diff --git "a/105801/metadata.json" "b/105801/metadata.json" new file mode 100644--- /dev/null +++ "b/105801/metadata.json" @@ -0,0 +1,78542 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "105801", + "quality_score": 0.8573, + "per_segment_quality_scores": [ + { + "start": 79.1, + "end": 80.76, + "probability": 0.074 + }, + { + "start": 81.12, + "end": 87.12, + "probability": 0.5478 + }, + { + "start": 87.8, + "end": 90.98, + "probability": 0.2083 + }, + { + "start": 92.82, + "end": 94.26, + "probability": 0.1083 + }, + { + "start": 96.02, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 148.0, + "end": 148.0, + "probability": 0.0 + }, + { + "start": 156.14, + "end": 158.94, + "probability": 0.0077 + }, + { + "start": 324.6, + "end": 324.7, + "probability": 0.0908 + }, + { + "start": 324.7, + "end": 326.14, + "probability": 0.7294 + }, + { + "start": 333.54, + "end": 336.06, + "probability": 0.4705 + }, + { + "start": 336.2, + "end": 337.98, + "probability": 0.6672 + }, + { + "start": 338.12, + "end": 339.3, + "probability": 0.5859 + }, + { + "start": 340.02, + "end": 344.12, + "probability": 0.8451 + }, + { + "start": 344.96, + "end": 347.84, + "probability": 0.9877 + }, + { + "start": 348.66, + "end": 349.84, + "probability": 0.6889 + }, + { + "start": 349.92, + "end": 352.48, + "probability": 0.9002 + }, + { + "start": 352.56, + "end": 354.08, + "probability": 0.3673 + }, + { + "start": 354.9, + "end": 357.8, + "probability": 0.9103 + }, + { + "start": 357.82, + "end": 358.36, + "probability": 0.7319 + }, + { + "start": 358.94, + "end": 363.44, + "probability": 0.9482 + }, + { + "start": 364.16, + "end": 368.54, + "probability": 0.7593 + }, + { + "start": 369.3, + "end": 370.68, + "probability": 0.972 + }, + { + "start": 370.76, + "end": 370.98, + "probability": 0.74 + }, + { + "start": 372.92, + "end": 374.88, + "probability": 0.6666 + }, + { + "start": 376.82, + "end": 377.58, + "probability": 0.3208 + }, + { + "start": 377.86, + "end": 378.04, + "probability": 0.7398 + }, + { + "start": 378.56, + "end": 378.92, + "probability": 0.999 + }, + { + "start": 379.74, + "end": 381.37, + "probability": 0.8647 + }, + { + "start": 382.54, + "end": 384.52, + "probability": 0.9721 + }, + { + "start": 385.8, + "end": 387.48, + "probability": 0.9717 + }, + { + "start": 388.1, + "end": 392.48, + "probability": 0.9755 + }, + { + "start": 393.46, + "end": 395.92, + "probability": 0.9879 + }, + { + "start": 396.46, + "end": 397.8, + "probability": 0.9984 + }, + { + "start": 398.62, + "end": 399.84, + "probability": 0.9385 + }, + { + "start": 400.28, + "end": 402.7, + "probability": 0.9909 + }, + { + "start": 405.64, + "end": 406.4, + "probability": 0.8854 + }, + { + "start": 413.34, + "end": 414.3, + "probability": 0.4502 + }, + { + "start": 414.5, + "end": 418.94, + "probability": 0.6184 + }, + { + "start": 419.14, + "end": 422.08, + "probability": 0.9282 + }, + { + "start": 422.82, + "end": 424.32, + "probability": 0.9185 + }, + { + "start": 425.02, + "end": 428.36, + "probability": 0.852 + }, + { + "start": 429.82, + "end": 434.6, + "probability": 0.7869 + }, + { + "start": 435.06, + "end": 437.64, + "probability": 0.8574 + }, + { + "start": 438.06, + "end": 440.26, + "probability": 0.9862 + }, + { + "start": 441.62, + "end": 447.64, + "probability": 0.9679 + }, + { + "start": 447.82, + "end": 450.44, + "probability": 0.6322 + }, + { + "start": 451.62, + "end": 455.54, + "probability": 0.9954 + }, + { + "start": 456.34, + "end": 458.72, + "probability": 0.902 + }, + { + "start": 459.52, + "end": 463.44, + "probability": 0.9949 + }, + { + "start": 463.44, + "end": 466.04, + "probability": 0.6742 + }, + { + "start": 466.2, + "end": 471.22, + "probability": 0.9714 + }, + { + "start": 472.38, + "end": 472.48, + "probability": 0.5337 + }, + { + "start": 473.28, + "end": 474.76, + "probability": 0.7243 + }, + { + "start": 475.56, + "end": 477.08, + "probability": 0.7174 + }, + { + "start": 477.96, + "end": 479.98, + "probability": 0.999 + }, + { + "start": 480.58, + "end": 481.88, + "probability": 0.9668 + }, + { + "start": 482.04, + "end": 487.1, + "probability": 0.9914 + }, + { + "start": 487.82, + "end": 489.58, + "probability": 0.9656 + }, + { + "start": 490.45, + "end": 494.68, + "probability": 0.9949 + }, + { + "start": 495.5, + "end": 497.98, + "probability": 0.8124 + }, + { + "start": 498.5, + "end": 500.92, + "probability": 0.6407 + }, + { + "start": 501.5, + "end": 503.68, + "probability": 0.9967 + }, + { + "start": 504.44, + "end": 505.92, + "probability": 0.999 + }, + { + "start": 509.84, + "end": 510.6, + "probability": 0.5457 + }, + { + "start": 511.16, + "end": 513.36, + "probability": 0.7756 + }, + { + "start": 514.74, + "end": 517.4, + "probability": 0.9434 + }, + { + "start": 524.12, + "end": 525.98, + "probability": 0.6324 + }, + { + "start": 526.0, + "end": 529.28, + "probability": 0.6762 + }, + { + "start": 529.96, + "end": 532.56, + "probability": 0.9695 + }, + { + "start": 532.56, + "end": 535.82, + "probability": 0.9152 + }, + { + "start": 535.92, + "end": 540.24, + "probability": 0.9952 + }, + { + "start": 541.0, + "end": 544.26, + "probability": 0.8561 + }, + { + "start": 544.26, + "end": 547.76, + "probability": 0.9977 + }, + { + "start": 548.22, + "end": 551.3, + "probability": 0.9898 + }, + { + "start": 551.3, + "end": 554.1, + "probability": 0.948 + }, + { + "start": 556.46, + "end": 559.1, + "probability": 0.8851 + }, + { + "start": 560.1, + "end": 561.92, + "probability": 0.9841 + }, + { + "start": 562.5, + "end": 566.22, + "probability": 0.9522 + }, + { + "start": 566.22, + "end": 571.56, + "probability": 0.6712 + }, + { + "start": 571.56, + "end": 578.48, + "probability": 0.8741 + }, + { + "start": 579.12, + "end": 585.32, + "probability": 0.9905 + }, + { + "start": 585.92, + "end": 589.62, + "probability": 0.9507 + }, + { + "start": 590.78, + "end": 592.12, + "probability": 0.8771 + }, + { + "start": 592.68, + "end": 596.6, + "probability": 0.9116 + }, + { + "start": 596.83, + "end": 601.16, + "probability": 0.8967 + }, + { + "start": 601.92, + "end": 604.32, + "probability": 0.7495 + }, + { + "start": 605.14, + "end": 606.88, + "probability": 0.9777 + }, + { + "start": 607.46, + "end": 612.08, + "probability": 0.9976 + }, + { + "start": 613.02, + "end": 614.84, + "probability": 0.9946 + }, + { + "start": 615.36, + "end": 616.3, + "probability": 0.975 + }, + { + "start": 617.24, + "end": 618.22, + "probability": 0.7984 + }, + { + "start": 618.82, + "end": 623.24, + "probability": 0.9893 + }, + { + "start": 623.24, + "end": 627.1, + "probability": 0.9943 + }, + { + "start": 627.64, + "end": 628.7, + "probability": 0.754 + }, + { + "start": 629.28, + "end": 631.58, + "probability": 0.9951 + }, + { + "start": 632.78, + "end": 634.7, + "probability": 0.937 + }, + { + "start": 635.26, + "end": 637.18, + "probability": 0.8748 + }, + { + "start": 638.02, + "end": 639.78, + "probability": 0.9096 + }, + { + "start": 640.36, + "end": 641.98, + "probability": 0.9665 + }, + { + "start": 646.44, + "end": 647.84, + "probability": 0.7225 + }, + { + "start": 647.88, + "end": 649.54, + "probability": 0.8347 + }, + { + "start": 649.62, + "end": 653.54, + "probability": 0.9617 + }, + { + "start": 653.66, + "end": 656.52, + "probability": 0.9756 + }, + { + "start": 656.6, + "end": 658.54, + "probability": 0.8319 + }, + { + "start": 660.12, + "end": 664.38, + "probability": 0.9959 + }, + { + "start": 664.58, + "end": 668.38, + "probability": 0.989 + }, + { + "start": 668.38, + "end": 673.32, + "probability": 0.9951 + }, + { + "start": 673.32, + "end": 679.0, + "probability": 0.959 + }, + { + "start": 679.22, + "end": 681.64, + "probability": 0.9946 + }, + { + "start": 681.64, + "end": 683.93, + "probability": 0.9985 + }, + { + "start": 684.22, + "end": 691.68, + "probability": 0.9282 + }, + { + "start": 692.36, + "end": 693.38, + "probability": 0.9765 + }, + { + "start": 693.54, + "end": 696.0, + "probability": 0.9862 + }, + { + "start": 696.14, + "end": 699.68, + "probability": 0.964 + }, + { + "start": 699.94, + "end": 701.18, + "probability": 0.7996 + }, + { + "start": 701.26, + "end": 705.32, + "probability": 0.9792 + }, + { + "start": 705.42, + "end": 706.5, + "probability": 0.8948 + }, + { + "start": 706.52, + "end": 711.36, + "probability": 0.9942 + }, + { + "start": 711.36, + "end": 718.02, + "probability": 0.9941 + }, + { + "start": 718.02, + "end": 723.0, + "probability": 0.9949 + }, + { + "start": 723.14, + "end": 725.56, + "probability": 0.9983 + }, + { + "start": 725.72, + "end": 728.34, + "probability": 0.998 + }, + { + "start": 729.44, + "end": 733.32, + "probability": 0.9661 + }, + { + "start": 733.36, + "end": 738.14, + "probability": 0.666 + }, + { + "start": 738.18, + "end": 739.43, + "probability": 0.9741 + }, + { + "start": 740.32, + "end": 743.63, + "probability": 0.9827 + }, + { + "start": 743.66, + "end": 747.04, + "probability": 0.9972 + }, + { + "start": 747.18, + "end": 749.82, + "probability": 0.8753 + }, + { + "start": 751.18, + "end": 752.26, + "probability": 0.1423 + }, + { + "start": 752.26, + "end": 753.71, + "probability": 0.3227 + }, + { + "start": 754.72, + "end": 756.18, + "probability": 0.879 + }, + { + "start": 756.78, + "end": 760.86, + "probability": 0.9911 + }, + { + "start": 761.9, + "end": 766.56, + "probability": 0.9847 + }, + { + "start": 766.63, + "end": 769.58, + "probability": 0.9971 + }, + { + "start": 770.88, + "end": 772.54, + "probability": 0.9823 + }, + { + "start": 773.28, + "end": 774.48, + "probability": 0.8784 + }, + { + "start": 775.02, + "end": 776.46, + "probability": 0.8777 + }, + { + "start": 777.18, + "end": 780.58, + "probability": 0.9899 + }, + { + "start": 781.12, + "end": 782.18, + "probability": 0.5146 + }, + { + "start": 782.86, + "end": 785.66, + "probability": 0.9208 + }, + { + "start": 786.2, + "end": 787.76, + "probability": 0.9892 + }, + { + "start": 788.48, + "end": 791.44, + "probability": 0.8356 + }, + { + "start": 792.02, + "end": 795.66, + "probability": 0.994 + }, + { + "start": 796.32, + "end": 798.32, + "probability": 0.9753 + }, + { + "start": 798.86, + "end": 800.26, + "probability": 0.9923 + }, + { + "start": 800.94, + "end": 803.66, + "probability": 0.9885 + }, + { + "start": 804.32, + "end": 804.72, + "probability": 0.8335 + }, + { + "start": 806.84, + "end": 807.27, + "probability": 0.5175 + }, + { + "start": 810.3, + "end": 816.48, + "probability": 0.9961 + }, + { + "start": 817.5, + "end": 819.48, + "probability": 0.9953 + }, + { + "start": 820.12, + "end": 822.22, + "probability": 0.9426 + }, + { + "start": 825.1, + "end": 825.98, + "probability": 0.7095 + }, + { + "start": 827.16, + "end": 829.28, + "probability": 0.7005 + }, + { + "start": 831.78, + "end": 832.5, + "probability": 0.7376 + }, + { + "start": 839.24, + "end": 839.5, + "probability": 0.5124 + }, + { + "start": 839.5, + "end": 841.28, + "probability": 0.7928 + }, + { + "start": 845.0, + "end": 846.32, + "probability": 0.5002 + }, + { + "start": 846.56, + "end": 847.12, + "probability": 0.5471 + }, + { + "start": 847.28, + "end": 847.6, + "probability": 0.9202 + }, + { + "start": 867.38, + "end": 868.3, + "probability": 0.5105 + }, + { + "start": 868.54, + "end": 872.56, + "probability": 0.9001 + }, + { + "start": 874.0, + "end": 875.46, + "probability": 0.9368 + }, + { + "start": 876.2, + "end": 881.74, + "probability": 0.9809 + }, + { + "start": 882.92, + "end": 885.88, + "probability": 0.9838 + }, + { + "start": 885.92, + "end": 886.58, + "probability": 0.8384 + }, + { + "start": 886.88, + "end": 888.92, + "probability": 0.9243 + }, + { + "start": 889.6, + "end": 890.25, + "probability": 0.6779 + }, + { + "start": 890.44, + "end": 890.76, + "probability": 0.8909 + }, + { + "start": 891.14, + "end": 892.44, + "probability": 0.8267 + }, + { + "start": 892.48, + "end": 893.18, + "probability": 0.4944 + }, + { + "start": 893.7, + "end": 897.6, + "probability": 0.9292 + }, + { + "start": 898.1, + "end": 902.08, + "probability": 0.8928 + }, + { + "start": 902.5, + "end": 906.68, + "probability": 0.8966 + }, + { + "start": 907.54, + "end": 908.58, + "probability": 0.48 + }, + { + "start": 908.66, + "end": 913.02, + "probability": 0.9835 + }, + { + "start": 914.72, + "end": 915.56, + "probability": 0.6016 + }, + { + "start": 915.66, + "end": 917.24, + "probability": 0.5149 + }, + { + "start": 917.9, + "end": 920.36, + "probability": 0.697 + }, + { + "start": 920.42, + "end": 921.28, + "probability": 0.9148 + }, + { + "start": 922.14, + "end": 925.4, + "probability": 0.9797 + }, + { + "start": 926.08, + "end": 929.9, + "probability": 0.8381 + }, + { + "start": 931.08, + "end": 934.06, + "probability": 0.8741 + }, + { + "start": 934.84, + "end": 940.68, + "probability": 0.9981 + }, + { + "start": 941.0, + "end": 945.2, + "probability": 0.9967 + }, + { + "start": 946.4, + "end": 949.84, + "probability": 0.9312 + }, + { + "start": 950.62, + "end": 952.12, + "probability": 0.9956 + }, + { + "start": 952.66, + "end": 955.24, + "probability": 0.6106 + }, + { + "start": 955.34, + "end": 956.06, + "probability": 0.8977 + }, + { + "start": 956.18, + "end": 956.78, + "probability": 0.5722 + }, + { + "start": 958.02, + "end": 960.34, + "probability": 0.9091 + }, + { + "start": 960.38, + "end": 962.52, + "probability": 0.8967 + }, + { + "start": 962.6, + "end": 966.64, + "probability": 0.9794 + }, + { + "start": 967.14, + "end": 968.19, + "probability": 0.9985 + }, + { + "start": 969.38, + "end": 972.56, + "probability": 0.9965 + }, + { + "start": 973.18, + "end": 974.58, + "probability": 0.9139 + }, + { + "start": 974.64, + "end": 977.84, + "probability": 0.9849 + }, + { + "start": 978.72, + "end": 980.44, + "probability": 0.9492 + }, + { + "start": 981.1, + "end": 983.3, + "probability": 0.9961 + }, + { + "start": 983.9, + "end": 986.54, + "probability": 0.9591 + }, + { + "start": 988.64, + "end": 990.1, + "probability": 0.9633 + }, + { + "start": 990.86, + "end": 998.22, + "probability": 0.9475 + }, + { + "start": 998.94, + "end": 1002.24, + "probability": 0.9492 + }, + { + "start": 1002.26, + "end": 1005.36, + "probability": 0.9985 + }, + { + "start": 1006.6, + "end": 1011.12, + "probability": 0.8994 + }, + { + "start": 1011.66, + "end": 1012.54, + "probability": 0.9931 + }, + { + "start": 1013.1, + "end": 1016.16, + "probability": 0.9966 + }, + { + "start": 1016.7, + "end": 1019.14, + "probability": 0.9663 + }, + { + "start": 1020.52, + "end": 1022.66, + "probability": 0.9648 + }, + { + "start": 1023.44, + "end": 1026.44, + "probability": 0.9454 + }, + { + "start": 1027.66, + "end": 1030.28, + "probability": 0.9131 + }, + { + "start": 1030.66, + "end": 1035.62, + "probability": 0.9849 + }, + { + "start": 1035.62, + "end": 1039.64, + "probability": 0.9163 + }, + { + "start": 1040.46, + "end": 1042.96, + "probability": 0.6947 + }, + { + "start": 1043.12, + "end": 1043.54, + "probability": 0.7678 + }, + { + "start": 1043.6, + "end": 1047.32, + "probability": 0.993 + }, + { + "start": 1048.98, + "end": 1050.79, + "probability": 0.997 + }, + { + "start": 1051.26, + "end": 1052.9, + "probability": 0.7559 + }, + { + "start": 1053.52, + "end": 1053.86, + "probability": 0.8125 + }, + { + "start": 1053.86, + "end": 1055.0, + "probability": 0.97 + }, + { + "start": 1055.2, + "end": 1059.66, + "probability": 0.9828 + }, + { + "start": 1059.78, + "end": 1061.56, + "probability": 0.868 + }, + { + "start": 1062.18, + "end": 1066.02, + "probability": 0.9945 + }, + { + "start": 1066.8, + "end": 1072.9, + "probability": 0.9955 + }, + { + "start": 1073.02, + "end": 1076.56, + "probability": 0.6817 + }, + { + "start": 1076.56, + "end": 1084.08, + "probability": 0.7053 + }, + { + "start": 1084.36, + "end": 1087.22, + "probability": 0.787 + }, + { + "start": 1087.9, + "end": 1088.68, + "probability": 0.5929 + }, + { + "start": 1088.74, + "end": 1090.14, + "probability": 0.883 + }, + { + "start": 1090.64, + "end": 1091.94, + "probability": 0.6878 + }, + { + "start": 1092.96, + "end": 1094.24, + "probability": 0.4721 + }, + { + "start": 1094.76, + "end": 1095.4, + "probability": 0.6463 + }, + { + "start": 1095.56, + "end": 1097.38, + "probability": 0.7586 + }, + { + "start": 1097.46, + "end": 1100.56, + "probability": 0.8493 + }, + { + "start": 1100.66, + "end": 1100.92, + "probability": 0.0532 + }, + { + "start": 1100.96, + "end": 1101.52, + "probability": 0.6824 + }, + { + "start": 1101.54, + "end": 1103.46, + "probability": 0.8463 + }, + { + "start": 1103.46, + "end": 1105.23, + "probability": 0.9834 + }, + { + "start": 1105.56, + "end": 1110.14, + "probability": 0.9244 + }, + { + "start": 1110.14, + "end": 1112.08, + "probability": 0.9956 + }, + { + "start": 1112.08, + "end": 1113.12, + "probability": 0.8973 + }, + { + "start": 1113.56, + "end": 1114.2, + "probability": 0.7639 + }, + { + "start": 1114.24, + "end": 1116.6, + "probability": 0.8958 + }, + { + "start": 1116.68, + "end": 1119.99, + "probability": 0.4964 + }, + { + "start": 1120.2, + "end": 1125.0, + "probability": 0.9189 + }, + { + "start": 1125.18, + "end": 1125.38, + "probability": 0.0829 + }, + { + "start": 1125.5, + "end": 1128.22, + "probability": 0.7162 + }, + { + "start": 1128.28, + "end": 1131.32, + "probability": 0.5089 + }, + { + "start": 1131.42, + "end": 1132.16, + "probability": 0.7422 + }, + { + "start": 1132.9, + "end": 1137.1, + "probability": 0.9796 + }, + { + "start": 1137.54, + "end": 1142.48, + "probability": 0.9656 + }, + { + "start": 1142.94, + "end": 1143.58, + "probability": 0.5428 + }, + { + "start": 1143.94, + "end": 1144.26, + "probability": 0.7576 + }, + { + "start": 1144.32, + "end": 1146.52, + "probability": 0.994 + }, + { + "start": 1149.21, + "end": 1154.44, + "probability": 0.9794 + }, + { + "start": 1154.44, + "end": 1156.24, + "probability": 0.7812 + }, + { + "start": 1156.78, + "end": 1157.58, + "probability": 0.8069 + }, + { + "start": 1158.1, + "end": 1158.7, + "probability": 0.9389 + }, + { + "start": 1158.76, + "end": 1159.6, + "probability": 0.8769 + }, + { + "start": 1159.74, + "end": 1161.76, + "probability": 0.9062 + }, + { + "start": 1161.92, + "end": 1162.12, + "probability": 0.9016 + }, + { + "start": 1162.18, + "end": 1162.99, + "probability": 0.9315 + }, + { + "start": 1163.2, + "end": 1163.88, + "probability": 0.8542 + }, + { + "start": 1163.98, + "end": 1164.84, + "probability": 0.8667 + }, + { + "start": 1164.96, + "end": 1166.26, + "probability": 0.9649 + }, + { + "start": 1166.88, + "end": 1170.04, + "probability": 0.7996 + }, + { + "start": 1170.5, + "end": 1171.96, + "probability": 0.8569 + }, + { + "start": 1172.04, + "end": 1172.84, + "probability": 0.951 + }, + { + "start": 1172.88, + "end": 1173.74, + "probability": 0.4036 + }, + { + "start": 1173.78, + "end": 1174.0, + "probability": 0.7321 + }, + { + "start": 1174.0, + "end": 1175.4, + "probability": 0.4807 + }, + { + "start": 1175.76, + "end": 1176.02, + "probability": 0.8008 + }, + { + "start": 1176.24, + "end": 1177.3, + "probability": 0.9681 + }, + { + "start": 1177.62, + "end": 1179.48, + "probability": 0.343 + }, + { + "start": 1179.58, + "end": 1180.61, + "probability": 0.5164 + }, + { + "start": 1180.9, + "end": 1181.4, + "probability": 0.555 + }, + { + "start": 1181.44, + "end": 1181.92, + "probability": 0.6163 + }, + { + "start": 1181.92, + "end": 1182.06, + "probability": 0.4382 + }, + { + "start": 1182.06, + "end": 1183.18, + "probability": 0.4172 + }, + { + "start": 1184.32, + "end": 1185.32, + "probability": 0.8498 + }, + { + "start": 1185.32, + "end": 1185.32, + "probability": 0.4753 + }, + { + "start": 1185.32, + "end": 1187.35, + "probability": 0.8224 + }, + { + "start": 1187.9, + "end": 1190.22, + "probability": 0.8708 + }, + { + "start": 1190.34, + "end": 1190.86, + "probability": 0.7723 + }, + { + "start": 1191.1, + "end": 1192.16, + "probability": 0.5766 + }, + { + "start": 1192.22, + "end": 1193.58, + "probability": 0.9312 + }, + { + "start": 1193.64, + "end": 1197.98, + "probability": 0.8921 + }, + { + "start": 1198.48, + "end": 1199.32, + "probability": 0.9652 + }, + { + "start": 1199.42, + "end": 1199.86, + "probability": 0.5647 + }, + { + "start": 1199.88, + "end": 1204.14, + "probability": 0.9499 + }, + { + "start": 1204.2, + "end": 1204.86, + "probability": 0.7993 + }, + { + "start": 1205.0, + "end": 1206.07, + "probability": 0.9468 + }, + { + "start": 1206.82, + "end": 1211.22, + "probability": 0.8964 + }, + { + "start": 1211.32, + "end": 1213.06, + "probability": 0.9807 + }, + { + "start": 1213.46, + "end": 1213.95, + "probability": 0.8813 + }, + { + "start": 1214.2, + "end": 1216.74, + "probability": 0.6008 + }, + { + "start": 1217.04, + "end": 1220.88, + "probability": 0.768 + }, + { + "start": 1220.92, + "end": 1221.36, + "probability": 0.5997 + }, + { + "start": 1221.7, + "end": 1224.36, + "probability": 0.9836 + }, + { + "start": 1225.94, + "end": 1226.86, + "probability": 0.5469 + }, + { + "start": 1226.86, + "end": 1227.58, + "probability": 0.8939 + }, + { + "start": 1228.0, + "end": 1231.26, + "probability": 0.985 + }, + { + "start": 1231.26, + "end": 1234.96, + "probability": 0.5768 + }, + { + "start": 1235.04, + "end": 1235.24, + "probability": 0.612 + }, + { + "start": 1235.7, + "end": 1236.3, + "probability": 0.6974 + }, + { + "start": 1236.62, + "end": 1237.08, + "probability": 0.446 + }, + { + "start": 1238.36, + "end": 1241.78, + "probability": 0.7889 + }, + { + "start": 1242.42, + "end": 1245.36, + "probability": 0.8291 + }, + { + "start": 1245.42, + "end": 1249.03, + "probability": 0.9948 + }, + { + "start": 1250.9, + "end": 1254.74, + "probability": 0.9882 + }, + { + "start": 1254.84, + "end": 1258.84, + "probability": 0.9937 + }, + { + "start": 1259.04, + "end": 1261.16, + "probability": 0.908 + }, + { + "start": 1262.1, + "end": 1264.88, + "probability": 0.998 + }, + { + "start": 1265.82, + "end": 1268.64, + "probability": 0.9873 + }, + { + "start": 1269.64, + "end": 1272.72, + "probability": 0.8688 + }, + { + "start": 1273.3, + "end": 1274.58, + "probability": 0.7025 + }, + { + "start": 1274.8, + "end": 1275.48, + "probability": 0.7306 + }, + { + "start": 1275.52, + "end": 1276.86, + "probability": 0.9827 + }, + { + "start": 1278.62, + "end": 1281.94, + "probability": 0.5741 + }, + { + "start": 1282.48, + "end": 1285.76, + "probability": 0.9409 + }, + { + "start": 1286.44, + "end": 1289.32, + "probability": 0.9559 + }, + { + "start": 1290.04, + "end": 1291.62, + "probability": 0.9053 + }, + { + "start": 1292.06, + "end": 1294.84, + "probability": 0.8995 + }, + { + "start": 1294.9, + "end": 1295.58, + "probability": 0.806 + }, + { + "start": 1296.3, + "end": 1296.4, + "probability": 0.0666 + }, + { + "start": 1296.4, + "end": 1297.59, + "probability": 0.5421 + }, + { + "start": 1299.0, + "end": 1305.4, + "probability": 0.9824 + }, + { + "start": 1305.4, + "end": 1308.98, + "probability": 0.9996 + }, + { + "start": 1309.64, + "end": 1310.99, + "probability": 0.9707 + }, + { + "start": 1313.1, + "end": 1315.8, + "probability": 0.9157 + }, + { + "start": 1316.08, + "end": 1317.12, + "probability": 0.7969 + }, + { + "start": 1317.12, + "end": 1319.48, + "probability": 0.9127 + }, + { + "start": 1320.32, + "end": 1323.56, + "probability": 0.9919 + }, + { + "start": 1323.64, + "end": 1324.68, + "probability": 0.8309 + }, + { + "start": 1325.22, + "end": 1328.74, + "probability": 0.6342 + }, + { + "start": 1329.02, + "end": 1329.86, + "probability": 0.7618 + }, + { + "start": 1330.06, + "end": 1330.24, + "probability": 0.4077 + }, + { + "start": 1330.26, + "end": 1331.08, + "probability": 0.5471 + }, + { + "start": 1331.76, + "end": 1333.88, + "probability": 0.8933 + }, + { + "start": 1334.02, + "end": 1335.28, + "probability": 0.8621 + }, + { + "start": 1335.72, + "end": 1336.56, + "probability": 0.7264 + }, + { + "start": 1337.96, + "end": 1339.08, + "probability": 0.8259 + }, + { + "start": 1339.36, + "end": 1339.78, + "probability": 0.0209 + }, + { + "start": 1340.16, + "end": 1341.6, + "probability": 0.019 + }, + { + "start": 1342.48, + "end": 1345.14, + "probability": 0.333 + }, + { + "start": 1345.14, + "end": 1345.78, + "probability": 0.2012 + }, + { + "start": 1346.5, + "end": 1347.1, + "probability": 0.2634 + }, + { + "start": 1347.86, + "end": 1348.08, + "probability": 0.0006 + }, + { + "start": 1348.2, + "end": 1353.5, + "probability": 0.0194 + }, + { + "start": 1353.5, + "end": 1355.38, + "probability": 0.6222 + }, + { + "start": 1355.54, + "end": 1362.66, + "probability": 0.9899 + }, + { + "start": 1362.74, + "end": 1363.84, + "probability": 0.8669 + }, + { + "start": 1364.56, + "end": 1366.42, + "probability": 0.8599 + }, + { + "start": 1366.68, + "end": 1367.38, + "probability": 0.996 + }, + { + "start": 1368.38, + "end": 1369.22, + "probability": 0.7411 + }, + { + "start": 1371.62, + "end": 1375.25, + "probability": 0.3625 + }, + { + "start": 1389.72, + "end": 1391.32, + "probability": 0.4992 + }, + { + "start": 1391.92, + "end": 1394.16, + "probability": 0.5095 + }, + { + "start": 1394.26, + "end": 1396.78, + "probability": 0.9937 + }, + { + "start": 1397.32, + "end": 1398.84, + "probability": 0.9979 + }, + { + "start": 1399.48, + "end": 1405.64, + "probability": 0.9961 + }, + { + "start": 1406.34, + "end": 1406.98, + "probability": 0.7531 + }, + { + "start": 1407.02, + "end": 1408.7, + "probability": 0.7824 + }, + { + "start": 1409.34, + "end": 1410.72, + "probability": 0.9984 + }, + { + "start": 1410.82, + "end": 1413.92, + "probability": 0.8806 + }, + { + "start": 1414.0, + "end": 1417.31, + "probability": 0.9636 + }, + { + "start": 1417.98, + "end": 1419.08, + "probability": 0.9949 + }, + { + "start": 1419.14, + "end": 1423.68, + "probability": 0.9982 + }, + { + "start": 1423.68, + "end": 1427.28, + "probability": 0.9714 + }, + { + "start": 1427.66, + "end": 1428.28, + "probability": 0.7396 + }, + { + "start": 1428.56, + "end": 1428.56, + "probability": 0.5241 + }, + { + "start": 1428.86, + "end": 1430.22, + "probability": 0.9258 + }, + { + "start": 1430.32, + "end": 1431.5, + "probability": 0.9795 + }, + { + "start": 1431.94, + "end": 1432.54, + "probability": 0.7827 + }, + { + "start": 1432.68, + "end": 1437.8, + "probability": 0.9082 + }, + { + "start": 1438.8, + "end": 1442.04, + "probability": 0.9978 + }, + { + "start": 1442.04, + "end": 1446.34, + "probability": 0.9968 + }, + { + "start": 1447.46, + "end": 1453.4, + "probability": 0.9971 + }, + { + "start": 1453.7, + "end": 1455.44, + "probability": 0.6931 + }, + { + "start": 1456.18, + "end": 1459.06, + "probability": 0.9216 + }, + { + "start": 1459.86, + "end": 1462.06, + "probability": 0.9736 + }, + { + "start": 1462.66, + "end": 1463.36, + "probability": 0.8406 + }, + { + "start": 1463.54, + "end": 1465.86, + "probability": 0.9288 + }, + { + "start": 1466.0, + "end": 1467.98, + "probability": 0.9792 + }, + { + "start": 1468.36, + "end": 1469.08, + "probability": 0.762 + }, + { + "start": 1471.1, + "end": 1471.68, + "probability": 0.7747 + }, + { + "start": 1471.98, + "end": 1474.2, + "probability": 0.9663 + }, + { + "start": 1475.92, + "end": 1478.52, + "probability": 0.8835 + }, + { + "start": 1481.44, + "end": 1484.68, + "probability": 0.0699 + }, + { + "start": 1484.96, + "end": 1486.28, + "probability": 0.2194 + }, + { + "start": 1492.7, + "end": 1492.98, + "probability": 0.0852 + }, + { + "start": 1521.76, + "end": 1523.74, + "probability": 0.6778 + }, + { + "start": 1525.12, + "end": 1530.98, + "probability": 0.9987 + }, + { + "start": 1531.72, + "end": 1532.78, + "probability": 0.378 + }, + { + "start": 1533.5, + "end": 1535.74, + "probability": 0.9856 + }, + { + "start": 1538.14, + "end": 1541.54, + "probability": 0.9873 + }, + { + "start": 1541.54, + "end": 1545.68, + "probability": 0.9937 + }, + { + "start": 1547.0, + "end": 1550.26, + "probability": 0.9727 + }, + { + "start": 1552.04, + "end": 1554.38, + "probability": 0.9734 + }, + { + "start": 1555.46, + "end": 1556.72, + "probability": 0.3437 + }, + { + "start": 1557.34, + "end": 1558.4, + "probability": 0.9353 + }, + { + "start": 1558.46, + "end": 1561.28, + "probability": 0.9751 + }, + { + "start": 1561.28, + "end": 1561.52, + "probability": 0.6718 + }, + { + "start": 1561.56, + "end": 1564.4, + "probability": 0.9487 + }, + { + "start": 1565.04, + "end": 1572.3, + "probability": 0.9546 + }, + { + "start": 1572.3, + "end": 1575.6, + "probability": 0.9496 + }, + { + "start": 1575.8, + "end": 1576.32, + "probability": 0.9008 + }, + { + "start": 1577.0, + "end": 1581.12, + "probability": 0.9766 + }, + { + "start": 1581.44, + "end": 1582.64, + "probability": 0.711 + }, + { + "start": 1582.84, + "end": 1584.12, + "probability": 0.6843 + }, + { + "start": 1584.8, + "end": 1585.4, + "probability": 0.135 + }, + { + "start": 1586.04, + "end": 1590.44, + "probability": 0.937 + }, + { + "start": 1590.44, + "end": 1596.6, + "probability": 0.9209 + }, + { + "start": 1601.18, + "end": 1601.94, + "probability": 0.6361 + }, + { + "start": 1602.44, + "end": 1603.77, + "probability": 0.8016 + }, + { + "start": 1604.02, + "end": 1605.72, + "probability": 0.3866 + }, + { + "start": 1605.84, + "end": 1606.6, + "probability": 0.6842 + }, + { + "start": 1607.58, + "end": 1611.34, + "probability": 0.9493 + }, + { + "start": 1612.48, + "end": 1614.6, + "probability": 0.999 + }, + { + "start": 1615.28, + "end": 1618.73, + "probability": 0.9681 + }, + { + "start": 1620.0, + "end": 1621.18, + "probability": 0.5035 + }, + { + "start": 1622.86, + "end": 1626.16, + "probability": 0.9954 + }, + { + "start": 1626.82, + "end": 1629.06, + "probability": 0.8394 + }, + { + "start": 1629.82, + "end": 1633.12, + "probability": 0.9076 + }, + { + "start": 1634.48, + "end": 1636.84, + "probability": 0.9922 + }, + { + "start": 1637.52, + "end": 1642.42, + "probability": 0.9683 + }, + { + "start": 1643.18, + "end": 1644.2, + "probability": 0.8329 + }, + { + "start": 1644.78, + "end": 1646.48, + "probability": 0.934 + }, + { + "start": 1647.28, + "end": 1650.38, + "probability": 0.9928 + }, + { + "start": 1650.98, + "end": 1653.56, + "probability": 0.9938 + }, + { + "start": 1654.36, + "end": 1655.88, + "probability": 0.9066 + }, + { + "start": 1656.82, + "end": 1658.08, + "probability": 0.7777 + }, + { + "start": 1658.76, + "end": 1662.28, + "probability": 0.9879 + }, + { + "start": 1662.9, + "end": 1667.92, + "probability": 0.9987 + }, + { + "start": 1667.92, + "end": 1673.94, + "probability": 0.9912 + }, + { + "start": 1674.18, + "end": 1675.97, + "probability": 0.9829 + }, + { + "start": 1676.82, + "end": 1678.6, + "probability": 0.9312 + }, + { + "start": 1679.12, + "end": 1684.26, + "probability": 0.9311 + }, + { + "start": 1684.72, + "end": 1684.94, + "probability": 0.5186 + }, + { + "start": 1685.42, + "end": 1686.66, + "probability": 0.8442 + }, + { + "start": 1686.78, + "end": 1687.36, + "probability": 0.9642 + }, + { + "start": 1687.46, + "end": 1688.44, + "probability": 0.9852 + }, + { + "start": 1688.92, + "end": 1690.4, + "probability": 0.7335 + }, + { + "start": 1690.74, + "end": 1691.32, + "probability": 0.8766 + }, + { + "start": 1691.42, + "end": 1692.12, + "probability": 0.9069 + }, + { + "start": 1692.74, + "end": 1695.82, + "probability": 0.7781 + }, + { + "start": 1696.4, + "end": 1698.06, + "probability": 0.8104 + }, + { + "start": 1698.8, + "end": 1705.84, + "probability": 0.9891 + }, + { + "start": 1705.96, + "end": 1706.46, + "probability": 0.766 + }, + { + "start": 1707.04, + "end": 1712.14, + "probability": 0.9976 + }, + { + "start": 1712.7, + "end": 1717.32, + "probability": 0.9952 + }, + { + "start": 1718.3, + "end": 1720.0, + "probability": 0.6967 + }, + { + "start": 1720.78, + "end": 1721.96, + "probability": 0.9836 + }, + { + "start": 1723.62, + "end": 1725.9, + "probability": 0.8852 + }, + { + "start": 1726.46, + "end": 1729.48, + "probability": 0.9973 + }, + { + "start": 1729.52, + "end": 1733.76, + "probability": 0.9802 + }, + { + "start": 1734.5, + "end": 1735.94, + "probability": 0.9993 + }, + { + "start": 1736.84, + "end": 1738.84, + "probability": 0.9206 + }, + { + "start": 1739.38, + "end": 1739.38, + "probability": 0.5786 + }, + { + "start": 1739.38, + "end": 1740.3, + "probability": 0.7977 + }, + { + "start": 1740.68, + "end": 1741.4, + "probability": 0.8495 + }, + { + "start": 1748.6, + "end": 1753.56, + "probability": 0.9902 + }, + { + "start": 1753.66, + "end": 1758.26, + "probability": 0.9777 + }, + { + "start": 1758.26, + "end": 1763.46, + "probability": 0.9807 + }, + { + "start": 1766.66, + "end": 1770.16, + "probability": 0.9735 + }, + { + "start": 1770.16, + "end": 1773.42, + "probability": 0.8871 + }, + { + "start": 1773.56, + "end": 1773.94, + "probability": 0.5711 + }, + { + "start": 1774.04, + "end": 1775.22, + "probability": 0.9941 + }, + { + "start": 1775.34, + "end": 1777.2, + "probability": 0.8859 + }, + { + "start": 1777.8, + "end": 1779.6, + "probability": 0.8849 + }, + { + "start": 1780.16, + "end": 1782.9, + "probability": 0.9873 + }, + { + "start": 1783.94, + "end": 1784.96, + "probability": 0.6842 + }, + { + "start": 1785.76, + "end": 1787.3, + "probability": 0.6925 + }, + { + "start": 1788.08, + "end": 1792.96, + "probability": 0.8931 + }, + { + "start": 1793.8, + "end": 1794.92, + "probability": 0.9805 + }, + { + "start": 1795.43, + "end": 1797.74, + "probability": 0.3627 + }, + { + "start": 1798.34, + "end": 1800.66, + "probability": 0.9037 + }, + { + "start": 1801.44, + "end": 1805.35, + "probability": 0.8893 + }, + { + "start": 1806.46, + "end": 1807.66, + "probability": 0.9982 + }, + { + "start": 1808.44, + "end": 1812.12, + "probability": 0.984 + }, + { + "start": 1812.96, + "end": 1815.94, + "probability": 0.8513 + }, + { + "start": 1816.46, + "end": 1818.82, + "probability": 0.9524 + }, + { + "start": 1820.7, + "end": 1821.6, + "probability": 0.5415 + }, + { + "start": 1822.32, + "end": 1824.47, + "probability": 0.9301 + }, + { + "start": 1825.06, + "end": 1826.36, + "probability": 0.968 + }, + { + "start": 1826.52, + "end": 1829.0, + "probability": 0.9933 + }, + { + "start": 1829.12, + "end": 1829.54, + "probability": 0.9058 + }, + { + "start": 1830.48, + "end": 1837.12, + "probability": 0.9914 + }, + { + "start": 1837.4, + "end": 1839.04, + "probability": 0.968 + }, + { + "start": 1839.86, + "end": 1840.88, + "probability": 0.6268 + }, + { + "start": 1842.26, + "end": 1843.32, + "probability": 0.2703 + }, + { + "start": 1845.14, + "end": 1847.18, + "probability": 0.0257 + }, + { + "start": 1847.18, + "end": 1847.18, + "probability": 0.0838 + }, + { + "start": 1847.18, + "end": 1847.72, + "probability": 0.2344 + }, + { + "start": 1848.54, + "end": 1850.54, + "probability": 0.4231 + }, + { + "start": 1852.44, + "end": 1852.83, + "probability": 0.3232 + }, + { + "start": 1852.96, + "end": 1854.12, + "probability": 0.9388 + }, + { + "start": 1854.62, + "end": 1855.76, + "probability": 0.9443 + }, + { + "start": 1855.94, + "end": 1862.94, + "probability": 0.9826 + }, + { + "start": 1863.54, + "end": 1864.52, + "probability": 0.6233 + }, + { + "start": 1865.44, + "end": 1869.22, + "probability": 0.9982 + }, + { + "start": 1869.28, + "end": 1869.7, + "probability": 0.7595 + }, + { + "start": 1869.92, + "end": 1874.06, + "probability": 0.9888 + }, + { + "start": 1874.68, + "end": 1878.56, + "probability": 0.9974 + }, + { + "start": 1878.56, + "end": 1882.66, + "probability": 0.9819 + }, + { + "start": 1883.18, + "end": 1884.22, + "probability": 0.861 + }, + { + "start": 1884.4, + "end": 1888.16, + "probability": 0.9186 + }, + { + "start": 1888.84, + "end": 1894.68, + "probability": 0.9967 + }, + { + "start": 1895.14, + "end": 1897.98, + "probability": 0.9946 + }, + { + "start": 1899.48, + "end": 1900.26, + "probability": 0.9067 + }, + { + "start": 1900.3, + "end": 1902.64, + "probability": 0.9941 + }, + { + "start": 1902.78, + "end": 1903.46, + "probability": 0.9145 + }, + { + "start": 1904.0, + "end": 1907.14, + "probability": 0.537 + }, + { + "start": 1908.28, + "end": 1912.3, + "probability": 0.3753 + }, + { + "start": 1913.52, + "end": 1915.14, + "probability": 0.7179 + }, + { + "start": 1915.76, + "end": 1918.56, + "probability": 0.8454 + }, + { + "start": 1919.1, + "end": 1922.44, + "probability": 0.9177 + }, + { + "start": 1922.96, + "end": 1926.04, + "probability": 0.9242 + }, + { + "start": 1927.02, + "end": 1928.5, + "probability": 0.8228 + }, + { + "start": 1928.82, + "end": 1930.62, + "probability": 0.9598 + }, + { + "start": 1931.0, + "end": 1931.34, + "probability": 0.3318 + }, + { + "start": 1931.52, + "end": 1933.39, + "probability": 0.9912 + }, + { + "start": 1933.7, + "end": 1938.28, + "probability": 0.9948 + }, + { + "start": 1938.8, + "end": 1942.96, + "probability": 0.9851 + }, + { + "start": 1943.18, + "end": 1943.56, + "probability": 0.8488 + }, + { + "start": 1944.3, + "end": 1947.52, + "probability": 0.9259 + }, + { + "start": 1948.74, + "end": 1949.0, + "probability": 0.5046 + }, + { + "start": 1949.14, + "end": 1951.06, + "probability": 0.9292 + }, + { + "start": 1951.06, + "end": 1952.02, + "probability": 0.3809 + }, + { + "start": 1952.08, + "end": 1952.72, + "probability": 0.6079 + }, + { + "start": 1954.36, + "end": 1958.0, + "probability": 0.9636 + }, + { + "start": 1959.04, + "end": 1961.36, + "probability": 0.9539 + }, + { + "start": 1962.24, + "end": 1963.84, + "probability": 0.9635 + }, + { + "start": 1963.92, + "end": 1965.82, + "probability": 0.9788 + }, + { + "start": 1965.84, + "end": 1967.97, + "probability": 0.8674 + }, + { + "start": 1968.5, + "end": 1972.01, + "probability": 0.8628 + }, + { + "start": 1972.72, + "end": 1973.98, + "probability": 0.9325 + }, + { + "start": 1974.08, + "end": 1979.54, + "probability": 0.9822 + }, + { + "start": 1979.93, + "end": 1982.2, + "probability": 0.3809 + }, + { + "start": 1982.28, + "end": 1987.44, + "probability": 0.9697 + }, + { + "start": 1988.2, + "end": 1991.22, + "probability": 0.8668 + }, + { + "start": 1991.86, + "end": 1993.44, + "probability": 0.7485 + }, + { + "start": 1994.02, + "end": 1995.0, + "probability": 0.9446 + }, + { + "start": 1995.12, + "end": 1995.68, + "probability": 0.4986 + }, + { + "start": 1995.94, + "end": 1997.84, + "probability": 0.9463 + }, + { + "start": 1997.9, + "end": 2002.42, + "probability": 0.9631 + }, + { + "start": 2002.94, + "end": 2005.06, + "probability": 0.5532 + }, + { + "start": 2005.54, + "end": 2010.78, + "probability": 0.9401 + }, + { + "start": 2010.8, + "end": 2013.1, + "probability": 0.8143 + }, + { + "start": 2013.72, + "end": 2014.64, + "probability": 0.587 + }, + { + "start": 2014.82, + "end": 2017.16, + "probability": 0.6735 + }, + { + "start": 2017.26, + "end": 2018.4, + "probability": 0.8483 + }, + { + "start": 2019.02, + "end": 2023.26, + "probability": 0.9504 + }, + { + "start": 2023.28, + "end": 2027.52, + "probability": 0.8496 + }, + { + "start": 2027.74, + "end": 2029.34, + "probability": 0.853 + }, + { + "start": 2030.12, + "end": 2030.66, + "probability": 0.5184 + }, + { + "start": 2030.78, + "end": 2032.6, + "probability": 0.6969 + }, + { + "start": 2032.74, + "end": 2035.26, + "probability": 0.8996 + }, + { + "start": 2035.74, + "end": 2036.26, + "probability": 0.8046 + }, + { + "start": 2036.3, + "end": 2039.76, + "probability": 0.9769 + }, + { + "start": 2039.82, + "end": 2041.58, + "probability": 0.9836 + }, + { + "start": 2042.24, + "end": 2046.06, + "probability": 0.9949 + }, + { + "start": 2046.5, + "end": 2046.98, + "probability": 0.7931 + }, + { + "start": 2047.06, + "end": 2048.7, + "probability": 0.7048 + }, + { + "start": 2049.2, + "end": 2053.24, + "probability": 0.9061 + }, + { + "start": 2054.02, + "end": 2056.34, + "probability": 0.9667 + }, + { + "start": 2056.9, + "end": 2059.0, + "probability": 0.9961 + }, + { + "start": 2059.68, + "end": 2065.48, + "probability": 0.9787 + }, + { + "start": 2065.72, + "end": 2069.16, + "probability": 0.9783 + }, + { + "start": 2070.12, + "end": 2070.7, + "probability": 0.7181 + }, + { + "start": 2071.08, + "end": 2071.82, + "probability": 0.9641 + }, + { + "start": 2073.18, + "end": 2074.78, + "probability": 0.7292 + }, + { + "start": 2074.88, + "end": 2076.38, + "probability": 0.7324 + }, + { + "start": 2084.16, + "end": 2084.62, + "probability": 0.5276 + }, + { + "start": 2084.66, + "end": 2085.4, + "probability": 0.6322 + }, + { + "start": 2086.0, + "end": 2088.44, + "probability": 0.8613 + }, + { + "start": 2089.3, + "end": 2092.0, + "probability": 0.998 + }, + { + "start": 2092.42, + "end": 2092.78, + "probability": 0.603 + }, + { + "start": 2093.06, + "end": 2094.22, + "probability": 0.4949 + }, + { + "start": 2094.3, + "end": 2096.9, + "probability": 0.9687 + }, + { + "start": 2097.58, + "end": 2098.62, + "probability": 0.8345 + }, + { + "start": 2099.28, + "end": 2104.02, + "probability": 0.9572 + }, + { + "start": 2104.56, + "end": 2107.66, + "probability": 0.8166 + }, + { + "start": 2107.8, + "end": 2111.18, + "probability": 0.9937 + }, + { + "start": 2111.24, + "end": 2112.98, + "probability": 0.8986 + }, + { + "start": 2113.32, + "end": 2115.18, + "probability": 0.7867 + }, + { + "start": 2115.52, + "end": 2118.86, + "probability": 0.8976 + }, + { + "start": 2119.14, + "end": 2120.3, + "probability": 0.794 + }, + { + "start": 2120.38, + "end": 2121.57, + "probability": 0.9165 + }, + { + "start": 2122.26, + "end": 2123.12, + "probability": 0.8421 + }, + { + "start": 2123.76, + "end": 2128.5, + "probability": 0.9714 + }, + { + "start": 2128.92, + "end": 2131.32, + "probability": 0.9833 + }, + { + "start": 2131.32, + "end": 2137.14, + "probability": 0.997 + }, + { + "start": 2137.54, + "end": 2138.48, + "probability": 0.7632 + }, + { + "start": 2138.6, + "end": 2139.5, + "probability": 0.9489 + }, + { + "start": 2139.66, + "end": 2142.24, + "probability": 0.9492 + }, + { + "start": 2142.4, + "end": 2145.36, + "probability": 0.9857 + }, + { + "start": 2145.72, + "end": 2146.84, + "probability": 0.9233 + }, + { + "start": 2146.92, + "end": 2148.1, + "probability": 0.9191 + }, + { + "start": 2148.18, + "end": 2148.64, + "probability": 0.9979 + }, + { + "start": 2149.28, + "end": 2152.68, + "probability": 0.9791 + }, + { + "start": 2153.02, + "end": 2153.44, + "probability": 0.7844 + }, + { + "start": 2154.5, + "end": 2156.56, + "probability": 0.5821 + }, + { + "start": 2156.72, + "end": 2157.98, + "probability": 0.9924 + }, + { + "start": 2158.26, + "end": 2158.82, + "probability": 0.884 + }, + { + "start": 2158.94, + "end": 2160.04, + "probability": 0.9873 + }, + { + "start": 2162.28, + "end": 2163.42, + "probability": 0.5277 + }, + { + "start": 2165.44, + "end": 2171.38, + "probability": 0.8151 + }, + { + "start": 2171.46, + "end": 2175.54, + "probability": 0.9926 + }, + { + "start": 2175.66, + "end": 2176.4, + "probability": 0.7323 + }, + { + "start": 2177.3, + "end": 2179.62, + "probability": 0.8823 + }, + { + "start": 2181.21, + "end": 2183.39, + "probability": 0.7025 + }, + { + "start": 2184.18, + "end": 2185.32, + "probability": 0.7217 + }, + { + "start": 2186.1, + "end": 2187.82, + "probability": 0.9976 + }, + { + "start": 2187.9, + "end": 2189.24, + "probability": 0.9723 + }, + { + "start": 2189.34, + "end": 2190.78, + "probability": 0.9883 + }, + { + "start": 2191.5, + "end": 2193.62, + "probability": 0.7177 + }, + { + "start": 2193.68, + "end": 2196.14, + "probability": 0.9586 + }, + { + "start": 2196.76, + "end": 2199.32, + "probability": 0.9961 + }, + { + "start": 2199.78, + "end": 2205.35, + "probability": 0.9985 + }, + { + "start": 2205.7, + "end": 2206.3, + "probability": 0.9198 + }, + { + "start": 2206.4, + "end": 2207.18, + "probability": 0.7081 + }, + { + "start": 2207.66, + "end": 2207.94, + "probability": 0.8921 + }, + { + "start": 2208.0, + "end": 2208.5, + "probability": 0.7193 + }, + { + "start": 2208.5, + "end": 2208.64, + "probability": 0.8284 + }, + { + "start": 2208.7, + "end": 2210.0, + "probability": 0.8847 + }, + { + "start": 2210.62, + "end": 2212.62, + "probability": 0.8771 + }, + { + "start": 2213.22, + "end": 2213.74, + "probability": 0.8475 + }, + { + "start": 2215.1, + "end": 2216.24, + "probability": 0.7493 + }, + { + "start": 2216.26, + "end": 2219.2, + "probability": 0.9571 + }, + { + "start": 2219.74, + "end": 2223.72, + "probability": 0.9962 + }, + { + "start": 2223.94, + "end": 2224.18, + "probability": 0.9354 + }, + { + "start": 2224.76, + "end": 2225.84, + "probability": 0.525 + }, + { + "start": 2226.56, + "end": 2230.26, + "probability": 0.9224 + }, + { + "start": 2230.72, + "end": 2235.22, + "probability": 0.8141 + }, + { + "start": 2236.04, + "end": 2239.66, + "probability": 0.9268 + }, + { + "start": 2240.36, + "end": 2243.82, + "probability": 0.9688 + }, + { + "start": 2244.54, + "end": 2250.2, + "probability": 0.9782 + }, + { + "start": 2251.22, + "end": 2254.8, + "probability": 0.9728 + }, + { + "start": 2255.24, + "end": 2255.72, + "probability": 0.7708 + }, + { + "start": 2255.86, + "end": 2256.34, + "probability": 0.7897 + }, + { + "start": 2256.5, + "end": 2257.88, + "probability": 0.9778 + }, + { + "start": 2257.9, + "end": 2259.64, + "probability": 0.9087 + }, + { + "start": 2260.06, + "end": 2261.74, + "probability": 0.9737 + }, + { + "start": 2261.82, + "end": 2262.56, + "probability": 0.8949 + }, + { + "start": 2262.68, + "end": 2263.2, + "probability": 0.5161 + }, + { + "start": 2263.76, + "end": 2264.18, + "probability": 0.7814 + }, + { + "start": 2264.78, + "end": 2269.34, + "probability": 0.9921 + }, + { + "start": 2269.78, + "end": 2271.66, + "probability": 0.931 + }, + { + "start": 2272.08, + "end": 2273.82, + "probability": 0.9823 + }, + { + "start": 2273.88, + "end": 2274.62, + "probability": 0.6522 + }, + { + "start": 2275.22, + "end": 2276.42, + "probability": 0.9746 + }, + { + "start": 2277.34, + "end": 2278.18, + "probability": 0.8721 + }, + { + "start": 2278.66, + "end": 2284.64, + "probability": 0.9953 + }, + { + "start": 2285.48, + "end": 2287.02, + "probability": 0.701 + }, + { + "start": 2287.62, + "end": 2288.6, + "probability": 0.9272 + }, + { + "start": 2289.24, + "end": 2290.0, + "probability": 0.6875 + }, + { + "start": 2290.94, + "end": 2292.62, + "probability": 0.8085 + }, + { + "start": 2293.22, + "end": 2294.98, + "probability": 0.8282 + }, + { + "start": 2295.02, + "end": 2296.78, + "probability": 0.6284 + }, + { + "start": 2297.56, + "end": 2300.26, + "probability": 0.837 + }, + { + "start": 2300.76, + "end": 2303.58, + "probability": 0.9906 + }, + { + "start": 2303.9, + "end": 2305.64, + "probability": 0.9249 + }, + { + "start": 2306.34, + "end": 2308.5, + "probability": 0.9583 + }, + { + "start": 2309.42, + "end": 2313.94, + "probability": 0.9847 + }, + { + "start": 2314.02, + "end": 2314.92, + "probability": 0.7777 + }, + { + "start": 2315.66, + "end": 2316.38, + "probability": 0.7876 + }, + { + "start": 2316.44, + "end": 2320.3, + "probability": 0.7983 + }, + { + "start": 2321.24, + "end": 2322.62, + "probability": 0.751 + }, + { + "start": 2323.28, + "end": 2325.56, + "probability": 0.9916 + }, + { + "start": 2325.72, + "end": 2326.44, + "probability": 0.2606 + }, + { + "start": 2326.56, + "end": 2328.0, + "probability": 0.9751 + }, + { + "start": 2328.38, + "end": 2330.18, + "probability": 0.9944 + }, + { + "start": 2330.8, + "end": 2334.48, + "probability": 0.9406 + }, + { + "start": 2334.56, + "end": 2337.41, + "probability": 0.9906 + }, + { + "start": 2338.7, + "end": 2341.36, + "probability": 0.9961 + }, + { + "start": 2342.42, + "end": 2345.34, + "probability": 0.8446 + }, + { + "start": 2345.42, + "end": 2345.94, + "probability": 0.9285 + }, + { + "start": 2346.26, + "end": 2347.48, + "probability": 0.9271 + }, + { + "start": 2348.16, + "end": 2352.42, + "probability": 0.9884 + }, + { + "start": 2352.42, + "end": 2356.92, + "probability": 0.9124 + }, + { + "start": 2357.54, + "end": 2359.56, + "probability": 0.7983 + }, + { + "start": 2360.4, + "end": 2363.78, + "probability": 0.8197 + }, + { + "start": 2364.4, + "end": 2367.47, + "probability": 0.958 + }, + { + "start": 2368.66, + "end": 2373.5, + "probability": 0.9908 + }, + { + "start": 2373.68, + "end": 2375.48, + "probability": 0.8033 + }, + { + "start": 2375.92, + "end": 2376.66, + "probability": 0.6822 + }, + { + "start": 2376.8, + "end": 2378.44, + "probability": 0.9819 + }, + { + "start": 2379.1, + "end": 2380.78, + "probability": 0.9824 + }, + { + "start": 2381.48, + "end": 2384.38, + "probability": 0.9863 + }, + { + "start": 2384.98, + "end": 2387.3, + "probability": 0.9968 + }, + { + "start": 2387.8, + "end": 2393.48, + "probability": 0.8971 + }, + { + "start": 2393.48, + "end": 2393.48, + "probability": 0.0235 + }, + { + "start": 2393.48, + "end": 2394.76, + "probability": 0.806 + }, + { + "start": 2396.26, + "end": 2400.66, + "probability": 0.9592 + }, + { + "start": 2400.84, + "end": 2401.22, + "probability": 0.8743 + }, + { + "start": 2401.8, + "end": 2402.8, + "probability": 0.7671 + }, + { + "start": 2402.98, + "end": 2407.3, + "probability": 0.9405 + }, + { + "start": 2408.0, + "end": 2408.78, + "probability": 0.9297 + }, + { + "start": 2409.42, + "end": 2411.36, + "probability": 0.7359 + }, + { + "start": 2411.48, + "end": 2412.4, + "probability": 0.9201 + }, + { + "start": 2412.5, + "end": 2413.71, + "probability": 0.9814 + }, + { + "start": 2413.84, + "end": 2414.08, + "probability": 0.4406 + }, + { + "start": 2414.48, + "end": 2414.9, + "probability": 0.5192 + }, + { + "start": 2414.94, + "end": 2416.02, + "probability": 0.9082 + }, + { + "start": 2416.5, + "end": 2418.18, + "probability": 0.9854 + }, + { + "start": 2418.7, + "end": 2420.28, + "probability": 0.9693 + }, + { + "start": 2420.56, + "end": 2421.92, + "probability": 0.9109 + }, + { + "start": 2421.98, + "end": 2423.57, + "probability": 0.9729 + }, + { + "start": 2424.78, + "end": 2428.12, + "probability": 0.83 + }, + { + "start": 2428.78, + "end": 2433.68, + "probability": 0.9407 + }, + { + "start": 2434.0, + "end": 2434.4, + "probability": 0.2914 + }, + { + "start": 2435.2, + "end": 2435.24, + "probability": 0.1742 + }, + { + "start": 2435.24, + "end": 2435.98, + "probability": 0.4666 + }, + { + "start": 2436.04, + "end": 2443.15, + "probability": 0.9447 + }, + { + "start": 2443.98, + "end": 2447.92, + "probability": 0.9968 + }, + { + "start": 2448.42, + "end": 2453.26, + "probability": 0.9969 + }, + { + "start": 2453.76, + "end": 2455.14, + "probability": 0.9904 + }, + { + "start": 2455.32, + "end": 2456.12, + "probability": 0.8643 + }, + { + "start": 2456.6, + "end": 2457.69, + "probability": 0.8563 + }, + { + "start": 2458.1, + "end": 2459.36, + "probability": 0.6474 + }, + { + "start": 2459.5, + "end": 2461.74, + "probability": 0.9317 + }, + { + "start": 2462.18, + "end": 2462.66, + "probability": 0.3013 + }, + { + "start": 2462.9, + "end": 2464.8, + "probability": 0.9889 + }, + { + "start": 2464.86, + "end": 2469.4, + "probability": 0.9742 + }, + { + "start": 2469.4, + "end": 2472.12, + "probability": 0.9957 + }, + { + "start": 2472.86, + "end": 2479.64, + "probability": 0.7918 + }, + { + "start": 2480.4, + "end": 2481.66, + "probability": 0.7599 + }, + { + "start": 2482.0, + "end": 2483.16, + "probability": 0.7284 + }, + { + "start": 2483.66, + "end": 2486.95, + "probability": 0.9956 + }, + { + "start": 2487.26, + "end": 2488.88, + "probability": 0.8011 + }, + { + "start": 2489.3, + "end": 2489.96, + "probability": 0.6794 + }, + { + "start": 2490.2, + "end": 2492.22, + "probability": 0.9476 + }, + { + "start": 2492.22, + "end": 2495.28, + "probability": 0.9059 + }, + { + "start": 2495.44, + "end": 2496.44, + "probability": 0.9569 + }, + { + "start": 2497.14, + "end": 2500.24, + "probability": 0.9674 + }, + { + "start": 2500.66, + "end": 2504.9, + "probability": 0.9894 + }, + { + "start": 2505.38, + "end": 2507.76, + "probability": 0.7201 + }, + { + "start": 2508.16, + "end": 2508.9, + "probability": 0.5112 + }, + { + "start": 2509.06, + "end": 2513.54, + "probability": 0.9515 + }, + { + "start": 2513.54, + "end": 2518.06, + "probability": 0.9977 + }, + { + "start": 2518.54, + "end": 2520.02, + "probability": 0.9925 + }, + { + "start": 2520.3, + "end": 2520.82, + "probability": 0.9642 + }, + { + "start": 2522.9, + "end": 2523.66, + "probability": 0.5925 + }, + { + "start": 2523.98, + "end": 2524.08, + "probability": 0.3136 + }, + { + "start": 2524.16, + "end": 2525.82, + "probability": 0.9122 + }, + { + "start": 2529.94, + "end": 2531.34, + "probability": 0.7291 + }, + { + "start": 2541.04, + "end": 2542.88, + "probability": 0.5944 + }, + { + "start": 2542.88, + "end": 2542.92, + "probability": 0.6981 + }, + { + "start": 2542.92, + "end": 2543.5, + "probability": 0.6827 + }, + { + "start": 2543.62, + "end": 2545.58, + "probability": 0.8867 + }, + { + "start": 2545.94, + "end": 2547.48, + "probability": 0.7463 + }, + { + "start": 2548.22, + "end": 2548.94, + "probability": 0.949 + }, + { + "start": 2549.0, + "end": 2552.04, + "probability": 0.9352 + }, + { + "start": 2553.2, + "end": 2554.56, + "probability": 0.8234 + }, + { + "start": 2554.66, + "end": 2555.18, + "probability": 0.5587 + }, + { + "start": 2555.2, + "end": 2555.72, + "probability": 0.4043 + }, + { + "start": 2555.94, + "end": 2558.48, + "probability": 0.9901 + }, + { + "start": 2559.52, + "end": 2564.4, + "probability": 0.9948 + }, + { + "start": 2565.42, + "end": 2566.06, + "probability": 0.6533 + }, + { + "start": 2566.3, + "end": 2571.38, + "probability": 0.9128 + }, + { + "start": 2572.36, + "end": 2575.34, + "probability": 0.9941 + }, + { + "start": 2575.78, + "end": 2578.68, + "probability": 0.9805 + }, + { + "start": 2578.78, + "end": 2580.48, + "probability": 0.6882 + }, + { + "start": 2581.26, + "end": 2582.38, + "probability": 0.5279 + }, + { + "start": 2583.42, + "end": 2585.46, + "probability": 0.9614 + }, + { + "start": 2586.02, + "end": 2586.58, + "probability": 0.7214 + }, + { + "start": 2586.68, + "end": 2587.02, + "probability": 0.609 + }, + { + "start": 2587.08, + "end": 2590.98, + "probability": 0.9482 + }, + { + "start": 2591.04, + "end": 2592.1, + "probability": 0.9422 + }, + { + "start": 2592.16, + "end": 2594.32, + "probability": 0.8679 + }, + { + "start": 2594.36, + "end": 2596.18, + "probability": 0.9753 + }, + { + "start": 2596.28, + "end": 2597.12, + "probability": 0.7193 + }, + { + "start": 2597.92, + "end": 2598.22, + "probability": 0.5009 + }, + { + "start": 2598.4, + "end": 2598.94, + "probability": 0.1963 + }, + { + "start": 2599.34, + "end": 2604.12, + "probability": 0.8322 + }, + { + "start": 2604.12, + "end": 2607.34, + "probability": 0.9759 + }, + { + "start": 2608.1, + "end": 2610.78, + "probability": 0.9318 + }, + { + "start": 2610.88, + "end": 2612.4, + "probability": 0.9888 + }, + { + "start": 2612.94, + "end": 2616.7, + "probability": 0.9036 + }, + { + "start": 2616.84, + "end": 2617.24, + "probability": 0.7717 + }, + { + "start": 2617.94, + "end": 2620.83, + "probability": 0.8772 + }, + { + "start": 2622.32, + "end": 2623.42, + "probability": 0.9951 + }, + { + "start": 2623.52, + "end": 2625.72, + "probability": 0.9691 + }, + { + "start": 2625.86, + "end": 2626.36, + "probability": 0.5111 + }, + { + "start": 2626.44, + "end": 2629.0, + "probability": 0.9924 + }, + { + "start": 2629.14, + "end": 2630.96, + "probability": 0.9067 + }, + { + "start": 2631.56, + "end": 2633.16, + "probability": 0.9233 + }, + { + "start": 2633.8, + "end": 2639.68, + "probability": 0.7922 + }, + { + "start": 2640.02, + "end": 2642.08, + "probability": 0.9989 + }, + { + "start": 2642.42, + "end": 2642.76, + "probability": 0.722 + }, + { + "start": 2642.9, + "end": 2644.82, + "probability": 0.9854 + }, + { + "start": 2645.82, + "end": 2648.18, + "probability": 0.7628 + }, + { + "start": 2649.12, + "end": 2650.64, + "probability": 0.5499 + }, + { + "start": 2651.86, + "end": 2655.08, + "probability": 0.9207 + }, + { + "start": 2655.64, + "end": 2656.56, + "probability": 0.7299 + }, + { + "start": 2656.76, + "end": 2659.36, + "probability": 0.8819 + }, + { + "start": 2659.56, + "end": 2663.36, + "probability": 0.9913 + }, + { + "start": 2663.5, + "end": 2666.68, + "probability": 0.9785 + }, + { + "start": 2667.1, + "end": 2668.82, + "probability": 0.9256 + }, + { + "start": 2669.32, + "end": 2670.24, + "probability": 0.6005 + }, + { + "start": 2670.76, + "end": 2673.44, + "probability": 0.9942 + }, + { + "start": 2673.96, + "end": 2674.32, + "probability": 0.8101 + }, + { + "start": 2674.82, + "end": 2675.62, + "probability": 0.7697 + }, + { + "start": 2675.76, + "end": 2677.72, + "probability": 0.8892 + }, + { + "start": 2679.36, + "end": 2680.52, + "probability": 0.7844 + }, + { + "start": 2686.92, + "end": 2686.94, + "probability": 0.4359 + }, + { + "start": 2686.94, + "end": 2689.0, + "probability": 0.7872 + }, + { + "start": 2689.1, + "end": 2690.58, + "probability": 0.9626 + }, + { + "start": 2691.58, + "end": 2691.58, + "probability": 0.4557 + }, + { + "start": 2691.58, + "end": 2693.7, + "probability": 0.1588 + }, + { + "start": 2713.98, + "end": 2714.1, + "probability": 0.8332 + }, + { + "start": 2722.29, + "end": 2723.72, + "probability": 0.6062 + }, + { + "start": 2726.48, + "end": 2730.06, + "probability": 0.9435 + }, + { + "start": 2730.26, + "end": 2731.34, + "probability": 0.9744 + }, + { + "start": 2731.38, + "end": 2733.5, + "probability": 0.9797 + }, + { + "start": 2734.12, + "end": 2734.44, + "probability": 0.9125 + }, + { + "start": 2735.5, + "end": 2736.18, + "probability": 0.9663 + }, + { + "start": 2739.4, + "end": 2739.86, + "probability": 0.5514 + }, + { + "start": 2741.37, + "end": 2743.5, + "probability": 0.8102 + }, + { + "start": 2743.62, + "end": 2744.5, + "probability": 0.6362 + }, + { + "start": 2748.8, + "end": 2749.92, + "probability": 0.703 + }, + { + "start": 2751.36, + "end": 2752.24, + "probability": 0.5753 + }, + { + "start": 2753.18, + "end": 2759.32, + "probability": 0.9619 + }, + { + "start": 2760.36, + "end": 2762.48, + "probability": 0.5906 + }, + { + "start": 2762.86, + "end": 2763.26, + "probability": 0.4772 + }, + { + "start": 2763.5, + "end": 2763.92, + "probability": 0.9736 + }, + { + "start": 2766.18, + "end": 2768.42, + "probability": 0.6686 + }, + { + "start": 2769.04, + "end": 2773.5, + "probability": 0.9973 + }, + { + "start": 2773.58, + "end": 2779.9, + "probability": 0.8258 + }, + { + "start": 2780.0, + "end": 2781.7, + "probability": 0.9684 + }, + { + "start": 2782.3, + "end": 2785.68, + "probability": 0.7066 + }, + { + "start": 2787.2, + "end": 2789.36, + "probability": 0.7696 + }, + { + "start": 2791.48, + "end": 2795.18, + "probability": 0.8051 + }, + { + "start": 2795.94, + "end": 2800.4, + "probability": 0.8254 + }, + { + "start": 2800.5, + "end": 2802.44, + "probability": 0.5945 + }, + { + "start": 2802.54, + "end": 2804.66, + "probability": 0.9366 + }, + { + "start": 2805.86, + "end": 2807.88, + "probability": 0.9924 + }, + { + "start": 2809.5, + "end": 2813.68, + "probability": 0.8392 + }, + { + "start": 2813.82, + "end": 2815.2, + "probability": 0.9971 + }, + { + "start": 2815.26, + "end": 2815.54, + "probability": 0.9197 + }, + { + "start": 2816.1, + "end": 2818.48, + "probability": 0.9439 + }, + { + "start": 2818.58, + "end": 2818.84, + "probability": 0.7098 + }, + { + "start": 2818.96, + "end": 2821.47, + "probability": 0.6972 + }, + { + "start": 2821.66, + "end": 2823.02, + "probability": 0.657 + }, + { + "start": 2823.02, + "end": 2823.34, + "probability": 0.0898 + }, + { + "start": 2823.72, + "end": 2824.38, + "probability": 0.1825 + }, + { + "start": 2824.38, + "end": 2825.12, + "probability": 0.6186 + }, + { + "start": 2825.4, + "end": 2826.53, + "probability": 0.0266 + }, + { + "start": 2828.56, + "end": 2828.86, + "probability": 0.0726 + }, + { + "start": 2828.86, + "end": 2830.58, + "probability": 0.5423 + }, + { + "start": 2831.48, + "end": 2832.12, + "probability": 0.4356 + }, + { + "start": 2832.16, + "end": 2833.14, + "probability": 0.6104 + }, + { + "start": 2833.2, + "end": 2833.2, + "probability": 0.1949 + }, + { + "start": 2833.2, + "end": 2834.38, + "probability": 0.8098 + }, + { + "start": 2835.98, + "end": 2838.25, + "probability": 0.9007 + }, + { + "start": 2840.9, + "end": 2843.18, + "probability": 0.9958 + }, + { + "start": 2843.82, + "end": 2845.6, + "probability": 0.996 + }, + { + "start": 2846.73, + "end": 2849.66, + "probability": 0.999 + }, + { + "start": 2850.48, + "end": 2851.86, + "probability": 0.9766 + }, + { + "start": 2851.96, + "end": 2852.24, + "probability": 0.6743 + }, + { + "start": 2852.32, + "end": 2852.9, + "probability": 0.503 + }, + { + "start": 2852.96, + "end": 2855.34, + "probability": 0.9654 + }, + { + "start": 2856.54, + "end": 2858.88, + "probability": 0.9173 + }, + { + "start": 2859.4, + "end": 2860.55, + "probability": 0.9656 + }, + { + "start": 2861.38, + "end": 2863.95, + "probability": 0.9951 + }, + { + "start": 2864.64, + "end": 2866.0, + "probability": 0.9517 + }, + { + "start": 2866.16, + "end": 2867.44, + "probability": 0.6928 + }, + { + "start": 2868.16, + "end": 2870.9, + "probability": 0.9834 + }, + { + "start": 2871.5, + "end": 2872.88, + "probability": 0.9658 + }, + { + "start": 2873.96, + "end": 2878.36, + "probability": 0.964 + }, + { + "start": 2878.78, + "end": 2880.06, + "probability": 0.8762 + }, + { + "start": 2880.1, + "end": 2881.58, + "probability": 0.9961 + }, + { + "start": 2891.86, + "end": 2891.86, + "probability": 0.2585 + }, + { + "start": 2893.08, + "end": 2895.22, + "probability": 0.9929 + }, + { + "start": 2895.8, + "end": 2898.68, + "probability": 0.994 + }, + { + "start": 2899.92, + "end": 2901.66, + "probability": 0.9586 + }, + { + "start": 2901.76, + "end": 2902.58, + "probability": 0.9956 + }, + { + "start": 2902.62, + "end": 2903.98, + "probability": 0.8136 + }, + { + "start": 2904.04, + "end": 2905.58, + "probability": 0.9832 + }, + { + "start": 2906.26, + "end": 2909.5, + "probability": 0.9971 + }, + { + "start": 2909.74, + "end": 2912.98, + "probability": 0.9573 + }, + { + "start": 2912.98, + "end": 2917.86, + "probability": 0.9755 + }, + { + "start": 2918.08, + "end": 2922.54, + "probability": 0.9865 + }, + { + "start": 2923.0, + "end": 2923.68, + "probability": 0.7899 + }, + { + "start": 2923.8, + "end": 2927.24, + "probability": 0.991 + }, + { + "start": 2928.14, + "end": 2931.25, + "probability": 0.9807 + }, + { + "start": 2932.5, + "end": 2935.76, + "probability": 0.9913 + }, + { + "start": 2936.94, + "end": 2937.54, + "probability": 0.6242 + }, + { + "start": 2937.7, + "end": 2941.08, + "probability": 0.9793 + }, + { + "start": 2941.24, + "end": 2944.52, + "probability": 0.8217 + }, + { + "start": 2945.24, + "end": 2946.04, + "probability": 0.8759 + }, + { + "start": 2946.1, + "end": 2948.3, + "probability": 0.8156 + }, + { + "start": 2948.38, + "end": 2949.66, + "probability": 0.8089 + }, + { + "start": 2951.02, + "end": 2952.06, + "probability": 0.3742 + }, + { + "start": 2952.06, + "end": 2952.06, + "probability": 0.0208 + }, + { + "start": 2952.06, + "end": 2955.22, + "probability": 0.6638 + }, + { + "start": 2955.4, + "end": 2957.28, + "probability": 0.9797 + }, + { + "start": 2957.28, + "end": 2957.58, + "probability": 0.5238 + }, + { + "start": 2957.68, + "end": 2960.6, + "probability": 0.9693 + }, + { + "start": 2960.72, + "end": 2964.24, + "probability": 0.9728 + }, + { + "start": 2964.8, + "end": 2967.94, + "probability": 0.9474 + }, + { + "start": 2968.62, + "end": 2970.46, + "probability": 0.9761 + }, + { + "start": 2970.54, + "end": 2976.18, + "probability": 0.9956 + }, + { + "start": 2977.04, + "end": 2978.54, + "probability": 0.5714 + }, + { + "start": 2978.84, + "end": 2980.24, + "probability": 0.6729 + }, + { + "start": 2980.32, + "end": 2987.84, + "probability": 0.9655 + }, + { + "start": 2988.06, + "end": 2988.98, + "probability": 0.66 + }, + { + "start": 2989.51, + "end": 2992.94, + "probability": 0.9846 + }, + { + "start": 2993.08, + "end": 2999.0, + "probability": 0.9984 + }, + { + "start": 2999.54, + "end": 3001.48, + "probability": 0.7754 + }, + { + "start": 3001.66, + "end": 3002.26, + "probability": 0.9077 + }, + { + "start": 3002.42, + "end": 3006.06, + "probability": 0.978 + }, + { + "start": 3006.3, + "end": 3008.2, + "probability": 0.9269 + }, + { + "start": 3008.24, + "end": 3012.14, + "probability": 0.9486 + }, + { + "start": 3012.82, + "end": 3015.48, + "probability": 0.8334 + }, + { + "start": 3015.56, + "end": 3018.02, + "probability": 0.9691 + }, + { + "start": 3018.44, + "end": 3022.36, + "probability": 0.9697 + }, + { + "start": 3022.64, + "end": 3027.24, + "probability": 0.9912 + }, + { + "start": 3027.32, + "end": 3029.32, + "probability": 0.8652 + }, + { + "start": 3030.76, + "end": 3034.86, + "probability": 0.9782 + }, + { + "start": 3035.12, + "end": 3037.9, + "probability": 0.753 + }, + { + "start": 3045.18, + "end": 3051.0, + "probability": 0.9963 + }, + { + "start": 3051.6, + "end": 3054.56, + "probability": 0.8289 + }, + { + "start": 3054.56, + "end": 3057.36, + "probability": 0.9893 + }, + { + "start": 3057.72, + "end": 3060.58, + "probability": 0.8576 + }, + { + "start": 3061.82, + "end": 3065.96, + "probability": 0.754 + }, + { + "start": 3066.5, + "end": 3069.14, + "probability": 0.9879 + }, + { + "start": 3069.82, + "end": 3072.56, + "probability": 0.8782 + }, + { + "start": 3073.22, + "end": 3079.74, + "probability": 0.8474 + }, + { + "start": 3080.8, + "end": 3082.36, + "probability": 0.9603 + }, + { + "start": 3082.94, + "end": 3085.12, + "probability": 0.5889 + }, + { + "start": 3085.26, + "end": 3087.6, + "probability": 0.9707 + }, + { + "start": 3087.68, + "end": 3091.18, + "probability": 0.9836 + }, + { + "start": 3091.54, + "end": 3093.8, + "probability": 0.9775 + }, + { + "start": 3094.96, + "end": 3097.94, + "probability": 0.7255 + }, + { + "start": 3097.98, + "end": 3100.96, + "probability": 0.9396 + }, + { + "start": 3100.98, + "end": 3101.77, + "probability": 0.7239 + }, + { + "start": 3102.08, + "end": 3105.64, + "probability": 0.7764 + }, + { + "start": 3106.22, + "end": 3110.52, + "probability": 0.9126 + }, + { + "start": 3111.32, + "end": 3115.3, + "probability": 0.9752 + }, + { + "start": 3115.3, + "end": 3119.38, + "probability": 0.9775 + }, + { + "start": 3119.66, + "end": 3121.78, + "probability": 0.9968 + }, + { + "start": 3122.66, + "end": 3125.66, + "probability": 0.8104 + }, + { + "start": 3125.66, + "end": 3128.88, + "probability": 0.9673 + }, + { + "start": 3129.32, + "end": 3133.54, + "probability": 0.9566 + }, + { + "start": 3133.6, + "end": 3135.54, + "probability": 0.8386 + }, + { + "start": 3135.74, + "end": 3139.82, + "probability": 0.8931 + }, + { + "start": 3139.94, + "end": 3142.38, + "probability": 0.9777 + }, + { + "start": 3142.9, + "end": 3143.68, + "probability": 0.6281 + }, + { + "start": 3143.88, + "end": 3148.0, + "probability": 0.7328 + }, + { + "start": 3148.12, + "end": 3151.12, + "probability": 0.9981 + }, + { + "start": 3151.56, + "end": 3152.58, + "probability": 0.941 + }, + { + "start": 3152.64, + "end": 3153.0, + "probability": 0.8415 + }, + { + "start": 3153.12, + "end": 3155.72, + "probability": 0.8883 + }, + { + "start": 3156.24, + "end": 3157.68, + "probability": 0.985 + }, + { + "start": 3158.14, + "end": 3162.78, + "probability": 0.9106 + }, + { + "start": 3162.84, + "end": 3164.04, + "probability": 0.6458 + }, + { + "start": 3164.72, + "end": 3167.12, + "probability": 0.9791 + }, + { + "start": 3168.22, + "end": 3170.26, + "probability": 0.9835 + }, + { + "start": 3170.78, + "end": 3174.22, + "probability": 0.975 + }, + { + "start": 3174.9, + "end": 3177.98, + "probability": 0.9961 + }, + { + "start": 3178.54, + "end": 3180.34, + "probability": 0.8275 + }, + { + "start": 3180.92, + "end": 3184.14, + "probability": 0.8394 + }, + { + "start": 3184.72, + "end": 3187.3, + "probability": 0.9919 + }, + { + "start": 3187.86, + "end": 3189.4, + "probability": 0.9763 + }, + { + "start": 3190.04, + "end": 3190.86, + "probability": 0.896 + }, + { + "start": 3190.92, + "end": 3193.09, + "probability": 0.9648 + }, + { + "start": 3193.94, + "end": 3196.7, + "probability": 0.8075 + }, + { + "start": 3196.84, + "end": 3198.72, + "probability": 0.9979 + }, + { + "start": 3199.14, + "end": 3200.04, + "probability": 0.8193 + }, + { + "start": 3200.16, + "end": 3206.17, + "probability": 0.8289 + }, + { + "start": 3206.38, + "end": 3207.38, + "probability": 0.9813 + }, + { + "start": 3207.88, + "end": 3211.2, + "probability": 0.8583 + }, + { + "start": 3212.32, + "end": 3216.12, + "probability": 0.8984 + }, + { + "start": 3216.64, + "end": 3220.2, + "probability": 0.948 + }, + { + "start": 3220.74, + "end": 3224.08, + "probability": 0.9756 + }, + { + "start": 3224.44, + "end": 3228.36, + "probability": 0.9917 + }, + { + "start": 3228.42, + "end": 3230.88, + "probability": 0.9937 + }, + { + "start": 3232.08, + "end": 3236.48, + "probability": 0.974 + }, + { + "start": 3236.96, + "end": 3240.3, + "probability": 0.8943 + }, + { + "start": 3240.88, + "end": 3241.56, + "probability": 0.7091 + }, + { + "start": 3241.92, + "end": 3246.5, + "probability": 0.9897 + }, + { + "start": 3247.26, + "end": 3250.34, + "probability": 0.9183 + }, + { + "start": 3250.9, + "end": 3257.32, + "probability": 0.9921 + }, + { + "start": 3258.32, + "end": 3262.82, + "probability": 0.9637 + }, + { + "start": 3262.82, + "end": 3264.54, + "probability": 0.949 + }, + { + "start": 3264.62, + "end": 3266.1, + "probability": 0.8835 + }, + { + "start": 3266.14, + "end": 3266.44, + "probability": 0.5426 + }, + { + "start": 3266.54, + "end": 3267.1, + "probability": 0.8846 + }, + { + "start": 3267.18, + "end": 3270.36, + "probability": 0.9787 + }, + { + "start": 3270.68, + "end": 3272.14, + "probability": 0.9943 + }, + { + "start": 3272.28, + "end": 3274.1, + "probability": 0.6836 + }, + { + "start": 3274.6, + "end": 3279.36, + "probability": 0.9738 + }, + { + "start": 3280.06, + "end": 3285.12, + "probability": 0.9887 + }, + { + "start": 3285.92, + "end": 3286.84, + "probability": 0.7334 + }, + { + "start": 3286.9, + "end": 3288.14, + "probability": 0.9922 + }, + { + "start": 3288.36, + "end": 3288.92, + "probability": 0.9823 + }, + { + "start": 3289.0, + "end": 3290.76, + "probability": 0.9377 + }, + { + "start": 3291.84, + "end": 3299.7, + "probability": 0.7579 + }, + { + "start": 3299.7, + "end": 3300.7, + "probability": 0.3949 + }, + { + "start": 3300.82, + "end": 3301.9, + "probability": 0.8227 + }, + { + "start": 3302.38, + "end": 3304.7, + "probability": 0.9919 + }, + { + "start": 3305.82, + "end": 3310.04, + "probability": 0.9549 + }, + { + "start": 3310.46, + "end": 3311.1, + "probability": 0.963 + }, + { + "start": 3311.54, + "end": 3314.68, + "probability": 0.9595 + }, + { + "start": 3315.34, + "end": 3316.0, + "probability": 0.9399 + }, + { + "start": 3316.34, + "end": 3322.6, + "probability": 0.9559 + }, + { + "start": 3323.04, + "end": 3326.34, + "probability": 0.992 + }, + { + "start": 3326.68, + "end": 3327.42, + "probability": 0.4754 + }, + { + "start": 3327.68, + "end": 3328.58, + "probability": 0.9159 + }, + { + "start": 3328.74, + "end": 3328.98, + "probability": 0.9847 + }, + { + "start": 3330.34, + "end": 3330.82, + "probability": 0.025 + }, + { + "start": 3330.82, + "end": 3334.54, + "probability": 0.6274 + }, + { + "start": 3334.54, + "end": 3334.84, + "probability": 0.6614 + }, + { + "start": 3335.6, + "end": 3336.48, + "probability": 0.7865 + }, + { + "start": 3336.82, + "end": 3338.16, + "probability": 0.8242 + }, + { + "start": 3338.38, + "end": 3340.5, + "probability": 0.9784 + }, + { + "start": 3341.66, + "end": 3343.32, + "probability": 0.7061 + }, + { + "start": 3343.46, + "end": 3344.64, + "probability": 0.8809 + }, + { + "start": 3345.1, + "end": 3345.6, + "probability": 0.7265 + }, + { + "start": 3345.62, + "end": 3349.08, + "probability": 0.9723 + }, + { + "start": 3349.14, + "end": 3351.34, + "probability": 0.9907 + }, + { + "start": 3353.1, + "end": 3354.86, + "probability": 0.5735 + }, + { + "start": 3354.94, + "end": 3355.24, + "probability": 0.7452 + }, + { + "start": 3355.4, + "end": 3356.96, + "probability": 0.949 + }, + { + "start": 3357.22, + "end": 3357.94, + "probability": 0.7909 + }, + { + "start": 3358.02, + "end": 3359.08, + "probability": 0.5628 + }, + { + "start": 3360.28, + "end": 3364.5, + "probability": 0.9888 + }, + { + "start": 3365.64, + "end": 3369.5, + "probability": 0.9863 + }, + { + "start": 3370.12, + "end": 3371.86, + "probability": 0.9395 + }, + { + "start": 3372.26, + "end": 3376.02, + "probability": 0.5957 + }, + { + "start": 3376.64, + "end": 3378.96, + "probability": 0.7963 + }, + { + "start": 3379.72, + "end": 3380.26, + "probability": 0.7662 + }, + { + "start": 3380.3, + "end": 3382.36, + "probability": 0.9906 + }, + { + "start": 3382.44, + "end": 3384.26, + "probability": 0.7401 + }, + { + "start": 3384.88, + "end": 3386.42, + "probability": 0.999 + }, + { + "start": 3386.86, + "end": 3387.18, + "probability": 0.4892 + }, + { + "start": 3387.3, + "end": 3391.48, + "probability": 0.9834 + }, + { + "start": 3392.22, + "end": 3393.46, + "probability": 0.9977 + }, + { + "start": 3393.46, + "end": 3396.34, + "probability": 0.9736 + }, + { + "start": 3396.9, + "end": 3397.74, + "probability": 0.9551 + }, + { + "start": 3398.4, + "end": 3401.06, + "probability": 0.8971 + }, + { + "start": 3401.18, + "end": 3404.52, + "probability": 0.4273 + }, + { + "start": 3404.98, + "end": 3408.76, + "probability": 0.988 + }, + { + "start": 3409.16, + "end": 3412.94, + "probability": 0.7525 + }, + { + "start": 3413.44, + "end": 3413.94, + "probability": 0.825 + }, + { + "start": 3414.08, + "end": 3415.62, + "probability": 0.9175 + }, + { + "start": 3415.84, + "end": 3416.89, + "probability": 0.4275 + }, + { + "start": 3418.02, + "end": 3420.72, + "probability": 0.9572 + }, + { + "start": 3421.2, + "end": 3425.38, + "probability": 0.9224 + }, + { + "start": 3425.48, + "end": 3425.74, + "probability": 0.575 + }, + { + "start": 3425.8, + "end": 3426.06, + "probability": 0.89 + }, + { + "start": 3426.1, + "end": 3426.8, + "probability": 0.8363 + }, + { + "start": 3427.12, + "end": 3429.12, + "probability": 0.6519 + }, + { + "start": 3429.56, + "end": 3430.68, + "probability": 0.8399 + }, + { + "start": 3430.76, + "end": 3430.88, + "probability": 0.5391 + }, + { + "start": 3431.04, + "end": 3431.84, + "probability": 0.6909 + }, + { + "start": 3431.92, + "end": 3434.48, + "probability": 0.9813 + }, + { + "start": 3435.04, + "end": 3436.74, + "probability": 0.9266 + }, + { + "start": 3437.0, + "end": 3437.94, + "probability": 0.8918 + }, + { + "start": 3438.02, + "end": 3438.94, + "probability": 0.8467 + }, + { + "start": 3440.08, + "end": 3441.46, + "probability": 0.5979 + }, + { + "start": 3441.5, + "end": 3444.86, + "probability": 0.9969 + }, + { + "start": 3445.98, + "end": 3449.64, + "probability": 0.8756 + }, + { + "start": 3450.56, + "end": 3455.28, + "probability": 0.9848 + }, + { + "start": 3455.34, + "end": 3457.1, + "probability": 0.6151 + }, + { + "start": 3458.0, + "end": 3458.43, + "probability": 0.6978 + }, + { + "start": 3458.78, + "end": 3459.56, + "probability": 0.8713 + }, + { + "start": 3459.92, + "end": 3461.84, + "probability": 0.9497 + }, + { + "start": 3461.96, + "end": 3462.3, + "probability": 0.6951 + }, + { + "start": 3463.01, + "end": 3465.42, + "probability": 0.533 + }, + { + "start": 3465.54, + "end": 3466.5, + "probability": 0.5529 + }, + { + "start": 3466.96, + "end": 3468.54, + "probability": 0.7044 + }, + { + "start": 3468.62, + "end": 3470.7, + "probability": 0.9976 + }, + { + "start": 3470.94, + "end": 3471.18, + "probability": 0.5013 + }, + { + "start": 3471.28, + "end": 3472.36, + "probability": 0.7984 + }, + { + "start": 3472.78, + "end": 3475.34, + "probability": 0.9935 + }, + { + "start": 3497.7, + "end": 3498.16, + "probability": 0.0359 + }, + { + "start": 3498.16, + "end": 3501.62, + "probability": 0.8873 + }, + { + "start": 3503.24, + "end": 3504.92, + "probability": 0.9299 + }, + { + "start": 3504.94, + "end": 3507.26, + "probability": 0.9606 + }, + { + "start": 3511.0, + "end": 3512.2, + "probability": 0.6796 + }, + { + "start": 3512.38, + "end": 3514.18, + "probability": 0.6618 + }, + { + "start": 3521.92, + "end": 3522.02, + "probability": 0.6341 + }, + { + "start": 3523.22, + "end": 3526.44, + "probability": 0.9227 + }, + { + "start": 3530.58, + "end": 3531.81, + "probability": 0.9604 + }, + { + "start": 3535.14, + "end": 3542.18, + "probability": 0.9241 + }, + { + "start": 3542.88, + "end": 3544.18, + "probability": 0.9657 + }, + { + "start": 3544.92, + "end": 3545.46, + "probability": 0.9674 + }, + { + "start": 3546.12, + "end": 3550.78, + "probability": 0.9601 + }, + { + "start": 3551.66, + "end": 3553.5, + "probability": 0.9871 + }, + { + "start": 3554.36, + "end": 3555.34, + "probability": 0.9286 + }, + { + "start": 3555.86, + "end": 3558.22, + "probability": 0.9986 + }, + { + "start": 3558.84, + "end": 3560.36, + "probability": 0.995 + }, + { + "start": 3561.0, + "end": 3566.6, + "probability": 0.9653 + }, + { + "start": 3567.4, + "end": 3569.16, + "probability": 0.6509 + }, + { + "start": 3570.94, + "end": 3573.22, + "probability": 0.9867 + }, + { + "start": 3573.84, + "end": 3577.58, + "probability": 0.9518 + }, + { + "start": 3578.22, + "end": 3582.84, + "probability": 0.9971 + }, + { + "start": 3582.84, + "end": 3587.92, + "probability": 0.9967 + }, + { + "start": 3588.44, + "end": 3590.5, + "probability": 0.9966 + }, + { + "start": 3591.58, + "end": 3595.5, + "probability": 0.6523 + }, + { + "start": 3596.08, + "end": 3601.86, + "probability": 0.8735 + }, + { + "start": 3602.08, + "end": 3604.32, + "probability": 0.9121 + }, + { + "start": 3606.5, + "end": 3608.9, + "probability": 0.9329 + }, + { + "start": 3609.5, + "end": 3615.92, + "probability": 0.9655 + }, + { + "start": 3616.92, + "end": 3619.7, + "probability": 0.9384 + }, + { + "start": 3620.9, + "end": 3621.8, + "probability": 0.7322 + }, + { + "start": 3622.32, + "end": 3629.28, + "probability": 0.9958 + }, + { + "start": 3630.46, + "end": 3632.12, + "probability": 0.7952 + }, + { + "start": 3632.96, + "end": 3637.48, + "probability": 0.9953 + }, + { + "start": 3637.48, + "end": 3644.48, + "probability": 0.9928 + }, + { + "start": 3646.24, + "end": 3649.64, + "probability": 0.9989 + }, + { + "start": 3649.64, + "end": 3655.24, + "probability": 0.9231 + }, + { + "start": 3655.98, + "end": 3657.24, + "probability": 0.9489 + }, + { + "start": 3657.88, + "end": 3662.6, + "probability": 0.9952 + }, + { + "start": 3662.66, + "end": 3669.3, + "probability": 0.9997 + }, + { + "start": 3670.18, + "end": 3676.78, + "probability": 0.9888 + }, + { + "start": 3677.4, + "end": 3681.26, + "probability": 0.6869 + }, + { + "start": 3681.96, + "end": 3684.52, + "probability": 0.9827 + }, + { + "start": 3685.16, + "end": 3688.18, + "probability": 0.9743 + }, + { + "start": 3689.36, + "end": 3692.84, + "probability": 0.9486 + }, + { + "start": 3693.42, + "end": 3700.56, + "probability": 0.9757 + }, + { + "start": 3701.42, + "end": 3707.0, + "probability": 0.9615 + }, + { + "start": 3708.16, + "end": 3710.48, + "probability": 0.8069 + }, + { + "start": 3711.2, + "end": 3715.44, + "probability": 0.9619 + }, + { + "start": 3716.48, + "end": 3721.2, + "probability": 0.9866 + }, + { + "start": 3722.02, + "end": 3729.24, + "probability": 0.9646 + }, + { + "start": 3730.72, + "end": 3732.34, + "probability": 0.976 + }, + { + "start": 3733.22, + "end": 3735.64, + "probability": 0.9948 + }, + { + "start": 3739.16, + "end": 3740.62, + "probability": 0.6364 + }, + { + "start": 3741.74, + "end": 3746.04, + "probability": 0.9985 + }, + { + "start": 3746.04, + "end": 3750.26, + "probability": 0.9913 + }, + { + "start": 3751.06, + "end": 3755.66, + "probability": 0.9905 + }, + { + "start": 3755.66, + "end": 3760.98, + "probability": 0.9995 + }, + { + "start": 3761.46, + "end": 3762.54, + "probability": 0.8343 + }, + { + "start": 3762.68, + "end": 3768.76, + "probability": 0.9836 + }, + { + "start": 3769.58, + "end": 3770.98, + "probability": 0.4712 + }, + { + "start": 3771.74, + "end": 3778.1, + "probability": 0.9988 + }, + { + "start": 3779.26, + "end": 3783.28, + "probability": 0.9629 + }, + { + "start": 3783.82, + "end": 3789.26, + "probability": 0.997 + }, + { + "start": 3790.18, + "end": 3795.74, + "probability": 0.9862 + }, + { + "start": 3796.3, + "end": 3800.7, + "probability": 0.9973 + }, + { + "start": 3801.74, + "end": 3802.64, + "probability": 0.8853 + }, + { + "start": 3803.28, + "end": 3809.54, + "probability": 0.9898 + }, + { + "start": 3810.54, + "end": 3813.62, + "probability": 0.9536 + }, + { + "start": 3813.62, + "end": 3818.42, + "probability": 0.9978 + }, + { + "start": 3820.04, + "end": 3825.24, + "probability": 0.9971 + }, + { + "start": 3825.24, + "end": 3830.66, + "probability": 0.9957 + }, + { + "start": 3831.76, + "end": 3835.4, + "probability": 0.9915 + }, + { + "start": 3835.4, + "end": 3839.68, + "probability": 0.9956 + }, + { + "start": 3840.5, + "end": 3845.66, + "probability": 0.992 + }, + { + "start": 3845.66, + "end": 3849.34, + "probability": 0.9992 + }, + { + "start": 3850.84, + "end": 3851.68, + "probability": 0.8742 + }, + { + "start": 3852.26, + "end": 3854.12, + "probability": 0.964 + }, + { + "start": 3854.76, + "end": 3859.4, + "probability": 0.9868 + }, + { + "start": 3859.94, + "end": 3864.04, + "probability": 0.8018 + }, + { + "start": 3864.04, + "end": 3868.64, + "probability": 0.9958 + }, + { + "start": 3870.54, + "end": 3873.52, + "probability": 0.9984 + }, + { + "start": 3873.52, + "end": 3878.52, + "probability": 0.99 + }, + { + "start": 3879.04, + "end": 3881.98, + "probability": 0.8315 + }, + { + "start": 3882.62, + "end": 3883.56, + "probability": 0.941 + }, + { + "start": 3884.62, + "end": 3887.46, + "probability": 0.0158 + }, + { + "start": 3892.26, + "end": 3894.3, + "probability": 0.01 + }, + { + "start": 3897.9, + "end": 3902.44, + "probability": 0.9623 + }, + { + "start": 3903.26, + "end": 3905.12, + "probability": 0.9864 + }, + { + "start": 3905.68, + "end": 3906.5, + "probability": 0.8948 + }, + { + "start": 3907.06, + "end": 3908.85, + "probability": 0.97 + }, + { + "start": 3909.12, + "end": 3916.38, + "probability": 0.9947 + }, + { + "start": 3917.92, + "end": 3922.16, + "probability": 0.9958 + }, + { + "start": 3922.16, + "end": 3927.12, + "probability": 0.9959 + }, + { + "start": 3928.2, + "end": 3931.46, + "probability": 0.9326 + }, + { + "start": 3931.46, + "end": 3938.58, + "probability": 0.9966 + }, + { + "start": 3939.3, + "end": 3944.86, + "probability": 0.8473 + }, + { + "start": 3945.4, + "end": 3951.06, + "probability": 0.8466 + }, + { + "start": 3951.68, + "end": 3956.84, + "probability": 0.9933 + }, + { + "start": 3957.94, + "end": 3961.2, + "probability": 0.998 + }, + { + "start": 3961.2, + "end": 3966.94, + "probability": 0.9893 + }, + { + "start": 3968.46, + "end": 3971.12, + "probability": 0.9669 + }, + { + "start": 3971.56, + "end": 3977.32, + "probability": 0.9985 + }, + { + "start": 3978.22, + "end": 3983.98, + "probability": 0.9967 + }, + { + "start": 3984.54, + "end": 3990.08, + "probability": 0.9924 + }, + { + "start": 3990.78, + "end": 3995.54, + "probability": 0.9862 + }, + { + "start": 3996.24, + "end": 4001.22, + "probability": 0.9994 + }, + { + "start": 4001.22, + "end": 4007.92, + "probability": 0.9974 + }, + { + "start": 4009.18, + "end": 4010.64, + "probability": 0.4187 + }, + { + "start": 4011.5, + "end": 4014.2, + "probability": 0.9091 + }, + { + "start": 4014.48, + "end": 4016.12, + "probability": 0.9816 + }, + { + "start": 4017.16, + "end": 4022.98, + "probability": 0.9957 + }, + { + "start": 4023.84, + "end": 4028.39, + "probability": 0.991 + }, + { + "start": 4029.18, + "end": 4030.52, + "probability": 0.9056 + }, + { + "start": 4031.04, + "end": 4035.14, + "probability": 0.9801 + }, + { + "start": 4038.1, + "end": 4039.58, + "probability": 0.243 + }, + { + "start": 4048.82, + "end": 4055.36, + "probability": 0.9977 + }, + { + "start": 4056.24, + "end": 4060.94, + "probability": 0.9923 + }, + { + "start": 4061.94, + "end": 4068.16, + "probability": 0.9993 + }, + { + "start": 4068.84, + "end": 4072.92, + "probability": 0.9577 + }, + { + "start": 4074.24, + "end": 4077.22, + "probability": 0.5818 + }, + { + "start": 4078.48, + "end": 4084.82, + "probability": 0.9946 + }, + { + "start": 4085.04, + "end": 4092.0, + "probability": 0.9831 + }, + { + "start": 4092.48, + "end": 4095.34, + "probability": 0.7544 + }, + { + "start": 4095.9, + "end": 4097.16, + "probability": 0.9828 + }, + { + "start": 4097.38, + "end": 4098.62, + "probability": 0.9248 + }, + { + "start": 4103.42, + "end": 4104.12, + "probability": 0.2567 + }, + { + "start": 4129.9, + "end": 4134.1, + "probability": 0.9195 + }, + { + "start": 4134.5, + "end": 4136.46, + "probability": 0.9219 + }, + { + "start": 4137.3, + "end": 4138.68, + "probability": 0.8502 + }, + { + "start": 4138.86, + "end": 4139.96, + "probability": 0.9927 + }, + { + "start": 4142.68, + "end": 4144.76, + "probability": 0.0638 + }, + { + "start": 4263.44, + "end": 4263.6, + "probability": 0.1651 + }, + { + "start": 4263.6, + "end": 4264.09, + "probability": 0.1799 + }, + { + "start": 4265.16, + "end": 4266.62, + "probability": 0.4466 + }, + { + "start": 4268.76, + "end": 4269.74, + "probability": 0.3685 + }, + { + "start": 4269.74, + "end": 4271.6, + "probability": 0.9814 + }, + { + "start": 4271.6, + "end": 4273.26, + "probability": 0.6212 + }, + { + "start": 4274.56, + "end": 4277.2, + "probability": 0.9628 + }, + { + "start": 4277.8, + "end": 4280.53, + "probability": 0.7517 + }, + { + "start": 4281.92, + "end": 4283.16, + "probability": 0.8789 + }, + { + "start": 4283.24, + "end": 4284.4, + "probability": 0.9855 + }, + { + "start": 4284.52, + "end": 4289.06, + "probability": 0.9526 + }, + { + "start": 4289.22, + "end": 4292.74, + "probability": 0.966 + }, + { + "start": 4293.14, + "end": 4299.48, + "probability": 0.9688 + }, + { + "start": 4299.6, + "end": 4301.26, + "probability": 0.8829 + }, + { + "start": 4302.12, + "end": 4304.4, + "probability": 0.834 + }, + { + "start": 4304.52, + "end": 4305.96, + "probability": 0.9364 + }, + { + "start": 4306.02, + "end": 4309.82, + "probability": 0.9804 + }, + { + "start": 4309.86, + "end": 4312.5, + "probability": 0.7781 + }, + { + "start": 4312.62, + "end": 4313.89, + "probability": 0.8923 + }, + { + "start": 4314.64, + "end": 4315.64, + "probability": 0.8478 + }, + { + "start": 4315.74, + "end": 4316.84, + "probability": 0.8515 + }, + { + "start": 4317.22, + "end": 4317.82, + "probability": 0.6575 + }, + { + "start": 4317.98, + "end": 4318.36, + "probability": 0.7939 + }, + { + "start": 4318.42, + "end": 4319.88, + "probability": 0.9305 + }, + { + "start": 4319.96, + "end": 4323.34, + "probability": 0.9888 + }, + { + "start": 4323.74, + "end": 4327.38, + "probability": 0.9923 + }, + { + "start": 4332.36, + "end": 4333.0, + "probability": 0.5615 + }, + { + "start": 4333.06, + "end": 4335.66, + "probability": 0.8801 + }, + { + "start": 4340.46, + "end": 4340.46, + "probability": 0.2872 + }, + { + "start": 4341.82, + "end": 4342.92, + "probability": 0.618 + }, + { + "start": 4361.88, + "end": 4363.5, + "probability": 0.6734 + }, + { + "start": 4363.62, + "end": 4364.84, + "probability": 0.8305 + }, + { + "start": 4365.06, + "end": 4370.16, + "probability": 0.9876 + }, + { + "start": 4371.36, + "end": 4371.88, + "probability": 0.9531 + }, + { + "start": 4372.56, + "end": 4374.88, + "probability": 0.9829 + }, + { + "start": 4375.66, + "end": 4381.56, + "probability": 0.9912 + }, + { + "start": 4382.4, + "end": 4387.88, + "probability": 0.9946 + }, + { + "start": 4387.88, + "end": 4388.12, + "probability": 0.48 + }, + { + "start": 4388.8, + "end": 4388.88, + "probability": 0.004 + }, + { + "start": 4388.88, + "end": 4390.09, + "probability": 0.9943 + }, + { + "start": 4390.98, + "end": 4395.06, + "probability": 0.9792 + }, + { + "start": 4395.08, + "end": 4401.42, + "probability": 0.8001 + }, + { + "start": 4402.66, + "end": 4405.88, + "probability": 0.9902 + }, + { + "start": 4406.5, + "end": 4409.0, + "probability": 0.9919 + }, + { + "start": 4409.5, + "end": 4414.66, + "probability": 0.6818 + }, + { + "start": 4414.96, + "end": 4415.7, + "probability": 0.8936 + }, + { + "start": 4416.56, + "end": 4418.2, + "probability": 0.9507 + }, + { + "start": 4418.46, + "end": 4419.6, + "probability": 0.9536 + }, + { + "start": 4420.14, + "end": 4421.42, + "probability": 0.7236 + }, + { + "start": 4422.28, + "end": 4427.46, + "probability": 0.9946 + }, + { + "start": 4428.18, + "end": 4430.54, + "probability": 0.9865 + }, + { + "start": 4430.64, + "end": 4432.44, + "probability": 0.9168 + }, + { + "start": 4432.86, + "end": 4434.06, + "probability": 0.7183 + }, + { + "start": 4434.66, + "end": 4439.14, + "probability": 0.7987 + }, + { + "start": 4439.68, + "end": 4443.16, + "probability": 0.8724 + }, + { + "start": 4443.66, + "end": 4445.9, + "probability": 0.881 + }, + { + "start": 4446.69, + "end": 4449.89, + "probability": 0.406 + }, + { + "start": 4449.9, + "end": 4454.54, + "probability": 0.9557 + }, + { + "start": 4454.54, + "end": 4454.54, + "probability": 0.4487 + }, + { + "start": 4454.96, + "end": 4456.32, + "probability": 0.8777 + }, + { + "start": 4456.5, + "end": 4458.7, + "probability": 0.6062 + }, + { + "start": 4459.24, + "end": 4462.78, + "probability": 0.9906 + }, + { + "start": 4463.16, + "end": 4464.4, + "probability": 0.8762 + }, + { + "start": 4464.78, + "end": 4467.68, + "probability": 0.8854 + }, + { + "start": 4468.4, + "end": 4475.04, + "probability": 0.7695 + }, + { + "start": 4475.68, + "end": 4476.08, + "probability": 0.8018 + }, + { + "start": 4476.2, + "end": 4477.78, + "probability": 0.6658 + }, + { + "start": 4477.78, + "end": 4480.92, + "probability": 0.9876 + }, + { + "start": 4481.06, + "end": 4481.46, + "probability": 0.7186 + }, + { + "start": 4481.84, + "end": 4486.78, + "probability": 0.8456 + }, + { + "start": 4487.56, + "end": 4489.44, + "probability": 0.8254 + }, + { + "start": 4489.8, + "end": 4492.92, + "probability": 0.9789 + }, + { + "start": 4493.06, + "end": 4493.5, + "probability": 0.645 + }, + { + "start": 4493.5, + "end": 4493.52, + "probability": 0.6095 + }, + { + "start": 4493.56, + "end": 4497.0, + "probability": 0.7572 + }, + { + "start": 4497.04, + "end": 4497.44, + "probability": 0.9026 + }, + { + "start": 4497.8, + "end": 4500.26, + "probability": 0.9155 + }, + { + "start": 4501.0, + "end": 4501.34, + "probability": 0.6226 + }, + { + "start": 4501.34, + "end": 4505.78, + "probability": 0.9808 + }, + { + "start": 4505.86, + "end": 4506.34, + "probability": 0.8829 + }, + { + "start": 4507.24, + "end": 4509.78, + "probability": 0.9936 + }, + { + "start": 4509.84, + "end": 4510.74, + "probability": 0.8481 + }, + { + "start": 4511.68, + "end": 4516.64, + "probability": 0.829 + }, + { + "start": 4517.2, + "end": 4519.68, + "probability": 0.9845 + }, + { + "start": 4519.78, + "end": 4523.58, + "probability": 0.951 + }, + { + "start": 4523.58, + "end": 4525.48, + "probability": 0.9474 + }, + { + "start": 4525.54, + "end": 4526.84, + "probability": 0.7103 + }, + { + "start": 4527.54, + "end": 4532.76, + "probability": 0.9458 + }, + { + "start": 4532.82, + "end": 4537.28, + "probability": 0.9984 + }, + { + "start": 4537.28, + "end": 4541.44, + "probability": 0.9992 + }, + { + "start": 4541.96, + "end": 4543.14, + "probability": 0.6809 + }, + { + "start": 4543.64, + "end": 4550.48, + "probability": 0.9173 + }, + { + "start": 4550.88, + "end": 4552.34, + "probability": 0.9708 + }, + { + "start": 4552.52, + "end": 4553.29, + "probability": 0.8205 + }, + { + "start": 4553.84, + "end": 4557.88, + "probability": 0.9929 + }, + { + "start": 4558.58, + "end": 4559.46, + "probability": 0.9468 + }, + { + "start": 4559.62, + "end": 4563.76, + "probability": 0.8664 + }, + { + "start": 4564.14, + "end": 4565.24, + "probability": 0.916 + }, + { + "start": 4565.3, + "end": 4569.3, + "probability": 0.993 + }, + { + "start": 4569.92, + "end": 4572.6, + "probability": 0.9922 + }, + { + "start": 4572.76, + "end": 4574.98, + "probability": 0.9321 + }, + { + "start": 4575.44, + "end": 4575.9, + "probability": 0.8743 + }, + { + "start": 4576.06, + "end": 4580.0, + "probability": 0.959 + }, + { + "start": 4580.66, + "end": 4581.6, + "probability": 0.9741 + }, + { + "start": 4581.88, + "end": 4584.96, + "probability": 0.9907 + }, + { + "start": 4585.44, + "end": 4589.52, + "probability": 0.9175 + }, + { + "start": 4589.58, + "end": 4591.08, + "probability": 0.9916 + }, + { + "start": 4591.48, + "end": 4592.94, + "probability": 0.9839 + }, + { + "start": 4592.98, + "end": 4593.68, + "probability": 0.9415 + }, + { + "start": 4594.08, + "end": 4595.98, + "probability": 0.9873 + }, + { + "start": 4596.46, + "end": 4599.94, + "probability": 0.9835 + }, + { + "start": 4600.32, + "end": 4602.62, + "probability": 0.9541 + }, + { + "start": 4603.78, + "end": 4606.56, + "probability": 0.9958 + }, + { + "start": 4607.46, + "end": 4611.52, + "probability": 0.9737 + }, + { + "start": 4611.98, + "end": 4613.8, + "probability": 0.9698 + }, + { + "start": 4613.96, + "end": 4615.72, + "probability": 0.9664 + }, + { + "start": 4616.24, + "end": 4621.54, + "probability": 0.998 + }, + { + "start": 4621.74, + "end": 4624.66, + "probability": 0.989 + }, + { + "start": 4625.18, + "end": 4627.84, + "probability": 0.9484 + }, + { + "start": 4627.9, + "end": 4628.5, + "probability": 0.7197 + }, + { + "start": 4628.56, + "end": 4631.24, + "probability": 0.9558 + }, + { + "start": 4633.48, + "end": 4634.6, + "probability": 0.6434 + }, + { + "start": 4636.15, + "end": 4638.6, + "probability": 0.5751 + }, + { + "start": 4638.74, + "end": 4640.26, + "probability": 0.4662 + }, + { + "start": 4641.44, + "end": 4645.94, + "probability": 0.9906 + }, + { + "start": 4646.54, + "end": 4648.06, + "probability": 0.656 + }, + { + "start": 4648.7, + "end": 4650.36, + "probability": 0.8192 + }, + { + "start": 4650.54, + "end": 4651.44, + "probability": 0.9439 + }, + { + "start": 4651.52, + "end": 4652.04, + "probability": 0.8458 + }, + { + "start": 4652.16, + "end": 4652.72, + "probability": 0.7519 + }, + { + "start": 4653.22, + "end": 4653.58, + "probability": 0.873 + }, + { + "start": 4653.7, + "end": 4654.18, + "probability": 0.9013 + }, + { + "start": 4654.36, + "end": 4654.84, + "probability": 0.7331 + }, + { + "start": 4655.06, + "end": 4655.92, + "probability": 0.7745 + }, + { + "start": 4657.98, + "end": 4661.52, + "probability": 0.8965 + }, + { + "start": 4661.84, + "end": 4662.44, + "probability": 0.9685 + }, + { + "start": 4662.64, + "end": 4663.32, + "probability": 0.8741 + }, + { + "start": 4663.8, + "end": 4664.42, + "probability": 0.9739 + }, + { + "start": 4664.92, + "end": 4668.0, + "probability": 0.9858 + }, + { + "start": 4669.84, + "end": 4673.36, + "probability": 0.9539 + }, + { + "start": 4673.6, + "end": 4675.76, + "probability": 0.9716 + }, + { + "start": 4675.84, + "end": 4678.86, + "probability": 0.9087 + }, + { + "start": 4679.04, + "end": 4682.86, + "probability": 0.6822 + }, + { + "start": 4683.26, + "end": 4684.2, + "probability": 0.4858 + }, + { + "start": 4684.68, + "end": 4685.28, + "probability": 0.4814 + }, + { + "start": 4685.64, + "end": 4686.74, + "probability": 0.5546 + }, + { + "start": 4687.0, + "end": 4690.08, + "probability": 0.8578 + }, + { + "start": 4691.59, + "end": 4697.8, + "probability": 0.7164 + }, + { + "start": 4697.98, + "end": 4703.14, + "probability": 0.9853 + }, + { + "start": 4703.24, + "end": 4706.54, + "probability": 0.8833 + }, + { + "start": 4706.64, + "end": 4707.42, + "probability": 0.8478 + }, + { + "start": 4707.62, + "end": 4711.64, + "probability": 0.9338 + }, + { + "start": 4713.14, + "end": 4713.94, + "probability": 0.7098 + }, + { + "start": 4714.0, + "end": 4716.02, + "probability": 0.9854 + }, + { + "start": 4716.2, + "end": 4717.6, + "probability": 0.6994 + }, + { + "start": 4717.96, + "end": 4719.7, + "probability": 0.7258 + }, + { + "start": 4720.22, + "end": 4721.96, + "probability": 0.5873 + }, + { + "start": 4722.28, + "end": 4722.5, + "probability": 0.6934 + }, + { + "start": 4723.78, + "end": 4724.6, + "probability": 0.5479 + }, + { + "start": 4724.88, + "end": 4726.14, + "probability": 0.7738 + }, + { + "start": 4726.66, + "end": 4727.9, + "probability": 0.9377 + }, + { + "start": 4728.3, + "end": 4729.88, + "probability": 0.9405 + }, + { + "start": 4730.46, + "end": 4732.08, + "probability": 0.9771 + }, + { + "start": 4733.06, + "end": 4735.08, + "probability": 0.7364 + }, + { + "start": 4735.7, + "end": 4739.02, + "probability": 0.9083 + }, + { + "start": 4739.26, + "end": 4739.88, + "probability": 0.6886 + }, + { + "start": 4740.46, + "end": 4742.34, + "probability": 0.9878 + }, + { + "start": 4743.82, + "end": 4745.3, + "probability": 0.7202 + }, + { + "start": 4745.56, + "end": 4749.36, + "probability": 0.9204 + }, + { + "start": 4749.42, + "end": 4754.32, + "probability": 0.9616 + }, + { + "start": 4754.44, + "end": 4758.0, + "probability": 0.9651 + }, + { + "start": 4758.46, + "end": 4760.9, + "probability": 0.7822 + }, + { + "start": 4760.96, + "end": 4762.82, + "probability": 0.9911 + }, + { + "start": 4763.36, + "end": 4763.88, + "probability": 0.4119 + }, + { + "start": 4764.46, + "end": 4768.48, + "probability": 0.9503 + }, + { + "start": 4768.48, + "end": 4771.5, + "probability": 0.9854 + }, + { + "start": 4772.2, + "end": 4773.32, + "probability": 0.7517 + }, + { + "start": 4773.54, + "end": 4776.72, + "probability": 0.9822 + }, + { + "start": 4777.02, + "end": 4781.72, + "probability": 0.9987 + }, + { + "start": 4781.72, + "end": 4785.6, + "probability": 0.996 + }, + { + "start": 4786.04, + "end": 4790.4, + "probability": 0.998 + }, + { + "start": 4790.6, + "end": 4792.64, + "probability": 0.1493 + }, + { + "start": 4792.64, + "end": 4794.6, + "probability": 0.8712 + }, + { + "start": 4794.64, + "end": 4796.72, + "probability": 0.9906 + }, + { + "start": 4797.24, + "end": 4797.26, + "probability": 0.037 + }, + { + "start": 4797.26, + "end": 4800.36, + "probability": 0.9802 + }, + { + "start": 4800.36, + "end": 4805.02, + "probability": 0.9904 + }, + { + "start": 4805.16, + "end": 4806.54, + "probability": 0.8914 + }, + { + "start": 4807.08, + "end": 4807.66, + "probability": 0.927 + }, + { + "start": 4807.88, + "end": 4812.62, + "probability": 0.9965 + }, + { + "start": 4812.62, + "end": 4817.52, + "probability": 0.999 + }, + { + "start": 4818.0, + "end": 4819.18, + "probability": 0.9492 + }, + { + "start": 4819.3, + "end": 4819.58, + "probability": 0.7625 + }, + { + "start": 4819.74, + "end": 4820.7, + "probability": 0.9724 + }, + { + "start": 4820.82, + "end": 4821.02, + "probability": 0.3303 + }, + { + "start": 4821.12, + "end": 4821.12, + "probability": 0.0441 + }, + { + "start": 4821.12, + "end": 4822.1, + "probability": 0.4979 + }, + { + "start": 4822.72, + "end": 4825.78, + "probability": 0.996 + }, + { + "start": 4826.28, + "end": 4826.34, + "probability": 0.0097 + }, + { + "start": 4826.34, + "end": 4829.5, + "probability": 0.9834 + }, + { + "start": 4829.9, + "end": 4830.56, + "probability": 0.0207 + }, + { + "start": 4830.56, + "end": 4830.56, + "probability": 0.0631 + }, + { + "start": 4830.56, + "end": 4831.44, + "probability": 0.5404 + }, + { + "start": 4831.88, + "end": 4834.86, + "probability": 0.9868 + }, + { + "start": 4834.86, + "end": 4835.22, + "probability": 0.4139 + }, + { + "start": 4835.42, + "end": 4836.88, + "probability": 0.6771 + }, + { + "start": 4837.24, + "end": 4839.18, + "probability": 0.3771 + }, + { + "start": 4839.18, + "end": 4839.24, + "probability": 0.1925 + }, + { + "start": 4839.62, + "end": 4841.48, + "probability": 0.6634 + }, + { + "start": 4841.56, + "end": 4844.4, + "probability": 0.321 + }, + { + "start": 4844.88, + "end": 4848.2, + "probability": 0.5534 + }, + { + "start": 4849.86, + "end": 4852.42, + "probability": 0.8413 + }, + { + "start": 4852.6, + "end": 4853.94, + "probability": 0.8925 + }, + { + "start": 4854.52, + "end": 4855.28, + "probability": 0.7537 + }, + { + "start": 4855.36, + "end": 4858.84, + "probability": 0.9951 + }, + { + "start": 4859.1, + "end": 4861.68, + "probability": 0.999 + }, + { + "start": 4861.68, + "end": 4865.12, + "probability": 0.9792 + }, + { + "start": 4865.36, + "end": 4866.22, + "probability": 0.7584 + }, + { + "start": 4867.02, + "end": 4867.66, + "probability": 0.8413 + }, + { + "start": 4868.16, + "end": 4869.08, + "probability": 0.9401 + }, + { + "start": 4869.22, + "end": 4873.16, + "probability": 0.9774 + }, + { + "start": 4873.16, + "end": 4877.28, + "probability": 0.9993 + }, + { + "start": 4877.72, + "end": 4880.58, + "probability": 0.9849 + }, + { + "start": 4881.08, + "end": 4881.94, + "probability": 0.6931 + }, + { + "start": 4882.0, + "end": 4883.96, + "probability": 0.6926 + }, + { + "start": 4884.12, + "end": 4890.5, + "probability": 0.9731 + }, + { + "start": 4891.0, + "end": 4891.16, + "probability": 0.1326 + }, + { + "start": 4891.16, + "end": 4891.82, + "probability": 0.9517 + }, + { + "start": 4892.56, + "end": 4893.54, + "probability": 0.7287 + }, + { + "start": 4893.64, + "end": 4895.38, + "probability": 0.9545 + }, + { + "start": 4895.82, + "end": 4896.9, + "probability": 0.8224 + }, + { + "start": 4896.9, + "end": 4897.46, + "probability": 0.7723 + }, + { + "start": 4897.66, + "end": 4902.0, + "probability": 0.9985 + }, + { + "start": 4902.08, + "end": 4903.89, + "probability": 0.9951 + }, + { + "start": 4904.38, + "end": 4905.74, + "probability": 0.9949 + }, + { + "start": 4905.9, + "end": 4906.73, + "probability": 0.5255 + }, + { + "start": 4907.72, + "end": 4911.32, + "probability": 0.9913 + }, + { + "start": 4911.5, + "end": 4911.54, + "probability": 0.0986 + }, + { + "start": 4911.86, + "end": 4912.34, + "probability": 0.4102 + }, + { + "start": 4912.5, + "end": 4915.84, + "probability": 0.9551 + }, + { + "start": 4915.94, + "end": 4918.88, + "probability": 0.9538 + }, + { + "start": 4919.64, + "end": 4923.98, + "probability": 0.9498 + }, + { + "start": 4923.98, + "end": 4927.42, + "probability": 0.9822 + }, + { + "start": 4927.56, + "end": 4927.64, + "probability": 0.2372 + }, + { + "start": 4927.64, + "end": 4929.92, + "probability": 0.9819 + }, + { + "start": 4932.12, + "end": 4932.84, + "probability": 0.823 + }, + { + "start": 4933.58, + "end": 4936.88, + "probability": 0.9864 + }, + { + "start": 4937.62, + "end": 4940.38, + "probability": 0.9501 + }, + { + "start": 4940.42, + "end": 4943.92, + "probability": 0.6878 + }, + { + "start": 4944.12, + "end": 4946.14, + "probability": 0.9938 + }, + { + "start": 4946.46, + "end": 4946.98, + "probability": 0.5734 + }, + { + "start": 4946.98, + "end": 4948.66, + "probability": 0.9622 + }, + { + "start": 4949.22, + "end": 4952.82, + "probability": 0.9904 + }, + { + "start": 4952.82, + "end": 4955.1, + "probability": 0.9986 + }, + { + "start": 4955.28, + "end": 4955.76, + "probability": 0.5839 + }, + { + "start": 4955.78, + "end": 4958.22, + "probability": 0.876 + }, + { + "start": 4958.76, + "end": 4960.18, + "probability": 0.8502 + }, + { + "start": 4968.32, + "end": 4970.28, + "probability": 0.6865 + }, + { + "start": 4971.74, + "end": 4974.8, + "probability": 0.9846 + }, + { + "start": 4975.76, + "end": 4978.98, + "probability": 0.9927 + }, + { + "start": 4979.06, + "end": 4981.26, + "probability": 0.7518 + }, + { + "start": 4981.9, + "end": 4983.76, + "probability": 0.8356 + }, + { + "start": 4983.82, + "end": 4987.66, + "probability": 0.9845 + }, + { + "start": 4987.76, + "end": 4993.46, + "probability": 0.9923 + }, + { + "start": 4994.16, + "end": 4996.26, + "probability": 0.8589 + }, + { + "start": 4996.56, + "end": 4996.8, + "probability": 0.7345 + }, + { + "start": 4998.0, + "end": 4998.64, + "probability": 0.7825 + }, + { + "start": 4998.68, + "end": 4999.64, + "probability": 0.9408 + }, + { + "start": 4999.72, + "end": 5002.3, + "probability": 0.9833 + }, + { + "start": 5003.28, + "end": 5003.78, + "probability": 0.7341 + }, + { + "start": 5003.86, + "end": 5006.26, + "probability": 0.9966 + }, + { + "start": 5006.26, + "end": 5009.22, + "probability": 0.9784 + }, + { + "start": 5009.72, + "end": 5010.28, + "probability": 0.6492 + }, + { + "start": 5010.4, + "end": 5013.0, + "probability": 0.8221 + }, + { + "start": 5013.22, + "end": 5019.48, + "probability": 0.9371 + }, + { + "start": 5019.48, + "end": 5030.06, + "probability": 0.9766 + }, + { + "start": 5030.06, + "end": 5036.12, + "probability": 0.9989 + }, + { + "start": 5036.28, + "end": 5039.22, + "probability": 0.9979 + }, + { + "start": 5039.7, + "end": 5041.54, + "probability": 0.9392 + }, + { + "start": 5041.7, + "end": 5043.78, + "probability": 0.9754 + }, + { + "start": 5045.35, + "end": 5047.76, + "probability": 0.9974 + }, + { + "start": 5047.76, + "end": 5051.1, + "probability": 0.9995 + }, + { + "start": 5052.92, + "end": 5053.9, + "probability": 0.7737 + }, + { + "start": 5054.0, + "end": 5054.74, + "probability": 0.9949 + }, + { + "start": 5054.88, + "end": 5056.06, + "probability": 0.7003 + }, + { + "start": 5056.1, + "end": 5056.72, + "probability": 0.7139 + }, + { + "start": 5056.88, + "end": 5058.18, + "probability": 0.9923 + }, + { + "start": 5058.3, + "end": 5059.86, + "probability": 0.9868 + }, + { + "start": 5060.58, + "end": 5061.9, + "probability": 0.7645 + }, + { + "start": 5062.0, + "end": 5065.38, + "probability": 0.9228 + }, + { + "start": 5066.68, + "end": 5070.94, + "probability": 0.9447 + }, + { + "start": 5070.96, + "end": 5072.36, + "probability": 0.9557 + }, + { + "start": 5072.46, + "end": 5075.24, + "probability": 0.9944 + }, + { + "start": 5076.16, + "end": 5078.46, + "probability": 0.9956 + }, + { + "start": 5079.56, + "end": 5082.36, + "probability": 0.9995 + }, + { + "start": 5082.6, + "end": 5083.78, + "probability": 0.5538 + }, + { + "start": 5084.24, + "end": 5087.13, + "probability": 0.9944 + }, + { + "start": 5087.98, + "end": 5090.48, + "probability": 0.9792 + }, + { + "start": 5091.26, + "end": 5093.78, + "probability": 0.9465 + }, + { + "start": 5094.84, + "end": 5097.48, + "probability": 0.9992 + }, + { + "start": 5098.08, + "end": 5101.9, + "probability": 0.9853 + }, + { + "start": 5102.55, + "end": 5105.86, + "probability": 0.7549 + }, + { + "start": 5106.82, + "end": 5111.88, + "probability": 0.9519 + }, + { + "start": 5112.46, + "end": 5115.1, + "probability": 0.9997 + }, + { + "start": 5115.72, + "end": 5120.58, + "probability": 0.9979 + }, + { + "start": 5120.58, + "end": 5124.76, + "probability": 0.9985 + }, + { + "start": 5124.76, + "end": 5129.52, + "probability": 0.999 + }, + { + "start": 5130.06, + "end": 5134.94, + "probability": 0.9883 + }, + { + "start": 5136.08, + "end": 5136.4, + "probability": 0.0925 + }, + { + "start": 5137.74, + "end": 5137.92, + "probability": 0.0596 + }, + { + "start": 5137.92, + "end": 5137.96, + "probability": 0.1015 + }, + { + "start": 5137.96, + "end": 5140.12, + "probability": 0.5009 + }, + { + "start": 5140.36, + "end": 5141.2, + "probability": 0.8558 + }, + { + "start": 5141.34, + "end": 5141.82, + "probability": 0.5099 + }, + { + "start": 5141.92, + "end": 5144.52, + "probability": 0.8921 + }, + { + "start": 5144.58, + "end": 5146.28, + "probability": 0.9802 + }, + { + "start": 5147.24, + "end": 5148.28, + "probability": 0.8767 + }, + { + "start": 5148.48, + "end": 5152.94, + "probability": 0.9562 + }, + { + "start": 5152.94, + "end": 5157.38, + "probability": 0.9976 + }, + { + "start": 5157.42, + "end": 5160.06, + "probability": 0.9727 + }, + { + "start": 5160.3, + "end": 5161.12, + "probability": 0.2586 + }, + { + "start": 5161.12, + "end": 5161.12, + "probability": 0.032 + }, + { + "start": 5161.12, + "end": 5162.5, + "probability": 0.9186 + }, + { + "start": 5162.85, + "end": 5163.94, + "probability": 0.1205 + }, + { + "start": 5164.08, + "end": 5164.9, + "probability": 0.4552 + }, + { + "start": 5165.02, + "end": 5166.22, + "probability": 0.8126 + }, + { + "start": 5167.02, + "end": 5168.8, + "probability": 0.2898 + }, + { + "start": 5169.46, + "end": 5170.96, + "probability": 0.6307 + }, + { + "start": 5171.44, + "end": 5174.66, + "probability": 0.9929 + }, + { + "start": 5174.76, + "end": 5177.9, + "probability": 0.9355 + }, + { + "start": 5178.16, + "end": 5179.88, + "probability": 0.4527 + }, + { + "start": 5179.96, + "end": 5181.82, + "probability": 0.9665 + }, + { + "start": 5181.86, + "end": 5183.48, + "probability": 0.9551 + }, + { + "start": 5183.98, + "end": 5187.46, + "probability": 0.9954 + }, + { + "start": 5187.59, + "end": 5189.6, + "probability": 0.6702 + }, + { + "start": 5189.7, + "end": 5192.9, + "probability": 0.8734 + }, + { + "start": 5192.94, + "end": 5194.66, + "probability": 0.9922 + }, + { + "start": 5194.76, + "end": 5198.64, + "probability": 0.7975 + }, + { + "start": 5199.2, + "end": 5200.34, + "probability": 0.9438 + }, + { + "start": 5200.64, + "end": 5201.74, + "probability": 0.9889 + }, + { + "start": 5201.86, + "end": 5204.02, + "probability": 0.991 + }, + { + "start": 5204.52, + "end": 5205.78, + "probability": 0.9797 + }, + { + "start": 5206.36, + "end": 5210.62, + "probability": 0.9047 + }, + { + "start": 5211.1, + "end": 5213.26, + "probability": 0.9983 + }, + { + "start": 5213.46, + "end": 5217.58, + "probability": 0.9987 + }, + { + "start": 5218.6, + "end": 5218.72, + "probability": 0.8784 + }, + { + "start": 5218.92, + "end": 5219.62, + "probability": 0.8959 + }, + { + "start": 5219.64, + "end": 5223.18, + "probability": 0.9991 + }, + { + "start": 5223.18, + "end": 5226.98, + "probability": 0.7577 + }, + { + "start": 5227.48, + "end": 5229.7, + "probability": 0.9824 + }, + { + "start": 5232.28, + "end": 5234.0, + "probability": 0.0083 + }, + { + "start": 5234.24, + "end": 5235.0, + "probability": 0.6292 + }, + { + "start": 5236.54, + "end": 5239.72, + "probability": 0.6496 + }, + { + "start": 5239.82, + "end": 5242.82, + "probability": 0.39 + }, + { + "start": 5242.96, + "end": 5245.26, + "probability": 0.3898 + }, + { + "start": 5245.34, + "end": 5245.72, + "probability": 0.3225 + }, + { + "start": 5245.84, + "end": 5246.78, + "probability": 0.6358 + }, + { + "start": 5247.18, + "end": 5249.88, + "probability": 0.9179 + }, + { + "start": 5251.0, + "end": 5256.04, + "probability": 0.9776 + }, + { + "start": 5256.36, + "end": 5257.92, + "probability": 0.7015 + }, + { + "start": 5258.08, + "end": 5259.22, + "probability": 0.7952 + }, + { + "start": 5261.19, + "end": 5264.54, + "probability": 0.761 + }, + { + "start": 5264.96, + "end": 5268.38, + "probability": 0.9881 + }, + { + "start": 5268.5, + "end": 5271.43, + "probability": 0.9701 + }, + { + "start": 5272.56, + "end": 5274.12, + "probability": 0.7644 + }, + { + "start": 5274.2, + "end": 5275.52, + "probability": 0.8884 + }, + { + "start": 5275.6, + "end": 5276.38, + "probability": 0.5492 + }, + { + "start": 5276.86, + "end": 5277.9, + "probability": 0.9562 + }, + { + "start": 5278.1, + "end": 5278.52, + "probability": 0.849 + }, + { + "start": 5278.64, + "end": 5279.06, + "probability": 0.7754 + }, + { + "start": 5280.0, + "end": 5282.12, + "probability": 0.9532 + }, + { + "start": 5282.32, + "end": 5284.64, + "probability": 0.9873 + }, + { + "start": 5284.88, + "end": 5285.8, + "probability": 0.8484 + }, + { + "start": 5286.1, + "end": 5287.08, + "probability": 0.7681 + }, + { + "start": 5288.28, + "end": 5292.98, + "probability": 0.9902 + }, + { + "start": 5293.02, + "end": 5293.62, + "probability": 0.567 + }, + { + "start": 5294.22, + "end": 5295.9, + "probability": 0.8698 + }, + { + "start": 5296.08, + "end": 5296.84, + "probability": 0.8743 + }, + { + "start": 5297.0, + "end": 5299.76, + "probability": 0.9897 + }, + { + "start": 5300.5, + "end": 5301.2, + "probability": 0.5371 + }, + { + "start": 5301.3, + "end": 5304.84, + "probability": 0.9884 + }, + { + "start": 5304.84, + "end": 5308.22, + "probability": 0.475 + }, + { + "start": 5308.62, + "end": 5309.64, + "probability": 0.833 + }, + { + "start": 5309.8, + "end": 5312.32, + "probability": 0.9801 + }, + { + "start": 5312.9, + "end": 5315.92, + "probability": 0.9609 + }, + { + "start": 5316.22, + "end": 5317.52, + "probability": 0.6686 + }, + { + "start": 5318.1, + "end": 5320.98, + "probability": 0.0849 + }, + { + "start": 5321.06, + "end": 5324.14, + "probability": 0.7686 + }, + { + "start": 5324.46, + "end": 5325.42, + "probability": 0.1459 + }, + { + "start": 5330.5, + "end": 5330.5, + "probability": 0.0687 + }, + { + "start": 5330.5, + "end": 5330.5, + "probability": 0.1757 + }, + { + "start": 5330.5, + "end": 5330.5, + "probability": 0.1073 + }, + { + "start": 5330.5, + "end": 5330.6, + "probability": 0.071 + }, + { + "start": 5330.6, + "end": 5332.42, + "probability": 0.8918 + }, + { + "start": 5332.6, + "end": 5333.88, + "probability": 0.9681 + }, + { + "start": 5334.44, + "end": 5337.08, + "probability": 0.8047 + }, + { + "start": 5337.18, + "end": 5338.78, + "probability": 0.9865 + }, + { + "start": 5338.98, + "end": 5343.94, + "probability": 0.998 + }, + { + "start": 5344.7, + "end": 5349.26, + "probability": 0.9979 + }, + { + "start": 5349.84, + "end": 5352.24, + "probability": 0.8839 + }, + { + "start": 5352.54, + "end": 5354.02, + "probability": 0.993 + }, + { + "start": 5354.48, + "end": 5360.38, + "probability": 0.9993 + }, + { + "start": 5360.44, + "end": 5360.94, + "probability": 0.6644 + }, + { + "start": 5362.32, + "end": 5365.8, + "probability": 0.94 + }, + { + "start": 5366.42, + "end": 5370.44, + "probability": 0.9655 + }, + { + "start": 5371.04, + "end": 5374.78, + "probability": 0.9824 + }, + { + "start": 5375.24, + "end": 5379.14, + "probability": 0.9788 + }, + { + "start": 5379.44, + "end": 5379.94, + "probability": 0.8084 + }, + { + "start": 5382.0, + "end": 5383.66, + "probability": 0.7417 + }, + { + "start": 5384.2, + "end": 5391.74, + "probability": 0.76 + }, + { + "start": 5392.38, + "end": 5393.06, + "probability": 0.6556 + }, + { + "start": 5393.46, + "end": 5395.74, + "probability": 0.9626 + }, + { + "start": 5395.78, + "end": 5397.42, + "probability": 0.8693 + }, + { + "start": 5397.68, + "end": 5398.38, + "probability": 0.9756 + }, + { + "start": 5398.76, + "end": 5401.54, + "probability": 0.8809 + }, + { + "start": 5401.84, + "end": 5403.26, + "probability": 0.9694 + }, + { + "start": 5403.6, + "end": 5404.76, + "probability": 0.9539 + }, + { + "start": 5405.06, + "end": 5408.08, + "probability": 0.9431 + }, + { + "start": 5408.24, + "end": 5409.68, + "probability": 0.8732 + }, + { + "start": 5409.82, + "end": 5414.22, + "probability": 0.9951 + }, + { + "start": 5414.74, + "end": 5415.02, + "probability": 0.6108 + }, + { + "start": 5415.88, + "end": 5418.22, + "probability": 0.8201 + }, + { + "start": 5418.3, + "end": 5418.48, + "probability": 0.6986 + }, + { + "start": 5418.6, + "end": 5421.64, + "probability": 0.9888 + }, + { + "start": 5421.82, + "end": 5425.1, + "probability": 0.9924 + }, + { + "start": 5425.58, + "end": 5427.06, + "probability": 0.0317 + }, + { + "start": 5427.06, + "end": 5427.42, + "probability": 0.3008 + }, + { + "start": 5428.12, + "end": 5430.68, + "probability": 0.0767 + }, + { + "start": 5430.92, + "end": 5433.32, + "probability": 0.9198 + }, + { + "start": 5433.42, + "end": 5435.04, + "probability": 0.517 + }, + { + "start": 5435.08, + "end": 5436.76, + "probability": 0.7111 + }, + { + "start": 5436.98, + "end": 5437.4, + "probability": 0.8574 + }, + { + "start": 5437.8, + "end": 5438.35, + "probability": 0.8236 + }, + { + "start": 5438.8, + "end": 5439.3, + "probability": 0.8752 + }, + { + "start": 5439.64, + "end": 5441.66, + "probability": 0.6543 + }, + { + "start": 5441.76, + "end": 5442.38, + "probability": 0.5139 + }, + { + "start": 5442.44, + "end": 5442.9, + "probability": 0.9492 + }, + { + "start": 5443.12, + "end": 5444.46, + "probability": 0.9757 + }, + { + "start": 5446.8, + "end": 5446.98, + "probability": 0.0001 + }, + { + "start": 5450.06, + "end": 5450.62, + "probability": 0.0659 + }, + { + "start": 5450.62, + "end": 5456.06, + "probability": 0.9956 + }, + { + "start": 5456.88, + "end": 5457.28, + "probability": 0.4075 + }, + { + "start": 5457.36, + "end": 5458.32, + "probability": 0.6546 + }, + { + "start": 5458.36, + "end": 5459.02, + "probability": 0.8663 + }, + { + "start": 5459.16, + "end": 5461.0, + "probability": 0.1674 + }, + { + "start": 5461.06, + "end": 5462.48, + "probability": 0.1065 + }, + { + "start": 5468.2, + "end": 5469.72, + "probability": 0.1855 + }, + { + "start": 5470.34, + "end": 5472.56, + "probability": 0.0888 + }, + { + "start": 5472.74, + "end": 5473.98, + "probability": 0.5435 + }, + { + "start": 5474.15, + "end": 5476.26, + "probability": 0.686 + }, + { + "start": 5476.4, + "end": 5481.76, + "probability": 0.9845 + }, + { + "start": 5481.84, + "end": 5485.46, + "probability": 0.6756 + }, + { + "start": 5486.02, + "end": 5488.38, + "probability": 0.9082 + }, + { + "start": 5488.58, + "end": 5491.44, + "probability": 0.6629 + }, + { + "start": 5491.7, + "end": 5492.56, + "probability": 0.9119 + }, + { + "start": 5493.16, + "end": 5496.24, + "probability": 0.9355 + }, + { + "start": 5496.3, + "end": 5501.51, + "probability": 0.9786 + }, + { + "start": 5502.3, + "end": 5503.48, + "probability": 0.0222 + }, + { + "start": 5503.48, + "end": 5504.56, + "probability": 0.5527 + }, + { + "start": 5504.56, + "end": 5505.2, + "probability": 0.0481 + }, + { + "start": 5505.28, + "end": 5505.32, + "probability": 0.2993 + }, + { + "start": 5505.32, + "end": 5512.32, + "probability": 0.9609 + }, + { + "start": 5512.68, + "end": 5513.9, + "probability": 0.7246 + }, + { + "start": 5514.74, + "end": 5517.58, + "probability": 0.0386 + }, + { + "start": 5517.58, + "end": 5517.58, + "probability": 0.0711 + }, + { + "start": 5518.1, + "end": 5520.34, + "probability": 0.0045 + }, + { + "start": 5520.94, + "end": 5522.28, + "probability": 0.0503 + }, + { + "start": 5522.46, + "end": 5523.7, + "probability": 0.6094 + }, + { + "start": 5523.7, + "end": 5524.84, + "probability": 0.0553 + }, + { + "start": 5524.84, + "end": 5526.74, + "probability": 0.084 + }, + { + "start": 5527.84, + "end": 5530.84, + "probability": 0.1374 + }, + { + "start": 5537.2, + "end": 5540.78, + "probability": 0.6446 + }, + { + "start": 5542.38, + "end": 5542.48, + "probability": 0.0631 + }, + { + "start": 5544.54, + "end": 5545.7, + "probability": 0.0726 + }, + { + "start": 5546.12, + "end": 5548.22, + "probability": 0.0515 + }, + { + "start": 5548.22, + "end": 5548.46, + "probability": 0.2864 + }, + { + "start": 5548.48, + "end": 5550.02, + "probability": 0.2714 + }, + { + "start": 5552.04, + "end": 5557.28, + "probability": 0.0601 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.0, + "end": 5622.0, + "probability": 0.0 + }, + { + "start": 5622.38, + "end": 5624.58, + "probability": 0.0915 + }, + { + "start": 5630.44, + "end": 5633.24, + "probability": 0.1619 + }, + { + "start": 5634.9, + "end": 5635.46, + "probability": 0.0123 + }, + { + "start": 5638.14, + "end": 5638.24, + "probability": 0.1873 + }, + { + "start": 5641.8, + "end": 5648.4, + "probability": 0.0506 + }, + { + "start": 5648.4, + "end": 5650.24, + "probability": 0.0663 + }, + { + "start": 5650.24, + "end": 5650.56, + "probability": 0.0931 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.0, + "end": 5757.0, + "probability": 0.0 + }, + { + "start": 5757.22, + "end": 5758.08, + "probability": 0.0085 + }, + { + "start": 5758.9, + "end": 5760.94, + "probability": 0.0028 + }, + { + "start": 5763.32, + "end": 5763.96, + "probability": 0.0723 + }, + { + "start": 5764.8, + "end": 5766.02, + "probability": 0.0328 + }, + { + "start": 5766.4, + "end": 5769.68, + "probability": 0.0462 + }, + { + "start": 5769.84, + "end": 5772.96, + "probability": 0.0408 + }, + { + "start": 5772.96, + "end": 5772.96, + "probability": 0.018 + }, + { + "start": 5775.54, + "end": 5776.1, + "probability": 0.0405 + }, + { + "start": 5776.1, + "end": 5776.56, + "probability": 0.1094 + }, + { + "start": 5788.0, + "end": 5789.64, + "probability": 0.0118 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.0, + "end": 5898.0, + "probability": 0.0 + }, + { + "start": 5898.16, + "end": 5899.88, + "probability": 0.0952 + }, + { + "start": 5899.88, + "end": 5899.88, + "probability": 0.1196 + }, + { + "start": 5899.88, + "end": 5902.42, + "probability": 0.8262 + }, + { + "start": 5902.76, + "end": 5905.84, + "probability": 0.9756 + }, + { + "start": 5906.36, + "end": 5910.18, + "probability": 0.983 + }, + { + "start": 5910.18, + "end": 5916.12, + "probability": 0.9982 + }, + { + "start": 5917.14, + "end": 5922.96, + "probability": 0.8428 + }, + { + "start": 5923.04, + "end": 5925.42, + "probability": 0.9868 + }, + { + "start": 5926.1, + "end": 5928.48, + "probability": 0.9927 + }, + { + "start": 5928.48, + "end": 5931.9, + "probability": 0.9763 + }, + { + "start": 5932.32, + "end": 5933.02, + "probability": 0.5392 + }, + { + "start": 5933.28, + "end": 5933.88, + "probability": 0.8811 + }, + { + "start": 5934.0, + "end": 5937.26, + "probability": 0.9621 + }, + { + "start": 5937.8, + "end": 5939.14, + "probability": 0.5363 + }, + { + "start": 5939.18, + "end": 5941.56, + "probability": 0.9971 + }, + { + "start": 5941.56, + "end": 5945.04, + "probability": 0.9971 + }, + { + "start": 5945.14, + "end": 5946.2, + "probability": 0.8186 + }, + { + "start": 5946.3, + "end": 5948.32, + "probability": 0.7505 + }, + { + "start": 5948.44, + "end": 5949.28, + "probability": 0.5829 + }, + { + "start": 5949.4, + "end": 5950.72, + "probability": 0.89 + }, + { + "start": 5950.76, + "end": 5953.46, + "probability": 0.8827 + }, + { + "start": 5953.52, + "end": 5954.0, + "probability": 0.574 + }, + { + "start": 5954.3, + "end": 5954.7, + "probability": 0.5145 + }, + { + "start": 5955.26, + "end": 5956.08, + "probability": 0.78 + }, + { + "start": 5956.74, + "end": 5956.82, + "probability": 0.3062 + }, + { + "start": 5957.12, + "end": 5957.12, + "probability": 0.5205 + }, + { + "start": 5957.12, + "end": 5959.64, + "probability": 0.9458 + }, + { + "start": 5960.38, + "end": 5961.0, + "probability": 0.8804 + }, + { + "start": 5964.32, + "end": 5965.0, + "probability": 0.4867 + }, + { + "start": 5965.14, + "end": 5965.7, + "probability": 0.8147 + }, + { + "start": 5984.96, + "end": 5986.26, + "probability": 0.6085 + }, + { + "start": 5987.82, + "end": 5990.42, + "probability": 0.8945 + }, + { + "start": 5992.12, + "end": 5993.36, + "probability": 0.5458 + }, + { + "start": 5993.94, + "end": 5994.6, + "probability": 0.672 + }, + { + "start": 5997.78, + "end": 5998.94, + "probability": 0.869 + }, + { + "start": 6000.14, + "end": 6004.08, + "probability": 0.9006 + }, + { + "start": 6005.4, + "end": 6007.0, + "probability": 0.8347 + }, + { + "start": 6007.74, + "end": 6010.06, + "probability": 0.9806 + }, + { + "start": 6010.42, + "end": 6011.34, + "probability": 0.8051 + }, + { + "start": 6011.36, + "end": 6011.36, + "probability": 0.486 + }, + { + "start": 6011.52, + "end": 6017.16, + "probability": 0.9683 + }, + { + "start": 6017.26, + "end": 6019.24, + "probability": 0.9846 + }, + { + "start": 6019.46, + "end": 6021.38, + "probability": 0.8457 + }, + { + "start": 6021.5, + "end": 6023.48, + "probability": 0.9952 + }, + { + "start": 6024.36, + "end": 6027.52, + "probability": 0.8516 + }, + { + "start": 6029.36, + "end": 6034.54, + "probability": 0.9987 + }, + { + "start": 6034.6, + "end": 6039.02, + "probability": 0.7113 + }, + { + "start": 6039.96, + "end": 6041.71, + "probability": 0.5929 + }, + { + "start": 6042.94, + "end": 6047.84, + "probability": 0.829 + }, + { + "start": 6053.29, + "end": 6055.7, + "probability": 0.8374 + }, + { + "start": 6055.84, + "end": 6056.26, + "probability": 0.8869 + }, + { + "start": 6063.7, + "end": 6066.04, + "probability": 0.6853 + }, + { + "start": 6067.04, + "end": 6068.58, + "probability": 0.9233 + }, + { + "start": 6069.74, + "end": 6070.6, + "probability": 0.3914 + }, + { + "start": 6070.82, + "end": 6072.66, + "probability": 0.8948 + }, + { + "start": 6072.72, + "end": 6073.46, + "probability": 0.964 + }, + { + "start": 6074.32, + "end": 6077.34, + "probability": 0.9468 + }, + { + "start": 6077.94, + "end": 6078.64, + "probability": 0.4293 + }, + { + "start": 6079.12, + "end": 6082.82, + "probability": 0.7263 + }, + { + "start": 6083.32, + "end": 6087.53, + "probability": 0.9819 + }, + { + "start": 6089.2, + "end": 6093.36, + "probability": 0.9836 + }, + { + "start": 6093.92, + "end": 6095.42, + "probability": 0.7646 + }, + { + "start": 6096.4, + "end": 6098.08, + "probability": 0.9969 + }, + { + "start": 6098.62, + "end": 6099.78, + "probability": 0.8903 + }, + { + "start": 6100.36, + "end": 6105.96, + "probability": 0.943 + }, + { + "start": 6106.86, + "end": 6109.28, + "probability": 0.9297 + }, + { + "start": 6110.18, + "end": 6116.42, + "probability": 0.9744 + }, + { + "start": 6116.52, + "end": 6119.7, + "probability": 0.9766 + }, + { + "start": 6120.22, + "end": 6124.18, + "probability": 0.8835 + }, + { + "start": 6124.28, + "end": 6124.92, + "probability": 0.7146 + }, + { + "start": 6125.76, + "end": 6135.72, + "probability": 0.9939 + }, + { + "start": 6136.14, + "end": 6136.7, + "probability": 0.8036 + }, + { + "start": 6136.88, + "end": 6138.1, + "probability": 0.9576 + }, + { + "start": 6138.58, + "end": 6140.12, + "probability": 0.443 + }, + { + "start": 6140.6, + "end": 6143.04, + "probability": 0.7812 + }, + { + "start": 6143.12, + "end": 6143.7, + "probability": 0.9579 + }, + { + "start": 6144.06, + "end": 6144.66, + "probability": 0.83 + }, + { + "start": 6144.86, + "end": 6146.46, + "probability": 0.9563 + }, + { + "start": 6147.64, + "end": 6151.3, + "probability": 0.9812 + }, + { + "start": 6151.3, + "end": 6151.64, + "probability": 0.1901 + }, + { + "start": 6151.8, + "end": 6153.86, + "probability": 0.9499 + }, + { + "start": 6154.58, + "end": 6156.64, + "probability": 0.9857 + }, + { + "start": 6157.1, + "end": 6159.02, + "probability": 0.998 + }, + { + "start": 6159.16, + "end": 6160.3, + "probability": 0.7619 + }, + { + "start": 6160.44, + "end": 6163.1, + "probability": 0.951 + }, + { + "start": 6163.8, + "end": 6166.44, + "probability": 0.9569 + }, + { + "start": 6166.72, + "end": 6168.58, + "probability": 0.9972 + }, + { + "start": 6169.26, + "end": 6171.9, + "probability": 0.93 + }, + { + "start": 6172.42, + "end": 6174.98, + "probability": 0.9021 + }, + { + "start": 6175.1, + "end": 6177.86, + "probability": 0.9522 + }, + { + "start": 6178.8, + "end": 6179.32, + "probability": 0.9138 + }, + { + "start": 6180.34, + "end": 6180.92, + "probability": 0.7039 + }, + { + "start": 6181.56, + "end": 6184.0, + "probability": 0.9762 + }, + { + "start": 6184.54, + "end": 6185.92, + "probability": 0.8086 + }, + { + "start": 6187.48, + "end": 6191.06, + "probability": 0.7045 + }, + { + "start": 6191.38, + "end": 6192.46, + "probability": 0.9653 + }, + { + "start": 6193.44, + "end": 6194.06, + "probability": 0.0536 + }, + { + "start": 6195.04, + "end": 6195.28, + "probability": 0.4339 + }, + { + "start": 6195.32, + "end": 6196.4, + "probability": 0.6381 + }, + { + "start": 6196.84, + "end": 6197.66, + "probability": 0.8389 + }, + { + "start": 6199.04, + "end": 6200.56, + "probability": 0.7129 + }, + { + "start": 6200.96, + "end": 6201.6, + "probability": 0.3015 + }, + { + "start": 6202.72, + "end": 6203.42, + "probability": 0.588 + }, + { + "start": 6203.56, + "end": 6210.7, + "probability": 0.8932 + }, + { + "start": 6210.7, + "end": 6218.6, + "probability": 0.8464 + }, + { + "start": 6219.6, + "end": 6221.5, + "probability": 0.9151 + }, + { + "start": 6221.5, + "end": 6222.34, + "probability": 0.4988 + }, + { + "start": 6222.78, + "end": 6223.2, + "probability": 0.7324 + }, + { + "start": 6223.48, + "end": 6223.92, + "probability": 0.7739 + }, + { + "start": 6224.0, + "end": 6224.41, + "probability": 0.6532 + }, + { + "start": 6225.62, + "end": 6228.42, + "probability": 0.8685 + }, + { + "start": 6228.64, + "end": 6230.0, + "probability": 0.8726 + }, + { + "start": 6230.16, + "end": 6231.5, + "probability": 0.6043 + }, + { + "start": 6231.66, + "end": 6232.26, + "probability": 0.9568 + }, + { + "start": 6232.32, + "end": 6232.92, + "probability": 0.9669 + }, + { + "start": 6233.0, + "end": 6234.18, + "probability": 0.7905 + }, + { + "start": 6234.36, + "end": 6235.62, + "probability": 0.7755 + }, + { + "start": 6235.66, + "end": 6236.24, + "probability": 0.9739 + }, + { + "start": 6236.32, + "end": 6238.99, + "probability": 0.9456 + }, + { + "start": 6240.44, + "end": 6241.9, + "probability": 0.8043 + }, + { + "start": 6242.3, + "end": 6242.44, + "probability": 0.4639 + }, + { + "start": 6242.56, + "end": 6243.02, + "probability": 0.7671 + }, + { + "start": 6243.16, + "end": 6243.44, + "probability": 0.4577 + }, + { + "start": 6243.44, + "end": 6245.92, + "probability": 0.8196 + }, + { + "start": 6246.3, + "end": 6248.74, + "probability": 0.8438 + }, + { + "start": 6248.82, + "end": 6249.53, + "probability": 0.6661 + }, + { + "start": 6250.22, + "end": 6250.96, + "probability": 0.8798 + }, + { + "start": 6250.98, + "end": 6253.16, + "probability": 0.954 + }, + { + "start": 6253.82, + "end": 6254.76, + "probability": 0.9491 + }, + { + "start": 6255.2, + "end": 6256.9, + "probability": 0.94 + }, + { + "start": 6257.3, + "end": 6257.46, + "probability": 0.2146 + }, + { + "start": 6257.74, + "end": 6257.96, + "probability": 0.7124 + }, + { + "start": 6258.5, + "end": 6260.1, + "probability": 0.9533 + }, + { + "start": 6260.8, + "end": 6262.3, + "probability": 0.4972 + }, + { + "start": 6263.08, + "end": 6264.98, + "probability": 0.8986 + }, + { + "start": 6265.24, + "end": 6266.68, + "probability": 0.9683 + }, + { + "start": 6266.88, + "end": 6268.64, + "probability": 0.6925 + }, + { + "start": 6268.68, + "end": 6270.42, + "probability": 0.8759 + }, + { + "start": 6271.04, + "end": 6272.84, + "probability": 0.7668 + }, + { + "start": 6273.6, + "end": 6274.6, + "probability": 0.6565 + }, + { + "start": 6274.6, + "end": 6275.1, + "probability": 0.4584 + }, + { + "start": 6275.44, + "end": 6277.5, + "probability": 0.9834 + }, + { + "start": 6277.62, + "end": 6279.15, + "probability": 0.9744 + }, + { + "start": 6280.0, + "end": 6286.66, + "probability": 0.9827 + }, + { + "start": 6286.66, + "end": 6292.0, + "probability": 0.5562 + }, + { + "start": 6293.62, + "end": 6298.64, + "probability": 0.9978 + }, + { + "start": 6298.9, + "end": 6300.36, + "probability": 0.6583 + }, + { + "start": 6300.8, + "end": 6302.92, + "probability": 0.7834 + }, + { + "start": 6303.78, + "end": 6305.7, + "probability": 0.9277 + }, + { + "start": 6306.4, + "end": 6307.5, + "probability": 0.78 + }, + { + "start": 6307.74, + "end": 6308.32, + "probability": 0.5421 + }, + { + "start": 6308.32, + "end": 6308.96, + "probability": 0.2238 + }, + { + "start": 6309.3, + "end": 6309.4, + "probability": 0.2456 + }, + { + "start": 6309.62, + "end": 6310.09, + "probability": 0.9385 + }, + { + "start": 6310.74, + "end": 6313.52, + "probability": 0.8908 + }, + { + "start": 6313.7, + "end": 6314.3, + "probability": 0.8552 + }, + { + "start": 6314.54, + "end": 6315.88, + "probability": 0.447 + }, + { + "start": 6316.73, + "end": 6319.38, + "probability": 0.9182 + }, + { + "start": 6320.62, + "end": 6327.06, + "probability": 0.9727 + }, + { + "start": 6327.12, + "end": 6328.8, + "probability": 0.8483 + }, + { + "start": 6328.8, + "end": 6332.0, + "probability": 0.6866 + }, + { + "start": 6332.18, + "end": 6334.76, + "probability": 0.7009 + }, + { + "start": 6335.3, + "end": 6336.42, + "probability": 0.3086 + }, + { + "start": 6339.12, + "end": 6339.54, + "probability": 0.0333 + }, + { + "start": 6340.66, + "end": 6342.74, + "probability": 0.7065 + }, + { + "start": 6343.08, + "end": 6345.98, + "probability": 0.9637 + }, + { + "start": 6346.18, + "end": 6346.34, + "probability": 0.486 + }, + { + "start": 6348.0, + "end": 6349.18, + "probability": 0.9198 + }, + { + "start": 6349.24, + "end": 6349.56, + "probability": 0.56 + }, + { + "start": 6349.72, + "end": 6350.51, + "probability": 0.8949 + }, + { + "start": 6350.96, + "end": 6352.86, + "probability": 0.8355 + }, + { + "start": 6353.14, + "end": 6353.94, + "probability": 0.8037 + }, + { + "start": 6354.04, + "end": 6356.4, + "probability": 0.9927 + }, + { + "start": 6356.48, + "end": 6357.44, + "probability": 0.9976 + }, + { + "start": 6357.48, + "end": 6359.1, + "probability": 0.9944 + }, + { + "start": 6359.72, + "end": 6360.32, + "probability": 0.4288 + }, + { + "start": 6360.42, + "end": 6360.88, + "probability": 0.7985 + }, + { + "start": 6360.92, + "end": 6362.64, + "probability": 0.9823 + }, + { + "start": 6363.58, + "end": 6364.26, + "probability": 0.7183 + }, + { + "start": 6364.5, + "end": 6366.1, + "probability": 0.6754 + }, + { + "start": 6366.14, + "end": 6366.42, + "probability": 0.3675 + }, + { + "start": 6366.72, + "end": 6369.78, + "probability": 0.7971 + }, + { + "start": 6370.46, + "end": 6371.24, + "probability": 0.7998 + }, + { + "start": 6371.28, + "end": 6371.82, + "probability": 0.9429 + }, + { + "start": 6372.44, + "end": 6373.84, + "probability": 0.5117 + }, + { + "start": 6374.7, + "end": 6377.84, + "probability": 0.4842 + }, + { + "start": 6379.14, + "end": 6380.92, + "probability": 0.7922 + }, + { + "start": 6381.52, + "end": 6383.2, + "probability": 0.6485 + }, + { + "start": 6383.3, + "end": 6384.86, + "probability": 0.9465 + }, + { + "start": 6385.0, + "end": 6385.82, + "probability": 0.7321 + }, + { + "start": 6385.86, + "end": 6387.0, + "probability": 0.928 + }, + { + "start": 6387.74, + "end": 6391.94, + "probability": 0.9742 + }, + { + "start": 6392.4, + "end": 6394.66, + "probability": 0.6363 + }, + { + "start": 6395.72, + "end": 6398.12, + "probability": 0.4341 + }, + { + "start": 6398.14, + "end": 6402.96, + "probability": 0.5739 + }, + { + "start": 6403.0, + "end": 6410.58, + "probability": 0.8226 + }, + { + "start": 6410.78, + "end": 6410.88, + "probability": 0.5587 + }, + { + "start": 6412.28, + "end": 6414.26, + "probability": 0.9798 + }, + { + "start": 6422.6, + "end": 6422.7, + "probability": 0.0187 + }, + { + "start": 6424.12, + "end": 6426.0, + "probability": 0.1493 + }, + { + "start": 6426.22, + "end": 6427.22, + "probability": 0.1965 + }, + { + "start": 6427.91, + "end": 6429.14, + "probability": 0.0814 + }, + { + "start": 6429.14, + "end": 6429.14, + "probability": 0.0523 + }, + { + "start": 6429.14, + "end": 6429.14, + "probability": 0.0044 + }, + { + "start": 6451.76, + "end": 6454.5, + "probability": 0.4548 + }, + { + "start": 6454.96, + "end": 6457.26, + "probability": 0.9443 + }, + { + "start": 6457.42, + "end": 6460.74, + "probability": 0.9519 + }, + { + "start": 6461.38, + "end": 6464.6, + "probability": 0.9185 + }, + { + "start": 6465.34, + "end": 6467.6, + "probability": 0.8486 + }, + { + "start": 6468.08, + "end": 6471.82, + "probability": 0.9915 + }, + { + "start": 6471.94, + "end": 6472.14, + "probability": 0.8353 + }, + { + "start": 6472.72, + "end": 6473.72, + "probability": 0.9985 + }, + { + "start": 6475.18, + "end": 6475.6, + "probability": 0.7213 + }, + { + "start": 6476.14, + "end": 6479.98, + "probability": 0.9316 + }, + { + "start": 6480.64, + "end": 6481.7, + "probability": 0.6293 + }, + { + "start": 6482.26, + "end": 6483.48, + "probability": 0.9147 + }, + { + "start": 6484.16, + "end": 6489.96, + "probability": 0.9932 + }, + { + "start": 6490.12, + "end": 6493.16, + "probability": 0.9024 + }, + { + "start": 6494.74, + "end": 6500.56, + "probability": 0.6692 + }, + { + "start": 6503.14, + "end": 6506.62, + "probability": 0.7608 + }, + { + "start": 6506.76, + "end": 6510.06, + "probability": 0.7522 + }, + { + "start": 6510.56, + "end": 6514.52, + "probability": 0.874 + }, + { + "start": 6518.1, + "end": 6520.7, + "probability": 0.9809 + }, + { + "start": 6520.7, + "end": 6523.36, + "probability": 0.8316 + }, + { + "start": 6523.86, + "end": 6528.2, + "probability": 0.9611 + }, + { + "start": 6529.06, + "end": 6533.14, + "probability": 0.8766 + }, + { + "start": 6533.2, + "end": 6536.32, + "probability": 0.7614 + }, + { + "start": 6536.46, + "end": 6538.98, + "probability": 0.7791 + }, + { + "start": 6539.24, + "end": 6541.08, + "probability": 0.8489 + }, + { + "start": 6541.12, + "end": 6542.63, + "probability": 0.8851 + }, + { + "start": 6545.16, + "end": 6549.0, + "probability": 0.7593 + }, + { + "start": 6549.98, + "end": 6553.82, + "probability": 0.9186 + }, + { + "start": 6554.28, + "end": 6556.7, + "probability": 0.849 + }, + { + "start": 6557.68, + "end": 6560.44, + "probability": 0.984 + }, + { + "start": 6560.56, + "end": 6563.46, + "probability": 0.8035 + }, + { + "start": 6564.18, + "end": 6565.32, + "probability": 0.8023 + }, + { + "start": 6566.42, + "end": 6568.1, + "probability": 0.601 + }, + { + "start": 6568.62, + "end": 6569.48, + "probability": 0.717 + }, + { + "start": 6570.54, + "end": 6574.13, + "probability": 0.4046 + }, + { + "start": 6576.9, + "end": 6578.16, + "probability": 0.0718 + }, + { + "start": 6579.04, + "end": 6580.88, + "probability": 0.5937 + }, + { + "start": 6582.96, + "end": 6586.9, + "probability": 0.837 + }, + { + "start": 6587.86, + "end": 6588.5, + "probability": 0.7232 + }, + { + "start": 6588.6, + "end": 6593.66, + "probability": 0.9658 + }, + { + "start": 6593.7, + "end": 6599.14, + "probability": 0.9451 + }, + { + "start": 6599.14, + "end": 6606.74, + "probability": 0.7385 + }, + { + "start": 6607.0, + "end": 6613.5, + "probability": 0.59 + }, + { + "start": 6614.06, + "end": 6616.66, + "probability": 0.885 + }, + { + "start": 6616.78, + "end": 6620.98, + "probability": 0.7612 + }, + { + "start": 6621.48, + "end": 6622.94, + "probability": 0.9167 + }, + { + "start": 6623.44, + "end": 6625.86, + "probability": 0.8442 + }, + { + "start": 6626.66, + "end": 6631.64, + "probability": 0.9583 + }, + { + "start": 6631.74, + "end": 6632.14, + "probability": 0.4213 + }, + { + "start": 6632.4, + "end": 6636.44, + "probability": 0.582 + }, + { + "start": 6637.2, + "end": 6638.54, + "probability": 0.8107 + }, + { + "start": 6638.66, + "end": 6641.46, + "probability": 0.993 + }, + { + "start": 6641.88, + "end": 6645.04, + "probability": 0.9916 + }, + { + "start": 6645.04, + "end": 6649.06, + "probability": 0.999 + }, + { + "start": 6651.32, + "end": 6653.82, + "probability": 0.7105 + }, + { + "start": 6653.88, + "end": 6655.62, + "probability": 0.8823 + }, + { + "start": 6658.9, + "end": 6660.04, + "probability": 0.6595 + }, + { + "start": 6660.22, + "end": 6661.36, + "probability": 0.9046 + }, + { + "start": 6661.84, + "end": 6664.68, + "probability": 0.9386 + }, + { + "start": 6665.5, + "end": 6669.34, + "probability": 0.8159 + }, + { + "start": 6669.44, + "end": 6672.9, + "probability": 0.9486 + }, + { + "start": 6673.0, + "end": 6675.98, + "probability": 0.9828 + }, + { + "start": 6675.98, + "end": 6678.94, + "probability": 0.9548 + }, + { + "start": 6679.38, + "end": 6683.16, + "probability": 0.8287 + }, + { + "start": 6683.9, + "end": 6689.04, + "probability": 0.7969 + }, + { + "start": 6689.64, + "end": 6690.28, + "probability": 0.9021 + }, + { + "start": 6690.54, + "end": 6692.16, + "probability": 0.9937 + }, + { + "start": 6692.32, + "end": 6694.3, + "probability": 0.807 + }, + { + "start": 6695.08, + "end": 6697.7, + "probability": 0.8147 + }, + { + "start": 6698.1, + "end": 6699.6, + "probability": 0.7069 + }, + { + "start": 6699.84, + "end": 6702.34, + "probability": 0.7174 + }, + { + "start": 6702.58, + "end": 6704.56, + "probability": 0.9211 + }, + { + "start": 6705.02, + "end": 6708.66, + "probability": 0.9477 + }, + { + "start": 6709.12, + "end": 6709.72, + "probability": 0.8385 + }, + { + "start": 6710.0, + "end": 6713.02, + "probability": 0.9502 + }, + { + "start": 6713.3, + "end": 6715.18, + "probability": 0.9658 + }, + { + "start": 6715.66, + "end": 6715.94, + "probability": 0.3004 + }, + { + "start": 6718.06, + "end": 6718.88, + "probability": 0.6985 + }, + { + "start": 6719.58, + "end": 6720.2, + "probability": 0.9056 + }, + { + "start": 6720.34, + "end": 6720.94, + "probability": 0.8393 + }, + { + "start": 6721.06, + "end": 6721.7, + "probability": 0.8719 + }, + { + "start": 6722.06, + "end": 6724.36, + "probability": 0.9315 + }, + { + "start": 6724.66, + "end": 6729.86, + "probability": 0.8069 + }, + { + "start": 6731.31, + "end": 6734.86, + "probability": 0.964 + }, + { + "start": 6734.86, + "end": 6737.94, + "probability": 0.895 + }, + { + "start": 6737.98, + "end": 6742.32, + "probability": 0.8646 + }, + { + "start": 6742.36, + "end": 6746.18, + "probability": 0.9982 + }, + { + "start": 6747.94, + "end": 6749.14, + "probability": 0.8092 + }, + { + "start": 6749.2, + "end": 6754.78, + "probability": 0.9963 + }, + { + "start": 6755.06, + "end": 6757.26, + "probability": 0.912 + }, + { + "start": 6757.66, + "end": 6760.46, + "probability": 0.9613 + }, + { + "start": 6761.36, + "end": 6765.08, + "probability": 0.6843 + }, + { + "start": 6765.36, + "end": 6766.72, + "probability": 0.9747 + }, + { + "start": 6767.08, + "end": 6767.48, + "probability": 0.5054 + }, + { + "start": 6767.56, + "end": 6768.46, + "probability": 0.9501 + }, + { + "start": 6769.9, + "end": 6772.0, + "probability": 0.5883 + }, + { + "start": 6773.76, + "end": 6776.78, + "probability": 0.9899 + }, + { + "start": 6777.14, + "end": 6780.06, + "probability": 0.8929 + }, + { + "start": 6780.96, + "end": 6786.24, + "probability": 0.6243 + }, + { + "start": 6787.52, + "end": 6788.58, + "probability": 0.9418 + }, + { + "start": 6795.14, + "end": 6797.98, + "probability": 0.8353 + }, + { + "start": 6797.98, + "end": 6800.96, + "probability": 0.9609 + }, + { + "start": 6801.32, + "end": 6804.46, + "probability": 0.6781 + }, + { + "start": 6805.14, + "end": 6809.86, + "probability": 0.9105 + }, + { + "start": 6810.08, + "end": 6813.2, + "probability": 0.9368 + }, + { + "start": 6815.5, + "end": 6816.32, + "probability": 0.6925 + }, + { + "start": 6816.92, + "end": 6818.54, + "probability": 0.8941 + }, + { + "start": 6819.34, + "end": 6822.78, + "probability": 0.9714 + }, + { + "start": 6823.9, + "end": 6826.92, + "probability": 0.9492 + }, + { + "start": 6827.18, + "end": 6828.22, + "probability": 0.9793 + }, + { + "start": 6828.38, + "end": 6831.38, + "probability": 0.8464 + }, + { + "start": 6831.52, + "end": 6837.52, + "probability": 0.8934 + }, + { + "start": 6837.62, + "end": 6838.46, + "probability": 0.7893 + }, + { + "start": 6839.04, + "end": 6840.26, + "probability": 0.7942 + }, + { + "start": 6840.68, + "end": 6843.18, + "probability": 0.8555 + }, + { + "start": 6843.22, + "end": 6844.48, + "probability": 0.7013 + }, + { + "start": 6846.14, + "end": 6847.56, + "probability": 0.5017 + }, + { + "start": 6848.06, + "end": 6850.36, + "probability": 0.872 + }, + { + "start": 6851.56, + "end": 6853.74, + "probability": 0.1753 + }, + { + "start": 6853.96, + "end": 6854.7, + "probability": 0.5012 + }, + { + "start": 6855.08, + "end": 6855.86, + "probability": 0.2082 + }, + { + "start": 6856.42, + "end": 6856.64, + "probability": 0.3028 + }, + { + "start": 6856.9, + "end": 6857.84, + "probability": 0.4568 + }, + { + "start": 6857.96, + "end": 6860.38, + "probability": 0.8718 + }, + { + "start": 6860.78, + "end": 6862.14, + "probability": 0.9189 + }, + { + "start": 6862.32, + "end": 6864.74, + "probability": 0.706 + }, + { + "start": 6866.12, + "end": 6869.84, + "probability": 0.6444 + }, + { + "start": 6870.2, + "end": 6872.02, + "probability": 0.3244 + }, + { + "start": 6872.02, + "end": 6872.24, + "probability": 0.3327 + }, + { + "start": 6872.28, + "end": 6875.8, + "probability": 0.7314 + }, + { + "start": 6875.8, + "end": 6878.7, + "probability": 0.9943 + }, + { + "start": 6879.18, + "end": 6882.64, + "probability": 0.4136 + }, + { + "start": 6883.06, + "end": 6886.28, + "probability": 0.9978 + }, + { + "start": 6886.8, + "end": 6891.74, + "probability": 0.7532 + }, + { + "start": 6892.06, + "end": 6895.1, + "probability": 0.804 + }, + { + "start": 6895.34, + "end": 6897.1, + "probability": 0.8187 + }, + { + "start": 6897.42, + "end": 6901.9, + "probability": 0.8945 + }, + { + "start": 6904.4, + "end": 6906.78, + "probability": 0.6613 + }, + { + "start": 6906.78, + "end": 6909.5, + "probability": 0.7345 + }, + { + "start": 6909.58, + "end": 6912.06, + "probability": 0.8097 + }, + { + "start": 6912.48, + "end": 6913.78, + "probability": 0.7688 + }, + { + "start": 6914.64, + "end": 6916.66, + "probability": 0.3845 + }, + { + "start": 6916.7, + "end": 6924.34, + "probability": 0.6694 + }, + { + "start": 6924.6, + "end": 6931.84, + "probability": 0.7606 + }, + { + "start": 6932.16, + "end": 6936.54, + "probability": 0.8391 + }, + { + "start": 6936.96, + "end": 6938.86, + "probability": 0.902 + }, + { + "start": 6938.98, + "end": 6940.94, + "probability": 0.8726 + }, + { + "start": 6941.8, + "end": 6946.18, + "probability": 0.9844 + }, + { + "start": 6946.88, + "end": 6954.94, + "probability": 0.4453 + }, + { + "start": 6955.32, + "end": 6958.4, + "probability": 0.9406 + }, + { + "start": 6958.58, + "end": 6961.0, + "probability": 0.9771 + }, + { + "start": 6961.18, + "end": 6965.36, + "probability": 0.9473 + }, + { + "start": 6965.5, + "end": 6967.78, + "probability": 0.6442 + }, + { + "start": 6968.66, + "end": 6973.4, + "probability": 0.6034 + }, + { + "start": 6973.42, + "end": 6974.62, + "probability": 0.7536 + }, + { + "start": 6975.32, + "end": 6978.24, + "probability": 0.7494 + }, + { + "start": 6978.24, + "end": 6982.19, + "probability": 0.9746 + }, + { + "start": 6982.62, + "end": 6984.82, + "probability": 0.721 + }, + { + "start": 6984.92, + "end": 6986.43, + "probability": 0.8255 + }, + { + "start": 6986.62, + "end": 6987.44, + "probability": 0.6866 + }, + { + "start": 6988.34, + "end": 6992.78, + "probability": 0.4786 + }, + { + "start": 6993.22, + "end": 6996.76, + "probability": 0.6585 + }, + { + "start": 6999.62, + "end": 7003.16, + "probability": 0.981 + }, + { + "start": 7003.2, + "end": 7006.1, + "probability": 0.8314 + }, + { + "start": 7007.3, + "end": 7008.62, + "probability": 0.4037 + }, + { + "start": 7008.74, + "end": 7010.22, + "probability": 0.4438 + }, + { + "start": 7010.32, + "end": 7015.06, + "probability": 0.8967 + }, + { + "start": 7015.2, + "end": 7016.24, + "probability": 0.6086 + }, + { + "start": 7016.78, + "end": 7017.64, + "probability": 0.8702 + }, + { + "start": 7017.74, + "end": 7021.0, + "probability": 0.854 + }, + { + "start": 7021.46, + "end": 7025.16, + "probability": 0.8427 + }, + { + "start": 7025.86, + "end": 7026.5, + "probability": 0.664 + }, + { + "start": 7027.22, + "end": 7032.46, + "probability": 0.789 + }, + { + "start": 7032.96, + "end": 7035.22, + "probability": 0.5922 + }, + { + "start": 7037.51, + "end": 7038.56, + "probability": 0.2444 + }, + { + "start": 7038.56, + "end": 7041.98, + "probability": 0.071 + }, + { + "start": 7042.1, + "end": 7042.1, + "probability": 0.097 + }, + { + "start": 7042.1, + "end": 7043.98, + "probability": 0.525 + }, + { + "start": 7045.74, + "end": 7046.82, + "probability": 0.5343 + }, + { + "start": 7047.48, + "end": 7050.98, + "probability": 0.517 + }, + { + "start": 7051.5, + "end": 7051.5, + "probability": 0.2254 + }, + { + "start": 7051.5, + "end": 7053.61, + "probability": 0.0336 + }, + { + "start": 7054.18, + "end": 7056.94, + "probability": 0.799 + }, + { + "start": 7057.42, + "end": 7057.9, + "probability": 0.5099 + }, + { + "start": 7058.04, + "end": 7060.12, + "probability": 0.812 + }, + { + "start": 7060.46, + "end": 7065.0, + "probability": 0.8403 + }, + { + "start": 7065.0, + "end": 7065.56, + "probability": 0.458 + }, + { + "start": 7065.56, + "end": 7069.14, + "probability": 0.2872 + }, + { + "start": 7069.18, + "end": 7069.18, + "probability": 0.3479 + }, + { + "start": 7069.18, + "end": 7071.0, + "probability": 0.748 + }, + { + "start": 7071.12, + "end": 7071.62, + "probability": 0.8251 + }, + { + "start": 7072.64, + "end": 7073.4, + "probability": 0.609 + }, + { + "start": 7073.88, + "end": 7074.9, + "probability": 0.1655 + }, + { + "start": 7076.22, + "end": 7076.42, + "probability": 0.0713 + }, + { + "start": 7076.42, + "end": 7076.78, + "probability": 0.5342 + }, + { + "start": 7076.78, + "end": 7077.62, + "probability": 0.0181 + }, + { + "start": 7077.62, + "end": 7079.58, + "probability": 0.3846 + }, + { + "start": 7084.2, + "end": 7084.64, + "probability": 0.5634 + }, + { + "start": 7084.8, + "end": 7085.46, + "probability": 0.4614 + }, + { + "start": 7086.46, + "end": 7088.68, + "probability": 0.9428 + }, + { + "start": 7089.2, + "end": 7092.68, + "probability": 0.9852 + }, + { + "start": 7093.0, + "end": 7096.82, + "probability": 0.9415 + }, + { + "start": 7097.18, + "end": 7102.1, + "probability": 0.7881 + }, + { + "start": 7102.54, + "end": 7105.9, + "probability": 0.9507 + }, + { + "start": 7106.22, + "end": 7106.28, + "probability": 0.4931 + }, + { + "start": 7106.28, + "end": 7111.3, + "probability": 0.6246 + }, + { + "start": 7111.6, + "end": 7112.65, + "probability": 0.5787 + }, + { + "start": 7113.02, + "end": 7113.02, + "probability": 0.6909 + }, + { + "start": 7113.12, + "end": 7116.78, + "probability": 0.6569 + }, + { + "start": 7117.02, + "end": 7117.9, + "probability": 0.9288 + }, + { + "start": 7118.08, + "end": 7119.54, + "probability": 0.8411 + }, + { + "start": 7119.82, + "end": 7124.26, + "probability": 0.795 + }, + { + "start": 7124.44, + "end": 7125.1, + "probability": 0.853 + }, + { + "start": 7125.1, + "end": 7125.7, + "probability": 0.5613 + }, + { + "start": 7125.8, + "end": 7129.74, + "probability": 0.6777 + }, + { + "start": 7129.92, + "end": 7132.04, + "probability": 0.3527 + }, + { + "start": 7132.14, + "end": 7135.9, + "probability": 0.7938 + }, + { + "start": 7135.96, + "end": 7136.76, + "probability": 0.8314 + }, + { + "start": 7165.12, + "end": 7167.24, + "probability": 0.6215 + }, + { + "start": 7167.82, + "end": 7169.32, + "probability": 0.7402 + }, + { + "start": 7170.82, + "end": 7173.98, + "probability": 0.8849 + }, + { + "start": 7174.84, + "end": 7176.96, + "probability": 0.9526 + }, + { + "start": 7178.46, + "end": 7182.62, + "probability": 0.7093 + }, + { + "start": 7182.62, + "end": 7183.5, + "probability": 0.5144 + }, + { + "start": 7183.6, + "end": 7184.18, + "probability": 0.4268 + }, + { + "start": 7184.18, + "end": 7185.28, + "probability": 0.569 + }, + { + "start": 7186.36, + "end": 7190.0, + "probability": 0.6563 + }, + { + "start": 7190.96, + "end": 7191.28, + "probability": 0.9633 + }, + { + "start": 7191.52, + "end": 7193.02, + "probability": 0.8024 + }, + { + "start": 7193.3, + "end": 7195.06, + "probability": 0.8171 + }, + { + "start": 7196.6, + "end": 7203.0, + "probability": 0.9809 + }, + { + "start": 7203.68, + "end": 7210.56, + "probability": 0.7852 + }, + { + "start": 7211.96, + "end": 7215.26, + "probability": 0.9933 + }, + { + "start": 7215.26, + "end": 7221.8, + "probability": 0.9889 + }, + { + "start": 7222.64, + "end": 7223.82, + "probability": 0.9884 + }, + { + "start": 7225.32, + "end": 7228.24, + "probability": 0.6943 + }, + { + "start": 7229.88, + "end": 7234.56, + "probability": 0.6684 + }, + { + "start": 7234.56, + "end": 7235.52, + "probability": 0.113 + }, + { + "start": 7235.52, + "end": 7236.94, + "probability": 0.8382 + }, + { + "start": 7236.94, + "end": 7239.72, + "probability": 0.8504 + }, + { + "start": 7239.88, + "end": 7240.62, + "probability": 0.1195 + }, + { + "start": 7240.62, + "end": 7242.16, + "probability": 0.1692 + }, + { + "start": 7243.74, + "end": 7244.09, + "probability": 0.0459 + }, + { + "start": 7244.88, + "end": 7245.8, + "probability": 0.2188 + }, + { + "start": 7245.8, + "end": 7246.43, + "probability": 0.8152 + }, + { + "start": 7246.86, + "end": 7248.56, + "probability": 0.7513 + }, + { + "start": 7248.56, + "end": 7249.5, + "probability": 0.6962 + }, + { + "start": 7249.56, + "end": 7251.2, + "probability": 0.6758 + }, + { + "start": 7251.2, + "end": 7251.3, + "probability": 0.61 + }, + { + "start": 7251.88, + "end": 7252.4, + "probability": 0.862 + }, + { + "start": 7253.42, + "end": 7258.16, + "probability": 0.9847 + }, + { + "start": 7259.06, + "end": 7261.88, + "probability": 0.9524 + }, + { + "start": 7262.86, + "end": 7267.36, + "probability": 0.9852 + }, + { + "start": 7267.36, + "end": 7271.36, + "probability": 0.9823 + }, + { + "start": 7271.94, + "end": 7275.02, + "probability": 0.9164 + }, + { + "start": 7275.68, + "end": 7277.84, + "probability": 0.8828 + }, + { + "start": 7278.72, + "end": 7281.34, + "probability": 0.8191 + }, + { + "start": 7282.18, + "end": 7282.2, + "probability": 0.2162 + }, + { + "start": 7282.2, + "end": 7282.2, + "probability": 0.0254 + }, + { + "start": 7282.2, + "end": 7290.14, + "probability": 0.9331 + }, + { + "start": 7290.6, + "end": 7293.88, + "probability": 0.9814 + }, + { + "start": 7295.18, + "end": 7299.06, + "probability": 0.7484 + }, + { + "start": 7299.7, + "end": 7302.96, + "probability": 0.8882 + }, + { + "start": 7303.82, + "end": 7304.68, + "probability": 0.5327 + }, + { + "start": 7306.1, + "end": 7309.92, + "probability": 0.9713 + }, + { + "start": 7309.92, + "end": 7315.64, + "probability": 0.9736 + }, + { + "start": 7315.66, + "end": 7323.38, + "probability": 0.8818 + }, + { + "start": 7324.0, + "end": 7325.06, + "probability": 0.6719 + }, + { + "start": 7325.5, + "end": 7330.62, + "probability": 0.9731 + }, + { + "start": 7331.56, + "end": 7334.76, + "probability": 0.9782 + }, + { + "start": 7335.64, + "end": 7337.96, + "probability": 0.9716 + }, + { + "start": 7338.22, + "end": 7342.34, + "probability": 0.7477 + }, + { + "start": 7343.36, + "end": 7348.14, + "probability": 0.9961 + }, + { + "start": 7349.24, + "end": 7350.98, + "probability": 0.9456 + }, + { + "start": 7351.64, + "end": 7353.66, + "probability": 0.8398 + }, + { + "start": 7354.02, + "end": 7357.76, + "probability": 0.9966 + }, + { + "start": 7358.5, + "end": 7359.5, + "probability": 0.7743 + }, + { + "start": 7360.34, + "end": 7364.76, + "probability": 0.9497 + }, + { + "start": 7365.28, + "end": 7369.32, + "probability": 0.8638 + }, + { + "start": 7370.3, + "end": 7373.78, + "probability": 0.7681 + }, + { + "start": 7374.32, + "end": 7376.14, + "probability": 0.7268 + }, + { + "start": 7376.72, + "end": 7382.08, + "probability": 0.9717 + }, + { + "start": 7382.64, + "end": 7384.72, + "probability": 0.8733 + }, + { + "start": 7385.16, + "end": 7390.38, + "probability": 0.9773 + }, + { + "start": 7391.12, + "end": 7391.7, + "probability": 0.7596 + }, + { + "start": 7392.24, + "end": 7399.42, + "probability": 0.9909 + }, + { + "start": 7400.24, + "end": 7402.28, + "probability": 0.9482 + }, + { + "start": 7403.18, + "end": 7404.12, + "probability": 0.9476 + }, + { + "start": 7404.78, + "end": 7405.76, + "probability": 0.7538 + }, + { + "start": 7406.4, + "end": 7407.78, + "probability": 0.7524 + }, + { + "start": 7408.4, + "end": 7411.9, + "probability": 0.9796 + }, + { + "start": 7412.58, + "end": 7415.68, + "probability": 0.9766 + }, + { + "start": 7416.42, + "end": 7418.66, + "probability": 0.9871 + }, + { + "start": 7419.6, + "end": 7422.6, + "probability": 0.9766 + }, + { + "start": 7423.56, + "end": 7427.36, + "probability": 0.9797 + }, + { + "start": 7427.94, + "end": 7431.6, + "probability": 0.9405 + }, + { + "start": 7432.88, + "end": 7436.54, + "probability": 0.9943 + }, + { + "start": 7436.84, + "end": 7438.02, + "probability": 0.8856 + }, + { + "start": 7438.14, + "end": 7439.12, + "probability": 0.4179 + }, + { + "start": 7439.32, + "end": 7443.8, + "probability": 0.9486 + }, + { + "start": 7443.84, + "end": 7450.34, + "probability": 0.9314 + }, + { + "start": 7450.42, + "end": 7457.54, + "probability": 0.9592 + }, + { + "start": 7458.66, + "end": 7460.6, + "probability": 0.9946 + }, + { + "start": 7461.76, + "end": 7463.16, + "probability": 0.8945 + }, + { + "start": 7463.76, + "end": 7465.56, + "probability": 0.9601 + }, + { + "start": 7466.34, + "end": 7467.78, + "probability": 0.9821 + }, + { + "start": 7468.34, + "end": 7471.06, + "probability": 0.998 + }, + { + "start": 7471.62, + "end": 7478.36, + "probability": 0.987 + }, + { + "start": 7478.78, + "end": 7479.78, + "probability": 0.8827 + }, + { + "start": 7480.38, + "end": 7486.0, + "probability": 0.9087 + }, + { + "start": 7486.08, + "end": 7486.7, + "probability": 0.6299 + }, + { + "start": 7486.74, + "end": 7487.0, + "probability": 0.7666 + }, + { + "start": 7487.0, + "end": 7490.62, + "probability": 0.7205 + }, + { + "start": 7491.4, + "end": 7493.22, + "probability": 0.8603 + }, + { + "start": 7494.3, + "end": 7494.3, + "probability": 0.2844 + }, + { + "start": 7494.3, + "end": 7496.0, + "probability": 0.4591 + }, + { + "start": 7496.04, + "end": 7499.84, + "probability": 0.8528 + }, + { + "start": 7500.02, + "end": 7503.72, + "probability": 0.6614 + }, + { + "start": 7504.26, + "end": 7510.38, + "probability": 0.9753 + }, + { + "start": 7510.96, + "end": 7511.76, + "probability": 0.7894 + }, + { + "start": 7512.4, + "end": 7515.94, + "probability": 0.9902 + }, + { + "start": 7517.06, + "end": 7521.68, + "probability": 0.9688 + }, + { + "start": 7522.76, + "end": 7530.46, + "probability": 0.9636 + }, + { + "start": 7530.82, + "end": 7532.0, + "probability": 0.8115 + }, + { + "start": 7532.26, + "end": 7535.16, + "probability": 0.7736 + }, + { + "start": 7535.76, + "end": 7538.88, + "probability": 0.9641 + }, + { + "start": 7538.98, + "end": 7541.5, + "probability": 0.6544 + }, + { + "start": 7541.62, + "end": 7544.0, + "probability": 0.7609 + }, + { + "start": 7544.06, + "end": 7544.78, + "probability": 0.8555 + }, + { + "start": 7570.52, + "end": 7571.66, + "probability": 0.4882 + }, + { + "start": 7572.6, + "end": 7573.04, + "probability": 0.7569 + }, + { + "start": 7573.78, + "end": 7576.54, + "probability": 0.827 + }, + { + "start": 7577.36, + "end": 7578.56, + "probability": 0.9442 + }, + { + "start": 7579.24, + "end": 7580.6, + "probability": 0.6369 + }, + { + "start": 7581.76, + "end": 7582.8, + "probability": 0.5046 + }, + { + "start": 7582.82, + "end": 7586.02, + "probability": 0.9724 + }, + { + "start": 7586.74, + "end": 7588.92, + "probability": 0.6293 + }, + { + "start": 7588.98, + "end": 7589.26, + "probability": 0.7081 + }, + { + "start": 7589.62, + "end": 7591.82, + "probability": 0.8543 + }, + { + "start": 7592.74, + "end": 7594.34, + "probability": 0.3427 + }, + { + "start": 7594.64, + "end": 7598.18, + "probability": 0.7317 + }, + { + "start": 7598.94, + "end": 7602.84, + "probability": 0.7865 + }, + { + "start": 7603.88, + "end": 7609.04, + "probability": 0.9316 + }, + { + "start": 7609.04, + "end": 7614.4, + "probability": 0.948 + }, + { + "start": 7615.34, + "end": 7620.87, + "probability": 0.9903 + }, + { + "start": 7624.56, + "end": 7624.98, + "probability": 0.0131 + }, + { + "start": 7626.3, + "end": 7627.8, + "probability": 0.629 + }, + { + "start": 7628.1, + "end": 7630.94, + "probability": 0.2837 + }, + { + "start": 7630.94, + "end": 7634.14, + "probability": 0.4508 + }, + { + "start": 7634.26, + "end": 7636.56, + "probability": 0.991 + }, + { + "start": 7636.56, + "end": 7636.7, + "probability": 0.3756 + }, + { + "start": 7636.96, + "end": 7637.44, + "probability": 0.8136 + }, + { + "start": 7637.76, + "end": 7638.26, + "probability": 0.5039 + }, + { + "start": 7639.06, + "end": 7641.68, + "probability": 0.4365 + }, + { + "start": 7642.54, + "end": 7645.72, + "probability": 0.8611 + }, + { + "start": 7645.72, + "end": 7650.7, + "probability": 0.8962 + }, + { + "start": 7650.78, + "end": 7652.76, + "probability": 0.6595 + }, + { + "start": 7652.78, + "end": 7654.62, + "probability": 0.122 + }, + { + "start": 7654.66, + "end": 7656.12, + "probability": 0.3067 + }, + { + "start": 7656.12, + "end": 7658.33, + "probability": 0.6241 + }, + { + "start": 7660.78, + "end": 7663.58, + "probability": 0.935 + }, + { + "start": 7663.58, + "end": 7666.64, + "probability": 0.4763 + }, + { + "start": 7667.04, + "end": 7670.28, + "probability": 0.9209 + }, + { + "start": 7670.66, + "end": 7672.6, + "probability": 0.7817 + }, + { + "start": 7673.24, + "end": 7675.08, + "probability": 0.7407 + }, + { + "start": 7675.08, + "end": 7676.04, + "probability": 0.791 + }, + { + "start": 7676.18, + "end": 7678.8, + "probability": 0.9816 + }, + { + "start": 7679.16, + "end": 7681.98, + "probability": 0.9148 + }, + { + "start": 7683.12, + "end": 7684.66, + "probability": 0.6319 + }, + { + "start": 7684.84, + "end": 7690.24, + "probability": 0.7179 + }, + { + "start": 7690.32, + "end": 7692.32, + "probability": 0.7585 + }, + { + "start": 7692.52, + "end": 7694.2, + "probability": 0.8114 + }, + { + "start": 7694.4, + "end": 7694.84, + "probability": 0.8823 + }, + { + "start": 7695.68, + "end": 7699.5, + "probability": 0.9935 + }, + { + "start": 7699.5, + "end": 7702.58, + "probability": 0.9651 + }, + { + "start": 7703.04, + "end": 7704.84, + "probability": 0.7469 + }, + { + "start": 7705.34, + "end": 7707.2, + "probability": 0.618 + }, + { + "start": 7708.6, + "end": 7711.4, + "probability": 0.9244 + }, + { + "start": 7711.54, + "end": 7713.64, + "probability": 0.5015 + }, + { + "start": 7714.34, + "end": 7716.16, + "probability": 0.912 + }, + { + "start": 7716.92, + "end": 7720.82, + "probability": 0.928 + }, + { + "start": 7720.82, + "end": 7723.78, + "probability": 0.9001 + }, + { + "start": 7723.9, + "end": 7726.3, + "probability": 0.4898 + }, + { + "start": 7726.36, + "end": 7728.7, + "probability": 0.8438 + }, + { + "start": 7728.88, + "end": 7731.52, + "probability": 0.9819 + }, + { + "start": 7732.36, + "end": 7735.24, + "probability": 0.7052 + }, + { + "start": 7736.2, + "end": 7738.74, + "probability": 0.9734 + }, + { + "start": 7739.68, + "end": 7742.9, + "probability": 0.9359 + }, + { + "start": 7748.16, + "end": 7751.82, + "probability": 0.8581 + }, + { + "start": 7752.1, + "end": 7753.98, + "probability": 0.431 + }, + { + "start": 7754.42, + "end": 7757.1, + "probability": 0.9976 + }, + { + "start": 7758.52, + "end": 7759.94, + "probability": 0.9465 + }, + { + "start": 7760.26, + "end": 7762.84, + "probability": 0.7595 + }, + { + "start": 7763.26, + "end": 7765.12, + "probability": 0.862 + }, + { + "start": 7765.54, + "end": 7768.36, + "probability": 0.9451 + }, + { + "start": 7769.08, + "end": 7770.26, + "probability": 0.9573 + }, + { + "start": 7770.76, + "end": 7772.72, + "probability": 0.9197 + }, + { + "start": 7773.54, + "end": 7776.08, + "probability": 0.9688 + }, + { + "start": 7776.14, + "end": 7778.8, + "probability": 0.9895 + }, + { + "start": 7779.16, + "end": 7780.02, + "probability": 0.8304 + }, + { + "start": 7780.86, + "end": 7782.36, + "probability": 0.909 + }, + { + "start": 7783.06, + "end": 7785.0, + "probability": 0.924 + }, + { + "start": 7785.14, + "end": 7786.04, + "probability": 0.7026 + }, + { + "start": 7786.54, + "end": 7791.1, + "probability": 0.9021 + }, + { + "start": 7791.94, + "end": 7796.52, + "probability": 0.9854 + }, + { + "start": 7796.94, + "end": 7799.46, + "probability": 0.6755 + }, + { + "start": 7800.1, + "end": 7802.38, + "probability": 0.6432 + }, + { + "start": 7803.64, + "end": 7806.18, + "probability": 0.9412 + }, + { + "start": 7806.64, + "end": 7807.24, + "probability": 0.7888 + }, + { + "start": 7807.46, + "end": 7811.08, + "probability": 0.973 + }, + { + "start": 7811.54, + "end": 7814.86, + "probability": 0.6379 + }, + { + "start": 7816.16, + "end": 7818.46, + "probability": 0.9436 + }, + { + "start": 7818.86, + "end": 7821.26, + "probability": 0.6169 + }, + { + "start": 7823.44, + "end": 7825.44, + "probability": 0.8014 + }, + { + "start": 7826.1, + "end": 7829.8, + "probability": 0.9919 + }, + { + "start": 7830.24, + "end": 7833.18, + "probability": 0.9126 + }, + { + "start": 7833.62, + "end": 7836.8, + "probability": 0.9904 + }, + { + "start": 7837.0, + "end": 7839.44, + "probability": 0.9065 + }, + { + "start": 7841.4, + "end": 7843.1, + "probability": 0.8446 + }, + { + "start": 7845.64, + "end": 7852.06, + "probability": 0.9702 + }, + { + "start": 7854.82, + "end": 7856.6, + "probability": 0.549 + }, + { + "start": 7857.52, + "end": 7861.94, + "probability": 0.7557 + }, + { + "start": 7862.9, + "end": 7866.36, + "probability": 0.9121 + }, + { + "start": 7866.52, + "end": 7867.6, + "probability": 0.9592 + }, + { + "start": 7868.24, + "end": 7873.7, + "probability": 0.9717 + }, + { + "start": 7874.7, + "end": 7878.86, + "probability": 0.9913 + }, + { + "start": 7879.4, + "end": 7882.1, + "probability": 0.8878 + }, + { + "start": 7882.58, + "end": 7885.62, + "probability": 0.9581 + }, + { + "start": 7886.5, + "end": 7888.42, + "probability": 0.5526 + }, + { + "start": 7888.72, + "end": 7889.82, + "probability": 0.9538 + }, + { + "start": 7890.14, + "end": 7895.48, + "probability": 0.7638 + }, + { + "start": 7895.66, + "end": 7899.57, + "probability": 0.8467 + }, + { + "start": 7899.88, + "end": 7900.86, + "probability": 0.956 + }, + { + "start": 7901.26, + "end": 7902.58, + "probability": 0.9616 + }, + { + "start": 7902.8, + "end": 7903.28, + "probability": 0.8705 + }, + { + "start": 7903.34, + "end": 7905.86, + "probability": 0.8443 + }, + { + "start": 7906.1, + "end": 7908.84, + "probability": 0.9116 + }, + { + "start": 7911.12, + "end": 7912.92, + "probability": 0.6079 + }, + { + "start": 7913.02, + "end": 7913.38, + "probability": 0.542 + }, + { + "start": 7914.06, + "end": 7914.46, + "probability": 0.4325 + }, + { + "start": 7915.38, + "end": 7917.44, + "probability": 0.5882 + }, + { + "start": 7919.2, + "end": 7923.06, + "probability": 0.6737 + }, + { + "start": 7923.16, + "end": 7926.62, + "probability": 0.8477 + }, + { + "start": 7936.2, + "end": 7936.92, + "probability": 0.9032 + }, + { + "start": 7940.34, + "end": 7941.3, + "probability": 0.409 + }, + { + "start": 7942.02, + "end": 7942.94, + "probability": 0.801 + }, + { + "start": 7943.48, + "end": 7945.86, + "probability": 0.8822 + }, + { + "start": 7946.58, + "end": 7948.04, + "probability": 0.9634 + }, + { + "start": 7948.6, + "end": 7950.82, + "probability": 0.0194 + }, + { + "start": 7952.1, + "end": 7954.3, + "probability": 0.1223 + }, + { + "start": 7955.26, + "end": 7955.36, + "probability": 0.0083 + }, + { + "start": 7959.34, + "end": 7960.42, + "probability": 0.1717 + }, + { + "start": 7960.5, + "end": 7960.64, + "probability": 0.0075 + }, + { + "start": 7961.67, + "end": 7962.64, + "probability": 0.0295 + }, + { + "start": 7962.64, + "end": 7962.94, + "probability": 0.2521 + }, + { + "start": 7963.48, + "end": 7963.48, + "probability": 0.5156 + }, + { + "start": 7963.62, + "end": 7963.76, + "probability": 0.1546 + }, + { + "start": 7964.18, + "end": 7965.94, + "probability": 0.0959 + }, + { + "start": 7967.18, + "end": 7970.76, + "probability": 0.8032 + }, + { + "start": 7970.88, + "end": 7971.48, + "probability": 0.9532 + }, + { + "start": 7971.7, + "end": 7973.66, + "probability": 0.8226 + }, + { + "start": 7973.86, + "end": 7974.28, + "probability": 0.8539 + }, + { + "start": 7974.32, + "end": 7976.24, + "probability": 0.9094 + }, + { + "start": 7976.32, + "end": 7978.05, + "probability": 0.4992 + }, + { + "start": 7982.22, + "end": 7983.68, + "probability": 0.0149 + }, + { + "start": 7983.68, + "end": 7984.06, + "probability": 0.1175 + }, + { + "start": 7986.04, + "end": 7990.3, + "probability": 0.2338 + }, + { + "start": 7990.66, + "end": 7991.52, + "probability": 0.0658 + }, + { + "start": 7991.56, + "end": 7991.9, + "probability": 0.5463 + }, + { + "start": 7992.92, + "end": 7994.2, + "probability": 0.1954 + }, + { + "start": 7994.56, + "end": 7996.54, + "probability": 0.5196 + }, + { + "start": 7997.56, + "end": 7999.36, + "probability": 0.1706 + }, + { + "start": 7999.38, + "end": 8000.54, + "probability": 0.1891 + }, + { + "start": 8001.4, + "end": 8002.12, + "probability": 0.2322 + }, + { + "start": 8002.42, + "end": 8002.72, + "probability": 0.5064 + }, + { + "start": 8002.78, + "end": 8003.26, + "probability": 0.4028 + }, + { + "start": 8003.44, + "end": 8004.3, + "probability": 0.3294 + }, + { + "start": 8004.44, + "end": 8004.64, + "probability": 0.3759 + }, + { + "start": 8004.68, + "end": 8005.18, + "probability": 0.3211 + }, + { + "start": 8005.54, + "end": 8007.28, + "probability": 0.0986 + }, + { + "start": 8016.38, + "end": 8021.14, + "probability": 0.9733 + }, + { + "start": 8022.24, + "end": 8023.16, + "probability": 0.4738 + }, + { + "start": 8023.18, + "end": 8026.04, + "probability": 0.7875 + }, + { + "start": 8026.08, + "end": 8029.48, + "probability": 0.9697 + }, + { + "start": 8029.54, + "end": 8031.18, + "probability": 0.4888 + }, + { + "start": 8031.46, + "end": 8031.48, + "probability": 0.4084 + }, + { + "start": 8031.58, + "end": 8031.68, + "probability": 0.324 + }, + { + "start": 8031.68, + "end": 8032.7, + "probability": 0.1325 + }, + { + "start": 8032.72, + "end": 8033.68, + "probability": 0.2665 + }, + { + "start": 8033.68, + "end": 8033.68, + "probability": 0.062 + }, + { + "start": 8034.64, + "end": 8034.92, + "probability": 0.0293 + }, + { + "start": 8034.92, + "end": 8034.92, + "probability": 0.2857 + }, + { + "start": 8034.92, + "end": 8037.78, + "probability": 0.5663 + }, + { + "start": 8037.88, + "end": 8042.04, + "probability": 0.7448 + }, + { + "start": 8042.1, + "end": 8043.62, + "probability": 0.4349 + }, + { + "start": 8044.8, + "end": 8045.32, + "probability": 0.6298 + }, + { + "start": 8046.0, + "end": 8049.66, + "probability": 0.6639 + }, + { + "start": 8049.84, + "end": 8052.48, + "probability": 0.9131 + }, + { + "start": 8052.48, + "end": 8054.92, + "probability": 0.9252 + }, + { + "start": 8055.22, + "end": 8056.26, + "probability": 0.6715 + }, + { + "start": 8056.32, + "end": 8056.66, + "probability": 0.651 + }, + { + "start": 8057.12, + "end": 8058.48, + "probability": 0.8812 + }, + { + "start": 8060.68, + "end": 8061.28, + "probability": 0.3019 + }, + { + "start": 8061.78, + "end": 8063.1, + "probability": 0.3191 + }, + { + "start": 8063.68, + "end": 8064.64, + "probability": 0.3613 + }, + { + "start": 8065.28, + "end": 8067.46, + "probability": 0.9636 + }, + { + "start": 8068.0, + "end": 8069.7, + "probability": 0.745 + }, + { + "start": 8070.74, + "end": 8072.38, + "probability": 0.7165 + }, + { + "start": 8077.2, + "end": 8077.9, + "probability": 0.4906 + }, + { + "start": 8078.32, + "end": 8079.32, + "probability": 0.829 + }, + { + "start": 8079.44, + "end": 8081.22, + "probability": 0.9706 + }, + { + "start": 8081.32, + "end": 8083.68, + "probability": 0.7644 + }, + { + "start": 8083.76, + "end": 8084.9, + "probability": 0.7166 + }, + { + "start": 8085.32, + "end": 8087.74, + "probability": 0.071 + }, + { + "start": 8088.64, + "end": 8090.22, + "probability": 0.7528 + }, + { + "start": 8092.08, + "end": 8093.7, + "probability": 0.9536 + }, + { + "start": 8093.78, + "end": 8095.72, + "probability": 0.8067 + }, + { + "start": 8096.12, + "end": 8098.69, + "probability": 0.9741 + }, + { + "start": 8099.02, + "end": 8099.26, + "probability": 0.0388 + }, + { + "start": 8100.68, + "end": 8102.24, + "probability": 0.293 + }, + { + "start": 8103.74, + "end": 8105.5, + "probability": 0.9911 + }, + { + "start": 8106.42, + "end": 8108.1, + "probability": 0.8633 + }, + { + "start": 8108.3, + "end": 8112.3, + "probability": 0.7751 + }, + { + "start": 8112.46, + "end": 8114.74, + "probability": 0.9123 + }, + { + "start": 8115.32, + "end": 8116.02, + "probability": 0.7074 + }, + { + "start": 8116.46, + "end": 8117.46, + "probability": 0.9068 + }, + { + "start": 8118.08, + "end": 8119.44, + "probability": 0.7333 + }, + { + "start": 8119.88, + "end": 8120.1, + "probability": 0.0528 + }, + { + "start": 8120.28, + "end": 8123.74, + "probability": 0.7372 + }, + { + "start": 8123.8, + "end": 8124.98, + "probability": 0.9583 + }, + { + "start": 8125.06, + "end": 8126.8, + "probability": 0.6571 + }, + { + "start": 8127.06, + "end": 8128.34, + "probability": 0.2798 + }, + { + "start": 8128.42, + "end": 8128.82, + "probability": 0.7681 + }, + { + "start": 8129.9, + "end": 8129.98, + "probability": 0.1382 + }, + { + "start": 8129.98, + "end": 8129.98, + "probability": 0.2245 + }, + { + "start": 8129.98, + "end": 8131.16, + "probability": 0.221 + }, + { + "start": 8131.18, + "end": 8132.6, + "probability": 0.3428 + }, + { + "start": 8133.98, + "end": 8135.04, + "probability": 0.5248 + }, + { + "start": 8136.7, + "end": 8140.48, + "probability": 0.7966 + }, + { + "start": 8141.84, + "end": 8144.78, + "probability": 0.3113 + }, + { + "start": 8145.42, + "end": 8146.62, + "probability": 0.8127 + }, + { + "start": 8147.16, + "end": 8147.62, + "probability": 0.5485 + }, + { + "start": 8148.76, + "end": 8150.88, + "probability": 0.8386 + }, + { + "start": 8151.72, + "end": 8154.32, + "probability": 0.6338 + }, + { + "start": 8155.16, + "end": 8157.02, + "probability": 0.7315 + }, + { + "start": 8157.12, + "end": 8159.8, + "probability": 0.8535 + }, + { + "start": 8160.28, + "end": 8161.76, + "probability": 0.7871 + }, + { + "start": 8161.92, + "end": 8162.08, + "probability": 0.645 + }, + { + "start": 8162.1, + "end": 8162.2, + "probability": 0.4151 + }, + { + "start": 8162.2, + "end": 8165.99, + "probability": 0.9803 + }, + { + "start": 8166.32, + "end": 8169.18, + "probability": 0.9167 + }, + { + "start": 8172.08, + "end": 8173.34, + "probability": 0.8321 + }, + { + "start": 8174.02, + "end": 8179.1, + "probability": 0.7522 + }, + { + "start": 8179.72, + "end": 8184.28, + "probability": 0.9033 + }, + { + "start": 8184.72, + "end": 8189.68, + "probability": 0.9692 + }, + { + "start": 8189.98, + "end": 8191.5, + "probability": 0.1037 + }, + { + "start": 8191.62, + "end": 8191.82, + "probability": 0.7517 + }, + { + "start": 8194.74, + "end": 8196.64, + "probability": 0.9977 + }, + { + "start": 8201.62, + "end": 8202.56, + "probability": 0.1609 + }, + { + "start": 8202.74, + "end": 8204.3, + "probability": 0.9308 + }, + { + "start": 8204.9, + "end": 8205.3, + "probability": 0.7633 + }, + { + "start": 8205.42, + "end": 8207.42, + "probability": 0.9873 + }, + { + "start": 8207.94, + "end": 8209.66, + "probability": 0.8556 + }, + { + "start": 8209.66, + "end": 8212.02, + "probability": 0.8123 + }, + { + "start": 8212.38, + "end": 8214.56, + "probability": 0.9965 + }, + { + "start": 8216.72, + "end": 8219.86, + "probability": 0.9932 + }, + { + "start": 8220.54, + "end": 8225.04, + "probability": 0.9733 + }, + { + "start": 8225.66, + "end": 8228.9, + "probability": 0.6138 + }, + { + "start": 8229.74, + "end": 8235.18, + "probability": 0.9897 + }, + { + "start": 8236.08, + "end": 8237.88, + "probability": 0.9849 + }, + { + "start": 8238.76, + "end": 8241.4, + "probability": 0.9712 + }, + { + "start": 8241.52, + "end": 8242.06, + "probability": 0.618 + }, + { + "start": 8242.96, + "end": 8248.95, + "probability": 0.9393 + }, + { + "start": 8249.24, + "end": 8254.74, + "probability": 0.9531 + }, + { + "start": 8254.9, + "end": 8257.72, + "probability": 0.9677 + }, + { + "start": 8258.04, + "end": 8261.34, + "probability": 0.93 + }, + { + "start": 8261.66, + "end": 8271.06, + "probability": 0.7943 + }, + { + "start": 8271.06, + "end": 8276.6, + "probability": 0.6774 + }, + { + "start": 8277.12, + "end": 8277.18, + "probability": 0.0115 + }, + { + "start": 8277.18, + "end": 8277.18, + "probability": 0.2895 + }, + { + "start": 8277.18, + "end": 8277.32, + "probability": 0.3242 + }, + { + "start": 8277.56, + "end": 8281.36, + "probability": 0.6846 + }, + { + "start": 8281.36, + "end": 8285.94, + "probability": 0.6923 + }, + { + "start": 8286.36, + "end": 8289.94, + "probability": 0.8143 + }, + { + "start": 8290.04, + "end": 8291.46, + "probability": 0.871 + }, + { + "start": 8291.7, + "end": 8294.24, + "probability": 0.7173 + }, + { + "start": 8295.0, + "end": 8295.08, + "probability": 0.0205 + }, + { + "start": 8295.08, + "end": 8296.88, + "probability": 0.721 + }, + { + "start": 8297.04, + "end": 8299.48, + "probability": 0.589 + }, + { + "start": 8299.64, + "end": 8300.5, + "probability": 0.8967 + }, + { + "start": 8301.0, + "end": 8303.62, + "probability": 0.9894 + }, + { + "start": 8304.16, + "end": 8305.89, + "probability": 0.9531 + }, + { + "start": 8306.46, + "end": 8308.28, + "probability": 0.9885 + }, + { + "start": 8309.66, + "end": 8310.22, + "probability": 0.4144 + }, + { + "start": 8310.22, + "end": 8311.68, + "probability": 0.7681 + }, + { + "start": 8312.24, + "end": 8316.32, + "probability": 0.8171 + }, + { + "start": 8316.76, + "end": 8318.56, + "probability": 0.9763 + }, + { + "start": 8319.3, + "end": 8320.46, + "probability": 0.5624 + }, + { + "start": 8321.8, + "end": 8328.16, + "probability": 0.8397 + }, + { + "start": 8329.97, + "end": 8338.62, + "probability": 0.9714 + }, + { + "start": 8338.9, + "end": 8339.8, + "probability": 0.4934 + }, + { + "start": 8340.34, + "end": 8345.68, + "probability": 0.825 + }, + { + "start": 8346.02, + "end": 8348.28, + "probability": 0.9125 + }, + { + "start": 8348.46, + "end": 8349.3, + "probability": 0.6662 + }, + { + "start": 8349.84, + "end": 8353.34, + "probability": 0.9801 + }, + { + "start": 8354.88, + "end": 8361.72, + "probability": 0.8954 + }, + { + "start": 8361.72, + "end": 8369.16, + "probability": 0.9896 + }, + { + "start": 8369.96, + "end": 8374.3, + "probability": 0.8958 + }, + { + "start": 8375.14, + "end": 8377.28, + "probability": 0.0393 + }, + { + "start": 8377.88, + "end": 8379.1, + "probability": 0.8036 + }, + { + "start": 8379.78, + "end": 8388.88, + "probability": 0.9863 + }, + { + "start": 8389.08, + "end": 8390.38, + "probability": 0.4871 + }, + { + "start": 8390.58, + "end": 8398.14, + "probability": 0.9966 + }, + { + "start": 8399.68, + "end": 8402.18, + "probability": 0.5113 + }, + { + "start": 8402.74, + "end": 8403.92, + "probability": 0.7814 + }, + { + "start": 8404.98, + "end": 8414.78, + "probability": 0.8285 + }, + { + "start": 8415.8, + "end": 8418.64, + "probability": 0.7461 + }, + { + "start": 8420.68, + "end": 8423.48, + "probability": 0.715 + }, + { + "start": 8423.66, + "end": 8425.74, + "probability": 0.6808 + }, + { + "start": 8426.12, + "end": 8431.78, + "probability": 0.9948 + }, + { + "start": 8431.86, + "end": 8432.54, + "probability": 0.8605 + }, + { + "start": 8432.98, + "end": 8433.78, + "probability": 0.6764 + }, + { + "start": 8434.36, + "end": 8435.22, + "probability": 0.7332 + }, + { + "start": 8435.24, + "end": 8441.42, + "probability": 0.6611 + }, + { + "start": 8441.56, + "end": 8443.58, + "probability": 0.5931 + }, + { + "start": 8446.08, + "end": 8447.18, + "probability": 0.8527 + }, + { + "start": 8469.1, + "end": 8472.62, + "probability": 0.7458 + }, + { + "start": 8473.72, + "end": 8477.86, + "probability": 0.9574 + }, + { + "start": 8477.86, + "end": 8484.14, + "probability": 0.8122 + }, + { + "start": 8484.74, + "end": 8486.92, + "probability": 0.9294 + }, + { + "start": 8487.62, + "end": 8491.35, + "probability": 0.9336 + }, + { + "start": 8491.54, + "end": 8494.3, + "probability": 0.5479 + }, + { + "start": 8494.92, + "end": 8503.38, + "probability": 0.9073 + }, + { + "start": 8504.0, + "end": 8507.32, + "probability": 0.8544 + }, + { + "start": 8507.36, + "end": 8508.68, + "probability": 0.9247 + }, + { + "start": 8509.12, + "end": 8516.94, + "probability": 0.9453 + }, + { + "start": 8517.2, + "end": 8522.34, + "probability": 0.9698 + }, + { + "start": 8522.34, + "end": 8526.64, + "probability": 0.9194 + }, + { + "start": 8529.48, + "end": 8530.46, + "probability": 0.454 + }, + { + "start": 8531.0, + "end": 8531.68, + "probability": 0.7041 + }, + { + "start": 8531.8, + "end": 8532.9, + "probability": 0.9004 + }, + { + "start": 8532.9, + "end": 8533.78, + "probability": 0.6079 + }, + { + "start": 8534.26, + "end": 8536.68, + "probability": 0.8982 + }, + { + "start": 8538.7, + "end": 8540.86, + "probability": 0.6645 + }, + { + "start": 8541.68, + "end": 8547.82, + "probability": 0.9833 + }, + { + "start": 8547.82, + "end": 8549.14, + "probability": 0.0844 + }, + { + "start": 8549.14, + "end": 8550.46, + "probability": 0.0438 + }, + { + "start": 8550.5, + "end": 8553.74, + "probability": 0.5857 + }, + { + "start": 8553.74, + "end": 8553.88, + "probability": 0.0357 + }, + { + "start": 8553.88, + "end": 8553.88, + "probability": 0.8868 + }, + { + "start": 8553.88, + "end": 8553.88, + "probability": 0.3186 + }, + { + "start": 8553.88, + "end": 8554.38, + "probability": 0.6822 + }, + { + "start": 8554.38, + "end": 8555.82, + "probability": 0.3851 + }, + { + "start": 8555.82, + "end": 8556.45, + "probability": 0.4907 + }, + { + "start": 8558.1, + "end": 8559.88, + "probability": 0.9712 + }, + { + "start": 8560.5, + "end": 8562.66, + "probability": 0.544 + }, + { + "start": 8562.82, + "end": 8564.56, + "probability": 0.6444 + }, + { + "start": 8564.56, + "end": 8566.62, + "probability": 0.6 + }, + { + "start": 8566.62, + "end": 8568.04, + "probability": 0.6806 + }, + { + "start": 8568.04, + "end": 8568.04, + "probability": 0.1084 + }, + { + "start": 8568.04, + "end": 8570.96, + "probability": 0.7258 + }, + { + "start": 8571.36, + "end": 8572.86, + "probability": 0.3201 + }, + { + "start": 8574.18, + "end": 8574.44, + "probability": 0.6412 + }, + { + "start": 8574.44, + "end": 8574.44, + "probability": 0.0872 + }, + { + "start": 8574.44, + "end": 8578.06, + "probability": 0.7489 + }, + { + "start": 8578.06, + "end": 8580.94, + "probability": 0.752 + }, + { + "start": 8581.36, + "end": 8581.64, + "probability": 0.6296 + }, + { + "start": 8581.64, + "end": 8581.64, + "probability": 0.5407 + }, + { + "start": 8581.64, + "end": 8583.9, + "probability": 0.696 + }, + { + "start": 8584.02, + "end": 8584.18, + "probability": 0.9003 + }, + { + "start": 8584.18, + "end": 8584.18, + "probability": 0.6124 + }, + { + "start": 8584.18, + "end": 8589.6, + "probability": 0.9727 + }, + { + "start": 8589.9, + "end": 8591.22, + "probability": 0.5751 + }, + { + "start": 8591.24, + "end": 8593.68, + "probability": 0.7492 + }, + { + "start": 8593.86, + "end": 8596.74, + "probability": 0.7101 + }, + { + "start": 8597.14, + "end": 8598.72, + "probability": 0.2741 + }, + { + "start": 8598.92, + "end": 8603.8, + "probability": 0.9312 + }, + { + "start": 8603.92, + "end": 8607.1, + "probability": 0.2539 + }, + { + "start": 8607.62, + "end": 8609.84, + "probability": 0.3826 + }, + { + "start": 8611.24, + "end": 8611.94, + "probability": 0.3299 + }, + { + "start": 8611.94, + "end": 8611.94, + "probability": 0.0831 + }, + { + "start": 8611.94, + "end": 8612.58, + "probability": 0.0782 + }, + { + "start": 8612.58, + "end": 8612.58, + "probability": 0.2813 + }, + { + "start": 8612.58, + "end": 8612.58, + "probability": 0.1304 + }, + { + "start": 8612.58, + "end": 8615.62, + "probability": 0.499 + }, + { + "start": 8615.82, + "end": 8616.4, + "probability": 0.0336 + }, + { + "start": 8616.4, + "end": 8616.4, + "probability": 0.304 + }, + { + "start": 8616.4, + "end": 8616.4, + "probability": 0.1694 + }, + { + "start": 8616.4, + "end": 8616.4, + "probability": 0.2521 + }, + { + "start": 8616.4, + "end": 8622.2, + "probability": 0.7874 + }, + { + "start": 8622.82, + "end": 8628.2, + "probability": 0.981 + }, + { + "start": 8628.44, + "end": 8637.22, + "probability": 0.7882 + }, + { + "start": 8637.86, + "end": 8639.68, + "probability": 0.6752 + }, + { + "start": 8640.74, + "end": 8645.48, + "probability": 0.8865 + }, + { + "start": 8645.62, + "end": 8646.46, + "probability": 0.8097 + }, + { + "start": 8646.96, + "end": 8651.48, + "probability": 0.3782 + }, + { + "start": 8651.86, + "end": 8654.02, + "probability": 0.7717 + }, + { + "start": 8654.02, + "end": 8654.04, + "probability": 0.3541 + }, + { + "start": 8654.04, + "end": 8654.48, + "probability": 0.675 + }, + { + "start": 8654.54, + "end": 8654.84, + "probability": 0.4218 + }, + { + "start": 8655.34, + "end": 8657.94, + "probability": 0.1902 + }, + { + "start": 8657.94, + "end": 8657.96, + "probability": 0.0268 + }, + { + "start": 8657.96, + "end": 8659.22, + "probability": 0.2646 + }, + { + "start": 8659.26, + "end": 8661.14, + "probability": 0.7165 + }, + { + "start": 8661.76, + "end": 8666.24, + "probability": 0.8184 + }, + { + "start": 8666.24, + "end": 8666.24, + "probability": 0.4898 + }, + { + "start": 8666.24, + "end": 8667.94, + "probability": 0.4864 + }, + { + "start": 8667.94, + "end": 8671.92, + "probability": 0.6363 + }, + { + "start": 8672.48, + "end": 8673.02, + "probability": 0.6424 + }, + { + "start": 8674.1, + "end": 8677.02, + "probability": 0.9493 + }, + { + "start": 8704.0, + "end": 8705.96, + "probability": 0.0789 + }, + { + "start": 8705.96, + "end": 8707.92, + "probability": 0.7116 + }, + { + "start": 8708.64, + "end": 8712.33, + "probability": 0.6732 + }, + { + "start": 8712.72, + "end": 8714.36, + "probability": 0.7479 + }, + { + "start": 8715.89, + "end": 8717.7, + "probability": 0.5872 + }, + { + "start": 8718.16, + "end": 8718.78, + "probability": 0.7188 + }, + { + "start": 8719.8, + "end": 8721.92, + "probability": 0.9983 + }, + { + "start": 8721.98, + "end": 8724.22, + "probability": 0.5028 + }, + { + "start": 8725.08, + "end": 8726.32, + "probability": 0.691 + }, + { + "start": 8726.36, + "end": 8728.16, + "probability": 0.9354 + }, + { + "start": 8728.36, + "end": 8729.32, + "probability": 0.8825 + }, + { + "start": 8729.76, + "end": 8730.02, + "probability": 0.4566 + }, + { + "start": 8730.3, + "end": 8733.64, + "probability": 0.4677 + }, + { + "start": 8734.04, + "end": 8734.36, + "probability": 0.7841 + }, + { + "start": 8734.38, + "end": 8735.4, + "probability": 0.7646 + }, + { + "start": 8735.72, + "end": 8737.34, + "probability": 0.8394 + }, + { + "start": 8737.9, + "end": 8738.26, + "probability": 0.6348 + }, + { + "start": 8738.3, + "end": 8738.86, + "probability": 0.9356 + }, + { + "start": 8739.12, + "end": 8741.72, + "probability": 0.959 + }, + { + "start": 8741.8, + "end": 8743.42, + "probability": 0.7397 + }, + { + "start": 8745.04, + "end": 8745.42, + "probability": 0.7232 + }, + { + "start": 8745.62, + "end": 8746.52, + "probability": 0.9604 + }, + { + "start": 8746.6, + "end": 8747.58, + "probability": 0.7846 + }, + { + "start": 8747.7, + "end": 8749.02, + "probability": 0.9172 + }, + { + "start": 8749.82, + "end": 8751.2, + "probability": 0.9553 + }, + { + "start": 8752.5, + "end": 8754.88, + "probability": 0.9585 + }, + { + "start": 8755.02, + "end": 8757.06, + "probability": 0.9692 + }, + { + "start": 8758.14, + "end": 8761.02, + "probability": 0.8557 + }, + { + "start": 8762.0, + "end": 8762.64, + "probability": 0.6226 + }, + { + "start": 8762.92, + "end": 8764.08, + "probability": 0.5273 + }, + { + "start": 8764.52, + "end": 8766.94, + "probability": 0.8653 + }, + { + "start": 8768.2, + "end": 8774.66, + "probability": 0.6335 + }, + { + "start": 8775.06, + "end": 8776.46, + "probability": 0.6798 + }, + { + "start": 8776.48, + "end": 8777.6, + "probability": 0.7597 + }, + { + "start": 8778.1, + "end": 8780.43, + "probability": 0.9573 + }, + { + "start": 8781.26, + "end": 8784.62, + "probability": 0.962 + }, + { + "start": 8784.76, + "end": 8788.12, + "probability": 0.8755 + }, + { + "start": 8788.8, + "end": 8792.86, + "probability": 0.922 + }, + { + "start": 8792.86, + "end": 8795.54, + "probability": 0.9956 + }, + { + "start": 8797.08, + "end": 8798.84, + "probability": 0.6597 + }, + { + "start": 8799.46, + "end": 8803.3, + "probability": 0.9802 + }, + { + "start": 8803.58, + "end": 8804.37, + "probability": 0.9326 + }, + { + "start": 8806.14, + "end": 8808.4, + "probability": 0.9821 + }, + { + "start": 8808.5, + "end": 8809.44, + "probability": 0.8299 + }, + { + "start": 8809.96, + "end": 8811.5, + "probability": 0.9575 + }, + { + "start": 8813.3, + "end": 8814.22, + "probability": 0.6151 + }, + { + "start": 8814.54, + "end": 8816.24, + "probability": 0.8724 + }, + { + "start": 8816.4, + "end": 8818.98, + "probability": 0.9046 + }, + { + "start": 8819.04, + "end": 8819.9, + "probability": 0.9701 + }, + { + "start": 8819.9, + "end": 8821.76, + "probability": 0.9629 + }, + { + "start": 8821.82, + "end": 8825.32, + "probability": 0.9906 + }, + { + "start": 8825.32, + "end": 8830.98, + "probability": 0.8102 + }, + { + "start": 8831.54, + "end": 8832.7, + "probability": 0.8364 + }, + { + "start": 8833.32, + "end": 8838.04, + "probability": 0.9862 + }, + { + "start": 8838.44, + "end": 8842.34, + "probability": 0.9816 + }, + { + "start": 8843.38, + "end": 8844.1, + "probability": 0.7994 + }, + { + "start": 8844.24, + "end": 8847.28, + "probability": 0.9837 + }, + { + "start": 8847.8, + "end": 8849.56, + "probability": 0.6007 + }, + { + "start": 8850.38, + "end": 8854.02, + "probability": 0.8228 + }, + { + "start": 8854.1, + "end": 8855.54, + "probability": 0.9189 + }, + { + "start": 8856.14, + "end": 8859.56, + "probability": 0.9923 + }, + { + "start": 8860.56, + "end": 8864.14, + "probability": 0.9985 + }, + { + "start": 8864.3, + "end": 8865.16, + "probability": 0.7479 + }, + { + "start": 8866.42, + "end": 8868.4, + "probability": 0.9786 + }, + { + "start": 8869.26, + "end": 8872.68, + "probability": 0.761 + }, + { + "start": 8873.3, + "end": 8876.22, + "probability": 0.9366 + }, + { + "start": 8876.3, + "end": 8878.16, + "probability": 0.9367 + }, + { + "start": 8878.42, + "end": 8880.03, + "probability": 0.9953 + }, + { + "start": 8880.34, + "end": 8881.9, + "probability": 0.881 + }, + { + "start": 8881.98, + "end": 8883.36, + "probability": 0.9884 + }, + { + "start": 8883.42, + "end": 8884.58, + "probability": 0.9468 + }, + { + "start": 8884.74, + "end": 8885.47, + "probability": 0.9067 + }, + { + "start": 8886.22, + "end": 8886.6, + "probability": 0.564 + }, + { + "start": 8886.6, + "end": 8888.12, + "probability": 0.8444 + }, + { + "start": 8888.14, + "end": 8889.56, + "probability": 0.8469 + }, + { + "start": 8889.86, + "end": 8892.18, + "probability": 0.7439 + }, + { + "start": 8892.54, + "end": 8895.36, + "probability": 0.6659 + }, + { + "start": 8895.38, + "end": 8896.84, + "probability": 0.5771 + }, + { + "start": 8896.88, + "end": 8897.34, + "probability": 0.8229 + }, + { + "start": 8897.4, + "end": 8901.16, + "probability": 0.8041 + }, + { + "start": 8901.32, + "end": 8902.98, + "probability": 0.5487 + }, + { + "start": 8903.86, + "end": 8904.14, + "probability": 0.2123 + }, + { + "start": 8904.14, + "end": 8907.04, + "probability": 0.0931 + }, + { + "start": 8907.26, + "end": 8908.96, + "probability": 0.6642 + }, + { + "start": 8909.02, + "end": 8909.34, + "probability": 0.7433 + }, + { + "start": 8910.16, + "end": 8913.7, + "probability": 0.8025 + }, + { + "start": 8925.2, + "end": 8925.66, + "probability": 0.7047 + }, + { + "start": 8925.66, + "end": 8926.18, + "probability": 0.2999 + }, + { + "start": 8926.18, + "end": 8926.36, + "probability": 0.217 + }, + { + "start": 8926.38, + "end": 8927.84, + "probability": 0.1146 + }, + { + "start": 8936.26, + "end": 8936.76, + "probability": 0.1035 + }, + { + "start": 8936.76, + "end": 8937.34, + "probability": 0.1043 + }, + { + "start": 8937.34, + "end": 8937.6, + "probability": 0.0834 + }, + { + "start": 8937.6, + "end": 8937.6, + "probability": 0.0614 + }, + { + "start": 8963.72, + "end": 8966.32, + "probability": 0.9394 + }, + { + "start": 8967.72, + "end": 8968.8, + "probability": 0.8846 + }, + { + "start": 8969.74, + "end": 8972.62, + "probability": 0.9515 + }, + { + "start": 8974.74, + "end": 8979.8, + "probability": 0.9796 + }, + { + "start": 8980.56, + "end": 8986.12, + "probability": 0.9912 + }, + { + "start": 8986.24, + "end": 8987.08, + "probability": 0.662 + }, + { + "start": 8987.66, + "end": 8990.38, + "probability": 0.7893 + }, + { + "start": 8990.72, + "end": 8997.18, + "probability": 0.8947 + }, + { + "start": 8997.68, + "end": 8999.94, + "probability": 0.7687 + }, + { + "start": 9007.52, + "end": 9014.76, + "probability": 0.8911 + }, + { + "start": 9015.64, + "end": 9020.52, + "probability": 0.6567 + }, + { + "start": 9021.16, + "end": 9029.84, + "probability": 0.8407 + }, + { + "start": 9030.28, + "end": 9033.12, + "probability": 0.5609 + }, + { + "start": 9033.46, + "end": 9035.5, + "probability": 0.9338 + }, + { + "start": 9035.56, + "end": 9038.44, + "probability": 0.9321 + }, + { + "start": 9039.24, + "end": 9042.46, + "probability": 0.7986 + }, + { + "start": 9042.52, + "end": 9044.06, + "probability": 0.9966 + }, + { + "start": 9044.24, + "end": 9045.74, + "probability": 0.5581 + }, + { + "start": 9046.4, + "end": 9047.76, + "probability": 0.6276 + }, + { + "start": 9048.94, + "end": 9051.1, + "probability": 0.959 + }, + { + "start": 9051.1, + "end": 9051.59, + "probability": 0.6604 + }, + { + "start": 9051.8, + "end": 9054.62, + "probability": 0.9546 + }, + { + "start": 9054.92, + "end": 9055.42, + "probability": 0.7074 + }, + { + "start": 9055.98, + "end": 9057.52, + "probability": 0.9843 + }, + { + "start": 9058.17, + "end": 9060.5, + "probability": 0.9626 + }, + { + "start": 9060.58, + "end": 9061.24, + "probability": 0.9769 + }, + { + "start": 9061.86, + "end": 9063.34, + "probability": 0.9287 + }, + { + "start": 9065.41, + "end": 9073.58, + "probability": 0.981 + }, + { + "start": 9074.38, + "end": 9081.46, + "probability": 0.9952 + }, + { + "start": 9082.12, + "end": 9084.34, + "probability": 0.7585 + }, + { + "start": 9084.4, + "end": 9085.32, + "probability": 0.8271 + }, + { + "start": 9085.96, + "end": 9086.9, + "probability": 0.6253 + }, + { + "start": 9088.24, + "end": 9090.9, + "probability": 0.8946 + }, + { + "start": 9091.08, + "end": 9093.9, + "probability": 0.9272 + }, + { + "start": 9094.42, + "end": 9097.34, + "probability": 0.9414 + }, + { + "start": 9097.74, + "end": 9100.32, + "probability": 0.6651 + }, + { + "start": 9100.68, + "end": 9102.5, + "probability": 0.8376 + }, + { + "start": 9102.96, + "end": 9106.98, + "probability": 0.9917 + }, + { + "start": 9107.74, + "end": 9115.62, + "probability": 0.8281 + }, + { + "start": 9116.4, + "end": 9119.54, + "probability": 0.9844 + }, + { + "start": 9119.86, + "end": 9122.3, + "probability": 0.947 + }, + { + "start": 9122.76, + "end": 9124.2, + "probability": 0.2449 + }, + { + "start": 9125.76, + "end": 9126.14, + "probability": 0.2616 + }, + { + "start": 9126.14, + "end": 9126.76, + "probability": 0.0955 + }, + { + "start": 9126.76, + "end": 9126.76, + "probability": 0.0324 + }, + { + "start": 9126.76, + "end": 9127.64, + "probability": 0.7126 + }, + { + "start": 9128.42, + "end": 9130.02, + "probability": 0.6144 + }, + { + "start": 9131.42, + "end": 9138.98, + "probability": 0.9875 + }, + { + "start": 9139.08, + "end": 9141.0, + "probability": 0.9102 + }, + { + "start": 9141.18, + "end": 9141.92, + "probability": 0.82 + }, + { + "start": 9142.08, + "end": 9142.88, + "probability": 0.5309 + }, + { + "start": 9143.02, + "end": 9145.4, + "probability": 0.6612 + }, + { + "start": 9145.46, + "end": 9147.06, + "probability": 0.5747 + }, + { + "start": 9149.38, + "end": 9150.3, + "probability": 0.3658 + }, + { + "start": 9150.38, + "end": 9151.36, + "probability": 0.8421 + }, + { + "start": 9152.82, + "end": 9156.62, + "probability": 0.9143 + }, + { + "start": 9157.3, + "end": 9158.96, + "probability": 0.5268 + }, + { + "start": 9160.26, + "end": 9162.38, + "probability": 0.7197 + }, + { + "start": 9162.44, + "end": 9162.44, + "probability": 0.0754 + }, + { + "start": 9162.6, + "end": 9163.7, + "probability": 0.572 + }, + { + "start": 9164.1, + "end": 9165.58, + "probability": 0.7913 + }, + { + "start": 9166.18, + "end": 9174.3, + "probability": 0.4023 + }, + { + "start": 9174.76, + "end": 9177.48, + "probability": 0.5234 + }, + { + "start": 9177.6, + "end": 9180.66, + "probability": 0.1936 + }, + { + "start": 9180.72, + "end": 9181.12, + "probability": 0.0659 + }, + { + "start": 9181.12, + "end": 9183.32, + "probability": 0.436 + }, + { + "start": 9184.44, + "end": 9186.16, + "probability": 0.7631 + }, + { + "start": 9186.28, + "end": 9190.28, + "probability": 0.7533 + }, + { + "start": 9190.58, + "end": 9192.74, + "probability": 0.7015 + }, + { + "start": 9193.62, + "end": 9196.92, + "probability": 0.5183 + }, + { + "start": 9202.04, + "end": 9203.19, + "probability": 0.8322 + }, + { + "start": 9204.08, + "end": 9205.02, + "probability": 0.6663 + }, + { + "start": 9205.66, + "end": 9207.12, + "probability": 0.7673 + }, + { + "start": 9209.4, + "end": 9213.32, + "probability": 0.9108 + }, + { + "start": 9214.2, + "end": 9219.24, + "probability": 0.7153 + }, + { + "start": 9220.44, + "end": 9222.16, + "probability": 0.8128 + }, + { + "start": 9224.08, + "end": 9226.56, + "probability": 0.5715 + }, + { + "start": 9228.42, + "end": 9229.48, + "probability": 0.8023 + }, + { + "start": 9239.02, + "end": 9240.24, + "probability": 0.491 + }, + { + "start": 9240.54, + "end": 9240.9, + "probability": 0.058 + }, + { + "start": 9240.9, + "end": 9241.44, + "probability": 0.2986 + }, + { + "start": 9242.08, + "end": 9242.34, + "probability": 0.0576 + }, + { + "start": 9245.88, + "end": 9247.7, + "probability": 0.5986 + }, + { + "start": 9247.78, + "end": 9251.52, + "probability": 0.5067 + }, + { + "start": 9251.64, + "end": 9253.58, + "probability": 0.8978 + }, + { + "start": 9254.42, + "end": 9258.2, + "probability": 0.6283 + }, + { + "start": 9259.48, + "end": 9263.46, + "probability": 0.931 + }, + { + "start": 9263.66, + "end": 9266.12, + "probability": 0.4833 + }, + { + "start": 9266.64, + "end": 9269.62, + "probability": 0.5912 + }, + { + "start": 9269.78, + "end": 9273.44, + "probability": 0.9938 + }, + { + "start": 9274.14, + "end": 9279.36, + "probability": 0.425 + }, + { + "start": 9281.08, + "end": 9284.08, + "probability": 0.964 + }, + { + "start": 9287.5, + "end": 9287.94, + "probability": 0.325 + }, + { + "start": 9294.88, + "end": 9295.66, + "probability": 0.2147 + }, + { + "start": 9300.76, + "end": 9301.18, + "probability": 0.4836 + }, + { + "start": 9302.06, + "end": 9302.48, + "probability": 0.0915 + }, + { + "start": 9307.62, + "end": 9310.86, + "probability": 0.265 + }, + { + "start": 9312.42, + "end": 9312.58, + "probability": 0.0846 + }, + { + "start": 9313.06, + "end": 9317.54, + "probability": 0.9399 + }, + { + "start": 9317.54, + "end": 9318.2, + "probability": 0.4557 + }, + { + "start": 9318.24, + "end": 9319.42, + "probability": 0.4839 + }, + { + "start": 9319.68, + "end": 9321.34, + "probability": 0.6346 + }, + { + "start": 9321.62, + "end": 9324.3, + "probability": 0.8159 + }, + { + "start": 9325.24, + "end": 9326.88, + "probability": 0.8754 + }, + { + "start": 9327.3, + "end": 9330.28, + "probability": 0.7753 + }, + { + "start": 9330.4, + "end": 9332.08, + "probability": 0.6777 + }, + { + "start": 9332.24, + "end": 9333.02, + "probability": 0.5192 + }, + { + "start": 9333.14, + "end": 9334.78, + "probability": 0.6126 + }, + { + "start": 9335.08, + "end": 9338.26, + "probability": 0.2497 + }, + { + "start": 9343.18, + "end": 9344.74, + "probability": 0.1179 + }, + { + "start": 9372.42, + "end": 9376.28, + "probability": 0.205 + }, + { + "start": 9376.78, + "end": 9378.14, + "probability": 0.5679 + }, + { + "start": 9378.28, + "end": 9381.5, + "probability": 0.9933 + }, + { + "start": 9393.12, + "end": 9393.3, + "probability": 0.3492 + }, + { + "start": 9394.22, + "end": 9397.76, + "probability": 0.9922 + }, + { + "start": 9397.98, + "end": 9398.46, + "probability": 0.7329 + }, + { + "start": 9411.14, + "end": 9415.72, + "probability": 0.4553 + }, + { + "start": 9417.04, + "end": 9418.56, + "probability": 0.0936 + }, + { + "start": 9419.09, + "end": 9422.06, + "probability": 0.1229 + }, + { + "start": 9422.08, + "end": 9424.76, + "probability": 0.0206 + }, + { + "start": 9428.78, + "end": 9434.08, + "probability": 0.6679 + }, + { + "start": 9434.24, + "end": 9435.74, + "probability": 0.4158 + }, + { + "start": 9435.9, + "end": 9436.24, + "probability": 0.2721 + }, + { + "start": 9436.24, + "end": 9437.0, + "probability": 0.6472 + }, + { + "start": 9437.12, + "end": 9440.74, + "probability": 0.806 + }, + { + "start": 9440.98, + "end": 9440.98, + "probability": 0.1356 + }, + { + "start": 9440.98, + "end": 9444.48, + "probability": 0.9663 + }, + { + "start": 9444.48, + "end": 9447.4, + "probability": 0.963 + }, + { + "start": 9448.0, + "end": 9448.4, + "probability": 0.0049 + }, + { + "start": 9448.4, + "end": 9452.4, + "probability": 0.772 + }, + { + "start": 9452.76, + "end": 9455.08, + "probability": 0.3526 + }, + { + "start": 9455.76, + "end": 9457.54, + "probability": 0.923 + }, + { + "start": 9457.66, + "end": 9460.18, + "probability": 0.8442 + }, + { + "start": 9460.76, + "end": 9463.7, + "probability": 0.8278 + }, + { + "start": 9477.54, + "end": 9478.62, + "probability": 0.5082 + }, + { + "start": 9479.5, + "end": 9480.88, + "probability": 0.876 + }, + { + "start": 9482.12, + "end": 9484.08, + "probability": 0.9985 + }, + { + "start": 9484.94, + "end": 9486.22, + "probability": 0.946 + }, + { + "start": 9487.72, + "end": 9491.34, + "probability": 0.9478 + }, + { + "start": 9492.04, + "end": 9494.19, + "probability": 0.9528 + }, + { + "start": 9494.42, + "end": 9496.34, + "probability": 0.9896 + }, + { + "start": 9497.14, + "end": 9501.79, + "probability": 0.9942 + }, + { + "start": 9502.58, + "end": 9503.98, + "probability": 0.6162 + }, + { + "start": 9513.96, + "end": 9521.08, + "probability": 0.9774 + }, + { + "start": 9521.58, + "end": 9525.44, + "probability": 0.9817 + }, + { + "start": 9526.68, + "end": 9531.9, + "probability": 0.9402 + }, + { + "start": 9532.98, + "end": 9533.46, + "probability": 0.1575 + }, + { + "start": 9536.54, + "end": 9538.58, + "probability": 0.9069 + }, + { + "start": 9539.36, + "end": 9542.06, + "probability": 0.9976 + }, + { + "start": 9542.86, + "end": 9545.64, + "probability": 0.9906 + }, + { + "start": 9546.1, + "end": 9549.98, + "probability": 0.9897 + }, + { + "start": 9549.98, + "end": 9554.54, + "probability": 0.9598 + }, + { + "start": 9554.66, + "end": 9556.52, + "probability": 0.6661 + }, + { + "start": 9556.82, + "end": 9558.44, + "probability": 0.3475 + }, + { + "start": 9559.44, + "end": 9559.8, + "probability": 0.792 + }, + { + "start": 9559.92, + "end": 9560.96, + "probability": 0.9248 + }, + { + "start": 9561.04, + "end": 9565.0, + "probability": 0.9982 + }, + { + "start": 9566.04, + "end": 9568.46, + "probability": 0.744 + }, + { + "start": 9569.62, + "end": 9570.56, + "probability": 0.9988 + }, + { + "start": 9571.1, + "end": 9576.38, + "probability": 0.9902 + }, + { + "start": 9576.48, + "end": 9578.5, + "probability": 0.9606 + }, + { + "start": 9578.94, + "end": 9582.04, + "probability": 0.8773 + }, + { + "start": 9582.44, + "end": 9584.8, + "probability": 0.9699 + }, + { + "start": 9584.86, + "end": 9585.26, + "probability": 0.7645 + }, + { + "start": 9587.16, + "end": 9589.54, + "probability": 0.7444 + }, + { + "start": 9590.44, + "end": 9595.58, + "probability": 0.8223 + }, + { + "start": 9595.98, + "end": 9596.68, + "probability": 0.4672 + }, + { + "start": 9596.7, + "end": 9597.04, + "probability": 0.7954 + }, + { + "start": 9601.64, + "end": 9602.9, + "probability": 0.623 + }, + { + "start": 9603.74, + "end": 9606.62, + "probability": 0.7655 + }, + { + "start": 9607.14, + "end": 9609.44, + "probability": 0.9789 + }, + { + "start": 9609.58, + "end": 9611.83, + "probability": 0.9373 + }, + { + "start": 9613.16, + "end": 9613.54, + "probability": 0.9594 + }, + { + "start": 9613.82, + "end": 9614.2, + "probability": 0.7106 + }, + { + "start": 9614.46, + "end": 9618.06, + "probability": 0.8429 + }, + { + "start": 9618.44, + "end": 9620.18, + "probability": 0.8572 + }, + { + "start": 9620.58, + "end": 9621.6, + "probability": 0.6149 + }, + { + "start": 9622.22, + "end": 9624.54, + "probability": 0.9862 + }, + { + "start": 9624.64, + "end": 9625.66, + "probability": 0.9513 + }, + { + "start": 9625.72, + "end": 9626.66, + "probability": 0.7537 + }, + { + "start": 9626.96, + "end": 9629.16, + "probability": 0.8025 + }, + { + "start": 9629.56, + "end": 9632.64, + "probability": 0.98 + }, + { + "start": 9633.54, + "end": 9635.14, + "probability": 0.9756 + }, + { + "start": 9635.72, + "end": 9639.36, + "probability": 0.9481 + }, + { + "start": 9639.46, + "end": 9639.9, + "probability": 0.7961 + }, + { + "start": 9642.3, + "end": 9643.18, + "probability": 0.8707 + }, + { + "start": 9644.28, + "end": 9647.56, + "probability": 0.9797 + }, + { + "start": 9647.66, + "end": 9648.12, + "probability": 0.731 + }, + { + "start": 9659.68, + "end": 9660.66, + "probability": 0.6725 + }, + { + "start": 9660.74, + "end": 9662.08, + "probability": 0.6887 + }, + { + "start": 9662.2, + "end": 9665.0, + "probability": 0.9849 + }, + { + "start": 9665.52, + "end": 9668.1, + "probability": 0.7764 + }, + { + "start": 9668.7, + "end": 9673.47, + "probability": 0.9898 + }, + { + "start": 9673.98, + "end": 9675.44, + "probability": 0.816 + }, + { + "start": 9675.7, + "end": 9679.78, + "probability": 0.8927 + }, + { + "start": 9679.96, + "end": 9681.16, + "probability": 0.9893 + }, + { + "start": 9681.82, + "end": 9684.54, + "probability": 0.9546 + }, + { + "start": 9684.64, + "end": 9685.06, + "probability": 0.6356 + }, + { + "start": 9685.9, + "end": 9687.28, + "probability": 0.7692 + }, + { + "start": 9687.68, + "end": 9690.28, + "probability": 0.5765 + }, + { + "start": 9690.5, + "end": 9691.52, + "probability": 0.9875 + }, + { + "start": 9691.62, + "end": 9693.2, + "probability": 0.9883 + }, + { + "start": 9693.5, + "end": 9694.86, + "probability": 0.9914 + }, + { + "start": 9695.1, + "end": 9696.68, + "probability": 0.9854 + }, + { + "start": 9696.76, + "end": 9698.16, + "probability": 0.995 + }, + { + "start": 9698.48, + "end": 9701.42, + "probability": 0.993 + }, + { + "start": 9701.9, + "end": 9703.96, + "probability": 0.9274 + }, + { + "start": 9704.18, + "end": 9706.3, + "probability": 0.9866 + }, + { + "start": 9706.6, + "end": 9708.76, + "probability": 0.9959 + }, + { + "start": 9708.86, + "end": 9710.3, + "probability": 0.9971 + }, + { + "start": 9710.66, + "end": 9711.26, + "probability": 0.5061 + }, + { + "start": 9711.4, + "end": 9712.62, + "probability": 0.4785 + }, + { + "start": 9712.88, + "end": 9715.04, + "probability": 0.9968 + }, + { + "start": 9715.22, + "end": 9717.42, + "probability": 0.7902 + }, + { + "start": 9717.66, + "end": 9717.96, + "probability": 0.711 + }, + { + "start": 9718.06, + "end": 9721.02, + "probability": 0.9578 + }, + { + "start": 9721.34, + "end": 9721.62, + "probability": 0.7794 + }, + { + "start": 9722.38, + "end": 9726.36, + "probability": 0.9748 + }, + { + "start": 9726.58, + "end": 9731.72, + "probability": 0.9895 + }, + { + "start": 9732.96, + "end": 9733.78, + "probability": 0.701 + }, + { + "start": 9734.34, + "end": 9737.9, + "probability": 0.9074 + }, + { + "start": 9737.98, + "end": 9739.68, + "probability": 0.7268 + }, + { + "start": 9741.42, + "end": 9742.64, + "probability": 0.8751 + }, + { + "start": 9743.02, + "end": 9743.78, + "probability": 0.0738 + }, + { + "start": 9752.24, + "end": 9753.4, + "probability": 0.1024 + }, + { + "start": 9754.08, + "end": 9760.4, + "probability": 0.064 + }, + { + "start": 9761.08, + "end": 9762.78, + "probability": 0.0114 + }, + { + "start": 9762.82, + "end": 9766.04, + "probability": 0.2081 + }, + { + "start": 9767.82, + "end": 9768.32, + "probability": 0.0396 + }, + { + "start": 9768.54, + "end": 9772.42, + "probability": 0.1935 + }, + { + "start": 9772.42, + "end": 9773.9, + "probability": 0.1771 + }, + { + "start": 9773.9, + "end": 9773.9, + "probability": 0.0999 + }, + { + "start": 9773.9, + "end": 9774.18, + "probability": 0.1636 + }, + { + "start": 9774.36, + "end": 9778.42, + "probability": 0.8877 + }, + { + "start": 9779.14, + "end": 9780.98, + "probability": 0.5848 + }, + { + "start": 9781.16, + "end": 9783.28, + "probability": 0.5322 + }, + { + "start": 9783.38, + "end": 9783.98, + "probability": 0.5004 + }, + { + "start": 9784.04, + "end": 9785.68, + "probability": 0.862 + }, + { + "start": 9785.92, + "end": 9787.14, + "probability": 0.7635 + }, + { + "start": 9788.14, + "end": 9791.6, + "probability": 0.9661 + }, + { + "start": 9791.64, + "end": 9793.92, + "probability": 0.7855 + }, + { + "start": 9794.36, + "end": 9796.54, + "probability": 0.2923 + }, + { + "start": 9798.32, + "end": 9798.4, + "probability": 0.7251 + }, + { + "start": 9798.96, + "end": 9800.6, + "probability": 0.8258 + }, + { + "start": 9800.94, + "end": 9803.7, + "probability": 0.8362 + }, + { + "start": 9804.02, + "end": 9806.94, + "probability": 0.8188 + }, + { + "start": 9808.48, + "end": 9808.76, + "probability": 0.3566 + }, + { + "start": 9815.72, + "end": 9815.76, + "probability": 0.1507 + }, + { + "start": 9835.42, + "end": 9835.92, + "probability": 0.3425 + }, + { + "start": 9836.1, + "end": 9837.6, + "probability": 0.744 + }, + { + "start": 9837.72, + "end": 9838.38, + "probability": 0.721 + }, + { + "start": 9838.44, + "end": 9838.52, + "probability": 0.7165 + }, + { + "start": 9838.52, + "end": 9839.7, + "probability": 0.9486 + }, + { + "start": 9839.86, + "end": 9846.82, + "probability": 0.769 + }, + { + "start": 9847.84, + "end": 9849.24, + "probability": 0.7776 + }, + { + "start": 9849.54, + "end": 9851.08, + "probability": 0.9934 + }, + { + "start": 9852.72, + "end": 9859.04, + "probability": 0.6534 + }, + { + "start": 9861.36, + "end": 9861.8, + "probability": 0.2121 + }, + { + "start": 9862.92, + "end": 9864.22, + "probability": 0.787 + }, + { + "start": 9864.56, + "end": 9867.34, + "probability": 0.8803 + }, + { + "start": 9868.26, + "end": 9873.92, + "probability": 0.9829 + }, + { + "start": 9874.8, + "end": 9877.16, + "probability": 0.7139 + }, + { + "start": 9877.96, + "end": 9879.4, + "probability": 0.9768 + }, + { + "start": 9879.94, + "end": 9882.0, + "probability": 0.9939 + }, + { + "start": 9882.76, + "end": 9888.54, + "probability": 0.9092 + }, + { + "start": 9888.82, + "end": 9893.24, + "probability": 0.9737 + }, + { + "start": 9893.5, + "end": 9896.98, + "probability": 0.9888 + }, + { + "start": 9897.04, + "end": 9899.58, + "probability": 0.9884 + }, + { + "start": 9899.74, + "end": 9900.93, + "probability": 0.88 + }, + { + "start": 9901.96, + "end": 9907.54, + "probability": 0.9592 + }, + { + "start": 9908.24, + "end": 9911.48, + "probability": 0.876 + }, + { + "start": 9911.8, + "end": 9917.26, + "probability": 0.9163 + }, + { + "start": 9918.14, + "end": 9919.32, + "probability": 0.7852 + }, + { + "start": 9920.02, + "end": 9925.24, + "probability": 0.9777 + }, + { + "start": 9926.28, + "end": 9930.82, + "probability": 0.9827 + }, + { + "start": 9931.14, + "end": 9935.5, + "probability": 0.7718 + }, + { + "start": 9935.58, + "end": 9936.56, + "probability": 0.7149 + }, + { + "start": 9936.62, + "end": 9937.18, + "probability": 0.5135 + }, + { + "start": 9937.38, + "end": 9939.1, + "probability": 0.8733 + }, + { + "start": 9939.2, + "end": 9940.4, + "probability": 0.7174 + }, + { + "start": 9940.52, + "end": 9944.22, + "probability": 0.8929 + }, + { + "start": 9944.72, + "end": 9945.96, + "probability": 0.483 + }, + { + "start": 9945.98, + "end": 9946.78, + "probability": 0.6066 + }, + { + "start": 9947.44, + "end": 9948.16, + "probability": 0.5793 + }, + { + "start": 9949.18, + "end": 9950.6, + "probability": 0.5425 + }, + { + "start": 9951.78, + "end": 9952.8, + "probability": 0.8668 + }, + { + "start": 9952.9, + "end": 9953.28, + "probability": 0.9174 + }, + { + "start": 9954.74, + "end": 9961.9, + "probability": 0.9727 + }, + { + "start": 9961.9, + "end": 9967.56, + "probability": 0.9943 + }, + { + "start": 9968.28, + "end": 9968.3, + "probability": 0.938 + }, + { + "start": 9969.14, + "end": 9973.72, + "probability": 0.9721 + }, + { + "start": 9974.32, + "end": 9978.28, + "probability": 0.915 + }, + { + "start": 9979.64, + "end": 9984.4, + "probability": 0.9869 + }, + { + "start": 9985.36, + "end": 9987.94, + "probability": 0.9988 + }, + { + "start": 9988.66, + "end": 9994.36, + "probability": 0.9992 + }, + { + "start": 9994.36, + "end": 10003.1, + "probability": 0.9973 + }, + { + "start": 10003.68, + "end": 10008.42, + "probability": 0.9865 + }, + { + "start": 10009.26, + "end": 10014.3, + "probability": 0.974 + }, + { + "start": 10014.92, + "end": 10019.44, + "probability": 0.9416 + }, + { + "start": 10019.44, + "end": 10024.92, + "probability": 0.8885 + }, + { + "start": 10025.32, + "end": 10026.86, + "probability": 0.942 + }, + { + "start": 10026.96, + "end": 10030.78, + "probability": 0.9937 + }, + { + "start": 10032.28, + "end": 10037.34, + "probability": 0.9863 + }, + { + "start": 10037.34, + "end": 10040.86, + "probability": 0.9971 + }, + { + "start": 10041.5, + "end": 10043.5, + "probability": 0.9978 + }, + { + "start": 10043.7, + "end": 10047.8, + "probability": 0.982 + }, + { + "start": 10048.86, + "end": 10053.5, + "probability": 0.9872 + }, + { + "start": 10053.82, + "end": 10059.64, + "probability": 0.9941 + }, + { + "start": 10061.04, + "end": 10064.26, + "probability": 0.8752 + }, + { + "start": 10064.88, + "end": 10068.22, + "probability": 0.9954 + }, + { + "start": 10068.22, + "end": 10072.32, + "probability": 0.9895 + }, + { + "start": 10073.06, + "end": 10073.58, + "probability": 0.616 + }, + { + "start": 10074.08, + "end": 10077.5, + "probability": 0.9926 + }, + { + "start": 10077.5, + "end": 10080.9, + "probability": 0.9959 + }, + { + "start": 10081.24, + "end": 10081.44, + "probability": 0.499 + }, + { + "start": 10081.5, + "end": 10082.1, + "probability": 0.981 + }, + { + "start": 10082.24, + "end": 10084.08, + "probability": 0.7363 + }, + { + "start": 10084.5, + "end": 10086.56, + "probability": 0.9439 + }, + { + "start": 10086.78, + "end": 10087.82, + "probability": 0.9907 + }, + { + "start": 10088.02, + "end": 10088.72, + "probability": 0.8342 + }, + { + "start": 10088.9, + "end": 10089.56, + "probability": 0.6286 + }, + { + "start": 10089.84, + "end": 10093.46, + "probability": 0.9797 + }, + { + "start": 10093.48, + "end": 10098.84, + "probability": 0.884 + }, + { + "start": 10099.34, + "end": 10103.8, + "probability": 0.9941 + }, + { + "start": 10105.77, + "end": 10113.7, + "probability": 0.9888 + }, + { + "start": 10113.98, + "end": 10116.46, + "probability": 0.9924 + }, + { + "start": 10117.52, + "end": 10118.32, + "probability": 0.9059 + }, + { + "start": 10118.52, + "end": 10126.24, + "probability": 0.9922 + }, + { + "start": 10126.66, + "end": 10130.7, + "probability": 0.9518 + }, + { + "start": 10130.7, + "end": 10135.46, + "probability": 0.9957 + }, + { + "start": 10139.37, + "end": 10143.5, + "probability": 0.9875 + }, + { + "start": 10144.18, + "end": 10150.56, + "probability": 0.978 + }, + { + "start": 10150.84, + "end": 10151.64, + "probability": 0.7181 + }, + { + "start": 10152.0, + "end": 10154.44, + "probability": 0.9912 + }, + { + "start": 10154.96, + "end": 10156.31, + "probability": 0.792 + }, + { + "start": 10156.6, + "end": 10162.34, + "probability": 0.9822 + }, + { + "start": 10162.34, + "end": 10173.14, + "probability": 0.9334 + }, + { + "start": 10173.18, + "end": 10175.34, + "probability": 0.9966 + }, + { + "start": 10176.02, + "end": 10181.36, + "probability": 0.991 + }, + { + "start": 10181.36, + "end": 10183.42, + "probability": 0.769 + }, + { + "start": 10184.12, + "end": 10185.48, + "probability": 0.9228 + }, + { + "start": 10185.54, + "end": 10186.84, + "probability": 0.7084 + }, + { + "start": 10186.88, + "end": 10187.98, + "probability": 0.9369 + }, + { + "start": 10188.38, + "end": 10191.3, + "probability": 0.9905 + }, + { + "start": 10191.62, + "end": 10193.7, + "probability": 0.6166 + }, + { + "start": 10194.46, + "end": 10201.9, + "probability": 0.9985 + }, + { + "start": 10202.58, + "end": 10203.7, + "probability": 0.7057 + }, + { + "start": 10203.8, + "end": 10207.0, + "probability": 0.9442 + }, + { + "start": 10207.52, + "end": 10214.84, + "probability": 0.97 + }, + { + "start": 10214.84, + "end": 10220.12, + "probability": 0.988 + }, + { + "start": 10221.16, + "end": 10221.82, + "probability": 0.6335 + }, + { + "start": 10221.88, + "end": 10226.28, + "probability": 0.9365 + }, + { + "start": 10226.62, + "end": 10229.06, + "probability": 0.9035 + }, + { + "start": 10229.58, + "end": 10233.24, + "probability": 0.7221 + }, + { + "start": 10233.82, + "end": 10235.52, + "probability": 0.7072 + }, + { + "start": 10235.72, + "end": 10237.02, + "probability": 0.833 + }, + { + "start": 10237.22, + "end": 10239.44, + "probability": 0.9537 + }, + { + "start": 10239.9, + "end": 10243.5, + "probability": 0.867 + }, + { + "start": 10243.88, + "end": 10246.36, + "probability": 0.9915 + }, + { + "start": 10246.46, + "end": 10247.3, + "probability": 0.9596 + }, + { + "start": 10248.08, + "end": 10249.64, + "probability": 0.9656 + }, + { + "start": 10249.94, + "end": 10253.94, + "probability": 0.7914 + }, + { + "start": 10254.0, + "end": 10254.98, + "probability": 0.8011 + }, + { + "start": 10256.2, + "end": 10260.42, + "probability": 0.9983 + }, + { + "start": 10260.9, + "end": 10262.46, + "probability": 0.7157 + }, + { + "start": 10262.84, + "end": 10263.76, + "probability": 0.9307 + }, + { + "start": 10263.96, + "end": 10265.94, + "probability": 0.9606 + }, + { + "start": 10266.3, + "end": 10270.61, + "probability": 0.743 + }, + { + "start": 10270.62, + "end": 10274.2, + "probability": 0.9963 + }, + { + "start": 10274.78, + "end": 10281.06, + "probability": 0.909 + }, + { + "start": 10281.58, + "end": 10286.04, + "probability": 0.9056 + }, + { + "start": 10286.4, + "end": 10289.4, + "probability": 0.4476 + }, + { + "start": 10289.4, + "end": 10292.64, + "probability": 0.972 + }, + { + "start": 10293.28, + "end": 10299.2, + "probability": 0.9917 + }, + { + "start": 10300.28, + "end": 10304.14, + "probability": 0.9963 + }, + { + "start": 10304.14, + "end": 10308.78, + "probability": 0.9216 + }, + { + "start": 10308.78, + "end": 10312.12, + "probability": 0.797 + }, + { + "start": 10312.74, + "end": 10313.04, + "probability": 0.6802 + }, + { + "start": 10313.4, + "end": 10318.7, + "probability": 0.8564 + }, + { + "start": 10319.22, + "end": 10323.06, + "probability": 0.8166 + }, + { + "start": 10323.16, + "end": 10324.02, + "probability": 0.7319 + }, + { + "start": 10326.29, + "end": 10331.62, + "probability": 0.9102 + }, + { + "start": 10331.78, + "end": 10336.98, + "probability": 0.9805 + }, + { + "start": 10337.04, + "end": 10341.08, + "probability": 0.992 + }, + { + "start": 10341.68, + "end": 10343.08, + "probability": 0.9002 + }, + { + "start": 10343.16, + "end": 10350.58, + "probability": 0.9217 + }, + { + "start": 10351.1, + "end": 10354.44, + "probability": 0.98 + }, + { + "start": 10355.24, + "end": 10361.6, + "probability": 0.747 + }, + { + "start": 10361.86, + "end": 10365.56, + "probability": 0.9956 + }, + { + "start": 10365.68, + "end": 10366.7, + "probability": 0.6342 + }, + { + "start": 10367.18, + "end": 10369.2, + "probability": 0.9077 + }, + { + "start": 10369.78, + "end": 10373.04, + "probability": 0.8152 + }, + { + "start": 10373.04, + "end": 10377.66, + "probability": 0.9944 + }, + { + "start": 10377.74, + "end": 10382.78, + "probability": 0.7872 + }, + { + "start": 10383.32, + "end": 10383.74, + "probability": 0.5677 + }, + { + "start": 10384.04, + "end": 10386.88, + "probability": 0.9101 + }, + { + "start": 10387.28, + "end": 10391.12, + "probability": 0.9858 + }, + { + "start": 10391.78, + "end": 10392.06, + "probability": 0.6659 + }, + { + "start": 10392.2, + "end": 10401.36, + "probability": 0.9042 + }, + { + "start": 10401.46, + "end": 10405.38, + "probability": 0.8507 + }, + { + "start": 10405.58, + "end": 10411.18, + "probability": 0.9556 + }, + { + "start": 10411.42, + "end": 10415.52, + "probability": 0.8882 + }, + { + "start": 10415.58, + "end": 10422.06, + "probability": 0.9874 + }, + { + "start": 10423.82, + "end": 10426.58, + "probability": 0.78 + }, + { + "start": 10426.78, + "end": 10427.54, + "probability": 0.8962 + }, + { + "start": 10428.2, + "end": 10431.54, + "probability": 0.9835 + }, + { + "start": 10431.54, + "end": 10434.96, + "probability": 0.9492 + }, + { + "start": 10435.14, + "end": 10436.1, + "probability": 0.7305 + }, + { + "start": 10436.48, + "end": 10442.86, + "probability": 0.9768 + }, + { + "start": 10443.62, + "end": 10448.86, + "probability": 0.9707 + }, + { + "start": 10449.38, + "end": 10450.58, + "probability": 0.7317 + }, + { + "start": 10452.16, + "end": 10453.83, + "probability": 0.5969 + }, + { + "start": 10454.48, + "end": 10454.48, + "probability": 0.665 + }, + { + "start": 10454.6, + "end": 10461.04, + "probability": 0.9838 + }, + { + "start": 10461.04, + "end": 10463.54, + "probability": 0.6576 + }, + { + "start": 10463.54, + "end": 10463.76, + "probability": 0.7322 + }, + { + "start": 10463.76, + "end": 10464.62, + "probability": 0.9752 + }, + { + "start": 10464.78, + "end": 10465.68, + "probability": 0.7791 + }, + { + "start": 10465.68, + "end": 10466.34, + "probability": 0.7032 + }, + { + "start": 10466.38, + "end": 10466.58, + "probability": 0.4806 + }, + { + "start": 10466.58, + "end": 10466.72, + "probability": 0.5522 + }, + { + "start": 10466.84, + "end": 10467.24, + "probability": 0.2304 + }, + { + "start": 10467.24, + "end": 10468.44, + "probability": 0.6721 + }, + { + "start": 10469.0, + "end": 10470.84, + "probability": 0.3202 + }, + { + "start": 10471.08, + "end": 10471.52, + "probability": 0.4788 + }, + { + "start": 10471.54, + "end": 10476.54, + "probability": 0.9893 + }, + { + "start": 10476.54, + "end": 10480.78, + "probability": 0.6162 + }, + { + "start": 10481.12, + "end": 10483.18, + "probability": 0.8717 + }, + { + "start": 10483.22, + "end": 10487.02, + "probability": 0.9973 + }, + { + "start": 10487.18, + "end": 10490.64, + "probability": 0.901 + }, + { + "start": 10491.22, + "end": 10492.12, + "probability": 0.741 + }, + { + "start": 10492.22, + "end": 10493.74, + "probability": 0.8949 + }, + { + "start": 10494.04, + "end": 10494.9, + "probability": 0.7583 + }, + { + "start": 10495.04, + "end": 10498.94, + "probability": 0.7396 + }, + { + "start": 10499.32, + "end": 10501.96, + "probability": 0.9233 + }, + { + "start": 10501.96, + "end": 10503.6, + "probability": 0.852 + }, + { + "start": 10503.66, + "end": 10504.36, + "probability": 0.3464 + }, + { + "start": 10506.74, + "end": 10506.74, + "probability": 0.0575 + }, + { + "start": 10506.74, + "end": 10506.74, + "probability": 0.4817 + }, + { + "start": 10506.74, + "end": 10510.02, + "probability": 0.9553 + }, + { + "start": 10510.5, + "end": 10514.38, + "probability": 0.9925 + }, + { + "start": 10514.68, + "end": 10520.08, + "probability": 0.7593 + }, + { + "start": 10520.1, + "end": 10522.32, + "probability": 0.648 + }, + { + "start": 10522.32, + "end": 10523.16, + "probability": 0.4227 + }, + { + "start": 10523.66, + "end": 10523.68, + "probability": 0.4205 + }, + { + "start": 10523.68, + "end": 10527.34, + "probability": 0.8932 + }, + { + "start": 10527.42, + "end": 10527.86, + "probability": 0.8024 + }, + { + "start": 10527.88, + "end": 10530.64, + "probability": 0.6433 + }, + { + "start": 10530.9, + "end": 10535.94, + "probability": 0.9765 + }, + { + "start": 10536.5, + "end": 10538.04, + "probability": 0.361 + }, + { + "start": 10538.36, + "end": 10542.16, + "probability": 0.9082 + }, + { + "start": 10556.34, + "end": 10557.8, + "probability": 0.5537 + }, + { + "start": 10557.82, + "end": 10559.44, + "probability": 0.4699 + }, + { + "start": 10559.84, + "end": 10560.14, + "probability": 0.4891 + }, + { + "start": 10578.0, + "end": 10578.66, + "probability": 0.8548 + }, + { + "start": 10584.5, + "end": 10585.96, + "probability": 0.7377 + }, + { + "start": 10587.42, + "end": 10591.16, + "probability": 0.7679 + }, + { + "start": 10591.9, + "end": 10595.48, + "probability": 0.9932 + }, + { + "start": 10595.54, + "end": 10600.3, + "probability": 0.9846 + }, + { + "start": 10601.4, + "end": 10609.5, + "probability": 0.995 + }, + { + "start": 10610.7, + "end": 10614.92, + "probability": 0.9985 + }, + { + "start": 10615.38, + "end": 10617.42, + "probability": 0.9359 + }, + { + "start": 10618.74, + "end": 10623.52, + "probability": 0.9896 + }, + { + "start": 10624.36, + "end": 10627.56, + "probability": 0.9292 + }, + { + "start": 10628.28, + "end": 10630.0, + "probability": 0.8708 + }, + { + "start": 10630.78, + "end": 10633.34, + "probability": 0.9832 + }, + { + "start": 10634.02, + "end": 10638.22, + "probability": 0.8092 + }, + { + "start": 10639.24, + "end": 10643.48, + "probability": 0.9792 + }, + { + "start": 10644.6, + "end": 10648.5, + "probability": 0.9917 + }, + { + "start": 10649.22, + "end": 10655.08, + "probability": 0.9993 + }, + { + "start": 10657.04, + "end": 10664.86, + "probability": 0.9404 + }, + { + "start": 10664.92, + "end": 10669.94, + "probability": 0.9788 + }, + { + "start": 10670.46, + "end": 10671.76, + "probability": 0.9871 + }, + { + "start": 10672.38, + "end": 10673.86, + "probability": 0.9943 + }, + { + "start": 10674.6, + "end": 10678.78, + "probability": 0.7838 + }, + { + "start": 10680.04, + "end": 10683.58, + "probability": 0.9741 + }, + { + "start": 10684.84, + "end": 10685.6, + "probability": 0.7788 + }, + { + "start": 10686.22, + "end": 10694.04, + "probability": 0.9702 + }, + { + "start": 10694.66, + "end": 10698.06, + "probability": 0.9972 + }, + { + "start": 10698.7, + "end": 10701.9, + "probability": 0.9714 + }, + { + "start": 10703.5, + "end": 10709.6, + "probability": 0.9316 + }, + { + "start": 10710.42, + "end": 10713.14, + "probability": 0.6993 + }, + { + "start": 10713.42, + "end": 10713.8, + "probability": 0.3897 + }, + { + "start": 10713.86, + "end": 10714.48, + "probability": 0.8513 + }, + { + "start": 10714.54, + "end": 10720.24, + "probability": 0.9364 + }, + { + "start": 10720.24, + "end": 10724.34, + "probability": 0.9946 + }, + { + "start": 10724.92, + "end": 10727.78, + "probability": 0.9884 + }, + { + "start": 10728.24, + "end": 10730.66, + "probability": 0.9727 + }, + { + "start": 10731.56, + "end": 10733.76, + "probability": 0.9638 + }, + { + "start": 10733.92, + "end": 10735.22, + "probability": 0.8367 + }, + { + "start": 10735.6, + "end": 10737.32, + "probability": 0.9862 + }, + { + "start": 10738.58, + "end": 10742.28, + "probability": 0.9953 + }, + { + "start": 10742.28, + "end": 10746.24, + "probability": 0.9838 + }, + { + "start": 10746.52, + "end": 10747.7, + "probability": 0.9136 + }, + { + "start": 10748.28, + "end": 10751.1, + "probability": 0.9904 + }, + { + "start": 10751.84, + "end": 10755.36, + "probability": 0.9121 + }, + { + "start": 10755.36, + "end": 10759.76, + "probability": 0.9988 + }, + { + "start": 10760.62, + "end": 10763.2, + "probability": 0.9293 + }, + { + "start": 10763.72, + "end": 10766.94, + "probability": 0.9833 + }, + { + "start": 10767.54, + "end": 10769.38, + "probability": 0.9264 + }, + { + "start": 10769.56, + "end": 10773.26, + "probability": 0.958 + }, + { + "start": 10773.46, + "end": 10779.82, + "probability": 0.944 + }, + { + "start": 10780.96, + "end": 10783.18, + "probability": 0.9993 + }, + { + "start": 10783.18, + "end": 10787.12, + "probability": 0.9993 + }, + { + "start": 10787.64, + "end": 10789.94, + "probability": 0.9798 + }, + { + "start": 10790.48, + "end": 10794.72, + "probability": 0.9026 + }, + { + "start": 10795.4, + "end": 10799.96, + "probability": 0.9904 + }, + { + "start": 10800.66, + "end": 10804.66, + "probability": 0.9973 + }, + { + "start": 10804.66, + "end": 10809.44, + "probability": 0.9972 + }, + { + "start": 10810.46, + "end": 10812.4, + "probability": 0.6181 + }, + { + "start": 10813.0, + "end": 10816.9, + "probability": 0.9182 + }, + { + "start": 10817.56, + "end": 10819.74, + "probability": 0.9958 + }, + { + "start": 10819.8, + "end": 10824.38, + "probability": 0.918 + }, + { + "start": 10824.48, + "end": 10825.16, + "probability": 0.9029 + }, + { + "start": 10825.32, + "end": 10825.8, + "probability": 0.9752 + }, + { + "start": 10825.82, + "end": 10826.64, + "probability": 0.7779 + }, + { + "start": 10827.2, + "end": 10830.4, + "probability": 0.6077 + }, + { + "start": 10830.56, + "end": 10831.08, + "probability": 0.7948 + }, + { + "start": 10831.38, + "end": 10832.32, + "probability": 0.8348 + }, + { + "start": 10832.32, + "end": 10832.64, + "probability": 0.9093 + }, + { + "start": 10833.3, + "end": 10833.92, + "probability": 0.7585 + }, + { + "start": 10835.08, + "end": 10840.6, + "probability": 0.9808 + }, + { + "start": 10840.82, + "end": 10842.6, + "probability": 0.4861 + }, + { + "start": 10843.14, + "end": 10845.18, + "probability": 0.9408 + }, + { + "start": 10859.56, + "end": 10860.72, + "probability": 0.5699 + }, + { + "start": 10861.44, + "end": 10862.4, + "probability": 0.9714 + }, + { + "start": 10862.72, + "end": 10865.06, + "probability": 0.6777 + }, + { + "start": 10866.24, + "end": 10869.3, + "probability": 0.8358 + }, + { + "start": 10870.18, + "end": 10872.54, + "probability": 0.8937 + }, + { + "start": 10872.66, + "end": 10875.94, + "probability": 0.8398 + }, + { + "start": 10876.88, + "end": 10879.44, + "probability": 0.8737 + }, + { + "start": 10880.32, + "end": 10881.3, + "probability": 0.7231 + }, + { + "start": 10881.4, + "end": 10885.68, + "probability": 0.9144 + }, + { + "start": 10885.82, + "end": 10887.04, + "probability": 0.9296 + }, + { + "start": 10887.08, + "end": 10889.2, + "probability": 0.9401 + }, + { + "start": 10889.32, + "end": 10893.04, + "probability": 0.9297 + }, + { + "start": 10893.14, + "end": 10894.5, + "probability": 0.7278 + }, + { + "start": 10896.14, + "end": 10900.7, + "probability": 0.9805 + }, + { + "start": 10901.22, + "end": 10903.94, + "probability": 0.9629 + }, + { + "start": 10904.42, + "end": 10907.16, + "probability": 0.9631 + }, + { + "start": 10907.42, + "end": 10910.8, + "probability": 0.8663 + }, + { + "start": 10911.58, + "end": 10916.8, + "probability": 0.5238 + }, + { + "start": 10916.88, + "end": 10919.38, + "probability": 0.8186 + }, + { + "start": 10922.26, + "end": 10924.22, + "probability": 0.6199 + }, + { + "start": 10924.76, + "end": 10929.46, + "probability": 0.7344 + }, + { + "start": 10929.84, + "end": 10931.42, + "probability": 0.91 + }, + { + "start": 10931.5, + "end": 10932.74, + "probability": 0.6855 + }, + { + "start": 10932.82, + "end": 10936.02, + "probability": 0.9789 + }, + { + "start": 10936.56, + "end": 10936.98, + "probability": 0.653 + }, + { + "start": 10937.06, + "end": 10937.9, + "probability": 0.9052 + }, + { + "start": 10938.32, + "end": 10939.3, + "probability": 0.7912 + }, + { + "start": 10939.52, + "end": 10942.66, + "probability": 0.8967 + }, + { + "start": 10942.84, + "end": 10943.86, + "probability": 0.5568 + }, + { + "start": 10944.16, + "end": 10944.94, + "probability": 0.8324 + }, + { + "start": 10945.02, + "end": 10945.46, + "probability": 0.754 + }, + { + "start": 10945.64, + "end": 10946.59, + "probability": 0.6096 + }, + { + "start": 10948.28, + "end": 10952.06, + "probability": 0.9581 + }, + { + "start": 10952.16, + "end": 10952.56, + "probability": 0.408 + }, + { + "start": 10952.64, + "end": 10953.02, + "probability": 0.9237 + }, + { + "start": 10953.12, + "end": 10955.88, + "probability": 0.9801 + }, + { + "start": 10956.38, + "end": 10958.64, + "probability": 0.8589 + }, + { + "start": 10958.76, + "end": 10960.38, + "probability": 0.8214 + }, + { + "start": 10960.84, + "end": 10962.08, + "probability": 0.9858 + }, + { + "start": 10962.12, + "end": 10964.8, + "probability": 0.6862 + }, + { + "start": 10965.4, + "end": 10967.3, + "probability": 0.9915 + }, + { + "start": 10967.44, + "end": 10970.98, + "probability": 0.8652 + }, + { + "start": 10971.1, + "end": 10975.56, + "probability": 0.9886 + }, + { + "start": 10975.6, + "end": 10978.84, + "probability": 0.9769 + }, + { + "start": 10979.02, + "end": 10980.26, + "probability": 0.9946 + }, + { + "start": 10980.34, + "end": 10982.32, + "probability": 0.9075 + }, + { + "start": 10982.34, + "end": 10982.96, + "probability": 0.6182 + }, + { + "start": 10983.1, + "end": 10984.24, + "probability": 0.3824 + }, + { + "start": 10984.69, + "end": 10985.05, + "probability": 0.1951 + }, + { + "start": 10988.63, + "end": 10992.0, + "probability": 0.968 + }, + { + "start": 10992.0, + "end": 10992.72, + "probability": 0.9489 + }, + { + "start": 10993.48, + "end": 10998.96, + "probability": 0.9737 + }, + { + "start": 10999.56, + "end": 11000.22, + "probability": 0.5085 + }, + { + "start": 11000.44, + "end": 11003.24, + "probability": 0.9685 + }, + { + "start": 11003.62, + "end": 11004.26, + "probability": 0.8186 + }, + { + "start": 11004.32, + "end": 11008.74, + "probability": 0.9834 + }, + { + "start": 11009.36, + "end": 11013.38, + "probability": 0.9587 + }, + { + "start": 11013.76, + "end": 11015.36, + "probability": 0.9858 + }, + { + "start": 11015.92, + "end": 11018.32, + "probability": 0.8313 + }, + { + "start": 11018.34, + "end": 11018.68, + "probability": 0.632 + }, + { + "start": 11019.18, + "end": 11022.08, + "probability": 0.8732 + }, + { + "start": 11022.2, + "end": 11026.64, + "probability": 0.9417 + }, + { + "start": 11026.84, + "end": 11028.68, + "probability": 0.3909 + }, + { + "start": 11029.54, + "end": 11032.51, + "probability": 0.8516 + }, + { + "start": 11033.94, + "end": 11034.66, + "probability": 0.7407 + }, + { + "start": 11044.0, + "end": 11046.68, + "probability": 0.7982 + }, + { + "start": 11047.7, + "end": 11049.44, + "probability": 0.6928 + }, + { + "start": 11049.92, + "end": 11051.32, + "probability": 0.7256 + }, + { + "start": 11052.34, + "end": 11053.88, + "probability": 0.7213 + }, + { + "start": 11054.78, + "end": 11059.34, + "probability": 0.9956 + }, + { + "start": 11060.38, + "end": 11063.04, + "probability": 0.9966 + }, + { + "start": 11063.12, + "end": 11069.18, + "probability": 0.9664 + }, + { + "start": 11069.92, + "end": 11073.0, + "probability": 0.9929 + }, + { + "start": 11073.6, + "end": 11077.1, + "probability": 0.9963 + }, + { + "start": 11077.1, + "end": 11084.34, + "probability": 0.9961 + }, + { + "start": 11084.5, + "end": 11085.24, + "probability": 0.7011 + }, + { + "start": 11085.48, + "end": 11086.26, + "probability": 0.6995 + }, + { + "start": 11086.82, + "end": 11088.74, + "probability": 0.7025 + }, + { + "start": 11088.78, + "end": 11094.12, + "probability": 0.99 + }, + { + "start": 11095.82, + "end": 11101.86, + "probability": 0.9939 + }, + { + "start": 11102.3, + "end": 11102.86, + "probability": 0.6663 + }, + { + "start": 11103.7, + "end": 11105.06, + "probability": 0.9572 + }, + { + "start": 11105.7, + "end": 11109.0, + "probability": 0.9581 + }, + { + "start": 11109.68, + "end": 11112.66, + "probability": 0.9862 + }, + { + "start": 11113.6, + "end": 11115.46, + "probability": 0.9971 + }, + { + "start": 11116.24, + "end": 11119.46, + "probability": 0.999 + }, + { + "start": 11120.32, + "end": 11121.02, + "probability": 0.7793 + }, + { + "start": 11121.98, + "end": 11123.96, + "probability": 0.9985 + }, + { + "start": 11125.16, + "end": 11129.84, + "probability": 0.986 + }, + { + "start": 11130.5, + "end": 11134.02, + "probability": 0.9956 + }, + { + "start": 11134.52, + "end": 11137.2, + "probability": 0.9549 + }, + { + "start": 11137.2, + "end": 11140.3, + "probability": 0.9978 + }, + { + "start": 11140.78, + "end": 11144.96, + "probability": 0.9573 + }, + { + "start": 11145.54, + "end": 11149.08, + "probability": 0.9921 + }, + { + "start": 11149.08, + "end": 11153.78, + "probability": 0.9993 + }, + { + "start": 11154.58, + "end": 11159.14, + "probability": 0.998 + }, + { + "start": 11159.14, + "end": 11163.64, + "probability": 0.983 + }, + { + "start": 11164.64, + "end": 11166.06, + "probability": 0.716 + }, + { + "start": 11166.58, + "end": 11170.16, + "probability": 0.9788 + }, + { + "start": 11170.4, + "end": 11175.54, + "probability": 0.8451 + }, + { + "start": 11175.94, + "end": 11177.22, + "probability": 0.6478 + }, + { + "start": 11177.44, + "end": 11178.78, + "probability": 0.6189 + }, + { + "start": 11179.44, + "end": 11183.62, + "probability": 0.9388 + }, + { + "start": 11186.06, + "end": 11193.2, + "probability": 0.9177 + }, + { + "start": 11193.96, + "end": 11197.72, + "probability": 0.9952 + }, + { + "start": 11198.1, + "end": 11201.04, + "probability": 0.9083 + }, + { + "start": 11202.0, + "end": 11205.36, + "probability": 0.9579 + }, + { + "start": 11205.48, + "end": 11206.68, + "probability": 0.7994 + }, + { + "start": 11207.24, + "end": 11207.86, + "probability": 0.9101 + }, + { + "start": 11208.36, + "end": 11213.04, + "probability": 0.9934 + }, + { + "start": 11213.92, + "end": 11217.36, + "probability": 0.9912 + }, + { + "start": 11218.06, + "end": 11223.58, + "probability": 0.9928 + }, + { + "start": 11223.76, + "end": 11224.98, + "probability": 0.852 + }, + { + "start": 11226.24, + "end": 11229.26, + "probability": 0.999 + }, + { + "start": 11229.26, + "end": 11232.88, + "probability": 0.9849 + }, + { + "start": 11233.74, + "end": 11236.76, + "probability": 0.9982 + }, + { + "start": 11236.76, + "end": 11240.78, + "probability": 0.9837 + }, + { + "start": 11240.98, + "end": 11245.6, + "probability": 0.975 + }, + { + "start": 11245.6, + "end": 11246.0, + "probability": 0.584 + }, + { + "start": 11246.18, + "end": 11246.64, + "probability": 0.4039 + }, + { + "start": 11246.64, + "end": 11249.13, + "probability": 0.8967 + }, + { + "start": 11249.49, + "end": 11253.72, + "probability": 0.8025 + }, + { + "start": 11254.32, + "end": 11255.46, + "probability": 0.9984 + }, + { + "start": 11255.98, + "end": 11260.78, + "probability": 0.9878 + }, + { + "start": 11260.78, + "end": 11266.94, + "probability": 0.9993 + }, + { + "start": 11267.46, + "end": 11270.26, + "probability": 0.8212 + }, + { + "start": 11270.74, + "end": 11272.7, + "probability": 0.9916 + }, + { + "start": 11273.32, + "end": 11276.34, + "probability": 0.9885 + }, + { + "start": 11276.56, + "end": 11277.98, + "probability": 0.9932 + }, + { + "start": 11281.18, + "end": 11282.86, + "probability": 0.7802 + }, + { + "start": 11282.96, + "end": 11285.6, + "probability": 0.8517 + }, + { + "start": 11285.66, + "end": 11288.98, + "probability": 0.6578 + }, + { + "start": 11289.6, + "end": 11294.8, + "probability": 0.9784 + }, + { + "start": 11294.94, + "end": 11296.82, + "probability": 0.4283 + }, + { + "start": 11297.76, + "end": 11300.1, + "probability": 0.8429 + }, + { + "start": 11300.36, + "end": 11301.94, + "probability": 0.9006 + }, + { + "start": 11303.26, + "end": 11305.86, + "probability": 0.7027 + }, + { + "start": 11306.96, + "end": 11311.68, + "probability": 0.9798 + }, + { + "start": 11312.88, + "end": 11316.3, + "probability": 0.9935 + }, + { + "start": 11316.46, + "end": 11317.28, + "probability": 0.6756 + }, + { + "start": 11318.32, + "end": 11321.72, + "probability": 0.6758 + }, + { + "start": 11323.04, + "end": 11325.34, + "probability": 0.8812 + }, + { + "start": 11325.54, + "end": 11327.46, + "probability": 0.9812 + }, + { + "start": 11327.6, + "end": 11327.76, + "probability": 0.4634 + }, + { + "start": 11327.8, + "end": 11328.98, + "probability": 0.5146 + }, + { + "start": 11329.62, + "end": 11332.68, + "probability": 0.9945 + }, + { + "start": 11332.74, + "end": 11333.64, + "probability": 0.9639 + }, + { + "start": 11333.72, + "end": 11334.44, + "probability": 0.9822 + }, + { + "start": 11335.06, + "end": 11336.3, + "probability": 0.9815 + }, + { + "start": 11336.42, + "end": 11337.32, + "probability": 0.8859 + }, + { + "start": 11337.82, + "end": 11338.76, + "probability": 0.6587 + }, + { + "start": 11338.76, + "end": 11340.36, + "probability": 0.8231 + }, + { + "start": 11340.48, + "end": 11341.36, + "probability": 0.7377 + }, + { + "start": 11341.9, + "end": 11342.46, + "probability": 0.3773 + }, + { + "start": 11342.6, + "end": 11344.46, + "probability": 0.4992 + }, + { + "start": 11345.06, + "end": 11346.96, + "probability": 0.9963 + }, + { + "start": 11347.06, + "end": 11348.08, + "probability": 0.6808 + }, + { + "start": 11348.64, + "end": 11350.32, + "probability": 0.9888 + }, + { + "start": 11351.98, + "end": 11353.08, + "probability": 0.7671 + }, + { + "start": 11353.14, + "end": 11354.1, + "probability": 0.8809 + }, + { + "start": 11354.62, + "end": 11356.88, + "probability": 0.9994 + }, + { + "start": 11358.24, + "end": 11360.42, + "probability": 0.8301 + }, + { + "start": 11361.02, + "end": 11363.36, + "probability": 0.9938 + }, + { + "start": 11363.62, + "end": 11365.46, + "probability": 0.9896 + }, + { + "start": 11366.64, + "end": 11368.58, + "probability": 0.9891 + }, + { + "start": 11369.26, + "end": 11372.08, + "probability": 0.7707 + }, + { + "start": 11373.26, + "end": 11375.08, + "probability": 0.6265 + }, + { + "start": 11375.2, + "end": 11377.22, + "probability": 0.9916 + }, + { + "start": 11377.22, + "end": 11379.46, + "probability": 0.7611 + }, + { + "start": 11379.52, + "end": 11379.94, + "probability": 0.3125 + }, + { + "start": 11379.98, + "end": 11380.88, + "probability": 0.6332 + }, + { + "start": 11381.62, + "end": 11381.96, + "probability": 0.4523 + }, + { + "start": 11381.96, + "end": 11382.69, + "probability": 0.9427 + }, + { + "start": 11382.8, + "end": 11383.34, + "probability": 0.7975 + }, + { + "start": 11383.4, + "end": 11384.0, + "probability": 0.8031 + }, + { + "start": 11384.12, + "end": 11386.86, + "probability": 0.9154 + }, + { + "start": 11387.38, + "end": 11389.18, + "probability": 0.6381 + }, + { + "start": 11389.52, + "end": 11390.72, + "probability": 0.8346 + }, + { + "start": 11392.5, + "end": 11396.78, + "probability": 0.9858 + }, + { + "start": 11396.88, + "end": 11399.2, + "probability": 0.4989 + }, + { + "start": 11399.3, + "end": 11400.78, + "probability": 0.9795 + }, + { + "start": 11401.74, + "end": 11401.94, + "probability": 0.1482 + }, + { + "start": 11402.62, + "end": 11403.74, + "probability": 0.8757 + }, + { + "start": 11404.24, + "end": 11405.1, + "probability": 0.6812 + }, + { + "start": 11405.68, + "end": 11407.9, + "probability": 0.5417 + }, + { + "start": 11415.98, + "end": 11416.76, + "probability": 0.535 + }, + { + "start": 11416.76, + "end": 11417.6, + "probability": 0.0373 + }, + { + "start": 11417.6, + "end": 11418.14, + "probability": 0.5867 + }, + { + "start": 11418.26, + "end": 11419.98, + "probability": 0.923 + }, + { + "start": 11420.94, + "end": 11420.94, + "probability": 0.4514 + }, + { + "start": 11420.94, + "end": 11423.2, + "probability": 0.9686 + }, + { + "start": 11423.7, + "end": 11424.36, + "probability": 0.9332 + }, + { + "start": 11425.04, + "end": 11426.34, + "probability": 0.7032 + }, + { + "start": 11426.7, + "end": 11429.02, + "probability": 0.7688 + }, + { + "start": 11429.08, + "end": 11430.7, + "probability": 0.9045 + }, + { + "start": 11431.36, + "end": 11432.36, + "probability": 0.7985 + }, + { + "start": 11432.46, + "end": 11436.32, + "probability": 0.9731 + }, + { + "start": 11436.32, + "end": 11440.84, + "probability": 0.9922 + }, + { + "start": 11441.74, + "end": 11442.26, + "probability": 0.9127 + }, + { + "start": 11442.36, + "end": 11450.72, + "probability": 0.9715 + }, + { + "start": 11450.98, + "end": 11453.48, + "probability": 0.8788 + }, + { + "start": 11454.28, + "end": 11455.32, + "probability": 0.8889 + }, + { + "start": 11455.4, + "end": 11458.9, + "probability": 0.9555 + }, + { + "start": 11459.94, + "end": 11464.2, + "probability": 0.9929 + }, + { + "start": 11464.78, + "end": 11469.78, + "probability": 0.9918 + }, + { + "start": 11470.0, + "end": 11474.52, + "probability": 0.9345 + }, + { + "start": 11474.64, + "end": 11474.9, + "probability": 0.31 + }, + { + "start": 11474.94, + "end": 11477.86, + "probability": 0.9077 + }, + { + "start": 11477.92, + "end": 11480.06, + "probability": 0.9528 + }, + { + "start": 11480.72, + "end": 11485.76, + "probability": 0.9917 + }, + { + "start": 11485.88, + "end": 11487.14, + "probability": 0.9961 + }, + { + "start": 11487.28, + "end": 11491.18, + "probability": 0.9763 + }, + { + "start": 11491.82, + "end": 11491.82, + "probability": 0.5687 + }, + { + "start": 11491.82, + "end": 11495.84, + "probability": 0.9851 + }, + { + "start": 11497.1, + "end": 11499.16, + "probability": 0.6011 + }, + { + "start": 11499.36, + "end": 11502.08, + "probability": 0.51 + }, + { + "start": 11502.6, + "end": 11504.5, + "probability": 0.9946 + }, + { + "start": 11504.56, + "end": 11505.64, + "probability": 0.8178 + }, + { + "start": 11505.7, + "end": 11507.78, + "probability": 0.8038 + }, + { + "start": 11508.02, + "end": 11511.5, + "probability": 0.7172 + }, + { + "start": 11518.6, + "end": 11518.6, + "probability": 0.4116 + }, + { + "start": 11518.6, + "end": 11518.6, + "probability": 0.1073 + }, + { + "start": 11518.6, + "end": 11518.6, + "probability": 0.0307 + }, + { + "start": 11518.6, + "end": 11518.6, + "probability": 0.1957 + }, + { + "start": 11518.6, + "end": 11518.6, + "probability": 0.0333 + }, + { + "start": 11530.62, + "end": 11536.96, + "probability": 0.9938 + }, + { + "start": 11537.6, + "end": 11540.08, + "probability": 0.9885 + }, + { + "start": 11540.08, + "end": 11543.88, + "probability": 0.939 + }, + { + "start": 11544.68, + "end": 11544.7, + "probability": 0.2456 + }, + { + "start": 11544.7, + "end": 11548.66, + "probability": 0.9937 + }, + { + "start": 11548.66, + "end": 11552.76, + "probability": 0.9716 + }, + { + "start": 11553.22, + "end": 11558.16, + "probability": 0.9637 + }, + { + "start": 11558.98, + "end": 11563.46, + "probability": 0.998 + }, + { + "start": 11563.46, + "end": 11568.28, + "probability": 0.9919 + }, + { + "start": 11568.4, + "end": 11570.66, + "probability": 0.9814 + }, + { + "start": 11572.24, + "end": 11572.86, + "probability": 0.8798 + }, + { + "start": 11573.34, + "end": 11576.4, + "probability": 0.8308 + }, + { + "start": 11576.54, + "end": 11581.96, + "probability": 0.8802 + }, + { + "start": 11581.96, + "end": 11586.18, + "probability": 0.9878 + }, + { + "start": 11586.32, + "end": 11588.66, + "probability": 0.7433 + }, + { + "start": 11589.32, + "end": 11589.64, + "probability": 0.5723 + }, + { + "start": 11590.06, + "end": 11593.52, + "probability": 0.8491 + }, + { + "start": 11594.34, + "end": 11596.68, + "probability": 0.8752 + }, + { + "start": 11596.84, + "end": 11597.0, + "probability": 0.074 + }, + { + "start": 11597.0, + "end": 11597.4, + "probability": 0.6734 + }, + { + "start": 11597.44, + "end": 11598.1, + "probability": 0.8773 + }, + { + "start": 11598.24, + "end": 11599.3, + "probability": 0.7208 + }, + { + "start": 11600.08, + "end": 11601.28, + "probability": 0.8698 + }, + { + "start": 11601.88, + "end": 11604.2, + "probability": 0.8619 + }, + { + "start": 11604.2, + "end": 11607.64, + "probability": 0.9749 + }, + { + "start": 11608.24, + "end": 11609.5, + "probability": 0.9152 + }, + { + "start": 11609.58, + "end": 11610.58, + "probability": 0.8732 + }, + { + "start": 11610.92, + "end": 11611.69, + "probability": 0.9559 + }, + { + "start": 11612.44, + "end": 11612.86, + "probability": 0.7737 + }, + { + "start": 11612.94, + "end": 11615.0, + "probability": 0.822 + }, + { + "start": 11615.06, + "end": 11615.44, + "probability": 0.6252 + }, + { + "start": 11615.52, + "end": 11618.48, + "probability": 0.9919 + }, + { + "start": 11619.2, + "end": 11621.82, + "probability": 0.9974 + }, + { + "start": 11621.82, + "end": 11623.96, + "probability": 0.9966 + }, + { + "start": 11624.54, + "end": 11628.68, + "probability": 0.8783 + }, + { + "start": 11628.7, + "end": 11631.26, + "probability": 0.9974 + }, + { + "start": 11632.08, + "end": 11632.62, + "probability": 0.8294 + }, + { + "start": 11633.0, + "end": 11635.12, + "probability": 0.8995 + }, + { + "start": 11635.58, + "end": 11638.2, + "probability": 0.9256 + }, + { + "start": 11638.2, + "end": 11641.68, + "probability": 0.989 + }, + { + "start": 11642.3, + "end": 11643.62, + "probability": 0.8484 + }, + { + "start": 11643.68, + "end": 11645.38, + "probability": 0.943 + }, + { + "start": 11646.42, + "end": 11648.42, + "probability": 0.9901 + }, + { + "start": 11648.78, + "end": 11651.76, + "probability": 0.9956 + }, + { + "start": 11652.44, + "end": 11655.76, + "probability": 0.9725 + }, + { + "start": 11656.26, + "end": 11657.68, + "probability": 0.9917 + }, + { + "start": 11657.86, + "end": 11661.38, + "probability": 0.7528 + }, + { + "start": 11661.86, + "end": 11664.74, + "probability": 0.9496 + }, + { + "start": 11664.94, + "end": 11666.16, + "probability": 0.6974 + }, + { + "start": 11666.56, + "end": 11667.48, + "probability": 0.8287 + }, + { + "start": 11667.56, + "end": 11670.06, + "probability": 0.9704 + }, + { + "start": 11671.28, + "end": 11672.14, + "probability": 0.7599 + }, + { + "start": 11672.96, + "end": 11675.42, + "probability": 0.9318 + }, + { + "start": 11675.42, + "end": 11678.78, + "probability": 0.9924 + }, + { + "start": 11679.36, + "end": 11679.88, + "probability": 0.7398 + }, + { + "start": 11680.42, + "end": 11682.32, + "probability": 0.9913 + }, + { + "start": 11682.32, + "end": 11685.06, + "probability": 0.9687 + }, + { + "start": 11685.6, + "end": 11687.46, + "probability": 0.9661 + }, + { + "start": 11688.0, + "end": 11690.94, + "probability": 0.9696 + }, + { + "start": 11691.28, + "end": 11695.04, + "probability": 0.9958 + }, + { + "start": 11695.04, + "end": 11698.5, + "probability": 0.9937 + }, + { + "start": 11699.26, + "end": 11700.72, + "probability": 0.4538 + }, + { + "start": 11700.84, + "end": 11705.12, + "probability": 0.8414 + }, + { + "start": 11705.48, + "end": 11705.68, + "probability": 0.5793 + }, + { + "start": 11706.6, + "end": 11707.32, + "probability": 0.7812 + }, + { + "start": 11708.22, + "end": 11710.7, + "probability": 0.7181 + }, + { + "start": 11710.9, + "end": 11713.14, + "probability": 0.9675 + }, + { + "start": 11721.3, + "end": 11721.42, + "probability": 0.2127 + }, + { + "start": 11721.98, + "end": 11723.38, + "probability": 0.066 + }, + { + "start": 11723.4, + "end": 11723.76, + "probability": 0.2258 + }, + { + "start": 11723.94, + "end": 11724.44, + "probability": 0.4968 + }, + { + "start": 11724.44, + "end": 11724.68, + "probability": 0.0141 + }, + { + "start": 11724.68, + "end": 11724.82, + "probability": 0.0912 + }, + { + "start": 11736.39, + "end": 11736.76, + "probability": 0.0658 + }, + { + "start": 11762.36, + "end": 11767.06, + "probability": 0.9949 + }, + { + "start": 11768.76, + "end": 11773.36, + "probability": 0.9996 + }, + { + "start": 11775.84, + "end": 11778.54, + "probability": 0.6852 + }, + { + "start": 11779.36, + "end": 11782.66, + "probability": 0.9874 + }, + { + "start": 11783.66, + "end": 11787.96, + "probability": 0.8574 + }, + { + "start": 11789.9, + "end": 11794.44, + "probability": 0.9777 + }, + { + "start": 11795.28, + "end": 11798.78, + "probability": 0.553 + }, + { + "start": 11799.52, + "end": 11801.85, + "probability": 0.9101 + }, + { + "start": 11801.98, + "end": 11804.52, + "probability": 0.9472 + }, + { + "start": 11805.06, + "end": 11806.12, + "probability": 0.6586 + }, + { + "start": 11806.36, + "end": 11811.54, + "probability": 0.9645 + }, + { + "start": 11812.32, + "end": 11816.76, + "probability": 0.9621 + }, + { + "start": 11817.4, + "end": 11825.48, + "probability": 0.9987 + }, + { + "start": 11825.66, + "end": 11828.86, + "probability": 0.8162 + }, + { + "start": 11829.42, + "end": 11830.78, + "probability": 0.6628 + }, + { + "start": 11831.32, + "end": 11833.48, + "probability": 0.9774 + }, + { + "start": 11834.06, + "end": 11836.46, + "probability": 0.5381 + }, + { + "start": 11837.88, + "end": 11838.96, + "probability": 0.7338 + }, + { + "start": 11839.62, + "end": 11842.24, + "probability": 0.991 + }, + { + "start": 11842.24, + "end": 11844.9, + "probability": 0.9556 + }, + { + "start": 11845.22, + "end": 11847.42, + "probability": 0.9277 + }, + { + "start": 11848.2, + "end": 11852.54, + "probability": 0.8141 + }, + { + "start": 11853.38, + "end": 11858.8, + "probability": 0.9272 + }, + { + "start": 11858.92, + "end": 11860.41, + "probability": 0.9897 + }, + { + "start": 11861.92, + "end": 11867.28, + "probability": 0.9571 + }, + { + "start": 11868.06, + "end": 11871.92, + "probability": 0.9878 + }, + { + "start": 11872.66, + "end": 11874.14, + "probability": 0.9883 + }, + { + "start": 11875.3, + "end": 11877.08, + "probability": 0.8367 + }, + { + "start": 11877.32, + "end": 11877.52, + "probability": 0.2194 + }, + { + "start": 11877.58, + "end": 11880.96, + "probability": 0.9883 + }, + { + "start": 11881.4, + "end": 11881.74, + "probability": 0.4902 + }, + { + "start": 11881.78, + "end": 11886.9, + "probability": 0.994 + }, + { + "start": 11888.28, + "end": 11889.36, + "probability": 0.8687 + }, + { + "start": 11891.18, + "end": 11894.5, + "probability": 0.4849 + }, + { + "start": 11895.36, + "end": 11901.1, + "probability": 0.9976 + }, + { + "start": 11901.68, + "end": 11904.92, + "probability": 0.998 + }, + { + "start": 11905.76, + "end": 11907.62, + "probability": 0.8937 + }, + { + "start": 11908.46, + "end": 11911.64, + "probability": 0.9962 + }, + { + "start": 11911.64, + "end": 11914.86, + "probability": 0.9346 + }, + { + "start": 11915.08, + "end": 11918.12, + "probability": 0.9456 + }, + { + "start": 11918.42, + "end": 11921.93, + "probability": 0.9887 + }, + { + "start": 11922.42, + "end": 11924.46, + "probability": 0.8358 + }, + { + "start": 11925.08, + "end": 11929.64, + "probability": 0.9243 + }, + { + "start": 11930.28, + "end": 11933.88, + "probability": 0.7084 + }, + { + "start": 11934.52, + "end": 11936.68, + "probability": 0.9955 + }, + { + "start": 11937.04, + "end": 11939.66, + "probability": 0.8919 + }, + { + "start": 11939.66, + "end": 11943.02, + "probability": 0.9669 + }, + { + "start": 11943.14, + "end": 11943.92, + "probability": 0.7065 + }, + { + "start": 11944.08, + "end": 11945.5, + "probability": 0.492 + }, + { + "start": 11945.58, + "end": 11948.1, + "probability": 0.9279 + }, + { + "start": 11957.1, + "end": 11957.92, + "probability": 0.3385 + }, + { + "start": 11960.88, + "end": 11963.02, + "probability": 0.4215 + }, + { + "start": 11963.76, + "end": 11968.4, + "probability": 0.0959 + }, + { + "start": 11970.2, + "end": 11970.48, + "probability": 0.0698 + }, + { + "start": 11970.94, + "end": 11971.58, + "probability": 0.2581 + }, + { + "start": 11980.54, + "end": 11982.56, + "probability": 0.6746 + }, + { + "start": 11983.5, + "end": 11985.14, + "probability": 0.8742 + }, + { + "start": 11986.26, + "end": 11990.5, + "probability": 0.9581 + }, + { + "start": 11991.06, + "end": 11991.9, + "probability": 0.6706 + }, + { + "start": 11992.36, + "end": 11995.2, + "probability": 0.9017 + }, + { + "start": 11995.78, + "end": 11996.78, + "probability": 0.8751 + }, + { + "start": 11998.08, + "end": 11999.76, + "probability": 0.7249 + }, + { + "start": 12000.44, + "end": 12001.28, + "probability": 0.8075 + }, + { + "start": 12001.38, + "end": 12006.34, + "probability": 0.9375 + }, + { + "start": 12006.44, + "end": 12007.21, + "probability": 0.9642 + }, + { + "start": 12007.84, + "end": 12014.94, + "probability": 0.9944 + }, + { + "start": 12015.0, + "end": 12015.84, + "probability": 0.7461 + }, + { + "start": 12017.0, + "end": 12017.92, + "probability": 0.7006 + }, + { + "start": 12018.9, + "end": 12021.68, + "probability": 0.9016 + }, + { + "start": 12022.48, + "end": 12025.02, + "probability": 0.9692 + }, + { + "start": 12025.06, + "end": 12025.75, + "probability": 0.7603 + }, + { + "start": 12026.96, + "end": 12028.6, + "probability": 0.9565 + }, + { + "start": 12030.34, + "end": 12032.58, + "probability": 0.4819 + }, + { + "start": 12033.78, + "end": 12035.12, + "probability": 0.9425 + }, + { + "start": 12035.16, + "end": 12035.52, + "probability": 0.4522 + }, + { + "start": 12035.72, + "end": 12036.16, + "probability": 0.5929 + }, + { + "start": 12036.26, + "end": 12036.6, + "probability": 0.9182 + }, + { + "start": 12036.74, + "end": 12038.22, + "probability": 0.8668 + }, + { + "start": 12038.72, + "end": 12039.92, + "probability": 0.7015 + }, + { + "start": 12040.46, + "end": 12043.2, + "probability": 0.8149 + }, + { + "start": 12043.62, + "end": 12045.74, + "probability": 0.9583 + }, + { + "start": 12045.84, + "end": 12049.48, + "probability": 0.8719 + }, + { + "start": 12049.68, + "end": 12050.63, + "probability": 0.8473 + }, + { + "start": 12052.22, + "end": 12055.98, + "probability": 0.9829 + }, + { + "start": 12056.98, + "end": 12057.74, + "probability": 0.7476 + }, + { + "start": 12057.94, + "end": 12060.1, + "probability": 0.9654 + }, + { + "start": 12060.2, + "end": 12061.62, + "probability": 0.9353 + }, + { + "start": 12061.88, + "end": 12063.06, + "probability": 0.9207 + }, + { + "start": 12064.02, + "end": 12067.8, + "probability": 0.9215 + }, + { + "start": 12067.86, + "end": 12068.96, + "probability": 0.7879 + }, + { + "start": 12069.34, + "end": 12069.88, + "probability": 0.7802 + }, + { + "start": 12070.0, + "end": 12076.38, + "probability": 0.9664 + }, + { + "start": 12076.66, + "end": 12077.34, + "probability": 0.6744 + }, + { + "start": 12077.48, + "end": 12078.42, + "probability": 0.516 + }, + { + "start": 12078.56, + "end": 12079.6, + "probability": 0.9984 + }, + { + "start": 12080.72, + "end": 12082.63, + "probability": 0.6604 + }, + { + "start": 12083.86, + "end": 12086.68, + "probability": 0.6681 + }, + { + "start": 12087.2, + "end": 12089.6, + "probability": 0.9387 + }, + { + "start": 12090.5, + "end": 12092.16, + "probability": 0.9506 + }, + { + "start": 12092.66, + "end": 12096.26, + "probability": 0.9525 + }, + { + "start": 12097.22, + "end": 12099.9, + "probability": 0.6771 + }, + { + "start": 12100.96, + "end": 12103.37, + "probability": 0.9839 + }, + { + "start": 12104.84, + "end": 12107.58, + "probability": 0.9417 + }, + { + "start": 12108.9, + "end": 12112.14, + "probability": 0.9976 + }, + { + "start": 12114.4, + "end": 12115.08, + "probability": 0.5977 + }, + { + "start": 12115.14, + "end": 12118.26, + "probability": 0.9697 + }, + { + "start": 12118.98, + "end": 12121.32, + "probability": 0.9723 + }, + { + "start": 12121.32, + "end": 12124.66, + "probability": 0.9854 + }, + { + "start": 12125.06, + "end": 12129.84, + "probability": 0.916 + }, + { + "start": 12130.58, + "end": 12133.96, + "probability": 0.9757 + }, + { + "start": 12135.36, + "end": 12138.7, + "probability": 0.8779 + }, + { + "start": 12138.76, + "end": 12140.42, + "probability": 0.6326 + }, + { + "start": 12140.62, + "end": 12141.8, + "probability": 0.9385 + }, + { + "start": 12142.36, + "end": 12144.58, + "probability": 0.9469 + }, + { + "start": 12145.98, + "end": 12146.3, + "probability": 0.4907 + }, + { + "start": 12146.34, + "end": 12148.4, + "probability": 0.6965 + }, + { + "start": 12148.54, + "end": 12148.86, + "probability": 0.767 + }, + { + "start": 12149.06, + "end": 12152.38, + "probability": 0.8868 + }, + { + "start": 12152.48, + "end": 12155.54, + "probability": 0.5278 + }, + { + "start": 12155.56, + "end": 12158.18, + "probability": 0.6013 + }, + { + "start": 12158.18, + "end": 12158.18, + "probability": 0.3199 + }, + { + "start": 12158.26, + "end": 12160.16, + "probability": 0.5922 + }, + { + "start": 12160.7, + "end": 12162.64, + "probability": 0.5774 + }, + { + "start": 12162.7, + "end": 12163.14, + "probability": 0.3419 + }, + { + "start": 12163.18, + "end": 12165.48, + "probability": 0.988 + }, + { + "start": 12165.88, + "end": 12166.16, + "probability": 0.6921 + }, + { + "start": 12166.16, + "end": 12169.06, + "probability": 0.9962 + }, + { + "start": 12169.6, + "end": 12172.3, + "probability": 0.7732 + }, + { + "start": 12172.36, + "end": 12172.76, + "probability": 0.616 + }, + { + "start": 12172.8, + "end": 12173.38, + "probability": 0.6866 + }, + { + "start": 12173.38, + "end": 12177.92, + "probability": 0.8052 + }, + { + "start": 12178.48, + "end": 12178.66, + "probability": 0.1262 + }, + { + "start": 12178.74, + "end": 12182.28, + "probability": 0.7571 + }, + { + "start": 12182.3, + "end": 12184.14, + "probability": 0.933 + }, + { + "start": 12184.36, + "end": 12184.66, + "probability": 0.5321 + }, + { + "start": 12184.66, + "end": 12184.66, + "probability": 0.2281 + }, + { + "start": 12184.66, + "end": 12184.98, + "probability": 0.6585 + }, + { + "start": 12185.32, + "end": 12187.7, + "probability": 0.8796 + }, + { + "start": 12202.48, + "end": 12202.58, + "probability": 0.202 + }, + { + "start": 12202.58, + "end": 12205.02, + "probability": 0.7233 + }, + { + "start": 12206.32, + "end": 12207.74, + "probability": 0.8719 + }, + { + "start": 12207.88, + "end": 12208.9, + "probability": 0.688 + }, + { + "start": 12209.06, + "end": 12211.94, + "probability": 0.9565 + }, + { + "start": 12212.9, + "end": 12215.6, + "probability": 0.5529 + }, + { + "start": 12216.74, + "end": 12217.8, + "probability": 0.9683 + }, + { + "start": 12218.46, + "end": 12219.34, + "probability": 0.9944 + }, + { + "start": 12219.44, + "end": 12220.22, + "probability": 0.97 + }, + { + "start": 12220.62, + "end": 12223.34, + "probability": 0.6818 + }, + { + "start": 12223.72, + "end": 12224.54, + "probability": 0.9591 + }, + { + "start": 12225.26, + "end": 12226.78, + "probability": 0.962 + }, + { + "start": 12226.84, + "end": 12227.76, + "probability": 0.7919 + }, + { + "start": 12227.78, + "end": 12230.26, + "probability": 0.5651 + }, + { + "start": 12230.9, + "end": 12232.98, + "probability": 0.8973 + }, + { + "start": 12234.04, + "end": 12237.26, + "probability": 0.8475 + }, + { + "start": 12238.38, + "end": 12242.04, + "probability": 0.9857 + }, + { + "start": 12242.52, + "end": 12247.08, + "probability": 0.9798 + }, + { + "start": 12247.24, + "end": 12248.94, + "probability": 0.8962 + }, + { + "start": 12249.04, + "end": 12250.54, + "probability": 0.6991 + }, + { + "start": 12250.6, + "end": 12251.76, + "probability": 0.7928 + }, + { + "start": 12251.82, + "end": 12257.16, + "probability": 0.9791 + }, + { + "start": 12257.76, + "end": 12261.04, + "probability": 0.9971 + }, + { + "start": 12261.74, + "end": 12264.14, + "probability": 0.8372 + }, + { + "start": 12264.62, + "end": 12267.32, + "probability": 0.8934 + }, + { + "start": 12267.44, + "end": 12269.54, + "probability": 0.9674 + }, + { + "start": 12270.06, + "end": 12272.68, + "probability": 0.5975 + }, + { + "start": 12273.18, + "end": 12273.96, + "probability": 0.975 + }, + { + "start": 12274.18, + "end": 12275.52, + "probability": 0.8142 + }, + { + "start": 12276.24, + "end": 12278.16, + "probability": 0.9937 + }, + { + "start": 12278.28, + "end": 12279.74, + "probability": 0.8972 + }, + { + "start": 12280.86, + "end": 12286.3, + "probability": 0.9661 + }, + { + "start": 12286.4, + "end": 12288.12, + "probability": 0.3327 + }, + { + "start": 12289.64, + "end": 12291.66, + "probability": 0.9878 + }, + { + "start": 12291.8, + "end": 12293.28, + "probability": 0.4373 + }, + { + "start": 12299.28, + "end": 12299.76, + "probability": 0.323 + }, + { + "start": 12300.74, + "end": 12303.66, + "probability": 0.0357 + }, + { + "start": 12307.78, + "end": 12309.56, + "probability": 0.9556 + }, + { + "start": 12309.56, + "end": 12309.62, + "probability": 0.1956 + }, + { + "start": 12309.62, + "end": 12309.62, + "probability": 0.751 + }, + { + "start": 12309.62, + "end": 12310.18, + "probability": 0.0188 + }, + { + "start": 12313.06, + "end": 12313.6, + "probability": 0.246 + }, + { + "start": 12313.6, + "end": 12315.2, + "probability": 0.4977 + }, + { + "start": 12315.6, + "end": 12316.04, + "probability": 0.219 + }, + { + "start": 12316.18, + "end": 12318.02, + "probability": 0.9609 + }, + { + "start": 12318.1, + "end": 12320.94, + "probability": 0.5844 + }, + { + "start": 12321.02, + "end": 12324.48, + "probability": 0.9771 + }, + { + "start": 12324.64, + "end": 12326.34, + "probability": 0.3847 + }, + { + "start": 12327.02, + "end": 12331.3, + "probability": 0.9541 + }, + { + "start": 12331.42, + "end": 12337.62, + "probability": 0.9807 + }, + { + "start": 12337.74, + "end": 12340.5, + "probability": 0.3525 + }, + { + "start": 12340.64, + "end": 12342.5, + "probability": 0.95 + }, + { + "start": 12343.24, + "end": 12343.4, + "probability": 0.1174 + }, + { + "start": 12345.06, + "end": 12347.53, + "probability": 0.0603 + }, + { + "start": 12348.76, + "end": 12349.46, + "probability": 0.0168 + }, + { + "start": 12350.2, + "end": 12351.52, + "probability": 0.3169 + }, + { + "start": 12352.14, + "end": 12352.52, + "probability": 0.0665 + }, + { + "start": 12363.54, + "end": 12364.34, + "probability": 0.2644 + }, + { + "start": 12365.72, + "end": 12365.88, + "probability": 0.4144 + }, + { + "start": 12375.76, + "end": 12378.92, + "probability": 0.0477 + }, + { + "start": 12379.14, + "end": 12379.5, + "probability": 0.4796 + }, + { + "start": 12379.58, + "end": 12383.82, + "probability": 0.8683 + }, + { + "start": 12384.02, + "end": 12386.6, + "probability": 0.3394 + }, + { + "start": 12386.68, + "end": 12389.7, + "probability": 0.8511 + }, + { + "start": 12389.92, + "end": 12392.04, + "probability": 0.9616 + }, + { + "start": 12392.62, + "end": 12394.98, + "probability": 0.7032 + }, + { + "start": 12411.59, + "end": 12415.42, + "probability": 0.7594 + }, + { + "start": 12415.52, + "end": 12416.16, + "probability": 0.8752 + }, + { + "start": 12419.33, + "end": 12424.25, + "probability": 0.9814 + }, + { + "start": 12424.28, + "end": 12427.36, + "probability": 0.8351 + }, + { + "start": 12427.52, + "end": 12430.06, + "probability": 0.348 + }, + { + "start": 12430.5, + "end": 12435.46, + "probability": 0.9863 + }, + { + "start": 12436.6, + "end": 12437.8, + "probability": 0.7278 + }, + { + "start": 12438.46, + "end": 12440.14, + "probability": 0.6584 + }, + { + "start": 12442.92, + "end": 12444.72, + "probability": 0.6491 + }, + { + "start": 12446.14, + "end": 12454.8, + "probability": 0.8397 + }, + { + "start": 12455.94, + "end": 12459.38, + "probability": 0.5872 + }, + { + "start": 12462.18, + "end": 12465.58, + "probability": 0.0419 + }, + { + "start": 12466.28, + "end": 12469.86, + "probability": 0.1834 + }, + { + "start": 12470.0, + "end": 12472.73, + "probability": 0.0723 + }, + { + "start": 12473.64, + "end": 12483.62, + "probability": 0.3704 + }, + { + "start": 12484.16, + "end": 12489.77, + "probability": 0.7615 + }, + { + "start": 12490.58, + "end": 12491.62, + "probability": 0.871 + }, + { + "start": 12492.14, + "end": 12496.76, + "probability": 0.9854 + }, + { + "start": 12497.24, + "end": 12501.36, + "probability": 0.9805 + }, + { + "start": 12502.1, + "end": 12506.64, + "probability": 0.9873 + }, + { + "start": 12507.2, + "end": 12514.06, + "probability": 0.9009 + }, + { + "start": 12514.58, + "end": 12516.48, + "probability": 0.6785 + }, + { + "start": 12516.94, + "end": 12521.32, + "probability": 0.9553 + }, + { + "start": 12522.1, + "end": 12523.84, + "probability": 0.6588 + }, + { + "start": 12526.58, + "end": 12530.36, + "probability": 0.2254 + }, + { + "start": 12535.82, + "end": 12539.48, + "probability": 0.107 + }, + { + "start": 12546.42, + "end": 12546.48, + "probability": 0.3115 + }, + { + "start": 12551.02, + "end": 12553.38, + "probability": 0.9135 + }, + { + "start": 12553.48, + "end": 12554.3, + "probability": 0.4258 + }, + { + "start": 12554.64, + "end": 12555.04, + "probability": 0.2474 + }, + { + "start": 12570.72, + "end": 12575.14, + "probability": 0.2104 + }, + { + "start": 12579.16, + "end": 12580.2, + "probability": 0.0557 + }, + { + "start": 12581.28, + "end": 12581.28, + "probability": 0.3289 + }, + { + "start": 12582.76, + "end": 12584.58, + "probability": 0.0379 + }, + { + "start": 12589.3, + "end": 12590.9, + "probability": 0.0381 + }, + { + "start": 12594.14, + "end": 12594.74, + "probability": 0.169 + }, + { + "start": 12596.64, + "end": 12597.18, + "probability": 0.166 + }, + { + "start": 12597.18, + "end": 12598.0, + "probability": 0.0419 + }, + { + "start": 12598.0, + "end": 12598.04, + "probability": 0.2077 + }, + { + "start": 12607.18, + "end": 12608.46, + "probability": 0.1079 + }, + { + "start": 12608.46, + "end": 12608.46, + "probability": 0.3608 + }, + { + "start": 12608.46, + "end": 12609.56, + "probability": 0.3515 + }, + { + "start": 12612.16, + "end": 12613.22, + "probability": 0.3035 + }, + { + "start": 12622.79, + "end": 12625.04, + "probability": 0.0711 + }, + { + "start": 12625.04, + "end": 12625.04, + "probability": 0.0713 + }, + { + "start": 12625.04, + "end": 12626.19, + "probability": 0.1032 + }, + { + "start": 12627.66, + "end": 12628.54, + "probability": 0.1526 + }, + { + "start": 12629.0, + "end": 12629.0, + "probability": 0.0 + }, + { + "start": 12629.0, + "end": 12629.0, + "probability": 0.0 + }, + { + "start": 12629.0, + "end": 12629.0, + "probability": 0.0 + }, + { + "start": 12629.0, + "end": 12629.0, + "probability": 0.0 + }, + { + "start": 12629.0, + "end": 12629.0, + "probability": 0.0 + }, + { + "start": 12629.0, + "end": 12629.0, + "probability": 0.0 + }, + { + "start": 12629.0, + "end": 12629.0, + "probability": 0.0 + }, + { + "start": 12629.0, + "end": 12629.0, + "probability": 0.0 + }, + { + "start": 12629.0, + "end": 12629.0, + "probability": 0.0 + }, + { + "start": 12629.0, + "end": 12629.0, + "probability": 0.0 + }, + { + "start": 12629.0, + "end": 12629.0, + "probability": 0.0 + }, + { + "start": 12629.0, + "end": 12629.0, + "probability": 0.0 + }, + { + "start": 12629.0, + "end": 12629.0, + "probability": 0.0 + }, + { + "start": 12629.0, + "end": 12629.0, + "probability": 0.0 + }, + { + "start": 12629.0, + "end": 12629.0, + "probability": 0.0 + }, + { + "start": 12629.0, + "end": 12629.0, + "probability": 0.0 + }, + { + "start": 12629.0, + "end": 12629.0, + "probability": 0.0 + }, + { + "start": 12629.0, + "end": 12629.0, + "probability": 0.0 + }, + { + "start": 12629.0, + "end": 12629.0, + "probability": 0.0 + }, + { + "start": 12629.0, + "end": 12629.0, + "probability": 0.0 + }, + { + "start": 12629.0, + "end": 12629.0, + "probability": 0.0 + }, + { + "start": 12629.0, + "end": 12629.0, + "probability": 0.0 + }, + { + "start": 12629.0, + "end": 12629.0, + "probability": 0.0 + }, + { + "start": 12629.0, + "end": 12629.0, + "probability": 0.0 + }, + { + "start": 12629.0, + "end": 12629.0, + "probability": 0.0 + }, + { + "start": 12629.0, + "end": 12629.0, + "probability": 0.0 + }, + { + "start": 12630.14, + "end": 12630.62, + "probability": 0.008 + }, + { + "start": 12630.62, + "end": 12630.62, + "probability": 0.0717 + }, + { + "start": 12630.62, + "end": 12633.18, + "probability": 0.9688 + }, + { + "start": 12633.18, + "end": 12635.28, + "probability": 0.9639 + }, + { + "start": 12635.96, + "end": 12636.38, + "probability": 0.2165 + }, + { + "start": 12636.7, + "end": 12637.8, + "probability": 0.9092 + }, + { + "start": 12637.9, + "end": 12640.18, + "probability": 0.9978 + }, + { + "start": 12640.68, + "end": 12641.26, + "probability": 0.8953 + }, + { + "start": 12641.62, + "end": 12647.2, + "probability": 0.951 + }, + { + "start": 12648.32, + "end": 12651.38, + "probability": 0.9019 + }, + { + "start": 12652.04, + "end": 12653.16, + "probability": 0.9216 + }, + { + "start": 12653.42, + "end": 12655.34, + "probability": 0.9918 + }, + { + "start": 12655.82, + "end": 12658.7, + "probability": 0.9832 + }, + { + "start": 12659.26, + "end": 12660.44, + "probability": 0.9769 + }, + { + "start": 12660.56, + "end": 12661.64, + "probability": 0.8503 + }, + { + "start": 12662.04, + "end": 12662.74, + "probability": 0.7357 + }, + { + "start": 12662.9, + "end": 12664.48, + "probability": 0.648 + }, + { + "start": 12664.82, + "end": 12666.34, + "probability": 0.9685 + }, + { + "start": 12666.62, + "end": 12670.3, + "probability": 0.7106 + }, + { + "start": 12670.4, + "end": 12672.16, + "probability": 0.7264 + }, + { + "start": 12672.62, + "end": 12674.8, + "probability": 0.9051 + }, + { + "start": 12675.62, + "end": 12680.66, + "probability": 0.9243 + }, + { + "start": 12681.1, + "end": 12682.08, + "probability": 0.8572 + }, + { + "start": 12682.6, + "end": 12683.14, + "probability": 0.9047 + }, + { + "start": 12683.44, + "end": 12684.64, + "probability": 0.7934 + }, + { + "start": 12685.04, + "end": 12687.74, + "probability": 0.9902 + }, + { + "start": 12691.96, + "end": 12693.64, + "probability": 0.8865 + }, + { + "start": 12694.92, + "end": 12696.0, + "probability": 0.973 + }, + { + "start": 12697.08, + "end": 12701.62, + "probability": 0.8245 + }, + { + "start": 12702.84, + "end": 12703.36, + "probability": 0.5579 + }, + { + "start": 12704.52, + "end": 12708.58, + "probability": 0.9636 + }, + { + "start": 12708.84, + "end": 12709.4, + "probability": 0.9373 + }, + { + "start": 12710.88, + "end": 12715.76, + "probability": 0.9688 + }, + { + "start": 12716.38, + "end": 12719.62, + "probability": 0.9524 + }, + { + "start": 12720.12, + "end": 12721.74, + "probability": 0.9868 + }, + { + "start": 12722.5, + "end": 12723.94, + "probability": 0.6531 + }, + { + "start": 12724.6, + "end": 12727.0, + "probability": 0.9033 + }, + { + "start": 12727.74, + "end": 12729.34, + "probability": 0.948 + }, + { + "start": 12730.4, + "end": 12731.3, + "probability": 0.9264 + }, + { + "start": 12731.42, + "end": 12738.48, + "probability": 0.9909 + }, + { + "start": 12739.04, + "end": 12740.02, + "probability": 0.4229 + }, + { + "start": 12740.1, + "end": 12740.84, + "probability": 0.9407 + }, + { + "start": 12741.26, + "end": 12742.98, + "probability": 0.9774 + }, + { + "start": 12743.4, + "end": 12746.9, + "probability": 0.9279 + }, + { + "start": 12747.16, + "end": 12748.48, + "probability": 0.9634 + }, + { + "start": 12748.54, + "end": 12749.14, + "probability": 0.8549 + }, + { + "start": 12749.44, + "end": 12752.13, + "probability": 0.936 + }, + { + "start": 12752.9, + "end": 12754.92, + "probability": 0.9781 + }, + { + "start": 12756.2, + "end": 12759.69, + "probability": 0.9954 + }, + { + "start": 12759.84, + "end": 12763.1, + "probability": 0.9475 + }, + { + "start": 12763.28, + "end": 12763.9, + "probability": 0.511 + }, + { + "start": 12764.5, + "end": 12765.88, + "probability": 0.8295 + }, + { + "start": 12766.42, + "end": 12767.62, + "probability": 0.981 + }, + { + "start": 12768.0, + "end": 12769.38, + "probability": 0.9446 + }, + { + "start": 12769.94, + "end": 12774.04, + "probability": 0.6496 + }, + { + "start": 12774.06, + "end": 12775.32, + "probability": 0.9688 + }, + { + "start": 12778.0, + "end": 12778.87, + "probability": 0.9436 + }, + { + "start": 12778.96, + "end": 12781.76, + "probability": 0.9832 + }, + { + "start": 12782.32, + "end": 12784.98, + "probability": 0.9937 + }, + { + "start": 12785.78, + "end": 12786.78, + "probability": 0.9945 + }, + { + "start": 12787.3, + "end": 12787.9, + "probability": 0.2419 + }, + { + "start": 12788.18, + "end": 12790.6, + "probability": 0.9274 + }, + { + "start": 12794.84, + "end": 12798.86, + "probability": 0.9356 + }, + { + "start": 12799.76, + "end": 12800.86, + "probability": 0.9092 + }, + { + "start": 12801.66, + "end": 12804.68, + "probability": 0.9944 + }, + { + "start": 12805.36, + "end": 12808.42, + "probability": 0.9338 + }, + { + "start": 12808.46, + "end": 12809.5, + "probability": 0.7573 + }, + { + "start": 12809.84, + "end": 12810.56, + "probability": 0.765 + }, + { + "start": 12812.36, + "end": 12816.6, + "probability": 0.7827 + }, + { + "start": 12817.46, + "end": 12823.58, + "probability": 0.9654 + }, + { + "start": 12824.1, + "end": 12827.94, + "probability": 0.9713 + }, + { + "start": 12829.3, + "end": 12834.94, + "probability": 0.9894 + }, + { + "start": 12835.88, + "end": 12839.06, + "probability": 0.9977 + }, + { + "start": 12839.14, + "end": 12840.22, + "probability": 0.9646 + }, + { + "start": 12841.22, + "end": 12842.16, + "probability": 0.9188 + }, + { + "start": 12843.2, + "end": 12843.78, + "probability": 0.9112 + }, + { + "start": 12844.18, + "end": 12846.6, + "probability": 0.9961 + }, + { + "start": 12847.76, + "end": 12848.24, + "probability": 0.8037 + }, + { + "start": 12848.98, + "end": 12851.86, + "probability": 0.7572 + }, + { + "start": 12852.4, + "end": 12853.52, + "probability": 0.6891 + }, + { + "start": 12854.1, + "end": 12855.56, + "probability": 0.7717 + }, + { + "start": 12859.94, + "end": 12861.88, + "probability": 0.8495 + }, + { + "start": 12862.0, + "end": 12864.66, + "probability": 0.9789 + }, + { + "start": 12865.14, + "end": 12867.32, + "probability": 0.9797 + }, + { + "start": 12867.4, + "end": 12868.78, + "probability": 0.9785 + }, + { + "start": 12869.22, + "end": 12871.08, + "probability": 0.9966 + }, + { + "start": 12871.6, + "end": 12872.6, + "probability": 0.8279 + }, + { + "start": 12873.2, + "end": 12873.78, + "probability": 0.2944 + }, + { + "start": 12874.22, + "end": 12875.28, + "probability": 0.866 + }, + { + "start": 12876.48, + "end": 12878.56, + "probability": 0.9934 + }, + { + "start": 12879.08, + "end": 12881.84, + "probability": 0.9755 + }, + { + "start": 12882.14, + "end": 12884.6, + "probability": 0.9769 + }, + { + "start": 12885.08, + "end": 12885.98, + "probability": 0.9424 + }, + { + "start": 12886.26, + "end": 12889.34, + "probability": 0.9912 + }, + { + "start": 12889.76, + "end": 12890.94, + "probability": 0.9792 + }, + { + "start": 12891.54, + "end": 12895.8, + "probability": 0.8866 + }, + { + "start": 12896.14, + "end": 12899.3, + "probability": 0.9615 + }, + { + "start": 12899.76, + "end": 12908.06, + "probability": 0.9842 + }, + { + "start": 12908.18, + "end": 12908.84, + "probability": 0.8503 + }, + { + "start": 12909.4, + "end": 12910.66, + "probability": 0.9575 + }, + { + "start": 12911.22, + "end": 12911.94, + "probability": 0.7994 + }, + { + "start": 12912.04, + "end": 12915.9, + "probability": 0.9749 + }, + { + "start": 12916.26, + "end": 12916.8, + "probability": 0.9692 + }, + { + "start": 12917.56, + "end": 12922.9, + "probability": 0.9933 + }, + { + "start": 12923.36, + "end": 12925.5, + "probability": 0.9543 + }, + { + "start": 12926.16, + "end": 12929.22, + "probability": 0.8258 + }, + { + "start": 12929.56, + "end": 12932.24, + "probability": 0.9052 + }, + { + "start": 12932.72, + "end": 12937.86, + "probability": 0.9403 + }, + { + "start": 12937.86, + "end": 12938.35, + "probability": 0.6918 + }, + { + "start": 12939.0, + "end": 12941.62, + "probability": 0.9833 + }, + { + "start": 12941.76, + "end": 12942.74, + "probability": 0.7556 + }, + { + "start": 12943.18, + "end": 12948.94, + "probability": 0.9087 + }, + { + "start": 12949.02, + "end": 12950.18, + "probability": 0.5196 + }, + { + "start": 12950.44, + "end": 12951.22, + "probability": 0.8745 + }, + { + "start": 12951.46, + "end": 12953.76, + "probability": 0.9764 + }, + { + "start": 12953.96, + "end": 12957.06, + "probability": 0.9071 + }, + { + "start": 12958.08, + "end": 12962.14, + "probability": 0.9679 + }, + { + "start": 12962.24, + "end": 12963.5, + "probability": 0.6595 + }, + { + "start": 12963.58, + "end": 12964.0, + "probability": 0.6315 + }, + { + "start": 12964.08, + "end": 12964.36, + "probability": 0.3219 + }, + { + "start": 12964.64, + "end": 12965.82, + "probability": 0.9583 + }, + { + "start": 12965.9, + "end": 12967.16, + "probability": 0.6711 + }, + { + "start": 12967.54, + "end": 12969.98, + "probability": 0.9212 + }, + { + "start": 12970.02, + "end": 12973.72, + "probability": 0.9712 + }, + { + "start": 12974.1, + "end": 12975.34, + "probability": 0.7497 + }, + { + "start": 12975.94, + "end": 12979.18, + "probability": 0.9764 + }, + { + "start": 12979.96, + "end": 12981.66, + "probability": 0.8553 + }, + { + "start": 12982.38, + "end": 12983.46, + "probability": 0.8065 + }, + { + "start": 12984.18, + "end": 12987.08, + "probability": 0.9808 + }, + { + "start": 12987.42, + "end": 12989.48, + "probability": 0.9864 + }, + { + "start": 12989.8, + "end": 12990.74, + "probability": 0.6719 + }, + { + "start": 12993.78, + "end": 12996.0, + "probability": 0.689 + }, + { + "start": 12997.22, + "end": 13001.32, + "probability": 0.8069 + }, + { + "start": 13002.6, + "end": 13004.38, + "probability": 0.6731 + }, + { + "start": 13005.14, + "end": 13011.62, + "probability": 0.9932 + }, + { + "start": 13011.94, + "end": 13014.64, + "probability": 0.9858 + }, + { + "start": 13014.68, + "end": 13017.38, + "probability": 0.8979 + }, + { + "start": 13017.8, + "end": 13021.66, + "probability": 0.986 + }, + { + "start": 13021.92, + "end": 13025.1, + "probability": 0.9427 + }, + { + "start": 13025.18, + "end": 13026.04, + "probability": 0.8793 + }, + { + "start": 13026.18, + "end": 13029.16, + "probability": 0.7701 + }, + { + "start": 13029.68, + "end": 13033.16, + "probability": 0.8326 + }, + { + "start": 13034.22, + "end": 13036.68, + "probability": 0.8983 + }, + { + "start": 13037.12, + "end": 13039.48, + "probability": 0.9933 + }, + { + "start": 13040.16, + "end": 13041.92, + "probability": 0.7756 + }, + { + "start": 13042.24, + "end": 13044.52, + "probability": 0.9924 + }, + { + "start": 13046.2, + "end": 13049.12, + "probability": 0.9325 + }, + { + "start": 13050.64, + "end": 13053.94, + "probability": 0.8054 + }, + { + "start": 13054.5, + "end": 13057.28, + "probability": 0.8325 + }, + { + "start": 13061.52, + "end": 13062.84, + "probability": 0.9751 + }, + { + "start": 13063.78, + "end": 13064.78, + "probability": 0.9094 + }, + { + "start": 13066.08, + "end": 13066.96, + "probability": 0.7061 + }, + { + "start": 13067.28, + "end": 13070.82, + "probability": 0.9795 + }, + { + "start": 13071.26, + "end": 13074.04, + "probability": 0.9703 + }, + { + "start": 13074.12, + "end": 13074.98, + "probability": 0.8683 + }, + { + "start": 13075.12, + "end": 13076.08, + "probability": 0.9307 + }, + { + "start": 13076.76, + "end": 13079.38, + "probability": 0.9939 + }, + { + "start": 13080.72, + "end": 13082.3, + "probability": 0.9348 + }, + { + "start": 13082.82, + "end": 13085.66, + "probability": 0.9183 + }, + { + "start": 13085.72, + "end": 13086.88, + "probability": 0.7084 + }, + { + "start": 13087.24, + "end": 13088.84, + "probability": 0.9482 + }, + { + "start": 13089.16, + "end": 13089.46, + "probability": 0.7638 + }, + { + "start": 13090.0, + "end": 13093.08, + "probability": 0.6062 + }, + { + "start": 13094.52, + "end": 13095.22, + "probability": 0.3984 + }, + { + "start": 13095.24, + "end": 13095.52, + "probability": 0.8422 + }, + { + "start": 13095.56, + "end": 13096.46, + "probability": 0.9976 + }, + { + "start": 13096.96, + "end": 13099.82, + "probability": 0.9893 + }, + { + "start": 13100.44, + "end": 13105.88, + "probability": 0.9325 + }, + { + "start": 13106.58, + "end": 13108.1, + "probability": 0.9378 + }, + { + "start": 13108.48, + "end": 13113.14, + "probability": 0.9968 + }, + { + "start": 13113.32, + "end": 13114.66, + "probability": 0.4286 + }, + { + "start": 13114.94, + "end": 13115.1, + "probability": 0.0736 + }, + { + "start": 13115.1, + "end": 13116.84, + "probability": 0.9586 + }, + { + "start": 13116.84, + "end": 13117.64, + "probability": 0.5167 + }, + { + "start": 13117.72, + "end": 13119.92, + "probability": 0.9663 + }, + { + "start": 13119.92, + "end": 13120.76, + "probability": 0.8016 + }, + { + "start": 13120.76, + "end": 13121.3, + "probability": 0.5652 + }, + { + "start": 13121.3, + "end": 13122.46, + "probability": 0.5698 + }, + { + "start": 13122.54, + "end": 13122.82, + "probability": 0.6644 + }, + { + "start": 13123.52, + "end": 13125.26, + "probability": 0.8704 + }, + { + "start": 13126.84, + "end": 13128.52, + "probability": 0.8671 + }, + { + "start": 13128.62, + "end": 13128.64, + "probability": 0.3235 + }, + { + "start": 13128.64, + "end": 13129.21, + "probability": 0.3293 + }, + { + "start": 13130.16, + "end": 13131.8, + "probability": 0.1833 + }, + { + "start": 13131.8, + "end": 13131.8, + "probability": 0.411 + }, + { + "start": 13131.8, + "end": 13132.62, + "probability": 0.3983 + }, + { + "start": 13132.68, + "end": 13137.62, + "probability": 0.9828 + }, + { + "start": 13137.68, + "end": 13138.36, + "probability": 0.7468 + }, + { + "start": 13138.36, + "end": 13138.96, + "probability": 0.7404 + }, + { + "start": 13139.1, + "end": 13144.1, + "probability": 0.9802 + }, + { + "start": 13144.68, + "end": 13147.2, + "probability": 0.8183 + }, + { + "start": 13147.64, + "end": 13151.88, + "probability": 0.8724 + }, + { + "start": 13161.6, + "end": 13161.8, + "probability": 0.7587 + }, + { + "start": 13161.82, + "end": 13163.54, + "probability": 0.7764 + }, + { + "start": 13165.08, + "end": 13167.48, + "probability": 0.6414 + }, + { + "start": 13167.62, + "end": 13168.68, + "probability": 0.7181 + }, + { + "start": 13168.78, + "end": 13169.22, + "probability": 0.8461 + }, + { + "start": 13169.34, + "end": 13169.54, + "probability": 0.7861 + }, + { + "start": 13170.52, + "end": 13173.32, + "probability": 0.9958 + }, + { + "start": 13174.62, + "end": 13177.3, + "probability": 0.9302 + }, + { + "start": 13177.88, + "end": 13180.02, + "probability": 0.859 + }, + { + "start": 13180.08, + "end": 13181.7, + "probability": 0.8393 + }, + { + "start": 13182.2, + "end": 13183.16, + "probability": 0.8833 + }, + { + "start": 13183.26, + "end": 13184.48, + "probability": 0.8546 + }, + { + "start": 13185.76, + "end": 13190.0, + "probability": 0.8697 + }, + { + "start": 13190.0, + "end": 13193.44, + "probability": 0.9598 + }, + { + "start": 13194.54, + "end": 13195.96, + "probability": 0.5412 + }, + { + "start": 13196.34, + "end": 13199.26, + "probability": 0.9917 + }, + { + "start": 13200.3, + "end": 13201.32, + "probability": 0.9707 + }, + { + "start": 13202.24, + "end": 13208.1, + "probability": 0.982 + }, + { + "start": 13208.54, + "end": 13212.12, + "probability": 0.98 + }, + { + "start": 13212.12, + "end": 13216.1, + "probability": 0.9777 + }, + { + "start": 13216.64, + "end": 13217.74, + "probability": 0.1549 + }, + { + "start": 13218.1, + "end": 13219.96, + "probability": 0.7887 + }, + { + "start": 13220.26, + "end": 13221.28, + "probability": 0.8966 + }, + { + "start": 13221.34, + "end": 13221.82, + "probability": 0.7822 + }, + { + "start": 13222.54, + "end": 13224.12, + "probability": 0.6824 + }, + { + "start": 13224.88, + "end": 13227.42, + "probability": 0.9956 + }, + { + "start": 13227.88, + "end": 13230.0, + "probability": 0.9642 + }, + { + "start": 13230.34, + "end": 13233.82, + "probability": 0.9569 + }, + { + "start": 13234.32, + "end": 13235.82, + "probability": 0.9111 + }, + { + "start": 13236.98, + "end": 13238.9, + "probability": 0.9833 + }, + { + "start": 13239.08, + "end": 13244.16, + "probability": 0.999 + }, + { + "start": 13244.36, + "end": 13246.22, + "probability": 0.8171 + }, + { + "start": 13248.29, + "end": 13253.44, + "probability": 0.9678 + }, + { + "start": 13253.48, + "end": 13254.96, + "probability": 0.9432 + }, + { + "start": 13255.18, + "end": 13255.54, + "probability": 0.8144 + }, + { + "start": 13256.2, + "end": 13259.96, + "probability": 0.9391 + }, + { + "start": 13260.14, + "end": 13261.1, + "probability": 0.7195 + }, + { + "start": 13262.4, + "end": 13266.64, + "probability": 0.9585 + }, + { + "start": 13266.82, + "end": 13271.48, + "probability": 0.839 + }, + { + "start": 13272.5, + "end": 13275.04, + "probability": 0.9019 + }, + { + "start": 13275.64, + "end": 13278.12, + "probability": 0.9966 + }, + { + "start": 13278.12, + "end": 13280.74, + "probability": 0.9992 + }, + { + "start": 13281.74, + "end": 13284.36, + "probability": 0.8444 + }, + { + "start": 13289.32, + "end": 13291.06, + "probability": 0.5212 + }, + { + "start": 13291.3, + "end": 13293.92, + "probability": 0.7679 + }, + { + "start": 13294.04, + "end": 13294.75, + "probability": 0.1526 + }, + { + "start": 13295.64, + "end": 13297.08, + "probability": 0.0913 + }, + { + "start": 13299.46, + "end": 13300.14, + "probability": 0.0249 + }, + { + "start": 13301.03, + "end": 13302.58, + "probability": 0.016 + }, + { + "start": 13303.24, + "end": 13305.8, + "probability": 0.0729 + }, + { + "start": 13307.3, + "end": 13310.5, + "probability": 0.0966 + }, + { + "start": 13311.58, + "end": 13315.28, + "probability": 0.0251 + }, + { + "start": 13316.16, + "end": 13316.66, + "probability": 0.0718 + }, + { + "start": 13318.88, + "end": 13319.6, + "probability": 0.1792 + }, + { + "start": 13320.92, + "end": 13320.94, + "probability": 0.2109 + }, + { + "start": 13321.54, + "end": 13321.54, + "probability": 0.5112 + }, + { + "start": 13321.62, + "end": 13322.08, + "probability": 0.0052 + }, + { + "start": 13322.51, + "end": 13326.92, + "probability": 0.1019 + }, + { + "start": 13330.14, + "end": 13330.76, + "probability": 0.7822 + }, + { + "start": 13331.8, + "end": 13334.32, + "probability": 0.0524 + }, + { + "start": 13334.98, + "end": 13337.2, + "probability": 0.161 + }, + { + "start": 13348.52, + "end": 13352.7, + "probability": 0.0092 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13381.1, + "end": 13381.62, + "probability": 0.2338 + }, + { + "start": 13386.5, + "end": 13389.48, + "probability": 0.0496 + }, + { + "start": 13389.48, + "end": 13391.34, + "probability": 0.0688 + }, + { + "start": 13391.36, + "end": 13396.38, + "probability": 0.1256 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13502.0, + "probability": 0.0 + }, + { + "start": 13502.0, + "end": 13504.06, + "probability": 0.8286 + }, + { + "start": 13504.18, + "end": 13508.38, + "probability": 0.8581 + }, + { + "start": 13508.7, + "end": 13513.28, + "probability": 0.9703 + }, + { + "start": 13516.54, + "end": 13522.84, + "probability": 0.9702 + }, + { + "start": 13523.82, + "end": 13525.44, + "probability": 0.7518 + }, + { + "start": 13526.52, + "end": 13530.5, + "probability": 0.9984 + }, + { + "start": 13531.4, + "end": 13534.04, + "probability": 0.9822 + }, + { + "start": 13534.87, + "end": 13539.02, + "probability": 0.9805 + }, + { + "start": 13540.56, + "end": 13542.58, + "probability": 0.7999 + }, + { + "start": 13543.34, + "end": 13550.4, + "probability": 0.973 + }, + { + "start": 13554.04, + "end": 13558.08, + "probability": 0.9863 + }, + { + "start": 13558.22, + "end": 13561.0, + "probability": 0.9985 + }, + { + "start": 13562.18, + "end": 13564.36, + "probability": 0.9718 + }, + { + "start": 13565.04, + "end": 13571.14, + "probability": 0.9703 + }, + { + "start": 13572.24, + "end": 13575.04, + "probability": 0.955 + }, + { + "start": 13575.4, + "end": 13577.06, + "probability": 0.8648 + }, + { + "start": 13577.4, + "end": 13580.08, + "probability": 0.6049 + }, + { + "start": 13580.42, + "end": 13582.18, + "probability": 0.8413 + }, + { + "start": 13582.62, + "end": 13585.08, + "probability": 0.9628 + }, + { + "start": 13585.58, + "end": 13590.66, + "probability": 0.9465 + }, + { + "start": 13591.14, + "end": 13592.12, + "probability": 0.4901 + }, + { + "start": 13592.9, + "end": 13596.24, + "probability": 0.8002 + }, + { + "start": 13596.78, + "end": 13599.72, + "probability": 0.6837 + }, + { + "start": 13599.94, + "end": 13601.36, + "probability": 0.9771 + }, + { + "start": 13602.08, + "end": 13606.0, + "probability": 0.8404 + }, + { + "start": 13606.56, + "end": 13607.9, + "probability": 0.751 + }, + { + "start": 13608.06, + "end": 13610.38, + "probability": 0.9817 + }, + { + "start": 13610.78, + "end": 13613.94, + "probability": 0.9803 + }, + { + "start": 13615.08, + "end": 13619.14, + "probability": 0.9709 + }, + { + "start": 13620.64, + "end": 13621.42, + "probability": 0.7911 + }, + { + "start": 13621.8, + "end": 13623.5, + "probability": 0.9825 + }, + { + "start": 13623.6, + "end": 13624.58, + "probability": 0.8569 + }, + { + "start": 13624.66, + "end": 13625.48, + "probability": 0.842 + }, + { + "start": 13626.92, + "end": 13629.46, + "probability": 0.9995 + }, + { + "start": 13629.56, + "end": 13630.98, + "probability": 0.9047 + }, + { + "start": 13631.08, + "end": 13632.22, + "probability": 0.4525 + }, + { + "start": 13632.22, + "end": 13634.7, + "probability": 0.9937 + }, + { + "start": 13635.3, + "end": 13636.38, + "probability": 0.7677 + }, + { + "start": 13636.5, + "end": 13637.74, + "probability": 0.6592 + }, + { + "start": 13638.16, + "end": 13639.02, + "probability": 0.8783 + }, + { + "start": 13639.1, + "end": 13640.3, + "probability": 0.7223 + }, + { + "start": 13640.32, + "end": 13641.4, + "probability": 0.9181 + }, + { + "start": 13642.6, + "end": 13644.22, + "probability": 0.8587 + }, + { + "start": 13644.24, + "end": 13646.06, + "probability": 0.9077 + }, + { + "start": 13646.5, + "end": 13648.4, + "probability": 0.8927 + }, + { + "start": 13648.5, + "end": 13649.74, + "probability": 0.7437 + }, + { + "start": 13650.68, + "end": 13654.08, + "probability": 0.9823 + }, + { + "start": 13655.34, + "end": 13656.0, + "probability": 0.8232 + }, + { + "start": 13656.4, + "end": 13659.02, + "probability": 0.8979 + }, + { + "start": 13659.02, + "end": 13662.86, + "probability": 0.9816 + }, + { + "start": 13663.98, + "end": 13665.0, + "probability": 0.8627 + }, + { + "start": 13665.68, + "end": 13668.4, + "probability": 0.9804 + }, + { + "start": 13669.1, + "end": 13670.68, + "probability": 0.8853 + }, + { + "start": 13670.9, + "end": 13675.44, + "probability": 0.9071 + }, + { + "start": 13675.66, + "end": 13676.46, + "probability": 0.6978 + }, + { + "start": 13676.56, + "end": 13676.96, + "probability": 0.7676 + }, + { + "start": 13677.02, + "end": 13680.64, + "probability": 0.9436 + }, + { + "start": 13680.78, + "end": 13682.76, + "probability": 0.7943 + }, + { + "start": 13683.6, + "end": 13686.74, + "probability": 0.822 + }, + { + "start": 13686.74, + "end": 13689.56, + "probability": 0.9985 + }, + { + "start": 13689.62, + "end": 13692.22, + "probability": 0.9834 + }, + { + "start": 13693.26, + "end": 13694.7, + "probability": 0.7829 + }, + { + "start": 13694.8, + "end": 13697.05, + "probability": 0.9719 + }, + { + "start": 13697.68, + "end": 13702.0, + "probability": 0.8412 + }, + { + "start": 13702.58, + "end": 13709.26, + "probability": 0.8556 + }, + { + "start": 13709.66, + "end": 13710.16, + "probability": 0.6779 + }, + { + "start": 13710.26, + "end": 13710.54, + "probability": 0.8098 + }, + { + "start": 13710.64, + "end": 13712.06, + "probability": 0.8203 + }, + { + "start": 13712.44, + "end": 13717.24, + "probability": 0.9788 + }, + { + "start": 13717.32, + "end": 13720.74, + "probability": 0.8157 + }, + { + "start": 13720.84, + "end": 13723.84, + "probability": 0.8437 + }, + { + "start": 13723.94, + "end": 13725.72, + "probability": 0.9716 + }, + { + "start": 13726.5, + "end": 13728.32, + "probability": 0.7734 + }, + { + "start": 13728.9, + "end": 13730.58, + "probability": 0.998 + }, + { + "start": 13730.66, + "end": 13733.28, + "probability": 0.6653 + }, + { + "start": 13733.34, + "end": 13735.82, + "probability": 0.5307 + }, + { + "start": 13736.08, + "end": 13737.05, + "probability": 0.0253 + }, + { + "start": 13737.78, + "end": 13737.94, + "probability": 0.3711 + }, + { + "start": 13738.1, + "end": 13741.94, + "probability": 0.8575 + }, + { + "start": 13742.66, + "end": 13744.08, + "probability": 0.8287 + }, + { + "start": 13744.48, + "end": 13744.88, + "probability": 0.6135 + }, + { + "start": 13745.02, + "end": 13746.06, + "probability": 0.4707 + }, + { + "start": 13746.08, + "end": 13747.92, + "probability": 0.7307 + }, + { + "start": 13748.0, + "end": 13748.94, + "probability": 0.8467 + }, + { + "start": 13749.1, + "end": 13750.76, + "probability": 0.9336 + }, + { + "start": 13750.82, + "end": 13751.96, + "probability": 0.7823 + }, + { + "start": 13752.06, + "end": 13753.46, + "probability": 0.0241 + }, + { + "start": 13753.46, + "end": 13754.32, + "probability": 0.4673 + }, + { + "start": 13754.44, + "end": 13758.58, + "probability": 0.7905 + }, + { + "start": 13758.96, + "end": 13762.24, + "probability": 0.7343 + }, + { + "start": 13762.74, + "end": 13764.29, + "probability": 0.7792 + }, + { + "start": 13765.04, + "end": 13768.24, + "probability": 0.978 + }, + { + "start": 13768.6, + "end": 13771.86, + "probability": 0.8387 + }, + { + "start": 13771.86, + "end": 13776.34, + "probability": 0.9611 + }, + { + "start": 13776.9, + "end": 13777.16, + "probability": 0.6549 + }, + { + "start": 13777.3, + "end": 13777.94, + "probability": 0.7041 + }, + { + "start": 13778.12, + "end": 13778.9, + "probability": 0.6851 + }, + { + "start": 13779.02, + "end": 13781.76, + "probability": 0.9728 + }, + { + "start": 13782.12, + "end": 13782.4, + "probability": 0.7399 + }, + { + "start": 13782.5, + "end": 13785.38, + "probability": 0.9941 + }, + { + "start": 13785.38, + "end": 13788.12, + "probability": 0.9984 + }, + { + "start": 13788.32, + "end": 13789.12, + "probability": 0.6742 + }, + { + "start": 13789.22, + "end": 13790.58, + "probability": 0.9543 + }, + { + "start": 13791.16, + "end": 13792.16, + "probability": 0.779 + }, + { + "start": 13792.9, + "end": 13795.32, + "probability": 0.949 + }, + { + "start": 13795.42, + "end": 13796.78, + "probability": 0.7816 + }, + { + "start": 13796.84, + "end": 13797.94, + "probability": 0.7115 + }, + { + "start": 13798.08, + "end": 13801.18, + "probability": 0.8424 + }, + { + "start": 13801.44, + "end": 13803.4, + "probability": 0.7654 + }, + { + "start": 13803.74, + "end": 13807.7, + "probability": 0.9819 + }, + { + "start": 13808.28, + "end": 13811.12, + "probability": 0.9375 + }, + { + "start": 13811.62, + "end": 13813.92, + "probability": 0.7491 + }, + { + "start": 13814.44, + "end": 13817.08, + "probability": 0.9101 + }, + { + "start": 13818.74, + "end": 13821.0, + "probability": 0.9075 + }, + { + "start": 13821.04, + "end": 13822.0, + "probability": 0.65 + }, + { + "start": 13822.06, + "end": 13822.46, + "probability": 0.5185 + }, + { + "start": 13822.88, + "end": 13824.7, + "probability": 0.9951 + }, + { + "start": 13825.46, + "end": 13825.8, + "probability": 0.4515 + }, + { + "start": 13826.02, + "end": 13828.89, + "probability": 0.9783 + }, + { + "start": 13828.94, + "end": 13832.28, + "probability": 0.7607 + }, + { + "start": 13833.06, + "end": 13835.98, + "probability": 0.8554 + }, + { + "start": 13836.46, + "end": 13840.0, + "probability": 0.8617 + }, + { + "start": 13840.0, + "end": 13842.76, + "probability": 0.9261 + }, + { + "start": 13843.26, + "end": 13844.05, + "probability": 0.9814 + }, + { + "start": 13844.54, + "end": 13845.16, + "probability": 0.6204 + }, + { + "start": 13845.24, + "end": 13846.16, + "probability": 0.8486 + }, + { + "start": 13846.72, + "end": 13847.34, + "probability": 0.3173 + }, + { + "start": 13847.96, + "end": 13849.42, + "probability": 0.9978 + }, + { + "start": 13849.92, + "end": 13852.98, + "probability": 0.9618 + }, + { + "start": 13853.12, + "end": 13855.86, + "probability": 0.9471 + }, + { + "start": 13855.92, + "end": 13857.08, + "probability": 0.9506 + }, + { + "start": 13857.16, + "end": 13857.78, + "probability": 0.9939 + }, + { + "start": 13857.96, + "end": 13859.16, + "probability": 0.7531 + }, + { + "start": 13859.66, + "end": 13864.36, + "probability": 0.9313 + }, + { + "start": 13864.36, + "end": 13867.58, + "probability": 0.9971 + }, + { + "start": 13867.82, + "end": 13870.52, + "probability": 0.9867 + }, + { + "start": 13871.4, + "end": 13872.74, + "probability": 0.7925 + }, + { + "start": 13873.18, + "end": 13876.08, + "probability": 0.9596 + }, + { + "start": 13876.84, + "end": 13879.8, + "probability": 0.9946 + }, + { + "start": 13879.86, + "end": 13883.73, + "probability": 0.6524 + }, + { + "start": 13883.9, + "end": 13886.4, + "probability": 0.9093 + }, + { + "start": 13886.58, + "end": 13887.98, + "probability": 0.9873 + }, + { + "start": 13888.7, + "end": 13889.16, + "probability": 0.5048 + }, + { + "start": 13889.32, + "end": 13889.92, + "probability": 0.3161 + }, + { + "start": 13890.28, + "end": 13890.62, + "probability": 0.6488 + }, + { + "start": 13890.64, + "end": 13891.56, + "probability": 0.8125 + }, + { + "start": 13891.58, + "end": 13892.0, + "probability": 0.7854 + }, + { + "start": 13892.02, + "end": 13893.66, + "probability": 0.7304 + }, + { + "start": 13893.8, + "end": 13896.1, + "probability": 0.8214 + }, + { + "start": 13896.44, + "end": 13897.9, + "probability": 0.6652 + }, + { + "start": 13898.76, + "end": 13901.2, + "probability": 0.7286 + }, + { + "start": 13901.78, + "end": 13905.12, + "probability": 0.9354 + }, + { + "start": 13905.3, + "end": 13905.72, + "probability": 0.981 + }, + { + "start": 13906.18, + "end": 13906.67, + "probability": 0.9362 + }, + { + "start": 13907.48, + "end": 13912.38, + "probability": 0.9912 + }, + { + "start": 13912.88, + "end": 13917.76, + "probability": 0.9946 + }, + { + "start": 13918.3, + "end": 13921.38, + "probability": 0.9908 + }, + { + "start": 13921.76, + "end": 13923.42, + "probability": 0.9521 + }, + { + "start": 13923.54, + "end": 13923.96, + "probability": 0.7607 + }, + { + "start": 13925.3, + "end": 13926.04, + "probability": 0.9575 + }, + { + "start": 13927.42, + "end": 13929.68, + "probability": 0.923 + }, + { + "start": 13930.2, + "end": 13936.64, + "probability": 0.972 + }, + { + "start": 13937.08, + "end": 13939.76, + "probability": 0.9562 + }, + { + "start": 13939.84, + "end": 13944.08, + "probability": 0.9048 + }, + { + "start": 13944.14, + "end": 13948.52, + "probability": 0.7954 + }, + { + "start": 13949.06, + "end": 13952.42, + "probability": 0.8798 + }, + { + "start": 13952.6, + "end": 13955.8, + "probability": 0.9846 + }, + { + "start": 13956.24, + "end": 13959.48, + "probability": 0.975 + }, + { + "start": 13959.86, + "end": 13960.42, + "probability": 0.5992 + }, + { + "start": 13963.48, + "end": 13963.8, + "probability": 0.1784 + }, + { + "start": 13963.8, + "end": 13966.54, + "probability": 0.6184 + }, + { + "start": 13966.62, + "end": 13967.47, + "probability": 0.937 + }, + { + "start": 13967.88, + "end": 13969.04, + "probability": 0.7637 + }, + { + "start": 13969.87, + "end": 13972.38, + "probability": 0.6484 + }, + { + "start": 13972.52, + "end": 13973.98, + "probability": 0.9854 + }, + { + "start": 13974.34, + "end": 13975.26, + "probability": 0.8339 + }, + { + "start": 13975.48, + "end": 13977.42, + "probability": 0.8329 + }, + { + "start": 13977.56, + "end": 13979.86, + "probability": 0.849 + }, + { + "start": 13980.48, + "end": 13984.26, + "probability": 0.9658 + }, + { + "start": 13984.26, + "end": 13986.94, + "probability": 0.991 + }, + { + "start": 13987.46, + "end": 13989.22, + "probability": 0.8333 + }, + { + "start": 13989.36, + "end": 13991.28, + "probability": 0.7389 + }, + { + "start": 13991.58, + "end": 13994.9, + "probability": 0.9541 + }, + { + "start": 13996.16, + "end": 13997.5, + "probability": 0.2601 + }, + { + "start": 13997.52, + "end": 13999.22, + "probability": 0.5818 + }, + { + "start": 13999.46, + "end": 14003.7, + "probability": 0.9708 + }, + { + "start": 14004.2, + "end": 14008.68, + "probability": 0.9596 + }, + { + "start": 14009.06, + "end": 14013.08, + "probability": 0.9531 + }, + { + "start": 14013.58, + "end": 14015.2, + "probability": 0.8295 + }, + { + "start": 14015.48, + "end": 14016.64, + "probability": 0.7213 + }, + { + "start": 14016.78, + "end": 14017.48, + "probability": 0.9563 + }, + { + "start": 14017.62, + "end": 14018.46, + "probability": 0.8855 + }, + { + "start": 14018.86, + "end": 14019.6, + "probability": 0.8818 + }, + { + "start": 14019.74, + "end": 14022.2, + "probability": 0.9017 + }, + { + "start": 14022.34, + "end": 14024.18, + "probability": 0.9611 + }, + { + "start": 14025.0, + "end": 14027.7, + "probability": 0.6648 + }, + { + "start": 14028.06, + "end": 14029.32, + "probability": 0.8003 + }, + { + "start": 14029.48, + "end": 14031.5, + "probability": 0.7566 + }, + { + "start": 14032.28, + "end": 14033.82, + "probability": 0.8241 + }, + { + "start": 14033.98, + "end": 14036.21, + "probability": 0.9141 + }, + { + "start": 14036.8, + "end": 14042.92, + "probability": 0.8926 + }, + { + "start": 14042.92, + "end": 14043.66, + "probability": 0.6915 + }, + { + "start": 14043.96, + "end": 14046.28, + "probability": 0.9899 + }, + { + "start": 14046.42, + "end": 14046.7, + "probability": 0.6146 + }, + { + "start": 14046.78, + "end": 14047.58, + "probability": 0.8871 + }, + { + "start": 14047.6, + "end": 14050.56, + "probability": 0.9911 + }, + { + "start": 14050.66, + "end": 14051.1, + "probability": 0.8118 + }, + { + "start": 14051.54, + "end": 14053.84, + "probability": 0.5587 + }, + { + "start": 14054.2, + "end": 14057.34, + "probability": 0.8407 + }, + { + "start": 14058.26, + "end": 14063.16, + "probability": 0.9702 + }, + { + "start": 14064.0, + "end": 14066.92, + "probability": 0.7763 + }, + { + "start": 14068.12, + "end": 14071.58, + "probability": 0.625 + }, + { + "start": 14073.1, + "end": 14079.66, + "probability": 0.7444 + }, + { + "start": 14079.72, + "end": 14081.34, + "probability": 0.8346 + }, + { + "start": 14082.64, + "end": 14083.64, + "probability": 0.7282 + }, + { + "start": 14083.72, + "end": 14086.84, + "probability": 0.959 + }, + { + "start": 14091.96, + "end": 14095.92, + "probability": 0.6528 + }, + { + "start": 14096.46, + "end": 14096.78, + "probability": 0.7354 + }, + { + "start": 14099.54, + "end": 14100.48, + "probability": 0.422 + }, + { + "start": 14103.98, + "end": 14104.76, + "probability": 0.8474 + }, + { + "start": 14104.86, + "end": 14106.04, + "probability": 0.7788 + }, + { + "start": 14106.1, + "end": 14106.68, + "probability": 0.7832 + }, + { + "start": 14106.98, + "end": 14107.96, + "probability": 0.8162 + }, + { + "start": 14108.88, + "end": 14110.4, + "probability": 0.8957 + }, + { + "start": 14112.68, + "end": 14113.4, + "probability": 0.1215 + }, + { + "start": 14113.4, + "end": 14113.76, + "probability": 0.743 + }, + { + "start": 14113.92, + "end": 14114.42, + "probability": 0.4715 + }, + { + "start": 14115.8, + "end": 14116.04, + "probability": 0.2678 + }, + { + "start": 14116.1, + "end": 14118.59, + "probability": 0.1022 + }, + { + "start": 14119.2, + "end": 14119.9, + "probability": 0.3897 + }, + { + "start": 14119.92, + "end": 14121.08, + "probability": 0.8022 + }, + { + "start": 14121.16, + "end": 14123.24, + "probability": 0.714 + }, + { + "start": 14123.66, + "end": 14123.7, + "probability": 0.0182 + }, + { + "start": 14123.7, + "end": 14123.7, + "probability": 0.2306 + }, + { + "start": 14123.7, + "end": 14123.7, + "probability": 0.0433 + }, + { + "start": 14123.7, + "end": 14124.1, + "probability": 0.4206 + }, + { + "start": 14124.68, + "end": 14125.6, + "probability": 0.8867 + }, + { + "start": 14126.32, + "end": 14128.7, + "probability": 0.8812 + }, + { + "start": 14128.82, + "end": 14130.04, + "probability": 0.9058 + }, + { + "start": 14130.06, + "end": 14133.05, + "probability": 0.4685 + }, + { + "start": 14134.04, + "end": 14134.7, + "probability": 0.3685 + }, + { + "start": 14134.7, + "end": 14135.9, + "probability": 0.6862 + }, + { + "start": 14135.9, + "end": 14136.46, + "probability": 0.483 + }, + { + "start": 14137.1, + "end": 14137.59, + "probability": 0.7546 + }, + { + "start": 14138.18, + "end": 14139.48, + "probability": 0.019 + }, + { + "start": 14139.92, + "end": 14140.84, + "probability": 0.1386 + }, + { + "start": 14141.1, + "end": 14142.0, + "probability": 0.4374 + }, + { + "start": 14142.38, + "end": 14142.7, + "probability": 0.8135 + }, + { + "start": 14142.98, + "end": 14144.14, + "probability": 0.7714 + }, + { + "start": 14144.48, + "end": 14145.52, + "probability": 0.7162 + }, + { + "start": 14146.16, + "end": 14147.57, + "probability": 0.8374 + }, + { + "start": 14147.76, + "end": 14150.26, + "probability": 0.6804 + }, + { + "start": 14150.86, + "end": 14152.36, + "probability": 0.4468 + }, + { + "start": 14152.48, + "end": 14154.34, + "probability": 0.5703 + }, + { + "start": 14155.86, + "end": 14165.26, + "probability": 0.9865 + }, + { + "start": 14166.7, + "end": 14167.48, + "probability": 0.8172 + }, + { + "start": 14167.56, + "end": 14170.72, + "probability": 0.9888 + }, + { + "start": 14171.42, + "end": 14174.82, + "probability": 0.6629 + }, + { + "start": 14176.96, + "end": 14178.31, + "probability": 0.5006 + }, + { + "start": 14179.92, + "end": 14183.24, + "probability": 0.9473 + }, + { + "start": 14184.16, + "end": 14185.1, + "probability": 0.9697 + }, + { + "start": 14186.0, + "end": 14188.68, + "probability": 0.9827 + }, + { + "start": 14189.2, + "end": 14190.92, + "probability": 0.967 + }, + { + "start": 14192.14, + "end": 14195.6, + "probability": 0.8706 + }, + { + "start": 14196.44, + "end": 14197.84, + "probability": 0.999 + }, + { + "start": 14198.5, + "end": 14199.46, + "probability": 0.881 + }, + { + "start": 14201.24, + "end": 14204.7, + "probability": 0.9904 + }, + { + "start": 14206.26, + "end": 14207.48, + "probability": 0.9934 + }, + { + "start": 14207.58, + "end": 14211.1, + "probability": 0.9772 + }, + { + "start": 14213.04, + "end": 14218.52, + "probability": 0.9922 + }, + { + "start": 14219.22, + "end": 14220.54, + "probability": 0.9664 + }, + { + "start": 14221.92, + "end": 14227.36, + "probability": 0.8346 + }, + { + "start": 14228.4, + "end": 14232.94, + "probability": 0.9458 + }, + { + "start": 14234.5, + "end": 14235.82, + "probability": 0.8558 + }, + { + "start": 14236.68, + "end": 14239.34, + "probability": 0.9844 + }, + { + "start": 14241.37, + "end": 14245.2, + "probability": 0.7566 + }, + { + "start": 14245.96, + "end": 14247.26, + "probability": 0.8456 + }, + { + "start": 14248.1, + "end": 14250.7, + "probability": 0.987 + }, + { + "start": 14250.7, + "end": 14252.7, + "probability": 0.6754 + }, + { + "start": 14254.45, + "end": 14258.98, + "probability": 0.846 + }, + { + "start": 14259.94, + "end": 14263.24, + "probability": 0.9937 + }, + { + "start": 14263.24, + "end": 14267.98, + "probability": 0.9859 + }, + { + "start": 14269.62, + "end": 14275.08, + "probability": 0.986 + }, + { + "start": 14276.28, + "end": 14277.68, + "probability": 0.8804 + }, + { + "start": 14279.78, + "end": 14283.48, + "probability": 0.9813 + }, + { + "start": 14284.52, + "end": 14286.98, + "probability": 0.97 + }, + { + "start": 14287.06, + "end": 14287.84, + "probability": 0.6517 + }, + { + "start": 14289.72, + "end": 14295.12, + "probability": 0.979 + }, + { + "start": 14296.08, + "end": 14297.74, + "probability": 0.9268 + }, + { + "start": 14298.6, + "end": 14305.4, + "probability": 0.9834 + }, + { + "start": 14306.02, + "end": 14308.76, + "probability": 0.9233 + }, + { + "start": 14309.56, + "end": 14313.8, + "probability": 0.8846 + }, + { + "start": 14314.3, + "end": 14317.56, + "probability": 0.9323 + }, + { + "start": 14317.56, + "end": 14322.52, + "probability": 0.9356 + }, + { + "start": 14323.64, + "end": 14326.84, + "probability": 0.8744 + }, + { + "start": 14327.84, + "end": 14329.62, + "probability": 0.9678 + }, + { + "start": 14329.96, + "end": 14334.4, + "probability": 0.9559 + }, + { + "start": 14335.06, + "end": 14340.48, + "probability": 0.9865 + }, + { + "start": 14341.16, + "end": 14342.7, + "probability": 0.9741 + }, + { + "start": 14343.52, + "end": 14345.46, + "probability": 0.9583 + }, + { + "start": 14346.08, + "end": 14348.9, + "probability": 0.9352 + }, + { + "start": 14349.72, + "end": 14353.92, + "probability": 0.9038 + }, + { + "start": 14354.54, + "end": 14357.68, + "probability": 0.9849 + }, + { + "start": 14358.2, + "end": 14362.92, + "probability": 0.9966 + }, + { + "start": 14363.04, + "end": 14367.5, + "probability": 0.88 + }, + { + "start": 14368.4, + "end": 14373.72, + "probability": 0.9912 + }, + { + "start": 14374.38, + "end": 14377.18, + "probability": 0.85 + }, + { + "start": 14377.94, + "end": 14381.48, + "probability": 0.8868 + }, + { + "start": 14381.8, + "end": 14386.76, + "probability": 0.9961 + }, + { + "start": 14387.36, + "end": 14390.72, + "probability": 0.7869 + }, + { + "start": 14391.72, + "end": 14392.26, + "probability": 0.8311 + }, + { + "start": 14393.48, + "end": 14395.34, + "probability": 0.8566 + }, + { + "start": 14400.54, + "end": 14404.63, + "probability": 0.9791 + }, + { + "start": 14406.8, + "end": 14407.9, + "probability": 0.7886 + }, + { + "start": 14408.04, + "end": 14411.95, + "probability": 0.9607 + }, + { + "start": 14413.02, + "end": 14415.66, + "probability": 0.9084 + }, + { + "start": 14416.04, + "end": 14418.0, + "probability": 0.9704 + }, + { + "start": 14418.56, + "end": 14422.36, + "probability": 0.9764 + }, + { + "start": 14422.74, + "end": 14429.84, + "probability": 0.9971 + }, + { + "start": 14430.0, + "end": 14430.42, + "probability": 0.5004 + }, + { + "start": 14430.7, + "end": 14431.8, + "probability": 0.8734 + }, + { + "start": 14432.3, + "end": 14433.76, + "probability": 0.8419 + }, + { + "start": 14434.24, + "end": 14436.4, + "probability": 0.9741 + }, + { + "start": 14436.46, + "end": 14437.36, + "probability": 0.8841 + }, + { + "start": 14437.62, + "end": 14439.68, + "probability": 0.9969 + }, + { + "start": 14439.92, + "end": 14440.28, + "probability": 0.8106 + }, + { + "start": 14441.5, + "end": 14444.08, + "probability": 0.7858 + }, + { + "start": 14445.86, + "end": 14450.04, + "probability": 0.7396 + }, + { + "start": 14450.22, + "end": 14452.52, + "probability": 0.8265 + }, + { + "start": 14453.56, + "end": 14455.19, + "probability": 0.7864 + }, + { + "start": 14456.72, + "end": 14457.26, + "probability": 0.8048 + }, + { + "start": 14464.24, + "end": 14465.5, + "probability": 0.6671 + }, + { + "start": 14465.74, + "end": 14466.38, + "probability": 0.8965 + }, + { + "start": 14466.62, + "end": 14467.62, + "probability": 0.7517 + }, + { + "start": 14467.66, + "end": 14472.82, + "probability": 0.9933 + }, + { + "start": 14473.88, + "end": 14474.44, + "probability": 0.8304 + }, + { + "start": 14475.7, + "end": 14480.62, + "probability": 0.8541 + }, + { + "start": 14480.88, + "end": 14484.22, + "probability": 0.6635 + }, + { + "start": 14485.32, + "end": 14487.92, + "probability": 0.9793 + }, + { + "start": 14488.04, + "end": 14488.16, + "probability": 0.5264 + }, + { + "start": 14488.26, + "end": 14490.88, + "probability": 0.9609 + }, + { + "start": 14490.96, + "end": 14491.64, + "probability": 0.9611 + }, + { + "start": 14491.72, + "end": 14495.5, + "probability": 0.7476 + }, + { + "start": 14496.02, + "end": 14497.06, + "probability": 0.7391 + }, + { + "start": 14497.42, + "end": 14500.18, + "probability": 0.7843 + }, + { + "start": 14500.2, + "end": 14501.38, + "probability": 0.8886 + }, + { + "start": 14501.96, + "end": 14503.08, + "probability": 0.9505 + }, + { + "start": 14503.22, + "end": 14504.72, + "probability": 0.9534 + }, + { + "start": 14504.84, + "end": 14508.74, + "probability": 0.8841 + }, + { + "start": 14509.4, + "end": 14511.7, + "probability": 0.8906 + }, + { + "start": 14512.1, + "end": 14517.48, + "probability": 0.9788 + }, + { + "start": 14518.16, + "end": 14518.24, + "probability": 0.7422 + }, + { + "start": 14518.3, + "end": 14521.1, + "probability": 0.6309 + }, + { + "start": 14521.28, + "end": 14521.7, + "probability": 0.7279 + }, + { + "start": 14521.74, + "end": 14524.26, + "probability": 0.9927 + }, + { + "start": 14524.26, + "end": 14527.48, + "probability": 0.6718 + }, + { + "start": 14527.62, + "end": 14530.2, + "probability": 0.8696 + }, + { + "start": 14530.2, + "end": 14530.82, + "probability": 0.7714 + }, + { + "start": 14530.96, + "end": 14535.9, + "probability": 0.6816 + }, + { + "start": 14536.82, + "end": 14537.54, + "probability": 0.7146 + }, + { + "start": 14537.54, + "end": 14540.04, + "probability": 0.647 + }, + { + "start": 14540.68, + "end": 14542.84, + "probability": 0.9705 + }, + { + "start": 14542.9, + "end": 14543.82, + "probability": 0.9689 + }, + { + "start": 14544.04, + "end": 14544.53, + "probability": 0.6014 + }, + { + "start": 14544.9, + "end": 14546.4, + "probability": 0.9407 + }, + { + "start": 14546.46, + "end": 14547.42, + "probability": 0.6728 + }, + { + "start": 14548.0, + "end": 14549.21, + "probability": 0.8784 + }, + { + "start": 14549.58, + "end": 14551.86, + "probability": 0.9675 + }, + { + "start": 14551.9, + "end": 14552.28, + "probability": 0.7867 + }, + { + "start": 14552.38, + "end": 14554.5, + "probability": 0.9596 + }, + { + "start": 14555.16, + "end": 14557.12, + "probability": 0.8417 + }, + { + "start": 14557.34, + "end": 14560.02, + "probability": 0.8574 + }, + { + "start": 14560.52, + "end": 14563.54, + "probability": 0.9368 + }, + { + "start": 14563.72, + "end": 14564.91, + "probability": 0.662 + }, + { + "start": 14565.62, + "end": 14569.62, + "probability": 0.9493 + }, + { + "start": 14569.7, + "end": 14571.03, + "probability": 0.9072 + }, + { + "start": 14571.36, + "end": 14573.06, + "probability": 0.955 + }, + { + "start": 14573.74, + "end": 14576.62, + "probability": 0.9937 + }, + { + "start": 14576.64, + "end": 14577.7, + "probability": 0.9768 + }, + { + "start": 14577.82, + "end": 14579.65, + "probability": 0.9142 + }, + { + "start": 14579.84, + "end": 14580.94, + "probability": 0.9951 + }, + { + "start": 14581.48, + "end": 14582.58, + "probability": 0.9429 + }, + { + "start": 14582.66, + "end": 14584.46, + "probability": 0.9857 + }, + { + "start": 14584.68, + "end": 14587.86, + "probability": 0.9706 + }, + { + "start": 14588.4, + "end": 14591.0, + "probability": 0.9918 + }, + { + "start": 14591.14, + "end": 14594.06, + "probability": 0.9912 + }, + { + "start": 14594.26, + "end": 14595.14, + "probability": 0.8786 + }, + { + "start": 14595.18, + "end": 14597.08, + "probability": 0.9863 + }, + { + "start": 14597.08, + "end": 14599.48, + "probability": 0.9923 + }, + { + "start": 14600.02, + "end": 14603.42, + "probability": 0.9895 + }, + { + "start": 14604.46, + "end": 14605.24, + "probability": 0.6921 + }, + { + "start": 14605.26, + "end": 14606.0, + "probability": 0.7406 + }, + { + "start": 14606.22, + "end": 14607.38, + "probability": 0.9402 + }, + { + "start": 14607.5, + "end": 14608.62, + "probability": 0.9761 + }, + { + "start": 14608.72, + "end": 14609.14, + "probability": 0.0996 + }, + { + "start": 14609.24, + "end": 14609.56, + "probability": 0.7537 + }, + { + "start": 14609.62, + "end": 14609.92, + "probability": 0.3664 + }, + { + "start": 14610.38, + "end": 14613.06, + "probability": 0.9753 + }, + { + "start": 14613.34, + "end": 14613.58, + "probability": 0.5577 + }, + { + "start": 14613.62, + "end": 14613.74, + "probability": 0.6466 + }, + { + "start": 14613.94, + "end": 14614.62, + "probability": 0.91 + }, + { + "start": 14614.62, + "end": 14615.38, + "probability": 0.8916 + }, + { + "start": 14616.2, + "end": 14617.9, + "probability": 0.9043 + }, + { + "start": 14618.44, + "end": 14620.48, + "probability": 0.9214 + }, + { + "start": 14620.48, + "end": 14623.18, + "probability": 0.9712 + }, + { + "start": 14623.28, + "end": 14623.94, + "probability": 0.7412 + }, + { + "start": 14624.06, + "end": 14625.12, + "probability": 0.9912 + }, + { + "start": 14625.7, + "end": 14628.08, + "probability": 0.8896 + }, + { + "start": 14628.22, + "end": 14629.08, + "probability": 0.4993 + }, + { + "start": 14629.52, + "end": 14631.2, + "probability": 0.9839 + }, + { + "start": 14631.26, + "end": 14632.16, + "probability": 0.7976 + }, + { + "start": 14632.18, + "end": 14635.88, + "probability": 0.9405 + }, + { + "start": 14635.96, + "end": 14637.84, + "probability": 0.9183 + }, + { + "start": 14637.98, + "end": 14638.5, + "probability": 0.2768 + }, + { + "start": 14639.1, + "end": 14640.94, + "probability": 0.9204 + }, + { + "start": 14642.38, + "end": 14643.76, + "probability": 0.7642 + }, + { + "start": 14644.06, + "end": 14644.32, + "probability": 0.4018 + }, + { + "start": 14644.42, + "end": 14646.14, + "probability": 0.9388 + }, + { + "start": 14647.02, + "end": 14648.9, + "probability": 0.831 + }, + { + "start": 14649.18, + "end": 14651.16, + "probability": 0.7903 + }, + { + "start": 14651.28, + "end": 14654.02, + "probability": 0.9948 + }, + { + "start": 14654.34, + "end": 14654.76, + "probability": 0.4575 + }, + { + "start": 14654.98, + "end": 14655.62, + "probability": 0.734 + }, + { + "start": 14655.68, + "end": 14656.94, + "probability": 0.8317 + }, + { + "start": 14657.04, + "end": 14659.12, + "probability": 0.8986 + }, + { + "start": 14659.16, + "end": 14659.98, + "probability": 0.9766 + }, + { + "start": 14660.84, + "end": 14662.5, + "probability": 0.1528 + }, + { + "start": 14662.98, + "end": 14663.66, + "probability": 0.5389 + }, + { + "start": 14664.08, + "end": 14666.2, + "probability": 0.6811 + }, + { + "start": 14666.34, + "end": 14667.92, + "probability": 0.894 + }, + { + "start": 14668.04, + "end": 14669.0, + "probability": 0.953 + }, + { + "start": 14669.06, + "end": 14669.42, + "probability": 0.71 + }, + { + "start": 14670.92, + "end": 14673.52, + "probability": 0.953 + }, + { + "start": 14673.56, + "end": 14675.32, + "probability": 0.9865 + }, + { + "start": 14676.16, + "end": 14678.84, + "probability": 0.7461 + }, + { + "start": 14679.54, + "end": 14685.84, + "probability": 0.9508 + }, + { + "start": 14686.28, + "end": 14689.4, + "probability": 0.9807 + }, + { + "start": 14689.4, + "end": 14692.62, + "probability": 0.9988 + }, + { + "start": 14693.36, + "end": 14695.66, + "probability": 0.8557 + }, + { + "start": 14695.74, + "end": 14697.75, + "probability": 0.9856 + }, + { + "start": 14698.12, + "end": 14698.72, + "probability": 0.4276 + }, + { + "start": 14698.82, + "end": 14699.06, + "probability": 0.6705 + }, + { + "start": 14699.18, + "end": 14700.6, + "probability": 0.6897 + }, + { + "start": 14701.04, + "end": 14704.08, + "probability": 0.7692 + }, + { + "start": 14704.64, + "end": 14705.8, + "probability": 0.6008 + }, + { + "start": 14706.2, + "end": 14709.9, + "probability": 0.8829 + }, + { + "start": 14709.94, + "end": 14710.82, + "probability": 0.8953 + }, + { + "start": 14710.9, + "end": 14711.46, + "probability": 0.7904 + }, + { + "start": 14711.48, + "end": 14712.28, + "probability": 0.9609 + }, + { + "start": 14712.34, + "end": 14713.14, + "probability": 0.7569 + }, + { + "start": 14713.16, + "end": 14713.94, + "probability": 0.5504 + }, + { + "start": 14714.26, + "end": 14718.52, + "probability": 0.9949 + }, + { + "start": 14718.66, + "end": 14719.4, + "probability": 0.8664 + }, + { + "start": 14719.52, + "end": 14720.6, + "probability": 0.9343 + }, + { + "start": 14720.88, + "end": 14721.74, + "probability": 0.9962 + }, + { + "start": 14721.86, + "end": 14723.26, + "probability": 0.8469 + }, + { + "start": 14723.56, + "end": 14724.54, + "probability": 0.8614 + }, + { + "start": 14725.04, + "end": 14725.74, + "probability": 0.7449 + }, + { + "start": 14726.26, + "end": 14729.08, + "probability": 0.8791 + }, + { + "start": 14729.38, + "end": 14729.64, + "probability": 0.8579 + }, + { + "start": 14732.58, + "end": 14734.68, + "probability": 0.9023 + }, + { + "start": 14735.62, + "end": 14739.3, + "probability": 0.5906 + }, + { + "start": 14739.52, + "end": 14742.56, + "probability": 0.9688 + }, + { + "start": 14742.68, + "end": 14743.62, + "probability": 0.7451 + }, + { + "start": 14743.78, + "end": 14744.76, + "probability": 0.9431 + }, + { + "start": 14745.08, + "end": 14747.02, + "probability": 0.7599 + }, + { + "start": 14747.1, + "end": 14747.48, + "probability": 0.8441 + }, + { + "start": 14747.6, + "end": 14749.72, + "probability": 0.4299 + }, + { + "start": 14749.82, + "end": 14750.26, + "probability": 0.3004 + }, + { + "start": 14767.76, + "end": 14767.98, + "probability": 0.1458 + }, + { + "start": 14767.98, + "end": 14768.1, + "probability": 0.481 + }, + { + "start": 14768.1, + "end": 14768.1, + "probability": 0.1139 + }, + { + "start": 14768.1, + "end": 14768.62, + "probability": 0.452 + }, + { + "start": 14769.86, + "end": 14772.1, + "probability": 0.79 + }, + { + "start": 14774.06, + "end": 14780.06, + "probability": 0.9733 + }, + { + "start": 14780.14, + "end": 14781.3, + "probability": 0.964 + }, + { + "start": 14781.82, + "end": 14786.44, + "probability": 0.9039 + }, + { + "start": 14786.68, + "end": 14788.16, + "probability": 0.6812 + }, + { + "start": 14789.07, + "end": 14793.0, + "probability": 0.9875 + }, + { + "start": 14793.78, + "end": 14794.24, + "probability": 0.8751 + }, + { + "start": 14794.52, + "end": 14796.96, + "probability": 0.9658 + }, + { + "start": 14796.96, + "end": 14801.18, + "probability": 0.9498 + }, + { + "start": 14802.18, + "end": 14807.46, + "probability": 0.9688 + }, + { + "start": 14808.08, + "end": 14813.28, + "probability": 0.9853 + }, + { + "start": 14813.52, + "end": 14815.06, + "probability": 0.8682 + }, + { + "start": 14815.52, + "end": 14815.52, + "probability": 0.3966 + }, + { + "start": 14815.52, + "end": 14820.84, + "probability": 0.9259 + }, + { + "start": 14821.12, + "end": 14821.64, + "probability": 0.7426 + }, + { + "start": 14822.46, + "end": 14825.94, + "probability": 0.7676 + }, + { + "start": 14826.66, + "end": 14828.08, + "probability": 0.9282 + }, + { + "start": 14828.58, + "end": 14830.02, + "probability": 0.6699 + }, + { + "start": 14830.5, + "end": 14831.86, + "probability": 0.9692 + }, + { + "start": 14832.04, + "end": 14833.82, + "probability": 0.8823 + }, + { + "start": 14833.9, + "end": 14837.16, + "probability": 0.9897 + }, + { + "start": 14837.22, + "end": 14840.76, + "probability": 0.768 + }, + { + "start": 14840.76, + "end": 14844.0, + "probability": 0.9623 + }, + { + "start": 14844.28, + "end": 14846.78, + "probability": 0.9849 + }, + { + "start": 14846.96, + "end": 14852.76, + "probability": 0.9264 + }, + { + "start": 14853.36, + "end": 14859.3, + "probability": 0.9339 + }, + { + "start": 14859.82, + "end": 14862.62, + "probability": 0.8796 + }, + { + "start": 14863.96, + "end": 14868.84, + "probability": 0.5104 + }, + { + "start": 14869.8, + "end": 14874.38, + "probability": 0.975 + }, + { + "start": 14874.38, + "end": 14880.32, + "probability": 0.9909 + }, + { + "start": 14880.92, + "end": 14885.18, + "probability": 0.9964 + }, + { + "start": 14885.18, + "end": 14888.32, + "probability": 0.9861 + }, + { + "start": 14888.92, + "end": 14890.96, + "probability": 0.7756 + }, + { + "start": 14891.26, + "end": 14893.28, + "probability": 0.9268 + }, + { + "start": 14893.52, + "end": 14897.28, + "probability": 0.9056 + }, + { + "start": 14897.68, + "end": 14899.42, + "probability": 0.822 + }, + { + "start": 14899.94, + "end": 14901.16, + "probability": 0.8122 + }, + { + "start": 14901.58, + "end": 14903.56, + "probability": 0.7651 + }, + { + "start": 14903.78, + "end": 14907.78, + "probability": 0.979 + }, + { + "start": 14907.96, + "end": 14913.0, + "probability": 0.8926 + }, + { + "start": 14913.28, + "end": 14914.48, + "probability": 0.6995 + }, + { + "start": 14916.12, + "end": 14918.86, + "probability": 0.9741 + }, + { + "start": 14918.9, + "end": 14920.02, + "probability": 0.7424 + }, + { + "start": 14920.5, + "end": 14925.74, + "probability": 0.951 + }, + { + "start": 14926.02, + "end": 14927.56, + "probability": 0.9264 + }, + { + "start": 14928.04, + "end": 14931.04, + "probability": 0.8804 + }, + { + "start": 14931.4, + "end": 14934.28, + "probability": 0.936 + }, + { + "start": 14934.8, + "end": 14936.84, + "probability": 0.9314 + }, + { + "start": 14937.04, + "end": 14937.24, + "probability": 0.3213 + }, + { + "start": 14937.36, + "end": 14941.16, + "probability": 0.977 + }, + { + "start": 14941.16, + "end": 14946.98, + "probability": 0.99 + }, + { + "start": 14947.18, + "end": 14951.36, + "probability": 0.9826 + }, + { + "start": 14951.4, + "end": 14953.74, + "probability": 0.83 + }, + { + "start": 14954.02, + "end": 14955.54, + "probability": 0.8015 + }, + { + "start": 14956.62, + "end": 14958.42, + "probability": 0.971 + }, + { + "start": 14959.62, + "end": 14961.82, + "probability": 0.9569 + }, + { + "start": 14962.02, + "end": 14963.64, + "probability": 0.9077 + }, + { + "start": 14963.74, + "end": 14967.18, + "probability": 0.9739 + }, + { + "start": 14967.4, + "end": 14968.94, + "probability": 0.928 + }, + { + "start": 14969.12, + "end": 14970.48, + "probability": 0.8022 + }, + { + "start": 14971.14, + "end": 14975.22, + "probability": 0.9783 + }, + { + "start": 14975.66, + "end": 14977.72, + "probability": 0.9901 + }, + { + "start": 14979.92, + "end": 14980.62, + "probability": 0.8622 + }, + { + "start": 14982.1, + "end": 14989.0, + "probability": 0.9979 + }, + { + "start": 14989.3, + "end": 14991.76, + "probability": 0.9971 + }, + { + "start": 14991.76, + "end": 14995.82, + "probability": 0.9812 + }, + { + "start": 14996.3, + "end": 14999.18, + "probability": 0.89 + }, + { + "start": 15000.04, + "end": 15005.66, + "probability": 0.9854 + }, + { + "start": 15005.88, + "end": 15010.12, + "probability": 0.9962 + }, + { + "start": 15010.88, + "end": 15014.28, + "probability": 0.9205 + }, + { + "start": 15014.34, + "end": 15018.48, + "probability": 0.9941 + }, + { + "start": 15018.52, + "end": 15019.46, + "probability": 0.9299 + }, + { + "start": 15019.6, + "end": 15023.16, + "probability": 0.9834 + }, + { + "start": 15023.44, + "end": 15025.32, + "probability": 0.9425 + }, + { + "start": 15025.89, + "end": 15028.26, + "probability": 0.8201 + }, + { + "start": 15028.5, + "end": 15030.96, + "probability": 0.7976 + }, + { + "start": 15031.6, + "end": 15036.92, + "probability": 0.9836 + }, + { + "start": 15037.64, + "end": 15042.34, + "probability": 0.9912 + }, + { + "start": 15042.34, + "end": 15048.16, + "probability": 0.9833 + }, + { + "start": 15048.6, + "end": 15052.22, + "probability": 0.9974 + }, + { + "start": 15052.46, + "end": 15052.68, + "probability": 0.3587 + }, + { + "start": 15053.3, + "end": 15055.36, + "probability": 0.9884 + }, + { + "start": 15055.56, + "end": 15061.0, + "probability": 0.9346 + }, + { + "start": 15061.0, + "end": 15064.68, + "probability": 0.8835 + }, + { + "start": 15064.92, + "end": 15067.64, + "probability": 0.9854 + }, + { + "start": 15067.74, + "end": 15069.84, + "probability": 0.9531 + }, + { + "start": 15070.04, + "end": 15076.34, + "probability": 0.9653 + }, + { + "start": 15076.56, + "end": 15079.18, + "probability": 0.9921 + }, + { + "start": 15079.82, + "end": 15083.02, + "probability": 0.9904 + }, + { + "start": 15083.54, + "end": 15084.22, + "probability": 0.8953 + }, + { + "start": 15084.76, + "end": 15089.0, + "probability": 0.9958 + }, + { + "start": 15089.22, + "end": 15092.03, + "probability": 0.6963 + }, + { + "start": 15092.06, + "end": 15095.16, + "probability": 0.9932 + }, + { + "start": 15095.44, + "end": 15097.66, + "probability": 0.9766 + }, + { + "start": 15098.14, + "end": 15101.76, + "probability": 0.999 + }, + { + "start": 15102.7, + "end": 15108.62, + "probability": 0.9877 + }, + { + "start": 15108.86, + "end": 15110.35, + "probability": 0.7612 + }, + { + "start": 15111.24, + "end": 15112.41, + "probability": 0.9594 + }, + { + "start": 15112.62, + "end": 15116.76, + "probability": 0.7521 + }, + { + "start": 15117.26, + "end": 15117.58, + "probability": 0.4185 + }, + { + "start": 15117.78, + "end": 15119.38, + "probability": 0.9937 + }, + { + "start": 15119.46, + "end": 15121.42, + "probability": 0.969 + }, + { + "start": 15121.78, + "end": 15122.29, + "probability": 0.9294 + }, + { + "start": 15122.54, + "end": 15124.58, + "probability": 0.9718 + }, + { + "start": 15124.84, + "end": 15129.06, + "probability": 0.8688 + }, + { + "start": 15129.06, + "end": 15131.46, + "probability": 0.9797 + }, + { + "start": 15131.54, + "end": 15133.74, + "probability": 0.9937 + }, + { + "start": 15134.26, + "end": 15136.58, + "probability": 0.9817 + }, + { + "start": 15136.68, + "end": 15138.15, + "probability": 0.9736 + }, + { + "start": 15138.58, + "end": 15140.64, + "probability": 0.9427 + }, + { + "start": 15140.78, + "end": 15145.5, + "probability": 0.9886 + }, + { + "start": 15145.72, + "end": 15149.44, + "probability": 0.9918 + }, + { + "start": 15149.7, + "end": 15151.82, + "probability": 0.9064 + }, + { + "start": 15152.04, + "end": 15154.4, + "probability": 0.9294 + }, + { + "start": 15155.02, + "end": 15159.42, + "probability": 0.9924 + }, + { + "start": 15159.6, + "end": 15160.04, + "probability": 0.3421 + }, + { + "start": 15160.8, + "end": 15161.08, + "probability": 0.18 + }, + { + "start": 15162.08, + "end": 15162.76, + "probability": 0.1023 + }, + { + "start": 15162.76, + "end": 15162.92, + "probability": 0.0136 + }, + { + "start": 15162.92, + "end": 15163.96, + "probability": 0.4021 + }, + { + "start": 15164.16, + "end": 15166.44, + "probability": 0.9771 + }, + { + "start": 15166.76, + "end": 15167.84, + "probability": 0.7767 + }, + { + "start": 15168.38, + "end": 15171.94, + "probability": 0.9933 + }, + { + "start": 15172.04, + "end": 15175.53, + "probability": 0.9937 + }, + { + "start": 15176.4, + "end": 15177.37, + "probability": 0.9985 + }, + { + "start": 15178.06, + "end": 15178.94, + "probability": 0.9401 + }, + { + "start": 15179.0, + "end": 15182.86, + "probability": 0.8621 + }, + { + "start": 15183.22, + "end": 15185.82, + "probability": 0.994 + }, + { + "start": 15186.0, + "end": 15186.26, + "probability": 0.1823 + }, + { + "start": 15186.38, + "end": 15187.18, + "probability": 0.8771 + }, + { + "start": 15187.36, + "end": 15190.56, + "probability": 0.8179 + }, + { + "start": 15190.56, + "end": 15193.78, + "probability": 0.9968 + }, + { + "start": 15193.82, + "end": 15195.08, + "probability": 0.8031 + }, + { + "start": 15195.14, + "end": 15196.76, + "probability": 0.7065 + }, + { + "start": 15197.06, + "end": 15197.72, + "probability": 0.6138 + }, + { + "start": 15197.82, + "end": 15200.0, + "probability": 0.9816 + }, + { + "start": 15200.0, + "end": 15203.2, + "probability": 0.995 + }, + { + "start": 15203.38, + "end": 15204.14, + "probability": 0.7601 + }, + { + "start": 15204.24, + "end": 15205.06, + "probability": 0.804 + }, + { + "start": 15205.22, + "end": 15207.94, + "probability": 0.8377 + }, + { + "start": 15208.26, + "end": 15211.1, + "probability": 0.9918 + }, + { + "start": 15211.18, + "end": 15214.14, + "probability": 0.9945 + }, + { + "start": 15214.78, + "end": 15215.86, + "probability": 0.6255 + }, + { + "start": 15216.28, + "end": 15218.56, + "probability": 0.958 + }, + { + "start": 15218.7, + "end": 15222.2, + "probability": 0.9423 + }, + { + "start": 15222.96, + "end": 15226.88, + "probability": 0.8828 + }, + { + "start": 15226.9, + "end": 15227.9, + "probability": 0.7484 + }, + { + "start": 15228.34, + "end": 15228.52, + "probability": 0.0199 + }, + { + "start": 15228.52, + "end": 15228.52, + "probability": 0.1033 + }, + { + "start": 15228.52, + "end": 15233.22, + "probability": 0.9756 + }, + { + "start": 15234.16, + "end": 15238.6, + "probability": 0.998 + }, + { + "start": 15238.68, + "end": 15239.14, + "probability": 0.8716 + }, + { + "start": 15240.02, + "end": 15241.6, + "probability": 0.6341 + }, + { + "start": 15242.22, + "end": 15245.46, + "probability": 0.8044 + }, + { + "start": 15269.68, + "end": 15271.5, + "probability": 0.7373 + }, + { + "start": 15272.2, + "end": 15276.14, + "probability": 0.89 + }, + { + "start": 15276.9, + "end": 15279.7, + "probability": 0.9861 + }, + { + "start": 15280.28, + "end": 15281.46, + "probability": 0.8638 + }, + { + "start": 15282.38, + "end": 15284.18, + "probability": 0.0367 + }, + { + "start": 15284.2, + "end": 15284.78, + "probability": 0.0096 + }, + { + "start": 15285.1, + "end": 15285.44, + "probability": 0.0185 + }, + { + "start": 15285.98, + "end": 15286.62, + "probability": 0.1806 + }, + { + "start": 15287.0, + "end": 15288.7, + "probability": 0.8982 + }, + { + "start": 15289.3, + "end": 15294.26, + "probability": 0.9357 + }, + { + "start": 15296.22, + "end": 15299.6, + "probability": 0.5683 + }, + { + "start": 15300.2, + "end": 15306.88, + "probability": 0.9478 + }, + { + "start": 15308.06, + "end": 15311.92, + "probability": 0.7778 + }, + { + "start": 15312.64, + "end": 15312.94, + "probability": 0.0457 + }, + { + "start": 15312.94, + "end": 15313.76, + "probability": 0.5449 + }, + { + "start": 15313.92, + "end": 15315.82, + "probability": 0.9951 + }, + { + "start": 15318.14, + "end": 15321.96, + "probability": 0.7422 + }, + { + "start": 15322.92, + "end": 15327.8, + "probability": 0.97 + }, + { + "start": 15329.08, + "end": 15334.76, + "probability": 0.9747 + }, + { + "start": 15335.62, + "end": 15339.08, + "probability": 0.9961 + }, + { + "start": 15339.08, + "end": 15343.26, + "probability": 0.9985 + }, + { + "start": 15344.26, + "end": 15345.92, + "probability": 0.9427 + }, + { + "start": 15346.88, + "end": 15347.5, + "probability": 0.8532 + }, + { + "start": 15348.14, + "end": 15351.3, + "probability": 0.9833 + }, + { + "start": 15351.3, + "end": 15354.06, + "probability": 0.9667 + }, + { + "start": 15354.94, + "end": 15356.62, + "probability": 0.7478 + }, + { + "start": 15356.68, + "end": 15357.6, + "probability": 0.6406 + }, + { + "start": 15358.02, + "end": 15360.22, + "probability": 0.9858 + }, + { + "start": 15360.92, + "end": 15362.44, + "probability": 0.7023 + }, + { + "start": 15364.8, + "end": 15366.72, + "probability": 0.9476 + }, + { + "start": 15368.12, + "end": 15373.7, + "probability": 0.9955 + }, + { + "start": 15373.88, + "end": 15379.44, + "probability": 0.996 + }, + { + "start": 15380.56, + "end": 15382.8, + "probability": 0.9725 + }, + { + "start": 15382.96, + "end": 15384.76, + "probability": 0.8049 + }, + { + "start": 15385.18, + "end": 15387.02, + "probability": 0.8558 + }, + { + "start": 15387.16, + "end": 15387.74, + "probability": 0.3875 + }, + { + "start": 15389.58, + "end": 15391.2, + "probability": 0.9182 + }, + { + "start": 15391.4, + "end": 15394.58, + "probability": 0.9635 + }, + { + "start": 15394.76, + "end": 15397.42, + "probability": 0.9833 + }, + { + "start": 15398.44, + "end": 15398.94, + "probability": 0.9769 + }, + { + "start": 15400.72, + "end": 15403.38, + "probability": 0.9967 + }, + { + "start": 15403.54, + "end": 15405.12, + "probability": 0.528 + }, + { + "start": 15405.28, + "end": 15405.92, + "probability": 0.5984 + }, + { + "start": 15406.1, + "end": 15406.96, + "probability": 0.4963 + }, + { + "start": 15407.54, + "end": 15409.8, + "probability": 0.9847 + }, + { + "start": 15409.8, + "end": 15414.74, + "probability": 0.8012 + }, + { + "start": 15415.14, + "end": 15416.98, + "probability": 0.9187 + }, + { + "start": 15417.1, + "end": 15417.6, + "probability": 0.3811 + }, + { + "start": 15417.98, + "end": 15421.34, + "probability": 0.97 + }, + { + "start": 15421.98, + "end": 15423.96, + "probability": 0.7828 + }, + { + "start": 15424.36, + "end": 15431.32, + "probability": 0.9839 + }, + { + "start": 15431.48, + "end": 15435.98, + "probability": 0.9697 + }, + { + "start": 15436.94, + "end": 15438.42, + "probability": 0.7381 + }, + { + "start": 15439.12, + "end": 15442.9, + "probability": 0.9504 + }, + { + "start": 15443.48, + "end": 15446.59, + "probability": 0.9746 + }, + { + "start": 15446.92, + "end": 15448.63, + "probability": 0.9895 + }, + { + "start": 15448.9, + "end": 15450.28, + "probability": 0.739 + }, + { + "start": 15450.62, + "end": 15451.34, + "probability": 0.7304 + }, + { + "start": 15451.42, + "end": 15452.98, + "probability": 0.986 + }, + { + "start": 15453.42, + "end": 15458.18, + "probability": 0.9468 + }, + { + "start": 15458.6, + "end": 15459.3, + "probability": 0.8914 + }, + { + "start": 15460.0, + "end": 15461.02, + "probability": 0.634 + }, + { + "start": 15461.66, + "end": 15462.28, + "probability": 0.9349 + }, + { + "start": 15462.46, + "end": 15463.7, + "probability": 0.9601 + }, + { + "start": 15463.84, + "end": 15468.54, + "probability": 0.9792 + }, + { + "start": 15468.84, + "end": 15471.36, + "probability": 0.639 + }, + { + "start": 15471.36, + "end": 15478.7, + "probability": 0.9043 + }, + { + "start": 15478.7, + "end": 15480.3, + "probability": 0.5184 + }, + { + "start": 15481.88, + "end": 15482.1, + "probability": 0.6429 + }, + { + "start": 15482.1, + "end": 15482.1, + "probability": 0.0844 + }, + { + "start": 15482.1, + "end": 15482.1, + "probability": 0.2579 + }, + { + "start": 15482.1, + "end": 15484.54, + "probability": 0.4747 + }, + { + "start": 15484.66, + "end": 15487.68, + "probability": 0.795 + }, + { + "start": 15487.91, + "end": 15489.02, + "probability": 0.3568 + }, + { + "start": 15489.02, + "end": 15489.02, + "probability": 0.4976 + }, + { + "start": 15489.08, + "end": 15494.68, + "probability": 0.9925 + }, + { + "start": 15494.68, + "end": 15496.28, + "probability": 0.9968 + }, + { + "start": 15496.6, + "end": 15496.84, + "probability": 0.6669 + }, + { + "start": 15496.96, + "end": 15498.94, + "probability": 0.8409 + }, + { + "start": 15499.02, + "end": 15501.18, + "probability": 0.9696 + }, + { + "start": 15501.72, + "end": 15502.6, + "probability": 0.9376 + }, + { + "start": 15502.66, + "end": 15504.42, + "probability": 0.8001 + }, + { + "start": 15504.54, + "end": 15508.28, + "probability": 0.9423 + }, + { + "start": 15511.4, + "end": 15513.9, + "probability": 0.1178 + }, + { + "start": 15537.88, + "end": 15540.42, + "probability": 0.1942 + }, + { + "start": 15540.68, + "end": 15542.72, + "probability": 0.8453 + }, + { + "start": 15543.7, + "end": 15545.26, + "probability": 0.874 + }, + { + "start": 15545.86, + "end": 15550.56, + "probability": 0.9856 + }, + { + "start": 15550.68, + "end": 15553.1, + "probability": 0.9611 + }, + { + "start": 15553.34, + "end": 15554.76, + "probability": 0.5069 + }, + { + "start": 15555.02, + "end": 15557.34, + "probability": 0.9717 + }, + { + "start": 15557.34, + "end": 15559.06, + "probability": 0.5426 + }, + { + "start": 15559.4, + "end": 15559.66, + "probability": 0.6016 + }, + { + "start": 15559.78, + "end": 15561.7, + "probability": 0.9434 + }, + { + "start": 15562.08, + "end": 15562.46, + "probability": 0.7468 + }, + { + "start": 15562.74, + "end": 15564.76, + "probability": 0.9492 + }, + { + "start": 15565.8, + "end": 15566.16, + "probability": 0.2383 + }, + { + "start": 15566.26, + "end": 15567.24, + "probability": 0.4747 + }, + { + "start": 15568.12, + "end": 15570.24, + "probability": 0.2607 + }, + { + "start": 15571.58, + "end": 15572.64, + "probability": 0.2637 + }, + { + "start": 15572.64, + "end": 15573.5, + "probability": 0.6153 + }, + { + "start": 15573.58, + "end": 15573.8, + "probability": 0.5811 + }, + { + "start": 15573.86, + "end": 15576.64, + "probability": 0.9575 + }, + { + "start": 15576.98, + "end": 15579.72, + "probability": 0.979 + }, + { + "start": 15581.26, + "end": 15581.28, + "probability": 0.5832 + }, + { + "start": 15581.28, + "end": 15582.78, + "probability": 0.6703 + }, + { + "start": 15583.66, + "end": 15584.78, + "probability": 0.8527 + }, + { + "start": 15584.78, + "end": 15587.04, + "probability": 0.9076 + }, + { + "start": 15587.16, + "end": 15588.7, + "probability": 0.8494 + }, + { + "start": 15589.5, + "end": 15591.66, + "probability": 0.8209 + }, + { + "start": 15592.18, + "end": 15593.12, + "probability": 0.9219 + }, + { + "start": 15593.28, + "end": 15594.4, + "probability": 0.608 + }, + { + "start": 15594.5, + "end": 15596.24, + "probability": 0.6216 + }, + { + "start": 15596.74, + "end": 15596.92, + "probability": 0.3958 + }, + { + "start": 15597.4, + "end": 15602.48, + "probability": 0.9321 + }, + { + "start": 15602.62, + "end": 15603.4, + "probability": 0.8939 + }, + { + "start": 15604.12, + "end": 15608.44, + "probability": 0.8982 + }, + { + "start": 15608.82, + "end": 15613.88, + "probability": 0.8734 + }, + { + "start": 15614.5, + "end": 15619.26, + "probability": 0.9965 + }, + { + "start": 15619.82, + "end": 15622.62, + "probability": 0.9899 + }, + { + "start": 15623.24, + "end": 15624.93, + "probability": 0.783 + }, + { + "start": 15625.02, + "end": 15627.06, + "probability": 0.9871 + }, + { + "start": 15627.56, + "end": 15629.88, + "probability": 0.9637 + }, + { + "start": 15630.58, + "end": 15632.76, + "probability": 0.7078 + }, + { + "start": 15634.36, + "end": 15634.36, + "probability": 0.3195 + }, + { + "start": 15634.36, + "end": 15635.74, + "probability": 0.8486 + }, + { + "start": 15636.1, + "end": 15636.88, + "probability": 0.8152 + }, + { + "start": 15636.98, + "end": 15638.1, + "probability": 0.9536 + }, + { + "start": 15638.72, + "end": 15645.2, + "probability": 0.9711 + }, + { + "start": 15645.64, + "end": 15648.44, + "probability": 0.9664 + }, + { + "start": 15648.46, + "end": 15651.02, + "probability": 0.9879 + }, + { + "start": 15651.88, + "end": 15655.34, + "probability": 0.8769 + }, + { + "start": 15655.76, + "end": 15656.62, + "probability": 0.8484 + }, + { + "start": 15657.42, + "end": 15662.16, + "probability": 0.9944 + }, + { + "start": 15662.28, + "end": 15662.74, + "probability": 0.1443 + }, + { + "start": 15663.06, + "end": 15663.56, + "probability": 0.2703 + }, + { + "start": 15663.62, + "end": 15665.08, + "probability": 0.6097 + }, + { + "start": 15666.12, + "end": 15667.6, + "probability": 0.6626 + }, + { + "start": 15667.76, + "end": 15668.78, + "probability": 0.8415 + }, + { + "start": 15668.9, + "end": 15670.9, + "probability": 0.9135 + }, + { + "start": 15671.08, + "end": 15673.18, + "probability": 0.9829 + }, + { + "start": 15673.54, + "end": 15675.08, + "probability": 0.8977 + }, + { + "start": 15675.8, + "end": 15677.44, + "probability": 0.8915 + }, + { + "start": 15677.86, + "end": 15679.32, + "probability": 0.8529 + }, + { + "start": 15679.34, + "end": 15680.15, + "probability": 0.8394 + }, + { + "start": 15681.58, + "end": 15682.24, + "probability": 0.8053 + }, + { + "start": 15682.36, + "end": 15683.34, + "probability": 0.7092 + }, + { + "start": 15683.36, + "end": 15685.84, + "probability": 0.9869 + }, + { + "start": 15686.34, + "end": 15688.7, + "probability": 0.9368 + }, + { + "start": 15689.3, + "end": 15690.86, + "probability": 0.642 + }, + { + "start": 15691.5, + "end": 15696.3, + "probability": 0.9358 + }, + { + "start": 15696.72, + "end": 15697.66, + "probability": 0.7433 + }, + { + "start": 15697.82, + "end": 15702.72, + "probability": 0.9651 + }, + { + "start": 15703.32, + "end": 15704.78, + "probability": 0.3652 + }, + { + "start": 15705.92, + "end": 15707.32, + "probability": 0.882 + }, + { + "start": 15707.62, + "end": 15713.07, + "probability": 0.782 + }, + { + "start": 15713.88, + "end": 15714.28, + "probability": 0.6599 + }, + { + "start": 15714.34, + "end": 15715.48, + "probability": 0.7896 + }, + { + "start": 15715.6, + "end": 15715.84, + "probability": 0.3702 + }, + { + "start": 15715.86, + "end": 15717.4, + "probability": 0.8258 + }, + { + "start": 15718.06, + "end": 15719.42, + "probability": 0.991 + }, + { + "start": 15720.96, + "end": 15726.66, + "probability": 0.9759 + }, + { + "start": 15726.84, + "end": 15727.64, + "probability": 0.5197 + }, + { + "start": 15727.64, + "end": 15728.7, + "probability": 0.7538 + }, + { + "start": 15729.02, + "end": 15731.06, + "probability": 0.9332 + }, + { + "start": 15731.62, + "end": 15735.44, + "probability": 0.9788 + }, + { + "start": 15735.92, + "end": 15738.48, + "probability": 0.8285 + }, + { + "start": 15738.84, + "end": 15740.66, + "probability": 0.9725 + }, + { + "start": 15741.04, + "end": 15741.86, + "probability": 0.7089 + }, + { + "start": 15741.92, + "end": 15745.12, + "probability": 0.9613 + }, + { + "start": 15745.26, + "end": 15747.45, + "probability": 0.9058 + }, + { + "start": 15748.1, + "end": 15748.96, + "probability": 0.8735 + }, + { + "start": 15749.0, + "end": 15752.4, + "probability": 0.9625 + }, + { + "start": 15752.76, + "end": 15754.38, + "probability": 0.6622 + }, + { + "start": 15754.96, + "end": 15756.64, + "probability": 0.6264 + }, + { + "start": 15757.0, + "end": 15759.26, + "probability": 0.6584 + }, + { + "start": 15759.88, + "end": 15765.3, + "probability": 0.983 + }, + { + "start": 15765.46, + "end": 15767.92, + "probability": 0.5026 + }, + { + "start": 15768.36, + "end": 15770.8, + "probability": 0.9603 + }, + { + "start": 15771.26, + "end": 15777.3, + "probability": 0.7438 + }, + { + "start": 15777.32, + "end": 15777.96, + "probability": 0.7368 + }, + { + "start": 15778.48, + "end": 15779.74, + "probability": 0.9482 + }, + { + "start": 15779.82, + "end": 15780.91, + "probability": 0.9745 + }, + { + "start": 15781.32, + "end": 15782.28, + "probability": 0.652 + }, + { + "start": 15783.08, + "end": 15788.96, + "probability": 0.9659 + }, + { + "start": 15789.56, + "end": 15790.32, + "probability": 0.9116 + }, + { + "start": 15790.4, + "end": 15793.32, + "probability": 0.9398 + }, + { + "start": 15793.48, + "end": 15794.66, + "probability": 0.9684 + }, + { + "start": 15794.82, + "end": 15796.96, + "probability": 0.9917 + }, + { + "start": 15797.28, + "end": 15797.76, + "probability": 0.5193 + }, + { + "start": 15798.0, + "end": 15799.18, + "probability": 0.7838 + }, + { + "start": 15800.06, + "end": 15801.27, + "probability": 0.7964 + }, + { + "start": 15802.02, + "end": 15806.26, + "probability": 0.9808 + }, + { + "start": 15806.3, + "end": 15806.64, + "probability": 0.7516 + }, + { + "start": 15806.74, + "end": 15808.26, + "probability": 0.4839 + }, + { + "start": 15809.4, + "end": 15810.56, + "probability": 0.7298 + }, + { + "start": 15810.72, + "end": 15811.22, + "probability": 0.7744 + }, + { + "start": 15811.34, + "end": 15811.66, + "probability": 0.8099 + }, + { + "start": 15811.7, + "end": 15814.08, + "probability": 0.9827 + }, + { + "start": 15814.2, + "end": 15814.84, + "probability": 0.768 + }, + { + "start": 15815.04, + "end": 15815.58, + "probability": 0.6832 + }, + { + "start": 15817.44, + "end": 15819.62, + "probability": 0.6295 + }, + { + "start": 15820.98, + "end": 15822.14, + "probability": 0.7449 + }, + { + "start": 15823.62, + "end": 15823.9, + "probability": 0.4577 + }, + { + "start": 15823.9, + "end": 15824.62, + "probability": 0.5327 + }, + { + "start": 15855.06, + "end": 15855.5, + "probability": 0.252 + }, + { + "start": 15856.62, + "end": 15859.3, + "probability": 0.832 + }, + { + "start": 15859.72, + "end": 15860.52, + "probability": 0.0917 + }, + { + "start": 15860.52, + "end": 15864.38, + "probability": 0.9318 + }, + { + "start": 15865.06, + "end": 15868.26, + "probability": 0.9983 + }, + { + "start": 15869.08, + "end": 15872.18, + "probability": 0.9928 + }, + { + "start": 15873.06, + "end": 15877.22, + "probability": 0.7515 + }, + { + "start": 15877.88, + "end": 15879.78, + "probability": 0.909 + }, + { + "start": 15882.7, + "end": 15887.16, + "probability": 0.8369 + }, + { + "start": 15888.46, + "end": 15890.06, + "probability": 0.855 + }, + { + "start": 15890.78, + "end": 15891.62, + "probability": 0.9728 + }, + { + "start": 15892.02, + "end": 15892.9, + "probability": 0.9935 + }, + { + "start": 15893.95, + "end": 15897.02, + "probability": 0.0688 + }, + { + "start": 15897.44, + "end": 15901.58, + "probability": 0.9423 + }, + { + "start": 15902.52, + "end": 15902.96, + "probability": 0.6796 + }, + { + "start": 15903.6, + "end": 15904.8, + "probability": 0.8086 + }, + { + "start": 15905.42, + "end": 15906.79, + "probability": 0.9546 + }, + { + "start": 15908.9, + "end": 15910.84, + "probability": 0.4608 + }, + { + "start": 15910.84, + "end": 15911.12, + "probability": 0.0895 + }, + { + "start": 15911.34, + "end": 15912.48, + "probability": 0.6406 + }, + { + "start": 15912.58, + "end": 15912.84, + "probability": 0.7941 + }, + { + "start": 15912.94, + "end": 15915.1, + "probability": 0.8412 + }, + { + "start": 15915.54, + "end": 15921.66, + "probability": 0.9055 + }, + { + "start": 15922.54, + "end": 15924.04, + "probability": 0.958 + }, + { + "start": 15924.12, + "end": 15926.2, + "probability": 0.9294 + }, + { + "start": 15926.54, + "end": 15928.68, + "probability": 0.9874 + }, + { + "start": 15929.06, + "end": 15930.54, + "probability": 0.0026 + }, + { + "start": 15931.44, + "end": 15931.58, + "probability": 0.013 + }, + { + "start": 15931.58, + "end": 15933.02, + "probability": 0.167 + }, + { + "start": 15933.66, + "end": 15935.6, + "probability": 0.9168 + }, + { + "start": 15936.16, + "end": 15938.12, + "probability": 0.9854 + }, + { + "start": 15938.52, + "end": 15943.56, + "probability": 0.9912 + }, + { + "start": 15943.8, + "end": 15944.62, + "probability": 0.894 + }, + { + "start": 15945.1, + "end": 15947.12, + "probability": 0.8618 + }, + { + "start": 15947.64, + "end": 15948.2, + "probability": 0.3083 + }, + { + "start": 15948.9, + "end": 15951.52, + "probability": 0.8124 + }, + { + "start": 15951.74, + "end": 15952.1, + "probability": 0.0913 + }, + { + "start": 15952.22, + "end": 15952.42, + "probability": 0.1403 + }, + { + "start": 15952.42, + "end": 15953.52, + "probability": 0.3524 + }, + { + "start": 15954.22, + "end": 15956.05, + "probability": 0.9797 + }, + { + "start": 15956.92, + "end": 15958.04, + "probability": 0.813 + }, + { + "start": 15958.82, + "end": 15962.5, + "probability": 0.9082 + }, + { + "start": 15962.78, + "end": 15963.78, + "probability": 0.7273 + }, + { + "start": 15963.85, + "end": 15967.9, + "probability": 0.9731 + }, + { + "start": 15967.9, + "end": 15968.15, + "probability": 0.1046 + }, + { + "start": 15969.36, + "end": 15971.58, + "probability": 0.2372 + }, + { + "start": 15971.88, + "end": 15972.08, + "probability": 0.0352 + }, + { + "start": 15972.08, + "end": 15973.44, + "probability": 0.656 + }, + { + "start": 15973.76, + "end": 15974.45, + "probability": 0.6116 + }, + { + "start": 15976.44, + "end": 15976.54, + "probability": 0.828 + }, + { + "start": 15976.54, + "end": 15979.09, + "probability": 0.4385 + }, + { + "start": 15980.46, + "end": 15982.72, + "probability": 0.5679 + }, + { + "start": 15982.84, + "end": 15983.0, + "probability": 0.1554 + }, + { + "start": 15983.0, + "end": 15983.56, + "probability": 0.6964 + }, + { + "start": 15983.82, + "end": 15986.1, + "probability": 0.7396 + }, + { + "start": 15986.26, + "end": 15986.76, + "probability": 0.6992 + }, + { + "start": 15986.86, + "end": 15987.9, + "probability": 0.8643 + }, + { + "start": 15988.08, + "end": 15992.3, + "probability": 0.9769 + }, + { + "start": 15992.42, + "end": 15994.6, + "probability": 0.9777 + }, + { + "start": 15994.64, + "end": 15994.72, + "probability": 0.1932 + }, + { + "start": 15994.72, + "end": 15995.04, + "probability": 0.2215 + }, + { + "start": 15995.18, + "end": 15997.38, + "probability": 0.9215 + }, + { + "start": 15997.72, + "end": 15998.34, + "probability": 0.6633 + }, + { + "start": 15998.52, + "end": 15998.52, + "probability": 0.1482 + }, + { + "start": 15998.52, + "end": 15999.94, + "probability": 0.7216 + }, + { + "start": 16000.04, + "end": 16002.28, + "probability": 0.8171 + }, + { + "start": 16006.42, + "end": 16006.7, + "probability": 0.0334 + }, + { + "start": 16006.7, + "end": 16006.7, + "probability": 0.1312 + }, + { + "start": 16006.7, + "end": 16006.7, + "probability": 0.3687 + }, + { + "start": 16006.7, + "end": 16006.7, + "probability": 0.0485 + }, + { + "start": 16006.7, + "end": 16006.7, + "probability": 0.1071 + }, + { + "start": 16006.7, + "end": 16006.7, + "probability": 0.3179 + }, + { + "start": 16006.7, + "end": 16010.4, + "probability": 0.436 + }, + { + "start": 16011.48, + "end": 16014.3, + "probability": 0.3532 + }, + { + "start": 16014.46, + "end": 16018.92, + "probability": 0.7449 + }, + { + "start": 16019.06, + "end": 16021.28, + "probability": 0.7613 + }, + { + "start": 16021.62, + "end": 16021.64, + "probability": 0.4064 + }, + { + "start": 16021.64, + "end": 16023.56, + "probability": 0.3148 + }, + { + "start": 16023.68, + "end": 16023.88, + "probability": 0.5377 + }, + { + "start": 16023.88, + "end": 16024.09, + "probability": 0.0393 + }, + { + "start": 16024.48, + "end": 16027.8, + "probability": 0.6592 + }, + { + "start": 16028.08, + "end": 16030.33, + "probability": 0.6234 + }, + { + "start": 16030.62, + "end": 16031.66, + "probability": 0.5159 + }, + { + "start": 16032.9, + "end": 16035.56, + "probability": 0.0548 + }, + { + "start": 16041.7, + "end": 16042.16, + "probability": 0.0067 + }, + { + "start": 16042.62, + "end": 16042.72, + "probability": 0.1007 + }, + { + "start": 16042.72, + "end": 16043.3, + "probability": 0.043 + }, + { + "start": 16043.74, + "end": 16047.2, + "probability": 0.1004 + }, + { + "start": 16047.64, + "end": 16048.94, + "probability": 0.0614 + }, + { + "start": 16048.94, + "end": 16048.94, + "probability": 0.1575 + }, + { + "start": 16048.94, + "end": 16049.38, + "probability": 0.3312 + }, + { + "start": 16049.38, + "end": 16049.58, + "probability": 0.4927 + }, + { + "start": 16051.9, + "end": 16054.68, + "probability": 0.5839 + }, + { + "start": 16057.22, + "end": 16057.66, + "probability": 0.7238 + }, + { + "start": 16057.84, + "end": 16060.94, + "probability": 0.5277 + }, + { + "start": 16061.46, + "end": 16063.48, + "probability": 0.9105 + }, + { + "start": 16063.66, + "end": 16064.6, + "probability": 0.7383 + }, + { + "start": 16064.96, + "end": 16065.58, + "probability": 0.4222 + }, + { + "start": 16065.76, + "end": 16067.36, + "probability": 0.8674 + }, + { + "start": 16068.53, + "end": 16069.18, + "probability": 0.0789 + }, + { + "start": 16069.18, + "end": 16069.94, + "probability": 0.8537 + }, + { + "start": 16070.08, + "end": 16070.68, + "probability": 0.1554 + }, + { + "start": 16071.14, + "end": 16078.76, + "probability": 0.9873 + }, + { + "start": 16079.46, + "end": 16081.9, + "probability": 0.981 + }, + { + "start": 16082.28, + "end": 16082.6, + "probability": 0.2353 + }, + { + "start": 16082.6, + "end": 16083.06, + "probability": 0.3674 + }, + { + "start": 16083.42, + "end": 16085.48, + "probability": 0.4462 + }, + { + "start": 16087.06, + "end": 16088.84, + "probability": 0.7349 + }, + { + "start": 16089.24, + "end": 16093.34, + "probability": 0.0334 + }, + { + "start": 16093.66, + "end": 16095.54, + "probability": 0.6228 + }, + { + "start": 16095.62, + "end": 16098.32, + "probability": 0.9207 + }, + { + "start": 16102.84, + "end": 16106.7, + "probability": 0.4208 + }, + { + "start": 16106.98, + "end": 16109.32, + "probability": 0.7463 + }, + { + "start": 16110.04, + "end": 16112.02, + "probability": 0.4627 + }, + { + "start": 16112.12, + "end": 16113.42, + "probability": 0.8795 + }, + { + "start": 16113.94, + "end": 16116.01, + "probability": 0.5171 + }, + { + "start": 16117.98, + "end": 16119.84, + "probability": 0.9258 + }, + { + "start": 16120.24, + "end": 16120.46, + "probability": 0.1206 + }, + { + "start": 16120.8, + "end": 16121.85, + "probability": 0.1435 + }, + { + "start": 16122.27, + "end": 16125.08, + "probability": 0.9187 + }, + { + "start": 16126.54, + "end": 16129.1, + "probability": 0.8821 + }, + { + "start": 16129.2, + "end": 16131.22, + "probability": 0.9551 + }, + { + "start": 16131.72, + "end": 16132.5, + "probability": 0.8081 + }, + { + "start": 16132.5, + "end": 16133.3, + "probability": 0.7645 + }, + { + "start": 16133.4, + "end": 16136.89, + "probability": 0.9863 + }, + { + "start": 16136.94, + "end": 16138.04, + "probability": 0.6095 + }, + { + "start": 16138.38, + "end": 16142.56, + "probability": 0.03 + }, + { + "start": 16146.1, + "end": 16146.2, + "probability": 0.4931 + }, + { + "start": 16159.28, + "end": 16159.4, + "probability": 0.0078 + }, + { + "start": 16159.4, + "end": 16159.4, + "probability": 0.0686 + }, + { + "start": 16159.4, + "end": 16159.4, + "probability": 0.0402 + }, + { + "start": 16159.4, + "end": 16159.4, + "probability": 0.1353 + }, + { + "start": 16159.4, + "end": 16160.32, + "probability": 0.6471 + }, + { + "start": 16161.06, + "end": 16162.36, + "probability": 0.534 + }, + { + "start": 16162.5, + "end": 16168.34, + "probability": 0.9497 + }, + { + "start": 16174.54, + "end": 16176.52, + "probability": 0.1783 + }, + { + "start": 16177.02, + "end": 16178.2, + "probability": 0.4262 + }, + { + "start": 16178.46, + "end": 16179.02, + "probability": 0.4876 + }, + { + "start": 16179.4, + "end": 16179.72, + "probability": 0.7845 + }, + { + "start": 16179.8, + "end": 16181.2, + "probability": 0.7993 + }, + { + "start": 16181.28, + "end": 16185.46, + "probability": 0.9602 + }, + { + "start": 16185.96, + "end": 16186.51, + "probability": 0.544 + }, + { + "start": 16186.94, + "end": 16189.26, + "probability": 0.9673 + }, + { + "start": 16189.48, + "end": 16190.5, + "probability": 0.6075 + }, + { + "start": 16192.18, + "end": 16192.97, + "probability": 0.6413 + }, + { + "start": 16193.44, + "end": 16195.28, + "probability": 0.832 + }, + { + "start": 16195.36, + "end": 16196.52, + "probability": 0.899 + }, + { + "start": 16196.74, + "end": 16196.96, + "probability": 0.0297 + }, + { + "start": 16199.96, + "end": 16200.98, + "probability": 0.8451 + }, + { + "start": 16203.58, + "end": 16206.32, + "probability": 0.7525 + }, + { + "start": 16206.4, + "end": 16208.36, + "probability": 0.0398 + }, + { + "start": 16209.28, + "end": 16211.84, + "probability": 0.3984 + }, + { + "start": 16211.98, + "end": 16215.34, + "probability": 0.7585 + }, + { + "start": 16216.14, + "end": 16221.12, + "probability": 0.6176 + }, + { + "start": 16223.5, + "end": 16225.0, + "probability": 0.7556 + }, + { + "start": 16233.76, + "end": 16234.82, + "probability": 0.8303 + }, + { + "start": 16235.06, + "end": 16236.29, + "probability": 0.8133 + }, + { + "start": 16240.3, + "end": 16241.84, + "probability": 0.8844 + }, + { + "start": 16248.42, + "end": 16249.42, + "probability": 0.773 + }, + { + "start": 16250.36, + "end": 16251.54, + "probability": 0.6677 + }, + { + "start": 16254.44, + "end": 16258.12, + "probability": 0.9854 + }, + { + "start": 16260.46, + "end": 16261.6, + "probability": 0.7948 + }, + { + "start": 16262.92, + "end": 16264.76, + "probability": 0.9823 + }, + { + "start": 16265.54, + "end": 16269.36, + "probability": 0.993 + }, + { + "start": 16270.78, + "end": 16271.64, + "probability": 0.9377 + }, + { + "start": 16276.38, + "end": 16278.96, + "probability": 0.7714 + }, + { + "start": 16278.98, + "end": 16280.82, + "probability": 0.7092 + }, + { + "start": 16281.24, + "end": 16282.32, + "probability": 0.8566 + }, + { + "start": 16283.48, + "end": 16289.46, + "probability": 0.9782 + }, + { + "start": 16290.98, + "end": 16296.76, + "probability": 0.633 + }, + { + "start": 16299.48, + "end": 16302.72, + "probability": 0.9954 + }, + { + "start": 16304.84, + "end": 16306.28, + "probability": 0.7323 + }, + { + "start": 16308.44, + "end": 16310.14, + "probability": 0.9822 + }, + { + "start": 16310.98, + "end": 16312.18, + "probability": 0.9451 + }, + { + "start": 16313.4, + "end": 16315.54, + "probability": 0.9807 + }, + { + "start": 16316.8, + "end": 16316.9, + "probability": 0.9176 + }, + { + "start": 16316.98, + "end": 16319.76, + "probability": 0.9719 + }, + { + "start": 16320.6, + "end": 16322.88, + "probability": 0.7042 + }, + { + "start": 16324.42, + "end": 16328.6, + "probability": 0.9789 + }, + { + "start": 16328.64, + "end": 16329.02, + "probability": 0.63 + }, + { + "start": 16329.14, + "end": 16330.94, + "probability": 0.9688 + }, + { + "start": 16331.4, + "end": 16333.24, + "probability": 0.962 + }, + { + "start": 16334.72, + "end": 16335.78, + "probability": 0.9762 + }, + { + "start": 16336.48, + "end": 16336.6, + "probability": 0.6659 + }, + { + "start": 16336.64, + "end": 16337.52, + "probability": 0.7243 + }, + { + "start": 16337.58, + "end": 16338.22, + "probability": 0.9131 + }, + { + "start": 16338.3, + "end": 16338.69, + "probability": 0.9289 + }, + { + "start": 16339.48, + "end": 16341.18, + "probability": 0.9414 + }, + { + "start": 16342.74, + "end": 16344.52, + "probability": 0.9876 + }, + { + "start": 16345.44, + "end": 16348.94, + "probability": 0.987 + }, + { + "start": 16349.82, + "end": 16350.54, + "probability": 0.6362 + }, + { + "start": 16352.08, + "end": 16352.9, + "probability": 0.964 + }, + { + "start": 16354.76, + "end": 16355.38, + "probability": 0.9702 + }, + { + "start": 16356.48, + "end": 16358.94, + "probability": 0.9889 + }, + { + "start": 16360.02, + "end": 16360.76, + "probability": 0.981 + }, + { + "start": 16362.06, + "end": 16364.37, + "probability": 0.9832 + }, + { + "start": 16365.42, + "end": 16371.26, + "probability": 0.9949 + }, + { + "start": 16372.06, + "end": 16373.36, + "probability": 0.5832 + }, + { + "start": 16374.32, + "end": 16375.44, + "probability": 0.8152 + }, + { + "start": 16376.02, + "end": 16377.4, + "probability": 0.9786 + }, + { + "start": 16377.94, + "end": 16379.14, + "probability": 0.9512 + }, + { + "start": 16380.08, + "end": 16383.1, + "probability": 0.9575 + }, + { + "start": 16383.64, + "end": 16386.62, + "probability": 0.9912 + }, + { + "start": 16386.82, + "end": 16387.34, + "probability": 0.6488 + }, + { + "start": 16387.76, + "end": 16393.54, + "probability": 0.9975 + }, + { + "start": 16394.74, + "end": 16398.82, + "probability": 0.9357 + }, + { + "start": 16399.36, + "end": 16400.54, + "probability": 0.9531 + }, + { + "start": 16401.22, + "end": 16402.7, + "probability": 0.8763 + }, + { + "start": 16403.58, + "end": 16406.58, + "probability": 0.9985 + }, + { + "start": 16407.12, + "end": 16411.12, + "probability": 0.9774 + }, + { + "start": 16411.2, + "end": 16411.74, + "probability": 0.9804 + }, + { + "start": 16412.82, + "end": 16414.26, + "probability": 0.8923 + }, + { + "start": 16414.92, + "end": 16415.54, + "probability": 0.9448 + }, + { + "start": 16415.66, + "end": 16418.12, + "probability": 0.9648 + }, + { + "start": 16418.6, + "end": 16420.26, + "probability": 0.9785 + }, + { + "start": 16421.04, + "end": 16424.14, + "probability": 0.947 + }, + { + "start": 16424.22, + "end": 16425.14, + "probability": 0.9201 + }, + { + "start": 16425.28, + "end": 16426.2, + "probability": 0.8892 + }, + { + "start": 16426.88, + "end": 16428.88, + "probability": 0.992 + }, + { + "start": 16428.88, + "end": 16432.4, + "probability": 0.9366 + }, + { + "start": 16433.04, + "end": 16434.14, + "probability": 0.8379 + }, + { + "start": 16434.94, + "end": 16435.78, + "probability": 0.9747 + }, + { + "start": 16436.34, + "end": 16438.12, + "probability": 0.9177 + }, + { + "start": 16438.76, + "end": 16442.4, + "probability": 0.9425 + }, + { + "start": 16442.52, + "end": 16444.04, + "probability": 0.9988 + }, + { + "start": 16444.72, + "end": 16447.9, + "probability": 0.9741 + }, + { + "start": 16448.56, + "end": 16449.32, + "probability": 0.8783 + }, + { + "start": 16450.86, + "end": 16451.88, + "probability": 0.9893 + }, + { + "start": 16452.66, + "end": 16455.82, + "probability": 0.9849 + }, + { + "start": 16456.44, + "end": 16457.16, + "probability": 0.991 + }, + { + "start": 16457.7, + "end": 16459.34, + "probability": 0.988 + }, + { + "start": 16459.42, + "end": 16460.32, + "probability": 0.9856 + }, + { + "start": 16460.48, + "end": 16461.64, + "probability": 0.9051 + }, + { + "start": 16462.34, + "end": 16463.35, + "probability": 0.8962 + }, + { + "start": 16463.8, + "end": 16464.26, + "probability": 0.7924 + }, + { + "start": 16464.36, + "end": 16465.62, + "probability": 0.9679 + }, + { + "start": 16465.66, + "end": 16466.96, + "probability": 0.9548 + }, + { + "start": 16467.48, + "end": 16469.14, + "probability": 0.9877 + }, + { + "start": 16469.64, + "end": 16470.46, + "probability": 0.9629 + }, + { + "start": 16471.12, + "end": 16472.4, + "probability": 0.9886 + }, + { + "start": 16472.48, + "end": 16476.2, + "probability": 0.9829 + }, + { + "start": 16477.38, + "end": 16484.06, + "probability": 0.9958 + }, + { + "start": 16485.08, + "end": 16489.06, + "probability": 0.7683 + }, + { + "start": 16489.7, + "end": 16491.64, + "probability": 0.9647 + }, + { + "start": 16493.12, + "end": 16495.0, + "probability": 0.8954 + }, + { + "start": 16496.62, + "end": 16497.3, + "probability": 0.9383 + }, + { + "start": 16498.14, + "end": 16499.12, + "probability": 0.9465 + }, + { + "start": 16500.24, + "end": 16503.4, + "probability": 0.9634 + }, + { + "start": 16503.9, + "end": 16509.86, + "probability": 0.9913 + }, + { + "start": 16510.78, + "end": 16511.56, + "probability": 0.8263 + }, + { + "start": 16512.62, + "end": 16513.68, + "probability": 0.8664 + }, + { + "start": 16513.86, + "end": 16516.9, + "probability": 0.9961 + }, + { + "start": 16518.2, + "end": 16523.06, + "probability": 0.9673 + }, + { + "start": 16523.66, + "end": 16525.38, + "probability": 0.9716 + }, + { + "start": 16526.7, + "end": 16529.24, + "probability": 0.9605 + }, + { + "start": 16529.46, + "end": 16531.56, + "probability": 0.9841 + }, + { + "start": 16532.18, + "end": 16533.3, + "probability": 0.9959 + }, + { + "start": 16534.42, + "end": 16536.48, + "probability": 0.9761 + }, + { + "start": 16538.24, + "end": 16543.98, + "probability": 0.9917 + }, + { + "start": 16544.08, + "end": 16544.8, + "probability": 0.6506 + }, + { + "start": 16548.96, + "end": 16553.77, + "probability": 0.9982 + }, + { + "start": 16555.38, + "end": 16556.44, + "probability": 0.7519 + }, + { + "start": 16556.52, + "end": 16559.4, + "probability": 0.9984 + }, + { + "start": 16560.32, + "end": 16563.74, + "probability": 0.9936 + }, + { + "start": 16564.44, + "end": 16565.56, + "probability": 0.751 + }, + { + "start": 16566.98, + "end": 16569.8, + "probability": 0.9678 + }, + { + "start": 16571.26, + "end": 16573.3, + "probability": 0.98 + }, + { + "start": 16574.54, + "end": 16577.24, + "probability": 0.9961 + }, + { + "start": 16579.36, + "end": 16585.66, + "probability": 0.9453 + }, + { + "start": 16586.02, + "end": 16586.98, + "probability": 0.8753 + }, + { + "start": 16587.42, + "end": 16588.46, + "probability": 0.6778 + }, + { + "start": 16589.22, + "end": 16592.06, + "probability": 0.8905 + }, + { + "start": 16592.74, + "end": 16595.95, + "probability": 0.9412 + }, + { + "start": 16597.18, + "end": 16601.04, + "probability": 0.5826 + }, + { + "start": 16601.04, + "end": 16603.03, + "probability": 0.6654 + }, + { + "start": 16603.4, + "end": 16603.64, + "probability": 0.0122 + }, + { + "start": 16603.98, + "end": 16604.44, + "probability": 0.6874 + }, + { + "start": 16604.86, + "end": 16607.14, + "probability": 0.8118 + }, + { + "start": 16609.34, + "end": 16616.66, + "probability": 0.9379 + }, + { + "start": 16616.76, + "end": 16619.14, + "probability": 0.9009 + }, + { + "start": 16619.88, + "end": 16621.44, + "probability": 0.8754 + }, + { + "start": 16621.9, + "end": 16626.54, + "probability": 0.9621 + }, + { + "start": 16627.06, + "end": 16629.6, + "probability": 0.9846 + }, + { + "start": 16629.86, + "end": 16630.98, + "probability": 0.9482 + }, + { + "start": 16631.48, + "end": 16633.74, + "probability": 0.9752 + }, + { + "start": 16634.02, + "end": 16635.92, + "probability": 0.7226 + }, + { + "start": 16635.98, + "end": 16636.48, + "probability": 0.8954 + }, + { + "start": 16637.12, + "end": 16638.34, + "probability": 0.9864 + }, + { + "start": 16639.52, + "end": 16641.06, + "probability": 0.9139 + }, + { + "start": 16641.14, + "end": 16643.24, + "probability": 0.9583 + }, + { + "start": 16645.08, + "end": 16647.44, + "probability": 0.9064 + }, + { + "start": 16648.26, + "end": 16649.96, + "probability": 0.7306 + }, + { + "start": 16649.98, + "end": 16650.72, + "probability": 0.9695 + }, + { + "start": 16651.44, + "end": 16654.96, + "probability": 0.998 + }, + { + "start": 16655.34, + "end": 16655.8, + "probability": 0.8282 + }, + { + "start": 16657.76, + "end": 16659.5, + "probability": 0.9887 + }, + { + "start": 16660.02, + "end": 16661.26, + "probability": 0.9494 + }, + { + "start": 16664.2, + "end": 16665.72, + "probability": 0.7465 + }, + { + "start": 16666.08, + "end": 16667.18, + "probability": 0.3969 + }, + { + "start": 16667.3, + "end": 16669.04, + "probability": 0.9974 + }, + { + "start": 16669.52, + "end": 16672.52, + "probability": 0.963 + }, + { + "start": 16673.22, + "end": 16673.6, + "probability": 0.5278 + }, + { + "start": 16675.0, + "end": 16676.66, + "probability": 0.8908 + }, + { + "start": 16678.64, + "end": 16680.48, + "probability": 0.9918 + }, + { + "start": 16680.6, + "end": 16683.24, + "probability": 0.1826 + }, + { + "start": 16683.24, + "end": 16685.73, + "probability": 0.154 + }, + { + "start": 16686.34, + "end": 16688.74, + "probability": 0.6951 + }, + { + "start": 16689.6, + "end": 16692.7, + "probability": 0.9226 + }, + { + "start": 16693.24, + "end": 16695.42, + "probability": 0.915 + }, + { + "start": 16697.01, + "end": 16699.84, + "probability": 0.8539 + }, + { + "start": 16701.06, + "end": 16702.46, + "probability": 0.9928 + }, + { + "start": 16704.06, + "end": 16706.52, + "probability": 0.9364 + }, + { + "start": 16708.06, + "end": 16710.22, + "probability": 0.9362 + }, + { + "start": 16710.76, + "end": 16712.36, + "probability": 0.9678 + }, + { + "start": 16713.44, + "end": 16715.12, + "probability": 0.9816 + }, + { + "start": 16716.46, + "end": 16718.36, + "probability": 0.9893 + }, + { + "start": 16719.16, + "end": 16725.92, + "probability": 0.9637 + }, + { + "start": 16726.46, + "end": 16730.04, + "probability": 0.9033 + }, + { + "start": 16732.38, + "end": 16732.82, + "probability": 0.0467 + }, + { + "start": 16732.82, + "end": 16733.4, + "probability": 0.7062 + }, + { + "start": 16739.26, + "end": 16743.76, + "probability": 0.9983 + }, + { + "start": 16744.02, + "end": 16745.4, + "probability": 0.8811 + }, + { + "start": 16745.94, + "end": 16747.34, + "probability": 0.944 + }, + { + "start": 16747.84, + "end": 16751.1, + "probability": 0.9946 + }, + { + "start": 16751.64, + "end": 16754.56, + "probability": 0.9972 + }, + { + "start": 16754.66, + "end": 16756.26, + "probability": 0.6865 + }, + { + "start": 16757.08, + "end": 16759.14, + "probability": 0.8988 + }, + { + "start": 16759.7, + "end": 16759.88, + "probability": 0.8394 + }, + { + "start": 16760.84, + "end": 16762.66, + "probability": 0.592 + }, + { + "start": 16762.78, + "end": 16766.78, + "probability": 0.0412 + }, + { + "start": 16766.9, + "end": 16767.64, + "probability": 0.6366 + }, + { + "start": 16767.94, + "end": 16768.26, + "probability": 0.8486 + }, + { + "start": 16768.32, + "end": 16770.38, + "probability": 0.939 + }, + { + "start": 16770.42, + "end": 16771.1, + "probability": 0.5957 + }, + { + "start": 16771.72, + "end": 16772.12, + "probability": 0.3881 + }, + { + "start": 16775.34, + "end": 16776.88, + "probability": 0.0609 + }, + { + "start": 16778.05, + "end": 16783.2, + "probability": 0.9976 + }, + { + "start": 16783.88, + "end": 16786.84, + "probability": 0.9924 + }, + { + "start": 16787.52, + "end": 16788.5, + "probability": 0.954 + }, + { + "start": 16789.68, + "end": 16790.94, + "probability": 0.8538 + }, + { + "start": 16791.54, + "end": 16792.5, + "probability": 0.96 + }, + { + "start": 16793.41, + "end": 16795.16, + "probability": 0.7214 + }, + { + "start": 16796.02, + "end": 16798.28, + "probability": 0.893 + }, + { + "start": 16799.54, + "end": 16801.76, + "probability": 0.8883 + }, + { + "start": 16802.62, + "end": 16804.46, + "probability": 0.8988 + }, + { + "start": 16804.78, + "end": 16804.92, + "probability": 0.5269 + }, + { + "start": 16804.92, + "end": 16805.02, + "probability": 0.3649 + }, + { + "start": 16805.34, + "end": 16807.2, + "probability": 0.7033 + }, + { + "start": 16807.28, + "end": 16810.02, + "probability": 0.9068 + }, + { + "start": 16811.02, + "end": 16812.31, + "probability": 0.7863 + }, + { + "start": 16813.18, + "end": 16816.26, + "probability": 0.939 + }, + { + "start": 16817.44, + "end": 16819.16, + "probability": 0.9979 + }, + { + "start": 16820.3, + "end": 16823.29, + "probability": 0.9954 + }, + { + "start": 16824.56, + "end": 16826.0, + "probability": 0.9744 + }, + { + "start": 16826.66, + "end": 16827.94, + "probability": 0.9983 + }, + { + "start": 16828.96, + "end": 16829.5, + "probability": 0.9491 + }, + { + "start": 16831.38, + "end": 16834.42, + "probability": 0.7964 + }, + { + "start": 16835.08, + "end": 16839.82, + "probability": 0.8521 + }, + { + "start": 16839.82, + "end": 16844.68, + "probability": 0.7505 + }, + { + "start": 16847.36, + "end": 16851.5, + "probability": 0.988 + }, + { + "start": 16852.16, + "end": 16856.92, + "probability": 0.9599 + }, + { + "start": 16857.76, + "end": 16858.78, + "probability": 0.9697 + }, + { + "start": 16859.44, + "end": 16861.88, + "probability": 0.9888 + }, + { + "start": 16861.96, + "end": 16862.48, + "probability": 0.5314 + }, + { + "start": 16862.6, + "end": 16862.9, + "probability": 0.2636 + }, + { + "start": 16862.9, + "end": 16864.6, + "probability": 0.9845 + }, + { + "start": 16864.72, + "end": 16867.06, + "probability": 0.7793 + }, + { + "start": 16867.7, + "end": 16869.36, + "probability": 0.3377 + }, + { + "start": 16870.16, + "end": 16870.5, + "probability": 0.7482 + }, + { + "start": 16871.18, + "end": 16871.28, + "probability": 0.4418 + }, + { + "start": 16871.28, + "end": 16871.3, + "probability": 0.0115 + }, + { + "start": 16871.3, + "end": 16871.7, + "probability": 0.6647 + }, + { + "start": 16873.88, + "end": 16874.96, + "probability": 0.2238 + }, + { + "start": 16876.58, + "end": 16876.9, + "probability": 0.0928 + }, + { + "start": 16876.9, + "end": 16877.62, + "probability": 0.0253 + }, + { + "start": 16877.72, + "end": 16881.7, + "probability": 0.9476 + }, + { + "start": 16882.44, + "end": 16885.6, + "probability": 0.9344 + }, + { + "start": 16885.6, + "end": 16888.24, + "probability": 0.3522 + }, + { + "start": 16888.24, + "end": 16888.34, + "probability": 0.537 + }, + { + "start": 16888.34, + "end": 16888.34, + "probability": 0.4507 + }, + { + "start": 16888.34, + "end": 16890.16, + "probability": 0.9755 + }, + { + "start": 16891.08, + "end": 16893.88, + "probability": 0.7134 + }, + { + "start": 16893.9, + "end": 16894.6, + "probability": 0.5652 + }, + { + "start": 16894.72, + "end": 16895.24, + "probability": 0.7708 + }, + { + "start": 16895.26, + "end": 16896.6, + "probability": 0.7241 + }, + { + "start": 16896.6, + "end": 16897.15, + "probability": 0.2064 + }, + { + "start": 16898.58, + "end": 16899.86, + "probability": 0.3567 + }, + { + "start": 16899.86, + "end": 16900.56, + "probability": 0.4715 + }, + { + "start": 16901.38, + "end": 16903.3, + "probability": 0.3417 + }, + { + "start": 16903.58, + "end": 16904.66, + "probability": 0.2822 + }, + { + "start": 16906.16, + "end": 16906.82, + "probability": 0.5827 + }, + { + "start": 16910.02, + "end": 16911.06, + "probability": 0.6579 + }, + { + "start": 16915.4, + "end": 16918.5, + "probability": 0.9717 + }, + { + "start": 16919.36, + "end": 16919.58, + "probability": 0.01 + }, + { + "start": 16921.08, + "end": 16921.56, + "probability": 0.0835 + }, + { + "start": 16924.04, + "end": 16926.04, + "probability": 0.4458 + }, + { + "start": 16926.18, + "end": 16926.44, + "probability": 0.0295 + }, + { + "start": 16928.7, + "end": 16929.16, + "probability": 0.4207 + }, + { + "start": 16929.86, + "end": 16930.06, + "probability": 0.103 + }, + { + "start": 16930.9, + "end": 16931.02, + "probability": 0.0056 + }, + { + "start": 16940.9, + "end": 16942.12, + "probability": 0.1848 + }, + { + "start": 16944.56, + "end": 16949.1, + "probability": 0.5513 + }, + { + "start": 16950.52, + "end": 16954.48, + "probability": 0.0403 + }, + { + "start": 16954.48, + "end": 16955.3, + "probability": 0.6129 + }, + { + "start": 16955.44, + "end": 16955.51, + "probability": 0.3024 + }, + { + "start": 16957.32, + "end": 16958.1, + "probability": 0.4876 + }, + { + "start": 16958.26, + "end": 16958.36, + "probability": 0.0289 + }, + { + "start": 16958.64, + "end": 16958.7, + "probability": 0.4805 + }, + { + "start": 16958.7, + "end": 16960.96, + "probability": 0.3373 + }, + { + "start": 16969.61, + "end": 16969.71, + "probability": 0.4697 + }, + { + "start": 16979.47, + "end": 16981.05, + "probability": 0.5377 + }, + { + "start": 16983.69, + "end": 16983.79, + "probability": 0.1843 + }, + { + "start": 16985.81, + "end": 16989.32, + "probability": 0.9534 + }, + { + "start": 16996.91, + "end": 16997.29, + "probability": 0.4239 + }, + { + "start": 16997.33, + "end": 16998.63, + "probability": 0.8084 + }, + { + "start": 16998.69, + "end": 17001.17, + "probability": 0.988 + }, + { + "start": 17001.33, + "end": 17002.39, + "probability": 0.6371 + }, + { + "start": 17002.65, + "end": 17003.87, + "probability": 0.456 + }, + { + "start": 17004.07, + "end": 17005.59, + "probability": 0.9595 + }, + { + "start": 17005.69, + "end": 17006.21, + "probability": 0.8525 + }, + { + "start": 17012.73, + "end": 17014.39, + "probability": 0.4884 + }, + { + "start": 17014.49, + "end": 17015.22, + "probability": 0.8274 + }, + { + "start": 17015.53, + "end": 17018.09, + "probability": 0.8194 + }, + { + "start": 17018.15, + "end": 17018.25, + "probability": 0.7928 + }, + { + "start": 17024.17, + "end": 17028.83, + "probability": 0.9903 + }, + { + "start": 17029.89, + "end": 17030.07, + "probability": 0.3268 + }, + { + "start": 17030.11, + "end": 17035.35, + "probability": 0.9644 + }, + { + "start": 17035.41, + "end": 17038.63, + "probability": 0.9461 + }, + { + "start": 17038.67, + "end": 17038.81, + "probability": 0.6247 + }, + { + "start": 17040.85, + "end": 17041.03, + "probability": 0.1324 + }, + { + "start": 17042.51, + "end": 17044.97, + "probability": 0.9802 + }, + { + "start": 17045.55, + "end": 17048.55, + "probability": 0.979 + }, + { + "start": 17048.55, + "end": 17052.09, + "probability": 0.9964 + }, + { + "start": 17052.79, + "end": 17055.99, + "probability": 0.9885 + }, + { + "start": 17056.85, + "end": 17056.97, + "probability": 0.341 + }, + { + "start": 17057.09, + "end": 17057.57, + "probability": 0.8407 + }, + { + "start": 17057.69, + "end": 17058.75, + "probability": 0.6366 + }, + { + "start": 17058.91, + "end": 17060.63, + "probability": 0.8407 + }, + { + "start": 17061.11, + "end": 17063.87, + "probability": 0.9707 + }, + { + "start": 17064.63, + "end": 17067.75, + "probability": 0.9984 + }, + { + "start": 17068.33, + "end": 17073.53, + "probability": 0.9768 + }, + { + "start": 17074.47, + "end": 17079.37, + "probability": 0.894 + }, + { + "start": 17082.21, + "end": 17087.47, + "probability": 0.9976 + }, + { + "start": 17088.59, + "end": 17089.35, + "probability": 0.1888 + }, + { + "start": 17089.91, + "end": 17095.25, + "probability": 0.9927 + }, + { + "start": 17096.51, + "end": 17099.57, + "probability": 0.9983 + }, + { + "start": 17099.61, + "end": 17104.07, + "probability": 0.9591 + }, + { + "start": 17104.87, + "end": 17104.95, + "probability": 0.2721 + }, + { + "start": 17105.89, + "end": 17108.65, + "probability": 0.8128 + }, + { + "start": 17109.29, + "end": 17111.59, + "probability": 0.8435 + }, + { + "start": 17112.19, + "end": 17114.65, + "probability": 0.8195 + }, + { + "start": 17115.29, + "end": 17118.05, + "probability": 0.995 + }, + { + "start": 17118.05, + "end": 17121.19, + "probability": 0.9983 + }, + { + "start": 17121.73, + "end": 17124.19, + "probability": 0.8154 + }, + { + "start": 17124.89, + "end": 17127.33, + "probability": 0.9521 + }, + { + "start": 17127.93, + "end": 17132.31, + "probability": 0.9703 + }, + { + "start": 17133.37, + "end": 17138.67, + "probability": 0.9462 + }, + { + "start": 17139.47, + "end": 17143.07, + "probability": 0.9591 + }, + { + "start": 17143.83, + "end": 17145.47, + "probability": 0.7054 + }, + { + "start": 17147.73, + "end": 17150.91, + "probability": 0.6677 + }, + { + "start": 17151.63, + "end": 17156.95, + "probability": 0.7729 + }, + { + "start": 17157.87, + "end": 17160.57, + "probability": 0.9185 + }, + { + "start": 17161.25, + "end": 17165.93, + "probability": 0.9543 + }, + { + "start": 17166.97, + "end": 17167.57, + "probability": 0.78 + }, + { + "start": 17168.37, + "end": 17171.75, + "probability": 0.9709 + }, + { + "start": 17172.39, + "end": 17177.87, + "probability": 0.8855 + }, + { + "start": 17178.15, + "end": 17178.83, + "probability": 0.7737 + }, + { + "start": 17179.39, + "end": 17182.17, + "probability": 0.976 + }, + { + "start": 17182.53, + "end": 17184.75, + "probability": 0.9582 + }, + { + "start": 17185.49, + "end": 17188.27, + "probability": 0.9856 + }, + { + "start": 17188.67, + "end": 17190.81, + "probability": 0.9922 + }, + { + "start": 17191.87, + "end": 17194.59, + "probability": 0.9289 + }, + { + "start": 17195.25, + "end": 17198.47, + "probability": 0.9987 + }, + { + "start": 17198.63, + "end": 17199.7, + "probability": 0.7472 + }, + { + "start": 17200.73, + "end": 17203.23, + "probability": 0.9835 + }, + { + "start": 17204.15, + "end": 17206.99, + "probability": 0.9941 + }, + { + "start": 17206.99, + "end": 17210.77, + "probability": 0.9507 + }, + { + "start": 17211.19, + "end": 17212.63, + "probability": 0.9209 + }, + { + "start": 17213.13, + "end": 17214.09, + "probability": 0.7148 + }, + { + "start": 17214.13, + "end": 17217.37, + "probability": 0.8186 + }, + { + "start": 17218.73, + "end": 17218.83, + "probability": 0.2916 + }, + { + "start": 17220.87, + "end": 17225.21, + "probability": 0.9919 + }, + { + "start": 17225.87, + "end": 17228.07, + "probability": 0.8335 + }, + { + "start": 17228.81, + "end": 17228.99, + "probability": 0.1562 + }, + { + "start": 17229.63, + "end": 17232.31, + "probability": 0.9814 + }, + { + "start": 17233.19, + "end": 17233.49, + "probability": 0.5116 + }, + { + "start": 17233.73, + "end": 17236.91, + "probability": 0.981 + }, + { + "start": 17236.97, + "end": 17238.79, + "probability": 0.9839 + }, + { + "start": 17239.67, + "end": 17239.91, + "probability": 0.8999 + }, + { + "start": 17240.43, + "end": 17244.35, + "probability": 0.9959 + }, + { + "start": 17244.95, + "end": 17246.33, + "probability": 0.9653 + }, + { + "start": 17247.17, + "end": 17247.45, + "probability": 0.107 + }, + { + "start": 17248.01, + "end": 17251.49, + "probability": 0.9963 + }, + { + "start": 17251.97, + "end": 17255.95, + "probability": 0.9367 + }, + { + "start": 17255.95, + "end": 17260.05, + "probability": 0.9949 + }, + { + "start": 17261.19, + "end": 17263.67, + "probability": 0.8937 + }, + { + "start": 17264.77, + "end": 17267.23, + "probability": 0.9367 + }, + { + "start": 17267.89, + "end": 17269.51, + "probability": 0.4 + }, + { + "start": 17270.09, + "end": 17272.57, + "probability": 0.9929 + }, + { + "start": 17273.28, + "end": 17277.61, + "probability": 0.916 + }, + { + "start": 17277.77, + "end": 17278.95, + "probability": 0.7148 + }, + { + "start": 17279.53, + "end": 17282.49, + "probability": 0.9774 + }, + { + "start": 17284.41, + "end": 17286.33, + "probability": 0.8782 + }, + { + "start": 17286.51, + "end": 17288.53, + "probability": 0.9932 + }, + { + "start": 17288.87, + "end": 17291.79, + "probability": 0.9941 + }, + { + "start": 17293.45, + "end": 17300.23, + "probability": 0.9577 + }, + { + "start": 17300.47, + "end": 17305.57, + "probability": 0.9865 + }, + { + "start": 17306.39, + "end": 17308.17, + "probability": 0.9467 + }, + { + "start": 17308.71, + "end": 17310.41, + "probability": 0.8288 + }, + { + "start": 17311.03, + "end": 17313.79, + "probability": 0.8999 + }, + { + "start": 17314.57, + "end": 17316.53, + "probability": 0.9918 + }, + { + "start": 17316.59, + "end": 17317.29, + "probability": 0.7403 + }, + { + "start": 17317.79, + "end": 17319.65, + "probability": 0.8308 + }, + { + "start": 17321.09, + "end": 17323.09, + "probability": 0.8739 + }, + { + "start": 17323.23, + "end": 17325.73, + "probability": 0.6453 + }, + { + "start": 17325.83, + "end": 17326.81, + "probability": 0.8849 + }, + { + "start": 17327.33, + "end": 17330.31, + "probability": 0.9614 + }, + { + "start": 17330.31, + "end": 17334.03, + "probability": 0.999 + }, + { + "start": 17335.03, + "end": 17337.25, + "probability": 0.7838 + }, + { + "start": 17338.09, + "end": 17341.01, + "probability": 0.9888 + }, + { + "start": 17341.77, + "end": 17344.31, + "probability": 0.8676 + }, + { + "start": 17345.01, + "end": 17347.77, + "probability": 0.9604 + }, + { + "start": 17349.05, + "end": 17349.87, + "probability": 0.6901 + }, + { + "start": 17350.03, + "end": 17354.67, + "probability": 0.9683 + }, + { + "start": 17355.21, + "end": 17355.93, + "probability": 0.6344 + }, + { + "start": 17356.99, + "end": 17361.09, + "probability": 0.9911 + }, + { + "start": 17363.99, + "end": 17367.17, + "probability": 0.9983 + }, + { + "start": 17368.49, + "end": 17371.43, + "probability": 0.9986 + }, + { + "start": 17371.43, + "end": 17374.89, + "probability": 0.9978 + }, + { + "start": 17376.01, + "end": 17377.23, + "probability": 0.7841 + }, + { + "start": 17377.91, + "end": 17378.89, + "probability": 0.588 + }, + { + "start": 17378.95, + "end": 17381.53, + "probability": 0.9215 + }, + { + "start": 17382.07, + "end": 17382.89, + "probability": 0.5495 + }, + { + "start": 17384.17, + "end": 17385.41, + "probability": 0.7839 + }, + { + "start": 17385.83, + "end": 17386.97, + "probability": 0.4424 + }, + { + "start": 17387.37, + "end": 17390.73, + "probability": 0.9834 + }, + { + "start": 17391.25, + "end": 17393.03, + "probability": 0.9596 + }, + { + "start": 17394.09, + "end": 17394.63, + "probability": 0.6106 + }, + { + "start": 17395.59, + "end": 17397.47, + "probability": 0.7937 + }, + { + "start": 17398.07, + "end": 17398.33, + "probability": 0.3267 + }, + { + "start": 17398.41, + "end": 17400.33, + "probability": 0.8888 + }, + { + "start": 17400.71, + "end": 17405.53, + "probability": 0.988 + }, + { + "start": 17406.21, + "end": 17407.77, + "probability": 0.8058 + }, + { + "start": 17408.31, + "end": 17411.73, + "probability": 0.9321 + }, + { + "start": 17413.39, + "end": 17414.97, + "probability": 0.8684 + }, + { + "start": 17415.65, + "end": 17416.57, + "probability": 0.8592 + }, + { + "start": 17416.93, + "end": 17419.05, + "probability": 0.9303 + }, + { + "start": 17419.89, + "end": 17421.07, + "probability": 0.7384 + }, + { + "start": 17421.91, + "end": 17426.23, + "probability": 0.9901 + }, + { + "start": 17427.13, + "end": 17431.53, + "probability": 0.9165 + }, + { + "start": 17432.37, + "end": 17433.75, + "probability": 0.9867 + }, + { + "start": 17434.61, + "end": 17436.65, + "probability": 0.9723 + }, + { + "start": 17437.17, + "end": 17439.49, + "probability": 0.8146 + }, + { + "start": 17440.05, + "end": 17442.57, + "probability": 0.8433 + }, + { + "start": 17443.25, + "end": 17447.45, + "probability": 0.9851 + }, + { + "start": 17447.91, + "end": 17450.45, + "probability": 0.9934 + }, + { + "start": 17451.51, + "end": 17455.37, + "probability": 0.991 + }, + { + "start": 17455.85, + "end": 17456.73, + "probability": 0.716 + }, + { + "start": 17457.15, + "end": 17460.05, + "probability": 0.9885 + }, + { + "start": 17460.39, + "end": 17462.43, + "probability": 0.9247 + }, + { + "start": 17463.63, + "end": 17464.41, + "probability": 0.9907 + }, + { + "start": 17466.07, + "end": 17469.17, + "probability": 0.9528 + }, + { + "start": 17469.93, + "end": 17472.71, + "probability": 0.9938 + }, + { + "start": 17473.37, + "end": 17474.33, + "probability": 0.7538 + }, + { + "start": 17474.91, + "end": 17478.14, + "probability": 0.9945 + }, + { + "start": 17478.65, + "end": 17482.81, + "probability": 0.9761 + }, + { + "start": 17482.81, + "end": 17486.31, + "probability": 0.8669 + }, + { + "start": 17487.09, + "end": 17490.65, + "probability": 0.6165 + }, + { + "start": 17491.91, + "end": 17495.03, + "probability": 0.9427 + }, + { + "start": 17497.19, + "end": 17498.05, + "probability": 0.8501 + }, + { + "start": 17521.81, + "end": 17525.21, + "probability": 0.8474 + }, + { + "start": 17525.43, + "end": 17526.71, + "probability": 0.0411 + }, + { + "start": 17526.71, + "end": 17527.13, + "probability": 0.0604 + }, + { + "start": 17527.13, + "end": 17527.75, + "probability": 0.0796 + }, + { + "start": 17537.07, + "end": 17539.83, + "probability": 0.855 + }, + { + "start": 17540.99, + "end": 17546.09, + "probability": 0.9847 + }, + { + "start": 17546.87, + "end": 17547.84, + "probability": 0.8049 + }, + { + "start": 17548.67, + "end": 17549.13, + "probability": 0.7943 + }, + { + "start": 17549.73, + "end": 17553.93, + "probability": 0.9674 + }, + { + "start": 17553.93, + "end": 17557.73, + "probability": 0.9954 + }, + { + "start": 17558.49, + "end": 17560.25, + "probability": 0.4362 + }, + { + "start": 17560.81, + "end": 17563.99, + "probability": 0.9384 + }, + { + "start": 17564.03, + "end": 17567.37, + "probability": 0.9922 + }, + { + "start": 17567.77, + "end": 17568.27, + "probability": 0.873 + }, + { + "start": 17568.97, + "end": 17570.73, + "probability": 0.7061 + }, + { + "start": 17571.47, + "end": 17572.29, + "probability": 0.5878 + }, + { + "start": 17575.41, + "end": 17577.57, + "probability": 0.7833 + }, + { + "start": 17579.79, + "end": 17584.01, + "probability": 0.5597 + }, + { + "start": 17585.05, + "end": 17585.79, + "probability": 0.2328 + }, + { + "start": 17585.85, + "end": 17585.85, + "probability": 0.5607 + }, + { + "start": 17586.09, + "end": 17586.27, + "probability": 0.4271 + }, + { + "start": 17586.27, + "end": 17589.34, + "probability": 0.8666 + }, + { + "start": 17592.17, + "end": 17593.07, + "probability": 0.4299 + }, + { + "start": 17594.43, + "end": 17597.99, + "probability": 0.85 + }, + { + "start": 17599.61, + "end": 17601.17, + "probability": 0.7649 + }, + { + "start": 17601.25, + "end": 17605.71, + "probability": 0.7244 + }, + { + "start": 17606.51, + "end": 17607.2, + "probability": 0.2367 + }, + { + "start": 17610.15, + "end": 17614.83, + "probability": 0.5722 + }, + { + "start": 17616.5, + "end": 17618.37, + "probability": 0.7829 + }, + { + "start": 17619.15, + "end": 17619.49, + "probability": 0.9792 + }, + { + "start": 17620.35, + "end": 17621.21, + "probability": 0.9154 + }, + { + "start": 17621.99, + "end": 17624.37, + "probability": 0.9602 + }, + { + "start": 17625.71, + "end": 17628.59, + "probability": 0.7714 + }, + { + "start": 17629.69, + "end": 17630.69, + "probability": 0.9956 + }, + { + "start": 17631.51, + "end": 17632.51, + "probability": 0.9652 + }, + { + "start": 17633.47, + "end": 17636.27, + "probability": 0.9681 + }, + { + "start": 17637.31, + "end": 17637.61, + "probability": 0.9961 + }, + { + "start": 17641.69, + "end": 17642.71, + "probability": 0.6987 + }, + { + "start": 17644.11, + "end": 17649.51, + "probability": 0.6141 + }, + { + "start": 17650.95, + "end": 17651.27, + "probability": 0.6434 + }, + { + "start": 17652.55, + "end": 17653.69, + "probability": 0.8483 + }, + { + "start": 17654.35, + "end": 17656.77, + "probability": 0.8699 + }, + { + "start": 17657.91, + "end": 17666.23, + "probability": 0.9198 + }, + { + "start": 17666.81, + "end": 17667.31, + "probability": 0.9837 + }, + { + "start": 17668.53, + "end": 17669.39, + "probability": 0.6426 + }, + { + "start": 17670.03, + "end": 17670.55, + "probability": 0.5303 + }, + { + "start": 17672.07, + "end": 17673.13, + "probability": 0.6932 + }, + { + "start": 17673.85, + "end": 17674.43, + "probability": 0.9486 + }, + { + "start": 17675.73, + "end": 17676.63, + "probability": 0.8361 + }, + { + "start": 17677.43, + "end": 17677.93, + "probability": 0.9546 + }, + { + "start": 17679.39, + "end": 17680.33, + "probability": 0.864 + }, + { + "start": 17681.41, + "end": 17682.03, + "probability": 0.9824 + }, + { + "start": 17683.15, + "end": 17684.09, + "probability": 0.9748 + }, + { + "start": 17685.75, + "end": 17686.35, + "probability": 0.9844 + }, + { + "start": 17687.53, + "end": 17688.39, + "probability": 0.801 + }, + { + "start": 17691.33, + "end": 17695.01, + "probability": 0.9924 + }, + { + "start": 17695.21, + "end": 17699.51, + "probability": 0.8855 + }, + { + "start": 17699.71, + "end": 17701.63, + "probability": 0.7566 + }, + { + "start": 17702.53, + "end": 17703.15, + "probability": 0.8574 + }, + { + "start": 17704.49, + "end": 17705.83, + "probability": 0.7419 + }, + { + "start": 17706.61, + "end": 17707.97, + "probability": 0.9567 + }, + { + "start": 17709.87, + "end": 17713.51, + "probability": 0.9345 + }, + { + "start": 17714.05, + "end": 17715.21, + "probability": 0.9524 + }, + { + "start": 17717.25, + "end": 17718.09, + "probability": 0.9626 + }, + { + "start": 17719.09, + "end": 17719.77, + "probability": 0.992 + }, + { + "start": 17720.73, + "end": 17721.53, + "probability": 0.8909 + }, + { + "start": 17722.69, + "end": 17723.29, + "probability": 0.9836 + }, + { + "start": 17727.23, + "end": 17728.07, + "probability": 0.5736 + }, + { + "start": 17729.01, + "end": 17729.51, + "probability": 0.9035 + }, + { + "start": 17730.93, + "end": 17731.89, + "probability": 0.8051 + }, + { + "start": 17733.77, + "end": 17736.83, + "probability": 0.981 + }, + { + "start": 17738.89, + "end": 17741.37, + "probability": 0.8397 + }, + { + "start": 17742.47, + "end": 17745.07, + "probability": 0.963 + }, + { + "start": 17747.25, + "end": 17750.25, + "probability": 0.9485 + }, + { + "start": 17753.09, + "end": 17755.05, + "probability": 0.7708 + }, + { + "start": 17757.03, + "end": 17762.43, + "probability": 0.7094 + }, + { + "start": 17764.57, + "end": 17767.67, + "probability": 0.8672 + }, + { + "start": 17770.19, + "end": 17773.85, + "probability": 0.884 + }, + { + "start": 17777.95, + "end": 17780.43, + "probability": 0.6391 + }, + { + "start": 17781.55, + "end": 17782.33, + "probability": 0.7659 + }, + { + "start": 17783.83, + "end": 17784.35, + "probability": 0.4045 + }, + { + "start": 17785.79, + "end": 17788.55, + "probability": 0.8922 + }, + { + "start": 17790.05, + "end": 17793.73, + "probability": 0.8079 + }, + { + "start": 17794.23, + "end": 17798.53, + "probability": 0.9796 + }, + { + "start": 17798.89, + "end": 17802.63, + "probability": 0.7361 + }, + { + "start": 17807.73, + "end": 17811.35, + "probability": 0.2587 + }, + { + "start": 17812.65, + "end": 17815.57, + "probability": 0.7542 + }, + { + "start": 17820.63, + "end": 17821.07, + "probability": 0.433 + }, + { + "start": 17822.51, + "end": 17823.45, + "probability": 0.5144 + }, + { + "start": 17824.23, + "end": 17826.53, + "probability": 0.9795 + }, + { + "start": 17827.67, + "end": 17829.71, + "probability": 0.8616 + }, + { + "start": 17830.59, + "end": 17831.07, + "probability": 0.9204 + }, + { + "start": 17832.45, + "end": 17833.31, + "probability": 0.8893 + }, + { + "start": 17834.33, + "end": 17835.29, + "probability": 0.9756 + }, + { + "start": 17837.77, + "end": 17840.89, + "probability": 0.8319 + }, + { + "start": 17842.39, + "end": 17843.61, + "probability": 0.8092 + }, + { + "start": 17844.19, + "end": 17844.81, + "probability": 0.9479 + }, + { + "start": 17845.73, + "end": 17846.65, + "probability": 0.7664 + }, + { + "start": 17847.57, + "end": 17850.47, + "probability": 0.5523 + }, + { + "start": 17851.31, + "end": 17854.57, + "probability": 0.9661 + }, + { + "start": 17855.29, + "end": 17857.43, + "probability": 0.9497 + }, + { + "start": 17858.77, + "end": 17861.13, + "probability": 0.9841 + }, + { + "start": 17861.73, + "end": 17862.95, + "probability": 0.9841 + }, + { + "start": 17863.59, + "end": 17864.49, + "probability": 0.9702 + }, + { + "start": 17866.23, + "end": 17872.15, + "probability": 0.821 + }, + { + "start": 17874.75, + "end": 17874.93, + "probability": 0.0271 + }, + { + "start": 17884.75, + "end": 17886.07, + "probability": 0.4186 + }, + { + "start": 17889.65, + "end": 17893.03, + "probability": 0.6711 + }, + { + "start": 17897.15, + "end": 17899.31, + "probability": 0.7457 + }, + { + "start": 17901.19, + "end": 17901.71, + "probability": 0.5977 + }, + { + "start": 17903.83, + "end": 17904.69, + "probability": 0.8476 + }, + { + "start": 17909.23, + "end": 17912.21, + "probability": 0.8689 + }, + { + "start": 17914.35, + "end": 17917.33, + "probability": 0.9795 + }, + { + "start": 17918.05, + "end": 17921.21, + "probability": 0.9348 + }, + { + "start": 17922.33, + "end": 17922.93, + "probability": 0.986 + }, + { + "start": 17924.31, + "end": 17924.47, + "probability": 0.6598 + }, + { + "start": 17927.81, + "end": 17932.43, + "probability": 0.6201 + }, + { + "start": 17933.25, + "end": 17935.85, + "probability": 0.8702 + }, + { + "start": 17938.28, + "end": 17943.94, + "probability": 0.5036 + }, + { + "start": 17946.15, + "end": 17951.79, + "probability": 0.7794 + }, + { + "start": 17953.53, + "end": 17960.65, + "probability": 0.924 + }, + { + "start": 17964.13, + "end": 17968.44, + "probability": 0.8403 + }, + { + "start": 17970.44, + "end": 17973.62, + "probability": 0.5433 + }, + { + "start": 17974.66, + "end": 17977.44, + "probability": 0.4613 + }, + { + "start": 17979.26, + "end": 17984.5, + "probability": 0.9766 + }, + { + "start": 17985.32, + "end": 17987.86, + "probability": 0.915 + }, + { + "start": 17988.96, + "end": 17989.52, + "probability": 0.981 + }, + { + "start": 17990.94, + "end": 17992.3, + "probability": 0.9021 + }, + { + "start": 17994.4, + "end": 17997.3, + "probability": 0.1121 + }, + { + "start": 17999.06, + "end": 17999.12, + "probability": 0.6118 + }, + { + "start": 18008.9, + "end": 18010.62, + "probability": 0.3696 + }, + { + "start": 18011.32, + "end": 18011.7, + "probability": 0.6722 + }, + { + "start": 18012.8, + "end": 18013.88, + "probability": 0.6147 + }, + { + "start": 18019.84, + "end": 18029.22, + "probability": 0.5138 + }, + { + "start": 18032.48, + "end": 18033.78, + "probability": 0.3727 + }, + { + "start": 18035.36, + "end": 18035.98, + "probability": 0.4065 + }, + { + "start": 18036.1, + "end": 18036.34, + "probability": 0.0318 + }, + { + "start": 18036.4, + "end": 18037.04, + "probability": 0.2803 + }, + { + "start": 18037.04, + "end": 18038.4, + "probability": 0.7338 + }, + { + "start": 18039.18, + "end": 18039.7, + "probability": 0.7617 + }, + { + "start": 18041.0, + "end": 18042.0, + "probability": 0.1876 + }, + { + "start": 18045.72, + "end": 18052.7, + "probability": 0.6635 + }, + { + "start": 18055.92, + "end": 18059.94, + "probability": 0.1582 + }, + { + "start": 18060.48, + "end": 18061.3, + "probability": 0.266 + }, + { + "start": 18081.6, + "end": 18084.54, + "probability": 0.3216 + }, + { + "start": 18085.84, + "end": 18089.68, + "probability": 0.8253 + }, + { + "start": 18090.88, + "end": 18091.22, + "probability": 0.823 + }, + { + "start": 18092.8, + "end": 18099.2, + "probability": 0.7266 + }, + { + "start": 18100.18, + "end": 18101.46, + "probability": 0.9168 + }, + { + "start": 18101.98, + "end": 18104.9, + "probability": 0.9793 + }, + { + "start": 18107.5, + "end": 18111.24, + "probability": 0.9739 + }, + { + "start": 18113.36, + "end": 18116.4, + "probability": 0.9746 + }, + { + "start": 18118.02, + "end": 18126.24, + "probability": 0.7374 + }, + { + "start": 18129.0, + "end": 18130.98, + "probability": 0.9826 + }, + { + "start": 18131.18, + "end": 18133.14, + "probability": 0.7875 + }, + { + "start": 18133.32, + "end": 18134.86, + "probability": 0.8149 + }, + { + "start": 18135.32, + "end": 18136.98, + "probability": 0.8811 + }, + { + "start": 18137.98, + "end": 18143.02, + "probability": 0.9048 + }, + { + "start": 18144.72, + "end": 18147.14, + "probability": 0.8052 + }, + { + "start": 18147.26, + "end": 18148.38, + "probability": 0.0658 + }, + { + "start": 18148.38, + "end": 18148.78, + "probability": 0.8417 + }, + { + "start": 18148.92, + "end": 18152.22, + "probability": 0.7677 + }, + { + "start": 18153.92, + "end": 18154.71, + "probability": 0.2034 + }, + { + "start": 18154.9, + "end": 18156.34, + "probability": 0.6917 + }, + { + "start": 18157.54, + "end": 18160.42, + "probability": 0.8292 + }, + { + "start": 18161.12, + "end": 18162.06, + "probability": 0.9846 + }, + { + "start": 18163.12, + "end": 18164.02, + "probability": 0.9026 + }, + { + "start": 18167.92, + "end": 18170.58, + "probability": 0.8937 + }, + { + "start": 18171.62, + "end": 18172.16, + "probability": 0.9788 + }, + { + "start": 18172.94, + "end": 18177.82, + "probability": 0.9645 + }, + { + "start": 18180.74, + "end": 18183.88, + "probability": 0.9111 + }, + { + "start": 18184.62, + "end": 18185.04, + "probability": 0.7321 + }, + { + "start": 18186.66, + "end": 18187.96, + "probability": 0.5171 + }, + { + "start": 18189.58, + "end": 18197.64, + "probability": 0.8982 + }, + { + "start": 18198.2, + "end": 18203.68, + "probability": 0.9352 + }, + { + "start": 18205.43, + "end": 18210.98, + "probability": 0.7642 + }, + { + "start": 18212.2, + "end": 18212.72, + "probability": 0.8347 + }, + { + "start": 18213.84, + "end": 18218.06, + "probability": 0.5502 + }, + { + "start": 18218.6, + "end": 18221.1, + "probability": 0.9632 + }, + { + "start": 18221.74, + "end": 18225.8, + "probability": 0.8813 + }, + { + "start": 18227.66, + "end": 18235.56, + "probability": 0.7959 + }, + { + "start": 18239.66, + "end": 18244.52, + "probability": 0.6376 + }, + { + "start": 18248.8, + "end": 18249.16, + "probability": 0.2226 + }, + { + "start": 18254.32, + "end": 18257.86, + "probability": 0.6988 + }, + { + "start": 18257.92, + "end": 18258.02, + "probability": 0.6819 + }, + { + "start": 18258.9, + "end": 18259.78, + "probability": 0.3651 + }, + { + "start": 18260.94, + "end": 18263.48, + "probability": 0.6218 + }, + { + "start": 18265.96, + "end": 18268.78, + "probability": 0.979 + }, + { + "start": 18271.44, + "end": 18274.56, + "probability": 0.9574 + }, + { + "start": 18275.58, + "end": 18276.38, + "probability": 0.8063 + }, + { + "start": 18277.02, + "end": 18277.54, + "probability": 0.8721 + }, + { + "start": 18279.94, + "end": 18280.88, + "probability": 0.7158 + }, + { + "start": 18282.96, + "end": 18287.04, + "probability": 0.9495 + }, + { + "start": 18288.96, + "end": 18290.96, + "probability": 0.9285 + }, + { + "start": 18292.66, + "end": 18296.48, + "probability": 0.9797 + }, + { + "start": 18298.0, + "end": 18299.48, + "probability": 0.9739 + }, + { + "start": 18301.08, + "end": 18301.98, + "probability": 0.9958 + }, + { + "start": 18302.82, + "end": 18303.42, + "probability": 0.5599 + }, + { + "start": 18305.3, + "end": 18309.06, + "probability": 0.6934 + }, + { + "start": 18311.94, + "end": 18315.4, + "probability": 0.9036 + }, + { + "start": 18317.58, + "end": 18320.14, + "probability": 0.5468 + }, + { + "start": 18321.72, + "end": 18324.48, + "probability": 0.9009 + }, + { + "start": 18325.84, + "end": 18327.32, + "probability": 0.938 + }, + { + "start": 18328.6, + "end": 18330.88, + "probability": 0.9285 + }, + { + "start": 18332.9, + "end": 18333.6, + "probability": 0.9707 + }, + { + "start": 18335.58, + "end": 18340.12, + "probability": 0.7376 + }, + { + "start": 18341.86, + "end": 18342.34, + "probability": 0.3741 + }, + { + "start": 18343.3, + "end": 18344.56, + "probability": 0.7376 + }, + { + "start": 18344.76, + "end": 18347.06, + "probability": 0.6854 + }, + { + "start": 18351.16, + "end": 18357.5, + "probability": 0.0565 + }, + { + "start": 18362.96, + "end": 18363.28, + "probability": 0.0268 + }, + { + "start": 18363.9, + "end": 18365.68, + "probability": 0.1294 + }, + { + "start": 18371.86, + "end": 18375.36, + "probability": 0.3068 + }, + { + "start": 18375.36, + "end": 18375.66, + "probability": 0.1008 + }, + { + "start": 18378.78, + "end": 18380.12, + "probability": 0.1054 + }, + { + "start": 18380.12, + "end": 18380.46, + "probability": 0.1581 + }, + { + "start": 18380.58, + "end": 18381.88, + "probability": 0.0575 + }, + { + "start": 18443.0, + "end": 18443.0, + "probability": 0.0 + }, + { + "start": 18443.0, + "end": 18443.0, + "probability": 0.0 + }, + { + "start": 18443.0, + "end": 18443.0, + "probability": 0.0 + }, + { + "start": 18443.0, + "end": 18443.0, + "probability": 0.0 + }, + { + "start": 18443.0, + "end": 18443.0, + "probability": 0.0 + }, + { + "start": 18443.0, + "end": 18443.0, + "probability": 0.0 + }, + { + "start": 18443.0, + "end": 18443.0, + "probability": 0.0 + }, + { + "start": 18453.24, + "end": 18454.78, + "probability": 0.0094 + }, + { + "start": 18455.58, + "end": 18458.14, + "probability": 0.0908 + }, + { + "start": 18458.18, + "end": 18461.9, + "probability": 0.5031 + }, + { + "start": 18463.62, + "end": 18464.04, + "probability": 0.0303 + }, + { + "start": 18464.04, + "end": 18464.82, + "probability": 0.1328 + }, + { + "start": 18464.86, + "end": 18465.7, + "probability": 0.1341 + }, + { + "start": 18465.74, + "end": 18469.48, + "probability": 0.3013 + }, + { + "start": 18589.0, + "end": 18589.0, + "probability": 0.0 + }, + { + "start": 18589.0, + "end": 18589.0, + "probability": 0.0 + }, + { + "start": 18589.0, + "end": 18589.0, + "probability": 0.0 + }, + { + "start": 18589.0, + "end": 18589.0, + "probability": 0.0 + }, + { + "start": 18589.0, + "end": 18589.0, + "probability": 0.0 + }, + { + "start": 18589.0, + "end": 18589.0, + "probability": 0.0 + }, + { + "start": 18589.0, + "end": 18589.0, + "probability": 0.0 + }, + { + "start": 18589.0, + "end": 18589.0, + "probability": 0.0 + }, + { + "start": 18589.0, + "end": 18589.0, + "probability": 0.0 + }, + { + "start": 18589.32, + "end": 18589.32, + "probability": 0.0859 + }, + { + "start": 18589.32, + "end": 18589.32, + "probability": 0.0966 + }, + { + "start": 18589.32, + "end": 18589.32, + "probability": 0.0956 + }, + { + "start": 18589.32, + "end": 18589.84, + "probability": 0.0645 + }, + { + "start": 18590.6, + "end": 18598.14, + "probability": 0.8279 + }, + { + "start": 18598.62, + "end": 18600.12, + "probability": 0.9771 + }, + { + "start": 18601.8, + "end": 18604.48, + "probability": 0.9962 + }, + { + "start": 18605.84, + "end": 18608.36, + "probability": 0.962 + }, + { + "start": 18610.74, + "end": 18616.18, + "probability": 0.8104 + }, + { + "start": 18617.94, + "end": 18620.6, + "probability": 0.8271 + }, + { + "start": 18622.8, + "end": 18623.62, + "probability": 0.7552 + }, + { + "start": 18624.68, + "end": 18627.18, + "probability": 0.9925 + }, + { + "start": 18628.24, + "end": 18630.02, + "probability": 0.9934 + }, + { + "start": 18630.82, + "end": 18632.28, + "probability": 0.9901 + }, + { + "start": 18633.5, + "end": 18637.12, + "probability": 0.9902 + }, + { + "start": 18637.96, + "end": 18639.32, + "probability": 0.9362 + }, + { + "start": 18640.04, + "end": 18641.96, + "probability": 0.7204 + }, + { + "start": 18643.56, + "end": 18647.18, + "probability": 0.9951 + }, + { + "start": 18648.2, + "end": 18651.4, + "probability": 0.78 + }, + { + "start": 18652.36, + "end": 18654.7, + "probability": 0.7684 + }, + { + "start": 18656.76, + "end": 18660.24, + "probability": 0.9989 + }, + { + "start": 18660.92, + "end": 18663.74, + "probability": 0.9584 + }, + { + "start": 18669.08, + "end": 18672.16, + "probability": 0.665 + }, + { + "start": 18673.16, + "end": 18675.46, + "probability": 0.9991 + }, + { + "start": 18676.4, + "end": 18678.26, + "probability": 0.8253 + }, + { + "start": 18678.84, + "end": 18687.12, + "probability": 0.9981 + }, + { + "start": 18688.12, + "end": 18688.86, + "probability": 0.9008 + }, + { + "start": 18689.54, + "end": 18691.18, + "probability": 0.9076 + }, + { + "start": 18691.96, + "end": 18696.4, + "probability": 0.9487 + }, + { + "start": 18697.34, + "end": 18701.92, + "probability": 0.9272 + }, + { + "start": 18703.18, + "end": 18704.52, + "probability": 0.2603 + }, + { + "start": 18705.1, + "end": 18709.4, + "probability": 0.9565 + }, + { + "start": 18709.62, + "end": 18710.37, + "probability": 0.8704 + }, + { + "start": 18711.08, + "end": 18712.42, + "probability": 0.824 + }, + { + "start": 18714.02, + "end": 18714.9, + "probability": 0.9663 + }, + { + "start": 18715.3, + "end": 18720.4, + "probability": 0.9086 + }, + { + "start": 18721.12, + "end": 18726.04, + "probability": 0.7347 + }, + { + "start": 18726.52, + "end": 18728.9, + "probability": 0.9931 + }, + { + "start": 18728.98, + "end": 18729.46, + "probability": 0.9291 + }, + { + "start": 18731.36, + "end": 18733.64, + "probability": 0.7264 + }, + { + "start": 18733.64, + "end": 18736.12, + "probability": 0.8111 + }, + { + "start": 18781.56, + "end": 18783.61, + "probability": 0.962 + }, + { + "start": 18786.16, + "end": 18787.58, + "probability": 0.9303 + }, + { + "start": 18789.02, + "end": 18792.88, + "probability": 0.854 + }, + { + "start": 18792.88, + "end": 18795.68, + "probability": 0.997 + }, + { + "start": 18795.9, + "end": 18796.7, + "probability": 0.9111 + }, + { + "start": 18797.52, + "end": 18799.56, + "probability": 0.9814 + }, + { + "start": 18800.18, + "end": 18801.7, + "probability": 0.9784 + }, + { + "start": 18802.88, + "end": 18804.1, + "probability": 0.9851 + }, + { + "start": 18805.62, + "end": 18806.9, + "probability": 0.6466 + }, + { + "start": 18809.28, + "end": 18809.96, + "probability": 0.8677 + }, + { + "start": 18810.5, + "end": 18812.88, + "probability": 0.2686 + }, + { + "start": 18812.96, + "end": 18813.5, + "probability": 0.1973 + }, + { + "start": 18815.43, + "end": 18818.72, + "probability": 0.9275 + }, + { + "start": 18821.78, + "end": 18821.85, + "probability": 0.2638 + }, + { + "start": 18826.7, + "end": 18827.06, + "probability": 0.3555 + }, + { + "start": 18827.22, + "end": 18828.58, + "probability": 0.6894 + }, + { + "start": 18828.88, + "end": 18831.32, + "probability": 0.9182 + }, + { + "start": 18831.68, + "end": 18834.4, + "probability": 0.9366 + }, + { + "start": 18835.22, + "end": 18838.14, + "probability": 0.1827 + }, + { + "start": 18841.56, + "end": 18842.42, + "probability": 0.4051 + }, + { + "start": 18842.42, + "end": 18842.84, + "probability": 0.4306 + }, + { + "start": 18845.12, + "end": 18846.1, + "probability": 0.5166 + }, + { + "start": 18846.18, + "end": 18846.6, + "probability": 0.3761 + }, + { + "start": 18848.88, + "end": 18851.62, + "probability": 0.7577 + }, + { + "start": 18854.94, + "end": 18857.38, + "probability": 0.0574 + }, + { + "start": 18859.86, + "end": 18860.82, + "probability": 0.6451 + }, + { + "start": 18865.36, + "end": 18867.0, + "probability": 0.8499 + }, + { + "start": 18868.66, + "end": 18871.18, + "probability": 0.9843 + }, + { + "start": 18871.94, + "end": 18874.99, + "probability": 0.9961 + }, + { + "start": 18875.2, + "end": 18878.36, + "probability": 0.9959 + }, + { + "start": 18878.5, + "end": 18881.16, + "probability": 0.9075 + }, + { + "start": 18882.18, + "end": 18885.88, + "probability": 0.9921 + }, + { + "start": 18886.6, + "end": 18890.0, + "probability": 0.9738 + }, + { + "start": 18890.4, + "end": 18895.32, + "probability": 0.956 + }, + { + "start": 18895.96, + "end": 18898.34, + "probability": 0.9624 + }, + { + "start": 18899.1, + "end": 18902.86, + "probability": 0.9937 + }, + { + "start": 18903.04, + "end": 18904.86, + "probability": 0.8862 + }, + { + "start": 18906.04, + "end": 18908.98, + "probability": 0.984 + }, + { + "start": 18908.98, + "end": 18912.68, + "probability": 0.9935 + }, + { + "start": 18912.8, + "end": 18914.2, + "probability": 0.6728 + }, + { + "start": 18915.12, + "end": 18917.72, + "probability": 0.7389 + }, + { + "start": 18917.78, + "end": 18918.58, + "probability": 0.7781 + }, + { + "start": 18918.78, + "end": 18920.24, + "probability": 0.9735 + }, + { + "start": 18920.84, + "end": 18923.48, + "probability": 0.8707 + }, + { + "start": 18923.98, + "end": 18924.7, + "probability": 0.7148 + }, + { + "start": 18925.32, + "end": 18928.04, + "probability": 0.9907 + }, + { + "start": 18928.14, + "end": 18930.54, + "probability": 0.9814 + }, + { + "start": 18930.94, + "end": 18932.16, + "probability": 0.7594 + }, + { + "start": 18934.34, + "end": 18937.08, + "probability": 0.7702 + }, + { + "start": 18937.76, + "end": 18940.56, + "probability": 0.988 + }, + { + "start": 18941.08, + "end": 18942.96, + "probability": 0.9878 + }, + { + "start": 18943.66, + "end": 18944.78, + "probability": 0.7002 + }, + { + "start": 18945.36, + "end": 18946.9, + "probability": 0.9071 + }, + { + "start": 18947.1, + "end": 18950.56, + "probability": 0.9927 + }, + { + "start": 18951.0, + "end": 18952.68, + "probability": 0.9692 + }, + { + "start": 18952.76, + "end": 18956.58, + "probability": 0.9951 + }, + { + "start": 18957.9, + "end": 18960.68, + "probability": 0.8679 + }, + { + "start": 18961.02, + "end": 18963.64, + "probability": 0.9744 + }, + { + "start": 18964.24, + "end": 18966.78, + "probability": 0.9507 + }, + { + "start": 18968.12, + "end": 18970.94, + "probability": 0.9194 + }, + { + "start": 18971.9, + "end": 18974.76, + "probability": 0.9993 + }, + { + "start": 18975.3, + "end": 18978.98, + "probability": 0.9788 + }, + { + "start": 18979.04, + "end": 18979.46, + "probability": 0.6622 + }, + { + "start": 18980.66, + "end": 18981.14, + "probability": 0.9399 + }, + { + "start": 18981.84, + "end": 18983.18, + "probability": 0.983 + }, + { + "start": 18983.76, + "end": 18985.92, + "probability": 0.8994 + }, + { + "start": 18986.66, + "end": 18987.48, + "probability": 0.9881 + }, + { + "start": 18988.12, + "end": 18991.4, + "probability": 0.6739 + }, + { + "start": 18992.58, + "end": 18994.5, + "probability": 0.5173 + }, + { + "start": 18994.72, + "end": 18998.76, + "probability": 0.9837 + }, + { + "start": 18999.44, + "end": 19003.07, + "probability": 0.9504 + }, + { + "start": 19003.96, + "end": 19005.1, + "probability": 0.9038 + }, + { + "start": 19005.36, + "end": 19006.28, + "probability": 0.7118 + }, + { + "start": 19006.94, + "end": 19009.02, + "probability": 0.688 + }, + { + "start": 19009.14, + "end": 19010.98, + "probability": 0.7116 + }, + { + "start": 19011.92, + "end": 19012.8, + "probability": 0.7214 + }, + { + "start": 19013.96, + "end": 19015.64, + "probability": 0.7676 + }, + { + "start": 19016.76, + "end": 19018.14, + "probability": 0.5248 + }, + { + "start": 19022.08, + "end": 19024.5, + "probability": 0.7521 + }, + { + "start": 19024.58, + "end": 19030.54, + "probability": 0.9583 + }, + { + "start": 19030.72, + "end": 19033.3, + "probability": 0.9958 + }, + { + "start": 19033.74, + "end": 19037.16, + "probability": 0.8138 + }, + { + "start": 19037.7, + "end": 19039.84, + "probability": 0.5488 + }, + { + "start": 19040.68, + "end": 19041.6, + "probability": 0.6348 + }, + { + "start": 19042.3, + "end": 19045.94, + "probability": 0.7858 + }, + { + "start": 19046.62, + "end": 19050.68, + "probability": 0.8348 + }, + { + "start": 19054.55, + "end": 19057.52, + "probability": 0.8717 + }, + { + "start": 19058.05, + "end": 19059.59, + "probability": 0.1913 + }, + { + "start": 19060.76, + "end": 19061.355, + "probability": 0.0092 + }, + { + "start": 19064.95, + "end": 19066.03, + "probability": 0.6773 + }, + { + "start": 19066.05, + "end": 19066.65, + "probability": 0.9443 + }, + { + "start": 19067.03, + "end": 19069.37, + "probability": 0.9523 + }, + { + "start": 19070.47, + "end": 19071.43, + "probability": 0.9561 + }, + { + "start": 19071.87, + "end": 19075.55, + "probability": 0.708 + }, + { + "start": 19076.23, + "end": 19079.08, + "probability": 0.9049 + }, + { + "start": 19079.67, + "end": 19081.07, + "probability": 0.9247 + }, + { + "start": 19081.39, + "end": 19083.17, + "probability": 0.6567 + }, + { + "start": 19083.59, + "end": 19086.27, + "probability": 0.9504 + }, + { + "start": 19086.69, + "end": 19086.83, + "probability": 0.8765 + }, + { + "start": 19086.95, + "end": 19091.49, + "probability": 0.9983 + }, + { + "start": 19092.23, + "end": 19092.61, + "probability": 0.3891 + }, + { + "start": 19093.21, + "end": 19096.89, + "probability": 0.9554 + }, + { + "start": 19097.21, + "end": 19101.13, + "probability": 0.7703 + }, + { + "start": 19102.19, + "end": 19102.19, + "probability": 0.5541 + }, + { + "start": 19102.19, + "end": 19103.47, + "probability": 0.8983 + }, + { + "start": 19103.59, + "end": 19104.77, + "probability": 0.953 + }, + { + "start": 19105.25, + "end": 19108.49, + "probability": 0.9932 + }, + { + "start": 19109.11, + "end": 19111.65, + "probability": 0.885 + }, + { + "start": 19113.21, + "end": 19115.67, + "probability": 0.7942 + }, + { + "start": 19116.91, + "end": 19121.35, + "probability": 0.9918 + }, + { + "start": 19122.27, + "end": 19124.77, + "probability": 0.9204 + }, + { + "start": 19125.65, + "end": 19129.03, + "probability": 0.5875 + }, + { + "start": 19129.57, + "end": 19133.39, + "probability": 0.9832 + }, + { + "start": 19134.25, + "end": 19135.73, + "probability": 0.2899 + }, + { + "start": 19136.47, + "end": 19140.23, + "probability": 0.7561 + }, + { + "start": 19140.93, + "end": 19144.11, + "probability": 0.9202 + }, + { + "start": 19144.73, + "end": 19148.35, + "probability": 0.9524 + }, + { + "start": 19148.95, + "end": 19149.55, + "probability": 0.5874 + }, + { + "start": 19149.63, + "end": 19149.85, + "probability": 0.3698 + }, + { + "start": 19149.95, + "end": 19152.83, + "probability": 0.9608 + }, + { + "start": 19152.91, + "end": 19154.05, + "probability": 0.9161 + }, + { + "start": 19154.93, + "end": 19157.89, + "probability": 0.9648 + }, + { + "start": 19158.33, + "end": 19160.03, + "probability": 0.9762 + }, + { + "start": 19160.87, + "end": 19165.01, + "probability": 0.5587 + }, + { + "start": 19165.55, + "end": 19168.51, + "probability": 0.9929 + }, + { + "start": 19168.51, + "end": 19171.41, + "probability": 0.9849 + }, + { + "start": 19172.23, + "end": 19173.47, + "probability": 0.9677 + }, + { + "start": 19173.67, + "end": 19174.95, + "probability": 0.9664 + }, + { + "start": 19175.15, + "end": 19178.71, + "probability": 0.9612 + }, + { + "start": 19179.67, + "end": 19183.25, + "probability": 0.9782 + }, + { + "start": 19184.01, + "end": 19187.67, + "probability": 0.854 + }, + { + "start": 19188.39, + "end": 19192.45, + "probability": 0.9946 + }, + { + "start": 19192.53, + "end": 19195.82, + "probability": 0.8535 + }, + { + "start": 19196.97, + "end": 19198.63, + "probability": 0.9014 + }, + { + "start": 19199.41, + "end": 19201.61, + "probability": 0.9961 + }, + { + "start": 19202.13, + "end": 19203.29, + "probability": 0.872 + }, + { + "start": 19205.2, + "end": 19209.81, + "probability": 0.8272 + }, + { + "start": 19210.03, + "end": 19212.25, + "probability": 0.9956 + }, + { + "start": 19213.11, + "end": 19214.01, + "probability": 0.5669 + }, + { + "start": 19214.11, + "end": 19214.77, + "probability": 0.6382 + }, + { + "start": 19214.93, + "end": 19216.77, + "probability": 0.827 + }, + { + "start": 19228.35, + "end": 19232.05, + "probability": 0.8387 + }, + { + "start": 19233.37, + "end": 19234.95, + "probability": 0.8322 + }, + { + "start": 19235.19, + "end": 19238.38, + "probability": 0.835 + }, + { + "start": 19240.39, + "end": 19241.33, + "probability": 0.913 + }, + { + "start": 19261.83, + "end": 19261.83, + "probability": 0.6543 + }, + { + "start": 19261.83, + "end": 19263.73, + "probability": 0.5648 + }, + { + "start": 19265.44, + "end": 19272.47, + "probability": 0.9847 + }, + { + "start": 19272.65, + "end": 19274.65, + "probability": 0.8062 + }, + { + "start": 19274.71, + "end": 19275.07, + "probability": 0.8589 + }, + { + "start": 19275.15, + "end": 19275.55, + "probability": 0.6081 + }, + { + "start": 19276.31, + "end": 19276.79, + "probability": 0.6485 + }, + { + "start": 19276.91, + "end": 19280.07, + "probability": 0.9419 + }, + { + "start": 19280.33, + "end": 19282.03, + "probability": 0.5967 + }, + { + "start": 19282.49, + "end": 19285.29, + "probability": 0.9491 + }, + { + "start": 19285.79, + "end": 19287.93, + "probability": 0.7817 + }, + { + "start": 19288.47, + "end": 19289.83, + "probability": 0.8785 + }, + { + "start": 19290.47, + "end": 19291.71, + "probability": 0.9812 + }, + { + "start": 19292.17, + "end": 19297.99, + "probability": 0.9941 + }, + { + "start": 19298.81, + "end": 19299.91, + "probability": 0.5811 + }, + { + "start": 19300.07, + "end": 19300.37, + "probability": 0.6868 + }, + { + "start": 19300.45, + "end": 19304.07, + "probability": 0.989 + }, + { + "start": 19304.81, + "end": 19306.13, + "probability": 0.4327 + }, + { + "start": 19306.25, + "end": 19310.69, + "probability": 0.66 + }, + { + "start": 19311.11, + "end": 19312.57, + "probability": 0.8804 + }, + { + "start": 19313.05, + "end": 19315.23, + "probability": 0.9917 + }, + { + "start": 19315.73, + "end": 19318.35, + "probability": 0.8837 + }, + { + "start": 19318.79, + "end": 19321.15, + "probability": 0.9082 + }, + { + "start": 19321.49, + "end": 19323.13, + "probability": 0.9888 + }, + { + "start": 19323.59, + "end": 19327.05, + "probability": 0.9406 + }, + { + "start": 19327.55, + "end": 19328.93, + "probability": 0.8463 + }, + { + "start": 19329.11, + "end": 19331.43, + "probability": 0.7276 + }, + { + "start": 19332.11, + "end": 19333.67, + "probability": 0.6924 + }, + { + "start": 19335.75, + "end": 19339.51, + "probability": 0.6447 + }, + { + "start": 19340.17, + "end": 19345.34, + "probability": 0.8784 + }, + { + "start": 19346.63, + "end": 19348.71, + "probability": 0.7933 + }, + { + "start": 19350.55, + "end": 19357.75, + "probability": 0.9751 + }, + { + "start": 19358.15, + "end": 19359.17, + "probability": 0.9147 + }, + { + "start": 19359.73, + "end": 19361.05, + "probability": 0.9084 + }, + { + "start": 19361.49, + "end": 19365.43, + "probability": 0.9937 + }, + { + "start": 19365.43, + "end": 19367.97, + "probability": 0.9953 + }, + { + "start": 19368.05, + "end": 19368.49, + "probability": 0.6672 + }, + { + "start": 19369.69, + "end": 19371.61, + "probability": 0.6754 + }, + { + "start": 19371.83, + "end": 19374.31, + "probability": 0.915 + }, + { + "start": 19375.73, + "end": 19376.13, + "probability": 0.8401 + }, + { + "start": 19376.17, + "end": 19377.77, + "probability": 0.5804 + }, + { + "start": 19377.77, + "end": 19381.31, + "probability": 0.8869 + }, + { + "start": 19381.47, + "end": 19385.31, + "probability": 0.2477 + }, + { + "start": 19385.85, + "end": 19385.97, + "probability": 0.5606 + }, + { + "start": 19391.67, + "end": 19395.07, + "probability": 0.7284 + }, + { + "start": 19410.91, + "end": 19413.37, + "probability": 0.5759 + }, + { + "start": 19414.53, + "end": 19415.01, + "probability": 0.5826 + }, + { + "start": 19416.43, + "end": 19417.69, + "probability": 0.8285 + }, + { + "start": 19421.85, + "end": 19425.99, + "probability": 0.6438 + }, + { + "start": 19426.53, + "end": 19426.53, + "probability": 0.2043 + }, + { + "start": 19434.25, + "end": 19434.97, + "probability": 0.6568 + }, + { + "start": 19438.29, + "end": 19440.11, + "probability": 0.5956 + }, + { + "start": 19444.19, + "end": 19445.31, + "probability": 0.5461 + }, + { + "start": 19446.31, + "end": 19450.17, + "probability": 0.5757 + }, + { + "start": 19457.59, + "end": 19458.57, + "probability": 0.7256 + }, + { + "start": 19459.51, + "end": 19460.23, + "probability": 0.8828 + }, + { + "start": 19462.29, + "end": 19463.95, + "probability": 0.8616 + }, + { + "start": 19466.01, + "end": 19467.89, + "probability": 0.9672 + }, + { + "start": 19469.41, + "end": 19469.97, + "probability": 0.1328 + }, + { + "start": 19475.47, + "end": 19477.23, + "probability": 0.1581 + }, + { + "start": 19479.25, + "end": 19481.77, + "probability": 0.7443 + }, + { + "start": 19483.79, + "end": 19484.37, + "probability": 0.7044 + }, + { + "start": 19485.45, + "end": 19486.37, + "probability": 0.7184 + }, + { + "start": 19488.83, + "end": 19491.81, + "probability": 0.7348 + }, + { + "start": 19493.17, + "end": 19497.71, + "probability": 0.7969 + }, + { + "start": 19498.49, + "end": 19502.31, + "probability": 0.9509 + }, + { + "start": 19503.59, + "end": 19507.21, + "probability": 0.7673 + }, + { + "start": 19508.15, + "end": 19509.15, + "probability": 0.9632 + }, + { + "start": 19511.79, + "end": 19513.79, + "probability": 0.8456 + }, + { + "start": 19515.03, + "end": 19515.97, + "probability": 0.9846 + }, + { + "start": 19517.87, + "end": 19520.53, + "probability": 0.9885 + }, + { + "start": 19521.23, + "end": 19521.85, + "probability": 0.9714 + }, + { + "start": 19523.91, + "end": 19524.89, + "probability": 0.9617 + }, + { + "start": 19525.57, + "end": 19528.91, + "probability": 0.9822 + }, + { + "start": 19531.25, + "end": 19533.47, + "probability": 0.6317 + }, + { + "start": 19538.31, + "end": 19540.95, + "probability": 0.7011 + }, + { + "start": 19541.75, + "end": 19543.47, + "probability": 0.8644 + }, + { + "start": 19544.73, + "end": 19545.85, + "probability": 0.9813 + }, + { + "start": 19546.71, + "end": 19547.47, + "probability": 0.8674 + }, + { + "start": 19548.93, + "end": 19549.95, + "probability": 0.9931 + }, + { + "start": 19551.99, + "end": 19552.93, + "probability": 0.9575 + }, + { + "start": 19554.29, + "end": 19554.87, + "probability": 0.9814 + }, + { + "start": 19557.01, + "end": 19557.97, + "probability": 0.9745 + }, + { + "start": 19558.93, + "end": 19561.79, + "probability": 0.977 + }, + { + "start": 19563.47, + "end": 19564.49, + "probability": 0.9708 + }, + { + "start": 19566.35, + "end": 19571.33, + "probability": 0.6824 + }, + { + "start": 19574.27, + "end": 19577.35, + "probability": 0.8288 + }, + { + "start": 19578.25, + "end": 19578.83, + "probability": 0.9595 + }, + { + "start": 19580.05, + "end": 19581.97, + "probability": 0.9307 + }, + { + "start": 19582.71, + "end": 19583.69, + "probability": 0.9196 + }, + { + "start": 19585.03, + "end": 19587.73, + "probability": 0.863 + }, + { + "start": 19590.47, + "end": 19594.17, + "probability": 0.1486 + }, + { + "start": 19600.67, + "end": 19602.39, + "probability": 0.6421 + }, + { + "start": 19603.63, + "end": 19606.47, + "probability": 0.4596 + }, + { + "start": 19607.67, + "end": 19608.15, + "probability": 0.8643 + }, + { + "start": 19610.07, + "end": 19612.59, + "probability": 0.7503 + }, + { + "start": 19613.77, + "end": 19615.21, + "probability": 0.616 + }, + { + "start": 19615.83, + "end": 19618.05, + "probability": 0.9451 + }, + { + "start": 19619.07, + "end": 19620.35, + "probability": 0.8102 + }, + { + "start": 19621.65, + "end": 19623.23, + "probability": 0.7295 + }, + { + "start": 19623.85, + "end": 19625.09, + "probability": 0.3363 + }, + { + "start": 19626.97, + "end": 19629.35, + "probability": 0.7109 + }, + { + "start": 19632.49, + "end": 19633.61, + "probability": 0.3023 + }, + { + "start": 19635.41, + "end": 19637.95, + "probability": 0.6277 + }, + { + "start": 19638.65, + "end": 19639.19, + "probability": 0.9746 + }, + { + "start": 19640.79, + "end": 19641.85, + "probability": 0.8164 + }, + { + "start": 19643.41, + "end": 19644.07, + "probability": 0.9967 + }, + { + "start": 19645.29, + "end": 19646.13, + "probability": 0.9676 + }, + { + "start": 19647.93, + "end": 19648.83, + "probability": 0.9868 + }, + { + "start": 19650.03, + "end": 19651.07, + "probability": 0.8963 + }, + { + "start": 19653.43, + "end": 19655.07, + "probability": 0.906 + }, + { + "start": 19658.55, + "end": 19660.45, + "probability": 0.4611 + }, + { + "start": 19661.61, + "end": 19663.85, + "probability": 0.5597 + }, + { + "start": 19665.79, + "end": 19667.73, + "probability": 0.6958 + }, + { + "start": 19668.79, + "end": 19669.39, + "probability": 0.9447 + }, + { + "start": 19670.57, + "end": 19671.49, + "probability": 0.8411 + }, + { + "start": 19674.01, + "end": 19675.73, + "probability": 0.9799 + }, + { + "start": 19676.39, + "end": 19677.01, + "probability": 0.9725 + }, + { + "start": 19677.97, + "end": 19679.31, + "probability": 0.9489 + }, + { + "start": 19680.35, + "end": 19680.93, + "probability": 0.9873 + }, + { + "start": 19681.77, + "end": 19682.59, + "probability": 0.9005 + }, + { + "start": 19683.79, + "end": 19685.99, + "probability": 0.9072 + }, + { + "start": 19689.01, + "end": 19690.61, + "probability": 0.6399 + }, + { + "start": 19691.87, + "end": 19692.67, + "probability": 0.5389 + }, + { + "start": 19708.79, + "end": 19709.49, + "probability": 0.5535 + }, + { + "start": 19712.11, + "end": 19713.57, + "probability": 0.5506 + }, + { + "start": 19716.91, + "end": 19718.63, + "probability": 0.7258 + }, + { + "start": 19719.81, + "end": 19720.41, + "probability": 0.9393 + }, + { + "start": 19722.77, + "end": 19727.27, + "probability": 0.8482 + }, + { + "start": 19728.51, + "end": 19731.47, + "probability": 0.0425 + }, + { + "start": 19731.47, + "end": 19732.23, + "probability": 0.4432 + }, + { + "start": 19732.57, + "end": 19734.31, + "probability": 0.3607 + }, + { + "start": 19735.05, + "end": 19737.67, + "probability": 0.9124 + }, + { + "start": 19738.89, + "end": 19741.05, + "probability": 0.6257 + }, + { + "start": 19744.17, + "end": 19748.09, + "probability": 0.7392 + }, + { + "start": 19748.91, + "end": 19751.31, + "probability": 0.8802 + }, + { + "start": 19752.19, + "end": 19752.87, + "probability": 0.9884 + }, + { + "start": 19753.67, + "end": 19754.97, + "probability": 0.9532 + }, + { + "start": 19756.08, + "end": 19761.67, + "probability": 0.9773 + }, + { + "start": 19763.31, + "end": 19764.35, + "probability": 0.6876 + }, + { + "start": 19765.49, + "end": 19765.89, + "probability": 0.3647 + }, + { + "start": 19768.53, + "end": 19769.49, + "probability": 0.3732 + }, + { + "start": 19771.29, + "end": 19774.81, + "probability": 0.6911 + }, + { + "start": 19776.07, + "end": 19776.69, + "probability": 0.9819 + }, + { + "start": 19778.41, + "end": 19779.43, + "probability": 0.8105 + }, + { + "start": 19780.49, + "end": 19781.17, + "probability": 0.9922 + }, + { + "start": 19784.13, + "end": 19785.19, + "probability": 0.7111 + }, + { + "start": 19787.15, + "end": 19789.05, + "probability": 0.7841 + }, + { + "start": 19790.61, + "end": 19793.01, + "probability": 0.9097 + }, + { + "start": 19795.49, + "end": 19796.75, + "probability": 0.9143 + }, + { + "start": 19797.55, + "end": 19797.69, + "probability": 0.0011 + }, + { + "start": 19797.69, + "end": 19799.49, + "probability": 0.8913 + }, + { + "start": 19799.67, + "end": 19801.75, + "probability": 0.779 + }, + { + "start": 19802.71, + "end": 19804.91, + "probability": 0.8586 + }, + { + "start": 19805.57, + "end": 19808.61, + "probability": 0.5607 + }, + { + "start": 19808.75, + "end": 19810.8, + "probability": 0.7349 + }, + { + "start": 19811.51, + "end": 19812.31, + "probability": 0.055 + }, + { + "start": 19812.31, + "end": 19814.09, + "probability": 0.6974 + }, + { + "start": 19814.87, + "end": 19816.29, + "probability": 0.993 + }, + { + "start": 19816.35, + "end": 19819.47, + "probability": 0.8947 + }, + { + "start": 19820.59, + "end": 19820.73, + "probability": 0.1471 + }, + { + "start": 19820.98, + "end": 19823.09, + "probability": 0.4598 + }, + { + "start": 19823.61, + "end": 19826.03, + "probability": 0.8341 + }, + { + "start": 19826.93, + "end": 19828.32, + "probability": 0.5793 + }, + { + "start": 19829.43, + "end": 19831.31, + "probability": 0.8809 + }, + { + "start": 19832.01, + "end": 19833.27, + "probability": 0.7706 + }, + { + "start": 19833.39, + "end": 19835.81, + "probability": 0.9302 + }, + { + "start": 19836.37, + "end": 19839.85, + "probability": 0.8228 + }, + { + "start": 19840.47, + "end": 19841.07, + "probability": 0.5147 + }, + { + "start": 19841.53, + "end": 19846.13, + "probability": 0.9003 + }, + { + "start": 19846.19, + "end": 19846.83, + "probability": 0.7851 + }, + { + "start": 19846.87, + "end": 19847.91, + "probability": 0.8047 + }, + { + "start": 19847.91, + "end": 19849.31, + "probability": 0.8254 + }, + { + "start": 19849.49, + "end": 19851.01, + "probability": 0.5069 + }, + { + "start": 19851.65, + "end": 19852.85, + "probability": 0.5243 + }, + { + "start": 19853.67, + "end": 19854.85, + "probability": 0.2567 + }, + { + "start": 19855.15, + "end": 19857.31, + "probability": 0.595 + }, + { + "start": 19861.05, + "end": 19863.57, + "probability": 0.5667 + }, + { + "start": 19863.59, + "end": 19865.39, + "probability": 0.473 + }, + { + "start": 19865.39, + "end": 19865.39, + "probability": 0.39 + }, + { + "start": 19865.39, + "end": 19865.63, + "probability": 0.3377 + }, + { + "start": 19865.69, + "end": 19866.75, + "probability": 0.3424 + }, + { + "start": 19866.89, + "end": 19867.73, + "probability": 0.4189 + }, + { + "start": 19867.81, + "end": 19871.07, + "probability": 0.5195 + }, + { + "start": 19871.19, + "end": 19873.95, + "probability": 0.6668 + }, + { + "start": 19874.09, + "end": 19878.83, + "probability": 0.546 + }, + { + "start": 19879.91, + "end": 19883.21, + "probability": 0.5977 + }, + { + "start": 19883.21, + "end": 19884.25, + "probability": 0.7308 + }, + { + "start": 19885.63, + "end": 19886.29, + "probability": 0.518 + }, + { + "start": 19893.99, + "end": 19895.79, + "probability": 0.7854 + }, + { + "start": 19896.49, + "end": 19898.62, + "probability": 0.0241 + }, + { + "start": 19900.03, + "end": 19901.61, + "probability": 0.0924 + }, + { + "start": 19903.27, + "end": 19904.91, + "probability": 0.1335 + }, + { + "start": 19906.13, + "end": 19908.01, + "probability": 0.0176 + }, + { + "start": 19908.01, + "end": 19908.05, + "probability": 0.2526 + }, + { + "start": 19908.81, + "end": 19909.79, + "probability": 0.4513 + }, + { + "start": 19909.93, + "end": 19911.47, + "probability": 0.4335 + }, + { + "start": 19912.29, + "end": 19913.91, + "probability": 0.734 + }, + { + "start": 19914.81, + "end": 19915.13, + "probability": 0.575 + }, + { + "start": 19915.81, + "end": 19919.17, + "probability": 0.2149 + }, + { + "start": 19921.07, + "end": 19921.67, + "probability": 0.38 + }, + { + "start": 19922.29, + "end": 19928.65, + "probability": 0.9134 + }, + { + "start": 19929.19, + "end": 19930.05, + "probability": 0.5031 + }, + { + "start": 19931.03, + "end": 19932.39, + "probability": 0.786 + }, + { + "start": 19932.72, + "end": 19937.79, + "probability": 0.2184 + }, + { + "start": 19937.83, + "end": 19938.73, + "probability": 0.7314 + }, + { + "start": 19938.75, + "end": 19943.05, + "probability": 0.202 + }, + { + "start": 19945.73, + "end": 19948.89, + "probability": 0.7584 + }, + { + "start": 19949.05, + "end": 19951.01, + "probability": 0.4967 + }, + { + "start": 19951.25, + "end": 19951.85, + "probability": 0.6019 + }, + { + "start": 19952.25, + "end": 19953.07, + "probability": 0.7248 + }, + { + "start": 19953.51, + "end": 19955.59, + "probability": 0.9023 + }, + { + "start": 19955.61, + "end": 19956.31, + "probability": 0.2598 + }, + { + "start": 19958.07, + "end": 19958.97, + "probability": 0.4995 + }, + { + "start": 19959.67, + "end": 19960.49, + "probability": 0.2503 + }, + { + "start": 19960.89, + "end": 19963.91, + "probability": 0.7413 + }, + { + "start": 19966.93, + "end": 19974.99, + "probability": 0.6593 + }, + { + "start": 19975.87, + "end": 19976.39, + "probability": 0.8318 + }, + { + "start": 19978.01, + "end": 19981.91, + "probability": 0.8459 + }, + { + "start": 19984.31, + "end": 19986.29, + "probability": 0.5294 + }, + { + "start": 19988.03, + "end": 19990.85, + "probability": 0.8171 + }, + { + "start": 19992.85, + "end": 19997.67, + "probability": 0.4338 + }, + { + "start": 19999.19, + "end": 19999.47, + "probability": 0.1211 + }, + { + "start": 20008.43, + "end": 20009.31, + "probability": 0.4762 + }, + { + "start": 20010.23, + "end": 20013.05, + "probability": 0.7051 + }, + { + "start": 20014.25, + "end": 20016.35, + "probability": 0.7891 + }, + { + "start": 20018.72, + "end": 20025.37, + "probability": 0.6121 + }, + { + "start": 20026.69, + "end": 20031.77, + "probability": 0.7736 + }, + { + "start": 20033.07, + "end": 20033.39, + "probability": 0.2838 + }, + { + "start": 20033.39, + "end": 20035.71, + "probability": 0.8147 + }, + { + "start": 20036.39, + "end": 20040.87, + "probability": 0.7757 + }, + { + "start": 20042.39, + "end": 20044.09, + "probability": 0.0754 + }, + { + "start": 20044.09, + "end": 20044.57, + "probability": 0.4656 + }, + { + "start": 20044.89, + "end": 20045.31, + "probability": 0.2659 + }, + { + "start": 20045.39, + "end": 20047.07, + "probability": 0.2214 + }, + { + "start": 20047.65, + "end": 20048.41, + "probability": 0.3692 + }, + { + "start": 20048.65, + "end": 20050.65, + "probability": 0.6281 + }, + { + "start": 20051.17, + "end": 20052.83, + "probability": 0.312 + }, + { + "start": 20053.17, + "end": 20056.83, + "probability": 0.3569 + }, + { + "start": 20056.97, + "end": 20058.67, + "probability": 0.4964 + }, + { + "start": 20060.15, + "end": 20060.77, + "probability": 0.9062 + }, + { + "start": 20061.87, + "end": 20062.87, + "probability": 0.6348 + }, + { + "start": 20063.63, + "end": 20065.93, + "probability": 0.9075 + }, + { + "start": 20067.19, + "end": 20067.75, + "probability": 0.9904 + }, + { + "start": 20070.19, + "end": 20071.23, + "probability": 0.7922 + }, + { + "start": 20072.89, + "end": 20074.53, + "probability": 0.9876 + }, + { + "start": 20076.05, + "end": 20077.05, + "probability": 0.6307 + }, + { + "start": 20078.11, + "end": 20080.03, + "probability": 0.6711 + }, + { + "start": 20097.67, + "end": 20103.21, + "probability": 0.5381 + }, + { + "start": 20105.75, + "end": 20107.29, + "probability": 0.7478 + }, + { + "start": 20109.97, + "end": 20113.09, + "probability": 0.5652 + }, + { + "start": 20116.11, + "end": 20119.47, + "probability": 0.6619 + }, + { + "start": 20120.87, + "end": 20124.89, + "probability": 0.8159 + }, + { + "start": 20126.39, + "end": 20129.05, + "probability": 0.8555 + }, + { + "start": 20129.71, + "end": 20130.87, + "probability": 0.9766 + }, + { + "start": 20131.97, + "end": 20133.55, + "probability": 0.9029 + }, + { + "start": 20136.57, + "end": 20141.23, + "probability": 0.5939 + }, + { + "start": 20142.27, + "end": 20147.81, + "probability": 0.6324 + }, + { + "start": 20149.01, + "end": 20153.09, + "probability": 0.8674 + }, + { + "start": 20156.07, + "end": 20157.87, + "probability": 0.9233 + }, + { + "start": 20159.47, + "end": 20162.99, + "probability": 0.8311 + }, + { + "start": 20164.91, + "end": 20165.91, + "probability": 0.8405 + }, + { + "start": 20167.47, + "end": 20168.22, + "probability": 0.3608 + }, + { + "start": 20168.99, + "end": 20171.33, + "probability": 0.6094 + }, + { + "start": 20172.03, + "end": 20175.41, + "probability": 0.7991 + }, + { + "start": 20177.31, + "end": 20179.43, + "probability": 0.7824 + }, + { + "start": 20180.31, + "end": 20182.37, + "probability": 0.7535 + }, + { + "start": 20184.83, + "end": 20187.55, + "probability": 0.7952 + }, + { + "start": 20188.67, + "end": 20191.97, + "probability": 0.8538 + }, + { + "start": 20192.79, + "end": 20194.63, + "probability": 0.8747 + }, + { + "start": 20195.79, + "end": 20197.83, + "probability": 0.6503 + }, + { + "start": 20198.71, + "end": 20200.81, + "probability": 0.475 + }, + { + "start": 20202.67, + "end": 20208.19, + "probability": 0.7738 + }, + { + "start": 20208.23, + "end": 20208.55, + "probability": 0.6496 + }, + { + "start": 20209.05, + "end": 20209.85, + "probability": 0.4309 + }, + { + "start": 20210.37, + "end": 20211.39, + "probability": 0.949 + }, + { + "start": 20213.91, + "end": 20214.87, + "probability": 0.2648 + }, + { + "start": 20215.55, + "end": 20218.15, + "probability": 0.6192 + }, + { + "start": 20223.87, + "end": 20225.67, + "probability": 0.2173 + }, + { + "start": 20227.01, + "end": 20227.53, + "probability": 0.8116 + }, + { + "start": 20232.95, + "end": 20235.47, + "probability": 0.5495 + }, + { + "start": 20238.49, + "end": 20239.45, + "probability": 0.3727 + }, + { + "start": 20241.88, + "end": 20244.11, + "probability": 0.8146 + }, + { + "start": 20246.23, + "end": 20248.69, + "probability": 0.5244 + }, + { + "start": 20251.41, + "end": 20255.59, + "probability": 0.5593 + }, + { + "start": 20258.21, + "end": 20259.19, + "probability": 0.7263 + }, + { + "start": 20260.01, + "end": 20260.53, + "probability": 0.822 + }, + { + "start": 20262.31, + "end": 20263.09, + "probability": 0.9048 + }, + { + "start": 20264.93, + "end": 20267.15, + "probability": 0.8276 + }, + { + "start": 20272.33, + "end": 20276.57, + "probability": 0.731 + }, + { + "start": 20278.95, + "end": 20280.61, + "probability": 0.9674 + }, + { + "start": 20281.81, + "end": 20284.11, + "probability": 0.8668 + }, + { + "start": 20285.15, + "end": 20285.53, + "probability": 0.8447 + }, + { + "start": 20287.01, + "end": 20288.01, + "probability": 0.8258 + }, + { + "start": 20288.63, + "end": 20296.57, + "probability": 0.8667 + }, + { + "start": 20299.01, + "end": 20302.75, + "probability": 0.3272 + }, + { + "start": 20306.87, + "end": 20307.71, + "probability": 0.5498 + }, + { + "start": 20311.21, + "end": 20313.99, + "probability": 0.7356 + }, + { + "start": 20315.03, + "end": 20318.95, + "probability": 0.9588 + }, + { + "start": 20319.61, + "end": 20327.51, + "probability": 0.7829 + }, + { + "start": 20329.35, + "end": 20331.39, + "probability": 0.8268 + }, + { + "start": 20332.81, + "end": 20339.81, + "probability": 0.7929 + }, + { + "start": 20344.63, + "end": 20347.61, + "probability": 0.217 + }, + { + "start": 20348.15, + "end": 20351.29, + "probability": 0.831 + }, + { + "start": 20352.43, + "end": 20354.95, + "probability": 0.7048 + }, + { + "start": 20356.09, + "end": 20357.13, + "probability": 0.6426 + }, + { + "start": 20360.73, + "end": 20361.91, + "probability": 0.4106 + }, + { + "start": 20362.61, + "end": 20366.57, + "probability": 0.764 + }, + { + "start": 20367.71, + "end": 20371.47, + "probability": 0.9202 + }, + { + "start": 20372.89, + "end": 20376.59, + "probability": 0.6877 + }, + { + "start": 20379.31, + "end": 20381.87, + "probability": 0.77 + }, + { + "start": 20383.55, + "end": 20383.71, + "probability": 0.283 + }, + { + "start": 20384.03, + "end": 20384.79, + "probability": 0.1263 + }, + { + "start": 20384.79, + "end": 20384.79, + "probability": 0.0129 + }, + { + "start": 20384.79, + "end": 20385.23, + "probability": 0.4528 + }, + { + "start": 20385.35, + "end": 20386.81, + "probability": 0.8118 + }, + { + "start": 20387.17, + "end": 20388.95, + "probability": 0.3011 + }, + { + "start": 20388.95, + "end": 20390.07, + "probability": 0.5376 + }, + { + "start": 20390.21, + "end": 20392.11, + "probability": 0.5935 + }, + { + "start": 20393.23, + "end": 20393.79, + "probability": 0.4967 + }, + { + "start": 20393.97, + "end": 20394.97, + "probability": 0.6832 + }, + { + "start": 20395.19, + "end": 20398.05, + "probability": 0.5722 + }, + { + "start": 20398.19, + "end": 20398.43, + "probability": 0.0068 + }, + { + "start": 20399.19, + "end": 20405.07, + "probability": 0.0187 + }, + { + "start": 20405.85, + "end": 20410.47, + "probability": 0.4387 + }, + { + "start": 20412.37, + "end": 20413.03, + "probability": 0.3748 + }, + { + "start": 20413.75, + "end": 20414.07, + "probability": 0.2487 + }, + { + "start": 20419.99, + "end": 20420.49, + "probability": 0.5844 + }, + { + "start": 20426.79, + "end": 20431.15, + "probability": 0.4233 + }, + { + "start": 20432.84, + "end": 20434.87, + "probability": 0.5713 + }, + { + "start": 20436.89, + "end": 20443.77, + "probability": 0.4751 + }, + { + "start": 20445.76, + "end": 20450.17, + "probability": 0.8438 + }, + { + "start": 20450.77, + "end": 20450.79, + "probability": 0.2949 + }, + { + "start": 20451.69, + "end": 20454.51, + "probability": 0.5473 + }, + { + "start": 20458.38, + "end": 20460.51, + "probability": 0.4785 + }, + { + "start": 20462.67, + "end": 20466.85, + "probability": 0.6881 + }, + { + "start": 20468.31, + "end": 20472.23, + "probability": 0.6911 + }, + { + "start": 20474.17, + "end": 20477.41, + "probability": 0.9575 + }, + { + "start": 20478.27, + "end": 20480.67, + "probability": 0.926 + }, + { + "start": 20481.25, + "end": 20482.59, + "probability": 0.9497 + }, + { + "start": 20483.63, + "end": 20486.23, + "probability": 0.0915 + }, + { + "start": 20496.37, + "end": 20499.01, + "probability": 0.5922 + }, + { + "start": 20501.57, + "end": 20502.95, + "probability": 0.317 + }, + { + "start": 20504.45, + "end": 20507.93, + "probability": 0.4983 + }, + { + "start": 20510.47, + "end": 20513.47, + "probability": 0.6589 + }, + { + "start": 20516.73, + "end": 20518.15, + "probability": 0.7025 + }, + { + "start": 20519.03, + "end": 20521.83, + "probability": 0.4908 + }, + { + "start": 20524.25, + "end": 20528.23, + "probability": 0.3046 + }, + { + "start": 20535.57, + "end": 20538.73, + "probability": 0.5215 + }, + { + "start": 20541.51, + "end": 20547.65, + "probability": 0.2675 + }, + { + "start": 20549.81, + "end": 20555.83, + "probability": 0.4239 + }, + { + "start": 20557.35, + "end": 20565.01, + "probability": 0.642 + }, + { + "start": 20565.65, + "end": 20569.91, + "probability": 0.922 + }, + { + "start": 20571.17, + "end": 20575.13, + "probability": 0.9418 + }, + { + "start": 20578.53, + "end": 20582.55, + "probability": 0.619 + }, + { + "start": 20583.67, + "end": 20584.61, + "probability": 0.5315 + }, + { + "start": 20587.81, + "end": 20589.23, + "probability": 0.5808 + }, + { + "start": 20590.27, + "end": 20591.07, + "probability": 0.6844 + }, + { + "start": 20593.59, + "end": 20598.17, + "probability": 0.9885 + }, + { + "start": 20598.23, + "end": 20601.85, + "probability": 0.4995 + }, + { + "start": 20602.43, + "end": 20602.81, + "probability": 0.512 + }, + { + "start": 20603.05, + "end": 20606.71, + "probability": 0.2277 + }, + { + "start": 20608.41, + "end": 20609.27, + "probability": 0.501 + }, + { + "start": 20611.13, + "end": 20611.97, + "probability": 0.5919 + }, + { + "start": 20612.55, + "end": 20613.41, + "probability": 0.2331 + }, + { + "start": 20615.69, + "end": 20618.51, + "probability": 0.6643 + }, + { + "start": 20629.37, + "end": 20633.89, + "probability": 0.6745 + }, + { + "start": 20637.05, + "end": 20640.21, + "probability": 0.309 + }, + { + "start": 20658.09, + "end": 20659.15, + "probability": 0.4609 + }, + { + "start": 20660.47, + "end": 20665.01, + "probability": 0.7304 + }, + { + "start": 20665.53, + "end": 20666.57, + "probability": 0.4508 + }, + { + "start": 20666.71, + "end": 20669.59, + "probability": 0.5103 + }, + { + "start": 20671.69, + "end": 20672.57, + "probability": 0.7634 + }, + { + "start": 20677.79, + "end": 20680.17, + "probability": 0.5172 + }, + { + "start": 20680.93, + "end": 20682.29, + "probability": 0.708 + }, + { + "start": 20682.39, + "end": 20683.81, + "probability": 0.7418 + }, + { + "start": 20684.67, + "end": 20686.09, + "probability": 0.9276 + }, + { + "start": 20686.52, + "end": 20689.91, + "probability": 0.9627 + }, + { + "start": 20690.55, + "end": 20691.85, + "probability": 0.0116 + }, + { + "start": 20694.45, + "end": 20696.85, + "probability": 0.535 + }, + { + "start": 20698.13, + "end": 20698.57, + "probability": 0.103 + }, + { + "start": 20699.25, + "end": 20702.37, + "probability": 0.1183 + }, + { + "start": 20706.55, + "end": 20709.37, + "probability": 0.3767 + }, + { + "start": 20709.71, + "end": 20710.49, + "probability": 0.998 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20832.0, + "end": 20832.0, + "probability": 0.0 + }, + { + "start": 20840.4, + "end": 20840.96, + "probability": 0.0174 + }, + { + "start": 20841.88, + "end": 20842.2, + "probability": 0.0504 + }, + { + "start": 20846.46, + "end": 20848.02, + "probability": 0.1305 + }, + { + "start": 20848.84, + "end": 20849.9, + "probability": 0.0242 + }, + { + "start": 20851.56, + "end": 20852.74, + "probability": 0.0358 + }, + { + "start": 20853.62, + "end": 20854.3, + "probability": 0.249 + }, + { + "start": 20854.58, + "end": 20855.82, + "probability": 0.0863 + }, + { + "start": 20870.02, + "end": 20870.02, + "probability": 0.0717 + }, + { + "start": 20870.02, + "end": 20870.02, + "probability": 0.0706 + }, + { + "start": 20870.02, + "end": 20870.02, + "probability": 0.3397 + }, + { + "start": 20870.02, + "end": 20870.02, + "probability": 0.0659 + }, + { + "start": 20870.02, + "end": 20870.1, + "probability": 0.1021 + }, + { + "start": 20870.14, + "end": 20870.16, + "probability": 0.0811 + }, + { + "start": 20877.34, + "end": 20877.6, + "probability": 0.122 + }, + { + "start": 20878.46, + "end": 20879.9, + "probability": 0.5742 + }, + { + "start": 20959.0, + "end": 20959.0, + "probability": 0.0 + }, + { + "start": 20959.0, + "end": 20959.0, + "probability": 0.0 + }, + { + "start": 20959.0, + "end": 20959.0, + "probability": 0.0 + }, + { + "start": 20959.0, + "end": 20959.0, + "probability": 0.0 + }, + { + "start": 20959.0, + "end": 20959.0, + "probability": 0.0 + }, + { + "start": 20959.0, + "end": 20959.0, + "probability": 0.0 + }, + { + "start": 20959.0, + "end": 20959.0, + "probability": 0.0 + }, + { + "start": 20959.0, + "end": 20959.0, + "probability": 0.0 + }, + { + "start": 20959.0, + "end": 20959.0, + "probability": 0.0 + }, + { + "start": 20959.0, + "end": 20959.0, + "probability": 0.0 + }, + { + "start": 20963.34, + "end": 20964.62, + "probability": 0.5538 + }, + { + "start": 20964.74, + "end": 20966.32, + "probability": 0.8287 + }, + { + "start": 20966.44, + "end": 20966.52, + "probability": 0.2291 + }, + { + "start": 20966.52, + "end": 20967.2, + "probability": 0.9611 + }, + { + "start": 20967.44, + "end": 20968.5, + "probability": 0.922 + }, + { + "start": 20968.76, + "end": 20972.48, + "probability": 0.8773 + }, + { + "start": 20972.74, + "end": 20972.74, + "probability": 0.3352 + }, + { + "start": 20972.74, + "end": 20973.7, + "probability": 0.9413 + }, + { + "start": 20973.78, + "end": 20975.26, + "probability": 0.9449 + }, + { + "start": 20975.5, + "end": 20976.78, + "probability": 0.7192 + }, + { + "start": 20977.04, + "end": 20977.42, + "probability": 0.3204 + }, + { + "start": 20977.42, + "end": 20977.42, + "probability": 0.104 + }, + { + "start": 20977.42, + "end": 20977.84, + "probability": 0.3227 + }, + { + "start": 20978.24, + "end": 20980.96, + "probability": 0.5002 + }, + { + "start": 20981.46, + "end": 20982.7, + "probability": 0.4408 + }, + { + "start": 20982.74, + "end": 20984.68, + "probability": 0.335 + }, + { + "start": 20984.68, + "end": 20985.58, + "probability": 0.1068 + }, + { + "start": 20985.62, + "end": 20987.2, + "probability": 0.5916 + }, + { + "start": 20987.64, + "end": 20987.68, + "probability": 0.2879 + }, + { + "start": 20988.3, + "end": 20988.88, + "probability": 0.0223 + }, + { + "start": 20988.88, + "end": 20989.32, + "probability": 0.2728 + }, + { + "start": 20989.32, + "end": 20989.9, + "probability": 0.2474 + }, + { + "start": 20990.54, + "end": 20990.89, + "probability": 0.2608 + }, + { + "start": 20998.68, + "end": 20998.96, + "probability": 0.222 + }, + { + "start": 20998.96, + "end": 20999.2, + "probability": 0.0172 + }, + { + "start": 20999.26, + "end": 21000.66, + "probability": 0.1197 + }, + { + "start": 21000.84, + "end": 21001.48, + "probability": 0.2325 + }, + { + "start": 21001.56, + "end": 21003.74, + "probability": 0.0701 + }, + { + "start": 21003.74, + "end": 21004.18, + "probability": 0.1194 + }, + { + "start": 21004.2, + "end": 21004.76, + "probability": 0.028 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.0, + "end": 21080.0, + "probability": 0.0 + }, + { + "start": 21080.1, + "end": 21080.1, + "probability": 0.2088 + }, + { + "start": 21080.1, + "end": 21081.68, + "probability": 0.7629 + }, + { + "start": 21082.1, + "end": 21082.38, + "probability": 0.7464 + }, + { + "start": 21082.4, + "end": 21084.84, + "probability": 0.446 + }, + { + "start": 21085.06, + "end": 21086.42, + "probability": 0.9631 + }, + { + "start": 21086.58, + "end": 21088.74, + "probability": 0.655 + }, + { + "start": 21089.28, + "end": 21090.76, + "probability": 0.8753 + }, + { + "start": 21091.0, + "end": 21092.24, + "probability": 0.6668 + }, + { + "start": 21093.64, + "end": 21094.56, + "probability": 0.8204 + }, + { + "start": 21094.6, + "end": 21095.38, + "probability": 0.5797 + }, + { + "start": 21095.5, + "end": 21096.46, + "probability": 0.8215 + }, + { + "start": 21096.9, + "end": 21098.82, + "probability": 0.4438 + }, + { + "start": 21100.04, + "end": 21100.66, + "probability": 0.3562 + }, + { + "start": 21100.72, + "end": 21100.8, + "probability": 0.2789 + }, + { + "start": 21100.8, + "end": 21102.46, + "probability": 0.5232 + }, + { + "start": 21102.72, + "end": 21103.41, + "probability": 0.5384 + }, + { + "start": 21103.68, + "end": 21104.0, + "probability": 0.4801 + }, + { + "start": 21104.42, + "end": 21105.04, + "probability": 0.717 + }, + { + "start": 21106.2, + "end": 21106.3, + "probability": 0.4715 + }, + { + "start": 21106.3, + "end": 21107.56, + "probability": 0.4901 + }, + { + "start": 21107.7, + "end": 21108.64, + "probability": 0.1024 + }, + { + "start": 21108.68, + "end": 21108.7, + "probability": 0.444 + }, + { + "start": 21108.82, + "end": 21110.9, + "probability": 0.7686 + }, + { + "start": 21110.9, + "end": 21111.36, + "probability": 0.6276 + }, + { + "start": 21111.38, + "end": 21112.54, + "probability": 0.5953 + }, + { + "start": 21112.72, + "end": 21114.59, + "probability": 0.5342 + }, + { + "start": 21114.8, + "end": 21118.0, + "probability": 0.6065 + }, + { + "start": 21118.32, + "end": 21120.14, + "probability": 0.6147 + }, + { + "start": 21120.14, + "end": 21120.14, + "probability": 0.3178 + }, + { + "start": 21120.18, + "end": 21120.98, + "probability": 0.4699 + }, + { + "start": 21120.98, + "end": 21122.66, + "probability": 0.3513 + }, + { + "start": 21122.82, + "end": 21123.88, + "probability": 0.7138 + }, + { + "start": 21124.06, + "end": 21125.02, + "probability": 0.4794 + }, + { + "start": 21125.3, + "end": 21125.3, + "probability": 0.4949 + }, + { + "start": 21125.42, + "end": 21126.24, + "probability": 0.7849 + }, + { + "start": 21126.56, + "end": 21128.14, + "probability": 0.6469 + }, + { + "start": 21128.68, + "end": 21131.72, + "probability": 0.7914 + }, + { + "start": 21132.32, + "end": 21132.32, + "probability": 0.0531 + }, + { + "start": 21132.32, + "end": 21134.14, + "probability": 0.4927 + }, + { + "start": 21135.0, + "end": 21137.3, + "probability": 0.9404 + }, + { + "start": 21144.36, + "end": 21144.36, + "probability": 0.3575 + }, + { + "start": 21144.36, + "end": 21144.36, + "probability": 0.1652 + }, + { + "start": 21144.36, + "end": 21144.36, + "probability": 0.1456 + }, + { + "start": 21144.36, + "end": 21144.36, + "probability": 0.0182 + }, + { + "start": 21144.36, + "end": 21145.5, + "probability": 0.0146 + }, + { + "start": 21157.11, + "end": 21158.6, + "probability": 0.6315 + }, + { + "start": 21173.06, + "end": 21174.02, + "probability": 0.6337 + }, + { + "start": 21175.26, + "end": 21177.18, + "probability": 0.8387 + }, + { + "start": 21178.46, + "end": 21179.56, + "probability": 0.8624 + }, + { + "start": 21181.46, + "end": 21182.68, + "probability": 0.9121 + }, + { + "start": 21184.76, + "end": 21185.38, + "probability": 0.931 + }, + { + "start": 21186.08, + "end": 21189.04, + "probability": 0.9417 + }, + { + "start": 21190.88, + "end": 21192.86, + "probability": 0.9841 + }, + { + "start": 21192.88, + "end": 21196.52, + "probability": 0.9512 + }, + { + "start": 21197.44, + "end": 21199.3, + "probability": 0.967 + }, + { + "start": 21200.58, + "end": 21202.54, + "probability": 0.9573 + }, + { + "start": 21204.5, + "end": 21209.84, + "probability": 0.8732 + }, + { + "start": 21212.24, + "end": 21215.06, + "probability": 0.8789 + }, + { + "start": 21215.98, + "end": 21217.36, + "probability": 0.8457 + }, + { + "start": 21218.68, + "end": 21223.1, + "probability": 0.9694 + }, + { + "start": 21223.82, + "end": 21227.18, + "probability": 0.9948 + }, + { + "start": 21227.7, + "end": 21228.78, + "probability": 0.8853 + }, + { + "start": 21230.62, + "end": 21232.28, + "probability": 0.9373 + }, + { + "start": 21234.04, + "end": 21234.86, + "probability": 0.9189 + }, + { + "start": 21237.08, + "end": 21240.16, + "probability": 0.8447 + }, + { + "start": 21240.98, + "end": 21241.4, + "probability": 0.9551 + }, + { + "start": 21242.5, + "end": 21247.12, + "probability": 0.9678 + }, + { + "start": 21248.16, + "end": 21249.44, + "probability": 0.8425 + }, + { + "start": 21250.28, + "end": 21252.46, + "probability": 0.5859 + }, + { + "start": 21253.56, + "end": 21254.84, + "probability": 0.5144 + }, + { + "start": 21255.92, + "end": 21258.82, + "probability": 0.9673 + }, + { + "start": 21260.8, + "end": 21264.12, + "probability": 0.7708 + }, + { + "start": 21265.02, + "end": 21266.56, + "probability": 0.7852 + }, + { + "start": 21268.44, + "end": 21269.86, + "probability": 0.9683 + }, + { + "start": 21273.38, + "end": 21274.02, + "probability": 0.1 + }, + { + "start": 21274.02, + "end": 21275.35, + "probability": 0.5461 + }, + { + "start": 21277.06, + "end": 21278.84, + "probability": 0.9449 + }, + { + "start": 21279.24, + "end": 21280.08, + "probability": 0.2693 + }, + { + "start": 21280.14, + "end": 21281.56, + "probability": 0.9508 + }, + { + "start": 21282.84, + "end": 21283.94, + "probability": 0.405 + }, + { + "start": 21285.26, + "end": 21286.58, + "probability": 0.3908 + }, + { + "start": 21289.46, + "end": 21295.74, + "probability": 0.9209 + }, + { + "start": 21295.9, + "end": 21298.38, + "probability": 0.7026 + }, + { + "start": 21298.82, + "end": 21301.38, + "probability": 0.9214 + }, + { + "start": 21303.92, + "end": 21307.32, + "probability": 0.8773 + }, + { + "start": 21308.62, + "end": 21311.84, + "probability": 0.4977 + }, + { + "start": 21312.78, + "end": 21314.72, + "probability": 0.9045 + }, + { + "start": 21317.4, + "end": 21318.58, + "probability": 0.6494 + }, + { + "start": 21321.84, + "end": 21322.56, + "probability": 0.4983 + }, + { + "start": 21323.32, + "end": 21324.7, + "probability": 0.6842 + }, + { + "start": 21327.56, + "end": 21330.58, + "probability": 0.9505 + }, + { + "start": 21330.62, + "end": 21333.24, + "probability": 0.9054 + }, + { + "start": 21333.6, + "end": 21334.6, + "probability": 0.9537 + }, + { + "start": 21336.74, + "end": 21340.36, + "probability": 0.9096 + }, + { + "start": 21340.38, + "end": 21340.9, + "probability": 0.6575 + }, + { + "start": 21341.42, + "end": 21344.52, + "probability": 0.9385 + }, + { + "start": 21346.58, + "end": 21349.82, + "probability": 0.963 + }, + { + "start": 21351.6, + "end": 21353.56, + "probability": 0.9629 + }, + { + "start": 21354.9, + "end": 21357.44, + "probability": 0.9771 + }, + { + "start": 21358.98, + "end": 21360.56, + "probability": 0.9819 + }, + { + "start": 21361.54, + "end": 21364.15, + "probability": 0.9722 + }, + { + "start": 21366.38, + "end": 21369.1, + "probability": 0.7881 + }, + { + "start": 21369.2, + "end": 21370.64, + "probability": 0.9386 + }, + { + "start": 21371.62, + "end": 21374.18, + "probability": 0.9799 + }, + { + "start": 21374.9, + "end": 21375.92, + "probability": 0.659 + }, + { + "start": 21376.02, + "end": 21376.72, + "probability": 0.6593 + }, + { + "start": 21377.32, + "end": 21381.48, + "probability": 0.8266 + }, + { + "start": 21382.08, + "end": 21385.24, + "probability": 0.9885 + }, + { + "start": 21386.84, + "end": 21389.52, + "probability": 0.9979 + }, + { + "start": 21390.9, + "end": 21393.8, + "probability": 0.9767 + }, + { + "start": 21394.16, + "end": 21397.5, + "probability": 0.6769 + }, + { + "start": 21397.62, + "end": 21400.36, + "probability": 0.9862 + }, + { + "start": 21402.52, + "end": 21404.36, + "probability": 0.749 + }, + { + "start": 21405.94, + "end": 21406.92, + "probability": 0.8338 + }, + { + "start": 21407.46, + "end": 21408.3, + "probability": 0.8573 + }, + { + "start": 21408.46, + "end": 21410.43, + "probability": 0.9678 + }, + { + "start": 21411.5, + "end": 21413.31, + "probability": 0.978 + }, + { + "start": 21413.56, + "end": 21415.58, + "probability": 0.9338 + }, + { + "start": 21415.78, + "end": 21416.3, + "probability": 0.6603 + }, + { + "start": 21416.36, + "end": 21417.36, + "probability": 0.7476 + }, + { + "start": 21418.66, + "end": 21419.3, + "probability": 0.7359 + }, + { + "start": 21419.4, + "end": 21420.14, + "probability": 0.7124 + }, + { + "start": 21420.46, + "end": 21424.6, + "probability": 0.9767 + }, + { + "start": 21425.4, + "end": 21427.02, + "probability": 0.9906 + }, + { + "start": 21427.48, + "end": 21429.46, + "probability": 0.6018 + }, + { + "start": 21430.04, + "end": 21430.9, + "probability": 0.818 + }, + { + "start": 21431.98, + "end": 21432.82, + "probability": 0.8373 + }, + { + "start": 21433.46, + "end": 21436.42, + "probability": 0.9751 + }, + { + "start": 21437.84, + "end": 21438.82, + "probability": 0.926 + }, + { + "start": 21439.5, + "end": 21441.84, + "probability": 0.8192 + }, + { + "start": 21442.82, + "end": 21443.42, + "probability": 0.9353 + }, + { + "start": 21447.0, + "end": 21448.14, + "probability": 0.8229 + }, + { + "start": 21448.38, + "end": 21451.4, + "probability": 0.9168 + }, + { + "start": 21452.5, + "end": 21454.12, + "probability": 0.7441 + }, + { + "start": 21454.24, + "end": 21454.5, + "probability": 0.9839 + }, + { + "start": 21455.86, + "end": 21458.08, + "probability": 0.9424 + }, + { + "start": 21458.08, + "end": 21461.1, + "probability": 0.8977 + }, + { + "start": 21461.22, + "end": 21462.04, + "probability": 0.5252 + }, + { + "start": 21463.7, + "end": 21465.8, + "probability": 0.8301 + }, + { + "start": 21467.72, + "end": 21468.28, + "probability": 0.832 + }, + { + "start": 21468.36, + "end": 21468.9, + "probability": 0.9594 + }, + { + "start": 21469.08, + "end": 21471.56, + "probability": 0.9897 + }, + { + "start": 21472.46, + "end": 21475.74, + "probability": 0.9788 + }, + { + "start": 21476.5, + "end": 21477.04, + "probability": 0.3803 + }, + { + "start": 21477.7, + "end": 21480.44, + "probability": 0.9387 + }, + { + "start": 21483.96, + "end": 21485.96, + "probability": 0.7334 + }, + { + "start": 21487.52, + "end": 21491.78, + "probability": 0.75 + }, + { + "start": 21492.64, + "end": 21493.7, + "probability": 0.7652 + }, + { + "start": 21494.34, + "end": 21496.6, + "probability": 0.656 + }, + { + "start": 21499.0, + "end": 21500.88, + "probability": 0.9854 + }, + { + "start": 21502.8, + "end": 21503.34, + "probability": 0.8687 + }, + { + "start": 21503.42, + "end": 21503.86, + "probability": 0.8301 + }, + { + "start": 21505.08, + "end": 21506.56, + "probability": 0.7552 + }, + { + "start": 21508.08, + "end": 21509.6, + "probability": 0.9971 + }, + { + "start": 21509.68, + "end": 21511.66, + "probability": 0.9961 + }, + { + "start": 21512.68, + "end": 21514.2, + "probability": 0.8779 + }, + { + "start": 21515.46, + "end": 21516.78, + "probability": 0.8483 + }, + { + "start": 21517.8, + "end": 21518.16, + "probability": 0.6743 + }, + { + "start": 21519.2, + "end": 21521.24, + "probability": 0.9884 + }, + { + "start": 21522.62, + "end": 21524.6, + "probability": 0.3882 + }, + { + "start": 21527.68, + "end": 21531.16, + "probability": 0.7611 + }, + { + "start": 21531.24, + "end": 21533.76, + "probability": 0.9492 + }, + { + "start": 21534.3, + "end": 21535.56, + "probability": 0.962 + }, + { + "start": 21536.54, + "end": 21538.42, + "probability": 0.8558 + }, + { + "start": 21539.54, + "end": 21541.78, + "probability": 0.9911 + }, + { + "start": 21542.42, + "end": 21544.18, + "probability": 0.7539 + }, + { + "start": 21546.8, + "end": 21548.5, + "probability": 0.999 + }, + { + "start": 21550.1, + "end": 21551.26, + "probability": 0.896 + }, + { + "start": 21551.38, + "end": 21554.84, + "probability": 0.9567 + }, + { + "start": 21555.56, + "end": 21556.28, + "probability": 0.5647 + }, + { + "start": 21557.12, + "end": 21558.36, + "probability": 0.746 + }, + { + "start": 21559.42, + "end": 21562.08, + "probability": 0.993 + }, + { + "start": 21562.86, + "end": 21563.86, + "probability": 0.6467 + }, + { + "start": 21564.84, + "end": 21570.4, + "probability": 0.9777 + }, + { + "start": 21571.34, + "end": 21571.92, + "probability": 0.687 + }, + { + "start": 21573.88, + "end": 21574.53, + "probability": 0.876 + }, + { + "start": 21575.6, + "end": 21580.48, + "probability": 0.9935 + }, + { + "start": 21582.2, + "end": 21586.42, + "probability": 0.9237 + }, + { + "start": 21587.82, + "end": 21588.9, + "probability": 0.7827 + }, + { + "start": 21590.06, + "end": 21593.67, + "probability": 0.6946 + }, + { + "start": 21598.56, + "end": 21603.0, + "probability": 0.9836 + }, + { + "start": 21603.72, + "end": 21604.32, + "probability": 0.7162 + }, + { + "start": 21604.56, + "end": 21605.72, + "probability": 0.8926 + }, + { + "start": 21606.54, + "end": 21607.62, + "probability": 0.9937 + }, + { + "start": 21608.52, + "end": 21609.72, + "probability": 0.9983 + }, + { + "start": 21611.28, + "end": 21612.14, + "probability": 0.9675 + }, + { + "start": 21613.14, + "end": 21614.78, + "probability": 0.9871 + }, + { + "start": 21615.66, + "end": 21619.3, + "probability": 0.8703 + }, + { + "start": 21619.74, + "end": 21620.76, + "probability": 0.964 + }, + { + "start": 21621.9, + "end": 21624.28, + "probability": 0.9489 + }, + { + "start": 21625.14, + "end": 21626.67, + "probability": 0.6898 + }, + { + "start": 21629.7, + "end": 21630.3, + "probability": 0.2514 + }, + { + "start": 21630.46, + "end": 21631.9, + "probability": 0.7849 + }, + { + "start": 21633.68, + "end": 21635.7, + "probability": 0.929 + }, + { + "start": 21635.75, + "end": 21638.16, + "probability": 0.9282 + }, + { + "start": 21638.46, + "end": 21639.46, + "probability": 0.9757 + }, + { + "start": 21641.8, + "end": 21644.18, + "probability": 0.967 + }, + { + "start": 21644.72, + "end": 21645.58, + "probability": 0.3068 + }, + { + "start": 21646.32, + "end": 21649.48, + "probability": 0.9171 + }, + { + "start": 21650.76, + "end": 21652.82, + "probability": 0.9773 + }, + { + "start": 21652.9, + "end": 21653.34, + "probability": 0.8575 + }, + { + "start": 21655.38, + "end": 21657.16, + "probability": 0.865 + }, + { + "start": 21659.16, + "end": 21661.62, + "probability": 0.8857 + }, + { + "start": 21664.94, + "end": 21665.56, + "probability": 0.4539 + }, + { + "start": 21665.94, + "end": 21666.62, + "probability": 0.5526 + }, + { + "start": 21666.8, + "end": 21669.12, + "probability": 0.7487 + }, + { + "start": 21669.5, + "end": 21674.62, + "probability": 0.4925 + }, + { + "start": 21675.48, + "end": 21677.22, + "probability": 0.7163 + }, + { + "start": 21682.36, + "end": 21686.36, + "probability": 0.9659 + }, + { + "start": 21687.28, + "end": 21688.4, + "probability": 0.4924 + }, + { + "start": 21688.96, + "end": 21690.02, + "probability": 0.876 + }, + { + "start": 21690.74, + "end": 21692.32, + "probability": 0.4188 + }, + { + "start": 21692.98, + "end": 21699.72, + "probability": 0.9946 + }, + { + "start": 21700.7, + "end": 21701.02, + "probability": 0.4111 + }, + { + "start": 21702.2, + "end": 21702.6, + "probability": 0.3084 + }, + { + "start": 21702.8, + "end": 21704.04, + "probability": 0.0334 + }, + { + "start": 21704.06, + "end": 21705.32, + "probability": 0.6247 + }, + { + "start": 21705.36, + "end": 21705.72, + "probability": 0.0506 + }, + { + "start": 21705.72, + "end": 21706.42, + "probability": 0.2714 + }, + { + "start": 21706.64, + "end": 21707.22, + "probability": 0.1038 + }, + { + "start": 21707.22, + "end": 21707.22, + "probability": 0.2397 + }, + { + "start": 21707.22, + "end": 21707.62, + "probability": 0.6937 + }, + { + "start": 21707.64, + "end": 21713.9, + "probability": 0.8125 + }, + { + "start": 21714.0, + "end": 21714.76, + "probability": 0.7248 + }, + { + "start": 21715.28, + "end": 21717.12, + "probability": 0.1768 + }, + { + "start": 21718.06, + "end": 21719.54, + "probability": 0.0373 + }, + { + "start": 21719.96, + "end": 21721.19, + "probability": 0.8594 + }, + { + "start": 21721.86, + "end": 21725.94, + "probability": 0.8184 + }, + { + "start": 21725.96, + "end": 21727.98, + "probability": 0.6474 + }, + { + "start": 21728.76, + "end": 21730.38, + "probability": 0.0495 + }, + { + "start": 21731.06, + "end": 21739.24, + "probability": 0.4707 + }, + { + "start": 21739.48, + "end": 21741.8, + "probability": 0.5863 + }, + { + "start": 21742.76, + "end": 21746.62, + "probability": 0.9484 + }, + { + "start": 21746.8, + "end": 21750.86, + "probability": 0.9906 + }, + { + "start": 21751.22, + "end": 21752.39, + "probability": 0.9032 + }, + { + "start": 21754.44, + "end": 21755.5, + "probability": 0.8634 + }, + { + "start": 21755.58, + "end": 21756.74, + "probability": 0.7118 + }, + { + "start": 21756.78, + "end": 21758.08, + "probability": 0.8084 + }, + { + "start": 21758.12, + "end": 21759.74, + "probability": 0.8336 + }, + { + "start": 21760.26, + "end": 21761.42, + "probability": 0.5394 + }, + { + "start": 21761.42, + "end": 21762.92, + "probability": 0.6245 + }, + { + "start": 21763.3, + "end": 21764.54, + "probability": 0.0192 + }, + { + "start": 21764.54, + "end": 21768.92, + "probability": 0.6558 + }, + { + "start": 21769.29, + "end": 21770.92, + "probability": 0.9659 + }, + { + "start": 21771.68, + "end": 21773.72, + "probability": 0.324 + }, + { + "start": 21773.74, + "end": 21775.7, + "probability": 0.9097 + }, + { + "start": 21775.72, + "end": 21777.4, + "probability": 0.8442 + }, + { + "start": 21778.58, + "end": 21780.18, + "probability": 0.6834 + }, + { + "start": 21780.64, + "end": 21780.86, + "probability": 0.1702 + }, + { + "start": 21780.86, + "end": 21780.94, + "probability": 0.0936 + }, + { + "start": 21781.18, + "end": 21782.04, + "probability": 0.8322 + }, + { + "start": 21782.18, + "end": 21784.98, + "probability": 0.9925 + }, + { + "start": 21784.98, + "end": 21788.84, + "probability": 0.8855 + }, + { + "start": 21789.36, + "end": 21790.24, + "probability": 0.6318 + }, + { + "start": 21790.52, + "end": 21793.74, + "probability": 0.8364 + }, + { + "start": 21793.82, + "end": 21797.1, + "probability": 0.7164 + }, + { + "start": 21797.35, + "end": 21798.2, + "probability": 0.7943 + }, + { + "start": 21798.62, + "end": 21800.14, + "probability": 0.6871 + }, + { + "start": 21800.94, + "end": 21804.16, + "probability": 0.5153 + }, + { + "start": 21804.16, + "end": 21806.88, + "probability": 0.1873 + }, + { + "start": 21807.08, + "end": 21807.08, + "probability": 0.0953 + }, + { + "start": 21807.08, + "end": 21807.98, + "probability": 0.975 + }, + { + "start": 21809.32, + "end": 21810.84, + "probability": 0.5407 + }, + { + "start": 21810.88, + "end": 21811.86, + "probability": 0.9771 + }, + { + "start": 21812.3, + "end": 21812.82, + "probability": 0.9709 + }, + { + "start": 21813.44, + "end": 21817.74, + "probability": 0.7306 + }, + { + "start": 21818.28, + "end": 21818.88, + "probability": 0.4806 + }, + { + "start": 21819.08, + "end": 21819.64, + "probability": 0.4828 + }, + { + "start": 21819.76, + "end": 21820.36, + "probability": 0.6743 + }, + { + "start": 21820.4, + "end": 21822.92, + "probability": 0.8037 + }, + { + "start": 21823.24, + "end": 21823.94, + "probability": 0.8569 + }, + { + "start": 21824.0, + "end": 21825.4, + "probability": 0.7178 + }, + { + "start": 21825.4, + "end": 21827.46, + "probability": 0.463 + }, + { + "start": 21827.46, + "end": 21828.98, + "probability": 0.8432 + }, + { + "start": 21829.24, + "end": 21830.14, + "probability": 0.0532 + }, + { + "start": 21830.14, + "end": 21830.52, + "probability": 0.3788 + }, + { + "start": 21830.56, + "end": 21830.9, + "probability": 0.6662 + }, + { + "start": 21831.0, + "end": 21832.68, + "probability": 0.7741 + }, + { + "start": 21832.72, + "end": 21834.58, + "probability": 0.7002 + }, + { + "start": 21834.58, + "end": 21834.9, + "probability": 0.2177 + }, + { + "start": 21835.02, + "end": 21836.54, + "probability": 0.9867 + }, + { + "start": 21836.56, + "end": 21836.84, + "probability": 0.8287 + }, + { + "start": 21837.1, + "end": 21837.82, + "probability": 0.7192 + }, + { + "start": 21838.76, + "end": 21843.42, + "probability": 0.8335 + }, + { + "start": 21843.7, + "end": 21844.58, + "probability": 0.3289 + }, + { + "start": 21844.96, + "end": 21846.84, + "probability": 0.6402 + }, + { + "start": 21846.96, + "end": 21847.56, + "probability": 0.7755 + }, + { + "start": 21847.96, + "end": 21851.74, + "probability": 0.9938 + }, + { + "start": 21852.0, + "end": 21852.16, + "probability": 0.0526 + }, + { + "start": 21852.16, + "end": 21852.8, + "probability": 0.323 + }, + { + "start": 21853.46, + "end": 21854.92, + "probability": 0.4199 + }, + { + "start": 21856.04, + "end": 21858.92, + "probability": 0.7694 + }, + { + "start": 21859.02, + "end": 21861.7, + "probability": 0.4578 + }, + { + "start": 21861.7, + "end": 21862.18, + "probability": 0.4184 + }, + { + "start": 21863.45, + "end": 21865.52, + "probability": 0.7393 + }, + { + "start": 21865.72, + "end": 21867.86, + "probability": 0.7934 + }, + { + "start": 21867.94, + "end": 21870.32, + "probability": 0.9634 + }, + { + "start": 21873.68, + "end": 21876.8, + "probability": 0.3058 + }, + { + "start": 21876.86, + "end": 21877.26, + "probability": 0.337 + }, + { + "start": 21877.42, + "end": 21878.7, + "probability": 0.5701 + }, + { + "start": 21878.78, + "end": 21882.34, + "probability": 0.2129 + }, + { + "start": 21882.88, + "end": 21883.28, + "probability": 0.157 + }, + { + "start": 21885.6, + "end": 21888.84, + "probability": 0.1464 + }, + { + "start": 21889.0, + "end": 21891.0, + "probability": 0.2766 + }, + { + "start": 21891.0, + "end": 21891.04, + "probability": 0.1666 + }, + { + "start": 21891.04, + "end": 21891.08, + "probability": 0.2037 + }, + { + "start": 21891.08, + "end": 21891.88, + "probability": 0.0966 + }, + { + "start": 21892.06, + "end": 21892.42, + "probability": 0.0526 + }, + { + "start": 21892.42, + "end": 21893.45, + "probability": 0.7509 + }, + { + "start": 21894.02, + "end": 21895.51, + "probability": 0.0326 + }, + { + "start": 21895.9, + "end": 21896.58, + "probability": 0.1798 + }, + { + "start": 21898.02, + "end": 21901.24, + "probability": 0.0276 + }, + { + "start": 21901.24, + "end": 21903.28, + "probability": 0.8429 + }, + { + "start": 21903.98, + "end": 21905.1, + "probability": 0.4385 + }, + { + "start": 21905.22, + "end": 21907.92, + "probability": 0.9645 + }, + { + "start": 21908.48, + "end": 21912.54, + "probability": 0.9961 + }, + { + "start": 21913.2, + "end": 21916.16, + "probability": 0.9698 + }, + { + "start": 21916.6, + "end": 21918.14, + "probability": 0.9854 + }, + { + "start": 21918.6, + "end": 21924.1, + "probability": 0.9916 + }, + { + "start": 21924.86, + "end": 21929.04, + "probability": 0.9928 + }, + { + "start": 21929.08, + "end": 21932.2, + "probability": 0.9586 + }, + { + "start": 21933.04, + "end": 21936.58, + "probability": 0.9825 + }, + { + "start": 21936.96, + "end": 21939.5, + "probability": 0.9956 + }, + { + "start": 21939.5, + "end": 21941.68, + "probability": 0.994 + }, + { + "start": 21943.14, + "end": 21943.38, + "probability": 0.5106 + }, + { + "start": 21943.82, + "end": 21949.14, + "probability": 0.9879 + }, + { + "start": 21949.7, + "end": 21955.12, + "probability": 0.9769 + }, + { + "start": 21955.36, + "end": 21955.86, + "probability": 0.4534 + }, + { + "start": 21956.08, + "end": 21960.3, + "probability": 0.9984 + }, + { + "start": 21961.74, + "end": 21963.24, + "probability": 0.9605 + }, + { + "start": 21964.82, + "end": 21968.54, + "probability": 0.9982 + }, + { + "start": 21968.54, + "end": 21971.6, + "probability": 0.9985 + }, + { + "start": 21972.04, + "end": 21973.72, + "probability": 0.9251 + }, + { + "start": 21974.4, + "end": 21975.12, + "probability": 0.9633 + }, + { + "start": 21975.64, + "end": 21977.22, + "probability": 0.8896 + }, + { + "start": 21977.36, + "end": 21979.7, + "probability": 0.999 + }, + { + "start": 21980.08, + "end": 21981.66, + "probability": 0.8465 + }, + { + "start": 21981.86, + "end": 21984.89, + "probability": 0.9147 + }, + { + "start": 21985.88, + "end": 21991.46, + "probability": 0.9852 + }, + { + "start": 21991.46, + "end": 21991.94, + "probability": 0.4988 + }, + { + "start": 21992.32, + "end": 21997.78, + "probability": 0.9946 + }, + { + "start": 21998.9, + "end": 21999.58, + "probability": 0.4742 + }, + { + "start": 21999.7, + "end": 22004.26, + "probability": 0.998 + }, + { + "start": 22004.26, + "end": 22008.78, + "probability": 0.9865 + }, + { + "start": 22011.36, + "end": 22015.18, + "probability": 0.9922 + }, + { + "start": 22015.88, + "end": 22019.52, + "probability": 0.9453 + }, + { + "start": 22019.52, + "end": 22021.92, + "probability": 0.9897 + }, + { + "start": 22023.02, + "end": 22024.08, + "probability": 0.9417 + }, + { + "start": 22024.6, + "end": 22025.96, + "probability": 0.9927 + }, + { + "start": 22026.48, + "end": 22030.8, + "probability": 0.9945 + }, + { + "start": 22032.48, + "end": 22033.2, + "probability": 0.5923 + }, + { + "start": 22033.38, + "end": 22033.84, + "probability": 0.555 + }, + { + "start": 22034.28, + "end": 22035.74, + "probability": 0.9268 + }, + { + "start": 22036.5, + "end": 22036.88, + "probability": 0.5379 + }, + { + "start": 22037.06, + "end": 22037.88, + "probability": 0.9617 + }, + { + "start": 22037.94, + "end": 22038.84, + "probability": 0.857 + }, + { + "start": 22039.08, + "end": 22040.22, + "probability": 0.8563 + }, + { + "start": 22040.9, + "end": 22044.16, + "probability": 0.6604 + }, + { + "start": 22044.42, + "end": 22045.8, + "probability": 0.8099 + }, + { + "start": 22046.5, + "end": 22048.32, + "probability": 0.9036 + }, + { + "start": 22049.4, + "end": 22052.68, + "probability": 0.9766 + }, + { + "start": 22052.68, + "end": 22055.4, + "probability": 0.9932 + }, + { + "start": 22055.52, + "end": 22055.9, + "probability": 0.7702 + }, + { + "start": 22055.98, + "end": 22056.34, + "probability": 0.7398 + }, + { + "start": 22057.66, + "end": 22062.28, + "probability": 0.8856 + }, + { + "start": 22062.98, + "end": 22064.6, + "probability": 0.9748 + }, + { + "start": 22064.72, + "end": 22068.16, + "probability": 0.9791 + }, + { + "start": 22068.16, + "end": 22071.28, + "probability": 0.9329 + }, + { + "start": 22071.78, + "end": 22076.5, + "probability": 0.9729 + }, + { + "start": 22076.98, + "end": 22080.4, + "probability": 0.987 + }, + { + "start": 22080.92, + "end": 22084.4, + "probability": 0.9941 + }, + { + "start": 22085.94, + "end": 22086.58, + "probability": 0.7512 + }, + { + "start": 22087.04, + "end": 22089.74, + "probability": 0.9927 + }, + { + "start": 22090.08, + "end": 22093.92, + "probability": 0.9913 + }, + { + "start": 22106.12, + "end": 22106.22, + "probability": 0.1037 + }, + { + "start": 22107.82, + "end": 22113.36, + "probability": 0.2715 + }, + { + "start": 22113.56, + "end": 22113.82, + "probability": 0.7578 + }, + { + "start": 22113.96, + "end": 22117.64, + "probability": 0.9972 + }, + { + "start": 22117.74, + "end": 22122.16, + "probability": 0.8734 + }, + { + "start": 22122.68, + "end": 22128.3, + "probability": 0.9956 + }, + { + "start": 22128.3, + "end": 22134.18, + "probability": 0.9984 + }, + { + "start": 22134.32, + "end": 22135.12, + "probability": 0.4452 + }, + { + "start": 22135.22, + "end": 22137.16, + "probability": 0.9258 + }, + { + "start": 22137.94, + "end": 22139.52, + "probability": 0.9653 + }, + { + "start": 22139.88, + "end": 22140.51, + "probability": 0.9937 + }, + { + "start": 22143.0, + "end": 22146.24, + "probability": 0.9961 + }, + { + "start": 22147.04, + "end": 22152.96, + "probability": 0.9839 + }, + { + "start": 22153.08, + "end": 22153.94, + "probability": 0.772 + }, + { + "start": 22154.42, + "end": 22158.56, + "probability": 0.977 + }, + { + "start": 22158.72, + "end": 22159.14, + "probability": 0.8903 + }, + { + "start": 22159.94, + "end": 22161.18, + "probability": 0.9889 + }, + { + "start": 22161.66, + "end": 22164.96, + "probability": 0.8449 + }, + { + "start": 22165.7, + "end": 22168.66, + "probability": 0.8384 + }, + { + "start": 22169.66, + "end": 22174.6, + "probability": 0.9705 + }, + { + "start": 22175.28, + "end": 22176.06, + "probability": 0.8632 + }, + { + "start": 22176.6, + "end": 22178.22, + "probability": 0.9308 + }, + { + "start": 22178.28, + "end": 22178.74, + "probability": 0.3205 + }, + { + "start": 22178.88, + "end": 22184.32, + "probability": 0.8742 + }, + { + "start": 22184.4, + "end": 22186.0, + "probability": 0.9935 + }, + { + "start": 22186.42, + "end": 22188.86, + "probability": 0.9771 + }, + { + "start": 22189.08, + "end": 22192.5, + "probability": 0.979 + }, + { + "start": 22193.38, + "end": 22199.18, + "probability": 0.7472 + }, + { + "start": 22199.78, + "end": 22203.52, + "probability": 0.9497 + }, + { + "start": 22204.3, + "end": 22208.84, + "probability": 0.869 + }, + { + "start": 22208.96, + "end": 22212.8, + "probability": 0.7603 + }, + { + "start": 22213.2, + "end": 22216.34, + "probability": 0.9728 + }, + { + "start": 22216.54, + "end": 22217.4, + "probability": 0.4481 + }, + { + "start": 22217.58, + "end": 22219.1, + "probability": 0.9946 + }, + { + "start": 22219.24, + "end": 22219.96, + "probability": 0.8001 + }, + { + "start": 22220.54, + "end": 22223.92, + "probability": 0.9976 + }, + { + "start": 22224.0, + "end": 22226.38, + "probability": 0.996 + }, + { + "start": 22227.3, + "end": 22228.24, + "probability": 0.8531 + }, + { + "start": 22229.28, + "end": 22232.1, + "probability": 0.9535 + }, + { + "start": 22233.34, + "end": 22234.36, + "probability": 0.5713 + }, + { + "start": 22234.62, + "end": 22235.4, + "probability": 0.6988 + }, + { + "start": 22235.48, + "end": 22235.76, + "probability": 0.8623 + }, + { + "start": 22236.16, + "end": 22238.88, + "probability": 0.592 + }, + { + "start": 22239.26, + "end": 22240.52, + "probability": 0.5574 + }, + { + "start": 22240.54, + "end": 22242.9, + "probability": 0.9954 + }, + { + "start": 22243.02, + "end": 22246.24, + "probability": 0.9968 + }, + { + "start": 22246.88, + "end": 22247.9, + "probability": 0.7809 + }, + { + "start": 22247.98, + "end": 22248.76, + "probability": 0.7689 + }, + { + "start": 22248.9, + "end": 22251.36, + "probability": 0.9821 + }, + { + "start": 22252.0, + "end": 22254.1, + "probability": 0.9087 + }, + { + "start": 22254.68, + "end": 22254.9, + "probability": 0.4517 + }, + { + "start": 22255.0, + "end": 22255.5, + "probability": 0.6802 + }, + { + "start": 22256.42, + "end": 22258.02, + "probability": 0.993 + }, + { + "start": 22259.2, + "end": 22261.34, + "probability": 0.782 + }, + { + "start": 22262.1, + "end": 22264.59, + "probability": 0.6855 + }, + { + "start": 22264.7, + "end": 22265.48, + "probability": 0.5262 + }, + { + "start": 22266.1, + "end": 22269.12, + "probability": 0.8716 + }, + { + "start": 22269.56, + "end": 22269.66, + "probability": 0.5217 + }, + { + "start": 22269.76, + "end": 22270.17, + "probability": 0.9298 + }, + { + "start": 22270.32, + "end": 22276.96, + "probability": 0.9957 + }, + { + "start": 22277.2, + "end": 22279.44, + "probability": 0.9991 + }, + { + "start": 22279.98, + "end": 22283.39, + "probability": 0.9909 + }, + { + "start": 22284.04, + "end": 22285.06, + "probability": 0.9748 + }, + { + "start": 22285.2, + "end": 22286.88, + "probability": 0.9129 + }, + { + "start": 22287.77, + "end": 22288.52, + "probability": 0.981 + }, + { + "start": 22288.58, + "end": 22291.64, + "probability": 0.9869 + }, + { + "start": 22291.98, + "end": 22292.4, + "probability": 0.9414 + }, + { + "start": 22292.86, + "end": 22293.94, + "probability": 0.9653 + }, + { + "start": 22294.04, + "end": 22295.34, + "probability": 0.8592 + }, + { + "start": 22295.82, + "end": 22297.7, + "probability": 0.9963 + }, + { + "start": 22298.36, + "end": 22304.8, + "probability": 0.9321 + }, + { + "start": 22304.8, + "end": 22309.1, + "probability": 0.9767 + }, + { + "start": 22309.5, + "end": 22310.02, + "probability": 0.2289 + }, + { + "start": 22310.04, + "end": 22313.58, + "probability": 0.8958 + }, + { + "start": 22313.94, + "end": 22314.64, + "probability": 0.8355 + }, + { + "start": 22314.76, + "end": 22315.62, + "probability": 0.7834 + }, + { + "start": 22315.74, + "end": 22316.36, + "probability": 0.771 + }, + { + "start": 22316.5, + "end": 22317.14, + "probability": 0.4551 + }, + { + "start": 22317.57, + "end": 22320.42, + "probability": 0.3608 + }, + { + "start": 22320.44, + "end": 22320.94, + "probability": 0.2557 + }, + { + "start": 22320.94, + "end": 22321.24, + "probability": 0.9453 + }, + { + "start": 22321.46, + "end": 22321.52, + "probability": 0.029 + }, + { + "start": 22321.52, + "end": 22322.02, + "probability": 0.2893 + }, + { + "start": 22322.14, + "end": 22323.68, + "probability": 0.9697 + }, + { + "start": 22323.7, + "end": 22325.24, + "probability": 0.9971 + }, + { + "start": 22325.76, + "end": 22328.42, + "probability": 0.9925 + }, + { + "start": 22328.42, + "end": 22333.64, + "probability": 0.9683 + }, + { + "start": 22334.22, + "end": 22338.48, + "probability": 0.9966 + }, + { + "start": 22338.48, + "end": 22341.48, + "probability": 0.9969 + }, + { + "start": 22341.8, + "end": 22342.46, + "probability": 0.7347 + }, + { + "start": 22342.78, + "end": 22345.96, + "probability": 0.9395 + }, + { + "start": 22345.96, + "end": 22346.2, + "probability": 0.5269 + }, + { + "start": 22346.68, + "end": 22349.06, + "probability": 0.9215 + }, + { + "start": 22349.24, + "end": 22349.82, + "probability": 0.0912 + }, + { + "start": 22350.22, + "end": 22351.54, + "probability": 0.7697 + }, + { + "start": 22351.82, + "end": 22355.08, + "probability": 0.3864 + }, + { + "start": 22355.22, + "end": 22359.2, + "probability": 0.8939 + }, + { + "start": 22359.26, + "end": 22359.68, + "probability": 0.9299 + }, + { + "start": 22368.72, + "end": 22370.16, + "probability": 0.7761 + }, + { + "start": 22370.32, + "end": 22370.4, + "probability": 0.3219 + }, + { + "start": 22370.46, + "end": 22370.58, + "probability": 0.1478 + }, + { + "start": 22370.6, + "end": 22372.04, + "probability": 0.5864 + }, + { + "start": 22372.8, + "end": 22375.22, + "probability": 0.8739 + }, + { + "start": 22375.44, + "end": 22376.52, + "probability": 0.9858 + }, + { + "start": 22377.06, + "end": 22378.5, + "probability": 0.7297 + }, + { + "start": 22379.38, + "end": 22381.34, + "probability": 0.9939 + }, + { + "start": 22382.28, + "end": 22383.2, + "probability": 0.7333 + }, + { + "start": 22383.5, + "end": 22385.88, + "probability": 0.5741 + }, + { + "start": 22386.62, + "end": 22387.96, + "probability": 0.9712 + }, + { + "start": 22388.24, + "end": 22391.28, + "probability": 0.829 + }, + { + "start": 22391.76, + "end": 22393.48, + "probability": 0.9604 + }, + { + "start": 22393.54, + "end": 22395.24, + "probability": 0.7725 + }, + { + "start": 22395.74, + "end": 22397.64, + "probability": 0.986 + }, + { + "start": 22398.08, + "end": 22400.04, + "probability": 0.434 + }, + { + "start": 22401.16, + "end": 22403.29, + "probability": 0.947 + }, + { + "start": 22404.04, + "end": 22405.68, + "probability": 0.9908 + }, + { + "start": 22406.44, + "end": 22409.02, + "probability": 0.9886 + }, + { + "start": 22409.84, + "end": 22410.62, + "probability": 0.917 + }, + { + "start": 22411.28, + "end": 22413.88, + "probability": 0.6892 + }, + { + "start": 22415.42, + "end": 22417.66, + "probability": 0.8588 + }, + { + "start": 22418.48, + "end": 22419.54, + "probability": 0.9683 + }, + { + "start": 22419.62, + "end": 22421.98, + "probability": 0.9607 + }, + { + "start": 22422.08, + "end": 22422.28, + "probability": 0.8416 + }, + { + "start": 22423.12, + "end": 22425.96, + "probability": 0.9516 + }, + { + "start": 22426.34, + "end": 22427.08, + "probability": 0.878 + }, + { + "start": 22427.2, + "end": 22429.54, + "probability": 0.9609 + }, + { + "start": 22430.04, + "end": 22432.6, + "probability": 0.908 + }, + { + "start": 22433.38, + "end": 22438.88, + "probability": 0.9564 + }, + { + "start": 22438.9, + "end": 22439.32, + "probability": 0.6439 + }, + { + "start": 22439.92, + "end": 22443.4, + "probability": 0.9626 + }, + { + "start": 22443.94, + "end": 22444.8, + "probability": 0.6423 + }, + { + "start": 22445.82, + "end": 22447.84, + "probability": 0.4119 + }, + { + "start": 22448.4, + "end": 22451.32, + "probability": 0.4008 + }, + { + "start": 22452.04, + "end": 22452.22, + "probability": 0.3082 + }, + { + "start": 22452.38, + "end": 22453.04, + "probability": 0.8463 + }, + { + "start": 22453.8, + "end": 22454.54, + "probability": 0.8321 + }, + { + "start": 22454.94, + "end": 22459.6, + "probability": 0.5244 + }, + { + "start": 22461.36, + "end": 22461.36, + "probability": 0.0749 + }, + { + "start": 22461.36, + "end": 22461.36, + "probability": 0.1198 + }, + { + "start": 22461.36, + "end": 22461.36, + "probability": 0.2413 + }, + { + "start": 22461.36, + "end": 22466.22, + "probability": 0.6965 + }, + { + "start": 22466.36, + "end": 22467.7, + "probability": 0.5882 + }, + { + "start": 22468.62, + "end": 22470.65, + "probability": 0.9922 + }, + { + "start": 22471.0, + "end": 22471.57, + "probability": 0.0175 + }, + { + "start": 22472.18, + "end": 22476.68, + "probability": 0.876 + }, + { + "start": 22477.26, + "end": 22477.26, + "probability": 0.0287 + }, + { + "start": 22477.26, + "end": 22477.26, + "probability": 0.0448 + }, + { + "start": 22477.26, + "end": 22477.26, + "probability": 0.1861 + }, + { + "start": 22477.6, + "end": 22479.37, + "probability": 0.5138 + }, + { + "start": 22480.28, + "end": 22481.18, + "probability": 0.697 + }, + { + "start": 22481.38, + "end": 22481.8, + "probability": 0.3749 + }, + { + "start": 22481.84, + "end": 22483.7, + "probability": 0.9375 + }, + { + "start": 22484.86, + "end": 22487.3, + "probability": 0.6728 + }, + { + "start": 22488.12, + "end": 22491.62, + "probability": 0.9575 + }, + { + "start": 22492.68, + "end": 22494.72, + "probability": 0.9919 + }, + { + "start": 22495.5, + "end": 22498.1, + "probability": 0.9342 + }, + { + "start": 22498.86, + "end": 22500.42, + "probability": 0.7441 + }, + { + "start": 22500.6, + "end": 22501.98, + "probability": 0.6837 + }, + { + "start": 22503.0, + "end": 22505.86, + "probability": 0.9007 + }, + { + "start": 22507.62, + "end": 22508.78, + "probability": 0.9878 + }, + { + "start": 22508.84, + "end": 22509.4, + "probability": 0.8508 + }, + { + "start": 22509.84, + "end": 22511.58, + "probability": 0.8415 + }, + { + "start": 22512.04, + "end": 22513.44, + "probability": 0.8457 + }, + { + "start": 22514.16, + "end": 22516.02, + "probability": 0.7615 + }, + { + "start": 22516.6, + "end": 22518.76, + "probability": 0.5925 + }, + { + "start": 22518.76, + "end": 22519.22, + "probability": 0.8285 + }, + { + "start": 22519.62, + "end": 22519.74, + "probability": 0.0131 + }, + { + "start": 22520.72, + "end": 22521.24, + "probability": 0.0667 + }, + { + "start": 22521.9, + "end": 22523.52, + "probability": 0.5412 + }, + { + "start": 22526.7, + "end": 22527.56, + "probability": 0.6204 + }, + { + "start": 22528.22, + "end": 22531.28, + "probability": 0.6611 + }, + { + "start": 22532.28, + "end": 22535.98, + "probability": 0.7797 + }, + { + "start": 22537.64, + "end": 22541.0, + "probability": 0.6525 + }, + { + "start": 22541.64, + "end": 22542.12, + "probability": 0.9735 + }, + { + "start": 22543.52, + "end": 22544.78, + "probability": 0.5941 + }, + { + "start": 22545.46, + "end": 22545.8, + "probability": 0.9819 + }, + { + "start": 22547.2, + "end": 22548.24, + "probability": 0.8959 + }, + { + "start": 22549.42, + "end": 22552.42, + "probability": 0.9338 + }, + { + "start": 22555.68, + "end": 22557.16, + "probability": 0.6064 + }, + { + "start": 22558.82, + "end": 22559.74, + "probability": 0.812 + }, + { + "start": 22560.9, + "end": 22563.48, + "probability": 0.7572 + }, + { + "start": 22564.96, + "end": 22566.58, + "probability": 0.9412 + }, + { + "start": 22567.72, + "end": 22568.78, + "probability": 0.8805 + }, + { + "start": 22569.94, + "end": 22572.78, + "probability": 0.9549 + }, + { + "start": 22574.28, + "end": 22574.86, + "probability": 0.985 + }, + { + "start": 22575.9, + "end": 22576.92, + "probability": 0.9639 + }, + { + "start": 22577.78, + "end": 22578.28, + "probability": 0.9922 + }, + { + "start": 22578.9, + "end": 22579.74, + "probability": 0.9783 + }, + { + "start": 22580.86, + "end": 22582.2, + "probability": 0.124 + }, + { + "start": 22588.88, + "end": 22592.5, + "probability": 0.5481 + }, + { + "start": 22593.68, + "end": 22594.72, + "probability": 0.6524 + }, + { + "start": 22595.96, + "end": 22599.3, + "probability": 0.8448 + }, + { + "start": 22600.34, + "end": 22604.3, + "probability": 0.975 + }, + { + "start": 22605.98, + "end": 22609.94, + "probability": 0.9587 + }, + { + "start": 22611.24, + "end": 22614.18, + "probability": 0.9798 + }, + { + "start": 22615.9, + "end": 22616.45, + "probability": 0.1537 + }, + { + "start": 22619.42, + "end": 22622.1, + "probability": 0.085 + }, + { + "start": 22624.02, + "end": 22627.56, + "probability": 0.526 + }, + { + "start": 22643.52, + "end": 22644.7, + "probability": 0.4778 + }, + { + "start": 22648.5, + "end": 22648.9, + "probability": 0.6749 + }, + { + "start": 22650.6, + "end": 22654.16, + "probability": 0.676 + }, + { + "start": 22655.98, + "end": 22658.98, + "probability": 0.9005 + }, + { + "start": 22660.12, + "end": 22661.06, + "probability": 0.943 + }, + { + "start": 22662.46, + "end": 22663.28, + "probability": 0.7674 + }, + { + "start": 22666.44, + "end": 22670.32, + "probability": 0.5004 + }, + { + "start": 22670.92, + "end": 22671.32, + "probability": 0.8173 + }, + { + "start": 22671.98, + "end": 22672.92, + "probability": 0.8387 + }, + { + "start": 22674.02, + "end": 22674.88, + "probability": 0.9663 + }, + { + "start": 22675.4, + "end": 22676.38, + "probability": 0.9433 + }, + { + "start": 22677.4, + "end": 22679.92, + "probability": 0.8874 + }, + { + "start": 22682.26, + "end": 22684.78, + "probability": 0.9581 + }, + { + "start": 22685.32, + "end": 22686.2, + "probability": 0.4813 + }, + { + "start": 22687.02, + "end": 22687.92, + "probability": 0.8454 + }, + { + "start": 22688.52, + "end": 22690.24, + "probability": 0.9817 + }, + { + "start": 22690.82, + "end": 22691.82, + "probability": 0.9096 + }, + { + "start": 22692.5, + "end": 22696.14, + "probability": 0.966 + }, + { + "start": 22697.4, + "end": 22700.22, + "probability": 0.5825 + }, + { + "start": 22703.56, + "end": 22704.92, + "probability": 0.963 + }, + { + "start": 22707.76, + "end": 22708.58, + "probability": 0.9226 + }, + { + "start": 22709.36, + "end": 22711.68, + "probability": 0.9194 + }, + { + "start": 22712.82, + "end": 22716.38, + "probability": 0.6007 + }, + { + "start": 22717.18, + "end": 22717.78, + "probability": 0.9849 + }, + { + "start": 22719.5, + "end": 22721.7, + "probability": 0.9264 + }, + { + "start": 22723.2, + "end": 22724.5, + "probability": 0.8022 + }, + { + "start": 22728.22, + "end": 22731.82, + "probability": 0.6704 + }, + { + "start": 22732.4, + "end": 22737.58, + "probability": 0.7048 + }, + { + "start": 22739.96, + "end": 22744.54, + "probability": 0.5631 + }, + { + "start": 22744.8, + "end": 22749.34, + "probability": 0.7085 + }, + { + "start": 22751.52, + "end": 22753.62, + "probability": 0.8093 + }, + { + "start": 22754.74, + "end": 22757.78, + "probability": 0.9634 + }, + { + "start": 22758.44, + "end": 22760.94, + "probability": 0.6834 + }, + { + "start": 22762.2, + "end": 22765.94, + "probability": 0.782 + }, + { + "start": 22766.86, + "end": 22767.3, + "probability": 0.9556 + }, + { + "start": 22772.8, + "end": 22774.1, + "probability": 0.5904 + }, + { + "start": 22775.16, + "end": 22779.56, + "probability": 0.8319 + }, + { + "start": 22780.22, + "end": 22781.06, + "probability": 0.9338 + }, + { + "start": 22782.52, + "end": 22783.04, + "probability": 0.9692 + }, + { + "start": 22784.28, + "end": 22785.04, + "probability": 0.8098 + }, + { + "start": 22788.96, + "end": 22792.92, + "probability": 0.9074 + }, + { + "start": 22795.36, + "end": 22797.04, + "probability": 0.8549 + }, + { + "start": 22798.52, + "end": 22803.18, + "probability": 0.7986 + }, + { + "start": 22804.16, + "end": 22807.5, + "probability": 0.658 + }, + { + "start": 22811.18, + "end": 22813.34, + "probability": 0.8347 + }, + { + "start": 22814.6, + "end": 22819.68, + "probability": 0.6623 + }, + { + "start": 22821.72, + "end": 22823.16, + "probability": 0.7462 + }, + { + "start": 22823.97, + "end": 22826.14, + "probability": 0.9438 + }, + { + "start": 22828.92, + "end": 22831.7, + "probability": 0.8576 + }, + { + "start": 22833.44, + "end": 22837.49, + "probability": 0.8926 + }, + { + "start": 22839.06, + "end": 22840.14, + "probability": 0.8965 + }, + { + "start": 22842.38, + "end": 22843.3, + "probability": 0.9647 + }, + { + "start": 22845.82, + "end": 22846.68, + "probability": 0.6826 + }, + { + "start": 22847.22, + "end": 22849.66, + "probability": 0.7941 + }, + { + "start": 22851.06, + "end": 22853.74, + "probability": 0.89 + }, + { + "start": 22855.5, + "end": 22856.12, + "probability": 0.5973 + }, + { + "start": 22860.94, + "end": 22861.56, + "probability": 0.8126 + }, + { + "start": 22864.84, + "end": 22869.36, + "probability": 0.6252 + }, + { + "start": 22870.66, + "end": 22872.36, + "probability": 0.9645 + }, + { + "start": 22873.08, + "end": 22875.7, + "probability": 0.6588 + }, + { + "start": 22877.7, + "end": 22882.9, + "probability": 0.5981 + }, + { + "start": 22883.9, + "end": 22885.12, + "probability": 0.8254 + }, + { + "start": 22885.96, + "end": 22887.2, + "probability": 0.7695 + }, + { + "start": 22888.66, + "end": 22889.3, + "probability": 0.9928 + }, + { + "start": 22891.4, + "end": 22896.34, + "probability": 0.6561 + }, + { + "start": 22897.5, + "end": 22903.8, + "probability": 0.8725 + }, + { + "start": 22905.3, + "end": 22908.96, + "probability": 0.9753 + }, + { + "start": 22909.84, + "end": 22912.86, + "probability": 0.9814 + }, + { + "start": 22913.84, + "end": 22914.4, + "probability": 0.9653 + }, + { + "start": 22917.22, + "end": 22918.32, + "probability": 0.6315 + }, + { + "start": 22918.88, + "end": 22921.44, + "probability": 0.4939 + }, + { + "start": 22927.52, + "end": 22933.16, + "probability": 0.6492 + }, + { + "start": 22936.42, + "end": 22940.66, + "probability": 0.2617 + }, + { + "start": 22942.54, + "end": 22942.92, + "probability": 0.7786 + }, + { + "start": 22943.86, + "end": 22945.06, + "probability": 0.6788 + }, + { + "start": 22948.56, + "end": 22952.6, + "probability": 0.6471 + }, + { + "start": 22953.32, + "end": 22954.22, + "probability": 0.3367 + }, + { + "start": 22954.3, + "end": 22955.54, + "probability": 0.6842 + }, + { + "start": 22956.74, + "end": 22958.04, + "probability": 0.5677 + }, + { + "start": 22958.58, + "end": 22958.9, + "probability": 0.0358 + }, + { + "start": 22960.46, + "end": 22960.92, + "probability": 0.8394 + }, + { + "start": 22963.92, + "end": 22964.92, + "probability": 0.2851 + }, + { + "start": 22966.0, + "end": 22974.26, + "probability": 0.7189 + }, + { + "start": 22975.34, + "end": 22977.44, + "probability": 0.9565 + }, + { + "start": 22980.86, + "end": 22983.86, + "probability": 0.8298 + }, + { + "start": 22984.54, + "end": 22986.3, + "probability": 0.6096 + }, + { + "start": 22987.24, + "end": 22987.76, + "probability": 0.9744 + }, + { + "start": 22990.24, + "end": 22995.8, + "probability": 0.7149 + }, + { + "start": 22997.84, + "end": 22998.48, + "probability": 0.8796 + }, + { + "start": 22999.8, + "end": 23000.7, + "probability": 0.602 + }, + { + "start": 23005.2, + "end": 23008.32, + "probability": 0.9057 + }, + { + "start": 23008.9, + "end": 23011.88, + "probability": 0.9565 + }, + { + "start": 23015.58, + "end": 23017.02, + "probability": 0.1444 + }, + { + "start": 23017.02, + "end": 23017.24, + "probability": 0.1088 + }, + { + "start": 23018.94, + "end": 23019.82, + "probability": 0.073 + }, + { + "start": 23019.82, + "end": 23020.24, + "probability": 0.7379 + }, + { + "start": 23022.4, + "end": 23022.74, + "probability": 0.0109 + }, + { + "start": 23031.96, + "end": 23033.22, + "probability": 0.4683 + }, + { + "start": 23033.84, + "end": 23039.26, + "probability": 0.696 + }, + { + "start": 23040.5, + "end": 23042.0, + "probability": 0.6101 + }, + { + "start": 23043.34, + "end": 23044.12, + "probability": 0.7015 + }, + { + "start": 23046.7, + "end": 23050.74, + "probability": 0.7259 + }, + { + "start": 23052.24, + "end": 23054.12, + "probability": 0.8812 + }, + { + "start": 23055.58, + "end": 23057.3, + "probability": 0.8158 + }, + { + "start": 23058.96, + "end": 23067.18, + "probability": 0.8538 + }, + { + "start": 23068.16, + "end": 23071.52, + "probability": 0.9328 + }, + { + "start": 23072.82, + "end": 23076.58, + "probability": 0.9322 + }, + { + "start": 23079.24, + "end": 23082.8, + "probability": 0.8415 + }, + { + "start": 23084.9, + "end": 23087.38, + "probability": 0.812 + }, + { + "start": 23088.9, + "end": 23090.68, + "probability": 0.6741 + }, + { + "start": 23091.28, + "end": 23091.76, + "probability": 0.9297 + }, + { + "start": 23094.02, + "end": 23094.9, + "probability": 0.7836 + }, + { + "start": 23096.98, + "end": 23099.92, + "probability": 0.7926 + }, + { + "start": 23102.76, + "end": 23105.74, + "probability": 0.7875 + }, + { + "start": 23106.34, + "end": 23111.82, + "probability": 0.9602 + }, + { + "start": 23114.02, + "end": 23120.74, + "probability": 0.6931 + }, + { + "start": 23122.16, + "end": 23124.38, + "probability": 0.7207 + }, + { + "start": 23134.1, + "end": 23135.18, + "probability": 0.3663 + }, + { + "start": 23135.74, + "end": 23136.92, + "probability": 0.5161 + }, + { + "start": 23137.84, + "end": 23138.26, + "probability": 0.896 + }, + { + "start": 23142.96, + "end": 23144.44, + "probability": 0.6472 + }, + { + "start": 23145.04, + "end": 23146.12, + "probability": 0.4227 + }, + { + "start": 23147.48, + "end": 23149.44, + "probability": 0.7906 + }, + { + "start": 23151.16, + "end": 23153.06, + "probability": 0.9377 + }, + { + "start": 23154.68, + "end": 23156.44, + "probability": 0.9363 + }, + { + "start": 23158.12, + "end": 23160.36, + "probability": 0.9352 + }, + { + "start": 23162.14, + "end": 23165.58, + "probability": 0.7174 + }, + { + "start": 23166.24, + "end": 23166.66, + "probability": 0.8154 + }, + { + "start": 23171.0, + "end": 23172.04, + "probability": 0.4919 + }, + { + "start": 23174.1, + "end": 23176.82, + "probability": 0.8738 + }, + { + "start": 23177.74, + "end": 23179.72, + "probability": 0.9679 + }, + { + "start": 23181.1, + "end": 23183.1, + "probability": 0.8027 + }, + { + "start": 23185.78, + "end": 23190.04, + "probability": 0.9664 + }, + { + "start": 23190.78, + "end": 23192.44, + "probability": 0.9066 + }, + { + "start": 23192.5, + "end": 23195.38, + "probability": 0.7254 + }, + { + "start": 23196.78, + "end": 23200.72, + "probability": 0.5008 + }, + { + "start": 23202.14, + "end": 23205.8, + "probability": 0.7106 + }, + { + "start": 23211.82, + "end": 23212.28, + "probability": 0.7838 + }, + { + "start": 23215.14, + "end": 23217.98, + "probability": 0.6806 + }, + { + "start": 23220.48, + "end": 23220.9, + "probability": 0.6936 + }, + { + "start": 23224.66, + "end": 23225.94, + "probability": 0.6685 + }, + { + "start": 23228.54, + "end": 23229.82, + "probability": 0.8394 + }, + { + "start": 23230.76, + "end": 23231.5, + "probability": 0.7187 + }, + { + "start": 23232.08, + "end": 23233.38, + "probability": 0.4423 + }, + { + "start": 23236.94, + "end": 23240.2, + "probability": 0.3875 + }, + { + "start": 23242.18, + "end": 23245.08, + "probability": 0.931 + }, + { + "start": 23246.51, + "end": 23247.26, + "probability": 0.567 + }, + { + "start": 23249.5, + "end": 23250.22, + "probability": 0.6308 + }, + { + "start": 23251.18, + "end": 23256.78, + "probability": 0.5664 + }, + { + "start": 23258.08, + "end": 23258.76, + "probability": 0.9704 + }, + { + "start": 23262.12, + "end": 23262.9, + "probability": 0.5404 + }, + { + "start": 23264.86, + "end": 23268.2, + "probability": 0.5469 + }, + { + "start": 23268.74, + "end": 23270.56, + "probability": 0.7152 + }, + { + "start": 23273.16, + "end": 23273.9, + "probability": 0.6392 + }, + { + "start": 23275.56, + "end": 23276.18, + "probability": 0.984 + }, + { + "start": 23278.3, + "end": 23282.1, + "probability": 0.8641 + }, + { + "start": 23283.84, + "end": 23285.78, + "probability": 0.9014 + }, + { + "start": 23287.68, + "end": 23289.34, + "probability": 0.9159 + }, + { + "start": 23291.16, + "end": 23291.8, + "probability": 0.7297 + }, + { + "start": 23293.1, + "end": 23295.36, + "probability": 0.5597 + }, + { + "start": 23295.58, + "end": 23296.37, + "probability": 0.6554 + }, + { + "start": 23297.5, + "end": 23299.8, + "probability": 0.9188 + }, + { + "start": 23300.3, + "end": 23302.08, + "probability": 0.3406 + }, + { + "start": 23303.26, + "end": 23303.46, + "probability": 0.4829 + }, + { + "start": 23304.0, + "end": 23304.0, + "probability": 0.0244 + }, + { + "start": 23304.0, + "end": 23304.0, + "probability": 0.0266 + }, + { + "start": 23304.0, + "end": 23305.26, + "probability": 0.449 + }, + { + "start": 23305.44, + "end": 23306.56, + "probability": 0.3168 + }, + { + "start": 23307.72, + "end": 23308.58, + "probability": 0.202 + }, + { + "start": 23312.9, + "end": 23315.38, + "probability": 0.1862 + }, + { + "start": 23316.46, + "end": 23319.82, + "probability": 0.0401 + }, + { + "start": 23322.76, + "end": 23322.78, + "probability": 0.0134 + }, + { + "start": 23374.64, + "end": 23374.64, + "probability": 0.0126 + }, + { + "start": 23383.36, + "end": 23388.16, + "probability": 0.013 + }, + { + "start": 23388.16, + "end": 23388.62, + "probability": 0.1368 + }, + { + "start": 23394.44, + "end": 23396.96, + "probability": 0.0323 + }, + { + "start": 23400.64, + "end": 23400.68, + "probability": 0.074 + }, + { + "start": 23430.38, + "end": 23432.74, + "probability": 0.4032 + }, + { + "start": 23432.88, + "end": 23437.25, + "probability": 0.7059 + }, + { + "start": 23437.8, + "end": 23442.62, + "probability": 0.9725 + }, + { + "start": 23444.04, + "end": 23446.54, + "probability": 0.8558 + }, + { + "start": 23447.5, + "end": 23447.7, + "probability": 0.0044 + }, + { + "start": 23447.7, + "end": 23449.22, + "probability": 0.6535 + }, + { + "start": 23450.16, + "end": 23452.13, + "probability": 0.7991 + }, + { + "start": 23452.8, + "end": 23454.46, + "probability": 0.6591 + }, + { + "start": 23454.46, + "end": 23456.88, + "probability": 0.7759 + }, + { + "start": 23457.3, + "end": 23460.62, + "probability": 0.7363 + }, + { + "start": 23461.44, + "end": 23463.38, + "probability": 0.2659 + }, + { + "start": 23486.56, + "end": 23487.78, + "probability": 0.7845 + }, + { + "start": 23488.48, + "end": 23492.66, + "probability": 0.9338 + }, + { + "start": 23492.76, + "end": 23494.42, + "probability": 0.9619 + }, + { + "start": 23494.8, + "end": 23498.92, + "probability": 0.7737 + }, + { + "start": 23499.4, + "end": 23499.8, + "probability": 0.1929 + }, + { + "start": 23500.46, + "end": 23500.98, + "probability": 0.0515 + }, + { + "start": 23501.8, + "end": 23502.74, + "probability": 0.5778 + }, + { + "start": 23507.04, + "end": 23508.12, + "probability": 0.9832 + }, + { + "start": 23508.16, + "end": 23508.64, + "probability": 0.8992 + }, + { + "start": 23508.7, + "end": 23509.08, + "probability": 0.7902 + }, + { + "start": 23509.24, + "end": 23510.18, + "probability": 0.7398 + }, + { + "start": 23510.9, + "end": 23512.42, + "probability": 0.1721 + }, + { + "start": 23512.84, + "end": 23512.84, + "probability": 0.1173 + }, + { + "start": 23512.84, + "end": 23514.04, + "probability": 0.4105 + }, + { + "start": 23514.56, + "end": 23515.84, + "probability": 0.0894 + }, + { + "start": 23517.04, + "end": 23520.7, + "probability": 0.4411 + }, + { + "start": 23522.3, + "end": 23522.56, + "probability": 0.4888 + }, + { + "start": 23522.56, + "end": 23522.56, + "probability": 0.4219 + }, + { + "start": 23522.98, + "end": 23523.26, + "probability": 0.0082 + }, + { + "start": 23529.32, + "end": 23529.68, + "probability": 0.3341 + }, + { + "start": 23529.68, + "end": 23533.14, + "probability": 0.7277 + }, + { + "start": 23533.82, + "end": 23535.7, + "probability": 0.9783 + }, + { + "start": 23535.8, + "end": 23536.41, + "probability": 0.5391 + }, + { + "start": 23537.02, + "end": 23540.26, + "probability": 0.8465 + }, + { + "start": 23540.28, + "end": 23540.82, + "probability": 0.4514 + }, + { + "start": 23541.08, + "end": 23542.86, + "probability": 0.4643 + }, + { + "start": 23542.94, + "end": 23543.6, + "probability": 0.7178 + }, + { + "start": 23544.0, + "end": 23545.14, + "probability": 0.5954 + }, + { + "start": 23545.18, + "end": 23545.53, + "probability": 0.5308 + }, + { + "start": 23545.86, + "end": 23549.12, + "probability": 0.6326 + }, + { + "start": 23550.14, + "end": 23551.82, + "probability": 0.6648 + }, + { + "start": 23552.16, + "end": 23552.8, + "probability": 0.5234 + }, + { + "start": 23556.02, + "end": 23556.94, + "probability": 0.4684 + }, + { + "start": 23557.44, + "end": 23558.24, + "probability": 0.3621 + }, + { + "start": 23559.54, + "end": 23560.32, + "probability": 0.4392 + }, + { + "start": 23560.4, + "end": 23560.49, + "probability": 0.1855 + }, + { + "start": 23561.36, + "end": 23562.7, + "probability": 0.4439 + }, + { + "start": 23563.22, + "end": 23566.56, + "probability": 0.0077 + }, + { + "start": 23566.56, + "end": 23566.56, + "probability": 0.086 + }, + { + "start": 23568.62, + "end": 23573.02, + "probability": 0.2002 + }, + { + "start": 23573.44, + "end": 23574.6, + "probability": 0.2022 + }, + { + "start": 23574.86, + "end": 23574.86, + "probability": 0.5263 + }, + { + "start": 23574.86, + "end": 23577.26, + "probability": 0.2325 + }, + { + "start": 23599.8, + "end": 23601.06, + "probability": 0.0172 + }, + { + "start": 23602.46, + "end": 23603.24, + "probability": 0.8771 + }, + { + "start": 23618.22, + "end": 23618.82, + "probability": 0.4213 + }, + { + "start": 23635.2, + "end": 23635.2, + "probability": 0.0004 + }, + { + "start": 23635.2, + "end": 23635.2, + "probability": 0.1151 + }, + { + "start": 23635.2, + "end": 23636.14, + "probability": 0.5506 + }, + { + "start": 23636.58, + "end": 23640.62, + "probability": 0.9661 + }, + { + "start": 23641.8, + "end": 23643.26, + "probability": 0.9836 + }, + { + "start": 23643.84, + "end": 23645.54, + "probability": 0.8878 + }, + { + "start": 23646.36, + "end": 23647.56, + "probability": 0.5133 + }, + { + "start": 23648.34, + "end": 23651.86, + "probability": 0.9847 + }, + { + "start": 23651.94, + "end": 23654.28, + "probability": 0.8382 + }, + { + "start": 23654.88, + "end": 23658.12, + "probability": 0.8457 + }, + { + "start": 23658.92, + "end": 23660.02, + "probability": 0.6407 + }, + { + "start": 23660.52, + "end": 23663.36, + "probability": 0.997 + }, + { + "start": 23665.0, + "end": 23668.18, + "probability": 0.8266 + }, + { + "start": 23668.26, + "end": 23668.8, + "probability": 0.7985 + }, + { + "start": 23668.96, + "end": 23669.54, + "probability": 0.8858 + }, + { + "start": 23669.64, + "end": 23671.42, + "probability": 0.7457 + }, + { + "start": 23671.42, + "end": 23671.8, + "probability": 0.5842 + }, + { + "start": 23672.78, + "end": 23673.96, + "probability": 0.9565 + }, + { + "start": 23674.66, + "end": 23675.92, + "probability": 0.7739 + }, + { + "start": 23676.62, + "end": 23678.94, + "probability": 0.9858 + }, + { + "start": 23679.4, + "end": 23680.98, + "probability": 0.9407 + }, + { + "start": 23682.02, + "end": 23684.54, + "probability": 0.4698 + }, + { + "start": 23686.36, + "end": 23687.16, + "probability": 0.887 + }, + { + "start": 23687.34, + "end": 23689.14, + "probability": 0.9377 + }, + { + "start": 23689.66, + "end": 23692.28, + "probability": 0.9011 + }, + { + "start": 23692.4, + "end": 23694.72, + "probability": 0.8595 + }, + { + "start": 23694.98, + "end": 23695.59, + "probability": 0.6295 + }, + { + "start": 23696.32, + "end": 23697.2, + "probability": 0.4517 + }, + { + "start": 23698.01, + "end": 23699.56, + "probability": 0.6039 + }, + { + "start": 23699.6, + "end": 23699.86, + "probability": 0.7625 + }, + { + "start": 23700.18, + "end": 23700.94, + "probability": 0.8347 + }, + { + "start": 23701.16, + "end": 23701.61, + "probability": 0.8135 + }, + { + "start": 23702.02, + "end": 23703.18, + "probability": 0.7378 + }, + { + "start": 23703.46, + "end": 23705.64, + "probability": 0.8271 + }, + { + "start": 23706.3, + "end": 23706.7, + "probability": 0.5196 + }, + { + "start": 23706.78, + "end": 23710.22, + "probability": 0.7288 + }, + { + "start": 23710.22, + "end": 23713.02, + "probability": 0.9878 + }, + { + "start": 23713.08, + "end": 23716.68, + "probability": 0.9285 + }, + { + "start": 23717.74, + "end": 23719.06, + "probability": 0.9056 + }, + { + "start": 23719.16, + "end": 23720.38, + "probability": 0.959 + }, + { + "start": 23720.48, + "end": 23722.04, + "probability": 0.8571 + }, + { + "start": 23722.14, + "end": 23723.38, + "probability": 0.8663 + }, + { + "start": 23724.3, + "end": 23725.36, + "probability": 0.8049 + }, + { + "start": 23726.0, + "end": 23726.88, + "probability": 0.6347 + }, + { + "start": 23727.6, + "end": 23730.0, + "probability": 0.8226 + }, + { + "start": 23730.34, + "end": 23731.64, + "probability": 0.7745 + }, + { + "start": 23731.72, + "end": 23732.58, + "probability": 0.8888 + }, + { + "start": 23732.68, + "end": 23735.44, + "probability": 0.8384 + }, + { + "start": 23735.9, + "end": 23739.04, + "probability": 0.9346 + }, + { + "start": 23739.56, + "end": 23744.18, + "probability": 0.9879 + }, + { + "start": 23744.18, + "end": 23748.06, + "probability": 0.9546 + }, + { + "start": 23748.6, + "end": 23749.94, + "probability": 0.7226 + }, + { + "start": 23750.08, + "end": 23752.22, + "probability": 0.8999 + }, + { + "start": 23752.7, + "end": 23757.04, + "probability": 0.8663 + }, + { + "start": 23757.48, + "end": 23761.46, + "probability": 0.9524 + }, + { + "start": 23762.0, + "end": 23764.28, + "probability": 0.9006 + }, + { + "start": 23764.6, + "end": 23768.5, + "probability": 0.8058 + }, + { + "start": 23769.22, + "end": 23770.3, + "probability": 0.902 + }, + { + "start": 23770.8, + "end": 23772.74, + "probability": 0.8628 + }, + { + "start": 23773.2, + "end": 23775.02, + "probability": 0.9397 + }, + { + "start": 23775.08, + "end": 23775.62, + "probability": 0.9077 + }, + { + "start": 23776.36, + "end": 23777.8, + "probability": 0.9855 + }, + { + "start": 23778.68, + "end": 23779.64, + "probability": 0.371 + }, + { + "start": 23779.8, + "end": 23780.6, + "probability": 0.9333 + }, + { + "start": 23782.24, + "end": 23783.59, + "probability": 0.9688 + }, + { + "start": 23784.86, + "end": 23788.04, + "probability": 0.544 + }, + { + "start": 23788.26, + "end": 23789.5, + "probability": 0.7724 + }, + { + "start": 23790.58, + "end": 23791.5, + "probability": 0.8243 + }, + { + "start": 23792.02, + "end": 23792.96, + "probability": 0.7348 + }, + { + "start": 23793.7, + "end": 23794.44, + "probability": 0.642 + }, + { + "start": 23797.7, + "end": 23800.9, + "probability": 0.8337 + }, + { + "start": 23801.48, + "end": 23804.24, + "probability": 0.7547 + }, + { + "start": 23804.82, + "end": 23809.94, + "probability": 0.2633 + }, + { + "start": 23811.48, + "end": 23814.74, + "probability": 0.198 + }, + { + "start": 23816.14, + "end": 23818.98, + "probability": 0.0615 + }, + { + "start": 23825.74, + "end": 23826.9, + "probability": 0.1866 + }, + { + "start": 23838.46, + "end": 23839.41, + "probability": 0.0022 + }, + { + "start": 23869.12, + "end": 23869.36, + "probability": 0.1483 + }, + { + "start": 23869.36, + "end": 23869.5, + "probability": 0.2322 + }, + { + "start": 23869.5, + "end": 23869.5, + "probability": 0.0224 + }, + { + "start": 23869.5, + "end": 23870.7, + "probability": 0.2852 + }, + { + "start": 23870.92, + "end": 23873.52, + "probability": 0.9597 + }, + { + "start": 23874.4, + "end": 23877.88, + "probability": 0.9858 + }, + { + "start": 23878.06, + "end": 23881.24, + "probability": 0.3779 + }, + { + "start": 23881.56, + "end": 23882.82, + "probability": 0.5753 + }, + { + "start": 23883.28, + "end": 23884.5, + "probability": 0.5527 + }, + { + "start": 23885.7, + "end": 23887.76, + "probability": 0.8276 + }, + { + "start": 23888.8, + "end": 23893.36, + "probability": 0.9851 + }, + { + "start": 23894.14, + "end": 23894.8, + "probability": 0.945 + }, + { + "start": 23895.38, + "end": 23897.66, + "probability": 0.9591 + }, + { + "start": 23898.28, + "end": 23899.76, + "probability": 0.7253 + }, + { + "start": 23900.58, + "end": 23901.34, + "probability": 0.6311 + }, + { + "start": 23901.4, + "end": 23902.78, + "probability": 0.7438 + }, + { + "start": 23902.9, + "end": 23905.08, + "probability": 0.9128 + }, + { + "start": 23914.1, + "end": 23914.58, + "probability": 0.4869 + }, + { + "start": 23915.1, + "end": 23921.98, + "probability": 0.9546 + }, + { + "start": 23922.82, + "end": 23925.88, + "probability": 0.7709 + }, + { + "start": 23926.16, + "end": 23926.3, + "probability": 0.052 + }, + { + "start": 23926.46, + "end": 23927.68, + "probability": 0.7025 + }, + { + "start": 23928.62, + "end": 23935.04, + "probability": 0.9918 + }, + { + "start": 23936.06, + "end": 23940.06, + "probability": 0.9971 + }, + { + "start": 23940.5, + "end": 23945.54, + "probability": 0.9875 + }, + { + "start": 23945.62, + "end": 23949.3, + "probability": 0.9995 + }, + { + "start": 23949.84, + "end": 23950.44, + "probability": 0.7469 + }, + { + "start": 23950.62, + "end": 23952.84, + "probability": 0.7603 + }, + { + "start": 23954.78, + "end": 23958.12, + "probability": 0.9898 + }, + { + "start": 23958.12, + "end": 23961.2, + "probability": 0.9979 + }, + { + "start": 23961.82, + "end": 23964.64, + "probability": 0.8562 + }, + { + "start": 23965.22, + "end": 23969.86, + "probability": 0.7896 + }, + { + "start": 23974.42, + "end": 23977.6, + "probability": 0.9929 + }, + { + "start": 23978.54, + "end": 23982.02, + "probability": 0.996 + }, + { + "start": 23982.04, + "end": 23986.96, + "probability": 0.9863 + }, + { + "start": 23987.6, + "end": 23991.86, + "probability": 0.9739 + }, + { + "start": 23992.34, + "end": 23996.9, + "probability": 0.9966 + }, + { + "start": 23998.14, + "end": 24000.8, + "probability": 0.7374 + }, + { + "start": 24001.3, + "end": 24001.74, + "probability": 0.3113 + }, + { + "start": 24001.74, + "end": 24004.44, + "probability": 0.7786 + }, + { + "start": 24005.38, + "end": 24008.96, + "probability": 0.9978 + }, + { + "start": 24009.56, + "end": 24013.12, + "probability": 0.9966 + }, + { + "start": 24013.47, + "end": 24017.58, + "probability": 0.999 + }, + { + "start": 24019.06, + "end": 24024.42, + "probability": 0.8361 + }, + { + "start": 24025.14, + "end": 24028.42, + "probability": 0.9811 + }, + { + "start": 24028.42, + "end": 24032.68, + "probability": 0.9504 + }, + { + "start": 24033.42, + "end": 24037.98, + "probability": 0.9937 + }, + { + "start": 24039.32, + "end": 24040.12, + "probability": 0.7481 + }, + { + "start": 24040.66, + "end": 24042.32, + "probability": 0.4404 + }, + { + "start": 24042.36, + "end": 24048.3, + "probability": 0.9875 + }, + { + "start": 24049.26, + "end": 24050.0, + "probability": 0.7664 + }, + { + "start": 24050.26, + "end": 24055.88, + "probability": 0.783 + }, + { + "start": 24055.88, + "end": 24061.76, + "probability": 0.8956 + }, + { + "start": 24073.98, + "end": 24076.14, + "probability": 0.5619 + }, + { + "start": 24076.44, + "end": 24077.5, + "probability": 0.4551 + }, + { + "start": 24097.24, + "end": 24098.72, + "probability": 0.7256 + }, + { + "start": 24098.72, + "end": 24099.0, + "probability": 0.5444 + }, + { + "start": 24104.58, + "end": 24106.36, + "probability": 0.6766 + }, + { + "start": 24107.38, + "end": 24110.74, + "probability": 0.7819 + }, + { + "start": 24110.74, + "end": 24111.66, + "probability": 0.8323 + }, + { + "start": 24112.86, + "end": 24113.68, + "probability": 0.9717 + }, + { + "start": 24114.14, + "end": 24119.08, + "probability": 0.8237 + }, + { + "start": 24119.86, + "end": 24121.82, + "probability": 0.9316 + }, + { + "start": 24122.0, + "end": 24122.82, + "probability": 0.5576 + }, + { + "start": 24122.88, + "end": 24125.18, + "probability": 0.9271 + }, + { + "start": 24125.4, + "end": 24126.04, + "probability": 0.9083 + }, + { + "start": 24126.14, + "end": 24126.34, + "probability": 0.4417 + }, + { + "start": 24126.36, + "end": 24128.94, + "probability": 0.9576 + }, + { + "start": 24128.98, + "end": 24133.58, + "probability": 0.8917 + }, + { + "start": 24134.18, + "end": 24137.34, + "probability": 0.6553 + }, + { + "start": 24138.02, + "end": 24140.58, + "probability": 0.9947 + }, + { + "start": 24140.98, + "end": 24142.48, + "probability": 0.9568 + }, + { + "start": 24142.7, + "end": 24146.88, + "probability": 0.9122 + }, + { + "start": 24146.9, + "end": 24151.22, + "probability": 0.9822 + }, + { + "start": 24151.92, + "end": 24155.54, + "probability": 0.3326 + }, + { + "start": 24155.7, + "end": 24156.11, + "probability": 0.7314 + }, + { + "start": 24156.42, + "end": 24156.96, + "probability": 0.5729 + }, + { + "start": 24157.52, + "end": 24160.3, + "probability": 0.8895 + }, + { + "start": 24160.66, + "end": 24162.62, + "probability": 0.8111 + }, + { + "start": 24162.9, + "end": 24168.74, + "probability": 0.9775 + }, + { + "start": 24168.92, + "end": 24170.64, + "probability": 0.7316 + }, + { + "start": 24171.18, + "end": 24171.5, + "probability": 0.6535 + }, + { + "start": 24171.62, + "end": 24172.42, + "probability": 0.6888 + }, + { + "start": 24172.86, + "end": 24176.06, + "probability": 0.9701 + }, + { + "start": 24176.64, + "end": 24179.06, + "probability": 0.7072 + }, + { + "start": 24179.06, + "end": 24180.68, + "probability": 0.4132 + }, + { + "start": 24181.56, + "end": 24184.72, + "probability": 0.6177 + }, + { + "start": 24184.88, + "end": 24184.88, + "probability": 0.3663 + }, + { + "start": 24184.88, + "end": 24185.02, + "probability": 0.6433 + }, + { + "start": 24185.12, + "end": 24188.1, + "probability": 0.9578 + }, + { + "start": 24188.14, + "end": 24189.56, + "probability": 0.707 + }, + { + "start": 24190.24, + "end": 24195.18, + "probability": 0.5076 + }, + { + "start": 24195.34, + "end": 24200.51, + "probability": 0.9588 + }, + { + "start": 24201.02, + "end": 24201.6, + "probability": 0.8966 + }, + { + "start": 24202.66, + "end": 24205.06, + "probability": 0.8811 + }, + { + "start": 24205.62, + "end": 24206.75, + "probability": 0.5964 + }, + { + "start": 24206.92, + "end": 24208.06, + "probability": 0.7452 + }, + { + "start": 24208.58, + "end": 24211.56, + "probability": 0.8028 + }, + { + "start": 24211.96, + "end": 24213.78, + "probability": 0.9502 + }, + { + "start": 24214.2, + "end": 24217.14, + "probability": 0.8824 + }, + { + "start": 24218.04, + "end": 24220.58, + "probability": 0.8804 + }, + { + "start": 24220.58, + "end": 24224.16, + "probability": 0.7188 + }, + { + "start": 24224.46, + "end": 24225.27, + "probability": 0.0703 + }, + { + "start": 24226.96, + "end": 24227.14, + "probability": 0.0004 + }, + { + "start": 24227.96, + "end": 24228.5, + "probability": 0.0399 + }, + { + "start": 24228.5, + "end": 24228.5, + "probability": 0.2403 + }, + { + "start": 24228.5, + "end": 24228.66, + "probability": 0.018 + }, + { + "start": 24231.66, + "end": 24232.4, + "probability": 0.7222 + }, + { + "start": 24233.34, + "end": 24234.0, + "probability": 0.97 + }, + { + "start": 24234.72, + "end": 24235.9, + "probability": 0.8157 + }, + { + "start": 24236.48, + "end": 24240.2, + "probability": 0.7017 + }, + { + "start": 24241.45, + "end": 24243.76, + "probability": 0.9392 + }, + { + "start": 24245.72, + "end": 24248.16, + "probability": 0.8967 + }, + { + "start": 24249.12, + "end": 24249.88, + "probability": 0.9214 + }, + { + "start": 24252.76, + "end": 24253.3, + "probability": 0.9844 + }, + { + "start": 24254.94, + "end": 24255.98, + "probability": 0.5399 + }, + { + "start": 24257.52, + "end": 24257.73, + "probability": 0.1588 + }, + { + "start": 24259.08, + "end": 24259.34, + "probability": 0.5235 + }, + { + "start": 24263.78, + "end": 24264.8, + "probability": 0.4769 + }, + { + "start": 24268.32, + "end": 24268.68, + "probability": 0.9163 + }, + { + "start": 24270.08, + "end": 24270.94, + "probability": 0.9262 + }, + { + "start": 24271.76, + "end": 24273.74, + "probability": 0.896 + }, + { + "start": 24277.2, + "end": 24277.9, + "probability": 0.7988 + }, + { + "start": 24279.06, + "end": 24280.0, + "probability": 0.9076 + }, + { + "start": 24282.66, + "end": 24284.64, + "probability": 0.9878 + }, + { + "start": 24285.26, + "end": 24286.36, + "probability": 0.8826 + }, + { + "start": 24287.5, + "end": 24287.9, + "probability": 0.9574 + }, + { + "start": 24288.98, + "end": 24290.82, + "probability": 0.9446 + }, + { + "start": 24291.88, + "end": 24292.52, + "probability": 0.6318 + }, + { + "start": 24293.54, + "end": 24293.86, + "probability": 0.9124 + }, + { + "start": 24295.16, + "end": 24295.98, + "probability": 0.8108 + }, + { + "start": 24296.76, + "end": 24297.24, + "probability": 0.9648 + }, + { + "start": 24298.22, + "end": 24301.74, + "probability": 0.7401 + }, + { + "start": 24302.42, + "end": 24303.18, + "probability": 0.716 + }, + { + "start": 24303.74, + "end": 24305.66, + "probability": 0.7773 + }, + { + "start": 24307.66, + "end": 24309.26, + "probability": 0.5217 + }, + { + "start": 24309.68, + "end": 24309.68, + "probability": 0.227 + }, + { + "start": 24309.68, + "end": 24309.7, + "probability": 0.5547 + }, + { + "start": 24309.7, + "end": 24310.82, + "probability": 0.1333 + }, + { + "start": 24311.34, + "end": 24311.73, + "probability": 0.2074 + }, + { + "start": 24314.48, + "end": 24314.7, + "probability": 0.1018 + }, + { + "start": 24316.3, + "end": 24318.24, + "probability": 0.0657 + }, + { + "start": 24320.78, + "end": 24321.52, + "probability": 0.4367 + }, + { + "start": 24321.52, + "end": 24323.4, + "probability": 0.4487 + }, + { + "start": 24323.62, + "end": 24325.44, + "probability": 0.342 + }, + { + "start": 24325.82, + "end": 24327.12, + "probability": 0.3073 + }, + { + "start": 24328.06, + "end": 24328.6, + "probability": 0.0878 + }, + { + "start": 24329.32, + "end": 24331.62, + "probability": 0.8978 + }, + { + "start": 24331.7, + "end": 24332.48, + "probability": 0.2523 + }, + { + "start": 24333.62, + "end": 24334.1, + "probability": 0.0933 + }, + { + "start": 24334.54, + "end": 24335.3, + "probability": 0.8289 + }, + { + "start": 24335.46, + "end": 24336.22, + "probability": 0.5566 + }, + { + "start": 24336.42, + "end": 24336.96, + "probability": 0.322 + }, + { + "start": 24337.06, + "end": 24337.98, + "probability": 0.9012 + }, + { + "start": 24338.66, + "end": 24340.24, + "probability": 0.0127 + }, + { + "start": 24341.26, + "end": 24344.45, + "probability": 0.2712 + }, + { + "start": 24347.1, + "end": 24348.36, + "probability": 0.2716 + }, + { + "start": 24350.76, + "end": 24353.14, + "probability": 0.4657 + }, + { + "start": 24353.3, + "end": 24353.74, + "probability": 0.7714 + }, + { + "start": 24353.98, + "end": 24354.36, + "probability": 0.4161 + }, + { + "start": 24354.62, + "end": 24354.92, + "probability": 0.2293 + }, + { + "start": 24356.12, + "end": 24356.6, + "probability": 0.811 + }, + { + "start": 24357.5, + "end": 24361.08, + "probability": 0.9733 + }, + { + "start": 24361.78, + "end": 24362.12, + "probability": 0.683 + }, + { + "start": 24362.76, + "end": 24364.08, + "probability": 0.7697 + }, + { + "start": 24364.64, + "end": 24369.46, + "probability": 0.9941 + }, + { + "start": 24369.98, + "end": 24370.84, + "probability": 0.8472 + }, + { + "start": 24374.46, + "end": 24377.4, + "probability": 0.6647 + }, + { + "start": 24377.92, + "end": 24378.78, + "probability": 0.9395 + }, + { + "start": 24378.9, + "end": 24380.05, + "probability": 0.6842 + }, + { + "start": 24380.66, + "end": 24381.58, + "probability": 0.6536 + }, + { + "start": 24382.2, + "end": 24383.52, + "probability": 0.9351 + }, + { + "start": 24384.06, + "end": 24384.34, + "probability": 0.5179 + }, + { + "start": 24386.98, + "end": 24388.6, + "probability": 0.6694 + }, + { + "start": 24390.2, + "end": 24393.74, + "probability": 0.3906 + }, + { + "start": 24394.08, + "end": 24395.73, + "probability": 0.623 + }, + { + "start": 24396.12, + "end": 24396.98, + "probability": 0.879 + }, + { + "start": 24398.2, + "end": 24399.72, + "probability": 0.8994 + }, + { + "start": 24400.48, + "end": 24401.18, + "probability": 0.815 + }, + { + "start": 24401.64, + "end": 24401.96, + "probability": 0.8498 + }, + { + "start": 24405.81, + "end": 24406.46, + "probability": 0.1555 + }, + { + "start": 24406.46, + "end": 24406.72, + "probability": 0.0192 + }, + { + "start": 24407.62, + "end": 24407.96, + "probability": 0.7835 + }, + { + "start": 24408.94, + "end": 24409.86, + "probability": 0.7581 + }, + { + "start": 24411.3, + "end": 24411.62, + "probability": 0.9632 + }, + { + "start": 24412.68, + "end": 24413.76, + "probability": 0.741 + }, + { + "start": 24415.26, + "end": 24418.18, + "probability": 0.8508 + }, + { + "start": 24421.64, + "end": 24422.02, + "probability": 0.7927 + }, + { + "start": 24424.08, + "end": 24424.82, + "probability": 0.8281 + }, + { + "start": 24425.72, + "end": 24426.36, + "probability": 0.8497 + }, + { + "start": 24427.72, + "end": 24429.38, + "probability": 0.6337 + }, + { + "start": 24432.88, + "end": 24433.2, + "probability": 0.6848 + }, + { + "start": 24434.64, + "end": 24435.42, + "probability": 0.6107 + }, + { + "start": 24436.34, + "end": 24437.16, + "probability": 0.8437 + }, + { + "start": 24437.74, + "end": 24438.6, + "probability": 0.8459 + }, + { + "start": 24439.44, + "end": 24439.9, + "probability": 0.686 + }, + { + "start": 24440.88, + "end": 24441.8, + "probability": 0.9094 + }, + { + "start": 24442.68, + "end": 24444.82, + "probability": 0.7993 + }, + { + "start": 24448.36, + "end": 24449.02, + "probability": 0.7684 + }, + { + "start": 24456.3, + "end": 24457.48, + "probability": 0.5454 + }, + { + "start": 24458.2, + "end": 24458.58, + "probability": 0.7115 + }, + { + "start": 24459.72, + "end": 24460.64, + "probability": 0.6831 + }, + { + "start": 24461.2, + "end": 24462.42, + "probability": 0.5651 + }, + { + "start": 24466.2, + "end": 24466.42, + "probability": 0.3726 + }, + { + "start": 24471.9, + "end": 24473.52, + "probability": 0.4914 + }, + { + "start": 24474.68, + "end": 24475.7, + "probability": 0.5347 + }, + { + "start": 24477.86, + "end": 24478.6, + "probability": 0.8172 + }, + { + "start": 24479.3, + "end": 24480.16, + "probability": 0.8907 + }, + { + "start": 24481.02, + "end": 24482.88, + "probability": 0.9347 + }, + { + "start": 24484.14, + "end": 24484.58, + "probability": 0.9734 + }, + { + "start": 24485.7, + "end": 24486.72, + "probability": 0.8957 + }, + { + "start": 24488.44, + "end": 24491.4, + "probability": 0.9117 + }, + { + "start": 24493.02, + "end": 24494.5, + "probability": 0.9796 + }, + { + "start": 24495.18, + "end": 24496.6, + "probability": 0.6849 + }, + { + "start": 24497.42, + "end": 24497.86, + "probability": 0.9749 + }, + { + "start": 24499.14, + "end": 24499.76, + "probability": 0.7095 + }, + { + "start": 24500.68, + "end": 24501.2, + "probability": 0.6463 + }, + { + "start": 24501.84, + "end": 24504.86, + "probability": 0.4841 + }, + { + "start": 24506.12, + "end": 24506.42, + "probability": 0.61 + }, + { + "start": 24507.88, + "end": 24508.74, + "probability": 0.2392 + }, + { + "start": 24511.68, + "end": 24512.16, + "probability": 0.9248 + }, + { + "start": 24513.64, + "end": 24514.54, + "probability": 0.7886 + }, + { + "start": 24515.34, + "end": 24518.34, + "probability": 0.8396 + }, + { + "start": 24519.14, + "end": 24519.62, + "probability": 0.9714 + }, + { + "start": 24520.42, + "end": 24521.76, + "probability": 0.5836 + }, + { + "start": 24524.56, + "end": 24524.94, + "probability": 0.9763 + }, + { + "start": 24526.74, + "end": 24528.26, + "probability": 0.7723 + }, + { + "start": 24530.06, + "end": 24530.98, + "probability": 0.985 + }, + { + "start": 24532.1, + "end": 24532.96, + "probability": 0.4417 + }, + { + "start": 24534.28, + "end": 24535.16, + "probability": 0.7831 + }, + { + "start": 24535.7, + "end": 24536.88, + "probability": 0.7392 + }, + { + "start": 24537.82, + "end": 24538.24, + "probability": 0.9811 + }, + { + "start": 24539.32, + "end": 24539.98, + "probability": 0.7124 + }, + { + "start": 24541.42, + "end": 24542.18, + "probability": 0.9917 + }, + { + "start": 24543.14, + "end": 24543.62, + "probability": 0.8769 + }, + { + "start": 24546.4, + "end": 24547.92, + "probability": 0.7673 + }, + { + "start": 24549.0, + "end": 24550.16, + "probability": 0.9009 + }, + { + "start": 24555.74, + "end": 24556.0, + "probability": 0.5318 + }, + { + "start": 24558.42, + "end": 24559.2, + "probability": 0.5326 + }, + { + "start": 24561.18, + "end": 24563.42, + "probability": 0.7976 + }, + { + "start": 24564.34, + "end": 24565.82, + "probability": 0.5467 + }, + { + "start": 24567.18, + "end": 24567.66, + "probability": 0.9531 + }, + { + "start": 24568.82, + "end": 24570.04, + "probability": 0.8937 + }, + { + "start": 24571.0, + "end": 24571.36, + "probability": 0.9048 + }, + { + "start": 24572.5, + "end": 24573.4, + "probability": 0.9442 + }, + { + "start": 24574.76, + "end": 24575.2, + "probability": 0.9919 + }, + { + "start": 24576.74, + "end": 24577.84, + "probability": 0.9897 + }, + { + "start": 24578.46, + "end": 24578.92, + "probability": 0.9694 + }, + { + "start": 24580.9, + "end": 24582.44, + "probability": 0.9638 + }, + { + "start": 24583.3, + "end": 24584.02, + "probability": 0.5097 + }, + { + "start": 24585.18, + "end": 24586.08, + "probability": 0.4003 + }, + { + "start": 24587.34, + "end": 24587.66, + "probability": 0.5342 + }, + { + "start": 24594.86, + "end": 24595.7, + "probability": 0.6145 + }, + { + "start": 24599.01, + "end": 24601.54, + "probability": 0.9387 + }, + { + "start": 24603.93, + "end": 24606.18, + "probability": 0.9219 + }, + { + "start": 24607.12, + "end": 24610.32, + "probability": 0.9282 + }, + { + "start": 24612.0, + "end": 24613.42, + "probability": 0.6669 + }, + { + "start": 24614.66, + "end": 24615.14, + "probability": 0.9901 + }, + { + "start": 24616.5, + "end": 24617.52, + "probability": 0.8548 + }, + { + "start": 24621.7, + "end": 24625.46, + "probability": 0.7287 + }, + { + "start": 24627.16, + "end": 24627.58, + "probability": 0.534 + }, + { + "start": 24628.58, + "end": 24629.54, + "probability": 0.752 + }, + { + "start": 24630.32, + "end": 24632.62, + "probability": 0.8576 + }, + { + "start": 24635.92, + "end": 24636.46, + "probability": 0.9821 + }, + { + "start": 24638.32, + "end": 24639.46, + "probability": 0.9863 + }, + { + "start": 24640.62, + "end": 24643.28, + "probability": 0.9797 + }, + { + "start": 24644.22, + "end": 24646.54, + "probability": 0.9609 + }, + { + "start": 24648.9, + "end": 24649.64, + "probability": 0.9744 + }, + { + "start": 24650.7, + "end": 24652.1, + "probability": 0.9602 + }, + { + "start": 24654.42, + "end": 24655.5, + "probability": 0.5026 + }, + { + "start": 24656.18, + "end": 24657.26, + "probability": 0.1394 + }, + { + "start": 24659.3, + "end": 24660.3, + "probability": 0.877 + }, + { + "start": 24660.84, + "end": 24661.78, + "probability": 0.6209 + }, + { + "start": 24664.2, + "end": 24664.72, + "probability": 0.7375 + }, + { + "start": 24668.3, + "end": 24669.74, + "probability": 0.6553 + }, + { + "start": 24671.04, + "end": 24672.02, + "probability": 0.8137 + }, + { + "start": 24672.86, + "end": 24673.96, + "probability": 0.5834 + }, + { + "start": 24678.4, + "end": 24679.34, + "probability": 0.8661 + }, + { + "start": 24680.32, + "end": 24681.52, + "probability": 0.8826 + }, + { + "start": 24682.22, + "end": 24682.62, + "probability": 0.9134 + }, + { + "start": 24684.12, + "end": 24685.42, + "probability": 0.9325 + }, + { + "start": 24685.96, + "end": 24686.38, + "probability": 0.9412 + }, + { + "start": 24687.46, + "end": 24688.32, + "probability": 0.971 + }, + { + "start": 24689.08, + "end": 24691.48, + "probability": 0.9766 + }, + { + "start": 24692.28, + "end": 24692.68, + "probability": 0.9766 + }, + { + "start": 24693.74, + "end": 24695.04, + "probability": 0.3135 + }, + { + "start": 24695.62, + "end": 24695.98, + "probability": 0.7231 + }, + { + "start": 24696.9, + "end": 24698.0, + "probability": 0.8106 + }, + { + "start": 24700.22, + "end": 24700.64, + "probability": 0.8838 + }, + { + "start": 24702.08, + "end": 24703.12, + "probability": 0.8864 + }, + { + "start": 24708.34, + "end": 24709.18, + "probability": 0.6851 + }, + { + "start": 24709.72, + "end": 24710.12, + "probability": 0.7708 + }, + { + "start": 24713.6, + "end": 24714.7, + "probability": 0.3045 + }, + { + "start": 24717.4, + "end": 24717.78, + "probability": 0.662 + }, + { + "start": 24720.24, + "end": 24721.14, + "probability": 0.6239 + }, + { + "start": 24721.88, + "end": 24722.28, + "probability": 0.9325 + }, + { + "start": 24723.14, + "end": 24724.16, + "probability": 0.6503 + }, + { + "start": 24725.42, + "end": 24725.9, + "probability": 0.9678 + }, + { + "start": 24726.48, + "end": 24727.52, + "probability": 0.9449 + }, + { + "start": 24728.16, + "end": 24728.62, + "probability": 0.9612 + }, + { + "start": 24729.62, + "end": 24730.52, + "probability": 0.7786 + }, + { + "start": 24733.34, + "end": 24733.88, + "probability": 0.9751 + }, + { + "start": 24735.0, + "end": 24736.06, + "probability": 0.8742 + }, + { + "start": 24738.22, + "end": 24738.57, + "probability": 0.1809 + }, + { + "start": 24739.9, + "end": 24740.4, + "probability": 0.7427 + }, + { + "start": 24747.04, + "end": 24748.06, + "probability": 0.4677 + }, + { + "start": 24749.22, + "end": 24749.62, + "probability": 0.5541 + }, + { + "start": 24750.84, + "end": 24751.7, + "probability": 0.5151 + }, + { + "start": 24753.4, + "end": 24755.9, + "probability": 0.9072 + }, + { + "start": 24757.44, + "end": 24758.14, + "probability": 0.8713 + }, + { + "start": 24759.24, + "end": 24759.96, + "probability": 0.8563 + }, + { + "start": 24761.01, + "end": 24763.32, + "probability": 0.5264 + }, + { + "start": 24764.62, + "end": 24765.04, + "probability": 0.981 + }, + { + "start": 24766.86, + "end": 24767.7, + "probability": 0.9577 + }, + { + "start": 24768.36, + "end": 24769.08, + "probability": 0.979 + }, + { + "start": 24770.06, + "end": 24771.3, + "probability": 0.7236 + }, + { + "start": 24772.1, + "end": 24774.48, + "probability": 0.6926 + }, + { + "start": 24775.22, + "end": 24777.36, + "probability": 0.6752 + }, + { + "start": 24778.16, + "end": 24778.56, + "probability": 0.759 + }, + { + "start": 24779.44, + "end": 24780.62, + "probability": 0.8623 + }, + { + "start": 24781.5, + "end": 24781.98, + "probability": 0.9689 + }, + { + "start": 24782.88, + "end": 24783.82, + "probability": 0.9056 + }, + { + "start": 24785.0, + "end": 24785.54, + "probability": 0.9855 + }, + { + "start": 24786.46, + "end": 24787.44, + "probability": 0.8878 + }, + { + "start": 24793.2, + "end": 24793.5, + "probability": 0.6902 + }, + { + "start": 24794.3, + "end": 24795.1, + "probability": 0.7062 + }, + { + "start": 24796.54, + "end": 24798.72, + "probability": 0.1069 + }, + { + "start": 24799.76, + "end": 24800.54, + "probability": 0.7441 + }, + { + "start": 24803.32, + "end": 24806.26, + "probability": 0.917 + }, + { + "start": 24807.1, + "end": 24807.5, + "probability": 0.9731 + }, + { + "start": 24809.02, + "end": 24810.1, + "probability": 0.9682 + }, + { + "start": 24811.26, + "end": 24813.5, + "probability": 0.9637 + }, + { + "start": 24816.4, + "end": 24816.54, + "probability": 0.4823 + }, + { + "start": 24824.02, + "end": 24825.54, + "probability": 0.6622 + }, + { + "start": 24826.98, + "end": 24827.78, + "probability": 0.7955 + }, + { + "start": 24829.7, + "end": 24831.34, + "probability": 0.948 + }, + { + "start": 24832.44, + "end": 24832.94, + "probability": 0.89 + }, + { + "start": 24834.46, + "end": 24835.8, + "probability": 0.9486 + }, + { + "start": 24838.04, + "end": 24838.92, + "probability": 0.9512 + }, + { + "start": 24839.92, + "end": 24840.68, + "probability": 0.8613 + }, + { + "start": 24841.64, + "end": 24842.48, + "probability": 0.9782 + }, + { + "start": 24843.74, + "end": 24845.24, + "probability": 0.9038 + }, + { + "start": 24849.4, + "end": 24850.32, + "probability": 0.8374 + }, + { + "start": 24851.7, + "end": 24853.16, + "probability": 0.7185 + }, + { + "start": 24855.06, + "end": 24856.06, + "probability": 0.9787 + }, + { + "start": 24857.06, + "end": 24858.4, + "probability": 0.8787 + }, + { + "start": 24860.42, + "end": 24861.36, + "probability": 0.9916 + }, + { + "start": 24861.96, + "end": 24862.94, + "probability": 0.8531 + }, + { + "start": 24863.92, + "end": 24864.44, + "probability": 0.9699 + }, + { + "start": 24865.16, + "end": 24866.14, + "probability": 0.8266 + }, + { + "start": 24869.84, + "end": 24870.58, + "probability": 0.7859 + }, + { + "start": 24871.46, + "end": 24872.4, + "probability": 0.6311 + }, + { + "start": 24873.56, + "end": 24873.98, + "probability": 0.6627 + }, + { + "start": 24875.1, + "end": 24876.14, + "probability": 0.8728 + }, + { + "start": 24879.42, + "end": 24879.94, + "probability": 0.9816 + }, + { + "start": 24881.7, + "end": 24882.72, + "probability": 0.6125 + }, + { + "start": 24884.12, + "end": 24884.66, + "probability": 0.9761 + }, + { + "start": 24886.08, + "end": 24887.28, + "probability": 0.8944 + }, + { + "start": 24889.0, + "end": 24892.14, + "probability": 0.9692 + }, + { + "start": 24893.12, + "end": 24893.68, + "probability": 0.9437 + }, + { + "start": 24895.24, + "end": 24896.12, + "probability": 0.8946 + }, + { + "start": 24900.36, + "end": 24900.84, + "probability": 0.7388 + }, + { + "start": 24902.4, + "end": 24903.32, + "probability": 0.599 + }, + { + "start": 24905.86, + "end": 24907.1, + "probability": 0.9756 + }, + { + "start": 24907.68, + "end": 24908.96, + "probability": 0.655 + }, + { + "start": 24909.64, + "end": 24910.12, + "probability": 0.8975 + }, + { + "start": 24910.82, + "end": 24912.46, + "probability": 0.546 + }, + { + "start": 24913.2, + "end": 24915.14, + "probability": 0.5261 + }, + { + "start": 24920.74, + "end": 24920.96, + "probability": 0.5033 + }, + { + "start": 24922.06, + "end": 24922.9, + "probability": 0.6241 + }, + { + "start": 24927.1, + "end": 24927.88, + "probability": 0.8447 + }, + { + "start": 24928.74, + "end": 24929.64, + "probability": 0.7488 + }, + { + "start": 24931.54, + "end": 24933.68, + "probability": 0.7879 + }, + { + "start": 24934.72, + "end": 24936.02, + "probability": 0.7795 + }, + { + "start": 24937.2, + "end": 24937.98, + "probability": 0.978 + }, + { + "start": 24939.12, + "end": 24940.24, + "probability": 0.8931 + }, + { + "start": 24941.68, + "end": 24942.5, + "probability": 0.9845 + }, + { + "start": 24943.76, + "end": 24944.7, + "probability": 0.9686 + }, + { + "start": 24945.02, + "end": 24945.16, + "probability": 0.0717 + }, + { + "start": 24945.16, + "end": 24947.34, + "probability": 0.0783 + }, + { + "start": 24947.68, + "end": 24949.13, + "probability": 0.0689 + }, + { + "start": 24965.44, + "end": 24967.3, + "probability": 0.7912 + }, + { + "start": 24970.44, + "end": 24972.92, + "probability": 0.8764 + }, + { + "start": 24974.24, + "end": 24975.06, + "probability": 0.9834 + }, + { + "start": 24976.18, + "end": 24977.0, + "probability": 0.8389 + }, + { + "start": 24978.36, + "end": 24979.42, + "probability": 0.5924 + }, + { + "start": 24979.42, + "end": 24979.6, + "probability": 0.2419 + }, + { + "start": 24979.6, + "end": 24979.6, + "probability": 0.2842 + }, + { + "start": 24986.52, + "end": 24990.92, + "probability": 0.2922 + }, + { + "start": 24991.74, + "end": 24994.92, + "probability": 0.7511 + }, + { + "start": 24995.48, + "end": 24996.4, + "probability": 0.8823 + }, + { + "start": 24998.46, + "end": 24999.36, + "probability": 0.9333 + }, + { + "start": 25003.84, + "end": 25004.6, + "probability": 0.6146 + }, + { + "start": 25006.02, + "end": 25006.76, + "probability": 0.8764 + }, + { + "start": 25007.7, + "end": 25008.82, + "probability": 0.5288 + }, + { + "start": 25012.88, + "end": 25013.88, + "probability": 0.6885 + }, + { + "start": 25014.82, + "end": 25015.7, + "probability": 0.4554 + }, + { + "start": 25017.36, + "end": 25020.78, + "probability": 0.7568 + }, + { + "start": 25021.42, + "end": 25022.26, + "probability": 0.8209 + }, + { + "start": 25023.28, + "end": 25023.52, + "probability": 0.0977 + }, + { + "start": 25027.54, + "end": 25029.3, + "probability": 0.5301 + }, + { + "start": 25031.14, + "end": 25032.02, + "probability": 0.6783 + }, + { + "start": 25033.06, + "end": 25033.88, + "probability": 0.8903 + }, + { + "start": 25035.64, + "end": 25036.52, + "probability": 0.8491 + }, + { + "start": 25038.2, + "end": 25038.6, + "probability": 0.9839 + }, + { + "start": 25043.84, + "end": 25044.1, + "probability": 0.6223 + }, + { + "start": 25047.2, + "end": 25048.32, + "probability": 0.357 + }, + { + "start": 25049.52, + "end": 25049.68, + "probability": 0.0134 + }, + { + "start": 25050.7, + "end": 25051.68, + "probability": 0.7393 + }, + { + "start": 25053.84, + "end": 25055.26, + "probability": 0.4732 + }, + { + "start": 25057.66, + "end": 25058.54, + "probability": 0.9097 + }, + { + "start": 25059.38, + "end": 25060.5, + "probability": 0.9633 + }, + { + "start": 25062.44, + "end": 25065.32, + "probability": 0.9186 + }, + { + "start": 25066.92, + "end": 25067.98, + "probability": 0.9714 + }, + { + "start": 25068.62, + "end": 25073.84, + "probability": 0.9025 + }, + { + "start": 25077.16, + "end": 25079.26, + "probability": 0.6559 + }, + { + "start": 25080.58, + "end": 25081.4, + "probability": 0.9782 + }, + { + "start": 25082.4, + "end": 25086.06, + "probability": 0.9812 + }, + { + "start": 25088.6, + "end": 25089.34, + "probability": 0.7432 + }, + { + "start": 25089.92, + "end": 25091.58, + "probability": 0.637 + }, + { + "start": 25091.82, + "end": 25092.5, + "probability": 0.6544 + }, + { + "start": 25093.52, + "end": 25094.62, + "probability": 0.0989 + }, + { + "start": 25239.56, + "end": 25240.2, + "probability": 0.6373 + }, + { + "start": 25240.22, + "end": 25242.32, + "probability": 0.5894 + }, + { + "start": 25242.4, + "end": 25243.28, + "probability": 0.5212 + }, + { + "start": 25243.7, + "end": 25243.94, + "probability": 0.9266 + }, + { + "start": 25243.96, + "end": 25244.74, + "probability": 0.8528 + }, + { + "start": 25244.88, + "end": 25245.4, + "probability": 0.4662 + }, + { + "start": 25245.5, + "end": 25247.11, + "probability": 0.9041 + }, + { + "start": 25247.64, + "end": 25249.04, + "probability": 0.3356 + }, + { + "start": 25249.94, + "end": 25254.72, + "probability": 0.9969 + }, + { + "start": 25255.26, + "end": 25256.28, + "probability": 0.6036 + }, + { + "start": 25256.82, + "end": 25257.82, + "probability": 0.7827 + }, + { + "start": 25258.22, + "end": 25258.94, + "probability": 0.971 + }, + { + "start": 25259.14, + "end": 25263.8, + "probability": 0.9591 + }, + { + "start": 25264.48, + "end": 25265.9, + "probability": 0.4667 + }, + { + "start": 25266.04, + "end": 25267.79, + "probability": 0.7592 + }, + { + "start": 25268.48, + "end": 25269.86, + "probability": 0.8069 + }, + { + "start": 25270.08, + "end": 25294.66, + "probability": 0.665 + }, + { + "start": 25294.74, + "end": 25294.92, + "probability": 0.5519 + }, + { + "start": 25294.96, + "end": 25295.72, + "probability": 0.7568 + }, + { + "start": 25296.14, + "end": 25296.34, + "probability": 0.6582 + }, + { + "start": 25301.58, + "end": 25302.66, + "probability": 0.6516 + }, + { + "start": 25304.12, + "end": 25307.02, + "probability": 0.8558 + }, + { + "start": 25307.82, + "end": 25309.5, + "probability": 0.7162 + }, + { + "start": 25310.7, + "end": 25311.58, + "probability": 0.7055 + }, + { + "start": 25312.1, + "end": 25312.74, + "probability": 0.5404 + }, + { + "start": 25313.42, + "end": 25314.38, + "probability": 0.8924 + }, + { + "start": 25314.54, + "end": 25315.3, + "probability": 0.9575 + }, + { + "start": 25316.84, + "end": 25317.7, + "probability": 0.6539 + }, + { + "start": 25317.96, + "end": 25318.4, + "probability": 0.4462 + }, + { + "start": 25318.62, + "end": 25320.44, + "probability": 0.7466 + }, + { + "start": 25321.5, + "end": 25324.18, + "probability": 0.9956 + }, + { + "start": 25324.7, + "end": 25328.24, + "probability": 0.9684 + }, + { + "start": 25329.42, + "end": 25334.72, + "probability": 0.9929 + }, + { + "start": 25335.3, + "end": 25336.4, + "probability": 0.8985 + }, + { + "start": 25337.02, + "end": 25341.18, + "probability": 0.9561 + }, + { + "start": 25342.42, + "end": 25345.68, + "probability": 0.9888 + }, + { + "start": 25346.56, + "end": 25349.26, + "probability": 0.9925 + }, + { + "start": 25349.94, + "end": 25352.14, + "probability": 0.9782 + }, + { + "start": 25353.16, + "end": 25353.28, + "probability": 0.6785 + }, + { + "start": 25353.78, + "end": 25361.04, + "probability": 0.9296 + }, + { + "start": 25361.76, + "end": 25363.82, + "probability": 0.6032 + }, + { + "start": 25364.64, + "end": 25367.44, + "probability": 0.9089 + }, + { + "start": 25368.12, + "end": 25370.78, + "probability": 0.9868 + }, + { + "start": 25371.3, + "end": 25372.62, + "probability": 0.9887 + }, + { + "start": 25373.2, + "end": 25377.1, + "probability": 0.9922 + }, + { + "start": 25377.62, + "end": 25379.34, + "probability": 0.981 + }, + { + "start": 25379.86, + "end": 25381.94, + "probability": 0.5543 + }, + { + "start": 25382.52, + "end": 25383.56, + "probability": 0.8272 + }, + { + "start": 25384.12, + "end": 25384.22, + "probability": 0.7439 + }, + { + "start": 25384.74, + "end": 25390.06, + "probability": 0.8861 + }, + { + "start": 25391.28, + "end": 25391.98, + "probability": 0.8491 + }, + { + "start": 25393.14, + "end": 25398.06, + "probability": 0.9081 + }, + { + "start": 25398.72, + "end": 25401.98, + "probability": 0.9852 + }, + { + "start": 25402.7, + "end": 25405.38, + "probability": 0.9689 + }, + { + "start": 25406.04, + "end": 25410.4, + "probability": 0.9971 + }, + { + "start": 25411.08, + "end": 25415.66, + "probability": 0.9814 + }, + { + "start": 25416.34, + "end": 25418.24, + "probability": 0.9215 + }, + { + "start": 25418.8, + "end": 25423.24, + "probability": 0.8352 + }, + { + "start": 25423.98, + "end": 25431.12, + "probability": 0.9918 + }, + { + "start": 25431.58, + "end": 25432.26, + "probability": 0.9196 + }, + { + "start": 25432.8, + "end": 25434.52, + "probability": 0.9703 + }, + { + "start": 25437.76, + "end": 25444.3, + "probability": 0.993 + }, + { + "start": 25444.46, + "end": 25445.78, + "probability": 0.8338 + }, + { + "start": 25446.4, + "end": 25447.06, + "probability": 0.6965 + }, + { + "start": 25447.74, + "end": 25451.7, + "probability": 0.9948 + }, + { + "start": 25451.7, + "end": 25456.0, + "probability": 0.9715 + }, + { + "start": 25456.56, + "end": 25458.66, + "probability": 0.8979 + }, + { + "start": 25459.4, + "end": 25463.7, + "probability": 0.9899 + }, + { + "start": 25464.44, + "end": 25464.66, + "probability": 0.7786 + }, + { + "start": 25465.24, + "end": 25466.79, + "probability": 0.9819 + }, + { + "start": 25467.44, + "end": 25469.44, + "probability": 0.9713 + }, + { + "start": 25470.12, + "end": 25474.58, + "probability": 0.9908 + }, + { + "start": 25474.96, + "end": 25475.24, + "probability": 0.951 + }, + { + "start": 25475.26, + "end": 25477.74, + "probability": 0.8274 + }, + { + "start": 25477.88, + "end": 25479.36, + "probability": 0.9375 + }, + { + "start": 25479.8, + "end": 25482.34, + "probability": 0.9589 + }, + { + "start": 25482.88, + "end": 25486.78, + "probability": 0.9717 + }, + { + "start": 25487.42, + "end": 25493.46, + "probability": 0.9914 + }, + { + "start": 25494.84, + "end": 25495.76, + "probability": 0.9069 + }, + { + "start": 25496.8, + "end": 25502.0, + "probability": 0.9967 + }, + { + "start": 25502.64, + "end": 25504.74, + "probability": 0.7679 + }, + { + "start": 25505.36, + "end": 25507.48, + "probability": 0.9658 + }, + { + "start": 25508.02, + "end": 25509.98, + "probability": 0.992 + }, + { + "start": 25510.38, + "end": 25512.2, + "probability": 0.9909 + }, + { + "start": 25512.66, + "end": 25515.48, + "probability": 0.9882 + }, + { + "start": 25516.04, + "end": 25517.06, + "probability": 0.999 + }, + { + "start": 25517.68, + "end": 25520.34, + "probability": 0.9958 + }, + { + "start": 25521.1, + "end": 25523.4, + "probability": 0.9827 + }, + { + "start": 25524.52, + "end": 25529.76, + "probability": 0.9713 + }, + { + "start": 25530.34, + "end": 25531.0, + "probability": 0.9972 + }, + { + "start": 25532.1, + "end": 25536.38, + "probability": 0.9891 + }, + { + "start": 25536.94, + "end": 25537.2, + "probability": 0.8265 + }, + { + "start": 25537.74, + "end": 25541.74, + "probability": 0.8337 + }, + { + "start": 25542.24, + "end": 25547.18, + "probability": 0.9351 + }, + { + "start": 25549.1, + "end": 25553.14, + "probability": 0.9461 + }, + { + "start": 25553.8, + "end": 25553.9, + "probability": 0.7434 + }, + { + "start": 25554.56, + "end": 25558.46, + "probability": 0.9708 + }, + { + "start": 25559.2, + "end": 25560.8, + "probability": 0.7636 + }, + { + "start": 25561.86, + "end": 25564.0, + "probability": 0.9632 + }, + { + "start": 25564.66, + "end": 25568.9, + "probability": 0.9823 + }, + { + "start": 25569.7, + "end": 25574.38, + "probability": 0.9295 + }, + { + "start": 25575.22, + "end": 25578.46, + "probability": 0.994 + }, + { + "start": 25579.08, + "end": 25580.28, + "probability": 0.5274 + }, + { + "start": 25581.0, + "end": 25582.34, + "probability": 0.8118 + }, + { + "start": 25583.02, + "end": 25584.16, + "probability": 0.9382 + }, + { + "start": 25584.78, + "end": 25588.42, + "probability": 0.9125 + }, + { + "start": 25588.9, + "end": 25592.24, + "probability": 0.998 + }, + { + "start": 25592.24, + "end": 25595.98, + "probability": 0.7967 + }, + { + "start": 25596.52, + "end": 25597.62, + "probability": 0.9955 + }, + { + "start": 25599.66, + "end": 25600.64, + "probability": 0.4961 + }, + { + "start": 25601.36, + "end": 25602.48, + "probability": 0.9937 + }, + { + "start": 25603.12, + "end": 25603.91, + "probability": 0.2801 + }, + { + "start": 25604.66, + "end": 25606.22, + "probability": 0.7925 + }, + { + "start": 25606.86, + "end": 25609.88, + "probability": 0.874 + }, + { + "start": 25610.34, + "end": 25610.48, + "probability": 0.462 + }, + { + "start": 25611.26, + "end": 25613.82, + "probability": 0.9093 + }, + { + "start": 25614.34, + "end": 25615.16, + "probability": 0.9614 + }, + { + "start": 25615.8, + "end": 25618.5, + "probability": 0.8119 + }, + { + "start": 25619.22, + "end": 25622.36, + "probability": 0.8328 + }, + { + "start": 25623.0, + "end": 25627.56, + "probability": 0.7773 + }, + { + "start": 25628.08, + "end": 25628.82, + "probability": 0.9223 + }, + { + "start": 25629.28, + "end": 25633.02, + "probability": 0.9164 + }, + { + "start": 25633.7, + "end": 25636.5, + "probability": 0.7312 + }, + { + "start": 25637.3, + "end": 25640.88, + "probability": 0.89 + }, + { + "start": 25641.26, + "end": 25643.99, + "probability": 0.6655 + }, + { + "start": 25644.34, + "end": 25645.52, + "probability": 0.9837 + }, + { + "start": 25646.04, + "end": 25648.86, + "probability": 0.9867 + }, + { + "start": 25649.82, + "end": 25651.84, + "probability": 0.9339 + }, + { + "start": 25652.48, + "end": 25653.76, + "probability": 0.9973 + }, + { + "start": 25654.26, + "end": 25654.58, + "probability": 0.8794 + }, + { + "start": 25654.82, + "end": 25655.04, + "probability": 0.5902 + }, + { + "start": 25655.52, + "end": 25656.11, + "probability": 0.8774 + }, + { + "start": 25656.18, + "end": 25659.4, + "probability": 0.9189 + }, + { + "start": 25660.18, + "end": 25662.32, + "probability": 0.7545 + }, + { + "start": 25663.0, + "end": 25665.3, + "probability": 0.8195 + }, + { + "start": 25665.32, + "end": 25667.86, + "probability": 0.7947 + }, + { + "start": 25668.42, + "end": 25672.2, + "probability": 0.9922 + }, + { + "start": 25672.6, + "end": 25672.7, + "probability": 0.3397 + }, + { + "start": 25672.7, + "end": 25673.46, + "probability": 0.8629 + }, + { + "start": 25673.78, + "end": 25676.3, + "probability": 0.9792 + }, + { + "start": 25676.5, + "end": 25679.14, + "probability": 0.4314 + }, + { + "start": 25679.66, + "end": 25679.66, + "probability": 0.0594 + }, + { + "start": 25679.66, + "end": 25679.66, + "probability": 0.1358 + }, + { + "start": 25679.66, + "end": 25680.2, + "probability": 0.5661 + }, + { + "start": 25680.3, + "end": 25682.16, + "probability": 0.8104 + }, + { + "start": 25682.48, + "end": 25682.66, + "probability": 0.2116 + }, + { + "start": 25682.78, + "end": 25684.64, + "probability": 0.9573 + }, + { + "start": 25684.92, + "end": 25684.98, + "probability": 0.0152 + }, + { + "start": 25684.98, + "end": 25686.64, + "probability": 0.7677 + }, + { + "start": 25686.94, + "end": 25688.9, + "probability": 0.7642 + }, + { + "start": 25689.16, + "end": 25689.16, + "probability": 0.1309 + }, + { + "start": 25689.16, + "end": 25690.1, + "probability": 0.809 + }, + { + "start": 25690.68, + "end": 25692.48, + "probability": 0.9805 + }, + { + "start": 25693.0, + "end": 25693.08, + "probability": 0.0921 + }, + { + "start": 25693.08, + "end": 25694.18, + "probability": 0.7496 + }, + { + "start": 25694.58, + "end": 25696.38, + "probability": 0.3291 + }, + { + "start": 25696.72, + "end": 25697.54, + "probability": 0.3712 + }, + { + "start": 25697.54, + "end": 25697.54, + "probability": 0.1243 + }, + { + "start": 25697.54, + "end": 25697.54, + "probability": 0.0342 + }, + { + "start": 25697.54, + "end": 25697.82, + "probability": 0.2996 + }, + { + "start": 25698.5, + "end": 25699.24, + "probability": 0.4307 + }, + { + "start": 25699.66, + "end": 25700.44, + "probability": 0.4114 + }, + { + "start": 25700.96, + "end": 25702.72, + "probability": 0.8234 + }, + { + "start": 25703.62, + "end": 25708.16, + "probability": 0.2845 + }, + { + "start": 25711.6, + "end": 25712.06, + "probability": 0.1389 + }, + { + "start": 25712.06, + "end": 25712.06, + "probability": 0.316 + }, + { + "start": 25712.06, + "end": 25712.06, + "probability": 0.0514 + }, + { + "start": 25712.06, + "end": 25712.82, + "probability": 0.6046 + }, + { + "start": 25712.82, + "end": 25713.98, + "probability": 0.8623 + }, + { + "start": 25714.4, + "end": 25718.99, + "probability": 0.7931 + }, + { + "start": 25719.28, + "end": 25720.54, + "probability": 0.1589 + }, + { + "start": 25720.88, + "end": 25723.6, + "probability": 0.4795 + }, + { + "start": 25724.12, + "end": 25728.92, + "probability": 0.6684 + }, + { + "start": 25729.48, + "end": 25731.02, + "probability": 0.9274 + }, + { + "start": 25731.42, + "end": 25733.94, + "probability": 0.8767 + }, + { + "start": 25734.56, + "end": 25735.2, + "probability": 0.6097 + }, + { + "start": 25735.4, + "end": 25737.24, + "probability": 0.7788 + }, + { + "start": 25737.66, + "end": 25739.5, + "probability": 0.7498 + }, + { + "start": 25740.04, + "end": 25742.62, + "probability": 0.8983 + }, + { + "start": 25743.82, + "end": 25747.18, + "probability": 0.7356 + }, + { + "start": 25747.82, + "end": 25750.58, + "probability": 0.9004 + }, + { + "start": 25751.02, + "end": 25752.06, + "probability": 0.8786 + }, + { + "start": 25752.46, + "end": 25757.04, + "probability": 0.7439 + }, + { + "start": 25757.66, + "end": 25760.9, + "probability": 0.9746 + }, + { + "start": 25761.4, + "end": 25765.02, + "probability": 0.999 + }, + { + "start": 25765.6, + "end": 25766.12, + "probability": 0.5402 + }, + { + "start": 25766.84, + "end": 25768.64, + "probability": 0.9701 + }, + { + "start": 25769.3, + "end": 25770.36, + "probability": 0.9102 + }, + { + "start": 25770.74, + "end": 25771.94, + "probability": 0.9967 + }, + { + "start": 25772.38, + "end": 25773.62, + "probability": 0.9982 + }, + { + "start": 25774.44, + "end": 25774.48, + "probability": 0.9717 + }, + { + "start": 25776.24, + "end": 25778.18, + "probability": 0.9994 + }, + { + "start": 25779.16, + "end": 25782.28, + "probability": 0.693 + }, + { + "start": 25783.56, + "end": 25784.54, + "probability": 0.7333 + }, + { + "start": 25785.88, + "end": 25787.4, + "probability": 0.9762 + }, + { + "start": 25787.78, + "end": 25788.22, + "probability": 0.8014 + }, + { + "start": 25788.86, + "end": 25789.96, + "probability": 0.9883 + }, + { + "start": 25790.62, + "end": 25791.78, + "probability": 0.9948 + }, + { + "start": 25791.78, + "end": 25793.08, + "probability": 0.7357 + }, + { + "start": 25794.86, + "end": 25794.86, + "probability": 0.0001 + }, + { + "start": 25796.0, + "end": 25796.44, + "probability": 0.0331 + }, + { + "start": 25797.04, + "end": 25797.85, + "probability": 0.0932 + }, + { + "start": 25798.14, + "end": 25798.42, + "probability": 0.2161 + }, + { + "start": 25799.28, + "end": 25803.12, + "probability": 0.6613 + }, + { + "start": 25803.88, + "end": 25804.42, + "probability": 0.3117 + }, + { + "start": 25805.34, + "end": 25805.8, + "probability": 0.0493 + }, + { + "start": 25805.8, + "end": 25807.02, + "probability": 0.265 + }, + { + "start": 25807.02, + "end": 25808.04, + "probability": 0.3585 + }, + { + "start": 25808.04, + "end": 25810.26, + "probability": 0.6324 + }, + { + "start": 25810.3, + "end": 25811.48, + "probability": 0.9316 + }, + { + "start": 25811.76, + "end": 25813.36, + "probability": 0.8359 + }, + { + "start": 25813.7, + "end": 25814.18, + "probability": 0.3954 + }, + { + "start": 25814.68, + "end": 25815.82, + "probability": 0.853 + }, + { + "start": 25815.82, + "end": 25816.28, + "probability": 0.3779 + }, + { + "start": 25816.34, + "end": 25817.24, + "probability": 0.9496 + }, + { + "start": 25817.44, + "end": 25818.4, + "probability": 0.5813 + }, + { + "start": 25818.4, + "end": 25818.92, + "probability": 0.5705 + }, + { + "start": 25819.08, + "end": 25819.26, + "probability": 0.1432 + }, + { + "start": 25819.26, + "end": 25820.92, + "probability": 0.4622 + }, + { + "start": 25822.02, + "end": 25826.06, + "probability": 0.2398 + }, + { + "start": 25826.06, + "end": 25826.06, + "probability": 0.0369 + }, + { + "start": 25826.06, + "end": 25826.06, + "probability": 0.2876 + }, + { + "start": 25826.06, + "end": 25826.06, + "probability": 0.5621 + }, + { + "start": 25826.06, + "end": 25826.06, + "probability": 0.0817 + }, + { + "start": 25826.06, + "end": 25826.06, + "probability": 0.1537 + }, + { + "start": 25826.06, + "end": 25829.46, + "probability": 0.2079 + }, + { + "start": 25829.88, + "end": 25831.62, + "probability": 0.7152 + }, + { + "start": 25832.16, + "end": 25834.44, + "probability": 0.6683 + }, + { + "start": 25834.98, + "end": 25836.7, + "probability": 0.6307 + }, + { + "start": 25837.48, + "end": 25838.78, + "probability": 0.0202 + }, + { + "start": 25838.96, + "end": 25839.32, + "probability": 0.0103 + }, + { + "start": 25839.42, + "end": 25840.68, + "probability": 0.6608 + }, + { + "start": 25841.14, + "end": 25843.24, + "probability": 0.6421 + }, + { + "start": 25843.96, + "end": 25844.96, + "probability": 0.0378 + }, + { + "start": 25844.96, + "end": 25845.06, + "probability": 0.484 + }, + { + "start": 25845.52, + "end": 25849.04, + "probability": 0.9764 + }, + { + "start": 25849.62, + "end": 25850.72, + "probability": 0.9569 + }, + { + "start": 25851.28, + "end": 25852.46, + "probability": 0.9241 + }, + { + "start": 25853.12, + "end": 25855.34, + "probability": 0.9443 + }, + { + "start": 25855.88, + "end": 25856.82, + "probability": 0.834 + }, + { + "start": 25857.72, + "end": 25859.8, + "probability": 0.0548 + }, + { + "start": 25859.8, + "end": 25860.7, + "probability": 0.5824 + }, + { + "start": 25861.7, + "end": 25864.0, + "probability": 0.5858 + }, + { + "start": 25864.68, + "end": 25869.96, + "probability": 0.9705 + }, + { + "start": 25870.46, + "end": 25871.0, + "probability": 0.1066 + }, + { + "start": 25871.0, + "end": 25872.02, + "probability": 0.5034 + }, + { + "start": 25872.28, + "end": 25873.32, + "probability": 0.588 + }, + { + "start": 25873.56, + "end": 25874.28, + "probability": 0.6223 + }, + { + "start": 25874.28, + "end": 25874.7, + "probability": 0.5178 + }, + { + "start": 25875.9, + "end": 25876.45, + "probability": 0.0753 + }, + { + "start": 25877.02, + "end": 25877.22, + "probability": 0.002 + }, + { + "start": 25878.26, + "end": 25878.82, + "probability": 0.0807 + }, + { + "start": 25878.86, + "end": 25878.9, + "probability": 0.0185 + }, + { + "start": 25878.96, + "end": 25880.18, + "probability": 0.3326 + }, + { + "start": 25880.58, + "end": 25880.78, + "probability": 0.1633 + }, + { + "start": 25880.78, + "end": 25880.78, + "probability": 0.0186 + }, + { + "start": 25880.78, + "end": 25882.56, + "probability": 0.615 + }, + { + "start": 25882.78, + "end": 25883.22, + "probability": 0.8673 + }, + { + "start": 25883.82, + "end": 25886.37, + "probability": 0.979 + }, + { + "start": 25887.2, + "end": 25890.24, + "probability": 0.6878 + }, + { + "start": 25890.7, + "end": 25893.06, + "probability": 0.9961 + }, + { + "start": 25893.14, + "end": 25893.64, + "probability": 0.1765 + }, + { + "start": 25893.68, + "end": 25893.78, + "probability": 0.2135 + }, + { + "start": 25893.78, + "end": 25895.14, + "probability": 0.1762 + }, + { + "start": 25895.4, + "end": 25895.54, + "probability": 0.2208 + }, + { + "start": 25895.54, + "end": 25896.17, + "probability": 0.9873 + }, + { + "start": 25897.82, + "end": 25901.0, + "probability": 0.6023 + }, + { + "start": 25901.04, + "end": 25901.5, + "probability": 0.3081 + }, + { + "start": 25901.56, + "end": 25902.52, + "probability": 0.8327 + }, + { + "start": 25902.52, + "end": 25905.74, + "probability": 0.9873 + }, + { + "start": 25905.76, + "end": 25905.76, + "probability": 0.5008 + }, + { + "start": 25905.78, + "end": 25906.3, + "probability": 0.7462 + }, + { + "start": 25906.38, + "end": 25907.98, + "probability": 0.8882 + }, + { + "start": 25908.12, + "end": 25909.33, + "probability": 0.9507 + }, + { + "start": 25912.43, + "end": 25912.92, + "probability": 0.062 + }, + { + "start": 25912.92, + "end": 25913.64, + "probability": 0.4165 + }, + { + "start": 25913.64, + "end": 25913.78, + "probability": 0.0276 + }, + { + "start": 25913.78, + "end": 25915.46, + "probability": 0.2659 + }, + { + "start": 25915.8, + "end": 25918.34, + "probability": 0.2178 + }, + { + "start": 25918.74, + "end": 25919.86, + "probability": 0.7162 + }, + { + "start": 25920.18, + "end": 25920.4, + "probability": 0.1802 + }, + { + "start": 25920.4, + "end": 25921.54, + "probability": 0.663 + }, + { + "start": 25921.74, + "end": 25922.44, + "probability": 0.8226 + }, + { + "start": 25922.76, + "end": 25924.58, + "probability": 0.3958 + }, + { + "start": 25926.26, + "end": 25926.52, + "probability": 0.0065 + }, + { + "start": 25926.52, + "end": 25926.52, + "probability": 0.0232 + }, + { + "start": 25926.52, + "end": 25926.88, + "probability": 0.048 + }, + { + "start": 25926.88, + "end": 25926.94, + "probability": 0.0503 + }, + { + "start": 25926.94, + "end": 25928.28, + "probability": 0.6315 + }, + { + "start": 25928.86, + "end": 25932.54, + "probability": 0.9335 + }, + { + "start": 25932.7, + "end": 25934.02, + "probability": 0.9291 + }, + { + "start": 25934.74, + "end": 25935.48, + "probability": 0.7999 + }, + { + "start": 25935.98, + "end": 25936.76, + "probability": 0.8732 + }, + { + "start": 25937.14, + "end": 25939.9, + "probability": 0.9825 + }, + { + "start": 25940.66, + "end": 25942.7, + "probability": 0.8942 + }, + { + "start": 25944.2, + "end": 25947.72, + "probability": 0.9153 + }, + { + "start": 25947.88, + "end": 25952.56, + "probability": 0.9857 + }, + { + "start": 25953.48, + "end": 25955.68, + "probability": 0.981 + }, + { + "start": 25956.24, + "end": 25957.76, + "probability": 0.9592 + }, + { + "start": 25958.32, + "end": 25959.6, + "probability": 0.997 + }, + { + "start": 25960.26, + "end": 25961.74, + "probability": 0.6965 + }, + { + "start": 25962.46, + "end": 25963.16, + "probability": 0.8601 + }, + { + "start": 25963.42, + "end": 25964.48, + "probability": 0.9355 + }, + { + "start": 25965.48, + "end": 25967.58, + "probability": 0.9484 + }, + { + "start": 25968.1, + "end": 25968.6, + "probability": 0.8681 + }, + { + "start": 25969.84, + "end": 25970.34, + "probability": 0.9935 + }, + { + "start": 25972.14, + "end": 25974.52, + "probability": 0.3637 + }, + { + "start": 25974.52, + "end": 25975.36, + "probability": 0.5703 + }, + { + "start": 25975.4, + "end": 25975.7, + "probability": 0.5676 + }, + { + "start": 25975.94, + "end": 25976.46, + "probability": 0.9121 + }, + { + "start": 25977.06, + "end": 25978.18, + "probability": 0.999 + }, + { + "start": 25978.76, + "end": 25982.5, + "probability": 0.9883 + }, + { + "start": 25983.64, + "end": 25985.52, + "probability": 0.744 + }, + { + "start": 25986.24, + "end": 25991.08, + "probability": 0.9995 + }, + { + "start": 25991.24, + "end": 25994.68, + "probability": 0.9942 + }, + { + "start": 25995.4, + "end": 25996.18, + "probability": 0.9703 + }, + { + "start": 25996.76, + "end": 25998.12, + "probability": 0.9956 + }, + { + "start": 25998.54, + "end": 26000.8, + "probability": 0.9098 + }, + { + "start": 26000.86, + "end": 26001.44, + "probability": 0.7542 + }, + { + "start": 26001.64, + "end": 26002.9, + "probability": 0.8704 + }, + { + "start": 26003.38, + "end": 26004.16, + "probability": 0.7025 + }, + { + "start": 26004.16, + "end": 26005.06, + "probability": 0.9164 + }, + { + "start": 26005.06, + "end": 26005.08, + "probability": 0.6251 + }, + { + "start": 26005.08, + "end": 26005.76, + "probability": 0.3743 + }, + { + "start": 26005.82, + "end": 26007.18, + "probability": 0.6733 + }, + { + "start": 26020.94, + "end": 26021.22, + "probability": 0.5091 + }, + { + "start": 26021.22, + "end": 26022.9, + "probability": 0.0663 + }, + { + "start": 26023.3, + "end": 26026.64, + "probability": 0.0345 + }, + { + "start": 26027.32, + "end": 26028.36, + "probability": 0.0412 + }, + { + "start": 26028.38, + "end": 26030.95, + "probability": 0.2492 + }, + { + "start": 26034.08, + "end": 26035.82, + "probability": 0.7208 + }, + { + "start": 26036.04, + "end": 26036.56, + "probability": 0.1457 + }, + { + "start": 26036.56, + "end": 26036.56, + "probability": 0.157 + }, + { + "start": 26036.56, + "end": 26037.5, + "probability": 0.1397 + }, + { + "start": 26037.88, + "end": 26038.3, + "probability": 0.6688 + }, + { + "start": 26040.6, + "end": 26040.74, + "probability": 0.4659 + }, + { + "start": 26041.4, + "end": 26044.2, + "probability": 0.5057 + }, + { + "start": 26045.18, + "end": 26050.34, + "probability": 0.8745 + }, + { + "start": 26050.38, + "end": 26050.52, + "probability": 0.9088 + }, + { + "start": 26067.18, + "end": 26067.28, + "probability": 0.0179 + }, + { + "start": 26068.1, + "end": 26071.46, + "probability": 0.4537 + }, + { + "start": 26071.86, + "end": 26073.84, + "probability": 0.6905 + }, + { + "start": 26074.36, + "end": 26076.16, + "probability": 0.9482 + }, + { + "start": 26076.98, + "end": 26078.74, + "probability": 0.9777 + }, + { + "start": 26078.82, + "end": 26079.76, + "probability": 0.5781 + }, + { + "start": 26080.12, + "end": 26081.36, + "probability": 0.6872 + }, + { + "start": 26081.66, + "end": 26082.84, + "probability": 0.2491 + }, + { + "start": 26083.4, + "end": 26085.38, + "probability": 0.0348 + }, + { + "start": 26085.48, + "end": 26087.66, + "probability": 0.1941 + }, + { + "start": 26088.22, + "end": 26090.6, + "probability": 0.3554 + }, + { + "start": 26090.84, + "end": 26091.48, + "probability": 0.2025 + }, + { + "start": 26091.48, + "end": 26091.73, + "probability": 0.1044 + }, + { + "start": 26092.94, + "end": 26094.62, + "probability": 0.5106 + }, + { + "start": 26096.04, + "end": 26098.5, + "probability": 0.4632 + }, + { + "start": 26098.5, + "end": 26098.64, + "probability": 0.3942 + }, + { + "start": 26098.64, + "end": 26099.02, + "probability": 0.6665 + }, + { + "start": 26099.02, + "end": 26099.16, + "probability": 0.7265 + }, + { + "start": 26099.48, + "end": 26100.88, + "probability": 0.9509 + }, + { + "start": 26102.36, + "end": 26107.32, + "probability": 0.9338 + }, + { + "start": 26107.56, + "end": 26109.66, + "probability": 0.3716 + }, + { + "start": 26110.4, + "end": 26113.8, + "probability": 0.9939 + }, + { + "start": 26114.34, + "end": 26116.14, + "probability": 0.988 + }, + { + "start": 26119.66, + "end": 26121.3, + "probability": 0.8936 + }, + { + "start": 26123.2, + "end": 26124.94, + "probability": 0.5584 + }, + { + "start": 26128.18, + "end": 26128.86, + "probability": 0.6121 + }, + { + "start": 26128.86, + "end": 26130.2, + "probability": 0.5324 + }, + { + "start": 26130.2, + "end": 26130.32, + "probability": 0.1066 + }, + { + "start": 26131.16, + "end": 26131.38, + "probability": 0.5549 + }, + { + "start": 26131.96, + "end": 26132.74, + "probability": 0.0542 + }, + { + "start": 26134.86, + "end": 26135.82, + "probability": 0.2426 + }, + { + "start": 26135.86, + "end": 26135.86, + "probability": 0.3217 + }, + { + "start": 26136.14, + "end": 26137.88, + "probability": 0.9415 + }, + { + "start": 26138.94, + "end": 26141.01, + "probability": 0.8744 + }, + { + "start": 26141.66, + "end": 26142.7, + "probability": 0.7243 + }, + { + "start": 26143.86, + "end": 26151.76, + "probability": 0.9909 + }, + { + "start": 26152.84, + "end": 26156.94, + "probability": 0.9967 + }, + { + "start": 26156.94, + "end": 26160.42, + "probability": 0.9561 + }, + { + "start": 26161.38, + "end": 26163.94, + "probability": 0.9915 + }, + { + "start": 26163.94, + "end": 26167.7, + "probability": 0.999 + }, + { + "start": 26168.22, + "end": 26174.7, + "probability": 0.9972 + }, + { + "start": 26174.82, + "end": 26176.26, + "probability": 0.9823 + }, + { + "start": 26176.78, + "end": 26181.59, + "probability": 0.9652 + }, + { + "start": 26184.26, + "end": 26188.32, + "probability": 0.9948 + }, + { + "start": 26189.22, + "end": 26193.62, + "probability": 0.9992 + }, + { + "start": 26194.34, + "end": 26196.7, + "probability": 0.9929 + }, + { + "start": 26197.6, + "end": 26200.0, + "probability": 0.8906 + }, + { + "start": 26201.58, + "end": 26202.26, + "probability": 0.5344 + }, + { + "start": 26202.36, + "end": 26203.8, + "probability": 0.9772 + }, + { + "start": 26203.92, + "end": 26205.34, + "probability": 0.9655 + }, + { + "start": 26206.3, + "end": 26208.84, + "probability": 0.9538 + }, + { + "start": 26209.36, + "end": 26211.8, + "probability": 0.9521 + }, + { + "start": 26213.0, + "end": 26213.66, + "probability": 0.9823 + }, + { + "start": 26215.5, + "end": 26220.78, + "probability": 0.8186 + }, + { + "start": 26221.96, + "end": 26223.66, + "probability": 0.9734 + }, + { + "start": 26224.6, + "end": 26227.2, + "probability": 0.9567 + }, + { + "start": 26227.6, + "end": 26228.16, + "probability": 0.9363 + }, + { + "start": 26228.58, + "end": 26229.4, + "probability": 0.9424 + }, + { + "start": 26230.16, + "end": 26232.86, + "probability": 0.6089 + }, + { + "start": 26233.56, + "end": 26234.24, + "probability": 0.9573 + }, + { + "start": 26235.14, + "end": 26237.14, + "probability": 0.994 + }, + { + "start": 26238.06, + "end": 26238.46, + "probability": 0.5568 + }, + { + "start": 26239.42, + "end": 26240.32, + "probability": 0.9393 + }, + { + "start": 26241.56, + "end": 26245.58, + "probability": 0.6325 + }, + { + "start": 26246.52, + "end": 26248.16, + "probability": 0.9057 + }, + { + "start": 26249.28, + "end": 26251.99, + "probability": 0.9372 + }, + { + "start": 26255.22, + "end": 26257.5, + "probability": 0.8616 + }, + { + "start": 26258.36, + "end": 26258.68, + "probability": 0.6495 + }, + { + "start": 26259.84, + "end": 26260.92, + "probability": 0.8207 + }, + { + "start": 26261.98, + "end": 26265.24, + "probability": 0.9194 + }, + { + "start": 26266.96, + "end": 26272.16, + "probability": 0.9006 + }, + { + "start": 26272.82, + "end": 26273.5, + "probability": 0.9902 + }, + { + "start": 26273.74, + "end": 26276.22, + "probability": 0.6886 + }, + { + "start": 26276.62, + "end": 26277.12, + "probability": 0.9717 + }, + { + "start": 26278.02, + "end": 26280.32, + "probability": 0.7773 + }, + { + "start": 26280.38, + "end": 26280.72, + "probability": 0.8424 + }, + { + "start": 26280.84, + "end": 26281.58, + "probability": 0.6753 + }, + { + "start": 26281.74, + "end": 26281.94, + "probability": 0.6592 + }, + { + "start": 26282.32, + "end": 26283.56, + "probability": 0.9438 + }, + { + "start": 26284.74, + "end": 26286.56, + "probability": 0.9394 + }, + { + "start": 26287.1, + "end": 26288.34, + "probability": 0.847 + }, + { + "start": 26288.9, + "end": 26290.62, + "probability": 0.4282 + }, + { + "start": 26291.12, + "end": 26293.06, + "probability": 0.9573 + }, + { + "start": 26293.32, + "end": 26295.34, + "probability": 0.8268 + }, + { + "start": 26295.74, + "end": 26296.5, + "probability": 0.0581 + }, + { + "start": 26296.5, + "end": 26296.8, + "probability": 0.1881 + }, + { + "start": 26297.44, + "end": 26300.32, + "probability": 0.3682 + }, + { + "start": 26301.14, + "end": 26306.39, + "probability": 0.2863 + }, + { + "start": 26308.66, + "end": 26308.7, + "probability": 0.1831 + }, + { + "start": 26308.7, + "end": 26308.7, + "probability": 0.4332 + }, + { + "start": 26308.7, + "end": 26310.96, + "probability": 0.0709 + }, + { + "start": 26311.78, + "end": 26312.35, + "probability": 0.939 + }, + { + "start": 26313.7, + "end": 26314.96, + "probability": 0.7352 + }, + { + "start": 26316.54, + "end": 26316.98, + "probability": 0.7215 + }, + { + "start": 26317.7, + "end": 26320.08, + "probability": 0.9133 + }, + { + "start": 26322.0, + "end": 26324.18, + "probability": 0.8254 + }, + { + "start": 26324.2, + "end": 26326.46, + "probability": 0.6385 + }, + { + "start": 26326.72, + "end": 26328.56, + "probability": 0.62 + }, + { + "start": 26329.44, + "end": 26330.63, + "probability": 0.5453 + }, + { + "start": 26331.6, + "end": 26332.36, + "probability": 0.6793 + }, + { + "start": 26334.34, + "end": 26336.2, + "probability": 0.8356 + }, + { + "start": 26336.78, + "end": 26337.42, + "probability": 0.057 + }, + { + "start": 26338.54, + "end": 26340.54, + "probability": 0.6063 + }, + { + "start": 26340.7, + "end": 26341.26, + "probability": 0.7956 + }, + { + "start": 26341.26, + "end": 26341.74, + "probability": 0.4621 + }, + { + "start": 26341.82, + "end": 26343.06, + "probability": 0.2191 + }, + { + "start": 26343.18, + "end": 26344.56, + "probability": 0.5901 + }, + { + "start": 26344.56, + "end": 26346.54, + "probability": 0.7575 + }, + { + "start": 26346.62, + "end": 26348.7, + "probability": 0.127 + }, + { + "start": 26350.18, + "end": 26351.32, + "probability": 0.0045 + }, + { + "start": 26351.42, + "end": 26351.42, + "probability": 0.2278 + }, + { + "start": 26351.42, + "end": 26351.64, + "probability": 0.2066 + }, + { + "start": 26351.64, + "end": 26351.64, + "probability": 0.3319 + }, + { + "start": 26351.64, + "end": 26352.68, + "probability": 0.5749 + }, + { + "start": 26352.8, + "end": 26353.84, + "probability": 0.5956 + }, + { + "start": 26354.34, + "end": 26359.14, + "probability": 0.1836 + }, + { + "start": 26360.18, + "end": 26360.66, + "probability": 0.0061 + }, + { + "start": 26360.66, + "end": 26361.18, + "probability": 0.0807 + }, + { + "start": 26361.26, + "end": 26363.56, + "probability": 0.7403 + }, + { + "start": 26363.66, + "end": 26368.72, + "probability": 0.9537 + }, + { + "start": 26369.16, + "end": 26369.78, + "probability": 0.7643 + }, + { + "start": 26370.72, + "end": 26373.46, + "probability": 0.866 + }, + { + "start": 26373.98, + "end": 26376.54, + "probability": 0.8006 + }, + { + "start": 26379.94, + "end": 26380.92, + "probability": 0.3791 + }, + { + "start": 26389.8, + "end": 26390.08, + "probability": 0.4788 + }, + { + "start": 26390.78, + "end": 26392.68, + "probability": 0.732 + }, + { + "start": 26393.68, + "end": 26395.22, + "probability": 0.7145 + }, + { + "start": 26395.8, + "end": 26400.9, + "probability": 0.9989 + }, + { + "start": 26401.56, + "end": 26404.44, + "probability": 0.9684 + }, + { + "start": 26405.08, + "end": 26408.64, + "probability": 0.8872 + }, + { + "start": 26409.38, + "end": 26410.64, + "probability": 0.5983 + }, + { + "start": 26411.14, + "end": 26415.38, + "probability": 0.998 + }, + { + "start": 26416.04, + "end": 26418.04, + "probability": 0.9944 + }, + { + "start": 26418.44, + "end": 26422.7, + "probability": 0.9656 + }, + { + "start": 26423.22, + "end": 26423.96, + "probability": 0.6091 + }, + { + "start": 26424.34, + "end": 26425.06, + "probability": 0.8915 + }, + { + "start": 26425.56, + "end": 26426.38, + "probability": 0.9751 + }, + { + "start": 26426.76, + "end": 26430.88, + "probability": 0.9828 + }, + { + "start": 26431.2, + "end": 26431.96, + "probability": 0.9046 + }, + { + "start": 26432.4, + "end": 26437.12, + "probability": 0.8328 + }, + { + "start": 26437.58, + "end": 26442.69, + "probability": 0.7219 + }, + { + "start": 26443.28, + "end": 26443.9, + "probability": 0.3933 + }, + { + "start": 26444.22, + "end": 26444.66, + "probability": 0.9295 + }, + { + "start": 26445.18, + "end": 26448.74, + "probability": 0.9652 + }, + { + "start": 26449.4, + "end": 26451.32, + "probability": 0.8613 + }, + { + "start": 26451.76, + "end": 26454.82, + "probability": 0.0862 + }, + { + "start": 26455.6, + "end": 26456.02, + "probability": 0.6391 + }, + { + "start": 26456.38, + "end": 26457.92, + "probability": 0.1722 + }, + { + "start": 26457.92, + "end": 26459.14, + "probability": 0.377 + }, + { + "start": 26463.49, + "end": 26465.12, + "probability": 0.9424 + }, + { + "start": 26465.12, + "end": 26469.18, + "probability": 0.5564 + }, + { + "start": 26469.56, + "end": 26472.02, + "probability": 0.2084 + }, + { + "start": 26472.4, + "end": 26472.4, + "probability": 0.0751 + }, + { + "start": 26472.4, + "end": 26472.58, + "probability": 0.2162 + }, + { + "start": 26473.46, + "end": 26473.8, + "probability": 0.1347 + }, + { + "start": 26474.1, + "end": 26474.1, + "probability": 0.2261 + }, + { + "start": 26474.1, + "end": 26474.1, + "probability": 0.0762 + }, + { + "start": 26475.08, + "end": 26476.7, + "probability": 0.0462 + }, + { + "start": 26476.96, + "end": 26477.14, + "probability": 0.116 + }, + { + "start": 26477.74, + "end": 26477.74, + "probability": 0.0587 + }, + { + "start": 26477.74, + "end": 26477.76, + "probability": 0.3736 + }, + { + "start": 26477.8, + "end": 26481.22, + "probability": 0.0648 + }, + { + "start": 26481.22, + "end": 26481.22, + "probability": 0.2015 + }, + { + "start": 26481.22, + "end": 26481.44, + "probability": 0.1457 + }, + { + "start": 26485.42, + "end": 26487.74, + "probability": 0.4548 + }, + { + "start": 26488.54, + "end": 26490.24, + "probability": 0.1533 + }, + { + "start": 26490.28, + "end": 26490.84, + "probability": 0.229 + }, + { + "start": 26491.22, + "end": 26492.7, + "probability": 0.0398 + }, + { + "start": 26492.77, + "end": 26495.38, + "probability": 0.0583 + }, + { + "start": 26495.42, + "end": 26498.84, + "probability": 0.0199 + }, + { + "start": 26503.68, + "end": 26503.98, + "probability": 0.0173 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.0, + "end": 26548.0, + "probability": 0.0 + }, + { + "start": 26548.12, + "end": 26548.92, + "probability": 0.0039 + }, + { + "start": 26549.04, + "end": 26552.08, + "probability": 0.0852 + }, + { + "start": 26553.02, + "end": 26554.68, + "probability": 0.5109 + }, + { + "start": 26555.16, + "end": 26558.14, + "probability": 0.8924 + }, + { + "start": 26558.62, + "end": 26564.18, + "probability": 0.8511 + }, + { + "start": 26564.8, + "end": 26565.5, + "probability": 0.739 + }, + { + "start": 26566.03, + "end": 26567.18, + "probability": 0.0297 + }, + { + "start": 26567.86, + "end": 26568.24, + "probability": 0.1152 + }, + { + "start": 26568.34, + "end": 26568.72, + "probability": 0.5928 + }, + { + "start": 26569.54, + "end": 26572.26, + "probability": 0.8616 + }, + { + "start": 26572.64, + "end": 26573.48, + "probability": 0.1254 + }, + { + "start": 26573.5, + "end": 26574.96, + "probability": 0.8845 + }, + { + "start": 26575.36, + "end": 26580.08, + "probability": 0.7748 + }, + { + "start": 26580.68, + "end": 26581.91, + "probability": 0.5847 + }, + { + "start": 26582.18, + "end": 26582.86, + "probability": 0.2532 + }, + { + "start": 26583.2, + "end": 26584.28, + "probability": 0.6016 + }, + { + "start": 26584.7, + "end": 26586.1, + "probability": 0.9951 + }, + { + "start": 26586.16, + "end": 26587.32, + "probability": 0.8756 + }, + { + "start": 26587.98, + "end": 26590.9, + "probability": 0.8643 + }, + { + "start": 26591.42, + "end": 26594.96, + "probability": 0.7889 + }, + { + "start": 26595.5, + "end": 26597.36, + "probability": 0.8566 + }, + { + "start": 26597.9, + "end": 26599.24, + "probability": 0.9585 + }, + { + "start": 26599.71, + "end": 26601.54, + "probability": 0.3863 + }, + { + "start": 26601.72, + "end": 26602.49, + "probability": 0.1007 + }, + { + "start": 26602.72, + "end": 26604.18, + "probability": 0.557 + }, + { + "start": 26604.68, + "end": 26605.44, + "probability": 0.6872 + }, + { + "start": 26605.54, + "end": 26607.16, + "probability": 0.6001 + }, + { + "start": 26607.42, + "end": 26608.88, + "probability": 0.7571 + }, + { + "start": 26609.0, + "end": 26609.52, + "probability": 0.4879 + }, + { + "start": 26610.1, + "end": 26610.96, + "probability": 0.5291 + }, + { + "start": 26610.98, + "end": 26614.0, + "probability": 0.794 + }, + { + "start": 26614.6, + "end": 26615.44, + "probability": 0.6648 + }, + { + "start": 26615.98, + "end": 26620.54, + "probability": 0.8339 + }, + { + "start": 26621.14, + "end": 26624.9, + "probability": 0.7721 + }, + { + "start": 26624.9, + "end": 26626.54, + "probability": 0.5332 + }, + { + "start": 26627.1, + "end": 26629.66, + "probability": 0.2918 + }, + { + "start": 26630.06, + "end": 26630.28, + "probability": 0.0884 + }, + { + "start": 26630.28, + "end": 26630.72, + "probability": 0.2998 + }, + { + "start": 26631.18, + "end": 26633.86, + "probability": 0.5645 + }, + { + "start": 26634.34, + "end": 26635.19, + "probability": 0.4452 + }, + { + "start": 26635.24, + "end": 26635.94, + "probability": 0.2229 + }, + { + "start": 26636.62, + "end": 26637.34, + "probability": 0.5438 + }, + { + "start": 26637.34, + "end": 26638.14, + "probability": 0.4108 + }, + { + "start": 26638.2, + "end": 26638.86, + "probability": 0.4254 + }, + { + "start": 26644.02, + "end": 26644.8, + "probability": 0.2449 + }, + { + "start": 26651.84, + "end": 26655.11, + "probability": 0.1024 + }, + { + "start": 26656.52, + "end": 26657.02, + "probability": 0.1758 + }, + { + "start": 26657.02, + "end": 26657.02, + "probability": 0.3029 + }, + { + "start": 26657.02, + "end": 26659.24, + "probability": 0.4729 + }, + { + "start": 26659.36, + "end": 26661.85, + "probability": 0.9845 + }, + { + "start": 26662.96, + "end": 26664.92, + "probability": 0.8635 + }, + { + "start": 26676.4, + "end": 26678.6, + "probability": 0.5641 + }, + { + "start": 26682.54, + "end": 26683.42, + "probability": 0.7371 + }, + { + "start": 26683.68, + "end": 26684.66, + "probability": 0.6648 + }, + { + "start": 26684.96, + "end": 26688.86, + "probability": 0.9806 + }, + { + "start": 26689.02, + "end": 26692.55, + "probability": 0.9051 + }, + { + "start": 26692.8, + "end": 26694.02, + "probability": 0.8861 + }, + { + "start": 26694.44, + "end": 26696.68, + "probability": 0.5004 + }, + { + "start": 26697.02, + "end": 26698.24, + "probability": 0.9336 + }, + { + "start": 26698.34, + "end": 26700.68, + "probability": 0.9732 + }, + { + "start": 26701.1, + "end": 26703.84, + "probability": 0.8624 + }, + { + "start": 26704.34, + "end": 26706.22, + "probability": 0.9492 + }, + { + "start": 26708.22, + "end": 26708.42, + "probability": 0.0136 + }, + { + "start": 26708.42, + "end": 26711.06, + "probability": 0.8723 + }, + { + "start": 26711.4, + "end": 26712.68, + "probability": 0.8636 + }, + { + "start": 26712.72, + "end": 26714.12, + "probability": 0.3616 + }, + { + "start": 26714.14, + "end": 26716.46, + "probability": 0.8188 + }, + { + "start": 26716.68, + "end": 26719.36, + "probability": 0.4445 + }, + { + "start": 26719.36, + "end": 26719.36, + "probability": 0.6216 + }, + { + "start": 26719.36, + "end": 26719.52, + "probability": 0.7606 + }, + { + "start": 26719.94, + "end": 26721.74, + "probability": 0.9058 + }, + { + "start": 26721.98, + "end": 26723.4, + "probability": 0.9094 + }, + { + "start": 26723.58, + "end": 26725.24, + "probability": 0.0583 + }, + { + "start": 26725.24, + "end": 26725.64, + "probability": 0.0034 + }, + { + "start": 26725.64, + "end": 26726.88, + "probability": 0.0389 + }, + { + "start": 26728.27, + "end": 26729.6, + "probability": 0.4026 + }, + { + "start": 26729.6, + "end": 26729.6, + "probability": 0.5896 + }, + { + "start": 26729.6, + "end": 26729.6, + "probability": 0.0447 + }, + { + "start": 26729.6, + "end": 26729.6, + "probability": 0.3739 + }, + { + "start": 26729.6, + "end": 26733.32, + "probability": 0.9714 + }, + { + "start": 26733.32, + "end": 26737.24, + "probability": 0.8421 + }, + { + "start": 26738.59, + "end": 26739.62, + "probability": 0.0125 + }, + { + "start": 26739.72, + "end": 26740.26, + "probability": 0.032 + }, + { + "start": 26740.26, + "end": 26740.26, + "probability": 0.4063 + }, + { + "start": 26740.26, + "end": 26741.42, + "probability": 0.284 + }, + { + "start": 26741.9, + "end": 26742.28, + "probability": 0.0393 + }, + { + "start": 26742.28, + "end": 26744.4, + "probability": 0.5873 + }, + { + "start": 26744.5, + "end": 26746.9, + "probability": 0.3283 + }, + { + "start": 26747.16, + "end": 26748.68, + "probability": 0.3811 + }, + { + "start": 26748.68, + "end": 26748.68, + "probability": 0.0958 + }, + { + "start": 26748.68, + "end": 26748.68, + "probability": 0.0846 + }, + { + "start": 26748.68, + "end": 26753.76, + "probability": 0.7713 + }, + { + "start": 26754.04, + "end": 26757.78, + "probability": 0.9679 + }, + { + "start": 26758.1, + "end": 26759.66, + "probability": 0.9958 + }, + { + "start": 26759.9, + "end": 26762.0, + "probability": 0.9945 + }, + { + "start": 26762.36, + "end": 26762.36, + "probability": 0.1617 + }, + { + "start": 26762.36, + "end": 26762.36, + "probability": 0.0229 + }, + { + "start": 26762.36, + "end": 26762.36, + "probability": 0.0805 + }, + { + "start": 26762.36, + "end": 26763.58, + "probability": 0.999 + }, + { + "start": 26764.02, + "end": 26765.7, + "probability": 0.8831 + }, + { + "start": 26765.8, + "end": 26765.98, + "probability": 0.4811 + }, + { + "start": 26765.98, + "end": 26770.56, + "probability": 0.9888 + }, + { + "start": 26770.76, + "end": 26771.86, + "probability": 0.9643 + }, + { + "start": 26771.94, + "end": 26773.14, + "probability": 0.9351 + }, + { + "start": 26773.38, + "end": 26774.94, + "probability": 0.9896 + }, + { + "start": 26775.1, + "end": 26775.46, + "probability": 0.8662 + }, + { + "start": 26776.44, + "end": 26778.1, + "probability": 0.8737 + }, + { + "start": 26778.42, + "end": 26779.76, + "probability": 0.85 + }, + { + "start": 26780.16, + "end": 26780.34, + "probability": 0.1516 + }, + { + "start": 26780.34, + "end": 26780.34, + "probability": 0.0015 + }, + { + "start": 26780.4, + "end": 26780.4, + "probability": 0.0389 + }, + { + "start": 26780.4, + "end": 26780.4, + "probability": 0.201 + }, + { + "start": 26780.4, + "end": 26782.2, + "probability": 0.6401 + }, + { + "start": 26782.42, + "end": 26786.04, + "probability": 0.9479 + }, + { + "start": 26786.42, + "end": 26789.86, + "probability": 0.8896 + }, + { + "start": 26790.8, + "end": 26790.84, + "probability": 0.2088 + }, + { + "start": 26790.84, + "end": 26792.98, + "probability": 0.9673 + }, + { + "start": 26793.46, + "end": 26793.56, + "probability": 0.0473 + }, + { + "start": 26793.56, + "end": 26797.32, + "probability": 0.9277 + }, + { + "start": 26797.53, + "end": 26799.36, + "probability": 0.8418 + }, + { + "start": 26799.42, + "end": 26801.82, + "probability": 0.9709 + }, + { + "start": 26802.2, + "end": 26802.2, + "probability": 0.0661 + }, + { + "start": 26802.2, + "end": 26803.14, + "probability": 0.4179 + }, + { + "start": 26803.24, + "end": 26803.82, + "probability": 0.7129 + }, + { + "start": 26803.9, + "end": 26804.16, + "probability": 0.3753 + }, + { + "start": 26804.16, + "end": 26804.16, + "probability": 0.4678 + }, + { + "start": 26804.16, + "end": 26805.34, + "probability": 0.5461 + }, + { + "start": 26805.62, + "end": 26806.06, + "probability": 0.8562 + }, + { + "start": 26806.3, + "end": 26808.22, + "probability": 0.7541 + }, + { + "start": 26808.72, + "end": 26809.76, + "probability": 0.7481 + }, + { + "start": 26810.3, + "end": 26811.02, + "probability": 0.684 + }, + { + "start": 26811.02, + "end": 26814.78, + "probability": 0.9886 + }, + { + "start": 26815.08, + "end": 26815.72, + "probability": 0.8848 + }, + { + "start": 26816.1, + "end": 26817.26, + "probability": 0.9912 + }, + { + "start": 26817.42, + "end": 26818.57, + "probability": 0.9336 + }, + { + "start": 26818.7, + "end": 26821.28, + "probability": 0.5096 + }, + { + "start": 26821.98, + "end": 26822.46, + "probability": 0.4497 + }, + { + "start": 26822.9, + "end": 26827.48, + "probability": 0.3616 + }, + { + "start": 26828.72, + "end": 26829.98, + "probability": 0.1839 + }, + { + "start": 26830.38, + "end": 26831.03, + "probability": 0.2182 + }, + { + "start": 26833.6, + "end": 26833.6, + "probability": 0.1209 + }, + { + "start": 26834.46, + "end": 26836.8, + "probability": 0.3023 + }, + { + "start": 26836.84, + "end": 26838.2, + "probability": 0.0574 + }, + { + "start": 26838.3, + "end": 26838.9, + "probability": 0.0304 + }, + { + "start": 26838.9, + "end": 26838.9, + "probability": 0.0604 + }, + { + "start": 26838.9, + "end": 26842.56, + "probability": 0.2867 + }, + { + "start": 26845.42, + "end": 26845.9, + "probability": 0.0414 + }, + { + "start": 26846.45, + "end": 26847.34, + "probability": 0.263 + }, + { + "start": 26847.34, + "end": 26847.64, + "probability": 0.0733 + }, + { + "start": 26848.08, + "end": 26849.4, + "probability": 0.171 + }, + { + "start": 26850.0, + "end": 26856.4, + "probability": 0.0848 + }, + { + "start": 26856.4, + "end": 26856.44, + "probability": 0.0183 + }, + { + "start": 26856.44, + "end": 26856.44, + "probability": 0.0605 + }, + { + "start": 26856.44, + "end": 26856.44, + "probability": 0.1062 + }, + { + "start": 26856.44, + "end": 26856.98, + "probability": 0.0467 + }, + { + "start": 26857.64, + "end": 26859.66, + "probability": 0.0773 + }, + { + "start": 26859.66, + "end": 26860.47, + "probability": 0.1517 + }, + { + "start": 26860.78, + "end": 26860.92, + "probability": 0.157 + }, + { + "start": 26862.75, + "end": 26864.86, + "probability": 0.0543 + }, + { + "start": 26864.86, + "end": 26866.16, + "probability": 0.1107 + }, + { + "start": 26866.42, + "end": 26868.1, + "probability": 0.5514 + }, + { + "start": 26874.78, + "end": 26878.0, + "probability": 0.0992 + }, + { + "start": 26887.0, + "end": 26887.0, + "probability": 0.0 + }, + { + "start": 26887.0, + "end": 26887.0, + "probability": 0.0 + }, + { + "start": 26887.0, + "end": 26887.0, + "probability": 0.0 + }, + { + "start": 26887.0, + "end": 26887.0, + "probability": 0.0 + }, + { + "start": 26887.0, + "end": 26887.0, + "probability": 0.0 + }, + { + "start": 26887.0, + "end": 26887.0, + "probability": 0.0 + }, + { + "start": 26887.0, + "end": 26887.0, + "probability": 0.0 + }, + { + "start": 26887.0, + "end": 26887.0, + "probability": 0.0 + }, + { + "start": 26887.0, + "end": 26887.0, + "probability": 0.0 + }, + { + "start": 26887.0, + "end": 26887.0, + "probability": 0.0 + }, + { + "start": 26887.0, + "end": 26887.0, + "probability": 0.0 + }, + { + "start": 26887.0, + "end": 26887.0, + "probability": 0.0 + }, + { + "start": 26887.0, + "end": 26887.0, + "probability": 0.0 + }, + { + "start": 26887.18, + "end": 26887.2, + "probability": 0.0545 + }, + { + "start": 26887.2, + "end": 26887.2, + "probability": 0.3076 + }, + { + "start": 26887.2, + "end": 26887.2, + "probability": 0.1083 + }, + { + "start": 26887.2, + "end": 26887.2, + "probability": 0.0222 + }, + { + "start": 26887.2, + "end": 26888.56, + "probability": 0.9322 + }, + { + "start": 26888.66, + "end": 26890.22, + "probability": 0.9939 + }, + { + "start": 26890.48, + "end": 26892.16, + "probability": 0.9941 + }, + { + "start": 26892.56, + "end": 26896.06, + "probability": 0.9355 + }, + { + "start": 26896.28, + "end": 26896.74, + "probability": 0.5295 + }, + { + "start": 26896.76, + "end": 26896.76, + "probability": 0.0409 + }, + { + "start": 26896.86, + "end": 26897.96, + "probability": 0.6672 + }, + { + "start": 26898.2, + "end": 26899.58, + "probability": 0.6155 + }, + { + "start": 26900.1, + "end": 26901.08, + "probability": 0.1872 + }, + { + "start": 26901.78, + "end": 26902.8, + "probability": 0.0141 + }, + { + "start": 26903.04, + "end": 26903.82, + "probability": 0.5852 + }, + { + "start": 26903.86, + "end": 26903.86, + "probability": 0.0354 + }, + { + "start": 26904.02, + "end": 26904.22, + "probability": 0.0619 + }, + { + "start": 26904.82, + "end": 26905.38, + "probability": 0.1148 + }, + { + "start": 26905.92, + "end": 26908.02, + "probability": 0.3239 + }, + { + "start": 26908.02, + "end": 26909.22, + "probability": 0.538 + }, + { + "start": 26909.46, + "end": 26912.86, + "probability": 0.99 + }, + { + "start": 26912.9, + "end": 26914.18, + "probability": 0.5 + }, + { + "start": 26914.56, + "end": 26916.9, + "probability": 0.9795 + }, + { + "start": 26917.24, + "end": 26919.36, + "probability": 0.9961 + }, + { + "start": 26919.7, + "end": 26923.18, + "probability": 0.8385 + }, + { + "start": 26923.48, + "end": 26924.82, + "probability": 0.9865 + }, + { + "start": 26925.4, + "end": 26928.64, + "probability": 0.9976 + }, + { + "start": 26930.67, + "end": 26934.52, + "probability": 0.777 + }, + { + "start": 26935.18, + "end": 26936.34, + "probability": 0.8576 + }, + { + "start": 26936.42, + "end": 26937.7, + "probability": 0.5854 + }, + { + "start": 26937.95, + "end": 26938.84, + "probability": 0.1235 + }, + { + "start": 26939.08, + "end": 26939.14, + "probability": 0.2587 + }, + { + "start": 26939.14, + "end": 26940.1, + "probability": 0.698 + }, + { + "start": 26940.5, + "end": 26942.54, + "probability": 0.9492 + }, + { + "start": 26942.82, + "end": 26944.78, + "probability": 0.8145 + }, + { + "start": 26945.24, + "end": 26945.48, + "probability": 0.0715 + }, + { + "start": 26945.48, + "end": 26945.48, + "probability": 0.1121 + }, + { + "start": 26945.48, + "end": 26946.18, + "probability": 0.533 + }, + { + "start": 26946.6, + "end": 26946.76, + "probability": 0.5885 + }, + { + "start": 26946.9, + "end": 26952.8, + "probability": 0.8638 + }, + { + "start": 26952.9, + "end": 26954.46, + "probability": 0.8707 + }, + { + "start": 26954.54, + "end": 26956.9, + "probability": 0.9941 + }, + { + "start": 26957.04, + "end": 26959.06, + "probability": 0.9902 + }, + { + "start": 26959.22, + "end": 26960.86, + "probability": 0.6805 + }, + { + "start": 26961.14, + "end": 26962.96, + "probability": 0.9841 + }, + { + "start": 26963.26, + "end": 26964.16, + "probability": 0.9022 + }, + { + "start": 26964.18, + "end": 26965.92, + "probability": 0.9711 + }, + { + "start": 26966.28, + "end": 26966.28, + "probability": 0.741 + }, + { + "start": 26966.28, + "end": 26967.74, + "probability": 0.9597 + }, + { + "start": 26968.34, + "end": 26969.76, + "probability": 0.9894 + }, + { + "start": 26969.82, + "end": 26971.96, + "probability": 0.9453 + }, + { + "start": 26972.56, + "end": 26974.04, + "probability": 0.9452 + }, + { + "start": 26974.2, + "end": 26979.84, + "probability": 0.9783 + }, + { + "start": 26979.84, + "end": 26981.86, + "probability": 0.9699 + }, + { + "start": 26982.84, + "end": 26984.66, + "probability": 0.8462 + }, + { + "start": 26985.44, + "end": 26985.52, + "probability": 0.1153 + }, + { + "start": 26985.56, + "end": 26985.64, + "probability": 0.4573 + }, + { + "start": 26985.64, + "end": 26986.2, + "probability": 0.3423 + }, + { + "start": 26986.4, + "end": 26986.4, + "probability": 0.0568 + }, + { + "start": 26986.4, + "end": 26987.1, + "probability": 0.3663 + }, + { + "start": 26990.14, + "end": 26990.76, + "probability": 0.0208 + }, + { + "start": 26990.76, + "end": 26990.94, + "probability": 0.0902 + }, + { + "start": 26990.94, + "end": 26990.94, + "probability": 0.6135 + }, + { + "start": 26990.96, + "end": 26993.0, + "probability": 0.5376 + }, + { + "start": 26993.32, + "end": 26995.06, + "probability": 0.2986 + }, + { + "start": 26996.58, + "end": 26996.86, + "probability": 0.1706 + }, + { + "start": 26996.86, + "end": 26996.86, + "probability": 0.3295 + }, + { + "start": 26996.86, + "end": 26997.83, + "probability": 0.8164 + }, + { + "start": 26998.02, + "end": 27000.34, + "probability": 0.9057 + }, + { + "start": 27000.36, + "end": 27001.33, + "probability": 0.6618 + }, + { + "start": 27001.42, + "end": 27003.94, + "probability": 0.9235 + }, + { + "start": 27004.32, + "end": 27006.03, + "probability": 0.9933 + }, + { + "start": 27007.08, + "end": 27008.04, + "probability": 0.0531 + }, + { + "start": 27008.64, + "end": 27009.71, + "probability": 0.8158 + }, + { + "start": 27010.18, + "end": 27010.42, + "probability": 0.0542 + }, + { + "start": 27010.42, + "end": 27011.34, + "probability": 0.6065 + }, + { + "start": 27011.92, + "end": 27013.36, + "probability": 0.7485 + }, + { + "start": 27013.52, + "end": 27015.38, + "probability": 0.5685 + }, + { + "start": 27015.38, + "end": 27019.4, + "probability": 0.6795 + }, + { + "start": 27019.44, + "end": 27020.22, + "probability": 0.3714 + }, + { + "start": 27020.58, + "end": 27023.4, + "probability": 0.5039 + }, + { + "start": 27023.4, + "end": 27025.72, + "probability": 0.8112 + }, + { + "start": 27026.02, + "end": 27026.88, + "probability": 0.1252 + }, + { + "start": 27028.14, + "end": 27029.2, + "probability": 0.009 + }, + { + "start": 27029.66, + "end": 27029.86, + "probability": 0.0495 + }, + { + "start": 27029.86, + "end": 27029.88, + "probability": 0.1416 + }, + { + "start": 27029.88, + "end": 27029.88, + "probability": 0.4125 + }, + { + "start": 27029.88, + "end": 27030.9, + "probability": 0.2355 + }, + { + "start": 27031.4, + "end": 27033.66, + "probability": 0.1771 + }, + { + "start": 27033.72, + "end": 27034.08, + "probability": 0.4429 + }, + { + "start": 27034.4, + "end": 27034.88, + "probability": 0.1678 + }, + { + "start": 27035.5, + "end": 27035.78, + "probability": 0.0472 + }, + { + "start": 27035.78, + "end": 27037.08, + "probability": 0.4337 + }, + { + "start": 27037.08, + "end": 27037.38, + "probability": 0.5616 + }, + { + "start": 27037.52, + "end": 27037.58, + "probability": 0.7448 + }, + { + "start": 27037.58, + "end": 27038.12, + "probability": 0.5318 + }, + { + "start": 27039.34, + "end": 27041.76, + "probability": 0.3786 + }, + { + "start": 27042.58, + "end": 27042.58, + "probability": 0.4119 + }, + { + "start": 27044.84, + "end": 27044.84, + "probability": 0.0718 + }, + { + "start": 27044.84, + "end": 27044.84, + "probability": 0.0086 + }, + { + "start": 27044.84, + "end": 27044.84, + "probability": 0.1742 + }, + { + "start": 27044.84, + "end": 27046.17, + "probability": 0.6544 + }, + { + "start": 27047.16, + "end": 27047.9, + "probability": 0.8871 + }, + { + "start": 27048.2, + "end": 27048.2, + "probability": 0.0296 + }, + { + "start": 27048.2, + "end": 27049.51, + "probability": 0.6027 + }, + { + "start": 27049.84, + "end": 27051.2, + "probability": 0.7744 + }, + { + "start": 27051.44, + "end": 27052.78, + "probability": 0.9959 + }, + { + "start": 27052.84, + "end": 27053.24, + "probability": 0.7201 + }, + { + "start": 27053.54, + "end": 27054.36, + "probability": 0.9651 + }, + { + "start": 27054.46, + "end": 27055.1, + "probability": 0.8462 + }, + { + "start": 27057.44, + "end": 27057.92, + "probability": 0.3845 + }, + { + "start": 27059.14, + "end": 27062.52, + "probability": 0.0967 + }, + { + "start": 27062.52, + "end": 27062.98, + "probability": 0.3894 + }, + { + "start": 27064.74, + "end": 27066.9, + "probability": 0.0043 + }, + { + "start": 27071.74, + "end": 27074.34, + "probability": 0.6563 + }, + { + "start": 27074.62, + "end": 27076.36, + "probability": 0.5783 + }, + { + "start": 27076.44, + "end": 27076.54, + "probability": 0.0345 + }, + { + "start": 27076.54, + "end": 27078.18, + "probability": 0.4817 + }, + { + "start": 27081.02, + "end": 27082.3, + "probability": 0.1789 + }, + { + "start": 27089.72, + "end": 27090.96, + "probability": 0.3605 + }, + { + "start": 27093.06, + "end": 27094.74, + "probability": 0.6197 + }, + { + "start": 27094.96, + "end": 27095.9, + "probability": 0.5654 + }, + { + "start": 27095.94, + "end": 27096.68, + "probability": 0.3053 + }, + { + "start": 27096.72, + "end": 27097.64, + "probability": 0.9738 + }, + { + "start": 27097.86, + "end": 27098.68, + "probability": 0.7089 + }, + { + "start": 27099.3, + "end": 27101.62, + "probability": 0.9253 + }, + { + "start": 27103.04, + "end": 27104.56, + "probability": 0.9502 + }, + { + "start": 27106.23, + "end": 27108.76, + "probability": 0.6152 + }, + { + "start": 27109.24, + "end": 27110.5, + "probability": 0.1324 + }, + { + "start": 27110.72, + "end": 27113.56, + "probability": 0.7986 + }, + { + "start": 27114.37, + "end": 27116.88, + "probability": 0.5692 + }, + { + "start": 27117.9, + "end": 27118.6, + "probability": 0.9577 + }, + { + "start": 27119.76, + "end": 27120.12, + "probability": 0.969 + }, + { + "start": 27122.3, + "end": 27124.13, + "probability": 0.9572 + }, + { + "start": 27124.52, + "end": 27125.46, + "probability": 0.6056 + }, + { + "start": 27125.6, + "end": 27126.94, + "probability": 0.7014 + }, + { + "start": 27127.06, + "end": 27128.08, + "probability": 0.9352 + }, + { + "start": 27129.14, + "end": 27131.04, + "probability": 0.966 + }, + { + "start": 27131.56, + "end": 27132.63, + "probability": 0.8145 + }, + { + "start": 27133.92, + "end": 27135.76, + "probability": 0.9634 + }, + { + "start": 27139.48, + "end": 27141.22, + "probability": 0.1617 + }, + { + "start": 27141.22, + "end": 27142.92, + "probability": 0.8087 + }, + { + "start": 27143.66, + "end": 27147.76, + "probability": 0.9847 + }, + { + "start": 27148.58, + "end": 27149.5, + "probability": 0.945 + }, + { + "start": 27150.78, + "end": 27151.46, + "probability": 0.3748 + }, + { + "start": 27151.46, + "end": 27151.92, + "probability": 0.7328 + }, + { + "start": 27152.42, + "end": 27152.88, + "probability": 0.772 + }, + { + "start": 27153.38, + "end": 27153.78, + "probability": 0.7433 + }, + { + "start": 27153.9, + "end": 27154.3, + "probability": 0.7826 + }, + { + "start": 27156.06, + "end": 27159.0, + "probability": 0.9913 + }, + { + "start": 27160.32, + "end": 27160.86, + "probability": 0.8818 + }, + { + "start": 27162.22, + "end": 27163.96, + "probability": 0.9946 + }, + { + "start": 27166.14, + "end": 27166.28, + "probability": 0.1347 + }, + { + "start": 27166.28, + "end": 27167.04, + "probability": 0.0144 + }, + { + "start": 27167.6, + "end": 27171.24, + "probability": 0.933 + }, + { + "start": 27172.16, + "end": 27175.2, + "probability": 0.9989 + }, + { + "start": 27175.82, + "end": 27176.86, + "probability": 0.9299 + }, + { + "start": 27178.16, + "end": 27180.12, + "probability": 0.9253 + }, + { + "start": 27180.82, + "end": 27182.62, + "probability": 0.927 + }, + { + "start": 27183.77, + "end": 27184.22, + "probability": 0.0424 + }, + { + "start": 27184.22, + "end": 27184.66, + "probability": 0.5034 + }, + { + "start": 27185.54, + "end": 27187.46, + "probability": 0.7852 + }, + { + "start": 27187.6, + "end": 27189.2, + "probability": 0.9947 + }, + { + "start": 27190.22, + "end": 27190.9, + "probability": 0.9472 + }, + { + "start": 27191.24, + "end": 27193.34, + "probability": 0.0757 + }, + { + "start": 27193.76, + "end": 27194.56, + "probability": 0.1423 + }, + { + "start": 27194.84, + "end": 27196.52, + "probability": 0.6522 + }, + { + "start": 27198.26, + "end": 27200.02, + "probability": 0.8139 + }, + { + "start": 27200.04, + "end": 27200.04, + "probability": 0.1253 + }, + { + "start": 27200.04, + "end": 27204.1, + "probability": 0.9705 + }, + { + "start": 27205.0, + "end": 27205.04, + "probability": 0.0248 + }, + { + "start": 27205.04, + "end": 27208.02, + "probability": 0.9593 + }, + { + "start": 27208.82, + "end": 27208.82, + "probability": 0.189 + }, + { + "start": 27208.82, + "end": 27208.82, + "probability": 0.2997 + }, + { + "start": 27208.82, + "end": 27212.22, + "probability": 0.8763 + }, + { + "start": 27212.8, + "end": 27215.6, + "probability": 0.9777 + }, + { + "start": 27215.62, + "end": 27216.26, + "probability": 0.1258 + }, + { + "start": 27216.26, + "end": 27216.36, + "probability": 0.3233 + }, + { + "start": 27217.1, + "end": 27218.62, + "probability": 0.9878 + }, + { + "start": 27218.82, + "end": 27219.64, + "probability": 0.2599 + }, + { + "start": 27219.74, + "end": 27220.74, + "probability": 0.9957 + }, + { + "start": 27221.3, + "end": 27222.84, + "probability": 0.9864 + }, + { + "start": 27223.28, + "end": 27226.3, + "probability": 0.0466 + }, + { + "start": 27226.3, + "end": 27227.56, + "probability": 0.1175 + }, + { + "start": 27228.26, + "end": 27230.78, + "probability": 0.7677 + }, + { + "start": 27231.92, + "end": 27232.4, + "probability": 0.1226 + }, + { + "start": 27232.46, + "end": 27235.52, + "probability": 0.664 + }, + { + "start": 27239.66, + "end": 27239.74, + "probability": 0.045 + }, + { + "start": 27239.74, + "end": 27240.9, + "probability": 0.2295 + }, + { + "start": 27241.8, + "end": 27244.36, + "probability": 0.9935 + }, + { + "start": 27245.1, + "end": 27245.44, + "probability": 0.3975 + }, + { + "start": 27245.56, + "end": 27248.48, + "probability": 0.9684 + }, + { + "start": 27248.76, + "end": 27249.72, + "probability": 0.9824 + }, + { + "start": 27249.84, + "end": 27252.66, + "probability": 0.6362 + }, + { + "start": 27253.74, + "end": 27255.22, + "probability": 0.9969 + }, + { + "start": 27255.28, + "end": 27257.72, + "probability": 0.8666 + }, + { + "start": 27258.48, + "end": 27259.38, + "probability": 0.9921 + }, + { + "start": 27259.46, + "end": 27260.52, + "probability": 0.7626 + }, + { + "start": 27261.5, + "end": 27261.94, + "probability": 0.0382 + }, + { + "start": 27263.26, + "end": 27264.98, + "probability": 0.7022 + }, + { + "start": 27264.98, + "end": 27267.52, + "probability": 0.9265 + }, + { + "start": 27268.24, + "end": 27268.24, + "probability": 0.097 + }, + { + "start": 27268.3, + "end": 27272.26, + "probability": 0.9207 + }, + { + "start": 27272.62, + "end": 27274.04, + "probability": 0.7157 + }, + { + "start": 27274.74, + "end": 27278.9, + "probability": 0.998 + }, + { + "start": 27278.96, + "end": 27280.3, + "probability": 0.833 + }, + { + "start": 27280.6, + "end": 27284.04, + "probability": 0.9962 + }, + { + "start": 27284.68, + "end": 27285.92, + "probability": 0.942 + }, + { + "start": 27286.68, + "end": 27290.84, + "probability": 0.1209 + }, + { + "start": 27290.96, + "end": 27291.02, + "probability": 0.0666 + }, + { + "start": 27291.02, + "end": 27291.68, + "probability": 0.4928 + }, + { + "start": 27292.52, + "end": 27295.38, + "probability": 0.9967 + }, + { + "start": 27296.0, + "end": 27299.46, + "probability": 0.9984 + }, + { + "start": 27300.26, + "end": 27302.96, + "probability": 0.9243 + }, + { + "start": 27303.94, + "end": 27307.56, + "probability": 0.9883 + }, + { + "start": 27307.92, + "end": 27310.6, + "probability": 0.9516 + }, + { + "start": 27312.02, + "end": 27319.62, + "probability": 0.9737 + }, + { + "start": 27320.8, + "end": 27326.2, + "probability": 0.9923 + }, + { + "start": 27327.14, + "end": 27331.04, + "probability": 0.9974 + }, + { + "start": 27331.72, + "end": 27334.34, + "probability": 0.9565 + }, + { + "start": 27336.24, + "end": 27339.02, + "probability": 0.9963 + }, + { + "start": 27339.74, + "end": 27340.52, + "probability": 0.514 + }, + { + "start": 27341.08, + "end": 27343.42, + "probability": 0.9667 + }, + { + "start": 27343.86, + "end": 27345.76, + "probability": 0.9476 + }, + { + "start": 27346.22, + "end": 27350.72, + "probability": 0.9929 + }, + { + "start": 27352.34, + "end": 27352.34, + "probability": 0.0232 + }, + { + "start": 27352.34, + "end": 27355.46, + "probability": 0.7417 + }, + { + "start": 27357.12, + "end": 27358.88, + "probability": 0.6747 + }, + { + "start": 27358.96, + "end": 27360.68, + "probability": 0.988 + }, + { + "start": 27361.12, + "end": 27363.5, + "probability": 0.9404 + }, + { + "start": 27364.66, + "end": 27365.04, + "probability": 0.0262 + }, + { + "start": 27365.04, + "end": 27366.72, + "probability": 0.7975 + }, + { + "start": 27367.44, + "end": 27369.0, + "probability": 0.7231 + }, + { + "start": 27369.58, + "end": 27372.78, + "probability": 0.9939 + }, + { + "start": 27373.94, + "end": 27374.88, + "probability": 0.8728 + }, + { + "start": 27375.74, + "end": 27375.74, + "probability": 0.0682 + }, + { + "start": 27375.74, + "end": 27376.54, + "probability": 0.6337 + }, + { + "start": 27376.58, + "end": 27377.54, + "probability": 0.6066 + }, + { + "start": 27377.54, + "end": 27380.2, + "probability": 0.7235 + }, + { + "start": 27382.76, + "end": 27382.76, + "probability": 0.1482 + }, + { + "start": 27382.76, + "end": 27382.76, + "probability": 0.6514 + }, + { + "start": 27382.76, + "end": 27383.94, + "probability": 0.042 + }, + { + "start": 27384.0, + "end": 27384.74, + "probability": 0.7165 + }, + { + "start": 27384.84, + "end": 27387.18, + "probability": 0.9115 + }, + { + "start": 27387.66, + "end": 27388.66, + "probability": 0.1457 + }, + { + "start": 27389.26, + "end": 27390.72, + "probability": 0.9351 + }, + { + "start": 27391.08, + "end": 27392.7, + "probability": 0.8766 + }, + { + "start": 27393.56, + "end": 27397.0, + "probability": 0.9519 + }, + { + "start": 27397.58, + "end": 27397.58, + "probability": 0.1277 + }, + { + "start": 27397.68, + "end": 27401.82, + "probability": 0.9947 + }, + { + "start": 27401.86, + "end": 27403.26, + "probability": 0.029 + }, + { + "start": 27403.3, + "end": 27403.58, + "probability": 0.2644 + }, + { + "start": 27404.99, + "end": 27406.82, + "probability": 0.6675 + }, + { + "start": 27406.82, + "end": 27408.55, + "probability": 0.7729 + }, + { + "start": 27409.6, + "end": 27411.88, + "probability": 0.8472 + }, + { + "start": 27411.92, + "end": 27413.78, + "probability": 0.1002 + }, + { + "start": 27414.36, + "end": 27414.42, + "probability": 0.0565 + }, + { + "start": 27414.42, + "end": 27414.42, + "probability": 0.0273 + }, + { + "start": 27414.42, + "end": 27414.42, + "probability": 0.1098 + }, + { + "start": 27414.42, + "end": 27414.42, + "probability": 0.0772 + }, + { + "start": 27414.42, + "end": 27417.38, + "probability": 0.9081 + }, + { + "start": 27418.02, + "end": 27420.66, + "probability": 0.751 + }, + { + "start": 27420.86, + "end": 27420.94, + "probability": 0.0967 + }, + { + "start": 27421.0, + "end": 27421.47, + "probability": 0.6651 + }, + { + "start": 27424.22, + "end": 27424.6, + "probability": 0.2189 + }, + { + "start": 27424.6, + "end": 27426.35, + "probability": 0.6416 + }, + { + "start": 27427.1, + "end": 27427.84, + "probability": 0.0166 + }, + { + "start": 27427.84, + "end": 27427.84, + "probability": 0.1645 + }, + { + "start": 27427.84, + "end": 27430.12, + "probability": 0.8459 + }, + { + "start": 27430.22, + "end": 27430.86, + "probability": 0.868 + }, + { + "start": 27431.1, + "end": 27433.12, + "probability": 0.723 + }, + { + "start": 27433.62, + "end": 27437.58, + "probability": 0.3446 + }, + { + "start": 27437.74, + "end": 27438.74, + "probability": 0.2601 + }, + { + "start": 27439.16, + "end": 27442.16, + "probability": 0.7922 + }, + { + "start": 27442.88, + "end": 27444.42, + "probability": 0.7265 + }, + { + "start": 27444.52, + "end": 27446.2, + "probability": 0.886 + }, + { + "start": 27447.1, + "end": 27450.09, + "probability": 0.6878 + }, + { + "start": 27451.5, + "end": 27455.51, + "probability": 0.7478 + }, + { + "start": 27456.48, + "end": 27457.76, + "probability": 0.9878 + }, + { + "start": 27464.64, + "end": 27468.04, + "probability": 0.997 + }, + { + "start": 27468.04, + "end": 27472.66, + "probability": 0.9706 + }, + { + "start": 27472.78, + "end": 27473.04, + "probability": 0.7088 + }, + { + "start": 27473.2, + "end": 27474.62, + "probability": 0.8977 + }, + { + "start": 27474.98, + "end": 27476.42, + "probability": 0.7991 + }, + { + "start": 27476.9, + "end": 27480.48, + "probability": 0.868 + }, + { + "start": 27480.48, + "end": 27482.9, + "probability": 0.8171 + }, + { + "start": 27483.94, + "end": 27485.54, + "probability": 0.7925 + }, + { + "start": 27485.66, + "end": 27488.3, + "probability": 0.844 + }, + { + "start": 27494.98, + "end": 27494.98, + "probability": 0.1325 + }, + { + "start": 27495.02, + "end": 27495.04, + "probability": 0.5293 + }, + { + "start": 27509.7, + "end": 27510.86, + "probability": 0.6061 + }, + { + "start": 27511.38, + "end": 27512.52, + "probability": 0.9328 + }, + { + "start": 27515.14, + "end": 27516.68, + "probability": 0.7462 + }, + { + "start": 27520.02, + "end": 27523.56, + "probability": 0.792 + }, + { + "start": 27526.1, + "end": 27527.76, + "probability": 0.9911 + }, + { + "start": 27529.04, + "end": 27532.56, + "probability": 0.9971 + }, + { + "start": 27533.04, + "end": 27534.96, + "probability": 0.8975 + }, + { + "start": 27535.64, + "end": 27536.16, + "probability": 0.2249 + }, + { + "start": 27538.18, + "end": 27539.3, + "probability": 0.8229 + }, + { + "start": 27540.84, + "end": 27544.32, + "probability": 0.9613 + }, + { + "start": 27544.74, + "end": 27549.44, + "probability": 0.9373 + }, + { + "start": 27550.74, + "end": 27551.38, + "probability": 0.5726 + }, + { + "start": 27552.18, + "end": 27553.66, + "probability": 0.8172 + }, + { + "start": 27554.76, + "end": 27557.98, + "probability": 0.9326 + }, + { + "start": 27558.72, + "end": 27561.74, + "probability": 0.9642 + }, + { + "start": 27561.86, + "end": 27562.78, + "probability": 0.8531 + }, + { + "start": 27563.04, + "end": 27564.06, + "probability": 0.9854 + }, + { + "start": 27564.3, + "end": 27565.36, + "probability": 0.9626 + }, + { + "start": 27565.46, + "end": 27566.66, + "probability": 0.7559 + }, + { + "start": 27566.92, + "end": 27567.36, + "probability": 0.6548 + }, + { + "start": 27568.98, + "end": 27571.82, + "probability": 0.7744 + }, + { + "start": 27572.62, + "end": 27575.84, + "probability": 0.9961 + }, + { + "start": 27576.62, + "end": 27578.32, + "probability": 0.8147 + }, + { + "start": 27578.84, + "end": 27579.86, + "probability": 0.9866 + }, + { + "start": 27579.96, + "end": 27581.1, + "probability": 0.962 + }, + { + "start": 27581.22, + "end": 27581.44, + "probability": 0.443 + }, + { + "start": 27582.32, + "end": 27582.99, + "probability": 0.8806 + }, + { + "start": 27584.0, + "end": 27585.78, + "probability": 0.955 + }, + { + "start": 27586.02, + "end": 27588.42, + "probability": 0.1657 + }, + { + "start": 27588.42, + "end": 27589.23, + "probability": 0.6261 + }, + { + "start": 27589.3, + "end": 27590.18, + "probability": 0.8562 + }, + { + "start": 27593.72, + "end": 27595.84, + "probability": 0.8994 + }, + { + "start": 27596.3, + "end": 27597.04, + "probability": 0.9653 + }, + { + "start": 27597.18, + "end": 27598.29, + "probability": 0.8086 + }, + { + "start": 27598.62, + "end": 27599.25, + "probability": 0.6088 + }, + { + "start": 27599.6, + "end": 27600.16, + "probability": 0.1442 + }, + { + "start": 27602.39, + "end": 27607.06, + "probability": 0.9163 + }, + { + "start": 27607.62, + "end": 27608.28, + "probability": 0.8061 + }, + { + "start": 27608.38, + "end": 27609.58, + "probability": 0.9567 + }, + { + "start": 27609.84, + "end": 27611.06, + "probability": 0.4237 + }, + { + "start": 27611.22, + "end": 27613.02, + "probability": 0.7574 + }, + { + "start": 27613.5, + "end": 27615.54, + "probability": 0.882 + }, + { + "start": 27615.64, + "end": 27616.66, + "probability": 0.9951 + }, + { + "start": 27616.82, + "end": 27618.1, + "probability": 0.7862 + }, + { + "start": 27618.76, + "end": 27620.12, + "probability": 0.9893 + }, + { + "start": 27620.4, + "end": 27621.14, + "probability": 0.6621 + }, + { + "start": 27622.38, + "end": 27624.06, + "probability": 0.6663 + }, + { + "start": 27624.6, + "end": 27626.14, + "probability": 0.769 + }, + { + "start": 27626.78, + "end": 27628.26, + "probability": 0.9894 + }, + { + "start": 27629.0, + "end": 27630.39, + "probability": 0.9353 + }, + { + "start": 27631.32, + "end": 27633.67, + "probability": 0.9951 + }, + { + "start": 27635.74, + "end": 27636.2, + "probability": 0.7153 + }, + { + "start": 27636.84, + "end": 27638.78, + "probability": 0.8972 + }, + { + "start": 27638.8, + "end": 27640.16, + "probability": 0.932 + }, + { + "start": 27641.56, + "end": 27642.86, + "probability": 0.9511 + }, + { + "start": 27643.12, + "end": 27645.68, + "probability": 0.566 + }, + { + "start": 27646.98, + "end": 27649.96, + "probability": 0.8784 + }, + { + "start": 27650.74, + "end": 27651.64, + "probability": 0.7828 + }, + { + "start": 27651.84, + "end": 27652.04, + "probability": 0.3858 + }, + { + "start": 27652.58, + "end": 27654.16, + "probability": 0.5501 + }, + { + "start": 27654.88, + "end": 27657.98, + "probability": 0.9836 + }, + { + "start": 27658.44, + "end": 27660.98, + "probability": 0.5811 + }, + { + "start": 27661.36, + "end": 27664.42, + "probability": 0.9677 + }, + { + "start": 27666.98, + "end": 27670.74, + "probability": 0.9169 + }, + { + "start": 27670.78, + "end": 27672.16, + "probability": 0.9143 + }, + { + "start": 27672.22, + "end": 27673.3, + "probability": 0.7297 + }, + { + "start": 27673.34, + "end": 27673.82, + "probability": 0.4799 + }, + { + "start": 27674.3, + "end": 27675.38, + "probability": 0.9326 + }, + { + "start": 27675.76, + "end": 27677.02, + "probability": 0.8259 + }, + { + "start": 27677.06, + "end": 27680.94, + "probability": 0.2052 + }, + { + "start": 27680.94, + "end": 27681.58, + "probability": 0.8781 + }, + { + "start": 27681.68, + "end": 27681.74, + "probability": 0.3583 + }, + { + "start": 27681.76, + "end": 27683.88, + "probability": 0.1021 + }, + { + "start": 27684.32, + "end": 27685.66, + "probability": 0.5875 + }, + { + "start": 27685.76, + "end": 27687.72, + "probability": 0.7451 + }, + { + "start": 27687.82, + "end": 27688.28, + "probability": 0.5005 + }, + { + "start": 27688.6, + "end": 27691.62, + "probability": 0.968 + }, + { + "start": 27691.62, + "end": 27693.98, + "probability": 0.9792 + }, + { + "start": 27694.06, + "end": 27694.58, + "probability": 0.4266 + }, + { + "start": 27695.08, + "end": 27697.06, + "probability": 0.7932 + }, + { + "start": 27697.82, + "end": 27698.76, + "probability": 0.8215 + }, + { + "start": 27698.84, + "end": 27700.17, + "probability": 0.9357 + }, + { + "start": 27700.36, + "end": 27701.24, + "probability": 0.8423 + }, + { + "start": 27701.3, + "end": 27701.98, + "probability": 0.865 + }, + { + "start": 27702.1, + "end": 27704.1, + "probability": 0.2234 + }, + { + "start": 27704.28, + "end": 27708.4, + "probability": 0.9261 + }, + { + "start": 27708.4, + "end": 27709.14, + "probability": 0.6789 + }, + { + "start": 27709.24, + "end": 27711.72, + "probability": 0.9755 + }, + { + "start": 27711.84, + "end": 27715.1, + "probability": 0.684 + }, + { + "start": 27715.44, + "end": 27716.64, + "probability": 0.9443 + }, + { + "start": 27717.4, + "end": 27719.14, + "probability": 0.9723 + }, + { + "start": 27719.24, + "end": 27720.06, + "probability": 0.8359 + }, + { + "start": 27720.06, + "end": 27722.18, + "probability": 0.4801 + }, + { + "start": 27722.64, + "end": 27722.78, + "probability": 0.1863 + }, + { + "start": 27722.78, + "end": 27723.76, + "probability": 0.7136 + }, + { + "start": 27723.8, + "end": 27725.78, + "probability": 0.2404 + }, + { + "start": 27725.84, + "end": 27727.52, + "probability": 0.6519 + }, + { + "start": 27727.64, + "end": 27728.04, + "probability": 0.1023 + }, + { + "start": 27728.5, + "end": 27728.78, + "probability": 0.7344 + }, + { + "start": 27729.5, + "end": 27730.26, + "probability": 0.8287 + }, + { + "start": 27730.9, + "end": 27735.92, + "probability": 0.8401 + }, + { + "start": 27735.98, + "end": 27736.66, + "probability": 0.7107 + }, + { + "start": 27736.82, + "end": 27739.08, + "probability": 0.8181 + }, + { + "start": 27739.2, + "end": 27741.86, + "probability": 0.3202 + }, + { + "start": 27742.2, + "end": 27742.8, + "probability": 0.6897 + }, + { + "start": 27742.8, + "end": 27742.9, + "probability": 0.2961 + }, + { + "start": 27743.44, + "end": 27745.62, + "probability": 0.8197 + }, + { + "start": 27745.74, + "end": 27746.56, + "probability": 0.8916 + }, + { + "start": 27746.56, + "end": 27747.3, + "probability": 0.1402 + }, + { + "start": 27747.68, + "end": 27748.38, + "probability": 0.3194 + }, + { + "start": 27748.42, + "end": 27749.26, + "probability": 0.8962 + }, + { + "start": 27749.84, + "end": 27755.18, + "probability": 0.6422 + }, + { + "start": 27755.8, + "end": 27757.12, + "probability": 0.877 + }, + { + "start": 27757.78, + "end": 27758.86, + "probability": 0.5972 + }, + { + "start": 27759.12, + "end": 27760.64, + "probability": 0.9022 + }, + { + "start": 27760.86, + "end": 27761.8, + "probability": 0.5014 + }, + { + "start": 27761.88, + "end": 27762.2, + "probability": 0.7183 + }, + { + "start": 27762.66, + "end": 27764.7, + "probability": 0.0866 + }, + { + "start": 27765.5, + "end": 27766.94, + "probability": 0.7739 + }, + { + "start": 27766.98, + "end": 27769.48, + "probability": 0.8774 + }, + { + "start": 27769.98, + "end": 27771.46, + "probability": 0.9642 + }, + { + "start": 27771.78, + "end": 27772.54, + "probability": 0.7493 + }, + { + "start": 27773.64, + "end": 27776.6, + "probability": 0.915 + }, + { + "start": 27776.66, + "end": 27777.44, + "probability": 0.6445 + }, + { + "start": 27777.5, + "end": 27779.34, + "probability": 0.809 + }, + { + "start": 27779.48, + "end": 27780.52, + "probability": 0.9873 + }, + { + "start": 27781.12, + "end": 27781.62, + "probability": 0.8325 + }, + { + "start": 27781.68, + "end": 27783.36, + "probability": 0.9087 + }, + { + "start": 27783.64, + "end": 27783.9, + "probability": 0.8758 + }, + { + "start": 27784.9, + "end": 27786.2, + "probability": 0.7622 + }, + { + "start": 27786.38, + "end": 27789.86, + "probability": 0.9388 + }, + { + "start": 27790.08, + "end": 27790.48, + "probability": 0.4185 + }, + { + "start": 27790.56, + "end": 27791.04, + "probability": 0.8918 + }, + { + "start": 27791.48, + "end": 27791.9, + "probability": 0.9384 + }, + { + "start": 27792.12, + "end": 27792.78, + "probability": 0.7873 + }, + { + "start": 27793.62, + "end": 27796.6, + "probability": 0.7261 + }, + { + "start": 27796.72, + "end": 27796.9, + "probability": 0.7638 + }, + { + "start": 27797.02, + "end": 27797.44, + "probability": 0.8559 + }, + { + "start": 27797.86, + "end": 27798.4, + "probability": 0.9069 + }, + { + "start": 27798.9, + "end": 27801.86, + "probability": 0.9952 + }, + { + "start": 27802.0, + "end": 27803.18, + "probability": 0.3533 + }, + { + "start": 27803.24, + "end": 27803.58, + "probability": 0.1542 + }, + { + "start": 27803.78, + "end": 27804.32, + "probability": 0.8862 + }, + { + "start": 27805.82, + "end": 27807.22, + "probability": 0.3528 + }, + { + "start": 27807.7, + "end": 27810.98, + "probability": 0.8184 + }, + { + "start": 27811.34, + "end": 27814.38, + "probability": 0.8838 + }, + { + "start": 27815.42, + "end": 27818.38, + "probability": 0.6226 + }, + { + "start": 27819.22, + "end": 27820.02, + "probability": 0.9479 + }, + { + "start": 27820.46, + "end": 27822.94, + "probability": 0.8875 + }, + { + "start": 27823.02, + "end": 27823.72, + "probability": 0.9487 + }, + { + "start": 27824.18, + "end": 27825.04, + "probability": 0.7765 + }, + { + "start": 27825.8, + "end": 27827.94, + "probability": 0.7263 + }, + { + "start": 27828.44, + "end": 27830.66, + "probability": 0.8647 + }, + { + "start": 27831.54, + "end": 27833.28, + "probability": 0.9042 + }, + { + "start": 27833.92, + "end": 27834.62, + "probability": 0.7812 + }, + { + "start": 27834.86, + "end": 27835.68, + "probability": 0.8501 + }, + { + "start": 27836.46, + "end": 27837.82, + "probability": 0.7644 + }, + { + "start": 27837.94, + "end": 27839.48, + "probability": 0.6155 + }, + { + "start": 27839.52, + "end": 27840.24, + "probability": 0.6091 + }, + { + "start": 27840.24, + "end": 27840.86, + "probability": 0.3566 + }, + { + "start": 27840.86, + "end": 27841.68, + "probability": 0.2062 + }, + { + "start": 27841.7, + "end": 27843.74, + "probability": 0.724 + }, + { + "start": 27843.86, + "end": 27845.74, + "probability": 0.7465 + }, + { + "start": 27846.78, + "end": 27848.61, + "probability": 0.9284 + }, + { + "start": 27848.72, + "end": 27849.66, + "probability": 0.6627 + }, + { + "start": 27849.8, + "end": 27850.72, + "probability": 0.363 + }, + { + "start": 27851.72, + "end": 27852.2, + "probability": 0.9847 + }, + { + "start": 27853.1, + "end": 27854.18, + "probability": 0.5975 + }, + { + "start": 27854.62, + "end": 27857.02, + "probability": 0.6304 + }, + { + "start": 27857.02, + "end": 27857.94, + "probability": 0.0342 + }, + { + "start": 27858.04, + "end": 27859.66, + "probability": 0.4548 + }, + { + "start": 27859.78, + "end": 27859.84, + "probability": 0.622 + }, + { + "start": 27860.02, + "end": 27861.2, + "probability": 0.4907 + }, + { + "start": 27861.28, + "end": 27862.32, + "probability": 0.8637 + }, + { + "start": 27862.38, + "end": 27864.94, + "probability": 0.6432 + }, + { + "start": 27866.18, + "end": 27867.08, + "probability": 0.9895 + }, + { + "start": 27868.0, + "end": 27871.64, + "probability": 0.9971 + }, + { + "start": 27871.68, + "end": 27872.44, + "probability": 0.9618 + }, + { + "start": 27873.42, + "end": 27875.32, + "probability": 0.9158 + }, + { + "start": 27875.58, + "end": 27876.84, + "probability": 0.9126 + }, + { + "start": 27877.32, + "end": 27878.34, + "probability": 0.4505 + }, + { + "start": 27878.78, + "end": 27879.66, + "probability": 0.8589 + }, + { + "start": 27879.78, + "end": 27882.04, + "probability": 0.5035 + }, + { + "start": 27883.0, + "end": 27884.48, + "probability": 0.9212 + }, + { + "start": 27884.64, + "end": 27886.76, + "probability": 0.8966 + }, + { + "start": 27887.26, + "end": 27888.42, + "probability": 0.9857 + }, + { + "start": 27888.52, + "end": 27889.28, + "probability": 0.8025 + }, + { + "start": 27890.52, + "end": 27891.36, + "probability": 0.9134 + }, + { + "start": 27891.84, + "end": 27893.54, + "probability": 0.8819 + }, + { + "start": 27894.3, + "end": 27895.44, + "probability": 0.896 + }, + { + "start": 27895.78, + "end": 27897.23, + "probability": 0.9596 + }, + { + "start": 27897.7, + "end": 27899.7, + "probability": 0.9753 + }, + { + "start": 27899.96, + "end": 27902.94, + "probability": 0.894 + }, + { + "start": 27903.44, + "end": 27904.7, + "probability": 0.9561 + }, + { + "start": 27904.86, + "end": 27906.56, + "probability": 0.8926 + }, + { + "start": 27907.8, + "end": 27910.12, + "probability": 0.833 + }, + { + "start": 27910.2, + "end": 27911.01, + "probability": 0.7963 + }, + { + "start": 27911.94, + "end": 27914.18, + "probability": 0.5804 + }, + { + "start": 27915.16, + "end": 27919.36, + "probability": 0.9614 + }, + { + "start": 27920.12, + "end": 27922.9, + "probability": 0.946 + }, + { + "start": 27922.96, + "end": 27923.36, + "probability": 0.6937 + }, + { + "start": 27923.86, + "end": 27926.0, + "probability": 0.9449 + }, + { + "start": 27926.6, + "end": 27927.54, + "probability": 0.7568 + }, + { + "start": 27928.12, + "end": 27929.04, + "probability": 0.926 + }, + { + "start": 27930.08, + "end": 27930.86, + "probability": 0.8006 + }, + { + "start": 27930.9, + "end": 27935.06, + "probability": 0.9535 + }, + { + "start": 27935.6, + "end": 27937.22, + "probability": 0.8309 + }, + { + "start": 27937.86, + "end": 27941.64, + "probability": 0.8905 + }, + { + "start": 27942.26, + "end": 27946.32, + "probability": 0.9619 + }, + { + "start": 27946.32, + "end": 27949.68, + "probability": 0.9352 + }, + { + "start": 27949.88, + "end": 27950.36, + "probability": 0.5335 + }, + { + "start": 27951.16, + "end": 27951.78, + "probability": 0.9899 + }, + { + "start": 27952.3, + "end": 27952.52, + "probability": 0.574 + }, + { + "start": 27952.64, + "end": 27956.28, + "probability": 0.9884 + }, + { + "start": 27956.78, + "end": 27958.66, + "probability": 0.7017 + }, + { + "start": 27958.74, + "end": 27962.58, + "probability": 0.9728 + }, + { + "start": 27963.08, + "end": 27966.4, + "probability": 0.9676 + }, + { + "start": 27966.86, + "end": 27968.02, + "probability": 0.5813 + }, + { + "start": 27968.62, + "end": 27970.78, + "probability": 0.9942 + }, + { + "start": 27971.16, + "end": 27972.56, + "probability": 0.9639 + }, + { + "start": 27972.9, + "end": 27974.86, + "probability": 0.7397 + }, + { + "start": 27974.86, + "end": 27975.8, + "probability": 0.8164 + }, + { + "start": 27976.02, + "end": 27977.16, + "probability": 0.9329 + }, + { + "start": 27977.38, + "end": 27978.69, + "probability": 0.9966 + }, + { + "start": 27979.62, + "end": 27981.06, + "probability": 0.999 + }, + { + "start": 27981.48, + "end": 27982.38, + "probability": 0.8269 + }, + { + "start": 27982.92, + "end": 27986.7, + "probability": 0.9744 + }, + { + "start": 27986.82, + "end": 27987.76, + "probability": 0.9382 + }, + { + "start": 27988.46, + "end": 27991.78, + "probability": 0.9388 + }, + { + "start": 27992.34, + "end": 27993.86, + "probability": 0.9075 + }, + { + "start": 27994.76, + "end": 27999.46, + "probability": 0.9858 + }, + { + "start": 27999.56, + "end": 28000.2, + "probability": 0.9253 + }, + { + "start": 28000.84, + "end": 28005.24, + "probability": 0.8228 + }, + { + "start": 28005.96, + "end": 28007.36, + "probability": 0.8096 + }, + { + "start": 28007.54, + "end": 28009.66, + "probability": 0.9611 + }, + { + "start": 28010.12, + "end": 28011.54, + "probability": 0.9667 + }, + { + "start": 28012.04, + "end": 28015.9, + "probability": 0.9779 + }, + { + "start": 28016.02, + "end": 28018.92, + "probability": 0.848 + }, + { + "start": 28019.6, + "end": 28022.04, + "probability": 0.8289 + }, + { + "start": 28022.6, + "end": 28025.2, + "probability": 0.9145 + }, + { + "start": 28026.28, + "end": 28029.38, + "probability": 0.7611 + }, + { + "start": 28029.6, + "end": 28031.2, + "probability": 0.861 + }, + { + "start": 28031.22, + "end": 28033.42, + "probability": 0.9814 + }, + { + "start": 28033.42, + "end": 28035.64, + "probability": 0.9889 + }, + { + "start": 28036.42, + "end": 28037.72, + "probability": 0.8274 + }, + { + "start": 28038.34, + "end": 28040.29, + "probability": 0.9178 + }, + { + "start": 28041.62, + "end": 28045.04, + "probability": 0.9933 + }, + { + "start": 28045.04, + "end": 28045.5, + "probability": 0.0192 + }, + { + "start": 28045.5, + "end": 28045.6, + "probability": 0.8111 + }, + { + "start": 28046.14, + "end": 28047.38, + "probability": 0.4632 + }, + { + "start": 28047.88, + "end": 28049.0, + "probability": 0.8684 + }, + { + "start": 28050.22, + "end": 28053.32, + "probability": 0.9479 + }, + { + "start": 28054.06, + "end": 28054.48, + "probability": 0.4765 + }, + { + "start": 28054.76, + "end": 28059.12, + "probability": 0.9849 + }, + { + "start": 28059.26, + "end": 28060.62, + "probability": 0.9965 + }, + { + "start": 28060.82, + "end": 28061.3, + "probability": 0.7991 + }, + { + "start": 28061.9, + "end": 28065.62, + "probability": 0.7412 + }, + { + "start": 28066.3, + "end": 28068.04, + "probability": 0.979 + }, + { + "start": 28068.6, + "end": 28069.51, + "probability": 0.7936 + }, + { + "start": 28069.9, + "end": 28071.22, + "probability": 0.9703 + }, + { + "start": 28084.84, + "end": 28085.0, + "probability": 0.9531 + }, + { + "start": 28085.64, + "end": 28086.58, + "probability": 0.0197 + }, + { + "start": 28086.6, + "end": 28087.82, + "probability": 0.1857 + }, + { + "start": 28087.95, + "end": 28088.07, + "probability": 0.0632 + }, + { + "start": 28089.04, + "end": 28089.04, + "probability": 0.2655 + }, + { + "start": 28089.7, + "end": 28091.58, + "probability": 0.1474 + }, + { + "start": 28091.58, + "end": 28092.82, + "probability": 0.0678 + }, + { + "start": 28093.9, + "end": 28099.42, + "probability": 0.0712 + }, + { + "start": 28099.67, + "end": 28100.32, + "probability": 0.0895 + }, + { + "start": 28100.34, + "end": 28100.94, + "probability": 0.044 + }, + { + "start": 28106.12, + "end": 28107.42, + "probability": 0.0712 + }, + { + "start": 28108.58, + "end": 28109.54, + "probability": 0.3392 + }, + { + "start": 28109.54, + "end": 28109.96, + "probability": 0.6601 + }, + { + "start": 28132.66, + "end": 28134.08, + "probability": 0.028 + }, + { + "start": 28134.08, + "end": 28136.42, + "probability": 0.0125 + }, + { + "start": 28136.46, + "end": 28137.16, + "probability": 0.0907 + }, + { + "start": 28137.16, + "end": 28137.94, + "probability": 0.0365 + }, + { + "start": 28138.26, + "end": 28138.32, + "probability": 0.0385 + }, + { + "start": 28139.22, + "end": 28139.52, + "probability": 0.0247 + }, + { + "start": 28139.52, + "end": 28139.52, + "probability": 0.1511 + }, + { + "start": 28139.52, + "end": 28139.52, + "probability": 0.0889 + }, + { + "start": 28139.52, + "end": 28139.52, + "probability": 0.0831 + }, + { + "start": 28139.52, + "end": 28139.52, + "probability": 0.0964 + }, + { + "start": 28139.52, + "end": 28140.82, + "probability": 0.3579 + }, + { + "start": 28141.38, + "end": 28144.38, + "probability": 0.6802 + }, + { + "start": 28144.44, + "end": 28145.86, + "probability": 0.8343 + }, + { + "start": 28146.08, + "end": 28146.7, + "probability": 0.8467 + }, + { + "start": 28146.72, + "end": 28148.2, + "probability": 0.9546 + }, + { + "start": 28148.84, + "end": 28152.86, + "probability": 0.9949 + }, + { + "start": 28153.56, + "end": 28154.52, + "probability": 0.9433 + }, + { + "start": 28155.6, + "end": 28158.58, + "probability": 0.9926 + }, + { + "start": 28159.06, + "end": 28163.08, + "probability": 0.98 + }, + { + "start": 28163.74, + "end": 28167.8, + "probability": 0.9754 + }, + { + "start": 28168.7, + "end": 28171.06, + "probability": 0.9986 + }, + { + "start": 28171.06, + "end": 28175.26, + "probability": 0.9988 + }, + { + "start": 28175.9, + "end": 28179.8, + "probability": 0.9903 + }, + { + "start": 28181.08, + "end": 28185.96, + "probability": 0.9596 + }, + { + "start": 28186.92, + "end": 28190.2, + "probability": 0.9978 + }, + { + "start": 28191.1, + "end": 28192.58, + "probability": 0.9618 + }, + { + "start": 28193.76, + "end": 28196.24, + "probability": 0.9978 + }, + { + "start": 28196.28, + "end": 28200.2, + "probability": 0.9949 + }, + { + "start": 28201.48, + "end": 28204.2, + "probability": 0.8464 + }, + { + "start": 28205.18, + "end": 28208.26, + "probability": 0.9664 + }, + { + "start": 28208.78, + "end": 28210.9, + "probability": 0.946 + }, + { + "start": 28212.0, + "end": 28213.14, + "probability": 0.5916 + }, + { + "start": 28213.98, + "end": 28214.42, + "probability": 0.8069 + }, + { + "start": 28215.62, + "end": 28219.84, + "probability": 0.9213 + }, + { + "start": 28220.0, + "end": 28221.76, + "probability": 0.8883 + }, + { + "start": 28222.42, + "end": 28226.46, + "probability": 0.9785 + }, + { + "start": 28226.7, + "end": 28231.08, + "probability": 0.9977 + }, + { + "start": 28232.36, + "end": 28234.66, + "probability": 0.6913 + }, + { + "start": 28235.94, + "end": 28238.26, + "probability": 0.978 + }, + { + "start": 28238.66, + "end": 28241.84, + "probability": 0.9934 + }, + { + "start": 28242.46, + "end": 28244.6, + "probability": 0.9583 + }, + { + "start": 28245.54, + "end": 28247.38, + "probability": 0.9792 + }, + { + "start": 28248.2, + "end": 28251.6, + "probability": 0.9842 + }, + { + "start": 28252.7, + "end": 28254.7, + "probability": 0.9685 + }, + { + "start": 28255.62, + "end": 28257.8, + "probability": 0.9952 + }, + { + "start": 28258.44, + "end": 28262.28, + "probability": 0.9603 + }, + { + "start": 28263.46, + "end": 28267.04, + "probability": 0.9972 + }, + { + "start": 28269.8, + "end": 28271.28, + "probability": 0.9911 + }, + { + "start": 28272.22, + "end": 28276.04, + "probability": 0.9955 + }, + { + "start": 28276.68, + "end": 28278.92, + "probability": 0.9963 + }, + { + "start": 28279.78, + "end": 28281.72, + "probability": 0.9937 + }, + { + "start": 28281.94, + "end": 28283.49, + "probability": 0.8856 + }, + { + "start": 28284.46, + "end": 28285.38, + "probability": 0.9361 + }, + { + "start": 28286.24, + "end": 28288.24, + "probability": 0.9988 + }, + { + "start": 28288.76, + "end": 28290.42, + "probability": 0.9786 + }, + { + "start": 28291.08, + "end": 28295.76, + "probability": 0.986 + }, + { + "start": 28295.76, + "end": 28300.22, + "probability": 0.9744 + }, + { + "start": 28301.46, + "end": 28303.5, + "probability": 0.0122 + }, + { + "start": 28303.78, + "end": 28304.65, + "probability": 0.1349 + }, + { + "start": 28304.94, + "end": 28308.38, + "probability": 0.9873 + }, + { + "start": 28309.18, + "end": 28309.48, + "probability": 0.416 + }, + { + "start": 28310.34, + "end": 28312.34, + "probability": 0.9937 + }, + { + "start": 28312.78, + "end": 28312.92, + "probability": 0.6 + }, + { + "start": 28313.02, + "end": 28313.94, + "probability": 0.8199 + }, + { + "start": 28315.08, + "end": 28317.04, + "probability": 0.9503 + }, + { + "start": 28317.52, + "end": 28318.45, + "probability": 0.7159 + }, + { + "start": 28319.02, + "end": 28320.36, + "probability": 0.9143 + }, + { + "start": 28320.48, + "end": 28320.68, + "probability": 0.6357 + }, + { + "start": 28320.82, + "end": 28322.04, + "probability": 0.7531 + }, + { + "start": 28323.44, + "end": 28325.74, + "probability": 0.8799 + }, + { + "start": 28326.72, + "end": 28327.6, + "probability": 0.2976 + }, + { + "start": 28327.68, + "end": 28328.88, + "probability": 0.6947 + }, + { + "start": 28329.56, + "end": 28329.72, + "probability": 0.2619 + }, + { + "start": 28330.72, + "end": 28333.12, + "probability": 0.0052 + }, + { + "start": 28350.1, + "end": 28351.12, + "probability": 0.4101 + }, + { + "start": 28356.2, + "end": 28357.0, + "probability": 0.6491 + }, + { + "start": 28357.26, + "end": 28358.88, + "probability": 0.6831 + }, + { + "start": 28358.98, + "end": 28361.78, + "probability": 0.9661 + }, + { + "start": 28361.81, + "end": 28365.4, + "probability": 0.9946 + }, + { + "start": 28368.16, + "end": 28370.78, + "probability": 0.9957 + }, + { + "start": 28371.58, + "end": 28373.66, + "probability": 0.999 + }, + { + "start": 28374.4, + "end": 28376.58, + "probability": 0.9976 + }, + { + "start": 28377.98, + "end": 28380.44, + "probability": 0.7872 + }, + { + "start": 28380.44, + "end": 28384.4, + "probability": 0.6907 + }, + { + "start": 28385.4, + "end": 28390.14, + "probability": 0.9928 + }, + { + "start": 28391.3, + "end": 28394.02, + "probability": 0.9891 + }, + { + "start": 28395.22, + "end": 28395.97, + "probability": 0.9037 + }, + { + "start": 28396.1, + "end": 28396.62, + "probability": 0.6105 + }, + { + "start": 28396.7, + "end": 28401.01, + "probability": 0.9181 + }, + { + "start": 28401.62, + "end": 28402.96, + "probability": 0.8411 + }, + { + "start": 28403.06, + "end": 28404.58, + "probability": 0.991 + }, + { + "start": 28405.0, + "end": 28408.64, + "probability": 0.983 + }, + { + "start": 28409.22, + "end": 28410.88, + "probability": 0.9886 + }, + { + "start": 28412.0, + "end": 28415.28, + "probability": 0.9973 + }, + { + "start": 28415.68, + "end": 28417.68, + "probability": 0.9609 + }, + { + "start": 28419.12, + "end": 28422.86, + "probability": 0.9926 + }, + { + "start": 28423.44, + "end": 28426.08, + "probability": 0.9984 + }, + { + "start": 28426.08, + "end": 28429.32, + "probability": 0.9663 + }, + { + "start": 28430.88, + "end": 28433.22, + "probability": 0.9961 + }, + { + "start": 28433.22, + "end": 28435.4, + "probability": 0.9988 + }, + { + "start": 28435.88, + "end": 28437.74, + "probability": 0.9789 + }, + { + "start": 28437.82, + "end": 28438.76, + "probability": 0.8996 + }, + { + "start": 28439.04, + "end": 28439.44, + "probability": 0.9256 + }, + { + "start": 28440.46, + "end": 28440.96, + "probability": 0.8893 + }, + { + "start": 28441.24, + "end": 28443.06, + "probability": 0.8947 + }, + { + "start": 28443.12, + "end": 28444.6, + "probability": 0.9671 + }, + { + "start": 28445.54, + "end": 28450.7, + "probability": 0.9904 + }, + { + "start": 28451.24, + "end": 28456.46, + "probability": 0.9772 + }, + { + "start": 28456.98, + "end": 28458.2, + "probability": 0.7863 + }, + { + "start": 28458.52, + "end": 28461.24, + "probability": 0.9491 + }, + { + "start": 28462.04, + "end": 28466.68, + "probability": 0.7238 + }, + { + "start": 28466.92, + "end": 28468.34, + "probability": 0.9816 + }, + { + "start": 28469.54, + "end": 28472.04, + "probability": 0.798 + }, + { + "start": 28472.42, + "end": 28477.64, + "probability": 0.9967 + }, + { + "start": 28478.22, + "end": 28480.86, + "probability": 0.9906 + }, + { + "start": 28481.46, + "end": 28483.16, + "probability": 0.9426 + }, + { + "start": 28483.78, + "end": 28488.1, + "probability": 0.9248 + }, + { + "start": 28488.66, + "end": 28493.3, + "probability": 0.9816 + }, + { + "start": 28493.9, + "end": 28494.58, + "probability": 0.9448 + }, + { + "start": 28494.72, + "end": 28497.26, + "probability": 0.995 + }, + { + "start": 28497.4, + "end": 28500.2, + "probability": 0.9978 + }, + { + "start": 28500.92, + "end": 28503.08, + "probability": 0.1314 + }, + { + "start": 28503.18, + "end": 28503.3, + "probability": 0.4007 + }, + { + "start": 28503.48, + "end": 28506.56, + "probability": 0.8148 + }, + { + "start": 28506.64, + "end": 28509.14, + "probability": 0.9878 + }, + { + "start": 28509.38, + "end": 28511.64, + "probability": 0.9129 + }, + { + "start": 28512.4, + "end": 28513.26, + "probability": 0.9948 + }, + { + "start": 28513.5, + "end": 28514.74, + "probability": 0.9855 + }, + { + "start": 28514.96, + "end": 28516.93, + "probability": 0.9905 + }, + { + "start": 28517.32, + "end": 28520.86, + "probability": 0.9879 + }, + { + "start": 28521.28, + "end": 28522.3, + "probability": 0.929 + }, + { + "start": 28523.2, + "end": 28528.45, + "probability": 0.9964 + }, + { + "start": 28529.4, + "end": 28532.1, + "probability": 0.9973 + }, + { + "start": 28532.1, + "end": 28534.56, + "probability": 0.9965 + }, + { + "start": 28534.74, + "end": 28541.94, + "probability": 0.9849 + }, + { + "start": 28541.94, + "end": 28544.03, + "probability": 0.3709 + }, + { + "start": 28545.08, + "end": 28545.73, + "probability": 0.8213 + }, + { + "start": 28547.3, + "end": 28551.17, + "probability": 0.998 + }, + { + "start": 28551.98, + "end": 28555.5, + "probability": 0.9701 + }, + { + "start": 28555.6, + "end": 28558.02, + "probability": 0.877 + }, + { + "start": 28558.24, + "end": 28560.1, + "probability": 0.5715 + }, + { + "start": 28560.24, + "end": 28560.68, + "probability": 0.8105 + }, + { + "start": 28561.42, + "end": 28562.88, + "probability": 0.8454 + }, + { + "start": 28563.5, + "end": 28565.54, + "probability": 0.6559 + }, + { + "start": 28568.98, + "end": 28571.02, + "probability": 0.6596 + }, + { + "start": 28571.72, + "end": 28571.72, + "probability": 0.7152 + }, + { + "start": 28571.74, + "end": 28573.51, + "probability": 0.4319 + }, + { + "start": 28575.64, + "end": 28577.26, + "probability": 0.5434 + }, + { + "start": 28577.3, + "end": 28577.8, + "probability": 0.7188 + }, + { + "start": 28577.88, + "end": 28578.1, + "probability": 0.8256 + }, + { + "start": 28582.3, + "end": 28582.8, + "probability": 0.218 + }, + { + "start": 28583.66, + "end": 28586.5, + "probability": 0.0589 + }, + { + "start": 28587.88, + "end": 28588.04, + "probability": 0.2075 + }, + { + "start": 28595.56, + "end": 28602.1, + "probability": 0.0233 + }, + { + "start": 28715.0, + "end": 28715.0, + "probability": 0.0 + }, + { + "start": 28715.0, + "end": 28715.0, + "probability": 0.0 + }, + { + "start": 28715.0, + "end": 28715.0, + "probability": 0.0 + }, + { + "start": 28715.0, + "end": 28715.0, + "probability": 0.0 + }, + { + "start": 28715.0, + "end": 28715.0, + "probability": 0.0 + }, + { + "start": 28715.0, + "end": 28715.0, + "probability": 0.0 + }, + { + "start": 28715.0, + "end": 28715.0, + "probability": 0.0 + }, + { + "start": 28715.0, + "end": 28715.0, + "probability": 0.0 + }, + { + "start": 28715.0, + "end": 28715.0, + "probability": 0.0 + }, + { + "start": 28715.0, + "end": 28715.0, + "probability": 0.0 + }, + { + "start": 28715.0, + "end": 28715.0, + "probability": 0.0 + }, + { + "start": 28715.0, + "end": 28715.0, + "probability": 0.0 + }, + { + "start": 28715.0, + "end": 28715.0, + "probability": 0.0 + }, + { + "start": 28715.0, + "end": 28715.0, + "probability": 0.0 + }, + { + "start": 28715.0, + "end": 28715.0, + "probability": 0.0 + }, + { + "start": 28715.0, + "end": 28715.0, + "probability": 0.0 + }, + { + "start": 28715.0, + "end": 28715.0, + "probability": 0.0 + }, + { + "start": 28715.0, + "end": 28715.0, + "probability": 0.0 + }, + { + "start": 28715.0, + "end": 28715.0, + "probability": 0.0 + }, + { + "start": 28715.0, + "end": 28715.0, + "probability": 0.0 + }, + { + "start": 28715.0, + "end": 28715.0, + "probability": 0.0 + }, + { + "start": 28715.0, + "end": 28715.0, + "probability": 0.0 + }, + { + "start": 28715.0, + "end": 28715.0, + "probability": 0.0 + }, + { + "start": 28715.0, + "end": 28715.0, + "probability": 0.0 + }, + { + "start": 28715.0, + "end": 28715.0, + "probability": 0.0 + }, + { + "start": 28715.0, + "end": 28715.0, + "probability": 0.0 + }, + { + "start": 28715.0, + "end": 28715.0, + "probability": 0.0 + }, + { + "start": 28715.5, + "end": 28716.88, + "probability": 0.4379 + }, + { + "start": 28716.88, + "end": 28716.98, + "probability": 0.0775 + }, + { + "start": 28717.28, + "end": 28717.88, + "probability": 0.4414 + }, + { + "start": 28718.06, + "end": 28718.06, + "probability": 0.3226 + }, + { + "start": 28718.06, + "end": 28719.39, + "probability": 0.4097 + }, + { + "start": 28721.7, + "end": 28723.6, + "probability": 0.7261 + }, + { + "start": 28724.16, + "end": 28725.2, + "probability": 0.861 + }, + { + "start": 28726.32, + "end": 28727.17, + "probability": 0.7007 + }, + { + "start": 28728.02, + "end": 28729.7, + "probability": 0.5209 + }, + { + "start": 28730.28, + "end": 28732.3, + "probability": 0.7662 + }, + { + "start": 28733.02, + "end": 28734.94, + "probability": 0.7454 + }, + { + "start": 28736.34, + "end": 28737.42, + "probability": 0.9556 + }, + { + "start": 28738.14, + "end": 28739.18, + "probability": 0.9561 + }, + { + "start": 28739.46, + "end": 28739.74, + "probability": 0.5305 + }, + { + "start": 28740.66, + "end": 28740.88, + "probability": 0.7184 + }, + { + "start": 28742.7, + "end": 28743.5, + "probability": 0.9033 + }, + { + "start": 28743.84, + "end": 28744.02, + "probability": 0.9075 + }, + { + "start": 28745.5, + "end": 28746.26, + "probability": 0.7206 + }, + { + "start": 28748.38, + "end": 28751.3, + "probability": 0.9211 + }, + { + "start": 28751.58, + "end": 28752.62, + "probability": 0.854 + }, + { + "start": 28752.62, + "end": 28754.34, + "probability": 0.8601 + }, + { + "start": 28754.68, + "end": 28755.94, + "probability": 0.8571 + }, + { + "start": 28757.08, + "end": 28759.68, + "probability": 0.9873 + }, + { + "start": 28760.32, + "end": 28762.22, + "probability": 0.994 + }, + { + "start": 28762.82, + "end": 28764.48, + "probability": 0.9662 + }, + { + "start": 28766.16, + "end": 28768.32, + "probability": 0.9881 + }, + { + "start": 28770.28, + "end": 28774.44, + "probability": 0.9824 + }, + { + "start": 28775.38, + "end": 28778.42, + "probability": 0.9748 + }, + { + "start": 28778.98, + "end": 28782.34, + "probability": 0.981 + }, + { + "start": 28783.58, + "end": 28786.82, + "probability": 0.9951 + }, + { + "start": 28787.3, + "end": 28790.22, + "probability": 0.9856 + }, + { + "start": 28795.2, + "end": 28796.95, + "probability": 0.9985 + }, + { + "start": 28798.16, + "end": 28799.72, + "probability": 0.996 + }, + { + "start": 28800.64, + "end": 28803.24, + "probability": 0.9976 + }, + { + "start": 28804.56, + "end": 28805.19, + "probability": 0.9858 + }, + { + "start": 28806.06, + "end": 28810.84, + "probability": 0.9786 + }, + { + "start": 28811.92, + "end": 28814.06, + "probability": 0.9393 + }, + { + "start": 28814.68, + "end": 28817.72, + "probability": 0.9666 + }, + { + "start": 28818.28, + "end": 28821.09, + "probability": 0.9971 + }, + { + "start": 28822.9, + "end": 28823.4, + "probability": 0.7585 + }, + { + "start": 28823.5, + "end": 28825.6, + "probability": 0.9297 + }, + { + "start": 28826.08, + "end": 28828.76, + "probability": 0.9962 + }, + { + "start": 28829.92, + "end": 28831.18, + "probability": 0.9966 + }, + { + "start": 28831.78, + "end": 28833.08, + "probability": 0.9393 + }, + { + "start": 28834.12, + "end": 28835.74, + "probability": 0.995 + }, + { + "start": 28836.36, + "end": 28841.06, + "probability": 0.9961 + }, + { + "start": 28841.06, + "end": 28845.2, + "probability": 0.9993 + }, + { + "start": 28846.2, + "end": 28848.94, + "probability": 0.9933 + }, + { + "start": 28849.56, + "end": 28851.72, + "probability": 0.9052 + }, + { + "start": 28859.36, + "end": 28860.88, + "probability": 0.932 + }, + { + "start": 28862.58, + "end": 28865.9, + "probability": 0.6455 + }, + { + "start": 28866.14, + "end": 28871.48, + "probability": 0.9251 + }, + { + "start": 28872.8, + "end": 28876.58, + "probability": 0.9951 + }, + { + "start": 28877.96, + "end": 28879.1, + "probability": 0.9536 + }, + { + "start": 28880.16, + "end": 28881.84, + "probability": 0.9796 + }, + { + "start": 28883.04, + "end": 28886.74, + "probability": 0.9908 + }, + { + "start": 28887.4, + "end": 28890.12, + "probability": 0.802 + }, + { + "start": 28890.76, + "end": 28895.66, + "probability": 0.9963 + }, + { + "start": 28896.54, + "end": 28898.12, + "probability": 0.8296 + }, + { + "start": 28898.84, + "end": 28900.5, + "probability": 0.987 + }, + { + "start": 28901.94, + "end": 28905.12, + "probability": 0.9901 + }, + { + "start": 28906.56, + "end": 28909.0, + "probability": 0.9961 + }, + { + "start": 28910.38, + "end": 28913.54, + "probability": 0.9995 + }, + { + "start": 28913.76, + "end": 28916.82, + "probability": 0.998 + }, + { + "start": 28917.56, + "end": 28918.26, + "probability": 0.6728 + }, + { + "start": 28919.32, + "end": 28923.42, + "probability": 0.5371 + }, + { + "start": 28924.54, + "end": 28927.98, + "probability": 0.9097 + }, + { + "start": 28929.1, + "end": 28933.06, + "probability": 0.9233 + }, + { + "start": 28933.7, + "end": 28935.18, + "probability": 0.4605 + }, + { + "start": 28935.84, + "end": 28938.62, + "probability": 0.9372 + }, + { + "start": 28939.64, + "end": 28946.82, + "probability": 0.9932 + }, + { + "start": 28947.4, + "end": 28949.46, + "probability": 0.9833 + }, + { + "start": 28950.08, + "end": 28952.54, + "probability": 0.9901 + }, + { + "start": 28952.72, + "end": 28953.68, + "probability": 0.9095 + }, + { + "start": 28954.16, + "end": 28955.98, + "probability": 0.9884 + }, + { + "start": 28958.56, + "end": 28961.64, + "probability": 0.9264 + }, + { + "start": 28962.3, + "end": 28965.9, + "probability": 0.9917 + }, + { + "start": 28966.48, + "end": 28969.3, + "probability": 0.8278 + }, + { + "start": 28970.06, + "end": 28973.5, + "probability": 0.9492 + }, + { + "start": 28974.06, + "end": 28974.48, + "probability": 0.4819 + }, + { + "start": 28975.1, + "end": 28978.16, + "probability": 0.6167 + }, + { + "start": 28978.66, + "end": 28986.34, + "probability": 0.6393 + }, + { + "start": 28986.42, + "end": 28987.3, + "probability": 0.491 + }, + { + "start": 28987.78, + "end": 28989.42, + "probability": 0.9196 + }, + { + "start": 28990.16, + "end": 28990.76, + "probability": 0.2666 + }, + { + "start": 28991.68, + "end": 28993.1, + "probability": 0.345 + }, + { + "start": 28993.1, + "end": 28994.1, + "probability": 0.8063 + }, + { + "start": 28994.46, + "end": 28996.66, + "probability": 0.6582 + }, + { + "start": 28998.08, + "end": 28999.06, + "probability": 0.7567 + }, + { + "start": 28999.84, + "end": 29005.06, + "probability": 0.9766 + }, + { + "start": 29006.04, + "end": 29009.72, + "probability": 0.9974 + }, + { + "start": 29009.72, + "end": 29013.74, + "probability": 0.9976 + }, + { + "start": 29014.18, + "end": 29015.84, + "probability": 0.8823 + }, + { + "start": 29017.56, + "end": 29021.48, + "probability": 0.93 + }, + { + "start": 29022.88, + "end": 29029.78, + "probability": 0.9078 + }, + { + "start": 29030.4, + "end": 29034.58, + "probability": 0.9569 + }, + { + "start": 29034.58, + "end": 29038.26, + "probability": 0.9989 + }, + { + "start": 29038.7, + "end": 29043.02, + "probability": 0.99 + }, + { + "start": 29043.46, + "end": 29044.86, + "probability": 0.7507 + }, + { + "start": 29046.4, + "end": 29049.24, + "probability": 0.9987 + }, + { + "start": 29049.24, + "end": 29052.24, + "probability": 0.9931 + }, + { + "start": 29052.8, + "end": 29056.54, + "probability": 0.9968 + }, + { + "start": 29057.32, + "end": 29060.86, + "probability": 0.9932 + }, + { + "start": 29061.98, + "end": 29063.14, + "probability": 0.8444 + }, + { + "start": 29064.26, + "end": 29068.78, + "probability": 0.995 + }, + { + "start": 29070.28, + "end": 29071.48, + "probability": 0.737 + }, + { + "start": 29072.4, + "end": 29074.22, + "probability": 0.9888 + }, + { + "start": 29075.02, + "end": 29076.36, + "probability": 0.9719 + }, + { + "start": 29077.16, + "end": 29079.54, + "probability": 0.9858 + }, + { + "start": 29080.54, + "end": 29081.04, + "probability": 0.9724 + }, + { + "start": 29081.68, + "end": 29083.02, + "probability": 0.9951 + }, + { + "start": 29083.8, + "end": 29086.58, + "probability": 0.9946 + }, + { + "start": 29087.58, + "end": 29089.2, + "probability": 0.9417 + }, + { + "start": 29090.74, + "end": 29091.4, + "probability": 0.7536 + }, + { + "start": 29091.76, + "end": 29092.88, + "probability": 0.6052 + }, + { + "start": 29092.98, + "end": 29095.58, + "probability": 0.9919 + }, + { + "start": 29096.54, + "end": 29099.42, + "probability": 0.9834 + }, + { + "start": 29100.62, + "end": 29102.38, + "probability": 0.9981 + }, + { + "start": 29103.06, + "end": 29104.94, + "probability": 0.9664 + }, + { + "start": 29105.62, + "end": 29107.5, + "probability": 0.2794 + }, + { + "start": 29108.62, + "end": 29110.26, + "probability": 0.9977 + }, + { + "start": 29110.32, + "end": 29110.42, + "probability": 0.4868 + }, + { + "start": 29111.08, + "end": 29115.02, + "probability": 0.9829 + }, + { + "start": 29115.74, + "end": 29119.18, + "probability": 0.6568 + }, + { + "start": 29119.42, + "end": 29119.78, + "probability": 0.4442 + }, + { + "start": 29120.96, + "end": 29122.82, + "probability": 0.9924 + }, + { + "start": 29123.68, + "end": 29126.56, + "probability": 0.2514 + }, + { + "start": 29127.1, + "end": 29127.84, + "probability": 0.7458 + }, + { + "start": 29127.98, + "end": 29131.92, + "probability": 0.8606 + }, + { + "start": 29132.36, + "end": 29136.62, + "probability": 0.9886 + }, + { + "start": 29137.76, + "end": 29139.2, + "probability": 0.05 + }, + { + "start": 29139.2, + "end": 29139.88, + "probability": 0.835 + }, + { + "start": 29143.02, + "end": 29143.66, + "probability": 0.946 + }, + { + "start": 29144.54, + "end": 29146.56, + "probability": 0.9924 + }, + { + "start": 29147.12, + "end": 29149.34, + "probability": 0.927 + }, + { + "start": 29149.96, + "end": 29152.26, + "probability": 0.9513 + }, + { + "start": 29153.1, + "end": 29157.78, + "probability": 0.9869 + }, + { + "start": 29159.42, + "end": 29160.48, + "probability": 0.9969 + }, + { + "start": 29161.14, + "end": 29163.08, + "probability": 0.985 + }, + { + "start": 29163.9, + "end": 29165.22, + "probability": 0.9985 + }, + { + "start": 29165.78, + "end": 29171.04, + "probability": 0.9888 + }, + { + "start": 29172.04, + "end": 29174.06, + "probability": 0.9954 + }, + { + "start": 29174.6, + "end": 29177.08, + "probability": 0.9945 + }, + { + "start": 29179.12, + "end": 29180.9, + "probability": 0.9648 + }, + { + "start": 29181.26, + "end": 29183.88, + "probability": 0.9731 + }, + { + "start": 29185.22, + "end": 29186.6, + "probability": 0.3625 + }, + { + "start": 29187.36, + "end": 29188.32, + "probability": 0.5651 + }, + { + "start": 29188.98, + "end": 29191.26, + "probability": 0.4601 + }, + { + "start": 29191.36, + "end": 29192.14, + "probability": 0.5161 + }, + { + "start": 29193.18, + "end": 29194.6, + "probability": 0.8682 + }, + { + "start": 29195.13, + "end": 29197.36, + "probability": 0.4875 + }, + { + "start": 29198.26, + "end": 29200.32, + "probability": 0.4471 + }, + { + "start": 29202.02, + "end": 29204.7, + "probability": 0.8336 + }, + { + "start": 29205.94, + "end": 29206.08, + "probability": 0.4619 + }, + { + "start": 29206.7, + "end": 29208.03, + "probability": 0.9613 + }, + { + "start": 29209.24, + "end": 29209.72, + "probability": 0.758 + }, + { + "start": 29225.1, + "end": 29225.92, + "probability": 0.671 + }, + { + "start": 29226.5, + "end": 29227.28, + "probability": 0.6249 + }, + { + "start": 29229.92, + "end": 29231.25, + "probability": 0.7668 + }, + { + "start": 29233.42, + "end": 29239.64, + "probability": 0.4902 + }, + { + "start": 29239.84, + "end": 29241.52, + "probability": 0.1713 + }, + { + "start": 29242.02, + "end": 29244.54, + "probability": 0.3459 + }, + { + "start": 29244.62, + "end": 29247.1, + "probability": 0.0758 + }, + { + "start": 29247.62, + "end": 29249.06, + "probability": 0.7488 + }, + { + "start": 29249.06, + "end": 29250.46, + "probability": 0.025 + }, + { + "start": 29250.74, + "end": 29254.38, + "probability": 0.3645 + }, + { + "start": 29254.76, + "end": 29258.42, + "probability": 0.2707 + }, + { + "start": 29258.64, + "end": 29260.44, + "probability": 0.2834 + }, + { + "start": 29273.56, + "end": 29274.57, + "probability": 0.4236 + }, + { + "start": 29275.82, + "end": 29276.2, + "probability": 0.0538 + }, + { + "start": 29279.68, + "end": 29280.2, + "probability": 0.0318 + }, + { + "start": 29289.52, + "end": 29291.16, + "probability": 0.0189 + }, + { + "start": 29293.14, + "end": 29293.87, + "probability": 0.0538 + }, + { + "start": 29294.38, + "end": 29295.26, + "probability": 0.0492 + }, + { + "start": 29295.28, + "end": 29296.56, + "probability": 0.1666 + }, + { + "start": 29296.56, + "end": 29298.08, + "probability": 0.0479 + }, + { + "start": 29300.53, + "end": 29302.24, + "probability": 0.0666 + }, + { + "start": 29302.32, + "end": 29304.98, + "probability": 0.0789 + }, + { + "start": 29305.0, + "end": 29305.0, + "probability": 0.0 + }, + { + "start": 29305.0, + "end": 29305.0, + "probability": 0.0 + }, + { + "start": 29305.0, + "end": 29305.0, + "probability": 0.0 + }, + { + "start": 29305.0, + "end": 29305.0, + "probability": 0.0 + }, + { + "start": 29305.0, + "end": 29305.0, + "probability": 0.0 + }, + { + "start": 29305.0, + "end": 29305.0, + "probability": 0.0 + }, + { + "start": 29305.0, + "end": 29305.0, + "probability": 0.0 + }, + { + "start": 29305.0, + "end": 29305.0, + "probability": 0.0 + }, + { + "start": 29305.0, + "end": 29305.0, + "probability": 0.0 + }, + { + "start": 29305.0, + "end": 29305.0, + "probability": 0.0 + }, + { + "start": 29305.0, + "end": 29305.0, + "probability": 0.0 + }, + { + "start": 29305.0, + "end": 29305.0, + "probability": 0.0 + }, + { + "start": 29305.0, + "end": 29305.0, + "probability": 0.0 + }, + { + "start": 29305.0, + "end": 29305.0, + "probability": 0.0 + }, + { + "start": 29305.22, + "end": 29305.3, + "probability": 0.0285 + }, + { + "start": 29305.3, + "end": 29305.3, + "probability": 0.0165 + }, + { + "start": 29305.3, + "end": 29309.7, + "probability": 0.4954 + }, + { + "start": 29310.1, + "end": 29312.46, + "probability": 0.944 + }, + { + "start": 29313.46, + "end": 29315.6, + "probability": 0.8711 + }, + { + "start": 29315.96, + "end": 29317.44, + "probability": 0.8734 + }, + { + "start": 29317.74, + "end": 29319.48, + "probability": 0.8044 + }, + { + "start": 29320.22, + "end": 29323.2, + "probability": 0.9788 + }, + { + "start": 29336.49, + "end": 29337.32, + "probability": 0.0464 + }, + { + "start": 29337.32, + "end": 29337.32, + "probability": 0.1229 + }, + { + "start": 29337.32, + "end": 29338.18, + "probability": 0.0221 + }, + { + "start": 29338.18, + "end": 29338.38, + "probability": 0.041 + }, + { + "start": 29338.38, + "end": 29338.76, + "probability": 0.0783 + }, + { + "start": 29340.22, + "end": 29342.82, + "probability": 0.9578 + }, + { + "start": 29343.48, + "end": 29347.6, + "probability": 0.9749 + }, + { + "start": 29348.14, + "end": 29351.5, + "probability": 0.9921 + }, + { + "start": 29351.96, + "end": 29355.16, + "probability": 0.9766 + }, + { + "start": 29356.22, + "end": 29358.72, + "probability": 0.9833 + }, + { + "start": 29358.72, + "end": 29361.68, + "probability": 0.999 + }, + { + "start": 29362.24, + "end": 29365.08, + "probability": 0.971 + }, + { + "start": 29366.86, + "end": 29368.74, + "probability": 0.6878 + }, + { + "start": 29368.92, + "end": 29370.56, + "probability": 0.693 + }, + { + "start": 29371.02, + "end": 29374.3, + "probability": 0.9918 + }, + { + "start": 29375.62, + "end": 29380.46, + "probability": 0.9746 + }, + { + "start": 29380.46, + "end": 29385.84, + "probability": 0.994 + }, + { + "start": 29387.04, + "end": 29388.58, + "probability": 0.9403 + }, + { + "start": 29388.82, + "end": 29389.92, + "probability": 0.9914 + }, + { + "start": 29390.16, + "end": 29392.5, + "probability": 0.9422 + }, + { + "start": 29392.96, + "end": 29396.78, + "probability": 0.9694 + }, + { + "start": 29397.2, + "end": 29397.82, + "probability": 0.9478 + }, + { + "start": 29398.22, + "end": 29401.98, + "probability": 0.9298 + }, + { + "start": 29402.96, + "end": 29406.06, + "probability": 0.7614 + }, + { + "start": 29407.5, + "end": 29408.8, + "probability": 0.8693 + }, + { + "start": 29409.0, + "end": 29411.44, + "probability": 0.9939 + }, + { + "start": 29411.44, + "end": 29414.86, + "probability": 0.9805 + }, + { + "start": 29415.06, + "end": 29419.6, + "probability": 0.9932 + }, + { + "start": 29420.18, + "end": 29420.3, + "probability": 0.2932 + }, + { + "start": 29420.44, + "end": 29423.26, + "probability": 0.981 + }, + { + "start": 29425.04, + "end": 29425.3, + "probability": 0.8289 + }, + { + "start": 29425.72, + "end": 29428.72, + "probability": 0.9876 + }, + { + "start": 29429.9, + "end": 29432.6, + "probability": 0.9908 + }, + { + "start": 29433.18, + "end": 29436.94, + "probability": 0.9453 + }, + { + "start": 29437.36, + "end": 29438.16, + "probability": 0.8957 + }, + { + "start": 29442.3, + "end": 29443.94, + "probability": 0.5877 + }, + { + "start": 29444.58, + "end": 29446.98, + "probability": 0.739 + }, + { + "start": 29447.8, + "end": 29448.52, + "probability": 0.6608 + }, + { + "start": 29448.84, + "end": 29454.46, + "probability": 0.9668 + }, + { + "start": 29454.56, + "end": 29456.44, + "probability": 0.6152 + }, + { + "start": 29457.4, + "end": 29457.86, + "probability": 0.6011 + }, + { + "start": 29458.36, + "end": 29461.1, + "probability": 0.9414 + }, + { + "start": 29461.5, + "end": 29463.46, + "probability": 0.9725 + }, + { + "start": 29463.84, + "end": 29467.86, + "probability": 0.9863 + }, + { + "start": 29467.9, + "end": 29471.08, + "probability": 0.9951 + }, + { + "start": 29472.18, + "end": 29472.74, + "probability": 0.7779 + }, + { + "start": 29473.1, + "end": 29477.02, + "probability": 0.9993 + }, + { + "start": 29477.06, + "end": 29479.94, + "probability": 0.9701 + }, + { + "start": 29481.12, + "end": 29482.71, + "probability": 0.8608 + }, + { + "start": 29483.38, + "end": 29488.4, + "probability": 0.9885 + }, + { + "start": 29489.08, + "end": 29489.74, + "probability": 0.7876 + }, + { + "start": 29490.42, + "end": 29494.14, + "probability": 0.991 + }, + { + "start": 29494.34, + "end": 29495.8, + "probability": 0.7422 + }, + { + "start": 29496.42, + "end": 29496.72, + "probability": 0.7599 + }, + { + "start": 29497.42, + "end": 29497.66, + "probability": 0.8652 + }, + { + "start": 29498.34, + "end": 29499.96, + "probability": 0.9377 + }, + { + "start": 29500.56, + "end": 29501.16, + "probability": 0.2997 + }, + { + "start": 29502.18, + "end": 29502.68, + "probability": 0.7279 + }, + { + "start": 29513.8, + "end": 29516.5, + "probability": 0.083 + }, + { + "start": 29517.02, + "end": 29517.04, + "probability": 0.0288 + }, + { + "start": 29517.04, + "end": 29517.3, + "probability": 0.3826 + }, + { + "start": 29517.3, + "end": 29518.1, + "probability": 0.1153 + }, + { + "start": 29518.1, + "end": 29518.38, + "probability": 0.2248 + }, + { + "start": 29518.38, + "end": 29518.48, + "probability": 0.0379 + }, + { + "start": 29530.06, + "end": 29530.16, + "probability": 0.3988 + }, + { + "start": 29530.48, + "end": 29533.84, + "probability": 0.366 + }, + { + "start": 29545.1, + "end": 29546.7, + "probability": 0.5314 + }, + { + "start": 29547.14, + "end": 29547.4, + "probability": 0.8197 + }, + { + "start": 29548.14, + "end": 29550.66, + "probability": 0.5778 + }, + { + "start": 29550.76, + "end": 29552.1, + "probability": 0.7434 + }, + { + "start": 29552.22, + "end": 29553.7, + "probability": 0.9639 + }, + { + "start": 29553.86, + "end": 29555.14, + "probability": 0.5032 + }, + { + "start": 29555.46, + "end": 29556.62, + "probability": 0.4921 + }, + { + "start": 29558.18, + "end": 29558.32, + "probability": 0.598 + }, + { + "start": 29558.58, + "end": 29560.98, + "probability": 0.9968 + }, + { + "start": 29561.24, + "end": 29563.82, + "probability": 0.9773 + }, + { + "start": 29564.94, + "end": 29566.12, + "probability": 0.9003 + }, + { + "start": 29566.64, + "end": 29570.32, + "probability": 0.9716 + }, + { + "start": 29570.32, + "end": 29573.02, + "probability": 0.9961 + }, + { + "start": 29573.1, + "end": 29573.9, + "probability": 0.9469 + }, + { + "start": 29574.02, + "end": 29574.12, + "probability": 0.4454 + }, + { + "start": 29574.72, + "end": 29577.46, + "probability": 0.9927 + }, + { + "start": 29578.0, + "end": 29580.16, + "probability": 0.9016 + }, + { + "start": 29580.58, + "end": 29582.32, + "probability": 0.9729 + }, + { + "start": 29584.1, + "end": 29587.24, + "probability": 0.6871 + }, + { + "start": 29588.08, + "end": 29589.14, + "probability": 0.8086 + }, + { + "start": 29590.52, + "end": 29592.84, + "probability": 0.8175 + }, + { + "start": 29593.42, + "end": 29594.5, + "probability": 0.9585 + }, + { + "start": 29595.6, + "end": 29596.12, + "probability": 0.845 + }, + { + "start": 29596.78, + "end": 29598.08, + "probability": 0.7573 + }, + { + "start": 29598.78, + "end": 29601.88, + "probability": 0.9779 + }, + { + "start": 29602.8, + "end": 29605.18, + "probability": 0.999 + }, + { + "start": 29605.9, + "end": 29607.5, + "probability": 0.7759 + }, + { + "start": 29607.98, + "end": 29611.3, + "probability": 0.961 + }, + { + "start": 29611.74, + "end": 29612.92, + "probability": 0.7204 + }, + { + "start": 29614.2, + "end": 29615.34, + "probability": 0.9461 + }, + { + "start": 29616.06, + "end": 29618.92, + "probability": 0.9867 + }, + { + "start": 29619.8, + "end": 29620.68, + "probability": 0.9404 + }, + { + "start": 29621.4, + "end": 29625.44, + "probability": 0.991 + }, + { + "start": 29625.6, + "end": 29626.16, + "probability": 0.9544 + }, + { + "start": 29627.0, + "end": 29628.9, + "probability": 0.9536 + }, + { + "start": 29629.76, + "end": 29631.16, + "probability": 0.885 + }, + { + "start": 29631.9, + "end": 29633.92, + "probability": 0.994 + }, + { + "start": 29634.56, + "end": 29636.36, + "probability": 0.9936 + }, + { + "start": 29637.04, + "end": 29639.46, + "probability": 0.9932 + }, + { + "start": 29639.6, + "end": 29643.02, + "probability": 0.9963 + }, + { + "start": 29644.44, + "end": 29648.64, + "probability": 0.9771 + }, + { + "start": 29649.22, + "end": 29651.68, + "probability": 0.9074 + }, + { + "start": 29652.74, + "end": 29654.34, + "probability": 0.801 + }, + { + "start": 29654.4, + "end": 29656.06, + "probability": 0.7108 + }, + { + "start": 29656.62, + "end": 29657.84, + "probability": 0.7681 + }, + { + "start": 29657.92, + "end": 29659.5, + "probability": 0.7995 + }, + { + "start": 29659.7, + "end": 29660.25, + "probability": 0.8867 + }, + { + "start": 29661.4, + "end": 29664.0, + "probability": 0.989 + }, + { + "start": 29664.28, + "end": 29665.06, + "probability": 0.716 + }, + { + "start": 29665.54, + "end": 29666.78, + "probability": 0.9845 + }, + { + "start": 29666.9, + "end": 29667.76, + "probability": 0.7765 + }, + { + "start": 29668.34, + "end": 29669.34, + "probability": 0.6375 + }, + { + "start": 29669.46, + "end": 29671.72, + "probability": 0.9416 + }, + { + "start": 29672.64, + "end": 29674.96, + "probability": 0.8818 + }, + { + "start": 29675.38, + "end": 29679.72, + "probability": 0.9968 + }, + { + "start": 29679.82, + "end": 29680.12, + "probability": 0.8361 + }, + { + "start": 29681.41, + "end": 29684.92, + "probability": 0.7456 + }, + { + "start": 29685.94, + "end": 29687.94, + "probability": 0.9857 + }, + { + "start": 29688.1, + "end": 29690.62, + "probability": 0.9601 + }, + { + "start": 29691.02, + "end": 29694.2, + "probability": 0.9778 + }, + { + "start": 29694.52, + "end": 29694.52, + "probability": 0.0015 + }, + { + "start": 29695.04, + "end": 29696.64, + "probability": 0.9865 + }, + { + "start": 29696.94, + "end": 29698.76, + "probability": 0.9184 + }, + { + "start": 29699.08, + "end": 29702.46, + "probability": 0.9976 + }, + { + "start": 29702.46, + "end": 29706.18, + "probability": 0.9353 + }, + { + "start": 29706.56, + "end": 29706.66, + "probability": 0.0596 + }, + { + "start": 29706.66, + "end": 29708.02, + "probability": 0.8661 + }, + { + "start": 29708.88, + "end": 29711.48, + "probability": 0.9133 + }, + { + "start": 29711.58, + "end": 29716.36, + "probability": 0.7877 + }, + { + "start": 29716.66, + "end": 29716.94, + "probability": 0.6979 + }, + { + "start": 29717.5, + "end": 29717.8, + "probability": 0.6923 + }, + { + "start": 29718.28, + "end": 29722.58, + "probability": 0.8203 + }, + { + "start": 29724.24, + "end": 29725.62, + "probability": 0.1727 + }, + { + "start": 29725.62, + "end": 29728.38, + "probability": 0.8195 + }, + { + "start": 29729.04, + "end": 29730.75, + "probability": 0.701 + }, + { + "start": 29738.6, + "end": 29739.52, + "probability": 0.0606 + }, + { + "start": 29754.3, + "end": 29755.98, + "probability": 0.3479 + }, + { + "start": 29755.98, + "end": 29756.5, + "probability": 0.1435 + }, + { + "start": 29757.69, + "end": 29760.98, + "probability": 0.1072 + }, + { + "start": 29760.98, + "end": 29762.22, + "probability": 0.0135 + }, + { + "start": 29767.06, + "end": 29768.5, + "probability": 0.0344 + }, + { + "start": 29769.16, + "end": 29770.02, + "probability": 0.0228 + }, + { + "start": 29770.82, + "end": 29772.75, + "probability": 0.0686 + }, + { + "start": 29773.6, + "end": 29776.22, + "probability": 0.0771 + }, + { + "start": 29790.54, + "end": 29794.1, + "probability": 0.7533 + }, + { + "start": 29796.4, + "end": 29798.54, + "probability": 0.9983 + }, + { + "start": 29798.6, + "end": 29801.92, + "probability": 0.9803 + }, + { + "start": 29801.96, + "end": 29805.72, + "probability": 0.9888 + }, + { + "start": 29805.72, + "end": 29809.44, + "probability": 0.9884 + }, + { + "start": 29809.68, + "end": 29810.42, + "probability": 0.8255 + }, + { + "start": 29810.58, + "end": 29811.42, + "probability": 0.8781 + }, + { + "start": 29812.18, + "end": 29813.67, + "probability": 0.8402 + }, + { + "start": 29814.48, + "end": 29815.04, + "probability": 0.7289 + }, + { + "start": 29815.2, + "end": 29816.2, + "probability": 0.7969 + }, + { + "start": 29816.7, + "end": 29819.86, + "probability": 0.9513 + }, + { + "start": 29820.64, + "end": 29822.88, + "probability": 0.8711 + }, + { + "start": 29824.3, + "end": 29828.06, + "probability": 0.9883 + }, + { + "start": 29829.36, + "end": 29832.18, + "probability": 0.9954 + }, + { + "start": 29833.54, + "end": 29836.02, + "probability": 0.843 + }, + { + "start": 29836.68, + "end": 29841.24, + "probability": 0.9925 + }, + { + "start": 29841.9, + "end": 29842.6, + "probability": 0.4199 + }, + { + "start": 29843.52, + "end": 29845.5, + "probability": 0.9832 + }, + { + "start": 29845.96, + "end": 29847.74, + "probability": 0.9754 + }, + { + "start": 29848.54, + "end": 29849.1, + "probability": 0.8623 + }, + { + "start": 29849.18, + "end": 29849.6, + "probability": 0.8927 + }, + { + "start": 29849.98, + "end": 29853.64, + "probability": 0.9873 + }, + { + "start": 29854.24, + "end": 29856.64, + "probability": 0.8917 + }, + { + "start": 29857.26, + "end": 29858.5, + "probability": 0.8731 + }, + { + "start": 29858.7, + "end": 29861.14, + "probability": 0.9839 + }, + { + "start": 29861.66, + "end": 29863.18, + "probability": 0.9769 + }, + { + "start": 29863.52, + "end": 29864.74, + "probability": 0.8304 + }, + { + "start": 29864.82, + "end": 29867.68, + "probability": 0.9443 + }, + { + "start": 29868.38, + "end": 29869.84, + "probability": 0.7399 + }, + { + "start": 29870.64, + "end": 29872.17, + "probability": 0.8896 + }, + { + "start": 29872.64, + "end": 29878.36, + "probability": 0.8148 + }, + { + "start": 29879.04, + "end": 29882.74, + "probability": 0.9985 + }, + { + "start": 29883.64, + "end": 29887.36, + "probability": 0.9938 + }, + { + "start": 29888.16, + "end": 29890.62, + "probability": 0.9777 + }, + { + "start": 29891.14, + "end": 29893.16, + "probability": 0.9955 + }, + { + "start": 29893.28, + "end": 29894.2, + "probability": 0.9513 + }, + { + "start": 29894.4, + "end": 29895.22, + "probability": 0.9899 + }, + { + "start": 29895.72, + "end": 29896.98, + "probability": 0.9925 + }, + { + "start": 29897.08, + "end": 29898.76, + "probability": 0.8496 + }, + { + "start": 29899.06, + "end": 29900.64, + "probability": 0.9823 + }, + { + "start": 29901.26, + "end": 29902.64, + "probability": 0.5929 + }, + { + "start": 29903.2, + "end": 29905.44, + "probability": 0.9836 + }, + { + "start": 29905.88, + "end": 29906.5, + "probability": 0.9179 + }, + { + "start": 29907.14, + "end": 29913.32, + "probability": 0.9801 + }, + { + "start": 29914.9, + "end": 29922.64, + "probability": 0.9869 + }, + { + "start": 29922.72, + "end": 29927.1, + "probability": 0.9967 + }, + { + "start": 29927.52, + "end": 29928.18, + "probability": 0.922 + }, + { + "start": 29928.54, + "end": 29933.92, + "probability": 0.9875 + }, + { + "start": 29935.22, + "end": 29939.74, + "probability": 0.9987 + }, + { + "start": 29940.72, + "end": 29941.63, + "probability": 0.7861 + }, + { + "start": 29943.28, + "end": 29944.3, + "probability": 0.7602 + }, + { + "start": 29945.16, + "end": 29946.04, + "probability": 0.9235 + }, + { + "start": 29946.62, + "end": 29950.23, + "probability": 0.9949 + }, + { + "start": 29951.22, + "end": 29954.46, + "probability": 0.9858 + }, + { + "start": 29954.86, + "end": 29955.92, + "probability": 0.9749 + }, + { + "start": 29956.38, + "end": 29956.88, + "probability": 0.9631 + }, + { + "start": 29957.06, + "end": 29959.28, + "probability": 0.6749 + }, + { + "start": 29959.38, + "end": 29960.86, + "probability": 0.5518 + }, + { + "start": 29962.34, + "end": 29963.26, + "probability": 0.9149 + }, + { + "start": 29963.94, + "end": 29970.64, + "probability": 0.9615 + }, + { + "start": 29971.3, + "end": 29974.26, + "probability": 0.957 + }, + { + "start": 29975.06, + "end": 29977.06, + "probability": 0.9375 + }, + { + "start": 29977.6, + "end": 29980.48, + "probability": 0.9901 + }, + { + "start": 29981.08, + "end": 29982.56, + "probability": 0.9871 + }, + { + "start": 29983.3, + "end": 29987.42, + "probability": 0.9947 + }, + { + "start": 29987.42, + "end": 29991.26, + "probability": 0.9985 + }, + { + "start": 29991.8, + "end": 29994.18, + "probability": 0.9953 + }, + { + "start": 29994.34, + "end": 29995.22, + "probability": 0.7194 + }, + { + "start": 29995.66, + "end": 29997.08, + "probability": 0.8374 + }, + { + "start": 29997.14, + "end": 29997.78, + "probability": 0.9396 + }, + { + "start": 29998.3, + "end": 29999.2, + "probability": 0.9212 + }, + { + "start": 30000.32, + "end": 30000.88, + "probability": 0.9578 + }, + { + "start": 30001.46, + "end": 30002.9, + "probability": 0.9302 + }, + { + "start": 30003.46, + "end": 30006.64, + "probability": 0.9478 + }, + { + "start": 30007.16, + "end": 30010.46, + "probability": 0.9622 + }, + { + "start": 30010.6, + "end": 30014.74, + "probability": 0.8945 + }, + { + "start": 30015.38, + "end": 30016.78, + "probability": 0.7029 + }, + { + "start": 30017.64, + "end": 30018.54, + "probability": 0.7194 + }, + { + "start": 30018.94, + "end": 30019.76, + "probability": 0.7839 + }, + { + "start": 30019.88, + "end": 30020.7, + "probability": 0.858 + }, + { + "start": 30021.1, + "end": 30021.68, + "probability": 0.5209 + }, + { + "start": 30021.9, + "end": 30022.8, + "probability": 0.948 + }, + { + "start": 30023.02, + "end": 30023.84, + "probability": 0.8305 + }, + { + "start": 30024.26, + "end": 30030.06, + "probability": 0.987 + }, + { + "start": 30030.48, + "end": 30030.88, + "probability": 0.7369 + }, + { + "start": 30031.06, + "end": 30032.06, + "probability": 0.784 + }, + { + "start": 30032.44, + "end": 30033.6, + "probability": 0.9694 + }, + { + "start": 30033.94, + "end": 30035.64, + "probability": 0.9771 + }, + { + "start": 30035.78, + "end": 30040.62, + "probability": 0.7349 + }, + { + "start": 30040.86, + "end": 30042.48, + "probability": 0.9011 + }, + { + "start": 30042.96, + "end": 30043.62, + "probability": 0.3364 + }, + { + "start": 30043.76, + "end": 30045.2, + "probability": 0.8045 + }, + { + "start": 30046.1, + "end": 30049.06, + "probability": 0.9984 + }, + { + "start": 30049.86, + "end": 30052.98, + "probability": 0.9367 + }, + { + "start": 30053.6, + "end": 30054.24, + "probability": 0.9507 + }, + { + "start": 30055.26, + "end": 30058.02, + "probability": 0.911 + }, + { + "start": 30059.08, + "end": 30062.28, + "probability": 0.9834 + }, + { + "start": 30062.54, + "end": 30062.82, + "probability": 0.827 + }, + { + "start": 30062.86, + "end": 30067.74, + "probability": 0.9926 + }, + { + "start": 30067.96, + "end": 30073.76, + "probability": 0.959 + }, + { + "start": 30074.2, + "end": 30075.53, + "probability": 0.9634 + }, + { + "start": 30075.6, + "end": 30079.92, + "probability": 0.9822 + }, + { + "start": 30080.74, + "end": 30083.02, + "probability": 0.9201 + }, + { + "start": 30083.1, + "end": 30084.3, + "probability": 0.7215 + }, + { + "start": 30084.8, + "end": 30087.48, + "probability": 0.9705 + }, + { + "start": 30088.1, + "end": 30089.96, + "probability": 0.9963 + }, + { + "start": 30090.36, + "end": 30094.24, + "probability": 0.9961 + }, + { + "start": 30094.68, + "end": 30097.68, + "probability": 0.6793 + }, + { + "start": 30098.4, + "end": 30098.94, + "probability": 0.4584 + }, + { + "start": 30099.32, + "end": 30101.26, + "probability": 0.8778 + }, + { + "start": 30101.92, + "end": 30105.54, + "probability": 0.9851 + }, + { + "start": 30105.54, + "end": 30106.4, + "probability": 0.4448 + }, + { + "start": 30107.08, + "end": 30110.82, + "probability": 0.9235 + }, + { + "start": 30111.1, + "end": 30111.52, + "probability": 0.286 + }, + { + "start": 30111.9, + "end": 30113.16, + "probability": 0.8954 + }, + { + "start": 30114.32, + "end": 30115.28, + "probability": 0.9059 + }, + { + "start": 30116.3, + "end": 30120.96, + "probability": 0.9648 + }, + { + "start": 30121.72, + "end": 30125.5, + "probability": 0.8809 + }, + { + "start": 30126.02, + "end": 30131.66, + "probability": 0.9704 + }, + { + "start": 30131.78, + "end": 30137.56, + "probability": 0.9492 + }, + { + "start": 30138.42, + "end": 30143.0, + "probability": 0.9885 + }, + { + "start": 30143.66, + "end": 30147.82, + "probability": 0.9932 + }, + { + "start": 30147.96, + "end": 30150.46, + "probability": 0.9913 + }, + { + "start": 30150.56, + "end": 30155.32, + "probability": 0.991 + }, + { + "start": 30156.3, + "end": 30156.48, + "probability": 0.3149 + }, + { + "start": 30157.22, + "end": 30158.86, + "probability": 0.861 + }, + { + "start": 30159.34, + "end": 30167.3, + "probability": 0.9142 + }, + { + "start": 30167.3, + "end": 30174.18, + "probability": 0.9984 + }, + { + "start": 30175.02, + "end": 30177.58, + "probability": 0.7488 + }, + { + "start": 30177.74, + "end": 30178.88, + "probability": 0.4037 + }, + { + "start": 30179.22, + "end": 30180.26, + "probability": 0.5871 + }, + { + "start": 30180.66, + "end": 30180.8, + "probability": 0.6482 + }, + { + "start": 30181.12, + "end": 30183.62, + "probability": 0.9397 + }, + { + "start": 30184.24, + "end": 30187.4, + "probability": 0.9675 + }, + { + "start": 30187.96, + "end": 30189.23, + "probability": 0.9626 + }, + { + "start": 30189.68, + "end": 30190.74, + "probability": 0.6661 + }, + { + "start": 30191.0, + "end": 30195.8, + "probability": 0.9548 + }, + { + "start": 30196.34, + "end": 30199.54, + "probability": 0.963 + }, + { + "start": 30200.02, + "end": 30205.96, + "probability": 0.994 + }, + { + "start": 30206.44, + "end": 30207.84, + "probability": 0.9821 + }, + { + "start": 30207.94, + "end": 30208.36, + "probability": 0.9526 + }, + { + "start": 30209.16, + "end": 30210.1, + "probability": 0.9504 + }, + { + "start": 30210.64, + "end": 30211.12, + "probability": 0.7264 + }, + { + "start": 30211.18, + "end": 30211.76, + "probability": 0.6884 + }, + { + "start": 30212.2, + "end": 30216.68, + "probability": 0.9985 + }, + { + "start": 30217.1, + "end": 30219.3, + "probability": 0.9604 + }, + { + "start": 30219.42, + "end": 30219.78, + "probability": 0.7604 + }, + { + "start": 30220.2, + "end": 30220.44, + "probability": 0.8157 + }, + { + "start": 30220.56, + "end": 30221.02, + "probability": 0.7427 + }, + { + "start": 30221.16, + "end": 30221.26, + "probability": 0.7466 + }, + { + "start": 30221.44, + "end": 30222.36, + "probability": 0.8318 + }, + { + "start": 30222.88, + "end": 30226.92, + "probability": 0.9482 + }, + { + "start": 30227.06, + "end": 30228.23, + "probability": 0.5003 + }, + { + "start": 30228.4, + "end": 30228.74, + "probability": 0.7348 + }, + { + "start": 30229.42, + "end": 30230.02, + "probability": 0.1987 + }, + { + "start": 30230.4, + "end": 30233.39, + "probability": 0.9727 + }, + { + "start": 30234.42, + "end": 30237.46, + "probability": 0.9861 + }, + { + "start": 30237.98, + "end": 30238.88, + "probability": 0.9651 + }, + { + "start": 30239.56, + "end": 30244.4, + "probability": 0.9938 + }, + { + "start": 30245.06, + "end": 30247.64, + "probability": 0.9949 + }, + { + "start": 30248.28, + "end": 30249.94, + "probability": 0.8377 + }, + { + "start": 30250.46, + "end": 30252.52, + "probability": 0.9956 + }, + { + "start": 30253.02, + "end": 30257.46, + "probability": 0.9771 + }, + { + "start": 30257.96, + "end": 30258.92, + "probability": 0.8057 + }, + { + "start": 30259.34, + "end": 30261.26, + "probability": 0.9089 + }, + { + "start": 30261.32, + "end": 30262.54, + "probability": 0.6615 + }, + { + "start": 30263.06, + "end": 30269.04, + "probability": 0.9294 + }, + { + "start": 30269.2, + "end": 30270.68, + "probability": 0.9757 + }, + { + "start": 30271.16, + "end": 30276.94, + "probability": 0.9741 + }, + { + "start": 30277.13, + "end": 30281.93, + "probability": 0.9885 + }, + { + "start": 30283.2, + "end": 30285.66, + "probability": 0.9929 + }, + { + "start": 30285.66, + "end": 30288.94, + "probability": 0.9922 + }, + { + "start": 30289.46, + "end": 30291.28, + "probability": 0.994 + }, + { + "start": 30291.8, + "end": 30294.6, + "probability": 0.9979 + }, + { + "start": 30295.16, + "end": 30297.84, + "probability": 0.9195 + }, + { + "start": 30298.32, + "end": 30299.02, + "probability": 0.8579 + }, + { + "start": 30299.54, + "end": 30300.58, + "probability": 0.9861 + }, + { + "start": 30300.92, + "end": 30302.26, + "probability": 0.9771 + }, + { + "start": 30302.32, + "end": 30304.74, + "probability": 0.9858 + }, + { + "start": 30305.26, + "end": 30309.46, + "probability": 0.9938 + }, + { + "start": 30309.96, + "end": 30312.58, + "probability": 0.9966 + }, + { + "start": 30313.14, + "end": 30314.46, + "probability": 0.8488 + }, + { + "start": 30315.02, + "end": 30316.28, + "probability": 0.9966 + }, + { + "start": 30317.0, + "end": 30319.62, + "probability": 0.9936 + }, + { + "start": 30319.62, + "end": 30322.74, + "probability": 0.999 + }, + { + "start": 30322.84, + "end": 30323.66, + "probability": 0.8903 + }, + { + "start": 30324.2, + "end": 30325.81, + "probability": 0.9971 + }, + { + "start": 30326.24, + "end": 30327.14, + "probability": 0.6956 + }, + { + "start": 30327.66, + "end": 30329.88, + "probability": 0.9966 + }, + { + "start": 30330.56, + "end": 30333.96, + "probability": 0.9235 + }, + { + "start": 30334.5, + "end": 30337.86, + "probability": 0.991 + }, + { + "start": 30338.42, + "end": 30343.24, + "probability": 0.9627 + }, + { + "start": 30343.28, + "end": 30347.48, + "probability": 0.9886 + }, + { + "start": 30347.76, + "end": 30349.8, + "probability": 0.7434 + }, + { + "start": 30349.86, + "end": 30350.54, + "probability": 0.8899 + }, + { + "start": 30351.2, + "end": 30354.14, + "probability": 0.9461 + }, + { + "start": 30354.82, + "end": 30356.94, + "probability": 0.9977 + }, + { + "start": 30357.0, + "end": 30357.92, + "probability": 0.662 + }, + { + "start": 30358.48, + "end": 30359.5, + "probability": 0.6627 + }, + { + "start": 30360.12, + "end": 30361.34, + "probability": 0.6911 + }, + { + "start": 30361.66, + "end": 30362.7, + "probability": 0.8625 + }, + { + "start": 30362.8, + "end": 30364.78, + "probability": 0.9834 + }, + { + "start": 30365.24, + "end": 30369.14, + "probability": 0.987 + }, + { + "start": 30369.14, + "end": 30373.24, + "probability": 0.9838 + }, + { + "start": 30373.26, + "end": 30374.72, + "probability": 0.8745 + }, + { + "start": 30375.28, + "end": 30375.94, + "probability": 0.7707 + }, + { + "start": 30376.36, + "end": 30377.1, + "probability": 0.693 + }, + { + "start": 30377.26, + "end": 30377.48, + "probability": 0.4411 + }, + { + "start": 30379.52, + "end": 30381.92, + "probability": 0.98 + }, + { + "start": 30382.9, + "end": 30385.41, + "probability": 0.9786 + }, + { + "start": 30386.82, + "end": 30390.28, + "probability": 0.9394 + }, + { + "start": 30391.04, + "end": 30391.66, + "probability": 0.6727 + }, + { + "start": 30391.82, + "end": 30396.54, + "probability": 0.9347 + }, + { + "start": 30397.1, + "end": 30399.75, + "probability": 0.8098 + }, + { + "start": 30400.62, + "end": 30402.82, + "probability": 0.8594 + }, + { + "start": 30402.84, + "end": 30402.84, + "probability": 0.1772 + }, + { + "start": 30402.84, + "end": 30403.58, + "probability": 0.7781 + }, + { + "start": 30404.66, + "end": 30408.76, + "probability": 0.9043 + }, + { + "start": 30409.58, + "end": 30410.48, + "probability": 0.7817 + }, + { + "start": 30411.2, + "end": 30413.3, + "probability": 0.9851 + }, + { + "start": 30413.68, + "end": 30416.2, + "probability": 0.794 + }, + { + "start": 30417.48, + "end": 30418.86, + "probability": 0.9028 + }, + { + "start": 30419.28, + "end": 30419.28, + "probability": 0.5737 + }, + { + "start": 30419.42, + "end": 30426.38, + "probability": 0.9548 + }, + { + "start": 30426.46, + "end": 30429.52, + "probability": 0.8097 + }, + { + "start": 30430.12, + "end": 30433.64, + "probability": 0.9346 + }, + { + "start": 30433.66, + "end": 30434.3, + "probability": 0.7758 + }, + { + "start": 30434.84, + "end": 30435.92, + "probability": 0.8691 + }, + { + "start": 30436.22, + "end": 30436.68, + "probability": 0.2809 + }, + { + "start": 30438.72, + "end": 30438.74, + "probability": 0.1975 + }, + { + "start": 30438.74, + "end": 30438.74, + "probability": 0.0546 + }, + { + "start": 30438.74, + "end": 30438.74, + "probability": 0.3028 + }, + { + "start": 30438.74, + "end": 30438.74, + "probability": 0.4466 + }, + { + "start": 30438.74, + "end": 30441.12, + "probability": 0.7468 + }, + { + "start": 30441.54, + "end": 30442.62, + "probability": 0.8721 + }, + { + "start": 30443.1, + "end": 30443.58, + "probability": 0.7031 + }, + { + "start": 30457.9, + "end": 30458.92, + "probability": 0.6647 + }, + { + "start": 30465.14, + "end": 30467.6, + "probability": 0.5025 + }, + { + "start": 30469.58, + "end": 30472.54, + "probability": 0.9909 + }, + { + "start": 30473.12, + "end": 30477.3, + "probability": 0.5112 + }, + { + "start": 30478.28, + "end": 30482.02, + "probability": 0.9906 + }, + { + "start": 30482.62, + "end": 30484.54, + "probability": 0.9665 + }, + { + "start": 30484.62, + "end": 30486.08, + "probability": 0.9692 + }, + { + "start": 30486.6, + "end": 30490.34, + "probability": 0.9843 + }, + { + "start": 30491.58, + "end": 30494.26, + "probability": 0.9622 + }, + { + "start": 30494.26, + "end": 30496.78, + "probability": 0.9987 + }, + { + "start": 30497.22, + "end": 30498.78, + "probability": 0.9814 + }, + { + "start": 30498.88, + "end": 30503.78, + "probability": 0.9375 + }, + { + "start": 30503.78, + "end": 30508.52, + "probability": 0.9847 + }, + { + "start": 30508.92, + "end": 30509.92, + "probability": 0.8671 + }, + { + "start": 30510.06, + "end": 30511.3, + "probability": 0.769 + }, + { + "start": 30511.76, + "end": 30512.46, + "probability": 0.1724 + }, + { + "start": 30512.78, + "end": 30515.54, + "probability": 0.868 + }, + { + "start": 30515.54, + "end": 30518.32, + "probability": 0.8487 + }, + { + "start": 30518.7, + "end": 30519.06, + "probability": 0.8119 + }, + { + "start": 30520.24, + "end": 30523.92, + "probability": 0.4909 + }, + { + "start": 30525.04, + "end": 30529.16, + "probability": 0.9361 + }, + { + "start": 30529.4, + "end": 30533.64, + "probability": 0.9043 + }, + { + "start": 30535.62, + "end": 30536.9, + "probability": 0.7999 + }, + { + "start": 30536.92, + "end": 30539.44, + "probability": 0.4696 + }, + { + "start": 30539.58, + "end": 30541.04, + "probability": 0.85 + }, + { + "start": 30541.14, + "end": 30544.38, + "probability": 0.9968 + }, + { + "start": 30544.38, + "end": 30547.36, + "probability": 0.996 + }, + { + "start": 30548.5, + "end": 30548.72, + "probability": 0.2728 + }, + { + "start": 30548.8, + "end": 30549.94, + "probability": 0.9503 + }, + { + "start": 30550.02, + "end": 30552.8, + "probability": 0.9836 + }, + { + "start": 30553.08, + "end": 30556.44, + "probability": 0.8944 + }, + { + "start": 30556.82, + "end": 30558.02, + "probability": 0.9659 + }, + { + "start": 30558.16, + "end": 30559.5, + "probability": 0.8409 + }, + { + "start": 30560.26, + "end": 30564.26, + "probability": 0.994 + }, + { + "start": 30564.76, + "end": 30565.92, + "probability": 0.5871 + }, + { + "start": 30566.62, + "end": 30570.82, + "probability": 0.9916 + }, + { + "start": 30572.02, + "end": 30573.28, + "probability": 0.957 + }, + { + "start": 30573.78, + "end": 30575.84, + "probability": 0.9392 + }, + { + "start": 30575.96, + "end": 30578.3, + "probability": 0.9954 + }, + { + "start": 30578.7, + "end": 30581.76, + "probability": 0.7973 + }, + { + "start": 30582.62, + "end": 30584.28, + "probability": 0.918 + }, + { + "start": 30585.18, + "end": 30588.74, + "probability": 0.9601 + }, + { + "start": 30588.74, + "end": 30591.96, + "probability": 0.9412 + }, + { + "start": 30592.72, + "end": 30596.12, + "probability": 0.9639 + }, + { + "start": 30596.46, + "end": 30597.3, + "probability": 0.9475 + }, + { + "start": 30597.56, + "end": 30598.2, + "probability": 0.5996 + }, + { + "start": 30598.3, + "end": 30599.76, + "probability": 0.9985 + }, + { + "start": 30600.32, + "end": 30603.23, + "probability": 0.9897 + }, + { + "start": 30603.66, + "end": 30606.2, + "probability": 0.9018 + }, + { + "start": 30606.56, + "end": 30610.92, + "probability": 0.9924 + }, + { + "start": 30611.38, + "end": 30612.14, + "probability": 0.5465 + }, + { + "start": 30612.5, + "end": 30614.56, + "probability": 0.9751 + }, + { + "start": 30614.56, + "end": 30615.54, + "probability": 0.8217 + }, + { + "start": 30615.92, + "end": 30619.12, + "probability": 0.5886 + }, + { + "start": 30619.22, + "end": 30619.24, + "probability": 0.1115 + }, + { + "start": 30619.24, + "end": 30619.24, + "probability": 0.4504 + }, + { + "start": 30619.3, + "end": 30623.18, + "probability": 0.9002 + }, + { + "start": 30623.26, + "end": 30623.9, + "probability": 0.8185 + }, + { + "start": 30624.32, + "end": 30624.74, + "probability": 0.8688 + }, + { + "start": 30626.02, + "end": 30627.94, + "probability": 0.6604 + }, + { + "start": 30628.46, + "end": 30628.86, + "probability": 0.6482 + }, + { + "start": 30628.88, + "end": 30630.14, + "probability": 0.8407 + }, + { + "start": 30630.18, + "end": 30630.26, + "probability": 0.0848 + }, + { + "start": 30630.32, + "end": 30632.0, + "probability": 0.8264 + }, + { + "start": 30632.54, + "end": 30633.56, + "probability": 0.419 + }, + { + "start": 30634.08, + "end": 30634.5, + "probability": 0.4919 + }, + { + "start": 30634.78, + "end": 30636.12, + "probability": 0.8259 + }, + { + "start": 30636.5, + "end": 30637.02, + "probability": 0.6605 + }, + { + "start": 30637.08, + "end": 30637.54, + "probability": 0.7807 + }, + { + "start": 30638.24, + "end": 30639.28, + "probability": 0.8868 + }, + { + "start": 30639.64, + "end": 30640.65, + "probability": 0.438 + }, + { + "start": 30640.76, + "end": 30642.67, + "probability": 0.6759 + }, + { + "start": 30643.04, + "end": 30644.04, + "probability": 0.0098 + }, + { + "start": 30644.06, + "end": 30644.28, + "probability": 0.3857 + }, + { + "start": 30644.32, + "end": 30645.7, + "probability": 0.5037 + }, + { + "start": 30645.84, + "end": 30646.16, + "probability": 0.6262 + }, + { + "start": 30646.84, + "end": 30647.42, + "probability": 0.6516 + }, + { + "start": 30647.58, + "end": 30647.72, + "probability": 0.7832 + }, + { + "start": 30647.76, + "end": 30649.76, + "probability": 0.9858 + }, + { + "start": 30649.78, + "end": 30650.56, + "probability": 0.2727 + }, + { + "start": 30650.94, + "end": 30651.44, + "probability": 0.3999 + }, + { + "start": 30651.58, + "end": 30652.74, + "probability": 0.9665 + }, + { + "start": 30652.84, + "end": 30653.9, + "probability": 0.9658 + }, + { + "start": 30654.54, + "end": 30656.5, + "probability": 0.7362 + }, + { + "start": 30656.74, + "end": 30657.14, + "probability": 0.9086 + }, + { + "start": 30657.4, + "end": 30661.3, + "probability": 0.9803 + }, + { + "start": 30661.3, + "end": 30663.9, + "probability": 0.9937 + }, + { + "start": 30663.94, + "end": 30664.2, + "probability": 0.7418 + }, + { + "start": 30664.84, + "end": 30665.62, + "probability": 0.7642 + }, + { + "start": 30666.04, + "end": 30667.34, + "probability": 0.7667 + }, + { + "start": 30667.68, + "end": 30667.74, + "probability": 0.183 + }, + { + "start": 30667.76, + "end": 30669.46, + "probability": 0.9897 + }, + { + "start": 30670.32, + "end": 30671.5, + "probability": 0.0209 + }, + { + "start": 30672.82, + "end": 30672.98, + "probability": 0.059 + }, + { + "start": 30672.98, + "end": 30672.98, + "probability": 0.0534 + }, + { + "start": 30672.98, + "end": 30675.09, + "probability": 0.4569 + }, + { + "start": 30675.1, + "end": 30676.42, + "probability": 0.1459 + }, + { + "start": 30676.42, + "end": 30676.94, + "probability": 0.1654 + }, + { + "start": 30683.36, + "end": 30685.06, + "probability": 0.6616 + }, + { + "start": 30685.18, + "end": 30687.28, + "probability": 0.9299 + }, + { + "start": 30687.86, + "end": 30692.02, + "probability": 0.9822 + }, + { + "start": 30692.82, + "end": 30692.86, + "probability": 0.1112 + }, + { + "start": 30692.86, + "end": 30692.86, + "probability": 0.2282 + }, + { + "start": 30692.86, + "end": 30693.26, + "probability": 0.3506 + }, + { + "start": 30693.44, + "end": 30694.02, + "probability": 0.7383 + }, + { + "start": 30694.42, + "end": 30695.1, + "probability": 0.571 + }, + { + "start": 30695.92, + "end": 30702.26, + "probability": 0.0311 + }, + { + "start": 30702.56, + "end": 30702.92, + "probability": 0.2965 + }, + { + "start": 30702.96, + "end": 30703.46, + "probability": 0.5828 + }, + { + "start": 30704.14, + "end": 30704.18, + "probability": 0.4527 + }, + { + "start": 30704.22, + "end": 30704.22, + "probability": 0.0117 + }, + { + "start": 30704.22, + "end": 30704.22, + "probability": 0.0212 + }, + { + "start": 30704.22, + "end": 30704.22, + "probability": 0.4863 + }, + { + "start": 30704.22, + "end": 30707.1, + "probability": 0.9619 + }, + { + "start": 30707.42, + "end": 30708.52, + "probability": 0.1312 + }, + { + "start": 30708.52, + "end": 30710.06, + "probability": 0.0478 + }, + { + "start": 30711.14, + "end": 30711.22, + "probability": 0.1694 + }, + { + "start": 30712.36, + "end": 30715.02, + "probability": 0.0417 + }, + { + "start": 30715.02, + "end": 30715.34, + "probability": 0.0999 + }, + { + "start": 30715.34, + "end": 30715.34, + "probability": 0.0253 + }, + { + "start": 30715.34, + "end": 30715.34, + "probability": 0.2269 + }, + { + "start": 30715.34, + "end": 30716.34, + "probability": 0.2357 + }, + { + "start": 30717.46, + "end": 30717.46, + "probability": 0.466 + }, + { + "start": 30717.46, + "end": 30718.48, + "probability": 0.2853 + }, + { + "start": 30718.64, + "end": 30718.8, + "probability": 0.3582 + }, + { + "start": 30720.86, + "end": 30721.82, + "probability": 0.0182 + }, + { + "start": 30722.66, + "end": 30725.68, + "probability": 0.1409 + }, + { + "start": 30760.0, + "end": 30760.0, + "probability": 0.0 + }, + { + "start": 30760.0, + "end": 30760.0, + "probability": 0.0 + }, + { + "start": 30760.0, + "end": 30760.0, + "probability": 0.0 + }, + { + "start": 30760.0, + "end": 30760.0, + "probability": 0.0 + }, + { + "start": 30760.0, + "end": 30760.0, + "probability": 0.0 + }, + { + "start": 30760.0, + "end": 30760.0, + "probability": 0.0 + }, + { + "start": 30760.0, + "end": 30760.0, + "probability": 0.0 + }, + { + "start": 30760.0, + "end": 30760.0, + "probability": 0.0 + }, + { + "start": 30760.0, + "end": 30760.0, + "probability": 0.0 + }, + { + "start": 30760.0, + "end": 30760.0, + "probability": 0.0 + }, + { + "start": 30760.0, + "end": 30760.0, + "probability": 0.0 + }, + { + "start": 30760.0, + "end": 30760.0, + "probability": 0.0 + }, + { + "start": 30760.0, + "end": 30760.0, + "probability": 0.0 + }, + { + "start": 30760.0, + "end": 30760.0, + "probability": 0.0 + }, + { + "start": 30760.0, + "end": 30760.0, + "probability": 0.0 + }, + { + "start": 30760.0, + "end": 30760.0, + "probability": 0.0 + }, + { + "start": 30760.0, + "end": 30760.0, + "probability": 0.0 + }, + { + "start": 30760.0, + "end": 30760.0, + "probability": 0.0 + }, + { + "start": 30760.0, + "end": 30760.0, + "probability": 0.0 + }, + { + "start": 30760.0, + "end": 30760.0, + "probability": 0.0 + }, + { + "start": 30760.36, + "end": 30760.36, + "probability": 0.0281 + }, + { + "start": 30760.36, + "end": 30760.36, + "probability": 0.0549 + }, + { + "start": 30760.36, + "end": 30760.36, + "probability": 0.0405 + }, + { + "start": 30760.36, + "end": 30760.36, + "probability": 0.106 + }, + { + "start": 30760.36, + "end": 30760.36, + "probability": 0.0207 + }, + { + "start": 30760.36, + "end": 30760.54, + "probability": 0.0402 + }, + { + "start": 30760.58, + "end": 30761.44, + "probability": 0.1148 + }, + { + "start": 30761.84, + "end": 30766.56, + "probability": 0.6807 + }, + { + "start": 30766.58, + "end": 30770.88, + "probability": 0.9085 + }, + { + "start": 30771.26, + "end": 30772.78, + "probability": 0.9426 + }, + { + "start": 30773.14, + "end": 30775.7, + "probability": 0.9705 + }, + { + "start": 30776.2, + "end": 30777.26, + "probability": 0.5222 + }, + { + "start": 30777.66, + "end": 30779.3, + "probability": 0.658 + }, + { + "start": 30779.3, + "end": 30780.92, + "probability": 0.7195 + }, + { + "start": 30781.0, + "end": 30781.22, + "probability": 0.4977 + }, + { + "start": 30781.22, + "end": 30782.64, + "probability": 0.9523 + }, + { + "start": 30782.68, + "end": 30784.42, + "probability": 0.8972 + }, + { + "start": 30784.56, + "end": 30786.72, + "probability": 0.903 + }, + { + "start": 30787.34, + "end": 30787.34, + "probability": 0.4175 + }, + { + "start": 30787.34, + "end": 30787.34, + "probability": 0.063 + }, + { + "start": 30787.34, + "end": 30789.52, + "probability": 0.5852 + }, + { + "start": 30789.52, + "end": 30789.88, + "probability": 0.0236 + }, + { + "start": 30789.88, + "end": 30791.94, + "probability": 0.6724 + }, + { + "start": 30792.0, + "end": 30793.22, + "probability": 0.8811 + }, + { + "start": 30793.64, + "end": 30795.24, + "probability": 0.9417 + }, + { + "start": 30795.3, + "end": 30796.54, + "probability": 0.9543 + }, + { + "start": 30797.08, + "end": 30797.64, + "probability": 0.8177 + }, + { + "start": 30797.72, + "end": 30798.28, + "probability": 0.9648 + }, + { + "start": 30798.36, + "end": 30801.04, + "probability": 0.9985 + }, + { + "start": 30801.04, + "end": 30804.84, + "probability": 0.9617 + }, + { + "start": 30805.2, + "end": 30805.76, + "probability": 0.7094 + }, + { + "start": 30805.8, + "end": 30806.7, + "probability": 0.6245 + }, + { + "start": 30807.18, + "end": 30808.42, + "probability": 0.8489 + }, + { + "start": 30808.48, + "end": 30808.74, + "probability": 0.4741 + }, + { + "start": 30808.88, + "end": 30810.44, + "probability": 0.9446 + }, + { + "start": 30811.12, + "end": 30811.64, + "probability": 0.342 + }, + { + "start": 30811.68, + "end": 30812.7, + "probability": 0.6704 + }, + { + "start": 30812.76, + "end": 30814.57, + "probability": 0.6091 + }, + { + "start": 30814.64, + "end": 30815.26, + "probability": 0.5603 + }, + { + "start": 30815.32, + "end": 30817.86, + "probability": 0.3595 + }, + { + "start": 30818.14, + "end": 30819.06, + "probability": 0.2116 + }, + { + "start": 30819.74, + "end": 30819.74, + "probability": 0.0598 + }, + { + "start": 30819.74, + "end": 30819.74, + "probability": 0.5428 + }, + { + "start": 30819.74, + "end": 30820.32, + "probability": 0.3653 + }, + { + "start": 30820.38, + "end": 30824.02, + "probability": 0.9013 + }, + { + "start": 30824.92, + "end": 30826.66, + "probability": 0.252 + }, + { + "start": 30826.66, + "end": 30829.62, + "probability": 0.5035 + }, + { + "start": 30833.18, + "end": 30835.28, + "probability": 0.2439 + }, + { + "start": 30836.0, + "end": 30836.96, + "probability": 0.6956 + }, + { + "start": 30837.56, + "end": 30838.34, + "probability": 0.6967 + }, + { + "start": 30838.72, + "end": 30839.62, + "probability": 0.7398 + }, + { + "start": 30839.7, + "end": 30840.18, + "probability": 0.3349 + }, + { + "start": 30840.58, + "end": 30840.96, + "probability": 0.6601 + }, + { + "start": 30841.08, + "end": 30841.42, + "probability": 0.9391 + }, + { + "start": 30842.26, + "end": 30843.97, + "probability": 0.676 + }, + { + "start": 30844.84, + "end": 30845.5, + "probability": 0.2217 + }, + { + "start": 30848.3, + "end": 30849.52, + "probability": 0.0152 + }, + { + "start": 30849.52, + "end": 30849.52, + "probability": 0.0976 + }, + { + "start": 30849.52, + "end": 30849.52, + "probability": 0.0474 + }, + { + "start": 30849.52, + "end": 30849.52, + "probability": 0.0298 + }, + { + "start": 30849.52, + "end": 30850.43, + "probability": 0.6149 + }, + { + "start": 30850.84, + "end": 30851.26, + "probability": 0.4222 + }, + { + "start": 30851.85, + "end": 30852.3, + "probability": 0.1393 + }, + { + "start": 30852.82, + "end": 30853.76, + "probability": 0.7703 + }, + { + "start": 30853.82, + "end": 30856.57, + "probability": 0.9868 + }, + { + "start": 30857.62, + "end": 30858.5, + "probability": 0.0662 + }, + { + "start": 30859.68, + "end": 30860.92, + "probability": 0.6094 + }, + { + "start": 30861.39, + "end": 30864.32, + "probability": 0.796 + }, + { + "start": 30865.12, + "end": 30867.88, + "probability": 0.8072 + }, + { + "start": 30868.74, + "end": 30870.14, + "probability": 0.7441 + }, + { + "start": 30871.02, + "end": 30873.46, + "probability": 0.0817 + }, + { + "start": 30873.46, + "end": 30873.46, + "probability": 0.0822 + }, + { + "start": 30873.46, + "end": 30875.8, + "probability": 0.7648 + }, + { + "start": 30877.92, + "end": 30880.76, + "probability": 0.9419 + }, + { + "start": 30881.34, + "end": 30882.08, + "probability": 0.6888 + }, + { + "start": 30883.04, + "end": 30884.14, + "probability": 0.1396 + }, + { + "start": 30884.14, + "end": 30885.0, + "probability": 0.3945 + }, + { + "start": 30886.64, + "end": 30887.1, + "probability": 0.8539 + }, + { + "start": 30887.12, + "end": 30888.3, + "probability": 0.1738 + }, + { + "start": 30889.3, + "end": 30892.7, + "probability": 0.7687 + }, + { + "start": 30892.98, + "end": 30896.2, + "probability": 0.2659 + }, + { + "start": 30896.48, + "end": 30898.8, + "probability": 0.8086 + }, + { + "start": 30899.58, + "end": 30900.7, + "probability": 0.7719 + }, + { + "start": 30901.36, + "end": 30906.82, + "probability": 0.9878 + }, + { + "start": 30906.82, + "end": 30910.98, + "probability": 0.9956 + }, + { + "start": 30911.66, + "end": 30913.32, + "probability": 0.9224 + }, + { + "start": 30914.04, + "end": 30915.88, + "probability": 0.7652 + }, + { + "start": 30915.94, + "end": 30916.24, + "probability": 0.4231 + }, + { + "start": 30916.26, + "end": 30917.48, + "probability": 0.8867 + }, + { + "start": 30918.64, + "end": 30919.94, + "probability": 0.8003 + }, + { + "start": 30920.14, + "end": 30922.06, + "probability": 0.9906 + }, + { + "start": 30922.36, + "end": 30923.46, + "probability": 0.8727 + }, + { + "start": 30923.82, + "end": 30928.96, + "probability": 0.9147 + }, + { + "start": 30929.44, + "end": 30931.12, + "probability": 0.9873 + }, + { + "start": 30931.96, + "end": 30935.92, + "probability": 0.9904 + }, + { + "start": 30936.0, + "end": 30938.0, + "probability": 0.9032 + }, + { + "start": 30938.54, + "end": 30940.32, + "probability": 0.9964 + }, + { + "start": 30940.84, + "end": 30942.62, + "probability": 0.9279 + }, + { + "start": 30943.08, + "end": 30945.76, + "probability": 0.9888 + }, + { + "start": 30946.28, + "end": 30948.4, + "probability": 0.9779 + }, + { + "start": 30948.4, + "end": 30952.62, + "probability": 0.9055 + }, + { + "start": 30953.38, + "end": 30956.62, + "probability": 0.9956 + }, + { + "start": 30957.18, + "end": 30960.78, + "probability": 0.8608 + }, + { + "start": 30961.34, + "end": 30961.82, + "probability": 0.8757 + }, + { + "start": 30963.0, + "end": 30963.54, + "probability": 0.5643 + }, + { + "start": 30964.18, + "end": 30966.4, + "probability": 0.658 + }, + { + "start": 30966.72, + "end": 30969.24, + "probability": 0.7715 + }, + { + "start": 30969.84, + "end": 30973.04, + "probability": 0.8629 + }, + { + "start": 30974.06, + "end": 30975.02, + "probability": 0.3942 + }, + { + "start": 30975.02, + "end": 30979.38, + "probability": 0.9344 + }, + { + "start": 30980.1, + "end": 30983.84, + "probability": 0.9927 + }, + { + "start": 30984.44, + "end": 30986.28, + "probability": 0.9482 + }, + { + "start": 30999.5, + "end": 30999.8, + "probability": 0.4945 + }, + { + "start": 31000.96, + "end": 31003.36, + "probability": 0.6288 + }, + { + "start": 31004.76, + "end": 31006.52, + "probability": 0.9375 + }, + { + "start": 31007.38, + "end": 31008.18, + "probability": 0.847 + }, + { + "start": 31009.0, + "end": 31010.68, + "probability": 0.9845 + }, + { + "start": 31011.24, + "end": 31012.14, + "probability": 0.782 + }, + { + "start": 31012.76, + "end": 31013.42, + "probability": 0.9946 + }, + { + "start": 31014.34, + "end": 31016.34, + "probability": 0.9944 + }, + { + "start": 31017.26, + "end": 31018.16, + "probability": 0.7078 + }, + { + "start": 31019.08, + "end": 31019.8, + "probability": 0.9325 + }, + { + "start": 31020.36, + "end": 31022.54, + "probability": 0.9276 + }, + { + "start": 31023.26, + "end": 31024.74, + "probability": 0.9766 + }, + { + "start": 31025.48, + "end": 31026.96, + "probability": 0.9925 + }, + { + "start": 31028.2, + "end": 31029.52, + "probability": 0.9749 + }, + { + "start": 31030.34, + "end": 31032.16, + "probability": 0.9886 + }, + { + "start": 31032.7, + "end": 31033.5, + "probability": 0.7962 + }, + { + "start": 31034.06, + "end": 31034.7, + "probability": 0.5139 + }, + { + "start": 31035.52, + "end": 31037.34, + "probability": 0.9543 + }, + { + "start": 31038.32, + "end": 31042.2, + "probability": 0.9616 + }, + { + "start": 31042.86, + "end": 31043.49, + "probability": 0.9513 + }, + { + "start": 31044.12, + "end": 31046.76, + "probability": 0.9932 + }, + { + "start": 31047.88, + "end": 31048.98, + "probability": 0.9258 + }, + { + "start": 31049.94, + "end": 31056.74, + "probability": 0.7628 + }, + { + "start": 31056.8, + "end": 31061.34, + "probability": 0.9155 + }, + { + "start": 31063.04, + "end": 31065.34, + "probability": 0.959 + }, + { + "start": 31066.38, + "end": 31069.38, + "probability": 0.9627 + }, + { + "start": 31070.08, + "end": 31073.86, + "probability": 0.9933 + }, + { + "start": 31074.92, + "end": 31078.64, + "probability": 0.9966 + }, + { + "start": 31079.32, + "end": 31080.24, + "probability": 0.8765 + }, + { + "start": 31080.98, + "end": 31082.78, + "probability": 0.8704 + }, + { + "start": 31083.48, + "end": 31085.02, + "probability": 0.5564 + }, + { + "start": 31086.42, + "end": 31088.44, + "probability": 0.991 + }, + { + "start": 31089.18, + "end": 31091.28, + "probability": 0.9771 + }, + { + "start": 31091.9, + "end": 31094.62, + "probability": 0.9871 + }, + { + "start": 31095.16, + "end": 31099.86, + "probability": 0.8957 + }, + { + "start": 31100.4, + "end": 31105.44, + "probability": 0.939 + }, + { + "start": 31106.46, + "end": 31106.86, + "probability": 0.8928 + }, + { + "start": 31107.64, + "end": 31112.4, + "probability": 0.9774 + }, + { + "start": 31113.18, + "end": 31114.46, + "probability": 0.9535 + }, + { + "start": 31115.08, + "end": 31117.32, + "probability": 0.9744 + }, + { + "start": 31117.96, + "end": 31118.6, + "probability": 0.369 + }, + { + "start": 31119.54, + "end": 31119.98, + "probability": 0.9683 + }, + { + "start": 31120.54, + "end": 31124.46, + "probability": 0.9225 + }, + { + "start": 31125.52, + "end": 31125.94, + "probability": 0.4303 + }, + { + "start": 31126.62, + "end": 31127.74, + "probability": 0.9285 + }, + { + "start": 31128.76, + "end": 31132.84, + "probability": 0.9592 + }, + { + "start": 31132.84, + "end": 31136.3, + "probability": 0.8867 + }, + { + "start": 31136.82, + "end": 31137.58, + "probability": 0.9824 + }, + { + "start": 31138.5, + "end": 31139.08, + "probability": 0.9639 + }, + { + "start": 31139.9, + "end": 31140.5, + "probability": 0.7238 + }, + { + "start": 31140.94, + "end": 31146.64, + "probability": 0.9773 + }, + { + "start": 31147.36, + "end": 31149.82, + "probability": 0.9939 + }, + { + "start": 31150.44, + "end": 31152.42, + "probability": 0.9592 + }, + { + "start": 31153.46, + "end": 31153.86, + "probability": 0.9746 + }, + { + "start": 31154.4, + "end": 31157.8, + "probability": 0.994 + }, + { + "start": 31158.78, + "end": 31160.24, + "probability": 0.8291 + }, + { + "start": 31160.88, + "end": 31166.56, + "probability": 0.936 + }, + { + "start": 31167.28, + "end": 31170.46, + "probability": 0.9903 + }, + { + "start": 31171.16, + "end": 31172.84, + "probability": 0.9805 + }, + { + "start": 31174.22, + "end": 31177.5, + "probability": 0.1679 + }, + { + "start": 31177.5, + "end": 31179.12, + "probability": 0.5551 + }, + { + "start": 31179.66, + "end": 31181.72, + "probability": 0.9919 + }, + { + "start": 31182.54, + "end": 31188.54, + "probability": 0.9822 + }, + { + "start": 31189.66, + "end": 31191.38, + "probability": 0.8629 + }, + { + "start": 31192.12, + "end": 31195.92, + "probability": 0.9897 + }, + { + "start": 31197.02, + "end": 31197.56, + "probability": 0.7699 + }, + { + "start": 31197.72, + "end": 31198.86, + "probability": 0.9393 + }, + { + "start": 31199.34, + "end": 31202.4, + "probability": 0.9897 + }, + { + "start": 31203.08, + "end": 31204.74, + "probability": 0.9074 + }, + { + "start": 31205.54, + "end": 31206.14, + "probability": 0.9674 + }, + { + "start": 31206.66, + "end": 31211.1, + "probability": 0.9993 + }, + { + "start": 31211.84, + "end": 31212.46, + "probability": 0.6269 + }, + { + "start": 31213.3, + "end": 31214.1, + "probability": 0.4316 + }, + { + "start": 31214.8, + "end": 31217.74, + "probability": 0.9965 + }, + { + "start": 31218.82, + "end": 31221.96, + "probability": 0.9445 + }, + { + "start": 31222.72, + "end": 31228.16, + "probability": 0.9466 + }, + { + "start": 31228.56, + "end": 31229.36, + "probability": 0.6917 + }, + { + "start": 31229.6, + "end": 31230.92, + "probability": 0.968 + }, + { + "start": 31231.12, + "end": 31231.54, + "probability": 0.9123 + }, + { + "start": 31232.4, + "end": 31235.62, + "probability": 0.9397 + }, + { + "start": 31236.16, + "end": 31238.7, + "probability": 0.9498 + }, + { + "start": 31239.26, + "end": 31246.9, + "probability": 0.9969 + }, + { + "start": 31246.9, + "end": 31253.46, + "probability": 0.9992 + }, + { + "start": 31254.04, + "end": 31255.24, + "probability": 0.9373 + }, + { + "start": 31255.36, + "end": 31258.3, + "probability": 0.9396 + }, + { + "start": 31259.1, + "end": 31265.5, + "probability": 0.9934 + }, + { + "start": 31266.18, + "end": 31267.84, + "probability": 0.9421 + }, + { + "start": 31268.58, + "end": 31269.34, + "probability": 0.6129 + }, + { + "start": 31270.04, + "end": 31274.0, + "probability": 0.9951 + }, + { + "start": 31274.68, + "end": 31275.2, + "probability": 0.5611 + }, + { + "start": 31275.64, + "end": 31276.76, + "probability": 0.9387 + }, + { + "start": 31277.5, + "end": 31280.72, + "probability": 0.9657 + }, + { + "start": 31281.74, + "end": 31282.9, + "probability": 0.9465 + }, + { + "start": 31283.56, + "end": 31287.68, + "probability": 0.9834 + }, + { + "start": 31288.28, + "end": 31291.32, + "probability": 0.9974 + }, + { + "start": 31291.96, + "end": 31295.62, + "probability": 0.9986 + }, + { + "start": 31296.2, + "end": 31299.52, + "probability": 0.9156 + }, + { + "start": 31300.26, + "end": 31300.62, + "probability": 0.7781 + }, + { + "start": 31300.72, + "end": 31301.4, + "probability": 0.8096 + }, + { + "start": 31301.98, + "end": 31305.24, + "probability": 0.9903 + }, + { + "start": 31305.24, + "end": 31309.82, + "probability": 0.9973 + }, + { + "start": 31311.04, + "end": 31312.44, + "probability": 0.9849 + }, + { + "start": 31313.82, + "end": 31319.14, + "probability": 0.9987 + }, + { + "start": 31319.14, + "end": 31323.26, + "probability": 0.994 + }, + { + "start": 31324.36, + "end": 31325.32, + "probability": 0.5288 + }, + { + "start": 31325.86, + "end": 31328.34, + "probability": 0.9901 + }, + { + "start": 31329.04, + "end": 31331.86, + "probability": 0.8497 + }, + { + "start": 31332.58, + "end": 31335.78, + "probability": 0.9929 + }, + { + "start": 31335.78, + "end": 31339.68, + "probability": 0.9905 + }, + { + "start": 31340.42, + "end": 31343.7, + "probability": 0.8262 + }, + { + "start": 31344.46, + "end": 31346.62, + "probability": 0.9953 + }, + { + "start": 31347.06, + "end": 31349.5, + "probability": 0.9885 + }, + { + "start": 31350.44, + "end": 31353.68, + "probability": 0.9974 + }, + { + "start": 31354.12, + "end": 31354.72, + "probability": 0.8193 + }, + { + "start": 31355.06, + "end": 31355.96, + "probability": 0.7783 + }, + { + "start": 31356.44, + "end": 31357.44, + "probability": 0.6338 + }, + { + "start": 31358.58, + "end": 31360.62, + "probability": 0.998 + }, + { + "start": 31361.46, + "end": 31362.4, + "probability": 0.5198 + }, + { + "start": 31363.04, + "end": 31367.72, + "probability": 0.8785 + }, + { + "start": 31367.94, + "end": 31372.12, + "probability": 0.9362 + }, + { + "start": 31372.84, + "end": 31376.84, + "probability": 0.9858 + }, + { + "start": 31376.84, + "end": 31379.84, + "probability": 0.9925 + }, + { + "start": 31380.78, + "end": 31381.7, + "probability": 0.7162 + }, + { + "start": 31382.34, + "end": 31384.86, + "probability": 0.9702 + }, + { + "start": 31385.26, + "end": 31387.14, + "probability": 0.9907 + }, + { + "start": 31387.82, + "end": 31391.48, + "probability": 0.8857 + }, + { + "start": 31391.56, + "end": 31393.0, + "probability": 0.875 + }, + { + "start": 31394.32, + "end": 31396.76, + "probability": 0.9115 + }, + { + "start": 31397.3, + "end": 31401.34, + "probability": 0.9799 + }, + { + "start": 31401.8, + "end": 31405.06, + "probability": 0.9955 + }, + { + "start": 31405.56, + "end": 31405.66, + "probability": 0.3472 + }, + { + "start": 31406.02, + "end": 31407.08, + "probability": 0.9119 + }, + { + "start": 31407.4, + "end": 31409.08, + "probability": 0.983 + }, + { + "start": 31409.5, + "end": 31410.1, + "probability": 0.7759 + }, + { + "start": 31410.58, + "end": 31411.56, + "probability": 0.7253 + }, + { + "start": 31411.78, + "end": 31412.51, + "probability": 0.8413 + }, + { + "start": 31413.22, + "end": 31415.02, + "probability": 0.9844 + }, + { + "start": 31416.04, + "end": 31416.8, + "probability": 0.8035 + }, + { + "start": 31416.92, + "end": 31417.3, + "probability": 0.8577 + }, + { + "start": 31417.8, + "end": 31418.74, + "probability": 0.8596 + }, + { + "start": 31419.02, + "end": 31423.34, + "probability": 0.9782 + }, + { + "start": 31423.88, + "end": 31426.52, + "probability": 0.8817 + }, + { + "start": 31427.4, + "end": 31429.5, + "probability": 0.9761 + }, + { + "start": 31430.06, + "end": 31430.56, + "probability": 0.9686 + }, + { + "start": 31431.1, + "end": 31435.14, + "probability": 0.9966 + }, + { + "start": 31435.6, + "end": 31437.54, + "probability": 0.6388 + }, + { + "start": 31437.88, + "end": 31440.3, + "probability": 0.9781 + }, + { + "start": 31440.64, + "end": 31441.2, + "probability": 0.8197 + }, + { + "start": 31442.16, + "end": 31442.98, + "probability": 0.8726 + }, + { + "start": 31443.7, + "end": 31450.78, + "probability": 0.8765 + }, + { + "start": 31451.44, + "end": 31453.44, + "probability": 0.954 + }, + { + "start": 31454.92, + "end": 31455.46, + "probability": 0.8454 + }, + { + "start": 31455.88, + "end": 31456.6, + "probability": 0.7178 + }, + { + "start": 31456.62, + "end": 31457.2, + "probability": 0.8496 + }, + { + "start": 31457.64, + "end": 31459.44, + "probability": 0.8317 + }, + { + "start": 31459.9, + "end": 31462.44, + "probability": 0.992 + }, + { + "start": 31462.9, + "end": 31469.94, + "probability": 0.9978 + }, + { + "start": 31470.38, + "end": 31472.34, + "probability": 0.9973 + }, + { + "start": 31473.3, + "end": 31475.82, + "probability": 0.9961 + }, + { + "start": 31476.42, + "end": 31480.06, + "probability": 0.9984 + }, + { + "start": 31480.06, + "end": 31483.74, + "probability": 0.994 + }, + { + "start": 31484.72, + "end": 31488.14, + "probability": 0.725 + }, + { + "start": 31488.72, + "end": 31489.72, + "probability": 0.7627 + }, + { + "start": 31490.62, + "end": 31493.6, + "probability": 0.8909 + }, + { + "start": 31494.26, + "end": 31497.44, + "probability": 0.9669 + }, + { + "start": 31498.38, + "end": 31500.24, + "probability": 0.9476 + }, + { + "start": 31500.74, + "end": 31503.18, + "probability": 0.9851 + }, + { + "start": 31503.92, + "end": 31506.38, + "probability": 0.6655 + }, + { + "start": 31507.04, + "end": 31510.16, + "probability": 0.7962 + }, + { + "start": 31510.86, + "end": 31517.34, + "probability": 0.9431 + }, + { + "start": 31518.3, + "end": 31519.44, + "probability": 0.7671 + }, + { + "start": 31519.88, + "end": 31525.0, + "probability": 0.9797 + }, + { + "start": 31525.46, + "end": 31527.02, + "probability": 0.9049 + }, + { + "start": 31527.48, + "end": 31532.1, + "probability": 0.9951 + }, + { + "start": 31532.76, + "end": 31534.08, + "probability": 0.9505 + }, + { + "start": 31535.36, + "end": 31536.08, + "probability": 0.9324 + }, + { + "start": 31536.6, + "end": 31537.3, + "probability": 0.7586 + }, + { + "start": 31537.94, + "end": 31544.08, + "probability": 0.971 + }, + { + "start": 31544.72, + "end": 31545.44, + "probability": 0.8987 + }, + { + "start": 31546.04, + "end": 31550.2, + "probability": 0.9974 + }, + { + "start": 31550.56, + "end": 31551.52, + "probability": 0.934 + }, + { + "start": 31552.18, + "end": 31554.64, + "probability": 0.6088 + }, + { + "start": 31555.2, + "end": 31556.36, + "probability": 0.7168 + }, + { + "start": 31556.76, + "end": 31559.26, + "probability": 0.9424 + }, + { + "start": 31560.18, + "end": 31560.66, + "probability": 0.8363 + }, + { + "start": 31561.26, + "end": 31567.56, + "probability": 0.991 + }, + { + "start": 31567.92, + "end": 31569.06, + "probability": 0.8233 + }, + { + "start": 31569.8, + "end": 31574.34, + "probability": 0.8908 + }, + { + "start": 31575.08, + "end": 31579.42, + "probability": 0.959 + }, + { + "start": 31579.76, + "end": 31580.18, + "probability": 0.5952 + }, + { + "start": 31580.24, + "end": 31583.26, + "probability": 0.9795 + }, + { + "start": 31583.58, + "end": 31587.2, + "probability": 0.9991 + }, + { + "start": 31587.98, + "end": 31591.24, + "probability": 0.9951 + }, + { + "start": 31591.24, + "end": 31595.26, + "probability": 0.9987 + }, + { + "start": 31596.12, + "end": 31599.58, + "probability": 0.9923 + }, + { + "start": 31599.58, + "end": 31602.84, + "probability": 0.8929 + }, + { + "start": 31603.68, + "end": 31606.04, + "probability": 0.9409 + }, + { + "start": 31606.62, + "end": 31608.56, + "probability": 0.962 + }, + { + "start": 31609.18, + "end": 31612.04, + "probability": 0.9973 + }, + { + "start": 31612.74, + "end": 31613.64, + "probability": 0.9796 + }, + { + "start": 31614.0, + "end": 31616.32, + "probability": 0.9927 + }, + { + "start": 31616.76, + "end": 31618.06, + "probability": 0.5505 + }, + { + "start": 31618.44, + "end": 31619.96, + "probability": 0.8796 + }, + { + "start": 31620.32, + "end": 31621.7, + "probability": 0.8166 + }, + { + "start": 31622.14, + "end": 31626.34, + "probability": 0.988 + }, + { + "start": 31626.92, + "end": 31627.74, + "probability": 0.9495 + }, + { + "start": 31628.04, + "end": 31629.14, + "probability": 0.8789 + }, + { + "start": 31629.48, + "end": 31630.94, + "probability": 0.9954 + }, + { + "start": 31631.38, + "end": 31633.6, + "probability": 0.9115 + }, + { + "start": 31633.82, + "end": 31634.04, + "probability": 0.5078 + }, + { + "start": 31634.58, + "end": 31636.54, + "probability": 0.9441 + }, + { + "start": 31637.02, + "end": 31637.34, + "probability": 0.6679 + }, + { + "start": 31646.78, + "end": 31646.94, + "probability": 0.4906 + }, + { + "start": 31646.94, + "end": 31648.06, + "probability": 0.5417 + }, + { + "start": 31655.84, + "end": 31657.9, + "probability": 0.6913 + }, + { + "start": 31658.78, + "end": 31663.7, + "probability": 0.9828 + }, + { + "start": 31664.94, + "end": 31667.46, + "probability": 0.8894 + }, + { + "start": 31667.82, + "end": 31669.36, + "probability": 0.901 + }, + { + "start": 31669.46, + "end": 31670.62, + "probability": 0.9963 + }, + { + "start": 31671.64, + "end": 31671.98, + "probability": 0.674 + }, + { + "start": 31672.16, + "end": 31675.62, + "probability": 0.986 + }, + { + "start": 31677.28, + "end": 31683.84, + "probability": 0.964 + }, + { + "start": 31684.46, + "end": 31684.9, + "probability": 0.473 + }, + { + "start": 31685.54, + "end": 31689.36, + "probability": 0.9474 + }, + { + "start": 31690.42, + "end": 31691.34, + "probability": 0.859 + }, + { + "start": 31692.08, + "end": 31693.52, + "probability": 0.779 + }, + { + "start": 31694.82, + "end": 31695.94, + "probability": 0.0019 + }, + { + "start": 31697.2, + "end": 31697.2, + "probability": 0.1452 + }, + { + "start": 31697.2, + "end": 31697.2, + "probability": 0.4333 + }, + { + "start": 31697.2, + "end": 31697.2, + "probability": 0.0768 + }, + { + "start": 31697.2, + "end": 31698.56, + "probability": 0.0512 + }, + { + "start": 31698.56, + "end": 31702.9, + "probability": 0.6971 + }, + { + "start": 31703.12, + "end": 31703.56, + "probability": 0.5682 + }, + { + "start": 31704.2, + "end": 31705.0, + "probability": 0.0055 + }, + { + "start": 31705.36, + "end": 31707.7, + "probability": 0.6823 + }, + { + "start": 31707.9, + "end": 31713.0, + "probability": 0.9437 + }, + { + "start": 31713.68, + "end": 31713.78, + "probability": 0.0046 + }, + { + "start": 31713.8, + "end": 31715.44, + "probability": 0.9523 + }, + { + "start": 31715.48, + "end": 31716.28, + "probability": 0.8668 + }, + { + "start": 31716.28, + "end": 31719.06, + "probability": 0.9723 + }, + { + "start": 31719.82, + "end": 31722.38, + "probability": 0.8525 + }, + { + "start": 31723.08, + "end": 31723.92, + "probability": 0.1744 + }, + { + "start": 31724.06, + "end": 31724.24, + "probability": 0.2344 + }, + { + "start": 31724.24, + "end": 31725.22, + "probability": 0.7006 + }, + { + "start": 31725.88, + "end": 31729.84, + "probability": 0.9673 + }, + { + "start": 31730.2, + "end": 31731.14, + "probability": 0.9844 + }, + { + "start": 31733.48, + "end": 31736.7, + "probability": 0.9644 + }, + { + "start": 31737.36, + "end": 31737.4, + "probability": 0.2643 + }, + { + "start": 31737.4, + "end": 31738.0, + "probability": 0.524 + }, + { + "start": 31738.94, + "end": 31743.92, + "probability": 0.9417 + }, + { + "start": 31744.04, + "end": 31747.88, + "probability": 0.9978 + }, + { + "start": 31747.88, + "end": 31749.72, + "probability": 0.6409 + }, + { + "start": 31750.14, + "end": 31750.84, + "probability": 0.0944 + }, + { + "start": 31750.84, + "end": 31751.86, + "probability": 0.2092 + }, + { + "start": 31751.86, + "end": 31753.62, + "probability": 0.5157 + }, + { + "start": 31753.62, + "end": 31754.78, + "probability": 0.4715 + }, + { + "start": 31754.82, + "end": 31755.32, + "probability": 0.6254 + }, + { + "start": 31755.32, + "end": 31757.2, + "probability": 0.2315 + }, + { + "start": 31757.22, + "end": 31758.72, + "probability": 0.5248 + }, + { + "start": 31759.0, + "end": 31761.58, + "probability": 0.8669 + }, + { + "start": 31761.64, + "end": 31763.5, + "probability": 0.9712 + }, + { + "start": 31764.42, + "end": 31767.82, + "probability": 0.9626 + }, + { + "start": 31768.46, + "end": 31768.92, + "probability": 0.7386 + }, + { + "start": 31769.72, + "end": 31769.72, + "probability": 0.3852 + }, + { + "start": 31769.72, + "end": 31771.02, + "probability": 0.4048 + }, + { + "start": 31771.04, + "end": 31771.9, + "probability": 0.2593 + }, + { + "start": 31774.34, + "end": 31774.34, + "probability": 0.2019 + }, + { + "start": 31777.34, + "end": 31783.26, + "probability": 0.7503 + }, + { + "start": 31783.26, + "end": 31787.32, + "probability": 0.9282 + }, + { + "start": 31787.54, + "end": 31788.1, + "probability": 0.015 + }, + { + "start": 31788.24, + "end": 31789.64, + "probability": 0.5581 + }, + { + "start": 31789.7, + "end": 31794.24, + "probability": 0.793 + }, + { + "start": 31794.26, + "end": 31795.44, + "probability": 0.7705 + }, + { + "start": 31795.6, + "end": 31796.06, + "probability": 0.8851 + }, + { + "start": 31807.26, + "end": 31811.19, + "probability": 0.2929 + }, + { + "start": 31814.12, + "end": 31817.4, + "probability": 0.8817 + }, + { + "start": 31817.5, + "end": 31817.86, + "probability": 0.4952 + }, + { + "start": 31817.9, + "end": 31819.72, + "probability": 0.7062 + }, + { + "start": 31819.74, + "end": 31822.9, + "probability": 0.6107 + }, + { + "start": 31828.02, + "end": 31828.7, + "probability": 0.1141 + }, + { + "start": 31834.2, + "end": 31838.12, + "probability": 0.629 + }, + { + "start": 31838.12, + "end": 31841.42, + "probability": 0.8386 + }, + { + "start": 31841.88, + "end": 31842.58, + "probability": 0.0172 + }, + { + "start": 31842.58, + "end": 31842.58, + "probability": 0.0709 + }, + { + "start": 31842.58, + "end": 31843.21, + "probability": 0.2294 + }, + { + "start": 31843.38, + "end": 31845.34, + "probability": 0.9237 + }, + { + "start": 31845.4, + "end": 31845.86, + "probability": 0.7204 + }, + { + "start": 31859.22, + "end": 31861.38, + "probability": 0.8143 + }, + { + "start": 31862.0, + "end": 31863.98, + "probability": 0.8153 + }, + { + "start": 31864.5, + "end": 31865.64, + "probability": 0.9567 + }, + { + "start": 31867.79, + "end": 31870.54, + "probability": 0.9343 + }, + { + "start": 31871.4, + "end": 31872.48, + "probability": 0.8203 + }, + { + "start": 31874.18, + "end": 31878.3, + "probability": 0.9175 + }, + { + "start": 31879.72, + "end": 31882.64, + "probability": 0.9992 + }, + { + "start": 31883.7, + "end": 31884.0, + "probability": 0.8143 + }, + { + "start": 31884.64, + "end": 31886.37, + "probability": 0.9165 + }, + { + "start": 31886.58, + "end": 31886.82, + "probability": 0.673 + }, + { + "start": 31886.88, + "end": 31888.06, + "probability": 0.9886 + }, + { + "start": 31888.2, + "end": 31888.52, + "probability": 0.88 + }, + { + "start": 31889.22, + "end": 31890.08, + "probability": 0.9766 + }, + { + "start": 31891.6, + "end": 31893.7, + "probability": 0.978 + }, + { + "start": 31894.9, + "end": 31895.2, + "probability": 0.9458 + }, + { + "start": 31896.4, + "end": 31897.35, + "probability": 0.9932 + }, + { + "start": 31898.58, + "end": 31900.34, + "probability": 0.9297 + }, + { + "start": 31901.62, + "end": 31904.24, + "probability": 0.9491 + }, + { + "start": 31904.92, + "end": 31908.6, + "probability": 0.9949 + }, + { + "start": 31909.82, + "end": 31912.44, + "probability": 0.2752 + }, + { + "start": 31912.5, + "end": 31914.84, + "probability": 0.9961 + }, + { + "start": 31916.62, + "end": 31919.7, + "probability": 0.9572 + }, + { + "start": 31920.72, + "end": 31922.28, + "probability": 0.777 + }, + { + "start": 31923.86, + "end": 31926.68, + "probability": 0.9984 + }, + { + "start": 31927.64, + "end": 31929.8, + "probability": 0.9822 + }, + { + "start": 31931.46, + "end": 31932.5, + "probability": 0.9723 + }, + { + "start": 31933.8, + "end": 31937.94, + "probability": 0.9845 + }, + { + "start": 31938.24, + "end": 31939.88, + "probability": 0.9917 + }, + { + "start": 31940.72, + "end": 31945.4, + "probability": 0.936 + }, + { + "start": 31946.56, + "end": 31948.68, + "probability": 0.9961 + }, + { + "start": 31949.84, + "end": 31950.46, + "probability": 0.8817 + }, + { + "start": 31951.6, + "end": 31953.3, + "probability": 0.9727 + }, + { + "start": 31953.76, + "end": 31954.31, + "probability": 0.8911 + }, + { + "start": 31954.46, + "end": 31956.0, + "probability": 0.9956 + }, + { + "start": 31956.82, + "end": 31958.1, + "probability": 0.8121 + }, + { + "start": 31959.46, + "end": 31961.94, + "probability": 0.9766 + }, + { + "start": 31962.46, + "end": 31964.12, + "probability": 0.9955 + }, + { + "start": 31965.74, + "end": 31966.78, + "probability": 0.6895 + }, + { + "start": 31968.6, + "end": 31972.42, + "probability": 0.9878 + }, + { + "start": 31972.7, + "end": 31974.0, + "probability": 0.948 + }, + { + "start": 31974.08, + "end": 31975.44, + "probability": 0.9946 + }, + { + "start": 31975.76, + "end": 31976.53, + "probability": 0.9333 + }, + { + "start": 31978.32, + "end": 31979.04, + "probability": 0.7203 + }, + { + "start": 31980.36, + "end": 31984.6, + "probability": 0.9539 + }, + { + "start": 31985.62, + "end": 31986.58, + "probability": 0.9966 + }, + { + "start": 31987.92, + "end": 31990.68, + "probability": 0.9977 + }, + { + "start": 31991.7, + "end": 31993.64, + "probability": 0.973 + }, + { + "start": 31993.74, + "end": 31995.26, + "probability": 0.9187 + }, + { + "start": 31995.26, + "end": 31995.42, + "probability": 0.5159 + }, + { + "start": 31995.5, + "end": 31996.7, + "probability": 0.7776 + }, + { + "start": 31997.84, + "end": 32000.76, + "probability": 0.9804 + }, + { + "start": 32001.8, + "end": 32003.44, + "probability": 0.9339 + }, + { + "start": 32004.06, + "end": 32006.82, + "probability": 0.9805 + }, + { + "start": 32006.86, + "end": 32008.01, + "probability": 0.8354 + }, + { + "start": 32009.51, + "end": 32013.2, + "probability": 0.9947 + }, + { + "start": 32014.84, + "end": 32017.62, + "probability": 0.9945 + }, + { + "start": 32017.98, + "end": 32021.5, + "probability": 0.9894 + }, + { + "start": 32022.94, + "end": 32023.71, + "probability": 0.9545 + }, + { + "start": 32024.78, + "end": 32027.3, + "probability": 0.9644 + }, + { + "start": 32028.08, + "end": 32028.6, + "probability": 0.792 + }, + { + "start": 32028.74, + "end": 32029.6, + "probability": 0.9754 + }, + { + "start": 32029.7, + "end": 32032.94, + "probability": 0.9833 + }, + { + "start": 32032.94, + "end": 32036.38, + "probability": 0.9902 + }, + { + "start": 32036.52, + "end": 32037.34, + "probability": 0.8433 + }, + { + "start": 32037.38, + "end": 32038.64, + "probability": 0.8877 + }, + { + "start": 32040.1, + "end": 32044.92, + "probability": 0.9691 + }, + { + "start": 32045.42, + "end": 32046.1, + "probability": 0.8402 + }, + { + "start": 32046.18, + "end": 32046.83, + "probability": 0.802 + }, + { + "start": 32047.28, + "end": 32048.66, + "probability": 0.9358 + }, + { + "start": 32048.9, + "end": 32049.68, + "probability": 0.7034 + }, + { + "start": 32050.84, + "end": 32051.62, + "probability": 0.9148 + }, + { + "start": 32053.16, + "end": 32054.4, + "probability": 0.9883 + }, + { + "start": 32056.82, + "end": 32059.96, + "probability": 0.9343 + }, + { + "start": 32061.06, + "end": 32061.48, + "probability": 0.8863 + }, + { + "start": 32062.46, + "end": 32062.8, + "probability": 0.7543 + }, + { + "start": 32063.02, + "end": 32066.84, + "probability": 0.9831 + }, + { + "start": 32067.84, + "end": 32072.54, + "probability": 0.9868 + }, + { + "start": 32073.6, + "end": 32075.08, + "probability": 0.8946 + }, + { + "start": 32075.88, + "end": 32079.7, + "probability": 0.9859 + }, + { + "start": 32080.74, + "end": 32084.78, + "probability": 0.9992 + }, + { + "start": 32086.52, + "end": 32087.78, + "probability": 0.999 + }, + { + "start": 32088.36, + "end": 32091.14, + "probability": 0.9979 + }, + { + "start": 32091.28, + "end": 32092.5, + "probability": 0.8577 + }, + { + "start": 32093.52, + "end": 32094.94, + "probability": 0.9958 + }, + { + "start": 32095.06, + "end": 32095.22, + "probability": 0.4527 + }, + { + "start": 32095.38, + "end": 32095.66, + "probability": 0.8382 + }, + { + "start": 32095.76, + "end": 32096.24, + "probability": 0.396 + }, + { + "start": 32096.38, + "end": 32097.9, + "probability": 0.9937 + }, + { + "start": 32099.42, + "end": 32101.66, + "probability": 0.9521 + }, + { + "start": 32102.74, + "end": 32106.02, + "probability": 0.9759 + }, + { + "start": 32107.36, + "end": 32107.36, + "probability": 0.6392 + }, + { + "start": 32107.48, + "end": 32108.94, + "probability": 0.959 + }, + { + "start": 32108.98, + "end": 32111.86, + "probability": 0.9855 + }, + { + "start": 32113.32, + "end": 32118.66, + "probability": 0.9944 + }, + { + "start": 32118.82, + "end": 32123.04, + "probability": 0.9963 + }, + { + "start": 32123.04, + "end": 32127.7, + "probability": 0.9939 + }, + { + "start": 32127.8, + "end": 32128.04, + "probability": 0.7209 + }, + { + "start": 32128.3, + "end": 32130.82, + "probability": 0.9893 + }, + { + "start": 32132.04, + "end": 32135.08, + "probability": 0.9944 + }, + { + "start": 32135.6, + "end": 32138.4, + "probability": 0.9893 + }, + { + "start": 32138.78, + "end": 32139.74, + "probability": 0.8682 + }, + { + "start": 32140.38, + "end": 32140.38, + "probability": 0.5355 + }, + { + "start": 32141.0, + "end": 32143.9, + "probability": 0.9968 + }, + { + "start": 32143.94, + "end": 32146.22, + "probability": 0.8092 + }, + { + "start": 32146.36, + "end": 32147.88, + "probability": 0.914 + }, + { + "start": 32148.2, + "end": 32148.5, + "probability": 0.6987 + }, + { + "start": 32148.8, + "end": 32149.52, + "probability": 0.8768 + }, + { + "start": 32150.04, + "end": 32151.08, + "probability": 0.9241 + }, + { + "start": 32151.66, + "end": 32154.52, + "probability": 0.9926 + }, + { + "start": 32154.98, + "end": 32155.78, + "probability": 0.9125 + }, + { + "start": 32156.58, + "end": 32157.96, + "probability": 0.7917 + }, + { + "start": 32158.2, + "end": 32158.46, + "probability": 0.7005 + }, + { + "start": 32158.92, + "end": 32160.98, + "probability": 0.5899 + }, + { + "start": 32161.0, + "end": 32162.22, + "probability": 0.6818 + }, + { + "start": 32180.48, + "end": 32182.86, + "probability": 0.5466 + }, + { + "start": 32188.1, + "end": 32188.88, + "probability": 0.6038 + }, + { + "start": 32191.08, + "end": 32191.46, + "probability": 0.7926 + }, + { + "start": 32192.24, + "end": 32192.98, + "probability": 0.8488 + }, + { + "start": 32193.12, + "end": 32193.82, + "probability": 0.7585 + }, + { + "start": 32194.38, + "end": 32196.24, + "probability": 0.832 + }, + { + "start": 32197.56, + "end": 32200.79, + "probability": 0.9076 + }, + { + "start": 32201.2, + "end": 32201.84, + "probability": 0.7873 + }, + { + "start": 32203.38, + "end": 32204.84, + "probability": 0.983 + }, + { + "start": 32205.82, + "end": 32207.6, + "probability": 0.9535 + }, + { + "start": 32207.7, + "end": 32208.52, + "probability": 0.988 + }, + { + "start": 32208.9, + "end": 32210.18, + "probability": 0.9692 + }, + { + "start": 32211.36, + "end": 32212.46, + "probability": 0.9878 + }, + { + "start": 32212.54, + "end": 32213.34, + "probability": 0.813 + }, + { + "start": 32213.4, + "end": 32215.32, + "probability": 0.8812 + }, + { + "start": 32216.26, + "end": 32218.34, + "probability": 0.9812 + }, + { + "start": 32218.96, + "end": 32220.6, + "probability": 0.9976 + }, + { + "start": 32222.26, + "end": 32225.06, + "probability": 0.6884 + }, + { + "start": 32225.84, + "end": 32227.48, + "probability": 0.5063 + }, + { + "start": 32228.16, + "end": 32228.88, + "probability": 0.3411 + }, + { + "start": 32230.06, + "end": 32231.16, + "probability": 0.8864 + }, + { + "start": 32231.66, + "end": 32235.66, + "probability": 0.7342 + }, + { + "start": 32235.66, + "end": 32237.38, + "probability": 0.7785 + }, + { + "start": 32237.66, + "end": 32237.92, + "probability": 0.5843 + }, + { + "start": 32238.72, + "end": 32238.98, + "probability": 0.28 + }, + { + "start": 32239.1, + "end": 32239.98, + "probability": 0.5809 + }, + { + "start": 32239.98, + "end": 32240.34, + "probability": 0.0617 + }, + { + "start": 32241.16, + "end": 32241.72, + "probability": 0.1979 + }, + { + "start": 32241.72, + "end": 32241.92, + "probability": 0.3356 + }, + { + "start": 32242.36, + "end": 32243.9, + "probability": 0.3766 + }, + { + "start": 32244.96, + "end": 32246.12, + "probability": 0.8197 + }, + { + "start": 32246.12, + "end": 32246.82, + "probability": 0.7744 + }, + { + "start": 32247.7, + "end": 32247.94, + "probability": 0.0949 + }, + { + "start": 32247.94, + "end": 32248.86, + "probability": 0.4048 + }, + { + "start": 32249.18, + "end": 32250.12, + "probability": 0.1397 + }, + { + "start": 32250.54, + "end": 32253.32, + "probability": 0.4318 + }, + { + "start": 32253.52, + "end": 32254.88, + "probability": 0.5552 + }, + { + "start": 32257.16, + "end": 32257.96, + "probability": 0.5435 + }, + { + "start": 32257.96, + "end": 32262.72, + "probability": 0.8868 + }, + { + "start": 32262.94, + "end": 32269.06, + "probability": 0.0815 + }, + { + "start": 32269.06, + "end": 32269.2, + "probability": 0.6892 + }, + { + "start": 32269.24, + "end": 32270.62, + "probability": 0.1014 + }, + { + "start": 32270.97, + "end": 32272.86, + "probability": 0.0601 + }, + { + "start": 32272.86, + "end": 32275.42, + "probability": 0.0229 + }, + { + "start": 32275.76, + "end": 32280.2, + "probability": 0.1267 + }, + { + "start": 32280.2, + "end": 32280.82, + "probability": 0.2154 + }, + { + "start": 32284.46, + "end": 32285.26, + "probability": 0.0544 + }, + { + "start": 32286.09, + "end": 32286.18, + "probability": 0.0459 + }, + { + "start": 32286.54, + "end": 32287.66, + "probability": 0.0624 + }, + { + "start": 32288.06, + "end": 32288.7, + "probability": 0.2246 + }, + { + "start": 32289.02, + "end": 32290.16, + "probability": 0.0261 + }, + { + "start": 32290.44, + "end": 32290.94, + "probability": 0.0245 + }, + { + "start": 32291.26, + "end": 32292.44, + "probability": 0.0275 + }, + { + "start": 32292.52, + "end": 32293.52, + "probability": 0.0549 + }, + { + "start": 32293.52, + "end": 32294.78, + "probability": 0.1481 + }, + { + "start": 32298.24, + "end": 32298.84, + "probability": 0.0045 + }, + { + "start": 32299.04, + "end": 32299.8, + "probability": 0.2825 + }, + { + "start": 32300.46, + "end": 32300.92, + "probability": 0.086 + }, + { + "start": 32300.92, + "end": 32301.8, + "probability": 0.1655 + }, + { + "start": 32301.8, + "end": 32302.64, + "probability": 0.1635 + }, + { + "start": 32303.16, + "end": 32303.22, + "probability": 0.1431 + }, + { + "start": 32303.26, + "end": 32303.96, + "probability": 0.0257 + }, + { + "start": 32304.12, + "end": 32305.98, + "probability": 0.2244 + }, + { + "start": 32306.64, + "end": 32310.9, + "probability": 0.1669 + }, + { + "start": 32314.0, + "end": 32314.0, + "probability": 0.0 + }, + { + "start": 32314.0, + "end": 32314.0, + "probability": 0.0 + }, + { + "start": 32314.0, + "end": 32314.0, + "probability": 0.0 + }, + { + "start": 32314.0, + "end": 32314.0, + "probability": 0.0 + }, + { + "start": 32314.0, + "end": 32314.0, + "probability": 0.0 + }, + { + "start": 32314.0, + "end": 32314.0, + "probability": 0.0 + }, + { + "start": 32314.0, + "end": 32314.0, + "probability": 0.0 + }, + { + "start": 32314.0, + "end": 32314.0, + "probability": 0.0 + }, + { + "start": 32314.0, + "end": 32314.0, + "probability": 0.0 + }, + { + "start": 32314.0, + "end": 32314.0, + "probability": 0.0 + }, + { + "start": 32314.14, + "end": 32315.46, + "probability": 0.0309 + }, + { + "start": 32316.92, + "end": 32318.4, + "probability": 0.916 + }, + { + "start": 32318.46, + "end": 32319.0, + "probability": 0.5615 + }, + { + "start": 32319.56, + "end": 32319.62, + "probability": 0.4614 + }, + { + "start": 32321.33, + "end": 32326.72, + "probability": 0.652 + }, + { + "start": 32326.96, + "end": 32327.52, + "probability": 0.7619 + }, + { + "start": 32327.64, + "end": 32328.2, + "probability": 0.3361 + }, + { + "start": 32328.54, + "end": 32330.28, + "probability": 0.9396 + }, + { + "start": 32330.82, + "end": 32332.44, + "probability": 0.3948 + }, + { + "start": 32332.8, + "end": 32335.04, + "probability": 0.7006 + }, + { + "start": 32335.14, + "end": 32335.72, + "probability": 0.771 + }, + { + "start": 32335.82, + "end": 32336.34, + "probability": 0.7897 + }, + { + "start": 32336.5, + "end": 32336.93, + "probability": 0.91 + }, + { + "start": 32337.3, + "end": 32340.68, + "probability": 0.6989 + }, + { + "start": 32340.98, + "end": 32342.21, + "probability": 0.0735 + }, + { + "start": 32342.42, + "end": 32343.9, + "probability": 0.5507 + }, + { + "start": 32345.64, + "end": 32346.28, + "probability": 0.0224 + }, + { + "start": 32346.48, + "end": 32348.7, + "probability": 0.5277 + }, + { + "start": 32348.84, + "end": 32348.84, + "probability": 0.0792 + }, + { + "start": 32348.84, + "end": 32350.54, + "probability": 0.6937 + }, + { + "start": 32351.04, + "end": 32351.5, + "probability": 0.6945 + }, + { + "start": 32351.98, + "end": 32354.3, + "probability": 0.229 + }, + { + "start": 32354.3, + "end": 32355.68, + "probability": 0.4308 + }, + { + "start": 32356.42, + "end": 32357.3, + "probability": 0.0468 + }, + { + "start": 32357.48, + "end": 32360.42, + "probability": 0.1984 + }, + { + "start": 32360.46, + "end": 32361.66, + "probability": 0.2475 + }, + { + "start": 32366.46, + "end": 32367.9, + "probability": 0.0399 + }, + { + "start": 32368.36, + "end": 32369.92, + "probability": 0.0908 + }, + { + "start": 32370.5, + "end": 32371.2, + "probability": 0.2475 + }, + { + "start": 32371.2, + "end": 32371.2, + "probability": 0.0462 + }, + { + "start": 32372.0, + "end": 32372.56, + "probability": 0.0688 + }, + { + "start": 32374.44, + "end": 32376.2, + "probability": 0.1784 + }, + { + "start": 32376.68, + "end": 32380.16, + "probability": 0.0574 + }, + { + "start": 32383.64, + "end": 32389.32, + "probability": 0.1745 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.14, + "end": 32444.96, + "probability": 0.0665 + }, + { + "start": 32445.68, + "end": 32447.06, + "probability": 0.6079 + }, + { + "start": 32449.76, + "end": 32451.46, + "probability": 0.7345 + }, + { + "start": 32451.56, + "end": 32454.94, + "probability": 0.9052 + }, + { + "start": 32455.64, + "end": 32458.38, + "probability": 0.8226 + }, + { + "start": 32459.0, + "end": 32461.22, + "probability": 0.9972 + }, + { + "start": 32461.26, + "end": 32464.68, + "probability": 0.8354 + }, + { + "start": 32465.5, + "end": 32468.62, + "probability": 0.9727 + }, + { + "start": 32469.06, + "end": 32471.5, + "probability": 0.9851 + }, + { + "start": 32471.92, + "end": 32472.18, + "probability": 0.8974 + }, + { + "start": 32472.28, + "end": 32472.77, + "probability": 0.6536 + }, + { + "start": 32473.3, + "end": 32475.12, + "probability": 0.8478 + }, + { + "start": 32475.62, + "end": 32479.2, + "probability": 0.9878 + }, + { + "start": 32479.48, + "end": 32480.84, + "probability": 0.9808 + }, + { + "start": 32481.02, + "end": 32482.02, + "probability": 0.8456 + }, + { + "start": 32482.66, + "end": 32484.88, + "probability": 0.9585 + }, + { + "start": 32485.36, + "end": 32487.74, + "probability": 0.9728 + }, + { + "start": 32488.24, + "end": 32491.56, + "probability": 0.8305 + }, + { + "start": 32491.8, + "end": 32493.0, + "probability": 0.8254 + }, + { + "start": 32493.08, + "end": 32495.26, + "probability": 0.99 + }, + { + "start": 32496.16, + "end": 32499.48, + "probability": 0.7063 + }, + { + "start": 32500.32, + "end": 32500.89, + "probability": 0.9775 + }, + { + "start": 32502.04, + "end": 32503.06, + "probability": 0.9426 + }, + { + "start": 32503.88, + "end": 32505.22, + "probability": 0.9893 + }, + { + "start": 32505.54, + "end": 32506.56, + "probability": 0.9751 + }, + { + "start": 32506.68, + "end": 32507.56, + "probability": 0.9855 + }, + { + "start": 32508.06, + "end": 32509.14, + "probability": 0.9731 + }, + { + "start": 32509.42, + "end": 32510.7, + "probability": 0.9724 + }, + { + "start": 32511.88, + "end": 32513.2, + "probability": 0.9486 + }, + { + "start": 32514.2, + "end": 32518.54, + "probability": 0.9413 + }, + { + "start": 32518.74, + "end": 32519.42, + "probability": 0.6422 + }, + { + "start": 32519.6, + "end": 32520.26, + "probability": 0.9399 + }, + { + "start": 32520.34, + "end": 32520.82, + "probability": 0.8759 + }, + { + "start": 32521.72, + "end": 32525.02, + "probability": 0.9467 + }, + { + "start": 32525.86, + "end": 32528.57, + "probability": 0.9985 + }, + { + "start": 32529.32, + "end": 32529.88, + "probability": 0.9821 + }, + { + "start": 32530.18, + "end": 32531.48, + "probability": 0.981 + }, + { + "start": 32531.62, + "end": 32532.38, + "probability": 0.7536 + }, + { + "start": 32532.42, + "end": 32534.41, + "probability": 0.953 + }, + { + "start": 32535.76, + "end": 32536.42, + "probability": 0.763 + }, + { + "start": 32537.72, + "end": 32538.9, + "probability": 0.9871 + }, + { + "start": 32539.4, + "end": 32540.14, + "probability": 0.7836 + }, + { + "start": 32541.52, + "end": 32543.72, + "probability": 0.9043 + }, + { + "start": 32544.8, + "end": 32545.16, + "probability": 0.7171 + }, + { + "start": 32545.82, + "end": 32546.58, + "probability": 0.9922 + }, + { + "start": 32547.06, + "end": 32549.31, + "probability": 0.8393 + }, + { + "start": 32549.7, + "end": 32550.16, + "probability": 0.9937 + }, + { + "start": 32551.75, + "end": 32554.04, + "probability": 0.9458 + }, + { + "start": 32554.54, + "end": 32556.64, + "probability": 0.7255 + }, + { + "start": 32557.54, + "end": 32558.66, + "probability": 0.9839 + }, + { + "start": 32559.4, + "end": 32561.66, + "probability": 0.6625 + }, + { + "start": 32562.26, + "end": 32563.97, + "probability": 0.7709 + }, + { + "start": 32564.86, + "end": 32565.34, + "probability": 0.9766 + }, + { + "start": 32566.28, + "end": 32567.22, + "probability": 0.9925 + }, + { + "start": 32568.0, + "end": 32569.04, + "probability": 0.9929 + }, + { + "start": 32569.6, + "end": 32570.38, + "probability": 0.4447 + }, + { + "start": 32570.38, + "end": 32571.08, + "probability": 0.0999 + }, + { + "start": 32571.2, + "end": 32571.8, + "probability": 0.854 + }, + { + "start": 32572.02, + "end": 32573.12, + "probability": 0.8789 + }, + { + "start": 32573.18, + "end": 32574.32, + "probability": 0.9233 + }, + { + "start": 32574.86, + "end": 32575.4, + "probability": 0.8245 + }, + { + "start": 32575.66, + "end": 32575.66, + "probability": 0.4664 + }, + { + "start": 32575.96, + "end": 32578.02, + "probability": 0.744 + }, + { + "start": 32578.02, + "end": 32578.52, + "probability": 0.6995 + }, + { + "start": 32611.98, + "end": 32611.98, + "probability": 0.067 + }, + { + "start": 32611.98, + "end": 32613.56, + "probability": 0.6991 + }, + { + "start": 32614.08, + "end": 32616.74, + "probability": 0.6603 + }, + { + "start": 32621.0, + "end": 32622.56, + "probability": 0.5869 + }, + { + "start": 32623.54, + "end": 32624.1, + "probability": 0.9001 + }, + { + "start": 32626.9, + "end": 32628.38, + "probability": 0.9937 + }, + { + "start": 32630.08, + "end": 32632.52, + "probability": 0.8256 + }, + { + "start": 32634.44, + "end": 32635.22, + "probability": 0.8799 + }, + { + "start": 32637.06, + "end": 32641.98, + "probability": 0.9942 + }, + { + "start": 32642.74, + "end": 32646.84, + "probability": 0.9934 + }, + { + "start": 32646.94, + "end": 32648.76, + "probability": 0.9953 + }, + { + "start": 32650.02, + "end": 32652.52, + "probability": 0.9963 + }, + { + "start": 32654.06, + "end": 32655.34, + "probability": 0.9849 + }, + { + "start": 32656.62, + "end": 32659.34, + "probability": 0.8324 + }, + { + "start": 32659.7, + "end": 32660.84, + "probability": 0.8557 + }, + { + "start": 32662.58, + "end": 32663.58, + "probability": 0.9989 + }, + { + "start": 32664.8, + "end": 32665.64, + "probability": 0.9765 + }, + { + "start": 32666.58, + "end": 32667.62, + "probability": 0.8127 + }, + { + "start": 32668.74, + "end": 32672.16, + "probability": 0.8838 + }, + { + "start": 32673.28, + "end": 32673.88, + "probability": 0.7394 + }, + { + "start": 32674.74, + "end": 32676.12, + "probability": 0.9079 + }, + { + "start": 32676.78, + "end": 32681.04, + "probability": 0.9387 + }, + { + "start": 32681.78, + "end": 32681.94, + "probability": 0.8608 + }, + { + "start": 32682.98, + "end": 32684.34, + "probability": 0.996 + }, + { + "start": 32685.42, + "end": 32687.02, + "probability": 0.7015 + }, + { + "start": 32687.82, + "end": 32688.9, + "probability": 0.9127 + }, + { + "start": 32689.96, + "end": 32692.94, + "probability": 0.9824 + }, + { + "start": 32693.6, + "end": 32695.54, + "probability": 0.9783 + }, + { + "start": 32695.81, + "end": 32696.9, + "probability": 0.9077 + }, + { + "start": 32700.04, + "end": 32700.3, + "probability": 0.3684 + }, + { + "start": 32701.76, + "end": 32702.7, + "probability": 0.9971 + }, + { + "start": 32703.5, + "end": 32707.0, + "probability": 0.9883 + }, + { + "start": 32707.6, + "end": 32708.9, + "probability": 0.9657 + }, + { + "start": 32711.2, + "end": 32713.44, + "probability": 0.9535 + }, + { + "start": 32714.46, + "end": 32716.9, + "probability": 0.9619 + }, + { + "start": 32718.4, + "end": 32719.18, + "probability": 0.9971 + }, + { + "start": 32721.76, + "end": 32722.58, + "probability": 0.8778 + }, + { + "start": 32723.84, + "end": 32724.74, + "probability": 0.9867 + }, + { + "start": 32726.42, + "end": 32729.0, + "probability": 0.7718 + }, + { + "start": 32729.06, + "end": 32730.96, + "probability": 0.9707 + }, + { + "start": 32731.04, + "end": 32733.78, + "probability": 0.9812 + }, + { + "start": 32737.03, + "end": 32739.28, + "probability": 0.9588 + }, + { + "start": 32740.06, + "end": 32746.02, + "probability": 0.9942 + }, + { + "start": 32746.4, + "end": 32746.92, + "probability": 0.876 + }, + { + "start": 32747.08, + "end": 32747.88, + "probability": 0.9381 + }, + { + "start": 32747.98, + "end": 32748.92, + "probability": 0.9945 + }, + { + "start": 32749.0, + "end": 32749.32, + "probability": 0.4764 + }, + { + "start": 32749.78, + "end": 32751.54, + "probability": 0.6342 + }, + { + "start": 32752.02, + "end": 32754.6, + "probability": 0.9419 + }, + { + "start": 32754.62, + "end": 32755.99, + "probability": 0.8901 + }, + { + "start": 32756.12, + "end": 32757.2, + "probability": 0.9206 + }, + { + "start": 32757.22, + "end": 32758.23, + "probability": 0.6555 + }, + { + "start": 32758.32, + "end": 32762.04, + "probability": 0.938 + }, + { + "start": 32763.62, + "end": 32765.36, + "probability": 0.9198 + }, + { + "start": 32765.5, + "end": 32766.6, + "probability": 0.7834 + }, + { + "start": 32766.88, + "end": 32768.58, + "probability": 0.9359 + }, + { + "start": 32769.28, + "end": 32770.16, + "probability": 0.8067 + }, + { + "start": 32770.24, + "end": 32771.66, + "probability": 0.6367 + }, + { + "start": 32772.16, + "end": 32772.7, + "probability": 0.5816 + }, + { + "start": 32772.78, + "end": 32774.04, + "probability": 0.9257 + }, + { + "start": 32776.19, + "end": 32778.76, + "probability": 0.9973 + }, + { + "start": 32779.7, + "end": 32783.34, + "probability": 0.9952 + }, + { + "start": 32783.86, + "end": 32786.42, + "probability": 0.935 + }, + { + "start": 32788.2, + "end": 32792.7, + "probability": 0.9932 + }, + { + "start": 32792.8, + "end": 32793.86, + "probability": 0.9912 + }, + { + "start": 32794.5, + "end": 32799.44, + "probability": 0.963 + }, + { + "start": 32799.8, + "end": 32803.42, + "probability": 0.8411 + }, + { + "start": 32805.12, + "end": 32807.0, + "probability": 0.5221 + }, + { + "start": 32807.48, + "end": 32808.3, + "probability": 0.6984 + }, + { + "start": 32809.26, + "end": 32810.06, + "probability": 0.6782 + }, + { + "start": 32810.52, + "end": 32810.96, + "probability": 0.6114 + }, + { + "start": 32817.61, + "end": 32818.32, + "probability": 0.1097 + }, + { + "start": 32826.76, + "end": 32828.56, + "probability": 0.1408 + }, + { + "start": 32830.68, + "end": 32830.68, + "probability": 0.0053 + }, + { + "start": 32831.8, + "end": 32835.38, + "probability": 0.8948 + }, + { + "start": 32836.82, + "end": 32840.14, + "probability": 0.9995 + }, + { + "start": 32841.58, + "end": 32842.22, + "probability": 0.7426 + }, + { + "start": 32843.54, + "end": 32847.14, + "probability": 0.7964 + }, + { + "start": 32848.1, + "end": 32852.6, + "probability": 0.1622 + }, + { + "start": 32852.78, + "end": 32856.24, + "probability": 0.1845 + }, + { + "start": 32856.24, + "end": 32862.28, + "probability": 0.8784 + }, + { + "start": 32862.88, + "end": 32865.64, + "probability": 0.9669 + }, + { + "start": 32867.58, + "end": 32869.34, + "probability": 0.8377 + }, + { + "start": 32870.76, + "end": 32875.28, + "probability": 0.9688 + }, + { + "start": 32876.67, + "end": 32879.38, + "probability": 0.7607 + }, + { + "start": 32880.06, + "end": 32886.92, + "probability": 0.9531 + }, + { + "start": 32887.66, + "end": 32890.94, + "probability": 0.9953 + }, + { + "start": 32891.22, + "end": 32895.08, + "probability": 0.9757 + }, + { + "start": 32895.94, + "end": 32901.72, + "probability": 0.9614 + }, + { + "start": 32903.28, + "end": 32909.34, + "probability": 0.8074 + }, + { + "start": 32909.64, + "end": 32909.94, + "probability": 0.8717 + }, + { + "start": 32911.34, + "end": 32914.64, + "probability": 0.7686 + }, + { + "start": 32915.64, + "end": 32916.79, + "probability": 0.1119 + }, + { + "start": 32917.44, + "end": 32918.28, + "probability": 0.0596 + }, + { + "start": 32919.26, + "end": 32919.4, + "probability": 0.3095 + }, + { + "start": 32919.4, + "end": 32921.0, + "probability": 0.1461 + }, + { + "start": 32921.32, + "end": 32921.32, + "probability": 0.0049 + }, + { + "start": 32922.9, + "end": 32925.94, + "probability": 0.3619 + }, + { + "start": 32925.94, + "end": 32929.24, + "probability": 0.5233 + }, + { + "start": 32929.3, + "end": 32929.52, + "probability": 0.216 + }, + { + "start": 32929.54, + "end": 32932.12, + "probability": 0.7085 + }, + { + "start": 32933.34, + "end": 32933.34, + "probability": 0.0092 + }, + { + "start": 32933.34, + "end": 32934.16, + "probability": 0.2704 + }, + { + "start": 32934.68, + "end": 32935.88, + "probability": 0.8691 + }, + { + "start": 32936.52, + "end": 32937.9, + "probability": 0.532 + }, + { + "start": 32939.22, + "end": 32939.62, + "probability": 0.8603 + }, + { + "start": 32940.34, + "end": 32942.3, + "probability": 0.8502 + }, + { + "start": 32943.66, + "end": 32944.26, + "probability": 0.7183 + }, + { + "start": 32944.48, + "end": 32945.58, + "probability": 0.8105 + }, + { + "start": 32946.3, + "end": 32946.72, + "probability": 0.7086 + }, + { + "start": 32948.14, + "end": 32949.22, + "probability": 0.0333 + }, + { + "start": 32949.46, + "end": 32951.24, + "probability": 0.5359 + }, + { + "start": 32951.3, + "end": 32952.06, + "probability": 0.8879 + }, + { + "start": 32952.4, + "end": 32952.56, + "probability": 0.3048 + }, + { + "start": 32952.68, + "end": 32955.0, + "probability": 0.0751 + }, + { + "start": 32955.32, + "end": 32956.06, + "probability": 0.3376 + }, + { + "start": 32956.06, + "end": 32958.86, + "probability": 0.0481 + }, + { + "start": 32960.54, + "end": 32961.82, + "probability": 0.1806 + }, + { + "start": 32961.82, + "end": 32962.8, + "probability": 0.1175 + }, + { + "start": 32962.8, + "end": 32965.72, + "probability": 0.0226 + }, + { + "start": 32966.56, + "end": 32967.48, + "probability": 0.3204 + }, + { + "start": 32967.84, + "end": 32968.8, + "probability": 0.7467 + }, + { + "start": 32969.32, + "end": 32969.72, + "probability": 0.5178 + }, + { + "start": 32970.02, + "end": 32970.49, + "probability": 0.7402 + }, + { + "start": 32972.12, + "end": 32972.94, + "probability": 0.6187 + }, + { + "start": 32973.44, + "end": 32973.62, + "probability": 0.9172 + }, + { + "start": 32974.6, + "end": 32976.08, + "probability": 0.7848 + }, + { + "start": 32977.34, + "end": 32980.18, + "probability": 0.9817 + }, + { + "start": 32980.6, + "end": 32981.36, + "probability": 0.7485 + }, + { + "start": 32981.38, + "end": 32982.18, + "probability": 0.7736 + }, + { + "start": 32982.36, + "end": 32985.32, + "probability": 0.9482 + }, + { + "start": 32985.6, + "end": 32986.08, + "probability": 0.8712 + }, + { + "start": 32987.36, + "end": 32988.42, + "probability": 0.0249 + }, + { + "start": 32988.78, + "end": 32989.54, + "probability": 0.3183 + }, + { + "start": 32991.48, + "end": 32994.1, + "probability": 0.178 + }, + { + "start": 32994.1, + "end": 32994.26, + "probability": 0.0649 + }, + { + "start": 32994.26, + "end": 32996.08, + "probability": 0.162 + }, + { + "start": 32996.08, + "end": 32996.14, + "probability": 0.1018 + }, + { + "start": 32997.84, + "end": 32998.78, + "probability": 0.1213 + }, + { + "start": 32999.08, + "end": 33001.9, + "probability": 0.1967 + }, + { + "start": 33002.06, + "end": 33002.06, + "probability": 0.0285 + }, + { + "start": 33002.34, + "end": 33002.36, + "probability": 0.1497 + }, + { + "start": 33002.5, + "end": 33002.5, + "probability": 0.1968 + }, + { + "start": 33002.5, + "end": 33002.74, + "probability": 0.314 + }, + { + "start": 33003.4, + "end": 33004.04, + "probability": 0.4329 + }, + { + "start": 33005.7, + "end": 33005.96, + "probability": 0.2454 + }, + { + "start": 33006.0, + "end": 33006.0, + "probability": 0.0 + }, + { + "start": 33006.0, + "end": 33006.0, + "probability": 0.0 + }, + { + "start": 33006.17, + "end": 33006.3, + "probability": 0.2789 + }, + { + "start": 33006.3, + "end": 33007.48, + "probability": 0.2868 + }, + { + "start": 33007.66, + "end": 33009.59, + "probability": 0.9744 + }, + { + "start": 33009.96, + "end": 33011.86, + "probability": 0.4095 + }, + { + "start": 33012.98, + "end": 33014.94, + "probability": 0.9028 + }, + { + "start": 33015.0, + "end": 33015.24, + "probability": 0.0347 + }, + { + "start": 33015.26, + "end": 33016.48, + "probability": 0.739 + }, + { + "start": 33017.02, + "end": 33018.22, + "probability": 0.8765 + }, + { + "start": 33018.36, + "end": 33019.5, + "probability": 0.4901 + }, + { + "start": 33019.62, + "end": 33020.34, + "probability": 0.8533 + }, + { + "start": 33020.68, + "end": 33025.28, + "probability": 0.9943 + }, + { + "start": 33025.52, + "end": 33027.58, + "probability": 0.7683 + }, + { + "start": 33028.2, + "end": 33029.8, + "probability": 0.3982 + }, + { + "start": 33029.8, + "end": 33032.22, + "probability": 0.813 + }, + { + "start": 33032.82, + "end": 33033.6, + "probability": 0.1437 + }, + { + "start": 33033.66, + "end": 33033.66, + "probability": 0.0383 + }, + { + "start": 33033.66, + "end": 33033.66, + "probability": 0.3217 + }, + { + "start": 33033.66, + "end": 33033.66, + "probability": 0.0683 + }, + { + "start": 33033.66, + "end": 33033.66, + "probability": 0.369 + }, + { + "start": 33033.66, + "end": 33033.66, + "probability": 0.0403 + }, + { + "start": 33033.66, + "end": 33034.32, + "probability": 0.5695 + }, + { + "start": 33034.84, + "end": 33036.82, + "probability": 0.7355 + }, + { + "start": 33051.06, + "end": 33051.2, + "probability": 0.2702 + }, + { + "start": 33051.74, + "end": 33051.78, + "probability": 0.0364 + }, + { + "start": 33051.8, + "end": 33052.14, + "probability": 0.0912 + }, + { + "start": 33057.38, + "end": 33058.36, + "probability": 0.6468 + }, + { + "start": 33058.98, + "end": 33061.04, + "probability": 0.6719 + }, + { + "start": 33062.48, + "end": 33063.68, + "probability": 0.6486 + }, + { + "start": 33072.52, + "end": 33073.32, + "probability": 0.6918 + }, + { + "start": 33073.32, + "end": 33075.66, + "probability": 0.6227 + }, + { + "start": 33075.66, + "end": 33077.46, + "probability": 0.9764 + }, + { + "start": 33080.64, + "end": 33083.6, + "probability": 0.8835 + }, + { + "start": 33085.44, + "end": 33091.72, + "probability": 0.9935 + }, + { + "start": 33093.28, + "end": 33094.12, + "probability": 0.7094 + }, + { + "start": 33094.84, + "end": 33096.88, + "probability": 0.7099 + }, + { + "start": 33097.98, + "end": 33098.56, + "probability": 0.8366 + }, + { + "start": 33099.26, + "end": 33100.84, + "probability": 0.9121 + }, + { + "start": 33101.76, + "end": 33103.34, + "probability": 0.9673 + }, + { + "start": 33104.04, + "end": 33106.22, + "probability": 0.9656 + }, + { + "start": 33107.08, + "end": 33107.9, + "probability": 0.9341 + }, + { + "start": 33109.56, + "end": 33110.78, + "probability": 0.8793 + }, + { + "start": 33111.74, + "end": 33114.12, + "probability": 0.9969 + }, + { + "start": 33116.02, + "end": 33119.06, + "probability": 0.9385 + }, + { + "start": 33119.84, + "end": 33121.24, + "probability": 0.9066 + }, + { + "start": 33121.4, + "end": 33124.34, + "probability": 0.9866 + }, + { + "start": 33125.32, + "end": 33126.92, + "probability": 0.9946 + }, + { + "start": 33127.78, + "end": 33129.46, + "probability": 0.7629 + }, + { + "start": 33130.12, + "end": 33130.94, + "probability": 0.7692 + }, + { + "start": 33131.54, + "end": 33133.52, + "probability": 0.7612 + }, + { + "start": 33133.64, + "end": 33134.76, + "probability": 0.9969 + }, + { + "start": 33135.18, + "end": 33136.46, + "probability": 0.978 + }, + { + "start": 33136.68, + "end": 33137.54, + "probability": 0.9922 + }, + { + "start": 33137.84, + "end": 33138.1, + "probability": 0.7087 + }, + { + "start": 33138.8, + "end": 33140.48, + "probability": 0.8101 + }, + { + "start": 33141.02, + "end": 33142.53, + "probability": 0.8979 + }, + { + "start": 33143.66, + "end": 33144.22, + "probability": 0.8009 + }, + { + "start": 33145.36, + "end": 33146.0, + "probability": 0.843 + }, + { + "start": 33146.46, + "end": 33147.06, + "probability": 0.765 + }, + { + "start": 33147.48, + "end": 33147.9, + "probability": 0.9607 + }, + { + "start": 33148.22, + "end": 33148.68, + "probability": 0.9558 + }, + { + "start": 33148.78, + "end": 33149.44, + "probability": 0.735 + }, + { + "start": 33149.56, + "end": 33149.8, + "probability": 0.9021 + }, + { + "start": 33150.28, + "end": 33150.9, + "probability": 0.6861 + }, + { + "start": 33151.28, + "end": 33151.64, + "probability": 0.9462 + }, + { + "start": 33151.82, + "end": 33152.14, + "probability": 0.7791 + }, + { + "start": 33152.2, + "end": 33152.86, + "probability": 0.994 + }, + { + "start": 33152.9, + "end": 33153.48, + "probability": 0.9805 + }, + { + "start": 33153.8, + "end": 33154.4, + "probability": 0.9738 + }, + { + "start": 33154.48, + "end": 33154.98, + "probability": 0.9668 + }, + { + "start": 33155.2, + "end": 33155.54, + "probability": 0.9739 + }, + { + "start": 33155.54, + "end": 33156.22, + "probability": 0.5085 + }, + { + "start": 33156.4, + "end": 33156.94, + "probability": 0.4562 + }, + { + "start": 33157.02, + "end": 33157.4, + "probability": 0.9338 + }, + { + "start": 33157.72, + "end": 33158.04, + "probability": 0.9541 + }, + { + "start": 33159.5, + "end": 33160.5, + "probability": 0.6182 + }, + { + "start": 33161.08, + "end": 33163.3, + "probability": 0.9634 + }, + { + "start": 33163.82, + "end": 33164.64, + "probability": 0.9698 + }, + { + "start": 33165.18, + "end": 33166.54, + "probability": 0.9773 + }, + { + "start": 33167.54, + "end": 33169.16, + "probability": 0.8772 + }, + { + "start": 33169.8, + "end": 33171.56, + "probability": 0.9377 + }, + { + "start": 33172.6, + "end": 33175.02, + "probability": 0.8442 + }, + { + "start": 33175.92, + "end": 33176.92, + "probability": 0.355 + }, + { + "start": 33177.3, + "end": 33179.72, + "probability": 0.9478 + }, + { + "start": 33180.26, + "end": 33181.34, + "probability": 0.9811 + }, + { + "start": 33182.52, + "end": 33184.2, + "probability": 0.7758 + }, + { + "start": 33184.72, + "end": 33185.66, + "probability": 0.9582 + }, + { + "start": 33186.16, + "end": 33187.58, + "probability": 0.5769 + }, + { + "start": 33188.07, + "end": 33189.04, + "probability": 0.936 + }, + { + "start": 33190.94, + "end": 33193.46, + "probability": 0.9509 + }, + { + "start": 33195.74, + "end": 33199.16, + "probability": 0.9236 + }, + { + "start": 33199.72, + "end": 33200.16, + "probability": 0.5884 + }, + { + "start": 33201.46, + "end": 33205.43, + "probability": 0.9325 + }, + { + "start": 33207.04, + "end": 33207.88, + "probability": 0.8169 + }, + { + "start": 33209.12, + "end": 33210.1, + "probability": 0.9049 + }, + { + "start": 33210.2, + "end": 33211.02, + "probability": 0.9824 + }, + { + "start": 33211.42, + "end": 33213.52, + "probability": 0.986 + }, + { + "start": 33214.18, + "end": 33218.04, + "probability": 0.8556 + }, + { + "start": 33218.04, + "end": 33221.42, + "probability": 0.9364 + }, + { + "start": 33222.28, + "end": 33223.54, + "probability": 0.7477 + }, + { + "start": 33225.54, + "end": 33226.24, + "probability": 0.8254 + }, + { + "start": 33226.24, + "end": 33227.16, + "probability": 0.554 + }, + { + "start": 33227.28, + "end": 33228.66, + "probability": 0.8674 + }, + { + "start": 33229.12, + "end": 33230.66, + "probability": 0.7141 + }, + { + "start": 33231.38, + "end": 33232.74, + "probability": 0.9979 + }, + { + "start": 33232.88, + "end": 33233.66, + "probability": 0.9806 + }, + { + "start": 33234.18, + "end": 33236.02, + "probability": 0.9941 + }, + { + "start": 33236.84, + "end": 33238.78, + "probability": 0.9922 + }, + { + "start": 33239.4, + "end": 33241.82, + "probability": 0.7765 + }, + { + "start": 33244.68, + "end": 33245.32, + "probability": 0.4005 + }, + { + "start": 33245.48, + "end": 33246.34, + "probability": 0.6602 + }, + { + "start": 33246.4, + "end": 33247.36, + "probability": 0.8764 + }, + { + "start": 33248.3, + "end": 33248.92, + "probability": 0.9784 + }, + { + "start": 33249.04, + "end": 33249.24, + "probability": 0.8801 + }, + { + "start": 33249.24, + "end": 33250.34, + "probability": 0.9951 + }, + { + "start": 33250.8, + "end": 33252.58, + "probability": 0.339 + }, + { + "start": 33253.0, + "end": 33255.22, + "probability": 0.8929 + }, + { + "start": 33255.68, + "end": 33257.4, + "probability": 0.7105 + }, + { + "start": 33257.46, + "end": 33258.08, + "probability": 0.8691 + }, + { + "start": 33258.56, + "end": 33261.02, + "probability": 0.7709 + }, + { + "start": 33261.3, + "end": 33263.02, + "probability": 0.9803 + }, + { + "start": 33263.62, + "end": 33266.32, + "probability": 0.958 + }, + { + "start": 33267.42, + "end": 33270.84, + "probability": 0.9771 + }, + { + "start": 33272.5, + "end": 33273.04, + "probability": 0.4558 + }, + { + "start": 33273.94, + "end": 33274.9, + "probability": 0.8546 + }, + { + "start": 33275.58, + "end": 33278.02, + "probability": 0.7156 + }, + { + "start": 33278.02, + "end": 33278.3, + "probability": 0.1676 + }, + { + "start": 33278.3, + "end": 33281.08, + "probability": 0.8961 + }, + { + "start": 33281.56, + "end": 33282.88, + "probability": 0.9614 + }, + { + "start": 33282.88, + "end": 33283.24, + "probability": 0.7518 + }, + { + "start": 33283.62, + "end": 33284.92, + "probability": 0.8365 + }, + { + "start": 33285.98, + "end": 33287.5, + "probability": 0.8003 + }, + { + "start": 33288.56, + "end": 33290.52, + "probability": 0.9854 + }, + { + "start": 33290.92, + "end": 33292.14, + "probability": 0.9755 + }, + { + "start": 33292.14, + "end": 33295.52, + "probability": 0.9895 + }, + { + "start": 33295.56, + "end": 33296.66, + "probability": 0.6443 + }, + { + "start": 33297.28, + "end": 33299.94, + "probability": 0.7003 + }, + { + "start": 33300.78, + "end": 33301.92, + "probability": 0.4121 + }, + { + "start": 33302.5, + "end": 33304.4, + "probability": 0.8322 + }, + { + "start": 33305.34, + "end": 33308.6, + "probability": 0.6 + }, + { + "start": 33309.18, + "end": 33309.72, + "probability": 0.6764 + }, + { + "start": 33310.26, + "end": 33312.54, + "probability": 0.4951 + }, + { + "start": 33312.58, + "end": 33313.03, + "probability": 0.5418 + }, + { + "start": 33313.3, + "end": 33314.4, + "probability": 0.8569 + }, + { + "start": 33314.72, + "end": 33315.02, + "probability": 0.0503 + }, + { + "start": 33315.1, + "end": 33315.56, + "probability": 0.5557 + }, + { + "start": 33315.58, + "end": 33317.82, + "probability": 0.2927 + }, + { + "start": 33318.12, + "end": 33318.82, + "probability": 0.8514 + }, + { + "start": 33319.48, + "end": 33320.56, + "probability": 0.9954 + }, + { + "start": 33324.62, + "end": 33327.02, + "probability": 0.9986 + }, + { + "start": 33327.78, + "end": 33328.85, + "probability": 0.666 + }, + { + "start": 33329.06, + "end": 33329.56, + "probability": 0.6552 + }, + { + "start": 33329.8, + "end": 33330.34, + "probability": 0.6594 + }, + { + "start": 33331.06, + "end": 33331.14, + "probability": 0.4217 + }, + { + "start": 33331.36, + "end": 33332.9, + "probability": 0.1051 + }, + { + "start": 33333.0, + "end": 33333.0, + "probability": 0.6889 + }, + { + "start": 33333.94, + "end": 33336.04, + "probability": 0.7742 + }, + { + "start": 33336.5, + "end": 33337.68, + "probability": 0.2566 + }, + { + "start": 33337.94, + "end": 33338.5, + "probability": 0.5272 + }, + { + "start": 33338.92, + "end": 33339.68, + "probability": 0.9656 + }, + { + "start": 33340.38, + "end": 33342.9, + "probability": 0.5319 + }, + { + "start": 33343.08, + "end": 33343.7, + "probability": 0.9059 + }, + { + "start": 33344.04, + "end": 33344.48, + "probability": 0.9146 + }, + { + "start": 33344.68, + "end": 33345.84, + "probability": 0.8427 + }, + { + "start": 33346.31, + "end": 33350.16, + "probability": 0.9749 + }, + { + "start": 33350.82, + "end": 33353.2, + "probability": 0.8085 + }, + { + "start": 33353.28, + "end": 33357.18, + "probability": 0.9938 + }, + { + "start": 33357.7, + "end": 33358.8, + "probability": 0.9927 + }, + { + "start": 33359.04, + "end": 33364.38, + "probability": 0.9961 + }, + { + "start": 33364.38, + "end": 33368.04, + "probability": 0.9968 + }, + { + "start": 33368.62, + "end": 33369.86, + "probability": 0.6361 + }, + { + "start": 33370.22, + "end": 33374.32, + "probability": 0.9827 + }, + { + "start": 33375.42, + "end": 33375.9, + "probability": 0.8835 + }, + { + "start": 33376.88, + "end": 33379.16, + "probability": 0.9982 + }, + { + "start": 33379.16, + "end": 33383.5, + "probability": 0.7962 + }, + { + "start": 33384.24, + "end": 33385.38, + "probability": 0.9428 + }, + { + "start": 33385.72, + "end": 33386.72, + "probability": 0.4036 + }, + { + "start": 33386.84, + "end": 33387.14, + "probability": 0.8094 + }, + { + "start": 33387.2, + "end": 33388.06, + "probability": 0.844 + }, + { + "start": 33388.2, + "end": 33394.16, + "probability": 0.9796 + }, + { + "start": 33394.16, + "end": 33397.68, + "probability": 0.9165 + }, + { + "start": 33398.08, + "end": 33400.98, + "probability": 0.9819 + }, + { + "start": 33401.58, + "end": 33401.82, + "probability": 0.5568 + }, + { + "start": 33401.92, + "end": 33408.57, + "probability": 0.8682 + }, + { + "start": 33409.28, + "end": 33412.9, + "probability": 0.8867 + }, + { + "start": 33413.4, + "end": 33416.66, + "probability": 0.9727 + }, + { + "start": 33416.88, + "end": 33421.6, + "probability": 0.8288 + }, + { + "start": 33421.66, + "end": 33422.0, + "probability": 0.7736 + }, + { + "start": 33422.14, + "end": 33423.34, + "probability": 0.7216 + }, + { + "start": 33423.46, + "end": 33429.14, + "probability": 0.9745 + }, + { + "start": 33429.7, + "end": 33432.2, + "probability": 0.7386 + }, + { + "start": 33432.82, + "end": 33437.36, + "probability": 0.9935 + }, + { + "start": 33438.06, + "end": 33443.88, + "probability": 0.9756 + }, + { + "start": 33444.58, + "end": 33449.44, + "probability": 0.9972 + }, + { + "start": 33449.44, + "end": 33452.96, + "probability": 0.999 + }, + { + "start": 33453.14, + "end": 33453.68, + "probability": 0.8266 + }, + { + "start": 33453.72, + "end": 33454.54, + "probability": 0.9213 + }, + { + "start": 33455.14, + "end": 33458.5, + "probability": 0.9992 + }, + { + "start": 33459.16, + "end": 33459.62, + "probability": 0.8728 + }, + { + "start": 33460.26, + "end": 33464.86, + "probability": 0.9813 + }, + { + "start": 33464.86, + "end": 33468.94, + "probability": 0.9956 + }, + { + "start": 33469.52, + "end": 33471.4, + "probability": 0.8811 + }, + { + "start": 33471.58, + "end": 33471.68, + "probability": 0.0365 + }, + { + "start": 33471.94, + "end": 33473.02, + "probability": 0.8347 + }, + { + "start": 33473.02, + "end": 33475.44, + "probability": 0.8818 + }, + { + "start": 33475.76, + "end": 33478.36, + "probability": 0.9512 + }, + { + "start": 33478.7, + "end": 33481.96, + "probability": 0.9917 + }, + { + "start": 33482.34, + "end": 33484.96, + "probability": 0.9901 + }, + { + "start": 33484.96, + "end": 33488.42, + "probability": 0.9667 + }, + { + "start": 33488.54, + "end": 33491.3, + "probability": 0.9845 + }, + { + "start": 33491.46, + "end": 33492.96, + "probability": 0.9395 + }, + { + "start": 33493.96, + "end": 33494.34, + "probability": 0.6622 + }, + { + "start": 33494.44, + "end": 33499.75, + "probability": 0.967 + }, + { + "start": 33501.08, + "end": 33504.5, + "probability": 0.9911 + }, + { + "start": 33504.92, + "end": 33507.62, + "probability": 0.9816 + }, + { + "start": 33508.14, + "end": 33511.76, + "probability": 0.9962 + }, + { + "start": 33511.76, + "end": 33513.96, + "probability": 0.9287 + }, + { + "start": 33514.36, + "end": 33515.5, + "probability": 0.9956 + }, + { + "start": 33516.5, + "end": 33519.26, + "probability": 0.9882 + }, + { + "start": 33519.72, + "end": 33522.98, + "probability": 0.98 + }, + { + "start": 33523.92, + "end": 33528.08, + "probability": 0.9645 + }, + { + "start": 33528.22, + "end": 33531.28, + "probability": 0.9954 + }, + { + "start": 33531.9, + "end": 33532.6, + "probability": 0.7983 + }, + { + "start": 33532.72, + "end": 33534.16, + "probability": 0.5145 + }, + { + "start": 33534.2, + "end": 33539.08, + "probability": 0.9857 + }, + { + "start": 33539.36, + "end": 33540.84, + "probability": 0.9877 + }, + { + "start": 33541.32, + "end": 33542.83, + "probability": 0.9819 + }, + { + "start": 33543.8, + "end": 33546.38, + "probability": 0.9952 + }, + { + "start": 33546.42, + "end": 33549.62, + "probability": 0.9819 + }, + { + "start": 33549.62, + "end": 33553.6, + "probability": 0.9644 + }, + { + "start": 33554.22, + "end": 33555.82, + "probability": 0.5605 + }, + { + "start": 33556.0, + "end": 33556.5, + "probability": 0.6711 + }, + { + "start": 33556.52, + "end": 33558.22, + "probability": 0.9883 + }, + { + "start": 33558.74, + "end": 33562.52, + "probability": 0.9366 + }, + { + "start": 33562.94, + "end": 33565.92, + "probability": 0.9834 + }, + { + "start": 33567.57, + "end": 33571.88, + "probability": 0.9069 + }, + { + "start": 33572.4, + "end": 33575.2, + "probability": 0.9754 + }, + { + "start": 33575.62, + "end": 33578.74, + "probability": 0.9489 + }, + { + "start": 33579.48, + "end": 33580.82, + "probability": 0.6646 + }, + { + "start": 33581.06, + "end": 33581.68, + "probability": 0.8249 + }, + { + "start": 33582.24, + "end": 33582.76, + "probability": 0.5783 + }, + { + "start": 33582.94, + "end": 33583.38, + "probability": 0.8357 + }, + { + "start": 33583.58, + "end": 33587.96, + "probability": 0.9744 + }, + { + "start": 33588.4, + "end": 33589.9, + "probability": 0.9993 + }, + { + "start": 33589.98, + "end": 33593.18, + "probability": 0.8641 + }, + { + "start": 33593.28, + "end": 33594.2, + "probability": 0.8551 + }, + { + "start": 33594.83, + "end": 33597.4, + "probability": 0.9624 + }, + { + "start": 33597.82, + "end": 33599.48, + "probability": 0.542 + }, + { + "start": 33600.04, + "end": 33601.08, + "probability": 0.744 + }, + { + "start": 33602.1, + "end": 33604.06, + "probability": 0.5215 + }, + { + "start": 33605.68, + "end": 33607.4, + "probability": 0.6883 + }, + { + "start": 33607.72, + "end": 33611.52, + "probability": 0.9256 + }, + { + "start": 33612.5, + "end": 33613.64, + "probability": 0.8184 + }, + { + "start": 33614.86, + "end": 33617.54, + "probability": 0.8428 + }, + { + "start": 33617.6, + "end": 33619.3, + "probability": 0.9729 + }, + { + "start": 33619.82, + "end": 33621.26, + "probability": 0.692 + }, + { + "start": 33621.32, + "end": 33625.33, + "probability": 0.9923 + }, + { + "start": 33626.98, + "end": 33629.68, + "probability": 0.6986 + }, + { + "start": 33629.88, + "end": 33631.29, + "probability": 0.8734 + }, + { + "start": 33632.02, + "end": 33634.14, + "probability": 0.8269 + }, + { + "start": 33634.2, + "end": 33634.86, + "probability": 0.5753 + }, + { + "start": 33634.96, + "end": 33635.84, + "probability": 0.7021 + }, + { + "start": 33635.84, + "end": 33638.34, + "probability": 0.7249 + }, + { + "start": 33638.64, + "end": 33641.44, + "probability": 0.9746 + }, + { + "start": 33642.22, + "end": 33643.82, + "probability": 0.4698 + }, + { + "start": 33644.36, + "end": 33644.98, + "probability": 0.275 + }, + { + "start": 33644.98, + "end": 33647.18, + "probability": 0.7077 + }, + { + "start": 33647.76, + "end": 33651.24, + "probability": 0.9556 + }, + { + "start": 33651.54, + "end": 33652.38, + "probability": 0.3174 + }, + { + "start": 33653.64, + "end": 33654.46, + "probability": 0.119 + }, + { + "start": 33654.82, + "end": 33655.0, + "probability": 0.472 + }, + { + "start": 33655.68, + "end": 33657.28, + "probability": 0.5275 + }, + { + "start": 33657.28, + "end": 33661.08, + "probability": 0.7714 + }, + { + "start": 33661.08, + "end": 33661.24, + "probability": 0.1392 + }, + { + "start": 33661.78, + "end": 33662.12, + "probability": 0.4982 + }, + { + "start": 33662.82, + "end": 33665.64, + "probability": 0.2027 + }, + { + "start": 33666.3, + "end": 33670.1, + "probability": 0.9893 + }, + { + "start": 33670.1, + "end": 33672.6, + "probability": 0.7355 + }, + { + "start": 33673.82, + "end": 33674.8, + "probability": 0.7988 + }, + { + "start": 33676.1, + "end": 33679.77, + "probability": 0.4768 + }, + { + "start": 33682.32, + "end": 33683.39, + "probability": 0.8755 + }, + { + "start": 33684.62, + "end": 33688.28, + "probability": 0.5197 + }, + { + "start": 33689.48, + "end": 33689.48, + "probability": 0.2287 + }, + { + "start": 33689.48, + "end": 33691.5, + "probability": 0.9976 + }, + { + "start": 33691.78, + "end": 33694.32, + "probability": 0.3908 + }, + { + "start": 33695.84, + "end": 33697.17, + "probability": 0.664 + }, + { + "start": 33697.66, + "end": 33699.96, + "probability": 0.6302 + }, + { + "start": 33700.06, + "end": 33700.92, + "probability": 0.8174 + }, + { + "start": 33702.16, + "end": 33703.6, + "probability": 0.5814 + }, + { + "start": 33703.66, + "end": 33704.54, + "probability": 0.8797 + }, + { + "start": 33704.74, + "end": 33706.28, + "probability": 0.9274 + }, + { + "start": 33711.34, + "end": 33711.34, + "probability": 0.1459 + }, + { + "start": 33713.22, + "end": 33715.38, + "probability": 0.7373 + }, + { + "start": 33716.52, + "end": 33716.62, + "probability": 0.0225 + }, + { + "start": 33716.62, + "end": 33717.72, + "probability": 0.4518 + }, + { + "start": 33718.12, + "end": 33719.64, + "probability": 0.5123 + }, + { + "start": 33719.74, + "end": 33720.52, + "probability": 0.694 + }, + { + "start": 33720.78, + "end": 33721.32, + "probability": 0.5498 + }, + { + "start": 33721.4, + "end": 33722.44, + "probability": 0.9002 + }, + { + "start": 33723.16, + "end": 33724.38, + "probability": 0.5327 + }, + { + "start": 33724.38, + "end": 33726.88, + "probability": 0.8916 + }, + { + "start": 33727.4, + "end": 33729.84, + "probability": 0.9895 + }, + { + "start": 33730.52, + "end": 33730.64, + "probability": 0.0757 + }, + { + "start": 33730.9, + "end": 33733.36, + "probability": 0.9809 + }, + { + "start": 33733.46, + "end": 33736.36, + "probability": 0.9204 + }, + { + "start": 33736.86, + "end": 33738.78, + "probability": 0.9713 + }, + { + "start": 33738.92, + "end": 33743.12, + "probability": 0.7431 + }, + { + "start": 33743.8, + "end": 33743.94, + "probability": 0.0282 + }, + { + "start": 33744.36, + "end": 33747.86, + "probability": 0.4556 + }, + { + "start": 33748.04, + "end": 33751.1, + "probability": 0.7977 + }, + { + "start": 33751.36, + "end": 33753.98, + "probability": 0.7922 + }, + { + "start": 33754.66, + "end": 33754.66, + "probability": 0.2022 + }, + { + "start": 33754.66, + "end": 33754.82, + "probability": 0.2622 + }, + { + "start": 33755.54, + "end": 33758.16, + "probability": 0.9246 + }, + { + "start": 33758.28, + "end": 33761.34, + "probability": 0.9029 + }, + { + "start": 33761.7, + "end": 33762.92, + "probability": 0.9868 + }, + { + "start": 33763.38, + "end": 33763.54, + "probability": 0.2324 + }, + { + "start": 33763.98, + "end": 33766.24, + "probability": 0.9694 + }, + { + "start": 33766.26, + "end": 33769.96, + "probability": 0.9866 + }, + { + "start": 33770.0, + "end": 33775.68, + "probability": 0.9545 + }, + { + "start": 33775.92, + "end": 33776.48, + "probability": 0.1955 + }, + { + "start": 33776.62, + "end": 33776.94, + "probability": 0.7153 + }, + { + "start": 33777.1, + "end": 33777.42, + "probability": 0.6135 + }, + { + "start": 33777.68, + "end": 33778.98, + "probability": 0.5659 + }, + { + "start": 33779.04, + "end": 33782.26, + "probability": 0.8195 + }, + { + "start": 33782.58, + "end": 33783.08, + "probability": 0.6539 + }, + { + "start": 33783.14, + "end": 33786.1, + "probability": 0.917 + }, + { + "start": 33786.88, + "end": 33788.58, + "probability": 0.8158 + }, + { + "start": 33788.68, + "end": 33788.68, + "probability": 0.2551 + }, + { + "start": 33788.68, + "end": 33788.86, + "probability": 0.4326 + }, + { + "start": 33788.86, + "end": 33789.65, + "probability": 0.6338 + }, + { + "start": 33789.78, + "end": 33792.24, + "probability": 0.6362 + }, + { + "start": 33792.82, + "end": 33793.92, + "probability": 0.7215 + }, + { + "start": 33794.54, + "end": 33795.08, + "probability": 0.217 + }, + { + "start": 33809.04, + "end": 33812.02, + "probability": 0.4227 + }, + { + "start": 33813.12, + "end": 33813.42, + "probability": 0.0824 + }, + { + "start": 33814.72, + "end": 33816.88, + "probability": 0.7402 + }, + { + "start": 33817.78, + "end": 33819.22, + "probability": 0.6961 + }, + { + "start": 33819.8, + "end": 33824.6, + "probability": 0.6603 + }, + { + "start": 33824.74, + "end": 33825.04, + "probability": 0.8325 + }, + { + "start": 33825.82, + "end": 33826.48, + "probability": 0.8363 + }, + { + "start": 33827.44, + "end": 33829.04, + "probability": 0.9897 + }, + { + "start": 33832.48, + "end": 33835.26, + "probability": 0.7048 + }, + { + "start": 33835.26, + "end": 33841.2, + "probability": 0.9346 + }, + { + "start": 33842.04, + "end": 33842.08, + "probability": 0.0001 + }, + { + "start": 33842.98, + "end": 33842.98, + "probability": 0.0466 + }, + { + "start": 33846.24, + "end": 33846.38, + "probability": 0.2024 + }, + { + "start": 33852.54, + "end": 33853.94, + "probability": 0.0697 + }, + { + "start": 33853.98, + "end": 33854.02, + "probability": 0.1717 + }, + { + "start": 33854.02, + "end": 33854.02, + "probability": 0.124 + }, + { + "start": 33854.02, + "end": 33854.02, + "probability": 0.1705 + }, + { + "start": 33854.02, + "end": 33854.02, + "probability": 0.246 + }, + { + "start": 33854.02, + "end": 33854.02, + "probability": 0.1864 + }, + { + "start": 33854.02, + "end": 33854.16, + "probability": 0.2831 + }, + { + "start": 33855.62, + "end": 33856.11, + "probability": 0.4776 + }, + { + "start": 33857.32, + "end": 33858.24, + "probability": 0.4768 + }, + { + "start": 33859.46, + "end": 33861.54, + "probability": 0.0508 + }, + { + "start": 33862.24, + "end": 33864.98, + "probability": 0.2794 + }, + { + "start": 33865.4, + "end": 33865.74, + "probability": 0.1111 + }, + { + "start": 33865.8, + "end": 33865.8, + "probability": 0.0049 + }, + { + "start": 33865.82, + "end": 33867.9, + "probability": 0.7607 + }, + { + "start": 33868.82, + "end": 33870.22, + "probability": 0.7824 + }, + { + "start": 33870.32, + "end": 33873.31, + "probability": 0.98 + }, + { + "start": 33873.48, + "end": 33873.86, + "probability": 0.7052 + }, + { + "start": 33874.0, + "end": 33877.04, + "probability": 0.8438 + }, + { + "start": 33877.74, + "end": 33879.44, + "probability": 0.8502 + }, + { + "start": 33879.84, + "end": 33880.84, + "probability": 0.7509 + }, + { + "start": 33881.26, + "end": 33884.02, + "probability": 0.9902 + }, + { + "start": 33884.48, + "end": 33885.48, + "probability": 0.9451 + }, + { + "start": 33885.7, + "end": 33887.44, + "probability": 0.9988 + }, + { + "start": 33888.04, + "end": 33890.72, + "probability": 0.9202 + }, + { + "start": 33891.5, + "end": 33893.58, + "probability": 0.8707 + }, + { + "start": 33894.28, + "end": 33896.3, + "probability": 0.9918 + }, + { + "start": 33896.76, + "end": 33897.5, + "probability": 0.4301 + }, + { + "start": 33897.82, + "end": 33899.3, + "probability": 0.8773 + }, + { + "start": 33899.78, + "end": 33899.96, + "probability": 0.4577 + }, + { + "start": 33900.1, + "end": 33900.88, + "probability": 0.9437 + }, + { + "start": 33901.26, + "end": 33901.46, + "probability": 0.7274 + }, + { + "start": 33901.68, + "end": 33902.84, + "probability": 0.8081 + }, + { + "start": 33903.44, + "end": 33905.08, + "probability": 0.973 + }, + { + "start": 33905.14, + "end": 33908.7, + "probability": 0.9807 + }, + { + "start": 33909.24, + "end": 33911.36, + "probability": 0.7857 + }, + { + "start": 33911.48, + "end": 33912.32, + "probability": 0.8385 + }, + { + "start": 33913.0, + "end": 33913.9, + "probability": 0.2293 + }, + { + "start": 33916.08, + "end": 33916.72, + "probability": 0.6651 + }, + { + "start": 33916.72, + "end": 33917.3, + "probability": 0.8284 + }, + { + "start": 33917.52, + "end": 33920.84, + "probability": 0.9906 + }, + { + "start": 33921.58, + "end": 33922.18, + "probability": 0.9827 + }, + { + "start": 33923.5, + "end": 33926.38, + "probability": 0.8873 + }, + { + "start": 33926.62, + "end": 33928.54, + "probability": 0.9855 + }, + { + "start": 33929.48, + "end": 33930.72, + "probability": 0.9512 + }, + { + "start": 33931.22, + "end": 33932.72, + "probability": 0.9218 + }, + { + "start": 33933.06, + "end": 33935.7, + "probability": 0.9536 + }, + { + "start": 33936.18, + "end": 33938.64, + "probability": 0.9538 + }, + { + "start": 33938.64, + "end": 33938.66, + "probability": 0.423 + }, + { + "start": 33938.66, + "end": 33939.32, + "probability": 0.334 + }, + { + "start": 33939.32, + "end": 33943.1, + "probability": 0.9816 + }, + { + "start": 33943.35, + "end": 33943.56, + "probability": 0.2256 + }, + { + "start": 33943.56, + "end": 33945.5, + "probability": 0.9214 + }, + { + "start": 33945.54, + "end": 33946.9, + "probability": 0.895 + }, + { + "start": 33947.2, + "end": 33948.56, + "probability": 0.9215 + }, + { + "start": 33948.82, + "end": 33949.24, + "probability": 0.536 + }, + { + "start": 33949.3, + "end": 33951.28, + "probability": 0.9718 + }, + { + "start": 33951.58, + "end": 33952.96, + "probability": 0.9956 + }, + { + "start": 33953.12, + "end": 33953.48, + "probability": 0.4866 + }, + { + "start": 33953.68, + "end": 33955.02, + "probability": 0.6046 + }, + { + "start": 33955.44, + "end": 33957.3, + "probability": 0.894 + }, + { + "start": 33957.38, + "end": 33958.36, + "probability": 0.96 + }, + { + "start": 33958.98, + "end": 33960.3, + "probability": 0.8589 + }, + { + "start": 33960.8, + "end": 33963.08, + "probability": 0.7824 + }, + { + "start": 33963.42, + "end": 33964.8, + "probability": 0.9546 + }, + { + "start": 33965.06, + "end": 33966.1, + "probability": 0.9848 + }, + { + "start": 33966.4, + "end": 33967.28, + "probability": 0.8143 + }, + { + "start": 33967.6, + "end": 33968.54, + "probability": 0.5502 + }, + { + "start": 33968.8, + "end": 33968.86, + "probability": 0.343 + }, + { + "start": 33968.86, + "end": 33971.46, + "probability": 0.9696 + }, + { + "start": 33971.8, + "end": 33973.78, + "probability": 0.9218 + }, + { + "start": 33974.04, + "end": 33974.12, + "probability": 0.8743 + }, + { + "start": 33974.12, + "end": 33975.04, + "probability": 0.7553 + }, + { + "start": 33975.3, + "end": 33977.26, + "probability": 0.8616 + }, + { + "start": 33977.3, + "end": 33980.94, + "probability": 0.9879 + }, + { + "start": 33980.94, + "end": 33985.72, + "probability": 0.9986 + }, + { + "start": 33985.72, + "end": 33985.72, + "probability": 0.063 + }, + { + "start": 33985.72, + "end": 33985.72, + "probability": 0.2774 + }, + { + "start": 33985.72, + "end": 33991.16, + "probability": 0.9619 + }, + { + "start": 33991.5, + "end": 33992.04, + "probability": 0.8716 + }, + { + "start": 33992.12, + "end": 33993.7, + "probability": 0.9482 + }, + { + "start": 33994.3, + "end": 33995.08, + "probability": 0.5261 + }, + { + "start": 33995.08, + "end": 33996.24, + "probability": 0.546 + }, + { + "start": 33997.02, + "end": 33999.08, + "probability": 0.2673 + }, + { + "start": 33999.08, + "end": 33999.66, + "probability": 0.3013 + }, + { + "start": 34000.06, + "end": 34002.68, + "probability": 0.9845 + }, + { + "start": 34003.18, + "end": 34003.38, + "probability": 0.0792 + }, + { + "start": 34003.38, + "end": 34009.18, + "probability": 0.8899 + }, + { + "start": 34009.54, + "end": 34011.54, + "probability": 0.8975 + }, + { + "start": 34011.68, + "end": 34012.38, + "probability": 0.6767 + }, + { + "start": 34012.66, + "end": 34016.16, + "probability": 0.9766 + }, + { + "start": 34016.44, + "end": 34017.58, + "probability": 0.8319 + }, + { + "start": 34017.68, + "end": 34018.4, + "probability": 0.5807 + }, + { + "start": 34018.72, + "end": 34019.82, + "probability": 0.6915 + }, + { + "start": 34020.08, + "end": 34022.74, + "probability": 0.9276 + }, + { + "start": 34023.04, + "end": 34025.64, + "probability": 0.9459 + }, + { + "start": 34025.92, + "end": 34026.48, + "probability": 0.9175 + }, + { + "start": 34026.56, + "end": 34027.44, + "probability": 0.9592 + }, + { + "start": 34027.86, + "end": 34028.84, + "probability": 0.8999 + }, + { + "start": 34029.12, + "end": 34030.22, + "probability": 0.7592 + }, + { + "start": 34030.46, + "end": 34033.28, + "probability": 0.9914 + }, + { + "start": 34033.54, + "end": 34037.04, + "probability": 0.9548 + }, + { + "start": 34037.46, + "end": 34039.42, + "probability": 0.9438 + }, + { + "start": 34039.7, + "end": 34042.48, + "probability": 0.5646 + }, + { + "start": 34042.7, + "end": 34044.28, + "probability": 0.1236 + }, + { + "start": 34044.28, + "end": 34045.2, + "probability": 0.3331 + }, + { + "start": 34046.78, + "end": 34047.5, + "probability": 0.6145 + }, + { + "start": 34047.6, + "end": 34047.6, + "probability": 0.5345 + }, + { + "start": 34047.62, + "end": 34047.94, + "probability": 0.6922 + }, + { + "start": 34048.0, + "end": 34048.1, + "probability": 0.5447 + }, + { + "start": 34049.72, + "end": 34051.02, + "probability": 0.7886 + }, + { + "start": 34051.65, + "end": 34054.6, + "probability": 0.6324 + }, + { + "start": 34055.0, + "end": 34055.88, + "probability": 0.967 + }, + { + "start": 34056.08, + "end": 34057.04, + "probability": 0.7543 + }, + { + "start": 34057.04, + "end": 34057.56, + "probability": 0.8553 + }, + { + "start": 34058.12, + "end": 34060.12, + "probability": 0.9905 + }, + { + "start": 34060.18, + "end": 34062.6, + "probability": 0.8998 + }, + { + "start": 34063.8, + "end": 34066.92, + "probability": 0.8953 + }, + { + "start": 34066.94, + "end": 34068.05, + "probability": 0.724 + }, + { + "start": 34070.6, + "end": 34071.74, + "probability": 0.9491 + }, + { + "start": 34072.24, + "end": 34073.42, + "probability": 0.7955 + }, + { + "start": 34073.96, + "end": 34074.78, + "probability": 0.959 + }, + { + "start": 34076.2, + "end": 34077.6, + "probability": 0.3794 + }, + { + "start": 34077.6, + "end": 34082.7, + "probability": 0.8116 + }, + { + "start": 34083.56, + "end": 34085.1, + "probability": 0.8342 + }, + { + "start": 34086.36, + "end": 34091.94, + "probability": 0.8343 + }, + { + "start": 34093.18, + "end": 34096.78, + "probability": 0.9964 + }, + { + "start": 34097.2, + "end": 34101.48, + "probability": 0.8923 + }, + { + "start": 34101.56, + "end": 34103.12, + "probability": 0.938 + }, + { + "start": 34104.18, + "end": 34105.52, + "probability": 0.7629 + }, + { + "start": 34106.24, + "end": 34106.84, + "probability": 0.7413 + }, + { + "start": 34107.72, + "end": 34109.16, + "probability": 0.7877 + }, + { + "start": 34109.18, + "end": 34109.72, + "probability": 0.5439 + }, + { + "start": 34110.82, + "end": 34112.46, + "probability": 0.6367 + }, + { + "start": 34112.48, + "end": 34113.38, + "probability": 0.2984 + }, + { + "start": 34114.66, + "end": 34114.8, + "probability": 0.5283 + }, + { + "start": 34115.5, + "end": 34115.86, + "probability": 0.4742 + }, + { + "start": 34118.46, + "end": 34119.22, + "probability": 0.3833 + }, + { + "start": 34119.96, + "end": 34122.16, + "probability": 0.9575 + }, + { + "start": 34122.46, + "end": 34122.86, + "probability": 0.8328 + }, + { + "start": 34123.92, + "end": 34125.2, + "probability": 0.9837 + }, + { + "start": 34125.3, + "end": 34125.91, + "probability": 0.7055 + }, + { + "start": 34126.4, + "end": 34129.68, + "probability": 0.9693 + }, + { + "start": 34129.78, + "end": 34132.3, + "probability": 0.6489 + }, + { + "start": 34132.92, + "end": 34138.36, + "probability": 0.9985 + }, + { + "start": 34139.0, + "end": 34142.94, + "probability": 0.9958 + }, + { + "start": 34143.32, + "end": 34143.8, + "probability": 0.5227 + }, + { + "start": 34144.8, + "end": 34148.0, + "probability": 0.9087 + }, + { + "start": 34148.82, + "end": 34150.18, + "probability": 0.9918 + }, + { + "start": 34151.08, + "end": 34152.24, + "probability": 0.8838 + }, + { + "start": 34153.2, + "end": 34155.64, + "probability": 0.9755 + }, + { + "start": 34156.08, + "end": 34158.46, + "probability": 0.9858 + }, + { + "start": 34160.08, + "end": 34164.3, + "probability": 0.9629 + }, + { + "start": 34165.24, + "end": 34172.02, + "probability": 0.9073 + }, + { + "start": 34172.78, + "end": 34175.5, + "probability": 0.9146 + }, + { + "start": 34176.98, + "end": 34178.08, + "probability": 0.9645 + }, + { + "start": 34179.54, + "end": 34180.26, + "probability": 0.9368 + }, + { + "start": 34181.8, + "end": 34185.54, + "probability": 0.9339 + }, + { + "start": 34186.56, + "end": 34188.68, + "probability": 0.9434 + }, + { + "start": 34189.1, + "end": 34189.42, + "probability": 0.8345 + }, + { + "start": 34190.14, + "end": 34190.38, + "probability": 0.6134 + }, + { + "start": 34190.52, + "end": 34191.7, + "probability": 0.5919 + }, + { + "start": 34192.14, + "end": 34192.96, + "probability": 0.8877 + }, + { + "start": 34193.1, + "end": 34195.48, + "probability": 0.9922 + }, + { + "start": 34196.18, + "end": 34197.94, + "probability": 0.9974 + }, + { + "start": 34198.72, + "end": 34202.08, + "probability": 0.9967 + }, + { + "start": 34202.74, + "end": 34204.22, + "probability": 0.9876 + }, + { + "start": 34204.98, + "end": 34207.86, + "probability": 0.9934 + }, + { + "start": 34208.4, + "end": 34212.34, + "probability": 0.8593 + }, + { + "start": 34213.14, + "end": 34215.92, + "probability": 0.9167 + }, + { + "start": 34216.54, + "end": 34222.58, + "probability": 0.9803 + }, + { + "start": 34223.2, + "end": 34227.14, + "probability": 0.8337 + }, + { + "start": 34228.04, + "end": 34230.52, + "probability": 0.9277 + }, + { + "start": 34231.52, + "end": 34234.06, + "probability": 0.6966 + }, + { + "start": 34234.74, + "end": 34242.38, + "probability": 0.9443 + }, + { + "start": 34242.72, + "end": 34243.12, + "probability": 0.5592 + }, + { + "start": 34243.16, + "end": 34247.02, + "probability": 0.9867 + }, + { + "start": 34247.76, + "end": 34250.34, + "probability": 0.7873 + }, + { + "start": 34250.96, + "end": 34254.52, + "probability": 0.8871 + }, + { + "start": 34255.2, + "end": 34259.3, + "probability": 0.9865 + }, + { + "start": 34260.0, + "end": 34262.9, + "probability": 0.8258 + }, + { + "start": 34263.38, + "end": 34264.64, + "probability": 0.7693 + }, + { + "start": 34265.86, + "end": 34265.9, + "probability": 0.2373 + }, + { + "start": 34265.9, + "end": 34267.66, + "probability": 0.1668 + }, + { + "start": 34267.78, + "end": 34268.26, + "probability": 0.8177 + }, + { + "start": 34268.44, + "end": 34268.76, + "probability": 0.5848 + }, + { + "start": 34268.84, + "end": 34270.76, + "probability": 0.9292 + }, + { + "start": 34272.68, + "end": 34273.1, + "probability": 0.3599 + }, + { + "start": 34273.12, + "end": 34274.66, + "probability": 0.9143 + }, + { + "start": 34274.92, + "end": 34276.41, + "probability": 0.9425 + }, + { + "start": 34282.12, + "end": 34284.24, + "probability": 0.0928 + }, + { + "start": 34295.28, + "end": 34295.58, + "probability": 0.1317 + }, + { + "start": 34297.18, + "end": 34299.06, + "probability": 0.3601 + }, + { + "start": 34302.64, + "end": 34303.76, + "probability": 0.641 + }, + { + "start": 34305.26, + "end": 34307.74, + "probability": 0.8975 + }, + { + "start": 34309.6, + "end": 34310.62, + "probability": 0.9501 + }, + { + "start": 34311.14, + "end": 34312.48, + "probability": 0.9644 + }, + { + "start": 34315.14, + "end": 34316.06, + "probability": 0.7809 + }, + { + "start": 34316.1, + "end": 34317.6, + "probability": 0.9843 + }, + { + "start": 34317.62, + "end": 34320.62, + "probability": 0.9511 + }, + { + "start": 34321.52, + "end": 34322.5, + "probability": 0.9486 + }, + { + "start": 34322.7, + "end": 34323.66, + "probability": 0.9932 + }, + { + "start": 34323.84, + "end": 34325.54, + "probability": 0.817 + }, + { + "start": 34326.82, + "end": 34331.36, + "probability": 0.9522 + }, + { + "start": 34332.88, + "end": 34334.35, + "probability": 0.8013 + }, + { + "start": 34337.36, + "end": 34338.48, + "probability": 0.7456 + }, + { + "start": 34339.65, + "end": 34340.62, + "probability": 0.5548 + }, + { + "start": 34341.78, + "end": 34342.84, + "probability": 0.4177 + }, + { + "start": 34343.06, + "end": 34344.06, + "probability": 0.5679 + }, + { + "start": 34344.08, + "end": 34345.26, + "probability": 0.8877 + }, + { + "start": 34345.72, + "end": 34346.08, + "probability": 0.8885 + }, + { + "start": 34346.08, + "end": 34347.17, + "probability": 0.6327 + }, + { + "start": 34347.52, + "end": 34347.72, + "probability": 0.9341 + }, + { + "start": 34347.82, + "end": 34352.2, + "probability": 0.9876 + }, + { + "start": 34352.78, + "end": 34358.12, + "probability": 0.9951 + }, + { + "start": 34358.88, + "end": 34361.11, + "probability": 0.9854 + }, + { + "start": 34361.6, + "end": 34363.2, + "probability": 0.9205 + }, + { + "start": 34363.32, + "end": 34364.54, + "probability": 0.9031 + }, + { + "start": 34365.1, + "end": 34366.76, + "probability": 0.9792 + }, + { + "start": 34367.18, + "end": 34369.22, + "probability": 0.92 + }, + { + "start": 34369.5, + "end": 34371.12, + "probability": 0.94 + }, + { + "start": 34371.34, + "end": 34371.94, + "probability": 0.7536 + }, + { + "start": 34373.66, + "end": 34375.3, + "probability": 0.6356 + }, + { + "start": 34375.46, + "end": 34377.04, + "probability": 0.5026 + }, + { + "start": 34377.54, + "end": 34378.71, + "probability": 0.9863 + }, + { + "start": 34379.68, + "end": 34380.69, + "probability": 0.845 + }, + { + "start": 34381.2, + "end": 34381.97, + "probability": 0.5771 + }, + { + "start": 34382.14, + "end": 34386.3, + "probability": 0.9884 + }, + { + "start": 34388.64, + "end": 34390.18, + "probability": 0.9307 + }, + { + "start": 34391.3, + "end": 34393.52, + "probability": 0.994 + }, + { + "start": 34393.76, + "end": 34396.28, + "probability": 0.7454 + }, + { + "start": 34396.9, + "end": 34398.03, + "probability": 0.8696 + }, + { + "start": 34399.18, + "end": 34403.52, + "probability": 0.9332 + }, + { + "start": 34404.46, + "end": 34406.34, + "probability": 0.7115 + }, + { + "start": 34406.42, + "end": 34407.12, + "probability": 0.1923 + }, + { + "start": 34408.52, + "end": 34409.68, + "probability": 0.6662 + }, + { + "start": 34410.2, + "end": 34410.62, + "probability": 0.8391 + }, + { + "start": 34410.88, + "end": 34411.78, + "probability": 0.2782 + }, + { + "start": 34412.16, + "end": 34414.8, + "probability": 0.8685 + }, + { + "start": 34416.02, + "end": 34420.0, + "probability": 0.9896 + }, + { + "start": 34420.06, + "end": 34420.87, + "probability": 0.9753 + }, + { + "start": 34421.46, + "end": 34422.23, + "probability": 0.9021 + }, + { + "start": 34423.28, + "end": 34423.82, + "probability": 0.4514 + }, + { + "start": 34423.94, + "end": 34424.8, + "probability": 0.9707 + }, + { + "start": 34425.84, + "end": 34429.74, + "probability": 0.9891 + }, + { + "start": 34430.48, + "end": 34435.86, + "probability": 0.9836 + }, + { + "start": 34436.76, + "end": 34437.72, + "probability": 0.6872 + }, + { + "start": 34439.04, + "end": 34441.48, + "probability": 0.9466 + }, + { + "start": 34442.1, + "end": 34442.86, + "probability": 0.7815 + }, + { + "start": 34443.52, + "end": 34449.12, + "probability": 0.9384 + }, + { + "start": 34449.68, + "end": 34453.5, + "probability": 0.9487 + }, + { + "start": 34453.82, + "end": 34455.74, + "probability": 0.9723 + }, + { + "start": 34455.86, + "end": 34457.98, + "probability": 0.9834 + }, + { + "start": 34458.98, + "end": 34460.14, + "probability": 0.9993 + }, + { + "start": 34461.92, + "end": 34464.88, + "probability": 0.9703 + }, + { + "start": 34465.5, + "end": 34467.44, + "probability": 0.7389 + }, + { + "start": 34468.58, + "end": 34471.3, + "probability": 0.9833 + }, + { + "start": 34472.74, + "end": 34475.98, + "probability": 0.9854 + }, + { + "start": 34476.66, + "end": 34479.1, + "probability": 0.9902 + }, + { + "start": 34479.9, + "end": 34482.22, + "probability": 0.8663 + }, + { + "start": 34483.0, + "end": 34486.88, + "probability": 0.8659 + }, + { + "start": 34487.8, + "end": 34488.34, + "probability": 0.6271 + }, + { + "start": 34488.98, + "end": 34491.72, + "probability": 0.9767 + }, + { + "start": 34491.78, + "end": 34495.22, + "probability": 0.9605 + }, + { + "start": 34495.22, + "end": 34496.12, + "probability": 0.8255 + }, + { + "start": 34496.22, + "end": 34498.28, + "probability": 0.926 + }, + { + "start": 34498.38, + "end": 34499.84, + "probability": 0.9604 + }, + { + "start": 34501.4, + "end": 34503.58, + "probability": 0.9846 + }, + { + "start": 34504.86, + "end": 34506.28, + "probability": 0.9774 + }, + { + "start": 34507.0, + "end": 34508.92, + "probability": 0.9087 + }, + { + "start": 34509.74, + "end": 34510.9, + "probability": 0.85 + }, + { + "start": 34511.1, + "end": 34511.44, + "probability": 0.7526 + }, + { + "start": 34511.72, + "end": 34516.58, + "probability": 0.9958 + }, + { + "start": 34517.22, + "end": 34518.22, + "probability": 0.9683 + }, + { + "start": 34518.84, + "end": 34521.76, + "probability": 0.9939 + }, + { + "start": 34521.76, + "end": 34522.8, + "probability": 0.9164 + }, + { + "start": 34523.3, + "end": 34525.84, + "probability": 0.7449 + }, + { + "start": 34526.5, + "end": 34527.12, + "probability": 0.9963 + }, + { + "start": 34527.88, + "end": 34529.82, + "probability": 0.8599 + }, + { + "start": 34530.14, + "end": 34531.28, + "probability": 0.9992 + }, + { + "start": 34531.72, + "end": 34532.48, + "probability": 0.425 + }, + { + "start": 34532.56, + "end": 34534.74, + "probability": 0.7192 + }, + { + "start": 34534.86, + "end": 34535.14, + "probability": 0.6341 + }, + { + "start": 34535.22, + "end": 34537.8, + "probability": 0.3995 + }, + { + "start": 34538.08, + "end": 34538.86, + "probability": 0.5097 + }, + { + "start": 34538.86, + "end": 34541.86, + "probability": 0.7444 + }, + { + "start": 34555.82, + "end": 34555.96, + "probability": 0.0068 + }, + { + "start": 34555.96, + "end": 34556.74, + "probability": 0.7458 + }, + { + "start": 34557.12, + "end": 34557.58, + "probability": 0.5588 + }, + { + "start": 34557.64, + "end": 34559.92, + "probability": 0.6397 + }, + { + "start": 34560.76, + "end": 34562.08, + "probability": 0.5728 + }, + { + "start": 34562.2, + "end": 34564.08, + "probability": 0.984 + }, + { + "start": 34564.16, + "end": 34566.38, + "probability": 0.8064 + }, + { + "start": 34567.24, + "end": 34570.92, + "probability": 0.7194 + }, + { + "start": 34571.94, + "end": 34573.86, + "probability": 0.6426 + }, + { + "start": 34574.46, + "end": 34579.62, + "probability": 0.7964 + }, + { + "start": 34580.96, + "end": 34581.82, + "probability": 0.7964 + }, + { + "start": 34581.84, + "end": 34582.34, + "probability": 0.9115 + }, + { + "start": 34582.46, + "end": 34583.5, + "probability": 0.8266 + }, + { + "start": 34583.62, + "end": 34584.32, + "probability": 0.5213 + }, + { + "start": 34584.74, + "end": 34586.16, + "probability": 0.7513 + }, + { + "start": 34586.34, + "end": 34586.34, + "probability": 0.5517 + }, + { + "start": 34586.42, + "end": 34587.24, + "probability": 0.8461 + }, + { + "start": 34587.34, + "end": 34588.04, + "probability": 0.8608 + }, + { + "start": 34588.28, + "end": 34588.78, + "probability": 0.8254 + }, + { + "start": 34588.88, + "end": 34590.3, + "probability": 0.9175 + }, + { + "start": 34590.82, + "end": 34592.06, + "probability": 0.9768 + }, + { + "start": 34595.86, + "end": 34595.93, + "probability": 0.2909 + }, + { + "start": 34597.68, + "end": 34597.7, + "probability": 0.0124 + }, + { + "start": 34598.24, + "end": 34598.26, + "probability": 0.2781 + }, + { + "start": 34598.28, + "end": 34598.48, + "probability": 0.2184 + }, + { + "start": 34599.98, + "end": 34603.82, + "probability": 0.7543 + }, + { + "start": 34603.88, + "end": 34605.6, + "probability": 0.6069 + }, + { + "start": 34606.14, + "end": 34607.24, + "probability": 0.7546 + }, + { + "start": 34607.29, + "end": 34609.4, + "probability": 0.794 + }, + { + "start": 34609.48, + "end": 34609.9, + "probability": 0.873 + }, + { + "start": 34610.02, + "end": 34610.8, + "probability": 0.4622 + }, + { + "start": 34611.34, + "end": 34613.4, + "probability": 0.8405 + }, + { + "start": 34613.5, + "end": 34614.72, + "probability": 0.5351 + }, + { + "start": 34615.32, + "end": 34617.3, + "probability": 0.7165 + }, + { + "start": 34617.74, + "end": 34619.5, + "probability": 0.6362 + }, + { + "start": 34619.92, + "end": 34620.94, + "probability": 0.7175 + }, + { + "start": 34621.36, + "end": 34623.68, + "probability": 0.7755 + }, + { + "start": 34624.06, + "end": 34626.94, + "probability": 0.7603 + }, + { + "start": 34626.98, + "end": 34627.68, + "probability": 0.004 + }, + { + "start": 34628.9, + "end": 34628.9, + "probability": 0.0014 + }, + { + "start": 34629.12, + "end": 34629.4, + "probability": 0.0038 + }, + { + "start": 34629.4, + "end": 34629.4, + "probability": 0.0479 + }, + { + "start": 34629.4, + "end": 34629.94, + "probability": 0.0945 + }, + { + "start": 34630.28, + "end": 34632.12, + "probability": 0.5873 + }, + { + "start": 34633.12, + "end": 34633.68, + "probability": 0.7526 + }, + { + "start": 34634.52, + "end": 34638.35, + "probability": 0.7521 + }, + { + "start": 34638.92, + "end": 34640.74, + "probability": 0.0245 + }, + { + "start": 34640.74, + "end": 34640.74, + "probability": 0.07 + }, + { + "start": 34640.74, + "end": 34640.74, + "probability": 0.2041 + }, + { + "start": 34640.74, + "end": 34640.74, + "probability": 0.3683 + }, + { + "start": 34640.74, + "end": 34642.38, + "probability": 0.3517 + }, + { + "start": 34642.94, + "end": 34642.94, + "probability": 0.1188 + }, + { + "start": 34642.94, + "end": 34643.44, + "probability": 0.1743 + }, + { + "start": 34643.44, + "end": 34644.5, + "probability": 0.5007 + }, + { + "start": 34644.7, + "end": 34645.84, + "probability": 0.5345 + }, + { + "start": 34646.92, + "end": 34648.32, + "probability": 0.5292 + }, + { + "start": 34648.32, + "end": 34648.4, + "probability": 0.0057 + }, + { + "start": 34648.4, + "end": 34649.26, + "probability": 0.2527 + }, + { + "start": 34649.41, + "end": 34651.12, + "probability": 0.2047 + }, + { + "start": 34651.45, + "end": 34651.94, + "probability": 0.2381 + }, + { + "start": 34652.53, + "end": 34656.23, + "probability": 0.5078 + }, + { + "start": 34656.48, + "end": 34657.14, + "probability": 0.8011 + }, + { + "start": 34657.18, + "end": 34657.44, + "probability": 0.8286 + }, + { + "start": 34657.5, + "end": 34657.98, + "probability": 0.4615 + }, + { + "start": 34657.98, + "end": 34658.4, + "probability": 0.0527 + }, + { + "start": 34658.42, + "end": 34659.92, + "probability": 0.998 + }, + { + "start": 34660.44, + "end": 34660.48, + "probability": 0.8491 + }, + { + "start": 34661.34, + "end": 34663.46, + "probability": 0.7624 + }, + { + "start": 34665.28, + "end": 34668.96, + "probability": 0.8313 + }, + { + "start": 34669.28, + "end": 34672.64, + "probability": 0.1676 + }, + { + "start": 34672.64, + "end": 34676.12, + "probability": 0.7009 + }, + { + "start": 34676.6, + "end": 34677.38, + "probability": 0.1659 + }, + { + "start": 34677.38, + "end": 34677.8, + "probability": 0.2078 + }, + { + "start": 34678.02, + "end": 34679.96, + "probability": 0.0451 + }, + { + "start": 34680.48, + "end": 34681.3, + "probability": 0.8276 + }, + { + "start": 34682.04, + "end": 34683.44, + "probability": 0.842 + }, + { + "start": 34684.12, + "end": 34688.06, + "probability": 0.3886 + }, + { + "start": 34688.12, + "end": 34688.5, + "probability": 0.1394 + }, + { + "start": 34689.26, + "end": 34689.74, + "probability": 0.1044 + }, + { + "start": 34689.76, + "end": 34690.68, + "probability": 0.7101 + }, + { + "start": 34690.82, + "end": 34691.72, + "probability": 0.4984 + }, + { + "start": 34691.74, + "end": 34693.92, + "probability": 0.8954 + }, + { + "start": 34694.02, + "end": 34695.14, + "probability": 0.8598 + }, + { + "start": 34695.84, + "end": 34696.14, + "probability": 0.8193 + }, + { + "start": 34696.5, + "end": 34697.5, + "probability": 0.2813 + }, + { + "start": 34697.68, + "end": 34697.9, + "probability": 0.1037 + }, + { + "start": 34699.14, + "end": 34699.86, + "probability": 0.701 + }, + { + "start": 34700.14, + "end": 34700.94, + "probability": 0.4029 + }, + { + "start": 34701.38, + "end": 34701.46, + "probability": 0.2821 + }, + { + "start": 34701.46, + "end": 34701.58, + "probability": 0.5704 + }, + { + "start": 34701.58, + "end": 34704.02, + "probability": 0.9949 + }, + { + "start": 34704.06, + "end": 34705.06, + "probability": 0.8008 + }, + { + "start": 34705.54, + "end": 34706.76, + "probability": 0.8161 + }, + { + "start": 34706.96, + "end": 34707.3, + "probability": 0.0213 + }, + { + "start": 34707.3, + "end": 34709.28, + "probability": 0.0743 + }, + { + "start": 34709.71, + "end": 34709.78, + "probability": 0.1129 + }, + { + "start": 34709.78, + "end": 34711.48, + "probability": 0.903 + }, + { + "start": 34711.5, + "end": 34712.62, + "probability": 0.3557 + }, + { + "start": 34713.3, + "end": 34713.86, + "probability": 0.7109 + }, + { + "start": 34715.38, + "end": 34715.82, + "probability": 0.874 + }, + { + "start": 34716.44, + "end": 34716.68, + "probability": 0.5803 + }, + { + "start": 34716.68, + "end": 34718.61, + "probability": 0.9763 + }, + { + "start": 34719.3, + "end": 34721.96, + "probability": 0.9968 + }, + { + "start": 34722.92, + "end": 34725.1, + "probability": 0.9821 + }, + { + "start": 34725.88, + "end": 34728.28, + "probability": 0.4311 + }, + { + "start": 34728.28, + "end": 34730.46, + "probability": 0.8674 + }, + { + "start": 34731.6, + "end": 34733.08, + "probability": 0.9539 + }, + { + "start": 34737.04, + "end": 34737.04, + "probability": 0.4951 + }, + { + "start": 34737.04, + "end": 34737.58, + "probability": 0.7056 + }, + { + "start": 34737.76, + "end": 34738.76, + "probability": 0.9377 + }, + { + "start": 34739.7, + "end": 34741.1, + "probability": 0.8662 + }, + { + "start": 34741.6, + "end": 34745.9, + "probability": 0.8696 + }, + { + "start": 34746.02, + "end": 34746.36, + "probability": 0.8498 + }, + { + "start": 34746.46, + "end": 34746.53, + "probability": 0.8708 + }, + { + "start": 34747.02, + "end": 34747.7, + "probability": 0.7587 + }, + { + "start": 34748.06, + "end": 34749.04, + "probability": 0.7859 + }, + { + "start": 34749.58, + "end": 34750.5, + "probability": 0.9004 + }, + { + "start": 34750.54, + "end": 34754.12, + "probability": 0.849 + }, + { + "start": 34754.22, + "end": 34754.98, + "probability": 0.925 + }, + { + "start": 34755.52, + "end": 34757.5, + "probability": 0.9619 + }, + { + "start": 34758.08, + "end": 34762.0, + "probability": 0.9871 + }, + { + "start": 34762.96, + "end": 34765.5, + "probability": 0.9076 + }, + { + "start": 34765.74, + "end": 34765.92, + "probability": 0.5474 + }, + { + "start": 34766.04, + "end": 34768.3, + "probability": 0.8916 + }, + { + "start": 34768.44, + "end": 34773.4, + "probability": 0.9591 + }, + { + "start": 34774.24, + "end": 34775.44, + "probability": 0.7613 + }, + { + "start": 34776.18, + "end": 34777.1, + "probability": 0.7386 + }, + { + "start": 34777.54, + "end": 34779.22, + "probability": 0.948 + }, + { + "start": 34780.24, + "end": 34782.36, + "probability": 0.6535 + }, + { + "start": 34782.78, + "end": 34783.6, + "probability": 0.5708 + }, + { + "start": 34783.92, + "end": 34784.9, + "probability": 0.8638 + }, + { + "start": 34785.18, + "end": 34789.5, + "probability": 0.8483 + }, + { + "start": 34790.5, + "end": 34793.64, + "probability": 0.7005 + }, + { + "start": 34794.38, + "end": 34794.4, + "probability": 0.5561 + }, + { + "start": 34794.4, + "end": 34796.64, + "probability": 0.3146 + }, + { + "start": 34796.82, + "end": 34797.14, + "probability": 0.0216 + }, + { + "start": 34797.19, + "end": 34798.8, + "probability": 0.0066 + }, + { + "start": 34799.1, + "end": 34800.78, + "probability": 0.3599 + }, + { + "start": 34800.8, + "end": 34802.3, + "probability": 0.8523 + }, + { + "start": 34802.54, + "end": 34803.84, + "probability": 0.1133 + }, + { + "start": 34803.96, + "end": 34805.42, + "probability": 0.9351 + }, + { + "start": 34808.2, + "end": 34809.78, + "probability": 0.6503 + }, + { + "start": 34810.4, + "end": 34812.76, + "probability": 0.8837 + }, + { + "start": 34813.06, + "end": 34814.22, + "probability": 0.6379 + }, + { + "start": 34814.78, + "end": 34816.64, + "probability": 0.8047 + }, + { + "start": 34816.7, + "end": 34817.14, + "probability": 0.6847 + }, + { + "start": 34817.24, + "end": 34817.7, + "probability": 0.7702 + }, + { + "start": 34817.78, + "end": 34818.42, + "probability": 0.9854 + }, + { + "start": 34818.58, + "end": 34819.28, + "probability": 0.4985 + }, + { + "start": 34819.56, + "end": 34820.38, + "probability": 0.7091 + }, + { + "start": 34820.78, + "end": 34823.21, + "probability": 0.8833 + }, + { + "start": 34823.64, + "end": 34825.56, + "probability": 0.8506 + }, + { + "start": 34826.08, + "end": 34830.02, + "probability": 0.9742 + }, + { + "start": 34830.12, + "end": 34832.0, + "probability": 0.9962 + }, + { + "start": 34832.56, + "end": 34834.34, + "probability": 0.6886 + }, + { + "start": 34835.14, + "end": 34838.14, + "probability": 0.9973 + }, + { + "start": 34838.56, + "end": 34840.18, + "probability": 0.8376 + }, + { + "start": 34840.36, + "end": 34841.48, + "probability": 0.9673 + }, + { + "start": 34841.64, + "end": 34842.61, + "probability": 0.9727 + }, + { + "start": 34843.26, + "end": 34844.04, + "probability": 0.6777 + }, + { + "start": 34844.18, + "end": 34849.02, + "probability": 0.7942 + }, + { + "start": 34849.1, + "end": 34854.08, + "probability": 0.9847 + }, + { + "start": 34854.8, + "end": 34857.56, + "probability": 0.8935 + }, + { + "start": 34857.92, + "end": 34858.98, + "probability": 0.5407 + }, + { + "start": 34859.08, + "end": 34860.83, + "probability": 0.5576 + }, + { + "start": 34861.14, + "end": 34861.76, + "probability": 0.7326 + }, + { + "start": 34862.26, + "end": 34862.42, + "probability": 0.7708 + }, + { + "start": 34862.46, + "end": 34863.52, + "probability": 0.8184 + }, + { + "start": 34863.74, + "end": 34867.78, + "probability": 0.9288 + }, + { + "start": 34868.22, + "end": 34870.26, + "probability": 0.7182 + }, + { + "start": 34870.26, + "end": 34870.9, + "probability": 0.3197 + }, + { + "start": 34870.96, + "end": 34872.72, + "probability": 0.7962 + }, + { + "start": 34873.08, + "end": 34874.96, + "probability": 0.8412 + }, + { + "start": 34875.16, + "end": 34876.0, + "probability": 0.7064 + }, + { + "start": 34876.1, + "end": 34876.9, + "probability": 0.5999 + }, + { + "start": 34878.42, + "end": 34878.76, + "probability": 0.042 + }, + { + "start": 34878.76, + "end": 34878.76, + "probability": 0.1389 + }, + { + "start": 34878.76, + "end": 34880.07, + "probability": 0.8119 + }, + { + "start": 34880.5, + "end": 34881.68, + "probability": 0.6083 + }, + { + "start": 34882.02, + "end": 34884.64, + "probability": 0.4881 + }, + { + "start": 34884.88, + "end": 34885.32, + "probability": 0.7 + }, + { + "start": 34885.74, + "end": 34886.02, + "probability": 0.7702 + }, + { + "start": 34886.04, + "end": 34887.04, + "probability": 0.9666 + }, + { + "start": 34887.8, + "end": 34889.27, + "probability": 0.5178 + }, + { + "start": 34889.42, + "end": 34890.42, + "probability": 0.6476 + }, + { + "start": 34891.4, + "end": 34892.24, + "probability": 0.979 + }, + { + "start": 34893.36, + "end": 34893.46, + "probability": 0.1423 + }, + { + "start": 34893.46, + "end": 34894.98, + "probability": 0.0332 + }, + { + "start": 34894.98, + "end": 34895.33, + "probability": 0.3781 + }, + { + "start": 34895.72, + "end": 34896.78, + "probability": 0.4455 + }, + { + "start": 34896.8, + "end": 34898.08, + "probability": 0.4647 + }, + { + "start": 34899.14, + "end": 34900.12, + "probability": 0.5666 + }, + { + "start": 34900.6, + "end": 34905.38, + "probability": 0.9495 + }, + { + "start": 34905.38, + "end": 34907.88, + "probability": 0.9511 + }, + { + "start": 34908.82, + "end": 34908.86, + "probability": 0.0908 + }, + { + "start": 34908.86, + "end": 34908.86, + "probability": 0.0296 + }, + { + "start": 34908.86, + "end": 34909.72, + "probability": 0.8235 + }, + { + "start": 34909.9, + "end": 34912.28, + "probability": 0.6146 + }, + { + "start": 34912.68, + "end": 34912.96, + "probability": 0.3399 + }, + { + "start": 34912.96, + "end": 34913.19, + "probability": 0.2466 + }, + { + "start": 34914.12, + "end": 34916.3, + "probability": 0.9528 + }, + { + "start": 34916.5, + "end": 34916.78, + "probability": 0.4622 + }, + { + "start": 34916.86, + "end": 34917.1, + "probability": 0.5066 + }, + { + "start": 34917.1, + "end": 34918.81, + "probability": 0.728 + }, + { + "start": 34919.06, + "end": 34920.04, + "probability": 0.7878 + }, + { + "start": 34920.14, + "end": 34920.94, + "probability": 0.8238 + }, + { + "start": 34920.96, + "end": 34921.8, + "probability": 0.8103 + }, + { + "start": 34922.54, + "end": 34923.45, + "probability": 0.9605 + }, + { + "start": 34923.96, + "end": 34926.7, + "probability": 0.9355 + }, + { + "start": 34926.7, + "end": 34927.02, + "probability": 0.4587 + }, + { + "start": 34927.86, + "end": 34931.28, + "probability": 0.9014 + }, + { + "start": 34931.9, + "end": 34932.54, + "probability": 0.0369 + }, + { + "start": 34932.54, + "end": 34933.26, + "probability": 0.3094 + }, + { + "start": 34933.26, + "end": 34933.75, + "probability": 0.0614 + }, + { + "start": 34934.72, + "end": 34938.42, + "probability": 0.8739 + }, + { + "start": 34938.78, + "end": 34939.46, + "probability": 0.616 + }, + { + "start": 34939.52, + "end": 34940.0, + "probability": 0.5729 + }, + { + "start": 34940.12, + "end": 34940.58, + "probability": 0.9346 + }, + { + "start": 34940.64, + "end": 34941.46, + "probability": 0.7726 + }, + { + "start": 34942.0, + "end": 34943.86, + "probability": 0.6377 + }, + { + "start": 34944.42, + "end": 34945.42, + "probability": 0.7538 + }, + { + "start": 34946.62, + "end": 34947.24, + "probability": 0.5844 + }, + { + "start": 34947.46, + "end": 34947.92, + "probability": 0.6334 + }, + { + "start": 34948.24, + "end": 34949.94, + "probability": 0.2479 + }, + { + "start": 34949.96, + "end": 34951.38, + "probability": 0.9894 + }, + { + "start": 34952.22, + "end": 34953.66, + "probability": 0.8387 + }, + { + "start": 34953.76, + "end": 34954.32, + "probability": 0.415 + }, + { + "start": 34954.48, + "end": 34955.02, + "probability": 0.1862 + }, + { + "start": 34956.18, + "end": 34956.54, + "probability": 0.1121 + }, + { + "start": 34962.48, + "end": 34962.56, + "probability": 0.0276 + }, + { + "start": 34962.56, + "end": 34962.62, + "probability": 0.1147 + }, + { + "start": 34962.62, + "end": 34963.36, + "probability": 0.5138 + }, + { + "start": 34964.88, + "end": 34967.36, + "probability": 0.5703 + }, + { + "start": 34969.76, + "end": 34972.34, + "probability": 0.7974 + }, + { + "start": 34975.48, + "end": 34977.44, + "probability": 0.9927 + }, + { + "start": 34979.1, + "end": 34981.72, + "probability": 0.9993 + }, + { + "start": 34982.76, + "end": 34983.82, + "probability": 0.2884 + }, + { + "start": 34984.86, + "end": 34985.24, + "probability": 0.3116 + }, + { + "start": 34985.24, + "end": 34985.24, + "probability": 0.0382 + }, + { + "start": 34985.24, + "end": 34985.34, + "probability": 0.0201 + }, + { + "start": 34985.34, + "end": 34986.24, + "probability": 0.8525 + }, + { + "start": 34986.32, + "end": 34990.54, + "probability": 0.9899 + }, + { + "start": 34990.54, + "end": 34991.42, + "probability": 0.3558 + }, + { + "start": 34991.48, + "end": 34992.3, + "probability": 0.6168 + }, + { + "start": 34992.42, + "end": 34994.58, + "probability": 0.1225 + }, + { + "start": 34995.42, + "end": 34997.12, + "probability": 0.2347 + }, + { + "start": 34997.94, + "end": 34998.94, + "probability": 0.6763 + }, + { + "start": 34999.8, + "end": 35009.78, + "probability": 0.7939 + }, + { + "start": 35010.04, + "end": 35011.06, + "probability": 0.5566 + }, + { + "start": 35011.16, + "end": 35012.72, + "probability": 0.7286 + }, + { + "start": 35012.74, + "end": 35015.04, + "probability": 0.5201 + }, + { + "start": 35016.02, + "end": 35021.02, + "probability": 0.9307 + }, + { + "start": 35021.58, + "end": 35021.94, + "probability": 0.7013 + }, + { + "start": 35022.1, + "end": 35027.42, + "probability": 0.8862 + }, + { + "start": 35028.0, + "end": 35028.7, + "probability": 0.8307 + }, + { + "start": 35028.7, + "end": 35029.9, + "probability": 0.6907 + }, + { + "start": 35030.1, + "end": 35033.02, + "probability": 0.9547 + }, + { + "start": 35034.16, + "end": 35038.04, + "probability": 0.4257 + }, + { + "start": 35038.2, + "end": 35040.56, + "probability": 0.9351 + }, + { + "start": 35040.68, + "end": 35041.62, + "probability": 0.8068 + }, + { + "start": 35041.62, + "end": 35045.74, + "probability": 0.8628 + }, + { + "start": 35045.9, + "end": 35046.65, + "probability": 0.5743 + }, + { + "start": 35046.88, + "end": 35047.38, + "probability": 0.4456 + }, + { + "start": 35047.5, + "end": 35048.64, + "probability": 0.8354 + }, + { + "start": 35048.92, + "end": 35049.77, + "probability": 0.597 + }, + { + "start": 35050.04, + "end": 35051.96, + "probability": 0.3989 + }, + { + "start": 35052.22, + "end": 35053.9, + "probability": 0.8403 + }, + { + "start": 35053.96, + "end": 35055.4, + "probability": 0.9326 + }, + { + "start": 35056.4, + "end": 35058.4, + "probability": 0.825 + }, + { + "start": 35059.2, + "end": 35061.36, + "probability": 0.9735 + }, + { + "start": 35061.88, + "end": 35063.26, + "probability": 0.7582 + }, + { + "start": 35064.54, + "end": 35068.64, + "probability": 0.8701 + }, + { + "start": 35069.52, + "end": 35071.14, + "probability": 0.896 + }, + { + "start": 35071.48, + "end": 35072.81, + "probability": 0.9658 + }, + { + "start": 35073.5, + "end": 35074.92, + "probability": 0.9936 + }, + { + "start": 35075.26, + "end": 35076.8, + "probability": 0.9894 + }, + { + "start": 35077.42, + "end": 35078.8, + "probability": 0.9312 + }, + { + "start": 35079.8, + "end": 35082.58, + "probability": 0.8782 + }, + { + "start": 35083.16, + "end": 35084.74, + "probability": 0.8994 + }, + { + "start": 35085.14, + "end": 35086.14, + "probability": 0.0408 + }, + { + "start": 35086.32, + "end": 35089.34, + "probability": 0.8238 + }, + { + "start": 35090.04, + "end": 35091.08, + "probability": 0.8489 + }, + { + "start": 35091.8, + "end": 35095.58, + "probability": 0.9374 + }, + { + "start": 35096.7, + "end": 35101.04, + "probability": 0.8114 + }, + { + "start": 35102.34, + "end": 35102.34, + "probability": 0.0692 + }, + { + "start": 35102.34, + "end": 35102.48, + "probability": 0.2705 + }, + { + "start": 35102.48, + "end": 35103.72, + "probability": 0.7257 + }, + { + "start": 35104.66, + "end": 35106.35, + "probability": 0.5155 + }, + { + "start": 35107.82, + "end": 35108.74, + "probability": 0.1451 + }, + { + "start": 35108.84, + "end": 35111.88, + "probability": 0.7349 + }, + { + "start": 35112.48, + "end": 35115.96, + "probability": 0.5878 + }, + { + "start": 35116.84, + "end": 35117.2, + "probability": 0.6387 + }, + { + "start": 35117.2, + "end": 35117.88, + "probability": 0.569 + }, + { + "start": 35118.62, + "end": 35118.66, + "probability": 0.8574 + }, + { + "start": 35118.66, + "end": 35120.04, + "probability": 0.7154 + }, + { + "start": 35120.2, + "end": 35120.84, + "probability": 0.9023 + }, + { + "start": 35121.64, + "end": 35121.82, + "probability": 0.4318 + }, + { + "start": 35121.82, + "end": 35125.32, + "probability": 0.8237 + }, + { + "start": 35125.48, + "end": 35125.62, + "probability": 0.0233 + }, + { + "start": 35125.62, + "end": 35131.38, + "probability": 0.9013 + }, + { + "start": 35132.26, + "end": 35137.14, + "probability": 0.9392 + }, + { + "start": 35137.7, + "end": 35140.0, + "probability": 0.736 + }, + { + "start": 35140.82, + "end": 35142.04, + "probability": 0.8558 + }, + { + "start": 35142.8, + "end": 35144.64, + "probability": 0.9719 + }, + { + "start": 35144.64, + "end": 35145.27, + "probability": 0.289 + }, + { + "start": 35145.34, + "end": 35146.94, + "probability": 0.6731 + }, + { + "start": 35146.94, + "end": 35148.16, + "probability": 0.7269 + }, + { + "start": 35148.74, + "end": 35149.78, + "probability": 0.8284 + }, + { + "start": 35150.28, + "end": 35151.04, + "probability": 0.439 + }, + { + "start": 35151.18, + "end": 35151.24, + "probability": 0.2691 + }, + { + "start": 35151.3, + "end": 35152.12, + "probability": 0.1103 + }, + { + "start": 35152.14, + "end": 35157.32, + "probability": 0.7431 + }, + { + "start": 35158.02, + "end": 35160.2, + "probability": 0.3406 + }, + { + "start": 35160.22, + "end": 35161.02, + "probability": 0.6548 + }, + { + "start": 35161.08, + "end": 35162.54, + "probability": 0.6571 + }, + { + "start": 35163.42, + "end": 35167.52, + "probability": 0.0037 + }, + { + "start": 35167.52, + "end": 35167.52, + "probability": 0.1054 + }, + { + "start": 35167.52, + "end": 35168.92, + "probability": 0.6757 + }, + { + "start": 35168.92, + "end": 35171.18, + "probability": 0.4507 + }, + { + "start": 35171.74, + "end": 35173.18, + "probability": 0.8713 + }, + { + "start": 35173.18, + "end": 35173.94, + "probability": 0.1714 + }, + { + "start": 35174.1, + "end": 35179.18, + "probability": 0.8441 + }, + { + "start": 35179.26, + "end": 35180.06, + "probability": 0.5909 + }, + { + "start": 35180.08, + "end": 35180.64, + "probability": 0.024 + }, + { + "start": 35180.74, + "end": 35185.58, + "probability": 0.9283 + }, + { + "start": 35186.28, + "end": 35188.84, + "probability": 0.9329 + }, + { + "start": 35189.72, + "end": 35192.2, + "probability": 0.9084 + }, + { + "start": 35193.16, + "end": 35195.62, + "probability": 0.8241 + }, + { + "start": 35197.06, + "end": 35197.06, + "probability": 0.133 + }, + { + "start": 35197.06, + "end": 35198.0, + "probability": 0.4473 + }, + { + "start": 35198.9, + "end": 35202.9, + "probability": 0.6776 + }, + { + "start": 35203.38, + "end": 35206.78, + "probability": 0.6466 + }, + { + "start": 35207.34, + "end": 35208.88, + "probability": 0.3325 + }, + { + "start": 35209.0, + "end": 35211.64, + "probability": 0.827 + }, + { + "start": 35211.66, + "end": 35216.0, + "probability": 0.8641 + }, + { + "start": 35216.14, + "end": 35218.08, + "probability": 0.845 + }, + { + "start": 35218.24, + "end": 35219.7, + "probability": 0.9919 + }, + { + "start": 35219.78, + "end": 35220.64, + "probability": 0.7949 + }, + { + "start": 35220.76, + "end": 35222.7, + "probability": 0.8782 + }, + { + "start": 35223.04, + "end": 35228.32, + "probability": 0.8018 + }, + { + "start": 35229.16, + "end": 35229.16, + "probability": 0.3171 + }, + { + "start": 35229.16, + "end": 35229.16, + "probability": 0.1927 + }, + { + "start": 35229.16, + "end": 35233.64, + "probability": 0.4026 + }, + { + "start": 35234.26, + "end": 35236.2, + "probability": 0.9277 + }, + { + "start": 35236.76, + "end": 35241.19, + "probability": 0.5787 + }, + { + "start": 35241.34, + "end": 35242.82, + "probability": 0.7788 + }, + { + "start": 35243.36, + "end": 35247.28, + "probability": 0.6465 + }, + { + "start": 35247.28, + "end": 35247.28, + "probability": 0.0286 + }, + { + "start": 35247.28, + "end": 35249.42, + "probability": 0.6663 + }, + { + "start": 35249.6, + "end": 35250.56, + "probability": 0.6758 + }, + { + "start": 35251.4, + "end": 35256.88, + "probability": 0.8566 + }, + { + "start": 35257.58, + "end": 35258.3, + "probability": 0.0818 + }, + { + "start": 35258.38, + "end": 35258.42, + "probability": 0.0674 + }, + { + "start": 35258.42, + "end": 35259.92, + "probability": 0.7271 + }, + { + "start": 35260.16, + "end": 35261.12, + "probability": 0.6807 + }, + { + "start": 35261.46, + "end": 35263.16, + "probability": 0.5318 + }, + { + "start": 35263.48, + "end": 35264.92, + "probability": 0.806 + }, + { + "start": 35264.98, + "end": 35265.94, + "probability": 0.4326 + }, + { + "start": 35265.96, + "end": 35269.04, + "probability": 0.8907 + }, + { + "start": 35269.42, + "end": 35270.86, + "probability": 0.9163 + }, + { + "start": 35271.4, + "end": 35271.76, + "probability": 0.0041 + }, + { + "start": 35271.76, + "end": 35272.04, + "probability": 0.473 + }, + { + "start": 35273.72, + "end": 35275.34, + "probability": 0.6391 + }, + { + "start": 35277.26, + "end": 35279.62, + "probability": 0.7676 + }, + { + "start": 35280.66, + "end": 35281.98, + "probability": 0.7318 + }, + { + "start": 35282.14, + "end": 35282.6, + "probability": 0.0677 + }, + { + "start": 35282.74, + "end": 35284.79, + "probability": 0.6709 + }, + { + "start": 35285.78, + "end": 35288.78, + "probability": 0.8486 + }, + { + "start": 35289.36, + "end": 35291.12, + "probability": 0.5831 + }, + { + "start": 35291.26, + "end": 35295.96, + "probability": 0.9664 + }, + { + "start": 35296.52, + "end": 35299.02, + "probability": 0.9458 + }, + { + "start": 35299.46, + "end": 35300.86, + "probability": 0.8486 + }, + { + "start": 35301.28, + "end": 35303.1, + "probability": 0.6997 + }, + { + "start": 35303.23, + "end": 35305.94, + "probability": 0.8853 + }, + { + "start": 35306.42, + "end": 35308.36, + "probability": 0.9965 + }, + { + "start": 35308.68, + "end": 35310.7, + "probability": 0.7918 + }, + { + "start": 35310.76, + "end": 35312.7, + "probability": 0.2603 + }, + { + "start": 35312.74, + "end": 35312.8, + "probability": 0.2497 + }, + { + "start": 35312.8, + "end": 35312.8, + "probability": 0.3783 + }, + { + "start": 35312.8, + "end": 35313.66, + "probability": 0.53 + }, + { + "start": 35313.82, + "end": 35315.04, + "probability": 0.6094 + }, + { + "start": 35315.1, + "end": 35319.12, + "probability": 0.5023 + }, + { + "start": 35319.48, + "end": 35319.48, + "probability": 0.1765 + }, + { + "start": 35319.48, + "end": 35322.52, + "probability": 0.7563 + }, + { + "start": 35324.22, + "end": 35327.38, + "probability": 0.7578 + }, + { + "start": 35328.16, + "end": 35330.28, + "probability": 0.7572 + }, + { + "start": 35332.84, + "end": 35333.64, + "probability": 0.1813 + }, + { + "start": 35333.64, + "end": 35334.64, + "probability": 0.0513 + }, + { + "start": 35335.62, + "end": 35336.52, + "probability": 0.5425 + }, + { + "start": 35337.2, + "end": 35340.8, + "probability": 0.7504 + }, + { + "start": 35341.14, + "end": 35342.92, + "probability": 0.818 + }, + { + "start": 35343.68, + "end": 35345.06, + "probability": 0.9462 + }, + { + "start": 35347.64, + "end": 35347.92, + "probability": 0.0946 + }, + { + "start": 35347.92, + "end": 35349.1, + "probability": 0.4216 + }, + { + "start": 35350.6, + "end": 35353.06, + "probability": 0.5476 + }, + { + "start": 35353.86, + "end": 35355.9, + "probability": 0.6694 + }, + { + "start": 35357.97, + "end": 35363.92, + "probability": 0.2445 + }, + { + "start": 35363.92, + "end": 35363.92, + "probability": 0.0708 + }, + { + "start": 35363.92, + "end": 35363.92, + "probability": 0.1273 + }, + { + "start": 35363.92, + "end": 35367.25, + "probability": 0.6232 + }, + { + "start": 35367.8, + "end": 35368.64, + "probability": 0.1577 + }, + { + "start": 35369.72, + "end": 35371.98, + "probability": 0.7024 + }, + { + "start": 35373.64, + "end": 35375.34, + "probability": 0.2871 + }, + { + "start": 35376.26, + "end": 35378.6, + "probability": 0.9049 + }, + { + "start": 35379.4, + "end": 35379.46, + "probability": 0.1631 + }, + { + "start": 35379.46, + "end": 35380.32, + "probability": 0.9644 + }, + { + "start": 35380.96, + "end": 35383.62, + "probability": 0.9044 + }, + { + "start": 35386.02, + "end": 35386.74, + "probability": 0.5708 + }, + { + "start": 35387.28, + "end": 35387.5, + "probability": 0.1945 + }, + { + "start": 35387.5, + "end": 35389.94, + "probability": 0.8937 + }, + { + "start": 35390.52, + "end": 35392.29, + "probability": 0.98 + }, + { + "start": 35392.9, + "end": 35394.06, + "probability": 0.9408 + }, + { + "start": 35394.74, + "end": 35398.7, + "probability": 0.5244 + }, + { + "start": 35399.4, + "end": 35400.28, + "probability": 0.1386 + }, + { + "start": 35401.12, + "end": 35402.06, + "probability": 0.1041 + }, + { + "start": 35402.06, + "end": 35402.06, + "probability": 0.2046 + }, + { + "start": 35402.06, + "end": 35402.06, + "probability": 0.0986 + }, + { + "start": 35402.06, + "end": 35402.06, + "probability": 0.2454 + }, + { + "start": 35402.06, + "end": 35402.52, + "probability": 0.114 + }, + { + "start": 35402.72, + "end": 35406.96, + "probability": 0.8711 + }, + { + "start": 35408.1, + "end": 35408.8, + "probability": 0.46 + }, + { + "start": 35409.86, + "end": 35411.46, + "probability": 0.4431 + }, + { + "start": 35412.4, + "end": 35414.18, + "probability": 0.9385 + }, + { + "start": 35414.18, + "end": 35416.72, + "probability": 0.7179 + }, + { + "start": 35417.06, + "end": 35419.58, + "probability": 0.7775 + }, + { + "start": 35420.66, + "end": 35424.4, + "probability": 0.9685 + }, + { + "start": 35424.48, + "end": 35425.32, + "probability": 0.9154 + }, + { + "start": 35427.74, + "end": 35429.44, + "probability": 0.9235 + }, + { + "start": 35429.6, + "end": 35432.8, + "probability": 0.8091 + }, + { + "start": 35433.56, + "end": 35433.58, + "probability": 0.0337 + }, + { + "start": 35433.58, + "end": 35436.04, + "probability": 0.8984 + }, + { + "start": 35436.86, + "end": 35437.22, + "probability": 0.073 + }, + { + "start": 35437.22, + "end": 35440.64, + "probability": 0.9898 + }, + { + "start": 35441.16, + "end": 35441.28, + "probability": 0.0483 + }, + { + "start": 35441.28, + "end": 35443.06, + "probability": 0.6544 + }, + { + "start": 35444.4, + "end": 35445.76, + "probability": 0.7776 + }, + { + "start": 35445.82, + "end": 35447.9, + "probability": 0.7213 + }, + { + "start": 35448.22, + "end": 35448.9, + "probability": 0.0081 + }, + { + "start": 35448.9, + "end": 35451.32, + "probability": 0.9863 + }, + { + "start": 35452.93, + "end": 35453.6, + "probability": 0.0026 + }, + { + "start": 35453.6, + "end": 35454.06, + "probability": 0.3369 + }, + { + "start": 35454.06, + "end": 35455.86, + "probability": 0.5893 + }, + { + "start": 35456.0, + "end": 35456.62, + "probability": 0.6319 + }, + { + "start": 35457.06, + "end": 35458.7, + "probability": 0.3201 + }, + { + "start": 35458.92, + "end": 35460.26, + "probability": 0.8235 + }, + { + "start": 35460.8, + "end": 35461.28, + "probability": 0.7637 + }, + { + "start": 35462.86, + "end": 35464.04, + "probability": 0.9735 + }, + { + "start": 35464.6, + "end": 35466.52, + "probability": 0.6651 + }, + { + "start": 35469.9, + "end": 35470.52, + "probability": 0.7815 + }, + { + "start": 35471.28, + "end": 35476.38, + "probability": 0.9846 + }, + { + "start": 35476.72, + "end": 35477.38, + "probability": 0.0662 + }, + { + "start": 35477.38, + "end": 35479.3, + "probability": 0.6808 + }, + { + "start": 35479.46, + "end": 35480.72, + "probability": 0.8784 + }, + { + "start": 35481.92, + "end": 35483.82, + "probability": 0.6235 + }, + { + "start": 35484.3, + "end": 35487.34, + "probability": 0.7213 + }, + { + "start": 35488.13, + "end": 35488.2, + "probability": 0.2252 + }, + { + "start": 35488.2, + "end": 35489.58, + "probability": 0.9539 + }, + { + "start": 35490.6, + "end": 35491.52, + "probability": 0.0323 + }, + { + "start": 35492.72, + "end": 35493.8, + "probability": 0.9445 + }, + { + "start": 35494.8, + "end": 35495.42, + "probability": 0.6456 + }, + { + "start": 35496.48, + "end": 35497.52, + "probability": 0.7375 + }, + { + "start": 35497.78, + "end": 35499.0, + "probability": 0.4695 + }, + { + "start": 35499.2, + "end": 35499.84, + "probability": 0.3466 + }, + { + "start": 35500.42, + "end": 35504.02, + "probability": 0.8374 + }, + { + "start": 35504.84, + "end": 35505.82, + "probability": 0.8155 + }, + { + "start": 35506.42, + "end": 35507.62, + "probability": 0.8955 + }, + { + "start": 35507.72, + "end": 35508.38, + "probability": 0.0148 + }, + { + "start": 35508.38, + "end": 35510.3, + "probability": 0.7722 + }, + { + "start": 35510.76, + "end": 35511.14, + "probability": 0.0398 + }, + { + "start": 35511.14, + "end": 35511.14, + "probability": 0.12 + }, + { + "start": 35511.14, + "end": 35513.18, + "probability": 0.632 + }, + { + "start": 35513.18, + "end": 35513.18, + "probability": 0.4759 + }, + { + "start": 35513.18, + "end": 35515.0, + "probability": 0.5572 + }, + { + "start": 35517.52, + "end": 35517.52, + "probability": 0.0237 + }, + { + "start": 35517.52, + "end": 35518.1, + "probability": 0.5374 + }, + { + "start": 35519.42, + "end": 35519.84, + "probability": 0.1208 + }, + { + "start": 35519.94, + "end": 35522.46, + "probability": 0.7595 + }, + { + "start": 35523.18, + "end": 35525.0, + "probability": 0.7812 + }, + { + "start": 35526.2, + "end": 35528.14, + "probability": 0.9789 + }, + { + "start": 35528.88, + "end": 35530.68, + "probability": 0.7769 + }, + { + "start": 35531.8, + "end": 35533.03, + "probability": 0.2044 + }, + { + "start": 35533.2, + "end": 35535.16, + "probability": 0.8944 + }, + { + "start": 35535.94, + "end": 35537.84, + "probability": 0.9578 + }, + { + "start": 35537.9, + "end": 35539.34, + "probability": 0.4678 + }, + { + "start": 35539.66, + "end": 35540.0, + "probability": 0.1264 + }, + { + "start": 35540.14, + "end": 35541.2, + "probability": 0.3718 + }, + { + "start": 35541.96, + "end": 35542.74, + "probability": 0.9473 + }, + { + "start": 35542.84, + "end": 35543.14, + "probability": 0.542 + }, + { + "start": 35543.76, + "end": 35543.76, + "probability": 0.9412 + }, + { + "start": 35543.76, + "end": 35544.72, + "probability": 0.3133 + }, + { + "start": 35544.72, + "end": 35545.3, + "probability": 0.329 + }, + { + "start": 35545.66, + "end": 35546.4, + "probability": 0.2924 + }, + { + "start": 35546.58, + "end": 35547.26, + "probability": 0.0232 + }, + { + "start": 35547.44, + "end": 35550.74, + "probability": 0.8026 + }, + { + "start": 35551.5, + "end": 35553.44, + "probability": 0.9961 + }, + { + "start": 35554.02, + "end": 35556.14, + "probability": 0.9898 + }, + { + "start": 35556.7, + "end": 35559.42, + "probability": 0.6999 + }, + { + "start": 35560.2, + "end": 35560.2, + "probability": 0.0027 + }, + { + "start": 35560.2, + "end": 35562.16, + "probability": 0.9673 + }, + { + "start": 35562.94, + "end": 35563.08, + "probability": 0.0492 + }, + { + "start": 35563.08, + "end": 35564.28, + "probability": 0.6214 + }, + { + "start": 35564.88, + "end": 35566.8, + "probability": 0.9375 + }, + { + "start": 35569.48, + "end": 35569.48, + "probability": 0.0559 + }, + { + "start": 35569.48, + "end": 35573.24, + "probability": 0.7106 + }, + { + "start": 35573.58, + "end": 35574.51, + "probability": 0.5866 + }, + { + "start": 35576.65, + "end": 35578.0, + "probability": 0.892 + }, + { + "start": 35578.0, + "end": 35580.76, + "probability": 0.9287 + }, + { + "start": 35581.4, + "end": 35583.32, + "probability": 0.9045 + }, + { + "start": 35583.86, + "end": 35587.06, + "probability": 0.8738 + }, + { + "start": 35587.7, + "end": 35590.68, + "probability": 0.7346 + }, + { + "start": 35593.02, + "end": 35595.76, + "probability": 0.7932 + }, + { + "start": 35596.1, + "end": 35596.66, + "probability": 0.1402 + }, + { + "start": 35597.56, + "end": 35597.98, + "probability": 0.2524 + }, + { + "start": 35597.98, + "end": 35598.62, + "probability": 0.486 + }, + { + "start": 35599.7, + "end": 35600.7, + "probability": 0.5339 + }, + { + "start": 35600.86, + "end": 35604.26, + "probability": 0.6724 + }, + { + "start": 35604.26, + "end": 35609.22, + "probability": 0.6803 + }, + { + "start": 35609.82, + "end": 35611.42, + "probability": 0.8367 + }, + { + "start": 35611.98, + "end": 35612.76, + "probability": 0.6788 + }, + { + "start": 35613.84, + "end": 35614.47, + "probability": 0.8665 + }, + { + "start": 35615.3, + "end": 35621.9, + "probability": 0.8938 + }, + { + "start": 35622.38, + "end": 35623.18, + "probability": 0.8042 + }, + { + "start": 35624.12, + "end": 35624.92, + "probability": 0.798 + }, + { + "start": 35625.44, + "end": 35626.44, + "probability": 0.9755 + }, + { + "start": 35627.04, + "end": 35629.0, + "probability": 0.8637 + }, + { + "start": 35629.42, + "end": 35630.16, + "probability": 0.9802 + }, + { + "start": 35631.3, + "end": 35632.06, + "probability": 0.9482 + }, + { + "start": 35639.66, + "end": 35640.96, + "probability": 0.5918 + }, + { + "start": 35641.96, + "end": 35646.1, + "probability": 0.9927 + }, + { + "start": 35646.7, + "end": 35647.96, + "probability": 0.8111 + }, + { + "start": 35648.92, + "end": 35651.26, + "probability": 0.992 + }, + { + "start": 35651.94, + "end": 35652.54, + "probability": 0.1227 + }, + { + "start": 35652.54, + "end": 35656.04, + "probability": 0.8625 + }, + { + "start": 35656.62, + "end": 35657.88, + "probability": 0.7506 + }, + { + "start": 35658.52, + "end": 35660.08, + "probability": 0.5113 + }, + { + "start": 35660.62, + "end": 35663.32, + "probability": 0.808 + }, + { + "start": 35663.74, + "end": 35665.0, + "probability": 0.9069 + }, + { + "start": 35666.04, + "end": 35667.88, + "probability": 0.6026 + }, + { + "start": 35667.88, + "end": 35667.88, + "probability": 0.0429 + }, + { + "start": 35667.88, + "end": 35669.19, + "probability": 0.486 + }, + { + "start": 35669.94, + "end": 35670.3, + "probability": 0.4482 + }, + { + "start": 35670.44, + "end": 35670.44, + "probability": 0.3791 + }, + { + "start": 35670.5, + "end": 35673.88, + "probability": 0.9385 + }, + { + "start": 35674.42, + "end": 35676.9, + "probability": 0.0054 + }, + { + "start": 35677.74, + "end": 35677.86, + "probability": 0.1186 + }, + { + "start": 35677.86, + "end": 35677.92, + "probability": 0.2617 + }, + { + "start": 35678.02, + "end": 35678.02, + "probability": 0.0216 + }, + { + "start": 35678.02, + "end": 35679.58, + "probability": 0.2571 + }, + { + "start": 35680.48, + "end": 35681.98, + "probability": 0.7446 + }, + { + "start": 35683.04, + "end": 35684.14, + "probability": 0.8205 + }, + { + "start": 35684.82, + "end": 35686.2, + "probability": 0.9939 + }, + { + "start": 35686.34, + "end": 35687.42, + "probability": 0.9234 + }, + { + "start": 35687.54, + "end": 35688.78, + "probability": 0.9932 + }, + { + "start": 35689.44, + "end": 35689.44, + "probability": 0.1711 + }, + { + "start": 35689.44, + "end": 35691.06, + "probability": 0.9734 + }, + { + "start": 35691.82, + "end": 35692.76, + "probability": 0.8662 + }, + { + "start": 35692.8, + "end": 35693.42, + "probability": 0.2157 + }, + { + "start": 35693.42, + "end": 35694.12, + "probability": 0.2262 + }, + { + "start": 35694.12, + "end": 35694.36, + "probability": 0.4398 + }, + { + "start": 35694.38, + "end": 35695.26, + "probability": 0.8349 + }, + { + "start": 35696.72, + "end": 35697.96, + "probability": 0.0523 + }, + { + "start": 35697.96, + "end": 35698.36, + "probability": 0.0836 + }, + { + "start": 35698.48, + "end": 35699.38, + "probability": 0.4433 + }, + { + "start": 35700.62, + "end": 35702.88, + "probability": 0.0583 + }, + { + "start": 35703.26, + "end": 35705.36, + "probability": 0.3322 + }, + { + "start": 35705.94, + "end": 35706.12, + "probability": 0.5347 + }, + { + "start": 35709.68, + "end": 35709.9, + "probability": 0.7668 + }, + { + "start": 35711.16, + "end": 35713.02, + "probability": 0.6871 + }, + { + "start": 35713.38, + "end": 35716.5, + "probability": 0.4149 + }, + { + "start": 35716.5, + "end": 35717.22, + "probability": 0.5935 + }, + { + "start": 35717.42, + "end": 35717.42, + "probability": 0.5956 + }, + { + "start": 35718.02, + "end": 35723.08, + "probability": 0.8151 + }, + { + "start": 35723.36, + "end": 35723.88, + "probability": 0.7981 + }, + { + "start": 35725.08, + "end": 35726.04, + "probability": 0.3231 + }, + { + "start": 35741.28, + "end": 35742.46, + "probability": 0.3201 + }, + { + "start": 35742.72, + "end": 35748.16, + "probability": 0.7383 + }, + { + "start": 35748.24, + "end": 35748.86, + "probability": 0.7486 + }, + { + "start": 35748.92, + "end": 35749.82, + "probability": 0.6124 + }, + { + "start": 35749.88, + "end": 35752.84, + "probability": 0.5317 + }, + { + "start": 35753.28, + "end": 35753.9, + "probability": 0.5644 + }, + { + "start": 35754.08, + "end": 35754.98, + "probability": 0.0643 + }, + { + "start": 35756.2, + "end": 35756.8, + "probability": 0.129 + }, + { + "start": 35758.92, + "end": 35760.18, + "probability": 0.48 + }, + { + "start": 35760.92, + "end": 35760.92, + "probability": 0.4158 + }, + { + "start": 35760.92, + "end": 35764.14, + "probability": 0.6229 + }, + { + "start": 35764.14, + "end": 35769.16, + "probability": 0.6681 + }, + { + "start": 35769.16, + "end": 35769.16, + "probability": 0.0541 + }, + { + "start": 35769.16, + "end": 35770.34, + "probability": 0.2423 + }, + { + "start": 35770.56, + "end": 35770.84, + "probability": 0.2144 + }, + { + "start": 35771.22, + "end": 35771.4, + "probability": 0.1443 + }, + { + "start": 35772.64, + "end": 35773.4, + "probability": 0.0704 + }, + { + "start": 35773.5, + "end": 35773.94, + "probability": 0.1207 + }, + { + "start": 35773.94, + "end": 35773.94, + "probability": 0.1289 + }, + { + "start": 35773.94, + "end": 35776.15, + "probability": 0.4068 + }, + { + "start": 35778.14, + "end": 35780.66, + "probability": 0.4616 + }, + { + "start": 35780.66, + "end": 35783.42, + "probability": 0.6093 + }, + { + "start": 35784.24, + "end": 35786.08, + "probability": 0.8493 + }, + { + "start": 35787.1, + "end": 35788.06, + "probability": 0.8006 + }, + { + "start": 35788.68, + "end": 35790.08, + "probability": 0.9746 + }, + { + "start": 35791.56, + "end": 35793.44, + "probability": 0.8567 + }, + { + "start": 35801.98, + "end": 35803.35, + "probability": 0.7599 + }, + { + "start": 35803.62, + "end": 35803.96, + "probability": 0.5 + }, + { + "start": 35804.68, + "end": 35804.96, + "probability": 0.7701 + }, + { + "start": 35806.32, + "end": 35807.88, + "probability": 0.9897 + }, + { + "start": 35808.42, + "end": 35810.26, + "probability": 0.9354 + }, + { + "start": 35811.22, + "end": 35814.12, + "probability": 0.937 + }, + { + "start": 35814.5, + "end": 35814.68, + "probability": 0.9503 + }, + { + "start": 35815.34, + "end": 35815.78, + "probability": 0.3614 + }, + { + "start": 35816.38, + "end": 35818.62, + "probability": 0.8199 + }, + { + "start": 35819.06, + "end": 35821.3, + "probability": 0.9875 + }, + { + "start": 35821.94, + "end": 35824.92, + "probability": 0.9697 + }, + { + "start": 35825.14, + "end": 35825.36, + "probability": 0.3808 + }, + { + "start": 35825.36, + "end": 35825.36, + "probability": 0.6014 + }, + { + "start": 35826.14, + "end": 35826.34, + "probability": 0.0317 + }, + { + "start": 35827.8, + "end": 35827.8, + "probability": 0.0084 + }, + { + "start": 35827.8, + "end": 35828.12, + "probability": 0.176 + }, + { + "start": 35829.52, + "end": 35830.3, + "probability": 0.6726 + }, + { + "start": 35831.44, + "end": 35834.08, + "probability": 0.9911 + }, + { + "start": 35835.38, + "end": 35836.96, + "probability": 0.9645 + }, + { + "start": 35837.58, + "end": 35842.16, + "probability": 0.8232 + }, + { + "start": 35843.2, + "end": 35843.8, + "probability": 0.5795 + }, + { + "start": 35844.5, + "end": 35846.9, + "probability": 0.7543 + }, + { + "start": 35847.66, + "end": 35849.72, + "probability": 0.9921 + }, + { + "start": 35849.94, + "end": 35853.3, + "probability": 0.9477 + }, + { + "start": 35854.04, + "end": 35858.48, + "probability": 0.973 + }, + { + "start": 35859.06, + "end": 35859.87, + "probability": 0.9287 + }, + { + "start": 35860.84, + "end": 35862.9, + "probability": 0.9441 + }, + { + "start": 35864.14, + "end": 35866.66, + "probability": 0.985 + }, + { + "start": 35867.96, + "end": 35868.62, + "probability": 0.8437 + }, + { + "start": 35869.18, + "end": 35870.26, + "probability": 0.9341 + }, + { + "start": 35871.14, + "end": 35875.6, + "probability": 0.9993 + }, + { + "start": 35876.28, + "end": 35877.82, + "probability": 0.9968 + }, + { + "start": 35878.56, + "end": 35880.58, + "probability": 0.7504 + }, + { + "start": 35881.38, + "end": 35887.84, + "probability": 0.998 + }, + { + "start": 35888.78, + "end": 35889.54, + "probability": 0.9157 + }, + { + "start": 35890.58, + "end": 35891.76, + "probability": 0.9766 + }, + { + "start": 35892.76, + "end": 35893.42, + "probability": 0.9957 + }, + { + "start": 35893.98, + "end": 35895.08, + "probability": 0.999 + }, + { + "start": 35895.82, + "end": 35897.0, + "probability": 0.8889 + }, + { + "start": 35897.58, + "end": 35899.28, + "probability": 0.9503 + }, + { + "start": 35899.84, + "end": 35905.14, + "probability": 0.7264 + }, + { + "start": 35905.96, + "end": 35907.64, + "probability": 0.889 + }, + { + "start": 35908.4, + "end": 35909.34, + "probability": 0.6955 + }, + { + "start": 35910.18, + "end": 35912.4, + "probability": 0.6869 + }, + { + "start": 35913.32, + "end": 35913.82, + "probability": 0.4783 + }, + { + "start": 35915.08, + "end": 35916.44, + "probability": 0.9423 + }, + { + "start": 35917.24, + "end": 35918.2, + "probability": 0.9612 + }, + { + "start": 35919.02, + "end": 35920.95, + "probability": 0.9936 + }, + { + "start": 35921.66, + "end": 35922.52, + "probability": 0.7367 + }, + { + "start": 35923.4, + "end": 35924.3, + "probability": 0.9967 + }, + { + "start": 35925.2, + "end": 35928.52, + "probability": 0.8235 + }, + { + "start": 35929.52, + "end": 35930.28, + "probability": 0.5102 + }, + { + "start": 35931.16, + "end": 35933.3, + "probability": 0.998 + }, + { + "start": 35933.3, + "end": 35936.22, + "probability": 0.9606 + }, + { + "start": 35936.84, + "end": 35939.24, + "probability": 0.9987 + }, + { + "start": 35939.76, + "end": 35945.78, + "probability": 0.9788 + }, + { + "start": 35946.38, + "end": 35949.32, + "probability": 0.9904 + }, + { + "start": 35949.76, + "end": 35950.84, + "probability": 0.783 + }, + { + "start": 35951.22, + "end": 35955.38, + "probability": 0.9963 + }, + { + "start": 35955.38, + "end": 35958.9, + "probability": 0.9943 + }, + { + "start": 35960.14, + "end": 35960.54, + "probability": 0.9305 + }, + { + "start": 35961.2, + "end": 35963.18, + "probability": 0.8269 + }, + { + "start": 35963.78, + "end": 35964.12, + "probability": 0.8533 + }, + { + "start": 35964.54, + "end": 35968.1, + "probability": 0.9961 + }, + { + "start": 35969.04, + "end": 35971.26, + "probability": 0.8573 + }, + { + "start": 35971.68, + "end": 35973.34, + "probability": 0.9846 + }, + { + "start": 35973.92, + "end": 35975.96, + "probability": 0.8573 + }, + { + "start": 35976.44, + "end": 35981.06, + "probability": 0.997 + }, + { + "start": 35982.04, + "end": 35982.86, + "probability": 0.5757 + }, + { + "start": 35983.6, + "end": 35984.7, + "probability": 0.8555 + }, + { + "start": 35985.38, + "end": 35987.5, + "probability": 0.9546 + }, + { + "start": 35988.02, + "end": 35989.32, + "probability": 0.9914 + }, + { + "start": 35990.16, + "end": 35992.1, + "probability": 0.9766 + }, + { + "start": 35992.3, + "end": 35992.96, + "probability": 0.8653 + }, + { + "start": 35993.36, + "end": 35993.76, + "probability": 0.458 + }, + { + "start": 35993.8, + "end": 35994.42, + "probability": 0.6531 + }, + { + "start": 35995.82, + "end": 36000.92, + "probability": 0.9985 + }, + { + "start": 36001.72, + "end": 36005.5, + "probability": 0.909 + }, + { + "start": 36005.98, + "end": 36009.98, + "probability": 0.9845 + }, + { + "start": 36010.68, + "end": 36011.22, + "probability": 0.8498 + }, + { + "start": 36011.84, + "end": 36016.28, + "probability": 0.9932 + }, + { + "start": 36017.04, + "end": 36020.94, + "probability": 0.9966 + }, + { + "start": 36022.07, + "end": 36025.94, + "probability": 0.9897 + }, + { + "start": 36027.3, + "end": 36028.78, + "probability": 0.9846 + }, + { + "start": 36029.3, + "end": 36031.02, + "probability": 0.9708 + }, + { + "start": 36031.2, + "end": 36033.64, + "probability": 0.8429 + }, + { + "start": 36034.48, + "end": 36037.02, + "probability": 0.953 + }, + { + "start": 36037.7, + "end": 36038.54, + "probability": 0.9852 + }, + { + "start": 36039.18, + "end": 36044.22, + "probability": 0.991 + }, + { + "start": 36044.86, + "end": 36045.4, + "probability": 0.8032 + }, + { + "start": 36045.96, + "end": 36050.54, + "probability": 0.9951 + }, + { + "start": 36051.76, + "end": 36055.24, + "probability": 0.8787 + }, + { + "start": 36056.2, + "end": 36060.0, + "probability": 0.997 + }, + { + "start": 36060.7, + "end": 36061.7, + "probability": 0.6846 + }, + { + "start": 36062.34, + "end": 36063.66, + "probability": 0.9782 + }, + { + "start": 36064.2, + "end": 36066.18, + "probability": 0.9685 + }, + { + "start": 36066.64, + "end": 36070.58, + "probability": 0.9793 + }, + { + "start": 36071.56, + "end": 36072.06, + "probability": 0.748 + }, + { + "start": 36073.16, + "end": 36073.32, + "probability": 0.8752 + }, + { + "start": 36074.04, + "end": 36074.5, + "probability": 0.7523 + }, + { + "start": 36075.06, + "end": 36077.96, + "probability": 0.9395 + }, + { + "start": 36078.74, + "end": 36083.52, + "probability": 0.9924 + }, + { + "start": 36083.88, + "end": 36088.3, + "probability": 0.998 + }, + { + "start": 36089.46, + "end": 36092.2, + "probability": 0.6046 + }, + { + "start": 36092.64, + "end": 36096.44, + "probability": 0.9836 + }, + { + "start": 36096.96, + "end": 36098.98, + "probability": 0.992 + }, + { + "start": 36099.78, + "end": 36102.42, + "probability": 0.9885 + }, + { + "start": 36102.76, + "end": 36106.14, + "probability": 0.9167 + }, + { + "start": 36106.84, + "end": 36107.66, + "probability": 0.9739 + }, + { + "start": 36107.8, + "end": 36108.12, + "probability": 0.7848 + }, + { + "start": 36108.32, + "end": 36110.66, + "probability": 0.9227 + }, + { + "start": 36110.82, + "end": 36111.28, + "probability": 0.8373 + }, + { + "start": 36111.9, + "end": 36114.21, + "probability": 0.8723 + }, + { + "start": 36115.0, + "end": 36115.52, + "probability": 0.4241 + }, + { + "start": 36115.6, + "end": 36117.0, + "probability": 0.9672 + }, + { + "start": 36133.76, + "end": 36136.12, + "probability": 0.7072 + }, + { + "start": 36136.26, + "end": 36137.14, + "probability": 0.7284 + }, + { + "start": 36137.86, + "end": 36140.14, + "probability": 0.873 + }, + { + "start": 36140.28, + "end": 36142.33, + "probability": 0.975 + }, + { + "start": 36143.04, + "end": 36143.46, + "probability": 0.3109 + }, + { + "start": 36144.06, + "end": 36147.24, + "probability": 0.9871 + }, + { + "start": 36148.42, + "end": 36149.56, + "probability": 0.7861 + }, + { + "start": 36150.46, + "end": 36152.86, + "probability": 0.8563 + }, + { + "start": 36153.86, + "end": 36155.34, + "probability": 0.8873 + }, + { + "start": 36155.5, + "end": 36158.78, + "probability": 0.8685 + }, + { + "start": 36159.28, + "end": 36161.46, + "probability": 0.9567 + }, + { + "start": 36162.02, + "end": 36162.93, + "probability": 0.9025 + }, + { + "start": 36163.58, + "end": 36164.88, + "probability": 0.9409 + }, + { + "start": 36165.8, + "end": 36166.34, + "probability": 0.1894 + }, + { + "start": 36167.32, + "end": 36174.52, + "probability": 0.9346 + }, + { + "start": 36175.4, + "end": 36177.38, + "probability": 0.8125 + }, + { + "start": 36178.3, + "end": 36180.94, + "probability": 0.9934 + }, + { + "start": 36182.08, + "end": 36186.42, + "probability": 0.9955 + }, + { + "start": 36189.1, + "end": 36191.84, + "probability": 0.7072 + }, + { + "start": 36191.84, + "end": 36193.52, + "probability": 0.9864 + }, + { + "start": 36194.16, + "end": 36197.06, + "probability": 0.881 + }, + { + "start": 36197.58, + "end": 36198.48, + "probability": 0.8253 + }, + { + "start": 36199.6, + "end": 36201.38, + "probability": 0.4444 + }, + { + "start": 36201.48, + "end": 36203.38, + "probability": 0.976 + }, + { + "start": 36203.5, + "end": 36205.02, + "probability": 0.9692 + }, + { + "start": 36206.44, + "end": 36207.04, + "probability": 0.7887 + }, + { + "start": 36207.86, + "end": 36208.4, + "probability": 0.3763 + }, + { + "start": 36210.56, + "end": 36214.82, + "probability": 0.5114 + }, + { + "start": 36215.48, + "end": 36216.53, + "probability": 0.9922 + }, + { + "start": 36216.82, + "end": 36221.94, + "probability": 0.9696 + }, + { + "start": 36222.4, + "end": 36223.72, + "probability": 0.6949 + }, + { + "start": 36224.68, + "end": 36227.92, + "probability": 0.901 + }, + { + "start": 36228.94, + "end": 36231.18, + "probability": 0.8776 + }, + { + "start": 36231.74, + "end": 36233.3, + "probability": 0.7694 + }, + { + "start": 36235.02, + "end": 36235.54, + "probability": 0.6559 + }, + { + "start": 36236.28, + "end": 36237.66, + "probability": 0.8989 + }, + { + "start": 36238.92, + "end": 36240.34, + "probability": 0.987 + }, + { + "start": 36241.02, + "end": 36242.52, + "probability": 0.9941 + }, + { + "start": 36244.22, + "end": 36246.41, + "probability": 0.9771 + }, + { + "start": 36247.08, + "end": 36248.22, + "probability": 0.9906 + }, + { + "start": 36248.54, + "end": 36251.48, + "probability": 0.9902 + }, + { + "start": 36252.22, + "end": 36253.06, + "probability": 0.884 + }, + { + "start": 36253.96, + "end": 36256.16, + "probability": 0.9563 + }, + { + "start": 36256.24, + "end": 36257.14, + "probability": 0.9149 + }, + { + "start": 36257.22, + "end": 36258.22, + "probability": 0.7793 + }, + { + "start": 36258.6, + "end": 36259.67, + "probability": 0.7655 + }, + { + "start": 36259.82, + "end": 36261.2, + "probability": 0.9209 + }, + { + "start": 36261.52, + "end": 36265.0, + "probability": 0.8962 + }, + { + "start": 36265.0, + "end": 36267.64, + "probability": 0.964 + }, + { + "start": 36267.74, + "end": 36270.9, + "probability": 0.9583 + }, + { + "start": 36271.42, + "end": 36274.1, + "probability": 0.9989 + }, + { + "start": 36274.66, + "end": 36276.5, + "probability": 0.8592 + }, + { + "start": 36277.02, + "end": 36278.44, + "probability": 0.9661 + }, + { + "start": 36278.97, + "end": 36281.26, + "probability": 0.8866 + }, + { + "start": 36281.46, + "end": 36282.58, + "probability": 0.6677 + }, + { + "start": 36283.66, + "end": 36284.96, + "probability": 0.8665 + }, + { + "start": 36285.38, + "end": 36287.2, + "probability": 0.9697 + }, + { + "start": 36288.26, + "end": 36289.06, + "probability": 0.8204 + }, + { + "start": 36289.28, + "end": 36290.0, + "probability": 0.9269 + }, + { + "start": 36290.24, + "end": 36292.46, + "probability": 0.7858 + }, + { + "start": 36292.54, + "end": 36297.4, + "probability": 0.8945 + }, + { + "start": 36299.06, + "end": 36301.53, + "probability": 0.9703 + }, + { + "start": 36302.9, + "end": 36305.7, + "probability": 0.9929 + }, + { + "start": 36305.86, + "end": 36306.68, + "probability": 0.5576 + }, + { + "start": 36306.74, + "end": 36307.22, + "probability": 0.4556 + }, + { + "start": 36307.3, + "end": 36308.78, + "probability": 0.937 + }, + { + "start": 36308.92, + "end": 36310.06, + "probability": 0.9302 + }, + { + "start": 36310.74, + "end": 36313.38, + "probability": 0.812 + }, + { + "start": 36314.06, + "end": 36314.82, + "probability": 0.9033 + }, + { + "start": 36315.0, + "end": 36317.64, + "probability": 0.9922 + }, + { + "start": 36317.82, + "end": 36320.9, + "probability": 0.9077 + }, + { + "start": 36321.22, + "end": 36322.68, + "probability": 0.9371 + }, + { + "start": 36323.04, + "end": 36323.1, + "probability": 0.0733 + }, + { + "start": 36323.1, + "end": 36325.8, + "probability": 0.9274 + }, + { + "start": 36325.8, + "end": 36326.84, + "probability": 0.7817 + }, + { + "start": 36327.2, + "end": 36328.64, + "probability": 0.9841 + }, + { + "start": 36328.78, + "end": 36330.52, + "probability": 0.9562 + }, + { + "start": 36330.6, + "end": 36331.34, + "probability": 0.6771 + }, + { + "start": 36331.34, + "end": 36331.8, + "probability": 0.8795 + }, + { + "start": 36332.42, + "end": 36332.42, + "probability": 0.1022 + }, + { + "start": 36332.42, + "end": 36333.9, + "probability": 0.7118 + }, + { + "start": 36334.26, + "end": 36334.78, + "probability": 0.3496 + }, + { + "start": 36334.8, + "end": 36335.7, + "probability": 0.7674 + }, + { + "start": 36338.4, + "end": 36341.85, + "probability": 0.1729 + }, + { + "start": 36342.48, + "end": 36342.7, + "probability": 0.6188 + }, + { + "start": 36343.12, + "end": 36344.16, + "probability": 0.6312 + }, + { + "start": 36344.58, + "end": 36346.18, + "probability": 0.3889 + }, + { + "start": 36346.94, + "end": 36348.56, + "probability": 0.9132 + }, + { + "start": 36349.06, + "end": 36350.3, + "probability": 0.9638 + }, + { + "start": 36350.36, + "end": 36350.93, + "probability": 0.0206 + }, + { + "start": 36352.42, + "end": 36353.38, + "probability": 0.6143 + }, + { + "start": 36363.48, + "end": 36364.6, + "probability": 0.3989 + }, + { + "start": 36364.78, + "end": 36367.96, + "probability": 0.1117 + }, + { + "start": 36368.4, + "end": 36370.64, + "probability": 0.4886 + }, + { + "start": 36371.42, + "end": 36372.86, + "probability": 0.0175 + }, + { + "start": 36372.86, + "end": 36375.0, + "probability": 0.1786 + }, + { + "start": 36375.0, + "end": 36375.0, + "probability": 0.3591 + }, + { + "start": 36375.0, + "end": 36375.52, + "probability": 0.0222 + }, + { + "start": 36376.28, + "end": 36378.6, + "probability": 0.0437 + }, + { + "start": 36378.6, + "end": 36378.78, + "probability": 0.0856 + }, + { + "start": 36378.78, + "end": 36380.12, + "probability": 0.0594 + }, + { + "start": 36381.48, + "end": 36384.92, + "probability": 0.0338 + }, + { + "start": 36384.92, + "end": 36385.68, + "probability": 0.18 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.0, + "end": 36439.0, + "probability": 0.0 + }, + { + "start": 36439.28, + "end": 36440.06, + "probability": 0.0513 + }, + { + "start": 36441.1, + "end": 36443.86, + "probability": 0.7495 + }, + { + "start": 36444.56, + "end": 36450.14, + "probability": 0.8904 + }, + { + "start": 36450.76, + "end": 36454.56, + "probability": 0.7289 + }, + { + "start": 36455.38, + "end": 36457.8, + "probability": 0.9863 + }, + { + "start": 36458.3, + "end": 36459.24, + "probability": 0.5255 + }, + { + "start": 36459.82, + "end": 36463.2, + "probability": 0.9077 + }, + { + "start": 36463.46, + "end": 36464.08, + "probability": 0.8071 + }, + { + "start": 36464.78, + "end": 36466.19, + "probability": 0.9854 + }, + { + "start": 36466.74, + "end": 36469.32, + "probability": 0.9495 + }, + { + "start": 36470.75, + "end": 36473.54, + "probability": 0.7565 + }, + { + "start": 36474.08, + "end": 36478.96, + "probability": 0.967 + }, + { + "start": 36479.84, + "end": 36483.16, + "probability": 0.8645 + }, + { + "start": 36483.42, + "end": 36485.0, + "probability": 0.9771 + }, + { + "start": 36485.74, + "end": 36487.1, + "probability": 0.7777 + }, + { + "start": 36487.64, + "end": 36491.94, + "probability": 0.9978 + }, + { + "start": 36492.38, + "end": 36495.88, + "probability": 0.9961 + }, + { + "start": 36496.0, + "end": 36496.36, + "probability": 0.7557 + }, + { + "start": 36499.06, + "end": 36500.86, + "probability": 0.8391 + }, + { + "start": 36501.5, + "end": 36503.12, + "probability": 0.9097 + }, + { + "start": 36503.76, + "end": 36504.28, + "probability": 0.3864 + }, + { + "start": 36504.7, + "end": 36505.36, + "probability": 0.7568 + }, + { + "start": 36505.48, + "end": 36506.65, + "probability": 0.8609 + }, + { + "start": 36520.5, + "end": 36522.42, + "probability": 0.7196 + }, + { + "start": 36534.32, + "end": 36536.02, + "probability": 0.6086 + }, + { + "start": 36536.08, + "end": 36536.9, + "probability": 0.6917 + }, + { + "start": 36538.14, + "end": 36543.44, + "probability": 0.8698 + }, + { + "start": 36543.44, + "end": 36549.32, + "probability": 0.8693 + }, + { + "start": 36549.52, + "end": 36554.72, + "probability": 0.9393 + }, + { + "start": 36555.38, + "end": 36557.3, + "probability": 0.5857 + }, + { + "start": 36558.18, + "end": 36561.2, + "probability": 0.7991 + }, + { + "start": 36561.8, + "end": 36565.18, + "probability": 0.9701 + }, + { + "start": 36566.54, + "end": 36571.08, + "probability": 0.9219 + }, + { + "start": 36571.82, + "end": 36578.1, + "probability": 0.8326 + }, + { + "start": 36578.48, + "end": 36581.53, + "probability": 0.7299 + }, + { + "start": 36582.74, + "end": 36586.08, + "probability": 0.677 + }, + { + "start": 36586.32, + "end": 36587.44, + "probability": 0.758 + }, + { + "start": 36587.68, + "end": 36590.52, + "probability": 0.5 + }, + { + "start": 36591.8, + "end": 36595.34, + "probability": 0.9201 + }, + { + "start": 36595.68, + "end": 36602.4, + "probability": 0.953 + }, + { + "start": 36602.46, + "end": 36605.7, + "probability": 0.9946 + }, + { + "start": 36605.96, + "end": 36611.21, + "probability": 0.9672 + }, + { + "start": 36612.32, + "end": 36617.48, + "probability": 0.9339 + }, + { + "start": 36617.48, + "end": 36621.76, + "probability": 0.9971 + }, + { + "start": 36622.46, + "end": 36622.96, + "probability": 0.6245 + }, + { + "start": 36623.04, + "end": 36624.1, + "probability": 0.8601 + }, + { + "start": 36624.52, + "end": 36630.78, + "probability": 0.8657 + }, + { + "start": 36631.36, + "end": 36637.44, + "probability": 0.9784 + }, + { + "start": 36638.02, + "end": 36646.96, + "probability": 0.9909 + }, + { + "start": 36647.34, + "end": 36654.9, + "probability": 0.9901 + }, + { + "start": 36655.46, + "end": 36658.16, + "probability": 0.978 + }, + { + "start": 36658.88, + "end": 36663.18, + "probability": 0.771 + }, + { + "start": 36663.18, + "end": 36668.52, + "probability": 0.991 + }, + { + "start": 36669.54, + "end": 36672.2, + "probability": 0.9678 + }, + { + "start": 36672.34, + "end": 36674.84, + "probability": 0.9894 + }, + { + "start": 36675.44, + "end": 36677.68, + "probability": 0.9994 + }, + { + "start": 36678.14, + "end": 36681.4, + "probability": 0.993 + }, + { + "start": 36682.54, + "end": 36686.63, + "probability": 0.9924 + }, + { + "start": 36687.18, + "end": 36691.84, + "probability": 0.9955 + }, + { + "start": 36693.16, + "end": 36698.68, + "probability": 0.8427 + }, + { + "start": 36699.94, + "end": 36699.94, + "probability": 0.2734 + }, + { + "start": 36699.94, + "end": 36699.94, + "probability": 0.0716 + }, + { + "start": 36699.94, + "end": 36700.16, + "probability": 0.7119 + }, + { + "start": 36701.0, + "end": 36705.59, + "probability": 0.9175 + }, + { + "start": 36706.46, + "end": 36706.46, + "probability": 0.1128 + }, + { + "start": 36706.46, + "end": 36713.44, + "probability": 0.9722 + }, + { + "start": 36714.0, + "end": 36717.62, + "probability": 0.9165 + }, + { + "start": 36719.92, + "end": 36721.56, + "probability": 0.7781 + }, + { + "start": 36723.04, + "end": 36723.1, + "probability": 0.004 + }, + { + "start": 36723.1, + "end": 36726.92, + "probability": 0.9368 + }, + { + "start": 36727.04, + "end": 36729.42, + "probability": 0.4429 + }, + { + "start": 36729.42, + "end": 36729.52, + "probability": 0.1434 + }, + { + "start": 36729.52, + "end": 36729.74, + "probability": 0.5846 + }, + { + "start": 36730.12, + "end": 36734.32, + "probability": 0.8929 + }, + { + "start": 36734.32, + "end": 36734.38, + "probability": 0.0477 + }, + { + "start": 36734.38, + "end": 36734.98, + "probability": 0.2235 + }, + { + "start": 36734.98, + "end": 36735.4, + "probability": 0.0165 + }, + { + "start": 36736.26, + "end": 36742.02, + "probability": 0.8419 + }, + { + "start": 36742.64, + "end": 36744.44, + "probability": 0.7027 + }, + { + "start": 36744.5, + "end": 36745.56, + "probability": 0.5959 + }, + { + "start": 36745.56, + "end": 36746.64, + "probability": 0.6479 + }, + { + "start": 36746.72, + "end": 36747.64, + "probability": 0.7041 + }, + { + "start": 36748.06, + "end": 36749.16, + "probability": 0.0729 + }, + { + "start": 36749.16, + "end": 36749.68, + "probability": 0.2083 + }, + { + "start": 36749.74, + "end": 36750.78, + "probability": 0.6957 + }, + { + "start": 36751.08, + "end": 36754.72, + "probability": 0.1837 + }, + { + "start": 36754.72, + "end": 36754.72, + "probability": 0.4375 + }, + { + "start": 36754.72, + "end": 36754.8, + "probability": 0.0536 + }, + { + "start": 36754.8, + "end": 36756.56, + "probability": 0.5294 + }, + { + "start": 36756.74, + "end": 36757.5, + "probability": 0.3153 + }, + { + "start": 36758.14, + "end": 36761.34, + "probability": 0.5084 + }, + { + "start": 36763.1, + "end": 36764.98, + "probability": 0.5345 + }, + { + "start": 36764.98, + "end": 36766.8, + "probability": 0.0684 + }, + { + "start": 36766.8, + "end": 36766.9, + "probability": 0.0513 + }, + { + "start": 36767.6, + "end": 36768.14, + "probability": 0.0817 + }, + { + "start": 36768.16, + "end": 36769.34, + "probability": 0.4153 + }, + { + "start": 36769.34, + "end": 36769.46, + "probability": 0.1195 + }, + { + "start": 36769.46, + "end": 36770.04, + "probability": 0.3472 + }, + { + "start": 36770.58, + "end": 36771.68, + "probability": 0.048 + }, + { + "start": 36772.48, + "end": 36772.48, + "probability": 0.1723 + }, + { + "start": 36772.48, + "end": 36774.68, + "probability": 0.8592 + }, + { + "start": 36774.76, + "end": 36776.92, + "probability": 0.9869 + }, + { + "start": 36776.98, + "end": 36777.98, + "probability": 0.6712 + }, + { + "start": 36778.5, + "end": 36781.14, + "probability": 0.9268 + }, + { + "start": 36781.74, + "end": 36784.44, + "probability": 0.8626 + }, + { + "start": 36784.54, + "end": 36785.88, + "probability": 0.9435 + }, + { + "start": 36786.02, + "end": 36788.12, + "probability": 0.9376 + }, + { + "start": 36789.04, + "end": 36795.54, + "probability": 0.8783 + }, + { + "start": 36796.14, + "end": 36797.96, + "probability": 0.5011 + }, + { + "start": 36797.96, + "end": 36800.86, + "probability": 0.8712 + }, + { + "start": 36800.92, + "end": 36803.84, + "probability": 0.0849 + }, + { + "start": 36803.84, + "end": 36805.82, + "probability": 0.6148 + }, + { + "start": 36806.38, + "end": 36811.36, + "probability": 0.7473 + }, + { + "start": 36811.36, + "end": 36812.26, + "probability": 0.5179 + }, + { + "start": 36813.16, + "end": 36822.9, + "probability": 0.9526 + }, + { + "start": 36823.26, + "end": 36824.82, + "probability": 0.9546 + }, + { + "start": 36824.9, + "end": 36827.52, + "probability": 0.916 + }, + { + "start": 36827.98, + "end": 36830.98, + "probability": 0.9929 + }, + { + "start": 36831.24, + "end": 36834.22, + "probability": 0.9954 + }, + { + "start": 36834.66, + "end": 36837.98, + "probability": 0.9767 + }, + { + "start": 36837.98, + "end": 36841.94, + "probability": 0.9607 + }, + { + "start": 36841.94, + "end": 36842.06, + "probability": 0.3981 + }, + { + "start": 36842.34, + "end": 36846.66, + "probability": 0.9988 + }, + { + "start": 36846.68, + "end": 36847.14, + "probability": 0.8642 + }, + { + "start": 36847.44, + "end": 36847.48, + "probability": 0.654 + }, + { + "start": 36847.82, + "end": 36850.05, + "probability": 0.5918 + }, + { + "start": 36851.34, + "end": 36851.62, + "probability": 0.6011 + }, + { + "start": 36857.14, + "end": 36858.44, + "probability": 0.0193 + }, + { + "start": 36858.58, + "end": 36861.12, + "probability": 0.2545 + }, + { + "start": 36861.12, + "end": 36862.65, + "probability": 0.1171 + }, + { + "start": 36864.08, + "end": 36864.62, + "probability": 0.0102 + }, + { + "start": 36865.44, + "end": 36869.34, + "probability": 0.2845 + }, + { + "start": 36876.48, + "end": 36878.28, + "probability": 0.6123 + }, + { + "start": 36878.4, + "end": 36882.1, + "probability": 0.9452 + }, + { + "start": 36882.14, + "end": 36884.86, + "probability": 0.7468 + }, + { + "start": 36885.68, + "end": 36887.88, + "probability": 0.5856 + }, + { + "start": 36887.98, + "end": 36889.31, + "probability": 0.5723 + }, + { + "start": 36890.28, + "end": 36893.2, + "probability": 0.8783 + }, + { + "start": 36893.76, + "end": 36899.12, + "probability": 0.9893 + }, + { + "start": 36899.42, + "end": 36906.32, + "probability": 0.9836 + }, + { + "start": 36907.14, + "end": 36908.0, + "probability": 0.1185 + }, + { + "start": 36908.0, + "end": 36908.64, + "probability": 0.9013 + }, + { + "start": 36908.82, + "end": 36909.78, + "probability": 0.7119 + }, + { + "start": 36910.04, + "end": 36910.92, + "probability": 0.6492 + }, + { + "start": 36910.98, + "end": 36911.52, + "probability": 0.5041 + }, + { + "start": 36913.46, + "end": 36913.7, + "probability": 0.1174 + }, + { + "start": 36913.7, + "end": 36915.67, + "probability": 0.8625 + }, + { + "start": 36916.08, + "end": 36917.02, + "probability": 0.5836 + }, + { + "start": 36917.38, + "end": 36920.2, + "probability": 0.9945 + }, + { + "start": 36921.06, + "end": 36924.94, + "probability": 0.512 + }, + { + "start": 36925.66, + "end": 36929.88, + "probability": 0.9224 + }, + { + "start": 36930.26, + "end": 36934.22, + "probability": 0.9979 + }, + { + "start": 36934.48, + "end": 36939.22, + "probability": 0.9917 + }, + { + "start": 36939.42, + "end": 36940.44, + "probability": 0.5873 + }, + { + "start": 36940.88, + "end": 36942.56, + "probability": 0.071 + }, + { + "start": 36942.56, + "end": 36943.12, + "probability": 0.1085 + }, + { + "start": 36943.24, + "end": 36943.86, + "probability": 0.3822 + }, + { + "start": 36944.32, + "end": 36948.0, + "probability": 0.6597 + }, + { + "start": 36948.74, + "end": 36951.34, + "probability": 0.9256 + }, + { + "start": 36952.02, + "end": 36956.54, + "probability": 0.9932 + }, + { + "start": 36956.54, + "end": 36958.9, + "probability": 0.8119 + }, + { + "start": 36959.68, + "end": 36960.25, + "probability": 0.9647 + }, + { + "start": 36961.32, + "end": 36963.66, + "probability": 0.9976 + }, + { + "start": 36963.66, + "end": 36966.02, + "probability": 0.9672 + }, + { + "start": 36966.56, + "end": 36969.64, + "probability": 0.9979 + }, + { + "start": 36970.36, + "end": 36972.92, + "probability": 0.9763 + }, + { + "start": 36973.5, + "end": 36975.26, + "probability": 0.6963 + }, + { + "start": 36975.92, + "end": 36979.12, + "probability": 0.7863 + }, + { + "start": 36979.58, + "end": 36985.52, + "probability": 0.988 + }, + { + "start": 36986.86, + "end": 36992.68, + "probability": 0.9944 + }, + { + "start": 36993.42, + "end": 36994.82, + "probability": 0.992 + }, + { + "start": 36995.74, + "end": 37000.38, + "probability": 0.3895 + }, + { + "start": 37001.08, + "end": 37003.22, + "probability": 0.8562 + }, + { + "start": 37004.1, + "end": 37007.98, + "probability": 0.9805 + }, + { + "start": 37008.36, + "end": 37009.86, + "probability": 0.9676 + }, + { + "start": 37010.54, + "end": 37013.22, + "probability": 0.9331 + }, + { + "start": 37013.74, + "end": 37018.62, + "probability": 0.9378 + }, + { + "start": 37018.74, + "end": 37019.84, + "probability": 0.8929 + }, + { + "start": 37020.4, + "end": 37023.94, + "probability": 0.8092 + }, + { + "start": 37024.26, + "end": 37026.44, + "probability": 0.9985 + }, + { + "start": 37026.94, + "end": 37027.48, + "probability": 0.7525 + }, + { + "start": 37027.68, + "end": 37031.54, + "probability": 0.9659 + }, + { + "start": 37032.16, + "end": 37034.27, + "probability": 0.7025 + }, + { + "start": 37035.48, + "end": 37037.92, + "probability": 0.9742 + }, + { + "start": 37038.64, + "end": 37039.0, + "probability": 0.5748 + }, + { + "start": 37039.44, + "end": 37040.46, + "probability": 0.5715 + }, + { + "start": 37041.36, + "end": 37042.22, + "probability": 0.5834 + }, + { + "start": 37042.94, + "end": 37044.06, + "probability": 0.3046 + }, + { + "start": 37044.18, + "end": 37045.52, + "probability": 0.817 + }, + { + "start": 37045.82, + "end": 37045.98, + "probability": 0.409 + }, + { + "start": 37046.16, + "end": 37047.54, + "probability": 0.532 + }, + { + "start": 37049.2, + "end": 37050.44, + "probability": 0.958 + }, + { + "start": 37050.78, + "end": 37053.46, + "probability": 0.4323 + }, + { + "start": 37054.16, + "end": 37054.97, + "probability": 0.5735 + }, + { + "start": 37056.15, + "end": 37060.0, + "probability": 0.4902 + }, + { + "start": 37060.6, + "end": 37062.26, + "probability": 0.5151 + }, + { + "start": 37062.5, + "end": 37066.52, + "probability": 0.7198 + }, + { + "start": 37067.1, + "end": 37067.2, + "probability": 0.6482 + }, + { + "start": 37069.34, + "end": 37074.3, + "probability": 0.0464 + }, + { + "start": 37087.8, + "end": 37088.36, + "probability": 0.1504 + }, + { + "start": 37088.36, + "end": 37090.74, + "probability": 0.4348 + }, + { + "start": 37090.82, + "end": 37094.46, + "probability": 0.4412 + }, + { + "start": 37094.46, + "end": 37096.54, + "probability": 0.417 + }, + { + "start": 37097.4, + "end": 37104.86, + "probability": 0.7837 + }, + { + "start": 37104.98, + "end": 37108.58, + "probability": 0.0166 + }, + { + "start": 37109.86, + "end": 37110.88, + "probability": 0.0199 + }, + { + "start": 37110.88, + "end": 37111.26, + "probability": 0.2327 + }, + { + "start": 37111.62, + "end": 37111.92, + "probability": 0.048 + }, + { + "start": 37112.0, + "end": 37112.56, + "probability": 0.68 + }, + { + "start": 37120.04, + "end": 37121.04, + "probability": 0.9799 + }, + { + "start": 37129.72, + "end": 37129.72, + "probability": 0.0645 + }, + { + "start": 37129.72, + "end": 37130.38, + "probability": 0.2759 + }, + { + "start": 37130.56, + "end": 37135.38, + "probability": 0.6556 + }, + { + "start": 37135.5, + "end": 37137.36, + "probability": 0.5455 + }, + { + "start": 37137.8, + "end": 37140.64, + "probability": 0.6902 + }, + { + "start": 37140.84, + "end": 37141.92, + "probability": 0.8132 + }, + { + "start": 37142.92, + "end": 37145.14, + "probability": 0.7188 + }, + { + "start": 37146.66, + "end": 37148.7, + "probability": 0.9091 + }, + { + "start": 37149.8, + "end": 37156.52, + "probability": 0.9717 + }, + { + "start": 37157.68, + "end": 37160.24, + "probability": 0.9911 + }, + { + "start": 37160.64, + "end": 37163.98, + "probability": 0.9938 + }, + { + "start": 37164.44, + "end": 37170.02, + "probability": 0.9283 + }, + { + "start": 37170.38, + "end": 37171.86, + "probability": 0.881 + }, + { + "start": 37172.4, + "end": 37174.3, + "probability": 0.9512 + }, + { + "start": 37174.82, + "end": 37179.62, + "probability": 0.9475 + }, + { + "start": 37180.86, + "end": 37186.42, + "probability": 0.9976 + }, + { + "start": 37186.42, + "end": 37192.02, + "probability": 0.9993 + }, + { + "start": 37193.86, + "end": 37196.36, + "probability": 0.8863 + }, + { + "start": 37196.76, + "end": 37199.06, + "probability": 0.8259 + }, + { + "start": 37199.6, + "end": 37201.06, + "probability": 0.9945 + }, + { + "start": 37201.38, + "end": 37202.72, + "probability": 0.7651 + }, + { + "start": 37203.12, + "end": 37205.18, + "probability": 0.6097 + }, + { + "start": 37205.84, + "end": 37206.36, + "probability": 0.8183 + }, + { + "start": 37208.44, + "end": 37215.02, + "probability": 0.9547 + }, + { + "start": 37215.02, + "end": 37218.32, + "probability": 0.9543 + }, + { + "start": 37218.88, + "end": 37220.08, + "probability": 0.8242 + }, + { + "start": 37220.28, + "end": 37221.2, + "probability": 0.8617 + }, + { + "start": 37221.22, + "end": 37221.9, + "probability": 0.7784 + }, + { + "start": 37222.0, + "end": 37225.42, + "probability": 0.9866 + }, + { + "start": 37225.42, + "end": 37229.96, + "probability": 0.9929 + }, + { + "start": 37230.82, + "end": 37232.34, + "probability": 0.8326 + }, + { + "start": 37232.4, + "end": 37233.92, + "probability": 0.7891 + }, + { + "start": 37234.06, + "end": 37237.84, + "probability": 0.8195 + }, + { + "start": 37238.5, + "end": 37241.66, + "probability": 0.7306 + }, + { + "start": 37241.66, + "end": 37248.3, + "probability": 0.9898 + }, + { + "start": 37248.46, + "end": 37249.9, + "probability": 0.9799 + }, + { + "start": 37250.48, + "end": 37258.12, + "probability": 0.9644 + }, + { + "start": 37259.18, + "end": 37260.38, + "probability": 0.9142 + }, + { + "start": 37260.44, + "end": 37264.04, + "probability": 0.4988 + }, + { + "start": 37264.04, + "end": 37266.78, + "probability": 0.9971 + }, + { + "start": 37267.16, + "end": 37267.66, + "probability": 0.7646 + }, + { + "start": 37267.8, + "end": 37268.82, + "probability": 0.9255 + }, + { + "start": 37268.94, + "end": 37270.68, + "probability": 0.9918 + }, + { + "start": 37271.18, + "end": 37275.26, + "probability": 0.9915 + }, + { + "start": 37275.26, + "end": 37279.2, + "probability": 0.9636 + }, + { + "start": 37280.28, + "end": 37285.14, + "probability": 0.9875 + }, + { + "start": 37285.74, + "end": 37287.48, + "probability": 0.7839 + }, + { + "start": 37287.96, + "end": 37289.0, + "probability": 0.5256 + }, + { + "start": 37289.04, + "end": 37292.96, + "probability": 0.6483 + }, + { + "start": 37293.32, + "end": 37294.08, + "probability": 0.9394 + }, + { + "start": 37294.42, + "end": 37295.4, + "probability": 0.9865 + }, + { + "start": 37295.4, + "end": 37296.2, + "probability": 0.9821 + }, + { + "start": 37296.48, + "end": 37297.66, + "probability": 0.9849 + }, + { + "start": 37297.74, + "end": 37298.64, + "probability": 0.9784 + }, + { + "start": 37298.78, + "end": 37302.62, + "probability": 0.8697 + }, + { + "start": 37303.02, + "end": 37303.66, + "probability": 0.3656 + }, + { + "start": 37303.78, + "end": 37304.64, + "probability": 0.762 + }, + { + "start": 37304.68, + "end": 37305.22, + "probability": 0.9425 + }, + { + "start": 37305.68, + "end": 37306.74, + "probability": 0.9922 + }, + { + "start": 37307.92, + "end": 37308.8, + "probability": 0.972 + }, + { + "start": 37308.88, + "end": 37311.78, + "probability": 0.9718 + }, + { + "start": 37312.12, + "end": 37316.34, + "probability": 0.9682 + }, + { + "start": 37316.34, + "end": 37319.32, + "probability": 0.8599 + }, + { + "start": 37319.56, + "end": 37329.96, + "probability": 0.9391 + }, + { + "start": 37330.84, + "end": 37336.3, + "probability": 0.9744 + }, + { + "start": 37336.4, + "end": 37341.36, + "probability": 0.984 + }, + { + "start": 37343.14, + "end": 37348.14, + "probability": 0.8976 + }, + { + "start": 37348.96, + "end": 37351.04, + "probability": 0.8164 + }, + { + "start": 37351.14, + "end": 37354.08, + "probability": 0.9042 + }, + { + "start": 37354.36, + "end": 37355.64, + "probability": 0.9757 + }, + { + "start": 37356.1, + "end": 37359.24, + "probability": 0.9835 + }, + { + "start": 37359.84, + "end": 37362.52, + "probability": 0.9893 + }, + { + "start": 37363.5, + "end": 37366.34, + "probability": 0.9965 + }, + { + "start": 37366.34, + "end": 37369.3, + "probability": 0.9613 + }, + { + "start": 37369.94, + "end": 37370.78, + "probability": 0.7321 + }, + { + "start": 37371.18, + "end": 37372.36, + "probability": 0.8534 + }, + { + "start": 37372.66, + "end": 37378.1, + "probability": 0.989 + }, + { + "start": 37378.86, + "end": 37383.52, + "probability": 0.9873 + }, + { + "start": 37383.58, + "end": 37384.24, + "probability": 0.901 + }, + { + "start": 37384.64, + "end": 37386.38, + "probability": 0.894 + }, + { + "start": 37386.78, + "end": 37387.58, + "probability": 0.8107 + }, + { + "start": 37388.02, + "end": 37389.98, + "probability": 0.9795 + }, + { + "start": 37390.46, + "end": 37391.02, + "probability": 0.8949 + }, + { + "start": 37391.46, + "end": 37392.3, + "probability": 0.7628 + }, + { + "start": 37392.52, + "end": 37393.78, + "probability": 0.7904 + }, + { + "start": 37394.76, + "end": 37396.58, + "probability": 0.7517 + }, + { + "start": 37397.64, + "end": 37401.7, + "probability": 0.8582 + }, + { + "start": 37401.88, + "end": 37404.0, + "probability": 0.8807 + }, + { + "start": 37404.48, + "end": 37408.3, + "probability": 0.9731 + }, + { + "start": 37408.88, + "end": 37410.86, + "probability": 0.9398 + }, + { + "start": 37411.04, + "end": 37413.58, + "probability": 0.9956 + }, + { + "start": 37413.68, + "end": 37414.88, + "probability": 0.8245 + }, + { + "start": 37414.98, + "end": 37415.48, + "probability": 0.7852 + }, + { + "start": 37416.44, + "end": 37421.44, + "probability": 0.8168 + }, + { + "start": 37421.8, + "end": 37428.06, + "probability": 0.983 + }, + { + "start": 37428.7, + "end": 37428.9, + "probability": 0.5098 + }, + { + "start": 37428.96, + "end": 37431.3, + "probability": 0.7008 + }, + { + "start": 37432.89, + "end": 37438.34, + "probability": 0.8721 + }, + { + "start": 37439.34, + "end": 37441.28, + "probability": 0.8977 + }, + { + "start": 37444.24, + "end": 37445.74, + "probability": 0.755 + }, + { + "start": 37446.2, + "end": 37447.87, + "probability": 0.4338 + }, + { + "start": 37448.04, + "end": 37450.3, + "probability": 0.7214 + }, + { + "start": 37450.48, + "end": 37453.64, + "probability": 0.8252 + }, + { + "start": 37456.86, + "end": 37460.48, + "probability": 0.8852 + }, + { + "start": 37474.14, + "end": 37475.02, + "probability": 0.6666 + }, + { + "start": 37475.34, + "end": 37476.82, + "probability": 0.895 + }, + { + "start": 37477.2, + "end": 37477.74, + "probability": 0.7016 + }, + { + "start": 37479.38, + "end": 37480.16, + "probability": 0.9835 + }, + { + "start": 37481.61, + "end": 37482.04, + "probability": 0.6265 + }, + { + "start": 37484.34, + "end": 37485.6, + "probability": 0.8159 + }, + { + "start": 37485.62, + "end": 37486.4, + "probability": 0.852 + }, + { + "start": 37486.48, + "end": 37488.72, + "probability": 0.8705 + }, + { + "start": 37488.72, + "end": 37491.84, + "probability": 0.9988 + }, + { + "start": 37491.88, + "end": 37495.42, + "probability": 0.8543 + }, + { + "start": 37496.4, + "end": 37500.42, + "probability": 0.9531 + }, + { + "start": 37500.52, + "end": 37501.16, + "probability": 0.7314 + }, + { + "start": 37503.02, + "end": 37503.1, + "probability": 0.238 + }, + { + "start": 37503.1, + "end": 37507.24, + "probability": 0.9344 + }, + { + "start": 37508.26, + "end": 37513.78, + "probability": 0.822 + }, + { + "start": 37513.78, + "end": 37518.5, + "probability": 0.9969 + }, + { + "start": 37519.06, + "end": 37520.08, + "probability": 0.9416 + }, + { + "start": 37520.86, + "end": 37523.88, + "probability": 0.9993 + }, + { + "start": 37525.4, + "end": 37527.66, + "probability": 0.9868 + }, + { + "start": 37527.66, + "end": 37530.54, + "probability": 0.9995 + }, + { + "start": 37530.96, + "end": 37531.4, + "probability": 0.6935 + }, + { + "start": 37531.5, + "end": 37536.34, + "probability": 0.9709 + }, + { + "start": 37537.02, + "end": 37538.56, + "probability": 0.6456 + }, + { + "start": 37538.68, + "end": 37541.45, + "probability": 0.7961 + }, + { + "start": 37542.26, + "end": 37544.54, + "probability": 0.9897 + }, + { + "start": 37545.18, + "end": 37545.32, + "probability": 0.686 + }, + { + "start": 37546.46, + "end": 37548.56, + "probability": 0.9966 + }, + { + "start": 37549.5, + "end": 37550.74, + "probability": 0.823 + }, + { + "start": 37551.44, + "end": 37553.36, + "probability": 0.9954 + }, + { + "start": 37554.24, + "end": 37557.36, + "probability": 0.9976 + }, + { + "start": 37557.7, + "end": 37562.44, + "probability": 0.8521 + }, + { + "start": 37563.46, + "end": 37565.28, + "probability": 0.927 + }, + { + "start": 37565.28, + "end": 37565.68, + "probability": 0.6564 + }, + { + "start": 37566.06, + "end": 37567.06, + "probability": 0.9526 + }, + { + "start": 37568.0, + "end": 37568.48, + "probability": 0.5639 + }, + { + "start": 37568.86, + "end": 37569.69, + "probability": 0.8549 + }, + { + "start": 37570.32, + "end": 37571.4, + "probability": 0.9786 + }, + { + "start": 37572.28, + "end": 37575.44, + "probability": 0.9131 + }, + { + "start": 37576.12, + "end": 37577.5, + "probability": 0.8652 + }, + { + "start": 37577.76, + "end": 37581.06, + "probability": 0.5407 + }, + { + "start": 37581.1, + "end": 37586.16, + "probability": 0.7768 + }, + { + "start": 37586.26, + "end": 37586.52, + "probability": 0.7816 + }, + { + "start": 37587.42, + "end": 37589.12, + "probability": 0.0376 + }, + { + "start": 37603.94, + "end": 37604.08, + "probability": 0.3019 + }, + { + "start": 37604.08, + "end": 37606.72, + "probability": 0.6862 + }, + { + "start": 37607.3, + "end": 37609.26, + "probability": 0.8757 + }, + { + "start": 37609.76, + "end": 37610.3, + "probability": 0.8341 + }, + { + "start": 37612.2, + "end": 37613.4, + "probability": 0.7825 + }, + { + "start": 37627.72, + "end": 37628.26, + "probability": 0.1156 + }, + { + "start": 37646.4, + "end": 37648.14, + "probability": 0.641 + }, + { + "start": 37649.32, + "end": 37652.56, + "probability": 0.3213 + }, + { + "start": 37652.64, + "end": 37654.36, + "probability": 0.967 + }, + { + "start": 37654.94, + "end": 37656.24, + "probability": 0.9959 + }, + { + "start": 37656.78, + "end": 37658.24, + "probability": 0.9724 + }, + { + "start": 37658.56, + "end": 37661.46, + "probability": 0.9756 + }, + { + "start": 37662.4, + "end": 37662.9, + "probability": 0.9303 + }, + { + "start": 37663.52, + "end": 37665.04, + "probability": 0.9565 + }, + { + "start": 37665.14, + "end": 37668.14, + "probability": 0.2767 + }, + { + "start": 37682.92, + "end": 37684.32, + "probability": 0.3864 + }, + { + "start": 37685.64, + "end": 37686.84, + "probability": 0.7067 + }, + { + "start": 37688.52, + "end": 37690.4, + "probability": 0.9445 + }, + { + "start": 37691.54, + "end": 37694.48, + "probability": 0.9598 + }, + { + "start": 37695.52, + "end": 37698.38, + "probability": 0.9811 + }, + { + "start": 37699.72, + "end": 37703.66, + "probability": 0.9846 + }, + { + "start": 37705.32, + "end": 37706.08, + "probability": 0.6221 + }, + { + "start": 37706.76, + "end": 37709.76, + "probability": 0.9904 + }, + { + "start": 37709.76, + "end": 37712.7, + "probability": 0.994 + }, + { + "start": 37713.72, + "end": 37720.38, + "probability": 0.9644 + }, + { + "start": 37720.82, + "end": 37722.58, + "probability": 0.9983 + }, + { + "start": 37723.16, + "end": 37726.58, + "probability": 0.8713 + }, + { + "start": 37728.52, + "end": 37728.84, + "probability": 0.2792 + }, + { + "start": 37729.2, + "end": 37730.46, + "probability": 0.5912 + }, + { + "start": 37731.3, + "end": 37731.96, + "probability": 0.7486 + }, + { + "start": 37732.52, + "end": 37736.1, + "probability": 0.9569 + }, + { + "start": 37736.16, + "end": 37737.8, + "probability": 0.9842 + }, + { + "start": 37738.46, + "end": 37739.7, + "probability": 0.98 + }, + { + "start": 37739.76, + "end": 37741.7, + "probability": 0.9161 + }, + { + "start": 37742.54, + "end": 37745.72, + "probability": 0.9714 + }, + { + "start": 37746.04, + "end": 37749.22, + "probability": 0.9922 + }, + { + "start": 37750.32, + "end": 37754.5, + "probability": 0.9471 + }, + { + "start": 37755.08, + "end": 37760.36, + "probability": 0.9111 + }, + { + "start": 37760.96, + "end": 37763.14, + "probability": 0.9923 + }, + { + "start": 37763.18, + "end": 37764.84, + "probability": 0.984 + }, + { + "start": 37765.44, + "end": 37767.86, + "probability": 0.9925 + }, + { + "start": 37767.86, + "end": 37772.0, + "probability": 0.91 + }, + { + "start": 37772.18, + "end": 37772.6, + "probability": 0.3818 + }, + { + "start": 37772.6, + "end": 37773.46, + "probability": 0.8516 + }, + { + "start": 37773.56, + "end": 37775.46, + "probability": 0.5539 + }, + { + "start": 37775.9, + "end": 37778.64, + "probability": 0.9331 + }, + { + "start": 37779.32, + "end": 37783.3, + "probability": 0.981 + }, + { + "start": 37784.02, + "end": 37787.8, + "probability": 0.8688 + }, + { + "start": 37788.44, + "end": 37789.78, + "probability": 0.8427 + }, + { + "start": 37789.88, + "end": 37792.1, + "probability": 0.9871 + }, + { + "start": 37792.1, + "end": 37794.36, + "probability": 0.9499 + }, + { + "start": 37795.22, + "end": 37797.34, + "probability": 0.8376 + }, + { + "start": 37797.48, + "end": 37799.46, + "probability": 0.7451 + }, + { + "start": 37799.84, + "end": 37801.2, + "probability": 0.889 + }, + { + "start": 37801.82, + "end": 37802.84, + "probability": 0.8368 + }, + { + "start": 37805.96, + "end": 37806.8, + "probability": 0.4649 + }, + { + "start": 37807.6, + "end": 37809.92, + "probability": 0.6232 + }, + { + "start": 37810.48, + "end": 37810.48, + "probability": 0.4897 + }, + { + "start": 37810.54, + "end": 37814.52, + "probability": 0.9012 + }, + { + "start": 37815.18, + "end": 37815.8, + "probability": 0.9922 + }, + { + "start": 37816.58, + "end": 37818.09, + "probability": 0.9137 + }, + { + "start": 37819.84, + "end": 37820.95, + "probability": 0.7502 + }, + { + "start": 37821.1, + "end": 37824.08, + "probability": 0.9271 + }, + { + "start": 37824.7, + "end": 37825.0, + "probability": 0.6417 + }, + { + "start": 37826.06, + "end": 37831.5, + "probability": 0.9917 + }, + { + "start": 37831.54, + "end": 37832.17, + "probability": 0.895 + }, + { + "start": 37832.4, + "end": 37834.16, + "probability": 0.8491 + }, + { + "start": 37834.56, + "end": 37836.96, + "probability": 0.9418 + }, + { + "start": 37836.96, + "end": 37839.14, + "probability": 0.9998 + }, + { + "start": 37839.76, + "end": 37843.02, + "probability": 0.9742 + }, + { + "start": 37843.5, + "end": 37845.7, + "probability": 0.9255 + }, + { + "start": 37846.2, + "end": 37851.5, + "probability": 0.9423 + }, + { + "start": 37853.0, + "end": 37853.42, + "probability": 0.6187 + }, + { + "start": 37857.0, + "end": 37857.66, + "probability": 0.6694 + }, + { + "start": 37858.34, + "end": 37858.58, + "probability": 0.7896 + }, + { + "start": 37859.5, + "end": 37860.58, + "probability": 0.7203 + }, + { + "start": 37863.62, + "end": 37864.54, + "probability": 0.6653 + }, + { + "start": 37865.36, + "end": 37865.64, + "probability": 0.7831 + }, + { + "start": 37866.12, + "end": 37867.42, + "probability": 0.8619 + }, + { + "start": 37867.7, + "end": 37869.5, + "probability": 0.7979 + }, + { + "start": 37871.28, + "end": 37874.04, + "probability": 0.9081 + }, + { + "start": 37874.2, + "end": 37879.18, + "probability": 0.9419 + }, + { + "start": 37879.94, + "end": 37880.45, + "probability": 0.8594 + }, + { + "start": 37880.92, + "end": 37885.64, + "probability": 0.9354 + }, + { + "start": 37886.26, + "end": 37889.58, + "probability": 0.9933 + }, + { + "start": 37891.06, + "end": 37892.82, + "probability": 0.7623 + }, + { + "start": 37892.86, + "end": 37895.16, + "probability": 0.9561 + }, + { + "start": 37895.16, + "end": 37898.68, + "probability": 0.8807 + }, + { + "start": 37899.32, + "end": 37901.49, + "probability": 0.8573 + }, + { + "start": 37902.68, + "end": 37905.7, + "probability": 0.7349 + }, + { + "start": 37905.82, + "end": 37909.52, + "probability": 0.8484 + }, + { + "start": 37910.12, + "end": 37914.04, + "probability": 0.8847 + }, + { + "start": 37914.64, + "end": 37916.84, + "probability": 0.902 + }, + { + "start": 37917.88, + "end": 37918.38, + "probability": 0.9026 + }, + { + "start": 37918.94, + "end": 37923.14, + "probability": 0.7791 + }, + { + "start": 37924.48, + "end": 37927.64, + "probability": 0.7758 + }, + { + "start": 37927.72, + "end": 37931.26, + "probability": 0.9922 + }, + { + "start": 37931.82, + "end": 37935.92, + "probability": 0.9495 + }, + { + "start": 37936.66, + "end": 37938.26, + "probability": 0.7129 + }, + { + "start": 37938.6, + "end": 37941.46, + "probability": 0.8804 + }, + { + "start": 37941.96, + "end": 37944.66, + "probability": 0.9641 + }, + { + "start": 37945.36, + "end": 37947.74, + "probability": 0.991 + }, + { + "start": 37948.38, + "end": 37950.58, + "probability": 0.981 + }, + { + "start": 37951.18, + "end": 37956.2, + "probability": 0.96 + }, + { + "start": 37956.78, + "end": 37958.66, + "probability": 0.9855 + }, + { + "start": 37958.8, + "end": 37959.02, + "probability": 0.7296 + }, + { + "start": 37959.3, + "end": 37960.48, + "probability": 0.7563 + }, + { + "start": 37961.1, + "end": 37962.3, + "probability": 0.8633 + }, + { + "start": 37963.38, + "end": 37963.8, + "probability": 0.9567 + }, + { + "start": 37963.94, + "end": 37966.3, + "probability": 0.873 + }, + { + "start": 37966.34, + "end": 37968.88, + "probability": 0.8433 + }, + { + "start": 37968.96, + "end": 37970.24, + "probability": 0.9758 + }, + { + "start": 37970.36, + "end": 37971.2, + "probability": 0.9539 + }, + { + "start": 37971.9, + "end": 37975.02, + "probability": 0.8213 + }, + { + "start": 37976.58, + "end": 37978.66, + "probability": 0.1428 + }, + { + "start": 37979.36, + "end": 37983.64, + "probability": 0.9774 + }, + { + "start": 37983.92, + "end": 37985.0, + "probability": 0.9124 + }, + { + "start": 37985.84, + "end": 37986.54, + "probability": 0.9499 + }, + { + "start": 37987.58, + "end": 37987.84, + "probability": 0.0328 + }, + { + "start": 37988.36, + "end": 37989.28, + "probability": 0.4811 + }, + { + "start": 37989.62, + "end": 37992.56, + "probability": 0.9932 + }, + { + "start": 37994.86, + "end": 37995.46, + "probability": 0.6354 + }, + { + "start": 37995.46, + "end": 37996.14, + "probability": 0.6472 + }, + { + "start": 37996.96, + "end": 38001.48, + "probability": 0.7733 + }, + { + "start": 38003.28, + "end": 38006.3, + "probability": 0.8922 + }, + { + "start": 38006.86, + "end": 38007.52, + "probability": 0.9901 + }, + { + "start": 38009.3, + "end": 38010.26, + "probability": 0.6561 + }, + { + "start": 38015.96, + "end": 38016.78, + "probability": 0.7383 + }, + { + "start": 38018.26, + "end": 38026.22, + "probability": 0.5252 + }, + { + "start": 38027.06, + "end": 38031.38, + "probability": 0.9076 + }, + { + "start": 38031.72, + "end": 38032.75, + "probability": 0.7164 + }, + { + "start": 38033.52, + "end": 38039.18, + "probability": 0.9612 + }, + { + "start": 38040.08, + "end": 38040.86, + "probability": 0.7668 + }, + { + "start": 38041.76, + "end": 38043.07, + "probability": 0.9653 + }, + { + "start": 38043.76, + "end": 38047.28, + "probability": 0.9771 + }, + { + "start": 38049.42, + "end": 38049.72, + "probability": 0.8252 + }, + { + "start": 38049.78, + "end": 38050.16, + "probability": 0.7429 + }, + { + "start": 38050.34, + "end": 38050.78, + "probability": 0.651 + }, + { + "start": 38051.22, + "end": 38052.2, + "probability": 0.9586 + }, + { + "start": 38052.44, + "end": 38053.0, + "probability": 0.5647 + }, + { + "start": 38054.24, + "end": 38056.08, + "probability": 0.585 + }, + { + "start": 38057.42, + "end": 38062.38, + "probability": 0.8843 + }, + { + "start": 38062.92, + "end": 38065.6, + "probability": 0.9749 + }, + { + "start": 38065.62, + "end": 38068.22, + "probability": 0.8977 + }, + { + "start": 38068.42, + "end": 38069.9, + "probability": 0.8352 + }, + { + "start": 38070.56, + "end": 38070.82, + "probability": 0.8089 + }, + { + "start": 38072.92, + "end": 38073.94, + "probability": 0.8597 + }, + { + "start": 38074.28, + "end": 38075.12, + "probability": 0.9068 + }, + { + "start": 38075.28, + "end": 38079.24, + "probability": 0.9624 + }, + { + "start": 38079.42, + "end": 38080.43, + "probability": 0.9679 + }, + { + "start": 38081.3, + "end": 38086.54, + "probability": 0.9399 + }, + { + "start": 38086.8, + "end": 38087.68, + "probability": 0.6832 + }, + { + "start": 38088.18, + "end": 38090.12, + "probability": 0.9937 + }, + { + "start": 38090.22, + "end": 38092.02, + "probability": 0.9882 + }, + { + "start": 38092.12, + "end": 38095.88, + "probability": 0.963 + }, + { + "start": 38096.74, + "end": 38101.26, + "probability": 0.9601 + }, + { + "start": 38101.36, + "end": 38101.8, + "probability": 0.774 + }, + { + "start": 38102.04, + "end": 38102.2, + "probability": 0.5408 + }, + { + "start": 38104.04, + "end": 38104.94, + "probability": 0.7324 + }, + { + "start": 38106.22, + "end": 38107.9, + "probability": 0.6403 + }, + { + "start": 38108.36, + "end": 38109.2, + "probability": 0.1774 + }, + { + "start": 38109.3, + "end": 38114.92, + "probability": 0.8027 + }, + { + "start": 38115.06, + "end": 38115.82, + "probability": 0.9235 + }, + { + "start": 38126.16, + "end": 38127.42, + "probability": 0.0693 + }, + { + "start": 38127.66, + "end": 38128.28, + "probability": 0.6659 + }, + { + "start": 38130.04, + "end": 38130.42, + "probability": 0.4461 + }, + { + "start": 38130.48, + "end": 38135.62, + "probability": 0.9753 + }, + { + "start": 38135.86, + "end": 38136.34, + "probability": 0.0132 + }, + { + "start": 38138.52, + "end": 38138.68, + "probability": 0.0545 + }, + { + "start": 38138.68, + "end": 38140.8, + "probability": 0.6121 + }, + { + "start": 38140.8, + "end": 38141.78, + "probability": 0.6728 + }, + { + "start": 38142.56, + "end": 38146.34, + "probability": 0.9921 + }, + { + "start": 38146.34, + "end": 38151.66, + "probability": 0.8998 + }, + { + "start": 38152.42, + "end": 38156.36, + "probability": 0.9951 + }, + { + "start": 38157.06, + "end": 38160.44, + "probability": 0.8177 + }, + { + "start": 38161.36, + "end": 38162.18, + "probability": 0.7237 + }, + { + "start": 38163.1, + "end": 38164.04, + "probability": 0.7871 + }, + { + "start": 38164.2, + "end": 38167.1, + "probability": 0.9241 + }, + { + "start": 38167.66, + "end": 38169.56, + "probability": 0.6929 + }, + { + "start": 38170.1, + "end": 38174.42, + "probability": 0.9757 + }, + { + "start": 38174.94, + "end": 38176.72, + "probability": 0.9526 + }, + { + "start": 38178.48, + "end": 38178.96, + "probability": 0.6529 + }, + { + "start": 38179.18, + "end": 38180.12, + "probability": 0.8144 + }, + { + "start": 38180.2, + "end": 38182.76, + "probability": 0.883 + }, + { + "start": 38182.84, + "end": 38183.46, + "probability": 0.9087 + }, + { + "start": 38183.58, + "end": 38184.28, + "probability": 0.9163 + }, + { + "start": 38184.8, + "end": 38187.16, + "probability": 0.9199 + }, + { + "start": 38187.99, + "end": 38189.48, + "probability": 0.9807 + }, + { + "start": 38189.6, + "end": 38192.58, + "probability": 0.8921 + }, + { + "start": 38192.58, + "end": 38196.2, + "probability": 0.8444 + }, + { + "start": 38196.24, + "end": 38198.16, + "probability": 0.9689 + }, + { + "start": 38198.32, + "end": 38200.62, + "probability": 0.9362 + }, + { + "start": 38201.34, + "end": 38202.78, + "probability": 0.7825 + }, + { + "start": 38204.0, + "end": 38206.92, + "probability": 0.9521 + }, + { + "start": 38206.92, + "end": 38209.92, + "probability": 0.9765 + }, + { + "start": 38211.74, + "end": 38212.76, + "probability": 0.977 + }, + { + "start": 38212.86, + "end": 38214.54, + "probability": 0.9319 + }, + { + "start": 38214.6, + "end": 38217.26, + "probability": 0.9318 + }, + { + "start": 38217.32, + "end": 38219.98, + "probability": 0.9862 + }, + { + "start": 38221.6, + "end": 38221.86, + "probability": 0.7561 + }, + { + "start": 38224.1, + "end": 38224.58, + "probability": 0.513 + }, + { + "start": 38225.14, + "end": 38226.68, + "probability": 0.7374 + }, + { + "start": 38227.86, + "end": 38228.52, + "probability": 0.9393 + }, + { + "start": 38230.0, + "end": 38231.42, + "probability": 0.2888 + }, + { + "start": 38231.8, + "end": 38234.48, + "probability": 0.9735 + }, + { + "start": 38240.66, + "end": 38241.7, + "probability": 0.7756 + }, + { + "start": 38242.68, + "end": 38244.78, + "probability": 0.9927 + }, + { + "start": 38245.6, + "end": 38247.2, + "probability": 0.9707 + }, + { + "start": 38248.74, + "end": 38252.58, + "probability": 0.9864 + }, + { + "start": 38253.9, + "end": 38255.04, + "probability": 0.7054 + }, + { + "start": 38255.24, + "end": 38257.18, + "probability": 0.9026 + }, + { + "start": 38257.38, + "end": 38258.7, + "probability": 0.6401 + }, + { + "start": 38259.84, + "end": 38264.5, + "probability": 0.7893 + }, + { + "start": 38265.14, + "end": 38270.4, + "probability": 0.9545 + }, + { + "start": 38272.52, + "end": 38272.98, + "probability": 0.9131 + }, + { + "start": 38273.14, + "end": 38273.96, + "probability": 0.8276 + }, + { + "start": 38274.12, + "end": 38275.24, + "probability": 0.7721 + }, + { + "start": 38275.38, + "end": 38278.64, + "probability": 0.9842 + }, + { + "start": 38278.64, + "end": 38282.02, + "probability": 0.9977 + }, + { + "start": 38282.52, + "end": 38287.0, + "probability": 0.8273 + }, + { + "start": 38287.4, + "end": 38291.11, + "probability": 0.9791 + }, + { + "start": 38291.48, + "end": 38296.02, + "probability": 0.9666 + }, + { + "start": 38297.06, + "end": 38302.68, + "probability": 0.9913 + }, + { + "start": 38303.46, + "end": 38307.56, + "probability": 0.6483 + }, + { + "start": 38308.38, + "end": 38311.8, + "probability": 0.9698 + }, + { + "start": 38312.32, + "end": 38315.1, + "probability": 0.9776 + }, + { + "start": 38315.7, + "end": 38316.6, + "probability": 0.799 + }, + { + "start": 38317.18, + "end": 38320.4, + "probability": 0.8593 + }, + { + "start": 38320.94, + "end": 38321.34, + "probability": 0.9816 + }, + { + "start": 38322.16, + "end": 38324.76, + "probability": 0.8978 + }, + { + "start": 38325.38, + "end": 38326.12, + "probability": 0.7014 + }, + { + "start": 38326.18, + "end": 38330.32, + "probability": 0.9772 + }, + { + "start": 38331.08, + "end": 38331.88, + "probability": 0.7273 + }, + { + "start": 38332.54, + "end": 38333.26, + "probability": 0.752 + }, + { + "start": 38333.78, + "end": 38335.36, + "probability": 0.9698 + }, + { + "start": 38335.94, + "end": 38336.52, + "probability": 0.965 + }, + { + "start": 38337.35, + "end": 38338.22, + "probability": 0.802 + }, + { + "start": 38339.62, + "end": 38340.7, + "probability": 0.9298 + }, + { + "start": 38341.38, + "end": 38342.94, + "probability": 0.5135 + }, + { + "start": 38344.48, + "end": 38346.08, + "probability": 0.9303 + }, + { + "start": 38346.26, + "end": 38347.62, + "probability": 0.9104 + }, + { + "start": 38347.86, + "end": 38350.04, + "probability": 0.9646 + }, + { + "start": 38350.46, + "end": 38354.7, + "probability": 0.9845 + }, + { + "start": 38355.02, + "end": 38359.64, + "probability": 0.9885 + }, + { + "start": 38360.82, + "end": 38363.28, + "probability": 0.9711 + }, + { + "start": 38363.66, + "end": 38367.3, + "probability": 0.8384 + }, + { + "start": 38367.3, + "end": 38370.26, + "probability": 0.9799 + }, + { + "start": 38370.32, + "end": 38373.04, + "probability": 0.9272 + }, + { + "start": 38374.16, + "end": 38375.8, + "probability": 0.966 + }, + { + "start": 38376.9, + "end": 38378.4, + "probability": 0.8444 + }, + { + "start": 38378.48, + "end": 38380.72, + "probability": 0.9067 + }, + { + "start": 38381.06, + "end": 38381.58, + "probability": 0.802 + }, + { + "start": 38381.9, + "end": 38383.62, + "probability": 0.8019 + }, + { + "start": 38384.22, + "end": 38387.52, + "probability": 0.7492 + }, + { + "start": 38388.4, + "end": 38391.48, + "probability": 0.9668 + }, + { + "start": 38391.68, + "end": 38392.26, + "probability": 0.9722 + }, + { + "start": 38392.68, + "end": 38393.66, + "probability": 0.6024 + }, + { + "start": 38395.5, + "end": 38398.76, + "probability": 0.9613 + }, + { + "start": 38399.02, + "end": 38405.98, + "probability": 0.9686 + }, + { + "start": 38406.22, + "end": 38407.46, + "probability": 0.4468 + }, + { + "start": 38408.1, + "end": 38411.6, + "probability": 0.7474 + }, + { + "start": 38412.36, + "end": 38413.36, + "probability": 0.567 + }, + { + "start": 38413.78, + "end": 38415.48, + "probability": 0.2411 + }, + { + "start": 38415.84, + "end": 38417.86, + "probability": 0.9932 + }, + { + "start": 38418.16, + "end": 38421.08, + "probability": 0.9771 + }, + { + "start": 38421.08, + "end": 38423.2, + "probability": 0.8129 + }, + { + "start": 38423.66, + "end": 38425.18, + "probability": 0.1552 + }, + { + "start": 38425.7, + "end": 38428.4, + "probability": 0.5812 + }, + { + "start": 38429.14, + "end": 38429.6, + "probability": 0.3465 + }, + { + "start": 38430.28, + "end": 38433.34, + "probability": 0.7346 + }, + { + "start": 38434.6, + "end": 38442.28, + "probability": 0.8434 + }, + { + "start": 38442.98, + "end": 38443.64, + "probability": 0.5638 + }, + { + "start": 38443.8, + "end": 38447.64, + "probability": 0.6682 + }, + { + "start": 38448.04, + "end": 38448.62, + "probability": 0.7924 + }, + { + "start": 38448.8, + "end": 38449.42, + "probability": 0.6493 + }, + { + "start": 38449.44, + "end": 38455.66, + "probability": 0.95 + }, + { + "start": 38456.24, + "end": 38456.72, + "probability": 0.5478 + }, + { + "start": 38456.86, + "end": 38461.94, + "probability": 0.7007 + }, + { + "start": 38462.32, + "end": 38463.12, + "probability": 0.6945 + }, + { + "start": 38463.94, + "end": 38467.34, + "probability": 0.7169 + }, + { + "start": 38467.88, + "end": 38468.92, + "probability": 0.9792 + }, + { + "start": 38469.44, + "end": 38480.74, + "probability": 0.7311 + }, + { + "start": 38480.74, + "end": 38480.96, + "probability": 0.3558 + }, + { + "start": 38481.28, + "end": 38481.92, + "probability": 0.922 + }, + { + "start": 38484.64, + "end": 38486.44, + "probability": 0.2359 + }, + { + "start": 38487.5, + "end": 38490.86, + "probability": 0.9626 + }, + { + "start": 38493.0, + "end": 38493.86, + "probability": 0.9967 + }, + { + "start": 38494.54, + "end": 38494.74, + "probability": 0.7119 + }, + { + "start": 38497.12, + "end": 38501.2, + "probability": 0.7819 + }, + { + "start": 38501.84, + "end": 38508.44, + "probability": 0.9876 + }, + { + "start": 38508.8, + "end": 38509.3, + "probability": 0.1294 + }, + { + "start": 38510.23, + "end": 38512.44, + "probability": 0.6862 + }, + { + "start": 38513.32, + "end": 38514.3, + "probability": 0.5347 + }, + { + "start": 38518.98, + "end": 38520.22, + "probability": 0.2021 + }, + { + "start": 38520.88, + "end": 38523.78, + "probability": 0.1892 + }, + { + "start": 38523.78, + "end": 38523.78, + "probability": 0.0202 + }, + { + "start": 38536.92, + "end": 38537.0, + "probability": 0.039 + }, + { + "start": 38537.0, + "end": 38537.6, + "probability": 0.8331 + }, + { + "start": 38540.34, + "end": 38544.34, + "probability": 0.9968 + }, + { + "start": 38545.58, + "end": 38546.88, + "probability": 0.9652 + }, + { + "start": 38548.2, + "end": 38552.12, + "probability": 0.992 + }, + { + "start": 38553.3, + "end": 38555.82, + "probability": 0.7598 + }, + { + "start": 38556.68, + "end": 38558.28, + "probability": 0.9902 + }, + { + "start": 38559.06, + "end": 38561.44, + "probability": 0.9136 + }, + { + "start": 38562.34, + "end": 38564.4, + "probability": 0.4755 + }, + { + "start": 38564.86, + "end": 38569.64, + "probability": 0.9988 + }, + { + "start": 38571.02, + "end": 38571.72, + "probability": 0.7297 + }, + { + "start": 38571.74, + "end": 38573.14, + "probability": 0.9896 + }, + { + "start": 38573.22, + "end": 38577.84, + "probability": 0.995 + }, + { + "start": 38577.94, + "end": 38581.9, + "probability": 0.9873 + }, + { + "start": 38582.32, + "end": 38585.56, + "probability": 0.7758 + }, + { + "start": 38586.12, + "end": 38587.24, + "probability": 0.9028 + }, + { + "start": 38588.02, + "end": 38595.08, + "probability": 0.9903 + }, + { + "start": 38595.88, + "end": 38600.94, + "probability": 0.9731 + }, + { + "start": 38602.8, + "end": 38605.54, + "probability": 0.999 + }, + { + "start": 38607.04, + "end": 38607.47, + "probability": 0.9065 + }, + { + "start": 38607.8, + "end": 38609.88, + "probability": 0.9536 + }, + { + "start": 38609.94, + "end": 38611.92, + "probability": 0.6062 + }, + { + "start": 38616.64, + "end": 38617.36, + "probability": 0.7032 + }, + { + "start": 38618.84, + "end": 38624.1, + "probability": 0.8555 + }, + { + "start": 38630.18, + "end": 38631.9, + "probability": 0.7824 + }, + { + "start": 38632.06, + "end": 38636.22, + "probability": 0.4407 + }, + { + "start": 38637.34, + "end": 38638.7, + "probability": 0.3752 + }, + { + "start": 38639.24, + "end": 38639.52, + "probability": 0.9987 + }, + { + "start": 38640.16, + "end": 38641.5, + "probability": 0.6227 + }, + { + "start": 38642.06, + "end": 38644.04, + "probability": 0.9848 + }, + { + "start": 38645.12, + "end": 38647.7, + "probability": 0.2684 + }, + { + "start": 38662.18, + "end": 38663.94, + "probability": 0.6416 + }, + { + "start": 38665.04, + "end": 38666.76, + "probability": 0.286 + }, + { + "start": 38666.88, + "end": 38670.1, + "probability": 0.5818 + }, + { + "start": 38670.26, + "end": 38672.1, + "probability": 0.9616 + }, + { + "start": 38672.14, + "end": 38675.78, + "probability": 0.662 + }, + { + "start": 38675.78, + "end": 38681.46, + "probability": 0.9542 + }, + { + "start": 38682.36, + "end": 38683.3, + "probability": 0.6392 + }, + { + "start": 38683.98, + "end": 38687.24, + "probability": 0.9613 + }, + { + "start": 38687.24, + "end": 38691.28, + "probability": 0.9939 + }, + { + "start": 38692.7, + "end": 38695.88, + "probability": 0.9956 + }, + { + "start": 38695.88, + "end": 38697.78, + "probability": 0.4331 + }, + { + "start": 38697.78, + "end": 38698.36, + "probability": 0.7061 + }, + { + "start": 38698.78, + "end": 38701.16, + "probability": 0.8782 + }, + { + "start": 38702.18, + "end": 38702.5, + "probability": 0.8668 + }, + { + "start": 38702.74, + "end": 38704.52, + "probability": 0.5289 + }, + { + "start": 38709.64, + "end": 38712.44, + "probability": 0.555 + }, + { + "start": 38712.52, + "end": 38712.94, + "probability": 0.8832 + }, + { + "start": 38714.22, + "end": 38714.98, + "probability": 0.4756 + }, + { + "start": 38715.82, + "end": 38716.5, + "probability": 0.8424 + }, + { + "start": 38717.02, + "end": 38719.4, + "probability": 0.9888 + }, + { + "start": 38719.4, + "end": 38721.51, + "probability": 0.751 + }, + { + "start": 38722.4, + "end": 38728.26, + "probability": 0.986 + }, + { + "start": 38729.16, + "end": 38730.18, + "probability": 0.7484 + }, + { + "start": 38730.5, + "end": 38733.44, + "probability": 0.9391 + }, + { + "start": 38734.84, + "end": 38736.52, + "probability": 0.9985 + }, + { + "start": 38737.04, + "end": 38741.14, + "probability": 0.9978 + }, + { + "start": 38741.56, + "end": 38744.72, + "probability": 0.9843 + }, + { + "start": 38745.2, + "end": 38748.14, + "probability": 0.9653 + }, + { + "start": 38750.24, + "end": 38751.4, + "probability": 0.5827 + }, + { + "start": 38751.6, + "end": 38754.48, + "probability": 0.5635 + }, + { + "start": 38755.89, + "end": 38760.06, + "probability": 0.9299 + }, + { + "start": 38760.1, + "end": 38761.28, + "probability": 0.8644 + }, + { + "start": 38761.4, + "end": 38762.4, + "probability": 0.5251 + }, + { + "start": 38763.56, + "end": 38765.62, + "probability": 0.551 + }, + { + "start": 38766.74, + "end": 38767.34, + "probability": 0.3044 + }, + { + "start": 38768.3, + "end": 38769.54, + "probability": 0.9835 + }, + { + "start": 38769.94, + "end": 38771.92, + "probability": 0.9796 + }, + { + "start": 38771.96, + "end": 38772.6, + "probability": 0.7534 + }, + { + "start": 38773.22, + "end": 38774.6, + "probability": 0.6816 + }, + { + "start": 38774.72, + "end": 38775.37, + "probability": 0.931 + }, + { + "start": 38777.44, + "end": 38778.42, + "probability": 0.9173 + }, + { + "start": 38780.5, + "end": 38782.58, + "probability": 0.8936 + }, + { + "start": 38783.18, + "end": 38786.96, + "probability": 0.6719 + }, + { + "start": 38787.46, + "end": 38789.0, + "probability": 0.984 + }, + { + "start": 38789.92, + "end": 38791.6, + "probability": 0.669 + }, + { + "start": 38792.44, + "end": 38793.96, + "probability": 0.9234 + }, + { + "start": 38794.16, + "end": 38795.52, + "probability": 0.7863 + }, + { + "start": 38795.84, + "end": 38796.36, + "probability": 0.8613 + }, + { + "start": 38797.34, + "end": 38800.9, + "probability": 0.976 + }, + { + "start": 38801.52, + "end": 38803.52, + "probability": 0.9885 + }, + { + "start": 38803.62, + "end": 38804.06, + "probability": 0.9576 + }, + { + "start": 38805.22, + "end": 38807.24, + "probability": 0.9941 + }, + { + "start": 38808.18, + "end": 38808.46, + "probability": 0.5586 + }, + { + "start": 38808.78, + "end": 38810.22, + "probability": 0.9965 + }, + { + "start": 38811.42, + "end": 38816.36, + "probability": 0.794 + }, + { + "start": 38816.5, + "end": 38819.92, + "probability": 0.6105 + }, + { + "start": 38821.2, + "end": 38823.24, + "probability": 0.911 + }, + { + "start": 38823.82, + "end": 38824.1, + "probability": 0.9491 + }, + { + "start": 38824.88, + "end": 38826.68, + "probability": 0.8188 + }, + { + "start": 38827.62, + "end": 38830.6, + "probability": 0.9382 + }, + { + "start": 38830.7, + "end": 38831.26, + "probability": 0.8807 + }, + { + "start": 38831.46, + "end": 38833.5, + "probability": 0.9242 + }, + { + "start": 38833.92, + "end": 38834.58, + "probability": 0.8777 + }, + { + "start": 38834.68, + "end": 38836.4, + "probability": 0.8796 + }, + { + "start": 38836.48, + "end": 38836.98, + "probability": 0.8583 + }, + { + "start": 38837.52, + "end": 38838.26, + "probability": 0.4253 + }, + { + "start": 38839.42, + "end": 38840.5, + "probability": 0.9435 + }, + { + "start": 38840.64, + "end": 38846.0, + "probability": 0.8276 + }, + { + "start": 38846.0, + "end": 38846.1, + "probability": 0.267 + }, + { + "start": 38846.22, + "end": 38848.16, + "probability": 0.9839 + }, + { + "start": 38848.88, + "end": 38852.16, + "probability": 0.9552 + }, + { + "start": 38852.26, + "end": 38854.22, + "probability": 0.6766 + }, + { + "start": 38854.98, + "end": 38855.68, + "probability": 0.9386 + }, + { + "start": 38856.92, + "end": 38858.0, + "probability": 0.8328 + }, + { + "start": 38858.44, + "end": 38858.92, + "probability": 0.8709 + }, + { + "start": 38859.24, + "end": 38860.72, + "probability": 0.8493 + }, + { + "start": 38861.06, + "end": 38862.2, + "probability": 0.9493 + }, + { + "start": 38862.78, + "end": 38863.18, + "probability": 0.7256 + }, + { + "start": 38863.24, + "end": 38867.32, + "probability": 0.7939 + }, + { + "start": 38867.44, + "end": 38869.23, + "probability": 0.9045 + }, + { + "start": 38869.96, + "end": 38871.04, + "probability": 0.9518 + }, + { + "start": 38872.5, + "end": 38873.28, + "probability": 0.7166 + }, + { + "start": 38873.85, + "end": 38879.22, + "probability": 0.5818 + }, + { + "start": 38879.32, + "end": 38880.28, + "probability": 0.7937 + }, + { + "start": 38880.94, + "end": 38886.15, + "probability": 0.2127 + }, + { + "start": 38886.98, + "end": 38888.98, + "probability": 0.6558 + }, + { + "start": 38889.12, + "end": 38893.86, + "probability": 0.9305 + }, + { + "start": 38894.04, + "end": 38896.12, + "probability": 0.5356 + }, + { + "start": 38896.92, + "end": 38897.66, + "probability": 0.8427 + }, + { + "start": 38897.82, + "end": 38901.24, + "probability": 0.9854 + }, + { + "start": 38902.2, + "end": 38902.34, + "probability": 0.8333 + }, + { + "start": 38904.8, + "end": 38906.08, + "probability": 0.3768 + }, + { + "start": 38907.46, + "end": 38909.72, + "probability": 0.6288 + }, + { + "start": 38911.24, + "end": 38912.06, + "probability": 0.8495 + }, + { + "start": 38912.26, + "end": 38912.33, + "probability": 0.132 + }, + { + "start": 38913.06, + "end": 38915.1, + "probability": 0.7233 + }, + { + "start": 38916.22, + "end": 38919.38, + "probability": 0.9142 + }, + { + "start": 38920.46, + "end": 38923.14, + "probability": 0.9845 + }, + { + "start": 38923.32, + "end": 38923.7, + "probability": 0.8511 + }, + { + "start": 38923.8, + "end": 38924.6, + "probability": 0.827 + }, + { + "start": 38924.7, + "end": 38925.28, + "probability": 0.7517 + }, + { + "start": 38925.4, + "end": 38926.2, + "probability": 0.7151 + }, + { + "start": 38926.3, + "end": 38926.96, + "probability": 0.5808 + }, + { + "start": 38927.88, + "end": 38929.5, + "probability": 0.7735 + }, + { + "start": 38929.68, + "end": 38930.72, + "probability": 0.9325 + }, + { + "start": 38930.76, + "end": 38931.9, + "probability": 0.451 + }, + { + "start": 38932.4, + "end": 38933.68, + "probability": 0.9989 + }, + { + "start": 38933.78, + "end": 38934.2, + "probability": 0.708 + }, + { + "start": 38934.86, + "end": 38936.88, + "probability": 0.9308 + }, + { + "start": 38936.94, + "end": 38937.42, + "probability": 0.5619 + }, + { + "start": 38938.02, + "end": 38939.22, + "probability": 0.81 + }, + { + "start": 38939.46, + "end": 38940.14, + "probability": 0.8072 + }, + { + "start": 38940.18, + "end": 38941.12, + "probability": 0.8654 + }, + { + "start": 38941.4, + "end": 38942.08, + "probability": 0.3657 + }, + { + "start": 38942.88, + "end": 38943.96, + "probability": 0.4988 + }, + { + "start": 38944.12, + "end": 38945.76, + "probability": 0.8867 + }, + { + "start": 38945.86, + "end": 38946.74, + "probability": 0.9337 + }, + { + "start": 38947.18, + "end": 38947.41, + "probability": 0.429 + }, + { + "start": 38948.86, + "end": 38949.92, + "probability": 0.7899 + }, + { + "start": 38950.02, + "end": 38951.8, + "probability": 0.5156 + }, + { + "start": 38952.18, + "end": 38954.36, + "probability": 0.9745 + }, + { + "start": 38955.26, + "end": 38958.95, + "probability": 0.9438 + }, + { + "start": 38961.66, + "end": 38965.24, + "probability": 0.7185 + }, + { + "start": 38965.58, + "end": 38965.74, + "probability": 0.3216 + }, + { + "start": 38965.74, + "end": 38966.54, + "probability": 0.4957 + }, + { + "start": 38966.8, + "end": 38970.91, + "probability": 0.7793 + }, + { + "start": 38972.82, + "end": 38974.68, + "probability": 0.8415 + }, + { + "start": 38975.0, + "end": 38982.46, + "probability": 0.9674 + }, + { + "start": 38983.1, + "end": 38985.56, + "probability": 0.8904 + }, + { + "start": 38986.3, + "end": 38989.14, + "probability": 0.9419 + }, + { + "start": 38989.24, + "end": 38991.36, + "probability": 0.9836 + }, + { + "start": 38992.56, + "end": 38994.33, + "probability": 0.0303 + }, + { + "start": 38995.9, + "end": 38997.96, + "probability": 0.6813 + }, + { + "start": 38998.22, + "end": 38998.98, + "probability": 0.7023 + }, + { + "start": 38999.14, + "end": 38999.86, + "probability": 0.1953 + }, + { + "start": 39000.68, + "end": 39000.98, + "probability": 0.1363 + }, + { + "start": 39001.18, + "end": 39003.56, + "probability": 0.7305 + }, + { + "start": 39003.68, + "end": 39004.18, + "probability": 0.9072 + }, + { + "start": 39004.98, + "end": 39006.02, + "probability": 0.9839 + }, + { + "start": 39006.38, + "end": 39008.04, + "probability": 0.9292 + }, + { + "start": 39008.24, + "end": 39008.86, + "probability": 0.9164 + }, + { + "start": 39009.26, + "end": 39012.07, + "probability": 0.5955 + }, + { + "start": 39012.62, + "end": 39014.88, + "probability": 0.7784 + }, + { + "start": 39015.46, + "end": 39017.98, + "probability": 0.7236 + }, + { + "start": 39018.68, + "end": 39019.96, + "probability": 0.0141 + }, + { + "start": 39020.18, + "end": 39020.26, + "probability": 0.0434 + }, + { + "start": 39020.26, + "end": 39020.62, + "probability": 0.1258 + }, + { + "start": 39021.18, + "end": 39023.32, + "probability": 0.5549 + }, + { + "start": 39023.34, + "end": 39025.64, + "probability": 0.3237 + }, + { + "start": 39025.8, + "end": 39025.94, + "probability": 0.1407 + }, + { + "start": 39025.94, + "end": 39027.94, + "probability": 0.7277 + }, + { + "start": 39029.83, + "end": 39032.6, + "probability": 0.8306 + }, + { + "start": 39033.4, + "end": 39036.64, + "probability": 0.5069 + }, + { + "start": 39037.52, + "end": 39038.04, + "probability": 0.2618 + }, + { + "start": 39038.46, + "end": 39041.36, + "probability": 0.8798 + }, + { + "start": 39042.34, + "end": 39045.18, + "probability": 0.4614 + }, + { + "start": 39045.18, + "end": 39045.5, + "probability": 0.03 + }, + { + "start": 39046.3, + "end": 39046.76, + "probability": 0.4672 + }, + { + "start": 39047.28, + "end": 39048.56, + "probability": 0.8431 + }, + { + "start": 39048.62, + "end": 39050.04, + "probability": 0.3017 + }, + { + "start": 39050.7, + "end": 39053.2, + "probability": 0.8671 + }, + { + "start": 39054.0, + "end": 39055.72, + "probability": 0.9347 + }, + { + "start": 39055.78, + "end": 39056.66, + "probability": 0.8087 + }, + { + "start": 39057.32, + "end": 39058.36, + "probability": 0.915 + }, + { + "start": 39058.88, + "end": 39063.0, + "probability": 0.9774 + }, + { + "start": 39063.92, + "end": 39064.66, + "probability": 0.905 + }, + { + "start": 39064.98, + "end": 39065.36, + "probability": 0.4546 + }, + { + "start": 39065.98, + "end": 39066.58, + "probability": 0.6512 + }, + { + "start": 39066.66, + "end": 39068.18, + "probability": 0.8349 + }, + { + "start": 39068.34, + "end": 39069.32, + "probability": 0.8341 + }, + { + "start": 39075.08, + "end": 39077.94, + "probability": 0.9417 + }, + { + "start": 39079.06, + "end": 39081.98, + "probability": 0.9853 + }, + { + "start": 39081.98, + "end": 39087.66, + "probability": 0.9587 + }, + { + "start": 39088.88, + "end": 39092.98, + "probability": 0.9961 + }, + { + "start": 39093.68, + "end": 39095.48, + "probability": 0.9839 + }, + { + "start": 39098.14, + "end": 39103.3, + "probability": 0.9871 + }, + { + "start": 39104.64, + "end": 39107.1, + "probability": 0.9874 + }, + { + "start": 39109.29, + "end": 39112.86, + "probability": 0.6772 + }, + { + "start": 39112.86, + "end": 39115.0, + "probability": 0.9897 + }, + { + "start": 39115.24, + "end": 39116.58, + "probability": 0.9925 + }, + { + "start": 39117.14, + "end": 39119.26, + "probability": 0.8427 + }, + { + "start": 39119.28, + "end": 39120.12, + "probability": 0.8728 + }, + { + "start": 39121.04, + "end": 39121.74, + "probability": 0.8943 + }, + { + "start": 39122.44, + "end": 39127.28, + "probability": 0.3775 + }, + { + "start": 39127.78, + "end": 39131.24, + "probability": 0.8491 + }, + { + "start": 39131.66, + "end": 39133.52, + "probability": 0.8902 + }, + { + "start": 39133.76, + "end": 39134.5, + "probability": 0.7105 + }, + { + "start": 39134.58, + "end": 39135.84, + "probability": 0.9947 + }, + { + "start": 39136.76, + "end": 39138.78, + "probability": 0.9424 + }, + { + "start": 39139.14, + "end": 39141.02, + "probability": 0.924 + }, + { + "start": 39141.38, + "end": 39144.26, + "probability": 0.9745 + }, + { + "start": 39144.34, + "end": 39147.76, + "probability": 0.99 + }, + { + "start": 39148.28, + "end": 39151.96, + "probability": 0.7399 + }, + { + "start": 39152.12, + "end": 39153.28, + "probability": 0.8665 + }, + { + "start": 39153.42, + "end": 39154.12, + "probability": 0.9255 + }, + { + "start": 39154.64, + "end": 39157.4, + "probability": 0.8931 + }, + { + "start": 39157.92, + "end": 39160.52, + "probability": 0.6864 + }, + { + "start": 39161.3, + "end": 39162.36, + "probability": 0.9872 + }, + { + "start": 39162.46, + "end": 39166.0, + "probability": 0.9942 + }, + { + "start": 39166.08, + "end": 39166.62, + "probability": 0.734 + }, + { + "start": 39167.26, + "end": 39168.38, + "probability": 0.8601 + }, + { + "start": 39168.99, + "end": 39170.86, + "probability": 0.8127 + }, + { + "start": 39170.94, + "end": 39171.7, + "probability": 0.8955 + }, + { + "start": 39171.96, + "end": 39172.56, + "probability": 0.92 + }, + { + "start": 39173.06, + "end": 39174.34, + "probability": 0.4446 + }, + { + "start": 39175.06, + "end": 39178.2, + "probability": 0.7016 + }, + { + "start": 39179.04, + "end": 39181.48, + "probability": 0.7789 + }, + { + "start": 39181.88, + "end": 39182.39, + "probability": 0.9057 + }, + { + "start": 39183.26, + "end": 39185.5, + "probability": 0.9478 + }, + { + "start": 39185.84, + "end": 39187.7, + "probability": 0.8421 + }, + { + "start": 39187.8, + "end": 39189.94, + "probability": 0.8991 + }, + { + "start": 39190.08, + "end": 39192.72, + "probability": 0.8958 + }, + { + "start": 39192.98, + "end": 39193.32, + "probability": 0.8375 + }, + { + "start": 39194.18, + "end": 39196.43, + "probability": 0.9031 + }, + { + "start": 39198.24, + "end": 39201.34, + "probability": 0.9664 + }, + { + "start": 39201.34, + "end": 39203.28, + "probability": 0.9625 + }, + { + "start": 39203.36, + "end": 39205.0, + "probability": 0.6582 + }, + { + "start": 39205.66, + "end": 39206.48, + "probability": 0.8379 + }, + { + "start": 39206.74, + "end": 39207.7, + "probability": 0.6537 + }, + { + "start": 39207.82, + "end": 39208.82, + "probability": 0.8748 + }, + { + "start": 39208.86, + "end": 39210.68, + "probability": 0.833 + }, + { + "start": 39211.6, + "end": 39213.8, + "probability": 0.9613 + }, + { + "start": 39214.62, + "end": 39216.2, + "probability": 0.639 + }, + { + "start": 39216.64, + "end": 39218.6, + "probability": 0.939 + }, + { + "start": 39218.88, + "end": 39220.38, + "probability": 0.9769 + }, + { + "start": 39220.96, + "end": 39222.06, + "probability": 0.9907 + }, + { + "start": 39222.68, + "end": 39224.82, + "probability": 0.6523 + }, + { + "start": 39225.56, + "end": 39227.04, + "probability": 0.7031 + }, + { + "start": 39227.14, + "end": 39227.98, + "probability": 0.9124 + }, + { + "start": 39228.18, + "end": 39231.48, + "probability": 0.9193 + }, + { + "start": 39231.86, + "end": 39233.6, + "probability": 0.9597 + }, + { + "start": 39233.84, + "end": 39237.02, + "probability": 0.9794 + }, + { + "start": 39237.44, + "end": 39238.28, + "probability": 0.8164 + }, + { + "start": 39238.66, + "end": 39239.04, + "probability": 0.7733 + }, + { + "start": 39239.3, + "end": 39240.22, + "probability": 0.9154 + }, + { + "start": 39240.71, + "end": 39242.52, + "probability": 0.9587 + }, + { + "start": 39244.9, + "end": 39245.82, + "probability": 0.687 + }, + { + "start": 39247.1, + "end": 39249.38, + "probability": 0.6589 + }, + { + "start": 39250.4, + "end": 39251.56, + "probability": 0.629 + }, + { + "start": 39251.96, + "end": 39253.04, + "probability": 0.2903 + }, + { + "start": 39253.9, + "end": 39254.62, + "probability": 0.5194 + }, + { + "start": 39257.04, + "end": 39260.96, + "probability": 0.6994 + }, + { + "start": 39262.2, + "end": 39268.11, + "probability": 0.9779 + }, + { + "start": 39268.64, + "end": 39268.94, + "probability": 0.134 + }, + { + "start": 39269.4, + "end": 39273.22, + "probability": 0.8108 + }, + { + "start": 39273.8, + "end": 39273.9, + "probability": 0.9736 + }, + { + "start": 39274.42, + "end": 39275.2, + "probability": 0.5536 + }, + { + "start": 39276.22, + "end": 39276.58, + "probability": 0.6363 + }, + { + "start": 39276.58, + "end": 39279.02, + "probability": 0.8796 + }, + { + "start": 39279.08, + "end": 39280.12, + "probability": 0.8505 + }, + { + "start": 39280.2, + "end": 39280.59, + "probability": 0.5865 + }, + { + "start": 39280.76, + "end": 39281.64, + "probability": 0.0512 + }, + { + "start": 39281.86, + "end": 39303.5, + "probability": 0.9895 + }, + { + "start": 39303.5, + "end": 39307.06, + "probability": 0.9868 + }, + { + "start": 39308.18, + "end": 39310.98, + "probability": 0.8314 + }, + { + "start": 39311.26, + "end": 39313.24, + "probability": 0.8453 + }, + { + "start": 39313.28, + "end": 39314.64, + "probability": 0.7603 + }, + { + "start": 39314.96, + "end": 39315.74, + "probability": 0.4399 + }, + { + "start": 39316.24, + "end": 39317.22, + "probability": 0.4878 + }, + { + "start": 39317.32, + "end": 39321.64, + "probability": 0.9023 + }, + { + "start": 39322.08, + "end": 39323.1, + "probability": 0.5306 + }, + { + "start": 39323.4, + "end": 39325.94, + "probability": 0.9387 + }, + { + "start": 39326.38, + "end": 39326.96, + "probability": 0.5583 + }, + { + "start": 39327.08, + "end": 39330.64, + "probability": 0.6824 + }, + { + "start": 39331.48, + "end": 39333.66, + "probability": 0.9969 + }, + { + "start": 39334.44, + "end": 39335.66, + "probability": 0.4827 + }, + { + "start": 39335.76, + "end": 39337.88, + "probability": 0.8048 + }, + { + "start": 39338.1, + "end": 39342.46, + "probability": 0.9735 + }, + { + "start": 39342.92, + "end": 39344.62, + "probability": 0.7809 + }, + { + "start": 39345.24, + "end": 39351.54, + "probability": 0.5753 + }, + { + "start": 39351.54, + "end": 39351.54, + "probability": 0.0944 + }, + { + "start": 39351.54, + "end": 39352.08, + "probability": 0.0358 + }, + { + "start": 39352.14, + "end": 39355.4, + "probability": 0.7153 + }, + { + "start": 39356.08, + "end": 39358.18, + "probability": 0.6213 + }, + { + "start": 39359.02, + "end": 39360.82, + "probability": 0.5006 + }, + { + "start": 39362.0, + "end": 39362.7, + "probability": 0.9382 + }, + { + "start": 39362.8, + "end": 39363.88, + "probability": 0.9127 + }, + { + "start": 39364.12, + "end": 39364.94, + "probability": 0.9518 + }, + { + "start": 39365.38, + "end": 39366.67, + "probability": 0.9702 + }, + { + "start": 39367.26, + "end": 39369.44, + "probability": 0.5858 + }, + { + "start": 39369.5, + "end": 39370.02, + "probability": 0.5967 + }, + { + "start": 39370.02, + "end": 39371.0, + "probability": 0.4774 + }, + { + "start": 39371.02, + "end": 39372.7, + "probability": 0.4594 + }, + { + "start": 39372.72, + "end": 39374.88, + "probability": 0.9951 + }, + { + "start": 39375.63, + "end": 39377.76, + "probability": 0.9321 + }, + { + "start": 39377.84, + "end": 39382.46, + "probability": 0.9846 + }, + { + "start": 39382.52, + "end": 39382.82, + "probability": 0.7451 + }, + { + "start": 39385.0, + "end": 39387.94, + "probability": 0.9981 + }, + { + "start": 39388.18, + "end": 39390.7, + "probability": 0.9585 + }, + { + "start": 39391.82, + "end": 39393.63, + "probability": 0.9885 + }, + { + "start": 39396.85, + "end": 39398.52, + "probability": 0.8418 + }, + { + "start": 39399.1, + "end": 39400.48, + "probability": 0.7203 + }, + { + "start": 39401.04, + "end": 39402.26, + "probability": 0.8576 + }, + { + "start": 39402.4, + "end": 39405.46, + "probability": 0.9956 + }, + { + "start": 39405.5, + "end": 39407.44, + "probability": 0.8533 + }, + { + "start": 39407.48, + "end": 39407.97, + "probability": 0.8755 + }, + { + "start": 39410.04, + "end": 39411.88, + "probability": 0.9117 + }, + { + "start": 39412.14, + "end": 39413.03, + "probability": 0.6774 + }, + { + "start": 39413.26, + "end": 39414.46, + "probability": 0.5068 + }, + { + "start": 39414.69, + "end": 39416.54, + "probability": 0.9785 + }, + { + "start": 39416.62, + "end": 39416.94, + "probability": 0.9446 + }, + { + "start": 39417.0, + "end": 39418.14, + "probability": 0.7322 + }, + { + "start": 39418.26, + "end": 39419.68, + "probability": 0.7714 + }, + { + "start": 39420.4, + "end": 39421.52, + "probability": 0.638 + }, + { + "start": 39421.6, + "end": 39423.02, + "probability": 0.8857 + }, + { + "start": 39423.62, + "end": 39426.24, + "probability": 0.9944 + }, + { + "start": 39427.24, + "end": 39429.24, + "probability": 0.9017 + }, + { + "start": 39429.28, + "end": 39430.77, + "probability": 0.883 + }, + { + "start": 39431.18, + "end": 39432.14, + "probability": 0.9887 + }, + { + "start": 39432.66, + "end": 39434.81, + "probability": 0.899 + }, + { + "start": 39435.9, + "end": 39437.64, + "probability": 0.784 + }, + { + "start": 39438.44, + "end": 39440.4, + "probability": 0.9288 + }, + { + "start": 39440.56, + "end": 39441.52, + "probability": 0.4724 + }, + { + "start": 39441.86, + "end": 39444.2, + "probability": 0.9341 + }, + { + "start": 39444.24, + "end": 39445.7, + "probability": 0.9963 + }, + { + "start": 39446.1, + "end": 39449.78, + "probability": 0.1126 + }, + { + "start": 39452.54, + "end": 39452.54, + "probability": 0.9145 + }, + { + "start": 39453.56, + "end": 39455.82, + "probability": 0.9894 + }, + { + "start": 39455.82, + "end": 39458.82, + "probability": 0.9814 + }, + { + "start": 39459.54, + "end": 39460.3, + "probability": 0.9373 + }, + { + "start": 39460.36, + "end": 39464.88, + "probability": 0.9927 + }, + { + "start": 39464.92, + "end": 39466.18, + "probability": 0.7926 + }, + { + "start": 39466.32, + "end": 39467.8, + "probability": 0.9282 + }, + { + "start": 39468.34, + "end": 39471.1, + "probability": 0.6693 + }, + { + "start": 39471.42, + "end": 39474.04, + "probability": 0.945 + }, + { + "start": 39474.2, + "end": 39475.44, + "probability": 0.7737 + }, + { + "start": 39475.5, + "end": 39477.04, + "probability": 0.9598 + }, + { + "start": 39477.2, + "end": 39477.96, + "probability": 0.6679 + }, + { + "start": 39478.48, + "end": 39481.52, + "probability": 0.9323 + }, + { + "start": 39481.6, + "end": 39484.76, + "probability": 0.8794 + }, + { + "start": 39484.88, + "end": 39486.32, + "probability": 0.8594 + }, + { + "start": 39486.78, + "end": 39489.28, + "probability": 0.6192 + }, + { + "start": 39489.96, + "end": 39490.92, + "probability": 0.8095 + }, + { + "start": 39491.4, + "end": 39491.52, + "probability": 0.5918 + }, + { + "start": 39491.64, + "end": 39491.82, + "probability": 0.5236 + }, + { + "start": 39491.88, + "end": 39492.16, + "probability": 0.9261 + }, + { + "start": 39492.38, + "end": 39493.74, + "probability": 0.6872 + }, + { + "start": 39494.68, + "end": 39495.83, + "probability": 0.3931 + }, + { + "start": 39496.02, + "end": 39498.34, + "probability": 0.9471 + }, + { + "start": 39498.44, + "end": 39498.58, + "probability": 0.4821 + }, + { + "start": 39498.66, + "end": 39498.76, + "probability": 0.0569 + }, + { + "start": 39499.2, + "end": 39500.46, + "probability": 0.8369 + }, + { + "start": 39501.24, + "end": 39503.86, + "probability": 0.9441 + }, + { + "start": 39504.24, + "end": 39506.16, + "probability": 0.9748 + }, + { + "start": 39506.58, + "end": 39508.36, + "probability": 0.9951 + }, + { + "start": 39509.46, + "end": 39509.66, + "probability": 0.8574 + }, + { + "start": 39510.96, + "end": 39512.34, + "probability": 0.9884 + }, + { + "start": 39512.82, + "end": 39514.86, + "probability": 0.786 + }, + { + "start": 39518.04, + "end": 39518.76, + "probability": 0.118 + }, + { + "start": 39518.76, + "end": 39520.63, + "probability": 0.7559 + }, + { + "start": 39520.68, + "end": 39522.31, + "probability": 0.897 + }, + { + "start": 39523.98, + "end": 39524.96, + "probability": 0.8099 + }, + { + "start": 39525.7, + "end": 39527.0, + "probability": 0.499 + }, + { + "start": 39527.34, + "end": 39530.58, + "probability": 0.9085 + }, + { + "start": 39551.12, + "end": 39551.12, + "probability": 0.0347 + }, + { + "start": 39551.12, + "end": 39551.12, + "probability": 0.0133 + }, + { + "start": 39551.12, + "end": 39551.6, + "probability": 0.2917 + }, + { + "start": 39552.44, + "end": 39552.82, + "probability": 0.7776 + }, + { + "start": 39553.8, + "end": 39554.5, + "probability": 0.9043 + }, + { + "start": 39554.68, + "end": 39554.78, + "probability": 0.7612 + }, + { + "start": 39557.02, + "end": 39559.78, + "probability": 0.7581 + }, + { + "start": 39561.0, + "end": 39567.46, + "probability": 0.7464 + }, + { + "start": 39568.94, + "end": 39574.58, + "probability": 0.9933 + }, + { + "start": 39575.14, + "end": 39575.8, + "probability": 0.7021 + }, + { + "start": 39576.78, + "end": 39577.96, + "probability": 0.8726 + }, + { + "start": 39578.54, + "end": 39582.96, + "probability": 0.9877 + }, + { + "start": 39583.22, + "end": 39583.46, + "probability": 0.6968 + }, + { + "start": 39585.94, + "end": 39587.72, + "probability": 0.6608 + }, + { + "start": 39587.72, + "end": 39590.56, + "probability": 0.9848 + }, + { + "start": 39591.88, + "end": 39593.26, + "probability": 0.981 + }, + { + "start": 39594.7, + "end": 39597.28, + "probability": 0.9797 + }, + { + "start": 39597.86, + "end": 39598.78, + "probability": 0.7295 + }, + { + "start": 39599.1, + "end": 39599.54, + "probability": 0.943 + }, + { + "start": 39599.8, + "end": 39600.47, + "probability": 0.8698 + }, + { + "start": 39600.84, + "end": 39601.8, + "probability": 0.9777 + }, + { + "start": 39602.78, + "end": 39603.38, + "probability": 0.5247 + }, + { + "start": 39603.54, + "end": 39604.14, + "probability": 0.9775 + }, + { + "start": 39604.76, + "end": 39607.36, + "probability": 0.9105 + }, + { + "start": 39609.56, + "end": 39609.96, + "probability": 0.0626 + }, + { + "start": 39611.18, + "end": 39611.66, + "probability": 0.0015 + }, + { + "start": 39612.24, + "end": 39612.42, + "probability": 0.3931 + }, + { + "start": 39612.42, + "end": 39612.52, + "probability": 0.6578 + }, + { + "start": 39613.16, + "end": 39613.58, + "probability": 0.4445 + }, + { + "start": 39613.66, + "end": 39614.4, + "probability": 0.3209 + }, + { + "start": 39614.46, + "end": 39614.56, + "probability": 0.1599 + }, + { + "start": 39614.86, + "end": 39615.58, + "probability": 0.3839 + }, + { + "start": 39615.76, + "end": 39616.6, + "probability": 0.6803 + }, + { + "start": 39617.32, + "end": 39619.43, + "probability": 0.696 + }, + { + "start": 39621.32, + "end": 39621.32, + "probability": 0.0323 + }, + { + "start": 39621.32, + "end": 39622.4, + "probability": 0.561 + }, + { + "start": 39623.24, + "end": 39625.5, + "probability": 0.9088 + }, + { + "start": 39625.96, + "end": 39626.84, + "probability": 0.8972 + }, + { + "start": 39627.54, + "end": 39628.62, + "probability": 0.9756 + }, + { + "start": 39628.88, + "end": 39629.55, + "probability": 0.9772 + }, + { + "start": 39629.9, + "end": 39633.02, + "probability": 0.9851 + }, + { + "start": 39634.98, + "end": 39635.92, + "probability": 0.6602 + }, + { + "start": 39636.86, + "end": 39638.5, + "probability": 0.4986 + }, + { + "start": 39638.74, + "end": 39644.28, + "probability": 0.9461 + }, + { + "start": 39650.62, + "end": 39652.22, + "probability": 0.6988 + }, + { + "start": 39652.54, + "end": 39654.46, + "probability": 0.9799 + }, + { + "start": 39654.92, + "end": 39655.02, + "probability": 0.2912 + }, + { + "start": 39655.84, + "end": 39662.56, + "probability": 0.9827 + }, + { + "start": 39663.0, + "end": 39665.68, + "probability": 0.9791 + }, + { + "start": 39666.08, + "end": 39667.02, + "probability": 0.7438 + }, + { + "start": 39667.62, + "end": 39675.74, + "probability": 0.9632 + }, + { + "start": 39676.92, + "end": 39677.18, + "probability": 0.3002 + }, + { + "start": 39678.72, + "end": 39683.62, + "probability": 0.9745 + }, + { + "start": 39684.22, + "end": 39689.4, + "probability": 0.9972 + }, + { + "start": 39689.5, + "end": 39689.8, + "probability": 0.8082 + }, + { + "start": 39690.86, + "end": 39692.88, + "probability": 0.6566 + }, + { + "start": 39692.9, + "end": 39696.98, + "probability": 0.9771 + }, + { + "start": 39697.02, + "end": 39698.12, + "probability": 0.8497 + }, + { + "start": 39698.72, + "end": 39700.33, + "probability": 0.8723 + }, + { + "start": 39700.88, + "end": 39703.36, + "probability": 0.9249 + }, + { + "start": 39704.04, + "end": 39705.04, + "probability": 0.6718 + }, + { + "start": 39705.18, + "end": 39706.36, + "probability": 0.9883 + }, + { + "start": 39706.56, + "end": 39707.12, + "probability": 0.5815 + }, + { + "start": 39707.9, + "end": 39709.26, + "probability": 0.7077 + }, + { + "start": 39709.34, + "end": 39713.92, + "probability": 0.8115 + }, + { + "start": 39714.04, + "end": 39715.12, + "probability": 0.9358 + }, + { + "start": 39715.3, + "end": 39719.4, + "probability": 0.9926 + }, + { + "start": 39719.4, + "end": 39721.52, + "probability": 0.9873 + }, + { + "start": 39721.56, + "end": 39722.94, + "probability": 0.9407 + }, + { + "start": 39723.78, + "end": 39724.06, + "probability": 0.6312 + }, + { + "start": 39724.1, + "end": 39727.5, + "probability": 0.8851 + }, + { + "start": 39727.62, + "end": 39730.76, + "probability": 0.7302 + }, + { + "start": 39730.76, + "end": 39731.02, + "probability": 0.5305 + }, + { + "start": 39731.14, + "end": 39731.82, + "probability": 0.7644 + }, + { + "start": 39732.32, + "end": 39732.44, + "probability": 0.7268 + }, + { + "start": 39732.44, + "end": 39735.42, + "probability": 0.9988 + }, + { + "start": 39735.94, + "end": 39737.68, + "probability": 0.843 + }, + { + "start": 39737.86, + "end": 39738.5, + "probability": 0.6307 + }, + { + "start": 39738.56, + "end": 39740.64, + "probability": 0.9303 + }, + { + "start": 39740.72, + "end": 39740.98, + "probability": 0.653 + }, + { + "start": 39741.4, + "end": 39742.2, + "probability": 0.9283 + }, + { + "start": 39742.3, + "end": 39744.74, + "probability": 0.7601 + }, + { + "start": 39745.18, + "end": 39746.3, + "probability": 0.9342 + }, + { + "start": 39746.5, + "end": 39747.95, + "probability": 0.9199 + }, + { + "start": 39748.94, + "end": 39751.44, + "probability": 0.9907 + }, + { + "start": 39752.16, + "end": 39755.56, + "probability": 0.9408 + }, + { + "start": 39756.88, + "end": 39757.42, + "probability": 0.571 + }, + { + "start": 39757.5, + "end": 39760.32, + "probability": 0.6283 + }, + { + "start": 39760.8, + "end": 39763.9, + "probability": 0.9026 + }, + { + "start": 39764.0, + "end": 39766.06, + "probability": 0.5678 + }, + { + "start": 39766.16, + "end": 39767.18, + "probability": 0.8738 + }, + { + "start": 39768.14, + "end": 39769.66, + "probability": 0.7723 + }, + { + "start": 39769.78, + "end": 39771.38, + "probability": 0.939 + }, + { + "start": 39772.32, + "end": 39775.28, + "probability": 0.6991 + }, + { + "start": 39775.76, + "end": 39777.04, + "probability": 0.9579 + }, + { + "start": 39777.3, + "end": 39779.2, + "probability": 0.7415 + }, + { + "start": 39779.88, + "end": 39780.76, + "probability": 0.9827 + }, + { + "start": 39781.44, + "end": 39783.26, + "probability": 0.6768 + }, + { + "start": 39783.72, + "end": 39785.42, + "probability": 0.8949 + }, + { + "start": 39786.68, + "end": 39789.28, + "probability": 0.9976 + }, + { + "start": 39789.32, + "end": 39791.19, + "probability": 0.9974 + }, + { + "start": 39791.9, + "end": 39792.2, + "probability": 0.2773 + }, + { + "start": 39792.46, + "end": 39792.54, + "probability": 0.7575 + }, + { + "start": 39792.68, + "end": 39794.98, + "probability": 0.6671 + }, + { + "start": 39795.56, + "end": 39796.46, + "probability": 0.6985 + }, + { + "start": 39797.42, + "end": 39800.6, + "probability": 0.971 + }, + { + "start": 39801.64, + "end": 39803.49, + "probability": 0.8008 + }, + { + "start": 39804.3, + "end": 39806.92, + "probability": 0.8821 + }, + { + "start": 39807.1, + "end": 39807.46, + "probability": 0.8215 + }, + { + "start": 39808.4, + "end": 39809.14, + "probability": 0.8913 + }, + { + "start": 39809.2, + "end": 39809.68, + "probability": 0.698 + }, + { + "start": 39809.78, + "end": 39811.18, + "probability": 0.9871 + }, + { + "start": 39811.22, + "end": 39811.88, + "probability": 0.8688 + }, + { + "start": 39812.58, + "end": 39812.84, + "probability": 0.8681 + }, + { + "start": 39814.04, + "end": 39815.42, + "probability": 0.8586 + }, + { + "start": 39815.94, + "end": 39817.18, + "probability": 0.9104 + }, + { + "start": 39817.22, + "end": 39819.46, + "probability": 0.9755 + }, + { + "start": 39820.24, + "end": 39822.14, + "probability": 0.8013 + }, + { + "start": 39822.24, + "end": 39824.14, + "probability": 0.9295 + }, + { + "start": 39824.56, + "end": 39826.4, + "probability": 0.9677 + }, + { + "start": 39828.04, + "end": 39829.72, + "probability": 0.9606 + }, + { + "start": 39829.82, + "end": 39830.16, + "probability": 0.8357 + }, + { + "start": 39830.48, + "end": 39832.0, + "probability": 0.9616 + }, + { + "start": 39832.74, + "end": 39835.62, + "probability": 0.7829 + }, + { + "start": 39835.72, + "end": 39837.66, + "probability": 0.7056 + }, + { + "start": 39838.3, + "end": 39840.04, + "probability": 0.7985 + }, + { + "start": 39840.12, + "end": 39841.38, + "probability": 0.8895 + }, + { + "start": 39841.6, + "end": 39843.78, + "probability": 0.8026 + }, + { + "start": 39844.58, + "end": 39846.82, + "probability": 0.8595 + }, + { + "start": 39847.14, + "end": 39848.81, + "probability": 0.8303 + }, + { + "start": 39849.34, + "end": 39850.18, + "probability": 0.9751 + }, + { + "start": 39851.32, + "end": 39853.58, + "probability": 0.8779 + }, + { + "start": 39854.24, + "end": 39854.76, + "probability": 0.9576 + }, + { + "start": 39855.64, + "end": 39857.41, + "probability": 0.6503 + }, + { + "start": 39857.68, + "end": 39857.8, + "probability": 0.6649 + }, + { + "start": 39857.98, + "end": 39858.2, + "probability": 0.3226 + }, + { + "start": 39858.32, + "end": 39858.72, + "probability": 0.698 + }, + { + "start": 39858.76, + "end": 39859.06, + "probability": 0.9627 + }, + { + "start": 39859.36, + "end": 39860.19, + "probability": 0.5936 + }, + { + "start": 39860.98, + "end": 39862.52, + "probability": 0.9063 + }, + { + "start": 39863.7, + "end": 39866.16, + "probability": 0.8365 + }, + { + "start": 39866.36, + "end": 39867.5, + "probability": 0.902 + }, + { + "start": 39867.64, + "end": 39868.64, + "probability": 0.5813 + }, + { + "start": 39868.8, + "end": 39869.5, + "probability": 0.5189 + }, + { + "start": 39869.6, + "end": 39871.08, + "probability": 0.8881 + }, + { + "start": 39871.56, + "end": 39872.06, + "probability": 0.7725 + }, + { + "start": 39872.32, + "end": 39872.84, + "probability": 0.9265 + }, + { + "start": 39873.24, + "end": 39874.76, + "probability": 0.9319 + }, + { + "start": 39875.76, + "end": 39877.16, + "probability": 0.9178 + }, + { + "start": 39877.38, + "end": 39879.64, + "probability": 0.9314 + }, + { + "start": 39879.98, + "end": 39881.28, + "probability": 0.8015 + }, + { + "start": 39882.66, + "end": 39883.72, + "probability": 0.7444 + }, + { + "start": 39884.24, + "end": 39884.88, + "probability": 0.9489 + }, + { + "start": 39885.06, + "end": 39886.57, + "probability": 0.7139 + }, + { + "start": 39886.86, + "end": 39889.58, + "probability": 0.9669 + }, + { + "start": 39890.3, + "end": 39890.7, + "probability": 0.9822 + }, + { + "start": 39890.76, + "end": 39892.96, + "probability": 0.7975 + }, + { + "start": 39893.06, + "end": 39896.48, + "probability": 0.8828 + }, + { + "start": 39896.56, + "end": 39897.05, + "probability": 0.635 + }, + { + "start": 39897.18, + "end": 39897.46, + "probability": 0.4506 + }, + { + "start": 39897.62, + "end": 39899.78, + "probability": 0.7366 + }, + { + "start": 39900.44, + "end": 39902.88, + "probability": 0.8188 + }, + { + "start": 39904.16, + "end": 39907.57, + "probability": 0.8685 + }, + { + "start": 39909.04, + "end": 39909.62, + "probability": 0.6733 + }, + { + "start": 39910.26, + "end": 39913.82, + "probability": 0.6861 + }, + { + "start": 39914.36, + "end": 39916.06, + "probability": 0.7146 + }, + { + "start": 39916.62, + "end": 39919.04, + "probability": 0.8218 + }, + { + "start": 39919.76, + "end": 39923.22, + "probability": 0.6268 + }, + { + "start": 39923.28, + "end": 39923.98, + "probability": 0.8315 + }, + { + "start": 39924.3, + "end": 39925.84, + "probability": 0.8887 + }, + { + "start": 39926.18, + "end": 39927.5, + "probability": 0.9214 + }, + { + "start": 39927.84, + "end": 39927.94, + "probability": 0.3212 + }, + { + "start": 39928.46, + "end": 39928.96, + "probability": 0.4895 + }, + { + "start": 39929.08, + "end": 39931.4, + "probability": 0.5034 + }, + { + "start": 39931.42, + "end": 39935.78, + "probability": 0.9515 + }, + { + "start": 39936.32, + "end": 39937.79, + "probability": 0.7156 + }, + { + "start": 39938.12, + "end": 39940.14, + "probability": 0.9722 + }, + { + "start": 39940.8, + "end": 39941.88, + "probability": 0.8684 + }, + { + "start": 39942.12, + "end": 39942.64, + "probability": 0.3206 + }, + { + "start": 39943.32, + "end": 39945.5, + "probability": 0.9323 + }, + { + "start": 39946.1, + "end": 39947.92, + "probability": 0.9967 + }, + { + "start": 39948.54, + "end": 39950.86, + "probability": 0.8918 + }, + { + "start": 39951.22, + "end": 39953.08, + "probability": 0.9164 + }, + { + "start": 39953.18, + "end": 39953.76, + "probability": 0.8196 + }, + { + "start": 39954.28, + "end": 39955.46, + "probability": 0.9078 + }, + { + "start": 39955.58, + "end": 39956.9, + "probability": 0.9818 + }, + { + "start": 39957.96, + "end": 39959.34, + "probability": 0.8916 + }, + { + "start": 39959.44, + "end": 39960.04, + "probability": 0.8855 + }, + { + "start": 39962.02, + "end": 39962.14, + "probability": 0.4674 + }, + { + "start": 39963.0, + "end": 39963.5, + "probability": 0.9824 + }, + { + "start": 39963.92, + "end": 39964.38, + "probability": 0.7856 + }, + { + "start": 39964.68, + "end": 39966.13, + "probability": 0.6988 + }, + { + "start": 39967.68, + "end": 39968.58, + "probability": 0.7752 + }, + { + "start": 39968.8, + "end": 39971.84, + "probability": 0.5995 + }, + { + "start": 39972.22, + "end": 39976.2, + "probability": 0.978 + }, + { + "start": 39979.22, + "end": 39980.2, + "probability": 0.9744 + }, + { + "start": 39980.5, + "end": 39985.06, + "probability": 0.9938 + }, + { + "start": 39985.12, + "end": 39987.92, + "probability": 0.8181 + }, + { + "start": 39989.34, + "end": 39993.02, + "probability": 0.9563 + }, + { + "start": 39993.7, + "end": 39999.24, + "probability": 0.997 + }, + { + "start": 39999.38, + "end": 40002.46, + "probability": 0.9923 + }, + { + "start": 40003.6, + "end": 40006.14, + "probability": 0.876 + }, + { + "start": 40006.22, + "end": 40008.48, + "probability": 0.933 + }, + { + "start": 40009.82, + "end": 40012.16, + "probability": 0.9907 + }, + { + "start": 40012.92, + "end": 40013.78, + "probability": 0.9822 + }, + { + "start": 40015.52, + "end": 40019.34, + "probability": 0.9854 + }, + { + "start": 40020.38, + "end": 40020.5, + "probability": 0.1687 + }, + { + "start": 40020.54, + "end": 40023.86, + "probability": 0.9674 + }, + { + "start": 40023.94, + "end": 40025.42, + "probability": 0.0471 + }, + { + "start": 40025.42, + "end": 40027.25, + "probability": 0.6925 + }, + { + "start": 40028.9, + "end": 40032.48, + "probability": 0.8389 + }, + { + "start": 40033.12, + "end": 40035.38, + "probability": 0.8646 + }, + { + "start": 40036.02, + "end": 40036.3, + "probability": 0.77 + }, + { + "start": 40036.86, + "end": 40037.56, + "probability": 0.6731 + }, + { + "start": 40038.64, + "end": 40041.9, + "probability": 0.776 + }, + { + "start": 40042.22, + "end": 40044.02, + "probability": 0.9604 + }, + { + "start": 40045.26, + "end": 40047.18, + "probability": 0.9889 + }, + { + "start": 40047.4, + "end": 40048.02, + "probability": 0.8471 + }, + { + "start": 40048.34, + "end": 40049.82, + "probability": 0.995 + }, + { + "start": 40051.18, + "end": 40054.34, + "probability": 0.9879 + }, + { + "start": 40055.0, + "end": 40055.74, + "probability": 0.9929 + }, + { + "start": 40057.12, + "end": 40057.92, + "probability": 0.56 + }, + { + "start": 40059.08, + "end": 40061.72, + "probability": 0.9973 + }, + { + "start": 40063.02, + "end": 40064.08, + "probability": 0.9267 + }, + { + "start": 40064.64, + "end": 40065.58, + "probability": 0.9941 + }, + { + "start": 40065.7, + "end": 40066.1, + "probability": 0.4573 + }, + { + "start": 40066.16, + "end": 40067.76, + "probability": 0.9963 + }, + { + "start": 40069.14, + "end": 40070.9, + "probability": 0.7743 + }, + { + "start": 40071.14, + "end": 40072.52, + "probability": 0.7441 + }, + { + "start": 40073.86, + "end": 40075.14, + "probability": 0.8897 + }, + { + "start": 40076.52, + "end": 40076.96, + "probability": 0.6855 + }, + { + "start": 40078.08, + "end": 40078.68, + "probability": 0.9445 + }, + { + "start": 40079.12, + "end": 40079.7, + "probability": 0.598 + }, + { + "start": 40079.76, + "end": 40080.3, + "probability": 0.9593 + }, + { + "start": 40081.32, + "end": 40082.56, + "probability": 0.9722 + }, + { + "start": 40082.72, + "end": 40083.1, + "probability": 0.7081 + }, + { + "start": 40083.22, + "end": 40083.4, + "probability": 0.4656 + }, + { + "start": 40083.82, + "end": 40084.76, + "probability": 0.8481 + }, + { + "start": 40085.15, + "end": 40085.88, + "probability": 0.8085 + }, + { + "start": 40086.86, + "end": 40089.79, + "probability": 0.9894 + }, + { + "start": 40090.64, + "end": 40092.52, + "probability": 0.9717 + }, + { + "start": 40092.74, + "end": 40092.96, + "probability": 0.0365 + }, + { + "start": 40092.98, + "end": 40093.16, + "probability": 0.7853 + }, + { + "start": 40093.6, + "end": 40093.82, + "probability": 0.9781 + }, + { + "start": 40094.36, + "end": 40095.14, + "probability": 0.9766 + }, + { + "start": 40095.88, + "end": 40096.42, + "probability": 0.9716 + }, + { + "start": 40097.18, + "end": 40097.36, + "probability": 0.9087 + }, + { + "start": 40098.0, + "end": 40099.02, + "probability": 0.8426 + }, + { + "start": 40099.32, + "end": 40100.58, + "probability": 0.9343 + }, + { + "start": 40102.3, + "end": 40104.66, + "probability": 0.9022 + }, + { + "start": 40105.64, + "end": 40106.1, + "probability": 0.8203 + }, + { + "start": 40106.8, + "end": 40109.2, + "probability": 0.8843 + }, + { + "start": 40109.3, + "end": 40110.17, + "probability": 0.9424 + }, + { + "start": 40111.04, + "end": 40113.06, + "probability": 0.7297 + }, + { + "start": 40113.92, + "end": 40115.09, + "probability": 0.9595 + }, + { + "start": 40116.14, + "end": 40118.4, + "probability": 0.911 + }, + { + "start": 40118.9, + "end": 40120.0, + "probability": 0.8565 + }, + { + "start": 40120.34, + "end": 40123.58, + "probability": 0.9792 + }, + { + "start": 40123.9, + "end": 40124.48, + "probability": 0.9307 + }, + { + "start": 40125.08, + "end": 40126.4, + "probability": 0.9705 + }, + { + "start": 40127.08, + "end": 40128.74, + "probability": 0.7989 + }, + { + "start": 40129.44, + "end": 40130.1, + "probability": 0.7894 + }, + { + "start": 40130.52, + "end": 40131.02, + "probability": 0.7061 + }, + { + "start": 40131.2, + "end": 40132.0, + "probability": 0.7598 + }, + { + "start": 40132.12, + "end": 40134.62, + "probability": 0.9895 + }, + { + "start": 40136.36, + "end": 40138.56, + "probability": 0.9902 + }, + { + "start": 40139.08, + "end": 40140.56, + "probability": 0.6031 + }, + { + "start": 40140.78, + "end": 40142.66, + "probability": 0.8107 + }, + { + "start": 40144.06, + "end": 40145.32, + "probability": 0.6864 + }, + { + "start": 40146.38, + "end": 40149.42, + "probability": 0.8875 + }, + { + "start": 40150.94, + "end": 40152.8, + "probability": 0.6754 + }, + { + "start": 40153.92, + "end": 40156.88, + "probability": 0.915 + }, + { + "start": 40156.9, + "end": 40157.52, + "probability": 0.6648 + }, + { + "start": 40157.58, + "end": 40158.58, + "probability": 0.972 + }, + { + "start": 40158.68, + "end": 40161.24, + "probability": 0.8955 + }, + { + "start": 40163.82, + "end": 40164.7, + "probability": 0.3705 + }, + { + "start": 40165.4, + "end": 40167.08, + "probability": 0.9422 + }, + { + "start": 40168.5, + "end": 40170.22, + "probability": 0.7733 + }, + { + "start": 40170.98, + "end": 40172.15, + "probability": 0.9282 + }, + { + "start": 40172.86, + "end": 40173.2, + "probability": 0.9487 + }, + { + "start": 40174.6, + "end": 40175.18, + "probability": 0.9635 + }, + { + "start": 40176.2, + "end": 40178.38, + "probability": 0.9627 + }, + { + "start": 40178.82, + "end": 40180.1, + "probability": 0.8237 + }, + { + "start": 40181.76, + "end": 40182.36, + "probability": 0.5182 + }, + { + "start": 40183.52, + "end": 40185.6, + "probability": 0.895 + }, + { + "start": 40186.3, + "end": 40187.48, + "probability": 0.7722 + }, + { + "start": 40188.16, + "end": 40188.9, + "probability": 0.9546 + }, + { + "start": 40189.76, + "end": 40191.38, + "probability": 0.8224 + }, + { + "start": 40191.9, + "end": 40192.84, + "probability": 0.9466 + }, + { + "start": 40194.26, + "end": 40196.62, + "probability": 0.7953 + }, + { + "start": 40197.18, + "end": 40197.88, + "probability": 0.5286 + }, + { + "start": 40198.62, + "end": 40201.42, + "probability": 0.7334 + }, + { + "start": 40202.18, + "end": 40203.68, + "probability": 0.8983 + }, + { + "start": 40204.74, + "end": 40205.5, + "probability": 0.9502 + }, + { + "start": 40206.62, + "end": 40210.25, + "probability": 0.9706 + }, + { + "start": 40210.52, + "end": 40210.52, + "probability": 0.5641 + }, + { + "start": 40210.52, + "end": 40212.94, + "probability": 0.7109 + }, + { + "start": 40213.48, + "end": 40215.68, + "probability": 0.8865 + }, + { + "start": 40216.18, + "end": 40217.04, + "probability": 0.9916 + }, + { + "start": 40217.16, + "end": 40218.02, + "probability": 0.8725 + }, + { + "start": 40218.2, + "end": 40219.94, + "probability": 0.9938 + }, + { + "start": 40220.12, + "end": 40221.4, + "probability": 0.9877 + }, + { + "start": 40221.74, + "end": 40222.96, + "probability": 0.9601 + }, + { + "start": 40223.42, + "end": 40224.52, + "probability": 0.8091 + }, + { + "start": 40225.34, + "end": 40227.4, + "probability": 0.9863 + }, + { + "start": 40228.9, + "end": 40229.34, + "probability": 0.6999 + }, + { + "start": 40230.6, + "end": 40233.72, + "probability": 0.9699 + }, + { + "start": 40234.92, + "end": 40236.9, + "probability": 0.8293 + }, + { + "start": 40239.7, + "end": 40240.58, + "probability": 0.8453 + }, + { + "start": 40240.72, + "end": 40241.12, + "probability": 0.1259 + }, + { + "start": 40241.28, + "end": 40242.98, + "probability": 0.9819 + }, + { + "start": 40243.28, + "end": 40244.1, + "probability": 0.7329 + }, + { + "start": 40245.28, + "end": 40247.0, + "probability": 0.8766 + }, + { + "start": 40247.74, + "end": 40249.1, + "probability": 0.7379 + }, + { + "start": 40250.08, + "end": 40252.34, + "probability": 0.9867 + }, + { + "start": 40252.62, + "end": 40253.1, + "probability": 0.6246 + }, + { + "start": 40253.38, + "end": 40254.76, + "probability": 0.6922 + }, + { + "start": 40255.34, + "end": 40257.3, + "probability": 0.8759 + }, + { + "start": 40257.92, + "end": 40258.94, + "probability": 0.8566 + }, + { + "start": 40259.66, + "end": 40260.76, + "probability": 0.981 + }, + { + "start": 40261.64, + "end": 40262.14, + "probability": 0.734 + }, + { + "start": 40262.74, + "end": 40264.0, + "probability": 0.915 + }, + { + "start": 40264.8, + "end": 40266.2, + "probability": 0.881 + }, + { + "start": 40266.3, + "end": 40267.71, + "probability": 0.7412 + }, + { + "start": 40267.92, + "end": 40269.76, + "probability": 0.8444 + }, + { + "start": 40270.68, + "end": 40275.54, + "probability": 0.9635 + }, + { + "start": 40276.06, + "end": 40277.26, + "probability": 0.9742 + }, + { + "start": 40277.44, + "end": 40278.24, + "probability": 0.9618 + }, + { + "start": 40279.06, + "end": 40281.66, + "probability": 0.8824 + }, + { + "start": 40281.66, + "end": 40283.54, + "probability": 0.8386 + }, + { + "start": 40284.88, + "end": 40287.44, + "probability": 0.9943 + }, + { + "start": 40289.38, + "end": 40290.66, + "probability": 0.9454 + }, + { + "start": 40292.32, + "end": 40294.46, + "probability": 0.9838 + }, + { + "start": 40294.68, + "end": 40295.82, + "probability": 0.9782 + }, + { + "start": 40295.94, + "end": 40296.76, + "probability": 0.8298 + }, + { + "start": 40297.3, + "end": 40301.32, + "probability": 0.9971 + }, + { + "start": 40302.7, + "end": 40305.0, + "probability": 0.7191 + }, + { + "start": 40305.08, + "end": 40306.64, + "probability": 0.9584 + }, + { + "start": 40307.14, + "end": 40309.64, + "probability": 0.9434 + }, + { + "start": 40309.82, + "end": 40313.16, + "probability": 0.8873 + }, + { + "start": 40313.44, + "end": 40314.14, + "probability": 0.645 + }, + { + "start": 40314.72, + "end": 40315.64, + "probability": 0.9214 + }, + { + "start": 40317.74, + "end": 40318.9, + "probability": 0.6407 + }, + { + "start": 40320.0, + "end": 40323.46, + "probability": 0.3962 + }, + { + "start": 40324.44, + "end": 40328.05, + "probability": 0.9292 + }, + { + "start": 40330.84, + "end": 40333.32, + "probability": 0.4005 + }, + { + "start": 40333.96, + "end": 40334.5, + "probability": 0.3486 + }, + { + "start": 40335.9, + "end": 40337.99, + "probability": 0.9704 + }, + { + "start": 40342.18, + "end": 40345.08, + "probability": 0.0357 + }, + { + "start": 40345.08, + "end": 40345.44, + "probability": 0.1793 + }, + { + "start": 40346.94, + "end": 40350.58, + "probability": 0.988 + }, + { + "start": 40350.58, + "end": 40353.44, + "probability": 0.9936 + }, + { + "start": 40354.6, + "end": 40357.5, + "probability": 0.9475 + }, + { + "start": 40358.12, + "end": 40360.38, + "probability": 0.9907 + }, + { + "start": 40361.86, + "end": 40366.28, + "probability": 0.9915 + }, + { + "start": 40367.64, + "end": 40369.44, + "probability": 0.95 + }, + { + "start": 40370.58, + "end": 40371.21, + "probability": 0.9517 + }, + { + "start": 40371.88, + "end": 40377.13, + "probability": 0.9941 + }, + { + "start": 40377.82, + "end": 40377.94, + "probability": 0.5022 + }, + { + "start": 40378.12, + "end": 40380.92, + "probability": 0.5772 + }, + { + "start": 40381.36, + "end": 40382.94, + "probability": 0.8083 + }, + { + "start": 40383.52, + "end": 40384.76, + "probability": 0.9927 + }, + { + "start": 40385.58, + "end": 40386.62, + "probability": 0.7985 + }, + { + "start": 40387.04, + "end": 40388.08, + "probability": 0.9552 + }, + { + "start": 40388.16, + "end": 40388.92, + "probability": 0.9454 + }, + { + "start": 40389.14, + "end": 40390.24, + "probability": 0.6949 + }, + { + "start": 40390.54, + "end": 40392.62, + "probability": 0.5513 + }, + { + "start": 40392.9, + "end": 40395.28, + "probability": 0.9768 + }, + { + "start": 40395.28, + "end": 40397.56, + "probability": 0.7692 + }, + { + "start": 40398.18, + "end": 40400.44, + "probability": 0.884 + }, + { + "start": 40401.36, + "end": 40402.84, + "probability": 0.9336 + }, + { + "start": 40403.58, + "end": 40405.44, + "probability": 0.9873 + }, + { + "start": 40407.28, + "end": 40409.58, + "probability": 0.9224 + }, + { + "start": 40409.58, + "end": 40413.14, + "probability": 0.9963 + }, + { + "start": 40414.42, + "end": 40416.72, + "probability": 0.9215 + }, + { + "start": 40417.52, + "end": 40418.7, + "probability": 0.9156 + }, + { + "start": 40420.12, + "end": 40422.52, + "probability": 0.8901 + }, + { + "start": 40422.52, + "end": 40424.62, + "probability": 0.8186 + }, + { + "start": 40426.37, + "end": 40427.08, + "probability": 0.6601 + }, + { + "start": 40428.16, + "end": 40431.8, + "probability": 0.7045 + }, + { + "start": 40432.28, + "end": 40433.62, + "probability": 0.9545 + }, + { + "start": 40433.8, + "end": 40435.51, + "probability": 0.7051 + }, + { + "start": 40436.32, + "end": 40439.14, + "probability": 0.9935 + }, + { + "start": 40439.28, + "end": 40440.88, + "probability": 0.4741 + }, + { + "start": 40441.1, + "end": 40442.35, + "probability": 0.9912 + }, + { + "start": 40442.98, + "end": 40445.41, + "probability": 0.8918 + }, + { + "start": 40445.72, + "end": 40448.5, + "probability": 0.9846 + }, + { + "start": 40449.02, + "end": 40449.72, + "probability": 0.6355 + }, + { + "start": 40449.76, + "end": 40452.4, + "probability": 0.959 + }, + { + "start": 40452.52, + "end": 40453.12, + "probability": 0.7964 + }, + { + "start": 40453.78, + "end": 40455.12, + "probability": 0.9331 + }, + { + "start": 40455.22, + "end": 40456.46, + "probability": 0.5266 + }, + { + "start": 40456.5, + "end": 40457.48, + "probability": 0.821 + }, + { + "start": 40457.68, + "end": 40459.67, + "probability": 0.9575 + }, + { + "start": 40460.18, + "end": 40461.4, + "probability": 0.9666 + }, + { + "start": 40462.06, + "end": 40463.0, + "probability": 0.9731 + }, + { + "start": 40463.06, + "end": 40463.69, + "probability": 0.8608 + }, + { + "start": 40463.96, + "end": 40464.43, + "probability": 0.346 + }, + { + "start": 40464.72, + "end": 40466.78, + "probability": 0.9858 + }, + { + "start": 40466.84, + "end": 40469.06, + "probability": 0.9294 + }, + { + "start": 40469.72, + "end": 40471.51, + "probability": 0.9941 + }, + { + "start": 40472.74, + "end": 40473.2, + "probability": 0.6743 + }, + { + "start": 40473.28, + "end": 40474.08, + "probability": 0.5643 + }, + { + "start": 40474.08, + "end": 40474.68, + "probability": 0.6387 + }, + { + "start": 40474.88, + "end": 40475.62, + "probability": 0.9624 + }, + { + "start": 40475.76, + "end": 40477.67, + "probability": 0.9552 + }, + { + "start": 40478.24, + "end": 40478.94, + "probability": 0.8939 + }, + { + "start": 40479.9, + "end": 40481.64, + "probability": 0.4466 + }, + { + "start": 40482.66, + "end": 40485.8, + "probability": 0.404 + }, + { + "start": 40486.02, + "end": 40488.06, + "probability": 0.9361 + }, + { + "start": 40488.16, + "end": 40491.02, + "probability": 0.9708 + }, + { + "start": 40525.52, + "end": 40526.7, + "probability": 0.6734 + }, + { + "start": 40526.76, + "end": 40527.55, + "probability": 0.9946 + }, + { + "start": 40528.82, + "end": 40530.3, + "probability": 0.7056 + }, + { + "start": 40531.65, + "end": 40534.14, + "probability": 0.9811 + }, + { + "start": 40534.4, + "end": 40534.54, + "probability": 0.4494 + }, + { + "start": 40534.64, + "end": 40536.64, + "probability": 0.7711 + }, + { + "start": 40537.9, + "end": 40538.0, + "probability": 0.5674 + }, + { + "start": 40539.52, + "end": 40540.8, + "probability": 0.7425 + }, + { + "start": 40545.26, + "end": 40547.1, + "probability": 0.4004 + }, + { + "start": 40547.18, + "end": 40550.1, + "probability": 0.8478 + }, + { + "start": 40550.1, + "end": 40550.79, + "probability": 0.6462 + }, + { + "start": 40551.2, + "end": 40551.5, + "probability": 0.0898 + }, + { + "start": 40551.56, + "end": 40552.0, + "probability": 0.5618 + }, + { + "start": 40552.14, + "end": 40554.56, + "probability": 0.6423 + }, + { + "start": 40555.12, + "end": 40555.3, + "probability": 0.6518 + }, + { + "start": 40555.66, + "end": 40556.9, + "probability": 0.8459 + }, + { + "start": 40557.28, + "end": 40559.11, + "probability": 0.6755 + }, + { + "start": 40563.04, + "end": 40567.0, + "probability": 0.9756 + }, + { + "start": 40568.18, + "end": 40570.66, + "probability": 0.9773 + }, + { + "start": 40571.24, + "end": 40572.3, + "probability": 0.9667 + }, + { + "start": 40574.32, + "end": 40577.36, + "probability": 0.9836 + }, + { + "start": 40578.66, + "end": 40582.52, + "probability": 0.9878 + }, + { + "start": 40583.4, + "end": 40585.28, + "probability": 0.9693 + }, + { + "start": 40585.68, + "end": 40589.54, + "probability": 0.9649 + }, + { + "start": 40590.5, + "end": 40596.44, + "probability": 0.9874 + }, + { + "start": 40599.2, + "end": 40608.05, + "probability": 0.9206 + }, + { + "start": 40609.0, + "end": 40611.6, + "probability": 0.9024 + }, + { + "start": 40612.34, + "end": 40613.18, + "probability": 0.9431 + }, + { + "start": 40613.58, + "end": 40613.97, + "probability": 0.9595 + }, + { + "start": 40614.18, + "end": 40615.4, + "probability": 0.9717 + }, + { + "start": 40616.12, + "end": 40617.81, + "probability": 0.7669 + }, + { + "start": 40618.22, + "end": 40619.96, + "probability": 0.9961 + }, + { + "start": 40620.92, + "end": 40624.12, + "probability": 0.9635 + }, + { + "start": 40624.18, + "end": 40624.52, + "probability": 0.7894 + }, + { + "start": 40624.58, + "end": 40626.72, + "probability": 0.7432 + }, + { + "start": 40628.02, + "end": 40631.88, + "probability": 0.0965 + }, + { + "start": 40631.9, + "end": 40632.7, + "probability": 0.7447 + }, + { + "start": 40632.72, + "end": 40635.0, + "probability": 0.4836 + }, + { + "start": 40635.02, + "end": 40637.07, + "probability": 0.8889 + }, + { + "start": 40637.16, + "end": 40638.62, + "probability": 0.7734 + }, + { + "start": 40639.72, + "end": 40642.6, + "probability": 0.6798 + }, + { + "start": 40643.48, + "end": 40644.84, + "probability": 0.7229 + }, + { + "start": 40644.9, + "end": 40647.08, + "probability": 0.6915 + }, + { + "start": 40647.18, + "end": 40649.18, + "probability": 0.8563 + }, + { + "start": 40649.28, + "end": 40652.08, + "probability": 0.8441 + }, + { + "start": 40652.34, + "end": 40653.06, + "probability": 0.9448 + }, + { + "start": 40653.14, + "end": 40658.44, + "probability": 0.9453 + }, + { + "start": 40658.54, + "end": 40659.36, + "probability": 0.865 + }, + { + "start": 40659.9, + "end": 40661.88, + "probability": 0.993 + }, + { + "start": 40662.02, + "end": 40665.1, + "probability": 0.9474 + }, + { + "start": 40665.28, + "end": 40665.48, + "probability": 0.652 + }, + { + "start": 40665.56, + "end": 40667.56, + "probability": 0.9946 + }, + { + "start": 40667.74, + "end": 40669.46, + "probability": 0.9312 + }, + { + "start": 40670.02, + "end": 40670.66, + "probability": 0.9932 + }, + { + "start": 40670.96, + "end": 40673.06, + "probability": 0.9924 + }, + { + "start": 40673.18, + "end": 40674.0, + "probability": 0.9361 + }, + { + "start": 40674.7, + "end": 40675.26, + "probability": 0.2113 + }, + { + "start": 40675.36, + "end": 40679.0, + "probability": 0.8136 + }, + { + "start": 40679.24, + "end": 40680.38, + "probability": 0.998 + }, + { + "start": 40680.44, + "end": 40681.18, + "probability": 0.9136 + }, + { + "start": 40681.74, + "end": 40683.44, + "probability": 0.7425 + }, + { + "start": 40684.54, + "end": 40685.14, + "probability": 0.3103 + }, + { + "start": 40685.52, + "end": 40687.44, + "probability": 0.9823 + }, + { + "start": 40689.52, + "end": 40690.96, + "probability": 0.6555 + }, + { + "start": 40691.1, + "end": 40691.76, + "probability": 0.8357 + }, + { + "start": 40691.84, + "end": 40695.8, + "probability": 0.9943 + }, + { + "start": 40696.44, + "end": 40697.12, + "probability": 0.6134 + }, + { + "start": 40697.34, + "end": 40697.5, + "probability": 0.5193 + }, + { + "start": 40699.72, + "end": 40703.68, + "probability": 0.9536 + }, + { + "start": 40703.86, + "end": 40704.3, + "probability": 0.7395 + }, + { + "start": 40704.66, + "end": 40705.52, + "probability": 0.8745 + }, + { + "start": 40705.66, + "end": 40706.68, + "probability": 0.7488 + }, + { + "start": 40706.82, + "end": 40707.12, + "probability": 0.4193 + }, + { + "start": 40708.36, + "end": 40709.75, + "probability": 0.9863 + }, + { + "start": 40710.2, + "end": 40712.01, + "probability": 0.9318 + }, + { + "start": 40713.24, + "end": 40717.42, + "probability": 0.8884 + }, + { + "start": 40717.5, + "end": 40718.34, + "probability": 0.9343 + }, + { + "start": 40718.42, + "end": 40719.77, + "probability": 0.9911 + }, + { + "start": 40721.38, + "end": 40724.0, + "probability": 0.9886 + }, + { + "start": 40724.1, + "end": 40728.62, + "probability": 0.9836 + }, + { + "start": 40728.78, + "end": 40730.64, + "probability": 0.9712 + }, + { + "start": 40730.72, + "end": 40735.54, + "probability": 0.7076 + }, + { + "start": 40735.68, + "end": 40738.14, + "probability": 0.9634 + }, + { + "start": 40740.26, + "end": 40742.82, + "probability": 0.9736 + }, + { + "start": 40743.54, + "end": 40744.94, + "probability": 0.7561 + }, + { + "start": 40745.92, + "end": 40747.2, + "probability": 0.8696 + }, + { + "start": 40748.18, + "end": 40748.7, + "probability": 0.9937 + }, + { + "start": 40749.52, + "end": 40749.82, + "probability": 0.9736 + }, + { + "start": 40750.62, + "end": 40754.08, + "probability": 0.9889 + }, + { + "start": 40755.44, + "end": 40756.34, + "probability": 0.8705 + }, + { + "start": 40756.44, + "end": 40757.12, + "probability": 0.4886 + }, + { + "start": 40757.14, + "end": 40757.57, + "probability": 0.5854 + }, + { + "start": 40758.04, + "end": 40758.88, + "probability": 0.4177 + }, + { + "start": 40759.02, + "end": 40759.74, + "probability": 0.233 + }, + { + "start": 40759.84, + "end": 40761.26, + "probability": 0.7842 + }, + { + "start": 40762.22, + "end": 40764.42, + "probability": 0.9766 + }, + { + "start": 40764.58, + "end": 40767.24, + "probability": 0.9966 + }, + { + "start": 40767.52, + "end": 40770.82, + "probability": 0.9874 + }, + { + "start": 40770.88, + "end": 40773.1, + "probability": 0.8567 + }, + { + "start": 40773.72, + "end": 40775.42, + "probability": 0.8222 + }, + { + "start": 40775.7, + "end": 40777.72, + "probability": 0.8867 + }, + { + "start": 40777.9, + "end": 40780.62, + "probability": 0.8153 + }, + { + "start": 40780.76, + "end": 40781.58, + "probability": 0.5126 + }, + { + "start": 40781.68, + "end": 40783.6, + "probability": 0.9751 + }, + { + "start": 40786.72, + "end": 40787.32, + "probability": 0.6839 + }, + { + "start": 40788.92, + "end": 40795.16, + "probability": 0.8176 + }, + { + "start": 40795.48, + "end": 40797.0, + "probability": 0.4613 + }, + { + "start": 40797.3, + "end": 40798.28, + "probability": 0.9611 + }, + { + "start": 40799.12, + "end": 40799.84, + "probability": 0.6927 + }, + { + "start": 40799.84, + "end": 40802.96, + "probability": 0.7238 + }, + { + "start": 40803.28, + "end": 40803.3, + "probability": 0.6427 + }, + { + "start": 40803.58, + "end": 40806.04, + "probability": 0.6093 + }, + { + "start": 40807.92, + "end": 40812.38, + "probability": 0.6807 + }, + { + "start": 40812.6, + "end": 40814.8, + "probability": 0.9825 + }, + { + "start": 40815.14, + "end": 40817.8, + "probability": 0.331 + }, + { + "start": 40821.71, + "end": 40825.3, + "probability": 0.7482 + }, + { + "start": 40826.66, + "end": 40829.65, + "probability": 0.9299 + }, + { + "start": 40829.82, + "end": 40832.64, + "probability": 0.9345 + }, + { + "start": 40833.66, + "end": 40834.76, + "probability": 0.7601 + }, + { + "start": 40835.44, + "end": 40837.78, + "probability": 0.9489 + }, + { + "start": 40837.78, + "end": 40840.5, + "probability": 0.9903 + }, + { + "start": 40841.02, + "end": 40843.84, + "probability": 0.9321 + }, + { + "start": 40845.54, + "end": 40847.0, + "probability": 0.7419 + }, + { + "start": 40847.3, + "end": 40849.82, + "probability": 0.9698 + }, + { + "start": 40850.0, + "end": 40852.74, + "probability": 0.5116 + }, + { + "start": 40853.66, + "end": 40855.61, + "probability": 0.9556 + }, + { + "start": 40855.74, + "end": 40858.42, + "probability": 0.9044 + }, + { + "start": 40859.76, + "end": 40860.06, + "probability": 0.7677 + }, + { + "start": 40860.2, + "end": 40862.92, + "probability": 0.6658 + }, + { + "start": 40862.92, + "end": 40864.88, + "probability": 0.6947 + }, + { + "start": 40865.78, + "end": 40866.52, + "probability": 0.6161 + }, + { + "start": 40866.56, + "end": 40867.7, + "probability": 0.7264 + }, + { + "start": 40867.76, + "end": 40868.3, + "probability": 0.8797 + }, + { + "start": 40868.32, + "end": 40870.24, + "probability": 0.9631 + }, + { + "start": 40871.1, + "end": 40875.08, + "probability": 0.9574 + }, + { + "start": 40875.16, + "end": 40876.68, + "probability": 0.8296 + }, + { + "start": 40876.78, + "end": 40877.2, + "probability": 0.9114 + }, + { + "start": 40877.34, + "end": 40879.35, + "probability": 0.8014 + }, + { + "start": 40879.58, + "end": 40879.86, + "probability": 0.7186 + }, + { + "start": 40880.0, + "end": 40880.78, + "probability": 0.8819 + }, + { + "start": 40880.84, + "end": 40881.42, + "probability": 0.8468 + }, + { + "start": 40881.62, + "end": 40882.16, + "probability": 0.9807 + }, + { + "start": 40883.6, + "end": 40887.16, + "probability": 0.9243 + }, + { + "start": 40887.24, + "end": 40888.62, + "probability": 0.9987 + }, + { + "start": 40888.86, + "end": 40890.54, + "probability": 0.7492 + }, + { + "start": 40890.58, + "end": 40891.02, + "probability": 0.6832 + }, + { + "start": 40891.1, + "end": 40893.68, + "probability": 0.9294 + }, + { + "start": 40893.9, + "end": 40896.92, + "probability": 0.952 + }, + { + "start": 40897.54, + "end": 40899.42, + "probability": 0.8184 + }, + { + "start": 40901.62, + "end": 40905.52, + "probability": 0.9927 + }, + { + "start": 40905.7, + "end": 40905.94, + "probability": 0.7081 + }, + { + "start": 40906.08, + "end": 40907.2, + "probability": 0.9407 + }, + { + "start": 40907.36, + "end": 40908.38, + "probability": 0.8643 + }, + { + "start": 40908.38, + "end": 40911.12, + "probability": 0.8181 + }, + { + "start": 40911.72, + "end": 40913.06, + "probability": 0.766 + }, + { + "start": 40914.02, + "end": 40919.18, + "probability": 0.9861 + }, + { + "start": 40920.06, + "end": 40924.42, + "probability": 0.7024 + }, + { + "start": 40924.66, + "end": 40924.7, + "probability": 0.659 + }, + { + "start": 40924.76, + "end": 40925.9, + "probability": 0.9141 + }, + { + "start": 40926.34, + "end": 40927.23, + "probability": 0.637 + }, + { + "start": 40928.08, + "end": 40932.04, + "probability": 0.8158 + }, + { + "start": 40933.0, + "end": 40935.04, + "probability": 0.7331 + }, + { + "start": 40935.04, + "end": 40939.98, + "probability": 0.9408 + }, + { + "start": 40941.14, + "end": 40943.22, + "probability": 0.9552 + }, + { + "start": 40943.56, + "end": 40945.22, + "probability": 0.9059 + }, + { + "start": 40945.46, + "end": 40948.68, + "probability": 0.967 + }, + { + "start": 40949.24, + "end": 40950.0, + "probability": 0.1788 + }, + { + "start": 40950.08, + "end": 40950.48, + "probability": 0.9389 + }, + { + "start": 40951.06, + "end": 40954.72, + "probability": 0.5111 + }, + { + "start": 40955.62, + "end": 40957.96, + "probability": 0.7699 + }, + { + "start": 40959.3, + "end": 40961.02, + "probability": 0.699 + }, + { + "start": 40961.7, + "end": 40963.6, + "probability": 0.9753 + }, + { + "start": 40963.92, + "end": 40964.06, + "probability": 0.4866 + }, + { + "start": 40964.1, + "end": 40965.24, + "probability": 0.8961 + }, + { + "start": 40965.34, + "end": 40967.68, + "probability": 0.8348 + }, + { + "start": 40968.22, + "end": 40970.98, + "probability": 0.7899 + }, + { + "start": 40971.46, + "end": 40973.56, + "probability": 0.5718 + }, + { + "start": 40974.1, + "end": 40976.88, + "probability": 0.9764 + }, + { + "start": 40977.36, + "end": 40979.72, + "probability": 0.4471 + }, + { + "start": 40979.84, + "end": 40980.4, + "probability": 0.4299 + }, + { + "start": 40982.08, + "end": 40982.88, + "probability": 0.732 + }, + { + "start": 40983.9, + "end": 40984.78, + "probability": 0.8474 + }, + { + "start": 40992.92, + "end": 40993.72, + "probability": 0.4406 + }, + { + "start": 40994.78, + "end": 40997.42, + "probability": 0.9393 + }, + { + "start": 40998.9, + "end": 41000.16, + "probability": 0.8151 + }, + { + "start": 41012.68, + "end": 41015.66, + "probability": 0.7377 + }, + { + "start": 41016.78, + "end": 41018.64, + "probability": 0.7123 + }, + { + "start": 41019.86, + "end": 41021.74, + "probability": 0.9691 + }, + { + "start": 41021.88, + "end": 41024.62, + "probability": 0.9785 + }, + { + "start": 41027.64, + "end": 41030.01, + "probability": 0.4209 + }, + { + "start": 41030.58, + "end": 41032.3, + "probability": 0.6429 + }, + { + "start": 41032.98, + "end": 41037.2, + "probability": 0.9715 + }, + { + "start": 41037.3, + "end": 41039.88, + "probability": 0.9892 + }, + { + "start": 41040.74, + "end": 41045.54, + "probability": 0.9811 + }, + { + "start": 41046.32, + "end": 41046.39, + "probability": 0.3391 + }, + { + "start": 41047.64, + "end": 41048.04, + "probability": 0.6353 + }, + { + "start": 41048.5, + "end": 41049.72, + "probability": 0.9733 + }, + { + "start": 41050.66, + "end": 41054.02, + "probability": 0.992 + }, + { + "start": 41054.16, + "end": 41057.88, + "probability": 0.9979 + }, + { + "start": 41058.72, + "end": 41059.66, + "probability": 0.8298 + }, + { + "start": 41061.26, + "end": 41062.38, + "probability": 0.7633 + }, + { + "start": 41062.44, + "end": 41065.0, + "probability": 0.9609 + }, + { + "start": 41065.1, + "end": 41066.02, + "probability": 0.8623 + }, + { + "start": 41066.6, + "end": 41067.64, + "probability": 0.9693 + }, + { + "start": 41069.76, + "end": 41072.7, + "probability": 0.9735 + }, + { + "start": 41072.84, + "end": 41074.34, + "probability": 0.9765 + }, + { + "start": 41074.58, + "end": 41077.14, + "probability": 0.4867 + }, + { + "start": 41077.44, + "end": 41080.78, + "probability": 0.824 + }, + { + "start": 41081.52, + "end": 41084.6, + "probability": 0.9777 + }, + { + "start": 41084.76, + "end": 41086.1, + "probability": 0.9929 + }, + { + "start": 41086.98, + "end": 41089.64, + "probability": 0.981 + }, + { + "start": 41089.92, + "end": 41090.9, + "probability": 0.4874 + }, + { + "start": 41091.46, + "end": 41093.8, + "probability": 0.9661 + }, + { + "start": 41093.9, + "end": 41096.8, + "probability": 0.5003 + }, + { + "start": 41096.94, + "end": 41098.68, + "probability": 0.9864 + }, + { + "start": 41099.78, + "end": 41102.46, + "probability": 0.7432 + }, + { + "start": 41103.14, + "end": 41103.98, + "probability": 0.7839 + }, + { + "start": 41104.74, + "end": 41107.36, + "probability": 0.9619 + }, + { + "start": 41107.78, + "end": 41108.98, + "probability": 0.9106 + }, + { + "start": 41109.96, + "end": 41111.68, + "probability": 0.908 + }, + { + "start": 41111.94, + "end": 41113.38, + "probability": 0.8431 + }, + { + "start": 41113.58, + "end": 41114.28, + "probability": 0.5683 + }, + { + "start": 41114.46, + "end": 41115.42, + "probability": 0.6064 + }, + { + "start": 41115.62, + "end": 41117.33, + "probability": 0.9342 + }, + { + "start": 41118.08, + "end": 41120.88, + "probability": 0.984 + }, + { + "start": 41120.98, + "end": 41123.92, + "probability": 0.7658 + }, + { + "start": 41124.68, + "end": 41124.8, + "probability": 0.2529 + }, + { + "start": 41124.8, + "end": 41127.0, + "probability": 0.762 + }, + { + "start": 41127.1, + "end": 41129.14, + "probability": 0.574 + }, + { + "start": 41129.3, + "end": 41131.28, + "probability": 0.9053 + }, + { + "start": 41132.45, + "end": 41133.3, + "probability": 0.9293 + }, + { + "start": 41133.72, + "end": 41134.08, + "probability": 0.7759 + }, + { + "start": 41134.3, + "end": 41135.34, + "probability": 0.9181 + }, + { + "start": 41135.76, + "end": 41138.9, + "probability": 0.9856 + }, + { + "start": 41139.08, + "end": 41140.12, + "probability": 0.979 + }, + { + "start": 41140.26, + "end": 41141.1, + "probability": 0.6138 + }, + { + "start": 41142.08, + "end": 41143.94, + "probability": 0.4273 + }, + { + "start": 41144.14, + "end": 41146.1, + "probability": 0.7168 + }, + { + "start": 41146.76, + "end": 41148.42, + "probability": 0.7722 + }, + { + "start": 41149.08, + "end": 41149.91, + "probability": 0.7031 + }, + { + "start": 41150.68, + "end": 41152.08, + "probability": 0.7547 + }, + { + "start": 41152.66, + "end": 41154.74, + "probability": 0.9977 + }, + { + "start": 41155.3, + "end": 41156.18, + "probability": 0.6709 + }, + { + "start": 41156.68, + "end": 41158.76, + "probability": 0.6532 + }, + { + "start": 41159.32, + "end": 41160.38, + "probability": 0.8566 + }, + { + "start": 41162.62, + "end": 41163.58, + "probability": 0.805 + }, + { + "start": 41165.0, + "end": 41166.52, + "probability": 0.673 + }, + { + "start": 41167.22, + "end": 41168.74, + "probability": 0.2873 + }, + { + "start": 41168.74, + "end": 41169.54, + "probability": 0.7532 + }, + { + "start": 41169.74, + "end": 41170.34, + "probability": 0.4547 + }, + { + "start": 41171.38, + "end": 41172.28, + "probability": 0.9866 + }, + { + "start": 41174.22, + "end": 41176.76, + "probability": 0.9813 + }, + { + "start": 41177.08, + "end": 41177.59, + "probability": 0.9106 + }, + { + "start": 41179.04, + "end": 41180.0, + "probability": 0.7502 + }, + { + "start": 41181.54, + "end": 41182.12, + "probability": 0.8256 + }, + { + "start": 41183.22, + "end": 41184.3, + "probability": 0.7974 + }, + { + "start": 41184.98, + "end": 41187.34, + "probability": 0.997 + }, + { + "start": 41188.54, + "end": 41189.9, + "probability": 0.9828 + }, + { + "start": 41190.04, + "end": 41193.1, + "probability": 0.9969 + }, + { + "start": 41193.28, + "end": 41194.76, + "probability": 0.9526 + }, + { + "start": 41195.72, + "end": 41197.5, + "probability": 0.7423 + }, + { + "start": 41197.68, + "end": 41201.96, + "probability": 0.9681 + }, + { + "start": 41201.96, + "end": 41206.88, + "probability": 0.9978 + }, + { + "start": 41207.7, + "end": 41210.42, + "probability": 0.8991 + }, + { + "start": 41211.06, + "end": 41215.62, + "probability": 0.9685 + }, + { + "start": 41215.72, + "end": 41216.76, + "probability": 0.8794 + }, + { + "start": 41217.78, + "end": 41220.14, + "probability": 0.9217 + }, + { + "start": 41220.5, + "end": 41224.12, + "probability": 0.6938 + }, + { + "start": 41224.22, + "end": 41231.52, + "probability": 0.7414 + }, + { + "start": 41233.02, + "end": 41236.2, + "probability": 0.9697 + }, + { + "start": 41236.72, + "end": 41240.18, + "probability": 0.9976 + }, + { + "start": 41240.26, + "end": 41244.12, + "probability": 0.9724 + }, + { + "start": 41244.18, + "end": 41244.48, + "probability": 0.677 + }, + { + "start": 41244.54, + "end": 41248.66, + "probability": 0.9909 + }, + { + "start": 41249.34, + "end": 41252.58, + "probability": 0.9932 + }, + { + "start": 41253.0, + "end": 41253.89, + "probability": 0.9603 + }, + { + "start": 41254.08, + "end": 41254.62, + "probability": 0.9282 + }, + { + "start": 41255.08, + "end": 41258.06, + "probability": 0.9912 + }, + { + "start": 41258.2, + "end": 41262.46, + "probability": 0.8836 + }, + { + "start": 41262.46, + "end": 41263.28, + "probability": 0.8422 + }, + { + "start": 41263.9, + "end": 41269.22, + "probability": 0.9717 + }, + { + "start": 41269.84, + "end": 41274.5, + "probability": 0.8198 + }, + { + "start": 41274.66, + "end": 41279.54, + "probability": 0.99 + }, + { + "start": 41279.54, + "end": 41285.22, + "probability": 0.9583 + }, + { + "start": 41285.22, + "end": 41288.64, + "probability": 0.9941 + }, + { + "start": 41288.88, + "end": 41289.44, + "probability": 0.8234 + }, + { + "start": 41290.96, + "end": 41294.37, + "probability": 0.9467 + }, + { + "start": 41294.52, + "end": 41295.54, + "probability": 0.7962 + }, + { + "start": 41296.96, + "end": 41297.48, + "probability": 0.2846 + }, + { + "start": 41297.6, + "end": 41297.95, + "probability": 0.9621 + }, + { + "start": 41298.1, + "end": 41300.14, + "probability": 0.556 + }, + { + "start": 41300.18, + "end": 41301.11, + "probability": 0.978 + }, + { + "start": 41302.36, + "end": 41303.08, + "probability": 0.5618 + }, + { + "start": 41303.4, + "end": 41305.46, + "probability": 0.9063 + }, + { + "start": 41305.78, + "end": 41306.23, + "probability": 0.9272 + }, + { + "start": 41306.3, + "end": 41306.7, + "probability": 0.5311 + }, + { + "start": 41307.44, + "end": 41309.1, + "probability": 0.8039 + }, + { + "start": 41309.72, + "end": 41312.9, + "probability": 0.948 + }, + { + "start": 41314.14, + "end": 41315.85, + "probability": 0.7032 + }, + { + "start": 41316.62, + "end": 41316.8, + "probability": 0.7635 + }, + { + "start": 41317.34, + "end": 41317.93, + "probability": 0.9246 + }, + { + "start": 41318.92, + "end": 41319.38, + "probability": 0.9637 + }, + { + "start": 41319.9, + "end": 41320.38, + "probability": 0.4848 + }, + { + "start": 41321.04, + "end": 41321.58, + "probability": 0.3929 + }, + { + "start": 41322.18, + "end": 41323.92, + "probability": 0.7766 + }, + { + "start": 41324.42, + "end": 41326.1, + "probability": 0.9292 + }, + { + "start": 41326.66, + "end": 41328.6, + "probability": 0.9565 + }, + { + "start": 41328.68, + "end": 41329.0, + "probability": 0.479 + }, + { + "start": 41329.46, + "end": 41331.42, + "probability": 0.9541 + }, + { + "start": 41332.06, + "end": 41332.78, + "probability": 0.9968 + }, + { + "start": 41333.2, + "end": 41334.18, + "probability": 0.9641 + }, + { + "start": 41335.2, + "end": 41335.92, + "probability": 0.8754 + }, + { + "start": 41336.68, + "end": 41338.42, + "probability": 0.963 + }, + { + "start": 41338.64, + "end": 41341.38, + "probability": 0.9607 + }, + { + "start": 41341.76, + "end": 41343.89, + "probability": 0.9902 + }, + { + "start": 41344.32, + "end": 41345.4, + "probability": 0.5328 + }, + { + "start": 41346.6, + "end": 41346.7, + "probability": 0.7238 + }, + { + "start": 41348.31, + "end": 41349.78, + "probability": 0.8326 + }, + { + "start": 41350.12, + "end": 41350.68, + "probability": 0.991 + }, + { + "start": 41351.6, + "end": 41352.34, + "probability": 0.2117 + }, + { + "start": 41353.84, + "end": 41356.48, + "probability": 0.8452 + }, + { + "start": 41357.22, + "end": 41361.42, + "probability": 0.9334 + }, + { + "start": 41368.98, + "end": 41373.54, + "probability": 0.9935 + }, + { + "start": 41374.4, + "end": 41375.38, + "probability": 0.8294 + }, + { + "start": 41376.08, + "end": 41376.28, + "probability": 0.9191 + }, + { + "start": 41377.14, + "end": 41378.92, + "probability": 0.8408 + }, + { + "start": 41379.48, + "end": 41381.56, + "probability": 0.8941 + }, + { + "start": 41382.76, + "end": 41386.7, + "probability": 0.9971 + }, + { + "start": 41388.18, + "end": 41389.9, + "probability": 0.8051 + }, + { + "start": 41391.14, + "end": 41392.3, + "probability": 0.8923 + }, + { + "start": 41392.94, + "end": 41395.1, + "probability": 0.9873 + }, + { + "start": 41395.62, + "end": 41396.86, + "probability": 0.9924 + }, + { + "start": 41400.05, + "end": 41402.8, + "probability": 0.9362 + }, + { + "start": 41403.78, + "end": 41404.0, + "probability": 0.2714 + }, + { + "start": 41404.06, + "end": 41405.12, + "probability": 0.8304 + }, + { + "start": 41405.38, + "end": 41408.19, + "probability": 0.9321 + }, + { + "start": 41409.4, + "end": 41412.32, + "probability": 0.6929 + }, + { + "start": 41412.38, + "end": 41413.8, + "probability": 0.7654 + }, + { + "start": 41413.86, + "end": 41415.38, + "probability": 0.9468 + }, + { + "start": 41416.12, + "end": 41419.72, + "probability": 0.7816 + }, + { + "start": 41419.98, + "end": 41420.76, + "probability": 0.979 + }, + { + "start": 41422.0, + "end": 41424.98, + "probability": 0.9681 + }, + { + "start": 41425.66, + "end": 41427.18, + "probability": 0.8271 + }, + { + "start": 41427.74, + "end": 41428.64, + "probability": 0.9563 + }, + { + "start": 41429.36, + "end": 41430.34, + "probability": 0.9721 + }, + { + "start": 41431.26, + "end": 41432.54, + "probability": 0.9858 + }, + { + "start": 41432.92, + "end": 41434.98, + "probability": 0.9879 + }, + { + "start": 41435.66, + "end": 41436.88, + "probability": 0.9973 + }, + { + "start": 41437.46, + "end": 41438.34, + "probability": 0.8521 + }, + { + "start": 41438.58, + "end": 41439.9, + "probability": 0.8364 + }, + { + "start": 41440.66, + "end": 41442.3, + "probability": 0.9954 + }, + { + "start": 41442.86, + "end": 41444.74, + "probability": 0.9841 + }, + { + "start": 41445.08, + "end": 41446.58, + "probability": 0.995 + }, + { + "start": 41447.7, + "end": 41448.54, + "probability": 0.7454 + }, + { + "start": 41448.78, + "end": 41450.08, + "probability": 0.8576 + }, + { + "start": 41450.08, + "end": 41451.16, + "probability": 0.9017 + }, + { + "start": 41451.64, + "end": 41454.06, + "probability": 0.8714 + }, + { + "start": 41454.56, + "end": 41455.52, + "probability": 0.8674 + }, + { + "start": 41456.72, + "end": 41458.26, + "probability": 0.8296 + }, + { + "start": 41458.8, + "end": 41460.92, + "probability": 0.9092 + }, + { + "start": 41463.32, + "end": 41465.02, + "probability": 0.5988 + }, + { + "start": 41465.04, + "end": 41466.74, + "probability": 0.9365 + }, + { + "start": 41468.46, + "end": 41469.04, + "probability": 0.5605 + }, + { + "start": 41471.92, + "end": 41472.98, + "probability": 0.8211 + }, + { + "start": 41473.08, + "end": 41477.04, + "probability": 0.9827 + }, + { + "start": 41477.1, + "end": 41480.56, + "probability": 0.9772 + }, + { + "start": 41480.74, + "end": 41482.18, + "probability": 0.9264 + }, + { + "start": 41483.82, + "end": 41489.24, + "probability": 0.9958 + }, + { + "start": 41489.28, + "end": 41490.45, + "probability": 0.9985 + }, + { + "start": 41491.54, + "end": 41493.86, + "probability": 0.8256 + }, + { + "start": 41495.12, + "end": 41496.94, + "probability": 0.9313 + }, + { + "start": 41497.74, + "end": 41502.1, + "probability": 0.9601 + }, + { + "start": 41503.0, + "end": 41508.48, + "probability": 0.9446 + }, + { + "start": 41509.36, + "end": 41510.78, + "probability": 0.6782 + }, + { + "start": 41511.52, + "end": 41515.04, + "probability": 0.8703 + }, + { + "start": 41515.3, + "end": 41518.68, + "probability": 0.7494 + }, + { + "start": 41518.76, + "end": 41520.84, + "probability": 0.9299 + }, + { + "start": 41520.92, + "end": 41523.74, + "probability": 0.7532 + }, + { + "start": 41523.96, + "end": 41526.98, + "probability": 0.8438 + }, + { + "start": 41528.16, + "end": 41529.54, + "probability": 0.9961 + }, + { + "start": 41530.88, + "end": 41533.14, + "probability": 0.91 + }, + { + "start": 41534.2, + "end": 41535.3, + "probability": 0.963 + }, + { + "start": 41536.56, + "end": 41541.78, + "probability": 0.7747 + }, + { + "start": 41542.18, + "end": 41542.98, + "probability": 0.8289 + }, + { + "start": 41543.78, + "end": 41547.44, + "probability": 0.9202 + }, + { + "start": 41548.04, + "end": 41551.72, + "probability": 0.9924 + }, + { + "start": 41551.9, + "end": 41556.78, + "probability": 0.9993 + }, + { + "start": 41557.04, + "end": 41558.76, + "probability": 0.9952 + }, + { + "start": 41559.22, + "end": 41562.01, + "probability": 0.8276 + }, + { + "start": 41564.76, + "end": 41567.1, + "probability": 0.9846 + }, + { + "start": 41567.28, + "end": 41570.62, + "probability": 0.9615 + }, + { + "start": 41571.16, + "end": 41574.88, + "probability": 0.9888 + }, + { + "start": 41574.96, + "end": 41577.48, + "probability": 0.9888 + }, + { + "start": 41577.82, + "end": 41578.14, + "probability": 0.7367 + }, + { + "start": 41578.96, + "end": 41580.48, + "probability": 0.8679 + }, + { + "start": 41582.72, + "end": 41585.7, + "probability": 0.986 + }, + { + "start": 41585.92, + "end": 41586.5, + "probability": 0.7972 + }, + { + "start": 41586.72, + "end": 41588.14, + "probability": 0.6631 + }, + { + "start": 41589.44, + "end": 41590.08, + "probability": 0.5701 + }, + { + "start": 41591.38, + "end": 41591.64, + "probability": 0.9504 + }, + { + "start": 41592.7, + "end": 41594.36, + "probability": 0.98 + }, + { + "start": 41595.14, + "end": 41596.18, + "probability": 0.7573 + }, + { + "start": 41596.66, + "end": 41597.68, + "probability": 0.9626 + }, + { + "start": 41598.34, + "end": 41601.14, + "probability": 0.9373 + }, + { + "start": 41601.18, + "end": 41602.38, + "probability": 0.9212 + }, + { + "start": 41603.54, + "end": 41603.88, + "probability": 0.4 + }, + { + "start": 41604.58, + "end": 41605.42, + "probability": 0.6487 + }, + { + "start": 41605.58, + "end": 41606.84, + "probability": 0.9082 + }, + { + "start": 41606.86, + "end": 41607.42, + "probability": 0.8041 + }, + { + "start": 41607.84, + "end": 41608.0, + "probability": 0.7543 + }, + { + "start": 41608.16, + "end": 41609.16, + "probability": 0.6343 + }, + { + "start": 41610.63, + "end": 41612.47, + "probability": 0.5624 + }, + { + "start": 41612.78, + "end": 41615.04, + "probability": 0.8397 + }, + { + "start": 41615.1, + "end": 41616.5, + "probability": 0.9827 + }, + { + "start": 41617.1, + "end": 41619.74, + "probability": 0.9881 + }, + { + "start": 41619.74, + "end": 41621.72, + "probability": 0.9641 + }, + { + "start": 41622.18, + "end": 41625.86, + "probability": 0.9916 + }, + { + "start": 41626.1, + "end": 41626.56, + "probability": 0.6843 + }, + { + "start": 41626.88, + "end": 41628.24, + "probability": 0.9732 + }, + { + "start": 41628.7, + "end": 41630.01, + "probability": 0.957 + }, + { + "start": 41630.16, + "end": 41632.88, + "probability": 0.8525 + }, + { + "start": 41633.16, + "end": 41633.3, + "probability": 0.4002 + }, + { + "start": 41633.3, + "end": 41634.46, + "probability": 0.9208 + }, + { + "start": 41634.7, + "end": 41636.1, + "probability": 0.9736 + }, + { + "start": 41636.42, + "end": 41638.34, + "probability": 0.8983 + }, + { + "start": 41639.18, + "end": 41639.42, + "probability": 0.6437 + }, + { + "start": 41639.9, + "end": 41640.44, + "probability": 0.9302 + }, + { + "start": 41641.38, + "end": 41642.06, + "probability": 0.6776 + }, + { + "start": 41643.18, + "end": 41644.5, + "probability": 0.5612 + }, + { + "start": 41644.6, + "end": 41647.09, + "probability": 0.6603 + }, + { + "start": 41654.26, + "end": 41654.6, + "probability": 0.3445 + }, + { + "start": 41654.86, + "end": 41657.33, + "probability": 0.8737 + }, + { + "start": 41660.2, + "end": 41664.14, + "probability": 0.9799 + }, + { + "start": 41665.85, + "end": 41668.12, + "probability": 0.9188 + }, + { + "start": 41670.58, + "end": 41674.78, + "probability": 0.8495 + }, + { + "start": 41675.18, + "end": 41678.26, + "probability": 0.9915 + }, + { + "start": 41678.72, + "end": 41682.38, + "probability": 0.9048 + }, + { + "start": 41683.08, + "end": 41684.8, + "probability": 0.9239 + }, + { + "start": 41687.04, + "end": 41687.72, + "probability": 0.766 + }, + { + "start": 41687.84, + "end": 41690.62, + "probability": 0.9456 + }, + { + "start": 41692.41, + "end": 41697.64, + "probability": 0.9821 + }, + { + "start": 41697.68, + "end": 41698.66, + "probability": 0.9114 + }, + { + "start": 41699.72, + "end": 41700.84, + "probability": 0.4857 + }, + { + "start": 41701.8, + "end": 41703.94, + "probability": 0.8139 + }, + { + "start": 41704.04, + "end": 41704.24, + "probability": 0.603 + }, + { + "start": 41705.52, + "end": 41707.66, + "probability": 0.9589 + }, + { + "start": 41707.88, + "end": 41708.3, + "probability": 0.9739 + }, + { + "start": 41708.38, + "end": 41708.75, + "probability": 0.986 + }, + { + "start": 41708.94, + "end": 41709.78, + "probability": 0.7632 + }, + { + "start": 41709.9, + "end": 41710.72, + "probability": 0.7903 + }, + { + "start": 41711.48, + "end": 41713.58, + "probability": 0.985 + }, + { + "start": 41715.0, + "end": 41715.91, + "probability": 0.9395 + }, + { + "start": 41716.66, + "end": 41717.11, + "probability": 0.8987 + }, + { + "start": 41717.32, + "end": 41719.02, + "probability": 0.9814 + }, + { + "start": 41719.12, + "end": 41720.84, + "probability": 0.9286 + }, + { + "start": 41721.6, + "end": 41722.56, + "probability": 0.9847 + }, + { + "start": 41722.68, + "end": 41723.94, + "probability": 0.9428 + }, + { + "start": 41724.3, + "end": 41726.2, + "probability": 0.9919 + }, + { + "start": 41726.34, + "end": 41728.34, + "probability": 0.9354 + }, + { + "start": 41729.44, + "end": 41732.34, + "probability": 0.9697 + }, + { + "start": 41733.48, + "end": 41735.28, + "probability": 0.6901 + }, + { + "start": 41736.32, + "end": 41737.32, + "probability": 0.4893 + }, + { + "start": 41737.8, + "end": 41738.02, + "probability": 0.1609 + }, + { + "start": 41738.04, + "end": 41741.22, + "probability": 0.9058 + }, + { + "start": 41742.22, + "end": 41744.54, + "probability": 0.9404 + }, + { + "start": 41746.04, + "end": 41746.54, + "probability": 0.2527 + }, + { + "start": 41746.72, + "end": 41749.56, + "probability": 0.7987 + }, + { + "start": 41750.06, + "end": 41753.56, + "probability": 0.7949 + }, + { + "start": 41754.3, + "end": 41756.6, + "probability": 0.9297 + }, + { + "start": 41757.16, + "end": 41758.82, + "probability": 0.3581 + }, + { + "start": 41759.36, + "end": 41759.82, + "probability": 0.6586 + }, + { + "start": 41759.98, + "end": 41760.5, + "probability": 0.8706 + }, + { + "start": 41760.8, + "end": 41762.64, + "probability": 0.706 + }, + { + "start": 41762.72, + "end": 41766.2, + "probability": 0.9793 + }, + { + "start": 41766.34, + "end": 41767.0, + "probability": 0.5608 + }, + { + "start": 41767.24, + "end": 41767.86, + "probability": 0.6976 + }, + { + "start": 41767.98, + "end": 41769.5, + "probability": 0.938 + }, + { + "start": 41769.94, + "end": 41770.82, + "probability": 0.9651 + }, + { + "start": 41772.44, + "end": 41772.8, + "probability": 0.6212 + }, + { + "start": 41772.96, + "end": 41773.52, + "probability": 0.7744 + }, + { + "start": 41781.83, + "end": 41784.06, + "probability": 0.4932 + }, + { + "start": 41785.62, + "end": 41786.92, + "probability": 0.5865 + }, + { + "start": 41787.2, + "end": 41788.36, + "probability": 0.8556 + }, + { + "start": 41788.58, + "end": 41790.5, + "probability": 0.9703 + }, + { + "start": 41791.5, + "end": 41792.58, + "probability": 0.873 + }, + { + "start": 41793.88, + "end": 41796.5, + "probability": 0.9611 + }, + { + "start": 41797.24, + "end": 41800.84, + "probability": 0.9548 + }, + { + "start": 41801.56, + "end": 41802.84, + "probability": 0.9961 + }, + { + "start": 41803.12, + "end": 41807.84, + "probability": 0.9881 + }, + { + "start": 41809.4, + "end": 41812.36, + "probability": 0.9988 + }, + { + "start": 41812.46, + "end": 41816.26, + "probability": 0.9955 + }, + { + "start": 41817.2, + "end": 41818.66, + "probability": 0.7625 + }, + { + "start": 41820.48, + "end": 41821.36, + "probability": 0.9927 + }, + { + "start": 41822.38, + "end": 41824.14, + "probability": 0.9888 + }, + { + "start": 41828.32, + "end": 41831.84, + "probability": 0.9889 + }, + { + "start": 41833.18, + "end": 41836.22, + "probability": 0.9873 + }, + { + "start": 41836.96, + "end": 41842.48, + "probability": 0.9971 + }, + { + "start": 41843.38, + "end": 41845.6, + "probability": 0.9978 + }, + { + "start": 41846.14, + "end": 41849.04, + "probability": 0.9884 + }, + { + "start": 41849.46, + "end": 41849.62, + "probability": 0.6177 + }, + { + "start": 41850.02, + "end": 41850.71, + "probability": 0.6654 + }, + { + "start": 41851.52, + "end": 41852.8, + "probability": 0.991 + }, + { + "start": 41853.44, + "end": 41854.22, + "probability": 0.8735 + }, + { + "start": 41855.0, + "end": 41855.34, + "probability": 0.793 + }, + { + "start": 41855.48, + "end": 41858.96, + "probability": 0.9864 + }, + { + "start": 41858.96, + "end": 41859.92, + "probability": 0.8496 + }, + { + "start": 41860.2, + "end": 41861.2, + "probability": 0.5354 + }, + { + "start": 41861.2, + "end": 41861.64, + "probability": 0.6061 + }, + { + "start": 41862.26, + "end": 41864.79, + "probability": 0.9968 + }, + { + "start": 41865.06, + "end": 41869.14, + "probability": 0.9976 + }, + { + "start": 41869.28, + "end": 41871.8, + "probability": 0.8679 + }, + { + "start": 41872.12, + "end": 41873.46, + "probability": 0.505 + }, + { + "start": 41873.86, + "end": 41875.48, + "probability": 0.9775 + }, + { + "start": 41875.64, + "end": 41877.74, + "probability": 0.7944 + }, + { + "start": 41877.74, + "end": 41877.74, + "probability": 0.1231 + }, + { + "start": 41877.74, + "end": 41877.88, + "probability": 0.9221 + }, + { + "start": 41878.18, + "end": 41880.4, + "probability": 0.9966 + }, + { + "start": 41880.4, + "end": 41881.14, + "probability": 0.9743 + }, + { + "start": 41881.95, + "end": 41884.84, + "probability": 0.9978 + }, + { + "start": 41885.42, + "end": 41887.08, + "probability": 0.9178 + }, + { + "start": 41887.3, + "end": 41887.52, + "probability": 0.7301 + }, + { + "start": 41888.34, + "end": 41889.12, + "probability": 0.8528 + }, + { + "start": 41889.46, + "end": 41890.28, + "probability": 0.8029 + }, + { + "start": 41890.32, + "end": 41892.98, + "probability": 0.8958 + }, + { + "start": 41893.26, + "end": 41894.34, + "probability": 0.9843 + }, + { + "start": 41894.44, + "end": 41896.64, + "probability": 0.9883 + }, + { + "start": 41897.36, + "end": 41899.64, + "probability": 0.9907 + }, + { + "start": 41899.74, + "end": 41900.4, + "probability": 0.9956 + }, + { + "start": 41901.06, + "end": 41903.0, + "probability": 0.9434 + }, + { + "start": 41903.76, + "end": 41903.86, + "probability": 0.4496 + }, + { + "start": 41903.98, + "end": 41905.16, + "probability": 0.9126 + }, + { + "start": 41905.7, + "end": 41906.5, + "probability": 0.6826 + }, + { + "start": 41906.72, + "end": 41907.72, + "probability": 0.1854 + }, + { + "start": 41907.84, + "end": 41908.58, + "probability": 0.793 + }, + { + "start": 41909.42, + "end": 41911.32, + "probability": 0.8582 + }, + { + "start": 41911.54, + "end": 41912.0, + "probability": 0.8447 + }, + { + "start": 41913.22, + "end": 41915.41, + "probability": 0.9741 + }, + { + "start": 41915.96, + "end": 41916.49, + "probability": 0.8969 + }, + { + "start": 41917.98, + "end": 41920.82, + "probability": 0.9819 + }, + { + "start": 41921.48, + "end": 41925.64, + "probability": 0.8897 + }, + { + "start": 41925.64, + "end": 41927.64, + "probability": 0.9961 + }, + { + "start": 41927.94, + "end": 41928.82, + "probability": 0.901 + }, + { + "start": 41929.1, + "end": 41929.46, + "probability": 0.6394 + }, + { + "start": 41930.0, + "end": 41932.52, + "probability": 0.9791 + }, + { + "start": 41933.26, + "end": 41934.2, + "probability": 0.8092 + }, + { + "start": 41934.2, + "end": 41935.76, + "probability": 0.8172 + }, + { + "start": 41936.32, + "end": 41939.14, + "probability": 0.9295 + }, + { + "start": 41939.68, + "end": 41940.08, + "probability": 0.9905 + }, + { + "start": 41940.88, + "end": 41941.54, + "probability": 0.9841 + }, + { + "start": 41941.96, + "end": 41943.7, + "probability": 0.9728 + }, + { + "start": 41944.1, + "end": 41945.62, + "probability": 0.9965 + }, + { + "start": 41946.36, + "end": 41947.36, + "probability": 0.7627 + }, + { + "start": 41947.92, + "end": 41948.1, + "probability": 0.3212 + }, + { + "start": 41948.1, + "end": 41951.44, + "probability": 0.956 + }, + { + "start": 41951.86, + "end": 41954.44, + "probability": 0.1102 + }, + { + "start": 41954.44, + "end": 41955.54, + "probability": 0.6581 + }, + { + "start": 41955.66, + "end": 41956.1, + "probability": 0.0355 + }, + { + "start": 41957.14, + "end": 41958.26, + "probability": 0.3102 + }, + { + "start": 41959.84, + "end": 41959.94, + "probability": 0.5776 + }, + { + "start": 41959.96, + "end": 41960.52, + "probability": 0.7008 + }, + { + "start": 41960.6, + "end": 41962.76, + "probability": 0.9906 + }, + { + "start": 41962.86, + "end": 41964.5, + "probability": 0.9906 + }, + { + "start": 41964.54, + "end": 41964.82, + "probability": 0.8041 + }, + { + "start": 41964.92, + "end": 41967.38, + "probability": 0.5998 + }, + { + "start": 41967.98, + "end": 41968.84, + "probability": 0.7192 + }, + { + "start": 41969.6, + "end": 41969.74, + "probability": 0.4225 + }, + { + "start": 41970.36, + "end": 41971.44, + "probability": 0.3262 + }, + { + "start": 41971.66, + "end": 41972.3, + "probability": 0.1927 + }, + { + "start": 41972.3, + "end": 41972.3, + "probability": 0.164 + }, + { + "start": 41972.48, + "end": 41973.02, + "probability": 0.7392 + }, + { + "start": 41973.38, + "end": 41975.74, + "probability": 0.9771 + }, + { + "start": 41975.86, + "end": 41976.86, + "probability": 0.8053 + }, + { + "start": 41976.96, + "end": 41977.28, + "probability": 0.8882 + }, + { + "start": 41977.28, + "end": 41979.1, + "probability": 0.1411 + }, + { + "start": 41979.34, + "end": 41984.84, + "probability": 0.9088 + }, + { + "start": 41992.93, + "end": 41995.52, + "probability": 0.9253 + }, + { + "start": 41997.66, + "end": 41998.66, + "probability": 0.7791 + }, + { + "start": 41998.74, + "end": 41999.64, + "probability": 0.9868 + }, + { + "start": 41999.74, + "end": 42000.38, + "probability": 0.8518 + }, + { + "start": 42000.46, + "end": 42001.06, + "probability": 0.7719 + }, + { + "start": 42001.12, + "end": 42001.95, + "probability": 0.9424 + }, + { + "start": 42002.66, + "end": 42005.37, + "probability": 0.9492 + }, + { + "start": 42005.56, + "end": 42006.68, + "probability": 0.9216 + }, + { + "start": 42007.58, + "end": 42009.56, + "probability": 0.8237 + }, + { + "start": 42009.66, + "end": 42010.48, + "probability": 0.8988 + }, + { + "start": 42010.56, + "end": 42011.1, + "probability": 0.9081 + }, + { + "start": 42011.62, + "end": 42013.56, + "probability": 0.8416 + }, + { + "start": 42014.54, + "end": 42017.0, + "probability": 0.9746 + }, + { + "start": 42017.16, + "end": 42018.36, + "probability": 0.9669 + }, + { + "start": 42018.86, + "end": 42020.32, + "probability": 0.9899 + }, + { + "start": 42021.04, + "end": 42022.46, + "probability": 0.8663 + }, + { + "start": 42023.14, + "end": 42023.49, + "probability": 0.9521 + }, + { + "start": 42024.32, + "end": 42025.08, + "probability": 0.4819 + }, + { + "start": 42025.5, + "end": 42025.88, + "probability": 0.8599 + }, + { + "start": 42026.16, + "end": 42026.5, + "probability": 0.7838 + }, + { + "start": 42026.56, + "end": 42026.94, + "probability": 0.9573 + }, + { + "start": 42027.14, + "end": 42027.58, + "probability": 0.8055 + }, + { + "start": 42027.82, + "end": 42028.06, + "probability": 0.7937 + }, + { + "start": 42028.54, + "end": 42029.98, + "probability": 0.9946 + }, + { + "start": 42030.34, + "end": 42030.74, + "probability": 0.7773 + }, + { + "start": 42030.82, + "end": 42031.34, + "probability": 0.7414 + }, + { + "start": 42031.68, + "end": 42032.78, + "probability": 0.7771 + }, + { + "start": 42033.48, + "end": 42035.22, + "probability": 0.66 + }, + { + "start": 42035.38, + "end": 42037.02, + "probability": 0.827 + }, + { + "start": 42037.54, + "end": 42039.24, + "probability": 0.8577 + }, + { + "start": 42039.7, + "end": 42043.5, + "probability": 0.8199 + }, + { + "start": 42045.4, + "end": 42046.6, + "probability": 0.7895 + }, + { + "start": 42047.14, + "end": 42048.3, + "probability": 0.9301 + }, + { + "start": 42048.54, + "end": 42048.58, + "probability": 0.5995 + }, + { + "start": 42048.68, + "end": 42051.64, + "probability": 0.9784 + }, + { + "start": 42051.8, + "end": 42055.08, + "probability": 0.9357 + }, + { + "start": 42056.54, + "end": 42059.36, + "probability": 0.7613 + }, + { + "start": 42060.42, + "end": 42062.64, + "probability": 0.8644 + }, + { + "start": 42063.2, + "end": 42065.34, + "probability": 0.4561 + }, + { + "start": 42066.0, + "end": 42069.44, + "probability": 0.985 + }, + { + "start": 42070.4, + "end": 42073.16, + "probability": 0.9976 + }, + { + "start": 42073.6, + "end": 42077.12, + "probability": 0.9972 + }, + { + "start": 42078.42, + "end": 42081.81, + "probability": 0.9423 + }, + { + "start": 42082.12, + "end": 42084.32, + "probability": 0.9466 + }, + { + "start": 42084.74, + "end": 42086.3, + "probability": 0.9393 + }, + { + "start": 42087.2, + "end": 42090.59, + "probability": 0.9849 + }, + { + "start": 42091.14, + "end": 42092.5, + "probability": 0.6776 + }, + { + "start": 42094.52, + "end": 42099.06, + "probability": 0.7123 + }, + { + "start": 42100.16, + "end": 42102.16, + "probability": 0.7533 + }, + { + "start": 42102.28, + "end": 42106.62, + "probability": 0.9408 + }, + { + "start": 42107.16, + "end": 42109.04, + "probability": 0.927 + }, + { + "start": 42109.9, + "end": 42111.1, + "probability": 0.8624 + }, + { + "start": 42111.66, + "end": 42113.42, + "probability": 0.4691 + }, + { + "start": 42114.62, + "end": 42116.28, + "probability": 0.8877 + }, + { + "start": 42117.54, + "end": 42120.04, + "probability": 0.7531 + }, + { + "start": 42120.62, + "end": 42122.04, + "probability": 0.8277 + }, + { + "start": 42123.56, + "end": 42126.64, + "probability": 0.7313 + }, + { + "start": 42127.46, + "end": 42128.64, + "probability": 0.9291 + }, + { + "start": 42129.84, + "end": 42131.12, + "probability": 0.85 + }, + { + "start": 42131.78, + "end": 42135.1, + "probability": 0.5554 + }, + { + "start": 42135.44, + "end": 42136.35, + "probability": 0.7151 + }, + { + "start": 42137.06, + "end": 42138.64, + "probability": 0.8473 + }, + { + "start": 42141.46, + "end": 42142.24, + "probability": 0.9594 + }, + { + "start": 42145.04, + "end": 42146.5, + "probability": 0.8944 + }, + { + "start": 42146.58, + "end": 42147.3, + "probability": 0.8653 + }, + { + "start": 42147.56, + "end": 42149.26, + "probability": 0.6808 + }, + { + "start": 42149.36, + "end": 42150.22, + "probability": 0.7641 + }, + { + "start": 42150.98, + "end": 42154.05, + "probability": 0.9868 + }, + { + "start": 42154.5, + "end": 42155.88, + "probability": 0.8724 + }, + { + "start": 42156.9, + "end": 42162.78, + "probability": 0.9851 + }, + { + "start": 42163.22, + "end": 42166.14, + "probability": 0.8251 + }, + { + "start": 42166.78, + "end": 42167.6, + "probability": 0.7828 + }, + { + "start": 42168.18, + "end": 42168.4, + "probability": 0.9984 + }, + { + "start": 42169.06, + "end": 42171.58, + "probability": 0.7926 + }, + { + "start": 42174.02, + "end": 42174.02, + "probability": 0.0012 + }, + { + "start": 42181.8, + "end": 42182.18, + "probability": 0.1871 + }, + { + "start": 42182.18, + "end": 42182.18, + "probability": 0.2153 + }, + { + "start": 42182.18, + "end": 42182.2, + "probability": 0.0934 + }, + { + "start": 42182.2, + "end": 42183.52, + "probability": 0.4451 + }, + { + "start": 42183.6, + "end": 42187.18, + "probability": 0.0467 + }, + { + "start": 42187.75, + "end": 42188.72, + "probability": 0.0512 + }, + { + "start": 42188.72, + "end": 42188.72, + "probability": 0.0948 + }, + { + "start": 42188.72, + "end": 42188.72, + "probability": 0.1652 + }, + { + "start": 42188.72, + "end": 42191.36, + "probability": 0.6655 + }, + { + "start": 42191.46, + "end": 42191.96, + "probability": 0.9053 + }, + { + "start": 42192.4, + "end": 42192.62, + "probability": 0.27 + }, + { + "start": 42193.96, + "end": 42195.96, + "probability": 0.957 + }, + { + "start": 42196.5, + "end": 42199.14, + "probability": 0.7184 + }, + { + "start": 42199.14, + "end": 42201.38, + "probability": 0.979 + }, + { + "start": 42201.58, + "end": 42202.18, + "probability": 0.2105 + }, + { + "start": 42202.22, + "end": 42203.76, + "probability": 0.6489 + }, + { + "start": 42203.84, + "end": 42204.96, + "probability": 0.7377 + }, + { + "start": 42205.16, + "end": 42206.36, + "probability": 0.8828 + }, + { + "start": 42206.6, + "end": 42211.0, + "probability": 0.593 + }, + { + "start": 42211.5, + "end": 42212.72, + "probability": 0.6576 + }, + { + "start": 42213.96, + "end": 42215.1, + "probability": 0.7509 + }, + { + "start": 42215.24, + "end": 42216.6, + "probability": 0.8468 + }, + { + "start": 42216.8, + "end": 42217.73, + "probability": 0.9249 + }, + { + "start": 42217.92, + "end": 42218.76, + "probability": 0.6925 + }, + { + "start": 42218.96, + "end": 42223.22, + "probability": 0.6993 + }, + { + "start": 42223.68, + "end": 42225.53, + "probability": 0.9485 + }, + { + "start": 42226.42, + "end": 42227.4, + "probability": 0.9671 + }, + { + "start": 42227.92, + "end": 42228.76, + "probability": 0.7137 + }, + { + "start": 42229.28, + "end": 42231.2, + "probability": 0.9648 + }, + { + "start": 42231.72, + "end": 42233.92, + "probability": 0.9973 + }, + { + "start": 42234.46, + "end": 42235.32, + "probability": 0.7941 + }, + { + "start": 42236.4, + "end": 42236.64, + "probability": 0.9203 + }, + { + "start": 42237.94, + "end": 42239.52, + "probability": 0.0389 + }, + { + "start": 42241.18, + "end": 42242.5, + "probability": 0.8291 + }, + { + "start": 42247.8, + "end": 42248.8, + "probability": 0.9941 + }, + { + "start": 42252.02, + "end": 42252.3, + "probability": 0.0064 + }, + { + "start": 42253.7, + "end": 42253.8, + "probability": 0.1707 + }, + { + "start": 42253.8, + "end": 42253.8, + "probability": 0.2535 + }, + { + "start": 42253.8, + "end": 42255.7, + "probability": 0.6589 + }, + { + "start": 42256.34, + "end": 42257.44, + "probability": 0.5649 + }, + { + "start": 42257.46, + "end": 42258.3, + "probability": 0.7994 + }, + { + "start": 42258.38, + "end": 42259.7, + "probability": 0.811 + }, + { + "start": 42260.32, + "end": 42261.24, + "probability": 0.8167 + }, + { + "start": 42261.54, + "end": 42262.12, + "probability": 0.9132 + }, + { + "start": 42262.72, + "end": 42263.94, + "probability": 0.891 + }, + { + "start": 42265.08, + "end": 42266.08, + "probability": 0.9194 + }, + { + "start": 42266.8, + "end": 42267.36, + "probability": 0.9647 + }, + { + "start": 42267.44, + "end": 42268.4, + "probability": 0.678 + }, + { + "start": 42268.46, + "end": 42270.4, + "probability": 0.9762 + }, + { + "start": 42272.86, + "end": 42273.08, + "probability": 0.0259 + }, + { + "start": 42273.08, + "end": 42273.46, + "probability": 0.6307 + }, + { + "start": 42273.58, + "end": 42273.96, + "probability": 0.0523 + }, + { + "start": 42273.96, + "end": 42276.36, + "probability": 0.9865 + }, + { + "start": 42278.18, + "end": 42281.54, + "probability": 0.7029 + }, + { + "start": 42282.22, + "end": 42282.4, + "probability": 0.1954 + }, + { + "start": 42284.3, + "end": 42301.26, + "probability": 0.6218 + }, + { + "start": 42301.94, + "end": 42306.12, + "probability": 0.9985 + }, + { + "start": 42306.84, + "end": 42309.35, + "probability": 0.9927 + }, + { + "start": 42310.2, + "end": 42313.62, + "probability": 0.9906 + }, + { + "start": 42314.56, + "end": 42316.38, + "probability": 0.9773 + }, + { + "start": 42318.04, + "end": 42321.94, + "probability": 0.9326 + }, + { + "start": 42322.14, + "end": 42325.28, + "probability": 0.9521 + }, + { + "start": 42325.86, + "end": 42327.4, + "probability": 0.9952 + }, + { + "start": 42327.94, + "end": 42331.02, + "probability": 0.9907 + }, + { + "start": 42331.22, + "end": 42331.82, + "probability": 0.865 + }, + { + "start": 42332.26, + "end": 42335.69, + "probability": 0.9762 + }, + { + "start": 42335.74, + "end": 42338.46, + "probability": 0.8902 + }, + { + "start": 42338.68, + "end": 42339.56, + "probability": 0.9475 + }, + { + "start": 42340.38, + "end": 42342.82, + "probability": 0.9821 + }, + { + "start": 42343.44, + "end": 42344.42, + "probability": 0.9304 + }, + { + "start": 42345.1, + "end": 42347.02, + "probability": 0.7682 + }, + { + "start": 42347.18, + "end": 42348.86, + "probability": 0.8171 + }, + { + "start": 42349.34, + "end": 42350.96, + "probability": 0.9956 + }, + { + "start": 42351.58, + "end": 42354.42, + "probability": 0.9868 + }, + { + "start": 42354.88, + "end": 42355.6, + "probability": 0.9641 + }, + { + "start": 42356.1, + "end": 42356.84, + "probability": 0.8779 + }, + { + "start": 42356.88, + "end": 42359.3, + "probability": 0.9932 + }, + { + "start": 42359.98, + "end": 42361.68, + "probability": 0.8293 + }, + { + "start": 42362.38, + "end": 42363.42, + "probability": 0.8779 + }, + { + "start": 42363.92, + "end": 42365.91, + "probability": 0.9612 + }, + { + "start": 42366.64, + "end": 42367.2, + "probability": 0.9722 + }, + { + "start": 42367.88, + "end": 42370.3, + "probability": 0.979 + }, + { + "start": 42370.42, + "end": 42371.21, + "probability": 0.7762 + }, + { + "start": 42371.36, + "end": 42372.76, + "probability": 0.7769 + }, + { + "start": 42374.62, + "end": 42377.9, + "probability": 0.5656 + }, + { + "start": 42384.08, + "end": 42385.8, + "probability": 0.5822 + }, + { + "start": 42392.5, + "end": 42392.5, + "probability": 0.2765 + }, + { + "start": 42392.5, + "end": 42396.98, + "probability": 0.9731 + }, + { + "start": 42398.16, + "end": 42402.3, + "probability": 0.9397 + }, + { + "start": 42403.36, + "end": 42404.26, + "probability": 0.9357 + }, + { + "start": 42404.82, + "end": 42406.32, + "probability": 0.9827 + }, + { + "start": 42406.44, + "end": 42407.06, + "probability": 0.8837 + }, + { + "start": 42407.5, + "end": 42410.64, + "probability": 0.9029 + }, + { + "start": 42411.22, + "end": 42412.06, + "probability": 0.5057 + }, + { + "start": 42412.58, + "end": 42413.8, + "probability": 0.9296 + }, + { + "start": 42414.92, + "end": 42416.84, + "probability": 0.9499 + }, + { + "start": 42417.96, + "end": 42421.72, + "probability": 0.9691 + }, + { + "start": 42422.52, + "end": 42424.5, + "probability": 0.9901 + }, + { + "start": 42425.9, + "end": 42427.0, + "probability": 0.7474 + }, + { + "start": 42427.24, + "end": 42428.44, + "probability": 0.9816 + }, + { + "start": 42428.48, + "end": 42429.62, + "probability": 0.6978 + }, + { + "start": 42430.74, + "end": 42432.88, + "probability": 0.9924 + }, + { + "start": 42433.18, + "end": 42438.98, + "probability": 0.9729 + }, + { + "start": 42439.7, + "end": 42443.52, + "probability": 0.9959 + }, + { + "start": 42443.7, + "end": 42445.48, + "probability": 0.8463 + }, + { + "start": 42446.64, + "end": 42453.16, + "probability": 0.9988 + }, + { + "start": 42453.16, + "end": 42460.9, + "probability": 0.9622 + }, + { + "start": 42460.98, + "end": 42464.2, + "probability": 0.938 + }, + { + "start": 42464.7, + "end": 42466.16, + "probability": 0.8805 + }, + { + "start": 42466.26, + "end": 42467.3, + "probability": 0.7347 + }, + { + "start": 42467.58, + "end": 42470.14, + "probability": 0.9717 + }, + { + "start": 42470.48, + "end": 42473.0, + "probability": 0.9888 + }, + { + "start": 42474.7, + "end": 42475.16, + "probability": 0.3329 + }, + { + "start": 42475.26, + "end": 42478.04, + "probability": 0.9883 + }, + { + "start": 42478.18, + "end": 42479.82, + "probability": 0.9976 + }, + { + "start": 42480.1, + "end": 42481.56, + "probability": 0.8732 + }, + { + "start": 42482.28, + "end": 42482.32, + "probability": 0.1479 + }, + { + "start": 42483.28, + "end": 42486.4, + "probability": 0.8228 + }, + { + "start": 42486.79, + "end": 42488.82, + "probability": 0.9336 + }, + { + "start": 42489.94, + "end": 42491.8, + "probability": 0.7923 + }, + { + "start": 42491.86, + "end": 42496.1, + "probability": 0.986 + }, + { + "start": 42496.24, + "end": 42497.67, + "probability": 0.9844 + }, + { + "start": 42499.0, + "end": 42500.44, + "probability": 0.9656 + }, + { + "start": 42501.12, + "end": 42504.88, + "probability": 0.9707 + }, + { + "start": 42505.06, + "end": 42505.9, + "probability": 0.9292 + }, + { + "start": 42506.24, + "end": 42507.13, + "probability": 0.9971 + }, + { + "start": 42507.8, + "end": 42510.0, + "probability": 0.936 + }, + { + "start": 42510.64, + "end": 42511.58, + "probability": 0.98 + }, + { + "start": 42512.1, + "end": 42514.64, + "probability": 0.9183 + }, + { + "start": 42514.86, + "end": 42516.1, + "probability": 0.9731 + }, + { + "start": 42516.2, + "end": 42518.58, + "probability": 0.2566 + }, + { + "start": 42518.58, + "end": 42519.26, + "probability": 0.67 + }, + { + "start": 42519.54, + "end": 42521.34, + "probability": 0.978 + }, + { + "start": 42521.42, + "end": 42522.16, + "probability": 0.785 + }, + { + "start": 42522.66, + "end": 42523.04, + "probability": 0.916 + }, + { + "start": 42523.56, + "end": 42523.86, + "probability": 0.922 + }, + { + "start": 42524.54, + "end": 42525.46, + "probability": 0.8552 + }, + { + "start": 42527.12, + "end": 42528.0, + "probability": 0.6812 + }, + { + "start": 42529.08, + "end": 42531.18, + "probability": 0.5829 + }, + { + "start": 42531.84, + "end": 42533.62, + "probability": 0.3329 + }, + { + "start": 42539.48, + "end": 42540.12, + "probability": 0.5501 + }, + { + "start": 42541.84, + "end": 42542.84, + "probability": 0.7059 + }, + { + "start": 42542.96, + "end": 42547.5, + "probability": 0.8572 + }, + { + "start": 42548.96, + "end": 42553.02, + "probability": 0.9442 + }, + { + "start": 42554.2, + "end": 42557.54, + "probability": 0.9674 + }, + { + "start": 42557.98, + "end": 42565.09, + "probability": 0.9722 + }, + { + "start": 42565.98, + "end": 42569.26, + "probability": 0.8539 + }, + { + "start": 42569.96, + "end": 42571.28, + "probability": 0.9546 + }, + { + "start": 42573.34, + "end": 42573.5, + "probability": 0.8785 + }, + { + "start": 42573.56, + "end": 42574.79, + "probability": 0.9135 + }, + { + "start": 42574.94, + "end": 42575.54, + "probability": 0.9888 + }, + { + "start": 42575.72, + "end": 42575.98, + "probability": 0.5302 + }, + { + "start": 42576.16, + "end": 42578.26, + "probability": 0.7275 + }, + { + "start": 42578.88, + "end": 42579.38, + "probability": 0.8123 + }, + { + "start": 42580.12, + "end": 42582.54, + "probability": 0.3581 + }, + { + "start": 42583.22, + "end": 42584.4, + "probability": 0.9945 + }, + { + "start": 42584.96, + "end": 42586.38, + "probability": 0.6872 + }, + { + "start": 42586.5, + "end": 42587.78, + "probability": 0.9557 + }, + { + "start": 42588.46, + "end": 42590.16, + "probability": 0.9026 + }, + { + "start": 42591.12, + "end": 42591.9, + "probability": 0.6267 + }, + { + "start": 42592.2, + "end": 42595.63, + "probability": 0.9948 + }, + { + "start": 42595.92, + "end": 42599.8, + "probability": 0.9989 + }, + { + "start": 42600.78, + "end": 42603.5, + "probability": 0.9592 + }, + { + "start": 42604.12, + "end": 42606.36, + "probability": 0.9868 + }, + { + "start": 42607.02, + "end": 42608.32, + "probability": 0.8942 + }, + { + "start": 42608.4, + "end": 42610.2, + "probability": 0.7991 + }, + { + "start": 42610.4, + "end": 42611.4, + "probability": 0.625 + }, + { + "start": 42611.48, + "end": 42611.98, + "probability": 0.9234 + }, + { + "start": 42612.8, + "end": 42614.48, + "probability": 0.9422 + }, + { + "start": 42615.08, + "end": 42616.87, + "probability": 0.7649 + }, + { + "start": 42619.38, + "end": 42619.6, + "probability": 0.8385 + }, + { + "start": 42623.5, + "end": 42626.82, + "probability": 0.7241 + }, + { + "start": 42627.1, + "end": 42629.22, + "probability": 0.4785 + }, + { + "start": 42629.3, + "end": 42629.48, + "probability": 0.5396 + }, + { + "start": 42629.5, + "end": 42630.34, + "probability": 0.6053 + }, + { + "start": 42631.46, + "end": 42632.78, + "probability": 0.5686 + }, + { + "start": 42633.8, + "end": 42636.68, + "probability": 0.9885 + }, + { + "start": 42637.22, + "end": 42637.6, + "probability": 0.6225 + }, + { + "start": 42637.7, + "end": 42639.32, + "probability": 0.9339 + }, + { + "start": 42639.66, + "end": 42639.88, + "probability": 0.6005 + }, + { + "start": 42640.12, + "end": 42641.91, + "probability": 0.9772 + }, + { + "start": 42642.54, + "end": 42645.18, + "probability": 0.9777 + }, + { + "start": 42646.58, + "end": 42648.36, + "probability": 0.773 + }, + { + "start": 42648.36, + "end": 42648.64, + "probability": 0.8949 + }, + { + "start": 42649.08, + "end": 42649.2, + "probability": 0.8555 + }, + { + "start": 42649.36, + "end": 42649.72, + "probability": 0.6318 + }, + { + "start": 42649.76, + "end": 42650.3, + "probability": 0.6219 + }, + { + "start": 42650.3, + "end": 42650.44, + "probability": 0.6536 + }, + { + "start": 42650.46, + "end": 42652.08, + "probability": 0.9267 + }, + { + "start": 42652.22, + "end": 42652.82, + "probability": 0.8281 + }, + { + "start": 42653.54, + "end": 42655.94, + "probability": 0.9792 + }, + { + "start": 42657.02, + "end": 42657.5, + "probability": 0.8677 + }, + { + "start": 42657.6, + "end": 42658.66, + "probability": 0.9924 + }, + { + "start": 42658.86, + "end": 42662.04, + "probability": 0.905 + }, + { + "start": 42662.88, + "end": 42664.04, + "probability": 0.6642 + }, + { + "start": 42667.82, + "end": 42668.64, + "probability": 0.5484 + }, + { + "start": 42668.74, + "end": 42669.42, + "probability": 0.5121 + }, + { + "start": 42670.26, + "end": 42673.48, + "probability": 0.7139 + }, + { + "start": 42674.7, + "end": 42677.64, + "probability": 0.9489 + }, + { + "start": 42677.64, + "end": 42678.56, + "probability": 0.8328 + }, + { + "start": 42678.68, + "end": 42679.86, + "probability": 0.7559 + }, + { + "start": 42680.06, + "end": 42680.8, + "probability": 0.2907 + }, + { + "start": 42681.44, + "end": 42683.84, + "probability": 0.7712 + }, + { + "start": 42684.3, + "end": 42690.0, + "probability": 0.8191 + }, + { + "start": 42690.36, + "end": 42691.1, + "probability": 0.5755 + }, + { + "start": 42691.22, + "end": 42693.6, + "probability": 0.8121 + }, + { + "start": 42694.6, + "end": 42697.88, + "probability": 0.8153 + }, + { + "start": 42697.94, + "end": 42699.48, + "probability": 0.9654 + }, + { + "start": 42699.54, + "end": 42700.92, + "probability": 0.9153 + }, + { + "start": 42701.56, + "end": 42703.0, + "probability": 0.9655 + }, + { + "start": 42703.52, + "end": 42707.46, + "probability": 0.9988 + }, + { + "start": 42707.54, + "end": 42711.1, + "probability": 0.9889 + }, + { + "start": 42712.12, + "end": 42716.9, + "probability": 0.9385 + }, + { + "start": 42717.6, + "end": 42722.18, + "probability": 0.983 + }, + { + "start": 42722.44, + "end": 42725.74, + "probability": 0.9408 + }, + { + "start": 42726.88, + "end": 42733.64, + "probability": 0.9721 + }, + { + "start": 42733.64, + "end": 42739.16, + "probability": 0.9984 + }, + { + "start": 42739.38, + "end": 42740.44, + "probability": 0.8812 + }, + { + "start": 42741.18, + "end": 42741.98, + "probability": 0.9937 + }, + { + "start": 42742.14, + "end": 42744.5, + "probability": 0.9961 + }, + { + "start": 42744.82, + "end": 42746.43, + "probability": 0.9371 + }, + { + "start": 42748.32, + "end": 42749.18, + "probability": 0.8156 + }, + { + "start": 42750.72, + "end": 42753.48, + "probability": 0.7559 + }, + { + "start": 42753.84, + "end": 42755.54, + "probability": 0.9728 + }, + { + "start": 42755.7, + "end": 42757.98, + "probability": 0.9412 + }, + { + "start": 42758.82, + "end": 42760.0, + "probability": 0.9334 + }, + { + "start": 42768.26, + "end": 42770.94, + "probability": 0.6537 + }, + { + "start": 42771.88, + "end": 42777.72, + "probability": 0.9974 + }, + { + "start": 42778.34, + "end": 42782.78, + "probability": 0.9963 + }, + { + "start": 42782.98, + "end": 42786.92, + "probability": 0.9585 + }, + { + "start": 42787.9, + "end": 42792.02, + "probability": 0.9879 + }, + { + "start": 42792.9, + "end": 42796.1, + "probability": 0.9987 + }, + { + "start": 42797.2, + "end": 42802.18, + "probability": 0.9673 + }, + { + "start": 42803.14, + "end": 42804.32, + "probability": 0.7032 + }, + { + "start": 42805.08, + "end": 42807.42, + "probability": 0.6959 + }, + { + "start": 42814.64, + "end": 42815.64, + "probability": 0.217 + }, + { + "start": 42815.76, + "end": 42817.46, + "probability": 0.9977 + }, + { + "start": 42819.22, + "end": 42821.92, + "probability": 0.8508 + }, + { + "start": 42823.54, + "end": 42825.86, + "probability": 0.9136 + }, + { + "start": 42826.76, + "end": 42827.92, + "probability": 0.9933 + }, + { + "start": 42828.76, + "end": 42829.26, + "probability": 0.9454 + }, + { + "start": 42830.08, + "end": 42830.94, + "probability": 0.7424 + }, + { + "start": 42832.04, + "end": 42834.65, + "probability": 0.9268 + }, + { + "start": 42835.82, + "end": 42836.46, + "probability": 0.9333 + }, + { + "start": 42836.54, + "end": 42837.04, + "probability": 0.792 + }, + { + "start": 42837.26, + "end": 42838.08, + "probability": 0.9496 + }, + { + "start": 42838.18, + "end": 42840.32, + "probability": 0.9709 + }, + { + "start": 42843.08, + "end": 42843.64, + "probability": 0.7119 + }, + { + "start": 42843.72, + "end": 42844.42, + "probability": 0.6358 + }, + { + "start": 42846.64, + "end": 42848.56, + "probability": 0.6934 + }, + { + "start": 42849.07, + "end": 42852.68, + "probability": 0.9129 + }, + { + "start": 42852.74, + "end": 42857.26, + "probability": 0.981 + }, + { + "start": 42858.0, + "end": 42858.56, + "probability": 0.1839 + }, + { + "start": 42858.64, + "end": 42862.7, + "probability": 0.9303 + }, + { + "start": 42863.24, + "end": 42866.3, + "probability": 0.9978 + }, + { + "start": 42866.58, + "end": 42872.64, + "probability": 0.9734 + }, + { + "start": 42872.74, + "end": 42875.76, + "probability": 0.8688 + }, + { + "start": 42876.78, + "end": 42880.1, + "probability": 0.9268 + }, + { + "start": 42881.0, + "end": 42887.36, + "probability": 0.9961 + }, + { + "start": 42887.36, + "end": 42893.8, + "probability": 0.9429 + }, + { + "start": 42894.3, + "end": 42896.5, + "probability": 0.9961 + }, + { + "start": 42897.34, + "end": 42898.68, + "probability": 0.8921 + }, + { + "start": 42899.58, + "end": 42899.9, + "probability": 0.6754 + }, + { + "start": 42900.98, + "end": 42904.28, + "probability": 0.8694 + }, + { + "start": 42905.16, + "end": 42907.12, + "probability": 0.9364 + }, + { + "start": 42907.22, + "end": 42910.06, + "probability": 0.9302 + }, + { + "start": 42910.44, + "end": 42916.34, + "probability": 0.9979 + }, + { + "start": 42916.34, + "end": 42919.2, + "probability": 0.9928 + }, + { + "start": 42919.34, + "end": 42921.96, + "probability": 0.9402 + }, + { + "start": 42922.9, + "end": 42927.88, + "probability": 0.9988 + }, + { + "start": 42927.88, + "end": 42932.8, + "probability": 0.9968 + }, + { + "start": 42933.08, + "end": 42934.68, + "probability": 0.9983 + }, + { + "start": 42935.28, + "end": 42937.39, + "probability": 0.615 + }, + { + "start": 42938.36, + "end": 42939.24, + "probability": 0.5718 + }, + { + "start": 42939.88, + "end": 42941.5, + "probability": 0.853 + }, + { + "start": 42941.76, + "end": 42942.43, + "probability": 0.9521 + }, + { + "start": 42942.56, + "end": 42946.98, + "probability": 0.9716 + }, + { + "start": 42947.12, + "end": 42950.48, + "probability": 0.9549 + }, + { + "start": 42950.8, + "end": 42950.88, + "probability": 0.7061 + }, + { + "start": 42950.94, + "end": 42952.26, + "probability": 0.8394 + }, + { + "start": 42954.28, + "end": 42954.78, + "probability": 0.7067 + }, + { + "start": 42954.78, + "end": 42956.42, + "probability": 0.7268 + }, + { + "start": 42956.54, + "end": 42958.32, + "probability": 0.4753 + }, + { + "start": 42958.42, + "end": 42958.54, + "probability": 0.5299 + }, + { + "start": 42958.62, + "end": 42958.9, + "probability": 0.7831 + }, + { + "start": 42959.0, + "end": 42959.58, + "probability": 0.9203 + }, + { + "start": 42961.39, + "end": 42963.68, + "probability": 0.9737 + }, + { + "start": 42965.12, + "end": 42967.32, + "probability": 0.9712 + }, + { + "start": 42968.4, + "end": 42969.74, + "probability": 0.9166 + }, + { + "start": 42971.32, + "end": 42972.82, + "probability": 0.9782 + }, + { + "start": 42973.8, + "end": 42976.4, + "probability": 0.905 + }, + { + "start": 42977.0, + "end": 42978.42, + "probability": 0.9941 + }, + { + "start": 42978.42, + "end": 42979.82, + "probability": 0.9974 + }, + { + "start": 42981.34, + "end": 42982.6, + "probability": 0.9876 + }, + { + "start": 42983.6, + "end": 42983.84, + "probability": 0.7624 + }, + { + "start": 42984.42, + "end": 42985.29, + "probability": 0.9106 + }, + { + "start": 42986.28, + "end": 42988.88, + "probability": 0.9912 + }, + { + "start": 42989.0, + "end": 42991.12, + "probability": 0.9917 + }, + { + "start": 42991.36, + "end": 42993.4, + "probability": 0.9634 + }, + { + "start": 42993.98, + "end": 42996.02, + "probability": 0.9703 + }, + { + "start": 42996.54, + "end": 42996.64, + "probability": 0.6653 + }, + { + "start": 42996.76, + "end": 42999.32, + "probability": 0.0888 + }, + { + "start": 43000.76, + "end": 43003.34, + "probability": 0.9958 + }, + { + "start": 43003.34, + "end": 43006.34, + "probability": 0.9929 + }, + { + "start": 43006.52, + "end": 43006.8, + "probability": 0.782 + }, + { + "start": 43017.04, + "end": 43018.16, + "probability": 0.0631 + }, + { + "start": 43020.19, + "end": 43021.48, + "probability": 0.0452 + }, + { + "start": 43021.52, + "end": 43022.32, + "probability": 0.0715 + }, + { + "start": 43023.92, + "end": 43024.84, + "probability": 0.0777 + }, + { + "start": 43024.84, + "end": 43024.84, + "probability": 0.1876 + }, + { + "start": 43024.84, + "end": 43025.6, + "probability": 0.0407 + }, + { + "start": 43025.8, + "end": 43026.92, + "probability": 0.826 + }, + { + "start": 43028.08, + "end": 43029.2, + "probability": 0.7044 + }, + { + "start": 43030.66, + "end": 43031.72, + "probability": 0.7671 + }, + { + "start": 43040.98, + "end": 43042.69, + "probability": 0.715 + }, + { + "start": 43043.56, + "end": 43044.9, + "probability": 0.7837 + }, + { + "start": 43045.74, + "end": 43047.81, + "probability": 0.7546 + }, + { + "start": 43048.76, + "end": 43052.04, + "probability": 0.9326 + }, + { + "start": 43052.04, + "end": 43056.08, + "probability": 0.9681 + }, + { + "start": 43056.76, + "end": 43059.96, + "probability": 0.9729 + }, + { + "start": 43060.7, + "end": 43066.78, + "probability": 0.9496 + }, + { + "start": 43067.42, + "end": 43072.46, + "probability": 0.9465 + }, + { + "start": 43073.14, + "end": 43075.76, + "probability": 0.994 + }, + { + "start": 43076.42, + "end": 43078.6, + "probability": 0.9462 + }, + { + "start": 43079.76, + "end": 43081.84, + "probability": 0.889 + }, + { + "start": 43081.96, + "end": 43082.76, + "probability": 0.308 + }, + { + "start": 43082.8, + "end": 43085.88, + "probability": 0.8574 + }, + { + "start": 43086.48, + "end": 43088.06, + "probability": 0.9979 + }, + { + "start": 43088.16, + "end": 43089.5, + "probability": 0.9668 + }, + { + "start": 43090.04, + "end": 43090.77, + "probability": 0.9032 + }, + { + "start": 43091.06, + "end": 43092.42, + "probability": 0.7866 + }, + { + "start": 43092.56, + "end": 43094.68, + "probability": 0.8806 + }, + { + "start": 43095.02, + "end": 43096.54, + "probability": 0.8172 + }, + { + "start": 43096.62, + "end": 43098.26, + "probability": 0.9341 + }, + { + "start": 43098.38, + "end": 43099.0, + "probability": 0.4302 + }, + { + "start": 43099.68, + "end": 43102.24, + "probability": 0.902 + }, + { + "start": 43102.32, + "end": 43102.64, + "probability": 0.6677 + }, + { + "start": 43103.18, + "end": 43105.66, + "probability": 0.8873 + }, + { + "start": 43105.82, + "end": 43107.56, + "probability": 0.9717 + }, + { + "start": 43107.58, + "end": 43110.02, + "probability": 0.9613 + }, + { + "start": 43110.1, + "end": 43110.4, + "probability": 0.603 + }, + { + "start": 43110.56, + "end": 43112.92, + "probability": 0.8077 + }, + { + "start": 43113.28, + "end": 43115.3, + "probability": 0.8222 + }, + { + "start": 43115.86, + "end": 43117.14, + "probability": 0.6617 + }, + { + "start": 43117.24, + "end": 43121.64, + "probability": 0.7539 + }, + { + "start": 43121.9, + "end": 43123.2, + "probability": 0.7419 + }, + { + "start": 43123.28, + "end": 43125.07, + "probability": 0.9018 + }, + { + "start": 43125.56, + "end": 43128.62, + "probability": 0.8988 + }, + { + "start": 43129.28, + "end": 43130.1, + "probability": 0.9741 + }, + { + "start": 43131.18, + "end": 43131.9, + "probability": 0.657 + }, + { + "start": 43132.04, + "end": 43132.46, + "probability": 0.6961 + }, + { + "start": 43132.64, + "end": 43136.24, + "probability": 0.8293 + }, + { + "start": 43136.34, + "end": 43137.76, + "probability": 0.4848 + }, + { + "start": 43137.84, + "end": 43138.26, + "probability": 0.4517 + }, + { + "start": 43138.76, + "end": 43140.84, + "probability": 0.9595 + }, + { + "start": 43141.96, + "end": 43142.86, + "probability": 0.6881 + }, + { + "start": 43143.3, + "end": 43144.88, + "probability": 0.6248 + }, + { + "start": 43147.02, + "end": 43148.87, + "probability": 0.5587 + }, + { + "start": 43151.56, + "end": 43152.62, + "probability": 0.6384 + }, + { + "start": 43152.96, + "end": 43157.18, + "probability": 0.9453 + }, + { + "start": 43157.56, + "end": 43161.28, + "probability": 0.8969 + }, + { + "start": 43162.26, + "end": 43166.2, + "probability": 0.9409 + }, + { + "start": 43166.88, + "end": 43169.8, + "probability": 0.9712 + }, + { + "start": 43171.02, + "end": 43174.26, + "probability": 0.5731 + }, + { + "start": 43175.76, + "end": 43176.56, + "probability": 0.9559 + }, + { + "start": 43176.74, + "end": 43178.12, + "probability": 0.9404 + }, + { + "start": 43180.59, + "end": 43180.96, + "probability": 0.0239 + }, + { + "start": 43180.96, + "end": 43183.23, + "probability": 0.77 + }, + { + "start": 43183.42, + "end": 43184.14, + "probability": 0.4862 + }, + { + "start": 43184.76, + "end": 43185.32, + "probability": 0.6685 + }, + { + "start": 43186.08, + "end": 43186.36, + "probability": 0.5582 + }, + { + "start": 43187.78, + "end": 43191.38, + "probability": 0.7442 + }, + { + "start": 43192.04, + "end": 43194.96, + "probability": 0.7365 + }, + { + "start": 43195.7, + "end": 43196.76, + "probability": 0.7217 + }, + { + "start": 43196.94, + "end": 43197.42, + "probability": 0.8318 + }, + { + "start": 43197.68, + "end": 43198.02, + "probability": 0.5693 + }, + { + "start": 43198.2, + "end": 43198.34, + "probability": 0.4977 + }, + { + "start": 43198.52, + "end": 43199.28, + "probability": 0.6519 + }, + { + "start": 43199.46, + "end": 43200.02, + "probability": 0.7568 + }, + { + "start": 43200.22, + "end": 43200.54, + "probability": 0.6436 + }, + { + "start": 43200.64, + "end": 43200.96, + "probability": 0.8624 + }, + { + "start": 43201.2, + "end": 43201.76, + "probability": 0.5899 + }, + { + "start": 43201.76, + "end": 43201.94, + "probability": 0.5428 + }, + { + "start": 43202.1, + "end": 43202.36, + "probability": 0.9324 + }, + { + "start": 43202.46, + "end": 43202.76, + "probability": 0.9632 + }, + { + "start": 43203.34, + "end": 43205.52, + "probability": 0.9618 + }, + { + "start": 43206.08, + "end": 43206.58, + "probability": 0.295 + }, + { + "start": 43206.58, + "end": 43207.07, + "probability": 0.4231 + }, + { + "start": 43207.2, + "end": 43208.2, + "probability": 0.7711 + }, + { + "start": 43208.38, + "end": 43209.38, + "probability": 0.9978 + }, + { + "start": 43210.18, + "end": 43210.88, + "probability": 0.3206 + }, + { + "start": 43211.0, + "end": 43215.18, + "probability": 0.6635 + }, + { + "start": 43215.8, + "end": 43219.1, + "probability": 0.9355 + }, + { + "start": 43219.16, + "end": 43220.46, + "probability": 0.8584 + }, + { + "start": 43220.64, + "end": 43222.02, + "probability": 0.9751 + }, + { + "start": 43222.14, + "end": 43225.34, + "probability": 0.9911 + }, + { + "start": 43225.48, + "end": 43229.45, + "probability": 0.9441 + }, + { + "start": 43229.98, + "end": 43231.13, + "probability": 0.9427 + }, + { + "start": 43232.3, + "end": 43233.66, + "probability": 0.9398 + }, + { + "start": 43234.54, + "end": 43236.56, + "probability": 0.5834 + }, + { + "start": 43236.62, + "end": 43238.72, + "probability": 0.4983 + }, + { + "start": 43239.12, + "end": 43240.18, + "probability": 0.7812 + }, + { + "start": 43240.46, + "end": 43242.4, + "probability": 0.7436 + }, + { + "start": 43242.5, + "end": 43243.72, + "probability": 0.9897 + }, + { + "start": 43243.84, + "end": 43245.02, + "probability": 0.9229 + }, + { + "start": 43246.76, + "end": 43248.48, + "probability": 0.6676 + }, + { + "start": 43249.42, + "end": 43252.16, + "probability": 0.7069 + }, + { + "start": 43252.82, + "end": 43254.34, + "probability": 0.8347 + }, + { + "start": 43254.94, + "end": 43255.98, + "probability": 0.7723 + }, + { + "start": 43256.7, + "end": 43260.16, + "probability": 0.6114 + }, + { + "start": 43261.4, + "end": 43264.32, + "probability": 0.8657 + }, + { + "start": 43264.88, + "end": 43267.2, + "probability": 0.8682 + }, + { + "start": 43268.28, + "end": 43269.46, + "probability": 0.7922 + }, + { + "start": 43270.89, + "end": 43273.64, + "probability": 0.9591 + }, + { + "start": 43275.25, + "end": 43276.56, + "probability": 0.6192 + }, + { + "start": 43276.6, + "end": 43277.35, + "probability": 0.9368 + }, + { + "start": 43278.0, + "end": 43278.56, + "probability": 0.7167 + }, + { + "start": 43278.92, + "end": 43279.62, + "probability": 0.6348 + }, + { + "start": 43279.76, + "end": 43280.3, + "probability": 0.7193 + }, + { + "start": 43280.86, + "end": 43281.78, + "probability": 0.989 + }, + { + "start": 43281.88, + "end": 43283.64, + "probability": 0.7831 + }, + { + "start": 43284.14, + "end": 43286.44, + "probability": 0.9541 + }, + { + "start": 43289.8, + "end": 43290.76, + "probability": 0.6617 + }, + { + "start": 43291.24, + "end": 43294.56, + "probability": 0.997 + }, + { + "start": 43294.56, + "end": 43297.28, + "probability": 0.994 + }, + { + "start": 43297.9, + "end": 43298.1, + "probability": 0.3272 + }, + { + "start": 43298.16, + "end": 43300.0, + "probability": 0.9843 + }, + { + "start": 43300.7, + "end": 43302.96, + "probability": 0.9992 + }, + { + "start": 43303.44, + "end": 43305.02, + "probability": 0.873 + }, + { + "start": 43305.64, + "end": 43307.76, + "probability": 0.9534 + }, + { + "start": 43307.94, + "end": 43309.6, + "probability": 0.6116 + }, + { + "start": 43309.94, + "end": 43312.22, + "probability": 0.9853 + }, + { + "start": 43313.34, + "end": 43313.5, + "probability": 0.1734 + }, + { + "start": 43313.78, + "end": 43313.82, + "probability": 0.3141 + }, + { + "start": 43313.98, + "end": 43315.22, + "probability": 0.9498 + }, + { + "start": 43315.28, + "end": 43315.76, + "probability": 0.9648 + }, + { + "start": 43316.94, + "end": 43318.54, + "probability": 0.9799 + }, + { + "start": 43318.96, + "end": 43320.26, + "probability": 0.5828 + }, + { + "start": 43321.06, + "end": 43321.76, + "probability": 0.2374 + }, + { + "start": 43322.06, + "end": 43323.18, + "probability": 0.8823 + }, + { + "start": 43324.08, + "end": 43325.82, + "probability": 0.7974 + }, + { + "start": 43325.82, + "end": 43326.88, + "probability": 0.8414 + }, + { + "start": 43327.05, + "end": 43330.06, + "probability": 0.9717 + }, + { + "start": 43330.38, + "end": 43332.74, + "probability": 0.9468 + }, + { + "start": 43334.58, + "end": 43335.3, + "probability": 0.7353 + }, + { + "start": 43336.08, + "end": 43338.78, + "probability": 0.7278 + }, + { + "start": 43338.92, + "end": 43339.62, + "probability": 0.9021 + }, + { + "start": 43339.7, + "end": 43340.35, + "probability": 0.9769 + }, + { + "start": 43340.62, + "end": 43341.96, + "probability": 0.8117 + }, + { + "start": 43342.12, + "end": 43343.14, + "probability": 0.9994 + }, + { + "start": 43343.88, + "end": 43344.24, + "probability": 0.8565 + }, + { + "start": 43344.84, + "end": 43345.08, + "probability": 0.8946 + }, + { + "start": 43349.06, + "end": 43350.18, + "probability": 0.642 + }, + { + "start": 43350.58, + "end": 43351.48, + "probability": 0.5678 + }, + { + "start": 43351.56, + "end": 43352.82, + "probability": 0.39 + }, + { + "start": 43352.94, + "end": 43354.0, + "probability": 0.8577 + }, + { + "start": 43354.12, + "end": 43354.74, + "probability": 0.7417 + }, + { + "start": 43355.34, + "end": 43360.62, + "probability": 0.7379 + }, + { + "start": 43361.02, + "end": 43362.8, + "probability": 0.9307 + }, + { + "start": 43363.36, + "end": 43366.52, + "probability": 0.9482 + }, + { + "start": 43366.62, + "end": 43367.18, + "probability": 0.9563 + }, + { + "start": 43367.22, + "end": 43368.54, + "probability": 0.6941 + }, + { + "start": 43369.38, + "end": 43369.62, + "probability": 0.8734 + }, + { + "start": 43370.8, + "end": 43371.4, + "probability": 0.9698 + }, + { + "start": 43371.66, + "end": 43372.84, + "probability": 0.6679 + }, + { + "start": 43373.16, + "end": 43373.58, + "probability": 0.6138 + }, + { + "start": 43373.86, + "end": 43374.18, + "probability": 0.4642 + }, + { + "start": 43374.34, + "end": 43374.98, + "probability": 0.8343 + }, + { + "start": 43375.56, + "end": 43376.48, + "probability": 0.7689 + }, + { + "start": 43376.5, + "end": 43377.95, + "probability": 0.9967 + }, + { + "start": 43378.64, + "end": 43380.62, + "probability": 0.8312 + }, + { + "start": 43380.72, + "end": 43384.06, + "probability": 0.7186 + }, + { + "start": 43384.6, + "end": 43386.62, + "probability": 0.9796 + }, + { + "start": 43386.7, + "end": 43388.1, + "probability": 0.7442 + }, + { + "start": 43388.8, + "end": 43389.02, + "probability": 0.6539 + }, + { + "start": 43389.02, + "end": 43390.73, + "probability": 0.9879 + }, + { + "start": 43391.4, + "end": 43393.02, + "probability": 0.8929 + }, + { + "start": 43393.68, + "end": 43394.8, + "probability": 0.9524 + }, + { + "start": 43395.0, + "end": 43396.94, + "probability": 0.9764 + }, + { + "start": 43397.06, + "end": 43399.08, + "probability": 0.9783 + }, + { + "start": 43399.96, + "end": 43400.6, + "probability": 0.8342 + }, + { + "start": 43400.98, + "end": 43402.21, + "probability": 0.9917 + }, + { + "start": 43402.44, + "end": 43403.38, + "probability": 0.9548 + }, + { + "start": 43404.06, + "end": 43404.44, + "probability": 0.3094 + }, + { + "start": 43404.58, + "end": 43405.16, + "probability": 0.5234 + }, + { + "start": 43405.34, + "end": 43405.74, + "probability": 0.7566 + }, + { + "start": 43405.74, + "end": 43406.48, + "probability": 0.5032 + }, + { + "start": 43406.56, + "end": 43410.3, + "probability": 0.947 + }, + { + "start": 43410.66, + "end": 43411.6, + "probability": 0.747 + }, + { + "start": 43411.76, + "end": 43416.92, + "probability": 0.1414 + }, + { + "start": 43416.92, + "end": 43421.16, + "probability": 0.811 + }, + { + "start": 43422.66, + "end": 43428.12, + "probability": 0.9729 + }, + { + "start": 43428.42, + "end": 43432.1, + "probability": 0.6572 + }, + { + "start": 43432.52, + "end": 43435.18, + "probability": 0.7374 + }, + { + "start": 43435.62, + "end": 43438.88, + "probability": 0.9426 + }, + { + "start": 43439.18, + "end": 43445.68, + "probability": 0.9449 + }, + { + "start": 43446.58, + "end": 43447.26, + "probability": 0.6571 + }, + { + "start": 43448.92, + "end": 43451.46, + "probability": 0.8531 + }, + { + "start": 43451.64, + "end": 43452.78, + "probability": 0.8994 + }, + { + "start": 43453.44, + "end": 43456.66, + "probability": 0.9031 + }, + { + "start": 43457.74, + "end": 43461.64, + "probability": 0.9547 + }, + { + "start": 43462.48, + "end": 43462.84, + "probability": 0.4849 + }, + { + "start": 43462.88, + "end": 43463.66, + "probability": 0.7183 + }, + { + "start": 43464.02, + "end": 43466.12, + "probability": 0.9795 + }, + { + "start": 43466.3, + "end": 43468.68, + "probability": 0.968 + }, + { + "start": 43470.6, + "end": 43470.94, + "probability": 0.6029 + }, + { + "start": 43471.06, + "end": 43471.86, + "probability": 0.5692 + }, + { + "start": 43471.96, + "end": 43472.8, + "probability": 0.7145 + }, + { + "start": 43472.82, + "end": 43475.02, + "probability": 0.9943 + }, + { + "start": 43475.06, + "end": 43478.6, + "probability": 0.9197 + }, + { + "start": 43479.14, + "end": 43480.88, + "probability": 0.8 + }, + { + "start": 43481.34, + "end": 43482.62, + "probability": 0.7159 + }, + { + "start": 43483.26, + "end": 43486.74, + "probability": 0.8427 + }, + { + "start": 43487.52, + "end": 43487.62, + "probability": 0.4827 + }, + { + "start": 43488.18, + "end": 43490.28, + "probability": 0.7668 + }, + { + "start": 43491.28, + "end": 43492.1, + "probability": 0.2953 + }, + { + "start": 43492.36, + "end": 43493.38, + "probability": 0.5707 + }, + { + "start": 43493.42, + "end": 43496.54, + "probability": 0.7761 + }, + { + "start": 43496.54, + "end": 43499.16, + "probability": 0.9848 + }, + { + "start": 43499.92, + "end": 43503.5, + "probability": 0.988 + }, + { + "start": 43504.2, + "end": 43508.18, + "probability": 0.7799 + }, + { + "start": 43508.44, + "end": 43509.24, + "probability": 0.7906 + }, + { + "start": 43509.42, + "end": 43510.88, + "probability": 0.9556 + }, + { + "start": 43512.02, + "end": 43516.08, + "probability": 0.967 + }, + { + "start": 43517.6, + "end": 43517.86, + "probability": 0.6007 + }, + { + "start": 43517.88, + "end": 43520.15, + "probability": 0.9596 + }, + { + "start": 43520.58, + "end": 43522.8, + "probability": 0.7864 + }, + { + "start": 43522.8, + "end": 43523.26, + "probability": 0.3169 + }, + { + "start": 43523.8, + "end": 43524.96, + "probability": 0.7196 + }, + { + "start": 43525.94, + "end": 43526.8, + "probability": 0.8988 + }, + { + "start": 43526.86, + "end": 43529.84, + "probability": 0.9061 + }, + { + "start": 43531.72, + "end": 43533.13, + "probability": 0.9673 + }, + { + "start": 43533.94, + "end": 43535.62, + "probability": 0.8531 + }, + { + "start": 43536.18, + "end": 43538.9, + "probability": 0.9718 + }, + { + "start": 43539.04, + "end": 43540.22, + "probability": 0.9475 + }, + { + "start": 43541.58, + "end": 43542.36, + "probability": 0.5331 + }, + { + "start": 43542.36, + "end": 43544.46, + "probability": 0.6922 + }, + { + "start": 43544.7, + "end": 43545.28, + "probability": 0.8175 + }, + { + "start": 43545.48, + "end": 43546.56, + "probability": 0.9821 + }, + { + "start": 43546.58, + "end": 43547.0, + "probability": 0.843 + }, + { + "start": 43547.1, + "end": 43547.86, + "probability": 0.7 + }, + { + "start": 43548.6, + "end": 43550.4, + "probability": 0.9919 + }, + { + "start": 43552.28, + "end": 43552.58, + "probability": 0.4524 + }, + { + "start": 43552.6, + "end": 43554.18, + "probability": 0.9006 + }, + { + "start": 43555.99, + "end": 43558.72, + "probability": 0.8629 + }, + { + "start": 43559.42, + "end": 43559.96, + "probability": 0.4046 + }, + { + "start": 43560.66, + "end": 43563.32, + "probability": 0.7618 + }, + { + "start": 43563.88, + "end": 43564.34, + "probability": 0.8177 + }, + { + "start": 43565.06, + "end": 43568.86, + "probability": 0.9115 + }, + { + "start": 43569.52, + "end": 43571.52, + "probability": 0.8655 + }, + { + "start": 43572.27, + "end": 43574.34, + "probability": 0.9281 + }, + { + "start": 43574.46, + "end": 43576.84, + "probability": 0.9567 + }, + { + "start": 43577.1, + "end": 43579.96, + "probability": 0.9489 + }, + { + "start": 43580.14, + "end": 43580.44, + "probability": 0.7148 + }, + { + "start": 43581.32, + "end": 43583.62, + "probability": 0.9624 + }, + { + "start": 43583.76, + "end": 43584.58, + "probability": 0.9684 + }, + { + "start": 43584.82, + "end": 43585.1, + "probability": 0.0714 + }, + { + "start": 43585.72, + "end": 43586.78, + "probability": 0.8641 + }, + { + "start": 43587.32, + "end": 43588.82, + "probability": 0.9376 + }, + { + "start": 43591.02, + "end": 43591.88, + "probability": 0.755 + }, + { + "start": 43592.88, + "end": 43594.86, + "probability": 0.7097 + }, + { + "start": 43595.9, + "end": 43596.16, + "probability": 0.2824 + }, + { + "start": 43596.68, + "end": 43598.96, + "probability": 0.713 + }, + { + "start": 43601.3, + "end": 43601.3, + "probability": 0.0649 + }, + { + "start": 43601.3, + "end": 43603.12, + "probability": 0.3736 + }, + { + "start": 43603.66, + "end": 43606.14, + "probability": 0.9172 + }, + { + "start": 43606.14, + "end": 43608.22, + "probability": 0.9261 + }, + { + "start": 43608.34, + "end": 43612.02, + "probability": 0.9569 + }, + { + "start": 43612.02, + "end": 43617.24, + "probability": 0.6367 + }, + { + "start": 43617.96, + "end": 43618.92, + "probability": 0.7524 + }, + { + "start": 43619.56, + "end": 43622.24, + "probability": 0.9902 + }, + { + "start": 43622.8, + "end": 43624.6, + "probability": 0.9771 + }, + { + "start": 43625.28, + "end": 43627.92, + "probability": 0.9072 + }, + { + "start": 43628.38, + "end": 43629.75, + "probability": 0.7478 + }, + { + "start": 43630.24, + "end": 43634.42, + "probability": 0.8311 + }, + { + "start": 43635.86, + "end": 43638.44, + "probability": 0.2815 + }, + { + "start": 43641.14, + "end": 43642.48, + "probability": 0.9482 + }, + { + "start": 43644.08, + "end": 43647.38, + "probability": 0.9937 + }, + { + "start": 43648.12, + "end": 43650.34, + "probability": 0.9808 + }, + { + "start": 43651.64, + "end": 43652.84, + "probability": 0.9561 + }, + { + "start": 43653.4, + "end": 43658.08, + "probability": 0.9741 + }, + { + "start": 43658.6, + "end": 43659.98, + "probability": 0.9372 + }, + { + "start": 43660.46, + "end": 43662.02, + "probability": 0.958 + }, + { + "start": 43663.34, + "end": 43665.64, + "probability": 0.9121 + }, + { + "start": 43666.04, + "end": 43666.77, + "probability": 0.9131 + }, + { + "start": 43667.94, + "end": 43670.02, + "probability": 0.882 + }, + { + "start": 43670.66, + "end": 43672.16, + "probability": 0.8802 + }, + { + "start": 43672.24, + "end": 43673.42, + "probability": 0.9854 + }, + { + "start": 43674.02, + "end": 43676.0, + "probability": 0.9841 + }, + { + "start": 43676.56, + "end": 43677.56, + "probability": 0.6712 + }, + { + "start": 43677.64, + "end": 43679.9, + "probability": 0.9503 + }, + { + "start": 43680.04, + "end": 43680.56, + "probability": 0.8609 + }, + { + "start": 43681.1, + "end": 43685.0, + "probability": 0.9856 + }, + { + "start": 43685.34, + "end": 43687.1, + "probability": 0.9937 + }, + { + "start": 43687.64, + "end": 43689.44, + "probability": 0.978 + }, + { + "start": 43689.5, + "end": 43690.46, + "probability": 0.7697 + }, + { + "start": 43692.14, + "end": 43693.22, + "probability": 0.6943 + }, + { + "start": 43693.34, + "end": 43694.3, + "probability": 0.6234 + }, + { + "start": 43695.02, + "end": 43695.82, + "probability": 0.925 + }, + { + "start": 43696.68, + "end": 43697.66, + "probability": 0.84 + }, + { + "start": 43697.72, + "end": 43698.58, + "probability": 0.6072 + }, + { + "start": 43698.76, + "end": 43699.18, + "probability": 0.0496 + }, + { + "start": 43699.18, + "end": 43699.5, + "probability": 0.3857 + }, + { + "start": 43699.68, + "end": 43700.28, + "probability": 0.8905 + }, + { + "start": 43700.32, + "end": 43700.42, + "probability": 0.7297 + }, + { + "start": 43701.18, + "end": 43701.18, + "probability": 0.2097 + }, + { + "start": 43701.18, + "end": 43704.38, + "probability": 0.7896 + }, + { + "start": 43705.12, + "end": 43707.42, + "probability": 0.9564 + }, + { + "start": 43707.72, + "end": 43710.44, + "probability": 0.9771 + }, + { + "start": 43711.22, + "end": 43711.65, + "probability": 0.1617 + }, + { + "start": 43711.76, + "end": 43713.81, + "probability": 0.6784 + }, + { + "start": 43714.66, + "end": 43717.82, + "probability": 0.9629 + }, + { + "start": 43717.94, + "end": 43719.9, + "probability": 0.8828 + }, + { + "start": 43720.4, + "end": 43721.64, + "probability": 0.9787 + }, + { + "start": 43721.74, + "end": 43722.45, + "probability": 0.9663 + }, + { + "start": 43723.26, + "end": 43723.9, + "probability": 0.5323 + }, + { + "start": 43724.56, + "end": 43725.58, + "probability": 0.9644 + }, + { + "start": 43725.64, + "end": 43725.98, + "probability": 0.9323 + }, + { + "start": 43726.04, + "end": 43727.82, + "probability": 0.9685 + }, + { + "start": 43727.88, + "end": 43728.86, + "probability": 0.8774 + }, + { + "start": 43729.34, + "end": 43729.9, + "probability": 0.9436 + }, + { + "start": 43730.42, + "end": 43731.1, + "probability": 0.9245 + }, + { + "start": 43731.58, + "end": 43732.16, + "probability": 0.9362 + }, + { + "start": 43732.46, + "end": 43733.46, + "probability": 0.8873 + }, + { + "start": 43733.78, + "end": 43735.16, + "probability": 0.995 + }, + { + "start": 43735.96, + "end": 43737.74, + "probability": 0.8795 + }, + { + "start": 43738.06, + "end": 43739.82, + "probability": 0.8669 + }, + { + "start": 43740.5, + "end": 43740.98, + "probability": 0.6014 + }, + { + "start": 43741.28, + "end": 43742.8, + "probability": 0.7689 + }, + { + "start": 43742.92, + "end": 43743.3, + "probability": 0.772 + }, + { + "start": 43744.04, + "end": 43747.82, + "probability": 0.9102 + }, + { + "start": 43750.36, + "end": 43751.24, + "probability": 0.6456 + }, + { + "start": 43751.62, + "end": 43752.9, + "probability": 0.1109 + }, + { + "start": 43754.44, + "end": 43757.24, + "probability": 0.9804 + }, + { + "start": 43760.0, + "end": 43761.1, + "probability": 0.6031 + }, + { + "start": 43761.28, + "end": 43762.06, + "probability": 0.7541 + }, + { + "start": 43762.32, + "end": 43764.48, + "probability": 0.8606 + }, + { + "start": 43764.62, + "end": 43768.56, + "probability": 0.8022 + }, + { + "start": 43769.38, + "end": 43772.1, + "probability": 0.8914 + }, + { + "start": 43772.92, + "end": 43773.72, + "probability": 0.5884 + }, + { + "start": 43774.24, + "end": 43776.2, + "probability": 0.6568 + }, + { + "start": 43779.17, + "end": 43791.21, + "probability": 0.9915 + }, + { + "start": 43796.64, + "end": 43797.0, + "probability": 0.0143 + }, + { + "start": 43798.9, + "end": 43799.32, + "probability": 0.0918 + }, + { + "start": 43800.4, + "end": 43800.66, + "probability": 0.1084 + }, + { + "start": 43800.66, + "end": 43802.13, + "probability": 0.0499 + }, + { + "start": 43803.4, + "end": 43805.98, + "probability": 0.0229 + }, + { + "start": 43809.92, + "end": 43810.44, + "probability": 0.0128 + }, + { + "start": 43810.48, + "end": 43811.31, + "probability": 0.0678 + }, + { + "start": 43812.1, + "end": 43812.34, + "probability": 0.0836 + }, + { + "start": 43813.6, + "end": 43814.88, + "probability": 0.0101 + }, + { + "start": 43814.88, + "end": 43814.88, + "probability": 0.0223 + }, + { + "start": 43814.88, + "end": 43816.04, + "probability": 0.1695 + }, + { + "start": 43816.06, + "end": 43816.26, + "probability": 0.054 + }, + { + "start": 43816.34, + "end": 43816.38, + "probability": 0.0845 + }, + { + "start": 43816.38, + "end": 43816.92, + "probability": 0.0388 + }, + { + "start": 43819.35, + "end": 43819.72, + "probability": 0.025 + }, + { + "start": 43826.18, + "end": 43827.18, + "probability": 0.1758 + }, + { + "start": 43832.43, + "end": 43835.8, + "probability": 0.0442 + }, + { + "start": 43836.4, + "end": 43840.02, + "probability": 0.0583 + }, + { + "start": 43842.25, + "end": 43844.93, + "probability": 0.0191 + }, + { + "start": 43847.8, + "end": 43849.5, + "probability": 0.0777 + }, + { + "start": 43851.0, + "end": 43851.0, + "probability": 0.0 + }, + { + "start": 43851.0, + "end": 43851.0, + "probability": 0.0 + }, + { + "start": 43851.0, + "end": 43851.0, + "probability": 0.0 + }, + { + "start": 43851.0, + "end": 43851.0, + "probability": 0.0 + }, + { + "start": 43851.0, + "end": 43851.0, + "probability": 0.0 + }, + { + "start": 43851.0, + "end": 43851.0, + "probability": 0.0 + }, + { + "start": 43851.0, + "end": 43851.0, + "probability": 0.0 + }, + { + "start": 43851.0, + "end": 43851.0, + "probability": 0.0 + }, + { + "start": 43851.0, + "end": 43851.0, + "probability": 0.0 + }, + { + "start": 43851.0, + "end": 43851.0, + "probability": 0.0 + }, + { + "start": 43851.0, + "end": 43851.0, + "probability": 0.0 + }, + { + "start": 43851.0, + "end": 43851.0, + "probability": 0.0 + }, + { + "start": 43851.0, + "end": 43851.0, + "probability": 0.0 + }, + { + "start": 43851.3, + "end": 43851.44, + "probability": 0.0001 + }, + { + "start": 43854.98, + "end": 43856.26, + "probability": 0.0871 + }, + { + "start": 43870.02, + "end": 43870.02, + "probability": 0.2624 + }, + { + "start": 43871.02, + "end": 43871.88, + "probability": 0.0291 + }, + { + "start": 43888.86, + "end": 43889.36, + "probability": 0.0691 + }, + { + "start": 43889.36, + "end": 43891.84, + "probability": 0.0255 + }, + { + "start": 43892.82, + "end": 43893.02, + "probability": 0.3521 + }, + { + "start": 43894.76, + "end": 43895.92, + "probability": 0.1451 + }, + { + "start": 43903.21, + "end": 43906.32, + "probability": 0.0508 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43971.0, + "end": 43971.0, + "probability": 0.0 + }, + { + "start": 43977.1, + "end": 43977.22, + "probability": 0.662 + }, + { + "start": 43977.28, + "end": 43979.16, + "probability": 0.7053 + }, + { + "start": 43980.02, + "end": 43980.75, + "probability": 0.9966 + }, + { + "start": 43982.09, + "end": 43984.74, + "probability": 0.9819 + }, + { + "start": 43985.44, + "end": 43989.58, + "probability": 0.9807 + }, + { + "start": 43990.04, + "end": 43990.57, + "probability": 0.9753 + }, + { + "start": 43992.58, + "end": 43993.92, + "probability": 0.9813 + }, + { + "start": 43994.26, + "end": 43994.28, + "probability": 0.8994 + }, + { + "start": 43994.92, + "end": 43999.2, + "probability": 0.652 + }, + { + "start": 43999.5, + "end": 44000.54, + "probability": 0.7924 + }, + { + "start": 44001.16, + "end": 44001.56, + "probability": 0.7244 + }, + { + "start": 44001.68, + "end": 44003.04, + "probability": 0.9705 + }, + { + "start": 44003.16, + "end": 44004.69, + "probability": 0.8941 + }, + { + "start": 44005.3, + "end": 44005.92, + "probability": 0.9352 + }, + { + "start": 44006.3, + "end": 44006.42, + "probability": 0.318 + }, + { + "start": 44006.48, + "end": 44006.86, + "probability": 0.8939 + }, + { + "start": 44006.96, + "end": 44007.94, + "probability": 0.9249 + }, + { + "start": 44008.08, + "end": 44008.94, + "probability": 0.9385 + }, + { + "start": 44009.06, + "end": 44012.38, + "probability": 0.7582 + }, + { + "start": 44012.9, + "end": 44013.97, + "probability": 0.9118 + }, + { + "start": 44014.3, + "end": 44015.38, + "probability": 0.8898 + }, + { + "start": 44015.48, + "end": 44016.46, + "probability": 0.9749 + }, + { + "start": 44017.42, + "end": 44019.58, + "probability": 0.9361 + }, + { + "start": 44020.32, + "end": 44020.89, + "probability": 0.841 + }, + { + "start": 44021.2, + "end": 44024.62, + "probability": 0.9239 + }, + { + "start": 44024.66, + "end": 44024.74, + "probability": 0.7122 + }, + { + "start": 44025.32, + "end": 44026.44, + "probability": 0.9854 + }, + { + "start": 44027.2, + "end": 44028.3, + "probability": 0.9463 + }, + { + "start": 44028.58, + "end": 44031.3, + "probability": 0.9556 + }, + { + "start": 44031.96, + "end": 44033.46, + "probability": 0.9464 + }, + { + "start": 44034.16, + "end": 44034.78, + "probability": 0.8173 + }, + { + "start": 44035.06, + "end": 44036.14, + "probability": 0.9645 + }, + { + "start": 44036.32, + "end": 44037.02, + "probability": 0.8652 + }, + { + "start": 44037.64, + "end": 44041.28, + "probability": 0.9532 + }, + { + "start": 44041.98, + "end": 44043.58, + "probability": 0.8793 + }, + { + "start": 44043.68, + "end": 44045.34, + "probability": 0.8433 + }, + { + "start": 44045.5, + "end": 44046.54, + "probability": 0.9147 + }, + { + "start": 44046.6, + "end": 44047.09, + "probability": 0.8306 + }, + { + "start": 44049.38, + "end": 44050.0, + "probability": 0.7591 + }, + { + "start": 44050.16, + "end": 44053.26, + "probability": 0.9066 + }, + { + "start": 44054.52, + "end": 44057.02, + "probability": 0.8067 + }, + { + "start": 44059.9, + "end": 44061.0, + "probability": 0.6609 + }, + { + "start": 44061.72, + "end": 44066.26, + "probability": 0.8679 + }, + { + "start": 44066.26, + "end": 44070.2, + "probability": 0.8726 + }, + { + "start": 44071.02, + "end": 44072.26, + "probability": 0.8206 + }, + { + "start": 44072.54, + "end": 44075.5, + "probability": 0.9631 + }, + { + "start": 44076.04, + "end": 44076.74, + "probability": 0.6394 + }, + { + "start": 44077.32, + "end": 44078.04, + "probability": 0.723 + }, + { + "start": 44078.32, + "end": 44080.0, + "probability": 0.9608 + }, + { + "start": 44080.5, + "end": 44082.56, + "probability": 0.8986 + }, + { + "start": 44082.94, + "end": 44087.0, + "probability": 0.9836 + }, + { + "start": 44088.1, + "end": 44090.34, + "probability": 0.5002 + }, + { + "start": 44093.28, + "end": 44095.92, + "probability": 0.8222 + }, + { + "start": 44096.0, + "end": 44102.98, + "probability": 0.9724 + }, + { + "start": 44104.6, + "end": 44105.68, + "probability": 0.9716 + }, + { + "start": 44106.96, + "end": 44110.52, + "probability": 0.9716 + }, + { + "start": 44111.44, + "end": 44114.06, + "probability": 0.8651 + }, + { + "start": 44114.78, + "end": 44115.64, + "probability": 0.7277 + }, + { + "start": 44116.36, + "end": 44117.6, + "probability": 0.9937 + }, + { + "start": 44118.7, + "end": 44119.82, + "probability": 0.7602 + }, + { + "start": 44119.9, + "end": 44122.26, + "probability": 0.9912 + }, + { + "start": 44123.08, + "end": 44126.26, + "probability": 0.979 + }, + { + "start": 44127.06, + "end": 44128.44, + "probability": 0.9323 + }, + { + "start": 44129.32, + "end": 44131.72, + "probability": 0.9266 + }, + { + "start": 44132.66, + "end": 44136.26, + "probability": 0.9642 + }, + { + "start": 44137.0, + "end": 44139.18, + "probability": 0.6427 + }, + { + "start": 44139.3, + "end": 44139.8, + "probability": 0.9709 + }, + { + "start": 44140.96, + "end": 44142.84, + "probability": 0.903 + }, + { + "start": 44143.12, + "end": 44144.22, + "probability": 0.9917 + }, + { + "start": 44145.5, + "end": 44146.0, + "probability": 0.3538 + }, + { + "start": 44146.54, + "end": 44148.36, + "probability": 0.9889 + }, + { + "start": 44149.18, + "end": 44152.04, + "probability": 0.91 + }, + { + "start": 44153.58, + "end": 44155.36, + "probability": 0.894 + }, + { + "start": 44155.4, + "end": 44156.24, + "probability": 0.7974 + }, + { + "start": 44156.92, + "end": 44158.46, + "probability": 0.9779 + }, + { + "start": 44159.72, + "end": 44161.02, + "probability": 0.9937 + }, + { + "start": 44161.7, + "end": 44164.92, + "probability": 0.9933 + }, + { + "start": 44165.98, + "end": 44166.54, + "probability": 0.9432 + }, + { + "start": 44167.3, + "end": 44169.69, + "probability": 0.7989 + }, + { + "start": 44169.84, + "end": 44172.98, + "probability": 0.971 + }, + { + "start": 44173.5, + "end": 44175.06, + "probability": 0.9889 + }, + { + "start": 44175.22, + "end": 44177.0, + "probability": 0.9784 + }, + { + "start": 44177.28, + "end": 44179.5, + "probability": 0.9792 + }, + { + "start": 44180.78, + "end": 44181.52, + "probability": 0.9956 + }, + { + "start": 44182.18, + "end": 44183.62, + "probability": 0.9797 + }, + { + "start": 44184.44, + "end": 44185.02, + "probability": 0.9837 + }, + { + "start": 44185.76, + "end": 44186.38, + "probability": 0.979 + }, + { + "start": 44187.36, + "end": 44188.86, + "probability": 0.9766 + }, + { + "start": 44189.18, + "end": 44190.22, + "probability": 0.9578 + }, + { + "start": 44191.54, + "end": 44193.38, + "probability": 0.9493 + }, + { + "start": 44193.38, + "end": 44196.32, + "probability": 0.9639 + }, + { + "start": 44197.28, + "end": 44198.36, + "probability": 0.778 + }, + { + "start": 44199.42, + "end": 44200.86, + "probability": 0.9448 + }, + { + "start": 44202.2, + "end": 44202.9, + "probability": 0.9966 + }, + { + "start": 44203.86, + "end": 44205.32, + "probability": 0.9877 + }, + { + "start": 44205.42, + "end": 44206.2, + "probability": 0.5056 + }, + { + "start": 44207.92, + "end": 44210.32, + "probability": 0.679 + }, + { + "start": 44210.98, + "end": 44212.2, + "probability": 0.7511 + }, + { + "start": 44212.64, + "end": 44214.54, + "probability": 0.8798 + }, + { + "start": 44215.76, + "end": 44217.56, + "probability": 0.8431 + }, + { + "start": 44218.38, + "end": 44219.62, + "probability": 0.9335 + }, + { + "start": 44220.88, + "end": 44222.58, + "probability": 0.7733 + }, + { + "start": 44222.62, + "end": 44223.68, + "probability": 0.852 + }, + { + "start": 44223.7, + "end": 44224.86, + "probability": 0.9365 + }, + { + "start": 44225.88, + "end": 44228.22, + "probability": 0.9506 + }, + { + "start": 44228.38, + "end": 44230.54, + "probability": 0.956 + }, + { + "start": 44231.66, + "end": 44233.82, + "probability": 0.8811 + }, + { + "start": 44234.12, + "end": 44236.66, + "probability": 0.9798 + }, + { + "start": 44237.68, + "end": 44240.3, + "probability": 0.8302 + }, + { + "start": 44241.1, + "end": 44241.3, + "probability": 0.5624 + }, + { + "start": 44241.76, + "end": 44244.6, + "probability": 0.9445 + }, + { + "start": 44245.14, + "end": 44246.86, + "probability": 0.8835 + }, + { + "start": 44248.22, + "end": 44253.58, + "probability": 0.7897 + }, + { + "start": 44254.48, + "end": 44258.38, + "probability": 0.935 + }, + { + "start": 44259.12, + "end": 44260.04, + "probability": 0.9419 + }, + { + "start": 44260.86, + "end": 44262.32, + "probability": 0.5664 + }, + { + "start": 44262.96, + "end": 44263.64, + "probability": 0.7943 + }, + { + "start": 44264.82, + "end": 44267.4, + "probability": 0.8067 + }, + { + "start": 44267.52, + "end": 44267.95, + "probability": 0.9561 + }, + { + "start": 44268.66, + "end": 44268.9, + "probability": 0.8946 + }, + { + "start": 44270.98, + "end": 44272.78, + "probability": 0.9332 + }, + { + "start": 44273.84, + "end": 44274.32, + "probability": 0.473 + }, + { + "start": 44274.68, + "end": 44276.76, + "probability": 0.7928 + }, + { + "start": 44276.76, + "end": 44278.42, + "probability": 0.86 + }, + { + "start": 44279.62, + "end": 44280.92, + "probability": 0.6981 + }, + { + "start": 44281.3, + "end": 44281.78, + "probability": 0.8352 + }, + { + "start": 44281.96, + "end": 44283.06, + "probability": 0.9822 + }, + { + "start": 44284.42, + "end": 44288.56, + "probability": 0.7994 + }, + { + "start": 44289.18, + "end": 44290.24, + "probability": 0.8339 + }, + { + "start": 44290.86, + "end": 44292.86, + "probability": 0.9902 + }, + { + "start": 44293.06, + "end": 44293.4, + "probability": 0.6415 + }, + { + "start": 44293.72, + "end": 44294.84, + "probability": 0.9966 + }, + { + "start": 44295.1, + "end": 44297.5, + "probability": 0.9263 + }, + { + "start": 44298.04, + "end": 44300.98, + "probability": 0.9467 + }, + { + "start": 44301.84, + "end": 44303.28, + "probability": 0.8997 + }, + { + "start": 44303.34, + "end": 44305.6, + "probability": 0.8855 + }, + { + "start": 44306.02, + "end": 44307.15, + "probability": 0.8488 + }, + { + "start": 44308.49, + "end": 44312.16, + "probability": 0.9409 + }, + { + "start": 44312.74, + "end": 44313.46, + "probability": 0.9582 + }, + { + "start": 44313.52, + "end": 44315.98, + "probability": 0.8408 + }, + { + "start": 44316.88, + "end": 44318.16, + "probability": 0.3918 + }, + { + "start": 44318.86, + "end": 44319.8, + "probability": 0.9329 + }, + { + "start": 44320.44, + "end": 44322.36, + "probability": 0.6601 + }, + { + "start": 44323.26, + "end": 44323.5, + "probability": 0.7171 + }, + { + "start": 44324.32, + "end": 44325.7, + "probability": 0.905 + }, + { + "start": 44326.46, + "end": 44327.26, + "probability": 0.5776 + }, + { + "start": 44330.16, + "end": 44331.16, + "probability": 0.6546 + }, + { + "start": 44332.58, + "end": 44335.08, + "probability": 0.9056 + }, + { + "start": 44335.64, + "end": 44337.8, + "probability": 0.7686 + }, + { + "start": 44339.84, + "end": 44343.8, + "probability": 0.9167 + }, + { + "start": 44344.68, + "end": 44346.38, + "probability": 0.9556 + }, + { + "start": 44348.06, + "end": 44349.52, + "probability": 0.9901 + }, + { + "start": 44350.18, + "end": 44352.32, + "probability": 0.6844 + }, + { + "start": 44354.88, + "end": 44356.86, + "probability": 0.5379 + }, + { + "start": 44360.44, + "end": 44361.97, + "probability": 0.9951 + }, + { + "start": 44364.34, + "end": 44365.54, + "probability": 0.9327 + }, + { + "start": 44366.64, + "end": 44367.24, + "probability": 0.9272 + }, + { + "start": 44369.0, + "end": 44369.66, + "probability": 0.9685 + }, + { + "start": 44369.72, + "end": 44372.68, + "probability": 0.955 + }, + { + "start": 44372.98, + "end": 44373.5, + "probability": 0.2946 + }, + { + "start": 44375.26, + "end": 44375.94, + "probability": 0.6601 + }, + { + "start": 44376.76, + "end": 44377.78, + "probability": 0.9064 + }, + { + "start": 44378.44, + "end": 44380.62, + "probability": 0.9897 + }, + { + "start": 44380.68, + "end": 44383.28, + "probability": 0.9902 + }, + { + "start": 44383.68, + "end": 44383.68, + "probability": 0.2228 + }, + { + "start": 44383.68, + "end": 44383.68, + "probability": 0.0401 + }, + { + "start": 44383.68, + "end": 44386.24, + "probability": 0.9695 + }, + { + "start": 44386.58, + "end": 44387.64, + "probability": 0.6184 + }, + { + "start": 44387.76, + "end": 44387.76, + "probability": 0.0757 + }, + { + "start": 44387.76, + "end": 44388.06, + "probability": 0.3942 + }, + { + "start": 44388.2, + "end": 44388.84, + "probability": 0.05 + }, + { + "start": 44388.86, + "end": 44392.93, + "probability": 0.9246 + }, + { + "start": 44394.48, + "end": 44395.96, + "probability": 0.9909 + }, + { + "start": 44396.54, + "end": 44397.44, + "probability": 0.8738 + }, + { + "start": 44397.86, + "end": 44399.62, + "probability": 0.9761 + }, + { + "start": 44399.64, + "end": 44401.68, + "probability": 0.8872 + }, + { + "start": 44402.22, + "end": 44403.86, + "probability": 0.7119 + }, + { + "start": 44404.84, + "end": 44405.58, + "probability": 0.7379 + }, + { + "start": 44405.9, + "end": 44406.08, + "probability": 0.6005 + }, + { + "start": 44406.46, + "end": 44406.98, + "probability": 0.5673 + }, + { + "start": 44407.04, + "end": 44408.32, + "probability": 0.9277 + }, + { + "start": 44408.42, + "end": 44409.22, + "probability": 0.9517 + }, + { + "start": 44410.06, + "end": 44411.5, + "probability": 0.6759 + }, + { + "start": 44411.92, + "end": 44413.06, + "probability": 0.5868 + }, + { + "start": 44413.58, + "end": 44414.66, + "probability": 0.6075 + }, + { + "start": 44415.1, + "end": 44417.92, + "probability": 0.7721 + }, + { + "start": 44418.96, + "end": 44419.16, + "probability": 0.7098 + }, + { + "start": 44422.56, + "end": 44426.34, + "probability": 0.8515 + }, + { + "start": 44426.5, + "end": 44429.72, + "probability": 0.9793 + }, + { + "start": 44430.02, + "end": 44430.78, + "probability": 0.8669 + }, + { + "start": 44431.12, + "end": 44433.44, + "probability": 0.9968 + }, + { + "start": 44433.44, + "end": 44437.16, + "probability": 0.8757 + }, + { + "start": 44437.18, + "end": 44437.54, + "probability": 0.6587 + }, + { + "start": 44438.42, + "end": 44440.88, + "probability": 0.9309 + }, + { + "start": 44441.44, + "end": 44442.78, + "probability": 0.8887 + }, + { + "start": 44444.08, + "end": 44445.94, + "probability": 0.957 + }, + { + "start": 44446.02, + "end": 44449.06, + "probability": 0.9761 + }, + { + "start": 44449.14, + "end": 44449.32, + "probability": 0.8334 + }, + { + "start": 44450.26, + "end": 44453.08, + "probability": 0.8724 + }, + { + "start": 44453.6, + "end": 44454.1, + "probability": 0.0175 + }, + { + "start": 44454.1, + "end": 44458.2, + "probability": 0.9573 + }, + { + "start": 44458.78, + "end": 44461.07, + "probability": 0.963 + }, + { + "start": 44461.86, + "end": 44462.52, + "probability": 0.5131 + }, + { + "start": 44463.12, + "end": 44464.02, + "probability": 0.6421 + }, + { + "start": 44464.95, + "end": 44467.88, + "probability": 0.684 + }, + { + "start": 44469.0, + "end": 44472.36, + "probability": 0.9376 + }, + { + "start": 44473.32, + "end": 44475.88, + "probability": 0.7515 + }, + { + "start": 44476.78, + "end": 44478.34, + "probability": 0.8499 + }, + { + "start": 44478.88, + "end": 44480.44, + "probability": 0.9939 + }, + { + "start": 44481.12, + "end": 44482.76, + "probability": 0.942 + }, + { + "start": 44483.84, + "end": 44483.84, + "probability": 0.2682 + }, + { + "start": 44483.88, + "end": 44486.46, + "probability": 0.6202 + }, + { + "start": 44487.44, + "end": 44489.74, + "probability": 0.9722 + }, + { + "start": 44489.94, + "end": 44491.74, + "probability": 0.662 + }, + { + "start": 44492.0, + "end": 44494.86, + "probability": 0.9053 + }, + { + "start": 44495.3, + "end": 44496.45, + "probability": 0.5869 + } + ], + "segments_count": 15705, + "words_count": 75391, + "avg_words_per_segment": 4.8004, + "avg_segment_duration": 1.9247, + "avg_words_per_minute": 101.6082, + "plenum_id": "105801", + "duration": 44518.63, + "title": null, + "plenum_date": "2022-02-16" +} \ No newline at end of file