diff --git "a/126248/metadata.json" "b/126248/metadata.json" new file mode 100644--- /dev/null +++ "b/126248/metadata.json" @@ -0,0 +1,42157 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "126248", + "quality_score": 0.8787, + "per_segment_quality_scores": [ + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 126.28, + "end": 128.04, + "probability": 0.9328 + }, + { + "start": 128.04, + "end": 130.24, + "probability": 0.9818 + }, + { + "start": 130.36, + "end": 131.84, + "probability": 0.3593 + }, + { + "start": 132.86, + "end": 136.02, + "probability": 0.9806 + }, + { + "start": 136.02, + "end": 139.72, + "probability": 0.9108 + }, + { + "start": 139.78, + "end": 141.98, + "probability": 0.3354 + }, + { + "start": 142.76, + "end": 145.66, + "probability": 0.7366 + }, + { + "start": 145.88, + "end": 148.54, + "probability": 0.9741 + }, + { + "start": 148.94, + "end": 154.82, + "probability": 0.5081 + }, + { + "start": 154.82, + "end": 157.68, + "probability": 0.8191 + }, + { + "start": 158.46, + "end": 158.54, + "probability": 0.5292 + }, + { + "start": 158.54, + "end": 159.44, + "probability": 0.7419 + }, + { + "start": 159.44, + "end": 162.2, + "probability": 0.9914 + }, + { + "start": 162.2, + "end": 166.66, + "probability": 0.8194 + }, + { + "start": 166.76, + "end": 169.76, + "probability": 0.22 + }, + { + "start": 169.76, + "end": 175.5, + "probability": 0.5359 + }, + { + "start": 176.68, + "end": 177.24, + "probability": 0.1452 + }, + { + "start": 177.24, + "end": 179.52, + "probability": 0.2088 + }, + { + "start": 180.44, + "end": 183.62, + "probability": 0.4631 + }, + { + "start": 184.02, + "end": 185.1, + "probability": 0.9447 + }, + { + "start": 185.18, + "end": 185.8, + "probability": 0.4055 + }, + { + "start": 186.0, + "end": 186.4, + "probability": 0.6544 + }, + { + "start": 186.52, + "end": 187.5, + "probability": 0.9093 + }, + { + "start": 187.76, + "end": 189.96, + "probability": 0.6774 + }, + { + "start": 191.12, + "end": 191.14, + "probability": 0.0193 + }, + { + "start": 191.14, + "end": 193.62, + "probability": 0.5145 + }, + { + "start": 193.82, + "end": 196.38, + "probability": 0.8012 + }, + { + "start": 197.1, + "end": 201.02, + "probability": 0.3201 + }, + { + "start": 201.08, + "end": 201.68, + "probability": 0.5589 + }, + { + "start": 201.74, + "end": 202.68, + "probability": 0.7236 + }, + { + "start": 202.8, + "end": 203.6, + "probability": 0.8217 + }, + { + "start": 203.74, + "end": 205.56, + "probability": 0.8405 + }, + { + "start": 207.14, + "end": 208.6, + "probability": 0.8247 + }, + { + "start": 209.32, + "end": 209.32, + "probability": 0.1026 + }, + { + "start": 209.32, + "end": 209.32, + "probability": 0.115 + }, + { + "start": 209.32, + "end": 210.14, + "probability": 0.1195 + }, + { + "start": 210.24, + "end": 212.98, + "probability": 0.9645 + }, + { + "start": 212.98, + "end": 218.96, + "probability": 0.9384 + }, + { + "start": 219.7, + "end": 221.66, + "probability": 0.7296 + }, + { + "start": 221.74, + "end": 224.54, + "probability": 0.3173 + }, + { + "start": 224.68, + "end": 226.78, + "probability": 0.7318 + }, + { + "start": 227.1, + "end": 233.22, + "probability": 0.6816 + }, + { + "start": 233.3, + "end": 233.5, + "probability": 0.6783 + }, + { + "start": 234.42, + "end": 236.96, + "probability": 0.9678 + }, + { + "start": 236.98, + "end": 241.42, + "probability": 0.9351 + }, + { + "start": 242.1, + "end": 244.16, + "probability": 0.9168 + }, + { + "start": 244.3, + "end": 247.22, + "probability": 0.627 + }, + { + "start": 247.68, + "end": 250.86, + "probability": 0.9865 + }, + { + "start": 251.52, + "end": 253.74, + "probability": 0.9417 + }, + { + "start": 255.1, + "end": 256.04, + "probability": 0.8853 + }, + { + "start": 268.44, + "end": 269.91, + "probability": 0.8259 + }, + { + "start": 271.58, + "end": 275.62, + "probability": 0.9157 + }, + { + "start": 276.7, + "end": 279.18, + "probability": 0.9377 + }, + { + "start": 280.24, + "end": 286.24, + "probability": 0.9534 + }, + { + "start": 286.34, + "end": 289.14, + "probability": 0.9215 + }, + { + "start": 289.98, + "end": 293.98, + "probability": 0.7771 + }, + { + "start": 295.16, + "end": 296.1, + "probability": 0.7627 + }, + { + "start": 296.66, + "end": 298.6, + "probability": 0.7822 + }, + { + "start": 298.68, + "end": 299.18, + "probability": 0.8744 + }, + { + "start": 300.04, + "end": 301.74, + "probability": 0.955 + }, + { + "start": 302.84, + "end": 303.94, + "probability": 0.9566 + }, + { + "start": 304.62, + "end": 306.82, + "probability": 0.6699 + }, + { + "start": 308.04, + "end": 310.06, + "probability": 0.953 + }, + { + "start": 310.6, + "end": 313.34, + "probability": 0.9419 + }, + { + "start": 313.44, + "end": 319.48, + "probability": 0.9806 + }, + { + "start": 321.8, + "end": 322.74, + "probability": 0.8539 + }, + { + "start": 322.86, + "end": 325.52, + "probability": 0.9851 + }, + { + "start": 328.1, + "end": 330.52, + "probability": 0.6522 + }, + { + "start": 330.64, + "end": 332.0, + "probability": 0.9854 + }, + { + "start": 332.16, + "end": 333.66, + "probability": 0.9249 + }, + { + "start": 334.7, + "end": 335.94, + "probability": 0.7819 + }, + { + "start": 336.08, + "end": 337.86, + "probability": 0.5842 + }, + { + "start": 339.24, + "end": 340.16, + "probability": 0.7413 + }, + { + "start": 340.86, + "end": 345.66, + "probability": 0.9939 + }, + { + "start": 346.5, + "end": 349.38, + "probability": 0.9837 + }, + { + "start": 350.34, + "end": 351.48, + "probability": 0.5499 + }, + { + "start": 353.5, + "end": 354.78, + "probability": 0.9823 + }, + { + "start": 355.72, + "end": 357.14, + "probability": 0.7844 + }, + { + "start": 357.64, + "end": 358.62, + "probability": 0.8036 + }, + { + "start": 359.22, + "end": 363.56, + "probability": 0.7478 + }, + { + "start": 365.58, + "end": 369.26, + "probability": 0.9017 + }, + { + "start": 371.1, + "end": 375.1, + "probability": 0.9105 + }, + { + "start": 377.2, + "end": 381.42, + "probability": 0.6653 + }, + { + "start": 381.64, + "end": 384.34, + "probability": 0.3134 + }, + { + "start": 384.5, + "end": 387.62, + "probability": 0.9607 + }, + { + "start": 387.82, + "end": 392.28, + "probability": 0.5411 + }, + { + "start": 392.44, + "end": 396.5, + "probability": 0.9747 + }, + { + "start": 396.62, + "end": 398.86, + "probability": 0.9583 + }, + { + "start": 399.5, + "end": 401.78, + "probability": 0.161 + }, + { + "start": 403.0, + "end": 404.58, + "probability": 0.5036 + }, + { + "start": 407.46, + "end": 408.93, + "probability": 0.7903 + }, + { + "start": 409.56, + "end": 411.46, + "probability": 0.744 + }, + { + "start": 411.56, + "end": 412.56, + "probability": 0.9666 + }, + { + "start": 423.28, + "end": 423.6, + "probability": 0.5727 + }, + { + "start": 424.12, + "end": 427.26, + "probability": 0.8219 + }, + { + "start": 428.42, + "end": 431.54, + "probability": 0.6623 + }, + { + "start": 431.64, + "end": 433.5, + "probability": 0.2119 + }, + { + "start": 433.64, + "end": 434.56, + "probability": 0.9962 + }, + { + "start": 435.4, + "end": 436.54, + "probability": 0.9336 + }, + { + "start": 436.58, + "end": 440.84, + "probability": 0.5353 + }, + { + "start": 440.96, + "end": 444.46, + "probability": 0.9903 + }, + { + "start": 444.46, + "end": 447.06, + "probability": 0.9929 + }, + { + "start": 447.6, + "end": 448.58, + "probability": 0.8215 + }, + { + "start": 448.76, + "end": 453.06, + "probability": 0.9608 + }, + { + "start": 453.3, + "end": 460.47, + "probability": 0.8396 + }, + { + "start": 464.66, + "end": 470.44, + "probability": 0.5835 + }, + { + "start": 470.76, + "end": 473.74, + "probability": 0.5443 + }, + { + "start": 473.86, + "end": 475.82, + "probability": 0.1301 + }, + { + "start": 476.36, + "end": 479.44, + "probability": 0.7158 + }, + { + "start": 482.0, + "end": 483.88, + "probability": 0.4222 + }, + { + "start": 484.32, + "end": 488.68, + "probability": 0.9503 + }, + { + "start": 488.84, + "end": 490.78, + "probability": 0.6772 + }, + { + "start": 491.36, + "end": 492.98, + "probability": 0.9739 + }, + { + "start": 494.32, + "end": 495.34, + "probability": 0.5062 + }, + { + "start": 496.66, + "end": 496.8, + "probability": 0.0128 + }, + { + "start": 496.8, + "end": 497.34, + "probability": 0.4185 + }, + { + "start": 497.88, + "end": 499.3, + "probability": 0.7911 + }, + { + "start": 499.3, + "end": 502.02, + "probability": 0.988 + }, + { + "start": 503.6, + "end": 510.84, + "probability": 0.9039 + }, + { + "start": 512.8, + "end": 513.88, + "probability": 0.943 + }, + { + "start": 518.38, + "end": 519.44, + "probability": 0.7924 + }, + { + "start": 521.32, + "end": 522.68, + "probability": 0.9827 + }, + { + "start": 523.28, + "end": 524.1, + "probability": 0.8558 + }, + { + "start": 525.82, + "end": 528.4, + "probability": 0.9789 + }, + { + "start": 530.6, + "end": 532.64, + "probability": 0.9888 + }, + { + "start": 533.9, + "end": 534.38, + "probability": 0.9793 + }, + { + "start": 536.76, + "end": 537.34, + "probability": 0.7063 + }, + { + "start": 538.3, + "end": 539.4, + "probability": 0.3985 + }, + { + "start": 539.88, + "end": 540.5, + "probability": 0.8995 + }, + { + "start": 542.42, + "end": 543.4, + "probability": 0.8628 + }, + { + "start": 543.58, + "end": 548.16, + "probability": 0.86 + }, + { + "start": 548.16, + "end": 553.06, + "probability": 0.9702 + }, + { + "start": 555.78, + "end": 558.7, + "probability": 0.9176 + }, + { + "start": 560.68, + "end": 562.44, + "probability": 0.9578 + }, + { + "start": 563.68, + "end": 564.26, + "probability": 0.9363 + }, + { + "start": 565.98, + "end": 568.4, + "probability": 0.8811 + }, + { + "start": 570.08, + "end": 570.74, + "probability": 0.8337 + }, + { + "start": 572.08, + "end": 572.82, + "probability": 0.1097 + }, + { + "start": 572.82, + "end": 573.12, + "probability": 0.3774 + }, + { + "start": 574.08, + "end": 574.08, + "probability": 0.4141 + }, + { + "start": 574.08, + "end": 574.36, + "probability": 0.129 + }, + { + "start": 574.44, + "end": 575.62, + "probability": 0.718 + }, + { + "start": 576.16, + "end": 576.42, + "probability": 0.1538 + }, + { + "start": 576.42, + "end": 576.42, + "probability": 0.0912 + }, + { + "start": 576.42, + "end": 582.18, + "probability": 0.8265 + }, + { + "start": 583.78, + "end": 585.2, + "probability": 0.1044 + }, + { + "start": 585.94, + "end": 586.92, + "probability": 0.2738 + }, + { + "start": 588.66, + "end": 588.84, + "probability": 0.0489 + }, + { + "start": 588.84, + "end": 588.84, + "probability": 0.2714 + }, + { + "start": 588.84, + "end": 588.84, + "probability": 0.0788 + }, + { + "start": 588.84, + "end": 588.84, + "probability": 0.0918 + }, + { + "start": 588.84, + "end": 588.84, + "probability": 0.1681 + }, + { + "start": 588.84, + "end": 591.3, + "probability": 0.8451 + }, + { + "start": 593.08, + "end": 598.44, + "probability": 0.5949 + }, + { + "start": 598.6, + "end": 599.44, + "probability": 0.0712 + }, + { + "start": 600.3, + "end": 602.26, + "probability": 0.0115 + }, + { + "start": 603.38, + "end": 603.92, + "probability": 0.0598 + }, + { + "start": 603.92, + "end": 605.48, + "probability": 0.2925 + }, + { + "start": 605.48, + "end": 605.48, + "probability": 0.3645 + }, + { + "start": 605.48, + "end": 605.72, + "probability": 0.1557 + }, + { + "start": 605.72, + "end": 606.7, + "probability": 0.2088 + }, + { + "start": 612.44, + "end": 613.96, + "probability": 0.0461 + }, + { + "start": 613.96, + "end": 615.34, + "probability": 0.5329 + }, + { + "start": 617.74, + "end": 619.34, + "probability": 0.1598 + }, + { + "start": 624.82, + "end": 625.58, + "probability": 0.0213 + }, + { + "start": 625.58, + "end": 629.08, + "probability": 0.6329 + }, + { + "start": 629.96, + "end": 632.56, + "probability": 0.1403 + }, + { + "start": 633.2, + "end": 635.36, + "probability": 0.1027 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 690.0, + "end": 690.0, + "probability": 0.0 + }, + { + "start": 691.78, + "end": 692.92, + "probability": 0.1932 + }, + { + "start": 693.62, + "end": 696.54, + "probability": 0.0277 + }, + { + "start": 698.33, + "end": 700.98, + "probability": 0.0236 + }, + { + "start": 701.24, + "end": 701.36, + "probability": 0.0774 + }, + { + "start": 701.36, + "end": 702.66, + "probability": 0.0651 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.0, + "end": 810.0, + "probability": 0.0 + }, + { + "start": 810.12, + "end": 810.91, + "probability": 0.1718 + }, + { + "start": 812.28, + "end": 813.08, + "probability": 0.8027 + }, + { + "start": 813.2, + "end": 813.96, + "probability": 0.6768 + }, + { + "start": 814.76, + "end": 816.72, + "probability": 0.8442 + }, + { + "start": 817.08, + "end": 819.42, + "probability": 0.2749 + }, + { + "start": 819.42, + "end": 820.02, + "probability": 0.7439 + }, + { + "start": 820.3, + "end": 823.48, + "probability": 0.6056 + }, + { + "start": 823.56, + "end": 824.92, + "probability": 0.9961 + }, + { + "start": 825.8, + "end": 827.05, + "probability": 0.5269 + }, + { + "start": 828.36, + "end": 830.86, + "probability": 0.7518 + }, + { + "start": 831.58, + "end": 834.66, + "probability": 0.9894 + }, + { + "start": 834.9, + "end": 835.66, + "probability": 0.9121 + }, + { + "start": 836.26, + "end": 840.58, + "probability": 0.937 + }, + { + "start": 841.32, + "end": 843.9, + "probability": 0.165 + }, + { + "start": 844.44, + "end": 844.44, + "probability": 0.1042 + }, + { + "start": 844.44, + "end": 846.76, + "probability": 0.9591 + }, + { + "start": 847.5, + "end": 848.18, + "probability": 0.7776 + }, + { + "start": 848.2, + "end": 850.16, + "probability": 0.8811 + }, + { + "start": 850.42, + "end": 851.98, + "probability": 0.7711 + }, + { + "start": 852.56, + "end": 855.9, + "probability": 0.9572 + }, + { + "start": 856.42, + "end": 857.24, + "probability": 0.1887 + }, + { + "start": 858.02, + "end": 858.42, + "probability": 0.2192 + }, + { + "start": 858.52, + "end": 859.96, + "probability": 0.8193 + }, + { + "start": 860.06, + "end": 862.4, + "probability": 0.9967 + }, + { + "start": 862.92, + "end": 864.97, + "probability": 0.8745 + }, + { + "start": 865.4, + "end": 867.14, + "probability": 0.9469 + }, + { + "start": 867.4, + "end": 869.01, + "probability": 0.0337 + }, + { + "start": 871.66, + "end": 872.08, + "probability": 0.0387 + }, + { + "start": 872.08, + "end": 872.08, + "probability": 0.1614 + }, + { + "start": 872.08, + "end": 872.08, + "probability": 0.335 + }, + { + "start": 872.08, + "end": 874.96, + "probability": 0.8702 + }, + { + "start": 874.96, + "end": 875.24, + "probability": 0.2103 + }, + { + "start": 875.58, + "end": 876.2, + "probability": 0.2166 + }, + { + "start": 878.32, + "end": 879.48, + "probability": 0.3373 + }, + { + "start": 880.08, + "end": 880.08, + "probability": 0.01 + }, + { + "start": 880.08, + "end": 880.08, + "probability": 0.0079 + }, + { + "start": 880.08, + "end": 880.08, + "probability": 0.5035 + }, + { + "start": 880.08, + "end": 884.56, + "probability": 0.8711 + }, + { + "start": 884.66, + "end": 886.26, + "probability": 0.6852 + }, + { + "start": 886.32, + "end": 891.68, + "probability": 0.1804 + }, + { + "start": 892.02, + "end": 892.36, + "probability": 0.0017 + }, + { + "start": 892.36, + "end": 892.36, + "probability": 0.0848 + }, + { + "start": 892.36, + "end": 892.36, + "probability": 0.0674 + }, + { + "start": 892.36, + "end": 892.36, + "probability": 0.315 + }, + { + "start": 892.36, + "end": 892.36, + "probability": 0.1211 + }, + { + "start": 892.36, + "end": 893.97, + "probability": 0.4562 + }, + { + "start": 894.44, + "end": 899.2, + "probability": 0.8677 + }, + { + "start": 899.72, + "end": 902.6, + "probability": 0.9905 + }, + { + "start": 903.42, + "end": 904.1, + "probability": 0.0731 + }, + { + "start": 904.1, + "end": 905.88, + "probability": 0.24 + }, + { + "start": 906.12, + "end": 906.22, + "probability": 0.1249 + }, + { + "start": 906.22, + "end": 910.11, + "probability": 0.8105 + }, + { + "start": 910.4, + "end": 910.52, + "probability": 0.0118 + }, + { + "start": 911.1, + "end": 911.54, + "probability": 0.0429 + }, + { + "start": 911.54, + "end": 911.54, + "probability": 0.0781 + }, + { + "start": 911.54, + "end": 912.86, + "probability": 0.5391 + }, + { + "start": 912.86, + "end": 913.3, + "probability": 0.7251 + }, + { + "start": 913.34, + "end": 915.76, + "probability": 0.9651 + }, + { + "start": 915.88, + "end": 918.7, + "probability": 0.9807 + }, + { + "start": 918.7, + "end": 920.94, + "probability": 0.966 + }, + { + "start": 921.12, + "end": 922.78, + "probability": 0.3199 + }, + { + "start": 923.46, + "end": 924.36, + "probability": 0.7568 + }, + { + "start": 924.56, + "end": 925.62, + "probability": 0.9922 + }, + { + "start": 926.2, + "end": 930.3, + "probability": 0.9854 + }, + { + "start": 930.78, + "end": 931.68, + "probability": 0.9246 + }, + { + "start": 932.18, + "end": 933.84, + "probability": 0.581 + }, + { + "start": 934.1, + "end": 937.16, + "probability": 0.2126 + }, + { + "start": 938.62, + "end": 939.32, + "probability": 0.3035 + }, + { + "start": 946.17, + "end": 949.64, + "probability": 0.9143 + }, + { + "start": 954.26, + "end": 956.58, + "probability": 0.6621 + }, + { + "start": 957.72, + "end": 963.14, + "probability": 0.9351 + }, + { + "start": 965.18, + "end": 967.14, + "probability": 0.9843 + }, + { + "start": 968.94, + "end": 973.3, + "probability": 0.9799 + }, + { + "start": 974.0, + "end": 975.04, + "probability": 0.6321 + }, + { + "start": 976.85, + "end": 979.6, + "probability": 0.2592 + }, + { + "start": 979.6, + "end": 979.86, + "probability": 0.2614 + }, + { + "start": 979.9, + "end": 984.26, + "probability": 0.3546 + }, + { + "start": 984.26, + "end": 984.26, + "probability": 0.4219 + }, + { + "start": 984.3, + "end": 984.3, + "probability": 0.6537 + }, + { + "start": 984.3, + "end": 984.48, + "probability": 0.6612 + }, + { + "start": 984.48, + "end": 988.68, + "probability": 0.9821 + }, + { + "start": 990.11, + "end": 992.06, + "probability": 0.8817 + }, + { + "start": 992.58, + "end": 993.82, + "probability": 0.7969 + }, + { + "start": 994.58, + "end": 995.48, + "probability": 0.6132 + }, + { + "start": 995.5, + "end": 996.4, + "probability": 0.7422 + }, + { + "start": 996.44, + "end": 999.34, + "probability": 0.7703 + }, + { + "start": 999.5, + "end": 1001.24, + "probability": 0.6656 + }, + { + "start": 1001.46, + "end": 1001.88, + "probability": 0.1144 + }, + { + "start": 1001.88, + "end": 1002.28, + "probability": 0.1755 + }, + { + "start": 1002.38, + "end": 1004.58, + "probability": 0.4027 + }, + { + "start": 1005.62, + "end": 1006.44, + "probability": 0.3228 + }, + { + "start": 1006.48, + "end": 1007.52, + "probability": 0.504 + }, + { + "start": 1008.6, + "end": 1011.44, + "probability": 0.8897 + }, + { + "start": 1011.74, + "end": 1013.2, + "probability": 0.1117 + }, + { + "start": 1013.2, + "end": 1013.2, + "probability": 0.0553 + }, + { + "start": 1013.2, + "end": 1015.23, + "probability": 0.6521 + }, + { + "start": 1015.92, + "end": 1019.54, + "probability": 0.9971 + }, + { + "start": 1021.06, + "end": 1023.34, + "probability": 0.6998 + }, + { + "start": 1023.98, + "end": 1026.58, + "probability": 0.9734 + }, + { + "start": 1029.56, + "end": 1033.01, + "probability": 0.7706 + }, + { + "start": 1033.96, + "end": 1040.8, + "probability": 0.8406 + }, + { + "start": 1040.86, + "end": 1042.83, + "probability": 0.3875 + }, + { + "start": 1043.32, + "end": 1044.34, + "probability": 0.2067 + }, + { + "start": 1044.57, + "end": 1045.52, + "probability": 0.4295 + }, + { + "start": 1045.52, + "end": 1048.08, + "probability": 0.7319 + }, + { + "start": 1049.62, + "end": 1051.72, + "probability": 0.9954 + }, + { + "start": 1052.4, + "end": 1053.18, + "probability": 0.7844 + }, + { + "start": 1054.76, + "end": 1056.12, + "probability": 0.5801 + }, + { + "start": 1058.18, + "end": 1065.93, + "probability": 0.9957 + }, + { + "start": 1066.24, + "end": 1071.7, + "probability": 0.9954 + }, + { + "start": 1072.5, + "end": 1073.72, + "probability": 0.9985 + }, + { + "start": 1074.6, + "end": 1077.78, + "probability": 0.9597 + }, + { + "start": 1078.66, + "end": 1081.18, + "probability": 0.965 + }, + { + "start": 1082.28, + "end": 1083.64, + "probability": 0.9609 + }, + { + "start": 1084.52, + "end": 1087.01, + "probability": 0.9932 + }, + { + "start": 1087.1, + "end": 1091.06, + "probability": 0.7421 + }, + { + "start": 1091.06, + "end": 1091.06, + "probability": 0.0464 + }, + { + "start": 1091.06, + "end": 1093.5, + "probability": 0.6493 + }, + { + "start": 1094.7, + "end": 1099.64, + "probability": 0.4646 + }, + { + "start": 1101.46, + "end": 1104.12, + "probability": 0.8533 + }, + { + "start": 1104.82, + "end": 1104.84, + "probability": 0.7896 + }, + { + "start": 1105.46, + "end": 1106.82, + "probability": 0.9845 + }, + { + "start": 1107.62, + "end": 1108.98, + "probability": 0.9554 + }, + { + "start": 1109.78, + "end": 1114.64, + "probability": 0.9904 + }, + { + "start": 1115.34, + "end": 1116.14, + "probability": 0.9795 + }, + { + "start": 1117.0, + "end": 1121.18, + "probability": 0.9855 + }, + { + "start": 1121.4, + "end": 1122.24, + "probability": 0.825 + }, + { + "start": 1122.44, + "end": 1123.36, + "probability": 0.3336 + }, + { + "start": 1123.88, + "end": 1124.86, + "probability": 0.7902 + }, + { + "start": 1125.6, + "end": 1126.2, + "probability": 0.879 + }, + { + "start": 1126.3, + "end": 1127.3, + "probability": 0.6143 + }, + { + "start": 1127.86, + "end": 1133.36, + "probability": 0.9919 + }, + { + "start": 1134.1, + "end": 1138.8, + "probability": 0.9351 + }, + { + "start": 1140.08, + "end": 1141.52, + "probability": 0.5147 + }, + { + "start": 1142.34, + "end": 1145.62, + "probability": 0.7405 + }, + { + "start": 1146.08, + "end": 1146.66, + "probability": 0.6218 + }, + { + "start": 1147.8, + "end": 1148.74, + "probability": 0.6728 + }, + { + "start": 1148.86, + "end": 1149.18, + "probability": 0.808 + }, + { + "start": 1149.22, + "end": 1152.78, + "probability": 0.9512 + }, + { + "start": 1153.2, + "end": 1154.56, + "probability": 0.9681 + }, + { + "start": 1155.02, + "end": 1157.22, + "probability": 0.7149 + }, + { + "start": 1158.04, + "end": 1161.08, + "probability": 0.9739 + }, + { + "start": 1164.58, + "end": 1167.18, + "probability": 0.9972 + }, + { + "start": 1167.78, + "end": 1172.7, + "probability": 0.9919 + }, + { + "start": 1172.7, + "end": 1175.75, + "probability": 0.7531 + }, + { + "start": 1176.16, + "end": 1178.94, + "probability": 0.9713 + }, + { + "start": 1180.44, + "end": 1183.16, + "probability": 0.9945 + }, + { + "start": 1183.72, + "end": 1185.46, + "probability": 0.5517 + }, + { + "start": 1186.38, + "end": 1188.06, + "probability": 0.7024 + }, + { + "start": 1188.66, + "end": 1190.24, + "probability": 0.9701 + }, + { + "start": 1191.3, + "end": 1192.92, + "probability": 0.8705 + }, + { + "start": 1193.74, + "end": 1197.41, + "probability": 0.9973 + }, + { + "start": 1198.6, + "end": 1200.84, + "probability": 0.9303 + }, + { + "start": 1202.06, + "end": 1205.38, + "probability": 0.8931 + }, + { + "start": 1206.8, + "end": 1209.24, + "probability": 0.9814 + }, + { + "start": 1209.88, + "end": 1211.44, + "probability": 0.842 + }, + { + "start": 1213.14, + "end": 1217.14, + "probability": 0.8044 + }, + { + "start": 1218.26, + "end": 1220.16, + "probability": 0.52 + }, + { + "start": 1220.78, + "end": 1227.2, + "probability": 0.9026 + }, + { + "start": 1229.2, + "end": 1232.18, + "probability": 0.9876 + }, + { + "start": 1232.86, + "end": 1235.44, + "probability": 0.7167 + }, + { + "start": 1236.28, + "end": 1239.44, + "probability": 0.6974 + }, + { + "start": 1239.44, + "end": 1242.2, + "probability": 0.9768 + }, + { + "start": 1243.26, + "end": 1248.62, + "probability": 0.9093 + }, + { + "start": 1249.28, + "end": 1253.68, + "probability": 0.7932 + }, + { + "start": 1255.0, + "end": 1256.68, + "probability": 0.8038 + }, + { + "start": 1257.54, + "end": 1260.06, + "probability": 0.8433 + }, + { + "start": 1260.18, + "end": 1261.42, + "probability": 0.7545 + }, + { + "start": 1262.28, + "end": 1263.82, + "probability": 0.7428 + }, + { + "start": 1264.36, + "end": 1267.46, + "probability": 0.9419 + }, + { + "start": 1268.24, + "end": 1271.1, + "probability": 0.9353 + }, + { + "start": 1271.1, + "end": 1275.86, + "probability": 0.967 + }, + { + "start": 1276.86, + "end": 1280.4, + "probability": 0.958 + }, + { + "start": 1280.76, + "end": 1281.5, + "probability": 0.6544 + }, + { + "start": 1281.64, + "end": 1282.16, + "probability": 0.7404 + }, + { + "start": 1283.26, + "end": 1286.98, + "probability": 0.8666 + }, + { + "start": 1288.26, + "end": 1289.94, + "probability": 0.9523 + }, + { + "start": 1290.96, + "end": 1293.54, + "probability": 0.9224 + }, + { + "start": 1294.68, + "end": 1296.28, + "probability": 0.998 + }, + { + "start": 1296.84, + "end": 1299.68, + "probability": 0.9829 + }, + { + "start": 1299.8, + "end": 1302.08, + "probability": 0.9977 + }, + { + "start": 1302.82, + "end": 1303.74, + "probability": 0.9909 + }, + { + "start": 1304.94, + "end": 1307.18, + "probability": 0.9647 + }, + { + "start": 1308.06, + "end": 1310.56, + "probability": 0.9171 + }, + { + "start": 1311.22, + "end": 1313.88, + "probability": 0.9128 + }, + { + "start": 1314.64, + "end": 1319.06, + "probability": 0.8279 + }, + { + "start": 1319.06, + "end": 1322.02, + "probability": 0.9959 + }, + { + "start": 1323.76, + "end": 1328.92, + "probability": 0.9921 + }, + { + "start": 1329.48, + "end": 1332.2, + "probability": 0.957 + }, + { + "start": 1333.44, + "end": 1336.4, + "probability": 0.9041 + }, + { + "start": 1336.96, + "end": 1340.76, + "probability": 0.9865 + }, + { + "start": 1342.18, + "end": 1343.96, + "probability": 0.8276 + }, + { + "start": 1344.14, + "end": 1348.68, + "probability": 0.9814 + }, + { + "start": 1349.6, + "end": 1350.34, + "probability": 0.7584 + }, + { + "start": 1350.9, + "end": 1355.18, + "probability": 0.9864 + }, + { + "start": 1355.18, + "end": 1358.28, + "probability": 0.716 + }, + { + "start": 1359.82, + "end": 1364.22, + "probability": 0.8603 + }, + { + "start": 1364.86, + "end": 1366.22, + "probability": 0.7431 + }, + { + "start": 1366.96, + "end": 1368.52, + "probability": 0.8418 + }, + { + "start": 1369.4, + "end": 1373.32, + "probability": 0.9868 + }, + { + "start": 1373.42, + "end": 1375.52, + "probability": 0.9525 + }, + { + "start": 1376.5, + "end": 1377.0, + "probability": 0.6822 + }, + { + "start": 1378.26, + "end": 1379.55, + "probability": 0.8293 + }, + { + "start": 1379.82, + "end": 1383.06, + "probability": 0.9969 + }, + { + "start": 1383.5, + "end": 1385.04, + "probability": 0.9686 + }, + { + "start": 1385.9, + "end": 1388.24, + "probability": 0.938 + }, + { + "start": 1389.1, + "end": 1391.04, + "probability": 0.9742 + }, + { + "start": 1391.62, + "end": 1393.64, + "probability": 0.9016 + }, + { + "start": 1394.48, + "end": 1399.9, + "probability": 0.8866 + }, + { + "start": 1399.9, + "end": 1404.22, + "probability": 0.9911 + }, + { + "start": 1404.36, + "end": 1404.72, + "probability": 0.6405 + }, + { + "start": 1405.64, + "end": 1407.3, + "probability": 0.6375 + }, + { + "start": 1408.18, + "end": 1408.2, + "probability": 0.0233 + }, + { + "start": 1408.2, + "end": 1408.2, + "probability": 0.3379 + }, + { + "start": 1408.6, + "end": 1409.74, + "probability": 0.7699 + }, + { + "start": 1409.86, + "end": 1411.34, + "probability": 0.1461 + }, + { + "start": 1412.02, + "end": 1413.78, + "probability": 0.6748 + }, + { + "start": 1414.1, + "end": 1417.18, + "probability": 0.7148 + }, + { + "start": 1417.84, + "end": 1420.56, + "probability": 0.7209 + }, + { + "start": 1420.98, + "end": 1422.81, + "probability": 0.9246 + }, + { + "start": 1423.48, + "end": 1424.16, + "probability": 0.8835 + }, + { + "start": 1424.44, + "end": 1425.84, + "probability": 0.9814 + }, + { + "start": 1426.3, + "end": 1429.3, + "probability": 0.9574 + }, + { + "start": 1430.3, + "end": 1431.22, + "probability": 0.5226 + }, + { + "start": 1431.24, + "end": 1433.12, + "probability": 0.917 + }, + { + "start": 1440.98, + "end": 1442.76, + "probability": 0.8529 + }, + { + "start": 1442.94, + "end": 1446.62, + "probability": 0.7175 + }, + { + "start": 1447.42, + "end": 1448.34, + "probability": 0.7667 + }, + { + "start": 1449.22, + "end": 1456.84, + "probability": 0.9953 + }, + { + "start": 1457.16, + "end": 1459.56, + "probability": 0.9382 + }, + { + "start": 1460.54, + "end": 1463.06, + "probability": 0.8083 + }, + { + "start": 1463.9, + "end": 1464.88, + "probability": 0.5582 + }, + { + "start": 1465.24, + "end": 1467.92, + "probability": 0.8455 + }, + { + "start": 1468.64, + "end": 1471.6, + "probability": 0.8829 + }, + { + "start": 1472.16, + "end": 1474.52, + "probability": 0.9626 + }, + { + "start": 1475.52, + "end": 1479.66, + "probability": 0.9748 + }, + { + "start": 1480.56, + "end": 1486.4, + "probability": 0.8747 + }, + { + "start": 1487.28, + "end": 1490.58, + "probability": 0.5493 + }, + { + "start": 1491.74, + "end": 1496.52, + "probability": 0.9463 + }, + { + "start": 1497.86, + "end": 1501.6, + "probability": 0.9653 + }, + { + "start": 1502.42, + "end": 1505.1, + "probability": 0.9595 + }, + { + "start": 1505.86, + "end": 1509.24, + "probability": 0.9854 + }, + { + "start": 1510.86, + "end": 1513.54, + "probability": 0.8497 + }, + { + "start": 1514.08, + "end": 1516.24, + "probability": 0.9917 + }, + { + "start": 1517.0, + "end": 1518.8, + "probability": 0.998 + }, + { + "start": 1519.52, + "end": 1521.88, + "probability": 0.9827 + }, + { + "start": 1522.92, + "end": 1525.0, + "probability": 0.9866 + }, + { + "start": 1526.04, + "end": 1530.32, + "probability": 0.8413 + }, + { + "start": 1531.04, + "end": 1531.9, + "probability": 0.9582 + }, + { + "start": 1532.28, + "end": 1538.04, + "probability": 0.976 + }, + { + "start": 1541.68, + "end": 1546.52, + "probability": 0.9268 + }, + { + "start": 1548.22, + "end": 1555.38, + "probability": 0.942 + }, + { + "start": 1557.64, + "end": 1562.24, + "probability": 0.9902 + }, + { + "start": 1562.98, + "end": 1564.4, + "probability": 0.7538 + }, + { + "start": 1565.0, + "end": 1565.88, + "probability": 0.9056 + }, + { + "start": 1566.52, + "end": 1569.72, + "probability": 0.8311 + }, + { + "start": 1570.62, + "end": 1572.52, + "probability": 0.8916 + }, + { + "start": 1573.14, + "end": 1573.92, + "probability": 0.7515 + }, + { + "start": 1574.5, + "end": 1581.46, + "probability": 0.9761 + }, + { + "start": 1581.58, + "end": 1581.98, + "probability": 0.7366 + }, + { + "start": 1582.46, + "end": 1584.72, + "probability": 0.7886 + }, + { + "start": 1584.8, + "end": 1586.31, + "probability": 0.9167 + }, + { + "start": 1587.28, + "end": 1588.04, + "probability": 0.261 + }, + { + "start": 1589.3, + "end": 1590.9, + "probability": 0.062 + }, + { + "start": 1605.54, + "end": 1606.14, + "probability": 0.7282 + }, + { + "start": 1606.42, + "end": 1608.18, + "probability": 0.5846 + }, + { + "start": 1608.44, + "end": 1610.24, + "probability": 0.6706 + }, + { + "start": 1611.06, + "end": 1614.76, + "probability": 0.9868 + }, + { + "start": 1615.52, + "end": 1618.02, + "probability": 0.9679 + }, + { + "start": 1618.62, + "end": 1619.99, + "probability": 0.5265 + }, + { + "start": 1620.42, + "end": 1623.78, + "probability": 0.9692 + }, + { + "start": 1623.88, + "end": 1625.52, + "probability": 0.9126 + }, + { + "start": 1625.74, + "end": 1627.84, + "probability": 0.9899 + }, + { + "start": 1629.38, + "end": 1632.48, + "probability": 0.8738 + }, + { + "start": 1633.16, + "end": 1636.52, + "probability": 0.9814 + }, + { + "start": 1637.12, + "end": 1645.12, + "probability": 0.8991 + }, + { + "start": 1645.8, + "end": 1647.12, + "probability": 0.6687 + }, + { + "start": 1647.98, + "end": 1649.24, + "probability": 0.8676 + }, + { + "start": 1650.76, + "end": 1653.48, + "probability": 0.8697 + }, + { + "start": 1655.38, + "end": 1656.76, + "probability": 0.9285 + }, + { + "start": 1658.04, + "end": 1659.6, + "probability": 0.9781 + }, + { + "start": 1660.54, + "end": 1663.0, + "probability": 0.9822 + }, + { + "start": 1663.12, + "end": 1664.02, + "probability": 0.8668 + }, + { + "start": 1664.52, + "end": 1666.2, + "probability": 0.9543 + }, + { + "start": 1666.52, + "end": 1667.66, + "probability": 0.6889 + }, + { + "start": 1668.32, + "end": 1669.77, + "probability": 0.9688 + }, + { + "start": 1670.8, + "end": 1672.21, + "probability": 0.9712 + }, + { + "start": 1673.64, + "end": 1676.74, + "probability": 0.9133 + }, + { + "start": 1677.26, + "end": 1679.63, + "probability": 0.4877 + }, + { + "start": 1679.82, + "end": 1681.88, + "probability": 0.729 + }, + { + "start": 1682.45, + "end": 1686.52, + "probability": 0.6029 + }, + { + "start": 1686.66, + "end": 1690.06, + "probability": 0.6528 + }, + { + "start": 1690.06, + "end": 1690.92, + "probability": 0.339 + }, + { + "start": 1691.04, + "end": 1691.7, + "probability": 0.6716 + }, + { + "start": 1691.82, + "end": 1692.9, + "probability": 0.9946 + }, + { + "start": 1693.28, + "end": 1693.4, + "probability": 0.0238 + }, + { + "start": 1693.48, + "end": 1695.76, + "probability": 0.4911 + }, + { + "start": 1695.76, + "end": 1697.12, + "probability": 0.3227 + }, + { + "start": 1697.52, + "end": 1702.16, + "probability": 0.677 + }, + { + "start": 1702.36, + "end": 1704.02, + "probability": 0.3882 + }, + { + "start": 1704.02, + "end": 1705.72, + "probability": 0.9663 + }, + { + "start": 1706.3, + "end": 1707.92, + "probability": 0.3235 + }, + { + "start": 1707.92, + "end": 1709.6, + "probability": 0.2167 + }, + { + "start": 1709.88, + "end": 1711.94, + "probability": 0.4343 + }, + { + "start": 1712.14, + "end": 1717.0, + "probability": 0.8715 + }, + { + "start": 1717.76, + "end": 1718.76, + "probability": 0.8932 + }, + { + "start": 1718.8, + "end": 1719.48, + "probability": 0.4998 + }, + { + "start": 1719.6, + "end": 1721.34, + "probability": 0.8218 + }, + { + "start": 1721.44, + "end": 1722.7, + "probability": 0.7636 + }, + { + "start": 1722.88, + "end": 1726.42, + "probability": 0.8739 + }, + { + "start": 1726.86, + "end": 1728.33, + "probability": 0.9717 + }, + { + "start": 1728.74, + "end": 1729.42, + "probability": 0.2552 + }, + { + "start": 1729.66, + "end": 1729.92, + "probability": 0.2089 + }, + { + "start": 1729.92, + "end": 1730.76, + "probability": 0.4696 + }, + { + "start": 1730.84, + "end": 1735.26, + "probability": 0.7821 + }, + { + "start": 1735.36, + "end": 1737.32, + "probability": 0.8323 + }, + { + "start": 1737.58, + "end": 1739.24, + "probability": 0.9658 + }, + { + "start": 1739.32, + "end": 1740.18, + "probability": 0.8099 + }, + { + "start": 1740.38, + "end": 1741.98, + "probability": 0.7732 + }, + { + "start": 1742.24, + "end": 1744.11, + "probability": 0.8657 + }, + { + "start": 1744.66, + "end": 1745.59, + "probability": 0.9696 + }, + { + "start": 1746.12, + "end": 1750.14, + "probability": 0.4805 + }, + { + "start": 1750.14, + "end": 1752.99, + "probability": 0.9139 + }, + { + "start": 1753.98, + "end": 1754.96, + "probability": 0.6665 + }, + { + "start": 1756.0, + "end": 1757.6, + "probability": 0.744 + }, + { + "start": 1758.08, + "end": 1759.28, + "probability": 0.6426 + }, + { + "start": 1759.66, + "end": 1761.34, + "probability": 0.9401 + }, + { + "start": 1762.66, + "end": 1763.84, + "probability": 0.6918 + }, + { + "start": 1764.06, + "end": 1765.4, + "probability": 0.997 + }, + { + "start": 1766.32, + "end": 1767.52, + "probability": 0.6914 + }, + { + "start": 1768.78, + "end": 1770.58, + "probability": 0.9777 + }, + { + "start": 1771.04, + "end": 1773.08, + "probability": 0.813 + }, + { + "start": 1784.56, + "end": 1786.36, + "probability": 0.761 + }, + { + "start": 1787.7, + "end": 1791.02, + "probability": 0.3908 + }, + { + "start": 1792.64, + "end": 1795.9, + "probability": 0.4677 + }, + { + "start": 1796.54, + "end": 1797.46, + "probability": 0.6399 + }, + { + "start": 1798.64, + "end": 1807.92, + "probability": 0.9914 + }, + { + "start": 1808.1, + "end": 1808.66, + "probability": 0.7925 + }, + { + "start": 1809.72, + "end": 1814.66, + "probability": 0.9662 + }, + { + "start": 1814.79, + "end": 1819.28, + "probability": 0.5601 + }, + { + "start": 1819.5, + "end": 1821.0, + "probability": 0.83 + }, + { + "start": 1821.06, + "end": 1822.18, + "probability": 0.9844 + }, + { + "start": 1823.12, + "end": 1827.0, + "probability": 0.9816 + }, + { + "start": 1827.12, + "end": 1828.22, + "probability": 0.9836 + }, + { + "start": 1828.38, + "end": 1830.16, + "probability": 0.985 + }, + { + "start": 1830.28, + "end": 1830.84, + "probability": 0.976 + }, + { + "start": 1830.92, + "end": 1832.86, + "probability": 0.925 + }, + { + "start": 1833.12, + "end": 1834.06, + "probability": 0.988 + }, + { + "start": 1834.36, + "end": 1835.56, + "probability": 0.991 + }, + { + "start": 1835.8, + "end": 1837.76, + "probability": 0.6172 + }, + { + "start": 1838.52, + "end": 1843.98, + "probability": 0.8035 + }, + { + "start": 1843.98, + "end": 1847.18, + "probability": 0.9997 + }, + { + "start": 1847.84, + "end": 1851.46, + "probability": 0.9609 + }, + { + "start": 1851.5, + "end": 1856.4, + "probability": 0.6599 + }, + { + "start": 1856.4, + "end": 1860.28, + "probability": 0.9957 + }, + { + "start": 1860.5, + "end": 1864.4, + "probability": 0.9922 + }, + { + "start": 1865.26, + "end": 1869.22, + "probability": 0.9985 + }, + { + "start": 1869.28, + "end": 1870.32, + "probability": 0.9966 + }, + { + "start": 1870.84, + "end": 1871.54, + "probability": 0.8121 + }, + { + "start": 1871.64, + "end": 1872.86, + "probability": 0.939 + }, + { + "start": 1873.0, + "end": 1878.66, + "probability": 0.9952 + }, + { + "start": 1878.66, + "end": 1883.14, + "probability": 0.9932 + }, + { + "start": 1884.18, + "end": 1884.84, + "probability": 0.7303 + }, + { + "start": 1885.04, + "end": 1887.66, + "probability": 0.5036 + }, + { + "start": 1887.78, + "end": 1889.56, + "probability": 0.8092 + }, + { + "start": 1889.58, + "end": 1893.62, + "probability": 0.927 + }, + { + "start": 1893.72, + "end": 1894.24, + "probability": 0.9966 + }, + { + "start": 1895.02, + "end": 1896.62, + "probability": 0.8605 + }, + { + "start": 1898.07, + "end": 1901.98, + "probability": 0.9942 + }, + { + "start": 1902.02, + "end": 1903.24, + "probability": 0.5407 + }, + { + "start": 1903.34, + "end": 1904.5, + "probability": 0.8998 + }, + { + "start": 1904.54, + "end": 1905.48, + "probability": 0.7396 + }, + { + "start": 1906.2, + "end": 1908.64, + "probability": 0.9889 + }, + { + "start": 1909.1, + "end": 1910.2, + "probability": 0.8182 + }, + { + "start": 1911.18, + "end": 1912.28, + "probability": 0.9355 + }, + { + "start": 1912.3, + "end": 1913.84, + "probability": 0.9802 + }, + { + "start": 1914.18, + "end": 1918.24, + "probability": 0.9868 + }, + { + "start": 1919.58, + "end": 1924.26, + "probability": 0.9883 + }, + { + "start": 1924.7, + "end": 1926.3, + "probability": 0.9969 + }, + { + "start": 1926.98, + "end": 1930.82, + "probability": 0.9516 + }, + { + "start": 1931.96, + "end": 1934.94, + "probability": 0.8779 + }, + { + "start": 1935.66, + "end": 1938.92, + "probability": 0.9934 + }, + { + "start": 1939.32, + "end": 1941.62, + "probability": 0.9683 + }, + { + "start": 1941.72, + "end": 1945.56, + "probability": 0.9686 + }, + { + "start": 1945.86, + "end": 1947.16, + "probability": 0.9807 + }, + { + "start": 1947.92, + "end": 1949.18, + "probability": 0.7168 + }, + { + "start": 1949.48, + "end": 1954.0, + "probability": 0.8708 + }, + { + "start": 1954.12, + "end": 1955.12, + "probability": 0.7894 + }, + { + "start": 1955.2, + "end": 1958.06, + "probability": 0.999 + }, + { + "start": 1959.1, + "end": 1960.48, + "probability": 0.9827 + }, + { + "start": 1961.0, + "end": 1962.28, + "probability": 0.966 + }, + { + "start": 1962.36, + "end": 1963.06, + "probability": 0.544 + }, + { + "start": 1963.14, + "end": 1963.84, + "probability": 0.9669 + }, + { + "start": 1963.9, + "end": 1965.04, + "probability": 0.8931 + }, + { + "start": 1965.08, + "end": 1967.44, + "probability": 0.9929 + }, + { + "start": 1968.16, + "end": 1969.44, + "probability": 0.8965 + }, + { + "start": 1970.52, + "end": 1975.26, + "probability": 0.9761 + }, + { + "start": 1975.62, + "end": 1976.58, + "probability": 0.9852 + }, + { + "start": 1977.58, + "end": 1980.92, + "probability": 0.8355 + }, + { + "start": 1981.84, + "end": 1982.5, + "probability": 0.9335 + }, + { + "start": 1983.08, + "end": 1983.4, + "probability": 0.6226 + }, + { + "start": 1983.88, + "end": 1985.52, + "probability": 0.7705 + }, + { + "start": 1985.52, + "end": 1988.76, + "probability": 0.9233 + }, + { + "start": 1989.02, + "end": 1989.3, + "probability": 0.9447 + }, + { + "start": 1989.38, + "end": 1991.08, + "probability": 0.9318 + }, + { + "start": 1991.14, + "end": 1991.42, + "probability": 0.8395 + }, + { + "start": 1992.32, + "end": 1992.78, + "probability": 0.7884 + }, + { + "start": 1992.88, + "end": 1993.66, + "probability": 0.7975 + }, + { + "start": 2003.16, + "end": 2003.82, + "probability": 0.5245 + }, + { + "start": 2003.9, + "end": 2004.62, + "probability": 0.7832 + }, + { + "start": 2004.74, + "end": 2007.06, + "probability": 0.9963 + }, + { + "start": 2008.08, + "end": 2011.36, + "probability": 0.8784 + }, + { + "start": 2011.6, + "end": 2013.3, + "probability": 0.9601 + }, + { + "start": 2013.44, + "end": 2014.72, + "probability": 0.9878 + }, + { + "start": 2014.86, + "end": 2014.96, + "probability": 0.4799 + }, + { + "start": 2015.84, + "end": 2016.36, + "probability": 0.3983 + }, + { + "start": 2016.64, + "end": 2020.56, + "probability": 0.9962 + }, + { + "start": 2021.34, + "end": 2022.62, + "probability": 0.7979 + }, + { + "start": 2024.46, + "end": 2027.68, + "probability": 0.9822 + }, + { + "start": 2027.72, + "end": 2029.38, + "probability": 0.9441 + }, + { + "start": 2029.48, + "end": 2031.88, + "probability": 0.9993 + }, + { + "start": 2032.68, + "end": 2033.52, + "probability": 0.7552 + }, + { + "start": 2034.56, + "end": 2037.14, + "probability": 0.998 + }, + { + "start": 2037.34, + "end": 2038.2, + "probability": 0.8954 + }, + { + "start": 2038.88, + "end": 2040.76, + "probability": 0.9588 + }, + { + "start": 2040.96, + "end": 2042.41, + "probability": 0.9934 + }, + { + "start": 2042.7, + "end": 2043.42, + "probability": 0.5661 + }, + { + "start": 2043.99, + "end": 2045.64, + "probability": 0.0753 + }, + { + "start": 2045.64, + "end": 2047.22, + "probability": 0.9849 + }, + { + "start": 2047.92, + "end": 2048.76, + "probability": 0.9644 + }, + { + "start": 2049.82, + "end": 2052.32, + "probability": 0.995 + }, + { + "start": 2052.92, + "end": 2053.8, + "probability": 0.9049 + }, + { + "start": 2054.4, + "end": 2055.24, + "probability": 0.9675 + }, + { + "start": 2056.16, + "end": 2059.42, + "probability": 0.9951 + }, + { + "start": 2059.94, + "end": 2060.58, + "probability": 0.7576 + }, + { + "start": 2061.54, + "end": 2066.22, + "probability": 0.9911 + }, + { + "start": 2066.22, + "end": 2067.98, + "probability": 0.9827 + }, + { + "start": 2068.1, + "end": 2069.92, + "probability": 0.9685 + }, + { + "start": 2070.38, + "end": 2073.2, + "probability": 0.9978 + }, + { + "start": 2073.64, + "end": 2074.76, + "probability": 0.993 + }, + { + "start": 2075.16, + "end": 2077.8, + "probability": 0.9978 + }, + { + "start": 2078.92, + "end": 2079.46, + "probability": 0.9215 + }, + { + "start": 2080.8, + "end": 2083.36, + "probability": 0.9963 + }, + { + "start": 2083.36, + "end": 2085.6, + "probability": 0.9661 + }, + { + "start": 2086.12, + "end": 2090.06, + "probability": 0.9958 + }, + { + "start": 2090.6, + "end": 2095.14, + "probability": 0.9588 + }, + { + "start": 2095.82, + "end": 2098.95, + "probability": 0.9941 + }, + { + "start": 2099.44, + "end": 2102.8, + "probability": 0.9978 + }, + { + "start": 2102.82, + "end": 2106.14, + "probability": 0.9468 + }, + { + "start": 2107.68, + "end": 2110.18, + "probability": 0.6298 + }, + { + "start": 2110.92, + "end": 2112.62, + "probability": 0.9813 + }, + { + "start": 2113.46, + "end": 2117.42, + "probability": 0.9739 + }, + { + "start": 2117.84, + "end": 2118.76, + "probability": 0.9976 + }, + { + "start": 2118.94, + "end": 2119.36, + "probability": 0.9041 + }, + { + "start": 2120.12, + "end": 2120.62, + "probability": 0.7496 + }, + { + "start": 2120.64, + "end": 2123.82, + "probability": 0.9084 + }, + { + "start": 2124.16, + "end": 2125.28, + "probability": 0.8185 + }, + { + "start": 2126.9, + "end": 2127.34, + "probability": 0.845 + }, + { + "start": 2136.48, + "end": 2136.78, + "probability": 0.3534 + }, + { + "start": 2136.86, + "end": 2139.94, + "probability": 0.9284 + }, + { + "start": 2141.14, + "end": 2148.04, + "probability": 0.9787 + }, + { + "start": 2148.2, + "end": 2149.9, + "probability": 0.9102 + }, + { + "start": 2149.98, + "end": 2152.58, + "probability": 0.9461 + }, + { + "start": 2153.3, + "end": 2153.84, + "probability": 0.8194 + }, + { + "start": 2154.04, + "end": 2154.94, + "probability": 0.8379 + }, + { + "start": 2155.2, + "end": 2156.26, + "probability": 0.6585 + }, + { + "start": 2156.4, + "end": 2157.02, + "probability": 0.9712 + }, + { + "start": 2157.52, + "end": 2157.98, + "probability": 0.9563 + }, + { + "start": 2158.24, + "end": 2158.52, + "probability": 0.7846 + }, + { + "start": 2159.8, + "end": 2162.24, + "probability": 0.9699 + }, + { + "start": 2162.3, + "end": 2166.28, + "probability": 0.9963 + }, + { + "start": 2167.42, + "end": 2170.7, + "probability": 0.9987 + }, + { + "start": 2171.42, + "end": 2173.94, + "probability": 0.9281 + }, + { + "start": 2174.34, + "end": 2175.36, + "probability": 0.6831 + }, + { + "start": 2175.4, + "end": 2176.34, + "probability": 0.7287 + }, + { + "start": 2177.6, + "end": 2179.7, + "probability": 0.9717 + }, + { + "start": 2180.02, + "end": 2180.7, + "probability": 0.9319 + }, + { + "start": 2181.02, + "end": 2182.46, + "probability": 0.5532 + }, + { + "start": 2183.1, + "end": 2183.66, + "probability": 0.6029 + }, + { + "start": 2183.8, + "end": 2186.1, + "probability": 0.9313 + }, + { + "start": 2186.16, + "end": 2187.22, + "probability": 0.8297 + }, + { + "start": 2187.36, + "end": 2188.16, + "probability": 0.6603 + }, + { + "start": 2188.62, + "end": 2190.32, + "probability": 0.7808 + }, + { + "start": 2190.52, + "end": 2193.36, + "probability": 0.9738 + }, + { + "start": 2193.84, + "end": 2196.1, + "probability": 0.9861 + }, + { + "start": 2196.96, + "end": 2199.7, + "probability": 0.991 + }, + { + "start": 2200.8, + "end": 2201.9, + "probability": 0.7473 + }, + { + "start": 2203.42, + "end": 2206.44, + "probability": 0.7913 + }, + { + "start": 2207.32, + "end": 2211.42, + "probability": 0.9409 + }, + { + "start": 2214.26, + "end": 2215.78, + "probability": 0.9697 + }, + { + "start": 2216.04, + "end": 2216.4, + "probability": 0.9855 + }, + { + "start": 2216.52, + "end": 2217.1, + "probability": 0.985 + }, + { + "start": 2217.2, + "end": 2217.8, + "probability": 0.9927 + }, + { + "start": 2217.92, + "end": 2218.56, + "probability": 0.8123 + }, + { + "start": 2219.12, + "end": 2220.58, + "probability": 0.7065 + }, + { + "start": 2221.8, + "end": 2224.26, + "probability": 0.9927 + }, + { + "start": 2225.16, + "end": 2229.44, + "probability": 0.9831 + }, + { + "start": 2229.54, + "end": 2229.86, + "probability": 0.7415 + }, + { + "start": 2230.52, + "end": 2231.42, + "probability": 0.9805 + }, + { + "start": 2232.82, + "end": 2237.24, + "probability": 0.9132 + }, + { + "start": 2237.34, + "end": 2240.74, + "probability": 0.8009 + }, + { + "start": 2241.96, + "end": 2247.46, + "probability": 0.9961 + }, + { + "start": 2247.96, + "end": 2249.61, + "probability": 0.9883 + }, + { + "start": 2252.04, + "end": 2253.46, + "probability": 0.9662 + }, + { + "start": 2254.16, + "end": 2255.0, + "probability": 0.9744 + }, + { + "start": 2256.58, + "end": 2261.76, + "probability": 0.5471 + }, + { + "start": 2262.9, + "end": 2264.52, + "probability": 0.9942 + }, + { + "start": 2264.82, + "end": 2266.98, + "probability": 0.6772 + }, + { + "start": 2270.38, + "end": 2274.82, + "probability": 0.994 + }, + { + "start": 2277.32, + "end": 2279.42, + "probability": 0.9001 + }, + { + "start": 2281.44, + "end": 2286.44, + "probability": 0.9415 + }, + { + "start": 2286.94, + "end": 2291.44, + "probability": 0.9989 + }, + { + "start": 2292.54, + "end": 2295.54, + "probability": 0.9985 + }, + { + "start": 2295.74, + "end": 2296.46, + "probability": 0.7406 + }, + { + "start": 2297.36, + "end": 2300.18, + "probability": 0.6937 + }, + { + "start": 2300.24, + "end": 2303.4, + "probability": 0.9005 + }, + { + "start": 2304.24, + "end": 2306.84, + "probability": 0.914 + }, + { + "start": 2323.18, + "end": 2324.1, + "probability": 0.6554 + }, + { + "start": 2324.96, + "end": 2325.6, + "probability": 0.6863 + }, + { + "start": 2326.58, + "end": 2328.6, + "probability": 0.9517 + }, + { + "start": 2329.26, + "end": 2329.96, + "probability": 0.878 + }, + { + "start": 2331.04, + "end": 2331.26, + "probability": 0.7112 + }, + { + "start": 2331.8, + "end": 2332.54, + "probability": 0.8741 + }, + { + "start": 2333.26, + "end": 2334.58, + "probability": 0.9437 + }, + { + "start": 2335.16, + "end": 2336.34, + "probability": 0.9395 + }, + { + "start": 2337.26, + "end": 2338.12, + "probability": 0.8859 + }, + { + "start": 2338.66, + "end": 2339.38, + "probability": 0.9479 + }, + { + "start": 2340.48, + "end": 2340.92, + "probability": 0.8572 + }, + { + "start": 2341.44, + "end": 2342.45, + "probability": 0.9689 + }, + { + "start": 2343.1, + "end": 2343.86, + "probability": 0.6416 + }, + { + "start": 2344.5, + "end": 2345.3, + "probability": 0.9722 + }, + { + "start": 2345.44, + "end": 2346.58, + "probability": 0.8939 + }, + { + "start": 2347.16, + "end": 2347.77, + "probability": 0.7415 + }, + { + "start": 2348.64, + "end": 2349.36, + "probability": 0.8866 + }, + { + "start": 2350.04, + "end": 2350.98, + "probability": 0.935 + }, + { + "start": 2351.72, + "end": 2354.8, + "probability": 0.9566 + }, + { + "start": 2355.92, + "end": 2358.7, + "probability": 0.9583 + }, + { + "start": 2359.36, + "end": 2359.64, + "probability": 0.9603 + }, + { + "start": 2360.54, + "end": 2363.16, + "probability": 0.7956 + }, + { + "start": 2363.92, + "end": 2364.56, + "probability": 0.6111 + }, + { + "start": 2365.74, + "end": 2368.34, + "probability": 0.8473 + }, + { + "start": 2369.2, + "end": 2370.58, + "probability": 0.9364 + }, + { + "start": 2371.44, + "end": 2374.46, + "probability": 0.916 + }, + { + "start": 2374.94, + "end": 2376.68, + "probability": 0.9897 + }, + { + "start": 2377.46, + "end": 2379.09, + "probability": 0.9946 + }, + { + "start": 2379.98, + "end": 2382.2, + "probability": 0.9201 + }, + { + "start": 2383.08, + "end": 2384.28, + "probability": 0.9904 + }, + { + "start": 2384.98, + "end": 2389.18, + "probability": 0.9871 + }, + { + "start": 2389.94, + "end": 2390.92, + "probability": 0.8901 + }, + { + "start": 2391.8, + "end": 2392.68, + "probability": 0.9648 + }, + { + "start": 2392.78, + "end": 2392.96, + "probability": 0.5584 + }, + { + "start": 2393.0, + "end": 2393.68, + "probability": 0.9555 + }, + { + "start": 2393.76, + "end": 2395.14, + "probability": 0.8706 + }, + { + "start": 2395.62, + "end": 2398.3, + "probability": 0.9919 + }, + { + "start": 2398.74, + "end": 2399.7, + "probability": 0.9155 + }, + { + "start": 2399.78, + "end": 2402.45, + "probability": 0.9749 + }, + { + "start": 2402.88, + "end": 2406.27, + "probability": 0.9956 + }, + { + "start": 2407.3, + "end": 2407.48, + "probability": 0.7747 + }, + { + "start": 2407.88, + "end": 2410.62, + "probability": 0.9991 + }, + { + "start": 2410.62, + "end": 2414.8, + "probability": 0.9329 + }, + { + "start": 2415.1, + "end": 2415.32, + "probability": 0.8997 + }, + { + "start": 2415.86, + "end": 2419.0, + "probability": 0.9972 + }, + { + "start": 2419.0, + "end": 2422.52, + "probability": 0.9991 + }, + { + "start": 2422.96, + "end": 2423.1, + "probability": 0.551 + }, + { + "start": 2423.42, + "end": 2424.8, + "probability": 0.9978 + }, + { + "start": 2425.42, + "end": 2428.02, + "probability": 0.9904 + }, + { + "start": 2428.02, + "end": 2428.28, + "probability": 0.834 + }, + { + "start": 2428.66, + "end": 2431.14, + "probability": 0.9877 + }, + { + "start": 2431.7, + "end": 2432.28, + "probability": 0.923 + }, + { + "start": 2433.16, + "end": 2433.5, + "probability": 0.3964 + }, + { + "start": 2434.84, + "end": 2436.76, + "probability": 0.8117 + }, + { + "start": 2436.88, + "end": 2439.12, + "probability": 0.715 + }, + { + "start": 2440.2, + "end": 2440.92, + "probability": 0.8097 + }, + { + "start": 2441.0, + "end": 2442.64, + "probability": 0.9922 + }, + { + "start": 2443.94, + "end": 2446.33, + "probability": 0.9777 + }, + { + "start": 2447.16, + "end": 2448.98, + "probability": 0.9706 + }, + { + "start": 2449.3, + "end": 2450.3, + "probability": 0.896 + }, + { + "start": 2450.74, + "end": 2453.64, + "probability": 0.9397 + }, + { + "start": 2455.18, + "end": 2456.24, + "probability": 0.9536 + }, + { + "start": 2456.62, + "end": 2457.38, + "probability": 0.9631 + }, + { + "start": 2457.78, + "end": 2460.06, + "probability": 0.9579 + }, + { + "start": 2460.52, + "end": 2463.1, + "probability": 0.9803 + }, + { + "start": 2463.34, + "end": 2464.17, + "probability": 0.6978 + }, + { + "start": 2464.42, + "end": 2466.98, + "probability": 0.9742 + }, + { + "start": 2467.02, + "end": 2467.48, + "probability": 0.5994 + }, + { + "start": 2467.82, + "end": 2469.0, + "probability": 0.9943 + }, + { + "start": 2469.46, + "end": 2472.58, + "probability": 0.9671 + }, + { + "start": 2472.64, + "end": 2473.02, + "probability": 0.0623 + }, + { + "start": 2473.36, + "end": 2473.94, + "probability": 0.6746 + }, + { + "start": 2474.44, + "end": 2475.26, + "probability": 0.6315 + }, + { + "start": 2475.32, + "end": 2483.24, + "probability": 0.9578 + }, + { + "start": 2483.46, + "end": 2484.04, + "probability": 0.7523 + }, + { + "start": 2484.94, + "end": 2485.82, + "probability": 0.4715 + }, + { + "start": 2486.52, + "end": 2490.12, + "probability": 0.906 + }, + { + "start": 2490.88, + "end": 2492.24, + "probability": 0.4307 + }, + { + "start": 2492.3, + "end": 2494.06, + "probability": 0.9484 + }, + { + "start": 2494.7, + "end": 2498.68, + "probability": 0.9741 + }, + { + "start": 2499.04, + "end": 2500.62, + "probability": 0.9882 + }, + { + "start": 2501.58, + "end": 2503.55, + "probability": 0.9007 + }, + { + "start": 2503.72, + "end": 2506.74, + "probability": 0.9338 + }, + { + "start": 2507.16, + "end": 2508.67, + "probability": 0.998 + }, + { + "start": 2509.28, + "end": 2510.96, + "probability": 0.9953 + }, + { + "start": 2511.4, + "end": 2514.56, + "probability": 0.9924 + }, + { + "start": 2514.74, + "end": 2514.92, + "probability": 0.7279 + }, + { + "start": 2515.0, + "end": 2515.94, + "probability": 0.8145 + }, + { + "start": 2516.4, + "end": 2518.7, + "probability": 0.998 + }, + { + "start": 2518.7, + "end": 2521.82, + "probability": 0.9961 + }, + { + "start": 2522.14, + "end": 2526.0, + "probability": 0.9868 + }, + { + "start": 2526.46, + "end": 2528.7, + "probability": 0.9923 + }, + { + "start": 2529.1, + "end": 2532.5, + "probability": 0.9868 + }, + { + "start": 2532.98, + "end": 2534.42, + "probability": 0.994 + }, + { + "start": 2534.88, + "end": 2537.88, + "probability": 0.999 + }, + { + "start": 2538.08, + "end": 2541.7, + "probability": 0.9982 + }, + { + "start": 2541.74, + "end": 2545.54, + "probability": 0.9971 + }, + { + "start": 2546.02, + "end": 2548.48, + "probability": 0.9649 + }, + { + "start": 2548.62, + "end": 2549.26, + "probability": 0.9211 + }, + { + "start": 2549.66, + "end": 2551.04, + "probability": 0.9226 + }, + { + "start": 2551.5, + "end": 2552.3, + "probability": 0.7709 + }, + { + "start": 2552.58, + "end": 2556.96, + "probability": 0.9989 + }, + { + "start": 2556.96, + "end": 2559.94, + "probability": 0.9958 + }, + { + "start": 2560.06, + "end": 2560.96, + "probability": 0.9436 + }, + { + "start": 2561.34, + "end": 2562.32, + "probability": 0.6504 + }, + { + "start": 2562.86, + "end": 2563.74, + "probability": 0.9015 + }, + { + "start": 2564.06, + "end": 2564.22, + "probability": 0.5661 + }, + { + "start": 2564.44, + "end": 2566.4, + "probability": 0.9653 + }, + { + "start": 2578.82, + "end": 2582.32, + "probability": 0.1063 + }, + { + "start": 2582.58, + "end": 2584.8, + "probability": 0.532 + }, + { + "start": 2585.08, + "end": 2586.3, + "probability": 0.4959 + }, + { + "start": 2592.64, + "end": 2594.72, + "probability": 0.4379 + }, + { + "start": 2598.7, + "end": 2599.94, + "probability": 0.5944 + }, + { + "start": 2600.94, + "end": 2602.1, + "probability": 0.0543 + }, + { + "start": 2603.46, + "end": 2604.03, + "probability": 0.0627 + }, + { + "start": 2604.24, + "end": 2605.28, + "probability": 0.1708 + }, + { + "start": 2610.56, + "end": 2611.68, + "probability": 0.0317 + }, + { + "start": 2612.22, + "end": 2613.52, + "probability": 0.1256 + }, + { + "start": 2613.52, + "end": 2614.22, + "probability": 0.2662 + }, + { + "start": 2625.38, + "end": 2625.94, + "probability": 0.0859 + }, + { + "start": 2625.94, + "end": 2626.68, + "probability": 0.0076 + }, + { + "start": 2626.68, + "end": 2626.96, + "probability": 0.0991 + }, + { + "start": 2626.96, + "end": 2627.68, + "probability": 0.0665 + }, + { + "start": 2627.8, + "end": 2627.8, + "probability": 0.0969 + }, + { + "start": 2627.8, + "end": 2627.8, + "probability": 0.4559 + }, + { + "start": 2631.16, + "end": 2633.66, + "probability": 0.2201 + }, + { + "start": 2634.36, + "end": 2634.82, + "probability": 0.4996 + }, + { + "start": 2637.94, + "end": 2639.68, + "probability": 0.0794 + }, + { + "start": 2643.06, + "end": 2644.94, + "probability": 0.3014 + }, + { + "start": 2646.7, + "end": 2648.68, + "probability": 0.0915 + }, + { + "start": 2648.68, + "end": 2648.68, + "probability": 0.0123 + }, + { + "start": 2648.83, + "end": 2651.98, + "probability": 0.1504 + }, + { + "start": 2652.0, + "end": 2652.0, + "probability": 0.0 + }, + { + "start": 2652.0, + "end": 2652.0, + "probability": 0.0 + }, + { + "start": 2652.0, + "end": 2652.0, + "probability": 0.0 + }, + { + "start": 2652.0, + "end": 2652.0, + "probability": 0.0 + }, + { + "start": 2652.0, + "end": 2652.0, + "probability": 0.0 + }, + { + "start": 2652.0, + "end": 2652.0, + "probability": 0.0 + }, + { + "start": 2652.7, + "end": 2652.7, + "probability": 0.0966 + }, + { + "start": 2652.7, + "end": 2652.7, + "probability": 0.0427 + }, + { + "start": 2652.7, + "end": 2653.94, + "probability": 0.3968 + }, + { + "start": 2654.7, + "end": 2661.08, + "probability": 0.8333 + }, + { + "start": 2661.46, + "end": 2663.78, + "probability": 0.7315 + }, + { + "start": 2664.36, + "end": 2668.18, + "probability": 0.9734 + }, + { + "start": 2669.82, + "end": 2671.94, + "probability": 0.9652 + }, + { + "start": 2672.72, + "end": 2676.96, + "probability": 0.9844 + }, + { + "start": 2677.72, + "end": 2680.4, + "probability": 0.9878 + }, + { + "start": 2681.32, + "end": 2689.0, + "probability": 0.9953 + }, + { + "start": 2689.54, + "end": 2692.32, + "probability": 0.985 + }, + { + "start": 2694.0, + "end": 2695.44, + "probability": 0.7642 + }, + { + "start": 2695.98, + "end": 2702.48, + "probability": 0.9004 + }, + { + "start": 2703.46, + "end": 2706.02, + "probability": 0.9344 + }, + { + "start": 2706.94, + "end": 2708.18, + "probability": 0.7347 + }, + { + "start": 2708.24, + "end": 2711.02, + "probability": 0.9702 + }, + { + "start": 2711.62, + "end": 2714.38, + "probability": 0.9672 + }, + { + "start": 2716.62, + "end": 2717.64, + "probability": 0.9498 + }, + { + "start": 2718.46, + "end": 2719.46, + "probability": 0.8694 + }, + { + "start": 2720.26, + "end": 2722.19, + "probability": 0.7427 + }, + { + "start": 2722.38, + "end": 2725.92, + "probability": 0.8955 + }, + { + "start": 2726.48, + "end": 2730.74, + "probability": 0.9772 + }, + { + "start": 2730.74, + "end": 2735.36, + "probability": 0.9946 + }, + { + "start": 2736.28, + "end": 2737.88, + "probability": 0.9681 + }, + { + "start": 2738.46, + "end": 2742.18, + "probability": 0.997 + }, + { + "start": 2742.32, + "end": 2743.86, + "probability": 0.8743 + }, + { + "start": 2744.28, + "end": 2746.92, + "probability": 0.9731 + }, + { + "start": 2747.7, + "end": 2748.62, + "probability": 0.9576 + }, + { + "start": 2749.28, + "end": 2750.3, + "probability": 0.7715 + }, + { + "start": 2750.84, + "end": 2752.32, + "probability": 0.9717 + }, + { + "start": 2752.38, + "end": 2756.56, + "probability": 0.9852 + }, + { + "start": 2756.66, + "end": 2759.1, + "probability": 0.7768 + }, + { + "start": 2760.02, + "end": 2760.02, + "probability": 0.0411 + }, + { + "start": 2760.32, + "end": 2760.46, + "probability": 0.3847 + }, + { + "start": 2760.48, + "end": 2765.2, + "probability": 0.924 + }, + { + "start": 2765.88, + "end": 2769.14, + "probability": 0.946 + }, + { + "start": 2769.58, + "end": 2772.5, + "probability": 0.9924 + }, + { + "start": 2772.62, + "end": 2773.55, + "probability": 0.9741 + }, + { + "start": 2774.58, + "end": 2777.46, + "probability": 0.9982 + }, + { + "start": 2778.46, + "end": 2779.64, + "probability": 0.9651 + }, + { + "start": 2780.0, + "end": 2783.08, + "probability": 0.9521 + }, + { + "start": 2783.14, + "end": 2783.24, + "probability": 0.1912 + }, + { + "start": 2783.32, + "end": 2784.4, + "probability": 0.7641 + }, + { + "start": 2785.74, + "end": 2788.74, + "probability": 0.9949 + }, + { + "start": 2790.12, + "end": 2792.72, + "probability": 0.9893 + }, + { + "start": 2793.64, + "end": 2797.5, + "probability": 0.9917 + }, + { + "start": 2798.14, + "end": 2803.06, + "probability": 0.9734 + }, + { + "start": 2803.5, + "end": 2805.82, + "probability": 0.9574 + }, + { + "start": 2806.34, + "end": 2808.28, + "probability": 0.9443 + }, + { + "start": 2808.94, + "end": 2810.66, + "probability": 0.6837 + }, + { + "start": 2810.66, + "end": 2812.84, + "probability": 0.9525 + }, + { + "start": 2813.4, + "end": 2815.88, + "probability": 0.9495 + }, + { + "start": 2816.52, + "end": 2818.24, + "probability": 0.9277 + }, + { + "start": 2818.82, + "end": 2820.5, + "probability": 0.9641 + }, + { + "start": 2821.06, + "end": 2822.84, + "probability": 0.8242 + }, + { + "start": 2822.84, + "end": 2824.62, + "probability": 0.2918 + }, + { + "start": 2825.34, + "end": 2827.12, + "probability": 0.9139 + }, + { + "start": 2827.5, + "end": 2827.9, + "probability": 0.5225 + }, + { + "start": 2828.04, + "end": 2829.12, + "probability": 0.9777 + }, + { + "start": 2829.18, + "end": 2830.86, + "probability": 0.9785 + }, + { + "start": 2831.32, + "end": 2835.2, + "probability": 0.8812 + }, + { + "start": 2835.66, + "end": 2838.16, + "probability": 0.9963 + }, + { + "start": 2838.54, + "end": 2839.8, + "probability": 0.9886 + }, + { + "start": 2840.1, + "end": 2841.1, + "probability": 0.8781 + }, + { + "start": 2841.92, + "end": 2843.38, + "probability": 0.9701 + }, + { + "start": 2843.98, + "end": 2845.38, + "probability": 0.8664 + }, + { + "start": 2845.5, + "end": 2846.44, + "probability": 0.9393 + }, + { + "start": 2846.58, + "end": 2847.66, + "probability": 0.7354 + }, + { + "start": 2858.64, + "end": 2858.64, + "probability": 0.3348 + }, + { + "start": 2858.64, + "end": 2858.64, + "probability": 0.0855 + }, + { + "start": 2858.64, + "end": 2858.64, + "probability": 0.1833 + }, + { + "start": 2858.64, + "end": 2858.64, + "probability": 0.0348 + }, + { + "start": 2858.66, + "end": 2858.74, + "probability": 0.2942 + }, + { + "start": 2872.94, + "end": 2874.46, + "probability": 0.429 + }, + { + "start": 2874.5, + "end": 2877.78, + "probability": 0.989 + }, + { + "start": 2878.54, + "end": 2882.6, + "probability": 0.9912 + }, + { + "start": 2882.68, + "end": 2883.89, + "probability": 0.8631 + }, + { + "start": 2884.14, + "end": 2885.66, + "probability": 0.9862 + }, + { + "start": 2886.34, + "end": 2889.16, + "probability": 0.8993 + }, + { + "start": 2889.16, + "end": 2891.8, + "probability": 0.9976 + }, + { + "start": 2892.28, + "end": 2895.82, + "probability": 0.9799 + }, + { + "start": 2896.3, + "end": 2899.82, + "probability": 0.9837 + }, + { + "start": 2899.9, + "end": 2901.1, + "probability": 0.6985 + }, + { + "start": 2901.64, + "end": 2904.36, + "probability": 0.9394 + }, + { + "start": 2904.98, + "end": 2905.54, + "probability": 0.7734 + }, + { + "start": 2905.62, + "end": 2906.72, + "probability": 0.589 + }, + { + "start": 2906.78, + "end": 2909.66, + "probability": 0.9725 + }, + { + "start": 2910.22, + "end": 2913.44, + "probability": 0.9952 + }, + { + "start": 2913.88, + "end": 2915.54, + "probability": 0.8206 + }, + { + "start": 2915.66, + "end": 2918.1, + "probability": 0.7004 + }, + { + "start": 2918.56, + "end": 2918.56, + "probability": 0.0141 + }, + { + "start": 2918.56, + "end": 2920.48, + "probability": 0.7235 + }, + { + "start": 2920.58, + "end": 2924.62, + "probability": 0.9839 + }, + { + "start": 2925.06, + "end": 2929.2, + "probability": 0.8558 + }, + { + "start": 2929.56, + "end": 2930.54, + "probability": 0.9774 + }, + { + "start": 2930.96, + "end": 2931.34, + "probability": 0.8271 + }, + { + "start": 2931.36, + "end": 2934.58, + "probability": 0.9843 + }, + { + "start": 2934.68, + "end": 2936.62, + "probability": 0.9954 + }, + { + "start": 2937.02, + "end": 2939.16, + "probability": 0.9888 + }, + { + "start": 2939.58, + "end": 2940.97, + "probability": 0.9971 + }, + { + "start": 2941.52, + "end": 2943.76, + "probability": 0.8233 + }, + { + "start": 2944.4, + "end": 2946.12, + "probability": 0.941 + }, + { + "start": 2946.58, + "end": 2947.82, + "probability": 0.9061 + }, + { + "start": 2948.28, + "end": 2950.52, + "probability": 0.9902 + }, + { + "start": 2951.08, + "end": 2953.1, + "probability": 0.9802 + }, + { + "start": 2953.74, + "end": 2958.36, + "probability": 0.917 + }, + { + "start": 2958.54, + "end": 2959.97, + "probability": 0.3907 + }, + { + "start": 2960.56, + "end": 2962.32, + "probability": 0.9983 + }, + { + "start": 2963.24, + "end": 2964.34, + "probability": 0.9224 + }, + { + "start": 2964.8, + "end": 2968.02, + "probability": 0.9979 + }, + { + "start": 2968.84, + "end": 2972.85, + "probability": 0.9985 + }, + { + "start": 2972.92, + "end": 2976.64, + "probability": 0.9625 + }, + { + "start": 2976.96, + "end": 2979.04, + "probability": 0.6887 + }, + { + "start": 2979.56, + "end": 2983.7, + "probability": 0.8903 + }, + { + "start": 2983.76, + "end": 2987.16, + "probability": 0.9861 + }, + { + "start": 2987.38, + "end": 2991.54, + "probability": 0.9717 + }, + { + "start": 2992.0, + "end": 2998.34, + "probability": 0.9921 + }, + { + "start": 3000.6, + "end": 3004.8, + "probability": 0.9968 + }, + { + "start": 3004.8, + "end": 3007.6, + "probability": 0.998 + }, + { + "start": 3007.66, + "end": 3008.49, + "probability": 0.9749 + }, + { + "start": 3009.1, + "end": 3012.46, + "probability": 0.8816 + }, + { + "start": 3012.96, + "end": 3017.4, + "probability": 0.9702 + }, + { + "start": 3018.0, + "end": 3021.74, + "probability": 0.9982 + }, + { + "start": 3021.8, + "end": 3025.26, + "probability": 0.999 + }, + { + "start": 3025.26, + "end": 3025.48, + "probability": 0.297 + }, + { + "start": 3026.54, + "end": 3027.18, + "probability": 0.6882 + }, + { + "start": 3027.22, + "end": 3031.14, + "probability": 0.6313 + }, + { + "start": 3031.26, + "end": 3033.42, + "probability": 0.9553 + }, + { + "start": 3033.42, + "end": 3033.42, + "probability": 0.5006 + }, + { + "start": 3033.42, + "end": 3037.16, + "probability": 0.4393 + }, + { + "start": 3037.24, + "end": 3038.3, + "probability": 0.6921 + }, + { + "start": 3038.62, + "end": 3040.88, + "probability": 0.9245 + }, + { + "start": 3041.1, + "end": 3043.47, + "probability": 0.9758 + }, + { + "start": 3044.32, + "end": 3045.42, + "probability": 0.9803 + }, + { + "start": 3054.26, + "end": 3055.94, + "probability": 0.7598 + }, + { + "start": 3057.98, + "end": 3061.12, + "probability": 0.995 + }, + { + "start": 3061.58, + "end": 3063.0, + "probability": 0.9964 + }, + { + "start": 3063.12, + "end": 3064.58, + "probability": 0.9881 + }, + { + "start": 3064.78, + "end": 3065.56, + "probability": 0.9816 + }, + { + "start": 3065.98, + "end": 3071.88, + "probability": 0.9684 + }, + { + "start": 3072.02, + "end": 3077.96, + "probability": 0.8634 + }, + { + "start": 3079.8, + "end": 3085.15, + "probability": 0.992 + }, + { + "start": 3086.06, + "end": 3087.18, + "probability": 0.8281 + }, + { + "start": 3087.28, + "end": 3091.79, + "probability": 0.9241 + }, + { + "start": 3091.98, + "end": 3092.57, + "probability": 0.6855 + }, + { + "start": 3093.68, + "end": 3096.2, + "probability": 0.9849 + }, + { + "start": 3096.48, + "end": 3098.42, + "probability": 0.9418 + }, + { + "start": 3098.48, + "end": 3100.3, + "probability": 0.9979 + }, + { + "start": 3100.44, + "end": 3101.08, + "probability": 0.9886 + }, + { + "start": 3101.16, + "end": 3103.45, + "probability": 0.9829 + }, + { + "start": 3117.62, + "end": 3117.88, + "probability": 0.1034 + }, + { + "start": 3117.88, + "end": 3117.88, + "probability": 0.026 + }, + { + "start": 3117.88, + "end": 3117.88, + "probability": 0.0471 + }, + { + "start": 3117.88, + "end": 3117.98, + "probability": 0.2203 + }, + { + "start": 3117.98, + "end": 3121.14, + "probability": 0.4246 + }, + { + "start": 3121.58, + "end": 3123.16, + "probability": 0.9608 + }, + { + "start": 3123.16, + "end": 3123.37, + "probability": 0.0924 + }, + { + "start": 3126.88, + "end": 3128.96, + "probability": 0.986 + }, + { + "start": 3129.02, + "end": 3130.1, + "probability": 0.9369 + }, + { + "start": 3130.18, + "end": 3131.94, + "probability": 0.7972 + }, + { + "start": 3132.12, + "end": 3136.1, + "probability": 0.9087 + }, + { + "start": 3136.32, + "end": 3142.06, + "probability": 0.991 + }, + { + "start": 3142.68, + "end": 3145.22, + "probability": 0.9824 + }, + { + "start": 3145.4, + "end": 3147.6, + "probability": 0.4619 + }, + { + "start": 3147.9, + "end": 3148.38, + "probability": 0.3996 + }, + { + "start": 3148.38, + "end": 3148.56, + "probability": 0.59 + }, + { + "start": 3148.56, + "end": 3152.12, + "probability": 0.8836 + }, + { + "start": 3153.78, + "end": 3155.8, + "probability": 0.9066 + }, + { + "start": 3156.54, + "end": 3159.58, + "probability": 0.7924 + }, + { + "start": 3161.04, + "end": 3164.02, + "probability": 0.807 + }, + { + "start": 3164.82, + "end": 3165.52, + "probability": 0.8673 + }, + { + "start": 3166.7, + "end": 3168.76, + "probability": 0.9902 + }, + { + "start": 3168.76, + "end": 3172.3, + "probability": 0.9858 + }, + { + "start": 3172.56, + "end": 3173.16, + "probability": 0.6664 + }, + { + "start": 3174.64, + "end": 3176.32, + "probability": 0.9425 + }, + { + "start": 3176.58, + "end": 3180.92, + "probability": 0.9626 + }, + { + "start": 3180.94, + "end": 3181.74, + "probability": 0.7584 + }, + { + "start": 3182.86, + "end": 3186.1, + "probability": 0.942 + }, + { + "start": 3187.02, + "end": 3187.24, + "probability": 0.5643 + }, + { + "start": 3187.36, + "end": 3190.56, + "probability": 0.9935 + }, + { + "start": 3192.98, + "end": 3194.16, + "probability": 0.999 + }, + { + "start": 3196.36, + "end": 3198.32, + "probability": 0.9888 + }, + { + "start": 3199.34, + "end": 3201.66, + "probability": 0.9916 + }, + { + "start": 3202.98, + "end": 3205.32, + "probability": 0.9826 + }, + { + "start": 3205.58, + "end": 3206.27, + "probability": 0.9734 + }, + { + "start": 3207.7, + "end": 3209.82, + "probability": 0.9912 + }, + { + "start": 3211.04, + "end": 3213.28, + "probability": 0.8986 + }, + { + "start": 3215.5, + "end": 3219.44, + "probability": 0.9976 + }, + { + "start": 3221.54, + "end": 3224.18, + "probability": 0.7348 + }, + { + "start": 3225.94, + "end": 3229.08, + "probability": 0.9116 + }, + { + "start": 3232.26, + "end": 3233.68, + "probability": 0.5995 + }, + { + "start": 3233.92, + "end": 3235.74, + "probability": 0.9915 + }, + { + "start": 3236.92, + "end": 3237.98, + "probability": 0.9594 + }, + { + "start": 3238.14, + "end": 3239.44, + "probability": 0.4514 + }, + { + "start": 3239.82, + "end": 3242.26, + "probability": 0.9803 + }, + { + "start": 3242.36, + "end": 3243.06, + "probability": 0.9618 + }, + { + "start": 3243.12, + "end": 3243.88, + "probability": 0.9268 + }, + { + "start": 3243.94, + "end": 3248.8, + "probability": 0.9643 + }, + { + "start": 3250.78, + "end": 3251.3, + "probability": 0.7383 + }, + { + "start": 3251.32, + "end": 3251.32, + "probability": 0.4855 + }, + { + "start": 3251.46, + "end": 3255.14, + "probability": 0.9894 + }, + { + "start": 3256.42, + "end": 3258.38, + "probability": 0.7696 + }, + { + "start": 3259.06, + "end": 3263.26, + "probability": 0.998 + }, + { + "start": 3264.5, + "end": 3266.5, + "probability": 0.9425 + }, + { + "start": 3266.76, + "end": 3267.3, + "probability": 0.5877 + }, + { + "start": 3267.42, + "end": 3268.76, + "probability": 0.8104 + }, + { + "start": 3270.84, + "end": 3272.78, + "probability": 0.9532 + }, + { + "start": 3291.94, + "end": 3293.0, + "probability": 0.7018 + }, + { + "start": 3294.26, + "end": 3295.34, + "probability": 0.7153 + }, + { + "start": 3297.28, + "end": 3301.05, + "probability": 0.9469 + }, + { + "start": 3303.61, + "end": 3307.23, + "probability": 0.9976 + }, + { + "start": 3308.15, + "end": 3308.99, + "probability": 0.7968 + }, + { + "start": 3309.05, + "end": 3311.61, + "probability": 0.7531 + }, + { + "start": 3312.35, + "end": 3314.95, + "probability": 0.9287 + }, + { + "start": 3316.33, + "end": 3316.73, + "probability": 0.9951 + }, + { + "start": 3317.29, + "end": 3318.21, + "probability": 0.9827 + }, + { + "start": 3320.51, + "end": 3321.25, + "probability": 0.0636 + }, + { + "start": 3321.89, + "end": 3322.07, + "probability": 0.3188 + }, + { + "start": 3322.07, + "end": 3323.77, + "probability": 0.2472 + }, + { + "start": 3324.39, + "end": 3326.01, + "probability": 0.9968 + }, + { + "start": 3326.43, + "end": 3326.53, + "probability": 0.3042 + }, + { + "start": 3326.53, + "end": 3328.51, + "probability": 0.9933 + }, + { + "start": 3329.99, + "end": 3333.55, + "probability": 0.246 + }, + { + "start": 3333.71, + "end": 3333.91, + "probability": 0.0611 + }, + { + "start": 3333.91, + "end": 3335.55, + "probability": 0.6192 + }, + { + "start": 3336.49, + "end": 3336.49, + "probability": 0.0233 + }, + { + "start": 3336.49, + "end": 3341.01, + "probability": 0.9711 + }, + { + "start": 3341.85, + "end": 3342.69, + "probability": 0.0134 + }, + { + "start": 3342.69, + "end": 3342.69, + "probability": 0.2869 + }, + { + "start": 3342.69, + "end": 3342.69, + "probability": 0.0806 + }, + { + "start": 3342.69, + "end": 3345.89, + "probability": 0.6745 + }, + { + "start": 3345.89, + "end": 3349.05, + "probability": 0.7271 + }, + { + "start": 3349.5, + "end": 3351.57, + "probability": 0.1025 + }, + { + "start": 3351.71, + "end": 3351.81, + "probability": 0.0648 + }, + { + "start": 3351.81, + "end": 3354.35, + "probability": 0.686 + }, + { + "start": 3354.35, + "end": 3355.13, + "probability": 0.9573 + }, + { + "start": 3355.27, + "end": 3356.33, + "probability": 0.8525 + }, + { + "start": 3356.39, + "end": 3360.17, + "probability": 0.9048 + }, + { + "start": 3360.87, + "end": 3362.11, + "probability": 0.9846 + }, + { + "start": 3362.37, + "end": 3362.43, + "probability": 0.0316 + }, + { + "start": 3362.43, + "end": 3362.43, + "probability": 0.2611 + }, + { + "start": 3362.43, + "end": 3363.93, + "probability": 0.7369 + }, + { + "start": 3364.23, + "end": 3366.41, + "probability": 0.9619 + }, + { + "start": 3369.73, + "end": 3369.73, + "probability": 0.0525 + }, + { + "start": 3369.73, + "end": 3369.73, + "probability": 0.0081 + }, + { + "start": 3369.73, + "end": 3371.07, + "probability": 0.7579 + }, + { + "start": 3371.13, + "end": 3372.53, + "probability": 0.932 + }, + { + "start": 3372.81, + "end": 3372.81, + "probability": 0.0599 + }, + { + "start": 3372.81, + "end": 3375.73, + "probability": 0.9657 + }, + { + "start": 3376.37, + "end": 3383.01, + "probability": 0.9982 + }, + { + "start": 3383.65, + "end": 3386.01, + "probability": 0.9914 + }, + { + "start": 3386.01, + "end": 3388.88, + "probability": 0.965 + }, + { + "start": 3389.55, + "end": 3394.65, + "probability": 0.991 + }, + { + "start": 3395.05, + "end": 3400.25, + "probability": 0.9818 + }, + { + "start": 3400.83, + "end": 3401.39, + "probability": 0.645 + }, + { + "start": 3401.91, + "end": 3403.67, + "probability": 0.9735 + }, + { + "start": 3404.69, + "end": 3407.67, + "probability": 0.8511 + }, + { + "start": 3408.71, + "end": 3409.11, + "probability": 0.2578 + }, + { + "start": 3409.57, + "end": 3410.09, + "probability": 0.0002 + }, + { + "start": 3410.99, + "end": 3410.99, + "probability": 0.1123 + }, + { + "start": 3410.99, + "end": 3412.57, + "probability": 0.4198 + }, + { + "start": 3412.83, + "end": 3415.29, + "probability": 0.7788 + }, + { + "start": 3415.83, + "end": 3416.9, + "probability": 0.9661 + }, + { + "start": 3417.37, + "end": 3418.25, + "probability": 0.0654 + }, + { + "start": 3419.29, + "end": 3422.11, + "probability": 0.9581 + }, + { + "start": 3422.33, + "end": 3425.77, + "probability": 0.9902 + }, + { + "start": 3425.77, + "end": 3429.77, + "probability": 0.9995 + }, + { + "start": 3429.91, + "end": 3430.25, + "probability": 0.2732 + }, + { + "start": 3430.25, + "end": 3430.25, + "probability": 0.0248 + }, + { + "start": 3430.25, + "end": 3433.27, + "probability": 0.7765 + }, + { + "start": 3433.67, + "end": 3434.22, + "probability": 0.0076 + }, + { + "start": 3434.29, + "end": 3434.29, + "probability": 0.1038 + }, + { + "start": 3434.29, + "end": 3435.35, + "probability": 0.3779 + }, + { + "start": 3435.61, + "end": 3438.51, + "probability": 0.6062 + }, + { + "start": 3438.65, + "end": 3439.63, + "probability": 0.4524 + }, + { + "start": 3439.67, + "end": 3441.04, + "probability": 0.7078 + }, + { + "start": 3441.19, + "end": 3443.25, + "probability": 0.9951 + }, + { + "start": 3443.49, + "end": 3447.75, + "probability": 0.9243 + }, + { + "start": 3448.19, + "end": 3449.87, + "probability": 0.4127 + }, + { + "start": 3454.69, + "end": 3456.11, + "probability": 0.207 + }, + { + "start": 3460.01, + "end": 3466.39, + "probability": 0.5069 + }, + { + "start": 3467.03, + "end": 3467.29, + "probability": 0.0359 + }, + { + "start": 3467.33, + "end": 3472.53, + "probability": 0.5244 + }, + { + "start": 3477.32, + "end": 3478.11, + "probability": 0.6456 + }, + { + "start": 3478.28, + "end": 3478.44, + "probability": 0.7524 + }, + { + "start": 3478.47, + "end": 3479.41, + "probability": 0.2134 + }, + { + "start": 3479.41, + "end": 3479.56, + "probability": 0.8308 + }, + { + "start": 3480.29, + "end": 3481.79, + "probability": 0.0566 + }, + { + "start": 3481.79, + "end": 3482.15, + "probability": 0.1788 + }, + { + "start": 3482.15, + "end": 3482.77, + "probability": 0.2349 + }, + { + "start": 3482.89, + "end": 3483.93, + "probability": 0.0152 + }, + { + "start": 3483.97, + "end": 3486.59, + "probability": 0.2882 + }, + { + "start": 3486.67, + "end": 3488.93, + "probability": 0.2893 + }, + { + "start": 3488.93, + "end": 3489.07, + "probability": 0.2722 + }, + { + "start": 3489.09, + "end": 3490.53, + "probability": 0.1132 + }, + { + "start": 3490.59, + "end": 3493.37, + "probability": 0.1103 + }, + { + "start": 3493.37, + "end": 3494.04, + "probability": 0.4951 + }, + { + "start": 3494.09, + "end": 3494.09, + "probability": 0.0117 + }, + { + "start": 3494.09, + "end": 3495.01, + "probability": 0.148 + }, + { + "start": 3495.03, + "end": 3495.09, + "probability": 0.0853 + }, + { + "start": 3495.09, + "end": 3495.35, + "probability": 0.0632 + }, + { + "start": 3495.35, + "end": 3495.55, + "probability": 0.1291 + }, + { + "start": 3495.55, + "end": 3495.97, + "probability": 0.2158 + }, + { + "start": 3496.0, + "end": 3496.0, + "probability": 0.0 + }, + { + "start": 3496.0, + "end": 3496.0, + "probability": 0.0 + }, + { + "start": 3496.0, + "end": 3496.0, + "probability": 0.0 + }, + { + "start": 3496.0, + "end": 3496.0, + "probability": 0.0 + }, + { + "start": 3496.0, + "end": 3496.0, + "probability": 0.0 + }, + { + "start": 3496.0, + "end": 3496.0, + "probability": 0.0 + }, + { + "start": 3496.0, + "end": 3496.0, + "probability": 0.0 + }, + { + "start": 3496.0, + "end": 3496.0, + "probability": 0.0 + }, + { + "start": 3496.0, + "end": 3496.0, + "probability": 0.0 + }, + { + "start": 3496.0, + "end": 3496.0, + "probability": 0.0 + }, + { + "start": 3496.0, + "end": 3496.0, + "probability": 0.0 + }, + { + "start": 3496.0, + "end": 3496.0, + "probability": 0.0 + }, + { + "start": 3496.0, + "end": 3496.0, + "probability": 0.0 + }, + { + "start": 3496.0, + "end": 3496.0, + "probability": 0.0 + }, + { + "start": 3496.0, + "end": 3496.0, + "probability": 0.0 + }, + { + "start": 3496.0, + "end": 3496.0, + "probability": 0.0 + }, + { + "start": 3496.0, + "end": 3496.0, + "probability": 0.0 + }, + { + "start": 3496.0, + "end": 3496.0, + "probability": 0.0 + }, + { + "start": 3496.04, + "end": 3496.68, + "probability": 0.0037 + }, + { + "start": 3496.68, + "end": 3496.68, + "probability": 0.0333 + }, + { + "start": 3496.68, + "end": 3497.0, + "probability": 0.0629 + }, + { + "start": 3497.36, + "end": 3497.4, + "probability": 0.108 + }, + { + "start": 3497.4, + "end": 3499.4, + "probability": 0.9769 + }, + { + "start": 3500.56, + "end": 3502.54, + "probability": 0.4492 + }, + { + "start": 3502.82, + "end": 3503.16, + "probability": 0.635 + }, + { + "start": 3503.26, + "end": 3503.42, + "probability": 0.2988 + }, + { + "start": 3503.42, + "end": 3506.46, + "probability": 0.0106 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.0, + "end": 3617.0, + "probability": 0.0 + }, + { + "start": 3617.16, + "end": 3620.72, + "probability": 0.9075 + }, + { + "start": 3622.12, + "end": 3625.48, + "probability": 0.9976 + }, + { + "start": 3625.6, + "end": 3627.28, + "probability": 0.813 + }, + { + "start": 3629.16, + "end": 3631.52, + "probability": 0.8306 + }, + { + "start": 3633.12, + "end": 3635.5, + "probability": 0.8297 + }, + { + "start": 3635.58, + "end": 3640.5, + "probability": 0.9757 + }, + { + "start": 3641.58, + "end": 3643.9, + "probability": 0.5382 + }, + { + "start": 3644.1, + "end": 3649.0, + "probability": 0.8304 + }, + { + "start": 3649.58, + "end": 3650.68, + "probability": 0.7771 + }, + { + "start": 3651.16, + "end": 3652.64, + "probability": 0.9083 + }, + { + "start": 3652.74, + "end": 3653.4, + "probability": 0.955 + }, + { + "start": 3653.62, + "end": 3656.2, + "probability": 0.9724 + }, + { + "start": 3657.62, + "end": 3660.7, + "probability": 0.9824 + }, + { + "start": 3661.76, + "end": 3663.84, + "probability": 0.7596 + }, + { + "start": 3664.0, + "end": 3665.46, + "probability": 0.8831 + }, + { + "start": 3665.68, + "end": 3666.34, + "probability": 0.8793 + }, + { + "start": 3667.06, + "end": 3668.8, + "probability": 0.9729 + }, + { + "start": 3670.22, + "end": 3674.56, + "probability": 0.9416 + }, + { + "start": 3675.24, + "end": 3677.14, + "probability": 0.8329 + }, + { + "start": 3677.92, + "end": 3682.58, + "probability": 0.9011 + }, + { + "start": 3684.2, + "end": 3689.3, + "probability": 0.7739 + }, + { + "start": 3689.54, + "end": 3696.84, + "probability": 0.8988 + }, + { + "start": 3696.98, + "end": 3697.1, + "probability": 0.8998 + }, + { + "start": 3697.94, + "end": 3702.38, + "probability": 0.9703 + }, + { + "start": 3703.02, + "end": 3704.5, + "probability": 0.2997 + }, + { + "start": 3704.68, + "end": 3706.66, + "probability": 0.1034 + }, + { + "start": 3741.22, + "end": 3744.02, + "probability": 0.7969 + }, + { + "start": 3756.62, + "end": 3757.48, + "probability": 0.6422 + }, + { + "start": 3757.58, + "end": 3758.64, + "probability": 0.6871 + }, + { + "start": 3758.96, + "end": 3760.5, + "probability": 0.8342 + }, + { + "start": 3760.96, + "end": 3763.8, + "probability": 0.9933 + }, + { + "start": 3765.36, + "end": 3771.42, + "probability": 0.9569 + }, + { + "start": 3773.04, + "end": 3773.96, + "probability": 0.9406 + }, + { + "start": 3774.08, + "end": 3778.38, + "probability": 0.959 + }, + { + "start": 3778.5, + "end": 3780.18, + "probability": 0.7607 + }, + { + "start": 3781.24, + "end": 3783.22, + "probability": 0.7737 + }, + { + "start": 3783.86, + "end": 3787.88, + "probability": 0.9622 + }, + { + "start": 3788.04, + "end": 3792.06, + "probability": 0.8719 + }, + { + "start": 3792.2, + "end": 3793.0, + "probability": 0.4437 + }, + { + "start": 3794.42, + "end": 3798.24, + "probability": 0.9467 + }, + { + "start": 3799.08, + "end": 3800.72, + "probability": 0.9834 + }, + { + "start": 3801.42, + "end": 3802.74, + "probability": 0.7323 + }, + { + "start": 3803.84, + "end": 3804.6, + "probability": 0.98 + }, + { + "start": 3805.34, + "end": 3806.84, + "probability": 0.5051 + }, + { + "start": 3806.92, + "end": 3813.86, + "probability": 0.8278 + }, + { + "start": 3814.98, + "end": 3816.98, + "probability": 0.8108 + }, + { + "start": 3817.6, + "end": 3821.28, + "probability": 0.963 + }, + { + "start": 3821.96, + "end": 3823.48, + "probability": 0.9766 + }, + { + "start": 3823.58, + "end": 3827.16, + "probability": 0.9521 + }, + { + "start": 3827.6, + "end": 3832.48, + "probability": 0.9893 + }, + { + "start": 3832.82, + "end": 3834.38, + "probability": 0.7878 + }, + { + "start": 3834.48, + "end": 3835.94, + "probability": 0.7423 + }, + { + "start": 3836.58, + "end": 3837.64, + "probability": 0.8774 + }, + { + "start": 3837.68, + "end": 3839.16, + "probability": 0.9808 + }, + { + "start": 3841.12, + "end": 3844.6, + "probability": 0.9735 + }, + { + "start": 3845.48, + "end": 3848.06, + "probability": 0.9792 + }, + { + "start": 3848.16, + "end": 3850.02, + "probability": 0.8403 + }, + { + "start": 3850.14, + "end": 3850.6, + "probability": 0.8362 + }, + { + "start": 3850.72, + "end": 3853.9, + "probability": 0.8286 + }, + { + "start": 3854.02, + "end": 3855.53, + "probability": 0.9431 + }, + { + "start": 3856.66, + "end": 3859.08, + "probability": 0.9661 + }, + { + "start": 3860.0, + "end": 3862.56, + "probability": 0.947 + }, + { + "start": 3863.84, + "end": 3867.1, + "probability": 0.7917 + }, + { + "start": 3867.28, + "end": 3872.04, + "probability": 0.9165 + }, + { + "start": 3872.1, + "end": 3874.56, + "probability": 0.9595 + }, + { + "start": 3875.88, + "end": 3878.82, + "probability": 0.9821 + }, + { + "start": 3879.24, + "end": 3882.1, + "probability": 0.994 + }, + { + "start": 3882.56, + "end": 3883.58, + "probability": 0.9062 + }, + { + "start": 3883.76, + "end": 3886.28, + "probability": 0.9863 + }, + { + "start": 3887.26, + "end": 3889.02, + "probability": 0.896 + }, + { + "start": 3889.18, + "end": 3891.54, + "probability": 0.9658 + }, + { + "start": 3891.74, + "end": 3897.0, + "probability": 0.9973 + }, + { + "start": 3898.02, + "end": 3901.18, + "probability": 0.975 + }, + { + "start": 3901.64, + "end": 3904.17, + "probability": 0.6745 + }, + { + "start": 3904.7, + "end": 3906.04, + "probability": 0.7766 + }, + { + "start": 3906.14, + "end": 3908.52, + "probability": 0.98 + }, + { + "start": 3908.62, + "end": 3908.8, + "probability": 0.3096 + }, + { + "start": 3909.84, + "end": 3910.36, + "probability": 0.761 + }, + { + "start": 3910.44, + "end": 3910.68, + "probability": 0.1824 + }, + { + "start": 3910.96, + "end": 3913.12, + "probability": 0.9379 + }, + { + "start": 3913.26, + "end": 3913.28, + "probability": 0.7104 + }, + { + "start": 3913.96, + "end": 3916.42, + "probability": 0.8189 + }, + { + "start": 3917.04, + "end": 3918.42, + "probability": 0.8238 + }, + { + "start": 3918.54, + "end": 3921.04, + "probability": 0.8853 + }, + { + "start": 3921.12, + "end": 3925.58, + "probability": 0.9819 + }, + { + "start": 3925.66, + "end": 3926.32, + "probability": 0.5188 + }, + { + "start": 3926.48, + "end": 3930.2, + "probability": 0.98 + }, + { + "start": 3930.9, + "end": 3933.24, + "probability": 0.99 + }, + { + "start": 3933.42, + "end": 3937.72, + "probability": 0.939 + }, + { + "start": 3938.18, + "end": 3940.0, + "probability": 0.9105 + }, + { + "start": 3940.32, + "end": 3940.98, + "probability": 0.4256 + }, + { + "start": 3941.06, + "end": 3941.8, + "probability": 0.5562 + }, + { + "start": 3941.96, + "end": 3943.8, + "probability": 0.9793 + }, + { + "start": 3944.3, + "end": 3945.26, + "probability": 0.8887 + }, + { + "start": 3945.3, + "end": 3946.2, + "probability": 0.9834 + }, + { + "start": 3946.78, + "end": 3950.82, + "probability": 0.8806 + }, + { + "start": 3951.4, + "end": 3954.18, + "probability": 0.7674 + }, + { + "start": 3955.16, + "end": 3960.38, + "probability": 0.9199 + }, + { + "start": 3960.76, + "end": 3960.94, + "probability": 0.4738 + }, + { + "start": 3960.94, + "end": 3962.26, + "probability": 0.8931 + }, + { + "start": 3962.5, + "end": 3964.14, + "probability": 0.9138 + }, + { + "start": 3964.46, + "end": 3965.92, + "probability": 0.993 + }, + { + "start": 3966.04, + "end": 3966.76, + "probability": 0.5154 + }, + { + "start": 3967.12, + "end": 3969.58, + "probability": 0.8528 + }, + { + "start": 3970.14, + "end": 3971.68, + "probability": 0.9827 + }, + { + "start": 3980.42, + "end": 3984.56, + "probability": 0.826 + }, + { + "start": 3994.94, + "end": 3996.62, + "probability": 0.1942 + }, + { + "start": 3996.76, + "end": 3999.3, + "probability": 0.6785 + }, + { + "start": 4000.02, + "end": 4003.28, + "probability": 0.9484 + }, + { + "start": 4003.32, + "end": 4010.76, + "probability": 0.994 + }, + { + "start": 4011.8, + "end": 4016.9, + "probability": 0.9972 + }, + { + "start": 4017.56, + "end": 4020.98, + "probability": 0.9895 + }, + { + "start": 4021.56, + "end": 4023.56, + "probability": 0.9975 + }, + { + "start": 4023.66, + "end": 4026.8, + "probability": 0.9976 + }, + { + "start": 4028.3, + "end": 4031.46, + "probability": 0.9982 + }, + { + "start": 4032.34, + "end": 4037.56, + "probability": 0.9979 + }, + { + "start": 4037.74, + "end": 4040.42, + "probability": 0.9847 + }, + { + "start": 4041.32, + "end": 4046.3, + "probability": 0.9963 + }, + { + "start": 4046.52, + "end": 4047.04, + "probability": 0.7462 + }, + { + "start": 4047.92, + "end": 4050.02, + "probability": 0.999 + }, + { + "start": 4050.16, + "end": 4050.16, + "probability": 0.7094 + }, + { + "start": 4050.16, + "end": 4052.78, + "probability": 0.576 + }, + { + "start": 4054.06, + "end": 4054.48, + "probability": 0.5966 + }, + { + "start": 4054.6, + "end": 4060.62, + "probability": 0.9634 + }, + { + "start": 4060.72, + "end": 4062.96, + "probability": 0.9751 + }, + { + "start": 4064.16, + "end": 4068.14, + "probability": 0.9973 + }, + { + "start": 4068.3, + "end": 4068.5, + "probability": 0.5185 + }, + { + "start": 4071.78, + "end": 4075.5, + "probability": 0.9419 + }, + { + "start": 4077.72, + "end": 4078.5, + "probability": 0.6209 + }, + { + "start": 4078.76, + "end": 4080.02, + "probability": 0.7766 + }, + { + "start": 4080.06, + "end": 4081.88, + "probability": 0.9961 + }, + { + "start": 4082.94, + "end": 4084.42, + "probability": 0.9728 + }, + { + "start": 4085.24, + "end": 4089.58, + "probability": 0.9979 + }, + { + "start": 4093.12, + "end": 4094.64, + "probability": 0.5053 + }, + { + "start": 4095.2, + "end": 4098.72, + "probability": 0.9357 + }, + { + "start": 4099.3, + "end": 4100.56, + "probability": 0.9683 + }, + { + "start": 4101.86, + "end": 4106.96, + "probability": 0.9971 + }, + { + "start": 4107.42, + "end": 4108.68, + "probability": 0.9418 + }, + { + "start": 4109.12, + "end": 4114.72, + "probability": 0.9976 + }, + { + "start": 4115.04, + "end": 4116.34, + "probability": 0.877 + }, + { + "start": 4117.06, + "end": 4121.82, + "probability": 0.9965 + }, + { + "start": 4121.82, + "end": 4126.38, + "probability": 0.9995 + }, + { + "start": 4127.5, + "end": 4132.12, + "probability": 0.9852 + }, + { + "start": 4132.22, + "end": 4132.84, + "probability": 0.9878 + }, + { + "start": 4133.92, + "end": 4134.46, + "probability": 0.9874 + }, + { + "start": 4136.04, + "end": 4140.52, + "probability": 0.988 + }, + { + "start": 4141.68, + "end": 4145.98, + "probability": 0.9954 + }, + { + "start": 4147.7, + "end": 4153.86, + "probability": 0.9873 + }, + { + "start": 4153.86, + "end": 4158.22, + "probability": 0.9809 + }, + { + "start": 4158.56, + "end": 4160.18, + "probability": 0.9907 + }, + { + "start": 4161.28, + "end": 4165.56, + "probability": 0.9889 + }, + { + "start": 4166.18, + "end": 4169.86, + "probability": 0.9751 + }, + { + "start": 4169.98, + "end": 4172.26, + "probability": 0.9982 + }, + { + "start": 4172.9, + "end": 4174.9, + "probability": 0.82 + }, + { + "start": 4174.98, + "end": 4175.86, + "probability": 0.6656 + }, + { + "start": 4176.16, + "end": 4177.23, + "probability": 0.2725 + }, + { + "start": 4177.8, + "end": 4178.46, + "probability": 0.7787 + }, + { + "start": 4178.52, + "end": 4181.74, + "probability": 0.9984 + }, + { + "start": 4182.1, + "end": 4183.26, + "probability": 0.7626 + }, + { + "start": 4184.32, + "end": 4188.98, + "probability": 0.999 + }, + { + "start": 4190.34, + "end": 4193.9, + "probability": 0.7914 + }, + { + "start": 4193.9, + "end": 4195.32, + "probability": 0.8527 + }, + { + "start": 4195.62, + "end": 4195.62, + "probability": 0.3431 + }, + { + "start": 4195.64, + "end": 4195.84, + "probability": 0.6447 + }, + { + "start": 4196.04, + "end": 4196.66, + "probability": 0.7078 + }, + { + "start": 4196.7, + "end": 4198.86, + "probability": 0.9432 + }, + { + "start": 4220.08, + "end": 4221.72, + "probability": 0.576 + }, + { + "start": 4221.88, + "end": 4223.22, + "probability": 0.7999 + }, + { + "start": 4223.58, + "end": 4224.36, + "probability": 0.9966 + }, + { + "start": 4225.6, + "end": 4229.35, + "probability": 0.9995 + }, + { + "start": 4229.88, + "end": 4234.52, + "probability": 0.7169 + }, + { + "start": 4234.52, + "end": 4238.3, + "probability": 0.9829 + }, + { + "start": 4239.02, + "end": 4241.06, + "probability": 0.5035 + }, + { + "start": 4241.72, + "end": 4242.78, + "probability": 0.9736 + }, + { + "start": 4242.92, + "end": 4243.88, + "probability": 0.8125 + }, + { + "start": 4244.04, + "end": 4245.56, + "probability": 0.7613 + }, + { + "start": 4246.0, + "end": 4247.19, + "probability": 0.8462 + }, + { + "start": 4247.4, + "end": 4250.02, + "probability": 0.8849 + }, + { + "start": 4250.44, + "end": 4251.7, + "probability": 0.9844 + }, + { + "start": 4251.8, + "end": 4254.24, + "probability": 0.9468 + }, + { + "start": 4254.48, + "end": 4258.38, + "probability": 0.9661 + }, + { + "start": 4259.22, + "end": 4262.12, + "probability": 0.972 + }, + { + "start": 4262.54, + "end": 4264.54, + "probability": 0.9646 + }, + { + "start": 4264.6, + "end": 4266.88, + "probability": 0.7857 + }, + { + "start": 4266.94, + "end": 4268.02, + "probability": 0.6607 + }, + { + "start": 4269.42, + "end": 4271.02, + "probability": 0.7988 + }, + { + "start": 4271.14, + "end": 4271.9, + "probability": 0.7826 + }, + { + "start": 4271.96, + "end": 4272.98, + "probability": 0.7436 + }, + { + "start": 4273.06, + "end": 4274.08, + "probability": 0.9271 + }, + { + "start": 4274.5, + "end": 4276.38, + "probability": 0.9746 + }, + { + "start": 4276.48, + "end": 4277.12, + "probability": 0.9873 + }, + { + "start": 4277.38, + "end": 4278.3, + "probability": 0.9044 + }, + { + "start": 4278.96, + "end": 4282.76, + "probability": 0.6873 + }, + { + "start": 4283.68, + "end": 4286.14, + "probability": 0.7997 + }, + { + "start": 4286.8, + "end": 4288.08, + "probability": 0.7067 + }, + { + "start": 4288.92, + "end": 4293.1, + "probability": 0.994 + }, + { + "start": 4293.1, + "end": 4296.58, + "probability": 0.978 + }, + { + "start": 4296.86, + "end": 4300.26, + "probability": 0.7815 + }, + { + "start": 4300.34, + "end": 4303.9, + "probability": 0.983 + }, + { + "start": 4304.38, + "end": 4307.48, + "probability": 0.9293 + }, + { + "start": 4308.3, + "end": 4309.24, + "probability": 0.7332 + }, + { + "start": 4309.9, + "end": 4312.24, + "probability": 0.9812 + }, + { + "start": 4312.76, + "end": 4315.2, + "probability": 0.9916 + }, + { + "start": 4316.1, + "end": 4320.38, + "probability": 0.8927 + }, + { + "start": 4320.58, + "end": 4322.88, + "probability": 0.8397 + }, + { + "start": 4323.08, + "end": 4325.42, + "probability": 0.7971 + }, + { + "start": 4325.76, + "end": 4328.86, + "probability": 0.9448 + }, + { + "start": 4329.58, + "end": 4330.72, + "probability": 0.804 + }, + { + "start": 4330.86, + "end": 4332.76, + "probability": 0.8954 + }, + { + "start": 4333.14, + "end": 4334.98, + "probability": 0.9773 + }, + { + "start": 4335.5, + "end": 4336.32, + "probability": 0.9824 + }, + { + "start": 4336.98, + "end": 4341.32, + "probability": 0.8399 + }, + { + "start": 4341.48, + "end": 4344.72, + "probability": 0.99 + }, + { + "start": 4345.14, + "end": 4346.68, + "probability": 0.9077 + }, + { + "start": 4347.04, + "end": 4348.98, + "probability": 0.9424 + }, + { + "start": 4349.42, + "end": 4350.14, + "probability": 0.6452 + }, + { + "start": 4350.92, + "end": 4351.32, + "probability": 0.6426 + }, + { + "start": 4351.54, + "end": 4354.64, + "probability": 0.9953 + }, + { + "start": 4354.98, + "end": 4357.56, + "probability": 0.9279 + }, + { + "start": 4358.66, + "end": 4365.46, + "probability": 0.9453 + }, + { + "start": 4365.82, + "end": 4366.12, + "probability": 0.6024 + }, + { + "start": 4367.98, + "end": 4368.42, + "probability": 0.577 + }, + { + "start": 4368.56, + "end": 4369.82, + "probability": 0.9196 + }, + { + "start": 4371.24, + "end": 4372.34, + "probability": 0.8131 + }, + { + "start": 4372.56, + "end": 4373.46, + "probability": 0.7083 + }, + { + "start": 4373.72, + "end": 4375.27, + "probability": 0.6523 + }, + { + "start": 4375.46, + "end": 4376.4, + "probability": 0.9387 + }, + { + "start": 4376.78, + "end": 4378.2, + "probability": 0.9898 + }, + { + "start": 4378.78, + "end": 4379.58, + "probability": 0.9809 + }, + { + "start": 4380.38, + "end": 4381.52, + "probability": 0.9753 + }, + { + "start": 4382.38, + "end": 4383.06, + "probability": 0.6584 + }, + { + "start": 4383.92, + "end": 4385.16, + "probability": 0.8822 + }, + { + "start": 4385.74, + "end": 4386.38, + "probability": 0.7126 + }, + { + "start": 4387.7, + "end": 4388.92, + "probability": 0.8252 + }, + { + "start": 4389.7, + "end": 4390.12, + "probability": 0.9655 + }, + { + "start": 4417.64, + "end": 4419.52, + "probability": 0.6133 + }, + { + "start": 4419.6, + "end": 4420.58, + "probability": 0.7581 + }, + { + "start": 4420.8, + "end": 4425.82, + "probability": 0.9893 + }, + { + "start": 4426.32, + "end": 4429.16, + "probability": 0.9058 + }, + { + "start": 4429.3, + "end": 4433.98, + "probability": 0.9688 + }, + { + "start": 4435.06, + "end": 4437.92, + "probability": 0.9986 + }, + { + "start": 4438.18, + "end": 4439.98, + "probability": 0.9982 + }, + { + "start": 4442.04, + "end": 4444.18, + "probability": 0.9788 + }, + { + "start": 4444.36, + "end": 4446.14, + "probability": 0.8203 + }, + { + "start": 4446.96, + "end": 4451.56, + "probability": 0.9906 + }, + { + "start": 4452.12, + "end": 4455.58, + "probability": 0.9621 + }, + { + "start": 4455.58, + "end": 4459.74, + "probability": 0.9051 + }, + { + "start": 4460.28, + "end": 4461.98, + "probability": 0.9479 + }, + { + "start": 4463.16, + "end": 4468.6, + "probability": 0.9966 + }, + { + "start": 4469.12, + "end": 4470.02, + "probability": 0.7486 + }, + { + "start": 4470.26, + "end": 4470.92, + "probability": 0.8093 + }, + { + "start": 4471.4, + "end": 4472.84, + "probability": 0.9893 + }, + { + "start": 4472.98, + "end": 4474.06, + "probability": 0.9129 + }, + { + "start": 4474.16, + "end": 4476.48, + "probability": 0.9776 + }, + { + "start": 4476.94, + "end": 4478.78, + "probability": 0.7977 + }, + { + "start": 4479.9, + "end": 4482.06, + "probability": 0.9744 + }, + { + "start": 4482.62, + "end": 4485.78, + "probability": 0.9902 + }, + { + "start": 4487.36, + "end": 4489.9, + "probability": 0.9937 + }, + { + "start": 4490.0, + "end": 4492.18, + "probability": 0.88 + }, + { + "start": 4492.32, + "end": 4496.1, + "probability": 0.9901 + }, + { + "start": 4496.3, + "end": 4498.26, + "probability": 0.9946 + }, + { + "start": 4499.16, + "end": 4500.22, + "probability": 0.9212 + }, + { + "start": 4500.8, + "end": 4503.32, + "probability": 0.9359 + }, + { + "start": 4503.7, + "end": 4505.42, + "probability": 0.8837 + }, + { + "start": 4505.9, + "end": 4509.2, + "probability": 0.9678 + }, + { + "start": 4510.54, + "end": 4515.9, + "probability": 0.9345 + }, + { + "start": 4516.28, + "end": 4520.34, + "probability": 0.9894 + }, + { + "start": 4521.1, + "end": 4523.06, + "probability": 0.9021 + }, + { + "start": 4523.2, + "end": 4524.24, + "probability": 0.9482 + }, + { + "start": 4524.64, + "end": 4528.26, + "probability": 0.974 + }, + { + "start": 4528.76, + "end": 4531.4, + "probability": 0.9932 + }, + { + "start": 4532.24, + "end": 4535.94, + "probability": 0.9966 + }, + { + "start": 4536.52, + "end": 4540.26, + "probability": 0.9956 + }, + { + "start": 4540.52, + "end": 4544.06, + "probability": 0.916 + }, + { + "start": 4544.92, + "end": 4548.62, + "probability": 0.9897 + }, + { + "start": 4549.28, + "end": 4550.5, + "probability": 0.9979 + }, + { + "start": 4551.86, + "end": 4556.88, + "probability": 0.9942 + }, + { + "start": 4557.4, + "end": 4559.62, + "probability": 0.9961 + }, + { + "start": 4559.78, + "end": 4562.82, + "probability": 0.998 + }, + { + "start": 4563.5, + "end": 4565.14, + "probability": 0.9761 + }, + { + "start": 4565.94, + "end": 4567.72, + "probability": 0.86 + }, + { + "start": 4569.14, + "end": 4572.24, + "probability": 0.9878 + }, + { + "start": 4572.76, + "end": 4573.8, + "probability": 0.8696 + }, + { + "start": 4575.06, + "end": 4578.96, + "probability": 0.9006 + }, + { + "start": 4579.9, + "end": 4581.36, + "probability": 0.9032 + }, + { + "start": 4582.26, + "end": 4585.14, + "probability": 0.9982 + }, + { + "start": 4585.84, + "end": 4588.42, + "probability": 0.9956 + }, + { + "start": 4589.06, + "end": 4592.24, + "probability": 0.9966 + }, + { + "start": 4592.24, + "end": 4596.06, + "probability": 0.9978 + }, + { + "start": 4597.32, + "end": 4600.8, + "probability": 0.9961 + }, + { + "start": 4602.02, + "end": 4603.6, + "probability": 0.9569 + }, + { + "start": 4603.76, + "end": 4604.92, + "probability": 0.9759 + }, + { + "start": 4605.42, + "end": 4606.8, + "probability": 0.9886 + }, + { + "start": 4608.42, + "end": 4609.16, + "probability": 0.9044 + }, + { + "start": 4611.02, + "end": 4611.02, + "probability": 0.1757 + }, + { + "start": 4611.04, + "end": 4612.94, + "probability": 0.7771 + }, + { + "start": 4615.48, + "end": 4616.84, + "probability": 0.9826 + }, + { + "start": 4618.8, + "end": 4619.52, + "probability": 0.1547 + }, + { + "start": 4628.92, + "end": 4631.0, + "probability": 0.6624 + }, + { + "start": 4632.34, + "end": 4634.54, + "probability": 0.9818 + }, + { + "start": 4635.31, + "end": 4638.98, + "probability": 0.9557 + }, + { + "start": 4640.96, + "end": 4644.18, + "probability": 0.9921 + }, + { + "start": 4644.5, + "end": 4646.36, + "probability": 0.4556 + }, + { + "start": 4646.38, + "end": 4650.24, + "probability": 0.9849 + }, + { + "start": 4652.28, + "end": 4653.68, + "probability": 0.9584 + }, + { + "start": 4657.02, + "end": 4658.56, + "probability": 0.938 + }, + { + "start": 4659.76, + "end": 4660.14, + "probability": 0.7656 + }, + { + "start": 4661.4, + "end": 4665.3, + "probability": 0.9992 + }, + { + "start": 4665.42, + "end": 4666.7, + "probability": 0.9897 + }, + { + "start": 4667.9, + "end": 4669.94, + "probability": 0.7842 + }, + { + "start": 4672.34, + "end": 4674.82, + "probability": 0.997 + }, + { + "start": 4675.76, + "end": 4678.86, + "probability": 0.9811 + }, + { + "start": 4679.94, + "end": 4682.52, + "probability": 0.6518 + }, + { + "start": 4684.76, + "end": 4686.76, + "probability": 0.9993 + }, + { + "start": 4687.1, + "end": 4689.02, + "probability": 0.9744 + }, + { + "start": 4689.12, + "end": 4689.44, + "probability": 0.7259 + }, + { + "start": 4691.08, + "end": 4693.42, + "probability": 0.7161 + }, + { + "start": 4694.64, + "end": 4698.38, + "probability": 0.978 + }, + { + "start": 4700.14, + "end": 4701.4, + "probability": 0.8893 + }, + { + "start": 4702.08, + "end": 4702.66, + "probability": 0.9973 + }, + { + "start": 4703.8, + "end": 4704.39, + "probability": 0.9727 + }, + { + "start": 4706.28, + "end": 4706.72, + "probability": 0.5836 + }, + { + "start": 4706.76, + "end": 4712.5, + "probability": 0.9863 + }, + { + "start": 4712.98, + "end": 4714.26, + "probability": 0.9725 + }, + { + "start": 4715.78, + "end": 4720.44, + "probability": 0.9813 + }, + { + "start": 4721.7, + "end": 4721.7, + "probability": 0.6146 + }, + { + "start": 4721.7, + "end": 4724.2, + "probability": 0.6641 + }, + { + "start": 4724.5, + "end": 4726.36, + "probability": 0.7975 + }, + { + "start": 4726.98, + "end": 4728.62, + "probability": 0.9996 + }, + { + "start": 4729.68, + "end": 4733.46, + "probability": 0.9985 + }, + { + "start": 4733.56, + "end": 4736.94, + "probability": 0.9473 + }, + { + "start": 4737.02, + "end": 4737.42, + "probability": 0.7013 + }, + { + "start": 4739.32, + "end": 4741.88, + "probability": 0.968 + }, + { + "start": 4742.92, + "end": 4743.54, + "probability": 0.9819 + }, + { + "start": 4744.38, + "end": 4747.1, + "probability": 0.9482 + }, + { + "start": 4747.44, + "end": 4748.84, + "probability": 0.5553 + }, + { + "start": 4750.02, + "end": 4751.08, + "probability": 0.8171 + }, + { + "start": 4751.3, + "end": 4754.58, + "probability": 0.9779 + }, + { + "start": 4754.62, + "end": 4756.98, + "probability": 0.9938 + }, + { + "start": 4757.76, + "end": 4758.99, + "probability": 0.9934 + }, + { + "start": 4759.8, + "end": 4761.24, + "probability": 0.6937 + }, + { + "start": 4762.02, + "end": 4763.28, + "probability": 0.97 + }, + { + "start": 4764.0, + "end": 4766.88, + "probability": 0.9805 + }, + { + "start": 4766.98, + "end": 4767.7, + "probability": 0.9051 + }, + { + "start": 4768.44, + "end": 4771.84, + "probability": 0.9858 + }, + { + "start": 4771.96, + "end": 4772.97, + "probability": 0.8244 + }, + { + "start": 4773.2, + "end": 4773.66, + "probability": 0.4215 + }, + { + "start": 4773.76, + "end": 4776.08, + "probability": 0.9805 + }, + { + "start": 4776.38, + "end": 4779.88, + "probability": 0.9713 + }, + { + "start": 4780.34, + "end": 4781.06, + "probability": 0.9306 + }, + { + "start": 4781.7, + "end": 4785.32, + "probability": 0.6256 + }, + { + "start": 4785.68, + "end": 4786.46, + "probability": 0.9378 + }, + { + "start": 4786.56, + "end": 4787.78, + "probability": 0.8921 + }, + { + "start": 4789.22, + "end": 4790.2, + "probability": 0.9856 + }, + { + "start": 4791.08, + "end": 4791.28, + "probability": 0.4936 + }, + { + "start": 4791.38, + "end": 4792.26, + "probability": 0.9928 + }, + { + "start": 4792.58, + "end": 4793.36, + "probability": 0.9008 + }, + { + "start": 4793.4, + "end": 4795.33, + "probability": 0.9746 + }, + { + "start": 4796.1, + "end": 4796.5, + "probability": 0.4028 + }, + { + "start": 4796.68, + "end": 4797.16, + "probability": 0.851 + }, + { + "start": 4797.24, + "end": 4798.0, + "probability": 0.6782 + }, + { + "start": 4798.02, + "end": 4798.48, + "probability": 0.8254 + }, + { + "start": 4799.0, + "end": 4800.1, + "probability": 0.8479 + }, + { + "start": 4801.32, + "end": 4803.58, + "probability": 0.8209 + }, + { + "start": 4804.2, + "end": 4806.26, + "probability": 0.9495 + }, + { + "start": 4806.34, + "end": 4808.08, + "probability": 0.9258 + }, + { + "start": 4808.46, + "end": 4808.98, + "probability": 0.3194 + }, + { + "start": 4809.28, + "end": 4810.88, + "probability": 0.521 + }, + { + "start": 4811.54, + "end": 4813.12, + "probability": 0.7099 + }, + { + "start": 4813.4, + "end": 4815.9, + "probability": 0.9055 + }, + { + "start": 4816.38, + "end": 4817.3, + "probability": 0.8352 + }, + { + "start": 4817.48, + "end": 4817.7, + "probability": 0.927 + }, + { + "start": 4819.26, + "end": 4820.74, + "probability": 0.8967 + }, + { + "start": 4822.1, + "end": 4824.28, + "probability": 0.7394 + }, + { + "start": 4825.49, + "end": 4827.72, + "probability": 0.4786 + }, + { + "start": 4828.8, + "end": 4831.96, + "probability": 0.9684 + }, + { + "start": 4841.1, + "end": 4841.86, + "probability": 0.0908 + }, + { + "start": 4847.2, + "end": 4847.61, + "probability": 0.0243 + }, + { + "start": 4848.9, + "end": 4850.58, + "probability": 0.2983 + }, + { + "start": 4851.28, + "end": 4852.1, + "probability": 0.1834 + }, + { + "start": 4852.78, + "end": 4853.1, + "probability": 0.2294 + }, + { + "start": 4874.78, + "end": 4876.36, + "probability": 0.2036 + }, + { + "start": 4877.48, + "end": 4878.44, + "probability": 0.5808 + }, + { + "start": 4879.64, + "end": 4884.71, + "probability": 0.991 + }, + { + "start": 4885.52, + "end": 4887.2, + "probability": 0.9974 + }, + { + "start": 4888.32, + "end": 4889.58, + "probability": 0.9966 + }, + { + "start": 4891.0, + "end": 4893.06, + "probability": 0.9795 + }, + { + "start": 4893.94, + "end": 4895.94, + "probability": 0.9977 + }, + { + "start": 4896.72, + "end": 4899.78, + "probability": 0.9634 + }, + { + "start": 4900.38, + "end": 4906.66, + "probability": 0.9385 + }, + { + "start": 4907.5, + "end": 4909.12, + "probability": 0.7242 + }, + { + "start": 4910.04, + "end": 4911.0, + "probability": 0.9958 + }, + { + "start": 4911.84, + "end": 4916.64, + "probability": 0.9961 + }, + { + "start": 4917.7, + "end": 4924.32, + "probability": 0.9881 + }, + { + "start": 4925.6, + "end": 4926.51, + "probability": 0.9717 + }, + { + "start": 4927.72, + "end": 4929.34, + "probability": 0.8649 + }, + { + "start": 4930.28, + "end": 4930.68, + "probability": 0.8222 + }, + { + "start": 4931.9, + "end": 4933.48, + "probability": 0.976 + }, + { + "start": 4934.48, + "end": 4935.45, + "probability": 0.8461 + }, + { + "start": 4936.36, + "end": 4937.74, + "probability": 0.9696 + }, + { + "start": 4939.02, + "end": 4941.94, + "probability": 0.8667 + }, + { + "start": 4942.88, + "end": 4949.76, + "probability": 0.9938 + }, + { + "start": 4950.56, + "end": 4954.68, + "probability": 0.9882 + }, + { + "start": 4955.6, + "end": 4961.36, + "probability": 0.9956 + }, + { + "start": 4961.98, + "end": 4965.64, + "probability": 0.9868 + }, + { + "start": 4966.9, + "end": 4967.78, + "probability": 0.8306 + }, + { + "start": 4968.84, + "end": 4970.89, + "probability": 0.9891 + }, + { + "start": 4971.8, + "end": 4974.46, + "probability": 0.9336 + }, + { + "start": 4976.48, + "end": 4980.46, + "probability": 0.7988 + }, + { + "start": 4981.6, + "end": 4982.32, + "probability": 0.802 + }, + { + "start": 4983.12, + "end": 4984.72, + "probability": 0.9977 + }, + { + "start": 4985.48, + "end": 4989.52, + "probability": 0.9775 + }, + { + "start": 4990.94, + "end": 4991.8, + "probability": 0.9436 + }, + { + "start": 4993.0, + "end": 4999.16, + "probability": 0.9871 + }, + { + "start": 5000.14, + "end": 5001.54, + "probability": 0.8502 + }, + { + "start": 5002.42, + "end": 5005.98, + "probability": 0.9937 + }, + { + "start": 5006.98, + "end": 5008.08, + "probability": 0.772 + }, + { + "start": 5008.76, + "end": 5013.0, + "probability": 0.998 + }, + { + "start": 5014.16, + "end": 5016.68, + "probability": 0.9817 + }, + { + "start": 5017.98, + "end": 5019.62, + "probability": 0.9354 + }, + { + "start": 5020.48, + "end": 5022.72, + "probability": 0.8739 + }, + { + "start": 5023.74, + "end": 5025.54, + "probability": 0.9971 + }, + { + "start": 5026.18, + "end": 5027.84, + "probability": 0.9489 + }, + { + "start": 5028.62, + "end": 5031.28, + "probability": 0.9561 + }, + { + "start": 5032.58, + "end": 5033.7, + "probability": 0.9241 + }, + { + "start": 5034.68, + "end": 5036.54, + "probability": 0.9953 + }, + { + "start": 5037.36, + "end": 5045.16, + "probability": 0.9961 + }, + { + "start": 5045.98, + "end": 5048.44, + "probability": 0.9945 + }, + { + "start": 5049.02, + "end": 5051.02, + "probability": 0.9993 + }, + { + "start": 5051.78, + "end": 5053.76, + "probability": 0.8492 + }, + { + "start": 5054.76, + "end": 5057.98, + "probability": 0.9954 + }, + { + "start": 5058.72, + "end": 5065.88, + "probability": 0.9943 + }, + { + "start": 5065.96, + "end": 5066.86, + "probability": 0.8118 + }, + { + "start": 5067.58, + "end": 5068.44, + "probability": 0.6675 + }, + { + "start": 5070.94, + "end": 5071.92, + "probability": 0.9797 + }, + { + "start": 5074.86, + "end": 5074.86, + "probability": 0.3966 + }, + { + "start": 5074.86, + "end": 5077.48, + "probability": 0.8166 + }, + { + "start": 5094.26, + "end": 5095.84, + "probability": 0.9776 + }, + { + "start": 5097.27, + "end": 5098.52, + "probability": 0.9609 + }, + { + "start": 5098.62, + "end": 5099.38, + "probability": 0.782 + }, + { + "start": 5100.06, + "end": 5102.68, + "probability": 0.8685 + }, + { + "start": 5102.88, + "end": 5103.34, + "probability": 0.0269 + }, + { + "start": 5104.2, + "end": 5107.02, + "probability": 0.7613 + }, + { + "start": 5108.08, + "end": 5108.58, + "probability": 0.3311 + }, + { + "start": 5108.82, + "end": 5109.34, + "probability": 0.8674 + }, + { + "start": 5109.36, + "end": 5110.34, + "probability": 0.9838 + }, + { + "start": 5110.44, + "end": 5112.54, + "probability": 0.8642 + }, + { + "start": 5112.6, + "end": 5115.3, + "probability": 0.8033 + }, + { + "start": 5116.5, + "end": 5117.52, + "probability": 0.9966 + }, + { + "start": 5118.78, + "end": 5120.52, + "probability": 0.9806 + }, + { + "start": 5120.62, + "end": 5123.16, + "probability": 0.9611 + }, + { + "start": 5124.16, + "end": 5125.74, + "probability": 0.8352 + }, + { + "start": 5126.56, + "end": 5127.0, + "probability": 0.8795 + }, + { + "start": 5127.16, + "end": 5127.91, + "probability": 0.9373 + }, + { + "start": 5128.22, + "end": 5128.66, + "probability": 0.938 + }, + { + "start": 5129.42, + "end": 5130.44, + "probability": 0.7447 + }, + { + "start": 5131.16, + "end": 5132.22, + "probability": 0.569 + }, + { + "start": 5132.36, + "end": 5135.92, + "probability": 0.9224 + }, + { + "start": 5136.28, + "end": 5136.3, + "probability": 0.8233 + }, + { + "start": 5136.48, + "end": 5136.8, + "probability": 0.4993 + }, + { + "start": 5136.92, + "end": 5138.14, + "probability": 0.7725 + }, + { + "start": 5138.18, + "end": 5138.86, + "probability": 0.5776 + }, + { + "start": 5139.4, + "end": 5141.02, + "probability": 0.8792 + }, + { + "start": 5141.7, + "end": 5142.28, + "probability": 0.854 + }, + { + "start": 5142.36, + "end": 5143.3, + "probability": 0.9929 + }, + { + "start": 5143.36, + "end": 5145.56, + "probability": 0.9028 + }, + { + "start": 5146.06, + "end": 5147.0, + "probability": 0.8081 + }, + { + "start": 5147.66, + "end": 5150.84, + "probability": 0.8521 + }, + { + "start": 5150.84, + "end": 5152.06, + "probability": 0.9139 + }, + { + "start": 5152.18, + "end": 5152.34, + "probability": 0.2845 + }, + { + "start": 5153.5, + "end": 5155.0, + "probability": 0.9355 + }, + { + "start": 5155.36, + "end": 5159.28, + "probability": 0.9946 + }, + { + "start": 5160.32, + "end": 5161.52, + "probability": 0.9885 + }, + { + "start": 5161.62, + "end": 5162.29, + "probability": 0.8788 + }, + { + "start": 5162.78, + "end": 5163.74, + "probability": 0.908 + }, + { + "start": 5163.88, + "end": 5165.26, + "probability": 0.8654 + }, + { + "start": 5165.36, + "end": 5165.84, + "probability": 0.3189 + }, + { + "start": 5165.9, + "end": 5166.66, + "probability": 0.7762 + }, + { + "start": 5167.8, + "end": 5168.62, + "probability": 0.8552 + }, + { + "start": 5168.78, + "end": 5172.26, + "probability": 0.939 + }, + { + "start": 5172.4, + "end": 5174.68, + "probability": 0.9647 + }, + { + "start": 5174.68, + "end": 5178.82, + "probability": 0.9656 + }, + { + "start": 5179.3, + "end": 5181.51, + "probability": 0.735 + }, + { + "start": 5181.58, + "end": 5183.02, + "probability": 0.9259 + }, + { + "start": 5183.54, + "end": 5184.64, + "probability": 0.9849 + }, + { + "start": 5184.78, + "end": 5186.4, + "probability": 0.9245 + }, + { + "start": 5186.88, + "end": 5190.36, + "probability": 0.9924 + }, + { + "start": 5191.06, + "end": 5192.16, + "probability": 0.9492 + }, + { + "start": 5192.24, + "end": 5192.64, + "probability": 0.8311 + }, + { + "start": 5193.78, + "end": 5194.14, + "probability": 0.3578 + }, + { + "start": 5194.16, + "end": 5195.56, + "probability": 0.9334 + }, + { + "start": 5214.46, + "end": 5216.54, + "probability": 0.7163 + }, + { + "start": 5217.36, + "end": 5219.48, + "probability": 0.8999 + }, + { + "start": 5220.4, + "end": 5222.62, + "probability": 0.9282 + }, + { + "start": 5223.34, + "end": 5224.88, + "probability": 0.9832 + }, + { + "start": 5225.62, + "end": 5227.22, + "probability": 0.9921 + }, + { + "start": 5227.38, + "end": 5233.36, + "probability": 0.8685 + }, + { + "start": 5233.92, + "end": 5236.92, + "probability": 0.7894 + }, + { + "start": 5237.48, + "end": 5238.28, + "probability": 0.4989 + }, + { + "start": 5238.94, + "end": 5240.04, + "probability": 0.9887 + }, + { + "start": 5240.98, + "end": 5241.58, + "probability": 0.4709 + }, + { + "start": 5241.66, + "end": 5244.94, + "probability": 0.9586 + }, + { + "start": 5245.58, + "end": 5247.88, + "probability": 0.9418 + }, + { + "start": 5249.02, + "end": 5252.08, + "probability": 0.8731 + }, + { + "start": 5252.62, + "end": 5257.46, + "probability": 0.8231 + }, + { + "start": 5257.62, + "end": 5259.44, + "probability": 0.9862 + }, + { + "start": 5260.02, + "end": 5263.6, + "probability": 0.9204 + }, + { + "start": 5263.78, + "end": 5267.86, + "probability": 0.9984 + }, + { + "start": 5268.06, + "end": 5271.18, + "probability": 0.776 + }, + { + "start": 5271.6, + "end": 5274.32, + "probability": 0.999 + }, + { + "start": 5274.78, + "end": 5275.76, + "probability": 0.9901 + }, + { + "start": 5276.38, + "end": 5279.04, + "probability": 0.9976 + }, + { + "start": 5279.84, + "end": 5281.76, + "probability": 0.8503 + }, + { + "start": 5282.18, + "end": 5283.24, + "probability": 0.9951 + }, + { + "start": 5284.24, + "end": 5286.02, + "probability": 0.9833 + }, + { + "start": 5286.64, + "end": 5290.92, + "probability": 0.6692 + }, + { + "start": 5291.5, + "end": 5292.48, + "probability": 0.8841 + }, + { + "start": 5292.98, + "end": 5294.26, + "probability": 0.9932 + }, + { + "start": 5294.84, + "end": 5295.58, + "probability": 0.9595 + }, + { + "start": 5297.06, + "end": 5297.62, + "probability": 0.8399 + }, + { + "start": 5298.14, + "end": 5300.76, + "probability": 0.9763 + }, + { + "start": 5301.36, + "end": 5305.22, + "probability": 0.9209 + }, + { + "start": 5305.28, + "end": 5306.06, + "probability": 0.9795 + }, + { + "start": 5306.76, + "end": 5309.32, + "probability": 0.9162 + }, + { + "start": 5309.58, + "end": 5311.6, + "probability": 0.996 + }, + { + "start": 5311.6, + "end": 5314.9, + "probability": 0.9865 + }, + { + "start": 5315.08, + "end": 5316.8, + "probability": 0.8957 + }, + { + "start": 5317.22, + "end": 5318.98, + "probability": 0.9941 + }, + { + "start": 5320.22, + "end": 5325.18, + "probability": 0.9177 + }, + { + "start": 5325.24, + "end": 5327.46, + "probability": 0.936 + }, + { + "start": 5327.52, + "end": 5328.0, + "probability": 0.7922 + }, + { + "start": 5328.24, + "end": 5328.86, + "probability": 0.278 + }, + { + "start": 5329.18, + "end": 5330.16, + "probability": 0.7908 + }, + { + "start": 5330.46, + "end": 5332.64, + "probability": 0.988 + }, + { + "start": 5333.42, + "end": 5336.9, + "probability": 0.7224 + }, + { + "start": 5337.78, + "end": 5340.28, + "probability": 0.8376 + }, + { + "start": 5341.28, + "end": 5344.08, + "probability": 0.9873 + }, + { + "start": 5344.72, + "end": 5349.34, + "probability": 0.9973 + }, + { + "start": 5350.04, + "end": 5355.0, + "probability": 0.9917 + }, + { + "start": 5355.08, + "end": 5357.02, + "probability": 0.9976 + }, + { + "start": 5357.66, + "end": 5359.96, + "probability": 0.9626 + }, + { + "start": 5360.7, + "end": 5362.72, + "probability": 0.9244 + }, + { + "start": 5363.16, + "end": 5369.84, + "probability": 0.9205 + }, + { + "start": 5370.36, + "end": 5374.56, + "probability": 0.9058 + }, + { + "start": 5374.56, + "end": 5379.2, + "probability": 0.9961 + }, + { + "start": 5380.33, + "end": 5382.75, + "probability": 0.4992 + }, + { + "start": 5383.08, + "end": 5387.0, + "probability": 0.8491 + }, + { + "start": 5387.14, + "end": 5388.18, + "probability": 0.9434 + }, + { + "start": 5388.28, + "end": 5390.78, + "probability": 0.8771 + }, + { + "start": 5391.24, + "end": 5392.08, + "probability": 0.9724 + }, + { + "start": 5392.58, + "end": 5395.68, + "probability": 0.9736 + }, + { + "start": 5396.28, + "end": 5399.54, + "probability": 0.9954 + }, + { + "start": 5400.0, + "end": 5401.18, + "probability": 0.9855 + }, + { + "start": 5401.24, + "end": 5404.12, + "probability": 0.9877 + }, + { + "start": 5404.48, + "end": 5407.12, + "probability": 0.9977 + }, + { + "start": 5408.0, + "end": 5410.6, + "probability": 0.9821 + }, + { + "start": 5410.98, + "end": 5413.4, + "probability": 0.9907 + }, + { + "start": 5413.92, + "end": 5418.24, + "probability": 0.9279 + }, + { + "start": 5418.72, + "end": 5421.52, + "probability": 0.9818 + }, + { + "start": 5422.1, + "end": 5427.64, + "probability": 0.9751 + }, + { + "start": 5427.64, + "end": 5427.86, + "probability": 0.5163 + }, + { + "start": 5427.9, + "end": 5432.3, + "probability": 0.9337 + }, + { + "start": 5432.6, + "end": 5433.2, + "probability": 0.5611 + }, + { + "start": 5433.6, + "end": 5436.86, + "probability": 0.9914 + }, + { + "start": 5437.12, + "end": 5437.94, + "probability": 0.8384 + }, + { + "start": 5438.4, + "end": 5438.8, + "probability": 0.3461 + }, + { + "start": 5438.84, + "end": 5440.21, + "probability": 0.5491 + }, + { + "start": 5441.04, + "end": 5441.8, + "probability": 0.9851 + }, + { + "start": 5442.2, + "end": 5444.72, + "probability": 0.9395 + }, + { + "start": 5444.78, + "end": 5446.46, + "probability": 0.7386 + }, + { + "start": 5446.48, + "end": 5447.18, + "probability": 0.7407 + }, + { + "start": 5447.44, + "end": 5448.34, + "probability": 0.4991 + }, + { + "start": 5448.76, + "end": 5449.76, + "probability": 0.5544 + }, + { + "start": 5449.8, + "end": 5450.94, + "probability": 0.9713 + }, + { + "start": 5451.04, + "end": 5453.06, + "probability": 0.8752 + }, + { + "start": 5453.3, + "end": 5455.3, + "probability": 0.9546 + }, + { + "start": 5455.3, + "end": 5457.46, + "probability": 0.4109 + }, + { + "start": 5458.04, + "end": 5462.48, + "probability": 0.7801 + }, + { + "start": 5462.54, + "end": 5462.78, + "probability": 0.8971 + }, + { + "start": 5466.02, + "end": 5466.72, + "probability": 0.1826 + }, + { + "start": 5468.48, + "end": 5471.36, + "probability": 0.5906 + }, + { + "start": 5472.26, + "end": 5475.74, + "probability": 0.9908 + }, + { + "start": 5476.64, + "end": 5480.82, + "probability": 0.9896 + }, + { + "start": 5480.98, + "end": 5487.69, + "probability": 0.9982 + }, + { + "start": 5488.8, + "end": 5494.62, + "probability": 0.9955 + }, + { + "start": 5495.38, + "end": 5497.42, + "probability": 0.8974 + }, + { + "start": 5498.4, + "end": 5503.22, + "probability": 0.9991 + }, + { + "start": 5503.98, + "end": 5505.34, + "probability": 0.8685 + }, + { + "start": 5506.8, + "end": 5509.18, + "probability": 0.8915 + }, + { + "start": 5510.14, + "end": 5514.14, + "probability": 0.9023 + }, + { + "start": 5514.22, + "end": 5517.04, + "probability": 0.9977 + }, + { + "start": 5518.3, + "end": 5520.1, + "probability": 0.9154 + }, + { + "start": 5521.1, + "end": 5523.04, + "probability": 0.9353 + }, + { + "start": 5524.88, + "end": 5527.4, + "probability": 0.9814 + }, + { + "start": 5528.44, + "end": 5530.08, + "probability": 0.9355 + }, + { + "start": 5530.84, + "end": 5535.64, + "probability": 0.9958 + }, + { + "start": 5535.64, + "end": 5540.48, + "probability": 0.9969 + }, + { + "start": 5541.04, + "end": 5543.66, + "probability": 0.9015 + }, + { + "start": 5544.14, + "end": 5548.9, + "probability": 0.9962 + }, + { + "start": 5549.44, + "end": 5551.78, + "probability": 0.9386 + }, + { + "start": 5553.26, + "end": 5553.44, + "probability": 0.1462 + }, + { + "start": 5554.58, + "end": 5560.16, + "probability": 0.9228 + }, + { + "start": 5560.6, + "end": 5566.3, + "probability": 0.977 + }, + { + "start": 5566.7, + "end": 5567.94, + "probability": 0.9668 + }, + { + "start": 5569.6, + "end": 5571.02, + "probability": 0.9177 + }, + { + "start": 5571.06, + "end": 5575.5, + "probability": 0.9938 + }, + { + "start": 5575.5, + "end": 5579.52, + "probability": 0.7268 + }, + { + "start": 5580.3, + "end": 5581.84, + "probability": 0.9572 + }, + { + "start": 5582.98, + "end": 5586.76, + "probability": 0.9944 + }, + { + "start": 5587.3, + "end": 5589.84, + "probability": 0.9414 + }, + { + "start": 5590.96, + "end": 5592.84, + "probability": 0.9028 + }, + { + "start": 5594.24, + "end": 5597.5, + "probability": 0.96 + }, + { + "start": 5598.1, + "end": 5602.52, + "probability": 0.9797 + }, + { + "start": 5603.16, + "end": 5605.18, + "probability": 0.9901 + }, + { + "start": 5605.84, + "end": 5612.06, + "probability": 0.9911 + }, + { + "start": 5612.06, + "end": 5616.76, + "probability": 0.9916 + }, + { + "start": 5617.52, + "end": 5617.78, + "probability": 0.3585 + }, + { + "start": 5618.4, + "end": 5619.84, + "probability": 0.6626 + }, + { + "start": 5620.56, + "end": 5626.22, + "probability": 0.9863 + }, + { + "start": 5626.7, + "end": 5627.96, + "probability": 0.9827 + }, + { + "start": 5628.32, + "end": 5634.82, + "probability": 0.9938 + }, + { + "start": 5635.62, + "end": 5639.78, + "probability": 0.9666 + }, + { + "start": 5641.04, + "end": 5645.98, + "probability": 0.9485 + }, + { + "start": 5646.5, + "end": 5649.62, + "probability": 0.9984 + }, + { + "start": 5650.52, + "end": 5654.22, + "probability": 0.9639 + }, + { + "start": 5655.02, + "end": 5660.22, + "probability": 0.9983 + }, + { + "start": 5661.42, + "end": 5668.18, + "probability": 0.9987 + }, + { + "start": 5668.18, + "end": 5676.04, + "probability": 0.9964 + }, + { + "start": 5676.48, + "end": 5678.74, + "probability": 0.9382 + }, + { + "start": 5679.18, + "end": 5679.54, + "probability": 0.7061 + }, + { + "start": 5679.92, + "end": 5680.48, + "probability": 0.3038 + }, + { + "start": 5680.5, + "end": 5682.54, + "probability": 0.8186 + }, + { + "start": 5683.77, + "end": 5684.92, + "probability": 0.4997 + }, + { + "start": 5685.08, + "end": 5686.28, + "probability": 0.8877 + }, + { + "start": 5698.6, + "end": 5698.98, + "probability": 0.5114 + }, + { + "start": 5699.2, + "end": 5700.3, + "probability": 0.5452 + }, + { + "start": 5704.98, + "end": 5710.66, + "probability": 0.9947 + }, + { + "start": 5711.44, + "end": 5711.8, + "probability": 0.3942 + }, + { + "start": 5712.72, + "end": 5712.9, + "probability": 0.884 + }, + { + "start": 5714.8, + "end": 5715.26, + "probability": 0.7912 + }, + { + "start": 5716.34, + "end": 5723.66, + "probability": 0.9844 + }, + { + "start": 5726.56, + "end": 5728.58, + "probability": 0.9922 + }, + { + "start": 5731.38, + "end": 5733.84, + "probability": 0.5745 + }, + { + "start": 5735.3, + "end": 5735.86, + "probability": 0.4724 + }, + { + "start": 5737.1, + "end": 5738.0, + "probability": 0.5841 + }, + { + "start": 5741.32, + "end": 5744.46, + "probability": 0.8071 + }, + { + "start": 5748.18, + "end": 5752.89, + "probability": 0.9489 + }, + { + "start": 5754.52, + "end": 5762.18, + "probability": 0.8535 + }, + { + "start": 5765.38, + "end": 5768.74, + "probability": 0.9771 + }, + { + "start": 5769.86, + "end": 5770.36, + "probability": 0.6852 + }, + { + "start": 5770.98, + "end": 5772.92, + "probability": 0.8783 + }, + { + "start": 5775.3, + "end": 5776.86, + "probability": 0.849 + }, + { + "start": 5777.12, + "end": 5777.76, + "probability": 0.9392 + }, + { + "start": 5778.42, + "end": 5779.14, + "probability": 0.823 + }, + { + "start": 5779.32, + "end": 5783.28, + "probability": 0.9481 + }, + { + "start": 5783.46, + "end": 5787.54, + "probability": 0.935 + }, + { + "start": 5787.7, + "end": 5789.0, + "probability": 0.9281 + }, + { + "start": 5790.08, + "end": 5791.06, + "probability": 0.8329 + }, + { + "start": 5793.02, + "end": 5793.72, + "probability": 0.9824 + }, + { + "start": 5794.62, + "end": 5796.22, + "probability": 0.7924 + }, + { + "start": 5799.44, + "end": 5802.22, + "probability": 0.9629 + }, + { + "start": 5802.4, + "end": 5803.32, + "probability": 0.8992 + }, + { + "start": 5804.46, + "end": 5805.34, + "probability": 0.9702 + }, + { + "start": 5805.96, + "end": 5806.46, + "probability": 0.9491 + }, + { + "start": 5807.0, + "end": 5808.58, + "probability": 0.8802 + }, + { + "start": 5809.16, + "end": 5810.68, + "probability": 0.7054 + }, + { + "start": 5812.28, + "end": 5814.94, + "probability": 0.8713 + }, + { + "start": 5816.1, + "end": 5816.94, + "probability": 0.739 + }, + { + "start": 5817.58, + "end": 5818.76, + "probability": 0.9362 + }, + { + "start": 5819.66, + "end": 5825.64, + "probability": 0.7528 + }, + { + "start": 5826.14, + "end": 5827.52, + "probability": 0.9639 + }, + { + "start": 5828.14, + "end": 5833.18, + "probability": 0.9915 + }, + { + "start": 5836.28, + "end": 5839.36, + "probability": 0.9832 + }, + { + "start": 5840.11, + "end": 5842.7, + "probability": 0.9326 + }, + { + "start": 5843.74, + "end": 5847.5, + "probability": 0.9761 + }, + { + "start": 5848.54, + "end": 5852.02, + "probability": 0.9427 + }, + { + "start": 5852.8, + "end": 5857.78, + "probability": 0.986 + }, + { + "start": 5858.88, + "end": 5863.52, + "probability": 0.9875 + }, + { + "start": 5864.7, + "end": 5867.58, + "probability": 0.9888 + }, + { + "start": 5868.12, + "end": 5868.64, + "probability": 0.9078 + }, + { + "start": 5869.42, + "end": 5870.2, + "probability": 0.9861 + }, + { + "start": 5870.52, + "end": 5870.82, + "probability": 0.8594 + }, + { + "start": 5871.76, + "end": 5872.1, + "probability": 0.3094 + }, + { + "start": 5872.14, + "end": 5873.28, + "probability": 0.709 + }, + { + "start": 5873.42, + "end": 5873.96, + "probability": 0.6695 + }, + { + "start": 5879.78, + "end": 5882.34, + "probability": 0.1462 + }, + { + "start": 5883.12, + "end": 5890.4, + "probability": 0.0731 + }, + { + "start": 5897.98, + "end": 5898.7, + "probability": 0.0323 + }, + { + "start": 5898.8, + "end": 5898.92, + "probability": 0.195 + }, + { + "start": 5898.92, + "end": 5899.1, + "probability": 0.0419 + }, + { + "start": 5899.1, + "end": 5899.14, + "probability": 0.0692 + }, + { + "start": 5899.14, + "end": 5899.3, + "probability": 0.0936 + }, + { + "start": 5899.32, + "end": 5899.32, + "probability": 0.0716 + }, + { + "start": 5899.32, + "end": 5899.32, + "probability": 0.2327 + }, + { + "start": 5899.32, + "end": 5899.32, + "probability": 0.2291 + }, + { + "start": 5899.32, + "end": 5899.32, + "probability": 0.0405 + }, + { + "start": 5899.62, + "end": 5900.18, + "probability": 0.2202 + }, + { + "start": 5933.04, + "end": 5933.14, + "probability": 0.0516 + }, + { + "start": 5935.6, + "end": 5937.96, + "probability": 0.6622 + }, + { + "start": 5939.2, + "end": 5944.4, + "probability": 0.7625 + }, + { + "start": 5945.18, + "end": 5946.26, + "probability": 0.939 + }, + { + "start": 5947.56, + "end": 5948.2, + "probability": 0.9321 + }, + { + "start": 5948.41, + "end": 5948.84, + "probability": 0.7756 + }, + { + "start": 5949.1, + "end": 5954.86, + "probability": 0.9644 + }, + { + "start": 5955.18, + "end": 5955.86, + "probability": 0.9055 + }, + { + "start": 5956.24, + "end": 5957.1, + "probability": 0.752 + }, + { + "start": 5957.92, + "end": 5959.26, + "probability": 0.9961 + }, + { + "start": 5960.3, + "end": 5960.84, + "probability": 0.7357 + }, + { + "start": 5961.52, + "end": 5965.06, + "probability": 0.9819 + }, + { + "start": 5965.84, + "end": 5966.34, + "probability": 0.5519 + }, + { + "start": 5966.9, + "end": 5968.54, + "probability": 0.6728 + }, + { + "start": 5969.42, + "end": 5970.14, + "probability": 0.7471 + }, + { + "start": 5970.82, + "end": 5974.48, + "probability": 0.9741 + }, + { + "start": 5975.64, + "end": 5976.44, + "probability": 0.9893 + }, + { + "start": 5976.52, + "end": 5978.67, + "probability": 0.9067 + }, + { + "start": 5979.5, + "end": 5981.2, + "probability": 0.9818 + }, + { + "start": 5981.74, + "end": 5982.3, + "probability": 0.7457 + }, + { + "start": 5984.04, + "end": 5985.14, + "probability": 0.905 + }, + { + "start": 5985.7, + "end": 5986.06, + "probability": 0.8801 + }, + { + "start": 5986.8, + "end": 5994.5, + "probability": 0.9251 + }, + { + "start": 5994.9, + "end": 5996.26, + "probability": 0.9776 + }, + { + "start": 5996.98, + "end": 5998.48, + "probability": 0.604 + }, + { + "start": 5999.54, + "end": 6000.42, + "probability": 0.8091 + }, + { + "start": 6000.58, + "end": 6002.02, + "probability": 0.9671 + }, + { + "start": 6002.52, + "end": 6003.44, + "probability": 0.9505 + }, + { + "start": 6003.66, + "end": 6005.92, + "probability": 0.9849 + }, + { + "start": 6006.34, + "end": 6008.14, + "probability": 0.7651 + }, + { + "start": 6008.66, + "end": 6010.86, + "probability": 0.9971 + }, + { + "start": 6012.02, + "end": 6014.72, + "probability": 0.913 + }, + { + "start": 6016.02, + "end": 6018.68, + "probability": 0.9513 + }, + { + "start": 6019.54, + "end": 6022.8, + "probability": 0.9363 + }, + { + "start": 6023.34, + "end": 6027.46, + "probability": 0.8216 + }, + { + "start": 6028.56, + "end": 6032.42, + "probability": 0.8434 + }, + { + "start": 6033.44, + "end": 6036.01, + "probability": 0.5126 + }, + { + "start": 6036.2, + "end": 6038.2, + "probability": 0.598 + }, + { + "start": 6039.22, + "end": 6045.48, + "probability": 0.7932 + }, + { + "start": 6045.54, + "end": 6046.08, + "probability": 0.6448 + }, + { + "start": 6047.2, + "end": 6051.25, + "probability": 0.5354 + }, + { + "start": 6053.79, + "end": 6056.74, + "probability": 0.8323 + }, + { + "start": 6057.94, + "end": 6058.72, + "probability": 0.4458 + }, + { + "start": 6059.62, + "end": 6060.46, + "probability": 0.8352 + }, + { + "start": 6061.04, + "end": 6061.98, + "probability": 0.7168 + }, + { + "start": 6062.58, + "end": 6065.24, + "probability": 0.9342 + }, + { + "start": 6065.76, + "end": 6067.76, + "probability": 0.9856 + }, + { + "start": 6068.26, + "end": 6069.87, + "probability": 0.8766 + }, + { + "start": 6070.54, + "end": 6072.66, + "probability": 0.7478 + }, + { + "start": 6073.32, + "end": 6076.5, + "probability": 0.7389 + }, + { + "start": 6077.34, + "end": 6080.3, + "probability": 0.487 + }, + { + "start": 6080.58, + "end": 6082.28, + "probability": 0.9849 + }, + { + "start": 6082.42, + "end": 6083.6, + "probability": 0.8579 + }, + { + "start": 6084.08, + "end": 6085.0, + "probability": 0.99 + }, + { + "start": 6085.52, + "end": 6086.26, + "probability": 0.7988 + }, + { + "start": 6087.18, + "end": 6088.96, + "probability": 0.9896 + }, + { + "start": 6089.62, + "end": 6093.08, + "probability": 0.5089 + }, + { + "start": 6093.72, + "end": 6095.72, + "probability": 0.9542 + }, + { + "start": 6096.28, + "end": 6097.34, + "probability": 0.8928 + }, + { + "start": 6099.32, + "end": 6099.88, + "probability": 0.7337 + }, + { + "start": 6100.1, + "end": 6101.34, + "probability": 0.9254 + }, + { + "start": 6126.98, + "end": 6128.46, + "probability": 0.6501 + }, + { + "start": 6130.94, + "end": 6136.5, + "probability": 0.9569 + }, + { + "start": 6137.44, + "end": 6140.44, + "probability": 0.9688 + }, + { + "start": 6141.24, + "end": 6147.68, + "probability": 0.9504 + }, + { + "start": 6149.24, + "end": 6152.38, + "probability": 0.9968 + }, + { + "start": 6153.14, + "end": 6157.08, + "probability": 0.97 + }, + { + "start": 6157.16, + "end": 6158.12, + "probability": 0.8276 + }, + { + "start": 6158.46, + "end": 6161.56, + "probability": 0.9819 + }, + { + "start": 6162.92, + "end": 6163.76, + "probability": 0.3982 + }, + { + "start": 6164.34, + "end": 6166.74, + "probability": 0.986 + }, + { + "start": 6168.14, + "end": 6170.94, + "probability": 0.9982 + }, + { + "start": 6171.6, + "end": 6175.2, + "probability": 0.8501 + }, + { + "start": 6175.2, + "end": 6178.44, + "probability": 0.9847 + }, + { + "start": 6180.92, + "end": 6182.2, + "probability": 0.7371 + }, + { + "start": 6183.86, + "end": 6184.97, + "probability": 0.9648 + }, + { + "start": 6186.08, + "end": 6192.44, + "probability": 0.6539 + }, + { + "start": 6193.56, + "end": 6194.84, + "probability": 0.9073 + }, + { + "start": 6195.9, + "end": 6198.36, + "probability": 0.9031 + }, + { + "start": 6198.36, + "end": 6201.06, + "probability": 0.9543 + }, + { + "start": 6201.16, + "end": 6201.54, + "probability": 0.7481 + }, + { + "start": 6201.58, + "end": 6204.48, + "probability": 0.9789 + }, + { + "start": 6206.68, + "end": 6209.24, + "probability": 0.9113 + }, + { + "start": 6210.58, + "end": 6213.36, + "probability": 0.9925 + }, + { + "start": 6213.84, + "end": 6216.76, + "probability": 0.9889 + }, + { + "start": 6217.26, + "end": 6218.2, + "probability": 0.843 + }, + { + "start": 6218.46, + "end": 6219.4, + "probability": 0.9132 + }, + { + "start": 6219.82, + "end": 6221.82, + "probability": 0.5948 + }, + { + "start": 6224.0, + "end": 6225.33, + "probability": 0.9971 + }, + { + "start": 6226.88, + "end": 6234.88, + "probability": 0.9824 + }, + { + "start": 6236.24, + "end": 6236.98, + "probability": 0.8519 + }, + { + "start": 6238.04, + "end": 6241.92, + "probability": 0.9916 + }, + { + "start": 6242.74, + "end": 6244.44, + "probability": 0.9921 + }, + { + "start": 6244.9, + "end": 6245.64, + "probability": 0.8805 + }, + { + "start": 6245.74, + "end": 6246.26, + "probability": 0.9842 + }, + { + "start": 6247.24, + "end": 6248.16, + "probability": 0.9858 + }, + { + "start": 6248.4, + "end": 6249.14, + "probability": 0.9207 + }, + { + "start": 6249.82, + "end": 6252.52, + "probability": 0.9838 + }, + { + "start": 6253.82, + "end": 6255.66, + "probability": 0.9092 + }, + { + "start": 6259.06, + "end": 6260.54, + "probability": 0.9843 + }, + { + "start": 6262.28, + "end": 6266.88, + "probability": 0.991 + }, + { + "start": 6267.5, + "end": 6269.04, + "probability": 0.778 + }, + { + "start": 6270.38, + "end": 6272.12, + "probability": 0.9496 + }, + { + "start": 6273.06, + "end": 6274.42, + "probability": 0.3129 + }, + { + "start": 6274.74, + "end": 6277.74, + "probability": 0.9985 + }, + { + "start": 6278.62, + "end": 6283.5, + "probability": 0.9968 + }, + { + "start": 6284.52, + "end": 6286.88, + "probability": 0.3327 + }, + { + "start": 6287.68, + "end": 6292.34, + "probability": 0.9829 + }, + { + "start": 6294.08, + "end": 6296.6, + "probability": 0.9931 + }, + { + "start": 6298.0, + "end": 6299.12, + "probability": 0.6301 + }, + { + "start": 6300.06, + "end": 6305.42, + "probability": 0.9788 + }, + { + "start": 6306.74, + "end": 6307.04, + "probability": 0.3326 + }, + { + "start": 6307.52, + "end": 6313.8, + "probability": 0.9694 + }, + { + "start": 6314.76, + "end": 6317.9, + "probability": 0.98 + }, + { + "start": 6317.9, + "end": 6318.82, + "probability": 0.1152 + }, + { + "start": 6319.4, + "end": 6319.4, + "probability": 0.5243 + }, + { + "start": 6319.4, + "end": 6323.78, + "probability": 0.9792 + }, + { + "start": 6324.48, + "end": 6327.68, + "probability": 0.9973 + }, + { + "start": 6328.18, + "end": 6330.26, + "probability": 0.9839 + }, + { + "start": 6332.24, + "end": 6333.7, + "probability": 0.0199 + }, + { + "start": 6335.48, + "end": 6335.68, + "probability": 0.0923 + }, + { + "start": 6335.68, + "end": 6339.28, + "probability": 0.8494 + }, + { + "start": 6340.02, + "end": 6342.44, + "probability": 0.8813 + }, + { + "start": 6343.04, + "end": 6345.28, + "probability": 0.9822 + }, + { + "start": 6346.48, + "end": 6347.52, + "probability": 0.3545 + }, + { + "start": 6347.56, + "end": 6349.86, + "probability": 0.7681 + }, + { + "start": 6350.0, + "end": 6350.9, + "probability": 0.4891 + }, + { + "start": 6351.0, + "end": 6352.74, + "probability": 0.7886 + }, + { + "start": 6352.94, + "end": 6354.24, + "probability": 0.9086 + }, + { + "start": 6354.8, + "end": 6356.34, + "probability": 0.9823 + }, + { + "start": 6357.18, + "end": 6358.18, + "probability": 0.7285 + }, + { + "start": 6358.18, + "end": 6360.76, + "probability": 0.2777 + }, + { + "start": 6361.02, + "end": 6362.5, + "probability": 0.6005 + }, + { + "start": 6363.12, + "end": 6364.38, + "probability": 0.9612 + }, + { + "start": 6365.08, + "end": 6365.76, + "probability": 0.7051 + }, + { + "start": 6365.96, + "end": 6367.12, + "probability": 0.8265 + }, + { + "start": 6367.76, + "end": 6368.5, + "probability": 0.5267 + }, + { + "start": 6377.16, + "end": 6379.12, + "probability": 0.636 + }, + { + "start": 6379.18, + "end": 6380.28, + "probability": 0.595 + }, + { + "start": 6381.42, + "end": 6382.66, + "probability": 0.7966 + }, + { + "start": 6382.74, + "end": 6384.6, + "probability": 0.932 + }, + { + "start": 6384.86, + "end": 6387.82, + "probability": 0.9913 + }, + { + "start": 6388.52, + "end": 6392.03, + "probability": 0.9833 + }, + { + "start": 6392.22, + "end": 6393.88, + "probability": 0.5696 + }, + { + "start": 6393.92, + "end": 6394.4, + "probability": 0.8331 + }, + { + "start": 6394.58, + "end": 6396.16, + "probability": 0.7675 + }, + { + "start": 6396.6, + "end": 6399.56, + "probability": 0.9753 + }, + { + "start": 6399.92, + "end": 6402.04, + "probability": 0.9867 + }, + { + "start": 6402.08, + "end": 6405.06, + "probability": 0.918 + }, + { + "start": 6405.16, + "end": 6405.62, + "probability": 0.5434 + }, + { + "start": 6406.18, + "end": 6408.4, + "probability": 0.8867 + }, + { + "start": 6409.0, + "end": 6412.23, + "probability": 0.9075 + }, + { + "start": 6412.8, + "end": 6414.64, + "probability": 0.8327 + }, + { + "start": 6414.78, + "end": 6416.0, + "probability": 0.9893 + }, + { + "start": 6416.58, + "end": 6416.8, + "probability": 0.6864 + }, + { + "start": 6416.9, + "end": 6418.1, + "probability": 0.9494 + }, + { + "start": 6418.16, + "end": 6420.98, + "probability": 0.9873 + }, + { + "start": 6421.26, + "end": 6422.02, + "probability": 0.889 + }, + { + "start": 6422.44, + "end": 6423.74, + "probability": 0.9867 + }, + { + "start": 6424.24, + "end": 6428.34, + "probability": 0.9873 + }, + { + "start": 6428.92, + "end": 6430.34, + "probability": 0.854 + }, + { + "start": 6430.42, + "end": 6431.32, + "probability": 0.7755 + }, + { + "start": 6431.88, + "end": 6434.28, + "probability": 0.5061 + }, + { + "start": 6434.9, + "end": 6436.44, + "probability": 0.9643 + }, + { + "start": 6436.6, + "end": 6438.72, + "probability": 0.9247 + }, + { + "start": 6439.32, + "end": 6444.16, + "probability": 0.9948 + }, + { + "start": 6444.28, + "end": 6451.08, + "probability": 0.9736 + }, + { + "start": 6451.26, + "end": 6451.92, + "probability": 0.4221 + }, + { + "start": 6451.96, + "end": 6453.0, + "probability": 0.7569 + }, + { + "start": 6453.58, + "end": 6454.84, + "probability": 0.9163 + }, + { + "start": 6455.14, + "end": 6455.18, + "probability": 0.7898 + }, + { + "start": 6455.32, + "end": 6456.42, + "probability": 0.933 + }, + { + "start": 6456.6, + "end": 6458.12, + "probability": 0.9176 + }, + { + "start": 6458.34, + "end": 6461.04, + "probability": 0.8326 + }, + { + "start": 6462.04, + "end": 6463.39, + "probability": 0.9487 + }, + { + "start": 6463.96, + "end": 6465.7, + "probability": 0.9822 + }, + { + "start": 6466.32, + "end": 6470.18, + "probability": 0.9785 + }, + { + "start": 6470.18, + "end": 6474.94, + "probability": 0.9873 + }, + { + "start": 6475.4, + "end": 6475.84, + "probability": 0.8667 + }, + { + "start": 6476.4, + "end": 6477.42, + "probability": 0.8875 + }, + { + "start": 6477.66, + "end": 6478.78, + "probability": 0.8809 + }, + { + "start": 6478.84, + "end": 6481.38, + "probability": 0.8404 + }, + { + "start": 6481.38, + "end": 6483.88, + "probability": 0.8071 + }, + { + "start": 6484.48, + "end": 6489.36, + "probability": 0.8635 + }, + { + "start": 6489.86, + "end": 6494.14, + "probability": 0.9853 + }, + { + "start": 6494.54, + "end": 6495.98, + "probability": 0.9087 + }, + { + "start": 6496.54, + "end": 6499.98, + "probability": 0.9908 + }, + { + "start": 6500.08, + "end": 6503.84, + "probability": 0.982 + }, + { + "start": 6504.72, + "end": 6510.2, + "probability": 0.9487 + }, + { + "start": 6510.78, + "end": 6515.1, + "probability": 0.8228 + }, + { + "start": 6515.16, + "end": 6516.78, + "probability": 0.9448 + }, + { + "start": 6517.52, + "end": 6518.18, + "probability": 0.425 + }, + { + "start": 6518.36, + "end": 6518.85, + "probability": 0.5902 + }, + { + "start": 6519.22, + "end": 6520.2, + "probability": 0.4682 + }, + { + "start": 6520.34, + "end": 6520.4, + "probability": 0.4701 + }, + { + "start": 6520.4, + "end": 6521.4, + "probability": 0.8892 + }, + { + "start": 6521.94, + "end": 6522.92, + "probability": 0.8783 + }, + { + "start": 6523.36, + "end": 6526.46, + "probability": 0.9744 + }, + { + "start": 6526.9, + "end": 6527.49, + "probability": 0.2983 + }, + { + "start": 6528.16, + "end": 6528.92, + "probability": 0.7477 + }, + { + "start": 6529.3, + "end": 6530.52, + "probability": 0.8979 + }, + { + "start": 6530.88, + "end": 6532.04, + "probability": 0.9939 + }, + { + "start": 6532.36, + "end": 6533.3, + "probability": 0.9429 + }, + { + "start": 6533.84, + "end": 6536.34, + "probability": 0.9837 + }, + { + "start": 6536.9, + "end": 6540.1, + "probability": 0.99 + }, + { + "start": 6540.52, + "end": 6545.1, + "probability": 0.987 + }, + { + "start": 6545.5, + "end": 6545.84, + "probability": 0.7063 + }, + { + "start": 6545.88, + "end": 6546.32, + "probability": 0.1924 + }, + { + "start": 6546.34, + "end": 6546.9, + "probability": 0.9539 + }, + { + "start": 6547.0, + "end": 6547.88, + "probability": 0.8399 + }, + { + "start": 6548.4, + "end": 6551.94, + "probability": 0.0108 + }, + { + "start": 6552.06, + "end": 6553.46, + "probability": 0.7751 + }, + { + "start": 6553.54, + "end": 6554.28, + "probability": 0.8664 + }, + { + "start": 6554.76, + "end": 6557.64, + "probability": 0.803 + }, + { + "start": 6558.02, + "end": 6559.5, + "probability": 0.8548 + }, + { + "start": 6560.0, + "end": 6562.58, + "probability": 0.9555 + }, + { + "start": 6562.66, + "end": 6563.54, + "probability": 0.264 + }, + { + "start": 6563.54, + "end": 6566.0, + "probability": 0.9141 + }, + { + "start": 6567.1, + "end": 6568.56, + "probability": 0.5138 + }, + { + "start": 6568.56, + "end": 6569.32, + "probability": 0.736 + }, + { + "start": 6569.44, + "end": 6571.24, + "probability": 0.5298 + }, + { + "start": 6571.5, + "end": 6572.74, + "probability": 0.7847 + }, + { + "start": 6572.82, + "end": 6573.84, + "probability": 0.6406 + }, + { + "start": 6573.94, + "end": 6577.9, + "probability": 0.9723 + }, + { + "start": 6578.32, + "end": 6583.82, + "probability": 0.8662 + }, + { + "start": 6584.26, + "end": 6586.72, + "probability": 0.8287 + }, + { + "start": 6586.74, + "end": 6587.98, + "probability": 0.7211 + }, + { + "start": 6588.34, + "end": 6590.74, + "probability": 0.9646 + }, + { + "start": 6591.1, + "end": 6593.8, + "probability": 0.9949 + }, + { + "start": 6594.12, + "end": 6595.64, + "probability": 0.8357 + }, + { + "start": 6595.76, + "end": 6596.48, + "probability": 0.7065 + }, + { + "start": 6596.58, + "end": 6596.58, + "probability": 0.681 + }, + { + "start": 6596.9, + "end": 6598.0, + "probability": 0.9971 + }, + { + "start": 6598.08, + "end": 6599.57, + "probability": 0.9968 + }, + { + "start": 6600.32, + "end": 6601.06, + "probability": 0.8456 + }, + { + "start": 6602.0, + "end": 6604.94, + "probability": 0.9865 + }, + { + "start": 6605.4, + "end": 6606.92, + "probability": 0.9226 + }, + { + "start": 6607.46, + "end": 6612.12, + "probability": 0.9988 + }, + { + "start": 6612.24, + "end": 6616.5, + "probability": 0.9844 + }, + { + "start": 6616.82, + "end": 6619.8, + "probability": 0.9653 + }, + { + "start": 6619.94, + "end": 6620.3, + "probability": 0.6906 + }, + { + "start": 6620.88, + "end": 6621.24, + "probability": 0.3424 + }, + { + "start": 6621.36, + "end": 6623.16, + "probability": 0.9829 + }, + { + "start": 6623.22, + "end": 6624.71, + "probability": 0.9846 + }, + { + "start": 6625.02, + "end": 6626.64, + "probability": 0.9971 + }, + { + "start": 6626.64, + "end": 6627.58, + "probability": 0.9868 + }, + { + "start": 6627.64, + "end": 6627.64, + "probability": 0.9152 + }, + { + "start": 6627.64, + "end": 6627.64, + "probability": 0.1278 + }, + { + "start": 6627.7, + "end": 6629.18, + "probability": 0.6786 + }, + { + "start": 6630.04, + "end": 6631.96, + "probability": 0.7789 + }, + { + "start": 6632.24, + "end": 6636.84, + "probability": 0.8913 + }, + { + "start": 6636.92, + "end": 6637.38, + "probability": 0.7625 + }, + { + "start": 6637.38, + "end": 6637.68, + "probability": 0.0143 + }, + { + "start": 6638.06, + "end": 6639.48, + "probability": 0.9256 + }, + { + "start": 6641.3, + "end": 6643.86, + "probability": 0.4561 + }, + { + "start": 6644.08, + "end": 6644.77, + "probability": 0.9579 + }, + { + "start": 6644.94, + "end": 6646.62, + "probability": 0.8598 + }, + { + "start": 6646.68, + "end": 6648.68, + "probability": 0.9922 + }, + { + "start": 6649.26, + "end": 6650.02, + "probability": 0.3089 + }, + { + "start": 6650.02, + "end": 6651.24, + "probability": 0.8916 + }, + { + "start": 6658.5, + "end": 6661.58, + "probability": 0.6619 + }, + { + "start": 6662.82, + "end": 6666.1, + "probability": 0.9706 + }, + { + "start": 6667.08, + "end": 6668.66, + "probability": 0.8411 + }, + { + "start": 6669.86, + "end": 6670.84, + "probability": 0.8848 + }, + { + "start": 6671.1, + "end": 6674.0, + "probability": 0.7036 + }, + { + "start": 6674.7, + "end": 6675.63, + "probability": 0.9353 + }, + { + "start": 6675.96, + "end": 6677.2, + "probability": 0.8971 + }, + { + "start": 6678.1, + "end": 6681.72, + "probability": 0.8355 + }, + { + "start": 6683.2, + "end": 6684.68, + "probability": 0.7633 + }, + { + "start": 6685.0, + "end": 6688.2, + "probability": 0.9669 + }, + { + "start": 6688.6, + "end": 6688.92, + "probability": 0.4147 + }, + { + "start": 6689.9, + "end": 6690.06, + "probability": 0.1199 + }, + { + "start": 6690.06, + "end": 6690.18, + "probability": 0.0475 + }, + { + "start": 6690.62, + "end": 6693.82, + "probability": 0.9668 + }, + { + "start": 6694.56, + "end": 6697.32, + "probability": 0.5642 + }, + { + "start": 6697.9, + "end": 6701.3, + "probability": 0.8179 + }, + { + "start": 6701.76, + "end": 6702.8, + "probability": 0.8801 + }, + { + "start": 6703.34, + "end": 6704.12, + "probability": 0.5491 + }, + { + "start": 6704.72, + "end": 6706.47, + "probability": 0.7239 + }, + { + "start": 6706.74, + "end": 6707.56, + "probability": 0.9318 + }, + { + "start": 6707.64, + "end": 6708.34, + "probability": 0.6775 + }, + { + "start": 6708.34, + "end": 6709.58, + "probability": 0.7291 + }, + { + "start": 6709.66, + "end": 6710.58, + "probability": 0.8233 + }, + { + "start": 6711.38, + "end": 6712.6, + "probability": 0.68 + }, + { + "start": 6713.16, + "end": 6717.34, + "probability": 0.5618 + }, + { + "start": 6719.34, + "end": 6720.14, + "probability": 0.3351 + }, + { + "start": 6720.38, + "end": 6721.32, + "probability": 0.3497 + }, + { + "start": 6722.22, + "end": 6722.22, + "probability": 0.0406 + }, + { + "start": 6723.0, + "end": 6723.18, + "probability": 0.0225 + }, + { + "start": 6723.18, + "end": 6723.72, + "probability": 0.0864 + }, + { + "start": 6723.82, + "end": 6724.5, + "probability": 0.2796 + }, + { + "start": 6724.96, + "end": 6726.16, + "probability": 0.7238 + }, + { + "start": 6726.22, + "end": 6727.66, + "probability": 0.8658 + }, + { + "start": 6727.94, + "end": 6730.06, + "probability": 0.8851 + }, + { + "start": 6730.14, + "end": 6731.1, + "probability": 0.2121 + }, + { + "start": 6731.14, + "end": 6732.68, + "probability": 0.9088 + }, + { + "start": 6732.68, + "end": 6736.14, + "probability": 0.6838 + }, + { + "start": 6738.12, + "end": 6739.78, + "probability": 0.7238 + }, + { + "start": 6741.52, + "end": 6742.08, + "probability": 0.7265 + }, + { + "start": 6743.06, + "end": 6745.1, + "probability": 0.8145 + }, + { + "start": 6745.38, + "end": 6746.76, + "probability": 0.9709 + }, + { + "start": 6747.6, + "end": 6752.74, + "probability": 0.7732 + }, + { + "start": 6753.16, + "end": 6753.6, + "probability": 0.4084 + }, + { + "start": 6753.76, + "end": 6754.2, + "probability": 0.6657 + }, + { + "start": 6754.4, + "end": 6755.22, + "probability": 0.3245 + }, + { + "start": 6755.26, + "end": 6757.92, + "probability": 0.6301 + }, + { + "start": 6759.58, + "end": 6763.38, + "probability": 0.7733 + }, + { + "start": 6764.5, + "end": 6767.88, + "probability": 0.6746 + }, + { + "start": 6768.02, + "end": 6768.84, + "probability": 0.608 + }, + { + "start": 6769.3, + "end": 6770.3, + "probability": 0.9572 + }, + { + "start": 6770.38, + "end": 6771.58, + "probability": 0.6353 + }, + { + "start": 6772.3, + "end": 6773.66, + "probability": 0.9516 + }, + { + "start": 6774.48, + "end": 6774.84, + "probability": 0.2001 + }, + { + "start": 6775.2, + "end": 6778.34, + "probability": 0.853 + }, + { + "start": 6779.28, + "end": 6779.76, + "probability": 0.9484 + }, + { + "start": 6779.84, + "end": 6784.02, + "probability": 0.9675 + }, + { + "start": 6784.42, + "end": 6786.87, + "probability": 0.9165 + }, + { + "start": 6787.6, + "end": 6790.5, + "probability": 0.9917 + }, + { + "start": 6790.5, + "end": 6792.86, + "probability": 0.9756 + }, + { + "start": 6792.96, + "end": 6793.83, + "probability": 0.5351 + }, + { + "start": 6794.2, + "end": 6798.58, + "probability": 0.9705 + }, + { + "start": 6799.36, + "end": 6802.06, + "probability": 0.7275 + }, + { + "start": 6802.58, + "end": 6802.58, + "probability": 0.1317 + }, + { + "start": 6802.58, + "end": 6802.58, + "probability": 0.3848 + }, + { + "start": 6802.58, + "end": 6806.44, + "probability": 0.9384 + }, + { + "start": 6807.62, + "end": 6810.74, + "probability": 0.9373 + }, + { + "start": 6810.74, + "end": 6814.02, + "probability": 0.9616 + }, + { + "start": 6814.02, + "end": 6817.9, + "probability": 0.8289 + }, + { + "start": 6817.9, + "end": 6820.12, + "probability": 0.8285 + }, + { + "start": 6820.18, + "end": 6821.78, + "probability": 0.9882 + }, + { + "start": 6822.26, + "end": 6822.99, + "probability": 0.7115 + }, + { + "start": 6823.14, + "end": 6824.52, + "probability": 0.6378 + }, + { + "start": 6824.94, + "end": 6826.62, + "probability": 0.7959 + }, + { + "start": 6827.28, + "end": 6827.88, + "probability": 0.9294 + }, + { + "start": 6828.4, + "end": 6831.72, + "probability": 0.7515 + }, + { + "start": 6832.26, + "end": 6832.85, + "probability": 0.5115 + }, + { + "start": 6833.46, + "end": 6839.38, + "probability": 0.9899 + }, + { + "start": 6839.38, + "end": 6842.16, + "probability": 0.7442 + }, + { + "start": 6842.2, + "end": 6843.44, + "probability": 0.7994 + }, + { + "start": 6845.7, + "end": 6849.64, + "probability": 0.6172 + }, + { + "start": 6849.64, + "end": 6852.78, + "probability": 0.9863 + }, + { + "start": 6853.2, + "end": 6854.8, + "probability": 0.5424 + }, + { + "start": 6854.88, + "end": 6858.04, + "probability": 0.8275 + }, + { + "start": 6858.66, + "end": 6858.66, + "probability": 0.0689 + }, + { + "start": 6858.66, + "end": 6862.86, + "probability": 0.8321 + }, + { + "start": 6863.62, + "end": 6867.12, + "probability": 0.9373 + }, + { + "start": 6867.2, + "end": 6871.56, + "probability": 0.8579 + }, + { + "start": 6871.88, + "end": 6873.23, + "probability": 0.6004 + }, + { + "start": 6874.82, + "end": 6876.9, + "probability": 0.7214 + }, + { + "start": 6877.52, + "end": 6878.94, + "probability": 0.7603 + }, + { + "start": 6879.24, + "end": 6881.34, + "probability": 0.9925 + }, + { + "start": 6882.36, + "end": 6884.9, + "probability": 0.6832 + }, + { + "start": 6885.24, + "end": 6888.22, + "probability": 0.5253 + }, + { + "start": 6889.15, + "end": 6891.9, + "probability": 0.8095 + }, + { + "start": 6892.02, + "end": 6892.98, + "probability": 0.5019 + }, + { + "start": 6893.02, + "end": 6894.38, + "probability": 0.5529 + }, + { + "start": 6894.38, + "end": 6894.74, + "probability": 0.0269 + }, + { + "start": 6894.78, + "end": 6896.1, + "probability": 0.7425 + }, + { + "start": 6896.38, + "end": 6896.98, + "probability": 0.529 + }, + { + "start": 6896.98, + "end": 6898.22, + "probability": 0.6587 + }, + { + "start": 6899.06, + "end": 6900.26, + "probability": 0.2771 + }, + { + "start": 6900.48, + "end": 6902.98, + "probability": 0.5036 + }, + { + "start": 6903.46, + "end": 6907.52, + "probability": 0.863 + }, + { + "start": 6907.82, + "end": 6909.5, + "probability": 0.5962 + }, + { + "start": 6909.7, + "end": 6910.3, + "probability": 0.1028 + }, + { + "start": 6910.3, + "end": 6915.49, + "probability": 0.9486 + }, + { + "start": 6917.3, + "end": 6917.36, + "probability": 0.2129 + }, + { + "start": 6917.36, + "end": 6919.72, + "probability": 0.8892 + }, + { + "start": 6919.92, + "end": 6920.71, + "probability": 0.9073 + }, + { + "start": 6921.46, + "end": 6922.68, + "probability": 0.6625 + }, + { + "start": 6922.68, + "end": 6922.98, + "probability": 0.0347 + }, + { + "start": 6923.0, + "end": 6923.32, + "probability": 0.7938 + }, + { + "start": 6923.46, + "end": 6924.46, + "probability": 0.9209 + }, + { + "start": 6924.56, + "end": 6926.9, + "probability": 0.8907 + }, + { + "start": 6927.74, + "end": 6929.6, + "probability": 0.5221 + }, + { + "start": 6929.66, + "end": 6930.74, + "probability": 0.8812 + }, + { + "start": 6931.31, + "end": 6934.16, + "probability": 0.9744 + }, + { + "start": 6934.28, + "end": 6937.04, + "probability": 0.9491 + }, + { + "start": 6937.22, + "end": 6938.66, + "probability": 0.7 + }, + { + "start": 6938.76, + "end": 6940.24, + "probability": 0.874 + }, + { + "start": 6940.48, + "end": 6940.66, + "probability": 0.0692 + }, + { + "start": 6940.66, + "end": 6943.02, + "probability": 0.7751 + }, + { + "start": 6943.02, + "end": 6945.4, + "probability": 0.8422 + }, + { + "start": 6945.98, + "end": 6946.22, + "probability": 0.0299 + }, + { + "start": 6946.5, + "end": 6949.68, + "probability": 0.5903 + }, + { + "start": 6949.68, + "end": 6952.16, + "probability": 0.3449 + }, + { + "start": 6952.48, + "end": 6956.46, + "probability": 0.5668 + }, + { + "start": 6956.48, + "end": 6958.66, + "probability": 0.0117 + }, + { + "start": 6958.82, + "end": 6960.02, + "probability": 0.756 + }, + { + "start": 6960.1, + "end": 6961.62, + "probability": 0.938 + }, + { + "start": 6961.82, + "end": 6963.94, + "probability": 0.7879 + }, + { + "start": 6964.22, + "end": 6964.54, + "probability": 0.7249 + }, + { + "start": 6964.62, + "end": 6968.6, + "probability": 0.864 + }, + { + "start": 6969.18, + "end": 6970.3, + "probability": 0.9805 + }, + { + "start": 6970.7, + "end": 6972.26, + "probability": 0.9363 + }, + { + "start": 6973.06, + "end": 6976.3, + "probability": 0.9751 + }, + { + "start": 6976.44, + "end": 6978.24, + "probability": 0.6015 + }, + { + "start": 6978.76, + "end": 6984.28, + "probability": 0.9857 + }, + { + "start": 6984.36, + "end": 6986.84, + "probability": 0.444 + }, + { + "start": 6987.22, + "end": 6987.87, + "probability": 0.9823 + }, + { + "start": 6987.96, + "end": 6989.35, + "probability": 0.8565 + }, + { + "start": 6989.68, + "end": 6991.12, + "probability": 0.5651 + }, + { + "start": 6991.26, + "end": 6991.97, + "probability": 0.9571 + }, + { + "start": 6992.02, + "end": 6993.08, + "probability": 0.2705 + }, + { + "start": 6993.4, + "end": 6998.86, + "probability": 0.9839 + }, + { + "start": 6998.9, + "end": 7000.18, + "probability": 0.9832 + }, + { + "start": 7001.04, + "end": 7005.98, + "probability": 0.9069 + }, + { + "start": 7006.02, + "end": 7007.49, + "probability": 0.9746 + }, + { + "start": 7007.72, + "end": 7008.74, + "probability": 0.9593 + }, + { + "start": 7009.56, + "end": 7009.96, + "probability": 0.4475 + }, + { + "start": 7011.06, + "end": 7013.88, + "probability": 0.7886 + }, + { + "start": 7013.96, + "end": 7015.92, + "probability": 0.6521 + }, + { + "start": 7015.96, + "end": 7016.56, + "probability": 0.3056 + }, + { + "start": 7016.66, + "end": 7017.82, + "probability": 0.072 + }, + { + "start": 7017.94, + "end": 7019.96, + "probability": 0.5654 + }, + { + "start": 7020.1, + "end": 7021.48, + "probability": 0.9757 + }, + { + "start": 7021.66, + "end": 7022.62, + "probability": 0.756 + }, + { + "start": 7023.26, + "end": 7023.36, + "probability": 0.0045 + }, + { + "start": 7023.42, + "end": 7027.7, + "probability": 0.854 + }, + { + "start": 7027.94, + "end": 7029.06, + "probability": 0.7422 + }, + { + "start": 7029.16, + "end": 7030.16, + "probability": 0.1421 + }, + { + "start": 7030.83, + "end": 7032.54, + "probability": 0.3936 + }, + { + "start": 7032.68, + "end": 7033.04, + "probability": 0.1562 + }, + { + "start": 7033.04, + "end": 7033.66, + "probability": 0.8439 + }, + { + "start": 7034.28, + "end": 7039.9, + "probability": 0.7154 + }, + { + "start": 7040.5, + "end": 7043.73, + "probability": 0.9189 + }, + { + "start": 7044.18, + "end": 7044.66, + "probability": 0.8252 + }, + { + "start": 7045.2, + "end": 7046.16, + "probability": 0.8426 + }, + { + "start": 7046.2, + "end": 7046.42, + "probability": 0.7104 + }, + { + "start": 7046.54, + "end": 7049.96, + "probability": 0.8226 + }, + { + "start": 7050.54, + "end": 7051.78, + "probability": 0.7079 + }, + { + "start": 7051.9, + "end": 7055.24, + "probability": 0.7311 + }, + { + "start": 7055.86, + "end": 7059.2, + "probability": 0.9409 + }, + { + "start": 7059.44, + "end": 7059.95, + "probability": 0.9023 + }, + { + "start": 7060.56, + "end": 7062.44, + "probability": 0.9092 + }, + { + "start": 7062.94, + "end": 7063.46, + "probability": 0.8854 + }, + { + "start": 7064.18, + "end": 7067.34, + "probability": 0.9775 + }, + { + "start": 7067.46, + "end": 7068.06, + "probability": 0.9827 + }, + { + "start": 7068.66, + "end": 7069.24, + "probability": 0.2507 + }, + { + "start": 7069.24, + "end": 7070.3, + "probability": 0.8575 + }, + { + "start": 7070.4, + "end": 7073.36, + "probability": 0.9302 + }, + { + "start": 7074.54, + "end": 7075.62, + "probability": 0.1102 + }, + { + "start": 7076.84, + "end": 7081.42, + "probability": 0.8123 + }, + { + "start": 7081.54, + "end": 7083.08, + "probability": 0.9626 + }, + { + "start": 7083.74, + "end": 7084.8, + "probability": 0.0141 + }, + { + "start": 7085.1, + "end": 7087.36, + "probability": 0.9478 + }, + { + "start": 7088.08, + "end": 7089.56, + "probability": 0.7915 + }, + { + "start": 7089.68, + "end": 7091.46, + "probability": 0.9278 + }, + { + "start": 7091.52, + "end": 7092.18, + "probability": 0.5389 + }, + { + "start": 7092.18, + "end": 7092.44, + "probability": 0.0236 + }, + { + "start": 7092.62, + "end": 7094.07, + "probability": 0.8362 + }, + { + "start": 7095.35, + "end": 7098.46, + "probability": 0.8247 + }, + { + "start": 7098.62, + "end": 7106.68, + "probability": 0.8322 + }, + { + "start": 7106.68, + "end": 7110.18, + "probability": 0.5651 + }, + { + "start": 7110.7, + "end": 7111.16, + "probability": 0.144 + }, + { + "start": 7111.32, + "end": 7112.55, + "probability": 0.983 + }, + { + "start": 7113.02, + "end": 7116.12, + "probability": 0.9753 + }, + { + "start": 7116.34, + "end": 7119.26, + "probability": 0.7561 + }, + { + "start": 7120.56, + "end": 7120.56, + "probability": 0.1369 + }, + { + "start": 7120.56, + "end": 7121.24, + "probability": 0.8391 + }, + { + "start": 7121.62, + "end": 7123.24, + "probability": 0.9122 + }, + { + "start": 7123.82, + "end": 7124.04, + "probability": 0.7006 + }, + { + "start": 7124.04, + "end": 7125.1, + "probability": 0.4082 + }, + { + "start": 7125.2, + "end": 7126.39, + "probability": 0.9832 + }, + { + "start": 7126.78, + "end": 7126.92, + "probability": 0.7739 + }, + { + "start": 7127.14, + "end": 7134.18, + "probability": 0.8481 + }, + { + "start": 7134.46, + "end": 7136.33, + "probability": 0.2333 + }, + { + "start": 7137.18, + "end": 7140.26, + "probability": 0.7002 + }, + { + "start": 7140.36, + "end": 7141.72, + "probability": 0.0751 + }, + { + "start": 7142.28, + "end": 7145.24, + "probability": 0.9978 + }, + { + "start": 7145.56, + "end": 7147.38, + "probability": 0.6672 + }, + { + "start": 7147.94, + "end": 7149.64, + "probability": 0.8402 + }, + { + "start": 7150.02, + "end": 7151.76, + "probability": 0.7479 + }, + { + "start": 7151.8, + "end": 7153.44, + "probability": 0.9407 + }, + { + "start": 7153.68, + "end": 7156.22, + "probability": 0.6489 + }, + { + "start": 7156.26, + "end": 7157.88, + "probability": 0.4917 + }, + { + "start": 7157.98, + "end": 7161.94, + "probability": 0.9879 + }, + { + "start": 7162.06, + "end": 7163.02, + "probability": 0.9746 + }, + { + "start": 7163.3, + "end": 7164.66, + "probability": 0.7038 + }, + { + "start": 7164.84, + "end": 7164.84, + "probability": 0.0454 + }, + { + "start": 7164.84, + "end": 7168.02, + "probability": 0.9175 + }, + { + "start": 7168.12, + "end": 7168.66, + "probability": 0.6662 + }, + { + "start": 7168.66, + "end": 7169.3, + "probability": 0.4145 + }, + { + "start": 7169.3, + "end": 7170.16, + "probability": 0.0936 + }, + { + "start": 7170.2, + "end": 7171.54, + "probability": 0.1061 + }, + { + "start": 7172.54, + "end": 7174.42, + "probability": 0.3526 + }, + { + "start": 7174.42, + "end": 7174.42, + "probability": 0.1639 + }, + { + "start": 7174.42, + "end": 7175.12, + "probability": 0.312 + }, + { + "start": 7175.46, + "end": 7176.36, + "probability": 0.4642 + }, + { + "start": 7176.58, + "end": 7177.02, + "probability": 0.1839 + }, + { + "start": 7177.5, + "end": 7180.84, + "probability": 0.9396 + }, + { + "start": 7180.84, + "end": 7184.14, + "probability": 0.3635 + }, + { + "start": 7184.28, + "end": 7185.06, + "probability": 0.558 + }, + { + "start": 7185.58, + "end": 7186.94, + "probability": 0.6606 + }, + { + "start": 7187.68, + "end": 7188.34, + "probability": 0.4631 + }, + { + "start": 7189.38, + "end": 7189.88, + "probability": 0.307 + }, + { + "start": 7201.62, + "end": 7207.44, + "probability": 0.5111 + }, + { + "start": 7207.44, + "end": 7210.09, + "probability": 0.9456 + }, + { + "start": 7210.24, + "end": 7211.66, + "probability": 0.4541 + }, + { + "start": 7211.66, + "end": 7217.0, + "probability": 0.8247 + }, + { + "start": 7217.28, + "end": 7218.44, + "probability": 0.6785 + }, + { + "start": 7218.63, + "end": 7220.04, + "probability": 0.0742 + }, + { + "start": 7220.04, + "end": 7220.7, + "probability": 0.016 + }, + { + "start": 7220.7, + "end": 7220.94, + "probability": 0.0704 + }, + { + "start": 7220.94, + "end": 7221.32, + "probability": 0.2797 + }, + { + "start": 7222.68, + "end": 7223.86, + "probability": 0.184 + }, + { + "start": 7225.06, + "end": 7227.0, + "probability": 0.1263 + }, + { + "start": 7227.0, + "end": 7227.12, + "probability": 0.0936 + }, + { + "start": 7227.12, + "end": 7230.56, + "probability": 0.6061 + }, + { + "start": 7231.6, + "end": 7233.6, + "probability": 0.8835 + }, + { + "start": 7233.94, + "end": 7234.74, + "probability": 0.7875 + }, + { + "start": 7243.98, + "end": 7246.98, + "probability": 0.6288 + }, + { + "start": 7247.22, + "end": 7248.22, + "probability": 0.7873 + }, + { + "start": 7248.44, + "end": 7252.44, + "probability": 0.98 + }, + { + "start": 7252.44, + "end": 7254.0, + "probability": 0.9565 + }, + { + "start": 7254.24, + "end": 7255.3, + "probability": 0.9813 + }, + { + "start": 7256.04, + "end": 7257.88, + "probability": 0.8464 + }, + { + "start": 7258.82, + "end": 7261.98, + "probability": 0.9772 + }, + { + "start": 7262.2, + "end": 7269.14, + "probability": 0.9449 + }, + { + "start": 7269.84, + "end": 7273.78, + "probability": 0.7892 + }, + { + "start": 7273.98, + "end": 7275.08, + "probability": 0.9737 + }, + { + "start": 7275.82, + "end": 7277.38, + "probability": 0.8601 + }, + { + "start": 7277.4, + "end": 7281.05, + "probability": 0.9951 + }, + { + "start": 7281.68, + "end": 7282.08, + "probability": 0.729 + }, + { + "start": 7283.06, + "end": 7283.55, + "probability": 0.5004 + }, + { + "start": 7283.68, + "end": 7285.26, + "probability": 0.8726 + }, + { + "start": 7285.78, + "end": 7287.2, + "probability": 0.949 + }, + { + "start": 7288.26, + "end": 7293.3, + "probability": 0.964 + }, + { + "start": 7294.8, + "end": 7296.3, + "probability": 0.9899 + }, + { + "start": 7296.84, + "end": 7302.06, + "probability": 0.9691 + }, + { + "start": 7302.88, + "end": 7304.62, + "probability": 0.9173 + }, + { + "start": 7305.28, + "end": 7310.4, + "probability": 0.9867 + }, + { + "start": 7310.54, + "end": 7311.66, + "probability": 0.5251 + }, + { + "start": 7312.6, + "end": 7313.74, + "probability": 0.8293 + }, + { + "start": 7313.84, + "end": 7316.84, + "probability": 0.8054 + }, + { + "start": 7317.92, + "end": 7320.94, + "probability": 0.995 + }, + { + "start": 7321.5, + "end": 7324.54, + "probability": 0.9698 + }, + { + "start": 7326.1, + "end": 7330.52, + "probability": 0.9707 + }, + { + "start": 7331.64, + "end": 7335.34, + "probability": 0.9934 + }, + { + "start": 7336.7, + "end": 7344.22, + "probability": 0.9897 + }, + { + "start": 7344.88, + "end": 7348.1, + "probability": 0.9741 + }, + { + "start": 7348.68, + "end": 7352.64, + "probability": 0.9714 + }, + { + "start": 7354.55, + "end": 7357.82, + "probability": 0.6616 + }, + { + "start": 7358.98, + "end": 7361.74, + "probability": 0.97 + }, + { + "start": 7362.06, + "end": 7365.76, + "probability": 0.9949 + }, + { + "start": 7366.5, + "end": 7368.26, + "probability": 0.987 + }, + { + "start": 7368.58, + "end": 7371.44, + "probability": 0.9924 + }, + { + "start": 7371.56, + "end": 7373.01, + "probability": 0.9062 + }, + { + "start": 7373.54, + "end": 7374.86, + "probability": 0.9692 + }, + { + "start": 7375.4, + "end": 7377.0, + "probability": 0.9443 + }, + { + "start": 7378.54, + "end": 7380.24, + "probability": 0.9866 + }, + { + "start": 7381.2, + "end": 7384.78, + "probability": 0.9844 + }, + { + "start": 7385.24, + "end": 7388.9, + "probability": 0.9874 + }, + { + "start": 7389.96, + "end": 7393.5, + "probability": 0.6747 + }, + { + "start": 7393.5, + "end": 7395.46, + "probability": 0.8307 + }, + { + "start": 7395.5, + "end": 7396.7, + "probability": 0.5036 + }, + { + "start": 7397.62, + "end": 7400.94, + "probability": 0.9641 + }, + { + "start": 7401.02, + "end": 7402.34, + "probability": 0.9466 + }, + { + "start": 7403.1, + "end": 7406.0, + "probability": 0.9972 + }, + { + "start": 7406.98, + "end": 7410.02, + "probability": 0.8388 + }, + { + "start": 7411.6, + "end": 7413.2, + "probability": 0.9941 + }, + { + "start": 7414.34, + "end": 7417.74, + "probability": 0.9943 + }, + { + "start": 7417.86, + "end": 7418.98, + "probability": 0.7003 + }, + { + "start": 7422.16, + "end": 7426.0, + "probability": 0.9944 + }, + { + "start": 7426.34, + "end": 7429.1, + "probability": 0.989 + }, + { + "start": 7430.24, + "end": 7430.6, + "probability": 0.7736 + }, + { + "start": 7431.18, + "end": 7433.08, + "probability": 0.9405 + }, + { + "start": 7433.2, + "end": 7434.48, + "probability": 0.8884 + }, + { + "start": 7434.96, + "end": 7439.86, + "probability": 0.9928 + }, + { + "start": 7440.82, + "end": 7446.42, + "probability": 0.9478 + }, + { + "start": 7446.96, + "end": 7449.16, + "probability": 0.9976 + }, + { + "start": 7449.26, + "end": 7453.0, + "probability": 0.9928 + }, + { + "start": 7453.76, + "end": 7460.36, + "probability": 0.9431 + }, + { + "start": 7461.02, + "end": 7462.12, + "probability": 0.7435 + }, + { + "start": 7462.56, + "end": 7464.82, + "probability": 0.9854 + }, + { + "start": 7464.92, + "end": 7467.74, + "probability": 0.9666 + }, + { + "start": 7468.24, + "end": 7469.42, + "probability": 0.9796 + }, + { + "start": 7469.72, + "end": 7472.72, + "probability": 0.9155 + }, + { + "start": 7472.78, + "end": 7476.34, + "probability": 0.9988 + }, + { + "start": 7476.96, + "end": 7478.1, + "probability": 0.8096 + }, + { + "start": 7478.86, + "end": 7479.1, + "probability": 0.7258 + }, + { + "start": 7479.18, + "end": 7480.72, + "probability": 0.8919 + }, + { + "start": 7481.2, + "end": 7483.38, + "probability": 0.9827 + }, + { + "start": 7484.96, + "end": 7487.62, + "probability": 0.9502 + }, + { + "start": 7487.62, + "end": 7491.12, + "probability": 0.99 + }, + { + "start": 7491.78, + "end": 7492.94, + "probability": 0.7047 + }, + { + "start": 7493.88, + "end": 7496.76, + "probability": 0.7461 + }, + { + "start": 7497.66, + "end": 7501.58, + "probability": 0.9683 + }, + { + "start": 7502.46, + "end": 7505.62, + "probability": 0.9778 + }, + { + "start": 7506.3, + "end": 7508.76, + "probability": 0.9834 + }, + { + "start": 7508.84, + "end": 7514.16, + "probability": 0.9406 + }, + { + "start": 7514.46, + "end": 7516.1, + "probability": 0.8734 + }, + { + "start": 7516.42, + "end": 7518.3, + "probability": 0.8538 + }, + { + "start": 7519.38, + "end": 7520.66, + "probability": 0.8893 + }, + { + "start": 7521.36, + "end": 7524.72, + "probability": 0.9849 + }, + { + "start": 7525.24, + "end": 7528.02, + "probability": 0.9654 + }, + { + "start": 7528.54, + "end": 7530.28, + "probability": 0.8113 + }, + { + "start": 7530.88, + "end": 7532.84, + "probability": 0.9626 + }, + { + "start": 7533.3, + "end": 7536.69, + "probability": 0.9976 + }, + { + "start": 7538.2, + "end": 7541.02, + "probability": 0.9525 + }, + { + "start": 7542.48, + "end": 7546.08, + "probability": 0.9944 + }, + { + "start": 7546.5, + "end": 7547.82, + "probability": 0.5927 + }, + { + "start": 7548.0, + "end": 7549.3, + "probability": 0.8972 + }, + { + "start": 7550.0, + "end": 7552.5, + "probability": 0.9787 + }, + { + "start": 7552.5, + "end": 7556.5, + "probability": 0.9951 + }, + { + "start": 7557.52, + "end": 7559.28, + "probability": 0.6935 + }, + { + "start": 7559.48, + "end": 7559.86, + "probability": 0.6466 + }, + { + "start": 7560.02, + "end": 7563.06, + "probability": 0.884 + }, + { + "start": 7563.36, + "end": 7563.36, + "probability": 0.1506 + }, + { + "start": 7563.36, + "end": 7565.66, + "probability": 0.7176 + }, + { + "start": 7566.14, + "end": 7567.78, + "probability": 0.5533 + }, + { + "start": 7568.22, + "end": 7568.86, + "probability": 0.5048 + }, + { + "start": 7569.28, + "end": 7571.12, + "probability": 0.6838 + }, + { + "start": 7571.38, + "end": 7572.45, + "probability": 0.7082 + }, + { + "start": 7572.52, + "end": 7576.66, + "probability": 0.6171 + }, + { + "start": 7576.66, + "end": 7580.22, + "probability": 0.4676 + }, + { + "start": 7580.72, + "end": 7582.02, + "probability": 0.6575 + }, + { + "start": 7582.4, + "end": 7583.12, + "probability": 0.7908 + }, + { + "start": 7583.58, + "end": 7586.48, + "probability": 0.9521 + }, + { + "start": 7586.65, + "end": 7590.1, + "probability": 0.9443 + }, + { + "start": 7590.1, + "end": 7592.74, + "probability": 0.8358 + }, + { + "start": 7596.88, + "end": 7599.46, + "probability": 0.8056 + }, + { + "start": 7600.48, + "end": 7602.51, + "probability": 0.9799 + }, + { + "start": 7603.18, + "end": 7603.64, + "probability": 0.9726 + }, + { + "start": 7604.46, + "end": 7605.12, + "probability": 0.9603 + }, + { + "start": 7605.92, + "end": 7608.36, + "probability": 0.9406 + }, + { + "start": 7609.66, + "end": 7611.66, + "probability": 0.8572 + }, + { + "start": 7612.58, + "end": 7613.8, + "probability": 0.7731 + }, + { + "start": 7613.96, + "end": 7620.28, + "probability": 0.9873 + }, + { + "start": 7620.46, + "end": 7621.68, + "probability": 0.9951 + }, + { + "start": 7622.68, + "end": 7624.24, + "probability": 0.9133 + }, + { + "start": 7625.12, + "end": 7626.1, + "probability": 0.9599 + }, + { + "start": 7626.9, + "end": 7630.64, + "probability": 0.9196 + }, + { + "start": 7631.52, + "end": 7633.12, + "probability": 0.6182 + }, + { + "start": 7633.96, + "end": 7636.56, + "probability": 0.8694 + }, + { + "start": 7638.02, + "end": 7640.12, + "probability": 0.9253 + }, + { + "start": 7640.16, + "end": 7640.86, + "probability": 0.9106 + }, + { + "start": 7640.98, + "end": 7641.74, + "probability": 0.9231 + }, + { + "start": 7642.24, + "end": 7642.9, + "probability": 0.9679 + }, + { + "start": 7643.22, + "end": 7644.38, + "probability": 0.5015 + }, + { + "start": 7644.88, + "end": 7645.54, + "probability": 0.9771 + }, + { + "start": 7645.84, + "end": 7646.92, + "probability": 0.9029 + }, + { + "start": 7648.98, + "end": 7652.76, + "probability": 0.9622 + }, + { + "start": 7653.46, + "end": 7654.62, + "probability": 0.8689 + }, + { + "start": 7655.5, + "end": 7656.44, + "probability": 0.4463 + }, + { + "start": 7656.98, + "end": 7657.98, + "probability": 0.7488 + }, + { + "start": 7658.4, + "end": 7663.1, + "probability": 0.9832 + }, + { + "start": 7663.3, + "end": 7664.96, + "probability": 0.9636 + }, + { + "start": 7666.08, + "end": 7669.4, + "probability": 0.9187 + }, + { + "start": 7669.5, + "end": 7674.38, + "probability": 0.9992 + }, + { + "start": 7674.38, + "end": 7678.22, + "probability": 0.9984 + }, + { + "start": 7679.04, + "end": 7683.68, + "probability": 0.9987 + }, + { + "start": 7684.38, + "end": 7686.9, + "probability": 0.4986 + }, + { + "start": 7687.46, + "end": 7691.0, + "probability": 0.9287 + }, + { + "start": 7691.42, + "end": 7692.76, + "probability": 0.9944 + }, + { + "start": 7693.34, + "end": 7696.44, + "probability": 0.9583 + }, + { + "start": 7697.06, + "end": 7698.08, + "probability": 0.9575 + }, + { + "start": 7698.66, + "end": 7699.69, + "probability": 0.9878 + }, + { + "start": 7700.7, + "end": 7704.12, + "probability": 0.97 + }, + { + "start": 7704.72, + "end": 7707.46, + "probability": 0.738 + }, + { + "start": 7708.38, + "end": 7711.5, + "probability": 0.9393 + }, + { + "start": 7712.16, + "end": 7713.72, + "probability": 0.8731 + }, + { + "start": 7714.34, + "end": 7716.5, + "probability": 0.9917 + }, + { + "start": 7716.96, + "end": 7718.96, + "probability": 0.9871 + }, + { + "start": 7721.0, + "end": 7725.52, + "probability": 0.9072 + }, + { + "start": 7726.5, + "end": 7727.22, + "probability": 0.449 + }, + { + "start": 7728.06, + "end": 7730.82, + "probability": 0.908 + }, + { + "start": 7731.44, + "end": 7734.2, + "probability": 0.7426 + }, + { + "start": 7734.68, + "end": 7737.3, + "probability": 0.147 + }, + { + "start": 7737.42, + "end": 7740.78, + "probability": 0.8357 + }, + { + "start": 7741.92, + "end": 7743.28, + "probability": 0.8295 + }, + { + "start": 7744.3, + "end": 7744.3, + "probability": 0.0332 + }, + { + "start": 7744.3, + "end": 7746.16, + "probability": 0.3219 + }, + { + "start": 7747.08, + "end": 7748.78, + "probability": 0.9513 + }, + { + "start": 7749.5, + "end": 7751.22, + "probability": 0.9065 + }, + { + "start": 7751.44, + "end": 7753.8, + "probability": 0.3877 + }, + { + "start": 7754.14, + "end": 7756.06, + "probability": 0.9757 + }, + { + "start": 7756.82, + "end": 7760.4, + "probability": 0.9967 + }, + { + "start": 7760.4, + "end": 7763.46, + "probability": 0.9749 + }, + { + "start": 7763.6, + "end": 7767.68, + "probability": 0.6489 + }, + { + "start": 7768.06, + "end": 7770.14, + "probability": 0.9932 + }, + { + "start": 7770.58, + "end": 7772.24, + "probability": 0.9971 + }, + { + "start": 7773.8, + "end": 7774.8, + "probability": 0.1622 + }, + { + "start": 7774.8, + "end": 7775.52, + "probability": 0.0087 + }, + { + "start": 7775.58, + "end": 7779.42, + "probability": 0.5391 + }, + { + "start": 7779.64, + "end": 7779.92, + "probability": 0.3139 + }, + { + "start": 7780.26, + "end": 7780.58, + "probability": 0.8364 + }, + { + "start": 7781.36, + "end": 7781.82, + "probability": 0.9744 + }, + { + "start": 7781.98, + "end": 7785.64, + "probability": 0.6729 + }, + { + "start": 7786.74, + "end": 7787.78, + "probability": 0.0625 + }, + { + "start": 7787.94, + "end": 7788.54, + "probability": 0.0472 + }, + { + "start": 7788.66, + "end": 7789.6, + "probability": 0.4316 + }, + { + "start": 7789.74, + "end": 7791.1, + "probability": 0.9213 + }, + { + "start": 7791.2, + "end": 7792.6, + "probability": 0.715 + }, + { + "start": 7792.84, + "end": 7794.8, + "probability": 0.9543 + }, + { + "start": 7794.8, + "end": 7796.72, + "probability": 0.8899 + }, + { + "start": 7796.78, + "end": 7800.7, + "probability": 0.9459 + }, + { + "start": 7801.94, + "end": 7804.06, + "probability": 0.7613 + }, + { + "start": 7804.06, + "end": 7807.56, + "probability": 0.5853 + }, + { + "start": 7808.78, + "end": 7812.14, + "probability": 0.5655 + }, + { + "start": 7812.2, + "end": 7814.88, + "probability": 0.8275 + }, + { + "start": 7814.88, + "end": 7817.16, + "probability": 0.7643 + }, + { + "start": 7817.24, + "end": 7820.7, + "probability": 0.7722 + }, + { + "start": 7821.42, + "end": 7821.88, + "probability": 0.6365 + }, + { + "start": 7822.68, + "end": 7824.6, + "probability": 0.6559 + }, + { + "start": 7824.6, + "end": 7826.62, + "probability": 0.715 + }, + { + "start": 7826.9, + "end": 7827.42, + "probability": 0.5667 + }, + { + "start": 7828.12, + "end": 7829.84, + "probability": 0.6658 + }, + { + "start": 7830.26, + "end": 7831.5, + "probability": 0.8136 + }, + { + "start": 7833.06, + "end": 7833.36, + "probability": 0.8374 + }, + { + "start": 7833.48, + "end": 7836.08, + "probability": 0.9683 + }, + { + "start": 7836.96, + "end": 7839.32, + "probability": 0.6511 + }, + { + "start": 7840.04, + "end": 7841.36, + "probability": 0.5573 + }, + { + "start": 7841.68, + "end": 7842.44, + "probability": 0.7802 + }, + { + "start": 7843.14, + "end": 7847.52, + "probability": 0.8903 + }, + { + "start": 7847.84, + "end": 7848.26, + "probability": 0.797 + }, + { + "start": 7848.62, + "end": 7851.91, + "probability": 0.9895 + }, + { + "start": 7853.06, + "end": 7853.8, + "probability": 0.6926 + }, + { + "start": 7853.8, + "end": 7855.48, + "probability": 0.1196 + }, + { + "start": 7856.14, + "end": 7858.52, + "probability": 0.8955 + }, + { + "start": 7858.8, + "end": 7861.19, + "probability": 0.0305 + }, + { + "start": 7861.86, + "end": 7863.68, + "probability": 0.2552 + }, + { + "start": 7866.03, + "end": 7866.4, + "probability": 0.0426 + }, + { + "start": 7866.4, + "end": 7867.6, + "probability": 0.1663 + }, + { + "start": 7867.66, + "end": 7867.9, + "probability": 0.0626 + }, + { + "start": 7867.9, + "end": 7872.7, + "probability": 0.9814 + }, + { + "start": 7873.12, + "end": 7873.36, + "probability": 0.0459 + }, + { + "start": 7873.52, + "end": 7876.92, + "probability": 0.873 + }, + { + "start": 7877.34, + "end": 7878.64, + "probability": 0.6731 + }, + { + "start": 7878.7, + "end": 7880.1, + "probability": 0.7472 + }, + { + "start": 7880.32, + "end": 7883.66, + "probability": 0.6976 + }, + { + "start": 7884.3, + "end": 7884.96, + "probability": 0.4929 + }, + { + "start": 7884.96, + "end": 7887.28, + "probability": 0.9197 + }, + { + "start": 7888.36, + "end": 7889.02, + "probability": 0.0815 + }, + { + "start": 7889.08, + "end": 7889.08, + "probability": 0.1335 + }, + { + "start": 7889.08, + "end": 7889.68, + "probability": 0.6351 + }, + { + "start": 7889.78, + "end": 7890.78, + "probability": 0.7429 + }, + { + "start": 7890.86, + "end": 7894.66, + "probability": 0.9434 + }, + { + "start": 7895.44, + "end": 7897.28, + "probability": 0.7433 + }, + { + "start": 7897.3, + "end": 7899.28, + "probability": 0.8564 + }, + { + "start": 7899.34, + "end": 7901.2, + "probability": 0.7903 + }, + { + "start": 7901.28, + "end": 7902.36, + "probability": 0.9738 + }, + { + "start": 7902.56, + "end": 7903.0, + "probability": 0.6708 + }, + { + "start": 7903.18, + "end": 7904.06, + "probability": 0.4855 + }, + { + "start": 7904.06, + "end": 7906.4, + "probability": 0.5311 + }, + { + "start": 7906.72, + "end": 7907.26, + "probability": 0.2669 + }, + { + "start": 7908.26, + "end": 7909.34, + "probability": 0.5195 + }, + { + "start": 7909.86, + "end": 7912.62, + "probability": 0.921 + }, + { + "start": 7912.64, + "end": 7913.34, + "probability": 0.5086 + }, + { + "start": 7914.08, + "end": 7915.42, + "probability": 0.3354 + }, + { + "start": 7915.96, + "end": 7918.08, + "probability": 0.9877 + }, + { + "start": 7918.08, + "end": 7920.9, + "probability": 0.553 + }, + { + "start": 7921.02, + "end": 7923.72, + "probability": 0.6914 + }, + { + "start": 7923.92, + "end": 7927.1, + "probability": 0.8587 + }, + { + "start": 7927.4, + "end": 7931.88, + "probability": 0.9078 + }, + { + "start": 7932.96, + "end": 7933.64, + "probability": 0.4852 + }, + { + "start": 7933.74, + "end": 7935.28, + "probability": 0.9888 + }, + { + "start": 7935.92, + "end": 7937.5, + "probability": 0.8491 + }, + { + "start": 7938.28, + "end": 7941.26, + "probability": 0.9825 + }, + { + "start": 7944.84, + "end": 7947.46, + "probability": 0.9858 + }, + { + "start": 7949.84, + "end": 7951.9, + "probability": 0.6326 + }, + { + "start": 7953.94, + "end": 7955.48, + "probability": 0.8025 + }, + { + "start": 7955.58, + "end": 7955.58, + "probability": 0.6228 + }, + { + "start": 7955.58, + "end": 7956.66, + "probability": 0.7056 + }, + { + "start": 7957.14, + "end": 7958.26, + "probability": 0.8873 + }, + { + "start": 7958.52, + "end": 7960.26, + "probability": 0.8804 + }, + { + "start": 7962.04, + "end": 7964.34, + "probability": 0.5221 + }, + { + "start": 7964.78, + "end": 7966.16, + "probability": 0.6271 + }, + { + "start": 7966.42, + "end": 7968.44, + "probability": 0.7125 + }, + { + "start": 7968.74, + "end": 7968.9, + "probability": 0.0151 + }, + { + "start": 7969.48, + "end": 7971.24, + "probability": 0.9431 + }, + { + "start": 7971.34, + "end": 7972.12, + "probability": 0.9115 + }, + { + "start": 7973.02, + "end": 7974.02, + "probability": 0.5941 + }, + { + "start": 7974.62, + "end": 7977.7, + "probability": 0.9822 + }, + { + "start": 7978.28, + "end": 7982.64, + "probability": 0.8638 + }, + { + "start": 7983.22, + "end": 7983.96, + "probability": 0.9221 + }, + { + "start": 7984.14, + "end": 7986.86, + "probability": 0.9273 + }, + { + "start": 7987.72, + "end": 7990.66, + "probability": 0.6984 + }, + { + "start": 7990.72, + "end": 7992.58, + "probability": 0.9006 + }, + { + "start": 7993.1, + "end": 7994.14, + "probability": 0.8804 + }, + { + "start": 7994.72, + "end": 7997.18, + "probability": 0.9961 + }, + { + "start": 7997.96, + "end": 8000.16, + "probability": 0.9535 + }, + { + "start": 8001.58, + "end": 8002.9, + "probability": 0.9244 + }, + { + "start": 8003.42, + "end": 8006.08, + "probability": 0.9847 + }, + { + "start": 8006.88, + "end": 8008.14, + "probability": 0.7444 + }, + { + "start": 8008.42, + "end": 8009.64, + "probability": 0.4271 + }, + { + "start": 8010.06, + "end": 8013.36, + "probability": 0.9688 + }, + { + "start": 8013.88, + "end": 8018.9, + "probability": 0.9678 + }, + { + "start": 8019.54, + "end": 8022.94, + "probability": 0.9132 + }, + { + "start": 8023.08, + "end": 8023.42, + "probability": 0.7379 + }, + { + "start": 8023.46, + "end": 8023.82, + "probability": 0.5411 + }, + { + "start": 8023.92, + "end": 8024.86, + "probability": 0.8895 + }, + { + "start": 8025.26, + "end": 8029.74, + "probability": 0.9575 + }, + { + "start": 8030.58, + "end": 8032.26, + "probability": 0.8745 + }, + { + "start": 8032.78, + "end": 8035.76, + "probability": 0.9015 + }, + { + "start": 8036.66, + "end": 8040.1, + "probability": 0.7535 + }, + { + "start": 8040.16, + "end": 8040.98, + "probability": 0.8369 + }, + { + "start": 8041.36, + "end": 8043.48, + "probability": 0.8199 + }, + { + "start": 8043.84, + "end": 8045.4, + "probability": 0.8781 + }, + { + "start": 8045.44, + "end": 8048.46, + "probability": 0.8059 + }, + { + "start": 8048.54, + "end": 8050.34, + "probability": 0.1042 + }, + { + "start": 8050.88, + "end": 8051.7, + "probability": 0.3638 + }, + { + "start": 8051.8, + "end": 8054.08, + "probability": 0.8815 + }, + { + "start": 8054.18, + "end": 8057.62, + "probability": 0.8444 + }, + { + "start": 8058.2, + "end": 8062.72, + "probability": 0.849 + }, + { + "start": 8063.22, + "end": 8064.8, + "probability": 0.7547 + }, + { + "start": 8064.94, + "end": 8066.98, + "probability": 0.8149 + }, + { + "start": 8067.28, + "end": 8068.76, + "probability": 0.6746 + }, + { + "start": 8069.26, + "end": 8069.88, + "probability": 0.6666 + }, + { + "start": 8070.02, + "end": 8071.04, + "probability": 0.9511 + }, + { + "start": 8071.26, + "end": 8072.42, + "probability": 0.8521 + }, + { + "start": 8072.68, + "end": 8074.38, + "probability": 0.9781 + }, + { + "start": 8074.66, + "end": 8075.66, + "probability": 0.908 + }, + { + "start": 8076.08, + "end": 8077.36, + "probability": 0.85 + }, + { + "start": 8077.62, + "end": 8080.98, + "probability": 0.985 + }, + { + "start": 8081.46, + "end": 8083.46, + "probability": 0.8794 + }, + { + "start": 8083.8, + "end": 8084.1, + "probability": 0.7965 + }, + { + "start": 8084.2, + "end": 8084.46, + "probability": 0.6503 + }, + { + "start": 8084.54, + "end": 8086.08, + "probability": 0.9799 + }, + { + "start": 8086.42, + "end": 8089.3, + "probability": 0.9961 + }, + { + "start": 8089.5, + "end": 8093.48, + "probability": 0.6801 + }, + { + "start": 8094.26, + "end": 8095.44, + "probability": 0.9576 + }, + { + "start": 8096.08, + "end": 8096.84, + "probability": 0.7514 + }, + { + "start": 8099.08, + "end": 8100.14, + "probability": 0.1461 + }, + { + "start": 8100.26, + "end": 8103.22, + "probability": 0.7268 + }, + { + "start": 8103.84, + "end": 8107.32, + "probability": 0.782 + }, + { + "start": 8107.6, + "end": 8112.26, + "probability": 0.9808 + }, + { + "start": 8112.76, + "end": 8116.88, + "probability": 0.9478 + }, + { + "start": 8117.6, + "end": 8122.88, + "probability": 0.5387 + }, + { + "start": 8123.78, + "end": 8127.48, + "probability": 0.6516 + }, + { + "start": 8128.5, + "end": 8129.14, + "probability": 0.8104 + }, + { + "start": 8129.7, + "end": 8131.56, + "probability": 0.845 + }, + { + "start": 8132.26, + "end": 8134.4, + "probability": 0.9627 + }, + { + "start": 8135.34, + "end": 8137.54, + "probability": 0.9718 + }, + { + "start": 8138.0, + "end": 8139.1, + "probability": 0.9888 + }, + { + "start": 8139.52, + "end": 8144.68, + "probability": 0.9928 + }, + { + "start": 8145.06, + "end": 8148.8, + "probability": 0.8851 + }, + { + "start": 8149.68, + "end": 8152.24, + "probability": 0.9971 + }, + { + "start": 8152.58, + "end": 8153.38, + "probability": 0.7715 + }, + { + "start": 8153.54, + "end": 8155.86, + "probability": 0.6684 + }, + { + "start": 8156.24, + "end": 8156.82, + "probability": 0.7877 + }, + { + "start": 8156.9, + "end": 8158.14, + "probability": 0.9805 + }, + { + "start": 8158.82, + "end": 8160.04, + "probability": 0.5153 + }, + { + "start": 8160.64, + "end": 8165.16, + "probability": 0.8765 + }, + { + "start": 8165.74, + "end": 8168.32, + "probability": 0.813 + }, + { + "start": 8168.94, + "end": 8168.96, + "probability": 0.2445 + }, + { + "start": 8168.96, + "end": 8169.18, + "probability": 0.6019 + }, + { + "start": 8169.66, + "end": 8171.6, + "probability": 0.7446 + }, + { + "start": 8172.58, + "end": 8173.98, + "probability": 0.7671 + }, + { + "start": 8174.56, + "end": 8176.38, + "probability": 0.6651 + }, + { + "start": 8176.84, + "end": 8179.0, + "probability": 0.9582 + }, + { + "start": 8179.5, + "end": 8180.56, + "probability": 0.9738 + }, + { + "start": 8181.6, + "end": 8182.82, + "probability": 0.123 + }, + { + "start": 8184.22, + "end": 8187.16, + "probability": 0.5151 + }, + { + "start": 8187.44, + "end": 8187.78, + "probability": 0.6371 + }, + { + "start": 8188.82, + "end": 8190.74, + "probability": 0.4168 + }, + { + "start": 8191.34, + "end": 8191.8, + "probability": 0.5139 + }, + { + "start": 8192.84, + "end": 8193.44, + "probability": 0.2665 + }, + { + "start": 8195.88, + "end": 8197.76, + "probability": 0.6929 + }, + { + "start": 8197.9, + "end": 8199.18, + "probability": 0.7452 + }, + { + "start": 8199.3, + "end": 8200.74, + "probability": 0.861 + }, + { + "start": 8200.96, + "end": 8203.5, + "probability": 0.9894 + }, + { + "start": 8204.38, + "end": 8207.24, + "probability": 0.9873 + }, + { + "start": 8208.22, + "end": 8208.86, + "probability": 0.9496 + }, + { + "start": 8210.04, + "end": 8211.34, + "probability": 0.9617 + }, + { + "start": 8212.52, + "end": 8215.58, + "probability": 0.8144 + }, + { + "start": 8216.88, + "end": 8218.78, + "probability": 0.8014 + }, + { + "start": 8219.32, + "end": 8221.28, + "probability": 0.9105 + }, + { + "start": 8221.7, + "end": 8222.98, + "probability": 0.55 + }, + { + "start": 8223.9, + "end": 8227.1, + "probability": 0.8508 + }, + { + "start": 8227.16, + "end": 8227.83, + "probability": 0.9614 + }, + { + "start": 8229.2, + "end": 8231.3, + "probability": 0.9293 + }, + { + "start": 8231.83, + "end": 8234.12, + "probability": 0.7815 + }, + { + "start": 8234.56, + "end": 8237.16, + "probability": 0.9785 + }, + { + "start": 8237.36, + "end": 8240.12, + "probability": 0.9602 + }, + { + "start": 8241.62, + "end": 8244.98, + "probability": 0.9264 + }, + { + "start": 8246.14, + "end": 8246.14, + "probability": 0.0115 + }, + { + "start": 8249.08, + "end": 8250.28, + "probability": 0.751 + }, + { + "start": 8250.4, + "end": 8250.91, + "probability": 0.5822 + }, + { + "start": 8251.3, + "end": 8253.24, + "probability": 0.8172 + }, + { + "start": 8253.24, + "end": 8255.82, + "probability": 0.6833 + }, + { + "start": 8256.5, + "end": 8260.05, + "probability": 0.9922 + }, + { + "start": 8260.12, + "end": 8261.06, + "probability": 0.3626 + }, + { + "start": 8261.2, + "end": 8261.86, + "probability": 0.7059 + }, + { + "start": 8261.92, + "end": 8263.44, + "probability": 0.669 + }, + { + "start": 8263.57, + "end": 8268.66, + "probability": 0.9479 + }, + { + "start": 8268.66, + "end": 8272.72, + "probability": 0.7052 + }, + { + "start": 8273.02, + "end": 8276.28, + "probability": 0.8403 + }, + { + "start": 8276.58, + "end": 8277.58, + "probability": 0.643 + }, + { + "start": 8278.18, + "end": 8281.48, + "probability": 0.9149 + }, + { + "start": 8281.78, + "end": 8283.45, + "probability": 0.9692 + }, + { + "start": 8284.12, + "end": 8285.52, + "probability": 0.7258 + }, + { + "start": 8286.42, + "end": 8286.96, + "probability": 0.6933 + }, + { + "start": 8287.46, + "end": 8292.94, + "probability": 0.9836 + }, + { + "start": 8293.28, + "end": 8297.55, + "probability": 0.9988 + }, + { + "start": 8298.04, + "end": 8302.1, + "probability": 0.9979 + }, + { + "start": 8302.38, + "end": 8303.25, + "probability": 0.458 + }, + { + "start": 8304.42, + "end": 8305.83, + "probability": 0.9292 + }, + { + "start": 8306.98, + "end": 8307.8, + "probability": 0.7469 + }, + { + "start": 8308.44, + "end": 8311.36, + "probability": 0.9916 + }, + { + "start": 8311.44, + "end": 8314.92, + "probability": 0.9908 + }, + { + "start": 8315.48, + "end": 8317.94, + "probability": 0.8501 + }, + { + "start": 8318.54, + "end": 8320.86, + "probability": 0.9257 + }, + { + "start": 8321.34, + "end": 8322.44, + "probability": 0.5022 + }, + { + "start": 8322.44, + "end": 8322.9, + "probability": 0.9722 + }, + { + "start": 8323.48, + "end": 8324.02, + "probability": 0.6171 + }, + { + "start": 8324.22, + "end": 8325.86, + "probability": 0.9744 + }, + { + "start": 8326.66, + "end": 8327.68, + "probability": 0.5394 + }, + { + "start": 8328.44, + "end": 8331.6, + "probability": 0.8341 + }, + { + "start": 8332.76, + "end": 8335.2, + "probability": 0.9793 + }, + { + "start": 8339.74, + "end": 8342.28, + "probability": 0.8176 + }, + { + "start": 8342.34, + "end": 8342.34, + "probability": 0.0643 + }, + { + "start": 8353.22, + "end": 8362.16, + "probability": 0.965 + }, + { + "start": 8362.18, + "end": 8371.26, + "probability": 0.9796 + }, + { + "start": 8371.44, + "end": 8372.08, + "probability": 0.4374 + }, + { + "start": 8372.32, + "end": 8373.56, + "probability": 0.9705 + }, + { + "start": 8374.46, + "end": 8377.58, + "probability": 0.6276 + }, + { + "start": 8377.76, + "end": 8382.12, + "probability": 0.9987 + }, + { + "start": 8382.12, + "end": 8387.16, + "probability": 0.9268 + }, + { + "start": 8387.48, + "end": 8391.26, + "probability": 0.6966 + }, + { + "start": 8391.42, + "end": 8393.32, + "probability": 0.9003 + }, + { + "start": 8393.42, + "end": 8394.91, + "probability": 0.7051 + }, + { + "start": 8395.32, + "end": 8397.56, + "probability": 0.7336 + }, + { + "start": 8397.7, + "end": 8400.7, + "probability": 0.977 + }, + { + "start": 8401.14, + "end": 8402.6, + "probability": 0.9863 + }, + { + "start": 8402.78, + "end": 8407.66, + "probability": 0.9935 + }, + { + "start": 8407.88, + "end": 8408.64, + "probability": 0.9233 + }, + { + "start": 8409.26, + "end": 8411.36, + "probability": 0.9922 + }, + { + "start": 8411.86, + "end": 8419.28, + "probability": 0.9878 + }, + { + "start": 8421.0, + "end": 8426.2, + "probability": 0.9986 + }, + { + "start": 8426.78, + "end": 8429.78, + "probability": 0.9961 + }, + { + "start": 8429.86, + "end": 8435.52, + "probability": 0.9948 + }, + { + "start": 8436.24, + "end": 8438.68, + "probability": 0.9968 + }, + { + "start": 8438.82, + "end": 8439.42, + "probability": 0.6653 + }, + { + "start": 8439.58, + "end": 8445.7, + "probability": 0.9066 + }, + { + "start": 8446.26, + "end": 8447.56, + "probability": 0.5264 + }, + { + "start": 8447.94, + "end": 8449.56, + "probability": 0.8514 + }, + { + "start": 8449.96, + "end": 8452.08, + "probability": 0.9949 + }, + { + "start": 8452.16, + "end": 8456.5, + "probability": 0.9983 + }, + { + "start": 8456.94, + "end": 8460.1, + "probability": 0.9979 + }, + { + "start": 8460.74, + "end": 8462.4, + "probability": 0.7462 + }, + { + "start": 8463.08, + "end": 8465.12, + "probability": 0.9748 + }, + { + "start": 8467.6, + "end": 8468.56, + "probability": 0.2374 + }, + { + "start": 8468.74, + "end": 8472.94, + "probability": 0.8835 + }, + { + "start": 8473.24, + "end": 8477.86, + "probability": 0.7309 + }, + { + "start": 8477.86, + "end": 8481.96, + "probability": 0.9096 + }, + { + "start": 8482.08, + "end": 8486.02, + "probability": 0.9097 + }, + { + "start": 8486.66, + "end": 8491.96, + "probability": 0.9855 + }, + { + "start": 8492.42, + "end": 8493.6, + "probability": 0.9659 + }, + { + "start": 8493.8, + "end": 8495.18, + "probability": 0.4422 + }, + { + "start": 8495.4, + "end": 8497.68, + "probability": 0.9954 + }, + { + "start": 8498.12, + "end": 8500.44, + "probability": 0.6683 + }, + { + "start": 8501.54, + "end": 8506.22, + "probability": 0.9698 + }, + { + "start": 8506.26, + "end": 8507.56, + "probability": 0.7813 + }, + { + "start": 8507.7, + "end": 8508.5, + "probability": 0.9873 + }, + { + "start": 8508.62, + "end": 8509.84, + "probability": 0.7857 + }, + { + "start": 8510.1, + "end": 8512.14, + "probability": 0.9191 + }, + { + "start": 8512.46, + "end": 8513.6, + "probability": 0.7426 + }, + { + "start": 8513.9, + "end": 8515.32, + "probability": 0.8307 + }, + { + "start": 8515.58, + "end": 8517.24, + "probability": 0.4338 + }, + { + "start": 8517.6, + "end": 8519.38, + "probability": 0.7497 + }, + { + "start": 8520.3, + "end": 8522.72, + "probability": 0.9934 + }, + { + "start": 8523.14, + "end": 8528.98, + "probability": 0.9952 + }, + { + "start": 8528.98, + "end": 8533.38, + "probability": 0.9772 + }, + { + "start": 8534.18, + "end": 8540.32, + "probability": 0.9911 + }, + { + "start": 8540.4, + "end": 8541.7, + "probability": 0.9612 + }, + { + "start": 8541.92, + "end": 8542.3, + "probability": 0.7937 + }, + { + "start": 8542.4, + "end": 8545.24, + "probability": 0.8801 + }, + { + "start": 8545.88, + "end": 8550.32, + "probability": 0.995 + }, + { + "start": 8550.78, + "end": 8555.26, + "probability": 0.9792 + }, + { + "start": 8555.66, + "end": 8556.96, + "probability": 0.9636 + }, + { + "start": 8556.98, + "end": 8557.6, + "probability": 0.7814 + }, + { + "start": 8558.06, + "end": 8560.22, + "probability": 0.9637 + }, + { + "start": 8560.62, + "end": 8561.78, + "probability": 0.9529 + }, + { + "start": 8572.13, + "end": 8575.34, + "probability": 0.7583 + }, + { + "start": 8575.44, + "end": 8576.22, + "probability": 0.7189 + }, + { + "start": 8576.38, + "end": 8579.0, + "probability": 0.8967 + }, + { + "start": 8579.38, + "end": 8580.06, + "probability": 0.8877 + }, + { + "start": 8580.3, + "end": 8581.34, + "probability": 0.322 + }, + { + "start": 8582.26, + "end": 8582.56, + "probability": 0.832 + }, + { + "start": 8583.38, + "end": 8583.98, + "probability": 0.2665 + }, + { + "start": 8584.04, + "end": 8584.73, + "probability": 0.626 + }, + { + "start": 8585.98, + "end": 8590.64, + "probability": 0.7503 + }, + { + "start": 8591.38, + "end": 8592.88, + "probability": 0.9665 + }, + { + "start": 8593.0, + "end": 8595.46, + "probability": 0.7527 + }, + { + "start": 8595.46, + "end": 8597.42, + "probability": 0.9923 + }, + { + "start": 8597.56, + "end": 8597.98, + "probability": 0.8306 + }, + { + "start": 8599.1, + "end": 8601.0, + "probability": 0.9461 + }, + { + "start": 8601.06, + "end": 8603.8, + "probability": 0.9482 + }, + { + "start": 8604.04, + "end": 8605.68, + "probability": 0.9961 + }, + { + "start": 8606.48, + "end": 8608.6, + "probability": 0.9969 + }, + { + "start": 8608.64, + "end": 8609.52, + "probability": 0.9897 + }, + { + "start": 8609.58, + "end": 8611.46, + "probability": 0.9943 + }, + { + "start": 8611.52, + "end": 8611.86, + "probability": 0.7784 + }, + { + "start": 8612.1, + "end": 8613.66, + "probability": 0.5493 + }, + { + "start": 8617.18, + "end": 8617.6, + "probability": 0.052 + }, + { + "start": 8617.74, + "end": 8618.02, + "probability": 0.0983 + }, + { + "start": 8618.02, + "end": 8620.3, + "probability": 0.979 + }, + { + "start": 8621.02, + "end": 8621.24, + "probability": 0.9624 + }, + { + "start": 8621.78, + "end": 8621.92, + "probability": 0.6426 + }, + { + "start": 8623.45, + "end": 8624.86, + "probability": 0.998 + }, + { + "start": 8624.94, + "end": 8625.83, + "probability": 0.9629 + }, + { + "start": 8627.3, + "end": 8631.42, + "probability": 0.9872 + }, + { + "start": 8632.66, + "end": 8637.28, + "probability": 0.9915 + }, + { + "start": 8638.28, + "end": 8640.42, + "probability": 0.9801 + }, + { + "start": 8640.64, + "end": 8644.2, + "probability": 0.9965 + }, + { + "start": 8645.36, + "end": 8646.2, + "probability": 0.941 + }, + { + "start": 8646.42, + "end": 8648.3, + "probability": 0.9609 + }, + { + "start": 8648.44, + "end": 8650.04, + "probability": 0.7756 + }, + { + "start": 8650.4, + "end": 8651.04, + "probability": 0.716 + }, + { + "start": 8651.3, + "end": 8652.54, + "probability": 0.9727 + }, + { + "start": 8653.14, + "end": 8659.14, + "probability": 0.8212 + }, + { + "start": 8659.3, + "end": 8663.1, + "probability": 0.9933 + }, + { + "start": 8663.42, + "end": 8663.98, + "probability": 0.6545 + }, + { + "start": 8665.48, + "end": 8665.48, + "probability": 0.0154 + }, + { + "start": 8665.92, + "end": 8667.48, + "probability": 0.9567 + }, + { + "start": 8667.86, + "end": 8670.6, + "probability": 0.996 + }, + { + "start": 8670.82, + "end": 8672.72, + "probability": 0.951 + }, + { + "start": 8673.68, + "end": 8678.24, + "probability": 0.9907 + }, + { + "start": 8680.06, + "end": 8682.46, + "probability": 0.5194 + }, + { + "start": 8683.26, + "end": 8688.42, + "probability": 0.9977 + }, + { + "start": 8689.26, + "end": 8690.18, + "probability": 0.823 + }, + { + "start": 8692.2, + "end": 8693.42, + "probability": 0.7074 + }, + { + "start": 8693.84, + "end": 8696.42, + "probability": 0.6095 + }, + { + "start": 8697.02, + "end": 8700.94, + "probability": 0.7036 + }, + { + "start": 8701.48, + "end": 8709.86, + "probability": 0.9636 + }, + { + "start": 8710.86, + "end": 8713.74, + "probability": 0.6667 + }, + { + "start": 8713.78, + "end": 8715.04, + "probability": 0.5243 + }, + { + "start": 8715.7, + "end": 8718.64, + "probability": 0.9888 + }, + { + "start": 8720.32, + "end": 8724.08, + "probability": 0.8607 + }, + { + "start": 8725.16, + "end": 8725.73, + "probability": 0.5581 + }, + { + "start": 8726.5, + "end": 8729.41, + "probability": 0.8857 + }, + { + "start": 8730.28, + "end": 8733.28, + "probability": 0.9888 + }, + { + "start": 8734.02, + "end": 8735.76, + "probability": 0.8437 + }, + { + "start": 8735.88, + "end": 8737.44, + "probability": 0.9839 + }, + { + "start": 8737.52, + "end": 8738.88, + "probability": 0.8211 + }, + { + "start": 8739.4, + "end": 8741.27, + "probability": 0.9766 + }, + { + "start": 8741.78, + "end": 8745.24, + "probability": 0.9952 + }, + { + "start": 8745.64, + "end": 8750.15, + "probability": 0.9166 + }, + { + "start": 8751.42, + "end": 8753.58, + "probability": 0.9 + }, + { + "start": 8753.86, + "end": 8755.48, + "probability": 0.7051 + }, + { + "start": 8755.62, + "end": 8756.46, + "probability": 0.6441 + }, + { + "start": 8756.5, + "end": 8756.5, + "probability": 0.3453 + }, + { + "start": 8756.5, + "end": 8760.52, + "probability": 0.9102 + }, + { + "start": 8761.9, + "end": 8762.74, + "probability": 0.7711 + }, + { + "start": 8763.12, + "end": 8764.83, + "probability": 0.9752 + }, + { + "start": 8765.14, + "end": 8768.52, + "probability": 0.8917 + }, + { + "start": 8768.82, + "end": 8769.68, + "probability": 0.8557 + }, + { + "start": 8769.8, + "end": 8774.04, + "probability": 0.9863 + }, + { + "start": 8775.66, + "end": 8777.72, + "probability": 0.5681 + }, + { + "start": 8778.0, + "end": 8779.54, + "probability": 0.9496 + }, + { + "start": 8780.22, + "end": 8780.96, + "probability": 0.8564 + }, + { + "start": 8781.5, + "end": 8782.54, + "probability": 0.9865 + }, + { + "start": 8782.76, + "end": 8782.94, + "probability": 0.8516 + }, + { + "start": 8783.74, + "end": 8784.68, + "probability": 0.7309 + }, + { + "start": 8784.68, + "end": 8787.44, + "probability": 0.8529 + }, + { + "start": 8787.64, + "end": 8789.06, + "probability": 0.9917 + }, + { + "start": 8789.96, + "end": 8793.14, + "probability": 0.995 + }, + { + "start": 8793.2, + "end": 8795.74, + "probability": 0.9979 + }, + { + "start": 8796.14, + "end": 8796.88, + "probability": 0.6833 + }, + { + "start": 8797.18, + "end": 8798.72, + "probability": 0.7435 + }, + { + "start": 8798.88, + "end": 8801.14, + "probability": 0.7871 + }, + { + "start": 8801.46, + "end": 8803.3, + "probability": 0.9831 + }, + { + "start": 8803.58, + "end": 8804.54, + "probability": 0.4876 + }, + { + "start": 8804.66, + "end": 8805.54, + "probability": 0.6294 + }, + { + "start": 8805.84, + "end": 8806.4, + "probability": 0.8938 + }, + { + "start": 8806.62, + "end": 8808.2, + "probability": 0.9561 + }, + { + "start": 8808.78, + "end": 8811.64, + "probability": 0.9694 + }, + { + "start": 8811.92, + "end": 8812.9, + "probability": 0.5409 + }, + { + "start": 8813.62, + "end": 8815.04, + "probability": 0.9248 + }, + { + "start": 8816.18, + "end": 8817.88, + "probability": 0.9292 + }, + { + "start": 8818.28, + "end": 8822.42, + "probability": 0.7665 + }, + { + "start": 8823.04, + "end": 8824.46, + "probability": 0.7545 + }, + { + "start": 8824.78, + "end": 8825.34, + "probability": 0.8456 + }, + { + "start": 8825.8, + "end": 8826.98, + "probability": 0.9351 + }, + { + "start": 8827.08, + "end": 8827.82, + "probability": 0.8441 + }, + { + "start": 8828.16, + "end": 8829.3, + "probability": 0.9945 + }, + { + "start": 8829.3, + "end": 8830.02, + "probability": 0.6976 + }, + { + "start": 8830.34, + "end": 8832.58, + "probability": 0.8311 + }, + { + "start": 8847.34, + "end": 8849.96, + "probability": 0.6362 + }, + { + "start": 8850.98, + "end": 8856.3, + "probability": 0.9961 + }, + { + "start": 8857.5, + "end": 8862.04, + "probability": 0.8475 + }, + { + "start": 8862.04, + "end": 8866.02, + "probability": 0.6091 + }, + { + "start": 8867.18, + "end": 8869.64, + "probability": 0.9756 + }, + { + "start": 8869.64, + "end": 8874.62, + "probability": 0.9893 + }, + { + "start": 8875.14, + "end": 8878.28, + "probability": 0.9946 + }, + { + "start": 8879.54, + "end": 8881.52, + "probability": 0.7662 + }, + { + "start": 8881.82, + "end": 8882.88, + "probability": 0.8361 + }, + { + "start": 8885.04, + "end": 8889.66, + "probability": 0.9658 + }, + { + "start": 8890.46, + "end": 8891.44, + "probability": 0.7292 + }, + { + "start": 8893.33, + "end": 8898.98, + "probability": 0.9901 + }, + { + "start": 8900.02, + "end": 8900.74, + "probability": 0.8633 + }, + { + "start": 8902.72, + "end": 8904.78, + "probability": 0.9879 + }, + { + "start": 8905.42, + "end": 8906.5, + "probability": 0.9232 + }, + { + "start": 8907.4, + "end": 8910.12, + "probability": 0.9688 + }, + { + "start": 8910.12, + "end": 8912.02, + "probability": 0.9205 + }, + { + "start": 8912.12, + "end": 8913.78, + "probability": 0.9806 + }, + { + "start": 8915.58, + "end": 8920.12, + "probability": 0.9964 + }, + { + "start": 8920.66, + "end": 8921.74, + "probability": 0.8553 + }, + { + "start": 8923.98, + "end": 8927.32, + "probability": 0.9451 + }, + { + "start": 8928.5, + "end": 8929.63, + "probability": 0.7939 + }, + { + "start": 8929.88, + "end": 8932.06, + "probability": 0.9976 + }, + { + "start": 8932.06, + "end": 8933.56, + "probability": 0.9629 + }, + { + "start": 8933.9, + "end": 8935.28, + "probability": 0.9858 + }, + { + "start": 8937.08, + "end": 8938.14, + "probability": 0.9971 + }, + { + "start": 8939.2, + "end": 8941.52, + "probability": 0.8306 + }, + { + "start": 8942.78, + "end": 8946.26, + "probability": 0.8885 + }, + { + "start": 8947.34, + "end": 8949.46, + "probability": 0.956 + }, + { + "start": 8950.32, + "end": 8953.08, + "probability": 0.9683 + }, + { + "start": 8953.22, + "end": 8956.22, + "probability": 0.9092 + }, + { + "start": 8956.28, + "end": 8958.08, + "probability": 0.9971 + }, + { + "start": 8958.72, + "end": 8960.26, + "probability": 0.9958 + }, + { + "start": 8961.38, + "end": 8962.88, + "probability": 0.9714 + }, + { + "start": 8963.72, + "end": 8964.82, + "probability": 0.9279 + }, + { + "start": 8965.98, + "end": 8968.24, + "probability": 0.7924 + }, + { + "start": 8968.9, + "end": 8972.14, + "probability": 0.9526 + }, + { + "start": 8972.14, + "end": 8976.08, + "probability": 0.9386 + }, + { + "start": 8976.58, + "end": 8977.66, + "probability": 0.7861 + }, + { + "start": 8977.96, + "end": 8980.22, + "probability": 0.9878 + }, + { + "start": 8980.64, + "end": 8981.66, + "probability": 0.9829 + }, + { + "start": 8981.78, + "end": 8983.06, + "probability": 0.8105 + }, + { + "start": 8984.46, + "end": 8987.62, + "probability": 0.9946 + }, + { + "start": 8989.17, + "end": 8990.58, + "probability": 0.7242 + }, + { + "start": 8991.38, + "end": 8991.8, + "probability": 0.6992 + }, + { + "start": 8992.78, + "end": 8995.52, + "probability": 0.977 + }, + { + "start": 8996.16, + "end": 8997.16, + "probability": 0.7358 + }, + { + "start": 8998.34, + "end": 8998.96, + "probability": 0.746 + }, + { + "start": 9000.28, + "end": 9000.66, + "probability": 0.9443 + }, + { + "start": 9000.76, + "end": 9001.26, + "probability": 0.8065 + }, + { + "start": 9001.74, + "end": 9002.49, + "probability": 0.9403 + }, + { + "start": 9003.89, + "end": 9007.06, + "probability": 0.8562 + }, + { + "start": 9007.06, + "end": 9009.2, + "probability": 0.9544 + }, + { + "start": 9009.76, + "end": 9013.1, + "probability": 0.7086 + }, + { + "start": 9013.12, + "end": 9014.16, + "probability": 0.9921 + }, + { + "start": 9014.78, + "end": 9018.36, + "probability": 0.9966 + }, + { + "start": 9020.16, + "end": 9021.68, + "probability": 0.9985 + }, + { + "start": 9023.48, + "end": 9024.44, + "probability": 0.6026 + }, + { + "start": 9025.44, + "end": 9027.08, + "probability": 0.9202 + }, + { + "start": 9027.22, + "end": 9028.2, + "probability": 0.7394 + }, + { + "start": 9028.3, + "end": 9032.52, + "probability": 0.9702 + }, + { + "start": 9034.02, + "end": 9036.54, + "probability": 0.9943 + }, + { + "start": 9036.92, + "end": 9038.76, + "probability": 0.7056 + }, + { + "start": 9038.84, + "end": 9040.14, + "probability": 0.8197 + }, + { + "start": 9041.38, + "end": 9041.84, + "probability": 0.8516 + }, + { + "start": 9042.4, + "end": 9044.6, + "probability": 0.9437 + }, + { + "start": 9044.82, + "end": 9044.82, + "probability": 0.6921 + }, + { + "start": 9044.82, + "end": 9047.24, + "probability": 0.9834 + }, + { + "start": 9047.42, + "end": 9047.96, + "probability": 0.5352 + }, + { + "start": 9048.12, + "end": 9048.22, + "probability": 0.4013 + }, + { + "start": 9048.62, + "end": 9050.76, + "probability": 0.8188 + }, + { + "start": 9067.78, + "end": 9069.44, + "probability": 0.9431 + }, + { + "start": 9069.9, + "end": 9070.42, + "probability": 0.7868 + }, + { + "start": 9070.78, + "end": 9071.44, + "probability": 0.99 + }, + { + "start": 9071.96, + "end": 9072.54, + "probability": 0.9115 + }, + { + "start": 9073.06, + "end": 9074.34, + "probability": 0.8348 + }, + { + "start": 9074.74, + "end": 9077.98, + "probability": 0.7668 + }, + { + "start": 9078.08, + "end": 9079.06, + "probability": 0.9578 + }, + { + "start": 9079.14, + "end": 9080.6, + "probability": 0.4091 + }, + { + "start": 9080.82, + "end": 9082.28, + "probability": 0.0437 + }, + { + "start": 9082.32, + "end": 9084.04, + "probability": 0.561 + }, + { + "start": 9084.18, + "end": 9089.64, + "probability": 0.957 + }, + { + "start": 9089.8, + "end": 9092.88, + "probability": 0.9855 + }, + { + "start": 9093.16, + "end": 9095.46, + "probability": 0.9717 + }, + { + "start": 9095.94, + "end": 9099.98, + "probability": 0.9961 + }, + { + "start": 9100.6, + "end": 9105.46, + "probability": 0.9972 + }, + { + "start": 9105.76, + "end": 9109.4, + "probability": 0.826 + }, + { + "start": 9109.68, + "end": 9115.7, + "probability": 0.9925 + }, + { + "start": 9115.94, + "end": 9117.18, + "probability": 0.9392 + }, + { + "start": 9117.8, + "end": 9119.76, + "probability": 0.8602 + }, + { + "start": 9119.98, + "end": 9122.84, + "probability": 0.9941 + }, + { + "start": 9122.84, + "end": 9124.52, + "probability": 0.9938 + }, + { + "start": 9124.78, + "end": 9127.46, + "probability": 0.9993 + }, + { + "start": 9127.96, + "end": 9132.74, + "probability": 0.9775 + }, + { + "start": 9133.3, + "end": 9134.68, + "probability": 0.8889 + }, + { + "start": 9135.18, + "end": 9136.32, + "probability": 0.665 + }, + { + "start": 9136.34, + "end": 9139.22, + "probability": 0.8381 + }, + { + "start": 9139.72, + "end": 9143.68, + "probability": 0.9045 + }, + { + "start": 9144.04, + "end": 9145.78, + "probability": 0.92 + }, + { + "start": 9145.82, + "end": 9146.18, + "probability": 0.8647 + }, + { + "start": 9146.44, + "end": 9147.22, + "probability": 0.9733 + }, + { + "start": 9147.38, + "end": 9148.44, + "probability": 0.9448 + }, + { + "start": 9148.68, + "end": 9151.36, + "probability": 0.9721 + }, + { + "start": 9151.44, + "end": 9152.58, + "probability": 0.9598 + }, + { + "start": 9152.96, + "end": 9156.92, + "probability": 0.9067 + }, + { + "start": 9156.92, + "end": 9160.16, + "probability": 0.9975 + }, + { + "start": 9160.52, + "end": 9164.26, + "probability": 0.9941 + }, + { + "start": 9164.4, + "end": 9166.14, + "probability": 0.9966 + }, + { + "start": 9166.38, + "end": 9167.75, + "probability": 0.859 + }, + { + "start": 9168.8, + "end": 9168.9, + "probability": 0.6497 + }, + { + "start": 9169.64, + "end": 9171.18, + "probability": 0.8341 + }, + { + "start": 9171.3, + "end": 9171.66, + "probability": 0.5114 + }, + { + "start": 9171.78, + "end": 9172.3, + "probability": 0.6262 + }, + { + "start": 9172.82, + "end": 9176.36, + "probability": 0.9844 + }, + { + "start": 9176.52, + "end": 9177.64, + "probability": 0.9966 + }, + { + "start": 9177.88, + "end": 9180.3, + "probability": 0.991 + }, + { + "start": 9180.42, + "end": 9181.38, + "probability": 0.9961 + }, + { + "start": 9181.88, + "end": 9186.6, + "probability": 0.9142 + }, + { + "start": 9186.7, + "end": 9188.34, + "probability": 0.9896 + }, + { + "start": 9188.68, + "end": 9190.2, + "probability": 0.9826 + }, + { + "start": 9190.92, + "end": 9193.28, + "probability": 0.9915 + }, + { + "start": 9195.06, + "end": 9195.16, + "probability": 0.1353 + }, + { + "start": 9195.7, + "end": 9195.7, + "probability": 0.2785 + }, + { + "start": 9195.7, + "end": 9196.9, + "probability": 0.3573 + }, + { + "start": 9196.98, + "end": 9197.73, + "probability": 0.9216 + }, + { + "start": 9198.42, + "end": 9199.74, + "probability": 0.9805 + }, + { + "start": 9200.28, + "end": 9201.48, + "probability": 0.6289 + }, + { + "start": 9201.9, + "end": 9203.87, + "probability": 0.7932 + }, + { + "start": 9204.36, + "end": 9205.51, + "probability": 0.8721 + }, + { + "start": 9205.86, + "end": 9206.9, + "probability": 0.4262 + }, + { + "start": 9206.96, + "end": 9208.56, + "probability": 0.9899 + }, + { + "start": 9209.2, + "end": 9210.58, + "probability": 0.9202 + }, + { + "start": 9211.48, + "end": 9213.88, + "probability": 0.8453 + }, + { + "start": 9214.4, + "end": 9219.08, + "probability": 0.7699 + }, + { + "start": 9219.1, + "end": 9219.1, + "probability": 0.6587 + }, + { + "start": 9219.12, + "end": 9225.12, + "probability": 0.9629 + }, + { + "start": 9225.34, + "end": 9226.26, + "probability": 0.9468 + }, + { + "start": 9226.32, + "end": 9228.64, + "probability": 0.9986 + }, + { + "start": 9229.0, + "end": 9230.8, + "probability": 0.7009 + }, + { + "start": 9231.22, + "end": 9231.52, + "probability": 0.667 + }, + { + "start": 9231.98, + "end": 9234.48, + "probability": 0.8997 + }, + { + "start": 9235.2, + "end": 9237.36, + "probability": 0.9492 + }, + { + "start": 9237.9, + "end": 9243.72, + "probability": 0.9613 + }, + { + "start": 9243.92, + "end": 9249.34, + "probability": 0.9012 + }, + { + "start": 9249.6, + "end": 9252.76, + "probability": 0.9733 + }, + { + "start": 9253.02, + "end": 9255.0, + "probability": 0.905 + }, + { + "start": 9255.5, + "end": 9256.25, + "probability": 0.6969 + }, + { + "start": 9256.52, + "end": 9257.22, + "probability": 0.7205 + }, + { + "start": 9257.36, + "end": 9262.06, + "probability": 0.9802 + }, + { + "start": 9262.06, + "end": 9266.18, + "probability": 0.9976 + }, + { + "start": 9266.76, + "end": 9268.52, + "probability": 0.6805 + }, + { + "start": 9268.52, + "end": 9271.18, + "probability": 0.9919 + }, + { + "start": 9271.32, + "end": 9273.72, + "probability": 0.9982 + }, + { + "start": 9274.08, + "end": 9274.36, + "probability": 0.836 + }, + { + "start": 9274.38, + "end": 9275.12, + "probability": 0.7144 + }, + { + "start": 9275.2, + "end": 9277.36, + "probability": 0.8643 + }, + { + "start": 9277.5, + "end": 9277.54, + "probability": 0.6222 + }, + { + "start": 9277.54, + "end": 9282.1, + "probability": 0.9722 + }, + { + "start": 9282.32, + "end": 9283.6, + "probability": 0.8857 + }, + { + "start": 9283.68, + "end": 9285.2, + "probability": 0.6245 + }, + { + "start": 9285.28, + "end": 9285.56, + "probability": 0.3085 + }, + { + "start": 9285.58, + "end": 9285.58, + "probability": 0.8554 + }, + { + "start": 9285.58, + "end": 9288.46, + "probability": 0.8286 + }, + { + "start": 9288.58, + "end": 9291.08, + "probability": 0.9949 + }, + { + "start": 9291.5, + "end": 9291.72, + "probability": 0.9175 + }, + { + "start": 9292.14, + "end": 9293.2, + "probability": 0.9525 + }, + { + "start": 9293.66, + "end": 9295.66, + "probability": 0.791 + }, + { + "start": 9297.4, + "end": 9298.92, + "probability": 0.7906 + }, + { + "start": 9299.16, + "end": 9301.0, + "probability": 0.7394 + }, + { + "start": 9301.3, + "end": 9302.0, + "probability": 0.8691 + }, + { + "start": 9302.02, + "end": 9303.91, + "probability": 0.0765 + }, + { + "start": 9305.76, + "end": 9306.94, + "probability": 0.9771 + }, + { + "start": 9307.22, + "end": 9308.66, + "probability": 0.9987 + }, + { + "start": 9309.14, + "end": 9310.06, + "probability": 0.802 + }, + { + "start": 9312.53, + "end": 9314.04, + "probability": 0.3476 + }, + { + "start": 9314.08, + "end": 9314.08, + "probability": 0.0147 + }, + { + "start": 9314.08, + "end": 9314.2, + "probability": 0.45 + }, + { + "start": 9315.62, + "end": 9316.16, + "probability": 0.8002 + }, + { + "start": 9337.4, + "end": 9337.98, + "probability": 0.5119 + }, + { + "start": 9338.06, + "end": 9339.08, + "probability": 0.7894 + }, + { + "start": 9339.46, + "end": 9340.28, + "probability": 0.8999 + }, + { + "start": 9340.78, + "end": 9345.72, + "probability": 0.9666 + }, + { + "start": 9346.48, + "end": 9346.58, + "probability": 0.8112 + }, + { + "start": 9346.84, + "end": 9347.82, + "probability": 0.9575 + }, + { + "start": 9347.92, + "end": 9349.0, + "probability": 0.9932 + }, + { + "start": 9349.56, + "end": 9351.32, + "probability": 0.9221 + }, + { + "start": 9352.96, + "end": 9356.84, + "probability": 0.9925 + }, + { + "start": 9356.84, + "end": 9356.98, + "probability": 0.6545 + }, + { + "start": 9356.98, + "end": 9356.98, + "probability": 0.6484 + }, + { + "start": 9356.98, + "end": 9359.84, + "probability": 0.9295 + }, + { + "start": 9361.16, + "end": 9362.12, + "probability": 0.9974 + }, + { + "start": 9362.12, + "end": 9362.52, + "probability": 0.4761 + }, + { + "start": 9362.62, + "end": 9366.82, + "probability": 0.4861 + }, + { + "start": 9366.84, + "end": 9367.8, + "probability": 0.9661 + }, + { + "start": 9367.9, + "end": 9372.16, + "probability": 0.9973 + }, + { + "start": 9372.76, + "end": 9372.94, + "probability": 0.1967 + }, + { + "start": 9372.94, + "end": 9373.5, + "probability": 0.3514 + }, + { + "start": 9374.16, + "end": 9375.16, + "probability": 0.9956 + }, + { + "start": 9375.8, + "end": 9376.66, + "probability": 0.9765 + }, + { + "start": 9377.0, + "end": 9377.95, + "probability": 0.9161 + }, + { + "start": 9378.12, + "end": 9382.68, + "probability": 0.3582 + }, + { + "start": 9382.78, + "end": 9385.06, + "probability": 0.6016 + }, + { + "start": 9385.18, + "end": 9386.48, + "probability": 0.7905 + }, + { + "start": 9386.58, + "end": 9389.64, + "probability": 0.9908 + }, + { + "start": 9389.94, + "end": 9391.26, + "probability": 0.9966 + }, + { + "start": 9391.34, + "end": 9392.74, + "probability": 0.8788 + }, + { + "start": 9392.84, + "end": 9394.1, + "probability": 0.4936 + }, + { + "start": 9394.12, + "end": 9394.34, + "probability": 0.3798 + }, + { + "start": 9394.4, + "end": 9394.98, + "probability": 0.926 + }, + { + "start": 9394.98, + "end": 9396.38, + "probability": 0.2747 + }, + { + "start": 9396.38, + "end": 9397.32, + "probability": 0.9348 + }, + { + "start": 9397.6, + "end": 9399.12, + "probability": 0.9834 + }, + { + "start": 9399.34, + "end": 9401.66, + "probability": 0.9399 + }, + { + "start": 9401.8, + "end": 9403.52, + "probability": 0.5832 + }, + { + "start": 9403.62, + "end": 9403.7, + "probability": 0.4314 + }, + { + "start": 9403.7, + "end": 9403.7, + "probability": 0.5706 + }, + { + "start": 9403.7, + "end": 9404.76, + "probability": 0.3442 + }, + { + "start": 9404.96, + "end": 9405.42, + "probability": 0.1963 + }, + { + "start": 9405.52, + "end": 9407.4, + "probability": 0.7868 + }, + { + "start": 9407.46, + "end": 9408.54, + "probability": 0.4229 + }, + { + "start": 9408.7, + "end": 9409.52, + "probability": 0.8518 + }, + { + "start": 9409.52, + "end": 9410.16, + "probability": 0.9768 + }, + { + "start": 9410.18, + "end": 9411.32, + "probability": 0.4609 + }, + { + "start": 9411.65, + "end": 9412.96, + "probability": 0.444 + }, + { + "start": 9412.98, + "end": 9414.2, + "probability": 0.8996 + }, + { + "start": 9414.3, + "end": 9416.82, + "probability": 0.7379 + }, + { + "start": 9417.6, + "end": 9417.94, + "probability": 0.1035 + }, + { + "start": 9418.06, + "end": 9418.16, + "probability": 0.3255 + }, + { + "start": 9418.16, + "end": 9418.82, + "probability": 0.2376 + }, + { + "start": 9418.86, + "end": 9420.14, + "probability": 0.8406 + }, + { + "start": 9420.18, + "end": 9422.5, + "probability": 0.9146 + }, + { + "start": 9422.62, + "end": 9424.22, + "probability": 0.9356 + }, + { + "start": 9424.76, + "end": 9425.34, + "probability": 0.785 + }, + { + "start": 9425.66, + "end": 9427.46, + "probability": 0.293 + }, + { + "start": 9427.46, + "end": 9428.54, + "probability": 0.1133 + }, + { + "start": 9428.54, + "end": 9431.68, + "probability": 0.7722 + }, + { + "start": 9431.92, + "end": 9434.82, + "probability": 0.9971 + }, + { + "start": 9435.54, + "end": 9437.28, + "probability": 0.8395 + }, + { + "start": 9437.76, + "end": 9438.76, + "probability": 0.9899 + }, + { + "start": 9438.88, + "end": 9440.52, + "probability": 0.9272 + }, + { + "start": 9440.96, + "end": 9441.54, + "probability": 0.2241 + }, + { + "start": 9441.54, + "end": 9441.54, + "probability": 0.6129 + }, + { + "start": 9441.54, + "end": 9442.2, + "probability": 0.3755 + }, + { + "start": 9443.06, + "end": 9444.54, + "probability": 0.9305 + }, + { + "start": 9444.62, + "end": 9445.3, + "probability": 0.9214 + }, + { + "start": 9445.5, + "end": 9448.96, + "probability": 0.9948 + }, + { + "start": 9449.5, + "end": 9450.94, + "probability": 0.9948 + }, + { + "start": 9451.22, + "end": 9453.34, + "probability": 0.8974 + }, + { + "start": 9453.44, + "end": 9454.16, + "probability": 0.9312 + }, + { + "start": 9454.6, + "end": 9454.98, + "probability": 0.8475 + }, + { + "start": 9455.06, + "end": 9455.64, + "probability": 0.9555 + }, + { + "start": 9455.68, + "end": 9456.2, + "probability": 0.9187 + }, + { + "start": 9456.64, + "end": 9457.95, + "probability": 0.9985 + }, + { + "start": 9458.38, + "end": 9459.9, + "probability": 0.841 + }, + { + "start": 9460.32, + "end": 9461.9, + "probability": 0.9956 + }, + { + "start": 9463.52, + "end": 9465.46, + "probability": 0.9861 + }, + { + "start": 9465.52, + "end": 9468.84, + "probability": 0.9897 + }, + { + "start": 9469.72, + "end": 9470.42, + "probability": 0.6359 + }, + { + "start": 9471.38, + "end": 9474.08, + "probability": 0.9897 + }, + { + "start": 9474.16, + "end": 9475.94, + "probability": 0.9939 + }, + { + "start": 9476.02, + "end": 9477.8, + "probability": 0.9562 + }, + { + "start": 9478.5, + "end": 9481.84, + "probability": 0.9978 + }, + { + "start": 9482.14, + "end": 9482.42, + "probability": 0.3951 + }, + { + "start": 9482.5, + "end": 9488.62, + "probability": 0.6732 + }, + { + "start": 9488.62, + "end": 9488.62, + "probability": 0.3802 + }, + { + "start": 9488.62, + "end": 9488.62, + "probability": 0.0467 + }, + { + "start": 9488.62, + "end": 9488.62, + "probability": 0.1675 + }, + { + "start": 9488.62, + "end": 9488.78, + "probability": 0.2744 + }, + { + "start": 9489.18, + "end": 9490.42, + "probability": 0.9219 + }, + { + "start": 9490.76, + "end": 9493.84, + "probability": 0.9911 + }, + { + "start": 9493.84, + "end": 9497.3, + "probability": 0.9888 + }, + { + "start": 9497.72, + "end": 9498.62, + "probability": 0.9904 + }, + { + "start": 9499.5, + "end": 9500.94, + "probability": 0.9814 + }, + { + "start": 9501.24, + "end": 9502.58, + "probability": 0.9969 + }, + { + "start": 9502.6, + "end": 9503.21, + "probability": 0.7961 + }, + { + "start": 9503.3, + "end": 9504.28, + "probability": 0.8672 + }, + { + "start": 9505.06, + "end": 9507.6, + "probability": 0.9928 + }, + { + "start": 9507.74, + "end": 9509.44, + "probability": 0.7305 + }, + { + "start": 9509.58, + "end": 9511.15, + "probability": 0.9898 + }, + { + "start": 9511.58, + "end": 9514.0, + "probability": 0.9928 + }, + { + "start": 9514.28, + "end": 9516.36, + "probability": 0.8888 + }, + { + "start": 9517.24, + "end": 9517.92, + "probability": 0.8613 + }, + { + "start": 9518.78, + "end": 9521.04, + "probability": 0.634 + }, + { + "start": 9521.48, + "end": 9524.44, + "probability": 0.8912 + }, + { + "start": 9525.04, + "end": 9525.76, + "probability": 0.974 + }, + { + "start": 9529.1, + "end": 9529.72, + "probability": 0.8964 + }, + { + "start": 9531.22, + "end": 9533.28, + "probability": 0.9841 + }, + { + "start": 9534.08, + "end": 9534.82, + "probability": 0.7752 + }, + { + "start": 9537.9, + "end": 9538.4, + "probability": 0.8922 + }, + { + "start": 9544.48, + "end": 9546.3, + "probability": 0.6458 + }, + { + "start": 9547.5, + "end": 9549.22, + "probability": 0.9185 + }, + { + "start": 9550.42, + "end": 9551.62, + "probability": 0.9209 + }, + { + "start": 9552.26, + "end": 9554.04, + "probability": 0.9869 + }, + { + "start": 9555.28, + "end": 9556.52, + "probability": 0.876 + }, + { + "start": 9557.14, + "end": 9559.8, + "probability": 0.9526 + }, + { + "start": 9559.96, + "end": 9562.32, + "probability": 0.9119 + }, + { + "start": 9562.8, + "end": 9563.96, + "probability": 0.4982 + }, + { + "start": 9566.3, + "end": 9567.72, + "probability": 0.8822 + }, + { + "start": 9567.86, + "end": 9569.8, + "probability": 0.9463 + }, + { + "start": 9570.34, + "end": 9572.76, + "probability": 0.9389 + }, + { + "start": 9574.32, + "end": 9580.32, + "probability": 0.9947 + }, + { + "start": 9581.44, + "end": 9582.86, + "probability": 0.8867 + }, + { + "start": 9583.94, + "end": 9589.4, + "probability": 0.9876 + }, + { + "start": 9590.56, + "end": 9591.96, + "probability": 0.6456 + }, + { + "start": 9592.58, + "end": 9595.38, + "probability": 0.985 + }, + { + "start": 9596.76, + "end": 9600.7, + "probability": 0.979 + }, + { + "start": 9602.2, + "end": 9608.58, + "probability": 0.9927 + }, + { + "start": 9609.96, + "end": 9611.64, + "probability": 0.6676 + }, + { + "start": 9612.24, + "end": 9613.02, + "probability": 0.9315 + }, + { + "start": 9613.34, + "end": 9615.33, + "probability": 0.9756 + }, + { + "start": 9615.86, + "end": 9619.88, + "probability": 0.984 + }, + { + "start": 9620.16, + "end": 9621.04, + "probability": 0.7759 + }, + { + "start": 9622.4, + "end": 9625.19, + "probability": 0.9252 + }, + { + "start": 9626.52, + "end": 9631.58, + "probability": 0.9943 + }, + { + "start": 9632.28, + "end": 9634.82, + "probability": 0.7506 + }, + { + "start": 9635.88, + "end": 9636.74, + "probability": 0.7713 + }, + { + "start": 9637.94, + "end": 9638.28, + "probability": 0.8669 + }, + { + "start": 9638.4, + "end": 9642.12, + "probability": 0.8387 + }, + { + "start": 9642.28, + "end": 9644.0, + "probability": 0.8153 + }, + { + "start": 9644.48, + "end": 9645.74, + "probability": 0.9667 + }, + { + "start": 9646.24, + "end": 9647.0, + "probability": 0.7933 + }, + { + "start": 9647.68, + "end": 9649.85, + "probability": 0.9702 + }, + { + "start": 9651.06, + "end": 9656.44, + "probability": 0.9944 + }, + { + "start": 9657.02, + "end": 9658.34, + "probability": 0.7862 + }, + { + "start": 9658.38, + "end": 9661.34, + "probability": 0.9567 + }, + { + "start": 9662.82, + "end": 9667.79, + "probability": 0.9404 + }, + { + "start": 9668.84, + "end": 9672.32, + "probability": 0.9014 + }, + { + "start": 9674.12, + "end": 9678.22, + "probability": 0.6572 + }, + { + "start": 9678.78, + "end": 9683.68, + "probability": 0.9399 + }, + { + "start": 9686.58, + "end": 9687.1, + "probability": 0.5716 + }, + { + "start": 9687.72, + "end": 9688.56, + "probability": 0.7609 + }, + { + "start": 9689.32, + "end": 9690.28, + "probability": 0.7859 + }, + { + "start": 9690.94, + "end": 9694.76, + "probability": 0.9531 + }, + { + "start": 9695.74, + "end": 9697.74, + "probability": 0.9136 + }, + { + "start": 9698.56, + "end": 9700.42, + "probability": 0.8516 + }, + { + "start": 9700.6, + "end": 9705.84, + "probability": 0.9155 + }, + { + "start": 9706.62, + "end": 9707.98, + "probability": 0.9376 + }, + { + "start": 9708.74, + "end": 9714.04, + "probability": 0.7178 + }, + { + "start": 9714.78, + "end": 9718.9, + "probability": 0.9832 + }, + { + "start": 9720.22, + "end": 9723.24, + "probability": 0.916 + }, + { + "start": 9724.3, + "end": 9728.34, + "probability": 0.9836 + }, + { + "start": 9729.0, + "end": 9730.1, + "probability": 0.9673 + }, + { + "start": 9731.02, + "end": 9731.64, + "probability": 0.7493 + }, + { + "start": 9732.74, + "end": 9736.82, + "probability": 0.9812 + }, + { + "start": 9737.52, + "end": 9738.8, + "probability": 0.7884 + }, + { + "start": 9739.74, + "end": 9740.48, + "probability": 0.9582 + }, + { + "start": 9741.0, + "end": 9741.96, + "probability": 0.9711 + }, + { + "start": 9742.54, + "end": 9746.96, + "probability": 0.9422 + }, + { + "start": 9747.08, + "end": 9748.8, + "probability": 0.096 + }, + { + "start": 9750.56, + "end": 9755.66, + "probability": 0.8036 + }, + { + "start": 9756.6, + "end": 9757.46, + "probability": 0.8862 + }, + { + "start": 9758.52, + "end": 9759.96, + "probability": 0.9145 + }, + { + "start": 9760.08, + "end": 9760.78, + "probability": 0.8466 + }, + { + "start": 9760.9, + "end": 9762.26, + "probability": 0.8665 + }, + { + "start": 9762.94, + "end": 9767.76, + "probability": 0.6706 + }, + { + "start": 9768.62, + "end": 9771.08, + "probability": 0.8071 + }, + { + "start": 9771.18, + "end": 9772.8, + "probability": 0.9687 + }, + { + "start": 9792.94, + "end": 9794.84, + "probability": 0.6623 + }, + { + "start": 9796.18, + "end": 9800.16, + "probability": 0.9575 + }, + { + "start": 9801.38, + "end": 9804.38, + "probability": 0.9496 + }, + { + "start": 9805.62, + "end": 9807.88, + "probability": 0.9734 + }, + { + "start": 9809.18, + "end": 9813.46, + "probability": 0.9744 + }, + { + "start": 9814.28, + "end": 9816.04, + "probability": 0.9859 + }, + { + "start": 9817.08, + "end": 9819.74, + "probability": 0.9927 + }, + { + "start": 9821.0, + "end": 9823.4, + "probability": 0.9821 + }, + { + "start": 9824.92, + "end": 9827.76, + "probability": 0.9966 + }, + { + "start": 9828.74, + "end": 9831.2, + "probability": 0.9946 + }, + { + "start": 9832.1, + "end": 9834.72, + "probability": 0.8141 + }, + { + "start": 9835.12, + "end": 9835.38, + "probability": 0.8019 + }, + { + "start": 9836.04, + "end": 9841.86, + "probability": 0.9954 + }, + { + "start": 9843.62, + "end": 9846.34, + "probability": 0.856 + }, + { + "start": 9847.3, + "end": 9851.52, + "probability": 0.725 + }, + { + "start": 9852.82, + "end": 9855.64, + "probability": 0.9966 + }, + { + "start": 9857.2, + "end": 9858.42, + "probability": 0.9552 + }, + { + "start": 9860.14, + "end": 9861.18, + "probability": 0.7148 + }, + { + "start": 9864.2, + "end": 9865.24, + "probability": 0.9901 + }, + { + "start": 9866.58, + "end": 9868.76, + "probability": 0.984 + }, + { + "start": 9869.58, + "end": 9872.88, + "probability": 0.9448 + }, + { + "start": 9872.92, + "end": 9873.42, + "probability": 0.6271 + }, + { + "start": 9873.94, + "end": 9875.52, + "probability": 0.9803 + }, + { + "start": 9876.58, + "end": 9879.24, + "probability": 0.9764 + }, + { + "start": 9879.72, + "end": 9886.64, + "probability": 0.9924 + }, + { + "start": 9887.76, + "end": 9890.06, + "probability": 0.9984 + }, + { + "start": 9890.06, + "end": 9893.34, + "probability": 0.9521 + }, + { + "start": 9894.68, + "end": 9897.96, + "probability": 0.8806 + }, + { + "start": 9898.12, + "end": 9899.12, + "probability": 0.9728 + }, + { + "start": 9900.2, + "end": 9901.4, + "probability": 0.8909 + }, + { + "start": 9902.36, + "end": 9904.86, + "probability": 0.9857 + }, + { + "start": 9905.98, + "end": 9906.46, + "probability": 0.8712 + }, + { + "start": 9907.86, + "end": 9911.88, + "probability": 0.8982 + }, + { + "start": 9912.26, + "end": 9912.58, + "probability": 0.9349 + }, + { + "start": 9913.14, + "end": 9913.86, + "probability": 0.9867 + }, + { + "start": 9914.4, + "end": 9914.92, + "probability": 0.8861 + }, + { + "start": 9915.78, + "end": 9918.64, + "probability": 0.8158 + }, + { + "start": 9919.16, + "end": 9921.8, + "probability": 0.7207 + }, + { + "start": 9922.72, + "end": 9923.98, + "probability": 0.9626 + }, + { + "start": 9938.1, + "end": 9941.98, + "probability": 0.1664 + }, + { + "start": 9942.6, + "end": 9943.94, + "probability": 0.0783 + }, + { + "start": 9944.32, + "end": 9945.34, + "probability": 0.0241 + }, + { + "start": 9945.34, + "end": 9945.56, + "probability": 0.0118 + }, + { + "start": 9950.65, + "end": 9951.37, + "probability": 0.0703 + }, + { + "start": 9986.66, + "end": 9987.26, + "probability": 0.8531 + }, + { + "start": 9987.74, + "end": 9988.78, + "probability": 0.9824 + }, + { + "start": 9989.02, + "end": 9991.94, + "probability": 0.9954 + }, + { + "start": 9991.94, + "end": 9996.24, + "probability": 0.9897 + }, + { + "start": 9998.26, + "end": 10000.92, + "probability": 0.9896 + }, + { + "start": 10001.36, + "end": 10003.86, + "probability": 0.9932 + }, + { + "start": 10005.18, + "end": 10005.92, + "probability": 0.8816 + }, + { + "start": 10006.26, + "end": 10012.3, + "probability": 0.9991 + }, + { + "start": 10013.0, + "end": 10014.06, + "probability": 0.8011 + }, + { + "start": 10014.64, + "end": 10019.78, + "probability": 0.9933 + }, + { + "start": 10020.74, + "end": 10023.52, + "probability": 0.9879 + }, + { + "start": 10023.7, + "end": 10024.84, + "probability": 0.9744 + }, + { + "start": 10025.8, + "end": 10028.82, + "probability": 0.9948 + }, + { + "start": 10028.82, + "end": 10032.1, + "probability": 0.9899 + }, + { + "start": 10032.38, + "end": 10036.64, + "probability": 0.9763 + }, + { + "start": 10037.32, + "end": 10039.56, + "probability": 0.9992 + }, + { + "start": 10040.56, + "end": 10041.9, + "probability": 0.6985 + }, + { + "start": 10041.98, + "end": 10042.6, + "probability": 0.8488 + }, + { + "start": 10042.72, + "end": 10045.5, + "probability": 0.9839 + }, + { + "start": 10046.5, + "end": 10048.48, + "probability": 0.9764 + }, + { + "start": 10049.54, + "end": 10054.08, + "probability": 0.9604 + }, + { + "start": 10054.08, + "end": 10058.6, + "probability": 0.9797 + }, + { + "start": 10059.64, + "end": 10062.96, + "probability": 0.9922 + }, + { + "start": 10063.02, + "end": 10065.55, + "probability": 0.9974 + }, + { + "start": 10066.0, + "end": 10067.46, + "probability": 0.9464 + }, + { + "start": 10067.92, + "end": 10068.62, + "probability": 0.8405 + }, + { + "start": 10069.38, + "end": 10073.3, + "probability": 0.998 + }, + { + "start": 10073.42, + "end": 10076.5, + "probability": 0.9442 + }, + { + "start": 10077.26, + "end": 10080.66, + "probability": 0.9913 + }, + { + "start": 10081.3, + "end": 10084.72, + "probability": 0.9923 + }, + { + "start": 10085.68, + "end": 10086.18, + "probability": 0.5739 + }, + { + "start": 10087.18, + "end": 10089.34, + "probability": 0.999 + }, + { + "start": 10089.52, + "end": 10093.24, + "probability": 0.9864 + }, + { + "start": 10093.34, + "end": 10094.96, + "probability": 0.9685 + }, + { + "start": 10096.36, + "end": 10099.2, + "probability": 0.8979 + }, + { + "start": 10099.9, + "end": 10101.92, + "probability": 0.9488 + }, + { + "start": 10102.48, + "end": 10103.71, + "probability": 0.4304 + }, + { + "start": 10104.62, + "end": 10108.28, + "probability": 0.9259 + }, + { + "start": 10108.88, + "end": 10109.18, + "probability": 0.7407 + }, + { + "start": 10110.26, + "end": 10111.06, + "probability": 0.6639 + }, + { + "start": 10111.48, + "end": 10113.84, + "probability": 0.9761 + }, + { + "start": 10115.32, + "end": 10116.38, + "probability": 0.9422 + }, + { + "start": 10126.68, + "end": 10127.68, + "probability": 0.6093 + }, + { + "start": 10128.82, + "end": 10129.98, + "probability": 0.692 + }, + { + "start": 10130.08, + "end": 10131.32, + "probability": 0.5766 + }, + { + "start": 10133.12, + "end": 10141.48, + "probability": 0.9951 + }, + { + "start": 10142.46, + "end": 10145.36, + "probability": 0.9388 + }, + { + "start": 10147.86, + "end": 10156.28, + "probability": 0.9435 + }, + { + "start": 10157.64, + "end": 10161.18, + "probability": 0.8172 + }, + { + "start": 10162.26, + "end": 10164.94, + "probability": 0.9723 + }, + { + "start": 10166.12, + "end": 10171.26, + "probability": 0.9896 + }, + { + "start": 10171.82, + "end": 10172.78, + "probability": 0.8261 + }, + { + "start": 10172.86, + "end": 10178.41, + "probability": 0.8661 + }, + { + "start": 10180.12, + "end": 10185.92, + "probability": 0.752 + }, + { + "start": 10186.66, + "end": 10188.0, + "probability": 0.7341 + }, + { + "start": 10188.58, + "end": 10190.78, + "probability": 0.9619 + }, + { + "start": 10191.2, + "end": 10196.04, + "probability": 0.7728 + }, + { + "start": 10197.64, + "end": 10199.0, + "probability": 0.7969 + }, + { + "start": 10200.02, + "end": 10200.84, + "probability": 0.7253 + }, + { + "start": 10201.52, + "end": 10205.02, + "probability": 0.4697 + }, + { + "start": 10205.56, + "end": 10207.24, + "probability": 0.9749 + }, + { + "start": 10207.56, + "end": 10209.61, + "probability": 0.7644 + }, + { + "start": 10210.26, + "end": 10213.16, + "probability": 0.9362 + }, + { + "start": 10215.85, + "end": 10218.24, + "probability": 0.752 + }, + { + "start": 10218.28, + "end": 10224.88, + "probability": 0.9788 + }, + { + "start": 10227.38, + "end": 10229.72, + "probability": 0.354 + }, + { + "start": 10230.38, + "end": 10234.0, + "probability": 0.9258 + }, + { + "start": 10234.8, + "end": 10235.68, + "probability": 0.2846 + }, + { + "start": 10235.76, + "end": 10244.26, + "probability": 0.9517 + }, + { + "start": 10245.7, + "end": 10249.4, + "probability": 0.985 + }, + { + "start": 10249.5, + "end": 10250.84, + "probability": 0.9951 + }, + { + "start": 10250.92, + "end": 10254.18, + "probability": 0.9968 + }, + { + "start": 10255.96, + "end": 10259.16, + "probability": 0.8511 + }, + { + "start": 10259.82, + "end": 10265.56, + "probability": 0.9844 + }, + { + "start": 10266.04, + "end": 10272.74, + "probability": 0.967 + }, + { + "start": 10272.8, + "end": 10273.54, + "probability": 0.7867 + }, + { + "start": 10273.56, + "end": 10274.02, + "probability": 0.5798 + }, + { + "start": 10274.12, + "end": 10276.12, + "probability": 0.8209 + }, + { + "start": 10276.18, + "end": 10277.18, + "probability": 0.8083 + }, + { + "start": 10277.4, + "end": 10277.62, + "probability": 0.8434 + }, + { + "start": 10278.02, + "end": 10279.76, + "probability": 0.8429 + }, + { + "start": 10280.16, + "end": 10281.88, + "probability": 0.8563 + }, + { + "start": 10282.0, + "end": 10282.72, + "probability": 0.9344 + }, + { + "start": 10283.06, + "end": 10284.3, + "probability": 0.6965 + }, + { + "start": 10284.88, + "end": 10285.52, + "probability": 0.4554 + }, + { + "start": 10285.98, + "end": 10287.86, + "probability": 0.9462 + }, + { + "start": 10292.34, + "end": 10293.42, + "probability": 0.8228 + }, + { + "start": 10318.18, + "end": 10320.28, + "probability": 0.7168 + }, + { + "start": 10321.94, + "end": 10325.42, + "probability": 0.9524 + }, + { + "start": 10326.32, + "end": 10327.3, + "probability": 0.9359 + }, + { + "start": 10328.06, + "end": 10330.8, + "probability": 0.9814 + }, + { + "start": 10331.22, + "end": 10336.66, + "probability": 0.9896 + }, + { + "start": 10337.32, + "end": 10340.62, + "probability": 0.9891 + }, + { + "start": 10341.9, + "end": 10347.9, + "probability": 0.9916 + }, + { + "start": 10349.6, + "end": 10351.1, + "probability": 0.8547 + }, + { + "start": 10351.22, + "end": 10353.72, + "probability": 0.8558 + }, + { + "start": 10353.72, + "end": 10354.46, + "probability": 0.409 + }, + { + "start": 10355.12, + "end": 10355.18, + "probability": 0.0312 + }, + { + "start": 10355.26, + "end": 10357.58, + "probability": 0.9427 + }, + { + "start": 10358.26, + "end": 10362.92, + "probability": 0.9919 + }, + { + "start": 10363.52, + "end": 10368.28, + "probability": 0.9934 + }, + { + "start": 10368.84, + "end": 10370.06, + "probability": 0.5804 + }, + { + "start": 10370.64, + "end": 10371.92, + "probability": 0.9911 + }, + { + "start": 10373.22, + "end": 10375.34, + "probability": 0.9525 + }, + { + "start": 10375.56, + "end": 10376.72, + "probability": 0.8436 + }, + { + "start": 10377.16, + "end": 10381.1, + "probability": 0.9951 + }, + { + "start": 10381.1, + "end": 10384.86, + "probability": 0.9629 + }, + { + "start": 10385.5, + "end": 10389.26, + "probability": 0.9988 + }, + { + "start": 10389.34, + "end": 10392.78, + "probability": 0.9942 + }, + { + "start": 10393.4, + "end": 10397.0, + "probability": 0.925 + }, + { + "start": 10398.44, + "end": 10404.48, + "probability": 0.972 + }, + { + "start": 10404.48, + "end": 10407.66, + "probability": 0.9975 + }, + { + "start": 10408.7, + "end": 10410.0, + "probability": 0.9983 + }, + { + "start": 10410.54, + "end": 10413.32, + "probability": 0.9654 + }, + { + "start": 10415.98, + "end": 10422.7, + "probability": 0.9949 + }, + { + "start": 10423.38, + "end": 10428.76, + "probability": 0.9979 + }, + { + "start": 10428.92, + "end": 10435.0, + "probability": 0.9993 + }, + { + "start": 10435.66, + "end": 10437.92, + "probability": 0.9963 + }, + { + "start": 10438.86, + "end": 10443.4, + "probability": 0.9892 + }, + { + "start": 10444.02, + "end": 10448.14, + "probability": 0.9973 + }, + { + "start": 10448.66, + "end": 10455.78, + "probability": 0.9875 + }, + { + "start": 10456.76, + "end": 10458.82, + "probability": 0.9688 + }, + { + "start": 10459.8, + "end": 10465.72, + "probability": 0.9978 + }, + { + "start": 10465.9, + "end": 10470.0, + "probability": 0.9889 + }, + { + "start": 10470.6, + "end": 10472.14, + "probability": 0.7057 + }, + { + "start": 10472.62, + "end": 10475.24, + "probability": 0.6622 + }, + { + "start": 10475.62, + "end": 10478.12, + "probability": 0.8906 + }, + { + "start": 10479.2, + "end": 10479.92, + "probability": 0.8185 + }, + { + "start": 10480.5, + "end": 10484.48, + "probability": 0.9865 + }, + { + "start": 10485.2, + "end": 10488.06, + "probability": 0.9983 + }, + { + "start": 10488.06, + "end": 10492.38, + "probability": 0.9949 + }, + { + "start": 10492.76, + "end": 10495.5, + "probability": 0.9873 + }, + { + "start": 10496.5, + "end": 10497.1, + "probability": 0.815 + }, + { + "start": 10497.74, + "end": 10499.64, + "probability": 0.9334 + }, + { + "start": 10501.76, + "end": 10502.96, + "probability": 0.9111 + }, + { + "start": 10510.32, + "end": 10512.04, + "probability": 0.6663 + }, + { + "start": 10513.64, + "end": 10515.52, + "probability": 0.3051 + }, + { + "start": 10517.18, + "end": 10522.6, + "probability": 0.9965 + }, + { + "start": 10523.56, + "end": 10529.04, + "probability": 0.9213 + }, + { + "start": 10531.04, + "end": 10532.54, + "probability": 0.9615 + }, + { + "start": 10532.62, + "end": 10535.86, + "probability": 0.9815 + }, + { + "start": 10535.9, + "end": 10541.32, + "probability": 0.9377 + }, + { + "start": 10543.18, + "end": 10546.06, + "probability": 0.9937 + }, + { + "start": 10546.16, + "end": 10548.48, + "probability": 0.999 + }, + { + "start": 10549.52, + "end": 10551.12, + "probability": 0.9995 + }, + { + "start": 10551.5, + "end": 10554.46, + "probability": 0.8164 + }, + { + "start": 10554.64, + "end": 10556.38, + "probability": 0.9749 + }, + { + "start": 10556.84, + "end": 10559.02, + "probability": 0.9993 + }, + { + "start": 10560.22, + "end": 10563.72, + "probability": 0.9696 + }, + { + "start": 10565.04, + "end": 10568.04, + "probability": 0.9987 + }, + { + "start": 10568.98, + "end": 10573.14, + "probability": 0.9963 + }, + { + "start": 10573.14, + "end": 10577.16, + "probability": 0.9985 + }, + { + "start": 10577.82, + "end": 10580.46, + "probability": 0.7704 + }, + { + "start": 10580.8, + "end": 10581.14, + "probability": 0.7881 + }, + { + "start": 10581.84, + "end": 10582.56, + "probability": 0.5938 + }, + { + "start": 10582.7, + "end": 10584.84, + "probability": 0.9165 + }, + { + "start": 10601.0, + "end": 10602.18, + "probability": 0.8348 + }, + { + "start": 10603.42, + "end": 10605.12, + "probability": 0.51 + }, + { + "start": 10605.58, + "end": 10606.3, + "probability": 0.8698 + }, + { + "start": 10606.82, + "end": 10609.66, + "probability": 0.7854 + }, + { + "start": 10609.96, + "end": 10610.44, + "probability": 0.3539 + }, + { + "start": 10610.44, + "end": 10610.89, + "probability": 0.5868 + }, + { + "start": 10611.08, + "end": 10611.92, + "probability": 0.9932 + }, + { + "start": 10612.82, + "end": 10613.36, + "probability": 0.6934 + }, + { + "start": 10615.38, + "end": 10616.86, + "probability": 0.6714 + }, + { + "start": 10617.37, + "end": 10620.04, + "probability": 0.816 + }, + { + "start": 10620.04, + "end": 10621.39, + "probability": 0.2748 + }, + { + "start": 10622.94, + "end": 10623.8, + "probability": 0.0761 + }, + { + "start": 10623.8, + "end": 10624.3, + "probability": 0.6737 + }, + { + "start": 10624.48, + "end": 10625.22, + "probability": 0.8944 + }, + { + "start": 10627.72, + "end": 10632.58, + "probability": 0.7502 + }, + { + "start": 10633.78, + "end": 10635.02, + "probability": 0.918 + }, + { + "start": 10636.24, + "end": 10640.8, + "probability": 0.9809 + }, + { + "start": 10640.8, + "end": 10640.9, + "probability": 0.8822 + }, + { + "start": 10642.18, + "end": 10645.12, + "probability": 0.9083 + }, + { + "start": 10645.36, + "end": 10646.62, + "probability": 0.985 + }, + { + "start": 10646.78, + "end": 10648.0, + "probability": 0.9692 + }, + { + "start": 10648.04, + "end": 10649.24, + "probability": 0.8801 + }, + { + "start": 10649.7, + "end": 10650.88, + "probability": 0.8262 + }, + { + "start": 10651.0, + "end": 10651.84, + "probability": 0.8236 + }, + { + "start": 10651.92, + "end": 10652.56, + "probability": 0.9842 + }, + { + "start": 10653.46, + "end": 10653.94, + "probability": 0.5657 + }, + { + "start": 10654.6, + "end": 10656.74, + "probability": 0.6869 + }, + { + "start": 10657.38, + "end": 10662.6, + "probability": 0.9958 + }, + { + "start": 10663.94, + "end": 10664.64, + "probability": 0.8885 + }, + { + "start": 10664.96, + "end": 10666.11, + "probability": 0.9531 + }, + { + "start": 10666.78, + "end": 10668.74, + "probability": 0.9862 + }, + { + "start": 10669.24, + "end": 10670.38, + "probability": 0.7316 + }, + { + "start": 10670.78, + "end": 10673.92, + "probability": 0.9939 + }, + { + "start": 10674.74, + "end": 10676.32, + "probability": 0.7402 + }, + { + "start": 10677.02, + "end": 10683.3, + "probability": 0.9971 + }, + { + "start": 10683.3, + "end": 10689.96, + "probability": 0.9967 + }, + { + "start": 10691.2, + "end": 10692.32, + "probability": 0.5373 + }, + { + "start": 10693.34, + "end": 10697.24, + "probability": 0.9917 + }, + { + "start": 10697.24, + "end": 10701.86, + "probability": 0.9958 + }, + { + "start": 10702.64, + "end": 10704.62, + "probability": 0.9459 + }, + { + "start": 10705.18, + "end": 10706.94, + "probability": 0.9944 + }, + { + "start": 10708.1, + "end": 10714.28, + "probability": 0.998 + }, + { + "start": 10714.84, + "end": 10719.62, + "probability": 0.9919 + }, + { + "start": 10720.56, + "end": 10721.26, + "probability": 0.6909 + }, + { + "start": 10721.88, + "end": 10726.44, + "probability": 0.9927 + }, + { + "start": 10726.44, + "end": 10731.9, + "probability": 0.999 + }, + { + "start": 10732.36, + "end": 10733.88, + "probability": 0.9185 + }, + { + "start": 10734.34, + "end": 10738.24, + "probability": 0.9924 + }, + { + "start": 10739.0, + "end": 10740.66, + "probability": 0.9062 + }, + { + "start": 10741.24, + "end": 10744.68, + "probability": 0.9867 + }, + { + "start": 10744.76, + "end": 10746.34, + "probability": 0.5205 + }, + { + "start": 10747.2, + "end": 10750.0, + "probability": 0.7926 + }, + { + "start": 10750.54, + "end": 10753.04, + "probability": 0.9965 + }, + { + "start": 10753.04, + "end": 10757.08, + "probability": 0.9338 + }, + { + "start": 10757.26, + "end": 10758.74, + "probability": 0.97 + }, + { + "start": 10759.1, + "end": 10761.46, + "probability": 0.9976 + }, + { + "start": 10762.14, + "end": 10766.32, + "probability": 0.995 + }, + { + "start": 10766.32, + "end": 10771.16, + "probability": 0.9996 + }, + { + "start": 10771.8, + "end": 10777.66, + "probability": 0.9949 + }, + { + "start": 10778.04, + "end": 10779.6, + "probability": 0.9604 + }, + { + "start": 10780.34, + "end": 10785.32, + "probability": 0.9948 + }, + { + "start": 10785.84, + "end": 10790.52, + "probability": 0.9692 + }, + { + "start": 10791.52, + "end": 10795.3, + "probability": 0.9819 + }, + { + "start": 10795.3, + "end": 10798.04, + "probability": 0.9992 + }, + { + "start": 10798.86, + "end": 10800.5, + "probability": 0.9531 + }, + { + "start": 10801.08, + "end": 10801.24, + "probability": 0.0567 + }, + { + "start": 10801.38, + "end": 10806.9, + "probability": 0.9556 + }, + { + "start": 10807.62, + "end": 10807.82, + "probability": 0.9128 + }, + { + "start": 10808.5, + "end": 10812.74, + "probability": 0.9655 + }, + { + "start": 10812.74, + "end": 10816.78, + "probability": 0.9269 + }, + { + "start": 10817.44, + "end": 10823.04, + "probability": 0.998 + }, + { + "start": 10823.82, + "end": 10826.66, + "probability": 0.8521 + }, + { + "start": 10826.7, + "end": 10830.0, + "probability": 0.8279 + }, + { + "start": 10830.92, + "end": 10836.02, + "probability": 0.9301 + }, + { + "start": 10836.18, + "end": 10836.74, + "probability": 0.5064 + }, + { + "start": 10836.86, + "end": 10838.47, + "probability": 0.876 + }, + { + "start": 10839.18, + "end": 10839.92, + "probability": 0.7685 + }, + { + "start": 10840.06, + "end": 10842.76, + "probability": 0.9578 + }, + { + "start": 10844.02, + "end": 10847.36, + "probability": 0.8112 + }, + { + "start": 10847.42, + "end": 10847.64, + "probability": 0.1707 + }, + { + "start": 10850.2, + "end": 10851.02, + "probability": 0.0162 + }, + { + "start": 10853.68, + "end": 10857.88, + "probability": 0.4641 + }, + { + "start": 10857.96, + "end": 10859.32, + "probability": 0.5887 + }, + { + "start": 10859.36, + "end": 10866.24, + "probability": 0.9821 + }, + { + "start": 10867.38, + "end": 10871.9, + "probability": 0.8159 + }, + { + "start": 10872.64, + "end": 10877.16, + "probability": 0.9319 + }, + { + "start": 10877.92, + "end": 10880.5, + "probability": 0.8322 + }, + { + "start": 10881.44, + "end": 10882.48, + "probability": 0.6923 + }, + { + "start": 10882.54, + "end": 10883.72, + "probability": 0.7956 + }, + { + "start": 10884.2, + "end": 10886.04, + "probability": 0.9888 + }, + { + "start": 10886.12, + "end": 10887.14, + "probability": 0.9187 + }, + { + "start": 10888.54, + "end": 10890.8, + "probability": 0.951 + }, + { + "start": 10892.48, + "end": 10893.84, + "probability": 0.846 + }, + { + "start": 10894.66, + "end": 10898.34, + "probability": 0.9855 + }, + { + "start": 10899.48, + "end": 10902.1, + "probability": 0.9983 + }, + { + "start": 10902.3, + "end": 10903.1, + "probability": 0.9884 + }, + { + "start": 10904.5, + "end": 10909.1, + "probability": 0.9988 + }, + { + "start": 10910.73, + "end": 10912.92, + "probability": 0.9543 + }, + { + "start": 10913.36, + "end": 10914.1, + "probability": 0.8805 + }, + { + "start": 10914.26, + "end": 10914.94, + "probability": 0.9237 + }, + { + "start": 10915.1, + "end": 10915.8, + "probability": 0.8452 + }, + { + "start": 10916.24, + "end": 10919.04, + "probability": 0.9645 + }, + { + "start": 10919.86, + "end": 10923.92, + "probability": 0.9985 + }, + { + "start": 10924.08, + "end": 10925.34, + "probability": 0.9993 + }, + { + "start": 10925.92, + "end": 10928.24, + "probability": 0.9814 + }, + { + "start": 10929.54, + "end": 10931.38, + "probability": 0.9956 + }, + { + "start": 10931.92, + "end": 10933.46, + "probability": 0.8569 + }, + { + "start": 10934.84, + "end": 10936.04, + "probability": 0.8932 + }, + { + "start": 10936.78, + "end": 10939.14, + "probability": 0.995 + }, + { + "start": 10939.88, + "end": 10940.64, + "probability": 0.8713 + }, + { + "start": 10941.46, + "end": 10943.32, + "probability": 0.1003 + }, + { + "start": 10943.9, + "end": 10944.52, + "probability": 0.0287 + }, + { + "start": 10944.52, + "end": 10944.52, + "probability": 0.0995 + }, + { + "start": 10944.52, + "end": 10945.68, + "probability": 0.3636 + }, + { + "start": 10948.66, + "end": 10949.6, + "probability": 0.1718 + }, + { + "start": 10949.84, + "end": 10951.97, + "probability": 0.1172 + }, + { + "start": 10952.88, + "end": 10953.32, + "probability": 0.151 + }, + { + "start": 10954.38, + "end": 10958.11, + "probability": 0.6122 + }, + { + "start": 10958.36, + "end": 10961.06, + "probability": 0.2257 + }, + { + "start": 10965.6, + "end": 10966.98, + "probability": 0.1069 + }, + { + "start": 10969.88, + "end": 10970.96, + "probability": 0.7147 + }, + { + "start": 10971.24, + "end": 10972.56, + "probability": 0.8874 + }, + { + "start": 10972.6, + "end": 10975.22, + "probability": 0.7286 + }, + { + "start": 10976.1, + "end": 10977.64, + "probability": 0.8494 + }, + { + "start": 10977.86, + "end": 10978.72, + "probability": 0.9191 + }, + { + "start": 10978.72, + "end": 10980.15, + "probability": 0.5409 + }, + { + "start": 10980.8, + "end": 10983.1, + "probability": 0.9814 + }, + { + "start": 10983.24, + "end": 10983.78, + "probability": 0.4394 + }, + { + "start": 10984.32, + "end": 10985.4, + "probability": 0.8042 + }, + { + "start": 10985.48, + "end": 10986.7, + "probability": 0.8239 + }, + { + "start": 10986.74, + "end": 10987.28, + "probability": 0.9388 + }, + { + "start": 10987.52, + "end": 10988.66, + "probability": 0.8925 + }, + { + "start": 10988.98, + "end": 10990.08, + "probability": 0.9177 + }, + { + "start": 10990.16, + "end": 10991.04, + "probability": 0.9025 + }, + { + "start": 10992.58, + "end": 10995.22, + "probability": 0.9929 + }, + { + "start": 10995.4, + "end": 10996.94, + "probability": 0.9971 + }, + { + "start": 10997.14, + "end": 10999.3, + "probability": 0.9333 + }, + { + "start": 11000.86, + "end": 11004.78, + "probability": 0.9613 + }, + { + "start": 11005.82, + "end": 11005.88, + "probability": 0.5557 + }, + { + "start": 11005.88, + "end": 11006.38, + "probability": 0.5883 + }, + { + "start": 11006.72, + "end": 11007.84, + "probability": 0.6785 + }, + { + "start": 11007.94, + "end": 11009.5, + "probability": 0.8675 + }, + { + "start": 11009.5, + "end": 11010.24, + "probability": 0.0917 + }, + { + "start": 11010.24, + "end": 11012.8, + "probability": 0.5332 + }, + { + "start": 11013.52, + "end": 11015.98, + "probability": 0.5593 + }, + { + "start": 11016.1, + "end": 11018.3, + "probability": 0.8347 + }, + { + "start": 11018.3, + "end": 11020.02, + "probability": 0.1968 + }, + { + "start": 11020.02, + "end": 11021.42, + "probability": 0.6152 + }, + { + "start": 11021.46, + "end": 11022.34, + "probability": 0.7062 + }, + { + "start": 11023.22, + "end": 11023.24, + "probability": 0.1365 + }, + { + "start": 11023.4, + "end": 11024.28, + "probability": 0.8518 + }, + { + "start": 11024.48, + "end": 11024.74, + "probability": 0.8017 + }, + { + "start": 11024.94, + "end": 11025.32, + "probability": 0.7741 + }, + { + "start": 11025.42, + "end": 11026.08, + "probability": 0.2359 + }, + { + "start": 11026.46, + "end": 11027.56, + "probability": 0.8169 + }, + { + "start": 11027.56, + "end": 11029.44, + "probability": 0.4535 + }, + { + "start": 11029.52, + "end": 11030.08, + "probability": 0.7458 + }, + { + "start": 11030.16, + "end": 11030.48, + "probability": 0.303 + }, + { + "start": 11030.6, + "end": 11031.44, + "probability": 0.9507 + }, + { + "start": 11031.52, + "end": 11032.2, + "probability": 0.8781 + }, + { + "start": 11032.24, + "end": 11032.94, + "probability": 0.8167 + }, + { + "start": 11033.49, + "end": 11035.94, + "probability": 0.9172 + }, + { + "start": 11036.0, + "end": 11036.78, + "probability": 0.7562 + }, + { + "start": 11036.9, + "end": 11036.96, + "probability": 0.4411 + }, + { + "start": 11037.04, + "end": 11038.37, + "probability": 0.9946 + }, + { + "start": 11039.22, + "end": 11043.84, + "probability": 0.9477 + }, + { + "start": 11044.2, + "end": 11045.04, + "probability": 0.3017 + }, + { + "start": 11045.18, + "end": 11046.94, + "probability": 0.8305 + }, + { + "start": 11047.86, + "end": 11048.86, + "probability": 0.8683 + }, + { + "start": 11048.9, + "end": 11049.6, + "probability": 0.8951 + }, + { + "start": 11049.62, + "end": 11050.1, + "probability": 0.9152 + }, + { + "start": 11050.26, + "end": 11050.46, + "probability": 0.6953 + }, + { + "start": 11050.58, + "end": 11053.74, + "probability": 0.9229 + }, + { + "start": 11053.82, + "end": 11055.74, + "probability": 0.6694 + }, + { + "start": 11056.58, + "end": 11058.04, + "probability": 0.8759 + }, + { + "start": 11058.74, + "end": 11059.06, + "probability": 0.7556 + }, + { + "start": 11059.08, + "end": 11061.44, + "probability": 0.88 + }, + { + "start": 11061.84, + "end": 11062.58, + "probability": 0.5795 + }, + { + "start": 11062.72, + "end": 11064.02, + "probability": 0.4582 + }, + { + "start": 11064.14, + "end": 11064.34, + "probability": 0.7281 + }, + { + "start": 11064.44, + "end": 11064.86, + "probability": 0.7343 + }, + { + "start": 11065.04, + "end": 11065.54, + "probability": 0.6765 + }, + { + "start": 11066.48, + "end": 11068.46, + "probability": 0.8003 + }, + { + "start": 11069.04, + "end": 11071.98, + "probability": 0.9845 + }, + { + "start": 11072.24, + "end": 11074.36, + "probability": 0.9059 + }, + { + "start": 11074.46, + "end": 11075.08, + "probability": 0.7778 + }, + { + "start": 11075.16, + "end": 11076.8, + "probability": 0.6649 + }, + { + "start": 11076.84, + "end": 11079.6, + "probability": 0.9492 + }, + { + "start": 11079.64, + "end": 11080.39, + "probability": 0.7769 + }, + { + "start": 11080.86, + "end": 11081.68, + "probability": 0.8733 + }, + { + "start": 11082.54, + "end": 11083.18, + "probability": 0.9189 + }, + { + "start": 11083.28, + "end": 11083.94, + "probability": 0.9834 + }, + { + "start": 11084.0, + "end": 11084.96, + "probability": 0.0028 + }, + { + "start": 11084.96, + "end": 11086.01, + "probability": 0.5854 + }, + { + "start": 11086.54, + "end": 11088.52, + "probability": 0.0569 + }, + { + "start": 11088.78, + "end": 11091.5, + "probability": 0.6416 + }, + { + "start": 11092.46, + "end": 11095.44, + "probability": 0.1198 + }, + { + "start": 11096.72, + "end": 11097.12, + "probability": 0.4207 + }, + { + "start": 11097.18, + "end": 11099.26, + "probability": 0.7587 + }, + { + "start": 11099.56, + "end": 11101.52, + "probability": 0.5509 + }, + { + "start": 11101.52, + "end": 11103.0, + "probability": 0.6631 + }, + { + "start": 11103.36, + "end": 11103.88, + "probability": 0.8263 + }, + { + "start": 11103.92, + "end": 11104.76, + "probability": 0.77 + }, + { + "start": 11104.78, + "end": 11104.84, + "probability": 0.459 + }, + { + "start": 11104.9, + "end": 11106.0, + "probability": 0.8068 + }, + { + "start": 11106.12, + "end": 11109.0, + "probability": 0.328 + }, + { + "start": 11109.1, + "end": 11111.1, + "probability": 0.9082 + }, + { + "start": 11111.14, + "end": 11111.56, + "probability": 0.5852 + }, + { + "start": 11111.76, + "end": 11112.12, + "probability": 0.6379 + }, + { + "start": 11113.12, + "end": 11116.32, + "probability": 0.3811 + }, + { + "start": 11116.72, + "end": 11121.22, + "probability": 0.756 + }, + { + "start": 11121.42, + "end": 11121.7, + "probability": 0.0418 + }, + { + "start": 11121.78, + "end": 11122.52, + "probability": 0.9333 + }, + { + "start": 11122.58, + "end": 11124.37, + "probability": 0.9526 + }, + { + "start": 11124.42, + "end": 11126.66, + "probability": 0.4356 + }, + { + "start": 11126.66, + "end": 11127.38, + "probability": 0.7261 + }, + { + "start": 11128.0, + "end": 11129.92, + "probability": 0.5142 + }, + { + "start": 11130.78, + "end": 11132.5, + "probability": 0.6413 + }, + { + "start": 11132.58, + "end": 11132.84, + "probability": 0.6268 + }, + { + "start": 11132.94, + "end": 11134.0, + "probability": 0.9592 + }, + { + "start": 11134.1, + "end": 11136.76, + "probability": 0.9342 + }, + { + "start": 11136.88, + "end": 11137.14, + "probability": 0.4465 + }, + { + "start": 11137.22, + "end": 11137.42, + "probability": 0.5768 + }, + { + "start": 11137.48, + "end": 11138.78, + "probability": 0.7576 + }, + { + "start": 11138.88, + "end": 11139.56, + "probability": 0.6312 + }, + { + "start": 11139.6, + "end": 11142.6, + "probability": 0.8756 + }, + { + "start": 11142.7, + "end": 11143.18, + "probability": 0.8316 + }, + { + "start": 11143.8, + "end": 11146.26, + "probability": 0.9588 + }, + { + "start": 11146.3, + "end": 11147.85, + "probability": 0.7234 + }, + { + "start": 11148.3, + "end": 11149.88, + "probability": 0.027 + }, + { + "start": 11149.88, + "end": 11150.38, + "probability": 0.6337 + }, + { + "start": 11151.89, + "end": 11152.72, + "probability": 0.0454 + }, + { + "start": 11152.9, + "end": 11153.52, + "probability": 0.5213 + }, + { + "start": 11153.54, + "end": 11154.68, + "probability": 0.4986 + }, + { + "start": 11156.0, + "end": 11158.06, + "probability": 0.9083 + }, + { + "start": 11158.16, + "end": 11159.16, + "probability": 0.9363 + }, + { + "start": 11159.28, + "end": 11162.06, + "probability": 0.9145 + }, + { + "start": 11162.1, + "end": 11162.6, + "probability": 0.7387 + }, + { + "start": 11162.86, + "end": 11163.04, + "probability": 0.5488 + }, + { + "start": 11163.04, + "end": 11163.53, + "probability": 0.6466 + }, + { + "start": 11163.74, + "end": 11165.74, + "probability": 0.1737 + }, + { + "start": 11165.82, + "end": 11166.94, + "probability": 0.0848 + }, + { + "start": 11169.02, + "end": 11172.32, + "probability": 0.2631 + }, + { + "start": 11172.32, + "end": 11173.98, + "probability": 0.65 + }, + { + "start": 11174.9, + "end": 11176.66, + "probability": 0.9526 + }, + { + "start": 11177.64, + "end": 11178.46, + "probability": 0.9861 + }, + { + "start": 11178.6, + "end": 11179.28, + "probability": 0.8589 + }, + { + "start": 11179.76, + "end": 11180.93, + "probability": 0.9424 + }, + { + "start": 11181.02, + "end": 11182.36, + "probability": 0.8285 + }, + { + "start": 11182.56, + "end": 11183.54, + "probability": 0.9801 + }, + { + "start": 11184.0, + "end": 11184.93, + "probability": 0.9889 + }, + { + "start": 11184.96, + "end": 11186.32, + "probability": 0.705 + }, + { + "start": 11186.4, + "end": 11186.58, + "probability": 0.7842 + }, + { + "start": 11186.6, + "end": 11187.3, + "probability": 0.854 + }, + { + "start": 11187.36, + "end": 11188.1, + "probability": 0.7144 + }, + { + "start": 11189.26, + "end": 11190.46, + "probability": 0.9245 + }, + { + "start": 11191.68, + "end": 11193.36, + "probability": 0.6426 + }, + { + "start": 11193.42, + "end": 11194.02, + "probability": 0.6422 + }, + { + "start": 11194.56, + "end": 11195.88, + "probability": 0.5637 + }, + { + "start": 11196.18, + "end": 11196.78, + "probability": 0.9395 + }, + { + "start": 11196.86, + "end": 11198.12, + "probability": 0.9321 + }, + { + "start": 11198.16, + "end": 11198.66, + "probability": 0.9656 + }, + { + "start": 11199.74, + "end": 11200.7, + "probability": 0.863 + }, + { + "start": 11200.78, + "end": 11201.42, + "probability": 0.7688 + }, + { + "start": 11201.48, + "end": 11201.64, + "probability": 0.5625 + }, + { + "start": 11201.66, + "end": 11204.24, + "probability": 0.9655 + }, + { + "start": 11204.3, + "end": 11205.52, + "probability": 0.5118 + }, + { + "start": 11205.6, + "end": 11206.18, + "probability": 0.7848 + }, + { + "start": 11206.24, + "end": 11208.66, + "probability": 0.84 + }, + { + "start": 11208.76, + "end": 11210.0, + "probability": 0.688 + }, + { + "start": 11210.1, + "end": 11210.9, + "probability": 0.9044 + }, + { + "start": 11211.54, + "end": 11212.9, + "probability": 0.9502 + }, + { + "start": 11213.16, + "end": 11213.38, + "probability": 0.922 + }, + { + "start": 11213.88, + "end": 11215.14, + "probability": 0.2533 + }, + { + "start": 11215.86, + "end": 11216.74, + "probability": 0.8883 + }, + { + "start": 11216.74, + "end": 11219.28, + "probability": 0.7807 + }, + { + "start": 11219.42, + "end": 11221.3, + "probability": 0.9578 + }, + { + "start": 11221.48, + "end": 11221.68, + "probability": 0.8998 + }, + { + "start": 11221.76, + "end": 11224.24, + "probability": 0.9971 + }, + { + "start": 11225.02, + "end": 11228.86, + "probability": 0.9912 + }, + { + "start": 11230.2, + "end": 11230.8, + "probability": 0.0006 + }, + { + "start": 11231.36, + "end": 11235.44, + "probability": 0.9779 + }, + { + "start": 11236.0, + "end": 11239.18, + "probability": 0.9502 + }, + { + "start": 11239.62, + "end": 11242.62, + "probability": 0.9971 + }, + { + "start": 11242.96, + "end": 11244.28, + "probability": 0.7924 + }, + { + "start": 11244.36, + "end": 11245.22, + "probability": 0.9503 + }, + { + "start": 11245.88, + "end": 11248.12, + "probability": 0.1471 + }, + { + "start": 11248.84, + "end": 11249.02, + "probability": 0.0831 + }, + { + "start": 11249.6, + "end": 11251.4, + "probability": 0.1481 + }, + { + "start": 11253.34, + "end": 11255.56, + "probability": 0.8304 + }, + { + "start": 11256.38, + "end": 11256.8, + "probability": 0.894 + }, + { + "start": 11268.44, + "end": 11268.8, + "probability": 0.6176 + }, + { + "start": 11269.26, + "end": 11271.2, + "probability": 0.7601 + }, + { + "start": 11273.24, + "end": 11274.57, + "probability": 0.7174 + }, + { + "start": 11274.82, + "end": 11276.74, + "probability": 0.9532 + }, + { + "start": 11277.7, + "end": 11279.96, + "probability": 0.9664 + }, + { + "start": 11281.14, + "end": 11282.68, + "probability": 0.9949 + }, + { + "start": 11282.76, + "end": 11286.28, + "probability": 0.9966 + }, + { + "start": 11287.12, + "end": 11289.16, + "probability": 0.8381 + }, + { + "start": 11289.28, + "end": 11291.36, + "probability": 0.8014 + }, + { + "start": 11292.18, + "end": 11295.48, + "probability": 0.9799 + }, + { + "start": 11296.28, + "end": 11298.62, + "probability": 0.975 + }, + { + "start": 11299.4, + "end": 11302.6, + "probability": 0.9963 + }, + { + "start": 11303.42, + "end": 11306.04, + "probability": 0.9991 + }, + { + "start": 11306.88, + "end": 11308.6, + "probability": 0.5862 + }, + { + "start": 11308.88, + "end": 11310.8, + "probability": 0.8194 + }, + { + "start": 11311.32, + "end": 11313.8, + "probability": 0.8983 + }, + { + "start": 11314.68, + "end": 11318.7, + "probability": 0.9908 + }, + { + "start": 11319.14, + "end": 11319.56, + "probability": 0.5028 + }, + { + "start": 11319.62, + "end": 11320.6, + "probability": 0.6664 + }, + { + "start": 11321.08, + "end": 11323.98, + "probability": 0.9596 + }, + { + "start": 11324.58, + "end": 11328.16, + "probability": 0.9878 + }, + { + "start": 11328.8, + "end": 11331.64, + "probability": 0.9717 + }, + { + "start": 11332.5, + "end": 11335.78, + "probability": 0.9458 + }, + { + "start": 11336.62, + "end": 11338.76, + "probability": 0.9556 + }, + { + "start": 11339.3, + "end": 11342.56, + "probability": 0.9985 + }, + { + "start": 11343.1, + "end": 11346.5, + "probability": 0.9841 + }, + { + "start": 11347.26, + "end": 11347.8, + "probability": 0.8473 + }, + { + "start": 11348.82, + "end": 11349.31, + "probability": 0.1754 + }, + { + "start": 11350.76, + "end": 11351.22, + "probability": 0.791 + }, + { + "start": 11351.84, + "end": 11353.26, + "probability": 0.9565 + }, + { + "start": 11353.84, + "end": 11357.36, + "probability": 0.9898 + }, + { + "start": 11358.36, + "end": 11361.26, + "probability": 0.649 + }, + { + "start": 11361.56, + "end": 11362.48, + "probability": 0.872 + }, + { + "start": 11362.8, + "end": 11363.7, + "probability": 0.874 + }, + { + "start": 11364.1, + "end": 11365.46, + "probability": 0.792 + }, + { + "start": 11365.66, + "end": 11367.42, + "probability": 0.9956 + }, + { + "start": 11368.4, + "end": 11372.04, + "probability": 0.9956 + }, + { + "start": 11372.22, + "end": 11373.04, + "probability": 0.6291 + }, + { + "start": 11373.72, + "end": 11376.33, + "probability": 0.9986 + }, + { + "start": 11377.16, + "end": 11379.86, + "probability": 0.922 + }, + { + "start": 11380.12, + "end": 11380.66, + "probability": 0.8819 + }, + { + "start": 11381.26, + "end": 11385.9, + "probability": 0.998 + }, + { + "start": 11385.92, + "end": 11392.68, + "probability": 0.9621 + }, + { + "start": 11393.26, + "end": 11398.32, + "probability": 0.981 + }, + { + "start": 11398.84, + "end": 11401.66, + "probability": 0.9189 + }, + { + "start": 11401.86, + "end": 11407.3, + "probability": 0.867 + }, + { + "start": 11407.9, + "end": 11412.56, + "probability": 0.9733 + }, + { + "start": 11412.82, + "end": 11414.7, + "probability": 0.9951 + }, + { + "start": 11415.22, + "end": 11420.22, + "probability": 0.9192 + }, + { + "start": 11420.82, + "end": 11427.4, + "probability": 0.8857 + }, + { + "start": 11427.54, + "end": 11428.56, + "probability": 0.8185 + }, + { + "start": 11429.28, + "end": 11431.6, + "probability": 0.9177 + }, + { + "start": 11432.1, + "end": 11433.14, + "probability": 0.7798 + }, + { + "start": 11433.54, + "end": 11434.4, + "probability": 0.9744 + }, + { + "start": 11434.76, + "end": 11436.18, + "probability": 0.9663 + }, + { + "start": 11436.36, + "end": 11437.94, + "probability": 0.9561 + }, + { + "start": 11438.36, + "end": 11439.5, + "probability": 0.5284 + }, + { + "start": 11440.04, + "end": 11444.3, + "probability": 0.8212 + }, + { + "start": 11444.98, + "end": 11447.36, + "probability": 0.9858 + }, + { + "start": 11448.0, + "end": 11451.92, + "probability": 0.9912 + }, + { + "start": 11452.78, + "end": 11454.68, + "probability": 0.9443 + }, + { + "start": 11455.26, + "end": 11456.4, + "probability": 0.959 + }, + { + "start": 11459.84, + "end": 11461.2, + "probability": 0.1425 + }, + { + "start": 11461.2, + "end": 11461.82, + "probability": 0.8738 + }, + { + "start": 11461.86, + "end": 11462.94, + "probability": 0.4506 + }, + { + "start": 11463.44, + "end": 11464.49, + "probability": 0.7094 + }, + { + "start": 11464.58, + "end": 11466.26, + "probability": 0.9602 + }, + { + "start": 11466.76, + "end": 11467.44, + "probability": 0.7254 + }, + { + "start": 11469.44, + "end": 11470.9, + "probability": 0.7374 + }, + { + "start": 11485.3, + "end": 11488.01, + "probability": 0.6498 + }, + { + "start": 11490.18, + "end": 11492.31, + "probability": 0.7554 + }, + { + "start": 11493.18, + "end": 11493.72, + "probability": 0.772 + }, + { + "start": 11493.82, + "end": 11495.4, + "probability": 0.915 + }, + { + "start": 11495.9, + "end": 11497.68, + "probability": 0.9789 + }, + { + "start": 11498.06, + "end": 11498.82, + "probability": 0.508 + }, + { + "start": 11499.51, + "end": 11500.96, + "probability": 0.8011 + }, + { + "start": 11500.96, + "end": 11501.42, + "probability": 0.9229 + }, + { + "start": 11502.42, + "end": 11503.78, + "probability": 0.9785 + }, + { + "start": 11504.42, + "end": 11506.9, + "probability": 0.4805 + }, + { + "start": 11507.44, + "end": 11508.04, + "probability": 0.7158 + }, + { + "start": 11508.24, + "end": 11511.7, + "probability": 0.9903 + }, + { + "start": 11511.7, + "end": 11516.16, + "probability": 0.9856 + }, + { + "start": 11516.92, + "end": 11521.08, + "probability": 0.9941 + }, + { + "start": 11521.14, + "end": 11523.92, + "probability": 0.9797 + }, + { + "start": 11524.2, + "end": 11528.38, + "probability": 0.981 + }, + { + "start": 11529.64, + "end": 11531.22, + "probability": 0.8154 + }, + { + "start": 11531.8, + "end": 11533.52, + "probability": 0.9832 + }, + { + "start": 11534.26, + "end": 11537.8, + "probability": 0.9883 + }, + { + "start": 11538.24, + "end": 11543.22, + "probability": 0.9575 + }, + { + "start": 11543.22, + "end": 11547.4, + "probability": 0.9967 + }, + { + "start": 11547.92, + "end": 11549.72, + "probability": 0.7079 + }, + { + "start": 11550.44, + "end": 11552.96, + "probability": 0.9854 + }, + { + "start": 11553.32, + "end": 11554.1, + "probability": 0.7821 + }, + { + "start": 11554.56, + "end": 11556.22, + "probability": 0.98 + }, + { + "start": 11556.7, + "end": 11557.84, + "probability": 0.9912 + }, + { + "start": 11558.44, + "end": 11559.46, + "probability": 0.9485 + }, + { + "start": 11560.08, + "end": 11562.12, + "probability": 0.7625 + }, + { + "start": 11562.64, + "end": 11567.76, + "probability": 0.9098 + }, + { + "start": 11568.3, + "end": 11570.02, + "probability": 0.9677 + }, + { + "start": 11570.06, + "end": 11570.92, + "probability": 0.9119 + }, + { + "start": 11571.76, + "end": 11576.05, + "probability": 0.7988 + }, + { + "start": 11576.18, + "end": 11577.8, + "probability": 0.7917 + }, + { + "start": 11578.48, + "end": 11581.52, + "probability": 0.978 + }, + { + "start": 11581.72, + "end": 11583.22, + "probability": 0.8087 + }, + { + "start": 11583.98, + "end": 11585.86, + "probability": 0.8993 + }, + { + "start": 11586.72, + "end": 11587.48, + "probability": 0.8374 + }, + { + "start": 11588.76, + "end": 11594.44, + "probability": 0.9758 + }, + { + "start": 11595.32, + "end": 11600.66, + "probability": 0.9379 + }, + { + "start": 11601.18, + "end": 11602.98, + "probability": 0.9619 + }, + { + "start": 11603.46, + "end": 11610.58, + "probability": 0.9815 + }, + { + "start": 11611.26, + "end": 11614.56, + "probability": 0.7345 + }, + { + "start": 11615.32, + "end": 11618.8, + "probability": 0.9432 + }, + { + "start": 11619.36, + "end": 11621.0, + "probability": 0.9907 + }, + { + "start": 11621.38, + "end": 11626.1, + "probability": 0.9905 + }, + { + "start": 11627.1, + "end": 11633.42, + "probability": 0.9927 + }, + { + "start": 11633.82, + "end": 11634.28, + "probability": 0.8244 + }, + { + "start": 11634.4, + "end": 11634.5, + "probability": 0.6372 + }, + { + "start": 11634.58, + "end": 11636.03, + "probability": 0.8815 + }, + { + "start": 11636.6, + "end": 11639.02, + "probability": 0.9658 + }, + { + "start": 11639.93, + "end": 11643.74, + "probability": 0.7495 + }, + { + "start": 11644.32, + "end": 11646.72, + "probability": 0.9774 + }, + { + "start": 11647.9, + "end": 11648.94, + "probability": 0.748 + }, + { + "start": 11649.56, + "end": 11654.06, + "probability": 0.8297 + }, + { + "start": 11654.36, + "end": 11655.7, + "probability": 0.6669 + }, + { + "start": 11656.1, + "end": 11657.58, + "probability": 0.9254 + }, + { + "start": 11658.14, + "end": 11659.18, + "probability": 0.9945 + }, + { + "start": 11659.28, + "end": 11660.3, + "probability": 0.9641 + }, + { + "start": 11660.66, + "end": 11664.28, + "probability": 0.9536 + }, + { + "start": 11664.68, + "end": 11666.04, + "probability": 0.9178 + }, + { + "start": 11666.4, + "end": 11666.86, + "probability": 0.7931 + }, + { + "start": 11668.0, + "end": 11668.5, + "probability": 0.4227 + }, + { + "start": 11668.52, + "end": 11671.09, + "probability": 0.9426 + }, + { + "start": 11672.36, + "end": 11673.95, + "probability": 0.9854 + }, + { + "start": 11674.32, + "end": 11675.08, + "probability": 0.7596 + }, + { + "start": 11675.2, + "end": 11676.46, + "probability": 0.7368 + }, + { + "start": 11676.5, + "end": 11677.32, + "probability": 0.5788 + }, + { + "start": 11677.94, + "end": 11678.98, + "probability": 0.9826 + }, + { + "start": 11701.44, + "end": 11702.02, + "probability": 0.74 + }, + { + "start": 11703.76, + "end": 11707.56, + "probability": 0.4378 + }, + { + "start": 11708.82, + "end": 11711.36, + "probability": 0.867 + }, + { + "start": 11712.52, + "end": 11715.28, + "probability": 0.9557 + }, + { + "start": 11716.74, + "end": 11717.8, + "probability": 0.9524 + }, + { + "start": 11719.08, + "end": 11720.22, + "probability": 0.9484 + }, + { + "start": 11720.86, + "end": 11722.14, + "probability": 0.7788 + }, + { + "start": 11722.68, + "end": 11723.22, + "probability": 0.3043 + }, + { + "start": 11724.72, + "end": 11726.76, + "probability": 0.9519 + }, + { + "start": 11727.14, + "end": 11730.18, + "probability": 0.9284 + }, + { + "start": 11731.3, + "end": 11734.66, + "probability": 0.9869 + }, + { + "start": 11734.78, + "end": 11738.74, + "probability": 0.9948 + }, + { + "start": 11738.82, + "end": 11740.78, + "probability": 0.9529 + }, + { + "start": 11743.24, + "end": 11745.68, + "probability": 0.9514 + }, + { + "start": 11746.22, + "end": 11747.0, + "probability": 0.9922 + }, + { + "start": 11748.2, + "end": 11749.74, + "probability": 0.9354 + }, + { + "start": 11750.62, + "end": 11752.1, + "probability": 0.9075 + }, + { + "start": 11752.9, + "end": 11753.62, + "probability": 0.9795 + }, + { + "start": 11753.7, + "end": 11755.74, + "probability": 0.9757 + }, + { + "start": 11755.74, + "end": 11759.36, + "probability": 0.9516 + }, + { + "start": 11760.1, + "end": 11764.2, + "probability": 0.9844 + }, + { + "start": 11764.32, + "end": 11765.34, + "probability": 0.981 + }, + { + "start": 11766.2, + "end": 11770.42, + "probability": 0.9564 + }, + { + "start": 11770.82, + "end": 11773.06, + "probability": 0.9702 + }, + { + "start": 11773.18, + "end": 11774.32, + "probability": 0.9872 + }, + { + "start": 11775.26, + "end": 11778.36, + "probability": 0.1209 + }, + { + "start": 11778.36, + "end": 11779.48, + "probability": 0.612 + }, + { + "start": 11780.54, + "end": 11782.54, + "probability": 0.8931 + }, + { + "start": 11784.3, + "end": 11787.32, + "probability": 0.9383 + }, + { + "start": 11788.78, + "end": 11790.72, + "probability": 0.9051 + }, + { + "start": 11792.42, + "end": 11795.44, + "probability": 0.942 + }, + { + "start": 11796.58, + "end": 11797.78, + "probability": 0.7371 + }, + { + "start": 11798.76, + "end": 11800.72, + "probability": 0.8836 + }, + { + "start": 11802.72, + "end": 11804.74, + "probability": 0.9073 + }, + { + "start": 11805.14, + "end": 11806.34, + "probability": 0.9012 + }, + { + "start": 11807.2, + "end": 11808.18, + "probability": 0.9056 + }, + { + "start": 11808.8, + "end": 11812.94, + "probability": 0.9941 + }, + { + "start": 11813.92, + "end": 11816.58, + "probability": 0.9183 + }, + { + "start": 11817.26, + "end": 11822.79, + "probability": 0.7794 + }, + { + "start": 11823.64, + "end": 11826.52, + "probability": 0.7898 + }, + { + "start": 11827.2, + "end": 11829.62, + "probability": 0.9967 + }, + { + "start": 11830.36, + "end": 11832.68, + "probability": 0.9547 + }, + { + "start": 11833.44, + "end": 11835.28, + "probability": 0.9136 + }, + { + "start": 11836.84, + "end": 11837.92, + "probability": 0.7321 + }, + { + "start": 11838.12, + "end": 11839.75, + "probability": 0.9226 + }, + { + "start": 11839.98, + "end": 11843.52, + "probability": 0.9909 + }, + { + "start": 11844.08, + "end": 11846.94, + "probability": 0.6464 + }, + { + "start": 11847.62, + "end": 11849.92, + "probability": 0.4678 + }, + { + "start": 11851.08, + "end": 11854.94, + "probability": 0.7167 + }, + { + "start": 11857.02, + "end": 11859.26, + "probability": 0.9907 + }, + { + "start": 11859.34, + "end": 11861.82, + "probability": 0.9935 + }, + { + "start": 11862.34, + "end": 11867.66, + "probability": 0.1135 + }, + { + "start": 11867.76, + "end": 11870.7, + "probability": 0.9964 + }, + { + "start": 11870.78, + "end": 11870.78, + "probability": 0.5142 + }, + { + "start": 11870.78, + "end": 11871.32, + "probability": 0.8994 + }, + { + "start": 11871.48, + "end": 11874.2, + "probability": 0.9893 + }, + { + "start": 11874.72, + "end": 11874.86, + "probability": 0.8889 + }, + { + "start": 11875.22, + "end": 11876.3, + "probability": 0.9521 + }, + { + "start": 11876.62, + "end": 11877.86, + "probability": 0.996 + }, + { + "start": 11878.84, + "end": 11880.76, + "probability": 0.9705 + }, + { + "start": 11881.76, + "end": 11883.42, + "probability": 0.5618 + }, + { + "start": 11883.96, + "end": 11884.64, + "probability": 0.8817 + }, + { + "start": 11885.12, + "end": 11887.5, + "probability": 0.8389 + }, + { + "start": 11888.28, + "end": 11889.32, + "probability": 0.9733 + }, + { + "start": 11889.4, + "end": 11890.58, + "probability": 0.9888 + }, + { + "start": 11890.68, + "end": 11892.04, + "probability": 0.9565 + }, + { + "start": 11892.42, + "end": 11893.44, + "probability": 0.9493 + }, + { + "start": 11893.96, + "end": 11894.9, + "probability": 0.9077 + }, + { + "start": 11895.3, + "end": 11898.56, + "probability": 0.8905 + }, + { + "start": 11899.34, + "end": 11900.02, + "probability": 0.9044 + }, + { + "start": 11900.14, + "end": 11901.64, + "probability": 0.9133 + }, + { + "start": 11901.72, + "end": 11902.18, + "probability": 0.9908 + }, + { + "start": 11902.58, + "end": 11903.23, + "probability": 0.9874 + }, + { + "start": 11903.54, + "end": 11906.26, + "probability": 0.9931 + }, + { + "start": 11906.32, + "end": 11907.1, + "probability": 0.9934 + }, + { + "start": 11907.16, + "end": 11908.98, + "probability": 0.9862 + }, + { + "start": 11909.34, + "end": 11910.8, + "probability": 0.998 + }, + { + "start": 11911.34, + "end": 11914.2, + "probability": 0.8477 + }, + { + "start": 11914.88, + "end": 11915.82, + "probability": 0.3716 + }, + { + "start": 11917.28, + "end": 11919.4, + "probability": 0.9398 + }, + { + "start": 11919.86, + "end": 11920.74, + "probability": 0.8805 + }, + { + "start": 11920.86, + "end": 11924.24, + "probability": 0.9963 + }, + { + "start": 11924.64, + "end": 11925.66, + "probability": 0.9714 + }, + { + "start": 11925.76, + "end": 11928.16, + "probability": 0.9652 + }, + { + "start": 11928.4, + "end": 11931.7, + "probability": 0.9751 + }, + { + "start": 11932.32, + "end": 11934.66, + "probability": 0.9955 + }, + { + "start": 11934.74, + "end": 11935.3, + "probability": 0.7666 + }, + { + "start": 11935.94, + "end": 11938.5, + "probability": 0.7324 + }, + { + "start": 11939.26, + "end": 11939.28, + "probability": 0.1535 + }, + { + "start": 11939.28, + "end": 11941.72, + "probability": 0.7602 + }, + { + "start": 11941.72, + "end": 11945.24, + "probability": 0.9927 + }, + { + "start": 11945.44, + "end": 11947.2, + "probability": 0.8651 + }, + { + "start": 11947.74, + "end": 11950.54, + "probability": 0.6524 + }, + { + "start": 11950.8, + "end": 11952.6, + "probability": 0.8948 + }, + { + "start": 11953.08, + "end": 11954.08, + "probability": 0.8323 + }, + { + "start": 11954.14, + "end": 11954.46, + "probability": 0.8206 + }, + { + "start": 11954.78, + "end": 11956.64, + "probability": 0.9238 + }, + { + "start": 11956.72, + "end": 11958.74, + "probability": 0.9235 + }, + { + "start": 11959.22, + "end": 11960.0, + "probability": 0.7282 + }, + { + "start": 11960.16, + "end": 11963.3, + "probability": 0.3279 + }, + { + "start": 11963.3, + "end": 11963.92, + "probability": 0.1684 + }, + { + "start": 11963.94, + "end": 11965.06, + "probability": 0.6339 + }, + { + "start": 11966.16, + "end": 11968.88, + "probability": 0.9012 + }, + { + "start": 11969.34, + "end": 11970.16, + "probability": 0.6276 + }, + { + "start": 11970.26, + "end": 11971.16, + "probability": 0.7873 + }, + { + "start": 11971.66, + "end": 11972.92, + "probability": 0.633 + }, + { + "start": 11973.08, + "end": 11977.4, + "probability": 0.9666 + }, + { + "start": 11977.62, + "end": 11979.44, + "probability": 0.9724 + }, + { + "start": 11979.62, + "end": 11980.18, + "probability": 0.5784 + }, + { + "start": 11980.7, + "end": 11983.78, + "probability": 0.9976 + }, + { + "start": 11983.84, + "end": 11984.76, + "probability": 0.7759 + }, + { + "start": 11984.92, + "end": 11985.22, + "probability": 0.7061 + }, + { + "start": 11985.28, + "end": 11987.62, + "probability": 0.9041 + }, + { + "start": 11987.68, + "end": 11989.42, + "probability": 0.9619 + }, + { + "start": 11989.5, + "end": 11991.96, + "probability": 0.9885 + }, + { + "start": 11992.44, + "end": 11994.32, + "probability": 0.9888 + }, + { + "start": 11994.8, + "end": 11997.88, + "probability": 0.9904 + }, + { + "start": 11998.3, + "end": 11999.93, + "probability": 0.9934 + }, + { + "start": 12000.18, + "end": 12004.64, + "probability": 0.8169 + }, + { + "start": 12004.86, + "end": 12005.64, + "probability": 0.0512 + }, + { + "start": 12005.74, + "end": 12006.86, + "probability": 0.7667 + }, + { + "start": 12007.24, + "end": 12010.58, + "probability": 0.3949 + }, + { + "start": 12010.84, + "end": 12011.9, + "probability": 0.5681 + }, + { + "start": 12012.16, + "end": 12012.4, + "probability": 0.7524 + }, + { + "start": 12013.0, + "end": 12013.36, + "probability": 0.3138 + }, + { + "start": 12013.4, + "end": 12017.66, + "probability": 0.5451 + }, + { + "start": 12018.18, + "end": 12020.08, + "probability": 0.6434 + }, + { + "start": 12020.3, + "end": 12021.96, + "probability": 0.6928 + }, + { + "start": 12022.16, + "end": 12022.5, + "probability": 0.9824 + }, + { + "start": 12043.84, + "end": 12046.32, + "probability": 0.7702 + }, + { + "start": 12053.36, + "end": 12054.9, + "probability": 0.7818 + }, + { + "start": 12055.58, + "end": 12059.66, + "probability": 0.9716 + }, + { + "start": 12061.18, + "end": 12061.82, + "probability": 0.6137 + }, + { + "start": 12063.08, + "end": 12066.7, + "probability": 0.5042 + }, + { + "start": 12068.64, + "end": 12070.84, + "probability": 0.0598 + }, + { + "start": 12072.28, + "end": 12072.92, + "probability": 0.0281 + }, + { + "start": 12073.78, + "end": 12076.08, + "probability": 0.0298 + }, + { + "start": 12077.44, + "end": 12079.74, + "probability": 0.2948 + }, + { + "start": 12082.26, + "end": 12084.5, + "probability": 0.9592 + }, + { + "start": 12086.48, + "end": 12086.94, + "probability": 0.8211 + }, + { + "start": 12088.38, + "end": 12091.32, + "probability": 0.9658 + }, + { + "start": 12092.68, + "end": 12093.38, + "probability": 0.9067 + }, + { + "start": 12097.3, + "end": 12100.62, + "probability": 0.9921 + }, + { + "start": 12101.78, + "end": 12102.54, + "probability": 0.7429 + }, + { + "start": 12103.74, + "end": 12106.68, + "probability": 0.8552 + }, + { + "start": 12106.84, + "end": 12109.04, + "probability": 0.9335 + }, + { + "start": 12110.16, + "end": 12110.88, + "probability": 0.9576 + }, + { + "start": 12111.84, + "end": 12114.64, + "probability": 0.9799 + }, + { + "start": 12116.14, + "end": 12122.74, + "probability": 0.9798 + }, + { + "start": 12125.4, + "end": 12127.04, + "probability": 0.5063 + }, + { + "start": 12128.14, + "end": 12132.18, + "probability": 0.9913 + }, + { + "start": 12133.64, + "end": 12135.96, + "probability": 0.9579 + }, + { + "start": 12137.4, + "end": 12138.65, + "probability": 0.9971 + }, + { + "start": 12139.52, + "end": 12140.64, + "probability": 0.9673 + }, + { + "start": 12143.12, + "end": 12149.84, + "probability": 0.9955 + }, + { + "start": 12149.84, + "end": 12158.84, + "probability": 0.9447 + }, + { + "start": 12160.66, + "end": 12161.76, + "probability": 0.9125 + }, + { + "start": 12163.0, + "end": 12168.38, + "probability": 0.9954 + }, + { + "start": 12169.72, + "end": 12170.34, + "probability": 0.8052 + }, + { + "start": 12172.08, + "end": 12173.34, + "probability": 0.8615 + }, + { + "start": 12174.22, + "end": 12174.78, + "probability": 0.8496 + }, + { + "start": 12175.74, + "end": 12178.34, + "probability": 0.9976 + }, + { + "start": 12179.24, + "end": 12183.4, + "probability": 0.9543 + }, + { + "start": 12185.54, + "end": 12190.02, + "probability": 0.9783 + }, + { + "start": 12190.8, + "end": 12191.84, + "probability": 0.8452 + }, + { + "start": 12192.66, + "end": 12193.85, + "probability": 0.995 + }, + { + "start": 12194.98, + "end": 12197.76, + "probability": 0.9899 + }, + { + "start": 12199.36, + "end": 12200.38, + "probability": 0.8568 + }, + { + "start": 12202.02, + "end": 12209.24, + "probability": 0.9961 + }, + { + "start": 12212.08, + "end": 12216.24, + "probability": 0.7161 + }, + { + "start": 12216.76, + "end": 12219.18, + "probability": 0.9059 + }, + { + "start": 12221.22, + "end": 12223.3, + "probability": 0.9971 + }, + { + "start": 12224.22, + "end": 12227.48, + "probability": 0.9806 + }, + { + "start": 12227.66, + "end": 12227.66, + "probability": 0.0043 + }, + { + "start": 12232.2, + "end": 12235.34, + "probability": 0.9871 + }, + { + "start": 12236.86, + "end": 12237.96, + "probability": 0.9663 + }, + { + "start": 12239.36, + "end": 12240.86, + "probability": 0.8796 + }, + { + "start": 12241.66, + "end": 12244.14, + "probability": 0.8989 + }, + { + "start": 12245.2, + "end": 12250.92, + "probability": 0.9966 + }, + { + "start": 12253.14, + "end": 12254.3, + "probability": 0.4659 + }, + { + "start": 12254.5, + "end": 12255.42, + "probability": 0.9279 + }, + { + "start": 12277.66, + "end": 12277.82, + "probability": 0.008 + }, + { + "start": 12277.82, + "end": 12278.87, + "probability": 0.4675 + }, + { + "start": 12280.3, + "end": 12283.34, + "probability": 0.8922 + }, + { + "start": 12285.46, + "end": 12289.16, + "probability": 0.932 + }, + { + "start": 12290.1, + "end": 12291.06, + "probability": 0.7389 + }, + { + "start": 12293.58, + "end": 12295.52, + "probability": 0.9533 + }, + { + "start": 12296.5, + "end": 12297.74, + "probability": 0.9187 + }, + { + "start": 12299.92, + "end": 12304.42, + "probability": 0.955 + }, + { + "start": 12305.64, + "end": 12306.56, + "probability": 0.9535 + }, + { + "start": 12307.68, + "end": 12308.1, + "probability": 0.2778 + }, + { + "start": 12308.18, + "end": 12311.4, + "probability": 0.9264 + }, + { + "start": 12311.46, + "end": 12314.24, + "probability": 0.6914 + }, + { + "start": 12315.8, + "end": 12321.36, + "probability": 0.9865 + }, + { + "start": 12321.48, + "end": 12324.13, + "probability": 0.5059 + }, + { + "start": 12326.34, + "end": 12326.34, + "probability": 0.0011 + }, + { + "start": 12329.82, + "end": 12332.96, + "probability": 0.6131 + }, + { + "start": 12334.9, + "end": 12341.02, + "probability": 0.8243 + }, + { + "start": 12342.46, + "end": 12347.54, + "probability": 0.832 + }, + { + "start": 12348.88, + "end": 12354.0, + "probability": 0.9554 + }, + { + "start": 12356.16, + "end": 12356.58, + "probability": 0.8729 + }, + { + "start": 12357.9, + "end": 12361.02, + "probability": 0.5903 + }, + { + "start": 12362.12, + "end": 12363.01, + "probability": 0.5083 + }, + { + "start": 12363.32, + "end": 12364.13, + "probability": 0.8456 + }, + { + "start": 12366.34, + "end": 12370.68, + "probability": 0.8823 + }, + { + "start": 12371.58, + "end": 12375.14, + "probability": 0.9946 + }, + { + "start": 12376.92, + "end": 12380.88, + "probability": 0.9243 + }, + { + "start": 12381.62, + "end": 12383.6, + "probability": 0.9958 + }, + { + "start": 12383.82, + "end": 12386.03, + "probability": 0.8058 + }, + { + "start": 12386.92, + "end": 12387.57, + "probability": 0.5816 + }, + { + "start": 12388.26, + "end": 12391.54, + "probability": 0.9846 + }, + { + "start": 12392.14, + "end": 12393.78, + "probability": 0.8288 + }, + { + "start": 12395.0, + "end": 12399.48, + "probability": 0.9237 + }, + { + "start": 12400.44, + "end": 12402.38, + "probability": 0.8882 + }, + { + "start": 12403.68, + "end": 12405.5, + "probability": 0.8319 + }, + { + "start": 12406.7, + "end": 12409.86, + "probability": 0.6364 + }, + { + "start": 12410.52, + "end": 12411.48, + "probability": 0.019 + }, + { + "start": 12412.4, + "end": 12415.3, + "probability": 0.8962 + }, + { + "start": 12415.62, + "end": 12416.88, + "probability": 0.9824 + }, + { + "start": 12417.66, + "end": 12422.86, + "probability": 0.8835 + }, + { + "start": 12423.58, + "end": 12425.98, + "probability": 0.988 + }, + { + "start": 12427.3, + "end": 12428.36, + "probability": 0.3715 + }, + { + "start": 12431.78, + "end": 12433.96, + "probability": 0.97 + }, + { + "start": 12435.18, + "end": 12438.84, + "probability": 0.9932 + }, + { + "start": 12439.52, + "end": 12441.12, + "probability": 0.8931 + }, + { + "start": 12441.58, + "end": 12449.62, + "probability": 0.9973 + }, + { + "start": 12449.76, + "end": 12450.36, + "probability": 0.7825 + }, + { + "start": 12451.14, + "end": 12451.5, + "probability": 0.3169 + }, + { + "start": 12451.52, + "end": 12452.6, + "probability": 0.9392 + }, + { + "start": 12472.3, + "end": 12474.42, + "probability": 0.5562 + }, + { + "start": 12476.78, + "end": 12483.28, + "probability": 0.7691 + }, + { + "start": 12483.5, + "end": 12484.86, + "probability": 0.8494 + }, + { + "start": 12485.46, + "end": 12487.52, + "probability": 0.7148 + }, + { + "start": 12489.62, + "end": 12494.84, + "probability": 0.9966 + }, + { + "start": 12497.28, + "end": 12499.21, + "probability": 0.9041 + }, + { + "start": 12499.74, + "end": 12503.82, + "probability": 0.8849 + }, + { + "start": 12505.42, + "end": 12509.12, + "probability": 0.9491 + }, + { + "start": 12510.0, + "end": 12511.22, + "probability": 0.7253 + }, + { + "start": 12512.22, + "end": 12514.62, + "probability": 0.9638 + }, + { + "start": 12515.44, + "end": 12517.36, + "probability": 0.9448 + }, + { + "start": 12518.12, + "end": 12520.36, + "probability": 0.9927 + }, + { + "start": 12522.9, + "end": 12523.84, + "probability": 0.7466 + }, + { + "start": 12523.9, + "end": 12524.96, + "probability": 0.9623 + }, + { + "start": 12525.0, + "end": 12527.5, + "probability": 0.8253 + }, + { + "start": 12528.3, + "end": 12530.54, + "probability": 0.8341 + }, + { + "start": 12531.04, + "end": 12531.04, + "probability": 0.8545 + }, + { + "start": 12531.9, + "end": 12533.87, + "probability": 0.7876 + }, + { + "start": 12535.1, + "end": 12535.58, + "probability": 0.067 + }, + { + "start": 12536.2, + "end": 12537.22, + "probability": 0.672 + }, + { + "start": 12538.54, + "end": 12543.48, + "probability": 0.6846 + }, + { + "start": 12544.3, + "end": 12546.92, + "probability": 0.9325 + }, + { + "start": 12547.52, + "end": 12554.34, + "probability": 0.9924 + }, + { + "start": 12555.44, + "end": 12557.46, + "probability": 0.9535 + }, + { + "start": 12557.98, + "end": 12564.18, + "probability": 0.9983 + }, + { + "start": 12565.28, + "end": 12565.63, + "probability": 0.2209 + }, + { + "start": 12567.02, + "end": 12569.2, + "probability": 0.8148 + }, + { + "start": 12569.72, + "end": 12574.86, + "probability": 0.9977 + }, + { + "start": 12575.2, + "end": 12578.58, + "probability": 0.9514 + }, + { + "start": 12580.04, + "end": 12582.66, + "probability": 0.8018 + }, + { + "start": 12582.78, + "end": 12586.42, + "probability": 0.9937 + }, + { + "start": 12586.48, + "end": 12587.34, + "probability": 0.8694 + }, + { + "start": 12587.7, + "end": 12588.78, + "probability": 0.7593 + }, + { + "start": 12589.24, + "end": 12592.84, + "probability": 0.9609 + }, + { + "start": 12593.6, + "end": 12595.46, + "probability": 0.9922 + }, + { + "start": 12596.48, + "end": 12598.44, + "probability": 0.9756 + }, + { + "start": 12599.06, + "end": 12601.54, + "probability": 0.8846 + }, + { + "start": 12602.24, + "end": 12606.61, + "probability": 0.0387 + }, + { + "start": 12607.64, + "end": 12610.14, + "probability": 0.891 + }, + { + "start": 12610.44, + "end": 12612.8, + "probability": 0.9113 + }, + { + "start": 12612.9, + "end": 12613.9, + "probability": 0.9647 + }, + { + "start": 12614.42, + "end": 12616.97, + "probability": 0.8954 + }, + { + "start": 12617.26, + "end": 12618.14, + "probability": 0.7985 + }, + { + "start": 12618.2, + "end": 12622.18, + "probability": 0.7632 + }, + { + "start": 12622.68, + "end": 12627.68, + "probability": 0.9822 + }, + { + "start": 12628.12, + "end": 12628.3, + "probability": 0.7501 + }, + { + "start": 12629.7, + "end": 12629.98, + "probability": 0.0935 + }, + { + "start": 12629.98, + "end": 12632.34, + "probability": 0.6068 + }, + { + "start": 12647.64, + "end": 12649.2, + "probability": 0.6579 + }, + { + "start": 12650.38, + "end": 12659.18, + "probability": 0.8957 + }, + { + "start": 12660.3, + "end": 12667.9, + "probability": 0.9976 + }, + { + "start": 12668.88, + "end": 12669.66, + "probability": 0.9624 + }, + { + "start": 12674.16, + "end": 12675.28, + "probability": 0.9646 + }, + { + "start": 12675.36, + "end": 12675.98, + "probability": 0.9692 + }, + { + "start": 12676.08, + "end": 12678.72, + "probability": 0.8556 + }, + { + "start": 12679.62, + "end": 12680.62, + "probability": 0.7069 + }, + { + "start": 12680.76, + "end": 12682.06, + "probability": 0.9876 + }, + { + "start": 12682.68, + "end": 12683.66, + "probability": 0.8666 + }, + { + "start": 12685.1, + "end": 12691.3, + "probability": 0.9705 + }, + { + "start": 12692.2, + "end": 12695.28, + "probability": 0.9959 + }, + { + "start": 12695.58, + "end": 12696.9, + "probability": 0.8994 + }, + { + "start": 12697.42, + "end": 12698.04, + "probability": 0.7821 + }, + { + "start": 12699.68, + "end": 12700.8, + "probability": 0.989 + }, + { + "start": 12701.86, + "end": 12708.84, + "probability": 0.9855 + }, + { + "start": 12708.98, + "end": 12710.26, + "probability": 0.9129 + }, + { + "start": 12710.3, + "end": 12710.72, + "probability": 0.7705 + }, + { + "start": 12711.54, + "end": 12717.56, + "probability": 0.9901 + }, + { + "start": 12718.08, + "end": 12719.64, + "probability": 0.9945 + }, + { + "start": 12720.54, + "end": 12722.78, + "probability": 0.9943 + }, + { + "start": 12724.12, + "end": 12725.23, + "probability": 0.9461 + }, + { + "start": 12731.18, + "end": 12733.12, + "probability": 0.8685 + }, + { + "start": 12749.66, + "end": 12750.02, + "probability": 0.4813 + }, + { + "start": 12750.54, + "end": 12751.36, + "probability": 0.6126 + }, + { + "start": 12752.32, + "end": 12753.42, + "probability": 0.5552 + }, + { + "start": 12753.5, + "end": 12754.7, + "probability": 0.5339 + }, + { + "start": 12755.26, + "end": 12756.52, + "probability": 0.5723 + }, + { + "start": 12757.0, + "end": 12757.48, + "probability": 0.2465 + }, + { + "start": 12758.66, + "end": 12759.26, + "probability": 0.5039 + }, + { + "start": 12759.32, + "end": 12760.23, + "probability": 0.5876 + }, + { + "start": 12761.9, + "end": 12764.42, + "probability": 0.9176 + }, + { + "start": 12764.98, + "end": 12766.1, + "probability": 0.8393 + }, + { + "start": 12766.64, + "end": 12770.18, + "probability": 0.7642 + }, + { + "start": 12770.44, + "end": 12771.5, + "probability": 0.2076 + }, + { + "start": 12772.66, + "end": 12776.52, + "probability": 0.8856 + }, + { + "start": 12777.7, + "end": 12777.7, + "probability": 0.0482 + }, + { + "start": 12777.7, + "end": 12779.44, + "probability": 0.72 + }, + { + "start": 12779.62, + "end": 12779.74, + "probability": 0.195 + }, + { + "start": 12780.12, + "end": 12782.56, + "probability": 0.3879 + }, + { + "start": 12782.68, + "end": 12783.46, + "probability": 0.2705 + }, + { + "start": 12783.58, + "end": 12787.08, + "probability": 0.2382 + }, + { + "start": 12787.08, + "end": 12789.84, + "probability": 0.4194 + }, + { + "start": 12790.0, + "end": 12791.0, + "probability": 0.3361 + }, + { + "start": 12791.02, + "end": 12792.92, + "probability": 0.8742 + }, + { + "start": 12794.98, + "end": 12798.3, + "probability": 0.9975 + }, + { + "start": 12798.44, + "end": 12800.84, + "probability": 0.4709 + }, + { + "start": 12801.04, + "end": 12802.28, + "probability": 0.6695 + }, + { + "start": 12802.36, + "end": 12803.0, + "probability": 0.6764 + }, + { + "start": 12803.42, + "end": 12806.24, + "probability": 0.7239 + }, + { + "start": 12806.3, + "end": 12810.52, + "probability": 0.7783 + }, + { + "start": 12812.35, + "end": 12815.28, + "probability": 0.8258 + }, + { + "start": 12815.5, + "end": 12817.04, + "probability": 0.4744 + }, + { + "start": 12817.76, + "end": 12820.22, + "probability": 0.6055 + }, + { + "start": 12820.52, + "end": 12820.8, + "probability": 0.2338 + }, + { + "start": 12820.8, + "end": 12823.34, + "probability": 0.8455 + }, + { + "start": 12823.48, + "end": 12824.32, + "probability": 0.9807 + }, + { + "start": 12824.52, + "end": 12826.5, + "probability": 0.7961 + }, + { + "start": 12826.72, + "end": 12827.35, + "probability": 0.3655 + }, + { + "start": 12827.94, + "end": 12830.0, + "probability": 0.3068 + }, + { + "start": 12830.02, + "end": 12830.16, + "probability": 0.3869 + }, + { + "start": 12830.16, + "end": 12831.32, + "probability": 0.7191 + }, + { + "start": 12831.46, + "end": 12832.1, + "probability": 0.4206 + }, + { + "start": 12833.0, + "end": 12837.44, + "probability": 0.4666 + }, + { + "start": 12837.56, + "end": 12837.84, + "probability": 0.3873 + }, + { + "start": 12838.72, + "end": 12839.34, + "probability": 0.9304 + }, + { + "start": 12839.46, + "end": 12840.0, + "probability": 0.0927 + }, + { + "start": 12841.0, + "end": 12844.12, + "probability": 0.987 + }, + { + "start": 12844.2, + "end": 12845.4, + "probability": 0.3515 + }, + { + "start": 12845.68, + "end": 12849.34, + "probability": 0.8042 + }, + { + "start": 12849.38, + "end": 12852.79, + "probability": 0.335 + }, + { + "start": 12855.54, + "end": 12855.96, + "probability": 0.0563 + }, + { + "start": 12855.96, + "end": 12856.04, + "probability": 0.069 + }, + { + "start": 12856.04, + "end": 12857.19, + "probability": 0.3172 + }, + { + "start": 12857.64, + "end": 12858.24, + "probability": 0.6721 + }, + { + "start": 12858.42, + "end": 12860.36, + "probability": 0.9287 + }, + { + "start": 12860.56, + "end": 12862.06, + "probability": 0.9263 + }, + { + "start": 12862.92, + "end": 12863.48, + "probability": 0.9084 + }, + { + "start": 12864.14, + "end": 12864.98, + "probability": 0.8325 + }, + { + "start": 12865.2, + "end": 12868.28, + "probability": 0.4315 + }, + { + "start": 12868.28, + "end": 12870.06, + "probability": 0.9956 + }, + { + "start": 12870.18, + "end": 12871.32, + "probability": 0.4873 + }, + { + "start": 12871.42, + "end": 12872.58, + "probability": 0.6758 + }, + { + "start": 12872.58, + "end": 12874.32, + "probability": 0.7108 + }, + { + "start": 12874.4, + "end": 12875.94, + "probability": 0.759 + }, + { + "start": 12875.94, + "end": 12882.0, + "probability": 0.9867 + }, + { + "start": 12883.12, + "end": 12885.38, + "probability": 0.6752 + }, + { + "start": 12886.08, + "end": 12887.62, + "probability": 0.8654 + }, + { + "start": 12888.22, + "end": 12891.14, + "probability": 0.9888 + }, + { + "start": 12891.2, + "end": 12892.68, + "probability": 0.9346 + }, + { + "start": 12893.18, + "end": 12894.26, + "probability": 0.8611 + }, + { + "start": 12894.88, + "end": 12899.14, + "probability": 0.9849 + }, + { + "start": 12899.14, + "end": 12899.55, + "probability": 0.0291 + }, + { + "start": 12900.6, + "end": 12903.08, + "probability": 0.4983 + }, + { + "start": 12903.08, + "end": 12903.8, + "probability": 0.0458 + }, + { + "start": 12903.8, + "end": 12908.58, + "probability": 0.7727 + }, + { + "start": 12909.16, + "end": 12911.94, + "probability": 0.9733 + }, + { + "start": 12912.4, + "end": 12914.58, + "probability": 0.2367 + }, + { + "start": 12914.8, + "end": 12915.8, + "probability": 0.6368 + }, + { + "start": 12916.04, + "end": 12916.98, + "probability": 0.8946 + }, + { + "start": 12917.08, + "end": 12917.36, + "probability": 0.1612 + }, + { + "start": 12917.36, + "end": 12920.24, + "probability": 0.2311 + }, + { + "start": 12920.84, + "end": 12923.44, + "probability": 0.9776 + }, + { + "start": 12923.7, + "end": 12925.8, + "probability": 0.7372 + }, + { + "start": 12926.4, + "end": 12927.62, + "probability": 0.9137 + }, + { + "start": 12928.2, + "end": 12931.54, + "probability": 0.827 + }, + { + "start": 12931.82, + "end": 12932.12, + "probability": 0.0323 + }, + { + "start": 12932.34, + "end": 12936.82, + "probability": 0.9338 + }, + { + "start": 12949.72, + "end": 12950.3, + "probability": 0.0701 + }, + { + "start": 12950.3, + "end": 12950.3, + "probability": 0.1409 + }, + { + "start": 12950.3, + "end": 12953.8, + "probability": 0.6749 + }, + { + "start": 12953.88, + "end": 12960.0, + "probability": 0.5158 + }, + { + "start": 12960.0, + "end": 12963.16, + "probability": 0.186 + }, + { + "start": 12963.4, + "end": 12963.7, + "probability": 0.5711 + }, + { + "start": 12963.7, + "end": 12966.68, + "probability": 0.8607 + }, + { + "start": 12967.28, + "end": 12967.8, + "probability": 0.9017 + }, + { + "start": 12967.86, + "end": 12968.82, + "probability": 0.6621 + }, + { + "start": 12969.2, + "end": 12972.12, + "probability": 0.8894 + }, + { + "start": 12972.94, + "end": 12974.5, + "probability": 0.9956 + }, + { + "start": 12975.66, + "end": 12976.98, + "probability": 0.9653 + }, + { + "start": 12977.72, + "end": 12979.92, + "probability": 0.9291 + }, + { + "start": 12979.94, + "end": 12980.68, + "probability": 0.657 + }, + { + "start": 12981.3, + "end": 12982.7, + "probability": 0.9642 + }, + { + "start": 12983.24, + "end": 12985.1, + "probability": 0.9937 + }, + { + "start": 12985.26, + "end": 12985.74, + "probability": 0.4729 + }, + { + "start": 12986.0, + "end": 12986.16, + "probability": 0.204 + }, + { + "start": 12988.58, + "end": 12989.92, + "probability": 0.358 + }, + { + "start": 12989.98, + "end": 12991.2, + "probability": 0.0886 + }, + { + "start": 12991.31, + "end": 12994.06, + "probability": 0.3874 + }, + { + "start": 12994.18, + "end": 12994.24, + "probability": 0.4846 + }, + { + "start": 12994.24, + "end": 12997.02, + "probability": 0.8 + }, + { + "start": 12997.48, + "end": 13000.94, + "probability": 0.6591 + }, + { + "start": 13001.14, + "end": 13001.84, + "probability": 0.646 + }, + { + "start": 13001.86, + "end": 13003.94, + "probability": 0.7909 + }, + { + "start": 13004.08, + "end": 13005.82, + "probability": 0.7571 + }, + { + "start": 13006.3, + "end": 13008.98, + "probability": 0.9826 + }, + { + "start": 13009.24, + "end": 13012.48, + "probability": 0.0662 + }, + { + "start": 13014.62, + "end": 13014.62, + "probability": 0.0456 + }, + { + "start": 13014.62, + "end": 13014.62, + "probability": 0.048 + }, + { + "start": 13014.62, + "end": 13014.62, + "probability": 0.0308 + }, + { + "start": 13014.62, + "end": 13014.62, + "probability": 0.0791 + }, + { + "start": 13014.62, + "end": 13015.76, + "probability": 0.5853 + }, + { + "start": 13016.28, + "end": 13019.2, + "probability": 0.6701 + }, + { + "start": 13019.68, + "end": 13020.6, + "probability": 0.9791 + }, + { + "start": 13022.14, + "end": 13023.06, + "probability": 0.4535 + }, + { + "start": 13023.8, + "end": 13026.02, + "probability": 0.0754 + }, + { + "start": 13026.02, + "end": 13027.23, + "probability": 0.1371 + }, + { + "start": 13028.0, + "end": 13030.52, + "probability": 0.9123 + }, + { + "start": 13031.24, + "end": 13032.12, + "probability": 0.5576 + }, + { + "start": 13032.56, + "end": 13036.06, + "probability": 0.9143 + }, + { + "start": 13036.58, + "end": 13038.46, + "probability": 0.5751 + }, + { + "start": 13038.9, + "end": 13041.08, + "probability": 0.9556 + }, + { + "start": 13041.26, + "end": 13045.64, + "probability": 0.945 + }, + { + "start": 13046.26, + "end": 13049.7, + "probability": 0.9805 + }, + { + "start": 13052.0, + "end": 13057.62, + "probability": 0.8025 + }, + { + "start": 13058.56, + "end": 13061.86, + "probability": 0.9252 + }, + { + "start": 13061.92, + "end": 13062.68, + "probability": 0.7082 + }, + { + "start": 13063.2, + "end": 13064.12, + "probability": 0.8986 + }, + { + "start": 13064.82, + "end": 13068.9, + "probability": 0.9969 + }, + { + "start": 13079.64, + "end": 13080.04, + "probability": 0.2155 + }, + { + "start": 13080.06, + "end": 13080.06, + "probability": 0.0255 + }, + { + "start": 13080.06, + "end": 13080.06, + "probability": 0.0726 + }, + { + "start": 13080.06, + "end": 13080.82, + "probability": 0.3529 + }, + { + "start": 13081.22, + "end": 13086.62, + "probability": 0.5617 + }, + { + "start": 13089.2, + "end": 13097.54, + "probability": 0.9209 + }, + { + "start": 13097.72, + "end": 13100.24, + "probability": 0.9893 + }, + { + "start": 13100.9, + "end": 13109.44, + "probability": 0.9952 + }, + { + "start": 13110.26, + "end": 13111.52, + "probability": 0.666 + }, + { + "start": 13112.34, + "end": 13114.58, + "probability": 0.9733 + }, + { + "start": 13115.46, + "end": 13120.32, + "probability": 0.9514 + }, + { + "start": 13120.4, + "end": 13121.06, + "probability": 0.8457 + }, + { + "start": 13122.12, + "end": 13127.24, + "probability": 0.9951 + }, + { + "start": 13129.04, + "end": 13129.08, + "probability": 0.0483 + }, + { + "start": 13129.08, + "end": 13130.94, + "probability": 0.8009 + }, + { + "start": 13131.06, + "end": 13133.2, + "probability": 0.8432 + }, + { + "start": 13136.56, + "end": 13138.8, + "probability": 0.7473 + }, + { + "start": 13139.5, + "end": 13141.28, + "probability": 0.9741 + }, + { + "start": 13141.84, + "end": 13145.12, + "probability": 0.7087 + }, + { + "start": 13145.72, + "end": 13146.54, + "probability": 0.8702 + }, + { + "start": 13147.5, + "end": 13150.02, + "probability": 0.8044 + }, + { + "start": 13150.66, + "end": 13152.36, + "probability": 0.9928 + }, + { + "start": 13153.7, + "end": 13157.7, + "probability": 0.9935 + }, + { + "start": 13157.86, + "end": 13159.42, + "probability": 0.987 + }, + { + "start": 13159.9, + "end": 13162.04, + "probability": 0.5085 + }, + { + "start": 13162.88, + "end": 13165.34, + "probability": 0.9935 + }, + { + "start": 13166.04, + "end": 13167.44, + "probability": 0.9724 + }, + { + "start": 13168.34, + "end": 13168.34, + "probability": 0.873 + }, + { + "start": 13170.64, + "end": 13173.04, + "probability": 0.8958 + }, + { + "start": 13173.98, + "end": 13176.68, + "probability": 0.9187 + }, + { + "start": 13177.32, + "end": 13180.14, + "probability": 0.8328 + }, + { + "start": 13181.56, + "end": 13183.86, + "probability": 0.9897 + }, + { + "start": 13184.44, + "end": 13186.56, + "probability": 0.9977 + }, + { + "start": 13187.46, + "end": 13188.12, + "probability": 0.8613 + }, + { + "start": 13189.34, + "end": 13192.78, + "probability": 0.7137 + }, + { + "start": 13193.42, + "end": 13194.88, + "probability": 0.83 + }, + { + "start": 13195.42, + "end": 13197.78, + "probability": 0.8864 + }, + { + "start": 13198.54, + "end": 13200.33, + "probability": 0.9119 + }, + { + "start": 13201.1, + "end": 13203.22, + "probability": 0.9883 + }, + { + "start": 13203.82, + "end": 13209.12, + "probability": 0.9709 + }, + { + "start": 13209.64, + "end": 13211.2, + "probability": 0.0124 + }, + { + "start": 13211.34, + "end": 13211.46, + "probability": 0.367 + }, + { + "start": 13212.26, + "end": 13214.19, + "probability": 0.0558 + }, + { + "start": 13214.38, + "end": 13215.06, + "probability": 0.8176 + }, + { + "start": 13215.92, + "end": 13216.08, + "probability": 0.3655 + }, + { + "start": 13216.08, + "end": 13217.72, + "probability": 0.1738 + }, + { + "start": 13217.84, + "end": 13218.19, + "probability": 0.0361 + }, + { + "start": 13218.54, + "end": 13219.26, + "probability": 0.6784 + }, + { + "start": 13219.3, + "end": 13219.46, + "probability": 0.8249 + }, + { + "start": 13219.62, + "end": 13222.74, + "probability": 0.9553 + }, + { + "start": 13223.78, + "end": 13225.96, + "probability": 0.9575 + }, + { + "start": 13226.58, + "end": 13228.1, + "probability": 0.8306 + }, + { + "start": 13228.88, + "end": 13229.4, + "probability": 0.6103 + }, + { + "start": 13229.88, + "end": 13231.04, + "probability": 0.7378 + }, + { + "start": 13231.86, + "end": 13232.86, + "probability": 0.7603 + }, + { + "start": 13233.54, + "end": 13233.62, + "probability": 0.0089 + }, + { + "start": 13233.62, + "end": 13236.66, + "probability": 0.9902 + }, + { + "start": 13237.66, + "end": 13239.3, + "probability": 0.7129 + }, + { + "start": 13240.08, + "end": 13242.14, + "probability": 0.3016 + }, + { + "start": 13242.58, + "end": 13244.38, + "probability": 0.9087 + }, + { + "start": 13245.7, + "end": 13250.28, + "probability": 0.9525 + }, + { + "start": 13251.17, + "end": 13253.24, + "probability": 0.7945 + }, + { + "start": 13254.02, + "end": 13254.86, + "probability": 0.3685 + }, + { + "start": 13255.26, + "end": 13256.14, + "probability": 0.7719 + }, + { + "start": 13256.22, + "end": 13257.16, + "probability": 0.6242 + }, + { + "start": 13257.62, + "end": 13259.22, + "probability": 0.9579 + }, + { + "start": 13259.8, + "end": 13266.46, + "probability": 0.96 + }, + { + "start": 13267.82, + "end": 13269.3, + "probability": 0.9937 + }, + { + "start": 13270.8, + "end": 13273.96, + "probability": 0.9328 + }, + { + "start": 13274.0, + "end": 13275.12, + "probability": 0.6078 + }, + { + "start": 13275.7, + "end": 13279.62, + "probability": 0.8318 + }, + { + "start": 13279.86, + "end": 13280.5, + "probability": 0.2111 + }, + { + "start": 13280.5, + "end": 13281.42, + "probability": 0.2553 + }, + { + "start": 13281.56, + "end": 13282.16, + "probability": 0.6721 + }, + { + "start": 13282.24, + "end": 13283.08, + "probability": 0.6682 + }, + { + "start": 13283.44, + "end": 13285.28, + "probability": 0.844 + }, + { + "start": 13285.38, + "end": 13286.28, + "probability": 0.5152 + }, + { + "start": 13286.42, + "end": 13287.22, + "probability": 0.8084 + }, + { + "start": 13287.28, + "end": 13287.56, + "probability": 0.4761 + }, + { + "start": 13287.66, + "end": 13290.46, + "probability": 0.741 + }, + { + "start": 13290.72, + "end": 13292.31, + "probability": 0.3243 + }, + { + "start": 13292.96, + "end": 13293.82, + "probability": 0.1289 + }, + { + "start": 13293.9, + "end": 13295.4, + "probability": 0.1711 + }, + { + "start": 13296.54, + "end": 13298.56, + "probability": 0.5517 + }, + { + "start": 13298.56, + "end": 13299.3, + "probability": 0.5647 + }, + { + "start": 13299.8, + "end": 13300.93, + "probability": 0.8922 + }, + { + "start": 13301.54, + "end": 13303.34, + "probability": 0.2887 + }, + { + "start": 13303.34, + "end": 13303.34, + "probability": 0.0381 + }, + { + "start": 13303.36, + "end": 13304.12, + "probability": 0.5215 + }, + { + "start": 13304.72, + "end": 13305.42, + "probability": 0.7781 + }, + { + "start": 13306.12, + "end": 13309.0, + "probability": 0.9791 + }, + { + "start": 13309.9, + "end": 13313.86, + "probability": 0.7782 + }, + { + "start": 13314.12, + "end": 13314.54, + "probability": 0.2048 + }, + { + "start": 13314.76, + "end": 13316.9, + "probability": 0.2685 + }, + { + "start": 13316.94, + "end": 13318.12, + "probability": 0.6107 + }, + { + "start": 13319.24, + "end": 13322.4, + "probability": 0.7649 + }, + { + "start": 13322.96, + "end": 13322.96, + "probability": 0.0629 + }, + { + "start": 13323.28, + "end": 13323.98, + "probability": 0.6189 + }, + { + "start": 13324.1, + "end": 13324.82, + "probability": 0.7493 + }, + { + "start": 13325.14, + "end": 13328.48, + "probability": 0.8433 + }, + { + "start": 13328.84, + "end": 13331.34, + "probability": 0.9196 + }, + { + "start": 13332.08, + "end": 13332.64, + "probability": 0.2772 + }, + { + "start": 13332.68, + "end": 13336.6, + "probability": 0.9749 + }, + { + "start": 13336.78, + "end": 13337.92, + "probability": 0.5969 + }, + { + "start": 13338.36, + "end": 13340.8, + "probability": 0.7378 + }, + { + "start": 13341.2, + "end": 13342.98, + "probability": 0.9102 + }, + { + "start": 13343.08, + "end": 13343.32, + "probability": 0.1403 + }, + { + "start": 13343.32, + "end": 13345.85, + "probability": 0.3765 + }, + { + "start": 13346.74, + "end": 13350.06, + "probability": 0.6974 + }, + { + "start": 13350.4, + "end": 13350.82, + "probability": 0.3387 + }, + { + "start": 13351.16, + "end": 13353.14, + "probability": 0.3135 + }, + { + "start": 13353.2, + "end": 13354.07, + "probability": 0.3764 + }, + { + "start": 13354.18, + "end": 13356.0, + "probability": 0.9377 + }, + { + "start": 13356.24, + "end": 13356.8, + "probability": 0.4681 + }, + { + "start": 13356.84, + "end": 13357.59, + "probability": 0.6001 + }, + { + "start": 13357.94, + "end": 13358.3, + "probability": 0.7031 + }, + { + "start": 13358.58, + "end": 13359.58, + "probability": 0.5716 + }, + { + "start": 13359.58, + "end": 13362.14, + "probability": 0.9802 + }, + { + "start": 13362.2, + "end": 13362.78, + "probability": 0.1953 + }, + { + "start": 13363.0, + "end": 13363.64, + "probability": 0.2166 + }, + { + "start": 13364.34, + "end": 13366.66, + "probability": 0.059 + }, + { + "start": 13366.96, + "end": 13370.08, + "probability": 0.226 + }, + { + "start": 13370.08, + "end": 13370.78, + "probability": 0.0451 + }, + { + "start": 13371.38, + "end": 13371.84, + "probability": 0.177 + }, + { + "start": 13372.66, + "end": 13372.66, + "probability": 0.0046 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.0, + "end": 13480.0, + "probability": 0.0 + }, + { + "start": 13480.08, + "end": 13481.18, + "probability": 0.5714 + }, + { + "start": 13481.18, + "end": 13482.7, + "probability": 0.7682 + }, + { + "start": 13482.74, + "end": 13486.88, + "probability": 0.9421 + }, + { + "start": 13487.18, + "end": 13489.12, + "probability": 0.9951 + }, + { + "start": 13489.22, + "end": 13490.42, + "probability": 0.8922 + }, + { + "start": 13490.48, + "end": 13493.98, + "probability": 0.9559 + }, + { + "start": 13494.04, + "end": 13496.14, + "probability": 0.9519 + }, + { + "start": 13496.22, + "end": 13496.95, + "probability": 0.8421 + }, + { + "start": 13497.52, + "end": 13499.34, + "probability": 0.755 + }, + { + "start": 13499.42, + "end": 13499.92, + "probability": 0.7142 + }, + { + "start": 13500.06, + "end": 13501.14, + "probability": 0.4684 + }, + { + "start": 13501.16, + "end": 13505.11, + "probability": 0.1993 + }, + { + "start": 13511.36, + "end": 13512.49, + "probability": 0.3262 + }, + { + "start": 13522.06, + "end": 13523.24, + "probability": 0.0719 + }, + { + "start": 13523.78, + "end": 13529.36, + "probability": 0.0541 + }, + { + "start": 13529.36, + "end": 13534.42, + "probability": 0.2364 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.0, + "end": 13602.0, + "probability": 0.0 + }, + { + "start": 13602.1, + "end": 13604.92, + "probability": 0.4848 + }, + { + "start": 13604.98, + "end": 13605.73, + "probability": 0.5162 + }, + { + "start": 13606.56, + "end": 13607.81, + "probability": 0.9924 + }, + { + "start": 13608.04, + "end": 13609.62, + "probability": 0.696 + }, + { + "start": 13610.78, + "end": 13613.03, + "probability": 0.934 + }, + { + "start": 13613.14, + "end": 13613.46, + "probability": 0.7541 + }, + { + "start": 13613.54, + "end": 13614.84, + "probability": 0.9741 + }, + { + "start": 13615.12, + "end": 13616.38, + "probability": 0.8643 + }, + { + "start": 13617.02, + "end": 13619.01, + "probability": 0.9607 + }, + { + "start": 13619.52, + "end": 13620.26, + "probability": 0.3616 + }, + { + "start": 13621.14, + "end": 13621.54, + "probability": 0.2812 + }, + { + "start": 13622.2, + "end": 13622.48, + "probability": 0.0819 + }, + { + "start": 13622.48, + "end": 13622.7, + "probability": 0.3461 + }, + { + "start": 13622.84, + "end": 13623.28, + "probability": 0.4669 + }, + { + "start": 13623.28, + "end": 13623.28, + "probability": 0.4794 + }, + { + "start": 13623.32, + "end": 13625.22, + "probability": 0.1752 + }, + { + "start": 13625.88, + "end": 13630.92, + "probability": 0.776 + }, + { + "start": 13631.86, + "end": 13632.14, + "probability": 0.4649 + }, + { + "start": 13632.7, + "end": 13636.2, + "probability": 0.8433 + }, + { + "start": 13636.28, + "end": 13638.88, + "probability": 0.8202 + }, + { + "start": 13638.9, + "end": 13639.5, + "probability": 0.8279 + }, + { + "start": 13639.6, + "end": 13641.0, + "probability": 0.8592 + }, + { + "start": 13641.32, + "end": 13642.32, + "probability": 0.7241 + }, + { + "start": 13642.7, + "end": 13643.54, + "probability": 0.5584 + }, + { + "start": 13644.48, + "end": 13646.06, + "probability": 0.9419 + }, + { + "start": 13646.3, + "end": 13646.82, + "probability": 0.8694 + }, + { + "start": 13647.82, + "end": 13648.56, + "probability": 0.9165 + }, + { + "start": 13649.44, + "end": 13649.6, + "probability": 0.2925 + }, + { + "start": 13649.74, + "end": 13658.16, + "probability": 0.9744 + }, + { + "start": 13658.38, + "end": 13659.8, + "probability": 0.9157 + }, + { + "start": 13659.9, + "end": 13663.38, + "probability": 0.9675 + }, + { + "start": 13664.48, + "end": 13666.16, + "probability": 0.9248 + }, + { + "start": 13666.3, + "end": 13666.54, + "probability": 0.7829 + }, + { + "start": 13666.62, + "end": 13667.32, + "probability": 0.7237 + }, + { + "start": 13668.32, + "end": 13669.46, + "probability": 0.9525 + }, + { + "start": 13669.52, + "end": 13670.33, + "probability": 0.9592 + }, + { + "start": 13670.8, + "end": 13671.8, + "probability": 0.931 + }, + { + "start": 13672.2, + "end": 13672.68, + "probability": 0.964 + }, + { + "start": 13673.24, + "end": 13676.86, + "probability": 0.8291 + }, + { + "start": 13677.06, + "end": 13679.2, + "probability": 0.8119 + }, + { + "start": 13680.45, + "end": 13683.22, + "probability": 0.6716 + }, + { + "start": 13684.44, + "end": 13687.66, + "probability": 0.8073 + }, + { + "start": 13688.9, + "end": 13690.54, + "probability": 0.9658 + }, + { + "start": 13691.0, + "end": 13692.68, + "probability": 0.8184 + }, + { + "start": 13693.08, + "end": 13693.9, + "probability": 0.7969 + }, + { + "start": 13693.9, + "end": 13696.36, + "probability": 0.9469 + }, + { + "start": 13697.9, + "end": 13701.68, + "probability": 0.85 + }, + { + "start": 13702.34, + "end": 13702.86, + "probability": 0.883 + }, + { + "start": 13702.98, + "end": 13703.72, + "probability": 0.9729 + }, + { + "start": 13703.98, + "end": 13705.5, + "probability": 0.9221 + }, + { + "start": 13705.58, + "end": 13707.92, + "probability": 0.9246 + }, + { + "start": 13708.46, + "end": 13710.7, + "probability": 0.7128 + }, + { + "start": 13711.38, + "end": 13715.2, + "probability": 0.9972 + }, + { + "start": 13715.2, + "end": 13718.66, + "probability": 0.9445 + }, + { + "start": 13719.7, + "end": 13722.38, + "probability": 0.9229 + }, + { + "start": 13722.84, + "end": 13728.8, + "probability": 0.832 + }, + { + "start": 13729.56, + "end": 13730.44, + "probability": 0.87 + }, + { + "start": 13730.76, + "end": 13732.02, + "probability": 0.9624 + }, + { + "start": 13732.82, + "end": 13734.8, + "probability": 0.8079 + }, + { + "start": 13735.84, + "end": 13737.24, + "probability": 0.9224 + }, + { + "start": 13738.12, + "end": 13738.74, + "probability": 0.9603 + }, + { + "start": 13739.26, + "end": 13740.38, + "probability": 0.9507 + }, + { + "start": 13740.86, + "end": 13742.0, + "probability": 0.9839 + }, + { + "start": 13742.48, + "end": 13743.32, + "probability": 0.8912 + }, + { + "start": 13743.74, + "end": 13746.28, + "probability": 0.9533 + }, + { + "start": 13746.28, + "end": 13746.58, + "probability": 0.8746 + }, + { + "start": 13747.46, + "end": 13749.32, + "probability": 0.605 + }, + { + "start": 13749.32, + "end": 13750.24, + "probability": 0.5479 + }, + { + "start": 13750.44, + "end": 13752.04, + "probability": 0.4114 + }, + { + "start": 13752.46, + "end": 13753.12, + "probability": 0.4906 + }, + { + "start": 13753.22, + "end": 13756.42, + "probability": 0.0887 + }, + { + "start": 13756.92, + "end": 13756.92, + "probability": 0.2868 + }, + { + "start": 13756.92, + "end": 13756.92, + "probability": 0.085 + }, + { + "start": 13756.92, + "end": 13757.94, + "probability": 0.2579 + }, + { + "start": 13758.1, + "end": 13759.7, + "probability": 0.6716 + }, + { + "start": 13759.98, + "end": 13761.32, + "probability": 0.5907 + }, + { + "start": 13762.06, + "end": 13763.14, + "probability": 0.161 + }, + { + "start": 13763.4, + "end": 13765.42, + "probability": 0.1744 + }, + { + "start": 13765.64, + "end": 13766.7, + "probability": 0.3501 + }, + { + "start": 13766.7, + "end": 13769.92, + "probability": 0.6021 + }, + { + "start": 13769.96, + "end": 13770.04, + "probability": 0.4218 + }, + { + "start": 13770.04, + "end": 13771.76, + "probability": 0.7314 + }, + { + "start": 13772.04, + "end": 13773.16, + "probability": 0.5231 + }, + { + "start": 13773.4, + "end": 13774.18, + "probability": 0.7703 + }, + { + "start": 13774.88, + "end": 13778.43, + "probability": 0.9924 + }, + { + "start": 13778.84, + "end": 13779.26, + "probability": 0.8335 + }, + { + "start": 13779.66, + "end": 13782.48, + "probability": 0.5309 + }, + { + "start": 13782.6, + "end": 13784.12, + "probability": 0.6648 + }, + { + "start": 13784.74, + "end": 13787.58, + "probability": 0.8524 + }, + { + "start": 13787.72, + "end": 13788.58, + "probability": 0.4532 + }, + { + "start": 13789.0, + "end": 13790.08, + "probability": 0.5034 + }, + { + "start": 13790.1, + "end": 13792.34, + "probability": 0.6309 + }, + { + "start": 13792.46, + "end": 13794.54, + "probability": 0.9884 + }, + { + "start": 13795.16, + "end": 13796.66, + "probability": 0.3 + }, + { + "start": 13796.7, + "end": 13797.48, + "probability": 0.6674 + }, + { + "start": 13798.64, + "end": 13799.82, + "probability": 0.6342 + }, + { + "start": 13800.06, + "end": 13801.72, + "probability": 0.9926 + }, + { + "start": 13802.16, + "end": 13803.9, + "probability": 0.9222 + }, + { + "start": 13803.9, + "end": 13808.38, + "probability": 0.4848 + }, + { + "start": 13809.75, + "end": 13811.74, + "probability": 0.698 + }, + { + "start": 13811.78, + "end": 13813.94, + "probability": 0.805 + }, + { + "start": 13813.94, + "end": 13814.6, + "probability": 0.6638 + }, + { + "start": 13814.96, + "end": 13817.58, + "probability": 0.2256 + }, + { + "start": 13817.64, + "end": 13820.37, + "probability": 0.8199 + }, + { + "start": 13820.64, + "end": 13821.2, + "probability": 0.627 + }, + { + "start": 13821.48, + "end": 13821.48, + "probability": 0.6939 + }, + { + "start": 13821.48, + "end": 13821.66, + "probability": 0.3411 + }, + { + "start": 13821.82, + "end": 13822.46, + "probability": 0.77 + }, + { + "start": 13822.62, + "end": 13823.28, + "probability": 0.0999 + }, + { + "start": 13824.38, + "end": 13827.44, + "probability": 0.9365 + }, + { + "start": 13827.58, + "end": 13828.36, + "probability": 0.9282 + }, + { + "start": 13828.36, + "end": 13831.2, + "probability": 0.5842 + }, + { + "start": 13831.64, + "end": 13832.9, + "probability": 0.9929 + }, + { + "start": 13833.04, + "end": 13836.58, + "probability": 0.9943 + }, + { + "start": 13836.82, + "end": 13841.56, + "probability": 0.3976 + }, + { + "start": 13841.7, + "end": 13842.02, + "probability": 0.9171 + }, + { + "start": 13842.08, + "end": 13846.16, + "probability": 0.7297 + }, + { + "start": 13846.24, + "end": 13846.88, + "probability": 0.5643 + }, + { + "start": 13846.92, + "end": 13847.38, + "probability": 0.9813 + }, + { + "start": 13847.44, + "end": 13848.24, + "probability": 0.9254 + }, + { + "start": 13848.56, + "end": 13849.2, + "probability": 0.8497 + }, + { + "start": 13849.52, + "end": 13851.3, + "probability": 0.9568 + }, + { + "start": 13851.3, + "end": 13854.02, + "probability": 0.8108 + }, + { + "start": 13855.56, + "end": 13858.26, + "probability": 0.6124 + }, + { + "start": 13858.66, + "end": 13860.92, + "probability": 0.608 + }, + { + "start": 13861.06, + "end": 13861.64, + "probability": 0.7916 + }, + { + "start": 13862.02, + "end": 13863.07, + "probability": 0.1252 + }, + { + "start": 13863.14, + "end": 13865.76, + "probability": 0.6667 + }, + { + "start": 13866.1, + "end": 13867.24, + "probability": 0.7169 + }, + { + "start": 13867.42, + "end": 13868.96, + "probability": 0.2148 + }, + { + "start": 13869.0, + "end": 13869.64, + "probability": 0.2143 + }, + { + "start": 13869.7, + "end": 13871.7, + "probability": 0.5935 + }, + { + "start": 13871.96, + "end": 13874.86, + "probability": 0.259 + }, + { + "start": 13874.86, + "end": 13878.0, + "probability": 0.8449 + }, + { + "start": 13878.81, + "end": 13881.86, + "probability": 0.6212 + }, + { + "start": 13881.86, + "end": 13888.18, + "probability": 0.2693 + }, + { + "start": 13888.42, + "end": 13890.57, + "probability": 0.9702 + }, + { + "start": 13891.88, + "end": 13893.1, + "probability": 0.9022 + }, + { + "start": 13893.16, + "end": 13894.96, + "probability": 0.5575 + }, + { + "start": 13895.06, + "end": 13895.42, + "probability": 0.8599 + }, + { + "start": 13895.84, + "end": 13899.24, + "probability": 0.9972 + }, + { + "start": 13899.24, + "end": 13902.96, + "probability": 0.9664 + }, + { + "start": 13903.36, + "end": 13904.98, + "probability": 0.3548 + }, + { + "start": 13905.2, + "end": 13905.66, + "probability": 0.1555 + }, + { + "start": 13906.84, + "end": 13908.8, + "probability": 0.1775 + }, + { + "start": 13909.38, + "end": 13911.04, + "probability": 0.2331 + }, + { + "start": 13911.04, + "end": 13911.96, + "probability": 0.4716 + }, + { + "start": 13912.44, + "end": 13913.32, + "probability": 0.6072 + }, + { + "start": 13913.32, + "end": 13913.66, + "probability": 0.719 + }, + { + "start": 13914.1, + "end": 13915.92, + "probability": 0.8298 + }, + { + "start": 13916.36, + "end": 13916.8, + "probability": 0.3651 + }, + { + "start": 13919.44, + "end": 13920.9, + "probability": 0.8688 + }, + { + "start": 13921.74, + "end": 13923.38, + "probability": 0.9841 + }, + { + "start": 13924.86, + "end": 13928.04, + "probability": 0.864 + }, + { + "start": 13928.62, + "end": 13929.08, + "probability": 0.6653 + }, + { + "start": 13929.66, + "end": 13930.32, + "probability": 0.526 + }, + { + "start": 13930.46, + "end": 13932.22, + "probability": 0.6669 + }, + { + "start": 13933.02, + "end": 13934.5, + "probability": 0.9647 + }, + { + "start": 13935.24, + "end": 13937.16, + "probability": 0.8941 + }, + { + "start": 13938.12, + "end": 13940.56, + "probability": 0.9888 + }, + { + "start": 13941.84, + "end": 13942.38, + "probability": 0.0945 + }, + { + "start": 13943.48, + "end": 13944.06, + "probability": 0.7527 + }, + { + "start": 13944.18, + "end": 13944.72, + "probability": 0.7429 + }, + { + "start": 13944.82, + "end": 13946.16, + "probability": 0.8263 + }, + { + "start": 13946.66, + "end": 13947.66, + "probability": 0.8144 + }, + { + "start": 13947.94, + "end": 13950.04, + "probability": 0.0693 + }, + { + "start": 13951.96, + "end": 13955.8, + "probability": 0.9889 + }, + { + "start": 13956.1, + "end": 13956.84, + "probability": 0.5649 + }, + { + "start": 13956.92, + "end": 13957.5, + "probability": 0.9958 + }, + { + "start": 13958.3, + "end": 13962.54, + "probability": 0.991 + }, + { + "start": 13962.92, + "end": 13963.22, + "probability": 0.7946 + }, + { + "start": 13963.88, + "end": 13965.12, + "probability": 0.5239 + }, + { + "start": 13965.32, + "end": 13966.79, + "probability": 0.7778 + }, + { + "start": 13967.9, + "end": 13969.4, + "probability": 0.9473 + }, + { + "start": 13970.4, + "end": 13973.45, + "probability": 0.9154 + }, + { + "start": 13975.94, + "end": 13975.94, + "probability": 0.0694 + }, + { + "start": 13975.94, + "end": 13977.16, + "probability": 0.8394 + }, + { + "start": 13977.36, + "end": 13977.62, + "probability": 0.3655 + }, + { + "start": 13977.7, + "end": 13979.2, + "probability": 0.1876 + }, + { + "start": 13980.5, + "end": 13981.42, + "probability": 0.8116 + }, + { + "start": 13982.32, + "end": 13984.08, + "probability": 0.6809 + }, + { + "start": 13985.58, + "end": 13988.24, + "probability": 0.7534 + }, + { + "start": 13995.72, + "end": 13997.6, + "probability": 0.2191 + }, + { + "start": 13998.04, + "end": 14002.12, + "probability": 0.1021 + }, + { + "start": 14003.04, + "end": 14004.24, + "probability": 0.2612 + }, + { + "start": 14004.34, + "end": 14005.16, + "probability": 0.4729 + }, + { + "start": 14005.44, + "end": 14006.6, + "probability": 0.3245 + }, + { + "start": 14006.94, + "end": 14007.9, + "probability": 0.7356 + }, + { + "start": 14008.98, + "end": 14010.78, + "probability": 0.4308 + }, + { + "start": 14011.46, + "end": 14013.78, + "probability": 0.5266 + }, + { + "start": 14014.08, + "end": 14014.5, + "probability": 0.6868 + }, + { + "start": 14015.0, + "end": 14017.14, + "probability": 0.1801 + }, + { + "start": 14017.62, + "end": 14017.62, + "probability": 0.2553 + }, + { + "start": 14017.62, + "end": 14018.48, + "probability": 0.5508 + }, + { + "start": 14018.7, + "end": 14020.36, + "probability": 0.9668 + }, + { + "start": 14020.48, + "end": 14020.92, + "probability": 0.5603 + }, + { + "start": 14021.02, + "end": 14021.47, + "probability": 0.9759 + }, + { + "start": 14022.72, + "end": 14023.94, + "probability": 0.8327 + }, + { + "start": 14024.26, + "end": 14025.18, + "probability": 0.5696 + }, + { + "start": 14025.26, + "end": 14026.84, + "probability": 0.9473 + }, + { + "start": 14027.59, + "end": 14030.8, + "probability": 0.8247 + }, + { + "start": 14031.96, + "end": 14036.96, + "probability": 0.8792 + }, + { + "start": 14037.16, + "end": 14039.02, + "probability": 0.3996 + }, + { + "start": 14039.08, + "end": 14040.62, + "probability": 0.9149 + }, + { + "start": 14041.88, + "end": 14043.86, + "probability": 0.0766 + }, + { + "start": 14044.06, + "end": 14047.52, + "probability": 0.8242 + }, + { + "start": 14048.08, + "end": 14050.68, + "probability": 0.3783 + }, + { + "start": 14050.74, + "end": 14056.98, + "probability": 0.8078 + }, + { + "start": 14057.28, + "end": 14061.32, + "probability": 0.7187 + }, + { + "start": 14061.38, + "end": 14062.14, + "probability": 0.1958 + }, + { + "start": 14062.14, + "end": 14067.16, + "probability": 0.8954 + }, + { + "start": 14067.46, + "end": 14068.64, + "probability": 0.6672 + }, + { + "start": 14069.16, + "end": 14072.28, + "probability": 0.9945 + }, + { + "start": 14072.78, + "end": 14074.61, + "probability": 0.9854 + }, + { + "start": 14074.7, + "end": 14075.37, + "probability": 0.3297 + }, + { + "start": 14076.16, + "end": 14078.6, + "probability": 0.667 + }, + { + "start": 14079.2, + "end": 14082.04, + "probability": 0.6352 + }, + { + "start": 14082.62, + "end": 14086.82, + "probability": 0.8159 + }, + { + "start": 14086.96, + "end": 14088.32, + "probability": 0.9559 + }, + { + "start": 14088.76, + "end": 14090.91, + "probability": 0.8181 + }, + { + "start": 14091.04, + "end": 14092.06, + "probability": 0.2765 + }, + { + "start": 14092.44, + "end": 14093.28, + "probability": 0.7327 + }, + { + "start": 14093.44, + "end": 14098.84, + "probability": 0.603 + }, + { + "start": 14099.4, + "end": 14104.02, + "probability": 0.9935 + }, + { + "start": 14104.1, + "end": 14106.18, + "probability": 0.6409 + }, + { + "start": 14106.18, + "end": 14106.2, + "probability": 0.1203 + }, + { + "start": 14106.2, + "end": 14107.44, + "probability": 0.8334 + }, + { + "start": 14107.48, + "end": 14109.68, + "probability": 0.5142 + }, + { + "start": 14110.02, + "end": 14110.55, + "probability": 0.953 + }, + { + "start": 14110.78, + "end": 14112.64, + "probability": 0.1454 + }, + { + "start": 14112.78, + "end": 14114.46, + "probability": 0.7679 + }, + { + "start": 14114.68, + "end": 14117.68, + "probability": 0.8782 + }, + { + "start": 14117.9, + "end": 14118.72, + "probability": 0.5748 + }, + { + "start": 14118.74, + "end": 14120.72, + "probability": 0.9123 + }, + { + "start": 14120.94, + "end": 14121.26, + "probability": 0.3246 + }, + { + "start": 14121.28, + "end": 14123.36, + "probability": 0.876 + }, + { + "start": 14123.7, + "end": 14124.78, + "probability": 0.5353 + }, + { + "start": 14124.82, + "end": 14126.4, + "probability": 0.0607 + }, + { + "start": 14126.4, + "end": 14126.5, + "probability": 0.2502 + }, + { + "start": 14126.5, + "end": 14127.39, + "probability": 0.2989 + }, + { + "start": 14127.86, + "end": 14130.58, + "probability": 0.9619 + }, + { + "start": 14130.8, + "end": 14134.96, + "probability": 0.7849 + }, + { + "start": 14135.2, + "end": 14137.58, + "probability": 0.946 + }, + { + "start": 14137.7, + "end": 14140.22, + "probability": 0.7654 + }, + { + "start": 14140.38, + "end": 14142.78, + "probability": 0.8663 + }, + { + "start": 14143.22, + "end": 14144.72, + "probability": 0.7956 + }, + { + "start": 14144.84, + "end": 14145.66, + "probability": 0.5771 + }, + { + "start": 14145.82, + "end": 14147.28, + "probability": 0.6538 + }, + { + "start": 14147.42, + "end": 14147.84, + "probability": 0.4561 + }, + { + "start": 14148.48, + "end": 14151.86, + "probability": 0.9105 + }, + { + "start": 14151.94, + "end": 14153.46, + "probability": 0.9229 + }, + { + "start": 14153.46, + "end": 14153.96, + "probability": 0.7351 + }, + { + "start": 14154.06, + "end": 14155.2, + "probability": 0.9147 + }, + { + "start": 14155.3, + "end": 14157.82, + "probability": 0.9839 + }, + { + "start": 14157.82, + "end": 14160.36, + "probability": 0.7402 + }, + { + "start": 14160.54, + "end": 14163.16, + "probability": 0.7511 + }, + { + "start": 14163.54, + "end": 14164.06, + "probability": 0.7656 + }, + { + "start": 14164.14, + "end": 14168.94, + "probability": 0.8077 + }, + { + "start": 14169.14, + "end": 14170.5, + "probability": 0.902 + }, + { + "start": 14170.5, + "end": 14171.28, + "probability": 0.0205 + }, + { + "start": 14173.54, + "end": 14173.64, + "probability": 0.0513 + }, + { + "start": 14173.64, + "end": 14173.64, + "probability": 0.0948 + }, + { + "start": 14173.64, + "end": 14173.82, + "probability": 0.5327 + }, + { + "start": 14174.02, + "end": 14174.16, + "probability": 0.4589 + }, + { + "start": 14174.16, + "end": 14174.96, + "probability": 0.71 + }, + { + "start": 14174.98, + "end": 14178.06, + "probability": 0.7634 + }, + { + "start": 14178.52, + "end": 14180.06, + "probability": 0.7471 + }, + { + "start": 14180.68, + "end": 14181.76, + "probability": 0.8851 + }, + { + "start": 14182.28, + "end": 14183.15, + "probability": 0.4179 + }, + { + "start": 14183.4, + "end": 14184.16, + "probability": 0.4204 + }, + { + "start": 14184.24, + "end": 14188.5, + "probability": 0.9163 + }, + { + "start": 14189.36, + "end": 14192.46, + "probability": 0.9896 + }, + { + "start": 14192.46, + "end": 14196.62, + "probability": 0.8955 + }, + { + "start": 14197.02, + "end": 14198.36, + "probability": 0.917 + }, + { + "start": 14198.78, + "end": 14199.84, + "probability": 0.476 + }, + { + "start": 14200.2, + "end": 14203.34, + "probability": 0.971 + }, + { + "start": 14203.84, + "end": 14206.34, + "probability": 0.4713 + }, + { + "start": 14206.68, + "end": 14210.1, + "probability": 0.8624 + }, + { + "start": 14210.68, + "end": 14213.42, + "probability": 0.991 + }, + { + "start": 14213.8, + "end": 14214.5, + "probability": 0.9424 + }, + { + "start": 14214.62, + "end": 14215.63, + "probability": 0.6093 + }, + { + "start": 14216.14, + "end": 14217.22, + "probability": 0.902 + }, + { + "start": 14217.22, + "end": 14218.14, + "probability": 0.6922 + }, + { + "start": 14218.32, + "end": 14219.9, + "probability": 0.5987 + }, + { + "start": 14220.26, + "end": 14222.42, + "probability": 0.8 + }, + { + "start": 14222.62, + "end": 14225.38, + "probability": 0.9785 + }, + { + "start": 14225.38, + "end": 14228.4, + "probability": 0.952 + }, + { + "start": 14228.66, + "end": 14230.7, + "probability": 0.7403 + }, + { + "start": 14230.9, + "end": 14232.2, + "probability": 0.9415 + }, + { + "start": 14232.2, + "end": 14233.54, + "probability": 0.481 + }, + { + "start": 14233.68, + "end": 14235.92, + "probability": 0.0995 + }, + { + "start": 14236.2, + "end": 14238.9, + "probability": 0.7557 + }, + { + "start": 14238.94, + "end": 14242.36, + "probability": 0.8186 + }, + { + "start": 14242.82, + "end": 14245.46, + "probability": 0.9905 + }, + { + "start": 14246.04, + "end": 14248.68, + "probability": 0.2558 + }, + { + "start": 14248.8, + "end": 14249.3, + "probability": 0.0424 + }, + { + "start": 14249.3, + "end": 14250.36, + "probability": 0.607 + }, + { + "start": 14251.2, + "end": 14251.2, + "probability": 0.0173 + }, + { + "start": 14251.2, + "end": 14253.88, + "probability": 0.9178 + }, + { + "start": 14253.94, + "end": 14255.4, + "probability": 0.8052 + }, + { + "start": 14255.54, + "end": 14258.8, + "probability": 0.9897 + }, + { + "start": 14259.12, + "end": 14263.06, + "probability": 0.8105 + }, + { + "start": 14263.06, + "end": 14264.76, + "probability": 0.628 + }, + { + "start": 14264.94, + "end": 14267.8, + "probability": 0.8485 + }, + { + "start": 14268.8, + "end": 14270.5, + "probability": 0.9517 + }, + { + "start": 14271.78, + "end": 14271.8, + "probability": 0.3514 + }, + { + "start": 14271.8, + "end": 14276.86, + "probability": 0.9854 + }, + { + "start": 14277.3, + "end": 14278.66, + "probability": 0.9987 + }, + { + "start": 14279.22, + "end": 14281.58, + "probability": 0.8143 + }, + { + "start": 14282.26, + "end": 14282.96, + "probability": 0.9634 + }, + { + "start": 14283.56, + "end": 14286.3, + "probability": 0.9387 + }, + { + "start": 14286.4, + "end": 14286.74, + "probability": 0.6744 + }, + { + "start": 14286.86, + "end": 14287.16, + "probability": 0.1767 + }, + { + "start": 14287.22, + "end": 14287.86, + "probability": 0.4814 + }, + { + "start": 14287.96, + "end": 14288.33, + "probability": 0.8901 + }, + { + "start": 14289.0, + "end": 14291.98, + "probability": 0.9343 + }, + { + "start": 14291.98, + "end": 14293.56, + "probability": 0.9495 + }, + { + "start": 14293.7, + "end": 14296.48, + "probability": 0.9528 + }, + { + "start": 14296.64, + "end": 14299.78, + "probability": 0.9659 + }, + { + "start": 14299.92, + "end": 14301.66, + "probability": 0.9274 + }, + { + "start": 14302.06, + "end": 14302.96, + "probability": 0.0772 + }, + { + "start": 14302.96, + "end": 14307.7, + "probability": 0.7191 + }, + { + "start": 14307.9, + "end": 14310.36, + "probability": 0.2241 + }, + { + "start": 14310.36, + "end": 14310.57, + "probability": 0.3841 + }, + { + "start": 14310.72, + "end": 14311.38, + "probability": 0.3883 + }, + { + "start": 14311.38, + "end": 14312.48, + "probability": 0.5199 + }, + { + "start": 14312.48, + "end": 14313.22, + "probability": 0.8687 + }, + { + "start": 14314.86, + "end": 14317.68, + "probability": 0.9379 + }, + { + "start": 14317.84, + "end": 14319.54, + "probability": 0.1826 + }, + { + "start": 14319.62, + "end": 14325.86, + "probability": 0.9899 + }, + { + "start": 14326.1, + "end": 14328.9, + "probability": 0.863 + }, + { + "start": 14329.12, + "end": 14330.18, + "probability": 0.648 + }, + { + "start": 14331.1, + "end": 14333.51, + "probability": 0.9121 + }, + { + "start": 14334.06, + "end": 14334.52, + "probability": 0.8088 + }, + { + "start": 14334.74, + "end": 14338.64, + "probability": 0.4806 + }, + { + "start": 14338.74, + "end": 14339.58, + "probability": 0.5651 + }, + { + "start": 14339.8, + "end": 14340.68, + "probability": 0.9718 + }, + { + "start": 14341.14, + "end": 14346.19, + "probability": 0.5071 + }, + { + "start": 14346.34, + "end": 14346.52, + "probability": 0.2351 + }, + { + "start": 14346.54, + "end": 14346.72, + "probability": 0.4675 + }, + { + "start": 14346.78, + "end": 14348.24, + "probability": 0.7803 + }, + { + "start": 14348.32, + "end": 14348.68, + "probability": 0.4189 + }, + { + "start": 14348.7, + "end": 14348.98, + "probability": 0.4027 + }, + { + "start": 14349.72, + "end": 14349.98, + "probability": 0.4219 + }, + { + "start": 14350.06, + "end": 14353.24, + "probability": 0.6871 + }, + { + "start": 14353.56, + "end": 14355.52, + "probability": 0.8128 + }, + { + "start": 14356.02, + "end": 14359.36, + "probability": 0.9871 + }, + { + "start": 14359.36, + "end": 14359.78, + "probability": 0.3632 + }, + { + "start": 14360.62, + "end": 14360.96, + "probability": 0.5651 + }, + { + "start": 14361.06, + "end": 14364.12, + "probability": 0.3633 + }, + { + "start": 14364.18, + "end": 14364.24, + "probability": 0.4138 + }, + { + "start": 14364.32, + "end": 14368.46, + "probability": 0.8548 + }, + { + "start": 14369.58, + "end": 14372.84, + "probability": 0.8395 + }, + { + "start": 14373.66, + "end": 14375.3, + "probability": 0.9666 + }, + { + "start": 14375.42, + "end": 14376.1, + "probability": 0.6751 + }, + { + "start": 14376.12, + "end": 14376.46, + "probability": 0.4509 + }, + { + "start": 14376.46, + "end": 14377.6, + "probability": 0.6098 + }, + { + "start": 14377.72, + "end": 14379.18, + "probability": 0.8674 + }, + { + "start": 14379.58, + "end": 14379.72, + "probability": 0.5034 + }, + { + "start": 14379.9, + "end": 14382.8, + "probability": 0.6644 + }, + { + "start": 14382.96, + "end": 14388.9, + "probability": 0.7563 + }, + { + "start": 14388.9, + "end": 14389.76, + "probability": 0.3956 + }, + { + "start": 14390.57, + "end": 14393.68, + "probability": 0.9438 + }, + { + "start": 14393.96, + "end": 14394.36, + "probability": 0.7811 + }, + { + "start": 14394.52, + "end": 14396.38, + "probability": 0.8156 + }, + { + "start": 14396.72, + "end": 14402.26, + "probability": 0.9427 + }, + { + "start": 14403.08, + "end": 14403.99, + "probability": 0.8862 + }, + { + "start": 14404.42, + "end": 14405.86, + "probability": 0.8073 + }, + { + "start": 14406.16, + "end": 14407.6, + "probability": 0.9187 + }, + { + "start": 14407.76, + "end": 14408.9, + "probability": 0.9694 + }, + { + "start": 14412.14, + "end": 14412.68, + "probability": 0.4923 + }, + { + "start": 14412.82, + "end": 14416.18, + "probability": 0.5091 + }, + { + "start": 14416.22, + "end": 14417.24, + "probability": 0.7766 + }, + { + "start": 14417.7, + "end": 14423.27, + "probability": 0.9574 + }, + { + "start": 14423.54, + "end": 14426.7, + "probability": 0.9736 + }, + { + "start": 14427.02, + "end": 14428.47, + "probability": 0.9917 + }, + { + "start": 14428.8, + "end": 14430.64, + "probability": 0.9937 + }, + { + "start": 14430.98, + "end": 14431.28, + "probability": 0.5302 + }, + { + "start": 14431.5, + "end": 14433.02, + "probability": 0.9778 + }, + { + "start": 14433.2, + "end": 14434.67, + "probability": 0.7681 + }, + { + "start": 14435.22, + "end": 14436.54, + "probability": 0.7918 + }, + { + "start": 14436.66, + "end": 14438.74, + "probability": 0.9727 + }, + { + "start": 14439.32, + "end": 14441.8, + "probability": 0.9639 + }, + { + "start": 14442.4, + "end": 14446.24, + "probability": 0.9827 + }, + { + "start": 14446.3, + "end": 14447.04, + "probability": 0.8672 + }, + { + "start": 14447.34, + "end": 14448.58, + "probability": 0.8011 + }, + { + "start": 14448.96, + "end": 14449.96, + "probability": 0.8467 + }, + { + "start": 14450.58, + "end": 14452.42, + "probability": 0.7742 + }, + { + "start": 14452.56, + "end": 14457.46, + "probability": 0.8114 + }, + { + "start": 14457.5, + "end": 14459.06, + "probability": 0.7812 + }, + { + "start": 14459.5, + "end": 14460.9, + "probability": 0.9911 + }, + { + "start": 14463.7, + "end": 14465.56, + "probability": 0.8706 + }, + { + "start": 14465.68, + "end": 14467.02, + "probability": 0.62 + }, + { + "start": 14467.44, + "end": 14469.0, + "probability": 0.8464 + }, + { + "start": 14469.7, + "end": 14470.92, + "probability": 0.8369 + }, + { + "start": 14471.02, + "end": 14471.62, + "probability": 0.7026 + }, + { + "start": 14471.66, + "end": 14474.58, + "probability": 0.9922 + }, + { + "start": 14474.6, + "end": 14474.86, + "probability": 0.0407 + }, + { + "start": 14476.1, + "end": 14480.08, + "probability": 0.9187 + }, + { + "start": 14480.28, + "end": 14481.68, + "probability": 0.976 + }, + { + "start": 14481.8, + "end": 14482.22, + "probability": 0.6208 + }, + { + "start": 14482.3, + "end": 14483.2, + "probability": 0.7107 + }, + { + "start": 14483.34, + "end": 14485.16, + "probability": 0.96 + }, + { + "start": 14485.88, + "end": 14489.94, + "probability": 0.9904 + }, + { + "start": 14490.24, + "end": 14491.22, + "probability": 0.7571 + }, + { + "start": 14491.85, + "end": 14494.66, + "probability": 0.5146 + }, + { + "start": 14495.42, + "end": 14497.76, + "probability": 0.9364 + }, + { + "start": 14497.8, + "end": 14498.52, + "probability": 0.8099 + }, + { + "start": 14498.52, + "end": 14501.32, + "probability": 0.8569 + }, + { + "start": 14501.6, + "end": 14501.66, + "probability": 0.4027 + }, + { + "start": 14501.66, + "end": 14503.78, + "probability": 0.8115 + }, + { + "start": 14504.06, + "end": 14506.4, + "probability": 0.7468 + }, + { + "start": 14507.14, + "end": 14510.2, + "probability": 0.7196 + }, + { + "start": 14510.38, + "end": 14512.4, + "probability": 0.9946 + }, + { + "start": 14512.74, + "end": 14514.88, + "probability": 0.6309 + }, + { + "start": 14514.92, + "end": 14519.26, + "probability": 0.9058 + }, + { + "start": 14519.38, + "end": 14520.56, + "probability": 0.7168 + }, + { + "start": 14520.56, + "end": 14522.37, + "probability": 0.9341 + }, + { + "start": 14522.76, + "end": 14524.72, + "probability": 0.9897 + }, + { + "start": 14524.86, + "end": 14526.12, + "probability": 0.7385 + }, + { + "start": 14526.2, + "end": 14526.88, + "probability": 0.834 + }, + { + "start": 14527.26, + "end": 14527.8, + "probability": 0.6013 + }, + { + "start": 14528.3, + "end": 14530.4, + "probability": 0.9962 + }, + { + "start": 14531.2, + "end": 14531.82, + "probability": 0.9602 + }, + { + "start": 14531.94, + "end": 14534.98, + "probability": 0.9569 + }, + { + "start": 14535.28, + "end": 14536.86, + "probability": 0.979 + }, + { + "start": 14537.3, + "end": 14538.36, + "probability": 0.9832 + }, + { + "start": 14539.14, + "end": 14541.54, + "probability": 0.8616 + }, + { + "start": 14542.22, + "end": 14543.92, + "probability": 0.9907 + }, + { + "start": 14544.28, + "end": 14545.86, + "probability": 0.9253 + }, + { + "start": 14546.86, + "end": 14548.88, + "probability": 0.8627 + }, + { + "start": 14549.4, + "end": 14553.16, + "probability": 0.1558 + }, + { + "start": 14553.16, + "end": 14554.76, + "probability": 0.8754 + }, + { + "start": 14555.24, + "end": 14555.7, + "probability": 0.5054 + }, + { + "start": 14556.32, + "end": 14558.08, + "probability": 0.6826 + }, + { + "start": 14558.88, + "end": 14559.56, + "probability": 0.626 + }, + { + "start": 14560.16, + "end": 14562.32, + "probability": 0.9501 + }, + { + "start": 14563.24, + "end": 14564.0, + "probability": 0.8064 + }, + { + "start": 14564.16, + "end": 14567.86, + "probability": 0.8559 + }, + { + "start": 14568.94, + "end": 14570.98, + "probability": 0.7469 + }, + { + "start": 14571.4, + "end": 14572.22, + "probability": 0.83 + }, + { + "start": 14572.74, + "end": 14574.86, + "probability": 0.8608 + }, + { + "start": 14575.14, + "end": 14576.79, + "probability": 0.6523 + }, + { + "start": 14577.6, + "end": 14580.78, + "probability": 0.8193 + }, + { + "start": 14581.34, + "end": 14583.36, + "probability": 0.8801 + }, + { + "start": 14583.94, + "end": 14585.96, + "probability": 0.9701 + }, + { + "start": 14585.98, + "end": 14586.24, + "probability": 0.8653 + }, + { + "start": 14586.24, + "end": 14586.24, + "probability": 0.0289 + }, + { + "start": 14586.24, + "end": 14587.23, + "probability": 0.1563 + }, + { + "start": 14587.62, + "end": 14589.66, + "probability": 0.9252 + }, + { + "start": 14589.94, + "end": 14591.8, + "probability": 0.9976 + }, + { + "start": 14592.22, + "end": 14594.14, + "probability": 0.9375 + }, + { + "start": 14594.38, + "end": 14595.62, + "probability": 0.9423 + }, + { + "start": 14596.02, + "end": 14597.6, + "probability": 0.991 + }, + { + "start": 14598.28, + "end": 14598.62, + "probability": 0.8667 + }, + { + "start": 14598.9, + "end": 14599.72, + "probability": 0.8867 + }, + { + "start": 14599.86, + "end": 14601.28, + "probability": 0.9155 + }, + { + "start": 14601.4, + "end": 14603.84, + "probability": 0.9823 + }, + { + "start": 14604.46, + "end": 14604.94, + "probability": 0.6081 + }, + { + "start": 14607.6, + "end": 14607.92, + "probability": 0.2209 + }, + { + "start": 14607.92, + "end": 14607.92, + "probability": 0.0327 + }, + { + "start": 14607.92, + "end": 14608.02, + "probability": 0.0171 + }, + { + "start": 14608.66, + "end": 14609.96, + "probability": 0.8679 + }, + { + "start": 14610.68, + "end": 14610.96, + "probability": 0.6896 + }, + { + "start": 14611.16, + "end": 14614.66, + "probability": 0.811 + }, + { + "start": 14614.66, + "end": 14616.08, + "probability": 0.7335 + }, + { + "start": 14616.52, + "end": 14618.34, + "probability": 0.9912 + }, + { + "start": 14619.56, + "end": 14621.86, + "probability": 0.6645 + }, + { + "start": 14622.46, + "end": 14625.02, + "probability": 0.7228 + }, + { + "start": 14625.6, + "end": 14626.5, + "probability": 0.9924 + }, + { + "start": 14627.1, + "end": 14628.78, + "probability": 0.9062 + }, + { + "start": 14629.38, + "end": 14632.72, + "probability": 0.9003 + }, + { + "start": 14632.94, + "end": 14633.48, + "probability": 0.9478 + }, + { + "start": 14634.0, + "end": 14635.58, + "probability": 0.9421 + }, + { + "start": 14635.98, + "end": 14637.36, + "probability": 0.9076 + }, + { + "start": 14637.78, + "end": 14639.32, + "probability": 0.9719 + }, + { + "start": 14640.65, + "end": 14642.26, + "probability": 0.5033 + }, + { + "start": 14642.58, + "end": 14643.72, + "probability": 0.5906 + }, + { + "start": 14643.86, + "end": 14644.76, + "probability": 0.3793 + }, + { + "start": 14644.76, + "end": 14645.06, + "probability": 0.4448 + }, + { + "start": 14645.44, + "end": 14646.85, + "probability": 0.9393 + }, + { + "start": 14647.8, + "end": 14649.92, + "probability": 0.9273 + }, + { + "start": 14650.48, + "end": 14652.62, + "probability": 0.8038 + }, + { + "start": 14653.54, + "end": 14654.4, + "probability": 0.194 + }, + { + "start": 14654.46, + "end": 14658.12, + "probability": 0.9591 + }, + { + "start": 14658.64, + "end": 14659.22, + "probability": 0.7049 + }, + { + "start": 14660.86, + "end": 14661.98, + "probability": 0.4727 + }, + { + "start": 14662.08, + "end": 14662.72, + "probability": 0.8401 + }, + { + "start": 14663.54, + "end": 14664.4, + "probability": 0.7383 + }, + { + "start": 14664.44, + "end": 14665.75, + "probability": 0.8046 + }, + { + "start": 14666.74, + "end": 14669.24, + "probability": 0.7679 + }, + { + "start": 14669.92, + "end": 14671.9, + "probability": 0.8309 + }, + { + "start": 14672.8, + "end": 14675.26, + "probability": 0.6988 + }, + { + "start": 14676.16, + "end": 14678.06, + "probability": 0.8287 + }, + { + "start": 14678.74, + "end": 14682.36, + "probability": 0.6201 + }, + { + "start": 14682.74, + "end": 14683.26, + "probability": 0.4979 + }, + { + "start": 14683.34, + "end": 14683.72, + "probability": 0.9658 + }, + { + "start": 14684.48, + "end": 14685.86, + "probability": 0.9296 + }, + { + "start": 14686.38, + "end": 14687.56, + "probability": 0.9092 + }, + { + "start": 14687.82, + "end": 14690.42, + "probability": 0.9914 + }, + { + "start": 14691.44, + "end": 14692.02, + "probability": 0.5497 + }, + { + "start": 14692.48, + "end": 14695.52, + "probability": 0.9373 + }, + { + "start": 14695.58, + "end": 14697.92, + "probability": 0.5781 + }, + { + "start": 14698.34, + "end": 14700.2, + "probability": 0.7086 + }, + { + "start": 14701.64, + "end": 14701.64, + "probability": 0.0538 + }, + { + "start": 14701.64, + "end": 14702.8, + "probability": 0.8374 + }, + { + "start": 14704.1, + "end": 14705.1, + "probability": 0.7067 + }, + { + "start": 14705.2, + "end": 14705.3, + "probability": 0.3803 + }, + { + "start": 14708.66, + "end": 14709.06, + "probability": 0.0189 + }, + { + "start": 14710.45, + "end": 14714.88, + "probability": 0.7697 + }, + { + "start": 14715.76, + "end": 14716.92, + "probability": 0.3572 + }, + { + "start": 14717.36, + "end": 14718.22, + "probability": 0.8776 + }, + { + "start": 14718.22, + "end": 14718.68, + "probability": 0.9226 + }, + { + "start": 14718.84, + "end": 14720.48, + "probability": 0.7766 + }, + { + "start": 14721.54, + "end": 14726.42, + "probability": 0.7291 + }, + { + "start": 14727.62, + "end": 14730.34, + "probability": 0.8139 + }, + { + "start": 14730.34, + "end": 14732.34, + "probability": 0.9111 + }, + { + "start": 14733.16, + "end": 14733.82, + "probability": 0.8939 + }, + { + "start": 14733.96, + "end": 14734.28, + "probability": 0.4763 + }, + { + "start": 14735.08, + "end": 14738.52, + "probability": 0.759 + }, + { + "start": 14738.78, + "end": 14739.38, + "probability": 0.5294 + }, + { + "start": 14739.48, + "end": 14740.02, + "probability": 0.9497 + }, + { + "start": 14740.78, + "end": 14741.82, + "probability": 0.9176 + }, + { + "start": 14741.86, + "end": 14743.16, + "probability": 0.9234 + }, + { + "start": 14743.5, + "end": 14745.36, + "probability": 0.6845 + }, + { + "start": 14745.98, + "end": 14747.92, + "probability": 0.8783 + }, + { + "start": 14748.64, + "end": 14749.72, + "probability": 0.5075 + }, + { + "start": 14750.22, + "end": 14750.8, + "probability": 0.8123 + }, + { + "start": 14750.88, + "end": 14751.92, + "probability": 0.1447 + }, + { + "start": 14752.2, + "end": 14753.24, + "probability": 0.8088 + }, + { + "start": 14753.26, + "end": 14754.08, + "probability": 0.5581 + }, + { + "start": 14754.48, + "end": 14756.12, + "probability": 0.9831 + }, + { + "start": 14756.7, + "end": 14758.48, + "probability": 0.6091 + }, + { + "start": 14758.66, + "end": 14759.58, + "probability": 0.6395 + }, + { + "start": 14760.38, + "end": 14760.74, + "probability": 0.862 + }, + { + "start": 14760.88, + "end": 14762.04, + "probability": 0.8723 + }, + { + "start": 14762.78, + "end": 14764.58, + "probability": 0.9795 + }, + { + "start": 14765.58, + "end": 14767.06, + "probability": 0.8921 + }, + { + "start": 14767.14, + "end": 14768.4, + "probability": 0.3649 + }, + { + "start": 14769.32, + "end": 14770.94, + "probability": 0.8369 + }, + { + "start": 14771.42, + "end": 14772.64, + "probability": 0.81 + }, + { + "start": 14773.22, + "end": 14775.08, + "probability": 0.4795 + }, + { + "start": 14775.56, + "end": 14776.22, + "probability": 0.1431 + }, + { + "start": 14776.22, + "end": 14776.72, + "probability": 0.9089 + }, + { + "start": 14777.2, + "end": 14783.62, + "probability": 0.9531 + }, + { + "start": 14784.2, + "end": 14786.86, + "probability": 0.9207 + }, + { + "start": 14787.66, + "end": 14789.34, + "probability": 0.8303 + }, + { + "start": 14790.42, + "end": 14792.82, + "probability": 0.7732 + }, + { + "start": 14793.28, + "end": 14793.6, + "probability": 0.8556 + }, + { + "start": 14793.72, + "end": 14794.08, + "probability": 0.9514 + }, + { + "start": 14794.2, + "end": 14794.32, + "probability": 0.7078 + }, + { + "start": 14794.36, + "end": 14795.07, + "probability": 0.7141 + }, + { + "start": 14795.76, + "end": 14798.18, + "probability": 0.9419 + }, + { + "start": 14799.06, + "end": 14800.76, + "probability": 0.9879 + }, + { + "start": 14802.04, + "end": 14804.06, + "probability": 0.8359 + }, + { + "start": 14804.68, + "end": 14806.12, + "probability": 0.8044 + }, + { + "start": 14806.38, + "end": 14807.22, + "probability": 0.7292 + }, + { + "start": 14807.54, + "end": 14807.78, + "probability": 0.2536 + }, + { + "start": 14807.78, + "end": 14808.24, + "probability": 0.3819 + }, + { + "start": 14808.34, + "end": 14808.6, + "probability": 0.4417 + }, + { + "start": 14808.84, + "end": 14809.24, + "probability": 0.8411 + }, + { + "start": 14809.3, + "end": 14809.88, + "probability": 0.8403 + }, + { + "start": 14810.44, + "end": 14812.52, + "probability": 0.8684 + }, + { + "start": 14813.18, + "end": 14814.78, + "probability": 0.9841 + }, + { + "start": 14815.78, + "end": 14816.86, + "probability": 0.8252 + }, + { + "start": 14817.24, + "end": 14820.26, + "probability": 0.9861 + }, + { + "start": 14820.74, + "end": 14822.34, + "probability": 0.9843 + }, + { + "start": 14823.22, + "end": 14826.34, + "probability": 0.7972 + }, + { + "start": 14826.7, + "end": 14827.82, + "probability": 0.9922 + }, + { + "start": 14828.0, + "end": 14828.36, + "probability": 0.8709 + }, + { + "start": 14829.02, + "end": 14830.94, + "probability": 0.7907 + }, + { + "start": 14832.4, + "end": 14833.1, + "probability": 0.8531 + }, + { + "start": 14833.18, + "end": 14833.88, + "probability": 0.7837 + }, + { + "start": 14834.44, + "end": 14834.64, + "probability": 0.1258 + }, + { + "start": 14834.66, + "end": 14835.04, + "probability": 0.6606 + }, + { + "start": 14835.08, + "end": 14836.8, + "probability": 0.7522 + }, + { + "start": 14837.18, + "end": 14838.34, + "probability": 0.9149 + }, + { + "start": 14838.48, + "end": 14840.46, + "probability": 0.9142 + }, + { + "start": 14840.5, + "end": 14841.09, + "probability": 0.859 + }, + { + "start": 14841.6, + "end": 14842.0, + "probability": 0.7701 + }, + { + "start": 14842.04, + "end": 14842.64, + "probability": 0.4436 + }, + { + "start": 14843.76, + "end": 14844.72, + "probability": 0.9961 + }, + { + "start": 14845.34, + "end": 14848.58, + "probability": 0.811 + }, + { + "start": 14848.7, + "end": 14849.08, + "probability": 0.9257 + }, + { + "start": 14849.18, + "end": 14849.8, + "probability": 0.8335 + }, + { + "start": 14850.28, + "end": 14852.42, + "probability": 0.9576 + }, + { + "start": 14853.24, + "end": 14854.42, + "probability": 0.6921 + }, + { + "start": 14855.4, + "end": 14857.44, + "probability": 0.6609 + }, + { + "start": 14857.58, + "end": 14857.86, + "probability": 0.8955 + }, + { + "start": 14859.2, + "end": 14860.04, + "probability": 0.7645 + }, + { + "start": 14860.74, + "end": 14861.4, + "probability": 0.9595 + }, + { + "start": 14862.14, + "end": 14863.64, + "probability": 0.6249 + }, + { + "start": 14864.3, + "end": 14865.16, + "probability": 0.8398 + }, + { + "start": 14866.04, + "end": 14866.94, + "probability": 0.8454 + }, + { + "start": 14867.52, + "end": 14869.36, + "probability": 0.9687 + }, + { + "start": 14869.96, + "end": 14870.96, + "probability": 0.2496 + }, + { + "start": 14871.6, + "end": 14872.42, + "probability": 0.6209 + }, + { + "start": 14872.88, + "end": 14874.18, + "probability": 0.8479 + }, + { + "start": 14874.7, + "end": 14875.3, + "probability": 0.7235 + }, + { + "start": 14875.88, + "end": 14877.34, + "probability": 0.7529 + }, + { + "start": 14878.0, + "end": 14881.6, + "probability": 0.9734 + }, + { + "start": 14882.18, + "end": 14884.7, + "probability": 0.9159 + }, + { + "start": 14885.18, + "end": 14890.36, + "probability": 0.8467 + }, + { + "start": 14890.98, + "end": 14893.51, + "probability": 0.5961 + }, + { + "start": 14894.18, + "end": 14896.06, + "probability": 0.9902 + }, + { + "start": 14896.3, + "end": 14897.46, + "probability": 0.7987 + }, + { + "start": 14897.58, + "end": 14897.9, + "probability": 0.9204 + }, + { + "start": 14898.76, + "end": 14900.3, + "probability": 0.7505 + }, + { + "start": 14901.04, + "end": 14902.98, + "probability": 0.8809 + }, + { + "start": 14903.08, + "end": 14905.54, + "probability": 0.6193 + }, + { + "start": 14906.51, + "end": 14908.28, + "probability": 0.8818 + }, + { + "start": 14909.14, + "end": 14911.94, + "probability": 0.7186 + }, + { + "start": 14912.06, + "end": 14912.44, + "probability": 0.8389 + }, + { + "start": 14913.66, + "end": 14916.7, + "probability": 0.7407 + }, + { + "start": 14916.9, + "end": 14918.24, + "probability": 0.6827 + }, + { + "start": 14918.52, + "end": 14919.16, + "probability": 0.6712 + }, + { + "start": 14919.9, + "end": 14920.82, + "probability": 0.6827 + }, + { + "start": 14920.96, + "end": 14922.4, + "probability": 0.54 + }, + { + "start": 14922.9, + "end": 14923.68, + "probability": 0.8962 + }, + { + "start": 14924.46, + "end": 14925.8, + "probability": 0.9028 + }, + { + "start": 14925.86, + "end": 14926.84, + "probability": 0.4025 + }, + { + "start": 14927.78, + "end": 14928.9, + "probability": 0.5138 + }, + { + "start": 14929.46, + "end": 14930.6, + "probability": 0.8174 + }, + { + "start": 14930.66, + "end": 14930.98, + "probability": 0.479 + }, + { + "start": 14931.32, + "end": 14932.82, + "probability": 0.9958 + }, + { + "start": 14933.64, + "end": 14936.2, + "probability": 0.702 + }, + { + "start": 14936.5, + "end": 14938.4, + "probability": 0.766 + }, + { + "start": 14938.46, + "end": 14939.02, + "probability": 0.9749 + }, + { + "start": 14939.08, + "end": 14939.8, + "probability": 0.7948 + }, + { + "start": 14940.22, + "end": 14941.68, + "probability": 0.5645 + }, + { + "start": 14941.76, + "end": 14943.06, + "probability": 0.883 + }, + { + "start": 14944.18, + "end": 14945.36, + "probability": 0.8234 + }, + { + "start": 14945.5, + "end": 14945.66, + "probability": 0.6406 + }, + { + "start": 14946.5, + "end": 14948.28, + "probability": 0.7147 + }, + { + "start": 14948.94, + "end": 14949.94, + "probability": 0.8887 + }, + { + "start": 14950.84, + "end": 14951.64, + "probability": 0.9739 + }, + { + "start": 14952.46, + "end": 14953.76, + "probability": 0.9819 + }, + { + "start": 14954.64, + "end": 14955.72, + "probability": 0.7739 + }, + { + "start": 14956.78, + "end": 14957.52, + "probability": 0.9358 + }, + { + "start": 14957.58, + "end": 14958.24, + "probability": 0.3353 + }, + { + "start": 14958.7, + "end": 14959.22, + "probability": 0.974 + }, + { + "start": 14960.18, + "end": 14962.7, + "probability": 0.8832 + }, + { + "start": 14963.0, + "end": 14963.66, + "probability": 0.8267 + }, + { + "start": 14963.68, + "end": 14964.42, + "probability": 0.674 + }, + { + "start": 14964.7, + "end": 14965.3, + "probability": 0.807 + }, + { + "start": 14966.16, + "end": 14966.8, + "probability": 0.5957 + }, + { + "start": 14969.43, + "end": 14971.2, + "probability": 0.8813 + }, + { + "start": 14971.6, + "end": 14972.15, + "probability": 0.9706 + }, + { + "start": 14973.32, + "end": 14973.74, + "probability": 0.759 + }, + { + "start": 14974.78, + "end": 14979.64, + "probability": 0.7246 + }, + { + "start": 14980.52, + "end": 14982.26, + "probability": 0.7295 + }, + { + "start": 14982.92, + "end": 14984.86, + "probability": 0.9174 + }, + { + "start": 14985.34, + "end": 14985.79, + "probability": 0.4943 + }, + { + "start": 14986.38, + "end": 14988.08, + "probability": 0.6386 + }, + { + "start": 14989.62, + "end": 14992.42, + "probability": 0.9951 + }, + { + "start": 14992.94, + "end": 14997.98, + "probability": 0.9251 + }, + { + "start": 14998.44, + "end": 14999.9, + "probability": 0.9562 + }, + { + "start": 14999.96, + "end": 15000.49, + "probability": 0.9642 + }, + { + "start": 15002.46, + "end": 15002.66, + "probability": 0.9774 + }, + { + "start": 15002.8, + "end": 15004.64, + "probability": 0.9203 + }, + { + "start": 15004.94, + "end": 15005.93, + "probability": 0.9921 + }, + { + "start": 15006.66, + "end": 15007.9, + "probability": 0.8599 + }, + { + "start": 15008.16, + "end": 15009.92, + "probability": 0.8501 + }, + { + "start": 15013.23, + "end": 15013.72, + "probability": 0.037 + }, + { + "start": 15013.72, + "end": 15015.2, + "probability": 0.4431 + }, + { + "start": 15015.22, + "end": 15015.46, + "probability": 0.1465 + }, + { + "start": 15015.46, + "end": 15015.62, + "probability": 0.2341 + }, + { + "start": 15015.76, + "end": 15016.3, + "probability": 0.3111 + }, + { + "start": 15016.3, + "end": 15017.16, + "probability": 0.9495 + }, + { + "start": 15018.2, + "end": 15020.38, + "probability": 0.8002 + }, + { + "start": 15021.02, + "end": 15022.06, + "probability": 0.7761 + }, + { + "start": 15022.18, + "end": 15024.56, + "probability": 0.8377 + }, + { + "start": 15025.28, + "end": 15025.5, + "probability": 0.9233 + }, + { + "start": 15026.1, + "end": 15026.82, + "probability": 0.8935 + }, + { + "start": 15027.46, + "end": 15027.9, + "probability": 0.8599 + }, + { + "start": 15028.66, + "end": 15029.19, + "probability": 0.7263 + }, + { + "start": 15029.86, + "end": 15032.14, + "probability": 0.9204 + }, + { + "start": 15032.24, + "end": 15034.29, + "probability": 0.9736 + }, + { + "start": 15035.08, + "end": 15037.46, + "probability": 0.9557 + }, + { + "start": 15038.14, + "end": 15038.6, + "probability": 0.9021 + }, + { + "start": 15039.2, + "end": 15040.56, + "probability": 0.8666 + }, + { + "start": 15041.68, + "end": 15045.98, + "probability": 0.9961 + }, + { + "start": 15046.66, + "end": 15048.46, + "probability": 0.833 + }, + { + "start": 15048.84, + "end": 15051.0, + "probability": 0.8623 + }, + { + "start": 15051.88, + "end": 15057.3, + "probability": 0.992 + }, + { + "start": 15057.6, + "end": 15059.5, + "probability": 0.9971 + }, + { + "start": 15060.12, + "end": 15061.38, + "probability": 0.9642 + }, + { + "start": 15061.96, + "end": 15062.92, + "probability": 0.9933 + }, + { + "start": 15063.34, + "end": 15064.3, + "probability": 0.745 + }, + { + "start": 15065.02, + "end": 15066.2, + "probability": 0.9238 + }, + { + "start": 15066.88, + "end": 15069.64, + "probability": 0.9838 + }, + { + "start": 15069.8, + "end": 15070.16, + "probability": 0.3929 + }, + { + "start": 15070.48, + "end": 15071.54, + "probability": 0.9101 + }, + { + "start": 15071.62, + "end": 15072.65, + "probability": 0.9393 + }, + { + "start": 15073.76, + "end": 15077.4, + "probability": 0.9194 + }, + { + "start": 15077.84, + "end": 15079.38, + "probability": 0.8934 + }, + { + "start": 15079.64, + "end": 15081.32, + "probability": 0.9888 + }, + { + "start": 15081.96, + "end": 15082.28, + "probability": 0.5018 + }, + { + "start": 15082.8, + "end": 15085.92, + "probability": 0.7938 + }, + { + "start": 15087.56, + "end": 15088.6, + "probability": 0.9071 + }, + { + "start": 15089.23, + "end": 15091.59, + "probability": 0.8873 + }, + { + "start": 15094.28, + "end": 15096.34, + "probability": 0.7167 + }, + { + "start": 15096.68, + "end": 15098.0, + "probability": 0.8862 + }, + { + "start": 15098.12, + "end": 15099.24, + "probability": 0.6388 + }, + { + "start": 15099.74, + "end": 15100.04, + "probability": 0.7022 + }, + { + "start": 15101.44, + "end": 15105.9, + "probability": 0.8552 + }, + { + "start": 15106.78, + "end": 15109.02, + "probability": 0.0141 + }, + { + "start": 15110.78, + "end": 15111.7, + "probability": 0.6988 + }, + { + "start": 15112.04, + "end": 15112.7, + "probability": 0.8651 + }, + { + "start": 15113.24, + "end": 15114.18, + "probability": 0.8284 + }, + { + "start": 15114.38, + "end": 15116.29, + "probability": 0.7849 + }, + { + "start": 15117.28, + "end": 15119.18, + "probability": 0.953 + }, + { + "start": 15119.92, + "end": 15121.6, + "probability": 0.8019 + }, + { + "start": 15121.8, + "end": 15123.28, + "probability": 0.35 + }, + { + "start": 15123.92, + "end": 15124.74, + "probability": 0.7178 + }, + { + "start": 15124.82, + "end": 15125.36, + "probability": 0.587 + }, + { + "start": 15126.02, + "end": 15126.28, + "probability": 0.9403 + }, + { + "start": 15126.8, + "end": 15128.6, + "probability": 0.9359 + }, + { + "start": 15129.14, + "end": 15129.54, + "probability": 0.9165 + }, + { + "start": 15129.58, + "end": 15131.02, + "probability": 0.825 + }, + { + "start": 15131.74, + "end": 15132.92, + "probability": 0.7365 + }, + { + "start": 15133.62, + "end": 15135.5, + "probability": 0.7942 + }, + { + "start": 15136.18, + "end": 15137.78, + "probability": 0.954 + }, + { + "start": 15138.36, + "end": 15139.3, + "probability": 0.9509 + }, + { + "start": 15140.08, + "end": 15143.02, + "probability": 0.9119 + }, + { + "start": 15143.38, + "end": 15145.34, + "probability": 0.8364 + }, + { + "start": 15145.6, + "end": 15146.96, + "probability": 0.9961 + }, + { + "start": 15147.5, + "end": 15148.66, + "probability": 0.9663 + }, + { + "start": 15150.1, + "end": 15152.64, + "probability": 0.6805 + }, + { + "start": 15152.92, + "end": 15153.81, + "probability": 0.9712 + }, + { + "start": 15154.5, + "end": 15156.66, + "probability": 0.9795 + }, + { + "start": 15156.96, + "end": 15158.98, + "probability": 0.165 + }, + { + "start": 15160.7, + "end": 15161.28, + "probability": 0.1914 + }, + { + "start": 15161.46, + "end": 15162.0, + "probability": 0.2241 + }, + { + "start": 15162.02, + "end": 15163.96, + "probability": 0.8146 + }, + { + "start": 15164.4, + "end": 15166.18, + "probability": 0.6207 + }, + { + "start": 15166.26, + "end": 15166.3, + "probability": 0.5753 + }, + { + "start": 15166.3, + "end": 15167.1, + "probability": 0.6304 + }, + { + "start": 15168.84, + "end": 15169.04, + "probability": 0.6957 + }, + { + "start": 15169.12, + "end": 15173.1, + "probability": 0.7945 + }, + { + "start": 15173.72, + "end": 15175.34, + "probability": 0.9619 + }, + { + "start": 15176.5, + "end": 15179.8, + "probability": 0.9499 + }, + { + "start": 15180.58, + "end": 15182.42, + "probability": 0.818 + }, + { + "start": 15183.18, + "end": 15185.82, + "probability": 0.9966 + }, + { + "start": 15186.66, + "end": 15188.66, + "probability": 0.9897 + }, + { + "start": 15190.54, + "end": 15193.48, + "probability": 0.8573 + }, + { + "start": 15194.04, + "end": 15195.36, + "probability": 0.9841 + }, + { + "start": 15195.96, + "end": 15196.74, + "probability": 0.7758 + }, + { + "start": 15197.46, + "end": 15200.44, + "probability": 0.9954 + }, + { + "start": 15200.78, + "end": 15201.26, + "probability": 0.6547 + }, + { + "start": 15201.38, + "end": 15201.96, + "probability": 0.7616 + }, + { + "start": 15202.18, + "end": 15202.7, + "probability": 0.2932 + }, + { + "start": 15204.04, + "end": 15205.08, + "probability": 0.858 + }, + { + "start": 15205.12, + "end": 15207.12, + "probability": 0.8714 + }, + { + "start": 15208.16, + "end": 15210.62, + "probability": 0.8665 + }, + { + "start": 15211.7, + "end": 15216.28, + "probability": 0.8547 + }, + { + "start": 15217.7, + "end": 15219.22, + "probability": 0.7048 + }, + { + "start": 15219.82, + "end": 15222.24, + "probability": 0.6785 + }, + { + "start": 15222.7, + "end": 15222.92, + "probability": 0.4774 + }, + { + "start": 15223.34, + "end": 15225.1, + "probability": 0.8154 + }, + { + "start": 15225.56, + "end": 15226.01, + "probability": 0.7783 + }, + { + "start": 15226.2, + "end": 15226.96, + "probability": 0.5289 + }, + { + "start": 15227.14, + "end": 15228.78, + "probability": 0.8848 + }, + { + "start": 15230.58, + "end": 15234.38, + "probability": 0.1576 + }, + { + "start": 15234.6, + "end": 15235.36, + "probability": 0.8807 + }, + { + "start": 15237.04, + "end": 15239.52, + "probability": 0.9235 + }, + { + "start": 15239.52, + "end": 15240.06, + "probability": 0.118 + }, + { + "start": 15241.34, + "end": 15246.64, + "probability": 0.5042 + }, + { + "start": 15246.68, + "end": 15247.7, + "probability": 0.7033 + }, + { + "start": 15247.94, + "end": 15248.88, + "probability": 0.3709 + }, + { + "start": 15248.97, + "end": 15252.14, + "probability": 0.5625 + }, + { + "start": 15252.52, + "end": 15253.84, + "probability": 0.1566 + }, + { + "start": 15254.1, + "end": 15254.28, + "probability": 0.3313 + }, + { + "start": 15254.28, + "end": 15255.94, + "probability": 0.7173 + }, + { + "start": 15256.28, + "end": 15256.96, + "probability": 0.6179 + }, + { + "start": 15259.65, + "end": 15263.06, + "probability": 0.8355 + }, + { + "start": 15263.58, + "end": 15267.46, + "probability": 0.909 + }, + { + "start": 15267.82, + "end": 15268.72, + "probability": 0.8154 + }, + { + "start": 15269.08, + "end": 15270.76, + "probability": 0.8576 + }, + { + "start": 15271.77, + "end": 15274.62, + "probability": 0.9595 + }, + { + "start": 15275.5, + "end": 15277.28, + "probability": 0.9654 + }, + { + "start": 15277.96, + "end": 15278.7, + "probability": 0.6486 + }, + { + "start": 15279.48, + "end": 15280.1, + "probability": 0.5576 + }, + { + "start": 15280.68, + "end": 15281.66, + "probability": 0.8779 + }, + { + "start": 15282.26, + "end": 15282.8, + "probability": 0.6068 + }, + { + "start": 15283.48, + "end": 15287.9, + "probability": 0.9788 + }, + { + "start": 15288.7, + "end": 15290.38, + "probability": 0.8718 + }, + { + "start": 15291.46, + "end": 15293.12, + "probability": 0.8585 + }, + { + "start": 15294.36, + "end": 15294.7, + "probability": 0.8005 + }, + { + "start": 15295.4, + "end": 15297.64, + "probability": 0.9363 + }, + { + "start": 15298.82, + "end": 15299.06, + "probability": 0.7186 + }, + { + "start": 15299.5, + "end": 15299.6, + "probability": 0.4169 + }, + { + "start": 15299.68, + "end": 15300.26, + "probability": 0.9757 + }, + { + "start": 15301.08, + "end": 15304.04, + "probability": 0.4722 + }, + { + "start": 15305.42, + "end": 15307.76, + "probability": 0.7166 + }, + { + "start": 15309.43, + "end": 15311.42, + "probability": 0.8916 + }, + { + "start": 15312.82, + "end": 15313.04, + "probability": 0.9461 + }, + { + "start": 15313.12, + "end": 15316.04, + "probability": 0.5713 + }, + { + "start": 15316.06, + "end": 15316.4, + "probability": 0.7458 + }, + { + "start": 15316.62, + "end": 15317.66, + "probability": 0.6198 + }, + { + "start": 15318.08, + "end": 15320.0, + "probability": 0.7759 + }, + { + "start": 15320.58, + "end": 15322.9, + "probability": 0.9556 + }, + { + "start": 15323.44, + "end": 15324.8, + "probability": 0.6334 + }, + { + "start": 15324.98, + "end": 15327.2, + "probability": 0.9136 + }, + { + "start": 15328.28, + "end": 15331.5, + "probability": 0.7891 + }, + { + "start": 15331.56, + "end": 15331.7, + "probability": 0.8741 + }, + { + "start": 15332.12, + "end": 15332.52, + "probability": 0.1381 + }, + { + "start": 15332.52, + "end": 15333.42, + "probability": 0.3723 + }, + { + "start": 15333.5, + "end": 15336.34, + "probability": 0.7014 + }, + { + "start": 15336.52, + "end": 15339.9, + "probability": 0.6592 + }, + { + "start": 15340.14, + "end": 15341.8, + "probability": 0.9944 + }, + { + "start": 15343.18, + "end": 15343.28, + "probability": 0.1385 + }, + { + "start": 15349.06, + "end": 15350.76, + "probability": 0.7627 + }, + { + "start": 15350.76, + "end": 15353.52, + "probability": 0.742 + }, + { + "start": 15353.68, + "end": 15358.66, + "probability": 0.6598 + }, + { + "start": 15358.66, + "end": 15361.14, + "probability": 0.5004 + }, + { + "start": 15362.8, + "end": 15363.88, + "probability": 0.1609 + }, + { + "start": 15364.3, + "end": 15364.92, + "probability": 0.2853 + }, + { + "start": 15365.5, + "end": 15366.2, + "probability": 0.3537 + }, + { + "start": 15366.2, + "end": 15367.86, + "probability": 0.0792 + }, + { + "start": 15369.34, + "end": 15369.34, + "probability": 0.2271 + }, + { + "start": 15369.34, + "end": 15369.71, + "probability": 0.3899 + }, + { + "start": 15371.19, + "end": 15372.74, + "probability": 0.5018 + }, + { + "start": 15372.8, + "end": 15373.42, + "probability": 0.1756 + }, + { + "start": 15374.99, + "end": 15378.84, + "probability": 0.7231 + }, + { + "start": 15379.02, + "end": 15381.58, + "probability": 0.7518 + }, + { + "start": 15381.72, + "end": 15383.48, + "probability": 0.8751 + }, + { + "start": 15384.36, + "end": 15385.69, + "probability": 0.9808 + }, + { + "start": 15386.0, + "end": 15386.38, + "probability": 0.653 + }, + { + "start": 15386.5, + "end": 15388.84, + "probability": 0.7451 + }, + { + "start": 15389.6, + "end": 15392.24, + "probability": 0.999 + }, + { + "start": 15392.44, + "end": 15393.0, + "probability": 0.3519 + }, + { + "start": 15393.08, + "end": 15394.73, + "probability": 0.7629 + }, + { + "start": 15394.8, + "end": 15395.08, + "probability": 0.913 + }, + { + "start": 15395.84, + "end": 15397.16, + "probability": 0.9915 + }, + { + "start": 15398.12, + "end": 15400.26, + "probability": 0.957 + }, + { + "start": 15401.76, + "end": 15403.88, + "probability": 0.8273 + }, + { + "start": 15406.1, + "end": 15409.6, + "probability": 0.9907 + }, + { + "start": 15410.22, + "end": 15413.62, + "probability": 0.988 + }, + { + "start": 15413.7, + "end": 15415.6, + "probability": 0.8703 + }, + { + "start": 15416.24, + "end": 15417.62, + "probability": 0.9946 + }, + { + "start": 15417.68, + "end": 15418.78, + "probability": 0.5057 + }, + { + "start": 15418.88, + "end": 15423.28, + "probability": 0.9509 + }, + { + "start": 15423.98, + "end": 15427.54, + "probability": 0.7505 + }, + { + "start": 15429.55, + "end": 15436.46, + "probability": 0.7962 + }, + { + "start": 15436.86, + "end": 15438.76, + "probability": 0.9622 + }, + { + "start": 15438.78, + "end": 15439.56, + "probability": 0.9574 + }, + { + "start": 15439.68, + "end": 15440.6, + "probability": 0.9717 + }, + { + "start": 15441.32, + "end": 15442.74, + "probability": 0.3658 + }, + { + "start": 15442.74, + "end": 15442.84, + "probability": 0.659 + }, + { + "start": 15443.62, + "end": 15444.94, + "probability": 0.7718 + }, + { + "start": 15447.95, + "end": 15449.24, + "probability": 0.8786 + }, + { + "start": 15454.96, + "end": 15459.02, + "probability": 0.7487 + }, + { + "start": 15459.98, + "end": 15460.6, + "probability": 0.9839 + }, + { + "start": 15467.52, + "end": 15470.0, + "probability": 0.859 + }, + { + "start": 15470.1, + "end": 15470.86, + "probability": 0.7925 + }, + { + "start": 15470.94, + "end": 15471.2, + "probability": 0.0595 + }, + { + "start": 15471.24, + "end": 15471.96, + "probability": 0.2007 + }, + { + "start": 15472.86, + "end": 15478.84, + "probability": 0.7113 + }, + { + "start": 15480.14, + "end": 15484.08, + "probability": 0.823 + }, + { + "start": 15484.7, + "end": 15485.52, + "probability": 0.9854 + }, + { + "start": 15486.44, + "end": 15487.26, + "probability": 0.8743 + }, + { + "start": 15487.56, + "end": 15489.14, + "probability": 0.5532 + }, + { + "start": 15489.14, + "end": 15490.56, + "probability": 0.0931 + }, + { + "start": 15490.58, + "end": 15490.68, + "probability": 0.0097 + }, + { + "start": 15490.7, + "end": 15493.16, + "probability": 0.6215 + }, + { + "start": 15493.18, + "end": 15494.4, + "probability": 0.4694 + }, + { + "start": 15497.32, + "end": 15498.6, + "probability": 0.6682 + }, + { + "start": 15499.42, + "end": 15500.62, + "probability": 0.7034 + }, + { + "start": 15500.74, + "end": 15500.8, + "probability": 0.4639 + }, + { + "start": 15500.8, + "end": 15502.16, + "probability": 0.4173 + }, + { + "start": 15502.34, + "end": 15503.14, + "probability": 0.5131 + }, + { + "start": 15503.24, + "end": 15505.06, + "probability": 0.7888 + }, + { + "start": 15505.84, + "end": 15505.86, + "probability": 0.6797 + }, + { + "start": 15506.1, + "end": 15509.04, + "probability": 0.9628 + }, + { + "start": 15509.54, + "end": 15510.18, + "probability": 0.7218 + }, + { + "start": 15510.44, + "end": 15510.92, + "probability": 0.6048 + }, + { + "start": 15511.38, + "end": 15512.42, + "probability": 0.9716 + }, + { + "start": 15513.36, + "end": 15515.62, + "probability": 0.8578 + }, + { + "start": 15516.3, + "end": 15516.8, + "probability": 0.938 + }, + { + "start": 15517.32, + "end": 15518.0, + "probability": 0.916 + }, + { + "start": 15518.08, + "end": 15518.7, + "probability": 0.7018 + }, + { + "start": 15518.74, + "end": 15520.04, + "probability": 0.889 + }, + { + "start": 15520.76, + "end": 15522.64, + "probability": 0.9727 + }, + { + "start": 15523.68, + "end": 15525.52, + "probability": 0.6725 + }, + { + "start": 15526.28, + "end": 15527.96, + "probability": 0.5926 + }, + { + "start": 15528.84, + "end": 15530.82, + "probability": 0.9227 + }, + { + "start": 15532.14, + "end": 15533.9, + "probability": 0.9725 + }, + { + "start": 15535.08, + "end": 15536.92, + "probability": 0.9814 + }, + { + "start": 15537.18, + "end": 15538.5, + "probability": 0.8962 + }, + { + "start": 15539.3, + "end": 15539.96, + "probability": 0.981 + }, + { + "start": 15540.04, + "end": 15540.48, + "probability": 0.9836 + }, + { + "start": 15540.72, + "end": 15541.1, + "probability": 0.9436 + }, + { + "start": 15541.32, + "end": 15541.78, + "probability": 0.8638 + }, + { + "start": 15542.4, + "end": 15543.24, + "probability": 0.8389 + }, + { + "start": 15543.54, + "end": 15545.47, + "probability": 0.9109 + }, + { + "start": 15546.78, + "end": 15547.3, + "probability": 0.5417 + }, + { + "start": 15547.88, + "end": 15548.5, + "probability": 0.6254 + }, + { + "start": 15549.08, + "end": 15549.5, + "probability": 0.3552 + }, + { + "start": 15549.82, + "end": 15550.26, + "probability": 0.7547 + }, + { + "start": 15550.3, + "end": 15550.5, + "probability": 0.8892 + }, + { + "start": 15550.6, + "end": 15553.08, + "probability": 0.6076 + }, + { + "start": 15553.48, + "end": 15553.7, + "probability": 0.8978 + }, + { + "start": 15554.86, + "end": 15555.26, + "probability": 0.7681 + }, + { + "start": 15555.78, + "end": 15557.0, + "probability": 0.9326 + }, + { + "start": 15557.88, + "end": 15559.47, + "probability": 0.5277 + }, + { + "start": 15560.76, + "end": 15561.3, + "probability": 0.5497 + }, + { + "start": 15561.88, + "end": 15564.2, + "probability": 0.8748 + }, + { + "start": 15564.9, + "end": 15567.28, + "probability": 0.934 + }, + { + "start": 15568.1, + "end": 15569.6, + "probability": 0.9952 + }, + { + "start": 15570.48, + "end": 15572.48, + "probability": 0.9902 + }, + { + "start": 15573.58, + "end": 15574.92, + "probability": 0.8716 + }, + { + "start": 15575.18, + "end": 15576.94, + "probability": 0.6796 + }, + { + "start": 15577.82, + "end": 15578.58, + "probability": 0.6299 + }, + { + "start": 15578.62, + "end": 15580.3, + "probability": 0.9308 + }, + { + "start": 15580.86, + "end": 15582.3, + "probability": 0.9537 + }, + { + "start": 15583.01, + "end": 15585.28, + "probability": 0.9305 + }, + { + "start": 15586.22, + "end": 15589.64, + "probability": 0.9375 + }, + { + "start": 15590.04, + "end": 15590.66, + "probability": 0.4987 + }, + { + "start": 15591.02, + "end": 15591.32, + "probability": 0.6168 + }, + { + "start": 15591.8, + "end": 15592.46, + "probability": 0.9133 + }, + { + "start": 15592.64, + "end": 15593.58, + "probability": 0.9532 + }, + { + "start": 15594.67, + "end": 15597.18, + "probability": 0.9602 + }, + { + "start": 15597.44, + "end": 15598.12, + "probability": 0.959 + }, + { + "start": 15599.1, + "end": 15601.02, + "probability": 0.9902 + }, + { + "start": 15601.66, + "end": 15603.04, + "probability": 0.9946 + }, + { + "start": 15603.6, + "end": 15604.28, + "probability": 0.732 + }, + { + "start": 15605.52, + "end": 15606.58, + "probability": 0.7783 + }, + { + "start": 15607.04, + "end": 15612.28, + "probability": 0.9946 + }, + { + "start": 15612.56, + "end": 15613.86, + "probability": 0.9303 + }, + { + "start": 15614.62, + "end": 15617.32, + "probability": 0.6969 + }, + { + "start": 15618.04, + "end": 15620.8, + "probability": 0.6577 + }, + { + "start": 15620.84, + "end": 15621.72, + "probability": 0.8282 + }, + { + "start": 15622.2, + "end": 15623.2, + "probability": 0.9385 + }, + { + "start": 15623.44, + "end": 15625.74, + "probability": 0.6752 + }, + { + "start": 15626.08, + "end": 15627.54, + "probability": 0.4349 + }, + { + "start": 15633.76, + "end": 15636.03, + "probability": 0.5251 + }, + { + "start": 15636.2, + "end": 15637.88, + "probability": 0.132 + }, + { + "start": 15638.94, + "end": 15639.42, + "probability": 0.6111 + }, + { + "start": 15639.42, + "end": 15641.16, + "probability": 0.3047 + }, + { + "start": 15641.16, + "end": 15642.54, + "probability": 0.3714 + }, + { + "start": 15642.7, + "end": 15646.46, + "probability": 0.9675 + }, + { + "start": 15647.8, + "end": 15652.3, + "probability": 0.7754 + }, + { + "start": 15653.64, + "end": 15654.58, + "probability": 0.9486 + }, + { + "start": 15655.32, + "end": 15655.86, + "probability": 0.8394 + }, + { + "start": 15656.32, + "end": 15659.62, + "probability": 0.7979 + }, + { + "start": 15659.76, + "end": 15660.4, + "probability": 0.9431 + }, + { + "start": 15661.06, + "end": 15661.52, + "probability": 0.5742 + }, + { + "start": 15662.28, + "end": 15663.79, + "probability": 0.989 + }, + { + "start": 15663.96, + "end": 15664.16, + "probability": 0.8774 + }, + { + "start": 15664.72, + "end": 15666.77, + "probability": 0.8525 + }, + { + "start": 15667.56, + "end": 15669.68, + "probability": 0.9873 + }, + { + "start": 15669.9, + "end": 15671.56, + "probability": 0.9644 + }, + { + "start": 15672.2, + "end": 15673.24, + "probability": 0.7328 + }, + { + "start": 15673.88, + "end": 15676.9, + "probability": 0.9697 + }, + { + "start": 15677.52, + "end": 15677.7, + "probability": 0.5736 + }, + { + "start": 15677.76, + "end": 15678.92, + "probability": 0.7148 + }, + { + "start": 15678.96, + "end": 15680.04, + "probability": 0.6769 + }, + { + "start": 15680.1, + "end": 15680.55, + "probability": 0.8945 + }, + { + "start": 15681.16, + "end": 15681.86, + "probability": 0.9478 + }, + { + "start": 15682.46, + "end": 15683.7, + "probability": 0.8833 + }, + { + "start": 15684.64, + "end": 15685.57, + "probability": 0.9395 + }, + { + "start": 15685.68, + "end": 15686.46, + "probability": 0.9838 + }, + { + "start": 15686.84, + "end": 15688.22, + "probability": 0.5018 + }, + { + "start": 15689.67, + "end": 15691.5, + "probability": 0.6153 + }, + { + "start": 15692.22, + "end": 15697.06, + "probability": 0.7556 + }, + { + "start": 15697.7, + "end": 15697.92, + "probability": 0.9 + }, + { + "start": 15697.96, + "end": 15698.7, + "probability": 0.8145 + }, + { + "start": 15699.32, + "end": 15701.04, + "probability": 0.323 + }, + { + "start": 15701.22, + "end": 15704.02, + "probability": 0.5103 + }, + { + "start": 15704.24, + "end": 15705.36, + "probability": 0.7868 + }, + { + "start": 15706.04, + "end": 15706.98, + "probability": 0.9924 + }, + { + "start": 15707.72, + "end": 15708.16, + "probability": 0.8979 + }, + { + "start": 15708.96, + "end": 15710.34, + "probability": 0.9736 + }, + { + "start": 15713.09, + "end": 15716.4, + "probability": 0.5082 + }, + { + "start": 15717.82, + "end": 15718.96, + "probability": 0.4139 + }, + { + "start": 15718.96, + "end": 15719.78, + "probability": 0.0449 + }, + { + "start": 15726.8, + "end": 15732.64, + "probability": 0.5197 + }, + { + "start": 15733.06, + "end": 15734.62, + "probability": 0.8889 + }, + { + "start": 15735.6, + "end": 15736.94, + "probability": 0.5322 + }, + { + "start": 15736.98, + "end": 15739.01, + "probability": 0.5746 + }, + { + "start": 15739.32, + "end": 15741.24, + "probability": 0.7284 + }, + { + "start": 15743.0, + "end": 15746.98, + "probability": 0.9859 + }, + { + "start": 15747.04, + "end": 15750.96, + "probability": 0.5361 + }, + { + "start": 15751.94, + "end": 15753.2, + "probability": 0.4434 + }, + { + "start": 15754.82, + "end": 15755.46, + "probability": 0.3726 + }, + { + "start": 15758.7, + "end": 15759.3, + "probability": 0.4758 + }, + { + "start": 15760.26, + "end": 15761.18, + "probability": 0.9663 + }, + { + "start": 15762.32, + "end": 15764.38, + "probability": 0.9166 + }, + { + "start": 15764.88, + "end": 15767.46, + "probability": 0.5309 + }, + { + "start": 15767.8, + "end": 15767.9, + "probability": 0.6919 + }, + { + "start": 15768.62, + "end": 15768.72, + "probability": 0.169 + }, + { + "start": 15769.2, + "end": 15771.28, + "probability": 0.9807 + }, + { + "start": 15772.04, + "end": 15773.04, + "probability": 0.584 + }, + { + "start": 15773.88, + "end": 15774.92, + "probability": 0.2582 + }, + { + "start": 15775.18, + "end": 15775.38, + "probability": 0.7466 + }, + { + "start": 15776.02, + "end": 15780.08, + "probability": 0.5942 + }, + { + "start": 15780.24, + "end": 15781.0, + "probability": 0.3847 + }, + { + "start": 15781.22, + "end": 15782.72, + "probability": 0.3283 + }, + { + "start": 15782.9, + "end": 15783.62, + "probability": 0.4552 + }, + { + "start": 15783.72, + "end": 15785.72, + "probability": 0.8022 + }, + { + "start": 15785.92, + "end": 15788.2, + "probability": 0.9915 + }, + { + "start": 15789.1, + "end": 15792.36, + "probability": 0.2371 + }, + { + "start": 15792.44, + "end": 15792.5, + "probability": 0.0149 + }, + { + "start": 15794.44, + "end": 15795.15, + "probability": 0.1921 + }, + { + "start": 15795.62, + "end": 15796.82, + "probability": 0.4544 + }, + { + "start": 15796.94, + "end": 15797.8, + "probability": 0.36 + }, + { + "start": 15798.16, + "end": 15801.62, + "probability": 0.9575 + }, + { + "start": 15802.12, + "end": 15803.88, + "probability": 0.9289 + }, + { + "start": 15804.14, + "end": 15806.18, + "probability": 0.9622 + }, + { + "start": 15806.68, + "end": 15808.32, + "probability": 0.4858 + }, + { + "start": 15808.72, + "end": 15811.68, + "probability": 0.8465 + }, + { + "start": 15811.78, + "end": 15818.06, + "probability": 0.7658 + }, + { + "start": 15818.14, + "end": 15818.56, + "probability": 0.8401 + }, + { + "start": 15819.54, + "end": 15823.68, + "probability": 0.9727 + }, + { + "start": 15824.34, + "end": 15824.98, + "probability": 0.723 + }, + { + "start": 15826.78, + "end": 15832.52, + "probability": 0.911 + }, + { + "start": 15833.89, + "end": 15838.12, + "probability": 0.5251 + }, + { + "start": 15839.12, + "end": 15843.42, + "probability": 0.9371 + }, + { + "start": 15844.26, + "end": 15846.14, + "probability": 0.9698 + }, + { + "start": 15846.98, + "end": 15849.0, + "probability": 0.6717 + }, + { + "start": 15849.98, + "end": 15850.8, + "probability": 0.8821 + }, + { + "start": 15851.5, + "end": 15853.76, + "probability": 0.6951 + }, + { + "start": 15854.3, + "end": 15855.54, + "probability": 0.9803 + }, + { + "start": 15856.5, + "end": 15862.62, + "probability": 0.9868 + }, + { + "start": 15862.7, + "end": 15863.74, + "probability": 0.8522 + }, + { + "start": 15863.74, + "end": 15864.9, + "probability": 0.7271 + }, + { + "start": 15865.78, + "end": 15867.28, + "probability": 0.7831 + }, + { + "start": 15867.32, + "end": 15868.54, + "probability": 0.6851 + }, + { + "start": 15869.36, + "end": 15870.52, + "probability": 0.7502 + }, + { + "start": 15870.76, + "end": 15872.06, + "probability": 0.9566 + }, + { + "start": 15872.16, + "end": 15876.1, + "probability": 0.7652 + }, + { + "start": 15876.62, + "end": 15878.26, + "probability": 0.8522 + }, + { + "start": 15878.92, + "end": 15880.42, + "probability": 0.9575 + }, + { + "start": 15880.78, + "end": 15883.3, + "probability": 0.9575 + }, + { + "start": 15883.68, + "end": 15885.3, + "probability": 0.707 + }, + { + "start": 15885.86, + "end": 15888.08, + "probability": 0.8407 + }, + { + "start": 15889.28, + "end": 15889.78, + "probability": 0.792 + }, + { + "start": 15890.34, + "end": 15891.96, + "probability": 0.7859 + }, + { + "start": 15893.06, + "end": 15893.99, + "probability": 0.96 + }, + { + "start": 15894.38, + "end": 15895.33, + "probability": 0.9873 + }, + { + "start": 15895.38, + "end": 15897.18, + "probability": 0.9455 + }, + { + "start": 15899.91, + "end": 15903.52, + "probability": 0.663 + }, + { + "start": 15904.04, + "end": 15904.94, + "probability": 0.9807 + }, + { + "start": 15905.98, + "end": 15908.08, + "probability": 0.838 + }, + { + "start": 15908.44, + "end": 15909.74, + "probability": 0.957 + }, + { + "start": 15910.66, + "end": 15914.54, + "probability": 0.8582 + }, + { + "start": 15915.08, + "end": 15916.78, + "probability": 0.9375 + }, + { + "start": 15918.22, + "end": 15919.72, + "probability": 0.7839 + }, + { + "start": 15919.88, + "end": 15920.54, + "probability": 0.7107 + }, + { + "start": 15920.92, + "end": 15923.28, + "probability": 0.8867 + }, + { + "start": 15923.44, + "end": 15924.24, + "probability": 0.1418 + }, + { + "start": 15924.4, + "end": 15924.88, + "probability": 0.2203 + }, + { + "start": 15925.56, + "end": 15926.65, + "probability": 0.4582 + }, + { + "start": 15928.08, + "end": 15928.8, + "probability": 0.0367 + }, + { + "start": 15929.42, + "end": 15936.24, + "probability": 0.2794 + }, + { + "start": 15936.5, + "end": 15936.5, + "probability": 0.1497 + }, + { + "start": 15936.5, + "end": 15939.14, + "probability": 0.8745 + }, + { + "start": 15939.7, + "end": 15942.52, + "probability": 0.9806 + }, + { + "start": 15942.76, + "end": 15945.8, + "probability": 0.9711 + }, + { + "start": 15945.98, + "end": 15948.1, + "probability": 0.9497 + }, + { + "start": 15948.16, + "end": 15951.48, + "probability": 0.9681 + }, + { + "start": 15952.24, + "end": 15954.56, + "probability": 0.9736 + }, + { + "start": 15954.76, + "end": 15956.22, + "probability": 0.9985 + }, + { + "start": 15956.3, + "end": 15957.18, + "probability": 0.9513 + }, + { + "start": 15957.3, + "end": 15958.3, + "probability": 0.927 + }, + { + "start": 15958.38, + "end": 15959.42, + "probability": 0.9778 + }, + { + "start": 15959.96, + "end": 15960.98, + "probability": 0.9884 + }, + { + "start": 15960.98, + "end": 15961.18, + "probability": 0.7483 + }, + { + "start": 15961.2, + "end": 15961.36, + "probability": 0.0891 + }, + { + "start": 15962.0, + "end": 15962.96, + "probability": 0.9589 + }, + { + "start": 15963.18, + "end": 15964.94, + "probability": 0.871 + }, + { + "start": 15964.94, + "end": 15966.5, + "probability": 0.9695 + }, + { + "start": 15966.76, + "end": 15968.08, + "probability": 0.7969 + }, + { + "start": 15968.78, + "end": 15971.04, + "probability": 0.8126 + }, + { + "start": 15971.2, + "end": 15971.88, + "probability": 0.4984 + }, + { + "start": 15973.84, + "end": 15977.54, + "probability": 0.0191 + }, + { + "start": 15977.54, + "end": 15978.5, + "probability": 0.0219 + }, + { + "start": 15978.5, + "end": 15978.5, + "probability": 0.0681 + }, + { + "start": 15978.5, + "end": 15978.5, + "probability": 0.2892 + }, + { + "start": 15978.5, + "end": 15978.5, + "probability": 0.0141 + }, + { + "start": 15978.5, + "end": 15978.84, + "probability": 0.0509 + }, + { + "start": 15978.92, + "end": 15980.02, + "probability": 0.933 + }, + { + "start": 15980.62, + "end": 15981.48, + "probability": 0.915 + }, + { + "start": 15982.38, + "end": 15982.59, + "probability": 0.7516 + }, + { + "start": 15982.76, + "end": 15983.92, + "probability": 0.9084 + }, + { + "start": 15984.16, + "end": 15984.32, + "probability": 0.3491 + }, + { + "start": 15984.46, + "end": 15986.02, + "probability": 0.9762 + }, + { + "start": 15986.5, + "end": 15989.94, + "probability": 0.9128 + }, + { + "start": 15989.96, + "end": 15991.24, + "probability": 0.8925 + }, + { + "start": 15991.24, + "end": 15991.26, + "probability": 0.08 + }, + { + "start": 15991.26, + "end": 15992.27, + "probability": 0.8261 + }, + { + "start": 15993.06, + "end": 15993.7, + "probability": 0.6785 + }, + { + "start": 15993.94, + "end": 15993.94, + "probability": 0.8154 + }, + { + "start": 15994.52, + "end": 15995.35, + "probability": 0.5614 + }, + { + "start": 15995.5, + "end": 15995.71, + "probability": 0.0527 + }, + { + "start": 15997.42, + "end": 16000.61, + "probability": 0.671 + }, + { + "start": 16000.98, + "end": 16002.34, + "probability": 0.8196 + }, + { + "start": 16002.34, + "end": 16004.78, + "probability": 0.9769 + }, + { + "start": 16005.16, + "end": 16006.04, + "probability": 0.8936 + }, + { + "start": 16007.25, + "end": 16008.6, + "probability": 0.0742 + }, + { + "start": 16009.02, + "end": 16009.14, + "probability": 0.149 + }, + { + "start": 16009.14, + "end": 16009.5, + "probability": 0.2695 + }, + { + "start": 16010.4, + "end": 16011.66, + "probability": 0.6367 + }, + { + "start": 16011.74, + "end": 16012.47, + "probability": 0.848 + }, + { + "start": 16012.76, + "end": 16014.6, + "probability": 0.6626 + }, + { + "start": 16014.78, + "end": 16016.04, + "probability": 0.8601 + }, + { + "start": 16016.16, + "end": 16016.48, + "probability": 0.473 + }, + { + "start": 16016.56, + "end": 16022.18, + "probability": 0.9841 + }, + { + "start": 16022.32, + "end": 16023.94, + "probability": 0.7461 + }, + { + "start": 16024.2, + "end": 16025.04, + "probability": 0.2862 + }, + { + "start": 16025.8, + "end": 16027.04, + "probability": 0.9067 + }, + { + "start": 16027.12, + "end": 16029.5, + "probability": 0.7563 + }, + { + "start": 16029.56, + "end": 16029.98, + "probability": 0.5217 + }, + { + "start": 16030.22, + "end": 16030.98, + "probability": 0.9536 + }, + { + "start": 16031.22, + "end": 16032.62, + "probability": 0.7113 + }, + { + "start": 16032.62, + "end": 16035.74, + "probability": 0.0559 + }, + { + "start": 16036.56, + "end": 16037.1, + "probability": 0.3051 + }, + { + "start": 16037.1, + "end": 16037.22, + "probability": 0.0304 + }, + { + "start": 16037.22, + "end": 16037.22, + "probability": 0.0571 + }, + { + "start": 16037.22, + "end": 16041.72, + "probability": 0.9928 + }, + { + "start": 16041.86, + "end": 16042.29, + "probability": 0.8578 + }, + { + "start": 16042.7, + "end": 16044.14, + "probability": 0.8917 + }, + { + "start": 16044.34, + "end": 16045.04, + "probability": 0.0876 + }, + { + "start": 16045.08, + "end": 16047.06, + "probability": 0.967 + }, + { + "start": 16047.74, + "end": 16050.52, + "probability": 0.7745 + }, + { + "start": 16050.6, + "end": 16051.16, + "probability": 0.6623 + }, + { + "start": 16051.32, + "end": 16051.82, + "probability": 0.4101 + }, + { + "start": 16052.02, + "end": 16054.78, + "probability": 0.2353 + }, + { + "start": 16054.88, + "end": 16057.48, + "probability": 0.9245 + }, + { + "start": 16057.48, + "end": 16058.11, + "probability": 0.8186 + }, + { + "start": 16058.96, + "end": 16063.36, + "probability": 0.9897 + }, + { + "start": 16063.38, + "end": 16064.9, + "probability": 0.6103 + }, + { + "start": 16065.18, + "end": 16066.93, + "probability": 0.7564 + }, + { + "start": 16068.04, + "end": 16071.74, + "probability": 0.8005 + }, + { + "start": 16072.3, + "end": 16075.34, + "probability": 0.9641 + }, + { + "start": 16075.42, + "end": 16076.3, + "probability": 0.6022 + }, + { + "start": 16076.46, + "end": 16078.82, + "probability": 0.9509 + }, + { + "start": 16078.96, + "end": 16081.44, + "probability": 0.9674 + }, + { + "start": 16081.44, + "end": 16081.83, + "probability": 0.8032 + }, + { + "start": 16082.06, + "end": 16083.18, + "probability": 0.6299 + }, + { + "start": 16083.68, + "end": 16086.16, + "probability": 0.7108 + }, + { + "start": 16086.42, + "end": 16086.98, + "probability": 0.5715 + }, + { + "start": 16086.98, + "end": 16090.76, + "probability": 0.0727 + }, + { + "start": 16090.98, + "end": 16091.52, + "probability": 0.665 + }, + { + "start": 16091.76, + "end": 16091.78, + "probability": 0.2906 + }, + { + "start": 16093.02, + "end": 16093.8, + "probability": 0.1915 + }, + { + "start": 16094.64, + "end": 16096.04, + "probability": 0.1426 + }, + { + "start": 16096.92, + "end": 16097.78, + "probability": 0.786 + }, + { + "start": 16098.2, + "end": 16099.2, + "probability": 0.9932 + }, + { + "start": 16099.32, + "end": 16101.62, + "probability": 0.8403 + }, + { + "start": 16101.88, + "end": 16102.14, + "probability": 0.4442 + }, + { + "start": 16102.18, + "end": 16104.4, + "probability": 0.5198 + }, + { + "start": 16104.56, + "end": 16105.56, + "probability": 0.6883 + }, + { + "start": 16106.02, + "end": 16106.04, + "probability": 0.5772 + }, + { + "start": 16106.04, + "end": 16108.96, + "probability": 0.9192 + }, + { + "start": 16109.06, + "end": 16109.8, + "probability": 0.9683 + }, + { + "start": 16110.08, + "end": 16112.5, + "probability": 0.2919 + }, + { + "start": 16113.41, + "end": 16117.91, + "probability": 0.7899 + }, + { + "start": 16118.24, + "end": 16122.1, + "probability": 0.6066 + }, + { + "start": 16123.22, + "end": 16127.74, + "probability": 0.5591 + }, + { + "start": 16127.96, + "end": 16128.88, + "probability": 0.492 + }, + { + "start": 16129.16, + "end": 16129.16, + "probability": 0.265 + }, + { + "start": 16129.16, + "end": 16129.16, + "probability": 0.2037 + }, + { + "start": 16129.16, + "end": 16130.28, + "probability": 0.6942 + }, + { + "start": 16130.46, + "end": 16131.75, + "probability": 0.0372 + }, + { + "start": 16134.82, + "end": 16135.88, + "probability": 0.0032 + }, + { + "start": 16136.14, + "end": 16136.14, + "probability": 0.0545 + }, + { + "start": 16136.14, + "end": 16136.14, + "probability": 0.3073 + }, + { + "start": 16136.14, + "end": 16136.92, + "probability": 0.4909 + }, + { + "start": 16137.2, + "end": 16138.96, + "probability": 0.5382 + }, + { + "start": 16139.06, + "end": 16139.54, + "probability": 0.8998 + }, + { + "start": 16139.54, + "end": 16141.16, + "probability": 0.8397 + }, + { + "start": 16141.2, + "end": 16142.34, + "probability": 0.6037 + }, + { + "start": 16142.34, + "end": 16145.68, + "probability": 0.8657 + }, + { + "start": 16146.29, + "end": 16148.44, + "probability": 0.7061 + }, + { + "start": 16148.84, + "end": 16151.14, + "probability": 0.8774 + }, + { + "start": 16151.16, + "end": 16151.71, + "probability": 0.1405 + }, + { + "start": 16152.6, + "end": 16152.96, + "probability": 0.0854 + }, + { + "start": 16153.6, + "end": 16156.5, + "probability": 0.7255 + }, + { + "start": 16157.1, + "end": 16158.0, + "probability": 0.6063 + }, + { + "start": 16158.26, + "end": 16159.16, + "probability": 0.9891 + }, + { + "start": 16159.56, + "end": 16161.8, + "probability": 0.9671 + }, + { + "start": 16161.8, + "end": 16164.08, + "probability": 0.9386 + }, + { + "start": 16165.58, + "end": 16167.66, + "probability": 0.7685 + }, + { + "start": 16168.18, + "end": 16170.12, + "probability": 0.7939 + }, + { + "start": 16171.72, + "end": 16172.4, + "probability": 0.0947 + }, + { + "start": 16172.4, + "end": 16173.5, + "probability": 0.093 + }, + { + "start": 16173.78, + "end": 16177.42, + "probability": 0.8274 + }, + { + "start": 16178.1, + "end": 16180.46, + "probability": 0.6342 + }, + { + "start": 16182.24, + "end": 16183.24, + "probability": 0.9051 + }, + { + "start": 16183.74, + "end": 16185.8, + "probability": 0.7834 + }, + { + "start": 16186.14, + "end": 16187.78, + "probability": 0.9407 + }, + { + "start": 16188.02, + "end": 16188.18, + "probability": 0.1737 + }, + { + "start": 16188.4, + "end": 16188.86, + "probability": 0.7805 + }, + { + "start": 16189.1, + "end": 16189.96, + "probability": 0.6768 + }, + { + "start": 16190.1, + "end": 16190.48, + "probability": 0.6607 + }, + { + "start": 16190.58, + "end": 16191.78, + "probability": 0.4951 + }, + { + "start": 16192.28, + "end": 16194.38, + "probability": 0.9966 + }, + { + "start": 16194.4, + "end": 16194.44, + "probability": 0.0576 + }, + { + "start": 16194.96, + "end": 16196.46, + "probability": 0.3277 + }, + { + "start": 16196.46, + "end": 16197.3, + "probability": 0.8969 + }, + { + "start": 16197.73, + "end": 16201.42, + "probability": 0.9972 + }, + { + "start": 16201.5, + "end": 16202.18, + "probability": 0.9985 + }, + { + "start": 16202.78, + "end": 16202.88, + "probability": 0.4255 + }, + { + "start": 16203.02, + "end": 16205.68, + "probability": 0.9196 + }, + { + "start": 16205.68, + "end": 16208.94, + "probability": 0.0913 + }, + { + "start": 16209.58, + "end": 16210.3, + "probability": 0.0622 + }, + { + "start": 16210.3, + "end": 16210.3, + "probability": 0.032 + }, + { + "start": 16210.3, + "end": 16210.3, + "probability": 0.1067 + }, + { + "start": 16210.3, + "end": 16211.24, + "probability": 0.3097 + }, + { + "start": 16211.32, + "end": 16215.74, + "probability": 0.954 + }, + { + "start": 16215.74, + "end": 16215.78, + "probability": 0.3099 + }, + { + "start": 16216.34, + "end": 16216.46, + "probability": 0.1918 + }, + { + "start": 16217.88, + "end": 16218.16, + "probability": 0.0466 + }, + { + "start": 16218.16, + "end": 16219.8, + "probability": 0.4254 + }, + { + "start": 16219.9, + "end": 16221.18, + "probability": 0.8188 + }, + { + "start": 16221.34, + "end": 16221.87, + "probability": 0.3446 + }, + { + "start": 16221.96, + "end": 16222.44, + "probability": 0.5791 + }, + { + "start": 16222.5, + "end": 16226.18, + "probability": 0.5071 + }, + { + "start": 16226.26, + "end": 16227.54, + "probability": 0.8191 + }, + { + "start": 16228.54, + "end": 16230.82, + "probability": 0.2942 + }, + { + "start": 16230.88, + "end": 16232.78, + "probability": 0.6485 + }, + { + "start": 16233.78, + "end": 16234.58, + "probability": 0.9076 + }, + { + "start": 16235.66, + "end": 16237.22, + "probability": 0.2434 + }, + { + "start": 16237.6, + "end": 16237.74, + "probability": 0.0074 + }, + { + "start": 16238.2, + "end": 16239.52, + "probability": 0.9383 + }, + { + "start": 16240.64, + "end": 16241.5, + "probability": 0.9885 + }, + { + "start": 16241.78, + "end": 16244.0, + "probability": 0.9338 + }, + { + "start": 16247.0, + "end": 16248.46, + "probability": 0.0287 + }, + { + "start": 16248.46, + "end": 16249.64, + "probability": 0.0268 + }, + { + "start": 16249.64, + "end": 16252.79, + "probability": 0.2855 + }, + { + "start": 16253.34, + "end": 16255.72, + "probability": 0.4428 + }, + { + "start": 16256.86, + "end": 16257.86, + "probability": 0.4304 + }, + { + "start": 16258.04, + "end": 16258.94, + "probability": 0.7682 + }, + { + "start": 16258.98, + "end": 16262.42, + "probability": 0.9878 + }, + { + "start": 16263.14, + "end": 16263.68, + "probability": 0.4129 + }, + { + "start": 16263.82, + "end": 16265.62, + "probability": 0.9225 + }, + { + "start": 16265.84, + "end": 16268.22, + "probability": 0.647 + }, + { + "start": 16268.26, + "end": 16268.7, + "probability": 0.4442 + }, + { + "start": 16268.7, + "end": 16271.82, + "probability": 0.6869 + }, + { + "start": 16271.88, + "end": 16274.62, + "probability": 0.7082 + }, + { + "start": 16274.66, + "end": 16276.76, + "probability": 0.726 + }, + { + "start": 16277.68, + "end": 16279.68, + "probability": 0.7363 + }, + { + "start": 16279.98, + "end": 16281.6, + "probability": 0.1106 + }, + { + "start": 16281.6, + "end": 16285.78, + "probability": 0.0939 + }, + { + "start": 16285.78, + "end": 16286.38, + "probability": 0.5317 + }, + { + "start": 16286.38, + "end": 16288.86, + "probability": 0.2687 + }, + { + "start": 16288.88, + "end": 16289.64, + "probability": 0.9661 + }, + { + "start": 16290.21, + "end": 16292.08, + "probability": 0.6457 + }, + { + "start": 16292.1, + "end": 16292.96, + "probability": 0.5363 + }, + { + "start": 16293.04, + "end": 16293.73, + "probability": 0.641 + }, + { + "start": 16294.1, + "end": 16295.26, + "probability": 0.8958 + }, + { + "start": 16296.22, + "end": 16297.66, + "probability": 0.6678 + }, + { + "start": 16298.02, + "end": 16298.56, + "probability": 0.7231 + }, + { + "start": 16299.14, + "end": 16301.48, + "probability": 0.9984 + }, + { + "start": 16301.66, + "end": 16303.56, + "probability": 0.6476 + }, + { + "start": 16303.68, + "end": 16304.53, + "probability": 0.7745 + }, + { + "start": 16305.02, + "end": 16305.34, + "probability": 0.149 + }, + { + "start": 16305.34, + "end": 16307.58, + "probability": 0.7804 + }, + { + "start": 16307.6, + "end": 16308.58, + "probability": 0.8232 + }, + { + "start": 16309.52, + "end": 16311.82, + "probability": 0.9891 + }, + { + "start": 16311.94, + "end": 16312.8, + "probability": 0.3931 + }, + { + "start": 16313.1, + "end": 16320.44, + "probability": 0.9735 + }, + { + "start": 16320.68, + "end": 16322.64, + "probability": 0.8648 + }, + { + "start": 16322.78, + "end": 16325.14, + "probability": 0.8527 + }, + { + "start": 16325.92, + "end": 16327.12, + "probability": 0.5578 + }, + { + "start": 16329.61, + "end": 16333.78, + "probability": 0.0317 + }, + { + "start": 16334.0, + "end": 16334.04, + "probability": 0.4652 + }, + { + "start": 16334.04, + "end": 16334.88, + "probability": 0.3372 + }, + { + "start": 16337.36, + "end": 16342.74, + "probability": 0.5394 + }, + { + "start": 16342.96, + "end": 16347.28, + "probability": 0.9423 + }, + { + "start": 16347.36, + "end": 16350.76, + "probability": 0.6529 + }, + { + "start": 16351.4, + "end": 16356.1, + "probability": 0.8832 + }, + { + "start": 16356.82, + "end": 16357.32, + "probability": 0.5993 + }, + { + "start": 16358.68, + "end": 16359.3, + "probability": 0.208 + }, + { + "start": 16359.36, + "end": 16360.32, + "probability": 0.6685 + }, + { + "start": 16360.42, + "end": 16361.1, + "probability": 0.4093 + }, + { + "start": 16361.24, + "end": 16362.34, + "probability": 0.6268 + }, + { + "start": 16362.34, + "end": 16363.64, + "probability": 0.7414 + }, + { + "start": 16363.64, + "end": 16368.16, + "probability": 0.9568 + }, + { + "start": 16368.47, + "end": 16372.64, + "probability": 0.9666 + }, + { + "start": 16373.34, + "end": 16375.9, + "probability": 0.805 + }, + { + "start": 16376.44, + "end": 16381.36, + "probability": 0.883 + }, + { + "start": 16382.0, + "end": 16383.4, + "probability": 0.7995 + }, + { + "start": 16384.36, + "end": 16385.64, + "probability": 0.9893 + }, + { + "start": 16385.66, + "end": 16389.38, + "probability": 0.9849 + }, + { + "start": 16389.38, + "end": 16392.16, + "probability": 0.9616 + }, + { + "start": 16392.7, + "end": 16394.06, + "probability": 0.9471 + }, + { + "start": 16394.62, + "end": 16394.86, + "probability": 0.9272 + }, + { + "start": 16395.6, + "end": 16398.02, + "probability": 0.9788 + }, + { + "start": 16398.9, + "end": 16401.44, + "probability": 0.9988 + }, + { + "start": 16401.6, + "end": 16402.32, + "probability": 0.4578 + }, + { + "start": 16402.74, + "end": 16403.7, + "probability": 0.4381 + }, + { + "start": 16404.36, + "end": 16406.22, + "probability": 0.7109 + }, + { + "start": 16406.42, + "end": 16407.34, + "probability": 0.9251 + }, + { + "start": 16407.88, + "end": 16410.88, + "probability": 0.9876 + }, + { + "start": 16411.4, + "end": 16414.18, + "probability": 0.823 + }, + { + "start": 16415.18, + "end": 16416.92, + "probability": 0.2747 + }, + { + "start": 16417.02, + "end": 16417.34, + "probability": 0.7601 + }, + { + "start": 16418.61, + "end": 16420.44, + "probability": 0.6189 + }, + { + "start": 16420.44, + "end": 16420.73, + "probability": 0.3202 + }, + { + "start": 16421.62, + "end": 16424.38, + "probability": 0.598 + }, + { + "start": 16424.58, + "end": 16424.58, + "probability": 0.0003 + }, + { + "start": 16425.12, + "end": 16428.22, + "probability": 0.3286 + }, + { + "start": 16428.32, + "end": 16429.3, + "probability": 0.4677 + }, + { + "start": 16430.11, + "end": 16431.52, + "probability": 0.6588 + }, + { + "start": 16432.46, + "end": 16433.56, + "probability": 0.9207 + }, + { + "start": 16434.0, + "end": 16435.1, + "probability": 0.7624 + }, + { + "start": 16435.32, + "end": 16438.64, + "probability": 0.6756 + }, + { + "start": 16439.52, + "end": 16440.22, + "probability": 0.9634 + }, + { + "start": 16441.58, + "end": 16441.86, + "probability": 0.6547 + }, + { + "start": 16442.86, + "end": 16445.64, + "probability": 0.7909 + }, + { + "start": 16445.64, + "end": 16448.4, + "probability": 0.4804 + }, + { + "start": 16448.4, + "end": 16449.7, + "probability": 0.3144 + }, + { + "start": 16449.82, + "end": 16451.98, + "probability": 0.5658 + }, + { + "start": 16452.0, + "end": 16454.24, + "probability": 0.8381 + }, + { + "start": 16454.46, + "end": 16456.8, + "probability": 0.5161 + }, + { + "start": 16457.04, + "end": 16458.8, + "probability": 0.7235 + }, + { + "start": 16459.42, + "end": 16461.14, + "probability": 0.3532 + }, + { + "start": 16462.2, + "end": 16462.48, + "probability": 0.8385 + }, + { + "start": 16462.48, + "end": 16462.7, + "probability": 0.8452 + }, + { + "start": 16464.06, + "end": 16464.88, + "probability": 0.9851 + }, + { + "start": 16464.94, + "end": 16465.78, + "probability": 0.6145 + }, + { + "start": 16465.84, + "end": 16466.26, + "probability": 0.9658 + }, + { + "start": 16467.82, + "end": 16471.4, + "probability": 0.9873 + }, + { + "start": 16472.28, + "end": 16473.3, + "probability": 0.7095 + }, + { + "start": 16473.4, + "end": 16475.4, + "probability": 0.723 + }, + { + "start": 16475.48, + "end": 16476.22, + "probability": 0.8633 + }, + { + "start": 16477.12, + "end": 16477.54, + "probability": 0.5358 + }, + { + "start": 16478.42, + "end": 16481.06, + "probability": 0.6975 + }, + { + "start": 16481.28, + "end": 16482.44, + "probability": 0.8997 + }, + { + "start": 16482.74, + "end": 16486.18, + "probability": 0.9456 + }, + { + "start": 16486.5, + "end": 16487.29, + "probability": 0.9648 + }, + { + "start": 16488.44, + "end": 16488.96, + "probability": 0.8323 + }, + { + "start": 16489.8, + "end": 16491.74, + "probability": 0.9479 + }, + { + "start": 16493.28, + "end": 16495.8, + "probability": 0.6553 + }, + { + "start": 16496.12, + "end": 16496.94, + "probability": 0.6741 + }, + { + "start": 16497.54, + "end": 16499.59, + "probability": 0.6859 + }, + { + "start": 16500.74, + "end": 16504.64, + "probability": 0.8463 + }, + { + "start": 16505.14, + "end": 16505.86, + "probability": 0.6117 + }, + { + "start": 16506.04, + "end": 16506.39, + "probability": 0.9565 + }, + { + "start": 16507.1, + "end": 16508.74, + "probability": 0.8246 + }, + { + "start": 16509.5, + "end": 16512.14, + "probability": 0.9629 + }, + { + "start": 16512.66, + "end": 16515.0, + "probability": 0.9312 + }, + { + "start": 16515.2, + "end": 16515.94, + "probability": 0.8401 + }, + { + "start": 16516.54, + "end": 16517.88, + "probability": 0.765 + }, + { + "start": 16519.36, + "end": 16520.54, + "probability": 0.5132 + }, + { + "start": 16520.84, + "end": 16522.32, + "probability": 0.3693 + }, + { + "start": 16522.66, + "end": 16524.46, + "probability": 0.8972 + }, + { + "start": 16524.8, + "end": 16526.94, + "probability": 0.8501 + }, + { + "start": 16527.28, + "end": 16529.4, + "probability": 0.937 + }, + { + "start": 16530.28, + "end": 16531.4, + "probability": 0.9189 + }, + { + "start": 16532.26, + "end": 16534.41, + "probability": 0.7696 + }, + { + "start": 16534.68, + "end": 16537.34, + "probability": 0.8606 + }, + { + "start": 16537.94, + "end": 16538.58, + "probability": 0.8045 + }, + { + "start": 16538.94, + "end": 16539.06, + "probability": 0.3323 + }, + { + "start": 16539.86, + "end": 16542.0, + "probability": 0.356 + }, + { + "start": 16542.94, + "end": 16545.84, + "probability": 0.9054 + }, + { + "start": 16545.96, + "end": 16546.54, + "probability": 0.6692 + }, + { + "start": 16546.62, + "end": 16547.88, + "probability": 0.5545 + }, + { + "start": 16548.12, + "end": 16548.82, + "probability": 0.5388 + }, + { + "start": 16549.0, + "end": 16551.8, + "probability": 0.7858 + }, + { + "start": 16552.0, + "end": 16554.06, + "probability": 0.9604 + }, + { + "start": 16554.18, + "end": 16557.12, + "probability": 0.9077 + }, + { + "start": 16557.24, + "end": 16559.72, + "probability": 0.8289 + }, + { + "start": 16560.02, + "end": 16560.2, + "probability": 0.6312 + }, + { + "start": 16560.32, + "end": 16560.54, + "probability": 0.6494 + }, + { + "start": 16560.96, + "end": 16561.68, + "probability": 0.7886 + }, + { + "start": 16561.68, + "end": 16562.18, + "probability": 0.4208 + }, + { + "start": 16563.33, + "end": 16565.8, + "probability": 0.4173 + }, + { + "start": 16565.8, + "end": 16565.8, + "probability": 0.5484 + }, + { + "start": 16565.8, + "end": 16565.8, + "probability": 0.0185 + }, + { + "start": 16565.8, + "end": 16565.84, + "probability": 0.3051 + }, + { + "start": 16565.98, + "end": 16566.56, + "probability": 0.9249 + }, + { + "start": 16566.72, + "end": 16567.38, + "probability": 0.7732 + }, + { + "start": 16568.16, + "end": 16569.82, + "probability": 0.439 + }, + { + "start": 16569.86, + "end": 16572.2, + "probability": 0.8056 + }, + { + "start": 16572.52, + "end": 16573.4, + "probability": 0.4411 + }, + { + "start": 16574.78, + "end": 16575.36, + "probability": 0.3043 + }, + { + "start": 16575.48, + "end": 16577.92, + "probability": 0.3115 + }, + { + "start": 16581.48, + "end": 16583.5, + "probability": 0.0982 + }, + { + "start": 16583.54, + "end": 16585.66, + "probability": 0.7271 + }, + { + "start": 16585.76, + "end": 16588.24, + "probability": 0.794 + }, + { + "start": 16588.84, + "end": 16589.5, + "probability": 0.9126 + }, + { + "start": 16590.16, + "end": 16590.58, + "probability": 0.7405 + }, + { + "start": 16590.58, + "end": 16592.56, + "probability": 0.3659 + }, + { + "start": 16592.7, + "end": 16593.26, + "probability": 0.4867 + }, + { + "start": 16593.72, + "end": 16596.85, + "probability": 0.6519 + }, + { + "start": 16597.66, + "end": 16600.12, + "probability": 0.9012 + }, + { + "start": 16600.12, + "end": 16601.48, + "probability": 0.8102 + }, + { + "start": 16601.52, + "end": 16609.38, + "probability": 0.9354 + }, + { + "start": 16609.62, + "end": 16610.16, + "probability": 0.6507 + }, + { + "start": 16610.8, + "end": 16612.78, + "probability": 0.9674 + }, + { + "start": 16613.52, + "end": 16614.5, + "probability": 0.6227 + }, + { + "start": 16614.5, + "end": 16615.1, + "probability": 0.8906 + }, + { + "start": 16615.42, + "end": 16615.92, + "probability": 0.9468 + }, + { + "start": 16616.16, + "end": 16617.5, + "probability": 0.3806 + }, + { + "start": 16617.54, + "end": 16622.42, + "probability": 0.8454 + }, + { + "start": 16622.58, + "end": 16623.4, + "probability": 0.9382 + }, + { + "start": 16624.24, + "end": 16628.78, + "probability": 0.9991 + }, + { + "start": 16629.2, + "end": 16629.98, + "probability": 0.4517 + }, + { + "start": 16630.0, + "end": 16630.8, + "probability": 0.5537 + }, + { + "start": 16631.76, + "end": 16633.46, + "probability": 0.8359 + }, + { + "start": 16637.34, + "end": 16638.82, + "probability": 0.5866 + }, + { + "start": 16638.98, + "end": 16640.14, + "probability": 0.1301 + }, + { + "start": 16640.28, + "end": 16642.22, + "probability": 0.9976 + }, + { + "start": 16642.7, + "end": 16644.94, + "probability": 0.8793 + }, + { + "start": 16645.82, + "end": 16651.3, + "probability": 0.991 + }, + { + "start": 16651.8, + "end": 16652.72, + "probability": 0.7214 + }, + { + "start": 16653.18, + "end": 16656.34, + "probability": 0.7219 + }, + { + "start": 16657.24, + "end": 16660.46, + "probability": 0.9006 + }, + { + "start": 16660.62, + "end": 16661.84, + "probability": 0.5335 + }, + { + "start": 16662.59, + "end": 16665.04, + "probability": 0.9619 + }, + { + "start": 16665.36, + "end": 16666.3, + "probability": 0.7148 + }, + { + "start": 16666.46, + "end": 16666.96, + "probability": 0.7074 + }, + { + "start": 16667.88, + "end": 16667.88, + "probability": 0.1623 + }, + { + "start": 16667.88, + "end": 16671.04, + "probability": 0.8388 + }, + { + "start": 16671.16, + "end": 16674.24, + "probability": 0.6283 + }, + { + "start": 16674.24, + "end": 16675.61, + "probability": 0.6952 + }, + { + "start": 16676.02, + "end": 16677.14, + "probability": 0.4415 + }, + { + "start": 16677.2, + "end": 16677.88, + "probability": 0.5374 + }, + { + "start": 16678.06, + "end": 16680.9, + "probability": 0.1327 + }, + { + "start": 16681.24, + "end": 16682.2, + "probability": 0.0248 + }, + { + "start": 16682.26, + "end": 16682.38, + "probability": 0.093 + }, + { + "start": 16682.38, + "end": 16683.01, + "probability": 0.8876 + }, + { + "start": 16683.94, + "end": 16684.72, + "probability": 0.7779 + }, + { + "start": 16684.76, + "end": 16688.68, + "probability": 0.9624 + }, + { + "start": 16689.04, + "end": 16694.3, + "probability": 0.9821 + }, + { + "start": 16694.64, + "end": 16696.12, + "probability": 0.7462 + }, + { + "start": 16696.86, + "end": 16698.36, + "probability": 0.9569 + }, + { + "start": 16698.76, + "end": 16701.81, + "probability": 0.9591 + }, + { + "start": 16701.92, + "end": 16703.52, + "probability": 0.9958 + }, + { + "start": 16704.34, + "end": 16704.56, + "probability": 0.4925 + }, + { + "start": 16704.7, + "end": 16705.34, + "probability": 0.7374 + }, + { + "start": 16705.72, + "end": 16706.72, + "probability": 0.9273 + }, + { + "start": 16707.1, + "end": 16708.68, + "probability": 0.7663 + }, + { + "start": 16709.12, + "end": 16714.38, + "probability": 0.7245 + }, + { + "start": 16714.56, + "end": 16715.2, + "probability": 0.5039 + }, + { + "start": 16715.24, + "end": 16719.5, + "probability": 0.7255 + }, + { + "start": 16719.58, + "end": 16721.42, + "probability": 0.8735 + }, + { + "start": 16721.64, + "end": 16723.8, + "probability": 0.8279 + }, + { + "start": 16723.84, + "end": 16724.78, + "probability": 0.7305 + }, + { + "start": 16724.99, + "end": 16726.52, + "probability": 0.6651 + }, + { + "start": 16726.78, + "end": 16727.88, + "probability": 0.2552 + }, + { + "start": 16727.88, + "end": 16729.0, + "probability": 0.675 + }, + { + "start": 16729.08, + "end": 16729.88, + "probability": 0.8696 + }, + { + "start": 16730.28, + "end": 16734.44, + "probability": 0.9514 + }, + { + "start": 16734.62, + "end": 16736.4, + "probability": 0.9019 + }, + { + "start": 16736.6, + "end": 16736.76, + "probability": 0.4939 + }, + { + "start": 16736.76, + "end": 16737.94, + "probability": 0.9907 + }, + { + "start": 16738.6, + "end": 16742.94, + "probability": 0.9951 + }, + { + "start": 16743.08, + "end": 16743.98, + "probability": 0.6229 + }, + { + "start": 16744.24, + "end": 16745.44, + "probability": 0.8867 + }, + { + "start": 16745.66, + "end": 16749.34, + "probability": 0.997 + }, + { + "start": 16749.54, + "end": 16753.32, + "probability": 0.8259 + }, + { + "start": 16753.78, + "end": 16755.1, + "probability": 0.9592 + }, + { + "start": 16755.44, + "end": 16756.88, + "probability": 0.779 + }, + { + "start": 16756.92, + "end": 16758.23, + "probability": 0.928 + }, + { + "start": 16758.48, + "end": 16759.15, + "probability": 0.4872 + }, + { + "start": 16759.74, + "end": 16760.56, + "probability": 0.6954 + }, + { + "start": 16760.68, + "end": 16763.66, + "probability": 0.2275 + }, + { + "start": 16763.78, + "end": 16766.5, + "probability": 0.5079 + }, + { + "start": 16766.98, + "end": 16770.0, + "probability": 0.759 + }, + { + "start": 16770.18, + "end": 16773.12, + "probability": 0.447 + }, + { + "start": 16773.24, + "end": 16774.02, + "probability": 0.7026 + }, + { + "start": 16774.75, + "end": 16776.32, + "probability": 0.1918 + }, + { + "start": 16776.6, + "end": 16776.6, + "probability": 0.4675 + }, + { + "start": 16776.6, + "end": 16778.24, + "probability": 0.9718 + }, + { + "start": 16779.94, + "end": 16780.96, + "probability": 0.4606 + }, + { + "start": 16782.06, + "end": 16783.38, + "probability": 0.837 + }, + { + "start": 16784.18, + "end": 16786.04, + "probability": 0.9713 + }, + { + "start": 16786.1, + "end": 16786.52, + "probability": 0.0658 + }, + { + "start": 16786.52, + "end": 16787.22, + "probability": 0.0559 + }, + { + "start": 16787.4, + "end": 16788.62, + "probability": 0.6694 + }, + { + "start": 16789.12, + "end": 16791.21, + "probability": 0.8984 + }, + { + "start": 16791.5, + "end": 16792.16, + "probability": 0.7791 + }, + { + "start": 16792.18, + "end": 16794.48, + "probability": 0.7569 + }, + { + "start": 16794.72, + "end": 16795.4, + "probability": 0.9207 + }, + { + "start": 16795.66, + "end": 16796.0, + "probability": 0.7898 + }, + { + "start": 16796.16, + "end": 16797.34, + "probability": 0.979 + }, + { + "start": 16798.1, + "end": 16799.86, + "probability": 0.7848 + }, + { + "start": 16799.96, + "end": 16801.0, + "probability": 0.0325 + }, + { + "start": 16801.0, + "end": 16802.62, + "probability": 0.1514 + }, + { + "start": 16802.78, + "end": 16803.62, + "probability": 0.5803 + }, + { + "start": 16803.96, + "end": 16805.06, + "probability": 0.8721 + }, + { + "start": 16805.14, + "end": 16806.5, + "probability": 0.8395 + }, + { + "start": 16807.37, + "end": 16807.82, + "probability": 0.7168 + }, + { + "start": 16807.82, + "end": 16808.38, + "probability": 0.3544 + }, + { + "start": 16809.7, + "end": 16809.86, + "probability": 0.3079 + }, + { + "start": 16810.04, + "end": 16811.21, + "probability": 0.9329 + }, + { + "start": 16811.3, + "end": 16813.54, + "probability": 0.7643 + }, + { + "start": 16813.7, + "end": 16815.55, + "probability": 0.0925 + }, + { + "start": 16816.2, + "end": 16818.66, + "probability": 0.7478 + }, + { + "start": 16819.66, + "end": 16820.44, + "probability": 0.669 + }, + { + "start": 16820.72, + "end": 16821.44, + "probability": 0.9327 + }, + { + "start": 16821.54, + "end": 16823.4, + "probability": 0.4909 + }, + { + "start": 16823.4, + "end": 16824.5, + "probability": 0.7014 + }, + { + "start": 16824.7, + "end": 16825.22, + "probability": 0.4746 + }, + { + "start": 16825.42, + "end": 16828.76, + "probability": 0.536 + }, + { + "start": 16829.32, + "end": 16830.78, + "probability": 0.9819 + }, + { + "start": 16831.12, + "end": 16831.76, + "probability": 0.6968 + }, + { + "start": 16832.06, + "end": 16836.12, + "probability": 0.4773 + }, + { + "start": 16836.12, + "end": 16836.46, + "probability": 0.6523 + }, + { + "start": 16836.62, + "end": 16837.18, + "probability": 0.7425 + }, + { + "start": 16837.3, + "end": 16837.94, + "probability": 0.9241 + }, + { + "start": 16838.08, + "end": 16840.66, + "probability": 0.787 + }, + { + "start": 16840.66, + "end": 16846.18, + "probability": 0.837 + }, + { + "start": 16846.2, + "end": 16853.72, + "probability": 0.8887 + }, + { + "start": 16853.72, + "end": 16854.0, + "probability": 0.3557 + }, + { + "start": 16854.14, + "end": 16855.61, + "probability": 0.7134 + }, + { + "start": 16856.44, + "end": 16857.02, + "probability": 0.2584 + }, + { + "start": 16857.02, + "end": 16858.06, + "probability": 0.8372 + }, + { + "start": 16858.22, + "end": 16859.54, + "probability": 0.9749 + }, + { + "start": 16860.08, + "end": 16861.7, + "probability": 0.8506 + }, + { + "start": 16861.84, + "end": 16862.14, + "probability": 0.47 + }, + { + "start": 16862.22, + "end": 16864.02, + "probability": 0.5803 + }, + { + "start": 16864.4, + "end": 16868.04, + "probability": 0.8383 + }, + { + "start": 16868.66, + "end": 16868.88, + "probability": 0.5699 + }, + { + "start": 16869.2, + "end": 16869.78, + "probability": 0.5895 + }, + { + "start": 16870.08, + "end": 16871.62, + "probability": 0.9867 + }, + { + "start": 16871.84, + "end": 16872.46, + "probability": 0.608 + }, + { + "start": 16872.5, + "end": 16873.32, + "probability": 0.8565 + }, + { + "start": 16873.34, + "end": 16874.52, + "probability": 0.6635 + }, + { + "start": 16875.33, + "end": 16877.76, + "probability": 0.7073 + }, + { + "start": 16877.88, + "end": 16879.26, + "probability": 0.9597 + }, + { + "start": 16879.42, + "end": 16879.52, + "probability": 0.8105 + }, + { + "start": 16880.32, + "end": 16881.36, + "probability": 0.6521 + }, + { + "start": 16881.52, + "end": 16885.92, + "probability": 0.9727 + }, + { + "start": 16886.5, + "end": 16887.06, + "probability": 0.6988 + }, + { + "start": 16887.26, + "end": 16888.04, + "probability": 0.957 + }, + { + "start": 16888.2, + "end": 16888.92, + "probability": 0.6522 + }, + { + "start": 16889.32, + "end": 16890.76, + "probability": 0.9945 + }, + { + "start": 16890.94, + "end": 16892.52, + "probability": 0.7974 + }, + { + "start": 16892.52, + "end": 16893.36, + "probability": 0.9064 + }, + { + "start": 16893.48, + "end": 16894.9, + "probability": 0.6294 + }, + { + "start": 16895.2, + "end": 16897.68, + "probability": 0.5642 + }, + { + "start": 16898.12, + "end": 16899.22, + "probability": 0.319 + }, + { + "start": 16899.64, + "end": 16901.72, + "probability": 0.5239 + }, + { + "start": 16901.9, + "end": 16902.14, + "probability": 0.1991 + }, + { + "start": 16902.32, + "end": 16902.7, + "probability": 0.8536 + }, + { + "start": 16902.86, + "end": 16904.24, + "probability": 0.5835 + }, + { + "start": 16904.56, + "end": 16905.8, + "probability": 0.9204 + }, + { + "start": 16905.88, + "end": 16907.16, + "probability": 0.1863 + }, + { + "start": 16907.38, + "end": 16908.12, + "probability": 0.5305 + }, + { + "start": 16908.16, + "end": 16911.56, + "probability": 0.5138 + }, + { + "start": 16911.56, + "end": 16913.48, + "probability": 0.7939 + }, + { + "start": 16913.78, + "end": 16916.34, + "probability": 0.6281 + }, + { + "start": 16916.62, + "end": 16919.27, + "probability": 0.698 + }, + { + "start": 16919.86, + "end": 16922.92, + "probability": 0.5619 + }, + { + "start": 16924.02, + "end": 16926.94, + "probability": 0.7988 + }, + { + "start": 16927.6, + "end": 16929.7, + "probability": 0.8599 + }, + { + "start": 16930.0, + "end": 16933.06, + "probability": 0.4058 + }, + { + "start": 16933.8, + "end": 16936.0, + "probability": 0.4518 + }, + { + "start": 16936.18, + "end": 16936.64, + "probability": 0.3384 + }, + { + "start": 16937.42, + "end": 16938.36, + "probability": 0.5771 + }, + { + "start": 16939.53, + "end": 16943.88, + "probability": 0.8003 + }, + { + "start": 16945.52, + "end": 16946.88, + "probability": 0.2409 + }, + { + "start": 16947.5, + "end": 16948.26, + "probability": 0.1883 + }, + { + "start": 16948.26, + "end": 16948.74, + "probability": 0.3 + }, + { + "start": 16949.04, + "end": 16949.46, + "probability": 0.4411 + }, + { + "start": 16949.46, + "end": 16950.08, + "probability": 0.491 + }, + { + "start": 16950.08, + "end": 16950.66, + "probability": 0.502 + }, + { + "start": 16951.45, + "end": 16952.96, + "probability": 0.6426 + }, + { + "start": 16954.41, + "end": 16958.42, + "probability": 0.8538 + }, + { + "start": 16958.5, + "end": 16962.94, + "probability": 0.8419 + }, + { + "start": 16963.14, + "end": 16963.68, + "probability": 0.2934 + }, + { + "start": 16964.32, + "end": 16966.68, + "probability": 0.6697 + }, + { + "start": 16966.85, + "end": 16969.93, + "probability": 0.2781 + }, + { + "start": 16970.34, + "end": 16971.78, + "probability": 0.5326 + }, + { + "start": 16971.78, + "end": 16976.26, + "probability": 0.9124 + }, + { + "start": 16976.5, + "end": 16977.4, + "probability": 0.4858 + }, + { + "start": 16978.85, + "end": 16981.12, + "probability": 0.4518 + }, + { + "start": 16981.84, + "end": 16982.58, + "probability": 0.002 + }, + { + "start": 16982.62, + "end": 16982.98, + "probability": 0.2825 + }, + { + "start": 16982.98, + "end": 16983.3, + "probability": 0.2648 + }, + { + "start": 16983.3, + "end": 16983.66, + "probability": 0.0472 + }, + { + "start": 16983.66, + "end": 16986.56, + "probability": 0.6575 + }, + { + "start": 16987.12, + "end": 16990.34, + "probability": 0.3553 + }, + { + "start": 16990.58, + "end": 16993.0, + "probability": 0.1688 + }, + { + "start": 16993.36, + "end": 16993.82, + "probability": 0.2703 + }, + { + "start": 16993.82, + "end": 16993.82, + "probability": 0.1332 + }, + { + "start": 16993.82, + "end": 16995.25, + "probability": 0.8328 + }, + { + "start": 16995.72, + "end": 16996.48, + "probability": 0.5243 + }, + { + "start": 16996.76, + "end": 16998.54, + "probability": 0.7421 + }, + { + "start": 16998.84, + "end": 17000.08, + "probability": 0.4866 + }, + { + "start": 17000.12, + "end": 17000.9, + "probability": 0.9094 + }, + { + "start": 17001.36, + "end": 17001.64, + "probability": 0.9572 + }, + { + "start": 17002.03, + "end": 17006.46, + "probability": 0.854 + }, + { + "start": 17006.5, + "end": 17009.78, + "probability": 0.9092 + }, + { + "start": 17009.86, + "end": 17010.27, + "probability": 0.4855 + }, + { + "start": 17011.06, + "end": 17012.58, + "probability": 0.9651 + }, + { + "start": 17012.68, + "end": 17014.4, + "probability": 0.8599 + }, + { + "start": 17014.74, + "end": 17015.79, + "probability": 0.7812 + }, + { + "start": 17016.47, + "end": 17018.74, + "probability": 0.8765 + }, + { + "start": 17018.98, + "end": 17022.12, + "probability": 0.6702 + }, + { + "start": 17022.24, + "end": 17023.6, + "probability": 0.3493 + }, + { + "start": 17023.8, + "end": 17025.32, + "probability": 0.5242 + }, + { + "start": 17025.5, + "end": 17026.26, + "probability": 0.8037 + }, + { + "start": 17026.3, + "end": 17026.98, + "probability": 0.4969 + }, + { + "start": 17027.12, + "end": 17028.64, + "probability": 0.7346 + }, + { + "start": 17028.86, + "end": 17030.12, + "probability": 0.9268 + }, + { + "start": 17030.28, + "end": 17031.62, + "probability": 0.6447 + }, + { + "start": 17031.74, + "end": 17033.27, + "probability": 0.981 + }, + { + "start": 17033.74, + "end": 17036.6, + "probability": 0.8965 + }, + { + "start": 17036.72, + "end": 17037.2, + "probability": 0.8087 + }, + { + "start": 17037.4, + "end": 17037.68, + "probability": 0.7928 + }, + { + "start": 17037.68, + "end": 17038.88, + "probability": 0.7706 + }, + { + "start": 17038.88, + "end": 17040.5, + "probability": 0.3763 + }, + { + "start": 17040.8, + "end": 17041.4, + "probability": 0.7878 + }, + { + "start": 17042.06, + "end": 17043.3, + "probability": 0.0634 + }, + { + "start": 17044.88, + "end": 17046.68, + "probability": 0.172 + }, + { + "start": 17046.68, + "end": 17046.68, + "probability": 0.0605 + }, + { + "start": 17046.68, + "end": 17046.68, + "probability": 0.1149 + }, + { + "start": 17046.68, + "end": 17046.68, + "probability": 0.1203 + }, + { + "start": 17046.68, + "end": 17047.32, + "probability": 0.4546 + }, + { + "start": 17047.72, + "end": 17049.32, + "probability": 0.939 + }, + { + "start": 17049.44, + "end": 17050.12, + "probability": 0.7388 + }, + { + "start": 17050.34, + "end": 17051.04, + "probability": 0.9262 + }, + { + "start": 17051.62, + "end": 17055.18, + "probability": 0.9731 + }, + { + "start": 17055.68, + "end": 17057.36, + "probability": 0.9349 + }, + { + "start": 17057.72, + "end": 17060.16, + "probability": 0.9948 + }, + { + "start": 17060.32, + "end": 17062.71, + "probability": 0.9307 + }, + { + "start": 17063.0, + "end": 17064.56, + "probability": 0.8939 + }, + { + "start": 17064.84, + "end": 17066.58, + "probability": 0.9883 + }, + { + "start": 17066.66, + "end": 17067.08, + "probability": 0.8376 + }, + { + "start": 17067.38, + "end": 17068.36, + "probability": 0.6929 + }, + { + "start": 17068.58, + "end": 17069.42, + "probability": 0.2352 + }, + { + "start": 17069.56, + "end": 17070.87, + "probability": 0.8444 + }, + { + "start": 17072.22, + "end": 17075.16, + "probability": 0.5594 + }, + { + "start": 17075.56, + "end": 17076.38, + "probability": 0.5948 + }, + { + "start": 17077.45, + "end": 17084.47, + "probability": 0.9963 + }, + { + "start": 17085.14, + "end": 17086.52, + "probability": 0.0152 + }, + { + "start": 17086.52, + "end": 17087.86, + "probability": 0.7839 + }, + { + "start": 17087.94, + "end": 17093.52, + "probability": 0.8691 + }, + { + "start": 17094.52, + "end": 17095.5, + "probability": 0.4183 + }, + { + "start": 17096.04, + "end": 17098.66, + "probability": 0.726 + }, + { + "start": 17098.74, + "end": 17099.28, + "probability": 0.4903 + }, + { + "start": 17099.36, + "end": 17103.82, + "probability": 0.6984 + }, + { + "start": 17109.9, + "end": 17115.48, + "probability": 0.6633 + }, + { + "start": 17116.62, + "end": 17118.46, + "probability": 0.7852 + }, + { + "start": 17118.54, + "end": 17119.3, + "probability": 0.4583 + }, + { + "start": 17119.78, + "end": 17120.9, + "probability": 0.8671 + }, + { + "start": 17120.9, + "end": 17124.3, + "probability": 0.9353 + }, + { + "start": 17124.38, + "end": 17124.48, + "probability": 0.412 + }, + { + "start": 17124.58, + "end": 17125.12, + "probability": 0.7097 + }, + { + "start": 17125.32, + "end": 17126.84, + "probability": 0.8431 + }, + { + "start": 17126.96, + "end": 17127.9, + "probability": 0.6981 + }, + { + "start": 17128.08, + "end": 17129.5, + "probability": 0.7842 + }, + { + "start": 17129.64, + "end": 17133.96, + "probability": 0.6594 + }, + { + "start": 17134.1, + "end": 17134.44, + "probability": 0.8889 + }, + { + "start": 17134.64, + "end": 17134.84, + "probability": 0.5221 + }, + { + "start": 17135.02, + "end": 17135.52, + "probability": 0.5728 + }, + { + "start": 17135.66, + "end": 17137.92, + "probability": 0.8546 + }, + { + "start": 17137.98, + "end": 17139.6, + "probability": 0.7172 + }, + { + "start": 17139.8, + "end": 17142.44, + "probability": 0.9489 + }, + { + "start": 17143.01, + "end": 17147.66, + "probability": 0.5597 + }, + { + "start": 17147.82, + "end": 17149.82, + "probability": 0.7718 + }, + { + "start": 17149.86, + "end": 17150.44, + "probability": 0.6334 + }, + { + "start": 17150.7, + "end": 17155.44, + "probability": 0.8722 + }, + { + "start": 17155.58, + "end": 17158.46, + "probability": 0.5743 + }, + { + "start": 17159.24, + "end": 17159.9, + "probability": 0.9619 + }, + { + "start": 17160.04, + "end": 17164.26, + "probability": 0.6638 + }, + { + "start": 17164.38, + "end": 17166.75, + "probability": 0.4998 + }, + { + "start": 17167.4, + "end": 17172.32, + "probability": 0.7692 + }, + { + "start": 17172.32, + "end": 17175.52, + "probability": 0.5895 + }, + { + "start": 17175.52, + "end": 17176.32, + "probability": 0.2845 + }, + { + "start": 17176.4, + "end": 17176.78, + "probability": 0.1894 + }, + { + "start": 17176.94, + "end": 17179.91, + "probability": 0.7645 + }, + { + "start": 17179.92, + "end": 17181.38, + "probability": 0.4911 + }, + { + "start": 17181.38, + "end": 17182.26, + "probability": 0.4252 + }, + { + "start": 17182.6, + "end": 17185.44, + "probability": 0.9958 + }, + { + "start": 17185.82, + "end": 17189.27, + "probability": 0.9823 + }, + { + "start": 17189.36, + "end": 17189.44, + "probability": 0.0049 + }, + { + "start": 17189.44, + "end": 17190.42, + "probability": 0.6689 + }, + { + "start": 17190.58, + "end": 17193.3, + "probability": 0.9007 + }, + { + "start": 17193.48, + "end": 17195.24, + "probability": 0.7648 + }, + { + "start": 17195.43, + "end": 17199.02, + "probability": 0.8013 + }, + { + "start": 17199.04, + "end": 17201.88, + "probability": 0.9833 + }, + { + "start": 17201.92, + "end": 17202.24, + "probability": 0.4507 + }, + { + "start": 17203.06, + "end": 17203.82, + "probability": 0.6451 + }, + { + "start": 17206.41, + "end": 17208.3, + "probability": 0.6426 + }, + { + "start": 17209.26, + "end": 17212.58, + "probability": 0.4415 + }, + { + "start": 17212.92, + "end": 17215.84, + "probability": 0.6071 + }, + { + "start": 17216.1, + "end": 17217.3, + "probability": 0.9331 + }, + { + "start": 17218.14, + "end": 17219.14, + "probability": 0.6881 + }, + { + "start": 17219.32, + "end": 17220.16, + "probability": 0.9054 + }, + { + "start": 17220.22, + "end": 17221.36, + "probability": 0.9605 + }, + { + "start": 17221.44, + "end": 17222.78, + "probability": 0.5293 + }, + { + "start": 17222.78, + "end": 17223.76, + "probability": 0.7089 + }, + { + "start": 17223.8, + "end": 17224.52, + "probability": 0.1209 + }, + { + "start": 17224.6, + "end": 17225.74, + "probability": 0.7314 + }, + { + "start": 17225.88, + "end": 17226.74, + "probability": 0.3523 + }, + { + "start": 17226.74, + "end": 17227.18, + "probability": 0.4875 + }, + { + "start": 17227.28, + "end": 17227.46, + "probability": 0.67 + }, + { + "start": 17227.58, + "end": 17230.84, + "probability": 0.7667 + }, + { + "start": 17230.84, + "end": 17232.96, + "probability": 0.9689 + }, + { + "start": 17233.1, + "end": 17233.88, + "probability": 0.8544 + }, + { + "start": 17234.38, + "end": 17235.66, + "probability": 0.6758 + }, + { + "start": 17239.19, + "end": 17241.92, + "probability": 0.7853 + }, + { + "start": 17242.06, + "end": 17243.0, + "probability": 0.7291 + }, + { + "start": 17243.14, + "end": 17244.06, + "probability": 0.4476 + }, + { + "start": 17246.38, + "end": 17247.76, + "probability": 0.7685 + }, + { + "start": 17248.08, + "end": 17251.88, + "probability": 0.7794 + }, + { + "start": 17253.02, + "end": 17253.02, + "probability": 0.4233 + }, + { + "start": 17257.42, + "end": 17258.98, + "probability": 0.7383 + }, + { + "start": 17259.78, + "end": 17259.88, + "probability": 0.0349 + }, + { + "start": 17259.96, + "end": 17264.92, + "probability": 0.4741 + }, + { + "start": 17265.06, + "end": 17267.64, + "probability": 0.9272 + }, + { + "start": 17268.12, + "end": 17272.42, + "probability": 0.9541 + }, + { + "start": 17272.66, + "end": 17276.18, + "probability": 0.7849 + }, + { + "start": 17276.22, + "end": 17278.24, + "probability": 0.9872 + }, + { + "start": 17278.32, + "end": 17280.14, + "probability": 0.9985 + }, + { + "start": 17280.24, + "end": 17281.58, + "probability": 0.621 + }, + { + "start": 17281.68, + "end": 17282.26, + "probability": 0.3712 + }, + { + "start": 17283.14, + "end": 17284.58, + "probability": 0.701 + }, + { + "start": 17284.88, + "end": 17285.06, + "probability": 0.7183 + }, + { + "start": 17285.18, + "end": 17286.12, + "probability": 0.9315 + }, + { + "start": 17286.56, + "end": 17288.62, + "probability": 0.9531 + }, + { + "start": 17290.52, + "end": 17293.33, + "probability": 0.9565 + }, + { + "start": 17294.86, + "end": 17300.16, + "probability": 0.5063 + }, + { + "start": 17300.78, + "end": 17301.82, + "probability": 0.4767 + }, + { + "start": 17301.82, + "end": 17304.7, + "probability": 0.7436 + }, + { + "start": 17305.56, + "end": 17308.6, + "probability": 0.6108 + }, + { + "start": 17308.78, + "end": 17311.89, + "probability": 0.9644 + }, + { + "start": 17312.68, + "end": 17314.28, + "probability": 0.658 + }, + { + "start": 17317.21, + "end": 17319.17, + "probability": 0.8638 + }, + { + "start": 17319.64, + "end": 17322.02, + "probability": 0.1399 + }, + { + "start": 17323.14, + "end": 17328.22, + "probability": 0.1104 + }, + { + "start": 17328.6, + "end": 17331.84, + "probability": 0.8753 + }, + { + "start": 17332.94, + "end": 17336.34, + "probability": 0.9027 + }, + { + "start": 17338.74, + "end": 17343.3, + "probability": 0.15 + }, + { + "start": 17343.8, + "end": 17346.16, + "probability": 0.2398 + }, + { + "start": 17348.3, + "end": 17351.8, + "probability": 0.9556 + }, + { + "start": 17352.62, + "end": 17353.56, + "probability": 0.9031 + }, + { + "start": 17353.62, + "end": 17354.1, + "probability": 0.7296 + }, + { + "start": 17354.14, + "end": 17354.39, + "probability": 0.032 + }, + { + "start": 17354.54, + "end": 17355.0, + "probability": 0.2516 + }, + { + "start": 17355.0, + "end": 17357.28, + "probability": 0.9888 + }, + { + "start": 17358.2, + "end": 17358.32, + "probability": 0.0916 + }, + { + "start": 17358.32, + "end": 17361.1, + "probability": 0.737 + }, + { + "start": 17361.52, + "end": 17362.52, + "probability": 0.7663 + }, + { + "start": 17364.33, + "end": 17365.07, + "probability": 0.4379 + }, + { + "start": 17365.66, + "end": 17368.02, + "probability": 0.782 + }, + { + "start": 17368.94, + "end": 17370.16, + "probability": 0.6911 + }, + { + "start": 17371.1, + "end": 17371.4, + "probability": 0.1043 + }, + { + "start": 17375.36, + "end": 17378.34, + "probability": 0.7711 + }, + { + "start": 17378.42, + "end": 17379.68, + "probability": 0.3928 + }, + { + "start": 17379.84, + "end": 17380.3, + "probability": 0.8183 + }, + { + "start": 17381.18, + "end": 17382.82, + "probability": 0.7175 + }, + { + "start": 17384.02, + "end": 17384.36, + "probability": 0.3499 + }, + { + "start": 17384.64, + "end": 17385.69, + "probability": 0.6609 + }, + { + "start": 17386.18, + "end": 17386.98, + "probability": 0.7496 + }, + { + "start": 17387.44, + "end": 17388.82, + "probability": 0.5857 + }, + { + "start": 17388.82, + "end": 17389.98, + "probability": 0.7451 + }, + { + "start": 17390.06, + "end": 17390.36, + "probability": 0.6999 + }, + { + "start": 17391.74, + "end": 17397.52, + "probability": 0.8283 + }, + { + "start": 17397.52, + "end": 17398.7, + "probability": 0.6351 + }, + { + "start": 17398.86, + "end": 17402.08, + "probability": 0.7617 + }, + { + "start": 17402.08, + "end": 17403.12, + "probability": 0.8209 + }, + { + "start": 17403.28, + "end": 17403.92, + "probability": 0.577 + }, + { + "start": 17404.28, + "end": 17404.5, + "probability": 0.393 + }, + { + "start": 17404.56, + "end": 17408.54, + "probability": 0.6924 + }, + { + "start": 17408.8, + "end": 17409.62, + "probability": 0.5165 + }, + { + "start": 17409.94, + "end": 17411.58, + "probability": 0.1503 + }, + { + "start": 17411.7, + "end": 17413.66, + "probability": 0.8415 + }, + { + "start": 17415.16, + "end": 17416.58, + "probability": 0.9082 + }, + { + "start": 17418.84, + "end": 17422.34, + "probability": 0.8016 + }, + { + "start": 17425.14, + "end": 17426.02, + "probability": 0.9984 + }, + { + "start": 17427.98, + "end": 17428.78, + "probability": 0.8951 + }, + { + "start": 17431.53, + "end": 17434.3, + "probability": 0.5726 + }, + { + "start": 17435.2, + "end": 17435.52, + "probability": 0.2742 + }, + { + "start": 17435.54, + "end": 17435.88, + "probability": 0.5783 + }, + { + "start": 17437.56, + "end": 17441.88, + "probability": 0.9603 + }, + { + "start": 17443.4, + "end": 17448.58, + "probability": 0.9679 + }, + { + "start": 17449.2, + "end": 17450.26, + "probability": 0.9754 + }, + { + "start": 17450.96, + "end": 17452.62, + "probability": 0.9737 + }, + { + "start": 17454.54, + "end": 17459.08, + "probability": 0.9966 + }, + { + "start": 17459.6, + "end": 17460.8, + "probability": 0.9795 + }, + { + "start": 17463.48, + "end": 17467.6, + "probability": 0.3641 + }, + { + "start": 17469.28, + "end": 17470.61, + "probability": 0.9934 + }, + { + "start": 17471.14, + "end": 17473.86, + "probability": 0.763 + }, + { + "start": 17474.46, + "end": 17478.98, + "probability": 0.9287 + }, + { + "start": 17479.2, + "end": 17480.5, + "probability": 0.878 + }, + { + "start": 17480.9, + "end": 17481.6, + "probability": 0.8098 + }, + { + "start": 17483.08, + "end": 17483.94, + "probability": 0.6368 + }, + { + "start": 17488.85, + "end": 17490.88, + "probability": 0.3835 + }, + { + "start": 17491.26, + "end": 17494.22, + "probability": 0.4383 + }, + { + "start": 17494.44, + "end": 17498.68, + "probability": 0.9482 + }, + { + "start": 17498.78, + "end": 17501.24, + "probability": 0.9792 + }, + { + "start": 17501.36, + "end": 17503.4, + "probability": 0.996 + }, + { + "start": 17503.88, + "end": 17506.28, + "probability": 0.8976 + }, + { + "start": 17506.9, + "end": 17507.6, + "probability": 0.8987 + }, + { + "start": 17509.0, + "end": 17511.0, + "probability": 0.2498 + }, + { + "start": 17512.1, + "end": 17512.72, + "probability": 0.2005 + }, + { + "start": 17512.72, + "end": 17512.72, + "probability": 0.3443 + }, + { + "start": 17512.72, + "end": 17517.4, + "probability": 0.908 + }, + { + "start": 17517.74, + "end": 17520.54, + "probability": 0.7268 + }, + { + "start": 17520.56, + "end": 17523.24, + "probability": 0.1629 + }, + { + "start": 17523.82, + "end": 17524.58, + "probability": 0.7922 + }, + { + "start": 17524.66, + "end": 17524.92, + "probability": 0.6371 + }, + { + "start": 17525.1, + "end": 17525.6, + "probability": 0.8961 + }, + { + "start": 17525.7, + "end": 17529.0, + "probability": 0.9126 + }, + { + "start": 17530.31, + "end": 17534.76, + "probability": 0.7233 + }, + { + "start": 17535.08, + "end": 17536.62, + "probability": 0.8269 + }, + { + "start": 17537.2, + "end": 17538.9, + "probability": 0.7378 + }, + { + "start": 17539.66, + "end": 17540.63, + "probability": 0.9141 + }, + { + "start": 17541.24, + "end": 17542.34, + "probability": 0.9136 + }, + { + "start": 17542.38, + "end": 17546.58, + "probability": 0.9947 + }, + { + "start": 17546.84, + "end": 17547.42, + "probability": 0.9118 + }, + { + "start": 17548.56, + "end": 17549.32, + "probability": 0.8378 + }, + { + "start": 17549.48, + "end": 17557.0, + "probability": 0.5414 + }, + { + "start": 17557.0, + "end": 17560.82, + "probability": 0.6428 + }, + { + "start": 17561.66, + "end": 17564.46, + "probability": 0.6479 + }, + { + "start": 17565.06, + "end": 17566.65, + "probability": 0.8008 + }, + { + "start": 17567.32, + "end": 17567.96, + "probability": 0.6453 + }, + { + "start": 17568.56, + "end": 17579.49, + "probability": 0.1304 + }, + { + "start": 17582.18, + "end": 17583.74, + "probability": 0.01 + }, + { + "start": 17591.8, + "end": 17592.68, + "probability": 0.3295 + }, + { + "start": 17595.42, + "end": 17600.8, + "probability": 0.0615 + }, + { + "start": 17601.26, + "end": 17603.26, + "probability": 0.3876 + }, + { + "start": 17605.0, + "end": 17609.12, + "probability": 0.5431 + }, + { + "start": 17610.0, + "end": 17610.68, + "probability": 0.0109 + }, + { + "start": 17611.62, + "end": 17613.24, + "probability": 0.0886 + }, + { + "start": 17614.26, + "end": 17614.84, + "probability": 0.2392 + }, + { + "start": 17666.0, + "end": 17666.0, + "probability": 0.0 + }, + { + "start": 17666.0, + "end": 17666.0, + "probability": 0.0 + }, + { + "start": 17666.0, + "end": 17666.0, + "probability": 0.0 + }, + { + "start": 17666.0, + "end": 17666.0, + "probability": 0.0 + }, + { + "start": 17666.0, + "end": 17666.0, + "probability": 0.0 + }, + { + "start": 17666.0, + "end": 17666.0, + "probability": 0.0 + }, + { + "start": 17666.0, + "end": 17666.0, + "probability": 0.0 + }, + { + "start": 17666.0, + "end": 17666.0, + "probability": 0.0 + }, + { + "start": 17666.0, + "end": 17666.0, + "probability": 0.0 + }, + { + "start": 17666.0, + "end": 17666.0, + "probability": 0.0 + }, + { + "start": 17666.0, + "end": 17666.0, + "probability": 0.0 + }, + { + "start": 17666.0, + "end": 17666.0, + "probability": 0.0 + }, + { + "start": 17666.0, + "end": 17666.0, + "probability": 0.0 + }, + { + "start": 17666.0, + "end": 17666.0, + "probability": 0.0 + }, + { + "start": 17666.0, + "end": 17666.0, + "probability": 0.0 + }, + { + "start": 17666.0, + "end": 17666.0, + "probability": 0.0 + }, + { + "start": 17666.21, + "end": 17669.34, + "probability": 0.6571 + }, + { + "start": 17669.94, + "end": 17672.74, + "probability": 0.9798 + }, + { + "start": 17673.52, + "end": 17675.5, + "probability": 0.9075 + }, + { + "start": 17679.36, + "end": 17680.48, + "probability": 0.7443 + }, + { + "start": 17681.8, + "end": 17682.7, + "probability": 0.5853 + }, + { + "start": 17682.78, + "end": 17683.8, + "probability": 0.8945 + }, + { + "start": 17684.06, + "end": 17689.44, + "probability": 0.9958 + }, + { + "start": 17689.44, + "end": 17694.08, + "probability": 0.9834 + }, + { + "start": 17694.84, + "end": 17697.42, + "probability": 0.4737 + }, + { + "start": 17698.28, + "end": 17701.56, + "probability": 0.7731 + }, + { + "start": 17702.24, + "end": 17704.44, + "probability": 0.8291 + }, + { + "start": 17706.6, + "end": 17709.58, + "probability": 0.638 + }, + { + "start": 17710.76, + "end": 17716.68, + "probability": 0.99 + }, + { + "start": 17716.68, + "end": 17723.56, + "probability": 0.9977 + }, + { + "start": 17724.24, + "end": 17728.02, + "probability": 0.9935 + }, + { + "start": 17728.02, + "end": 17733.56, + "probability": 0.9885 + }, + { + "start": 17733.66, + "end": 17734.96, + "probability": 0.8547 + }, + { + "start": 17735.66, + "end": 17739.52, + "probability": 0.9684 + }, + { + "start": 17740.12, + "end": 17740.78, + "probability": 0.908 + }, + { + "start": 17741.4, + "end": 17743.1, + "probability": 0.9297 + }, + { + "start": 17743.14, + "end": 17743.82, + "probability": 0.8394 + }, + { + "start": 17743.94, + "end": 17746.72, + "probability": 0.9951 + }, + { + "start": 17747.36, + "end": 17748.68, + "probability": 0.9819 + }, + { + "start": 17749.76, + "end": 17750.96, + "probability": 0.76 + }, + { + "start": 17751.06, + "end": 17752.16, + "probability": 0.744 + }, + { + "start": 17752.6, + "end": 17755.32, + "probability": 0.991 + }, + { + "start": 17756.0, + "end": 17761.34, + "probability": 0.995 + }, + { + "start": 17762.52, + "end": 17766.12, + "probability": 0.9973 + }, + { + "start": 17766.12, + "end": 17769.46, + "probability": 0.9988 + }, + { + "start": 17770.16, + "end": 17772.8, + "probability": 0.9865 + }, + { + "start": 17773.62, + "end": 17777.12, + "probability": 0.9985 + }, + { + "start": 17777.84, + "end": 17780.12, + "probability": 0.9962 + }, + { + "start": 17781.08, + "end": 17783.08, + "probability": 0.8173 + }, + { + "start": 17783.72, + "end": 17786.6, + "probability": 0.9961 + }, + { + "start": 17787.44, + "end": 17790.48, + "probability": 0.937 + }, + { + "start": 17791.1, + "end": 17794.5, + "probability": 0.9924 + }, + { + "start": 17795.8, + "end": 17796.94, + "probability": 0.6545 + }, + { + "start": 17797.62, + "end": 17802.58, + "probability": 0.9897 + }, + { + "start": 17805.16, + "end": 17808.64, + "probability": 0.9971 + }, + { + "start": 17809.56, + "end": 17811.3, + "probability": 0.8554 + }, + { + "start": 17812.18, + "end": 17813.7, + "probability": 0.9913 + }, + { + "start": 17814.94, + "end": 17821.88, + "probability": 0.981 + }, + { + "start": 17822.74, + "end": 17824.8, + "probability": 0.7381 + }, + { + "start": 17825.48, + "end": 17828.84, + "probability": 0.9883 + }, + { + "start": 17830.04, + "end": 17833.74, + "probability": 0.9027 + }, + { + "start": 17834.4, + "end": 17835.42, + "probability": 0.5238 + }, + { + "start": 17836.14, + "end": 17837.62, + "probability": 0.6775 + }, + { + "start": 17838.14, + "end": 17840.78, + "probability": 0.7747 + }, + { + "start": 17841.48, + "end": 17845.68, + "probability": 0.9744 + }, + { + "start": 17847.12, + "end": 17850.62, + "probability": 0.9233 + }, + { + "start": 17850.62, + "end": 17854.46, + "probability": 0.9192 + }, + { + "start": 17854.5, + "end": 17860.96, + "probability": 0.9958 + }, + { + "start": 17861.62, + "end": 17865.06, + "probability": 0.9985 + }, + { + "start": 17865.76, + "end": 17867.5, + "probability": 0.8193 + }, + { + "start": 17868.04, + "end": 17872.52, + "probability": 0.9901 + }, + { + "start": 17873.24, + "end": 17877.0, + "probability": 0.9695 + }, + { + "start": 17877.64, + "end": 17881.44, + "probability": 0.9728 + }, + { + "start": 17882.6, + "end": 17882.96, + "probability": 0.5774 + }, + { + "start": 17883.76, + "end": 17889.28, + "probability": 0.9643 + }, + { + "start": 17891.47, + "end": 17893.82, + "probability": 0.6681 + }, + { + "start": 17894.64, + "end": 17902.06, + "probability": 0.6884 + }, + { + "start": 17902.18, + "end": 17911.08, + "probability": 0.9925 + }, + { + "start": 17911.78, + "end": 17915.88, + "probability": 0.9755 + }, + { + "start": 17917.18, + "end": 17920.16, + "probability": 0.8599 + }, + { + "start": 17920.96, + "end": 17925.18, + "probability": 0.9978 + }, + { + "start": 17925.74, + "end": 17927.34, + "probability": 0.9339 + }, + { + "start": 17928.74, + "end": 17935.6, + "probability": 0.96 + }, + { + "start": 17936.92, + "end": 17942.3, + "probability": 0.9961 + }, + { + "start": 17943.56, + "end": 17947.34, + "probability": 0.9976 + }, + { + "start": 17947.74, + "end": 17951.34, + "probability": 0.9088 + }, + { + "start": 17952.06, + "end": 17955.14, + "probability": 0.9966 + }, + { + "start": 17955.86, + "end": 17960.56, + "probability": 0.9912 + }, + { + "start": 17960.56, + "end": 17964.96, + "probability": 0.9971 + }, + { + "start": 17965.52, + "end": 17969.28, + "probability": 0.9958 + }, + { + "start": 17969.9, + "end": 17973.82, + "probability": 0.9976 + }, + { + "start": 17974.7, + "end": 17979.16, + "probability": 0.816 + }, + { + "start": 17979.56, + "end": 17982.18, + "probability": 0.78 + }, + { + "start": 17982.82, + "end": 17986.76, + "probability": 0.6378 + }, + { + "start": 17987.02, + "end": 17989.12, + "probability": 0.7638 + }, + { + "start": 17989.74, + "end": 17992.44, + "probability": 0.9966 + }, + { + "start": 17992.94, + "end": 17996.08, + "probability": 0.9987 + }, + { + "start": 17996.8, + "end": 18001.24, + "probability": 0.9945 + }, + { + "start": 18001.24, + "end": 18004.92, + "probability": 0.9618 + }, + { + "start": 18005.34, + "end": 18007.06, + "probability": 0.8555 + }, + { + "start": 18007.5, + "end": 18012.32, + "probability": 0.9889 + }, + { + "start": 18013.04, + "end": 18017.78, + "probability": 0.94 + }, + { + "start": 18018.68, + "end": 18019.68, + "probability": 0.4927 + }, + { + "start": 18019.92, + "end": 18026.72, + "probability": 0.997 + }, + { + "start": 18027.26, + "end": 18027.58, + "probability": 0.735 + }, + { + "start": 18029.12, + "end": 18029.88, + "probability": 0.6022 + }, + { + "start": 18030.1, + "end": 18031.68, + "probability": 0.8644 + }, + { + "start": 18031.74, + "end": 18036.5, + "probability": 0.8039 + }, + { + "start": 18037.4, + "end": 18042.38, + "probability": 0.967 + }, + { + "start": 18042.38, + "end": 18046.64, + "probability": 0.8458 + }, + { + "start": 18047.18, + "end": 18051.1, + "probability": 0.5656 + }, + { + "start": 18051.84, + "end": 18053.34, + "probability": 0.5738 + }, + { + "start": 18055.76, + "end": 18055.94, + "probability": 0.119 + }, + { + "start": 18058.18, + "end": 18060.44, + "probability": 0.0027 + }, + { + "start": 18066.32, + "end": 18067.46, + "probability": 0.1257 + }, + { + "start": 18067.46, + "end": 18071.2, + "probability": 0.2902 + }, + { + "start": 18071.72, + "end": 18072.88, + "probability": 0.5707 + }, + { + "start": 18073.08, + "end": 18075.66, + "probability": 0.9871 + }, + { + "start": 18076.52, + "end": 18079.08, + "probability": 0.4247 + }, + { + "start": 18080.44, + "end": 18080.68, + "probability": 0.7632 + }, + { + "start": 18080.96, + "end": 18081.98, + "probability": 0.7159 + }, + { + "start": 18084.6, + "end": 18087.93, + "probability": 0.9885 + }, + { + "start": 18089.42, + "end": 18093.76, + "probability": 0.9087 + }, + { + "start": 18093.76, + "end": 18097.16, + "probability": 0.505 + }, + { + "start": 18097.76, + "end": 18101.72, + "probability": 0.6435 + }, + { + "start": 18103.04, + "end": 18104.22, + "probability": 0.0558 + }, + { + "start": 18105.36, + "end": 18108.98, + "probability": 0.9356 + }, + { + "start": 18108.98, + "end": 18111.96, + "probability": 0.1856 + }, + { + "start": 18112.02, + "end": 18113.7, + "probability": 0.7079 + }, + { + "start": 18114.06, + "end": 18115.1, + "probability": 0.2012 + }, + { + "start": 18115.94, + "end": 18118.32, + "probability": 0.8553 + }, + { + "start": 18118.64, + "end": 18121.44, + "probability": 0.9911 + }, + { + "start": 18121.44, + "end": 18124.28, + "probability": 0.4714 + }, + { + "start": 18124.8, + "end": 18124.96, + "probability": 0.0244 + }, + { + "start": 18125.6, + "end": 18129.04, + "probability": 0.7569 + }, + { + "start": 18129.58, + "end": 18131.54, + "probability": 0.9465 + }, + { + "start": 18132.52, + "end": 18135.42, + "probability": 0.8327 + }, + { + "start": 18136.18, + "end": 18140.46, + "probability": 0.974 + }, + { + "start": 18141.12, + "end": 18145.54, + "probability": 0.978 + }, + { + "start": 18145.54, + "end": 18149.18, + "probability": 0.9635 + }, + { + "start": 18150.06, + "end": 18153.26, + "probability": 0.9865 + }, + { + "start": 18153.28, + "end": 18153.8, + "probability": 0.8848 + }, + { + "start": 18163.5, + "end": 18164.62, + "probability": 0.7422 + }, + { + "start": 18164.8, + "end": 18167.19, + "probability": 0.9562 + }, + { + "start": 18168.84, + "end": 18170.44, + "probability": 0.7167 + }, + { + "start": 18170.66, + "end": 18171.08, + "probability": 0.7006 + }, + { + "start": 18172.93, + "end": 18181.46, + "probability": 0.8877 + }, + { + "start": 18181.56, + "end": 18183.3, + "probability": 0.9123 + }, + { + "start": 18184.02, + "end": 18185.88, + "probability": 0.3653 + }, + { + "start": 18187.08, + "end": 18190.42, + "probability": 0.7835 + }, + { + "start": 18190.42, + "end": 18195.17, + "probability": 0.9853 + }, + { + "start": 18195.42, + "end": 18195.92, + "probability": 0.7521 + }, + { + "start": 18196.48, + "end": 18199.14, + "probability": 0.9763 + }, + { + "start": 18199.9, + "end": 18201.16, + "probability": 0.5145 + }, + { + "start": 18201.76, + "end": 18204.82, + "probability": 0.9578 + }, + { + "start": 18205.08, + "end": 18207.3, + "probability": 0.7437 + }, + { + "start": 18207.36, + "end": 18210.34, + "probability": 0.9743 + }, + { + "start": 18211.18, + "end": 18213.28, + "probability": 0.9668 + }, + { + "start": 18213.32, + "end": 18216.62, + "probability": 0.8936 + }, + { + "start": 18216.78, + "end": 18220.02, + "probability": 0.8807 + }, + { + "start": 18221.56, + "end": 18227.36, + "probability": 0.9921 + }, + { + "start": 18228.26, + "end": 18230.14, + "probability": 0.9905 + }, + { + "start": 18230.46, + "end": 18232.04, + "probability": 0.9781 + }, + { + "start": 18232.18, + "end": 18233.4, + "probability": 0.9807 + }, + { + "start": 18233.7, + "end": 18234.85, + "probability": 0.9108 + }, + { + "start": 18236.34, + "end": 18238.14, + "probability": 0.9588 + }, + { + "start": 18238.88, + "end": 18244.66, + "probability": 0.8813 + }, + { + "start": 18245.52, + "end": 18248.44, + "probability": 0.9553 + }, + { + "start": 18249.12, + "end": 18252.72, + "probability": 0.9958 + }, + { + "start": 18252.92, + "end": 18256.74, + "probability": 0.8477 + }, + { + "start": 18257.3, + "end": 18260.86, + "probability": 0.9299 + }, + { + "start": 18262.28, + "end": 18263.1, + "probability": 0.7781 + }, + { + "start": 18263.66, + "end": 18270.64, + "probability": 0.8412 + }, + { + "start": 18271.2, + "end": 18273.68, + "probability": 0.7146 + }, + { + "start": 18274.36, + "end": 18275.46, + "probability": 0.7672 + }, + { + "start": 18275.98, + "end": 18276.72, + "probability": 0.9862 + }, + { + "start": 18277.5, + "end": 18279.66, + "probability": 0.927 + }, + { + "start": 18280.5, + "end": 18282.7, + "probability": 0.9758 + }, + { + "start": 18283.26, + "end": 18285.72, + "probability": 0.9843 + }, + { + "start": 18286.24, + "end": 18292.0, + "probability": 0.9793 + }, + { + "start": 18293.1, + "end": 18293.34, + "probability": 0.2853 + }, + { + "start": 18293.92, + "end": 18296.68, + "probability": 0.924 + }, + { + "start": 18297.42, + "end": 18298.32, + "probability": 0.9024 + }, + { + "start": 18298.4, + "end": 18300.72, + "probability": 0.9448 + }, + { + "start": 18301.08, + "end": 18306.94, + "probability": 0.9476 + }, + { + "start": 18307.48, + "end": 18309.48, + "probability": 0.9731 + }, + { + "start": 18310.6, + "end": 18311.5, + "probability": 0.9457 + }, + { + "start": 18312.72, + "end": 18317.74, + "probability": 0.987 + }, + { + "start": 18319.06, + "end": 18324.84, + "probability": 0.9987 + }, + { + "start": 18325.2, + "end": 18330.38, + "probability": 0.996 + }, + { + "start": 18331.8, + "end": 18336.99, + "probability": 0.9448 + }, + { + "start": 18337.74, + "end": 18338.9, + "probability": 0.7326 + }, + { + "start": 18340.22, + "end": 18342.62, + "probability": 0.7871 + }, + { + "start": 18344.76, + "end": 18346.32, + "probability": 0.7567 + }, + { + "start": 18346.88, + "end": 18350.58, + "probability": 0.7983 + }, + { + "start": 18351.72, + "end": 18355.28, + "probability": 0.5591 + }, + { + "start": 18355.28, + "end": 18356.1, + "probability": 0.4547 + }, + { + "start": 18356.7, + "end": 18360.34, + "probability": 0.9064 + }, + { + "start": 18361.38, + "end": 18362.77, + "probability": 0.9951 + }, + { + "start": 18364.64, + "end": 18367.2, + "probability": 0.8239 + }, + { + "start": 18368.16, + "end": 18371.5, + "probability": 0.9303 + }, + { + "start": 18371.96, + "end": 18373.74, + "probability": 0.8979 + }, + { + "start": 18374.22, + "end": 18377.2, + "probability": 0.9622 + }, + { + "start": 18378.18, + "end": 18380.3, + "probability": 0.8854 + }, + { + "start": 18380.7, + "end": 18383.36, + "probability": 0.9946 + }, + { + "start": 18383.88, + "end": 18385.6, + "probability": 0.9958 + }, + { + "start": 18386.98, + "end": 18392.0, + "probability": 0.8546 + }, + { + "start": 18392.64, + "end": 18393.78, + "probability": 0.8552 + }, + { + "start": 18394.94, + "end": 18400.94, + "probability": 0.9368 + }, + { + "start": 18401.22, + "end": 18404.1, + "probability": 0.9409 + }, + { + "start": 18404.74, + "end": 18406.16, + "probability": 0.9931 + }, + { + "start": 18406.68, + "end": 18411.6, + "probability": 0.9949 + }, + { + "start": 18411.78, + "end": 18416.82, + "probability": 0.9954 + }, + { + "start": 18418.02, + "end": 18420.34, + "probability": 0.8133 + }, + { + "start": 18421.18, + "end": 18422.0, + "probability": 0.8817 + }, + { + "start": 18422.8, + "end": 18424.88, + "probability": 0.9709 + }, + { + "start": 18426.06, + "end": 18428.48, + "probability": 0.8525 + }, + { + "start": 18430.12, + "end": 18431.06, + "probability": 0.6294 + }, + { + "start": 18431.46, + "end": 18436.14, + "probability": 0.9948 + }, + { + "start": 18436.84, + "end": 18441.76, + "probability": 0.9655 + }, + { + "start": 18442.6, + "end": 18446.06, + "probability": 0.9971 + }, + { + "start": 18446.68, + "end": 18448.0, + "probability": 0.8409 + }, + { + "start": 18448.76, + "end": 18451.02, + "probability": 0.9884 + }, + { + "start": 18452.58, + "end": 18455.72, + "probability": 0.9951 + }, + { + "start": 18456.38, + "end": 18461.74, + "probability": 0.9304 + }, + { + "start": 18462.8, + "end": 18463.78, + "probability": 0.9878 + }, + { + "start": 18463.84, + "end": 18466.66, + "probability": 0.9956 + }, + { + "start": 18467.4, + "end": 18469.04, + "probability": 0.9978 + }, + { + "start": 18469.26, + "end": 18471.24, + "probability": 0.9966 + }, + { + "start": 18471.94, + "end": 18477.48, + "probability": 0.9714 + }, + { + "start": 18478.56, + "end": 18481.78, + "probability": 0.9854 + }, + { + "start": 18482.66, + "end": 18485.4, + "probability": 0.9763 + }, + { + "start": 18485.4, + "end": 18488.9, + "probability": 0.9747 + }, + { + "start": 18489.92, + "end": 18491.88, + "probability": 0.9541 + }, + { + "start": 18492.5, + "end": 18494.08, + "probability": 0.9668 + }, + { + "start": 18494.92, + "end": 18499.72, + "probability": 0.9854 + }, + { + "start": 18500.5, + "end": 18504.0, + "probability": 0.7451 + }, + { + "start": 18504.24, + "end": 18506.04, + "probability": 0.7745 + }, + { + "start": 18506.66, + "end": 18508.92, + "probability": 0.9949 + }, + { + "start": 18509.62, + "end": 18513.2, + "probability": 0.9943 + }, + { + "start": 18514.24, + "end": 18517.98, + "probability": 0.9925 + }, + { + "start": 18518.96, + "end": 18521.12, + "probability": 0.999 + }, + { + "start": 18521.96, + "end": 18525.6, + "probability": 0.9174 + }, + { + "start": 18525.76, + "end": 18526.14, + "probability": 0.7771 + }, + { + "start": 18526.3, + "end": 18526.6, + "probability": 0.7463 + }, + { + "start": 18527.36, + "end": 18530.34, + "probability": 0.9767 + }, + { + "start": 18531.94, + "end": 18532.68, + "probability": 0.8394 + }, + { + "start": 18533.48, + "end": 18536.78, + "probability": 0.9893 + }, + { + "start": 18537.3, + "end": 18538.68, + "probability": 0.9577 + }, + { + "start": 18539.24, + "end": 18541.48, + "probability": 0.8663 + }, + { + "start": 18542.1, + "end": 18543.8, + "probability": 0.8052 + }, + { + "start": 18544.68, + "end": 18545.82, + "probability": 0.8382 + }, + { + "start": 18546.6, + "end": 18548.25, + "probability": 0.9867 + }, + { + "start": 18548.62, + "end": 18550.54, + "probability": 0.985 + }, + { + "start": 18551.02, + "end": 18554.92, + "probability": 0.9447 + }, + { + "start": 18555.74, + "end": 18557.44, + "probability": 0.9902 + }, + { + "start": 18558.5, + "end": 18562.24, + "probability": 0.9674 + }, + { + "start": 18562.86, + "end": 18566.56, + "probability": 0.9733 + }, + { + "start": 18567.6, + "end": 18569.28, + "probability": 0.9919 + }, + { + "start": 18569.88, + "end": 18571.84, + "probability": 0.9969 + }, + { + "start": 18572.34, + "end": 18575.12, + "probability": 0.9581 + }, + { + "start": 18576.38, + "end": 18582.18, + "probability": 0.9904 + }, + { + "start": 18582.98, + "end": 18586.58, + "probability": 0.8218 + }, + { + "start": 18587.06, + "end": 18589.76, + "probability": 0.9819 + }, + { + "start": 18591.32, + "end": 18593.6, + "probability": 0.6489 + }, + { + "start": 18593.88, + "end": 18596.74, + "probability": 0.9451 + }, + { + "start": 18598.9, + "end": 18602.2, + "probability": 0.9422 + }, + { + "start": 18602.78, + "end": 18603.22, + "probability": 0.8066 + }, + { + "start": 18604.7, + "end": 18609.36, + "probability": 0.9965 + }, + { + "start": 18609.96, + "end": 18613.52, + "probability": 0.8427 + }, + { + "start": 18615.04, + "end": 18621.32, + "probability": 0.9958 + }, + { + "start": 18621.64, + "end": 18623.14, + "probability": 0.9699 + }, + { + "start": 18623.78, + "end": 18625.82, + "probability": 0.9515 + }, + { + "start": 18627.0, + "end": 18630.92, + "probability": 0.9964 + }, + { + "start": 18631.92, + "end": 18633.02, + "probability": 0.9446 + }, + { + "start": 18633.7, + "end": 18635.24, + "probability": 0.9651 + }, + { + "start": 18636.34, + "end": 18640.04, + "probability": 0.9883 + }, + { + "start": 18641.5, + "end": 18644.0, + "probability": 0.9849 + }, + { + "start": 18644.6, + "end": 18647.34, + "probability": 0.9789 + }, + { + "start": 18648.22, + "end": 18649.54, + "probability": 0.9433 + }, + { + "start": 18650.8, + "end": 18653.64, + "probability": 0.9973 + }, + { + "start": 18654.4, + "end": 18656.24, + "probability": 0.9868 + }, + { + "start": 18656.76, + "end": 18658.58, + "probability": 0.8337 + }, + { + "start": 18659.2, + "end": 18661.86, + "probability": 0.9689 + }, + { + "start": 18662.3, + "end": 18664.02, + "probability": 0.959 + }, + { + "start": 18664.66, + "end": 18664.98, + "probability": 0.9478 + }, + { + "start": 18665.54, + "end": 18665.64, + "probability": 0.9997 + }, + { + "start": 18666.86, + "end": 18671.32, + "probability": 0.9987 + }, + { + "start": 18673.16, + "end": 18676.02, + "probability": 0.9827 + }, + { + "start": 18676.82, + "end": 18679.42, + "probability": 0.9968 + }, + { + "start": 18679.54, + "end": 18680.36, + "probability": 0.9913 + }, + { + "start": 18682.26, + "end": 18688.82, + "probability": 0.9885 + }, + { + "start": 18689.24, + "end": 18692.92, + "probability": 0.9502 + }, + { + "start": 18693.8, + "end": 18697.08, + "probability": 0.8317 + }, + { + "start": 18698.16, + "end": 18699.34, + "probability": 0.9073 + }, + { + "start": 18699.94, + "end": 18702.36, + "probability": 0.8525 + }, + { + "start": 18702.94, + "end": 18706.42, + "probability": 0.9017 + }, + { + "start": 18706.78, + "end": 18708.38, + "probability": 0.9853 + }, + { + "start": 18709.3, + "end": 18710.44, + "probability": 0.9819 + }, + { + "start": 18710.94, + "end": 18714.04, + "probability": 0.9909 + }, + { + "start": 18714.66, + "end": 18720.16, + "probability": 0.8755 + }, + { + "start": 18721.12, + "end": 18722.82, + "probability": 0.8547 + }, + { + "start": 18723.28, + "end": 18725.42, + "probability": 0.3712 + }, + { + "start": 18725.74, + "end": 18729.46, + "probability": 0.7725 + }, + { + "start": 18731.06, + "end": 18733.3, + "probability": 0.9281 + }, + { + "start": 18734.16, + "end": 18736.16, + "probability": 0.9971 + }, + { + "start": 18737.66, + "end": 18741.74, + "probability": 0.9219 + }, + { + "start": 18742.52, + "end": 18744.9, + "probability": 0.7701 + }, + { + "start": 18745.86, + "end": 18749.62, + "probability": 0.9684 + }, + { + "start": 18750.86, + "end": 18754.02, + "probability": 0.9946 + }, + { + "start": 18754.2, + "end": 18758.74, + "probability": 0.9953 + }, + { + "start": 18759.62, + "end": 18761.64, + "probability": 0.9307 + }, + { + "start": 18762.4, + "end": 18764.08, + "probability": 0.8841 + }, + { + "start": 18764.3, + "end": 18766.79, + "probability": 0.9203 + }, + { + "start": 18767.2, + "end": 18770.54, + "probability": 0.8842 + }, + { + "start": 18770.98, + "end": 18775.18, + "probability": 0.9485 + }, + { + "start": 18775.88, + "end": 18777.5, + "probability": 0.8535 + }, + { + "start": 18778.16, + "end": 18784.4, + "probability": 0.9869 + }, + { + "start": 18786.16, + "end": 18787.36, + "probability": 0.8714 + }, + { + "start": 18791.64, + "end": 18792.66, + "probability": 0.5038 + }, + { + "start": 18803.37, + "end": 18806.7, + "probability": 0.8242 + }, + { + "start": 18807.86, + "end": 18809.0, + "probability": 0.6763 + }, + { + "start": 18810.22, + "end": 18814.44, + "probability": 0.9808 + }, + { + "start": 18816.1, + "end": 18819.8, + "probability": 0.9461 + }, + { + "start": 18823.42, + "end": 18826.36, + "probability": 0.9982 + }, + { + "start": 18826.46, + "end": 18828.16, + "probability": 0.9941 + }, + { + "start": 18829.44, + "end": 18833.76, + "probability": 0.9747 + }, + { + "start": 18833.9, + "end": 18834.9, + "probability": 0.9849 + }, + { + "start": 18835.0, + "end": 18838.12, + "probability": 0.9697 + }, + { + "start": 18840.7, + "end": 18843.58, + "probability": 0.9554 + }, + { + "start": 18843.72, + "end": 18846.76, + "probability": 0.6667 + }, + { + "start": 18847.68, + "end": 18850.28, + "probability": 0.8755 + }, + { + "start": 18850.58, + "end": 18850.86, + "probability": 0.4574 + }, + { + "start": 18852.46, + "end": 18854.3, + "probability": 0.9775 + }, + { + "start": 18854.36, + "end": 18856.44, + "probability": 0.9658 + }, + { + "start": 18885.0, + "end": 18886.92, + "probability": 0.7299 + }, + { + "start": 18888.26, + "end": 18890.98, + "probability": 0.7374 + }, + { + "start": 18891.06, + "end": 18892.0, + "probability": 0.7285 + }, + { + "start": 18892.82, + "end": 18894.74, + "probability": 0.9377 + }, + { + "start": 18896.04, + "end": 18899.88, + "probability": 0.9903 + }, + { + "start": 18899.96, + "end": 18900.2, + "probability": 0.9029 + }, + { + "start": 18901.06, + "end": 18903.72, + "probability": 0.8486 + }, + { + "start": 18904.98, + "end": 18909.64, + "probability": 0.9721 + }, + { + "start": 18909.8, + "end": 18914.8, + "probability": 0.93 + }, + { + "start": 18915.92, + "end": 18920.6, + "probability": 0.9609 + }, + { + "start": 18921.26, + "end": 18924.16, + "probability": 0.9997 + }, + { + "start": 18925.12, + "end": 18929.66, + "probability": 0.937 + }, + { + "start": 18930.5, + "end": 18932.22, + "probability": 0.7429 + }, + { + "start": 18933.06, + "end": 18939.3, + "probability": 0.9963 + }, + { + "start": 18939.32, + "end": 18940.72, + "probability": 0.6475 + }, + { + "start": 18941.6, + "end": 18942.6, + "probability": 0.9136 + }, + { + "start": 18943.34, + "end": 18946.3, + "probability": 0.8255 + }, + { + "start": 18946.86, + "end": 18949.76, + "probability": 0.9564 + }, + { + "start": 18950.62, + "end": 18951.76, + "probability": 0.589 + }, + { + "start": 18952.38, + "end": 18954.84, + "probability": 0.9231 + }, + { + "start": 18955.44, + "end": 18957.64, + "probability": 0.8572 + }, + { + "start": 18958.46, + "end": 18962.3, + "probability": 0.9987 + }, + { + "start": 18962.3, + "end": 18967.72, + "probability": 0.9479 + }, + { + "start": 18968.66, + "end": 18972.1, + "probability": 0.9971 + }, + { + "start": 18972.98, + "end": 18977.22, + "probability": 0.9713 + }, + { + "start": 18977.9, + "end": 18982.28, + "probability": 0.9476 + }, + { + "start": 18983.08, + "end": 18984.18, + "probability": 0.9559 + }, + { + "start": 18984.72, + "end": 18986.88, + "probability": 0.9976 + }, + { + "start": 18987.66, + "end": 18988.66, + "probability": 0.9766 + }, + { + "start": 18989.42, + "end": 18992.28, + "probability": 0.9923 + }, + { + "start": 18993.02, + "end": 18997.14, + "probability": 0.905 + }, + { + "start": 18998.4, + "end": 19001.14, + "probability": 0.9485 + }, + { + "start": 19001.9, + "end": 19009.06, + "probability": 0.9845 + }, + { + "start": 19009.76, + "end": 19010.38, + "probability": 0.8435 + }, + { + "start": 19011.14, + "end": 19012.88, + "probability": 0.9989 + }, + { + "start": 19013.16, + "end": 19017.5, + "probability": 0.8783 + }, + { + "start": 19018.06, + "end": 19019.89, + "probability": 0.7502 + }, + { + "start": 19021.2, + "end": 19024.56, + "probability": 0.986 + }, + { + "start": 19025.02, + "end": 19029.14, + "probability": 0.9243 + }, + { + "start": 19029.82, + "end": 19032.36, + "probability": 0.9132 + }, + { + "start": 19033.1, + "end": 19035.52, + "probability": 0.9789 + }, + { + "start": 19036.46, + "end": 19038.9, + "probability": 0.9733 + }, + { + "start": 19041.18, + "end": 19042.62, + "probability": 0.7841 + }, + { + "start": 19043.14, + "end": 19046.7, + "probability": 0.9604 + }, + { + "start": 19048.86, + "end": 19050.6, + "probability": 0.9957 + }, + { + "start": 19050.7, + "end": 19052.24, + "probability": 0.9924 + }, + { + "start": 19052.94, + "end": 19055.3, + "probability": 0.9944 + }, + { + "start": 19056.28, + "end": 19060.08, + "probability": 0.9515 + }, + { + "start": 19061.34, + "end": 19065.28, + "probability": 0.9639 + }, + { + "start": 19066.7, + "end": 19069.0, + "probability": 0.9531 + }, + { + "start": 19069.16, + "end": 19069.86, + "probability": 0.7837 + }, + { + "start": 19070.62, + "end": 19073.46, + "probability": 0.9953 + }, + { + "start": 19073.58, + "end": 19075.18, + "probability": 0.9281 + }, + { + "start": 19076.84, + "end": 19079.74, + "probability": 0.9937 + }, + { + "start": 19082.0, + "end": 19082.4, + "probability": 0.9504 + }, + { + "start": 19082.44, + "end": 19082.78, + "probability": 0.944 + }, + { + "start": 19082.86, + "end": 19087.06, + "probability": 0.8469 + }, + { + "start": 19087.18, + "end": 19089.74, + "probability": 0.7469 + }, + { + "start": 19090.26, + "end": 19093.14, + "probability": 0.9565 + }, + { + "start": 19094.66, + "end": 19101.02, + "probability": 0.9931 + }, + { + "start": 19101.9, + "end": 19103.58, + "probability": 0.8896 + }, + { + "start": 19104.14, + "end": 19107.08, + "probability": 0.9987 + }, + { + "start": 19108.2, + "end": 19112.0, + "probability": 0.9984 + }, + { + "start": 19112.0, + "end": 19115.16, + "probability": 0.992 + }, + { + "start": 19116.58, + "end": 19117.98, + "probability": 0.8185 + }, + { + "start": 19118.52, + "end": 19123.0, + "probability": 0.9215 + }, + { + "start": 19123.58, + "end": 19124.76, + "probability": 0.7923 + }, + { + "start": 19125.4, + "end": 19127.88, + "probability": 0.9976 + }, + { + "start": 19128.6, + "end": 19136.0, + "probability": 0.9715 + }, + { + "start": 19137.64, + "end": 19139.38, + "probability": 0.9982 + }, + { + "start": 19140.9, + "end": 19141.88, + "probability": 0.9457 + }, + { + "start": 19142.64, + "end": 19146.52, + "probability": 0.2829 + }, + { + "start": 19146.52, + "end": 19150.26, + "probability": 0.693 + }, + { + "start": 19151.58, + "end": 19154.27, + "probability": 0.9424 + }, + { + "start": 19154.62, + "end": 19158.2, + "probability": 0.9883 + }, + { + "start": 19159.38, + "end": 19160.68, + "probability": 0.9966 + }, + { + "start": 19161.0, + "end": 19162.2, + "probability": 0.9286 + }, + { + "start": 19162.3, + "end": 19163.77, + "probability": 0.8074 + }, + { + "start": 19164.62, + "end": 19169.6, + "probability": 0.8257 + }, + { + "start": 19170.3, + "end": 19170.96, + "probability": 0.8443 + }, + { + "start": 19173.06, + "end": 19173.58, + "probability": 0.5668 + }, + { + "start": 19173.64, + "end": 19174.12, + "probability": 0.5102 + }, + { + "start": 19174.16, + "end": 19174.64, + "probability": 0.8955 + }, + { + "start": 19174.8, + "end": 19175.8, + "probability": 0.8788 + }, + { + "start": 19175.96, + "end": 19176.44, + "probability": 0.4692 + }, + { + "start": 19177.28, + "end": 19178.52, + "probability": 0.6585 + }, + { + "start": 19178.86, + "end": 19181.92, + "probability": 0.9268 + }, + { + "start": 19181.96, + "end": 19183.4, + "probability": 0.9567 + }, + { + "start": 19184.2, + "end": 19186.18, + "probability": 0.9818 + }, + { + "start": 19187.2, + "end": 19191.24, + "probability": 0.8433 + }, + { + "start": 19192.12, + "end": 19195.12, + "probability": 0.9397 + }, + { + "start": 19196.06, + "end": 19198.33, + "probability": 0.994 + }, + { + "start": 19199.66, + "end": 19201.66, + "probability": 0.8793 + }, + { + "start": 19201.72, + "end": 19203.92, + "probability": 0.9601 + }, + { + "start": 19204.2, + "end": 19207.26, + "probability": 0.9899 + }, + { + "start": 19207.66, + "end": 19208.42, + "probability": 0.867 + }, + { + "start": 19208.8, + "end": 19211.42, + "probability": 0.9937 + }, + { + "start": 19212.34, + "end": 19217.22, + "probability": 0.9732 + }, + { + "start": 19218.52, + "end": 19220.26, + "probability": 0.9974 + }, + { + "start": 19220.68, + "end": 19222.92, + "probability": 0.982 + }, + { + "start": 19223.8, + "end": 19225.1, + "probability": 0.9734 + }, + { + "start": 19225.66, + "end": 19226.82, + "probability": 0.6503 + }, + { + "start": 19228.4, + "end": 19229.74, + "probability": 0.7101 + }, + { + "start": 19230.46, + "end": 19233.02, + "probability": 0.7831 + }, + { + "start": 19235.1, + "end": 19236.48, + "probability": 0.8315 + }, + { + "start": 19237.12, + "end": 19240.48, + "probability": 0.8174 + }, + { + "start": 19241.1, + "end": 19242.2, + "probability": 0.958 + }, + { + "start": 19242.92, + "end": 19244.22, + "probability": 0.9863 + }, + { + "start": 19244.88, + "end": 19246.94, + "probability": 0.9465 + }, + { + "start": 19247.1, + "end": 19247.38, + "probability": 0.5869 + }, + { + "start": 19247.56, + "end": 19249.14, + "probability": 0.6367 + }, + { + "start": 19249.28, + "end": 19250.88, + "probability": 0.928 + }, + { + "start": 19251.64, + "end": 19253.4, + "probability": 0.7747 + }, + { + "start": 19254.12, + "end": 19257.58, + "probability": 0.9858 + }, + { + "start": 19257.7, + "end": 19258.64, + "probability": 0.8513 + }, + { + "start": 19259.3, + "end": 19262.4, + "probability": 0.9852 + }, + { + "start": 19263.94, + "end": 19265.02, + "probability": 0.6216 + }, + { + "start": 19265.94, + "end": 19266.84, + "probability": 0.6256 + }, + { + "start": 19267.62, + "end": 19270.8, + "probability": 0.9861 + }, + { + "start": 19271.2, + "end": 19272.3, + "probability": 0.8696 + }, + { + "start": 19272.62, + "end": 19273.8, + "probability": 0.9401 + }, + { + "start": 19274.0, + "end": 19274.52, + "probability": 0.9456 + }, + { + "start": 19274.6, + "end": 19276.71, + "probability": 0.9191 + }, + { + "start": 19277.68, + "end": 19279.08, + "probability": 0.9566 + }, + { + "start": 19280.54, + "end": 19282.7, + "probability": 0.9937 + }, + { + "start": 19283.8, + "end": 19286.32, + "probability": 0.9691 + }, + { + "start": 19287.32, + "end": 19290.34, + "probability": 0.9216 + }, + { + "start": 19291.28, + "end": 19292.92, + "probability": 0.9767 + }, + { + "start": 19293.58, + "end": 19295.42, + "probability": 0.9408 + }, + { + "start": 19296.52, + "end": 19297.32, + "probability": 0.895 + }, + { + "start": 19297.48, + "end": 19300.92, + "probability": 0.9896 + }, + { + "start": 19300.92, + "end": 19304.78, + "probability": 0.9952 + }, + { + "start": 19305.76, + "end": 19306.26, + "probability": 0.5278 + }, + { + "start": 19306.84, + "end": 19310.14, + "probability": 0.9966 + }, + { + "start": 19311.5, + "end": 19314.62, + "probability": 0.9138 + }, + { + "start": 19315.46, + "end": 19316.24, + "probability": 0.9202 + }, + { + "start": 19316.82, + "end": 19318.6, + "probability": 0.9757 + }, + { + "start": 19319.22, + "end": 19320.86, + "probability": 0.7376 + }, + { + "start": 19321.38, + "end": 19322.76, + "probability": 0.9216 + }, + { + "start": 19324.1, + "end": 19328.65, + "probability": 0.9111 + }, + { + "start": 19330.44, + "end": 19332.18, + "probability": 0.917 + }, + { + "start": 19333.18, + "end": 19336.6, + "probability": 0.937 + }, + { + "start": 19337.54, + "end": 19338.84, + "probability": 0.9438 + }, + { + "start": 19339.7, + "end": 19341.32, + "probability": 0.8846 + }, + { + "start": 19341.46, + "end": 19345.36, + "probability": 0.9513 + }, + { + "start": 19346.2, + "end": 19348.68, + "probability": 0.9493 + }, + { + "start": 19348.76, + "end": 19349.42, + "probability": 0.5895 + }, + { + "start": 19349.42, + "end": 19350.88, + "probability": 0.9256 + }, + { + "start": 19352.3, + "end": 19354.18, + "probability": 0.9879 + }, + { + "start": 19355.02, + "end": 19355.9, + "probability": 0.7 + }, + { + "start": 19356.54, + "end": 19358.46, + "probability": 0.8866 + }, + { + "start": 19359.08, + "end": 19360.8, + "probability": 0.9062 + }, + { + "start": 19361.74, + "end": 19362.48, + "probability": 0.8975 + }, + { + "start": 19363.18, + "end": 19363.96, + "probability": 0.9024 + }, + { + "start": 19364.52, + "end": 19366.74, + "probability": 0.989 + }, + { + "start": 19367.64, + "end": 19370.52, + "probability": 0.9495 + }, + { + "start": 19374.06, + "end": 19374.38, + "probability": 0.8649 + }, + { + "start": 19374.44, + "end": 19375.54, + "probability": 0.7367 + }, + { + "start": 19375.64, + "end": 19379.12, + "probability": 0.9892 + }, + { + "start": 19379.28, + "end": 19381.02, + "probability": 0.6963 + }, + { + "start": 19381.08, + "end": 19381.86, + "probability": 0.8233 + }, + { + "start": 19382.66, + "end": 19385.72, + "probability": 0.9888 + }, + { + "start": 19386.2, + "end": 19388.1, + "probability": 0.9986 + }, + { + "start": 19388.18, + "end": 19389.28, + "probability": 0.6814 + }, + { + "start": 19389.36, + "end": 19391.12, + "probability": 0.9958 + }, + { + "start": 19391.84, + "end": 19394.48, + "probability": 0.9932 + }, + { + "start": 19395.32, + "end": 19395.9, + "probability": 0.8972 + }, + { + "start": 19398.06, + "end": 19400.7, + "probability": 0.9238 + }, + { + "start": 19402.26, + "end": 19403.76, + "probability": 0.7905 + }, + { + "start": 19404.02, + "end": 19404.56, + "probability": 0.9047 + }, + { + "start": 19405.28, + "end": 19407.86, + "probability": 0.9551 + }, + { + "start": 19408.76, + "end": 19412.34, + "probability": 0.5886 + }, + { + "start": 19412.98, + "end": 19413.6, + "probability": 0.5135 + }, + { + "start": 19413.72, + "end": 19416.96, + "probability": 0.9672 + }, + { + "start": 19417.76, + "end": 19419.2, + "probability": 0.8442 + }, + { + "start": 19420.1, + "end": 19420.74, + "probability": 0.8332 + }, + { + "start": 19420.82, + "end": 19423.82, + "probability": 0.9692 + }, + { + "start": 19423.96, + "end": 19425.76, + "probability": 0.8512 + }, + { + "start": 19426.56, + "end": 19427.18, + "probability": 0.7356 + }, + { + "start": 19427.3, + "end": 19430.26, + "probability": 0.8652 + }, + { + "start": 19430.52, + "end": 19431.58, + "probability": 0.936 + }, + { + "start": 19432.1, + "end": 19434.02, + "probability": 0.9877 + }, + { + "start": 19434.58, + "end": 19437.2, + "probability": 0.8815 + }, + { + "start": 19437.88, + "end": 19439.34, + "probability": 0.7559 + }, + { + "start": 19439.6, + "end": 19442.9, + "probability": 0.829 + }, + { + "start": 19443.8, + "end": 19444.56, + "probability": 0.8588 + }, + { + "start": 19444.64, + "end": 19448.76, + "probability": 0.8495 + }, + { + "start": 19449.42, + "end": 19450.22, + "probability": 0.7574 + }, + { + "start": 19450.32, + "end": 19451.7, + "probability": 0.9796 + }, + { + "start": 19451.78, + "end": 19452.48, + "probability": 0.9647 + }, + { + "start": 19452.64, + "end": 19453.98, + "probability": 0.7126 + }, + { + "start": 19454.56, + "end": 19455.36, + "probability": 0.7198 + }, + { + "start": 19455.6, + "end": 19458.28, + "probability": 0.9778 + }, + { + "start": 19458.82, + "end": 19459.64, + "probability": 0.9058 + }, + { + "start": 19460.26, + "end": 19461.28, + "probability": 0.8876 + }, + { + "start": 19461.46, + "end": 19465.66, + "probability": 0.9854 + }, + { + "start": 19465.88, + "end": 19466.7, + "probability": 0.7546 + }, + { + "start": 19467.06, + "end": 19468.44, + "probability": 0.8026 + }, + { + "start": 19468.7, + "end": 19470.8, + "probability": 0.9421 + }, + { + "start": 19471.44, + "end": 19472.16, + "probability": 0.6693 + }, + { + "start": 19472.28, + "end": 19476.68, + "probability": 0.9664 + }, + { + "start": 19477.22, + "end": 19478.0, + "probability": 0.5942 + }, + { + "start": 19478.0, + "end": 19479.5, + "probability": 0.6876 + }, + { + "start": 19479.64, + "end": 19482.48, + "probability": 0.9211 + }, + { + "start": 19483.0, + "end": 19483.84, + "probability": 0.8846 + }, + { + "start": 19484.24, + "end": 19487.1, + "probability": 0.829 + }, + { + "start": 19487.5, + "end": 19488.88, + "probability": 0.9162 + }, + { + "start": 19489.4, + "end": 19490.56, + "probability": 0.9191 + }, + { + "start": 19491.2, + "end": 19492.48, + "probability": 0.8335 + }, + { + "start": 19492.86, + "end": 19494.2, + "probability": 0.9543 + }, + { + "start": 19494.68, + "end": 19496.22, + "probability": 0.9603 + }, + { + "start": 19496.6, + "end": 19497.86, + "probability": 0.8418 + }, + { + "start": 19498.32, + "end": 19499.96, + "probability": 0.9114 + }, + { + "start": 19500.52, + "end": 19502.34, + "probability": 0.952 + }, + { + "start": 19503.14, + "end": 19506.12, + "probability": 0.989 + }, + { + "start": 19507.78, + "end": 19508.04, + "probability": 0.8317 + }, + { + "start": 19510.4, + "end": 19512.72, + "probability": 0.8958 + }, + { + "start": 19512.86, + "end": 19516.18, + "probability": 0.9446 + }, + { + "start": 19516.78, + "end": 19520.36, + "probability": 0.9161 + }, + { + "start": 19521.58, + "end": 19521.82, + "probability": 0.4321 + }, + { + "start": 19521.92, + "end": 19523.86, + "probability": 0.8032 + }, + { + "start": 19523.96, + "end": 19528.02, + "probability": 0.8177 + }, + { + "start": 19528.16, + "end": 19530.5, + "probability": 0.8086 + }, + { + "start": 19531.04, + "end": 19531.96, + "probability": 0.6719 + }, + { + "start": 19534.04, + "end": 19535.46, + "probability": 0.9384 + }, + { + "start": 19539.66, + "end": 19539.76, + "probability": 0.3491 + }, + { + "start": 19540.46, + "end": 19542.48, + "probability": 0.477 + }, + { + "start": 19542.66, + "end": 19544.23, + "probability": 0.8049 + }, + { + "start": 19544.7, + "end": 19546.0, + "probability": 0.6368 + }, + { + "start": 19546.1, + "end": 19547.02, + "probability": 0.6469 + }, + { + "start": 19547.66, + "end": 19549.34, + "probability": 0.9857 + }, + { + "start": 19550.1, + "end": 19550.9, + "probability": 0.7551 + }, + { + "start": 19551.0, + "end": 19552.36, + "probability": 0.6805 + }, + { + "start": 19552.4, + "end": 19555.08, + "probability": 0.9912 + }, + { + "start": 19556.12, + "end": 19559.22, + "probability": 0.9523 + }, + { + "start": 19559.28, + "end": 19561.54, + "probability": 0.9964 + }, + { + "start": 19563.38, + "end": 19565.1, + "probability": 0.6677 + }, + { + "start": 19565.4, + "end": 19569.36, + "probability": 0.9992 + }, + { + "start": 19570.12, + "end": 19573.86, + "probability": 0.8888 + }, + { + "start": 19575.04, + "end": 19581.64, + "probability": 0.9783 + }, + { + "start": 19582.56, + "end": 19582.98, + "probability": 0.9137 + }, + { + "start": 19583.16, + "end": 19583.96, + "probability": 0.8426 + }, + { + "start": 19584.0, + "end": 19586.32, + "probability": 0.9901 + }, + { + "start": 19586.84, + "end": 19590.08, + "probability": 0.9805 + }, + { + "start": 19590.72, + "end": 19593.32, + "probability": 0.8565 + }, + { + "start": 19593.86, + "end": 19597.52, + "probability": 0.8972 + }, + { + "start": 19598.74, + "end": 19599.54, + "probability": 0.881 + }, + { + "start": 19599.74, + "end": 19600.68, + "probability": 0.8557 + }, + { + "start": 19600.8, + "end": 19602.08, + "probability": 0.9755 + }, + { + "start": 19602.5, + "end": 19603.92, + "probability": 0.9967 + }, + { + "start": 19605.1, + "end": 19607.48, + "probability": 0.9768 + }, + { + "start": 19607.55, + "end": 19610.52, + "probability": 0.9751 + }, + { + "start": 19611.42, + "end": 19611.9, + "probability": 0.5905 + }, + { + "start": 19612.0, + "end": 19612.6, + "probability": 0.6919 + }, + { + "start": 19612.68, + "end": 19613.54, + "probability": 0.92 + }, + { + "start": 19613.6, + "end": 19614.42, + "probability": 0.9866 + }, + { + "start": 19615.14, + "end": 19615.34, + "probability": 0.9286 + }, + { + "start": 19618.78, + "end": 19622.98, + "probability": 0.9954 + }, + { + "start": 19623.52, + "end": 19624.56, + "probability": 0.8562 + }, + { + "start": 19625.26, + "end": 19625.9, + "probability": 0.6313 + }, + { + "start": 19626.9, + "end": 19628.36, + "probability": 0.8346 + }, + { + "start": 19629.1, + "end": 19630.46, + "probability": 0.8943 + }, + { + "start": 19631.12, + "end": 19633.74, + "probability": 0.9385 + }, + { + "start": 19634.54, + "end": 19639.54, + "probability": 0.9754 + }, + { + "start": 19640.28, + "end": 19644.11, + "probability": 0.9912 + }, + { + "start": 19645.24, + "end": 19648.1, + "probability": 0.9606 + }, + { + "start": 19648.64, + "end": 19651.94, + "probability": 0.9905 + }, + { + "start": 19652.16, + "end": 19653.12, + "probability": 0.8187 + }, + { + "start": 19655.76, + "end": 19661.55, + "probability": 0.9883 + }, + { + "start": 19661.84, + "end": 19662.76, + "probability": 0.8477 + }, + { + "start": 19663.08, + "end": 19663.78, + "probability": 0.9452 + }, + { + "start": 19663.86, + "end": 19664.46, + "probability": 0.8036 + }, + { + "start": 19664.46, + "end": 19666.74, + "probability": 0.9858 + }, + { + "start": 19667.8, + "end": 19672.6, + "probability": 0.9775 + }, + { + "start": 19672.6, + "end": 19673.7, + "probability": 0.968 + }, + { + "start": 19674.1, + "end": 19676.16, + "probability": 0.8585 + }, + { + "start": 19677.56, + "end": 19678.7, + "probability": 0.9503 + }, + { + "start": 19679.26, + "end": 19680.76, + "probability": 0.8568 + }, + { + "start": 19681.22, + "end": 19684.72, + "probability": 0.8892 + }, + { + "start": 19685.62, + "end": 19688.22, + "probability": 0.9958 + }, + { + "start": 19689.16, + "end": 19692.32, + "probability": 0.9927 + }, + { + "start": 19693.36, + "end": 19694.34, + "probability": 0.5343 + }, + { + "start": 19694.86, + "end": 19696.68, + "probability": 0.9585 + }, + { + "start": 19697.64, + "end": 19701.54, + "probability": 0.9895 + }, + { + "start": 19702.58, + "end": 19705.94, + "probability": 0.9901 + }, + { + "start": 19706.98, + "end": 19710.18, + "probability": 0.9922 + }, + { + "start": 19710.62, + "end": 19711.9, + "probability": 0.6211 + }, + { + "start": 19712.82, + "end": 19715.78, + "probability": 0.7789 + }, + { + "start": 19716.6, + "end": 19718.94, + "probability": 0.9928 + }, + { + "start": 19719.04, + "end": 19722.72, + "probability": 0.9922 + }, + { + "start": 19722.72, + "end": 19726.26, + "probability": 0.9995 + }, + { + "start": 19727.28, + "end": 19729.44, + "probability": 0.593 + }, + { + "start": 19730.0, + "end": 19732.68, + "probability": 0.9742 + }, + { + "start": 19733.46, + "end": 19737.56, + "probability": 0.991 + }, + { + "start": 19738.6, + "end": 19739.84, + "probability": 0.9674 + }, + { + "start": 19741.6, + "end": 19742.56, + "probability": 0.7145 + }, + { + "start": 19742.68, + "end": 19745.74, + "probability": 0.9955 + }, + { + "start": 19746.44, + "end": 19750.06, + "probability": 0.9634 + }, + { + "start": 19750.98, + "end": 19752.9, + "probability": 0.9778 + }, + { + "start": 19753.02, + "end": 19755.82, + "probability": 0.9973 + }, + { + "start": 19755.82, + "end": 19761.08, + "probability": 0.9927 + }, + { + "start": 19762.58, + "end": 19765.64, + "probability": 0.9947 + }, + { + "start": 19766.16, + "end": 19768.6, + "probability": 0.946 + }, + { + "start": 19773.2, + "end": 19778.22, + "probability": 0.967 + }, + { + "start": 19778.88, + "end": 19781.74, + "probability": 0.782 + }, + { + "start": 19782.56, + "end": 19784.78, + "probability": 0.9879 + }, + { + "start": 19784.92, + "end": 19786.23, + "probability": 0.9893 + }, + { + "start": 19786.66, + "end": 19791.46, + "probability": 0.9963 + }, + { + "start": 19792.6, + "end": 19796.4, + "probability": 0.9985 + }, + { + "start": 19796.6, + "end": 19797.38, + "probability": 0.9388 + }, + { + "start": 19797.46, + "end": 19798.32, + "probability": 0.8488 + }, + { + "start": 19798.84, + "end": 19799.68, + "probability": 0.8274 + }, + { + "start": 19800.38, + "end": 19801.14, + "probability": 0.4392 + }, + { + "start": 19801.82, + "end": 19802.48, + "probability": 0.8156 + }, + { + "start": 19802.66, + "end": 19803.46, + "probability": 0.7483 + }, + { + "start": 19804.26, + "end": 19806.24, + "probability": 0.9817 + }, + { + "start": 19806.76, + "end": 19808.54, + "probability": 0.8649 + }, + { + "start": 19809.84, + "end": 19811.84, + "probability": 0.8678 + }, + { + "start": 19811.92, + "end": 19814.54, + "probability": 0.886 + }, + { + "start": 19815.54, + "end": 19817.7, + "probability": 0.8778 + }, + { + "start": 19818.28, + "end": 19820.81, + "probability": 0.9817 + }, + { + "start": 19822.28, + "end": 19824.64, + "probability": 0.9913 + }, + { + "start": 19825.24, + "end": 19829.74, + "probability": 0.9737 + }, + { + "start": 19830.54, + "end": 19833.7, + "probability": 0.9891 + }, + { + "start": 19833.7, + "end": 19837.54, + "probability": 0.9971 + }, + { + "start": 19838.98, + "end": 19840.22, + "probability": 0.8231 + }, + { + "start": 19840.84, + "end": 19845.34, + "probability": 0.9443 + }, + { + "start": 19846.36, + "end": 19847.02, + "probability": 0.9393 + }, + { + "start": 19847.18, + "end": 19849.14, + "probability": 0.9504 + }, + { + "start": 19849.26, + "end": 19849.36, + "probability": 0.9051 + }, + { + "start": 19850.2, + "end": 19851.24, + "probability": 0.9877 + }, + { + "start": 19851.24, + "end": 19851.86, + "probability": 0.9877 + }, + { + "start": 19851.86, + "end": 19853.26, + "probability": 0.9233 + }, + { + "start": 19853.66, + "end": 19855.82, + "probability": 0.8855 + }, + { + "start": 19856.28, + "end": 19859.5, + "probability": 0.9954 + }, + { + "start": 19859.96, + "end": 19861.5, + "probability": 0.9681 + }, + { + "start": 19861.96, + "end": 19863.18, + "probability": 0.9303 + }, + { + "start": 19863.88, + "end": 19868.64, + "probability": 0.9526 + }, + { + "start": 19869.06, + "end": 19869.96, + "probability": 0.9613 + }, + { + "start": 19870.84, + "end": 19871.7, + "probability": 0.5068 + }, + { + "start": 19872.38, + "end": 19875.32, + "probability": 0.9752 + }, + { + "start": 19875.74, + "end": 19876.48, + "probability": 0.7354 + }, + { + "start": 19876.98, + "end": 19882.04, + "probability": 0.9815 + }, + { + "start": 19882.88, + "end": 19884.44, + "probability": 0.9976 + }, + { + "start": 19885.74, + "end": 19887.19, + "probability": 0.4541 + }, + { + "start": 19888.0, + "end": 19889.38, + "probability": 0.87 + }, + { + "start": 19889.86, + "end": 19893.72, + "probability": 0.9946 + }, + { + "start": 19893.78, + "end": 19894.56, + "probability": 0.8339 + }, + { + "start": 19895.4, + "end": 19899.38, + "probability": 0.929 + }, + { + "start": 19899.98, + "end": 19903.56, + "probability": 0.9804 + }, + { + "start": 19904.4, + "end": 19907.02, + "probability": 0.9104 + }, + { + "start": 19907.1, + "end": 19910.32, + "probability": 0.8872 + }, + { + "start": 19910.7, + "end": 19913.76, + "probability": 0.9958 + }, + { + "start": 19914.44, + "end": 19916.68, + "probability": 0.9985 + }, + { + "start": 19916.76, + "end": 19917.38, + "probability": 0.4875 + }, + { + "start": 19917.42, + "end": 19918.28, + "probability": 0.9583 + }, + { + "start": 19918.56, + "end": 19919.78, + "probability": 0.706 + }, + { + "start": 19920.3, + "end": 19922.42, + "probability": 0.9843 + }, + { + "start": 19922.94, + "end": 19923.66, + "probability": 0.9371 + }, + { + "start": 19924.3, + "end": 19925.16, + "probability": 0.5033 + }, + { + "start": 19926.24, + "end": 19931.3, + "probability": 0.9842 + }, + { + "start": 19931.92, + "end": 19933.18, + "probability": 0.9209 + }, + { + "start": 19933.96, + "end": 19937.66, + "probability": 0.9966 + }, + { + "start": 19937.98, + "end": 19940.26, + "probability": 0.9995 + }, + { + "start": 19940.9, + "end": 19942.12, + "probability": 0.7103 + }, + { + "start": 19942.46, + "end": 19945.14, + "probability": 0.8693 + }, + { + "start": 19945.8, + "end": 19946.96, + "probability": 0.9757 + }, + { + "start": 19947.12, + "end": 19948.06, + "probability": 0.9692 + }, + { + "start": 19948.44, + "end": 19949.96, + "probability": 0.986 + }, + { + "start": 19953.04, + "end": 19956.22, + "probability": 0.9867 + }, + { + "start": 19956.84, + "end": 19960.74, + "probability": 0.9873 + }, + { + "start": 19961.42, + "end": 19963.51, + "probability": 0.9932 + }, + { + "start": 19964.52, + "end": 19965.36, + "probability": 0.9496 + }, + { + "start": 19965.78, + "end": 19966.71, + "probability": 0.9851 + }, + { + "start": 19967.22, + "end": 19968.8, + "probability": 0.9568 + }, + { + "start": 19969.18, + "end": 19970.38, + "probability": 0.8495 + }, + { + "start": 19970.8, + "end": 19971.48, + "probability": 0.8016 + }, + { + "start": 19971.62, + "end": 19973.96, + "probability": 0.9883 + }, + { + "start": 19973.98, + "end": 19974.46, + "probability": 0.6626 + }, + { + "start": 19974.52, + "end": 19975.46, + "probability": 0.9399 + }, + { + "start": 19976.36, + "end": 19978.84, + "probability": 0.9978 + }, + { + "start": 19979.24, + "end": 19981.6, + "probability": 0.9824 + }, + { + "start": 19982.1, + "end": 19986.7, + "probability": 0.9274 + }, + { + "start": 19987.2, + "end": 19988.28, + "probability": 0.7702 + }, + { + "start": 19988.74, + "end": 19989.64, + "probability": 0.5276 + }, + { + "start": 19989.76, + "end": 19990.4, + "probability": 0.6003 + }, + { + "start": 19990.78, + "end": 19992.36, + "probability": 0.8324 + }, + { + "start": 19993.0, + "end": 19994.28, + "probability": 0.8202 + }, + { + "start": 19995.12, + "end": 19997.0, + "probability": 0.8763 + }, + { + "start": 19997.52, + "end": 19999.12, + "probability": 0.983 + }, + { + "start": 19999.66, + "end": 20002.46, + "probability": 0.9851 + }, + { + "start": 20005.14, + "end": 20007.28, + "probability": 0.967 + }, + { + "start": 20007.58, + "end": 20012.28, + "probability": 0.8824 + }, + { + "start": 20012.9, + "end": 20016.48, + "probability": 0.9329 + }, + { + "start": 20016.98, + "end": 20020.98, + "probability": 0.9807 + }, + { + "start": 20021.7, + "end": 20021.9, + "probability": 0.9214 + }, + { + "start": 20022.6, + "end": 20024.21, + "probability": 0.9794 + }, + { + "start": 20026.28, + "end": 20027.2, + "probability": 0.9471 + }, + { + "start": 20027.76, + "end": 20032.0, + "probability": 0.9491 + }, + { + "start": 20032.52, + "end": 20033.86, + "probability": 0.9857 + }, + { + "start": 20034.2, + "end": 20035.5, + "probability": 0.9853 + }, + { + "start": 20035.88, + "end": 20037.16, + "probability": 0.9424 + }, + { + "start": 20037.48, + "end": 20040.2, + "probability": 0.9707 + }, + { + "start": 20041.08, + "end": 20042.68, + "probability": 0.9052 + }, + { + "start": 20043.36, + "end": 20044.9, + "probability": 0.7311 + }, + { + "start": 20045.24, + "end": 20048.08, + "probability": 0.7767 + }, + { + "start": 20048.94, + "end": 20050.6, + "probability": 0.6951 + }, + { + "start": 20051.2, + "end": 20053.18, + "probability": 0.8007 + }, + { + "start": 20053.8, + "end": 20055.82, + "probability": 0.9785 + }, + { + "start": 20056.26, + "end": 20060.8, + "probability": 0.9938 + }, + { + "start": 20061.34, + "end": 20065.84, + "probability": 0.9874 + }, + { + "start": 20066.36, + "end": 20070.84, + "probability": 0.9696 + }, + { + "start": 20071.36, + "end": 20074.94, + "probability": 0.9864 + }, + { + "start": 20075.5, + "end": 20076.88, + "probability": 0.6761 + }, + { + "start": 20077.64, + "end": 20080.44, + "probability": 0.9873 + }, + { + "start": 20080.82, + "end": 20081.88, + "probability": 0.9851 + }, + { + "start": 20082.24, + "end": 20083.26, + "probability": 0.9673 + }, + { + "start": 20083.76, + "end": 20084.82, + "probability": 0.9724 + }, + { + "start": 20085.62, + "end": 20087.02, + "probability": 0.972 + }, + { + "start": 20087.68, + "end": 20089.46, + "probability": 0.97 + }, + { + "start": 20090.3, + "end": 20093.28, + "probability": 0.9976 + }, + { + "start": 20093.58, + "end": 20096.94, + "probability": 0.9946 + }, + { + "start": 20097.58, + "end": 20100.5, + "probability": 0.9898 + }, + { + "start": 20101.24, + "end": 20103.04, + "probability": 0.8397 + }, + { + "start": 20103.88, + "end": 20105.56, + "probability": 0.9912 + }, + { + "start": 20106.18, + "end": 20107.32, + "probability": 0.9649 + }, + { + "start": 20107.92, + "end": 20111.08, + "probability": 0.969 + }, + { + "start": 20111.36, + "end": 20115.16, + "probability": 0.9867 + }, + { + "start": 20115.92, + "end": 20116.4, + "probability": 0.5148 + }, + { + "start": 20117.06, + "end": 20118.52, + "probability": 0.6588 + }, + { + "start": 20119.24, + "end": 20122.36, + "probability": 0.9884 + }, + { + "start": 20122.96, + "end": 20128.74, + "probability": 0.9814 + }, + { + "start": 20129.42, + "end": 20131.24, + "probability": 0.7903 + }, + { + "start": 20131.8, + "end": 20133.46, + "probability": 0.9784 + }, + { + "start": 20134.9, + "end": 20135.62, + "probability": 0.9592 + }, + { + "start": 20135.9, + "end": 20139.44, + "probability": 0.9811 + }, + { + "start": 20139.84, + "end": 20144.68, + "probability": 0.843 + }, + { + "start": 20145.82, + "end": 20147.88, + "probability": 0.7546 + }, + { + "start": 20148.82, + "end": 20150.94, + "probability": 0.7976 + }, + { + "start": 20151.38, + "end": 20155.3, + "probability": 0.9792 + }, + { + "start": 20156.36, + "end": 20157.12, + "probability": 0.9718 + }, + { + "start": 20157.72, + "end": 20159.38, + "probability": 0.7978 + }, + { + "start": 20159.52, + "end": 20160.88, + "probability": 0.8957 + }, + { + "start": 20185.06, + "end": 20185.86, + "probability": 0.0015 + }, + { + "start": 20185.86, + "end": 20187.08, + "probability": 0.8478 + }, + { + "start": 20187.18, + "end": 20188.3, + "probability": 0.7681 + }, + { + "start": 20188.96, + "end": 20190.96, + "probability": 0.8552 + }, + { + "start": 20194.02, + "end": 20196.76, + "probability": 0.9937 + }, + { + "start": 20198.32, + "end": 20199.72, + "probability": 0.9891 + }, + { + "start": 20201.08, + "end": 20204.48, + "probability": 0.9824 + }, + { + "start": 20205.9, + "end": 20212.22, + "probability": 0.9936 + }, + { + "start": 20214.0, + "end": 20215.02, + "probability": 0.9628 + }, + { + "start": 20216.36, + "end": 20219.38, + "probability": 0.9873 + }, + { + "start": 20220.64, + "end": 20222.42, + "probability": 0.9065 + }, + { + "start": 20224.64, + "end": 20226.24, + "probability": 0.8692 + }, + { + "start": 20227.1, + "end": 20229.82, + "probability": 0.9963 + }, + { + "start": 20231.26, + "end": 20232.56, + "probability": 0.9749 + }, + { + "start": 20232.68, + "end": 20234.48, + "probability": 0.9858 + }, + { + "start": 20235.2, + "end": 20235.88, + "probability": 0.7906 + }, + { + "start": 20236.84, + "end": 20237.26, + "probability": 0.0006 + }, + { + "start": 20238.9, + "end": 20240.66, + "probability": 0.9915 + }, + { + "start": 20241.98, + "end": 20243.4, + "probability": 0.995 + }, + { + "start": 20245.0, + "end": 20247.0, + "probability": 0.9937 + }, + { + "start": 20248.6, + "end": 20249.46, + "probability": 0.998 + }, + { + "start": 20251.02, + "end": 20252.92, + "probability": 0.9704 + }, + { + "start": 20254.86, + "end": 20256.96, + "probability": 0.9712 + }, + { + "start": 20258.3, + "end": 20259.18, + "probability": 0.8839 + }, + { + "start": 20260.3, + "end": 20261.26, + "probability": 0.9788 + }, + { + "start": 20262.26, + "end": 20263.66, + "probability": 0.9882 + }, + { + "start": 20265.66, + "end": 20269.55, + "probability": 0.9302 + }, + { + "start": 20270.34, + "end": 20271.84, + "probability": 0.9978 + }, + { + "start": 20273.24, + "end": 20274.58, + "probability": 0.9849 + }, + { + "start": 20275.82, + "end": 20277.28, + "probability": 0.7707 + }, + { + "start": 20278.38, + "end": 20282.18, + "probability": 0.6844 + }, + { + "start": 20282.94, + "end": 20284.74, + "probability": 0.8131 + }, + { + "start": 20286.3, + "end": 20288.1, + "probability": 0.9954 + }, + { + "start": 20288.2, + "end": 20289.4, + "probability": 0.8992 + }, + { + "start": 20289.7, + "end": 20290.14, + "probability": 0.7269 + }, + { + "start": 20290.72, + "end": 20291.36, + "probability": 0.9441 + }, + { + "start": 20292.58, + "end": 20294.6, + "probability": 0.9956 + }, + { + "start": 20295.44, + "end": 20296.56, + "probability": 0.9895 + }, + { + "start": 20298.83, + "end": 20304.34, + "probability": 0.7571 + }, + { + "start": 20304.54, + "end": 20306.2, + "probability": 0.8246 + }, + { + "start": 20307.38, + "end": 20308.54, + "probability": 0.8936 + }, + { + "start": 20309.28, + "end": 20312.42, + "probability": 0.9456 + }, + { + "start": 20313.16, + "end": 20315.87, + "probability": 0.9907 + }, + { + "start": 20317.42, + "end": 20319.91, + "probability": 0.9794 + }, + { + "start": 20321.98, + "end": 20325.66, + "probability": 0.9888 + }, + { + "start": 20327.4, + "end": 20331.86, + "probability": 0.8557 + }, + { + "start": 20333.94, + "end": 20338.9, + "probability": 0.8317 + }, + { + "start": 20340.0, + "end": 20341.36, + "probability": 0.9728 + }, + { + "start": 20342.4, + "end": 20344.36, + "probability": 0.9985 + }, + { + "start": 20345.22, + "end": 20349.0, + "probability": 0.9814 + }, + { + "start": 20350.32, + "end": 20353.46, + "probability": 0.8259 + }, + { + "start": 20354.7, + "end": 20355.58, + "probability": 0.9875 + }, + { + "start": 20356.66, + "end": 20360.18, + "probability": 0.8033 + }, + { + "start": 20360.86, + "end": 20361.3, + "probability": 0.7383 + }, + { + "start": 20362.24, + "end": 20363.8, + "probability": 0.8833 + }, + { + "start": 20364.84, + "end": 20366.06, + "probability": 0.9897 + }, + { + "start": 20367.02, + "end": 20371.0, + "probability": 0.9124 + }, + { + "start": 20371.02, + "end": 20371.84, + "probability": 0.5676 + }, + { + "start": 20372.76, + "end": 20374.18, + "probability": 0.9833 + }, + { + "start": 20376.46, + "end": 20377.54, + "probability": 0.7501 + }, + { + "start": 20379.62, + "end": 20379.84, + "probability": 0.4838 + }, + { + "start": 20379.96, + "end": 20381.16, + "probability": 0.8631 + }, + { + "start": 20381.3, + "end": 20384.9, + "probability": 0.9934 + }, + { + "start": 20386.3, + "end": 20390.48, + "probability": 0.9941 + }, + { + "start": 20391.48, + "end": 20393.2, + "probability": 0.9968 + }, + { + "start": 20394.42, + "end": 20396.44, + "probability": 0.9925 + }, + { + "start": 20397.48, + "end": 20398.92, + "probability": 0.9497 + }, + { + "start": 20399.94, + "end": 20402.62, + "probability": 0.999 + }, + { + "start": 20403.8, + "end": 20404.74, + "probability": 0.8529 + }, + { + "start": 20406.08, + "end": 20407.0, + "probability": 0.6621 + }, + { + "start": 20409.04, + "end": 20410.6, + "probability": 0.9626 + }, + { + "start": 20411.56, + "end": 20415.56, + "probability": 0.9901 + }, + { + "start": 20416.36, + "end": 20418.5, + "probability": 0.7517 + }, + { + "start": 20419.68, + "end": 20420.3, + "probability": 0.7177 + }, + { + "start": 20422.4, + "end": 20426.46, + "probability": 0.7446 + }, + { + "start": 20426.96, + "end": 20428.54, + "probability": 0.9494 + }, + { + "start": 20429.06, + "end": 20429.61, + "probability": 0.9639 + }, + { + "start": 20431.98, + "end": 20434.46, + "probability": 0.8058 + }, + { + "start": 20435.96, + "end": 20438.44, + "probability": 0.9801 + }, + { + "start": 20439.24, + "end": 20440.64, + "probability": 0.6426 + }, + { + "start": 20441.54, + "end": 20443.6, + "probability": 0.8532 + }, + { + "start": 20444.76, + "end": 20447.16, + "probability": 0.9985 + }, + { + "start": 20449.24, + "end": 20454.82, + "probability": 0.9159 + }, + { + "start": 20454.86, + "end": 20455.88, + "probability": 0.6846 + }, + { + "start": 20455.88, + "end": 20457.02, + "probability": 0.7366 + }, + { + "start": 20459.44, + "end": 20460.03, + "probability": 0.9258 + }, + { + "start": 20461.92, + "end": 20463.62, + "probability": 0.983 + }, + { + "start": 20464.68, + "end": 20466.58, + "probability": 0.6272 + }, + { + "start": 20467.94, + "end": 20469.88, + "probability": 0.9562 + }, + { + "start": 20472.02, + "end": 20474.9, + "probability": 0.5385 + }, + { + "start": 20476.28, + "end": 20477.16, + "probability": 0.8796 + }, + { + "start": 20478.4, + "end": 20481.0, + "probability": 0.966 + }, + { + "start": 20481.0, + "end": 20485.1, + "probability": 0.8278 + }, + { + "start": 20486.98, + "end": 20488.32, + "probability": 0.919 + }, + { + "start": 20488.9, + "end": 20490.44, + "probability": 0.7149 + }, + { + "start": 20491.22, + "end": 20494.58, + "probability": 0.9849 + }, + { + "start": 20494.7, + "end": 20496.0, + "probability": 0.9932 + }, + { + "start": 20496.96, + "end": 20498.46, + "probability": 0.9492 + }, + { + "start": 20499.6, + "end": 20503.04, + "probability": 0.9775 + }, + { + "start": 20505.4, + "end": 20508.1, + "probability": 0.8537 + }, + { + "start": 20509.48, + "end": 20511.16, + "probability": 0.2803 + }, + { + "start": 20511.92, + "end": 20512.46, + "probability": 0.5354 + }, + { + "start": 20513.68, + "end": 20518.38, + "probability": 0.9918 + }, + { + "start": 20519.2, + "end": 20521.02, + "probability": 0.8377 + }, + { + "start": 20521.94, + "end": 20523.38, + "probability": 0.7681 + }, + { + "start": 20524.86, + "end": 20526.92, + "probability": 0.9857 + }, + { + "start": 20527.66, + "end": 20531.2, + "probability": 0.9414 + }, + { + "start": 20532.12, + "end": 20534.4, + "probability": 0.9613 + }, + { + "start": 20536.24, + "end": 20537.8, + "probability": 0.998 + }, + { + "start": 20539.24, + "end": 20540.02, + "probability": 0.5168 + }, + { + "start": 20540.41, + "end": 20546.52, + "probability": 0.9927 + }, + { + "start": 20547.26, + "end": 20548.76, + "probability": 0.5886 + }, + { + "start": 20549.94, + "end": 20553.13, + "probability": 0.9088 + }, + { + "start": 20553.3, + "end": 20555.14, + "probability": 0.9868 + }, + { + "start": 20556.18, + "end": 20557.72, + "probability": 0.6019 + }, + { + "start": 20559.2, + "end": 20561.16, + "probability": 0.9583 + }, + { + "start": 20563.06, + "end": 20564.3, + "probability": 0.9351 + }, + { + "start": 20565.68, + "end": 20568.24, + "probability": 0.9953 + }, + { + "start": 20569.04, + "end": 20570.94, + "probability": 0.998 + }, + { + "start": 20572.0, + "end": 20573.96, + "probability": 0.9604 + }, + { + "start": 20574.92, + "end": 20575.28, + "probability": 0.7488 + }, + { + "start": 20576.74, + "end": 20582.2, + "probability": 0.9815 + }, + { + "start": 20582.7, + "end": 20585.58, + "probability": 0.8076 + }, + { + "start": 20586.24, + "end": 20587.32, + "probability": 0.7648 + }, + { + "start": 20587.8, + "end": 20588.9, + "probability": 0.7766 + }, + { + "start": 20589.38, + "end": 20590.66, + "probability": 0.8918 + }, + { + "start": 20590.98, + "end": 20591.88, + "probability": 0.5578 + }, + { + "start": 20591.92, + "end": 20592.84, + "probability": 0.7466 + }, + { + "start": 20594.4, + "end": 20595.13, + "probability": 0.8544 + }, + { + "start": 20596.04, + "end": 20597.3, + "probability": 0.7967 + }, + { + "start": 20598.2, + "end": 20599.24, + "probability": 0.986 + }, + { + "start": 20599.66, + "end": 20600.88, + "probability": 0.9817 + }, + { + "start": 20602.66, + "end": 20603.4, + "probability": 0.7919 + }, + { + "start": 20603.92, + "end": 20605.42, + "probability": 0.7297 + }, + { + "start": 20606.66, + "end": 20608.06, + "probability": 0.7369 + }, + { + "start": 20608.12, + "end": 20609.62, + "probability": 0.5944 + }, + { + "start": 20610.08, + "end": 20610.84, + "probability": 0.9331 + }, + { + "start": 20611.32, + "end": 20614.2, + "probability": 0.9399 + }, + { + "start": 20615.4, + "end": 20616.1, + "probability": 0.7357 + }, + { + "start": 20618.64, + "end": 20619.86, + "probability": 0.4744 + }, + { + "start": 20620.68, + "end": 20621.74, + "probability": 0.8875 + }, + { + "start": 20623.5, + "end": 20624.46, + "probability": 0.9695 + }, + { + "start": 20625.96, + "end": 20628.78, + "probability": 0.638 + }, + { + "start": 20628.84, + "end": 20629.92, + "probability": 0.8542 + }, + { + "start": 20630.54, + "end": 20632.09, + "probability": 0.9819 + }, + { + "start": 20632.42, + "end": 20634.1, + "probability": 0.9893 + }, + { + "start": 20635.0, + "end": 20636.14, + "probability": 0.9189 + }, + { + "start": 20637.42, + "end": 20638.64, + "probability": 0.9778 + }, + { + "start": 20639.58, + "end": 20642.8, + "probability": 0.9764 + }, + { + "start": 20643.34, + "end": 20644.44, + "probability": 0.7655 + }, + { + "start": 20645.22, + "end": 20647.34, + "probability": 0.9948 + }, + { + "start": 20647.84, + "end": 20649.78, + "probability": 0.7254 + }, + { + "start": 20650.14, + "end": 20651.2, + "probability": 0.9989 + }, + { + "start": 20651.72, + "end": 20652.94, + "probability": 0.9755 + }, + { + "start": 20654.28, + "end": 20655.34, + "probability": 0.8859 + }, + { + "start": 20656.62, + "end": 20657.04, + "probability": 0.7891 + }, + { + "start": 20658.88, + "end": 20660.52, + "probability": 0.8295 + }, + { + "start": 20661.48, + "end": 20664.2, + "probability": 0.7089 + }, + { + "start": 20665.64, + "end": 20666.8, + "probability": 0.9761 + }, + { + "start": 20667.72, + "end": 20669.42, + "probability": 0.9734 + }, + { + "start": 20670.44, + "end": 20672.0, + "probability": 0.9453 + }, + { + "start": 20672.56, + "end": 20674.58, + "probability": 0.9775 + }, + { + "start": 20676.06, + "end": 20677.52, + "probability": 0.9934 + }, + { + "start": 20678.34, + "end": 20678.98, + "probability": 0.5847 + }, + { + "start": 20679.98, + "end": 20681.78, + "probability": 0.9893 + }, + { + "start": 20682.38, + "end": 20683.84, + "probability": 0.9508 + }, + { + "start": 20684.7, + "end": 20685.96, + "probability": 0.9958 + }, + { + "start": 20686.76, + "end": 20689.78, + "probability": 0.9945 + }, + { + "start": 20691.5, + "end": 20695.86, + "probability": 0.9926 + }, + { + "start": 20696.92, + "end": 20697.88, + "probability": 0.9028 + }, + { + "start": 20698.66, + "end": 20699.9, + "probability": 0.9973 + }, + { + "start": 20700.84, + "end": 20701.98, + "probability": 0.9791 + }, + { + "start": 20702.5, + "end": 20703.32, + "probability": 0.7555 + }, + { + "start": 20704.56, + "end": 20705.86, + "probability": 0.9951 + }, + { + "start": 20707.94, + "end": 20713.0, + "probability": 0.8606 + }, + { + "start": 20714.2, + "end": 20715.46, + "probability": 0.9612 + }, + { + "start": 20716.26, + "end": 20721.4, + "probability": 0.8962 + }, + { + "start": 20722.12, + "end": 20723.36, + "probability": 0.8412 + }, + { + "start": 20724.14, + "end": 20725.62, + "probability": 0.998 + }, + { + "start": 20726.18, + "end": 20727.97, + "probability": 0.7913 + }, + { + "start": 20728.62, + "end": 20730.88, + "probability": 0.9385 + }, + { + "start": 20731.46, + "end": 20734.8, + "probability": 0.9628 + }, + { + "start": 20736.24, + "end": 20737.86, + "probability": 0.9465 + }, + { + "start": 20738.5, + "end": 20740.38, + "probability": 0.9974 + }, + { + "start": 20741.3, + "end": 20742.24, + "probability": 0.6963 + }, + { + "start": 20744.12, + "end": 20748.09, + "probability": 0.9966 + }, + { + "start": 20748.98, + "end": 20752.36, + "probability": 0.9974 + }, + { + "start": 20752.8, + "end": 20757.26, + "probability": 0.9852 + }, + { + "start": 20757.26, + "end": 20761.04, + "probability": 0.9592 + }, + { + "start": 20761.78, + "end": 20764.7, + "probability": 0.8971 + }, + { + "start": 20765.46, + "end": 20767.68, + "probability": 0.4372 + }, + { + "start": 20767.7, + "end": 20771.2, + "probability": 0.8093 + }, + { + "start": 20771.68, + "end": 20773.28, + "probability": 0.8535 + }, + { + "start": 20773.88, + "end": 20777.68, + "probability": 0.8797 + }, + { + "start": 20778.06, + "end": 20779.0, + "probability": 0.5456 + }, + { + "start": 20780.42, + "end": 20782.78, + "probability": 0.9862 + }, + { + "start": 20783.22, + "end": 20785.7, + "probability": 0.9439 + }, + { + "start": 20786.28, + "end": 20789.66, + "probability": 0.9399 + }, + { + "start": 20790.48, + "end": 20790.96, + "probability": 0.91 + }, + { + "start": 20791.72, + "end": 20793.16, + "probability": 0.8903 + }, + { + "start": 20793.32, + "end": 20798.74, + "probability": 0.9653 + }, + { + "start": 20799.62, + "end": 20801.6, + "probability": 0.0326 + }, + { + "start": 20820.7, + "end": 20826.72, + "probability": 0.1774 + }, + { + "start": 20827.0, + "end": 20828.66, + "probability": 0.026 + }, + { + "start": 20829.5, + "end": 20830.36, + "probability": 0.2795 + }, + { + "start": 20844.52, + "end": 20847.88, + "probability": 0.8393 + }, + { + "start": 20848.16, + "end": 20851.08, + "probability": 0.8658 + }, + { + "start": 20852.26, + "end": 20853.32, + "probability": 0.9073 + }, + { + "start": 20853.42, + "end": 20858.04, + "probability": 0.9723 + }, + { + "start": 20858.5, + "end": 20859.14, + "probability": 0.0631 + }, + { + "start": 20859.14, + "end": 20859.7, + "probability": 0.1304 + }, + { + "start": 20860.16, + "end": 20860.36, + "probability": 0.9788 + }, + { + "start": 20860.84, + "end": 20866.02, + "probability": 0.9373 + }, + { + "start": 20866.24, + "end": 20867.92, + "probability": 0.5265 + }, + { + "start": 20868.0, + "end": 20869.62, + "probability": 0.7805 + }, + { + "start": 20869.82, + "end": 20870.38, + "probability": 0.6643 + }, + { + "start": 20870.74, + "end": 20871.78, + "probability": 0.5058 + }, + { + "start": 20871.94, + "end": 20874.72, + "probability": 0.6429 + }, + { + "start": 20874.72, + "end": 20877.34, + "probability": 0.3653 + }, + { + "start": 20878.9, + "end": 20880.68, + "probability": 0.1189 + }, + { + "start": 20881.44, + "end": 20886.46, + "probability": 0.2307 + }, + { + "start": 20886.88, + "end": 20888.92, + "probability": 0.6295 + }, + { + "start": 20889.38, + "end": 20890.72, + "probability": 0.6916 + }, + { + "start": 20890.74, + "end": 20894.34, + "probability": 0.5324 + }, + { + "start": 20894.38, + "end": 20894.78, + "probability": 0.6971 + }, + { + "start": 20894.88, + "end": 20895.23, + "probability": 0.4051 + }, + { + "start": 20895.7, + "end": 20895.94, + "probability": 0.1514 + }, + { + "start": 20896.32, + "end": 20896.86, + "probability": 0.4204 + }, + { + "start": 20897.12, + "end": 20898.16, + "probability": 0.7666 + }, + { + "start": 20898.32, + "end": 20898.72, + "probability": 0.6053 + }, + { + "start": 20898.8, + "end": 20900.34, + "probability": 0.827 + }, + { + "start": 20900.34, + "end": 20906.0, + "probability": 0.8096 + }, + { + "start": 20906.24, + "end": 20907.38, + "probability": 0.2336 + }, + { + "start": 20907.38, + "end": 20908.34, + "probability": 0.5182 + }, + { + "start": 20908.46, + "end": 20911.34, + "probability": 0.7983 + }, + { + "start": 20911.64, + "end": 20913.64, + "probability": 0.7013 + }, + { + "start": 20914.3, + "end": 20917.74, + "probability": 0.2793 + }, + { + "start": 20918.08, + "end": 20920.03, + "probability": 0.8074 + }, + { + "start": 20920.66, + "end": 20921.06, + "probability": 0.6439 + }, + { + "start": 20921.12, + "end": 20922.66, + "probability": 0.9808 + }, + { + "start": 20922.7, + "end": 20923.08, + "probability": 0.8103 + }, + { + "start": 20923.35, + "end": 20923.42, + "probability": 0.4412 + }, + { + "start": 20923.42, + "end": 20926.2, + "probability": 0.7939 + }, + { + "start": 20927.32, + "end": 20929.72, + "probability": 0.9834 + }, + { + "start": 20929.94, + "end": 20931.74, + "probability": 0.2507 + }, + { + "start": 20932.16, + "end": 20932.74, + "probability": 0.0498 + }, + { + "start": 20934.06, + "end": 20934.74, + "probability": 0.0291 + }, + { + "start": 20934.74, + "end": 20937.42, + "probability": 0.28 + }, + { + "start": 20939.7, + "end": 20942.9, + "probability": 0.2385 + }, + { + "start": 20943.38, + "end": 20949.16, + "probability": 0.1008 + }, + { + "start": 20949.54, + "end": 20950.4, + "probability": 0.1885 + }, + { + "start": 20950.4, + "end": 20950.4, + "probability": 0.4686 + }, + { + "start": 20950.4, + "end": 20950.86, + "probability": 0.1161 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.0, + "end": 21041.0, + "probability": 0.0 + }, + { + "start": 21041.16, + "end": 21044.7, + "probability": 0.7119 + }, + { + "start": 21046.06, + "end": 21048.4, + "probability": 0.7344 + }, + { + "start": 21049.24, + "end": 21051.68, + "probability": 0.9318 + }, + { + "start": 21052.64, + "end": 21055.4, + "probability": 0.9345 + }, + { + "start": 21056.96, + "end": 21064.08, + "probability": 0.9654 + }, + { + "start": 21065.26, + "end": 21067.02, + "probability": 0.9351 + }, + { + "start": 21067.16, + "end": 21069.44, + "probability": 0.9942 + }, + { + "start": 21070.74, + "end": 21072.82, + "probability": 0.8397 + }, + { + "start": 21073.8, + "end": 21078.08, + "probability": 0.9917 + }, + { + "start": 21079.32, + "end": 21082.18, + "probability": 0.9225 + }, + { + "start": 21083.44, + "end": 21086.5, + "probability": 0.9911 + }, + { + "start": 21086.74, + "end": 21089.96, + "probability": 0.9917 + }, + { + "start": 21090.0, + "end": 21092.74, + "probability": 0.9959 + }, + { + "start": 21094.16, + "end": 21096.86, + "probability": 0.9279 + }, + { + "start": 21097.1, + "end": 21098.32, + "probability": 0.9406 + }, + { + "start": 21098.62, + "end": 21098.76, + "probability": 0.1253 + }, + { + "start": 21098.92, + "end": 21100.44, + "probability": 0.5284 + }, + { + "start": 21100.44, + "end": 21101.4, + "probability": 0.479 + }, + { + "start": 21102.4, + "end": 21102.42, + "probability": 0.4496 + }, + { + "start": 21102.54, + "end": 21102.54, + "probability": 0.2112 + }, + { + "start": 21102.54, + "end": 21104.5, + "probability": 0.8824 + }, + { + "start": 21104.58, + "end": 21107.12, + "probability": 0.588 + }, + { + "start": 21107.64, + "end": 21107.72, + "probability": 0.6807 + }, + { + "start": 21107.72, + "end": 21110.06, + "probability": 0.8117 + }, + { + "start": 21111.86, + "end": 21112.88, + "probability": 0.7155 + }, + { + "start": 21113.88, + "end": 21114.76, + "probability": 0.5869 + }, + { + "start": 21114.9, + "end": 21118.36, + "probability": 0.9808 + }, + { + "start": 21119.06, + "end": 21126.15, + "probability": 0.9832 + }, + { + "start": 21126.52, + "end": 21129.32, + "probability": 0.9929 + }, + { + "start": 21130.02, + "end": 21133.86, + "probability": 0.9978 + }, + { + "start": 21134.46, + "end": 21135.8, + "probability": 0.8392 + }, + { + "start": 21135.92, + "end": 21137.5, + "probability": 0.8439 + }, + { + "start": 21138.4, + "end": 21141.92, + "probability": 0.9753 + }, + { + "start": 21142.5, + "end": 21143.82, + "probability": 0.955 + }, + { + "start": 21144.26, + "end": 21146.98, + "probability": 0.855 + }, + { + "start": 21147.22, + "end": 21148.74, + "probability": 0.8692 + }, + { + "start": 21148.78, + "end": 21155.76, + "probability": 0.9858 + }, + { + "start": 21155.78, + "end": 21159.0, + "probability": 0.7981 + }, + { + "start": 21159.12, + "end": 21160.46, + "probability": 0.9936 + }, + { + "start": 21161.36, + "end": 21161.66, + "probability": 0.244 + }, + { + "start": 21161.66, + "end": 21161.78, + "probability": 0.8482 + }, + { + "start": 21161.88, + "end": 21163.32, + "probability": 0.1697 + }, + { + "start": 21163.58, + "end": 21164.0, + "probability": 0.3503 + }, + { + "start": 21164.0, + "end": 21165.4, + "probability": 0.9121 + }, + { + "start": 21165.5, + "end": 21167.46, + "probability": 0.8193 + }, + { + "start": 21167.52, + "end": 21169.56, + "probability": 0.9875 + }, + { + "start": 21169.6, + "end": 21171.16, + "probability": 0.8853 + }, + { + "start": 21171.2, + "end": 21171.72, + "probability": 0.8408 + }, + { + "start": 21171.78, + "end": 21174.4, + "probability": 0.9873 + }, + { + "start": 21174.4, + "end": 21174.8, + "probability": 0.1154 + }, + { + "start": 21174.88, + "end": 21178.46, + "probability": 0.604 + }, + { + "start": 21178.62, + "end": 21179.14, + "probability": 0.1321 + }, + { + "start": 21179.2, + "end": 21179.62, + "probability": 0.2972 + }, + { + "start": 21179.8, + "end": 21184.28, + "probability": 0.6611 + }, + { + "start": 21184.36, + "end": 21187.9, + "probability": 0.8973 + }, + { + "start": 21187.94, + "end": 21189.12, + "probability": 0.6395 + }, + { + "start": 21189.44, + "end": 21190.62, + "probability": 0.2725 + }, + { + "start": 21190.76, + "end": 21194.0, + "probability": 0.4415 + }, + { + "start": 21194.28, + "end": 21194.78, + "probability": 0.1339 + }, + { + "start": 21194.78, + "end": 21196.14, + "probability": 0.812 + }, + { + "start": 21196.28, + "end": 21197.6, + "probability": 0.651 + }, + { + "start": 21197.6, + "end": 21198.3, + "probability": 0.8188 + }, + { + "start": 21198.32, + "end": 21200.52, + "probability": 0.5868 + }, + { + "start": 21200.52, + "end": 21201.62, + "probability": 0.9447 + }, + { + "start": 21201.72, + "end": 21202.62, + "probability": 0.7406 + }, + { + "start": 21203.2, + "end": 21203.62, + "probability": 0.612 + }, + { + "start": 21203.68, + "end": 21205.12, + "probability": 0.9651 + }, + { + "start": 21205.98, + "end": 21206.66, + "probability": 0.9139 + }, + { + "start": 21207.28, + "end": 21208.74, + "probability": 0.985 + }, + { + "start": 21209.72, + "end": 21211.44, + "probability": 0.9903 + }, + { + "start": 21212.06, + "end": 21213.24, + "probability": 0.9393 + }, + { + "start": 21213.66, + "end": 21216.22, + "probability": 0.9907 + }, + { + "start": 21216.56, + "end": 21218.02, + "probability": 0.8044 + }, + { + "start": 21218.12, + "end": 21219.16, + "probability": 0.9247 + }, + { + "start": 21219.2, + "end": 21220.12, + "probability": 0.9495 + }, + { + "start": 21220.28, + "end": 21221.08, + "probability": 0.0928 + }, + { + "start": 21221.12, + "end": 21221.68, + "probability": 0.1249 + }, + { + "start": 21221.72, + "end": 21223.2, + "probability": 0.9899 + }, + { + "start": 21223.22, + "end": 21228.06, + "probability": 0.6068 + }, + { + "start": 21228.08, + "end": 21230.2, + "probability": 0.8433 + }, + { + "start": 21230.54, + "end": 21230.64, + "probability": 0.1664 + }, + { + "start": 21230.72, + "end": 21232.08, + "probability": 0.6617 + }, + { + "start": 21232.28, + "end": 21234.38, + "probability": 0.2828 + }, + { + "start": 21234.62, + "end": 21235.8, + "probability": 0.2376 + }, + { + "start": 21236.12, + "end": 21237.88, + "probability": 0.5345 + }, + { + "start": 21238.06, + "end": 21243.86, + "probability": 0.7685 + }, + { + "start": 21244.58, + "end": 21246.06, + "probability": 0.9353 + }, + { + "start": 21246.14, + "end": 21249.16, + "probability": 0.9902 + }, + { + "start": 21249.2, + "end": 21249.92, + "probability": 0.7491 + }, + { + "start": 21250.64, + "end": 21255.2, + "probability": 0.7056 + }, + { + "start": 21255.24, + "end": 21256.8, + "probability": 0.3065 + }, + { + "start": 21257.16, + "end": 21259.72, + "probability": 0.637 + }, + { + "start": 21259.82, + "end": 21261.36, + "probability": 0.9426 + }, + { + "start": 21261.48, + "end": 21264.66, + "probability": 0.9899 + }, + { + "start": 21264.96, + "end": 21267.84, + "probability": 0.9968 + }, + { + "start": 21268.98, + "end": 21272.72, + "probability": 0.9849 + }, + { + "start": 21272.8, + "end": 21274.64, + "probability": 0.993 + }, + { + "start": 21275.13, + "end": 21277.74, + "probability": 0.9971 + }, + { + "start": 21277.86, + "end": 21278.0, + "probability": 0.0328 + }, + { + "start": 21278.08, + "end": 21280.48, + "probability": 0.6724 + }, + { + "start": 21280.76, + "end": 21281.82, + "probability": 0.5017 + }, + { + "start": 21282.04, + "end": 21284.86, + "probability": 0.9402 + }, + { + "start": 21285.02, + "end": 21285.08, + "probability": 0.4897 + }, + { + "start": 21285.08, + "end": 21288.8, + "probability": 0.9927 + }, + { + "start": 21288.94, + "end": 21293.4, + "probability": 0.9893 + }, + { + "start": 21293.4, + "end": 21297.76, + "probability": 0.9977 + }, + { + "start": 21298.06, + "end": 21298.34, + "probability": 0.1036 + }, + { + "start": 21298.34, + "end": 21298.8, + "probability": 0.0709 + }, + { + "start": 21299.26, + "end": 21301.72, + "probability": 0.519 + }, + { + "start": 21301.76, + "end": 21304.17, + "probability": 0.815 + }, + { + "start": 21304.82, + "end": 21304.82, + "probability": 0.1156 + }, + { + "start": 21304.82, + "end": 21304.96, + "probability": 0.2745 + }, + { + "start": 21305.4, + "end": 21306.46, + "probability": 0.9696 + }, + { + "start": 21306.7, + "end": 21307.36, + "probability": 0.9912 + }, + { + "start": 21307.8, + "end": 21309.92, + "probability": 0.9973 + }, + { + "start": 21310.06, + "end": 21311.08, + "probability": 0.1051 + }, + { + "start": 21311.08, + "end": 21312.76, + "probability": 0.6086 + }, + { + "start": 21313.02, + "end": 21313.44, + "probability": 0.2393 + }, + { + "start": 21313.44, + "end": 21315.06, + "probability": 0.1902 + }, + { + "start": 21315.3, + "end": 21316.7, + "probability": 0.5497 + }, + { + "start": 21317.42, + "end": 21317.6, + "probability": 0.0637 + }, + { + "start": 21317.6, + "end": 21317.6, + "probability": 0.1733 + }, + { + "start": 21317.6, + "end": 21318.0, + "probability": 0.4903 + }, + { + "start": 21318.02, + "end": 21319.14, + "probability": 0.5411 + }, + { + "start": 21319.2, + "end": 21321.44, + "probability": 0.9805 + }, + { + "start": 21321.44, + "end": 21322.12, + "probability": 0.664 + }, + { + "start": 21324.1, + "end": 21327.94, + "probability": 0.0943 + }, + { + "start": 21327.94, + "end": 21327.94, + "probability": 0.0579 + }, + { + "start": 21327.94, + "end": 21327.94, + "probability": 0.2628 + }, + { + "start": 21327.98, + "end": 21329.66, + "probability": 0.6568 + }, + { + "start": 21329.7, + "end": 21329.76, + "probability": 0.0089 + }, + { + "start": 21329.76, + "end": 21330.38, + "probability": 0.4509 + }, + { + "start": 21330.38, + "end": 21330.98, + "probability": 0.199 + }, + { + "start": 21331.2, + "end": 21334.22, + "probability": 0.8161 + }, + { + "start": 21334.42, + "end": 21335.1, + "probability": 0.4612 + }, + { + "start": 21335.52, + "end": 21336.68, + "probability": 0.2325 + }, + { + "start": 21336.76, + "end": 21337.28, + "probability": 0.4327 + }, + { + "start": 21337.76, + "end": 21338.32, + "probability": 0.7791 + }, + { + "start": 21338.44, + "end": 21339.63, + "probability": 0.9958 + }, + { + "start": 21339.86, + "end": 21341.44, + "probability": 0.967 + }, + { + "start": 21341.46, + "end": 21343.23, + "probability": 0.5971 + }, + { + "start": 21343.46, + "end": 21344.56, + "probability": 0.0928 + }, + { + "start": 21344.56, + "end": 21349.08, + "probability": 0.9861 + }, + { + "start": 21349.08, + "end": 21349.88, + "probability": 0.3574 + }, + { + "start": 21350.12, + "end": 21351.17, + "probability": 0.9979 + }, + { + "start": 21352.0, + "end": 21354.54, + "probability": 0.9807 + }, + { + "start": 21356.72, + "end": 21358.36, + "probability": 0.7921 + }, + { + "start": 21359.24, + "end": 21361.62, + "probability": 0.9013 + }, + { + "start": 21362.46, + "end": 21365.36, + "probability": 0.6081 + }, + { + "start": 21366.04, + "end": 21367.52, + "probability": 0.7688 + }, + { + "start": 21368.98, + "end": 21369.16, + "probability": 0.2148 + }, + { + "start": 21370.36, + "end": 21370.82, + "probability": 0.1515 + }, + { + "start": 21370.9, + "end": 21372.96, + "probability": 0.2035 + }, + { + "start": 21372.96, + "end": 21374.48, + "probability": 0.4824 + }, + { + "start": 21374.56, + "end": 21376.66, + "probability": 0.2062 + }, + { + "start": 21377.18, + "end": 21378.7, + "probability": 0.3942 + }, + { + "start": 21378.92, + "end": 21382.66, + "probability": 0.7447 + }, + { + "start": 21382.9, + "end": 21385.34, + "probability": 0.7065 + }, + { + "start": 21385.34, + "end": 21385.36, + "probability": 0.002 + }, + { + "start": 21385.36, + "end": 21388.66, + "probability": 0.6943 + }, + { + "start": 21388.68, + "end": 21388.68, + "probability": 0.6263 + }, + { + "start": 21388.74, + "end": 21390.25, + "probability": 0.8881 + }, + { + "start": 21390.4, + "end": 21390.83, + "probability": 0.6909 + }, + { + "start": 21391.22, + "end": 21393.44, + "probability": 0.8199 + }, + { + "start": 21393.5, + "end": 21395.04, + "probability": 0.133 + }, + { + "start": 21395.54, + "end": 21398.13, + "probability": 0.9609 + }, + { + "start": 21398.16, + "end": 21400.02, + "probability": 0.6562 + }, + { + "start": 21400.14, + "end": 21402.62, + "probability": 0.9938 + }, + { + "start": 21402.7, + "end": 21403.72, + "probability": 0.5202 + }, + { + "start": 21405.78, + "end": 21406.68, + "probability": 0.0028 + }, + { + "start": 21407.1, + "end": 21412.8, + "probability": 0.9907 + }, + { + "start": 21413.52, + "end": 21416.12, + "probability": 0.9702 + }, + { + "start": 21416.86, + "end": 21423.2, + "probability": 0.9963 + }, + { + "start": 21423.74, + "end": 21428.69, + "probability": 0.9878 + }, + { + "start": 21431.44, + "end": 21432.84, + "probability": 0.9988 + }, + { + "start": 21433.02, + "end": 21436.16, + "probability": 0.9982 + }, + { + "start": 21436.16, + "end": 21439.24, + "probability": 0.9986 + }, + { + "start": 21439.4, + "end": 21441.7, + "probability": 0.84 + }, + { + "start": 21442.84, + "end": 21442.96, + "probability": 0.01 + }, + { + "start": 21442.96, + "end": 21442.96, + "probability": 0.1128 + }, + { + "start": 21442.96, + "end": 21443.58, + "probability": 0.3275 + }, + { + "start": 21443.76, + "end": 21444.46, + "probability": 0.5293 + }, + { + "start": 21444.54, + "end": 21446.36, + "probability": 0.7163 + }, + { + "start": 21447.3, + "end": 21447.76, + "probability": 0.0995 + }, + { + "start": 21447.76, + "end": 21448.5, + "probability": 0.1351 + }, + { + "start": 21448.5, + "end": 21450.88, + "probability": 0.8857 + }, + { + "start": 21450.92, + "end": 21452.42, + "probability": 0.9976 + }, + { + "start": 21453.28, + "end": 21453.84, + "probability": 0.7821 + }, + { + "start": 21454.92, + "end": 21457.38, + "probability": 0.9762 + }, + { + "start": 21457.98, + "end": 21462.62, + "probability": 0.9563 + }, + { + "start": 21463.24, + "end": 21464.47, + "probability": 0.9665 + }, + { + "start": 21464.86, + "end": 21468.54, + "probability": 0.9716 + }, + { + "start": 21469.38, + "end": 21470.2, + "probability": 0.7032 + }, + { + "start": 21470.62, + "end": 21471.04, + "probability": 0.1374 + }, + { + "start": 21471.04, + "end": 21471.7, + "probability": 0.299 + }, + { + "start": 21472.44, + "end": 21473.86, + "probability": 0.1179 + }, + { + "start": 21473.96, + "end": 21476.15, + "probability": 0.333 + }, + { + "start": 21476.43, + "end": 21480.52, + "probability": 0.6348 + }, + { + "start": 21480.84, + "end": 21482.14, + "probability": 0.5157 + }, + { + "start": 21482.52, + "end": 21484.56, + "probability": 0.4513 + }, + { + "start": 21484.56, + "end": 21485.04, + "probability": 0.6872 + }, + { + "start": 21485.26, + "end": 21486.98, + "probability": 0.2972 + }, + { + "start": 21488.16, + "end": 21489.56, + "probability": 0.5108 + }, + { + "start": 21489.66, + "end": 21489.82, + "probability": 0.3526 + }, + { + "start": 21490.62, + "end": 21490.69, + "probability": 0.3959 + }, + { + "start": 21490.7, + "end": 21490.89, + "probability": 0.0133 + }, + { + "start": 21491.28, + "end": 21493.39, + "probability": 0.9927 + }, + { + "start": 21493.62, + "end": 21495.18, + "probability": 0.9897 + }, + { + "start": 21495.68, + "end": 21499.4, + "probability": 0.9845 + }, + { + "start": 21500.28, + "end": 21505.08, + "probability": 0.9839 + }, + { + "start": 21505.56, + "end": 21508.08, + "probability": 0.998 + }, + { + "start": 21508.58, + "end": 21510.67, + "probability": 0.645 + }, + { + "start": 21510.9, + "end": 21511.3, + "probability": 0.8056 + }, + { + "start": 21511.56, + "end": 21512.08, + "probability": 0.6698 + }, + { + "start": 21512.5, + "end": 21513.84, + "probability": 0.9189 + }, + { + "start": 21513.92, + "end": 21516.24, + "probability": 0.9847 + }, + { + "start": 21516.96, + "end": 21521.0, + "probability": 0.9983 + }, + { + "start": 21521.3, + "end": 21523.0, + "probability": 0.9955 + }, + { + "start": 21523.0, + "end": 21525.94, + "probability": 0.9878 + }, + { + "start": 21526.16, + "end": 21526.74, + "probability": 0.7733 + }, + { + "start": 21527.28, + "end": 21529.26, + "probability": 0.5385 + }, + { + "start": 21529.34, + "end": 21529.62, + "probability": 0.7347 + }, + { + "start": 21529.62, + "end": 21530.64, + "probability": 0.5315 + }, + { + "start": 21530.86, + "end": 21531.52, + "probability": 0.0008 + }, + { + "start": 21532.14, + "end": 21533.12, + "probability": 0.7695 + }, + { + "start": 21533.9, + "end": 21535.58, + "probability": 0.829 + }, + { + "start": 21536.34, + "end": 21541.38, + "probability": 0.9983 + }, + { + "start": 21542.22, + "end": 21544.98, + "probability": 0.7086 + }, + { + "start": 21544.98, + "end": 21548.68, + "probability": 0.9944 + }, + { + "start": 21549.0, + "end": 21550.99, + "probability": 0.3844 + }, + { + "start": 21551.66, + "end": 21552.48, + "probability": 0.8296 + }, + { + "start": 21552.86, + "end": 21555.46, + "probability": 0.98 + }, + { + "start": 21556.46, + "end": 21560.06, + "probability": 0.9969 + }, + { + "start": 21560.58, + "end": 21563.44, + "probability": 0.999 + }, + { + "start": 21563.64, + "end": 21566.96, + "probability": 0.9743 + }, + { + "start": 21567.14, + "end": 21567.76, + "probability": 0.9255 + }, + { + "start": 21568.04, + "end": 21571.46, + "probability": 0.9961 + }, + { + "start": 21571.52, + "end": 21575.88, + "probability": 0.996 + }, + { + "start": 21576.62, + "end": 21579.72, + "probability": 0.9966 + }, + { + "start": 21580.32, + "end": 21582.3, + "probability": 0.9315 + }, + { + "start": 21582.5, + "end": 21584.92, + "probability": 0.9695 + }, + { + "start": 21585.62, + "end": 21587.76, + "probability": 0.9944 + }, + { + "start": 21587.76, + "end": 21591.58, + "probability": 0.9609 + }, + { + "start": 21592.12, + "end": 21594.92, + "probability": 0.9233 + }, + { + "start": 21595.34, + "end": 21598.84, + "probability": 0.9568 + }, + { + "start": 21600.08, + "end": 21601.38, + "probability": 0.9519 + }, + { + "start": 21601.86, + "end": 21605.68, + "probability": 0.9989 + }, + { + "start": 21606.26, + "end": 21609.1, + "probability": 0.9943 + }, + { + "start": 21609.86, + "end": 21610.88, + "probability": 0.7342 + }, + { + "start": 21610.96, + "end": 21611.06, + "probability": 0.2321 + }, + { + "start": 21611.06, + "end": 21615.22, + "probability": 0.8225 + }, + { + "start": 21615.34, + "end": 21616.0, + "probability": 0.5851 + }, + { + "start": 21616.12, + "end": 21617.24, + "probability": 0.8835 + }, + { + "start": 21617.48, + "end": 21619.0, + "probability": 0.5862 + }, + { + "start": 21619.18, + "end": 21621.8, + "probability": 0.5021 + }, + { + "start": 21621.84, + "end": 21622.22, + "probability": 0.5803 + }, + { + "start": 21622.32, + "end": 21622.54, + "probability": 0.5045 + }, + { + "start": 21622.62, + "end": 21622.7, + "probability": 0.0121 + }, + { + "start": 21622.7, + "end": 21622.96, + "probability": 0.0429 + }, + { + "start": 21622.96, + "end": 21627.48, + "probability": 0.378 + }, + { + "start": 21627.7, + "end": 21627.7, + "probability": 0.0031 + }, + { + "start": 21627.78, + "end": 21629.62, + "probability": 0.9254 + }, + { + "start": 21629.84, + "end": 21630.1, + "probability": 0.0687 + }, + { + "start": 21630.4, + "end": 21632.34, + "probability": 0.8861 + }, + { + "start": 21632.7, + "end": 21637.2, + "probability": 0.9609 + }, + { + "start": 21637.78, + "end": 21638.6, + "probability": 0.9117 + }, + { + "start": 21638.92, + "end": 21642.0, + "probability": 0.8721 + }, + { + "start": 21642.08, + "end": 21643.94, + "probability": 0.9982 + }, + { + "start": 21644.0, + "end": 21644.18, + "probability": 0.0789 + }, + { + "start": 21644.54, + "end": 21646.78, + "probability": 0.4732 + }, + { + "start": 21646.78, + "end": 21649.54, + "probability": 0.9993 + }, + { + "start": 21649.7, + "end": 21652.44, + "probability": 0.9946 + }, + { + "start": 21653.04, + "end": 21655.18, + "probability": 0.9902 + }, + { + "start": 21655.18, + "end": 21658.5, + "probability": 0.9969 + }, + { + "start": 21658.84, + "end": 21659.74, + "probability": 0.7145 + }, + { + "start": 21659.9, + "end": 21662.8, + "probability": 0.9927 + }, + { + "start": 21663.1, + "end": 21664.2, + "probability": 0.5283 + }, + { + "start": 21664.5, + "end": 21669.0, + "probability": 0.9273 + }, + { + "start": 21669.32, + "end": 21670.02, + "probability": 0.6864 + }, + { + "start": 21670.26, + "end": 21674.11, + "probability": 0.9966 + }, + { + "start": 21674.64, + "end": 21676.38, + "probability": 0.9951 + }, + { + "start": 21676.42, + "end": 21680.78, + "probability": 0.7084 + }, + { + "start": 21681.7, + "end": 21684.88, + "probability": 0.2077 + }, + { + "start": 21687.94, + "end": 21690.9, + "probability": 0.9971 + }, + { + "start": 21691.56, + "end": 21694.48, + "probability": 0.9701 + }, + { + "start": 21695.24, + "end": 21700.44, + "probability": 0.9852 + }, + { + "start": 21700.44, + "end": 21705.66, + "probability": 0.9776 + }, + { + "start": 21705.76, + "end": 21706.7, + "probability": 0.9777 + }, + { + "start": 21707.14, + "end": 21709.6, + "probability": 0.9986 + }, + { + "start": 21709.72, + "end": 21712.9, + "probability": 0.9576 + }, + { + "start": 21713.12, + "end": 21716.78, + "probability": 0.9925 + }, + { + "start": 21716.86, + "end": 21718.54, + "probability": 0.999 + }, + { + "start": 21719.24, + "end": 21720.3, + "probability": 0.9741 + }, + { + "start": 21720.6, + "end": 21721.84, + "probability": 0.8419 + }, + { + "start": 21721.98, + "end": 21723.44, + "probability": 0.9131 + }, + { + "start": 21723.7, + "end": 21725.0, + "probability": 0.9662 + }, + { + "start": 21725.24, + "end": 21727.44, + "probability": 0.8774 + }, + { + "start": 21728.24, + "end": 21728.6, + "probability": 0.0452 + }, + { + "start": 21731.66, + "end": 21732.0, + "probability": 0.0239 + }, + { + "start": 21732.0, + "end": 21732.5, + "probability": 0.5633 + }, + { + "start": 21732.5, + "end": 21732.5, + "probability": 0.5233 + }, + { + "start": 21732.62, + "end": 21736.76, + "probability": 0.7087 + }, + { + "start": 21737.02, + "end": 21741.6, + "probability": 0.9906 + }, + { + "start": 21742.08, + "end": 21742.78, + "probability": 0.1312 + }, + { + "start": 21742.78, + "end": 21743.48, + "probability": 0.3453 + }, + { + "start": 21745.2, + "end": 21746.76, + "probability": 0.9954 + }, + { + "start": 21748.0, + "end": 21751.26, + "probability": 0.9891 + }, + { + "start": 21751.48, + "end": 21753.6, + "probability": 0.9897 + }, + { + "start": 21754.26, + "end": 21756.56, + "probability": 0.9919 + }, + { + "start": 21756.6, + "end": 21757.22, + "probability": 0.9072 + }, + { + "start": 21757.56, + "end": 21758.24, + "probability": 0.8178 + }, + { + "start": 21758.32, + "end": 21762.76, + "probability": 0.9878 + }, + { + "start": 21763.76, + "end": 21766.5, + "probability": 0.9005 + }, + { + "start": 21766.52, + "end": 21767.34, + "probability": 0.7766 + }, + { + "start": 21768.4, + "end": 21773.78, + "probability": 0.9771 + }, + { + "start": 21773.84, + "end": 21774.42, + "probability": 0.9485 + }, + { + "start": 21774.86, + "end": 21776.82, + "probability": 0.9946 + }, + { + "start": 21777.54, + "end": 21778.28, + "probability": 0.7894 + }, + { + "start": 21778.84, + "end": 21781.8, + "probability": 0.9954 + }, + { + "start": 21782.34, + "end": 21784.22, + "probability": 0.9937 + }, + { + "start": 21784.3, + "end": 21786.57, + "probability": 0.9766 + }, + { + "start": 21786.98, + "end": 21789.58, + "probability": 0.9966 + }, + { + "start": 21790.06, + "end": 21792.62, + "probability": 0.9985 + }, + { + "start": 21792.84, + "end": 21796.18, + "probability": 0.9932 + }, + { + "start": 21796.64, + "end": 21799.08, + "probability": 0.8227 + }, + { + "start": 21799.64, + "end": 21801.48, + "probability": 0.9688 + }, + { + "start": 21801.58, + "end": 21802.2, + "probability": 0.4917 + }, + { + "start": 21802.78, + "end": 21804.72, + "probability": 0.9846 + }, + { + "start": 21805.3, + "end": 21806.8, + "probability": 0.7148 + }, + { + "start": 21807.7, + "end": 21808.98, + "probability": 0.9971 + }, + { + "start": 21809.68, + "end": 21815.82, + "probability": 0.7672 + }, + { + "start": 21815.98, + "end": 21818.7, + "probability": 0.9738 + }, + { + "start": 21820.16, + "end": 21820.72, + "probability": 0.9526 + }, + { + "start": 21821.18, + "end": 21821.34, + "probability": 0.3077 + }, + { + "start": 21821.46, + "end": 21824.02, + "probability": 0.9847 + }, + { + "start": 21824.72, + "end": 21826.78, + "probability": 0.998 + }, + { + "start": 21827.48, + "end": 21828.54, + "probability": 0.9077 + }, + { + "start": 21829.34, + "end": 21831.4, + "probability": 0.9738 + }, + { + "start": 21832.44, + "end": 21834.44, + "probability": 0.9247 + }, + { + "start": 21835.44, + "end": 21838.24, + "probability": 0.9906 + }, + { + "start": 21838.28, + "end": 21839.38, + "probability": 0.6198 + }, + { + "start": 21839.86, + "end": 21843.2, + "probability": 0.9788 + }, + { + "start": 21843.9, + "end": 21848.24, + "probability": 0.999 + }, + { + "start": 21848.36, + "end": 21848.52, + "probability": 0.8502 + }, + { + "start": 21848.6, + "end": 21850.8, + "probability": 0.9744 + }, + { + "start": 21850.96, + "end": 21852.18, + "probability": 0.921 + }, + { + "start": 21853.04, + "end": 21860.28, + "probability": 0.7059 + }, + { + "start": 21860.88, + "end": 21860.96, + "probability": 0.2323 + }, + { + "start": 21860.96, + "end": 21861.06, + "probability": 0.3093 + }, + { + "start": 21861.16, + "end": 21865.8, + "probability": 0.9932 + }, + { + "start": 21865.9, + "end": 21866.48, + "probability": 0.9271 + }, + { + "start": 21866.96, + "end": 21871.26, + "probability": 0.8366 + }, + { + "start": 21871.7, + "end": 21873.54, + "probability": 0.9786 + }, + { + "start": 21873.8, + "end": 21876.44, + "probability": 0.9886 + }, + { + "start": 21876.8, + "end": 21877.48, + "probability": 0.7728 + }, + { + "start": 21878.04, + "end": 21881.44, + "probability": 0.8753 + }, + { + "start": 21881.52, + "end": 21885.44, + "probability": 0.9885 + }, + { + "start": 21885.6, + "end": 21886.48, + "probability": 0.9742 + }, + { + "start": 21886.66, + "end": 21887.3, + "probability": 0.1845 + }, + { + "start": 21888.06, + "end": 21888.2, + "probability": 0.2143 + }, + { + "start": 21888.2, + "end": 21888.97, + "probability": 0.6039 + }, + { + "start": 21889.3, + "end": 21889.7, + "probability": 0.4059 + }, + { + "start": 21889.86, + "end": 21889.88, + "probability": 0.1443 + }, + { + "start": 21889.88, + "end": 21890.9, + "probability": 0.5729 + }, + { + "start": 21890.92, + "end": 21893.06, + "probability": 0.7101 + }, + { + "start": 21893.2, + "end": 21894.48, + "probability": 0.8418 + }, + { + "start": 21894.86, + "end": 21897.14, + "probability": 0.9556 + }, + { + "start": 21897.7, + "end": 21898.78, + "probability": 0.7524 + }, + { + "start": 21898.86, + "end": 21899.18, + "probability": 0.7007 + }, + { + "start": 21900.16, + "end": 21901.98, + "probability": 0.6511 + }, + { + "start": 21902.04, + "end": 21903.32, + "probability": 0.6643 + }, + { + "start": 21903.32, + "end": 21903.36, + "probability": 0.0666 + }, + { + "start": 21903.36, + "end": 21906.74, + "probability": 0.6764 + }, + { + "start": 21906.76, + "end": 21910.5, + "probability": 0.9858 + }, + { + "start": 21912.08, + "end": 21912.98, + "probability": 0.3548 + }, + { + "start": 21913.06, + "end": 21915.22, + "probability": 0.6655 + }, + { + "start": 21915.52, + "end": 21917.08, + "probability": 0.812 + }, + { + "start": 21917.3, + "end": 21922.78, + "probability": 0.9939 + }, + { + "start": 21923.58, + "end": 21927.18, + "probability": 0.9996 + }, + { + "start": 21927.18, + "end": 21929.96, + "probability": 0.9897 + }, + { + "start": 21930.06, + "end": 21933.12, + "probability": 0.998 + }, + { + "start": 21933.36, + "end": 21935.06, + "probability": 0.951 + }, + { + "start": 21935.2, + "end": 21935.76, + "probability": 0.2911 + }, + { + "start": 21936.3, + "end": 21937.14, + "probability": 0.026 + }, + { + "start": 21938.58, + "end": 21939.92, + "probability": 0.6258 + }, + { + "start": 21940.14, + "end": 21941.3, + "probability": 0.9513 + }, + { + "start": 21941.42, + "end": 21942.72, + "probability": 0.6142 + }, + { + "start": 21942.76, + "end": 21945.84, + "probability": 0.3416 + }, + { + "start": 21947.12, + "end": 21952.5, + "probability": 0.0232 + }, + { + "start": 21952.5, + "end": 21952.98, + "probability": 0.1286 + }, + { + "start": 21953.9, + "end": 21955.24, + "probability": 0.8651 + }, + { + "start": 21955.6, + "end": 21958.94, + "probability": 0.9948 + }, + { + "start": 21959.4, + "end": 21959.96, + "probability": 0.3299 + }, + { + "start": 21960.38, + "end": 21961.36, + "probability": 0.5195 + }, + { + "start": 21961.5, + "end": 21965.91, + "probability": 0.9193 + }, + { + "start": 21967.26, + "end": 21969.6, + "probability": 0.3253 + }, + { + "start": 21969.66, + "end": 21970.96, + "probability": 0.9668 + }, + { + "start": 21971.02, + "end": 21971.58, + "probability": 0.4825 + }, + { + "start": 21971.68, + "end": 21972.5, + "probability": 0.4774 + }, + { + "start": 21972.66, + "end": 21973.58, + "probability": 0.949 + }, + { + "start": 21973.64, + "end": 21975.7, + "probability": 0.8912 + }, + { + "start": 21976.2, + "end": 21980.74, + "probability": 0.6113 + }, + { + "start": 21981.92, + "end": 21981.92, + "probability": 0.1472 + }, + { + "start": 21981.92, + "end": 21984.32, + "probability": 0.6202 + }, + { + "start": 21984.46, + "end": 21984.48, + "probability": 0.3296 + }, + { + "start": 21984.48, + "end": 21985.1, + "probability": 0.8175 + }, + { + "start": 21985.28, + "end": 21989.16, + "probability": 0.9896 + }, + { + "start": 21989.32, + "end": 21990.42, + "probability": 0.2123 + }, + { + "start": 21990.81, + "end": 21992.86, + "probability": 0.0696 + }, + { + "start": 21992.86, + "end": 21992.86, + "probability": 0.1259 + }, + { + "start": 21992.86, + "end": 21994.95, + "probability": 0.101 + }, + { + "start": 21995.26, + "end": 21996.12, + "probability": 0.8289 + }, + { + "start": 21997.1, + "end": 21997.76, + "probability": 0.7821 + }, + { + "start": 21998.6, + "end": 22003.02, + "probability": 0.9541 + }, + { + "start": 22003.58, + "end": 22006.56, + "probability": 0.8894 + }, + { + "start": 22007.06, + "end": 22009.9, + "probability": 0.7145 + }, + { + "start": 22010.46, + "end": 22015.52, + "probability": 0.9883 + }, + { + "start": 22015.6, + "end": 22016.96, + "probability": 0.9448 + }, + { + "start": 22017.48, + "end": 22018.42, + "probability": 0.9162 + }, + { + "start": 22019.26, + "end": 22027.38, + "probability": 0.9372 + }, + { + "start": 22028.69, + "end": 22031.2, + "probability": 0.9796 + }, + { + "start": 22033.3, + "end": 22035.58, + "probability": 0.9883 + }, + { + "start": 22038.36, + "end": 22039.86, + "probability": 0.4945 + }, + { + "start": 22041.38, + "end": 22044.18, + "probability": 0.9983 + }, + { + "start": 22044.22, + "end": 22044.38, + "probability": 0.3735 + }, + { + "start": 22044.46, + "end": 22048.16, + "probability": 0.9697 + }, + { + "start": 22049.26, + "end": 22050.28, + "probability": 0.8368 + }, + { + "start": 22051.02, + "end": 22051.02, + "probability": 0.0749 + }, + { + "start": 22051.56, + "end": 22051.56, + "probability": 0.0374 + }, + { + "start": 22051.56, + "end": 22052.28, + "probability": 0.3863 + }, + { + "start": 22052.46, + "end": 22053.93, + "probability": 0.9327 + }, + { + "start": 22055.48, + "end": 22057.1, + "probability": 0.8832 + }, + { + "start": 22057.18, + "end": 22058.54, + "probability": 0.9458 + }, + { + "start": 22058.8, + "end": 22064.68, + "probability": 0.9922 + }, + { + "start": 22065.14, + "end": 22066.78, + "probability": 0.9655 + }, + { + "start": 22067.3, + "end": 22071.38, + "probability": 0.988 + }, + { + "start": 22073.08, + "end": 22077.6, + "probability": 0.9136 + }, + { + "start": 22078.42, + "end": 22081.12, + "probability": 0.8832 + }, + { + "start": 22081.86, + "end": 22084.4, + "probability": 0.999 + }, + { + "start": 22085.62, + "end": 22086.16, + "probability": 0.0095 + }, + { + "start": 22086.34, + "end": 22088.22, + "probability": 0.9082 + }, + { + "start": 22088.22, + "end": 22088.29, + "probability": 0.0061 + }, + { + "start": 22088.9, + "end": 22090.16, + "probability": 0.1825 + }, + { + "start": 22090.36, + "end": 22091.12, + "probability": 0.0393 + }, + { + "start": 22091.12, + "end": 22092.78, + "probability": 0.2498 + }, + { + "start": 22092.98, + "end": 22093.44, + "probability": 0.0979 + }, + { + "start": 22094.64, + "end": 22095.96, + "probability": 0.4355 + }, + { + "start": 22096.18, + "end": 22096.76, + "probability": 0.6476 + }, + { + "start": 22096.86, + "end": 22099.22, + "probability": 0.9874 + }, + { + "start": 22099.52, + "end": 22099.86, + "probability": 0.1117 + }, + { + "start": 22099.86, + "end": 22099.92, + "probability": 0.346 + }, + { + "start": 22100.12, + "end": 22101.76, + "probability": 0.6264 + }, + { + "start": 22102.1, + "end": 22102.46, + "probability": 0.6318 + }, + { + "start": 22102.88, + "end": 22104.86, + "probability": 0.5007 + }, + { + "start": 22104.9, + "end": 22105.06, + "probability": 0.5483 + }, + { + "start": 22105.06, + "end": 22106.76, + "probability": 0.9946 + }, + { + "start": 22106.88, + "end": 22110.02, + "probability": 0.8395 + }, + { + "start": 22110.02, + "end": 22111.14, + "probability": 0.343 + }, + { + "start": 22111.36, + "end": 22112.8, + "probability": 0.2595 + }, + { + "start": 22113.74, + "end": 22114.36, + "probability": 0.1619 + }, + { + "start": 22114.36, + "end": 22114.92, + "probability": 0.7388 + }, + { + "start": 22115.14, + "end": 22117.54, + "probability": 0.8284 + }, + { + "start": 22117.76, + "end": 22120.75, + "probability": 0.7295 + }, + { + "start": 22121.24, + "end": 22123.8, + "probability": 0.8966 + }, + { + "start": 22123.92, + "end": 22124.82, + "probability": 0.769 + }, + { + "start": 22125.04, + "end": 22127.82, + "probability": 0.9712 + }, + { + "start": 22127.88, + "end": 22128.72, + "probability": 0.9967 + }, + { + "start": 22129.4, + "end": 22130.88, + "probability": 0.9189 + }, + { + "start": 22131.82, + "end": 22132.92, + "probability": 0.9717 + }, + { + "start": 22133.1, + "end": 22134.04, + "probability": 0.7031 + }, + { + "start": 22134.4, + "end": 22135.68, + "probability": 0.7668 + }, + { + "start": 22136.22, + "end": 22140.52, + "probability": 0.9355 + }, + { + "start": 22141.04, + "end": 22141.22, + "probability": 0.0449 + }, + { + "start": 22141.22, + "end": 22142.8, + "probability": 0.3333 + }, + { + "start": 22143.62, + "end": 22144.62, + "probability": 0.4152 + }, + { + "start": 22144.72, + "end": 22146.28, + "probability": 0.7379 + }, + { + "start": 22147.26, + "end": 22149.92, + "probability": 0.9891 + }, + { + "start": 22150.64, + "end": 22153.84, + "probability": 0.9987 + }, + { + "start": 22154.78, + "end": 22157.68, + "probability": 0.6827 + }, + { + "start": 22157.68, + "end": 22157.76, + "probability": 0.4854 + }, + { + "start": 22158.28, + "end": 22162.12, + "probability": 0.0801 + }, + { + "start": 22162.14, + "end": 22165.52, + "probability": 0.8874 + }, + { + "start": 22166.12, + "end": 22167.06, + "probability": 0.9983 + }, + { + "start": 22167.58, + "end": 22168.8, + "probability": 0.9979 + }, + { + "start": 22169.44, + "end": 22170.0, + "probability": 0.8655 + }, + { + "start": 22170.56, + "end": 22173.5, + "probability": 0.9928 + }, + { + "start": 22173.6, + "end": 22175.34, + "probability": 0.75 + }, + { + "start": 22175.6, + "end": 22178.14, + "probability": 0.999 + }, + { + "start": 22178.16, + "end": 22178.23, + "probability": 0.3272 + }, + { + "start": 22178.32, + "end": 22181.26, + "probability": 0.0677 + }, + { + "start": 22181.54, + "end": 22181.92, + "probability": 0.2741 + }, + { + "start": 22182.27, + "end": 22188.01, + "probability": 0.3483 + }, + { + "start": 22188.4, + "end": 22191.18, + "probability": 0.2661 + }, + { + "start": 22191.18, + "end": 22191.18, + "probability": 0.0792 + }, + { + "start": 22191.18, + "end": 22192.08, + "probability": 0.2148 + }, + { + "start": 22192.08, + "end": 22192.24, + "probability": 0.424 + }, + { + "start": 22192.24, + "end": 22192.76, + "probability": 0.4391 + }, + { + "start": 22192.82, + "end": 22194.29, + "probability": 0.9277 + }, + { + "start": 22194.9, + "end": 22199.3, + "probability": 0.3806 + }, + { + "start": 22199.96, + "end": 22200.17, + "probability": 0.2177 + }, + { + "start": 22200.34, + "end": 22200.34, + "probability": 0.1355 + }, + { + "start": 22200.34, + "end": 22201.6, + "probability": 0.0905 + }, + { + "start": 22202.12, + "end": 22203.66, + "probability": 0.9282 + }, + { + "start": 22203.82, + "end": 22207.94, + "probability": 0.9962 + }, + { + "start": 22208.1, + "end": 22212.36, + "probability": 0.8358 + }, + { + "start": 22212.76, + "end": 22214.54, + "probability": 0.9896 + }, + { + "start": 22214.64, + "end": 22214.74, + "probability": 0.0262 + }, + { + "start": 22214.74, + "end": 22214.74, + "probability": 0.0286 + }, + { + "start": 22214.74, + "end": 22214.74, + "probability": 0.0803 + }, + { + "start": 22214.74, + "end": 22216.84, + "probability": 0.4642 + }, + { + "start": 22217.08, + "end": 22221.7, + "probability": 0.8555 + }, + { + "start": 22222.34, + "end": 22223.68, + "probability": 0.8003 + }, + { + "start": 22223.72, + "end": 22223.86, + "probability": 0.3083 + }, + { + "start": 22223.86, + "end": 22223.86, + "probability": 0.0674 + }, + { + "start": 22223.86, + "end": 22223.86, + "probability": 0.1577 + }, + { + "start": 22223.86, + "end": 22223.88, + "probability": 0.2879 + }, + { + "start": 22224.06, + "end": 22228.04, + "probability": 0.7075 + }, + { + "start": 22228.04, + "end": 22230.28, + "probability": 0.0734 + }, + { + "start": 22230.28, + "end": 22230.28, + "probability": 0.6468 + }, + { + "start": 22230.28, + "end": 22231.4, + "probability": 0.9832 + }, + { + "start": 22231.4, + "end": 22232.5, + "probability": 0.8438 + }, + { + "start": 22232.54, + "end": 22232.94, + "probability": 0.037 + }, + { + "start": 22232.94, + "end": 22233.72, + "probability": 0.8949 + }, + { + "start": 22233.9, + "end": 22234.86, + "probability": 0.9046 + }, + { + "start": 22234.86, + "end": 22235.44, + "probability": 0.8371 + }, + { + "start": 22235.54, + "end": 22238.84, + "probability": 0.9573 + }, + { + "start": 22239.3, + "end": 22240.1, + "probability": 0.9458 + }, + { + "start": 22240.26, + "end": 22240.92, + "probability": 0.4531 + }, + { + "start": 22240.96, + "end": 22242.64, + "probability": 0.8727 + }, + { + "start": 22242.97, + "end": 22246.53, + "probability": 0.9974 + }, + { + "start": 22247.08, + "end": 22247.18, + "probability": 0.7435 + }, + { + "start": 22247.18, + "end": 22247.18, + "probability": 0.045 + }, + { + "start": 22247.18, + "end": 22248.06, + "probability": 0.5997 + }, + { + "start": 22248.38, + "end": 22250.93, + "probability": 0.9648 + }, + { + "start": 22251.52, + "end": 22252.26, + "probability": 0.998 + }, + { + "start": 22252.62, + "end": 22252.66, + "probability": 0.0063 + }, + { + "start": 22252.66, + "end": 22253.34, + "probability": 0.0475 + }, + { + "start": 22253.56, + "end": 22254.76, + "probability": 0.6966 + }, + { + "start": 22254.76, + "end": 22255.96, + "probability": 0.8151 + }, + { + "start": 22256.12, + "end": 22257.02, + "probability": 0.9883 + }, + { + "start": 22257.3, + "end": 22260.92, + "probability": 0.9545 + }, + { + "start": 22261.11, + "end": 22264.12, + "probability": 0.9902 + }, + { + "start": 22264.3, + "end": 22266.82, + "probability": 0.9875 + }, + { + "start": 22266.82, + "end": 22269.22, + "probability": 0.698 + }, + { + "start": 22269.28, + "end": 22271.58, + "probability": 0.9678 + }, + { + "start": 22271.8, + "end": 22273.34, + "probability": 0.8813 + }, + { + "start": 22273.7, + "end": 22276.2, + "probability": 0.2404 + }, + { + "start": 22276.2, + "end": 22276.46, + "probability": 0.1628 + }, + { + "start": 22276.46, + "end": 22276.46, + "probability": 0.1514 + }, + { + "start": 22276.46, + "end": 22278.56, + "probability": 0.2603 + }, + { + "start": 22279.08, + "end": 22279.8, + "probability": 0.9775 + }, + { + "start": 22280.14, + "end": 22281.6, + "probability": 0.8433 + }, + { + "start": 22281.76, + "end": 22282.4, + "probability": 0.4607 + }, + { + "start": 22282.56, + "end": 22283.54, + "probability": 0.9575 + }, + { + "start": 22283.6, + "end": 22284.46, + "probability": 0.8833 + }, + { + "start": 22284.46, + "end": 22289.28, + "probability": 0.8413 + }, + { + "start": 22289.54, + "end": 22290.44, + "probability": 0.9326 + }, + { + "start": 22291.12, + "end": 22291.86, + "probability": 0.7645 + }, + { + "start": 22292.12, + "end": 22293.48, + "probability": 0.0778 + }, + { + "start": 22293.68, + "end": 22298.02, + "probability": 0.5844 + }, + { + "start": 22298.02, + "end": 22298.16, + "probability": 0.127 + }, + { + "start": 22298.16, + "end": 22298.34, + "probability": 0.1028 + }, + { + "start": 22298.34, + "end": 22298.34, + "probability": 0.1607 + }, + { + "start": 22298.34, + "end": 22300.2, + "probability": 0.6727 + }, + { + "start": 22300.34, + "end": 22300.58, + "probability": 0.4118 + }, + { + "start": 22300.64, + "end": 22302.12, + "probability": 0.8271 + }, + { + "start": 22302.34, + "end": 22304.24, + "probability": 0.9068 + }, + { + "start": 22304.24, + "end": 22306.9, + "probability": 0.3573 + }, + { + "start": 22306.93, + "end": 22309.1, + "probability": 0.4542 + }, + { + "start": 22309.1, + "end": 22310.64, + "probability": 0.9059 + }, + { + "start": 22311.44, + "end": 22311.92, + "probability": 0.8784 + }, + { + "start": 22311.94, + "end": 22314.94, + "probability": 0.7633 + }, + { + "start": 22315.12, + "end": 22316.5, + "probability": 0.9881 + }, + { + "start": 22316.9, + "end": 22320.62, + "probability": 0.728 + }, + { + "start": 22320.62, + "end": 22321.94, + "probability": 0.9187 + }, + { + "start": 22322.06, + "end": 22323.93, + "probability": 0.8965 + }, + { + "start": 22324.34, + "end": 22328.22, + "probability": 0.7676 + }, + { + "start": 22328.26, + "end": 22328.26, + "probability": 0.0024 + }, + { + "start": 22328.26, + "end": 22329.86, + "probability": 0.5096 + }, + { + "start": 22329.86, + "end": 22330.68, + "probability": 0.4436 + }, + { + "start": 22330.74, + "end": 22330.88, + "probability": 0.021 + }, + { + "start": 22330.88, + "end": 22335.08, + "probability": 0.9941 + }, + { + "start": 22335.26, + "end": 22337.28, + "probability": 0.9731 + }, + { + "start": 22337.42, + "end": 22337.54, + "probability": 0.0237 + }, + { + "start": 22337.54, + "end": 22338.94, + "probability": 0.1876 + }, + { + "start": 22338.96, + "end": 22339.1, + "probability": 0.2845 + }, + { + "start": 22339.1, + "end": 22341.7, + "probability": 0.8914 + }, + { + "start": 22341.78, + "end": 22343.08, + "probability": 0.9841 + }, + { + "start": 22343.26, + "end": 22344.52, + "probability": 0.4122 + }, + { + "start": 22344.58, + "end": 22345.54, + "probability": 0.8259 + }, + { + "start": 22345.64, + "end": 22346.16, + "probability": 0.8765 + }, + { + "start": 22346.64, + "end": 22348.46, + "probability": 0.806 + }, + { + "start": 22348.74, + "end": 22348.8, + "probability": 0.4261 + }, + { + "start": 22348.8, + "end": 22352.08, + "probability": 0.7642 + }, + { + "start": 22352.2, + "end": 22354.8, + "probability": 0.9819 + }, + { + "start": 22354.96, + "end": 22357.3, + "probability": 0.9937 + }, + { + "start": 22357.34, + "end": 22363.02, + "probability": 0.8745 + }, + { + "start": 22363.08, + "end": 22364.18, + "probability": 0.8414 + }, + { + "start": 22364.18, + "end": 22364.18, + "probability": 0.2913 + }, + { + "start": 22364.18, + "end": 22365.48, + "probability": 0.4856 + }, + { + "start": 22365.58, + "end": 22366.7, + "probability": 0.3152 + }, + { + "start": 22366.7, + "end": 22371.46, + "probability": 0.6442 + }, + { + "start": 22371.94, + "end": 22373.52, + "probability": 0.9337 + }, + { + "start": 22376.01, + "end": 22380.02, + "probability": 0.3739 + }, + { + "start": 22380.28, + "end": 22382.24, + "probability": 0.2658 + }, + { + "start": 22382.34, + "end": 22383.08, + "probability": 0.4133 + }, + { + "start": 22383.26, + "end": 22385.72, + "probability": 0.9697 + }, + { + "start": 22386.46, + "end": 22389.84, + "probability": 0.9969 + }, + { + "start": 22389.84, + "end": 22391.9, + "probability": 0.9409 + }, + { + "start": 22391.9, + "end": 22392.8, + "probability": 0.6649 + }, + { + "start": 22393.2, + "end": 22394.8, + "probability": 0.8943 + }, + { + "start": 22394.88, + "end": 22398.48, + "probability": 0.4673 + }, + { + "start": 22398.72, + "end": 22400.54, + "probability": 0.4607 + }, + { + "start": 22400.68, + "end": 22401.5, + "probability": 0.5424 + }, + { + "start": 22401.64, + "end": 22404.18, + "probability": 0.5599 + }, + { + "start": 22404.28, + "end": 22411.64, + "probability": 0.1789 + }, + { + "start": 22411.98, + "end": 22411.98, + "probability": 0.4522 + }, + { + "start": 22411.98, + "end": 22411.98, + "probability": 0.0255 + }, + { + "start": 22411.98, + "end": 22411.98, + "probability": 0.0072 + }, + { + "start": 22411.98, + "end": 22411.98, + "probability": 0.1414 + }, + { + "start": 22411.98, + "end": 22413.7, + "probability": 0.6997 + }, + { + "start": 22414.0, + "end": 22415.72, + "probability": 0.7421 + }, + { + "start": 22417.1, + "end": 22418.52, + "probability": 0.3239 + }, + { + "start": 22419.36, + "end": 22420.38, + "probability": 0.9865 + }, + { + "start": 22420.46, + "end": 22424.7, + "probability": 0.9517 + }, + { + "start": 22425.24, + "end": 22425.49, + "probability": 0.6216 + }, + { + "start": 22426.36, + "end": 22426.48, + "probability": 0.0199 + }, + { + "start": 22426.48, + "end": 22427.53, + "probability": 0.5392 + }, + { + "start": 22427.64, + "end": 22428.6, + "probability": 0.0447 + }, + { + "start": 22428.82, + "end": 22429.84, + "probability": 0.6149 + }, + { + "start": 22430.55, + "end": 22433.22, + "probability": 0.9655 + }, + { + "start": 22433.64, + "end": 22437.04, + "probability": 0.8547 + }, + { + "start": 22438.2, + "end": 22439.22, + "probability": 0.0625 + }, + { + "start": 22439.3, + "end": 22439.38, + "probability": 0.1566 + }, + { + "start": 22439.38, + "end": 22439.38, + "probability": 0.0755 + }, + { + "start": 22439.38, + "end": 22441.72, + "probability": 0.6044 + }, + { + "start": 22442.88, + "end": 22444.9, + "probability": 0.9617 + }, + { + "start": 22448.11, + "end": 22449.14, + "probability": 0.4905 + }, + { + "start": 22453.34, + "end": 22455.27, + "probability": 0.9141 + }, + { + "start": 22456.12, + "end": 22458.59, + "probability": 0.9619 + }, + { + "start": 22459.16, + "end": 22461.69, + "probability": 0.9932 + }, + { + "start": 22461.89, + "end": 22466.25, + "probability": 0.9974 + }, + { + "start": 22468.47, + "end": 22470.37, + "probability": 0.9784 + }, + { + "start": 22470.47, + "end": 22471.43, + "probability": 0.9368 + }, + { + "start": 22471.49, + "end": 22472.47, + "probability": 0.9992 + }, + { + "start": 22473.4, + "end": 22478.69, + "probability": 0.9781 + }, + { + "start": 22478.99, + "end": 22485.75, + "probability": 0.993 + }, + { + "start": 22487.13, + "end": 22492.11, + "probability": 0.1178 + }, + { + "start": 22493.05, + "end": 22493.23, + "probability": 0.0564 + }, + { + "start": 22493.23, + "end": 22496.83, + "probability": 0.9902 + }, + { + "start": 22497.53, + "end": 22500.03, + "probability": 0.9958 + }, + { + "start": 22500.03, + "end": 22504.29, + "probability": 0.9418 + }, + { + "start": 22504.81, + "end": 22505.53, + "probability": 0.8822 + }, + { + "start": 22505.71, + "end": 22507.97, + "probability": 0.9659 + }, + { + "start": 22508.55, + "end": 22510.11, + "probability": 0.8874 + }, + { + "start": 22510.27, + "end": 22512.65, + "probability": 0.7837 + }, + { + "start": 22513.25, + "end": 22516.53, + "probability": 0.9665 + }, + { + "start": 22517.33, + "end": 22519.27, + "probability": 0.9334 + }, + { + "start": 22519.81, + "end": 22521.37, + "probability": 0.7807 + }, + { + "start": 22521.47, + "end": 22524.25, + "probability": 0.9866 + }, + { + "start": 22524.25, + "end": 22528.55, + "probability": 0.2288 + }, + { + "start": 22528.71, + "end": 22536.67, + "probability": 0.9965 + }, + { + "start": 22536.67, + "end": 22540.87, + "probability": 0.9912 + }, + { + "start": 22541.45, + "end": 22544.69, + "probability": 0.9989 + }, + { + "start": 22544.81, + "end": 22545.97, + "probability": 0.7251 + }, + { + "start": 22546.79, + "end": 22547.75, + "probability": 0.6749 + }, + { + "start": 22550.77, + "end": 22552.51, + "probability": 0.9646 + }, + { + "start": 22553.47, + "end": 22554.89, + "probability": 0.9441 + }, + { + "start": 22556.11, + "end": 22557.97, + "probability": 0.994 + }, + { + "start": 22558.27, + "end": 22562.72, + "probability": 0.9836 + }, + { + "start": 22563.11, + "end": 22565.95, + "probability": 0.9941 + }, + { + "start": 22566.49, + "end": 22570.79, + "probability": 0.9025 + }, + { + "start": 22570.91, + "end": 22572.8, + "probability": 0.5907 + }, + { + "start": 22574.29, + "end": 22575.55, + "probability": 0.7625 + }, + { + "start": 22576.19, + "end": 22577.43, + "probability": 0.9876 + }, + { + "start": 22578.13, + "end": 22580.49, + "probability": 0.9951 + }, + { + "start": 22581.33, + "end": 22586.01, + "probability": 0.9951 + }, + { + "start": 22586.01, + "end": 22589.31, + "probability": 0.939 + }, + { + "start": 22589.55, + "end": 22590.95, + "probability": 0.8427 + }, + { + "start": 22591.43, + "end": 22593.21, + "probability": 0.9555 + }, + { + "start": 22593.31, + "end": 22593.83, + "probability": 0.9274 + }, + { + "start": 22593.87, + "end": 22597.69, + "probability": 0.9855 + }, + { + "start": 22598.51, + "end": 22601.59, + "probability": 0.9989 + }, + { + "start": 22602.45, + "end": 22605.19, + "probability": 0.9598 + }, + { + "start": 22606.33, + "end": 22609.03, + "probability": 0.9598 + }, + { + "start": 22609.09, + "end": 22611.41, + "probability": 0.9895 + }, + { + "start": 22611.61, + "end": 22612.63, + "probability": 0.9113 + }, + { + "start": 22613.15, + "end": 22615.49, + "probability": 0.993 + }, + { + "start": 22616.11, + "end": 22625.61, + "probability": 0.995 + }, + { + "start": 22626.25, + "end": 22630.05, + "probability": 0.9834 + }, + { + "start": 22630.07, + "end": 22631.21, + "probability": 0.0222 + }, + { + "start": 22634.83, + "end": 22635.03, + "probability": 0.0206 + }, + { + "start": 22635.03, + "end": 22635.03, + "probability": 0.0317 + }, + { + "start": 22635.03, + "end": 22635.03, + "probability": 0.1615 + }, + { + "start": 22635.03, + "end": 22635.03, + "probability": 0.3671 + }, + { + "start": 22635.03, + "end": 22635.99, + "probability": 0.0943 + }, + { + "start": 22635.99, + "end": 22636.55, + "probability": 0.5158 + }, + { + "start": 22636.61, + "end": 22637.55, + "probability": 0.7854 + }, + { + "start": 22638.05, + "end": 22639.77, + "probability": 0.9746 + }, + { + "start": 22639.97, + "end": 22640.89, + "probability": 0.9941 + }, + { + "start": 22641.53, + "end": 22642.35, + "probability": 0.7341 + }, + { + "start": 22643.35, + "end": 22646.35, + "probability": 0.9299 + }, + { + "start": 22647.01, + "end": 22648.79, + "probability": 0.9157 + }, + { + "start": 22648.79, + "end": 22649.14, + "probability": 0.0069 + }, + { + "start": 22649.81, + "end": 22649.83, + "probability": 0.1399 + }, + { + "start": 22649.85, + "end": 22650.33, + "probability": 0.6946 + }, + { + "start": 22650.33, + "end": 22650.77, + "probability": 0.2384 + }, + { + "start": 22652.01, + "end": 22654.25, + "probability": 0.9985 + }, + { + "start": 22654.31, + "end": 22657.47, + "probability": 0.9251 + }, + { + "start": 22657.63, + "end": 22657.81, + "probability": 0.8986 + }, + { + "start": 22657.81, + "end": 22657.81, + "probability": 0.0181 + }, + { + "start": 22657.81, + "end": 22658.73, + "probability": 0.0742 + }, + { + "start": 22658.99, + "end": 22660.63, + "probability": 0.9504 + }, + { + "start": 22660.75, + "end": 22662.32, + "probability": 0.9655 + }, + { + "start": 22662.53, + "end": 22664.13, + "probability": 0.9829 + }, + { + "start": 22664.57, + "end": 22665.41, + "probability": 0.4989 + }, + { + "start": 22665.41, + "end": 22670.03, + "probability": 0.97 + }, + { + "start": 22670.15, + "end": 22670.75, + "probability": 0.8567 + }, + { + "start": 22671.11, + "end": 22672.89, + "probability": 0.9779 + }, + { + "start": 22673.17, + "end": 22676.07, + "probability": 0.9592 + }, + { + "start": 22676.37, + "end": 22678.25, + "probability": 0.9976 + }, + { + "start": 22678.47, + "end": 22679.37, + "probability": 0.5355 + }, + { + "start": 22679.47, + "end": 22680.45, + "probability": 0.8694 + }, + { + "start": 22680.67, + "end": 22683.15, + "probability": 0.5989 + }, + { + "start": 22683.33, + "end": 22684.39, + "probability": 0.4679 + }, + { + "start": 22685.48, + "end": 22687.31, + "probability": 0.8978 + }, + { + "start": 22687.45, + "end": 22694.67, + "probability": 0.9204 + }, + { + "start": 22694.97, + "end": 22695.35, + "probability": 0.8577 + }, + { + "start": 22696.53, + "end": 22696.99, + "probability": 0.1684 + }, + { + "start": 22700.17, + "end": 22703.85, + "probability": 0.146 + }, + { + "start": 22705.83, + "end": 22706.39, + "probability": 0.2445 + }, + { + "start": 22709.75, + "end": 22712.81, + "probability": 0.6221 + }, + { + "start": 22713.45, + "end": 22719.71, + "probability": 0.9399 + }, + { + "start": 22720.29, + "end": 22721.36, + "probability": 0.8037 + }, + { + "start": 22724.23, + "end": 22725.79, + "probability": 0.3569 + }, + { + "start": 22725.79, + "end": 22728.47, + "probability": 0.2693 + }, + { + "start": 22728.59, + "end": 22733.15, + "probability": 0.9352 + }, + { + "start": 22733.25, + "end": 22734.39, + "probability": 0.8067 + }, + { + "start": 22735.17, + "end": 22738.93, + "probability": 0.9478 + }, + { + "start": 22739.13, + "end": 22740.6, + "probability": 0.9381 + }, + { + "start": 22740.89, + "end": 22744.19, + "probability": 0.9218 + }, + { + "start": 22744.75, + "end": 22745.27, + "probability": 0.8154 + }, + { + "start": 22747.21, + "end": 22750.19, + "probability": 0.2057 + }, + { + "start": 22756.27, + "end": 22757.37, + "probability": 0.2157 + }, + { + "start": 22759.53, + "end": 22762.39, + "probability": 0.6213 + }, + { + "start": 22762.39, + "end": 22765.17, + "probability": 0.7336 + }, + { + "start": 22765.27, + "end": 22767.29, + "probability": 0.9179 + }, + { + "start": 22767.71, + "end": 22768.05, + "probability": 0.6879 + }, + { + "start": 22768.13, + "end": 22770.03, + "probability": 0.77 + }, + { + "start": 22770.71, + "end": 22772.37, + "probability": 0.873 + }, + { + "start": 22772.57, + "end": 22775.81, + "probability": 0.9578 + }, + { + "start": 22776.95, + "end": 22782.99, + "probability": 0.6026 + }, + { + "start": 22783.09, + "end": 22783.95, + "probability": 0.7928 + }, + { + "start": 22784.07, + "end": 22789.25, + "probability": 0.1339 + }, + { + "start": 22789.81, + "end": 22791.15, + "probability": 0.2023 + }, + { + "start": 22791.37, + "end": 22793.07, + "probability": 0.6866 + }, + { + "start": 22793.19, + "end": 22793.69, + "probability": 0.8252 + }, + { + "start": 22793.83, + "end": 22795.01, + "probability": 0.6856 + }, + { + "start": 22797.29, + "end": 22797.69, + "probability": 0.0474 + }, + { + "start": 22797.69, + "end": 22798.9, + "probability": 0.1431 + }, + { + "start": 22799.51, + "end": 22800.61, + "probability": 0.8588 + }, + { + "start": 22800.73, + "end": 22801.25, + "probability": 0.6302 + }, + { + "start": 22801.45, + "end": 22802.95, + "probability": 0.8503 + }, + { + "start": 22804.19, + "end": 22805.65, + "probability": 0.0775 + }, + { + "start": 22805.65, + "end": 22808.95, + "probability": 0.5982 + }, + { + "start": 22810.09, + "end": 22815.67, + "probability": 0.7697 + }, + { + "start": 22815.81, + "end": 22816.29, + "probability": 0.7567 + }, + { + "start": 22816.41, + "end": 22816.99, + "probability": 0.8356 + }, + { + "start": 22817.19, + "end": 22817.51, + "probability": 0.5328 + }, + { + "start": 22818.07, + "end": 22818.91, + "probability": 0.7845 + }, + { + "start": 22818.99, + "end": 22824.33, + "probability": 0.47 + }, + { + "start": 22824.33, + "end": 22824.73, + "probability": 0.031 + }, + { + "start": 22825.01, + "end": 22826.63, + "probability": 0.5714 + }, + { + "start": 22826.71, + "end": 22828.65, + "probability": 0.705 + }, + { + "start": 22831.25, + "end": 22831.97, + "probability": 0.142 + }, + { + "start": 22832.55, + "end": 22833.85, + "probability": 0.0497 + }, + { + "start": 22833.85, + "end": 22835.54, + "probability": 0.3658 + }, + { + "start": 22835.73, + "end": 22836.93, + "probability": 0.729 + }, + { + "start": 22837.01, + "end": 22838.55, + "probability": 0.5736 + }, + { + "start": 22839.61, + "end": 22839.85, + "probability": 0.0365 + }, + { + "start": 22839.85, + "end": 22839.85, + "probability": 0.2014 + }, + { + "start": 22839.85, + "end": 22839.85, + "probability": 0.5449 + }, + { + "start": 22839.85, + "end": 22842.13, + "probability": 0.7285 + }, + { + "start": 22842.53, + "end": 22846.53, + "probability": 0.8199 + }, + { + "start": 22846.53, + "end": 22848.51, + "probability": 0.5221 + }, + { + "start": 22849.39, + "end": 22852.85, + "probability": 0.7114 + }, + { + "start": 22853.73, + "end": 22854.58, + "probability": 0.026 + } + ], + "segments_count": 8428, + "words_count": 41308, + "avg_words_per_segment": 4.9013, + "avg_segment_duration": 1.9478, + "avg_words_per_minute": 106.899, + "plenum_id": "126248", + "duration": 23185.25, + "title": null, + "plenum_date": "2024-04-15" +} \ No newline at end of file