diff --git "a/5538/metadata.json" "b/5538/metadata.json" new file mode 100644--- /dev/null +++ "b/5538/metadata.json" @@ -0,0 +1,20677 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "5538", + "quality_score": 0.8884, + "per_segment_quality_scores": [ + { + "start": 67.41, + "end": 67.85, + "probability": 0.1657 + }, + { + "start": 75.32, + "end": 75.92, + "probability": 0.0245 + }, + { + "start": 77.54, + "end": 77.54, + "probability": 0.0038 + }, + { + "start": 78.34, + "end": 79.9, + "probability": 0.0853 + }, + { + "start": 79.9, + "end": 80.66, + "probability": 0.1965 + }, + { + "start": 108.6, + "end": 108.98, + "probability": 0.7654 + }, + { + "start": 110.02, + "end": 112.44, + "probability": 0.7862 + }, + { + "start": 113.12, + "end": 114.26, + "probability": 0.9792 + }, + { + "start": 115.04, + "end": 115.8, + "probability": 0.7134 + }, + { + "start": 116.66, + "end": 121.48, + "probability": 0.804 + }, + { + "start": 121.54, + "end": 122.64, + "probability": 0.7058 + }, + { + "start": 123.52, + "end": 123.86, + "probability": 0.1355 + }, + { + "start": 123.96, + "end": 126.78, + "probability": 0.8391 + }, + { + "start": 126.9, + "end": 128.28, + "probability": 0.0996 + }, + { + "start": 130.29, + "end": 132.46, + "probability": 0.4845 + }, + { + "start": 135.54, + "end": 136.66, + "probability": 0.0282 + }, + { + "start": 136.66, + "end": 137.06, + "probability": 0.018 + }, + { + "start": 137.54, + "end": 137.82, + "probability": 0.0441 + }, + { + "start": 139.57, + "end": 140.76, + "probability": 0.0438 + }, + { + "start": 140.76, + "end": 141.36, + "probability": 0.0132 + }, + { + "start": 141.44, + "end": 142.6, + "probability": 0.0392 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 145.44, + "end": 150.34, + "probability": 0.9769 + }, + { + "start": 150.94, + "end": 154.26, + "probability": 0.6622 + }, + { + "start": 154.4, + "end": 158.82, + "probability": 0.9662 + }, + { + "start": 159.38, + "end": 160.24, + "probability": 0.2275 + }, + { + "start": 160.84, + "end": 162.54, + "probability": 0.9951 + }, + { + "start": 163.86, + "end": 169.56, + "probability": 0.8563 + }, + { + "start": 170.26, + "end": 170.66, + "probability": 0.9187 + }, + { + "start": 171.52, + "end": 172.46, + "probability": 0.8931 + }, + { + "start": 173.26, + "end": 175.86, + "probability": 0.9385 + }, + { + "start": 175.88, + "end": 177.74, + "probability": 0.6356 + }, + { + "start": 179.63, + "end": 184.64, + "probability": 0.8305 + }, + { + "start": 185.3, + "end": 185.3, + "probability": 0.0346 + }, + { + "start": 185.3, + "end": 185.62, + "probability": 0.112 + }, + { + "start": 185.66, + "end": 186.84, + "probability": 0.5198 + }, + { + "start": 186.94, + "end": 189.68, + "probability": 0.8403 + }, + { + "start": 189.96, + "end": 191.78, + "probability": 0.8784 + }, + { + "start": 192.46, + "end": 196.2, + "probability": 0.88 + }, + { + "start": 196.66, + "end": 197.74, + "probability": 0.0241 + }, + { + "start": 198.44, + "end": 200.46, + "probability": 0.9905 + }, + { + "start": 200.94, + "end": 201.56, + "probability": 0.5451 + }, + { + "start": 202.22, + "end": 203.85, + "probability": 0.8203 + }, + { + "start": 204.48, + "end": 205.88, + "probability": 0.919 + }, + { + "start": 206.06, + "end": 207.02, + "probability": 0.8507 + }, + { + "start": 207.22, + "end": 208.12, + "probability": 0.8542 + }, + { + "start": 209.22, + "end": 211.52, + "probability": 0.6228 + }, + { + "start": 211.82, + "end": 212.78, + "probability": 0.1312 + }, + { + "start": 212.86, + "end": 213.96, + "probability": 0.9231 + }, + { + "start": 214.06, + "end": 214.88, + "probability": 0.7379 + }, + { + "start": 215.5, + "end": 215.64, + "probability": 0.0766 + }, + { + "start": 215.64, + "end": 217.19, + "probability": 0.472 + }, + { + "start": 217.46, + "end": 219.28, + "probability": 0.9038 + }, + { + "start": 219.48, + "end": 220.44, + "probability": 0.7615 + }, + { + "start": 221.22, + "end": 221.88, + "probability": 0.8982 + }, + { + "start": 221.98, + "end": 222.0, + "probability": 0.226 + }, + { + "start": 222.0, + "end": 225.7, + "probability": 0.7053 + }, + { + "start": 226.24, + "end": 227.18, + "probability": 0.2079 + }, + { + "start": 227.44, + "end": 230.02, + "probability": 0.9785 + }, + { + "start": 230.12, + "end": 230.44, + "probability": 0.6677 + }, + { + "start": 231.56, + "end": 233.0, + "probability": 0.6188 + }, + { + "start": 233.06, + "end": 236.28, + "probability": 0.5877 + }, + { + "start": 237.02, + "end": 239.22, + "probability": 0.8889 + }, + { + "start": 239.76, + "end": 241.24, + "probability": 0.7395 + }, + { + "start": 241.4, + "end": 242.98, + "probability": 0.9043 + }, + { + "start": 243.58, + "end": 247.23, + "probability": 0.945 + }, + { + "start": 248.22, + "end": 249.18, + "probability": 0.4675 + }, + { + "start": 250.08, + "end": 251.68, + "probability": 0.9421 + }, + { + "start": 252.4, + "end": 256.72, + "probability": 0.9447 + }, + { + "start": 257.16, + "end": 263.66, + "probability": 0.9854 + }, + { + "start": 264.34, + "end": 267.28, + "probability": 0.9905 + }, + { + "start": 267.94, + "end": 268.58, + "probability": 0.7447 + }, + { + "start": 273.6, + "end": 277.82, + "probability": 0.611 + }, + { + "start": 277.82, + "end": 282.16, + "probability": 0.9735 + }, + { + "start": 282.8, + "end": 284.2, + "probability": 0.9845 + }, + { + "start": 284.82, + "end": 287.98, + "probability": 0.7811 + }, + { + "start": 288.22, + "end": 289.02, + "probability": 0.5531 + }, + { + "start": 289.54, + "end": 290.86, + "probability": 0.9052 + }, + { + "start": 291.54, + "end": 296.42, + "probability": 0.8132 + }, + { + "start": 298.16, + "end": 301.36, + "probability": 0.8234 + }, + { + "start": 302.04, + "end": 302.3, + "probability": 0.7434 + }, + { + "start": 302.42, + "end": 308.44, + "probability": 0.9683 + }, + { + "start": 308.44, + "end": 312.02, + "probability": 0.9945 + }, + { + "start": 312.34, + "end": 315.14, + "probability": 0.985 + }, + { + "start": 315.58, + "end": 318.82, + "probability": 0.6479 + }, + { + "start": 319.6, + "end": 320.26, + "probability": 0.5035 + }, + { + "start": 320.54, + "end": 322.84, + "probability": 0.9922 + }, + { + "start": 323.74, + "end": 324.96, + "probability": 0.5691 + }, + { + "start": 325.2, + "end": 327.36, + "probability": 0.1375 + }, + { + "start": 327.58, + "end": 328.24, + "probability": 0.5854 + }, + { + "start": 328.26, + "end": 328.44, + "probability": 0.0194 + }, + { + "start": 329.02, + "end": 329.56, + "probability": 0.0515 + }, + { + "start": 329.56, + "end": 330.38, + "probability": 0.4687 + }, + { + "start": 330.54, + "end": 332.44, + "probability": 0.7531 + }, + { + "start": 333.16, + "end": 337.06, + "probability": 0.5009 + }, + { + "start": 337.14, + "end": 338.56, + "probability": 0.7433 + }, + { + "start": 339.0, + "end": 339.98, + "probability": 0.1569 + }, + { + "start": 340.06, + "end": 342.86, + "probability": 0.9421 + }, + { + "start": 346.59, + "end": 347.38, + "probability": 0.5109 + }, + { + "start": 348.06, + "end": 348.92, + "probability": 0.0162 + }, + { + "start": 349.02, + "end": 351.44, + "probability": 0.3847 + }, + { + "start": 351.74, + "end": 354.72, + "probability": 0.6615 + }, + { + "start": 355.94, + "end": 357.12, + "probability": 0.9957 + }, + { + "start": 357.86, + "end": 360.0, + "probability": 0.7777 + }, + { + "start": 361.76, + "end": 362.86, + "probability": 0.0213 + }, + { + "start": 363.42, + "end": 365.64, + "probability": 0.9594 + }, + { + "start": 365.96, + "end": 368.0, + "probability": 0.9041 + }, + { + "start": 368.54, + "end": 369.95, + "probability": 0.6584 + }, + { + "start": 370.72, + "end": 371.48, + "probability": 0.9375 + }, + { + "start": 373.42, + "end": 374.14, + "probability": 0.5909 + }, + { + "start": 374.22, + "end": 377.44, + "probability": 0.9965 + }, + { + "start": 378.4, + "end": 381.15, + "probability": 0.7245 + }, + { + "start": 383.2, + "end": 384.74, + "probability": 0.1937 + }, + { + "start": 385.58, + "end": 386.38, + "probability": 0.661 + }, + { + "start": 386.54, + "end": 387.14, + "probability": 0.6971 + }, + { + "start": 387.22, + "end": 389.52, + "probability": 0.867 + }, + { + "start": 390.0, + "end": 391.42, + "probability": 0.6606 + }, + { + "start": 391.44, + "end": 396.6, + "probability": 0.9069 + }, + { + "start": 397.2, + "end": 398.98, + "probability": 0.9708 + }, + { + "start": 400.3, + "end": 400.98, + "probability": 0.7244 + }, + { + "start": 401.52, + "end": 405.32, + "probability": 0.9961 + }, + { + "start": 406.54, + "end": 410.58, + "probability": 0.9808 + }, + { + "start": 410.58, + "end": 414.36, + "probability": 0.9925 + }, + { + "start": 415.08, + "end": 417.42, + "probability": 0.641 + }, + { + "start": 417.94, + "end": 418.56, + "probability": 0.9645 + }, + { + "start": 420.5, + "end": 427.4, + "probability": 0.7357 + }, + { + "start": 427.86, + "end": 429.12, + "probability": 0.9985 + }, + { + "start": 430.42, + "end": 432.08, + "probability": 0.9661 + }, + { + "start": 432.44, + "end": 433.34, + "probability": 0.8743 + }, + { + "start": 434.24, + "end": 435.34, + "probability": 0.6441 + }, + { + "start": 436.0, + "end": 438.14, + "probability": 0.9848 + }, + { + "start": 439.08, + "end": 441.8, + "probability": 0.9979 + }, + { + "start": 443.1, + "end": 446.24, + "probability": 0.6963 + }, + { + "start": 447.58, + "end": 449.92, + "probability": 0.9967 + }, + { + "start": 450.96, + "end": 452.9, + "probability": 0.9839 + }, + { + "start": 453.54, + "end": 454.23, + "probability": 0.9141 + }, + { + "start": 455.4, + "end": 455.62, + "probability": 0.0002 + }, + { + "start": 456.64, + "end": 457.9, + "probability": 0.9793 + }, + { + "start": 458.18, + "end": 460.55, + "probability": 0.9983 + }, + { + "start": 461.22, + "end": 464.06, + "probability": 0.9985 + }, + { + "start": 464.76, + "end": 466.14, + "probability": 0.9974 + }, + { + "start": 466.72, + "end": 468.9, + "probability": 0.9951 + }, + { + "start": 469.54, + "end": 470.56, + "probability": 0.5464 + }, + { + "start": 470.82, + "end": 472.36, + "probability": 0.8564 + }, + { + "start": 472.84, + "end": 473.42, + "probability": 0.8739 + }, + { + "start": 473.6, + "end": 474.16, + "probability": 0.9685 + }, + { + "start": 474.76, + "end": 476.26, + "probability": 0.7989 + }, + { + "start": 476.86, + "end": 479.4, + "probability": 0.9791 + }, + { + "start": 480.0, + "end": 480.9, + "probability": 0.9062 + }, + { + "start": 481.56, + "end": 483.82, + "probability": 0.9342 + }, + { + "start": 484.42, + "end": 485.32, + "probability": 0.9067 + }, + { + "start": 486.3, + "end": 487.98, + "probability": 0.7565 + }, + { + "start": 488.58, + "end": 490.06, + "probability": 0.7956 + }, + { + "start": 490.84, + "end": 491.6, + "probability": 0.3223 + }, + { + "start": 491.86, + "end": 493.24, + "probability": 0.9976 + }, + { + "start": 494.34, + "end": 494.5, + "probability": 0.6913 + }, + { + "start": 494.64, + "end": 500.08, + "probability": 0.994 + }, + { + "start": 500.14, + "end": 501.24, + "probability": 0.7584 + }, + { + "start": 501.8, + "end": 502.76, + "probability": 0.9962 + }, + { + "start": 504.38, + "end": 507.44, + "probability": 0.9967 + }, + { + "start": 507.7, + "end": 510.08, + "probability": 0.9971 + }, + { + "start": 511.18, + "end": 512.52, + "probability": 0.9492 + }, + { + "start": 513.72, + "end": 514.94, + "probability": 0.9294 + }, + { + "start": 515.5, + "end": 517.62, + "probability": 0.9985 + }, + { + "start": 518.26, + "end": 522.42, + "probability": 0.9945 + }, + { + "start": 522.88, + "end": 523.45, + "probability": 0.32 + }, + { + "start": 524.4, + "end": 527.12, + "probability": 0.9077 + }, + { + "start": 527.88, + "end": 530.18, + "probability": 0.9802 + }, + { + "start": 531.06, + "end": 532.42, + "probability": 0.944 + }, + { + "start": 532.64, + "end": 535.72, + "probability": 0.9905 + }, + { + "start": 536.34, + "end": 541.06, + "probability": 0.9926 + }, + { + "start": 541.24, + "end": 541.64, + "probability": 0.527 + }, + { + "start": 542.46, + "end": 543.06, + "probability": 0.7194 + }, + { + "start": 543.76, + "end": 546.68, + "probability": 0.9071 + }, + { + "start": 547.18, + "end": 549.32, + "probability": 0.9535 + }, + { + "start": 550.26, + "end": 553.06, + "probability": 0.9992 + }, + { + "start": 553.06, + "end": 556.16, + "probability": 0.9813 + }, + { + "start": 556.3, + "end": 557.22, + "probability": 0.8015 + }, + { + "start": 557.66, + "end": 560.44, + "probability": 0.9736 + }, + { + "start": 561.02, + "end": 563.36, + "probability": 0.9574 + }, + { + "start": 563.46, + "end": 564.8, + "probability": 0.9923 + }, + { + "start": 565.28, + "end": 566.5, + "probability": 0.8448 + }, + { + "start": 567.02, + "end": 568.2, + "probability": 0.907 + }, + { + "start": 568.62, + "end": 569.54, + "probability": 0.6222 + }, + { + "start": 569.58, + "end": 571.02, + "probability": 0.8622 + }, + { + "start": 571.06, + "end": 573.85, + "probability": 0.8647 + }, + { + "start": 574.44, + "end": 574.66, + "probability": 0.112 + }, + { + "start": 574.74, + "end": 575.42, + "probability": 0.9148 + }, + { + "start": 575.52, + "end": 577.56, + "probability": 0.9946 + }, + { + "start": 577.86, + "end": 578.86, + "probability": 0.5692 + }, + { + "start": 578.96, + "end": 580.62, + "probability": 0.4942 + }, + { + "start": 580.62, + "end": 580.98, + "probability": 0.9414 + }, + { + "start": 581.46, + "end": 584.48, + "probability": 0.8302 + }, + { + "start": 584.9, + "end": 586.86, + "probability": 0.9951 + }, + { + "start": 588.62, + "end": 589.28, + "probability": 0.7368 + }, + { + "start": 589.94, + "end": 591.32, + "probability": 0.9825 + }, + { + "start": 591.94, + "end": 593.58, + "probability": 0.9948 + }, + { + "start": 595.4, + "end": 596.7, + "probability": 0.9914 + }, + { + "start": 598.8, + "end": 600.12, + "probability": 0.9955 + }, + { + "start": 600.98, + "end": 602.02, + "probability": 0.7985 + }, + { + "start": 603.24, + "end": 604.06, + "probability": 0.7687 + }, + { + "start": 605.06, + "end": 606.82, + "probability": 0.9834 + }, + { + "start": 607.24, + "end": 608.78, + "probability": 0.9734 + }, + { + "start": 610.38, + "end": 610.96, + "probability": 0.9824 + }, + { + "start": 611.54, + "end": 613.74, + "probability": 0.9785 + }, + { + "start": 614.32, + "end": 615.36, + "probability": 0.908 + }, + { + "start": 616.12, + "end": 618.16, + "probability": 0.9121 + }, + { + "start": 619.24, + "end": 621.39, + "probability": 0.782 + }, + { + "start": 622.26, + "end": 624.26, + "probability": 0.965 + }, + { + "start": 625.7, + "end": 626.36, + "probability": 0.9264 + }, + { + "start": 626.98, + "end": 627.52, + "probability": 0.804 + }, + { + "start": 628.34, + "end": 631.42, + "probability": 0.9607 + }, + { + "start": 632.9, + "end": 636.78, + "probability": 0.8958 + }, + { + "start": 638.54, + "end": 640.06, + "probability": 0.9227 + }, + { + "start": 640.28, + "end": 641.65, + "probability": 0.9602 + }, + { + "start": 642.36, + "end": 643.82, + "probability": 0.9865 + }, + { + "start": 646.02, + "end": 648.64, + "probability": 0.9628 + }, + { + "start": 650.0, + "end": 651.08, + "probability": 0.8391 + }, + { + "start": 651.38, + "end": 651.94, + "probability": 0.9031 + }, + { + "start": 652.28, + "end": 652.99, + "probability": 0.8184 + }, + { + "start": 653.18, + "end": 658.89, + "probability": 0.9933 + }, + { + "start": 660.94, + "end": 664.04, + "probability": 0.9991 + }, + { + "start": 665.66, + "end": 667.7, + "probability": 0.8968 + }, + { + "start": 669.38, + "end": 672.64, + "probability": 0.9782 + }, + { + "start": 674.96, + "end": 677.64, + "probability": 0.875 + }, + { + "start": 678.74, + "end": 680.2, + "probability": 0.9727 + }, + { + "start": 682.12, + "end": 686.64, + "probability": 0.9663 + }, + { + "start": 688.0, + "end": 689.24, + "probability": 0.6071 + }, + { + "start": 690.36, + "end": 691.53, + "probability": 0.9971 + }, + { + "start": 693.6, + "end": 695.64, + "probability": 0.7542 + }, + { + "start": 696.84, + "end": 698.6, + "probability": 0.9966 + }, + { + "start": 698.74, + "end": 700.5, + "probability": 0.9819 + }, + { + "start": 701.68, + "end": 704.48, + "probability": 0.9883 + }, + { + "start": 706.7, + "end": 708.94, + "probability": 0.9295 + }, + { + "start": 709.14, + "end": 710.12, + "probability": 0.9922 + }, + { + "start": 710.18, + "end": 713.06, + "probability": 0.9858 + }, + { + "start": 714.0, + "end": 714.36, + "probability": 0.8951 + }, + { + "start": 715.46, + "end": 717.91, + "probability": 0.981 + }, + { + "start": 719.3, + "end": 720.81, + "probability": 0.8864 + }, + { + "start": 722.32, + "end": 724.17, + "probability": 0.5816 + }, + { + "start": 725.5, + "end": 726.28, + "probability": 0.9691 + }, + { + "start": 727.24, + "end": 728.62, + "probability": 0.8026 + }, + { + "start": 729.14, + "end": 732.14, + "probability": 0.7816 + }, + { + "start": 732.48, + "end": 732.68, + "probability": 0.973 + }, + { + "start": 732.72, + "end": 733.02, + "probability": 0.7828 + }, + { + "start": 733.36, + "end": 734.41, + "probability": 0.9871 + }, + { + "start": 734.54, + "end": 736.34, + "probability": 0.9824 + }, + { + "start": 736.96, + "end": 737.32, + "probability": 0.8174 + }, + { + "start": 737.46, + "end": 738.4, + "probability": 0.7826 + }, + { + "start": 739.04, + "end": 740.7, + "probability": 0.9867 + }, + { + "start": 741.34, + "end": 743.06, + "probability": 0.8599 + }, + { + "start": 744.36, + "end": 747.6, + "probability": 0.9799 + }, + { + "start": 748.3, + "end": 749.68, + "probability": 0.3446 + }, + { + "start": 751.06, + "end": 752.46, + "probability": 0.9943 + }, + { + "start": 753.68, + "end": 755.66, + "probability": 0.9908 + }, + { + "start": 756.24, + "end": 758.48, + "probability": 0.984 + }, + { + "start": 759.02, + "end": 761.4, + "probability": 0.9811 + }, + { + "start": 762.16, + "end": 764.28, + "probability": 0.9662 + }, + { + "start": 765.78, + "end": 769.78, + "probability": 0.9873 + }, + { + "start": 769.8, + "end": 771.2, + "probability": 0.9355 + }, + { + "start": 772.36, + "end": 773.92, + "probability": 0.9966 + }, + { + "start": 774.16, + "end": 775.82, + "probability": 0.9517 + }, + { + "start": 775.86, + "end": 778.38, + "probability": 0.9758 + }, + { + "start": 779.74, + "end": 782.5, + "probability": 0.9669 + }, + { + "start": 783.72, + "end": 786.1, + "probability": 0.9402 + }, + { + "start": 787.24, + "end": 788.92, + "probability": 0.8264 + }, + { + "start": 789.6, + "end": 790.7, + "probability": 0.9329 + }, + { + "start": 791.38, + "end": 792.88, + "probability": 0.9928 + }, + { + "start": 794.34, + "end": 796.04, + "probability": 0.7321 + }, + { + "start": 796.98, + "end": 799.34, + "probability": 0.9805 + }, + { + "start": 800.12, + "end": 803.08, + "probability": 0.988 + }, + { + "start": 804.92, + "end": 807.0, + "probability": 0.998 + }, + { + "start": 808.04, + "end": 809.02, + "probability": 0.7591 + }, + { + "start": 809.12, + "end": 810.06, + "probability": 0.9863 + }, + { + "start": 810.22, + "end": 811.07, + "probability": 0.9363 + }, + { + "start": 813.64, + "end": 816.12, + "probability": 0.9974 + }, + { + "start": 817.98, + "end": 820.7, + "probability": 0.8246 + }, + { + "start": 821.46, + "end": 823.0, + "probability": 0.9292 + }, + { + "start": 825.68, + "end": 827.18, + "probability": 0.9211 + }, + { + "start": 828.97, + "end": 831.04, + "probability": 0.5811 + }, + { + "start": 831.22, + "end": 834.06, + "probability": 0.9507 + }, + { + "start": 834.06, + "end": 836.96, + "probability": 0.9989 + }, + { + "start": 837.86, + "end": 840.24, + "probability": 0.9842 + }, + { + "start": 841.66, + "end": 842.98, + "probability": 0.7249 + }, + { + "start": 845.7, + "end": 849.22, + "probability": 0.9854 + }, + { + "start": 849.32, + "end": 850.92, + "probability": 0.9575 + }, + { + "start": 851.8, + "end": 854.54, + "probability": 0.946 + }, + { + "start": 855.34, + "end": 857.88, + "probability": 0.8936 + }, + { + "start": 858.4, + "end": 861.42, + "probability": 0.977 + }, + { + "start": 861.78, + "end": 864.14, + "probability": 0.9863 + }, + { + "start": 865.06, + "end": 865.98, + "probability": 0.9242 + }, + { + "start": 867.68, + "end": 869.82, + "probability": 0.9978 + }, + { + "start": 872.22, + "end": 875.9, + "probability": 0.9814 + }, + { + "start": 876.34, + "end": 876.98, + "probability": 0.4987 + }, + { + "start": 877.24, + "end": 877.86, + "probability": 0.9267 + }, + { + "start": 878.24, + "end": 880.84, + "probability": 0.9892 + }, + { + "start": 881.54, + "end": 884.44, + "probability": 0.9871 + }, + { + "start": 885.8, + "end": 887.0, + "probability": 0.9393 + }, + { + "start": 887.9, + "end": 888.84, + "probability": 0.9912 + }, + { + "start": 890.1, + "end": 892.47, + "probability": 0.9065 + }, + { + "start": 893.02, + "end": 896.8, + "probability": 0.9815 + }, + { + "start": 897.16, + "end": 898.36, + "probability": 0.9044 + }, + { + "start": 899.98, + "end": 900.98, + "probability": 0.9194 + }, + { + "start": 902.76, + "end": 903.35, + "probability": 0.733 + }, + { + "start": 903.82, + "end": 905.26, + "probability": 0.6068 + }, + { + "start": 905.38, + "end": 905.9, + "probability": 0.9557 + }, + { + "start": 906.04, + "end": 907.22, + "probability": 0.6771 + }, + { + "start": 907.44, + "end": 909.54, + "probability": 0.8813 + }, + { + "start": 909.7, + "end": 912.22, + "probability": 0.7124 + }, + { + "start": 912.62, + "end": 913.46, + "probability": 0.6195 + }, + { + "start": 913.72, + "end": 915.12, + "probability": 0.2776 + }, + { + "start": 915.14, + "end": 917.7, + "probability": 0.9982 + }, + { + "start": 917.98, + "end": 919.4, + "probability": 0.8809 + }, + { + "start": 920.18, + "end": 922.82, + "probability": 0.8287 + }, + { + "start": 923.06, + "end": 924.8, + "probability": 0.9695 + }, + { + "start": 925.2, + "end": 925.55, + "probability": 0.8903 + }, + { + "start": 926.46, + "end": 929.5, + "probability": 0.9722 + }, + { + "start": 930.32, + "end": 931.72, + "probability": 0.9446 + }, + { + "start": 932.38, + "end": 935.52, + "probability": 0.9966 + }, + { + "start": 935.66, + "end": 936.48, + "probability": 0.5045 + }, + { + "start": 936.54, + "end": 937.64, + "probability": 0.8789 + }, + { + "start": 938.16, + "end": 939.7, + "probability": 0.9624 + }, + { + "start": 940.16, + "end": 942.24, + "probability": 0.7577 + }, + { + "start": 943.54, + "end": 946.08, + "probability": 0.8999 + }, + { + "start": 946.22, + "end": 948.24, + "probability": 0.9507 + }, + { + "start": 949.35, + "end": 952.1, + "probability": 0.5684 + }, + { + "start": 952.34, + "end": 953.44, + "probability": 0.9219 + }, + { + "start": 953.76, + "end": 958.56, + "probability": 0.5027 + }, + { + "start": 958.72, + "end": 959.94, + "probability": 0.528 + }, + { + "start": 960.38, + "end": 961.88, + "probability": 0.5117 + }, + { + "start": 961.94, + "end": 962.72, + "probability": 0.2359 + }, + { + "start": 962.86, + "end": 965.64, + "probability": 0.6356 + }, + { + "start": 966.72, + "end": 970.54, + "probability": 0.832 + }, + { + "start": 971.28, + "end": 973.53, + "probability": 0.9927 + }, + { + "start": 974.32, + "end": 975.98, + "probability": 0.9056 + }, + { + "start": 976.16, + "end": 979.52, + "probability": 0.9949 + }, + { + "start": 980.12, + "end": 982.48, + "probability": 0.9895 + }, + { + "start": 982.98, + "end": 983.57, + "probability": 0.8215 + }, + { + "start": 984.12, + "end": 986.82, + "probability": 0.9933 + }, + { + "start": 987.68, + "end": 991.24, + "probability": 0.9526 + }, + { + "start": 991.32, + "end": 992.44, + "probability": 0.7996 + }, + { + "start": 992.54, + "end": 993.1, + "probability": 0.7563 + }, + { + "start": 993.22, + "end": 993.44, + "probability": 0.7879 + }, + { + "start": 993.9, + "end": 994.64, + "probability": 0.6634 + }, + { + "start": 995.0, + "end": 999.66, + "probability": 0.9941 + }, + { + "start": 1000.34, + "end": 1001.2, + "probability": 0.9807 + }, + { + "start": 1001.86, + "end": 1006.22, + "probability": 0.9993 + }, + { + "start": 1006.74, + "end": 1011.24, + "probability": 0.9991 + }, + { + "start": 1011.42, + "end": 1012.06, + "probability": 0.7802 + }, + { + "start": 1012.48, + "end": 1013.91, + "probability": 0.9305 + }, + { + "start": 1014.4, + "end": 1015.82, + "probability": 0.9834 + }, + { + "start": 1016.4, + "end": 1018.96, + "probability": 0.5741 + }, + { + "start": 1019.88, + "end": 1021.4, + "probability": 0.9968 + }, + { + "start": 1022.04, + "end": 1023.86, + "probability": 0.9945 + }, + { + "start": 1024.68, + "end": 1029.04, + "probability": 0.9923 + }, + { + "start": 1034.78, + "end": 1037.08, + "probability": 0.7632 + }, + { + "start": 1037.74, + "end": 1039.74, + "probability": 0.9003 + }, + { + "start": 1041.24, + "end": 1042.94, + "probability": 0.9441 + }, + { + "start": 1044.06, + "end": 1046.38, + "probability": 0.9608 + }, + { + "start": 1046.82, + "end": 1047.54, + "probability": 0.8813 + }, + { + "start": 1048.06, + "end": 1051.15, + "probability": 0.9963 + }, + { + "start": 1051.48, + "end": 1053.86, + "probability": 0.8639 + }, + { + "start": 1054.44, + "end": 1055.8, + "probability": 0.9929 + }, + { + "start": 1056.82, + "end": 1058.08, + "probability": 0.8955 + }, + { + "start": 1058.7, + "end": 1061.94, + "probability": 0.6479 + }, + { + "start": 1062.48, + "end": 1063.38, + "probability": 0.6854 + }, + { + "start": 1064.24, + "end": 1065.72, + "probability": 0.7269 + }, + { + "start": 1066.66, + "end": 1069.24, + "probability": 0.9971 + }, + { + "start": 1070.26, + "end": 1075.6, + "probability": 0.9119 + }, + { + "start": 1076.66, + "end": 1081.1, + "probability": 0.9645 + }, + { + "start": 1081.86, + "end": 1084.0, + "probability": 0.998 + }, + { + "start": 1085.0, + "end": 1086.46, + "probability": 0.4269 + }, + { + "start": 1087.76, + "end": 1088.68, + "probability": 0.5952 + }, + { + "start": 1088.86, + "end": 1089.93, + "probability": 0.9357 + }, + { + "start": 1090.24, + "end": 1091.14, + "probability": 0.9852 + }, + { + "start": 1092.4, + "end": 1093.26, + "probability": 0.9622 + }, + { + "start": 1093.82, + "end": 1095.58, + "probability": 0.9702 + }, + { + "start": 1096.54, + "end": 1097.72, + "probability": 0.9725 + }, + { + "start": 1098.64, + "end": 1102.68, + "probability": 0.9954 + }, + { + "start": 1102.76, + "end": 1105.38, + "probability": 0.9995 + }, + { + "start": 1107.08, + "end": 1107.7, + "probability": 0.0132 + }, + { + "start": 1107.7, + "end": 1107.7, + "probability": 0.2245 + }, + { + "start": 1107.7, + "end": 1107.94, + "probability": 0.0347 + }, + { + "start": 1108.12, + "end": 1109.5, + "probability": 0.2212 + }, + { + "start": 1109.96, + "end": 1112.34, + "probability": 0.6861 + }, + { + "start": 1113.84, + "end": 1116.64, + "probability": 0.8543 + }, + { + "start": 1117.16, + "end": 1119.4, + "probability": 0.979 + }, + { + "start": 1120.42, + "end": 1121.04, + "probability": 0.7238 + }, + { + "start": 1121.8, + "end": 1122.86, + "probability": 0.9814 + }, + { + "start": 1124.12, + "end": 1125.03, + "probability": 0.0532 + }, + { + "start": 1126.26, + "end": 1127.66, + "probability": 0.3627 + }, + { + "start": 1128.38, + "end": 1130.81, + "probability": 0.4065 + }, + { + "start": 1130.98, + "end": 1133.28, + "probability": 0.3583 + }, + { + "start": 1133.52, + "end": 1134.01, + "probability": 0.1627 + }, + { + "start": 1134.12, + "end": 1135.42, + "probability": 0.7449 + }, + { + "start": 1135.94, + "end": 1138.2, + "probability": 0.9618 + }, + { + "start": 1138.28, + "end": 1139.16, + "probability": 0.9731 + }, + { + "start": 1140.26, + "end": 1141.36, + "probability": 0.9237 + }, + { + "start": 1142.52, + "end": 1144.24, + "probability": 0.9961 + }, + { + "start": 1144.3, + "end": 1146.88, + "probability": 0.8475 + }, + { + "start": 1146.96, + "end": 1148.46, + "probability": 0.7457 + }, + { + "start": 1149.04, + "end": 1152.55, + "probability": 0.9478 + }, + { + "start": 1153.22, + "end": 1154.32, + "probability": 0.6511 + }, + { + "start": 1154.86, + "end": 1156.86, + "probability": 0.9989 + }, + { + "start": 1157.52, + "end": 1158.4, + "probability": 0.998 + }, + { + "start": 1159.56, + "end": 1162.44, + "probability": 0.9877 + }, + { + "start": 1162.98, + "end": 1164.36, + "probability": 0.8455 + }, + { + "start": 1165.34, + "end": 1167.28, + "probability": 0.9828 + }, + { + "start": 1167.96, + "end": 1169.96, + "probability": 0.9701 + }, + { + "start": 1170.52, + "end": 1173.6, + "probability": 0.5003 + }, + { + "start": 1174.28, + "end": 1178.65, + "probability": 0.9436 + }, + { + "start": 1179.5, + "end": 1180.94, + "probability": 0.9909 + }, + { + "start": 1181.94, + "end": 1183.56, + "probability": 0.9984 + }, + { + "start": 1184.5, + "end": 1187.86, + "probability": 0.9966 + }, + { + "start": 1188.32, + "end": 1189.1, + "probability": 0.9102 + }, + { + "start": 1189.52, + "end": 1190.16, + "probability": 0.6166 + }, + { + "start": 1190.52, + "end": 1190.86, + "probability": 0.8003 + }, + { + "start": 1190.9, + "end": 1197.22, + "probability": 0.9834 + }, + { + "start": 1197.7, + "end": 1198.96, + "probability": 0.9985 + }, + { + "start": 1199.94, + "end": 1200.84, + "probability": 0.9976 + }, + { + "start": 1201.54, + "end": 1203.62, + "probability": 0.964 + }, + { + "start": 1203.76, + "end": 1204.84, + "probability": 0.8062 + }, + { + "start": 1205.36, + "end": 1207.34, + "probability": 0.9639 + }, + { + "start": 1207.58, + "end": 1207.8, + "probability": 0.7416 + }, + { + "start": 1208.28, + "end": 1209.54, + "probability": 0.7971 + }, + { + "start": 1210.0, + "end": 1212.92, + "probability": 0.4091 + }, + { + "start": 1213.54, + "end": 1216.12, + "probability": 0.9744 + }, + { + "start": 1217.94, + "end": 1219.7, + "probability": 0.456 + }, + { + "start": 1219.84, + "end": 1223.32, + "probability": 0.9114 + }, + { + "start": 1224.24, + "end": 1225.4, + "probability": 0.8128 + }, + { + "start": 1226.88, + "end": 1229.5, + "probability": 0.8976 + }, + { + "start": 1230.04, + "end": 1231.92, + "probability": 0.9645 + }, + { + "start": 1245.98, + "end": 1246.08, + "probability": 0.1555 + }, + { + "start": 1246.48, + "end": 1246.72, + "probability": 0.9387 + }, + { + "start": 1247.98, + "end": 1250.58, + "probability": 0.7185 + }, + { + "start": 1251.66, + "end": 1254.54, + "probability": 0.9524 + }, + { + "start": 1254.98, + "end": 1259.66, + "probability": 0.8996 + }, + { + "start": 1261.24, + "end": 1262.0, + "probability": 0.9888 + }, + { + "start": 1263.3, + "end": 1264.9, + "probability": 0.7181 + }, + { + "start": 1265.86, + "end": 1271.02, + "probability": 0.9864 + }, + { + "start": 1271.74, + "end": 1278.04, + "probability": 0.9954 + }, + { + "start": 1278.52, + "end": 1281.0, + "probability": 0.9708 + }, + { + "start": 1282.28, + "end": 1284.54, + "probability": 0.842 + }, + { + "start": 1285.14, + "end": 1286.0, + "probability": 0.9246 + }, + { + "start": 1286.66, + "end": 1291.84, + "probability": 0.9189 + }, + { + "start": 1292.66, + "end": 1293.4, + "probability": 0.9648 + }, + { + "start": 1293.56, + "end": 1294.76, + "probability": 0.9592 + }, + { + "start": 1294.86, + "end": 1295.68, + "probability": 0.8851 + }, + { + "start": 1295.76, + "end": 1299.64, + "probability": 0.988 + }, + { + "start": 1299.64, + "end": 1303.2, + "probability": 0.9438 + }, + { + "start": 1304.08, + "end": 1305.28, + "probability": 0.9824 + }, + { + "start": 1306.24, + "end": 1307.5, + "probability": 0.9267 + }, + { + "start": 1308.3, + "end": 1310.86, + "probability": 0.9443 + }, + { + "start": 1311.6, + "end": 1313.6, + "probability": 0.6948 + }, + { + "start": 1314.66, + "end": 1321.18, + "probability": 0.9824 + }, + { + "start": 1321.24, + "end": 1321.7, + "probability": 0.9025 + }, + { + "start": 1321.84, + "end": 1322.78, + "probability": 0.9183 + }, + { + "start": 1323.84, + "end": 1326.66, + "probability": 0.9783 + }, + { + "start": 1327.28, + "end": 1328.04, + "probability": 0.9213 + }, + { + "start": 1328.16, + "end": 1329.64, + "probability": 0.8466 + }, + { + "start": 1330.08, + "end": 1332.76, + "probability": 0.9528 + }, + { + "start": 1333.38, + "end": 1336.48, + "probability": 0.7534 + }, + { + "start": 1337.3, + "end": 1340.86, + "probability": 0.989 + }, + { + "start": 1341.8, + "end": 1343.94, + "probability": 0.9985 + }, + { + "start": 1344.14, + "end": 1349.14, + "probability": 0.99 + }, + { + "start": 1349.24, + "end": 1356.26, + "probability": 0.9823 + }, + { + "start": 1356.38, + "end": 1356.88, + "probability": 0.5606 + }, + { + "start": 1356.98, + "end": 1359.58, + "probability": 0.9181 + }, + { + "start": 1360.16, + "end": 1365.26, + "probability": 0.9723 + }, + { + "start": 1365.9, + "end": 1368.92, + "probability": 0.9951 + }, + { + "start": 1369.56, + "end": 1373.05, + "probability": 0.9919 + }, + { + "start": 1373.64, + "end": 1378.06, + "probability": 0.9833 + }, + { + "start": 1378.94, + "end": 1383.84, + "probability": 0.9158 + }, + { + "start": 1383.94, + "end": 1385.4, + "probability": 0.9462 + }, + { + "start": 1385.68, + "end": 1388.18, + "probability": 0.9958 + }, + { + "start": 1388.88, + "end": 1391.98, + "probability": 0.9995 + }, + { + "start": 1392.26, + "end": 1394.64, + "probability": 0.9858 + }, + { + "start": 1395.16, + "end": 1396.3, + "probability": 0.6833 + }, + { + "start": 1396.46, + "end": 1397.54, + "probability": 0.8936 + }, + { + "start": 1398.02, + "end": 1399.3, + "probability": 0.9985 + }, + { + "start": 1400.06, + "end": 1402.48, + "probability": 0.8102 + }, + { + "start": 1402.84, + "end": 1404.34, + "probability": 0.9744 + }, + { + "start": 1404.54, + "end": 1405.26, + "probability": 0.7498 + }, + { + "start": 1405.8, + "end": 1407.28, + "probability": 0.3923 + }, + { + "start": 1407.38, + "end": 1408.5, + "probability": 0.9087 + }, + { + "start": 1408.62, + "end": 1410.69, + "probability": 0.9493 + }, + { + "start": 1411.08, + "end": 1413.46, + "probability": 0.9238 + }, + { + "start": 1413.46, + "end": 1418.54, + "probability": 0.9087 + }, + { + "start": 1419.24, + "end": 1426.12, + "probability": 0.9746 + }, + { + "start": 1426.34, + "end": 1428.84, + "probability": 0.9932 + }, + { + "start": 1429.2, + "end": 1431.52, + "probability": 0.999 + }, + { + "start": 1432.1, + "end": 1435.0, + "probability": 0.9343 + }, + { + "start": 1435.6, + "end": 1443.36, + "probability": 0.9772 + }, + { + "start": 1443.36, + "end": 1452.3, + "probability": 0.9995 + }, + { + "start": 1452.38, + "end": 1456.24, + "probability": 0.9962 + }, + { + "start": 1457.98, + "end": 1458.2, + "probability": 0.6183 + }, + { + "start": 1458.2, + "end": 1458.66, + "probability": 0.6633 + }, + { + "start": 1458.78, + "end": 1459.24, + "probability": 0.5217 + }, + { + "start": 1459.52, + "end": 1461.17, + "probability": 0.9394 + }, + { + "start": 1461.98, + "end": 1463.04, + "probability": 0.9614 + }, + { + "start": 1463.16, + "end": 1464.12, + "probability": 0.6356 + }, + { + "start": 1464.24, + "end": 1467.6, + "probability": 0.9732 + }, + { + "start": 1467.74, + "end": 1470.5, + "probability": 0.9399 + }, + { + "start": 1471.46, + "end": 1472.28, + "probability": 0.7792 + }, + { + "start": 1473.0, + "end": 1477.06, + "probability": 0.8982 + }, + { + "start": 1477.14, + "end": 1479.0, + "probability": 0.9645 + }, + { + "start": 1479.3, + "end": 1481.86, + "probability": 0.9937 + }, + { + "start": 1482.2, + "end": 1483.64, + "probability": 0.953 + }, + { + "start": 1484.22, + "end": 1485.02, + "probability": 0.8706 + }, + { + "start": 1485.66, + "end": 1486.58, + "probability": 0.512 + }, + { + "start": 1486.64, + "end": 1488.1, + "probability": 0.8776 + }, + { + "start": 1488.58, + "end": 1489.98, + "probability": 0.9271 + }, + { + "start": 1490.04, + "end": 1490.86, + "probability": 0.9432 + }, + { + "start": 1491.3, + "end": 1494.92, + "probability": 0.9503 + }, + { + "start": 1495.48, + "end": 1497.74, + "probability": 0.7683 + }, + { + "start": 1498.3, + "end": 1499.6, + "probability": 0.8616 + }, + { + "start": 1500.52, + "end": 1502.32, + "probability": 0.9949 + }, + { + "start": 1503.5, + "end": 1506.46, + "probability": 0.596 + }, + { + "start": 1507.02, + "end": 1508.57, + "probability": 0.887 + }, + { + "start": 1508.72, + "end": 1509.88, + "probability": 0.9109 + }, + { + "start": 1510.58, + "end": 1511.12, + "probability": 0.9514 + }, + { + "start": 1511.76, + "end": 1516.46, + "probability": 0.6981 + }, + { + "start": 1517.0, + "end": 1520.4, + "probability": 0.9695 + }, + { + "start": 1520.88, + "end": 1526.02, + "probability": 0.9972 + }, + { + "start": 1526.62, + "end": 1530.24, + "probability": 0.9243 + }, + { + "start": 1530.74, + "end": 1533.76, + "probability": 0.9848 + }, + { + "start": 1534.5, + "end": 1534.64, + "probability": 0.6982 + }, + { + "start": 1535.12, + "end": 1541.28, + "probability": 0.9976 + }, + { + "start": 1541.62, + "end": 1545.08, + "probability": 0.9944 + }, + { + "start": 1545.42, + "end": 1547.26, + "probability": 0.8621 + }, + { + "start": 1548.18, + "end": 1552.04, + "probability": 0.9735 + }, + { + "start": 1552.68, + "end": 1553.34, + "probability": 0.8527 + }, + { + "start": 1554.72, + "end": 1558.54, + "probability": 0.8316 + }, + { + "start": 1559.16, + "end": 1562.32, + "probability": 0.719 + }, + { + "start": 1562.9, + "end": 1564.36, + "probability": 0.9846 + }, + { + "start": 1565.0, + "end": 1569.14, + "probability": 0.9873 + }, + { + "start": 1569.36, + "end": 1572.98, + "probability": 0.9905 + }, + { + "start": 1573.24, + "end": 1575.54, + "probability": 0.9962 + }, + { + "start": 1576.72, + "end": 1580.64, + "probability": 0.8322 + }, + { + "start": 1581.16, + "end": 1582.96, + "probability": 0.9867 + }, + { + "start": 1583.4, + "end": 1586.42, + "probability": 0.9834 + }, + { + "start": 1587.04, + "end": 1589.89, + "probability": 0.9979 + }, + { + "start": 1590.52, + "end": 1593.9, + "probability": 0.9902 + }, + { + "start": 1593.9, + "end": 1597.9, + "probability": 0.9995 + }, + { + "start": 1598.08, + "end": 1598.64, + "probability": 0.6463 + }, + { + "start": 1598.96, + "end": 1602.34, + "probability": 0.9933 + }, + { + "start": 1602.58, + "end": 1606.1, + "probability": 0.9983 + }, + { + "start": 1606.9, + "end": 1612.22, + "probability": 0.9968 + }, + { + "start": 1612.22, + "end": 1615.82, + "probability": 0.9977 + }, + { + "start": 1616.6, + "end": 1621.96, + "probability": 0.9993 + }, + { + "start": 1622.58, + "end": 1627.56, + "probability": 0.9971 + }, + { + "start": 1628.1, + "end": 1631.16, + "probability": 0.9778 + }, + { + "start": 1631.26, + "end": 1632.76, + "probability": 0.9677 + }, + { + "start": 1632.82, + "end": 1634.62, + "probability": 0.8987 + }, + { + "start": 1635.44, + "end": 1637.06, + "probability": 0.9619 + }, + { + "start": 1637.2, + "end": 1639.56, + "probability": 0.9866 + }, + { + "start": 1639.88, + "end": 1640.44, + "probability": 0.5873 + }, + { + "start": 1640.66, + "end": 1641.24, + "probability": 0.5469 + }, + { + "start": 1641.64, + "end": 1642.3, + "probability": 0.7641 + }, + { + "start": 1642.38, + "end": 1643.0, + "probability": 0.9136 + }, + { + "start": 1643.38, + "end": 1644.12, + "probability": 0.8901 + }, + { + "start": 1644.2, + "end": 1648.48, + "probability": 0.954 + }, + { + "start": 1648.86, + "end": 1654.72, + "probability": 0.9927 + }, + { + "start": 1655.02, + "end": 1655.7, + "probability": 0.4662 + }, + { + "start": 1656.38, + "end": 1661.52, + "probability": 0.9546 + }, + { + "start": 1661.6, + "end": 1664.3, + "probability": 0.9991 + }, + { + "start": 1664.9, + "end": 1672.78, + "probability": 0.9981 + }, + { + "start": 1672.78, + "end": 1679.96, + "probability": 0.9933 + }, + { + "start": 1680.6, + "end": 1684.58, + "probability": 0.9962 + }, + { + "start": 1684.58, + "end": 1689.32, + "probability": 0.9964 + }, + { + "start": 1689.76, + "end": 1691.76, + "probability": 0.9045 + }, + { + "start": 1692.56, + "end": 1693.84, + "probability": 0.7536 + }, + { + "start": 1694.24, + "end": 1699.96, + "probability": 0.9995 + }, + { + "start": 1700.06, + "end": 1700.3, + "probability": 0.9272 + }, + { + "start": 1700.82, + "end": 1703.05, + "probability": 0.9788 + }, + { + "start": 1703.92, + "end": 1707.34, + "probability": 0.8401 + }, + { + "start": 1707.46, + "end": 1711.74, + "probability": 0.9874 + }, + { + "start": 1712.2, + "end": 1712.98, + "probability": 0.5051 + }, + { + "start": 1713.46, + "end": 1720.12, + "probability": 0.9912 + }, + { + "start": 1720.16, + "end": 1722.06, + "probability": 0.344 + }, + { + "start": 1722.06, + "end": 1723.4, + "probability": 0.2492 + }, + { + "start": 1724.48, + "end": 1725.54, + "probability": 0.7711 + }, + { + "start": 1725.64, + "end": 1727.26, + "probability": 0.3151 + }, + { + "start": 1728.14, + "end": 1728.48, + "probability": 0.8017 + }, + { + "start": 1728.56, + "end": 1729.22, + "probability": 0.6708 + }, + { + "start": 1729.54, + "end": 1730.62, + "probability": 0.3626 + }, + { + "start": 1730.66, + "end": 1731.7, + "probability": 0.4308 + }, + { + "start": 1731.76, + "end": 1732.93, + "probability": 0.8989 + }, + { + "start": 1733.22, + "end": 1735.76, + "probability": 0.7381 + }, + { + "start": 1736.4, + "end": 1741.86, + "probability": 0.9841 + }, + { + "start": 1742.52, + "end": 1744.6, + "probability": 0.6384 + }, + { + "start": 1744.6, + "end": 1746.68, + "probability": 0.9396 + }, + { + "start": 1747.42, + "end": 1753.58, + "probability": 0.9859 + }, + { + "start": 1754.18, + "end": 1754.88, + "probability": 0.7419 + }, + { + "start": 1754.96, + "end": 1756.94, + "probability": 0.8753 + }, + { + "start": 1757.1, + "end": 1758.44, + "probability": 0.9153 + }, + { + "start": 1758.94, + "end": 1763.48, + "probability": 0.9853 + }, + { + "start": 1764.2, + "end": 1767.54, + "probability": 0.9976 + }, + { + "start": 1767.7, + "end": 1768.14, + "probability": 0.6649 + }, + { + "start": 1768.36, + "end": 1770.84, + "probability": 0.974 + }, + { + "start": 1771.4, + "end": 1772.32, + "probability": 0.9182 + }, + { + "start": 1773.92, + "end": 1780.24, + "probability": 0.9889 + }, + { + "start": 1780.72, + "end": 1786.08, + "probability": 0.9634 + }, + { + "start": 1786.22, + "end": 1788.15, + "probability": 0.9922 + }, + { + "start": 1789.32, + "end": 1795.08, + "probability": 0.9559 + }, + { + "start": 1795.6, + "end": 1796.12, + "probability": 0.4115 + }, + { + "start": 1796.3, + "end": 1797.18, + "probability": 0.8395 + }, + { + "start": 1797.62, + "end": 1801.94, + "probability": 0.9414 + }, + { + "start": 1803.46, + "end": 1804.6, + "probability": 0.8643 + }, + { + "start": 1804.98, + "end": 1805.44, + "probability": 0.984 + }, + { + "start": 1805.6, + "end": 1806.48, + "probability": 0.989 + }, + { + "start": 1806.78, + "end": 1811.54, + "probability": 0.9655 + }, + { + "start": 1811.98, + "end": 1813.32, + "probability": 0.7306 + }, + { + "start": 1813.88, + "end": 1814.68, + "probability": 0.6051 + }, + { + "start": 1815.14, + "end": 1820.86, + "probability": 0.8664 + }, + { + "start": 1821.7, + "end": 1825.8, + "probability": 0.986 + }, + { + "start": 1826.5, + "end": 1831.76, + "probability": 0.981 + }, + { + "start": 1832.4, + "end": 1836.36, + "probability": 0.9991 + }, + { + "start": 1836.82, + "end": 1839.1, + "probability": 0.9756 + }, + { + "start": 1839.38, + "end": 1840.02, + "probability": 0.8708 + }, + { + "start": 1840.4, + "end": 1844.01, + "probability": 0.9736 + }, + { + "start": 1845.04, + "end": 1848.38, + "probability": 0.6324 + }, + { + "start": 1848.86, + "end": 1850.06, + "probability": 0.6633 + }, + { + "start": 1850.6, + "end": 1852.62, + "probability": 0.9917 + }, + { + "start": 1853.26, + "end": 1856.7, + "probability": 0.9619 + }, + { + "start": 1857.42, + "end": 1860.18, + "probability": 0.6598 + }, + { + "start": 1860.8, + "end": 1863.56, + "probability": 0.6437 + }, + { + "start": 1864.34, + "end": 1866.76, + "probability": 0.7775 + }, + { + "start": 1866.94, + "end": 1869.64, + "probability": 0.9817 + }, + { + "start": 1869.9, + "end": 1874.72, + "probability": 0.9635 + }, + { + "start": 1875.42, + "end": 1878.18, + "probability": 0.9956 + }, + { + "start": 1878.74, + "end": 1879.66, + "probability": 0.8451 + }, + { + "start": 1879.78, + "end": 1880.54, + "probability": 0.661 + }, + { + "start": 1881.5, + "end": 1882.16, + "probability": 0.7783 + }, + { + "start": 1883.14, + "end": 1883.84, + "probability": 0.9372 + }, + { + "start": 1885.18, + "end": 1885.72, + "probability": 0.8272 + }, + { + "start": 1887.78, + "end": 1894.28, + "probability": 0.7197 + }, + { + "start": 1894.34, + "end": 1895.12, + "probability": 0.9154 + }, + { + "start": 1896.4, + "end": 1900.88, + "probability": 0.9524 + }, + { + "start": 1902.24, + "end": 1904.9, + "probability": 0.766 + }, + { + "start": 1906.22, + "end": 1907.02, + "probability": 0.426 + }, + { + "start": 1907.16, + "end": 1913.9, + "probability": 0.9385 + }, + { + "start": 1915.44, + "end": 1917.58, + "probability": 0.9905 + }, + { + "start": 1918.26, + "end": 1920.8, + "probability": 0.9938 + }, + { + "start": 1921.44, + "end": 1927.36, + "probability": 0.9911 + }, + { + "start": 1928.2, + "end": 1933.64, + "probability": 0.9307 + }, + { + "start": 1935.16, + "end": 1937.5, + "probability": 0.7003 + }, + { + "start": 1937.62, + "end": 1941.58, + "probability": 0.837 + }, + { + "start": 1942.38, + "end": 1943.06, + "probability": 0.8097 + }, + { + "start": 1943.24, + "end": 1945.96, + "probability": 0.9176 + }, + { + "start": 1947.24, + "end": 1951.72, + "probability": 0.9174 + }, + { + "start": 1952.76, + "end": 1953.22, + "probability": 0.6421 + }, + { + "start": 1953.3, + "end": 1953.9, + "probability": 0.9489 + }, + { + "start": 1953.9, + "end": 1956.69, + "probability": 0.8045 + }, + { + "start": 1956.72, + "end": 1959.34, + "probability": 0.7509 + }, + { + "start": 1959.46, + "end": 1968.14, + "probability": 0.8372 + }, + { + "start": 1968.86, + "end": 1971.18, + "probability": 0.8136 + }, + { + "start": 1972.26, + "end": 1977.36, + "probability": 0.9551 + }, + { + "start": 1977.98, + "end": 1981.14, + "probability": 0.9621 + }, + { + "start": 1981.78, + "end": 1984.97, + "probability": 0.8651 + }, + { + "start": 1986.38, + "end": 1988.22, + "probability": 0.672 + }, + { + "start": 1988.78, + "end": 1990.06, + "probability": 0.9689 + }, + { + "start": 1991.78, + "end": 1993.17, + "probability": 0.9386 + }, + { + "start": 1994.84, + "end": 1996.1, + "probability": 0.8647 + }, + { + "start": 1996.78, + "end": 1999.38, + "probability": 0.6246 + }, + { + "start": 1999.98, + "end": 2001.64, + "probability": 0.8784 + }, + { + "start": 2002.8, + "end": 2004.02, + "probability": 0.6939 + }, + { + "start": 2004.4, + "end": 2008.06, + "probability": 0.8086 + }, + { + "start": 2008.96, + "end": 2010.52, + "probability": 0.7944 + }, + { + "start": 2012.22, + "end": 2012.96, + "probability": 0.7642 + }, + { + "start": 2015.94, + "end": 2019.7, + "probability": 0.8066 + }, + { + "start": 2019.7, + "end": 2023.94, + "probability": 0.9329 + }, + { + "start": 2025.98, + "end": 2027.54, + "probability": 0.9775 + }, + { + "start": 2028.16, + "end": 2028.96, + "probability": 0.629 + }, + { + "start": 2029.68, + "end": 2034.0, + "probability": 0.9915 + }, + { + "start": 2037.22, + "end": 2037.96, + "probability": 0.7211 + }, + { + "start": 2038.96, + "end": 2039.04, + "probability": 0.6095 + }, + { + "start": 2039.64, + "end": 2042.52, + "probability": 0.4603 + }, + { + "start": 2042.74, + "end": 2045.6, + "probability": 0.551 + }, + { + "start": 2046.2, + "end": 2046.96, + "probability": 0.4669 + }, + { + "start": 2047.56, + "end": 2050.7, + "probability": 0.6772 + }, + { + "start": 2051.02, + "end": 2052.42, + "probability": 0.7513 + }, + { + "start": 2052.56, + "end": 2053.8, + "probability": 0.5838 + }, + { + "start": 2053.86, + "end": 2056.46, + "probability": 0.7743 + }, + { + "start": 2056.76, + "end": 2061.07, + "probability": 0.6374 + }, + { + "start": 2061.56, + "end": 2062.82, + "probability": 0.1514 + }, + { + "start": 2066.36, + "end": 2067.32, + "probability": 0.5003 + }, + { + "start": 2067.5, + "end": 2069.6, + "probability": 0.6633 + }, + { + "start": 2070.2, + "end": 2070.88, + "probability": 0.853 + }, + { + "start": 2070.96, + "end": 2071.56, + "probability": 0.5854 + }, + { + "start": 2071.74, + "end": 2072.08, + "probability": 0.8416 + }, + { + "start": 2072.1, + "end": 2076.92, + "probability": 0.9892 + }, + { + "start": 2076.92, + "end": 2082.42, + "probability": 0.8554 + }, + { + "start": 2082.88, + "end": 2082.88, + "probability": 0.541 + }, + { + "start": 2082.88, + "end": 2085.48, + "probability": 0.3016 + }, + { + "start": 2085.48, + "end": 2086.88, + "probability": 0.9617 + }, + { + "start": 2087.44, + "end": 2094.99, + "probability": 0.9682 + }, + { + "start": 2096.02, + "end": 2097.12, + "probability": 0.7171 + }, + { + "start": 2097.18, + "end": 2098.56, + "probability": 0.7654 + }, + { + "start": 2098.68, + "end": 2100.76, + "probability": 0.7044 + }, + { + "start": 2100.84, + "end": 2101.5, + "probability": 0.7714 + }, + { + "start": 2101.6, + "end": 2103.12, + "probability": 0.9056 + }, + { + "start": 2103.56, + "end": 2104.67, + "probability": 0.885 + }, + { + "start": 2105.16, + "end": 2106.46, + "probability": 0.598 + }, + { + "start": 2106.72, + "end": 2109.66, + "probability": 0.8944 + }, + { + "start": 2109.82, + "end": 2110.16, + "probability": 0.8496 + }, + { + "start": 2110.22, + "end": 2110.48, + "probability": 0.5627 + }, + { + "start": 2110.72, + "end": 2111.22, + "probability": 0.7053 + }, + { + "start": 2111.68, + "end": 2114.62, + "probability": 0.9885 + }, + { + "start": 2115.02, + "end": 2115.22, + "probability": 0.7577 + }, + { + "start": 2116.26, + "end": 2119.18, + "probability": 0.9722 + }, + { + "start": 2119.66, + "end": 2123.72, + "probability": 0.9893 + }, + { + "start": 2124.02, + "end": 2125.7, + "probability": 0.7183 + }, + { + "start": 2126.44, + "end": 2127.64, + "probability": 0.6183 + }, + { + "start": 2127.92, + "end": 2131.92, + "probability": 0.9861 + }, + { + "start": 2132.32, + "end": 2135.26, + "probability": 0.994 + }, + { + "start": 2135.82, + "end": 2139.09, + "probability": 0.9102 + }, + { + "start": 2139.3, + "end": 2141.06, + "probability": 0.9839 + }, + { + "start": 2141.62, + "end": 2144.08, + "probability": 0.9961 + }, + { + "start": 2144.42, + "end": 2146.49, + "probability": 0.9945 + }, + { + "start": 2146.9, + "end": 2150.4, + "probability": 0.7043 + }, + { + "start": 2150.7, + "end": 2151.9, + "probability": 0.731 + }, + { + "start": 2152.5, + "end": 2152.78, + "probability": 0.8228 + }, + { + "start": 2153.26, + "end": 2154.44, + "probability": 0.7509 + }, + { + "start": 2155.16, + "end": 2155.4, + "probability": 0.9597 + }, + { + "start": 2156.34, + "end": 2160.58, + "probability": 0.7734 + }, + { + "start": 2161.18, + "end": 2162.88, + "probability": 0.9414 + }, + { + "start": 2163.2, + "end": 2165.52, + "probability": 0.8834 + }, + { + "start": 2166.26, + "end": 2168.68, + "probability": 0.9672 + }, + { + "start": 2169.2, + "end": 2170.06, + "probability": 0.7249 + }, + { + "start": 2170.52, + "end": 2173.08, + "probability": 0.5953 + }, + { + "start": 2173.42, + "end": 2176.2, + "probability": 0.1202 + }, + { + "start": 2177.82, + "end": 2180.72, + "probability": 0.4482 + }, + { + "start": 2181.36, + "end": 2181.5, + "probability": 0.1122 + }, + { + "start": 2181.52, + "end": 2181.52, + "probability": 0.075 + }, + { + "start": 2181.52, + "end": 2183.36, + "probability": 0.1699 + }, + { + "start": 2183.68, + "end": 2185.34, + "probability": 0.8495 + }, + { + "start": 2185.74, + "end": 2187.3, + "probability": 0.3607 + }, + { + "start": 2189.28, + "end": 2191.24, + "probability": 0.1396 + }, + { + "start": 2192.54, + "end": 2195.77, + "probability": 0.1975 + }, + { + "start": 2197.84, + "end": 2199.82, + "probability": 0.7173 + }, + { + "start": 2199.84, + "end": 2200.62, + "probability": 0.3254 + }, + { + "start": 2201.42, + "end": 2209.68, + "probability": 0.7773 + }, + { + "start": 2210.46, + "end": 2212.38, + "probability": 0.7842 + }, + { + "start": 2212.56, + "end": 2213.7, + "probability": 0.578 + }, + { + "start": 2213.94, + "end": 2216.42, + "probability": 0.7343 + }, + { + "start": 2216.98, + "end": 2218.64, + "probability": 0.9297 + }, + { + "start": 2219.16, + "end": 2223.05, + "probability": 0.8292 + }, + { + "start": 2223.94, + "end": 2225.72, + "probability": 0.3641 + }, + { + "start": 2225.84, + "end": 2226.52, + "probability": 0.5539 + }, + { + "start": 2227.3, + "end": 2228.62, + "probability": 0.0839 + }, + { + "start": 2228.62, + "end": 2232.16, + "probability": 0.7674 + }, + { + "start": 2232.96, + "end": 2233.7, + "probability": 0.4954 + }, + { + "start": 2233.74, + "end": 2239.58, + "probability": 0.9758 + }, + { + "start": 2240.1, + "end": 2242.14, + "probability": 0.8368 + }, + { + "start": 2242.46, + "end": 2243.76, + "probability": 0.895 + }, + { + "start": 2244.7, + "end": 2246.16, + "probability": 0.7968 + }, + { + "start": 2248.6, + "end": 2249.48, + "probability": 0.7235 + }, + { + "start": 2250.76, + "end": 2251.84, + "probability": 0.9425 + }, + { + "start": 2252.42, + "end": 2253.68, + "probability": 0.9969 + }, + { + "start": 2254.2, + "end": 2255.48, + "probability": 0.9736 + }, + { + "start": 2255.92, + "end": 2256.96, + "probability": 0.9277 + }, + { + "start": 2257.42, + "end": 2257.5, + "probability": 0.0306 + }, + { + "start": 2257.5, + "end": 2258.76, + "probability": 0.3582 + }, + { + "start": 2259.42, + "end": 2260.58, + "probability": 0.715 + }, + { + "start": 2261.06, + "end": 2265.64, + "probability": 0.8234 + }, + { + "start": 2266.04, + "end": 2267.52, + "probability": 0.8877 + }, + { + "start": 2267.88, + "end": 2274.1, + "probability": 0.9694 + }, + { + "start": 2275.04, + "end": 2278.96, + "probability": 0.8843 + }, + { + "start": 2279.24, + "end": 2280.16, + "probability": 0.7291 + }, + { + "start": 2280.68, + "end": 2281.68, + "probability": 0.7498 + }, + { + "start": 2281.9, + "end": 2282.6, + "probability": 0.0896 + }, + { + "start": 2282.6, + "end": 2283.1, + "probability": 0.7565 + }, + { + "start": 2283.36, + "end": 2283.8, + "probability": 0.6387 + }, + { + "start": 2283.84, + "end": 2285.14, + "probability": 0.9419 + }, + { + "start": 2285.66, + "end": 2288.24, + "probability": 0.8265 + }, + { + "start": 2288.68, + "end": 2289.02, + "probability": 0.9679 + }, + { + "start": 2289.24, + "end": 2292.2, + "probability": 0.9655 + }, + { + "start": 2292.56, + "end": 2294.06, + "probability": 0.8457 + }, + { + "start": 2294.1, + "end": 2296.16, + "probability": 0.402 + }, + { + "start": 2296.76, + "end": 2302.0, + "probability": 0.9941 + }, + { + "start": 2302.08, + "end": 2302.92, + "probability": 0.9126 + }, + { + "start": 2304.7, + "end": 2307.04, + "probability": 0.9026 + }, + { + "start": 2307.82, + "end": 2309.42, + "probability": 0.9946 + }, + { + "start": 2310.66, + "end": 2311.98, + "probability": 0.9925 + }, + { + "start": 2315.86, + "end": 2316.7, + "probability": 0.0 + }, + { + "start": 2317.26, + "end": 2320.04, + "probability": 0.9143 + }, + { + "start": 2321.18, + "end": 2322.26, + "probability": 0.8555 + }, + { + "start": 2323.44, + "end": 2324.84, + "probability": 0.9937 + }, + { + "start": 2326.16, + "end": 2326.76, + "probability": 0.7319 + }, + { + "start": 2326.82, + "end": 2331.6, + "probability": 0.9591 + }, + { + "start": 2332.16, + "end": 2335.04, + "probability": 0.7827 + }, + { + "start": 2335.78, + "end": 2336.26, + "probability": 0.8313 + }, + { + "start": 2337.26, + "end": 2345.42, + "probability": 0.9896 + }, + { + "start": 2345.56, + "end": 2346.32, + "probability": 0.6089 + }, + { + "start": 2346.88, + "end": 2347.9, + "probability": 0.7307 + }, + { + "start": 2348.46, + "end": 2353.4, + "probability": 0.8069 + }, + { + "start": 2353.7, + "end": 2356.88, + "probability": 0.7144 + }, + { + "start": 2361.52, + "end": 2363.1, + "probability": 0.7507 + }, + { + "start": 2364.38, + "end": 2366.58, + "probability": 0.7743 + }, + { + "start": 2367.26, + "end": 2370.36, + "probability": 0.9271 + }, + { + "start": 2370.7, + "end": 2376.78, + "probability": 0.7367 + }, + { + "start": 2377.32, + "end": 2378.88, + "probability": 0.76 + }, + { + "start": 2379.58, + "end": 2384.58, + "probability": 0.9664 + }, + { + "start": 2384.58, + "end": 2388.6, + "probability": 0.8447 + }, + { + "start": 2389.12, + "end": 2389.28, + "probability": 0.3148 + }, + { + "start": 2389.36, + "end": 2390.82, + "probability": 0.7994 + }, + { + "start": 2391.32, + "end": 2398.08, + "probability": 0.8983 + }, + { + "start": 2398.36, + "end": 2400.26, + "probability": 0.977 + }, + { + "start": 2401.0, + "end": 2402.58, + "probability": 0.7061 + }, + { + "start": 2404.38, + "end": 2407.5, + "probability": 0.9788 + }, + { + "start": 2408.56, + "end": 2410.24, + "probability": 0.7686 + }, + { + "start": 2410.8, + "end": 2411.88, + "probability": 0.7412 + }, + { + "start": 2412.0, + "end": 2412.7, + "probability": 0.7567 + }, + { + "start": 2413.02, + "end": 2413.56, + "probability": 0.7295 + }, + { + "start": 2413.98, + "end": 2416.18, + "probability": 0.7456 + }, + { + "start": 2416.62, + "end": 2417.36, + "probability": 0.4974 + }, + { + "start": 2417.72, + "end": 2418.32, + "probability": 0.6854 + }, + { + "start": 2418.88, + "end": 2422.02, + "probability": 0.5955 + }, + { + "start": 2422.56, + "end": 2422.9, + "probability": 0.757 + }, + { + "start": 2424.88, + "end": 2427.52, + "probability": 0.4419 + }, + { + "start": 2429.68, + "end": 2430.08, + "probability": 0.3182 + }, + { + "start": 2430.34, + "end": 2435.78, + "probability": 0.8207 + }, + { + "start": 2436.62, + "end": 2438.9, + "probability": 0.8889 + }, + { + "start": 2439.24, + "end": 2443.38, + "probability": 0.9466 + }, + { + "start": 2443.82, + "end": 2446.53, + "probability": 0.8385 + }, + { + "start": 2447.06, + "end": 2447.48, + "probability": 0.8337 + }, + { + "start": 2447.84, + "end": 2451.22, + "probability": 0.7837 + }, + { + "start": 2451.52, + "end": 2451.62, + "probability": 0.5108 + }, + { + "start": 2451.68, + "end": 2453.72, + "probability": 0.8375 + }, + { + "start": 2455.94, + "end": 2459.9, + "probability": 0.7071 + }, + { + "start": 2460.28, + "end": 2461.5, + "probability": 0.7919 + }, + { + "start": 2462.98, + "end": 2463.46, + "probability": 0.7999 + }, + { + "start": 2464.06, + "end": 2464.82, + "probability": 0.9319 + }, + { + "start": 2465.42, + "end": 2467.96, + "probability": 0.7946 + }, + { + "start": 2468.38, + "end": 2471.7, + "probability": 0.9754 + }, + { + "start": 2471.7, + "end": 2474.5, + "probability": 0.9847 + }, + { + "start": 2475.16, + "end": 2479.86, + "probability": 0.8358 + }, + { + "start": 2481.62, + "end": 2483.68, + "probability": 0.4763 + }, + { + "start": 2484.24, + "end": 2484.88, + "probability": 0.6627 + }, + { + "start": 2484.94, + "end": 2485.68, + "probability": 0.4806 + }, + { + "start": 2486.0, + "end": 2488.24, + "probability": 0.9837 + }, + { + "start": 2489.15, + "end": 2489.62, + "probability": 0.1626 + }, + { + "start": 2489.62, + "end": 2490.34, + "probability": 0.7354 + }, + { + "start": 2490.46, + "end": 2490.58, + "probability": 0.5591 + }, + { + "start": 2490.94, + "end": 2491.16, + "probability": 0.0112 + }, + { + "start": 2491.16, + "end": 2492.2, + "probability": 0.6597 + }, + { + "start": 2492.56, + "end": 2493.86, + "probability": 0.6865 + }, + { + "start": 2494.6, + "end": 2496.08, + "probability": 0.9365 + }, + { + "start": 2496.4, + "end": 2498.62, + "probability": 0.8895 + }, + { + "start": 2499.7, + "end": 2499.9, + "probability": 0.8237 + }, + { + "start": 2501.24, + "end": 2502.84, + "probability": 0.7526 + }, + { + "start": 2504.26, + "end": 2505.06, + "probability": 0.3377 + }, + { + "start": 2505.16, + "end": 2505.72, + "probability": 0.7152 + }, + { + "start": 2506.02, + "end": 2507.6, + "probability": 0.804 + }, + { + "start": 2508.64, + "end": 2509.68, + "probability": 0.5671 + }, + { + "start": 2510.6, + "end": 2513.56, + "probability": 0.5238 + }, + { + "start": 2514.12, + "end": 2516.26, + "probability": 0.4786 + }, + { + "start": 2519.54, + "end": 2520.88, + "probability": 0.8601 + }, + { + "start": 2521.88, + "end": 2523.42, + "probability": 0.9529 + }, + { + "start": 2524.04, + "end": 2525.4, + "probability": 0.877 + }, + { + "start": 2526.58, + "end": 2528.12, + "probability": 0.8842 + }, + { + "start": 2529.16, + "end": 2530.32, + "probability": 0.9664 + }, + { + "start": 2531.86, + "end": 2540.17, + "probability": 0.8712 + }, + { + "start": 2542.42, + "end": 2546.7, + "probability": 0.9624 + }, + { + "start": 2546.8, + "end": 2550.68, + "probability": 0.6856 + }, + { + "start": 2551.62, + "end": 2553.24, + "probability": 0.867 + }, + { + "start": 2554.14, + "end": 2558.98, + "probability": 0.7617 + }, + { + "start": 2559.36, + "end": 2560.38, + "probability": 0.9841 + }, + { + "start": 2561.18, + "end": 2565.12, + "probability": 0.8372 + }, + { + "start": 2565.82, + "end": 2568.94, + "probability": 0.9455 + }, + { + "start": 2569.06, + "end": 2570.94, + "probability": 0.813 + }, + { + "start": 2571.06, + "end": 2571.55, + "probability": 0.8828 + }, + { + "start": 2572.76, + "end": 2576.32, + "probability": 0.5145 + }, + { + "start": 2576.32, + "end": 2577.74, + "probability": 0.9329 + }, + { + "start": 2578.32, + "end": 2581.2, + "probability": 0.9949 + }, + { + "start": 2581.9, + "end": 2584.66, + "probability": 0.9506 + }, + { + "start": 2585.2, + "end": 2588.8, + "probability": 0.8935 + }, + { + "start": 2589.6, + "end": 2595.82, + "probability": 0.9453 + }, + { + "start": 2595.92, + "end": 2596.42, + "probability": 0.7297 + }, + { + "start": 2598.16, + "end": 2601.3, + "probability": 0.8513 + }, + { + "start": 2602.8, + "end": 2606.38, + "probability": 0.476 + }, + { + "start": 2607.6, + "end": 2611.38, + "probability": 0.9448 + }, + { + "start": 2612.04, + "end": 2616.88, + "probability": 0.9635 + }, + { + "start": 2617.56, + "end": 2618.3, + "probability": 0.8645 + }, + { + "start": 2618.54, + "end": 2619.5, + "probability": 0.6649 + }, + { + "start": 2620.62, + "end": 2622.92, + "probability": 0.8965 + }, + { + "start": 2623.62, + "end": 2627.9, + "probability": 0.8672 + }, + { + "start": 2628.48, + "end": 2629.4, + "probability": 0.9814 + }, + { + "start": 2629.9, + "end": 2630.66, + "probability": 0.9681 + }, + { + "start": 2630.88, + "end": 2635.36, + "probability": 0.9896 + }, + { + "start": 2636.36, + "end": 2637.18, + "probability": 0.8502 + }, + { + "start": 2639.79, + "end": 2643.78, + "probability": 0.8535 + }, + { + "start": 2644.38, + "end": 2646.24, + "probability": 0.585 + }, + { + "start": 2646.24, + "end": 2647.62, + "probability": 0.743 + }, + { + "start": 2648.3, + "end": 2650.76, + "probability": 0.8038 + }, + { + "start": 2651.24, + "end": 2653.44, + "probability": 0.9858 + }, + { + "start": 2654.28, + "end": 2654.92, + "probability": 0.9671 + }, + { + "start": 2655.8, + "end": 2658.64, + "probability": 0.9612 + }, + { + "start": 2659.36, + "end": 2660.98, + "probability": 0.7797 + }, + { + "start": 2661.42, + "end": 2664.12, + "probability": 0.906 + }, + { + "start": 2665.26, + "end": 2668.52, + "probability": 0.8389 + }, + { + "start": 2668.86, + "end": 2669.92, + "probability": 0.8414 + }, + { + "start": 2670.08, + "end": 2674.66, + "probability": 0.8016 + }, + { + "start": 2675.08, + "end": 2675.34, + "probability": 0.2547 + }, + { + "start": 2675.76, + "end": 2676.55, + "probability": 0.7507 + }, + { + "start": 2677.75, + "end": 2678.74, + "probability": 0.2651 + }, + { + "start": 2679.9, + "end": 2683.94, + "probability": 0.482 + }, + { + "start": 2684.02, + "end": 2689.22, + "probability": 0.9774 + }, + { + "start": 2689.52, + "end": 2693.86, + "probability": 0.604 + }, + { + "start": 2712.34, + "end": 2713.08, + "probability": 0.5435 + }, + { + "start": 2715.04, + "end": 2718.84, + "probability": 0.8221 + }, + { + "start": 2720.34, + "end": 2721.84, + "probability": 0.6553 + }, + { + "start": 2724.56, + "end": 2724.64, + "probability": 0.4904 + }, + { + "start": 2726.1, + "end": 2728.68, + "probability": 0.3858 + }, + { + "start": 2731.14, + "end": 2732.26, + "probability": 0.5174 + }, + { + "start": 2733.68, + "end": 2735.5, + "probability": 0.9658 + }, + { + "start": 2737.14, + "end": 2739.17, + "probability": 0.757 + }, + { + "start": 2741.46, + "end": 2742.6, + "probability": 0.8557 + }, + { + "start": 2743.48, + "end": 2747.9, + "probability": 0.7426 + }, + { + "start": 2750.9, + "end": 2751.51, + "probability": 0.7689 + }, + { + "start": 2753.04, + "end": 2753.9, + "probability": 0.9805 + }, + { + "start": 2755.48, + "end": 2756.14, + "probability": 0.6614 + }, + { + "start": 2756.86, + "end": 2757.76, + "probability": 0.9956 + }, + { + "start": 2758.86, + "end": 2759.72, + "probability": 0.8216 + }, + { + "start": 2762.56, + "end": 2763.64, + "probability": 0.9954 + }, + { + "start": 2766.18, + "end": 2768.3, + "probability": 0.9749 + }, + { + "start": 2769.54, + "end": 2771.42, + "probability": 0.3858 + }, + { + "start": 2771.96, + "end": 2772.8, + "probability": 0.8849 + }, + { + "start": 2773.7, + "end": 2774.4, + "probability": 0.9858 + }, + { + "start": 2776.94, + "end": 2777.84, + "probability": 0.8711 + }, + { + "start": 2779.18, + "end": 2780.26, + "probability": 0.9893 + }, + { + "start": 2780.96, + "end": 2782.4, + "probability": 0.7778 + }, + { + "start": 2784.18, + "end": 2786.08, + "probability": 0.5905 + }, + { + "start": 2786.62, + "end": 2786.72, + "probability": 0.7436 + }, + { + "start": 2787.3, + "end": 2787.96, + "probability": 0.4431 + }, + { + "start": 2789.4, + "end": 2790.55, + "probability": 0.4134 + }, + { + "start": 2790.86, + "end": 2791.68, + "probability": 0.7485 + }, + { + "start": 2791.76, + "end": 2792.58, + "probability": 0.7811 + }, + { + "start": 2792.76, + "end": 2793.8, + "probability": 0.8349 + }, + { + "start": 2794.62, + "end": 2798.54, + "probability": 0.9074 + }, + { + "start": 2799.32, + "end": 2800.72, + "probability": 0.9563 + }, + { + "start": 2801.6, + "end": 2805.24, + "probability": 0.9926 + }, + { + "start": 2805.84, + "end": 2807.0, + "probability": 0.5093 + }, + { + "start": 2808.76, + "end": 2809.74, + "probability": 0.558 + }, + { + "start": 2810.76, + "end": 2811.7, + "probability": 0.9477 + }, + { + "start": 2813.18, + "end": 2818.52, + "probability": 0.7794 + }, + { + "start": 2820.22, + "end": 2825.32, + "probability": 0.9653 + }, + { + "start": 2828.0, + "end": 2830.4, + "probability": 0.889 + }, + { + "start": 2832.32, + "end": 2833.26, + "probability": 0.9849 + }, + { + "start": 2834.54, + "end": 2835.58, + "probability": 0.9832 + }, + { + "start": 2836.44, + "end": 2839.54, + "probability": 0.9765 + }, + { + "start": 2840.12, + "end": 2842.48, + "probability": 0.9504 + }, + { + "start": 2843.46, + "end": 2845.8, + "probability": 0.6726 + }, + { + "start": 2847.02, + "end": 2849.3, + "probability": 0.8497 + }, + { + "start": 2852.38, + "end": 2852.78, + "probability": 0.6688 + }, + { + "start": 2854.06, + "end": 2856.56, + "probability": 0.807 + }, + { + "start": 2857.22, + "end": 2857.64, + "probability": 0.2465 + }, + { + "start": 2857.74, + "end": 2859.74, + "probability": 0.9124 + }, + { + "start": 2860.96, + "end": 2864.42, + "probability": 0.9706 + }, + { + "start": 2865.12, + "end": 2866.44, + "probability": 0.9443 + }, + { + "start": 2867.04, + "end": 2867.52, + "probability": 0.5227 + }, + { + "start": 2868.48, + "end": 2869.8, + "probability": 0.7489 + }, + { + "start": 2869.9, + "end": 2870.94, + "probability": 0.9873 + }, + { + "start": 2871.82, + "end": 2872.94, + "probability": 0.8655 + }, + { + "start": 2873.28, + "end": 2875.02, + "probability": 0.7093 + }, + { + "start": 2875.28, + "end": 2876.16, + "probability": 0.9701 + }, + { + "start": 2877.52, + "end": 2879.16, + "probability": 0.7507 + }, + { + "start": 2879.94, + "end": 2881.3, + "probability": 0.8891 + }, + { + "start": 2882.18, + "end": 2882.58, + "probability": 0.6019 + }, + { + "start": 2884.16, + "end": 2885.27, + "probability": 0.5686 + }, + { + "start": 2885.48, + "end": 2888.04, + "probability": 0.6935 + }, + { + "start": 2888.22, + "end": 2888.7, + "probability": 0.7792 + }, + { + "start": 2890.08, + "end": 2893.7, + "probability": 0.8816 + }, + { + "start": 2894.26, + "end": 2895.72, + "probability": 0.8622 + }, + { + "start": 2896.3, + "end": 2898.87, + "probability": 0.3883 + }, + { + "start": 2899.68, + "end": 2900.8, + "probability": 0.5273 + }, + { + "start": 2901.5, + "end": 2902.3, + "probability": 0.9312 + }, + { + "start": 2903.0, + "end": 2905.84, + "probability": 0.8828 + }, + { + "start": 2905.88, + "end": 2906.86, + "probability": 0.8152 + }, + { + "start": 2907.72, + "end": 2909.48, + "probability": 0.9858 + }, + { + "start": 2910.18, + "end": 2910.98, + "probability": 0.957 + }, + { + "start": 2911.98, + "end": 2913.11, + "probability": 0.0282 + }, + { + "start": 2913.26, + "end": 2916.44, + "probability": 0.8599 + }, + { + "start": 2917.26, + "end": 2920.52, + "probability": 0.8975 + }, + { + "start": 2921.58, + "end": 2922.96, + "probability": 0.8945 + }, + { + "start": 2924.0, + "end": 2924.96, + "probability": 0.4569 + }, + { + "start": 2925.9, + "end": 2927.68, + "probability": 0.8543 + }, + { + "start": 2928.68, + "end": 2929.49, + "probability": 0.7511 + }, + { + "start": 2930.4, + "end": 2931.32, + "probability": 0.7455 + }, + { + "start": 2932.82, + "end": 2933.48, + "probability": 0.9369 + }, + { + "start": 2934.04, + "end": 2935.92, + "probability": 0.7166 + }, + { + "start": 2937.02, + "end": 2938.08, + "probability": 0.9054 + }, + { + "start": 2938.94, + "end": 2941.18, + "probability": 0.9878 + }, + { + "start": 2942.2, + "end": 2944.56, + "probability": 0.7604 + }, + { + "start": 2945.68, + "end": 2946.36, + "probability": 0.8967 + }, + { + "start": 2947.26, + "end": 2947.84, + "probability": 0.5315 + }, + { + "start": 2948.6, + "end": 2949.7, + "probability": 0.808 + }, + { + "start": 2950.54, + "end": 2953.68, + "probability": 0.7687 + }, + { + "start": 2954.34, + "end": 2957.6, + "probability": 0.8875 + }, + { + "start": 2957.74, + "end": 2958.2, + "probability": 0.4394 + }, + { + "start": 2959.16, + "end": 2960.84, + "probability": 0.6584 + }, + { + "start": 2961.34, + "end": 2963.96, + "probability": 0.8523 + }, + { + "start": 2964.6, + "end": 2965.96, + "probability": 0.8127 + }, + { + "start": 2966.06, + "end": 2966.42, + "probability": 0.6293 + }, + { + "start": 2966.54, + "end": 2969.72, + "probability": 0.6771 + }, + { + "start": 2970.18, + "end": 2971.84, + "probability": 0.8188 + }, + { + "start": 2972.72, + "end": 2974.82, + "probability": 0.3987 + }, + { + "start": 2975.03, + "end": 2977.58, + "probability": 0.8854 + }, + { + "start": 2977.72, + "end": 2978.62, + "probability": 0.932 + }, + { + "start": 2979.46, + "end": 2982.7, + "probability": 0.6424 + }, + { + "start": 2983.14, + "end": 2983.42, + "probability": 0.8517 + }, + { + "start": 2983.44, + "end": 2983.94, + "probability": 0.519 + }, + { + "start": 2985.34, + "end": 2988.2, + "probability": 0.5937 + }, + { + "start": 2988.34, + "end": 2988.9, + "probability": 0.5275 + }, + { + "start": 2989.0, + "end": 2989.12, + "probability": 0.5416 + }, + { + "start": 2989.94, + "end": 2993.52, + "probability": 0.9443 + }, + { + "start": 2995.0, + "end": 2997.16, + "probability": 0.6749 + }, + { + "start": 2997.28, + "end": 2997.82, + "probability": 0.8425 + }, + { + "start": 2998.34, + "end": 2999.02, + "probability": 0.7411 + }, + { + "start": 2999.74, + "end": 3002.46, + "probability": 0.8015 + }, + { + "start": 3002.98, + "end": 3006.9, + "probability": 0.6376 + }, + { + "start": 3007.94, + "end": 3009.5, + "probability": 0.5811 + }, + { + "start": 3009.72, + "end": 3010.3, + "probability": 0.7434 + }, + { + "start": 3011.68, + "end": 3013.1, + "probability": 0.7568 + }, + { + "start": 3013.62, + "end": 3015.54, + "probability": 0.6384 + }, + { + "start": 3018.9, + "end": 3019.86, + "probability": 0.8134 + }, + { + "start": 3019.96, + "end": 3021.58, + "probability": 0.9409 + }, + { + "start": 3021.76, + "end": 3022.84, + "probability": 0.9709 + }, + { + "start": 3023.34, + "end": 3026.86, + "probability": 0.837 + }, + { + "start": 3027.7, + "end": 3028.29, + "probability": 0.9657 + }, + { + "start": 3029.22, + "end": 3030.58, + "probability": 0.9917 + }, + { + "start": 3031.62, + "end": 3032.84, + "probability": 0.7249 + }, + { + "start": 3033.0, + "end": 3036.04, + "probability": 0.8912 + }, + { + "start": 3037.48, + "end": 3038.08, + "probability": 0.8854 + }, + { + "start": 3038.6, + "end": 3038.92, + "probability": 0.8632 + }, + { + "start": 3039.58, + "end": 3040.36, + "probability": 0.6657 + }, + { + "start": 3041.12, + "end": 3043.38, + "probability": 0.9242 + }, + { + "start": 3043.84, + "end": 3047.28, + "probability": 0.8354 + }, + { + "start": 3047.44, + "end": 3047.7, + "probability": 0.685 + }, + { + "start": 3048.26, + "end": 3049.56, + "probability": 0.8282 + }, + { + "start": 3050.48, + "end": 3052.14, + "probability": 0.981 + }, + { + "start": 3053.44, + "end": 3054.14, + "probability": 0.8126 + }, + { + "start": 3054.64, + "end": 3062.36, + "probability": 0.8222 + }, + { + "start": 3063.16, + "end": 3064.1, + "probability": 0.9408 + }, + { + "start": 3065.04, + "end": 3066.37, + "probability": 0.9578 + }, + { + "start": 3067.56, + "end": 3069.44, + "probability": 0.997 + }, + { + "start": 3070.26, + "end": 3071.6, + "probability": 0.9822 + }, + { + "start": 3072.06, + "end": 3076.04, + "probability": 0.978 + }, + { + "start": 3076.36, + "end": 3077.22, + "probability": 0.9873 + }, + { + "start": 3077.94, + "end": 3078.7, + "probability": 0.9878 + }, + { + "start": 3079.52, + "end": 3081.32, + "probability": 0.9722 + }, + { + "start": 3081.8, + "end": 3082.78, + "probability": 0.99 + }, + { + "start": 3083.42, + "end": 3086.36, + "probability": 0.928 + }, + { + "start": 3087.6, + "end": 3089.2, + "probability": 0.936 + }, + { + "start": 3090.04, + "end": 3092.1, + "probability": 0.9869 + }, + { + "start": 3092.78, + "end": 3094.28, + "probability": 0.879 + }, + { + "start": 3094.72, + "end": 3095.56, + "probability": 0.8653 + }, + { + "start": 3095.9, + "end": 3097.36, + "probability": 0.9453 + }, + { + "start": 3097.84, + "end": 3098.54, + "probability": 0.5547 + }, + { + "start": 3098.64, + "end": 3099.24, + "probability": 0.6806 + }, + { + "start": 3099.74, + "end": 3100.98, + "probability": 0.9894 + }, + { + "start": 3101.42, + "end": 3102.01, + "probability": 0.905 + }, + { + "start": 3103.34, + "end": 3104.16, + "probability": 0.9267 + }, + { + "start": 3104.9, + "end": 3106.44, + "probability": 0.861 + }, + { + "start": 3107.48, + "end": 3108.96, + "probability": 0.549 + }, + { + "start": 3110.86, + "end": 3113.16, + "probability": 0.7537 + }, + { + "start": 3113.36, + "end": 3113.54, + "probability": 0.9868 + }, + { + "start": 3114.42, + "end": 3116.08, + "probability": 0.9922 + }, + { + "start": 3116.92, + "end": 3117.94, + "probability": 0.9663 + }, + { + "start": 3118.66, + "end": 3119.3, + "probability": 0.6716 + }, + { + "start": 3121.04, + "end": 3123.16, + "probability": 0.9336 + }, + { + "start": 3123.22, + "end": 3125.28, + "probability": 0.9246 + }, + { + "start": 3125.7, + "end": 3131.84, + "probability": 0.7051 + }, + { + "start": 3133.86, + "end": 3137.26, + "probability": 0.9155 + }, + { + "start": 3138.42, + "end": 3139.16, + "probability": 0.3974 + }, + { + "start": 3139.82, + "end": 3141.6, + "probability": 0.9666 + }, + { + "start": 3142.4, + "end": 3145.74, + "probability": 0.7821 + }, + { + "start": 3145.84, + "end": 3146.96, + "probability": 0.7851 + }, + { + "start": 3147.42, + "end": 3149.76, + "probability": 0.8027 + }, + { + "start": 3150.48, + "end": 3151.9, + "probability": 0.6653 + }, + { + "start": 3152.62, + "end": 3155.0, + "probability": 0.7191 + }, + { + "start": 3155.7, + "end": 3156.42, + "probability": 0.8048 + }, + { + "start": 3157.6, + "end": 3161.9, + "probability": 0.4901 + }, + { + "start": 3162.2, + "end": 3163.4, + "probability": 0.7799 + }, + { + "start": 3163.94, + "end": 3164.56, + "probability": 0.8275 + }, + { + "start": 3165.26, + "end": 3166.82, + "probability": 0.7695 + }, + { + "start": 3166.92, + "end": 3167.66, + "probability": 0.9922 + }, + { + "start": 3168.94, + "end": 3169.6, + "probability": 0.8525 + }, + { + "start": 3170.32, + "end": 3170.82, + "probability": 0.6681 + }, + { + "start": 3171.4, + "end": 3173.02, + "probability": 0.884 + }, + { + "start": 3174.06, + "end": 3175.54, + "probability": 0.9024 + }, + { + "start": 3176.46, + "end": 3179.2, + "probability": 0.9757 + }, + { + "start": 3180.06, + "end": 3181.86, + "probability": 0.9363 + }, + { + "start": 3183.24, + "end": 3184.8, + "probability": 0.8104 + }, + { + "start": 3185.76, + "end": 3186.56, + "probability": 0.8354 + }, + { + "start": 3187.9, + "end": 3188.74, + "probability": 0.9769 + }, + { + "start": 3189.56, + "end": 3191.2, + "probability": 0.9667 + }, + { + "start": 3191.78, + "end": 3193.44, + "probability": 0.9228 + }, + { + "start": 3194.22, + "end": 3195.92, + "probability": 0.9375 + }, + { + "start": 3197.34, + "end": 3198.02, + "probability": 0.6114 + }, + { + "start": 3198.98, + "end": 3200.6, + "probability": 0.9728 + }, + { + "start": 3200.86, + "end": 3201.48, + "probability": 0.9795 + }, + { + "start": 3202.14, + "end": 3203.04, + "probability": 0.7566 + }, + { + "start": 3203.58, + "end": 3204.48, + "probability": 0.5401 + }, + { + "start": 3204.74, + "end": 3206.1, + "probability": 0.8672 + }, + { + "start": 3206.86, + "end": 3208.36, + "probability": 0.9734 + }, + { + "start": 3208.9, + "end": 3216.32, + "probability": 0.966 + }, + { + "start": 3219.26, + "end": 3219.8, + "probability": 0.9496 + }, + { + "start": 3220.94, + "end": 3225.89, + "probability": 0.7994 + }, + { + "start": 3228.28, + "end": 3230.37, + "probability": 0.0857 + }, + { + "start": 3231.5, + "end": 3232.32, + "probability": 0.2652 + }, + { + "start": 3232.32, + "end": 3235.27, + "probability": 0.1963 + }, + { + "start": 3236.74, + "end": 3241.32, + "probability": 0.6004 + }, + { + "start": 3241.32, + "end": 3245.12, + "probability": 0.6204 + }, + { + "start": 3245.52, + "end": 3246.2, + "probability": 0.7236 + }, + { + "start": 3246.54, + "end": 3247.6, + "probability": 0.1612 + }, + { + "start": 3248.24, + "end": 3249.04, + "probability": 0.4138 + }, + { + "start": 3249.52, + "end": 3252.9, + "probability": 0.7519 + }, + { + "start": 3252.9, + "end": 3255.4, + "probability": 0.6425 + }, + { + "start": 3256.74, + "end": 3259.76, + "probability": 0.9391 + }, + { + "start": 3260.5, + "end": 3263.16, + "probability": 0.6829 + }, + { + "start": 3263.7, + "end": 3267.92, + "probability": 0.7027 + }, + { + "start": 3268.26, + "end": 3268.94, + "probability": 0.781 + }, + { + "start": 3269.48, + "end": 3271.98, + "probability": 0.9712 + }, + { + "start": 3273.78, + "end": 3276.92, + "probability": 0.7672 + }, + { + "start": 3277.76, + "end": 3280.42, + "probability": 0.8455 + }, + { + "start": 3282.0, + "end": 3282.44, + "probability": 0.7439 + }, + { + "start": 3283.02, + "end": 3283.74, + "probability": 0.9841 + }, + { + "start": 3285.81, + "end": 3288.79, + "probability": 0.7213 + }, + { + "start": 3289.44, + "end": 3290.27, + "probability": 0.8727 + }, + { + "start": 3290.86, + "end": 3291.28, + "probability": 0.7348 + }, + { + "start": 3291.42, + "end": 3291.96, + "probability": 0.7284 + }, + { + "start": 3292.42, + "end": 3293.56, + "probability": 0.5021 + }, + { + "start": 3293.6, + "end": 3295.08, + "probability": 0.3738 + }, + { + "start": 3295.3, + "end": 3299.3, + "probability": 0.8696 + }, + { + "start": 3299.62, + "end": 3300.68, + "probability": 0.8917 + }, + { + "start": 3301.46, + "end": 3303.9, + "probability": 0.8217 + }, + { + "start": 3304.3, + "end": 3305.52, + "probability": 0.7845 + }, + { + "start": 3305.74, + "end": 3306.12, + "probability": 0.418 + }, + { + "start": 3306.9, + "end": 3309.3, + "probability": 0.6294 + }, + { + "start": 3314.92, + "end": 3316.26, + "probability": 0.7151 + }, + { + "start": 3316.98, + "end": 3316.98, + "probability": 0.5989 + }, + { + "start": 3317.06, + "end": 3318.02, + "probability": 0.6778 + }, + { + "start": 3318.28, + "end": 3321.48, + "probability": 0.8674 + }, + { + "start": 3321.52, + "end": 3329.12, + "probability": 0.9366 + }, + { + "start": 3329.96, + "end": 3330.83, + "probability": 0.9705 + }, + { + "start": 3331.48, + "end": 3334.04, + "probability": 0.9727 + }, + { + "start": 3334.98, + "end": 3336.28, + "probability": 0.9983 + }, + { + "start": 3337.94, + "end": 3339.9, + "probability": 0.9236 + }, + { + "start": 3339.92, + "end": 3344.4, + "probability": 0.9616 + }, + { + "start": 3345.04, + "end": 3346.24, + "probability": 0.891 + }, + { + "start": 3347.46, + "end": 3353.0, + "probability": 0.9906 + }, + { + "start": 3353.12, + "end": 3353.78, + "probability": 0.8677 + }, + { + "start": 3354.1, + "end": 3358.04, + "probability": 0.8749 + }, + { + "start": 3358.12, + "end": 3359.58, + "probability": 0.9756 + }, + { + "start": 3359.82, + "end": 3360.99, + "probability": 0.9356 + }, + { + "start": 3361.26, + "end": 3362.46, + "probability": 0.6801 + }, + { + "start": 3362.98, + "end": 3363.78, + "probability": 0.9608 + }, + { + "start": 3364.18, + "end": 3366.02, + "probability": 0.9067 + }, + { + "start": 3366.08, + "end": 3367.22, + "probability": 0.9728 + }, + { + "start": 3367.28, + "end": 3367.82, + "probability": 0.7707 + }, + { + "start": 3368.82, + "end": 3373.86, + "probability": 0.9258 + }, + { + "start": 3374.04, + "end": 3375.66, + "probability": 0.8812 + }, + { + "start": 3376.56, + "end": 3378.78, + "probability": 0.8256 + }, + { + "start": 3379.58, + "end": 3381.08, + "probability": 0.7867 + }, + { + "start": 3381.14, + "end": 3382.1, + "probability": 0.981 + }, + { + "start": 3382.4, + "end": 3385.94, + "probability": 0.9558 + }, + { + "start": 3386.06, + "end": 3388.58, + "probability": 0.9353 + }, + { + "start": 3389.18, + "end": 3391.9, + "probability": 0.972 + }, + { + "start": 3392.42, + "end": 3393.84, + "probability": 0.7453 + }, + { + "start": 3394.4, + "end": 3397.62, + "probability": 0.9868 + }, + { + "start": 3397.74, + "end": 3399.3, + "probability": 0.9242 + }, + { + "start": 3400.02, + "end": 3400.44, + "probability": 0.7585 + }, + { + "start": 3401.52, + "end": 3404.67, + "probability": 0.9103 + }, + { + "start": 3405.28, + "end": 3409.06, + "probability": 0.9956 + }, + { + "start": 3409.16, + "end": 3410.54, + "probability": 0.7209 + }, + { + "start": 3410.82, + "end": 3415.18, + "probability": 0.9618 + }, + { + "start": 3416.12, + "end": 3417.64, + "probability": 0.814 + }, + { + "start": 3418.22, + "end": 3420.78, + "probability": 0.8852 + }, + { + "start": 3421.88, + "end": 3422.8, + "probability": 0.8408 + }, + { + "start": 3423.36, + "end": 3428.2, + "probability": 0.9731 + }, + { + "start": 3428.76, + "end": 3430.44, + "probability": 0.9718 + }, + { + "start": 3431.6, + "end": 3434.32, + "probability": 0.9717 + }, + { + "start": 3435.36, + "end": 3435.52, + "probability": 0.5883 + }, + { + "start": 3436.0, + "end": 3439.3, + "probability": 0.9016 + }, + { + "start": 3440.26, + "end": 3442.82, + "probability": 0.9897 + }, + { + "start": 3443.44, + "end": 3446.8, + "probability": 0.8607 + }, + { + "start": 3447.46, + "end": 3450.2, + "probability": 0.9889 + }, + { + "start": 3452.12, + "end": 3453.48, + "probability": 0.9917 + }, + { + "start": 3454.98, + "end": 3455.94, + "probability": 0.6699 + }, + { + "start": 3456.48, + "end": 3457.76, + "probability": 0.8882 + }, + { + "start": 3457.98, + "end": 3458.66, + "probability": 0.9146 + }, + { + "start": 3458.86, + "end": 3459.86, + "probability": 0.9048 + }, + { + "start": 3460.32, + "end": 3460.88, + "probability": 0.9873 + }, + { + "start": 3461.0, + "end": 3462.15, + "probability": 0.9791 + }, + { + "start": 3463.04, + "end": 3464.88, + "probability": 0.9858 + }, + { + "start": 3465.3, + "end": 3466.4, + "probability": 0.9602 + }, + { + "start": 3467.04, + "end": 3472.86, + "probability": 0.9941 + }, + { + "start": 3473.92, + "end": 3476.52, + "probability": 0.999 + }, + { + "start": 3476.84, + "end": 3480.96, + "probability": 0.9761 + }, + { + "start": 3480.96, + "end": 3484.73, + "probability": 0.9971 + }, + { + "start": 3485.48, + "end": 3486.28, + "probability": 0.9917 + }, + { + "start": 3487.16, + "end": 3487.9, + "probability": 0.9541 + }, + { + "start": 3489.1, + "end": 3492.84, + "probability": 0.9541 + }, + { + "start": 3493.0, + "end": 3495.94, + "probability": 0.9875 + }, + { + "start": 3496.16, + "end": 3496.54, + "probability": 0.7593 + }, + { + "start": 3497.04, + "end": 3498.74, + "probability": 0.9155 + }, + { + "start": 3498.78, + "end": 3502.72, + "probability": 0.9795 + }, + { + "start": 3502.94, + "end": 3504.4, + "probability": 0.9678 + }, + { + "start": 3504.58, + "end": 3506.8, + "probability": 0.9976 + }, + { + "start": 3507.6, + "end": 3509.36, + "probability": 0.8858 + }, + { + "start": 3510.0, + "end": 3510.8, + "probability": 0.4931 + }, + { + "start": 3512.64, + "end": 3514.58, + "probability": 0.9666 + }, + { + "start": 3515.48, + "end": 3516.96, + "probability": 0.9438 + }, + { + "start": 3517.86, + "end": 3518.06, + "probability": 0.9452 + }, + { + "start": 3518.22, + "end": 3520.18, + "probability": 0.9742 + }, + { + "start": 3520.38, + "end": 3522.44, + "probability": 0.97 + }, + { + "start": 3523.38, + "end": 3525.08, + "probability": 0.9907 + }, + { + "start": 3525.4, + "end": 3526.44, + "probability": 0.9902 + }, + { + "start": 3526.56, + "end": 3528.24, + "probability": 0.9921 + }, + { + "start": 3528.52, + "end": 3529.1, + "probability": 0.9356 + }, + { + "start": 3529.16, + "end": 3531.6, + "probability": 0.8846 + }, + { + "start": 3531.6, + "end": 3532.38, + "probability": 0.9165 + }, + { + "start": 3533.4, + "end": 3535.19, + "probability": 0.8971 + }, + { + "start": 3536.48, + "end": 3537.42, + "probability": 0.9875 + }, + { + "start": 3537.76, + "end": 3539.02, + "probability": 0.9883 + }, + { + "start": 3539.36, + "end": 3545.34, + "probability": 0.9081 + }, + { + "start": 3546.34, + "end": 3548.6, + "probability": 0.9727 + }, + { + "start": 3549.0, + "end": 3550.08, + "probability": 0.9091 + }, + { + "start": 3550.5, + "end": 3552.57, + "probability": 0.8157 + }, + { + "start": 3555.57, + "end": 3560.16, + "probability": 0.7265 + }, + { + "start": 3560.26, + "end": 3561.43, + "probability": 0.9639 + }, + { + "start": 3561.92, + "end": 3562.52, + "probability": 0.2588 + }, + { + "start": 3562.68, + "end": 3563.72, + "probability": 0.7324 + }, + { + "start": 3564.02, + "end": 3564.78, + "probability": 0.7363 + }, + { + "start": 3565.12, + "end": 3565.86, + "probability": 0.5264 + }, + { + "start": 3565.98, + "end": 3566.38, + "probability": 0.8661 + }, + { + "start": 3566.44, + "end": 3567.47, + "probability": 0.936 + }, + { + "start": 3567.86, + "end": 3570.39, + "probability": 0.9887 + }, + { + "start": 3571.16, + "end": 3571.42, + "probability": 0.9095 + }, + { + "start": 3573.52, + "end": 3574.42, + "probability": 0.6969 + }, + { + "start": 3574.84, + "end": 3575.76, + "probability": 0.9279 + }, + { + "start": 3576.62, + "end": 3578.9, + "probability": 0.998 + }, + { + "start": 3579.42, + "end": 3581.03, + "probability": 0.9976 + }, + { + "start": 3581.3, + "end": 3582.86, + "probability": 0.9967 + }, + { + "start": 3583.3, + "end": 3585.42, + "probability": 0.9979 + }, + { + "start": 3586.34, + "end": 3587.04, + "probability": 0.9595 + }, + { + "start": 3587.68, + "end": 3592.26, + "probability": 0.9948 + }, + { + "start": 3593.04, + "end": 3595.09, + "probability": 0.735 + }, + { + "start": 3595.3, + "end": 3596.1, + "probability": 0.7631 + }, + { + "start": 3596.78, + "end": 3598.58, + "probability": 0.95 + }, + { + "start": 3611.16, + "end": 3611.38, + "probability": 0.5708 + }, + { + "start": 3611.38, + "end": 3613.34, + "probability": 0.6365 + }, + { + "start": 3614.42, + "end": 3616.32, + "probability": 0.8563 + }, + { + "start": 3616.34, + "end": 3617.26, + "probability": 0.9743 + }, + { + "start": 3620.6, + "end": 3622.6, + "probability": 0.335 + }, + { + "start": 3622.6, + "end": 3623.89, + "probability": 0.7912 + }, + { + "start": 3624.7, + "end": 3626.28, + "probability": 0.5543 + }, + { + "start": 3628.62, + "end": 3631.9, + "probability": 0.4735 + }, + { + "start": 3632.84, + "end": 3635.3, + "probability": 0.9735 + }, + { + "start": 3636.3, + "end": 3640.18, + "probability": 0.7932 + }, + { + "start": 3641.52, + "end": 3643.46, + "probability": 0.9941 + }, + { + "start": 3645.2, + "end": 3647.62, + "probability": 0.9751 + }, + { + "start": 3649.3, + "end": 3650.58, + "probability": 0.7633 + }, + { + "start": 3651.64, + "end": 3654.76, + "probability": 0.967 + }, + { + "start": 3655.6, + "end": 3656.84, + "probability": 0.8484 + }, + { + "start": 3657.44, + "end": 3661.48, + "probability": 0.7928 + }, + { + "start": 3662.3, + "end": 3662.94, + "probability": 0.9688 + }, + { + "start": 3664.14, + "end": 3664.76, + "probability": 0.8351 + }, + { + "start": 3665.66, + "end": 3670.56, + "probability": 0.9279 + }, + { + "start": 3671.32, + "end": 3673.57, + "probability": 0.8713 + }, + { + "start": 3675.34, + "end": 3678.44, + "probability": 0.9947 + }, + { + "start": 3678.98, + "end": 3681.46, + "probability": 0.9802 + }, + { + "start": 3682.0, + "end": 3684.26, + "probability": 0.9829 + }, + { + "start": 3684.84, + "end": 3685.7, + "probability": 0.6644 + }, + { + "start": 3686.82, + "end": 3687.44, + "probability": 0.4489 + }, + { + "start": 3688.68, + "end": 3691.72, + "probability": 0.9829 + }, + { + "start": 3692.96, + "end": 3693.52, + "probability": 0.507 + }, + { + "start": 3694.14, + "end": 3694.68, + "probability": 0.9856 + }, + { + "start": 3695.68, + "end": 3696.18, + "probability": 0.6872 + }, + { + "start": 3698.28, + "end": 3700.88, + "probability": 0.6438 + }, + { + "start": 3701.62, + "end": 3702.3, + "probability": 0.9871 + }, + { + "start": 3703.02, + "end": 3704.26, + "probability": 0.9808 + }, + { + "start": 3704.88, + "end": 3706.44, + "probability": 0.602 + }, + { + "start": 3706.96, + "end": 3707.2, + "probability": 0.9068 + }, + { + "start": 3708.66, + "end": 3710.92, + "probability": 0.8853 + }, + { + "start": 3711.5, + "end": 3716.94, + "probability": 0.8515 + }, + { + "start": 3717.68, + "end": 3718.36, + "probability": 0.9091 + }, + { + "start": 3719.12, + "end": 3721.42, + "probability": 0.9576 + }, + { + "start": 3721.72, + "end": 3725.74, + "probability": 0.9976 + }, + { + "start": 3725.74, + "end": 3731.84, + "probability": 0.9888 + }, + { + "start": 3732.42, + "end": 3733.78, + "probability": 0.8688 + }, + { + "start": 3734.96, + "end": 3735.72, + "probability": 0.695 + }, + { + "start": 3736.34, + "end": 3739.72, + "probability": 0.7936 + }, + { + "start": 3740.92, + "end": 3742.4, + "probability": 0.9314 + }, + { + "start": 3743.0, + "end": 3747.28, + "probability": 0.9515 + }, + { + "start": 3748.7, + "end": 3752.88, + "probability": 0.6651 + }, + { + "start": 3753.5, + "end": 3754.24, + "probability": 0.8107 + }, + { + "start": 3755.04, + "end": 3756.46, + "probability": 0.998 + }, + { + "start": 3757.14, + "end": 3761.92, + "probability": 0.5332 + }, + { + "start": 3761.96, + "end": 3765.62, + "probability": 0.641 + }, + { + "start": 3766.26, + "end": 3766.94, + "probability": 0.8273 + }, + { + "start": 3767.82, + "end": 3769.9, + "probability": 0.9977 + }, + { + "start": 3771.24, + "end": 3774.68, + "probability": 0.6924 + }, + { + "start": 3775.2, + "end": 3775.62, + "probability": 0.999 + }, + { + "start": 3776.82, + "end": 3777.8, + "probability": 0.9978 + }, + { + "start": 3778.38, + "end": 3778.86, + "probability": 0.8393 + }, + { + "start": 3780.64, + "end": 3783.08, + "probability": 0.7438 + }, + { + "start": 3783.76, + "end": 3784.7, + "probability": 0.8236 + }, + { + "start": 3785.48, + "end": 3786.12, + "probability": 0.9786 + }, + { + "start": 3786.68, + "end": 3788.16, + "probability": 0.71 + }, + { + "start": 3789.04, + "end": 3790.26, + "probability": 0.4415 + }, + { + "start": 3791.18, + "end": 3792.26, + "probability": 0.8298 + }, + { + "start": 3792.9, + "end": 3793.56, + "probability": 0.6906 + }, + { + "start": 3794.32, + "end": 3798.76, + "probability": 0.9879 + }, + { + "start": 3799.36, + "end": 3802.22, + "probability": 0.6621 + }, + { + "start": 3803.08, + "end": 3805.1, + "probability": 0.9121 + }, + { + "start": 3806.46, + "end": 3807.02, + "probability": 0.9299 + }, + { + "start": 3808.2, + "end": 3809.74, + "probability": 0.7381 + }, + { + "start": 3810.79, + "end": 3814.25, + "probability": 0.9941 + }, + { + "start": 3816.22, + "end": 3818.62, + "probability": 0.944 + }, + { + "start": 3820.18, + "end": 3821.7, + "probability": 0.8994 + }, + { + "start": 3823.78, + "end": 3826.5, + "probability": 0.7789 + }, + { + "start": 3828.04, + "end": 3829.04, + "probability": 0.9831 + }, + { + "start": 3829.72, + "end": 3830.34, + "probability": 0.6198 + }, + { + "start": 3830.96, + "end": 3832.0, + "probability": 0.8492 + }, + { + "start": 3832.92, + "end": 3834.11, + "probability": 0.9521 + }, + { + "start": 3834.76, + "end": 3836.38, + "probability": 0.9658 + }, + { + "start": 3837.34, + "end": 3840.22, + "probability": 0.9916 + }, + { + "start": 3840.9, + "end": 3841.18, + "probability": 0.7462 + }, + { + "start": 3841.9, + "end": 3843.24, + "probability": 0.6981 + }, + { + "start": 3844.06, + "end": 3844.34, + "probability": 0.8247 + }, + { + "start": 3844.9, + "end": 3846.66, + "probability": 0.8505 + }, + { + "start": 3846.74, + "end": 3849.1, + "probability": 0.6628 + }, + { + "start": 3850.1, + "end": 3852.82, + "probability": 0.9368 + }, + { + "start": 3858.96, + "end": 3860.74, + "probability": 0.465 + }, + { + "start": 3871.18, + "end": 3872.88, + "probability": 0.6785 + }, + { + "start": 3873.0, + "end": 3873.5, + "probability": 0.8966 + }, + { + "start": 3882.22, + "end": 3886.08, + "probability": 0.4721 + }, + { + "start": 3886.12, + "end": 3887.06, + "probability": 0.2931 + }, + { + "start": 3887.08, + "end": 3889.4, + "probability": 0.9355 + }, + { + "start": 3890.88, + "end": 3897.34, + "probability": 0.9738 + }, + { + "start": 3897.6, + "end": 3897.78, + "probability": 0.7204 + }, + { + "start": 3899.3, + "end": 3902.94, + "probability": 0.9787 + }, + { + "start": 3906.24, + "end": 3906.5, + "probability": 0.1154 + }, + { + "start": 3906.52, + "end": 3908.68, + "probability": 0.7133 + }, + { + "start": 3908.92, + "end": 3910.14, + "probability": 0.7913 + }, + { + "start": 3911.7, + "end": 3913.86, + "probability": 0.9894 + }, + { + "start": 3915.3, + "end": 3915.8, + "probability": 0.9969 + }, + { + "start": 3917.5, + "end": 3922.3, + "probability": 0.9595 + }, + { + "start": 3923.44, + "end": 3925.36, + "probability": 0.9578 + }, + { + "start": 3926.2, + "end": 3927.2, + "probability": 0.6779 + }, + { + "start": 3929.78, + "end": 3930.52, + "probability": 0.8855 + }, + { + "start": 3932.24, + "end": 3935.33, + "probability": 0.9089 + }, + { + "start": 3937.4, + "end": 3938.62, + "probability": 0.9832 + }, + { + "start": 3940.92, + "end": 3944.84, + "probability": 0.7378 + }, + { + "start": 3945.32, + "end": 3946.16, + "probability": 0.8665 + }, + { + "start": 3946.74, + "end": 3950.26, + "probability": 0.9062 + }, + { + "start": 3950.78, + "end": 3953.08, + "probability": 0.4823 + }, + { + "start": 3953.66, + "end": 3956.72, + "probability": 0.6899 + }, + { + "start": 3957.66, + "end": 3958.18, + "probability": 0.8444 + }, + { + "start": 3959.14, + "end": 3960.64, + "probability": 0.8241 + }, + { + "start": 3961.34, + "end": 3963.2, + "probability": 0.777 + }, + { + "start": 3965.56, + "end": 3967.24, + "probability": 0.6588 + }, + { + "start": 3968.66, + "end": 3970.52, + "probability": 0.812 + }, + { + "start": 3971.5, + "end": 3973.26, + "probability": 0.9341 + }, + { + "start": 3974.22, + "end": 3974.66, + "probability": 0.9899 + }, + { + "start": 3975.38, + "end": 3976.6, + "probability": 0.9249 + }, + { + "start": 3977.96, + "end": 3978.78, + "probability": 0.966 + }, + { + "start": 3979.7, + "end": 3980.32, + "probability": 0.9849 + }, + { + "start": 3981.23, + "end": 3982.7, + "probability": 0.7903 + }, + { + "start": 3984.04, + "end": 3986.3, + "probability": 0.6782 + }, + { + "start": 3986.82, + "end": 3987.6, + "probability": 0.5666 + }, + { + "start": 3987.68, + "end": 3988.24, + "probability": 0.7881 + }, + { + "start": 3988.96, + "end": 3989.52, + "probability": 0.9834 + }, + { + "start": 3990.62, + "end": 3991.46, + "probability": 0.6199 + }, + { + "start": 3992.92, + "end": 3995.04, + "probability": 0.9345 + }, + { + "start": 3995.64, + "end": 3999.12, + "probability": 0.813 + }, + { + "start": 4000.24, + "end": 4002.06, + "probability": 0.9823 + }, + { + "start": 4003.16, + "end": 4004.36, + "probability": 0.9753 + }, + { + "start": 4005.96, + "end": 4009.44, + "probability": 0.896 + }, + { + "start": 4009.78, + "end": 4010.82, + "probability": 0.4428 + }, + { + "start": 4011.58, + "end": 4013.08, + "probability": 0.8384 + }, + { + "start": 4014.72, + "end": 4016.14, + "probability": 0.7778 + }, + { + "start": 4017.58, + "end": 4018.42, + "probability": 0.948 + }, + { + "start": 4020.12, + "end": 4022.39, + "probability": 0.9862 + }, + { + "start": 4024.12, + "end": 4031.12, + "probability": 0.7688 + }, + { + "start": 4032.12, + "end": 4036.52, + "probability": 0.9343 + }, + { + "start": 4036.86, + "end": 4041.18, + "probability": 0.9956 + }, + { + "start": 4041.88, + "end": 4046.66, + "probability": 0.9777 + }, + { + "start": 4046.84, + "end": 4047.34, + "probability": 0.9056 + }, + { + "start": 4048.1, + "end": 4053.16, + "probability": 0.9634 + }, + { + "start": 4053.44, + "end": 4054.76, + "probability": 0.761 + }, + { + "start": 4056.14, + "end": 4057.96, + "probability": 0.9048 + }, + { + "start": 4058.9, + "end": 4060.01, + "probability": 0.8315 + }, + { + "start": 4061.76, + "end": 4064.06, + "probability": 0.8201 + }, + { + "start": 4067.9, + "end": 4072.68, + "probability": 0.9788 + }, + { + "start": 4074.72, + "end": 4076.51, + "probability": 0.5008 + }, + { + "start": 4077.58, + "end": 4078.84, + "probability": 0.8493 + }, + { + "start": 4079.78, + "end": 4082.88, + "probability": 0.9372 + }, + { + "start": 4083.8, + "end": 4085.24, + "probability": 0.7688 + }, + { + "start": 4085.32, + "end": 4086.86, + "probability": 0.9294 + }, + { + "start": 4089.5, + "end": 4094.08, + "probability": 0.7583 + }, + { + "start": 4095.1, + "end": 4098.66, + "probability": 0.6868 + }, + { + "start": 4099.38, + "end": 4103.06, + "probability": 0.9971 + }, + { + "start": 4103.8, + "end": 4104.86, + "probability": 0.9016 + }, + { + "start": 4106.56, + "end": 4108.49, + "probability": 0.9604 + }, + { + "start": 4110.58, + "end": 4118.6, + "probability": 0.9502 + }, + { + "start": 4119.4, + "end": 4120.16, + "probability": 0.7691 + }, + { + "start": 4121.82, + "end": 4122.84, + "probability": 0.8479 + }, + { + "start": 4123.8, + "end": 4127.06, + "probability": 0.9639 + }, + { + "start": 4128.04, + "end": 4129.92, + "probability": 0.8678 + }, + { + "start": 4130.64, + "end": 4131.78, + "probability": 0.8976 + }, + { + "start": 4132.7, + "end": 4137.4, + "probability": 0.997 + }, + { + "start": 4137.94, + "end": 4140.02, + "probability": 0.9934 + }, + { + "start": 4141.46, + "end": 4144.27, + "probability": 0.9971 + }, + { + "start": 4145.12, + "end": 4148.26, + "probability": 0.842 + }, + { + "start": 4149.12, + "end": 4150.2, + "probability": 0.8328 + }, + { + "start": 4151.08, + "end": 4153.64, + "probability": 0.7708 + }, + { + "start": 4154.54, + "end": 4160.54, + "probability": 0.9872 + }, + { + "start": 4161.1, + "end": 4162.01, + "probability": 0.5742 + }, + { + "start": 4162.63, + "end": 4164.48, + "probability": 0.4028 + }, + { + "start": 4165.22, + "end": 4166.92, + "probability": 0.7854 + }, + { + "start": 4167.76, + "end": 4170.58, + "probability": 0.9852 + }, + { + "start": 4170.86, + "end": 4172.64, + "probability": 0.8564 + }, + { + "start": 4172.88, + "end": 4174.94, + "probability": 0.8853 + }, + { + "start": 4175.54, + "end": 4178.12, + "probability": 0.7104 + }, + { + "start": 4180.8, + "end": 4182.72, + "probability": 0.9001 + }, + { + "start": 4182.72, + "end": 4182.98, + "probability": 0.1024 + }, + { + "start": 4183.68, + "end": 4185.04, + "probability": 0.2007 + }, + { + "start": 4185.88, + "end": 4186.28, + "probability": 0.1397 + }, + { + "start": 4186.64, + "end": 4187.76, + "probability": 0.3443 + }, + { + "start": 4189.98, + "end": 4193.12, + "probability": 0.3255 + }, + { + "start": 4194.02, + "end": 4197.28, + "probability": 0.6969 + }, + { + "start": 4198.04, + "end": 4199.4, + "probability": 0.3809 + }, + { + "start": 4199.58, + "end": 4200.28, + "probability": 0.929 + }, + { + "start": 4200.84, + "end": 4201.98, + "probability": 0.6667 + }, + { + "start": 4202.7, + "end": 4203.36, + "probability": 0.6325 + }, + { + "start": 4203.76, + "end": 4205.46, + "probability": 0.4989 + }, + { + "start": 4206.3, + "end": 4207.04, + "probability": 0.8503 + }, + { + "start": 4210.86, + "end": 4217.02, + "probability": 0.7572 + }, + { + "start": 4218.36, + "end": 4219.68, + "probability": 0.9079 + }, + { + "start": 4221.14, + "end": 4223.26, + "probability": 0.9746 + }, + { + "start": 4223.72, + "end": 4224.78, + "probability": 0.9403 + }, + { + "start": 4225.46, + "end": 4226.68, + "probability": 0.9544 + }, + { + "start": 4226.78, + "end": 4227.54, + "probability": 0.8918 + }, + { + "start": 4227.68, + "end": 4229.36, + "probability": 0.9371 + }, + { + "start": 4230.84, + "end": 4232.84, + "probability": 0.7231 + }, + { + "start": 4233.78, + "end": 4233.9, + "probability": 0.3129 + }, + { + "start": 4233.9, + "end": 4237.32, + "probability": 0.9234 + }, + { + "start": 4239.46, + "end": 4242.5, + "probability": 0.9212 + }, + { + "start": 4244.02, + "end": 4245.91, + "probability": 0.869 + }, + { + "start": 4247.76, + "end": 4248.6, + "probability": 0.856 + }, + { + "start": 4249.18, + "end": 4250.54, + "probability": 0.4003 + }, + { + "start": 4251.94, + "end": 4255.48, + "probability": 0.9515 + }, + { + "start": 4256.64, + "end": 4257.24, + "probability": 0.597 + }, + { + "start": 4258.42, + "end": 4259.18, + "probability": 0.6068 + }, + { + "start": 4260.88, + "end": 4263.21, + "probability": 0.9819 + }, + { + "start": 4264.6, + "end": 4266.82, + "probability": 0.9575 + }, + { + "start": 4267.72, + "end": 4267.74, + "probability": 0.9746 + }, + { + "start": 4270.42, + "end": 4271.08, + "probability": 0.8969 + }, + { + "start": 4272.28, + "end": 4273.72, + "probability": 0.9927 + }, + { + "start": 4275.38, + "end": 4277.04, + "probability": 0.8242 + }, + { + "start": 4278.32, + "end": 4284.22, + "probability": 0.9629 + }, + { + "start": 4285.06, + "end": 4285.9, + "probability": 0.3341 + }, + { + "start": 4287.28, + "end": 4288.24, + "probability": 0.6679 + }, + { + "start": 4288.56, + "end": 4289.0, + "probability": 0.7489 + }, + { + "start": 4289.46, + "end": 4292.02, + "probability": 0.6764 + }, + { + "start": 4293.9, + "end": 4295.1, + "probability": 0.8794 + }, + { + "start": 4295.12, + "end": 4296.57, + "probability": 0.8377 + }, + { + "start": 4298.74, + "end": 4301.64, + "probability": 0.7538 + }, + { + "start": 4303.3, + "end": 4303.88, + "probability": 0.5028 + }, + { + "start": 4304.52, + "end": 4307.19, + "probability": 0.9872 + }, + { + "start": 4308.34, + "end": 4310.74, + "probability": 0.8723 + }, + { + "start": 4310.74, + "end": 4314.55, + "probability": 0.9287 + }, + { + "start": 4317.0, + "end": 4319.4, + "probability": 0.9414 + }, + { + "start": 4320.32, + "end": 4321.4, + "probability": 0.7692 + }, + { + "start": 4322.3, + "end": 4325.1, + "probability": 0.6945 + }, + { + "start": 4325.72, + "end": 4330.86, + "probability": 0.5134 + }, + { + "start": 4331.42, + "end": 4336.78, + "probability": 0.7927 + }, + { + "start": 4337.56, + "end": 4344.44, + "probability": 0.9701 + }, + { + "start": 4345.26, + "end": 4346.64, + "probability": 0.6157 + }, + { + "start": 4346.96, + "end": 4347.48, + "probability": 0.745 + }, + { + "start": 4347.8, + "end": 4348.3, + "probability": 0.8089 + }, + { + "start": 4348.44, + "end": 4349.2, + "probability": 0.8962 + }, + { + "start": 4349.74, + "end": 4351.04, + "probability": 0.9287 + }, + { + "start": 4352.08, + "end": 4354.46, + "probability": 0.875 + }, + { + "start": 4355.96, + "end": 4358.26, + "probability": 0.9668 + }, + { + "start": 4358.92, + "end": 4361.06, + "probability": 0.8762 + }, + { + "start": 4361.74, + "end": 4362.14, + "probability": 0.8151 + }, + { + "start": 4362.52, + "end": 4365.64, + "probability": 0.804 + }, + { + "start": 4365.76, + "end": 4367.46, + "probability": 0.8779 + }, + { + "start": 4367.98, + "end": 4368.74, + "probability": 0.8655 + }, + { + "start": 4392.04, + "end": 4394.78, + "probability": 0.6465 + }, + { + "start": 4395.58, + "end": 4398.88, + "probability": 0.2858 + }, + { + "start": 4402.02, + "end": 4406.16, + "probability": 0.6565 + }, + { + "start": 4406.76, + "end": 4408.52, + "probability": 0.7283 + }, + { + "start": 4409.22, + "end": 4413.88, + "probability": 0.9917 + }, + { + "start": 4415.42, + "end": 4416.1, + "probability": 0.2355 + }, + { + "start": 4417.3, + "end": 4420.24, + "probability": 0.8646 + }, + { + "start": 4421.4, + "end": 4425.34, + "probability": 0.8948 + }, + { + "start": 4426.5, + "end": 4430.98, + "probability": 0.9888 + }, + { + "start": 4433.34, + "end": 4436.6, + "probability": 0.8962 + }, + { + "start": 4436.64, + "end": 4438.06, + "probability": 0.8298 + }, + { + "start": 4439.42, + "end": 4439.52, + "probability": 0.2596 + }, + { + "start": 4439.52, + "end": 4440.03, + "probability": 0.9071 + }, + { + "start": 4440.3, + "end": 4441.59, + "probability": 0.9546 + }, + { + "start": 4441.92, + "end": 4444.46, + "probability": 0.9138 + }, + { + "start": 4444.8, + "end": 4445.32, + "probability": 0.7522 + }, + { + "start": 4445.68, + "end": 4447.48, + "probability": 0.8093 + }, + { + "start": 4447.48, + "end": 4447.82, + "probability": 0.9622 + }, + { + "start": 4450.34, + "end": 4455.0, + "probability": 0.9061 + }, + { + "start": 4455.36, + "end": 4455.98, + "probability": 0.6624 + }, + { + "start": 4457.12, + "end": 4459.88, + "probability": 0.8638 + }, + { + "start": 4461.82, + "end": 4465.82, + "probability": 0.8514 + }, + { + "start": 4467.26, + "end": 4474.0, + "probability": 0.9506 + }, + { + "start": 4474.66, + "end": 4477.82, + "probability": 0.9634 + }, + { + "start": 4478.68, + "end": 4483.88, + "probability": 0.6378 + }, + { + "start": 4485.42, + "end": 4488.28, + "probability": 0.9966 + }, + { + "start": 4488.86, + "end": 4489.5, + "probability": 0.9505 + }, + { + "start": 4490.82, + "end": 4494.38, + "probability": 0.9692 + }, + { + "start": 4495.82, + "end": 4497.58, + "probability": 0.8851 + }, + { + "start": 4498.66, + "end": 4500.86, + "probability": 0.6927 + }, + { + "start": 4500.96, + "end": 4503.96, + "probability": 0.7133 + }, + { + "start": 4504.06, + "end": 4505.26, + "probability": 0.953 + }, + { + "start": 4506.0, + "end": 4513.38, + "probability": 0.9541 + }, + { + "start": 4514.92, + "end": 4516.24, + "probability": 0.6718 + }, + { + "start": 4517.62, + "end": 4520.0, + "probability": 0.7383 + }, + { + "start": 4520.98, + "end": 4523.68, + "probability": 0.7155 + }, + { + "start": 4525.04, + "end": 4530.72, + "probability": 0.9322 + }, + { + "start": 4530.72, + "end": 4535.96, + "probability": 0.9652 + }, + { + "start": 4536.9, + "end": 4540.92, + "probability": 0.66 + }, + { + "start": 4541.36, + "end": 4542.76, + "probability": 0.6567 + }, + { + "start": 4543.52, + "end": 4547.87, + "probability": 0.7923 + }, + { + "start": 4548.08, + "end": 4551.16, + "probability": 0.9404 + }, + { + "start": 4551.9, + "end": 4552.92, + "probability": 0.9413 + }, + { + "start": 4553.54, + "end": 4555.26, + "probability": 0.9438 + }, + { + "start": 4555.74, + "end": 4558.36, + "probability": 0.9834 + }, + { + "start": 4559.66, + "end": 4562.94, + "probability": 0.7638 + }, + { + "start": 4564.83, + "end": 4569.9, + "probability": 0.8809 + }, + { + "start": 4570.58, + "end": 4572.36, + "probability": 0.968 + }, + { + "start": 4573.86, + "end": 4577.14, + "probability": 0.814 + }, + { + "start": 4577.96, + "end": 4582.94, + "probability": 0.7583 + }, + { + "start": 4583.46, + "end": 4586.3, + "probability": 0.4602 + }, + { + "start": 4586.66, + "end": 4586.66, + "probability": 0.1365 + }, + { + "start": 4586.66, + "end": 4588.95, + "probability": 0.2711 + }, + { + "start": 4590.44, + "end": 4595.18, + "probability": 0.8503 + }, + { + "start": 4595.42, + "end": 4599.02, + "probability": 0.8695 + }, + { + "start": 4599.66, + "end": 4600.2, + "probability": 0.76 + }, + { + "start": 4600.52, + "end": 4601.78, + "probability": 0.6927 + }, + { + "start": 4601.86, + "end": 4604.32, + "probability": 0.9357 + }, + { + "start": 4604.7, + "end": 4605.48, + "probability": 0.5677 + }, + { + "start": 4605.92, + "end": 4607.76, + "probability": 0.769 + }, + { + "start": 4626.56, + "end": 4628.14, + "probability": 0.5316 + }, + { + "start": 4640.38, + "end": 4640.88, + "probability": 0.2804 + }, + { + "start": 4641.62, + "end": 4642.5, + "probability": 0.6736 + }, + { + "start": 4644.14, + "end": 4652.7, + "probability": 0.9624 + }, + { + "start": 4654.34, + "end": 4655.82, + "probability": 0.7628 + }, + { + "start": 4656.82, + "end": 4657.12, + "probability": 0.6909 + }, + { + "start": 4658.4, + "end": 4659.94, + "probability": 0.7809 + }, + { + "start": 4660.94, + "end": 4661.6, + "probability": 0.6411 + }, + { + "start": 4663.26, + "end": 4665.3, + "probability": 0.918 + }, + { + "start": 4666.06, + "end": 4669.8, + "probability": 0.9922 + }, + { + "start": 4671.3, + "end": 4674.64, + "probability": 0.6706 + }, + { + "start": 4675.54, + "end": 4678.44, + "probability": 0.8222 + }, + { + "start": 4679.84, + "end": 4681.0, + "probability": 0.9837 + }, + { + "start": 4681.34, + "end": 4684.44, + "probability": 0.6025 + }, + { + "start": 4685.76, + "end": 4691.54, + "probability": 0.9927 + }, + { + "start": 4692.38, + "end": 4694.14, + "probability": 0.9914 + }, + { + "start": 4694.76, + "end": 4696.3, + "probability": 0.7646 + }, + { + "start": 4697.36, + "end": 4699.36, + "probability": 0.9146 + }, + { + "start": 4700.22, + "end": 4702.08, + "probability": 0.9443 + }, + { + "start": 4702.56, + "end": 4703.24, + "probability": 0.8456 + }, + { + "start": 4703.46, + "end": 4704.42, + "probability": 0.9799 + }, + { + "start": 4705.02, + "end": 4705.96, + "probability": 0.9614 + }, + { + "start": 4707.4, + "end": 4708.16, + "probability": 0.6921 + }, + { + "start": 4708.36, + "end": 4711.3, + "probability": 0.5323 + }, + { + "start": 4712.16, + "end": 4713.12, + "probability": 0.6376 + }, + { + "start": 4714.2, + "end": 4716.02, + "probability": 0.8901 + }, + { + "start": 4716.62, + "end": 4716.96, + "probability": 0.6647 + }, + { + "start": 4717.9, + "end": 4718.86, + "probability": 0.9474 + }, + { + "start": 4718.98, + "end": 4721.32, + "probability": 0.7348 + }, + { + "start": 4721.5, + "end": 4722.1, + "probability": 0.7648 + }, + { + "start": 4722.66, + "end": 4725.64, + "probability": 0.9379 + }, + { + "start": 4725.92, + "end": 4728.02, + "probability": 0.8905 + }, + { + "start": 4729.18, + "end": 4731.48, + "probability": 0.7727 + }, + { + "start": 4732.1, + "end": 4733.36, + "probability": 0.5091 + }, + { + "start": 4733.9, + "end": 4734.84, + "probability": 0.8827 + }, + { + "start": 4735.66, + "end": 4738.26, + "probability": 0.9588 + }, + { + "start": 4739.88, + "end": 4740.94, + "probability": 0.6651 + }, + { + "start": 4743.01, + "end": 4745.38, + "probability": 0.9622 + }, + { + "start": 4747.4, + "end": 4749.42, + "probability": 0.6664 + }, + { + "start": 4750.6, + "end": 4754.48, + "probability": 0.5658 + }, + { + "start": 4755.08, + "end": 4756.6, + "probability": 0.9507 + }, + { + "start": 4756.9, + "end": 4758.88, + "probability": 0.9873 + }, + { + "start": 4759.52, + "end": 4763.24, + "probability": 0.9478 + }, + { + "start": 4764.3, + "end": 4767.38, + "probability": 0.9941 + }, + { + "start": 4767.38, + "end": 4771.52, + "probability": 0.9864 + }, + { + "start": 4772.48, + "end": 4775.88, + "probability": 0.9979 + }, + { + "start": 4776.84, + "end": 4779.56, + "probability": 0.4659 + }, + { + "start": 4780.12, + "end": 4780.74, + "probability": 0.8796 + }, + { + "start": 4781.72, + "end": 4783.3, + "probability": 0.9258 + }, + { + "start": 4784.0, + "end": 4788.86, + "probability": 0.9187 + }, + { + "start": 4789.68, + "end": 4790.26, + "probability": 0.8481 + }, + { + "start": 4791.78, + "end": 4792.19, + "probability": 0.1922 + }, + { + "start": 4793.82, + "end": 4796.14, + "probability": 0.6806 + }, + { + "start": 4796.62, + "end": 4798.58, + "probability": 0.982 + }, + { + "start": 4800.14, + "end": 4802.5, + "probability": 0.9074 + }, + { + "start": 4805.02, + "end": 4805.91, + "probability": 0.9542 + }, + { + "start": 4806.24, + "end": 4808.29, + "probability": 0.7124 + }, + { + "start": 4809.24, + "end": 4810.72, + "probability": 0.4111 + }, + { + "start": 4811.92, + "end": 4812.8, + "probability": 0.9921 + }, + { + "start": 4814.48, + "end": 4816.48, + "probability": 0.8287 + }, + { + "start": 4817.2, + "end": 4817.58, + "probability": 0.6682 + }, + { + "start": 4818.4, + "end": 4819.66, + "probability": 0.9639 + }, + { + "start": 4820.4, + "end": 4821.2, + "probability": 0.7745 + }, + { + "start": 4822.14, + "end": 4823.24, + "probability": 0.9855 + }, + { + "start": 4823.48, + "end": 4824.24, + "probability": 0.8037 + }, + { + "start": 4824.56, + "end": 4825.14, + "probability": 0.7342 + }, + { + "start": 4825.66, + "end": 4827.8, + "probability": 0.9611 + }, + { + "start": 4828.82, + "end": 4830.76, + "probability": 0.8591 + }, + { + "start": 4830.92, + "end": 4831.78, + "probability": 0.7917 + }, + { + "start": 4832.14, + "end": 4832.7, + "probability": 0.4051 + }, + { + "start": 4833.38, + "end": 4833.94, + "probability": 0.9107 + }, + { + "start": 4835.02, + "end": 4835.7, + "probability": 0.955 + }, + { + "start": 4836.74, + "end": 4838.02, + "probability": 0.9095 + }, + { + "start": 4838.62, + "end": 4840.08, + "probability": 0.9819 + }, + { + "start": 4840.8, + "end": 4842.2, + "probability": 0.9932 + }, + { + "start": 4842.28, + "end": 4842.76, + "probability": 0.5204 + }, + { + "start": 4843.16, + "end": 4843.96, + "probability": 0.9706 + }, + { + "start": 4844.8, + "end": 4846.66, + "probability": 0.6401 + }, + { + "start": 4847.44, + "end": 4849.14, + "probability": 0.7747 + }, + { + "start": 4849.92, + "end": 4850.7, + "probability": 0.9823 + }, + { + "start": 4851.4, + "end": 4853.32, + "probability": 0.9259 + }, + { + "start": 4854.16, + "end": 4855.6, + "probability": 0.6679 + }, + { + "start": 4856.08, + "end": 4859.94, + "probability": 0.7498 + }, + { + "start": 4860.54, + "end": 4861.1, + "probability": 0.8549 + }, + { + "start": 4861.54, + "end": 4862.58, + "probability": 0.888 + }, + { + "start": 4863.24, + "end": 4864.38, + "probability": 0.6184 + }, + { + "start": 4865.0, + "end": 4866.86, + "probability": 0.6067 + }, + { + "start": 4866.88, + "end": 4867.5, + "probability": 0.5653 + }, + { + "start": 4867.7, + "end": 4869.82, + "probability": 0.4962 + }, + { + "start": 4869.96, + "end": 4871.0, + "probability": 0.8044 + }, + { + "start": 4880.6, + "end": 4881.12, + "probability": 0.7805 + }, + { + "start": 4881.6, + "end": 4882.96, + "probability": 0.9419 + }, + { + "start": 4884.06, + "end": 4886.54, + "probability": 0.7592 + }, + { + "start": 4887.68, + "end": 4895.15, + "probability": 0.9702 + }, + { + "start": 4895.86, + "end": 4898.44, + "probability": 0.8599 + }, + { + "start": 4899.26, + "end": 4902.24, + "probability": 0.9805 + }, + { + "start": 4902.54, + "end": 4902.95, + "probability": 0.809 + }, + { + "start": 4903.66, + "end": 4904.86, + "probability": 0.9803 + }, + { + "start": 4905.24, + "end": 4906.02, + "probability": 0.6527 + }, + { + "start": 4906.9, + "end": 4909.7, + "probability": 0.9613 + }, + { + "start": 4911.72, + "end": 4914.32, + "probability": 0.9954 + }, + { + "start": 4914.32, + "end": 4917.54, + "probability": 0.9995 + }, + { + "start": 4917.62, + "end": 4920.36, + "probability": 0.7982 + }, + { + "start": 4921.4, + "end": 4922.82, + "probability": 0.9112 + }, + { + "start": 4923.06, + "end": 4926.64, + "probability": 0.9974 + }, + { + "start": 4926.78, + "end": 4928.88, + "probability": 0.979 + }, + { + "start": 4929.72, + "end": 4933.96, + "probability": 0.8254 + }, + { + "start": 4934.1, + "end": 4939.58, + "probability": 0.999 + }, + { + "start": 4939.62, + "end": 4941.36, + "probability": 0.9916 + }, + { + "start": 4941.38, + "end": 4941.66, + "probability": 0.7783 + }, + { + "start": 4941.66, + "end": 4942.17, + "probability": 0.6668 + }, + { + "start": 4942.42, + "end": 4943.92, + "probability": 0.7452 + }, + { + "start": 4944.08, + "end": 4945.5, + "probability": 0.8491 + }, + { + "start": 4946.42, + "end": 4948.78, + "probability": 0.9114 + }, + { + "start": 4949.84, + "end": 4954.08, + "probability": 0.9583 + }, + { + "start": 4954.6, + "end": 4957.22, + "probability": 0.9505 + }, + { + "start": 4957.88, + "end": 4961.0, + "probability": 0.9544 + }, + { + "start": 4961.64, + "end": 4966.02, + "probability": 0.979 + }, + { + "start": 4966.84, + "end": 4969.4, + "probability": 0.9143 + }, + { + "start": 4970.06, + "end": 4974.78, + "probability": 0.9886 + }, + { + "start": 4975.32, + "end": 4978.9, + "probability": 0.7609 + }, + { + "start": 4979.86, + "end": 4983.02, + "probability": 0.7309 + }, + { + "start": 4983.74, + "end": 4987.68, + "probability": 0.9808 + }, + { + "start": 4988.5, + "end": 4990.42, + "probability": 0.7585 + }, + { + "start": 4990.86, + "end": 4994.96, + "probability": 0.7837 + }, + { + "start": 4995.48, + "end": 4998.14, + "probability": 0.9886 + }, + { + "start": 4998.76, + "end": 4999.36, + "probability": 0.9695 + }, + { + "start": 4999.56, + "end": 5001.26, + "probability": 0.7601 + }, + { + "start": 5001.74, + "end": 5003.42, + "probability": 0.9584 + }, + { + "start": 5003.98, + "end": 5006.9, + "probability": 0.9832 + }, + { + "start": 5007.82, + "end": 5009.08, + "probability": 0.9603 + }, + { + "start": 5009.52, + "end": 5012.0, + "probability": 0.9397 + }, + { + "start": 5012.14, + "end": 5014.5, + "probability": 0.6185 + }, + { + "start": 5014.56, + "end": 5017.84, + "probability": 0.8679 + }, + { + "start": 5019.38, + "end": 5020.04, + "probability": 0.8405 + }, + { + "start": 5020.52, + "end": 5021.86, + "probability": 0.7532 + }, + { + "start": 5021.9, + "end": 5023.42, + "probability": 0.819 + }, + { + "start": 5023.92, + "end": 5025.9, + "probability": 0.9722 + }, + { + "start": 5026.78, + "end": 5028.02, + "probability": 0.974 + }, + { + "start": 5028.64, + "end": 5033.06, + "probability": 0.75 + }, + { + "start": 5033.66, + "end": 5034.86, + "probability": 0.5713 + }, + { + "start": 5035.68, + "end": 5038.9, + "probability": 0.9906 + }, + { + "start": 5039.6, + "end": 5044.9, + "probability": 0.7953 + }, + { + "start": 5045.04, + "end": 5047.38, + "probability": 0.9326 + }, + { + "start": 5048.27, + "end": 5051.4, + "probability": 0.9713 + }, + { + "start": 5051.4, + "end": 5054.68, + "probability": 0.8949 + }, + { + "start": 5055.54, + "end": 5059.2, + "probability": 0.9937 + }, + { + "start": 5059.38, + "end": 5059.98, + "probability": 0.5033 + }, + { + "start": 5060.34, + "end": 5061.5, + "probability": 0.873 + }, + { + "start": 5061.68, + "end": 5064.4, + "probability": 0.9185 + }, + { + "start": 5064.74, + "end": 5065.58, + "probability": 0.7361 + }, + { + "start": 5066.12, + "end": 5067.58, + "probability": 0.7881 + }, + { + "start": 5067.72, + "end": 5073.2, + "probability": 0.9763 + }, + { + "start": 5073.98, + "end": 5075.72, + "probability": 0.9816 + }, + { + "start": 5075.98, + "end": 5077.3, + "probability": 0.9764 + }, + { + "start": 5077.63, + "end": 5084.76, + "probability": 0.9875 + }, + { + "start": 5085.14, + "end": 5086.36, + "probability": 0.9867 + }, + { + "start": 5087.3, + "end": 5088.46, + "probability": 0.6549 + }, + { + "start": 5088.64, + "end": 5091.3, + "probability": 0.8845 + }, + { + "start": 5093.29, + "end": 5095.44, + "probability": 0.735 + }, + { + "start": 5106.78, + "end": 5108.58, + "probability": 0.6669 + }, + { + "start": 5115.8, + "end": 5116.88, + "probability": 0.5152 + }, + { + "start": 5118.88, + "end": 5119.64, + "probability": 0.8627 + }, + { + "start": 5121.46, + "end": 5125.86, + "probability": 0.9244 + }, + { + "start": 5127.46, + "end": 5130.8, + "probability": 0.9946 + }, + { + "start": 5132.84, + "end": 5136.94, + "probability": 0.7222 + }, + { + "start": 5138.28, + "end": 5140.46, + "probability": 0.9953 + }, + { + "start": 5141.24, + "end": 5142.94, + "probability": 0.6603 + }, + { + "start": 5143.66, + "end": 5144.76, + "probability": 0.9783 + }, + { + "start": 5144.92, + "end": 5145.52, + "probability": 0.818 + }, + { + "start": 5148.26, + "end": 5150.34, + "probability": 0.9125 + }, + { + "start": 5152.26, + "end": 5152.94, + "probability": 0.9691 + }, + { + "start": 5153.98, + "end": 5155.44, + "probability": 0.9873 + }, + { + "start": 5156.36, + "end": 5157.22, + "probability": 0.7498 + }, + { + "start": 5158.06, + "end": 5159.34, + "probability": 0.9458 + }, + { + "start": 5160.92, + "end": 5164.52, + "probability": 0.984 + }, + { + "start": 5165.24, + "end": 5166.04, + "probability": 0.817 + }, + { + "start": 5166.8, + "end": 5167.64, + "probability": 0.9733 + }, + { + "start": 5168.68, + "end": 5169.84, + "probability": 0.9893 + }, + { + "start": 5171.0, + "end": 5177.98, + "probability": 0.9215 + }, + { + "start": 5178.82, + "end": 5183.74, + "probability": 0.9423 + }, + { + "start": 5186.8, + "end": 5187.64, + "probability": 0.8962 + }, + { + "start": 5189.52, + "end": 5190.98, + "probability": 0.8784 + }, + { + "start": 5191.96, + "end": 5193.27, + "probability": 0.999 + }, + { + "start": 5194.9, + "end": 5197.9, + "probability": 0.9824 + }, + { + "start": 5198.8, + "end": 5201.54, + "probability": 0.9154 + }, + { + "start": 5203.56, + "end": 5204.51, + "probability": 0.9917 + }, + { + "start": 5206.88, + "end": 5207.58, + "probability": 0.9845 + }, + { + "start": 5209.5, + "end": 5211.34, + "probability": 0.9694 + }, + { + "start": 5212.74, + "end": 5214.74, + "probability": 0.9552 + }, + { + "start": 5216.6, + "end": 5217.32, + "probability": 0.9438 + }, + { + "start": 5218.24, + "end": 5218.6, + "probability": 0.5201 + }, + { + "start": 5220.78, + "end": 5222.18, + "probability": 0.9304 + }, + { + "start": 5224.27, + "end": 5226.54, + "probability": 0.7528 + }, + { + "start": 5227.36, + "end": 5228.1, + "probability": 0.8145 + }, + { + "start": 5230.04, + "end": 5231.94, + "probability": 0.9713 + }, + { + "start": 5233.08, + "end": 5236.64, + "probability": 0.9848 + }, + { + "start": 5237.82, + "end": 5241.38, + "probability": 0.9916 + }, + { + "start": 5242.28, + "end": 5243.6, + "probability": 0.8872 + }, + { + "start": 5245.34, + "end": 5246.34, + "probability": 0.4984 + }, + { + "start": 5247.8, + "end": 5248.86, + "probability": 0.5817 + }, + { + "start": 5250.72, + "end": 5251.84, + "probability": 0.697 + }, + { + "start": 5252.26, + "end": 5257.88, + "probability": 0.9974 + }, + { + "start": 5259.18, + "end": 5261.96, + "probability": 0.9494 + }, + { + "start": 5262.7, + "end": 5263.88, + "probability": 0.9954 + }, + { + "start": 5265.8, + "end": 5269.24, + "probability": 0.9876 + }, + { + "start": 5270.16, + "end": 5272.61, + "probability": 0.9861 + }, + { + "start": 5272.96, + "end": 5274.28, + "probability": 0.9879 + }, + { + "start": 5275.28, + "end": 5275.98, + "probability": 0.9438 + }, + { + "start": 5277.28, + "end": 5278.28, + "probability": 0.9892 + }, + { + "start": 5279.62, + "end": 5281.26, + "probability": 0.8927 + }, + { + "start": 5282.46, + "end": 5283.08, + "probability": 0.5535 + }, + { + "start": 5283.62, + "end": 5286.56, + "probability": 0.8825 + }, + { + "start": 5287.7, + "end": 5288.86, + "probability": 0.6519 + }, + { + "start": 5291.2, + "end": 5292.35, + "probability": 0.8947 + }, + { + "start": 5293.67, + "end": 5295.1, + "probability": 0.8522 + }, + { + "start": 5296.5, + "end": 5299.18, + "probability": 0.9749 + }, + { + "start": 5300.28, + "end": 5301.89, + "probability": 0.9974 + }, + { + "start": 5303.2, + "end": 5304.96, + "probability": 0.989 + }, + { + "start": 5307.38, + "end": 5311.86, + "probability": 0.9025 + }, + { + "start": 5311.98, + "end": 5313.94, + "probability": 0.993 + }, + { + "start": 5315.92, + "end": 5317.84, + "probability": 0.9655 + }, + { + "start": 5318.1, + "end": 5319.7, + "probability": 0.8828 + }, + { + "start": 5320.98, + "end": 5321.9, + "probability": 0.9086 + }, + { + "start": 5323.92, + "end": 5325.72, + "probability": 0.9983 + }, + { + "start": 5326.34, + "end": 5326.92, + "probability": 0.8419 + }, + { + "start": 5327.4, + "end": 5328.01, + "probability": 0.698 + }, + { + "start": 5329.36, + "end": 5329.75, + "probability": 0.8894 + }, + { + "start": 5332.86, + "end": 5335.46, + "probability": 0.3526 + }, + { + "start": 5335.8, + "end": 5337.76, + "probability": 0.9307 + }, + { + "start": 5338.26, + "end": 5341.66, + "probability": 0.9976 + }, + { + "start": 5342.38, + "end": 5345.36, + "probability": 0.9989 + }, + { + "start": 5347.06, + "end": 5348.0, + "probability": 0.9212 + }, + { + "start": 5349.7, + "end": 5350.96, + "probability": 0.9874 + }, + { + "start": 5352.52, + "end": 5353.6, + "probability": 0.8618 + }, + { + "start": 5355.34, + "end": 5360.54, + "probability": 0.9897 + }, + { + "start": 5360.92, + "end": 5366.36, + "probability": 0.8094 + }, + { + "start": 5366.84, + "end": 5367.8, + "probability": 0.728 + }, + { + "start": 5369.04, + "end": 5371.08, + "probability": 0.9368 + }, + { + "start": 5373.1, + "end": 5373.6, + "probability": 0.9465 + }, + { + "start": 5374.32, + "end": 5374.69, + "probability": 0.9888 + }, + { + "start": 5376.32, + "end": 5378.24, + "probability": 0.8867 + }, + { + "start": 5378.5, + "end": 5378.99, + "probability": 0.7646 + }, + { + "start": 5379.92, + "end": 5382.4, + "probability": 0.8658 + }, + { + "start": 5383.54, + "end": 5386.46, + "probability": 0.8903 + }, + { + "start": 5387.66, + "end": 5390.1, + "probability": 0.9866 + }, + { + "start": 5391.1, + "end": 5392.88, + "probability": 0.9946 + }, + { + "start": 5393.18, + "end": 5393.88, + "probability": 0.962 + }, + { + "start": 5394.3, + "end": 5395.22, + "probability": 0.9911 + }, + { + "start": 5396.96, + "end": 5399.5, + "probability": 0.9561 + }, + { + "start": 5399.5, + "end": 5399.78, + "probability": 0.0307 + }, + { + "start": 5400.32, + "end": 5404.5, + "probability": 0.9863 + }, + { + "start": 5404.5, + "end": 5408.8, + "probability": 0.9961 + }, + { + "start": 5409.86, + "end": 5413.06, + "probability": 0.9502 + }, + { + "start": 5413.2, + "end": 5414.86, + "probability": 0.7092 + }, + { + "start": 5416.02, + "end": 5417.16, + "probability": 0.675 + }, + { + "start": 5419.91, + "end": 5422.1, + "probability": 0.886 + }, + { + "start": 5422.26, + "end": 5424.0, + "probability": 0.885 + }, + { + "start": 5425.1, + "end": 5426.2, + "probability": 0.8553 + }, + { + "start": 5427.22, + "end": 5428.06, + "probability": 0.9277 + }, + { + "start": 5429.3, + "end": 5431.86, + "probability": 0.9515 + }, + { + "start": 5432.86, + "end": 5435.48, + "probability": 0.9932 + }, + { + "start": 5435.8, + "end": 5435.96, + "probability": 0.4187 + }, + { + "start": 5438.2, + "end": 5439.24, + "probability": 0.9413 + }, + { + "start": 5439.78, + "end": 5440.44, + "probability": 0.7803 + }, + { + "start": 5441.44, + "end": 5443.54, + "probability": 0.9952 + }, + { + "start": 5443.6, + "end": 5444.12, + "probability": 0.766 + }, + { + "start": 5444.64, + "end": 5446.68, + "probability": 0.9972 + }, + { + "start": 5447.36, + "end": 5448.88, + "probability": 0.9187 + }, + { + "start": 5449.88, + "end": 5451.32, + "probability": 0.8807 + }, + { + "start": 5451.98, + "end": 5454.0, + "probability": 0.8711 + }, + { + "start": 5454.36, + "end": 5455.18, + "probability": 0.8011 + }, + { + "start": 5460.8, + "end": 5462.22, + "probability": 0.0976 + }, + { + "start": 5463.5, + "end": 5464.48, + "probability": 0.1853 + }, + { + "start": 5468.18, + "end": 5469.18, + "probability": 0.6105 + }, + { + "start": 5475.18, + "end": 5476.52, + "probability": 0.216 + }, + { + "start": 5476.52, + "end": 5477.11, + "probability": 0.3746 + }, + { + "start": 5479.37, + "end": 5484.5, + "probability": 0.7084 + }, + { + "start": 5485.72, + "end": 5486.44, + "probability": 0.6703 + }, + { + "start": 5489.28, + "end": 5491.62, + "probability": 0.9653 + }, + { + "start": 5493.14, + "end": 5496.62, + "probability": 0.9351 + }, + { + "start": 5497.2, + "end": 5498.88, + "probability": 0.846 + }, + { + "start": 5500.04, + "end": 5500.62, + "probability": 0.4942 + }, + { + "start": 5501.38, + "end": 5502.68, + "probability": 0.9675 + }, + { + "start": 5503.84, + "end": 5504.7, + "probability": 0.792 + }, + { + "start": 5505.34, + "end": 5506.24, + "probability": 0.9204 + }, + { + "start": 5508.88, + "end": 5512.34, + "probability": 0.9957 + }, + { + "start": 5513.84, + "end": 5516.16, + "probability": 0.9995 + }, + { + "start": 5516.16, + "end": 5519.02, + "probability": 0.9985 + }, + { + "start": 5520.02, + "end": 5521.22, + "probability": 0.7842 + }, + { + "start": 5521.34, + "end": 5525.66, + "probability": 0.9929 + }, + { + "start": 5526.16, + "end": 5528.32, + "probability": 0.6385 + }, + { + "start": 5528.44, + "end": 5531.38, + "probability": 0.9795 + }, + { + "start": 5531.84, + "end": 5532.8, + "probability": 0.8488 + }, + { + "start": 5532.96, + "end": 5537.4, + "probability": 0.986 + }, + { + "start": 5538.54, + "end": 5539.56, + "probability": 0.7397 + }, + { + "start": 5540.26, + "end": 5541.28, + "probability": 0.9741 + }, + { + "start": 5542.44, + "end": 5546.52, + "probability": 0.8924 + }, + { + "start": 5547.68, + "end": 5552.7, + "probability": 0.8213 + }, + { + "start": 5553.0, + "end": 5554.08, + "probability": 0.8544 + }, + { + "start": 5554.74, + "end": 5555.4, + "probability": 0.7819 + }, + { + "start": 5557.02, + "end": 5558.62, + "probability": 0.5402 + }, + { + "start": 5559.4, + "end": 5560.3, + "probability": 0.9215 + }, + { + "start": 5561.44, + "end": 5563.36, + "probability": 0.929 + }, + { + "start": 5563.88, + "end": 5565.34, + "probability": 0.9726 + }, + { + "start": 5565.42, + "end": 5566.7, + "probability": 0.9661 + }, + { + "start": 5566.92, + "end": 5567.94, + "probability": 0.9312 + }, + { + "start": 5579.5, + "end": 5580.7, + "probability": 0.0682 + }, + { + "start": 5580.7, + "end": 5580.7, + "probability": 0.0442 + }, + { + "start": 5580.7, + "end": 5580.7, + "probability": 0.0385 + }, + { + "start": 5580.7, + "end": 5582.1, + "probability": 0.2701 + }, + { + "start": 5582.38, + "end": 5583.32, + "probability": 0.7344 + }, + { + "start": 5583.4, + "end": 5584.36, + "probability": 0.6407 + }, + { + "start": 5585.4, + "end": 5586.4, + "probability": 0.6855 + }, + { + "start": 5586.52, + "end": 5588.41, + "probability": 0.9989 + }, + { + "start": 5589.9, + "end": 5593.82, + "probability": 0.9979 + }, + { + "start": 5594.72, + "end": 5596.12, + "probability": 0.9296 + }, + { + "start": 5597.8, + "end": 5600.6, + "probability": 0.9988 + }, + { + "start": 5600.8, + "end": 5606.76, + "probability": 0.9131 + }, + { + "start": 5607.16, + "end": 5607.16, + "probability": 0.5993 + }, + { + "start": 5607.16, + "end": 5611.36, + "probability": 0.9902 + }, + { + "start": 5612.96, + "end": 5615.48, + "probability": 0.7644 + }, + { + "start": 5615.74, + "end": 5616.02, + "probability": 0.5627 + }, + { + "start": 5616.12, + "end": 5617.0, + "probability": 0.7649 + }, + { + "start": 5617.4, + "end": 5618.54, + "probability": 0.4503 + }, + { + "start": 5619.46, + "end": 5621.61, + "probability": 0.9458 + }, + { + "start": 5621.74, + "end": 5622.06, + "probability": 0.6691 + }, + { + "start": 5622.16, + "end": 5622.5, + "probability": 0.3701 + }, + { + "start": 5622.5, + "end": 5622.72, + "probability": 0.2826 + }, + { + "start": 5623.22, + "end": 5625.26, + "probability": 0.5776 + }, + { + "start": 5626.36, + "end": 5628.44, + "probability": 0.6719 + }, + { + "start": 5628.64, + "end": 5630.36, + "probability": 0.9248 + }, + { + "start": 5630.5, + "end": 5631.78, + "probability": 0.8911 + }, + { + "start": 5632.28, + "end": 5634.66, + "probability": 0.9942 + }, + { + "start": 5635.34, + "end": 5635.84, + "probability": 0.4212 + }, + { + "start": 5636.2, + "end": 5636.7, + "probability": 0.3214 + }, + { + "start": 5636.78, + "end": 5638.86, + "probability": 0.937 + }, + { + "start": 5640.04, + "end": 5643.28, + "probability": 0.9819 + }, + { + "start": 5643.94, + "end": 5648.28, + "probability": 0.9985 + }, + { + "start": 5648.6, + "end": 5650.08, + "probability": 0.9705 + }, + { + "start": 5650.7, + "end": 5651.6, + "probability": 0.9661 + }, + { + "start": 5651.6, + "end": 5652.74, + "probability": 0.9006 + }, + { + "start": 5652.98, + "end": 5654.2, + "probability": 0.7626 + }, + { + "start": 5655.14, + "end": 5658.64, + "probability": 0.8435 + }, + { + "start": 5660.42, + "end": 5661.95, + "probability": 0.5001 + }, + { + "start": 5662.26, + "end": 5662.42, + "probability": 0.3227 + }, + { + "start": 5662.46, + "end": 5663.42, + "probability": 0.748 + }, + { + "start": 5664.83, + "end": 5668.36, + "probability": 0.9771 + }, + { + "start": 5668.96, + "end": 5669.46, + "probability": 0.4956 + }, + { + "start": 5669.46, + "end": 5672.88, + "probability": 0.9284 + }, + { + "start": 5677.04, + "end": 5677.5, + "probability": 0.2198 + }, + { + "start": 5677.5, + "end": 5678.0, + "probability": 0.3735 + }, + { + "start": 5678.12, + "end": 5678.34, + "probability": 0.2457 + }, + { + "start": 5679.04, + "end": 5680.19, + "probability": 0.4246 + }, + { + "start": 5681.0, + "end": 5689.42, + "probability": 0.6345 + }, + { + "start": 5691.18, + "end": 5693.7, + "probability": 0.925 + }, + { + "start": 5693.7, + "end": 5696.06, + "probability": 0.9935 + }, + { + "start": 5696.74, + "end": 5700.94, + "probability": 0.9793 + }, + { + "start": 5701.02, + "end": 5702.18, + "probability": 0.9279 + }, + { + "start": 5704.27, + "end": 5705.58, + "probability": 0.4974 + }, + { + "start": 5705.6, + "end": 5706.6, + "probability": 0.4891 + }, + { + "start": 5707.36, + "end": 5708.12, + "probability": 0.0693 + }, + { + "start": 5710.8, + "end": 5711.1, + "probability": 0.6132 + }, + { + "start": 5712.7, + "end": 5715.22, + "probability": 0.3453 + }, + { + "start": 5715.46, + "end": 5715.48, + "probability": 0.4127 + }, + { + "start": 5715.48, + "end": 5716.78, + "probability": 0.1982 + }, + { + "start": 5717.2, + "end": 5722.48, + "probability": 0.1788 + }, + { + "start": 5722.8, + "end": 5724.96, + "probability": 0.7393 + }, + { + "start": 5725.04, + "end": 5727.18, + "probability": 0.9927 + }, + { + "start": 5728.38, + "end": 5729.66, + "probability": 0.8081 + }, + { + "start": 5730.92, + "end": 5733.22, + "probability": 0.9979 + }, + { + "start": 5733.22, + "end": 5735.84, + "probability": 0.9938 + }, + { + "start": 5736.68, + "end": 5736.92, + "probability": 0.2579 + }, + { + "start": 5737.06, + "end": 5742.78, + "probability": 0.8967 + }, + { + "start": 5744.26, + "end": 5750.06, + "probability": 0.8677 + }, + { + "start": 5751.08, + "end": 5754.82, + "probability": 0.9501 + }, + { + "start": 5755.86, + "end": 5756.88, + "probability": 0.8473 + }, + { + "start": 5757.08, + "end": 5758.68, + "probability": 0.979 + }, + { + "start": 5758.94, + "end": 5760.66, + "probability": 0.9871 + }, + { + "start": 5760.78, + "end": 5764.24, + "probability": 0.9839 + }, + { + "start": 5764.32, + "end": 5764.32, + "probability": 0.7018 + }, + { + "start": 5764.54, + "end": 5765.18, + "probability": 0.8389 + }, + { + "start": 5765.36, + "end": 5770.58, + "probability": 0.9912 + }, + { + "start": 5771.18, + "end": 5772.9, + "probability": 0.9587 + }, + { + "start": 5773.98, + "end": 5776.02, + "probability": 0.7144 + }, + { + "start": 5777.66, + "end": 5780.76, + "probability": 0.6697 + }, + { + "start": 5782.2, + "end": 5783.38, + "probability": 0.4815 + }, + { + "start": 5785.4, + "end": 5786.9, + "probability": 0.5333 + }, + { + "start": 5787.98, + "end": 5790.4, + "probability": 0.7278 + }, + { + "start": 5790.48, + "end": 5790.52, + "probability": 0.0117 + }, + { + "start": 5790.52, + "end": 5791.59, + "probability": 0.4214 + }, + { + "start": 5792.0, + "end": 5793.66, + "probability": 0.5599 + }, + { + "start": 5793.7, + "end": 5793.8, + "probability": 0.9376 + }, + { + "start": 5794.38, + "end": 5794.76, + "probability": 0.8257 + }, + { + "start": 5796.1, + "end": 5798.5, + "probability": 0.6409 + }, + { + "start": 5799.94, + "end": 5805.34, + "probability": 0.9371 + }, + { + "start": 5806.38, + "end": 5810.76, + "probability": 0.9867 + }, + { + "start": 5810.76, + "end": 5813.26, + "probability": 0.9426 + }, + { + "start": 5815.58, + "end": 5818.14, + "probability": 0.9688 + }, + { + "start": 5818.14, + "end": 5821.4, + "probability": 0.9988 + }, + { + "start": 5822.2, + "end": 5825.8, + "probability": 0.9944 + }, + { + "start": 5826.7, + "end": 5831.06, + "probability": 0.9973 + }, + { + "start": 5831.92, + "end": 5834.76, + "probability": 0.9921 + }, + { + "start": 5835.5, + "end": 5838.78, + "probability": 0.9935 + }, + { + "start": 5839.0, + "end": 5843.26, + "probability": 0.9905 + }, + { + "start": 5844.8, + "end": 5845.1, + "probability": 0.4363 + }, + { + "start": 5845.14, + "end": 5846.66, + "probability": 0.979 + }, + { + "start": 5847.0, + "end": 5850.5, + "probability": 0.9878 + }, + { + "start": 5851.56, + "end": 5853.0, + "probability": 0.9744 + }, + { + "start": 5853.52, + "end": 5856.52, + "probability": 0.9046 + }, + { + "start": 5857.2, + "end": 5861.5, + "probability": 0.9905 + }, + { + "start": 5863.2, + "end": 5866.9, + "probability": 0.7971 + }, + { + "start": 5867.46, + "end": 5868.78, + "probability": 0.8499 + }, + { + "start": 5870.02, + "end": 5872.88, + "probability": 0.9141 + }, + { + "start": 5872.88, + "end": 5873.32, + "probability": 0.526 + }, + { + "start": 5873.56, + "end": 5874.26, + "probability": 0.4936 + }, + { + "start": 5874.72, + "end": 5875.22, + "probability": 0.4288 + }, + { + "start": 5876.58, + "end": 5878.1, + "probability": 0.4764 + }, + { + "start": 5878.1, + "end": 5879.96, + "probability": 0.8196 + }, + { + "start": 5881.18, + "end": 5886.7, + "probability": 0.7287 + }, + { + "start": 5887.2, + "end": 5889.16, + "probability": 0.5957 + }, + { + "start": 5890.26, + "end": 5892.7, + "probability": 0.9934 + }, + { + "start": 5893.7, + "end": 5894.72, + "probability": 0.8837 + }, + { + "start": 5895.56, + "end": 5900.22, + "probability": 0.924 + }, + { + "start": 5901.76, + "end": 5902.72, + "probability": 0.9098 + }, + { + "start": 5903.38, + "end": 5908.36, + "probability": 0.9825 + }, + { + "start": 5908.84, + "end": 5912.58, + "probability": 0.8824 + }, + { + "start": 5913.16, + "end": 5914.44, + "probability": 0.2345 + }, + { + "start": 5914.96, + "end": 5918.6, + "probability": 0.9722 + }, + { + "start": 5919.24, + "end": 5922.68, + "probability": 0.9538 + }, + { + "start": 5924.66, + "end": 5927.2, + "probability": 0.9834 + }, + { + "start": 5927.82, + "end": 5930.42, + "probability": 0.9179 + }, + { + "start": 5930.9, + "end": 5932.52, + "probability": 0.9808 + }, + { + "start": 5933.38, + "end": 5937.24, + "probability": 0.9664 + }, + { + "start": 5937.6, + "end": 5940.78, + "probability": 0.9634 + }, + { + "start": 5942.26, + "end": 5945.36, + "probability": 0.9261 + }, + { + "start": 5946.12, + "end": 5948.06, + "probability": 0.9583 + }, + { + "start": 5949.14, + "end": 5955.0, + "probability": 0.9014 + }, + { + "start": 5956.5, + "end": 5961.38, + "probability": 0.96 + }, + { + "start": 5961.38, + "end": 5964.88, + "probability": 0.9958 + }, + { + "start": 5965.5, + "end": 5969.24, + "probability": 0.929 + }, + { + "start": 5969.78, + "end": 5971.6, + "probability": 0.9904 + }, + { + "start": 5971.82, + "end": 5974.8, + "probability": 0.5853 + }, + { + "start": 5975.5, + "end": 5981.24, + "probability": 0.9954 + }, + { + "start": 5981.24, + "end": 5986.46, + "probability": 0.9849 + }, + { + "start": 5986.86, + "end": 5990.5, + "probability": 0.9778 + }, + { + "start": 5991.98, + "end": 5992.72, + "probability": 0.8265 + }, + { + "start": 5993.32, + "end": 5993.56, + "probability": 0.9238 + }, + { + "start": 5993.86, + "end": 5994.9, + "probability": 0.7169 + }, + { + "start": 5995.88, + "end": 5997.44, + "probability": 0.8877 + }, + { + "start": 5997.86, + "end": 6000.38, + "probability": 0.9844 + }, + { + "start": 6001.3, + "end": 6004.18, + "probability": 0.9744 + }, + { + "start": 6004.52, + "end": 6007.74, + "probability": 0.9638 + }, + { + "start": 6008.22, + "end": 6008.64, + "probability": 0.9861 + }, + { + "start": 6009.32, + "end": 6014.24, + "probability": 0.9297 + }, + { + "start": 6014.24, + "end": 6019.56, + "probability": 0.8849 + }, + { + "start": 6019.88, + "end": 6020.52, + "probability": 0.6097 + }, + { + "start": 6021.04, + "end": 6023.12, + "probability": 0.8759 + }, + { + "start": 6023.38, + "end": 6025.18, + "probability": 0.7298 + }, + { + "start": 6028.63, + "end": 6030.54, + "probability": 0.6762 + }, + { + "start": 6030.86, + "end": 6036.44, + "probability": 0.845 + }, + { + "start": 6036.9, + "end": 6041.2, + "probability": 0.9692 + }, + { + "start": 6041.2, + "end": 6045.72, + "probability": 0.9088 + }, + { + "start": 6046.46, + "end": 6047.94, + "probability": 0.5569 + }, + { + "start": 6048.06, + "end": 6051.8, + "probability": 0.7652 + }, + { + "start": 6052.84, + "end": 6055.4, + "probability": 0.421 + }, + { + "start": 6076.08, + "end": 6079.0, + "probability": 0.7794 + }, + { + "start": 6079.78, + "end": 6083.04, + "probability": 0.8383 + }, + { + "start": 6083.04, + "end": 6084.43, + "probability": 0.0509 + }, + { + "start": 6084.64, + "end": 6087.08, + "probability": 0.9401 + }, + { + "start": 6088.06, + "end": 6089.46, + "probability": 0.7191 + }, + { + "start": 6090.28, + "end": 6091.54, + "probability": 0.2588 + }, + { + "start": 6091.96, + "end": 6094.66, + "probability": 0.5939 + }, + { + "start": 6094.68, + "end": 6095.32, + "probability": 0.0063 + }, + { + "start": 6095.32, + "end": 6095.64, + "probability": 0.7728 + }, + { + "start": 6095.76, + "end": 6096.8, + "probability": 0.8912 + }, + { + "start": 6097.56, + "end": 6100.79, + "probability": 0.9773 + }, + { + "start": 6101.82, + "end": 6104.2, + "probability": 0.9476 + }, + { + "start": 6104.22, + "end": 6105.02, + "probability": 0.5649 + }, + { + "start": 6105.18, + "end": 6105.92, + "probability": 0.54 + }, + { + "start": 6107.7, + "end": 6109.82, + "probability": 0.6031 + }, + { + "start": 6110.04, + "end": 6112.06, + "probability": 0.2895 + }, + { + "start": 6112.26, + "end": 6112.66, + "probability": 0.9626 + }, + { + "start": 6112.8, + "end": 6113.04, + "probability": 0.587 + }, + { + "start": 6113.26, + "end": 6114.12, + "probability": 0.7196 + }, + { + "start": 6114.18, + "end": 6114.77, + "probability": 0.6637 + }, + { + "start": 6115.64, + "end": 6118.48, + "probability": 0.4024 + }, + { + "start": 6119.1, + "end": 6122.44, + "probability": 0.7502 + }, + { + "start": 6123.62, + "end": 6127.34, + "probability": 0.866 + }, + { + "start": 6127.86, + "end": 6128.82, + "probability": 0.8745 + }, + { + "start": 6128.94, + "end": 6134.16, + "probability": 0.9089 + }, + { + "start": 6134.3, + "end": 6135.62, + "probability": 0.951 + }, + { + "start": 6136.3, + "end": 6139.2, + "probability": 0.9105 + }, + { + "start": 6140.18, + "end": 6143.92, + "probability": 0.981 + }, + { + "start": 6143.92, + "end": 6148.28, + "probability": 0.972 + }, + { + "start": 6150.78, + "end": 6152.4, + "probability": 0.6951 + }, + { + "start": 6152.5, + "end": 6153.9, + "probability": 0.8361 + }, + { + "start": 6154.56, + "end": 6159.1, + "probability": 0.9728 + }, + { + "start": 6160.28, + "end": 6162.24, + "probability": 0.8384 + }, + { + "start": 6162.26, + "end": 6163.04, + "probability": 0.7116 + }, + { + "start": 6165.86, + "end": 6168.12, + "probability": 0.7093 + }, + { + "start": 6168.84, + "end": 6169.91, + "probability": 0.613 + }, + { + "start": 6171.24, + "end": 6174.38, + "probability": 0.8958 + }, + { + "start": 6175.1, + "end": 6178.0, + "probability": 0.8477 + }, + { + "start": 6178.6, + "end": 6181.52, + "probability": 0.9908 + }, + { + "start": 6182.1, + "end": 6184.8, + "probability": 0.9966 + }, + { + "start": 6184.8, + "end": 6188.72, + "probability": 0.9767 + }, + { + "start": 6188.92, + "end": 6190.16, + "probability": 0.9912 + }, + { + "start": 6191.49, + "end": 6194.06, + "probability": 0.6684 + }, + { + "start": 6194.06, + "end": 6194.84, + "probability": 0.9233 + }, + { + "start": 6194.98, + "end": 6196.91, + "probability": 0.7682 + }, + { + "start": 6198.56, + "end": 6200.74, + "probability": 0.8894 + }, + { + "start": 6200.82, + "end": 6201.34, + "probability": 0.2804 + }, + { + "start": 6201.5, + "end": 6202.56, + "probability": 0.2525 + }, + { + "start": 6202.7, + "end": 6203.75, + "probability": 0.6236 + }, + { + "start": 6203.86, + "end": 6205.52, + "probability": 0.8297 + }, + { + "start": 6205.62, + "end": 6206.46, + "probability": 0.4954 + }, + { + "start": 6206.54, + "end": 6207.86, + "probability": 0.4758 + }, + { + "start": 6208.08, + "end": 6211.76, + "probability": 0.8649 + }, + { + "start": 6212.15, + "end": 6214.44, + "probability": 0.9851 + }, + { + "start": 6214.46, + "end": 6214.99, + "probability": 0.96 + }, + { + "start": 6215.46, + "end": 6216.2, + "probability": 0.3531 + }, + { + "start": 6216.24, + "end": 6217.62, + "probability": 0.7823 + }, + { + "start": 6217.64, + "end": 6218.28, + "probability": 0.1131 + }, + { + "start": 6218.56, + "end": 6220.38, + "probability": 0.0804 + }, + { + "start": 6221.14, + "end": 6223.02, + "probability": 0.6367 + }, + { + "start": 6226.22, + "end": 6230.42, + "probability": 0.6871 + }, + { + "start": 6231.04, + "end": 6231.32, + "probability": 0.0318 + }, + { + "start": 6231.32, + "end": 6231.32, + "probability": 0.0869 + }, + { + "start": 6231.32, + "end": 6231.9, + "probability": 0.0305 + }, + { + "start": 6231.9, + "end": 6236.3, + "probability": 0.7983 + }, + { + "start": 6236.4, + "end": 6240.42, + "probability": 0.8777 + }, + { + "start": 6240.98, + "end": 6243.5, + "probability": 0.9975 + }, + { + "start": 6243.5, + "end": 6247.1, + "probability": 0.9946 + }, + { + "start": 6247.74, + "end": 6248.64, + "probability": 0.7493 + }, + { + "start": 6249.06, + "end": 6251.42, + "probability": 0.9978 + }, + { + "start": 6251.72, + "end": 6252.36, + "probability": 0.6885 + }, + { + "start": 6252.92, + "end": 6254.52, + "probability": 0.6788 + }, + { + "start": 6255.06, + "end": 6257.18, + "probability": 0.6851 + }, + { + "start": 6257.74, + "end": 6260.24, + "probability": 0.6244 + }, + { + "start": 6260.98, + "end": 6263.94, + "probability": 0.7655 + }, + { + "start": 6264.88, + "end": 6268.48, + "probability": 0.9973 + }, + { + "start": 6269.18, + "end": 6273.0, + "probability": 0.7911 + }, + { + "start": 6273.64, + "end": 6277.94, + "probability": 0.6478 + }, + { + "start": 6278.58, + "end": 6280.42, + "probability": 0.747 + }, + { + "start": 6281.08, + "end": 6281.98, + "probability": 0.8353 + }, + { + "start": 6283.18, + "end": 6284.42, + "probability": 0.9081 + }, + { + "start": 6285.02, + "end": 6286.84, + "probability": 0.5904 + }, + { + "start": 6294.4, + "end": 6299.0, + "probability": 0.5818 + }, + { + "start": 6299.78, + "end": 6303.42, + "probability": 0.5495 + }, + { + "start": 6303.48, + "end": 6304.67, + "probability": 0.8742 + }, + { + "start": 6305.18, + "end": 6307.1, + "probability": 0.6405 + }, + { + "start": 6311.98, + "end": 6313.78, + "probability": 0.8004 + }, + { + "start": 6313.84, + "end": 6317.02, + "probability": 0.8816 + }, + { + "start": 6317.08, + "end": 6317.28, + "probability": 0.9186 + }, + { + "start": 6317.38, + "end": 6317.89, + "probability": 0.9424 + }, + { + "start": 6318.12, + "end": 6318.84, + "probability": 0.8999 + }, + { + "start": 6319.0, + "end": 6323.18, + "probability": 0.6624 + }, + { + "start": 6328.84, + "end": 6329.3, + "probability": 0.6356 + }, + { + "start": 6330.48, + "end": 6331.44, + "probability": 0.3815 + }, + { + "start": 6332.56, + "end": 6336.36, + "probability": 0.8786 + }, + { + "start": 6336.36, + "end": 6341.16, + "probability": 0.9974 + }, + { + "start": 6341.98, + "end": 6342.59, + "probability": 0.4444 + }, + { + "start": 6343.94, + "end": 6345.2, + "probability": 0.4375 + }, + { + "start": 6346.28, + "end": 6347.22, + "probability": 0.8439 + }, + { + "start": 6347.82, + "end": 6350.96, + "probability": 0.9395 + }, + { + "start": 6350.96, + "end": 6354.76, + "probability": 0.9871 + }, + { + "start": 6355.54, + "end": 6360.72, + "probability": 0.8405 + }, + { + "start": 6361.04, + "end": 6362.34, + "probability": 0.8568 + }, + { + "start": 6363.14, + "end": 6366.56, + "probability": 0.7665 + }, + { + "start": 6367.8, + "end": 6368.92, + "probability": 0.709 + }, + { + "start": 6370.12, + "end": 6375.12, + "probability": 0.9585 + }, + { + "start": 6375.9, + "end": 6377.08, + "probability": 0.9472 + }, + { + "start": 6377.94, + "end": 6378.9, + "probability": 0.6135 + }, + { + "start": 6379.6, + "end": 6382.12, + "probability": 0.7632 + }, + { + "start": 6383.2, + "end": 6385.02, + "probability": 0.9338 + }, + { + "start": 6385.74, + "end": 6388.06, + "probability": 0.8674 + }, + { + "start": 6388.66, + "end": 6390.2, + "probability": 0.6294 + }, + { + "start": 6390.82, + "end": 6395.42, + "probability": 0.7499 + }, + { + "start": 6395.88, + "end": 6397.52, + "probability": 0.9346 + }, + { + "start": 6397.96, + "end": 6400.7, + "probability": 0.9557 + }, + { + "start": 6401.62, + "end": 6406.7, + "probability": 0.9543 + }, + { + "start": 6406.75, + "end": 6412.38, + "probability": 0.9995 + }, + { + "start": 6412.9, + "end": 6414.22, + "probability": 0.6558 + }, + { + "start": 6415.06, + "end": 6416.96, + "probability": 0.965 + }, + { + "start": 6417.7, + "end": 6421.02, + "probability": 0.9944 + }, + { + "start": 6423.85, + "end": 6428.63, + "probability": 0.9233 + }, + { + "start": 6429.22, + "end": 6433.78, + "probability": 0.7157 + }, + { + "start": 6434.56, + "end": 6436.48, + "probability": 0.8136 + }, + { + "start": 6436.86, + "end": 6438.72, + "probability": 0.8471 + }, + { + "start": 6439.24, + "end": 6440.16, + "probability": 0.5145 + }, + { + "start": 6440.36, + "end": 6445.24, + "probability": 0.9794 + }, + { + "start": 6446.06, + "end": 6447.6, + "probability": 0.8956 + }, + { + "start": 6450.76, + "end": 6453.04, + "probability": 0.9864 + }, + { + "start": 6453.72, + "end": 6457.6, + "probability": 0.9951 + }, + { + "start": 6457.6, + "end": 6461.28, + "probability": 0.8686 + }, + { + "start": 6461.78, + "end": 6463.46, + "probability": 0.0023 + }, + { + "start": 6464.56, + "end": 6468.42, + "probability": 0.0822 + }, + { + "start": 6469.1, + "end": 6469.32, + "probability": 0.0312 + }, + { + "start": 6469.32, + "end": 6469.32, + "probability": 0.0234 + }, + { + "start": 6469.32, + "end": 6469.32, + "probability": 0.0553 + }, + { + "start": 6469.32, + "end": 6473.3, + "probability": 0.7368 + }, + { + "start": 6474.2, + "end": 6478.9, + "probability": 0.6938 + }, + { + "start": 6479.14, + "end": 6481.58, + "probability": 0.5348 + }, + { + "start": 6481.9, + "end": 6485.4, + "probability": 0.8949 + }, + { + "start": 6487.26, + "end": 6493.19, + "probability": 0.7546 + }, + { + "start": 6496.02, + "end": 6496.14, + "probability": 0.0301 + }, + { + "start": 6499.14, + "end": 6499.68, + "probability": 0.0402 + }, + { + "start": 6499.68, + "end": 6503.82, + "probability": 0.5124 + }, + { + "start": 6504.82, + "end": 6506.5, + "probability": 0.6178 + }, + { + "start": 6508.88, + "end": 6511.06, + "probability": 0.9192 + }, + { + "start": 6512.9, + "end": 6514.02, + "probability": 0.7979 + }, + { + "start": 6515.16, + "end": 6517.64, + "probability": 0.8499 + }, + { + "start": 6518.74, + "end": 6526.48, + "probability": 0.7552 + }, + { + "start": 6527.6, + "end": 6530.5, + "probability": 0.5681 + }, + { + "start": 6531.38, + "end": 6535.22, + "probability": 0.9692 + }, + { + "start": 6535.22, + "end": 6539.1, + "probability": 0.9905 + }, + { + "start": 6539.1, + "end": 6543.96, + "probability": 0.9797 + }, + { + "start": 6544.38, + "end": 6547.8, + "probability": 0.7253 + }, + { + "start": 6548.02, + "end": 6548.68, + "probability": 0.794 + }, + { + "start": 6548.72, + "end": 6549.4, + "probability": 0.7115 + }, + { + "start": 6549.5, + "end": 6550.28, + "probability": 0.8985 + }, + { + "start": 6550.58, + "end": 6553.36, + "probability": 0.0067 + }, + { + "start": 6554.6, + "end": 6555.12, + "probability": 0.3821 + }, + { + "start": 6558.22, + "end": 6560.06, + "probability": 0.523 + }, + { + "start": 6563.6, + "end": 6565.38, + "probability": 0.3072 + }, + { + "start": 6565.6, + "end": 6569.28, + "probability": 0.3396 + }, + { + "start": 6569.28, + "end": 6574.06, + "probability": 0.9302 + }, + { + "start": 6574.58, + "end": 6575.82, + "probability": 0.9683 + }, + { + "start": 6576.52, + "end": 6583.2, + "probability": 0.7278 + }, + { + "start": 6583.9, + "end": 6589.76, + "probability": 0.9984 + }, + { + "start": 6590.32, + "end": 6594.62, + "probability": 0.997 + }, + { + "start": 6595.16, + "end": 6596.18, + "probability": 0.5209 + }, + { + "start": 6596.2, + "end": 6596.98, + "probability": 0.7272 + }, + { + "start": 6597.36, + "end": 6598.2, + "probability": 0.7726 + }, + { + "start": 6598.22, + "end": 6598.94, + "probability": 0.9273 + }, + { + "start": 6607.04, + "end": 6611.16, + "probability": 0.3651 + }, + { + "start": 6611.76, + "end": 6615.1, + "probability": 0.1356 + }, + { + "start": 6615.14, + "end": 6616.38, + "probability": 0.3637 + }, + { + "start": 6617.0, + "end": 6619.24, + "probability": 0.2773 + }, + { + "start": 6619.78, + "end": 6625.18, + "probability": 0.6747 + }, + { + "start": 6626.6, + "end": 6629.34, + "probability": 0.9648 + }, + { + "start": 6629.92, + "end": 6631.66, + "probability": 0.856 + }, + { + "start": 6632.2, + "end": 6633.64, + "probability": 0.7866 + }, + { + "start": 6638.8, + "end": 6639.22, + "probability": 0.3444 + }, + { + "start": 6639.9, + "end": 6642.96, + "probability": 0.7244 + }, + { + "start": 6644.1, + "end": 6645.04, + "probability": 0.8175 + }, + { + "start": 6645.24, + "end": 6646.39, + "probability": 0.5322 + }, + { + "start": 6646.5, + "end": 6648.66, + "probability": 0.9785 + }, + { + "start": 6649.06, + "end": 6652.04, + "probability": 0.9898 + }, + { + "start": 6652.6, + "end": 6653.54, + "probability": 0.7238 + }, + { + "start": 6654.06, + "end": 6656.16, + "probability": 0.7972 + }, + { + "start": 6656.82, + "end": 6658.5, + "probability": 0.4811 + }, + { + "start": 6659.1, + "end": 6660.92, + "probability": 0.9899 + }, + { + "start": 6661.36, + "end": 6661.8, + "probability": 0.7536 + }, + { + "start": 6662.38, + "end": 6662.88, + "probability": 0.408 + }, + { + "start": 6662.92, + "end": 6666.57, + "probability": 0.8924 + }, + { + "start": 6667.58, + "end": 6670.48, + "probability": 0.9777 + }, + { + "start": 6671.16, + "end": 6674.1, + "probability": 0.5578 + }, + { + "start": 6674.6, + "end": 6676.8, + "probability": 0.674 + }, + { + "start": 6687.76, + "end": 6689.9, + "probability": 0.6491 + }, + { + "start": 6689.96, + "end": 6693.6, + "probability": 0.9861 + }, + { + "start": 6700.78, + "end": 6701.48, + "probability": 0.6563 + }, + { + "start": 6701.7, + "end": 6703.91, + "probability": 0.996 + }, + { + "start": 6704.98, + "end": 6707.94, + "probability": 0.4591 + }, + { + "start": 6708.7, + "end": 6712.42, + "probability": 0.9873 + }, + { + "start": 6712.42, + "end": 6715.96, + "probability": 0.9793 + }, + { + "start": 6716.7, + "end": 6721.28, + "probability": 0.981 + }, + { + "start": 6721.5, + "end": 6722.42, + "probability": 0.8561 + }, + { + "start": 6722.5, + "end": 6723.28, + "probability": 0.7104 + }, + { + "start": 6724.26, + "end": 6724.74, + "probability": 0.8025 + }, + { + "start": 6724.78, + "end": 6726.7, + "probability": 0.9293 + }, + { + "start": 6727.04, + "end": 6728.3, + "probability": 0.9952 + }, + { + "start": 6728.84, + "end": 6731.46, + "probability": 0.9979 + }, + { + "start": 6732.56, + "end": 6735.88, + "probability": 0.9073 + }, + { + "start": 6735.88, + "end": 6738.38, + "probability": 0.9996 + }, + { + "start": 6738.84, + "end": 6742.26, + "probability": 0.9993 + }, + { + "start": 6742.86, + "end": 6745.04, + "probability": 0.995 + }, + { + "start": 6745.18, + "end": 6748.26, + "probability": 0.9872 + }, + { + "start": 6750.19, + "end": 6750.64, + "probability": 0.2544 + }, + { + "start": 6750.64, + "end": 6753.72, + "probability": 0.6383 + }, + { + "start": 6753.8, + "end": 6759.06, + "probability": 0.9756 + }, + { + "start": 6759.18, + "end": 6763.02, + "probability": 0.999 + }, + { + "start": 6763.74, + "end": 6765.89, + "probability": 0.6666 + }, + { + "start": 6765.96, + "end": 6769.5, + "probability": 0.9545 + }, + { + "start": 6769.5, + "end": 6773.54, + "probability": 0.9746 + }, + { + "start": 6774.04, + "end": 6774.24, + "probability": 0.3575 + }, + { + "start": 6774.38, + "end": 6775.1, + "probability": 0.7643 + }, + { + "start": 6775.22, + "end": 6777.86, + "probability": 0.8494 + }, + { + "start": 6778.28, + "end": 6778.64, + "probability": 0.4894 + }, + { + "start": 6778.84, + "end": 6779.42, + "probability": 0.7928 + }, + { + "start": 6779.52, + "end": 6780.43, + "probability": 0.9678 + }, + { + "start": 6780.92, + "end": 6783.42, + "probability": 0.9819 + }, + { + "start": 6784.2, + "end": 6787.56, + "probability": 0.9946 + }, + { + "start": 6787.62, + "end": 6792.42, + "probability": 0.9578 + }, + { + "start": 6792.86, + "end": 6793.18, + "probability": 0.017 + }, + { + "start": 6793.58, + "end": 6795.88, + "probability": 0.5929 + }, + { + "start": 6796.6, + "end": 6797.66, + "probability": 0.978 + }, + { + "start": 6797.78, + "end": 6800.38, + "probability": 0.9136 + }, + { + "start": 6801.85, + "end": 6805.88, + "probability": 0.9696 + }, + { + "start": 6806.26, + "end": 6807.16, + "probability": 0.999 + }, + { + "start": 6807.94, + "end": 6809.42, + "probability": 0.9956 + }, + { + "start": 6809.84, + "end": 6810.58, + "probability": 0.8088 + }, + { + "start": 6810.64, + "end": 6811.2, + "probability": 0.8262 + }, + { + "start": 6811.3, + "end": 6812.34, + "probability": 0.964 + }, + { + "start": 6813.06, + "end": 6813.2, + "probability": 0.5846 + }, + { + "start": 6813.24, + "end": 6813.86, + "probability": 0.8431 + }, + { + "start": 6813.92, + "end": 6817.76, + "probability": 0.933 + }, + { + "start": 6817.9, + "end": 6818.91, + "probability": 0.9588 + }, + { + "start": 6819.52, + "end": 6822.64, + "probability": 0.7515 + }, + { + "start": 6822.68, + "end": 6824.72, + "probability": 0.864 + }, + { + "start": 6825.28, + "end": 6825.54, + "probability": 0.6176 + }, + { + "start": 6825.6, + "end": 6828.28, + "probability": 0.9862 + }, + { + "start": 6828.52, + "end": 6832.98, + "probability": 0.9828 + }, + { + "start": 6833.52, + "end": 6838.44, + "probability": 0.9967 + }, + { + "start": 6838.54, + "end": 6841.52, + "probability": 0.9973 + }, + { + "start": 6841.52, + "end": 6845.3, + "probability": 0.992 + }, + { + "start": 6845.62, + "end": 6846.41, + "probability": 0.8444 + }, + { + "start": 6847.1, + "end": 6849.3, + "probability": 0.998 + }, + { + "start": 6849.3, + "end": 6852.2, + "probability": 0.9502 + }, + { + "start": 6852.4, + "end": 6855.92, + "probability": 0.9928 + }, + { + "start": 6856.58, + "end": 6857.12, + "probability": 0.8949 + }, + { + "start": 6857.54, + "end": 6859.2, + "probability": 0.8131 + }, + { + "start": 6859.66, + "end": 6862.06, + "probability": 0.5337 + }, + { + "start": 6862.06, + "end": 6863.8, + "probability": 0.6642 + }, + { + "start": 6864.24, + "end": 6866.84, + "probability": 0.8582 + }, + { + "start": 6867.18, + "end": 6871.06, + "probability": 0.9182 + }, + { + "start": 6871.1, + "end": 6872.38, + "probability": 0.8851 + }, + { + "start": 6873.32, + "end": 6874.32, + "probability": 0.8623 + }, + { + "start": 6874.46, + "end": 6876.82, + "probability": 0.9823 + }, + { + "start": 6876.96, + "end": 6879.2, + "probability": 0.9951 + }, + { + "start": 6879.64, + "end": 6880.06, + "probability": 0.6588 + }, + { + "start": 6880.24, + "end": 6880.72, + "probability": 0.9492 + }, + { + "start": 6880.74, + "end": 6881.3, + "probability": 0.7808 + }, + { + "start": 6882.2, + "end": 6883.74, + "probability": 0.9268 + }, + { + "start": 6884.96, + "end": 6889.12, + "probability": 0.8266 + }, + { + "start": 6889.66, + "end": 6893.0, + "probability": 0.9604 + }, + { + "start": 6893.0, + "end": 6899.84, + "probability": 0.9906 + }, + { + "start": 6900.12, + "end": 6900.76, + "probability": 0.7425 + }, + { + "start": 6901.5, + "end": 6902.12, + "probability": 0.9056 + }, + { + "start": 6902.36, + "end": 6905.52, + "probability": 0.9941 + }, + { + "start": 6906.74, + "end": 6910.34, + "probability": 0.991 + }, + { + "start": 6910.66, + "end": 6911.46, + "probability": 0.7743 + }, + { + "start": 6911.95, + "end": 6912.68, + "probability": 0.7434 + }, + { + "start": 6913.44, + "end": 6914.82, + "probability": 0.9985 + }, + { + "start": 6915.28, + "end": 6918.76, + "probability": 0.923 + }, + { + "start": 6919.14, + "end": 6921.86, + "probability": 0.9905 + }, + { + "start": 6922.0, + "end": 6922.98, + "probability": 0.9346 + }, + { + "start": 6923.5, + "end": 6925.0, + "probability": 0.9598 + }, + { + "start": 6925.52, + "end": 6925.84, + "probability": 0.0601 + }, + { + "start": 6925.94, + "end": 6927.1, + "probability": 0.9215 + }, + { + "start": 6927.56, + "end": 6930.68, + "probability": 0.9619 + }, + { + "start": 6931.16, + "end": 6933.28, + "probability": 0.9982 + }, + { + "start": 6933.82, + "end": 6935.14, + "probability": 0.9985 + }, + { + "start": 6935.74, + "end": 6936.5, + "probability": 0.8462 + }, + { + "start": 6936.96, + "end": 6938.12, + "probability": 0.9517 + }, + { + "start": 6938.2, + "end": 6938.64, + "probability": 0.3803 + }, + { + "start": 6938.64, + "end": 6940.38, + "probability": 0.9928 + }, + { + "start": 6941.84, + "end": 6942.42, + "probability": 0.7653 + }, + { + "start": 6943.56, + "end": 6946.9, + "probability": 0.9709 + }, + { + "start": 6946.92, + "end": 6949.46, + "probability": 0.8682 + }, + { + "start": 6949.46, + "end": 6950.14, + "probability": 0.9407 + }, + { + "start": 6951.08, + "end": 6952.4, + "probability": 0.9058 + }, + { + "start": 6952.58, + "end": 6954.24, + "probability": 0.514 + }, + { + "start": 6955.88, + "end": 6957.96, + "probability": 0.9413 + }, + { + "start": 6958.06, + "end": 6958.92, + "probability": 0.5186 + }, + { + "start": 6959.32, + "end": 6962.42, + "probability": 0.8667 + }, + { + "start": 6962.62, + "end": 6963.06, + "probability": 0.7795 + }, + { + "start": 6963.06, + "end": 6967.42, + "probability": 0.9573 + }, + { + "start": 6967.8, + "end": 6968.58, + "probability": 0.9844 + }, + { + "start": 6969.2, + "end": 6971.8, + "probability": 0.7546 + }, + { + "start": 6971.8, + "end": 6972.08, + "probability": 0.5039 + }, + { + "start": 6972.14, + "end": 6972.28, + "probability": 0.9417 + }, + { + "start": 6972.36, + "end": 6975.76, + "probability": 0.756 + }, + { + "start": 6976.32, + "end": 6977.1, + "probability": 0.7042 + }, + { + "start": 6977.52, + "end": 6980.76, + "probability": 0.8383 + }, + { + "start": 6981.04, + "end": 6981.94, + "probability": 0.4666 + }, + { + "start": 6982.02, + "end": 6982.46, + "probability": 0.9167 + }, + { + "start": 6982.82, + "end": 6987.5, + "probability": 0.9901 + }, + { + "start": 6987.58, + "end": 6988.78, + "probability": 0.9985 + }, + { + "start": 6989.22, + "end": 6989.64, + "probability": 0.9799 + }, + { + "start": 6990.4, + "end": 6993.4, + "probability": 0.7262 + }, + { + "start": 6993.74, + "end": 6996.32, + "probability": 0.9169 + }, + { + "start": 6997.06, + "end": 7000.06, + "probability": 0.983 + }, + { + "start": 7000.62, + "end": 7006.88, + "probability": 0.7959 + }, + { + "start": 7008.0, + "end": 7008.56, + "probability": 0.5541 + }, + { + "start": 7008.92, + "end": 7011.6, + "probability": 0.8802 + }, + { + "start": 7012.12, + "end": 7013.72, + "probability": 0.3635 + }, + { + "start": 7014.24, + "end": 7014.98, + "probability": 0.6212 + }, + { + "start": 7015.0, + "end": 7016.22, + "probability": 0.4485 + }, + { + "start": 7016.32, + "end": 7016.96, + "probability": 0.6406 + }, + { + "start": 7017.32, + "end": 7018.0, + "probability": 0.8444 + }, + { + "start": 7022.04, + "end": 7023.9, + "probability": 0.0574 + }, + { + "start": 7032.86, + "end": 7035.48, + "probability": 0.2707 + }, + { + "start": 7035.54, + "end": 7039.86, + "probability": 0.6748 + }, + { + "start": 7040.38, + "end": 7041.88, + "probability": 0.8796 + }, + { + "start": 7042.12, + "end": 7043.52, + "probability": 0.8139 + }, + { + "start": 7044.28, + "end": 7045.6, + "probability": 0.7995 + }, + { + "start": 7045.74, + "end": 7046.16, + "probability": 0.9115 + }, + { + "start": 7046.86, + "end": 7048.9, + "probability": 0.9797 + }, + { + "start": 7048.9, + "end": 7052.3, + "probability": 0.5054 + }, + { + "start": 7052.42, + "end": 7052.82, + "probability": 0.7487 + }, + { + "start": 7052.94, + "end": 7053.42, + "probability": 0.8883 + }, + { + "start": 7063.46, + "end": 7064.86, + "probability": 0.1002 + }, + { + "start": 7065.54, + "end": 7066.04, + "probability": 0.0438 + }, + { + "start": 7066.56, + "end": 7068.8, + "probability": 0.3649 + }, + { + "start": 7069.36, + "end": 7069.92, + "probability": 0.5595 + }, + { + "start": 7070.5, + "end": 7074.2, + "probability": 0.9661 + }, + { + "start": 7076.94, + "end": 7077.43, + "probability": 0.2732 + }, + { + "start": 7078.64, + "end": 7079.32, + "probability": 0.3215 + }, + { + "start": 7079.46, + "end": 7080.32, + "probability": 0.7865 + }, + { + "start": 7080.46, + "end": 7082.36, + "probability": 0.8923 + }, + { + "start": 7082.76, + "end": 7083.5, + "probability": 0.8402 + }, + { + "start": 7086.7, + "end": 7088.14, + "probability": 0.7502 + }, + { + "start": 7089.88, + "end": 7101.8, + "probability": 0.8509 + }, + { + "start": 7101.94, + "end": 7102.72, + "probability": 0.7273 + }, + { + "start": 7103.5, + "end": 7104.55, + "probability": 0.9951 + }, + { + "start": 7105.44, + "end": 7107.04, + "probability": 0.9039 + }, + { + "start": 7107.58, + "end": 7110.04, + "probability": 0.7689 + }, + { + "start": 7111.86, + "end": 7114.74, + "probability": 0.8738 + }, + { + "start": 7115.48, + "end": 7118.54, + "probability": 0.984 + }, + { + "start": 7118.6, + "end": 7118.96, + "probability": 0.908 + }, + { + "start": 7118.96, + "end": 7119.28, + "probability": 0.7528 + }, + { + "start": 7119.82, + "end": 7122.46, + "probability": 0.9224 + }, + { + "start": 7123.0, + "end": 7124.52, + "probability": 0.9919 + }, + { + "start": 7125.1, + "end": 7126.76, + "probability": 0.697 + }, + { + "start": 7127.24, + "end": 7128.94, + "probability": 0.8018 + }, + { + "start": 7129.34, + "end": 7132.24, + "probability": 0.9694 + }, + { + "start": 7132.38, + "end": 7133.54, + "probability": 0.915 + }, + { + "start": 7134.32, + "end": 7134.84, + "probability": 0.7592 + }, + { + "start": 7134.98, + "end": 7136.92, + "probability": 0.4793 + }, + { + "start": 7137.04, + "end": 7139.36, + "probability": 0.908 + }, + { + "start": 7140.26, + "end": 7142.14, + "probability": 0.7679 + }, + { + "start": 7143.1, + "end": 7147.36, + "probability": 0.9897 + }, + { + "start": 7147.94, + "end": 7149.21, + "probability": 0.2067 + }, + { + "start": 7150.44, + "end": 7152.16, + "probability": 0.8828 + }, + { + "start": 7153.04, + "end": 7157.02, + "probability": 0.4706 + }, + { + "start": 7157.02, + "end": 7162.98, + "probability": 0.8891 + }, + { + "start": 7163.16, + "end": 7163.76, + "probability": 0.7439 + }, + { + "start": 7164.18, + "end": 7166.06, + "probability": 0.9812 + }, + { + "start": 7166.72, + "end": 7171.5, + "probability": 0.98 + }, + { + "start": 7171.7, + "end": 7172.64, + "probability": 0.8616 + }, + { + "start": 7173.0, + "end": 7176.16, + "probability": 0.693 + }, + { + "start": 7176.6, + "end": 7177.82, + "probability": 0.6342 + }, + { + "start": 7179.16, + "end": 7182.78, + "probability": 0.7294 + }, + { + "start": 7182.78, + "end": 7187.36, + "probability": 0.8474 + }, + { + "start": 7187.84, + "end": 7192.64, + "probability": 0.9509 + }, + { + "start": 7193.86, + "end": 7197.7, + "probability": 0.9872 + }, + { + "start": 7197.7, + "end": 7203.38, + "probability": 0.996 + }, + { + "start": 7203.78, + "end": 7206.08, + "probability": 0.9934 + }, + { + "start": 7206.22, + "end": 7206.92, + "probability": 0.4995 + }, + { + "start": 7207.78, + "end": 7207.94, + "probability": 0.0052 + }, + { + "start": 7207.94, + "end": 7208.96, + "probability": 0.5935 + }, + { + "start": 7209.6, + "end": 7212.98, + "probability": 0.4844 + }, + { + "start": 7214.86, + "end": 7217.36, + "probability": 0.3154 + }, + { + "start": 7222.42, + "end": 7224.36, + "probability": 0.5855 + }, + { + "start": 7224.42, + "end": 7226.62, + "probability": 0.9377 + }, + { + "start": 7226.78, + "end": 7227.38, + "probability": 0.7396 + }, + { + "start": 7227.46, + "end": 7228.32, + "probability": 0.8941 + }, + { + "start": 7228.42, + "end": 7229.22, + "probability": 0.5056 + }, + { + "start": 7229.4, + "end": 7230.26, + "probability": 0.7297 + }, + { + "start": 7230.32, + "end": 7230.96, + "probability": 0.9184 + }, + { + "start": 7231.02, + "end": 7232.1, + "probability": 0.9426 + }, + { + "start": 7232.38, + "end": 7233.24, + "probability": 0.6212 + }, + { + "start": 7233.44, + "end": 7235.7, + "probability": 0.8413 + }, + { + "start": 7236.12, + "end": 7238.4, + "probability": 0.7863 + }, + { + "start": 7238.46, + "end": 7242.34, + "probability": 0.9839 + }, + { + "start": 7243.46, + "end": 7245.18, + "probability": 0.9398 + }, + { + "start": 7245.42, + "end": 7245.74, + "probability": 0.399 + }, + { + "start": 7246.36, + "end": 7246.92, + "probability": 0.7094 + }, + { + "start": 7247.48, + "end": 7251.02, + "probability": 0.9468 + }, + { + "start": 7251.08, + "end": 7253.48, + "probability": 0.746 + }, + { + "start": 7254.4, + "end": 7255.46, + "probability": 0.8261 + }, + { + "start": 7257.38, + "end": 7261.79, + "probability": 0.9612 + }, + { + "start": 7262.58, + "end": 7263.34, + "probability": 0.8101 + }, + { + "start": 7263.44, + "end": 7267.32, + "probability": 0.7227 + }, + { + "start": 7267.98, + "end": 7270.28, + "probability": 0.1151 + }, + { + "start": 7270.36, + "end": 7271.0, + "probability": 0.4036 + }, + { + "start": 7271.0, + "end": 7272.04, + "probability": 0.5871 + }, + { + "start": 7276.46, + "end": 7282.92, + "probability": 0.0605 + }, + { + "start": 7284.44, + "end": 7287.86, + "probability": 0.5232 + }, + { + "start": 7287.96, + "end": 7290.78, + "probability": 0.9938 + }, + { + "start": 7290.88, + "end": 7292.16, + "probability": 0.7351 + }, + { + "start": 7293.12, + "end": 7294.68, + "probability": 0.9667 + }, + { + "start": 7294.92, + "end": 7295.66, + "probability": 0.7206 + }, + { + "start": 7296.06, + "end": 7297.92, + "probability": 0.8374 + }, + { + "start": 7298.48, + "end": 7299.98, + "probability": 0.8286 + }, + { + "start": 7300.52, + "end": 7302.36, + "probability": 0.0685 + }, + { + "start": 7302.4, + "end": 7302.88, + "probability": 0.5702 + }, + { + "start": 7302.92, + "end": 7303.62, + "probability": 0.8575 + }, + { + "start": 7305.14, + "end": 7305.34, + "probability": 0.0806 + }, + { + "start": 7305.9, + "end": 7306.33, + "probability": 0.3613 + }, + { + "start": 7308.32, + "end": 7308.36, + "probability": 0.0443 + }, + { + "start": 7309.62, + "end": 7310.56, + "probability": 0.3045 + }, + { + "start": 7311.3, + "end": 7312.22, + "probability": 0.0808 + }, + { + "start": 7315.64, + "end": 7318.44, + "probability": 0.719 + }, + { + "start": 7318.78, + "end": 7321.6, + "probability": 0.7797 + }, + { + "start": 7322.08, + "end": 7322.78, + "probability": 0.6871 + }, + { + "start": 7323.02, + "end": 7324.78, + "probability": 0.7381 + }, + { + "start": 7324.82, + "end": 7328.22, + "probability": 0.9938 + }, + { + "start": 7328.6, + "end": 7332.9, + "probability": 0.9697 + }, + { + "start": 7333.22, + "end": 7334.98, + "probability": 0.9158 + }, + { + "start": 7335.04, + "end": 7339.0, + "probability": 0.986 + }, + { + "start": 7339.54, + "end": 7355.1, + "probability": 0.6863 + }, + { + "start": 7355.68, + "end": 7358.4, + "probability": 0.9908 + }, + { + "start": 7358.98, + "end": 7361.66, + "probability": 0.814 + }, + { + "start": 7361.72, + "end": 7362.44, + "probability": 0.8879 + }, + { + "start": 7362.92, + "end": 7364.12, + "probability": 0.9085 + }, + { + "start": 7364.32, + "end": 7364.68, + "probability": 0.7138 + }, + { + "start": 7364.78, + "end": 7365.58, + "probability": 0.5655 + }, + { + "start": 7366.04, + "end": 7366.2, + "probability": 0.4738 + }, + { + "start": 7366.28, + "end": 7370.98, + "probability": 0.9157 + }, + { + "start": 7371.4, + "end": 7372.6, + "probability": 0.6985 + }, + { + "start": 7373.14, + "end": 7373.46, + "probability": 0.8736 + }, + { + "start": 7373.48, + "end": 7373.82, + "probability": 0.9615 + }, + { + "start": 7373.88, + "end": 7374.54, + "probability": 0.863 + }, + { + "start": 7374.58, + "end": 7376.62, + "probability": 0.9739 + }, + { + "start": 7376.92, + "end": 7378.12, + "probability": 0.739 + }, + { + "start": 7378.44, + "end": 7381.04, + "probability": 0.7992 + }, + { + "start": 7381.6, + "end": 7383.0, + "probability": 0.9634 + }, + { + "start": 7383.86, + "end": 7384.82, + "probability": 0.9834 + }, + { + "start": 7386.2, + "end": 7386.88, + "probability": 0.6475 + }, + { + "start": 7387.02, + "end": 7388.54, + "probability": 0.6042 + }, + { + "start": 7389.1, + "end": 7392.3, + "probability": 0.9894 + }, + { + "start": 7392.84, + "end": 7394.92, + "probability": 0.1635 + }, + { + "start": 7395.96, + "end": 7397.92, + "probability": 0.9754 + }, + { + "start": 7398.94, + "end": 7404.8, + "probability": 0.9786 + }, + { + "start": 7405.66, + "end": 7412.02, + "probability": 0.9992 + }, + { + "start": 7412.02, + "end": 7416.66, + "probability": 0.9981 + }, + { + "start": 7417.76, + "end": 7418.56, + "probability": 0.7481 + }, + { + "start": 7418.8, + "end": 7423.62, + "probability": 0.9839 + }, + { + "start": 7424.14, + "end": 7425.44, + "probability": 0.6918 + }, + { + "start": 7425.98, + "end": 7429.4, + "probability": 0.8184 + }, + { + "start": 7429.88, + "end": 7433.92, + "probability": 0.9672 + }, + { + "start": 7435.16, + "end": 7435.86, + "probability": 0.8868 + }, + { + "start": 7435.96, + "end": 7436.88, + "probability": 0.9505 + }, + { + "start": 7436.96, + "end": 7439.74, + "probability": 0.9801 + }, + { + "start": 7440.16, + "end": 7441.64, + "probability": 0.7924 + }, + { + "start": 7442.2, + "end": 7447.48, + "probability": 0.964 + }, + { + "start": 7448.44, + "end": 7450.96, + "probability": 0.8676 + }, + { + "start": 7451.36, + "end": 7452.02, + "probability": 0.8762 + }, + { + "start": 7452.36, + "end": 7457.0, + "probability": 0.9941 + }, + { + "start": 7457.5, + "end": 7462.24, + "probability": 0.9492 + }, + { + "start": 7463.28, + "end": 7465.54, + "probability": 0.9943 + }, + { + "start": 7466.02, + "end": 7469.42, + "probability": 0.9227 + }, + { + "start": 7469.42, + "end": 7473.08, + "probability": 0.8652 + }, + { + "start": 7473.76, + "end": 7477.0, + "probability": 0.9617 + }, + { + "start": 7477.68, + "end": 7481.18, + "probability": 0.8828 + }, + { + "start": 7481.72, + "end": 7484.84, + "probability": 0.9178 + }, + { + "start": 7485.9, + "end": 7490.54, + "probability": 0.9793 + }, + { + "start": 7490.54, + "end": 7495.1, + "probability": 0.6642 + }, + { + "start": 7495.48, + "end": 7499.58, + "probability": 0.8281 + }, + { + "start": 7500.62, + "end": 7507.04, + "probability": 0.9729 + }, + { + "start": 7508.1, + "end": 7508.92, + "probability": 0.754 + }, + { + "start": 7509.48, + "end": 7511.02, + "probability": 0.9958 + }, + { + "start": 7511.78, + "end": 7514.8, + "probability": 0.983 + }, + { + "start": 7515.72, + "end": 7516.36, + "probability": 0.6291 + }, + { + "start": 7517.34, + "end": 7517.94, + "probability": 0.8431 + }, + { + "start": 7519.16, + "end": 7519.72, + "probability": 0.939 + }, + { + "start": 7521.58, + "end": 7523.16, + "probability": 0.5515 + }, + { + "start": 7524.24, + "end": 7527.88, + "probability": 0.9928 + }, + { + "start": 7527.88, + "end": 7530.14, + "probability": 0.9777 + }, + { + "start": 7530.74, + "end": 7532.78, + "probability": 0.9962 + }, + { + "start": 7533.38, + "end": 7537.14, + "probability": 0.9888 + }, + { + "start": 7537.2, + "end": 7537.48, + "probability": 0.7581 + }, + { + "start": 7539.56, + "end": 7541.18, + "probability": 0.7095 + }, + { + "start": 7541.26, + "end": 7542.8, + "probability": 0.8323 + }, + { + "start": 7547.28, + "end": 7548.54, + "probability": 0.6149 + }, + { + "start": 7548.56, + "end": 7549.14, + "probability": 0.7312 + }, + { + "start": 7558.98, + "end": 7560.96, + "probability": 0.0776 + }, + { + "start": 7566.04, + "end": 7566.84, + "probability": 0.5911 + }, + { + "start": 7567.12, + "end": 7572.06, + "probability": 0.6054 + }, + { + "start": 7572.54, + "end": 7574.05, + "probability": 0.867 + }, + { + "start": 7574.34, + "end": 7577.6, + "probability": 0.9669 + }, + { + "start": 7578.74, + "end": 7581.92, + "probability": 0.6894 + }, + { + "start": 7582.12, + "end": 7583.98, + "probability": 0.8339 + }, + { + "start": 7584.02, + "end": 7584.66, + "probability": 0.8052 + }, + { + "start": 7597.82, + "end": 7600.08, + "probability": 0.1412 + }, + { + "start": 7601.34, + "end": 7603.34, + "probability": 0.0163 + }, + { + "start": 7605.9, + "end": 7606.28, + "probability": 0.8379 + }, + { + "start": 7606.3, + "end": 7609.04, + "probability": 0.9159 + }, + { + "start": 7609.18, + "end": 7609.6, + "probability": 0.9175 + }, + { + "start": 7610.02, + "end": 7610.58, + "probability": 0.6772 + }, + { + "start": 7610.68, + "end": 7613.16, + "probability": 0.9531 + }, + { + "start": 7613.3, + "end": 7615.24, + "probability": 0.9993 + }, + { + "start": 7615.42, + "end": 7617.7, + "probability": 0.8741 + }, + { + "start": 7618.68, + "end": 7619.42, + "probability": 0.8487 + }, + { + "start": 7620.0, + "end": 7624.88, + "probability": 0.9401 + }, + { + "start": 7625.42, + "end": 7628.18, + "probability": 0.7994 + }, + { + "start": 7629.58, + "end": 7632.04, + "probability": 0.4136 + }, + { + "start": 7632.22, + "end": 7635.5, + "probability": 0.6584 + }, + { + "start": 7635.54, + "end": 7637.3, + "probability": 0.9776 + }, + { + "start": 7637.36, + "end": 7637.62, + "probability": 0.8324 + }, + { + "start": 7638.5, + "end": 7639.26, + "probability": 0.5062 + }, + { + "start": 7640.18, + "end": 7640.84, + "probability": 0.9471 + }, + { + "start": 7642.64, + "end": 7644.08, + "probability": 0.5921 + }, + { + "start": 7644.64, + "end": 7645.44, + "probability": 0.6589 + }, + { + "start": 7646.36, + "end": 7648.44, + "probability": 0.9699 + }, + { + "start": 7648.64, + "end": 7649.9, + "probability": 0.5453 + }, + { + "start": 7650.4, + "end": 7652.16, + "probability": 0.9045 + }, + { + "start": 7652.16, + "end": 7654.74, + "probability": 0.9647 + }, + { + "start": 7655.24, + "end": 7655.9, + "probability": 0.9289 + }, + { + "start": 7656.0, + "end": 7657.48, + "probability": 0.9851 + }, + { + "start": 7658.06, + "end": 7659.36, + "probability": 0.6172 + }, + { + "start": 7659.4, + "end": 7662.94, + "probability": 0.9515 + }, + { + "start": 7663.62, + "end": 7663.9, + "probability": 0.405 + }, + { + "start": 7663.92, + "end": 7664.68, + "probability": 0.6077 + }, + { + "start": 7664.82, + "end": 7666.72, + "probability": 0.9569 + }, + { + "start": 7666.74, + "end": 7667.36, + "probability": 0.5782 + }, + { + "start": 7668.98, + "end": 7673.76, + "probability": 0.6786 + }, + { + "start": 7678.2, + "end": 7680.42, + "probability": 0.6764 + }, + { + "start": 7680.58, + "end": 7681.68, + "probability": 0.3358 + }, + { + "start": 7682.28, + "end": 7684.74, + "probability": 0.7146 + }, + { + "start": 7684.82, + "end": 7686.56, + "probability": 0.9949 + }, + { + "start": 7687.38, + "end": 7691.28, + "probability": 0.9822 + }, + { + "start": 7692.42, + "end": 7695.44, + "probability": 0.9897 + }, + { + "start": 7696.54, + "end": 7696.72, + "probability": 0.3877 + }, + { + "start": 7696.9, + "end": 7698.44, + "probability": 0.3643 + }, + { + "start": 7698.58, + "end": 7698.88, + "probability": 0.4371 + }, + { + "start": 7699.1, + "end": 7699.72, + "probability": 0.9087 + }, + { + "start": 7699.76, + "end": 7701.08, + "probability": 0.7133 + }, + { + "start": 7701.54, + "end": 7703.58, + "probability": 0.9166 + }, + { + "start": 7704.12, + "end": 7708.88, + "probability": 0.9868 + }, + { + "start": 7709.34, + "end": 7713.78, + "probability": 0.9924 + }, + { + "start": 7714.28, + "end": 7719.2, + "probability": 0.9468 + }, + { + "start": 7719.2, + "end": 7722.64, + "probability": 0.9224 + }, + { + "start": 7722.82, + "end": 7726.4, + "probability": 0.9823 + }, + { + "start": 7726.88, + "end": 7730.28, + "probability": 0.9919 + }, + { + "start": 7730.82, + "end": 7733.26, + "probability": 0.8835 + }, + { + "start": 7733.94, + "end": 7736.76, + "probability": 0.9766 + }, + { + "start": 7737.16, + "end": 7740.58, + "probability": 0.9795 + }, + { + "start": 7740.58, + "end": 7744.22, + "probability": 0.9717 + }, + { + "start": 7745.08, + "end": 7747.4, + "probability": 0.8936 + }, + { + "start": 7748.42, + "end": 7750.4, + "probability": 0.6569 + }, + { + "start": 7750.54, + "end": 7753.96, + "probability": 0.991 + }, + { + "start": 7753.96, + "end": 7758.64, + "probability": 0.9965 + }, + { + "start": 7759.29, + "end": 7762.72, + "probability": 0.7951 + }, + { + "start": 7763.2, + "end": 7764.72, + "probability": 0.3427 + }, + { + "start": 7765.16, + "end": 7769.56, + "probability": 0.9902 + }, + { + "start": 7770.16, + "end": 7771.56, + "probability": 0.7698 + }, + { + "start": 7771.66, + "end": 7775.06, + "probability": 0.9224 + }, + { + "start": 7775.18, + "end": 7775.76, + "probability": 0.645 + }, + { + "start": 7777.78, + "end": 7779.8, + "probability": 0.9714 + }, + { + "start": 7780.44, + "end": 7783.72, + "probability": 0.987 + }, + { + "start": 7784.22, + "end": 7786.62, + "probability": 0.9164 + }, + { + "start": 7787.34, + "end": 7788.28, + "probability": 0.6459 + }, + { + "start": 7788.84, + "end": 7790.22, + "probability": 0.9626 + }, + { + "start": 7790.54, + "end": 7791.74, + "probability": 0.9743 + }, + { + "start": 7791.86, + "end": 7793.82, + "probability": 0.7274 + }, + { + "start": 7794.04, + "end": 7794.82, + "probability": 0.8992 + }, + { + "start": 7795.4, + "end": 7798.64, + "probability": 0.9764 + }, + { + "start": 7798.94, + "end": 7799.38, + "probability": 0.5614 + }, + { + "start": 7799.46, + "end": 7801.86, + "probability": 0.9526 + }, + { + "start": 7802.76, + "end": 7809.26, + "probability": 0.0358 + }, + { + "start": 7810.8, + "end": 7810.8, + "probability": 0.0218 + }, + { + "start": 7810.85, + "end": 7815.0, + "probability": 0.0701 + }, + { + "start": 7815.38, + "end": 7815.42, + "probability": 0.0233 + }, + { + "start": 7815.42, + "end": 7815.42, + "probability": 0.0344 + }, + { + "start": 7840.18, + "end": 7843.5, + "probability": 0.5014 + }, + { + "start": 7844.14, + "end": 7848.36, + "probability": 0.9927 + }, + { + "start": 7848.36, + "end": 7850.12, + "probability": 0.7145 + }, + { + "start": 7850.9, + "end": 7851.78, + "probability": 0.7594 + }, + { + "start": 7851.96, + "end": 7853.38, + "probability": 0.8861 + }, + { + "start": 7854.14, + "end": 7855.26, + "probability": 0.7506 + }, + { + "start": 7856.06, + "end": 7859.0, + "probability": 0.9727 + }, + { + "start": 7859.0, + "end": 7864.1, + "probability": 0.6927 + }, + { + "start": 7864.34, + "end": 7869.44, + "probability": 0.7706 + }, + { + "start": 7870.06, + "end": 7872.12, + "probability": 0.7141 + }, + { + "start": 7873.94, + "end": 7874.08, + "probability": 0.4205 + }, + { + "start": 7874.08, + "end": 7874.16, + "probability": 0.0178 + }, + { + "start": 7899.34, + "end": 7899.88, + "probability": 0.1544 + }, + { + "start": 7902.02, + "end": 7903.8, + "probability": 0.9792 + }, + { + "start": 7903.9, + "end": 7906.52, + "probability": 0.4527 + }, + { + "start": 7906.66, + "end": 7909.88, + "probability": 0.9838 + }, + { + "start": 7910.64, + "end": 7912.06, + "probability": 0.8153 + }, + { + "start": 7912.86, + "end": 7917.28, + "probability": 0.8932 + }, + { + "start": 7918.06, + "end": 7922.36, + "probability": 0.9908 + }, + { + "start": 7923.72, + "end": 7925.74, + "probability": 0.9925 + }, + { + "start": 7926.92, + "end": 7930.98, + "probability": 0.9951 + }, + { + "start": 7930.98, + "end": 7933.6, + "probability": 0.9769 + }, + { + "start": 7935.04, + "end": 7936.54, + "probability": 0.9847 + }, + { + "start": 7936.66, + "end": 7941.46, + "probability": 0.9763 + }, + { + "start": 7947.26, + "end": 7948.24, + "probability": 0.616 + }, + { + "start": 7951.17, + "end": 7955.22, + "probability": 0.7977 + }, + { + "start": 7955.22, + "end": 7957.66, + "probability": 0.9907 + }, + { + "start": 7958.62, + "end": 7961.34, + "probability": 0.9941 + }, + { + "start": 7963.1, + "end": 7967.8, + "probability": 0.7494 + }, + { + "start": 7969.84, + "end": 7970.56, + "probability": 0.5108 + }, + { + "start": 7970.68, + "end": 7974.5, + "probability": 0.9131 + }, + { + "start": 7976.52, + "end": 7981.46, + "probability": 0.9205 + }, + { + "start": 7982.08, + "end": 7984.7, + "probability": 0.9897 + }, + { + "start": 7985.68, + "end": 7990.74, + "probability": 0.9893 + }, + { + "start": 7990.92, + "end": 7995.18, + "probability": 0.9987 + }, + { + "start": 7996.0, + "end": 7998.42, + "probability": 0.6202 + }, + { + "start": 7999.1, + "end": 7999.2, + "probability": 0.1669 + }, + { + "start": 7999.2, + "end": 8005.06, + "probability": 0.9957 + }, + { + "start": 8005.06, + "end": 8008.47, + "probability": 0.9067 + }, + { + "start": 8009.08, + "end": 8009.28, + "probability": 0.0083 + }, + { + "start": 8010.02, + "end": 8010.82, + "probability": 0.9321 + }, + { + "start": 8011.76, + "end": 8014.08, + "probability": 0.5546 + }, + { + "start": 8014.72, + "end": 8015.64, + "probability": 0.9443 + }, + { + "start": 8016.16, + "end": 8019.46, + "probability": 0.9847 + }, + { + "start": 8020.12, + "end": 8024.46, + "probability": 0.9784 + }, + { + "start": 8024.6, + "end": 8025.36, + "probability": 0.8569 + }, + { + "start": 8026.22, + "end": 8028.82, + "probability": 0.9868 + }, + { + "start": 8029.66, + "end": 8030.36, + "probability": 0.2622 + }, + { + "start": 8031.28, + "end": 8033.5, + "probability": 0.8369 + }, + { + "start": 8033.5, + "end": 8033.5, + "probability": 0.6666 + }, + { + "start": 8033.52, + "end": 8034.42, + "probability": 0.9082 + }, + { + "start": 8034.68, + "end": 8037.82, + "probability": 0.8451 + }, + { + "start": 8037.86, + "end": 8038.46, + "probability": 0.8006 + }, + { + "start": 8057.8, + "end": 8061.72, + "probability": 0.2287 + }, + { + "start": 8062.0, + "end": 8063.68, + "probability": 0.0408 + }, + { + "start": 8063.86, + "end": 8068.12, + "probability": 0.5064 + }, + { + "start": 8069.3, + "end": 8070.3, + "probability": 0.0509 + }, + { + "start": 8070.3, + "end": 8073.17, + "probability": 0.2047 + }, + { + "start": 8074.62, + "end": 8076.22, + "probability": 0.0076 + }, + { + "start": 8076.22, + "end": 8077.59, + "probability": 0.0626 + }, + { + "start": 8083.16, + "end": 8086.82, + "probability": 0.2155 + }, + { + "start": 8095.6, + "end": 8101.62, + "probability": 0.0534 + }, + { + "start": 8101.86, + "end": 8102.0, + "probability": 0.0982 + }, + { + "start": 8102.12, + "end": 8102.22, + "probability": 0.1246 + }, + { + "start": 8102.24, + "end": 8104.62, + "probability": 0.0692 + }, + { + "start": 8104.66, + "end": 8105.3, + "probability": 0.4852 + }, + { + "start": 8106.1, + "end": 8110.44, + "probability": 0.0212 + }, + { + "start": 8117.0, + "end": 8117.0, + "probability": 0.0 + }, + { + "start": 8117.0, + "end": 8117.0, + "probability": 0.0 + }, + { + "start": 8117.0, + "end": 8117.0, + "probability": 0.0 + }, + { + "start": 8117.0, + "end": 8117.0, + "probability": 0.0 + }, + { + "start": 8117.0, + "end": 8117.0, + "probability": 0.0 + }, + { + "start": 8117.0, + "end": 8117.0, + "probability": 0.0 + }, + { + "start": 8117.0, + "end": 8117.0, + "probability": 0.0 + }, + { + "start": 8117.0, + "end": 8117.0, + "probability": 0.0 + }, + { + "start": 8117.0, + "end": 8117.0, + "probability": 0.0 + }, + { + "start": 8117.0, + "end": 8117.0, + "probability": 0.0 + }, + { + "start": 8117.0, + "end": 8117.0, + "probability": 0.0 + }, + { + "start": 8117.0, + "end": 8117.0, + "probability": 0.0 + }, + { + "start": 8117.0, + "end": 8117.0, + "probability": 0.0 + }, + { + "start": 8117.18, + "end": 8117.98, + "probability": 0.0538 + }, + { + "start": 8118.76, + "end": 8122.52, + "probability": 0.0196 + }, + { + "start": 8122.7, + "end": 8123.72, + "probability": 0.0405 + }, + { + "start": 8123.72, + "end": 8123.72, + "probability": 0.0408 + }, + { + "start": 8123.72, + "end": 8124.44, + "probability": 0.1981 + }, + { + "start": 8125.3, + "end": 8125.36, + "probability": 0.0511 + }, + { + "start": 8125.36, + "end": 8125.36, + "probability": 0.0122 + }, + { + "start": 8125.36, + "end": 8126.86, + "probability": 0.1324 + }, + { + "start": 8126.88, + "end": 8131.48, + "probability": 0.8275 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.0, + "end": 8244.0, + "probability": 0.0 + }, + { + "start": 8244.28, + "end": 8244.3, + "probability": 0.2636 + }, + { + "start": 8244.3, + "end": 8244.3, + "probability": 0.1549 + }, + { + "start": 8244.3, + "end": 8246.72, + "probability": 0.7918 + }, + { + "start": 8247.56, + "end": 8251.88, + "probability": 0.8179 + }, + { + "start": 8252.46, + "end": 8252.74, + "probability": 0.9048 + }, + { + "start": 8252.84, + "end": 8254.58, + "probability": 0.9767 + }, + { + "start": 8254.7, + "end": 8260.96, + "probability": 0.9648 + }, + { + "start": 8261.36, + "end": 8263.14, + "probability": 0.9976 + }, + { + "start": 8263.72, + "end": 8267.08, + "probability": 0.9889 + }, + { + "start": 8267.08, + "end": 8273.38, + "probability": 0.9055 + }, + { + "start": 8274.0, + "end": 8279.34, + "probability": 0.9382 + }, + { + "start": 8279.54, + "end": 8282.18, + "probability": 0.5637 + }, + { + "start": 8283.16, + "end": 8288.52, + "probability": 0.9665 + }, + { + "start": 8288.64, + "end": 8292.62, + "probability": 0.9989 + }, + { + "start": 8294.82, + "end": 8295.48, + "probability": 0.4754 + }, + { + "start": 8301.84, + "end": 8307.24, + "probability": 0.9757 + }, + { + "start": 8307.24, + "end": 8310.18, + "probability": 0.9487 + }, + { + "start": 8310.98, + "end": 8314.08, + "probability": 0.9407 + }, + { + "start": 8314.4, + "end": 8316.0, + "probability": 0.7905 + }, + { + "start": 8316.16, + "end": 8317.64, + "probability": 0.6533 + }, + { + "start": 8318.54, + "end": 8323.62, + "probability": 0.7001 + }, + { + "start": 8324.16, + "end": 8325.96, + "probability": 0.9886 + }, + { + "start": 8327.36, + "end": 8329.5, + "probability": 0.9984 + }, + { + "start": 8329.82, + "end": 8335.72, + "probability": 0.9979 + }, + { + "start": 8335.9, + "end": 8338.18, + "probability": 0.587 + }, + { + "start": 8338.64, + "end": 8338.7, + "probability": 0.0276 + }, + { + "start": 8338.7, + "end": 8340.8, + "probability": 0.9028 + }, + { + "start": 8340.86, + "end": 8345.98, + "probability": 0.9735 + }, + { + "start": 8346.06, + "end": 8346.24, + "probability": 0.787 + }, + { + "start": 8346.8, + "end": 8349.48, + "probability": 0.946 + }, + { + "start": 8349.94, + "end": 8352.2, + "probability": 0.8722 + }, + { + "start": 8354.1, + "end": 8357.5, + "probability": 0.9172 + }, + { + "start": 8357.98, + "end": 8360.62, + "probability": 0.7212 + }, + { + "start": 8360.62, + "end": 8361.02, + "probability": 0.6764 + }, + { + "start": 8361.34, + "end": 8364.82, + "probability": 0.9596 + }, + { + "start": 8364.96, + "end": 8365.3, + "probability": 0.7852 + }, + { + "start": 8366.0, + "end": 8366.44, + "probability": 0.1035 + }, + { + "start": 8366.56, + "end": 8368.32, + "probability": 0.8296 + }, + { + "start": 8368.44, + "end": 8370.2, + "probability": 0.288 + }, + { + "start": 8370.3, + "end": 8372.38, + "probability": 0.1962 + }, + { + "start": 8382.84, + "end": 8384.77, + "probability": 0.7711 + }, + { + "start": 8387.46, + "end": 8392.02, + "probability": 0.8461 + }, + { + "start": 8393.61, + "end": 8395.98, + "probability": 0.9354 + }, + { + "start": 8398.16, + "end": 8401.96, + "probability": 0.8508 + }, + { + "start": 8403.18, + "end": 8405.58, + "probability": 0.7083 + }, + { + "start": 8406.66, + "end": 8409.74, + "probability": 0.9956 + }, + { + "start": 8412.12, + "end": 8420.62, + "probability": 0.9814 + }, + { + "start": 8421.3, + "end": 8421.78, + "probability": 0.429 + }, + { + "start": 8423.12, + "end": 8424.18, + "probability": 0.9296 + }, + { + "start": 8424.48, + "end": 8428.38, + "probability": 0.9884 + }, + { + "start": 8429.96, + "end": 8434.82, + "probability": 0.9943 + }, + { + "start": 8434.82, + "end": 8437.7, + "probability": 0.9989 + }, + { + "start": 8439.26, + "end": 8439.76, + "probability": 0.5399 + }, + { + "start": 8441.02, + "end": 8442.56, + "probability": 0.9912 + }, + { + "start": 8443.98, + "end": 8446.32, + "probability": 0.9951 + }, + { + "start": 8447.86, + "end": 8448.5, + "probability": 0.5807 + }, + { + "start": 8449.78, + "end": 8450.36, + "probability": 0.994 + }, + { + "start": 8451.66, + "end": 8452.88, + "probability": 0.8657 + }, + { + "start": 8453.76, + "end": 8455.54, + "probability": 0.9768 + }, + { + "start": 8457.24, + "end": 8459.94, + "probability": 0.9028 + }, + { + "start": 8460.86, + "end": 8462.2, + "probability": 0.999 + }, + { + "start": 8463.22, + "end": 8464.22, + "probability": 0.5149 + }, + { + "start": 8464.36, + "end": 8465.64, + "probability": 0.7817 + }, + { + "start": 8465.88, + "end": 8467.34, + "probability": 0.6877 + }, + { + "start": 8468.64, + "end": 8470.36, + "probability": 0.9843 + }, + { + "start": 8471.56, + "end": 8474.06, + "probability": 0.9901 + }, + { + "start": 8475.44, + "end": 8477.36, + "probability": 0.9641 + }, + { + "start": 8478.36, + "end": 8479.14, + "probability": 0.3328 + }, + { + "start": 8480.94, + "end": 8482.76, + "probability": 0.7296 + }, + { + "start": 8484.1, + "end": 8485.04, + "probability": 0.8798 + }, + { + "start": 8485.82, + "end": 8486.74, + "probability": 0.8448 + }, + { + "start": 8488.6, + "end": 8490.3, + "probability": 0.7173 + }, + { + "start": 8492.82, + "end": 8499.06, + "probability": 0.7826 + }, + { + "start": 8500.68, + "end": 8503.22, + "probability": 0.9275 + }, + { + "start": 8504.02, + "end": 8506.38, + "probability": 0.9804 + }, + { + "start": 8507.06, + "end": 8509.84, + "probability": 0.9194 + }, + { + "start": 8510.68, + "end": 8511.86, + "probability": 0.9574 + }, + { + "start": 8513.16, + "end": 8515.64, + "probability": 0.9827 + }, + { + "start": 8516.96, + "end": 8519.58, + "probability": 0.963 + }, + { + "start": 8520.5, + "end": 8523.98, + "probability": 0.9971 + }, + { + "start": 8524.8, + "end": 8526.84, + "probability": 0.9969 + }, + { + "start": 8527.48, + "end": 8531.24, + "probability": 0.9899 + }, + { + "start": 8533.56, + "end": 8534.56, + "probability": 0.9443 + }, + { + "start": 8536.04, + "end": 8537.08, + "probability": 0.9985 + }, + { + "start": 8538.46, + "end": 8540.4, + "probability": 0.995 + }, + { + "start": 8541.48, + "end": 8542.74, + "probability": 0.9472 + }, + { + "start": 8543.5, + "end": 8546.22, + "probability": 0.999 + }, + { + "start": 8546.3, + "end": 8547.78, + "probability": 0.8828 + }, + { + "start": 8548.44, + "end": 8548.92, + "probability": 0.7828 + }, + { + "start": 8549.44, + "end": 8551.84, + "probability": 0.9915 + }, + { + "start": 8552.04, + "end": 8554.34, + "probability": 0.9856 + }, + { + "start": 8555.44, + "end": 8558.28, + "probability": 0.8547 + }, + { + "start": 8558.7, + "end": 8559.72, + "probability": 0.9224 + }, + { + "start": 8562.95, + "end": 8564.58, + "probability": 0.8889 + }, + { + "start": 8566.34, + "end": 8567.3, + "probability": 0.8911 + }, + { + "start": 8568.18, + "end": 8570.22, + "probability": 0.8226 + }, + { + "start": 8571.62, + "end": 8572.5, + "probability": 0.6605 + }, + { + "start": 8573.6, + "end": 8575.32, + "probability": 0.9941 + }, + { + "start": 8576.14, + "end": 8579.1, + "probability": 0.9209 + }, + { + "start": 8580.16, + "end": 8581.66, + "probability": 0.9941 + }, + { + "start": 8583.06, + "end": 8586.36, + "probability": 0.9775 + }, + { + "start": 8587.26, + "end": 8588.96, + "probability": 0.6843 + }, + { + "start": 8589.86, + "end": 8592.86, + "probability": 0.9541 + }, + { + "start": 8593.66, + "end": 8595.9, + "probability": 0.8637 + }, + { + "start": 8596.76, + "end": 8597.72, + "probability": 0.9871 + }, + { + "start": 8598.84, + "end": 8600.16, + "probability": 0.8058 + }, + { + "start": 8600.78, + "end": 8601.82, + "probability": 0.9209 + }, + { + "start": 8602.44, + "end": 8603.46, + "probability": 0.8658 + }, + { + "start": 8604.26, + "end": 8605.52, + "probability": 0.9277 + }, + { + "start": 8606.4, + "end": 8607.88, + "probability": 0.9863 + }, + { + "start": 8608.62, + "end": 8609.5, + "probability": 0.7101 + }, + { + "start": 8609.62, + "end": 8610.14, + "probability": 0.783 + }, + { + "start": 8611.02, + "end": 8613.94, + "probability": 0.8429 + }, + { + "start": 8615.66, + "end": 8620.28, + "probability": 0.7962 + }, + { + "start": 8620.38, + "end": 8622.0, + "probability": 0.4401 + }, + { + "start": 8622.84, + "end": 8625.62, + "probability": 0.7283 + }, + { + "start": 8626.32, + "end": 8628.6, + "probability": 0.7282 + }, + { + "start": 8629.82, + "end": 8631.02, + "probability": 0.934 + }, + { + "start": 8631.72, + "end": 8632.32, + "probability": 0.7474 + }, + { + "start": 8633.12, + "end": 8635.0, + "probability": 0.9244 + }, + { + "start": 8636.0, + "end": 8638.42, + "probability": 0.9963 + }, + { + "start": 8640.28, + "end": 8641.72, + "probability": 0.7867 + }, + { + "start": 8643.62, + "end": 8648.16, + "probability": 0.9941 + }, + { + "start": 8649.38, + "end": 8650.69, + "probability": 0.7102 + }, + { + "start": 8651.82, + "end": 8653.32, + "probability": 0.994 + }, + { + "start": 8661.14, + "end": 8661.38, + "probability": 0.4897 + }, + { + "start": 8661.94, + "end": 8665.42, + "probability": 0.9894 + }, + { + "start": 8665.48, + "end": 8667.28, + "probability": 0.9932 + }, + { + "start": 8667.96, + "end": 8670.34, + "probability": 0.9412 + }, + { + "start": 8671.12, + "end": 8672.7, + "probability": 0.7575 + }, + { + "start": 8673.36, + "end": 8675.36, + "probability": 0.8052 + }, + { + "start": 8676.66, + "end": 8679.2, + "probability": 0.6846 + }, + { + "start": 8679.82, + "end": 8680.56, + "probability": 0.4278 + }, + { + "start": 8681.4, + "end": 8681.4, + "probability": 0.0838 + }, + { + "start": 8681.44, + "end": 8683.86, + "probability": 0.9893 + }, + { + "start": 8684.44, + "end": 8686.84, + "probability": 0.8096 + }, + { + "start": 8687.68, + "end": 8688.22, + "probability": 0.9929 + }, + { + "start": 8688.36, + "end": 8689.18, + "probability": 0.878 + }, + { + "start": 8689.62, + "end": 8694.04, + "probability": 0.8789 + }, + { + "start": 8694.62, + "end": 8696.56, + "probability": 0.9487 + }, + { + "start": 8698.46, + "end": 8699.52, + "probability": 0.7082 + }, + { + "start": 8700.06, + "end": 8702.64, + "probability": 0.8605 + }, + { + "start": 8708.88, + "end": 8715.6, + "probability": 0.0218 + }, + { + "start": 8720.97, + "end": 8723.03, + "probability": 0.0833 + }, + { + "start": 8723.63, + "end": 8724.31, + "probability": 0.1609 + }, + { + "start": 8724.31, + "end": 8729.17, + "probability": 0.5764 + }, + { + "start": 8729.17, + "end": 8735.21, + "probability": 0.9547 + }, + { + "start": 8736.05, + "end": 8736.6, + "probability": 0.621 + }, + { + "start": 8737.61, + "end": 8739.95, + "probability": 0.8962 + }, + { + "start": 8740.7, + "end": 8742.17, + "probability": 0.9224 + }, + { + "start": 8742.31, + "end": 8744.91, + "probability": 0.9836 + }, + { + "start": 8744.91, + "end": 8748.07, + "probability": 0.9797 + }, + { + "start": 8748.93, + "end": 8751.55, + "probability": 0.2907 + }, + { + "start": 8753.05, + "end": 8754.23, + "probability": 0.6844 + }, + { + "start": 8754.29, + "end": 8755.37, + "probability": 0.6803 + }, + { + "start": 8759.31, + "end": 8759.67, + "probability": 0.167 + }, + { + "start": 8770.41, + "end": 8771.22, + "probability": 0.4273 + }, + { + "start": 8771.49, + "end": 8772.11, + "probability": 0.8593 + }, + { + "start": 8788.59, + "end": 8789.83, + "probability": 0.7102 + }, + { + "start": 8790.43, + "end": 8794.37, + "probability": 0.7523 + }, + { + "start": 8794.63, + "end": 8796.49, + "probability": 0.9861 + }, + { + "start": 8796.49, + "end": 8799.83, + "probability": 0.9697 + }, + { + "start": 8799.83, + "end": 8802.11, + "probability": 0.9136 + }, + { + "start": 8802.63, + "end": 8804.83, + "probability": 0.7915 + }, + { + "start": 8808.65, + "end": 8814.41, + "probability": 0.8962 + }, + { + "start": 8814.59, + "end": 8815.81, + "probability": 0.7751 + }, + { + "start": 8816.05, + "end": 8818.28, + "probability": 0.7431 + }, + { + "start": 8819.37, + "end": 8821.75, + "probability": 0.9922 + }, + { + "start": 8821.81, + "end": 8822.37, + "probability": 0.6172 + }, + { + "start": 8822.37, + "end": 8824.02, + "probability": 0.0122 + }, + { + "start": 8824.57, + "end": 8828.15, + "probability": 0.7355 + }, + { + "start": 8828.19, + "end": 8832.01, + "probability": 0.6474 + }, + { + "start": 8832.83, + "end": 8835.23, + "probability": 0.9159 + }, + { + "start": 8835.37, + "end": 8838.05, + "probability": 0.9575 + }, + { + "start": 8839.43, + "end": 8842.65, + "probability": 0.836 + }, + { + "start": 8842.89, + "end": 8846.33, + "probability": 0.8767 + }, + { + "start": 8846.45, + "end": 8847.67, + "probability": 0.7747 + }, + { + "start": 8848.31, + "end": 8849.69, + "probability": 0.9613 + }, + { + "start": 8849.89, + "end": 8850.55, + "probability": 0.7219 + }, + { + "start": 8851.21, + "end": 8854.05, + "probability": 0.9799 + }, + { + "start": 8854.13, + "end": 8856.45, + "probability": 0.6921 + }, + { + "start": 8856.53, + "end": 8857.66, + "probability": 0.7741 + }, + { + "start": 8857.89, + "end": 8861.65, + "probability": 0.6512 + }, + { + "start": 8862.21, + "end": 8864.52, + "probability": 0.9108 + }, + { + "start": 8865.29, + "end": 8867.1, + "probability": 0.8423 + }, + { + "start": 8867.45, + "end": 8869.25, + "probability": 0.8009 + }, + { + "start": 8869.49, + "end": 8870.5, + "probability": 0.9419 + }, + { + "start": 8871.03, + "end": 8872.45, + "probability": 0.9041 + }, + { + "start": 8873.13, + "end": 8874.68, + "probability": 0.9841 + }, + { + "start": 8875.03, + "end": 8875.47, + "probability": 0.5526 + }, + { + "start": 8875.87, + "end": 8877.47, + "probability": 0.9883 + }, + { + "start": 8877.51, + "end": 8879.43, + "probability": 0.9611 + }, + { + "start": 8880.17, + "end": 8881.17, + "probability": 0.6876 + }, + { + "start": 8881.81, + "end": 8881.91, + "probability": 0.4578 + }, + { + "start": 8882.43, + "end": 8884.23, + "probability": 0.8865 + }, + { + "start": 8885.79, + "end": 8886.31, + "probability": 0.8222 + }, + { + "start": 8887.15, + "end": 8890.09, + "probability": 0.8529 + }, + { + "start": 8890.77, + "end": 8892.37, + "probability": 0.8974 + }, + { + "start": 8892.93, + "end": 8896.35, + "probability": 0.9771 + }, + { + "start": 8896.85, + "end": 8899.09, + "probability": 0.9956 + }, + { + "start": 8899.51, + "end": 8902.47, + "probability": 0.993 + }, + { + "start": 8902.66, + "end": 8905.49, + "probability": 0.8143 + }, + { + "start": 8905.61, + "end": 8905.61, + "probability": 0.3819 + }, + { + "start": 8905.67, + "end": 8906.81, + "probability": 0.5023 + }, + { + "start": 8907.49, + "end": 8909.95, + "probability": 0.981 + }, + { + "start": 8910.55, + "end": 8917.21, + "probability": 0.9597 + }, + { + "start": 8917.65, + "end": 8918.35, + "probability": 0.724 + }, + { + "start": 8919.13, + "end": 8920.01, + "probability": 0.6734 + }, + { + "start": 8920.59, + "end": 8922.53, + "probability": 0.7241 + }, + { + "start": 8922.99, + "end": 8924.63, + "probability": 0.9136 + }, + { + "start": 8925.23, + "end": 8927.55, + "probability": 0.9419 + }, + { + "start": 8927.63, + "end": 8930.11, + "probability": 0.6239 + }, + { + "start": 8930.65, + "end": 8932.83, + "probability": 0.9514 + }, + { + "start": 8933.35, + "end": 8934.99, + "probability": 0.6807 + }, + { + "start": 8935.57, + "end": 8937.47, + "probability": 0.7875 + }, + { + "start": 8937.59, + "end": 8938.89, + "probability": 0.7248 + }, + { + "start": 8939.35, + "end": 8941.57, + "probability": 0.9844 + }, + { + "start": 8942.05, + "end": 8942.95, + "probability": 0.8884 + }, + { + "start": 8943.61, + "end": 8945.96, + "probability": 0.7164 + }, + { + "start": 8946.99, + "end": 8947.37, + "probability": 0.9834 + }, + { + "start": 8948.05, + "end": 8951.95, + "probability": 0.9727 + }, + { + "start": 8952.11, + "end": 8952.31, + "probability": 0.3708 + }, + { + "start": 8952.69, + "end": 8955.95, + "probability": 0.9736 + }, + { + "start": 8956.65, + "end": 8959.21, + "probability": 0.9801 + }, + { + "start": 8959.87, + "end": 8964.15, + "probability": 0.9764 + }, + { + "start": 8964.73, + "end": 8966.11, + "probability": 0.9556 + }, + { + "start": 8966.57, + "end": 8968.11, + "probability": 0.9968 + }, + { + "start": 8968.31, + "end": 8971.94, + "probability": 0.9554 + }, + { + "start": 8972.28, + "end": 8974.15, + "probability": 0.9929 + }, + { + "start": 8974.27, + "end": 8974.85, + "probability": 0.7394 + }, + { + "start": 8974.97, + "end": 8975.45, + "probability": 0.7371 + }, + { + "start": 8976.03, + "end": 8976.37, + "probability": 0.9257 + }, + { + "start": 8977.87, + "end": 8979.67, + "probability": 0.9485 + }, + { + "start": 8980.33, + "end": 8983.15, + "probability": 0.9876 + }, + { + "start": 8983.37, + "end": 8986.75, + "probability": 0.9199 + }, + { + "start": 8986.87, + "end": 8987.27, + "probability": 0.8166 + }, + { + "start": 8987.37, + "end": 8987.85, + "probability": 0.7866 + }, + { + "start": 8988.65, + "end": 8989.79, + "probability": 0.9821 + }, + { + "start": 8990.81, + "end": 8992.55, + "probability": 0.998 + }, + { + "start": 8993.11, + "end": 8993.95, + "probability": 0.5369 + }, + { + "start": 8994.63, + "end": 8995.87, + "probability": 0.7961 + }, + { + "start": 8996.05, + "end": 8997.73, + "probability": 0.7634 + }, + { + "start": 8998.19, + "end": 8998.97, + "probability": 0.7424 + }, + { + "start": 8999.49, + "end": 9000.51, + "probability": 0.7639 + }, + { + "start": 9001.17, + "end": 9005.35, + "probability": 0.8083 + }, + { + "start": 9006.53, + "end": 9007.15, + "probability": 0.9323 + }, + { + "start": 9007.49, + "end": 9010.39, + "probability": 0.5974 + }, + { + "start": 9011.03, + "end": 9011.23, + "probability": 0.7364 + }, + { + "start": 9011.73, + "end": 9012.31, + "probability": 0.3364 + }, + { + "start": 9012.31, + "end": 9013.05, + "probability": 0.7908 + }, + { + "start": 9013.13, + "end": 9014.67, + "probability": 0.9423 + }, + { + "start": 9014.73, + "end": 9017.89, + "probability": 0.9207 + }, + { + "start": 9018.11, + "end": 9021.03, + "probability": 0.9325 + }, + { + "start": 9021.47, + "end": 9023.93, + "probability": 0.9804 + }, + { + "start": 9024.57, + "end": 9028.59, + "probability": 0.8087 + }, + { + "start": 9029.17, + "end": 9030.61, + "probability": 0.7594 + }, + { + "start": 9040.41, + "end": 9040.51, + "probability": 0.5109 + }, + { + "start": 9041.93, + "end": 9044.13, + "probability": 0.7972 + }, + { + "start": 9044.35, + "end": 9046.11, + "probability": 0.9658 + }, + { + "start": 9046.21, + "end": 9048.43, + "probability": 0.8862 + }, + { + "start": 9048.59, + "end": 9050.47, + "probability": 0.9145 + }, + { + "start": 9050.49, + "end": 9051.49, + "probability": 0.7539 + }, + { + "start": 9052.09, + "end": 9053.17, + "probability": 0.6549 + }, + { + "start": 9054.13, + "end": 9055.97, + "probability": 0.7556 + }, + { + "start": 9056.27, + "end": 9056.79, + "probability": 0.5638 + }, + { + "start": 9056.99, + "end": 9058.25, + "probability": 0.9418 + }, + { + "start": 9058.47, + "end": 9060.65, + "probability": 0.908 + }, + { + "start": 9060.79, + "end": 9062.87, + "probability": 0.9692 + }, + { + "start": 9064.27, + "end": 9069.57, + "probability": 0.9948 + }, + { + "start": 9069.57, + "end": 9074.51, + "probability": 0.9995 + }, + { + "start": 9075.85, + "end": 9078.59, + "probability": 0.9995 + }, + { + "start": 9079.29, + "end": 9081.35, + "probability": 0.9801 + }, + { + "start": 9082.23, + "end": 9086.83, + "probability": 0.9995 + }, + { + "start": 9087.77, + "end": 9089.65, + "probability": 0.9878 + }, + { + "start": 9090.73, + "end": 9092.01, + "probability": 0.9004 + }, + { + "start": 9092.61, + "end": 9097.41, + "probability": 0.9974 + }, + { + "start": 9098.47, + "end": 9099.81, + "probability": 0.999 + }, + { + "start": 9100.51, + "end": 9101.65, + "probability": 0.9857 + }, + { + "start": 9102.11, + "end": 9104.99, + "probability": 0.9985 + }, + { + "start": 9105.99, + "end": 9108.91, + "probability": 0.9962 + }, + { + "start": 9109.01, + "end": 9114.15, + "probability": 0.9932 + }, + { + "start": 9115.05, + "end": 9116.27, + "probability": 0.9985 + }, + { + "start": 9116.85, + "end": 9121.43, + "probability": 0.8647 + }, + { + "start": 9121.67, + "end": 9125.25, + "probability": 0.9854 + }, + { + "start": 9126.23, + "end": 9130.47, + "probability": 0.991 + }, + { + "start": 9131.05, + "end": 9134.43, + "probability": 0.9534 + }, + { + "start": 9135.07, + "end": 9137.41, + "probability": 0.9769 + }, + { + "start": 9138.17, + "end": 9139.15, + "probability": 0.886 + }, + { + "start": 9139.67, + "end": 9141.79, + "probability": 0.9879 + }, + { + "start": 9141.87, + "end": 9144.07, + "probability": 0.9948 + }, + { + "start": 9144.57, + "end": 9147.27, + "probability": 0.9928 + }, + { + "start": 9147.27, + "end": 9150.29, + "probability": 0.9993 + }, + { + "start": 9150.81, + "end": 9151.75, + "probability": 0.8755 + }, + { + "start": 9152.19, + "end": 9155.89, + "probability": 0.9912 + }, + { + "start": 9156.09, + "end": 9157.69, + "probability": 0.9944 + }, + { + "start": 9158.33, + "end": 9159.27, + "probability": 0.9933 + }, + { + "start": 9160.03, + "end": 9163.57, + "probability": 0.9942 + }, + { + "start": 9163.57, + "end": 9166.21, + "probability": 0.9565 + }, + { + "start": 9167.91, + "end": 9169.67, + "probability": 0.9904 + }, + { + "start": 9169.97, + "end": 9172.87, + "probability": 0.9429 + }, + { + "start": 9173.77, + "end": 9176.81, + "probability": 0.9619 + }, + { + "start": 9177.41, + "end": 9178.79, + "probability": 0.9883 + }, + { + "start": 9179.31, + "end": 9181.07, + "probability": 0.9883 + }, + { + "start": 9181.61, + "end": 9185.01, + "probability": 0.9988 + }, + { + "start": 9185.01, + "end": 9188.79, + "probability": 0.9996 + }, + { + "start": 9189.7, + "end": 9193.67, + "probability": 0.7394 + }, + { + "start": 9194.23, + "end": 9198.39, + "probability": 0.9985 + }, + { + "start": 9198.55, + "end": 9199.17, + "probability": 0.5259 + }, + { + "start": 9199.71, + "end": 9201.29, + "probability": 0.9939 + }, + { + "start": 9202.75, + "end": 9206.29, + "probability": 0.9875 + }, + { + "start": 9207.37, + "end": 9210.99, + "probability": 0.959 + }, + { + "start": 9211.79, + "end": 9213.87, + "probability": 0.9856 + }, + { + "start": 9213.87, + "end": 9217.03, + "probability": 0.9984 + }, + { + "start": 9218.09, + "end": 9222.49, + "probability": 0.9978 + }, + { + "start": 9223.15, + "end": 9226.37, + "probability": 0.9644 + }, + { + "start": 9227.19, + "end": 9229.71, + "probability": 0.8905 + }, + { + "start": 9230.33, + "end": 9234.97, + "probability": 0.9958 + }, + { + "start": 9236.14, + "end": 9239.68, + "probability": 0.7773 + }, + { + "start": 9240.27, + "end": 9242.39, + "probability": 0.9835 + }, + { + "start": 9242.57, + "end": 9244.43, + "probability": 0.6489 + }, + { + "start": 9244.59, + "end": 9248.01, + "probability": 0.9873 + }, + { + "start": 9248.15, + "end": 9249.77, + "probability": 0.8159 + }, + { + "start": 9250.01, + "end": 9253.77, + "probability": 0.5644 + }, + { + "start": 9253.89, + "end": 9257.17, + "probability": 0.947 + }, + { + "start": 9257.45, + "end": 9262.17, + "probability": 0.9926 + }, + { + "start": 9263.35, + "end": 9267.79, + "probability": 0.988 + }, + { + "start": 9267.79, + "end": 9272.47, + "probability": 0.9991 + }, + { + "start": 9273.01, + "end": 9278.01, + "probability": 0.9946 + }, + { + "start": 9278.55, + "end": 9279.55, + "probability": 0.8745 + }, + { + "start": 9279.67, + "end": 9283.25, + "probability": 0.9947 + }, + { + "start": 9283.25, + "end": 9285.99, + "probability": 0.9901 + }, + { + "start": 9286.61, + "end": 9288.11, + "probability": 0.7607 + }, + { + "start": 9288.79, + "end": 9290.21, + "probability": 0.9142 + }, + { + "start": 9290.63, + "end": 9293.05, + "probability": 0.9585 + }, + { + "start": 9293.53, + "end": 9296.57, + "probability": 0.9692 + }, + { + "start": 9296.57, + "end": 9299.63, + "probability": 0.9635 + }, + { + "start": 9300.37, + "end": 9304.91, + "probability": 0.9821 + }, + { + "start": 9306.03, + "end": 9307.15, + "probability": 0.8743 + }, + { + "start": 9307.69, + "end": 9312.11, + "probability": 0.998 + }, + { + "start": 9313.39, + "end": 9316.87, + "probability": 0.9957 + }, + { + "start": 9317.03, + "end": 9318.21, + "probability": 0.992 + }, + { + "start": 9318.89, + "end": 9320.87, + "probability": 0.9958 + }, + { + "start": 9321.23, + "end": 9326.94, + "probability": 0.9968 + }, + { + "start": 9327.45, + "end": 9330.27, + "probability": 0.9779 + }, + { + "start": 9330.87, + "end": 9331.13, + "probability": 0.8143 + }, + { + "start": 9331.75, + "end": 9334.18, + "probability": 0.6542 + }, + { + "start": 9335.43, + "end": 9337.65, + "probability": 0.8412 + }, + { + "start": 9352.29, + "end": 9355.29, + "probability": 0.4859 + }, + { + "start": 9356.25, + "end": 9358.11, + "probability": 0.9211 + }, + { + "start": 9358.85, + "end": 9361.23, + "probability": 0.869 + }, + { + "start": 9362.79, + "end": 9364.55, + "probability": 0.8777 + }, + { + "start": 9365.61, + "end": 9371.8, + "probability": 0.9062 + }, + { + "start": 9373.13, + "end": 9375.85, + "probability": 0.852 + }, + { + "start": 9375.99, + "end": 9381.09, + "probability": 0.9797 + }, + { + "start": 9382.25, + "end": 9384.19, + "probability": 0.9229 + }, + { + "start": 9384.93, + "end": 9388.31, + "probability": 0.9608 + }, + { + "start": 9389.15, + "end": 9392.21, + "probability": 0.7615 + }, + { + "start": 9392.51, + "end": 9393.57, + "probability": 0.8207 + }, + { + "start": 9394.05, + "end": 9396.49, + "probability": 0.9738 + }, + { + "start": 9396.71, + "end": 9397.75, + "probability": 0.9951 + }, + { + "start": 9398.27, + "end": 9399.41, + "probability": 0.9604 + }, + { + "start": 9399.85, + "end": 9402.37, + "probability": 0.9929 + }, + { + "start": 9402.63, + "end": 9404.97, + "probability": 0.9202 + }, + { + "start": 9405.83, + "end": 9410.03, + "probability": 0.8805 + }, + { + "start": 9410.61, + "end": 9412.63, + "probability": 0.6411 + }, + { + "start": 9413.65, + "end": 9414.49, + "probability": 0.8387 + }, + { + "start": 9415.23, + "end": 9416.29, + "probability": 0.8712 + }, + { + "start": 9416.91, + "end": 9419.53, + "probability": 0.7013 + }, + { + "start": 9419.57, + "end": 9422.03, + "probability": 0.9736 + }, + { + "start": 9422.55, + "end": 9424.35, + "probability": 0.9953 + }, + { + "start": 9424.85, + "end": 9426.94, + "probability": 0.9987 + }, + { + "start": 9427.35, + "end": 9428.37, + "probability": 0.9345 + }, + { + "start": 9428.45, + "end": 9429.45, + "probability": 0.8596 + }, + { + "start": 9429.51, + "end": 9430.57, + "probability": 0.8765 + }, + { + "start": 9431.83, + "end": 9434.99, + "probability": 0.8813 + }, + { + "start": 9435.37, + "end": 9436.79, + "probability": 0.9706 + }, + { + "start": 9437.41, + "end": 9440.85, + "probability": 0.9859 + }, + { + "start": 9441.21, + "end": 9444.77, + "probability": 0.9744 + }, + { + "start": 9444.91, + "end": 9446.8, + "probability": 0.9992 + }, + { + "start": 9447.51, + "end": 9449.27, + "probability": 0.7115 + }, + { + "start": 9449.83, + "end": 9454.29, + "probability": 0.9695 + }, + { + "start": 9455.19, + "end": 9460.69, + "probability": 0.9409 + }, + { + "start": 9460.75, + "end": 9462.21, + "probability": 0.8668 + }, + { + "start": 9462.71, + "end": 9467.13, + "probability": 0.7786 + }, + { + "start": 9467.19, + "end": 9469.99, + "probability": 0.9473 + }, + { + "start": 9471.23, + "end": 9474.29, + "probability": 0.8079 + }, + { + "start": 9474.91, + "end": 9479.59, + "probability": 0.8954 + }, + { + "start": 9480.01, + "end": 9481.49, + "probability": 0.6547 + }, + { + "start": 9481.85, + "end": 9484.59, + "probability": 0.8869 + }, + { + "start": 9484.77, + "end": 9486.31, + "probability": 0.7361 + }, + { + "start": 9487.27, + "end": 9489.71, + "probability": 0.9753 + }, + { + "start": 9493.87, + "end": 9494.35, + "probability": 0.4696 + }, + { + "start": 9494.49, + "end": 9496.51, + "probability": 0.8539 + }, + { + "start": 9499.89, + "end": 9502.35, + "probability": 0.6318 + }, + { + "start": 9503.21, + "end": 9505.55, + "probability": 0.916 + }, + { + "start": 9505.55, + "end": 9506.85, + "probability": 0.8145 + }, + { + "start": 9506.91, + "end": 9509.37, + "probability": 0.8289 + }, + { + "start": 9509.47, + "end": 9510.71, + "probability": 0.7725 + }, + { + "start": 9510.81, + "end": 9512.69, + "probability": 0.9425 + }, + { + "start": 9512.79, + "end": 9513.45, + "probability": 0.8071 + }, + { + "start": 9514.43, + "end": 9516.87, + "probability": 0.9739 + }, + { + "start": 9518.29, + "end": 9523.95, + "probability": 0.9037 + }, + { + "start": 9524.07, + "end": 9526.41, + "probability": 0.9275 + }, + { + "start": 9526.61, + "end": 9529.33, + "probability": 0.9976 + }, + { + "start": 9529.43, + "end": 9530.11, + "probability": 0.6863 + }, + { + "start": 9531.14, + "end": 9533.63, + "probability": 0.179 + }, + { + "start": 9533.65, + "end": 9536.23, + "probability": 0.7792 + }, + { + "start": 9537.05, + "end": 9540.97, + "probability": 0.9929 + }, + { + "start": 9543.57, + "end": 9545.43, + "probability": 0.8226 + }, + { + "start": 9546.01, + "end": 9547.15, + "probability": 0.7734 + }, + { + "start": 9547.73, + "end": 9551.39, + "probability": 0.8857 + }, + { + "start": 9552.57, + "end": 9553.41, + "probability": 0.7576 + }, + { + "start": 9553.97, + "end": 9560.81, + "probability": 0.5064 + }, + { + "start": 9560.81, + "end": 9564.23, + "probability": 0.643 + }, + { + "start": 9565.67, + "end": 9570.53, + "probability": 0.9421 + }, + { + "start": 9570.91, + "end": 9572.35, + "probability": 0.9937 + }, + { + "start": 9572.43, + "end": 9573.17, + "probability": 0.9207 + }, + { + "start": 9573.61, + "end": 9575.51, + "probability": 0.8846 + }, + { + "start": 9575.51, + "end": 9579.41, + "probability": 0.7125 + }, + { + "start": 9579.93, + "end": 9585.67, + "probability": 0.7392 + }, + { + "start": 9585.67, + "end": 9586.82, + "probability": 0.6202 + }, + { + "start": 9587.39, + "end": 9589.57, + "probability": 0.8828 + }, + { + "start": 9589.89, + "end": 9594.63, + "probability": 0.6782 + }, + { + "start": 9595.15, + "end": 9596.51, + "probability": 0.9865 + }, + { + "start": 9597.03, + "end": 9602.01, + "probability": 0.991 + }, + { + "start": 9602.35, + "end": 9604.01, + "probability": 0.8738 + }, + { + "start": 9604.51, + "end": 9607.79, + "probability": 0.6817 + }, + { + "start": 9608.21, + "end": 9614.03, + "probability": 0.9637 + }, + { + "start": 9614.47, + "end": 9617.61, + "probability": 0.7953 + }, + { + "start": 9617.75, + "end": 9619.11, + "probability": 0.3584 + }, + { + "start": 9619.21, + "end": 9620.55, + "probability": 0.8709 + }, + { + "start": 9621.6, + "end": 9625.93, + "probability": 0.9364 + }, + { + "start": 9626.49, + "end": 9627.73, + "probability": 0.9725 + }, + { + "start": 9628.25, + "end": 9629.57, + "probability": 0.6235 + }, + { + "start": 9630.37, + "end": 9632.27, + "probability": 0.5019 + }, + { + "start": 9633.19, + "end": 9633.95, + "probability": 0.5929 + }, + { + "start": 9634.11, + "end": 9635.95, + "probability": 0.7498 + }, + { + "start": 9636.41, + "end": 9638.77, + "probability": 0.9669 + }, + { + "start": 9639.05, + "end": 9641.47, + "probability": 0.9618 + }, + { + "start": 9641.85, + "end": 9642.93, + "probability": 0.9341 + }, + { + "start": 9643.41, + "end": 9645.41, + "probability": 0.9868 + }, + { + "start": 9645.79, + "end": 9649.51, + "probability": 0.9618 + }, + { + "start": 9649.53, + "end": 9653.17, + "probability": 0.9141 + }, + { + "start": 9653.63, + "end": 9656.13, + "probability": 0.8256 + }, + { + "start": 9656.55, + "end": 9657.47, + "probability": 0.9709 + }, + { + "start": 9657.75, + "end": 9658.34, + "probability": 0.8921 + }, + { + "start": 9659.07, + "end": 9661.93, + "probability": 0.9918 + }, + { + "start": 9662.45, + "end": 9663.35, + "probability": 0.9424 + }, + { + "start": 9664.33, + "end": 9664.77, + "probability": 0.7539 + }, + { + "start": 9665.07, + "end": 9665.93, + "probability": 0.7546 + }, + { + "start": 9666.25, + "end": 9669.15, + "probability": 0.9468 + }, + { + "start": 9669.29, + "end": 9671.07, + "probability": 0.6734 + }, + { + "start": 9671.53, + "end": 9671.81, + "probability": 0.8063 + }, + { + "start": 9672.13, + "end": 9673.21, + "probability": 0.6858 + }, + { + "start": 9673.43, + "end": 9673.89, + "probability": 0.9493 + }, + { + "start": 9673.97, + "end": 9674.81, + "probability": 0.7868 + }, + { + "start": 9674.85, + "end": 9677.63, + "probability": 0.765 + }, + { + "start": 9677.77, + "end": 9678.23, + "probability": 0.4051 + }, + { + "start": 9678.53, + "end": 9681.87, + "probability": 0.6632 + }, + { + "start": 9689.61, + "end": 9691.03, + "probability": 0.5524 + }, + { + "start": 9691.13, + "end": 9691.57, + "probability": 0.9519 + }, + { + "start": 9700.23, + "end": 9704.23, + "probability": 0.4228 + }, + { + "start": 9704.87, + "end": 9711.41, + "probability": 0.6284 + }, + { + "start": 9712.83, + "end": 9714.65, + "probability": 0.9586 + }, + { + "start": 9714.89, + "end": 9716.13, + "probability": 0.9432 + }, + { + "start": 9716.83, + "end": 9719.29, + "probability": 0.7654 + }, + { + "start": 9720.37, + "end": 9724.75, + "probability": 0.8128 + }, + { + "start": 9724.85, + "end": 9729.37, + "probability": 0.9944 + }, + { + "start": 9729.47, + "end": 9730.91, + "probability": 0.7993 + }, + { + "start": 9731.43, + "end": 9732.65, + "probability": 0.9496 + }, + { + "start": 9733.43, + "end": 9736.91, + "probability": 0.9667 + }, + { + "start": 9737.13, + "end": 9741.57, + "probability": 0.9872 + }, + { + "start": 9741.85, + "end": 9742.69, + "probability": 0.9727 + }, + { + "start": 9742.91, + "end": 9744.87, + "probability": 0.8526 + }, + { + "start": 9745.81, + "end": 9749.25, + "probability": 0.8025 + }, + { + "start": 9750.09, + "end": 9752.57, + "probability": 0.9971 + }, + { + "start": 9752.79, + "end": 9754.33, + "probability": 0.9699 + }, + { + "start": 9754.79, + "end": 9757.01, + "probability": 0.9841 + }, + { + "start": 9757.07, + "end": 9759.73, + "probability": 0.9724 + }, + { + "start": 9760.43, + "end": 9761.07, + "probability": 0.9397 + }, + { + "start": 9761.75, + "end": 9763.14, + "probability": 0.8999 + }, + { + "start": 9763.17, + "end": 9764.49, + "probability": 0.9646 + }, + { + "start": 9764.61, + "end": 9765.25, + "probability": 0.9624 + }, + { + "start": 9765.31, + "end": 9767.21, + "probability": 0.9951 + }, + { + "start": 9767.73, + "end": 9768.49, + "probability": 0.9358 + }, + { + "start": 9768.57, + "end": 9770.61, + "probability": 0.7606 + }, + { + "start": 9770.73, + "end": 9771.61, + "probability": 0.9722 + }, + { + "start": 9771.79, + "end": 9775.69, + "probability": 0.8237 + }, + { + "start": 9776.27, + "end": 9777.26, + "probability": 0.9508 + }, + { + "start": 9777.49, + "end": 9778.89, + "probability": 0.8022 + }, + { + "start": 9779.17, + "end": 9780.17, + "probability": 0.8309 + }, + { + "start": 9780.69, + "end": 9784.73, + "probability": 0.8797 + }, + { + "start": 9785.41, + "end": 9786.15, + "probability": 0.7347 + }, + { + "start": 9786.69, + "end": 9788.07, + "probability": 0.8503 + }, + { + "start": 9788.21, + "end": 9790.77, + "probability": 0.9954 + }, + { + "start": 9791.45, + "end": 9792.91, + "probability": 0.9841 + }, + { + "start": 9793.39, + "end": 9797.41, + "probability": 0.8613 + }, + { + "start": 9797.93, + "end": 9799.08, + "probability": 0.8809 + }, + { + "start": 9800.39, + "end": 9803.09, + "probability": 0.7708 + }, + { + "start": 9803.11, + "end": 9803.52, + "probability": 0.8987 + }, + { + "start": 9803.71, + "end": 9804.59, + "probability": 0.6287 + }, + { + "start": 9805.07, + "end": 9806.17, + "probability": 0.8305 + }, + { + "start": 9806.29, + "end": 9809.53, + "probability": 0.4553 + }, + { + "start": 9810.21, + "end": 9811.17, + "probability": 0.9266 + }, + { + "start": 9811.49, + "end": 9813.09, + "probability": 0.7515 + }, + { + "start": 9813.15, + "end": 9815.55, + "probability": 0.8605 + }, + { + "start": 9816.04, + "end": 9819.07, + "probability": 0.9546 + }, + { + "start": 9819.29, + "end": 9820.07, + "probability": 0.9592 + }, + { + "start": 9820.63, + "end": 9821.81, + "probability": 0.9508 + }, + { + "start": 9822.27, + "end": 9825.17, + "probability": 0.9102 + }, + { + "start": 9825.73, + "end": 9828.45, + "probability": 0.998 + }, + { + "start": 9829.21, + "end": 9833.77, + "probability": 0.3273 + }, + { + "start": 9833.85, + "end": 9834.49, + "probability": 0.2193 + }, + { + "start": 9834.89, + "end": 9836.05, + "probability": 0.9043 + }, + { + "start": 9836.49, + "end": 9839.81, + "probability": 0.876 + }, + { + "start": 9839.87, + "end": 9840.83, + "probability": 0.7429 + }, + { + "start": 9841.05, + "end": 9842.15, + "probability": 0.8342 + }, + { + "start": 9842.67, + "end": 9844.69, + "probability": 0.5337 + }, + { + "start": 9845.49, + "end": 9847.55, + "probability": 0.8379 + }, + { + "start": 9847.85, + "end": 9848.65, + "probability": 0.8481 + }, + { + "start": 9849.01, + "end": 9849.68, + "probability": 0.9773 + }, + { + "start": 9849.81, + "end": 9853.91, + "probability": 0.7084 + }, + { + "start": 9854.35, + "end": 9854.87, + "probability": 0.9451 + }, + { + "start": 9855.35, + "end": 9857.23, + "probability": 0.9406 + }, + { + "start": 9857.71, + "end": 9859.05, + "probability": 0.9761 + }, + { + "start": 9859.15, + "end": 9860.71, + "probability": 0.7499 + }, + { + "start": 9860.83, + "end": 9862.71, + "probability": 0.8308 + }, + { + "start": 9862.83, + "end": 9865.25, + "probability": 0.9193 + }, + { + "start": 9865.71, + "end": 9869.57, + "probability": 0.8433 + }, + { + "start": 9870.31, + "end": 9873.43, + "probability": 0.8982 + }, + { + "start": 9873.61, + "end": 9874.95, + "probability": 0.6187 + }, + { + "start": 9875.15, + "end": 9877.75, + "probability": 0.9222 + }, + { + "start": 9878.41, + "end": 9881.15, + "probability": 0.5984 + }, + { + "start": 9881.85, + "end": 9883.31, + "probability": 0.763 + }, + { + "start": 9883.49, + "end": 9887.75, + "probability": 0.668 + }, + { + "start": 9887.75, + "end": 9892.21, + "probability": 0.9028 + }, + { + "start": 9892.29, + "end": 9894.33, + "probability": 0.9033 + }, + { + "start": 9894.85, + "end": 9895.07, + "probability": 0.7117 + }, + { + "start": 9896.49, + "end": 9897.53, + "probability": 0.4967 + }, + { + "start": 9897.57, + "end": 9900.39, + "probability": 0.6654 + }, + { + "start": 9911.33, + "end": 9913.59, + "probability": 0.5581 + }, + { + "start": 9913.59, + "end": 9914.84, + "probability": 0.8904 + }, + { + "start": 9915.55, + "end": 9916.75, + "probability": 0.7051 + }, + { + "start": 9918.47, + "end": 9920.93, + "probability": 0.87 + }, + { + "start": 9922.81, + "end": 9925.63, + "probability": 0.9922 + }, + { + "start": 9926.53, + "end": 9933.61, + "probability": 0.9883 + }, + { + "start": 9935.01, + "end": 9936.43, + "probability": 0.8828 + }, + { + "start": 9937.39, + "end": 9941.41, + "probability": 0.9709 + }, + { + "start": 9942.59, + "end": 9944.45, + "probability": 0.9966 + }, + { + "start": 9946.61, + "end": 9948.83, + "probability": 0.9958 + }, + { + "start": 9949.69, + "end": 9950.53, + "probability": 0.8409 + }, + { + "start": 9951.55, + "end": 9953.85, + "probability": 0.7248 + }, + { + "start": 9956.2, + "end": 9960.05, + "probability": 0.9651 + }, + { + "start": 9961.05, + "end": 9965.53, + "probability": 0.9897 + }, + { + "start": 9967.53, + "end": 9969.76, + "probability": 0.9478 + }, + { + "start": 9970.95, + "end": 9973.11, + "probability": 0.9915 + }, + { + "start": 9974.37, + "end": 9977.67, + "probability": 0.9966 + }, + { + "start": 9979.45, + "end": 9981.27, + "probability": 0.9979 + }, + { + "start": 9981.95, + "end": 9986.29, + "probability": 0.9985 + }, + { + "start": 9987.15, + "end": 9989.13, + "probability": 0.856 + }, + { + "start": 9989.69, + "end": 9993.83, + "probability": 0.9978 + }, + { + "start": 9994.81, + "end": 9994.87, + "probability": 0.3395 + }, + { + "start": 9994.93, + "end": 9995.25, + "probability": 0.9489 + }, + { + "start": 9995.35, + "end": 9996.55, + "probability": 0.9881 + }, + { + "start": 9996.73, + "end": 10000.11, + "probability": 0.8771 + }, + { + "start": 10000.57, + "end": 10001.99, + "probability": 0.997 + }, + { + "start": 10002.89, + "end": 10002.89, + "probability": 0.2931 + }, + { + "start": 10002.89, + "end": 10004.67, + "probability": 0.689 + }, + { + "start": 10004.83, + "end": 10005.79, + "probability": 0.9303 + }, + { + "start": 10005.95, + "end": 10007.67, + "probability": 0.903 + }, + { + "start": 10007.85, + "end": 10009.23, + "probability": 0.9865 + }, + { + "start": 10010.13, + "end": 10012.13, + "probability": 0.9749 + }, + { + "start": 10012.21, + "end": 10013.53, + "probability": 0.8832 + }, + { + "start": 10027.85, + "end": 10030.01, + "probability": 0.4746 + }, + { + "start": 10030.03, + "end": 10030.75, + "probability": 0.8682 + }, + { + "start": 10031.99, + "end": 10033.37, + "probability": 0.6713 + }, + { + "start": 10033.63, + "end": 10034.35, + "probability": 0.6478 + }, + { + "start": 10034.53, + "end": 10036.45, + "probability": 0.7905 + }, + { + "start": 10038.11, + "end": 10038.87, + "probability": 0.887 + }, + { + "start": 10041.79, + "end": 10045.37, + "probability": 0.8187 + }, + { + "start": 10046.15, + "end": 10051.35, + "probability": 0.997 + }, + { + "start": 10051.97, + "end": 10052.99, + "probability": 0.9963 + }, + { + "start": 10054.75, + "end": 10055.73, + "probability": 0.9901 + }, + { + "start": 10060.85, + "end": 10064.37, + "probability": 0.5842 + }, + { + "start": 10067.07, + "end": 10071.37, + "probability": 0.9937 + }, + { + "start": 10072.17, + "end": 10074.03, + "probability": 0.9668 + }, + { + "start": 10075.13, + "end": 10076.07, + "probability": 0.9917 + }, + { + "start": 10079.53, + "end": 10080.25, + "probability": 0.6481 + }, + { + "start": 10081.69, + "end": 10084.09, + "probability": 0.391 + }, + { + "start": 10085.45, + "end": 10087.51, + "probability": 0.9463 + }, + { + "start": 10087.65, + "end": 10091.71, + "probability": 0.655 + }, + { + "start": 10092.09, + "end": 10093.07, + "probability": 0.907 + }, + { + "start": 10093.31, + "end": 10095.55, + "probability": 0.9622 + }, + { + "start": 10097.69, + "end": 10099.97, + "probability": 0.9497 + }, + { + "start": 10101.07, + "end": 10104.61, + "probability": 0.9386 + }, + { + "start": 10105.19, + "end": 10106.95, + "probability": 0.3625 + }, + { + "start": 10107.37, + "end": 10110.29, + "probability": 0.9224 + }, + { + "start": 10110.39, + "end": 10111.53, + "probability": 0.7109 + }, + { + "start": 10112.53, + "end": 10115.17, + "probability": 0.8684 + }, + { + "start": 10115.67, + "end": 10116.71, + "probability": 0.3801 + }, + { + "start": 10116.99, + "end": 10118.21, + "probability": 0.6784 + }, + { + "start": 10118.69, + "end": 10121.41, + "probability": 0.9669 + }, + { + "start": 10121.41, + "end": 10124.37, + "probability": 0.9764 + }, + { + "start": 10125.69, + "end": 10125.97, + "probability": 0.8689 + }, + { + "start": 10130.21, + "end": 10135.67, + "probability": 0.7661 + }, + { + "start": 10136.47, + "end": 10137.83, + "probability": 0.8396 + }, + { + "start": 10138.07, + "end": 10139.75, + "probability": 0.9935 + }, + { + "start": 10140.45, + "end": 10144.43, + "probability": 0.9967 + }, + { + "start": 10144.99, + "end": 10147.95, + "probability": 0.9826 + }, + { + "start": 10149.77, + "end": 10151.55, + "probability": 0.9611 + }, + { + "start": 10152.13, + "end": 10153.75, + "probability": 0.9004 + }, + { + "start": 10154.65, + "end": 10157.77, + "probability": 0.6542 + }, + { + "start": 10157.83, + "end": 10159.13, + "probability": 0.857 + }, + { + "start": 10160.59, + "end": 10162.45, + "probability": 0.9883 + }, + { + "start": 10165.32, + "end": 10170.23, + "probability": 0.7144 + }, + { + "start": 10170.53, + "end": 10171.79, + "probability": 0.7457 + }, + { + "start": 10172.31, + "end": 10173.89, + "probability": 0.7956 + }, + { + "start": 10174.27, + "end": 10174.69, + "probability": 0.8931 + }, + { + "start": 10175.41, + "end": 10176.55, + "probability": 0.5063 + }, + { + "start": 10176.84, + "end": 10180.15, + "probability": 0.7271 + }, + { + "start": 10180.77, + "end": 10183.67, + "probability": 0.8242 + }, + { + "start": 10183.71, + "end": 10184.31, + "probability": 0.8207 + }, + { + "start": 10186.48, + "end": 10189.0, + "probability": 0.0525 + }, + { + "start": 10190.67, + "end": 10191.37, + "probability": 0.0034 + }, + { + "start": 10194.05, + "end": 10194.19, + "probability": 0.0389 + }, + { + "start": 10205.13, + "end": 10206.59, + "probability": 0.0727 + }, + { + "start": 10207.55, + "end": 10207.59, + "probability": 0.496 + }, + { + "start": 10207.59, + "end": 10209.01, + "probability": 0.5177 + }, + { + "start": 10210.53, + "end": 10212.05, + "probability": 0.5682 + }, + { + "start": 10212.25, + "end": 10213.65, + "probability": 0.3455 + }, + { + "start": 10213.83, + "end": 10217.25, + "probability": 0.9358 + }, + { + "start": 10217.35, + "end": 10219.51, + "probability": 0.8884 + }, + { + "start": 10219.61, + "end": 10220.83, + "probability": 0.6827 + }, + { + "start": 10220.89, + "end": 10222.13, + "probability": 0.9011 + }, + { + "start": 10222.75, + "end": 10224.89, + "probability": 0.4041 + }, + { + "start": 10224.95, + "end": 10225.85, + "probability": 0.7476 + }, + { + "start": 10226.23, + "end": 10229.35, + "probability": 0.762 + }, + { + "start": 10229.35, + "end": 10232.47, + "probability": 0.744 + }, + { + "start": 10233.21, + "end": 10234.41, + "probability": 0.963 + }, + { + "start": 10237.31, + "end": 10238.29, + "probability": 0.7183 + }, + { + "start": 10238.37, + "end": 10239.21, + "probability": 0.8799 + }, + { + "start": 10239.69, + "end": 10240.91, + "probability": 0.8539 + }, + { + "start": 10240.97, + "end": 10242.11, + "probability": 0.5741 + }, + { + "start": 10242.17, + "end": 10243.45, + "probability": 0.8858 + }, + { + "start": 10243.57, + "end": 10244.91, + "probability": 0.9635 + }, + { + "start": 10245.07, + "end": 10247.19, + "probability": 0.9316 + }, + { + "start": 10248.01, + "end": 10249.01, + "probability": 0.0797 + }, + { + "start": 10249.25, + "end": 10250.53, + "probability": 0.5435 + }, + { + "start": 10250.63, + "end": 10251.33, + "probability": 0.7813 + }, + { + "start": 10251.47, + "end": 10251.89, + "probability": 0.8291 + }, + { + "start": 10253.53, + "end": 10254.41, + "probability": 0.7207 + }, + { + "start": 10254.59, + "end": 10259.53, + "probability": 0.8077 + }, + { + "start": 10259.79, + "end": 10260.81, + "probability": 0.226 + }, + { + "start": 10261.51, + "end": 10262.25, + "probability": 0.708 + }, + { + "start": 10262.37, + "end": 10265.27, + "probability": 0.7915 + }, + { + "start": 10265.37, + "end": 10266.65, + "probability": 0.9301 + }, + { + "start": 10266.97, + "end": 10267.69, + "probability": 0.795 + }, + { + "start": 10269.03, + "end": 10274.19, + "probability": 0.5332 + }, + { + "start": 10274.31, + "end": 10274.97, + "probability": 0.4308 + }, + { + "start": 10274.99, + "end": 10277.03, + "probability": 0.9247 + }, + { + "start": 10277.99, + "end": 10278.47, + "probability": 0.853 + }, + { + "start": 10284.89, + "end": 10284.97, + "probability": 0.4415 + }, + { + "start": 10284.97, + "end": 10286.83, + "probability": 0.6506 + }, + { + "start": 10289.31, + "end": 10294.97, + "probability": 0.8531 + }, + { + "start": 10296.01, + "end": 10304.47, + "probability": 0.7403 + }, + { + "start": 10305.03, + "end": 10307.71, + "probability": 0.9943 + }, + { + "start": 10308.03, + "end": 10308.85, + "probability": 0.7681 + }, + { + "start": 10308.97, + "end": 10310.31, + "probability": 0.6732 + }, + { + "start": 10311.93, + "end": 10312.87, + "probability": 0.9653 + }, + { + "start": 10313.17, + "end": 10315.17, + "probability": 0.4913 + }, + { + "start": 10316.43, + "end": 10317.27, + "probability": 0.862 + }, + { + "start": 10317.85, + "end": 10321.17, + "probability": 0.9956 + }, + { + "start": 10321.49, + "end": 10323.89, + "probability": 0.981 + }, + { + "start": 10325.71, + "end": 10328.87, + "probability": 0.9878 + }, + { + "start": 10328.87, + "end": 10333.03, + "probability": 0.9966 + }, + { + "start": 10333.57, + "end": 10335.81, + "probability": 0.9922 + }, + { + "start": 10337.97, + "end": 10343.85, + "probability": 0.7585 + }, + { + "start": 10344.63, + "end": 10345.49, + "probability": 0.9896 + }, + { + "start": 10346.65, + "end": 10350.65, + "probability": 0.8638 + }, + { + "start": 10351.63, + "end": 10354.44, + "probability": 0.9919 + }, + { + "start": 10355.05, + "end": 10356.55, + "probability": 0.9766 + }, + { + "start": 10357.87, + "end": 10361.91, + "probability": 0.9844 + }, + { + "start": 10362.25, + "end": 10362.91, + "probability": 0.8319 + }, + { + "start": 10363.47, + "end": 10366.17, + "probability": 0.7605 + }, + { + "start": 10367.81, + "end": 10371.47, + "probability": 0.7351 + }, + { + "start": 10372.07, + "end": 10374.39, + "probability": 0.9943 + }, + { + "start": 10375.29, + "end": 10378.25, + "probability": 0.8262 + }, + { + "start": 10379.57, + "end": 10381.73, + "probability": 0.8887 + }, + { + "start": 10381.79, + "end": 10382.87, + "probability": 0.9812 + }, + { + "start": 10383.33, + "end": 10384.03, + "probability": 0.8531 + }, + { + "start": 10385.47, + "end": 10389.29, + "probability": 0.7992 + }, + { + "start": 10390.29, + "end": 10392.41, + "probability": 0.7856 + }, + { + "start": 10393.45, + "end": 10394.81, + "probability": 0.5648 + }, + { + "start": 10395.39, + "end": 10397.75, + "probability": 0.9288 + }, + { + "start": 10398.43, + "end": 10399.49, + "probability": 0.6011 + }, + { + "start": 10400.67, + "end": 10403.53, + "probability": 0.9339 + }, + { + "start": 10404.43, + "end": 10405.71, + "probability": 0.0269 + }, + { + "start": 10406.45, + "end": 10407.51, + "probability": 0.0626 + }, + { + "start": 10408.17, + "end": 10410.97, + "probability": 0.0322 + }, + { + "start": 10411.71, + "end": 10414.85, + "probability": 0.7415 + }, + { + "start": 10414.99, + "end": 10416.15, + "probability": 0.9924 + }, + { + "start": 10416.79, + "end": 10417.9, + "probability": 0.8682 + }, + { + "start": 10418.57, + "end": 10420.87, + "probability": 0.6751 + }, + { + "start": 10421.05, + "end": 10422.01, + "probability": 0.8931 + }, + { + "start": 10422.11, + "end": 10423.05, + "probability": 0.9049 + }, + { + "start": 10423.53, + "end": 10426.51, + "probability": 0.0097 + }, + { + "start": 10426.51, + "end": 10426.69, + "probability": 0.0605 + }, + { + "start": 10426.69, + "end": 10429.46, + "probability": 0.33 + }, + { + "start": 10429.77, + "end": 10430.47, + "probability": 0.3495 + }, + { + "start": 10430.47, + "end": 10436.65, + "probability": 0.9337 + }, + { + "start": 10436.99, + "end": 10437.77, + "probability": 0.6478 + }, + { + "start": 10438.11, + "end": 10438.73, + "probability": 0.8815 + }, + { + "start": 10440.01, + "end": 10445.79, + "probability": 0.9456 + }, + { + "start": 10446.55, + "end": 10447.73, + "probability": 0.9478 + }, + { + "start": 10447.79, + "end": 10451.13, + "probability": 0.9899 + }, + { + "start": 10452.07, + "end": 10453.63, + "probability": 0.1419 + }, + { + "start": 10454.35, + "end": 10454.87, + "probability": 0.4129 + }, + { + "start": 10455.39, + "end": 10456.33, + "probability": 0.9961 + }, + { + "start": 10456.91, + "end": 10457.61, + "probability": 0.971 + }, + { + "start": 10458.25, + "end": 10458.87, + "probability": 0.6634 + }, + { + "start": 10459.83, + "end": 10460.41, + "probability": 0.0264 + }, + { + "start": 10460.51, + "end": 10462.67, + "probability": 0.9492 + }, + { + "start": 10462.67, + "end": 10465.57, + "probability": 0.9293 + }, + { + "start": 10466.35, + "end": 10472.29, + "probability": 0.9021 + }, + { + "start": 10472.53, + "end": 10473.39, + "probability": 0.8327 + }, + { + "start": 10474.21, + "end": 10474.31, + "probability": 0.2772 + }, + { + "start": 10477.07, + "end": 10482.01, + "probability": 0.9894 + }, + { + "start": 10482.95, + "end": 10487.09, + "probability": 0.9857 + }, + { + "start": 10487.63, + "end": 10488.69, + "probability": 0.9978 + }, + { + "start": 10489.67, + "end": 10494.01, + "probability": 0.9386 + }, + { + "start": 10494.63, + "end": 10498.09, + "probability": 0.9792 + }, + { + "start": 10499.37, + "end": 10499.87, + "probability": 0.7566 + }, + { + "start": 10499.99, + "end": 10506.25, + "probability": 0.8779 + }, + { + "start": 10506.43, + "end": 10508.95, + "probability": 0.9629 + }, + { + "start": 10509.19, + "end": 10509.91, + "probability": 0.5972 + }, + { + "start": 10510.97, + "end": 10515.09, + "probability": 0.9849 + }, + { + "start": 10515.09, + "end": 10519.35, + "probability": 0.954 + }, + { + "start": 10520.39, + "end": 10522.61, + "probability": 0.8924 + }, + { + "start": 10523.27, + "end": 10527.11, + "probability": 0.9939 + }, + { + "start": 10527.73, + "end": 10532.99, + "probability": 0.939 + }, + { + "start": 10533.91, + "end": 10535.77, + "probability": 0.9237 + }, + { + "start": 10535.93, + "end": 10537.65, + "probability": 0.8721 + }, + { + "start": 10538.35, + "end": 10542.01, + "probability": 0.9893 + }, + { + "start": 10542.63, + "end": 10543.45, + "probability": 0.9605 + }, + { + "start": 10544.81, + "end": 10547.43, + "probability": 0.9604 + }, + { + "start": 10547.87, + "end": 10551.25, + "probability": 0.8202 + }, + { + "start": 10551.39, + "end": 10553.33, + "probability": 0.8967 + }, + { + "start": 10554.13, + "end": 10557.51, + "probability": 0.7635 + }, + { + "start": 10558.61, + "end": 10562.55, + "probability": 0.9745 + }, + { + "start": 10563.73, + "end": 10565.47, + "probability": 0.9917 + }, + { + "start": 10566.89, + "end": 10569.76, + "probability": 0.7627 + }, + { + "start": 10570.73, + "end": 10571.95, + "probability": 0.8857 + }, + { + "start": 10573.05, + "end": 10575.99, + "probability": 0.9476 + }, + { + "start": 10577.31, + "end": 10582.79, + "probability": 0.9831 + }, + { + "start": 10583.59, + "end": 10586.19, + "probability": 0.7244 + }, + { + "start": 10586.73, + "end": 10587.91, + "probability": 0.9723 + }, + { + "start": 10589.03, + "end": 10590.89, + "probability": 0.9943 + }, + { + "start": 10591.59, + "end": 10593.01, + "probability": 0.9976 + }, + { + "start": 10593.83, + "end": 10594.69, + "probability": 0.9533 + }, + { + "start": 10596.95, + "end": 10602.35, + "probability": 0.9669 + }, + { + "start": 10602.73, + "end": 10605.65, + "probability": 0.8224 + }, + { + "start": 10606.13, + "end": 10606.39, + "probability": 0.7464 + }, + { + "start": 10606.93, + "end": 10608.65, + "probability": 0.5336 + }, + { + "start": 10609.27, + "end": 10611.89, + "probability": 0.6313 + }, + { + "start": 10611.89, + "end": 10612.51, + "probability": 0.8901 + }, + { + "start": 10614.87, + "end": 10615.37, + "probability": 0.0644 + }, + { + "start": 10639.18, + "end": 10640.21, + "probability": 0.506 + }, + { + "start": 10640.55, + "end": 10640.93, + "probability": 0.8631 + }, + { + "start": 10642.97, + "end": 10644.23, + "probability": 0.7365 + }, + { + "start": 10646.66, + "end": 10648.41, + "probability": 0.6455 + }, + { + "start": 10649.13, + "end": 10653.77, + "probability": 0.9778 + }, + { + "start": 10655.65, + "end": 10659.99, + "probability": 0.9817 + }, + { + "start": 10660.47, + "end": 10665.81, + "probability": 0.9932 + }, + { + "start": 10666.71, + "end": 10672.69, + "probability": 0.8487 + }, + { + "start": 10673.75, + "end": 10678.75, + "probability": 0.8915 + }, + { + "start": 10678.93, + "end": 10682.97, + "probability": 0.9929 + }, + { + "start": 10683.77, + "end": 10689.87, + "probability": 0.9377 + }, + { + "start": 10690.51, + "end": 10696.67, + "probability": 0.6604 + }, + { + "start": 10698.15, + "end": 10701.35, + "probability": 0.9797 + }, + { + "start": 10702.13, + "end": 10705.33, + "probability": 0.9788 + }, + { + "start": 10707.25, + "end": 10709.95, + "probability": 0.9896 + }, + { + "start": 10709.95, + "end": 10713.87, + "probability": 0.9873 + }, + { + "start": 10714.57, + "end": 10716.21, + "probability": 0.7514 + }, + { + "start": 10717.33, + "end": 10720.69, + "probability": 0.9622 + }, + { + "start": 10720.73, + "end": 10725.45, + "probability": 0.8379 + }, + { + "start": 10726.25, + "end": 10727.07, + "probability": 0.8834 + }, + { + "start": 10727.75, + "end": 10729.13, + "probability": 0.9467 + }, + { + "start": 10729.71, + "end": 10735.17, + "probability": 0.9654 + }, + { + "start": 10735.97, + "end": 10738.19, + "probability": 0.8918 + }, + { + "start": 10739.99, + "end": 10743.85, + "probability": 0.9596 + }, + { + "start": 10743.85, + "end": 10748.19, + "probability": 0.9073 + }, + { + "start": 10748.63, + "end": 10749.41, + "probability": 0.8746 + }, + { + "start": 10750.19, + "end": 10750.53, + "probability": 0.8013 + }, + { + "start": 10751.33, + "end": 10752.39, + "probability": 0.6842 + }, + { + "start": 10753.37, + "end": 10757.89, + "probability": 0.9949 + }, + { + "start": 10759.09, + "end": 10765.23, + "probability": 0.9988 + }, + { + "start": 10765.23, + "end": 10771.33, + "probability": 0.9965 + }, + { + "start": 10772.21, + "end": 10774.23, + "probability": 0.9993 + }, + { + "start": 10774.77, + "end": 10776.11, + "probability": 0.9972 + }, + { + "start": 10776.99, + "end": 10781.07, + "probability": 0.6564 + }, + { + "start": 10781.83, + "end": 10782.45, + "probability": 0.5293 + }, + { + "start": 10783.05, + "end": 10784.61, + "probability": 0.9987 + }, + { + "start": 10785.77, + "end": 10788.61, + "probability": 0.7115 + }, + { + "start": 10790.45, + "end": 10793.11, + "probability": 0.9546 + }, + { + "start": 10793.71, + "end": 10798.33, + "probability": 0.6542 + }, + { + "start": 10798.85, + "end": 10799.31, + "probability": 0.7484 + }, + { + "start": 10800.53, + "end": 10801.68, + "probability": 0.6501 + }, + { + "start": 10801.91, + "end": 10804.37, + "probability": 0.8853 + }, + { + "start": 10823.43, + "end": 10823.43, + "probability": 0.7362 + }, + { + "start": 10823.43, + "end": 10825.51, + "probability": 0.5528 + }, + { + "start": 10825.55, + "end": 10825.97, + "probability": 0.9211 + }, + { + "start": 10828.59, + "end": 10829.65, + "probability": 0.2748 + }, + { + "start": 10830.03, + "end": 10831.01, + "probability": 0.8589 + }, + { + "start": 10831.13, + "end": 10833.59, + "probability": 0.9948 + }, + { + "start": 10834.43, + "end": 10835.23, + "probability": 0.959 + }, + { + "start": 10835.33, + "end": 10839.13, + "probability": 0.9873 + }, + { + "start": 10839.79, + "end": 10844.61, + "probability": 0.9963 + }, + { + "start": 10845.25, + "end": 10845.85, + "probability": 0.9062 + }, + { + "start": 10847.35, + "end": 10848.91, + "probability": 0.9024 + }, + { + "start": 10849.39, + "end": 10851.61, + "probability": 0.998 + }, + { + "start": 10852.27, + "end": 10853.33, + "probability": 0.8264 + }, + { + "start": 10853.95, + "end": 10855.23, + "probability": 0.9902 + }, + { + "start": 10856.21, + "end": 10860.41, + "probability": 0.9857 + }, + { + "start": 10860.49, + "end": 10864.51, + "probability": 0.965 + }, + { + "start": 10865.41, + "end": 10868.35, + "probability": 0.9941 + }, + { + "start": 10869.65, + "end": 10873.41, + "probability": 0.9959 + }, + { + "start": 10874.35, + "end": 10877.55, + "probability": 0.9934 + }, + { + "start": 10878.29, + "end": 10879.11, + "probability": 0.8889 + }, + { + "start": 10879.71, + "end": 10884.25, + "probability": 0.9911 + }, + { + "start": 10885.09, + "end": 10887.15, + "probability": 0.9271 + }, + { + "start": 10887.89, + "end": 10891.85, + "probability": 0.9575 + }, + { + "start": 10892.45, + "end": 10894.17, + "probability": 0.8718 + }, + { + "start": 10894.61, + "end": 10896.53, + "probability": 0.9854 + }, + { + "start": 10897.23, + "end": 10898.03, + "probability": 0.7328 + }, + { + "start": 10898.09, + "end": 10901.01, + "probability": 0.9032 + }, + { + "start": 10902.03, + "end": 10906.57, + "probability": 0.9929 + }, + { + "start": 10907.69, + "end": 10910.13, + "probability": 0.9959 + }, + { + "start": 10910.81, + "end": 10913.73, + "probability": 0.9968 + }, + { + "start": 10914.77, + "end": 10919.77, + "probability": 0.9543 + }, + { + "start": 10919.97, + "end": 10925.51, + "probability": 0.9985 + }, + { + "start": 10926.05, + "end": 10929.15, + "probability": 0.9836 + }, + { + "start": 10929.41, + "end": 10930.15, + "probability": 0.9671 + }, + { + "start": 10930.61, + "end": 10933.47, + "probability": 0.9897 + }, + { + "start": 10933.55, + "end": 10934.31, + "probability": 0.6976 + }, + { + "start": 10934.57, + "end": 10935.83, + "probability": 0.8661 + }, + { + "start": 10936.19, + "end": 10937.55, + "probability": 0.8474 + }, + { + "start": 10937.67, + "end": 10939.77, + "probability": 0.9661 + }, + { + "start": 10940.19, + "end": 10947.15, + "probability": 0.9946 + }, + { + "start": 10947.57, + "end": 10948.27, + "probability": 0.8389 + }, + { + "start": 10948.41, + "end": 10948.89, + "probability": 0.8428 + }, + { + "start": 10948.99, + "end": 10950.97, + "probability": 0.8412 + }, + { + "start": 10951.17, + "end": 10951.55, + "probability": 0.4545 + }, + { + "start": 10951.63, + "end": 10952.03, + "probability": 0.7947 + }, + { + "start": 10952.15, + "end": 10954.89, + "probability": 0.9689 + }, + { + "start": 10956.05, + "end": 10956.99, + "probability": 0.8857 + }, + { + "start": 10957.07, + "end": 10958.99, + "probability": 0.9871 + }, + { + "start": 10959.07, + "end": 10960.41, + "probability": 0.9642 + }, + { + "start": 10960.45, + "end": 10961.75, + "probability": 0.9465 + }, + { + "start": 10961.85, + "end": 10962.63, + "probability": 0.5513 + }, + { + "start": 10962.81, + "end": 10964.53, + "probability": 0.9457 + }, + { + "start": 10965.15, + "end": 10966.23, + "probability": 0.7768 + }, + { + "start": 10966.51, + "end": 10968.11, + "probability": 0.6035 + }, + { + "start": 10968.21, + "end": 10969.05, + "probability": 0.9431 + }, + { + "start": 10969.51, + "end": 10972.29, + "probability": 0.6734 + }, + { + "start": 10973.05, + "end": 10975.61, + "probability": 0.9895 + }, + { + "start": 10975.69, + "end": 10976.17, + "probability": 0.8339 + }, + { + "start": 10976.29, + "end": 10977.27, + "probability": 0.6917 + }, + { + "start": 10977.59, + "end": 10978.31, + "probability": 0.8105 + }, + { + "start": 10978.41, + "end": 10978.93, + "probability": 0.0693 + }, + { + "start": 10979.01, + "end": 10980.23, + "probability": 0.9749 + }, + { + "start": 10980.41, + "end": 10983.47, + "probability": 0.9922 + }, + { + "start": 10983.73, + "end": 10984.01, + "probability": 0.4985 + }, + { + "start": 10984.19, + "end": 10986.01, + "probability": 0.9919 + }, + { + "start": 10986.11, + "end": 10988.27, + "probability": 0.9792 + }, + { + "start": 10988.45, + "end": 10991.89, + "probability": 0.9956 + }, + { + "start": 10991.89, + "end": 10995.85, + "probability": 0.9734 + }, + { + "start": 10996.29, + "end": 10999.37, + "probability": 0.9912 + }, + { + "start": 10999.37, + "end": 11002.21, + "probability": 0.9771 + }, + { + "start": 11003.01, + "end": 11005.95, + "probability": 0.8406 + }, + { + "start": 11006.11, + "end": 11006.67, + "probability": 0.9587 + }, + { + "start": 11007.47, + "end": 11008.5, + "probability": 0.9101 + }, + { + "start": 11009.13, + "end": 11011.39, + "probability": 0.9693 + }, + { + "start": 11011.93, + "end": 11015.99, + "probability": 0.7092 + }, + { + "start": 11016.51, + "end": 11018.99, + "probability": 0.6461 + }, + { + "start": 11019.73, + "end": 11020.97, + "probability": 0.9802 + }, + { + "start": 11022.01, + "end": 11022.45, + "probability": 0.4148 + }, + { + "start": 11022.45, + "end": 11023.12, + "probability": 0.2447 + }, + { + "start": 11023.69, + "end": 11025.35, + "probability": 0.8992 + }, + { + "start": 11026.47, + "end": 11027.09, + "probability": 0.5792 + }, + { + "start": 11027.11, + "end": 11027.11, + "probability": 0.4032 + }, + { + "start": 11027.47, + "end": 11029.71, + "probability": 0.9539 + }, + { + "start": 11044.03, + "end": 11044.93, + "probability": 0.5967 + }, + { + "start": 11044.93, + "end": 11045.93, + "probability": 0.8168 + }, + { + "start": 11047.43, + "end": 11048.83, + "probability": 0.5403 + }, + { + "start": 11049.59, + "end": 11052.75, + "probability": 0.8996 + }, + { + "start": 11053.51, + "end": 11056.59, + "probability": 0.9781 + }, + { + "start": 11056.59, + "end": 11057.51, + "probability": 0.704 + }, + { + "start": 11057.69, + "end": 11058.57, + "probability": 0.9792 + }, + { + "start": 11059.25, + "end": 11060.57, + "probability": 0.7088 + }, + { + "start": 11060.67, + "end": 11062.91, + "probability": 0.5035 + }, + { + "start": 11062.91, + "end": 11065.89, + "probability": 0.9873 + }, + { + "start": 11066.41, + "end": 11070.31, + "probability": 0.9875 + }, + { + "start": 11070.85, + "end": 11074.45, + "probability": 0.9523 + }, + { + "start": 11074.53, + "end": 11078.67, + "probability": 0.9961 + }, + { + "start": 11079.73, + "end": 11080.71, + "probability": 0.9147 + }, + { + "start": 11081.51, + "end": 11082.21, + "probability": 0.3818 + }, + { + "start": 11082.63, + "end": 11086.67, + "probability": 0.9712 + }, + { + "start": 11087.39, + "end": 11087.39, + "probability": 0.7324 + }, + { + "start": 11088.47, + "end": 11091.61, + "probability": 0.8462 + }, + { + "start": 11092.27, + "end": 11092.57, + "probability": 0.2443 + }, + { + "start": 11092.57, + "end": 11093.47, + "probability": 0.6489 + }, + { + "start": 11093.61, + "end": 11095.47, + "probability": 0.9228 + }, + { + "start": 11096.01, + "end": 11097.85, + "probability": 0.7688 + }, + { + "start": 11098.31, + "end": 11100.65, + "probability": 0.915 + }, + { + "start": 11100.67, + "end": 11102.91, + "probability": 0.9667 + }, + { + "start": 11103.73, + "end": 11105.57, + "probability": 0.9487 + }, + { + "start": 11105.93, + "end": 11107.25, + "probability": 0.7494 + }, + { + "start": 11107.83, + "end": 11110.93, + "probability": 0.8994 + }, + { + "start": 11111.15, + "end": 11113.31, + "probability": 0.9868 + }, + { + "start": 11113.93, + "end": 11120.03, + "probability": 0.9443 + }, + { + "start": 11120.09, + "end": 11125.99, + "probability": 0.9932 + }, + { + "start": 11126.47, + "end": 11128.23, + "probability": 0.9937 + }, + { + "start": 11128.35, + "end": 11129.57, + "probability": 0.9242 + }, + { + "start": 11129.61, + "end": 11130.73, + "probability": 0.9844 + }, + { + "start": 11130.81, + "end": 11132.71, + "probability": 0.9056 + }, + { + "start": 11133.21, + "end": 11136.59, + "probability": 0.9229 + }, + { + "start": 11137.31, + "end": 11141.27, + "probability": 0.9268 + }, + { + "start": 11141.45, + "end": 11145.99, + "probability": 0.9822 + }, + { + "start": 11146.55, + "end": 11151.25, + "probability": 0.999 + }, + { + "start": 11151.33, + "end": 11152.57, + "probability": 0.9359 + }, + { + "start": 11152.69, + "end": 11152.87, + "probability": 0.3488 + }, + { + "start": 11152.87, + "end": 11156.45, + "probability": 0.9884 + }, + { + "start": 11156.45, + "end": 11156.85, + "probability": 0.7922 + }, + { + "start": 11157.37, + "end": 11159.15, + "probability": 0.9244 + }, + { + "start": 11159.35, + "end": 11160.63, + "probability": 0.6877 + }, + { + "start": 11161.11, + "end": 11162.31, + "probability": 0.0901 + }, + { + "start": 11162.39, + "end": 11165.97, + "probability": 0.9703 + }, + { + "start": 11166.09, + "end": 11168.69, + "probability": 0.993 + }, + { + "start": 11168.79, + "end": 11171.13, + "probability": 0.7162 + }, + { + "start": 11171.23, + "end": 11173.44, + "probability": 0.9922 + }, + { + "start": 11173.57, + "end": 11177.31, + "probability": 0.9541 + }, + { + "start": 11177.79, + "end": 11178.93, + "probability": 0.9253 + }, + { + "start": 11179.69, + "end": 11180.73, + "probability": 0.8376 + }, + { + "start": 11182.51, + "end": 11183.43, + "probability": 0.6628 + }, + { + "start": 11183.51, + "end": 11185.31, + "probability": 0.9972 + }, + { + "start": 11185.75, + "end": 11187.97, + "probability": 0.8507 + }, + { + "start": 11188.64, + "end": 11191.33, + "probability": 0.9395 + }, + { + "start": 11191.77, + "end": 11195.11, + "probability": 0.9956 + }, + { + "start": 11195.57, + "end": 11198.09, + "probability": 0.9965 + }, + { + "start": 11198.19, + "end": 11199.77, + "probability": 0.6666 + }, + { + "start": 11199.81, + "end": 11200.51, + "probability": 0.9304 + }, + { + "start": 11200.93, + "end": 11202.47, + "probability": 0.8361 + }, + { + "start": 11202.57, + "end": 11204.32, + "probability": 0.9917 + }, + { + "start": 11204.91, + "end": 11206.07, + "probability": 0.8728 + }, + { + "start": 11207.95, + "end": 11209.17, + "probability": 0.632 + }, + { + "start": 11209.75, + "end": 11214.83, + "probability": 0.89 + }, + { + "start": 11215.51, + "end": 11220.19, + "probability": 0.93 + }, + { + "start": 11220.25, + "end": 11223.65, + "probability": 0.9966 + }, + { + "start": 11224.43, + "end": 11226.21, + "probability": 0.6576 + }, + { + "start": 11226.75, + "end": 11228.69, + "probability": 0.9635 + }, + { + "start": 11228.85, + "end": 11229.69, + "probability": 0.9231 + }, + { + "start": 11229.83, + "end": 11231.71, + "probability": 0.9908 + }, + { + "start": 11232.55, + "end": 11235.91, + "probability": 0.9499 + }, + { + "start": 11236.35, + "end": 11239.95, + "probability": 0.9952 + }, + { + "start": 11239.95, + "end": 11242.85, + "probability": 0.999 + }, + { + "start": 11243.11, + "end": 11245.73, + "probability": 0.9969 + }, + { + "start": 11246.13, + "end": 11246.65, + "probability": 0.7489 + }, + { + "start": 11247.13, + "end": 11248.75, + "probability": 0.9977 + }, + { + "start": 11250.09, + "end": 11253.27, + "probability": 0.9955 + }, + { + "start": 11253.77, + "end": 11254.73, + "probability": 0.5387 + }, + { + "start": 11255.05, + "end": 11257.35, + "probability": 0.9909 + }, + { + "start": 11258.27, + "end": 11260.79, + "probability": 0.9386 + }, + { + "start": 11261.09, + "end": 11261.33, + "probability": 0.7581 + }, + { + "start": 11262.13, + "end": 11264.63, + "probability": 0.9316 + }, + { + "start": 11264.79, + "end": 11266.81, + "probability": 0.946 + }, + { + "start": 11278.97, + "end": 11279.11, + "probability": 0.7839 + }, + { + "start": 11279.11, + "end": 11279.39, + "probability": 0.472 + }, + { + "start": 11287.33, + "end": 11288.71, + "probability": 0.6333 + }, + { + "start": 11289.57, + "end": 11291.81, + "probability": 0.7293 + }, + { + "start": 11292.61, + "end": 11296.85, + "probability": 0.9647 + }, + { + "start": 11296.85, + "end": 11299.25, + "probability": 0.9805 + }, + { + "start": 11299.95, + "end": 11307.29, + "probability": 0.995 + }, + { + "start": 11307.43, + "end": 11308.27, + "probability": 0.7549 + }, + { + "start": 11308.37, + "end": 11312.25, + "probability": 0.9948 + }, + { + "start": 11313.09, + "end": 11314.65, + "probability": 0.9752 + }, + { + "start": 11314.81, + "end": 11315.75, + "probability": 0.8313 + }, + { + "start": 11315.91, + "end": 11316.37, + "probability": 0.5885 + }, + { + "start": 11316.41, + "end": 11317.21, + "probability": 0.9069 + }, + { + "start": 11317.23, + "end": 11322.61, + "probability": 0.9728 + }, + { + "start": 11323.19, + "end": 11326.11, + "probability": 0.967 + }, + { + "start": 11327.27, + "end": 11328.49, + "probability": 0.7915 + }, + { + "start": 11329.15, + "end": 11332.21, + "probability": 0.9612 + }, + { + "start": 11332.45, + "end": 11334.91, + "probability": 0.9307 + }, + { + "start": 11335.81, + "end": 11343.81, + "probability": 0.9899 + }, + { + "start": 11344.75, + "end": 11345.75, + "probability": 0.9349 + }, + { + "start": 11345.81, + "end": 11348.99, + "probability": 0.7861 + }, + { + "start": 11349.53, + "end": 11350.49, + "probability": 0.7388 + }, + { + "start": 11351.35, + "end": 11353.65, + "probability": 0.904 + }, + { + "start": 11354.21, + "end": 11357.13, + "probability": 0.9186 + }, + { + "start": 11357.59, + "end": 11362.71, + "probability": 0.9861 + }, + { + "start": 11363.23, + "end": 11367.13, + "probability": 0.9521 + }, + { + "start": 11367.69, + "end": 11370.61, + "probability": 0.8086 + }, + { + "start": 11371.15, + "end": 11372.95, + "probability": 0.9796 + }, + { + "start": 11373.55, + "end": 11374.27, + "probability": 0.9888 + }, + { + "start": 11374.37, + "end": 11377.87, + "probability": 0.9952 + }, + { + "start": 11378.45, + "end": 11379.33, + "probability": 0.9936 + }, + { + "start": 11380.05, + "end": 11381.13, + "probability": 0.7504 + }, + { + "start": 11381.71, + "end": 11383.47, + "probability": 0.851 + }, + { + "start": 11383.89, + "end": 11386.79, + "probability": 0.5974 + }, + { + "start": 11387.11, + "end": 11387.66, + "probability": 0.8774 + }, + { + "start": 11388.47, + "end": 11390.77, + "probability": 0.9043 + }, + { + "start": 11391.35, + "end": 11394.17, + "probability": 0.9926 + }, + { + "start": 11394.43, + "end": 11396.71, + "probability": 0.9847 + }, + { + "start": 11397.25, + "end": 11399.87, + "probability": 0.5706 + }, + { + "start": 11400.33, + "end": 11401.31, + "probability": 0.6011 + }, + { + "start": 11401.55, + "end": 11402.09, + "probability": 0.7907 + }, + { + "start": 11402.21, + "end": 11403.35, + "probability": 0.7633 + }, + { + "start": 11403.67, + "end": 11406.39, + "probability": 0.9354 + }, + { + "start": 11406.81, + "end": 11407.31, + "probability": 0.4014 + }, + { + "start": 11407.51, + "end": 11408.57, + "probability": 0.9697 + }, + { + "start": 11409.01, + "end": 11411.83, + "probability": 0.9944 + }, + { + "start": 11411.83, + "end": 11415.35, + "probability": 0.9992 + }, + { + "start": 11415.61, + "end": 11416.95, + "probability": 0.7737 + }, + { + "start": 11417.19, + "end": 11418.54, + "probability": 0.7991 + }, + { + "start": 11419.31, + "end": 11420.19, + "probability": 0.9281 + }, + { + "start": 11420.75, + "end": 11421.87, + "probability": 0.8407 + }, + { + "start": 11422.37, + "end": 11424.45, + "probability": 0.9067 + }, + { + "start": 11424.51, + "end": 11425.17, + "probability": 0.8701 + }, + { + "start": 11425.55, + "end": 11428.81, + "probability": 0.9492 + }, + { + "start": 11429.29, + "end": 11432.55, + "probability": 0.8763 + }, + { + "start": 11433.33, + "end": 11437.85, + "probability": 0.854 + }, + { + "start": 11438.55, + "end": 11442.23, + "probability": 0.5043 + }, + { + "start": 11442.83, + "end": 11447.37, + "probability": 0.9333 + }, + { + "start": 11447.53, + "end": 11452.91, + "probability": 0.9791 + }, + { + "start": 11454.63, + "end": 11455.41, + "probability": 0.0555 + }, + { + "start": 11455.41, + "end": 11457.73, + "probability": 0.2441 + }, + { + "start": 11457.73, + "end": 11458.94, + "probability": 0.1078 + }, + { + "start": 11459.65, + "end": 11462.33, + "probability": 0.9087 + }, + { + "start": 11462.57, + "end": 11464.13, + "probability": 0.8663 + }, + { + "start": 11464.69, + "end": 11467.95, + "probability": 0.912 + }, + { + "start": 11468.33, + "end": 11468.73, + "probability": 0.7458 + }, + { + "start": 11468.77, + "end": 11472.83, + "probability": 0.9459 + }, + { + "start": 11473.03, + "end": 11473.47, + "probability": 0.8561 + }, + { + "start": 11474.39, + "end": 11477.59, + "probability": 0.8834 + }, + { + "start": 11482.27, + "end": 11482.91, + "probability": 0.2067 + }, + { + "start": 11484.09, + "end": 11485.83, + "probability": 0.0315 + }, + { + "start": 11490.37, + "end": 11491.49, + "probability": 0.09 + }, + { + "start": 11492.09, + "end": 11492.27, + "probability": 0.0208 + }, + { + "start": 11492.27, + "end": 11492.31, + "probability": 0.0121 + }, + { + "start": 11492.31, + "end": 11493.17, + "probability": 0.3783 + }, + { + "start": 11493.55, + "end": 11493.57, + "probability": 0.0961 + }, + { + "start": 11497.17, + "end": 11497.89, + "probability": 0.0977 + }, + { + "start": 11500.71, + "end": 11504.27, + "probability": 0.2921 + }, + { + "start": 11504.45, + "end": 11509.39, + "probability": 0.6237 + }, + { + "start": 11510.43, + "end": 11514.19, + "probability": 0.1824 + }, + { + "start": 11514.73, + "end": 11515.65, + "probability": 0.5158 + }, + { + "start": 11515.85, + "end": 11516.89, + "probability": 0.8381 + }, + { + "start": 11518.71, + "end": 11521.77, + "probability": 0.6735 + }, + { + "start": 11521.93, + "end": 11523.93, + "probability": 0.3837 + }, + { + "start": 11524.05, + "end": 11524.93, + "probability": 0.726 + }, + { + "start": 11525.01, + "end": 11527.11, + "probability": 0.9382 + }, + { + "start": 11527.23, + "end": 11529.21, + "probability": 0.9504 + }, + { + "start": 11530.35, + "end": 11531.63, + "probability": 0.3197 + }, + { + "start": 11531.81, + "end": 11534.73, + "probability": 0.6047 + }, + { + "start": 11536.01, + "end": 11536.89, + "probability": 0.9732 + }, + { + "start": 11537.89, + "end": 11538.43, + "probability": 0.6063 + }, + { + "start": 11547.03, + "end": 11551.11, + "probability": 0.916 + }, + { + "start": 11552.35, + "end": 11552.85, + "probability": 0.3919 + }, + { + "start": 11552.99, + "end": 11554.33, + "probability": 0.5043 + }, + { + "start": 11555.15, + "end": 11556.85, + "probability": 0.4686 + }, + { + "start": 11557.79, + "end": 11558.65, + "probability": 0.0285 + }, + { + "start": 11558.79, + "end": 11560.99, + "probability": 0.1047 + }, + { + "start": 11562.39, + "end": 11562.81, + "probability": 0.088 + }, + { + "start": 11566.17, + "end": 11566.31, + "probability": 0.5085 + }, + { + "start": 11580.79, + "end": 11582.01, + "probability": 0.3707 + }, + { + "start": 11582.23, + "end": 11583.05, + "probability": 0.0691 + }, + { + "start": 11583.05, + "end": 11583.85, + "probability": 0.8899 + }, + { + "start": 11584.83, + "end": 11584.99, + "probability": 0.404 + }, + { + "start": 11585.55, + "end": 11587.79, + "probability": 0.8026 + }, + { + "start": 11587.79, + "end": 11588.42, + "probability": 0.586 + }, + { + "start": 11588.81, + "end": 11592.31, + "probability": 0.9118 + }, + { + "start": 11593.19, + "end": 11595.09, + "probability": 0.9223 + }, + { + "start": 11595.21, + "end": 11600.97, + "probability": 0.9779 + }, + { + "start": 11600.97, + "end": 11605.39, + "probability": 0.8558 + }, + { + "start": 11605.39, + "end": 11608.85, + "probability": 0.922 + }, + { + "start": 11608.97, + "end": 11609.65, + "probability": 0.9365 + }, + { + "start": 11611.11, + "end": 11613.19, + "probability": 0.7607 + }, + { + "start": 11614.43, + "end": 11615.11, + "probability": 0.8931 + }, + { + "start": 11616.97, + "end": 11621.79, + "probability": 0.9857 + }, + { + "start": 11622.51, + "end": 11623.89, + "probability": 0.0549 + }, + { + "start": 11623.91, + "end": 11630.13, + "probability": 0.9941 + }, + { + "start": 11631.15, + "end": 11631.73, + "probability": 0.96 + }, + { + "start": 11632.29, + "end": 11633.79, + "probability": 0.9878 + }, + { + "start": 11634.51, + "end": 11635.73, + "probability": 0.8055 + }, + { + "start": 11636.59, + "end": 11639.45, + "probability": 0.9791 + }, + { + "start": 11641.79, + "end": 11647.47, + "probability": 0.9121 + }, + { + "start": 11648.25, + "end": 11653.69, + "probability": 0.8946 + }, + { + "start": 11653.69, + "end": 11658.71, + "probability": 0.9913 + }, + { + "start": 11659.51, + "end": 11661.93, + "probability": 0.9967 + }, + { + "start": 11662.55, + "end": 11663.91, + "probability": 0.9959 + }, + { + "start": 11665.23, + "end": 11666.61, + "probability": 0.915 + }, + { + "start": 11667.05, + "end": 11669.83, + "probability": 0.9728 + }, + { + "start": 11669.83, + "end": 11673.85, + "probability": 0.9928 + }, + { + "start": 11675.05, + "end": 11677.29, + "probability": 0.6651 + }, + { + "start": 11678.19, + "end": 11680.97, + "probability": 0.9946 + }, + { + "start": 11681.69, + "end": 11685.09, + "probability": 0.9446 + }, + { + "start": 11686.05, + "end": 11689.21, + "probability": 0.9883 + }, + { + "start": 11689.73, + "end": 11693.19, + "probability": 0.9927 + }, + { + "start": 11693.99, + "end": 11695.27, + "probability": 0.8478 + }, + { + "start": 11695.83, + "end": 11696.85, + "probability": 0.957 + }, + { + "start": 11697.39, + "end": 11698.61, + "probability": 0.8364 + }, + { + "start": 11700.11, + "end": 11702.27, + "probability": 0.9319 + }, + { + "start": 11703.05, + "end": 11706.81, + "probability": 0.9943 + }, + { + "start": 11707.87, + "end": 11712.44, + "probability": 0.9558 + }, + { + "start": 11712.55, + "end": 11716.55, + "probability": 0.9925 + }, + { + "start": 11717.09, + "end": 11721.99, + "probability": 0.9767 + }, + { + "start": 11721.99, + "end": 11724.69, + "probability": 0.9543 + }, + { + "start": 11725.49, + "end": 11727.87, + "probability": 0.9238 + }, + { + "start": 11728.49, + "end": 11732.13, + "probability": 0.9582 + }, + { + "start": 11732.83, + "end": 11733.11, + "probability": 0.4099 + }, + { + "start": 11733.27, + "end": 11738.13, + "probability": 0.7816 + }, + { + "start": 11738.85, + "end": 11741.55, + "probability": 0.6913 + }, + { + "start": 11742.05, + "end": 11742.75, + "probability": 0.8101 + }, + { + "start": 11743.73, + "end": 11748.79, + "probability": 0.9762 + }, + { + "start": 11749.27, + "end": 11753.23, + "probability": 0.7488 + }, + { + "start": 11753.23, + "end": 11757.31, + "probability": 0.981 + }, + { + "start": 11760.03, + "end": 11760.13, + "probability": 0.2877 + }, + { + "start": 11760.17, + "end": 11761.93, + "probability": 0.7682 + }, + { + "start": 11766.43, + "end": 11768.15, + "probability": 0.7801 + }, + { + "start": 11768.23, + "end": 11770.15, + "probability": 0.983 + }, + { + "start": 11770.27, + "end": 11771.53, + "probability": 0.9411 + }, + { + "start": 11772.27, + "end": 11773.89, + "probability": 0.7655 + }, + { + "start": 11774.13, + "end": 11777.05, + "probability": 0.773 + }, + { + "start": 11790.15, + "end": 11791.05, + "probability": 0.5219 + }, + { + "start": 11791.99, + "end": 11793.63, + "probability": 0.4114 + }, + { + "start": 11793.75, + "end": 11793.75, + "probability": 0.4017 + }, + { + "start": 11793.89, + "end": 11795.29, + "probability": 0.7388 + }, + { + "start": 11795.59, + "end": 11796.23, + "probability": 0.9211 + }, + { + "start": 11796.37, + "end": 11797.15, + "probability": 0.8966 + }, + { + "start": 11797.23, + "end": 11798.35, + "probability": 0.7689 + }, + { + "start": 11799.58, + "end": 11805.81, + "probability": 0.916 + }, + { + "start": 11805.81, + "end": 11809.37, + "probability": 0.9971 + }, + { + "start": 11810.37, + "end": 11811.91, + "probability": 0.9977 + }, + { + "start": 11812.79, + "end": 11816.0, + "probability": 0.9272 + }, + { + "start": 11816.27, + "end": 11817.23, + "probability": 0.6189 + }, + { + "start": 11817.73, + "end": 11820.83, + "probability": 0.9165 + }, + { + "start": 11821.11, + "end": 11827.89, + "probability": 0.9907 + }, + { + "start": 11829.05, + "end": 11833.13, + "probability": 0.9896 + }, + { + "start": 11834.07, + "end": 11837.89, + "probability": 0.9787 + }, + { + "start": 11838.57, + "end": 11842.69, + "probability": 0.9862 + }, + { + "start": 11843.21, + "end": 11847.73, + "probability": 0.9849 + }, + { + "start": 11847.73, + "end": 11851.43, + "probability": 0.9732 + }, + { + "start": 11851.93, + "end": 11857.49, + "probability": 0.9954 + }, + { + "start": 11858.31, + "end": 11862.03, + "probability": 0.9443 + }, + { + "start": 11862.77, + "end": 11867.81, + "probability": 0.9928 + }, + { + "start": 11867.81, + "end": 11871.37, + "probability": 0.9692 + }, + { + "start": 11871.93, + "end": 11879.47, + "probability": 0.8588 + }, + { + "start": 11880.61, + "end": 11885.73, + "probability": 0.9102 + }, + { + "start": 11885.73, + "end": 11891.73, + "probability": 0.9985 + }, + { + "start": 11892.39, + "end": 11894.97, + "probability": 0.6587 + }, + { + "start": 11895.43, + "end": 11896.87, + "probability": 0.9863 + }, + { + "start": 11897.73, + "end": 11899.49, + "probability": 0.6355 + }, + { + "start": 11900.23, + "end": 11902.67, + "probability": 0.3801 + }, + { + "start": 11902.81, + "end": 11908.75, + "probability": 0.9896 + }, + { + "start": 11909.49, + "end": 11919.31, + "probability": 0.9897 + }, + { + "start": 11920.29, + "end": 11921.17, + "probability": 0.733 + }, + { + "start": 11922.19, + "end": 11923.25, + "probability": 0.7603 + }, + { + "start": 11923.97, + "end": 11928.31, + "probability": 0.8624 + }, + { + "start": 11928.75, + "end": 11933.49, + "probability": 0.9972 + }, + { + "start": 11934.25, + "end": 11939.05, + "probability": 0.7678 + }, + { + "start": 11939.83, + "end": 11941.71, + "probability": 0.8828 + }, + { + "start": 11942.69, + "end": 11948.83, + "probability": 0.9971 + }, + { + "start": 11948.83, + "end": 11955.11, + "probability": 0.9917 + }, + { + "start": 11956.11, + "end": 11956.39, + "probability": 0.4942 + }, + { + "start": 11956.77, + "end": 11961.97, + "probability": 0.8796 + }, + { + "start": 11962.75, + "end": 11968.39, + "probability": 0.9844 + }, + { + "start": 11968.39, + "end": 11972.11, + "probability": 0.9969 + }, + { + "start": 11972.41, + "end": 11973.35, + "probability": 0.9888 + }, + { + "start": 11973.91, + "end": 11977.31, + "probability": 0.9924 + }, + { + "start": 11977.87, + "end": 11980.45, + "probability": 0.9775 + }, + { + "start": 11980.71, + "end": 11980.91, + "probability": 0.7938 + }, + { + "start": 11980.93, + "end": 11981.85, + "probability": 0.4092 + }, + { + "start": 11982.25, + "end": 11983.99, + "probability": 0.9202 + }, + { + "start": 11984.11, + "end": 11985.31, + "probability": 0.8311 + }, + { + "start": 11985.89, + "end": 11986.67, + "probability": 0.8692 + }, + { + "start": 11990.44, + "end": 11992.48, + "probability": 0.0586 + }, + { + "start": 11998.87, + "end": 12001.15, + "probability": 0.2526 + }, + { + "start": 12006.94, + "end": 12009.37, + "probability": 0.5073 + }, + { + "start": 12009.41, + "end": 12015.81, + "probability": 0.8976 + }, + { + "start": 12015.81, + "end": 12019.01, + "probability": 0.9698 + }, + { + "start": 12020.01, + "end": 12020.97, + "probability": 0.7088 + }, + { + "start": 12021.11, + "end": 12024.75, + "probability": 0.858 + }, + { + "start": 12024.79, + "end": 12025.43, + "probability": 0.7817 + }, + { + "start": 12027.55, + "end": 12030.19, + "probability": 0.9465 + }, + { + "start": 12030.91, + "end": 12032.73, + "probability": 0.0902 + }, + { + "start": 12054.51, + "end": 12058.13, + "probability": 0.6663 + }, + { + "start": 12058.29, + "end": 12059.15, + "probability": 0.4486 + }, + { + "start": 12059.59, + "end": 12060.01, + "probability": 0.8803 + }, + { + "start": 12063.86, + "end": 12067.19, + "probability": 0.0314 + }, + { + "start": 12067.19, + "end": 12069.23, + "probability": 0.0203 + }, + { + "start": 12079.57, + "end": 12082.25, + "probability": 0.06 + }, + { + "start": 12083.27, + "end": 12083.87, + "probability": 0.0686 + }, + { + "start": 12086.73, + "end": 12088.53, + "probability": 0.1109 + }, + { + "start": 12089.35, + "end": 12093.71, + "probability": 0.1122 + }, + { + "start": 12093.73, + "end": 12100.29, + "probability": 0.1053 + }, + { + "start": 12101.21, + "end": 12104.17, + "probability": 0.0691 + }, + { + "start": 12104.17, + "end": 12104.29, + "probability": 0.2722 + }, + { + "start": 12146.0, + "end": 12146.0, + "probability": 0.0 + }, + { + "start": 12146.0, + "end": 12146.0, + "probability": 0.0 + }, + { + "start": 12146.0, + "end": 12146.0, + "probability": 0.0 + }, + { + "start": 12146.0, + "end": 12146.0, + "probability": 0.0 + }, + { + "start": 12146.0, + "end": 12146.0, + "probability": 0.0 + }, + { + "start": 12146.0, + "end": 12146.0, + "probability": 0.0 + }, + { + "start": 12146.0, + "end": 12146.0, + "probability": 0.0 + }, + { + "start": 12146.0, + "end": 12146.0, + "probability": 0.0 + }, + { + "start": 12146.0, + "end": 12146.0, + "probability": 0.0 + }, + { + "start": 12146.0, + "end": 12146.0, + "probability": 0.0 + }, + { + "start": 12146.0, + "end": 12146.0, + "probability": 0.0 + }, + { + "start": 12146.0, + "end": 12146.0, + "probability": 0.0 + }, + { + "start": 12146.0, + "end": 12146.0, + "probability": 0.0 + }, + { + "start": 12146.0, + "end": 12146.0, + "probability": 0.0 + }, + { + "start": 12146.0, + "end": 12146.0, + "probability": 0.0 + }, + { + "start": 12146.0, + "end": 12146.0, + "probability": 0.0 + }, + { + "start": 12146.0, + "end": 12146.0, + "probability": 0.0 + }, + { + "start": 12146.0, + "end": 12146.0, + "probability": 0.0 + }, + { + "start": 12146.0, + "end": 12146.0, + "probability": 0.0 + }, + { + "start": 12146.0, + "end": 12146.0, + "probability": 0.0 + }, + { + "start": 12146.0, + "end": 12146.0, + "probability": 0.0 + }, + { + "start": 12146.0, + "end": 12146.0, + "probability": 0.0 + }, + { + "start": 12146.0, + "end": 12146.0, + "probability": 0.0 + }, + { + "start": 12146.0, + "end": 12146.0, + "probability": 0.0 + }, + { + "start": 12158.6, + "end": 12159.32, + "probability": 0.12 + }, + { + "start": 12159.32, + "end": 12162.94, + "probability": 0.0217 + }, + { + "start": 12167.24, + "end": 12168.16, + "probability": 0.0662 + }, + { + "start": 12169.09, + "end": 12171.24, + "probability": 0.0131 + }, + { + "start": 12172.16, + "end": 12174.04, + "probability": 0.2812 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.0, + "end": 12278.0, + "probability": 0.0 + }, + { + "start": 12278.88, + "end": 12282.5, + "probability": 0.442 + }, + { + "start": 12282.5, + "end": 12287.2, + "probability": 0.0142 + }, + { + "start": 12290.64, + "end": 12292.52, + "probability": 0.0381 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.0, + "end": 12403.0, + "probability": 0.0 + }, + { + "start": 12403.66, + "end": 12407.66, + "probability": 0.75 + }, + { + "start": 12408.58, + "end": 12409.46, + "probability": 0.9817 + }, + { + "start": 12410.18, + "end": 12410.2, + "probability": 0.0229 + } + ], + "segments_count": 4132, + "words_count": 21029, + "avg_words_per_segment": 5.0893, + "avg_segment_duration": 2.062, + "avg_words_per_minute": 100.943, + "plenum_id": "5538", + "duration": 12499.53, + "title": null, + "plenum_date": "2009-12-28" +} \ No newline at end of file