.42, + "end": 18187.16, + "probability": 0.9903 + }, + { + "start": 18188.52, + "end": 18189.8, + "probability": 0.999 + }, + { + "start": 18190.34, + "end": 18192.66, + "probability": 0.8935 + }, + { + "start": 18193.4, + "end": 18194.68, + "probability": 0.6887 + }, + { + "start": 18196.04, + "end": 18199.22, + "probability": 0.9847 + }, + { + "start": 18199.92, + "end": 18207.34, + "probability": 0.9949 + }, + { + "start": 18207.34, + "end": 18216.82, + "probability": 0.9951 + }, + { + "start": 18218.14, + "end": 18221.08, + "probability": 0.8447 + }, + { + "start": 18222.64, + "end": 18227.86, + "probability": 0.9696 + }, + { + "start": 18228.28, + "end": 18229.66, + "probability": 0.9064 + }, + { + "start": 18230.48, + "end": 18231.72, + "probability": 0.9753 + }, + { + "start": 18233.16, + "end": 18235.22, + "probability": 0.0126 + }, + { + "start": 18235.22, + "end": 18239.28, + "probability": 0.599 + }, + { + "start": 18240.22, + "end": 18242.44, + "probability": 0.8647 + }, + { + "start": 18242.54, + "end": 18244.1, + "probability": 0.6903 + }, + { + "start": 18244.24, + "end": 18247.4, + "probability": 0.9915 + }, + { + "start": 18248.0, + "end": 18253.7, + "probability": 0.9899 + }, + { + "start": 18253.7, + "end": 18259.28, + "probability": 0.9985 + }, + { + "start": 18260.48, + "end": 18262.92, + "probability": 0.963 + }, + { + "start": 18263.16, + "end": 18264.06, + "probability": 0.9515 + }, + { + "start": 18264.26, + "end": 18265.78, + "probability": 0.6415 + }, + { + "start": 18265.86, + "end": 18270.4, + "probability": 0.9691 + }, + { + "start": 18271.9, + "end": 18279.12, + "probability": 0.9877 + }, + { + "start": 18279.38, + "end": 18281.14, + "probability": 0.9568 + }, + { + "start": 18281.66, + "end": 18285.62, + "probability": 0.9552 + }, + { + "start": 18286.64, + "end": 18288.0, + "probability": 0.405 + }, + { + "start": 18288.58, + "end": 18291.48, + "probability": 0.9924 + }, + { + "start": 18291.72, + "end": 18292.38, + "probability": 0.9613 + }, + { + "start": 18292.54, + "end": 18293.5, + "probability": 0.9735 + }, + { + "start": 18294.72, + "end": 18297.69, + "probability": 0.9889 + }, + { + "start": 18298.58, + "end": 18301.68, + "probability": 0.9906 + }, + { + "start": 18302.88, + "end": 18305.81, + "probability": 0.9941 + }, + { + "start": 18307.6, + "end": 18313.48, + "probability": 0.9994 + }, + { + "start": 18314.14, + "end": 18316.76, + "probability": 0.9849 + }, + { + "start": 18316.76, + "end": 18323.04, + "probability": 0.785 + }, + { + "start": 18323.78, + "end": 18327.1, + "probability": 0.8175 + }, + { + "start": 18327.58, + "end": 18328.3, + "probability": 0.9941 + }, + { + "start": 18329.12, + "end": 18335.96, + "probability": 0.9577 + }, + { + "start": 18336.1, + "end": 18339.24, + "probability": 0.9896 + }, + { + "start": 18340.64, + "end": 18344.48, + "probability": 0.9942 + }, + { + "start": 18344.48, + "end": 18347.54, + "probability": 0.8893 + }, + { + "start": 18348.34, + "end": 18349.0, + "probability": 0.5616 + }, + { + "start": 18349.34, + "end": 18350.46, + "probability": 0.932 + }, + { + "start": 18350.52, + "end": 18352.32, + "probability": 0.9655 + }, + { + "start": 18354.06, + "end": 18356.18, + "probability": 0.953 + }, + { + "start": 18357.06, + "end": 18359.14, + "probability": 0.9917 + }, + { + "start": 18360.4, + "end": 18361.08, + "probability": 0.9891 + }, + { + "start": 18361.6, + "end": 18364.22, + "probability": 0.9969 + }, + { + "start": 18365.96, + "end": 18367.6, + "probability": 0.9514 + }, + { + "start": 18368.36, + "end": 18371.85, + "probability": 0.9627 + }, + { + "start": 18374.2, + "end": 18376.58, + "probability": 0.9202 + }, + { + "start": 18376.66, + "end": 18377.8, + "probability": 0.7902 + }, + { + "start": 18378.02, + "end": 18384.34, + "probability": 0.9733 + }, + { + "start": 18385.36, + "end": 18390.16, + "probability": 0.9192 + }, + { + "start": 18390.86, + "end": 18395.66, + "probability": 0.9888 + }, + { + "start": 18398.1, + "end": 18402.28, + "probability": 0.9992 + }, + { + "start": 18402.28, + "end": 18405.58, + "probability": 0.9989 + }, + { + "start": 18406.38, + "end": 18408.6, + "probability": 0.8379 + }, + { + "start": 18408.68, + "end": 18413.46, + "probability": 0.9713 + }, + { + "start": 18414.24, + "end": 18418.44, + "probability": 0.9787 + }, + { + "start": 18419.38, + "end": 18420.26, + "probability": 0.6033 + }, + { + "start": 18420.48, + "end": 18421.28, + "probability": 0.9362 + }, + { + "start": 18421.92, + "end": 18427.6, + "probability": 0.9542 + }, + { + "start": 18428.14, + "end": 18430.46, + "probability": 0.6327 + }, + { + "start": 18431.08, + "end": 18433.26, + "probability": 0.7318 + }, + { + "start": 18434.02, + "end": 18434.88, + "probability": 0.827 + }, + { + "start": 18435.4, + "end": 18437.38, + "probability": 0.9805 + }, + { + "start": 18438.72, + "end": 18439.62, + "probability": 0.6948 + }, + { + "start": 18439.8, + "end": 18441.15, + "probability": 0.8042 + }, + { + "start": 18442.92, + "end": 18447.34, + "probability": 0.9391 + }, + { + "start": 18447.42, + "end": 18448.1, + "probability": 0.6354 + }, + { + "start": 18448.3, + "end": 18449.26, + "probability": 0.9191 + }, + { + "start": 18450.08, + "end": 18452.1, + "probability": 0.7398 + }, + { + "start": 18452.18, + "end": 18454.42, + "probability": 0.8898 + }, + { + "start": 18455.52, + "end": 18456.39, + "probability": 0.0458 + }, + { + "start": 18458.64, + "end": 18459.74, + "probability": 0.957 + }, + { + "start": 18461.56, + "end": 18464.14, + "probability": 0.953 + }, + { + "start": 18464.84, + "end": 18465.32, + "probability": 0.3802 + }, + { + "start": 18465.4, + "end": 18467.0, + "probability": 0.719 + }, + { + "start": 18469.8, + "end": 18470.96, + "probability": 0.8224 + }, + { + "start": 18471.2, + "end": 18471.98, + "probability": 0.2572 + }, + { + "start": 18472.08, + "end": 18473.62, + "probability": 0.8394 + }, + { + "start": 18475.7, + "end": 18478.64, + "probability": 0.989 + }, + { + "start": 18479.28, + "end": 18480.26, + "probability": 0.4946 + }, + { + "start": 18480.36, + "end": 18483.84, + "probability": 0.7622 + }, + { + "start": 18484.02, + "end": 18484.44, + "probability": 0.9325 + }, + { + "start": 18485.58, + "end": 18490.12, + "probability": 0.9876 + }, + { + "start": 18490.16, + "end": 18493.22, + "probability": 0.8594 + }, + { + "start": 18493.46, + "end": 18497.3, + "probability": 0.9956 + }, + { + "start": 18498.32, + "end": 18502.6, + "probability": 0.8654 + }, + { + "start": 18503.64, + "end": 18509.62, + "probability": 0.9669 + }, + { + "start": 18509.7, + "end": 18511.56, + "probability": 0.8344 + }, + { + "start": 18512.22, + "end": 18514.16, + "probability": 0.9825 + }, + { + "start": 18514.42, + "end": 18519.72, + "probability": 0.9717 + }, + { + "start": 18520.02, + "end": 18523.84, + "probability": 0.9451 + }, + { + "start": 18524.28, + "end": 18525.06, + "probability": 0.718 + }, + { + "start": 18525.26, + "end": 18527.7, + "probability": 0.9297 + }, + { + "start": 18528.04, + "end": 18531.74, + "probability": 0.9889 + }, + { + "start": 18532.28, + "end": 18533.88, + "probability": 0.9913 + }, + { + "start": 18534.0, + "end": 18534.9, + "probability": 0.8463 + }, + { + "start": 18535.26, + "end": 18537.6, + "probability": 0.9745 + }, + { + "start": 18537.8, + "end": 18542.6, + "probability": 0.9829 + }, + { + "start": 18542.9, + "end": 18543.6, + "probability": 0.9203 + }, + { + "start": 18543.96, + "end": 18545.44, + "probability": 0.9663 + }, + { + "start": 18545.86, + "end": 18549.01, + "probability": 0.9861 + }, + { + "start": 18549.35, + "end": 18550.33, + "probability": 0.9961 + }, + { + "start": 18550.81, + "end": 18552.17, + "probability": 0.5599 + }, + { + "start": 18552.25, + "end": 18557.09, + "probability": 0.9736 + }, + { + "start": 18557.53, + "end": 18558.4, + "probability": 0.9976 + }, + { + "start": 18558.97, + "end": 18560.48, + "probability": 0.9733 + }, + { + "start": 18560.83, + "end": 18562.63, + "probability": 0.9587 + }, + { + "start": 18562.99, + "end": 18565.35, + "probability": 0.7994 + }, + { + "start": 18565.87, + "end": 18570.47, + "probability": 0.8572 + }, + { + "start": 18570.57, + "end": 18571.84, + "probability": 0.9927 + }, + { + "start": 18572.53, + "end": 18574.53, + "probability": 0.9756 + }, + { + "start": 18574.55, + "end": 18575.89, + "probability": 0.8273 + }, + { + "start": 18576.15, + "end": 18576.47, + "probability": 0.7884 + }, + { + "start": 18578.03, + "end": 18581.07, + "probability": 0.9407 + }, + { + "start": 18581.39, + "end": 18583.93, + "probability": 0.5497 + }, + { + "start": 18587.73, + "end": 18592.65, + "probability": 0.9293 + }, + { + "start": 18592.69, + "end": 18593.88, + "probability": 0.9028 + }, + { + "start": 18594.29, + "end": 18598.17, + "probability": 0.9616 + }, + { + "start": 18598.17, + "end": 18602.53, + "probability": 0.761 + }, + { + "start": 18602.69, + "end": 18604.79, + "probability": 0.1873 + }, + { + "start": 18605.47, + "end": 18607.69, + "probability": 0.261 + }, + { + "start": 18608.77, + "end": 18610.67, + "probability": 0.8119 + }, + { + "start": 18611.19, + "end": 18615.15, + "probability": 0.0142 + }, + { + "start": 18638.83, + "end": 18643.31, + "probability": 0.3498 + }, + { + "start": 18645.8, + "end": 18647.99, + "probability": 0.056 + }, + { + "start": 18647.99, + "end": 18648.15, + "probability": 0.0904 + }, + { + "start": 18648.71, + "end": 18650.37, + "probability": 0.0254 + }, + { + "start": 18653.67, + "end": 18655.45, + "probability": 0.2456 + }, + { + "start": 18656.01, + "end": 18656.57, + "probability": 0.0939 + }, + { + "start": 18671.83, + "end": 18673.05, + "probability": 0.3996 + }, + { + "start": 18673.61, + "end": 18676.73, + "probability": 0.2626 + }, + { + "start": 18679.91, + "end": 18682.63, + "probability": 0.1319 + }, + { + "start": 18682.63, + "end": 18685.07, + "probability": 0.2947 + }, + { + "start": 18685.99, + "end": 18687.21, + "probability": 0.0157 + }, + { + "start": 18687.21, + "end": 18687.21, + "probability": 0.0879 + }, + { + "start": 18687.21, + "end": 18687.21, + "probability": 0.0448 + }, + { + "start": 18687.21, + "end": 18687.21, + "probability": 0.1691 + }, + { + "start": 18687.21, + "end": 18687.53, + "probability": 0.2228 + }, + { + "start": 18688.0, + "end": 18688.0, + "probability": 0.0 + }, + { + "start": 18688.0, + "end": 18688.0, + "probability": 0.0 + }, + { + "start": 18688.0, + "end": 18688.0, + "probability": 0.0 + }, + { + "start": 18688.0, + "end": 18688.0, + "probability": 0.0 + }, + { + "start": 18688.0, + "end": 18688.0, + "probability": 0.0 + }, + { + "start": 18688.0, + "end": 18688.0, + "probability": 0.0 + }, + { + "start": 18688.0, + "end": 18688.0, + "probability": 0.0 + }, + { + "start": 18688.14, + "end": 18688.18, + "probability": 0.1298 + }, + { + "start": 18688.18, + "end": 18688.18, + "probability": 0.0283 + }, + { + "start": 18688.18, + "end": 18689.4, + "probability": 0.0737 + }, + { + "start": 18689.6, + "end": 18691.52, + "probability": 0.1569 + }, + { + "start": 18692.24, + "end": 18694.4, + "probability": 0.1709 + }, + { + "start": 18696.0, + "end": 18698.52, + "probability": 0.5812 + }, + { + "start": 18699.42, + "end": 18704.02, + "probability": 0.879 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18812.0, + "end": 18812.0, + "probability": 0.0 + }, + { + "start": 18816.1, + "end": 18816.58, + "probability": 0.1541 + }, + { + "start": 18816.58, + "end": 18818.24, + "probability": 0.7143 + }, + { + "start": 18818.78, + "end": 18821.98, + "probability": 0.9956 + }, + { + "start": 18822.6, + "end": 18825.58, + "probability": 0.6523 + }, + { + "start": 18827.04, + "end": 18831.04, + "probability": 0.8044 + }, + { + "start": 18831.28, + "end": 18831.82, + "probability": 0.8555 + }, + { + "start": 18831.86, + "end": 18832.6, + "probability": 0.6632 + }, + { + "start": 18834.58, + "end": 18837.3, + "probability": 0.7297 + }, + { + "start": 18837.46, + "end": 18839.04, + "probability": 0.3125 + }, + { + "start": 18839.38, + "end": 18841.08, + "probability": 0.2323 + }, + { + "start": 18841.66, + "end": 18842.52, + "probability": 0.7616 + }, + { + "start": 18843.26, + "end": 18844.36, + "probability": 0.0515 + }, + { + "start": 18866.78, + "end": 18870.66, + "probability": 0.2848 + }, + { + "start": 18870.66, + "end": 18871.96, + "probability": 0.074 + }, + { + "start": 18873.18, + "end": 18873.9, + "probability": 0.0362 + }, + { + "start": 18876.44, + "end": 18879.74, + "probability": 0.05 + }, + { + "start": 18897.8, + "end": 18899.58, + "probability": 0.6035 + }, + { + "start": 18899.66, + "end": 18901.3, + "probability": 0.6874 + }, + { + "start": 18901.34, + "end": 18903.3, + "probability": 0.9519 + }, + { + "start": 18903.76, + "end": 18904.96, + "probability": 0.1365 + }, + { + "start": 18905.1, + "end": 18905.88, + "probability": 0.1845 + }, + { + "start": 18932.0, + "end": 18932.0, + "probability": 0.0 + }, + { + "start": 18932.0, + "end": 18932.0, + "probability": 0.0 + }, + { + "start": 18932.0, + "end": 18932.0, + "probability": 0.0 + }, + { + "start": 18932.0, + "end": 18932.0, + "probability": 0.0 + }, + { + "start": 18932.0, + "end": 18932.0, + "probability": 0.0 + }, + { + "start": 18932.0, + "end": 18932.0, + "probability": 0.0 + }, + { + "start": 18932.0, + "end": 18932.0, + "probability": 0.0 + }, + { + "start": 18932.0, + "end": 18932.0, + "probability": 0.0 + }, + { + "start": 18932.0, + "end": 18932.0, + "probability": 0.0 + }, + { + "start": 18932.0, + "end": 18932.0, + "probability": 0.0 + }, + { + "start": 18932.0, + "end": 18932.0, + "probability": 0.0 + }, + { + "start": 18932.0, + "end": 18932.0, + "probability": 0.0 + }, + { + "start": 18932.0, + "end": 18932.0, + "probability": 0.0 + }, + { + "start": 18932.0, + "end": 18932.0, + "probability": 0.0 + }, + { + "start": 18932.0, + "end": 18932.0, + "probability": 0.0 + }, + { + "start": 18932.0, + "end": 18932.0, + "probability": 0.0 + }, + { + "start": 18932.0, + "end": 18932.0, + "probability": 0.0 + }, + { + "start": 18932.0, + "end": 18932.0, + "probability": 0.0 + }, + { + "start": 18932.0, + "end": 18932.0, + "probability": 0.0 + }, + { + "start": 18932.0, + "end": 18932.0, + "probability": 0.0 + }, + { + "start": 18932.0, + "end": 18932.0, + "probability": 0.0 + }, + { + "start": 18936.86, + "end": 18938.64, + "probability": 0.5597 + }, + { + "start": 18938.7, + "end": 18942.26, + "probability": 0.9752 + }, + { + "start": 18942.36, + "end": 18943.14, + "probability": 0.951 + }, + { + "start": 18944.06, + "end": 18948.86, + "probability": 0.8706 + }, + { + "start": 18949.44, + "end": 18952.69, + "probability": 0.9868 + }, + { + "start": 18968.64, + "end": 18972.7, + "probability": 0.6798 + }, + { + "start": 18973.48, + "end": 18976.04, + "probability": 0.9849 + }, + { + "start": 18976.3, + "end": 18977.98, + "probability": 0.9159 + }, + { + "start": 18979.84, + "end": 18983.56, + "probability": 0.9268 + }, + { + "start": 18983.72, + "end": 18987.1, + "probability": 0.796 + }, + { + "start": 18987.26, + "end": 18987.28, + "probability": 0.2888 + }, + { + "start": 18987.88, + "end": 18988.2, + "probability": 0.1588 + }, + { + "start": 18989.9, + "end": 18992.52, + "probability": 0.1751 + }, + { + "start": 18992.7, + "end": 18993.36, + "probability": 0.5972 + }, + { + "start": 18993.4, + "end": 18995.54, + "probability": 0.4121 + }, + { + "start": 18995.86, + "end": 18997.12, + "probability": 0.5922 + }, + { + "start": 18997.3, + "end": 18999.97, + "probability": 0.8575 + }, + { + "start": 19000.74, + "end": 19002.28, + "probability": 0.9136 + }, + { + "start": 19002.96, + "end": 19005.02, + "probability": 0.9709 + }, + { + "start": 19005.36, + "end": 19006.1, + "probability": 0.9475 + }, + { + "start": 19006.18, + "end": 19009.12, + "probability": 0.9567 + }, + { + "start": 19010.4, + "end": 19013.0, + "probability": 0.9448 + }, + { + "start": 19013.1, + "end": 19015.32, + "probability": 0.9646 + }, + { + "start": 19015.98, + "end": 19018.74, + "probability": 0.949 + }, + { + "start": 19019.12, + "end": 19023.72, + "probability": 0.9556 + }, + { + "start": 19025.24, + "end": 19026.08, + "probability": 0.6616 + }, + { + "start": 19026.68, + "end": 19032.24, + "probability": 0.7848 + }, + { + "start": 19032.24, + "end": 19036.38, + "probability": 0.9963 + }, + { + "start": 19037.08, + "end": 19038.1, + "probability": 0.7099 + }, + { + "start": 19038.54, + "end": 19041.54, + "probability": 0.9729 + }, + { + "start": 19041.7, + "end": 19043.5, + "probability": 0.9055 + }, + { + "start": 19043.54, + "end": 19045.96, + "probability": 0.4941 + }, + { + "start": 19045.96, + "end": 19046.76, + "probability": 0.0089 + }, + { + "start": 19047.28, + "end": 19047.58, + "probability": 0.1883 + }, + { + "start": 19048.78, + "end": 19049.32, + "probability": 0.3186 + }, + { + "start": 19049.42, + "end": 19055.06, + "probability": 0.1477 + }, + { + "start": 19055.28, + "end": 19055.66, + "probability": 0.5421 + }, + { + "start": 19055.66, + "end": 19056.32, + "probability": 0.6642 + }, + { + "start": 19056.76, + "end": 19060.04, + "probability": 0.4461 + }, + { + "start": 19060.78, + "end": 19063.4, + "probability": 0.9792 + }, + { + "start": 19064.52, + "end": 19067.92, + "probability": 0.9903 + }, + { + "start": 19067.92, + "end": 19071.6, + "probability": 0.9931 + }, + { + "start": 19071.6, + "end": 19076.1, + "probability": 0.9507 + }, + { + "start": 19076.88, + "end": 19077.08, + "probability": 0.4136 + }, + { + "start": 19077.94, + "end": 19079.24, + "probability": 0.8244 + }, + { + "start": 19079.7, + "end": 19083.54, + "probability": 0.8493 + }, + { + "start": 19083.72, + "end": 19086.78, + "probability": 0.9602 + }, + { + "start": 19087.78, + "end": 19088.86, + "probability": 0.7583 + }, + { + "start": 19089.58, + "end": 19091.74, + "probability": 0.9557 + }, + { + "start": 19092.78, + "end": 19093.58, + "probability": 0.8537 + }, + { + "start": 19094.28, + "end": 19096.92, + "probability": 0.8049 + }, + { + "start": 19097.81, + "end": 19102.88, + "probability": 0.829 + }, + { + "start": 19103.48, + "end": 19105.56, + "probability": 0.9847 + }, + { + "start": 19105.56, + "end": 19108.32, + "probability": 0.764 + }, + { + "start": 19109.04, + "end": 19111.86, + "probability": 0.8882 + }, + { + "start": 19111.96, + "end": 19113.64, + "probability": 0.9958 + }, + { + "start": 19114.12, + "end": 19118.52, + "probability": 0.995 + }, + { + "start": 19119.66, + "end": 19123.02, + "probability": 0.8647 + }, + { + "start": 19123.14, + "end": 19128.14, + "probability": 0.9943 + }, + { + "start": 19128.18, + "end": 19130.18, + "probability": 0.8244 + }, + { + "start": 19130.26, + "end": 19130.86, + "probability": 0.8472 + }, + { + "start": 19132.42, + "end": 19133.5, + "probability": 0.9321 + }, + { + "start": 19135.0, + "end": 19136.92, + "probability": 0.9811 + }, + { + "start": 19137.28, + "end": 19138.03, + "probability": 0.9335 + }, + { + "start": 19140.39, + "end": 19144.2, + "probability": 0.9304 + }, + { + "start": 19145.96, + "end": 19147.76, + "probability": 0.9873 + }, + { + "start": 19149.02, + "end": 19154.56, + "probability": 0.9749 + }, + { + "start": 19154.62, + "end": 19156.36, + "probability": 0.9855 + }, + { + "start": 19157.3, + "end": 19157.66, + "probability": 0.9602 + }, + { + "start": 19158.66, + "end": 19161.1, + "probability": 0.998 + }, + { + "start": 19162.32, + "end": 19165.96, + "probability": 0.8281 + }, + { + "start": 19167.66, + "end": 19171.3, + "probability": 0.7747 + }, + { + "start": 19172.78, + "end": 19175.24, + "probability": 0.9937 + }, + { + "start": 19175.36, + "end": 19177.26, + "probability": 0.9187 + }, + { + "start": 19177.94, + "end": 19179.4, + "probability": 0.9423 + }, + { + "start": 19179.94, + "end": 19180.78, + "probability": 0.9556 + }, + { + "start": 19181.66, + "end": 19182.94, + "probability": 0.6029 + }, + { + "start": 19183.12, + "end": 19183.22, + "probability": 0.507 + }, + { + "start": 19183.6, + "end": 19184.88, + "probability": 0.8234 + }, + { + "start": 19185.02, + "end": 19185.84, + "probability": 0.6126 + }, + { + "start": 19186.02, + "end": 19187.9, + "probability": 0.8963 + }, + { + "start": 19189.26, + "end": 19189.76, + "probability": 0.881 + }, + { + "start": 19190.76, + "end": 19191.28, + "probability": 0.8642 + }, + { + "start": 19191.38, + "end": 19193.24, + "probability": 0.9494 + }, + { + "start": 19193.28, + "end": 19197.26, + "probability": 0.9905 + }, + { + "start": 19198.24, + "end": 19201.28, + "probability": 0.9851 + }, + { + "start": 19201.36, + "end": 19201.92, + "probability": 0.8368 + }, + { + "start": 19203.32, + "end": 19205.0, + "probability": 0.9868 + }, + { + "start": 19205.18, + "end": 19206.2, + "probability": 0.7411 + }, + { + "start": 19206.28, + "end": 19207.08, + "probability": 0.9231 + }, + { + "start": 19208.26, + "end": 19210.82, + "probability": 0.9979 + }, + { + "start": 19211.72, + "end": 19216.44, + "probability": 0.9942 + }, + { + "start": 19216.44, + "end": 19219.86, + "probability": 0.9888 + }, + { + "start": 19219.94, + "end": 19220.2, + "probability": 0.7004 + }, + { + "start": 19220.64, + "end": 19222.6, + "probability": 0.983 + }, + { + "start": 19222.76, + "end": 19224.98, + "probability": 0.7854 + }, + { + "start": 19227.13, + "end": 19232.4, + "probability": 0.9381 + }, + { + "start": 19233.28, + "end": 19234.7, + "probability": 0.6552 + }, + { + "start": 19234.74, + "end": 19237.66, + "probability": 0.6656 + }, + { + "start": 19238.04, + "end": 19245.72, + "probability": 0.9829 + }, + { + "start": 19248.6, + "end": 19252.1, + "probability": 0.3414 + }, + { + "start": 19252.62, + "end": 19253.86, + "probability": 0.8403 + }, + { + "start": 19254.36, + "end": 19257.02, + "probability": 0.2565 + }, + { + "start": 19257.08, + "end": 19258.52, + "probability": 0.8714 + }, + { + "start": 19259.8, + "end": 19261.34, + "probability": 0.8432 + }, + { + "start": 19261.5, + "end": 19262.36, + "probability": 0.6664 + }, + { + "start": 19262.82, + "end": 19264.04, + "probability": 0.4631 + }, + { + "start": 19264.2, + "end": 19264.88, + "probability": 0.4287 + }, + { + "start": 19264.98, + "end": 19266.92, + "probability": 0.5595 + }, + { + "start": 19267.08, + "end": 19270.06, + "probability": 0.7679 + }, + { + "start": 19270.14, + "end": 19272.82, + "probability": 0.9484 + }, + { + "start": 19273.08, + "end": 19273.84, + "probability": 0.7415 + }, + { + "start": 19275.13, + "end": 19278.22, + "probability": 0.7742 + }, + { + "start": 19278.6, + "end": 19279.84, + "probability": 0.9485 + }, + { + "start": 19280.14, + "end": 19283.94, + "probability": 0.9297 + }, + { + "start": 19284.44, + "end": 19285.42, + "probability": 0.9078 + }, + { + "start": 19285.52, + "end": 19286.34, + "probability": 0.9479 + }, + { + "start": 19286.66, + "end": 19291.14, + "probability": 0.9751 + }, + { + "start": 19291.46, + "end": 19293.46, + "probability": 0.889 + }, + { + "start": 19293.64, + "end": 19294.88, + "probability": 0.9894 + }, + { + "start": 19295.68, + "end": 19298.36, + "probability": 0.9768 + }, + { + "start": 19298.62, + "end": 19301.36, + "probability": 0.7704 + }, + { + "start": 19301.56, + "end": 19302.48, + "probability": 0.6234 + }, + { + "start": 19302.66, + "end": 19305.02, + "probability": 0.775 + }, + { + "start": 19305.2, + "end": 19306.32, + "probability": 0.7768 + }, + { + "start": 19306.74, + "end": 19307.02, + "probability": 0.8621 + }, + { + "start": 19308.04, + "end": 19308.8, + "probability": 0.5545 + }, + { + "start": 19309.12, + "end": 19312.3, + "probability": 0.8279 + }, + { + "start": 19312.3, + "end": 19315.34, + "probability": 0.9863 + }, + { + "start": 19315.72, + "end": 19316.1, + "probability": 0.7298 + }, + { + "start": 19316.22, + "end": 19319.48, + "probability": 0.9521 + }, + { + "start": 19320.56, + "end": 19322.0, + "probability": 0.3998 + }, + { + "start": 19322.18, + "end": 19324.24, + "probability": 0.9868 + }, + { + "start": 19324.44, + "end": 19325.56, + "probability": 0.7638 + }, + { + "start": 19325.88, + "end": 19327.33, + "probability": 0.2709 + }, + { + "start": 19327.98, + "end": 19330.76, + "probability": 0.6707 + }, + { + "start": 19330.92, + "end": 19334.26, + "probability": 0.8817 + }, + { + "start": 19334.36, + "end": 19334.8, + "probability": 0.8417 + }, + { + "start": 19335.98, + "end": 19336.46, + "probability": 0.0743 + } + ], + "segments_count": 6937, + "words_count": 33568, + "avg_words_per_segment": 4.839, + "avg_segment_duration": 1.9906, + "avg_words_per_minute": 103.9654, + "plenum_id": "33882", + "duration": 19372.59, + "title": null, + "plenum_date": "2014-01-06" +} \ No newline at end of file