diff --git "a/104349/metadata.json" "b/104349/metadata.json" new file mode 100644--- /dev/null +++ "b/104349/metadata.json" @@ -0,0 +1,30272 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "104349", + "quality_score": 0.8585, + "per_segment_quality_scores": [ + { + "start": 61.16, + "end": 64.67, + "probability": 0.9414 + }, + { + "start": 64.74, + "end": 68.9, + "probability": 0.9905 + }, + { + "start": 69.0, + "end": 70.52, + "probability": 0.6144 + }, + { + "start": 70.74, + "end": 71.78, + "probability": 0.7092 + }, + { + "start": 72.38, + "end": 75.74, + "probability": 0.8737 + }, + { + "start": 76.0, + "end": 76.28, + "probability": 0.5025 + }, + { + "start": 77.66, + "end": 80.34, + "probability": 0.7922 + }, + { + "start": 80.98, + "end": 83.46, + "probability": 0.8839 + }, + { + "start": 84.04, + "end": 88.42, + "probability": 0.8896 + }, + { + "start": 88.74, + "end": 89.2, + "probability": 0.6363 + }, + { + "start": 89.3, + "end": 90.84, + "probability": 0.848 + }, + { + "start": 96.5, + "end": 97.9, + "probability": 0.689 + }, + { + "start": 98.58, + "end": 99.86, + "probability": 0.7539 + }, + { + "start": 99.98, + "end": 104.36, + "probability": 0.9863 + }, + { + "start": 104.88, + "end": 105.12, + "probability": 0.8262 + }, + { + "start": 108.26, + "end": 108.9, + "probability": 0.7705 + }, + { + "start": 109.7, + "end": 111.26, + "probability": 0.3041 + }, + { + "start": 117.4, + "end": 117.76, + "probability": 0.2876 + }, + { + "start": 117.76, + "end": 119.96, + "probability": 0.4418 + }, + { + "start": 120.04, + "end": 121.62, + "probability": 0.7336 + }, + { + "start": 121.9, + "end": 124.78, + "probability": 0.9401 + }, + { + "start": 125.8, + "end": 126.54, + "probability": 0.7007 + }, + { + "start": 160.06, + "end": 160.52, + "probability": 0.7579 + }, + { + "start": 161.06, + "end": 163.58, + "probability": 0.8458 + }, + { + "start": 164.26, + "end": 166.56, + "probability": 0.9647 + }, + { + "start": 167.44, + "end": 169.64, + "probability": 0.9496 + }, + { + "start": 169.74, + "end": 171.64, + "probability": 0.9861 + }, + { + "start": 172.66, + "end": 174.14, + "probability": 0.8657 + }, + { + "start": 175.66, + "end": 179.04, + "probability": 0.7751 + }, + { + "start": 179.7, + "end": 180.8, + "probability": 0.7607 + }, + { + "start": 182.04, + "end": 183.26, + "probability": 0.9438 + }, + { + "start": 183.58, + "end": 187.2, + "probability": 0.8721 + }, + { + "start": 188.18, + "end": 189.38, + "probability": 0.7817 + }, + { + "start": 189.48, + "end": 190.28, + "probability": 0.7284 + }, + { + "start": 190.9, + "end": 191.84, + "probability": 0.6264 + }, + { + "start": 192.88, + "end": 194.14, + "probability": 0.8869 + }, + { + "start": 195.18, + "end": 197.32, + "probability": 0.9836 + }, + { + "start": 198.34, + "end": 201.04, + "probability": 0.9885 + }, + { + "start": 201.9, + "end": 204.06, + "probability": 0.9907 + }, + { + "start": 205.08, + "end": 205.5, + "probability": 0.9972 + }, + { + "start": 206.12, + "end": 208.34, + "probability": 0.8504 + }, + { + "start": 211.32, + "end": 212.94, + "probability": 0.9597 + }, + { + "start": 214.4, + "end": 215.2, + "probability": 0.8182 + }, + { + "start": 216.78, + "end": 223.5, + "probability": 0.8438 + }, + { + "start": 224.62, + "end": 225.54, + "probability": 0.5054 + }, + { + "start": 226.39, + "end": 230.28, + "probability": 0.8511 + }, + { + "start": 231.52, + "end": 235.96, + "probability": 0.7812 + }, + { + "start": 237.04, + "end": 237.44, + "probability": 0.5579 + }, + { + "start": 238.42, + "end": 241.1, + "probability": 0.7866 + }, + { + "start": 242.06, + "end": 247.16, + "probability": 0.9822 + }, + { + "start": 247.68, + "end": 250.22, + "probability": 0.994 + }, + { + "start": 253.14, + "end": 254.52, + "probability": 0.7848 + }, + { + "start": 255.56, + "end": 256.46, + "probability": 0.7665 + }, + { + "start": 256.52, + "end": 260.06, + "probability": 0.966 + }, + { + "start": 260.28, + "end": 262.82, + "probability": 0.9913 + }, + { + "start": 262.92, + "end": 266.04, + "probability": 0.9927 + }, + { + "start": 267.5, + "end": 267.9, + "probability": 0.778 + }, + { + "start": 267.94, + "end": 269.66, + "probability": 0.992 + }, + { + "start": 270.42, + "end": 274.2, + "probability": 0.97 + }, + { + "start": 274.52, + "end": 275.8, + "probability": 0.8857 + }, + { + "start": 276.04, + "end": 278.14, + "probability": 0.941 + }, + { + "start": 278.24, + "end": 280.2, + "probability": 0.8815 + }, + { + "start": 281.16, + "end": 282.32, + "probability": 0.867 + }, + { + "start": 283.12, + "end": 286.04, + "probability": 0.5048 + }, + { + "start": 288.32, + "end": 289.54, + "probability": 0.2551 + }, + { + "start": 289.68, + "end": 290.32, + "probability": 0.6807 + }, + { + "start": 290.86, + "end": 293.44, + "probability": 0.9785 + }, + { + "start": 293.88, + "end": 297.93, + "probability": 0.8397 + }, + { + "start": 298.76, + "end": 303.26, + "probability": 0.8544 + }, + { + "start": 303.56, + "end": 305.32, + "probability": 0.8807 + }, + { + "start": 306.2, + "end": 307.4, + "probability": 0.8691 + }, + { + "start": 307.92, + "end": 314.12, + "probability": 0.8648 + }, + { + "start": 314.46, + "end": 315.92, + "probability": 0.8109 + }, + { + "start": 316.52, + "end": 321.2, + "probability": 0.9951 + }, + { + "start": 322.1, + "end": 329.56, + "probability": 0.9767 + }, + { + "start": 330.08, + "end": 333.8, + "probability": 0.8081 + }, + { + "start": 334.1, + "end": 335.14, + "probability": 0.6906 + }, + { + "start": 335.52, + "end": 337.12, + "probability": 0.9845 + }, + { + "start": 337.52, + "end": 338.2, + "probability": 0.8122 + }, + { + "start": 338.48, + "end": 340.51, + "probability": 0.6497 + }, + { + "start": 342.38, + "end": 344.18, + "probability": 0.9963 + }, + { + "start": 346.38, + "end": 348.74, + "probability": 0.9172 + }, + { + "start": 348.74, + "end": 350.1, + "probability": 0.6836 + }, + { + "start": 350.48, + "end": 355.26, + "probability": 0.8699 + }, + { + "start": 355.72, + "end": 355.88, + "probability": 0.3277 + }, + { + "start": 355.96, + "end": 360.42, + "probability": 0.7021 + }, + { + "start": 360.42, + "end": 361.12, + "probability": 0.8814 + }, + { + "start": 381.96, + "end": 383.76, + "probability": 0.7263 + }, + { + "start": 384.74, + "end": 385.76, + "probability": 0.8879 + }, + { + "start": 386.54, + "end": 389.86, + "probability": 0.7269 + }, + { + "start": 391.16, + "end": 396.64, + "probability": 0.8907 + }, + { + "start": 396.72, + "end": 398.1, + "probability": 0.6551 + }, + { + "start": 399.1, + "end": 402.1, + "probability": 0.5644 + }, + { + "start": 402.22, + "end": 405.3, + "probability": 0.8031 + }, + { + "start": 405.78, + "end": 409.72, + "probability": 0.9979 + }, + { + "start": 409.72, + "end": 413.52, + "probability": 0.9994 + }, + { + "start": 414.04, + "end": 414.38, + "probability": 0.7063 + }, + { + "start": 415.56, + "end": 417.94, + "probability": 0.9083 + }, + { + "start": 418.98, + "end": 422.08, + "probability": 0.7397 + }, + { + "start": 422.74, + "end": 422.94, + "probability": 0.8305 + }, + { + "start": 423.76, + "end": 427.14, + "probability": 0.995 + }, + { + "start": 427.14, + "end": 431.0, + "probability": 0.8377 + }, + { + "start": 431.7, + "end": 432.42, + "probability": 0.9655 + }, + { + "start": 433.56, + "end": 437.44, + "probability": 0.9384 + }, + { + "start": 437.64, + "end": 440.3, + "probability": 0.9938 + }, + { + "start": 441.04, + "end": 444.52, + "probability": 0.9766 + }, + { + "start": 445.42, + "end": 447.74, + "probability": 0.924 + }, + { + "start": 447.92, + "end": 448.28, + "probability": 0.803 + }, + { + "start": 448.52, + "end": 449.02, + "probability": 0.9514 + }, + { + "start": 449.16, + "end": 450.36, + "probability": 0.7148 + }, + { + "start": 452.98, + "end": 457.68, + "probability": 0.7764 + }, + { + "start": 460.3, + "end": 461.28, + "probability": 0.6138 + }, + { + "start": 461.78, + "end": 464.86, + "probability": 0.9976 + }, + { + "start": 464.98, + "end": 468.88, + "probability": 0.9991 + }, + { + "start": 469.46, + "end": 470.98, + "probability": 0.9417 + }, + { + "start": 472.64, + "end": 476.7, + "probability": 0.9967 + }, + { + "start": 476.98, + "end": 480.62, + "probability": 0.8701 + }, + { + "start": 481.7, + "end": 484.1, + "probability": 0.9448 + }, + { + "start": 484.36, + "end": 486.2, + "probability": 0.9937 + }, + { + "start": 487.6, + "end": 490.44, + "probability": 0.8943 + }, + { + "start": 491.32, + "end": 492.0, + "probability": 0.4888 + }, + { + "start": 492.12, + "end": 494.92, + "probability": 0.8718 + }, + { + "start": 494.92, + "end": 498.0, + "probability": 0.9979 + }, + { + "start": 499.38, + "end": 502.44, + "probability": 0.7842 + }, + { + "start": 502.52, + "end": 504.7, + "probability": 0.8218 + }, + { + "start": 505.4, + "end": 508.66, + "probability": 0.7919 + }, + { + "start": 509.68, + "end": 512.38, + "probability": 0.7805 + }, + { + "start": 513.2, + "end": 513.24, + "probability": 0.4764 + }, + { + "start": 513.24, + "end": 514.0, + "probability": 0.799 + }, + { + "start": 514.08, + "end": 515.22, + "probability": 0.4545 + }, + { + "start": 515.28, + "end": 516.64, + "probability": 0.9897 + }, + { + "start": 517.32, + "end": 520.32, + "probability": 0.9762 + }, + { + "start": 521.1, + "end": 526.18, + "probability": 0.8362 + }, + { + "start": 526.18, + "end": 529.02, + "probability": 0.9985 + }, + { + "start": 530.0, + "end": 535.02, + "probability": 0.9971 + }, + { + "start": 535.62, + "end": 537.4, + "probability": 0.7565 + }, + { + "start": 538.18, + "end": 542.12, + "probability": 0.9926 + }, + { + "start": 542.8, + "end": 546.46, + "probability": 0.9985 + }, + { + "start": 546.74, + "end": 551.33, + "probability": 0.9318 + }, + { + "start": 552.68, + "end": 554.8, + "probability": 0.9957 + }, + { + "start": 554.92, + "end": 556.32, + "probability": 0.8278 + }, + { + "start": 557.16, + "end": 557.54, + "probability": 0.8579 + }, + { + "start": 559.68, + "end": 560.18, + "probability": 0.6402 + }, + { + "start": 561.54, + "end": 562.74, + "probability": 0.8496 + }, + { + "start": 566.9, + "end": 568.14, + "probability": 0.8972 + }, + { + "start": 568.98, + "end": 572.16, + "probability": 0.8341 + }, + { + "start": 573.5, + "end": 575.86, + "probability": 0.78 + }, + { + "start": 577.22, + "end": 579.1, + "probability": 0.9466 + }, + { + "start": 580.46, + "end": 582.2, + "probability": 0.998 + }, + { + "start": 582.62, + "end": 585.48, + "probability": 0.7717 + }, + { + "start": 585.6, + "end": 586.52, + "probability": 0.7515 + }, + { + "start": 587.3, + "end": 590.28, + "probability": 0.9784 + }, + { + "start": 590.38, + "end": 592.54, + "probability": 0.9985 + }, + { + "start": 593.16, + "end": 596.7, + "probability": 0.8626 + }, + { + "start": 596.86, + "end": 598.3, + "probability": 0.4965 + }, + { + "start": 598.3, + "end": 600.46, + "probability": 0.9035 + }, + { + "start": 600.52, + "end": 602.26, + "probability": 0.845 + }, + { + "start": 602.36, + "end": 603.66, + "probability": 0.7448 + }, + { + "start": 606.79, + "end": 610.04, + "probability": 0.998 + }, + { + "start": 610.2, + "end": 611.56, + "probability": 0.8215 + }, + { + "start": 612.62, + "end": 616.16, + "probability": 0.8724 + }, + { + "start": 616.88, + "end": 618.58, + "probability": 0.9878 + }, + { + "start": 618.66, + "end": 622.12, + "probability": 0.994 + }, + { + "start": 622.34, + "end": 623.34, + "probability": 0.6577 + }, + { + "start": 624.53, + "end": 628.26, + "probability": 0.995 + }, + { + "start": 629.88, + "end": 633.66, + "probability": 0.8313 + }, + { + "start": 634.68, + "end": 638.0, + "probability": 0.7353 + }, + { + "start": 638.1, + "end": 639.21, + "probability": 0.9849 + }, + { + "start": 640.08, + "end": 641.92, + "probability": 0.8454 + }, + { + "start": 642.56, + "end": 648.64, + "probability": 0.9978 + }, + { + "start": 650.18, + "end": 654.62, + "probability": 0.604 + }, + { + "start": 654.8, + "end": 660.22, + "probability": 0.9653 + }, + { + "start": 660.3, + "end": 661.9, + "probability": 0.9185 + }, + { + "start": 662.66, + "end": 663.6, + "probability": 0.6832 + }, + { + "start": 664.24, + "end": 665.76, + "probability": 0.7108 + }, + { + "start": 666.88, + "end": 669.68, + "probability": 0.9183 + }, + { + "start": 669.74, + "end": 672.3, + "probability": 0.9938 + }, + { + "start": 672.3, + "end": 673.16, + "probability": 0.9006 + }, + { + "start": 675.34, + "end": 676.72, + "probability": 0.9846 + }, + { + "start": 677.26, + "end": 682.08, + "probability": 0.9928 + }, + { + "start": 682.64, + "end": 684.28, + "probability": 0.9706 + }, + { + "start": 684.72, + "end": 686.3, + "probability": 0.9279 + }, + { + "start": 686.76, + "end": 692.8, + "probability": 0.9637 + }, + { + "start": 693.36, + "end": 696.88, + "probability": 0.9796 + }, + { + "start": 697.54, + "end": 699.24, + "probability": 0.9855 + }, + { + "start": 699.5, + "end": 700.5, + "probability": 0.7437 + }, + { + "start": 700.72, + "end": 701.6, + "probability": 0.9507 + }, + { + "start": 701.78, + "end": 702.54, + "probability": 0.9344 + }, + { + "start": 702.68, + "end": 702.96, + "probability": 0.2152 + }, + { + "start": 703.14, + "end": 703.24, + "probability": 0.551 + }, + { + "start": 703.58, + "end": 705.0, + "probability": 0.9873 + }, + { + "start": 706.26, + "end": 707.52, + "probability": 0.8622 + }, + { + "start": 707.78, + "end": 714.24, + "probability": 0.9879 + }, + { + "start": 714.9, + "end": 716.12, + "probability": 0.9365 + }, + { + "start": 716.36, + "end": 717.86, + "probability": 0.9883 + }, + { + "start": 718.82, + "end": 725.66, + "probability": 0.9958 + }, + { + "start": 726.66, + "end": 731.2, + "probability": 0.9968 + }, + { + "start": 731.92, + "end": 732.28, + "probability": 0.9502 + }, + { + "start": 732.46, + "end": 732.86, + "probability": 0.6704 + }, + { + "start": 732.88, + "end": 733.97, + "probability": 0.6658 + }, + { + "start": 734.66, + "end": 736.5, + "probability": 0.5842 + }, + { + "start": 736.64, + "end": 737.82, + "probability": 0.9902 + }, + { + "start": 738.94, + "end": 740.82, + "probability": 0.8508 + }, + { + "start": 740.9, + "end": 741.68, + "probability": 0.8542 + }, + { + "start": 741.9, + "end": 749.48, + "probability": 0.9881 + }, + { + "start": 749.58, + "end": 750.2, + "probability": 0.9881 + }, + { + "start": 751.02, + "end": 751.96, + "probability": 0.8998 + }, + { + "start": 754.72, + "end": 757.98, + "probability": 0.7952 + }, + { + "start": 758.54, + "end": 760.66, + "probability": 0.9398 + }, + { + "start": 761.26, + "end": 761.62, + "probability": 0.7492 + }, + { + "start": 761.76, + "end": 765.8, + "probability": 0.9985 + }, + { + "start": 765.96, + "end": 767.72, + "probability": 0.9971 + }, + { + "start": 768.0, + "end": 772.18, + "probability": 0.9956 + }, + { + "start": 773.1, + "end": 773.48, + "probability": 0.5524 + }, + { + "start": 773.54, + "end": 776.72, + "probability": 0.8569 + }, + { + "start": 777.58, + "end": 782.26, + "probability": 0.9656 + }, + { + "start": 783.1, + "end": 784.08, + "probability": 0.8914 + }, + { + "start": 784.26, + "end": 787.32, + "probability": 0.5303 + }, + { + "start": 787.72, + "end": 791.08, + "probability": 0.685 + }, + { + "start": 791.68, + "end": 796.32, + "probability": 0.9597 + }, + { + "start": 796.96, + "end": 800.16, + "probability": 0.9959 + }, + { + "start": 801.62, + "end": 802.87, + "probability": 0.9527 + }, + { + "start": 803.7, + "end": 805.92, + "probability": 0.9976 + }, + { + "start": 805.92, + "end": 807.9, + "probability": 0.9945 + }, + { + "start": 808.38, + "end": 808.9, + "probability": 0.6139 + }, + { + "start": 809.12, + "end": 810.5, + "probability": 0.9702 + }, + { + "start": 811.26, + "end": 813.88, + "probability": 0.9919 + }, + { + "start": 814.5, + "end": 819.0, + "probability": 0.8538 + }, + { + "start": 820.1, + "end": 822.78, + "probability": 0.7547 + }, + { + "start": 823.6, + "end": 825.68, + "probability": 0.959 + }, + { + "start": 826.64, + "end": 828.36, + "probability": 0.7754 + }, + { + "start": 828.5, + "end": 829.68, + "probability": 0.8675 + }, + { + "start": 830.42, + "end": 831.98, + "probability": 0.9427 + }, + { + "start": 832.16, + "end": 836.5, + "probability": 0.9634 + }, + { + "start": 836.98, + "end": 838.8, + "probability": 0.6528 + }, + { + "start": 838.84, + "end": 839.22, + "probability": 0.609 + }, + { + "start": 839.42, + "end": 841.88, + "probability": 0.9946 + }, + { + "start": 841.88, + "end": 844.28, + "probability": 0.9947 + }, + { + "start": 844.92, + "end": 847.26, + "probability": 0.9987 + }, + { + "start": 848.58, + "end": 850.18, + "probability": 0.8148 + }, + { + "start": 850.26, + "end": 853.28, + "probability": 0.9929 + }, + { + "start": 854.02, + "end": 855.2, + "probability": 0.9958 + }, + { + "start": 856.96, + "end": 858.5, + "probability": 0.8848 + }, + { + "start": 858.74, + "end": 860.96, + "probability": 0.8574 + }, + { + "start": 861.02, + "end": 861.65, + "probability": 0.5454 + }, + { + "start": 861.78, + "end": 863.92, + "probability": 0.9976 + }, + { + "start": 864.6, + "end": 867.5, + "probability": 0.972 + }, + { + "start": 868.18, + "end": 872.38, + "probability": 0.9976 + }, + { + "start": 872.38, + "end": 878.06, + "probability": 0.8879 + }, + { + "start": 878.12, + "end": 880.28, + "probability": 0.9568 + }, + { + "start": 881.68, + "end": 885.42, + "probability": 0.995 + }, + { + "start": 885.42, + "end": 888.7, + "probability": 0.9899 + }, + { + "start": 889.46, + "end": 891.85, + "probability": 0.9883 + }, + { + "start": 893.78, + "end": 896.8, + "probability": 0.9926 + }, + { + "start": 897.52, + "end": 900.56, + "probability": 0.7992 + }, + { + "start": 901.04, + "end": 907.14, + "probability": 0.9925 + }, + { + "start": 907.14, + "end": 911.04, + "probability": 0.9846 + }, + { + "start": 911.78, + "end": 912.98, + "probability": 0.5795 + }, + { + "start": 913.6, + "end": 917.94, + "probability": 0.9702 + }, + { + "start": 918.48, + "end": 920.9, + "probability": 0.9429 + }, + { + "start": 921.44, + "end": 922.57, + "probability": 0.9778 + }, + { + "start": 922.98, + "end": 923.82, + "probability": 0.9932 + }, + { + "start": 924.14, + "end": 924.24, + "probability": 0.8889 + }, + { + "start": 925.04, + "end": 926.26, + "probability": 0.9219 + }, + { + "start": 926.42, + "end": 926.9, + "probability": 0.5232 + }, + { + "start": 926.92, + "end": 928.62, + "probability": 0.7786 + }, + { + "start": 934.32, + "end": 935.82, + "probability": 0.6153 + }, + { + "start": 936.3, + "end": 936.9, + "probability": 0.7204 + }, + { + "start": 938.0, + "end": 944.6, + "probability": 0.8807 + }, + { + "start": 944.78, + "end": 946.08, + "probability": 0.839 + }, + { + "start": 946.22, + "end": 946.84, + "probability": 0.588 + }, + { + "start": 947.62, + "end": 948.56, + "probability": 0.906 + }, + { + "start": 949.04, + "end": 950.4, + "probability": 0.928 + }, + { + "start": 950.78, + "end": 952.1, + "probability": 0.8352 + }, + { + "start": 952.76, + "end": 953.65, + "probability": 0.6982 + }, + { + "start": 953.98, + "end": 955.96, + "probability": 0.9797 + }, + { + "start": 956.88, + "end": 963.74, + "probability": 0.8615 + }, + { + "start": 963.84, + "end": 967.2, + "probability": 0.5552 + }, + { + "start": 968.12, + "end": 971.44, + "probability": 0.7473 + }, + { + "start": 972.22, + "end": 972.5, + "probability": 0.654 + }, + { + "start": 973.02, + "end": 976.76, + "probability": 0.7596 + }, + { + "start": 977.7, + "end": 979.48, + "probability": 0.7989 + }, + { + "start": 980.28, + "end": 981.09, + "probability": 0.9272 + }, + { + "start": 981.64, + "end": 987.06, + "probability": 0.7848 + }, + { + "start": 987.38, + "end": 989.52, + "probability": 0.9274 + }, + { + "start": 990.7, + "end": 992.96, + "probability": 0.7863 + }, + { + "start": 993.88, + "end": 995.72, + "probability": 0.772 + }, + { + "start": 996.02, + "end": 996.16, + "probability": 0.4846 + }, + { + "start": 996.3, + "end": 999.68, + "probability": 0.8757 + }, + { + "start": 1000.32, + "end": 1001.24, + "probability": 0.6088 + }, + { + "start": 1001.36, + "end": 1004.34, + "probability": 0.9951 + }, + { + "start": 1004.42, + "end": 1005.14, + "probability": 0.8582 + }, + { + "start": 1005.24, + "end": 1006.06, + "probability": 0.9711 + }, + { + "start": 1006.18, + "end": 1010.3, + "probability": 0.9126 + }, + { + "start": 1010.78, + "end": 1013.26, + "probability": 0.6343 + }, + { + "start": 1014.04, + "end": 1014.5, + "probability": 0.746 + }, + { + "start": 1014.54, + "end": 1016.89, + "probability": 0.8849 + }, + { + "start": 1016.9, + "end": 1018.62, + "probability": 0.7432 + }, + { + "start": 1018.78, + "end": 1020.9, + "probability": 0.7483 + }, + { + "start": 1021.4, + "end": 1021.4, + "probability": 0.3989 + }, + { + "start": 1021.4, + "end": 1023.75, + "probability": 0.7639 + }, + { + "start": 1024.14, + "end": 1026.72, + "probability": 0.975 + }, + { + "start": 1026.92, + "end": 1027.34, + "probability": 0.8545 + }, + { + "start": 1027.44, + "end": 1030.04, + "probability": 0.9202 + }, + { + "start": 1030.5, + "end": 1032.06, + "probability": 0.9739 + }, + { + "start": 1032.8, + "end": 1033.22, + "probability": 0.7334 + }, + { + "start": 1034.58, + "end": 1035.44, + "probability": 0.813 + }, + { + "start": 1036.46, + "end": 1037.8, + "probability": 0.8815 + }, + { + "start": 1037.92, + "end": 1038.48, + "probability": 0.9052 + }, + { + "start": 1039.2, + "end": 1042.5, + "probability": 0.8159 + }, + { + "start": 1042.62, + "end": 1046.56, + "probability": 0.987 + }, + { + "start": 1046.88, + "end": 1047.04, + "probability": 0.6497 + }, + { + "start": 1047.4, + "end": 1049.66, + "probability": 0.7227 + }, + { + "start": 1049.92, + "end": 1051.13, + "probability": 0.9268 + }, + { + "start": 1052.25, + "end": 1053.94, + "probability": 0.8273 + }, + { + "start": 1055.24, + "end": 1056.22, + "probability": 0.939 + }, + { + "start": 1056.82, + "end": 1057.38, + "probability": 0.9504 + }, + { + "start": 1057.9, + "end": 1059.62, + "probability": 0.9483 + }, + { + "start": 1061.04, + "end": 1064.58, + "probability": 0.8809 + }, + { + "start": 1065.44, + "end": 1067.56, + "probability": 0.8458 + }, + { + "start": 1068.28, + "end": 1069.86, + "probability": 0.8202 + }, + { + "start": 1070.8, + "end": 1072.94, + "probability": 0.9951 + }, + { + "start": 1073.26, + "end": 1074.68, + "probability": 0.7762 + }, + { + "start": 1075.24, + "end": 1078.84, + "probability": 0.9683 + }, + { + "start": 1079.62, + "end": 1080.86, + "probability": 0.9595 + }, + { + "start": 1080.96, + "end": 1083.32, + "probability": 0.8599 + }, + { + "start": 1083.78, + "end": 1084.7, + "probability": 0.8342 + }, + { + "start": 1085.68, + "end": 1087.14, + "probability": 0.8289 + }, + { + "start": 1087.74, + "end": 1089.0, + "probability": 0.9608 + }, + { + "start": 1089.86, + "end": 1090.18, + "probability": 0.9635 + }, + { + "start": 1090.22, + "end": 1093.46, + "probability": 0.9799 + }, + { + "start": 1093.96, + "end": 1098.52, + "probability": 0.9467 + }, + { + "start": 1098.86, + "end": 1101.06, + "probability": 0.9941 + }, + { + "start": 1102.3, + "end": 1104.46, + "probability": 0.9596 + }, + { + "start": 1104.78, + "end": 1110.68, + "probability": 0.9891 + }, + { + "start": 1111.44, + "end": 1113.82, + "probability": 0.9931 + }, + { + "start": 1114.14, + "end": 1116.02, + "probability": 0.5143 + }, + { + "start": 1116.52, + "end": 1120.52, + "probability": 0.9581 + }, + { + "start": 1120.68, + "end": 1122.02, + "probability": 0.9966 + }, + { + "start": 1122.5, + "end": 1123.82, + "probability": 0.9708 + }, + { + "start": 1125.06, + "end": 1125.52, + "probability": 0.6182 + }, + { + "start": 1125.6, + "end": 1127.08, + "probability": 0.6803 + }, + { + "start": 1132.5, + "end": 1132.98, + "probability": 0.7116 + }, + { + "start": 1133.24, + "end": 1133.86, + "probability": 0.7089 + }, + { + "start": 1134.02, + "end": 1134.86, + "probability": 0.5348 + }, + { + "start": 1135.18, + "end": 1137.46, + "probability": 0.9256 + }, + { + "start": 1138.22, + "end": 1142.28, + "probability": 0.9829 + }, + { + "start": 1142.28, + "end": 1145.88, + "probability": 0.9958 + }, + { + "start": 1146.58, + "end": 1149.0, + "probability": 0.9928 + }, + { + "start": 1149.1, + "end": 1150.38, + "probability": 0.5653 + }, + { + "start": 1150.48, + "end": 1154.48, + "probability": 0.8853 + }, + { + "start": 1155.0, + "end": 1157.94, + "probability": 0.9395 + }, + { + "start": 1157.94, + "end": 1162.64, + "probability": 0.9871 + }, + { + "start": 1163.44, + "end": 1165.26, + "probability": 0.7429 + }, + { + "start": 1165.9, + "end": 1166.0, + "probability": 0.3113 + }, + { + "start": 1166.12, + "end": 1166.96, + "probability": 0.7998 + }, + { + "start": 1167.46, + "end": 1168.66, + "probability": 0.8935 + }, + { + "start": 1169.06, + "end": 1171.7, + "probability": 0.8153 + }, + { + "start": 1173.7, + "end": 1175.62, + "probability": 0.9486 + }, + { + "start": 1176.0, + "end": 1179.14, + "probability": 0.9893 + }, + { + "start": 1179.14, + "end": 1181.68, + "probability": 0.9868 + }, + { + "start": 1182.32, + "end": 1188.14, + "probability": 0.9909 + }, + { + "start": 1188.68, + "end": 1190.56, + "probability": 0.7799 + }, + { + "start": 1190.92, + "end": 1191.27, + "probability": 0.9865 + }, + { + "start": 1191.5, + "end": 1194.98, + "probability": 0.7743 + }, + { + "start": 1195.36, + "end": 1196.34, + "probability": 0.939 + }, + { + "start": 1196.82, + "end": 1197.42, + "probability": 0.7011 + }, + { + "start": 1198.22, + "end": 1200.54, + "probability": 0.9874 + }, + { + "start": 1201.38, + "end": 1204.98, + "probability": 0.9854 + }, + { + "start": 1206.86, + "end": 1208.78, + "probability": 0.8692 + }, + { + "start": 1209.0, + "end": 1210.06, + "probability": 0.9668 + }, + { + "start": 1210.14, + "end": 1214.68, + "probability": 0.9979 + }, + { + "start": 1214.68, + "end": 1220.0, + "probability": 0.9897 + }, + { + "start": 1220.2, + "end": 1226.6, + "probability": 0.9772 + }, + { + "start": 1227.08, + "end": 1229.11, + "probability": 0.9746 + }, + { + "start": 1230.54, + "end": 1236.48, + "probability": 0.8664 + }, + { + "start": 1236.54, + "end": 1237.54, + "probability": 0.9448 + }, + { + "start": 1237.98, + "end": 1238.16, + "probability": 0.8612 + }, + { + "start": 1238.26, + "end": 1242.22, + "probability": 0.9828 + }, + { + "start": 1242.9, + "end": 1245.16, + "probability": 0.9518 + }, + { + "start": 1245.64, + "end": 1246.16, + "probability": 0.3021 + }, + { + "start": 1246.16, + "end": 1246.32, + "probability": 0.9424 + }, + { + "start": 1246.5, + "end": 1249.28, + "probability": 0.9962 + }, + { + "start": 1250.08, + "end": 1252.66, + "probability": 0.7281 + }, + { + "start": 1253.56, + "end": 1255.36, + "probability": 0.8978 + }, + { + "start": 1255.56, + "end": 1255.56, + "probability": 0.1672 + }, + { + "start": 1255.56, + "end": 1256.74, + "probability": 0.8133 + }, + { + "start": 1256.76, + "end": 1257.66, + "probability": 0.0555 + }, + { + "start": 1257.74, + "end": 1258.0, + "probability": 0.5663 + }, + { + "start": 1258.0, + "end": 1258.7, + "probability": 0.3298 + }, + { + "start": 1258.74, + "end": 1259.56, + "probability": 0.7291 + }, + { + "start": 1259.62, + "end": 1260.34, + "probability": 0.9562 + }, + { + "start": 1261.22, + "end": 1263.72, + "probability": 0.9038 + }, + { + "start": 1264.2, + "end": 1265.47, + "probability": 0.9844 + }, + { + "start": 1266.22, + "end": 1267.32, + "probability": 0.9609 + }, + { + "start": 1268.28, + "end": 1271.4, + "probability": 0.9951 + }, + { + "start": 1271.58, + "end": 1275.76, + "probability": 0.996 + }, + { + "start": 1278.2, + "end": 1278.84, + "probability": 0.7994 + }, + { + "start": 1279.68, + "end": 1282.3, + "probability": 0.4891 + }, + { + "start": 1282.64, + "end": 1287.64, + "probability": 0.7523 + }, + { + "start": 1288.2, + "end": 1289.24, + "probability": 0.8154 + }, + { + "start": 1290.09, + "end": 1292.84, + "probability": 0.6967 + }, + { + "start": 1307.76, + "end": 1308.72, + "probability": 0.7322 + }, + { + "start": 1309.28, + "end": 1309.92, + "probability": 0.7625 + }, + { + "start": 1311.54, + "end": 1314.96, + "probability": 0.5633 + }, + { + "start": 1316.2, + "end": 1319.32, + "probability": 0.8716 + }, + { + "start": 1319.42, + "end": 1321.84, + "probability": 0.8784 + }, + { + "start": 1322.72, + "end": 1327.56, + "probability": 0.8422 + }, + { + "start": 1329.16, + "end": 1331.32, + "probability": 0.6747 + }, + { + "start": 1332.5, + "end": 1334.46, + "probability": 0.5923 + }, + { + "start": 1335.54, + "end": 1336.3, + "probability": 0.8908 + }, + { + "start": 1337.12, + "end": 1337.76, + "probability": 0.644 + }, + { + "start": 1338.22, + "end": 1339.13, + "probability": 0.1611 + }, + { + "start": 1339.49, + "end": 1341.6, + "probability": 0.6647 + }, + { + "start": 1341.92, + "end": 1343.64, + "probability": 0.9801 + }, + { + "start": 1343.76, + "end": 1344.88, + "probability": 0.7907 + }, + { + "start": 1345.42, + "end": 1348.42, + "probability": 0.7932 + }, + { + "start": 1348.46, + "end": 1349.02, + "probability": 0.7462 + }, + { + "start": 1349.08, + "end": 1349.69, + "probability": 0.9084 + }, + { + "start": 1350.36, + "end": 1351.16, + "probability": 0.9683 + }, + { + "start": 1353.24, + "end": 1354.82, + "probability": 0.8065 + }, + { + "start": 1356.28, + "end": 1357.66, + "probability": 0.8745 + }, + { + "start": 1357.74, + "end": 1358.0, + "probability": 0.962 + }, + { + "start": 1358.83, + "end": 1366.16, + "probability": 0.9079 + }, + { + "start": 1367.66, + "end": 1369.5, + "probability": 0.9591 + }, + { + "start": 1369.94, + "end": 1373.0, + "probability": 0.995 + }, + { + "start": 1373.9, + "end": 1374.5, + "probability": 0.4615 + }, + { + "start": 1375.46, + "end": 1379.38, + "probability": 0.8081 + }, + { + "start": 1379.88, + "end": 1380.19, + "probability": 0.1268 + }, + { + "start": 1380.77, + "end": 1382.62, + "probability": 0.8058 + }, + { + "start": 1383.36, + "end": 1383.98, + "probability": 0.2535 + }, + { + "start": 1384.26, + "end": 1388.28, + "probability": 0.9823 + }, + { + "start": 1388.58, + "end": 1389.44, + "probability": 0.3366 + }, + { + "start": 1390.02, + "end": 1391.12, + "probability": 0.9094 + }, + { + "start": 1391.22, + "end": 1392.24, + "probability": 0.5433 + }, + { + "start": 1393.02, + "end": 1399.4, + "probability": 0.7784 + }, + { + "start": 1400.1, + "end": 1403.08, + "probability": 0.9977 + }, + { + "start": 1403.08, + "end": 1406.6, + "probability": 0.9235 + }, + { + "start": 1407.3, + "end": 1407.88, + "probability": 0.8176 + }, + { + "start": 1408.18, + "end": 1410.89, + "probability": 0.8732 + }, + { + "start": 1412.56, + "end": 1413.96, + "probability": 0.5743 + }, + { + "start": 1415.16, + "end": 1419.42, + "probability": 0.5938 + }, + { + "start": 1419.56, + "end": 1419.56, + "probability": 0.3773 + }, + { + "start": 1419.66, + "end": 1426.06, + "probability": 0.8741 + }, + { + "start": 1426.06, + "end": 1426.52, + "probability": 0.3772 + }, + { + "start": 1426.72, + "end": 1427.98, + "probability": 0.9607 + }, + { + "start": 1429.12, + "end": 1429.56, + "probability": 0.8409 + }, + { + "start": 1429.86, + "end": 1431.3, + "probability": 0.8866 + }, + { + "start": 1431.38, + "end": 1432.3, + "probability": 0.0298 + }, + { + "start": 1432.84, + "end": 1434.2, + "probability": 0.3183 + }, + { + "start": 1434.22, + "end": 1434.64, + "probability": 0.9376 + }, + { + "start": 1435.22, + "end": 1439.34, + "probability": 0.8465 + }, + { + "start": 1439.36, + "end": 1441.72, + "probability": 0.8205 + }, + { + "start": 1441.78, + "end": 1442.46, + "probability": 0.9115 + }, + { + "start": 1443.0, + "end": 1443.2, + "probability": 0.8567 + }, + { + "start": 1445.24, + "end": 1448.12, + "probability": 0.9252 + }, + { + "start": 1449.44, + "end": 1456.18, + "probability": 0.993 + }, + { + "start": 1457.2, + "end": 1459.1, + "probability": 0.868 + }, + { + "start": 1459.66, + "end": 1461.52, + "probability": 0.9644 + }, + { + "start": 1462.62, + "end": 1463.64, + "probability": 0.8531 + }, + { + "start": 1466.53, + "end": 1468.16, + "probability": 0.3549 + }, + { + "start": 1468.8, + "end": 1469.32, + "probability": 0.8418 + }, + { + "start": 1469.38, + "end": 1470.88, + "probability": 0.9723 + }, + { + "start": 1471.18, + "end": 1471.78, + "probability": 0.6441 + }, + { + "start": 1471.98, + "end": 1473.7, + "probability": 0.98 + }, + { + "start": 1474.22, + "end": 1475.76, + "probability": 0.9856 + }, + { + "start": 1477.24, + "end": 1477.98, + "probability": 0.5731 + }, + { + "start": 1479.08, + "end": 1479.42, + "probability": 0.0641 + }, + { + "start": 1479.42, + "end": 1482.32, + "probability": 0.1814 + }, + { + "start": 1482.42, + "end": 1484.78, + "probability": 0.6602 + }, + { + "start": 1484.78, + "end": 1489.76, + "probability": 0.0615 + }, + { + "start": 1489.76, + "end": 1489.76, + "probability": 0.4394 + }, + { + "start": 1489.76, + "end": 1489.76, + "probability": 0.3257 + }, + { + "start": 1489.76, + "end": 1489.86, + "probability": 0.1783 + }, + { + "start": 1491.58, + "end": 1492.44, + "probability": 0.7293 + }, + { + "start": 1493.22, + "end": 1495.02, + "probability": 0.9628 + }, + { + "start": 1495.78, + "end": 1499.66, + "probability": 0.9922 + }, + { + "start": 1500.32, + "end": 1504.36, + "probability": 0.9929 + }, + { + "start": 1504.72, + "end": 1508.34, + "probability": 0.9997 + }, + { + "start": 1509.14, + "end": 1513.54, + "probability": 0.7005 + }, + { + "start": 1514.12, + "end": 1516.32, + "probability": 0.993 + }, + { + "start": 1516.32, + "end": 1519.54, + "probability": 0.9449 + }, + { + "start": 1519.86, + "end": 1520.68, + "probability": 0.6094 + }, + { + "start": 1521.7, + "end": 1524.82, + "probability": 0.9821 + }, + { + "start": 1525.52, + "end": 1528.36, + "probability": 0.9896 + }, + { + "start": 1529.06, + "end": 1529.92, + "probability": 0.5403 + }, + { + "start": 1530.16, + "end": 1534.98, + "probability": 0.9937 + }, + { + "start": 1535.68, + "end": 1536.4, + "probability": 0.9517 + }, + { + "start": 1537.12, + "end": 1537.88, + "probability": 0.989 + }, + { + "start": 1538.4, + "end": 1543.0, + "probability": 0.7574 + }, + { + "start": 1543.16, + "end": 1548.44, + "probability": 0.9872 + }, + { + "start": 1549.84, + "end": 1552.46, + "probability": 0.9937 + }, + { + "start": 1552.46, + "end": 1555.4, + "probability": 0.9407 + }, + { + "start": 1556.24, + "end": 1558.36, + "probability": 0.994 + }, + { + "start": 1558.96, + "end": 1561.96, + "probability": 0.9931 + }, + { + "start": 1562.24, + "end": 1563.66, + "probability": 0.7512 + }, + { + "start": 1564.76, + "end": 1565.56, + "probability": 0.6989 + }, + { + "start": 1566.02, + "end": 1571.66, + "probability": 0.9904 + }, + { + "start": 1572.02, + "end": 1572.7, + "probability": 0.9089 + }, + { + "start": 1572.9, + "end": 1573.68, + "probability": 0.856 + }, + { + "start": 1573.94, + "end": 1580.62, + "probability": 0.9891 + }, + { + "start": 1581.8, + "end": 1583.0, + "probability": 0.8251 + }, + { + "start": 1584.14, + "end": 1584.94, + "probability": 0.6215 + }, + { + "start": 1585.52, + "end": 1586.6, + "probability": 0.6061 + }, + { + "start": 1586.8, + "end": 1587.64, + "probability": 0.7249 + }, + { + "start": 1587.74, + "end": 1588.5, + "probability": 0.8519 + }, + { + "start": 1588.64, + "end": 1589.8, + "probability": 0.7211 + }, + { + "start": 1590.14, + "end": 1591.64, + "probability": 0.8207 + }, + { + "start": 1594.38, + "end": 1597.24, + "probability": 0.9558 + }, + { + "start": 1597.5, + "end": 1598.26, + "probability": 0.7873 + }, + { + "start": 1600.0, + "end": 1601.02, + "probability": 0.0058 + }, + { + "start": 1601.02, + "end": 1601.28, + "probability": 0.1102 + }, + { + "start": 1601.28, + "end": 1601.28, + "probability": 0.2619 + }, + { + "start": 1601.28, + "end": 1601.28, + "probability": 0.4849 + }, + { + "start": 1601.28, + "end": 1603.01, + "probability": 0.2987 + }, + { + "start": 1603.62, + "end": 1603.9, + "probability": 0.7515 + }, + { + "start": 1604.94, + "end": 1608.0, + "probability": 0.9554 + }, + { + "start": 1608.9, + "end": 1612.0, + "probability": 0.9792 + }, + { + "start": 1612.08, + "end": 1616.78, + "probability": 0.9995 + }, + { + "start": 1617.3, + "end": 1619.18, + "probability": 0.993 + }, + { + "start": 1619.24, + "end": 1622.72, + "probability": 0.9983 + }, + { + "start": 1623.28, + "end": 1624.9, + "probability": 0.6674 + }, + { + "start": 1625.18, + "end": 1627.44, + "probability": 0.8062 + }, + { + "start": 1627.94, + "end": 1632.22, + "probability": 0.9574 + }, + { + "start": 1632.56, + "end": 1633.36, + "probability": 0.7076 + }, + { + "start": 1633.98, + "end": 1638.54, + "probability": 0.9346 + }, + { + "start": 1639.24, + "end": 1639.9, + "probability": 0.758 + }, + { + "start": 1640.18, + "end": 1646.4, + "probability": 0.9893 + }, + { + "start": 1646.44, + "end": 1647.94, + "probability": 0.8999 + }, + { + "start": 1648.76, + "end": 1650.78, + "probability": 0.8108 + }, + { + "start": 1651.42, + "end": 1655.58, + "probability": 0.9907 + }, + { + "start": 1656.26, + "end": 1659.04, + "probability": 0.9287 + }, + { + "start": 1659.16, + "end": 1660.0, + "probability": 0.8708 + }, + { + "start": 1661.09, + "end": 1665.84, + "probability": 0.9634 + }, + { + "start": 1666.54, + "end": 1669.28, + "probability": 0.9881 + }, + { + "start": 1670.06, + "end": 1671.92, + "probability": 0.7412 + }, + { + "start": 1672.14, + "end": 1676.9, + "probability": 0.9948 + }, + { + "start": 1677.46, + "end": 1678.28, + "probability": 0.9512 + }, + { + "start": 1678.5, + "end": 1679.94, + "probability": 0.5958 + }, + { + "start": 1680.22, + "end": 1683.6, + "probability": 0.927 + }, + { + "start": 1684.2, + "end": 1688.48, + "probability": 0.9833 + }, + { + "start": 1689.08, + "end": 1690.0, + "probability": 0.6138 + }, + { + "start": 1690.1, + "end": 1691.88, + "probability": 0.9858 + }, + { + "start": 1692.58, + "end": 1695.7, + "probability": 0.831 + }, + { + "start": 1695.76, + "end": 1698.94, + "probability": 0.9779 + }, + { + "start": 1700.14, + "end": 1700.42, + "probability": 0.7544 + }, + { + "start": 1701.76, + "end": 1705.06, + "probability": 0.9946 + }, + { + "start": 1705.16, + "end": 1708.56, + "probability": 0.9424 + }, + { + "start": 1709.4, + "end": 1712.84, + "probability": 0.5908 + }, + { + "start": 1713.06, + "end": 1713.91, + "probability": 0.8416 + }, + { + "start": 1714.44, + "end": 1717.68, + "probability": 0.969 + }, + { + "start": 1718.3, + "end": 1722.22, + "probability": 0.9852 + }, + { + "start": 1722.76, + "end": 1724.26, + "probability": 0.8246 + }, + { + "start": 1724.4, + "end": 1724.8, + "probability": 0.8209 + }, + { + "start": 1725.36, + "end": 1726.8, + "probability": 0.9811 + }, + { + "start": 1727.64, + "end": 1728.12, + "probability": 0.8855 + }, + { + "start": 1728.16, + "end": 1729.28, + "probability": 0.759 + }, + { + "start": 1729.7, + "end": 1732.2, + "probability": 0.6127 + }, + { + "start": 1732.28, + "end": 1732.7, + "probability": 0.8115 + }, + { + "start": 1732.78, + "end": 1733.73, + "probability": 0.8538 + }, + { + "start": 1734.66, + "end": 1735.36, + "probability": 0.0523 + }, + { + "start": 1735.36, + "end": 1735.62, + "probability": 0.2541 + }, + { + "start": 1736.48, + "end": 1737.6, + "probability": 0.8677 + }, + { + "start": 1737.94, + "end": 1740.34, + "probability": 0.9549 + }, + { + "start": 1740.56, + "end": 1741.5, + "probability": 0.825 + }, + { + "start": 1742.24, + "end": 1743.12, + "probability": 0.7959 + }, + { + "start": 1743.2, + "end": 1744.42, + "probability": 0.9417 + }, + { + "start": 1744.56, + "end": 1745.21, + "probability": 0.7699 + }, + { + "start": 1745.8, + "end": 1747.88, + "probability": 0.9097 + }, + { + "start": 1748.2, + "end": 1749.08, + "probability": 0.0516 + }, + { + "start": 1749.38, + "end": 1749.68, + "probability": 0.4349 + }, + { + "start": 1749.68, + "end": 1750.18, + "probability": 0.418 + }, + { + "start": 1750.34, + "end": 1751.56, + "probability": 0.8549 + }, + { + "start": 1751.72, + "end": 1752.68, + "probability": 0.5049 + }, + { + "start": 1752.94, + "end": 1753.18, + "probability": 0.7789 + }, + { + "start": 1754.26, + "end": 1757.14, + "probability": 0.2263 + }, + { + "start": 1757.16, + "end": 1763.22, + "probability": 0.6158 + }, + { + "start": 1763.72, + "end": 1763.94, + "probability": 0.825 + }, + { + "start": 1764.48, + "end": 1765.92, + "probability": 0.6396 + }, + { + "start": 1769.21, + "end": 1771.96, + "probability": 0.0382 + }, + { + "start": 1772.04, + "end": 1772.46, + "probability": 0.1709 + }, + { + "start": 1772.46, + "end": 1774.64, + "probability": 0.1789 + }, + { + "start": 1775.12, + "end": 1775.96, + "probability": 0.4607 + }, + { + "start": 1777.1, + "end": 1777.86, + "probability": 0.4298 + }, + { + "start": 1778.54, + "end": 1781.77, + "probability": 0.4837 + }, + { + "start": 1782.02, + "end": 1782.48, + "probability": 0.2597 + }, + { + "start": 1782.48, + "end": 1782.48, + "probability": 0.1068 + }, + { + "start": 1782.48, + "end": 1782.48, + "probability": 0.032 + }, + { + "start": 1782.48, + "end": 1782.48, + "probability": 0.2126 + }, + { + "start": 1782.48, + "end": 1782.88, + "probability": 0.6762 + }, + { + "start": 1783.06, + "end": 1786.46, + "probability": 0.4102 + }, + { + "start": 1787.04, + "end": 1790.8, + "probability": 0.5613 + }, + { + "start": 1791.8, + "end": 1794.6, + "probability": 0.9422 + }, + { + "start": 1795.94, + "end": 1798.3, + "probability": 0.2817 + }, + { + "start": 1798.42, + "end": 1800.09, + "probability": 0.8817 + }, + { + "start": 1801.26, + "end": 1808.42, + "probability": 0.9817 + }, + { + "start": 1808.78, + "end": 1810.88, + "probability": 0.9919 + }, + { + "start": 1811.54, + "end": 1813.7, + "probability": 0.2655 + }, + { + "start": 1813.8, + "end": 1817.04, + "probability": 0.6042 + }, + { + "start": 1817.34, + "end": 1818.32, + "probability": 0.3334 + }, + { + "start": 1818.32, + "end": 1819.1, + "probability": 0.6804 + }, + { + "start": 1820.3, + "end": 1820.75, + "probability": 0.4641 + }, + { + "start": 1821.24, + "end": 1822.66, + "probability": 0.5178 + }, + { + "start": 1822.76, + "end": 1825.38, + "probability": 0.6355 + }, + { + "start": 1826.1, + "end": 1827.04, + "probability": 0.7954 + }, + { + "start": 1827.74, + "end": 1829.3, + "probability": 0.1282 + }, + { + "start": 1831.68, + "end": 1832.04, + "probability": 0.5586 + }, + { + "start": 1832.66, + "end": 1835.11, + "probability": 0.889 + }, + { + "start": 1836.0, + "end": 1837.9, + "probability": 0.3552 + }, + { + "start": 1838.26, + "end": 1839.34, + "probability": 0.828 + }, + { + "start": 1839.38, + "end": 1841.08, + "probability": 0.9771 + }, + { + "start": 1841.12, + "end": 1842.26, + "probability": 0.974 + }, + { + "start": 1842.34, + "end": 1843.36, + "probability": 0.9481 + }, + { + "start": 1843.7, + "end": 1844.66, + "probability": 0.8417 + }, + { + "start": 1844.74, + "end": 1846.06, + "probability": 0.8313 + }, + { + "start": 1846.54, + "end": 1846.66, + "probability": 0.0469 + }, + { + "start": 1846.66, + "end": 1849.42, + "probability": 0.9852 + }, + { + "start": 1849.58, + "end": 1850.16, + "probability": 0.2033 + }, + { + "start": 1850.16, + "end": 1850.65, + "probability": 0.3393 + }, + { + "start": 1851.62, + "end": 1852.14, + "probability": 0.5778 + }, + { + "start": 1852.14, + "end": 1855.84, + "probability": 0.2242 + }, + { + "start": 1857.06, + "end": 1857.3, + "probability": 0.0259 + }, + { + "start": 1857.3, + "end": 1857.3, + "probability": 0.0592 + }, + { + "start": 1857.3, + "end": 1858.2, + "probability": 0.1216 + }, + { + "start": 1858.48, + "end": 1859.32, + "probability": 0.8793 + }, + { + "start": 1861.28, + "end": 1861.72, + "probability": 0.4346 + }, + { + "start": 1861.72, + "end": 1862.6, + "probability": 0.47 + }, + { + "start": 1863.78, + "end": 1864.06, + "probability": 0.1804 + }, + { + "start": 1864.32, + "end": 1865.02, + "probability": 0.5279 + }, + { + "start": 1865.02, + "end": 1865.08, + "probability": 0.4983 + }, + { + "start": 1865.08, + "end": 1866.9, + "probability": 0.4548 + }, + { + "start": 1866.92, + "end": 1868.42, + "probability": 0.6585 + }, + { + "start": 1868.96, + "end": 1869.86, + "probability": 0.0524 + }, + { + "start": 1870.76, + "end": 1870.94, + "probability": 0.2775 + }, + { + "start": 1872.02, + "end": 1872.58, + "probability": 0.6525 + }, + { + "start": 1873.04, + "end": 1874.26, + "probability": 0.8996 + }, + { + "start": 1874.74, + "end": 1875.6, + "probability": 0.8349 + }, + { + "start": 1875.76, + "end": 1878.82, + "probability": 0.9416 + }, + { + "start": 1878.94, + "end": 1882.3, + "probability": 0.5308 + }, + { + "start": 1883.14, + "end": 1883.46, + "probability": 0.7802 + }, + { + "start": 1885.02, + "end": 1888.22, + "probability": 0.5883 + }, + { + "start": 1888.82, + "end": 1889.92, + "probability": 0.5333 + }, + { + "start": 1890.32, + "end": 1890.96, + "probability": 0.8072 + }, + { + "start": 1892.04, + "end": 1893.56, + "probability": 0.7559 + }, + { + "start": 1894.48, + "end": 1896.28, + "probability": 0.7667 + }, + { + "start": 1896.84, + "end": 1899.72, + "probability": 0.9749 + }, + { + "start": 1900.3, + "end": 1901.14, + "probability": 0.8636 + }, + { + "start": 1902.1, + "end": 1902.86, + "probability": 0.9066 + }, + { + "start": 1904.62, + "end": 1906.88, + "probability": 0.6852 + }, + { + "start": 1907.42, + "end": 1909.62, + "probability": 0.5313 + }, + { + "start": 1910.28, + "end": 1915.8, + "probability": 0.9409 + }, + { + "start": 1916.52, + "end": 1917.82, + "probability": 0.7161 + }, + { + "start": 1918.58, + "end": 1920.28, + "probability": 0.7076 + }, + { + "start": 1920.44, + "end": 1921.8, + "probability": 0.8206 + }, + { + "start": 1921.8, + "end": 1923.7, + "probability": 0.3528 + }, + { + "start": 1924.48, + "end": 1925.58, + "probability": 0.9485 + }, + { + "start": 1926.52, + "end": 1930.4, + "probability": 0.8887 + }, + { + "start": 1930.7, + "end": 1934.18, + "probability": 0.9797 + }, + { + "start": 1934.82, + "end": 1937.54, + "probability": 0.886 + }, + { + "start": 1938.44, + "end": 1940.7, + "probability": 0.7817 + }, + { + "start": 1940.82, + "end": 1941.49, + "probability": 0.3682 + }, + { + "start": 1942.0, + "end": 1944.58, + "probability": 0.6646 + }, + { + "start": 1945.46, + "end": 1950.22, + "probability": 0.9792 + }, + { + "start": 1950.56, + "end": 1951.26, + "probability": 0.4917 + }, + { + "start": 1953.14, + "end": 1954.62, + "probability": 0.8019 + }, + { + "start": 1956.02, + "end": 1959.04, + "probability": 0.867 + }, + { + "start": 1959.12, + "end": 1963.62, + "probability": 0.9443 + }, + { + "start": 1964.18, + "end": 1967.14, + "probability": 0.9863 + }, + { + "start": 1967.18, + "end": 1969.64, + "probability": 0.9043 + }, + { + "start": 1970.58, + "end": 1972.48, + "probability": 0.9545 + }, + { + "start": 1973.62, + "end": 1973.64, + "probability": 0.0676 + }, + { + "start": 1973.64, + "end": 1977.1, + "probability": 0.7437 + }, + { + "start": 1977.92, + "end": 1978.94, + "probability": 0.9186 + }, + { + "start": 1979.46, + "end": 1980.46, + "probability": 0.9954 + }, + { + "start": 1983.14, + "end": 1983.74, + "probability": 0.7344 + }, + { + "start": 1984.36, + "end": 1988.96, + "probability": 0.9853 + }, + { + "start": 1989.34, + "end": 1991.48, + "probability": 0.9927 + }, + { + "start": 1991.56, + "end": 1992.35, + "probability": 0.9482 + }, + { + "start": 1993.6, + "end": 1994.32, + "probability": 0.2794 + }, + { + "start": 1995.72, + "end": 1997.5, + "probability": 0.3619 + }, + { + "start": 1997.76, + "end": 1998.57, + "probability": 0.0751 + }, + { + "start": 1999.62, + "end": 2000.86, + "probability": 0.796 + }, + { + "start": 2000.92, + "end": 2002.66, + "probability": 0.6582 + }, + { + "start": 2003.58, + "end": 2006.02, + "probability": 0.2724 + }, + { + "start": 2009.0, + "end": 2010.82, + "probability": 0.2371 + }, + { + "start": 2010.82, + "end": 2013.62, + "probability": 0.1147 + }, + { + "start": 2013.62, + "end": 2017.24, + "probability": 0.0211 + }, + { + "start": 2017.52, + "end": 2017.92, + "probability": 0.1653 + }, + { + "start": 2020.78, + "end": 2020.88, + "probability": 0.0745 + }, + { + "start": 2022.28, + "end": 2024.26, + "probability": 0.1291 + }, + { + "start": 2025.56, + "end": 2026.12, + "probability": 0.0719 + }, + { + "start": 2026.74, + "end": 2029.24, + "probability": 0.0 + }, + { + "start": 2039.22, + "end": 2041.14, + "probability": 0.029 + }, + { + "start": 2041.14, + "end": 2041.9, + "probability": 0.1269 + }, + { + "start": 2042.62, + "end": 2042.8, + "probability": 0.1147 + }, + { + "start": 2043.42, + "end": 2043.76, + "probability": 0.1833 + }, + { + "start": 2045.12, + "end": 2046.6, + "probability": 0.1267 + }, + { + "start": 2048.98, + "end": 2049.28, + "probability": 0.1018 + }, + { + "start": 2049.28, + "end": 2049.28, + "probability": 0.2999 + }, + { + "start": 2049.28, + "end": 2049.7, + "probability": 0.0166 + }, + { + "start": 2051.6, + "end": 2055.7, + "probability": 0.0537 + }, + { + "start": 2056.16, + "end": 2060.56, + "probability": 0.0645 + }, + { + "start": 2060.68, + "end": 2064.45, + "probability": 0.0098 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2077.0, + "end": 2077.0, + "probability": 0.0 + }, + { + "start": 2082.12, + "end": 2084.02, + "probability": 0.5315 + }, + { + "start": 2084.02, + "end": 2085.46, + "probability": 0.8285 + }, + { + "start": 2085.46, + "end": 2088.18, + "probability": 0.9029 + }, + { + "start": 2088.26, + "end": 2088.54, + "probability": 0.3446 + }, + { + "start": 2089.18, + "end": 2089.44, + "probability": 0.5916 + }, + { + "start": 2089.64, + "end": 2090.78, + "probability": 0.1003 + }, + { + "start": 2091.06, + "end": 2092.32, + "probability": 0.22 + }, + { + "start": 2092.32, + "end": 2092.7, + "probability": 0.1133 + }, + { + "start": 2093.52, + "end": 2093.94, + "probability": 0.5731 + }, + { + "start": 2094.1, + "end": 2097.16, + "probability": 0.0615 + }, + { + "start": 2097.16, + "end": 2097.18, + "probability": 0.1083 + }, + { + "start": 2097.72, + "end": 2102.4, + "probability": 0.64 + }, + { + "start": 2102.56, + "end": 2105.06, + "probability": 0.8424 + }, + { + "start": 2105.7, + "end": 2108.3, + "probability": 0.0462 + }, + { + "start": 2108.3, + "end": 2108.3, + "probability": 0.0185 + }, + { + "start": 2108.3, + "end": 2108.3, + "probability": 0.2718 + }, + { + "start": 2108.3, + "end": 2108.94, + "probability": 0.4419 + }, + { + "start": 2109.22, + "end": 2111.08, + "probability": 0.9621 + }, + { + "start": 2111.16, + "end": 2112.14, + "probability": 0.0564 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.0, + "end": 2210.0, + "probability": 0.0 + }, + { + "start": 2210.16, + "end": 2211.28, + "probability": 0.5853 + }, + { + "start": 2212.44, + "end": 2214.82, + "probability": 0.9956 + }, + { + "start": 2215.02, + "end": 2218.64, + "probability": 0.9774 + }, + { + "start": 2219.44, + "end": 2220.2, + "probability": 0.9116 + }, + { + "start": 2220.66, + "end": 2224.24, + "probability": 0.9961 + }, + { + "start": 2224.28, + "end": 2226.14, + "probability": 0.9402 + }, + { + "start": 2226.62, + "end": 2227.8, + "probability": 0.7701 + }, + { + "start": 2228.46, + "end": 2231.88, + "probability": 0.9915 + }, + { + "start": 2233.7, + "end": 2233.8, + "probability": 0.0658 + }, + { + "start": 2233.8, + "end": 2233.8, + "probability": 0.1084 + }, + { + "start": 2233.8, + "end": 2234.44, + "probability": 0.4148 + }, + { + "start": 2234.84, + "end": 2239.2, + "probability": 0.998 + }, + { + "start": 2239.28, + "end": 2240.86, + "probability": 0.8872 + }, + { + "start": 2241.34, + "end": 2243.84, + "probability": 0.9591 + }, + { + "start": 2244.62, + "end": 2245.1, + "probability": 0.7284 + }, + { + "start": 2245.46, + "end": 2248.32, + "probability": 0.168 + }, + { + "start": 2249.66, + "end": 2252.16, + "probability": 0.3637 + }, + { + "start": 2252.8, + "end": 2255.08, + "probability": 0.9683 + }, + { + "start": 2255.86, + "end": 2260.68, + "probability": 0.9954 + }, + { + "start": 2260.74, + "end": 2262.02, + "probability": 0.9647 + }, + { + "start": 2262.54, + "end": 2265.2, + "probability": 0.9661 + }, + { + "start": 2265.82, + "end": 2268.92, + "probability": 0.6311 + }, + { + "start": 2269.74, + "end": 2269.76, + "probability": 0.0663 + }, + { + "start": 2269.76, + "end": 2272.24, + "probability": 0.8497 + }, + { + "start": 2272.46, + "end": 2275.62, + "probability": 0.9964 + }, + { + "start": 2276.48, + "end": 2278.36, + "probability": 0.9849 + }, + { + "start": 2279.36, + "end": 2280.38, + "probability": 0.8767 + }, + { + "start": 2281.04, + "end": 2281.22, + "probability": 0.1964 + }, + { + "start": 2281.22, + "end": 2283.72, + "probability": 0.4633 + }, + { + "start": 2283.86, + "end": 2285.42, + "probability": 0.9751 + }, + { + "start": 2286.72, + "end": 2289.22, + "probability": 0.4056 + }, + { + "start": 2290.5, + "end": 2290.8, + "probability": 0.1944 + }, + { + "start": 2290.8, + "end": 2290.8, + "probability": 0.2169 + }, + { + "start": 2290.8, + "end": 2290.8, + "probability": 0.0747 + }, + { + "start": 2290.8, + "end": 2296.16, + "probability": 0.77 + }, + { + "start": 2296.72, + "end": 2298.54, + "probability": 0.9988 + }, + { + "start": 2299.1, + "end": 2303.72, + "probability": 0.9922 + }, + { + "start": 2304.26, + "end": 2305.88, + "probability": 0.8428 + }, + { + "start": 2306.82, + "end": 2308.22, + "probability": 0.8047 + }, + { + "start": 2308.56, + "end": 2308.62, + "probability": 0.0703 + }, + { + "start": 2308.62, + "end": 2313.12, + "probability": 0.9451 + }, + { + "start": 2313.24, + "end": 2314.66, + "probability": 0.7005 + }, + { + "start": 2315.26, + "end": 2316.16, + "probability": 0.8605 + }, + { + "start": 2316.83, + "end": 2320.64, + "probability": 0.8288 + }, + { + "start": 2320.64, + "end": 2321.14, + "probability": 0.1337 + }, + { + "start": 2321.96, + "end": 2322.22, + "probability": 0.2989 + }, + { + "start": 2322.22, + "end": 2323.36, + "probability": 0.2963 + }, + { + "start": 2323.82, + "end": 2324.82, + "probability": 0.3648 + }, + { + "start": 2324.96, + "end": 2325.66, + "probability": 0.1024 + }, + { + "start": 2325.66, + "end": 2327.44, + "probability": 0.1814 + }, + { + "start": 2327.44, + "end": 2328.82, + "probability": 0.9485 + }, + { + "start": 2328.9, + "end": 2332.42, + "probability": 0.9956 + }, + { + "start": 2332.78, + "end": 2333.02, + "probability": 0.6366 + }, + { + "start": 2333.02, + "end": 2336.52, + "probability": 0.9748 + }, + { + "start": 2336.9, + "end": 2338.7, + "probability": 0.3451 + }, + { + "start": 2339.24, + "end": 2340.32, + "probability": 0.1271 + }, + { + "start": 2340.36, + "end": 2344.32, + "probability": 0.8369 + }, + { + "start": 2344.48, + "end": 2344.62, + "probability": 0.8018 + }, + { + "start": 2344.72, + "end": 2346.87, + "probability": 0.9895 + }, + { + "start": 2347.56, + "end": 2348.68, + "probability": 0.5839 + }, + { + "start": 2348.86, + "end": 2349.6, + "probability": 0.8219 + }, + { + "start": 2350.2, + "end": 2352.44, + "probability": 0.5446 + }, + { + "start": 2352.44, + "end": 2352.44, + "probability": 0.1539 + }, + { + "start": 2352.44, + "end": 2352.79, + "probability": 0.5178 + }, + { + "start": 2352.88, + "end": 2354.02, + "probability": 0.9927 + }, + { + "start": 2354.08, + "end": 2356.36, + "probability": 0.9072 + }, + { + "start": 2357.6, + "end": 2361.66, + "probability": 0.9303 + }, + { + "start": 2362.2, + "end": 2365.96, + "probability": 0.6519 + }, + { + "start": 2366.3, + "end": 2368.98, + "probability": 0.7644 + }, + { + "start": 2369.06, + "end": 2371.8, + "probability": 0.8826 + }, + { + "start": 2371.96, + "end": 2372.92, + "probability": 0.916 + }, + { + "start": 2373.06, + "end": 2375.28, + "probability": 0.9885 + }, + { + "start": 2375.68, + "end": 2379.44, + "probability": 0.9189 + }, + { + "start": 2379.54, + "end": 2379.58, + "probability": 0.2607 + }, + { + "start": 2379.58, + "end": 2380.28, + "probability": 0.5268 + }, + { + "start": 2380.52, + "end": 2382.6, + "probability": 0.8527 + }, + { + "start": 2382.88, + "end": 2384.84, + "probability": 0.8704 + }, + { + "start": 2385.42, + "end": 2387.64, + "probability": 0.0472 + }, + { + "start": 2387.64, + "end": 2389.24, + "probability": 0.4736 + }, + { + "start": 2389.24, + "end": 2390.92, + "probability": 0.1527 + }, + { + "start": 2392.96, + "end": 2392.96, + "probability": 0.0989 + }, + { + "start": 2392.98, + "end": 2397.0, + "probability": 0.8838 + }, + { + "start": 2397.0, + "end": 2402.26, + "probability": 0.9966 + }, + { + "start": 2402.92, + "end": 2404.58, + "probability": 0.8127 + }, + { + "start": 2405.22, + "end": 2407.04, + "probability": 0.8277 + }, + { + "start": 2407.2, + "end": 2408.72, + "probability": 0.9714 + }, + { + "start": 2409.22, + "end": 2410.51, + "probability": 0.8966 + }, + { + "start": 2410.82, + "end": 2414.32, + "probability": 0.9934 + }, + { + "start": 2414.66, + "end": 2414.66, + "probability": 0.0305 + }, + { + "start": 2414.66, + "end": 2420.98, + "probability": 0.9765 + }, + { + "start": 2421.12, + "end": 2421.8, + "probability": 0.0917 + }, + { + "start": 2422.58, + "end": 2425.98, + "probability": 0.0337 + }, + { + "start": 2425.98, + "end": 2425.98, + "probability": 0.1753 + }, + { + "start": 2425.98, + "end": 2426.2, + "probability": 0.4825 + }, + { + "start": 2426.24, + "end": 2429.54, + "probability": 0.5644 + }, + { + "start": 2429.54, + "end": 2430.65, + "probability": 0.114 + }, + { + "start": 2430.96, + "end": 2431.39, + "probability": 0.2977 + }, + { + "start": 2432.02, + "end": 2433.54, + "probability": 0.6745 + }, + { + "start": 2433.7, + "end": 2435.24, + "probability": 0.9484 + }, + { + "start": 2435.38, + "end": 2436.12, + "probability": 0.0359 + }, + { + "start": 2436.12, + "end": 2437.0, + "probability": 0.7964 + }, + { + "start": 2437.18, + "end": 2439.06, + "probability": 0.4986 + }, + { + "start": 2439.28, + "end": 2443.26, + "probability": 0.092 + }, + { + "start": 2443.78, + "end": 2445.46, + "probability": 0.2603 + }, + { + "start": 2447.94, + "end": 2449.74, + "probability": 0.2389 + }, + { + "start": 2450.1, + "end": 2450.92, + "probability": 0.0663 + }, + { + "start": 2450.98, + "end": 2451.38, + "probability": 0.1885 + }, + { + "start": 2451.38, + "end": 2451.38, + "probability": 0.0834 + }, + { + "start": 2451.4, + "end": 2451.64, + "probability": 0.1678 + }, + { + "start": 2451.64, + "end": 2452.04, + "probability": 0.0548 + }, + { + "start": 2452.04, + "end": 2453.26, + "probability": 0.1726 + }, + { + "start": 2453.26, + "end": 2455.9, + "probability": 0.2778 + }, + { + "start": 2457.02, + "end": 2458.24, + "probability": 0.3043 + }, + { + "start": 2459.0, + "end": 2459.38, + "probability": 0.0292 + }, + { + "start": 2459.38, + "end": 2459.38, + "probability": 0.1888 + }, + { + "start": 2459.38, + "end": 2459.38, + "probability": 0.0614 + }, + { + "start": 2459.38, + "end": 2459.38, + "probability": 0.0073 + }, + { + "start": 2459.38, + "end": 2462.9, + "probability": 0.4094 + }, + { + "start": 2476.4, + "end": 2476.9, + "probability": 0.048 + }, + { + "start": 2476.9, + "end": 2479.58, + "probability": 0.0688 + }, + { + "start": 2480.68, + "end": 2480.68, + "probability": 0.0722 + }, + { + "start": 2480.68, + "end": 2480.68, + "probability": 0.0724 + }, + { + "start": 2480.68, + "end": 2480.68, + "probability": 0.0477 + }, + { + "start": 2480.68, + "end": 2480.68, + "probability": 0.2343 + }, + { + "start": 2480.68, + "end": 2482.05, + "probability": 0.18 + }, + { + "start": 2484.28, + "end": 2486.72, + "probability": 0.6427 + }, + { + "start": 2487.38, + "end": 2488.01, + "probability": 0.729 + }, + { + "start": 2488.48, + "end": 2488.84, + "probability": 0.5477 + }, + { + "start": 2488.96, + "end": 2492.4, + "probability": 0.9729 + }, + { + "start": 2492.76, + "end": 2493.74, + "probability": 0.5246 + }, + { + "start": 2494.42, + "end": 2495.25, + "probability": 0.7503 + }, + { + "start": 2495.54, + "end": 2498.68, + "probability": 0.7476 + }, + { + "start": 2499.14, + "end": 2499.86, + "probability": 0.8003 + }, + { + "start": 2500.4, + "end": 2502.52, + "probability": 0.7498 + }, + { + "start": 2503.02, + "end": 2505.02, + "probability": 0.8354 + }, + { + "start": 2505.36, + "end": 2506.28, + "probability": 0.9468 + }, + { + "start": 2506.78, + "end": 2508.68, + "probability": 0.9927 + }, + { + "start": 2509.34, + "end": 2512.38, + "probability": 0.5468 + }, + { + "start": 2512.5, + "end": 2515.36, + "probability": 0.658 + }, + { + "start": 2515.8, + "end": 2516.7, + "probability": 0.8099 + }, + { + "start": 2517.02, + "end": 2518.18, + "probability": 0.695 + }, + { + "start": 2519.41, + "end": 2523.88, + "probability": 0.76 + }, + { + "start": 2524.0, + "end": 2525.58, + "probability": 0.934 + }, + { + "start": 2526.34, + "end": 2527.46, + "probability": 0.7123 + }, + { + "start": 2527.48, + "end": 2532.06, + "probability": 0.3006 + }, + { + "start": 2532.06, + "end": 2532.06, + "probability": 0.02 + }, + { + "start": 2532.06, + "end": 2535.58, + "probability": 0.8617 + }, + { + "start": 2535.88, + "end": 2536.49, + "probability": 0.9672 + }, + { + "start": 2536.6, + "end": 2537.68, + "probability": 0.9468 + }, + { + "start": 2537.76, + "end": 2538.3, + "probability": 0.7249 + }, + { + "start": 2538.34, + "end": 2539.12, + "probability": 0.8667 + }, + { + "start": 2539.54, + "end": 2541.08, + "probability": 0.8975 + }, + { + "start": 2542.43, + "end": 2546.82, + "probability": 0.425 + }, + { + "start": 2547.58, + "end": 2547.86, + "probability": 0.0384 + }, + { + "start": 2547.86, + "end": 2547.86, + "probability": 0.0269 + }, + { + "start": 2547.86, + "end": 2549.06, + "probability": 0.5747 + }, + { + "start": 2549.12, + "end": 2549.7, + "probability": 0.1415 + }, + { + "start": 2549.7, + "end": 2550.4, + "probability": 0.436 + }, + { + "start": 2550.52, + "end": 2550.62, + "probability": 0.4882 + }, + { + "start": 2550.62, + "end": 2551.33, + "probability": 0.6973 + }, + { + "start": 2551.44, + "end": 2551.84, + "probability": 0.3477 + }, + { + "start": 2551.94, + "end": 2553.4, + "probability": 0.6708 + }, + { + "start": 2553.64, + "end": 2555.64, + "probability": 0.8297 + }, + { + "start": 2555.66, + "end": 2559.76, + "probability": 0.7818 + }, + { + "start": 2559.8, + "end": 2560.58, + "probability": 0.4292 + }, + { + "start": 2561.02, + "end": 2562.76, + "probability": 0.37 + }, + { + "start": 2563.02, + "end": 2564.96, + "probability": 0.759 + }, + { + "start": 2575.4, + "end": 2577.68, + "probability": 0.7369 + }, + { + "start": 2578.48, + "end": 2580.3, + "probability": 0.1552 + }, + { + "start": 2580.3, + "end": 2580.3, + "probability": 0.045 + }, + { + "start": 2580.3, + "end": 2580.3, + "probability": 0.0539 + }, + { + "start": 2580.3, + "end": 2580.3, + "probability": 0.0775 + }, + { + "start": 2580.3, + "end": 2580.48, + "probability": 0.0475 + }, + { + "start": 2580.76, + "end": 2580.96, + "probability": 0.5714 + }, + { + "start": 2582.12, + "end": 2583.12, + "probability": 0.7984 + }, + { + "start": 2583.18, + "end": 2584.22, + "probability": 0.5475 + }, + { + "start": 2584.32, + "end": 2586.21, + "probability": 0.9399 + }, + { + "start": 2586.42, + "end": 2589.72, + "probability": 0.8796 + }, + { + "start": 2590.24, + "end": 2591.82, + "probability": 0.9579 + }, + { + "start": 2591.96, + "end": 2593.18, + "probability": 0.9756 + }, + { + "start": 2593.7, + "end": 2596.32, + "probability": 0.9427 + }, + { + "start": 2596.88, + "end": 2599.78, + "probability": 0.8888 + }, + { + "start": 2600.38, + "end": 2601.56, + "probability": 0.9882 + }, + { + "start": 2601.58, + "end": 2604.78, + "probability": 0.9801 + }, + { + "start": 2605.2, + "end": 2606.78, + "probability": 0.9909 + }, + { + "start": 2606.92, + "end": 2607.16, + "probability": 0.7847 + }, + { + "start": 2607.38, + "end": 2608.42, + "probability": 0.8948 + }, + { + "start": 2609.2, + "end": 2611.6, + "probability": 0.8246 + }, + { + "start": 2611.6, + "end": 2614.12, + "probability": 0.8646 + }, + { + "start": 2614.52, + "end": 2615.02, + "probability": 0.1039 + }, + { + "start": 2615.52, + "end": 2616.84, + "probability": 0.7221 + }, + { + "start": 2616.96, + "end": 2621.68, + "probability": 0.9786 + }, + { + "start": 2622.22, + "end": 2624.32, + "probability": 0.6652 + }, + { + "start": 2624.88, + "end": 2627.46, + "probability": 0.0458 + }, + { + "start": 2627.48, + "end": 2631.86, + "probability": 0.8949 + }, + { + "start": 2632.02, + "end": 2632.94, + "probability": 0.8389 + }, + { + "start": 2633.06, + "end": 2634.4, + "probability": 0.6129 + }, + { + "start": 2634.92, + "end": 2636.48, + "probability": 0.7968 + }, + { + "start": 2637.08, + "end": 2640.68, + "probability": 0.5053 + }, + { + "start": 2641.16, + "end": 2641.96, + "probability": 0.9314 + }, + { + "start": 2642.42, + "end": 2643.06, + "probability": 0.8275 + }, + { + "start": 2643.18, + "end": 2643.52, + "probability": 0.695 + }, + { + "start": 2644.16, + "end": 2645.6, + "probability": 0.9935 + }, + { + "start": 2646.02, + "end": 2647.94, + "probability": 0.917 + }, + { + "start": 2648.78, + "end": 2650.12, + "probability": 0.9757 + }, + { + "start": 2650.84, + "end": 2653.22, + "probability": 0.9364 + }, + { + "start": 2654.06, + "end": 2655.38, + "probability": 0.6137 + }, + { + "start": 2655.72, + "end": 2656.48, + "probability": 0.8745 + }, + { + "start": 2656.86, + "end": 2662.0, + "probability": 0.5386 + }, + { + "start": 2662.56, + "end": 2666.6, + "probability": 0.9964 + }, + { + "start": 2667.28, + "end": 2670.12, + "probability": 0.9354 + }, + { + "start": 2670.18, + "end": 2670.86, + "probability": 0.8522 + }, + { + "start": 2671.66, + "end": 2672.2, + "probability": 0.3073 + }, + { + "start": 2672.32, + "end": 2675.02, + "probability": 0.9908 + }, + { + "start": 2675.86, + "end": 2677.02, + "probability": 0.8188 + }, + { + "start": 2677.18, + "end": 2677.34, + "probability": 0.8228 + }, + { + "start": 2677.44, + "end": 2677.68, + "probability": 0.9031 + }, + { + "start": 2677.74, + "end": 2679.11, + "probability": 0.9947 + }, + { + "start": 2679.62, + "end": 2680.9, + "probability": 0.8545 + }, + { + "start": 2681.4, + "end": 2682.89, + "probability": 0.7703 + }, + { + "start": 2683.1, + "end": 2684.54, + "probability": 0.9718 + }, + { + "start": 2684.8, + "end": 2686.06, + "probability": 0.6504 + }, + { + "start": 2686.58, + "end": 2688.6, + "probability": 0.8806 + }, + { + "start": 2689.4, + "end": 2690.48, + "probability": 0.941 + }, + { + "start": 2690.88, + "end": 2692.34, + "probability": 0.8045 + }, + { + "start": 2692.8, + "end": 2698.14, + "probability": 0.4798 + }, + { + "start": 2698.98, + "end": 2703.0, + "probability": 0.6965 + }, + { + "start": 2703.72, + "end": 2705.72, + "probability": 0.9367 + }, + { + "start": 2705.8, + "end": 2707.1, + "probability": 0.9735 + }, + { + "start": 2707.24, + "end": 2710.16, + "probability": 0.7514 + }, + { + "start": 2710.8, + "end": 2713.08, + "probability": 0.9806 + }, + { + "start": 2713.6, + "end": 2716.02, + "probability": 0.8489 + }, + { + "start": 2716.3, + "end": 2717.82, + "probability": 0.9965 + }, + { + "start": 2719.47, + "end": 2721.24, + "probability": 0.9952 + }, + { + "start": 2721.96, + "end": 2723.3, + "probability": 0.684 + }, + { + "start": 2723.66, + "end": 2724.32, + "probability": 0.9648 + }, + { + "start": 2724.4, + "end": 2726.31, + "probability": 0.972 + }, + { + "start": 2727.02, + "end": 2729.74, + "probability": 0.9567 + }, + { + "start": 2730.4, + "end": 2731.36, + "probability": 0.9092 + }, + { + "start": 2731.86, + "end": 2733.12, + "probability": 0.9306 + }, + { + "start": 2733.4, + "end": 2734.08, + "probability": 0.8652 + }, + { + "start": 2734.22, + "end": 2738.48, + "probability": 0.9887 + }, + { + "start": 2738.9, + "end": 2741.04, + "probability": 0.9932 + }, + { + "start": 2741.8, + "end": 2742.48, + "probability": 0.4347 + }, + { + "start": 2742.68, + "end": 2743.06, + "probability": 0.9538 + }, + { + "start": 2743.16, + "end": 2744.56, + "probability": 0.9609 + }, + { + "start": 2744.7, + "end": 2745.58, + "probability": 0.9205 + }, + { + "start": 2745.66, + "end": 2747.4, + "probability": 0.9814 + }, + { + "start": 2747.94, + "end": 2750.54, + "probability": 0.9023 + }, + { + "start": 2750.64, + "end": 2754.38, + "probability": 0.9969 + }, + { + "start": 2754.74, + "end": 2757.72, + "probability": 0.9326 + }, + { + "start": 2758.28, + "end": 2761.58, + "probability": 0.911 + }, + { + "start": 2762.6, + "end": 2765.34, + "probability": 0.9159 + }, + { + "start": 2766.48, + "end": 2768.34, + "probability": 0.9703 + }, + { + "start": 2769.42, + "end": 2770.56, + "probability": 0.1137 + }, + { + "start": 2771.06, + "end": 2771.84, + "probability": 0.5706 + }, + { + "start": 2772.18, + "end": 2773.68, + "probability": 0.7731 + }, + { + "start": 2774.86, + "end": 2775.06, + "probability": 0.8221 + }, + { + "start": 2781.1, + "end": 2782.32, + "probability": 0.6338 + }, + { + "start": 2782.42, + "end": 2783.04, + "probability": 0.5992 + }, + { + "start": 2783.16, + "end": 2783.7, + "probability": 0.7745 + }, + { + "start": 2784.55, + "end": 2786.41, + "probability": 0.9766 + }, + { + "start": 2787.36, + "end": 2788.86, + "probability": 0.5105 + }, + { + "start": 2788.9, + "end": 2789.74, + "probability": 0.9365 + }, + { + "start": 2790.5, + "end": 2795.24, + "probability": 0.9628 + }, + { + "start": 2795.24, + "end": 2799.2, + "probability": 0.9857 + }, + { + "start": 2799.26, + "end": 2802.56, + "probability": 0.8654 + }, + { + "start": 2803.24, + "end": 2804.22, + "probability": 0.5457 + }, + { + "start": 2804.38, + "end": 2805.36, + "probability": 0.5796 + }, + { + "start": 2805.44, + "end": 2806.14, + "probability": 0.3338 + }, + { + "start": 2806.34, + "end": 2807.22, + "probability": 0.8513 + }, + { + "start": 2807.54, + "end": 2808.18, + "probability": 0.7252 + }, + { + "start": 2808.24, + "end": 2808.94, + "probability": 0.8199 + }, + { + "start": 2809.16, + "end": 2810.84, + "probability": 0.9629 + }, + { + "start": 2811.54, + "end": 2812.22, + "probability": 0.6595 + }, + { + "start": 2812.94, + "end": 2815.08, + "probability": 0.4248 + }, + { + "start": 2815.9, + "end": 2817.72, + "probability": 0.8391 + }, + { + "start": 2818.3, + "end": 2820.58, + "probability": 0.9943 + }, + { + "start": 2820.7, + "end": 2823.54, + "probability": 0.9688 + }, + { + "start": 2824.02, + "end": 2825.56, + "probability": 0.9869 + }, + { + "start": 2826.88, + "end": 2828.74, + "probability": 0.9762 + }, + { + "start": 2829.4, + "end": 2831.46, + "probability": 0.7153 + }, + { + "start": 2832.46, + "end": 2833.52, + "probability": 0.8074 + }, + { + "start": 2833.56, + "end": 2834.14, + "probability": 0.5234 + }, + { + "start": 2834.34, + "end": 2834.96, + "probability": 0.8012 + }, + { + "start": 2835.12, + "end": 2835.56, + "probability": 0.6166 + }, + { + "start": 2835.6, + "end": 2836.52, + "probability": 0.8913 + }, + { + "start": 2836.94, + "end": 2838.08, + "probability": 0.8879 + }, + { + "start": 2838.86, + "end": 2842.18, + "probability": 0.9608 + }, + { + "start": 2842.18, + "end": 2845.42, + "probability": 0.9711 + }, + { + "start": 2846.08, + "end": 2848.06, + "probability": 0.6154 + }, + { + "start": 2848.2, + "end": 2848.78, + "probability": 0.6557 + }, + { + "start": 2849.32, + "end": 2851.3, + "probability": 0.9266 + }, + { + "start": 2851.3, + "end": 2854.21, + "probability": 0.9855 + }, + { + "start": 2854.8, + "end": 2856.96, + "probability": 0.9969 + }, + { + "start": 2857.16, + "end": 2857.78, + "probability": 0.7159 + }, + { + "start": 2859.13, + "end": 2861.32, + "probability": 0.9727 + }, + { + "start": 2861.54, + "end": 2863.98, + "probability": 0.6541 + }, + { + "start": 2864.85, + "end": 2865.1, + "probability": 0.4999 + }, + { + "start": 2865.1, + "end": 2866.76, + "probability": 0.7949 + }, + { + "start": 2866.82, + "end": 2867.7, + "probability": 0.4685 + }, + { + "start": 2867.92, + "end": 2869.82, + "probability": 0.9813 + }, + { + "start": 2869.88, + "end": 2871.2, + "probability": 0.9521 + }, + { + "start": 2871.88, + "end": 2875.68, + "probability": 0.77 + }, + { + "start": 2876.56, + "end": 2880.1, + "probability": 0.9363 + }, + { + "start": 2880.52, + "end": 2883.62, + "probability": 0.8333 + }, + { + "start": 2884.14, + "end": 2888.68, + "probability": 0.9112 + }, + { + "start": 2889.26, + "end": 2892.72, + "probability": 0.9892 + }, + { + "start": 2892.84, + "end": 2893.56, + "probability": 0.9238 + }, + { + "start": 2893.78, + "end": 2894.68, + "probability": 0.8379 + }, + { + "start": 2894.74, + "end": 2895.8, + "probability": 0.9253 + }, + { + "start": 2895.86, + "end": 2896.76, + "probability": 0.8381 + }, + { + "start": 2897.38, + "end": 2898.44, + "probability": 0.9861 + }, + { + "start": 2898.64, + "end": 2899.1, + "probability": 0.808 + }, + { + "start": 2899.16, + "end": 2899.42, + "probability": 0.787 + }, + { + "start": 2899.82, + "end": 2900.6, + "probability": 0.9614 + }, + { + "start": 2901.56, + "end": 2902.64, + "probability": 0.7928 + }, + { + "start": 2902.76, + "end": 2903.16, + "probability": 0.8703 + }, + { + "start": 2903.34, + "end": 2909.32, + "probability": 0.9973 + }, + { + "start": 2910.14, + "end": 2911.58, + "probability": 0.974 + }, + { + "start": 2911.82, + "end": 2914.44, + "probability": 0.725 + }, + { + "start": 2915.18, + "end": 2916.9, + "probability": 0.5909 + }, + { + "start": 2917.12, + "end": 2920.06, + "probability": 0.6427 + }, + { + "start": 2921.06, + "end": 2924.5, + "probability": 0.5461 + }, + { + "start": 2925.68, + "end": 2928.53, + "probability": 0.9968 + }, + { + "start": 2928.58, + "end": 2933.18, + "probability": 0.8977 + }, + { + "start": 2933.72, + "end": 2936.9, + "probability": 0.8336 + }, + { + "start": 2937.94, + "end": 2941.5, + "probability": 0.8765 + }, + { + "start": 2942.36, + "end": 2945.14, + "probability": 0.9786 + }, + { + "start": 2945.92, + "end": 2952.9, + "probability": 0.9876 + }, + { + "start": 2953.78, + "end": 2954.56, + "probability": 0.9879 + }, + { + "start": 2955.14, + "end": 2960.34, + "probability": 0.9949 + }, + { + "start": 2961.08, + "end": 2963.5, + "probability": 0.6842 + }, + { + "start": 2964.2, + "end": 2967.52, + "probability": 0.9939 + }, + { + "start": 2967.7, + "end": 2972.96, + "probability": 0.8718 + }, + { + "start": 2973.1, + "end": 2974.74, + "probability": 0.9219 + }, + { + "start": 2975.56, + "end": 2976.36, + "probability": 0.9069 + }, + { + "start": 2977.8, + "end": 2979.06, + "probability": 0.5817 + }, + { + "start": 2979.55, + "end": 2982.02, + "probability": 0.8965 + }, + { + "start": 2982.08, + "end": 2985.0, + "probability": 0.8101 + }, + { + "start": 2987.64, + "end": 2991.3, + "probability": 0.9853 + }, + { + "start": 2991.54, + "end": 2993.94, + "probability": 0.0892 + }, + { + "start": 2994.12, + "end": 2997.8, + "probability": 0.0083 + }, + { + "start": 2998.1, + "end": 2999.6, + "probability": 0.895 + }, + { + "start": 3000.42, + "end": 3002.84, + "probability": 0.0828 + }, + { + "start": 3002.84, + "end": 3003.93, + "probability": 0.5588 + }, + { + "start": 3004.16, + "end": 3005.75, + "probability": 0.8823 + }, + { + "start": 3006.58, + "end": 3011.52, + "probability": 0.9245 + }, + { + "start": 3011.62, + "end": 3013.42, + "probability": 0.9719 + }, + { + "start": 3013.84, + "end": 3017.76, + "probability": 0.7236 + }, + { + "start": 3017.98, + "end": 3022.54, + "probability": 0.7838 + }, + { + "start": 3022.8, + "end": 3023.5, + "probability": 0.5408 + }, + { + "start": 3024.8, + "end": 3025.3, + "probability": 0.7173 + }, + { + "start": 3025.42, + "end": 3026.86, + "probability": 0.9315 + }, + { + "start": 3026.96, + "end": 3029.32, + "probability": 0.9808 + }, + { + "start": 3029.48, + "end": 3034.3, + "probability": 0.8318 + }, + { + "start": 3034.84, + "end": 3036.26, + "probability": 0.8343 + }, + { + "start": 3036.52, + "end": 3038.68, + "probability": 0.9438 + }, + { + "start": 3039.6, + "end": 3041.84, + "probability": 0.8612 + }, + { + "start": 3042.16, + "end": 3042.58, + "probability": 0.731 + }, + { + "start": 3042.68, + "end": 3049.74, + "probability": 0.9908 + }, + { + "start": 3050.0, + "end": 3051.36, + "probability": 0.8387 + }, + { + "start": 3052.28, + "end": 3053.06, + "probability": 0.859 + }, + { + "start": 3053.76, + "end": 3055.48, + "probability": 0.8158 + }, + { + "start": 3056.08, + "end": 3056.4, + "probability": 0.9746 + }, + { + "start": 3056.42, + "end": 3059.73, + "probability": 0.6911 + }, + { + "start": 3061.54, + "end": 3065.74, + "probability": 0.9994 + }, + { + "start": 3066.88, + "end": 3069.66, + "probability": 0.8885 + }, + { + "start": 3070.5, + "end": 3071.74, + "probability": 0.5202 + }, + { + "start": 3072.38, + "end": 3076.9, + "probability": 0.939 + }, + { + "start": 3077.5, + "end": 3080.37, + "probability": 0.9937 + }, + { + "start": 3081.6, + "end": 3085.22, + "probability": 0.4071 + }, + { + "start": 3086.24, + "end": 3087.9, + "probability": 0.7579 + }, + { + "start": 3087.94, + "end": 3089.93, + "probability": 0.9696 + }, + { + "start": 3091.1, + "end": 3094.48, + "probability": 0.7713 + }, + { + "start": 3094.48, + "end": 3096.76, + "probability": 0.985 + }, + { + "start": 3097.86, + "end": 3099.36, + "probability": 0.9916 + }, + { + "start": 3100.3, + "end": 3102.22, + "probability": 0.6967 + }, + { + "start": 3102.28, + "end": 3107.88, + "probability": 0.8245 + }, + { + "start": 3109.02, + "end": 3117.18, + "probability": 0.9688 + }, + { + "start": 3117.44, + "end": 3120.16, + "probability": 0.473 + }, + { + "start": 3120.34, + "end": 3121.64, + "probability": 0.8036 + }, + { + "start": 3122.06, + "end": 3125.42, + "probability": 0.9686 + }, + { + "start": 3126.0, + "end": 3131.3, + "probability": 0.9487 + }, + { + "start": 3131.84, + "end": 3135.46, + "probability": 0.337 + }, + { + "start": 3136.02, + "end": 3136.58, + "probability": 0.3104 + }, + { + "start": 3137.2, + "end": 3137.96, + "probability": 0.8581 + }, + { + "start": 3138.1, + "end": 3139.13, + "probability": 0.9824 + }, + { + "start": 3139.34, + "end": 3140.84, + "probability": 0.9817 + }, + { + "start": 3141.18, + "end": 3143.33, + "probability": 0.6668 + }, + { + "start": 3143.8, + "end": 3143.8, + "probability": 0.4671 + }, + { + "start": 3144.5, + "end": 3145.16, + "probability": 0.7135 + }, + { + "start": 3145.4, + "end": 3145.76, + "probability": 0.9179 + }, + { + "start": 3147.38, + "end": 3147.7, + "probability": 0.861 + }, + { + "start": 3147.74, + "end": 3148.12, + "probability": 0.9032 + }, + { + "start": 3148.26, + "end": 3148.5, + "probability": 0.8155 + }, + { + "start": 3148.56, + "end": 3151.3, + "probability": 0.9802 + }, + { + "start": 3151.3, + "end": 3152.8, + "probability": 0.8271 + }, + { + "start": 3153.16, + "end": 3153.28, + "probability": 0.6953 + }, + { + "start": 3154.8, + "end": 3156.16, + "probability": 0.8739 + }, + { + "start": 3157.48, + "end": 3160.17, + "probability": 0.8301 + }, + { + "start": 3161.08, + "end": 3161.9, + "probability": 0.5191 + }, + { + "start": 3161.94, + "end": 3163.66, + "probability": 0.7637 + }, + { + "start": 3163.72, + "end": 3167.38, + "probability": 0.2121 + }, + { + "start": 3167.4, + "end": 3168.21, + "probability": 0.8088 + }, + { + "start": 3168.56, + "end": 3169.12, + "probability": 0.3594 + }, + { + "start": 3169.28, + "end": 3170.66, + "probability": 0.7188 + }, + { + "start": 3171.04, + "end": 3171.55, + "probability": 0.5202 + }, + { + "start": 3171.72, + "end": 3172.46, + "probability": 0.6622 + }, + { + "start": 3172.5, + "end": 3172.98, + "probability": 0.8634 + }, + { + "start": 3173.7, + "end": 3176.06, + "probability": 0.968 + }, + { + "start": 3176.18, + "end": 3177.34, + "probability": 0.8611 + }, + { + "start": 3177.36, + "end": 3180.98, + "probability": 0.9377 + }, + { + "start": 3181.53, + "end": 3183.7, + "probability": 0.6541 + }, + { + "start": 3184.4, + "end": 3186.42, + "probability": 0.8184 + }, + { + "start": 3186.5, + "end": 3190.56, + "probability": 0.6983 + }, + { + "start": 3190.72, + "end": 3190.72, + "probability": 0.5854 + }, + { + "start": 3190.72, + "end": 3190.72, + "probability": 0.3263 + }, + { + "start": 3190.72, + "end": 3191.12, + "probability": 0.8272 + }, + { + "start": 3191.2, + "end": 3196.46, + "probability": 0.0423 + }, + { + "start": 3196.48, + "end": 3198.0, + "probability": 0.9686 + }, + { + "start": 3198.16, + "end": 3199.18, + "probability": 0.9329 + }, + { + "start": 3199.4, + "end": 3200.46, + "probability": 0.978 + }, + { + "start": 3201.18, + "end": 3204.12, + "probability": 0.9448 + }, + { + "start": 3204.54, + "end": 3205.87, + "probability": 0.7661 + }, + { + "start": 3205.96, + "end": 3208.8, + "probability": 0.862 + }, + { + "start": 3208.8, + "end": 3210.28, + "probability": 0.9708 + }, + { + "start": 3211.1, + "end": 3212.22, + "probability": 0.9775 + }, + { + "start": 3212.56, + "end": 3212.68, + "probability": 0.7979 + }, + { + "start": 3213.0, + "end": 3213.79, + "probability": 0.8699 + }, + { + "start": 3214.04, + "end": 3216.44, + "probability": 0.98 + }, + { + "start": 3217.18, + "end": 3218.96, + "probability": 0.9662 + }, + { + "start": 3219.46, + "end": 3222.12, + "probability": 0.5635 + }, + { + "start": 3222.44, + "end": 3223.2, + "probability": 0.5916 + }, + { + "start": 3223.28, + "end": 3223.66, + "probability": 0.7018 + }, + { + "start": 3223.88, + "end": 3226.34, + "probability": 0.8121 + }, + { + "start": 3227.1, + "end": 3229.46, + "probability": 0.8903 + }, + { + "start": 3229.46, + "end": 3233.64, + "probability": 0.9889 + }, + { + "start": 3234.16, + "end": 3235.36, + "probability": 0.8716 + }, + { + "start": 3235.48, + "end": 3237.92, + "probability": 0.9921 + }, + { + "start": 3237.92, + "end": 3239.9, + "probability": 0.9894 + }, + { + "start": 3240.98, + "end": 3241.96, + "probability": 0.769 + }, + { + "start": 3242.14, + "end": 3243.96, + "probability": 0.8048 + }, + { + "start": 3243.98, + "end": 3245.85, + "probability": 0.9976 + }, + { + "start": 3245.94, + "end": 3246.24, + "probability": 0.7782 + }, + { + "start": 3246.3, + "end": 3248.36, + "probability": 0.8686 + }, + { + "start": 3249.48, + "end": 3250.72, + "probability": 0.7587 + }, + { + "start": 3251.02, + "end": 3251.24, + "probability": 0.7163 + }, + { + "start": 3253.44, + "end": 3254.34, + "probability": 0.989 + }, + { + "start": 3257.92, + "end": 3258.52, + "probability": 0.9214 + }, + { + "start": 3259.46, + "end": 3261.6, + "probability": 0.8568 + }, + { + "start": 3262.46, + "end": 3266.1, + "probability": 0.8523 + }, + { + "start": 3273.98, + "end": 3275.78, + "probability": 0.7593 + }, + { + "start": 3278.42, + "end": 3284.44, + "probability": 0.8983 + }, + { + "start": 3284.54, + "end": 3287.66, + "probability": 0.998 + }, + { + "start": 3288.38, + "end": 3289.04, + "probability": 0.9874 + }, + { + "start": 3290.24, + "end": 3291.7, + "probability": 0.9048 + }, + { + "start": 3292.44, + "end": 3297.46, + "probability": 0.9405 + }, + { + "start": 3298.48, + "end": 3300.94, + "probability": 0.8666 + }, + { + "start": 3301.06, + "end": 3301.4, + "probability": 0.8754 + }, + { + "start": 3301.82, + "end": 3303.44, + "probability": 0.9926 + }, + { + "start": 3304.56, + "end": 3306.04, + "probability": 0.9805 + }, + { + "start": 3306.62, + "end": 3307.74, + "probability": 0.7672 + }, + { + "start": 3309.76, + "end": 3309.86, + "probability": 0.47 + }, + { + "start": 3310.64, + "end": 3312.01, + "probability": 0.9902 + }, + { + "start": 3313.38, + "end": 3314.5, + "probability": 0.876 + }, + { + "start": 3315.16, + "end": 3315.83, + "probability": 0.9678 + }, + { + "start": 3316.98, + "end": 3322.38, + "probability": 0.9152 + }, + { + "start": 3322.58, + "end": 3322.72, + "probability": 0.3923 + }, + { + "start": 3322.84, + "end": 3324.14, + "probability": 0.9624 + }, + { + "start": 3324.18, + "end": 3324.28, + "probability": 0.465 + }, + { + "start": 3325.22, + "end": 3326.92, + "probability": 0.9681 + }, + { + "start": 3327.64, + "end": 3328.98, + "probability": 0.7383 + }, + { + "start": 3329.38, + "end": 3329.82, + "probability": 0.3413 + }, + { + "start": 3329.96, + "end": 3335.18, + "probability": 0.7504 + }, + { + "start": 3335.28, + "end": 3335.98, + "probability": 0.6669 + }, + { + "start": 3336.16, + "end": 3337.74, + "probability": 0.9605 + }, + { + "start": 3338.64, + "end": 3342.68, + "probability": 0.9558 + }, + { + "start": 3343.5, + "end": 3347.54, + "probability": 0.9531 + }, + { + "start": 3348.08, + "end": 3353.38, + "probability": 0.9849 + }, + { + "start": 3353.8, + "end": 3356.32, + "probability": 0.8021 + }, + { + "start": 3356.88, + "end": 3357.64, + "probability": 0.7952 + }, + { + "start": 3358.66, + "end": 3360.92, + "probability": 0.9971 + }, + { + "start": 3361.0, + "end": 3363.58, + "probability": 0.9973 + }, + { + "start": 3363.62, + "end": 3366.16, + "probability": 0.658 + }, + { + "start": 3366.16, + "end": 3367.72, + "probability": 0.4851 + }, + { + "start": 3367.76, + "end": 3368.86, + "probability": 0.8525 + }, + { + "start": 3369.04, + "end": 3369.28, + "probability": 0.1608 + }, + { + "start": 3369.48, + "end": 3371.74, + "probability": 0.6528 + }, + { + "start": 3372.24, + "end": 3375.98, + "probability": 0.9804 + }, + { + "start": 3376.68, + "end": 3378.6, + "probability": 0.6273 + }, + { + "start": 3380.42, + "end": 3383.06, + "probability": 0.2266 + }, + { + "start": 3389.64, + "end": 3390.96, + "probability": 0.3843 + }, + { + "start": 3390.96, + "end": 3392.04, + "probability": 0.0561 + }, + { + "start": 3392.04, + "end": 3392.04, + "probability": 0.0272 + }, + { + "start": 3392.04, + "end": 3392.04, + "probability": 0.0626 + }, + { + "start": 3392.04, + "end": 3392.04, + "probability": 0.1068 + }, + { + "start": 3392.04, + "end": 3392.04, + "probability": 0.1364 + }, + { + "start": 3392.04, + "end": 3395.87, + "probability": 0.4039 + }, + { + "start": 3396.38, + "end": 3399.06, + "probability": 0.6494 + }, + { + "start": 3399.28, + "end": 3400.52, + "probability": 0.9471 + }, + { + "start": 3400.58, + "end": 3401.54, + "probability": 0.9988 + }, + { + "start": 3402.62, + "end": 3406.42, + "probability": 0.9311 + }, + { + "start": 3406.98, + "end": 3407.8, + "probability": 0.9326 + }, + { + "start": 3407.9, + "end": 3408.92, + "probability": 0.9902 + }, + { + "start": 3408.96, + "end": 3410.26, + "probability": 0.9453 + }, + { + "start": 3410.8, + "end": 3413.22, + "probability": 0.9098 + }, + { + "start": 3413.78, + "end": 3416.9, + "probability": 0.9989 + }, + { + "start": 3416.9, + "end": 3420.46, + "probability": 0.7608 + }, + { + "start": 3421.06, + "end": 3422.16, + "probability": 0.8611 + }, + { + "start": 3422.92, + "end": 3426.08, + "probability": 0.9958 + }, + { + "start": 3426.08, + "end": 3431.12, + "probability": 0.9988 + }, + { + "start": 3431.64, + "end": 3434.44, + "probability": 0.9937 + }, + { + "start": 3435.18, + "end": 3435.66, + "probability": 0.5051 + }, + { + "start": 3436.22, + "end": 3440.62, + "probability": 0.9844 + }, + { + "start": 3441.34, + "end": 3443.8, + "probability": 0.8652 + }, + { + "start": 3444.36, + "end": 3445.86, + "probability": 0.8817 + }, + { + "start": 3446.14, + "end": 3446.72, + "probability": 0.782 + }, + { + "start": 3446.96, + "end": 3449.76, + "probability": 0.9181 + }, + { + "start": 3449.9, + "end": 3450.8, + "probability": 0.8242 + }, + { + "start": 3450.96, + "end": 3452.72, + "probability": 0.9775 + }, + { + "start": 3454.2, + "end": 3458.14, + "probability": 0.303 + }, + { + "start": 3458.14, + "end": 3458.72, + "probability": 0.3916 + }, + { + "start": 3458.84, + "end": 3460.28, + "probability": 0.88 + }, + { + "start": 3460.4, + "end": 3461.17, + "probability": 0.9958 + }, + { + "start": 3462.37, + "end": 3467.74, + "probability": 0.9991 + }, + { + "start": 3467.92, + "end": 3468.45, + "probability": 0.8652 + }, + { + "start": 3469.44, + "end": 3470.34, + "probability": 0.4702 + }, + { + "start": 3470.44, + "end": 3472.9, + "probability": 0.7249 + }, + { + "start": 3472.96, + "end": 3473.52, + "probability": 0.5451 + }, + { + "start": 3473.88, + "end": 3475.82, + "probability": 0.9565 + }, + { + "start": 3475.82, + "end": 3475.92, + "probability": 0.5972 + }, + { + "start": 3476.06, + "end": 3476.44, + "probability": 0.8307 + }, + { + "start": 3476.78, + "end": 3476.92, + "probability": 0.8573 + }, + { + "start": 3476.98, + "end": 3478.54, + "probability": 0.79 + }, + { + "start": 3479.28, + "end": 3481.98, + "probability": 0.9858 + }, + { + "start": 3482.78, + "end": 3485.74, + "probability": 0.8767 + }, + { + "start": 3486.3, + "end": 3486.4, + "probability": 0.2618 + }, + { + "start": 3487.02, + "end": 3488.66, + "probability": 0.2761 + }, + { + "start": 3490.0, + "end": 3494.4, + "probability": 0.0562 + }, + { + "start": 3494.94, + "end": 3495.06, + "probability": 0.4338 + }, + { + "start": 3495.33, + "end": 3497.44, + "probability": 0.0985 + }, + { + "start": 3498.32, + "end": 3499.32, + "probability": 0.5167 + }, + { + "start": 3499.52, + "end": 3502.38, + "probability": 0.9944 + }, + { + "start": 3502.68, + "end": 3505.46, + "probability": 0.6448 + }, + { + "start": 3506.06, + "end": 3506.92, + "probability": 0.8647 + }, + { + "start": 3507.56, + "end": 3508.24, + "probability": 0.3243 + }, + { + "start": 3508.68, + "end": 3509.34, + "probability": 0.7136 + }, + { + "start": 3509.82, + "end": 3513.66, + "probability": 0.8728 + }, + { + "start": 3514.02, + "end": 3515.62, + "probability": 0.4957 + }, + { + "start": 3516.75, + "end": 3520.8, + "probability": 0.9895 + }, + { + "start": 3520.8, + "end": 3526.0, + "probability": 0.9424 + }, + { + "start": 3526.4, + "end": 3528.46, + "probability": 0.9082 + }, + { + "start": 3528.86, + "end": 3530.92, + "probability": 0.7145 + }, + { + "start": 3531.84, + "end": 3534.56, + "probability": 0.9584 + }, + { + "start": 3534.74, + "end": 3537.64, + "probability": 0.9783 + }, + { + "start": 3538.7, + "end": 3539.16, + "probability": 0.6665 + }, + { + "start": 3539.26, + "end": 3539.78, + "probability": 0.8091 + }, + { + "start": 3539.84, + "end": 3541.12, + "probability": 0.9919 + }, + { + "start": 3541.32, + "end": 3545.12, + "probability": 0.8598 + }, + { + "start": 3545.72, + "end": 3551.44, + "probability": 0.9949 + }, + { + "start": 3552.04, + "end": 3554.04, + "probability": 0.9971 + }, + { + "start": 3555.1, + "end": 3558.76, + "probability": 0.9973 + }, + { + "start": 3558.9, + "end": 3560.06, + "probability": 0.8037 + }, + { + "start": 3560.2, + "end": 3565.88, + "probability": 0.9661 + }, + { + "start": 3566.3, + "end": 3569.38, + "probability": 0.9749 + }, + { + "start": 3570.02, + "end": 3570.6, + "probability": 0.9175 + }, + { + "start": 3571.58, + "end": 3574.24, + "probability": 0.9278 + }, + { + "start": 3575.0, + "end": 3579.46, + "probability": 0.9889 + }, + { + "start": 3580.52, + "end": 3584.44, + "probability": 0.9732 + }, + { + "start": 3584.96, + "end": 3587.06, + "probability": 0.9039 + }, + { + "start": 3588.05, + "end": 3590.36, + "probability": 0.8398 + }, + { + "start": 3590.78, + "end": 3594.1, + "probability": 0.9722 + }, + { + "start": 3594.78, + "end": 3598.04, + "probability": 0.9991 + }, + { + "start": 3598.5, + "end": 3599.4, + "probability": 0.8005 + }, + { + "start": 3599.8, + "end": 3601.36, + "probability": 0.6426 + }, + { + "start": 3601.96, + "end": 3602.5, + "probability": 0.7812 + }, + { + "start": 3602.74, + "end": 3604.82, + "probability": 0.9473 + }, + { + "start": 3605.64, + "end": 3613.32, + "probability": 0.9928 + }, + { + "start": 3615.05, + "end": 3619.58, + "probability": 0.9912 + }, + { + "start": 3619.68, + "end": 3620.64, + "probability": 0.9822 + }, + { + "start": 3621.12, + "end": 3622.56, + "probability": 0.6479 + }, + { + "start": 3623.12, + "end": 3626.18, + "probability": 0.8416 + }, + { + "start": 3626.56, + "end": 3628.67, + "probability": 0.9478 + }, + { + "start": 3629.96, + "end": 3631.54, + "probability": 0.9303 + }, + { + "start": 3631.56, + "end": 3632.54, + "probability": 0.7001 + }, + { + "start": 3633.1, + "end": 3639.14, + "probability": 0.5541 + }, + { + "start": 3639.56, + "end": 3644.06, + "probability": 0.9944 + }, + { + "start": 3644.66, + "end": 3645.86, + "probability": 0.8799 + }, + { + "start": 3646.98, + "end": 3650.6, + "probability": 0.9445 + }, + { + "start": 3651.56, + "end": 3654.8, + "probability": 0.8018 + }, + { + "start": 3655.38, + "end": 3660.86, + "probability": 0.9427 + }, + { + "start": 3661.2, + "end": 3663.94, + "probability": 0.9883 + }, + { + "start": 3664.58, + "end": 3669.82, + "probability": 0.8675 + }, + { + "start": 3670.3, + "end": 3671.62, + "probability": 0.998 + }, + { + "start": 3671.9, + "end": 3675.25, + "probability": 0.9946 + }, + { + "start": 3675.86, + "end": 3678.96, + "probability": 0.9998 + }, + { + "start": 3679.42, + "end": 3679.8, + "probability": 0.6226 + }, + { + "start": 3680.14, + "end": 3682.18, + "probability": 0.6795 + }, + { + "start": 3682.38, + "end": 3683.5, + "probability": 0.8585 + }, + { + "start": 3683.6, + "end": 3685.06, + "probability": 0.9421 + }, + { + "start": 3685.8, + "end": 3687.14, + "probability": 0.9964 + }, + { + "start": 3688.76, + "end": 3690.98, + "probability": 0.9849 + }, + { + "start": 3691.08, + "end": 3692.5, + "probability": 0.9671 + }, + { + "start": 3692.94, + "end": 3694.1, + "probability": 0.9802 + }, + { + "start": 3694.3, + "end": 3696.26, + "probability": 0.7764 + }, + { + "start": 3696.74, + "end": 3699.12, + "probability": 0.9669 + }, + { + "start": 3699.26, + "end": 3701.08, + "probability": 0.9932 + }, + { + "start": 3701.7, + "end": 3705.72, + "probability": 0.9956 + }, + { + "start": 3706.24, + "end": 3706.68, + "probability": 0.6852 + }, + { + "start": 3706.9, + "end": 3710.44, + "probability": 0.9875 + }, + { + "start": 3711.06, + "end": 3714.36, + "probability": 0.8917 + }, + { + "start": 3714.78, + "end": 3717.86, + "probability": 0.9938 + }, + { + "start": 3718.1, + "end": 3720.28, + "probability": 0.9591 + }, + { + "start": 3720.9, + "end": 3722.78, + "probability": 0.9796 + }, + { + "start": 3723.26, + "end": 3728.76, + "probability": 0.9013 + }, + { + "start": 3729.12, + "end": 3729.78, + "probability": 0.8969 + }, + { + "start": 3730.08, + "end": 3730.66, + "probability": 0.9807 + }, + { + "start": 3731.12, + "end": 3732.0, + "probability": 0.9719 + }, + { + "start": 3732.48, + "end": 3733.44, + "probability": 0.9301 + }, + { + "start": 3733.7, + "end": 3734.2, + "probability": 0.885 + }, + { + "start": 3734.28, + "end": 3734.9, + "probability": 0.8212 + }, + { + "start": 3735.16, + "end": 3738.3, + "probability": 0.9893 + }, + { + "start": 3738.88, + "end": 3744.22, + "probability": 0.9625 + }, + { + "start": 3745.28, + "end": 3748.76, + "probability": 0.5928 + }, + { + "start": 3749.59, + "end": 3752.04, + "probability": 0.4623 + }, + { + "start": 3752.14, + "end": 3752.14, + "probability": 0.559 + }, + { + "start": 3752.28, + "end": 3757.88, + "probability": 0.8347 + }, + { + "start": 3757.96, + "end": 3758.56, + "probability": 0.5679 + }, + { + "start": 3759.3, + "end": 3762.94, + "probability": 0.9918 + }, + { + "start": 3763.4, + "end": 3764.62, + "probability": 0.7703 + }, + { + "start": 3765.44, + "end": 3767.4, + "probability": 0.0725 + }, + { + "start": 3767.7, + "end": 3767.92, + "probability": 0.0087 + }, + { + "start": 3767.92, + "end": 3769.1, + "probability": 0.6311 + }, + { + "start": 3769.18, + "end": 3769.18, + "probability": 0.3789 + }, + { + "start": 3769.18, + "end": 3773.08, + "probability": 0.8486 + }, + { + "start": 3774.31, + "end": 3779.66, + "probability": 0.9224 + }, + { + "start": 3780.18, + "end": 3781.95, + "probability": 0.5283 + }, + { + "start": 3782.83, + "end": 3786.78, + "probability": 0.9917 + }, + { + "start": 3787.48, + "end": 3790.38, + "probability": 0.9159 + }, + { + "start": 3790.4, + "end": 3791.26, + "probability": 0.9958 + }, + { + "start": 3792.54, + "end": 3793.12, + "probability": 0.9823 + }, + { + "start": 3793.7, + "end": 3798.08, + "probability": 0.5916 + }, + { + "start": 3799.76, + "end": 3803.64, + "probability": 0.8394 + }, + { + "start": 3804.18, + "end": 3804.18, + "probability": 0.1797 + }, + { + "start": 3804.18, + "end": 3804.49, + "probability": 0.4537 + }, + { + "start": 3804.84, + "end": 3805.74, + "probability": 0.8383 + }, + { + "start": 3805.74, + "end": 3805.91, + "probability": 0.4175 + }, + { + "start": 3806.7, + "end": 3808.56, + "probability": 0.0685 + }, + { + "start": 3808.58, + "end": 3808.58, + "probability": 0.2 + }, + { + "start": 3808.76, + "end": 3810.51, + "probability": 0.9438 + }, + { + "start": 3810.68, + "end": 3811.71, + "probability": 0.6858 + }, + { + "start": 3811.82, + "end": 3812.95, + "probability": 0.73 + }, + { + "start": 3814.04, + "end": 3817.32, + "probability": 0.9196 + }, + { + "start": 3817.96, + "end": 3830.04, + "probability": 0.9188 + }, + { + "start": 3830.16, + "end": 3830.16, + "probability": 0.1344 + }, + { + "start": 3830.18, + "end": 3832.66, + "probability": 0.9873 + }, + { + "start": 3833.96, + "end": 3834.6, + "probability": 0.665 + }, + { + "start": 3835.08, + "end": 3836.34, + "probability": 0.5421 + }, + { + "start": 3836.42, + "end": 3840.36, + "probability": 0.7618 + }, + { + "start": 3841.24, + "end": 3841.38, + "probability": 0.4355 + }, + { + "start": 3842.26, + "end": 3844.38, + "probability": 0.7366 + }, + { + "start": 3844.58, + "end": 3845.77, + "probability": 0.7754 + }, + { + "start": 3846.7, + "end": 3847.58, + "probability": 0.7548 + }, + { + "start": 3848.2, + "end": 3849.4, + "probability": 0.9753 + }, + { + "start": 3849.8, + "end": 3852.58, + "probability": 0.9948 + }, + { + "start": 3852.58, + "end": 3854.4, + "probability": 0.901 + }, + { + "start": 3854.42, + "end": 3857.34, + "probability": 0.9762 + }, + { + "start": 3857.88, + "end": 3861.54, + "probability": 0.5306 + }, + { + "start": 3861.9, + "end": 3864.32, + "probability": 0.7052 + }, + { + "start": 3865.12, + "end": 3865.82, + "probability": 0.5867 + }, + { + "start": 3867.1, + "end": 3870.0, + "probability": 0.9019 + }, + { + "start": 3871.8, + "end": 3874.56, + "probability": 0.9369 + }, + { + "start": 3875.16, + "end": 3875.42, + "probability": 0.4848 + }, + { + "start": 3876.56, + "end": 3878.34, + "probability": 0.4287 + }, + { + "start": 3879.34, + "end": 3881.78, + "probability": 0.7677 + }, + { + "start": 3881.78, + "end": 3886.54, + "probability": 0.9614 + }, + { + "start": 3886.62, + "end": 3888.39, + "probability": 0.6064 + }, + { + "start": 3889.08, + "end": 3894.06, + "probability": 0.8656 + }, + { + "start": 3894.62, + "end": 3897.1, + "probability": 0.8413 + }, + { + "start": 3897.42, + "end": 3898.4, + "probability": 0.8866 + }, + { + "start": 3899.18, + "end": 3905.68, + "probability": 0.6974 + }, + { + "start": 3905.76, + "end": 3906.62, + "probability": 0.927 + }, + { + "start": 3906.86, + "end": 3908.34, + "probability": 0.7616 + }, + { + "start": 3908.36, + "end": 3909.04, + "probability": 0.8695 + }, + { + "start": 3909.12, + "end": 3912.0, + "probability": 0.9943 + }, + { + "start": 3912.66, + "end": 3916.2, + "probability": 0.967 + }, + { + "start": 3916.84, + "end": 3918.58, + "probability": 0.9963 + }, + { + "start": 3918.88, + "end": 3920.56, + "probability": 0.9816 + }, + { + "start": 3920.88, + "end": 3924.22, + "probability": 0.7468 + }, + { + "start": 3924.9, + "end": 3928.84, + "probability": 0.9172 + }, + { + "start": 3930.72, + "end": 3931.96, + "probability": 0.8443 + }, + { + "start": 3932.82, + "end": 3934.72, + "probability": 0.7664 + }, + { + "start": 3934.78, + "end": 3936.7, + "probability": 0.9469 + }, + { + "start": 3937.5, + "end": 3939.52, + "probability": 0.9041 + }, + { + "start": 3939.8, + "end": 3942.64, + "probability": 0.6083 + }, + { + "start": 3943.22, + "end": 3944.94, + "probability": 0.7617 + }, + { + "start": 3945.04, + "end": 3945.98, + "probability": 0.6395 + }, + { + "start": 3946.1, + "end": 3948.19, + "probability": 0.4442 + }, + { + "start": 3949.16, + "end": 3951.42, + "probability": 0.5816 + }, + { + "start": 3952.5, + "end": 3957.82, + "probability": 0.9956 + }, + { + "start": 3958.48, + "end": 3959.7, + "probability": 0.8052 + }, + { + "start": 3959.7, + "end": 3962.75, + "probability": 0.1867 + }, + { + "start": 3965.0, + "end": 3965.46, + "probability": 0.0079 + }, + { + "start": 3965.46, + "end": 3965.88, + "probability": 0.0215 + }, + { + "start": 3965.88, + "end": 3966.09, + "probability": 0.5292 + }, + { + "start": 3966.58, + "end": 3969.76, + "probability": 0.6702 + }, + { + "start": 3969.84, + "end": 3970.04, + "probability": 0.6571 + }, + { + "start": 3970.1, + "end": 3971.1, + "probability": 0.9263 + }, + { + "start": 3971.18, + "end": 3972.06, + "probability": 0.8047 + }, + { + "start": 3972.06, + "end": 3972.36, + "probability": 0.2603 + }, + { + "start": 3972.38, + "end": 3973.9, + "probability": 0.5199 + }, + { + "start": 3973.9, + "end": 3976.7, + "probability": 0.7242 + }, + { + "start": 3976.8, + "end": 3977.94, + "probability": 0.6587 + }, + { + "start": 3977.94, + "end": 3979.98, + "probability": 0.7762 + }, + { + "start": 3983.36, + "end": 3984.2, + "probability": 0.7057 + }, + { + "start": 3987.48, + "end": 3989.76, + "probability": 0.3539 + }, + { + "start": 3995.76, + "end": 3997.56, + "probability": 0.793 + }, + { + "start": 3998.38, + "end": 4004.32, + "probability": 0.9922 + }, + { + "start": 4005.36, + "end": 4007.2, + "probability": 0.9638 + }, + { + "start": 4007.28, + "end": 4009.9, + "probability": 0.9902 + }, + { + "start": 4010.46, + "end": 4011.2, + "probability": 0.8152 + }, + { + "start": 4011.84, + "end": 4015.54, + "probability": 0.9404 + }, + { + "start": 4016.2, + "end": 4017.14, + "probability": 0.7455 + }, + { + "start": 4017.8, + "end": 4019.96, + "probability": 0.9723 + }, + { + "start": 4020.2, + "end": 4020.48, + "probability": 0.7932 + }, + { + "start": 4020.6, + "end": 4020.84, + "probability": 0.7576 + }, + { + "start": 4021.68, + "end": 4022.38, + "probability": 0.7377 + }, + { + "start": 4022.5, + "end": 4024.2, + "probability": 0.8137 + }, + { + "start": 4027.16, + "end": 4030.76, + "probability": 0.8796 + }, + { + "start": 4031.78, + "end": 4032.7, + "probability": 0.9844 + }, + { + "start": 4035.98, + "end": 4039.18, + "probability": 0.9974 + }, + { + "start": 4039.42, + "end": 4042.74, + "probability": 0.985 + }, + { + "start": 4043.8, + "end": 4046.62, + "probability": 0.996 + }, + { + "start": 4047.06, + "end": 4052.12, + "probability": 0.8979 + }, + { + "start": 4052.7, + "end": 4057.6, + "probability": 0.8076 + }, + { + "start": 4057.74, + "end": 4061.72, + "probability": 0.6906 + }, + { + "start": 4061.92, + "end": 4063.48, + "probability": 0.732 + }, + { + "start": 4063.58, + "end": 4063.58, + "probability": 0.5984 + }, + { + "start": 4064.24, + "end": 4065.8, + "probability": 0.4565 + }, + { + "start": 4066.54, + "end": 4069.04, + "probability": 0.8528 + }, + { + "start": 4069.68, + "end": 4073.18, + "probability": 0.9172 + }, + { + "start": 4074.14, + "end": 4077.66, + "probability": 0.8926 + }, + { + "start": 4078.0, + "end": 4078.48, + "probability": 0.8988 + }, + { + "start": 4078.8, + "end": 4079.68, + "probability": 0.9635 + }, + { + "start": 4079.76, + "end": 4080.16, + "probability": 0.7957 + }, + { + "start": 4080.34, + "end": 4080.74, + "probability": 0.9705 + }, + { + "start": 4081.24, + "end": 4087.48, + "probability": 0.8814 + }, + { + "start": 4088.12, + "end": 4092.62, + "probability": 0.9768 + }, + { + "start": 4093.24, + "end": 4097.02, + "probability": 0.7573 + }, + { + "start": 4097.72, + "end": 4101.02, + "probability": 0.9833 + }, + { + "start": 4101.42, + "end": 4108.46, + "probability": 0.9081 + }, + { + "start": 4108.84, + "end": 4111.44, + "probability": 0.859 + }, + { + "start": 4111.8, + "end": 4116.38, + "probability": 0.9482 + }, + { + "start": 4116.44, + "end": 4116.6, + "probability": 0.3974 + }, + { + "start": 4116.66, + "end": 4117.68, + "probability": 0.953 + }, + { + "start": 4118.14, + "end": 4119.7, + "probability": 0.9922 + }, + { + "start": 4119.84, + "end": 4120.58, + "probability": 0.855 + }, + { + "start": 4121.1, + "end": 4122.84, + "probability": 0.9891 + }, + { + "start": 4122.96, + "end": 4124.98, + "probability": 0.8219 + }, + { + "start": 4125.26, + "end": 4128.68, + "probability": 0.991 + }, + { + "start": 4129.12, + "end": 4132.5, + "probability": 0.9989 + }, + { + "start": 4132.86, + "end": 4134.44, + "probability": 0.9995 + }, + { + "start": 4134.62, + "end": 4140.46, + "probability": 0.9954 + }, + { + "start": 4140.54, + "end": 4141.88, + "probability": 0.9384 + }, + { + "start": 4142.38, + "end": 4143.14, + "probability": 0.9595 + }, + { + "start": 4143.2, + "end": 4147.68, + "probability": 0.9561 + }, + { + "start": 4147.68, + "end": 4150.48, + "probability": 0.9973 + }, + { + "start": 4151.1, + "end": 4155.96, + "probability": 0.9854 + }, + { + "start": 4156.36, + "end": 4157.34, + "probability": 0.6166 + }, + { + "start": 4157.64, + "end": 4159.04, + "probability": 0.9961 + }, + { + "start": 4159.36, + "end": 4161.22, + "probability": 0.726 + }, + { + "start": 4161.84, + "end": 4162.94, + "probability": 0.9941 + }, + { + "start": 4163.08, + "end": 4164.9, + "probability": 0.8672 + }, + { + "start": 4165.48, + "end": 4170.1, + "probability": 0.9603 + }, + { + "start": 4170.48, + "end": 4173.3, + "probability": 0.8909 + }, + { + "start": 4174.48, + "end": 4175.84, + "probability": 0.3527 + }, + { + "start": 4176.4, + "end": 4177.36, + "probability": 0.9097 + }, + { + "start": 4177.9, + "end": 4179.16, + "probability": 0.9705 + }, + { + "start": 4179.4, + "end": 4183.48, + "probability": 0.974 + }, + { + "start": 4183.54, + "end": 4184.76, + "probability": 0.7513 + }, + { + "start": 4185.66, + "end": 4188.64, + "probability": 0.9908 + }, + { + "start": 4188.76, + "end": 4191.88, + "probability": 0.9849 + }, + { + "start": 4191.96, + "end": 4195.7, + "probability": 0.9902 + }, + { + "start": 4195.94, + "end": 4196.92, + "probability": 0.5352 + }, + { + "start": 4197.72, + "end": 4200.04, + "probability": 0.8083 + }, + { + "start": 4200.12, + "end": 4202.3, + "probability": 0.9379 + }, + { + "start": 4202.74, + "end": 4203.36, + "probability": 0.9766 + }, + { + "start": 4203.96, + "end": 4204.71, + "probability": 0.5185 + }, + { + "start": 4205.14, + "end": 4207.48, + "probability": 0.723 + }, + { + "start": 4208.06, + "end": 4208.68, + "probability": 0.9041 + }, + { + "start": 4208.78, + "end": 4209.72, + "probability": 0.9038 + }, + { + "start": 4210.18, + "end": 4212.46, + "probability": 0.6009 + }, + { + "start": 4212.78, + "end": 4214.2, + "probability": 0.8195 + }, + { + "start": 4214.88, + "end": 4218.68, + "probability": 0.8241 + }, + { + "start": 4218.96, + "end": 4224.1, + "probability": 0.993 + }, + { + "start": 4224.1, + "end": 4229.44, + "probability": 0.9926 + }, + { + "start": 4229.84, + "end": 4230.48, + "probability": 0.6442 + }, + { + "start": 4231.85, + "end": 4239.86, + "probability": 0.9956 + }, + { + "start": 4240.28, + "end": 4241.33, + "probability": 0.563 + }, + { + "start": 4242.28, + "end": 4244.34, + "probability": 0.714 + }, + { + "start": 4244.88, + "end": 4245.7, + "probability": 0.9925 + }, + { + "start": 4246.7, + "end": 4249.06, + "probability": 0.8999 + }, + { + "start": 4249.12, + "end": 4250.88, + "probability": 0.9681 + }, + { + "start": 4250.98, + "end": 4252.38, + "probability": 0.8569 + }, + { + "start": 4253.82, + "end": 4255.08, + "probability": 0.9741 + }, + { + "start": 4255.22, + "end": 4256.13, + "probability": 0.9779 + }, + { + "start": 4256.36, + "end": 4256.98, + "probability": 0.7472 + }, + { + "start": 4257.48, + "end": 4260.82, + "probability": 0.6278 + }, + { + "start": 4262.09, + "end": 4269.94, + "probability": 0.8022 + }, + { + "start": 4270.52, + "end": 4272.64, + "probability": 0.9973 + }, + { + "start": 4273.32, + "end": 4276.01, + "probability": 0.6439 + }, + { + "start": 4276.5, + "end": 4279.74, + "probability": 0.9966 + }, + { + "start": 4280.18, + "end": 4284.7, + "probability": 0.9735 + }, + { + "start": 4284.78, + "end": 4289.54, + "probability": 0.9853 + }, + { + "start": 4289.54, + "end": 4292.68, + "probability": 0.9855 + }, + { + "start": 4293.16, + "end": 4296.08, + "probability": 0.9966 + }, + { + "start": 4297.0, + "end": 4297.94, + "probability": 0.9895 + }, + { + "start": 4298.18, + "end": 4299.12, + "probability": 0.8501 + }, + { + "start": 4299.16, + "end": 4299.92, + "probability": 0.8692 + }, + { + "start": 4300.06, + "end": 4301.02, + "probability": 0.8062 + }, + { + "start": 4301.84, + "end": 4303.62, + "probability": 0.9347 + }, + { + "start": 4304.77, + "end": 4308.92, + "probability": 0.938 + }, + { + "start": 4310.72, + "end": 4313.46, + "probability": 0.9951 + }, + { + "start": 4314.44, + "end": 4315.6, + "probability": 0.963 + }, + { + "start": 4316.28, + "end": 4319.8, + "probability": 0.6503 + }, + { + "start": 4321.06, + "end": 4324.76, + "probability": 0.269 + }, + { + "start": 4325.14, + "end": 4329.06, + "probability": 0.9878 + }, + { + "start": 4329.06, + "end": 4332.8, + "probability": 0.9945 + }, + { + "start": 4332.86, + "end": 4338.0, + "probability": 0.9817 + }, + { + "start": 4338.48, + "end": 4343.56, + "probability": 0.9966 + }, + { + "start": 4343.7, + "end": 4345.1, + "probability": 0.9228 + }, + { + "start": 4345.98, + "end": 4349.74, + "probability": 0.5957 + }, + { + "start": 4352.6, + "end": 4352.64, + "probability": 0.1949 + }, + { + "start": 4352.64, + "end": 4354.96, + "probability": 0.5638 + }, + { + "start": 4355.32, + "end": 4357.18, + "probability": 0.2624 + }, + { + "start": 4357.96, + "end": 4358.16, + "probability": 0.1992 + }, + { + "start": 4358.9, + "end": 4359.22, + "probability": 0.3879 + }, + { + "start": 4359.68, + "end": 4360.61, + "probability": 0.9513 + }, + { + "start": 4360.88, + "end": 4362.21, + "probability": 0.5464 + }, + { + "start": 4363.48, + "end": 4364.86, + "probability": 0.7849 + }, + { + "start": 4367.08, + "end": 4368.24, + "probability": 0.8679 + }, + { + "start": 4368.28, + "end": 4372.54, + "probability": 0.9581 + }, + { + "start": 4373.48, + "end": 4376.76, + "probability": 0.9403 + }, + { + "start": 4377.22, + "end": 4380.48, + "probability": 0.9245 + }, + { + "start": 4381.12, + "end": 4381.66, + "probability": 0.972 + }, + { + "start": 4382.76, + "end": 4386.36, + "probability": 0.972 + }, + { + "start": 4386.5, + "end": 4386.9, + "probability": 0.4598 + }, + { + "start": 4387.41, + "end": 4388.92, + "probability": 0.9839 + }, + { + "start": 4389.28, + "end": 4396.38, + "probability": 0.9798 + }, + { + "start": 4396.84, + "end": 4397.54, + "probability": 0.6331 + }, + { + "start": 4398.14, + "end": 4399.96, + "probability": 0.8705 + }, + { + "start": 4402.02, + "end": 4402.88, + "probability": 0.902 + }, + { + "start": 4403.72, + "end": 4407.3, + "probability": 0.5751 + }, + { + "start": 4407.48, + "end": 4408.34, + "probability": 0.7282 + }, + { + "start": 4409.68, + "end": 4413.16, + "probability": 0.9814 + }, + { + "start": 4413.42, + "end": 4414.86, + "probability": 0.8704 + }, + { + "start": 4415.56, + "end": 4417.98, + "probability": 0.717 + }, + { + "start": 4418.06, + "end": 4419.72, + "probability": 0.7155 + }, + { + "start": 4419.98, + "end": 4420.14, + "probability": 0.4457 + }, + { + "start": 4420.16, + "end": 4420.75, + "probability": 0.7629 + }, + { + "start": 4420.94, + "end": 4422.38, + "probability": 0.6365 + }, + { + "start": 4422.7, + "end": 4425.2, + "probability": 0.0547 + }, + { + "start": 4425.36, + "end": 4425.36, + "probability": 0.2011 + }, + { + "start": 4425.36, + "end": 4426.84, + "probability": 0.5682 + }, + { + "start": 4427.44, + "end": 4428.58, + "probability": 0.9187 + }, + { + "start": 4428.84, + "end": 4430.66, + "probability": 0.6006 + }, + { + "start": 4431.0, + "end": 4437.26, + "probability": 0.9844 + }, + { + "start": 4437.64, + "end": 4438.9, + "probability": 0.9316 + }, + { + "start": 4439.42, + "end": 4439.74, + "probability": 0.0134 + }, + { + "start": 4439.96, + "end": 4440.28, + "probability": 0.4868 + }, + { + "start": 4441.02, + "end": 4447.56, + "probability": 0.983 + }, + { + "start": 4448.1, + "end": 4449.87, + "probability": 0.7645 + }, + { + "start": 4453.3, + "end": 4453.72, + "probability": 0.1346 + }, + { + "start": 4453.72, + "end": 4453.72, + "probability": 0.2098 + }, + { + "start": 4453.72, + "end": 4454.22, + "probability": 0.5282 + }, + { + "start": 4454.28, + "end": 4454.63, + "probability": 0.9083 + }, + { + "start": 4455.06, + "end": 4458.94, + "probability": 0.9808 + }, + { + "start": 4459.46, + "end": 4463.02, + "probability": 0.9937 + }, + { + "start": 4463.24, + "end": 4465.9, + "probability": 0.6113 + }, + { + "start": 4466.36, + "end": 4469.1, + "probability": 0.9124 + }, + { + "start": 4469.1, + "end": 4469.1, + "probability": 0.5198 + }, + { + "start": 4469.1, + "end": 4469.34, + "probability": 0.3561 + }, + { + "start": 4469.52, + "end": 4469.9, + "probability": 0.7292 + }, + { + "start": 4470.18, + "end": 4471.44, + "probability": 0.5379 + }, + { + "start": 4472.0, + "end": 4472.9, + "probability": 0.3917 + }, + { + "start": 4473.43, + "end": 4475.18, + "probability": 0.7524 + }, + { + "start": 4476.66, + "end": 4479.42, + "probability": 0.8763 + }, + { + "start": 4481.08, + "end": 4484.28, + "probability": 0.9956 + }, + { + "start": 4484.92, + "end": 4487.89, + "probability": 0.8845 + }, + { + "start": 4488.64, + "end": 4489.8, + "probability": 0.6236 + }, + { + "start": 4490.1, + "end": 4492.08, + "probability": 0.6888 + }, + { + "start": 4492.16, + "end": 4492.92, + "probability": 0.4691 + }, + { + "start": 4492.98, + "end": 4497.9, + "probability": 0.8082 + }, + { + "start": 4498.6, + "end": 4500.38, + "probability": 0.9263 + }, + { + "start": 4500.88, + "end": 4502.69, + "probability": 0.6762 + }, + { + "start": 4502.88, + "end": 4504.0, + "probability": 0.9314 + }, + { + "start": 4504.04, + "end": 4507.38, + "probability": 0.9897 + }, + { + "start": 4507.48, + "end": 4509.26, + "probability": 0.9518 + }, + { + "start": 4509.46, + "end": 4509.68, + "probability": 0.8821 + }, + { + "start": 4510.08, + "end": 4510.73, + "probability": 0.9724 + }, + { + "start": 4510.92, + "end": 4511.64, + "probability": 0.9744 + }, + { + "start": 4512.6, + "end": 4513.4, + "probability": 0.9189 + }, + { + "start": 4513.58, + "end": 4514.38, + "probability": 0.9604 + }, + { + "start": 4514.46, + "end": 4515.28, + "probability": 0.976 + }, + { + "start": 4515.74, + "end": 4516.44, + "probability": 0.635 + }, + { + "start": 4516.68, + "end": 4517.58, + "probability": 0.7521 + }, + { + "start": 4519.18, + "end": 4520.56, + "probability": 0.9834 + }, + { + "start": 4521.22, + "end": 4523.66, + "probability": 0.8319 + }, + { + "start": 4523.8, + "end": 4525.34, + "probability": 0.7287 + }, + { + "start": 4525.44, + "end": 4526.92, + "probability": 0.6182 + }, + { + "start": 4528.3, + "end": 4529.4, + "probability": 0.8403 + }, + { + "start": 4531.54, + "end": 4534.22, + "probability": 0.9505 + }, + { + "start": 4535.04, + "end": 4539.18, + "probability": 0.987 + }, + { + "start": 4540.64, + "end": 4543.68, + "probability": 0.9973 + }, + { + "start": 4544.24, + "end": 4544.46, + "probability": 0.0204 + }, + { + "start": 4544.46, + "end": 4544.67, + "probability": 0.5408 + }, + { + "start": 4545.66, + "end": 4546.8, + "probability": 0.4722 + }, + { + "start": 4547.44, + "end": 4548.86, + "probability": 0.7524 + }, + { + "start": 4548.9, + "end": 4550.54, + "probability": 0.8587 + }, + { + "start": 4550.76, + "end": 4554.1, + "probability": 0.5783 + }, + { + "start": 4554.1, + "end": 4556.54, + "probability": 0.9541 + }, + { + "start": 4557.26, + "end": 4559.56, + "probability": 0.9156 + }, + { + "start": 4560.22, + "end": 4562.72, + "probability": 0.9971 + }, + { + "start": 4564.14, + "end": 4568.5, + "probability": 0.9949 + }, + { + "start": 4568.9, + "end": 4570.66, + "probability": 0.9868 + }, + { + "start": 4571.54, + "end": 4572.44, + "probability": 0.5196 + }, + { + "start": 4573.46, + "end": 4575.05, + "probability": 0.9985 + }, + { + "start": 4575.34, + "end": 4576.72, + "probability": 0.9032 + }, + { + "start": 4577.08, + "end": 4579.24, + "probability": 0.9953 + }, + { + "start": 4579.74, + "end": 4582.16, + "probability": 0.8789 + }, + { + "start": 4582.16, + "end": 4582.48, + "probability": 0.4652 + }, + { + "start": 4582.78, + "end": 4584.01, + "probability": 0.9985 + }, + { + "start": 4584.68, + "end": 4585.72, + "probability": 0.5436 + }, + { + "start": 4586.18, + "end": 4588.7, + "probability": 0.7647 + }, + { + "start": 4588.78, + "end": 4589.0, + "probability": 0.5062 + }, + { + "start": 4589.12, + "end": 4591.2, + "probability": 0.6733 + }, + { + "start": 4592.26, + "end": 4592.46, + "probability": 0.628 + }, + { + "start": 4592.94, + "end": 4593.9, + "probability": 0.7428 + }, + { + "start": 4594.12, + "end": 4594.5, + "probability": 0.5997 + }, + { + "start": 4595.4, + "end": 4601.06, + "probability": 0.994 + }, + { + "start": 4601.86, + "end": 4603.54, + "probability": 0.8816 + }, + { + "start": 4603.8, + "end": 4607.26, + "probability": 0.6798 + }, + { + "start": 4607.94, + "end": 4609.16, + "probability": 0.969 + }, + { + "start": 4609.22, + "end": 4611.14, + "probability": 0.7547 + }, + { + "start": 4611.64, + "end": 4613.04, + "probability": 0.887 + }, + { + "start": 4613.68, + "end": 4616.44, + "probability": 0.9761 + }, + { + "start": 4616.9, + "end": 4617.9, + "probability": 0.7699 + }, + { + "start": 4618.72, + "end": 4623.04, + "probability": 0.9867 + }, + { + "start": 4623.42, + "end": 4624.62, + "probability": 0.9956 + }, + { + "start": 4624.76, + "end": 4626.3, + "probability": 0.658 + }, + { + "start": 4626.94, + "end": 4631.7, + "probability": 0.9955 + }, + { + "start": 4631.7, + "end": 4635.06, + "probability": 0.8222 + }, + { + "start": 4635.06, + "end": 4635.06, + "probability": 0.0926 + }, + { + "start": 4635.06, + "end": 4636.7, + "probability": 0.925 + }, + { + "start": 4637.28, + "end": 4638.24, + "probability": 0.9495 + }, + { + "start": 4638.32, + "end": 4639.07, + "probability": 0.9932 + }, + { + "start": 4639.84, + "end": 4643.22, + "probability": 0.9756 + }, + { + "start": 4643.22, + "end": 4644.36, + "probability": 0.8511 + }, + { + "start": 4644.88, + "end": 4645.6, + "probability": 0.6798 + }, + { + "start": 4645.66, + "end": 4645.78, + "probability": 0.7083 + }, + { + "start": 4646.42, + "end": 4646.8, + "probability": 0.9345 + }, + { + "start": 4647.1, + "end": 4647.54, + "probability": 0.6473 + }, + { + "start": 4648.02, + "end": 4648.36, + "probability": 0.7849 + }, + { + "start": 4648.62, + "end": 4650.6, + "probability": 0.7515 + }, + { + "start": 4651.16, + "end": 4654.34, + "probability": 0.923 + }, + { + "start": 4654.5, + "end": 4656.32, + "probability": 0.7639 + }, + { + "start": 4656.44, + "end": 4657.3, + "probability": 0.4789 + }, + { + "start": 4658.52, + "end": 4661.12, + "probability": 0.596 + }, + { + "start": 4661.38, + "end": 4667.1, + "probability": 0.8534 + }, + { + "start": 4668.96, + "end": 4673.74, + "probability": 0.8082 + }, + { + "start": 4675.66, + "end": 4675.9, + "probability": 0.7211 + }, + { + "start": 4676.86, + "end": 4677.7, + "probability": 0.8677 + }, + { + "start": 4677.78, + "end": 4678.51, + "probability": 0.9189 + }, + { + "start": 4680.08, + "end": 4681.34, + "probability": 0.8989 + }, + { + "start": 4682.64, + "end": 4686.04, + "probability": 0.7693 + }, + { + "start": 4686.88, + "end": 4689.62, + "probability": 0.9988 + }, + { + "start": 4689.84, + "end": 4691.5, + "probability": 0.7679 + }, + { + "start": 4691.66, + "end": 4691.66, + "probability": 0.4915 + }, + { + "start": 4691.66, + "end": 4692.24, + "probability": 0.8438 + }, + { + "start": 4694.52, + "end": 4696.62, + "probability": 0.4852 + }, + { + "start": 4696.62, + "end": 4698.44, + "probability": 0.3574 + }, + { + "start": 4698.44, + "end": 4698.54, + "probability": 0.0676 + }, + { + "start": 4699.06, + "end": 4699.54, + "probability": 0.1866 + }, + { + "start": 4699.68, + "end": 4700.48, + "probability": 0.3334 + }, + { + "start": 4700.98, + "end": 4701.02, + "probability": 0.4102 + }, + { + "start": 4701.02, + "end": 4701.38, + "probability": 0.5608 + }, + { + "start": 4701.4, + "end": 4702.46, + "probability": 0.6516 + }, + { + "start": 4702.46, + "end": 4702.8, + "probability": 0.5878 + }, + { + "start": 4702.8, + "end": 4704.29, + "probability": 0.8647 + }, + { + "start": 4704.44, + "end": 4704.82, + "probability": 0.8852 + }, + { + "start": 4705.34, + "end": 4706.48, + "probability": 0.629 + }, + { + "start": 4707.02, + "end": 4707.02, + "probability": 0.2174 + }, + { + "start": 4707.02, + "end": 4708.8, + "probability": 0.9202 + }, + { + "start": 4709.0, + "end": 4712.6, + "probability": 0.9941 + }, + { + "start": 4712.92, + "end": 4713.66, + "probability": 0.7802 + }, + { + "start": 4714.2, + "end": 4715.28, + "probability": 0.9554 + }, + { + "start": 4715.42, + "end": 4718.9, + "probability": 0.9041 + }, + { + "start": 4719.54, + "end": 4723.48, + "probability": 0.989 + }, + { + "start": 4724.08, + "end": 4724.68, + "probability": 0.9424 + }, + { + "start": 4725.36, + "end": 4728.98, + "probability": 0.9348 + }, + { + "start": 4729.14, + "end": 4729.48, + "probability": 0.7334 + }, + { + "start": 4730.92, + "end": 4733.46, + "probability": 0.6011 + }, + { + "start": 4733.5, + "end": 4734.0, + "probability": 0.2137 + }, + { + "start": 4734.84, + "end": 4738.39, + "probability": 0.6698 + }, + { + "start": 4739.88, + "end": 4740.68, + "probability": 0.682 + }, + { + "start": 4741.94, + "end": 4746.56, + "probability": 0.9976 + }, + { + "start": 4747.72, + "end": 4747.98, + "probability": 0.8181 + }, + { + "start": 4748.94, + "end": 4754.68, + "probability": 0.9721 + }, + { + "start": 4755.48, + "end": 4757.84, + "probability": 0.8889 + }, + { + "start": 4757.84, + "end": 4759.82, + "probability": 0.9692 + }, + { + "start": 4761.34, + "end": 4762.58, + "probability": 0.7456 + }, + { + "start": 4763.14, + "end": 4764.24, + "probability": 0.9775 + }, + { + "start": 4764.64, + "end": 4765.76, + "probability": 0.8333 + }, + { + "start": 4766.44, + "end": 4768.52, + "probability": 0.9627 + }, + { + "start": 4769.28, + "end": 4770.48, + "probability": 0.9039 + }, + { + "start": 4771.08, + "end": 4775.16, + "probability": 0.9604 + }, + { + "start": 4775.3, + "end": 4777.16, + "probability": 0.9818 + }, + { + "start": 4777.86, + "end": 4781.8, + "probability": 0.9509 + }, + { + "start": 4782.4, + "end": 4784.52, + "probability": 0.9867 + }, + { + "start": 4785.34, + "end": 4787.46, + "probability": 0.7649 + }, + { + "start": 4788.86, + "end": 4791.28, + "probability": 0.4685 + }, + { + "start": 4791.8, + "end": 4792.68, + "probability": 0.6455 + }, + { + "start": 4793.46, + "end": 4797.08, + "probability": 0.976 + }, + { + "start": 4797.78, + "end": 4798.22, + "probability": 0.7745 + }, + { + "start": 4798.64, + "end": 4799.3, + "probability": 0.8503 + }, + { + "start": 4800.12, + "end": 4802.2, + "probability": 0.9755 + }, + { + "start": 4802.4, + "end": 4803.4, + "probability": 0.7012 + }, + { + "start": 4804.02, + "end": 4805.68, + "probability": 0.8324 + }, + { + "start": 4806.22, + "end": 4807.3, + "probability": 0.8541 + }, + { + "start": 4807.92, + "end": 4814.02, + "probability": 0.9387 + }, + { + "start": 4814.48, + "end": 4817.7, + "probability": 0.7586 + }, + { + "start": 4818.44, + "end": 4819.26, + "probability": 0.8919 + }, + { + "start": 4820.0, + "end": 4823.98, + "probability": 0.9761 + }, + { + "start": 4824.66, + "end": 4825.16, + "probability": 0.7454 + }, + { + "start": 4825.32, + "end": 4826.5, + "probability": 0.6342 + }, + { + "start": 4827.12, + "end": 4828.36, + "probability": 0.9108 + }, + { + "start": 4828.6, + "end": 4831.38, + "probability": 0.979 + }, + { + "start": 4831.38, + "end": 4831.64, + "probability": 0.2423 + }, + { + "start": 4831.66, + "end": 4833.0, + "probability": 0.4113 + }, + { + "start": 4833.12, + "end": 4835.62, + "probability": 0.701 + }, + { + "start": 4836.28, + "end": 4837.48, + "probability": 0.3742 + }, + { + "start": 4837.48, + "end": 4837.48, + "probability": 0.0831 + }, + { + "start": 4837.48, + "end": 4842.7, + "probability": 0.994 + }, + { + "start": 4843.9, + "end": 4846.76, + "probability": 0.9033 + }, + { + "start": 4847.5, + "end": 4851.78, + "probability": 0.9992 + }, + { + "start": 4852.3, + "end": 4857.1, + "probability": 0.9981 + }, + { + "start": 4857.68, + "end": 4860.06, + "probability": 0.8228 + }, + { + "start": 4860.74, + "end": 4862.0, + "probability": 0.9629 + }, + { + "start": 4862.9, + "end": 4865.7, + "probability": 0.9958 + }, + { + "start": 4866.32, + "end": 4871.14, + "probability": 0.8424 + }, + { + "start": 4871.8, + "end": 4874.96, + "probability": 0.9431 + }, + { + "start": 4875.64, + "end": 4877.76, + "probability": 0.9954 + }, + { + "start": 4878.28, + "end": 4879.3, + "probability": 0.8496 + }, + { + "start": 4879.72, + "end": 4884.52, + "probability": 0.9048 + }, + { + "start": 4884.54, + "end": 4885.74, + "probability": 0.8872 + }, + { + "start": 4886.84, + "end": 4889.9, + "probability": 0.9775 + }, + { + "start": 4890.52, + "end": 4892.24, + "probability": 0.9855 + }, + { + "start": 4892.86, + "end": 4897.13, + "probability": 0.9678 + }, + { + "start": 4897.9, + "end": 4899.3, + "probability": 0.8137 + }, + { + "start": 4900.48, + "end": 4905.04, + "probability": 0.7428 + }, + { + "start": 4906.28, + "end": 4908.66, + "probability": 0.9469 + }, + { + "start": 4908.8, + "end": 4910.98, + "probability": 0.936 + }, + { + "start": 4911.18, + "end": 4912.98, + "probability": 0.4592 + }, + { + "start": 4914.58, + "end": 4915.04, + "probability": 0.188 + }, + { + "start": 4915.06, + "end": 4915.32, + "probability": 0.5024 + }, + { + "start": 4915.72, + "end": 4916.84, + "probability": 0.4855 + }, + { + "start": 4917.82, + "end": 4921.62, + "probability": 0.6629 + }, + { + "start": 4921.66, + "end": 4921.88, + "probability": 0.3832 + }, + { + "start": 4922.52, + "end": 4927.12, + "probability": 0.8979 + }, + { + "start": 4927.92, + "end": 4930.66, + "probability": 0.8956 + }, + { + "start": 4931.42, + "end": 4935.04, + "probability": 0.6302 + }, + { + "start": 4935.8, + "end": 4937.28, + "probability": 0.9955 + }, + { + "start": 4937.88, + "end": 4943.04, + "probability": 0.9937 + }, + { + "start": 4943.7, + "end": 4944.18, + "probability": 0.5193 + }, + { + "start": 4945.24, + "end": 4948.12, + "probability": 0.9928 + }, + { + "start": 4948.12, + "end": 4953.58, + "probability": 0.9833 + }, + { + "start": 4954.06, + "end": 4958.83, + "probability": 0.9573 + }, + { + "start": 4958.88, + "end": 4962.66, + "probability": 0.9943 + }, + { + "start": 4963.04, + "end": 4963.04, + "probability": 0.3378 + }, + { + "start": 4963.04, + "end": 4963.18, + "probability": 0.6136 + }, + { + "start": 4964.0, + "end": 4964.42, + "probability": 0.6299 + }, + { + "start": 4964.58, + "end": 4967.1, + "probability": 0.7979 + }, + { + "start": 4967.22, + "end": 4968.06, + "probability": 0.7332 + }, + { + "start": 4968.94, + "end": 4970.06, + "probability": 0.0698 + }, + { + "start": 4970.14, + "end": 4972.46, + "probability": 0.9601 + }, + { + "start": 4973.22, + "end": 4980.28, + "probability": 0.9978 + }, + { + "start": 4980.7, + "end": 4981.38, + "probability": 0.8945 + }, + { + "start": 4981.58, + "end": 4981.92, + "probability": 0.8194 + }, + { + "start": 4982.06, + "end": 4982.86, + "probability": 0.836 + }, + { + "start": 4983.2, + "end": 4984.95, + "probability": 0.9951 + }, + { + "start": 4985.76, + "end": 4990.44, + "probability": 0.9598 + }, + { + "start": 4991.0, + "end": 4992.04, + "probability": 0.8261 + }, + { + "start": 4992.38, + "end": 4993.04, + "probability": 0.8549 + }, + { + "start": 4993.18, + "end": 4996.38, + "probability": 0.944 + }, + { + "start": 4996.82, + "end": 4998.2, + "probability": 0.9407 + }, + { + "start": 4998.62, + "end": 5000.08, + "probability": 0.8838 + }, + { + "start": 5000.12, + "end": 5001.66, + "probability": 0.9774 + }, + { + "start": 5001.72, + "end": 5003.92, + "probability": 0.916 + }, + { + "start": 5004.16, + "end": 5004.69, + "probability": 0.546 + }, + { + "start": 5004.94, + "end": 5005.06, + "probability": 0.7036 + }, + { + "start": 5005.44, + "end": 5008.14, + "probability": 0.9487 + }, + { + "start": 5008.52, + "end": 5009.42, + "probability": 0.9849 + }, + { + "start": 5009.5, + "end": 5009.78, + "probability": 0.8036 + }, + { + "start": 5009.94, + "end": 5012.88, + "probability": 0.965 + }, + { + "start": 5014.51, + "end": 5018.3, + "probability": 0.9868 + }, + { + "start": 5018.48, + "end": 5023.14, + "probability": 0.8486 + }, + { + "start": 5023.36, + "end": 5024.38, + "probability": 0.7629 + }, + { + "start": 5024.8, + "end": 5028.62, + "probability": 0.9048 + }, + { + "start": 5028.66, + "end": 5030.48, + "probability": 0.9768 + }, + { + "start": 5030.5, + "end": 5031.88, + "probability": 0.5734 + }, + { + "start": 5031.94, + "end": 5032.6, + "probability": 0.9261 + }, + { + "start": 5032.68, + "end": 5034.36, + "probability": 0.9828 + }, + { + "start": 5034.72, + "end": 5036.78, + "probability": 0.9951 + }, + { + "start": 5037.24, + "end": 5040.98, + "probability": 0.9123 + }, + { + "start": 5040.98, + "end": 5042.06, + "probability": 0.9788 + }, + { + "start": 5042.18, + "end": 5042.94, + "probability": 0.4409 + }, + { + "start": 5044.36, + "end": 5044.5, + "probability": 0.0374 + }, + { + "start": 5044.5, + "end": 5044.5, + "probability": 0.0554 + }, + { + "start": 5044.5, + "end": 5044.5, + "probability": 0.1421 + }, + { + "start": 5044.5, + "end": 5044.86, + "probability": 0.5738 + }, + { + "start": 5045.16, + "end": 5045.3, + "probability": 0.9154 + }, + { + "start": 5045.46, + "end": 5048.44, + "probability": 0.8733 + }, + { + "start": 5048.74, + "end": 5052.26, + "probability": 0.9182 + }, + { + "start": 5053.92, + "end": 5056.82, + "probability": 0.9734 + }, + { + "start": 5056.88, + "end": 5059.3, + "probability": 0.9971 + }, + { + "start": 5059.86, + "end": 5060.26, + "probability": 0.6379 + }, + { + "start": 5060.4, + "end": 5061.12, + "probability": 0.8297 + }, + { + "start": 5061.74, + "end": 5062.3, + "probability": 0.554 + }, + { + "start": 5062.4, + "end": 5065.68, + "probability": 0.5576 + }, + { + "start": 5067.44, + "end": 5067.54, + "probability": 0.0202 + }, + { + "start": 5067.54, + "end": 5070.16, + "probability": 0.6716 + }, + { + "start": 5070.94, + "end": 5072.16, + "probability": 0.6646 + }, + { + "start": 5072.34, + "end": 5076.58, + "probability": 0.7802 + }, + { + "start": 5076.78, + "end": 5077.02, + "probability": 0.3124 + }, + { + "start": 5077.34, + "end": 5078.48, + "probability": 0.4146 + }, + { + "start": 5079.42, + "end": 5082.38, + "probability": 0.2364 + }, + { + "start": 5083.06, + "end": 5085.36, + "probability": 0.4356 + }, + { + "start": 5085.52, + "end": 5086.5, + "probability": 0.3515 + }, + { + "start": 5086.72, + "end": 5088.46, + "probability": 0.8677 + }, + { + "start": 5088.52, + "end": 5088.54, + "probability": 0.685 + }, + { + "start": 5088.86, + "end": 5090.76, + "probability": 0.9927 + }, + { + "start": 5090.8, + "end": 5092.28, + "probability": 0.2863 + }, + { + "start": 5092.38, + "end": 5093.21, + "probability": 0.7481 + }, + { + "start": 5093.84, + "end": 5094.18, + "probability": 0.3035 + }, + { + "start": 5094.63, + "end": 5095.93, + "probability": 0.0925 + }, + { + "start": 5097.3, + "end": 5103.56, + "probability": 0.7089 + }, + { + "start": 5103.56, + "end": 5103.9, + "probability": 0.5658 + }, + { + "start": 5105.34, + "end": 5106.46, + "probability": 0.0 + }, + { + "start": 5107.18, + "end": 5108.12, + "probability": 0.4443 + }, + { + "start": 5108.12, + "end": 5108.22, + "probability": 0.7295 + }, + { + "start": 5108.8, + "end": 5110.37, + "probability": 0.018 + }, + { + "start": 5112.24, + "end": 5112.96, + "probability": 0.0659 + }, + { + "start": 5113.1, + "end": 5114.34, + "probability": 0.2945 + }, + { + "start": 5114.5, + "end": 5115.28, + "probability": 0.6668 + }, + { + "start": 5116.18, + "end": 5117.84, + "probability": 0.6905 + }, + { + "start": 5117.98, + "end": 5121.28, + "probability": 0.8538 + }, + { + "start": 5121.6, + "end": 5123.52, + "probability": 0.3429 + }, + { + "start": 5123.9, + "end": 5129.02, + "probability": 0.9609 + }, + { + "start": 5130.12, + "end": 5131.7, + "probability": 0.8284 + }, + { + "start": 5131.84, + "end": 5137.62, + "probability": 0.9602 + }, + { + "start": 5137.62, + "end": 5141.84, + "probability": 0.9686 + }, + { + "start": 5142.52, + "end": 5145.98, + "probability": 0.9896 + }, + { + "start": 5146.26, + "end": 5146.48, + "probability": 0.6279 + }, + { + "start": 5146.66, + "end": 5147.12, + "probability": 0.8727 + }, + { + "start": 5147.34, + "end": 5150.14, + "probability": 0.7021 + }, + { + "start": 5150.32, + "end": 5154.18, + "probability": 0.8692 + }, + { + "start": 5155.04, + "end": 5160.66, + "probability": 0.9679 + }, + { + "start": 5161.52, + "end": 5162.46, + "probability": 0.9572 + }, + { + "start": 5162.7, + "end": 5164.08, + "probability": 0.5348 + }, + { + "start": 5164.18, + "end": 5164.68, + "probability": 0.7093 + }, + { + "start": 5164.9, + "end": 5168.74, + "probability": 0.8643 + }, + { + "start": 5169.02, + "end": 5171.6, + "probability": 0.6031 + }, + { + "start": 5172.36, + "end": 5173.64, + "probability": 0.645 + }, + { + "start": 5174.72, + "end": 5175.98, + "probability": 0.985 + }, + { + "start": 5176.14, + "end": 5176.58, + "probability": 0.7957 + }, + { + "start": 5177.04, + "end": 5179.43, + "probability": 0.9758 + }, + { + "start": 5180.2, + "end": 5182.54, + "probability": 0.8364 + }, + { + "start": 5182.8, + "end": 5184.86, + "probability": 0.9344 + }, + { + "start": 5186.1, + "end": 5190.12, + "probability": 0.6973 + }, + { + "start": 5190.8, + "end": 5194.34, + "probability": 0.9976 + }, + { + "start": 5194.48, + "end": 5194.98, + "probability": 0.6803 + }, + { + "start": 5195.96, + "end": 5199.36, + "probability": 0.9928 + }, + { + "start": 5201.4, + "end": 5201.72, + "probability": 0.9785 + }, + { + "start": 5202.28, + "end": 5205.14, + "probability": 0.9473 + }, + { + "start": 5205.3, + "end": 5209.28, + "probability": 0.9637 + }, + { + "start": 5210.0, + "end": 5210.52, + "probability": 0.9961 + }, + { + "start": 5211.28, + "end": 5213.8, + "probability": 0.9968 + }, + { + "start": 5214.58, + "end": 5216.56, + "probability": 0.9464 + }, + { + "start": 5216.6, + "end": 5218.88, + "probability": 0.9868 + }, + { + "start": 5219.7, + "end": 5222.66, + "probability": 0.9434 + }, + { + "start": 5223.92, + "end": 5226.96, + "probability": 0.9394 + }, + { + "start": 5227.16, + "end": 5229.17, + "probability": 0.9899 + }, + { + "start": 5230.12, + "end": 5230.9, + "probability": 0.7001 + }, + { + "start": 5230.92, + "end": 5234.02, + "probability": 0.7529 + }, + { + "start": 5234.64, + "end": 5238.34, + "probability": 0.964 + }, + { + "start": 5238.48, + "end": 5239.12, + "probability": 0.7194 + }, + { + "start": 5239.68, + "end": 5240.58, + "probability": 0.9666 + }, + { + "start": 5240.68, + "end": 5242.9, + "probability": 0.9933 + }, + { + "start": 5243.54, + "end": 5246.4, + "probability": 0.9884 + }, + { + "start": 5247.06, + "end": 5247.96, + "probability": 0.8223 + }, + { + "start": 5248.0, + "end": 5249.94, + "probability": 0.9915 + }, + { + "start": 5250.56, + "end": 5252.64, + "probability": 0.928 + }, + { + "start": 5253.22, + "end": 5255.38, + "probability": 0.9925 + }, + { + "start": 5255.58, + "end": 5257.72, + "probability": 0.6348 + }, + { + "start": 5258.64, + "end": 5258.78, + "probability": 0.2391 + }, + { + "start": 5258.8, + "end": 5259.5, + "probability": 0.8323 + }, + { + "start": 5259.82, + "end": 5263.24, + "probability": 0.9407 + }, + { + "start": 5263.38, + "end": 5264.36, + "probability": 0.6619 + }, + { + "start": 5264.72, + "end": 5264.94, + "probability": 0.7516 + }, + { + "start": 5265.7, + "end": 5266.42, + "probability": 0.8884 + }, + { + "start": 5266.68, + "end": 5267.46, + "probability": 0.9231 + }, + { + "start": 5273.78, + "end": 5274.98, + "probability": 0.8867 + }, + { + "start": 5275.18, + "end": 5279.18, + "probability": 0.9917 + }, + { + "start": 5279.9, + "end": 5283.28, + "probability": 0.9976 + }, + { + "start": 5283.92, + "end": 5288.96, + "probability": 0.9945 + }, + { + "start": 5288.98, + "end": 5290.72, + "probability": 0.7342 + }, + { + "start": 5291.24, + "end": 5295.42, + "probability": 0.9844 + }, + { + "start": 5296.34, + "end": 5298.16, + "probability": 0.9926 + }, + { + "start": 5298.26, + "end": 5298.64, + "probability": 0.8273 + }, + { + "start": 5298.74, + "end": 5299.14, + "probability": 0.6496 + }, + { + "start": 5299.26, + "end": 5299.62, + "probability": 0.7683 + }, + { + "start": 5299.7, + "end": 5301.96, + "probability": 0.9934 + }, + { + "start": 5302.8, + "end": 5305.5, + "probability": 0.9976 + }, + { + "start": 5306.3, + "end": 5308.0, + "probability": 0.946 + }, + { + "start": 5308.16, + "end": 5308.54, + "probability": 0.6904 + }, + { + "start": 5308.86, + "end": 5311.4, + "probability": 0.9281 + }, + { + "start": 5312.5, + "end": 5314.08, + "probability": 0.8315 + }, + { + "start": 5314.6, + "end": 5314.9, + "probability": 0.6761 + }, + { + "start": 5315.06, + "end": 5316.24, + "probability": 0.7351 + }, + { + "start": 5316.3, + "end": 5317.52, + "probability": 0.7298 + }, + { + "start": 5317.58, + "end": 5318.84, + "probability": 0.7594 + }, + { + "start": 5319.66, + "end": 5321.66, + "probability": 0.9782 + }, + { + "start": 5321.9, + "end": 5323.74, + "probability": 0.8317 + }, + { + "start": 5324.36, + "end": 5324.78, + "probability": 0.1992 + }, + { + "start": 5325.72, + "end": 5327.86, + "probability": 0.4439 + }, + { + "start": 5328.64, + "end": 5330.62, + "probability": 0.9865 + }, + { + "start": 5330.74, + "end": 5331.12, + "probability": 0.7189 + }, + { + "start": 5331.6, + "end": 5332.22, + "probability": 0.5806 + }, + { + "start": 5332.58, + "end": 5333.48, + "probability": 0.9555 + }, + { + "start": 5333.56, + "end": 5334.88, + "probability": 0.8 + }, + { + "start": 5335.28, + "end": 5336.36, + "probability": 0.6986 + }, + { + "start": 5336.82, + "end": 5340.0, + "probability": 0.789 + }, + { + "start": 5341.93, + "end": 5342.0, + "probability": 0.5504 + }, + { + "start": 18098.0, + "end": 18098.0, + "probability": 0.0 + }, + { + "start": 18098.0, + "end": 18098.0, + "probability": 0.0 + }, + { + "start": 18098.0, + "end": 18098.0, + "probability": 0.0 + }, + { + "start": 18098.0, + "end": 18098.0, + "probability": 0.0 + }, + { + "start": 18098.24, + "end": 18099.44, + "probability": 0.6458 + }, + { + "start": 18100.1, + "end": 18101.14, + "probability": 0.7903 + }, + { + "start": 18101.4, + "end": 18102.7, + "probability": 0.6466 + }, + { + "start": 18102.82, + "end": 18104.0, + "probability": 0.9462 + }, + { + "start": 18105.16, + "end": 18106.96, + "probability": 0.8646 + }, + { + "start": 18107.54, + "end": 18109.21, + "probability": 0.9626 + }, + { + "start": 18110.16, + "end": 18112.2, + "probability": 0.937 + }, + { + "start": 18112.84, + "end": 18113.06, + "probability": 0.198 + }, + { + "start": 18113.68, + "end": 18113.98, + "probability": 0.0934 + }, + { + "start": 18114.94, + "end": 18117.08, + "probability": 0.5682 + }, + { + "start": 18117.56, + "end": 18118.16, + "probability": 0.7304 + }, + { + "start": 18118.66, + "end": 18119.88, + "probability": 0.9349 + }, + { + "start": 18120.62, + "end": 18122.56, + "probability": 0.9803 + }, + { + "start": 18122.56, + "end": 18125.54, + "probability": 0.7381 + }, + { + "start": 18125.54, + "end": 18125.9, + "probability": 0.6648 + }, + { + "start": 18126.42, + "end": 18127.34, + "probability": 0.6783 + }, + { + "start": 18127.88, + "end": 18130.84, + "probability": 0.9171 + }, + { + "start": 18130.98, + "end": 18132.6, + "probability": 0.9944 + }, + { + "start": 18133.38, + "end": 18135.34, + "probability": 0.9823 + }, + { + "start": 18135.38, + "end": 18136.26, + "probability": 0.5054 + }, + { + "start": 18153.55, + "end": 18155.1, + "probability": 0.8215 + }, + { + "start": 18156.86, + "end": 18157.74, + "probability": 0.9375 + }, + { + "start": 18158.96, + "end": 18160.02, + "probability": 0.813 + }, + { + "start": 18166.79, + "end": 18167.2, + "probability": 0.0199 + }, + { + "start": 18168.48, + "end": 18171.16, + "probability": 0.7963 + }, + { + "start": 18172.18, + "end": 18175.76, + "probability": 0.7491 + }, + { + "start": 18176.54, + "end": 18178.16, + "probability": 0.5163 + }, + { + "start": 18179.73, + "end": 18183.7, + "probability": 0.7944 + }, + { + "start": 18184.22, + "end": 18185.7, + "probability": 0.9018 + }, + { + "start": 18186.1, + "end": 18189.48, + "probability": 0.9219 + }, + { + "start": 18189.88, + "end": 18193.72, + "probability": 0.9632 + }, + { + "start": 18193.72, + "end": 18196.14, + "probability": 0.9879 + }, + { + "start": 18202.8, + "end": 18208.24, + "probability": 0.963 + }, + { + "start": 18210.32, + "end": 18212.26, + "probability": 0.8473 + }, + { + "start": 18212.9, + "end": 18215.42, + "probability": 0.9868 + }, + { + "start": 18215.46, + "end": 18218.88, + "probability": 0.9974 + }, + { + "start": 18219.32, + "end": 18220.22, + "probability": 0.8977 + }, + { + "start": 18220.36, + "end": 18222.52, + "probability": 0.8999 + }, + { + "start": 18223.74, + "end": 18227.46, + "probability": 0.9344 + }, + { + "start": 18228.0, + "end": 18230.3, + "probability": 0.9295 + }, + { + "start": 18231.14, + "end": 18236.86, + "probability": 0.7769 + }, + { + "start": 18237.32, + "end": 18239.22, + "probability": 0.9905 + }, + { + "start": 18239.94, + "end": 18242.76, + "probability": 0.9118 + }, + { + "start": 18242.76, + "end": 18247.06, + "probability": 0.9971 + }, + { + "start": 18247.94, + "end": 18254.06, + "probability": 0.984 + }, + { + "start": 18254.6, + "end": 18257.76, + "probability": 0.9722 + }, + { + "start": 18258.78, + "end": 18261.88, + "probability": 0.9966 + }, + { + "start": 18261.88, + "end": 18265.14, + "probability": 0.9769 + }, + { + "start": 18270.96, + "end": 18272.38, + "probability": 0.8264 + }, + { + "start": 18273.12, + "end": 18276.18, + "probability": 0.8302 + }, + { + "start": 18276.7, + "end": 18278.44, + "probability": 0.7689 + }, + { + "start": 18278.96, + "end": 18283.24, + "probability": 0.9553 + }, + { + "start": 18283.24, + "end": 18287.16, + "probability": 0.9351 + }, + { + "start": 18288.38, + "end": 18291.26, + "probability": 0.9903 + }, + { + "start": 18291.82, + "end": 18294.68, + "probability": 0.9707 + }, + { + "start": 18296.3, + "end": 18298.56, + "probability": 0.9509 + }, + { + "start": 18299.04, + "end": 18304.24, + "probability": 0.998 + }, + { + "start": 18312.12, + "end": 18314.28, + "probability": 0.6882 + }, + { + "start": 18317.7, + "end": 18319.88, + "probability": 0.9559 + }, + { + "start": 18319.94, + "end": 18321.48, + "probability": 0.8866 + }, + { + "start": 18321.86, + "end": 18324.28, + "probability": 0.6294 + }, + { + "start": 18324.38, + "end": 18325.82, + "probability": 0.7087 + }, + { + "start": 18326.48, + "end": 18329.1, + "probability": 0.9941 + }, + { + "start": 18329.82, + "end": 18333.04, + "probability": 0.9918 + }, + { + "start": 18333.74, + "end": 18335.66, + "probability": 0.8601 + }, + { + "start": 18335.9, + "end": 18337.38, + "probability": 0.7631 + }, + { + "start": 18338.24, + "end": 18341.82, + "probability": 0.7602 + }, + { + "start": 18342.18, + "end": 18342.92, + "probability": 0.8601 + }, + { + "start": 18344.62, + "end": 18347.48, + "probability": 0.895 + }, + { + "start": 18347.82, + "end": 18350.8, + "probability": 0.9962 + }, + { + "start": 18351.26, + "end": 18351.68, + "probability": 0.9015 + }, + { + "start": 18351.88, + "end": 18352.58, + "probability": 0.9318 + }, + { + "start": 18352.96, + "end": 18353.6, + "probability": 0.9777 + }, + { + "start": 18353.96, + "end": 18356.06, + "probability": 0.8042 + }, + { + "start": 18357.28, + "end": 18360.42, + "probability": 0.9909 + }, + { + "start": 18360.56, + "end": 18361.94, + "probability": 0.4923 + }, + { + "start": 18361.96, + "end": 18368.38, + "probability": 0.9829 + }, + { + "start": 18369.74, + "end": 18373.16, + "probability": 0.9866 + }, + { + "start": 18373.16, + "end": 18378.12, + "probability": 0.9953 + }, + { + "start": 18378.96, + "end": 18382.24, + "probability": 0.887 + }, + { + "start": 18382.74, + "end": 18383.22, + "probability": 0.911 + }, + { + "start": 18383.88, + "end": 18387.28, + "probability": 0.9814 + }, + { + "start": 18387.28, + "end": 18391.0, + "probability": 0.9945 + }, + { + "start": 18391.94, + "end": 18395.28, + "probability": 0.9969 + }, + { + "start": 18395.9, + "end": 18399.08, + "probability": 0.9712 + }, + { + "start": 18399.96, + "end": 18400.3, + "probability": 0.7214 + }, + { + "start": 18400.44, + "end": 18402.54, + "probability": 0.8918 + }, + { + "start": 18402.88, + "end": 18405.08, + "probability": 0.8835 + }, + { + "start": 18405.2, + "end": 18406.36, + "probability": 0.6474 + }, + { + "start": 18406.94, + "end": 18408.28, + "probability": 0.8003 + }, + { + "start": 18408.84, + "end": 18411.8, + "probability": 0.9395 + }, + { + "start": 18411.92, + "end": 18413.56, + "probability": 0.9827 + }, + { + "start": 18414.56, + "end": 18417.94, + "probability": 0.7929 + }, + { + "start": 18421.54, + "end": 18427.32, + "probability": 0.9941 + }, + { + "start": 18427.96, + "end": 18430.08, + "probability": 0.9759 + }, + { + "start": 18430.92, + "end": 18433.68, + "probability": 0.9868 + }, + { + "start": 18437.64, + "end": 18440.56, + "probability": 0.9751 + }, + { + "start": 18442.0, + "end": 18445.12, + "probability": 0.9966 + }, + { + "start": 18445.78, + "end": 18450.88, + "probability": 0.9969 + }, + { + "start": 18451.68, + "end": 18454.06, + "probability": 0.941 + }, + { + "start": 18454.94, + "end": 18457.28, + "probability": 0.7756 + }, + { + "start": 18458.18, + "end": 18462.06, + "probability": 0.8731 + }, + { + "start": 18462.4, + "end": 18464.18, + "probability": 0.9869 + }, + { + "start": 18466.44, + "end": 18468.14, + "probability": 0.2449 + }, + { + "start": 18469.68, + "end": 18469.68, + "probability": 0.0 + }, + { + "start": 18473.32, + "end": 18475.8, + "probability": 0.5042 + }, + { + "start": 18476.59, + "end": 18479.27, + "probability": 0.9417 + }, + { + "start": 18480.02, + "end": 18480.7, + "probability": 0.9698 + }, + { + "start": 18481.44, + "end": 18483.82, + "probability": 0.9934 + }, + { + "start": 18485.68, + "end": 18486.26, + "probability": 0.9711 + }, + { + "start": 18487.04, + "end": 18487.2, + "probability": 0.9532 + }, + { + "start": 18488.74, + "end": 18490.86, + "probability": 0.8066 + }, + { + "start": 18491.9, + "end": 18492.74, + "probability": 0.8015 + }, + { + "start": 18492.98, + "end": 18493.76, + "probability": 0.7305 + }, + { + "start": 18494.02, + "end": 18497.78, + "probability": 0.9843 + }, + { + "start": 18499.62, + "end": 18504.74, + "probability": 0.8097 + }, + { + "start": 18505.5, + "end": 18508.48, + "probability": 0.8659 + }, + { + "start": 18509.1, + "end": 18514.9, + "probability": 0.891 + }, + { + "start": 18515.54, + "end": 18519.72, + "probability": 0.9845 + }, + { + "start": 18520.16, + "end": 18524.04, + "probability": 0.9577 + }, + { + "start": 18527.04, + "end": 18528.6, + "probability": 0.9907 + }, + { + "start": 18529.18, + "end": 18531.4, + "probability": 0.6898 + }, + { + "start": 18532.04, + "end": 18532.48, + "probability": 0.4575 + }, + { + "start": 18532.9, + "end": 18536.94, + "probability": 0.9583 + }, + { + "start": 18536.94, + "end": 18540.8, + "probability": 0.9961 + }, + { + "start": 18540.8, + "end": 18544.12, + "probability": 0.997 + }, + { + "start": 18545.26, + "end": 18545.94, + "probability": 0.6299 + }, + { + "start": 18547.86, + "end": 18548.62, + "probability": 0.6074 + }, + { + "start": 18549.38, + "end": 18551.92, + "probability": 0.7585 + }, + { + "start": 18552.76, + "end": 18553.06, + "probability": 0.2791 + }, + { + "start": 18553.08, + "end": 18558.12, + "probability": 0.8496 + }, + { + "start": 18558.12, + "end": 18563.34, + "probability": 0.9806 + }, + { + "start": 18564.62, + "end": 18567.66, + "probability": 0.8793 + }, + { + "start": 18568.18, + "end": 18571.14, + "probability": 0.8272 + }, + { + "start": 18571.18, + "end": 18576.54, + "probability": 0.7168 + }, + { + "start": 18577.7, + "end": 18578.18, + "probability": 0.5934 + }, + { + "start": 18579.84, + "end": 18581.18, + "probability": 0.0172 + }, + { + "start": 18581.18, + "end": 18584.4, + "probability": 0.4006 + }, + { + "start": 18584.58, + "end": 18587.9, + "probability": 0.6375 + }, + { + "start": 18588.24, + "end": 18592.02, + "probability": 0.6903 + }, + { + "start": 18592.54, + "end": 18594.36, + "probability": 0.9028 + }, + { + "start": 18594.98, + "end": 18599.76, + "probability": 0.9972 + }, + { + "start": 18600.82, + "end": 18602.74, + "probability": 0.9659 + }, + { + "start": 18603.14, + "end": 18603.58, + "probability": 0.2869 + }, + { + "start": 18603.66, + "end": 18609.32, + "probability": 0.9819 + }, + { + "start": 18611.24, + "end": 18615.15, + "probability": 0.953 + }, + { + "start": 18616.34, + "end": 18622.5, + "probability": 0.9189 + }, + { + "start": 18623.76, + "end": 18626.16, + "probability": 0.7609 + }, + { + "start": 18626.16, + "end": 18629.22, + "probability": 0.8667 + }, + { + "start": 18629.78, + "end": 18634.42, + "probability": 0.9518 + }, + { + "start": 18635.14, + "end": 18635.76, + "probability": 0.5518 + }, + { + "start": 18635.84, + "end": 18636.96, + "probability": 0.8528 + }, + { + "start": 18637.08, + "end": 18640.54, + "probability": 0.9751 + }, + { + "start": 18640.98, + "end": 18644.26, + "probability": 0.7681 + }, + { + "start": 18645.36, + "end": 18647.96, + "probability": 0.8331 + }, + { + "start": 18648.09, + "end": 18650.52, + "probability": 0.8799 + }, + { + "start": 18651.64, + "end": 18655.6, + "probability": 0.9951 + }, + { + "start": 18656.58, + "end": 18659.16, + "probability": 0.9373 + }, + { + "start": 18660.02, + "end": 18664.64, + "probability": 0.9739 + }, + { + "start": 18665.16, + "end": 18668.86, + "probability": 0.9795 + }, + { + "start": 18669.84, + "end": 18674.44, + "probability": 0.9973 + }, + { + "start": 18676.14, + "end": 18677.88, + "probability": 0.7061 + }, + { + "start": 18681.1, + "end": 18684.2, + "probability": 0.6686 + }, + { + "start": 18684.86, + "end": 18689.44, + "probability": 0.9919 + }, + { + "start": 18689.44, + "end": 18693.9, + "probability": 0.9955 + }, + { + "start": 18694.3, + "end": 18698.34, + "probability": 0.8818 + }, + { + "start": 18699.16, + "end": 18701.54, + "probability": 0.9368 + }, + { + "start": 18702.04, + "end": 18704.96, + "probability": 0.9955 + }, + { + "start": 18705.66, + "end": 18706.08, + "probability": 0.5908 + }, + { + "start": 18713.52, + "end": 18717.38, + "probability": 0.9543 + }, + { + "start": 18718.22, + "end": 18724.52, + "probability": 0.6993 + }, + { + "start": 18725.68, + "end": 18727.88, + "probability": 0.6558 + }, + { + "start": 18728.64, + "end": 18729.92, + "probability": 0.7986 + }, + { + "start": 18730.88, + "end": 18731.52, + "probability": 0.9976 + }, + { + "start": 18732.92, + "end": 18734.04, + "probability": 0.9587 + }, + { + "start": 18734.52, + "end": 18735.66, + "probability": 0.5023 + }, + { + "start": 18736.12, + "end": 18737.92, + "probability": 0.9505 + }, + { + "start": 18743.72, + "end": 18743.72, + "probability": 0.2074 + }, + { + "start": 18743.72, + "end": 18743.72, + "probability": 0.0703 + }, + { + "start": 18743.72, + "end": 18743.72, + "probability": 0.0864 + }, + { + "start": 18743.72, + "end": 18743.72, + "probability": 0.0967 + }, + { + "start": 18760.28, + "end": 18762.04, + "probability": 0.0514 + }, + { + "start": 18762.04, + "end": 18762.88, + "probability": 0.2084 + }, + { + "start": 18762.88, + "end": 18762.88, + "probability": 0.1498 + }, + { + "start": 18762.88, + "end": 18762.94, + "probability": 0.4315 + }, + { + "start": 18762.94, + "end": 18763.4, + "probability": 0.1002 + }, + { + "start": 18764.34, + "end": 18766.06, + "probability": 0.0223 + }, + { + "start": 18766.54, + "end": 18770.48, + "probability": 0.1787 + }, + { + "start": 18780.0, + "end": 18781.88, + "probability": 0.3936 + }, + { + "start": 18797.18, + "end": 18800.3, + "probability": 0.7738 + }, + { + "start": 18801.52, + "end": 18802.24, + "probability": 0.594 + }, + { + "start": 18803.02, + "end": 18803.52, + "probability": 0.5329 + }, + { + "start": 18804.66, + "end": 18805.36, + "probability": 0.7681 + }, + { + "start": 18808.62, + "end": 18812.84, + "probability": 0.9863 + }, + { + "start": 18814.2, + "end": 18815.52, + "probability": 0.7212 + }, + { + "start": 18816.92, + "end": 18822.88, + "probability": 0.9862 + }, + { + "start": 18828.24, + "end": 18829.12, + "probability": 0.5267 + }, + { + "start": 18831.34, + "end": 18833.4, + "probability": 0.9977 + }, + { + "start": 18834.74, + "end": 18836.92, + "probability": 0.9431 + }, + { + "start": 18838.64, + "end": 18840.08, + "probability": 0.9688 + }, + { + "start": 18840.82, + "end": 18841.5, + "probability": 0.8654 + }, + { + "start": 18842.68, + "end": 18844.04, + "probability": 0.9832 + }, + { + "start": 18844.86, + "end": 18846.32, + "probability": 0.8459 + }, + { + "start": 18846.52, + "end": 18847.98, + "probability": 0.9136 + }, + { + "start": 18848.52, + "end": 18848.88, + "probability": 0.758 + }, + { + "start": 18849.06, + "end": 18849.1, + "probability": 0.1021 + }, + { + "start": 18849.22, + "end": 18849.92, + "probability": 0.8031 + }, + { + "start": 18849.92, + "end": 18850.76, + "probability": 0.6824 + }, + { + "start": 18852.2, + "end": 18852.84, + "probability": 0.7783 + }, + { + "start": 18855.02, + "end": 18855.04, + "probability": 0.1609 + }, + { + "start": 18855.04, + "end": 18855.91, + "probability": 0.8288 + }, + { + "start": 18856.08, + "end": 18857.96, + "probability": 0.9958 + }, + { + "start": 18859.24, + "end": 18861.99, + "probability": 0.9817 + }, + { + "start": 18862.7, + "end": 18866.44, + "probability": 0.5903 + }, + { + "start": 18866.44, + "end": 18868.7, + "probability": 0.6617 + }, + { + "start": 18870.46, + "end": 18872.38, + "probability": 0.9236 + }, + { + "start": 18872.52, + "end": 18873.18, + "probability": 0.8312 + }, + { + "start": 18873.32, + "end": 18874.24, + "probability": 0.833 + }, + { + "start": 18874.4, + "end": 18875.42, + "probability": 0.9551 + }, + { + "start": 18876.02, + "end": 18879.12, + "probability": 0.9547 + }, + { + "start": 18879.86, + "end": 18879.94, + "probability": 0.1722 + }, + { + "start": 18879.94, + "end": 18881.19, + "probability": 0.5083 + }, + { + "start": 18881.72, + "end": 18886.82, + "probability": 0.9323 + }, + { + "start": 18886.96, + "end": 18890.34, + "probability": 0.9656 + }, + { + "start": 18891.12, + "end": 18896.7, + "probability": 0.9972 + }, + { + "start": 18896.74, + "end": 18898.28, + "probability": 0.9477 + }, + { + "start": 18899.62, + "end": 18900.78, + "probability": 0.8232 + }, + { + "start": 18900.96, + "end": 18903.98, + "probability": 0.9896 + }, + { + "start": 18904.04, + "end": 18905.8, + "probability": 0.9919 + }, + { + "start": 18911.66, + "end": 18914.08, + "probability": 0.0681 + }, + { + "start": 18914.08, + "end": 18914.08, + "probability": 0.0909 + }, + { + "start": 18914.08, + "end": 18914.62, + "probability": 0.014 + }, + { + "start": 18914.86, + "end": 18915.38, + "probability": 0.3129 + }, + { + "start": 18915.64, + "end": 18918.38, + "probability": 0.8964 + }, + { + "start": 18918.4, + "end": 18921.5, + "probability": 0.8946 + }, + { + "start": 18924.68, + "end": 18925.88, + "probability": 0.8982 + }, + { + "start": 18926.28, + "end": 18927.62, + "probability": 0.9756 + }, + { + "start": 18927.66, + "end": 18928.94, + "probability": 0.994 + }, + { + "start": 18928.98, + "end": 18930.6, + "probability": 0.9912 + }, + { + "start": 18930.7, + "end": 18931.16, + "probability": 0.3817 + }, + { + "start": 18933.72, + "end": 18935.5, + "probability": 0.8309 + }, + { + "start": 18935.58, + "end": 18940.62, + "probability": 0.9714 + }, + { + "start": 18940.74, + "end": 18944.66, + "probability": 0.7445 + }, + { + "start": 18948.34, + "end": 18953.42, + "probability": 0.9766 + }, + { + "start": 18954.36, + "end": 18955.52, + "probability": 0.769 + }, + { + "start": 18956.24, + "end": 18957.06, + "probability": 0.8783 + }, + { + "start": 18957.64, + "end": 18958.56, + "probability": 0.9111 + }, + { + "start": 18960.0, + "end": 18962.74, + "probability": 0.989 + }, + { + "start": 18963.08, + "end": 18963.2, + "probability": 0.7507 + }, + { + "start": 18963.26, + "end": 18967.16, + "probability": 0.9802 + }, + { + "start": 18967.36, + "end": 18968.94, + "probability": 0.6814 + }, + { + "start": 18969.56, + "end": 18970.24, + "probability": 0.8523 + }, + { + "start": 18971.16, + "end": 18975.32, + "probability": 0.9992 + }, + { + "start": 18975.38, + "end": 18980.88, + "probability": 0.957 + }, + { + "start": 18981.42, + "end": 18982.18, + "probability": 0.9079 + }, + { + "start": 18982.6, + "end": 18983.12, + "probability": 0.7751 + }, + { + "start": 18984.2, + "end": 18985.14, + "probability": 0.8796 + }, + { + "start": 18985.74, + "end": 18989.18, + "probability": 0.8873 + }, + { + "start": 18991.16, + "end": 18995.16, + "probability": 0.958 + }, + { + "start": 18995.86, + "end": 18996.02, + "probability": 0.0028 + }, + { + "start": 18996.02, + "end": 18996.02, + "probability": 0.0139 + }, + { + "start": 18996.02, + "end": 18996.02, + "probability": 0.0256 + }, + { + "start": 18996.02, + "end": 18997.96, + "probability": 0.8248 + }, + { + "start": 18998.16, + "end": 18998.64, + "probability": 0.4797 + }, + { + "start": 18998.84, + "end": 18999.1, + "probability": 0.4343 + }, + { + "start": 18999.46, + "end": 18999.9, + "probability": 0.6411 + }, + { + "start": 19004.92, + "end": 19004.92, + "probability": 0.0584 + }, + { + "start": 19004.92, + "end": 19004.92, + "probability": 0.0551 + }, + { + "start": 19004.92, + "end": 19004.92, + "probability": 0.0159 + }, + { + "start": 19004.92, + "end": 19004.94, + "probability": 0.049 + }, + { + "start": 19004.94, + "end": 19004.98, + "probability": 0.0862 + }, + { + "start": 19017.08, + "end": 19020.32, + "probability": 0.6719 + }, + { + "start": 19020.74, + "end": 19024.62, + "probability": 0.9792 + }, + { + "start": 19024.62, + "end": 19028.46, + "probability": 0.972 + }, + { + "start": 19029.06, + "end": 19030.14, + "probability": 0.9638 + }, + { + "start": 19030.3, + "end": 19032.88, + "probability": 0.7229 + }, + { + "start": 19033.2, + "end": 19035.74, + "probability": 0.9749 + }, + { + "start": 19036.58, + "end": 19036.68, + "probability": 0.0293 + }, + { + "start": 19036.68, + "end": 19039.9, + "probability": 0.5951 + }, + { + "start": 19040.46, + "end": 19043.34, + "probability": 0.8164 + }, + { + "start": 19058.12, + "end": 19060.06, + "probability": 0.8255 + }, + { + "start": 19066.54, + "end": 19067.18, + "probability": 0.718 + }, + { + "start": 19071.68, + "end": 19072.62, + "probability": 0.9385 + }, + { + "start": 19073.36, + "end": 19079.26, + "probability": 0.9619 + }, + { + "start": 19079.36, + "end": 19081.89, + "probability": 0.9976 + }, + { + "start": 19082.06, + "end": 19084.88, + "probability": 0.999 + }, + { + "start": 19087.33, + "end": 19089.18, + "probability": 0.9866 + }, + { + "start": 19090.12, + "end": 19093.84, + "probability": 0.8846 + }, + { + "start": 19094.02, + "end": 19099.14, + "probability": 0.9971 + }, + { + "start": 19099.15, + "end": 19102.96, + "probability": 0.9939 + }, + { + "start": 19103.62, + "end": 19106.19, + "probability": 0.9963 + }, + { + "start": 19106.7, + "end": 19110.0, + "probability": 0.998 + }, + { + "start": 19110.5, + "end": 19111.24, + "probability": 0.5767 + }, + { + "start": 19112.08, + "end": 19113.7, + "probability": 0.9277 + }, + { + "start": 19114.24, + "end": 19115.18, + "probability": 0.9941 + }, + { + "start": 19115.2, + "end": 19121.22, + "probability": 0.97 + }, + { + "start": 19122.26, + "end": 19122.48, + "probability": 0.0591 + }, + { + "start": 19122.48, + "end": 19122.48, + "probability": 0.3817 + }, + { + "start": 19122.48, + "end": 19123.08, + "probability": 0.5048 + }, + { + "start": 19123.64, + "end": 19126.6, + "probability": 0.969 + }, + { + "start": 19127.36, + "end": 19127.64, + "probability": 0.1275 + }, + { + "start": 19127.64, + "end": 19130.16, + "probability": 0.9901 + }, + { + "start": 19131.6, + "end": 19132.14, + "probability": 0.7768 + }, + { + "start": 19132.48, + "end": 19135.84, + "probability": 0.9929 + }, + { + "start": 19136.38, + "end": 19136.88, + "probability": 0.0249 + }, + { + "start": 19136.88, + "end": 19137.08, + "probability": 0.0325 + }, + { + "start": 19137.08, + "end": 19137.08, + "probability": 0.0308 + }, + { + "start": 19137.08, + "end": 19137.91, + "probability": 0.3899 + }, + { + "start": 19138.54, + "end": 19139.38, + "probability": 0.9299 + }, + { + "start": 19139.66, + "end": 19142.94, + "probability": 0.9253 + }, + { + "start": 19143.6, + "end": 19145.96, + "probability": 0.7433 + }, + { + "start": 19146.12, + "end": 19147.44, + "probability": 0.8116 + }, + { + "start": 19149.34, + "end": 19149.34, + "probability": 0.0053 + }, + { + "start": 19149.34, + "end": 19149.34, + "probability": 0.0685 + }, + { + "start": 19149.34, + "end": 19151.9, + "probability": 0.7143 + }, + { + "start": 19153.38, + "end": 19156.38, + "probability": 0.9585 + }, + { + "start": 19157.12, + "end": 19159.48, + "probability": 0.7919 + }, + { + "start": 19160.06, + "end": 19160.96, + "probability": 0.7679 + }, + { + "start": 19162.12, + "end": 19165.98, + "probability": 0.7551 + }, + { + "start": 19166.76, + "end": 19172.44, + "probability": 0.941 + }, + { + "start": 19173.04, + "end": 19175.2, + "probability": 0.7114 + }, + { + "start": 19176.18, + "end": 19179.18, + "probability": 0.829 + }, + { + "start": 19179.82, + "end": 19183.26, + "probability": 0.9741 + }, + { + "start": 19183.78, + "end": 19189.94, + "probability": 0.9952 + }, + { + "start": 19190.86, + "end": 19193.48, + "probability": 0.8618 + }, + { + "start": 19193.84, + "end": 19195.12, + "probability": 0.8972 + }, + { + "start": 19195.16, + "end": 19196.76, + "probability": 0.8207 + }, + { + "start": 19196.88, + "end": 19197.16, + "probability": 0.7696 + }, + { + "start": 19197.66, + "end": 19199.36, + "probability": 0.9774 + }, + { + "start": 19199.4, + "end": 19201.16, + "probability": 0.9677 + }, + { + "start": 19201.84, + "end": 19205.42, + "probability": 0.9365 + }, + { + "start": 19206.1, + "end": 19210.26, + "probability": 0.9309 + }, + { + "start": 19210.36, + "end": 19212.34, + "probability": 0.7763 + }, + { + "start": 19212.46, + "end": 19212.76, + "probability": 0.8757 + }, + { + "start": 19212.84, + "end": 19213.22, + "probability": 0.9183 + }, + { + "start": 19213.32, + "end": 19214.98, + "probability": 0.9616 + }, + { + "start": 19215.4, + "end": 19216.3, + "probability": 0.9763 + }, + { + "start": 19216.66, + "end": 19218.54, + "probability": 0.9723 + }, + { + "start": 19219.5, + "end": 19220.84, + "probability": 0.8737 + }, + { + "start": 19221.36, + "end": 19224.78, + "probability": 0.8163 + }, + { + "start": 19225.5, + "end": 19229.3, + "probability": 0.925 + }, + { + "start": 19229.78, + "end": 19230.22, + "probability": 0.5377 + }, + { + "start": 19230.74, + "end": 19236.48, + "probability": 0.7058 + }, + { + "start": 19236.48, + "end": 19236.54, + "probability": 0.4254 + }, + { + "start": 19236.54, + "end": 19237.0, + "probability": 0.3776 + }, + { + "start": 19237.0, + "end": 19237.7, + "probability": 0.6031 + }, + { + "start": 19238.18, + "end": 19243.32, + "probability": 0.8987 + }, + { + "start": 19244.04, + "end": 19244.47, + "probability": 0.9019 + }, + { + "start": 19245.74, + "end": 19248.7, + "probability": 0.7969 + }, + { + "start": 19249.48, + "end": 19249.7, + "probability": 0.6445 + }, + { + "start": 19249.8, + "end": 19250.44, + "probability": 0.5881 + }, + { + "start": 19250.5, + "end": 19250.92, + "probability": 0.7038 + }, + { + "start": 19251.14, + "end": 19253.48, + "probability": 0.8617 + }, + { + "start": 19253.48, + "end": 19258.42, + "probability": 0.8513 + }, + { + "start": 19258.5, + "end": 19262.92, + "probability": 0.9761 + }, + { + "start": 19263.78, + "end": 19269.3, + "probability": 0.9379 + }, + { + "start": 19269.94, + "end": 19271.84, + "probability": 0.7682 + }, + { + "start": 19272.29, + "end": 19275.86, + "probability": 0.996 + }, + { + "start": 19275.94, + "end": 19280.3, + "probability": 0.9944 + }, + { + "start": 19281.66, + "end": 19284.32, + "probability": 0.7302 + }, + { + "start": 19284.76, + "end": 19291.32, + "probability": 0.8048 + }, + { + "start": 19291.84, + "end": 19295.64, + "probability": 0.9555 + }, + { + "start": 19296.3, + "end": 19302.48, + "probability": 0.8408 + }, + { + "start": 19302.6, + "end": 19304.94, + "probability": 0.7533 + }, + { + "start": 19305.36, + "end": 19308.88, + "probability": 0.9441 + }, + { + "start": 19309.1, + "end": 19309.44, + "probability": 0.5217 + }, + { + "start": 19309.66, + "end": 19309.94, + "probability": 0.791 + }, + { + "start": 19310.0, + "end": 19311.98, + "probability": 0.9668 + }, + { + "start": 19312.4, + "end": 19314.58, + "probability": 0.9266 + }, + { + "start": 19315.14, + "end": 19318.16, + "probability": 0.9964 + }, + { + "start": 19318.16, + "end": 19321.6, + "probability": 0.8388 + }, + { + "start": 19322.04, + "end": 19328.06, + "probability": 0.9149 + }, + { + "start": 19328.06, + "end": 19335.66, + "probability": 0.8622 + }, + { + "start": 19336.28, + "end": 19337.4, + "probability": 0.7884 + }, + { + "start": 19338.0, + "end": 19341.82, + "probability": 0.9841 + }, + { + "start": 19343.45, + "end": 19345.14, + "probability": 0.6949 + }, + { + "start": 19345.24, + "end": 19345.9, + "probability": 0.8038 + }, + { + "start": 19347.32, + "end": 19347.54, + "probability": 0.3282 + }, + { + "start": 19348.08, + "end": 19353.02, + "probability": 0.4856 + }, + { + "start": 19354.32, + "end": 19356.32, + "probability": 0.9472 + }, + { + "start": 19356.86, + "end": 19358.04, + "probability": 0.9827 + }, + { + "start": 19358.5, + "end": 19360.72, + "probability": 0.9938 + }, + { + "start": 19360.82, + "end": 19365.82, + "probability": 0.9858 + }, + { + "start": 19366.0, + "end": 19366.66, + "probability": 0.6302 + }, + { + "start": 19366.78, + "end": 19367.5, + "probability": 0.9762 + }, + { + "start": 19367.68, + "end": 19369.14, + "probability": 0.756 + }, + { + "start": 19369.22, + "end": 19370.4, + "probability": 0.8375 + }, + { + "start": 19370.52, + "end": 19372.52, + "probability": 0.8767 + }, + { + "start": 19372.62, + "end": 19372.86, + "probability": 0.8525 + }, + { + "start": 19373.2, + "end": 19375.24, + "probability": 0.7817 + }, + { + "start": 19376.44, + "end": 19377.78, + "probability": 0.4703 + }, + { + "start": 19378.7, + "end": 19379.96, + "probability": 0.4727 + }, + { + "start": 19379.98, + "end": 19380.98, + "probability": 0.6093 + }, + { + "start": 19406.08, + "end": 19406.9, + "probability": 0.4905 + }, + { + "start": 19407.04, + "end": 19408.1, + "probability": 0.7731 + }, + { + "start": 19408.28, + "end": 19413.88, + "probability": 0.9373 + }, + { + "start": 19414.04, + "end": 19416.4, + "probability": 0.9859 + }, + { + "start": 19416.4, + "end": 19419.54, + "probability": 0.9292 + }, + { + "start": 19420.76, + "end": 19424.24, + "probability": 0.9942 + }, + { + "start": 19424.44, + "end": 19428.32, + "probability": 0.8951 + }, + { + "start": 19429.42, + "end": 19432.46, + "probability": 0.7484 + }, + { + "start": 19433.16, + "end": 19435.56, + "probability": 0.0564 + }, + { + "start": 19436.64, + "end": 19436.74, + "probability": 0.0908 + }, + { + "start": 19439.12, + "end": 19439.28, + "probability": 0.3437 + }, + { + "start": 19439.28, + "end": 19439.28, + "probability": 0.0515 + }, + { + "start": 19439.28, + "end": 19439.52, + "probability": 0.0557 + }, + { + "start": 19439.52, + "end": 19440.92, + "probability": 0.7644 + }, + { + "start": 19441.06, + "end": 19443.46, + "probability": 0.639 + }, + { + "start": 19447.68, + "end": 19448.46, + "probability": 0.0763 + }, + { + "start": 19455.68, + "end": 19456.1, + "probability": 0.6264 + }, + { + "start": 19458.34, + "end": 19458.82, + "probability": 0.0662 + }, + { + "start": 19458.82, + "end": 19458.82, + "probability": 0.0643 + }, + { + "start": 19458.82, + "end": 19458.82, + "probability": 0.0517 + }, + { + "start": 19458.82, + "end": 19458.92, + "probability": 0.2011 + }, + { + "start": 19460.88, + "end": 19462.04, + "probability": 0.5569 + }, + { + "start": 19467.72, + "end": 19472.22, + "probability": 0.9476 + }, + { + "start": 19473.48, + "end": 19477.88, + "probability": 0.8082 + }, + { + "start": 19478.4, + "end": 19481.2, + "probability": 0.998 + }, + { + "start": 19481.94, + "end": 19484.38, + "probability": 0.824 + }, + { + "start": 19486.6, + "end": 19489.88, + "probability": 0.7886 + }, + { + "start": 19490.06, + "end": 19493.96, + "probability": 0.8306 + }, + { + "start": 19494.56, + "end": 19497.42, + "probability": 0.9513 + }, + { + "start": 19499.72, + "end": 19501.88, + "probability": 0.9585 + }, + { + "start": 19502.5, + "end": 19504.72, + "probability": 0.9243 + }, + { + "start": 19504.9, + "end": 19506.54, + "probability": 0.9906 + }, + { + "start": 19506.64, + "end": 19506.88, + "probability": 0.1746 + }, + { + "start": 19506.88, + "end": 19507.14, + "probability": 0.3521 + }, + { + "start": 19507.54, + "end": 19509.1, + "probability": 0.9938 + }, + { + "start": 19510.08, + "end": 19512.46, + "probability": 0.9916 + }, + { + "start": 19513.6, + "end": 19514.2, + "probability": 0.9523 + }, + { + "start": 19514.3, + "end": 19515.76, + "probability": 0.9946 + }, + { + "start": 19516.94, + "end": 19518.92, + "probability": 0.9194 + }, + { + "start": 19519.04, + "end": 19522.2, + "probability": 0.9313 + }, + { + "start": 19524.12, + "end": 19530.2, + "probability": 0.998 + }, + { + "start": 19530.24, + "end": 19534.14, + "probability": 0.9613 + }, + { + "start": 19534.94, + "end": 19535.48, + "probability": 0.6428 + }, + { + "start": 19535.58, + "end": 19537.96, + "probability": 0.6121 + }, + { + "start": 19538.78, + "end": 19541.04, + "probability": 0.8018 + }, + { + "start": 19545.6, + "end": 19547.0, + "probability": 0.8918 + }, + { + "start": 19549.04, + "end": 19549.8, + "probability": 0.756 + }, + { + "start": 19550.4, + "end": 19551.56, + "probability": 0.7471 + }, + { + "start": 19552.54, + "end": 19553.6, + "probability": 0.8697 + }, + { + "start": 19553.6, + "end": 19555.12, + "probability": 0.9003 + }, + { + "start": 19556.6, + "end": 19560.42, + "probability": 0.6871 + }, + { + "start": 19561.46, + "end": 19564.84, + "probability": 0.7466 + }, + { + "start": 19564.84, + "end": 19568.46, + "probability": 0.7685 + }, + { + "start": 19569.12, + "end": 19571.08, + "probability": 0.9673 + }, + { + "start": 19571.94, + "end": 19572.88, + "probability": 0.4538 + }, + { + "start": 19574.18, + "end": 19578.78, + "probability": 0.9861 + }, + { + "start": 19579.6, + "end": 19581.42, + "probability": 0.9308 + }, + { + "start": 19582.22, + "end": 19583.24, + "probability": 0.7542 + }, + { + "start": 19583.4, + "end": 19584.44, + "probability": 0.8735 + }, + { + "start": 19584.56, + "end": 19586.82, + "probability": 0.5003 + }, + { + "start": 19587.64, + "end": 19590.02, + "probability": 0.9873 + }, + { + "start": 19590.98, + "end": 19593.46, + "probability": 0.8503 + }, + { + "start": 19594.22, + "end": 19597.46, + "probability": 0.6633 + }, + { + "start": 19597.46, + "end": 19602.16, + "probability": 0.7255 + }, + { + "start": 19602.76, + "end": 19606.22, + "probability": 0.9832 + }, + { + "start": 19606.76, + "end": 19607.62, + "probability": 0.704 + }, + { + "start": 19607.86, + "end": 19608.44, + "probability": 0.8387 + }, + { + "start": 19608.94, + "end": 19610.78, + "probability": 0.8272 + }, + { + "start": 19611.8, + "end": 19613.98, + "probability": 0.9249 + }, + { + "start": 19615.18, + "end": 19616.92, + "probability": 0.7779 + }, + { + "start": 19616.96, + "end": 19617.85, + "probability": 0.6285 + }, + { + "start": 19619.44, + "end": 19621.72, + "probability": 0.3461 + }, + { + "start": 19621.8, + "end": 19625.78, + "probability": 0.5744 + }, + { + "start": 19625.98, + "end": 19625.98, + "probability": 0.0166 + }, + { + "start": 19625.98, + "end": 19626.5, + "probability": 0.5602 + }, + { + "start": 19626.58, + "end": 19627.1, + "probability": 0.5993 + }, + { + "start": 19627.14, + "end": 19627.14, + "probability": 0.2397 + }, + { + "start": 19645.06, + "end": 19645.82, + "probability": 0.1832 + }, + { + "start": 19647.52, + "end": 19651.28, + "probability": 0.2824 + }, + { + "start": 19657.62, + "end": 19660.94, + "probability": 0.0403 + }, + { + "start": 19661.11, + "end": 19661.86, + "probability": 0.0214 + }, + { + "start": 19661.86, + "end": 19661.98, + "probability": 0.0276 + }, + { + "start": 19662.24, + "end": 19663.58, + "probability": 0.1141 + }, + { + "start": 19664.5, + "end": 19664.72, + "probability": 0.0139 + }, + { + "start": 19665.3, + "end": 19665.36, + "probability": 0.1003 + }, + { + "start": 19679.96, + "end": 19682.41, + "probability": 0.0299 + }, + { + "start": 19683.85, + "end": 19684.94, + "probability": 0.0182 + }, + { + "start": 19685.34, + "end": 19687.04, + "probability": 0.2288 + }, + { + "start": 19688.31, + "end": 19689.08, + "probability": 0.0373 + }, + { + "start": 19689.8, + "end": 19693.5, + "probability": 0.0687 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.0, + "end": 19713.0, + "probability": 0.0 + }, + { + "start": 19713.22, + "end": 19714.18, + "probability": 0.7303 + }, + { + "start": 19715.04, + "end": 19720.1, + "probability": 0.9433 + }, + { + "start": 19721.18, + "end": 19721.64, + "probability": 0.4881 + }, + { + "start": 19723.44, + "end": 19725.96, + "probability": 0.827 + }, + { + "start": 19727.22, + "end": 19731.62, + "probability": 0.891 + }, + { + "start": 19732.57, + "end": 19738.38, + "probability": 0.9962 + }, + { + "start": 19739.06, + "end": 19739.84, + "probability": 0.6841 + }, + { + "start": 19740.58, + "end": 19743.34, + "probability": 0.8486 + }, + { + "start": 19744.7, + "end": 19751.52, + "probability": 0.9979 + }, + { + "start": 19752.58, + "end": 19755.1, + "probability": 0.9199 + }, + { + "start": 19755.42, + "end": 19757.58, + "probability": 0.682 + }, + { + "start": 19758.82, + "end": 19760.54, + "probability": 0.7791 + }, + { + "start": 19761.44, + "end": 19765.56, + "probability": 0.9016 + }, + { + "start": 19767.42, + "end": 19768.18, + "probability": 0.7694 + }, + { + "start": 19769.12, + "end": 19771.52, + "probability": 0.9073 + }, + { + "start": 19772.16, + "end": 19772.9, + "probability": 0.8933 + }, + { + "start": 19777.74, + "end": 19777.74, + "probability": 0.6584 + }, + { + "start": 19777.74, + "end": 19777.74, + "probability": 0.0606 + }, + { + "start": 19777.74, + "end": 19778.16, + "probability": 0.5285 + }, + { + "start": 19779.6, + "end": 19780.4, + "probability": 0.6384 + }, + { + "start": 19780.56, + "end": 19780.94, + "probability": 0.9309 + }, + { + "start": 19782.76, + "end": 19783.86, + "probability": 0.7475 + }, + { + "start": 19784.42, + "end": 19785.38, + "probability": 0.9695 + }, + { + "start": 19785.96, + "end": 19792.52, + "probability": 0.9928 + }, + { + "start": 19793.36, + "end": 19794.34, + "probability": 0.9888 + }, + { + "start": 19795.58, + "end": 19795.78, + "probability": 0.8817 + }, + { + "start": 19796.5, + "end": 19799.38, + "probability": 0.9655 + }, + { + "start": 19799.5, + "end": 19802.8, + "probability": 0.9746 + }, + { + "start": 19803.6, + "end": 19804.82, + "probability": 0.9764 + }, + { + "start": 19806.43, + "end": 19808.12, + "probability": 0.9093 + }, + { + "start": 19808.24, + "end": 19810.94, + "probability": 0.8269 + }, + { + "start": 19812.78, + "end": 19816.76, + "probability": 0.7098 + }, + { + "start": 19817.64, + "end": 19820.36, + "probability": 0.9395 + }, + { + "start": 19821.96, + "end": 19822.02, + "probability": 0.9116 + }, + { + "start": 19822.62, + "end": 19826.6, + "probability": 0.9851 + }, + { + "start": 19827.9, + "end": 19829.26, + "probability": 0.9683 + }, + { + "start": 19829.9, + "end": 19832.28, + "probability": 0.96 + }, + { + "start": 19833.14, + "end": 19834.22, + "probability": 0.9758 + }, + { + "start": 19835.02, + "end": 19835.98, + "probability": 0.9886 + }, + { + "start": 19836.78, + "end": 19837.5, + "probability": 0.8221 + }, + { + "start": 19838.34, + "end": 19839.46, + "probability": 0.9282 + }, + { + "start": 19840.04, + "end": 19841.94, + "probability": 0.9929 + }, + { + "start": 19842.02, + "end": 19843.88, + "probability": 0.9927 + }, + { + "start": 19844.02, + "end": 19846.36, + "probability": 0.8751 + }, + { + "start": 19848.16, + "end": 19850.16, + "probability": 0.9985 + }, + { + "start": 19851.16, + "end": 19853.6, + "probability": 0.9844 + }, + { + "start": 19855.12, + "end": 19857.6, + "probability": 0.7754 + }, + { + "start": 19857.8, + "end": 19859.3, + "probability": 0.1173 + }, + { + "start": 19859.48, + "end": 19859.7, + "probability": 0.5069 + }, + { + "start": 19859.7, + "end": 19860.26, + "probability": 0.1606 + }, + { + "start": 19860.3, + "end": 19860.84, + "probability": 0.064 + }, + { + "start": 19860.84, + "end": 19862.38, + "probability": 0.5984 + }, + { + "start": 19862.68, + "end": 19864.42, + "probability": 0.949 + }, + { + "start": 19864.5, + "end": 19865.41, + "probability": 0.9849 + }, + { + "start": 19865.48, + "end": 19866.86, + "probability": 0.9431 + }, + { + "start": 19867.46, + "end": 19868.68, + "probability": 0.9673 + }, + { + "start": 19868.78, + "end": 19870.76, + "probability": 0.9328 + }, + { + "start": 19870.88, + "end": 19871.79, + "probability": 0.9861 + }, + { + "start": 19872.02, + "end": 19872.56, + "probability": 0.8346 + }, + { + "start": 19872.74, + "end": 19874.48, + "probability": 0.6892 + }, + { + "start": 19874.94, + "end": 19877.62, + "probability": 0.8636 + }, + { + "start": 19877.62, + "end": 19881.1, + "probability": 0.9266 + }, + { + "start": 19881.18, + "end": 19882.26, + "probability": 0.4092 + }, + { + "start": 19882.36, + "end": 19883.02, + "probability": 0.9471 + }, + { + "start": 19883.1, + "end": 19886.66, + "probability": 0.9959 + }, + { + "start": 19887.22, + "end": 19887.62, + "probability": 0.5285 + }, + { + "start": 19887.68, + "end": 19888.76, + "probability": 0.9727 + }, + { + "start": 19888.88, + "end": 19893.02, + "probability": 0.9837 + }, + { + "start": 19893.02, + "end": 19893.3, + "probability": 0.0988 + }, + { + "start": 19893.44, + "end": 19894.52, + "probability": 0.8622 + }, + { + "start": 19894.96, + "end": 19895.58, + "probability": 0.7818 + }, + { + "start": 19895.64, + "end": 19899.08, + "probability": 0.978 + }, + { + "start": 19899.08, + "end": 19904.68, + "probability": 0.9769 + }, + { + "start": 19905.22, + "end": 19906.9, + "probability": 0.7577 + }, + { + "start": 19907.62, + "end": 19907.64, + "probability": 0.4061 + }, + { + "start": 19907.96, + "end": 19909.48, + "probability": 0.9718 + }, + { + "start": 19910.14, + "end": 19913.9, + "probability": 0.9873 + }, + { + "start": 19914.12, + "end": 19915.64, + "probability": 0.9453 + }, + { + "start": 19916.32, + "end": 19917.62, + "probability": 0.0167 + }, + { + "start": 19917.66, + "end": 19918.96, + "probability": 0.6059 + }, + { + "start": 19919.54, + "end": 19921.12, + "probability": 0.8889 + }, + { + "start": 19921.3, + "end": 19922.08, + "probability": 0.9623 + }, + { + "start": 19922.7, + "end": 19924.58, + "probability": 0.0019 + }, + { + "start": 19927.3, + "end": 19931.0, + "probability": 0.3031 + }, + { + "start": 19931.4, + "end": 19932.7, + "probability": 0.7832 + }, + { + "start": 19933.16, + "end": 19933.36, + "probability": 0.1 + }, + { + "start": 19933.36, + "end": 19933.86, + "probability": 0.5909 + }, + { + "start": 19934.04, + "end": 19934.76, + "probability": 0.6286 + }, + { + "start": 19934.94, + "end": 19935.16, + "probability": 0.6004 + }, + { + "start": 19936.18, + "end": 19937.12, + "probability": 0.6545 + }, + { + "start": 19937.94, + "end": 19937.94, + "probability": 0.0536 + }, + { + "start": 19938.26, + "end": 19939.3, + "probability": 0.333 + }, + { + "start": 19941.82, + "end": 19942.36, + "probability": 0.2585 + }, + { + "start": 19942.36, + "end": 19942.78, + "probability": 0.034 + }, + { + "start": 19954.14, + "end": 19955.38, + "probability": 0.0757 + }, + { + "start": 19955.38, + "end": 19956.52, + "probability": 0.0454 + }, + { + "start": 19956.52, + "end": 19956.68, + "probability": 0.0535 + }, + { + "start": 19958.0, + "end": 19959.08, + "probability": 0.5096 + }, + { + "start": 19966.92, + "end": 19967.52, + "probability": 0.0471 + }, + { + "start": 19967.52, + "end": 19967.86, + "probability": 0.2209 + }, + { + "start": 19967.86, + "end": 19968.44, + "probability": 0.2941 + }, + { + "start": 19968.82, + "end": 19969.04, + "probability": 0.5128 + }, + { + "start": 19970.16, + "end": 19971.08, + "probability": 0.2978 + }, + { + "start": 19971.08, + "end": 19971.42, + "probability": 0.2989 + }, + { + "start": 19979.93, + "end": 19981.4, + "probability": 0.0942 + }, + { + "start": 19981.8, + "end": 19982.68, + "probability": 0.0098 + }, + { + "start": 19994.84, + "end": 19995.6, + "probability": 0.1527 + }, + { + "start": 19996.68, + "end": 19997.26, + "probability": 0.0015 + }, + { + "start": 19998.9, + "end": 19999.62, + "probability": 0.092 + }, + { + "start": 20000.56, + "end": 20004.2, + "probability": 0.0456 + }, + { + "start": 20025.0, + "end": 20025.0, + "probability": 0.0 + }, + { + "start": 20025.0, + "end": 20025.0, + "probability": 0.0 + }, + { + "start": 20025.0, + "end": 20025.0, + "probability": 0.0 + }, + { + "start": 20025.0, + "end": 20025.0, + "probability": 0.0 + }, + { + "start": 20025.0, + "end": 20025.0, + "probability": 0.0 + }, + { + "start": 20025.0, + "end": 20025.0, + "probability": 0.0 + }, + { + "start": 20025.0, + "end": 20025.0, + "probability": 0.0 + }, + { + "start": 20025.0, + "end": 20025.0, + "probability": 0.0 + }, + { + "start": 20025.0, + "end": 20025.0, + "probability": 0.0 + }, + { + "start": 20025.0, + "end": 20025.0, + "probability": 0.0 + }, + { + "start": 20025.0, + "end": 20025.0, + "probability": 0.0 + }, + { + "start": 20025.0, + "end": 20025.0, + "probability": 0.0 + }, + { + "start": 20025.0, + "end": 20025.0, + "probability": 0.0 + }, + { + "start": 20025.0, + "end": 20025.0, + "probability": 0.0 + }, + { + "start": 20025.0, + "end": 20025.0, + "probability": 0.0 + }, + { + "start": 20025.0, + "end": 20025.0, + "probability": 0.0 + }, + { + "start": 20025.0, + "end": 20025.0, + "probability": 0.0 + }, + { + "start": 20025.0, + "end": 20025.0, + "probability": 0.0 + }, + { + "start": 20025.0, + "end": 20025.0, + "probability": 0.0 + }, + { + "start": 20025.0, + "end": 20025.0, + "probability": 0.0 + }, + { + "start": 20025.26, + "end": 20026.48, + "probability": 0.6207 + }, + { + "start": 20027.42, + "end": 20028.98, + "probability": 0.3249 + }, + { + "start": 20028.98, + "end": 20029.14, + "probability": 0.5837 + }, + { + "start": 20029.42, + "end": 20030.16, + "probability": 0.7618 + }, + { + "start": 20031.04, + "end": 20031.48, + "probability": 0.4004 + }, + { + "start": 20031.66, + "end": 20032.08, + "probability": 0.397 + }, + { + "start": 20033.04, + "end": 20033.76, + "probability": 0.9774 + }, + { + "start": 20033.96, + "end": 20035.94, + "probability": 0.985 + }, + { + "start": 20036.8, + "end": 20037.54, + "probability": 0.8894 + }, + { + "start": 20037.98, + "end": 20039.83, + "probability": 0.9929 + }, + { + "start": 20040.98, + "end": 20042.72, + "probability": 0.7751 + }, + { + "start": 20044.74, + "end": 20046.34, + "probability": 0.3585 + }, + { + "start": 20048.24, + "end": 20049.96, + "probability": 0.2978 + }, + { + "start": 20053.44, + "end": 20053.72, + "probability": 0.4502 + }, + { + "start": 20055.06, + "end": 20055.78, + "probability": 0.5799 + }, + { + "start": 20058.44, + "end": 20059.12, + "probability": 0.4028 + }, + { + "start": 20059.9, + "end": 20060.88, + "probability": 0.9863 + }, + { + "start": 20061.56, + "end": 20063.8, + "probability": 0.9404 + }, + { + "start": 20064.38, + "end": 20067.02, + "probability": 0.7173 + }, + { + "start": 20067.24, + "end": 20068.1, + "probability": 0.0914 + }, + { + "start": 20068.62, + "end": 20072.24, + "probability": 0.5185 + }, + { + "start": 20072.94, + "end": 20074.58, + "probability": 0.0746 + }, + { + "start": 20074.58, + "end": 20074.58, + "probability": 0.0244 + }, + { + "start": 20074.58, + "end": 20075.92, + "probability": 0.2806 + }, + { + "start": 20075.92, + "end": 20075.92, + "probability": 0.2026 + }, + { + "start": 20075.92, + "end": 20076.64, + "probability": 0.304 + }, + { + "start": 20076.82, + "end": 20077.38, + "probability": 0.4987 + }, + { + "start": 20077.78, + "end": 20079.14, + "probability": 0.0604 + }, + { + "start": 20081.66, + "end": 20081.82, + "probability": 0.0044 + }, + { + "start": 20085.4, + "end": 20085.84, + "probability": 0.5542 + }, + { + "start": 20092.96, + "end": 20096.2, + "probability": 0.1762 + }, + { + "start": 20096.8, + "end": 20097.84, + "probability": 0.0181 + }, + { + "start": 20116.1, + "end": 20117.0, + "probability": 0.0752 + }, + { + "start": 20117.92, + "end": 20118.0, + "probability": 0.0154 + }, + { + "start": 20122.16, + "end": 20124.12, + "probability": 0.102 + }, + { + "start": 20124.12, + "end": 20125.54, + "probability": 0.131 + }, + { + "start": 20125.62, + "end": 20127.46, + "probability": 0.202 + }, + { + "start": 20150.0, + "end": 20150.0, + "probability": 0.0 + }, + { + "start": 20150.0, + "end": 20150.0, + "probability": 0.0 + }, + { + "start": 20150.0, + "end": 20150.0, + "probability": 0.0 + }, + { + "start": 20150.0, + "end": 20150.0, + "probability": 0.0 + }, + { + "start": 20150.0, + "end": 20150.0, + "probability": 0.0 + }, + { + "start": 20150.0, + "end": 20150.0, + "probability": 0.0 + }, + { + "start": 20150.0, + "end": 20150.0, + "probability": 0.0 + }, + { + "start": 20150.0, + "end": 20150.0, + "probability": 0.0 + }, + { + "start": 20150.0, + "end": 20150.0, + "probability": 0.0 + }, + { + "start": 20150.0, + "end": 20150.0, + "probability": 0.0 + }, + { + "start": 20150.0, + "end": 20150.0, + "probability": 0.0 + }, + { + "start": 20150.0, + "end": 20150.0, + "probability": 0.0 + }, + { + "start": 20150.0, + "end": 20150.0, + "probability": 0.0 + }, + { + "start": 20150.0, + "end": 20150.0, + "probability": 0.0 + }, + { + "start": 20150.0, + "end": 20150.0, + "probability": 0.0 + }, + { + "start": 20150.0, + "end": 20150.0, + "probability": 0.0 + }, + { + "start": 20150.0, + "end": 20150.0, + "probability": 0.0 + }, + { + "start": 20150.0, + "end": 20150.0, + "probability": 0.0 + }, + { + "start": 20150.0, + "end": 20150.0, + "probability": 0.0 + }, + { + "start": 20150.0, + "end": 20150.0, + "probability": 0.0 + }, + { + "start": 20150.0, + "end": 20150.0, + "probability": 0.0 + }, + { + "start": 20150.0, + "end": 20150.0, + "probability": 0.0 + }, + { + "start": 20150.0, + "end": 20150.0, + "probability": 0.0 + }, + { + "start": 20150.0, + "end": 20150.0, + "probability": 0.0 + }, + { + "start": 20150.0, + "end": 20150.0, + "probability": 0.0 + }, + { + "start": 20150.16, + "end": 20151.04, + "probability": 0.0822 + }, + { + "start": 20151.7, + "end": 20155.98, + "probability": 0.9816 + }, + { + "start": 20156.92, + "end": 20162.54, + "probability": 0.9978 + }, + { + "start": 20162.54, + "end": 20168.18, + "probability": 0.9967 + }, + { + "start": 20168.18, + "end": 20175.26, + "probability": 0.9972 + }, + { + "start": 20176.2, + "end": 20179.16, + "probability": 0.9968 + }, + { + "start": 20179.86, + "end": 20181.96, + "probability": 0.9568 + }, + { + "start": 20182.94, + "end": 20185.16, + "probability": 0.9867 + }, + { + "start": 20186.04, + "end": 20191.12, + "probability": 0.9526 + }, + { + "start": 20191.12, + "end": 20196.3, + "probability": 0.9716 + }, + { + "start": 20196.88, + "end": 20198.96, + "probability": 0.9445 + }, + { + "start": 20199.88, + "end": 20202.92, + "probability": 0.993 + }, + { + "start": 20202.92, + "end": 20207.06, + "probability": 0.9943 + }, + { + "start": 20207.72, + "end": 20210.3, + "probability": 0.9844 + }, + { + "start": 20210.82, + "end": 20214.23, + "probability": 0.6726 + }, + { + "start": 20216.12, + "end": 20216.12, + "probability": 0.0388 + }, + { + "start": 20216.12, + "end": 20216.12, + "probability": 0.1813 + }, + { + "start": 20216.12, + "end": 20216.12, + "probability": 0.0345 + }, + { + "start": 20216.12, + "end": 20219.04, + "probability": 0.63 + }, + { + "start": 20220.54, + "end": 20227.62, + "probability": 0.9702 + }, + { + "start": 20227.62, + "end": 20234.78, + "probability": 0.9733 + }, + { + "start": 20235.36, + "end": 20237.48, + "probability": 0.9588 + }, + { + "start": 20238.2, + "end": 20240.92, + "probability": 0.9326 + }, + { + "start": 20242.04, + "end": 20247.62, + "probability": 0.9956 + }, + { + "start": 20247.62, + "end": 20252.74, + "probability": 0.9968 + }, + { + "start": 20253.26, + "end": 20254.56, + "probability": 0.7295 + }, + { + "start": 20255.14, + "end": 20260.98, + "probability": 0.9968 + }, + { + "start": 20261.92, + "end": 20262.04, + "probability": 0.1559 + }, + { + "start": 20262.04, + "end": 20267.48, + "probability": 0.9363 + }, + { + "start": 20268.34, + "end": 20273.36, + "probability": 0.9926 + }, + { + "start": 20273.94, + "end": 20275.64, + "probability": 0.9907 + }, + { + "start": 20276.26, + "end": 20278.76, + "probability": 0.9164 + }, + { + "start": 20279.24, + "end": 20284.16, + "probability": 0.0167 + }, + { + "start": 20288.9, + "end": 20289.8, + "probability": 0.1826 + }, + { + "start": 20291.42, + "end": 20294.56, + "probability": 0.0173 + }, + { + "start": 20294.56, + "end": 20294.56, + "probability": 0.0166 + }, + { + "start": 20294.56, + "end": 20294.56, + "probability": 0.1122 + }, + { + "start": 20294.56, + "end": 20294.56, + "probability": 0.1489 + }, + { + "start": 20294.56, + "end": 20298.28, + "probability": 0.3171 + }, + { + "start": 20298.28, + "end": 20303.2, + "probability": 0.9764 + }, + { + "start": 20303.7, + "end": 20307.48, + "probability": 0.9957 + }, + { + "start": 20308.24, + "end": 20308.84, + "probability": 0.7639 + }, + { + "start": 20309.8, + "end": 20315.04, + "probability": 0.142 + }, + { + "start": 20315.04, + "end": 20315.04, + "probability": 0.6003 + }, + { + "start": 20315.04, + "end": 20317.4, + "probability": 0.2152 + }, + { + "start": 20318.68, + "end": 20319.3, + "probability": 0.2467 + }, + { + "start": 20323.0, + "end": 20325.76, + "probability": 0.0683 + }, + { + "start": 20325.87, + "end": 20325.96, + "probability": 0.0334 + }, + { + "start": 20326.0, + "end": 20326.12, + "probability": 0.0625 + }, + { + "start": 20326.12, + "end": 20326.69, + "probability": 0.4974 + }, + { + "start": 20327.1, + "end": 20329.29, + "probability": 0.8356 + }, + { + "start": 20330.2, + "end": 20332.02, + "probability": 0.5157 + }, + { + "start": 20332.52, + "end": 20334.7, + "probability": 0.8515 + }, + { + "start": 20334.76, + "end": 20336.34, + "probability": 0.8297 + }, + { + "start": 20336.88, + "end": 20337.54, + "probability": 0.4932 + }, + { + "start": 20337.64, + "end": 20337.86, + "probability": 0.5118 + }, + { + "start": 20337.92, + "end": 20339.48, + "probability": 0.9588 + }, + { + "start": 20340.62, + "end": 20341.26, + "probability": 0.925 + }, + { + "start": 20341.88, + "end": 20342.66, + "probability": 0.9932 + }, + { + "start": 20345.12, + "end": 20347.48, + "probability": 0.8632 + }, + { + "start": 20348.44, + "end": 20351.98, + "probability": 0.976 + }, + { + "start": 20351.98, + "end": 20356.24, + "probability": 0.9992 + }, + { + "start": 20356.42, + "end": 20357.46, + "probability": 0.8507 + }, + { + "start": 20357.76, + "end": 20359.76, + "probability": 0.8989 + }, + { + "start": 20360.4, + "end": 20362.34, + "probability": 0.8114 + }, + { + "start": 20362.96, + "end": 20363.8, + "probability": 0.107 + }, + { + "start": 20363.98, + "end": 20364.1, + "probability": 0.1529 + }, + { + "start": 20364.1, + "end": 20365.22, + "probability": 0.8089 + }, + { + "start": 20365.98, + "end": 20367.34, + "probability": 0.6484 + }, + { + "start": 20367.74, + "end": 20369.66, + "probability": 0.6079 + }, + { + "start": 20370.16, + "end": 20371.82, + "probability": 0.9453 + }, + { + "start": 20372.38, + "end": 20372.58, + "probability": 0.4824 + }, + { + "start": 20372.58, + "end": 20374.26, + "probability": 0.9312 + }, + { + "start": 20375.0, + "end": 20376.0, + "probability": 0.7169 + }, + { + "start": 20376.0, + "end": 20376.7, + "probability": 0.8086 + }, + { + "start": 20377.16, + "end": 20380.6, + "probability": 0.9932 + }, + { + "start": 20381.02, + "end": 20384.54, + "probability": 0.9922 + }, + { + "start": 20384.84, + "end": 20385.34, + "probability": 0.8015 + }, + { + "start": 20385.5, + "end": 20386.46, + "probability": 0.9295 + }, + { + "start": 20386.56, + "end": 20386.98, + "probability": 0.8569 + }, + { + "start": 20387.08, + "end": 20387.92, + "probability": 0.8891 + }, + { + "start": 20388.48, + "end": 20389.22, + "probability": 0.9052 + }, + { + "start": 20390.44, + "end": 20392.12, + "probability": 0.9019 + }, + { + "start": 20392.24, + "end": 20395.1, + "probability": 0.9669 + }, + { + "start": 20395.52, + "end": 20395.92, + "probability": 0.8082 + }, + { + "start": 20396.48, + "end": 20397.66, + "probability": 0.908 + }, + { + "start": 20398.66, + "end": 20401.18, + "probability": 0.9816 + }, + { + "start": 20401.34, + "end": 20403.22, + "probability": 0.905 + }, + { + "start": 20403.96, + "end": 20406.24, + "probability": 0.8352 + }, + { + "start": 20406.66, + "end": 20407.68, + "probability": 0.7839 + }, + { + "start": 20408.36, + "end": 20409.12, + "probability": 0.7149 + }, + { + "start": 20409.14, + "end": 20410.32, + "probability": 0.996 + }, + { + "start": 20410.4, + "end": 20410.68, + "probability": 0.647 + }, + { + "start": 20411.16, + "end": 20413.22, + "probability": 0.9663 + }, + { + "start": 20413.94, + "end": 20417.62, + "probability": 0.5495 + }, + { + "start": 20418.32, + "end": 20419.28, + "probability": 0.768 + }, + { + "start": 20425.43, + "end": 20427.0, + "probability": 0.0368 + }, + { + "start": 20427.72, + "end": 20428.98, + "probability": 0.4529 + }, + { + "start": 20429.02, + "end": 20429.5, + "probability": 0.7997 + }, + { + "start": 20430.36, + "end": 20431.62, + "probability": 0.7668 + }, + { + "start": 20431.66, + "end": 20437.02, + "probability": 0.9827 + }, + { + "start": 20437.6, + "end": 20438.7, + "probability": 0.9194 + }, + { + "start": 20439.18, + "end": 20443.26, + "probability": 0.9954 + }, + { + "start": 20443.28, + "end": 20444.5, + "probability": 0.9785 + }, + { + "start": 20446.1, + "end": 20448.84, + "probability": 0.9972 + }, + { + "start": 20448.98, + "end": 20450.85, + "probability": 0.835 + }, + { + "start": 20451.36, + "end": 20453.16, + "probability": 0.9367 + }, + { + "start": 20453.6, + "end": 20455.94, + "probability": 0.7557 + }, + { + "start": 20456.5, + "end": 20456.82, + "probability": 0.3045 + }, + { + "start": 20456.88, + "end": 20458.02, + "probability": 0.881 + }, + { + "start": 20458.08, + "end": 20459.32, + "probability": 0.7681 + }, + { + "start": 20459.62, + "end": 20463.14, + "probability": 0.8739 + }, + { + "start": 20463.36, + "end": 20464.2, + "probability": 0.6028 + }, + { + "start": 20464.62, + "end": 20467.92, + "probability": 0.9712 + }, + { + "start": 20468.88, + "end": 20473.96, + "probability": 0.9737 + }, + { + "start": 20474.94, + "end": 20479.42, + "probability": 0.9966 + }, + { + "start": 20479.78, + "end": 20480.56, + "probability": 0.6578 + }, + { + "start": 20480.92, + "end": 20481.88, + "probability": 0.6754 + }, + { + "start": 20482.46, + "end": 20484.78, + "probability": 0.9248 + }, + { + "start": 20485.1, + "end": 20486.52, + "probability": 0.9695 + }, + { + "start": 20486.8, + "end": 20488.42, + "probability": 0.7819 + }, + { + "start": 20488.76, + "end": 20492.2, + "probability": 0.9609 + }, + { + "start": 20492.2, + "end": 20494.24, + "probability": 0.9974 + }, + { + "start": 20494.86, + "end": 20498.5, + "probability": 0.8185 + }, + { + "start": 20498.54, + "end": 20498.98, + "probability": 0.7064 + }, + { + "start": 20499.5, + "end": 20503.3, + "probability": 0.9404 + }, + { + "start": 20503.4, + "end": 20504.14, + "probability": 0.0725 + }, + { + "start": 20504.58, + "end": 20507.86, + "probability": 0.5266 + }, + { + "start": 20507.86, + "end": 20509.46, + "probability": 0.3336 + }, + { + "start": 20509.6, + "end": 20510.66, + "probability": 0.4917 + }, + { + "start": 20512.38, + "end": 20514.06, + "probability": 0.593 + }, + { + "start": 20514.1, + "end": 20514.76, + "probability": 0.8583 + }, + { + "start": 20514.96, + "end": 20515.82, + "probability": 0.7607 + }, + { + "start": 20523.26, + "end": 20523.58, + "probability": 0.4567 + }, + { + "start": 20524.84, + "end": 20525.26, + "probability": 0.1818 + }, + { + "start": 20526.95, + "end": 20531.06, + "probability": 0.0712 + }, + { + "start": 20531.06, + "end": 20532.26, + "probability": 0.0364 + }, + { + "start": 20532.86, + "end": 20537.52, + "probability": 0.0418 + }, + { + "start": 20537.52, + "end": 20538.4, + "probability": 0.2231 + }, + { + "start": 20539.4, + "end": 20539.4, + "probability": 0.1021 + }, + { + "start": 20539.4, + "end": 20539.4, + "probability": 0.0793 + }, + { + "start": 20539.4, + "end": 20541.08, + "probability": 0.6479 + }, + { + "start": 20541.5, + "end": 20545.9, + "probability": 0.687 + }, + { + "start": 20546.08, + "end": 20550.22, + "probability": 0.8098 + }, + { + "start": 20550.26, + "end": 20551.54, + "probability": 0.9219 + }, + { + "start": 20551.9, + "end": 20554.96, + "probability": 0.9874 + }, + { + "start": 20554.98, + "end": 20555.14, + "probability": 0.9143 + }, + { + "start": 20560.22, + "end": 20560.96, + "probability": 0.7027 + }, + { + "start": 20562.48, + "end": 20565.78, + "probability": 0.6492 + }, + { + "start": 20566.92, + "end": 20567.48, + "probability": 0.5514 + }, + { + "start": 20568.2, + "end": 20569.16, + "probability": 0.9125 + }, + { + "start": 20569.18, + "end": 20570.24, + "probability": 0.9482 + }, + { + "start": 20570.26, + "end": 20570.54, + "probability": 0.9394 + }, + { + "start": 20570.6, + "end": 20571.74, + "probability": 0.8922 + }, + { + "start": 20572.32, + "end": 20572.8, + "probability": 0.5684 + }, + { + "start": 20573.82, + "end": 20575.22, + "probability": 0.9377 + }, + { + "start": 20575.3, + "end": 20576.38, + "probability": 0.4181 + }, + { + "start": 20576.7, + "end": 20578.36, + "probability": 0.7179 + }, + { + "start": 20582.08, + "end": 20586.38, + "probability": 0.2825 + }, + { + "start": 20586.42, + "end": 20587.42, + "probability": 0.7497 + }, + { + "start": 20587.52, + "end": 20588.52, + "probability": 0.528 + }, + { + "start": 20588.68, + "end": 20589.06, + "probability": 0.4705 + }, + { + "start": 20589.14, + "end": 20589.98, + "probability": 0.8638 + }, + { + "start": 20590.04, + "end": 20593.42, + "probability": 0.7004 + }, + { + "start": 20593.6, + "end": 20594.58, + "probability": 0.9691 + }, + { + "start": 20595.81, + "end": 20597.74, + "probability": 0.9603 + }, + { + "start": 20599.44, + "end": 20605.12, + "probability": 0.963 + }, + { + "start": 20606.4, + "end": 20608.16, + "probability": 0.7717 + }, + { + "start": 20609.2, + "end": 20611.86, + "probability": 0.9211 + }, + { + "start": 20612.88, + "end": 20614.66, + "probability": 0.9714 + }, + { + "start": 20615.3, + "end": 20618.96, + "probability": 0.9171 + }, + { + "start": 20618.96, + "end": 20621.9, + "probability": 0.9966 + }, + { + "start": 20622.92, + "end": 20627.22, + "probability": 0.981 + }, + { + "start": 20628.06, + "end": 20634.64, + "probability": 0.9972 + }, + { + "start": 20634.64, + "end": 20639.62, + "probability": 0.9482 + }, + { + "start": 20640.2, + "end": 20642.14, + "probability": 0.9834 + }, + { + "start": 20642.72, + "end": 20643.92, + "probability": 0.955 + }, + { + "start": 20644.68, + "end": 20650.12, + "probability": 0.9966 + }, + { + "start": 20650.12, + "end": 20655.96, + "probability": 0.9958 + }, + { + "start": 20655.96, + "end": 20660.56, + "probability": 0.9998 + }, + { + "start": 20661.08, + "end": 20662.94, + "probability": 0.6703 + }, + { + "start": 20663.82, + "end": 20666.2, + "probability": 0.9987 + }, + { + "start": 20666.2, + "end": 20669.9, + "probability": 0.9865 + }, + { + "start": 20670.88, + "end": 20671.92, + "probability": 0.7741 + }, + { + "start": 20673.34, + "end": 20674.4, + "probability": 0.9326 + }, + { + "start": 20675.08, + "end": 20678.36, + "probability": 0.9868 + }, + { + "start": 20678.88, + "end": 20680.52, + "probability": 0.9909 + }, + { + "start": 20681.0, + "end": 20683.2, + "probability": 0.9935 + }, + { + "start": 20683.8, + "end": 20685.72, + "probability": 0.9971 + }, + { + "start": 20686.26, + "end": 20690.98, + "probability": 0.9966 + }, + { + "start": 20691.66, + "end": 20696.18, + "probability": 0.9984 + }, + { + "start": 20696.84, + "end": 20701.16, + "probability": 0.9988 + }, + { + "start": 20701.38, + "end": 20705.16, + "probability": 0.9729 + }, + { + "start": 20705.64, + "end": 20709.02, + "probability": 0.9782 + }, + { + "start": 20709.62, + "end": 20714.34, + "probability": 0.9961 + }, + { + "start": 20715.36, + "end": 20720.94, + "probability": 0.9985 + }, + { + "start": 20720.94, + "end": 20726.22, + "probability": 0.9985 + }, + { + "start": 20726.98, + "end": 20729.02, + "probability": 0.729 + }, + { + "start": 20729.6, + "end": 20730.28, + "probability": 0.8273 + }, + { + "start": 20730.42, + "end": 20731.4, + "probability": 0.8792 + }, + { + "start": 20731.86, + "end": 20735.34, + "probability": 0.9326 + }, + { + "start": 20736.2, + "end": 20741.88, + "probability": 0.9266 + }, + { + "start": 20742.28, + "end": 20744.26, + "probability": 0.9979 + }, + { + "start": 20744.92, + "end": 20745.7, + "probability": 0.629 + }, + { + "start": 20745.88, + "end": 20750.7, + "probability": 0.888 + }, + { + "start": 20751.06, + "end": 20755.1, + "probability": 0.9871 + }, + { + "start": 20755.1, + "end": 20760.38, + "probability": 0.9941 + }, + { + "start": 20760.78, + "end": 20761.96, + "probability": 0.7242 + }, + { + "start": 20762.72, + "end": 20766.74, + "probability": 0.9875 + }, + { + "start": 20767.46, + "end": 20768.46, + "probability": 0.8737 + }, + { + "start": 20769.16, + "end": 20770.04, + "probability": 0.9891 + }, + { + "start": 20770.26, + "end": 20771.4, + "probability": 0.7586 + }, + { + "start": 20771.84, + "end": 20774.86, + "probability": 0.9985 + }, + { + "start": 20776.74, + "end": 20779.24, + "probability": 0.9984 + }, + { + "start": 20779.26, + "end": 20779.52, + "probability": 0.5862 + }, + { + "start": 20780.56, + "end": 20782.14, + "probability": 0.6684 + }, + { + "start": 20782.22, + "end": 20785.72, + "probability": 0.929 + }, + { + "start": 20793.62, + "end": 20795.74, + "probability": 0.8208 + }, + { + "start": 20801.5, + "end": 20802.5, + "probability": 0.6353 + }, + { + "start": 20803.4, + "end": 20804.68, + "probability": 0.7786 + }, + { + "start": 20805.82, + "end": 20807.3, + "probability": 0.9073 + }, + { + "start": 20807.66, + "end": 20809.59, + "probability": 0.9442 + }, + { + "start": 20811.4, + "end": 20818.8, + "probability": 0.9705 + }, + { + "start": 20819.5, + "end": 20824.3, + "probability": 0.7887 + }, + { + "start": 20825.14, + "end": 20826.86, + "probability": 0.7999 + }, + { + "start": 20827.74, + "end": 20829.88, + "probability": 0.9908 + }, + { + "start": 20831.26, + "end": 20834.22, + "probability": 0.9336 + }, + { + "start": 20835.08, + "end": 20836.44, + "probability": 0.9976 + }, + { + "start": 20838.04, + "end": 20839.52, + "probability": 0.7141 + }, + { + "start": 20840.2, + "end": 20840.56, + "probability": 0.7141 + }, + { + "start": 20841.1, + "end": 20847.38, + "probability": 0.8875 + }, + { + "start": 20847.94, + "end": 20850.32, + "probability": 0.9941 + }, + { + "start": 20850.86, + "end": 20851.24, + "probability": 0.9259 + }, + { + "start": 20851.8, + "end": 20854.6, + "probability": 0.9512 + }, + { + "start": 20855.24, + "end": 20856.7, + "probability": 0.8623 + }, + { + "start": 20857.3, + "end": 20858.4, + "probability": 0.632 + }, + { + "start": 20860.18, + "end": 20863.96, + "probability": 0.9901 + }, + { + "start": 20864.5, + "end": 20865.58, + "probability": 0.9087 + }, + { + "start": 20865.76, + "end": 20866.4, + "probability": 0.8511 + }, + { + "start": 20866.44, + "end": 20867.34, + "probability": 0.928 + }, + { + "start": 20867.76, + "end": 20870.2, + "probability": 0.6596 + }, + { + "start": 20870.53, + "end": 20873.62, + "probability": 0.767 + }, + { + "start": 20874.2, + "end": 20876.34, + "probability": 0.9824 + }, + { + "start": 20876.5, + "end": 20876.76, + "probability": 0.4571 + }, + { + "start": 20877.6, + "end": 20880.14, + "probability": 0.9962 + }, + { + "start": 20881.8, + "end": 20883.08, + "probability": 0.2657 + }, + { + "start": 20883.58, + "end": 20886.36, + "probability": 0.5624 + }, + { + "start": 20886.56, + "end": 20890.1, + "probability": 0.9727 + }, + { + "start": 20890.1, + "end": 20893.22, + "probability": 0.9945 + }, + { + "start": 20894.12, + "end": 20897.18, + "probability": 0.7804 + }, + { + "start": 20897.74, + "end": 20899.22, + "probability": 0.655 + }, + { + "start": 20899.64, + "end": 20902.98, + "probability": 0.9419 + }, + { + "start": 20903.34, + "end": 20907.68, + "probability": 0.9834 + }, + { + "start": 20907.96, + "end": 20909.7, + "probability": 0.5557 + }, + { + "start": 20910.34, + "end": 20913.5, + "probability": 0.9854 + }, + { + "start": 20915.72, + "end": 20917.14, + "probability": 0.9662 + }, + { + "start": 20917.58, + "end": 20918.48, + "probability": 0.7944 + }, + { + "start": 20918.92, + "end": 20922.18, + "probability": 0.9696 + }, + { + "start": 20922.7, + "end": 20924.94, + "probability": 0.8879 + }, + { + "start": 20926.02, + "end": 20928.62, + "probability": 0.9774 + }, + { + "start": 20929.68, + "end": 20933.22, + "probability": 0.9308 + }, + { + "start": 20933.44, + "end": 20937.66, + "probability": 0.98 + }, + { + "start": 20941.04, + "end": 20941.5, + "probability": 0.7063 + }, + { + "start": 20941.66, + "end": 20942.16, + "probability": 0.7439 + }, + { + "start": 20942.26, + "end": 20945.08, + "probability": 0.9907 + }, + { + "start": 20945.32, + "end": 20948.4, + "probability": 0.8132 + }, + { + "start": 20949.2, + "end": 20952.18, + "probability": 0.7757 + }, + { + "start": 20952.82, + "end": 20956.06, + "probability": 0.6911 + }, + { + "start": 20958.08, + "end": 20961.0, + "probability": 0.9256 + }, + { + "start": 20961.02, + "end": 20964.52, + "probability": 0.5425 + }, + { + "start": 20964.78, + "end": 20968.48, + "probability": 0.882 + }, + { + "start": 20969.42, + "end": 20973.82, + "probability": 0.9541 + }, + { + "start": 20975.08, + "end": 20978.82, + "probability": 0.9932 + }, + { + "start": 20981.08, + "end": 20987.28, + "probability": 0.9422 + }, + { + "start": 20987.86, + "end": 20989.04, + "probability": 0.7205 + }, + { + "start": 20989.92, + "end": 20991.94, + "probability": 0.9922 + }, + { + "start": 20991.94, + "end": 20996.6, + "probability": 0.9833 + }, + { + "start": 20997.36, + "end": 20999.2, + "probability": 0.8886 + }, + { + "start": 21000.12, + "end": 21005.36, + "probability": 0.8833 + }, + { + "start": 21006.36, + "end": 21009.58, + "probability": 0.9952 + }, + { + "start": 21010.04, + "end": 21012.68, + "probability": 0.6933 + }, + { + "start": 21013.14, + "end": 21014.26, + "probability": 0.9561 + }, + { + "start": 21014.64, + "end": 21016.76, + "probability": 0.9984 + }, + { + "start": 21017.48, + "end": 21019.32, + "probability": 0.728 + }, + { + "start": 21022.44, + "end": 21024.06, + "probability": 0.9338 + }, + { + "start": 21024.18, + "end": 21025.32, + "probability": 0.9552 + }, + { + "start": 21025.48, + "end": 21026.2, + "probability": 0.865 + }, + { + "start": 21026.66, + "end": 21032.96, + "probability": 0.9806 + }, + { + "start": 21033.08, + "end": 21034.28, + "probability": 0.8092 + }, + { + "start": 21034.78, + "end": 21035.38, + "probability": 0.4832 + }, + { + "start": 21035.8, + "end": 21038.38, + "probability": 0.9243 + }, + { + "start": 21038.9, + "end": 21043.42, + "probability": 0.8903 + }, + { + "start": 21045.42, + "end": 21049.94, + "probability": 0.9563 + }, + { + "start": 21049.94, + "end": 21054.3, + "probability": 0.8993 + }, + { + "start": 21054.78, + "end": 21055.97, + "probability": 0.9741 + }, + { + "start": 21056.4, + "end": 21057.72, + "probability": 0.8969 + }, + { + "start": 21058.12, + "end": 21060.46, + "probability": 0.9867 + }, + { + "start": 21060.88, + "end": 21063.2, + "probability": 0.9246 + }, + { + "start": 21063.74, + "end": 21066.3, + "probability": 0.8638 + }, + { + "start": 21067.14, + "end": 21070.32, + "probability": 0.8601 + }, + { + "start": 21070.32, + "end": 21074.3, + "probability": 0.9978 + }, + { + "start": 21074.78, + "end": 21077.56, + "probability": 0.8142 + }, + { + "start": 21078.6, + "end": 21081.54, + "probability": 0.9248 + }, + { + "start": 21082.18, + "end": 21083.34, + "probability": 0.9032 + }, + { + "start": 21084.28, + "end": 21085.48, + "probability": 0.7145 + }, + { + "start": 21086.68, + "end": 21090.0, + "probability": 0.9829 + }, + { + "start": 21090.54, + "end": 21091.86, + "probability": 0.9578 + }, + { + "start": 21092.34, + "end": 21092.58, + "probability": 0.8003 + }, + { + "start": 21092.98, + "end": 21093.24, + "probability": 0.8126 + }, + { + "start": 21094.36, + "end": 21095.88, + "probability": 0.7926 + }, + { + "start": 21096.26, + "end": 21096.84, + "probability": 0.7001 + }, + { + "start": 21096.98, + "end": 21097.64, + "probability": 0.9351 + }, + { + "start": 21107.0, + "end": 21108.08, + "probability": 0.6749 + }, + { + "start": 21108.22, + "end": 21109.6, + "probability": 0.6881 + }, + { + "start": 21109.82, + "end": 21112.44, + "probability": 0.7988 + }, + { + "start": 21113.06, + "end": 21117.22, + "probability": 0.8481 + }, + { + "start": 21118.14, + "end": 21121.94, + "probability": 0.9899 + }, + { + "start": 21122.04, + "end": 21122.87, + "probability": 0.7482 + }, + { + "start": 21123.72, + "end": 21129.8, + "probability": 0.994 + }, + { + "start": 21130.2, + "end": 21133.74, + "probability": 0.9951 + }, + { + "start": 21133.92, + "end": 21138.02, + "probability": 0.9791 + }, + { + "start": 21138.54, + "end": 21139.6, + "probability": 0.8574 + }, + { + "start": 21139.68, + "end": 21140.41, + "probability": 0.4523 + }, + { + "start": 21141.12, + "end": 21142.64, + "probability": 0.9758 + }, + { + "start": 21142.72, + "end": 21143.2, + "probability": 0.6277 + }, + { + "start": 21143.5, + "end": 21145.98, + "probability": 0.9731 + }, + { + "start": 21147.06, + "end": 21153.22, + "probability": 0.9696 + }, + { + "start": 21153.22, + "end": 21157.94, + "probability": 0.9952 + }, + { + "start": 21158.06, + "end": 21159.74, + "probability": 0.876 + }, + { + "start": 21160.42, + "end": 21163.6, + "probability": 0.9507 + }, + { + "start": 21163.6, + "end": 21166.56, + "probability": 0.9981 + }, + { + "start": 21167.58, + "end": 21168.08, + "probability": 0.5787 + }, + { + "start": 21168.2, + "end": 21170.4, + "probability": 0.9821 + }, + { + "start": 21170.4, + "end": 21174.48, + "probability": 0.9995 + }, + { + "start": 21175.08, + "end": 21176.64, + "probability": 0.8252 + }, + { + "start": 21176.74, + "end": 21181.0, + "probability": 0.9813 + }, + { + "start": 21181.0, + "end": 21185.04, + "probability": 0.9957 + }, + { + "start": 21185.86, + "end": 21187.94, + "probability": 0.7572 + }, + { + "start": 21188.6, + "end": 21189.72, + "probability": 0.9922 + }, + { + "start": 21190.4, + "end": 21191.3, + "probability": 0.9852 + }, + { + "start": 21192.12, + "end": 21193.12, + "probability": 0.7922 + }, + { + "start": 21194.34, + "end": 21196.24, + "probability": 0.9911 + }, + { + "start": 21196.82, + "end": 21198.16, + "probability": 0.8184 + }, + { + "start": 21198.92, + "end": 21200.3, + "probability": 0.9502 + }, + { + "start": 21201.18, + "end": 21201.8, + "probability": 0.9143 + }, + { + "start": 21202.44, + "end": 21202.98, + "probability": 0.8236 + }, + { + "start": 21203.44, + "end": 21205.48, + "probability": 0.7106 + }, + { + "start": 21206.02, + "end": 21210.76, + "probability": 0.9027 + }, + { + "start": 21212.08, + "end": 21213.62, + "probability": 0.975 + }, + { + "start": 21213.72, + "end": 21216.18, + "probability": 0.999 + }, + { + "start": 21216.18, + "end": 21219.74, + "probability": 0.8643 + }, + { + "start": 21220.26, + "end": 21221.5, + "probability": 0.9365 + }, + { + "start": 21222.36, + "end": 21224.18, + "probability": 0.9968 + }, + { + "start": 21225.18, + "end": 21227.36, + "probability": 0.9526 + }, + { + "start": 21227.38, + "end": 21229.3, + "probability": 0.9555 + }, + { + "start": 21229.84, + "end": 21230.18, + "probability": 0.8256 + }, + { + "start": 21232.58, + "end": 21235.28, + "probability": 0.969 + }, + { + "start": 21235.8, + "end": 21237.12, + "probability": 0.5963 + }, + { + "start": 21237.84, + "end": 21240.66, + "probability": 0.8374 + }, + { + "start": 21241.02, + "end": 21242.44, + "probability": 0.96 + }, + { + "start": 21242.94, + "end": 21244.46, + "probability": 0.3325 + }, + { + "start": 21246.86, + "end": 21249.38, + "probability": 0.7281 + }, + { + "start": 21250.18, + "end": 21250.8, + "probability": 0.8459 + }, + { + "start": 21251.98, + "end": 21253.12, + "probability": 0.7626 + }, + { + "start": 21254.22, + "end": 21254.78, + "probability": 0.9536 + }, + { + "start": 21255.52, + "end": 21256.7, + "probability": 0.7194 + }, + { + "start": 21257.7, + "end": 21257.94, + "probability": 0.9844 + }, + { + "start": 21258.68, + "end": 21259.56, + "probability": 0.9167 + }, + { + "start": 21260.32, + "end": 21262.06, + "probability": 0.9543 + }, + { + "start": 21263.14, + "end": 21265.38, + "probability": 0.6814 + }, + { + "start": 21269.28, + "end": 21269.7, + "probability": 0.6094 + }, + { + "start": 21272.26, + "end": 21273.1, + "probability": 0.4798 + }, + { + "start": 21274.48, + "end": 21275.12, + "probability": 0.8256 + }, + { + "start": 21275.78, + "end": 21276.66, + "probability": 0.8007 + }, + { + "start": 21277.36, + "end": 21279.48, + "probability": 0.9562 + }, + { + "start": 21280.48, + "end": 21280.88, + "probability": 0.979 + }, + { + "start": 21281.54, + "end": 21282.38, + "probability": 0.9838 + }, + { + "start": 21283.36, + "end": 21285.14, + "probability": 0.9855 + }, + { + "start": 21285.66, + "end": 21287.82, + "probability": 0.983 + }, + { + "start": 21288.78, + "end": 21289.2, + "probability": 0.973 + }, + { + "start": 21290.06, + "end": 21292.34, + "probability": 0.9939 + }, + { + "start": 21292.92, + "end": 21293.64, + "probability": 0.9229 + }, + { + "start": 21299.04, + "end": 21300.36, + "probability": 0.4135 + }, + { + "start": 21304.58, + "end": 21305.46, + "probability": 0.5323 + }, + { + "start": 21306.32, + "end": 21306.68, + "probability": 0.7216 + }, + { + "start": 21307.66, + "end": 21308.56, + "probability": 0.7379 + }, + { + "start": 21309.34, + "end": 21311.3, + "probability": 0.863 + }, + { + "start": 21312.18, + "end": 21313.02, + "probability": 0.9717 + }, + { + "start": 21313.72, + "end": 21314.64, + "probability": 0.8873 + }, + { + "start": 21315.5, + "end": 21315.98, + "probability": 0.9881 + }, + { + "start": 21316.64, + "end": 21317.42, + "probability": 0.978 + }, + { + "start": 21319.02, + "end": 21319.46, + "probability": 0.9818 + }, + { + "start": 21320.4, + "end": 21321.12, + "probability": 0.9866 + }, + { + "start": 21321.98, + "end": 21322.42, + "probability": 0.9832 + }, + { + "start": 21323.2, + "end": 21324.3, + "probability": 0.9894 + }, + { + "start": 21324.98, + "end": 21325.38, + "probability": 0.9565 + }, + { + "start": 21326.16, + "end": 21327.06, + "probability": 0.9832 + }, + { + "start": 21328.08, + "end": 21328.9, + "probability": 0.803 + }, + { + "start": 21329.66, + "end": 21330.42, + "probability": 0.6491 + }, + { + "start": 21331.08, + "end": 21333.26, + "probability": 0.7761 + }, + { + "start": 21334.14, + "end": 21334.52, + "probability": 0.979 + }, + { + "start": 21336.44, + "end": 21337.16, + "probability": 0.8726 + }, + { + "start": 21338.08, + "end": 21338.46, + "probability": 0.8142 + }, + { + "start": 21339.48, + "end": 21340.28, + "probability": 0.8828 + }, + { + "start": 21342.92, + "end": 21349.14, + "probability": 0.92 + }, + { + "start": 21349.84, + "end": 21351.24, + "probability": 0.8357 + }, + { + "start": 21352.36, + "end": 21353.36, + "probability": 0.9022 + }, + { + "start": 21353.9, + "end": 21355.58, + "probability": 0.9751 + }, + { + "start": 21357.74, + "end": 21358.37, + "probability": 0.5211 + }, + { + "start": 21359.28, + "end": 21359.68, + "probability": 0.9373 + }, + { + "start": 21360.48, + "end": 21361.42, + "probability": 0.6008 + }, + { + "start": 21362.5, + "end": 21363.26, + "probability": 0.8374 + }, + { + "start": 21364.42, + "end": 21365.16, + "probability": 0.8433 + }, + { + "start": 21367.14, + "end": 21367.86, + "probability": 0.9592 + }, + { + "start": 21368.88, + "end": 21369.68, + "probability": 0.9303 + }, + { + "start": 21370.98, + "end": 21371.4, + "probability": 0.9861 + }, + { + "start": 21372.5, + "end": 21373.36, + "probability": 0.8996 + }, + { + "start": 21374.0, + "end": 21374.48, + "probability": 0.9593 + }, + { + "start": 21375.16, + "end": 21376.0, + "probability": 0.9513 + }, + { + "start": 21376.76, + "end": 21377.16, + "probability": 0.9746 + }, + { + "start": 21377.94, + "end": 21379.28, + "probability": 0.7865 + }, + { + "start": 21380.96, + "end": 21381.36, + "probability": 0.9919 + }, + { + "start": 21382.38, + "end": 21383.08, + "probability": 0.9704 + }, + { + "start": 21386.48, + "end": 21387.14, + "probability": 0.1924 + }, + { + "start": 21388.5, + "end": 21391.24, + "probability": 0.4859 + }, + { + "start": 21392.86, + "end": 21393.62, + "probability": 0.7092 + }, + { + "start": 21394.56, + "end": 21394.96, + "probability": 0.7479 + }, + { + "start": 21395.7, + "end": 21396.56, + "probability": 0.7178 + }, + { + "start": 21401.02, + "end": 21401.42, + "probability": 0.7932 + }, + { + "start": 21403.36, + "end": 21404.06, + "probability": 0.347 + }, + { + "start": 21405.5, + "end": 21405.84, + "probability": 0.9219 + }, + { + "start": 21406.6, + "end": 21407.62, + "probability": 0.8066 + }, + { + "start": 21408.6, + "end": 21411.26, + "probability": 0.8372 + }, + { + "start": 21413.56, + "end": 21416.38, + "probability": 0.7607 + }, + { + "start": 21418.0, + "end": 21419.22, + "probability": 0.7792 + }, + { + "start": 21419.8, + "end": 21420.22, + "probability": 0.8933 + }, + { + "start": 21421.0, + "end": 21422.26, + "probability": 0.7285 + }, + { + "start": 21423.78, + "end": 21425.94, + "probability": 0.6937 + }, + { + "start": 21427.06, + "end": 21427.76, + "probability": 0.9057 + }, + { + "start": 21428.56, + "end": 21429.6, + "probability": 0.8087 + }, + { + "start": 21430.3, + "end": 21430.74, + "probability": 0.9907 + }, + { + "start": 21431.84, + "end": 21432.64, + "probability": 0.8042 + }, + { + "start": 21433.3, + "end": 21433.8, + "probability": 0.9948 + }, + { + "start": 21434.68, + "end": 21435.5, + "probability": 0.9832 + }, + { + "start": 21436.84, + "end": 21437.22, + "probability": 0.9906 + }, + { + "start": 21438.46, + "end": 21439.3, + "probability": 0.9634 + }, + { + "start": 21440.88, + "end": 21441.34, + "probability": 0.7078 + }, + { + "start": 21442.42, + "end": 21443.72, + "probability": 0.5814 + }, + { + "start": 21444.44, + "end": 21444.84, + "probability": 0.8831 + }, + { + "start": 21445.86, + "end": 21447.08, + "probability": 0.8784 + }, + { + "start": 21447.82, + "end": 21448.34, + "probability": 0.9761 + }, + { + "start": 21449.62, + "end": 21450.32, + "probability": 0.9521 + }, + { + "start": 21451.2, + "end": 21452.28, + "probability": 0.9768 + }, + { + "start": 21453.12, + "end": 21453.98, + "probability": 0.9869 + }, + { + "start": 21454.86, + "end": 21455.28, + "probability": 0.9897 + }, + { + "start": 21456.2, + "end": 21457.48, + "probability": 0.9667 + }, + { + "start": 21458.36, + "end": 21459.04, + "probability": 0.9715 + }, + { + "start": 21459.74, + "end": 21460.62, + "probability": 0.8963 + }, + { + "start": 21461.92, + "end": 21462.4, + "probability": 0.9915 + }, + { + "start": 21463.5, + "end": 21464.18, + "probability": 0.9637 + }, + { + "start": 21465.82, + "end": 21466.52, + "probability": 0.9853 + }, + { + "start": 21467.26, + "end": 21467.92, + "probability": 0.9931 + }, + { + "start": 21468.94, + "end": 21469.64, + "probability": 0.5907 + }, + { + "start": 21470.28, + "end": 21470.86, + "probability": 0.7267 + }, + { + "start": 21471.66, + "end": 21471.94, + "probability": 0.5729 + }, + { + "start": 21473.34, + "end": 21474.06, + "probability": 0.8925 + }, + { + "start": 21475.1, + "end": 21475.5, + "probability": 0.9683 + }, + { + "start": 21476.92, + "end": 21478.28, + "probability": 0.7405 + }, + { + "start": 21478.9, + "end": 21479.42, + "probability": 0.9884 + }, + { + "start": 21480.4, + "end": 21481.28, + "probability": 0.7765 + }, + { + "start": 21484.06, + "end": 21485.7, + "probability": 0.9484 + }, + { + "start": 21487.22, + "end": 21489.2, + "probability": 0.9555 + }, + { + "start": 21490.88, + "end": 21491.3, + "probability": 0.9241 + }, + { + "start": 21492.1, + "end": 21492.9, + "probability": 0.935 + }, + { + "start": 21494.06, + "end": 21496.34, + "probability": 0.8751 + }, + { + "start": 21497.8, + "end": 21499.96, + "probability": 0.2704 + }, + { + "start": 21501.1, + "end": 21502.1, + "probability": 0.6308 + }, + { + "start": 21503.24, + "end": 21503.74, + "probability": 0.6746 + }, + { + "start": 21505.3, + "end": 21506.18, + "probability": 0.868 + }, + { + "start": 21507.58, + "end": 21507.98, + "probability": 0.9347 + }, + { + "start": 21509.12, + "end": 21509.9, + "probability": 0.9382 + }, + { + "start": 21510.68, + "end": 21512.98, + "probability": 0.9779 + }, + { + "start": 21514.16, + "end": 21514.66, + "probability": 0.9784 + }, + { + "start": 21516.62, + "end": 21520.08, + "probability": 0.8008 + }, + { + "start": 21521.16, + "end": 21522.9, + "probability": 0.9863 + }, + { + "start": 21523.78, + "end": 21525.0, + "probability": 0.8871 + }, + { + "start": 21526.04, + "end": 21526.46, + "probability": 0.9839 + }, + { + "start": 21527.6, + "end": 21528.52, + "probability": 0.6341 + }, + { + "start": 21530.1, + "end": 21535.66, + "probability": 0.4167 + }, + { + "start": 21536.38, + "end": 21536.7, + "probability": 0.8748 + }, + { + "start": 21537.42, + "end": 21539.98, + "probability": 0.8132 + }, + { + "start": 21541.46, + "end": 21541.86, + "probability": 0.7267 + }, + { + "start": 21543.16, + "end": 21543.96, + "probability": 0.8989 + }, + { + "start": 21545.42, + "end": 21545.84, + "probability": 0.9756 + }, + { + "start": 21546.82, + "end": 21547.68, + "probability": 0.8969 + }, + { + "start": 21548.82, + "end": 21551.24, + "probability": 0.7508 + }, + { + "start": 21552.46, + "end": 21552.94, + "probability": 0.9823 + }, + { + "start": 21554.76, + "end": 21555.76, + "probability": 0.957 + }, + { + "start": 21556.96, + "end": 21557.6, + "probability": 0.9749 + }, + { + "start": 21558.68, + "end": 21559.7, + "probability": 0.547 + }, + { + "start": 21564.16, + "end": 21568.88, + "probability": 0.7495 + }, + { + "start": 21581.78, + "end": 21582.77, + "probability": 0.662 + }, + { + "start": 21583.76, + "end": 21584.18, + "probability": 0.8657 + }, + { + "start": 21586.02, + "end": 21586.92, + "probability": 0.6591 + }, + { + "start": 21588.26, + "end": 21588.72, + "probability": 0.9814 + }, + { + "start": 21589.86, + "end": 21590.8, + "probability": 0.8849 + }, + { + "start": 21591.36, + "end": 21592.04, + "probability": 0.9708 + }, + { + "start": 21592.62, + "end": 21593.38, + "probability": 0.6525 + }, + { + "start": 21594.68, + "end": 21595.12, + "probability": 0.9863 + }, + { + "start": 21596.92, + "end": 21597.78, + "probability": 0.9042 + }, + { + "start": 21599.84, + "end": 21600.34, + "probability": 0.9782 + }, + { + "start": 21601.66, + "end": 21602.76, + "probability": 0.4984 + }, + { + "start": 21604.58, + "end": 21605.04, + "probability": 0.9891 + }, + { + "start": 21606.5, + "end": 21607.42, + "probability": 0.8175 + }, + { + "start": 21609.96, + "end": 21610.98, + "probability": 0.4908 + }, + { + "start": 21613.48, + "end": 21616.26, + "probability": 0.7412 + }, + { + "start": 21617.56, + "end": 21619.64, + "probability": 0.9531 + }, + { + "start": 21621.78, + "end": 21622.22, + "probability": 0.9652 + }, + { + "start": 21623.34, + "end": 21624.02, + "probability": 0.4757 + }, + { + "start": 21624.78, + "end": 21625.62, + "probability": 0.986 + }, + { + "start": 21626.9, + "end": 21627.88, + "probability": 0.9539 + }, + { + "start": 21628.66, + "end": 21629.36, + "probability": 0.8912 + }, + { + "start": 21630.02, + "end": 21631.48, + "probability": 0.9442 + }, + { + "start": 21632.66, + "end": 21636.62, + "probability": 0.4971 + }, + { + "start": 21639.36, + "end": 21639.76, + "probability": 0.7432 + }, + { + "start": 21640.8, + "end": 21641.9, + "probability": 0.8254 + }, + { + "start": 21643.06, + "end": 21643.44, + "probability": 0.889 + }, + { + "start": 21644.3, + "end": 21645.22, + "probability": 0.8623 + }, + { + "start": 21646.88, + "end": 21647.34, + "probability": 0.9642 + }, + { + "start": 21648.36, + "end": 21649.34, + "probability": 0.872 + }, + { + "start": 21650.58, + "end": 21651.0, + "probability": 0.9565 + }, + { + "start": 21651.8, + "end": 21652.68, + "probability": 0.8865 + }, + { + "start": 21655.44, + "end": 21656.42, + "probability": 0.4917 + }, + { + "start": 21657.66, + "end": 21658.4, + "probability": 0.5872 + }, + { + "start": 21664.06, + "end": 21664.52, + "probability": 0.7456 + }, + { + "start": 21666.3, + "end": 21667.2, + "probability": 0.7191 + }, + { + "start": 21667.98, + "end": 21668.38, + "probability": 0.9568 + }, + { + "start": 21669.52, + "end": 21670.22, + "probability": 0.8062 + }, + { + "start": 21674.08, + "end": 21677.52, + "probability": 0.8776 + }, + { + "start": 21680.7, + "end": 21681.22, + "probability": 0.9714 + }, + { + "start": 21682.68, + "end": 21683.64, + "probability": 0.9084 + }, + { + "start": 21685.66, + "end": 21687.06, + "probability": 0.7489 + }, + { + "start": 21687.6, + "end": 21688.76, + "probability": 0.8929 + }, + { + "start": 21689.64, + "end": 21690.02, + "probability": 0.887 + }, + { + "start": 21691.22, + "end": 21692.52, + "probability": 0.915 + }, + { + "start": 21694.58, + "end": 21696.86, + "probability": 0.9597 + }, + { + "start": 21698.34, + "end": 21698.78, + "probability": 0.9946 + }, + { + "start": 21699.46, + "end": 21700.74, + "probability": 0.9085 + }, + { + "start": 21702.14, + "end": 21703.06, + "probability": 0.9951 + }, + { + "start": 21704.36, + "end": 21705.8, + "probability": 0.8359 + }, + { + "start": 21706.44, + "end": 21707.28, + "probability": 0.9584 + }, + { + "start": 21707.94, + "end": 21709.22, + "probability": 0.9028 + }, + { + "start": 21710.18, + "end": 21710.66, + "probability": 0.7123 + }, + { + "start": 21712.04, + "end": 21712.96, + "probability": 0.5172 + }, + { + "start": 21715.22, + "end": 21715.7, + "probability": 0.9578 + }, + { + "start": 21716.72, + "end": 21717.68, + "probability": 0.7898 + }, + { + "start": 21719.22, + "end": 21724.02, + "probability": 0.6885 + }, + { + "start": 21725.08, + "end": 21726.06, + "probability": 0.957 + }, + { + "start": 21727.22, + "end": 21728.18, + "probability": 0.9209 + }, + { + "start": 21729.02, + "end": 21730.4, + "probability": 0.9899 + }, + { + "start": 21732.1, + "end": 21732.88, + "probability": 0.7349 + }, + { + "start": 21734.38, + "end": 21735.36, + "probability": 0.993 + }, + { + "start": 21735.9, + "end": 21736.98, + "probability": 0.948 + }, + { + "start": 21737.6, + "end": 21737.88, + "probability": 0.9902 + }, + { + "start": 21742.12, + "end": 21743.42, + "probability": 0.554 + }, + { + "start": 21744.68, + "end": 21745.54, + "probability": 0.8614 + }, + { + "start": 21746.5, + "end": 21747.06, + "probability": 0.6411 + }, + { + "start": 21748.6, + "end": 21749.14, + "probability": 0.8649 + }, + { + "start": 21750.5, + "end": 21751.3, + "probability": 0.631 + }, + { + "start": 21752.1, + "end": 21754.6, + "probability": 0.7507 + }, + { + "start": 21756.2, + "end": 21761.58, + "probability": 0.8148 + }, + { + "start": 21763.74, + "end": 21764.23, + "probability": 0.6265 + }, + { + "start": 21765.54, + "end": 21766.2, + "probability": 0.786 + }, + { + "start": 21766.88, + "end": 21767.96, + "probability": 0.5012 + }, + { + "start": 21768.86, + "end": 21769.56, + "probability": 0.9812 + }, + { + "start": 21770.74, + "end": 21771.6, + "probability": 0.8088 + }, + { + "start": 21772.16, + "end": 21772.88, + "probability": 0.9801 + }, + { + "start": 21773.48, + "end": 21774.56, + "probability": 0.9591 + }, + { + "start": 21775.08, + "end": 21777.88, + "probability": 0.9696 + }, + { + "start": 21779.02, + "end": 21780.02, + "probability": 0.7192 + }, + { + "start": 21780.88, + "end": 21781.6, + "probability": 0.9373 + }, + { + "start": 21782.4, + "end": 21783.3, + "probability": 0.9689 + }, + { + "start": 21784.74, + "end": 21785.5, + "probability": 0.9926 + }, + { + "start": 21787.4, + "end": 21788.56, + "probability": 0.5065 + }, + { + "start": 21789.38, + "end": 21790.3, + "probability": 0.8478 + }, + { + "start": 21791.16, + "end": 21791.62, + "probability": 0.384 + }, + { + "start": 21793.34, + "end": 21794.1, + "probability": 0.8579 + }, + { + "start": 21794.86, + "end": 21796.38, + "probability": 0.9154 + }, + { + "start": 21797.28, + "end": 21798.08, + "probability": 0.9714 + }, + { + "start": 21799.82, + "end": 21800.74, + "probability": 0.9778 + }, + { + "start": 21801.62, + "end": 21802.36, + "probability": 0.6597 + }, + { + "start": 21804.5, + "end": 21805.3, + "probability": 0.5122 + }, + { + "start": 21806.4, + "end": 21807.16, + "probability": 0.988 + }, + { + "start": 21809.8, + "end": 21810.68, + "probability": 0.5559 + }, + { + "start": 21811.7, + "end": 21813.74, + "probability": 0.9476 + }, + { + "start": 21813.94, + "end": 21816.54, + "probability": 0.7108 + }, + { + "start": 21817.12, + "end": 21818.2, + "probability": 0.9496 + }, + { + "start": 21818.96, + "end": 21822.58, + "probability": 0.8899 + }, + { + "start": 21823.22, + "end": 21824.68, + "probability": 0.9764 + }, + { + "start": 21824.86, + "end": 21827.58, + "probability": 0.6296 + }, + { + "start": 21827.94, + "end": 21828.88, + "probability": 0.9965 + }, + { + "start": 21830.32, + "end": 21830.58, + "probability": 0.7671 + }, + { + "start": 21831.3, + "end": 21832.06, + "probability": 0.7387 + }, + { + "start": 21832.96, + "end": 21833.78, + "probability": 0.7852 + }, + { + "start": 21835.38, + "end": 21836.08, + "probability": 0.9696 + }, + { + "start": 21836.86, + "end": 21838.16, + "probability": 0.9261 + }, + { + "start": 21839.06, + "end": 21839.96, + "probability": 0.994 + }, + { + "start": 21840.72, + "end": 21843.24, + "probability": 0.9177 + }, + { + "start": 21843.92, + "end": 21846.32, + "probability": 0.7059 + }, + { + "start": 21847.52, + "end": 21848.54, + "probability": 0.9888 + }, + { + "start": 21849.38, + "end": 21850.62, + "probability": 0.7214 + }, + { + "start": 21851.94, + "end": 21856.4, + "probability": 0.8522 + }, + { + "start": 21858.16, + "end": 21860.24, + "probability": 0.3925 + }, + { + "start": 21860.72, + "end": 21861.94, + "probability": 0.377 + }, + { + "start": 21862.42, + "end": 21863.28, + "probability": 0.9181 + }, + { + "start": 21865.7, + "end": 21870.52, + "probability": 0.1259 + }, + { + "start": 21873.18, + "end": 21874.66, + "probability": 0.1792 + }, + { + "start": 21875.7, + "end": 21876.24, + "probability": 0.1567 + }, + { + "start": 21881.5, + "end": 21882.68, + "probability": 0.0778 + }, + { + "start": 21883.82, + "end": 21886.34, + "probability": 0.0987 + }, + { + "start": 21887.12, + "end": 21889.16, + "probability": 0.003 + }, + { + "start": 21947.1, + "end": 21948.84, + "probability": 0.9661 + }, + { + "start": 21952.84, + "end": 21954.65, + "probability": 0.6431 + }, + { + "start": 21955.68, + "end": 21957.96, + "probability": 0.8745 + }, + { + "start": 21957.98, + "end": 21959.1, + "probability": 0.7384 + }, + { + "start": 21959.42, + "end": 21961.32, + "probability": 0.8185 + }, + { + "start": 21964.22, + "end": 21964.76, + "probability": 0.1212 + }, + { + "start": 21964.76, + "end": 21964.82, + "probability": 0.1188 + }, + { + "start": 21964.82, + "end": 21965.5, + "probability": 0.6111 + }, + { + "start": 21967.02, + "end": 21969.52, + "probability": 0.71 + }, + { + "start": 21970.22, + "end": 21972.64, + "probability": 0.9629 + }, + { + "start": 21972.64, + "end": 21973.76, + "probability": 0.7151 + }, + { + "start": 21974.26, + "end": 21975.5, + "probability": 0.9704 + }, + { + "start": 21976.54, + "end": 21976.9, + "probability": 0.8936 + }, + { + "start": 21978.94, + "end": 21979.36, + "probability": 0.5726 + }, + { + "start": 21982.65, + "end": 21984.76, + "probability": 0.4925 + }, + { + "start": 21985.46, + "end": 21989.3, + "probability": 0.8901 + }, + { + "start": 21990.3, + "end": 21991.74, + "probability": 0.7755 + }, + { + "start": 21992.64, + "end": 21993.42, + "probability": 0.7251 + }, + { + "start": 21994.68, + "end": 21996.74, + "probability": 0.0034 + }, + { + "start": 22003.26, + "end": 22003.66, + "probability": 0.0407 + }, + { + "start": 22003.66, + "end": 22003.66, + "probability": 0.1583 + }, + { + "start": 22003.66, + "end": 22003.66, + "probability": 0.1979 + }, + { + "start": 22003.66, + "end": 22003.66, + "probability": 0.0246 + }, + { + "start": 22003.66, + "end": 22003.8, + "probability": 0.2703 + }, + { + "start": 22003.92, + "end": 22004.4, + "probability": 0.3562 + }, + { + "start": 22029.28, + "end": 22033.12, + "probability": 0.7258 + }, + { + "start": 22034.48, + "end": 22037.26, + "probability": 0.9451 + }, + { + "start": 22038.8, + "end": 22044.9, + "probability": 0.9913 + }, + { + "start": 22045.62, + "end": 22046.38, + "probability": 0.783 + }, + { + "start": 22046.98, + "end": 22049.16, + "probability": 0.9896 + }, + { + "start": 22050.22, + "end": 22052.44, + "probability": 0.7233 + }, + { + "start": 22052.54, + "end": 22055.5, + "probability": 0.9902 + }, + { + "start": 22057.7, + "end": 22060.96, + "probability": 0.9871 + }, + { + "start": 22062.7, + "end": 22064.26, + "probability": 0.9124 + }, + { + "start": 22065.48, + "end": 22066.22, + "probability": 0.4075 + }, + { + "start": 22067.22, + "end": 22069.02, + "probability": 0.7838 + }, + { + "start": 22070.0, + "end": 22076.24, + "probability": 0.943 + }, + { + "start": 22076.9, + "end": 22082.2, + "probability": 0.9919 + }, + { + "start": 22082.2, + "end": 22086.4, + "probability": 0.8883 + }, + { + "start": 22087.72, + "end": 22090.26, + "probability": 0.972 + }, + { + "start": 22091.22, + "end": 22093.98, + "probability": 0.9854 + }, + { + "start": 22094.76, + "end": 22096.72, + "probability": 0.9967 + }, + { + "start": 22097.7, + "end": 22099.22, + "probability": 0.9724 + }, + { + "start": 22100.18, + "end": 22101.42, + "probability": 0.9666 + }, + { + "start": 22102.92, + "end": 22104.06, + "probability": 0.7764 + }, + { + "start": 22105.0, + "end": 22108.16, + "probability": 0.9493 + }, + { + "start": 22109.88, + "end": 22114.88, + "probability": 0.9208 + }, + { + "start": 22115.78, + "end": 22121.56, + "probability": 0.9992 + }, + { + "start": 22126.08, + "end": 22127.1, + "probability": 0.0708 + }, + { + "start": 22128.12, + "end": 22128.62, + "probability": 0.5738 + }, + { + "start": 22129.42, + "end": 22130.64, + "probability": 0.8384 + }, + { + "start": 22131.52, + "end": 22132.68, + "probability": 0.9402 + }, + { + "start": 22133.52, + "end": 22136.96, + "probability": 0.9752 + }, + { + "start": 22137.86, + "end": 22141.9, + "probability": 0.9046 + }, + { + "start": 22142.8, + "end": 22144.24, + "probability": 0.6226 + }, + { + "start": 22145.38, + "end": 22149.88, + "probability": 0.9966 + }, + { + "start": 22150.76, + "end": 22151.9, + "probability": 0.9824 + }, + { + "start": 22152.46, + "end": 22155.36, + "probability": 0.9776 + }, + { + "start": 22156.08, + "end": 22157.42, + "probability": 0.9795 + }, + { + "start": 22157.96, + "end": 22163.34, + "probability": 0.9957 + }, + { + "start": 22165.34, + "end": 22171.46, + "probability": 0.963 + }, + { + "start": 22172.4, + "end": 22173.84, + "probability": 0.9976 + }, + { + "start": 22175.26, + "end": 22175.3, + "probability": 0.0441 + }, + { + "start": 22175.3, + "end": 22177.09, + "probability": 0.7294 + }, + { + "start": 22177.94, + "end": 22179.42, + "probability": 0.8009 + }, + { + "start": 22180.16, + "end": 22181.5, + "probability": 0.8945 + }, + { + "start": 22182.1, + "end": 22183.08, + "probability": 0.8542 + }, + { + "start": 22183.16, + "end": 22184.84, + "probability": 0.9152 + }, + { + "start": 22185.68, + "end": 22187.96, + "probability": 0.8213 + }, + { + "start": 22188.2, + "end": 22191.7, + "probability": 0.8649 + }, + { + "start": 22192.16, + "end": 22192.58, + "probability": 0.764 + }, + { + "start": 22195.9, + "end": 22199.48, + "probability": 0.9014 + }, + { + "start": 22200.04, + "end": 22200.06, + "probability": 0.0969 + }, + { + "start": 22200.06, + "end": 22203.58, + "probability": 0.9644 + }, + { + "start": 22203.88, + "end": 22204.96, + "probability": 0.0133 + }, + { + "start": 22205.32, + "end": 22209.22, + "probability": 0.6311 + }, + { + "start": 22210.66, + "end": 22211.1, + "probability": 0.1 + }, + { + "start": 22211.1, + "end": 22211.1, + "probability": 0.0434 + }, + { + "start": 22211.1, + "end": 22211.1, + "probability": 0.3479 + }, + { + "start": 22211.1, + "end": 22211.1, + "probability": 0.0504 + }, + { + "start": 22211.1, + "end": 22211.1, + "probability": 0.0506 + }, + { + "start": 22211.1, + "end": 22213.62, + "probability": 0.6961 + }, + { + "start": 22214.22, + "end": 22217.6, + "probability": 0.9298 + }, + { + "start": 22218.22, + "end": 22219.12, + "probability": 0.7239 + }, + { + "start": 22219.74, + "end": 22221.42, + "probability": 0.8024 + }, + { + "start": 22223.88, + "end": 22224.62, + "probability": 0.2367 + }, + { + "start": 22224.72, + "end": 22226.58, + "probability": 0.6936 + }, + { + "start": 22227.1, + "end": 22232.02, + "probability": 0.9921 + }, + { + "start": 22232.74, + "end": 22237.5, + "probability": 0.9935 + }, + { + "start": 22238.42, + "end": 22240.44, + "probability": 0.8892 + }, + { + "start": 22241.38, + "end": 22244.26, + "probability": 0.7446 + }, + { + "start": 22245.3, + "end": 22248.14, + "probability": 0.9901 + }, + { + "start": 22249.0, + "end": 22250.33, + "probability": 0.9468 + }, + { + "start": 22250.92, + "end": 22252.56, + "probability": 0.9265 + }, + { + "start": 22253.36, + "end": 22254.14, + "probability": 0.4014 + }, + { + "start": 22255.04, + "end": 22258.58, + "probability": 0.9641 + }, + { + "start": 22259.46, + "end": 22260.88, + "probability": 0.8332 + }, + { + "start": 22261.34, + "end": 22261.68, + "probability": 0.7673 + }, + { + "start": 22262.48, + "end": 22263.76, + "probability": 0.9067 + }, + { + "start": 22264.82, + "end": 22265.98, + "probability": 0.9961 + }, + { + "start": 22266.74, + "end": 22269.28, + "probability": 0.998 + }, + { + "start": 22270.08, + "end": 22272.52, + "probability": 0.9962 + }, + { + "start": 22273.36, + "end": 22274.48, + "probability": 0.7571 + }, + { + "start": 22275.04, + "end": 22276.68, + "probability": 0.9701 + }, + { + "start": 22277.26, + "end": 22278.78, + "probability": 0.9587 + }, + { + "start": 22279.88, + "end": 22281.22, + "probability": 0.999 + }, + { + "start": 22281.62, + "end": 22283.1, + "probability": 0.9844 + }, + { + "start": 22283.92, + "end": 22285.1, + "probability": 0.9865 + }, + { + "start": 22285.32, + "end": 22286.7, + "probability": 0.9931 + }, + { + "start": 22287.56, + "end": 22289.88, + "probability": 0.9868 + }, + { + "start": 22290.1, + "end": 22290.8, + "probability": 0.7407 + }, + { + "start": 22293.18, + "end": 22295.86, + "probability": 0.7871 + }, + { + "start": 22296.56, + "end": 22298.88, + "probability": 0.9121 + }, + { + "start": 22299.74, + "end": 22303.88, + "probability": 0.2635 + }, + { + "start": 22303.88, + "end": 22303.95, + "probability": 0.1758 + }, + { + "start": 22305.08, + "end": 22306.58, + "probability": 0.0817 + }, + { + "start": 22307.3, + "end": 22307.3, + "probability": 0.0825 + }, + { + "start": 22307.3, + "end": 22308.02, + "probability": 0.0308 + }, + { + "start": 22308.5, + "end": 22312.36, + "probability": 0.66 + }, + { + "start": 22326.24, + "end": 22326.75, + "probability": 0.6059 + }, + { + "start": 22329.8, + "end": 22330.5, + "probability": 0.1584 + }, + { + "start": 22330.5, + "end": 22330.5, + "probability": 0.1031 + }, + { + "start": 22330.5, + "end": 22330.5, + "probability": 0.1057 + }, + { + "start": 22330.5, + "end": 22330.5, + "probability": 0.0375 + }, + { + "start": 22330.5, + "end": 22335.78, + "probability": 0.8887 + }, + { + "start": 22336.74, + "end": 22338.56, + "probability": 0.8549 + }, + { + "start": 22341.12, + "end": 22343.16, + "probability": 0.8344 + }, + { + "start": 22344.58, + "end": 22345.28, + "probability": 0.8852 + }, + { + "start": 22346.86, + "end": 22350.04, + "probability": 0.8713 + }, + { + "start": 22351.54, + "end": 22352.3, + "probability": 0.8081 + }, + { + "start": 22354.1, + "end": 22354.68, + "probability": 0.5125 + }, + { + "start": 22357.68, + "end": 22358.18, + "probability": 0.7239 + }, + { + "start": 22359.6, + "end": 22360.28, + "probability": 0.714 + }, + { + "start": 22361.1, + "end": 22363.76, + "probability": 0.7307 + }, + { + "start": 22365.04, + "end": 22369.62, + "probability": 0.9919 + }, + { + "start": 22369.86, + "end": 22370.96, + "probability": 0.9834 + }, + { + "start": 22371.16, + "end": 22372.18, + "probability": 0.0211 + }, + { + "start": 22373.46, + "end": 22375.6, + "probability": 0.9537 + }, + { + "start": 22377.0, + "end": 22378.36, + "probability": 0.7321 + }, + { + "start": 22379.42, + "end": 22381.2, + "probability": 0.8758 + }, + { + "start": 22382.5, + "end": 22383.64, + "probability": 0.8644 + }, + { + "start": 22385.02, + "end": 22387.88, + "probability": 0.8427 + }, + { + "start": 22389.18, + "end": 22391.54, + "probability": 0.9952 + }, + { + "start": 22391.54, + "end": 22395.96, + "probability": 0.9733 + }, + { + "start": 22396.0, + "end": 22396.44, + "probability": 0.4836 + }, + { + "start": 22396.62, + "end": 22397.37, + "probability": 0.7136 + }, + { + "start": 22398.12, + "end": 22399.38, + "probability": 0.8054 + }, + { + "start": 22400.42, + "end": 22400.52, + "probability": 0.3056 + }, + { + "start": 22400.52, + "end": 22401.22, + "probability": 0.5927 + }, + { + "start": 22401.32, + "end": 22401.64, + "probability": 0.4332 + }, + { + "start": 22401.7, + "end": 22402.4, + "probability": 0.8403 + }, + { + "start": 22403.2, + "end": 22406.18, + "probability": 0.991 + }, + { + "start": 22406.78, + "end": 22408.84, + "probability": 0.7585 + }, + { + "start": 22409.58, + "end": 22410.18, + "probability": 0.7261 + }, + { + "start": 22410.92, + "end": 22411.2, + "probability": 0.752 + }, + { + "start": 22411.26, + "end": 22411.66, + "probability": 0.9161 + }, + { + "start": 22411.84, + "end": 22412.88, + "probability": 0.7501 + }, + { + "start": 22413.2, + "end": 22414.06, + "probability": 0.7794 + }, + { + "start": 22414.52, + "end": 22415.3, + "probability": 0.7303 + }, + { + "start": 22416.28, + "end": 22418.7, + "probability": 0.9819 + }, + { + "start": 22421.24, + "end": 22423.28, + "probability": 0.7697 + }, + { + "start": 22423.7, + "end": 22428.22, + "probability": 0.9541 + }, + { + "start": 22428.76, + "end": 22431.28, + "probability": 0.9653 + }, + { + "start": 22432.58, + "end": 22433.99, + "probability": 0.9438 + }, + { + "start": 22434.08, + "end": 22435.98, + "probability": 0.9844 + }, + { + "start": 22436.9, + "end": 22441.48, + "probability": 0.9473 + }, + { + "start": 22442.9, + "end": 22444.88, + "probability": 0.708 + }, + { + "start": 22445.96, + "end": 22447.92, + "probability": 0.9982 + }, + { + "start": 22449.54, + "end": 22450.9, + "probability": 0.976 + }, + { + "start": 22451.62, + "end": 22453.62, + "probability": 0.9963 + }, + { + "start": 22454.44, + "end": 22456.09, + "probability": 0.9372 + }, + { + "start": 22456.98, + "end": 22459.44, + "probability": 0.9771 + }, + { + "start": 22461.7, + "end": 22465.44, + "probability": 0.8511 + }, + { + "start": 22467.04, + "end": 22468.36, + "probability": 0.9819 + }, + { + "start": 22469.44, + "end": 22471.76, + "probability": 0.9985 + }, + { + "start": 22472.56, + "end": 22476.9, + "probability": 0.9807 + }, + { + "start": 22478.04, + "end": 22480.08, + "probability": 0.8432 + }, + { + "start": 22481.02, + "end": 22482.24, + "probability": 0.8286 + }, + { + "start": 22483.88, + "end": 22484.64, + "probability": 0.8893 + }, + { + "start": 22485.86, + "end": 22486.12, + "probability": 0.6109 + }, + { + "start": 22488.56, + "end": 22492.24, + "probability": 0.899 + }, + { + "start": 22492.86, + "end": 22497.02, + "probability": 0.9644 + }, + { + "start": 22499.6, + "end": 22501.76, + "probability": 0.855 + }, + { + "start": 22503.44, + "end": 22505.06, + "probability": 0.937 + }, + { + "start": 22505.64, + "end": 22508.6, + "probability": 0.9979 + }, + { + "start": 22509.1, + "end": 22510.36, + "probability": 0.9121 + }, + { + "start": 22511.6, + "end": 22517.98, + "probability": 0.9934 + }, + { + "start": 22517.98, + "end": 22522.7, + "probability": 0.9846 + }, + { + "start": 22522.78, + "end": 22523.56, + "probability": 0.8811 + }, + { + "start": 22523.64, + "end": 22525.8, + "probability": 0.9474 + }, + { + "start": 22526.26, + "end": 22527.26, + "probability": 0.7331 + }, + { + "start": 22528.44, + "end": 22529.94, + "probability": 0.6889 + }, + { + "start": 22530.86, + "end": 22531.16, + "probability": 0.5474 + }, + { + "start": 22531.78, + "end": 22534.16, + "probability": 0.9059 + }, + { + "start": 22535.16, + "end": 22542.6, + "probability": 0.1065 + }, + { + "start": 22553.92, + "end": 22553.92, + "probability": 0.1143 + }, + { + "start": 22553.92, + "end": 22553.94, + "probability": 0.0484 + }, + { + "start": 22553.94, + "end": 22553.98, + "probability": 0.07 + }, + { + "start": 22562.28, + "end": 22562.3, + "probability": 0.1412 + }, + { + "start": 22562.3, + "end": 22562.3, + "probability": 0.1227 + }, + { + "start": 22562.3, + "end": 22562.3, + "probability": 0.0541 + }, + { + "start": 22562.3, + "end": 22562.3, + "probability": 0.0987 + }, + { + "start": 22562.3, + "end": 22562.3, + "probability": 0.2877 + }, + { + "start": 22562.3, + "end": 22563.22, + "probability": 0.1017 + }, + { + "start": 22576.66, + "end": 22577.38, + "probability": 0.2883 + }, + { + "start": 22581.06, + "end": 22581.62, + "probability": 0.0605 + }, + { + "start": 22583.68, + "end": 22584.94, + "probability": 0.1369 + }, + { + "start": 22585.04, + "end": 22586.5, + "probability": 0.0563 + }, + { + "start": 22586.5, + "end": 22586.92, + "probability": 0.1934 + }, + { + "start": 22586.92, + "end": 22587.26, + "probability": 0.0408 + }, + { + "start": 22588.68, + "end": 22590.76, + "probability": 0.2422 + }, + { + "start": 22607.7, + "end": 22610.14, + "probability": 0.7316 + }, + { + "start": 22610.18, + "end": 22611.64, + "probability": 0.9036 + }, + { + "start": 22611.76, + "end": 22612.54, + "probability": 0.7324 + }, + { + "start": 22612.66, + "end": 22615.64, + "probability": 0.9468 + }, + { + "start": 22615.64, + "end": 22620.24, + "probability": 0.9927 + }, + { + "start": 22622.64, + "end": 22626.02, + "probability": 0.9842 + }, + { + "start": 22627.58, + "end": 22629.16, + "probability": 0.9387 + }, + { + "start": 22631.28, + "end": 22631.92, + "probability": 0.6659 + }, + { + "start": 22632.56, + "end": 22637.12, + "probability": 0.9536 + }, + { + "start": 22637.22, + "end": 22638.98, + "probability": 0.9509 + }, + { + "start": 22640.28, + "end": 22642.52, + "probability": 0.9968 + }, + { + "start": 22642.58, + "end": 22643.02, + "probability": 0.8694 + }, + { + "start": 22643.1, + "end": 22643.74, + "probability": 0.9125 + }, + { + "start": 22643.9, + "end": 22644.98, + "probability": 0.9968 + }, + { + "start": 22646.5, + "end": 22649.26, + "probability": 0.9326 + }, + { + "start": 22650.1, + "end": 22651.54, + "probability": 0.8671 + }, + { + "start": 22651.9, + "end": 22652.96, + "probability": 0.9294 + }, + { + "start": 22653.1, + "end": 22654.56, + "probability": 0.637 + }, + { + "start": 22656.08, + "end": 22657.86, + "probability": 0.9551 + }, + { + "start": 22657.92, + "end": 22658.6, + "probability": 0.7305 + }, + { + "start": 22658.7, + "end": 22659.68, + "probability": 0.9432 + }, + { + "start": 22659.82, + "end": 22664.42, + "probability": 0.7912 + }, + { + "start": 22664.6, + "end": 22667.76, + "probability": 0.9374 + }, + { + "start": 22668.4, + "end": 22669.54, + "probability": 0.6298 + }, + { + "start": 22670.46, + "end": 22675.54, + "probability": 0.9901 + }, + { + "start": 22675.54, + "end": 22678.44, + "probability": 0.9946 + }, + { + "start": 22680.32, + "end": 22680.42, + "probability": 0.0014 + }, + { + "start": 22680.42, + "end": 22683.3, + "probability": 0.8677 + }, + { + "start": 22683.34, + "end": 22683.91, + "probability": 0.9985 + }, + { + "start": 22684.72, + "end": 22687.66, + "probability": 0.9019 + }, + { + "start": 22687.7, + "end": 22689.62, + "probability": 0.7347 + }, + { + "start": 22690.02, + "end": 22691.56, + "probability": 0.8976 + }, + { + "start": 22691.64, + "end": 22692.32, + "probability": 0.8982 + }, + { + "start": 22693.2, + "end": 22694.92, + "probability": 0.8197 + }, + { + "start": 22696.58, + "end": 22700.56, + "probability": 0.8335 + }, + { + "start": 22701.88, + "end": 22703.36, + "probability": 0.9929 + }, + { + "start": 22705.7, + "end": 22707.42, + "probability": 0.7759 + }, + { + "start": 22707.42, + "end": 22709.12, + "probability": 0.8917 + }, + { + "start": 22709.74, + "end": 22710.97, + "probability": 0.8882 + }, + { + "start": 22711.54, + "end": 22712.98, + "probability": 0.9675 + }, + { + "start": 22713.4, + "end": 22714.62, + "probability": 0.6138 + }, + { + "start": 22716.5, + "end": 22717.98, + "probability": 0.1354 + }, + { + "start": 22717.98, + "end": 22718.3, + "probability": 0.2131 + }, + { + "start": 22718.38, + "end": 22722.52, + "probability": 0.9203 + }, + { + "start": 22724.44, + "end": 22725.36, + "probability": 0.5573 + }, + { + "start": 22725.6, + "end": 22729.3, + "probability": 0.9952 + }, + { + "start": 22730.08, + "end": 22733.14, + "probability": 0.9935 + }, + { + "start": 22733.68, + "end": 22735.12, + "probability": 0.5546 + }, + { + "start": 22735.44, + "end": 22740.82, + "probability": 0.976 + }, + { + "start": 22741.0, + "end": 22741.44, + "probability": 0.5359 + }, + { + "start": 22741.7, + "end": 22743.26, + "probability": 0.9966 + }, + { + "start": 22744.14, + "end": 22745.92, + "probability": 0.9976 + }, + { + "start": 22746.98, + "end": 22748.28, + "probability": 0.7816 + }, + { + "start": 22749.8, + "end": 22750.5, + "probability": 0.7422 + }, + { + "start": 22752.08, + "end": 22754.94, + "probability": 0.0978 + }, + { + "start": 22755.78, + "end": 22756.52, + "probability": 0.314 + }, + { + "start": 22756.54, + "end": 22758.24, + "probability": 0.2249 + }, + { + "start": 22765.9, + "end": 22766.58, + "probability": 0.5048 + }, + { + "start": 22768.93, + "end": 22772.1, + "probability": 0.7897 + }, + { + "start": 22773.1, + "end": 22773.14, + "probability": 0.0196 + }, + { + "start": 22773.14, + "end": 22775.46, + "probability": 0.9856 + }, + { + "start": 22775.46, + "end": 22778.06, + "probability": 0.9977 + }, + { + "start": 22778.36, + "end": 22779.66, + "probability": 0.8634 + }, + { + "start": 22780.16, + "end": 22781.18, + "probability": 0.8135 + }, + { + "start": 22781.42, + "end": 22783.4, + "probability": 0.9259 + }, + { + "start": 22783.42, + "end": 22784.66, + "probability": 0.9222 + }, + { + "start": 22784.84, + "end": 22787.64, + "probability": 0.9689 + }, + { + "start": 22787.94, + "end": 22788.06, + "probability": 0.6697 + }, + { + "start": 22788.5, + "end": 22790.02, + "probability": 0.9912 + }, + { + "start": 22790.14, + "end": 22792.12, + "probability": 0.9555 + }, + { + "start": 22793.4, + "end": 22794.56, + "probability": 0.5982 + }, + { + "start": 22795.32, + "end": 22796.25, + "probability": 0.4967 + }, + { + "start": 22796.5, + "end": 22797.86, + "probability": 0.0418 + }, + { + "start": 22798.36, + "end": 22800.74, + "probability": 0.9538 + }, + { + "start": 22800.96, + "end": 22802.3, + "probability": 0.6844 + }, + { + "start": 22802.52, + "end": 22803.85, + "probability": 0.4213 + }, + { + "start": 22804.2, + "end": 22804.9, + "probability": 0.508 + }, + { + "start": 22806.42, + "end": 22809.28, + "probability": 0.9573 + }, + { + "start": 22809.34, + "end": 22810.82, + "probability": 0.7781 + }, + { + "start": 22811.5, + "end": 22814.4, + "probability": 0.9595 + }, + { + "start": 22814.84, + "end": 22815.78, + "probability": 0.991 + }, + { + "start": 22821.28, + "end": 22823.98, + "probability": 0.9709 + }, + { + "start": 22824.82, + "end": 22826.02, + "probability": 0.9526 + }, + { + "start": 22827.0, + "end": 22830.52, + "probability": 0.8163 + }, + { + "start": 22830.52, + "end": 22831.14, + "probability": 0.6058 + }, + { + "start": 22831.9, + "end": 22834.48, + "probability": 0.9944 + }, + { + "start": 22835.26, + "end": 22839.46, + "probability": 0.9941 + }, + { + "start": 22839.94, + "end": 22841.72, + "probability": 0.8669 + }, + { + "start": 22842.62, + "end": 22847.36, + "probability": 0.976 + }, + { + "start": 22848.24, + "end": 22851.84, + "probability": 0.9985 + }, + { + "start": 22852.4, + "end": 22853.2, + "probability": 0.9828 + }, + { + "start": 22853.3, + "end": 22858.7, + "probability": 0.8138 + }, + { + "start": 22859.02, + "end": 22859.82, + "probability": 0.6825 + }, + { + "start": 22860.28, + "end": 22861.22, + "probability": 0.9766 + }, + { + "start": 22861.32, + "end": 22862.6, + "probability": 0.9284 + }, + { + "start": 22863.02, + "end": 22864.22, + "probability": 0.8584 + }, + { + "start": 22864.4, + "end": 22865.02, + "probability": 0.794 + }, + { + "start": 22865.74, + "end": 22866.64, + "probability": 0.9497 + }, + { + "start": 22868.12, + "end": 22871.32, + "probability": 0.9046 + }, + { + "start": 22871.9, + "end": 22874.22, + "probability": 0.8433 + }, + { + "start": 22875.24, + "end": 22877.44, + "probability": 0.998 + }, + { + "start": 22877.6, + "end": 22880.42, + "probability": 0.9509 + }, + { + "start": 22880.42, + "end": 22880.52, + "probability": 0.0099 + }, + { + "start": 22881.66, + "end": 22881.92, + "probability": 0.3981 + }, + { + "start": 22882.0, + "end": 22882.72, + "probability": 0.9517 + }, + { + "start": 22882.8, + "end": 22882.94, + "probability": 0.6226 + }, + { + "start": 22883.02, + "end": 22885.54, + "probability": 0.9604 + }, + { + "start": 22885.62, + "end": 22887.26, + "probability": 0.9104 + }, + { + "start": 22888.48, + "end": 22889.4, + "probability": 0.6585 + }, + { + "start": 22889.56, + "end": 22891.4, + "probability": 0.8046 + }, + { + "start": 22891.98, + "end": 22893.36, + "probability": 0.7979 + }, + { + "start": 22894.08, + "end": 22894.62, + "probability": 0.5249 + }, + { + "start": 22894.86, + "end": 22896.72, + "probability": 0.0244 + }, + { + "start": 22896.86, + "end": 22897.56, + "probability": 0.2456 + }, + { + "start": 22897.84, + "end": 22900.52, + "probability": 0.4277 + }, + { + "start": 22900.78, + "end": 22902.4, + "probability": 0.2531 + }, + { + "start": 22902.62, + "end": 22904.26, + "probability": 0.2157 + }, + { + "start": 22904.66, + "end": 22905.38, + "probability": 0.6654 + }, + { + "start": 22906.08, + "end": 22907.04, + "probability": 0.2456 + }, + { + "start": 22907.28, + "end": 22907.42, + "probability": 0.4208 + }, + { + "start": 22907.42, + "end": 22908.96, + "probability": 0.5372 + }, + { + "start": 22908.98, + "end": 22910.14, + "probability": 0.2379 + }, + { + "start": 22910.54, + "end": 22911.74, + "probability": 0.7536 + }, + { + "start": 22911.82, + "end": 22913.62, + "probability": 0.69 + }, + { + "start": 22913.62, + "end": 22916.32, + "probability": 0.996 + }, + { + "start": 22916.42, + "end": 22917.82, + "probability": 0.9992 + }, + { + "start": 22917.82, + "end": 22921.26, + "probability": 0.9048 + }, + { + "start": 22921.36, + "end": 22922.13, + "probability": 0.433 + }, + { + "start": 22922.28, + "end": 22922.82, + "probability": 0.6843 + }, + { + "start": 22923.22, + "end": 22924.32, + "probability": 0.9688 + }, + { + "start": 22924.78, + "end": 22926.06, + "probability": 0.9773 + }, + { + "start": 22926.4, + "end": 22927.6, + "probability": 0.6102 + }, + { + "start": 22927.78, + "end": 22932.58, + "probability": 0.8867 + }, + { + "start": 22932.6, + "end": 22933.64, + "probability": 0.8875 + }, + { + "start": 22933.72, + "end": 22935.2, + "probability": 0.9942 + }, + { + "start": 22936.7, + "end": 22938.02, + "probability": 0.68 + }, + { + "start": 22938.12, + "end": 22942.4, + "probability": 0.9901 + }, + { + "start": 22942.56, + "end": 22943.6, + "probability": 0.9792 + }, + { + "start": 22944.36, + "end": 22948.7, + "probability": 0.9655 + }, + { + "start": 22949.32, + "end": 22953.0, + "probability": 0.9993 + }, + { + "start": 22953.64, + "end": 22954.7, + "probability": 0.8567 + }, + { + "start": 22956.7, + "end": 22957.46, + "probability": 0.7005 + }, + { + "start": 22959.18, + "end": 22962.38, + "probability": 0.9932 + }, + { + "start": 22962.54, + "end": 22963.42, + "probability": 0.9346 + }, + { + "start": 22963.54, + "end": 22964.31, + "probability": 0.8819 + }, + { + "start": 22964.6, + "end": 22965.12, + "probability": 0.7958 + }, + { + "start": 22966.32, + "end": 22966.42, + "probability": 0.9143 + }, + { + "start": 22968.35, + "end": 22969.12, + "probability": 0.7598 + }, + { + "start": 22969.12, + "end": 22969.12, + "probability": 0.0061 + }, + { + "start": 22969.12, + "end": 22969.66, + "probability": 0.3232 + }, + { + "start": 22969.76, + "end": 22971.18, + "probability": 0.5899 + }, + { + "start": 22971.22, + "end": 22973.72, + "probability": 0.9049 + }, + { + "start": 22974.72, + "end": 22977.22, + "probability": 0.9736 + }, + { + "start": 22977.3, + "end": 22978.18, + "probability": 0.792 + }, + { + "start": 22978.38, + "end": 22979.68, + "probability": 0.9604 + }, + { + "start": 22980.28, + "end": 22981.55, + "probability": 0.9712 + }, + { + "start": 22982.16, + "end": 22984.3, + "probability": 0.8181 + }, + { + "start": 22984.84, + "end": 22987.04, + "probability": 0.9781 + }, + { + "start": 22987.12, + "end": 22988.24, + "probability": 0.9829 + }, + { + "start": 22989.22, + "end": 22992.32, + "probability": 0.9831 + }, + { + "start": 22993.22, + "end": 22995.88, + "probability": 0.9912 + }, + { + "start": 22996.06, + "end": 22996.94, + "probability": 0.7049 + }, + { + "start": 22997.42, + "end": 22999.3, + "probability": 0.7883 + }, + { + "start": 22999.42, + "end": 23000.1, + "probability": 0.9122 + }, + { + "start": 23000.14, + "end": 23001.02, + "probability": 0.9614 + }, + { + "start": 23001.54, + "end": 23004.38, + "probability": 0.9651 + }, + { + "start": 23004.8, + "end": 23006.1, + "probability": 0.9499 + }, + { + "start": 23006.48, + "end": 23007.82, + "probability": 0.9672 + }, + { + "start": 23008.96, + "end": 23011.36, + "probability": 0.9989 + }, + { + "start": 23011.38, + "end": 23011.8, + "probability": 0.8797 + }, + { + "start": 23012.28, + "end": 23015.52, + "probability": 0.9635 + }, + { + "start": 23016.0, + "end": 23016.76, + "probability": 0.8051 + }, + { + "start": 23016.88, + "end": 23017.36, + "probability": 0.9304 + }, + { + "start": 23018.22, + "end": 23019.48, + "probability": 0.9543 + }, + { + "start": 23020.02, + "end": 23020.96, + "probability": 0.8242 + }, + { + "start": 23021.06, + "end": 23022.58, + "probability": 0.9347 + }, + { + "start": 23023.14, + "end": 23025.88, + "probability": 0.5674 + }, + { + "start": 23025.88, + "end": 23029.3, + "probability": 0.9776 + }, + { + "start": 23036.16, + "end": 23037.14, + "probability": 0.0558 + }, + { + "start": 23037.14, + "end": 23037.14, + "probability": 0.0302 + }, + { + "start": 23037.14, + "end": 23037.36, + "probability": 0.1462 + }, + { + "start": 23037.8, + "end": 23038.9, + "probability": 0.7857 + }, + { + "start": 23038.98, + "end": 23039.22, + "probability": 0.6073 + }, + { + "start": 23039.62, + "end": 23040.61, + "probability": 0.7267 + }, + { + "start": 23044.82, + "end": 23046.14, + "probability": 0.5543 + }, + { + "start": 23046.44, + "end": 23048.98, + "probability": 0.1972 + }, + { + "start": 23049.2, + "end": 23051.4, + "probability": 0.4992 + }, + { + "start": 23051.4, + "end": 23053.06, + "probability": 0.9621 + }, + { + "start": 23053.52, + "end": 23054.46, + "probability": 0.9761 + }, + { + "start": 23055.12, + "end": 23056.58, + "probability": 0.8298 + }, + { + "start": 23057.12, + "end": 23058.58, + "probability": 0.9033 + }, + { + "start": 23058.76, + "end": 23059.44, + "probability": 0.9016 + }, + { + "start": 23059.56, + "end": 23061.01, + "probability": 0.9961 + }, + { + "start": 23061.6, + "end": 23062.76, + "probability": 0.9582 + }, + { + "start": 23062.86, + "end": 23064.12, + "probability": 0.9781 + }, + { + "start": 23064.14, + "end": 23066.04, + "probability": 0.9591 + }, + { + "start": 23066.34, + "end": 23067.54, + "probability": 0.9576 + }, + { + "start": 23068.42, + "end": 23070.5, + "probability": 0.7338 + }, + { + "start": 23071.02, + "end": 23073.0, + "probability": 0.9827 + }, + { + "start": 23073.04, + "end": 23073.8, + "probability": 0.7964 + }, + { + "start": 23073.8, + "end": 23074.62, + "probability": 0.9302 + }, + { + "start": 23075.16, + "end": 23076.44, + "probability": 0.9873 + }, + { + "start": 23076.8, + "end": 23078.07, + "probability": 0.979 + }, + { + "start": 23079.8, + "end": 23081.76, + "probability": 0.8794 + }, + { + "start": 23083.44, + "end": 23085.72, + "probability": 0.9945 + }, + { + "start": 23086.64, + "end": 23087.3, + "probability": 0.9849 + }, + { + "start": 23087.3, + "end": 23092.62, + "probability": 0.9095 + }, + { + "start": 23093.32, + "end": 23095.84, + "probability": 0.9791 + }, + { + "start": 23096.96, + "end": 23097.83, + "probability": 0.895 + }, + { + "start": 23098.7, + "end": 23102.08, + "probability": 0.9813 + }, + { + "start": 23102.18, + "end": 23104.94, + "probability": 0.985 + }, + { + "start": 23105.3, + "end": 23105.74, + "probability": 0.8318 + }, + { + "start": 23106.5, + "end": 23108.86, + "probability": 0.9902 + }, + { + "start": 23108.86, + "end": 23111.9, + "probability": 0.9985 + }, + { + "start": 23112.73, + "end": 23115.8, + "probability": 0.9563 + }, + { + "start": 23115.96, + "end": 23117.4, + "probability": 0.6943 + }, + { + "start": 23117.68, + "end": 23120.8, + "probability": 0.8179 + }, + { + "start": 23121.12, + "end": 23121.14, + "probability": 0.5339 + }, + { + "start": 23121.22, + "end": 23122.18, + "probability": 0.8439 + }, + { + "start": 23122.42, + "end": 23123.88, + "probability": 0.5656 + }, + { + "start": 23123.94, + "end": 23124.5, + "probability": 0.9743 + }, + { + "start": 23124.8, + "end": 23125.7, + "probability": 0.9603 + }, + { + "start": 23126.22, + "end": 23127.0, + "probability": 0.9203 + }, + { + "start": 23127.28, + "end": 23127.9, + "probability": 0.9399 + }, + { + "start": 23128.1, + "end": 23128.64, + "probability": 0.958 + }, + { + "start": 23128.7, + "end": 23130.28, + "probability": 0.9783 + }, + { + "start": 23130.52, + "end": 23133.52, + "probability": 0.9486 + }, + { + "start": 23134.84, + "end": 23136.13, + "probability": 0.021 + }, + { + "start": 23136.7, + "end": 23137.36, + "probability": 0.7364 + }, + { + "start": 23137.5, + "end": 23137.96, + "probability": 0.8616 + }, + { + "start": 23137.96, + "end": 23138.64, + "probability": 0.7827 + }, + { + "start": 23138.7, + "end": 23139.8, + "probability": 0.8995 + }, + { + "start": 23140.92, + "end": 23141.34, + "probability": 0.1005 + }, + { + "start": 23141.34, + "end": 23142.5, + "probability": 0.2627 + }, + { + "start": 23143.06, + "end": 23143.66, + "probability": 0.6823 + }, + { + "start": 23143.74, + "end": 23144.36, + "probability": 0.7339 + }, + { + "start": 23144.38, + "end": 23147.22, + "probability": 0.4916 + }, + { + "start": 23147.28, + "end": 23148.6, + "probability": 0.4459 + }, + { + "start": 23148.6, + "end": 23149.68, + "probability": 0.1795 + }, + { + "start": 23150.34, + "end": 23151.2, + "probability": 0.2312 + }, + { + "start": 23151.2, + "end": 23152.22, + "probability": 0.0472 + }, + { + "start": 23152.22, + "end": 23153.74, + "probability": 0.0078 + }, + { + "start": 23153.86, + "end": 23154.0, + "probability": 0.0083 + }, + { + "start": 23154.44, + "end": 23158.9, + "probability": 0.9517 + }, + { + "start": 23159.1, + "end": 23162.5, + "probability": 0.805 + }, + { + "start": 23163.3, + "end": 23163.3, + "probability": 0.0096 + }, + { + "start": 23163.3, + "end": 23163.98, + "probability": 0.3711 + }, + { + "start": 23164.14, + "end": 23165.35, + "probability": 0.8376 + }, + { + "start": 23166.68, + "end": 23170.06, + "probability": 0.7867 + }, + { + "start": 23170.18, + "end": 23172.0, + "probability": 0.8481 + }, + { + "start": 23172.42, + "end": 23175.48, + "probability": 0.9546 + }, + { + "start": 23175.48, + "end": 23177.54, + "probability": 0.5918 + }, + { + "start": 23178.61, + "end": 23182.86, + "probability": 0.9619 + }, + { + "start": 23182.94, + "end": 23186.84, + "probability": 0.9973 + }, + { + "start": 23187.8, + "end": 23189.76, + "probability": 0.9602 + }, + { + "start": 23189.76, + "end": 23191.82, + "probability": 0.778 + }, + { + "start": 23192.12, + "end": 23192.46, + "probability": 0.8271 + }, + { + "start": 23193.32, + "end": 23195.4, + "probability": 0.6215 + }, + { + "start": 23195.52, + "end": 23196.26, + "probability": 0.7687 + }, + { + "start": 23196.56, + "end": 23197.06, + "probability": 0.7217 + }, + { + "start": 23197.66, + "end": 23199.74, + "probability": 0.7678 + }, + { + "start": 23200.06, + "end": 23201.94, + "probability": 0.4521 + }, + { + "start": 23202.06, + "end": 23203.02, + "probability": 0.5876 + }, + { + "start": 23203.02, + "end": 23203.83, + "probability": 0.702 + }, + { + "start": 23204.64, + "end": 23206.32, + "probability": 0.9852 + }, + { + "start": 23208.76, + "end": 23209.82, + "probability": 0.4679 + }, + { + "start": 23215.4, + "end": 23216.82, + "probability": 0.5367 + }, + { + "start": 23217.88, + "end": 23218.24, + "probability": 0.9324 + }, + { + "start": 23219.22, + "end": 23220.2, + "probability": 0.8178 + }, + { + "start": 23221.14, + "end": 23221.54, + "probability": 0.9778 + }, + { + "start": 23222.28, + "end": 23223.32, + "probability": 0.7418 + }, + { + "start": 23224.6, + "end": 23225.0, + "probability": 0.9907 + }, + { + "start": 23225.78, + "end": 23226.52, + "probability": 0.9013 + }, + { + "start": 23227.32, + "end": 23229.08, + "probability": 0.9602 + }, + { + "start": 23230.38, + "end": 23231.04, + "probability": 0.9406 + }, + { + "start": 23232.26, + "end": 23234.02, + "probability": 0.6172 + }, + { + "start": 23234.88, + "end": 23235.84, + "probability": 0.9814 + }, + { + "start": 23236.68, + "end": 23237.5, + "probability": 0.9356 + }, + { + "start": 23239.34, + "end": 23240.06, + "probability": 0.941 + }, + { + "start": 23241.14, + "end": 23241.98, + "probability": 0.6816 + }, + { + "start": 23243.0, + "end": 23243.26, + "probability": 0.5245 + }, + { + "start": 23244.4, + "end": 23245.3, + "probability": 0.8218 + }, + { + "start": 23246.1, + "end": 23246.52, + "probability": 0.856 + }, + { + "start": 23247.24, + "end": 23248.0, + "probability": 0.9069 + }, + { + "start": 23249.14, + "end": 23251.18, + "probability": 0.962 + }, + { + "start": 23252.16, + "end": 23254.44, + "probability": 0.956 + }, + { + "start": 23255.78, + "end": 23256.36, + "probability": 0.8353 + }, + { + "start": 23257.3, + "end": 23258.22, + "probability": 0.9835 + }, + { + "start": 23259.1, + "end": 23260.62, + "probability": 0.9805 + }, + { + "start": 23261.3, + "end": 23262.16, + "probability": 0.972 + }, + { + "start": 23263.7, + "end": 23264.56, + "probability": 0.9786 + }, + { + "start": 23265.44, + "end": 23266.32, + "probability": 0.8838 + }, + { + "start": 23272.0, + "end": 23276.32, + "probability": 0.4409 + }, + { + "start": 23277.16, + "end": 23278.22, + "probability": 0.6692 + }, + { + "start": 23280.96, + "end": 23282.36, + "probability": 0.8022 + }, + { + "start": 23283.3, + "end": 23284.22, + "probability": 0.8331 + }, + { + "start": 23285.78, + "end": 23286.5, + "probability": 0.8069 + }, + { + "start": 23287.1, + "end": 23287.94, + "probability": 0.8431 + }, + { + "start": 23289.14, + "end": 23292.88, + "probability": 0.8817 + }, + { + "start": 23294.42, + "end": 23295.14, + "probability": 0.9847 + }, + { + "start": 23295.94, + "end": 23296.78, + "probability": 0.9475 + }, + { + "start": 23298.48, + "end": 23299.16, + "probability": 0.9473 + }, + { + "start": 23299.76, + "end": 23300.68, + "probability": 0.6856 + }, + { + "start": 23301.24, + "end": 23301.9, + "probability": 0.816 + }, + { + "start": 23302.58, + "end": 23303.38, + "probability": 0.8617 + }, + { + "start": 23304.14, + "end": 23304.86, + "probability": 0.9793 + }, + { + "start": 23305.46, + "end": 23306.8, + "probability": 0.7177 + }, + { + "start": 23308.28, + "end": 23309.18, + "probability": 0.9888 + }, + { + "start": 23310.44, + "end": 23311.32, + "probability": 0.9505 + }, + { + "start": 23311.88, + "end": 23312.8, + "probability": 0.7463 + }, + { + "start": 23314.64, + "end": 23315.46, + "probability": 0.802 + }, + { + "start": 23316.72, + "end": 23317.04, + "probability": 0.7869 + }, + { + "start": 23318.26, + "end": 23319.04, + "probability": 0.9509 + }, + { + "start": 23320.16, + "end": 23323.2, + "probability": 0.9724 + }, + { + "start": 23324.04, + "end": 23324.42, + "probability": 0.9409 + }, + { + "start": 23329.78, + "end": 23330.6, + "probability": 0.616 + }, + { + "start": 23331.52, + "end": 23331.88, + "probability": 0.8799 + }, + { + "start": 23332.52, + "end": 23333.1, + "probability": 0.7832 + }, + { + "start": 23334.12, + "end": 23334.54, + "probability": 0.9753 + }, + { + "start": 23335.32, + "end": 23336.1, + "probability": 0.8181 + }, + { + "start": 23337.11, + "end": 23339.28, + "probability": 0.8405 + }, + { + "start": 23340.22, + "end": 23342.08, + "probability": 0.2348 + }, + { + "start": 23345.3, + "end": 23347.24, + "probability": 0.1302 + }, + { + "start": 23355.42, + "end": 23357.28, + "probability": 0.5383 + }, + { + "start": 23371.56, + "end": 23373.56, + "probability": 0.3355 + }, + { + "start": 23374.64, + "end": 23377.32, + "probability": 0.6282 + }, + { + "start": 23378.12, + "end": 23378.8, + "probability": 0.9465 + }, + { + "start": 23379.36, + "end": 23380.38, + "probability": 0.8913 + }, + { + "start": 23381.34, + "end": 23383.36, + "probability": 0.6648 + }, + { + "start": 23385.32, + "end": 23385.77, + "probability": 0.1129 + }, + { + "start": 23390.28, + "end": 23391.52, + "probability": 0.5647 + }, + { + "start": 23392.66, + "end": 23393.54, + "probability": 0.068 + }, + { + "start": 23394.88, + "end": 23395.72, + "probability": 0.8129 + }, + { + "start": 23396.64, + "end": 23399.06, + "probability": 0.838 + }, + { + "start": 23400.22, + "end": 23401.74, + "probability": 0.8345 + }, + { + "start": 23402.98, + "end": 23403.76, + "probability": 0.9114 + }, + { + "start": 23404.7, + "end": 23405.84, + "probability": 0.9782 + }, + { + "start": 23406.78, + "end": 23407.54, + "probability": 0.9658 + }, + { + "start": 23408.58, + "end": 23409.68, + "probability": 0.7611 + }, + { + "start": 23410.28, + "end": 23411.1, + "probability": 0.9856 + }, + { + "start": 23411.64, + "end": 23412.48, + "probability": 0.5131 + }, + { + "start": 23413.36, + "end": 23414.06, + "probability": 0.8877 + }, + { + "start": 23414.92, + "end": 23415.96, + "probability": 0.5409 + }, + { + "start": 23419.18, + "end": 23423.23, + "probability": 0.2041 + }, + { + "start": 23426.18, + "end": 23427.0, + "probability": 0.3041 + }, + { + "start": 23427.82, + "end": 23428.48, + "probability": 0.7641 + }, + { + "start": 23429.44, + "end": 23429.98, + "probability": 0.8232 + }, + { + "start": 23432.66, + "end": 23434.02, + "probability": 0.532 + }, + { + "start": 23435.24, + "end": 23436.02, + "probability": 0.7292 + }, + { + "start": 23436.98, + "end": 23437.72, + "probability": 0.8946 + }, + { + "start": 23438.76, + "end": 23441.0, + "probability": 0.7388 + }, + { + "start": 23441.9, + "end": 23442.96, + "probability": 0.9186 + }, + { + "start": 23444.2, + "end": 23444.96, + "probability": 0.9934 + }, + { + "start": 23446.04, + "end": 23446.86, + "probability": 0.9535 + }, + { + "start": 23447.76, + "end": 23449.9, + "probability": 0.8325 + }, + { + "start": 23451.94, + "end": 23456.68, + "probability": 0.8235 + }, + { + "start": 23457.74, + "end": 23459.74, + "probability": 0.882 + }, + { + "start": 23460.56, + "end": 23464.2, + "probability": 0.9925 + }, + { + "start": 23464.92, + "end": 23465.74, + "probability": 0.9711 + }, + { + "start": 23466.54, + "end": 23467.24, + "probability": 0.9729 + }, + { + "start": 23468.24, + "end": 23469.12, + "probability": 0.9505 + }, + { + "start": 23469.98, + "end": 23470.68, + "probability": 0.9938 + }, + { + "start": 23473.72, + "end": 23474.86, + "probability": 0.5813 + }, + { + "start": 23475.4, + "end": 23478.74, + "probability": 0.6784 + }, + { + "start": 23479.4, + "end": 23485.52, + "probability": 0.6796 + }, + { + "start": 23487.48, + "end": 23490.22, + "probability": 0.7212 + }, + { + "start": 23491.82, + "end": 23494.14, + "probability": 0.8109 + }, + { + "start": 23495.02, + "end": 23495.84, + "probability": 0.8935 + }, + { + "start": 23496.76, + "end": 23497.4, + "probability": 0.909 + }, + { + "start": 23500.7, + "end": 23501.2, + "probability": 0.9253 + }, + { + "start": 23502.18, + "end": 23503.02, + "probability": 0.9345 + }, + { + "start": 23503.94, + "end": 23505.86, + "probability": 0.9601 + }, + { + "start": 23506.48, + "end": 23508.5, + "probability": 0.9666 + }, + { + "start": 23509.18, + "end": 23510.98, + "probability": 0.726 + }, + { + "start": 23511.54, + "end": 23513.2, + "probability": 0.6759 + }, + { + "start": 23514.24, + "end": 23517.76, + "probability": 0.9155 + }, + { + "start": 23518.5, + "end": 23520.12, + "probability": 0.8444 + }, + { + "start": 23520.96, + "end": 23521.76, + "probability": 0.9561 + }, + { + "start": 23522.34, + "end": 23525.78, + "probability": 0.8756 + }, + { + "start": 23528.0, + "end": 23528.42, + "probability": 0.9854 + }, + { + "start": 23530.36, + "end": 23531.06, + "probability": 0.8668 + }, + { + "start": 23532.84, + "end": 23535.18, + "probability": 0.8708 + }, + { + "start": 23536.32, + "end": 23537.08, + "probability": 0.7353 + }, + { + "start": 23538.68, + "end": 23539.04, + "probability": 0.646 + }, + { + "start": 23540.5, + "end": 23541.4, + "probability": 0.3624 + }, + { + "start": 23542.42, + "end": 23544.54, + "probability": 0.9338 + }, + { + "start": 23545.32, + "end": 23547.3, + "probability": 0.9229 + }, + { + "start": 23548.14, + "end": 23550.42, + "probability": 0.9779 + }, + { + "start": 23555.92, + "end": 23556.4, + "probability": 0.5281 + }, + { + "start": 23557.8, + "end": 23558.72, + "probability": 0.7239 + }, + { + "start": 23559.86, + "end": 23560.5, + "probability": 0.8704 + }, + { + "start": 23561.3, + "end": 23562.18, + "probability": 0.672 + }, + { + "start": 23563.1, + "end": 23563.88, + "probability": 0.9921 + }, + { + "start": 23564.96, + "end": 23567.06, + "probability": 0.7532 + }, + { + "start": 23568.5, + "end": 23569.88, + "probability": 0.9373 + }, + { + "start": 23570.74, + "end": 23571.74, + "probability": 0.4543 + }, + { + "start": 23573.36, + "end": 23575.36, + "probability": 0.9632 + }, + { + "start": 23576.34, + "end": 23577.32, + "probability": 0.4318 + }, + { + "start": 23578.56, + "end": 23580.34, + "probability": 0.8959 + }, + { + "start": 23584.62, + "end": 23584.84, + "probability": 0.5541 + }, + { + "start": 23586.74, + "end": 23589.34, + "probability": 0.7973 + }, + { + "start": 23590.2, + "end": 23590.94, + "probability": 0.9878 + }, + { + "start": 23592.0, + "end": 23592.7, + "probability": 0.9029 + }, + { + "start": 23593.44, + "end": 23593.72, + "probability": 0.793 + }, + { + "start": 23594.3, + "end": 23595.14, + "probability": 0.3753 + }, + { + "start": 23595.76, + "end": 23596.58, + "probability": 0.9741 + }, + { + "start": 23598.38, + "end": 23599.82, + "probability": 0.9127 + }, + { + "start": 23600.68, + "end": 23602.14, + "probability": 0.9574 + }, + { + "start": 23603.38, + "end": 23604.14, + "probability": 0.4131 + }, + { + "start": 23605.93, + "end": 23608.26, + "probability": 0.365 + }, + { + "start": 23610.1, + "end": 23611.3, + "probability": 0.5047 + }, + { + "start": 23612.82, + "end": 23613.8, + "probability": 0.7074 + }, + { + "start": 23614.64, + "end": 23615.92, + "probability": 0.7163 + }, + { + "start": 23616.84, + "end": 23618.64, + "probability": 0.8699 + }, + { + "start": 23619.56, + "end": 23621.6, + "probability": 0.9112 + }, + { + "start": 23625.16, + "end": 23630.66, + "probability": 0.7394 + }, + { + "start": 23635.04, + "end": 23637.56, + "probability": 0.2094 + }, + { + "start": 23638.86, + "end": 23639.22, + "probability": 0.4263 + }, + { + "start": 23639.84, + "end": 23640.94, + "probability": 0.7261 + }, + { + "start": 23643.18, + "end": 23646.68, + "probability": 0.6022 + }, + { + "start": 23647.34, + "end": 23648.02, + "probability": 0.7655 + }, + { + "start": 23649.0, + "end": 23649.98, + "probability": 0.9008 + }, + { + "start": 23651.06, + "end": 23652.1, + "probability": 0.7211 + }, + { + "start": 23653.1, + "end": 23653.82, + "probability": 0.834 + }, + { + "start": 23654.62, + "end": 23655.94, + "probability": 0.9522 + }, + { + "start": 23658.08, + "end": 23660.4, + "probability": 0.9551 + }, + { + "start": 23662.06, + "end": 23662.98, + "probability": 0.9849 + }, + { + "start": 23663.8, + "end": 23664.46, + "probability": 0.901 + }, + { + "start": 23665.04, + "end": 23667.2, + "probability": 0.9425 + }, + { + "start": 23667.98, + "end": 23668.76, + "probability": 0.9938 + }, + { + "start": 23669.32, + "end": 23672.96, + "probability": 0.584 + }, + { + "start": 23674.18, + "end": 23676.54, + "probability": 0.2075 + }, + { + "start": 23677.06, + "end": 23682.26, + "probability": 0.5078 + }, + { + "start": 23683.04, + "end": 23685.24, + "probability": 0.678 + }, + { + "start": 23686.8, + "end": 23688.02, + "probability": 0.51 + }, + { + "start": 23689.98, + "end": 23690.88, + "probability": 0.5083 + }, + { + "start": 23692.32, + "end": 23693.82, + "probability": 0.9734 + }, + { + "start": 23694.56, + "end": 23695.62, + "probability": 0.8679 + }, + { + "start": 23696.72, + "end": 23700.78, + "probability": 0.6806 + }, + { + "start": 23701.82, + "end": 23702.84, + "probability": 0.9075 + }, + { + "start": 23703.76, + "end": 23704.26, + "probability": 0.8933 + }, + { + "start": 23705.84, + "end": 23707.04, + "probability": 0.7465 + }, + { + "start": 23707.94, + "end": 23709.84, + "probability": 0.7969 + }, + { + "start": 23710.66, + "end": 23712.38, + "probability": 0.9162 + }, + { + "start": 23713.34, + "end": 23715.64, + "probability": 0.8862 + }, + { + "start": 23716.42, + "end": 23721.06, + "probability": 0.5993 + }, + { + "start": 23721.48, + "end": 23725.82, + "probability": 0.011 + }, + { + "start": 23726.4, + "end": 23729.6, + "probability": 0.6893 + }, + { + "start": 23730.48, + "end": 23731.14, + "probability": 0.9617 + }, + { + "start": 23731.7, + "end": 23735.21, + "probability": 0.7581 + }, + { + "start": 23741.08, + "end": 23741.98, + "probability": 0.4069 + }, + { + "start": 23743.92, + "end": 23745.08, + "probability": 0.278 + }, + { + "start": 23746.36, + "end": 23748.9, + "probability": 0.6725 + }, + { + "start": 23754.76, + "end": 23758.2, + "probability": 0.5079 + }, + { + "start": 23758.92, + "end": 23761.2, + "probability": 0.9536 + }, + { + "start": 23761.9, + "end": 23762.94, + "probability": 0.9596 + }, + { + "start": 23764.34, + "end": 23765.12, + "probability": 0.976 + }, + { + "start": 23766.0, + "end": 23767.04, + "probability": 0.9866 + }, + { + "start": 23767.06, + "end": 23768.58, + "probability": 0.8682 + }, + { + "start": 23768.6, + "end": 23770.06, + "probability": 0.786 + }, + { + "start": 23770.2, + "end": 23770.86, + "probability": 0.9591 + }, + { + "start": 23771.4, + "end": 23773.12, + "probability": 0.733 + }, + { + "start": 23774.7, + "end": 23775.5, + "probability": 0.514 + }, + { + "start": 23775.52, + "end": 23776.88, + "probability": 0.9172 + }, + { + "start": 23777.16, + "end": 23778.66, + "probability": 0.88 + }, + { + "start": 23779.54, + "end": 23781.3, + "probability": 0.9689 + }, + { + "start": 23781.96, + "end": 23784.56, + "probability": 0.776 + }, + { + "start": 23785.5, + "end": 23786.98, + "probability": 0.8432 + }, + { + "start": 23787.0, + "end": 23789.44, + "probability": 0.6937 + }, + { + "start": 23789.56, + "end": 23790.66, + "probability": 0.148 + }, + { + "start": 23790.74, + "end": 23792.2, + "probability": 0.5632 + }, + { + "start": 23793.04, + "end": 23794.58, + "probability": 0.8873 + }, + { + "start": 23794.62, + "end": 23796.12, + "probability": 0.8785 + }, + { + "start": 23796.18, + "end": 23797.12, + "probability": 0.9253 + }, + { + "start": 23798.38, + "end": 23800.1, + "probability": 0.8515 + }, + { + "start": 23800.26, + "end": 23801.44, + "probability": 0.5057 + }, + { + "start": 23801.48, + "end": 23802.56, + "probability": 0.7206 + }, + { + "start": 23802.78, + "end": 23803.58, + "probability": 0.9639 + }, + { + "start": 23804.94, + "end": 23805.56, + "probability": 0.8635 + }, + { + "start": 23806.44, + "end": 23807.54, + "probability": 0.9734 + }, + { + "start": 23809.82, + "end": 23810.78, + "probability": 0.6648 + }, + { + "start": 23811.48, + "end": 23812.5, + "probability": 0.9348 + }, + { + "start": 23813.3, + "end": 23814.18, + "probability": 0.9071 + }, + { + "start": 23815.0, + "end": 23817.92, + "probability": 0.9035 + }, + { + "start": 23818.48, + "end": 23819.46, + "probability": 0.9539 + }, + { + "start": 23820.24, + "end": 23822.66, + "probability": 0.614 + }, + { + "start": 23827.7, + "end": 23832.32, + "probability": 0.7108 + }, + { + "start": 23833.02, + "end": 23834.08, + "probability": 0.8617 + }, + { + "start": 23834.76, + "end": 23835.98, + "probability": 0.7758 + }, + { + "start": 23836.56, + "end": 23838.6, + "probability": 0.8776 + }, + { + "start": 23839.76, + "end": 23841.94, + "probability": 0.665 + }, + { + "start": 23842.48, + "end": 23846.1, + "probability": 0.6525 + }, + { + "start": 23846.64, + "end": 23848.52, + "probability": 0.9273 + }, + { + "start": 23850.42, + "end": 23853.94, + "probability": 0.8615 + }, + { + "start": 23854.04, + "end": 23854.92, + "probability": 0.939 + }, + { + "start": 23855.36, + "end": 23855.88, + "probability": 0.9831 + }, + { + "start": 23856.48, + "end": 23857.4, + "probability": 0.8091 + }, + { + "start": 23858.18, + "end": 23859.18, + "probability": 0.91 + }, + { + "start": 23859.98, + "end": 23860.62, + "probability": 0.3109 + }, + { + "start": 23861.82, + "end": 23862.52, + "probability": 0.9143 + }, + { + "start": 23863.06, + "end": 23863.36, + "probability": 0.3415 + }, + { + "start": 23863.68, + "end": 23864.82, + "probability": 0.8559 + }, + { + "start": 23865.22, + "end": 23867.8, + "probability": 0.427 + }, + { + "start": 23867.82, + "end": 23868.78, + "probability": 0.9481 + }, + { + "start": 23870.22, + "end": 23872.36, + "probability": 0.8731 + }, + { + "start": 23873.3, + "end": 23876.26, + "probability": 0.7257 + }, + { + "start": 23877.58, + "end": 23880.12, + "probability": 0.7099 + }, + { + "start": 23882.0, + "end": 23883.72, + "probability": 0.8589 + }, + { + "start": 23884.6, + "end": 23885.52, + "probability": 0.7994 + }, + { + "start": 23886.84, + "end": 23887.14, + "probability": 0.9038 + }, + { + "start": 23887.86, + "end": 23890.12, + "probability": 0.9897 + }, + { + "start": 23891.18, + "end": 23893.16, + "probability": 0.9484 + }, + { + "start": 23894.28, + "end": 23895.56, + "probability": 0.9893 + }, + { + "start": 23896.66, + "end": 23897.08, + "probability": 0.6559 + }, + { + "start": 23898.22, + "end": 23899.0, + "probability": 0.7633 + }, + { + "start": 23899.68, + "end": 23900.5, + "probability": 0.4976 + }, + { + "start": 23900.62, + "end": 23902.28, + "probability": 0.6613 + }, + { + "start": 23902.4, + "end": 23903.26, + "probability": 0.8128 + }, + { + "start": 23904.6, + "end": 23906.9, + "probability": 0.722 + }, + { + "start": 23907.68, + "end": 23911.46, + "probability": 0.7123 + }, + { + "start": 23913.46, + "end": 23916.66, + "probability": 0.5574 + }, + { + "start": 23917.24, + "end": 23922.78, + "probability": 0.556 + }, + { + "start": 23924.44, + "end": 23924.74, + "probability": 0.349 + }, + { + "start": 23926.0, + "end": 23929.19, + "probability": 0.4966 + }, + { + "start": 23929.74, + "end": 23931.0, + "probability": 0.425 + }, + { + "start": 23931.4, + "end": 23932.14, + "probability": 0.3233 + }, + { + "start": 23932.22, + "end": 23932.72, + "probability": 0.4416 + }, + { + "start": 23933.92, + "end": 23934.35, + "probability": 0.1998 + }, + { + "start": 23935.08, + "end": 23939.34, + "probability": 0.0245 + }, + { + "start": 23939.8, + "end": 23939.8, + "probability": 0.0767 + }, + { + "start": 23940.04, + "end": 23940.04, + "probability": 0.146 + }, + { + "start": 23940.3, + "end": 23940.68, + "probability": 0.0982 + }, + { + "start": 23942.54, + "end": 23942.54, + "probability": 0.084 + }, + { + "start": 23945.32, + "end": 23946.58, + "probability": 0.0133 + }, + { + "start": 23950.38, + "end": 23951.98, + "probability": 0.0483 + }, + { + "start": 23954.26, + "end": 23955.94, + "probability": 0.0064 + }, + { + "start": 23993.4, + "end": 23997.7, + "probability": 0.6151 + }, + { + "start": 23998.1, + "end": 24001.62, + "probability": 0.8452 + }, + { + "start": 24003.54, + "end": 24004.24, + "probability": 0.6281 + }, + { + "start": 24004.6, + "end": 24004.7, + "probability": 0.0003 + }, + { + "start": 24005.3, + "end": 24008.92, + "probability": 0.9757 + }, + { + "start": 24010.16, + "end": 24011.52, + "probability": 0.8682 + }, + { + "start": 24012.24, + "end": 24015.5, + "probability": 0.5574 + }, + { + "start": 24016.28, + "end": 24018.1, + "probability": 0.9358 + }, + { + "start": 24018.56, + "end": 24020.12, + "probability": 0.7302 + }, + { + "start": 24020.18, + "end": 24020.48, + "probability": 0.4337 + }, + { + "start": 24043.78, + "end": 24044.9, + "probability": 0.7818 + }, + { + "start": 24052.96, + "end": 24056.44, + "probability": 0.8126 + }, + { + "start": 24057.38, + "end": 24059.32, + "probability": 0.7245 + }, + { + "start": 24059.74, + "end": 24066.8, + "probability": 0.8722 + }, + { + "start": 24066.84, + "end": 24067.9, + "probability": 0.8063 + }, + { + "start": 24068.88, + "end": 24074.76, + "probability": 0.9209 + }, + { + "start": 24075.44, + "end": 24077.92, + "probability": 0.7356 + }, + { + "start": 24078.52, + "end": 24079.38, + "probability": 0.8115 + }, + { + "start": 24079.5, + "end": 24084.48, + "probability": 0.6585 + }, + { + "start": 24084.48, + "end": 24089.36, + "probability": 0.8995 + }, + { + "start": 24089.5, + "end": 24093.44, + "probability": 0.9648 + }, + { + "start": 24093.56, + "end": 24094.82, + "probability": 0.7656 + }, + { + "start": 24095.14, + "end": 24095.86, + "probability": 0.7323 + }, + { + "start": 24096.2, + "end": 24099.54, + "probability": 0.9458 + }, + { + "start": 24100.14, + "end": 24103.66, + "probability": 0.9821 + }, + { + "start": 24104.28, + "end": 24109.54, + "probability": 0.9768 + }, + { + "start": 24110.06, + "end": 24112.02, + "probability": 0.7294 + }, + { + "start": 24112.32, + "end": 24116.56, + "probability": 0.892 + }, + { + "start": 24116.72, + "end": 24117.22, + "probability": 0.8061 + }, + { + "start": 24117.64, + "end": 24118.9, + "probability": 0.8725 + }, + { + "start": 24119.18, + "end": 24120.72, + "probability": 0.9864 + }, + { + "start": 24123.34, + "end": 24125.72, + "probability": 0.4061 + }, + { + "start": 24126.06, + "end": 24133.06, + "probability": 0.9744 + }, + { + "start": 24134.34, + "end": 24139.6, + "probability": 0.9749 + }, + { + "start": 24139.78, + "end": 24141.44, + "probability": 0.9191 + }, + { + "start": 24142.4, + "end": 24142.8, + "probability": 0.446 + }, + { + "start": 24143.0, + "end": 24145.76, + "probability": 0.9491 + }, + { + "start": 24145.94, + "end": 24147.0, + "probability": 0.9661 + }, + { + "start": 24147.22, + "end": 24147.9, + "probability": 0.9525 + }, + { + "start": 24148.08, + "end": 24149.72, + "probability": 0.9464 + }, + { + "start": 24149.88, + "end": 24152.46, + "probability": 0.7369 + }, + { + "start": 24152.54, + "end": 24153.22, + "probability": 0.7457 + }, + { + "start": 24153.28, + "end": 24154.24, + "probability": 0.7801 + }, + { + "start": 24154.8, + "end": 24160.56, + "probability": 0.9316 + }, + { + "start": 24161.02, + "end": 24162.44, + "probability": 0.7389 + }, + { + "start": 24162.82, + "end": 24168.62, + "probability": 0.9741 + }, + { + "start": 24172.42, + "end": 24178.62, + "probability": 0.9775 + }, + { + "start": 24179.0, + "end": 24183.08, + "probability": 0.97 + }, + { + "start": 24183.52, + "end": 24188.5, + "probability": 0.9629 + }, + { + "start": 24188.5, + "end": 24191.12, + "probability": 0.9965 + }, + { + "start": 24192.54, + "end": 24197.7, + "probability": 0.9752 + }, + { + "start": 24198.6, + "end": 24203.6, + "probability": 0.9875 + }, + { + "start": 24203.6, + "end": 24209.54, + "probability": 0.9956 + }, + { + "start": 24210.98, + "end": 24214.52, + "probability": 0.995 + }, + { + "start": 24215.06, + "end": 24219.12, + "probability": 0.9978 + }, + { + "start": 24219.68, + "end": 24225.08, + "probability": 0.9873 + }, + { + "start": 24225.68, + "end": 24228.32, + "probability": 0.978 + }, + { + "start": 24228.5, + "end": 24233.48, + "probability": 0.9639 + }, + { + "start": 24234.24, + "end": 24234.58, + "probability": 0.5247 + }, + { + "start": 24234.92, + "end": 24238.06, + "probability": 0.9957 + }, + { + "start": 24238.42, + "end": 24238.76, + "probability": 0.2994 + }, + { + "start": 24238.9, + "end": 24242.1, + "probability": 0.966 + }, + { + "start": 24242.48, + "end": 24247.26, + "probability": 0.9844 + }, + { + "start": 24248.62, + "end": 24252.36, + "probability": 0.9745 + }, + { + "start": 24252.36, + "end": 24255.84, + "probability": 0.9324 + }, + { + "start": 24256.46, + "end": 24261.68, + "probability": 0.8412 + }, + { + "start": 24262.16, + "end": 24262.88, + "probability": 0.5534 + }, + { + "start": 24262.94, + "end": 24266.46, + "probability": 0.965 + }, + { + "start": 24266.46, + "end": 24269.76, + "probability": 0.9898 + }, + { + "start": 24270.18, + "end": 24274.64, + "probability": 0.8076 + }, + { + "start": 24274.86, + "end": 24275.92, + "probability": 0.9108 + }, + { + "start": 24276.02, + "end": 24277.52, + "probability": 0.981 + }, + { + "start": 24278.2, + "end": 24283.8, + "probability": 0.8133 + }, + { + "start": 24284.32, + "end": 24288.04, + "probability": 0.9985 + }, + { + "start": 24288.68, + "end": 24293.74, + "probability": 0.9591 + }, + { + "start": 24293.74, + "end": 24297.64, + "probability": 0.9925 + }, + { + "start": 24298.04, + "end": 24301.54, + "probability": 0.9992 + }, + { + "start": 24301.84, + "end": 24302.4, + "probability": 0.4629 + }, + { + "start": 24302.48, + "end": 24303.92, + "probability": 0.3969 + }, + { + "start": 24304.74, + "end": 24309.52, + "probability": 0.9581 + }, + { + "start": 24310.26, + "end": 24311.02, + "probability": 0.4901 + }, + { + "start": 24311.02, + "end": 24311.96, + "probability": 0.5073 + }, + { + "start": 24312.04, + "end": 24317.02, + "probability": 0.6647 + }, + { + "start": 24317.72, + "end": 24319.96, + "probability": 0.9596 + }, + { + "start": 24320.46, + "end": 24325.06, + "probability": 0.9944 + }, + { + "start": 24325.06, + "end": 24330.08, + "probability": 0.9888 + }, + { + "start": 24330.68, + "end": 24331.1, + "probability": 0.558 + }, + { + "start": 24331.56, + "end": 24332.24, + "probability": 0.4936 + }, + { + "start": 24332.38, + "end": 24337.38, + "probability": 0.989 + }, + { + "start": 24337.76, + "end": 24343.28, + "probability": 0.9802 + }, + { + "start": 24343.64, + "end": 24346.96, + "probability": 0.885 + }, + { + "start": 24347.7, + "end": 24354.0, + "probability": 0.8073 + }, + { + "start": 24354.06, + "end": 24356.06, + "probability": 0.9976 + }, + { + "start": 24356.32, + "end": 24357.36, + "probability": 0.4425 + }, + { + "start": 24357.78, + "end": 24358.98, + "probability": 0.7941 + }, + { + "start": 24359.32, + "end": 24362.82, + "probability": 0.9983 + }, + { + "start": 24363.14, + "end": 24366.92, + "probability": 0.9867 + }, + { + "start": 24367.06, + "end": 24367.62, + "probability": 0.8444 + }, + { + "start": 24368.98, + "end": 24372.16, + "probability": 0.7693 + }, + { + "start": 24372.64, + "end": 24375.06, + "probability": 0.9732 + }, + { + "start": 24375.96, + "end": 24377.16, + "probability": 0.6401 + }, + { + "start": 24391.88, + "end": 24394.22, + "probability": 0.6714 + }, + { + "start": 24396.84, + "end": 24398.24, + "probability": 0.6226 + }, + { + "start": 24398.38, + "end": 24399.8, + "probability": 0.7804 + }, + { + "start": 24400.8, + "end": 24405.0, + "probability": 0.9324 + }, + { + "start": 24405.18, + "end": 24406.4, + "probability": 0.6066 + }, + { + "start": 24407.14, + "end": 24410.12, + "probability": 0.9944 + }, + { + "start": 24410.32, + "end": 24411.72, + "probability": 0.5002 + }, + { + "start": 24412.3, + "end": 24415.2, + "probability": 0.9714 + }, + { + "start": 24415.2, + "end": 24417.64, + "probability": 0.9972 + }, + { + "start": 24418.62, + "end": 24420.98, + "probability": 0.9961 + }, + { + "start": 24420.98, + "end": 24423.92, + "probability": 0.8581 + }, + { + "start": 24424.4, + "end": 24427.46, + "probability": 0.9913 + }, + { + "start": 24427.46, + "end": 24431.92, + "probability": 0.9956 + }, + { + "start": 24432.6, + "end": 24435.3, + "probability": 0.9739 + }, + { + "start": 24436.04, + "end": 24436.42, + "probability": 0.4436 + }, + { + "start": 24436.54, + "end": 24438.64, + "probability": 0.9912 + }, + { + "start": 24438.78, + "end": 24440.82, + "probability": 0.9972 + }, + { + "start": 24441.28, + "end": 24445.46, + "probability": 0.9477 + }, + { + "start": 24446.46, + "end": 24446.92, + "probability": 0.6818 + }, + { + "start": 24446.96, + "end": 24450.62, + "probability": 0.9927 + }, + { + "start": 24450.66, + "end": 24453.06, + "probability": 0.9953 + }, + { + "start": 24453.5, + "end": 24457.0, + "probability": 0.9758 + }, + { + "start": 24457.46, + "end": 24459.04, + "probability": 0.9083 + }, + { + "start": 24459.7, + "end": 24462.72, + "probability": 0.9525 + }, + { + "start": 24462.94, + "end": 24463.68, + "probability": 0.85 + }, + { + "start": 24463.96, + "end": 24466.72, + "probability": 0.982 + }, + { + "start": 24467.56, + "end": 24470.9, + "probability": 0.9937 + }, + { + "start": 24471.42, + "end": 24473.82, + "probability": 0.9756 + }, + { + "start": 24474.26, + "end": 24477.66, + "probability": 0.9895 + }, + { + "start": 24478.28, + "end": 24478.94, + "probability": 0.7354 + }, + { + "start": 24479.04, + "end": 24482.58, + "probability": 0.9893 + }, + { + "start": 24482.76, + "end": 24486.08, + "probability": 0.9741 + }, + { + "start": 24486.08, + "end": 24489.62, + "probability": 0.9785 + }, + { + "start": 24490.42, + "end": 24490.7, + "probability": 0.4801 + }, + { + "start": 24491.3, + "end": 24494.08, + "probability": 0.7552 + }, + { + "start": 24494.08, + "end": 24498.2, + "probability": 0.9793 + }, + { + "start": 24498.68, + "end": 24501.02, + "probability": 0.9796 + }, + { + "start": 24501.16, + "end": 24501.94, + "probability": 0.6462 + }, + { + "start": 24502.4, + "end": 24505.76, + "probability": 0.9884 + }, + { + "start": 24506.06, + "end": 24506.64, + "probability": 0.5052 + }, + { + "start": 24507.26, + "end": 24507.58, + "probability": 0.3663 + }, + { + "start": 24507.6, + "end": 24512.02, + "probability": 0.9902 + }, + { + "start": 24512.4, + "end": 24515.52, + "probability": 0.9717 + }, + { + "start": 24515.98, + "end": 24518.76, + "probability": 0.9951 + }, + { + "start": 24520.1, + "end": 24522.46, + "probability": 0.9836 + }, + { + "start": 24522.46, + "end": 24524.88, + "probability": 0.8827 + }, + { + "start": 24525.44, + "end": 24528.6, + "probability": 0.9935 + }, + { + "start": 24529.36, + "end": 24530.12, + "probability": 0.6568 + }, + { + "start": 24530.2, + "end": 24534.24, + "probability": 0.7125 + }, + { + "start": 24534.24, + "end": 24537.4, + "probability": 0.9894 + }, + { + "start": 24537.74, + "end": 24539.68, + "probability": 0.1922 + }, + { + "start": 24540.4, + "end": 24542.0, + "probability": 0.0935 + }, + { + "start": 24542.76, + "end": 24546.2, + "probability": 0.9493 + }, + { + "start": 24546.3, + "end": 24546.52, + "probability": 0.7375 + }, + { + "start": 24547.22, + "end": 24549.84, + "probability": 0.659 + }, + { + "start": 24550.96, + "end": 24552.4, + "probability": 0.5214 + }, + { + "start": 24553.74, + "end": 24555.9, + "probability": 0.1339 + }, + { + "start": 24557.8, + "end": 24559.32, + "probability": 0.009 + }, + { + "start": 24560.76, + "end": 24560.98, + "probability": 0.0624 + }, + { + "start": 24560.98, + "end": 24561.0, + "probability": 0.1444 + }, + { + "start": 24561.0, + "end": 24561.21, + "probability": 0.437 + }, + { + "start": 24562.6, + "end": 24564.32, + "probability": 0.5277 + }, + { + "start": 24564.46, + "end": 24565.12, + "probability": 0.5945 + }, + { + "start": 24584.24, + "end": 24587.04, + "probability": 0.0504 + }, + { + "start": 24587.04, + "end": 24588.85, + "probability": 0.157 + }, + { + "start": 24589.0, + "end": 24589.38, + "probability": 0.0618 + }, + { + "start": 24589.44, + "end": 24590.82, + "probability": 0.0426 + }, + { + "start": 24590.82, + "end": 24591.52, + "probability": 0.4494 + }, + { + "start": 24591.72, + "end": 24592.62, + "probability": 0.853 + }, + { + "start": 24598.36, + "end": 24599.32, + "probability": 0.0379 + }, + { + "start": 24599.32, + "end": 24599.58, + "probability": 0.0239 + }, + { + "start": 24600.48, + "end": 24600.5, + "probability": 0.0951 + }, + { + "start": 24600.5, + "end": 24602.04, + "probability": 0.1476 + }, + { + "start": 24602.04, + "end": 24606.34, + "probability": 0.0695 + }, + { + "start": 24606.34, + "end": 24607.26, + "probability": 0.1085 + }, + { + "start": 24608.78, + "end": 24612.74, + "probability": 0.0462 + }, + { + "start": 24612.74, + "end": 24612.74, + "probability": 0.0754 + }, + { + "start": 24612.74, + "end": 24612.74, + "probability": 0.0238 + }, + { + "start": 24612.74, + "end": 24613.9, + "probability": 0.1842 + }, + { + "start": 24642.0, + "end": 24642.0, + "probability": 0.0 + }, + { + "start": 24642.0, + "end": 24642.0, + "probability": 0.0 + }, + { + "start": 24642.0, + "end": 24642.0, + "probability": 0.0 + }, + { + "start": 24642.0, + "end": 24642.0, + "probability": 0.0 + }, + { + "start": 24642.0, + "end": 24642.0, + "probability": 0.0 + }, + { + "start": 24642.0, + "end": 24642.0, + "probability": 0.0 + }, + { + "start": 24642.0, + "end": 24642.0, + "probability": 0.0 + }, + { + "start": 24642.0, + "end": 24642.0, + "probability": 0.0 + }, + { + "start": 24642.0, + "end": 24642.0, + "probability": 0.0 + }, + { + "start": 24642.52, + "end": 24644.74, + "probability": 0.1002 + }, + { + "start": 24644.8, + "end": 24646.02, + "probability": 0.0495 + }, + { + "start": 24660.8, + "end": 24661.16, + "probability": 0.0996 + }, + { + "start": 24664.17, + "end": 24666.82, + "probability": 0.2479 + }, + { + "start": 24667.48, + "end": 24673.28, + "probability": 0.0978 + }, + { + "start": 24673.28, + "end": 24673.28, + "probability": 0.0224 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.0, + "end": 24801.0, + "probability": 0.0 + }, + { + "start": 24801.66, + "end": 24802.62, + "probability": 0.0147 + }, + { + "start": 24802.72, + "end": 24802.72, + "probability": 0.0775 + }, + { + "start": 24802.72, + "end": 24802.72, + "probability": 0.0351 + }, + { + "start": 24802.72, + "end": 24802.72, + "probability": 0.096 + }, + { + "start": 24802.86, + "end": 24803.88, + "probability": 0.0086 + }, + { + "start": 24804.44, + "end": 24806.2, + "probability": 0.5346 + }, + { + "start": 24811.78, + "end": 24814.02, + "probability": 0.8342 + }, + { + "start": 24814.58, + "end": 24817.23, + "probability": 0.9453 + }, + { + "start": 24818.4, + "end": 24821.38, + "probability": 0.9337 + }, + { + "start": 24823.2, + "end": 24826.66, + "probability": 0.8191 + }, + { + "start": 24826.8, + "end": 24831.64, + "probability": 0.867 + }, + { + "start": 24832.68, + "end": 24834.78, + "probability": 0.9223 + }, + { + "start": 24834.78, + "end": 24838.66, + "probability": 0.9919 + }, + { + "start": 24846.9, + "end": 24849.26, + "probability": 0.9861 + }, + { + "start": 24849.48, + "end": 24853.38, + "probability": 0.961 + }, + { + "start": 24854.84, + "end": 24859.04, + "probability": 0.9026 + }, + { + "start": 24859.32, + "end": 24860.48, + "probability": 0.6102 + }, + { + "start": 24861.22, + "end": 24864.82, + "probability": 0.9885 + }, + { + "start": 24868.53, + "end": 24869.49, + "probability": 0.3224 + }, + { + "start": 24870.61, + "end": 24883.43, + "probability": 0.8355 + }, + { + "start": 24883.43, + "end": 24889.48, + "probability": 0.9333 + }, + { + "start": 24891.17, + "end": 24894.27, + "probability": 0.483 + }, + { + "start": 24894.49, + "end": 24900.79, + "probability": 0.759 + }, + { + "start": 24901.03, + "end": 24902.88, + "probability": 0.9839 + }, + { + "start": 24903.81, + "end": 24905.67, + "probability": 0.8425 + }, + { + "start": 24906.53, + "end": 24907.37, + "probability": 0.9478 + }, + { + "start": 24908.19, + "end": 24910.13, + "probability": 0.7691 + }, + { + "start": 24910.87, + "end": 24914.83, + "probability": 0.8829 + }, + { + "start": 24915.55, + "end": 24916.97, + "probability": 0.0543 + }, + { + "start": 24917.01, + "end": 24918.01, + "probability": 0.0232 + }, + { + "start": 24918.53, + "end": 24920.29, + "probability": 0.9106 + }, + { + "start": 24920.59, + "end": 24922.41, + "probability": 0.4121 + }, + { + "start": 24922.85, + "end": 24925.19, + "probability": 0.9248 + }, + { + "start": 24925.21, + "end": 24926.27, + "probability": 0.3095 + }, + { + "start": 24926.27, + "end": 24929.69, + "probability": 0.5527 + }, + { + "start": 24930.39, + "end": 24931.43, + "probability": 0.3509 + }, + { + "start": 24933.35, + "end": 24936.09, + "probability": 0.3072 + }, + { + "start": 24936.55, + "end": 24936.59, + "probability": 0.6731 + }, + { + "start": 24936.59, + "end": 24938.09, + "probability": 0.8001 + }, + { + "start": 24938.45, + "end": 24939.56, + "probability": 0.3792 + }, + { + "start": 24940.41, + "end": 24941.47, + "probability": 0.5893 + }, + { + "start": 24941.51, + "end": 24942.31, + "probability": 0.5225 + }, + { + "start": 24942.49, + "end": 24943.05, + "probability": 0.5867 + }, + { + "start": 24947.87, + "end": 24948.85, + "probability": 0.6926 + }, + { + "start": 24950.07, + "end": 24953.29, + "probability": 0.0294 + }, + { + "start": 24953.53, + "end": 24953.89, + "probability": 0.0081 + }, + { + "start": 24956.58, + "end": 24959.01, + "probability": 0.0933 + }, + { + "start": 24959.07, + "end": 24960.27, + "probability": 0.0332 + }, + { + "start": 24960.61, + "end": 24961.93, + "probability": 0.1972 + }, + { + "start": 24962.57, + "end": 24962.81, + "probability": 0.0802 + }, + { + "start": 24963.11, + "end": 24963.27, + "probability": 0.1218 + }, + { + "start": 24963.77, + "end": 24964.25, + "probability": 0.7309 + }, + { + "start": 24964.41, + "end": 24966.45, + "probability": 0.9523 + }, + { + "start": 24966.67, + "end": 24967.61, + "probability": 0.7249 + }, + { + "start": 24968.53, + "end": 24969.93, + "probability": 0.4046 + }, + { + "start": 24970.31, + "end": 24971.84, + "probability": 0.7726 + }, + { + "start": 24972.43, + "end": 24975.19, + "probability": 0.9559 + }, + { + "start": 24975.39, + "end": 24975.77, + "probability": 0.792 + }, + { + "start": 24976.21, + "end": 24976.21, + "probability": 0.6113 + }, + { + "start": 24976.21, + "end": 24978.93, + "probability": 0.9558 + }, + { + "start": 24980.91, + "end": 24983.71, + "probability": 0.6065 + }, + { + "start": 24985.11, + "end": 24986.75, + "probability": 0.709 + }, + { + "start": 24988.73, + "end": 24990.21, + "probability": 0.8909 + }, + { + "start": 24990.71, + "end": 24992.49, + "probability": 0.9304 + }, + { + "start": 24993.81, + "end": 24996.23, + "probability": 0.9593 + }, + { + "start": 24996.59, + "end": 24997.89, + "probability": 0.1595 + }, + { + "start": 24998.95, + "end": 24999.23, + "probability": 0.1235 + }, + { + "start": 25000.25, + "end": 25003.07, + "probability": 0.5553 + }, + { + "start": 25003.69, + "end": 25005.43, + "probability": 0.888 + }, + { + "start": 25005.53, + "end": 25005.65, + "probability": 0.6626 + }, + { + "start": 25006.41, + "end": 25007.55, + "probability": 0.3698 + }, + { + "start": 25008.05, + "end": 25009.03, + "probability": 0.9682 + }, + { + "start": 25009.51, + "end": 25009.73, + "probability": 0.5257 + }, + { + "start": 25009.77, + "end": 25010.59, + "probability": 0.8892 + }, + { + "start": 25011.35, + "end": 25013.53, + "probability": 0.6309 + }, + { + "start": 25013.63, + "end": 25018.91, + "probability": 0.6581 + }, + { + "start": 25019.05, + "end": 25020.79, + "probability": 0.9346 + }, + { + "start": 25020.79, + "end": 25021.41, + "probability": 0.6054 + }, + { + "start": 25021.41, + "end": 25024.21, + "probability": 0.515 + }, + { + "start": 25026.01, + "end": 25026.67, + "probability": 0.2642 + }, + { + "start": 25026.67, + "end": 25028.59, + "probability": 0.646 + }, + { + "start": 25029.47, + "end": 25030.59, + "probability": 0.9236 + }, + { + "start": 25031.05, + "end": 25033.97, + "probability": 0.3458 + }, + { + "start": 25036.34, + "end": 25037.73, + "probability": 0.5255 + }, + { + "start": 25037.81, + "end": 25038.47, + "probability": 0.9445 + }, + { + "start": 25038.97, + "end": 25039.79, + "probability": 0.8147 + }, + { + "start": 25040.99, + "end": 25045.59, + "probability": 0.1244 + }, + { + "start": 25046.71, + "end": 25055.09, + "probability": 0.3391 + }, + { + "start": 25061.67, + "end": 25062.25, + "probability": 0.0426 + }, + { + "start": 25063.68, + "end": 25065.31, + "probability": 0.4301 + }, + { + "start": 25083.93, + "end": 25086.59, + "probability": 0.2203 + }, + { + "start": 25087.03, + "end": 25091.13, + "probability": 0.5858 + }, + { + "start": 25092.03, + "end": 25092.63, + "probability": 0.6814 + }, + { + "start": 25094.97, + "end": 25095.85, + "probability": 0.3041 + }, + { + "start": 25099.64, + "end": 25101.2, + "probability": 0.4808 + }, + { + "start": 25103.03, + "end": 25110.49, + "probability": 0.0522 + }, + { + "start": 25110.59, + "end": 25110.69, + "probability": 0.0152 + }, + { + "start": 25110.69, + "end": 25110.69, + "probability": 0.2645 + }, + { + "start": 25110.69, + "end": 25110.81, + "probability": 0.1115 + }, + { + "start": 25110.81, + "end": 25111.66, + "probability": 0.0386 + }, + { + "start": 25111.69, + "end": 25111.69, + "probability": 0.0875 + }, + { + "start": 25111.69, + "end": 25111.83, + "probability": 0.0537 + }, + { + "start": 25112.0, + "end": 25112.0, + "probability": 0.0 + }, + { + "start": 25112.0, + "end": 25112.0, + "probability": 0.0 + }, + { + "start": 25112.0, + "end": 25112.0, + "probability": 0.0 + }, + { + "start": 25112.0, + "end": 25112.0, + "probability": 0.0 + }, + { + "start": 25112.0, + "end": 25112.0, + "probability": 0.0 + }, + { + "start": 25112.0, + "end": 25112.0, + "probability": 0.0 + }, + { + "start": 25123.96, + "end": 25124.08, + "probability": 0.4511 + }, + { + "start": 25124.62, + "end": 25125.54, + "probability": 0.0968 + }, + { + "start": 25125.54, + "end": 25129.24, + "probability": 0.368 + }, + { + "start": 25132.2, + "end": 25132.22, + "probability": 0.0018 + }, + { + "start": 25134.04, + "end": 25135.66, + "probability": 0.0666 + }, + { + "start": 25139.14, + "end": 25147.54, + "probability": 0.1179 + }, + { + "start": 25147.78, + "end": 25152.42, + "probability": 0.0365 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.0, + "end": 25237.0, + "probability": 0.0 + }, + { + "start": 25237.14, + "end": 25240.84, + "probability": 0.584 + }, + { + "start": 25243.34, + "end": 25246.26, + "probability": 0.957 + }, + { + "start": 25246.68, + "end": 25250.14, + "probability": 0.9764 + }, + { + "start": 25251.1, + "end": 25252.84, + "probability": 0.3677 + }, + { + "start": 25253.78, + "end": 25254.32, + "probability": 0.8129 + }, + { + "start": 25255.9, + "end": 25261.46, + "probability": 0.9302 + }, + { + "start": 25262.1, + "end": 25262.98, + "probability": 0.7629 + }, + { + "start": 25265.12, + "end": 25265.76, + "probability": 0.9962 + }, + { + "start": 25266.72, + "end": 25267.8, + "probability": 0.997 + }, + { + "start": 25269.18, + "end": 25270.42, + "probability": 0.7455 + }, + { + "start": 25271.74, + "end": 25274.46, + "probability": 0.9563 + }, + { + "start": 25276.36, + "end": 25279.2, + "probability": 0.9919 + }, + { + "start": 25280.34, + "end": 25285.38, + "probability": 0.9849 + }, + { + "start": 25286.18, + "end": 25288.38, + "probability": 0.9703 + }, + { + "start": 25289.66, + "end": 25296.0, + "probability": 0.986 + }, + { + "start": 25296.5, + "end": 25300.58, + "probability": 0.9286 + }, + { + "start": 25301.7, + "end": 25305.8, + "probability": 0.823 + }, + { + "start": 25308.08, + "end": 25311.58, + "probability": 0.9769 + }, + { + "start": 25312.32, + "end": 25316.1, + "probability": 0.8362 + }, + { + "start": 25316.54, + "end": 25316.76, + "probability": 0.4728 + }, + { + "start": 25317.02, + "end": 25318.46, + "probability": 0.5581 + }, + { + "start": 25318.94, + "end": 25320.6, + "probability": 0.6175 + }, + { + "start": 25321.18, + "end": 25325.28, + "probability": 0.8019 + }, + { + "start": 25325.64, + "end": 25328.44, + "probability": 0.9798 + }, + { + "start": 25328.9, + "end": 25332.8, + "probability": 0.8059 + }, + { + "start": 25333.34, + "end": 25339.3, + "probability": 0.9902 + }, + { + "start": 25339.82, + "end": 25345.62, + "probability": 0.9971 + }, + { + "start": 25345.82, + "end": 25346.28, + "probability": 0.7468 + }, + { + "start": 25347.62, + "end": 25349.66, + "probability": 0.6625 + }, + { + "start": 25351.47, + "end": 25356.7, + "probability": 0.9032 + }, + { + "start": 25356.78, + "end": 25359.54, + "probability": 0.9826 + }, + { + "start": 25360.08, + "end": 25361.52, + "probability": 0.9147 + }, + { + "start": 25361.92, + "end": 25365.92, + "probability": 0.1495 + }, + { + "start": 25366.06, + "end": 25366.28, + "probability": 0.208 + }, + { + "start": 25366.32, + "end": 25367.36, + "probability": 0.998 + }, + { + "start": 25378.62, + "end": 25378.68, + "probability": 0.3767 + }, + { + "start": 25378.68, + "end": 25379.96, + "probability": 0.3896 + }, + { + "start": 25379.96, + "end": 25380.66, + "probability": 0.8089 + }, + { + "start": 25380.76, + "end": 25381.64, + "probability": 0.866 + }, + { + "start": 25381.78, + "end": 25382.76, + "probability": 0.8278 + }, + { + "start": 25382.84, + "end": 25383.49, + "probability": 0.9347 + }, + { + "start": 25384.42, + "end": 25387.82, + "probability": 0.902 + }, + { + "start": 25388.62, + "end": 25390.12, + "probability": 0.9972 + }, + { + "start": 25390.22, + "end": 25394.82, + "probability": 0.9976 + }, + { + "start": 25394.94, + "end": 25395.48, + "probability": 0.7237 + }, + { + "start": 25395.54, + "end": 25400.0, + "probability": 0.822 + }, + { + "start": 25400.1, + "end": 25403.2, + "probability": 0.9935 + }, + { + "start": 25403.96, + "end": 25405.16, + "probability": 0.9409 + }, + { + "start": 25405.22, + "end": 25409.18, + "probability": 0.991 + }, + { + "start": 25409.26, + "end": 25410.81, + "probability": 0.9979 + }, + { + "start": 25411.24, + "end": 25413.3, + "probability": 0.9989 + }, + { + "start": 25413.4, + "end": 25414.94, + "probability": 0.9949 + }, + { + "start": 25415.5, + "end": 25417.4, + "probability": 0.8699 + }, + { + "start": 25417.56, + "end": 25419.04, + "probability": 0.8059 + }, + { + "start": 25419.04, + "end": 25420.06, + "probability": 0.8665 + }, + { + "start": 25420.14, + "end": 25420.76, + "probability": 0.897 + }, + { + "start": 25421.52, + "end": 25423.5, + "probability": 0.6924 + }, + { + "start": 25424.52, + "end": 25426.52, + "probability": 0.712 + }, + { + "start": 25426.52, + "end": 25428.52, + "probability": 0.8553 + }, + { + "start": 25428.94, + "end": 25431.84, + "probability": 0.945 + }, + { + "start": 25432.58, + "end": 25433.44, + "probability": 0.6947 + }, + { + "start": 25433.56, + "end": 25434.14, + "probability": 0.735 + }, + { + "start": 25448.3, + "end": 25451.14, + "probability": 0.7332 + }, + { + "start": 25451.96, + "end": 25456.24, + "probability": 0.9539 + }, + { + "start": 25457.1, + "end": 25459.43, + "probability": 0.9824 + }, + { + "start": 25460.46, + "end": 25462.76, + "probability": 0.995 + }, + { + "start": 25464.24, + "end": 25467.6, + "probability": 0.6826 + }, + { + "start": 25467.74, + "end": 25472.1, + "probability": 0.7375 + }, + { + "start": 25472.16, + "end": 25472.88, + "probability": 0.6806 + }, + { + "start": 25473.0, + "end": 25475.22, + "probability": 0.8272 + }, + { + "start": 25475.4, + "end": 25476.8, + "probability": 0.9626 + }, + { + "start": 25477.38, + "end": 25478.2, + "probability": 0.5224 + }, + { + "start": 25478.2, + "end": 25479.14, + "probability": 0.0254 + }, + { + "start": 25479.92, + "end": 25481.7, + "probability": 0.0028 + }, + { + "start": 25483.62, + "end": 25488.02, + "probability": 0.0716 + }, + { + "start": 25488.02, + "end": 25493.44, + "probability": 0.1907 + }, + { + "start": 25494.32, + "end": 25495.88, + "probability": 0.0493 + }, + { + "start": 25496.62, + "end": 25500.84, + "probability": 0.2565 + }, + { + "start": 25502.94, + "end": 25508.78, + "probability": 0.1857 + }, + { + "start": 25509.44, + "end": 25515.9, + "probability": 0.0485 + }, + { + "start": 25517.64, + "end": 25518.02, + "probability": 0.1764 + }, + { + "start": 25518.6, + "end": 25521.6, + "probability": 0.138 + }, + { + "start": 25522.5, + "end": 25525.79, + "probability": 0.0957 + }, + { + "start": 25529.21, + "end": 25529.57, + "probability": 0.2836 + }, + { + "start": 25533.92, + "end": 25537.6, + "probability": 0.0308 + }, + { + "start": 25541.14, + "end": 25544.6, + "probability": 0.3457 + }, + { + "start": 25544.66, + "end": 25547.62, + "probability": 0.5576 + }, + { + "start": 25548.0, + "end": 25548.0, + "probability": 0.0 + }, + { + "start": 25551.88, + "end": 25555.22, + "probability": 0.823 + }, + { + "start": 25556.5, + "end": 25558.88, + "probability": 0.9792 + }, + { + "start": 25559.22, + "end": 25561.7, + "probability": 0.2053 + }, + { + "start": 25562.76, + "end": 25564.5, + "probability": 0.3655 + }, + { + "start": 25565.3, + "end": 25567.44, + "probability": 0.6007 + }, + { + "start": 25567.5, + "end": 25573.26, + "probability": 0.9191 + }, + { + "start": 25574.74, + "end": 25576.42, + "probability": 0.0268 + }, + { + "start": 25578.72, + "end": 25581.96, + "probability": 0.0556 + }, + { + "start": 25582.3, + "end": 25585.76, + "probability": 0.0536 + }, + { + "start": 25585.76, + "end": 25590.14, + "probability": 0.1831 + }, + { + "start": 25590.2, + "end": 25596.0, + "probability": 0.3308 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.0, + "end": 25682.0, + "probability": 0.0 + }, + { + "start": 25682.1, + "end": 25683.95, + "probability": 0.6826 + }, + { + "start": 25685.18, + "end": 25685.5, + "probability": 0.4224 + }, + { + "start": 25685.5, + "end": 25686.54, + "probability": 0.4845 + }, + { + "start": 25686.62, + "end": 25688.52, + "probability": 0.9181 + }, + { + "start": 25689.22, + "end": 25691.08, + "probability": 0.8164 + }, + { + "start": 25691.18, + "end": 25692.52, + "probability": 0.5822 + }, + { + "start": 25693.0, + "end": 25694.92, + "probability": 0.8584 + }, + { + "start": 25695.8, + "end": 25696.62, + "probability": 0.5218 + }, + { + "start": 25696.66, + "end": 25697.24, + "probability": 0.3459 + }, + { + "start": 25697.28, + "end": 25697.88, + "probability": 0.6622 + }, + { + "start": 25698.62, + "end": 25699.8, + "probability": 0.6948 + }, + { + "start": 25700.92, + "end": 25704.26, + "probability": 0.2367 + }, + { + "start": 25706.04, + "end": 25711.26, + "probability": 0.1184 + }, + { + "start": 25711.28, + "end": 25713.86, + "probability": 0.068 + }, + { + "start": 25715.42, + "end": 25723.32, + "probability": 0.0834 + }, + { + "start": 25723.62, + "end": 25723.72, + "probability": 0.0404 + }, + { + "start": 25728.2, + "end": 25730.88, + "probability": 0.5532 + }, + { + "start": 25731.78, + "end": 25733.48, + "probability": 0.3301 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.0, + "end": 25808.0, + "probability": 0.0 + }, + { + "start": 25808.38, + "end": 25809.62, + "probability": 0.1755 + }, + { + "start": 25810.72, + "end": 25811.1, + "probability": 0.0217 + }, + { + "start": 25826.1, + "end": 25827.94, + "probability": 0.0841 + }, + { + "start": 25827.98, + "end": 25829.34, + "probability": 0.1778 + }, + { + "start": 25829.52, + "end": 25830.22, + "probability": 0.2097 + }, + { + "start": 25830.34, + "end": 25830.88, + "probability": 0.0879 + }, + { + "start": 25832.26, + "end": 25834.82, + "probability": 0.0676 + }, + { + "start": 25834.82, + "end": 25834.92, + "probability": 0.0725 + }, + { + "start": 25834.92, + "end": 25835.24, + "probability": 0.0473 + }, + { + "start": 25835.24, + "end": 25835.9, + "probability": 0.3253 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.28, + "end": 25935.6, + "probability": 0.0916 + }, + { + "start": 25935.6, + "end": 25935.6, + "probability": 0.013 + }, + { + "start": 25935.6, + "end": 25935.6, + "probability": 0.0536 + }, + { + "start": 25935.6, + "end": 25936.17, + "probability": 0.2956 + }, + { + "start": 25937.04, + "end": 25937.58, + "probability": 0.3074 + }, + { + "start": 25937.66, + "end": 25938.94, + "probability": 0.8191 + }, + { + "start": 25939.0, + "end": 25939.86, + "probability": 0.761 + }, + { + "start": 25939.96, + "end": 25940.64, + "probability": 0.8382 + }, + { + "start": 25941.8, + "end": 25944.92, + "probability": 0.9513 + }, + { + "start": 25945.04, + "end": 25946.22, + "probability": 0.999 + }, + { + "start": 25947.36, + "end": 25949.36, + "probability": 0.9658 + }, + { + "start": 25949.74, + "end": 25952.58, + "probability": 0.9592 + }, + { + "start": 25953.2, + "end": 25954.2, + "probability": 0.6868 + }, + { + "start": 25955.06, + "end": 25955.56, + "probability": 0.9937 + }, + { + "start": 25956.56, + "end": 25957.48, + "probability": 0.6206 + }, + { + "start": 25957.72, + "end": 25960.64, + "probability": 0.7496 + }, + { + "start": 25960.74, + "end": 25961.98, + "probability": 0.8589 + }, + { + "start": 25962.02, + "end": 25963.62, + "probability": 0.8787 + }, + { + "start": 25963.88, + "end": 25965.76, + "probability": 0.7803 + }, + { + "start": 25965.84, + "end": 25966.12, + "probability": 0.6703 + }, + { + "start": 25966.52, + "end": 25971.14, + "probability": 0.9734 + }, + { + "start": 25971.5, + "end": 25971.92, + "probability": 0.1793 + }, + { + "start": 25971.94, + "end": 25973.98, + "probability": 0.7498 + }, + { + "start": 25974.14, + "end": 25974.46, + "probability": 0.4398 + }, + { + "start": 25975.3, + "end": 25977.96, + "probability": 0.9377 + }, + { + "start": 25978.1, + "end": 25979.9, + "probability": 0.885 + }, + { + "start": 25980.68, + "end": 25981.49, + "probability": 0.3831 + }, + { + "start": 25982.86, + "end": 25984.42, + "probability": 0.7576 + }, + { + "start": 25984.52, + "end": 25985.48, + "probability": 0.9725 + }, + { + "start": 25986.1, + "end": 25986.46, + "probability": 0.3538 + }, + { + "start": 25986.46, + "end": 25990.08, + "probability": 0.9914 + }, + { + "start": 25990.3, + "end": 25991.74, + "probability": 0.7897 + }, + { + "start": 25992.2, + "end": 25994.74, + "probability": 0.6971 + }, + { + "start": 25994.96, + "end": 25996.17, + "probability": 0.7303 + }, + { + "start": 25996.74, + "end": 26004.32, + "probability": 0.4734 + }, + { + "start": 26004.58, + "end": 26010.56, + "probability": 0.7864 + }, + { + "start": 26010.58, + "end": 26011.92, + "probability": 0.776 + }, + { + "start": 26012.28, + "end": 26014.18, + "probability": 0.7664 + }, + { + "start": 26014.3, + "end": 26015.86, + "probability": 0.9906 + }, + { + "start": 26016.62, + "end": 26017.22, + "probability": 0.1216 + }, + { + "start": 26017.76, + "end": 26019.24, + "probability": 0.6746 + }, + { + "start": 26019.6, + "end": 26023.24, + "probability": 0.7591 + }, + { + "start": 26023.36, + "end": 26026.12, + "probability": 0.9889 + }, + { + "start": 26026.22, + "end": 26027.96, + "probability": 0.9926 + }, + { + "start": 26028.66, + "end": 26033.44, + "probability": 0.9803 + }, + { + "start": 26033.54, + "end": 26034.58, + "probability": 0.8257 + }, + { + "start": 26034.66, + "end": 26035.36, + "probability": 0.8466 + }, + { + "start": 26038.32, + "end": 26039.02, + "probability": 0.2479 + }, + { + "start": 26039.38, + "end": 26040.92, + "probability": 0.9201 + }, + { + "start": 26042.64, + "end": 26043.22, + "probability": 0.5572 + }, + { + "start": 26043.26, + "end": 26044.12, + "probability": 0.9684 + }, + { + "start": 26044.14, + "end": 26045.74, + "probability": 0.7415 + }, + { + "start": 26046.72, + "end": 26049.96, + "probability": 0.0655 + }, + { + "start": 26050.02, + "end": 26052.46, + "probability": 0.7335 + }, + { + "start": 26052.72, + "end": 26053.3, + "probability": 0.6944 + }, + { + "start": 26054.04, + "end": 26054.82, + "probability": 0.5979 + }, + { + "start": 26054.98, + "end": 26055.35, + "probability": 0.515 + }, + { + "start": 26056.7, + "end": 26057.14, + "probability": 0.3343 + }, + { + "start": 26057.14, + "end": 26057.14, + "probability": 0.0089 + }, + { + "start": 26057.14, + "end": 26057.6, + "probability": 0.1609 + }, + { + "start": 26057.68, + "end": 26060.14, + "probability": 0.4509 + }, + { + "start": 26060.24, + "end": 26060.62, + "probability": 0.5302 + }, + { + "start": 26060.72, + "end": 26062.16, + "probability": 0.3262 + }, + { + "start": 26062.16, + "end": 26062.28, + "probability": 0.4834 + }, + { + "start": 26062.36, + "end": 26062.46, + "probability": 0.2746 + }, + { + "start": 26062.46, + "end": 26063.0, + "probability": 0.9563 + }, + { + "start": 26063.1, + "end": 26063.76, + "probability": 0.7856 + }, + { + "start": 26063.88, + "end": 26066.6, + "probability": 0.7759 + }, + { + "start": 26066.6, + "end": 26068.1, + "probability": 0.5793 + }, + { + "start": 26068.24, + "end": 26069.42, + "probability": 0.8552 + }, + { + "start": 26070.02, + "end": 26072.06, + "probability": 0.9859 + }, + { + "start": 26072.08, + "end": 26073.64, + "probability": 0.9293 + }, + { + "start": 26073.84, + "end": 26076.44, + "probability": 0.6921 + }, + { + "start": 26076.44, + "end": 26079.77, + "probability": 0.6553 + }, + { + "start": 26080.24, + "end": 26081.5, + "probability": 0.8655 + }, + { + "start": 26082.32, + "end": 26084.74, + "probability": 0.9834 + }, + { + "start": 26085.14, + "end": 26087.0, + "probability": 0.6672 + }, + { + "start": 26087.1, + "end": 26089.66, + "probability": 0.9518 + }, + { + "start": 26090.06, + "end": 26091.0, + "probability": 0.5544 + }, + { + "start": 26091.06, + "end": 26094.78, + "probability": 0.9039 + }, + { + "start": 26095.18, + "end": 26096.28, + "probability": 0.8686 + }, + { + "start": 26096.56, + "end": 26097.32, + "probability": 0.6116 + }, + { + "start": 26097.46, + "end": 26098.0, + "probability": 0.2614 + }, + { + "start": 26098.04, + "end": 26100.3, + "probability": 0.8994 + }, + { + "start": 26100.8, + "end": 26101.66, + "probability": 0.9168 + }, + { + "start": 26102.82, + "end": 26107.92, + "probability": 0.9493 + }, + { + "start": 26108.46, + "end": 26113.38, + "probability": 0.99 + }, + { + "start": 26113.8, + "end": 26115.38, + "probability": 0.9176 + }, + { + "start": 26116.06, + "end": 26117.92, + "probability": 0.8516 + }, + { + "start": 26118.3, + "end": 26120.08, + "probability": 0.9181 + }, + { + "start": 26120.22, + "end": 26121.96, + "probability": 0.9753 + }, + { + "start": 26122.16, + "end": 26124.06, + "probability": 0.9946 + }, + { + "start": 26124.22, + "end": 26125.52, + "probability": 0.7234 + }, + { + "start": 26125.64, + "end": 26130.34, + "probability": 0.9497 + }, + { + "start": 26130.48, + "end": 26135.86, + "probability": 0.939 + }, + { + "start": 26136.08, + "end": 26138.4, + "probability": 0.7993 + }, + { + "start": 26139.18, + "end": 26140.38, + "probability": 0.7825 + }, + { + "start": 26141.0, + "end": 26143.34, + "probability": 0.8884 + }, + { + "start": 26146.23, + "end": 26147.24, + "probability": 0.0416 + }, + { + "start": 26147.24, + "end": 26147.24, + "probability": 0.2226 + }, + { + "start": 26147.3, + "end": 26148.27, + "probability": 0.4975 + }, + { + "start": 26148.36, + "end": 26148.36, + "probability": 0.2403 + }, + { + "start": 26148.36, + "end": 26148.36, + "probability": 0.1156 + }, + { + "start": 26148.36, + "end": 26148.6, + "probability": 0.6786 + }, + { + "start": 26149.2, + "end": 26151.13, + "probability": 0.8576 + }, + { + "start": 26152.84, + "end": 26152.94, + "probability": 0.1402 + }, + { + "start": 26152.94, + "end": 26153.5, + "probability": 0.5651 + }, + { + "start": 26153.7, + "end": 26154.12, + "probability": 0.7423 + }, + { + "start": 26154.26, + "end": 26155.38, + "probability": 0.6869 + }, + { + "start": 26155.48, + "end": 26157.68, + "probability": 0.9573 + }, + { + "start": 26158.76, + "end": 26162.27, + "probability": 0.9359 + }, + { + "start": 26162.52, + "end": 26163.58, + "probability": 0.9951 + }, + { + "start": 26163.9, + "end": 26163.94, + "probability": 0.2316 + }, + { + "start": 26163.94, + "end": 26164.98, + "probability": 0.6367 + }, + { + "start": 26165.64, + "end": 26167.42, + "probability": 0.7162 + }, + { + "start": 26167.5, + "end": 26168.38, + "probability": 0.9924 + }, + { + "start": 26168.38, + "end": 26168.6, + "probability": 0.6693 + }, + { + "start": 26169.0, + "end": 26170.74, + "probability": 0.7524 + }, + { + "start": 26170.92, + "end": 26174.72, + "probability": 0.8981 + }, + { + "start": 26174.98, + "end": 26176.08, + "probability": 0.9884 + }, + { + "start": 26176.34, + "end": 26178.64, + "probability": 0.3286 + }, + { + "start": 26178.7, + "end": 26179.94, + "probability": 0.6227 + }, + { + "start": 26179.94, + "end": 26180.3, + "probability": 0.4056 + }, + { + "start": 26180.3, + "end": 26180.3, + "probability": 0.3921 + }, + { + "start": 26180.3, + "end": 26180.95, + "probability": 0.3936 + }, + { + "start": 26181.74, + "end": 26182.58, + "probability": 0.2891 + }, + { + "start": 26183.2, + "end": 26184.66, + "probability": 0.4611 + }, + { + "start": 26190.28, + "end": 26192.92, + "probability": 0.608 + }, + { + "start": 26200.62, + "end": 26201.9, + "probability": 0.8041 + }, + { + "start": 26202.78, + "end": 26203.86, + "probability": 0.6973 + }, + { + "start": 26205.36, + "end": 26206.64, + "probability": 0.7004 + }, + { + "start": 26207.5, + "end": 26208.92, + "probability": 0.6475 + }, + { + "start": 26208.98, + "end": 26214.7, + "probability": 0.7817 + }, + { + "start": 26214.84, + "end": 26217.28, + "probability": 0.9665 + }, + { + "start": 26217.32, + "end": 26221.2, + "probability": 0.8695 + }, + { + "start": 26221.7, + "end": 26222.88, + "probability": 0.6949 + }, + { + "start": 26223.0, + "end": 26225.88, + "probability": 0.9719 + }, + { + "start": 26226.22, + "end": 26228.14, + "probability": 0.8864 + }, + { + "start": 26228.36, + "end": 26230.06, + "probability": 0.7697 + }, + { + "start": 26230.22, + "end": 26231.6, + "probability": 0.9845 + }, + { + "start": 26232.4, + "end": 26233.22, + "probability": 0.9615 + }, + { + "start": 26234.3, + "end": 26240.02, + "probability": 0.972 + }, + { + "start": 26240.94, + "end": 26242.0, + "probability": 0.9224 + }, + { + "start": 26242.34, + "end": 26245.38, + "probability": 0.9706 + }, + { + "start": 26247.26, + "end": 26248.02, + "probability": 0.7387 + }, + { + "start": 26248.54, + "end": 26248.9, + "probability": 0.3371 + }, + { + "start": 26249.14, + "end": 26249.7, + "probability": 0.86 + }, + { + "start": 26250.18, + "end": 26250.74, + "probability": 0.6852 + }, + { + "start": 26251.48, + "end": 26252.82, + "probability": 0.9673 + }, + { + "start": 26253.94, + "end": 26254.16, + "probability": 0.707 + }, + { + "start": 26255.1, + "end": 26255.98, + "probability": 0.8729 + }, + { + "start": 26255.98, + "end": 26256.16, + "probability": 0.8943 + }, + { + "start": 26257.46, + "end": 26259.76, + "probability": 0.4991 + }, + { + "start": 26260.36, + "end": 26264.26, + "probability": 0.6421 + }, + { + "start": 26265.02, + "end": 26267.2, + "probability": 0.8613 + }, + { + "start": 26268.5, + "end": 26269.3, + "probability": 0.6499 + }, + { + "start": 26269.82, + "end": 26270.42, + "probability": 0.6856 + }, + { + "start": 26270.94, + "end": 26272.28, + "probability": 0.2561 + }, + { + "start": 26272.28, + "end": 26273.26, + "probability": 0.1685 + }, + { + "start": 26274.58, + "end": 26275.42, + "probability": 0.2939 + }, + { + "start": 26275.82, + "end": 26278.48, + "probability": 0.8424 + }, + { + "start": 26279.18, + "end": 26280.04, + "probability": 0.7729 + }, + { + "start": 26280.16, + "end": 26284.96, + "probability": 0.8261 + }, + { + "start": 26284.98, + "end": 26285.08, + "probability": 0.4425 + }, + { + "start": 26286.02, + "end": 26286.34, + "probability": 0.7677 + }, + { + "start": 26286.44, + "end": 26287.54, + "probability": 0.8101 + }, + { + "start": 26287.62, + "end": 26288.08, + "probability": 0.649 + }, + { + "start": 26288.14, + "end": 26289.46, + "probability": 0.8989 + }, + { + "start": 26289.52, + "end": 26290.6, + "probability": 0.6549 + }, + { + "start": 26290.74, + "end": 26291.4, + "probability": 0.9814 + }, + { + "start": 26292.52, + "end": 26296.32, + "probability": 0.6742 + }, + { + "start": 26297.3, + "end": 26297.86, + "probability": 0.5562 + }, + { + "start": 26297.96, + "end": 26298.46, + "probability": 0.8963 + }, + { + "start": 26298.7, + "end": 26300.7, + "probability": 0.8657 + }, + { + "start": 26300.98, + "end": 26301.52, + "probability": 0.4627 + }, + { + "start": 26301.62, + "end": 26305.02, + "probability": 0.4955 + }, + { + "start": 26305.04, + "end": 26305.58, + "probability": 0.6335 + }, + { + "start": 26305.66, + "end": 26307.22, + "probability": 0.958 + }, + { + "start": 26308.46, + "end": 26309.56, + "probability": 0.8192 + }, + { + "start": 26309.66, + "end": 26310.78, + "probability": 0.5162 + }, + { + "start": 26310.94, + "end": 26313.62, + "probability": 0.6312 + }, + { + "start": 26314.2, + "end": 26314.8, + "probability": 0.9696 + }, + { + "start": 26315.5, + "end": 26316.26, + "probability": 0.7359 + }, + { + "start": 26316.32, + "end": 26317.32, + "probability": 0.7029 + }, + { + "start": 26317.46, + "end": 26318.84, + "probability": 0.7691 + }, + { + "start": 26318.84, + "end": 26319.44, + "probability": 0.8063 + }, + { + "start": 26319.44, + "end": 26321.22, + "probability": 0.8356 + }, + { + "start": 26322.1, + "end": 26325.41, + "probability": 0.9819 + }, + { + "start": 26326.16, + "end": 26331.12, + "probability": 0.9721 + }, + { + "start": 26331.62, + "end": 26334.24, + "probability": 0.9481 + }, + { + "start": 26334.88, + "end": 26337.46, + "probability": 0.9842 + }, + { + "start": 26338.48, + "end": 26341.52, + "probability": 0.7168 + }, + { + "start": 26342.72, + "end": 26346.72, + "probability": 0.9154 + }, + { + "start": 26347.6, + "end": 26349.04, + "probability": 0.0785 + }, + { + "start": 26349.06, + "end": 26350.04, + "probability": 0.8896 + }, + { + "start": 26350.12, + "end": 26351.56, + "probability": 0.9663 + }, + { + "start": 26352.5, + "end": 26354.64, + "probability": 0.9558 + }, + { + "start": 26355.3, + "end": 26357.46, + "probability": 0.8506 + }, + { + "start": 26358.12, + "end": 26360.9, + "probability": 0.7455 + }, + { + "start": 26361.22, + "end": 26361.98, + "probability": 0.7446 + }, + { + "start": 26362.0, + "end": 26362.18, + "probability": 0.7626 + }, + { + "start": 26362.3, + "end": 26364.44, + "probability": 0.897 + }, + { + "start": 26365.18, + "end": 26368.18, + "probability": 0.9868 + }, + { + "start": 26368.5, + "end": 26368.94, + "probability": 0.4576 + }, + { + "start": 26369.0, + "end": 26371.2, + "probability": 0.9877 + }, + { + "start": 26371.24, + "end": 26372.2, + "probability": 0.8252 + }, + { + "start": 26373.38, + "end": 26374.78, + "probability": 0.733 + }, + { + "start": 26374.88, + "end": 26376.6, + "probability": 0.6263 + }, + { + "start": 26376.66, + "end": 26377.4, + "probability": 0.992 + }, + { + "start": 26378.08, + "end": 26380.08, + "probability": 0.7114 + }, + { + "start": 26380.14, + "end": 26383.2, + "probability": 0.8454 + }, + { + "start": 26383.72, + "end": 26386.32, + "probability": 0.7248 + }, + { + "start": 26386.96, + "end": 26388.1, + "probability": 0.9625 + }, + { + "start": 26388.12, + "end": 26390.02, + "probability": 0.8708 + }, + { + "start": 26390.6, + "end": 26392.92, + "probability": 0.7881 + }, + { + "start": 26393.42, + "end": 26394.42, + "probability": 0.9297 + }, + { + "start": 26395.08, + "end": 26396.36, + "probability": 0.9314 + }, + { + "start": 26396.44, + "end": 26397.9, + "probability": 0.9504 + }, + { + "start": 26398.24, + "end": 26398.9, + "probability": 0.8264 + }, + { + "start": 26399.38, + "end": 26400.5, + "probability": 0.9647 + }, + { + "start": 26400.84, + "end": 26401.82, + "probability": 0.7393 + }, + { + "start": 26402.08, + "end": 26402.77, + "probability": 0.7167 + }, + { + "start": 26403.64, + "end": 26403.64, + "probability": 0.3803 + }, + { + "start": 26403.64, + "end": 26404.97, + "probability": 0.9333 + }, + { + "start": 26405.84, + "end": 26406.54, + "probability": 0.8102 + }, + { + "start": 26406.64, + "end": 26409.22, + "probability": 0.9932 + }, + { + "start": 26409.86, + "end": 26413.72, + "probability": 0.9515 + }, + { + "start": 26414.18, + "end": 26416.18, + "probability": 0.9922 + }, + { + "start": 26416.26, + "end": 26419.01, + "probability": 0.9956 + }, + { + "start": 26419.12, + "end": 26420.04, + "probability": 0.4544 + }, + { + "start": 26420.16, + "end": 26420.72, + "probability": 0.6656 + }, + { + "start": 26420.8, + "end": 26421.5, + "probability": 0.9197 + }, + { + "start": 26422.02, + "end": 26425.5, + "probability": 0.8931 + }, + { + "start": 26425.5, + "end": 26428.74, + "probability": 0.9868 + }, + { + "start": 26428.76, + "end": 26429.12, + "probability": 0.7342 + }, + { + "start": 26429.36, + "end": 26430.8, + "probability": 0.5282 + }, + { + "start": 26430.92, + "end": 26433.24, + "probability": 0.8732 + }, + { + "start": 26433.8, + "end": 26435.32, + "probability": 0.9836 + }, + { + "start": 26436.1, + "end": 26438.74, + "probability": 0.4718 + }, + { + "start": 26443.06, + "end": 26443.44, + "probability": 0.7659 + }, + { + "start": 26448.6, + "end": 26448.62, + "probability": 0.1796 + }, + { + "start": 26448.62, + "end": 26448.62, + "probability": 0.1838 + }, + { + "start": 26448.62, + "end": 26449.58, + "probability": 0.3803 + }, + { + "start": 26450.3, + "end": 26450.92, + "probability": 0.3344 + }, + { + "start": 26451.52, + "end": 26451.7, + "probability": 0.4268 + }, + { + "start": 26454.0, + "end": 26457.06, + "probability": 0.2416 + }, + { + "start": 26457.4, + "end": 26458.16, + "probability": 0.038 + }, + { + "start": 26458.46, + "end": 26461.88, + "probability": 0.771 + }, + { + "start": 26462.76, + "end": 26465.14, + "probability": 0.732 + }, + { + "start": 26465.74, + "end": 26465.96, + "probability": 0.6177 + }, + { + "start": 26466.02, + "end": 26468.88, + "probability": 0.9987 + }, + { + "start": 26470.73, + "end": 26474.82, + "probability": 0.9985 + }, + { + "start": 26474.98, + "end": 26476.08, + "probability": 0.9314 + }, + { + "start": 26476.2, + "end": 26477.8, + "probability": 0.9737 + }, + { + "start": 26478.34, + "end": 26482.14, + "probability": 0.9973 + }, + { + "start": 26484.33, + "end": 26485.44, + "probability": 0.0331 + }, + { + "start": 26485.54, + "end": 26488.82, + "probability": 0.9126 + }, + { + "start": 26489.38, + "end": 26492.24, + "probability": 0.9788 + }, + { + "start": 26492.8, + "end": 26495.16, + "probability": 0.7726 + }, + { + "start": 26495.32, + "end": 26498.1, + "probability": 0.95 + }, + { + "start": 26498.46, + "end": 26500.12, + "probability": 0.7245 + }, + { + "start": 26500.8, + "end": 26502.88, + "probability": 0.9305 + }, + { + "start": 26503.04, + "end": 26503.28, + "probability": 0.9886 + }, + { + "start": 26503.34, + "end": 26507.76, + "probability": 0.9948 + }, + { + "start": 26508.06, + "end": 26511.0, + "probability": 0.9946 + }, + { + "start": 26511.2, + "end": 26513.16, + "probability": 0.7315 + }, + { + "start": 26514.0, + "end": 26516.36, + "probability": 0.9741 + }, + { + "start": 26516.48, + "end": 26519.38, + "probability": 0.972 + }, + { + "start": 26519.46, + "end": 26520.52, + "probability": 0.7479 + }, + { + "start": 26520.66, + "end": 26521.66, + "probability": 0.9548 + }, + { + "start": 26522.06, + "end": 26522.4, + "probability": 0.5676 + }, + { + "start": 26523.1, + "end": 26525.02, + "probability": 0.6209 + }, + { + "start": 26525.86, + "end": 26528.3, + "probability": 0.821 + }, + { + "start": 26528.46, + "end": 26528.92, + "probability": 0.5306 + }, + { + "start": 26529.12, + "end": 26531.6, + "probability": 0.9743 + }, + { + "start": 26531.8, + "end": 26535.83, + "probability": 0.9871 + }, + { + "start": 26536.74, + "end": 26539.61, + "probability": 0.7533 + }, + { + "start": 26539.9, + "end": 26545.97, + "probability": 0.9797 + }, + { + "start": 26546.66, + "end": 26551.14, + "probability": 0.9175 + }, + { + "start": 26551.36, + "end": 26551.7, + "probability": 0.8169 + }, + { + "start": 26551.84, + "end": 26553.18, + "probability": 0.9915 + }, + { + "start": 26553.3, + "end": 26553.5, + "probability": 0.8987 + }, + { + "start": 26554.0, + "end": 26554.96, + "probability": 0.906 + }, + { + "start": 26555.44, + "end": 26557.82, + "probability": 0.9944 + }, + { + "start": 26557.82, + "end": 26561.58, + "probability": 0.9947 + }, + { + "start": 26562.18, + "end": 26565.9, + "probability": 0.9922 + }, + { + "start": 26566.18, + "end": 26567.2, + "probability": 0.9126 + }, + { + "start": 26567.68, + "end": 26569.84, + "probability": 0.9954 + }, + { + "start": 26572.04, + "end": 26574.26, + "probability": 0.9749 + }, + { + "start": 26574.36, + "end": 26576.6, + "probability": 0.8457 + }, + { + "start": 26576.78, + "end": 26579.42, + "probability": 0.9923 + }, + { + "start": 26579.42, + "end": 26582.2, + "probability": 0.9961 + }, + { + "start": 26582.94, + "end": 26585.12, + "probability": 0.9977 + }, + { + "start": 26585.12, + "end": 26587.74, + "probability": 0.9991 + }, + { + "start": 26588.56, + "end": 26590.26, + "probability": 0.9971 + }, + { + "start": 26590.7, + "end": 26592.58, + "probability": 0.8614 + }, + { + "start": 26592.66, + "end": 26594.22, + "probability": 0.9512 + }, + { + "start": 26594.58, + "end": 26596.96, + "probability": 0.908 + }, + { + "start": 26597.0, + "end": 26599.34, + "probability": 0.7784 + }, + { + "start": 26599.36, + "end": 26601.42, + "probability": 0.7264 + }, + { + "start": 26601.6, + "end": 26602.5, + "probability": 0.7439 + }, + { + "start": 26602.86, + "end": 26605.48, + "probability": 0.6413 + }, + { + "start": 26606.22, + "end": 26610.44, + "probability": 0.9764 + }, + { + "start": 26611.36, + "end": 26614.26, + "probability": 0.9545 + }, + { + "start": 26614.76, + "end": 26616.38, + "probability": 0.8383 + }, + { + "start": 26616.42, + "end": 26620.94, + "probability": 0.963 + }, + { + "start": 26621.3, + "end": 26624.68, + "probability": 0.9835 + }, + { + "start": 26624.7, + "end": 26627.7, + "probability": 0.9923 + }, + { + "start": 26628.68, + "end": 26629.88, + "probability": 0.9272 + }, + { + "start": 26629.96, + "end": 26632.36, + "probability": 0.988 + }, + { + "start": 26633.28, + "end": 26633.74, + "probability": 0.6964 + }, + { + "start": 26633.84, + "end": 26636.78, + "probability": 0.9905 + }, + { + "start": 26637.06, + "end": 26638.54, + "probability": 0.7668 + }, + { + "start": 26638.92, + "end": 26641.58, + "probability": 0.9782 + }, + { + "start": 26641.58, + "end": 26643.44, + "probability": 0.9725 + }, + { + "start": 26644.46, + "end": 26648.74, + "probability": 0.9945 + }, + { + "start": 26649.14, + "end": 26650.95, + "probability": 0.8949 + }, + { + "start": 26652.24, + "end": 26654.0, + "probability": 0.9951 + }, + { + "start": 26654.62, + "end": 26656.58, + "probability": 0.9822 + }, + { + "start": 26656.58, + "end": 26658.9, + "probability": 0.9917 + }, + { + "start": 26659.0, + "end": 26660.3, + "probability": 0.6139 + }, + { + "start": 26660.78, + "end": 26660.78, + "probability": 0.2959 + }, + { + "start": 26660.8, + "end": 26663.97, + "probability": 0.9834 + }, + { + "start": 26664.45, + "end": 26668.32, + "probability": 0.9886 + }, + { + "start": 26669.06, + "end": 26671.58, + "probability": 0.9873 + }, + { + "start": 26671.58, + "end": 26676.17, + "probability": 0.9951 + }, + { + "start": 26677.64, + "end": 26678.22, + "probability": 0.6908 + }, + { + "start": 26681.2, + "end": 26682.92, + "probability": 0.9886 + }, + { + "start": 26683.78, + "end": 26686.14, + "probability": 0.9978 + }, + { + "start": 26686.14, + "end": 26688.96, + "probability": 0.9907 + }, + { + "start": 26689.7, + "end": 26692.92, + "probability": 0.9305 + }, + { + "start": 26693.2, + "end": 26693.52, + "probability": 0.513 + }, + { + "start": 26694.12, + "end": 26696.84, + "probability": 0.9513 + }, + { + "start": 26697.72, + "end": 26700.32, + "probability": 0.9888 + }, + { + "start": 26700.4, + "end": 26703.64, + "probability": 0.9889 + }, + { + "start": 26703.72, + "end": 26705.34, + "probability": 0.9868 + }, + { + "start": 26705.78, + "end": 26706.6, + "probability": 0.8571 + }, + { + "start": 26706.7, + "end": 26708.6, + "probability": 0.9374 + }, + { + "start": 26708.72, + "end": 26709.46, + "probability": 0.8056 + }, + { + "start": 26709.94, + "end": 26710.7, + "probability": 0.9884 + }, + { + "start": 26711.36, + "end": 26714.22, + "probability": 0.9437 + }, + { + "start": 26714.22, + "end": 26717.22, + "probability": 0.9954 + }, + { + "start": 26717.34, + "end": 26718.8, + "probability": 0.9463 + }, + { + "start": 26719.4, + "end": 26719.6, + "probability": 0.7362 + }, + { + "start": 26720.34, + "end": 26723.1, + "probability": 0.9937 + }, + { + "start": 26723.1, + "end": 26725.4, + "probability": 0.9983 + }, + { + "start": 26726.02, + "end": 26728.6, + "probability": 0.9924 + }, + { + "start": 26728.6, + "end": 26733.1, + "probability": 0.9859 + }, + { + "start": 26733.1, + "end": 26737.34, + "probability": 0.9444 + }, + { + "start": 26737.86, + "end": 26741.48, + "probability": 0.8636 + }, + { + "start": 26741.56, + "end": 26742.88, + "probability": 0.9341 + }, + { + "start": 26743.02, + "end": 26743.4, + "probability": 0.8452 + }, + { + "start": 26743.78, + "end": 26745.7, + "probability": 0.9321 + }, + { + "start": 26746.36, + "end": 26746.64, + "probability": 0.8442 + }, + { + "start": 26747.46, + "end": 26748.1, + "probability": 0.5545 + }, + { + "start": 26748.34, + "end": 26749.92, + "probability": 0.6714 + }, + { + "start": 26749.92, + "end": 26754.76, + "probability": 0.9653 + }, + { + "start": 26755.62, + "end": 26758.0, + "probability": 0.993 + }, + { + "start": 26758.0, + "end": 26761.08, + "probability": 0.9986 + }, + { + "start": 26761.62, + "end": 26764.18, + "probability": 0.9673 + }, + { + "start": 26764.58, + "end": 26767.14, + "probability": 0.9908 + }, + { + "start": 26767.72, + "end": 26769.88, + "probability": 0.9967 + }, + { + "start": 26769.88, + "end": 26773.26, + "probability": 0.7738 + }, + { + "start": 26773.52, + "end": 26777.2, + "probability": 0.9877 + }, + { + "start": 26778.56, + "end": 26781.96, + "probability": 0.8088 + }, + { + "start": 26782.0, + "end": 26784.82, + "probability": 0.98 + }, + { + "start": 26785.38, + "end": 26785.92, + "probability": 0.7572 + }, + { + "start": 26786.02, + "end": 26787.88, + "probability": 0.7183 + }, + { + "start": 26788.22, + "end": 26790.68, + "probability": 0.6835 + }, + { + "start": 26791.04, + "end": 26791.64, + "probability": 0.8535 + }, + { + "start": 26791.78, + "end": 26794.32, + "probability": 0.888 + }, + { + "start": 26794.46, + "end": 26797.64, + "probability": 0.9837 + }, + { + "start": 26797.8, + "end": 26801.5, + "probability": 0.7906 + }, + { + "start": 26801.94, + "end": 26804.74, + "probability": 0.9337 + }, + { + "start": 26805.64, + "end": 26807.94, + "probability": 0.973 + }, + { + "start": 26809.84, + "end": 26813.1, + "probability": 0.8842 + }, + { + "start": 26813.1, + "end": 26816.22, + "probability": 0.9667 + }, + { + "start": 26816.34, + "end": 26819.66, + "probability": 0.9424 + }, + { + "start": 26819.66, + "end": 26823.88, + "probability": 0.995 + }, + { + "start": 26824.32, + "end": 26825.82, + "probability": 0.9693 + }, + { + "start": 26825.94, + "end": 26827.08, + "probability": 0.9042 + }, + { + "start": 26827.12, + "end": 26828.24, + "probability": 0.8212 + }, + { + "start": 26828.32, + "end": 26830.4, + "probability": 0.984 + }, + { + "start": 26831.2, + "end": 26833.0, + "probability": 0.96 + }, + { + "start": 26833.0, + "end": 26837.06, + "probability": 0.9843 + }, + { + "start": 26837.14, + "end": 26840.82, + "probability": 0.9248 + }, + { + "start": 26841.2, + "end": 26845.04, + "probability": 0.8693 + }, + { + "start": 26846.48, + "end": 26847.56, + "probability": 0.6687 + }, + { + "start": 26848.5, + "end": 26848.8, + "probability": 0.8665 + }, + { + "start": 26848.94, + "end": 26849.9, + "probability": 0.8459 + }, + { + "start": 26850.4, + "end": 26851.84, + "probability": 0.9882 + }, + { + "start": 26852.62, + "end": 26852.88, + "probability": 0.9167 + }, + { + "start": 26854.58, + "end": 26858.52, + "probability": 0.7659 + }, + { + "start": 26859.9, + "end": 26860.46, + "probability": 0.5201 + }, + { + "start": 26861.2, + "end": 26862.76, + "probability": 0.6513 + }, + { + "start": 26867.34, + "end": 26868.16, + "probability": 0.7155 + }, + { + "start": 26868.94, + "end": 26869.98, + "probability": 0.603 + }, + { + "start": 26870.24, + "end": 26871.04, + "probability": 0.5625 + }, + { + "start": 26871.32, + "end": 26872.16, + "probability": 0.5257 + }, + { + "start": 26872.64, + "end": 26873.56, + "probability": 0.677 + }, + { + "start": 26875.5, + "end": 26876.01, + "probability": 0.2869 + }, + { + "start": 26890.12, + "end": 26890.38, + "probability": 0.3441 + }, + { + "start": 26890.38, + "end": 26890.74, + "probability": 0.4994 + }, + { + "start": 26891.82, + "end": 26893.19, + "probability": 0.8601 + }, + { + "start": 26893.64, + "end": 26896.3, + "probability": 0.7213 + }, + { + "start": 26897.22, + "end": 26898.72, + "probability": 0.492 + }, + { + "start": 26899.4, + "end": 26900.6, + "probability": 0.5581 + }, + { + "start": 26901.64, + "end": 26904.0, + "probability": 0.669 + }, + { + "start": 26908.48, + "end": 26908.84, + "probability": 0.5631 + }, + { + "start": 26910.3, + "end": 26911.38, + "probability": 0.419 + }, + { + "start": 26911.52, + "end": 26913.54, + "probability": 0.5734 + }, + { + "start": 26913.66, + "end": 26915.7, + "probability": 0.7934 + }, + { + "start": 26919.98, + "end": 26920.3, + "probability": 0.6474 + }, + { + "start": 26920.6, + "end": 26920.98, + "probability": 0.7458 + }, + { + "start": 26921.76, + "end": 26926.0, + "probability": 0.9944 + }, + { + "start": 26927.3, + "end": 26928.36, + "probability": 0.2433 + }, + { + "start": 26930.42, + "end": 26937.86, + "probability": 0.303 + }, + { + "start": 26938.5, + "end": 26938.5, + "probability": 0.0089 + }, + { + "start": 26938.5, + "end": 26940.5, + "probability": 0.8271 + }, + { + "start": 26960.91, + "end": 26962.73, + "probability": 0.7542 + }, + { + "start": 26964.32, + "end": 26966.14, + "probability": 0.7694 + }, + { + "start": 26967.42, + "end": 26972.28, + "probability": 0.9346 + }, + { + "start": 26972.98, + "end": 26976.46, + "probability": 0.9677 + }, + { + "start": 26977.54, + "end": 26979.58, + "probability": 0.8137 + }, + { + "start": 26979.6, + "end": 26982.58, + "probability": 0.9694 + }, + { + "start": 26983.28, + "end": 26985.08, + "probability": 0.9899 + }, + { + "start": 26985.84, + "end": 26989.48, + "probability": 0.992 + }, + { + "start": 26990.08, + "end": 26991.68, + "probability": 0.7964 + }, + { + "start": 26992.7, + "end": 26994.6, + "probability": 0.899 + }, + { + "start": 26995.36, + "end": 26996.71, + "probability": 0.9988 + }, + { + "start": 26997.78, + "end": 26998.98, + "probability": 0.9845 + }, + { + "start": 26999.2, + "end": 27003.3, + "probability": 0.9569 + }, + { + "start": 27003.3, + "end": 27006.56, + "probability": 0.9966 + }, + { + "start": 27007.1, + "end": 27010.4, + "probability": 0.8579 + }, + { + "start": 27010.52, + "end": 27013.6, + "probability": 0.9066 + }, + { + "start": 27013.7, + "end": 27017.62, + "probability": 0.794 + }, + { + "start": 27018.4, + "end": 27022.68, + "probability": 0.9324 + }, + { + "start": 27023.26, + "end": 27025.0, + "probability": 0.8807 + }, + { + "start": 27025.98, + "end": 27029.04, + "probability": 0.9634 + }, + { + "start": 27029.04, + "end": 27032.74, + "probability": 0.9841 + }, + { + "start": 27033.14, + "end": 27037.46, + "probability": 0.9959 + }, + { + "start": 27037.46, + "end": 27041.78, + "probability": 0.9992 + }, + { + "start": 27042.3, + "end": 27045.08, + "probability": 0.7706 + }, + { + "start": 27046.02, + "end": 27051.78, + "probability": 0.9964 + }, + { + "start": 27052.74, + "end": 27055.3, + "probability": 0.9955 + }, + { + "start": 27055.3, + "end": 27058.14, + "probability": 0.9935 + }, + { + "start": 27058.9, + "end": 27060.02, + "probability": 0.7505 + }, + { + "start": 27060.64, + "end": 27063.56, + "probability": 0.9378 + }, + { + "start": 27063.56, + "end": 27066.18, + "probability": 0.9957 + }, + { + "start": 27067.66, + "end": 27068.29, + "probability": 0.8596 + }, + { + "start": 27068.54, + "end": 27072.5, + "probability": 0.9945 + }, + { + "start": 27072.78, + "end": 27074.16, + "probability": 0.1341 + }, + { + "start": 27074.82, + "end": 27075.32, + "probability": 0.2588 + }, + { + "start": 27075.42, + "end": 27077.54, + "probability": 0.9421 + }, + { + "start": 27079.08, + "end": 27082.24, + "probability": 0.895 + }, + { + "start": 27083.76, + "end": 27085.2, + "probability": 0.9652 + }, + { + "start": 27085.3, + "end": 27085.38, + "probability": 0.9712 + }, + { + "start": 27085.38, + "end": 27086.9, + "probability": 0.1285 + }, + { + "start": 27087.6, + "end": 27089.8, + "probability": 0.9616 + }, + { + "start": 27089.86, + "end": 27091.16, + "probability": 0.6978 + }, + { + "start": 27091.32, + "end": 27095.02, + "probability": 0.9915 + }, + { + "start": 27095.6, + "end": 27098.38, + "probability": 0.9903 + }, + { + "start": 27098.52, + "end": 27099.88, + "probability": 0.8595 + }, + { + "start": 27100.42, + "end": 27103.34, + "probability": 0.8365 + }, + { + "start": 27103.34, + "end": 27107.32, + "probability": 0.991 + }, + { + "start": 27107.92, + "end": 27111.66, + "probability": 0.9757 + }, + { + "start": 27112.34, + "end": 27115.8, + "probability": 0.986 + }, + { + "start": 27115.8, + "end": 27119.86, + "probability": 0.9991 + }, + { + "start": 27119.86, + "end": 27124.0, + "probability": 0.9945 + }, + { + "start": 27124.7, + "end": 27128.98, + "probability": 0.8038 + }, + { + "start": 27129.9, + "end": 27132.06, + "probability": 0.9917 + }, + { + "start": 27132.92, + "end": 27134.58, + "probability": 0.9939 + }, + { + "start": 27135.24, + "end": 27136.92, + "probability": 0.9893 + }, + { + "start": 27137.46, + "end": 27139.58, + "probability": 0.9907 + }, + { + "start": 27140.1, + "end": 27144.02, + "probability": 0.9536 + }, + { + "start": 27144.74, + "end": 27148.84, + "probability": 0.9663 + }, + { + "start": 27149.66, + "end": 27153.46, + "probability": 0.8727 + }, + { + "start": 27154.24, + "end": 27156.1, + "probability": 0.8949 + }, + { + "start": 27156.16, + "end": 27161.69, + "probability": 0.8918 + }, + { + "start": 27162.18, + "end": 27162.44, + "probability": 0.6646 + }, + { + "start": 27162.58, + "end": 27163.68, + "probability": 0.9773 + }, + { + "start": 27166.52, + "end": 27166.72, + "probability": 0.0217 + }, + { + "start": 27166.8, + "end": 27169.78, + "probability": 0.1967 + }, + { + "start": 27198.72, + "end": 27200.64, + "probability": 0.6745 + }, + { + "start": 27201.88, + "end": 27204.5, + "probability": 0.803 + }, + { + "start": 27205.8, + "end": 27207.62, + "probability": 0.9961 + }, + { + "start": 27208.0, + "end": 27209.96, + "probability": 0.714 + }, + { + "start": 27211.2, + "end": 27214.06, + "probability": 0.9976 + }, + { + "start": 27214.12, + "end": 27215.18, + "probability": 0.9382 + }, + { + "start": 27215.64, + "end": 27215.74, + "probability": 0.6636 + }, + { + "start": 27216.52, + "end": 27219.12, + "probability": 0.9812 + }, + { + "start": 27220.54, + "end": 27221.54, + "probability": 0.9281 + }, + { + "start": 27222.54, + "end": 27225.34, + "probability": 0.9861 + }, + { + "start": 27226.52, + "end": 27229.78, + "probability": 0.999 + }, + { + "start": 27230.48, + "end": 27232.16, + "probability": 0.9521 + }, + { + "start": 27233.54, + "end": 27234.5, + "probability": 0.9177 + }, + { + "start": 27236.04, + "end": 27239.12, + "probability": 0.9873 + }, + { + "start": 27240.22, + "end": 27242.86, + "probability": 0.9569 + }, + { + "start": 27243.8, + "end": 27245.36, + "probability": 0.963 + }, + { + "start": 27245.96, + "end": 27247.64, + "probability": 0.6062 + }, + { + "start": 27248.42, + "end": 27250.78, + "probability": 0.9911 + }, + { + "start": 27251.62, + "end": 27253.12, + "probability": 0.9769 + }, + { + "start": 27254.16, + "end": 27256.04, + "probability": 0.9902 + }, + { + "start": 27256.84, + "end": 27262.22, + "probability": 0.8057 + }, + { + "start": 27263.1, + "end": 27264.7, + "probability": 0.8909 + }, + { + "start": 27265.54, + "end": 27266.98, + "probability": 0.9611 + }, + { + "start": 27268.64, + "end": 27268.66, + "probability": 0.0744 + }, + { + "start": 27268.66, + "end": 27269.98, + "probability": 0.9472 + }, + { + "start": 27270.2, + "end": 27270.22, + "probability": 0.8406 + }, + { + "start": 27270.22, + "end": 27272.12, + "probability": 0.1196 + }, + { + "start": 27272.12, + "end": 27273.14, + "probability": 0.0644 + }, + { + "start": 27273.5, + "end": 27274.82, + "probability": 0.4925 + }, + { + "start": 27275.76, + "end": 27276.28, + "probability": 0.1273 + }, + { + "start": 27282.58, + "end": 27283.4, + "probability": 0.1225 + }, + { + "start": 27283.4, + "end": 27283.4, + "probability": 0.0269 + }, + { + "start": 27283.46, + "end": 27283.7, + "probability": 0.2097 + }, + { + "start": 27283.7, + "end": 27283.7, + "probability": 0.0571 + }, + { + "start": 27283.7, + "end": 27283.7, + "probability": 0.565 + }, + { + "start": 27283.7, + "end": 27283.7, + "probability": 0.2189 + }, + { + "start": 27283.7, + "end": 27283.7, + "probability": 0.0247 + }, + { + "start": 27283.7, + "end": 27283.7, + "probability": 0.1474 + }, + { + "start": 27283.7, + "end": 27284.82, + "probability": 0.4903 + }, + { + "start": 27284.96, + "end": 27288.15, + "probability": 0.1328 + }, + { + "start": 27292.8, + "end": 27293.32, + "probability": 0.1268 + }, + { + "start": 27293.32, + "end": 27293.92, + "probability": 0.6571 + }, + { + "start": 27294.06, + "end": 27294.92, + "probability": 0.9182 + }, + { + "start": 27295.26, + "end": 27297.4, + "probability": 0.7178 + }, + { + "start": 27297.76, + "end": 27298.78, + "probability": 0.1468 + }, + { + "start": 27300.2, + "end": 27300.58, + "probability": 0.4648 + }, + { + "start": 27300.82, + "end": 27302.72, + "probability": 0.1713 + }, + { + "start": 27305.06, + "end": 27305.5, + "probability": 0.5934 + }, + { + "start": 27305.5, + "end": 27305.56, + "probability": 0.1124 + }, + { + "start": 27305.56, + "end": 27305.62, + "probability": 0.3121 + }, + { + "start": 27305.62, + "end": 27305.68, + "probability": 0.3049 + }, + { + "start": 27305.68, + "end": 27305.68, + "probability": 0.2554 + }, + { + "start": 27305.68, + "end": 27306.8, + "probability": 0.0661 + }, + { + "start": 27306.92, + "end": 27313.56, + "probability": 0.6483 + }, + { + "start": 27313.66, + "end": 27314.3, + "probability": 0.4534 + }, + { + "start": 27314.64, + "end": 27316.84, + "probability": 0.6392 + }, + { + "start": 27317.14, + "end": 27318.26, + "probability": 0.4786 + }, + { + "start": 27318.5, + "end": 27320.62, + "probability": 0.4374 + }, + { + "start": 27320.94, + "end": 27323.38, + "probability": 0.2563 + }, + { + "start": 27323.4, + "end": 27324.52, + "probability": 0.3751 + }, + { + "start": 27324.52, + "end": 27324.56, + "probability": 0.7402 + }, + { + "start": 27324.64, + "end": 27325.66, + "probability": 0.4825 + }, + { + "start": 27325.76, + "end": 27328.97, + "probability": 0.075 + }, + { + "start": 27330.39, + "end": 27330.72, + "probability": 0.1159 + }, + { + "start": 27330.88, + "end": 27330.88, + "probability": 0.0992 + }, + { + "start": 27330.88, + "end": 27331.44, + "probability": 0.5026 + }, + { + "start": 27331.64, + "end": 27333.4, + "probability": 0.446 + }, + { + "start": 27333.46, + "end": 27333.74, + "probability": 0.6511 + }, + { + "start": 27333.76, + "end": 27335.62, + "probability": 0.1202 + }, + { + "start": 27335.9, + "end": 27336.94, + "probability": 0.2592 + }, + { + "start": 27337.18, + "end": 27340.1, + "probability": 0.2617 + }, + { + "start": 27340.24, + "end": 27340.34, + "probability": 0.0854 + }, + { + "start": 27340.42, + "end": 27340.46, + "probability": 0.1491 + }, + { + "start": 27340.6, + "end": 27340.84, + "probability": 0.1018 + }, + { + "start": 27340.96, + "end": 27341.58, + "probability": 0.457 + }, + { + "start": 27341.78, + "end": 27342.99, + "probability": 0.9668 + }, + { + "start": 27343.1, + "end": 27345.06, + "probability": 0.3847 + }, + { + "start": 27345.22, + "end": 27345.78, + "probability": 0.7279 + }, + { + "start": 27345.94, + "end": 27350.46, + "probability": 0.8949 + }, + { + "start": 27351.32, + "end": 27352.6, + "probability": 0.9832 + }, + { + "start": 27352.72, + "end": 27355.38, + "probability": 0.9963 + }, + { + "start": 27355.92, + "end": 27359.96, + "probability": 0.4215 + }, + { + "start": 27360.58, + "end": 27361.68, + "probability": 0.1316 + }, + { + "start": 27362.18, + "end": 27362.98, + "probability": 0.8729 + }, + { + "start": 27364.26, + "end": 27367.72, + "probability": 0.8683 + }, + { + "start": 27368.48, + "end": 27369.08, + "probability": 0.9448 + }, + { + "start": 27369.62, + "end": 27371.88, + "probability": 0.9978 + }, + { + "start": 27372.98, + "end": 27374.4, + "probability": 0.8235 + }, + { + "start": 27375.5, + "end": 27378.46, + "probability": 0.9585 + }, + { + "start": 27379.48, + "end": 27382.08, + "probability": 0.9977 + }, + { + "start": 27382.84, + "end": 27387.28, + "probability": 0.8771 + }, + { + "start": 27388.28, + "end": 27389.3, + "probability": 0.8843 + }, + { + "start": 27390.0, + "end": 27391.24, + "probability": 0.5313 + }, + { + "start": 27392.06, + "end": 27394.48, + "probability": 0.9137 + }, + { + "start": 27395.1, + "end": 27396.28, + "probability": 0.2387 + }, + { + "start": 27396.28, + "end": 27397.44, + "probability": 0.3865 + }, + { + "start": 27397.54, + "end": 27398.7, + "probability": 0.1553 + }, + { + "start": 27398.98, + "end": 27399.1, + "probability": 0.0199 + }, + { + "start": 27399.78, + "end": 27401.04, + "probability": 0.0356 + }, + { + "start": 27401.04, + "end": 27402.18, + "probability": 0.2544 + }, + { + "start": 27402.74, + "end": 27404.62, + "probability": 0.4982 + }, + { + "start": 27404.9, + "end": 27406.54, + "probability": 0.3082 + }, + { + "start": 27406.64, + "end": 27407.14, + "probability": 0.8081 + }, + { + "start": 27407.26, + "end": 27408.74, + "probability": 0.047 + }, + { + "start": 27409.5, + "end": 27410.38, + "probability": 0.201 + }, + { + "start": 27410.38, + "end": 27410.42, + "probability": 0.1763 + }, + { + "start": 27410.42, + "end": 27411.02, + "probability": 0.4441 + }, + { + "start": 27412.54, + "end": 27416.32, + "probability": 0.1331 + }, + { + "start": 27416.32, + "end": 27416.46, + "probability": 0.2493 + }, + { + "start": 27416.88, + "end": 27417.86, + "probability": 0.6269 + }, + { + "start": 27417.94, + "end": 27422.68, + "probability": 0.9832 + }, + { + "start": 27423.42, + "end": 27425.44, + "probability": 0.7279 + }, + { + "start": 27426.36, + "end": 27427.04, + "probability": 0.6162 + }, + { + "start": 27427.72, + "end": 27428.7, + "probability": 0.9803 + }, + { + "start": 27429.08, + "end": 27432.84, + "probability": 0.8654 + }, + { + "start": 27433.18, + "end": 27434.72, + "probability": 0.9971 + }, + { + "start": 27435.32, + "end": 27436.34, + "probability": 0.9261 + }, + { + "start": 27438.36, + "end": 27439.52, + "probability": 0.7039 + }, + { + "start": 27440.9, + "end": 27443.36, + "probability": 0.958 + }, + { + "start": 27444.42, + "end": 27445.16, + "probability": 0.8982 + }, + { + "start": 27446.86, + "end": 27447.96, + "probability": 0.9471 + }, + { + "start": 27448.58, + "end": 27451.32, + "probability": 0.9402 + }, + { + "start": 27452.26, + "end": 27454.7, + "probability": 0.8867 + }, + { + "start": 27455.42, + "end": 27457.26, + "probability": 0.9086 + }, + { + "start": 27457.95, + "end": 27460.71, + "probability": 0.7607 + }, + { + "start": 27461.32, + "end": 27463.06, + "probability": 0.7957 + }, + { + "start": 27463.8, + "end": 27466.48, + "probability": 0.9507 + }, + { + "start": 27467.56, + "end": 27468.76, + "probability": 0.9815 + }, + { + "start": 27469.08, + "end": 27471.78, + "probability": 0.9463 + }, + { + "start": 27473.22, + "end": 27478.5, + "probability": 0.9983 + }, + { + "start": 27479.1, + "end": 27484.14, + "probability": 0.9943 + }, + { + "start": 27484.44, + "end": 27489.0, + "probability": 0.8623 + }, + { + "start": 27490.54, + "end": 27491.12, + "probability": 0.6917 + }, + { + "start": 27492.4, + "end": 27499.14, + "probability": 0.9724 + }, + { + "start": 27500.2, + "end": 27501.8, + "probability": 0.8479 + }, + { + "start": 27502.6, + "end": 27504.36, + "probability": 0.9954 + }, + { + "start": 27504.76, + "end": 27507.04, + "probability": 0.9944 + }, + { + "start": 27507.34, + "end": 27508.52, + "probability": 0.8326 + }, + { + "start": 27508.98, + "end": 27510.36, + "probability": 0.6946 + }, + { + "start": 27510.38, + "end": 27511.5, + "probability": 0.7122 + }, + { + "start": 27512.04, + "end": 27514.17, + "probability": 0.8962 + }, + { + "start": 27514.86, + "end": 27516.68, + "probability": 0.6036 + }, + { + "start": 27531.86, + "end": 27534.66, + "probability": 0.0532 + }, + { + "start": 27535.74, + "end": 27535.88, + "probability": 0.0285 + }, + { + "start": 27535.88, + "end": 27535.88, + "probability": 0.0463 + }, + { + "start": 27535.88, + "end": 27535.88, + "probability": 0.0307 + }, + { + "start": 27535.88, + "end": 27537.2, + "probability": 0.293 + }, + { + "start": 27539.02, + "end": 27541.14, + "probability": 0.0526 + }, + { + "start": 27541.14, + "end": 27542.36, + "probability": 0.5329 + }, + { + "start": 27542.36, + "end": 27544.38, + "probability": 0.7545 + }, + { + "start": 27545.92, + "end": 27549.5, + "probability": 0.9902 + }, + { + "start": 27550.96, + "end": 27554.86, + "probability": 0.9372 + }, + { + "start": 27555.34, + "end": 27556.64, + "probability": 0.9627 + }, + { + "start": 27557.72, + "end": 27559.96, + "probability": 0.9563 + }, + { + "start": 27560.2, + "end": 27561.5, + "probability": 0.9941 + }, + { + "start": 27562.7, + "end": 27565.3, + "probability": 0.7458 + }, + { + "start": 27566.42, + "end": 27569.66, + "probability": 0.9207 + }, + { + "start": 27570.26, + "end": 27570.9, + "probability": 0.3924 + }, + { + "start": 27570.98, + "end": 27574.35, + "probability": 0.9854 + }, + { + "start": 27575.4, + "end": 27577.06, + "probability": 0.6583 + }, + { + "start": 27577.22, + "end": 27577.88, + "probability": 0.4455 + }, + { + "start": 27578.16, + "end": 27579.91, + "probability": 0.9577 + }, + { + "start": 27580.34, + "end": 27581.18, + "probability": 0.6613 + }, + { + "start": 27581.56, + "end": 27582.8, + "probability": 0.9406 + }, + { + "start": 27583.86, + "end": 27586.52, + "probability": 0.9539 + }, + { + "start": 27587.04, + "end": 27588.38, + "probability": 0.9636 + }, + { + "start": 27589.22, + "end": 27591.8, + "probability": 0.8729 + }, + { + "start": 27591.98, + "end": 27592.36, + "probability": 0.6126 + }, + { + "start": 27592.56, + "end": 27593.54, + "probability": 0.5344 + }, + { + "start": 27594.6, + "end": 27595.62, + "probability": 0.9429 + }, + { + "start": 27595.7, + "end": 27597.7, + "probability": 0.9922 + }, + { + "start": 27598.48, + "end": 27599.1, + "probability": 0.8196 + }, + { + "start": 27600.8, + "end": 27601.14, + "probability": 0.6652 + }, + { + "start": 27601.28, + "end": 27602.84, + "probability": 0.9663 + }, + { + "start": 27603.1, + "end": 27604.02, + "probability": 0.7304 + }, + { + "start": 27604.1, + "end": 27605.08, + "probability": 0.936 + }, + { + "start": 27606.12, + "end": 27606.14, + "probability": 0.8291 + }, + { + "start": 27606.96, + "end": 27608.43, + "probability": 0.927 + }, + { + "start": 27609.12, + "end": 27611.22, + "probability": 0.87 + }, + { + "start": 27612.14, + "end": 27614.2, + "probability": 0.8883 + }, + { + "start": 27614.76, + "end": 27617.92, + "probability": 0.9585 + }, + { + "start": 27618.36, + "end": 27622.22, + "probability": 0.9555 + }, + { + "start": 27622.8, + "end": 27625.6, + "probability": 0.9758 + }, + { + "start": 27626.26, + "end": 27628.18, + "probability": 0.9172 + }, + { + "start": 27628.72, + "end": 27630.84, + "probability": 0.4938 + }, + { + "start": 27631.74, + "end": 27633.68, + "probability": 0.9915 + }, + { + "start": 27633.84, + "end": 27635.94, + "probability": 0.8442 + }, + { + "start": 27636.5, + "end": 27639.14, + "probability": 0.9648 + }, + { + "start": 27639.42, + "end": 27640.58, + "probability": 0.9656 + }, + { + "start": 27640.62, + "end": 27641.18, + "probability": 0.93 + }, + { + "start": 27641.66, + "end": 27643.46, + "probability": 0.7354 + }, + { + "start": 27644.76, + "end": 27645.72, + "probability": 0.991 + }, + { + "start": 27646.6, + "end": 27648.04, + "probability": 0.9236 + }, + { + "start": 27648.72, + "end": 27652.08, + "probability": 0.5498 + }, + { + "start": 27652.12, + "end": 27654.22, + "probability": 0.9845 + }, + { + "start": 27655.62, + "end": 27656.46, + "probability": 0.8325 + }, + { + "start": 27656.6, + "end": 27660.72, + "probability": 0.9735 + }, + { + "start": 27660.9, + "end": 27661.48, + "probability": 0.7814 + }, + { + "start": 27661.58, + "end": 27662.24, + "probability": 0.8647 + }, + { + "start": 27662.62, + "end": 27666.53, + "probability": 0.8921 + }, + { + "start": 27666.58, + "end": 27670.58, + "probability": 0.9128 + }, + { + "start": 27670.96, + "end": 27673.7, + "probability": 0.9493 + }, + { + "start": 27674.32, + "end": 27678.12, + "probability": 0.9321 + }, + { + "start": 27678.66, + "end": 27679.56, + "probability": 0.7153 + }, + { + "start": 27679.7, + "end": 27681.46, + "probability": 0.9814 + }, + { + "start": 27681.72, + "end": 27682.7, + "probability": 0.7673 + }, + { + "start": 27682.9, + "end": 27683.86, + "probability": 0.944 + }, + { + "start": 27684.14, + "end": 27685.61, + "probability": 0.7701 + }, + { + "start": 27686.44, + "end": 27688.02, + "probability": 0.4291 + }, + { + "start": 27688.82, + "end": 27690.66, + "probability": 0.9185 + }, + { + "start": 27691.68, + "end": 27692.12, + "probability": 0.9143 + }, + { + "start": 27692.9, + "end": 27694.18, + "probability": 0.9575 + }, + { + "start": 27694.3, + "end": 27695.48, + "probability": 0.8844 + }, + { + "start": 27696.2, + "end": 27697.4, + "probability": 0.6426 + }, + { + "start": 27698.14, + "end": 27700.2, + "probability": 0.8632 + }, + { + "start": 27700.49, + "end": 27700.84, + "probability": 0.4265 + }, + { + "start": 27700.9, + "end": 27703.38, + "probability": 0.9907 + }, + { + "start": 27704.4, + "end": 27705.96, + "probability": 0.9789 + }, + { + "start": 27706.02, + "end": 27706.56, + "probability": 0.9533 + }, + { + "start": 27706.88, + "end": 27707.74, + "probability": 0.6122 + }, + { + "start": 27708.42, + "end": 27711.64, + "probability": 0.9751 + }, + { + "start": 27711.82, + "end": 27714.36, + "probability": 0.5216 + }, + { + "start": 27714.92, + "end": 27717.56, + "probability": 0.9286 + }, + { + "start": 27717.6, + "end": 27720.54, + "probability": 0.8278 + }, + { + "start": 27720.6, + "end": 27721.02, + "probability": 0.8032 + }, + { + "start": 27722.4, + "end": 27723.7, + "probability": 0.9415 + }, + { + "start": 27724.44, + "end": 27726.5, + "probability": 0.957 + }, + { + "start": 27727.42, + "end": 27728.26, + "probability": 0.7818 + }, + { + "start": 27728.82, + "end": 27729.36, + "probability": 0.5533 + }, + { + "start": 27729.84, + "end": 27731.34, + "probability": 0.1744 + }, + { + "start": 27731.48, + "end": 27732.44, + "probability": 0.1109 + }, + { + "start": 27733.0, + "end": 27733.34, + "probability": 0.1777 + }, + { + "start": 27733.48, + "end": 27734.56, + "probability": 0.1184 + }, + { + "start": 27734.56, + "end": 27734.68, + "probability": 0.0189 + }, + { + "start": 27734.68, + "end": 27734.68, + "probability": 0.0892 + }, + { + "start": 27734.68, + "end": 27736.28, + "probability": 0.5014 + }, + { + "start": 27736.48, + "end": 27737.96, + "probability": 0.6525 + }, + { + "start": 27738.78, + "end": 27741.86, + "probability": 0.6829 + }, + { + "start": 27742.64, + "end": 27743.24, + "probability": 0.8198 + }, + { + "start": 27743.44, + "end": 27744.0, + "probability": 0.8637 + }, + { + "start": 27744.06, + "end": 27744.37, + "probability": 0.0378 + }, + { + "start": 27748.36, + "end": 27748.66, + "probability": 0.2191 + }, + { + "start": 27748.98, + "end": 27749.86, + "probability": 0.1392 + }, + { + "start": 27751.98, + "end": 27754.74, + "probability": 0.0458 + }, + { + "start": 27757.1, + "end": 27758.32, + "probability": 0.0548 + }, + { + "start": 27758.8, + "end": 27762.76, + "probability": 0.1763 + }, + { + "start": 27763.46, + "end": 27763.56, + "probability": 0.0099 + }, + { + "start": 27763.56, + "end": 27765.4, + "probability": 0.5318 + }, + { + "start": 27769.02, + "end": 27771.4, + "probability": 0.2937 + }, + { + "start": 27771.42, + "end": 27771.42, + "probability": 0.0136 + }, + { + "start": 27782.02, + "end": 27782.3, + "probability": 0.0946 + }, + { + "start": 27782.74, + "end": 27787.08, + "probability": 0.4961 + }, + { + "start": 27787.64, + "end": 27789.8, + "probability": 0.2742 + }, + { + "start": 27790.52, + "end": 27792.66, + "probability": 0.4053 + }, + { + "start": 27794.82, + "end": 27800.64, + "probability": 0.0279 + }, + { + "start": 27802.96, + "end": 27806.7, + "probability": 0.1426 + }, + { + "start": 27806.7, + "end": 27807.84, + "probability": 0.0389 + }, + { + "start": 27807.84, + "end": 27814.14, + "probability": 0.0928 + }, + { + "start": 27815.03, + "end": 27816.11, + "probability": 0.0199 + }, + { + "start": 27817.5, + "end": 27818.4, + "probability": 0.0138 + }, + { + "start": 27822.0, + "end": 27822.0, + "probability": 0.0 + }, + { + "start": 27822.0, + "end": 27822.0, + "probability": 0.0 + }, + { + "start": 27822.0, + "end": 27822.0, + "probability": 0.0 + }, + { + "start": 27822.0, + "end": 27822.0, + "probability": 0.0 + }, + { + "start": 27822.0, + "end": 27822.0, + "probability": 0.0 + }, + { + "start": 27822.0, + "end": 27822.0, + "probability": 0.0 + }, + { + "start": 27822.0, + "end": 27822.0, + "probability": 0.0 + }, + { + "start": 27822.0, + "end": 27822.0, + "probability": 0.0 + }, + { + "start": 27822.0, + "end": 27822.0, + "probability": 0.0 + }, + { + "start": 27822.0, + "end": 27822.0, + "probability": 0.0 + }, + { + "start": 27822.0, + "end": 27822.0, + "probability": 0.0 + }, + { + "start": 27822.0, + "end": 27822.0, + "probability": 0.0 + }, + { + "start": 27822.0, + "end": 27822.0, + "probability": 0.0 + }, + { + "start": 27822.0, + "end": 27822.0, + "probability": 0.0 + }, + { + "start": 27822.0, + "end": 27822.0, + "probability": 0.0 + }, + { + "start": 27822.0, + "end": 27822.0, + "probability": 0.0 + }, + { + "start": 27822.0, + "end": 27822.0, + "probability": 0.0 + }, + { + "start": 27824.72, + "end": 27825.2, + "probability": 0.1775 + }, + { + "start": 27825.2, + "end": 27826.62, + "probability": 0.4276 + }, + { + "start": 27827.38, + "end": 27828.02, + "probability": 0.5102 + }, + { + "start": 27828.16, + "end": 27829.76, + "probability": 0.7949 + }, + { + "start": 27830.42, + "end": 27831.84, + "probability": 0.7742 + }, + { + "start": 27832.4, + "end": 27833.22, + "probability": 0.9164 + }, + { + "start": 27835.02, + "end": 27835.92, + "probability": 0.5033 + }, + { + "start": 27837.14, + "end": 27838.38, + "probability": 0.261 + }, + { + "start": 27838.38, + "end": 27839.0, + "probability": 0.618 + }, + { + "start": 27839.14, + "end": 27839.36, + "probability": 0.2924 + }, + { + "start": 27839.88, + "end": 27839.92, + "probability": 0.6204 + }, + { + "start": 27839.92, + "end": 27842.22, + "probability": 0.9777 + }, + { + "start": 27843.04, + "end": 27844.6, + "probability": 0.7668 + }, + { + "start": 27844.94, + "end": 27848.32, + "probability": 0.835 + }, + { + "start": 27848.6, + "end": 27851.38, + "probability": 0.6037 + }, + { + "start": 27851.38, + "end": 27854.54, + "probability": 0.7671 + }, + { + "start": 27854.62, + "end": 27854.68, + "probability": 0.0443 + }, + { + "start": 27854.68, + "end": 27856.26, + "probability": 0.5887 + }, + { + "start": 27856.3, + "end": 27856.94, + "probability": 0.6064 + }, + { + "start": 27862.26, + "end": 27863.26, + "probability": 0.9551 + }, + { + "start": 27877.74, + "end": 27879.26, + "probability": 0.3813 + }, + { + "start": 27880.22, + "end": 27880.46, + "probability": 0.8776 + }, + { + "start": 27881.34, + "end": 27884.3, + "probability": 0.9714 + }, + { + "start": 27884.44, + "end": 27886.08, + "probability": 0.9912 + }, + { + "start": 27886.48, + "end": 27886.74, + "probability": 0.801 + }, + { + "start": 27886.86, + "end": 27888.22, + "probability": 0.7472 + }, + { + "start": 27888.78, + "end": 27891.99, + "probability": 0.9531 + }, + { + "start": 27892.44, + "end": 27893.93, + "probability": 0.4156 + }, + { + "start": 27894.48, + "end": 27894.88, + "probability": 0.358 + }, + { + "start": 27894.9, + "end": 27895.34, + "probability": 0.7145 + }, + { + "start": 27895.74, + "end": 27897.16, + "probability": 0.9728 + }, + { + "start": 27897.64, + "end": 27898.56, + "probability": 0.5509 + }, + { + "start": 27900.1, + "end": 27902.96, + "probability": 0.7439 + }, + { + "start": 27903.28, + "end": 27903.56, + "probability": 0.6674 + }, + { + "start": 27904.32, + "end": 27905.02, + "probability": 0.4923 + }, + { + "start": 27905.24, + "end": 27906.14, + "probability": 0.9399 + }, + { + "start": 27906.58, + "end": 27906.92, + "probability": 0.387 + }, + { + "start": 27907.16, + "end": 27909.02, + "probability": 0.9895 + }, + { + "start": 27909.82, + "end": 27910.64, + "probability": 0.6952 + }, + { + "start": 27911.06, + "end": 27911.28, + "probability": 0.9176 + }, + { + "start": 27911.74, + "end": 27913.78, + "probability": 0.8558 + }, + { + "start": 27914.0, + "end": 27915.61, + "probability": 0.7482 + }, + { + "start": 27916.02, + "end": 27920.58, + "probability": 0.8401 + }, + { + "start": 27921.16, + "end": 27925.62, + "probability": 0.9268 + }, + { + "start": 27925.62, + "end": 27929.92, + "probability": 0.9139 + }, + { + "start": 27931.2, + "end": 27934.24, + "probability": 0.9884 + }, + { + "start": 27934.66, + "end": 27939.34, + "probability": 0.9907 + }, + { + "start": 27939.46, + "end": 27941.18, + "probability": 0.8148 + }, + { + "start": 27942.58, + "end": 27948.98, + "probability": 0.9899 + }, + { + "start": 27949.56, + "end": 27952.52, + "probability": 0.9046 + }, + { + "start": 27953.0, + "end": 27954.4, + "probability": 0.9167 + }, + { + "start": 27954.56, + "end": 27955.06, + "probability": 0.8041 + }, + { + "start": 27955.68, + "end": 27956.58, + "probability": 0.7817 + }, + { + "start": 27956.84, + "end": 27960.02, + "probability": 0.6539 + }, + { + "start": 27960.66, + "end": 27962.64, + "probability": 0.7469 + }, + { + "start": 27963.22, + "end": 27967.18, + "probability": 0.9521 + }, + { + "start": 27967.76, + "end": 27968.48, + "probability": 0.5116 + }, + { + "start": 27969.18, + "end": 27971.73, + "probability": 0.9596 + }, + { + "start": 27972.04, + "end": 27976.38, + "probability": 0.9769 + }, + { + "start": 27977.22, + "end": 27982.24, + "probability": 0.9741 + }, + { + "start": 27982.28, + "end": 27983.26, + "probability": 0.6322 + }, + { + "start": 27983.3, + "end": 27987.08, + "probability": 0.9611 + }, + { + "start": 27988.3, + "end": 27991.76, + "probability": 0.8109 + }, + { + "start": 27992.54, + "end": 27997.16, + "probability": 0.967 + }, + { + "start": 27997.16, + "end": 28001.3, + "probability": 0.9954 + }, + { + "start": 28002.04, + "end": 28004.06, + "probability": 0.9831 + }, + { + "start": 28004.72, + "end": 28005.08, + "probability": 0.5549 + }, + { + "start": 28005.22, + "end": 28011.28, + "probability": 0.9894 + }, + { + "start": 28011.96, + "end": 28014.82, + "probability": 0.9961 + }, + { + "start": 28014.82, + "end": 28017.04, + "probability": 0.9985 + }, + { + "start": 28017.58, + "end": 28021.56, + "probability": 0.7933 + }, + { + "start": 28022.16, + "end": 28023.62, + "probability": 0.9935 + }, + { + "start": 28023.78, + "end": 28025.38, + "probability": 0.8833 + }, + { + "start": 28025.42, + "end": 28027.96, + "probability": 0.9987 + }, + { + "start": 28028.52, + "end": 28029.98, + "probability": 0.9551 + }, + { + "start": 28030.12, + "end": 28031.09, + "probability": 0.9717 + }, + { + "start": 28031.98, + "end": 28034.76, + "probability": 0.989 + }, + { + "start": 28035.66, + "end": 28040.96, + "probability": 0.9152 + }, + { + "start": 28041.32, + "end": 28045.34, + "probability": 0.9967 + }, + { + "start": 28045.86, + "end": 28048.2, + "probability": 0.8371 + }, + { + "start": 28048.52, + "end": 28050.0, + "probability": 0.9725 + }, + { + "start": 28050.36, + "end": 28053.34, + "probability": 0.9749 + }, + { + "start": 28054.02, + "end": 28056.32, + "probability": 0.9976 + }, + { + "start": 28056.98, + "end": 28059.5, + "probability": 0.976 + }, + { + "start": 28060.12, + "end": 28061.64, + "probability": 0.9895 + }, + { + "start": 28062.2, + "end": 28064.42, + "probability": 0.7732 + }, + { + "start": 28065.2, + "end": 28067.58, + "probability": 0.9896 + }, + { + "start": 28068.36, + "end": 28070.22, + "probability": 0.6839 + }, + { + "start": 28070.9, + "end": 28074.64, + "probability": 0.9866 + }, + { + "start": 28075.18, + "end": 28078.58, + "probability": 0.9926 + }, + { + "start": 28079.14, + "end": 28083.54, + "probability": 0.9968 + }, + { + "start": 28084.44, + "end": 28088.54, + "probability": 0.7506 + }, + { + "start": 28088.58, + "end": 28090.98, + "probability": 0.9966 + }, + { + "start": 28091.52, + "end": 28092.26, + "probability": 0.9172 + }, + { + "start": 28092.38, + "end": 28093.5, + "probability": 0.9725 + }, + { + "start": 28093.58, + "end": 28095.66, + "probability": 0.9579 + }, + { + "start": 28096.22, + "end": 28097.52, + "probability": 0.9927 + }, + { + "start": 28097.64, + "end": 28099.54, + "probability": 0.9905 + }, + { + "start": 28100.2, + "end": 28103.28, + "probability": 0.9773 + }, + { + "start": 28103.36, + "end": 28108.82, + "probability": 0.9889 + }, + { + "start": 28108.88, + "end": 28110.98, + "probability": 0.98 + }, + { + "start": 28111.66, + "end": 28114.82, + "probability": 0.9222 + }, + { + "start": 28114.96, + "end": 28118.08, + "probability": 0.9397 + }, + { + "start": 28119.28, + "end": 28125.48, + "probability": 0.9878 + }, + { + "start": 28125.74, + "end": 28127.58, + "probability": 0.9164 + }, + { + "start": 28127.92, + "end": 28128.82, + "probability": 0.8943 + }, + { + "start": 28129.34, + "end": 28130.42, + "probability": 0.6945 + }, + { + "start": 28131.02, + "end": 28134.3, + "probability": 0.8698 + }, + { + "start": 28134.92, + "end": 28134.94, + "probability": 0.0271 + }, + { + "start": 28134.96, + "end": 28139.9, + "probability": 0.9832 + }, + { + "start": 28140.36, + "end": 28144.78, + "probability": 0.9586 + }, + { + "start": 28145.56, + "end": 28145.64, + "probability": 0.5622 + }, + { + "start": 28145.64, + "end": 28146.1, + "probability": 0.7448 + }, + { + "start": 28146.24, + "end": 28147.46, + "probability": 0.9414 + }, + { + "start": 28147.74, + "end": 28149.78, + "probability": 0.979 + }, + { + "start": 28150.06, + "end": 28152.12, + "probability": 0.9526 + }, + { + "start": 28152.7, + "end": 28154.46, + "probability": 0.9936 + }, + { + "start": 28154.76, + "end": 28155.16, + "probability": 0.7114 + }, + { + "start": 28155.28, + "end": 28156.02, + "probability": 0.6075 + }, + { + "start": 28156.02, + "end": 28160.42, + "probability": 0.7945 + }, + { + "start": 28160.88, + "end": 28161.32, + "probability": 0.7349 + }, + { + "start": 28161.4, + "end": 28161.64, + "probability": 0.6085 + }, + { + "start": 28161.7, + "end": 28161.98, + "probability": 0.675 + }, + { + "start": 28162.08, + "end": 28163.7, + "probability": 0.5798 + }, + { + "start": 28164.32, + "end": 28167.3, + "probability": 0.3675 + }, + { + "start": 28167.7, + "end": 28168.3, + "probability": 0.7753 + }, + { + "start": 28190.82, + "end": 28192.0, + "probability": 0.7101 + }, + { + "start": 28192.84, + "end": 28193.62, + "probability": 0.7251 + }, + { + "start": 28194.16, + "end": 28195.48, + "probability": 0.7029 + }, + { + "start": 28195.94, + "end": 28196.18, + "probability": 0.4538 + }, + { + "start": 28196.36, + "end": 28201.88, + "probability": 0.9623 + }, + { + "start": 28202.38, + "end": 28203.48, + "probability": 0.8795 + }, + { + "start": 28203.68, + "end": 28205.92, + "probability": 0.9744 + }, + { + "start": 28206.5, + "end": 28207.56, + "probability": 0.9009 + }, + { + "start": 28207.9, + "end": 28211.62, + "probability": 0.9936 + }, + { + "start": 28214.8, + "end": 28217.6, + "probability": 0.8579 + }, + { + "start": 28218.8, + "end": 28222.78, + "probability": 0.9972 + }, + { + "start": 28223.8, + "end": 28226.9, + "probability": 0.9393 + }, + { + "start": 28227.64, + "end": 28228.9, + "probability": 0.9866 + }, + { + "start": 28230.46, + "end": 28232.82, + "probability": 0.9956 + }, + { + "start": 28233.02, + "end": 28233.9, + "probability": 0.9112 + }, + { + "start": 28234.46, + "end": 28238.86, + "probability": 0.991 + }, + { + "start": 28239.86, + "end": 28242.66, + "probability": 0.9975 + }, + { + "start": 28242.66, + "end": 28246.9, + "probability": 0.9938 + }, + { + "start": 28247.86, + "end": 28248.3, + "probability": 0.3935 + }, + { + "start": 28249.16, + "end": 28253.44, + "probability": 0.9928 + }, + { + "start": 28254.08, + "end": 28258.88, + "probability": 0.9873 + }, + { + "start": 28259.92, + "end": 28260.34, + "probability": 0.8049 + }, + { + "start": 28260.96, + "end": 28266.62, + "probability": 0.9953 + }, + { + "start": 28267.56, + "end": 28268.9, + "probability": 0.6852 + }, + { + "start": 28269.42, + "end": 28272.72, + "probability": 0.9937 + }, + { + "start": 28273.62, + "end": 28279.28, + "probability": 0.998 + }, + { + "start": 28279.98, + "end": 28282.74, + "probability": 0.9768 + }, + { + "start": 28283.38, + "end": 28287.82, + "probability": 0.9805 + }, + { + "start": 28287.82, + "end": 28292.9, + "probability": 0.9676 + }, + { + "start": 28293.26, + "end": 28300.84, + "probability": 0.9205 + }, + { + "start": 28302.04, + "end": 28304.28, + "probability": 0.9129 + }, + { + "start": 28304.68, + "end": 28308.4, + "probability": 0.9983 + }, + { + "start": 28308.4, + "end": 28312.48, + "probability": 0.9988 + }, + { + "start": 28313.14, + "end": 28315.12, + "probability": 0.9841 + }, + { + "start": 28315.72, + "end": 28316.16, + "probability": 0.7896 + }, + { + "start": 28316.22, + "end": 28318.7, + "probability": 0.9522 + }, + { + "start": 28319.12, + "end": 28324.04, + "probability": 0.983 + }, + { + "start": 28324.46, + "end": 28328.34, + "probability": 0.966 + }, + { + "start": 28328.34, + "end": 28331.82, + "probability": 0.9958 + }, + { + "start": 28332.84, + "end": 28334.94, + "probability": 0.6268 + }, + { + "start": 28335.28, + "end": 28335.62, + "probability": 0.6418 + }, + { + "start": 28335.72, + "end": 28337.48, + "probability": 0.9624 + }, + { + "start": 28338.76, + "end": 28341.22, + "probability": 0.9752 + }, + { + "start": 28341.34, + "end": 28344.62, + "probability": 0.9372 + }, + { + "start": 28344.62, + "end": 28348.7, + "probability": 0.9717 + }, + { + "start": 28349.3, + "end": 28351.5, + "probability": 0.8958 + }, + { + "start": 28352.34, + "end": 28352.9, + "probability": 0.7765 + }, + { + "start": 28353.4, + "end": 28355.78, + "probability": 0.9599 + }, + { + "start": 28356.16, + "end": 28358.22, + "probability": 0.9961 + }, + { + "start": 28359.96, + "end": 28361.06, + "probability": 0.8997 + }, + { + "start": 28361.56, + "end": 28364.66, + "probability": 0.9934 + }, + { + "start": 28364.82, + "end": 28369.0, + "probability": 0.9902 + }, + { + "start": 28369.32, + "end": 28370.56, + "probability": 0.9498 + }, + { + "start": 28371.36, + "end": 28375.8, + "probability": 0.995 + }, + { + "start": 28376.76, + "end": 28378.52, + "probability": 0.8738 + }, + { + "start": 28378.66, + "end": 28382.62, + "probability": 0.9765 + }, + { + "start": 28382.66, + "end": 28387.14, + "probability": 0.9949 + }, + { + "start": 28387.96, + "end": 28389.32, + "probability": 0.9421 + }, + { + "start": 28389.96, + "end": 28390.86, + "probability": 0.8485 + }, + { + "start": 28391.16, + "end": 28394.76, + "probability": 0.9813 + }, + { + "start": 28394.76, + "end": 28397.1, + "probability": 0.994 + }, + { + "start": 28397.68, + "end": 28397.86, + "probability": 0.0263 + }, + { + "start": 28397.88, + "end": 28402.12, + "probability": 0.9969 + }, + { + "start": 28403.24, + "end": 28406.54, + "probability": 0.9961 + }, + { + "start": 28407.14, + "end": 28408.62, + "probability": 0.9814 + }, + { + "start": 28409.12, + "end": 28412.94, + "probability": 0.9974 + }, + { + "start": 28412.94, + "end": 28416.88, + "probability": 0.998 + }, + { + "start": 28417.8, + "end": 28420.42, + "probability": 0.9857 + }, + { + "start": 28421.16, + "end": 28423.3, + "probability": 0.8068 + }, + { + "start": 28424.4, + "end": 28426.78, + "probability": 0.9154 + }, + { + "start": 28427.2, + "end": 28430.58, + "probability": 0.9888 + }, + { + "start": 28431.5, + "end": 28434.04, + "probability": 0.9669 + }, + { + "start": 28435.24, + "end": 28439.3, + "probability": 0.9484 + }, + { + "start": 28439.46, + "end": 28441.8, + "probability": 0.9882 + }, + { + "start": 28441.8, + "end": 28444.84, + "probability": 0.8888 + }, + { + "start": 28445.24, + "end": 28447.02, + "probability": 0.9873 + }, + { + "start": 28447.6, + "end": 28448.94, + "probability": 0.8019 + }, + { + "start": 28449.74, + "end": 28452.44, + "probability": 0.9303 + }, + { + "start": 28452.98, + "end": 28456.0, + "probability": 0.9978 + }, + { + "start": 28456.44, + "end": 28459.12, + "probability": 0.9978 + }, + { + "start": 28459.56, + "end": 28460.52, + "probability": 0.9889 + }, + { + "start": 28461.16, + "end": 28462.86, + "probability": 0.9476 + }, + { + "start": 28463.72, + "end": 28465.8, + "probability": 0.9417 + }, + { + "start": 28465.8, + "end": 28469.14, + "probability": 0.9864 + }, + { + "start": 28469.6, + "end": 28474.04, + "probability": 0.994 + }, + { + "start": 28475.4, + "end": 28478.16, + "probability": 0.957 + }, + { + "start": 28478.16, + "end": 28481.6, + "probability": 0.9798 + }, + { + "start": 28482.02, + "end": 28483.34, + "probability": 0.7372 + }, + { + "start": 28483.86, + "end": 28487.88, + "probability": 0.9942 + }, + { + "start": 28488.78, + "end": 28491.96, + "probability": 0.797 + }, + { + "start": 28492.48, + "end": 28494.56, + "probability": 0.9753 + }, + { + "start": 28494.94, + "end": 28495.86, + "probability": 0.8475 + }, + { + "start": 28495.98, + "end": 28497.4, + "probability": 0.9785 + }, + { + "start": 28497.98, + "end": 28499.08, + "probability": 0.9562 + }, + { + "start": 28499.52, + "end": 28501.54, + "probability": 0.9948 + }, + { + "start": 28502.1, + "end": 28502.64, + "probability": 0.621 + }, + { + "start": 28502.66, + "end": 28503.9, + "probability": 0.8368 + }, + { + "start": 28503.98, + "end": 28505.18, + "probability": 0.8456 + }, + { + "start": 28505.6, + "end": 28506.86, + "probability": 0.5944 + }, + { + "start": 28506.92, + "end": 28511.62, + "probability": 0.9768 + }, + { + "start": 28511.62, + "end": 28518.0, + "probability": 0.9952 + }, + { + "start": 28518.32, + "end": 28520.11, + "probability": 0.8044 + }, + { + "start": 28520.94, + "end": 28521.3, + "probability": 0.5819 + }, + { + "start": 28521.86, + "end": 28524.36, + "probability": 0.8849 + }, + { + "start": 28526.08, + "end": 28526.58, + "probability": 0.6656 + }, + { + "start": 28527.22, + "end": 28529.94, + "probability": 0.6784 + }, + { + "start": 28530.64, + "end": 28531.74, + "probability": 0.9895 + }, + { + "start": 28536.72, + "end": 28539.7, + "probability": 0.8184 + }, + { + "start": 28539.78, + "end": 28541.4, + "probability": 0.6603 + }, + { + "start": 28541.86, + "end": 28543.0, + "probability": 0.5767 + }, + { + "start": 28544.28, + "end": 28545.56, + "probability": 0.577 + }, + { + "start": 28546.82, + "end": 28547.44, + "probability": 0.6734 + }, + { + "start": 28547.66, + "end": 28548.04, + "probability": 0.6821 + }, + { + "start": 28566.62, + "end": 28566.8, + "probability": 0.2244 + }, + { + "start": 28566.8, + "end": 28568.66, + "probability": 0.5776 + }, + { + "start": 28569.24, + "end": 28570.85, + "probability": 0.7355 + }, + { + "start": 28571.12, + "end": 28572.18, + "probability": 0.7225 + }, + { + "start": 28572.36, + "end": 28572.92, + "probability": 0.0801 + }, + { + "start": 28573.9, + "end": 28578.16, + "probability": 0.5322 + }, + { + "start": 28578.58, + "end": 28584.0, + "probability": 0.4679 + }, + { + "start": 28584.0, + "end": 28587.9, + "probability": 0.6714 + }, + { + "start": 28588.2, + "end": 28588.44, + "probability": 0.0008 + }, + { + "start": 28588.44, + "end": 28590.46, + "probability": 0.4356 + }, + { + "start": 28591.24, + "end": 28591.4, + "probability": 0.7118 + }, + { + "start": 28591.98, + "end": 28595.33, + "probability": 0.78 + }, + { + "start": 28609.67, + "end": 28611.98, + "probability": 0.638 + }, + { + "start": 28612.2, + "end": 28613.34, + "probability": 0.7873 + }, + { + "start": 28614.82, + "end": 28615.36, + "probability": 0.8979 + }, + { + "start": 28616.94, + "end": 28619.0, + "probability": 0.996 + }, + { + "start": 28619.0, + "end": 28622.44, + "probability": 0.9983 + }, + { + "start": 28623.88, + "end": 28625.78, + "probability": 0.9941 + }, + { + "start": 28625.98, + "end": 28627.94, + "probability": 0.9624 + }, + { + "start": 28628.8, + "end": 28631.54, + "probability": 0.9926 + }, + { + "start": 28632.14, + "end": 28637.6, + "probability": 0.9954 + }, + { + "start": 28638.24, + "end": 28639.68, + "probability": 0.9664 + }, + { + "start": 28639.8, + "end": 28642.28, + "probability": 0.9928 + }, + { + "start": 28643.56, + "end": 28649.14, + "probability": 0.988 + }, + { + "start": 28650.0, + "end": 28650.54, + "probability": 0.5913 + }, + { + "start": 28650.6, + "end": 28654.44, + "probability": 0.9934 + }, + { + "start": 28655.88, + "end": 28657.11, + "probability": 0.8696 + }, + { + "start": 28657.18, + "end": 28660.92, + "probability": 0.9829 + }, + { + "start": 28662.4, + "end": 28663.6, + "probability": 0.8361 + }, + { + "start": 28663.7, + "end": 28664.38, + "probability": 0.875 + }, + { + "start": 28664.7, + "end": 28668.96, + "probability": 0.8492 + }, + { + "start": 28669.72, + "end": 28673.3, + "probability": 0.9511 + }, + { + "start": 28674.32, + "end": 28679.7, + "probability": 0.9845 + }, + { + "start": 28679.94, + "end": 28681.2, + "probability": 0.4364 + }, + { + "start": 28682.6, + "end": 28685.14, + "probability": 0.9976 + }, + { + "start": 28685.14, + "end": 28688.18, + "probability": 0.986 + }, + { + "start": 28689.06, + "end": 28694.18, + "probability": 0.9589 + }, + { + "start": 28694.84, + "end": 28699.06, + "probability": 0.9038 + }, + { + "start": 28699.66, + "end": 28700.78, + "probability": 0.8154 + }, + { + "start": 28701.84, + "end": 28703.56, + "probability": 0.9891 + }, + { + "start": 28703.76, + "end": 28709.84, + "probability": 0.9414 + }, + { + "start": 28710.56, + "end": 28716.22, + "probability": 0.9946 + }, + { + "start": 28717.2, + "end": 28720.34, + "probability": 0.999 + }, + { + "start": 28720.96, + "end": 28721.44, + "probability": 0.3868 + }, + { + "start": 28721.7, + "end": 28727.58, + "probability": 0.9844 + }, + { + "start": 28727.8, + "end": 28730.08, + "probability": 0.975 + }, + { + "start": 28730.88, + "end": 28736.28, + "probability": 0.99 + }, + { + "start": 28736.92, + "end": 28741.72, + "probability": 0.9856 + }, + { + "start": 28742.3, + "end": 28746.08, + "probability": 0.9097 + }, + { + "start": 28747.34, + "end": 28754.5, + "probability": 0.991 + }, + { + "start": 28754.5, + "end": 28760.26, + "probability": 0.9941 + }, + { + "start": 28760.82, + "end": 28764.88, + "probability": 0.7736 + }, + { + "start": 28765.16, + "end": 28768.2, + "probability": 0.8921 + }, + { + "start": 28769.16, + "end": 28769.56, + "probability": 0.8832 + }, + { + "start": 28770.06, + "end": 28775.34, + "probability": 0.9255 + }, + { + "start": 28776.42, + "end": 28777.22, + "probability": 0.7922 + }, + { + "start": 28777.26, + "end": 28778.14, + "probability": 0.9536 + }, + { + "start": 28778.24, + "end": 28783.16, + "probability": 0.98 + }, + { + "start": 28783.26, + "end": 28784.06, + "probability": 0.794 + }, + { + "start": 28784.62, + "end": 28791.14, + "probability": 0.8837 + }, + { + "start": 28792.24, + "end": 28795.94, + "probability": 0.9711 + }, + { + "start": 28795.94, + "end": 28800.62, + "probability": 0.9937 + }, + { + "start": 28800.66, + "end": 28800.7, + "probability": 0.3086 + }, + { + "start": 28800.86, + "end": 28801.5, + "probability": 0.7951 + }, + { + "start": 28802.16, + "end": 28804.68, + "probability": 0.5569 + }, + { + "start": 28805.24, + "end": 28806.76, + "probability": 0.9878 + }, + { + "start": 28808.52, + "end": 28809.72, + "probability": 0.9202 + }, + { + "start": 28816.34, + "end": 28816.44, + "probability": 0.1609 + }, + { + "start": 28817.42, + "end": 28817.72, + "probability": 0.0676 + }, + { + "start": 28817.72, + "end": 28817.72, + "probability": 0.2667 + }, + { + "start": 28831.08, + "end": 28831.08, + "probability": 0.1664 + }, + { + "start": 28831.08, + "end": 28833.72, + "probability": 0.7366 + }, + { + "start": 28835.2, + "end": 28836.26, + "probability": 0.7901 + }, + { + "start": 28837.36, + "end": 28839.94, + "probability": 0.9438 + }, + { + "start": 28840.76, + "end": 28843.4, + "probability": 0.9492 + }, + { + "start": 28844.26, + "end": 28848.02, + "probability": 0.9202 + }, + { + "start": 28848.74, + "end": 28850.84, + "probability": 0.9755 + }, + { + "start": 28852.95, + "end": 28858.96, + "probability": 0.9944 + }, + { + "start": 28859.72, + "end": 28862.95, + "probability": 0.9863 + }, + { + "start": 28864.1, + "end": 28867.72, + "probability": 0.9496 + }, + { + "start": 28870.5, + "end": 28872.34, + "probability": 0.7612 + }, + { + "start": 28873.12, + "end": 28874.28, + "probability": 0.7446 + }, + { + "start": 28875.68, + "end": 28878.18, + "probability": 0.902 + }, + { + "start": 28878.94, + "end": 28883.46, + "probability": 0.9849 + }, + { + "start": 28884.3, + "end": 28887.6, + "probability": 0.9341 + }, + { + "start": 28888.24, + "end": 28889.38, + "probability": 0.7332 + }, + { + "start": 28889.64, + "end": 28892.58, + "probability": 0.9741 + }, + { + "start": 28893.24, + "end": 28894.66, + "probability": 0.9567 + }, + { + "start": 28894.78, + "end": 28896.0, + "probability": 0.9798 + }, + { + "start": 28896.84, + "end": 28899.2, + "probability": 0.8314 + }, + { + "start": 28899.3, + "end": 28900.86, + "probability": 0.958 + }, + { + "start": 28900.94, + "end": 28901.94, + "probability": 0.9627 + }, + { + "start": 28901.98, + "end": 28902.72, + "probability": 0.4764 + }, + { + "start": 28903.14, + "end": 28903.52, + "probability": 0.9806 + }, + { + "start": 28904.14, + "end": 28904.78, + "probability": 0.9833 + }, + { + "start": 28905.28, + "end": 28906.82, + "probability": 0.9521 + }, + { + "start": 28906.92, + "end": 28909.42, + "probability": 0.98 + }, + { + "start": 28909.98, + "end": 28910.42, + "probability": 0.9558 + }, + { + "start": 28910.96, + "end": 28913.2, + "probability": 0.8231 + }, + { + "start": 28913.88, + "end": 28915.88, + "probability": 0.6651 + }, + { + "start": 28915.96, + "end": 28916.42, + "probability": 0.3818 + }, + { + "start": 28916.54, + "end": 28917.24, + "probability": 0.6882 + }, + { + "start": 28917.8, + "end": 28918.56, + "probability": 0.8819 + }, + { + "start": 28919.28, + "end": 28920.44, + "probability": 0.8895 + }, + { + "start": 28922.5, + "end": 28924.7, + "probability": 0.9582 + }, + { + "start": 28924.7, + "end": 28926.8, + "probability": 0.9926 + }, + { + "start": 28927.42, + "end": 28929.16, + "probability": 0.8534 + }, + { + "start": 28929.16, + "end": 28931.44, + "probability": 0.9969 + }, + { + "start": 28932.26, + "end": 28933.0, + "probability": 0.7402 + }, + { + "start": 28933.56, + "end": 28936.3, + "probability": 0.8381 + }, + { + "start": 28936.86, + "end": 28938.66, + "probability": 0.952 + }, + { + "start": 28939.46, + "end": 28940.68, + "probability": 0.9229 + }, + { + "start": 28941.5, + "end": 28943.74, + "probability": 0.8684 + }, + { + "start": 28943.9, + "end": 28944.3, + "probability": 0.7543 + }, + { + "start": 28944.94, + "end": 28946.73, + "probability": 0.8683 + }, + { + "start": 28947.52, + "end": 28951.44, + "probability": 0.9557 + }, + { + "start": 28952.14, + "end": 28955.86, + "probability": 0.9899 + }, + { + "start": 28956.34, + "end": 28959.58, + "probability": 0.9909 + }, + { + "start": 28960.66, + "end": 28961.76, + "probability": 0.9816 + }, + { + "start": 28962.86, + "end": 28965.88, + "probability": 0.9946 + }, + { + "start": 28966.86, + "end": 28968.1, + "probability": 0.8825 + }, + { + "start": 28968.98, + "end": 28970.54, + "probability": 0.999 + }, + { + "start": 28971.18, + "end": 28973.1, + "probability": 0.991 + }, + { + "start": 28973.72, + "end": 28975.82, + "probability": 0.9917 + }, + { + "start": 28976.58, + "end": 28977.72, + "probability": 0.9279 + }, + { + "start": 28978.26, + "end": 28980.47, + "probability": 0.9082 + }, + { + "start": 28981.14, + "end": 28982.1, + "probability": 0.7647 + }, + { + "start": 28982.82, + "end": 28984.34, + "probability": 0.9033 + }, + { + "start": 28984.92, + "end": 28986.1, + "probability": 0.9185 + }, + { + "start": 28986.76, + "end": 28989.46, + "probability": 0.9958 + }, + { + "start": 28989.96, + "end": 28991.28, + "probability": 0.9845 + }, + { + "start": 28991.62, + "end": 28994.3, + "probability": 0.996 + }, + { + "start": 28995.2, + "end": 28998.98, + "probability": 0.9947 + }, + { + "start": 28999.64, + "end": 29000.24, + "probability": 0.3456 + }, + { + "start": 29000.44, + "end": 29002.94, + "probability": 0.9938 + }, + { + "start": 29003.42, + "end": 29006.22, + "probability": 0.9394 + }, + { + "start": 29006.38, + "end": 29007.06, + "probability": 0.7416 + }, + { + "start": 29007.78, + "end": 29009.14, + "probability": 0.9847 + }, + { + "start": 29010.22, + "end": 29012.78, + "probability": 0.9897 + }, + { + "start": 29013.4, + "end": 29014.44, + "probability": 0.8157 + }, + { + "start": 29014.56, + "end": 29015.96, + "probability": 0.6561 + }, + { + "start": 29016.2, + "end": 29017.72, + "probability": 0.8068 + }, + { + "start": 29018.7, + "end": 29019.36, + "probability": 0.8235 + }, + { + "start": 29020.04, + "end": 29023.84, + "probability": 0.9801 + }, + { + "start": 29024.66, + "end": 29026.88, + "probability": 0.9467 + }, + { + "start": 29027.66, + "end": 29030.32, + "probability": 0.9969 + }, + { + "start": 29030.52, + "end": 29032.52, + "probability": 0.9872 + }, + { + "start": 29032.52, + "end": 29034.9, + "probability": 0.9979 + }, + { + "start": 29035.62, + "end": 29038.4, + "probability": 0.9685 + }, + { + "start": 29039.42, + "end": 29041.04, + "probability": 0.9875 + }, + { + "start": 29041.16, + "end": 29042.92, + "probability": 0.8455 + }, + { + "start": 29043.98, + "end": 29046.37, + "probability": 0.8826 + }, + { + "start": 29047.58, + "end": 29052.78, + "probability": 0.969 + }, + { + "start": 29053.54, + "end": 29056.14, + "probability": 0.7947 + }, + { + "start": 29056.56, + "end": 29059.82, + "probability": 0.9304 + }, + { + "start": 29060.4, + "end": 29063.9, + "probability": 0.9674 + }, + { + "start": 29064.42, + "end": 29064.93, + "probability": 0.7075 + }, + { + "start": 29065.36, + "end": 29065.72, + "probability": 0.9878 + }, + { + "start": 29066.0, + "end": 29066.28, + "probability": 0.9459 + }, + { + "start": 29067.18, + "end": 29067.54, + "probability": 0.263 + }, + { + "start": 29067.72, + "end": 29069.44, + "probability": 0.8719 + }, + { + "start": 29069.94, + "end": 29073.26, + "probability": 0.5057 + }, + { + "start": 29078.46, + "end": 29082.08, + "probability": 0.698 + }, + { + "start": 29082.88, + "end": 29084.36, + "probability": 0.9673 + }, + { + "start": 29085.5, + "end": 29086.74, + "probability": 0.7722 + }, + { + "start": 29086.84, + "end": 29087.5, + "probability": 0.8059 + }, + { + "start": 29087.64, + "end": 29089.74, + "probability": 0.0349 + }, + { + "start": 29094.06, + "end": 29094.54, + "probability": 0.0365 + }, + { + "start": 29095.06, + "end": 29095.82, + "probability": 0.2927 + }, + { + "start": 29096.76, + "end": 29098.27, + "probability": 0.0579 + }, + { + "start": 29099.1, + "end": 29100.32, + "probability": 0.2153 + }, + { + "start": 29100.52, + "end": 29101.72, + "probability": 0.4364 + }, + { + "start": 29103.48, + "end": 29103.8, + "probability": 0.5143 + }, + { + "start": 29104.02, + "end": 29104.78, + "probability": 0.8006 + }, + { + "start": 29105.12, + "end": 29106.54, + "probability": 0.8214 + }, + { + "start": 29106.92, + "end": 29111.38, + "probability": 0.9131 + }, + { + "start": 29112.4, + "end": 29118.12, + "probability": 0.9088 + }, + { + "start": 29119.0, + "end": 29122.34, + "probability": 0.9857 + }, + { + "start": 29122.54, + "end": 29123.0, + "probability": 0.8227 + }, + { + "start": 29123.26, + "end": 29123.9, + "probability": 0.9599 + }, + { + "start": 29124.12, + "end": 29124.76, + "probability": 0.9932 + }, + { + "start": 29124.86, + "end": 29125.48, + "probability": 0.8929 + }, + { + "start": 29126.04, + "end": 29127.92, + "probability": 0.9946 + }, + { + "start": 29128.5, + "end": 29131.84, + "probability": 0.7587 + }, + { + "start": 29131.96, + "end": 29134.1, + "probability": 0.882 + }, + { + "start": 29135.54, + "end": 29139.34, + "probability": 0.9853 + }, + { + "start": 29139.4, + "end": 29141.04, + "probability": 0.9803 + }, + { + "start": 29142.12, + "end": 29145.54, + "probability": 0.7865 + }, + { + "start": 29145.54, + "end": 29150.04, + "probability": 0.9976 + }, + { + "start": 29150.72, + "end": 29153.84, + "probability": 0.992 + }, + { + "start": 29155.76, + "end": 29158.06, + "probability": 0.9987 + }, + { + "start": 29158.22, + "end": 29159.58, + "probability": 0.9049 + }, + { + "start": 29160.02, + "end": 29160.86, + "probability": 0.9635 + }, + { + "start": 29161.96, + "end": 29163.6, + "probability": 0.9467 + }, + { + "start": 29163.64, + "end": 29165.36, + "probability": 0.998 + }, + { + "start": 29165.6, + "end": 29169.9, + "probability": 0.9641 + }, + { + "start": 29170.62, + "end": 29172.72, + "probability": 0.9948 + }, + { + "start": 29172.72, + "end": 29176.6, + "probability": 0.9968 + }, + { + "start": 29177.44, + "end": 29179.98, + "probability": 0.9857 + }, + { + "start": 29179.98, + "end": 29181.92, + "probability": 0.998 + }, + { + "start": 29183.82, + "end": 29184.26, + "probability": 0.644 + }, + { + "start": 29184.3, + "end": 29186.66, + "probability": 0.9724 + }, + { + "start": 29186.78, + "end": 29187.14, + "probability": 0.4158 + }, + { + "start": 29187.34, + "end": 29187.9, + "probability": 0.9769 + }, + { + "start": 29188.0, + "end": 29188.62, + "probability": 0.9783 + }, + { + "start": 29189.44, + "end": 29192.18, + "probability": 0.9889 + }, + { + "start": 29192.38, + "end": 29194.8, + "probability": 0.956 + }, + { + "start": 29196.08, + "end": 29199.16, + "probability": 0.6923 + }, + { + "start": 29199.98, + "end": 29201.88, + "probability": 0.7836 + }, + { + "start": 29202.56, + "end": 29205.26, + "probability": 0.9945 + }, + { + "start": 29205.58, + "end": 29207.58, + "probability": 0.9941 + }, + { + "start": 29207.66, + "end": 29209.4, + "probability": 0.9795 + }, + { + "start": 29209.9, + "end": 29214.2, + "probability": 0.7528 + }, + { + "start": 29214.26, + "end": 29215.82, + "probability": 0.9103 + }, + { + "start": 29216.22, + "end": 29216.58, + "probability": 0.4965 + }, + { + "start": 29216.6, + "end": 29219.58, + "probability": 0.9508 + }, + { + "start": 29220.08, + "end": 29221.92, + "probability": 0.9513 + }, + { + "start": 29222.24, + "end": 29226.56, + "probability": 0.9979 + }, + { + "start": 29226.56, + "end": 29228.94, + "probability": 0.8672 + }, + { + "start": 29229.54, + "end": 29230.46, + "probability": 0.6041 + }, + { + "start": 29230.58, + "end": 29232.44, + "probability": 0.7557 + }, + { + "start": 29232.5, + "end": 29232.94, + "probability": 0.4991 + }, + { + "start": 29233.32, + "end": 29236.4, + "probability": 0.7992 + }, + { + "start": 29236.96, + "end": 29240.36, + "probability": 0.998 + }, + { + "start": 29240.5, + "end": 29241.62, + "probability": 0.8902 + }, + { + "start": 29242.18, + "end": 29244.48, + "probability": 0.8972 + }, + { + "start": 29244.48, + "end": 29246.76, + "probability": 0.994 + }, + { + "start": 29247.98, + "end": 29251.54, + "probability": 0.9789 + }, + { + "start": 29252.52, + "end": 29254.63, + "probability": 0.8831 + }, + { + "start": 29256.48, + "end": 29260.72, + "probability": 0.9956 + }, + { + "start": 29260.72, + "end": 29264.28, + "probability": 0.9973 + }, + { + "start": 29265.78, + "end": 29267.92, + "probability": 0.7084 + }, + { + "start": 29268.16, + "end": 29271.38, + "probability": 0.9937 + }, + { + "start": 29271.48, + "end": 29272.66, + "probability": 0.7732 + }, + { + "start": 29273.16, + "end": 29275.1, + "probability": 0.8032 + }, + { + "start": 29275.28, + "end": 29278.56, + "probability": 0.8283 + }, + { + "start": 29279.1, + "end": 29281.48, + "probability": 0.9977 + }, + { + "start": 29281.66, + "end": 29282.26, + "probability": 0.6718 + }, + { + "start": 29282.44, + "end": 29282.6, + "probability": 0.4764 + }, + { + "start": 29282.8, + "end": 29283.52, + "probability": 0.8485 + }, + { + "start": 29284.08, + "end": 29287.4, + "probability": 0.9948 + }, + { + "start": 29287.6, + "end": 29288.96, + "probability": 0.6045 + }, + { + "start": 29289.2, + "end": 29290.08, + "probability": 0.8343 + }, + { + "start": 29290.66, + "end": 29291.52, + "probability": 0.9609 + }, + { + "start": 29292.64, + "end": 29295.14, + "probability": 0.982 + }, + { + "start": 29295.14, + "end": 29297.92, + "probability": 0.9868 + }, + { + "start": 29298.32, + "end": 29300.92, + "probability": 0.8837 + }, + { + "start": 29301.98, + "end": 29303.58, + "probability": 0.9832 + }, + { + "start": 29304.26, + "end": 29306.2, + "probability": 0.9766 + }, + { + "start": 29306.88, + "end": 29311.0, + "probability": 0.9982 + }, + { + "start": 29311.3, + "end": 29313.18, + "probability": 0.9616 + }, + { + "start": 29313.96, + "end": 29316.34, + "probability": 0.7485 + }, + { + "start": 29316.84, + "end": 29319.9, + "probability": 0.9987 + }, + { + "start": 29320.26, + "end": 29321.98, + "probability": 0.989 + }, + { + "start": 29322.84, + "end": 29327.16, + "probability": 0.9331 + }, + { + "start": 29328.58, + "end": 29331.7, + "probability": 0.9814 + }, + { + "start": 29332.04, + "end": 29334.5, + "probability": 0.9582 + }, + { + "start": 29335.16, + "end": 29339.72, + "probability": 0.9243 + }, + { + "start": 29340.66, + "end": 29343.34, + "probability": 0.9684 + }, + { + "start": 29343.58, + "end": 29346.1, + "probability": 0.9376 + }, + { + "start": 29347.04, + "end": 29349.06, + "probability": 0.9767 + }, + { + "start": 29349.42, + "end": 29351.64, + "probability": 0.8931 + }, + { + "start": 29351.84, + "end": 29356.5, + "probability": 0.9898 + }, + { + "start": 29357.26, + "end": 29359.2, + "probability": 0.691 + }, + { + "start": 29359.66, + "end": 29361.74, + "probability": 0.999 + }, + { + "start": 29361.98, + "end": 29367.3, + "probability": 0.9885 + }, + { + "start": 29367.98, + "end": 29370.34, + "probability": 0.8373 + }, + { + "start": 29370.46, + "end": 29372.96, + "probability": 0.9871 + }, + { + "start": 29373.5, + "end": 29374.82, + "probability": 0.9819 + }, + { + "start": 29375.0, + "end": 29378.7, + "probability": 0.9938 + }, + { + "start": 29379.28, + "end": 29381.62, + "probability": 0.9012 + }, + { + "start": 29381.94, + "end": 29384.24, + "probability": 0.8701 + }, + { + "start": 29385.06, + "end": 29386.2, + "probability": 0.9909 + }, + { + "start": 29386.3, + "end": 29387.19, + "probability": 0.8809 + }, + { + "start": 29388.96, + "end": 29392.12, + "probability": 0.8887 + }, + { + "start": 29393.0, + "end": 29394.44, + "probability": 0.8492 + }, + { + "start": 29394.76, + "end": 29398.8, + "probability": 0.9917 + }, + { + "start": 29399.28, + "end": 29399.44, + "probability": 0.9013 + }, + { + "start": 29399.56, + "end": 29400.4, + "probability": 0.9473 + }, + { + "start": 29400.96, + "end": 29402.1, + "probability": 0.7657 + }, + { + "start": 29402.24, + "end": 29403.88, + "probability": 0.998 + }, + { + "start": 29404.22, + "end": 29407.3, + "probability": 0.9976 + }, + { + "start": 29407.48, + "end": 29407.98, + "probability": 0.8021 + }, + { + "start": 29408.5, + "end": 29410.58, + "probability": 0.9993 + }, + { + "start": 29410.84, + "end": 29412.98, + "probability": 0.6166 + }, + { + "start": 29413.72, + "end": 29416.27, + "probability": 0.9875 + }, + { + "start": 29417.08, + "end": 29420.9, + "probability": 0.994 + }, + { + "start": 29421.48, + "end": 29428.24, + "probability": 0.7545 + }, + { + "start": 29428.84, + "end": 29428.94, + "probability": 0.4128 + }, + { + "start": 29428.94, + "end": 29431.36, + "probability": 0.7241 + }, + { + "start": 29431.84, + "end": 29434.28, + "probability": 0.9879 + }, + { + "start": 29434.38, + "end": 29435.9, + "probability": 0.8557 + }, + { + "start": 29436.74, + "end": 29442.42, + "probability": 0.9958 + }, + { + "start": 29442.48, + "end": 29448.4, + "probability": 0.9993 + }, + { + "start": 29449.7, + "end": 29453.16, + "probability": 0.9995 + }, + { + "start": 29453.82, + "end": 29456.5, + "probability": 0.996 + }, + { + "start": 29457.08, + "end": 29460.24, + "probability": 0.9916 + }, + { + "start": 29461.24, + "end": 29462.02, + "probability": 0.4051 + }, + { + "start": 29462.16, + "end": 29462.4, + "probability": 0.8192 + }, + { + "start": 29466.6, + "end": 29467.8, + "probability": 0.2338 + }, + { + "start": 29468.34, + "end": 29469.68, + "probability": 0.5758 + }, + { + "start": 29472.78, + "end": 29473.72, + "probability": 0.4556 + }, + { + "start": 29473.98, + "end": 29475.14, + "probability": 0.543 + }, + { + "start": 29481.2, + "end": 29481.62, + "probability": 0.1813 + }, + { + "start": 29492.22, + "end": 29492.34, + "probability": 0.2872 + }, + { + "start": 29492.34, + "end": 29494.58, + "probability": 0.433 + }, + { + "start": 29495.32, + "end": 29497.6, + "probability": 0.7232 + }, + { + "start": 29498.66, + "end": 29500.11, + "probability": 0.9643 + }, + { + "start": 29503.52, + "end": 29504.12, + "probability": 0.1046 + }, + { + "start": 29506.72, + "end": 29510.72, + "probability": 0.3082 + }, + { + "start": 29511.34, + "end": 29511.72, + "probability": 0.4968 + }, + { + "start": 29511.72, + "end": 29511.72, + "probability": 0.1061 + }, + { + "start": 29511.78, + "end": 29511.78, + "probability": 0.4671 + }, + { + "start": 29511.9, + "end": 29512.22, + "probability": 0.5893 + }, + { + "start": 29514.76, + "end": 29515.34, + "probability": 0.5259 + }, + { + "start": 29517.18, + "end": 29518.74, + "probability": 0.9471 + }, + { + "start": 29520.88, + "end": 29524.08, + "probability": 0.6145 + }, + { + "start": 29525.04, + "end": 29527.02, + "probability": 0.9143 + }, + { + "start": 29528.5, + "end": 29533.82, + "probability": 0.7864 + }, + { + "start": 29534.32, + "end": 29534.42, + "probability": 0.1884 + } + ], + "segments_count": 6051, + "words_count": 28975, + "avg_words_per_segment": 4.7885, + "avg_segment_duration": 1.8639, + "avg_words_per_minute": 58.7681, + "plenum_id": "104349", + "duration": 29582.37, + "title": null, + "plenum_date": "2022-01-12" +} \ No newline at end of file