diff --git "a/19220/metadata.json" "b/19220/metadata.json" new file mode 100644--- /dev/null +++ "b/19220/metadata.json" @@ -0,0 +1,26142 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "19220", + "quality_score": 0.9073, + "per_segment_quality_scores": [ + { + "start": 46.98, + "end": 47.98, + "probability": 0.1718 + }, + { + "start": 51.14, + "end": 57.38, + "probability": 0.076 + }, + { + "start": 57.9, + "end": 61.78, + "probability": 0.08 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 132.0, + "end": 132.0, + "probability": 0.0 + }, + { + "start": 155.52, + "end": 156.04, + "probability": 0.5691 + }, + { + "start": 157.06, + "end": 157.8, + "probability": 0.6097 + }, + { + "start": 157.84, + "end": 162.82, + "probability": 0.5369 + }, + { + "start": 163.74, + "end": 166.24, + "probability": 0.629 + }, + { + "start": 166.62, + "end": 169.44, + "probability": 0.8904 + }, + { + "start": 169.74, + "end": 170.02, + "probability": 0.3703 + }, + { + "start": 171.12, + "end": 175.26, + "probability": 0.7537 + }, + { + "start": 176.0, + "end": 177.84, + "probability": 0.6655 + }, + { + "start": 178.44, + "end": 181.82, + "probability": 0.8336 + }, + { + "start": 182.34, + "end": 187.04, + "probability": 0.9956 + }, + { + "start": 187.04, + "end": 191.62, + "probability": 0.962 + }, + { + "start": 192.48, + "end": 198.02, + "probability": 0.946 + }, + { + "start": 198.96, + "end": 200.38, + "probability": 0.8196 + }, + { + "start": 201.24, + "end": 202.58, + "probability": 0.6348 + }, + { + "start": 203.56, + "end": 205.88, + "probability": 0.9661 + }, + { + "start": 206.1, + "end": 209.3, + "probability": 0.8835 + }, + { + "start": 210.16, + "end": 211.52, + "probability": 0.8285 + }, + { + "start": 212.82, + "end": 215.2, + "probability": 0.9922 + }, + { + "start": 215.36, + "end": 218.5, + "probability": 0.9287 + }, + { + "start": 219.1, + "end": 220.24, + "probability": 0.9391 + }, + { + "start": 220.78, + "end": 224.52, + "probability": 0.9771 + }, + { + "start": 225.62, + "end": 230.24, + "probability": 0.9946 + }, + { + "start": 231.06, + "end": 231.78, + "probability": 0.8766 + }, + { + "start": 232.52, + "end": 233.38, + "probability": 0.8681 + }, + { + "start": 233.48, + "end": 236.66, + "probability": 0.8892 + }, + { + "start": 237.54, + "end": 240.0, + "probability": 0.9937 + }, + { + "start": 240.56, + "end": 241.3, + "probability": 0.9937 + }, + { + "start": 243.68, + "end": 245.82, + "probability": 0.8113 + }, + { + "start": 246.78, + "end": 247.65, + "probability": 0.6792 + }, + { + "start": 248.86, + "end": 250.66, + "probability": 0.9966 + }, + { + "start": 251.36, + "end": 253.98, + "probability": 0.9716 + }, + { + "start": 258.9, + "end": 261.1, + "probability": 0.664 + }, + { + "start": 262.78, + "end": 264.04, + "probability": 0.7122 + }, + { + "start": 264.08, + "end": 265.47, + "probability": 0.2969 + }, + { + "start": 265.86, + "end": 269.18, + "probability": 0.4146 + }, + { + "start": 269.75, + "end": 273.52, + "probability": 0.9136 + }, + { + "start": 274.88, + "end": 278.86, + "probability": 0.8463 + }, + { + "start": 279.1, + "end": 280.96, + "probability": 0.8596 + }, + { + "start": 280.98, + "end": 281.74, + "probability": 0.779 + }, + { + "start": 282.04, + "end": 282.76, + "probability": 0.96 + }, + { + "start": 283.18, + "end": 283.7, + "probability": 0.9852 + }, + { + "start": 286.6, + "end": 288.56, + "probability": 0.6133 + }, + { + "start": 437.0, + "end": 437.0, + "probability": 0.0 + }, + { + "start": 437.0, + "end": 437.0, + "probability": 0.0 + }, + { + "start": 450.34, + "end": 453.38, + "probability": 0.5782 + }, + { + "start": 453.56, + "end": 454.6, + "probability": 0.0181 + }, + { + "start": 456.88, + "end": 457.44, + "probability": 0.3325 + }, + { + "start": 457.98, + "end": 458.52, + "probability": 0.2253 + }, + { + "start": 459.82, + "end": 460.14, + "probability": 0.0766 + }, + { + "start": 463.9, + "end": 465.9, + "probability": 0.0185 + }, + { + "start": 466.54, + "end": 468.02, + "probability": 0.1321 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 563.0, + "end": 563.0, + "probability": 0.0 + }, + { + "start": 566.2, + "end": 566.6, + "probability": 0.6473 + }, + { + "start": 567.36, + "end": 567.78, + "probability": 0.8144 + }, + { + "start": 568.38, + "end": 569.58, + "probability": 0.9734 + }, + { + "start": 570.68, + "end": 571.32, + "probability": 0.5684 + }, + { + "start": 571.98, + "end": 575.02, + "probability": 0.9456 + }, + { + "start": 576.2, + "end": 576.8, + "probability": 0.9624 + }, + { + "start": 577.74, + "end": 578.4, + "probability": 0.9878 + }, + { + "start": 579.6, + "end": 583.68, + "probability": 0.9492 + }, + { + "start": 584.78, + "end": 585.66, + "probability": 0.8567 + }, + { + "start": 587.84, + "end": 588.44, + "probability": 0.9917 + }, + { + "start": 589.76, + "end": 592.56, + "probability": 0.855 + }, + { + "start": 594.02, + "end": 594.96, + "probability": 0.8599 + }, + { + "start": 595.84, + "end": 597.1, + "probability": 0.3775 + }, + { + "start": 597.92, + "end": 599.39, + "probability": 0.783 + }, + { + "start": 599.92, + "end": 600.52, + "probability": 0.9268 + }, + { + "start": 600.88, + "end": 602.02, + "probability": 0.9283 + }, + { + "start": 603.54, + "end": 604.83, + "probability": 0.9914 + }, + { + "start": 605.72, + "end": 607.3, + "probability": 0.9595 + }, + { + "start": 608.42, + "end": 609.16, + "probability": 0.9915 + }, + { + "start": 610.4, + "end": 611.34, + "probability": 0.7373 + }, + { + "start": 612.1, + "end": 613.02, + "probability": 0.9823 + }, + { + "start": 616.5, + "end": 617.84, + "probability": 0.7625 + }, + { + "start": 619.18, + "end": 621.16, + "probability": 0.9921 + }, + { + "start": 622.32, + "end": 623.02, + "probability": 0.9839 + }, + { + "start": 623.74, + "end": 625.68, + "probability": 0.9922 + }, + { + "start": 627.32, + "end": 629.06, + "probability": 0.9292 + }, + { + "start": 630.77, + "end": 632.82, + "probability": 0.9611 + }, + { + "start": 634.62, + "end": 635.4, + "probability": 0.7938 + }, + { + "start": 636.44, + "end": 639.88, + "probability": 0.9935 + }, + { + "start": 640.04, + "end": 640.6, + "probability": 0.4745 + }, + { + "start": 641.8, + "end": 642.2, + "probability": 0.7108 + }, + { + "start": 642.34, + "end": 645.34, + "probability": 0.9589 + }, + { + "start": 647.22, + "end": 650.68, + "probability": 0.9708 + }, + { + "start": 653.28, + "end": 656.44, + "probability": 0.5964 + }, + { + "start": 659.22, + "end": 661.0, + "probability": 0.8419 + }, + { + "start": 662.16, + "end": 663.47, + "probability": 0.9509 + }, + { + "start": 664.46, + "end": 665.4, + "probability": 0.8318 + }, + { + "start": 666.04, + "end": 666.94, + "probability": 0.8039 + }, + { + "start": 668.62, + "end": 670.22, + "probability": 0.774 + }, + { + "start": 671.98, + "end": 674.76, + "probability": 0.7271 + }, + { + "start": 676.9, + "end": 678.55, + "probability": 0.864 + }, + { + "start": 679.78, + "end": 683.38, + "probability": 0.9668 + }, + { + "start": 685.24, + "end": 688.24, + "probability": 0.751 + }, + { + "start": 689.14, + "end": 689.7, + "probability": 0.9915 + }, + { + "start": 690.6, + "end": 692.9, + "probability": 0.9074 + }, + { + "start": 693.52, + "end": 693.98, + "probability": 0.967 + }, + { + "start": 695.84, + "end": 701.54, + "probability": 0.9824 + }, + { + "start": 703.46, + "end": 707.66, + "probability": 0.7373 + }, + { + "start": 709.76, + "end": 713.54, + "probability": 0.533 + }, + { + "start": 713.66, + "end": 715.04, + "probability": 0.9381 + }, + { + "start": 715.72, + "end": 716.54, + "probability": 0.7616 + }, + { + "start": 717.6, + "end": 718.52, + "probability": 0.9463 + }, + { + "start": 718.68, + "end": 719.18, + "probability": 0.9619 + }, + { + "start": 720.42, + "end": 722.88, + "probability": 0.9749 + }, + { + "start": 725.48, + "end": 729.4, + "probability": 0.842 + }, + { + "start": 733.8, + "end": 735.34, + "probability": 0.8395 + }, + { + "start": 736.72, + "end": 740.18, + "probability": 0.6449 + }, + { + "start": 740.94, + "end": 742.08, + "probability": 0.9466 + }, + { + "start": 745.3, + "end": 749.1, + "probability": 0.9834 + }, + { + "start": 750.4, + "end": 755.34, + "probability": 0.9946 + }, + { + "start": 756.78, + "end": 760.54, + "probability": 0.8134 + }, + { + "start": 761.76, + "end": 762.5, + "probability": 0.4794 + }, + { + "start": 763.26, + "end": 764.36, + "probability": 0.9335 + }, + { + "start": 765.7, + "end": 769.08, + "probability": 0.6622 + }, + { + "start": 770.56, + "end": 775.88, + "probability": 0.928 + }, + { + "start": 778.84, + "end": 779.38, + "probability": 0.8707 + }, + { + "start": 779.5, + "end": 780.96, + "probability": 0.8206 + }, + { + "start": 782.66, + "end": 784.12, + "probability": 0.9576 + }, + { + "start": 784.74, + "end": 786.46, + "probability": 0.0401 + }, + { + "start": 786.54, + "end": 787.94, + "probability": 0.6034 + }, + { + "start": 788.3, + "end": 789.26, + "probability": 0.5028 + }, + { + "start": 789.3, + "end": 790.28, + "probability": 0.9352 + }, + { + "start": 791.04, + "end": 793.2, + "probability": 0.6328 + }, + { + "start": 794.02, + "end": 796.1, + "probability": 0.8543 + }, + { + "start": 796.18, + "end": 799.1, + "probability": 0.8547 + }, + { + "start": 799.14, + "end": 800.24, + "probability": 0.5538 + }, + { + "start": 801.1, + "end": 801.88, + "probability": 0.9551 + }, + { + "start": 802.4, + "end": 806.02, + "probability": 0.9644 + }, + { + "start": 807.16, + "end": 810.9, + "probability": 0.4886 + }, + { + "start": 811.72, + "end": 814.0, + "probability": 0.9538 + }, + { + "start": 814.62, + "end": 818.39, + "probability": 0.9182 + }, + { + "start": 818.96, + "end": 821.88, + "probability": 0.761 + }, + { + "start": 822.38, + "end": 823.79, + "probability": 0.8269 + }, + { + "start": 824.2, + "end": 826.2, + "probability": 0.959 + }, + { + "start": 826.62, + "end": 828.36, + "probability": 0.6237 + }, + { + "start": 828.86, + "end": 830.66, + "probability": 0.7363 + }, + { + "start": 830.96, + "end": 832.48, + "probability": 0.978 + }, + { + "start": 833.44, + "end": 835.78, + "probability": 0.9429 + }, + { + "start": 835.86, + "end": 837.88, + "probability": 0.7353 + }, + { + "start": 838.14, + "end": 838.66, + "probability": 0.5896 + }, + { + "start": 840.34, + "end": 841.26, + "probability": 0.7609 + }, + { + "start": 842.62, + "end": 848.56, + "probability": 0.5882 + }, + { + "start": 848.88, + "end": 852.04, + "probability": 0.813 + }, + { + "start": 853.32, + "end": 855.14, + "probability": 0.9911 + }, + { + "start": 856.08, + "end": 859.7, + "probability": 0.6072 + }, + { + "start": 861.1, + "end": 861.9, + "probability": 0.5278 + }, + { + "start": 862.58, + "end": 863.48, + "probability": 0.8923 + }, + { + "start": 865.62, + "end": 868.36, + "probability": 0.8323 + }, + { + "start": 868.84, + "end": 871.2, + "probability": 0.8103 + }, + { + "start": 871.88, + "end": 872.3, + "probability": 0.6753 + }, + { + "start": 872.82, + "end": 880.16, + "probability": 0.9888 + }, + { + "start": 884.62, + "end": 885.4, + "probability": 0.664 + }, + { + "start": 886.16, + "end": 887.7, + "probability": 0.9932 + }, + { + "start": 888.4, + "end": 889.18, + "probability": 0.9963 + }, + { + "start": 889.92, + "end": 893.0, + "probability": 0.9276 + }, + { + "start": 894.56, + "end": 894.92, + "probability": 0.8898 + }, + { + "start": 896.06, + "end": 898.16, + "probability": 0.9024 + }, + { + "start": 900.24, + "end": 901.12, + "probability": 0.9954 + }, + { + "start": 902.54, + "end": 905.56, + "probability": 0.9072 + }, + { + "start": 906.24, + "end": 907.16, + "probability": 0.9966 + }, + { + "start": 908.34, + "end": 911.04, + "probability": 0.5504 + }, + { + "start": 912.1, + "end": 914.22, + "probability": 0.7327 + }, + { + "start": 915.54, + "end": 916.58, + "probability": 0.8499 + }, + { + "start": 919.3, + "end": 919.89, + "probability": 0.8125 + }, + { + "start": 920.66, + "end": 924.46, + "probability": 0.9619 + }, + { + "start": 925.06, + "end": 926.12, + "probability": 0.9121 + }, + { + "start": 927.54, + "end": 929.28, + "probability": 0.95 + }, + { + "start": 929.9, + "end": 930.96, + "probability": 0.7124 + }, + { + "start": 931.74, + "end": 932.62, + "probability": 0.1286 + }, + { + "start": 933.68, + "end": 933.89, + "probability": 0.7561 + }, + { + "start": 934.98, + "end": 938.44, + "probability": 0.9482 + }, + { + "start": 938.98, + "end": 941.16, + "probability": 0.8523 + }, + { + "start": 941.78, + "end": 942.88, + "probability": 0.6683 + }, + { + "start": 943.26, + "end": 945.24, + "probability": 0.9193 + }, + { + "start": 945.34, + "end": 945.86, + "probability": 0.9113 + }, + { + "start": 946.64, + "end": 947.24, + "probability": 0.8595 + }, + { + "start": 947.28, + "end": 949.68, + "probability": 0.9684 + }, + { + "start": 949.74, + "end": 950.06, + "probability": 0.9057 + }, + { + "start": 950.22, + "end": 950.36, + "probability": 0.9716 + }, + { + "start": 950.4, + "end": 951.26, + "probability": 0.9568 + }, + { + "start": 951.32, + "end": 952.34, + "probability": 0.8335 + }, + { + "start": 952.44, + "end": 953.06, + "probability": 0.9198 + }, + { + "start": 953.22, + "end": 953.7, + "probability": 0.4655 + }, + { + "start": 953.72, + "end": 953.92, + "probability": 0.3569 + }, + { + "start": 954.88, + "end": 956.28, + "probability": 0.9 + }, + { + "start": 957.58, + "end": 958.44, + "probability": 0.7386 + }, + { + "start": 959.14, + "end": 960.16, + "probability": 0.6249 + }, + { + "start": 960.64, + "end": 961.58, + "probability": 0.9803 + }, + { + "start": 969.16, + "end": 971.32, + "probability": 0.9786 + }, + { + "start": 971.36, + "end": 972.84, + "probability": 0.8039 + }, + { + "start": 973.7, + "end": 973.98, + "probability": 0.7274 + }, + { + "start": 974.5, + "end": 975.4, + "probability": 0.5664 + }, + { + "start": 976.47, + "end": 980.4, + "probability": 0.9812 + }, + { + "start": 981.1, + "end": 982.3, + "probability": 0.9254 + }, + { + "start": 983.06, + "end": 985.66, + "probability": 0.9419 + }, + { + "start": 986.72, + "end": 987.92, + "probability": 0.8303 + }, + { + "start": 989.16, + "end": 989.22, + "probability": 0.0507 + }, + { + "start": 989.22, + "end": 989.92, + "probability": 0.5522 + }, + { + "start": 990.56, + "end": 992.04, + "probability": 0.8654 + }, + { + "start": 993.32, + "end": 995.7, + "probability": 0.9868 + }, + { + "start": 996.4, + "end": 997.5, + "probability": 0.9038 + }, + { + "start": 998.06, + "end": 999.26, + "probability": 0.9651 + }, + { + "start": 999.32, + "end": 1000.74, + "probability": 0.833 + }, + { + "start": 1000.82, + "end": 1001.94, + "probability": 0.8939 + }, + { + "start": 1002.62, + "end": 1005.5, + "probability": 0.8485 + }, + { + "start": 1006.32, + "end": 1008.0, + "probability": 0.8693 + }, + { + "start": 1008.34, + "end": 1009.54, + "probability": 0.9746 + }, + { + "start": 1009.56, + "end": 1010.16, + "probability": 0.5913 + }, + { + "start": 1011.14, + "end": 1014.92, + "probability": 0.8428 + }, + { + "start": 1016.82, + "end": 1017.74, + "probability": 0.8472 + }, + { + "start": 1018.32, + "end": 1019.78, + "probability": 0.9429 + }, + { + "start": 1021.08, + "end": 1023.8, + "probability": 0.7271 + }, + { + "start": 1024.32, + "end": 1025.24, + "probability": 0.9001 + }, + { + "start": 1026.38, + "end": 1028.22, + "probability": 0.8628 + }, + { + "start": 1029.46, + "end": 1035.32, + "probability": 0.8462 + }, + { + "start": 1035.84, + "end": 1037.88, + "probability": 0.9688 + }, + { + "start": 1038.42, + "end": 1039.84, + "probability": 0.8394 + }, + { + "start": 1040.6, + "end": 1042.54, + "probability": 0.8435 + }, + { + "start": 1044.02, + "end": 1044.76, + "probability": 0.9769 + }, + { + "start": 1045.56, + "end": 1048.22, + "probability": 0.9929 + }, + { + "start": 1049.8, + "end": 1052.08, + "probability": 0.8 + }, + { + "start": 1053.12, + "end": 1055.04, + "probability": 0.9464 + }, + { + "start": 1056.18, + "end": 1058.78, + "probability": 0.9648 + }, + { + "start": 1059.42, + "end": 1060.62, + "probability": 0.8943 + }, + { + "start": 1061.8, + "end": 1062.36, + "probability": 0.1 + }, + { + "start": 1063.1, + "end": 1065.74, + "probability": 0.9728 + }, + { + "start": 1066.14, + "end": 1069.58, + "probability": 0.6534 + }, + { + "start": 1070.68, + "end": 1071.78, + "probability": 0.9875 + }, + { + "start": 1071.94, + "end": 1076.0, + "probability": 0.8021 + }, + { + "start": 1076.7, + "end": 1077.72, + "probability": 0.9977 + }, + { + "start": 1078.76, + "end": 1080.68, + "probability": 0.6086 + }, + { + "start": 1082.44, + "end": 1083.1, + "probability": 0.9009 + }, + { + "start": 1084.88, + "end": 1085.68, + "probability": 0.9356 + }, + { + "start": 1086.22, + "end": 1088.25, + "probability": 0.749 + }, + { + "start": 1089.18, + "end": 1090.64, + "probability": 0.8405 + }, + { + "start": 1091.28, + "end": 1094.2, + "probability": 0.7435 + }, + { + "start": 1094.66, + "end": 1096.56, + "probability": 0.8197 + }, + { + "start": 1097.44, + "end": 1098.66, + "probability": 0.3165 + }, + { + "start": 1099.3, + "end": 1103.1, + "probability": 0.9835 + }, + { + "start": 1103.42, + "end": 1105.06, + "probability": 0.9543 + }, + { + "start": 1105.98, + "end": 1106.72, + "probability": 0.8457 + }, + { + "start": 1107.28, + "end": 1110.66, + "probability": 0.9016 + }, + { + "start": 1111.26, + "end": 1114.7, + "probability": 0.8845 + }, + { + "start": 1116.14, + "end": 1116.34, + "probability": 0.2316 + }, + { + "start": 1116.5, + "end": 1118.84, + "probability": 0.7422 + }, + { + "start": 1118.92, + "end": 1118.96, + "probability": 0.3114 + }, + { + "start": 1118.98, + "end": 1119.68, + "probability": 0.343 + }, + { + "start": 1119.78, + "end": 1120.72, + "probability": 0.4914 + }, + { + "start": 1120.86, + "end": 1122.38, + "probability": 0.7786 + }, + { + "start": 1122.44, + "end": 1122.96, + "probability": 0.429 + }, + { + "start": 1123.2, + "end": 1125.16, + "probability": 0.7564 + }, + { + "start": 1125.48, + "end": 1126.44, + "probability": 0.7163 + }, + { + "start": 1126.58, + "end": 1128.34, + "probability": 0.4446 + }, + { + "start": 1128.34, + "end": 1131.88, + "probability": 0.9117 + }, + { + "start": 1134.1, + "end": 1135.06, + "probability": 0.9639 + }, + { + "start": 1135.62, + "end": 1136.18, + "probability": 0.9189 + }, + { + "start": 1136.7, + "end": 1139.5, + "probability": 0.9625 + }, + { + "start": 1143.16, + "end": 1144.48, + "probability": 0.832 + }, + { + "start": 1144.64, + "end": 1147.84, + "probability": 0.9668 + }, + { + "start": 1148.74, + "end": 1151.56, + "probability": 0.9331 + }, + { + "start": 1152.26, + "end": 1155.64, + "probability": 0.9395 + }, + { + "start": 1156.52, + "end": 1161.74, + "probability": 0.9143 + }, + { + "start": 1165.8, + "end": 1168.9, + "probability": 0.8256 + }, + { + "start": 1169.74, + "end": 1173.3, + "probability": 0.9832 + }, + { + "start": 1173.8, + "end": 1175.16, + "probability": 0.916 + }, + { + "start": 1177.43, + "end": 1179.74, + "probability": 0.9012 + }, + { + "start": 1180.34, + "end": 1181.8, + "probability": 0.7986 + }, + { + "start": 1182.84, + "end": 1184.74, + "probability": 0.9592 + }, + { + "start": 1185.54, + "end": 1190.32, + "probability": 0.9784 + }, + { + "start": 1191.18, + "end": 1193.42, + "probability": 0.98 + }, + { + "start": 1193.6, + "end": 1193.98, + "probability": 0.7005 + }, + { + "start": 1194.5, + "end": 1199.08, + "probability": 0.8892 + }, + { + "start": 1199.6, + "end": 1202.34, + "probability": 0.8629 + }, + { + "start": 1202.34, + "end": 1204.9, + "probability": 0.9826 + }, + { + "start": 1206.41, + "end": 1209.48, + "probability": 0.9829 + }, + { + "start": 1210.02, + "end": 1211.36, + "probability": 0.8311 + }, + { + "start": 1211.7, + "end": 1212.38, + "probability": 0.6319 + }, + { + "start": 1213.2, + "end": 1213.74, + "probability": 0.9033 + }, + { + "start": 1213.84, + "end": 1216.38, + "probability": 0.7759 + }, + { + "start": 1217.94, + "end": 1219.62, + "probability": 0.7537 + }, + { + "start": 1220.26, + "end": 1220.26, + "probability": 0.1816 + }, + { + "start": 1220.26, + "end": 1222.6, + "probability": 0.9356 + }, + { + "start": 1222.6, + "end": 1226.5, + "probability": 0.9465 + }, + { + "start": 1230.54, + "end": 1232.1, + "probability": 0.6236 + }, + { + "start": 1233.3, + "end": 1236.33, + "probability": 0.834 + }, + { + "start": 1237.28, + "end": 1244.14, + "probability": 0.8896 + }, + { + "start": 1245.06, + "end": 1247.64, + "probability": 0.9968 + }, + { + "start": 1248.4, + "end": 1250.98, + "probability": 0.8663 + }, + { + "start": 1251.42, + "end": 1254.14, + "probability": 0.9216 + }, + { + "start": 1255.28, + "end": 1256.74, + "probability": 0.7065 + }, + { + "start": 1256.92, + "end": 1258.96, + "probability": 0.8426 + }, + { + "start": 1259.04, + "end": 1262.3, + "probability": 0.8912 + }, + { + "start": 1262.5, + "end": 1264.0, + "probability": 0.8794 + }, + { + "start": 1264.54, + "end": 1269.78, + "probability": 0.9914 + }, + { + "start": 1270.62, + "end": 1274.24, + "probability": 0.9899 + }, + { + "start": 1274.38, + "end": 1275.56, + "probability": 0.7796 + }, + { + "start": 1276.08, + "end": 1282.5, + "probability": 0.987 + }, + { + "start": 1283.04, + "end": 1286.8, + "probability": 0.9906 + }, + { + "start": 1287.68, + "end": 1288.16, + "probability": 0.5459 + }, + { + "start": 1288.36, + "end": 1288.66, + "probability": 0.6376 + }, + { + "start": 1288.72, + "end": 1289.98, + "probability": 0.9727 + }, + { + "start": 1290.1, + "end": 1291.68, + "probability": 0.9817 + }, + { + "start": 1292.3, + "end": 1298.26, + "probability": 0.9884 + }, + { + "start": 1298.72, + "end": 1300.38, + "probability": 0.9667 + }, + { + "start": 1300.8, + "end": 1302.42, + "probability": 0.9892 + }, + { + "start": 1302.58, + "end": 1303.62, + "probability": 0.9817 + }, + { + "start": 1303.74, + "end": 1305.34, + "probability": 0.9124 + }, + { + "start": 1305.82, + "end": 1307.76, + "probability": 0.9938 + }, + { + "start": 1307.92, + "end": 1309.3, + "probability": 0.9329 + }, + { + "start": 1309.44, + "end": 1313.02, + "probability": 0.4955 + }, + { + "start": 1313.42, + "end": 1318.88, + "probability": 0.9385 + }, + { + "start": 1318.94, + "end": 1324.94, + "probability": 0.8144 + }, + { + "start": 1325.22, + "end": 1330.7, + "probability": 0.9981 + }, + { + "start": 1331.18, + "end": 1332.5, + "probability": 0.9443 + }, + { + "start": 1332.7, + "end": 1334.2, + "probability": 0.9806 + }, + { + "start": 1334.88, + "end": 1336.48, + "probability": 0.9907 + }, + { + "start": 1337.16, + "end": 1337.88, + "probability": 0.8551 + }, + { + "start": 1338.58, + "end": 1343.04, + "probability": 0.9907 + }, + { + "start": 1343.32, + "end": 1344.06, + "probability": 0.6412 + }, + { + "start": 1345.42, + "end": 1350.24, + "probability": 0.9854 + }, + { + "start": 1350.76, + "end": 1352.18, + "probability": 0.8578 + }, + { + "start": 1352.86, + "end": 1355.86, + "probability": 0.7172 + }, + { + "start": 1356.4, + "end": 1356.97, + "probability": 0.9245 + }, + { + "start": 1357.7, + "end": 1360.58, + "probability": 0.9959 + }, + { + "start": 1361.04, + "end": 1361.92, + "probability": 0.9859 + }, + { + "start": 1361.96, + "end": 1365.78, + "probability": 0.9613 + }, + { + "start": 1365.82, + "end": 1367.46, + "probability": 0.8442 + }, + { + "start": 1367.96, + "end": 1368.53, + "probability": 0.617 + }, + { + "start": 1368.92, + "end": 1371.96, + "probability": 0.9524 + }, + { + "start": 1372.48, + "end": 1373.14, + "probability": 0.9171 + }, + { + "start": 1373.72, + "end": 1375.64, + "probability": 0.9843 + }, + { + "start": 1376.1, + "end": 1376.8, + "probability": 0.8508 + }, + { + "start": 1376.9, + "end": 1379.18, + "probability": 0.861 + }, + { + "start": 1379.92, + "end": 1380.54, + "probability": 0.6891 + }, + { + "start": 1380.94, + "end": 1386.16, + "probability": 0.9777 + }, + { + "start": 1386.66, + "end": 1390.4, + "probability": 0.9961 + }, + { + "start": 1391.04, + "end": 1391.8, + "probability": 0.9485 + }, + { + "start": 1392.96, + "end": 1393.18, + "probability": 0.699 + }, + { + "start": 1393.22, + "end": 1396.5, + "probability": 0.9424 + }, + { + "start": 1397.08, + "end": 1402.88, + "probability": 0.8574 + }, + { + "start": 1403.3, + "end": 1404.86, + "probability": 0.9363 + }, + { + "start": 1405.32, + "end": 1409.08, + "probability": 0.987 + }, + { + "start": 1409.52, + "end": 1410.28, + "probability": 0.4968 + }, + { + "start": 1410.46, + "end": 1411.28, + "probability": 0.7013 + }, + { + "start": 1411.7, + "end": 1416.76, + "probability": 0.9405 + }, + { + "start": 1417.3, + "end": 1418.62, + "probability": 0.9739 + }, + { + "start": 1419.1, + "end": 1420.1, + "probability": 0.8712 + }, + { + "start": 1420.16, + "end": 1421.2, + "probability": 0.8264 + }, + { + "start": 1421.38, + "end": 1426.06, + "probability": 0.9866 + }, + { + "start": 1426.6, + "end": 1429.3, + "probability": 0.66 + }, + { + "start": 1430.62, + "end": 1432.84, + "probability": 0.9946 + }, + { + "start": 1433.98, + "end": 1435.64, + "probability": 0.6085 + }, + { + "start": 1448.74, + "end": 1449.22, + "probability": 0.2301 + }, + { + "start": 1449.22, + "end": 1449.22, + "probability": 0.021 + }, + { + "start": 1449.22, + "end": 1449.22, + "probability": 0.028 + }, + { + "start": 1449.22, + "end": 1449.22, + "probability": 0.0486 + }, + { + "start": 1449.22, + "end": 1452.93, + "probability": 0.4802 + }, + { + "start": 1454.26, + "end": 1454.48, + "probability": 0.0216 + }, + { + "start": 1454.48, + "end": 1454.48, + "probability": 0.0422 + }, + { + "start": 1454.48, + "end": 1456.94, + "probability": 0.9451 + }, + { + "start": 1457.6, + "end": 1458.34, + "probability": 0.9246 + }, + { + "start": 1458.92, + "end": 1460.78, + "probability": 0.762 + }, + { + "start": 1461.34, + "end": 1463.3, + "probability": 0.9935 + }, + { + "start": 1463.46, + "end": 1465.04, + "probability": 0.9175 + }, + { + "start": 1465.36, + "end": 1468.28, + "probability": 0.8704 + }, + { + "start": 1468.42, + "end": 1469.46, + "probability": 0.7315 + }, + { + "start": 1469.9, + "end": 1470.48, + "probability": 0.6991 + }, + { + "start": 1470.66, + "end": 1477.34, + "probability": 0.9895 + }, + { + "start": 1477.36, + "end": 1481.1, + "probability": 0.9919 + }, + { + "start": 1481.66, + "end": 1482.7, + "probability": 0.8715 + }, + { + "start": 1482.72, + "end": 1487.52, + "probability": 0.9872 + }, + { + "start": 1487.62, + "end": 1489.26, + "probability": 0.6084 + }, + { + "start": 1489.94, + "end": 1495.3, + "probability": 0.9928 + }, + { + "start": 1495.74, + "end": 1500.34, + "probability": 0.9937 + }, + { + "start": 1500.34, + "end": 1503.7, + "probability": 0.9597 + }, + { + "start": 1503.72, + "end": 1508.7, + "probability": 0.9346 + }, + { + "start": 1509.6, + "end": 1514.1, + "probability": 0.9609 + }, + { + "start": 1514.1, + "end": 1516.76, + "probability": 0.996 + }, + { + "start": 1517.78, + "end": 1517.78, + "probability": 0.3 + }, + { + "start": 1517.78, + "end": 1518.84, + "probability": 0.8024 + }, + { + "start": 1518.94, + "end": 1521.28, + "probability": 0.9914 + }, + { + "start": 1521.44, + "end": 1522.6, + "probability": 0.7692 + }, + { + "start": 1523.22, + "end": 1527.0, + "probability": 0.9844 + }, + { + "start": 1527.56, + "end": 1529.38, + "probability": 0.5933 + }, + { + "start": 1530.42, + "end": 1531.44, + "probability": 0.7182 + }, + { + "start": 1532.1, + "end": 1533.46, + "probability": 0.9915 + }, + { + "start": 1533.64, + "end": 1535.76, + "probability": 0.9362 + }, + { + "start": 1536.22, + "end": 1536.66, + "probability": 0.5385 + }, + { + "start": 1536.8, + "end": 1537.67, + "probability": 0.5444 + }, + { + "start": 1538.46, + "end": 1541.26, + "probability": 0.9802 + }, + { + "start": 1541.68, + "end": 1544.42, + "probability": 0.9979 + }, + { + "start": 1544.8, + "end": 1546.74, + "probability": 0.983 + }, + { + "start": 1546.86, + "end": 1549.5, + "probability": 0.8461 + }, + { + "start": 1550.02, + "end": 1553.46, + "probability": 0.9888 + }, + { + "start": 1553.86, + "end": 1556.28, + "probability": 0.981 + }, + { + "start": 1556.28, + "end": 1559.22, + "probability": 0.9668 + }, + { + "start": 1560.02, + "end": 1561.5, + "probability": 0.8935 + }, + { + "start": 1561.96, + "end": 1567.32, + "probability": 0.9392 + }, + { + "start": 1567.46, + "end": 1569.7, + "probability": 0.9601 + }, + { + "start": 1570.24, + "end": 1574.56, + "probability": 0.9885 + }, + { + "start": 1575.22, + "end": 1577.66, + "probability": 0.6545 + }, + { + "start": 1578.32, + "end": 1585.22, + "probability": 0.8999 + }, + { + "start": 1585.3, + "end": 1585.74, + "probability": 0.4033 + }, + { + "start": 1585.76, + "end": 1587.1, + "probability": 0.7764 + }, + { + "start": 1587.8, + "end": 1591.58, + "probability": 0.9474 + }, + { + "start": 1591.78, + "end": 1598.14, + "probability": 0.9714 + }, + { + "start": 1598.5, + "end": 1600.4, + "probability": 0.7199 + }, + { + "start": 1600.76, + "end": 1601.56, + "probability": 0.9771 + }, + { + "start": 1601.64, + "end": 1603.12, + "probability": 0.8757 + }, + { + "start": 1603.48, + "end": 1604.96, + "probability": 0.9397 + }, + { + "start": 1605.68, + "end": 1610.3, + "probability": 0.9049 + }, + { + "start": 1610.42, + "end": 1611.86, + "probability": 0.9427 + }, + { + "start": 1612.52, + "end": 1617.0, + "probability": 0.8326 + }, + { + "start": 1617.3, + "end": 1618.84, + "probability": 0.9009 + }, + { + "start": 1618.9, + "end": 1619.76, + "probability": 0.9718 + }, + { + "start": 1620.2, + "end": 1623.28, + "probability": 0.9844 + }, + { + "start": 1623.56, + "end": 1628.28, + "probability": 0.9645 + }, + { + "start": 1628.66, + "end": 1633.66, + "probability": 0.9026 + }, + { + "start": 1634.86, + "end": 1636.88, + "probability": 0.8882 + }, + { + "start": 1637.46, + "end": 1639.56, + "probability": 0.9916 + }, + { + "start": 1639.9, + "end": 1644.78, + "probability": 0.9834 + }, + { + "start": 1646.3, + "end": 1647.86, + "probability": 0.6976 + }, + { + "start": 1647.96, + "end": 1649.3, + "probability": 0.727 + }, + { + "start": 1649.78, + "end": 1651.52, + "probability": 0.9878 + }, + { + "start": 1652.12, + "end": 1655.86, + "probability": 0.9504 + }, + { + "start": 1656.78, + "end": 1658.96, + "probability": 0.9071 + }, + { + "start": 1659.08, + "end": 1659.42, + "probability": 0.6887 + }, + { + "start": 1659.62, + "end": 1663.1, + "probability": 0.989 + }, + { + "start": 1663.88, + "end": 1665.3, + "probability": 0.8777 + }, + { + "start": 1665.44, + "end": 1666.08, + "probability": 0.1605 + }, + { + "start": 1666.42, + "end": 1667.72, + "probability": 0.9872 + }, + { + "start": 1667.86, + "end": 1668.46, + "probability": 0.8497 + }, + { + "start": 1669.28, + "end": 1672.44, + "probability": 0.9933 + }, + { + "start": 1672.44, + "end": 1676.44, + "probability": 0.7265 + }, + { + "start": 1676.44, + "end": 1680.88, + "probability": 0.945 + }, + { + "start": 1681.34, + "end": 1682.86, + "probability": 0.628 + }, + { + "start": 1684.18, + "end": 1686.42, + "probability": 0.9941 + }, + { + "start": 1686.94, + "end": 1690.84, + "probability": 0.988 + }, + { + "start": 1691.98, + "end": 1695.8, + "probability": 0.9404 + }, + { + "start": 1697.6, + "end": 1700.78, + "probability": 0.4642 + }, + { + "start": 1701.62, + "end": 1702.9, + "probability": 0.771 + }, + { + "start": 1703.58, + "end": 1709.74, + "probability": 0.9827 + }, + { + "start": 1710.5, + "end": 1712.48, + "probability": 0.9973 + }, + { + "start": 1713.06, + "end": 1714.78, + "probability": 0.9229 + }, + { + "start": 1715.28, + "end": 1716.14, + "probability": 0.5817 + }, + { + "start": 1716.2, + "end": 1719.15, + "probability": 0.6324 + }, + { + "start": 1719.82, + "end": 1721.75, + "probability": 0.979 + }, + { + "start": 1722.34, + "end": 1726.82, + "probability": 0.9614 + }, + { + "start": 1726.82, + "end": 1730.34, + "probability": 0.773 + }, + { + "start": 1730.92, + "end": 1735.48, + "probability": 0.9919 + }, + { + "start": 1736.68, + "end": 1743.04, + "probability": 0.9896 + }, + { + "start": 1743.14, + "end": 1744.54, + "probability": 0.8729 + }, + { + "start": 1745.04, + "end": 1748.1, + "probability": 0.9971 + }, + { + "start": 1748.76, + "end": 1750.28, + "probability": 0.9282 + }, + { + "start": 1750.66, + "end": 1754.28, + "probability": 0.964 + }, + { + "start": 1754.5, + "end": 1755.0, + "probability": 0.9318 + }, + { + "start": 1755.18, + "end": 1755.44, + "probability": 0.864 + }, + { + "start": 1755.56, + "end": 1756.12, + "probability": 0.9727 + }, + { + "start": 1756.18, + "end": 1757.08, + "probability": 0.8468 + }, + { + "start": 1757.62, + "end": 1761.44, + "probability": 0.9839 + }, + { + "start": 1761.84, + "end": 1764.9, + "probability": 0.9944 + }, + { + "start": 1765.68, + "end": 1767.7, + "probability": 0.9482 + }, + { + "start": 1768.22, + "end": 1769.29, + "probability": 0.9177 + }, + { + "start": 1769.94, + "end": 1771.38, + "probability": 0.9629 + }, + { + "start": 1771.86, + "end": 1774.08, + "probability": 0.9713 + }, + { + "start": 1774.54, + "end": 1778.1, + "probability": 0.9978 + }, + { + "start": 1778.1, + "end": 1782.58, + "probability": 0.9907 + }, + { + "start": 1783.26, + "end": 1783.5, + "probability": 0.5446 + }, + { + "start": 1783.56, + "end": 1784.6, + "probability": 0.7874 + }, + { + "start": 1785.04, + "end": 1785.48, + "probability": 0.7874 + }, + { + "start": 1785.58, + "end": 1786.44, + "probability": 0.8493 + }, + { + "start": 1786.86, + "end": 1788.18, + "probability": 0.9888 + }, + { + "start": 1788.46, + "end": 1789.46, + "probability": 0.8674 + }, + { + "start": 1789.6, + "end": 1793.04, + "probability": 0.9832 + }, + { + "start": 1793.04, + "end": 1795.68, + "probability": 0.8805 + }, + { + "start": 1796.26, + "end": 1799.7, + "probability": 0.9004 + }, + { + "start": 1800.24, + "end": 1803.13, + "probability": 0.9639 + }, + { + "start": 1804.16, + "end": 1807.9, + "probability": 0.9897 + }, + { + "start": 1808.5, + "end": 1812.1, + "probability": 0.9886 + }, + { + "start": 1812.76, + "end": 1816.19, + "probability": 0.6808 + }, + { + "start": 1816.78, + "end": 1817.72, + "probability": 0.7517 + }, + { + "start": 1818.2, + "end": 1819.56, + "probability": 0.6057 + }, + { + "start": 1820.14, + "end": 1823.4, + "probability": 0.7592 + }, + { + "start": 1824.02, + "end": 1824.72, + "probability": 0.9855 + }, + { + "start": 1827.74, + "end": 1831.28, + "probability": 0.9773 + }, + { + "start": 1832.24, + "end": 1834.56, + "probability": 0.6896 + }, + { + "start": 1835.44, + "end": 1839.9, + "probability": 0.759 + }, + { + "start": 1840.06, + "end": 1841.62, + "probability": 0.5543 + }, + { + "start": 1842.14, + "end": 1843.94, + "probability": 0.7573 + }, + { + "start": 1844.72, + "end": 1845.16, + "probability": 0.5242 + }, + { + "start": 1845.64, + "end": 1846.5, + "probability": 0.6805 + }, + { + "start": 1846.68, + "end": 1847.85, + "probability": 0.4545 + }, + { + "start": 1848.06, + "end": 1848.44, + "probability": 0.0643 + }, + { + "start": 1848.82, + "end": 1849.74, + "probability": 0.6168 + }, + { + "start": 1850.16, + "end": 1852.14, + "probability": 0.9627 + }, + { + "start": 1852.74, + "end": 1855.08, + "probability": 0.98 + }, + { + "start": 1855.26, + "end": 1857.78, + "probability": 0.4966 + }, + { + "start": 1858.14, + "end": 1861.7, + "probability": 0.9368 + }, + { + "start": 1862.9, + "end": 1864.5, + "probability": 0.9918 + }, + { + "start": 1864.72, + "end": 1866.2, + "probability": 0.648 + }, + { + "start": 1867.28, + "end": 1869.76, + "probability": 0.7834 + }, + { + "start": 1871.12, + "end": 1875.74, + "probability": 0.9575 + }, + { + "start": 1876.76, + "end": 1879.88, + "probability": 0.9297 + }, + { + "start": 1880.68, + "end": 1883.36, + "probability": 0.9956 + }, + { + "start": 1883.44, + "end": 1884.86, + "probability": 0.9637 + }, + { + "start": 1885.68, + "end": 1889.96, + "probability": 0.6831 + }, + { + "start": 1890.58, + "end": 1892.84, + "probability": 0.5995 + }, + { + "start": 1893.06, + "end": 1893.32, + "probability": 0.8206 + }, + { + "start": 1893.54, + "end": 1896.86, + "probability": 0.6777 + }, + { + "start": 1897.5, + "end": 1897.99, + "probability": 0.98 + }, + { + "start": 1898.22, + "end": 1899.76, + "probability": 0.9984 + }, + { + "start": 1899.92, + "end": 1900.3, + "probability": 0.4747 + }, + { + "start": 1901.4, + "end": 1906.16, + "probability": 0.8846 + }, + { + "start": 1906.44, + "end": 1910.0, + "probability": 0.9675 + }, + { + "start": 1910.1, + "end": 1911.95, + "probability": 0.9941 + }, + { + "start": 1913.06, + "end": 1914.61, + "probability": 0.386 + }, + { + "start": 1915.5, + "end": 1917.12, + "probability": 0.9231 + }, + { + "start": 1918.0, + "end": 1919.0, + "probability": 0.6528 + }, + { + "start": 1919.06, + "end": 1919.56, + "probability": 0.8515 + }, + { + "start": 1920.1, + "end": 1922.5, + "probability": 0.7625 + }, + { + "start": 1923.73, + "end": 1925.92, + "probability": 0.6268 + }, + { + "start": 1925.94, + "end": 1926.26, + "probability": 0.754 + }, + { + "start": 1926.4, + "end": 1928.52, + "probability": 0.9357 + }, + { + "start": 1931.13, + "end": 1933.16, + "probability": 0.9946 + }, + { + "start": 1933.16, + "end": 1933.5, + "probability": 0.6426 + }, + { + "start": 1933.6, + "end": 1934.28, + "probability": 0.8677 + }, + { + "start": 1934.46, + "end": 1936.28, + "probability": 0.889 + }, + { + "start": 1937.48, + "end": 1940.58, + "probability": 0.8678 + }, + { + "start": 1940.58, + "end": 1943.6, + "probability": 0.9956 + }, + { + "start": 1945.18, + "end": 1946.8, + "probability": 0.6354 + }, + { + "start": 1946.96, + "end": 1950.5, + "probability": 0.9602 + }, + { + "start": 1951.62, + "end": 1952.84, + "probability": 0.3533 + }, + { + "start": 1952.98, + "end": 1954.52, + "probability": 0.9888 + }, + { + "start": 1955.26, + "end": 1955.71, + "probability": 0.6133 + }, + { + "start": 1958.52, + "end": 1959.52, + "probability": 0.0221 + }, + { + "start": 1959.52, + "end": 1959.66, + "probability": 0.0262 + }, + { + "start": 1959.66, + "end": 1961.0, + "probability": 0.1968 + }, + { + "start": 1961.4, + "end": 1961.94, + "probability": 0.4602 + }, + { + "start": 1962.08, + "end": 1963.26, + "probability": 0.79 + }, + { + "start": 1963.8, + "end": 1964.6, + "probability": 0.9213 + }, + { + "start": 1965.6, + "end": 1967.66, + "probability": 0.7597 + }, + { + "start": 1967.74, + "end": 1968.18, + "probability": 0.937 + }, + { + "start": 1969.02, + "end": 1972.86, + "probability": 0.6456 + }, + { + "start": 1973.44, + "end": 1973.44, + "probability": 0.7804 + }, + { + "start": 1973.76, + "end": 1975.86, + "probability": 0.7603 + }, + { + "start": 1976.48, + "end": 1978.5, + "probability": 0.9388 + }, + { + "start": 1979.98, + "end": 1981.0, + "probability": 0.9621 + }, + { + "start": 1982.16, + "end": 1983.04, + "probability": 0.7444 + }, + { + "start": 1984.94, + "end": 1985.76, + "probability": 0.4777 + }, + { + "start": 1987.06, + "end": 1989.22, + "probability": 0.9788 + }, + { + "start": 1989.84, + "end": 1991.9, + "probability": 0.9982 + }, + { + "start": 1993.9, + "end": 1998.94, + "probability": 0.9899 + }, + { + "start": 2000.7, + "end": 2002.16, + "probability": 0.6131 + }, + { + "start": 2003.6, + "end": 2006.42, + "probability": 0.9867 + }, + { + "start": 2007.28, + "end": 2008.48, + "probability": 0.9476 + }, + { + "start": 2009.04, + "end": 2012.68, + "probability": 0.9934 + }, + { + "start": 2014.14, + "end": 2016.7, + "probability": 0.8602 + }, + { + "start": 2017.18, + "end": 2017.18, + "probability": 0.0875 + }, + { + "start": 2017.18, + "end": 2019.26, + "probability": 0.8789 + }, + { + "start": 2020.22, + "end": 2023.14, + "probability": 0.9303 + }, + { + "start": 2023.4, + "end": 2025.82, + "probability": 0.9351 + }, + { + "start": 2026.4, + "end": 2027.26, + "probability": 0.9116 + }, + { + "start": 2028.0, + "end": 2029.22, + "probability": 0.9869 + }, + { + "start": 2030.08, + "end": 2032.12, + "probability": 0.939 + }, + { + "start": 2032.46, + "end": 2034.64, + "probability": 0.7507 + }, + { + "start": 2036.48, + "end": 2039.56, + "probability": 0.9969 + }, + { + "start": 2039.64, + "end": 2040.68, + "probability": 0.7642 + }, + { + "start": 2041.3, + "end": 2044.54, + "probability": 0.9553 + }, + { + "start": 2044.58, + "end": 2045.92, + "probability": 0.7683 + }, + { + "start": 2048.18, + "end": 2050.38, + "probability": 0.8831 + }, + { + "start": 2050.48, + "end": 2053.14, + "probability": 0.9498 + }, + { + "start": 2054.86, + "end": 2055.8, + "probability": 0.9751 + }, + { + "start": 2056.58, + "end": 2057.3, + "probability": 0.9878 + }, + { + "start": 2059.8, + "end": 2060.7, + "probability": 0.7626 + }, + { + "start": 2062.22, + "end": 2063.76, + "probability": 0.6882 + }, + { + "start": 2065.66, + "end": 2067.94, + "probability": 0.7223 + }, + { + "start": 2068.54, + "end": 2069.02, + "probability": 0.933 + }, + { + "start": 2069.86, + "end": 2072.38, + "probability": 0.9957 + }, + { + "start": 2073.54, + "end": 2075.0, + "probability": 0.8927 + }, + { + "start": 2076.8, + "end": 2077.52, + "probability": 0.7206 + }, + { + "start": 2078.2, + "end": 2080.1, + "probability": 0.9469 + }, + { + "start": 2081.36, + "end": 2084.62, + "probability": 0.9515 + }, + { + "start": 2084.98, + "end": 2087.08, + "probability": 0.9523 + }, + { + "start": 2088.16, + "end": 2089.48, + "probability": 0.9836 + }, + { + "start": 2089.64, + "end": 2091.48, + "probability": 0.9918 + }, + { + "start": 2092.56, + "end": 2095.36, + "probability": 0.9883 + }, + { + "start": 2096.22, + "end": 2098.94, + "probability": 0.9958 + }, + { + "start": 2101.04, + "end": 2102.92, + "probability": 0.9487 + }, + { + "start": 2104.68, + "end": 2107.04, + "probability": 0.9941 + }, + { + "start": 2107.14, + "end": 2108.9, + "probability": 0.9932 + }, + { + "start": 2109.04, + "end": 2110.41, + "probability": 0.9971 + }, + { + "start": 2112.04, + "end": 2114.14, + "probability": 0.9875 + }, + { + "start": 2114.26, + "end": 2115.66, + "probability": 0.9388 + }, + { + "start": 2116.2, + "end": 2119.68, + "probability": 0.9946 + }, + { + "start": 2120.8, + "end": 2121.98, + "probability": 0.968 + }, + { + "start": 2122.94, + "end": 2124.96, + "probability": 0.9745 + }, + { + "start": 2126.14, + "end": 2129.1, + "probability": 0.9983 + }, + { + "start": 2129.1, + "end": 2131.78, + "probability": 0.9963 + }, + { + "start": 2132.46, + "end": 2135.4, + "probability": 0.9627 + }, + { + "start": 2136.28, + "end": 2139.12, + "probability": 0.4997 + }, + { + "start": 2139.9, + "end": 2141.34, + "probability": 0.8663 + }, + { + "start": 2141.98, + "end": 2142.74, + "probability": 0.8166 + }, + { + "start": 2143.52, + "end": 2144.6, + "probability": 0.8984 + }, + { + "start": 2145.32, + "end": 2146.26, + "probability": 0.967 + }, + { + "start": 2146.84, + "end": 2149.62, + "probability": 0.99 + }, + { + "start": 2150.08, + "end": 2151.18, + "probability": 0.9869 + }, + { + "start": 2152.54, + "end": 2153.96, + "probability": 0.8587 + }, + { + "start": 2154.74, + "end": 2158.12, + "probability": 0.9735 + }, + { + "start": 2161.16, + "end": 2162.78, + "probability": 0.6464 + }, + { + "start": 2164.24, + "end": 2166.6, + "probability": 0.823 + }, + { + "start": 2166.86, + "end": 2168.4, + "probability": 0.9954 + }, + { + "start": 2168.78, + "end": 2170.5, + "probability": 0.9548 + }, + { + "start": 2171.1, + "end": 2172.82, + "probability": 0.964 + }, + { + "start": 2174.7, + "end": 2177.88, + "probability": 0.7496 + }, + { + "start": 2179.32, + "end": 2182.1, + "probability": 0.9703 + }, + { + "start": 2184.9, + "end": 2185.74, + "probability": 0.9429 + }, + { + "start": 2187.48, + "end": 2190.26, + "probability": 0.9668 + }, + { + "start": 2192.38, + "end": 2193.04, + "probability": 0.8336 + }, + { + "start": 2194.08, + "end": 2195.84, + "probability": 0.8007 + }, + { + "start": 2196.7, + "end": 2199.0, + "probability": 0.6248 + }, + { + "start": 2199.04, + "end": 2200.5, + "probability": 0.896 + }, + { + "start": 2200.56, + "end": 2202.24, + "probability": 0.5184 + }, + { + "start": 2202.96, + "end": 2203.06, + "probability": 0.1612 + }, + { + "start": 2203.06, + "end": 2207.52, + "probability": 0.9462 + }, + { + "start": 2209.84, + "end": 2211.66, + "probability": 0.9685 + }, + { + "start": 2212.58, + "end": 2213.34, + "probability": 0.917 + }, + { + "start": 2215.2, + "end": 2217.22, + "probability": 0.9161 + }, + { + "start": 2217.62, + "end": 2218.98, + "probability": 0.8464 + }, + { + "start": 2219.02, + "end": 2220.06, + "probability": 0.9729 + }, + { + "start": 2220.6, + "end": 2222.32, + "probability": 0.9982 + }, + { + "start": 2223.4, + "end": 2225.36, + "probability": 0.9433 + }, + { + "start": 2225.4, + "end": 2226.28, + "probability": 0.8011 + }, + { + "start": 2226.78, + "end": 2229.74, + "probability": 0.9553 + }, + { + "start": 2230.58, + "end": 2231.52, + "probability": 0.9295 + }, + { + "start": 2233.52, + "end": 2236.41, + "probability": 0.8086 + }, + { + "start": 2239.58, + "end": 2241.56, + "probability": 0.9211 + }, + { + "start": 2241.84, + "end": 2242.67, + "probability": 0.9994 + }, + { + "start": 2243.62, + "end": 2244.54, + "probability": 0.8202 + }, + { + "start": 2245.58, + "end": 2246.06, + "probability": 0.9833 + }, + { + "start": 2247.12, + "end": 2247.62, + "probability": 0.985 + }, + { + "start": 2248.66, + "end": 2249.3, + "probability": 0.9979 + }, + { + "start": 2250.52, + "end": 2252.0, + "probability": 0.9342 + }, + { + "start": 2252.48, + "end": 2253.72, + "probability": 0.9071 + }, + { + "start": 2253.8, + "end": 2255.18, + "probability": 0.434 + }, + { + "start": 2255.32, + "end": 2255.94, + "probability": 0.1492 + }, + { + "start": 2256.1, + "end": 2257.65, + "probability": 0.9184 + }, + { + "start": 2257.96, + "end": 2258.64, + "probability": 0.326 + }, + { + "start": 2258.64, + "end": 2258.94, + "probability": 0.0841 + }, + { + "start": 2258.94, + "end": 2262.74, + "probability": 0.3152 + }, + { + "start": 2262.76, + "end": 2265.18, + "probability": 0.0391 + }, + { + "start": 2266.12, + "end": 2266.12, + "probability": 0.2911 + }, + { + "start": 2266.12, + "end": 2266.18, + "probability": 0.0661 + }, + { + "start": 2266.18, + "end": 2267.8, + "probability": 0.6731 + }, + { + "start": 2267.86, + "end": 2268.8, + "probability": 0.6229 + }, + { + "start": 2268.98, + "end": 2268.98, + "probability": 0.0551 + }, + { + "start": 2268.98, + "end": 2269.84, + "probability": 0.2889 + }, + { + "start": 2269.9, + "end": 2271.06, + "probability": 0.7741 + }, + { + "start": 2271.38, + "end": 2271.56, + "probability": 0.0327 + }, + { + "start": 2272.12, + "end": 2275.86, + "probability": 0.3478 + }, + { + "start": 2278.58, + "end": 2279.38, + "probability": 0.3599 + }, + { + "start": 2279.38, + "end": 2279.8, + "probability": 0.7588 + }, + { + "start": 2279.86, + "end": 2281.98, + "probability": 0.9882 + }, + { + "start": 2282.06, + "end": 2285.0, + "probability": 0.8705 + }, + { + "start": 2285.18, + "end": 2285.64, + "probability": 0.2804 + }, + { + "start": 2285.78, + "end": 2285.78, + "probability": 0.1255 + }, + { + "start": 2285.78, + "end": 2285.78, + "probability": 0.0192 + }, + { + "start": 2285.78, + "end": 2287.57, + "probability": 0.9246 + }, + { + "start": 2288.18, + "end": 2290.14, + "probability": 0.8504 + }, + { + "start": 2290.58, + "end": 2294.4, + "probability": 0.8907 + }, + { + "start": 2294.52, + "end": 2296.22, + "probability": 0.9795 + }, + { + "start": 2296.32, + "end": 2298.18, + "probability": 0.9351 + }, + { + "start": 2298.3, + "end": 2300.62, + "probability": 0.535 + }, + { + "start": 2300.62, + "end": 2302.7, + "probability": 0.8966 + }, + { + "start": 2303.12, + "end": 2304.09, + "probability": 0.1745 + }, + { + "start": 2304.66, + "end": 2305.6, + "probability": 0.8657 + }, + { + "start": 2305.74, + "end": 2308.42, + "probability": 0.6098 + }, + { + "start": 2308.94, + "end": 2310.51, + "probability": 0.9673 + }, + { + "start": 2310.66, + "end": 2312.2, + "probability": 0.9961 + }, + { + "start": 2312.74, + "end": 2314.9, + "probability": 0.255 + }, + { + "start": 2315.34, + "end": 2317.88, + "probability": 0.6227 + }, + { + "start": 2317.96, + "end": 2319.12, + "probability": 0.4325 + }, + { + "start": 2319.82, + "end": 2322.8, + "probability": 0.2893 + }, + { + "start": 2323.0, + "end": 2323.12, + "probability": 0.4647 + }, + { + "start": 2323.22, + "end": 2324.95, + "probability": 0.936 + }, + { + "start": 2325.24, + "end": 2327.44, + "probability": 0.7175 + }, + { + "start": 2327.74, + "end": 2329.24, + "probability": 0.4093 + }, + { + "start": 2329.72, + "end": 2331.56, + "probability": 0.7649 + }, + { + "start": 2332.12, + "end": 2333.3, + "probability": 0.8396 + }, + { + "start": 2334.22, + "end": 2336.32, + "probability": 0.9834 + }, + { + "start": 2337.36, + "end": 2339.4, + "probability": 0.9956 + }, + { + "start": 2339.52, + "end": 2340.76, + "probability": 0.9849 + }, + { + "start": 2341.14, + "end": 2344.42, + "probability": 0.998 + }, + { + "start": 2345.02, + "end": 2346.24, + "probability": 0.9513 + }, + { + "start": 2346.92, + "end": 2348.18, + "probability": 0.6864 + }, + { + "start": 2348.28, + "end": 2353.6, + "probability": 0.9481 + }, + { + "start": 2355.14, + "end": 2358.12, + "probability": 0.9678 + }, + { + "start": 2358.76, + "end": 2361.08, + "probability": 0.9498 + }, + { + "start": 2362.34, + "end": 2363.4, + "probability": 0.9934 + }, + { + "start": 2364.72, + "end": 2368.36, + "probability": 0.9777 + }, + { + "start": 2369.22, + "end": 2372.1, + "probability": 0.818 + }, + { + "start": 2373.08, + "end": 2375.3, + "probability": 0.9978 + }, + { + "start": 2375.62, + "end": 2376.04, + "probability": 0.9976 + }, + { + "start": 2376.94, + "end": 2378.6, + "probability": 0.9543 + }, + { + "start": 2379.46, + "end": 2382.76, + "probability": 0.9405 + }, + { + "start": 2383.32, + "end": 2384.24, + "probability": 0.9539 + }, + { + "start": 2385.66, + "end": 2385.7, + "probability": 0.2335 + }, + { + "start": 2385.7, + "end": 2386.28, + "probability": 0.6261 + }, + { + "start": 2387.12, + "end": 2388.64, + "probability": 0.9916 + }, + { + "start": 2388.8, + "end": 2390.26, + "probability": 0.8976 + }, + { + "start": 2390.3, + "end": 2390.98, + "probability": 0.9386 + }, + { + "start": 2391.12, + "end": 2392.14, + "probability": 0.9284 + }, + { + "start": 2392.74, + "end": 2393.3, + "probability": 0.7587 + }, + { + "start": 2394.18, + "end": 2395.06, + "probability": 0.736 + }, + { + "start": 2395.22, + "end": 2398.12, + "probability": 0.7556 + }, + { + "start": 2398.64, + "end": 2399.42, + "probability": 0.7278 + }, + { + "start": 2400.08, + "end": 2402.26, + "probability": 0.8639 + }, + { + "start": 2403.34, + "end": 2405.48, + "probability": 0.9653 + }, + { + "start": 2406.08, + "end": 2408.54, + "probability": 0.8469 + }, + { + "start": 2409.18, + "end": 2409.48, + "probability": 0.8879 + }, + { + "start": 2410.66, + "end": 2414.14, + "probability": 0.9445 + }, + { + "start": 2415.44, + "end": 2416.68, + "probability": 0.7974 + }, + { + "start": 2417.62, + "end": 2418.7, + "probability": 0.8413 + }, + { + "start": 2419.28, + "end": 2422.08, + "probability": 0.8906 + }, + { + "start": 2422.84, + "end": 2423.08, + "probability": 0.5795 + }, + { + "start": 2423.62, + "end": 2428.44, + "probability": 0.8702 + }, + { + "start": 2429.76, + "end": 2433.2, + "probability": 0.9843 + }, + { + "start": 2433.94, + "end": 2435.52, + "probability": 0.8752 + }, + { + "start": 2436.6, + "end": 2438.34, + "probability": 0.8844 + }, + { + "start": 2438.62, + "end": 2440.28, + "probability": 0.8031 + }, + { + "start": 2440.46, + "end": 2442.8, + "probability": 0.9644 + }, + { + "start": 2444.85, + "end": 2445.94, + "probability": 0.9706 + }, + { + "start": 2447.74, + "end": 2448.9, + "probability": 0.4163 + }, + { + "start": 2449.24, + "end": 2449.56, + "probability": 0.0786 + }, + { + "start": 2450.54, + "end": 2451.66, + "probability": 0.9785 + }, + { + "start": 2452.42, + "end": 2457.48, + "probability": 0.9134 + }, + { + "start": 2458.58, + "end": 2459.4, + "probability": 0.728 + }, + { + "start": 2460.48, + "end": 2461.56, + "probability": 0.9651 + }, + { + "start": 2463.12, + "end": 2464.56, + "probability": 0.9111 + }, + { + "start": 2465.16, + "end": 2466.26, + "probability": 0.8866 + }, + { + "start": 2467.9, + "end": 2471.86, + "probability": 0.9723 + }, + { + "start": 2472.54, + "end": 2473.26, + "probability": 0.9124 + }, + { + "start": 2473.78, + "end": 2475.72, + "probability": 0.8935 + }, + { + "start": 2476.14, + "end": 2477.6, + "probability": 0.9761 + }, + { + "start": 2479.22, + "end": 2480.76, + "probability": 0.9878 + }, + { + "start": 2481.92, + "end": 2482.64, + "probability": 0.989 + }, + { + "start": 2483.2, + "end": 2483.84, + "probability": 0.9782 + }, + { + "start": 2483.98, + "end": 2487.36, + "probability": 0.8608 + }, + { + "start": 2488.82, + "end": 2491.48, + "probability": 0.9956 + }, + { + "start": 2493.42, + "end": 2495.34, + "probability": 0.8255 + }, + { + "start": 2496.26, + "end": 2497.6, + "probability": 0.813 + }, + { + "start": 2498.5, + "end": 2500.26, + "probability": 0.8592 + }, + { + "start": 2500.78, + "end": 2503.34, + "probability": 0.9873 + }, + { + "start": 2504.96, + "end": 2507.78, + "probability": 0.9803 + }, + { + "start": 2508.48, + "end": 2509.14, + "probability": 0.5251 + }, + { + "start": 2509.92, + "end": 2511.06, + "probability": 0.8719 + }, + { + "start": 2511.56, + "end": 2512.14, + "probability": 0.5654 + }, + { + "start": 2512.66, + "end": 2513.16, + "probability": 0.5042 + }, + { + "start": 2514.4, + "end": 2515.98, + "probability": 0.9296 + }, + { + "start": 2517.1, + "end": 2518.08, + "probability": 0.9855 + }, + { + "start": 2518.82, + "end": 2519.62, + "probability": 0.7833 + }, + { + "start": 2520.58, + "end": 2521.58, + "probability": 0.9842 + }, + { + "start": 2522.54, + "end": 2525.12, + "probability": 0.9926 + }, + { + "start": 2525.66, + "end": 2528.5, + "probability": 0.876 + }, + { + "start": 2529.94, + "end": 2530.64, + "probability": 0.9294 + }, + { + "start": 2532.02, + "end": 2534.54, + "probability": 0.9937 + }, + { + "start": 2534.68, + "end": 2535.18, + "probability": 0.9719 + }, + { + "start": 2535.32, + "end": 2537.82, + "probability": 0.9921 + }, + { + "start": 2538.72, + "end": 2541.36, + "probability": 0.9976 + }, + { + "start": 2542.98, + "end": 2544.32, + "probability": 0.896 + }, + { + "start": 2545.26, + "end": 2548.54, + "probability": 0.9969 + }, + { + "start": 2549.28, + "end": 2553.06, + "probability": 0.9978 + }, + { + "start": 2553.88, + "end": 2556.34, + "probability": 0.9875 + }, + { + "start": 2557.36, + "end": 2559.84, + "probability": 0.8336 + }, + { + "start": 2561.14, + "end": 2562.24, + "probability": 0.9342 + }, + { + "start": 2563.32, + "end": 2564.08, + "probability": 0.9486 + }, + { + "start": 2566.28, + "end": 2571.64, + "probability": 0.9912 + }, + { + "start": 2571.78, + "end": 2572.3, + "probability": 0.971 + }, + { + "start": 2572.88, + "end": 2573.72, + "probability": 0.9528 + }, + { + "start": 2574.6, + "end": 2575.46, + "probability": 0.9878 + }, + { + "start": 2576.38, + "end": 2577.78, + "probability": 0.8714 + }, + { + "start": 2578.74, + "end": 2579.42, + "probability": 0.5127 + }, + { + "start": 2579.86, + "end": 2584.24, + "probability": 0.9894 + }, + { + "start": 2586.34, + "end": 2588.2, + "probability": 0.9537 + }, + { + "start": 2590.62, + "end": 2591.3, + "probability": 0.9919 + }, + { + "start": 2593.18, + "end": 2595.46, + "probability": 0.9922 + }, + { + "start": 2596.92, + "end": 2599.56, + "probability": 0.9966 + }, + { + "start": 2599.56, + "end": 2602.88, + "probability": 0.8573 + }, + { + "start": 2603.96, + "end": 2605.62, + "probability": 0.9863 + }, + { + "start": 2606.72, + "end": 2610.04, + "probability": 0.9561 + }, + { + "start": 2611.0, + "end": 2612.08, + "probability": 0.9802 + }, + { + "start": 2612.4, + "end": 2616.08, + "probability": 0.9903 + }, + { + "start": 2616.08, + "end": 2618.04, + "probability": 0.9894 + }, + { + "start": 2618.16, + "end": 2619.56, + "probability": 0.8291 + }, + { + "start": 2619.7, + "end": 2620.2, + "probability": 0.7937 + }, + { + "start": 2620.54, + "end": 2621.84, + "probability": 0.908 + }, + { + "start": 2623.12, + "end": 2626.92, + "probability": 0.8464 + }, + { + "start": 2627.54, + "end": 2629.7, + "probability": 0.8476 + }, + { + "start": 2633.64, + "end": 2636.98, + "probability": 0.9919 + }, + { + "start": 2637.62, + "end": 2639.02, + "probability": 0.6732 + }, + { + "start": 2640.23, + "end": 2644.0, + "probability": 0.9781 + }, + { + "start": 2644.08, + "end": 2645.22, + "probability": 0.6918 + }, + { + "start": 2645.3, + "end": 2645.92, + "probability": 0.8604 + }, + { + "start": 2648.1, + "end": 2648.56, + "probability": 0.8887 + }, + { + "start": 2650.64, + "end": 2653.1, + "probability": 0.9619 + }, + { + "start": 2654.16, + "end": 2655.62, + "probability": 0.9899 + }, + { + "start": 2655.68, + "end": 2655.86, + "probability": 0.33 + }, + { + "start": 2656.2, + "end": 2656.48, + "probability": 0.8027 + }, + { + "start": 2656.72, + "end": 2658.5, + "probability": 0.9712 + }, + { + "start": 2661.86, + "end": 2662.44, + "probability": 0.6726 + }, + { + "start": 2663.74, + "end": 2664.98, + "probability": 0.8792 + }, + { + "start": 2665.9, + "end": 2668.18, + "probability": 0.9552 + }, + { + "start": 2668.7, + "end": 2669.68, + "probability": 0.9928 + }, + { + "start": 2669.8, + "end": 2670.62, + "probability": 0.9973 + }, + { + "start": 2670.67, + "end": 2671.12, + "probability": 0.9956 + }, + { + "start": 2671.6, + "end": 2672.68, + "probability": 0.9974 + }, + { + "start": 2673.74, + "end": 2675.54, + "probability": 0.9937 + }, + { + "start": 2676.74, + "end": 2677.94, + "probability": 0.7249 + }, + { + "start": 2678.86, + "end": 2680.2, + "probability": 0.9659 + }, + { + "start": 2681.94, + "end": 2683.1, + "probability": 0.9848 + }, + { + "start": 2683.96, + "end": 2688.86, + "probability": 0.9114 + }, + { + "start": 2690.78, + "end": 2693.82, + "probability": 0.9712 + }, + { + "start": 2696.26, + "end": 2698.38, + "probability": 0.974 + }, + { + "start": 2699.78, + "end": 2701.22, + "probability": 0.816 + }, + { + "start": 2701.38, + "end": 2703.1, + "probability": 0.7556 + }, + { + "start": 2703.86, + "end": 2706.32, + "probability": 0.9767 + }, + { + "start": 2707.12, + "end": 2709.8, + "probability": 0.998 + }, + { + "start": 2711.46, + "end": 2712.76, + "probability": 0.9774 + }, + { + "start": 2713.44, + "end": 2714.9, + "probability": 0.8477 + }, + { + "start": 2715.62, + "end": 2718.62, + "probability": 0.863 + }, + { + "start": 2719.3, + "end": 2723.26, + "probability": 0.987 + }, + { + "start": 2723.82, + "end": 2726.74, + "probability": 0.9776 + }, + { + "start": 2739.62, + "end": 2742.72, + "probability": 0.3318 + }, + { + "start": 2742.72, + "end": 2742.72, + "probability": 0.0707 + }, + { + "start": 2742.72, + "end": 2742.72, + "probability": 0.1671 + }, + { + "start": 2742.72, + "end": 2742.72, + "probability": 0.0083 + }, + { + "start": 2742.72, + "end": 2742.72, + "probability": 0.1834 + }, + { + "start": 2742.72, + "end": 2743.44, + "probability": 0.2034 + }, + { + "start": 2744.32, + "end": 2745.64, + "probability": 0.5806 + }, + { + "start": 2746.8, + "end": 2749.04, + "probability": 0.5996 + }, + { + "start": 2749.2, + "end": 2752.62, + "probability": 0.9775 + }, + { + "start": 2756.3, + "end": 2757.92, + "probability": 0.8716 + }, + { + "start": 2759.34, + "end": 2761.75, + "probability": 0.9917 + }, + { + "start": 2763.24, + "end": 2764.98, + "probability": 0.9551 + }, + { + "start": 2765.82, + "end": 2766.8, + "probability": 0.955 + }, + { + "start": 2767.46, + "end": 2769.7, + "probability": 0.998 + }, + { + "start": 2769.88, + "end": 2771.42, + "probability": 0.8628 + }, + { + "start": 2772.56, + "end": 2776.64, + "probability": 0.9814 + }, + { + "start": 2777.32, + "end": 2778.64, + "probability": 0.9412 + }, + { + "start": 2778.86, + "end": 2779.1, + "probability": 0.7267 + }, + { + "start": 2779.58, + "end": 2781.46, + "probability": 0.8575 + }, + { + "start": 2781.5, + "end": 2782.62, + "probability": 0.9199 + }, + { + "start": 2783.14, + "end": 2785.28, + "probability": 0.749 + }, + { + "start": 2788.32, + "end": 2790.08, + "probability": 0.686 + }, + { + "start": 2791.44, + "end": 2792.63, + "probability": 0.9443 + }, + { + "start": 2793.7, + "end": 2796.62, + "probability": 0.9097 + }, + { + "start": 2796.66, + "end": 2798.32, + "probability": 0.588 + }, + { + "start": 2799.7, + "end": 2803.64, + "probability": 0.9346 + }, + { + "start": 2804.56, + "end": 2805.8, + "probability": 0.6891 + }, + { + "start": 2806.08, + "end": 2808.28, + "probability": 0.9907 + }, + { + "start": 2809.86, + "end": 2812.44, + "probability": 0.9444 + }, + { + "start": 2814.44, + "end": 2815.12, + "probability": 0.9406 + }, + { + "start": 2816.0, + "end": 2818.1, + "probability": 0.983 + }, + { + "start": 2818.2, + "end": 2819.76, + "probability": 0.9691 + }, + { + "start": 2820.9, + "end": 2822.04, + "probability": 0.9628 + }, + { + "start": 2822.86, + "end": 2827.04, + "probability": 0.9554 + }, + { + "start": 2827.42, + "end": 2830.26, + "probability": 0.9943 + }, + { + "start": 2831.04, + "end": 2832.34, + "probability": 0.9921 + }, + { + "start": 2832.48, + "end": 2832.68, + "probability": 0.6016 + }, + { + "start": 2832.86, + "end": 2833.56, + "probability": 0.7442 + }, + { + "start": 2833.82, + "end": 2835.56, + "probability": 0.7626 + }, + { + "start": 2837.06, + "end": 2837.6, + "probability": 0.8307 + }, + { + "start": 2839.16, + "end": 2840.78, + "probability": 0.9778 + }, + { + "start": 2840.86, + "end": 2841.54, + "probability": 0.7284 + }, + { + "start": 2841.62, + "end": 2843.48, + "probability": 0.981 + }, + { + "start": 2844.72, + "end": 2847.9, + "probability": 0.9844 + }, + { + "start": 2849.42, + "end": 2852.2, + "probability": 0.9885 + }, + { + "start": 2853.22, + "end": 2855.42, + "probability": 0.9954 + }, + { + "start": 2857.04, + "end": 2860.14, + "probability": 0.9985 + }, + { + "start": 2860.48, + "end": 2862.7, + "probability": 0.9839 + }, + { + "start": 2863.18, + "end": 2864.18, + "probability": 0.7486 + }, + { + "start": 2864.22, + "end": 2864.89, + "probability": 0.8667 + }, + { + "start": 2865.66, + "end": 2868.16, + "probability": 0.7333 + }, + { + "start": 2869.74, + "end": 2872.84, + "probability": 0.9977 + }, + { + "start": 2874.6, + "end": 2877.96, + "probability": 0.9273 + }, + { + "start": 2878.88, + "end": 2881.82, + "probability": 0.979 + }, + { + "start": 2882.4, + "end": 2884.32, + "probability": 0.9983 + }, + { + "start": 2885.04, + "end": 2886.92, + "probability": 0.8621 + }, + { + "start": 2887.72, + "end": 2888.74, + "probability": 0.95 + }, + { + "start": 2889.56, + "end": 2891.42, + "probability": 0.9445 + }, + { + "start": 2893.9, + "end": 2894.76, + "probability": 0.9812 + }, + { + "start": 2895.44, + "end": 2897.5, + "probability": 0.9502 + }, + { + "start": 2898.04, + "end": 2901.7, + "probability": 0.9959 + }, + { + "start": 2901.92, + "end": 2903.8, + "probability": 0.9902 + }, + { + "start": 2904.26, + "end": 2905.02, + "probability": 0.8281 + }, + { + "start": 2905.06, + "end": 2906.16, + "probability": 0.9656 + }, + { + "start": 2908.72, + "end": 2909.54, + "probability": 0.5839 + }, + { + "start": 2911.86, + "end": 2914.62, + "probability": 0.9824 + }, + { + "start": 2915.36, + "end": 2919.78, + "probability": 0.9728 + }, + { + "start": 2920.58, + "end": 2924.21, + "probability": 0.9944 + }, + { + "start": 2924.58, + "end": 2927.36, + "probability": 0.9971 + }, + { + "start": 2928.82, + "end": 2929.28, + "probability": 0.9661 + }, + { + "start": 2930.54, + "end": 2931.12, + "probability": 0.9877 + }, + { + "start": 2932.38, + "end": 2933.7, + "probability": 0.9949 + }, + { + "start": 2934.22, + "end": 2935.94, + "probability": 0.9857 + }, + { + "start": 2937.04, + "end": 2938.26, + "probability": 0.9976 + }, + { + "start": 2938.7, + "end": 2939.4, + "probability": 0.7275 + }, + { + "start": 2939.54, + "end": 2940.0, + "probability": 0.8259 + }, + { + "start": 2940.06, + "end": 2942.14, + "probability": 0.924 + }, + { + "start": 2942.38, + "end": 2942.82, + "probability": 0.9242 + }, + { + "start": 2943.14, + "end": 2944.0, + "probability": 0.8997 + }, + { + "start": 2945.28, + "end": 2948.42, + "probability": 0.9796 + }, + { + "start": 2948.56, + "end": 2949.14, + "probability": 0.9481 + }, + { + "start": 2949.52, + "end": 2950.6, + "probability": 0.9811 + }, + { + "start": 2950.86, + "end": 2951.7, + "probability": 0.752 + }, + { + "start": 2951.82, + "end": 2953.86, + "probability": 0.9482 + }, + { + "start": 2954.96, + "end": 2956.76, + "probability": 0.8423 + }, + { + "start": 2958.42, + "end": 2961.8, + "probability": 0.9611 + }, + { + "start": 2961.84, + "end": 2962.44, + "probability": 0.5221 + }, + { + "start": 2963.62, + "end": 2966.14, + "probability": 0.9948 + }, + { + "start": 2966.14, + "end": 2968.46, + "probability": 0.9628 + }, + { + "start": 2969.58, + "end": 2971.4, + "probability": 0.9971 + }, + { + "start": 2971.56, + "end": 2972.4, + "probability": 0.653 + }, + { + "start": 2972.5, + "end": 2975.28, + "probability": 0.8172 + }, + { + "start": 2976.46, + "end": 2978.5, + "probability": 0.9375 + }, + { + "start": 2980.22, + "end": 2984.88, + "probability": 0.9899 + }, + { + "start": 2986.68, + "end": 2990.04, + "probability": 0.9988 + }, + { + "start": 2990.04, + "end": 2993.84, + "probability": 0.9985 + }, + { + "start": 2994.74, + "end": 2999.42, + "probability": 0.9763 + }, + { + "start": 3000.68, + "end": 3002.84, + "probability": 0.935 + }, + { + "start": 3003.0, + "end": 3005.72, + "probability": 0.9955 + }, + { + "start": 3006.36, + "end": 3008.44, + "probability": 0.8843 + }, + { + "start": 3009.1, + "end": 3014.44, + "probability": 0.9956 + }, + { + "start": 3018.98, + "end": 3021.84, + "probability": 0.9626 + }, + { + "start": 3023.4, + "end": 3024.8, + "probability": 0.7527 + }, + { + "start": 3025.84, + "end": 3026.34, + "probability": 0.7587 + }, + { + "start": 3027.62, + "end": 3030.36, + "probability": 0.9898 + }, + { + "start": 3030.52, + "end": 3031.7, + "probability": 0.9767 + }, + { + "start": 3032.66, + "end": 3033.56, + "probability": 0.8612 + }, + { + "start": 3033.64, + "end": 3034.88, + "probability": 0.8934 + }, + { + "start": 3035.02, + "end": 3035.26, + "probability": 0.349 + }, + { + "start": 3035.42, + "end": 3036.36, + "probability": 0.6445 + }, + { + "start": 3038.64, + "end": 3045.66, + "probability": 0.9808 + }, + { + "start": 3046.54, + "end": 3049.58, + "probability": 0.9972 + }, + { + "start": 3050.9, + "end": 3052.4, + "probability": 0.8942 + }, + { + "start": 3053.18, + "end": 3055.26, + "probability": 0.9812 + }, + { + "start": 3056.12, + "end": 3059.16, + "probability": 0.9578 + }, + { + "start": 3061.36, + "end": 3064.86, + "probability": 0.9967 + }, + { + "start": 3066.2, + "end": 3067.62, + "probability": 0.9562 + }, + { + "start": 3067.78, + "end": 3070.56, + "probability": 0.9827 + }, + { + "start": 3073.88, + "end": 3074.72, + "probability": 0.6184 + }, + { + "start": 3076.0, + "end": 3076.38, + "probability": 0.8873 + }, + { + "start": 3077.48, + "end": 3079.38, + "probability": 0.9792 + }, + { + "start": 3080.7, + "end": 3082.34, + "probability": 0.8467 + }, + { + "start": 3083.02, + "end": 3084.58, + "probability": 0.9933 + }, + { + "start": 3084.64, + "end": 3085.9, + "probability": 0.9904 + }, + { + "start": 3086.38, + "end": 3087.32, + "probability": 0.9137 + }, + { + "start": 3087.48, + "end": 3090.92, + "probability": 0.987 + }, + { + "start": 3092.32, + "end": 3094.78, + "probability": 0.6651 + }, + { + "start": 3095.52, + "end": 3097.54, + "probability": 0.7743 + }, + { + "start": 3098.66, + "end": 3098.66, + "probability": 0.0037 + }, + { + "start": 3098.66, + "end": 3101.58, + "probability": 0.9868 + }, + { + "start": 3103.94, + "end": 3103.94, + "probability": 0.0885 + }, + { + "start": 3103.94, + "end": 3104.14, + "probability": 0.7368 + }, + { + "start": 3105.42, + "end": 3106.42, + "probability": 0.3415 + }, + { + "start": 3107.66, + "end": 3108.6, + "probability": 0.46 + }, + { + "start": 3108.84, + "end": 3109.8, + "probability": 0.9536 + }, + { + "start": 3110.4, + "end": 3113.28, + "probability": 0.9876 + }, + { + "start": 3113.92, + "end": 3117.66, + "probability": 0.9869 + }, + { + "start": 3118.48, + "end": 3119.94, + "probability": 0.9685 + }, + { + "start": 3121.02, + "end": 3122.68, + "probability": 0.9865 + }, + { + "start": 3122.8, + "end": 3124.2, + "probability": 0.9716 + }, + { + "start": 3124.64, + "end": 3126.32, + "probability": 0.991 + }, + { + "start": 3126.72, + "end": 3127.8, + "probability": 0.9875 + }, + { + "start": 3128.26, + "end": 3129.82, + "probability": 0.9974 + }, + { + "start": 3132.18, + "end": 3133.64, + "probability": 0.9995 + }, + { + "start": 3135.24, + "end": 3138.44, + "probability": 0.8502 + }, + { + "start": 3140.2, + "end": 3140.66, + "probability": 0.9067 + }, + { + "start": 3141.64, + "end": 3142.38, + "probability": 0.8912 + }, + { + "start": 3144.38, + "end": 3145.82, + "probability": 0.999 + }, + { + "start": 3147.32, + "end": 3151.3, + "probability": 0.8728 + }, + { + "start": 3151.8, + "end": 3153.74, + "probability": 0.8311 + }, + { + "start": 3155.2, + "end": 3160.1, + "probability": 0.9844 + }, + { + "start": 3160.92, + "end": 3162.04, + "probability": 0.9783 + }, + { + "start": 3162.2, + "end": 3163.34, + "probability": 0.778 + }, + { + "start": 3164.14, + "end": 3167.04, + "probability": 0.9075 + }, + { + "start": 3167.58, + "end": 3168.52, + "probability": 0.9787 + }, + { + "start": 3168.92, + "end": 3170.42, + "probability": 0.9648 + }, + { + "start": 3170.78, + "end": 3171.7, + "probability": 0.9859 + }, + { + "start": 3171.92, + "end": 3172.76, + "probability": 0.8209 + }, + { + "start": 3173.44, + "end": 3174.68, + "probability": 0.9108 + }, + { + "start": 3175.36, + "end": 3176.86, + "probability": 0.9898 + }, + { + "start": 3177.66, + "end": 3180.78, + "probability": 0.9933 + }, + { + "start": 3181.42, + "end": 3184.38, + "probability": 0.8884 + }, + { + "start": 3185.14, + "end": 3187.84, + "probability": 0.9089 + }, + { + "start": 3188.62, + "end": 3189.78, + "probability": 0.531 + }, + { + "start": 3191.4, + "end": 3192.62, + "probability": 0.958 + }, + { + "start": 3194.08, + "end": 3194.96, + "probability": 0.8688 + }, + { + "start": 3196.04, + "end": 3196.56, + "probability": 0.9137 + }, + { + "start": 3198.86, + "end": 3199.7, + "probability": 0.8218 + }, + { + "start": 3200.68, + "end": 3201.8, + "probability": 0.6242 + }, + { + "start": 3202.56, + "end": 3205.06, + "probability": 0.9912 + }, + { + "start": 3205.86, + "end": 3206.58, + "probability": 0.8372 + }, + { + "start": 3206.78, + "end": 3207.74, + "probability": 0.9177 + }, + { + "start": 3207.78, + "end": 3208.5, + "probability": 0.8999 + }, + { + "start": 3208.6, + "end": 3208.72, + "probability": 0.3875 + }, + { + "start": 3209.32, + "end": 3210.15, + "probability": 0.8091 + }, + { + "start": 3210.98, + "end": 3214.48, + "probability": 0.9268 + }, + { + "start": 3215.24, + "end": 3216.6, + "probability": 0.7876 + }, + { + "start": 3218.14, + "end": 3221.06, + "probability": 0.989 + }, + { + "start": 3223.28, + "end": 3224.62, + "probability": 0.9417 + }, + { + "start": 3226.8, + "end": 3228.6, + "probability": 0.9734 + }, + { + "start": 3228.7, + "end": 3232.06, + "probability": 0.9727 + }, + { + "start": 3234.18, + "end": 3237.24, + "probability": 0.9868 + }, + { + "start": 3237.92, + "end": 3241.67, + "probability": 0.9901 + }, + { + "start": 3243.62, + "end": 3245.52, + "probability": 0.5241 + }, + { + "start": 3246.28, + "end": 3247.72, + "probability": 0.9666 + }, + { + "start": 3251.02, + "end": 3254.64, + "probability": 0.9575 + }, + { + "start": 3255.22, + "end": 3255.66, + "probability": 0.7534 + }, + { + "start": 3256.54, + "end": 3258.68, + "probability": 0.9535 + }, + { + "start": 3259.3, + "end": 3260.38, + "probability": 0.8917 + }, + { + "start": 3261.2, + "end": 3264.4, + "probability": 0.9982 + }, + { + "start": 3264.68, + "end": 3267.02, + "probability": 0.6446 + }, + { + "start": 3267.68, + "end": 3269.72, + "probability": 0.7024 + }, + { + "start": 3271.32, + "end": 3274.34, + "probability": 0.9896 + }, + { + "start": 3275.06, + "end": 3279.26, + "probability": 0.994 + }, + { + "start": 3279.94, + "end": 3281.86, + "probability": 0.9596 + }, + { + "start": 3283.56, + "end": 3283.64, + "probability": 0.3308 + }, + { + "start": 3283.64, + "end": 3286.92, + "probability": 0.9916 + }, + { + "start": 3288.04, + "end": 3295.0, + "probability": 0.7796 + }, + { + "start": 3295.9, + "end": 3303.42, + "probability": 0.9849 + }, + { + "start": 3303.42, + "end": 3309.6, + "probability": 0.9927 + }, + { + "start": 3309.84, + "end": 3312.9, + "probability": 0.9759 + }, + { + "start": 3313.94, + "end": 3316.62, + "probability": 0.8976 + }, + { + "start": 3316.88, + "end": 3317.72, + "probability": 0.667 + }, + { + "start": 3318.82, + "end": 3319.14, + "probability": 0.0012 + }, + { + "start": 3319.7, + "end": 3323.0, + "probability": 0.8571 + }, + { + "start": 3323.54, + "end": 3328.76, + "probability": 0.9675 + }, + { + "start": 3329.44, + "end": 3329.44, + "probability": 0.1758 + }, + { + "start": 3329.44, + "end": 3332.84, + "probability": 0.935 + }, + { + "start": 3332.9, + "end": 3335.66, + "probability": 0.9916 + }, + { + "start": 3336.26, + "end": 3338.7, + "probability": 0.9698 + }, + { + "start": 3339.28, + "end": 3342.44, + "probability": 0.9906 + }, + { + "start": 3343.28, + "end": 3343.92, + "probability": 0.8013 + }, + { + "start": 3344.66, + "end": 3348.16, + "probability": 0.9902 + }, + { + "start": 3349.06, + "end": 3352.06, + "probability": 0.9495 + }, + { + "start": 3352.96, + "end": 3356.42, + "probability": 0.8273 + }, + { + "start": 3356.64, + "end": 3357.88, + "probability": 0.8617 + }, + { + "start": 3358.34, + "end": 3359.48, + "probability": 0.6013 + }, + { + "start": 3360.08, + "end": 3361.36, + "probability": 0.8334 + }, + { + "start": 3363.96, + "end": 3368.06, + "probability": 0.9626 + }, + { + "start": 3389.04, + "end": 3389.8, + "probability": 0.5024 + }, + { + "start": 3389.82, + "end": 3391.32, + "probability": 0.8448 + }, + { + "start": 3392.61, + "end": 3394.76, + "probability": 0.7368 + }, + { + "start": 3396.46, + "end": 3399.86, + "probability": 0.7365 + }, + { + "start": 3400.6, + "end": 3402.34, + "probability": 0.9954 + }, + { + "start": 3406.26, + "end": 3407.1, + "probability": 0.2136 + }, + { + "start": 3407.1, + "end": 3409.2, + "probability": 0.7939 + }, + { + "start": 3411.5, + "end": 3413.5, + "probability": 0.9254 + }, + { + "start": 3413.7, + "end": 3416.0, + "probability": 0.3747 + }, + { + "start": 3416.32, + "end": 3419.14, + "probability": 0.1383 + }, + { + "start": 3421.98, + "end": 3427.5, + "probability": 0.9421 + }, + { + "start": 3427.78, + "end": 3428.52, + "probability": 0.8375 + }, + { + "start": 3428.62, + "end": 3429.4, + "probability": 0.8332 + }, + { + "start": 3431.4, + "end": 3434.88, + "probability": 0.9932 + }, + { + "start": 3436.7, + "end": 3438.22, + "probability": 0.9518 + }, + { + "start": 3438.26, + "end": 3438.62, + "probability": 0.4113 + }, + { + "start": 3438.66, + "end": 3440.64, + "probability": 0.5294 + }, + { + "start": 3441.6, + "end": 3443.82, + "probability": 0.963 + }, + { + "start": 3444.88, + "end": 3447.28, + "probability": 0.879 + }, + { + "start": 3448.92, + "end": 3454.72, + "probability": 0.952 + }, + { + "start": 3456.16, + "end": 3456.44, + "probability": 0.588 + }, + { + "start": 3457.78, + "end": 3461.88, + "probability": 0.9843 + }, + { + "start": 3464.4, + "end": 3467.1, + "probability": 0.876 + }, + { + "start": 3468.74, + "end": 3473.12, + "probability": 0.8522 + }, + { + "start": 3474.18, + "end": 3479.08, + "probability": 0.8525 + }, + { + "start": 3479.9, + "end": 3481.28, + "probability": 0.9113 + }, + { + "start": 3482.66, + "end": 3484.9, + "probability": 0.9507 + }, + { + "start": 3484.98, + "end": 3486.3, + "probability": 0.9252 + }, + { + "start": 3487.06, + "end": 3494.56, + "probability": 0.9912 + }, + { + "start": 3495.18, + "end": 3495.74, + "probability": 0.9219 + }, + { + "start": 3497.56, + "end": 3497.9, + "probability": 0.7157 + }, + { + "start": 3499.68, + "end": 3505.96, + "probability": 0.9937 + }, + { + "start": 3507.52, + "end": 3509.4, + "probability": 0.9563 + }, + { + "start": 3511.34, + "end": 3513.34, + "probability": 0.9145 + }, + { + "start": 3513.52, + "end": 3514.3, + "probability": 0.9527 + }, + { + "start": 3514.8, + "end": 3516.76, + "probability": 0.7783 + }, + { + "start": 3516.94, + "end": 3518.02, + "probability": 0.8709 + }, + { + "start": 3518.44, + "end": 3519.27, + "probability": 0.8853 + }, + { + "start": 3519.56, + "end": 3520.34, + "probability": 0.8969 + }, + { + "start": 3520.5, + "end": 3521.16, + "probability": 0.9399 + }, + { + "start": 3522.14, + "end": 3526.88, + "probability": 0.8534 + }, + { + "start": 3528.16, + "end": 3528.78, + "probability": 0.8223 + }, + { + "start": 3530.14, + "end": 3532.78, + "probability": 0.9451 + }, + { + "start": 3535.54, + "end": 3538.38, + "probability": 0.9736 + }, + { + "start": 3539.06, + "end": 3540.1, + "probability": 0.8789 + }, + { + "start": 3541.26, + "end": 3543.16, + "probability": 0.9908 + }, + { + "start": 3545.64, + "end": 3547.84, + "probability": 0.6663 + }, + { + "start": 3548.64, + "end": 3552.22, + "probability": 0.8671 + }, + { + "start": 3553.42, + "end": 3558.24, + "probability": 0.9972 + }, + { + "start": 3559.06, + "end": 3561.82, + "probability": 0.9702 + }, + { + "start": 3562.04, + "end": 3563.64, + "probability": 0.7362 + }, + { + "start": 3563.68, + "end": 3564.24, + "probability": 0.5429 + }, + { + "start": 3565.52, + "end": 3566.34, + "probability": 0.926 + }, + { + "start": 3571.44, + "end": 3571.88, + "probability": 0.5872 + }, + { + "start": 3575.21, + "end": 3578.0, + "probability": 0.7729 + }, + { + "start": 3578.14, + "end": 3579.16, + "probability": 0.4214 + }, + { + "start": 3579.22, + "end": 3580.53, + "probability": 0.5543 + }, + { + "start": 3580.98, + "end": 3582.64, + "probability": 0.9424 + }, + { + "start": 3583.66, + "end": 3584.46, + "probability": 0.7593 + }, + { + "start": 3585.46, + "end": 3587.96, + "probability": 0.9691 + }, + { + "start": 3590.2, + "end": 3591.06, + "probability": 0.2505 + }, + { + "start": 3591.74, + "end": 3592.6, + "probability": 0.709 + }, + { + "start": 3593.4, + "end": 3597.14, + "probability": 0.98 + }, + { + "start": 3598.62, + "end": 3599.62, + "probability": 0.6113 + }, + { + "start": 3600.8, + "end": 3602.0, + "probability": 0.7938 + }, + { + "start": 3603.16, + "end": 3605.78, + "probability": 0.866 + }, + { + "start": 3606.98, + "end": 3607.66, + "probability": 0.8247 + }, + { + "start": 3607.84, + "end": 3608.6, + "probability": 0.6994 + }, + { + "start": 3608.76, + "end": 3609.28, + "probability": 0.9801 + }, + { + "start": 3609.5, + "end": 3610.24, + "probability": 0.8248 + }, + { + "start": 3610.72, + "end": 3611.4, + "probability": 0.9446 + }, + { + "start": 3611.66, + "end": 3613.62, + "probability": 0.9402 + }, + { + "start": 3615.08, + "end": 3619.68, + "probability": 0.9751 + }, + { + "start": 3620.72, + "end": 3621.32, + "probability": 0.638 + }, + { + "start": 3621.48, + "end": 3623.68, + "probability": 0.783 + }, + { + "start": 3626.7, + "end": 3629.88, + "probability": 0.9672 + }, + { + "start": 3629.88, + "end": 3633.26, + "probability": 0.8672 + }, + { + "start": 3635.68, + "end": 3637.62, + "probability": 0.9825 + }, + { + "start": 3639.1, + "end": 3640.68, + "probability": 0.9099 + }, + { + "start": 3642.42, + "end": 3644.38, + "probability": 0.8555 + }, + { + "start": 3646.28, + "end": 3649.18, + "probability": 0.985 + }, + { + "start": 3652.98, + "end": 3654.8, + "probability": 0.9988 + }, + { + "start": 3655.48, + "end": 3657.54, + "probability": 0.9984 + }, + { + "start": 3659.34, + "end": 3662.18, + "probability": 0.983 + }, + { + "start": 3664.02, + "end": 3667.32, + "probability": 0.9924 + }, + { + "start": 3667.62, + "end": 3671.56, + "probability": 0.8659 + }, + { + "start": 3672.34, + "end": 3675.98, + "probability": 0.9854 + }, + { + "start": 3676.08, + "end": 3676.62, + "probability": 0.8112 + }, + { + "start": 3680.18, + "end": 3681.5, + "probability": 0.9766 + }, + { + "start": 3682.52, + "end": 3683.59, + "probability": 0.9482 + }, + { + "start": 3686.06, + "end": 3686.68, + "probability": 0.9048 + }, + { + "start": 3687.36, + "end": 3688.5, + "probability": 0.9666 + }, + { + "start": 3689.38, + "end": 3692.72, + "probability": 0.9539 + }, + { + "start": 3694.04, + "end": 3695.36, + "probability": 0.7493 + }, + { + "start": 3698.02, + "end": 3699.76, + "probability": 0.688 + }, + { + "start": 3702.28, + "end": 3703.1, + "probability": 0.9883 + }, + { + "start": 3703.22, + "end": 3705.0, + "probability": 0.8789 + }, + { + "start": 3705.16, + "end": 3707.3, + "probability": 0.7919 + }, + { + "start": 3708.62, + "end": 3711.24, + "probability": 0.873 + }, + { + "start": 3713.06, + "end": 3715.66, + "probability": 0.9948 + }, + { + "start": 3717.18, + "end": 3719.0, + "probability": 0.9365 + }, + { + "start": 3720.94, + "end": 3724.58, + "probability": 0.9854 + }, + { + "start": 3726.22, + "end": 3728.04, + "probability": 0.9847 + }, + { + "start": 3729.34, + "end": 3734.7, + "probability": 0.9958 + }, + { + "start": 3734.7, + "end": 3736.92, + "probability": 0.9386 + }, + { + "start": 3738.36, + "end": 3738.36, + "probability": 0.3064 + }, + { + "start": 3739.5, + "end": 3740.06, + "probability": 0.7208 + }, + { + "start": 3742.24, + "end": 3744.38, + "probability": 0.9795 + }, + { + "start": 3745.42, + "end": 3747.44, + "probability": 0.8833 + }, + { + "start": 3748.52, + "end": 3750.86, + "probability": 0.7685 + }, + { + "start": 3752.78, + "end": 3756.32, + "probability": 0.9869 + }, + { + "start": 3757.02, + "end": 3758.33, + "probability": 0.8581 + }, + { + "start": 3759.54, + "end": 3760.36, + "probability": 0.9822 + }, + { + "start": 3760.96, + "end": 3762.32, + "probability": 0.8777 + }, + { + "start": 3762.4, + "end": 3764.86, + "probability": 0.9824 + }, + { + "start": 3766.88, + "end": 3768.46, + "probability": 0.7927 + }, + { + "start": 3772.4, + "end": 3773.24, + "probability": 0.6567 + }, + { + "start": 3774.62, + "end": 3775.94, + "probability": 0.9801 + }, + { + "start": 3777.1, + "end": 3778.34, + "probability": 0.9969 + }, + { + "start": 3781.36, + "end": 3782.4, + "probability": 0.9645 + }, + { + "start": 3783.52, + "end": 3786.76, + "probability": 0.9756 + }, + { + "start": 3786.82, + "end": 3787.68, + "probability": 0.7023 + }, + { + "start": 3788.54, + "end": 3789.4, + "probability": 0.5939 + }, + { + "start": 3790.62, + "end": 3793.0, + "probability": 0.9667 + }, + { + "start": 3793.86, + "end": 3796.6, + "probability": 0.9854 + }, + { + "start": 3797.66, + "end": 3800.4, + "probability": 0.7671 + }, + { + "start": 3801.98, + "end": 3804.72, + "probability": 0.8942 + }, + { + "start": 3805.86, + "end": 3806.9, + "probability": 0.789 + }, + { + "start": 3808.94, + "end": 3811.18, + "probability": 0.7849 + }, + { + "start": 3811.4, + "end": 3814.34, + "probability": 0.9583 + }, + { + "start": 3814.92, + "end": 3816.3, + "probability": 0.7086 + }, + { + "start": 3817.68, + "end": 3819.5, + "probability": 0.9978 + }, + { + "start": 3821.28, + "end": 3824.3, + "probability": 0.8223 + }, + { + "start": 3826.24, + "end": 3826.8, + "probability": 0.7195 + }, + { + "start": 3826.94, + "end": 3828.24, + "probability": 0.8033 + }, + { + "start": 3828.66, + "end": 3829.98, + "probability": 0.9783 + }, + { + "start": 3830.82, + "end": 3835.16, + "probability": 0.6694 + }, + { + "start": 3836.34, + "end": 3839.08, + "probability": 0.9927 + }, + { + "start": 3839.32, + "end": 3839.9, + "probability": 0.7466 + }, + { + "start": 3840.84, + "end": 3843.19, + "probability": 0.9688 + }, + { + "start": 3844.1, + "end": 3845.38, + "probability": 0.9846 + }, + { + "start": 3845.42, + "end": 3849.88, + "probability": 0.9931 + }, + { + "start": 3851.66, + "end": 3853.5, + "probability": 0.9937 + }, + { + "start": 3854.3, + "end": 3857.04, + "probability": 0.914 + }, + { + "start": 3858.24, + "end": 3859.52, + "probability": 0.9022 + }, + { + "start": 3860.72, + "end": 3864.32, + "probability": 0.9689 + }, + { + "start": 3865.02, + "end": 3867.06, + "probability": 0.8488 + }, + { + "start": 3871.46, + "end": 3872.0, + "probability": 0.4833 + }, + { + "start": 3872.06, + "end": 3874.38, + "probability": 0.9924 + }, + { + "start": 3874.56, + "end": 3877.02, + "probability": 0.8926 + }, + { + "start": 3882.58, + "end": 3885.78, + "probability": 0.8861 + }, + { + "start": 3887.38, + "end": 3891.98, + "probability": 0.9945 + }, + { + "start": 3893.86, + "end": 3898.56, + "probability": 0.9785 + }, + { + "start": 3899.08, + "end": 3899.76, + "probability": 0.731 + }, + { + "start": 3903.32, + "end": 3906.08, + "probability": 0.9897 + }, + { + "start": 3908.24, + "end": 3911.28, + "probability": 0.9919 + }, + { + "start": 3913.12, + "end": 3914.6, + "probability": 0.9961 + }, + { + "start": 3915.26, + "end": 3920.28, + "probability": 0.9932 + }, + { + "start": 3921.72, + "end": 3923.32, + "probability": 0.9976 + }, + { + "start": 3923.44, + "end": 3924.69, + "probability": 0.999 + }, + { + "start": 3925.74, + "end": 3930.26, + "probability": 0.9739 + }, + { + "start": 3931.96, + "end": 3933.72, + "probability": 0.8889 + }, + { + "start": 3936.14, + "end": 3937.88, + "probability": 0.9966 + }, + { + "start": 3938.58, + "end": 3939.44, + "probability": 0.7632 + }, + { + "start": 3940.38, + "end": 3942.98, + "probability": 0.957 + }, + { + "start": 3944.08, + "end": 3945.36, + "probability": 0.9645 + }, + { + "start": 3946.76, + "end": 3947.98, + "probability": 0.9968 + }, + { + "start": 3949.44, + "end": 3951.4, + "probability": 0.7193 + }, + { + "start": 3955.22, + "end": 3957.74, + "probability": 0.901 + }, + { + "start": 3958.98, + "end": 3961.46, + "probability": 0.9181 + }, + { + "start": 3961.96, + "end": 3962.86, + "probability": 0.8308 + }, + { + "start": 3964.84, + "end": 3967.57, + "probability": 0.7437 + }, + { + "start": 3969.28, + "end": 3972.08, + "probability": 0.9785 + }, + { + "start": 3973.72, + "end": 3975.68, + "probability": 0.9967 + }, + { + "start": 3978.14, + "end": 3980.04, + "probability": 0.878 + }, + { + "start": 3980.18, + "end": 3980.8, + "probability": 0.926 + }, + { + "start": 3981.16, + "end": 3982.02, + "probability": 0.9038 + }, + { + "start": 3982.08, + "end": 3983.36, + "probability": 0.9612 + }, + { + "start": 3984.42, + "end": 3985.05, + "probability": 0.0589 + }, + { + "start": 3987.58, + "end": 3989.8, + "probability": 0.7461 + }, + { + "start": 3998.9, + "end": 4000.06, + "probability": 0.6346 + }, + { + "start": 4000.14, + "end": 4001.7, + "probability": 0.8621 + }, + { + "start": 4002.5, + "end": 4004.58, + "probability": 0.8786 + }, + { + "start": 4005.24, + "end": 4006.1, + "probability": 0.9268 + }, + { + "start": 4006.58, + "end": 4007.24, + "probability": 0.9634 + }, + { + "start": 4007.36, + "end": 4007.74, + "probability": 0.9875 + }, + { + "start": 4007.84, + "end": 4008.44, + "probability": 0.9911 + }, + { + "start": 4008.46, + "end": 4009.04, + "probability": 0.9925 + }, + { + "start": 4009.48, + "end": 4010.08, + "probability": 0.7894 + }, + { + "start": 4010.54, + "end": 4012.12, + "probability": 0.6085 + }, + { + "start": 4012.24, + "end": 4012.88, + "probability": 0.733 + }, + { + "start": 4012.96, + "end": 4014.0, + "probability": 0.8238 + }, + { + "start": 4014.4, + "end": 4015.18, + "probability": 0.7454 + }, + { + "start": 4015.7, + "end": 4021.86, + "probability": 0.981 + }, + { + "start": 4022.42, + "end": 4022.8, + "probability": 0.5951 + }, + { + "start": 4022.9, + "end": 4023.48, + "probability": 0.7599 + }, + { + "start": 4023.62, + "end": 4026.2, + "probability": 0.9784 + }, + { + "start": 4026.2, + "end": 4029.18, + "probability": 0.8232 + }, + { + "start": 4031.78, + "end": 4033.86, + "probability": 0.9875 + }, + { + "start": 4034.82, + "end": 4035.32, + "probability": 0.8846 + }, + { + "start": 4036.18, + "end": 4037.26, + "probability": 0.9083 + }, + { + "start": 4038.8, + "end": 4041.34, + "probability": 0.9704 + }, + { + "start": 4044.34, + "end": 4044.9, + "probability": 0.9507 + }, + { + "start": 4045.6, + "end": 4046.16, + "probability": 0.7731 + }, + { + "start": 4047.24, + "end": 4048.52, + "probability": 0.9512 + }, + { + "start": 4049.2, + "end": 4049.62, + "probability": 0.7138 + }, + { + "start": 4050.78, + "end": 4051.23, + "probability": 0.6567 + }, + { + "start": 4055.04, + "end": 4057.1, + "probability": 0.9871 + }, + { + "start": 4058.02, + "end": 4058.4, + "probability": 0.8414 + }, + { + "start": 4059.44, + "end": 4060.32, + "probability": 0.8445 + }, + { + "start": 4060.52, + "end": 4065.02, + "probability": 0.9893 + }, + { + "start": 4065.7, + "end": 4067.02, + "probability": 0.8293 + }, + { + "start": 4067.76, + "end": 4072.2, + "probability": 0.9478 + }, + { + "start": 4072.98, + "end": 4075.28, + "probability": 0.938 + }, + { + "start": 4075.4, + "end": 4076.8, + "probability": 0.7737 + }, + { + "start": 4077.48, + "end": 4079.88, + "probability": 0.6976 + }, + { + "start": 4079.96, + "end": 4082.8, + "probability": 0.9707 + }, + { + "start": 4083.48, + "end": 4085.84, + "probability": 0.5596 + }, + { + "start": 4086.16, + "end": 4087.26, + "probability": 0.8245 + }, + { + "start": 4087.76, + "end": 4088.06, + "probability": 0.7353 + }, + { + "start": 4101.54, + "end": 4101.92, + "probability": 0.3808 + }, + { + "start": 4101.96, + "end": 4103.78, + "probability": 0.5937 + }, + { + "start": 4106.12, + "end": 4108.02, + "probability": 0.9937 + }, + { + "start": 4108.52, + "end": 4110.08, + "probability": 0.8468 + }, + { + "start": 4110.32, + "end": 4117.3, + "probability": 0.9376 + }, + { + "start": 4117.38, + "end": 4119.92, + "probability": 0.9749 + }, + { + "start": 4120.84, + "end": 4122.33, + "probability": 0.9331 + }, + { + "start": 4124.62, + "end": 4126.86, + "probability": 0.9751 + }, + { + "start": 4127.76, + "end": 4129.94, + "probability": 0.875 + }, + { + "start": 4132.12, + "end": 4136.24, + "probability": 0.9437 + }, + { + "start": 4136.3, + "end": 4138.78, + "probability": 0.9958 + }, + { + "start": 4141.08, + "end": 4147.64, + "probability": 0.982 + }, + { + "start": 4151.0, + "end": 4155.1, + "probability": 0.9767 + }, + { + "start": 4156.82, + "end": 4160.21, + "probability": 0.8461 + }, + { + "start": 4161.94, + "end": 4164.68, + "probability": 0.9714 + }, + { + "start": 4165.26, + "end": 4166.16, + "probability": 0.9559 + }, + { + "start": 4167.9, + "end": 4168.64, + "probability": 0.4048 + }, + { + "start": 4168.92, + "end": 4172.04, + "probability": 0.9961 + }, + { + "start": 4172.56, + "end": 4173.28, + "probability": 0.7558 + }, + { + "start": 4173.92, + "end": 4175.28, + "probability": 0.9556 + }, + { + "start": 4176.5, + "end": 4177.92, + "probability": 0.7056 + }, + { + "start": 4178.64, + "end": 4180.7, + "probability": 0.9888 + }, + { + "start": 4182.86, + "end": 4184.24, + "probability": 0.9634 + }, + { + "start": 4185.82, + "end": 4186.18, + "probability": 0.6709 + }, + { + "start": 4186.42, + "end": 4191.74, + "probability": 0.9797 + }, + { + "start": 4192.06, + "end": 4195.28, + "probability": 0.731 + }, + { + "start": 4196.16, + "end": 4198.2, + "probability": 0.958 + }, + { + "start": 4199.64, + "end": 4201.64, + "probability": 0.8929 + }, + { + "start": 4202.44, + "end": 4203.82, + "probability": 0.9799 + }, + { + "start": 4205.9, + "end": 4207.1, + "probability": 0.9757 + }, + { + "start": 4208.16, + "end": 4209.54, + "probability": 0.7652 + }, + { + "start": 4211.2, + "end": 4213.32, + "probability": 0.8838 + }, + { + "start": 4213.52, + "end": 4214.94, + "probability": 0.947 + }, + { + "start": 4215.94, + "end": 4217.68, + "probability": 0.9971 + }, + { + "start": 4218.72, + "end": 4219.96, + "probability": 0.9895 + }, + { + "start": 4221.18, + "end": 4221.7, + "probability": 0.8634 + }, + { + "start": 4222.06, + "end": 4225.14, + "probability": 0.9679 + }, + { + "start": 4225.38, + "end": 4226.96, + "probability": 0.9941 + }, + { + "start": 4227.58, + "end": 4229.66, + "probability": 0.9006 + }, + { + "start": 4231.58, + "end": 4238.6, + "probability": 0.9303 + }, + { + "start": 4238.78, + "end": 4240.32, + "probability": 0.9955 + }, + { + "start": 4240.44, + "end": 4240.76, + "probability": 0.4577 + }, + { + "start": 4241.18, + "end": 4241.72, + "probability": 0.8465 + }, + { + "start": 4241.92, + "end": 4243.3, + "probability": 0.9907 + }, + { + "start": 4244.26, + "end": 4248.82, + "probability": 0.9697 + }, + { + "start": 4249.58, + "end": 4250.46, + "probability": 0.7745 + }, + { + "start": 4251.06, + "end": 4254.0, + "probability": 0.9135 + }, + { + "start": 4255.86, + "end": 4257.4, + "probability": 0.9639 + }, + { + "start": 4258.76, + "end": 4261.36, + "probability": 0.9844 + }, + { + "start": 4263.28, + "end": 4265.02, + "probability": 0.794 + }, + { + "start": 4266.34, + "end": 4266.92, + "probability": 0.3881 + }, + { + "start": 4267.72, + "end": 4269.66, + "probability": 0.9774 + }, + { + "start": 4270.52, + "end": 4272.98, + "probability": 0.7737 + }, + { + "start": 4274.46, + "end": 4277.34, + "probability": 0.9504 + }, + { + "start": 4278.52, + "end": 4282.92, + "probability": 0.9917 + }, + { + "start": 4283.64, + "end": 4284.16, + "probability": 0.929 + }, + { + "start": 4285.76, + "end": 4288.19, + "probability": 0.9055 + }, + { + "start": 4289.3, + "end": 4292.38, + "probability": 0.958 + }, + { + "start": 4292.56, + "end": 4298.48, + "probability": 0.9351 + }, + { + "start": 4299.02, + "end": 4301.34, + "probability": 0.9275 + }, + { + "start": 4301.78, + "end": 4302.98, + "probability": 0.7212 + }, + { + "start": 4303.22, + "end": 4305.04, + "probability": 0.8588 + }, + { + "start": 4305.24, + "end": 4306.16, + "probability": 0.8427 + }, + { + "start": 4307.3, + "end": 4310.9, + "probability": 0.9174 + }, + { + "start": 4311.36, + "end": 4313.08, + "probability": 0.9311 + }, + { + "start": 4314.16, + "end": 4315.0, + "probability": 0.8133 + }, + { + "start": 4316.16, + "end": 4316.62, + "probability": 0.6186 + }, + { + "start": 4317.52, + "end": 4318.8, + "probability": 0.7007 + }, + { + "start": 4319.74, + "end": 4324.78, + "probability": 0.8632 + }, + { + "start": 4324.78, + "end": 4325.12, + "probability": 0.1424 + }, + { + "start": 4326.3, + "end": 4326.32, + "probability": 0.3345 + }, + { + "start": 4326.32, + "end": 4328.62, + "probability": 0.8404 + }, + { + "start": 4329.28, + "end": 4331.7, + "probability": 0.8641 + }, + { + "start": 4332.42, + "end": 4333.28, + "probability": 0.7848 + }, + { + "start": 4334.04, + "end": 4338.7, + "probability": 0.9006 + }, + { + "start": 4339.62, + "end": 4340.64, + "probability": 0.8508 + }, + { + "start": 4341.84, + "end": 4343.88, + "probability": 0.9922 + }, + { + "start": 4344.44, + "end": 4347.64, + "probability": 0.8712 + }, + { + "start": 4348.1, + "end": 4349.02, + "probability": 0.8696 + }, + { + "start": 4350.24, + "end": 4353.16, + "probability": 0.9899 + }, + { + "start": 4353.94, + "end": 4357.7, + "probability": 0.8479 + }, + { + "start": 4358.38, + "end": 4359.72, + "probability": 0.9528 + }, + { + "start": 4360.2, + "end": 4362.06, + "probability": 0.739 + }, + { + "start": 4362.2, + "end": 4362.74, + "probability": 0.8143 + }, + { + "start": 4363.14, + "end": 4364.24, + "probability": 0.8944 + }, + { + "start": 4364.5, + "end": 4367.04, + "probability": 0.8077 + }, + { + "start": 4368.06, + "end": 4369.46, + "probability": 0.9958 + }, + { + "start": 4370.14, + "end": 4373.82, + "probability": 0.9 + }, + { + "start": 4374.56, + "end": 4376.46, + "probability": 0.5649 + }, + { + "start": 4377.38, + "end": 4379.84, + "probability": 0.815 + }, + { + "start": 4381.22, + "end": 4384.1, + "probability": 0.9564 + }, + { + "start": 4384.62, + "end": 4385.6, + "probability": 0.9121 + }, + { + "start": 4386.58, + "end": 4389.22, + "probability": 0.7537 + }, + { + "start": 4390.3, + "end": 4392.66, + "probability": 0.8848 + }, + { + "start": 4393.22, + "end": 4394.68, + "probability": 0.9338 + }, + { + "start": 4395.06, + "end": 4397.76, + "probability": 0.9456 + }, + { + "start": 4397.93, + "end": 4402.06, + "probability": 0.7933 + }, + { + "start": 4402.86, + "end": 4405.06, + "probability": 0.9222 + }, + { + "start": 4405.96, + "end": 4407.26, + "probability": 0.3106 + }, + { + "start": 4407.88, + "end": 4412.45, + "probability": 0.997 + }, + { + "start": 4412.86, + "end": 4413.88, + "probability": 0.8535 + }, + { + "start": 4415.06, + "end": 4415.92, + "probability": 0.854 + }, + { + "start": 4417.12, + "end": 4420.13, + "probability": 0.9471 + }, + { + "start": 4421.12, + "end": 4422.46, + "probability": 0.6884 + }, + { + "start": 4423.3, + "end": 4426.54, + "probability": 0.9471 + }, + { + "start": 4429.04, + "end": 4433.62, + "probability": 0.9533 + }, + { + "start": 4433.84, + "end": 4435.32, + "probability": 0.8308 + }, + { + "start": 4435.36, + "end": 4435.94, + "probability": 0.944 + }, + { + "start": 4437.06, + "end": 4437.64, + "probability": 0.6673 + }, + { + "start": 4439.18, + "end": 4439.5, + "probability": 0.5111 + }, + { + "start": 4439.6, + "end": 4446.08, + "probability": 0.9003 + }, + { + "start": 4447.0, + "end": 4447.88, + "probability": 0.6867 + }, + { + "start": 4449.58, + "end": 4450.62, + "probability": 0.9034 + }, + { + "start": 4450.78, + "end": 4452.86, + "probability": 0.9579 + }, + { + "start": 4452.94, + "end": 4454.74, + "probability": 0.8881 + }, + { + "start": 4455.24, + "end": 4456.42, + "probability": 0.3567 + }, + { + "start": 4456.62, + "end": 4458.82, + "probability": 0.8539 + }, + { + "start": 4459.58, + "end": 4462.48, + "probability": 0.8594 + }, + { + "start": 4462.48, + "end": 4468.44, + "probability": 0.9487 + }, + { + "start": 4469.84, + "end": 4470.7, + "probability": 0.7294 + }, + { + "start": 4471.72, + "end": 4473.62, + "probability": 0.9475 + }, + { + "start": 4474.64, + "end": 4480.26, + "probability": 0.7748 + }, + { + "start": 4481.58, + "end": 4482.3, + "probability": 0.9291 + }, + { + "start": 4483.64, + "end": 4486.16, + "probability": 0.9911 + }, + { + "start": 4486.9, + "end": 4487.5, + "probability": 0.9484 + }, + { + "start": 4488.02, + "end": 4488.89, + "probability": 0.9385 + }, + { + "start": 4489.8, + "end": 4492.2, + "probability": 0.9805 + }, + { + "start": 4492.46, + "end": 4494.62, + "probability": 0.9746 + }, + { + "start": 4495.26, + "end": 4497.31, + "probability": 0.9946 + }, + { + "start": 4497.52, + "end": 4499.44, + "probability": 0.7473 + }, + { + "start": 4500.66, + "end": 4501.76, + "probability": 0.9184 + }, + { + "start": 4503.08, + "end": 4504.06, + "probability": 0.7705 + }, + { + "start": 4504.14, + "end": 4504.62, + "probability": 0.959 + }, + { + "start": 4504.84, + "end": 4506.2, + "probability": 0.7949 + }, + { + "start": 4506.32, + "end": 4506.62, + "probability": 0.8473 + }, + { + "start": 4507.74, + "end": 4510.94, + "probability": 0.9962 + }, + { + "start": 4512.0, + "end": 4512.28, + "probability": 0.7719 + }, + { + "start": 4512.38, + "end": 4514.06, + "probability": 0.9967 + }, + { + "start": 4514.18, + "end": 4518.1, + "probability": 0.9924 + }, + { + "start": 4519.7, + "end": 4520.72, + "probability": 0.8933 + }, + { + "start": 4521.84, + "end": 4523.18, + "probability": 0.8527 + }, + { + "start": 4523.36, + "end": 4524.34, + "probability": 0.9792 + }, + { + "start": 4524.44, + "end": 4525.5, + "probability": 0.7897 + }, + { + "start": 4525.62, + "end": 4526.4, + "probability": 0.5411 + }, + { + "start": 4527.86, + "end": 4530.76, + "probability": 0.9695 + }, + { + "start": 4532.3, + "end": 4534.46, + "probability": 0.8771 + }, + { + "start": 4535.06, + "end": 4536.2, + "probability": 0.9006 + }, + { + "start": 4537.16, + "end": 4538.4, + "probability": 0.7668 + }, + { + "start": 4538.5, + "end": 4539.6, + "probability": 0.8443 + }, + { + "start": 4539.72, + "end": 4540.76, + "probability": 0.8107 + }, + { + "start": 4541.02, + "end": 4541.7, + "probability": 0.7935 + }, + { + "start": 4542.74, + "end": 4545.36, + "probability": 0.9878 + }, + { + "start": 4546.6, + "end": 4548.3, + "probability": 0.9989 + }, + { + "start": 4550.14, + "end": 4550.72, + "probability": 0.8051 + }, + { + "start": 4551.64, + "end": 4553.56, + "probability": 0.9561 + }, + { + "start": 4554.66, + "end": 4556.62, + "probability": 0.9929 + }, + { + "start": 4557.38, + "end": 4562.46, + "probability": 0.9761 + }, + { + "start": 4562.62, + "end": 4566.1, + "probability": 0.9793 + }, + { + "start": 4567.1, + "end": 4571.26, + "probability": 0.9179 + }, + { + "start": 4571.76, + "end": 4576.3, + "probability": 0.9924 + }, + { + "start": 4576.9, + "end": 4579.9, + "probability": 0.8088 + }, + { + "start": 4582.18, + "end": 4583.04, + "probability": 0.651 + }, + { + "start": 4583.18, + "end": 4586.34, + "probability": 0.9673 + }, + { + "start": 4586.58, + "end": 4589.04, + "probability": 0.9964 + }, + { + "start": 4589.04, + "end": 4591.54, + "probability": 0.9456 + }, + { + "start": 4592.36, + "end": 4595.48, + "probability": 0.9305 + }, + { + "start": 4596.12, + "end": 4598.42, + "probability": 0.929 + }, + { + "start": 4599.82, + "end": 4601.54, + "probability": 0.8394 + }, + { + "start": 4602.52, + "end": 4603.34, + "probability": 0.9098 + }, + { + "start": 4604.0, + "end": 4605.36, + "probability": 0.9871 + }, + { + "start": 4606.28, + "end": 4607.4, + "probability": 0.843 + }, + { + "start": 4607.5, + "end": 4608.18, + "probability": 0.9854 + }, + { + "start": 4608.32, + "end": 4608.92, + "probability": 0.8754 + }, + { + "start": 4609.3, + "end": 4610.62, + "probability": 0.9756 + }, + { + "start": 4613.04, + "end": 4614.56, + "probability": 0.9843 + }, + { + "start": 4615.6, + "end": 4617.12, + "probability": 0.9995 + }, + { + "start": 4618.44, + "end": 4621.32, + "probability": 0.9984 + }, + { + "start": 4623.04, + "end": 4624.96, + "probability": 0.998 + }, + { + "start": 4626.18, + "end": 4628.79, + "probability": 0.9463 + }, + { + "start": 4629.44, + "end": 4634.02, + "probability": 0.9979 + }, + { + "start": 4634.26, + "end": 4635.02, + "probability": 0.9805 + }, + { + "start": 4635.76, + "end": 4641.12, + "probability": 0.8007 + }, + { + "start": 4642.02, + "end": 4646.26, + "probability": 0.9526 + }, + { + "start": 4646.9, + "end": 4647.94, + "probability": 0.9558 + }, + { + "start": 4648.04, + "end": 4648.9, + "probability": 0.8906 + }, + { + "start": 4648.98, + "end": 4649.68, + "probability": 0.8297 + }, + { + "start": 4649.78, + "end": 4650.34, + "probability": 0.7468 + }, + { + "start": 4651.2, + "end": 4653.78, + "probability": 0.9508 + }, + { + "start": 4654.1, + "end": 4654.1, + "probability": 0.0551 + }, + { + "start": 4654.1, + "end": 4659.2, + "probability": 0.9148 + }, + { + "start": 4659.96, + "end": 4660.63, + "probability": 0.9971 + }, + { + "start": 4662.1, + "end": 4663.08, + "probability": 0.8982 + }, + { + "start": 4664.4, + "end": 4665.84, + "probability": 0.6666 + }, + { + "start": 4667.38, + "end": 4670.52, + "probability": 0.9662 + }, + { + "start": 4671.52, + "end": 4673.88, + "probability": 0.9722 + }, + { + "start": 4675.3, + "end": 4676.12, + "probability": 0.9217 + }, + { + "start": 4677.5, + "end": 4677.88, + "probability": 0.5511 + }, + { + "start": 4678.02, + "end": 4678.68, + "probability": 0.7702 + }, + { + "start": 4679.12, + "end": 4679.96, + "probability": 0.9224 + }, + { + "start": 4680.06, + "end": 4681.96, + "probability": 0.9956 + }, + { + "start": 4682.42, + "end": 4682.5, + "probability": 0.3136 + }, + { + "start": 4682.56, + "end": 4682.74, + "probability": 0.8418 + }, + { + "start": 4683.2, + "end": 4684.2, + "probability": 0.9222 + }, + { + "start": 4684.36, + "end": 4684.6, + "probability": 0.738 + }, + { + "start": 4685.0, + "end": 4685.9, + "probability": 0.9647 + }, + { + "start": 4686.52, + "end": 4688.26, + "probability": 0.9867 + }, + { + "start": 4689.08, + "end": 4691.1, + "probability": 0.9724 + }, + { + "start": 4691.72, + "end": 4692.54, + "probability": 0.9807 + }, + { + "start": 4694.1, + "end": 4696.4, + "probability": 0.9882 + }, + { + "start": 4696.4, + "end": 4699.72, + "probability": 0.9985 + }, + { + "start": 4700.96, + "end": 4702.64, + "probability": 0.9924 + }, + { + "start": 4702.72, + "end": 4704.04, + "probability": 0.9541 + }, + { + "start": 4704.26, + "end": 4704.76, + "probability": 0.6127 + }, + { + "start": 4706.06, + "end": 4708.42, + "probability": 0.9438 + }, + { + "start": 4709.26, + "end": 4710.8, + "probability": 0.9822 + }, + { + "start": 4711.92, + "end": 4712.22, + "probability": 0.8452 + }, + { + "start": 4712.94, + "end": 4717.0, + "probability": 0.9932 + }, + { + "start": 4718.6, + "end": 4719.16, + "probability": 0.6311 + }, + { + "start": 4719.24, + "end": 4721.76, + "probability": 0.8567 + }, + { + "start": 4721.98, + "end": 4724.28, + "probability": 0.8699 + }, + { + "start": 4725.36, + "end": 4730.0, + "probability": 0.9353 + }, + { + "start": 4730.66, + "end": 4732.18, + "probability": 0.5645 + }, + { + "start": 4733.12, + "end": 4733.74, + "probability": 0.8676 + }, + { + "start": 4734.14, + "end": 4735.42, + "probability": 0.8909 + }, + { + "start": 4735.56, + "end": 4737.84, + "probability": 0.9741 + }, + { + "start": 4738.84, + "end": 4740.14, + "probability": 0.5531 + }, + { + "start": 4740.14, + "end": 4744.2, + "probability": 0.9845 + }, + { + "start": 4744.7, + "end": 4745.7, + "probability": 0.6218 + }, + { + "start": 4746.52, + "end": 4748.62, + "probability": 0.7832 + }, + { + "start": 4748.98, + "end": 4750.65, + "probability": 0.994 + }, + { + "start": 4751.68, + "end": 4752.9, + "probability": 0.9508 + }, + { + "start": 4754.04, + "end": 4755.94, + "probability": 0.9943 + }, + { + "start": 4756.46, + "end": 4758.92, + "probability": 0.9976 + }, + { + "start": 4759.58, + "end": 4761.12, + "probability": 0.6729 + }, + { + "start": 4763.36, + "end": 4765.24, + "probability": 0.9825 + }, + { + "start": 4767.9, + "end": 4769.04, + "probability": 0.8964 + }, + { + "start": 4769.92, + "end": 4770.36, + "probability": 0.9202 + }, + { + "start": 4771.26, + "end": 4772.98, + "probability": 0.9453 + }, + { + "start": 4774.02, + "end": 4775.14, + "probability": 0.9002 + }, + { + "start": 4775.64, + "end": 4777.98, + "probability": 0.9036 + }, + { + "start": 4779.06, + "end": 4779.88, + "probability": 0.8593 + }, + { + "start": 4780.54, + "end": 4781.6, + "probability": 0.9244 + }, + { + "start": 4782.46, + "end": 4784.36, + "probability": 0.8958 + }, + { + "start": 4785.54, + "end": 4788.76, + "probability": 0.8547 + }, + { + "start": 4789.54, + "end": 4790.2, + "probability": 0.8094 + }, + { + "start": 4790.36, + "end": 4794.02, + "probability": 0.7472 + }, + { + "start": 4794.56, + "end": 4794.78, + "probability": 0.756 + }, + { + "start": 4796.7, + "end": 4798.76, + "probability": 0.6996 + }, + { + "start": 4799.54, + "end": 4804.64, + "probability": 0.4739 + }, + { + "start": 4804.8, + "end": 4806.04, + "probability": 0.9008 + }, + { + "start": 4807.1, + "end": 4807.82, + "probability": 0.8792 + }, + { + "start": 4808.72, + "end": 4811.52, + "probability": 0.955 + }, + { + "start": 4813.38, + "end": 4816.0, + "probability": 0.9332 + }, + { + "start": 4816.66, + "end": 4817.9, + "probability": 0.334 + }, + { + "start": 4833.82, + "end": 4834.18, + "probability": 0.2958 + }, + { + "start": 4834.18, + "end": 4834.86, + "probability": 0.5926 + }, + { + "start": 4835.88, + "end": 4837.36, + "probability": 0.9102 + }, + { + "start": 4838.36, + "end": 4843.04, + "probability": 0.6133 + }, + { + "start": 4844.88, + "end": 4845.46, + "probability": 0.8936 + }, + { + "start": 4847.04, + "end": 4849.32, + "probability": 0.9296 + }, + { + "start": 4850.48, + "end": 4851.94, + "probability": 0.9965 + }, + { + "start": 4853.18, + "end": 4854.74, + "probability": 0.9533 + }, + { + "start": 4855.32, + "end": 4857.0, + "probability": 0.8076 + }, + { + "start": 4858.06, + "end": 4861.54, + "probability": 0.9758 + }, + { + "start": 4863.5, + "end": 4865.65, + "probability": 0.8637 + }, + { + "start": 4867.8, + "end": 4870.66, + "probability": 0.9217 + }, + { + "start": 4871.22, + "end": 4872.62, + "probability": 0.8027 + }, + { + "start": 4874.26, + "end": 4875.58, + "probability": 0.9919 + }, + { + "start": 4878.54, + "end": 4879.78, + "probability": 0.995 + }, + { + "start": 4880.72, + "end": 4883.08, + "probability": 0.9989 + }, + { + "start": 4885.02, + "end": 4885.54, + "probability": 0.7217 + }, + { + "start": 4886.3, + "end": 4887.14, + "probability": 0.7301 + }, + { + "start": 4887.92, + "end": 4889.7, + "probability": 0.9863 + }, + { + "start": 4891.64, + "end": 4896.62, + "probability": 0.9981 + }, + { + "start": 4898.02, + "end": 4902.14, + "probability": 0.994 + }, + { + "start": 4903.2, + "end": 4905.38, + "probability": 0.85 + }, + { + "start": 4906.0, + "end": 4908.61, + "probability": 0.8809 + }, + { + "start": 4910.52, + "end": 4914.04, + "probability": 0.9138 + }, + { + "start": 4914.78, + "end": 4917.16, + "probability": 0.9585 + }, + { + "start": 4918.18, + "end": 4918.58, + "probability": 0.7515 + }, + { + "start": 4919.02, + "end": 4919.54, + "probability": 0.6772 + }, + { + "start": 4919.78, + "end": 4920.54, + "probability": 0.8492 + }, + { + "start": 4920.74, + "end": 4920.94, + "probability": 0.4953 + }, + { + "start": 4921.36, + "end": 4921.72, + "probability": 0.86 + }, + { + "start": 4922.68, + "end": 4923.22, + "probability": 0.925 + }, + { + "start": 4924.06, + "end": 4927.18, + "probability": 0.8334 + }, + { + "start": 4927.72, + "end": 4928.5, + "probability": 0.8102 + }, + { + "start": 4929.68, + "end": 4932.1, + "probability": 0.9106 + }, + { + "start": 4934.06, + "end": 4936.4, + "probability": 0.9759 + }, + { + "start": 4937.82, + "end": 4939.16, + "probability": 0.6369 + }, + { + "start": 4939.64, + "end": 4941.02, + "probability": 0.7705 + }, + { + "start": 4941.06, + "end": 4943.32, + "probability": 0.9939 + }, + { + "start": 4943.98, + "end": 4945.14, + "probability": 0.7953 + }, + { + "start": 4946.5, + "end": 4948.74, + "probability": 0.9636 + }, + { + "start": 4950.54, + "end": 4954.6, + "probability": 0.9413 + }, + { + "start": 4955.1, + "end": 4957.82, + "probability": 0.8937 + }, + { + "start": 4958.76, + "end": 4959.18, + "probability": 0.9153 + }, + { + "start": 4960.06, + "end": 4960.28, + "probability": 0.8369 + }, + { + "start": 4960.94, + "end": 4961.46, + "probability": 0.837 + }, + { + "start": 4962.38, + "end": 4964.38, + "probability": 0.7286 + }, + { + "start": 4964.98, + "end": 4968.12, + "probability": 0.965 + }, + { + "start": 4970.26, + "end": 4971.96, + "probability": 0.9849 + }, + { + "start": 4972.64, + "end": 4973.8, + "probability": 0.9447 + }, + { + "start": 4974.94, + "end": 4975.73, + "probability": 0.9785 + }, + { + "start": 4975.78, + "end": 4976.72, + "probability": 0.5439 + }, + { + "start": 4976.84, + "end": 4977.24, + "probability": 0.8052 + }, + { + "start": 4977.28, + "end": 4981.28, + "probability": 0.9893 + }, + { + "start": 4981.8, + "end": 4985.66, + "probability": 0.9424 + }, + { + "start": 4985.96, + "end": 4988.78, + "probability": 0.9937 + }, + { + "start": 4989.48, + "end": 4990.24, + "probability": 0.769 + }, + { + "start": 4990.88, + "end": 4992.1, + "probability": 0.8931 + }, + { + "start": 4992.58, + "end": 4998.02, + "probability": 0.9766 + }, + { + "start": 4999.12, + "end": 5004.98, + "probability": 0.9976 + }, + { + "start": 5005.98, + "end": 5009.94, + "probability": 0.8973 + }, + { + "start": 5011.16, + "end": 5012.08, + "probability": 0.7982 + }, + { + "start": 5012.64, + "end": 5014.5, + "probability": 0.8324 + }, + { + "start": 5015.68, + "end": 5019.42, + "probability": 0.92 + }, + { + "start": 5020.06, + "end": 5020.86, + "probability": 0.7224 + }, + { + "start": 5022.06, + "end": 5026.14, + "probability": 0.9724 + }, + { + "start": 5026.14, + "end": 5029.48, + "probability": 0.769 + }, + { + "start": 5030.08, + "end": 5031.04, + "probability": 0.999 + }, + { + "start": 5031.92, + "end": 5032.94, + "probability": 0.9198 + }, + { + "start": 5033.7, + "end": 5034.56, + "probability": 0.9839 + }, + { + "start": 5035.42, + "end": 5038.76, + "probability": 0.9408 + }, + { + "start": 5039.54, + "end": 5042.44, + "probability": 0.9658 + }, + { + "start": 5043.0, + "end": 5045.16, + "probability": 0.828 + }, + { + "start": 5046.36, + "end": 5047.1, + "probability": 0.7286 + }, + { + "start": 5047.62, + "end": 5049.98, + "probability": 0.843 + }, + { + "start": 5050.84, + "end": 5052.08, + "probability": 0.9691 + }, + { + "start": 5052.34, + "end": 5053.98, + "probability": 0.9956 + }, + { + "start": 5054.58, + "end": 5058.94, + "probability": 0.9688 + }, + { + "start": 5058.94, + "end": 5062.14, + "probability": 0.9679 + }, + { + "start": 5062.84, + "end": 5065.66, + "probability": 0.9931 + }, + { + "start": 5066.08, + "end": 5067.08, + "probability": 0.9818 + }, + { + "start": 5067.6, + "end": 5068.18, + "probability": 0.5698 + }, + { + "start": 5068.54, + "end": 5069.2, + "probability": 0.7852 + }, + { + "start": 5069.64, + "end": 5077.38, + "probability": 0.9939 + }, + { + "start": 5077.44, + "end": 5077.86, + "probability": 0.7595 + }, + { + "start": 5079.08, + "end": 5080.26, + "probability": 0.9917 + }, + { + "start": 5082.0, + "end": 5083.38, + "probability": 0.9157 + }, + { + "start": 5084.6, + "end": 5085.38, + "probability": 0.657 + }, + { + "start": 5085.46, + "end": 5086.58, + "probability": 0.8641 + }, + { + "start": 5090.82, + "end": 5092.4, + "probability": 0.9199 + }, + { + "start": 5109.12, + "end": 5110.96, + "probability": 0.6656 + }, + { + "start": 5112.68, + "end": 5115.92, + "probability": 0.906 + }, + { + "start": 5117.54, + "end": 5118.0, + "probability": 0.8487 + }, + { + "start": 5118.08, + "end": 5125.18, + "probability": 0.8538 + }, + { + "start": 5125.32, + "end": 5127.44, + "probability": 0.9611 + }, + { + "start": 5128.76, + "end": 5131.04, + "probability": 0.8246 + }, + { + "start": 5132.5, + "end": 5133.06, + "probability": 0.6133 + }, + { + "start": 5134.04, + "end": 5135.4, + "probability": 0.7107 + }, + { + "start": 5136.0, + "end": 5137.76, + "probability": 0.9939 + }, + { + "start": 5138.42, + "end": 5139.08, + "probability": 0.8892 + }, + { + "start": 5139.7, + "end": 5141.8, + "probability": 0.9287 + }, + { + "start": 5145.5, + "end": 5148.02, + "probability": 0.9944 + }, + { + "start": 5149.2, + "end": 5153.48, + "probability": 0.9993 + }, + { + "start": 5153.62, + "end": 5154.4, + "probability": 0.6912 + }, + { + "start": 5154.5, + "end": 5155.52, + "probability": 0.7415 + }, + { + "start": 5156.54, + "end": 5158.32, + "probability": 0.9969 + }, + { + "start": 5159.02, + "end": 5160.12, + "probability": 0.7755 + }, + { + "start": 5161.02, + "end": 5162.84, + "probability": 0.9893 + }, + { + "start": 5163.82, + "end": 5166.74, + "probability": 0.9799 + }, + { + "start": 5167.48, + "end": 5168.04, + "probability": 0.9636 + }, + { + "start": 5169.76, + "end": 5174.0, + "probability": 0.9617 + }, + { + "start": 5174.82, + "end": 5176.48, + "probability": 0.9665 + }, + { + "start": 5177.6, + "end": 5178.4, + "probability": 0.9886 + }, + { + "start": 5178.52, + "end": 5179.06, + "probability": 0.7888 + }, + { + "start": 5179.12, + "end": 5179.66, + "probability": 0.6543 + }, + { + "start": 5179.76, + "end": 5186.12, + "probability": 0.9499 + }, + { + "start": 5186.12, + "end": 5187.88, + "probability": 0.9404 + }, + { + "start": 5188.28, + "end": 5188.52, + "probability": 0.6066 + }, + { + "start": 5189.66, + "end": 5190.96, + "probability": 0.0313 + }, + { + "start": 5191.58, + "end": 5191.64, + "probability": 0.4624 + }, + { + "start": 5191.64, + "end": 5195.0, + "probability": 0.9247 + }, + { + "start": 5195.32, + "end": 5196.94, + "probability": 0.8387 + }, + { + "start": 5197.56, + "end": 5198.14, + "probability": 0.5836 + }, + { + "start": 5199.24, + "end": 5200.32, + "probability": 0.9531 + }, + { + "start": 5200.46, + "end": 5200.88, + "probability": 0.812 + }, + { + "start": 5201.48, + "end": 5202.44, + "probability": 0.7283 + }, + { + "start": 5202.56, + "end": 5205.46, + "probability": 0.9403 + }, + { + "start": 5205.9, + "end": 5206.49, + "probability": 0.969 + }, + { + "start": 5206.72, + "end": 5206.9, + "probability": 0.9575 + }, + { + "start": 5207.84, + "end": 5213.0, + "probability": 0.8682 + }, + { + "start": 5213.8, + "end": 5214.39, + "probability": 0.3738 + }, + { + "start": 5215.22, + "end": 5217.7, + "probability": 0.9658 + }, + { + "start": 5218.52, + "end": 5219.54, + "probability": 0.9085 + }, + { + "start": 5220.18, + "end": 5221.98, + "probability": 0.8625 + }, + { + "start": 5222.42, + "end": 5225.32, + "probability": 0.9168 + }, + { + "start": 5225.68, + "end": 5228.3, + "probability": 0.9696 + }, + { + "start": 5228.4, + "end": 5229.46, + "probability": 0.9749 + }, + { + "start": 5229.82, + "end": 5231.26, + "probability": 0.8831 + }, + { + "start": 5231.8, + "end": 5233.6, + "probability": 0.4504 + }, + { + "start": 5233.84, + "end": 5234.92, + "probability": 0.7535 + }, + { + "start": 5234.96, + "end": 5235.68, + "probability": 0.398 + }, + { + "start": 5235.68, + "end": 5243.08, + "probability": 0.8017 + }, + { + "start": 5244.16, + "end": 5244.5, + "probability": 0.188 + }, + { + "start": 5244.5, + "end": 5248.4, + "probability": 0.9936 + }, + { + "start": 5248.49, + "end": 5252.8, + "probability": 0.9885 + }, + { + "start": 5252.98, + "end": 5254.14, + "probability": 0.5076 + }, + { + "start": 5254.14, + "end": 5256.14, + "probability": 0.7212 + }, + { + "start": 5256.72, + "end": 5259.28, + "probability": 0.6652 + }, + { + "start": 5260.06, + "end": 5260.66, + "probability": 0.6155 + }, + { + "start": 5261.58, + "end": 5262.2, + "probability": 0.563 + }, + { + "start": 5262.8, + "end": 5263.08, + "probability": 0.1323 + }, + { + "start": 5263.44, + "end": 5265.02, + "probability": 0.9905 + }, + { + "start": 5265.08, + "end": 5267.08, + "probability": 0.9458 + }, + { + "start": 5267.5, + "end": 5272.04, + "probability": 0.9941 + }, + { + "start": 5272.28, + "end": 5273.92, + "probability": 0.964 + }, + { + "start": 5275.02, + "end": 5279.14, + "probability": 0.9636 + }, + { + "start": 5279.94, + "end": 5282.9, + "probability": 0.7738 + }, + { + "start": 5283.54, + "end": 5284.16, + "probability": 0.7018 + }, + { + "start": 5285.56, + "end": 5286.92, + "probability": 0.916 + }, + { + "start": 5287.64, + "end": 5293.84, + "probability": 0.8992 + }, + { + "start": 5294.4, + "end": 5297.24, + "probability": 0.9674 + }, + { + "start": 5297.92, + "end": 5301.93, + "probability": 0.6644 + }, + { + "start": 5303.2, + "end": 5304.66, + "probability": 0.8571 + }, + { + "start": 5305.24, + "end": 5306.36, + "probability": 0.8777 + }, + { + "start": 5306.72, + "end": 5307.6, + "probability": 0.9019 + }, + { + "start": 5308.02, + "end": 5309.59, + "probability": 0.9932 + }, + { + "start": 5310.84, + "end": 5311.8, + "probability": 0.9904 + }, + { + "start": 5312.58, + "end": 5314.92, + "probability": 0.6861 + }, + { + "start": 5315.96, + "end": 5317.52, + "probability": 0.8772 + }, + { + "start": 5318.78, + "end": 5320.86, + "probability": 0.9958 + }, + { + "start": 5321.48, + "end": 5324.34, + "probability": 0.9946 + }, + { + "start": 5325.52, + "end": 5330.21, + "probability": 0.8831 + }, + { + "start": 5330.32, + "end": 5332.75, + "probability": 0.8809 + }, + { + "start": 5333.82, + "end": 5335.98, + "probability": 0.8107 + }, + { + "start": 5337.38, + "end": 5341.8, + "probability": 0.9556 + }, + { + "start": 5342.5, + "end": 5343.26, + "probability": 0.7854 + }, + { + "start": 5344.42, + "end": 5346.76, + "probability": 0.9801 + }, + { + "start": 5347.5, + "end": 5349.62, + "probability": 0.9901 + }, + { + "start": 5349.9, + "end": 5351.08, + "probability": 0.7295 + }, + { + "start": 5351.48, + "end": 5351.86, + "probability": 0.6075 + }, + { + "start": 5351.92, + "end": 5352.28, + "probability": 0.5526 + }, + { + "start": 5352.3, + "end": 5356.44, + "probability": 0.939 + }, + { + "start": 5356.44, + "end": 5361.04, + "probability": 0.9783 + }, + { + "start": 5361.22, + "end": 5363.08, + "probability": 0.8807 + }, + { + "start": 5363.6, + "end": 5365.38, + "probability": 0.9233 + }, + { + "start": 5366.28, + "end": 5367.28, + "probability": 0.9874 + }, + { + "start": 5367.38, + "end": 5371.96, + "probability": 0.9578 + }, + { + "start": 5372.54, + "end": 5372.96, + "probability": 0.8903 + }, + { + "start": 5375.67, + "end": 5378.56, + "probability": 0.5377 + }, + { + "start": 5378.64, + "end": 5381.82, + "probability": 0.9626 + }, + { + "start": 5384.04, + "end": 5385.34, + "probability": 0.9535 + }, + { + "start": 5401.86, + "end": 5402.4, + "probability": 0.4452 + }, + { + "start": 5402.66, + "end": 5403.58, + "probability": 0.6829 + }, + { + "start": 5404.0, + "end": 5406.98, + "probability": 0.9965 + }, + { + "start": 5407.94, + "end": 5412.76, + "probability": 0.998 + }, + { + "start": 5412.76, + "end": 5416.22, + "probability": 0.9987 + }, + { + "start": 5417.02, + "end": 5421.78, + "probability": 0.9967 + }, + { + "start": 5421.78, + "end": 5426.32, + "probability": 0.999 + }, + { + "start": 5427.24, + "end": 5428.16, + "probability": 0.7428 + }, + { + "start": 5428.8, + "end": 5429.96, + "probability": 0.948 + }, + { + "start": 5430.6, + "end": 5434.28, + "probability": 0.9931 + }, + { + "start": 5435.02, + "end": 5437.98, + "probability": 0.6953 + }, + { + "start": 5438.52, + "end": 5439.94, + "probability": 0.9479 + }, + { + "start": 5441.02, + "end": 5444.22, + "probability": 0.9699 + }, + { + "start": 5444.58, + "end": 5447.46, + "probability": 0.9961 + }, + { + "start": 5447.46, + "end": 5450.98, + "probability": 0.9929 + }, + { + "start": 5451.14, + "end": 5453.24, + "probability": 0.9738 + }, + { + "start": 5454.0, + "end": 5456.9, + "probability": 0.997 + }, + { + "start": 5457.86, + "end": 5461.9, + "probability": 0.9976 + }, + { + "start": 5462.46, + "end": 5466.36, + "probability": 0.9783 + }, + { + "start": 5466.36, + "end": 5469.66, + "probability": 0.9864 + }, + { + "start": 5469.96, + "end": 5472.44, + "probability": 0.9993 + }, + { + "start": 5472.8, + "end": 5474.14, + "probability": 0.9314 + }, + { + "start": 5474.68, + "end": 5475.74, + "probability": 0.9954 + }, + { + "start": 5476.42, + "end": 5478.24, + "probability": 0.9961 + }, + { + "start": 5478.42, + "end": 5479.97, + "probability": 0.9954 + }, + { + "start": 5480.72, + "end": 5482.9, + "probability": 0.979 + }, + { + "start": 5483.36, + "end": 5485.68, + "probability": 0.9905 + }, + { + "start": 5486.18, + "end": 5487.84, + "probability": 0.8727 + }, + { + "start": 5489.14, + "end": 5490.48, + "probability": 0.7994 + }, + { + "start": 5490.56, + "end": 5491.72, + "probability": 0.9874 + }, + { + "start": 5492.04, + "end": 5493.02, + "probability": 0.8081 + }, + { + "start": 5493.4, + "end": 5497.46, + "probability": 0.975 + }, + { + "start": 5498.0, + "end": 5499.28, + "probability": 0.9481 + }, + { + "start": 5499.32, + "end": 5502.58, + "probability": 0.9978 + }, + { + "start": 5502.58, + "end": 5506.36, + "probability": 0.9808 + }, + { + "start": 5507.12, + "end": 5508.94, + "probability": 0.9963 + }, + { + "start": 5509.1, + "end": 5514.4, + "probability": 0.9933 + }, + { + "start": 5514.4, + "end": 5519.96, + "probability": 0.9993 + }, + { + "start": 5520.44, + "end": 5524.1, + "probability": 0.9541 + }, + { + "start": 5524.78, + "end": 5528.71, + "probability": 0.9695 + }, + { + "start": 5530.08, + "end": 5534.02, + "probability": 0.8307 + }, + { + "start": 5534.66, + "end": 5537.06, + "probability": 0.999 + }, + { + "start": 5537.14, + "end": 5539.52, + "probability": 0.9912 + }, + { + "start": 5540.36, + "end": 5544.2, + "probability": 0.9012 + }, + { + "start": 5544.2, + "end": 5548.6, + "probability": 0.9956 + }, + { + "start": 5548.8, + "end": 5549.78, + "probability": 0.6276 + }, + { + "start": 5550.36, + "end": 5552.74, + "probability": 0.8576 + }, + { + "start": 5553.16, + "end": 5558.38, + "probability": 0.9253 + }, + { + "start": 5558.42, + "end": 5560.6, + "probability": 0.9735 + }, + { + "start": 5561.22, + "end": 5564.2, + "probability": 0.9978 + }, + { + "start": 5564.8, + "end": 5566.14, + "probability": 0.9951 + }, + { + "start": 5566.76, + "end": 5568.64, + "probability": 0.5451 + }, + { + "start": 5568.84, + "end": 5571.26, + "probability": 0.9334 + }, + { + "start": 5571.94, + "end": 5573.06, + "probability": 0.9784 + }, + { + "start": 5573.16, + "end": 5574.26, + "probability": 0.9156 + }, + { + "start": 5574.68, + "end": 5576.18, + "probability": 0.9824 + }, + { + "start": 5576.3, + "end": 5578.48, + "probability": 0.9609 + }, + { + "start": 5579.16, + "end": 5579.91, + "probability": 0.8408 + }, + { + "start": 5580.08, + "end": 5584.66, + "probability": 0.9849 + }, + { + "start": 5585.26, + "end": 5586.22, + "probability": 0.6929 + }, + { + "start": 5586.84, + "end": 5587.76, + "probability": 0.9644 + }, + { + "start": 5588.32, + "end": 5591.14, + "probability": 0.8339 + }, + { + "start": 5591.52, + "end": 5593.34, + "probability": 0.8439 + }, + { + "start": 5594.12, + "end": 5597.28, + "probability": 0.9782 + }, + { + "start": 5597.96, + "end": 5598.16, + "probability": 0.9201 + }, + { + "start": 5598.78, + "end": 5599.02, + "probability": 0.3564 + }, + { + "start": 5599.16, + "end": 5602.62, + "probability": 0.9108 + }, + { + "start": 5602.88, + "end": 5603.7, + "probability": 0.8101 + }, + { + "start": 5604.04, + "end": 5605.7, + "probability": 0.6282 + }, + { + "start": 5605.9, + "end": 5606.9, + "probability": 0.9027 + }, + { + "start": 5607.28, + "end": 5608.68, + "probability": 0.9513 + }, + { + "start": 5609.2, + "end": 5615.1, + "probability": 0.9482 + }, + { + "start": 5615.56, + "end": 5616.36, + "probability": 0.8173 + }, + { + "start": 5616.46, + "end": 5617.41, + "probability": 0.8783 + }, + { + "start": 5618.42, + "end": 5619.84, + "probability": 0.9775 + }, + { + "start": 5620.36, + "end": 5622.32, + "probability": 0.9734 + }, + { + "start": 5622.96, + "end": 5625.12, + "probability": 0.9926 + }, + { + "start": 5625.82, + "end": 5630.46, + "probability": 0.9456 + }, + { + "start": 5631.24, + "end": 5634.72, + "probability": 0.997 + }, + { + "start": 5634.88, + "end": 5635.26, + "probability": 0.8316 + }, + { + "start": 5635.78, + "end": 5639.48, + "probability": 0.9923 + }, + { + "start": 5639.6, + "end": 5640.26, + "probability": 0.7684 + }, + { + "start": 5640.8, + "end": 5642.02, + "probability": 0.9126 + }, + { + "start": 5642.34, + "end": 5643.68, + "probability": 0.588 + }, + { + "start": 5644.14, + "end": 5648.0, + "probability": 0.9961 + }, + { + "start": 5649.02, + "end": 5653.8, + "probability": 0.9686 + }, + { + "start": 5654.18, + "end": 5656.86, + "probability": 0.9095 + }, + { + "start": 5657.52, + "end": 5658.08, + "probability": 0.7983 + }, + { + "start": 5658.52, + "end": 5659.22, + "probability": 0.7466 + }, + { + "start": 5659.34, + "end": 5664.38, + "probability": 0.9927 + }, + { + "start": 5665.04, + "end": 5666.18, + "probability": 0.5269 + }, + { + "start": 5666.26, + "end": 5668.08, + "probability": 0.9731 + }, + { + "start": 5669.02, + "end": 5672.74, + "probability": 0.8299 + }, + { + "start": 5672.8, + "end": 5674.98, + "probability": 0.8927 + }, + { + "start": 5675.04, + "end": 5676.0, + "probability": 0.9183 + }, + { + "start": 5676.58, + "end": 5677.36, + "probability": 0.7432 + }, + { + "start": 5677.79, + "end": 5682.24, + "probability": 0.9907 + }, + { + "start": 5683.58, + "end": 5683.9, + "probability": 0.2624 + }, + { + "start": 5683.94, + "end": 5684.84, + "probability": 0.8356 + }, + { + "start": 5685.6, + "end": 5686.6, + "probability": 0.955 + }, + { + "start": 5687.38, + "end": 5688.26, + "probability": 0.8622 + }, + { + "start": 5688.84, + "end": 5690.5, + "probability": 0.9167 + }, + { + "start": 5690.68, + "end": 5693.2, + "probability": 0.9029 + }, + { + "start": 5693.64, + "end": 5697.14, + "probability": 0.9756 + }, + { + "start": 5697.76, + "end": 5699.48, + "probability": 0.9976 + }, + { + "start": 5699.52, + "end": 5700.76, + "probability": 0.9683 + }, + { + "start": 5700.98, + "end": 5702.58, + "probability": 0.9628 + }, + { + "start": 5702.88, + "end": 5704.14, + "probability": 0.9088 + }, + { + "start": 5705.14, + "end": 5709.58, + "probability": 0.9858 + }, + { + "start": 5710.56, + "end": 5712.98, + "probability": 0.5161 + }, + { + "start": 5714.64, + "end": 5716.84, + "probability": 0.9566 + }, + { + "start": 5716.94, + "end": 5717.48, + "probability": 0.5004 + }, + { + "start": 5717.74, + "end": 5719.42, + "probability": 0.8286 + }, + { + "start": 5721.76, + "end": 5722.32, + "probability": 0.1988 + }, + { + "start": 5722.32, + "end": 5724.28, + "probability": 0.65 + }, + { + "start": 5725.04, + "end": 5727.62, + "probability": 0.9902 + }, + { + "start": 5727.62, + "end": 5729.9, + "probability": 0.8942 + }, + { + "start": 5730.44, + "end": 5732.0, + "probability": 0.9862 + }, + { + "start": 5733.14, + "end": 5738.23, + "probability": 0.7227 + }, + { + "start": 5738.74, + "end": 5743.57, + "probability": 0.9977 + }, + { + "start": 5744.24, + "end": 5746.22, + "probability": 0.9875 + }, + { + "start": 5746.66, + "end": 5746.94, + "probability": 0.8199 + }, + { + "start": 5747.68, + "end": 5749.68, + "probability": 0.6829 + }, + { + "start": 5749.68, + "end": 5751.0, + "probability": 0.8073 + }, + { + "start": 5752.5, + "end": 5756.54, + "probability": 0.9656 + }, + { + "start": 5774.54, + "end": 5777.8, + "probability": 0.9887 + }, + { + "start": 5778.92, + "end": 5780.54, + "probability": 0.9653 + }, + { + "start": 5780.9, + "end": 5782.4, + "probability": 0.7636 + }, + { + "start": 5783.8, + "end": 5785.38, + "probability": 0.8633 + }, + { + "start": 5786.66, + "end": 5790.58, + "probability": 0.9238 + }, + { + "start": 5790.8, + "end": 5791.9, + "probability": 0.8613 + }, + { + "start": 5793.44, + "end": 5796.84, + "probability": 0.8657 + }, + { + "start": 5799.24, + "end": 5800.78, + "probability": 0.8586 + }, + { + "start": 5801.86, + "end": 5803.78, + "probability": 0.8131 + }, + { + "start": 5804.08, + "end": 5807.68, + "probability": 0.9717 + }, + { + "start": 5808.86, + "end": 5812.92, + "probability": 0.7231 + }, + { + "start": 5814.34, + "end": 5817.56, + "probability": 0.5334 + }, + { + "start": 5818.54, + "end": 5821.18, + "probability": 0.7304 + }, + { + "start": 5821.24, + "end": 5825.34, + "probability": 0.9683 + }, + { + "start": 5825.42, + "end": 5826.06, + "probability": 0.6881 + }, + { + "start": 5826.12, + "end": 5828.3, + "probability": 0.9844 + }, + { + "start": 5829.32, + "end": 5831.16, + "probability": 0.8333 + }, + { + "start": 5831.24, + "end": 5832.14, + "probability": 0.879 + }, + { + "start": 5832.18, + "end": 5834.98, + "probability": 0.9871 + }, + { + "start": 5835.1, + "end": 5836.96, + "probability": 0.5267 + }, + { + "start": 5837.94, + "end": 5838.38, + "probability": 0.9592 + }, + { + "start": 5839.3, + "end": 5841.84, + "probability": 0.9953 + }, + { + "start": 5842.0, + "end": 5842.82, + "probability": 0.8411 + }, + { + "start": 5843.1, + "end": 5843.95, + "probability": 0.8958 + }, + { + "start": 5844.1, + "end": 5844.6, + "probability": 0.738 + }, + { + "start": 5844.66, + "end": 5847.7, + "probability": 0.7564 + }, + { + "start": 5848.22, + "end": 5849.38, + "probability": 0.9946 + }, + { + "start": 5850.0, + "end": 5850.66, + "probability": 0.9683 + }, + { + "start": 5850.78, + "end": 5851.46, + "probability": 0.9848 + }, + { + "start": 5851.56, + "end": 5852.18, + "probability": 0.9044 + }, + { + "start": 5852.82, + "end": 5854.22, + "probability": 0.974 + }, + { + "start": 5854.4, + "end": 5855.62, + "probability": 0.7539 + }, + { + "start": 5855.62, + "end": 5855.9, + "probability": 0.8689 + }, + { + "start": 5857.4, + "end": 5858.56, + "probability": 0.5396 + }, + { + "start": 5860.44, + "end": 5861.14, + "probability": 0.563 + }, + { + "start": 5861.14, + "end": 5861.6, + "probability": 0.8674 + }, + { + "start": 5862.02, + "end": 5862.98, + "probability": 0.9033 + }, + { + "start": 5863.0, + "end": 5863.8, + "probability": 0.7361 + }, + { + "start": 5864.44, + "end": 5866.1, + "probability": 0.1426 + }, + { + "start": 5867.88, + "end": 5868.26, + "probability": 0.0781 + }, + { + "start": 5868.26, + "end": 5868.26, + "probability": 0.0895 + }, + { + "start": 5868.26, + "end": 5868.26, + "probability": 0.4447 + }, + { + "start": 5868.26, + "end": 5868.86, + "probability": 0.2951 + }, + { + "start": 5868.98, + "end": 5870.76, + "probability": 0.4821 + }, + { + "start": 5870.78, + "end": 5871.91, + "probability": 0.9414 + }, + { + "start": 5872.0, + "end": 5873.38, + "probability": 0.793 + }, + { + "start": 5873.44, + "end": 5874.68, + "probability": 0.9825 + }, + { + "start": 5876.06, + "end": 5878.74, + "probability": 0.9839 + }, + { + "start": 5879.96, + "end": 5882.7, + "probability": 0.9238 + }, + { + "start": 5883.4, + "end": 5883.5, + "probability": 0.6509 + }, + { + "start": 5884.48, + "end": 5885.94, + "probability": 0.8639 + }, + { + "start": 5886.72, + "end": 5887.56, + "probability": 0.9001 + }, + { + "start": 5888.52, + "end": 5889.6, + "probability": 0.807 + }, + { + "start": 5889.68, + "end": 5889.9, + "probability": 0.9206 + }, + { + "start": 5889.94, + "end": 5893.08, + "probability": 0.8602 + }, + { + "start": 5893.12, + "end": 5894.38, + "probability": 0.7965 + }, + { + "start": 5894.96, + "end": 5896.36, + "probability": 0.9836 + }, + { + "start": 5896.7, + "end": 5897.86, + "probability": 0.7366 + }, + { + "start": 5898.44, + "end": 5899.16, + "probability": 0.7726 + }, + { + "start": 5899.86, + "end": 5901.5, + "probability": 0.9778 + }, + { + "start": 5902.08, + "end": 5902.94, + "probability": 0.5873 + }, + { + "start": 5903.06, + "end": 5906.32, + "probability": 0.6987 + }, + { + "start": 5907.46, + "end": 5909.36, + "probability": 0.8325 + }, + { + "start": 5910.12, + "end": 5911.18, + "probability": 0.9083 + }, + { + "start": 5912.2, + "end": 5915.62, + "probability": 0.9292 + }, + { + "start": 5915.78, + "end": 5916.7, + "probability": 0.7938 + }, + { + "start": 5916.78, + "end": 5918.54, + "probability": 0.9834 + }, + { + "start": 5919.48, + "end": 5921.53, + "probability": 0.8574 + }, + { + "start": 5922.14, + "end": 5922.94, + "probability": 0.5342 + }, + { + "start": 5923.0, + "end": 5923.38, + "probability": 0.7512 + }, + { + "start": 5924.3, + "end": 5925.34, + "probability": 0.986 + }, + { + "start": 5926.48, + "end": 5927.68, + "probability": 0.7047 + }, + { + "start": 5927.72, + "end": 5929.36, + "probability": 0.7225 + }, + { + "start": 5929.5, + "end": 5930.2, + "probability": 0.5654 + }, + { + "start": 5930.8, + "end": 5932.18, + "probability": 0.6608 + }, + { + "start": 5932.54, + "end": 5933.52, + "probability": 0.5094 + }, + { + "start": 5934.9, + "end": 5939.8, + "probability": 0.7086 + }, + { + "start": 5941.48, + "end": 5942.32, + "probability": 0.9429 + }, + { + "start": 5942.66, + "end": 5944.42, + "probability": 0.9886 + }, + { + "start": 5945.24, + "end": 5945.5, + "probability": 0.6699 + }, + { + "start": 5945.6, + "end": 5945.76, + "probability": 0.9316 + }, + { + "start": 5945.88, + "end": 5949.18, + "probability": 0.7405 + }, + { + "start": 5949.22, + "end": 5950.94, + "probability": 0.6583 + }, + { + "start": 5951.62, + "end": 5953.48, + "probability": 0.7097 + }, + { + "start": 5954.04, + "end": 5957.76, + "probability": 0.9644 + }, + { + "start": 5957.92, + "end": 5959.9, + "probability": 0.964 + }, + { + "start": 5959.98, + "end": 5960.9, + "probability": 0.81 + }, + { + "start": 5961.74, + "end": 5964.08, + "probability": 0.9403 + }, + { + "start": 5964.78, + "end": 5966.02, + "probability": 0.9759 + }, + { + "start": 5966.62, + "end": 5970.64, + "probability": 0.9916 + }, + { + "start": 5971.3, + "end": 5971.96, + "probability": 0.7103 + }, + { + "start": 5972.64, + "end": 5974.5, + "probability": 0.9787 + }, + { + "start": 5974.98, + "end": 5975.74, + "probability": 0.821 + }, + { + "start": 5976.94, + "end": 5978.18, + "probability": 0.813 + }, + { + "start": 5978.74, + "end": 5979.76, + "probability": 0.9814 + }, + { + "start": 5980.86, + "end": 5983.84, + "probability": 0.9946 + }, + { + "start": 5985.02, + "end": 5985.68, + "probability": 0.6528 + }, + { + "start": 5986.22, + "end": 5987.2, + "probability": 0.98 + }, + { + "start": 5987.32, + "end": 5988.57, + "probability": 0.9912 + }, + { + "start": 5989.18, + "end": 5990.1, + "probability": 0.9052 + }, + { + "start": 5991.32, + "end": 5994.08, + "probability": 0.95 + }, + { + "start": 5994.8, + "end": 5995.88, + "probability": 0.963 + }, + { + "start": 5996.92, + "end": 5998.44, + "probability": 0.9588 + }, + { + "start": 5998.6, + "end": 5999.46, + "probability": 0.6973 + }, + { + "start": 6000.02, + "end": 6000.66, + "probability": 0.9277 + }, + { + "start": 6000.7, + "end": 6000.88, + "probability": 0.8292 + }, + { + "start": 6000.94, + "end": 6001.18, + "probability": 0.8659 + }, + { + "start": 6001.62, + "end": 6002.08, + "probability": 0.4624 + }, + { + "start": 6002.36, + "end": 6003.12, + "probability": 0.9045 + }, + { + "start": 6003.26, + "end": 6004.22, + "probability": 0.8374 + }, + { + "start": 6005.0, + "end": 6005.86, + "probability": 0.9903 + }, + { + "start": 6006.34, + "end": 6007.82, + "probability": 0.9207 + }, + { + "start": 6008.18, + "end": 6010.18, + "probability": 0.6557 + }, + { + "start": 6010.82, + "end": 6012.04, + "probability": 0.8664 + }, + { + "start": 6012.58, + "end": 6013.98, + "probability": 0.899 + }, + { + "start": 6014.24, + "end": 6015.74, + "probability": 0.9673 + }, + { + "start": 6016.64, + "end": 6018.92, + "probability": 0.9827 + }, + { + "start": 6019.48, + "end": 6021.2, + "probability": 0.8586 + }, + { + "start": 6023.04, + "end": 6023.74, + "probability": 0.3689 + }, + { + "start": 6024.6, + "end": 6026.36, + "probability": 0.8563 + }, + { + "start": 6027.1, + "end": 6029.9, + "probability": 0.979 + }, + { + "start": 6030.8, + "end": 6034.08, + "probability": 0.9985 + }, + { + "start": 6034.46, + "end": 6036.66, + "probability": 0.9985 + }, + { + "start": 6036.72, + "end": 6037.47, + "probability": 0.9966 + }, + { + "start": 6038.52, + "end": 6040.36, + "probability": 0.938 + }, + { + "start": 6040.52, + "end": 6041.3, + "probability": 0.9888 + }, + { + "start": 6041.64, + "end": 6044.38, + "probability": 0.8111 + }, + { + "start": 6044.54, + "end": 6045.28, + "probability": 0.9008 + }, + { + "start": 6046.02, + "end": 6046.78, + "probability": 0.7113 + }, + { + "start": 6047.36, + "end": 6048.8, + "probability": 0.9565 + }, + { + "start": 6049.1, + "end": 6051.5, + "probability": 0.8291 + }, + { + "start": 6052.16, + "end": 6053.08, + "probability": 0.9204 + }, + { + "start": 6055.18, + "end": 6057.26, + "probability": 0.5257 + }, + { + "start": 6057.66, + "end": 6058.58, + "probability": 0.9199 + }, + { + "start": 6058.6, + "end": 6059.66, + "probability": 0.98 + }, + { + "start": 6061.88, + "end": 6063.36, + "probability": 0.5337 + }, + { + "start": 6063.42, + "end": 6063.42, + "probability": 0.7624 + }, + { + "start": 6063.42, + "end": 6065.16, + "probability": 0.9604 + }, + { + "start": 6065.36, + "end": 6066.32, + "probability": 0.4419 + }, + { + "start": 6066.92, + "end": 6068.36, + "probability": 0.7175 + }, + { + "start": 6069.88, + "end": 6070.7, + "probability": 0.7978 + }, + { + "start": 6071.22, + "end": 6072.7, + "probability": 0.8001 + }, + { + "start": 6073.54, + "end": 6076.08, + "probability": 0.9125 + }, + { + "start": 6076.84, + "end": 6078.56, + "probability": 0.9862 + }, + { + "start": 6078.68, + "end": 6079.78, + "probability": 0.6919 + }, + { + "start": 6080.06, + "end": 6082.1, + "probability": 0.6093 + }, + { + "start": 6082.2, + "end": 6082.22, + "probability": 0.3613 + }, + { + "start": 6082.48, + "end": 6083.34, + "probability": 0.4796 + }, + { + "start": 6083.38, + "end": 6084.38, + "probability": 0.3145 + }, + { + "start": 6084.38, + "end": 6085.44, + "probability": 0.674 + }, + { + "start": 6085.68, + "end": 6087.32, + "probability": 0.9814 + }, + { + "start": 6087.64, + "end": 6089.56, + "probability": 0.8119 + }, + { + "start": 6090.44, + "end": 6093.08, + "probability": 0.8696 + }, + { + "start": 6093.62, + "end": 6096.14, + "probability": 0.9478 + }, + { + "start": 6096.58, + "end": 6097.5, + "probability": 0.8469 + }, + { + "start": 6097.62, + "end": 6098.46, + "probability": 0.949 + }, + { + "start": 6099.22, + "end": 6103.92, + "probability": 0.807 + }, + { + "start": 6104.62, + "end": 6106.26, + "probability": 0.7407 + }, + { + "start": 6106.58, + "end": 6106.95, + "probability": 0.2756 + }, + { + "start": 6108.36, + "end": 6110.7, + "probability": 0.9667 + }, + { + "start": 6111.58, + "end": 6112.38, + "probability": 0.8857 + }, + { + "start": 6113.78, + "end": 6115.68, + "probability": 0.7512 + }, + { + "start": 6116.82, + "end": 6119.54, + "probability": 0.9651 + }, + { + "start": 6120.64, + "end": 6121.82, + "probability": 0.9021 + }, + { + "start": 6122.98, + "end": 6123.5, + "probability": 0.7347 + }, + { + "start": 6124.94, + "end": 6125.66, + "probability": 0.6676 + }, + { + "start": 6125.74, + "end": 6127.29, + "probability": 0.8514 + }, + { + "start": 6129.06, + "end": 6129.44, + "probability": 0.8955 + }, + { + "start": 6129.56, + "end": 6130.76, + "probability": 0.9465 + }, + { + "start": 6130.9, + "end": 6132.06, + "probability": 0.9199 + }, + { + "start": 6132.74, + "end": 6133.89, + "probability": 0.7778 + }, + { + "start": 6135.62, + "end": 6138.42, + "probability": 0.8386 + }, + { + "start": 6138.6, + "end": 6140.54, + "probability": 0.8563 + }, + { + "start": 6141.02, + "end": 6141.98, + "probability": 0.8607 + }, + { + "start": 6142.8, + "end": 6143.48, + "probability": 0.9211 + }, + { + "start": 6143.72, + "end": 6144.58, + "probability": 0.6924 + }, + { + "start": 6144.6, + "end": 6146.46, + "probability": 0.0681 + }, + { + "start": 6146.48, + "end": 6148.34, + "probability": 0.5176 + }, + { + "start": 6148.46, + "end": 6148.9, + "probability": 0.6531 + }, + { + "start": 6148.9, + "end": 6149.68, + "probability": 0.2982 + }, + { + "start": 6149.78, + "end": 6150.94, + "probability": 0.9021 + }, + { + "start": 6151.1, + "end": 6151.7, + "probability": 0.7414 + }, + { + "start": 6152.62, + "end": 6154.7, + "probability": 0.5367 + }, + { + "start": 6154.8, + "end": 6156.12, + "probability": 0.3674 + }, + { + "start": 6156.3, + "end": 6157.4, + "probability": 0.9735 + }, + { + "start": 6158.4, + "end": 6161.44, + "probability": 0.9956 + }, + { + "start": 6161.92, + "end": 6162.3, + "probability": 0.1822 + }, + { + "start": 6162.58, + "end": 6163.68, + "probability": 0.5269 + }, + { + "start": 6163.72, + "end": 6164.86, + "probability": 0.8702 + }, + { + "start": 6166.28, + "end": 6166.46, + "probability": 0.4038 + }, + { + "start": 6166.46, + "end": 6166.46, + "probability": 0.6798 + }, + { + "start": 6166.5, + "end": 6170.35, + "probability": 0.8199 + }, + { + "start": 6171.3, + "end": 6171.82, + "probability": 0.9462 + }, + { + "start": 6173.43, + "end": 6174.16, + "probability": 0.9551 + }, + { + "start": 6174.16, + "end": 6174.66, + "probability": 0.8325 + }, + { + "start": 6174.78, + "end": 6175.46, + "probability": 0.7812 + }, + { + "start": 6175.76, + "end": 6176.2, + "probability": 0.6714 + }, + { + "start": 6176.26, + "end": 6177.12, + "probability": 0.8078 + }, + { + "start": 6177.88, + "end": 6178.18, + "probability": 0.7667 + }, + { + "start": 6178.76, + "end": 6179.66, + "probability": 0.464 + }, + { + "start": 6179.66, + "end": 6180.54, + "probability": 0.8584 + }, + { + "start": 6180.62, + "end": 6181.16, + "probability": 0.7181 + }, + { + "start": 6182.52, + "end": 6184.5, + "probability": 0.9738 + }, + { + "start": 6185.38, + "end": 6186.08, + "probability": 0.7927 + }, + { + "start": 6186.8, + "end": 6187.76, + "probability": 0.6257 + }, + { + "start": 6187.92, + "end": 6190.1, + "probability": 0.5576 + }, + { + "start": 6190.88, + "end": 6192.96, + "probability": 0.9757 + }, + { + "start": 6193.66, + "end": 6196.94, + "probability": 0.9521 + }, + { + "start": 6197.3, + "end": 6197.76, + "probability": 0.8318 + }, + { + "start": 6198.86, + "end": 6200.16, + "probability": 0.6972 + }, + { + "start": 6211.46, + "end": 6211.56, + "probability": 0.2422 + }, + { + "start": 6211.56, + "end": 6212.68, + "probability": 0.7529 + }, + { + "start": 6214.79, + "end": 6218.39, + "probability": 0.1317 + }, + { + "start": 6219.52, + "end": 6220.86, + "probability": 0.5501 + }, + { + "start": 6221.4, + "end": 6222.28, + "probability": 0.1078 + }, + { + "start": 6222.74, + "end": 6223.44, + "probability": 0.7188 + }, + { + "start": 6223.98, + "end": 6223.98, + "probability": 0.709 + }, + { + "start": 6224.64, + "end": 6225.52, + "probability": 0.8369 + }, + { + "start": 6226.12, + "end": 6226.76, + "probability": 0.7722 + }, + { + "start": 6230.78, + "end": 6231.98, + "probability": 0.2398 + }, + { + "start": 6231.98, + "end": 6232.06, + "probability": 0.2674 + }, + { + "start": 6232.18, + "end": 6232.36, + "probability": 0.0536 + }, + { + "start": 6232.36, + "end": 6233.18, + "probability": 0.5737 + }, + { + "start": 6233.62, + "end": 6236.16, + "probability": 0.8372 + }, + { + "start": 6236.76, + "end": 6240.15, + "probability": 0.9902 + }, + { + "start": 6241.16, + "end": 6243.52, + "probability": 0.9256 + }, + { + "start": 6244.38, + "end": 6246.42, + "probability": 0.9783 + }, + { + "start": 6247.48, + "end": 6248.62, + "probability": 0.9907 + }, + { + "start": 6249.9, + "end": 6252.35, + "probability": 0.9634 + }, + { + "start": 6253.44, + "end": 6253.98, + "probability": 0.5168 + }, + { + "start": 6254.0, + "end": 6255.88, + "probability": 0.8655 + }, + { + "start": 6256.68, + "end": 6259.0, + "probability": 0.9785 + }, + { + "start": 6260.2, + "end": 6261.62, + "probability": 0.9194 + }, + { + "start": 6261.7, + "end": 6263.8, + "probability": 0.9866 + }, + { + "start": 6266.1, + "end": 6266.72, + "probability": 0.6176 + }, + { + "start": 6267.2, + "end": 6271.52, + "probability": 0.9342 + }, + { + "start": 6271.62, + "end": 6272.26, + "probability": 0.531 + }, + { + "start": 6272.66, + "end": 6273.28, + "probability": 0.7182 + }, + { + "start": 6274.88, + "end": 6277.1, + "probability": 0.9698 + }, + { + "start": 6277.28, + "end": 6279.28, + "probability": 0.9149 + }, + { + "start": 6281.58, + "end": 6282.46, + "probability": 0.3874 + }, + { + "start": 6282.46, + "end": 6282.58, + "probability": 0.4751 + }, + { + "start": 6283.64, + "end": 6285.4, + "probability": 0.9489 + }, + { + "start": 6285.9, + "end": 6286.46, + "probability": 0.82 + }, + { + "start": 6288.58, + "end": 6289.82, + "probability": 0.8761 + }, + { + "start": 6292.06, + "end": 6292.64, + "probability": 0.7729 + }, + { + "start": 6292.7, + "end": 6300.44, + "probability": 0.9841 + }, + { + "start": 6301.86, + "end": 6304.7, + "probability": 0.9722 + }, + { + "start": 6306.44, + "end": 6309.08, + "probability": 0.9985 + }, + { + "start": 6309.18, + "end": 6309.64, + "probability": 0.5439 + }, + { + "start": 6309.72, + "end": 6311.02, + "probability": 0.8561 + }, + { + "start": 6311.2, + "end": 6313.14, + "probability": 0.7979 + }, + { + "start": 6314.02, + "end": 6317.86, + "probability": 0.958 + }, + { + "start": 6319.7, + "end": 6321.82, + "probability": 0.0551 + }, + { + "start": 6322.02, + "end": 6322.44, + "probability": 0.1237 + }, + { + "start": 6322.44, + "end": 6323.88, + "probability": 0.62 + }, + { + "start": 6325.02, + "end": 6325.88, + "probability": 0.5028 + }, + { + "start": 6326.02, + "end": 6326.42, + "probability": 0.4519 + }, + { + "start": 6326.48, + "end": 6327.82, + "probability": 0.7534 + }, + { + "start": 6328.22, + "end": 6332.16, + "probability": 0.979 + }, + { + "start": 6333.18, + "end": 6335.24, + "probability": 0.9572 + }, + { + "start": 6335.98, + "end": 6339.56, + "probability": 0.9959 + }, + { + "start": 6340.44, + "end": 6343.7, + "probability": 0.8309 + }, + { + "start": 6344.29, + "end": 6347.84, + "probability": 0.9102 + }, + { + "start": 6348.48, + "end": 6353.9, + "probability": 0.9246 + }, + { + "start": 6355.2, + "end": 6356.12, + "probability": 0.7598 + }, + { + "start": 6358.82, + "end": 6358.82, + "probability": 0.449 + }, + { + "start": 6358.82, + "end": 6359.3, + "probability": 0.2637 + }, + { + "start": 6359.34, + "end": 6360.18, + "probability": 0.3382 + }, + { + "start": 6360.28, + "end": 6360.8, + "probability": 0.627 + }, + { + "start": 6360.9, + "end": 6362.02, + "probability": 0.487 + }, + { + "start": 6362.92, + "end": 6365.69, + "probability": 0.0601 + }, + { + "start": 6367.98, + "end": 6369.78, + "probability": 0.6969 + }, + { + "start": 6371.08, + "end": 6378.3, + "probability": 0.8979 + }, + { + "start": 6379.12, + "end": 6380.62, + "probability": 0.9409 + }, + { + "start": 6382.7, + "end": 6385.86, + "probability": 0.9987 + }, + { + "start": 6386.52, + "end": 6388.34, + "probability": 0.9161 + }, + { + "start": 6389.08, + "end": 6393.34, + "probability": 0.9966 + }, + { + "start": 6394.74, + "end": 6397.14, + "probability": 0.8081 + }, + { + "start": 6397.92, + "end": 6402.08, + "probability": 0.892 + }, + { + "start": 6402.08, + "end": 6406.76, + "probability": 0.732 + }, + { + "start": 6406.82, + "end": 6408.72, + "probability": 0.8875 + }, + { + "start": 6408.74, + "end": 6409.16, + "probability": 0.6886 + }, + { + "start": 6410.84, + "end": 6412.82, + "probability": 0.9119 + }, + { + "start": 6412.84, + "end": 6417.66, + "probability": 0.9865 + }, + { + "start": 6418.74, + "end": 6421.12, + "probability": 0.8272 + }, + { + "start": 6422.4, + "end": 6423.42, + "probability": 0.986 + }, + { + "start": 6424.2, + "end": 6425.72, + "probability": 0.908 + }, + { + "start": 6425.86, + "end": 6427.02, + "probability": 0.6143 + }, + { + "start": 6427.14, + "end": 6427.94, + "probability": 0.9656 + }, + { + "start": 6429.84, + "end": 6433.14, + "probability": 0.9967 + }, + { + "start": 6433.64, + "end": 6434.74, + "probability": 0.9951 + }, + { + "start": 6435.22, + "end": 6436.62, + "probability": 0.9631 + }, + { + "start": 6437.54, + "end": 6438.56, + "probability": 0.9489 + }, + { + "start": 6438.86, + "end": 6442.78, + "probability": 0.9912 + }, + { + "start": 6443.1, + "end": 6443.94, + "probability": 0.6501 + }, + { + "start": 6444.1, + "end": 6446.2, + "probability": 0.9386 + }, + { + "start": 6446.64, + "end": 6451.16, + "probability": 0.9855 + }, + { + "start": 6451.44, + "end": 6453.4, + "probability": 0.9185 + }, + { + "start": 6454.04, + "end": 6458.44, + "probability": 0.985 + }, + { + "start": 6459.4, + "end": 6460.08, + "probability": 0.9897 + }, + { + "start": 6460.96, + "end": 6463.04, + "probability": 0.7565 + }, + { + "start": 6464.82, + "end": 6465.06, + "probability": 0.3748 + }, + { + "start": 6465.2, + "end": 6465.32, + "probability": 0.2706 + }, + { + "start": 6465.32, + "end": 6465.92, + "probability": 0.8032 + }, + { + "start": 6467.0, + "end": 6471.64, + "probability": 0.9426 + }, + { + "start": 6471.68, + "end": 6472.78, + "probability": 0.7942 + }, + { + "start": 6473.48, + "end": 6475.12, + "probability": 0.9951 + }, + { + "start": 6476.04, + "end": 6482.06, + "probability": 0.8768 + }, + { + "start": 6482.54, + "end": 6486.74, + "probability": 0.9691 + }, + { + "start": 6487.38, + "end": 6488.72, + "probability": 0.9081 + }, + { + "start": 6488.88, + "end": 6489.76, + "probability": 0.7485 + }, + { + "start": 6491.66, + "end": 6495.7, + "probability": 0.9858 + }, + { + "start": 6497.12, + "end": 6498.84, + "probability": 0.7526 + }, + { + "start": 6500.5, + "end": 6501.4, + "probability": 0.9674 + }, + { + "start": 6502.56, + "end": 6504.38, + "probability": 0.9878 + }, + { + "start": 6504.52, + "end": 6505.44, + "probability": 0.8905 + }, + { + "start": 6505.56, + "end": 6509.0, + "probability": 0.9708 + }, + { + "start": 6509.1, + "end": 6510.4, + "probability": 0.7437 + }, + { + "start": 6511.52, + "end": 6515.66, + "probability": 0.9941 + }, + { + "start": 6516.26, + "end": 6517.42, + "probability": 0.6177 + }, + { + "start": 6518.88, + "end": 6521.86, + "probability": 0.9336 + }, + { + "start": 6523.28, + "end": 6523.46, + "probability": 0.9736 + }, + { + "start": 6524.64, + "end": 6529.8, + "probability": 0.7954 + }, + { + "start": 6530.6, + "end": 6531.32, + "probability": 0.7966 + }, + { + "start": 6531.86, + "end": 6533.62, + "probability": 0.8039 + }, + { + "start": 6535.1, + "end": 6539.14, + "probability": 0.9205 + }, + { + "start": 6539.94, + "end": 6542.26, + "probability": 0.9624 + }, + { + "start": 6542.3, + "end": 6542.8, + "probability": 0.7845 + }, + { + "start": 6542.88, + "end": 6544.16, + "probability": 0.8398 + }, + { + "start": 6544.28, + "end": 6545.68, + "probability": 0.9342 + }, + { + "start": 6545.94, + "end": 6548.08, + "probability": 0.9231 + }, + { + "start": 6549.48, + "end": 6550.04, + "probability": 0.6338 + }, + { + "start": 6555.62, + "end": 6558.28, + "probability": 0.744 + }, + { + "start": 6564.16, + "end": 6565.54, + "probability": 0.9148 + }, + { + "start": 6566.08, + "end": 6566.72, + "probability": 0.6406 + }, + { + "start": 6567.04, + "end": 6567.14, + "probability": 0.0077 + }, + { + "start": 6573.8, + "end": 6576.04, + "probability": 0.6284 + }, + { + "start": 6577.12, + "end": 6577.92, + "probability": 0.9537 + }, + { + "start": 6578.6, + "end": 6580.64, + "probability": 0.6813 + }, + { + "start": 6581.38, + "end": 6583.96, + "probability": 0.1661 + }, + { + "start": 6585.27, + "end": 6586.56, + "probability": 0.0644 + }, + { + "start": 6600.32, + "end": 6601.66, + "probability": 0.7433 + }, + { + "start": 6603.6, + "end": 6607.32, + "probability": 0.9975 + }, + { + "start": 6608.46, + "end": 6609.58, + "probability": 0.7708 + }, + { + "start": 6610.58, + "end": 6614.82, + "probability": 0.9969 + }, + { + "start": 6614.96, + "end": 6616.84, + "probability": 0.9753 + }, + { + "start": 6619.66, + "end": 6621.4, + "probability": 0.9351 + }, + { + "start": 6622.79, + "end": 6625.2, + "probability": 0.9076 + }, + { + "start": 6625.54, + "end": 6628.28, + "probability": 0.9907 + }, + { + "start": 6629.2, + "end": 6630.82, + "probability": 0.7818 + }, + { + "start": 6631.7, + "end": 6634.52, + "probability": 0.9075 + }, + { + "start": 6635.36, + "end": 6635.96, + "probability": 0.9356 + }, + { + "start": 6636.04, + "end": 6638.66, + "probability": 0.8669 + }, + { + "start": 6638.7, + "end": 6643.26, + "probability": 0.9096 + }, + { + "start": 6644.88, + "end": 6648.34, + "probability": 0.8703 + }, + { + "start": 6649.46, + "end": 6650.68, + "probability": 0.6062 + }, + { + "start": 6651.44, + "end": 6653.16, + "probability": 0.9244 + }, + { + "start": 6654.21, + "end": 6658.92, + "probability": 0.8907 + }, + { + "start": 6659.97, + "end": 6663.3, + "probability": 0.945 + }, + { + "start": 6665.06, + "end": 6668.52, + "probability": 0.7816 + }, + { + "start": 6668.66, + "end": 6669.98, + "probability": 0.9709 + }, + { + "start": 6670.06, + "end": 6670.43, + "probability": 0.9956 + }, + { + "start": 6671.32, + "end": 6672.64, + "probability": 0.9537 + }, + { + "start": 6672.76, + "end": 6677.02, + "probability": 0.6821 + }, + { + "start": 6677.38, + "end": 6678.84, + "probability": 0.5253 + }, + { + "start": 6679.08, + "end": 6680.26, + "probability": 0.963 + }, + { + "start": 6680.68, + "end": 6681.28, + "probability": 0.8685 + }, + { + "start": 6681.92, + "end": 6683.36, + "probability": 0.7447 + }, + { + "start": 6683.36, + "end": 6684.41, + "probability": 0.8016 + }, + { + "start": 6685.58, + "end": 6688.06, + "probability": 0.9833 + }, + { + "start": 6690.16, + "end": 6694.38, + "probability": 0.5643 + }, + { + "start": 6695.0, + "end": 6698.26, + "probability": 0.8799 + }, + { + "start": 6698.86, + "end": 6700.36, + "probability": 0.8737 + }, + { + "start": 6700.82, + "end": 6704.42, + "probability": 0.8025 + }, + { + "start": 6704.96, + "end": 6707.96, + "probability": 0.7166 + }, + { + "start": 6711.18, + "end": 6712.6, + "probability": 0.8326 + }, + { + "start": 6713.1, + "end": 6715.46, + "probability": 0.9985 + }, + { + "start": 6716.0, + "end": 6716.66, + "probability": 0.7632 + }, + { + "start": 6718.34, + "end": 6719.02, + "probability": 0.7618 + }, + { + "start": 6720.0, + "end": 6722.86, + "probability": 0.9468 + }, + { + "start": 6724.22, + "end": 6725.74, + "probability": 0.7821 + }, + { + "start": 6726.72, + "end": 6729.8, + "probability": 0.9844 + }, + { + "start": 6731.26, + "end": 6732.16, + "probability": 0.9355 + }, + { + "start": 6732.28, + "end": 6732.82, + "probability": 0.8553 + }, + { + "start": 6733.04, + "end": 6736.4, + "probability": 0.9875 + }, + { + "start": 6736.62, + "end": 6737.06, + "probability": 0.3178 + }, + { + "start": 6737.36, + "end": 6738.52, + "probability": 0.8319 + }, + { + "start": 6739.82, + "end": 6741.94, + "probability": 0.989 + }, + { + "start": 6742.86, + "end": 6743.62, + "probability": 0.9683 + }, + { + "start": 6744.3, + "end": 6749.18, + "probability": 0.7689 + }, + { + "start": 6749.2, + "end": 6749.8, + "probability": 0.9335 + }, + { + "start": 6750.74, + "end": 6752.3, + "probability": 0.9715 + }, + { + "start": 6753.34, + "end": 6755.56, + "probability": 0.8511 + }, + { + "start": 6755.72, + "end": 6757.58, + "probability": 0.7523 + }, + { + "start": 6758.16, + "end": 6762.96, + "probability": 0.7664 + }, + { + "start": 6763.08, + "end": 6767.64, + "probability": 0.8255 + }, + { + "start": 6768.1, + "end": 6768.66, + "probability": 0.5601 + }, + { + "start": 6769.24, + "end": 6770.04, + "probability": 0.7129 + }, + { + "start": 6770.66, + "end": 6775.46, + "probability": 0.9095 + }, + { + "start": 6775.96, + "end": 6777.76, + "probability": 0.7173 + }, + { + "start": 6778.28, + "end": 6781.24, + "probability": 0.9155 + }, + { + "start": 6782.0, + "end": 6783.02, + "probability": 0.6845 + }, + { + "start": 6783.66, + "end": 6784.4, + "probability": 0.9265 + }, + { + "start": 6785.14, + "end": 6787.58, + "probability": 0.7996 + }, + { + "start": 6789.22, + "end": 6791.48, + "probability": 0.9175 + }, + { + "start": 6791.7, + "end": 6798.24, + "probability": 0.8579 + }, + { + "start": 6798.92, + "end": 6799.72, + "probability": 0.717 + }, + { + "start": 6800.44, + "end": 6804.78, + "probability": 0.9873 + }, + { + "start": 6805.72, + "end": 6806.6, + "probability": 0.7593 + }, + { + "start": 6807.56, + "end": 6808.9, + "probability": 0.9418 + }, + { + "start": 6809.04, + "end": 6811.8, + "probability": 0.9628 + }, + { + "start": 6811.88, + "end": 6812.68, + "probability": 0.7902 + }, + { + "start": 6813.82, + "end": 6814.92, + "probability": 0.9886 + }, + { + "start": 6817.0, + "end": 6817.66, + "probability": 0.8929 + }, + { + "start": 6818.44, + "end": 6822.29, + "probability": 0.9628 + }, + { + "start": 6824.74, + "end": 6825.26, + "probability": 0.6977 + }, + { + "start": 6825.94, + "end": 6826.54, + "probability": 0.6841 + }, + { + "start": 6827.28, + "end": 6828.9, + "probability": 0.8552 + }, + { + "start": 6829.42, + "end": 6830.16, + "probability": 0.8098 + }, + { + "start": 6831.26, + "end": 6832.22, + "probability": 0.9259 + }, + { + "start": 6832.9, + "end": 6833.58, + "probability": 0.8354 + }, + { + "start": 6834.14, + "end": 6837.02, + "probability": 0.9433 + }, + { + "start": 6837.58, + "end": 6838.86, + "probability": 0.7327 + }, + { + "start": 6839.02, + "end": 6840.94, + "probability": 0.9936 + }, + { + "start": 6841.64, + "end": 6846.62, + "probability": 0.9854 + }, + { + "start": 6847.24, + "end": 6851.0, + "probability": 0.9936 + }, + { + "start": 6851.88, + "end": 6854.98, + "probability": 0.991 + }, + { + "start": 6855.16, + "end": 6855.62, + "probability": 0.6699 + }, + { + "start": 6861.6, + "end": 6862.86, + "probability": 0.5626 + }, + { + "start": 6863.42, + "end": 6866.22, + "probability": 0.9803 + }, + { + "start": 6867.32, + "end": 6869.08, + "probability": 0.9606 + }, + { + "start": 6882.86, + "end": 6884.22, + "probability": 0.7531 + }, + { + "start": 6884.42, + "end": 6884.42, + "probability": 0.2415 + }, + { + "start": 6884.42, + "end": 6885.04, + "probability": 0.8168 + }, + { + "start": 6885.2, + "end": 6886.32, + "probability": 0.8053 + }, + { + "start": 6887.34, + "end": 6892.12, + "probability": 0.9784 + }, + { + "start": 6893.0, + "end": 6893.84, + "probability": 0.7692 + }, + { + "start": 6894.54, + "end": 6896.02, + "probability": 0.8096 + }, + { + "start": 6897.0, + "end": 6901.32, + "probability": 0.9471 + }, + { + "start": 6902.1, + "end": 6904.32, + "probability": 0.748 + }, + { + "start": 6904.94, + "end": 6908.12, + "probability": 0.7195 + }, + { + "start": 6909.54, + "end": 6911.84, + "probability": 0.9346 + }, + { + "start": 6912.52, + "end": 6915.28, + "probability": 0.9857 + }, + { + "start": 6916.6, + "end": 6917.84, + "probability": 0.6737 + }, + { + "start": 6918.58, + "end": 6920.7, + "probability": 0.8399 + }, + { + "start": 6921.92, + "end": 6923.34, + "probability": 0.8778 + }, + { + "start": 6924.04, + "end": 6926.26, + "probability": 0.8126 + }, + { + "start": 6926.68, + "end": 6927.84, + "probability": 0.6859 + }, + { + "start": 6927.92, + "end": 6931.28, + "probability": 0.8481 + }, + { + "start": 6931.68, + "end": 6932.9, + "probability": 0.9746 + }, + { + "start": 6933.66, + "end": 6936.94, + "probability": 0.9336 + }, + { + "start": 6937.62, + "end": 6942.06, + "probability": 0.9718 + }, + { + "start": 6942.82, + "end": 6947.02, + "probability": 0.9563 + }, + { + "start": 6947.72, + "end": 6952.92, + "probability": 0.9866 + }, + { + "start": 6953.76, + "end": 6954.76, + "probability": 0.7562 + }, + { + "start": 6956.02, + "end": 6958.22, + "probability": 0.8733 + }, + { + "start": 6958.74, + "end": 6963.9, + "probability": 0.9635 + }, + { + "start": 6964.72, + "end": 6969.0, + "probability": 0.9388 + }, + { + "start": 6969.58, + "end": 6976.86, + "probability": 0.9763 + }, + { + "start": 6977.62, + "end": 6983.28, + "probability": 0.9949 + }, + { + "start": 6983.42, + "end": 6988.4, + "probability": 0.9822 + }, + { + "start": 6989.1, + "end": 6993.32, + "probability": 0.8518 + }, + { + "start": 6994.1, + "end": 6995.22, + "probability": 0.7086 + }, + { + "start": 6995.76, + "end": 7001.04, + "probability": 0.9411 + }, + { + "start": 7001.76, + "end": 7005.4, + "probability": 0.8961 + }, + { + "start": 7006.82, + "end": 7010.92, + "probability": 0.9844 + }, + { + "start": 7011.44, + "end": 7012.7, + "probability": 0.894 + }, + { + "start": 7013.18, + "end": 7017.38, + "probability": 0.9957 + }, + { + "start": 7017.8, + "end": 7020.76, + "probability": 0.8736 + }, + { + "start": 7020.76, + "end": 7025.74, + "probability": 0.9789 + }, + { + "start": 7026.28, + "end": 7029.36, + "probability": 0.9844 + }, + { + "start": 7029.8, + "end": 7035.92, + "probability": 0.9408 + }, + { + "start": 7036.62, + "end": 7040.22, + "probability": 0.5558 + }, + { + "start": 7040.22, + "end": 7043.72, + "probability": 0.9258 + }, + { + "start": 7044.34, + "end": 7045.38, + "probability": 0.9748 + }, + { + "start": 7046.0, + "end": 7047.56, + "probability": 0.9146 + }, + { + "start": 7048.96, + "end": 7052.9, + "probability": 0.9197 + }, + { + "start": 7053.38, + "end": 7053.62, + "probability": 0.7773 + }, + { + "start": 7054.94, + "end": 7055.5, + "probability": 0.4312 + }, + { + "start": 7057.7, + "end": 7058.7, + "probability": 0.9386 + }, + { + "start": 7059.86, + "end": 7062.52, + "probability": 0.9417 + }, + { + "start": 7078.82, + "end": 7083.82, + "probability": 0.8104 + }, + { + "start": 7085.6, + "end": 7087.06, + "probability": 0.7935 + }, + { + "start": 7089.38, + "end": 7091.02, + "probability": 0.9838 + }, + { + "start": 7092.62, + "end": 7094.76, + "probability": 0.8894 + }, + { + "start": 7095.74, + "end": 7097.48, + "probability": 0.8875 + }, + { + "start": 7098.36, + "end": 7098.88, + "probability": 0.7731 + }, + { + "start": 7099.58, + "end": 7100.21, + "probability": 0.9666 + }, + { + "start": 7101.34, + "end": 7102.78, + "probability": 0.9176 + }, + { + "start": 7103.78, + "end": 7106.53, + "probability": 0.9922 + }, + { + "start": 7107.2, + "end": 7108.86, + "probability": 0.9181 + }, + { + "start": 7109.38, + "end": 7110.14, + "probability": 0.5377 + }, + { + "start": 7111.94, + "end": 7114.08, + "probability": 0.967 + }, + { + "start": 7115.06, + "end": 7119.1, + "probability": 0.8534 + }, + { + "start": 7119.56, + "end": 7123.43, + "probability": 0.7827 + }, + { + "start": 7124.72, + "end": 7126.74, + "probability": 0.8865 + }, + { + "start": 7127.72, + "end": 7130.42, + "probability": 0.8142 + }, + { + "start": 7131.5, + "end": 7134.56, + "probability": 0.8703 + }, + { + "start": 7135.58, + "end": 7140.34, + "probability": 0.9624 + }, + { + "start": 7140.7, + "end": 7144.84, + "probability": 0.9938 + }, + { + "start": 7146.14, + "end": 7148.0, + "probability": 0.8457 + }, + { + "start": 7148.92, + "end": 7152.14, + "probability": 0.84 + }, + { + "start": 7152.84, + "end": 7154.72, + "probability": 0.918 + }, + { + "start": 7155.74, + "end": 7156.7, + "probability": 0.8043 + }, + { + "start": 7156.9, + "end": 7158.14, + "probability": 0.9696 + }, + { + "start": 7158.3, + "end": 7160.6, + "probability": 0.958 + }, + { + "start": 7162.38, + "end": 7165.15, + "probability": 0.9922 + }, + { + "start": 7166.58, + "end": 7172.16, + "probability": 0.9938 + }, + { + "start": 7172.8, + "end": 7177.44, + "probability": 0.9312 + }, + { + "start": 7177.94, + "end": 7180.38, + "probability": 0.9054 + }, + { + "start": 7181.16, + "end": 7187.48, + "probability": 0.9819 + }, + { + "start": 7188.3, + "end": 7191.7, + "probability": 0.9897 + }, + { + "start": 7191.84, + "end": 7192.36, + "probability": 0.8552 + }, + { + "start": 7192.42, + "end": 7195.86, + "probability": 0.894 + }, + { + "start": 7195.92, + "end": 7197.6, + "probability": 0.9073 + }, + { + "start": 7198.22, + "end": 7199.6, + "probability": 0.6497 + }, + { + "start": 7200.62, + "end": 7202.8, + "probability": 0.8157 + }, + { + "start": 7204.16, + "end": 7207.88, + "probability": 0.7739 + }, + { + "start": 7208.48, + "end": 7211.36, + "probability": 0.9431 + }, + { + "start": 7212.04, + "end": 7215.66, + "probability": 0.9897 + }, + { + "start": 7216.12, + "end": 7219.24, + "probability": 0.9385 + }, + { + "start": 7219.76, + "end": 7222.24, + "probability": 0.7121 + }, + { + "start": 7222.66, + "end": 7223.02, + "probability": 0.5895 + }, + { + "start": 7223.16, + "end": 7226.3, + "probability": 0.9863 + }, + { + "start": 7226.94, + "end": 7230.2, + "probability": 0.9427 + }, + { + "start": 7231.2, + "end": 7232.42, + "probability": 0.9186 + }, + { + "start": 7232.94, + "end": 7236.88, + "probability": 0.9844 + }, + { + "start": 7237.5, + "end": 7240.6, + "probability": 0.7826 + }, + { + "start": 7241.12, + "end": 7242.78, + "probability": 0.8054 + }, + { + "start": 7243.34, + "end": 7248.86, + "probability": 0.9324 + }, + { + "start": 7249.54, + "end": 7252.94, + "probability": 0.9941 + }, + { + "start": 7254.36, + "end": 7255.2, + "probability": 0.5785 + }, + { + "start": 7256.0, + "end": 7257.42, + "probability": 0.8103 + }, + { + "start": 7258.02, + "end": 7259.4, + "probability": 0.9626 + }, + { + "start": 7259.5, + "end": 7260.16, + "probability": 0.9295 + }, + { + "start": 7260.24, + "end": 7263.16, + "probability": 0.9365 + }, + { + "start": 7263.84, + "end": 7268.0, + "probability": 0.9875 + }, + { + "start": 7268.54, + "end": 7270.08, + "probability": 0.8195 + }, + { + "start": 7270.5, + "end": 7275.22, + "probability": 0.8884 + }, + { + "start": 7275.36, + "end": 7276.74, + "probability": 0.8922 + }, + { + "start": 7277.5, + "end": 7279.98, + "probability": 0.8298 + }, + { + "start": 7280.64, + "end": 7284.18, + "probability": 0.9628 + }, + { + "start": 7286.32, + "end": 7287.64, + "probability": 0.394 + }, + { + "start": 7288.2, + "end": 7290.38, + "probability": 0.7911 + }, + { + "start": 7290.84, + "end": 7292.1, + "probability": 0.7823 + }, + { + "start": 7292.76, + "end": 7296.6, + "probability": 0.9734 + }, + { + "start": 7297.72, + "end": 7298.22, + "probability": 0.4147 + }, + { + "start": 7298.72, + "end": 7300.32, + "probability": 0.9434 + }, + { + "start": 7300.5, + "end": 7301.84, + "probability": 0.7722 + }, + { + "start": 7302.38, + "end": 7304.2, + "probability": 0.9036 + }, + { + "start": 7305.22, + "end": 7307.42, + "probability": 0.6703 + }, + { + "start": 7308.78, + "end": 7311.34, + "probability": 0.9724 + }, + { + "start": 7312.47, + "end": 7320.04, + "probability": 0.9675 + }, + { + "start": 7320.1, + "end": 7321.5, + "probability": 0.9609 + }, + { + "start": 7322.16, + "end": 7325.5, + "probability": 0.9886 + }, + { + "start": 7325.54, + "end": 7326.12, + "probability": 0.5999 + }, + { + "start": 7326.61, + "end": 7327.8, + "probability": 0.5958 + }, + { + "start": 7329.46, + "end": 7336.46, + "probability": 0.7709 + }, + { + "start": 7336.96, + "end": 7338.98, + "probability": 0.9878 + }, + { + "start": 7340.28, + "end": 7341.2, + "probability": 0.8708 + }, + { + "start": 7341.94, + "end": 7344.14, + "probability": 0.939 + }, + { + "start": 7344.7, + "end": 7345.68, + "probability": 0.8502 + }, + { + "start": 7347.26, + "end": 7348.18, + "probability": 0.7939 + }, + { + "start": 7350.34, + "end": 7354.0, + "probability": 0.9612 + }, + { + "start": 7354.16, + "end": 7356.32, + "probability": 0.9082 + }, + { + "start": 7356.68, + "end": 7360.16, + "probability": 0.9951 + }, + { + "start": 7361.18, + "end": 7362.4, + "probability": 0.6592 + }, + { + "start": 7363.16, + "end": 7365.9, + "probability": 0.8437 + }, + { + "start": 7366.34, + "end": 7368.76, + "probability": 0.9469 + }, + { + "start": 7370.76, + "end": 7376.54, + "probability": 0.9878 + }, + { + "start": 7377.3, + "end": 7380.1, + "probability": 0.9993 + }, + { + "start": 7380.7, + "end": 7382.38, + "probability": 0.9619 + }, + { + "start": 7383.12, + "end": 7385.8, + "probability": 0.9938 + }, + { + "start": 7387.42, + "end": 7387.42, + "probability": 0.7617 + }, + { + "start": 7388.04, + "end": 7389.26, + "probability": 0.918 + }, + { + "start": 7389.86, + "end": 7393.66, + "probability": 0.7987 + }, + { + "start": 7394.44, + "end": 7396.06, + "probability": 0.9775 + }, + { + "start": 7396.28, + "end": 7397.66, + "probability": 0.8058 + }, + { + "start": 7398.31, + "end": 7398.82, + "probability": 0.9894 + }, + { + "start": 7401.56, + "end": 7402.66, + "probability": 0.8232 + }, + { + "start": 7403.48, + "end": 7407.28, + "probability": 0.9907 + }, + { + "start": 7408.94, + "end": 7412.64, + "probability": 0.9627 + }, + { + "start": 7413.9, + "end": 7417.34, + "probability": 0.9976 + }, + { + "start": 7417.56, + "end": 7419.02, + "probability": 0.3153 + }, + { + "start": 7419.82, + "end": 7423.1, + "probability": 0.9399 + }, + { + "start": 7424.28, + "end": 7427.14, + "probability": 0.9831 + }, + { + "start": 7428.2, + "end": 7431.6, + "probability": 0.7777 + }, + { + "start": 7432.1, + "end": 7433.24, + "probability": 0.8245 + }, + { + "start": 7433.86, + "end": 7435.9, + "probability": 0.9329 + }, + { + "start": 7436.64, + "end": 7437.82, + "probability": 0.9509 + }, + { + "start": 7440.14, + "end": 7440.18, + "probability": 0.0755 + }, + { + "start": 7440.18, + "end": 7440.18, + "probability": 0.0634 + }, + { + "start": 7440.18, + "end": 7444.02, + "probability": 0.9672 + }, + { + "start": 7445.0, + "end": 7448.2, + "probability": 0.9852 + }, + { + "start": 7448.94, + "end": 7452.0, + "probability": 0.9971 + }, + { + "start": 7452.06, + "end": 7453.8, + "probability": 0.9411 + }, + { + "start": 7455.28, + "end": 7457.96, + "probability": 0.9259 + }, + { + "start": 7458.5, + "end": 7459.62, + "probability": 0.8764 + }, + { + "start": 7460.0, + "end": 7460.34, + "probability": 0.8413 + }, + { + "start": 7460.96, + "end": 7461.66, + "probability": 0.7261 + }, + { + "start": 7462.24, + "end": 7463.4, + "probability": 0.6166 + }, + { + "start": 7464.92, + "end": 7467.86, + "probability": 0.9705 + }, + { + "start": 7467.94, + "end": 7471.9, + "probability": 0.9956 + }, + { + "start": 7472.44, + "end": 7473.14, + "probability": 0.7755 + }, + { + "start": 7474.88, + "end": 7476.54, + "probability": 0.8579 + }, + { + "start": 7476.7, + "end": 7477.42, + "probability": 0.7963 + }, + { + "start": 7479.24, + "end": 7483.06, + "probability": 0.9056 + }, + { + "start": 7484.2, + "end": 7485.68, + "probability": 0.8901 + }, + { + "start": 7487.28, + "end": 7488.82, + "probability": 0.6357 + }, + { + "start": 7489.92, + "end": 7492.56, + "probability": 0.901 + }, + { + "start": 7493.42, + "end": 7496.54, + "probability": 0.917 + }, + { + "start": 7497.64, + "end": 7498.56, + "probability": 0.9599 + }, + { + "start": 7499.12, + "end": 7502.06, + "probability": 0.9903 + }, + { + "start": 7502.54, + "end": 7504.94, + "probability": 0.9916 + }, + { + "start": 7505.46, + "end": 7507.2, + "probability": 0.753 + }, + { + "start": 7508.34, + "end": 7509.18, + "probability": 0.9927 + }, + { + "start": 7510.58, + "end": 7511.36, + "probability": 0.9806 + }, + { + "start": 7512.4, + "end": 7513.4, + "probability": 0.9792 + }, + { + "start": 7513.96, + "end": 7516.4, + "probability": 0.9709 + }, + { + "start": 7516.78, + "end": 7517.88, + "probability": 0.9509 + }, + { + "start": 7517.9, + "end": 7519.26, + "probability": 0.9722 + }, + { + "start": 7519.66, + "end": 7520.96, + "probability": 0.9614 + }, + { + "start": 7521.94, + "end": 7523.3, + "probability": 0.8305 + }, + { + "start": 7523.38, + "end": 7524.94, + "probability": 0.5231 + }, + { + "start": 7524.96, + "end": 7525.24, + "probability": 0.3764 + }, + { + "start": 7525.24, + "end": 7529.68, + "probability": 0.6669 + }, + { + "start": 7532.32, + "end": 7533.06, + "probability": 0.8135 + }, + { + "start": 7533.16, + "end": 7534.0, + "probability": 0.8585 + }, + { + "start": 7534.12, + "end": 7536.44, + "probability": 0.6523 + }, + { + "start": 7537.18, + "end": 7544.22, + "probability": 0.9401 + }, + { + "start": 7544.42, + "end": 7548.12, + "probability": 0.887 + }, + { + "start": 7548.66, + "end": 7551.74, + "probability": 0.6455 + }, + { + "start": 7552.16, + "end": 7556.54, + "probability": 0.9727 + }, + { + "start": 7556.54, + "end": 7558.4, + "probability": 0.6243 + }, + { + "start": 7558.8, + "end": 7562.32, + "probability": 0.9974 + }, + { + "start": 7563.16, + "end": 7564.86, + "probability": 0.9829 + }, + { + "start": 7566.54, + "end": 7568.5, + "probability": 0.9171 + }, + { + "start": 7568.78, + "end": 7569.34, + "probability": 0.6181 + }, + { + "start": 7569.46, + "end": 7570.7, + "probability": 0.9609 + }, + { + "start": 7570.8, + "end": 7575.48, + "probability": 0.7885 + }, + { + "start": 7575.64, + "end": 7579.3, + "probability": 0.9868 + }, + { + "start": 7580.2, + "end": 7580.76, + "probability": 0.6092 + }, + { + "start": 7581.2, + "end": 7582.99, + "probability": 0.5484 + }, + { + "start": 7583.7, + "end": 7586.98, + "probability": 0.9185 + }, + { + "start": 7587.42, + "end": 7587.82, + "probability": 0.7883 + }, + { + "start": 7587.92, + "end": 7590.54, + "probability": 0.9441 + }, + { + "start": 7590.98, + "end": 7594.0, + "probability": 0.8273 + }, + { + "start": 7594.06, + "end": 7596.39, + "probability": 0.9932 + }, + { + "start": 7597.1, + "end": 7598.52, + "probability": 0.8697 + }, + { + "start": 7598.56, + "end": 7599.06, + "probability": 0.3047 + }, + { + "start": 7599.26, + "end": 7603.58, + "probability": 0.9551 + }, + { + "start": 7604.0, + "end": 7605.26, + "probability": 0.7438 + }, + { + "start": 7605.34, + "end": 7607.78, + "probability": 0.9603 + }, + { + "start": 7608.3, + "end": 7609.72, + "probability": 0.6507 + }, + { + "start": 7609.72, + "end": 7609.82, + "probability": 0.446 + }, + { + "start": 7610.06, + "end": 7612.98, + "probability": 0.9948 + }, + { + "start": 7613.04, + "end": 7615.1, + "probability": 0.9036 + }, + { + "start": 7615.3, + "end": 7616.04, + "probability": 0.7437 + }, + { + "start": 7617.46, + "end": 7620.96, + "probability": 0.8996 + }, + { + "start": 7621.78, + "end": 7623.68, + "probability": 0.9824 + }, + { + "start": 7623.88, + "end": 7624.22, + "probability": 0.567 + }, + { + "start": 7624.98, + "end": 7626.48, + "probability": 0.9331 + }, + { + "start": 7626.66, + "end": 7627.8, + "probability": 0.8564 + }, + { + "start": 7627.86, + "end": 7628.26, + "probability": 0.895 + }, + { + "start": 7629.02, + "end": 7629.3, + "probability": 0.7852 + }, + { + "start": 7629.5, + "end": 7631.58, + "probability": 0.4134 + }, + { + "start": 7632.46, + "end": 7634.38, + "probability": 0.639 + }, + { + "start": 7635.36, + "end": 7636.41, + "probability": 0.1388 + }, + { + "start": 7637.26, + "end": 7637.38, + "probability": 0.0013 + }, + { + "start": 7638.02, + "end": 7638.38, + "probability": 0.0303 + }, + { + "start": 7638.38, + "end": 7638.92, + "probability": 0.4852 + }, + { + "start": 7639.14, + "end": 7641.32, + "probability": 0.5098 + }, + { + "start": 7641.52, + "end": 7641.74, + "probability": 0.8336 + }, + { + "start": 7641.84, + "end": 7645.88, + "probability": 0.9736 + }, + { + "start": 7646.4, + "end": 7649.02, + "probability": 0.9417 + }, + { + "start": 7649.02, + "end": 7650.2, + "probability": 0.6366 + }, + { + "start": 7650.26, + "end": 7650.36, + "probability": 0.8576 + }, + { + "start": 7650.76, + "end": 7654.02, + "probability": 0.9795 + }, + { + "start": 7654.64, + "end": 7655.6, + "probability": 0.8517 + }, + { + "start": 7656.34, + "end": 7657.4, + "probability": 0.9987 + }, + { + "start": 7657.98, + "end": 7661.74, + "probability": 0.9478 + }, + { + "start": 7662.24, + "end": 7663.5, + "probability": 0.9856 + }, + { + "start": 7664.38, + "end": 7665.28, + "probability": 0.9209 + }, + { + "start": 7666.18, + "end": 7668.3, + "probability": 0.8867 + }, + { + "start": 7668.9, + "end": 7669.7, + "probability": 0.9647 + }, + { + "start": 7670.2, + "end": 7671.52, + "probability": 0.7499 + }, + { + "start": 7672.04, + "end": 7672.88, + "probability": 0.9958 + }, + { + "start": 7673.4, + "end": 7674.12, + "probability": 0.908 + }, + { + "start": 7675.24, + "end": 7679.22, + "probability": 0.998 + }, + { + "start": 7680.72, + "end": 7681.58, + "probability": 0.9535 + }, + { + "start": 7681.66, + "end": 7681.94, + "probability": 0.8505 + }, + { + "start": 7682.02, + "end": 7684.76, + "probability": 0.9525 + }, + { + "start": 7685.26, + "end": 7686.87, + "probability": 0.982 + }, + { + "start": 7687.62, + "end": 7690.06, + "probability": 0.9696 + }, + { + "start": 7690.58, + "end": 7691.58, + "probability": 0.9985 + }, + { + "start": 7692.6, + "end": 7694.14, + "probability": 0.9084 + }, + { + "start": 7694.68, + "end": 7697.58, + "probability": 0.9259 + }, + { + "start": 7698.16, + "end": 7699.12, + "probability": 0.8926 + }, + { + "start": 7699.32, + "end": 7700.88, + "probability": 0.2093 + }, + { + "start": 7701.44, + "end": 7703.62, + "probability": 0.9817 + }, + { + "start": 7703.72, + "end": 7704.02, + "probability": 0.8294 + }, + { + "start": 7704.18, + "end": 7707.76, + "probability": 0.9515 + }, + { + "start": 7708.28, + "end": 7710.46, + "probability": 0.9964 + }, + { + "start": 7710.98, + "end": 7711.64, + "probability": 0.857 + }, + { + "start": 7711.74, + "end": 7715.4, + "probability": 0.8969 + }, + { + "start": 7715.9, + "end": 7717.16, + "probability": 0.8925 + }, + { + "start": 7717.72, + "end": 7722.82, + "probability": 0.9983 + }, + { + "start": 7723.08, + "end": 7723.9, + "probability": 0.6825 + }, + { + "start": 7724.0, + "end": 7725.12, + "probability": 0.7405 + }, + { + "start": 7725.16, + "end": 7726.36, + "probability": 0.8863 + }, + { + "start": 7726.36, + "end": 7726.52, + "probability": 0.5642 + }, + { + "start": 7726.68, + "end": 7729.0, + "probability": 0.7621 + }, + { + "start": 7729.64, + "end": 7731.02, + "probability": 0.8214 + }, + { + "start": 7731.1, + "end": 7731.36, + "probability": 0.4055 + }, + { + "start": 7731.48, + "end": 7731.74, + "probability": 0.8789 + }, + { + "start": 7732.02, + "end": 7735.82, + "probability": 0.9917 + }, + { + "start": 7736.76, + "end": 7738.14, + "probability": 0.8087 + }, + { + "start": 7739.36, + "end": 7741.66, + "probability": 0.9042 + }, + { + "start": 7742.18, + "end": 7744.2, + "probability": 0.9912 + }, + { + "start": 7744.46, + "end": 7745.58, + "probability": 0.9908 + }, + { + "start": 7745.88, + "end": 7747.26, + "probability": 0.9888 + }, + { + "start": 7747.54, + "end": 7749.9, + "probability": 0.9675 + }, + { + "start": 7750.44, + "end": 7755.81, + "probability": 0.9386 + }, + { + "start": 7756.12, + "end": 7758.42, + "probability": 0.8352 + }, + { + "start": 7759.3, + "end": 7763.5, + "probability": 0.9154 + }, + { + "start": 7763.88, + "end": 7767.44, + "probability": 0.9981 + }, + { + "start": 7768.12, + "end": 7769.56, + "probability": 0.6609 + }, + { + "start": 7769.66, + "end": 7771.34, + "probability": 0.3416 + }, + { + "start": 7771.34, + "end": 7772.84, + "probability": 0.4681 + }, + { + "start": 7772.92, + "end": 7774.86, + "probability": 0.9154 + }, + { + "start": 7774.96, + "end": 7779.1, + "probability": 0.9332 + }, + { + "start": 7779.12, + "end": 7780.65, + "probability": 0.7115 + }, + { + "start": 7780.74, + "end": 7783.46, + "probability": 0.3405 + }, + { + "start": 7783.56, + "end": 7784.18, + "probability": 0.3588 + }, + { + "start": 7784.48, + "end": 7784.8, + "probability": 0.192 + }, + { + "start": 7784.96, + "end": 7785.06, + "probability": 0.0107 + }, + { + "start": 7785.06, + "end": 7786.82, + "probability": 0.416 + }, + { + "start": 7786.82, + "end": 7788.08, + "probability": 0.4521 + }, + { + "start": 7790.52, + "end": 7791.06, + "probability": 0.1567 + }, + { + "start": 7791.06, + "end": 7791.3, + "probability": 0.1198 + }, + { + "start": 7791.42, + "end": 7793.54, + "probability": 0.2603 + }, + { + "start": 7793.62, + "end": 7794.9, + "probability": 0.5429 + }, + { + "start": 7794.9, + "end": 7795.16, + "probability": 0.4933 + }, + { + "start": 7795.38, + "end": 7796.65, + "probability": 0.2144 + }, + { + "start": 7797.66, + "end": 7799.42, + "probability": 0.7626 + }, + { + "start": 7800.96, + "end": 7801.44, + "probability": 0.065 + }, + { + "start": 7802.26, + "end": 7805.22, + "probability": 0.9979 + }, + { + "start": 7805.22, + "end": 7808.52, + "probability": 0.9943 + }, + { + "start": 7808.9, + "end": 7810.18, + "probability": 0.9917 + }, + { + "start": 7810.32, + "end": 7811.4, + "probability": 0.9691 + }, + { + "start": 7811.74, + "end": 7812.66, + "probability": 0.8589 + }, + { + "start": 7812.9, + "end": 7818.12, + "probability": 0.9914 + }, + { + "start": 7818.26, + "end": 7819.6, + "probability": 0.937 + }, + { + "start": 7821.48, + "end": 7822.2, + "probability": 0.798 + }, + { + "start": 7822.64, + "end": 7823.8, + "probability": 0.7217 + }, + { + "start": 7823.84, + "end": 7826.2, + "probability": 0.9649 + }, + { + "start": 7826.6, + "end": 7828.22, + "probability": 0.755 + }, + { + "start": 7829.2, + "end": 7831.84, + "probability": 0.869 + }, + { + "start": 7832.58, + "end": 7834.46, + "probability": 0.9556 + }, + { + "start": 7834.5, + "end": 7835.28, + "probability": 0.8958 + }, + { + "start": 7835.36, + "end": 7836.18, + "probability": 0.9502 + }, + { + "start": 7836.24, + "end": 7836.92, + "probability": 0.8572 + }, + { + "start": 7837.04, + "end": 7839.32, + "probability": 0.9004 + }, + { + "start": 7839.4, + "end": 7842.52, + "probability": 0.9871 + }, + { + "start": 7843.0, + "end": 7846.12, + "probability": 0.6803 + }, + { + "start": 7847.04, + "end": 7849.32, + "probability": 0.9831 + }, + { + "start": 7850.12, + "end": 7851.68, + "probability": 0.7632 + }, + { + "start": 7851.74, + "end": 7852.48, + "probability": 0.8381 + }, + { + "start": 7852.64, + "end": 7855.16, + "probability": 0.9976 + }, + { + "start": 7855.22, + "end": 7855.66, + "probability": 0.8303 + }, + { + "start": 7855.78, + "end": 7856.12, + "probability": 0.8589 + }, + { + "start": 7856.4, + "end": 7857.92, + "probability": 0.9035 + }, + { + "start": 7858.04, + "end": 7858.94, + "probability": 0.728 + }, + { + "start": 7859.38, + "end": 7860.78, + "probability": 0.9911 + }, + { + "start": 7861.1, + "end": 7862.1, + "probability": 0.9819 + }, + { + "start": 7862.34, + "end": 7864.3, + "probability": 0.9968 + }, + { + "start": 7864.3, + "end": 7865.44, + "probability": 0.7364 + }, + { + "start": 7865.84, + "end": 7867.68, + "probability": 0.9408 + }, + { + "start": 7868.62, + "end": 7871.02, + "probability": 0.844 + }, + { + "start": 7871.32, + "end": 7871.8, + "probability": 0.5577 + }, + { + "start": 7872.82, + "end": 7873.36, + "probability": 0.965 + }, + { + "start": 7873.5, + "end": 7873.7, + "probability": 0.8621 + }, + { + "start": 7873.72, + "end": 7876.12, + "probability": 0.9474 + }, + { + "start": 7876.58, + "end": 7877.96, + "probability": 0.998 + }, + { + "start": 7879.16, + "end": 7882.24, + "probability": 0.7558 + }, + { + "start": 7882.86, + "end": 7885.66, + "probability": 0.9932 + }, + { + "start": 7886.22, + "end": 7888.02, + "probability": 0.9988 + }, + { + "start": 7888.72, + "end": 7890.7, + "probability": 0.9617 + }, + { + "start": 7891.2, + "end": 7894.78, + "probability": 0.8106 + }, + { + "start": 7895.2, + "end": 7895.8, + "probability": 0.9097 + }, + { + "start": 7895.9, + "end": 7896.45, + "probability": 0.958 + }, + { + "start": 7896.64, + "end": 7896.82, + "probability": 0.8296 + }, + { + "start": 7896.96, + "end": 7898.2, + "probability": 0.9529 + }, + { + "start": 7898.86, + "end": 7900.68, + "probability": 0.7208 + }, + { + "start": 7907.88, + "end": 7910.34, + "probability": 0.8558 + }, + { + "start": 7910.8, + "end": 7915.22, + "probability": 0.9902 + }, + { + "start": 7918.64, + "end": 7919.66, + "probability": 0.7737 + }, + { + "start": 7921.0, + "end": 7924.04, + "probability": 0.9001 + }, + { + "start": 7924.22, + "end": 7925.26, + "probability": 0.9917 + }, + { + "start": 7926.11, + "end": 7926.48, + "probability": 0.4797 + }, + { + "start": 7926.74, + "end": 7927.78, + "probability": 0.6507 + }, + { + "start": 7927.88, + "end": 7928.5, + "probability": 0.5417 + }, + { + "start": 7928.52, + "end": 7933.32, + "probability": 0.6223 + }, + { + "start": 7933.36, + "end": 7936.84, + "probability": 0.9119 + }, + { + "start": 7936.84, + "end": 7937.16, + "probability": 0.8513 + }, + { + "start": 7937.2, + "end": 7937.5, + "probability": 0.5085 + }, + { + "start": 7937.92, + "end": 7940.28, + "probability": 0.994 + }, + { + "start": 7940.8, + "end": 7943.68, + "probability": 0.9858 + }, + { + "start": 7943.68, + "end": 7945.26, + "probability": 0.6002 + }, + { + "start": 7945.6, + "end": 7946.42, + "probability": 0.8648 + }, + { + "start": 7946.54, + "end": 7947.52, + "probability": 0.7693 + }, + { + "start": 7949.62, + "end": 7950.72, + "probability": 0.9915 + }, + { + "start": 7950.96, + "end": 7955.76, + "probability": 0.979 + }, + { + "start": 7957.18, + "end": 7957.92, + "probability": 0.9771 + }, + { + "start": 7958.3, + "end": 7958.84, + "probability": 0.8223 + }, + { + "start": 7959.96, + "end": 7962.64, + "probability": 0.8886 + }, + { + "start": 7962.84, + "end": 7963.34, + "probability": 0.8555 + }, + { + "start": 7965.0, + "end": 7965.14, + "probability": 0.1082 + }, + { + "start": 7965.14, + "end": 7965.44, + "probability": 0.4068 + }, + { + "start": 7966.91, + "end": 7969.14, + "probability": 0.9214 + }, + { + "start": 7969.54, + "end": 7971.86, + "probability": 0.8243 + }, + { + "start": 7973.18, + "end": 7974.64, + "probability": 0.9508 + }, + { + "start": 7976.66, + "end": 7979.66, + "probability": 0.9521 + }, + { + "start": 7981.82, + "end": 7984.44, + "probability": 0.7009 + }, + { + "start": 7985.14, + "end": 7986.68, + "probability": 0.7178 + }, + { + "start": 7988.28, + "end": 7993.24, + "probability": 0.9916 + }, + { + "start": 7994.78, + "end": 8000.06, + "probability": 0.9492 + }, + { + "start": 8001.2, + "end": 8002.94, + "probability": 0.5442 + }, + { + "start": 8003.34, + "end": 8004.08, + "probability": 0.771 + }, + { + "start": 8004.94, + "end": 8010.2, + "probability": 0.9912 + }, + { + "start": 8010.92, + "end": 8011.98, + "probability": 0.8583 + }, + { + "start": 8012.86, + "end": 8015.56, + "probability": 0.9569 + }, + { + "start": 8016.02, + "end": 8016.62, + "probability": 0.9009 + }, + { + "start": 8017.78, + "end": 8019.38, + "probability": 0.823 + }, + { + "start": 8021.04, + "end": 8022.18, + "probability": 0.7321 + }, + { + "start": 8022.26, + "end": 8023.72, + "probability": 0.9241 + }, + { + "start": 8024.09, + "end": 8027.3, + "probability": 0.8992 + }, + { + "start": 8028.34, + "end": 8029.2, + "probability": 0.8838 + }, + { + "start": 8029.88, + "end": 8035.6, + "probability": 0.9705 + }, + { + "start": 8039.22, + "end": 8041.92, + "probability": 0.9867 + }, + { + "start": 8043.16, + "end": 8045.82, + "probability": 0.9806 + }, + { + "start": 8045.88, + "end": 8046.99, + "probability": 0.9961 + }, + { + "start": 8047.86, + "end": 8049.2, + "probability": 0.93 + }, + { + "start": 8050.36, + "end": 8051.82, + "probability": 0.962 + }, + { + "start": 8052.72, + "end": 8054.4, + "probability": 0.8233 + }, + { + "start": 8054.56, + "end": 8056.1, + "probability": 0.9989 + }, + { + "start": 8058.2, + "end": 8061.88, + "probability": 0.9603 + }, + { + "start": 8062.8, + "end": 8067.24, + "probability": 0.9935 + }, + { + "start": 8068.28, + "end": 8069.52, + "probability": 0.974 + }, + { + "start": 8071.72, + "end": 8073.24, + "probability": 0.7836 + }, + { + "start": 8074.22, + "end": 8076.32, + "probability": 0.9964 + }, + { + "start": 8076.76, + "end": 8078.78, + "probability": 0.8147 + }, + { + "start": 8079.82, + "end": 8084.68, + "probability": 0.9736 + }, + { + "start": 8085.34, + "end": 8086.08, + "probability": 0.8316 + }, + { + "start": 8086.86, + "end": 8091.52, + "probability": 0.9934 + }, + { + "start": 8092.3, + "end": 8093.68, + "probability": 0.9583 + }, + { + "start": 8094.36, + "end": 8096.42, + "probability": 0.9971 + }, + { + "start": 8098.82, + "end": 8102.18, + "probability": 0.897 + }, + { + "start": 8103.48, + "end": 8104.16, + "probability": 0.9199 + }, + { + "start": 8105.62, + "end": 8106.76, + "probability": 0.9971 + }, + { + "start": 8107.88, + "end": 8111.24, + "probability": 0.9844 + }, + { + "start": 8111.3, + "end": 8111.78, + "probability": 0.9196 + }, + { + "start": 8112.0, + "end": 8112.97, + "probability": 0.5453 + }, + { + "start": 8114.1, + "end": 8118.24, + "probability": 0.93 + }, + { + "start": 8119.28, + "end": 8119.74, + "probability": 0.9259 + }, + { + "start": 8120.38, + "end": 8123.02, + "probability": 0.8185 + }, + { + "start": 8124.26, + "end": 8127.2, + "probability": 0.9519 + }, + { + "start": 8128.6, + "end": 8131.48, + "probability": 0.8915 + }, + { + "start": 8131.48, + "end": 8134.94, + "probability": 0.9909 + }, + { + "start": 8135.84, + "end": 8137.28, + "probability": 0.9312 + }, + { + "start": 8139.04, + "end": 8139.18, + "probability": 0.3954 + }, + { + "start": 8139.34, + "end": 8142.98, + "probability": 0.9953 + }, + { + "start": 8143.42, + "end": 8144.34, + "probability": 0.4979 + }, + { + "start": 8144.76, + "end": 8145.94, + "probability": 0.9207 + }, + { + "start": 8148.14, + "end": 8149.96, + "probability": 0.8582 + }, + { + "start": 8151.88, + "end": 8154.06, + "probability": 0.998 + }, + { + "start": 8155.72, + "end": 8156.78, + "probability": 0.7387 + }, + { + "start": 8157.48, + "end": 8160.16, + "probability": 0.9941 + }, + { + "start": 8162.14, + "end": 8166.2, + "probability": 0.9967 + }, + { + "start": 8166.28, + "end": 8166.82, + "probability": 0.9655 + }, + { + "start": 8167.58, + "end": 8170.6, + "probability": 0.9199 + }, + { + "start": 8171.6, + "end": 8174.84, + "probability": 0.925 + }, + { + "start": 8174.86, + "end": 8177.42, + "probability": 0.9941 + }, + { + "start": 8180.56, + "end": 8184.3, + "probability": 0.9082 + }, + { + "start": 8185.76, + "end": 8189.52, + "probability": 0.906 + }, + { + "start": 8189.6, + "end": 8190.4, + "probability": 0.7227 + }, + { + "start": 8190.68, + "end": 8191.38, + "probability": 0.7616 + }, + { + "start": 8191.9, + "end": 8192.98, + "probability": 0.9961 + }, + { + "start": 8193.88, + "end": 8194.8, + "probability": 0.9359 + }, + { + "start": 8195.62, + "end": 8197.26, + "probability": 0.7591 + }, + { + "start": 8197.92, + "end": 8200.88, + "probability": 0.845 + }, + { + "start": 8201.86, + "end": 8203.14, + "probability": 0.9768 + }, + { + "start": 8203.82, + "end": 8206.28, + "probability": 0.9824 + }, + { + "start": 8207.22, + "end": 8207.92, + "probability": 0.9755 + }, + { + "start": 8208.98, + "end": 8211.86, + "probability": 0.9963 + }, + { + "start": 8213.26, + "end": 8213.88, + "probability": 0.522 + }, + { + "start": 8214.02, + "end": 8217.36, + "probability": 0.901 + }, + { + "start": 8218.9, + "end": 8223.34, + "probability": 0.9927 + }, + { + "start": 8223.54, + "end": 8224.6, + "probability": 0.9902 + }, + { + "start": 8224.98, + "end": 8226.24, + "probability": 0.978 + }, + { + "start": 8226.9, + "end": 8229.54, + "probability": 0.9647 + }, + { + "start": 8232.44, + "end": 8234.44, + "probability": 0.9801 + }, + { + "start": 8236.6, + "end": 8239.8, + "probability": 0.9994 + }, + { + "start": 8240.68, + "end": 8241.72, + "probability": 0.9188 + }, + { + "start": 8242.8, + "end": 8245.64, + "probability": 0.9642 + }, + { + "start": 8246.96, + "end": 8248.74, + "probability": 0.9971 + }, + { + "start": 8249.1, + "end": 8252.18, + "probability": 0.9963 + }, + { + "start": 8253.84, + "end": 8256.06, + "probability": 0.9948 + }, + { + "start": 8256.3, + "end": 8257.42, + "probability": 0.9268 + }, + { + "start": 8258.26, + "end": 8259.48, + "probability": 0.869 + }, + { + "start": 8260.06, + "end": 8261.12, + "probability": 0.9856 + }, + { + "start": 8263.04, + "end": 8264.18, + "probability": 0.9154 + }, + { + "start": 8265.92, + "end": 8266.82, + "probability": 0.7321 + }, + { + "start": 8267.58, + "end": 8268.46, + "probability": 0.9934 + }, + { + "start": 8271.22, + "end": 8273.36, + "probability": 0.9819 + }, + { + "start": 8273.92, + "end": 8276.46, + "probability": 0.9681 + }, + { + "start": 8278.0, + "end": 8278.7, + "probability": 0.8153 + }, + { + "start": 8282.16, + "end": 8285.42, + "probability": 0.875 + }, + { + "start": 8286.8, + "end": 8290.98, + "probability": 0.9961 + }, + { + "start": 8293.34, + "end": 8297.88, + "probability": 0.9938 + }, + { + "start": 8298.7, + "end": 8302.0, + "probability": 0.9547 + }, + { + "start": 8302.12, + "end": 8302.9, + "probability": 0.9022 + }, + { + "start": 8304.18, + "end": 8304.94, + "probability": 0.9175 + }, + { + "start": 8306.24, + "end": 8308.5, + "probability": 0.544 + }, + { + "start": 8308.64, + "end": 8310.24, + "probability": 0.917 + }, + { + "start": 8311.24, + "end": 8313.18, + "probability": 0.9945 + }, + { + "start": 8314.14, + "end": 8315.38, + "probability": 0.9976 + }, + { + "start": 8315.52, + "end": 8317.78, + "probability": 0.89 + }, + { + "start": 8319.22, + "end": 8325.84, + "probability": 0.8164 + }, + { + "start": 8327.94, + "end": 8330.16, + "probability": 0.9954 + }, + { + "start": 8330.3, + "end": 8331.06, + "probability": 0.6385 + }, + { + "start": 8331.78, + "end": 8333.24, + "probability": 0.9902 + }, + { + "start": 8334.82, + "end": 8335.6, + "probability": 0.8172 + }, + { + "start": 8336.34, + "end": 8338.48, + "probability": 0.9339 + }, + { + "start": 8339.04, + "end": 8341.24, + "probability": 0.999 + }, + { + "start": 8341.56, + "end": 8344.36, + "probability": 0.9982 + }, + { + "start": 8344.36, + "end": 8347.02, + "probability": 0.9975 + }, + { + "start": 8347.46, + "end": 8348.64, + "probability": 0.9087 + }, + { + "start": 8349.24, + "end": 8352.78, + "probability": 0.9976 + }, + { + "start": 8354.72, + "end": 8356.16, + "probability": 0.7443 + }, + { + "start": 8358.6, + "end": 8360.24, + "probability": 0.8213 + }, + { + "start": 8361.06, + "end": 8364.94, + "probability": 0.9961 + }, + { + "start": 8364.94, + "end": 8368.58, + "probability": 0.9749 + }, + { + "start": 8369.28, + "end": 8370.12, + "probability": 0.6035 + }, + { + "start": 8371.12, + "end": 8372.04, + "probability": 0.8445 + }, + { + "start": 8372.94, + "end": 8375.78, + "probability": 0.952 + }, + { + "start": 8376.66, + "end": 8377.32, + "probability": 0.7679 + }, + { + "start": 8378.54, + "end": 8381.4, + "probability": 0.9738 + }, + { + "start": 8381.52, + "end": 8383.8, + "probability": 0.9663 + }, + { + "start": 8384.54, + "end": 8388.7, + "probability": 0.9781 + }, + { + "start": 8389.62, + "end": 8390.7, + "probability": 0.6628 + }, + { + "start": 8391.14, + "end": 8392.5, + "probability": 0.9315 + }, + { + "start": 8392.58, + "end": 8393.4, + "probability": 0.9922 + }, + { + "start": 8393.52, + "end": 8395.38, + "probability": 0.9767 + }, + { + "start": 8396.7, + "end": 8399.22, + "probability": 0.9458 + }, + { + "start": 8399.84, + "end": 8405.5, + "probability": 0.9902 + }, + { + "start": 8406.42, + "end": 8407.76, + "probability": 0.8355 + }, + { + "start": 8408.3, + "end": 8409.22, + "probability": 0.7655 + }, + { + "start": 8411.4, + "end": 8412.4, + "probability": 0.961 + }, + { + "start": 8413.86, + "end": 8415.88, + "probability": 0.9643 + }, + { + "start": 8417.04, + "end": 8419.82, + "probability": 0.9917 + }, + { + "start": 8420.7, + "end": 8421.62, + "probability": 0.9666 + }, + { + "start": 8422.42, + "end": 8423.0, + "probability": 0.9521 + }, + { + "start": 8423.58, + "end": 8424.72, + "probability": 0.8389 + }, + { + "start": 8425.32, + "end": 8426.78, + "probability": 0.8231 + }, + { + "start": 8427.2, + "end": 8431.78, + "probability": 0.9556 + }, + { + "start": 8432.56, + "end": 8435.42, + "probability": 0.998 + }, + { + "start": 8435.96, + "end": 8438.16, + "probability": 0.9881 + }, + { + "start": 8439.26, + "end": 8441.74, + "probability": 0.9652 + }, + { + "start": 8442.62, + "end": 8443.52, + "probability": 0.6657 + }, + { + "start": 8443.94, + "end": 8446.9, + "probability": 0.9963 + }, + { + "start": 8446.9, + "end": 8453.52, + "probability": 0.9841 + }, + { + "start": 8453.6, + "end": 8454.56, + "probability": 0.9266 + }, + { + "start": 8454.94, + "end": 8456.02, + "probability": 0.7972 + }, + { + "start": 8456.18, + "end": 8457.18, + "probability": 0.7393 + }, + { + "start": 8457.74, + "end": 8458.58, + "probability": 0.7173 + }, + { + "start": 8459.38, + "end": 8462.54, + "probability": 0.7494 + }, + { + "start": 8463.18, + "end": 8464.52, + "probability": 0.9213 + }, + { + "start": 8464.68, + "end": 8465.78, + "probability": 0.9403 + }, + { + "start": 8466.24, + "end": 8470.04, + "probability": 0.9989 + }, + { + "start": 8470.7, + "end": 8473.16, + "probability": 0.9864 + }, + { + "start": 8473.6, + "end": 8474.08, + "probability": 0.7546 + }, + { + "start": 8474.72, + "end": 8475.36, + "probability": 0.6531 + }, + { + "start": 8475.46, + "end": 8476.44, + "probability": 0.7109 + }, + { + "start": 8477.16, + "end": 8479.14, + "probability": 0.9753 + }, + { + "start": 8480.86, + "end": 8483.4, + "probability": 0.6403 + }, + { + "start": 8485.3, + "end": 8486.16, + "probability": 0.8217 + }, + { + "start": 8486.28, + "end": 8492.02, + "probability": 0.8889 + }, + { + "start": 8492.08, + "end": 8492.86, + "probability": 0.9742 + }, + { + "start": 8493.4, + "end": 8500.6, + "probability": 0.9656 + }, + { + "start": 8502.28, + "end": 8510.0, + "probability": 0.9314 + }, + { + "start": 8510.4, + "end": 8511.72, + "probability": 0.9661 + }, + { + "start": 8511.94, + "end": 8518.18, + "probability": 0.9357 + }, + { + "start": 8519.46, + "end": 8519.5, + "probability": 0.0649 + }, + { + "start": 8520.12, + "end": 8520.12, + "probability": 0.0096 + }, + { + "start": 8520.12, + "end": 8523.36, + "probability": 0.3111 + }, + { + "start": 8525.9, + "end": 8526.46, + "probability": 0.9673 + }, + { + "start": 8527.02, + "end": 8527.82, + "probability": 0.9358 + }, + { + "start": 8528.9, + "end": 8530.78, + "probability": 0.967 + }, + { + "start": 8531.54, + "end": 8534.34, + "probability": 0.9956 + }, + { + "start": 8536.52, + "end": 8539.42, + "probability": 0.9532 + }, + { + "start": 8540.56, + "end": 8543.52, + "probability": 0.9981 + }, + { + "start": 8543.52, + "end": 8547.2, + "probability": 0.9949 + }, + { + "start": 8547.86, + "end": 8550.74, + "probability": 0.9032 + }, + { + "start": 8551.5, + "end": 8553.1, + "probability": 0.6979 + }, + { + "start": 8553.18, + "end": 8553.68, + "probability": 0.634 + }, + { + "start": 8553.7, + "end": 8554.3, + "probability": 0.7421 + }, + { + "start": 8554.36, + "end": 8555.2, + "probability": 0.5583 + }, + { + "start": 8558.96, + "end": 8560.12, + "probability": 0.6947 + }, + { + "start": 8569.9, + "end": 8570.44, + "probability": 0.2703 + }, + { + "start": 8570.44, + "end": 8571.06, + "probability": 0.3618 + }, + { + "start": 8571.74, + "end": 8574.1, + "probability": 0.5428 + }, + { + "start": 8574.92, + "end": 8578.22, + "probability": 0.8931 + }, + { + "start": 8579.3, + "end": 8579.64, + "probability": 0.8483 + }, + { + "start": 8580.2, + "end": 8584.12, + "probability": 0.8394 + }, + { + "start": 8584.12, + "end": 8588.68, + "probability": 0.9889 + }, + { + "start": 8589.24, + "end": 8591.72, + "probability": 0.6306 + }, + { + "start": 8592.52, + "end": 8593.74, + "probability": 0.8059 + }, + { + "start": 8594.28, + "end": 8595.98, + "probability": 0.4726 + }, + { + "start": 8596.72, + "end": 8597.3, + "probability": 0.6563 + }, + { + "start": 8597.38, + "end": 8598.26, + "probability": 0.3991 + }, + { + "start": 8598.26, + "end": 8598.9, + "probability": 0.1785 + }, + { + "start": 8601.08, + "end": 8601.94, + "probability": 0.5476 + }, + { + "start": 8603.1, + "end": 8603.68, + "probability": 0.5529 + }, + { + "start": 8608.78, + "end": 8612.22, + "probability": 0.243 + }, + { + "start": 8613.16, + "end": 8615.16, + "probability": 0.1701 + }, + { + "start": 8616.12, + "end": 8617.92, + "probability": 0.3646 + }, + { + "start": 8618.2, + "end": 8619.34, + "probability": 0.4382 + }, + { + "start": 8620.06, + "end": 8621.86, + "probability": 0.4763 + }, + { + "start": 8621.98, + "end": 8626.6, + "probability": 0.8217 + }, + { + "start": 8627.3, + "end": 8631.6, + "probability": 0.8 + }, + { + "start": 8631.7, + "end": 8633.06, + "probability": 0.4961 + }, + { + "start": 8634.38, + "end": 8637.12, + "probability": 0.8616 + }, + { + "start": 8637.48, + "end": 8640.34, + "probability": 0.829 + }, + { + "start": 8641.0, + "end": 8642.42, + "probability": 0.6243 + }, + { + "start": 8645.74, + "end": 8645.78, + "probability": 0.2019 + }, + { + "start": 8647.22, + "end": 8647.44, + "probability": 0.5126 + }, + { + "start": 8648.28, + "end": 8650.52, + "probability": 0.5608 + }, + { + "start": 8653.64, + "end": 8655.9, + "probability": 0.2811 + }, + { + "start": 8660.18, + "end": 8660.42, + "probability": 0.298 + }, + { + "start": 8660.42, + "end": 8661.0, + "probability": 0.3367 + }, + { + "start": 8661.76, + "end": 8663.94, + "probability": 0.3801 + }, + { + "start": 8664.44, + "end": 8667.9, + "probability": 0.9119 + }, + { + "start": 8668.72, + "end": 8671.62, + "probability": 0.7742 + }, + { + "start": 8672.44, + "end": 8672.94, + "probability": 0.5531 + }, + { + "start": 8673.02, + "end": 8674.64, + "probability": 0.6656 + }, + { + "start": 8677.57, + "end": 8681.6, + "probability": 0.4852 + }, + { + "start": 8681.6, + "end": 8683.2, + "probability": 0.4396 + }, + { + "start": 8683.28, + "end": 8684.27, + "probability": 0.7528 + }, + { + "start": 8685.0, + "end": 8687.6, + "probability": 0.9794 + }, + { + "start": 8688.08, + "end": 8690.14, + "probability": 0.7973 + }, + { + "start": 8690.26, + "end": 8691.12, + "probability": 0.6565 + }, + { + "start": 8692.76, + "end": 8694.72, + "probability": 0.9697 + }, + { + "start": 8694.84, + "end": 8694.98, + "probability": 0.4933 + }, + { + "start": 8695.06, + "end": 8701.02, + "probability": 0.9224 + }, + { + "start": 8714.78, + "end": 8717.66, + "probability": 0.2866 + }, + { + "start": 8720.44, + "end": 8721.32, + "probability": 0.5362 + }, + { + "start": 8722.84, + "end": 8726.6, + "probability": 0.9713 + }, + { + "start": 8728.74, + "end": 8729.92, + "probability": 0.8735 + }, + { + "start": 8736.38, + "end": 8737.04, + "probability": 0.6326 + }, + { + "start": 8740.16, + "end": 8740.6, + "probability": 0.4247 + }, + { + "start": 8744.86, + "end": 8746.16, + "probability": 0.5848 + }, + { + "start": 8746.26, + "end": 8746.5, + "probability": 0.8916 + }, + { + "start": 8747.52, + "end": 8747.94, + "probability": 0.5486 + }, + { + "start": 8748.24, + "end": 8749.18, + "probability": 0.9078 + }, + { + "start": 8750.06, + "end": 8753.0, + "probability": 0.9888 + }, + { + "start": 8753.0, + "end": 8756.9, + "probability": 0.9257 + }, + { + "start": 8757.68, + "end": 8762.52, + "probability": 0.5898 + }, + { + "start": 8763.72, + "end": 8768.4, + "probability": 0.8591 + }, + { + "start": 8768.9, + "end": 8773.7, + "probability": 0.9624 + }, + { + "start": 8774.6, + "end": 8778.84, + "probability": 0.9875 + }, + { + "start": 8779.62, + "end": 8782.18, + "probability": 0.776 + }, + { + "start": 8783.22, + "end": 8783.34, + "probability": 0.3446 + }, + { + "start": 8783.48, + "end": 8788.4, + "probability": 0.9897 + }, + { + "start": 8788.53, + "end": 8796.72, + "probability": 0.9927 + }, + { + "start": 8797.96, + "end": 8802.9, + "probability": 0.8687 + }, + { + "start": 8803.88, + "end": 8809.24, + "probability": 0.994 + }, + { + "start": 8810.06, + "end": 8811.06, + "probability": 0.9832 + }, + { + "start": 8812.02, + "end": 8812.56, + "probability": 0.4815 + }, + { + "start": 8814.12, + "end": 8818.96, + "probability": 0.9979 + }, + { + "start": 8820.0, + "end": 8825.46, + "probability": 0.9814 + }, + { + "start": 8826.54, + "end": 8828.06, + "probability": 0.787 + }, + { + "start": 8828.58, + "end": 8830.48, + "probability": 0.9858 + }, + { + "start": 8830.48, + "end": 8835.54, + "probability": 0.8997 + }, + { + "start": 8835.54, + "end": 8839.72, + "probability": 0.9432 + }, + { + "start": 8839.72, + "end": 8845.58, + "probability": 0.8192 + }, + { + "start": 8845.64, + "end": 8847.5, + "probability": 0.1989 + }, + { + "start": 8848.4, + "end": 8853.74, + "probability": 0.8272 + }, + { + "start": 8854.44, + "end": 8856.68, + "probability": 0.9018 + }, + { + "start": 8856.68, + "end": 8858.27, + "probability": 0.2934 + }, + { + "start": 8858.46, + "end": 8860.72, + "probability": 0.8241 + }, + { + "start": 8861.32, + "end": 8864.22, + "probability": 0.6398 + }, + { + "start": 8864.28, + "end": 8865.2, + "probability": 0.6157 + }, + { + "start": 8865.28, + "end": 8866.98, + "probability": 0.5569 + }, + { + "start": 8867.44, + "end": 8868.28, + "probability": 0.7431 + }, + { + "start": 8868.52, + "end": 8868.84, + "probability": 0.6189 + }, + { + "start": 8868.96, + "end": 8869.98, + "probability": 0.698 + }, + { + "start": 8870.06, + "end": 8873.32, + "probability": 0.9434 + }, + { + "start": 8873.84, + "end": 8876.42, + "probability": 0.809 + }, + { + "start": 8876.88, + "end": 8877.62, + "probability": 0.6892 + }, + { + "start": 8878.2, + "end": 8880.42, + "probability": 0.7572 + }, + { + "start": 8881.08, + "end": 8885.41, + "probability": 0.9316 + }, + { + "start": 8886.24, + "end": 8888.16, + "probability": 0.9453 + }, + { + "start": 8889.4, + "end": 8893.84, + "probability": 0.6459 + }, + { + "start": 8894.76, + "end": 8895.54, + "probability": 0.5486 + }, + { + "start": 8896.46, + "end": 8900.66, + "probability": 0.6053 + }, + { + "start": 8900.78, + "end": 8903.14, + "probability": 0.8483 + }, + { + "start": 8905.1, + "end": 8905.8, + "probability": 0.717 + }, + { + "start": 8905.86, + "end": 8906.46, + "probability": 0.7149 + }, + { + "start": 8906.54, + "end": 8907.14, + "probability": 0.9703 + }, + { + "start": 8914.24, + "end": 8914.58, + "probability": 0.003 + }, + { + "start": 8915.56, + "end": 8915.64, + "probability": 0.0 + }, + { + "start": 8919.32, + "end": 8920.66, + "probability": 0.0905 + }, + { + "start": 8922.04, + "end": 8924.54, + "probability": 0.8149 + }, + { + "start": 8925.05, + "end": 8927.12, + "probability": 0.7232 + }, + { + "start": 8927.76, + "end": 8930.56, + "probability": 0.979 + }, + { + "start": 8931.6, + "end": 8934.5, + "probability": 0.9967 + }, + { + "start": 8934.86, + "end": 8935.48, + "probability": 0.757 + }, + { + "start": 8935.52, + "end": 8935.98, + "probability": 0.551 + }, + { + "start": 8935.98, + "end": 8937.0, + "probability": 0.6801 + }, + { + "start": 8955.7, + "end": 8958.26, + "probability": 0.4534 + }, + { + "start": 8958.52, + "end": 8960.08, + "probability": 0.1662 + }, + { + "start": 8960.56, + "end": 8961.28, + "probability": 0.116 + }, + { + "start": 8964.64, + "end": 8965.7, + "probability": 0.0368 + }, + { + "start": 8965.7, + "end": 8968.44, + "probability": 0.4467 + }, + { + "start": 8970.24, + "end": 8970.66, + "probability": 0.4642 + }, + { + "start": 8971.32, + "end": 8974.92, + "probability": 0.4098 + }, + { + "start": 8994.72, + "end": 8996.78, + "probability": 0.5959 + }, + { + "start": 9004.06, + "end": 9005.62, + "probability": 0.1427 + }, + { + "start": 9007.78, + "end": 9012.26, + "probability": 0.015 + }, + { + "start": 9012.26, + "end": 9014.38, + "probability": 0.1248 + }, + { + "start": 9014.56, + "end": 9015.26, + "probability": 0.5183 + }, + { + "start": 9017.71, + "end": 9020.26, + "probability": 0.3079 + }, + { + "start": 9025.46, + "end": 9025.86, + "probability": 0.0296 + }, + { + "start": 9026.94, + "end": 9026.94, + "probability": 0.11 + }, + { + "start": 9034.84, + "end": 9038.54, + "probability": 0.0877 + }, + { + "start": 9038.54, + "end": 9039.48, + "probability": 0.0514 + }, + { + "start": 9039.48, + "end": 9043.74, + "probability": 0.2417 + }, + { + "start": 9044.54, + "end": 9046.58, + "probability": 0.0343 + }, + { + "start": 9047.24, + "end": 9047.24, + "probability": 0.131 + }, + { + "start": 9056.0, + "end": 9056.0, + "probability": 0.0 + }, + { + "start": 9056.0, + "end": 9056.0, + "probability": 0.0 + }, + { + "start": 9056.0, + "end": 9056.0, + "probability": 0.0 + }, + { + "start": 9056.0, + "end": 9056.0, + "probability": 0.0 + }, + { + "start": 9056.0, + "end": 9056.0, + "probability": 0.0 + }, + { + "start": 9056.0, + "end": 9056.0, + "probability": 0.0 + }, + { + "start": 9056.0, + "end": 9056.0, + "probability": 0.0 + }, + { + "start": 9056.0, + "end": 9056.0, + "probability": 0.0 + }, + { + "start": 9056.0, + "end": 9056.0, + "probability": 0.0 + }, + { + "start": 9056.0, + "end": 9056.0, + "probability": 0.0 + }, + { + "start": 9056.0, + "end": 9056.0, + "probability": 0.0 + }, + { + "start": 9056.18, + "end": 9059.02, + "probability": 0.7553 + }, + { + "start": 9060.08, + "end": 9060.44, + "probability": 0.5605 + }, + { + "start": 9061.18, + "end": 9068.56, + "probability": 0.9478 + }, + { + "start": 9068.56, + "end": 9072.18, + "probability": 0.9972 + }, + { + "start": 9072.18, + "end": 9075.24, + "probability": 0.9943 + }, + { + "start": 9076.02, + "end": 9080.06, + "probability": 0.9956 + }, + { + "start": 9081.36, + "end": 9084.42, + "probability": 0.9717 + }, + { + "start": 9085.04, + "end": 9088.9, + "probability": 0.9825 + }, + { + "start": 9090.52, + "end": 9094.32, + "probability": 0.9262 + }, + { + "start": 9094.64, + "end": 9096.72, + "probability": 0.9244 + }, + { + "start": 9097.42, + "end": 9099.68, + "probability": 0.9829 + }, + { + "start": 9100.02, + "end": 9102.42, + "probability": 0.9991 + }, + { + "start": 9103.6, + "end": 9104.22, + "probability": 0.849 + }, + { + "start": 9106.14, + "end": 9110.18, + "probability": 0.9987 + }, + { + "start": 9110.3, + "end": 9113.72, + "probability": 0.9967 + }, + { + "start": 9114.46, + "end": 9118.22, + "probability": 0.9961 + }, + { + "start": 9118.22, + "end": 9123.24, + "probability": 0.9954 + }, + { + "start": 9123.84, + "end": 9126.92, + "probability": 0.9976 + }, + { + "start": 9127.8, + "end": 9132.38, + "probability": 0.9741 + }, + { + "start": 9132.58, + "end": 9133.58, + "probability": 0.7898 + }, + { + "start": 9133.94, + "end": 9135.28, + "probability": 0.9423 + }, + { + "start": 9135.88, + "end": 9139.98, + "probability": 0.9963 + }, + { + "start": 9139.98, + "end": 9143.68, + "probability": 0.9373 + }, + { + "start": 9144.14, + "end": 9145.2, + "probability": 0.5993 + }, + { + "start": 9145.68, + "end": 9148.3, + "probability": 0.9879 + }, + { + "start": 9149.18, + "end": 9153.0, + "probability": 0.9773 + }, + { + "start": 9153.66, + "end": 9158.48, + "probability": 0.8338 + }, + { + "start": 9158.48, + "end": 9161.12, + "probability": 0.9954 + }, + { + "start": 9161.72, + "end": 9166.7, + "probability": 0.9922 + }, + { + "start": 9167.0, + "end": 9167.84, + "probability": 0.7284 + }, + { + "start": 9168.44, + "end": 9169.6, + "probability": 0.7007 + }, + { + "start": 9169.78, + "end": 9170.76, + "probability": 0.8784 + }, + { + "start": 9170.82, + "end": 9174.3, + "probability": 0.9417 + }, + { + "start": 9174.34, + "end": 9175.76, + "probability": 0.7932 + }, + { + "start": 9175.82, + "end": 9176.42, + "probability": 0.4031 + }, + { + "start": 9176.46, + "end": 9178.0, + "probability": 0.3851 + }, + { + "start": 9178.14, + "end": 9178.78, + "probability": 0.8129 + }, + { + "start": 9179.32, + "end": 9182.5, + "probability": 0.9363 + }, + { + "start": 9182.6, + "end": 9182.94, + "probability": 0.9379 + }, + { + "start": 9183.34, + "end": 9183.94, + "probability": 0.8563 + }, + { + "start": 9185.24, + "end": 9191.22, + "probability": 0.6779 + }, + { + "start": 9193.86, + "end": 9196.81, + "probability": 0.9321 + }, + { + "start": 9197.48, + "end": 9197.88, + "probability": 0.8431 + }, + { + "start": 9199.16, + "end": 9199.34, + "probability": 0.6947 + }, + { + "start": 9199.34, + "end": 9200.76, + "probability": 0.5694 + }, + { + "start": 9201.96, + "end": 9206.56, + "probability": 0.9897 + }, + { + "start": 9209.4, + "end": 9211.5, + "probability": 0.9704 + }, + { + "start": 9211.96, + "end": 9217.54, + "probability": 0.9769 + }, + { + "start": 9217.62, + "end": 9219.32, + "probability": 0.8477 + }, + { + "start": 9219.76, + "end": 9222.88, + "probability": 0.9919 + }, + { + "start": 9223.58, + "end": 9225.06, + "probability": 0.9203 + }, + { + "start": 9225.94, + "end": 9227.06, + "probability": 0.4523 + }, + { + "start": 9227.5, + "end": 9231.04, + "probability": 0.951 + }, + { + "start": 9231.72, + "end": 9236.94, + "probability": 0.9481 + }, + { + "start": 9237.56, + "end": 9239.08, + "probability": 0.9426 + }, + { + "start": 9239.8, + "end": 9240.92, + "probability": 0.9839 + }, + { + "start": 9241.24, + "end": 9241.72, + "probability": 0.5848 + }, + { + "start": 9241.78, + "end": 9243.42, + "probability": 0.9658 + }, + { + "start": 9245.02, + "end": 9247.7, + "probability": 0.9143 + }, + { + "start": 9247.78, + "end": 9248.76, + "probability": 0.9746 + }, + { + "start": 9249.44, + "end": 9251.52, + "probability": 0.9755 + }, + { + "start": 9252.06, + "end": 9257.8, + "probability": 0.8957 + }, + { + "start": 9257.92, + "end": 9258.8, + "probability": 0.8057 + }, + { + "start": 9259.42, + "end": 9263.32, + "probability": 0.8359 + }, + { + "start": 9264.2, + "end": 9264.84, + "probability": 0.9779 + }, + { + "start": 9264.88, + "end": 9267.62, + "probability": 0.9912 + }, + { + "start": 9267.62, + "end": 9270.3, + "probability": 0.9917 + }, + { + "start": 9271.46, + "end": 9273.48, + "probability": 0.7397 + }, + { + "start": 9273.66, + "end": 9275.6, + "probability": 0.9613 + }, + { + "start": 9276.22, + "end": 9277.56, + "probability": 0.8927 + }, + { + "start": 9278.1, + "end": 9279.62, + "probability": 0.9556 + }, + { + "start": 9279.7, + "end": 9281.14, + "probability": 0.9777 + }, + { + "start": 9281.44, + "end": 9282.56, + "probability": 0.5318 + }, + { + "start": 9282.66, + "end": 9283.66, + "probability": 0.9443 + }, + { + "start": 9284.12, + "end": 9285.28, + "probability": 0.856 + }, + { + "start": 9285.36, + "end": 9286.65, + "probability": 0.8584 + }, + { + "start": 9287.44, + "end": 9290.33, + "probability": 0.8378 + }, + { + "start": 9290.62, + "end": 9293.75, + "probability": 0.9802 + }, + { + "start": 9294.18, + "end": 9295.34, + "probability": 0.9377 + }, + { + "start": 9295.72, + "end": 9296.32, + "probability": 0.739 + }, + { + "start": 9296.54, + "end": 9301.98, + "probability": 0.7093 + }, + { + "start": 9302.38, + "end": 9306.92, + "probability": 0.9967 + }, + { + "start": 9307.4, + "end": 9308.76, + "probability": 0.8693 + }, + { + "start": 9309.58, + "end": 9312.38, + "probability": 0.9355 + }, + { + "start": 9312.94, + "end": 9314.82, + "probability": 0.8799 + }, + { + "start": 9314.84, + "end": 9316.9, + "probability": 0.8785 + }, + { + "start": 9317.04, + "end": 9318.51, + "probability": 0.7035 + }, + { + "start": 9319.02, + "end": 9320.82, + "probability": 0.9594 + }, + { + "start": 9321.3, + "end": 9323.9, + "probability": 0.9352 + }, + { + "start": 9324.12, + "end": 9325.87, + "probability": 0.9473 + }, + { + "start": 9326.3, + "end": 9327.22, + "probability": 0.9883 + }, + { + "start": 9328.08, + "end": 9330.1, + "probability": 0.8427 + }, + { + "start": 9330.48, + "end": 9334.78, + "probability": 0.9748 + }, + { + "start": 9334.78, + "end": 9340.62, + "probability": 0.8289 + }, + { + "start": 9340.7, + "end": 9343.96, + "probability": 0.9874 + }, + { + "start": 9343.96, + "end": 9347.12, + "probability": 0.915 + }, + { + "start": 9347.68, + "end": 9350.34, + "probability": 0.9703 + }, + { + "start": 9350.58, + "end": 9351.66, + "probability": 0.4544 + }, + { + "start": 9351.72, + "end": 9353.32, + "probability": 0.8884 + }, + { + "start": 9353.7, + "end": 9357.36, + "probability": 0.8711 + }, + { + "start": 9357.54, + "end": 9359.75, + "probability": 0.7694 + }, + { + "start": 9360.14, + "end": 9361.4, + "probability": 0.83 + }, + { + "start": 9361.76, + "end": 9363.74, + "probability": 0.9824 + }, + { + "start": 9363.74, + "end": 9366.72, + "probability": 0.7899 + }, + { + "start": 9366.84, + "end": 9367.58, + "probability": 0.2438 + }, + { + "start": 9367.9, + "end": 9368.74, + "probability": 0.9178 + }, + { + "start": 9369.28, + "end": 9371.68, + "probability": 0.7009 + }, + { + "start": 9372.28, + "end": 9376.3, + "probability": 0.9546 + }, + { + "start": 9376.6, + "end": 9378.18, + "probability": 0.9907 + }, + { + "start": 9378.46, + "end": 9380.26, + "probability": 0.9235 + }, + { + "start": 9380.5, + "end": 9384.84, + "probability": 0.9688 + }, + { + "start": 9385.24, + "end": 9388.32, + "probability": 0.9705 + }, + { + "start": 9388.94, + "end": 9390.6, + "probability": 0.9971 + }, + { + "start": 9390.72, + "end": 9391.65, + "probability": 0.8624 + }, + { + "start": 9392.16, + "end": 9394.28, + "probability": 0.991 + }, + { + "start": 9395.05, + "end": 9399.5, + "probability": 0.8084 + }, + { + "start": 9399.8, + "end": 9400.08, + "probability": 0.4091 + }, + { + "start": 9400.12, + "end": 9400.78, + "probability": 0.4845 + }, + { + "start": 9400.84, + "end": 9401.51, + "probability": 0.7069 + }, + { + "start": 9403.26, + "end": 9404.16, + "probability": 0.7746 + }, + { + "start": 9404.66, + "end": 9409.15, + "probability": 0.994 + }, + { + "start": 9409.86, + "end": 9410.44, + "probability": 0.2605 + }, + { + "start": 9410.74, + "end": 9413.27, + "probability": 0.9229 + }, + { + "start": 9413.82, + "end": 9415.9, + "probability": 0.8958 + }, + { + "start": 9416.46, + "end": 9418.46, + "probability": 0.5354 + }, + { + "start": 9419.18, + "end": 9423.2, + "probability": 0.5638 + }, + { + "start": 9423.94, + "end": 9425.92, + "probability": 0.8838 + }, + { + "start": 9426.02, + "end": 9426.86, + "probability": 0.999 + }, + { + "start": 9427.5, + "end": 9429.46, + "probability": 0.776 + }, + { + "start": 9429.52, + "end": 9431.24, + "probability": 0.7632 + }, + { + "start": 9431.3, + "end": 9432.26, + "probability": 0.7428 + }, + { + "start": 9432.44, + "end": 9433.32, + "probability": 0.9373 + }, + { + "start": 9433.56, + "end": 9434.22, + "probability": 0.6107 + }, + { + "start": 9434.22, + "end": 9435.92, + "probability": 0.9514 + }, + { + "start": 9436.28, + "end": 9437.64, + "probability": 0.9087 + }, + { + "start": 9438.18, + "end": 9439.65, + "probability": 0.8115 + }, + { + "start": 9440.08, + "end": 9443.56, + "probability": 0.9939 + }, + { + "start": 9443.92, + "end": 9447.68, + "probability": 0.8905 + }, + { + "start": 9448.06, + "end": 9449.06, + "probability": 0.3286 + }, + { + "start": 9449.16, + "end": 9449.4, + "probability": 0.7672 + }, + { + "start": 9449.96, + "end": 9451.38, + "probability": 0.7378 + }, + { + "start": 9451.78, + "end": 9455.82, + "probability": 0.9833 + }, + { + "start": 9457.6, + "end": 9460.08, + "probability": 0.5199 + }, + { + "start": 9460.26, + "end": 9465.72, + "probability": 0.3825 + }, + { + "start": 9465.9, + "end": 9466.3, + "probability": 0.6032 + }, + { + "start": 9466.36, + "end": 9466.76, + "probability": 0.6099 + }, + { + "start": 9467.5, + "end": 9468.06, + "probability": 0.7245 + }, + { + "start": 9490.43, + "end": 9492.64, + "probability": 0.1866 + }, + { + "start": 9493.26, + "end": 9493.6, + "probability": 0.0452 + }, + { + "start": 9495.2, + "end": 9496.52, + "probability": 0.6313 + }, + { + "start": 9506.7, + "end": 9507.84, + "probability": 0.0455 + }, + { + "start": 9507.84, + "end": 9515.2, + "probability": 0.3038 + }, + { + "start": 9518.84, + "end": 9520.04, + "probability": 0.1586 + }, + { + "start": 9529.68, + "end": 9529.78, + "probability": 0.0863 + }, + { + "start": 9530.08, + "end": 9531.96, + "probability": 0.1341 + }, + { + "start": 9531.96, + "end": 9531.96, + "probability": 0.0312 + }, + { + "start": 9531.96, + "end": 9534.5, + "probability": 0.0329 + }, + { + "start": 9535.77, + "end": 9539.9, + "probability": 0.0407 + }, + { + "start": 9540.02, + "end": 9540.58, + "probability": 0.0706 + }, + { + "start": 9562.0, + "end": 9562.0, + "probability": 0.0 + }, + { + "start": 9562.0, + "end": 9562.0, + "probability": 0.0 + }, + { + "start": 9562.0, + "end": 9562.0, + "probability": 0.0 + }, + { + "start": 9562.0, + "end": 9562.0, + "probability": 0.0 + }, + { + "start": 9562.0, + "end": 9562.0, + "probability": 0.0 + }, + { + "start": 9562.0, + "end": 9562.0, + "probability": 0.0 + }, + { + "start": 9562.0, + "end": 9562.0, + "probability": 0.0 + }, + { + "start": 9562.0, + "end": 9562.0, + "probability": 0.0 + }, + { + "start": 9562.0, + "end": 9562.0, + "probability": 0.0 + }, + { + "start": 9562.0, + "end": 9562.0, + "probability": 0.0 + }, + { + "start": 9562.0, + "end": 9562.0, + "probability": 0.0 + }, + { + "start": 9562.0, + "end": 9562.0, + "probability": 0.0 + }, + { + "start": 9562.0, + "end": 9562.0, + "probability": 0.0 + }, + { + "start": 9562.0, + "end": 9562.0, + "probability": 0.0 + }, + { + "start": 9562.0, + "end": 9562.0, + "probability": 0.0 + }, + { + "start": 9562.0, + "end": 9562.0, + "probability": 0.0 + }, + { + "start": 9562.0, + "end": 9562.0, + "probability": 0.0 + }, + { + "start": 9562.0, + "end": 9562.0, + "probability": 0.0 + }, + { + "start": 9562.0, + "end": 9562.0, + "probability": 0.0 + }, + { + "start": 9562.0, + "end": 9562.0, + "probability": 0.0 + }, + { + "start": 9562.0, + "end": 9562.0, + "probability": 0.0 + }, + { + "start": 9562.0, + "end": 9562.0, + "probability": 0.0 + }, + { + "start": 9563.67, + "end": 9565.12, + "probability": 0.4342 + }, + { + "start": 9565.26, + "end": 9565.74, + "probability": 0.7139 + }, + { + "start": 9565.76, + "end": 9567.1, + "probability": 0.8228 + }, + { + "start": 9567.36, + "end": 9568.88, + "probability": 0.9667 + }, + { + "start": 9569.86, + "end": 9574.7, + "probability": 0.9927 + }, + { + "start": 9574.86, + "end": 9576.24, + "probability": 0.9814 + }, + { + "start": 9577.2, + "end": 9577.7, + "probability": 0.8705 + }, + { + "start": 9578.24, + "end": 9584.58, + "probability": 0.9972 + }, + { + "start": 9585.58, + "end": 9587.38, + "probability": 0.8953 + }, + { + "start": 9587.66, + "end": 9588.88, + "probability": 0.8514 + }, + { + "start": 9589.02, + "end": 9593.26, + "probability": 0.955 + }, + { + "start": 9593.84, + "end": 9597.54, + "probability": 0.8355 + }, + { + "start": 9598.06, + "end": 9602.88, + "probability": 0.9957 + }, + { + "start": 9603.44, + "end": 9606.64, + "probability": 0.6084 + }, + { + "start": 9607.56, + "end": 9611.62, + "probability": 0.9106 + }, + { + "start": 9612.08, + "end": 9613.74, + "probability": 0.9398 + }, + { + "start": 9613.9, + "end": 9615.12, + "probability": 0.9961 + }, + { + "start": 9615.8, + "end": 9618.72, + "probability": 0.9728 + }, + { + "start": 9620.12, + "end": 9625.04, + "probability": 0.9919 + }, + { + "start": 9625.24, + "end": 9626.52, + "probability": 0.9445 + }, + { + "start": 9626.62, + "end": 9627.64, + "probability": 0.6894 + }, + { + "start": 9628.18, + "end": 9630.46, + "probability": 0.9861 + }, + { + "start": 9631.0, + "end": 9632.34, + "probability": 0.9874 + }, + { + "start": 9632.42, + "end": 9635.1, + "probability": 0.7855 + }, + { + "start": 9635.6, + "end": 9637.26, + "probability": 0.9882 + }, + { + "start": 9638.0, + "end": 9638.9, + "probability": 0.8919 + }, + { + "start": 9639.02, + "end": 9643.42, + "probability": 0.9797 + }, + { + "start": 9643.5, + "end": 9648.08, + "probability": 0.9964 + }, + { + "start": 9648.66, + "end": 9651.56, + "probability": 0.7488 + }, + { + "start": 9652.1, + "end": 9653.02, + "probability": 0.9774 + }, + { + "start": 9654.02, + "end": 9656.16, + "probability": 0.9043 + }, + { + "start": 9656.26, + "end": 9658.1, + "probability": 0.9899 + }, + { + "start": 9658.22, + "end": 9659.9, + "probability": 0.995 + }, + { + "start": 9660.5, + "end": 9662.3, + "probability": 0.996 + }, + { + "start": 9662.96, + "end": 9664.3, + "probability": 0.9988 + }, + { + "start": 9664.88, + "end": 9669.54, + "probability": 0.9468 + }, + { + "start": 9669.82, + "end": 9678.2, + "probability": 0.9948 + }, + { + "start": 9678.32, + "end": 9682.04, + "probability": 0.9972 + }, + { + "start": 9682.56, + "end": 9688.28, + "probability": 0.9712 + }, + { + "start": 9688.92, + "end": 9692.48, + "probability": 0.9941 + }, + { + "start": 9692.48, + "end": 9699.16, + "probability": 0.9932 + }, + { + "start": 9699.56, + "end": 9704.5, + "probability": 0.9827 + }, + { + "start": 9704.5, + "end": 9710.22, + "probability": 0.9985 + }, + { + "start": 9710.94, + "end": 9715.08, + "probability": 0.9553 + }, + { + "start": 9715.08, + "end": 9720.76, + "probability": 0.9982 + }, + { + "start": 9721.6, + "end": 9724.94, + "probability": 0.5504 + }, + { + "start": 9724.94, + "end": 9729.92, + "probability": 0.7976 + }, + { + "start": 9730.4, + "end": 9734.34, + "probability": 0.9902 + }, + { + "start": 9734.96, + "end": 9738.24, + "probability": 0.9942 + }, + { + "start": 9738.38, + "end": 9738.56, + "probability": 0.7634 + }, + { + "start": 9738.66, + "end": 9740.88, + "probability": 0.8208 + }, + { + "start": 9741.36, + "end": 9742.2, + "probability": 0.973 + }, + { + "start": 9742.42, + "end": 9746.24, + "probability": 0.8698 + }, + { + "start": 9746.4, + "end": 9748.81, + "probability": 0.8813 + }, + { + "start": 9749.66, + "end": 9750.48, + "probability": 0.7785 + }, + { + "start": 9751.36, + "end": 9753.18, + "probability": 0.7021 + }, + { + "start": 9754.14, + "end": 9757.98, + "probability": 0.7122 + }, + { + "start": 9757.98, + "end": 9761.22, + "probability": 0.9034 + }, + { + "start": 9761.38, + "end": 9762.62, + "probability": 0.7482 + }, + { + "start": 9763.3, + "end": 9766.94, + "probability": 0.9961 + }, + { + "start": 9767.44, + "end": 9769.5, + "probability": 0.8121 + }, + { + "start": 9769.64, + "end": 9772.68, + "probability": 0.995 + }, + { + "start": 9772.68, + "end": 9776.08, + "probability": 0.9777 + }, + { + "start": 9776.84, + "end": 9780.88, + "probability": 0.9832 + }, + { + "start": 9780.98, + "end": 9781.94, + "probability": 0.6894 + }, + { + "start": 9782.06, + "end": 9784.66, + "probability": 0.9874 + }, + { + "start": 9784.66, + "end": 9788.14, + "probability": 0.998 + }, + { + "start": 9788.32, + "end": 9789.28, + "probability": 0.8823 + }, + { + "start": 9789.82, + "end": 9791.42, + "probability": 0.9808 + }, + { + "start": 9791.62, + "end": 9794.44, + "probability": 0.7769 + }, + { + "start": 9794.48, + "end": 9799.84, + "probability": 0.9791 + }, + { + "start": 9800.18, + "end": 9806.64, + "probability": 0.9932 + }, + { + "start": 9806.64, + "end": 9811.96, + "probability": 0.9932 + }, + { + "start": 9813.42, + "end": 9817.5, + "probability": 0.9981 + }, + { + "start": 9817.54, + "end": 9817.72, + "probability": 0.7362 + }, + { + "start": 9817.78, + "end": 9821.44, + "probability": 0.9785 + }, + { + "start": 9821.62, + "end": 9822.64, + "probability": 0.8821 + }, + { + "start": 9822.74, + "end": 9823.69, + "probability": 0.9968 + }, + { + "start": 9824.68, + "end": 9826.27, + "probability": 0.9885 + }, + { + "start": 9826.74, + "end": 9831.32, + "probability": 0.9989 + }, + { + "start": 9831.84, + "end": 9835.38, + "probability": 0.9801 + }, + { + "start": 9835.46, + "end": 9839.88, + "probability": 0.834 + }, + { + "start": 9840.0, + "end": 9843.56, + "probability": 0.9879 + }, + { + "start": 9843.64, + "end": 9850.68, + "probability": 0.9954 + }, + { + "start": 9850.68, + "end": 9857.28, + "probability": 0.9994 + }, + { + "start": 9857.28, + "end": 9862.12, + "probability": 0.9997 + }, + { + "start": 9862.26, + "end": 9864.24, + "probability": 0.9024 + }, + { + "start": 9864.7, + "end": 9864.98, + "probability": 0.5145 + }, + { + "start": 9865.04, + "end": 9867.68, + "probability": 0.9745 + }, + { + "start": 9867.88, + "end": 9871.74, + "probability": 0.9861 + }, + { + "start": 9871.8, + "end": 9873.74, + "probability": 0.8356 + }, + { + "start": 9873.94, + "end": 9879.46, + "probability": 0.9857 + }, + { + "start": 9879.5, + "end": 9883.6, + "probability": 0.8884 + }, + { + "start": 9883.74, + "end": 9883.98, + "probability": 0.6453 + }, + { + "start": 9884.64, + "end": 9885.46, + "probability": 0.5932 + }, + { + "start": 9886.66, + "end": 9887.74, + "probability": 0.6465 + }, + { + "start": 9888.04, + "end": 9889.62, + "probability": 0.907 + }, + { + "start": 9889.82, + "end": 9891.88, + "probability": 0.709 + }, + { + "start": 9892.82, + "end": 9894.46, + "probability": 0.6518 + }, + { + "start": 9896.08, + "end": 9897.25, + "probability": 0.8666 + }, + { + "start": 9902.92, + "end": 9903.34, + "probability": 0.5191 + }, + { + "start": 9904.62, + "end": 9909.08, + "probability": 0.9446 + }, + { + "start": 9912.0, + "end": 9913.46, + "probability": 0.5289 + }, + { + "start": 9915.24, + "end": 9918.92, + "probability": 0.966 + }, + { + "start": 9919.04, + "end": 9919.5, + "probability": 0.8845 + }, + { + "start": 9919.82, + "end": 9921.86, + "probability": 0.9153 + }, + { + "start": 9923.22, + "end": 9925.75, + "probability": 0.978 + }, + { + "start": 9925.92, + "end": 9929.68, + "probability": 0.9385 + }, + { + "start": 9930.26, + "end": 9931.38, + "probability": 0.5537 + }, + { + "start": 9932.04, + "end": 9932.94, + "probability": 0.9733 + }, + { + "start": 9933.5, + "end": 9935.06, + "probability": 0.9463 + }, + { + "start": 9935.14, + "end": 9936.38, + "probability": 0.8943 + }, + { + "start": 9937.22, + "end": 9939.82, + "probability": 0.9902 + }, + { + "start": 9940.94, + "end": 9944.3, + "probability": 0.9991 + }, + { + "start": 9945.52, + "end": 9949.28, + "probability": 0.9985 + }, + { + "start": 9949.96, + "end": 9952.9, + "probability": 0.9257 + }, + { + "start": 9953.84, + "end": 9955.58, + "probability": 0.9817 + }, + { + "start": 9957.16, + "end": 9958.4, + "probability": 0.8346 + }, + { + "start": 9958.46, + "end": 9962.28, + "probability": 0.9617 + }, + { + "start": 9962.74, + "end": 9964.73, + "probability": 0.9971 + }, + { + "start": 9965.04, + "end": 9966.68, + "probability": 0.9888 + }, + { + "start": 9967.6, + "end": 9968.24, + "probability": 0.8101 + }, + { + "start": 9968.3, + "end": 9969.46, + "probability": 0.9287 + }, + { + "start": 9969.78, + "end": 9971.2, + "probability": 0.9985 + }, + { + "start": 9972.88, + "end": 9975.5, + "probability": 0.9943 + }, + { + "start": 9975.68, + "end": 9976.31, + "probability": 0.8088 + }, + { + "start": 9976.58, + "end": 9978.48, + "probability": 0.8333 + }, + { + "start": 9978.54, + "end": 9980.32, + "probability": 0.9279 + }, + { + "start": 9980.4, + "end": 9981.34, + "probability": 0.9976 + }, + { + "start": 9981.42, + "end": 9985.06, + "probability": 0.9517 + }, + { + "start": 9985.6, + "end": 9990.62, + "probability": 0.98 + }, + { + "start": 9990.74, + "end": 9991.48, + "probability": 0.72 + }, + { + "start": 9992.32, + "end": 9993.5, + "probability": 0.9437 + }, + { + "start": 9993.64, + "end": 9994.46, + "probability": 0.8799 + }, + { + "start": 9995.4, + "end": 10000.36, + "probability": 0.9932 + }, + { + "start": 10000.76, + "end": 10002.04, + "probability": 0.9792 + }, + { + "start": 10002.62, + "end": 10004.08, + "probability": 0.9132 + }, + { + "start": 10004.12, + "end": 10006.98, + "probability": 0.9639 + }, + { + "start": 10006.98, + "end": 10011.72, + "probability": 0.9847 + }, + { + "start": 10012.22, + "end": 10014.1, + "probability": 0.6879 + }, + { + "start": 10014.68, + "end": 10016.74, + "probability": 0.981 + }, + { + "start": 10016.96, + "end": 10019.14, + "probability": 0.7873 + }, + { + "start": 10019.68, + "end": 10022.81, + "probability": 0.9746 + }, + { + "start": 10023.0, + "end": 10026.38, + "probability": 0.9341 + }, + { + "start": 10026.42, + "end": 10026.76, + "probability": 0.761 + }, + { + "start": 10027.58, + "end": 10028.52, + "probability": 0.8004 + }, + { + "start": 10028.94, + "end": 10031.06, + "probability": 0.9234 + }, + { + "start": 10031.82, + "end": 10033.26, + "probability": 0.8701 + }, + { + "start": 10033.72, + "end": 10037.32, + "probability": 0.987 + }, + { + "start": 10037.7, + "end": 10038.74, + "probability": 0.9247 + }, + { + "start": 10039.34, + "end": 10042.68, + "probability": 0.0413 + }, + { + "start": 10042.68, + "end": 10046.56, + "probability": 0.4453 + }, + { + "start": 10047.04, + "end": 10047.46, + "probability": 0.4938 + }, + { + "start": 10047.52, + "end": 10048.76, + "probability": 0.8105 + }, + { + "start": 10048.96, + "end": 10051.28, + "probability": 0.7703 + }, + { + "start": 10051.82, + "end": 10056.14, + "probability": 0.987 + }, + { + "start": 10056.24, + "end": 10059.4, + "probability": 0.9138 + }, + { + "start": 10059.52, + "end": 10062.12, + "probability": 0.8844 + }, + { + "start": 10062.5, + "end": 10064.55, + "probability": 0.833 + }, + { + "start": 10065.34, + "end": 10067.46, + "probability": 0.9486 + }, + { + "start": 10068.74, + "end": 10069.44, + "probability": 0.7583 + }, + { + "start": 10069.48, + "end": 10069.7, + "probability": 0.7876 + }, + { + "start": 10070.1, + "end": 10072.44, + "probability": 0.9946 + }, + { + "start": 10073.16, + "end": 10074.84, + "probability": 0.4506 + }, + { + "start": 10075.16, + "end": 10076.04, + "probability": 0.9133 + }, + { + "start": 10076.72, + "end": 10077.8, + "probability": 0.8451 + }, + { + "start": 10077.88, + "end": 10080.34, + "probability": 0.9861 + }, + { + "start": 10080.46, + "end": 10085.22, + "probability": 0.9943 + }, + { + "start": 10085.6, + "end": 10088.1, + "probability": 0.8997 + }, + { + "start": 10088.74, + "end": 10089.46, + "probability": 0.6987 + }, + { + "start": 10089.62, + "end": 10091.44, + "probability": 0.8987 + }, + { + "start": 10091.78, + "end": 10092.5, + "probability": 0.8959 + }, + { + "start": 10092.58, + "end": 10093.23, + "probability": 0.6943 + }, + { + "start": 10094.54, + "end": 10096.18, + "probability": 0.9119 + }, + { + "start": 10096.28, + "end": 10098.54, + "probability": 0.9697 + }, + { + "start": 10098.96, + "end": 10099.28, + "probability": 0.5286 + }, + { + "start": 10099.7, + "end": 10101.16, + "probability": 0.989 + }, + { + "start": 10101.24, + "end": 10102.5, + "probability": 0.7858 + }, + { + "start": 10102.62, + "end": 10102.82, + "probability": 0.2891 + }, + { + "start": 10102.96, + "end": 10103.59, + "probability": 0.8818 + }, + { + "start": 10103.88, + "end": 10105.13, + "probability": 0.9868 + }, + { + "start": 10106.0, + "end": 10107.52, + "probability": 0.9648 + }, + { + "start": 10107.6, + "end": 10109.88, + "probability": 0.9706 + }, + { + "start": 10110.32, + "end": 10113.48, + "probability": 0.5276 + }, + { + "start": 10113.48, + "end": 10116.56, + "probability": 0.984 + }, + { + "start": 10116.64, + "end": 10117.88, + "probability": 0.7477 + }, + { + "start": 10118.68, + "end": 10122.26, + "probability": 0.9478 + }, + { + "start": 10122.38, + "end": 10124.94, + "probability": 0.9966 + }, + { + "start": 10125.56, + "end": 10128.08, + "probability": 0.7159 + }, + { + "start": 10128.46, + "end": 10133.02, + "probability": 0.9858 + }, + { + "start": 10133.44, + "end": 10134.52, + "probability": 0.5156 + }, + { + "start": 10134.56, + "end": 10135.66, + "probability": 0.5894 + }, + { + "start": 10137.68, + "end": 10139.36, + "probability": 0.7688 + }, + { + "start": 10141.32, + "end": 10143.28, + "probability": 0.9194 + }, + { + "start": 10143.8, + "end": 10145.6, + "probability": 0.6526 + }, + { + "start": 10147.38, + "end": 10149.74, + "probability": 0.8435 + }, + { + "start": 10149.84, + "end": 10151.8, + "probability": 0.925 + }, + { + "start": 10165.28, + "end": 10167.44, + "probability": 0.5836 + }, + { + "start": 10168.4, + "end": 10169.52, + "probability": 0.7126 + }, + { + "start": 10170.44, + "end": 10176.04, + "probability": 0.9927 + }, + { + "start": 10176.64, + "end": 10179.92, + "probability": 0.9658 + }, + { + "start": 10180.7, + "end": 10185.72, + "probability": 0.8559 + }, + { + "start": 10186.68, + "end": 10188.84, + "probability": 0.9183 + }, + { + "start": 10188.92, + "end": 10192.06, + "probability": 0.9946 + }, + { + "start": 10192.68, + "end": 10194.62, + "probability": 0.9895 + }, + { + "start": 10195.44, + "end": 10196.16, + "probability": 0.8828 + }, + { + "start": 10197.1, + "end": 10200.52, + "probability": 0.9898 + }, + { + "start": 10202.08, + "end": 10204.78, + "probability": 0.981 + }, + { + "start": 10205.96, + "end": 10210.12, + "probability": 0.9967 + }, + { + "start": 10210.7, + "end": 10216.64, + "probability": 0.991 + }, + { + "start": 10216.64, + "end": 10221.86, + "probability": 0.9963 + }, + { + "start": 10222.64, + "end": 10226.24, + "probability": 0.9966 + }, + { + "start": 10226.24, + "end": 10229.18, + "probability": 0.9966 + }, + { + "start": 10230.16, + "end": 10232.0, + "probability": 0.7154 + }, + { + "start": 10232.08, + "end": 10238.18, + "probability": 0.958 + }, + { + "start": 10238.3, + "end": 10241.4, + "probability": 0.9795 + }, + { + "start": 10242.58, + "end": 10244.76, + "probability": 0.9305 + }, + { + "start": 10244.88, + "end": 10254.52, + "probability": 0.9609 + }, + { + "start": 10255.14, + "end": 10257.8, + "probability": 0.8853 + }, + { + "start": 10258.44, + "end": 10259.46, + "probability": 0.6923 + }, + { + "start": 10259.6, + "end": 10260.88, + "probability": 0.9629 + }, + { + "start": 10261.18, + "end": 10263.16, + "probability": 0.783 + }, + { + "start": 10263.82, + "end": 10267.14, + "probability": 0.9858 + }, + { + "start": 10267.62, + "end": 10276.0, + "probability": 0.9792 + }, + { + "start": 10276.96, + "end": 10279.26, + "probability": 0.9954 + }, + { + "start": 10279.44, + "end": 10282.96, + "probability": 0.9679 + }, + { + "start": 10283.52, + "end": 10284.76, + "probability": 0.7465 + }, + { + "start": 10285.4, + "end": 10296.14, + "probability": 0.8712 + }, + { + "start": 10296.38, + "end": 10301.2, + "probability": 0.959 + }, + { + "start": 10301.2, + "end": 10302.16, + "probability": 0.7616 + }, + { + "start": 10302.28, + "end": 10305.28, + "probability": 0.8369 + }, + { + "start": 10305.96, + "end": 10312.1, + "probability": 0.9873 + }, + { + "start": 10312.76, + "end": 10313.52, + "probability": 0.9444 + }, + { + "start": 10313.7, + "end": 10317.96, + "probability": 0.9485 + }, + { + "start": 10318.52, + "end": 10322.88, + "probability": 0.9985 + }, + { + "start": 10323.08, + "end": 10325.14, + "probability": 0.9899 + }, + { + "start": 10326.22, + "end": 10328.14, + "probability": 0.8906 + }, + { + "start": 10328.72, + "end": 10329.76, + "probability": 0.774 + }, + { + "start": 10329.82, + "end": 10332.06, + "probability": 0.9318 + }, + { + "start": 10332.14, + "end": 10335.02, + "probability": 0.9968 + }, + { + "start": 10335.18, + "end": 10337.62, + "probability": 0.6768 + }, + { + "start": 10338.62, + "end": 10341.56, + "probability": 0.9746 + }, + { + "start": 10342.18, + "end": 10345.04, + "probability": 0.9855 + }, + { + "start": 10346.2, + "end": 10348.06, + "probability": 0.9814 + }, + { + "start": 10349.46, + "end": 10355.76, + "probability": 0.9981 + }, + { + "start": 10356.56, + "end": 10359.06, + "probability": 0.9974 + }, + { + "start": 10359.06, + "end": 10362.94, + "probability": 0.9962 + }, + { + "start": 10363.86, + "end": 10367.44, + "probability": 0.9981 + }, + { + "start": 10367.44, + "end": 10371.7, + "probability": 0.999 + }, + { + "start": 10373.02, + "end": 10376.0, + "probability": 0.9946 + }, + { + "start": 10376.0, + "end": 10378.32, + "probability": 0.9975 + }, + { + "start": 10378.44, + "end": 10382.78, + "probability": 0.994 + }, + { + "start": 10382.78, + "end": 10386.44, + "probability": 0.9972 + }, + { + "start": 10387.9, + "end": 10391.36, + "probability": 0.9985 + }, + { + "start": 10392.31, + "end": 10396.48, + "probability": 0.9382 + }, + { + "start": 10396.64, + "end": 10397.48, + "probability": 0.8335 + }, + { + "start": 10398.04, + "end": 10399.22, + "probability": 0.5466 + }, + { + "start": 10399.9, + "end": 10406.05, + "probability": 0.9974 + }, + { + "start": 10408.92, + "end": 10412.14, + "probability": 0.9075 + }, + { + "start": 10412.72, + "end": 10419.12, + "probability": 0.9969 + }, + { + "start": 10419.46, + "end": 10419.9, + "probability": 0.8537 + }, + { + "start": 10420.78, + "end": 10422.74, + "probability": 0.6974 + }, + { + "start": 10424.36, + "end": 10426.88, + "probability": 0.8932 + }, + { + "start": 10427.68, + "end": 10430.98, + "probability": 0.7547 + }, + { + "start": 10452.5, + "end": 10453.1, + "probability": 0.6692 + }, + { + "start": 10454.04, + "end": 10454.84, + "probability": 0.8699 + }, + { + "start": 10457.08, + "end": 10457.86, + "probability": 0.95 + }, + { + "start": 10459.38, + "end": 10460.92, + "probability": 0.9766 + }, + { + "start": 10462.68, + "end": 10465.74, + "probability": 0.9968 + }, + { + "start": 10467.36, + "end": 10468.72, + "probability": 0.9583 + }, + { + "start": 10470.12, + "end": 10473.6, + "probability": 0.9875 + }, + { + "start": 10474.36, + "end": 10479.04, + "probability": 0.9923 + }, + { + "start": 10480.7, + "end": 10483.16, + "probability": 0.9668 + }, + { + "start": 10485.02, + "end": 10486.28, + "probability": 0.7842 + }, + { + "start": 10487.62, + "end": 10491.56, + "probability": 0.9953 + }, + { + "start": 10493.36, + "end": 10495.9, + "probability": 0.7262 + }, + { + "start": 10498.52, + "end": 10500.02, + "probability": 0.7717 + }, + { + "start": 10501.06, + "end": 10503.08, + "probability": 0.9992 + }, + { + "start": 10504.28, + "end": 10505.16, + "probability": 0.9178 + }, + { + "start": 10505.28, + "end": 10505.87, + "probability": 0.9344 + }, + { + "start": 10506.16, + "end": 10508.74, + "probability": 0.9922 + }, + { + "start": 10510.24, + "end": 10514.8, + "probability": 0.9324 + }, + { + "start": 10515.48, + "end": 10516.28, + "probability": 0.8133 + }, + { + "start": 10518.24, + "end": 10520.1, + "probability": 0.9965 + }, + { + "start": 10523.6, + "end": 10527.24, + "probability": 0.9592 + }, + { + "start": 10531.84, + "end": 10534.4, + "probability": 0.9106 + }, + { + "start": 10535.74, + "end": 10535.74, + "probability": 0.8687 + }, + { + "start": 10536.98, + "end": 10539.32, + "probability": 0.9916 + }, + { + "start": 10540.22, + "end": 10542.05, + "probability": 0.8545 + }, + { + "start": 10544.3, + "end": 10545.78, + "probability": 0.7542 + }, + { + "start": 10546.56, + "end": 10547.54, + "probability": 0.8325 + }, + { + "start": 10549.52, + "end": 10550.82, + "probability": 0.911 + }, + { + "start": 10552.28, + "end": 10555.66, + "probability": 0.8994 + }, + { + "start": 10559.18, + "end": 10561.32, + "probability": 0.9857 + }, + { + "start": 10562.54, + "end": 10565.4, + "probability": 0.9966 + }, + { + "start": 10566.62, + "end": 10567.55, + "probability": 0.9196 + }, + { + "start": 10568.5, + "end": 10569.74, + "probability": 0.9656 + }, + { + "start": 10570.8, + "end": 10572.14, + "probability": 0.9884 + }, + { + "start": 10573.46, + "end": 10575.48, + "probability": 0.9419 + }, + { + "start": 10576.64, + "end": 10578.32, + "probability": 0.9932 + }, + { + "start": 10579.82, + "end": 10581.68, + "probability": 0.916 + }, + { + "start": 10583.1, + "end": 10585.36, + "probability": 0.9791 + }, + { + "start": 10586.14, + "end": 10587.27, + "probability": 0.9966 + }, + { + "start": 10588.52, + "end": 10591.8, + "probability": 0.948 + }, + { + "start": 10592.16, + "end": 10594.8, + "probability": 0.5671 + }, + { + "start": 10595.62, + "end": 10596.36, + "probability": 0.8634 + }, + { + "start": 10596.92, + "end": 10599.52, + "probability": 0.9276 + }, + { + "start": 10599.62, + "end": 10602.5, + "probability": 0.939 + }, + { + "start": 10603.72, + "end": 10605.6, + "probability": 0.9945 + }, + { + "start": 10606.72, + "end": 10608.14, + "probability": 0.6871 + }, + { + "start": 10608.86, + "end": 10612.24, + "probability": 0.9839 + }, + { + "start": 10612.84, + "end": 10614.06, + "probability": 0.942 + }, + { + "start": 10615.6, + "end": 10616.8, + "probability": 0.8627 + }, + { + "start": 10617.82, + "end": 10620.46, + "probability": 0.8816 + }, + { + "start": 10621.04, + "end": 10623.82, + "probability": 0.7399 + }, + { + "start": 10624.16, + "end": 10627.1, + "probability": 0.9967 + }, + { + "start": 10627.62, + "end": 10630.42, + "probability": 0.9955 + }, + { + "start": 10630.94, + "end": 10631.72, + "probability": 0.5876 + }, + { + "start": 10632.72, + "end": 10636.14, + "probability": 0.8947 + }, + { + "start": 10636.68, + "end": 10637.58, + "probability": 0.959 + }, + { + "start": 10638.36, + "end": 10643.62, + "probability": 0.9646 + }, + { + "start": 10644.34, + "end": 10646.66, + "probability": 0.8361 + }, + { + "start": 10647.7, + "end": 10649.44, + "probability": 0.6329 + }, + { + "start": 10649.44, + "end": 10651.54, + "probability": 0.9658 + }, + { + "start": 10652.26, + "end": 10653.36, + "probability": 0.68 + }, + { + "start": 10654.0, + "end": 10654.94, + "probability": 0.9982 + }, + { + "start": 10655.5, + "end": 10657.34, + "probability": 0.9786 + }, + { + "start": 10657.94, + "end": 10661.57, + "probability": 0.981 + }, + { + "start": 10662.18, + "end": 10662.58, + "probability": 0.2916 + }, + { + "start": 10662.8, + "end": 10663.22, + "probability": 0.7313 + }, + { + "start": 10664.82, + "end": 10666.22, + "probability": 0.8705 + }, + { + "start": 10672.18, + "end": 10672.96, + "probability": 0.7455 + }, + { + "start": 10673.98, + "end": 10674.12, + "probability": 0.3521 + }, + { + "start": 10681.5, + "end": 10681.7, + "probability": 0.1066 + }, + { + "start": 10681.7, + "end": 10681.7, + "probability": 0.054 + }, + { + "start": 10681.7, + "end": 10682.42, + "probability": 0.0767 + }, + { + "start": 10682.42, + "end": 10682.6, + "probability": 0.1621 + }, + { + "start": 10691.48, + "end": 10691.58, + "probability": 0.0031 + }, + { + "start": 10691.66, + "end": 10691.66, + "probability": 0.3079 + }, + { + "start": 10691.66, + "end": 10693.76, + "probability": 0.5207 + }, + { + "start": 10694.88, + "end": 10696.38, + "probability": 0.709 + }, + { + "start": 10697.24, + "end": 10699.66, + "probability": 0.9574 + }, + { + "start": 10699.66, + "end": 10703.68, + "probability": 0.9954 + }, + { + "start": 10704.46, + "end": 10705.3, + "probability": 0.9547 + }, + { + "start": 10706.2, + "end": 10707.94, + "probability": 0.7711 + }, + { + "start": 10708.82, + "end": 10712.12, + "probability": 0.9726 + }, + { + "start": 10712.96, + "end": 10714.43, + "probability": 0.9767 + }, + { + "start": 10714.86, + "end": 10716.0, + "probability": 0.9919 + }, + { + "start": 10716.54, + "end": 10717.89, + "probability": 0.9927 + }, + { + "start": 10718.48, + "end": 10719.84, + "probability": 0.9964 + }, + { + "start": 10721.18, + "end": 10723.06, + "probability": 0.9742 + }, + { + "start": 10723.06, + "end": 10723.54, + "probability": 0.4938 + }, + { + "start": 10723.64, + "end": 10724.06, + "probability": 0.5726 + }, + { + "start": 10724.48, + "end": 10725.98, + "probability": 0.9115 + }, + { + "start": 10726.54, + "end": 10727.87, + "probability": 0.9109 + }, + { + "start": 10728.44, + "end": 10728.9, + "probability": 0.44 + }, + { + "start": 10729.16, + "end": 10730.34, + "probability": 0.9265 + }, + { + "start": 10730.4, + "end": 10731.34, + "probability": 0.9384 + }, + { + "start": 10731.44, + "end": 10731.68, + "probability": 0.2925 + }, + { + "start": 10731.68, + "end": 10731.78, + "probability": 0.8425 + }, + { + "start": 10733.22, + "end": 10733.4, + "probability": 0.0262 + }, + { + "start": 10733.42, + "end": 10734.64, + "probability": 0.9272 + }, + { + "start": 10734.82, + "end": 10735.34, + "probability": 0.7522 + }, + { + "start": 10735.6, + "end": 10737.72, + "probability": 0.5041 + }, + { + "start": 10738.26, + "end": 10739.98, + "probability": 0.5441 + }, + { + "start": 10739.98, + "end": 10740.3, + "probability": 0.7275 + }, + { + "start": 10741.34, + "end": 10742.94, + "probability": 0.9577 + }, + { + "start": 10743.48, + "end": 10745.97, + "probability": 0.8125 + }, + { + "start": 10746.44, + "end": 10747.43, + "probability": 0.412 + }, + { + "start": 10748.1, + "end": 10753.72, + "probability": 0.5576 + }, + { + "start": 10754.87, + "end": 10756.18, + "probability": 0.1263 + }, + { + "start": 10756.18, + "end": 10756.22, + "probability": 0.1251 + }, + { + "start": 10756.22, + "end": 10756.22, + "probability": 0.0357 + }, + { + "start": 10756.22, + "end": 10757.14, + "probability": 0.7403 + }, + { + "start": 10757.36, + "end": 10758.49, + "probability": 0.9897 + }, + { + "start": 10758.96, + "end": 10759.17, + "probability": 0.6502 + }, + { + "start": 10759.66, + "end": 10761.78, + "probability": 0.3244 + }, + { + "start": 10764.3, + "end": 10766.18, + "probability": 0.7925 + }, + { + "start": 10766.18, + "end": 10766.76, + "probability": 0.8157 + }, + { + "start": 10767.32, + "end": 10769.5, + "probability": 0.8632 + }, + { + "start": 10769.5, + "end": 10773.46, + "probability": 0.8313 + }, + { + "start": 10774.46, + "end": 10777.72, + "probability": 0.9884 + }, + { + "start": 10778.38, + "end": 10779.8, + "probability": 0.9113 + }, + { + "start": 10781.1, + "end": 10783.9, + "probability": 0.9609 + }, + { + "start": 10784.74, + "end": 10787.54, + "probability": 0.9001 + }, + { + "start": 10788.08, + "end": 10789.43, + "probability": 0.9932 + }, + { + "start": 10789.68, + "end": 10789.86, + "probability": 0.6598 + }, + { + "start": 10789.92, + "end": 10790.72, + "probability": 0.7564 + }, + { + "start": 10790.98, + "end": 10791.58, + "probability": 0.9346 + }, + { + "start": 10792.56, + "end": 10793.5, + "probability": 0.9287 + }, + { + "start": 10793.8, + "end": 10796.04, + "probability": 0.3595 + }, + { + "start": 10796.04, + "end": 10796.04, + "probability": 0.0513 + }, + { + "start": 10796.04, + "end": 10796.3, + "probability": 0.1886 + }, + { + "start": 10797.42, + "end": 10798.54, + "probability": 0.8595 + }, + { + "start": 10798.88, + "end": 10801.0, + "probability": 0.2419 + }, + { + "start": 10801.68, + "end": 10804.66, + "probability": 0.5985 + }, + { + "start": 10805.12, + "end": 10806.76, + "probability": 0.707 + }, + { + "start": 10807.32, + "end": 10809.78, + "probability": 0.9075 + }, + { + "start": 10810.2, + "end": 10810.68, + "probability": 0.8047 + }, + { + "start": 10810.72, + "end": 10811.7, + "probability": 0.945 + }, + { + "start": 10811.82, + "end": 10814.76, + "probability": 0.9545 + }, + { + "start": 10814.82, + "end": 10817.93, + "probability": 0.9702 + }, + { + "start": 10818.52, + "end": 10820.04, + "probability": 0.6933 + }, + { + "start": 10820.12, + "end": 10821.52, + "probability": 0.5075 + }, + { + "start": 10822.78, + "end": 10825.66, + "probability": 0.7712 + }, + { + "start": 10826.74, + "end": 10829.26, + "probability": 0.9647 + }, + { + "start": 10830.92, + "end": 10832.86, + "probability": 0.9398 + }, + { + "start": 10834.04, + "end": 10835.82, + "probability": 0.6361 + }, + { + "start": 10836.66, + "end": 10837.72, + "probability": 0.6421 + }, + { + "start": 10838.32, + "end": 10839.26, + "probability": 0.8361 + }, + { + "start": 10839.52, + "end": 10840.62, + "probability": 0.1672 + }, + { + "start": 10841.44, + "end": 10843.96, + "probability": 0.9849 + }, + { + "start": 10844.08, + "end": 10844.88, + "probability": 0.6301 + }, + { + "start": 10846.08, + "end": 10846.98, + "probability": 0.8589 + }, + { + "start": 10847.58, + "end": 10851.62, + "probability": 0.9032 + }, + { + "start": 10852.44, + "end": 10853.56, + "probability": 0.8982 + }, + { + "start": 10853.68, + "end": 10853.98, + "probability": 0.7918 + }, + { + "start": 10854.06, + "end": 10855.68, + "probability": 0.8928 + }, + { + "start": 10857.18, + "end": 10859.08, + "probability": 0.877 + }, + { + "start": 10859.26, + "end": 10861.78, + "probability": 0.9603 + }, + { + "start": 10861.98, + "end": 10863.0, + "probability": 0.7579 + }, + { + "start": 10864.38, + "end": 10868.06, + "probability": 0.8181 + }, + { + "start": 10868.18, + "end": 10869.8, + "probability": 0.9604 + }, + { + "start": 10870.98, + "end": 10872.26, + "probability": 0.9919 + }, + { + "start": 10873.1, + "end": 10873.69, + "probability": 0.9929 + }, + { + "start": 10875.26, + "end": 10878.72, + "probability": 0.7866 + }, + { + "start": 10879.66, + "end": 10880.76, + "probability": 0.651 + }, + { + "start": 10881.28, + "end": 10884.74, + "probability": 0.9357 + }, + { + "start": 10885.08, + "end": 10888.26, + "probability": 0.9827 + }, + { + "start": 10888.86, + "end": 10890.18, + "probability": 0.8476 + }, + { + "start": 10891.52, + "end": 10892.38, + "probability": 0.8506 + }, + { + "start": 10892.96, + "end": 10893.3, + "probability": 0.9175 + }, + { + "start": 10894.26, + "end": 10898.78, + "probability": 0.8999 + }, + { + "start": 10898.94, + "end": 10900.22, + "probability": 0.7349 + }, + { + "start": 10900.8, + "end": 10902.72, + "probability": 0.6508 + }, + { + "start": 10903.44, + "end": 10904.08, + "probability": 0.9692 + }, + { + "start": 10904.48, + "end": 10905.52, + "probability": 0.7068 + }, + { + "start": 10905.86, + "end": 10909.38, + "probability": 0.8687 + }, + { + "start": 10909.78, + "end": 10910.38, + "probability": 0.7281 + }, + { + "start": 10910.5, + "end": 10914.0, + "probability": 0.7085 + }, + { + "start": 10914.06, + "end": 10917.48, + "probability": 0.8569 + }, + { + "start": 10917.64, + "end": 10922.06, + "probability": 0.9674 + }, + { + "start": 10922.36, + "end": 10922.72, + "probability": 0.4581 + }, + { + "start": 10922.72, + "end": 10924.66, + "probability": 0.9018 + }, + { + "start": 10925.6, + "end": 10927.8, + "probability": 0.7989 + }, + { + "start": 10928.86, + "end": 10929.62, + "probability": 0.9424 + }, + { + "start": 10930.3, + "end": 10933.44, + "probability": 0.9924 + }, + { + "start": 10933.48, + "end": 10934.78, + "probability": 0.9932 + }, + { + "start": 10935.36, + "end": 10938.26, + "probability": 0.9951 + }, + { + "start": 10938.78, + "end": 10940.48, + "probability": 0.3906 + }, + { + "start": 10940.52, + "end": 10944.56, + "probability": 0.7914 + }, + { + "start": 10945.6, + "end": 10945.7, + "probability": 0.5194 + }, + { + "start": 10945.72, + "end": 10945.86, + "probability": 0.3494 + }, + { + "start": 10945.98, + "end": 10946.88, + "probability": 0.734 + }, + { + "start": 10949.66, + "end": 10950.28, + "probability": 0.1679 + }, + { + "start": 10950.28, + "end": 10950.54, + "probability": 0.6108 + }, + { + "start": 10950.82, + "end": 10951.1, + "probability": 0.7019 + }, + { + "start": 10951.78, + "end": 10953.24, + "probability": 0.761 + }, + { + "start": 10956.38, + "end": 10956.38, + "probability": 0.0004 + }, + { + "start": 10957.44, + "end": 10958.12, + "probability": 0.3286 + }, + { + "start": 10958.12, + "end": 10958.86, + "probability": 0.0048 + }, + { + "start": 10959.02, + "end": 10959.86, + "probability": 0.7774 + }, + { + "start": 10959.96, + "end": 10963.96, + "probability": 0.8084 + }, + { + "start": 10964.68, + "end": 10970.2, + "probability": 0.9915 + }, + { + "start": 10970.38, + "end": 10971.38, + "probability": 0.9202 + }, + { + "start": 10972.08, + "end": 10973.8, + "probability": 0.8014 + }, + { + "start": 10974.48, + "end": 10976.3, + "probability": 0.9733 + }, + { + "start": 10976.46, + "end": 10979.66, + "probability": 0.9229 + }, + { + "start": 10980.2, + "end": 10985.3, + "probability": 0.9336 + }, + { + "start": 10985.94, + "end": 10987.16, + "probability": 0.7883 + }, + { + "start": 10987.4, + "end": 10988.86, + "probability": 0.9843 + }, + { + "start": 10989.02, + "end": 10997.48, + "probability": 0.9521 + }, + { + "start": 10997.54, + "end": 10998.42, + "probability": 0.6812 + }, + { + "start": 10998.48, + "end": 10999.38, + "probability": 0.9053 + }, + { + "start": 10999.44, + "end": 11003.14, + "probability": 0.7734 + }, + { + "start": 11003.62, + "end": 11003.94, + "probability": 0.2915 + }, + { + "start": 11004.04, + "end": 11005.41, + "probability": 0.8697 + }, + { + "start": 11005.76, + "end": 11006.76, + "probability": 0.8636 + }, + { + "start": 11007.38, + "end": 11008.82, + "probability": 0.6813 + }, + { + "start": 11009.0, + "end": 11009.9, + "probability": 0.5712 + }, + { + "start": 11010.18, + "end": 11012.12, + "probability": 0.8638 + }, + { + "start": 11012.14, + "end": 11012.5, + "probability": 0.7982 + }, + { + "start": 11012.64, + "end": 11013.81, + "probability": 0.9076 + }, + { + "start": 11014.22, + "end": 11016.25, + "probability": 0.9937 + }, + { + "start": 11016.7, + "end": 11021.84, + "probability": 0.9932 + }, + { + "start": 11022.4, + "end": 11022.56, + "probability": 0.3502 + }, + { + "start": 11022.56, + "end": 11025.64, + "probability": 0.7781 + }, + { + "start": 11025.74, + "end": 11027.34, + "probability": 0.9493 + }, + { + "start": 11028.06, + "end": 11031.8, + "probability": 0.9883 + }, + { + "start": 11032.16, + "end": 11035.84, + "probability": 0.9766 + }, + { + "start": 11036.36, + "end": 11038.03, + "probability": 0.8369 + }, + { + "start": 11038.94, + "end": 11041.96, + "probability": 0.9277 + }, + { + "start": 11042.52, + "end": 11045.7, + "probability": 0.9094 + }, + { + "start": 11046.26, + "end": 11048.83, + "probability": 0.9524 + }, + { + "start": 11049.33, + "end": 11050.91, + "probability": 0.8158 + }, + { + "start": 11050.95, + "end": 11054.45, + "probability": 0.7528 + }, + { + "start": 11054.45, + "end": 11058.09, + "probability": 0.9735 + }, + { + "start": 11058.35, + "end": 11060.47, + "probability": 0.9944 + }, + { + "start": 11060.89, + "end": 11061.91, + "probability": 0.981 + }, + { + "start": 11062.01, + "end": 11063.46, + "probability": 0.9736 + }, + { + "start": 11063.87, + "end": 11065.81, + "probability": 0.9837 + }, + { + "start": 11066.19, + "end": 11070.59, + "probability": 0.9903 + }, + { + "start": 11071.01, + "end": 11071.41, + "probability": 0.874 + }, + { + "start": 11071.63, + "end": 11074.73, + "probability": 0.9412 + }, + { + "start": 11074.99, + "end": 11075.33, + "probability": 0.5281 + }, + { + "start": 11075.35, + "end": 11075.83, + "probability": 0.9009 + }, + { + "start": 11076.39, + "end": 11080.59, + "probability": 0.8687 + }, + { + "start": 11080.65, + "end": 11084.49, + "probability": 0.9956 + }, + { + "start": 11084.79, + "end": 11085.23, + "probability": 0.868 + }, + { + "start": 11085.51, + "end": 11086.07, + "probability": 0.4397 + }, + { + "start": 11086.65, + "end": 11086.97, + "probability": 0.8129 + }, + { + "start": 11087.01, + "end": 11090.19, + "probability": 0.9956 + }, + { + "start": 11091.13, + "end": 11092.19, + "probability": 0.8192 + }, + { + "start": 11093.27, + "end": 11096.49, + "probability": 0.6379 + }, + { + "start": 11097.25, + "end": 11098.53, + "probability": 0.7567 + }, + { + "start": 11098.71, + "end": 11104.23, + "probability": 0.8512 + }, + { + "start": 11104.33, + "end": 11104.69, + "probability": 0.6221 + }, + { + "start": 11104.73, + "end": 11105.43, + "probability": 0.3335 + }, + { + "start": 11108.19, + "end": 11110.05, + "probability": 0.3768 + }, + { + "start": 11124.77, + "end": 11125.99, + "probability": 0.0163 + }, + { + "start": 11126.51, + "end": 11126.51, + "probability": 0.0 + }, + { + "start": 11133.62, + "end": 11134.53, + "probability": 0.0226 + }, + { + "start": 11136.35, + "end": 11138.41, + "probability": 0.0457 + }, + { + "start": 11139.31, + "end": 11140.41, + "probability": 0.745 + }, + { + "start": 11141.97, + "end": 11144.51, + "probability": 0.3965 + }, + { + "start": 11148.99, + "end": 11149.81, + "probability": 0.0352 + }, + { + "start": 11150.61, + "end": 11151.33, + "probability": 0.0025 + }, + { + "start": 11152.67, + "end": 11154.09, + "probability": 0.1938 + }, + { + "start": 11155.09, + "end": 11159.17, + "probability": 0.1091 + }, + { + "start": 11161.85, + "end": 11164.39, + "probability": 0.3104 + }, + { + "start": 11165.03, + "end": 11165.79, + "probability": 0.0984 + }, + { + "start": 11172.23, + "end": 11176.29, + "probability": 0.4292 + }, + { + "start": 11177.23, + "end": 11181.03, + "probability": 0.0763 + }, + { + "start": 11182.24, + "end": 11183.97, + "probability": 0.1409 + }, + { + "start": 11184.0, + "end": 11184.0, + "probability": 0.0 + }, + { + "start": 11184.0, + "end": 11184.0, + "probability": 0.0 + }, + { + "start": 11184.0, + "end": 11184.0, + "probability": 0.0 + }, + { + "start": 11184.0, + "end": 11184.0, + "probability": 0.0 + }, + { + "start": 11184.0, + "end": 11184.0, + "probability": 0.0 + }, + { + "start": 11184.0, + "end": 11184.0, + "probability": 0.0 + }, + { + "start": 11184.0, + "end": 11184.0, + "probability": 0.0 + }, + { + "start": 11184.0, + "end": 11184.0, + "probability": 0.0 + }, + { + "start": 11184.0, + "end": 11184.0, + "probability": 0.0 + }, + { + "start": 11184.0, + "end": 11184.0, + "probability": 0.0 + }, + { + "start": 11184.0, + "end": 11184.0, + "probability": 0.0 + }, + { + "start": 11184.0, + "end": 11184.0, + "probability": 0.0 + }, + { + "start": 11184.0, + "end": 11184.0, + "probability": 0.0 + }, + { + "start": 11186.18, + "end": 11188.42, + "probability": 0.2667 + }, + { + "start": 11188.42, + "end": 11188.42, + "probability": 0.0879 + }, + { + "start": 11188.42, + "end": 11188.42, + "probability": 0.0495 + }, + { + "start": 11188.42, + "end": 11188.82, + "probability": 0.5828 + }, + { + "start": 11188.9, + "end": 11192.34, + "probability": 0.7461 + }, + { + "start": 11207.16, + "end": 11207.36, + "probability": 0.4507 + }, + { + "start": 11208.36, + "end": 11208.56, + "probability": 0.7418 + }, + { + "start": 11210.06, + "end": 11210.42, + "probability": 0.8352 + }, + { + "start": 11210.72, + "end": 11213.74, + "probability": 0.7534 + }, + { + "start": 11215.14, + "end": 11217.1, + "probability": 0.9582 + }, + { + "start": 11217.66, + "end": 11219.7, + "probability": 0.979 + }, + { + "start": 11219.98, + "end": 11220.84, + "probability": 0.8661 + }, + { + "start": 11223.46, + "end": 11226.58, + "probability": 0.9048 + }, + { + "start": 11229.46, + "end": 11230.52, + "probability": 0.9702 + }, + { + "start": 11232.19, + "end": 11234.78, + "probability": 0.4973 + }, + { + "start": 11234.86, + "end": 11237.12, + "probability": 0.4481 + }, + { + "start": 11237.2, + "end": 11237.72, + "probability": 0.2728 + }, + { + "start": 11238.02, + "end": 11238.52, + "probability": 0.5192 + }, + { + "start": 11238.58, + "end": 11239.2, + "probability": 0.6253 + }, + { + "start": 11239.3, + "end": 11240.24, + "probability": 0.1811 + }, + { + "start": 11240.36, + "end": 11243.08, + "probability": 0.9716 + }, + { + "start": 11243.08, + "end": 11247.44, + "probability": 0.9913 + }, + { + "start": 11248.98, + "end": 11250.38, + "probability": 0.61 + }, + { + "start": 11251.8, + "end": 11259.44, + "probability": 0.9751 + }, + { + "start": 11262.0, + "end": 11262.88, + "probability": 0.5384 + }, + { + "start": 11263.0, + "end": 11265.7, + "probability": 0.4254 + }, + { + "start": 11265.78, + "end": 11270.02, + "probability": 0.9963 + }, + { + "start": 11275.06, + "end": 11279.66, + "probability": 0.9973 + }, + { + "start": 11280.98, + "end": 11282.3, + "probability": 0.623 + }, + { + "start": 11282.94, + "end": 11283.96, + "probability": 0.9067 + }, + { + "start": 11284.66, + "end": 11285.26, + "probability": 0.3235 + }, + { + "start": 11285.26, + "end": 11286.54, + "probability": 0.722 + }, + { + "start": 11286.82, + "end": 11288.8, + "probability": 0.7176 + }, + { + "start": 11288.96, + "end": 11289.22, + "probability": 0.2712 + }, + { + "start": 11289.22, + "end": 11289.52, + "probability": 0.7909 + }, + { + "start": 11290.16, + "end": 11292.56, + "probability": 0.5624 + }, + { + "start": 11293.08, + "end": 11293.14, + "probability": 0.255 + }, + { + "start": 11293.14, + "end": 11293.68, + "probability": 0.5181 + }, + { + "start": 11294.08, + "end": 11295.8, + "probability": 0.9702 + }, + { + "start": 11295.86, + "end": 11298.5, + "probability": 0.9495 + }, + { + "start": 11298.54, + "end": 11298.88, + "probability": 0.5663 + }, + { + "start": 11298.96, + "end": 11300.42, + "probability": 0.9927 + }, + { + "start": 11301.02, + "end": 11302.14, + "probability": 0.7565 + }, + { + "start": 11302.24, + "end": 11303.06, + "probability": 0.5037 + }, + { + "start": 11303.24, + "end": 11304.42, + "probability": 0.8459 + }, + { + "start": 11304.48, + "end": 11305.9, + "probability": 0.5575 + }, + { + "start": 11305.96, + "end": 11306.54, + "probability": 0.9377 + }, + { + "start": 11306.66, + "end": 11311.22, + "probability": 0.7076 + }, + { + "start": 11311.32, + "end": 11312.14, + "probability": 0.7342 + }, + { + "start": 11312.24, + "end": 11313.22, + "probability": 0.9153 + }, + { + "start": 11313.32, + "end": 11313.52, + "probability": 0.5055 + }, + { + "start": 11314.02, + "end": 11315.04, + "probability": 0.8758 + }, + { + "start": 11315.1, + "end": 11315.86, + "probability": 0.6375 + }, + { + "start": 11316.36, + "end": 11318.12, + "probability": 0.8307 + }, + { + "start": 11318.7, + "end": 11323.32, + "probability": 0.985 + }, + { + "start": 11323.48, + "end": 11324.84, + "probability": 0.9721 + }, + { + "start": 11324.94, + "end": 11326.52, + "probability": 0.9077 + }, + { + "start": 11327.56, + "end": 11328.36, + "probability": 0.6341 + }, + { + "start": 11328.52, + "end": 11329.22, + "probability": 0.5949 + }, + { + "start": 11329.3, + "end": 11336.1, + "probability": 0.9868 + }, + { + "start": 11336.64, + "end": 11338.46, + "probability": 0.9759 + }, + { + "start": 11339.54, + "end": 11340.72, + "probability": 0.9135 + }, + { + "start": 11340.96, + "end": 11345.16, + "probability": 0.8247 + }, + { + "start": 11345.3, + "end": 11347.28, + "probability": 0.777 + }, + { + "start": 11348.02, + "end": 11350.68, + "probability": 0.9855 + }, + { + "start": 11351.22, + "end": 11351.98, + "probability": 0.8204 + }, + { + "start": 11352.86, + "end": 11353.08, + "probability": 0.4614 + }, + { + "start": 11353.22, + "end": 11353.94, + "probability": 0.5565 + }, + { + "start": 11354.1, + "end": 11358.44, + "probability": 0.96 + }, + { + "start": 11358.78, + "end": 11362.15, + "probability": 0.9951 + }, + { + "start": 11362.32, + "end": 11364.66, + "probability": 0.9784 + }, + { + "start": 11364.86, + "end": 11365.7, + "probability": 0.6033 + }, + { + "start": 11365.78, + "end": 11367.24, + "probability": 0.9512 + }, + { + "start": 11367.62, + "end": 11369.38, + "probability": 0.8765 + }, + { + "start": 11369.44, + "end": 11372.1, + "probability": 0.9866 + }, + { + "start": 11372.7, + "end": 11378.34, + "probability": 0.988 + }, + { + "start": 11378.34, + "end": 11381.38, + "probability": 0.9836 + }, + { + "start": 11381.56, + "end": 11382.05, + "probability": 0.7144 + }, + { + "start": 11382.56, + "end": 11387.22, + "probability": 0.994 + }, + { + "start": 11387.22, + "end": 11390.64, + "probability": 0.9974 + }, + { + "start": 11391.28, + "end": 11394.98, + "probability": 0.836 + }, + { + "start": 11395.62, + "end": 11398.16, + "probability": 0.5019 + }, + { + "start": 11399.1, + "end": 11402.7, + "probability": 0.8958 + }, + { + "start": 11402.78, + "end": 11404.04, + "probability": 0.915 + }, + { + "start": 11405.38, + "end": 11405.68, + "probability": 0.6277 + }, + { + "start": 11406.3, + "end": 11406.56, + "probability": 0.1987 + }, + { + "start": 11406.84, + "end": 11409.7, + "probability": 0.8606 + }, + { + "start": 11411.26, + "end": 11411.36, + "probability": 0.0281 + }, + { + "start": 11411.36, + "end": 11413.54, + "probability": 0.8667 + }, + { + "start": 11414.14, + "end": 11417.04, + "probability": 0.9091 + }, + { + "start": 11417.04, + "end": 11420.06, + "probability": 0.9746 + }, + { + "start": 11420.94, + "end": 11423.22, + "probability": 0.6655 + }, + { + "start": 11423.32, + "end": 11426.2, + "probability": 0.9937 + }, + { + "start": 11426.58, + "end": 11431.32, + "probability": 0.9511 + }, + { + "start": 11431.32, + "end": 11435.22, + "probability": 0.9254 + }, + { + "start": 11435.34, + "end": 11435.52, + "probability": 0.6884 + }, + { + "start": 11435.84, + "end": 11436.58, + "probability": 0.5177 + }, + { + "start": 11436.66, + "end": 11439.78, + "probability": 0.8595 + }, + { + "start": 11439.92, + "end": 11440.66, + "probability": 0.2742 + }, + { + "start": 11440.68, + "end": 11441.7, + "probability": 0.5871 + }, + { + "start": 11441.76, + "end": 11442.64, + "probability": 0.3046 + }, + { + "start": 11442.8, + "end": 11444.52, + "probability": 0.764 + }, + { + "start": 11444.86, + "end": 11445.96, + "probability": 0.0038 + }, + { + "start": 11448.16, + "end": 11448.64, + "probability": 0.1688 + }, + { + "start": 11449.3, + "end": 11449.3, + "probability": 0.1054 + }, + { + "start": 11449.3, + "end": 11449.3, + "probability": 0.3094 + }, + { + "start": 11449.3, + "end": 11449.96, + "probability": 0.1138 + }, + { + "start": 11451.13, + "end": 11453.02, + "probability": 0.2983 + }, + { + "start": 11453.52, + "end": 11454.28, + "probability": 0.056 + }, + { + "start": 11457.24, + "end": 11458.3, + "probability": 0.7283 + }, + { + "start": 11458.54, + "end": 11459.42, + "probability": 0.6229 + }, + { + "start": 11459.46, + "end": 11459.76, + "probability": 0.4028 + }, + { + "start": 11459.86, + "end": 11460.82, + "probability": 0.4838 + }, + { + "start": 11461.88, + "end": 11465.48, + "probability": 0.6667 + }, + { + "start": 11466.08, + "end": 11467.86, + "probability": 0.6396 + }, + { + "start": 11469.02, + "end": 11469.66, + "probability": 0.4678 + }, + { + "start": 11469.74, + "end": 11470.2, + "probability": 0.4824 + }, + { + "start": 11470.3, + "end": 11470.82, + "probability": 0.7248 + }, + { + "start": 11470.9, + "end": 11471.24, + "probability": 0.8455 + }, + { + "start": 11471.4, + "end": 11472.42, + "probability": 0.8486 + }, + { + "start": 11472.42, + "end": 11474.26, + "probability": 0.3778 + }, + { + "start": 11475.02, + "end": 11475.98, + "probability": 0.8976 + }, + { + "start": 11476.88, + "end": 11477.62, + "probability": 0.9447 + }, + { + "start": 11479.74, + "end": 11481.74, + "probability": 0.9106 + }, + { + "start": 11482.0, + "end": 11482.49, + "probability": 0.5509 + }, + { + "start": 11484.54, + "end": 11484.96, + "probability": 0.0684 + }, + { + "start": 11484.96, + "end": 11487.08, + "probability": 0.6174 + }, + { + "start": 11487.82, + "end": 11489.04, + "probability": 0.7382 + }, + { + "start": 11490.2, + "end": 11490.56, + "probability": 0.2823 + }, + { + "start": 11491.66, + "end": 11493.42, + "probability": 0.072 + }, + { + "start": 11495.14, + "end": 11496.78, + "probability": 0.318 + }, + { + "start": 11497.3, + "end": 11499.3, + "probability": 0.7802 + }, + { + "start": 11499.44, + "end": 11501.2, + "probability": 0.8034 + }, + { + "start": 11501.32, + "end": 11502.14, + "probability": 0.1578 + }, + { + "start": 11502.6, + "end": 11503.42, + "probability": 0.7903 + }, + { + "start": 11503.58, + "end": 11504.5, + "probability": 0.661 + }, + { + "start": 11507.98, + "end": 11510.06, + "probability": 0.7571 + }, + { + "start": 11510.96, + "end": 11511.56, + "probability": 0.8626 + }, + { + "start": 11511.6, + "end": 11512.12, + "probability": 0.701 + }, + { + "start": 11512.18, + "end": 11515.9, + "probability": 0.9806 + }, + { + "start": 11515.96, + "end": 11516.12, + "probability": 0.4675 + }, + { + "start": 11516.28, + "end": 11521.34, + "probability": 0.994 + }, + { + "start": 11521.6, + "end": 11522.9, + "probability": 0.6723 + }, + { + "start": 11523.63, + "end": 11528.64, + "probability": 0.9517 + }, + { + "start": 11529.54, + "end": 11532.42, + "probability": 0.7445 + }, + { + "start": 11532.58, + "end": 11533.24, + "probability": 0.9039 + }, + { + "start": 11533.3, + "end": 11534.18, + "probability": 0.9312 + }, + { + "start": 11534.24, + "end": 11537.16, + "probability": 0.8564 + }, + { + "start": 11537.72, + "end": 11542.98, + "probability": 0.9895 + }, + { + "start": 11544.12, + "end": 11545.86, + "probability": 0.9851 + }, + { + "start": 11546.4, + "end": 11552.5, + "probability": 0.9952 + }, + { + "start": 11553.08, + "end": 11554.6, + "probability": 0.9399 + }, + { + "start": 11554.74, + "end": 11556.02, + "probability": 0.8877 + }, + { + "start": 11556.12, + "end": 11557.16, + "probability": 0.8631 + }, + { + "start": 11558.66, + "end": 11563.48, + "probability": 0.7711 + }, + { + "start": 11564.18, + "end": 11565.32, + "probability": 0.9222 + }, + { + "start": 11565.4, + "end": 11566.42, + "probability": 0.9449 + }, + { + "start": 11567.0, + "end": 11572.38, + "probability": 0.9916 + }, + { + "start": 11572.52, + "end": 11578.52, + "probability": 0.8824 + }, + { + "start": 11578.52, + "end": 11581.54, + "probability": 0.9988 + }, + { + "start": 11582.14, + "end": 11584.03, + "probability": 0.9792 + }, + { + "start": 11585.2, + "end": 11586.54, + "probability": 0.9033 + }, + { + "start": 11587.34, + "end": 11588.78, + "probability": 0.8104 + }, + { + "start": 11588.94, + "end": 11589.9, + "probability": 0.9558 + }, + { + "start": 11591.0, + "end": 11592.56, + "probability": 0.7824 + }, + { + "start": 11593.32, + "end": 11597.18, + "probability": 0.9377 + }, + { + "start": 11597.18, + "end": 11599.74, + "probability": 0.9984 + }, + { + "start": 11600.24, + "end": 11601.82, + "probability": 0.9028 + }, + { + "start": 11601.88, + "end": 11604.48, + "probability": 0.9248 + }, + { + "start": 11605.12, + "end": 11607.84, + "probability": 0.7092 + }, + { + "start": 11608.9, + "end": 11614.0, + "probability": 0.9898 + }, + { + "start": 11614.64, + "end": 11618.04, + "probability": 0.9951 + }, + { + "start": 11618.04, + "end": 11622.56, + "probability": 0.992 + }, + { + "start": 11622.64, + "end": 11625.92, + "probability": 0.9753 + }, + { + "start": 11626.32, + "end": 11628.22, + "probability": 0.9971 + }, + { + "start": 11628.66, + "end": 11631.58, + "probability": 0.9817 + }, + { + "start": 11631.58, + "end": 11635.2, + "probability": 0.9973 + }, + { + "start": 11635.24, + "end": 11639.68, + "probability": 0.9986 + }, + { + "start": 11640.04, + "end": 11641.14, + "probability": 0.998 + }, + { + "start": 11641.72, + "end": 11643.37, + "probability": 0.991 + }, + { + "start": 11644.84, + "end": 11646.18, + "probability": 0.8725 + }, + { + "start": 11646.82, + "end": 11649.79, + "probability": 0.9492 + }, + { + "start": 11650.84, + "end": 11651.54, + "probability": 0.7476 + }, + { + "start": 11652.06, + "end": 11656.7, + "probability": 0.9806 + }, + { + "start": 11657.32, + "end": 11662.08, + "probability": 0.9963 + }, + { + "start": 11662.48, + "end": 11663.4, + "probability": 0.7439 + }, + { + "start": 11663.6, + "end": 11664.98, + "probability": 0.9572 + }, + { + "start": 11665.06, + "end": 11666.84, + "probability": 0.9584 + }, + { + "start": 11667.36, + "end": 11671.2, + "probability": 0.9375 + }, + { + "start": 11671.32, + "end": 11672.16, + "probability": 0.9761 + }, + { + "start": 11672.58, + "end": 11676.24, + "probability": 0.7051 + }, + { + "start": 11676.7, + "end": 11677.86, + "probability": 0.8557 + }, + { + "start": 11678.22, + "end": 11679.68, + "probability": 0.8138 + }, + { + "start": 11680.16, + "end": 11682.12, + "probability": 0.9861 + }, + { + "start": 11682.24, + "end": 11684.02, + "probability": 0.8528 + }, + { + "start": 11684.4, + "end": 11687.26, + "probability": 0.9568 + }, + { + "start": 11687.36, + "end": 11690.42, + "probability": 0.9478 + }, + { + "start": 11690.46, + "end": 11690.86, + "probability": 0.9001 + }, + { + "start": 11691.2, + "end": 11691.72, + "probability": 0.6774 + }, + { + "start": 11691.78, + "end": 11693.0, + "probability": 0.8948 + }, + { + "start": 11693.48, + "end": 11693.86, + "probability": 0.5639 + }, + { + "start": 11693.92, + "end": 11695.88, + "probability": 0.9796 + }, + { + "start": 11696.96, + "end": 11697.14, + "probability": 0.7085 + }, + { + "start": 11697.68, + "end": 11698.96, + "probability": 0.9661 + }, + { + "start": 11698.96, + "end": 11700.6, + "probability": 0.907 + }, + { + "start": 11700.6, + "end": 11702.6, + "probability": 0.5614 + }, + { + "start": 11702.64, + "end": 11702.96, + "probability": 0.8932 + }, + { + "start": 11707.62, + "end": 11710.2, + "probability": 0.5869 + }, + { + "start": 11710.2, + "end": 11712.88, + "probability": 0.644 + }, + { + "start": 11713.06, + "end": 11713.34, + "probability": 0.2588 + }, + { + "start": 11713.52, + "end": 11713.52, + "probability": 0.6529 + }, + { + "start": 11713.52, + "end": 11714.76, + "probability": 0.7829 + }, + { + "start": 11715.0, + "end": 11715.36, + "probability": 0.9287 + }, + { + "start": 11715.36, + "end": 11716.4, + "probability": 0.5935 + }, + { + "start": 11718.38, + "end": 11719.38, + "probability": 0.2502 + }, + { + "start": 11722.04, + "end": 11722.96, + "probability": 0.2426 + }, + { + "start": 11722.96, + "end": 11724.38, + "probability": 0.6346 + }, + { + "start": 11724.42, + "end": 11727.26, + "probability": 0.5488 + }, + { + "start": 11727.78, + "end": 11730.2, + "probability": 0.8073 + }, + { + "start": 11731.14, + "end": 11731.95, + "probability": 0.5048 + }, + { + "start": 11733.32, + "end": 11735.28, + "probability": 0.9179 + }, + { + "start": 11735.88, + "end": 11740.54, + "probability": 0.9875 + }, + { + "start": 11740.72, + "end": 11741.15, + "probability": 0.9312 + }, + { + "start": 11741.84, + "end": 11742.78, + "probability": 0.7982 + }, + { + "start": 11743.28, + "end": 11748.0, + "probability": 0.9858 + }, + { + "start": 11748.66, + "end": 11751.42, + "probability": 0.9702 + }, + { + "start": 11752.84, + "end": 11753.88, + "probability": 0.8609 + }, + { + "start": 11754.62, + "end": 11756.76, + "probability": 0.8713 + }, + { + "start": 11757.58, + "end": 11759.26, + "probability": 0.9485 + }, + { + "start": 11759.92, + "end": 11762.24, + "probability": 0.9834 + }, + { + "start": 11762.34, + "end": 11762.77, + "probability": 0.746 + }, + { + "start": 11763.84, + "end": 11764.96, + "probability": 0.9476 + }, + { + "start": 11765.5, + "end": 11766.98, + "probability": 0.9199 + }, + { + "start": 11768.06, + "end": 11769.22, + "probability": 0.8918 + }, + { + "start": 11770.04, + "end": 11770.06, + "probability": 0.0552 + }, + { + "start": 11770.3, + "end": 11771.16, + "probability": 0.9625 + }, + { + "start": 11771.66, + "end": 11772.74, + "probability": 0.9816 + }, + { + "start": 11772.82, + "end": 11773.78, + "probability": 0.8925 + }, + { + "start": 11774.22, + "end": 11776.62, + "probability": 0.9914 + }, + { + "start": 11777.2, + "end": 11779.91, + "probability": 0.7778 + }, + { + "start": 11780.95, + "end": 11782.66, + "probability": 0.7051 + }, + { + "start": 11783.62, + "end": 11785.98, + "probability": 0.7231 + }, + { + "start": 11786.78, + "end": 11787.7, + "probability": 0.6585 + }, + { + "start": 11788.18, + "end": 11790.22, + "probability": 0.7945 + }, + { + "start": 11791.02, + "end": 11792.12, + "probability": 0.9959 + }, + { + "start": 11792.72, + "end": 11794.52, + "probability": 0.9691 + }, + { + "start": 11796.12, + "end": 11796.5, + "probability": 0.3477 + }, + { + "start": 11796.5, + "end": 11797.78, + "probability": 0.721 + }, + { + "start": 11797.9, + "end": 11799.24, + "probability": 0.7664 + }, + { + "start": 11799.88, + "end": 11802.14, + "probability": 0.8309 + }, + { + "start": 11802.7, + "end": 11805.18, + "probability": 0.9871 + }, + { + "start": 11805.58, + "end": 11806.8, + "probability": 0.9759 + }, + { + "start": 11807.0, + "end": 11809.68, + "probability": 0.8618 + }, + { + "start": 11810.04, + "end": 11811.02, + "probability": 0.5755 + }, + { + "start": 11811.06, + "end": 11812.28, + "probability": 0.9293 + }, + { + "start": 11812.84, + "end": 11813.16, + "probability": 0.825 + }, + { + "start": 11813.26, + "end": 11814.16, + "probability": 0.7307 + }, + { + "start": 11814.56, + "end": 11816.46, + "probability": 0.97 + }, + { + "start": 11816.8, + "end": 11822.04, + "probability": 0.8945 + }, + { + "start": 11822.52, + "end": 11825.46, + "probability": 0.8326 + }, + { + "start": 11825.92, + "end": 11827.76, + "probability": 0.9195 + }, + { + "start": 11828.58, + "end": 11831.6, + "probability": 0.874 + }, + { + "start": 11831.74, + "end": 11832.12, + "probability": 0.7359 + }, + { + "start": 11832.2, + "end": 11837.12, + "probability": 0.9817 + }, + { + "start": 11837.56, + "end": 11838.62, + "probability": 0.9824 + }, + { + "start": 11839.02, + "end": 11841.34, + "probability": 0.9688 + }, + { + "start": 11841.44, + "end": 11842.58, + "probability": 0.7695 + }, + { + "start": 11842.7, + "end": 11843.9, + "probability": 0.7852 + }, + { + "start": 11844.06, + "end": 11844.34, + "probability": 0.5066 + }, + { + "start": 11844.76, + "end": 11845.4, + "probability": 0.7461 + }, + { + "start": 11846.24, + "end": 11848.88, + "probability": 0.9301 + }, + { + "start": 11849.96, + "end": 11857.82, + "probability": 0.9438 + }, + { + "start": 11858.54, + "end": 11861.18, + "probability": 0.9966 + }, + { + "start": 11861.76, + "end": 11862.06, + "probability": 0.3716 + }, + { + "start": 11862.08, + "end": 11866.68, + "probability": 0.9935 + }, + { + "start": 11867.24, + "end": 11872.24, + "probability": 0.9927 + }, + { + "start": 11872.72, + "end": 11874.08, + "probability": 0.6555 + }, + { + "start": 11874.14, + "end": 11874.92, + "probability": 0.9456 + }, + { + "start": 11874.98, + "end": 11875.2, + "probability": 0.7316 + }, + { + "start": 11875.26, + "end": 11876.37, + "probability": 0.7981 + }, + { + "start": 11877.68, + "end": 11879.16, + "probability": 0.9585 + }, + { + "start": 11879.34, + "end": 11881.54, + "probability": 0.8682 + }, + { + "start": 11881.72, + "end": 11882.86, + "probability": 0.6462 + }, + { + "start": 11883.38, + "end": 11887.42, + "probability": 0.5003 + }, + { + "start": 11887.46, + "end": 11887.94, + "probability": 0.7537 + }, + { + "start": 11909.74, + "end": 11913.76, + "probability": 0.2845 + }, + { + "start": 11914.54, + "end": 11916.2, + "probability": 0.3132 + }, + { + "start": 11919.78, + "end": 11920.98, + "probability": 0.0374 + }, + { + "start": 11924.19, + "end": 11926.68, + "probability": 0.9395 + }, + { + "start": 11928.28, + "end": 11928.74, + "probability": 0.0778 + }, + { + "start": 11933.49, + "end": 11937.9, + "probability": 0.018 + }, + { + "start": 11939.32, + "end": 11944.12, + "probability": 0.0514 + }, + { + "start": 11945.52, + "end": 11945.7, + "probability": 0.002 + }, + { + "start": 11946.38, + "end": 11948.2, + "probability": 0.0528 + }, + { + "start": 11948.2, + "end": 11948.54, + "probability": 0.0445 + }, + { + "start": 11953.5, + "end": 11956.0, + "probability": 0.7942 + }, + { + "start": 11957.3, + "end": 11957.78, + "probability": 0.0307 + }, + { + "start": 12000.0, + "end": 12000.0, + "probability": 0.0 + }, + { + "start": 12000.0, + "end": 12000.0, + "probability": 0.0 + }, + { + "start": 12000.0, + "end": 12000.0, + "probability": 0.0 + }, + { + "start": 12000.0, + "end": 12000.0, + "probability": 0.0 + }, + { + "start": 12000.0, + "end": 12000.0, + "probability": 0.0 + }, + { + "start": 12000.0, + "end": 12000.0, + "probability": 0.0 + }, + { + "start": 12000.0, + "end": 12000.0, + "probability": 0.0 + }, + { + "start": 12000.0, + "end": 12000.0, + "probability": 0.0 + }, + { + "start": 12000.0, + "end": 12000.0, + "probability": 0.0 + }, + { + "start": 12000.0, + "end": 12000.0, + "probability": 0.0 + }, + { + "start": 12000.12, + "end": 12000.3, + "probability": 0.0344 + }, + { + "start": 12000.3, + "end": 12000.3, + "probability": 0.0167 + }, + { + "start": 12000.3, + "end": 12000.72, + "probability": 0.09 + }, + { + "start": 12001.78, + "end": 12003.76, + "probability": 0.8501 + }, + { + "start": 12004.58, + "end": 12007.48, + "probability": 0.8928 + }, + { + "start": 12008.18, + "end": 12013.82, + "probability": 0.9746 + }, + { + "start": 12015.02, + "end": 12018.2, + "probability": 0.9721 + }, + { + "start": 12018.2, + "end": 12020.7, + "probability": 0.9963 + }, + { + "start": 12021.66, + "end": 12023.68, + "probability": 0.886 + }, + { + "start": 12024.12, + "end": 12026.4, + "probability": 0.9465 + }, + { + "start": 12026.86, + "end": 12032.06, + "probability": 0.9974 + }, + { + "start": 12032.56, + "end": 12034.56, + "probability": 0.9732 + }, + { + "start": 12036.42, + "end": 12037.06, + "probability": 0.6863 + }, + { + "start": 12037.66, + "end": 12040.52, + "probability": 0.9965 + }, + { + "start": 12041.06, + "end": 12042.78, + "probability": 0.8691 + }, + { + "start": 12043.24, + "end": 12045.02, + "probability": 0.7995 + }, + { + "start": 12045.1, + "end": 12046.72, + "probability": 0.5998 + }, + { + "start": 12047.48, + "end": 12052.08, + "probability": 0.8783 + }, + { + "start": 12053.1, + "end": 12056.94, + "probability": 0.9791 + }, + { + "start": 12057.5, + "end": 12063.4, + "probability": 0.9894 + }, + { + "start": 12064.26, + "end": 12069.52, + "probability": 0.9927 + }, + { + "start": 12070.18, + "end": 12075.48, + "probability": 0.9811 + }, + { + "start": 12076.54, + "end": 12081.4, + "probability": 0.957 + }, + { + "start": 12082.34, + "end": 12084.98, + "probability": 0.9707 + }, + { + "start": 12084.98, + "end": 12089.31, + "probability": 0.9971 + }, + { + "start": 12090.14, + "end": 12092.66, + "probability": 0.9873 + }, + { + "start": 12093.62, + "end": 12097.6, + "probability": 0.9312 + }, + { + "start": 12098.1, + "end": 12100.74, + "probability": 0.732 + }, + { + "start": 12101.28, + "end": 12105.5, + "probability": 0.9979 + }, + { + "start": 12106.56, + "end": 12107.14, + "probability": 0.8445 + }, + { + "start": 12107.94, + "end": 12110.0, + "probability": 0.999 + }, + { + "start": 12110.74, + "end": 12114.64, + "probability": 0.9957 + }, + { + "start": 12115.07, + "end": 12118.32, + "probability": 0.9527 + }, + { + "start": 12119.74, + "end": 12123.74, + "probability": 0.9927 + }, + { + "start": 12123.74, + "end": 12128.24, + "probability": 0.9965 + }, + { + "start": 12129.0, + "end": 12130.92, + "probability": 0.8548 + }, + { + "start": 12131.44, + "end": 12136.7, + "probability": 0.9987 + }, + { + "start": 12137.88, + "end": 12138.94, + "probability": 0.7601 + }, + { + "start": 12140.24, + "end": 12144.36, + "probability": 0.9024 + }, + { + "start": 12145.3, + "end": 12146.54, + "probability": 0.9577 + }, + { + "start": 12147.06, + "end": 12150.14, + "probability": 0.8518 + }, + { + "start": 12150.82, + "end": 12151.78, + "probability": 0.9565 + }, + { + "start": 12152.58, + "end": 12157.96, + "probability": 0.9941 + }, + { + "start": 12158.06, + "end": 12161.52, + "probability": 0.9048 + }, + { + "start": 12162.5, + "end": 12163.1, + "probability": 0.7256 + }, + { + "start": 12163.22, + "end": 12166.88, + "probability": 0.8593 + }, + { + "start": 12166.88, + "end": 12169.46, + "probability": 0.9121 + }, + { + "start": 12170.82, + "end": 12173.22, + "probability": 0.9984 + }, + { + "start": 12173.98, + "end": 12177.04, + "probability": 0.9696 + }, + { + "start": 12178.08, + "end": 12182.64, + "probability": 0.9967 + }, + { + "start": 12183.26, + "end": 12187.54, + "probability": 0.9343 + }, + { + "start": 12187.54, + "end": 12191.66, + "probability": 0.9967 + }, + { + "start": 12192.84, + "end": 12199.02, + "probability": 0.9911 + }, + { + "start": 12199.74, + "end": 12203.26, + "probability": 0.9955 + }, + { + "start": 12204.56, + "end": 12209.94, + "probability": 0.986 + }, + { + "start": 12210.86, + "end": 12212.48, + "probability": 0.9111 + }, + { + "start": 12212.78, + "end": 12213.74, + "probability": 0.8812 + }, + { + "start": 12214.22, + "end": 12215.32, + "probability": 0.9746 + }, + { + "start": 12215.52, + "end": 12216.54, + "probability": 0.9779 + }, + { + "start": 12216.9, + "end": 12218.34, + "probability": 0.9792 + }, + { + "start": 12218.46, + "end": 12221.78, + "probability": 0.9841 + }, + { + "start": 12221.78, + "end": 12225.99, + "probability": 0.9482 + }, + { + "start": 12227.04, + "end": 12231.4, + "probability": 0.9195 + }, + { + "start": 12232.5, + "end": 12237.18, + "probability": 0.9376 + }, + { + "start": 12238.34, + "end": 12239.34, + "probability": 0.9582 + }, + { + "start": 12239.84, + "end": 12241.32, + "probability": 0.7383 + }, + { + "start": 12241.56, + "end": 12244.02, + "probability": 0.9853 + }, + { + "start": 12244.5, + "end": 12246.04, + "probability": 0.9116 + }, + { + "start": 12246.78, + "end": 12249.84, + "probability": 0.9904 + }, + { + "start": 12249.84, + "end": 12254.02, + "probability": 0.9905 + }, + { + "start": 12254.82, + "end": 12255.1, + "probability": 0.1641 + }, + { + "start": 12283.54, + "end": 12287.1, + "probability": 0.8055 + }, + { + "start": 12287.24, + "end": 12289.26, + "probability": 0.7658 + }, + { + "start": 12289.92, + "end": 12291.58, + "probability": 0.8738 + }, + { + "start": 12291.78, + "end": 12293.42, + "probability": 0.6732 + }, + { + "start": 12294.18, + "end": 12297.26, + "probability": 0.3219 + }, + { + "start": 12297.42, + "end": 12299.06, + "probability": 0.2192 + }, + { + "start": 12299.16, + "end": 12300.34, + "probability": 0.9339 + }, + { + "start": 12300.48, + "end": 12305.28, + "probability": 0.9363 + }, + { + "start": 12305.48, + "end": 12307.3, + "probability": 0.7095 + }, + { + "start": 12307.94, + "end": 12309.86, + "probability": 0.9874 + }, + { + "start": 12310.04, + "end": 12310.28, + "probability": 0.8231 + }, + { + "start": 12311.4, + "end": 12312.3, + "probability": 0.5739 + }, + { + "start": 12313.28, + "end": 12315.77, + "probability": 0.7195 + }, + { + "start": 12320.74, + "end": 12321.64, + "probability": 0.637 + }, + { + "start": 12322.64, + "end": 12324.14, + "probability": 0.7352 + }, + { + "start": 12325.3, + "end": 12328.7, + "probability": 0.999 + }, + { + "start": 12329.57, + "end": 12332.92, + "probability": 0.9985 + }, + { + "start": 12333.58, + "end": 12334.66, + "probability": 0.9341 + }, + { + "start": 12335.6, + "end": 12339.12, + "probability": 0.9271 + }, + { + "start": 12339.12, + "end": 12342.06, + "probability": 0.9988 + }, + { + "start": 12342.22, + "end": 12346.56, + "probability": 0.8405 + }, + { + "start": 12346.56, + "end": 12350.36, + "probability": 0.9942 + }, + { + "start": 12351.28, + "end": 12353.66, + "probability": 0.9653 + }, + { + "start": 12354.34, + "end": 12362.78, + "probability": 0.9885 + }, + { + "start": 12364.12, + "end": 12365.5, + "probability": 0.6256 + }, + { + "start": 12365.58, + "end": 12366.44, + "probability": 0.6977 + }, + { + "start": 12366.64, + "end": 12372.24, + "probability": 0.9164 + }, + { + "start": 12373.53, + "end": 12377.36, + "probability": 0.9761 + }, + { + "start": 12378.0, + "end": 12387.64, + "probability": 0.9897 + }, + { + "start": 12388.28, + "end": 12393.48, + "probability": 0.7537 + }, + { + "start": 12394.08, + "end": 12401.18, + "probability": 0.999 + }, + { + "start": 12401.18, + "end": 12407.32, + "probability": 0.9768 + }, + { + "start": 12408.36, + "end": 12412.82, + "probability": 0.9463 + }, + { + "start": 12413.4, + "end": 12418.86, + "probability": 0.9886 + }, + { + "start": 12419.72, + "end": 12421.18, + "probability": 0.6067 + }, + { + "start": 12421.22, + "end": 12422.5, + "probability": 0.9646 + }, + { + "start": 12422.92, + "end": 12425.08, + "probability": 0.9595 + }, + { + "start": 12425.24, + "end": 12429.46, + "probability": 0.912 + }, + { + "start": 12429.72, + "end": 12431.02, + "probability": 0.8737 + }, + { + "start": 12431.26, + "end": 12435.96, + "probability": 0.9849 + }, + { + "start": 12436.3, + "end": 12437.02, + "probability": 0.8977 + }, + { + "start": 12437.14, + "end": 12438.26, + "probability": 0.9211 + }, + { + "start": 12439.24, + "end": 12439.84, + "probability": 0.7174 + }, + { + "start": 12440.72, + "end": 12442.96, + "probability": 0.9458 + }, + { + "start": 12443.26, + "end": 12445.66, + "probability": 0.9202 + }, + { + "start": 12445.9, + "end": 12449.76, + "probability": 0.974 + }, + { + "start": 12450.52, + "end": 12452.54, + "probability": 0.9928 + }, + { + "start": 12452.76, + "end": 12457.62, + "probability": 0.9177 + }, + { + "start": 12458.08, + "end": 12459.1, + "probability": 0.8035 + }, + { + "start": 12459.28, + "end": 12463.76, + "probability": 0.9739 + }, + { + "start": 12464.66, + "end": 12466.36, + "probability": 0.9059 + }, + { + "start": 12466.74, + "end": 12472.3, + "probability": 0.9832 + }, + { + "start": 12472.86, + "end": 12475.48, + "probability": 0.9368 + }, + { + "start": 12475.64, + "end": 12477.96, + "probability": 0.8323 + }, + { + "start": 12478.56, + "end": 12481.44, + "probability": 0.9184 + }, + { + "start": 12481.58, + "end": 12485.7, + "probability": 0.9856 + }, + { + "start": 12485.92, + "end": 12489.04, + "probability": 0.9939 + }, + { + "start": 12489.16, + "end": 12489.74, + "probability": 0.55 + }, + { + "start": 12490.36, + "end": 12492.64, + "probability": 0.988 + }, + { + "start": 12493.58, + "end": 12495.24, + "probability": 0.3198 + }, + { + "start": 12495.46, + "end": 12502.3, + "probability": 0.8993 + }, + { + "start": 12502.52, + "end": 12503.5, + "probability": 0.5198 + }, + { + "start": 12504.18, + "end": 12507.2, + "probability": 0.9841 + }, + { + "start": 12507.6, + "end": 12509.1, + "probability": 0.7407 + }, + { + "start": 12509.26, + "end": 12510.24, + "probability": 0.699 + }, + { + "start": 12510.48, + "end": 12511.24, + "probability": 0.5007 + }, + { + "start": 12511.68, + "end": 12512.94, + "probability": 0.8482 + }, + { + "start": 12513.14, + "end": 12516.42, + "probability": 0.832 + }, + { + "start": 12517.76, + "end": 12524.68, + "probability": 0.9636 + }, + { + "start": 12524.9, + "end": 12528.92, + "probability": 0.9108 + }, + { + "start": 12529.74, + "end": 12530.48, + "probability": 0.9613 + }, + { + "start": 12533.48, + "end": 12533.74, + "probability": 0.1512 + }, + { + "start": 12533.74, + "end": 12534.4, + "probability": 0.2481 + }, + { + "start": 12534.48, + "end": 12540.7, + "probability": 0.9671 + }, + { + "start": 12541.36, + "end": 12543.88, + "probability": 0.7006 + }, + { + "start": 12544.42, + "end": 12549.8, + "probability": 0.9758 + }, + { + "start": 12550.32, + "end": 12554.48, + "probability": 0.9504 + }, + { + "start": 12554.48, + "end": 12557.96, + "probability": 0.8385 + }, + { + "start": 12558.38, + "end": 12559.36, + "probability": 0.8025 + }, + { + "start": 12559.7, + "end": 12563.52, + "probability": 0.8796 + }, + { + "start": 12564.84, + "end": 12567.72, + "probability": 0.7346 + }, + { + "start": 12568.38, + "end": 12570.24, + "probability": 0.7829 + }, + { + "start": 12570.24, + "end": 12571.2, + "probability": 0.5872 + }, + { + "start": 12571.42, + "end": 12573.04, + "probability": 0.6524 + }, + { + "start": 12577.58, + "end": 12579.82, + "probability": 0.8376 + }, + { + "start": 12580.08, + "end": 12584.62, + "probability": 0.8483 + }, + { + "start": 12585.6, + "end": 12590.66, + "probability": 0.8129 + }, + { + "start": 12590.84, + "end": 12593.68, + "probability": 0.949 + }, + { + "start": 12594.22, + "end": 12596.62, + "probability": 0.9959 + }, + { + "start": 12597.46, + "end": 12599.24, + "probability": 0.7511 + }, + { + "start": 12599.86, + "end": 12605.34, + "probability": 0.9954 + }, + { + "start": 12605.94, + "end": 12607.46, + "probability": 0.8548 + }, + { + "start": 12607.84, + "end": 12613.84, + "probability": 0.9105 + }, + { + "start": 12613.9, + "end": 12616.64, + "probability": 0.6895 + }, + { + "start": 12617.4, + "end": 12622.16, + "probability": 0.9796 + }, + { + "start": 12622.16, + "end": 12625.34, + "probability": 0.6548 + }, + { + "start": 12625.72, + "end": 12630.4, + "probability": 0.9254 + }, + { + "start": 12630.52, + "end": 12633.08, + "probability": 0.7896 + }, + { + "start": 12633.28, + "end": 12639.52, + "probability": 0.9948 + }, + { + "start": 12639.98, + "end": 12642.44, + "probability": 0.9653 + }, + { + "start": 12642.86, + "end": 12644.1, + "probability": 0.8027 + }, + { + "start": 12644.3, + "end": 12649.06, + "probability": 0.9049 + }, + { + "start": 12649.7, + "end": 12653.4, + "probability": 0.9567 + }, + { + "start": 12653.92, + "end": 12654.58, + "probability": 0.7297 + }, + { + "start": 12656.02, + "end": 12657.28, + "probability": 0.9899 + }, + { + "start": 12657.82, + "end": 12659.74, + "probability": 0.738 + }, + { + "start": 12660.66, + "end": 12663.98, + "probability": 0.9572 + }, + { + "start": 12664.32, + "end": 12668.22, + "probability": 0.9579 + }, + { + "start": 12669.12, + "end": 12676.44, + "probability": 0.9318 + }, + { + "start": 12676.56, + "end": 12678.66, + "probability": 0.9663 + }, + { + "start": 12678.88, + "end": 12680.9, + "probability": 0.8814 + }, + { + "start": 12681.02, + "end": 12683.28, + "probability": 0.9531 + }, + { + "start": 12683.34, + "end": 12685.24, + "probability": 0.811 + }, + { + "start": 12685.42, + "end": 12687.38, + "probability": 0.8787 + }, + { + "start": 12687.82, + "end": 12692.95, + "probability": 0.9971 + }, + { + "start": 12693.7, + "end": 12694.58, + "probability": 0.6213 + }, + { + "start": 12694.72, + "end": 12696.82, + "probability": 0.9917 + }, + { + "start": 12697.14, + "end": 12699.1, + "probability": 0.9839 + }, + { + "start": 12699.22, + "end": 12700.7, + "probability": 0.9665 + }, + { + "start": 12700.76, + "end": 12703.28, + "probability": 0.979 + }, + { + "start": 12703.94, + "end": 12706.76, + "probability": 0.9775 + }, + { + "start": 12706.86, + "end": 12712.7, + "probability": 0.9497 + }, + { + "start": 12713.46, + "end": 12713.46, + "probability": 0.1927 + }, + { + "start": 12713.52, + "end": 12713.96, + "probability": 0.6842 + }, + { + "start": 12714.58, + "end": 12714.58, + "probability": 0.4027 + }, + { + "start": 12714.58, + "end": 12715.02, + "probability": 0.5085 + }, + { + "start": 12715.02, + "end": 12715.43, + "probability": 0.6371 + }, + { + "start": 12716.48, + "end": 12718.66, + "probability": 0.9683 + }, + { + "start": 12718.76, + "end": 12719.34, + "probability": 0.4448 + }, + { + "start": 12719.52, + "end": 12722.22, + "probability": 0.4422 + }, + { + "start": 12725.32, + "end": 12728.14, + "probability": 0.7681 + }, + { + "start": 12731.34, + "end": 12732.46, + "probability": 0.6447 + }, + { + "start": 12733.34, + "end": 12736.6, + "probability": 0.9351 + }, + { + "start": 12737.46, + "end": 12738.68, + "probability": 0.7866 + }, + { + "start": 12739.1, + "end": 12739.64, + "probability": 0.5464 + }, + { + "start": 12739.66, + "end": 12740.42, + "probability": 0.4803 + }, + { + "start": 12742.28, + "end": 12743.58, + "probability": 0.8463 + }, + { + "start": 12747.26, + "end": 12749.32, + "probability": 0.9258 + }, + { + "start": 12750.2, + "end": 12752.25, + "probability": 0.9958 + }, + { + "start": 12753.92, + "end": 12756.82, + "probability": 0.9214 + }, + { + "start": 12759.64, + "end": 12760.0, + "probability": 0.5027 + }, + { + "start": 12761.08, + "end": 12761.3, + "probability": 0.3489 + }, + { + "start": 12761.86, + "end": 12761.98, + "probability": 0.113 + }, + { + "start": 12762.92, + "end": 12766.96, + "probability": 0.8899 + }, + { + "start": 12768.48, + "end": 12772.85, + "probability": 0.8228 + }, + { + "start": 12775.0, + "end": 12778.8, + "probability": 0.6944 + }, + { + "start": 12779.18, + "end": 12780.62, + "probability": 0.999 + }, + { + "start": 12781.44, + "end": 12782.3, + "probability": 0.776 + }, + { + "start": 12783.34, + "end": 12785.5, + "probability": 0.9336 + }, + { + "start": 12787.8, + "end": 12793.6, + "probability": 0.9941 + }, + { + "start": 12793.78, + "end": 12795.0, + "probability": 0.9479 + }, + { + "start": 12795.94, + "end": 12801.88, + "probability": 0.9938 + }, + { + "start": 12802.32, + "end": 12804.68, + "probability": 0.994 + }, + { + "start": 12805.52, + "end": 12805.95, + "probability": 0.4756 + }, + { + "start": 12807.82, + "end": 12810.98, + "probability": 0.9933 + }, + { + "start": 12812.32, + "end": 12813.38, + "probability": 0.9633 + }, + { + "start": 12814.56, + "end": 12814.9, + "probability": 0.4943 + }, + { + "start": 12815.6, + "end": 12818.24, + "probability": 0.2255 + }, + { + "start": 12818.24, + "end": 12819.22, + "probability": 0.5954 + }, + { + "start": 12819.74, + "end": 12820.85, + "probability": 0.2126 + }, + { + "start": 12821.72, + "end": 12823.36, + "probability": 0.6824 + }, + { + "start": 12824.14, + "end": 12826.32, + "probability": 0.845 + }, + { + "start": 12827.52, + "end": 12828.62, + "probability": 0.9801 + }, + { + "start": 12829.95, + "end": 12831.06, + "probability": 0.9479 + }, + { + "start": 12833.7, + "end": 12840.1, + "probability": 0.9709 + }, + { + "start": 12842.1, + "end": 12847.22, + "probability": 0.9877 + }, + { + "start": 12848.1, + "end": 12848.86, + "probability": 0.9719 + }, + { + "start": 12849.58, + "end": 12852.1, + "probability": 0.8417 + }, + { + "start": 12852.8, + "end": 12856.7, + "probability": 0.6613 + }, + { + "start": 12856.7, + "end": 12863.14, + "probability": 0.9966 + }, + { + "start": 12864.34, + "end": 12866.62, + "probability": 0.9989 + }, + { + "start": 12870.26, + "end": 12871.26, + "probability": 0.9715 + }, + { + "start": 12873.22, + "end": 12873.9, + "probability": 0.6593 + }, + { + "start": 12874.56, + "end": 12878.0, + "probability": 0.9922 + }, + { + "start": 12879.38, + "end": 12881.3, + "probability": 0.9867 + }, + { + "start": 12882.78, + "end": 12884.72, + "probability": 0.6823 + }, + { + "start": 12884.76, + "end": 12888.38, + "probability": 0.9839 + }, + { + "start": 12890.42, + "end": 12891.04, + "probability": 0.9759 + }, + { + "start": 12891.6, + "end": 12895.4, + "probability": 0.996 + }, + { + "start": 12897.46, + "end": 12898.5, + "probability": 0.9082 + }, + { + "start": 12898.58, + "end": 12900.3, + "probability": 0.9659 + }, + { + "start": 12901.34, + "end": 12902.96, + "probability": 0.945 + }, + { + "start": 12903.28, + "end": 12905.48, + "probability": 0.9807 + }, + { + "start": 12909.94, + "end": 12913.18, + "probability": 0.9066 + }, + { + "start": 12913.76, + "end": 12915.2, + "probability": 0.9912 + }, + { + "start": 12915.74, + "end": 12919.6, + "probability": 0.8708 + }, + { + "start": 12920.18, + "end": 12922.0, + "probability": 0.9717 + }, + { + "start": 12922.42, + "end": 12923.72, + "probability": 0.7689 + }, + { + "start": 12923.8, + "end": 12928.64, + "probability": 0.9047 + }, + { + "start": 12928.9, + "end": 12932.32, + "probability": 0.9949 + }, + { + "start": 12934.46, + "end": 12937.76, + "probability": 0.9252 + }, + { + "start": 12938.3, + "end": 12939.02, + "probability": 0.8336 + }, + { + "start": 12940.24, + "end": 12942.2, + "probability": 0.6059 + }, + { + "start": 12942.6, + "end": 12944.44, + "probability": 0.9242 + }, + { + "start": 12944.96, + "end": 12945.94, + "probability": 0.9806 + }, + { + "start": 12946.96, + "end": 12948.02, + "probability": 0.77 + }, + { + "start": 12949.04, + "end": 12950.18, + "probability": 0.9739 + }, + { + "start": 12950.82, + "end": 12951.56, + "probability": 0.9434 + }, + { + "start": 12953.88, + "end": 12957.44, + "probability": 0.9968 + }, + { + "start": 12958.74, + "end": 12960.08, + "probability": 0.7888 + }, + { + "start": 12960.46, + "end": 12964.82, + "probability": 0.9924 + }, + { + "start": 12966.66, + "end": 12968.14, + "probability": 0.9189 + }, + { + "start": 12969.7, + "end": 12973.42, + "probability": 0.8545 + }, + { + "start": 12974.78, + "end": 12977.34, + "probability": 0.9945 + }, + { + "start": 12977.92, + "end": 12978.89, + "probability": 0.8667 + }, + { + "start": 12980.2, + "end": 12982.48, + "probability": 0.9304 + }, + { + "start": 12982.86, + "end": 12985.9, + "probability": 0.9771 + }, + { + "start": 12986.44, + "end": 12987.58, + "probability": 0.9978 + }, + { + "start": 12988.36, + "end": 12991.16, + "probability": 0.9661 + }, + { + "start": 12991.86, + "end": 12993.58, + "probability": 0.5092 + }, + { + "start": 12993.72, + "end": 12995.28, + "probability": 0.8296 + }, + { + "start": 12996.3, + "end": 12998.92, + "probability": 0.9801 + }, + { + "start": 12999.64, + "end": 13000.58, + "probability": 0.4477 + }, + { + "start": 13001.94, + "end": 13002.56, + "probability": 0.5525 + }, + { + "start": 13003.7, + "end": 13004.64, + "probability": 0.1442 + }, + { + "start": 13005.16, + "end": 13006.46, + "probability": 0.9351 + }, + { + "start": 13007.48, + "end": 13009.28, + "probability": 0.7111 + }, + { + "start": 13010.42, + "end": 13013.86, + "probability": 0.9004 + }, + { + "start": 13014.86, + "end": 13016.52, + "probability": 0.9555 + }, + { + "start": 13018.64, + "end": 13019.78, + "probability": 0.6054 + }, + { + "start": 13021.34, + "end": 13025.64, + "probability": 0.9486 + }, + { + "start": 13026.42, + "end": 13027.77, + "probability": 0.8563 + }, + { + "start": 13028.78, + "end": 13030.36, + "probability": 0.6198 + }, + { + "start": 13030.6, + "end": 13032.66, + "probability": 0.9924 + }, + { + "start": 13032.94, + "end": 13034.86, + "probability": 0.9302 + }, + { + "start": 13035.22, + "end": 13038.36, + "probability": 0.8692 + }, + { + "start": 13039.04, + "end": 13041.92, + "probability": 0.894 + }, + { + "start": 13042.6, + "end": 13043.4, + "probability": 0.9816 + }, + { + "start": 13044.74, + "end": 13044.96, + "probability": 0.1905 + }, + { + "start": 13045.24, + "end": 13046.7, + "probability": 0.727 + }, + { + "start": 13047.26, + "end": 13048.2, + "probability": 0.745 + }, + { + "start": 13048.8, + "end": 13051.46, + "probability": 0.9764 + }, + { + "start": 13053.9, + "end": 13056.2, + "probability": 0.9836 + }, + { + "start": 13057.16, + "end": 13057.78, + "probability": 0.6647 + }, + { + "start": 13058.06, + "end": 13058.64, + "probability": 0.7047 + }, + { + "start": 13058.84, + "end": 13059.74, + "probability": 0.4944 + }, + { + "start": 13061.14, + "end": 13064.24, + "probability": 0.928 + }, + { + "start": 13065.68, + "end": 13073.72, + "probability": 0.9397 + }, + { + "start": 13074.24, + "end": 13075.34, + "probability": 0.608 + }, + { + "start": 13077.02, + "end": 13078.4, + "probability": 0.7255 + }, + { + "start": 13082.28, + "end": 13083.52, + "probability": 0.6854 + }, + { + "start": 13083.68, + "end": 13083.68, + "probability": 0.6448 + }, + { + "start": 13083.68, + "end": 13084.04, + "probability": 0.5143 + }, + { + "start": 13084.16, + "end": 13085.1, + "probability": 0.3977 + }, + { + "start": 13085.48, + "end": 13086.32, + "probability": 0.7728 + }, + { + "start": 13086.46, + "end": 13087.44, + "probability": 0.6034 + }, + { + "start": 13087.54, + "end": 13093.1, + "probability": 0.7306 + }, + { + "start": 13094.26, + "end": 13099.9, + "probability": 0.9005 + }, + { + "start": 13099.9, + "end": 13103.98, + "probability": 0.6482 + }, + { + "start": 13104.4, + "end": 13105.06, + "probability": 0.8949 + }, + { + "start": 13106.32, + "end": 13109.34, + "probability": 0.8048 + }, + { + "start": 13109.64, + "end": 13110.7, + "probability": 0.9836 + }, + { + "start": 13110.76, + "end": 13113.18, + "probability": 0.5476 + }, + { + "start": 13113.86, + "end": 13115.38, + "probability": 0.6921 + }, + { + "start": 13115.88, + "end": 13117.2, + "probability": 0.4204 + }, + { + "start": 13117.66, + "end": 13120.54, + "probability": 0.9937 + }, + { + "start": 13120.66, + "end": 13121.18, + "probability": 0.6992 + }, + { + "start": 13121.66, + "end": 13123.62, + "probability": 0.913 + }, + { + "start": 13124.24, + "end": 13128.04, + "probability": 0.9833 + }, + { + "start": 13128.4, + "end": 13132.04, + "probability": 0.975 + }, + { + "start": 13132.1, + "end": 13135.88, + "probability": 0.9897 + }, + { + "start": 13136.46, + "end": 13138.42, + "probability": 0.9675 + }, + { + "start": 13138.62, + "end": 13142.16, + "probability": 0.9008 + }, + { + "start": 13142.72, + "end": 13147.76, + "probability": 0.9565 + }, + { + "start": 13148.22, + "end": 13149.6, + "probability": 0.8374 + }, + { + "start": 13149.66, + "end": 13152.28, + "probability": 0.6429 + }, + { + "start": 13152.34, + "end": 13153.32, + "probability": 0.8975 + }, + { + "start": 13155.18, + "end": 13156.02, + "probability": 0.6927 + }, + { + "start": 13156.02, + "end": 13156.21, + "probability": 0.8105 + }, + { + "start": 13156.8, + "end": 13157.38, + "probability": 0.9412 + }, + { + "start": 13157.56, + "end": 13159.08, + "probability": 0.979 + }, + { + "start": 13159.46, + "end": 13160.36, + "probability": 0.7211 + }, + { + "start": 13160.44, + "end": 13162.9, + "probability": 0.9651 + }, + { + "start": 13162.96, + "end": 13165.02, + "probability": 0.9959 + }, + { + "start": 13165.4, + "end": 13167.1, + "probability": 0.9311 + }, + { + "start": 13167.44, + "end": 13168.58, + "probability": 0.8558 + }, + { + "start": 13168.76, + "end": 13169.32, + "probability": 0.7552 + }, + { + "start": 13169.68, + "end": 13171.56, + "probability": 0.991 + }, + { + "start": 13171.74, + "end": 13172.2, + "probability": 0.5585 + }, + { + "start": 13172.82, + "end": 13173.7, + "probability": 0.6295 + }, + { + "start": 13173.8, + "end": 13176.48, + "probability": 0.5384 + }, + { + "start": 13176.6, + "end": 13180.08, + "probability": 0.9575 + }, + { + "start": 13180.94, + "end": 13184.24, + "probability": 0.7215 + }, + { + "start": 13184.86, + "end": 13186.38, + "probability": 0.9722 + }, + { + "start": 13186.48, + "end": 13187.46, + "probability": 0.9761 + }, + { + "start": 13187.78, + "end": 13189.22, + "probability": 0.7746 + }, + { + "start": 13189.92, + "end": 13191.06, + "probability": 0.9818 + }, + { + "start": 13191.14, + "end": 13192.9, + "probability": 0.8848 + }, + { + "start": 13193.54, + "end": 13194.74, + "probability": 0.6425 + }, + { + "start": 13195.3, + "end": 13199.82, + "probability": 0.9608 + }, + { + "start": 13200.02, + "end": 13201.38, + "probability": 0.8154 + }, + { + "start": 13201.48, + "end": 13202.82, + "probability": 0.8318 + }, + { + "start": 13203.14, + "end": 13204.74, + "probability": 0.9552 + }, + { + "start": 13205.28, + "end": 13209.2, + "probability": 0.9547 + }, + { + "start": 13209.24, + "end": 13210.22, + "probability": 0.426 + }, + { + "start": 13210.48, + "end": 13215.0, + "probability": 0.9453 + }, + { + "start": 13215.54, + "end": 13217.82, + "probability": 0.9494 + }, + { + "start": 13218.5, + "end": 13224.08, + "probability": 0.9606 + }, + { + "start": 13224.16, + "end": 13226.76, + "probability": 0.9246 + }, + { + "start": 13227.04, + "end": 13228.96, + "probability": 0.8132 + }, + { + "start": 13229.24, + "end": 13230.52, + "probability": 0.7758 + }, + { + "start": 13230.76, + "end": 13233.24, + "probability": 0.9984 + }, + { + "start": 13233.68, + "end": 13236.76, + "probability": 0.9926 + }, + { + "start": 13237.18, + "end": 13238.3, + "probability": 0.9083 + }, + { + "start": 13238.68, + "end": 13239.8, + "probability": 0.7878 + }, + { + "start": 13240.36, + "end": 13242.82, + "probability": 0.9851 + }, + { + "start": 13243.22, + "end": 13245.48, + "probability": 0.972 + }, + { + "start": 13246.24, + "end": 13246.66, + "probability": 0.9418 + }, + { + "start": 13247.32, + "end": 13248.26, + "probability": 0.8759 + }, + { + "start": 13248.64, + "end": 13252.7, + "probability": 0.9226 + }, + { + "start": 13253.26, + "end": 13254.8, + "probability": 0.9459 + }, + { + "start": 13255.2, + "end": 13256.1, + "probability": 0.9376 + }, + { + "start": 13256.6, + "end": 13257.76, + "probability": 0.7497 + }, + { + "start": 13257.94, + "end": 13259.46, + "probability": 0.803 + }, + { + "start": 13259.76, + "end": 13261.16, + "probability": 0.876 + }, + { + "start": 13261.64, + "end": 13264.48, + "probability": 0.9534 + }, + { + "start": 13264.64, + "end": 13266.12, + "probability": 0.8155 + }, + { + "start": 13266.66, + "end": 13268.74, + "probability": 0.9084 + }, + { + "start": 13268.88, + "end": 13269.98, + "probability": 0.8926 + }, + { + "start": 13270.4, + "end": 13271.46, + "probability": 0.8442 + }, + { + "start": 13271.56, + "end": 13272.92, + "probability": 0.808 + }, + { + "start": 13273.4, + "end": 13275.9, + "probability": 0.9546 + }, + { + "start": 13276.24, + "end": 13277.26, + "probability": 0.8223 + }, + { + "start": 13277.84, + "end": 13281.48, + "probability": 0.7535 + }, + { + "start": 13281.86, + "end": 13283.44, + "probability": 0.9934 + }, + { + "start": 13283.62, + "end": 13285.36, + "probability": 0.9565 + }, + { + "start": 13285.54, + "end": 13286.44, + "probability": 0.9866 + }, + { + "start": 13286.5, + "end": 13287.06, + "probability": 0.8635 + }, + { + "start": 13287.56, + "end": 13289.38, + "probability": 0.9526 + }, + { + "start": 13289.54, + "end": 13291.44, + "probability": 0.9931 + }, + { + "start": 13292.3, + "end": 13294.08, + "probability": 0.7915 + }, + { + "start": 13294.62, + "end": 13298.38, + "probability": 0.8384 + }, + { + "start": 13299.0, + "end": 13299.74, + "probability": 0.8378 + }, + { + "start": 13299.84, + "end": 13301.76, + "probability": 0.9677 + }, + { + "start": 13302.24, + "end": 13305.54, + "probability": 0.9901 + }, + { + "start": 13305.92, + "end": 13307.72, + "probability": 0.9881 + }, + { + "start": 13308.34, + "end": 13310.4, + "probability": 0.875 + }, + { + "start": 13311.06, + "end": 13311.96, + "probability": 0.9423 + }, + { + "start": 13312.3, + "end": 13314.52, + "probability": 0.7944 + }, + { + "start": 13314.8, + "end": 13316.92, + "probability": 0.9868 + }, + { + "start": 13317.32, + "end": 13318.34, + "probability": 0.9627 + }, + { + "start": 13318.86, + "end": 13323.02, + "probability": 0.8102 + }, + { + "start": 13323.4, + "end": 13325.76, + "probability": 0.9452 + }, + { + "start": 13326.62, + "end": 13329.08, + "probability": 0.9534 + }, + { + "start": 13329.38, + "end": 13331.02, + "probability": 0.9723 + }, + { + "start": 13331.54, + "end": 13332.92, + "probability": 0.956 + }, + { + "start": 13333.58, + "end": 13334.78, + "probability": 0.5079 + }, + { + "start": 13334.9, + "end": 13336.12, + "probability": 0.7 + }, + { + "start": 13336.48, + "end": 13340.26, + "probability": 0.8997 + }, + { + "start": 13340.74, + "end": 13344.56, + "probability": 0.9794 + }, + { + "start": 13344.98, + "end": 13348.96, + "probability": 0.9235 + }, + { + "start": 13349.28, + "end": 13351.44, + "probability": 0.9962 + }, + { + "start": 13351.94, + "end": 13353.06, + "probability": 0.8745 + }, + { + "start": 13353.44, + "end": 13355.32, + "probability": 0.8416 + }, + { + "start": 13356.1, + "end": 13361.84, + "probability": 0.9719 + }, + { + "start": 13362.22, + "end": 13365.92, + "probability": 0.9841 + }, + { + "start": 13366.24, + "end": 13368.56, + "probability": 0.9849 + }, + { + "start": 13368.64, + "end": 13369.82, + "probability": 0.9237 + }, + { + "start": 13369.9, + "end": 13371.06, + "probability": 0.9938 + }, + { + "start": 13371.1, + "end": 13372.22, + "probability": 0.7814 + }, + { + "start": 13372.56, + "end": 13376.9, + "probability": 0.9927 + }, + { + "start": 13377.2, + "end": 13380.9, + "probability": 0.9983 + }, + { + "start": 13381.22, + "end": 13381.56, + "probability": 0.6686 + }, + { + "start": 13381.78, + "end": 13382.6, + "probability": 0.619 + }, + { + "start": 13382.62, + "end": 13382.92, + "probability": 0.828 + }, + { + "start": 13383.64, + "end": 13385.1, + "probability": 0.7341 + }, + { + "start": 13385.28, + "end": 13386.45, + "probability": 0.8481 + }, + { + "start": 13386.56, + "end": 13388.58, + "probability": 0.8701 + }, + { + "start": 13388.6, + "end": 13389.98, + "probability": 0.6542 + }, + { + "start": 13390.96, + "end": 13392.72, + "probability": 0.5613 + }, + { + "start": 13393.36, + "end": 13395.62, + "probability": 0.8573 + }, + { + "start": 13396.22, + "end": 13398.82, + "probability": 0.8322 + }, + { + "start": 13399.52, + "end": 13401.14, + "probability": 0.9189 + }, + { + "start": 13401.26, + "end": 13403.48, + "probability": 0.9323 + }, + { + "start": 13403.66, + "end": 13405.1, + "probability": 0.4961 + }, + { + "start": 13405.58, + "end": 13406.3, + "probability": 0.6118 + }, + { + "start": 13406.48, + "end": 13406.58, + "probability": 0.4557 + }, + { + "start": 13406.78, + "end": 13406.9, + "probability": 0.3319 + }, + { + "start": 13407.12, + "end": 13411.11, + "probability": 0.9849 + }, + { + "start": 13412.38, + "end": 13416.54, + "probability": 0.9812 + }, + { + "start": 13416.6, + "end": 13417.42, + "probability": 0.6744 + }, + { + "start": 13418.52, + "end": 13420.28, + "probability": 0.549 + }, + { + "start": 13420.36, + "end": 13421.32, + "probability": 0.5115 + }, + { + "start": 13421.38, + "end": 13423.16, + "probability": 0.7471 + }, + { + "start": 13423.7, + "end": 13427.12, + "probability": 0.9854 + }, + { + "start": 13427.22, + "end": 13428.94, + "probability": 0.8796 + }, + { + "start": 13429.34, + "end": 13429.86, + "probability": 0.7474 + }, + { + "start": 13430.32, + "end": 13431.92, + "probability": 0.9941 + }, + { + "start": 13432.68, + "end": 13434.67, + "probability": 0.8918 + }, + { + "start": 13435.38, + "end": 13440.32, + "probability": 0.9962 + }, + { + "start": 13440.36, + "end": 13443.54, + "probability": 0.9883 + }, + { + "start": 13446.6, + "end": 13448.74, + "probability": 0.0741 + }, + { + "start": 13449.68, + "end": 13455.18, + "probability": 0.4799 + }, + { + "start": 13455.4, + "end": 13456.16, + "probability": 0.3114 + }, + { + "start": 13456.4, + "end": 13457.28, + "probability": 0.7155 + }, + { + "start": 13457.56, + "end": 13459.04, + "probability": 0.5303 + }, + { + "start": 13459.04, + "end": 13460.82, + "probability": 0.6144 + }, + { + "start": 13461.42, + "end": 13465.3, + "probability": 0.9816 + }, + { + "start": 13466.8, + "end": 13469.04, + "probability": 0.9985 + }, + { + "start": 13469.56, + "end": 13471.48, + "probability": 0.986 + }, + { + "start": 13471.48, + "end": 13474.17, + "probability": 0.9956 + }, + { + "start": 13474.92, + "end": 13477.08, + "probability": 0.9847 + }, + { + "start": 13479.34, + "end": 13481.66, + "probability": 0.998 + }, + { + "start": 13482.2, + "end": 13485.7, + "probability": 0.9924 + }, + { + "start": 13485.8, + "end": 13488.44, + "probability": 0.9923 + }, + { + "start": 13488.94, + "end": 13491.62, + "probability": 0.9801 + }, + { + "start": 13491.7, + "end": 13493.94, + "probability": 0.9225 + }, + { + "start": 13495.24, + "end": 13498.02, + "probability": 0.9889 + }, + { + "start": 13498.76, + "end": 13500.44, + "probability": 0.993 + }, + { + "start": 13501.18, + "end": 13504.98, + "probability": 0.9961 + }, + { + "start": 13505.7, + "end": 13506.16, + "probability": 0.4836 + }, + { + "start": 13506.3, + "end": 13507.36, + "probability": 0.9211 + }, + { + "start": 13507.7, + "end": 13508.5, + "probability": 0.8702 + }, + { + "start": 13508.6, + "end": 13509.57, + "probability": 0.9849 + }, + { + "start": 13511.02, + "end": 13514.46, + "probability": 0.9977 + }, + { + "start": 13515.3, + "end": 13517.02, + "probability": 0.6007 + }, + { + "start": 13517.22, + "end": 13518.28, + "probability": 0.8013 + }, + { + "start": 13519.88, + "end": 13521.58, + "probability": 0.8589 + }, + { + "start": 13524.06, + "end": 13525.66, + "probability": 0.8696 + }, + { + "start": 13526.1, + "end": 13527.19, + "probability": 0.857 + }, + { + "start": 13528.22, + "end": 13532.4, + "probability": 0.9711 + }, + { + "start": 13533.84, + "end": 13539.26, + "probability": 0.9869 + }, + { + "start": 13540.38, + "end": 13542.78, + "probability": 0.8878 + }, + { + "start": 13545.22, + "end": 13548.24, + "probability": 0.9894 + }, + { + "start": 13548.78, + "end": 13550.07, + "probability": 0.9712 + }, + { + "start": 13550.76, + "end": 13552.94, + "probability": 0.9888 + }, + { + "start": 13553.68, + "end": 13560.12, + "probability": 0.9937 + }, + { + "start": 13560.56, + "end": 13564.62, + "probability": 0.8384 + }, + { + "start": 13565.0, + "end": 13565.49, + "probability": 0.9683 + }, + { + "start": 13566.5, + "end": 13567.84, + "probability": 0.9689 + }, + { + "start": 13568.28, + "end": 13573.66, + "probability": 0.9856 + }, + { + "start": 13573.84, + "end": 13574.72, + "probability": 0.2552 + }, + { + "start": 13575.26, + "end": 13576.86, + "probability": 0.9951 + }, + { + "start": 13577.96, + "end": 13582.66, + "probability": 0.9775 + }, + { + "start": 13585.24, + "end": 13588.58, + "probability": 0.8758 + }, + { + "start": 13590.56, + "end": 13595.24, + "probability": 0.9888 + }, + { + "start": 13595.5, + "end": 13596.26, + "probability": 0.4649 + }, + { + "start": 13598.54, + "end": 13601.62, + "probability": 0.9554 + }, + { + "start": 13601.86, + "end": 13606.04, + "probability": 0.8674 + }, + { + "start": 13607.22, + "end": 13610.44, + "probability": 0.891 + }, + { + "start": 13610.96, + "end": 13612.84, + "probability": 0.8901 + }, + { + "start": 13613.32, + "end": 13617.1, + "probability": 0.7812 + }, + { + "start": 13618.08, + "end": 13619.78, + "probability": 0.9854 + }, + { + "start": 13620.48, + "end": 13621.36, + "probability": 0.7563 + }, + { + "start": 13622.06, + "end": 13623.7, + "probability": 0.964 + }, + { + "start": 13623.82, + "end": 13626.06, + "probability": 0.9561 + }, + { + "start": 13627.54, + "end": 13628.38, + "probability": 0.5875 + }, + { + "start": 13628.94, + "end": 13631.14, + "probability": 0.8603 + }, + { + "start": 13631.22, + "end": 13633.04, + "probability": 0.9062 + }, + { + "start": 13634.02, + "end": 13635.02, + "probability": 0.8672 + }, + { + "start": 13635.18, + "end": 13636.08, + "probability": 0.6979 + }, + { + "start": 13636.18, + "end": 13636.66, + "probability": 0.4463 + }, + { + "start": 13636.92, + "end": 13638.92, + "probability": 0.982 + }, + { + "start": 13639.0, + "end": 13639.64, + "probability": 0.886 + }, + { + "start": 13640.6, + "end": 13641.22, + "probability": 0.74 + }, + { + "start": 13641.36, + "end": 13643.44, + "probability": 0.9193 + }, + { + "start": 13644.46, + "end": 13647.15, + "probability": 0.979 + }, + { + "start": 13648.4, + "end": 13649.62, + "probability": 0.8355 + }, + { + "start": 13650.48, + "end": 13651.14, + "probability": 0.9883 + }, + { + "start": 13652.65, + "end": 13656.34, + "probability": 0.8315 + }, + { + "start": 13657.0, + "end": 13658.62, + "probability": 0.8483 + }, + { + "start": 13659.24, + "end": 13659.68, + "probability": 0.3012 + }, + { + "start": 13660.14, + "end": 13662.62, + "probability": 0.9743 + }, + { + "start": 13663.8, + "end": 13665.52, + "probability": 0.9697 + }, + { + "start": 13665.58, + "end": 13666.38, + "probability": 0.9631 + }, + { + "start": 13666.82, + "end": 13668.58, + "probability": 0.843 + }, + { + "start": 13668.92, + "end": 13670.24, + "probability": 0.9948 + }, + { + "start": 13670.76, + "end": 13672.68, + "probability": 0.9716 + }, + { + "start": 13672.74, + "end": 13673.72, + "probability": 0.8532 + }, + { + "start": 13674.34, + "end": 13678.38, + "probability": 0.9121 + }, + { + "start": 13678.82, + "end": 13681.22, + "probability": 0.7909 + }, + { + "start": 13681.9, + "end": 13682.27, + "probability": 0.9717 + }, + { + "start": 13683.26, + "end": 13683.47, + "probability": 0.0957 + }, + { + "start": 13684.02, + "end": 13684.68, + "probability": 0.5347 + }, + { + "start": 13684.94, + "end": 13687.28, + "probability": 0.9491 + }, + { + "start": 13687.6, + "end": 13688.3, + "probability": 0.7407 + }, + { + "start": 13689.14, + "end": 13690.32, + "probability": 0.7673 + }, + { + "start": 13690.72, + "end": 13694.02, + "probability": 0.8178 + }, + { + "start": 13694.64, + "end": 13698.0, + "probability": 0.8856 + }, + { + "start": 13698.82, + "end": 13701.16, + "probability": 0.868 + }, + { + "start": 13701.66, + "end": 13703.92, + "probability": 0.663 + }, + { + "start": 13704.88, + "end": 13706.56, + "probability": 0.9663 + }, + { + "start": 13706.6, + "end": 13708.33, + "probability": 0.9966 + }, + { + "start": 13709.16, + "end": 13713.26, + "probability": 0.7118 + }, + { + "start": 13713.64, + "end": 13719.56, + "probability": 0.7515 + }, + { + "start": 13719.88, + "end": 13722.06, + "probability": 0.9868 + }, + { + "start": 13722.22, + "end": 13724.58, + "probability": 0.9016 + }, + { + "start": 13724.92, + "end": 13729.4, + "probability": 0.9865 + }, + { + "start": 13729.5, + "end": 13734.12, + "probability": 0.9982 + }, + { + "start": 13734.6, + "end": 13737.86, + "probability": 0.7828 + }, + { + "start": 13737.98, + "end": 13739.18, + "probability": 0.9202 + }, + { + "start": 13739.4, + "end": 13739.76, + "probability": 0.3274 + }, + { + "start": 13740.52, + "end": 13741.64, + "probability": 0.9371 + }, + { + "start": 13742.3, + "end": 13745.04, + "probability": 0.8887 + }, + { + "start": 13746.68, + "end": 13750.6, + "probability": 0.9882 + }, + { + "start": 13752.34, + "end": 13754.3, + "probability": 0.9993 + }, + { + "start": 13754.52, + "end": 13757.34, + "probability": 0.8879 + }, + { + "start": 13758.7, + "end": 13763.56, + "probability": 0.9868 + }, + { + "start": 13764.2, + "end": 13765.5, + "probability": 0.9885 + }, + { + "start": 13766.16, + "end": 13768.66, + "probability": 0.9434 + }, + { + "start": 13771.08, + "end": 13772.42, + "probability": 0.8358 + }, + { + "start": 13774.02, + "end": 13777.34, + "probability": 0.9941 + }, + { + "start": 13777.42, + "end": 13778.34, + "probability": 0.802 + }, + { + "start": 13778.46, + "end": 13779.79, + "probability": 0.9763 + }, + { + "start": 13780.38, + "end": 13784.3, + "probability": 0.983 + }, + { + "start": 13784.32, + "end": 13785.56, + "probability": 0.9797 + }, + { + "start": 13785.8, + "end": 13786.16, + "probability": 0.8668 + }, + { + "start": 13786.86, + "end": 13787.98, + "probability": 0.7397 + }, + { + "start": 13789.2, + "end": 13789.76, + "probability": 0.518 + }, + { + "start": 13790.48, + "end": 13790.94, + "probability": 0.8142 + }, + { + "start": 13791.02, + "end": 13791.76, + "probability": 0.5638 + }, + { + "start": 13791.96, + "end": 13796.7, + "probability": 0.9915 + }, + { + "start": 13796.84, + "end": 13799.56, + "probability": 0.9291 + }, + { + "start": 13800.04, + "end": 13801.62, + "probability": 0.9329 + }, + { + "start": 13801.76, + "end": 13802.92, + "probability": 0.7787 + }, + { + "start": 13803.38, + "end": 13805.98, + "probability": 0.997 + }, + { + "start": 13806.3, + "end": 13809.7, + "probability": 0.9888 + }, + { + "start": 13809.7, + "end": 13812.14, + "probability": 0.9768 + }, + { + "start": 13812.54, + "end": 13812.84, + "probability": 0.9141 + }, + { + "start": 13813.22, + "end": 13814.42, + "probability": 0.7332 + }, + { + "start": 13815.12, + "end": 13817.68, + "probability": 0.9758 + }, + { + "start": 13818.54, + "end": 13819.62, + "probability": 0.5158 + }, + { + "start": 13821.22, + "end": 13822.8, + "probability": 0.7532 + }, + { + "start": 13824.12, + "end": 13824.4, + "probability": 0.8704 + }, + { + "start": 13824.52, + "end": 13827.0, + "probability": 0.9473 + }, + { + "start": 13827.0, + "end": 13829.92, + "probability": 0.9803 + }, + { + "start": 13830.14, + "end": 13830.24, + "probability": 0.191 + }, + { + "start": 13831.88, + "end": 13833.48, + "probability": 0.0554 + }, + { + "start": 13834.18, + "end": 13834.46, + "probability": 0.0606 + }, + { + "start": 13835.7, + "end": 13835.8, + "probability": 0.1336 + }, + { + "start": 13835.8, + "end": 13835.8, + "probability": 0.2585 + }, + { + "start": 13835.8, + "end": 13836.28, + "probability": 0.5988 + }, + { + "start": 13836.8, + "end": 13837.4, + "probability": 0.7069 + }, + { + "start": 13837.92, + "end": 13840.62, + "probability": 0.6489 + }, + { + "start": 13842.96, + "end": 13844.38, + "probability": 0.9607 + }, + { + "start": 13844.58, + "end": 13846.96, + "probability": 0.1302 + }, + { + "start": 13846.96, + "end": 13847.43, + "probability": 0.5275 + }, + { + "start": 13847.6, + "end": 13848.28, + "probability": 0.8005 + }, + { + "start": 13849.4, + "end": 13851.56, + "probability": 0.8595 + }, + { + "start": 13854.16, + "end": 13856.74, + "probability": 0.9941 + }, + { + "start": 13857.42, + "end": 13860.52, + "probability": 0.9489 + }, + { + "start": 13862.28, + "end": 13865.08, + "probability": 0.7872 + }, + { + "start": 13866.8, + "end": 13871.76, + "probability": 0.9453 + }, + { + "start": 13872.28, + "end": 13873.44, + "probability": 0.9876 + }, + { + "start": 13875.7, + "end": 13877.2, + "probability": 0.8293 + }, + { + "start": 13879.54, + "end": 13880.56, + "probability": 0.8221 + }, + { + "start": 13884.36, + "end": 13884.36, + "probability": 0.9639 + }, + { + "start": 13887.76, + "end": 13890.64, + "probability": 0.9941 + }, + { + "start": 13891.9, + "end": 13894.52, + "probability": 0.757 + }, + { + "start": 13896.96, + "end": 13898.46, + "probability": 0.9961 + }, + { + "start": 13902.76, + "end": 13903.22, + "probability": 0.9803 + }, + { + "start": 13905.46, + "end": 13908.66, + "probability": 0.9941 + }, + { + "start": 13911.18, + "end": 13914.22, + "probability": 0.9839 + }, + { + "start": 13915.08, + "end": 13916.14, + "probability": 0.9812 + }, + { + "start": 13918.32, + "end": 13921.86, + "probability": 0.8843 + }, + { + "start": 13922.46, + "end": 13924.12, + "probability": 0.9968 + }, + { + "start": 13925.12, + "end": 13930.78, + "probability": 0.9922 + }, + { + "start": 13931.54, + "end": 13932.5, + "probability": 0.8432 + }, + { + "start": 13934.14, + "end": 13936.34, + "probability": 0.9893 + }, + { + "start": 13937.28, + "end": 13938.94, + "probability": 0.9054 + }, + { + "start": 13939.06, + "end": 13940.46, + "probability": 0.8269 + }, + { + "start": 13940.74, + "end": 13945.76, + "probability": 0.9645 + }, + { + "start": 13946.42, + "end": 13947.12, + "probability": 0.9079 + }, + { + "start": 13951.5, + "end": 13952.3, + "probability": 0.9093 + }, + { + "start": 13955.0, + "end": 13958.78, + "probability": 0.9866 + }, + { + "start": 13961.58, + "end": 13962.21, + "probability": 0.9951 + }, + { + "start": 13963.66, + "end": 13964.98, + "probability": 0.6008 + }, + { + "start": 13966.22, + "end": 13967.4, + "probability": 0.9814 + }, + { + "start": 13968.82, + "end": 13969.92, + "probability": 0.6878 + }, + { + "start": 13970.5, + "end": 13971.1, + "probability": 0.7476 + }, + { + "start": 13972.72, + "end": 13974.38, + "probability": 0.9855 + }, + { + "start": 13975.24, + "end": 13981.88, + "probability": 0.9136 + }, + { + "start": 13983.1, + "end": 13984.56, + "probability": 0.8475 + }, + { + "start": 13985.92, + "end": 13987.52, + "probability": 0.9943 + }, + { + "start": 13989.0, + "end": 13990.38, + "probability": 0.9084 + }, + { + "start": 13991.48, + "end": 13995.74, + "probability": 0.9983 + }, + { + "start": 13997.14, + "end": 13998.4, + "probability": 0.8472 + }, + { + "start": 13999.6, + "end": 14000.28, + "probability": 0.6048 + }, + { + "start": 14000.9, + "end": 14002.4, + "probability": 0.7648 + }, + { + "start": 14005.5, + "end": 14007.98, + "probability": 0.9966 + }, + { + "start": 14010.42, + "end": 14013.68, + "probability": 0.9856 + }, + { + "start": 14014.46, + "end": 14017.14, + "probability": 0.9367 + }, + { + "start": 14018.32, + "end": 14018.98, + "probability": 0.776 + }, + { + "start": 14020.38, + "end": 14022.32, + "probability": 0.9753 + }, + { + "start": 14022.44, + "end": 14023.18, + "probability": 0.9744 + }, + { + "start": 14025.96, + "end": 14029.64, + "probability": 0.9917 + }, + { + "start": 14032.96, + "end": 14034.0, + "probability": 0.6851 + }, + { + "start": 14034.16, + "end": 14036.1, + "probability": 0.8689 + }, + { + "start": 14036.9, + "end": 14038.28, + "probability": 0.8872 + }, + { + "start": 14039.12, + "end": 14043.08, + "probability": 0.8633 + }, + { + "start": 14044.92, + "end": 14047.4, + "probability": 0.891 + }, + { + "start": 14048.58, + "end": 14049.6, + "probability": 0.8439 + }, + { + "start": 14050.38, + "end": 14050.8, + "probability": 0.1435 + }, + { + "start": 14052.14, + "end": 14054.02, + "probability": 0.6776 + }, + { + "start": 14055.02, + "end": 14056.38, + "probability": 0.8752 + }, + { + "start": 14057.0, + "end": 14059.98, + "probability": 0.8687 + }, + { + "start": 14062.44, + "end": 14065.5, + "probability": 0.9373 + }, + { + "start": 14066.04, + "end": 14067.32, + "probability": 0.9917 + }, + { + "start": 14069.44, + "end": 14069.64, + "probability": 0.747 + }, + { + "start": 14071.72, + "end": 14072.22, + "probability": 0.5672 + }, + { + "start": 14073.18, + "end": 14075.9, + "probability": 0.9945 + }, + { + "start": 14078.02, + "end": 14078.72, + "probability": 0.9529 + }, + { + "start": 14080.7, + "end": 14081.38, + "probability": 0.7755 + }, + { + "start": 14081.76, + "end": 14084.16, + "probability": 0.811 + }, + { + "start": 14084.92, + "end": 14085.54, + "probability": 0.9136 + }, + { + "start": 14085.62, + "end": 14086.14, + "probability": 0.7687 + }, + { + "start": 14087.76, + "end": 14088.9, + "probability": 0.9844 + }, + { + "start": 14089.02, + "end": 14089.74, + "probability": 0.6357 + }, + { + "start": 14090.24, + "end": 14093.46, + "probability": 0.8856 + }, + { + "start": 14096.28, + "end": 14100.2, + "probability": 0.9236 + }, + { + "start": 14101.76, + "end": 14106.02, + "probability": 0.9738 + }, + { + "start": 14107.06, + "end": 14108.34, + "probability": 0.7127 + }, + { + "start": 14110.78, + "end": 14112.22, + "probability": 0.9945 + }, + { + "start": 14113.0, + "end": 14115.8, + "probability": 0.9933 + }, + { + "start": 14117.18, + "end": 14117.6, + "probability": 0.8521 + }, + { + "start": 14118.28, + "end": 14119.9, + "probability": 0.9016 + }, + { + "start": 14121.14, + "end": 14122.62, + "probability": 0.9746 + }, + { + "start": 14122.7, + "end": 14128.92, + "probability": 0.9608 + }, + { + "start": 14131.16, + "end": 14131.84, + "probability": 0.821 + }, + { + "start": 14132.68, + "end": 14133.84, + "probability": 0.7886 + }, + { + "start": 14135.04, + "end": 14135.86, + "probability": 0.6912 + }, + { + "start": 14136.42, + "end": 14139.12, + "probability": 0.9747 + }, + { + "start": 14141.44, + "end": 14141.7, + "probability": 0.709 + }, + { + "start": 14142.06, + "end": 14142.58, + "probability": 0.9255 + }, + { + "start": 14142.74, + "end": 14144.02, + "probability": 0.8847 + }, + { + "start": 14144.14, + "end": 14145.14, + "probability": 0.7205 + }, + { + "start": 14146.06, + "end": 14147.3, + "probability": 0.7535 + }, + { + "start": 14148.38, + "end": 14148.64, + "probability": 0.7993 + }, + { + "start": 14149.2, + "end": 14150.36, + "probability": 0.9587 + }, + { + "start": 14151.06, + "end": 14152.34, + "probability": 0.7316 + }, + { + "start": 14153.42, + "end": 14153.9, + "probability": 0.5629 + }, + { + "start": 14154.26, + "end": 14155.54, + "probability": 0.9712 + }, + { + "start": 14156.28, + "end": 14156.81, + "probability": 0.6083 + }, + { + "start": 14157.26, + "end": 14160.42, + "probability": 0.9909 + }, + { + "start": 14161.58, + "end": 14163.56, + "probability": 0.9502 + }, + { + "start": 14163.66, + "end": 14167.94, + "probability": 0.9846 + }, + { + "start": 14168.16, + "end": 14169.26, + "probability": 0.5206 + }, + { + "start": 14169.84, + "end": 14171.46, + "probability": 0.9182 + }, + { + "start": 14171.84, + "end": 14172.54, + "probability": 0.6048 + }, + { + "start": 14172.86, + "end": 14173.48, + "probability": 0.887 + }, + { + "start": 14173.64, + "end": 14174.08, + "probability": 0.7991 + }, + { + "start": 14174.18, + "end": 14175.04, + "probability": 0.7877 + }, + { + "start": 14178.74, + "end": 14181.32, + "probability": 0.9098 + }, + { + "start": 14182.66, + "end": 14183.74, + "probability": 0.9421 + }, + { + "start": 14184.72, + "end": 14186.44, + "probability": 0.7539 + }, + { + "start": 14187.84, + "end": 14188.64, + "probability": 0.8288 + }, + { + "start": 14188.74, + "end": 14191.47, + "probability": 0.659 + }, + { + "start": 14191.54, + "end": 14193.36, + "probability": 0.7669 + }, + { + "start": 14194.44, + "end": 14195.12, + "probability": 0.8834 + }, + { + "start": 14195.7, + "end": 14197.6, + "probability": 0.9952 + }, + { + "start": 14198.5, + "end": 14201.46, + "probability": 0.5614 + }, + { + "start": 14202.14, + "end": 14203.12, + "probability": 0.9591 + }, + { + "start": 14204.72, + "end": 14208.62, + "probability": 0.8683 + }, + { + "start": 14209.72, + "end": 14210.48, + "probability": 0.8203 + }, + { + "start": 14211.02, + "end": 14212.1, + "probability": 0.8503 + }, + { + "start": 14213.18, + "end": 14215.08, + "probability": 0.9082 + }, + { + "start": 14215.2, + "end": 14216.91, + "probability": 0.6428 + }, + { + "start": 14217.18, + "end": 14218.04, + "probability": 0.8038 + }, + { + "start": 14218.24, + "end": 14219.56, + "probability": 0.7832 + }, + { + "start": 14220.16, + "end": 14220.48, + "probability": 0.5971 + }, + { + "start": 14221.8, + "end": 14223.84, + "probability": 0.9153 + }, + { + "start": 14227.4, + "end": 14228.16, + "probability": 0.589 + }, + { + "start": 14228.36, + "end": 14230.24, + "probability": 0.981 + }, + { + "start": 14230.36, + "end": 14231.26, + "probability": 0.9827 + }, + { + "start": 14232.04, + "end": 14232.88, + "probability": 0.4962 + }, + { + "start": 14232.94, + "end": 14237.0, + "probability": 0.9968 + }, + { + "start": 14237.46, + "end": 14237.9, + "probability": 0.8424 + }, + { + "start": 14238.7, + "end": 14240.78, + "probability": 0.8472 + }, + { + "start": 14240.82, + "end": 14243.64, + "probability": 0.9373 + }, + { + "start": 14244.22, + "end": 14246.74, + "probability": 0.8999 + }, + { + "start": 14247.1, + "end": 14248.16, + "probability": 0.9676 + }, + { + "start": 14248.62, + "end": 14249.1, + "probability": 0.746 + }, + { + "start": 14249.62, + "end": 14251.42, + "probability": 0.8514 + }, + { + "start": 14251.52, + "end": 14255.42, + "probability": 0.9265 + }, + { + "start": 14255.72, + "end": 14261.24, + "probability": 0.8893 + }, + { + "start": 14261.46, + "end": 14262.46, + "probability": 0.8879 + }, + { + "start": 14262.84, + "end": 14269.28, + "probability": 0.8831 + }, + { + "start": 14269.36, + "end": 14274.96, + "probability": 0.9866 + }, + { + "start": 14275.06, + "end": 14275.24, + "probability": 0.6686 + }, + { + "start": 14275.52, + "end": 14276.38, + "probability": 0.6117 + }, + { + "start": 14277.36, + "end": 14281.1, + "probability": 0.9163 + }, + { + "start": 14284.72, + "end": 14287.96, + "probability": 0.5542 + }, + { + "start": 14289.3, + "end": 14290.92, + "probability": 0.3948 + }, + { + "start": 14291.52, + "end": 14291.74, + "probability": 0.7609 + }, + { + "start": 14293.98, + "end": 14296.16, + "probability": 0.7312 + }, + { + "start": 14296.86, + "end": 14298.78, + "probability": 0.915 + }, + { + "start": 14298.82, + "end": 14299.42, + "probability": 0.917 + }, + { + "start": 14299.54, + "end": 14300.72, + "probability": 0.8276 + }, + { + "start": 14301.76, + "end": 14304.36, + "probability": 0.9984 + }, + { + "start": 14304.4, + "end": 14304.98, + "probability": 0.6824 + }, + { + "start": 14308.9, + "end": 14309.9, + "probability": 0.7348 + }, + { + "start": 14310.28, + "end": 14311.7, + "probability": 0.7453 + }, + { + "start": 14311.78, + "end": 14313.52, + "probability": 0.9584 + }, + { + "start": 14313.84, + "end": 14318.58, + "probability": 0.9801 + }, + { + "start": 14318.84, + "end": 14319.5, + "probability": 0.8977 + }, + { + "start": 14320.04, + "end": 14322.12, + "probability": 0.7074 + }, + { + "start": 14322.18, + "end": 14323.26, + "probability": 0.5999 + }, + { + "start": 14324.54, + "end": 14326.6, + "probability": 0.9368 + }, + { + "start": 14326.74, + "end": 14328.39, + "probability": 0.998 + }, + { + "start": 14328.98, + "end": 14336.08, + "probability": 0.9035 + }, + { + "start": 14336.68, + "end": 14338.5, + "probability": 0.7609 + }, + { + "start": 14338.7, + "end": 14341.04, + "probability": 0.9961 + }, + { + "start": 14341.14, + "end": 14342.92, + "probability": 0.7496 + }, + { + "start": 14343.44, + "end": 14345.6, + "probability": 0.8488 + }, + { + "start": 14346.72, + "end": 14350.43, + "probability": 0.938 + }, + { + "start": 14350.8, + "end": 14353.76, + "probability": 0.9896 + }, + { + "start": 14353.76, + "end": 14355.98, + "probability": 0.8703 + }, + { + "start": 14356.06, + "end": 14360.66, + "probability": 0.8963 + }, + { + "start": 14360.66, + "end": 14363.62, + "probability": 0.9932 + }, + { + "start": 14364.22, + "end": 14364.66, + "probability": 0.5589 + }, + { + "start": 14365.48, + "end": 14368.66, + "probability": 0.9355 + }, + { + "start": 14368.9, + "end": 14369.68, + "probability": 0.5878 + }, + { + "start": 14369.68, + "end": 14370.64, + "probability": 0.6487 + }, + { + "start": 14370.82, + "end": 14372.56, + "probability": 0.9291 + }, + { + "start": 14373.34, + "end": 14375.48, + "probability": 0.921 + }, + { + "start": 14376.14, + "end": 14377.38, + "probability": 0.6848 + }, + { + "start": 14377.84, + "end": 14380.62, + "probability": 0.958 + }, + { + "start": 14380.76, + "end": 14382.0, + "probability": 0.9865 + }, + { + "start": 14382.66, + "end": 14383.52, + "probability": 0.9823 + }, + { + "start": 14384.3, + "end": 14391.0, + "probability": 0.9797 + }, + { + "start": 14391.2, + "end": 14391.32, + "probability": 0.0384 + }, + { + "start": 14391.62, + "end": 14393.66, + "probability": 0.981 + }, + { + "start": 14393.94, + "end": 14401.1, + "probability": 0.9695 + }, + { + "start": 14401.1, + "end": 14405.48, + "probability": 0.9928 + }, + { + "start": 14405.92, + "end": 14406.66, + "probability": 0.5078 + }, + { + "start": 14406.96, + "end": 14407.8, + "probability": 0.6507 + }, + { + "start": 14408.0, + "end": 14412.44, + "probability": 0.9169 + }, + { + "start": 14412.56, + "end": 14412.72, + "probability": 0.5779 + }, + { + "start": 14412.84, + "end": 14414.74, + "probability": 0.4752 + }, + { + "start": 14414.96, + "end": 14416.56, + "probability": 0.5997 + }, + { + "start": 14416.72, + "end": 14416.88, + "probability": 0.6952 + }, + { + "start": 14416.96, + "end": 14418.12, + "probability": 0.7998 + }, + { + "start": 14418.26, + "end": 14418.74, + "probability": 0.7338 + }, + { + "start": 14419.28, + "end": 14422.68, + "probability": 0.9824 + }, + { + "start": 14422.92, + "end": 14425.62, + "probability": 0.4767 + }, + { + "start": 14426.06, + "end": 14427.4, + "probability": 0.9286 + }, + { + "start": 14427.66, + "end": 14427.78, + "probability": 0.5616 + }, + { + "start": 14427.82, + "end": 14429.18, + "probability": 0.9281 + }, + { + "start": 14429.24, + "end": 14430.29, + "probability": 0.7437 + }, + { + "start": 14431.08, + "end": 14435.48, + "probability": 0.9037 + }, + { + "start": 14435.54, + "end": 14436.73, + "probability": 0.5859 + }, + { + "start": 14438.6, + "end": 14440.58, + "probability": 0.0616 + }, + { + "start": 14440.93, + "end": 14441.0, + "probability": 0.0204 + }, + { + "start": 14441.22, + "end": 14442.5, + "probability": 0.5914 + }, + { + "start": 14442.54, + "end": 14444.07, + "probability": 0.5933 + }, + { + "start": 14446.85, + "end": 14447.2, + "probability": 0.3206 + }, + { + "start": 14447.46, + "end": 14448.02, + "probability": 0.5282 + }, + { + "start": 14448.24, + "end": 14448.76, + "probability": 0.507 + }, + { + "start": 14448.76, + "end": 14450.66, + "probability": 0.5527 + }, + { + "start": 14451.2, + "end": 14452.06, + "probability": 0.0112 + }, + { + "start": 14452.72, + "end": 14453.34, + "probability": 0.1882 + }, + { + "start": 14454.32, + "end": 14455.88, + "probability": 0.8562 + }, + { + "start": 14456.06, + "end": 14456.72, + "probability": 0.4551 + }, + { + "start": 14457.18, + "end": 14458.4, + "probability": 0.8315 + }, + { + "start": 14458.68, + "end": 14461.14, + "probability": 0.8768 + }, + { + "start": 14461.84, + "end": 14463.28, + "probability": 0.3039 + }, + { + "start": 14463.36, + "end": 14464.0, + "probability": 0.8252 + }, + { + "start": 14464.12, + "end": 14465.8, + "probability": 0.8106 + }, + { + "start": 14466.02, + "end": 14469.66, + "probability": 0.9272 + }, + { + "start": 14470.02, + "end": 14471.48, + "probability": 0.5403 + }, + { + "start": 14472.2, + "end": 14473.58, + "probability": 0.7972 + }, + { + "start": 14474.14, + "end": 14475.1, + "probability": 0.9067 + }, + { + "start": 14475.2, + "end": 14477.68, + "probability": 0.9775 + }, + { + "start": 14477.88, + "end": 14478.68, + "probability": 0.9504 + }, + { + "start": 14478.98, + "end": 14480.72, + "probability": 0.9918 + }, + { + "start": 14481.16, + "end": 14482.96, + "probability": 0.9967 + }, + { + "start": 14483.02, + "end": 14484.04, + "probability": 0.9883 + }, + { + "start": 14484.46, + "end": 14485.48, + "probability": 0.7977 + }, + { + "start": 14485.54, + "end": 14488.78, + "probability": 0.9905 + }, + { + "start": 14489.9, + "end": 14494.62, + "probability": 0.9943 + }, + { + "start": 14495.26, + "end": 14499.38, + "probability": 0.9877 + }, + { + "start": 14499.92, + "end": 14504.06, + "probability": 0.9994 + }, + { + "start": 14504.06, + "end": 14509.16, + "probability": 0.9928 + }, + { + "start": 14509.96, + "end": 14510.78, + "probability": 0.6398 + }, + { + "start": 14510.92, + "end": 14513.82, + "probability": 0.8934 + }, + { + "start": 14514.26, + "end": 14517.3, + "probability": 0.9517 + }, + { + "start": 14517.66, + "end": 14522.42, + "probability": 0.9944 + }, + { + "start": 14523.38, + "end": 14526.86, + "probability": 0.7605 + }, + { + "start": 14526.86, + "end": 14530.84, + "probability": 0.9984 + }, + { + "start": 14530.92, + "end": 14532.2, + "probability": 0.8865 + }, + { + "start": 14532.3, + "end": 14532.92, + "probability": 0.5603 + }, + { + "start": 14533.4, + "end": 14534.96, + "probability": 0.8904 + }, + { + "start": 14535.12, + "end": 14536.08, + "probability": 0.8062 + }, + { + "start": 14536.88, + "end": 14537.52, + "probability": 0.7507 + }, + { + "start": 14537.78, + "end": 14540.98, + "probability": 0.9182 + }, + { + "start": 14541.22, + "end": 14541.76, + "probability": 0.9111 + }, + { + "start": 14542.34, + "end": 14547.38, + "probability": 0.9937 + }, + { + "start": 14547.38, + "end": 14554.56, + "probability": 0.8991 + }, + { + "start": 14555.58, + "end": 14557.92, + "probability": 0.9966 + }, + { + "start": 14557.92, + "end": 14560.78, + "probability": 0.9983 + }, + { + "start": 14561.72, + "end": 14564.26, + "probability": 0.9932 + }, + { + "start": 14564.26, + "end": 14567.16, + "probability": 0.9728 + }, + { + "start": 14567.76, + "end": 14570.74, + "probability": 0.9126 + }, + { + "start": 14570.76, + "end": 14573.88, + "probability": 0.984 + }, + { + "start": 14575.12, + "end": 14577.52, + "probability": 0.9932 + }, + { + "start": 14578.04, + "end": 14579.8, + "probability": 0.9201 + }, + { + "start": 14580.58, + "end": 14584.7, + "probability": 0.9876 + }, + { + "start": 14584.7, + "end": 14589.08, + "probability": 0.998 + }, + { + "start": 14590.62, + "end": 14593.04, + "probability": 0.7596 + }, + { + "start": 14593.3, + "end": 14596.74, + "probability": 0.9737 + }, + { + "start": 14596.74, + "end": 14601.82, + "probability": 0.9845 + }, + { + "start": 14603.38, + "end": 14606.28, + "probability": 0.8861 + }, + { + "start": 14606.28, + "end": 14609.64, + "probability": 0.9991 + }, + { + "start": 14610.1, + "end": 14614.46, + "probability": 0.9945 + }, + { + "start": 14614.66, + "end": 14620.22, + "probability": 0.9987 + }, + { + "start": 14621.56, + "end": 14625.72, + "probability": 0.9948 + }, + { + "start": 14627.24, + "end": 14631.32, + "probability": 0.9407 + }, + { + "start": 14631.38, + "end": 14634.58, + "probability": 0.9984 + }, + { + "start": 14635.32, + "end": 14640.52, + "probability": 0.9966 + }, + { + "start": 14641.06, + "end": 14646.24, + "probability": 0.9968 + }, + { + "start": 14646.8, + "end": 14651.86, + "probability": 0.9898 + }, + { + "start": 14652.64, + "end": 14659.7, + "probability": 0.9598 + }, + { + "start": 14660.62, + "end": 14664.62, + "probability": 0.8324 + }, + { + "start": 14665.74, + "end": 14667.42, + "probability": 0.7913 + }, + { + "start": 14667.74, + "end": 14671.08, + "probability": 0.9844 + }, + { + "start": 14671.72, + "end": 14674.48, + "probability": 0.8718 + }, + { + "start": 14676.1, + "end": 14680.2, + "probability": 0.9555 + }, + { + "start": 14680.44, + "end": 14683.82, + "probability": 0.7153 + }, + { + "start": 14683.9, + "end": 14686.0, + "probability": 0.8782 + }, + { + "start": 14687.26, + "end": 14689.36, + "probability": 0.9836 + }, + { + "start": 14689.5, + "end": 14693.28, + "probability": 0.9869 + }, + { + "start": 14694.08, + "end": 14694.94, + "probability": 0.6599 + }, + { + "start": 14695.28, + "end": 14696.3, + "probability": 0.5232 + }, + { + "start": 14697.96, + "end": 14699.8, + "probability": 0.9373 + }, + { + "start": 14699.92, + "end": 14700.64, + "probability": 0.6411 + }, + { + "start": 14700.72, + "end": 14702.58, + "probability": 0.8711 + }, + { + "start": 14702.68, + "end": 14704.96, + "probability": 0.2954 + }, + { + "start": 14705.74, + "end": 14706.2, + "probability": 0.6747 + }, + { + "start": 14706.26, + "end": 14706.66, + "probability": 0.883 + }, + { + "start": 14707.38, + "end": 14709.36, + "probability": 0.5603 + }, + { + "start": 14709.46, + "end": 14710.04, + "probability": 0.5749 + }, + { + "start": 14710.1, + "end": 14714.88, + "probability": 0.7198 + }, + { + "start": 14715.78, + "end": 14718.28, + "probability": 0.4181 + }, + { + "start": 14719.16, + "end": 14721.04, + "probability": 0.98 + }, + { + "start": 14721.08, + "end": 14722.0, + "probability": 0.8966 + }, + { + "start": 14722.5, + "end": 14724.86, + "probability": 0.433 + }, + { + "start": 14724.92, + "end": 14727.28, + "probability": 0.5518 + }, + { + "start": 14728.26, + "end": 14731.46, + "probability": 0.6844 + }, + { + "start": 14732.52, + "end": 14733.52, + "probability": 0.2417 + } + ], + "segments_count": 5225, + "words_count": 25215, + "avg_words_per_segment": 4.8258, + "avg_segment_duration": 1.9494, + "avg_words_per_minute": 102.4506, + "plenum_id": "19220", + "duration": 14767.11, + "title": null, + "plenum_date": "2012-02-13" +} \ No newline at end of file