diff --git "a/1953/metadata.json" "b/1953/metadata.json" new file mode 100644--- /dev/null +++ "b/1953/metadata.json" @@ -0,0 +1,22697 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "1953", + "quality_score": 0.9121, + "per_segment_quality_scores": [ + { + "start": 342.0, + "end": 342.0, + "probability": 0.0 + }, + { + "start": 342.0, + "end": 342.0, + "probability": 0.0 + }, + { + "start": 342.0, + "end": 342.0, + "probability": 0.0 + }, + { + "start": 342.0, + "end": 342.0, + "probability": 0.0 + }, + { + "start": 342.0, + "end": 342.0, + "probability": 0.0 + }, + { + "start": 379.15, + "end": 380.12, + "probability": 0.1192 + }, + { + "start": 380.12, + "end": 380.48, + "probability": 0.1229 + }, + { + "start": 381.12, + "end": 381.72, + "probability": 0.3997 + }, + { + "start": 383.96, + "end": 387.02, + "probability": 0.0573 + }, + { + "start": 387.74, + "end": 388.34, + "probability": 0.1679 + }, + { + "start": 392.06, + "end": 395.9, + "probability": 0.0731 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.0, + "end": 483.0, + "probability": 0.0 + }, + { + "start": 483.22, + "end": 488.38, + "probability": 0.0822 + }, + { + "start": 493.32, + "end": 495.52, + "probability": 0.1747 + }, + { + "start": 495.52, + "end": 496.76, + "probability": 0.0448 + }, + { + "start": 496.92, + "end": 500.61, + "probability": 0.1171 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.0, + "end": 605.0, + "probability": 0.0 + }, + { + "start": 605.1, + "end": 606.5, + "probability": 0.5622 + }, + { + "start": 608.36, + "end": 610.66, + "probability": 0.6431 + }, + { + "start": 611.02, + "end": 611.48, + "probability": 0.6916 + }, + { + "start": 611.92, + "end": 613.98, + "probability": 0.7542 + }, + { + "start": 614.92, + "end": 616.36, + "probability": 0.7634 + }, + { + "start": 618.96, + "end": 624.62, + "probability": 0.986 + }, + { + "start": 624.96, + "end": 626.78, + "probability": 0.9934 + }, + { + "start": 628.12, + "end": 634.14, + "probability": 0.982 + }, + { + "start": 635.12, + "end": 636.8, + "probability": 0.8653 + }, + { + "start": 637.92, + "end": 641.96, + "probability": 0.9778 + }, + { + "start": 642.7, + "end": 644.86, + "probability": 0.9939 + }, + { + "start": 647.6, + "end": 653.22, + "probability": 0.9954 + }, + { + "start": 653.34, + "end": 653.8, + "probability": 0.6768 + }, + { + "start": 654.52, + "end": 656.26, + "probability": 0.9795 + }, + { + "start": 657.12, + "end": 659.66, + "probability": 0.9976 + }, + { + "start": 659.76, + "end": 660.78, + "probability": 0.5538 + }, + { + "start": 661.42, + "end": 662.42, + "probability": 0.9825 + }, + { + "start": 663.68, + "end": 667.2, + "probability": 0.7475 + }, + { + "start": 667.2, + "end": 670.34, + "probability": 0.9437 + }, + { + "start": 671.64, + "end": 671.9, + "probability": 0.4703 + }, + { + "start": 672.98, + "end": 673.7, + "probability": 0.4681 + }, + { + "start": 674.4, + "end": 677.06, + "probability": 0.8519 + }, + { + "start": 677.7, + "end": 680.46, + "probability": 0.984 + }, + { + "start": 681.02, + "end": 683.04, + "probability": 0.7957 + }, + { + "start": 683.8, + "end": 686.32, + "probability": 0.7408 + }, + { + "start": 687.04, + "end": 690.06, + "probability": 0.8708 + }, + { + "start": 690.58, + "end": 692.7, + "probability": 0.9949 + }, + { + "start": 693.6, + "end": 696.52, + "probability": 0.7606 + }, + { + "start": 697.28, + "end": 700.14, + "probability": 0.9521 + }, + { + "start": 700.88, + "end": 701.88, + "probability": 0.6539 + }, + { + "start": 701.96, + "end": 702.54, + "probability": 0.8596 + }, + { + "start": 703.02, + "end": 710.16, + "probability": 0.9922 + }, + { + "start": 710.86, + "end": 713.34, + "probability": 0.9685 + }, + { + "start": 716.64, + "end": 718.16, + "probability": 0.8297 + }, + { + "start": 726.26, + "end": 726.96, + "probability": 0.5796 + }, + { + "start": 727.26, + "end": 729.7, + "probability": 0.9546 + }, + { + "start": 729.76, + "end": 733.62, + "probability": 0.9548 + }, + { + "start": 733.7, + "end": 734.02, + "probability": 0.8957 + }, + { + "start": 734.1, + "end": 736.12, + "probability": 0.9401 + }, + { + "start": 737.3, + "end": 742.38, + "probability": 0.9968 + }, + { + "start": 742.54, + "end": 743.44, + "probability": 0.9867 + }, + { + "start": 743.5, + "end": 744.1, + "probability": 0.6562 + }, + { + "start": 744.64, + "end": 747.74, + "probability": 0.9971 + }, + { + "start": 748.54, + "end": 750.34, + "probability": 0.9951 + }, + { + "start": 751.16, + "end": 753.94, + "probability": 0.8881 + }, + { + "start": 755.24, + "end": 760.14, + "probability": 0.9974 + }, + { + "start": 760.66, + "end": 762.1, + "probability": 0.8844 + }, + { + "start": 762.32, + "end": 765.74, + "probability": 0.98 + }, + { + "start": 766.14, + "end": 767.92, + "probability": 0.978 + }, + { + "start": 769.0, + "end": 770.44, + "probability": 0.5627 + }, + { + "start": 770.88, + "end": 774.24, + "probability": 0.8486 + }, + { + "start": 774.3, + "end": 777.56, + "probability": 0.8872 + }, + { + "start": 778.24, + "end": 780.04, + "probability": 0.8405 + }, + { + "start": 780.14, + "end": 782.12, + "probability": 0.5363 + }, + { + "start": 782.46, + "end": 784.12, + "probability": 0.9354 + }, + { + "start": 784.64, + "end": 787.38, + "probability": 0.9817 + }, + { + "start": 787.66, + "end": 789.08, + "probability": 0.8588 + }, + { + "start": 789.54, + "end": 791.28, + "probability": 0.8223 + }, + { + "start": 791.28, + "end": 791.38, + "probability": 0.4391 + }, + { + "start": 791.9, + "end": 795.46, + "probability": 0.9521 + }, + { + "start": 796.04, + "end": 797.2, + "probability": 0.7732 + }, + { + "start": 797.24, + "end": 798.8, + "probability": 0.766 + }, + { + "start": 799.0, + "end": 800.1, + "probability": 0.9169 + }, + { + "start": 800.92, + "end": 806.24, + "probability": 0.9824 + }, + { + "start": 806.46, + "end": 808.62, + "probability": 0.9706 + }, + { + "start": 808.8, + "end": 809.82, + "probability": 0.8079 + }, + { + "start": 810.46, + "end": 813.24, + "probability": 0.7127 + }, + { + "start": 813.44, + "end": 815.95, + "probability": 0.7999 + }, + { + "start": 816.9, + "end": 820.34, + "probability": 0.9531 + }, + { + "start": 820.86, + "end": 823.3, + "probability": 0.8246 + }, + { + "start": 824.16, + "end": 825.76, + "probability": 0.9824 + }, + { + "start": 825.82, + "end": 826.94, + "probability": 0.6471 + }, + { + "start": 827.54, + "end": 829.76, + "probability": 0.7426 + }, + { + "start": 829.96, + "end": 830.74, + "probability": 0.8981 + }, + { + "start": 830.9, + "end": 833.58, + "probability": 0.9631 + }, + { + "start": 833.96, + "end": 837.4, + "probability": 0.9544 + }, + { + "start": 837.42, + "end": 840.14, + "probability": 0.8855 + }, + { + "start": 840.6, + "end": 840.92, + "probability": 0.5264 + }, + { + "start": 840.96, + "end": 844.34, + "probability": 0.9905 + }, + { + "start": 844.4, + "end": 845.82, + "probability": 0.6461 + }, + { + "start": 846.88, + "end": 850.6, + "probability": 0.9462 + }, + { + "start": 850.78, + "end": 854.56, + "probability": 0.9932 + }, + { + "start": 854.76, + "end": 855.28, + "probability": 0.4952 + }, + { + "start": 855.62, + "end": 860.34, + "probability": 0.5911 + }, + { + "start": 860.94, + "end": 864.12, + "probability": 0.974 + }, + { + "start": 864.38, + "end": 866.62, + "probability": 0.9785 + }, + { + "start": 866.78, + "end": 867.26, + "probability": 0.3594 + }, + { + "start": 867.6, + "end": 869.04, + "probability": 0.8674 + }, + { + "start": 869.2, + "end": 870.78, + "probability": 0.8621 + }, + { + "start": 871.06, + "end": 872.38, + "probability": 0.9812 + }, + { + "start": 872.82, + "end": 874.8, + "probability": 0.9941 + }, + { + "start": 874.94, + "end": 875.43, + "probability": 0.5879 + }, + { + "start": 876.48, + "end": 880.96, + "probability": 0.7764 + }, + { + "start": 881.18, + "end": 882.49, + "probability": 0.8306 + }, + { + "start": 883.34, + "end": 884.89, + "probability": 0.9653 + }, + { + "start": 885.6, + "end": 887.38, + "probability": 0.9947 + }, + { + "start": 887.46, + "end": 890.24, + "probability": 0.8033 + }, + { + "start": 890.3, + "end": 890.74, + "probability": 0.7427 + }, + { + "start": 890.86, + "end": 891.4, + "probability": 0.975 + }, + { + "start": 891.74, + "end": 897.28, + "probability": 0.9062 + }, + { + "start": 897.48, + "end": 899.72, + "probability": 0.8322 + }, + { + "start": 900.42, + "end": 902.02, + "probability": 0.9563 + }, + { + "start": 902.62, + "end": 905.52, + "probability": 0.5627 + }, + { + "start": 907.48, + "end": 910.22, + "probability": 0.9801 + }, + { + "start": 911.8, + "end": 912.94, + "probability": 0.9897 + }, + { + "start": 913.54, + "end": 915.15, + "probability": 0.9937 + }, + { + "start": 915.72, + "end": 917.5, + "probability": 0.769 + }, + { + "start": 917.96, + "end": 921.6, + "probability": 0.7046 + }, + { + "start": 922.14, + "end": 924.58, + "probability": 0.9873 + }, + { + "start": 925.48, + "end": 927.42, + "probability": 0.5881 + }, + { + "start": 928.06, + "end": 928.84, + "probability": 0.7426 + }, + { + "start": 928.88, + "end": 929.18, + "probability": 0.798 + }, + { + "start": 929.52, + "end": 932.88, + "probability": 0.9677 + }, + { + "start": 933.42, + "end": 934.72, + "probability": 0.979 + }, + { + "start": 935.5, + "end": 939.82, + "probability": 0.9863 + }, + { + "start": 940.8, + "end": 941.6, + "probability": 0.7748 + }, + { + "start": 942.14, + "end": 944.42, + "probability": 0.9154 + }, + { + "start": 945.12, + "end": 946.1, + "probability": 0.743 + }, + { + "start": 946.6, + "end": 950.22, + "probability": 0.998 + }, + { + "start": 950.66, + "end": 951.7, + "probability": 0.759 + }, + { + "start": 952.08, + "end": 952.32, + "probability": 0.3357 + }, + { + "start": 952.46, + "end": 954.04, + "probability": 0.9636 + }, + { + "start": 954.64, + "end": 954.74, + "probability": 0.7886 + }, + { + "start": 956.0, + "end": 957.28, + "probability": 0.8601 + }, + { + "start": 957.84, + "end": 959.66, + "probability": 0.9683 + }, + { + "start": 960.2, + "end": 962.6, + "probability": 0.9457 + }, + { + "start": 963.08, + "end": 964.48, + "probability": 0.9479 + }, + { + "start": 964.74, + "end": 969.19, + "probability": 0.8345 + }, + { + "start": 969.66, + "end": 971.28, + "probability": 0.7926 + }, + { + "start": 972.24, + "end": 974.0, + "probability": 0.9519 + }, + { + "start": 974.04, + "end": 975.86, + "probability": 0.9747 + }, + { + "start": 976.5, + "end": 980.94, + "probability": 0.6971 + }, + { + "start": 981.4, + "end": 982.12, + "probability": 0.9805 + }, + { + "start": 982.76, + "end": 985.24, + "probability": 0.8859 + }, + { + "start": 986.58, + "end": 989.52, + "probability": 0.7424 + }, + { + "start": 989.7, + "end": 991.98, + "probability": 0.9595 + }, + { + "start": 992.68, + "end": 996.56, + "probability": 0.9854 + }, + { + "start": 996.76, + "end": 997.65, + "probability": 0.9021 + }, + { + "start": 998.44, + "end": 1002.6, + "probability": 0.9806 + }, + { + "start": 1003.02, + "end": 1005.08, + "probability": 0.9863 + }, + { + "start": 1005.78, + "end": 1009.02, + "probability": 0.8841 + }, + { + "start": 1009.54, + "end": 1010.76, + "probability": 0.9709 + }, + { + "start": 1011.62, + "end": 1012.46, + "probability": 0.5146 + }, + { + "start": 1012.48, + "end": 1012.98, + "probability": 0.6976 + }, + { + "start": 1013.1, + "end": 1016.26, + "probability": 0.8651 + }, + { + "start": 1016.6, + "end": 1017.38, + "probability": 0.9133 + }, + { + "start": 1017.54, + "end": 1017.74, + "probability": 0.3003 + }, + { + "start": 1018.06, + "end": 1018.92, + "probability": 0.6792 + }, + { + "start": 1019.82, + "end": 1019.82, + "probability": 0.0145 + }, + { + "start": 1019.82, + "end": 1021.55, + "probability": 0.6687 + }, + { + "start": 1022.59, + "end": 1025.06, + "probability": 0.9687 + }, + { + "start": 1025.2, + "end": 1025.98, + "probability": 0.9412 + }, + { + "start": 1026.62, + "end": 1027.58, + "probability": 0.6085 + }, + { + "start": 1028.14, + "end": 1030.3, + "probability": 0.9762 + }, + { + "start": 1030.76, + "end": 1032.3, + "probability": 0.9197 + }, + { + "start": 1032.7, + "end": 1034.46, + "probability": 0.5732 + }, + { + "start": 1034.92, + "end": 1038.18, + "probability": 0.9915 + }, + { + "start": 1038.4, + "end": 1039.28, + "probability": 0.8223 + }, + { + "start": 1039.58, + "end": 1040.86, + "probability": 0.7784 + }, + { + "start": 1040.92, + "end": 1041.5, + "probability": 0.767 + }, + { + "start": 1046.48, + "end": 1049.94, + "probability": 0.3751 + }, + { + "start": 1050.16, + "end": 1053.6, + "probability": 0.8879 + }, + { + "start": 1054.34, + "end": 1055.6, + "probability": 0.7676 + }, + { + "start": 1055.98, + "end": 1057.4, + "probability": 0.9417 + }, + { + "start": 1057.98, + "end": 1058.98, + "probability": 0.9679 + }, + { + "start": 1059.4, + "end": 1060.42, + "probability": 0.8511 + }, + { + "start": 1060.72, + "end": 1061.48, + "probability": 0.9512 + }, + { + "start": 1061.74, + "end": 1062.8, + "probability": 0.596 + }, + { + "start": 1062.86, + "end": 1063.18, + "probability": 0.5669 + }, + { + "start": 1063.72, + "end": 1064.62, + "probability": 0.6094 + }, + { + "start": 1064.7, + "end": 1065.62, + "probability": 0.6319 + }, + { + "start": 1066.02, + "end": 1067.12, + "probability": 0.9019 + }, + { + "start": 1067.3, + "end": 1068.08, + "probability": 0.6046 + }, + { + "start": 1069.38, + "end": 1070.06, + "probability": 0.4539 + }, + { + "start": 1070.6, + "end": 1071.86, + "probability": 0.3127 + }, + { + "start": 1072.38, + "end": 1075.98, + "probability": 0.9497 + }, + { + "start": 1076.66, + "end": 1077.9, + "probability": 0.9331 + }, + { + "start": 1078.02, + "end": 1080.94, + "probability": 0.7416 + }, + { + "start": 1081.92, + "end": 1085.22, + "probability": 0.8158 + }, + { + "start": 1086.14, + "end": 1090.0, + "probability": 0.9795 + }, + { + "start": 1090.0, + "end": 1094.02, + "probability": 0.958 + }, + { + "start": 1094.72, + "end": 1097.06, + "probability": 0.9753 + }, + { + "start": 1097.74, + "end": 1099.28, + "probability": 0.5865 + }, + { + "start": 1099.84, + "end": 1099.86, + "probability": 0.1892 + }, + { + "start": 1100.92, + "end": 1102.9, + "probability": 0.8883 + }, + { + "start": 1103.44, + "end": 1104.32, + "probability": 0.8267 + }, + { + "start": 1106.83, + "end": 1109.56, + "probability": 0.5397 + }, + { + "start": 1109.62, + "end": 1110.0, + "probability": 0.4238 + }, + { + "start": 1110.98, + "end": 1111.08, + "probability": 0.27 + }, + { + "start": 1111.42, + "end": 1114.62, + "probability": 0.6817 + }, + { + "start": 1114.78, + "end": 1115.26, + "probability": 0.5881 + }, + { + "start": 1115.68, + "end": 1117.3, + "probability": 0.9009 + }, + { + "start": 1118.0, + "end": 1118.16, + "probability": 0.0009 + }, + { + "start": 1119.38, + "end": 1119.92, + "probability": 0.6744 + }, + { + "start": 1120.58, + "end": 1124.5, + "probability": 0.9173 + }, + { + "start": 1125.62, + "end": 1126.82, + "probability": 0.1838 + }, + { + "start": 1127.42, + "end": 1129.34, + "probability": 0.4533 + }, + { + "start": 1129.88, + "end": 1132.06, + "probability": 0.4969 + }, + { + "start": 1133.28, + "end": 1137.56, + "probability": 0.9673 + }, + { + "start": 1137.7, + "end": 1140.68, + "probability": 0.7358 + }, + { + "start": 1141.0, + "end": 1142.34, + "probability": 0.6497 + }, + { + "start": 1142.98, + "end": 1146.14, + "probability": 0.9277 + }, + { + "start": 1146.54, + "end": 1148.96, + "probability": 0.9184 + }, + { + "start": 1149.22, + "end": 1152.24, + "probability": 0.568 + }, + { + "start": 1152.42, + "end": 1152.72, + "probability": 0.5396 + }, + { + "start": 1153.28, + "end": 1153.46, + "probability": 0.933 + }, + { + "start": 1154.0, + "end": 1157.64, + "probability": 0.8419 + }, + { + "start": 1157.94, + "end": 1160.32, + "probability": 0.9958 + }, + { + "start": 1160.34, + "end": 1161.98, + "probability": 0.9673 + }, + { + "start": 1162.16, + "end": 1162.88, + "probability": 0.6345 + }, + { + "start": 1163.12, + "end": 1164.76, + "probability": 0.4281 + }, + { + "start": 1165.32, + "end": 1167.56, + "probability": 0.6045 + }, + { + "start": 1174.38, + "end": 1177.54, + "probability": 0.9299 + }, + { + "start": 1177.8, + "end": 1182.4, + "probability": 0.9133 + }, + { + "start": 1183.16, + "end": 1185.74, + "probability": 0.7749 + }, + { + "start": 1186.3, + "end": 1190.12, + "probability": 0.9883 + }, + { + "start": 1190.76, + "end": 1191.82, + "probability": 0.8552 + }, + { + "start": 1192.16, + "end": 1196.8, + "probability": 0.9687 + }, + { + "start": 1196.92, + "end": 1200.54, + "probability": 0.9788 + }, + { + "start": 1200.78, + "end": 1202.3, + "probability": 0.9852 + }, + { + "start": 1203.08, + "end": 1205.38, + "probability": 0.9951 + }, + { + "start": 1206.2, + "end": 1209.94, + "probability": 0.9941 + }, + { + "start": 1211.2, + "end": 1213.74, + "probability": 0.7274 + }, + { + "start": 1214.14, + "end": 1215.48, + "probability": 0.8385 + }, + { + "start": 1216.14, + "end": 1220.98, + "probability": 0.993 + }, + { + "start": 1221.16, + "end": 1224.94, + "probability": 0.9917 + }, + { + "start": 1225.56, + "end": 1229.72, + "probability": 0.9846 + }, + { + "start": 1230.6, + "end": 1233.46, + "probability": 0.8685 + }, + { + "start": 1233.98, + "end": 1235.86, + "probability": 0.9685 + }, + { + "start": 1236.5, + "end": 1238.6, + "probability": 0.9661 + }, + { + "start": 1239.16, + "end": 1240.3, + "probability": 0.9725 + }, + { + "start": 1241.24, + "end": 1243.98, + "probability": 0.8672 + }, + { + "start": 1244.6, + "end": 1249.72, + "probability": 0.9948 + }, + { + "start": 1250.5, + "end": 1253.5, + "probability": 0.9889 + }, + { + "start": 1257.2, + "end": 1260.1, + "probability": 0.9825 + }, + { + "start": 1260.8, + "end": 1263.9, + "probability": 0.9841 + }, + { + "start": 1265.46, + "end": 1267.68, + "probability": 0.4758 + }, + { + "start": 1269.18, + "end": 1272.02, + "probability": 0.6667 + }, + { + "start": 1272.68, + "end": 1276.08, + "probability": 0.9867 + }, + { + "start": 1276.66, + "end": 1277.24, + "probability": 0.6633 + }, + { + "start": 1278.04, + "end": 1278.7, + "probability": 0.7921 + }, + { + "start": 1278.88, + "end": 1282.68, + "probability": 0.996 + }, + { + "start": 1282.68, + "end": 1286.26, + "probability": 0.9938 + }, + { + "start": 1286.8, + "end": 1290.84, + "probability": 0.9741 + }, + { + "start": 1291.44, + "end": 1295.46, + "probability": 0.9395 + }, + { + "start": 1295.96, + "end": 1298.64, + "probability": 0.9942 + }, + { + "start": 1299.14, + "end": 1302.28, + "probability": 0.9888 + }, + { + "start": 1302.5, + "end": 1305.34, + "probability": 0.8421 + }, + { + "start": 1305.5, + "end": 1306.18, + "probability": 0.8416 + }, + { + "start": 1307.2, + "end": 1308.54, + "probability": 0.9445 + }, + { + "start": 1308.7, + "end": 1311.02, + "probability": 0.959 + }, + { + "start": 1311.62, + "end": 1311.82, + "probability": 0.7573 + }, + { + "start": 1312.24, + "end": 1312.48, + "probability": 0.2066 + }, + { + "start": 1312.68, + "end": 1313.26, + "probability": 0.4437 + }, + { + "start": 1313.56, + "end": 1313.88, + "probability": 0.6154 + }, + { + "start": 1314.0, + "end": 1317.86, + "probability": 0.9162 + }, + { + "start": 1318.42, + "end": 1318.98, + "probability": 0.7165 + }, + { + "start": 1319.84, + "end": 1321.24, + "probability": 0.7684 + }, + { + "start": 1321.76, + "end": 1327.02, + "probability": 0.6982 + }, + { + "start": 1327.43, + "end": 1329.32, + "probability": 0.9954 + }, + { + "start": 1329.32, + "end": 1332.54, + "probability": 0.9922 + }, + { + "start": 1333.16, + "end": 1333.87, + "probability": 0.9961 + }, + { + "start": 1334.7, + "end": 1337.16, + "probability": 0.9204 + }, + { + "start": 1339.54, + "end": 1341.38, + "probability": 0.2676 + }, + { + "start": 1341.82, + "end": 1342.4, + "probability": 0.6779 + }, + { + "start": 1342.62, + "end": 1343.23, + "probability": 0.2147 + }, + { + "start": 1343.94, + "end": 1346.52, + "probability": 0.3969 + }, + { + "start": 1346.92, + "end": 1348.25, + "probability": 0.8888 + }, + { + "start": 1348.84, + "end": 1353.9, + "probability": 0.8323 + }, + { + "start": 1353.96, + "end": 1357.42, + "probability": 0.5557 + }, + { + "start": 1359.02, + "end": 1360.22, + "probability": 0.5397 + }, + { + "start": 1360.9, + "end": 1362.58, + "probability": 0.8962 + }, + { + "start": 1363.02, + "end": 1363.2, + "probability": 0.2446 + }, + { + "start": 1363.26, + "end": 1367.58, + "probability": 0.9334 + }, + { + "start": 1367.96, + "end": 1368.96, + "probability": 0.9978 + }, + { + "start": 1369.5, + "end": 1374.66, + "probability": 0.9579 + }, + { + "start": 1375.06, + "end": 1376.92, + "probability": 0.2427 + }, + { + "start": 1377.64, + "end": 1381.48, + "probability": 0.851 + }, + { + "start": 1382.62, + "end": 1382.78, + "probability": 0.7693 + }, + { + "start": 1382.84, + "end": 1383.34, + "probability": 0.7249 + }, + { + "start": 1383.96, + "end": 1387.38, + "probability": 0.802 + }, + { + "start": 1388.4, + "end": 1389.62, + "probability": 0.8641 + }, + { + "start": 1390.78, + "end": 1395.44, + "probability": 0.9546 + }, + { + "start": 1397.14, + "end": 1402.78, + "probability": 0.9711 + }, + { + "start": 1403.24, + "end": 1408.72, + "probability": 0.9954 + }, + { + "start": 1408.96, + "end": 1410.88, + "probability": 0.8948 + }, + { + "start": 1411.0, + "end": 1412.98, + "probability": 0.7134 + }, + { + "start": 1413.26, + "end": 1418.32, + "probability": 0.9343 + }, + { + "start": 1418.32, + "end": 1423.1, + "probability": 0.9088 + }, + { + "start": 1423.84, + "end": 1426.22, + "probability": 0.905 + }, + { + "start": 1427.69, + "end": 1430.76, + "probability": 0.9289 + }, + { + "start": 1431.12, + "end": 1432.82, + "probability": 0.4943 + }, + { + "start": 1432.96, + "end": 1433.4, + "probability": 0.2654 + }, + { + "start": 1433.4, + "end": 1435.56, + "probability": 0.9214 + }, + { + "start": 1435.92, + "end": 1436.92, + "probability": 0.9758 + }, + { + "start": 1437.54, + "end": 1438.88, + "probability": 0.7461 + }, + { + "start": 1440.42, + "end": 1440.62, + "probability": 0.0065 + }, + { + "start": 1442.48, + "end": 1442.62, + "probability": 0.0281 + }, + { + "start": 1442.62, + "end": 1445.64, + "probability": 0.8754 + }, + { + "start": 1446.26, + "end": 1448.42, + "probability": 0.9781 + }, + { + "start": 1449.0, + "end": 1450.7, + "probability": 0.512 + }, + { + "start": 1451.54, + "end": 1453.56, + "probability": 0.9985 + }, + { + "start": 1456.12, + "end": 1458.6, + "probability": 0.9932 + }, + { + "start": 1458.6, + "end": 1461.78, + "probability": 0.9929 + }, + { + "start": 1461.78, + "end": 1464.34, + "probability": 0.9517 + }, + { + "start": 1471.43, + "end": 1476.66, + "probability": 0.9851 + }, + { + "start": 1477.28, + "end": 1478.38, + "probability": 0.924 + }, + { + "start": 1479.54, + "end": 1481.8, + "probability": 0.8196 + }, + { + "start": 1481.96, + "end": 1483.66, + "probability": 0.8306 + }, + { + "start": 1484.2, + "end": 1487.5, + "probability": 0.6467 + }, + { + "start": 1487.64, + "end": 1487.85, + "probability": 0.0557 + }, + { + "start": 1489.82, + "end": 1492.04, + "probability": 0.8715 + }, + { + "start": 1492.12, + "end": 1492.68, + "probability": 0.8457 + }, + { + "start": 1492.82, + "end": 1494.9, + "probability": 0.9985 + }, + { + "start": 1495.64, + "end": 1498.1, + "probability": 0.959 + }, + { + "start": 1498.64, + "end": 1507.36, + "probability": 0.8208 + }, + { + "start": 1507.78, + "end": 1509.16, + "probability": 0.6757 + }, + { + "start": 1509.74, + "end": 1511.18, + "probability": 0.7629 + }, + { + "start": 1512.0, + "end": 1514.94, + "probability": 0.98 + }, + { + "start": 1515.04, + "end": 1516.34, + "probability": 0.9812 + }, + { + "start": 1518.28, + "end": 1519.16, + "probability": 0.8181 + }, + { + "start": 1519.64, + "end": 1522.76, + "probability": 0.9413 + }, + { + "start": 1523.02, + "end": 1524.76, + "probability": 0.9251 + }, + { + "start": 1524.82, + "end": 1525.42, + "probability": 0.2688 + }, + { + "start": 1525.42, + "end": 1529.14, + "probability": 0.9761 + }, + { + "start": 1529.46, + "end": 1531.18, + "probability": 0.6147 + }, + { + "start": 1531.74, + "end": 1534.06, + "probability": 0.8138 + }, + { + "start": 1534.6, + "end": 1539.62, + "probability": 0.7808 + }, + { + "start": 1540.18, + "end": 1543.76, + "probability": 0.6816 + }, + { + "start": 1544.32, + "end": 1545.14, + "probability": 0.7988 + }, + { + "start": 1545.66, + "end": 1546.94, + "probability": 0.6968 + }, + { + "start": 1547.64, + "end": 1547.72, + "probability": 0.4245 + }, + { + "start": 1547.78, + "end": 1547.96, + "probability": 0.8316 + }, + { + "start": 1548.04, + "end": 1550.76, + "probability": 0.9613 + }, + { + "start": 1551.3, + "end": 1553.22, + "probability": 0.8002 + }, + { + "start": 1553.58, + "end": 1554.26, + "probability": 0.6805 + }, + { + "start": 1554.72, + "end": 1561.32, + "probability": 0.9274 + }, + { + "start": 1561.54, + "end": 1562.12, + "probability": 0.8768 + }, + { + "start": 1562.66, + "end": 1563.56, + "probability": 0.9127 + }, + { + "start": 1564.1, + "end": 1565.88, + "probability": 0.8765 + }, + { + "start": 1567.3, + "end": 1570.78, + "probability": 0.881 + }, + { + "start": 1571.3, + "end": 1578.04, + "probability": 0.8062 + }, + { + "start": 1578.38, + "end": 1581.54, + "probability": 0.9454 + }, + { + "start": 1582.18, + "end": 1584.62, + "probability": 0.8401 + }, + { + "start": 1584.8, + "end": 1588.64, + "probability": 0.9276 + }, + { + "start": 1588.98, + "end": 1592.62, + "probability": 0.8866 + }, + { + "start": 1593.0, + "end": 1598.36, + "probability": 0.9132 + }, + { + "start": 1598.9, + "end": 1601.4, + "probability": 0.5591 + }, + { + "start": 1601.48, + "end": 1601.74, + "probability": 0.7527 + }, + { + "start": 1603.76, + "end": 1605.8, + "probability": 0.5083 + }, + { + "start": 1607.96, + "end": 1613.66, + "probability": 0.9929 + }, + { + "start": 1617.5, + "end": 1618.9, + "probability": 0.8207 + }, + { + "start": 1619.16, + "end": 1619.82, + "probability": 0.0258 + }, + { + "start": 1619.94, + "end": 1620.24, + "probability": 0.6112 + }, + { + "start": 1620.38, + "end": 1624.24, + "probability": 0.4712 + }, + { + "start": 1624.34, + "end": 1624.72, + "probability": 0.1055 + }, + { + "start": 1625.26, + "end": 1626.36, + "probability": 0.7686 + }, + { + "start": 1626.46, + "end": 1628.92, + "probability": 0.8006 + }, + { + "start": 1629.44, + "end": 1630.54, + "probability": 0.4995 + }, + { + "start": 1631.56, + "end": 1633.58, + "probability": 0.6194 + }, + { + "start": 1641.68, + "end": 1642.54, + "probability": 0.5561 + }, + { + "start": 1643.58, + "end": 1644.32, + "probability": 0.7129 + }, + { + "start": 1645.48, + "end": 1647.68, + "probability": 0.9705 + }, + { + "start": 1647.68, + "end": 1650.54, + "probability": 0.9958 + }, + { + "start": 1651.48, + "end": 1653.02, + "probability": 0.9333 + }, + { + "start": 1653.44, + "end": 1656.18, + "probability": 0.9894 + }, + { + "start": 1656.18, + "end": 1660.84, + "probability": 0.7146 + }, + { + "start": 1661.32, + "end": 1661.56, + "probability": 0.2549 + }, + { + "start": 1661.62, + "end": 1662.94, + "probability": 0.6803 + }, + { + "start": 1663.02, + "end": 1666.88, + "probability": 0.9842 + }, + { + "start": 1667.66, + "end": 1676.34, + "probability": 0.975 + }, + { + "start": 1676.42, + "end": 1680.4, + "probability": 0.9907 + }, + { + "start": 1680.4, + "end": 1685.26, + "probability": 0.9977 + }, + { + "start": 1685.5, + "end": 1686.44, + "probability": 0.5697 + }, + { + "start": 1686.6, + "end": 1686.86, + "probability": 0.7186 + }, + { + "start": 1687.46, + "end": 1688.48, + "probability": 0.9222 + }, + { + "start": 1694.48, + "end": 1697.42, + "probability": 0.6723 + }, + { + "start": 1697.42, + "end": 1698.54, + "probability": 0.6136 + }, + { + "start": 1698.64, + "end": 1699.34, + "probability": 0.5893 + }, + { + "start": 1699.56, + "end": 1700.98, + "probability": 0.8348 + }, + { + "start": 1702.72, + "end": 1703.72, + "probability": 0.4741 + }, + { + "start": 1703.78, + "end": 1704.92, + "probability": 0.9902 + }, + { + "start": 1705.06, + "end": 1705.56, + "probability": 0.6632 + }, + { + "start": 1705.68, + "end": 1707.7, + "probability": 0.9922 + }, + { + "start": 1708.04, + "end": 1708.6, + "probability": 0.7201 + }, + { + "start": 1711.21, + "end": 1713.91, + "probability": 0.6072 + }, + { + "start": 1714.12, + "end": 1716.24, + "probability": 0.7851 + }, + { + "start": 1716.86, + "end": 1719.38, + "probability": 0.9666 + }, + { + "start": 1719.54, + "end": 1723.86, + "probability": 0.9093 + }, + { + "start": 1724.52, + "end": 1725.68, + "probability": 0.3303 + }, + { + "start": 1726.23, + "end": 1728.2, + "probability": 0.6379 + }, + { + "start": 1728.2, + "end": 1728.5, + "probability": 0.7852 + }, + { + "start": 1728.6, + "end": 1730.52, + "probability": 0.9756 + }, + { + "start": 1731.02, + "end": 1733.02, + "probability": 0.8853 + }, + { + "start": 1733.56, + "end": 1734.32, + "probability": 0.7367 + }, + { + "start": 1734.48, + "end": 1738.48, + "probability": 0.9504 + }, + { + "start": 1739.5, + "end": 1742.22, + "probability": 0.866 + }, + { + "start": 1742.76, + "end": 1744.46, + "probability": 0.9875 + }, + { + "start": 1744.58, + "end": 1749.4, + "probability": 0.9774 + }, + { + "start": 1749.52, + "end": 1753.06, + "probability": 0.9595 + }, + { + "start": 1753.06, + "end": 1753.76, + "probability": 0.794 + }, + { + "start": 1754.52, + "end": 1756.88, + "probability": 0.9917 + }, + { + "start": 1757.86, + "end": 1762.4, + "probability": 0.9844 + }, + { + "start": 1763.03, + "end": 1769.14, + "probability": 0.6655 + }, + { + "start": 1769.52, + "end": 1772.08, + "probability": 0.9935 + }, + { + "start": 1773.82, + "end": 1778.86, + "probability": 0.7515 + }, + { + "start": 1779.02, + "end": 1782.48, + "probability": 0.6338 + }, + { + "start": 1782.58, + "end": 1784.6, + "probability": 0.1086 + }, + { + "start": 1785.14, + "end": 1789.56, + "probability": 0.7859 + }, + { + "start": 1789.6, + "end": 1791.68, + "probability": 0.9411 + }, + { + "start": 1791.74, + "end": 1796.2, + "probability": 0.1752 + }, + { + "start": 1796.56, + "end": 1799.12, + "probability": 0.6308 + }, + { + "start": 1799.62, + "end": 1806.18, + "probability": 0.6748 + }, + { + "start": 1807.6, + "end": 1813.04, + "probability": 0.0805 + }, + { + "start": 1813.04, + "end": 1813.58, + "probability": 0.467 + }, + { + "start": 1813.58, + "end": 1814.0, + "probability": 0.5849 + }, + { + "start": 1814.2, + "end": 1814.65, + "probability": 0.9041 + }, + { + "start": 1814.76, + "end": 1819.86, + "probability": 0.9883 + }, + { + "start": 1819.96, + "end": 1822.22, + "probability": 0.8025 + }, + { + "start": 1822.6, + "end": 1824.78, + "probability": 0.8238 + }, + { + "start": 1825.12, + "end": 1829.16, + "probability": 0.9561 + }, + { + "start": 1829.62, + "end": 1833.22, + "probability": 0.9893 + }, + { + "start": 1833.92, + "end": 1836.18, + "probability": 0.9795 + }, + { + "start": 1836.2, + "end": 1836.2, + "probability": 0.1902 + }, + { + "start": 1837.02, + "end": 1838.24, + "probability": 0.6393 + }, + { + "start": 1838.34, + "end": 1842.44, + "probability": 0.992 + }, + { + "start": 1843.24, + "end": 1848.88, + "probability": 0.9883 + }, + { + "start": 1848.9, + "end": 1849.4, + "probability": 0.7847 + }, + { + "start": 1849.4, + "end": 1852.6, + "probability": 0.7698 + }, + { + "start": 1852.82, + "end": 1855.14, + "probability": 0.7912 + }, + { + "start": 1855.18, + "end": 1857.2, + "probability": 0.5952 + }, + { + "start": 1857.2, + "end": 1857.76, + "probability": 0.3817 + }, + { + "start": 1857.76, + "end": 1861.55, + "probability": 0.7559 + }, + { + "start": 1861.98, + "end": 1862.68, + "probability": 0.4046 + }, + { + "start": 1862.68, + "end": 1867.24, + "probability": 0.9316 + }, + { + "start": 1867.9, + "end": 1871.86, + "probability": 0.9958 + }, + { + "start": 1871.86, + "end": 1877.22, + "probability": 0.993 + }, + { + "start": 1877.9, + "end": 1879.02, + "probability": 0.9277 + }, + { + "start": 1879.14, + "end": 1884.06, + "probability": 0.8335 + }, + { + "start": 1885.36, + "end": 1889.54, + "probability": 0.9455 + }, + { + "start": 1891.36, + "end": 1894.02, + "probability": 0.4687 + }, + { + "start": 1894.6, + "end": 1897.16, + "probability": 0.6648 + }, + { + "start": 1897.16, + "end": 1901.38, + "probability": 0.888 + }, + { + "start": 1901.6, + "end": 1903.84, + "probability": 0.9929 + }, + { + "start": 1905.4, + "end": 1910.84, + "probability": 0.4855 + }, + { + "start": 1911.82, + "end": 1913.64, + "probability": 0.8875 + }, + { + "start": 1917.16, + "end": 1920.46, + "probability": 0.3613 + }, + { + "start": 1920.96, + "end": 1922.38, + "probability": 0.5671 + }, + { + "start": 1923.06, + "end": 1924.06, + "probability": 0.5186 + }, + { + "start": 1924.22, + "end": 1925.36, + "probability": 0.9595 + }, + { + "start": 1925.48, + "end": 1926.64, + "probability": 0.9074 + }, + { + "start": 1927.06, + "end": 1930.66, + "probability": 0.8311 + }, + { + "start": 1931.04, + "end": 1931.04, + "probability": 0.4749 + }, + { + "start": 1931.28, + "end": 1932.08, + "probability": 0.8312 + }, + { + "start": 1932.5, + "end": 1933.34, + "probability": 0.9012 + }, + { + "start": 1933.34, + "end": 1934.66, + "probability": 0.5472 + }, + { + "start": 1934.96, + "end": 1940.06, + "probability": 0.9756 + }, + { + "start": 1940.48, + "end": 1942.66, + "probability": 0.8382 + }, + { + "start": 1942.78, + "end": 1944.74, + "probability": 0.9365 + }, + { + "start": 1945.44, + "end": 1951.06, + "probability": 0.8831 + }, + { + "start": 1951.06, + "end": 1955.8, + "probability": 0.7606 + }, + { + "start": 1956.26, + "end": 1956.72, + "probability": 0.7367 + }, + { + "start": 1956.72, + "end": 1959.78, + "probability": 0.2009 + }, + { + "start": 1960.16, + "end": 1966.4, + "probability": 0.1017 + }, + { + "start": 1968.62, + "end": 1973.32, + "probability": 0.8784 + }, + { + "start": 1973.46, + "end": 1975.62, + "probability": 0.2118 + }, + { + "start": 1975.68, + "end": 1976.64, + "probability": 0.432 + }, + { + "start": 1977.06, + "end": 1981.6, + "probability": 0.9741 + }, + { + "start": 1981.74, + "end": 1983.12, + "probability": 0.9973 + }, + { + "start": 1983.8, + "end": 1985.28, + "probability": 0.9558 + }, + { + "start": 1985.48, + "end": 1989.34, + "probability": 0.9155 + }, + { + "start": 1990.0, + "end": 1991.98, + "probability": 0.9585 + }, + { + "start": 1992.94, + "end": 1993.22, + "probability": 0.2787 + }, + { + "start": 1993.52, + "end": 1998.18, + "probability": 0.9922 + }, + { + "start": 1998.32, + "end": 2000.56, + "probability": 0.771 + }, + { + "start": 2000.68, + "end": 2002.12, + "probability": 0.8209 + }, + { + "start": 2002.24, + "end": 2005.48, + "probability": 0.9623 + }, + { + "start": 2006.4, + "end": 2010.36, + "probability": 0.2254 + }, + { + "start": 2010.36, + "end": 2013.66, + "probability": 0.9857 + }, + { + "start": 2013.82, + "end": 2015.64, + "probability": 0.6968 + }, + { + "start": 2015.64, + "end": 2019.24, + "probability": 0.992 + }, + { + "start": 2019.26, + "end": 2020.36, + "probability": 0.2236 + }, + { + "start": 2020.48, + "end": 2021.94, + "probability": 0.5378 + }, + { + "start": 2022.4, + "end": 2024.44, + "probability": 0.6366 + }, + { + "start": 2024.9, + "end": 2025.52, + "probability": 0.8542 + }, + { + "start": 2025.72, + "end": 2026.0, + "probability": 0.4093 + }, + { + "start": 2026.36, + "end": 2032.14, + "probability": 0.2764 + }, + { + "start": 2032.22, + "end": 2032.68, + "probability": 0.5226 + }, + { + "start": 2032.68, + "end": 2037.76, + "probability": 0.5883 + }, + { + "start": 2038.56, + "end": 2040.56, + "probability": 0.6429 + }, + { + "start": 2041.7, + "end": 2043.76, + "probability": 0.8735 + }, + { + "start": 2044.3, + "end": 2048.76, + "probability": 0.9801 + }, + { + "start": 2048.9, + "end": 2051.46, + "probability": 0.7939 + }, + { + "start": 2051.72, + "end": 2052.4, + "probability": 0.7995 + }, + { + "start": 2052.7, + "end": 2055.68, + "probability": 0.7432 + }, + { + "start": 2055.72, + "end": 2055.94, + "probability": 0.0251 + }, + { + "start": 2061.02, + "end": 2063.93, + "probability": 0.3518 + }, + { + "start": 2064.42, + "end": 2066.9, + "probability": 0.6026 + }, + { + "start": 2066.92, + "end": 2067.08, + "probability": 0.4336 + }, + { + "start": 2071.07, + "end": 2075.32, + "probability": 0.8699 + }, + { + "start": 2075.7, + "end": 2077.47, + "probability": 0.9458 + }, + { + "start": 2077.66, + "end": 2081.54, + "probability": 0.9369 + }, + { + "start": 2081.68, + "end": 2082.66, + "probability": 0.8406 + }, + { + "start": 2083.22, + "end": 2084.52, + "probability": 0.732 + }, + { + "start": 2086.76, + "end": 2088.82, + "probability": 0.5229 + }, + { + "start": 2089.02, + "end": 2091.36, + "probability": 0.9688 + }, + { + "start": 2092.26, + "end": 2096.0, + "probability": 0.3262 + }, + { + "start": 2096.18, + "end": 2096.92, + "probability": 0.3758 + }, + { + "start": 2097.62, + "end": 2101.12, + "probability": 0.875 + }, + { + "start": 2101.72, + "end": 2105.07, + "probability": 0.4839 + }, + { + "start": 2105.7, + "end": 2107.42, + "probability": 0.2188 + }, + { + "start": 2107.5, + "end": 2109.36, + "probability": 0.173 + }, + { + "start": 2112.38, + "end": 2113.44, + "probability": 0.0583 + }, + { + "start": 2113.48, + "end": 2116.92, + "probability": 0.7172 + }, + { + "start": 2117.1, + "end": 2120.22, + "probability": 0.9175 + }, + { + "start": 2123.48, + "end": 2123.78, + "probability": 0.0816 + }, + { + "start": 2123.78, + "end": 2124.08, + "probability": 0.7504 + }, + { + "start": 2124.32, + "end": 2126.38, + "probability": 0.8234 + }, + { + "start": 2126.4, + "end": 2127.78, + "probability": 0.4836 + }, + { + "start": 2128.58, + "end": 2129.82, + "probability": 0.8233 + }, + { + "start": 2130.58, + "end": 2134.83, + "probability": 0.9308 + }, + { + "start": 2136.18, + "end": 2137.04, + "probability": 0.9548 + }, + { + "start": 2137.12, + "end": 2144.28, + "probability": 0.942 + }, + { + "start": 2144.32, + "end": 2149.03, + "probability": 0.9775 + }, + { + "start": 2149.86, + "end": 2151.68, + "probability": 0.9541 + }, + { + "start": 2151.86, + "end": 2156.19, + "probability": 0.869 + }, + { + "start": 2156.7, + "end": 2163.4, + "probability": 0.9872 + }, + { + "start": 2165.42, + "end": 2166.84, + "probability": 0.9368 + }, + { + "start": 2167.3, + "end": 2171.18, + "probability": 0.9988 + }, + { + "start": 2171.18, + "end": 2176.6, + "probability": 0.9966 + }, + { + "start": 2177.67, + "end": 2181.11, + "probability": 0.9961 + }, + { + "start": 2181.54, + "end": 2183.2, + "probability": 0.9326 + }, + { + "start": 2183.46, + "end": 2184.88, + "probability": 0.9614 + }, + { + "start": 2184.96, + "end": 2186.14, + "probability": 0.8872 + }, + { + "start": 2186.82, + "end": 2191.84, + "probability": 0.9456 + }, + { + "start": 2192.3, + "end": 2194.94, + "probability": 0.8916 + }, + { + "start": 2195.34, + "end": 2196.32, + "probability": 0.9452 + }, + { + "start": 2196.48, + "end": 2202.3, + "probability": 0.9645 + }, + { + "start": 2202.7, + "end": 2206.1, + "probability": 0.9828 + }, + { + "start": 2206.22, + "end": 2210.7, + "probability": 0.998 + }, + { + "start": 2210.86, + "end": 2216.4, + "probability": 0.8542 + }, + { + "start": 2216.68, + "end": 2221.4, + "probability": 0.9965 + }, + { + "start": 2221.4, + "end": 2226.38, + "probability": 0.9974 + }, + { + "start": 2226.86, + "end": 2227.94, + "probability": 0.841 + }, + { + "start": 2228.3, + "end": 2231.46, + "probability": 0.9857 + }, + { + "start": 2231.46, + "end": 2236.3, + "probability": 0.995 + }, + { + "start": 2237.64, + "end": 2238.48, + "probability": 0.7472 + }, + { + "start": 2238.78, + "end": 2239.54, + "probability": 0.6105 + }, + { + "start": 2239.54, + "end": 2244.34, + "probability": 0.7803 + }, + { + "start": 2245.58, + "end": 2246.58, + "probability": 0.1797 + }, + { + "start": 2246.58, + "end": 2247.24, + "probability": 0.0245 + }, + { + "start": 2248.1, + "end": 2248.56, + "probability": 0.7828 + }, + { + "start": 2249.04, + "end": 2250.54, + "probability": 0.7722 + }, + { + "start": 2252.26, + "end": 2254.62, + "probability": 0.9543 + }, + { + "start": 2254.82, + "end": 2256.7, + "probability": 0.9154 + }, + { + "start": 2257.22, + "end": 2261.99, + "probability": 0.8734 + }, + { + "start": 2263.0, + "end": 2268.54, + "probability": 0.8712 + }, + { + "start": 2268.6, + "end": 2272.62, + "probability": 0.9421 + }, + { + "start": 2273.2, + "end": 2273.56, + "probability": 0.6537 + }, + { + "start": 2274.16, + "end": 2274.32, + "probability": 0.6586 + }, + { + "start": 2274.48, + "end": 2277.96, + "probability": 0.8721 + }, + { + "start": 2278.78, + "end": 2279.46, + "probability": 0.9041 + }, + { + "start": 2280.1, + "end": 2283.78, + "probability": 0.8674 + }, + { + "start": 2284.32, + "end": 2287.3, + "probability": 0.9338 + }, + { + "start": 2287.36, + "end": 2291.12, + "probability": 0.9465 + }, + { + "start": 2291.7, + "end": 2295.2, + "probability": 0.8869 + }, + { + "start": 2295.86, + "end": 2296.7, + "probability": 0.801 + }, + { + "start": 2297.22, + "end": 2297.72, + "probability": 0.2774 + }, + { + "start": 2298.38, + "end": 2298.59, + "probability": 0.4896 + }, + { + "start": 2300.06, + "end": 2302.0, + "probability": 0.9316 + }, + { + "start": 2302.3, + "end": 2303.6, + "probability": 0.9052 + }, + { + "start": 2303.88, + "end": 2304.14, + "probability": 0.6978 + }, + { + "start": 2304.42, + "end": 2305.88, + "probability": 0.7625 + }, + { + "start": 2306.04, + "end": 2307.06, + "probability": 0.7375 + }, + { + "start": 2307.22, + "end": 2310.44, + "probability": 0.8788 + }, + { + "start": 2311.78, + "end": 2315.8, + "probability": 0.8709 + }, + { + "start": 2316.92, + "end": 2319.62, + "probability": 0.623 + }, + { + "start": 2320.45, + "end": 2325.56, + "probability": 0.9497 + }, + { + "start": 2326.42, + "end": 2330.52, + "probability": 0.9235 + }, + { + "start": 2330.52, + "end": 2333.84, + "probability": 0.9937 + }, + { + "start": 2334.48, + "end": 2337.28, + "probability": 0.9954 + }, + { + "start": 2337.28, + "end": 2340.64, + "probability": 0.998 + }, + { + "start": 2340.8, + "end": 2342.8, + "probability": 0.7708 + }, + { + "start": 2343.46, + "end": 2347.78, + "probability": 0.8489 + }, + { + "start": 2347.78, + "end": 2351.42, + "probability": 0.9114 + }, + { + "start": 2351.82, + "end": 2354.62, + "probability": 0.6124 + }, + { + "start": 2355.32, + "end": 2356.88, + "probability": 0.9091 + }, + { + "start": 2357.18, + "end": 2359.68, + "probability": 0.9682 + }, + { + "start": 2361.52, + "end": 2364.6, + "probability": 0.7562 + }, + { + "start": 2364.6, + "end": 2367.66, + "probability": 0.7206 + }, + { + "start": 2369.54, + "end": 2370.86, + "probability": 0.5861 + }, + { + "start": 2371.66, + "end": 2374.64, + "probability": 0.7309 + }, + { + "start": 2374.64, + "end": 2375.5, + "probability": 0.7193 + }, + { + "start": 2376.78, + "end": 2382.12, + "probability": 0.6599 + }, + { + "start": 2383.0, + "end": 2385.88, + "probability": 0.9878 + }, + { + "start": 2386.26, + "end": 2390.86, + "probability": 0.949 + }, + { + "start": 2391.86, + "end": 2393.88, + "probability": 0.8766 + }, + { + "start": 2394.06, + "end": 2396.4, + "probability": 0.9414 + }, + { + "start": 2396.8, + "end": 2398.98, + "probability": 0.7809 + }, + { + "start": 2399.4, + "end": 2400.24, + "probability": 0.7493 + }, + { + "start": 2400.34, + "end": 2401.2, + "probability": 0.8067 + }, + { + "start": 2401.32, + "end": 2405.76, + "probability": 0.9932 + }, + { + "start": 2406.22, + "end": 2409.61, + "probability": 0.9849 + }, + { + "start": 2409.84, + "end": 2410.64, + "probability": 0.7973 + }, + { + "start": 2411.24, + "end": 2413.92, + "probability": 0.8514 + }, + { + "start": 2414.0, + "end": 2414.2, + "probability": 0.7301 + }, + { + "start": 2415.4, + "end": 2416.64, + "probability": 0.6069 + }, + { + "start": 2416.7, + "end": 2417.9, + "probability": 0.9637 + }, + { + "start": 2418.74, + "end": 2422.8, + "probability": 0.8691 + }, + { + "start": 2423.78, + "end": 2429.14, + "probability": 0.8407 + }, + { + "start": 2429.24, + "end": 2430.46, + "probability": 0.0836 + }, + { + "start": 2430.54, + "end": 2431.86, + "probability": 0.7207 + }, + { + "start": 2431.96, + "end": 2440.88, + "probability": 0.668 + }, + { + "start": 2441.34, + "end": 2442.0, + "probability": 0.5192 + }, + { + "start": 2442.12, + "end": 2442.92, + "probability": 0.4508 + }, + { + "start": 2446.8, + "end": 2447.78, + "probability": 0.2485 + }, + { + "start": 2454.12, + "end": 2454.5, + "probability": 0.5986 + }, + { + "start": 2458.86, + "end": 2459.62, + "probability": 0.6688 + }, + { + "start": 2461.26, + "end": 2462.02, + "probability": 0.7329 + }, + { + "start": 2462.74, + "end": 2464.06, + "probability": 0.7927 + }, + { + "start": 2464.54, + "end": 2467.56, + "probability": 0.6597 + }, + { + "start": 2468.92, + "end": 2471.76, + "probability": 0.9277 + }, + { + "start": 2472.56, + "end": 2477.88, + "probability": 0.9017 + }, + { + "start": 2478.38, + "end": 2483.16, + "probability": 0.9959 + }, + { + "start": 2483.74, + "end": 2485.78, + "probability": 0.8646 + }, + { + "start": 2486.64, + "end": 2486.82, + "probability": 0.0969 + }, + { + "start": 2486.82, + "end": 2488.18, + "probability": 0.7774 + }, + { + "start": 2488.56, + "end": 2491.32, + "probability": 0.7568 + }, + { + "start": 2512.36, + "end": 2514.09, + "probability": 0.7386 + }, + { + "start": 2515.82, + "end": 2519.32, + "probability": 0.9675 + }, + { + "start": 2519.78, + "end": 2523.54, + "probability": 0.6096 + }, + { + "start": 2524.0, + "end": 2525.26, + "probability": 0.9897 + }, + { + "start": 2525.74, + "end": 2528.42, + "probability": 0.7723 + }, + { + "start": 2528.46, + "end": 2529.72, + "probability": 0.7676 + }, + { + "start": 2529.88, + "end": 2531.26, + "probability": 0.8151 + }, + { + "start": 2531.44, + "end": 2536.36, + "probability": 0.7884 + }, + { + "start": 2536.58, + "end": 2537.64, + "probability": 0.5031 + }, + { + "start": 2538.2, + "end": 2541.62, + "probability": 0.9814 + }, + { + "start": 2542.54, + "end": 2544.32, + "probability": 0.8072 + }, + { + "start": 2544.5, + "end": 2546.32, + "probability": 0.508 + }, + { + "start": 2547.5, + "end": 2550.06, + "probability": 0.8856 + }, + { + "start": 2550.82, + "end": 2559.2, + "probability": 0.9129 + }, + { + "start": 2559.44, + "end": 2559.98, + "probability": 0.7155 + }, + { + "start": 2560.68, + "end": 2564.42, + "probability": 0.881 + }, + { + "start": 2565.44, + "end": 2569.06, + "probability": 0.7447 + }, + { + "start": 2569.7, + "end": 2571.9, + "probability": 0.9971 + }, + { + "start": 2572.44, + "end": 2573.86, + "probability": 0.9378 + }, + { + "start": 2573.98, + "end": 2574.86, + "probability": 0.8511 + }, + { + "start": 2575.72, + "end": 2576.64, + "probability": 0.2093 + }, + { + "start": 2576.9, + "end": 2578.42, + "probability": 0.7651 + }, + { + "start": 2579.26, + "end": 2579.98, + "probability": 0.4529 + }, + { + "start": 2580.5, + "end": 2582.7, + "probability": 0.3639 + }, + { + "start": 2583.22, + "end": 2585.86, + "probability": 0.8791 + }, + { + "start": 2586.08, + "end": 2588.3, + "probability": 0.5845 + }, + { + "start": 2588.96, + "end": 2591.24, + "probability": 0.9478 + }, + { + "start": 2591.9, + "end": 2595.7, + "probability": 0.5372 + }, + { + "start": 2595.78, + "end": 2596.94, + "probability": 0.7827 + }, + { + "start": 2598.48, + "end": 2600.98, + "probability": 0.6877 + }, + { + "start": 2604.34, + "end": 2610.22, + "probability": 0.7792 + }, + { + "start": 2611.76, + "end": 2612.06, + "probability": 0.6302 + }, + { + "start": 2612.68, + "end": 2613.38, + "probability": 0.6911 + }, + { + "start": 2613.44, + "end": 2616.2, + "probability": 0.6766 + }, + { + "start": 2616.72, + "end": 2620.12, + "probability": 0.7625 + }, + { + "start": 2620.7, + "end": 2625.62, + "probability": 0.8665 + }, + { + "start": 2625.7, + "end": 2627.02, + "probability": 0.802 + }, + { + "start": 2628.34, + "end": 2630.3, + "probability": 0.9069 + }, + { + "start": 2630.4, + "end": 2633.0, + "probability": 0.7207 + }, + { + "start": 2633.34, + "end": 2637.8, + "probability": 0.9706 + }, + { + "start": 2637.9, + "end": 2639.2, + "probability": 0.8624 + }, + { + "start": 2640.6, + "end": 2641.12, + "probability": 0.7818 + }, + { + "start": 2642.38, + "end": 2647.76, + "probability": 0.8908 + }, + { + "start": 2648.44, + "end": 2649.14, + "probability": 0.8966 + }, + { + "start": 2650.58, + "end": 2652.48, + "probability": 0.9396 + }, + { + "start": 2653.18, + "end": 2658.26, + "probability": 0.9607 + }, + { + "start": 2659.24, + "end": 2659.66, + "probability": 0.9794 + }, + { + "start": 2660.58, + "end": 2663.74, + "probability": 0.5761 + }, + { + "start": 2665.2, + "end": 2668.0, + "probability": 0.96 + }, + { + "start": 2668.0, + "end": 2670.96, + "probability": 0.827 + }, + { + "start": 2671.76, + "end": 2673.16, + "probability": 0.3917 + }, + { + "start": 2673.96, + "end": 2677.0, + "probability": 0.6826 + }, + { + "start": 2679.7, + "end": 2681.72, + "probability": 0.5454 + }, + { + "start": 2681.98, + "end": 2681.98, + "probability": 0.1009 + }, + { + "start": 2681.98, + "end": 2682.48, + "probability": 0.4592 + }, + { + "start": 2683.26, + "end": 2687.32, + "probability": 0.9612 + }, + { + "start": 2687.32, + "end": 2690.42, + "probability": 0.9412 + }, + { + "start": 2690.76, + "end": 2692.1, + "probability": 0.7856 + }, + { + "start": 2692.58, + "end": 2697.68, + "probability": 0.8816 + }, + { + "start": 2698.36, + "end": 2701.8, + "probability": 0.6576 + }, + { + "start": 2701.8, + "end": 2704.9, + "probability": 0.983 + }, + { + "start": 2705.94, + "end": 2707.54, + "probability": 0.9956 + }, + { + "start": 2708.28, + "end": 2711.84, + "probability": 0.6611 + }, + { + "start": 2713.0, + "end": 2716.78, + "probability": 0.67 + }, + { + "start": 2717.44, + "end": 2719.4, + "probability": 0.5789 + }, + { + "start": 2719.86, + "end": 2722.44, + "probability": 0.7949 + }, + { + "start": 2723.22, + "end": 2727.9, + "probability": 0.8391 + }, + { + "start": 2728.06, + "end": 2729.18, + "probability": 0.8158 + }, + { + "start": 2729.92, + "end": 2732.22, + "probability": 0.9932 + }, + { + "start": 2732.38, + "end": 2734.9, + "probability": 0.2365 + }, + { + "start": 2735.62, + "end": 2736.68, + "probability": 0.6774 + }, + { + "start": 2737.44, + "end": 2739.56, + "probability": 0.7107 + }, + { + "start": 2739.64, + "end": 2743.5, + "probability": 0.7408 + }, + { + "start": 2744.32, + "end": 2752.34, + "probability": 0.9762 + }, + { + "start": 2752.9, + "end": 2756.18, + "probability": 0.9727 + }, + { + "start": 2756.5, + "end": 2762.24, + "probability": 0.7141 + }, + { + "start": 2762.24, + "end": 2768.08, + "probability": 0.9598 + }, + { + "start": 2768.26, + "end": 2772.56, + "probability": 0.9917 + }, + { + "start": 2773.44, + "end": 2774.7, + "probability": 0.5785 + }, + { + "start": 2775.68, + "end": 2779.86, + "probability": 0.9923 + }, + { + "start": 2780.42, + "end": 2781.12, + "probability": 0.903 + }, + { + "start": 2781.62, + "end": 2784.2, + "probability": 0.9922 + }, + { + "start": 2784.66, + "end": 2789.16, + "probability": 0.7231 + }, + { + "start": 2789.16, + "end": 2792.44, + "probability": 0.9899 + }, + { + "start": 2793.92, + "end": 2794.32, + "probability": 0.7994 + }, + { + "start": 2800.85, + "end": 2801.92, + "probability": 0.4233 + }, + { + "start": 2802.04, + "end": 2807.94, + "probability": 0.7145 + }, + { + "start": 2809.46, + "end": 2811.76, + "probability": 0.1737 + }, + { + "start": 2812.74, + "end": 2814.92, + "probability": 0.8029 + }, + { + "start": 2815.78, + "end": 2819.22, + "probability": 0.7201 + }, + { + "start": 2819.34, + "end": 2822.2, + "probability": 0.9934 + }, + { + "start": 2822.32, + "end": 2822.81, + "probability": 0.9816 + }, + { + "start": 2824.02, + "end": 2827.94, + "probability": 0.7573 + }, + { + "start": 2828.44, + "end": 2829.42, + "probability": 0.8221 + }, + { + "start": 2829.52, + "end": 2832.52, + "probability": 0.8987 + }, + { + "start": 2832.52, + "end": 2832.54, + "probability": 0.3402 + }, + { + "start": 2832.66, + "end": 2833.93, + "probability": 0.9941 + }, + { + "start": 2834.52, + "end": 2835.84, + "probability": 0.6445 + }, + { + "start": 2836.04, + "end": 2838.54, + "probability": 0.8575 + }, + { + "start": 2838.8, + "end": 2838.86, + "probability": 0.5242 + }, + { + "start": 2838.96, + "end": 2840.78, + "probability": 0.8856 + }, + { + "start": 2841.44, + "end": 2842.44, + "probability": 0.5241 + }, + { + "start": 2842.78, + "end": 2844.04, + "probability": 0.2253 + }, + { + "start": 2844.24, + "end": 2847.48, + "probability": 0.7164 + }, + { + "start": 2848.0, + "end": 2851.0, + "probability": 0.9683 + }, + { + "start": 2851.08, + "end": 2852.14, + "probability": 0.2969 + }, + { + "start": 2854.24, + "end": 2854.34, + "probability": 0.0001 + }, + { + "start": 2858.94, + "end": 2864.34, + "probability": 0.8167 + }, + { + "start": 2865.0, + "end": 2870.56, + "probability": 0.7458 + }, + { + "start": 2873.36, + "end": 2875.46, + "probability": 0.835 + }, + { + "start": 2875.46, + "end": 2877.64, + "probability": 0.4487 + }, + { + "start": 2886.7, + "end": 2890.9, + "probability": 0.6306 + }, + { + "start": 2892.08, + "end": 2896.24, + "probability": 0.9329 + }, + { + "start": 2896.34, + "end": 2896.96, + "probability": 0.5045 + }, + { + "start": 2897.52, + "end": 2898.38, + "probability": 0.7559 + }, + { + "start": 2898.54, + "end": 2906.1, + "probability": 0.9857 + }, + { + "start": 2907.1, + "end": 2908.2, + "probability": 0.7762 + }, + { + "start": 2908.8, + "end": 2910.8, + "probability": 0.7561 + }, + { + "start": 2912.08, + "end": 2915.37, + "probability": 0.5114 + }, + { + "start": 2915.86, + "end": 2916.44, + "probability": 0.8252 + }, + { + "start": 2916.48, + "end": 2917.2, + "probability": 0.9298 + }, + { + "start": 2917.26, + "end": 2918.4, + "probability": 0.877 + }, + { + "start": 2918.84, + "end": 2919.83, + "probability": 0.9229 + }, + { + "start": 2920.14, + "end": 2921.24, + "probability": 0.4976 + }, + { + "start": 2924.7, + "end": 2924.78, + "probability": 0.0796 + }, + { + "start": 2924.78, + "end": 2928.96, + "probability": 0.5671 + }, + { + "start": 2929.1, + "end": 2930.68, + "probability": 0.3567 + }, + { + "start": 2930.68, + "end": 2931.19, + "probability": 0.9059 + }, + { + "start": 2931.92, + "end": 2932.5, + "probability": 0.5628 + }, + { + "start": 2932.54, + "end": 2933.46, + "probability": 0.7876 + }, + { + "start": 2933.94, + "end": 2936.4, + "probability": 0.9402 + }, + { + "start": 2936.76, + "end": 2942.12, + "probability": 0.9187 + }, + { + "start": 2942.66, + "end": 2943.9, + "probability": 0.7814 + }, + { + "start": 2944.28, + "end": 2945.24, + "probability": 0.7401 + }, + { + "start": 2945.3, + "end": 2946.14, + "probability": 0.7806 + }, + { + "start": 2946.14, + "end": 2947.72, + "probability": 0.8967 + }, + { + "start": 2948.18, + "end": 2948.98, + "probability": 0.8819 + }, + { + "start": 2949.44, + "end": 2950.66, + "probability": 0.7359 + }, + { + "start": 2950.76, + "end": 2951.44, + "probability": 0.5701 + }, + { + "start": 2952.46, + "end": 2954.18, + "probability": 0.9295 + }, + { + "start": 2954.72, + "end": 2957.22, + "probability": 0.4187 + }, + { + "start": 2958.38, + "end": 2960.2, + "probability": 0.488 + }, + { + "start": 2968.36, + "end": 2968.88, + "probability": 0.3325 + }, + { + "start": 2968.88, + "end": 2970.7, + "probability": 0.5761 + }, + { + "start": 2971.1, + "end": 2974.02, + "probability": 0.9788 + }, + { + "start": 2974.38, + "end": 2975.56, + "probability": 0.9641 + }, + { + "start": 2976.44, + "end": 2976.9, + "probability": 0.8089 + }, + { + "start": 2977.06, + "end": 2984.32, + "probability": 0.9778 + }, + { + "start": 2984.32, + "end": 2990.64, + "probability": 0.9841 + }, + { + "start": 2991.18, + "end": 2991.48, + "probability": 0.8267 + }, + { + "start": 3003.98, + "end": 3006.2, + "probability": 0.7632 + }, + { + "start": 3008.16, + "end": 3014.4, + "probability": 0.942 + }, + { + "start": 3015.04, + "end": 3015.46, + "probability": 0.0156 + }, + { + "start": 3015.68, + "end": 3020.54, + "probability": 0.9706 + }, + { + "start": 3021.62, + "end": 3024.36, + "probability": 0.7843 + }, + { + "start": 3025.3, + "end": 3029.3, + "probability": 0.979 + }, + { + "start": 3030.44, + "end": 3031.38, + "probability": 0.9191 + }, + { + "start": 3032.96, + "end": 3033.55, + "probability": 0.4595 + }, + { + "start": 3034.44, + "end": 3035.92, + "probability": 0.9825 + }, + { + "start": 3037.46, + "end": 3038.08, + "probability": 0.6441 + }, + { + "start": 3038.16, + "end": 3042.5, + "probability": 0.8083 + }, + { + "start": 3042.66, + "end": 3043.96, + "probability": 0.9163 + }, + { + "start": 3044.16, + "end": 3047.9, + "probability": 0.9873 + }, + { + "start": 3047.92, + "end": 3049.02, + "probability": 0.9698 + }, + { + "start": 3050.06, + "end": 3053.62, + "probability": 0.7181 + }, + { + "start": 3054.38, + "end": 3056.8, + "probability": 0.1606 + }, + { + "start": 3057.77, + "end": 3063.01, + "probability": 0.8581 + }, + { + "start": 3065.0, + "end": 3068.16, + "probability": 0.9174 + }, + { + "start": 3068.86, + "end": 3076.12, + "probability": 0.8467 + }, + { + "start": 3076.32, + "end": 3084.18, + "probability": 0.7164 + }, + { + "start": 3085.02, + "end": 3091.42, + "probability": 0.9538 + }, + { + "start": 3093.02, + "end": 3097.66, + "probability": 0.9659 + }, + { + "start": 3098.8, + "end": 3101.56, + "probability": 0.9958 + }, + { + "start": 3101.72, + "end": 3105.3, + "probability": 0.9916 + }, + { + "start": 3106.22, + "end": 3111.42, + "probability": 0.9378 + }, + { + "start": 3112.3, + "end": 3114.32, + "probability": 0.9871 + }, + { + "start": 3115.5, + "end": 3118.32, + "probability": 0.5972 + }, + { + "start": 3119.22, + "end": 3124.44, + "probability": 0.6923 + }, + { + "start": 3124.7, + "end": 3126.24, + "probability": 0.9971 + }, + { + "start": 3126.96, + "end": 3128.72, + "probability": 0.9745 + }, + { + "start": 3129.4, + "end": 3131.28, + "probability": 0.9511 + }, + { + "start": 3132.02, + "end": 3133.7, + "probability": 0.9886 + }, + { + "start": 3134.26, + "end": 3135.32, + "probability": 0.8264 + }, + { + "start": 3136.02, + "end": 3138.24, + "probability": 0.9961 + }, + { + "start": 3138.24, + "end": 3141.0, + "probability": 0.9525 + }, + { + "start": 3141.88, + "end": 3144.24, + "probability": 0.8921 + }, + { + "start": 3145.14, + "end": 3149.62, + "probability": 0.9747 + }, + { + "start": 3150.32, + "end": 3154.34, + "probability": 0.9802 + }, + { + "start": 3154.38, + "end": 3160.64, + "probability": 0.6704 + }, + { + "start": 3160.74, + "end": 3161.9, + "probability": 0.8101 + }, + { + "start": 3162.36, + "end": 3164.38, + "probability": 0.9954 + }, + { + "start": 3165.28, + "end": 3167.16, + "probability": 0.7996 + }, + { + "start": 3168.38, + "end": 3171.0, + "probability": 0.9808 + }, + { + "start": 3171.68, + "end": 3173.5, + "probability": 0.996 + }, + { + "start": 3174.84, + "end": 3176.38, + "probability": 0.998 + }, + { + "start": 3177.06, + "end": 3178.44, + "probability": 0.9783 + }, + { + "start": 3178.54, + "end": 3181.18, + "probability": 0.8479 + }, + { + "start": 3181.46, + "end": 3182.3, + "probability": 0.5903 + }, + { + "start": 3182.82, + "end": 3184.42, + "probability": 0.7743 + }, + { + "start": 3185.06, + "end": 3189.5, + "probability": 0.8947 + }, + { + "start": 3190.68, + "end": 3192.54, + "probability": 0.6338 + }, + { + "start": 3192.76, + "end": 3195.38, + "probability": 0.5046 + }, + { + "start": 3196.26, + "end": 3199.46, + "probability": 0.9896 + }, + { + "start": 3199.46, + "end": 3204.92, + "probability": 0.9869 + }, + { + "start": 3205.98, + "end": 3208.7, + "probability": 0.9496 + }, + { + "start": 3209.28, + "end": 3212.16, + "probability": 0.9836 + }, + { + "start": 3212.16, + "end": 3215.88, + "probability": 0.9425 + }, + { + "start": 3216.68, + "end": 3220.76, + "probability": 0.6101 + }, + { + "start": 3221.58, + "end": 3228.92, + "probability": 0.7951 + }, + { + "start": 3230.14, + "end": 3231.12, + "probability": 0.6409 + }, + { + "start": 3231.28, + "end": 3235.22, + "probability": 0.9678 + }, + { + "start": 3235.78, + "end": 3237.14, + "probability": 0.9202 + }, + { + "start": 3238.62, + "end": 3240.06, + "probability": 0.7703 + }, + { + "start": 3241.04, + "end": 3242.8, + "probability": 0.5398 + }, + { + "start": 3243.22, + "end": 3244.58, + "probability": 0.947 + }, + { + "start": 3244.66, + "end": 3248.84, + "probability": 0.8976 + }, + { + "start": 3249.38, + "end": 3250.0, + "probability": 0.7534 + }, + { + "start": 3251.14, + "end": 3251.64, + "probability": 0.8767 + }, + { + "start": 3251.68, + "end": 3258.02, + "probability": 0.9106 + }, + { + "start": 3258.22, + "end": 3262.16, + "probability": 0.8714 + }, + { + "start": 3262.6, + "end": 3263.76, + "probability": 0.6649 + }, + { + "start": 3264.54, + "end": 3264.64, + "probability": 0.0438 + }, + { + "start": 3264.74, + "end": 3266.14, + "probability": 0.6344 + }, + { + "start": 3266.2, + "end": 3268.82, + "probability": 0.9763 + }, + { + "start": 3270.19, + "end": 3271.98, + "probability": 0.7447 + }, + { + "start": 3272.58, + "end": 3278.46, + "probability": 0.9186 + }, + { + "start": 3279.14, + "end": 3282.28, + "probability": 0.8953 + }, + { + "start": 3282.7, + "end": 3288.32, + "probability": 0.9141 + }, + { + "start": 3288.86, + "end": 3290.56, + "probability": 0.9963 + }, + { + "start": 3290.76, + "end": 3293.24, + "probability": 0.6807 + }, + { + "start": 3293.8, + "end": 3293.82, + "probability": 0.526 + }, + { + "start": 3293.82, + "end": 3296.96, + "probability": 0.9952 + }, + { + "start": 3297.46, + "end": 3298.4, + "probability": 0.9823 + }, + { + "start": 3299.26, + "end": 3302.22, + "probability": 0.8785 + }, + { + "start": 3302.22, + "end": 3304.28, + "probability": 0.8712 + }, + { + "start": 3305.08, + "end": 3306.53, + "probability": 0.5673 + }, + { + "start": 3307.18, + "end": 3308.82, + "probability": 0.7708 + }, + { + "start": 3309.94, + "end": 3313.76, + "probability": 0.995 + }, + { + "start": 3314.5, + "end": 3317.08, + "probability": 0.9995 + }, + { + "start": 3317.86, + "end": 3319.26, + "probability": 0.2539 + }, + { + "start": 3319.78, + "end": 3322.18, + "probability": 0.5697 + }, + { + "start": 3323.18, + "end": 3325.48, + "probability": 0.9538 + }, + { + "start": 3326.28, + "end": 3330.76, + "probability": 0.9038 + }, + { + "start": 3331.5, + "end": 3333.12, + "probability": 0.8401 + }, + { + "start": 3334.16, + "end": 3336.1, + "probability": 0.214 + }, + { + "start": 3336.92, + "end": 3338.5, + "probability": 0.6985 + }, + { + "start": 3339.0, + "end": 3339.92, + "probability": 0.8753 + }, + { + "start": 3339.96, + "end": 3340.88, + "probability": 0.6209 + }, + { + "start": 3341.42, + "end": 3344.86, + "probability": 0.9839 + }, + { + "start": 3344.86, + "end": 3348.48, + "probability": 0.9557 + }, + { + "start": 3349.24, + "end": 3349.88, + "probability": 0.4999 + }, + { + "start": 3349.9, + "end": 3355.94, + "probability": 0.8208 + }, + { + "start": 3356.4, + "end": 3357.16, + "probability": 0.8417 + }, + { + "start": 3357.68, + "end": 3358.9, + "probability": 0.9274 + }, + { + "start": 3359.58, + "end": 3361.32, + "probability": 0.8353 + }, + { + "start": 3362.0, + "end": 3362.42, + "probability": 0.7542 + }, + { + "start": 3362.66, + "end": 3365.46, + "probability": 0.9397 + }, + { + "start": 3367.04, + "end": 3372.44, + "probability": 0.981 + }, + { + "start": 3372.58, + "end": 3374.08, + "probability": 0.7379 + }, + { + "start": 3374.74, + "end": 3376.84, + "probability": 0.963 + }, + { + "start": 3377.5, + "end": 3377.78, + "probability": 0.7488 + }, + { + "start": 3378.24, + "end": 3378.56, + "probability": 0.7804 + }, + { + "start": 3378.66, + "end": 3384.56, + "probability": 0.9194 + }, + { + "start": 3384.6, + "end": 3389.86, + "probability": 0.9962 + }, + { + "start": 3390.4, + "end": 3392.04, + "probability": 0.6453 + }, + { + "start": 3392.66, + "end": 3397.2, + "probability": 0.9636 + }, + { + "start": 3397.2, + "end": 3402.4, + "probability": 0.1279 + }, + { + "start": 3402.84, + "end": 3404.28, + "probability": 0.6292 + }, + { + "start": 3404.9, + "end": 3406.36, + "probability": 0.3513 + }, + { + "start": 3406.36, + "end": 3407.92, + "probability": 0.5317 + }, + { + "start": 3408.26, + "end": 3410.4, + "probability": 0.5377 + }, + { + "start": 3411.1, + "end": 3413.34, + "probability": 0.8657 + }, + { + "start": 3413.74, + "end": 3414.52, + "probability": 0.7874 + }, + { + "start": 3414.86, + "end": 3415.8, + "probability": 0.8422 + }, + { + "start": 3416.5, + "end": 3417.84, + "probability": 0.8999 + }, + { + "start": 3421.52, + "end": 3423.58, + "probability": 0.9337 + }, + { + "start": 3424.52, + "end": 3427.7, + "probability": 0.9895 + }, + { + "start": 3428.38, + "end": 3430.42, + "probability": 0.916 + }, + { + "start": 3431.76, + "end": 3433.2, + "probability": 0.9912 + }, + { + "start": 3433.64, + "end": 3435.66, + "probability": 0.8802 + }, + { + "start": 3440.98, + "end": 3442.44, + "probability": 0.7441 + }, + { + "start": 3443.78, + "end": 3445.04, + "probability": 0.8296 + }, + { + "start": 3448.36, + "end": 3454.28, + "probability": 0.9447 + }, + { + "start": 3456.22, + "end": 3457.54, + "probability": 0.6955 + }, + { + "start": 3457.58, + "end": 3459.94, + "probability": 0.8564 + }, + { + "start": 3460.96, + "end": 3463.25, + "probability": 0.9692 + }, + { + "start": 3463.94, + "end": 3465.42, + "probability": 0.9298 + }, + { + "start": 3465.96, + "end": 3468.1, + "probability": 0.7088 + }, + { + "start": 3468.8, + "end": 3471.64, + "probability": 0.8394 + }, + { + "start": 3472.34, + "end": 3473.98, + "probability": 0.9813 + }, + { + "start": 3474.94, + "end": 3475.72, + "probability": 0.7539 + }, + { + "start": 3476.64, + "end": 3479.28, + "probability": 0.9596 + }, + { + "start": 3480.28, + "end": 3482.34, + "probability": 0.736 + }, + { + "start": 3482.86, + "end": 3487.3, + "probability": 0.9706 + }, + { + "start": 3488.16, + "end": 3489.66, + "probability": 0.9125 + }, + { + "start": 3490.62, + "end": 3496.82, + "probability": 0.9826 + }, + { + "start": 3497.82, + "end": 3499.06, + "probability": 0.9221 + }, + { + "start": 3499.2, + "end": 3499.98, + "probability": 0.6734 + }, + { + "start": 3500.12, + "end": 3500.66, + "probability": 0.8481 + }, + { + "start": 3500.86, + "end": 3502.04, + "probability": 0.5632 + }, + { + "start": 3502.12, + "end": 3503.4, + "probability": 0.5335 + }, + { + "start": 3503.72, + "end": 3504.38, + "probability": 0.434 + }, + { + "start": 3504.48, + "end": 3506.48, + "probability": 0.9321 + }, + { + "start": 3507.4, + "end": 3507.64, + "probability": 0.8439 + }, + { + "start": 3507.7, + "end": 3511.58, + "probability": 0.9657 + }, + { + "start": 3511.58, + "end": 3514.64, + "probability": 0.9895 + }, + { + "start": 3514.72, + "end": 3516.08, + "probability": 0.7898 + }, + { + "start": 3516.8, + "end": 3518.92, + "probability": 0.9643 + }, + { + "start": 3519.68, + "end": 3521.03, + "probability": 0.4984 + }, + { + "start": 3522.7, + "end": 3523.54, + "probability": 0.4663 + }, + { + "start": 3525.7, + "end": 3528.28, + "probability": 0.5028 + }, + { + "start": 3528.34, + "end": 3533.54, + "probability": 0.7098 + }, + { + "start": 3534.64, + "end": 3534.86, + "probability": 0.854 + }, + { + "start": 3534.9, + "end": 3537.26, + "probability": 0.9668 + }, + { + "start": 3537.36, + "end": 3538.32, + "probability": 0.9559 + }, + { + "start": 3538.38, + "end": 3539.54, + "probability": 0.9901 + }, + { + "start": 3539.68, + "end": 3542.18, + "probability": 0.9902 + }, + { + "start": 3542.3, + "end": 3542.84, + "probability": 0.578 + }, + { + "start": 3542.92, + "end": 3546.2, + "probability": 0.9675 + }, + { + "start": 3546.56, + "end": 3547.74, + "probability": 0.8385 + }, + { + "start": 3548.56, + "end": 3550.78, + "probability": 0.9839 + }, + { + "start": 3550.86, + "end": 3551.32, + "probability": 0.736 + }, + { + "start": 3552.02, + "end": 3555.8, + "probability": 0.8793 + }, + { + "start": 3555.9, + "end": 3559.32, + "probability": 0.9974 + }, + { + "start": 3560.32, + "end": 3560.42, + "probability": 0.4487 + }, + { + "start": 3560.62, + "end": 3561.16, + "probability": 0.7512 + }, + { + "start": 3561.18, + "end": 3566.3, + "probability": 0.888 + }, + { + "start": 3567.1, + "end": 3572.98, + "probability": 0.9937 + }, + { + "start": 3573.44, + "end": 3575.57, + "probability": 0.9324 + }, + { + "start": 3577.04, + "end": 3577.52, + "probability": 0.6935 + }, + { + "start": 3577.62, + "end": 3578.14, + "probability": 0.6345 + }, + { + "start": 3578.22, + "end": 3579.84, + "probability": 0.6407 + }, + { + "start": 3579.96, + "end": 3583.38, + "probability": 0.8354 + }, + { + "start": 3583.42, + "end": 3584.24, + "probability": 0.6921 + }, + { + "start": 3584.42, + "end": 3586.44, + "probability": 0.9932 + }, + { + "start": 3586.96, + "end": 3589.52, + "probability": 0.7039 + }, + { + "start": 3589.94, + "end": 3591.78, + "probability": 0.9985 + }, + { + "start": 3592.12, + "end": 3595.18, + "probability": 0.9883 + }, + { + "start": 3595.74, + "end": 3597.54, + "probability": 0.5004 + }, + { + "start": 3597.98, + "end": 3600.12, + "probability": 0.6592 + }, + { + "start": 3604.31, + "end": 3607.78, + "probability": 0.9622 + }, + { + "start": 3608.28, + "end": 3610.82, + "probability": 0.9728 + }, + { + "start": 3611.74, + "end": 3615.64, + "probability": 0.9751 + }, + { + "start": 3616.0, + "end": 3616.93, + "probability": 0.8118 + }, + { + "start": 3617.08, + "end": 3622.98, + "probability": 0.9788 + }, + { + "start": 3623.32, + "end": 3624.93, + "probability": 0.967 + }, + { + "start": 3627.12, + "end": 3631.32, + "probability": 0.9413 + }, + { + "start": 3632.0, + "end": 3636.9, + "probability": 0.8657 + }, + { + "start": 3638.37, + "end": 3642.02, + "probability": 0.6331 + }, + { + "start": 3642.3, + "end": 3644.18, + "probability": 0.9938 + }, + { + "start": 3644.54, + "end": 3647.04, + "probability": 0.9106 + }, + { + "start": 3647.04, + "end": 3648.96, + "probability": 0.9601 + }, + { + "start": 3649.92, + "end": 3650.54, + "probability": 0.7838 + }, + { + "start": 3650.66, + "end": 3654.3, + "probability": 0.9447 + }, + { + "start": 3654.62, + "end": 3655.48, + "probability": 0.8345 + }, + { + "start": 3656.0, + "end": 3657.82, + "probability": 0.959 + }, + { + "start": 3658.26, + "end": 3659.52, + "probability": 0.9757 + }, + { + "start": 3659.98, + "end": 3661.0, + "probability": 0.894 + }, + { + "start": 3661.5, + "end": 3664.42, + "probability": 0.9875 + }, + { + "start": 3664.84, + "end": 3667.32, + "probability": 0.8906 + }, + { + "start": 3667.72, + "end": 3668.28, + "probability": 0.6012 + }, + { + "start": 3668.44, + "end": 3671.86, + "probability": 0.9114 + }, + { + "start": 3671.9, + "end": 3674.34, + "probability": 0.7365 + }, + { + "start": 3674.64, + "end": 3675.74, + "probability": 0.982 + }, + { + "start": 3676.18, + "end": 3676.9, + "probability": 0.6865 + }, + { + "start": 3677.32, + "end": 3680.58, + "probability": 0.8724 + }, + { + "start": 3680.68, + "end": 3681.64, + "probability": 0.2232 + }, + { + "start": 3682.1, + "end": 3683.54, + "probability": 0.8653 + }, + { + "start": 3683.58, + "end": 3686.22, + "probability": 0.7833 + }, + { + "start": 3686.36, + "end": 3688.52, + "probability": 0.937 + }, + { + "start": 3688.52, + "end": 3691.26, + "probability": 0.9709 + }, + { + "start": 3691.34, + "end": 3693.42, + "probability": 0.7253 + }, + { + "start": 3693.48, + "end": 3697.52, + "probability": 0.9475 + }, + { + "start": 3697.84, + "end": 3700.88, + "probability": 0.9889 + }, + { + "start": 3701.24, + "end": 3701.6, + "probability": 0.7935 + }, + { + "start": 3701.98, + "end": 3703.68, + "probability": 0.9 + }, + { + "start": 3704.18, + "end": 3705.56, + "probability": 0.9273 + }, + { + "start": 3705.88, + "end": 3709.24, + "probability": 0.8865 + }, + { + "start": 3709.58, + "end": 3710.84, + "probability": 0.8097 + }, + { + "start": 3711.36, + "end": 3714.28, + "probability": 0.9542 + }, + { + "start": 3715.88, + "end": 3720.0, + "probability": 0.63 + }, + { + "start": 3721.08, + "end": 3723.76, + "probability": 0.9792 + }, + { + "start": 3724.64, + "end": 3729.56, + "probability": 0.6751 + }, + { + "start": 3730.32, + "end": 3732.18, + "probability": 0.9707 + }, + { + "start": 3732.9, + "end": 3736.2, + "probability": 0.8902 + }, + { + "start": 3736.4, + "end": 3738.38, + "probability": 0.7348 + }, + { + "start": 3739.22, + "end": 3740.5, + "probability": 0.8025 + }, + { + "start": 3741.28, + "end": 3744.82, + "probability": 0.9619 + }, + { + "start": 3754.66, + "end": 3755.68, + "probability": 0.7 + }, + { + "start": 3756.42, + "end": 3759.38, + "probability": 0.7869 + }, + { + "start": 3760.0, + "end": 3760.86, + "probability": 0.9306 + }, + { + "start": 3760.9, + "end": 3763.84, + "probability": 0.9834 + }, + { + "start": 3764.4, + "end": 3768.08, + "probability": 0.9795 + }, + { + "start": 3768.6, + "end": 3769.06, + "probability": 0.8184 + }, + { + "start": 3769.42, + "end": 3769.58, + "probability": 0.4918 + }, + { + "start": 3769.84, + "end": 3771.08, + "probability": 0.5701 + }, + { + "start": 3771.58, + "end": 3775.8, + "probability": 0.9751 + }, + { + "start": 3776.66, + "end": 3778.56, + "probability": 0.8468 + }, + { + "start": 3779.08, + "end": 3783.52, + "probability": 0.9754 + }, + { + "start": 3784.28, + "end": 3787.36, + "probability": 0.9927 + }, + { + "start": 3787.9, + "end": 3790.24, + "probability": 0.9963 + }, + { + "start": 3790.76, + "end": 3792.8, + "probability": 0.9883 + }, + { + "start": 3793.3, + "end": 3796.28, + "probability": 0.7614 + }, + { + "start": 3798.1, + "end": 3798.2, + "probability": 0.1141 + }, + { + "start": 3798.2, + "end": 3802.0, + "probability": 0.9712 + }, + { + "start": 3802.78, + "end": 3807.9, + "probability": 0.8002 + }, + { + "start": 3807.96, + "end": 3809.02, + "probability": 0.775 + }, + { + "start": 3809.54, + "end": 3813.38, + "probability": 0.9807 + }, + { + "start": 3814.1, + "end": 3815.98, + "probability": 0.9172 + }, + { + "start": 3816.48, + "end": 3817.69, + "probability": 0.8159 + }, + { + "start": 3818.1, + "end": 3820.3, + "probability": 0.9978 + }, + { + "start": 3820.74, + "end": 3824.5, + "probability": 0.9775 + }, + { + "start": 3825.04, + "end": 3826.44, + "probability": 0.7352 + }, + { + "start": 3827.6, + "end": 3829.36, + "probability": 0.9209 + }, + { + "start": 3829.42, + "end": 3833.26, + "probability": 0.8819 + }, + { + "start": 3834.08, + "end": 3835.32, + "probability": 0.8107 + }, + { + "start": 3835.48, + "end": 3838.56, + "probability": 0.8792 + }, + { + "start": 3838.56, + "end": 3841.84, + "probability": 0.9973 + }, + { + "start": 3842.5, + "end": 3846.48, + "probability": 0.8587 + }, + { + "start": 3846.96, + "end": 3849.02, + "probability": 0.9834 + }, + { + "start": 3849.82, + "end": 3852.24, + "probability": 0.9976 + }, + { + "start": 3852.24, + "end": 3855.46, + "probability": 0.9987 + }, + { + "start": 3856.12, + "end": 3858.68, + "probability": 0.9836 + }, + { + "start": 3859.28, + "end": 3863.08, + "probability": 0.8541 + }, + { + "start": 3863.7, + "end": 3866.4, + "probability": 0.9897 + }, + { + "start": 3867.3, + "end": 3870.06, + "probability": 0.8395 + }, + { + "start": 3870.8, + "end": 3874.4, + "probability": 0.9954 + }, + { + "start": 3874.94, + "end": 3878.46, + "probability": 0.9934 + }, + { + "start": 3879.18, + "end": 3880.46, + "probability": 0.7359 + }, + { + "start": 3880.68, + "end": 3882.28, + "probability": 0.9153 + }, + { + "start": 3882.68, + "end": 3883.78, + "probability": 0.9064 + }, + { + "start": 3883.94, + "end": 3886.3, + "probability": 0.8757 + }, + { + "start": 3887.16, + "end": 3891.02, + "probability": 0.9974 + }, + { + "start": 3891.86, + "end": 3895.3, + "probability": 0.9912 + }, + { + "start": 3896.38, + "end": 3898.86, + "probability": 0.9943 + }, + { + "start": 3898.86, + "end": 3901.9, + "probability": 0.9978 + }, + { + "start": 3902.72, + "end": 3903.26, + "probability": 0.726 + }, + { + "start": 3903.56, + "end": 3906.0, + "probability": 0.9885 + }, + { + "start": 3906.08, + "end": 3909.4, + "probability": 0.9808 + }, + { + "start": 3909.56, + "end": 3911.48, + "probability": 0.8956 + }, + { + "start": 3912.44, + "end": 3915.02, + "probability": 0.9822 + }, + { + "start": 3915.02, + "end": 3917.42, + "probability": 0.9951 + }, + { + "start": 3917.98, + "end": 3921.66, + "probability": 0.7618 + }, + { + "start": 3922.14, + "end": 3925.26, + "probability": 0.9985 + }, + { + "start": 3925.94, + "end": 3929.22, + "probability": 0.7539 + }, + { + "start": 3930.74, + "end": 3931.42, + "probability": 0.4098 + }, + { + "start": 3931.72, + "end": 3933.78, + "probability": 0.7538 + }, + { + "start": 3934.18, + "end": 3937.38, + "probability": 0.9596 + }, + { + "start": 3938.6, + "end": 3940.2, + "probability": 0.9204 + }, + { + "start": 3940.28, + "end": 3942.45, + "probability": 0.9884 + }, + { + "start": 3942.9, + "end": 3945.32, + "probability": 0.9686 + }, + { + "start": 3946.06, + "end": 3948.15, + "probability": 0.5641 + }, + { + "start": 3948.74, + "end": 3950.04, + "probability": 0.9478 + }, + { + "start": 3950.3, + "end": 3951.4, + "probability": 0.4007 + }, + { + "start": 3951.46, + "end": 3952.54, + "probability": 0.9433 + }, + { + "start": 3952.66, + "end": 3953.62, + "probability": 0.5878 + }, + { + "start": 3954.4, + "end": 3956.2, + "probability": 0.9771 + }, + { + "start": 3956.32, + "end": 3958.3, + "probability": 0.6133 + }, + { + "start": 3958.78, + "end": 3960.8, + "probability": 0.9473 + }, + { + "start": 3961.34, + "end": 3964.59, + "probability": 0.9372 + }, + { + "start": 3965.56, + "end": 3968.18, + "probability": 0.5468 + }, + { + "start": 3968.18, + "end": 3971.14, + "probability": 0.9947 + }, + { + "start": 3971.88, + "end": 3976.06, + "probability": 0.9907 + }, + { + "start": 3976.7, + "end": 3979.28, + "probability": 0.9907 + }, + { + "start": 3979.88, + "end": 3982.84, + "probability": 0.9874 + }, + { + "start": 3982.98, + "end": 3986.06, + "probability": 0.9924 + }, + { + "start": 3986.98, + "end": 3988.08, + "probability": 0.7051 + }, + { + "start": 3989.1, + "end": 3991.68, + "probability": 0.5007 + }, + { + "start": 3992.58, + "end": 3996.06, + "probability": 0.8549 + }, + { + "start": 3996.44, + "end": 3998.82, + "probability": 0.9936 + }, + { + "start": 3999.58, + "end": 4000.31, + "probability": 0.6991 + }, + { + "start": 4002.52, + "end": 4002.76, + "probability": 0.0213 + }, + { + "start": 4002.76, + "end": 4004.82, + "probability": 0.8975 + }, + { + "start": 4005.42, + "end": 4008.12, + "probability": 0.9967 + }, + { + "start": 4009.06, + "end": 4011.28, + "probability": 0.9946 + }, + { + "start": 4011.8, + "end": 4014.37, + "probability": 0.8802 + }, + { + "start": 4015.66, + "end": 4017.74, + "probability": 0.584 + }, + { + "start": 4017.74, + "end": 4022.12, + "probability": 0.957 + }, + { + "start": 4022.58, + "end": 4023.36, + "probability": 0.5293 + }, + { + "start": 4023.56, + "end": 4024.5, + "probability": 0.5697 + }, + { + "start": 4024.84, + "end": 4026.26, + "probability": 0.9517 + }, + { + "start": 4026.62, + "end": 4027.84, + "probability": 0.7847 + }, + { + "start": 4028.44, + "end": 4033.04, + "probability": 0.9814 + }, + { + "start": 4033.2, + "end": 4033.76, + "probability": 0.5348 + }, + { + "start": 4033.82, + "end": 4034.52, + "probability": 0.6107 + }, + { + "start": 4035.62, + "end": 4038.52, + "probability": 0.9585 + }, + { + "start": 4038.8, + "end": 4041.18, + "probability": 0.9983 + }, + { + "start": 4042.06, + "end": 4044.54, + "probability": 0.8721 + }, + { + "start": 4045.18, + "end": 4048.7, + "probability": 0.9137 + }, + { + "start": 4048.8, + "end": 4049.26, + "probability": 0.9548 + }, + { + "start": 4049.44, + "end": 4049.88, + "probability": 0.9691 + }, + { + "start": 4049.92, + "end": 4050.58, + "probability": 0.9272 + }, + { + "start": 4051.1, + "end": 4052.2, + "probability": 0.999 + }, + { + "start": 4053.04, + "end": 4055.28, + "probability": 0.9883 + }, + { + "start": 4056.0, + "end": 4060.34, + "probability": 0.863 + }, + { + "start": 4060.96, + "end": 4064.92, + "probability": 0.9473 + }, + { + "start": 4064.92, + "end": 4068.36, + "probability": 0.9695 + }, + { + "start": 4069.62, + "end": 4070.24, + "probability": 0.4957 + }, + { + "start": 4070.48, + "end": 4074.24, + "probability": 0.9914 + }, + { + "start": 4075.1, + "end": 4075.38, + "probability": 0.7776 + }, + { + "start": 4076.12, + "end": 4077.1, + "probability": 0.889 + }, + { + "start": 4077.66, + "end": 4082.06, + "probability": 0.9469 + }, + { + "start": 4082.5, + "end": 4085.92, + "probability": 0.99 + }, + { + "start": 4086.7, + "end": 4092.8, + "probability": 0.9924 + }, + { + "start": 4097.18, + "end": 4100.66, + "probability": 0.7539 + }, + { + "start": 4102.44, + "end": 4103.0, + "probability": 0.5938 + }, + { + "start": 4104.42, + "end": 4104.54, + "probability": 0.3871 + }, + { + "start": 4104.54, + "end": 4105.3, + "probability": 0.1665 + }, + { + "start": 4105.58, + "end": 4105.9, + "probability": 0.0501 + }, + { + "start": 4106.42, + "end": 4107.08, + "probability": 0.7675 + }, + { + "start": 4110.7, + "end": 4111.64, + "probability": 0.7837 + }, + { + "start": 4112.02, + "end": 4112.96, + "probability": 0.1516 + }, + { + "start": 4113.52, + "end": 4114.04, + "probability": 0.4042 + }, + { + "start": 4114.78, + "end": 4117.16, + "probability": 0.936 + }, + { + "start": 4122.62, + "end": 4123.68, + "probability": 0.9109 + }, + { + "start": 4123.86, + "end": 4127.16, + "probability": 0.9344 + }, + { + "start": 4127.94, + "end": 4131.06, + "probability": 0.9968 + }, + { + "start": 4131.99, + "end": 4134.98, + "probability": 0.9961 + }, + { + "start": 4135.36, + "end": 4140.12, + "probability": 0.9702 + }, + { + "start": 4147.06, + "end": 4150.06, + "probability": 0.9954 + }, + { + "start": 4150.46, + "end": 4154.76, + "probability": 0.9307 + }, + { + "start": 4155.98, + "end": 4159.26, + "probability": 0.8604 + }, + { + "start": 4160.84, + "end": 4161.76, + "probability": 0.9426 + }, + { + "start": 4163.86, + "end": 4164.8, + "probability": 0.9577 + }, + { + "start": 4166.36, + "end": 4168.0, + "probability": 0.7982 + }, + { + "start": 4169.36, + "end": 4174.76, + "probability": 0.9919 + }, + { + "start": 4175.94, + "end": 4178.24, + "probability": 0.9375 + }, + { + "start": 4179.16, + "end": 4181.16, + "probability": 0.9138 + }, + { + "start": 4182.38, + "end": 4186.96, + "probability": 0.9791 + }, + { + "start": 4187.56, + "end": 4188.96, + "probability": 0.6682 + }, + { + "start": 4192.92, + "end": 4194.28, + "probability": 0.8681 + }, + { + "start": 4196.06, + "end": 4197.18, + "probability": 0.9272 + }, + { + "start": 4198.16, + "end": 4199.98, + "probability": 0.9546 + }, + { + "start": 4201.0, + "end": 4202.5, + "probability": 0.8531 + }, + { + "start": 4203.66, + "end": 4207.58, + "probability": 0.9955 + }, + { + "start": 4209.16, + "end": 4210.18, + "probability": 0.978 + }, + { + "start": 4211.48, + "end": 4213.94, + "probability": 0.9202 + }, + { + "start": 4215.04, + "end": 4216.12, + "probability": 0.9803 + }, + { + "start": 4216.88, + "end": 4220.74, + "probability": 0.9003 + }, + { + "start": 4221.56, + "end": 4223.76, + "probability": 0.9595 + }, + { + "start": 4224.32, + "end": 4226.34, + "probability": 0.9921 + }, + { + "start": 4227.78, + "end": 4229.74, + "probability": 0.9585 + }, + { + "start": 4230.38, + "end": 4233.4, + "probability": 0.9243 + }, + { + "start": 4234.28, + "end": 4237.34, + "probability": 0.9905 + }, + { + "start": 4238.0, + "end": 4239.28, + "probability": 0.9655 + }, + { + "start": 4241.08, + "end": 4244.44, + "probability": 0.8449 + }, + { + "start": 4245.1, + "end": 4247.82, + "probability": 0.9593 + }, + { + "start": 4249.0, + "end": 4252.4, + "probability": 0.9314 + }, + { + "start": 4253.4, + "end": 4256.66, + "probability": 0.9934 + }, + { + "start": 4258.08, + "end": 4263.12, + "probability": 0.9832 + }, + { + "start": 4263.72, + "end": 4264.6, + "probability": 0.995 + }, + { + "start": 4265.14, + "end": 4266.1, + "probability": 0.9932 + }, + { + "start": 4267.72, + "end": 4270.7, + "probability": 0.9801 + }, + { + "start": 4271.62, + "end": 4272.44, + "probability": 0.7811 + }, + { + "start": 4272.98, + "end": 4274.96, + "probability": 0.988 + }, + { + "start": 4276.26, + "end": 4277.56, + "probability": 0.9708 + }, + { + "start": 4277.66, + "end": 4278.3, + "probability": 0.9373 + }, + { + "start": 4278.7, + "end": 4280.12, + "probability": 0.9284 + }, + { + "start": 4280.56, + "end": 4282.4, + "probability": 0.7472 + }, + { + "start": 4283.18, + "end": 4283.78, + "probability": 0.5257 + }, + { + "start": 4284.72, + "end": 4285.94, + "probability": 0.874 + }, + { + "start": 4286.64, + "end": 4290.4, + "probability": 0.8098 + }, + { + "start": 4291.18, + "end": 4294.96, + "probability": 0.9534 + }, + { + "start": 4296.22, + "end": 4303.46, + "probability": 0.9836 + }, + { + "start": 4304.0, + "end": 4305.14, + "probability": 0.6169 + }, + { + "start": 4305.22, + "end": 4308.5, + "probability": 0.9398 + }, + { + "start": 4309.76, + "end": 4311.44, + "probability": 0.6576 + }, + { + "start": 4312.66, + "end": 4320.54, + "probability": 0.839 + }, + { + "start": 4321.04, + "end": 4322.54, + "probability": 0.9396 + }, + { + "start": 4323.82, + "end": 4325.02, + "probability": 0.6284 + }, + { + "start": 4325.46, + "end": 4326.9, + "probability": 0.83 + }, + { + "start": 4327.36, + "end": 4329.74, + "probability": 0.9275 + }, + { + "start": 4330.22, + "end": 4333.26, + "probability": 0.9889 + }, + { + "start": 4334.42, + "end": 4339.56, + "probability": 0.9963 + }, + { + "start": 4340.16, + "end": 4343.7, + "probability": 0.9728 + }, + { + "start": 4343.7, + "end": 4348.02, + "probability": 0.9976 + }, + { + "start": 4349.44, + "end": 4350.02, + "probability": 0.8128 + }, + { + "start": 4350.92, + "end": 4352.0, + "probability": 0.8372 + }, + { + "start": 4352.78, + "end": 4355.54, + "probability": 0.7843 + }, + { + "start": 4356.16, + "end": 4358.08, + "probability": 0.9126 + }, + { + "start": 4359.2, + "end": 4364.12, + "probability": 0.8896 + }, + { + "start": 4364.88, + "end": 4365.94, + "probability": 0.8314 + }, + { + "start": 4366.5, + "end": 4369.42, + "probability": 0.9665 + }, + { + "start": 4369.88, + "end": 4372.52, + "probability": 0.9658 + }, + { + "start": 4373.34, + "end": 4378.14, + "probability": 0.8736 + }, + { + "start": 4379.02, + "end": 4384.46, + "probability": 0.9919 + }, + { + "start": 4385.66, + "end": 4386.34, + "probability": 0.72 + }, + { + "start": 4386.58, + "end": 4391.86, + "probability": 0.9743 + }, + { + "start": 4392.48, + "end": 4393.8, + "probability": 0.814 + }, + { + "start": 4394.92, + "end": 4400.28, + "probability": 0.9739 + }, + { + "start": 4400.66, + "end": 4401.34, + "probability": 0.7496 + }, + { + "start": 4401.98, + "end": 4404.28, + "probability": 0.9611 + }, + { + "start": 4405.3, + "end": 4407.8, + "probability": 0.7879 + }, + { + "start": 4408.58, + "end": 4412.84, + "probability": 0.8646 + }, + { + "start": 4413.3, + "end": 4416.1, + "probability": 0.9044 + }, + { + "start": 4416.6, + "end": 4417.98, + "probability": 0.9805 + }, + { + "start": 4418.42, + "end": 4420.3, + "probability": 0.9147 + }, + { + "start": 4421.36, + "end": 4424.84, + "probability": 0.8749 + }, + { + "start": 4425.82, + "end": 4427.94, + "probability": 0.9988 + }, + { + "start": 4428.56, + "end": 4429.5, + "probability": 0.893 + }, + { + "start": 4429.96, + "end": 4435.3, + "probability": 0.9891 + }, + { + "start": 4435.3, + "end": 4441.78, + "probability": 0.9793 + }, + { + "start": 4442.78, + "end": 4445.88, + "probability": 0.9415 + }, + { + "start": 4446.3, + "end": 4447.6, + "probability": 0.8652 + }, + { + "start": 4448.02, + "end": 4449.66, + "probability": 0.6564 + }, + { + "start": 4455.66, + "end": 4460.04, + "probability": 0.7911 + }, + { + "start": 4460.86, + "end": 4461.84, + "probability": 0.8673 + }, + { + "start": 4462.54, + "end": 4464.76, + "probability": 0.8694 + }, + { + "start": 4465.42, + "end": 4468.42, + "probability": 0.9884 + }, + { + "start": 4469.46, + "end": 4471.06, + "probability": 0.7478 + }, + { + "start": 4471.66, + "end": 4472.9, + "probability": 0.9835 + }, + { + "start": 4473.9, + "end": 4475.54, + "probability": 0.984 + }, + { + "start": 4476.96, + "end": 4477.5, + "probability": 0.6418 + }, + { + "start": 4478.76, + "end": 4481.06, + "probability": 0.9856 + }, + { + "start": 4481.96, + "end": 4483.9, + "probability": 0.8025 + }, + { + "start": 4485.14, + "end": 4489.12, + "probability": 0.9528 + }, + { + "start": 4490.2, + "end": 4492.04, + "probability": 0.9797 + }, + { + "start": 4492.54, + "end": 4494.4, + "probability": 0.9385 + }, + { + "start": 4495.12, + "end": 4501.52, + "probability": 0.9771 + }, + { + "start": 4502.62, + "end": 4503.98, + "probability": 0.8314 + }, + { + "start": 4505.0, + "end": 4508.48, + "probability": 0.9668 + }, + { + "start": 4509.4, + "end": 4510.1, + "probability": 0.2789 + }, + { + "start": 4512.52, + "end": 4514.97, + "probability": 0.0743 + }, + { + "start": 4550.12, + "end": 4551.0, + "probability": 0.4858 + }, + { + "start": 4553.74, + "end": 4555.84, + "probability": 0.9987 + }, + { + "start": 4558.9, + "end": 4559.94, + "probability": 0.9983 + }, + { + "start": 4561.98, + "end": 4562.72, + "probability": 0.6374 + }, + { + "start": 4564.2, + "end": 4569.66, + "probability": 0.7999 + }, + { + "start": 4572.74, + "end": 4573.08, + "probability": 0.587 + }, + { + "start": 4576.92, + "end": 4577.48, + "probability": 0.6362 + }, + { + "start": 4580.18, + "end": 4581.5, + "probability": 0.9332 + }, + { + "start": 4583.46, + "end": 4584.54, + "probability": 0.8167 + }, + { + "start": 4586.54, + "end": 4587.5, + "probability": 0.9407 + }, + { + "start": 4587.86, + "end": 4589.26, + "probability": 0.9173 + }, + { + "start": 4591.4, + "end": 4592.24, + "probability": 0.6138 + }, + { + "start": 4593.44, + "end": 4594.62, + "probability": 0.9712 + }, + { + "start": 4596.0, + "end": 4597.52, + "probability": 0.9614 + }, + { + "start": 4598.82, + "end": 4601.08, + "probability": 0.9873 + }, + { + "start": 4601.22, + "end": 4602.06, + "probability": 0.967 + }, + { + "start": 4604.02, + "end": 4604.02, + "probability": 0.1704 + }, + { + "start": 4605.7, + "end": 4606.76, + "probability": 0.8771 + }, + { + "start": 4607.76, + "end": 4609.12, + "probability": 0.9907 + }, + { + "start": 4609.2, + "end": 4610.9, + "probability": 0.9776 + }, + { + "start": 4611.34, + "end": 4613.38, + "probability": 0.9905 + }, + { + "start": 4616.56, + "end": 4618.18, + "probability": 0.9275 + }, + { + "start": 4620.62, + "end": 4625.08, + "probability": 0.9463 + }, + { + "start": 4625.78, + "end": 4626.48, + "probability": 0.7423 + }, + { + "start": 4627.9, + "end": 4631.46, + "probability": 0.8189 + }, + { + "start": 4632.3, + "end": 4633.82, + "probability": 0.6915 + }, + { + "start": 4635.26, + "end": 4637.45, + "probability": 0.9675 + }, + { + "start": 4638.8, + "end": 4640.32, + "probability": 0.827 + }, + { + "start": 4642.04, + "end": 4644.82, + "probability": 0.7519 + }, + { + "start": 4644.92, + "end": 4646.32, + "probability": 0.9316 + }, + { + "start": 4646.32, + "end": 4647.24, + "probability": 0.7741 + }, + { + "start": 4648.82, + "end": 4650.02, + "probability": 0.9473 + }, + { + "start": 4651.96, + "end": 4655.76, + "probability": 0.9811 + }, + { + "start": 4657.52, + "end": 4658.74, + "probability": 0.9683 + }, + { + "start": 4661.38, + "end": 4662.28, + "probability": 0.981 + }, + { + "start": 4662.48, + "end": 4665.44, + "probability": 0.9933 + }, + { + "start": 4667.84, + "end": 4669.96, + "probability": 0.9831 + }, + { + "start": 4670.14, + "end": 4671.42, + "probability": 0.979 + }, + { + "start": 4671.74, + "end": 4673.16, + "probability": 0.9687 + }, + { + "start": 4673.24, + "end": 4675.52, + "probability": 0.9655 + }, + { + "start": 4676.64, + "end": 4678.48, + "probability": 0.9366 + }, + { + "start": 4678.88, + "end": 4680.64, + "probability": 0.9899 + }, + { + "start": 4682.62, + "end": 4686.48, + "probability": 0.998 + }, + { + "start": 4687.92, + "end": 4690.86, + "probability": 0.9943 + }, + { + "start": 4692.3, + "end": 4693.98, + "probability": 0.9662 + }, + { + "start": 4695.66, + "end": 4696.88, + "probability": 0.9106 + }, + { + "start": 4698.4, + "end": 4701.14, + "probability": 0.9953 + }, + { + "start": 4703.26, + "end": 4704.98, + "probability": 0.8611 + }, + { + "start": 4707.08, + "end": 4708.08, + "probability": 0.6581 + }, + { + "start": 4709.34, + "end": 4710.84, + "probability": 0.9483 + }, + { + "start": 4713.66, + "end": 4714.78, + "probability": 0.9722 + }, + { + "start": 4715.82, + "end": 4717.64, + "probability": 0.9687 + }, + { + "start": 4720.34, + "end": 4720.42, + "probability": 0.0 + }, + { + "start": 4721.0, + "end": 4721.24, + "probability": 0.0 + }, + { + "start": 4725.04, + "end": 4727.7, + "probability": 0.6218 + }, + { + "start": 4729.3, + "end": 4732.96, + "probability": 0.8076 + }, + { + "start": 4736.52, + "end": 4737.34, + "probability": 0.8208 + }, + { + "start": 4739.28, + "end": 4742.72, + "probability": 0.8977 + }, + { + "start": 4745.58, + "end": 4746.64, + "probability": 0.6195 + }, + { + "start": 4748.5, + "end": 4751.4, + "probability": 0.9882 + }, + { + "start": 4753.42, + "end": 4757.16, + "probability": 0.794 + }, + { + "start": 4758.0, + "end": 4761.1, + "probability": 0.9777 + }, + { + "start": 4762.58, + "end": 4764.76, + "probability": 0.9914 + }, + { + "start": 4765.74, + "end": 4769.88, + "probability": 0.9701 + }, + { + "start": 4770.68, + "end": 4774.42, + "probability": 0.9889 + }, + { + "start": 4777.12, + "end": 4778.2, + "probability": 0.5135 + }, + { + "start": 4778.2, + "end": 4778.22, + "probability": 0.7215 + }, + { + "start": 4778.26, + "end": 4778.6, + "probability": 0.809 + }, + { + "start": 4778.72, + "end": 4780.16, + "probability": 0.9724 + }, + { + "start": 4781.12, + "end": 4782.52, + "probability": 0.9125 + }, + { + "start": 4784.86, + "end": 4786.0, + "probability": 0.9697 + }, + { + "start": 4786.4, + "end": 4787.56, + "probability": 0.9865 + }, + { + "start": 4787.72, + "end": 4788.76, + "probability": 0.9768 + }, + { + "start": 4788.86, + "end": 4793.98, + "probability": 0.9191 + }, + { + "start": 4794.96, + "end": 4798.92, + "probability": 0.9976 + }, + { + "start": 4799.47, + "end": 4801.66, + "probability": 0.9951 + }, + { + "start": 4803.26, + "end": 4804.68, + "probability": 0.986 + }, + { + "start": 4807.1, + "end": 4808.66, + "probability": 0.98 + }, + { + "start": 4811.44, + "end": 4813.02, + "probability": 0.9927 + }, + { + "start": 4814.38, + "end": 4816.36, + "probability": 0.8204 + }, + { + "start": 4817.8, + "end": 4821.12, + "probability": 0.915 + }, + { + "start": 4822.84, + "end": 4823.64, + "probability": 0.978 + }, + { + "start": 4824.54, + "end": 4827.62, + "probability": 0.9662 + }, + { + "start": 4828.68, + "end": 4829.42, + "probability": 0.9238 + }, + { + "start": 4830.78, + "end": 4833.98, + "probability": 0.9815 + }, + { + "start": 4837.5, + "end": 4838.64, + "probability": 0.9569 + }, + { + "start": 4840.66, + "end": 4842.14, + "probability": 0.9872 + }, + { + "start": 4843.94, + "end": 4845.72, + "probability": 0.8545 + }, + { + "start": 4846.46, + "end": 4848.14, + "probability": 0.9948 + }, + { + "start": 4849.18, + "end": 4849.82, + "probability": 0.9526 + }, + { + "start": 4850.46, + "end": 4851.02, + "probability": 0.9388 + }, + { + "start": 4853.06, + "end": 4853.94, + "probability": 0.9385 + }, + { + "start": 4855.24, + "end": 4856.8, + "probability": 0.9004 + }, + { + "start": 4857.82, + "end": 4859.08, + "probability": 0.9907 + }, + { + "start": 4859.8, + "end": 4861.78, + "probability": 0.8267 + }, + { + "start": 4863.24, + "end": 4864.64, + "probability": 0.9075 + }, + { + "start": 4865.64, + "end": 4867.56, + "probability": 0.8197 + }, + { + "start": 4869.08, + "end": 4869.12, + "probability": 0.4638 + }, + { + "start": 4869.7, + "end": 4872.7, + "probability": 0.9961 + }, + { + "start": 4875.18, + "end": 4876.24, + "probability": 0.9315 + }, + { + "start": 4878.26, + "end": 4881.46, + "probability": 0.8905 + }, + { + "start": 4881.5, + "end": 4883.98, + "probability": 0.9916 + }, + { + "start": 4885.88, + "end": 4887.7, + "probability": 0.6208 + }, + { + "start": 4889.34, + "end": 4893.14, + "probability": 0.9952 + }, + { + "start": 4894.08, + "end": 4895.96, + "probability": 0.9991 + }, + { + "start": 4897.56, + "end": 4904.14, + "probability": 0.9875 + }, + { + "start": 4905.74, + "end": 4906.22, + "probability": 0.778 + }, + { + "start": 4907.44, + "end": 4910.04, + "probability": 0.9959 + }, + { + "start": 4910.4, + "end": 4913.1, + "probability": 0.8563 + }, + { + "start": 4913.68, + "end": 4915.44, + "probability": 0.7124 + }, + { + "start": 4915.5, + "end": 4915.92, + "probability": 0.6327 + }, + { + "start": 4923.62, + "end": 4927.62, + "probability": 0.8466 + }, + { + "start": 4929.44, + "end": 4933.46, + "probability": 0.9438 + }, + { + "start": 4933.46, + "end": 4939.46, + "probability": 0.995 + }, + { + "start": 4940.42, + "end": 4943.28, + "probability": 0.9967 + }, + { + "start": 4944.54, + "end": 4945.3, + "probability": 0.8337 + }, + { + "start": 4945.9, + "end": 4949.26, + "probability": 0.9952 + }, + { + "start": 4950.38, + "end": 4952.06, + "probability": 0.9081 + }, + { + "start": 4953.18, + "end": 4961.0, + "probability": 0.9981 + }, + { + "start": 4961.68, + "end": 4964.12, + "probability": 0.9326 + }, + { + "start": 4964.98, + "end": 4968.66, + "probability": 0.9394 + }, + { + "start": 4969.86, + "end": 4971.1, + "probability": 0.9675 + }, + { + "start": 4971.98, + "end": 4975.36, + "probability": 0.9941 + }, + { + "start": 4976.42, + "end": 4980.6, + "probability": 0.9904 + }, + { + "start": 4981.32, + "end": 4983.66, + "probability": 0.9616 + }, + { + "start": 4984.32, + "end": 4985.6, + "probability": 0.8137 + }, + { + "start": 4986.32, + "end": 4988.02, + "probability": 0.8408 + }, + { + "start": 4988.78, + "end": 4992.82, + "probability": 0.8695 + }, + { + "start": 4994.02, + "end": 4994.9, + "probability": 0.9927 + }, + { + "start": 4995.54, + "end": 5000.6, + "probability": 0.9968 + }, + { + "start": 5001.68, + "end": 5006.8, + "probability": 0.8391 + }, + { + "start": 5007.38, + "end": 5009.22, + "probability": 0.7869 + }, + { + "start": 5010.5, + "end": 5013.74, + "probability": 0.9811 + }, + { + "start": 5014.84, + "end": 5019.9, + "probability": 0.9957 + }, + { + "start": 5019.9, + "end": 5023.34, + "probability": 0.9915 + }, + { + "start": 5024.58, + "end": 5026.46, + "probability": 0.9449 + }, + { + "start": 5027.34, + "end": 5027.76, + "probability": 0.4066 + }, + { + "start": 5028.52, + "end": 5030.52, + "probability": 0.9822 + }, + { + "start": 5031.48, + "end": 5033.18, + "probability": 0.9452 + }, + { + "start": 5034.7, + "end": 5035.02, + "probability": 0.6245 + }, + { + "start": 5035.12, + "end": 5035.96, + "probability": 0.8597 + }, + { + "start": 5036.44, + "end": 5040.22, + "probability": 0.9935 + }, + { + "start": 5041.28, + "end": 5041.58, + "probability": 0.4911 + }, + { + "start": 5042.0, + "end": 5048.48, + "probability": 0.9722 + }, + { + "start": 5050.2, + "end": 5051.76, + "probability": 0.8315 + }, + { + "start": 5053.04, + "end": 5057.5, + "probability": 0.9392 + }, + { + "start": 5058.1, + "end": 5063.92, + "probability": 0.9658 + }, + { + "start": 5064.88, + "end": 5066.78, + "probability": 0.994 + }, + { + "start": 5068.16, + "end": 5072.2, + "probability": 0.9828 + }, + { + "start": 5072.2, + "end": 5077.54, + "probability": 0.9993 + }, + { + "start": 5078.12, + "end": 5081.46, + "probability": 0.9947 + }, + { + "start": 5082.22, + "end": 5085.98, + "probability": 0.9924 + }, + { + "start": 5086.52, + "end": 5088.44, + "probability": 0.9969 + }, + { + "start": 5089.2, + "end": 5090.32, + "probability": 0.9907 + }, + { + "start": 5091.94, + "end": 5095.28, + "probability": 0.9985 + }, + { + "start": 5096.32, + "end": 5101.86, + "probability": 0.9989 + }, + { + "start": 5102.2, + "end": 5103.76, + "probability": 0.9214 + }, + { + "start": 5104.6, + "end": 5108.38, + "probability": 0.9902 + }, + { + "start": 5109.08, + "end": 5110.24, + "probability": 0.9265 + }, + { + "start": 5111.44, + "end": 5112.68, + "probability": 0.8223 + }, + { + "start": 5113.7, + "end": 5116.54, + "probability": 0.6914 + }, + { + "start": 5116.74, + "end": 5119.18, + "probability": 0.7334 + }, + { + "start": 5119.68, + "end": 5121.66, + "probability": 0.9664 + }, + { + "start": 5123.58, + "end": 5126.78, + "probability": 0.9966 + }, + { + "start": 5128.1, + "end": 5132.74, + "probability": 0.9435 + }, + { + "start": 5132.9, + "end": 5135.46, + "probability": 0.9902 + }, + { + "start": 5136.28, + "end": 5138.06, + "probability": 0.9833 + }, + { + "start": 5138.3, + "end": 5139.76, + "probability": 0.7661 + }, + { + "start": 5141.46, + "end": 5142.02, + "probability": 0.5112 + }, + { + "start": 5142.06, + "end": 5145.0, + "probability": 0.991 + }, + { + "start": 5145.26, + "end": 5145.54, + "probability": 0.9399 + }, + { + "start": 5145.66, + "end": 5147.4, + "probability": 0.8246 + }, + { + "start": 5148.94, + "end": 5153.1, + "probability": 0.7565 + }, + { + "start": 5153.98, + "end": 5157.24, + "probability": 0.9658 + }, + { + "start": 5158.0, + "end": 5162.6, + "probability": 0.9735 + }, + { + "start": 5162.68, + "end": 5166.26, + "probability": 0.9991 + }, + { + "start": 5167.14, + "end": 5171.2, + "probability": 0.9985 + }, + { + "start": 5171.2, + "end": 5177.06, + "probability": 0.9949 + }, + { + "start": 5178.0, + "end": 5182.96, + "probability": 0.9883 + }, + { + "start": 5183.84, + "end": 5189.07, + "probability": 0.9967 + }, + { + "start": 5190.28, + "end": 5191.46, + "probability": 0.4498 + }, + { + "start": 5191.6, + "end": 5195.86, + "probability": 0.991 + }, + { + "start": 5195.98, + "end": 5197.06, + "probability": 0.6252 + }, + { + "start": 5198.04, + "end": 5201.42, + "probability": 0.9951 + }, + { + "start": 5201.62, + "end": 5203.2, + "probability": 0.7379 + }, + { + "start": 5204.46, + "end": 5206.92, + "probability": 0.6693 + }, + { + "start": 5207.44, + "end": 5211.52, + "probability": 0.9768 + }, + { + "start": 5212.58, + "end": 5214.7, + "probability": 0.8152 + }, + { + "start": 5214.8, + "end": 5216.46, + "probability": 0.9918 + }, + { + "start": 5216.58, + "end": 5217.58, + "probability": 0.9238 + }, + { + "start": 5221.15, + "end": 5222.87, + "probability": 0.3237 + }, + { + "start": 5223.98, + "end": 5227.5, + "probability": 0.7943 + }, + { + "start": 5228.44, + "end": 5233.0, + "probability": 0.9496 + }, + { + "start": 5233.52, + "end": 5234.54, + "probability": 0.7614 + }, + { + "start": 5236.16, + "end": 5237.66, + "probability": 0.9301 + }, + { + "start": 5238.66, + "end": 5243.5, + "probability": 0.9371 + }, + { + "start": 5244.38, + "end": 5247.0, + "probability": 0.8759 + }, + { + "start": 5249.44, + "end": 5252.08, + "probability": 0.8913 + }, + { + "start": 5252.68, + "end": 5257.14, + "probability": 0.9897 + }, + { + "start": 5258.24, + "end": 5262.06, + "probability": 0.9606 + }, + { + "start": 5263.04, + "end": 5263.92, + "probability": 0.8352 + }, + { + "start": 5265.36, + "end": 5269.44, + "probability": 0.9979 + }, + { + "start": 5269.82, + "end": 5270.4, + "probability": 0.7874 + }, + { + "start": 5270.94, + "end": 5271.18, + "probability": 0.6175 + }, + { + "start": 5271.86, + "end": 5275.68, + "probability": 0.7859 + }, + { + "start": 5276.26, + "end": 5279.54, + "probability": 0.989 + }, + { + "start": 5280.94, + "end": 5283.12, + "probability": 0.9131 + }, + { + "start": 5284.18, + "end": 5285.6, + "probability": 0.7875 + }, + { + "start": 5286.28, + "end": 5289.32, + "probability": 0.9016 + }, + { + "start": 5289.32, + "end": 5293.58, + "probability": 0.8849 + }, + { + "start": 5294.58, + "end": 5297.74, + "probability": 0.9631 + }, + { + "start": 5300.06, + "end": 5301.96, + "probability": 0.669 + }, + { + "start": 5302.78, + "end": 5303.94, + "probability": 0.7743 + }, + { + "start": 5304.22, + "end": 5305.4, + "probability": 0.9707 + }, + { + "start": 5305.7, + "end": 5307.34, + "probability": 0.7127 + }, + { + "start": 5307.92, + "end": 5309.28, + "probability": 0.9194 + }, + { + "start": 5310.1, + "end": 5315.02, + "probability": 0.4324 + }, + { + "start": 5316.36, + "end": 5321.1, + "probability": 0.9839 + }, + { + "start": 5321.8, + "end": 5325.62, + "probability": 0.99 + }, + { + "start": 5326.72, + "end": 5327.36, + "probability": 0.5525 + }, + { + "start": 5327.52, + "end": 5328.86, + "probability": 0.6659 + }, + { + "start": 5329.12, + "end": 5332.04, + "probability": 0.9701 + }, + { + "start": 5332.96, + "end": 5335.01, + "probability": 0.9404 + }, + { + "start": 5336.98, + "end": 5340.52, + "probability": 0.6972 + }, + { + "start": 5341.38, + "end": 5345.18, + "probability": 0.9507 + }, + { + "start": 5345.94, + "end": 5348.98, + "probability": 0.8011 + }, + { + "start": 5349.88, + "end": 5351.76, + "probability": 0.9342 + }, + { + "start": 5352.26, + "end": 5354.76, + "probability": 0.9873 + }, + { + "start": 5355.94, + "end": 5357.88, + "probability": 0.9511 + }, + { + "start": 5358.58, + "end": 5360.78, + "probability": 0.9629 + }, + { + "start": 5364.36, + "end": 5364.86, + "probability": 0.503 + }, + { + "start": 5367.2, + "end": 5368.94, + "probability": 0.828 + }, + { + "start": 5369.68, + "end": 5372.08, + "probability": 0.9121 + }, + { + "start": 5374.28, + "end": 5379.18, + "probability": 0.9965 + }, + { + "start": 5379.36, + "end": 5382.04, + "probability": 0.9292 + }, + { + "start": 5382.56, + "end": 5383.62, + "probability": 0.7759 + }, + { + "start": 5385.02, + "end": 5385.52, + "probability": 0.5861 + }, + { + "start": 5385.58, + "end": 5392.7, + "probability": 0.4685 + }, + { + "start": 5392.7, + "end": 5396.84, + "probability": 0.9183 + }, + { + "start": 5397.36, + "end": 5399.03, + "probability": 0.9863 + }, + { + "start": 5400.02, + "end": 5401.18, + "probability": 0.8514 + }, + { + "start": 5403.9, + "end": 5408.98, + "probability": 0.9955 + }, + { + "start": 5409.86, + "end": 5410.44, + "probability": 0.5113 + }, + { + "start": 5411.1, + "end": 5412.76, + "probability": 0.9216 + }, + { + "start": 5413.74, + "end": 5414.92, + "probability": 0.9659 + }, + { + "start": 5415.88, + "end": 5417.48, + "probability": 0.8487 + }, + { + "start": 5418.04, + "end": 5423.54, + "probability": 0.9766 + }, + { + "start": 5426.38, + "end": 5428.28, + "probability": 0.6992 + }, + { + "start": 5429.28, + "end": 5433.9, + "probability": 0.9076 + }, + { + "start": 5434.12, + "end": 5435.34, + "probability": 0.9402 + }, + { + "start": 5436.2, + "end": 5438.98, + "probability": 0.9878 + }, + { + "start": 5439.98, + "end": 5442.02, + "probability": 0.9971 + }, + { + "start": 5442.58, + "end": 5445.62, + "probability": 0.8684 + }, + { + "start": 5446.94, + "end": 5449.62, + "probability": 0.8558 + }, + { + "start": 5450.44, + "end": 5450.96, + "probability": 0.798 + }, + { + "start": 5451.84, + "end": 5455.74, + "probability": 0.9969 + }, + { + "start": 5457.04, + "end": 5459.16, + "probability": 0.9927 + }, + { + "start": 5460.5, + "end": 5463.34, + "probability": 0.6389 + }, + { + "start": 5463.34, + "end": 5466.28, + "probability": 0.9989 + }, + { + "start": 5466.48, + "end": 5471.58, + "probability": 0.8742 + }, + { + "start": 5472.2, + "end": 5472.94, + "probability": 0.7363 + }, + { + "start": 5474.16, + "end": 5474.48, + "probability": 0.6707 + }, + { + "start": 5474.48, + "end": 5481.1, + "probability": 0.9767 + }, + { + "start": 5482.06, + "end": 5483.74, + "probability": 0.9282 + }, + { + "start": 5484.94, + "end": 5488.06, + "probability": 0.9889 + }, + { + "start": 5488.64, + "end": 5488.74, + "probability": 0.6191 + }, + { + "start": 5489.7, + "end": 5491.54, + "probability": 0.7446 + }, + { + "start": 5492.18, + "end": 5494.08, + "probability": 0.9924 + }, + { + "start": 5496.52, + "end": 5500.87, + "probability": 0.9954 + }, + { + "start": 5501.2, + "end": 5501.62, + "probability": 0.833 + }, + { + "start": 5501.78, + "end": 5502.26, + "probability": 0.5554 + }, + { + "start": 5502.3, + "end": 5503.62, + "probability": 0.59 + }, + { + "start": 5504.98, + "end": 5507.44, + "probability": 0.9967 + }, + { + "start": 5508.28, + "end": 5511.16, + "probability": 0.9538 + }, + { + "start": 5511.94, + "end": 5515.88, + "probability": 0.9907 + }, + { + "start": 5517.12, + "end": 5519.14, + "probability": 0.9977 + }, + { + "start": 5519.22, + "end": 5521.48, + "probability": 0.6487 + }, + { + "start": 5521.94, + "end": 5523.16, + "probability": 0.7328 + }, + { + "start": 5523.62, + "end": 5527.43, + "probability": 0.5552 + }, + { + "start": 5527.64, + "end": 5530.42, + "probability": 0.9971 + }, + { + "start": 5534.22, + "end": 5536.2, + "probability": 0.6019 + }, + { + "start": 5536.9, + "end": 5539.54, + "probability": 0.9542 + }, + { + "start": 5540.18, + "end": 5540.96, + "probability": 0.7744 + }, + { + "start": 5540.98, + "end": 5545.4, + "probability": 0.8015 + }, + { + "start": 5545.9, + "end": 5548.22, + "probability": 0.6681 + }, + { + "start": 5549.06, + "end": 5551.74, + "probability": 0.9985 + }, + { + "start": 5551.74, + "end": 5554.78, + "probability": 0.8706 + }, + { + "start": 5555.88, + "end": 5558.94, + "probability": 0.9893 + }, + { + "start": 5559.42, + "end": 5560.98, + "probability": 0.9666 + }, + { + "start": 5561.64, + "end": 5564.9, + "probability": 0.935 + }, + { + "start": 5565.52, + "end": 5566.66, + "probability": 0.9916 + }, + { + "start": 5567.22, + "end": 5570.34, + "probability": 0.9877 + }, + { + "start": 5571.12, + "end": 5572.24, + "probability": 0.9069 + }, + { + "start": 5573.34, + "end": 5575.58, + "probability": 0.7375 + }, + { + "start": 5576.68, + "end": 5579.28, + "probability": 0.9696 + }, + { + "start": 5580.18, + "end": 5582.18, + "probability": 0.7214 + }, + { + "start": 5582.68, + "end": 5583.48, + "probability": 0.6617 + }, + { + "start": 5584.22, + "end": 5589.04, + "probability": 0.9927 + }, + { + "start": 5589.5, + "end": 5590.58, + "probability": 0.8336 + }, + { + "start": 5591.06, + "end": 5592.6, + "probability": 0.866 + }, + { + "start": 5592.76, + "end": 5593.2, + "probability": 0.9484 + }, + { + "start": 5593.28, + "end": 5594.7, + "probability": 0.8633 + }, + { + "start": 5595.18, + "end": 5596.42, + "probability": 0.9041 + }, + { + "start": 5596.9, + "end": 5600.58, + "probability": 0.9183 + }, + { + "start": 5602.04, + "end": 5603.66, + "probability": 0.9058 + }, + { + "start": 5603.94, + "end": 5606.08, + "probability": 0.6761 + }, + { + "start": 5606.54, + "end": 5609.8, + "probability": 0.9738 + }, + { + "start": 5609.92, + "end": 5614.34, + "probability": 0.9729 + }, + { + "start": 5614.82, + "end": 5616.08, + "probability": 0.983 + }, + { + "start": 5616.26, + "end": 5617.42, + "probability": 0.9485 + }, + { + "start": 5617.94, + "end": 5623.18, + "probability": 0.9832 + }, + { + "start": 5623.74, + "end": 5625.46, + "probability": 0.5577 + }, + { + "start": 5626.08, + "end": 5627.8, + "probability": 0.7116 + }, + { + "start": 5628.87, + "end": 5630.78, + "probability": 0.9944 + }, + { + "start": 5631.36, + "end": 5634.86, + "probability": 0.9642 + }, + { + "start": 5635.4, + "end": 5637.73, + "probability": 0.6165 + }, + { + "start": 5638.58, + "end": 5640.98, + "probability": 0.8833 + }, + { + "start": 5641.4, + "end": 5642.9, + "probability": 0.9095 + }, + { + "start": 5643.74, + "end": 5645.12, + "probability": 0.9303 + }, + { + "start": 5645.42, + "end": 5646.22, + "probability": 0.4236 + }, + { + "start": 5646.34, + "end": 5647.87, + "probability": 0.9845 + }, + { + "start": 5648.26, + "end": 5649.6, + "probability": 0.9952 + }, + { + "start": 5650.78, + "end": 5651.08, + "probability": 0.9126 + }, + { + "start": 5663.46, + "end": 5667.24, + "probability": 0.2096 + }, + { + "start": 5669.06, + "end": 5672.42, + "probability": 0.8437 + }, + { + "start": 5673.32, + "end": 5676.2, + "probability": 0.8285 + }, + { + "start": 5676.96, + "end": 5680.23, + "probability": 0.9736 + }, + { + "start": 5680.5, + "end": 5684.36, + "probability": 0.9559 + }, + { + "start": 5685.16, + "end": 5688.66, + "probability": 0.9983 + }, + { + "start": 5688.66, + "end": 5692.52, + "probability": 0.998 + }, + { + "start": 5693.62, + "end": 5696.48, + "probability": 0.8525 + }, + { + "start": 5697.28, + "end": 5703.3, + "probability": 0.9895 + }, + { + "start": 5703.3, + "end": 5708.56, + "probability": 0.9937 + }, + { + "start": 5712.66, + "end": 5717.84, + "probability": 0.8806 + }, + { + "start": 5719.08, + "end": 5727.02, + "probability": 0.9653 + }, + { + "start": 5727.02, + "end": 5727.18, + "probability": 0.6148 + }, + { + "start": 5728.18, + "end": 5731.18, + "probability": 0.9661 + }, + { + "start": 5732.24, + "end": 5733.9, + "probability": 0.9404 + }, + { + "start": 5734.6, + "end": 5735.5, + "probability": 0.8301 + }, + { + "start": 5736.72, + "end": 5742.7, + "probability": 0.9653 + }, + { + "start": 5744.56, + "end": 5748.76, + "probability": 0.968 + }, + { + "start": 5749.44, + "end": 5755.64, + "probability": 0.9032 + }, + { + "start": 5755.8, + "end": 5759.58, + "probability": 0.8561 + }, + { + "start": 5762.04, + "end": 5766.58, + "probability": 0.9968 + }, + { + "start": 5766.76, + "end": 5772.58, + "probability": 0.7921 + }, + { + "start": 5773.82, + "end": 5775.84, + "probability": 0.6739 + }, + { + "start": 5776.68, + "end": 5780.86, + "probability": 0.9562 + }, + { + "start": 5781.96, + "end": 5787.88, + "probability": 0.7693 + }, + { + "start": 5788.14, + "end": 5791.9, + "probability": 0.6577 + }, + { + "start": 5792.46, + "end": 5794.5, + "probability": 0.962 + }, + { + "start": 5795.3, + "end": 5800.48, + "probability": 0.98 + }, + { + "start": 5801.04, + "end": 5807.58, + "probability": 0.9596 + }, + { + "start": 5809.18, + "end": 5816.16, + "probability": 0.8864 + }, + { + "start": 5817.78, + "end": 5818.7, + "probability": 0.5585 + }, + { + "start": 5819.32, + "end": 5820.34, + "probability": 0.9241 + }, + { + "start": 5820.86, + "end": 5822.7, + "probability": 0.6553 + }, + { + "start": 5823.9, + "end": 5827.44, + "probability": 0.9702 + }, + { + "start": 5830.22, + "end": 5836.62, + "probability": 0.9043 + }, + { + "start": 5836.62, + "end": 5837.94, + "probability": 0.9105 + }, + { + "start": 5838.04, + "end": 5839.26, + "probability": 0.7635 + }, + { + "start": 5839.36, + "end": 5840.3, + "probability": 0.587 + }, + { + "start": 5841.12, + "end": 5843.68, + "probability": 0.8885 + }, + { + "start": 5844.1, + "end": 5845.56, + "probability": 0.791 + }, + { + "start": 5845.92, + "end": 5847.94, + "probability": 0.9159 + }, + { + "start": 5848.84, + "end": 5858.1, + "probability": 0.944 + }, + { + "start": 5862.32, + "end": 5863.14, + "probability": 0.611 + }, + { + "start": 5863.84, + "end": 5864.38, + "probability": 0.7485 + }, + { + "start": 5865.38, + "end": 5866.88, + "probability": 0.6386 + }, + { + "start": 5867.34, + "end": 5868.2, + "probability": 0.9626 + }, + { + "start": 5869.8, + "end": 5872.88, + "probability": 0.9865 + }, + { + "start": 5874.3, + "end": 5881.78, + "probability": 0.9416 + }, + { + "start": 5883.1, + "end": 5889.16, + "probability": 0.9961 + }, + { + "start": 5889.16, + "end": 5899.2, + "probability": 0.8521 + }, + { + "start": 5899.42, + "end": 5900.78, + "probability": 0.4468 + }, + { + "start": 5901.22, + "end": 5903.04, + "probability": 0.9597 + }, + { + "start": 5904.52, + "end": 5910.68, + "probability": 0.9902 + }, + { + "start": 5910.68, + "end": 5915.14, + "probability": 0.9935 + }, + { + "start": 5915.82, + "end": 5922.5, + "probability": 0.9898 + }, + { + "start": 5923.32, + "end": 5926.9, + "probability": 0.6834 + }, + { + "start": 5928.12, + "end": 5931.82, + "probability": 0.9843 + }, + { + "start": 5933.8, + "end": 5938.96, + "probability": 0.9778 + }, + { + "start": 5939.58, + "end": 5942.98, + "probability": 0.9973 + }, + { + "start": 5942.98, + "end": 5947.9, + "probability": 0.9873 + }, + { + "start": 5950.86, + "end": 5953.1, + "probability": 0.0256 + }, + { + "start": 5953.56, + "end": 5956.04, + "probability": 0.0211 + }, + { + "start": 5956.36, + "end": 5957.42, + "probability": 0.1484 + }, + { + "start": 5957.94, + "end": 5960.36, + "probability": 0.055 + }, + { + "start": 5960.36, + "end": 5965.7, + "probability": 0.6665 + }, + { + "start": 5966.52, + "end": 5969.28, + "probability": 0.9461 + }, + { + "start": 5969.38, + "end": 5969.94, + "probability": 0.4317 + }, + { + "start": 5970.08, + "end": 5970.5, + "probability": 0.8826 + }, + { + "start": 5981.14, + "end": 5983.04, + "probability": 0.9919 + }, + { + "start": 5983.1, + "end": 5984.56, + "probability": 0.7381 + }, + { + "start": 5984.86, + "end": 5985.34, + "probability": 0.9865 + }, + { + "start": 5989.62, + "end": 5990.84, + "probability": 0.6228 + }, + { + "start": 5991.94, + "end": 5994.28, + "probability": 0.9297 + }, + { + "start": 5994.88, + "end": 5996.16, + "probability": 0.962 + }, + { + "start": 5996.86, + "end": 5997.18, + "probability": 0.6542 + }, + { + "start": 5997.88, + "end": 5999.64, + "probability": 0.9933 + }, + { + "start": 5999.9, + "end": 6001.9, + "probability": 0.9906 + }, + { + "start": 6002.34, + "end": 6003.0, + "probability": 0.6601 + }, + { + "start": 6003.52, + "end": 6004.52, + "probability": 0.3775 + }, + { + "start": 6005.82, + "end": 6006.21, + "probability": 0.2686 + }, + { + "start": 6006.86, + "end": 6010.82, + "probability": 0.8283 + }, + { + "start": 6011.48, + "end": 6015.0, + "probability": 0.9979 + }, + { + "start": 6016.2, + "end": 6017.68, + "probability": 0.9751 + }, + { + "start": 6018.28, + "end": 6020.68, + "probability": 0.9253 + }, + { + "start": 6021.4, + "end": 6023.74, + "probability": 0.9395 + }, + { + "start": 6024.4, + "end": 6024.72, + "probability": 0.4664 + }, + { + "start": 6025.46, + "end": 6026.1, + "probability": 0.7411 + }, + { + "start": 6026.72, + "end": 6028.22, + "probability": 0.866 + }, + { + "start": 6028.76, + "end": 6029.84, + "probability": 0.7011 + }, + { + "start": 6029.96, + "end": 6030.66, + "probability": 0.9122 + }, + { + "start": 6030.82, + "end": 6036.58, + "probability": 0.9677 + }, + { + "start": 6036.86, + "end": 6040.52, + "probability": 0.9886 + }, + { + "start": 6040.92, + "end": 6041.56, + "probability": 0.9604 + }, + { + "start": 6041.9, + "end": 6045.84, + "probability": 0.8341 + }, + { + "start": 6047.3, + "end": 6047.98, + "probability": 0.85 + }, + { + "start": 6048.82, + "end": 6052.9, + "probability": 0.9932 + }, + { + "start": 6053.74, + "end": 6060.76, + "probability": 0.991 + }, + { + "start": 6061.02, + "end": 6061.78, + "probability": 0.7211 + }, + { + "start": 6062.5, + "end": 6068.7, + "probability": 0.9893 + }, + { + "start": 6069.58, + "end": 6073.48, + "probability": 0.9888 + }, + { + "start": 6074.16, + "end": 6078.62, + "probability": 0.8728 + }, + { + "start": 6078.78, + "end": 6079.38, + "probability": 0.4872 + }, + { + "start": 6079.86, + "end": 6080.6, + "probability": 0.6242 + }, + { + "start": 6080.98, + "end": 6081.74, + "probability": 0.8214 + }, + { + "start": 6082.66, + "end": 6083.4, + "probability": 0.811 + }, + { + "start": 6083.44, + "end": 6084.6, + "probability": 0.984 + }, + { + "start": 6084.72, + "end": 6089.28, + "probability": 0.9926 + }, + { + "start": 6089.28, + "end": 6093.0, + "probability": 0.9829 + }, + { + "start": 6094.22, + "end": 6102.0, + "probability": 0.9954 + }, + { + "start": 6102.84, + "end": 6103.36, + "probability": 0.7916 + }, + { + "start": 6103.74, + "end": 6107.66, + "probability": 0.9933 + }, + { + "start": 6107.9, + "end": 6108.58, + "probability": 0.1909 + }, + { + "start": 6108.64, + "end": 6109.4, + "probability": 0.4516 + }, + { + "start": 6109.52, + "end": 6112.98, + "probability": 0.9531 + }, + { + "start": 6113.18, + "end": 6114.48, + "probability": 0.8908 + }, + { + "start": 6114.64, + "end": 6117.0, + "probability": 0.9701 + }, + { + "start": 6117.4, + "end": 6119.76, + "probability": 0.9978 + }, + { + "start": 6120.26, + "end": 6123.02, + "probability": 0.6917 + }, + { + "start": 6124.04, + "end": 6129.86, + "probability": 0.9787 + }, + { + "start": 6130.54, + "end": 6133.62, + "probability": 0.9771 + }, + { + "start": 6134.08, + "end": 6138.14, + "probability": 0.922 + }, + { + "start": 6138.46, + "end": 6138.96, + "probability": 0.9263 + }, + { + "start": 6139.68, + "end": 6141.36, + "probability": 0.9907 + }, + { + "start": 6141.98, + "end": 6145.36, + "probability": 0.6295 + }, + { + "start": 6146.16, + "end": 6146.76, + "probability": 0.5146 + }, + { + "start": 6146.82, + "end": 6147.96, + "probability": 0.7518 + }, + { + "start": 6148.1, + "end": 6150.04, + "probability": 0.958 + }, + { + "start": 6150.42, + "end": 6151.94, + "probability": 0.8678 + }, + { + "start": 6152.54, + "end": 6154.68, + "probability": 0.8864 + }, + { + "start": 6155.76, + "end": 6158.68, + "probability": 0.7368 + }, + { + "start": 6159.38, + "end": 6160.64, + "probability": 0.9245 + }, + { + "start": 6160.78, + "end": 6162.28, + "probability": 0.9719 + }, + { + "start": 6162.52, + "end": 6164.44, + "probability": 0.7616 + }, + { + "start": 6164.62, + "end": 6165.08, + "probability": 0.6758 + }, + { + "start": 6165.2, + "end": 6165.76, + "probability": 0.4174 + }, + { + "start": 6165.86, + "end": 6168.74, + "probability": 0.8037 + }, + { + "start": 6169.3, + "end": 6170.82, + "probability": 0.9272 + }, + { + "start": 6170.96, + "end": 6173.92, + "probability": 0.8431 + }, + { + "start": 6174.14, + "end": 6176.0, + "probability": 0.9412 + }, + { + "start": 6176.48, + "end": 6178.9, + "probability": 0.6992 + }, + { + "start": 6179.48, + "end": 6182.06, + "probability": 0.915 + }, + { + "start": 6182.2, + "end": 6184.04, + "probability": 0.832 + }, + { + "start": 6184.52, + "end": 6186.88, + "probability": 0.9629 + }, + { + "start": 6187.24, + "end": 6189.48, + "probability": 0.7209 + }, + { + "start": 6190.2, + "end": 6196.26, + "probability": 0.9781 + }, + { + "start": 6197.26, + "end": 6199.34, + "probability": 0.9125 + }, + { + "start": 6199.9, + "end": 6204.18, + "probability": 0.9749 + }, + { + "start": 6204.66, + "end": 6206.54, + "probability": 0.8653 + }, + { + "start": 6206.96, + "end": 6210.67, + "probability": 0.8877 + }, + { + "start": 6211.4, + "end": 6212.66, + "probability": 0.9966 + }, + { + "start": 6212.98, + "end": 6214.5, + "probability": 0.6682 + }, + { + "start": 6215.14, + "end": 6217.86, + "probability": 0.9925 + }, + { + "start": 6218.22, + "end": 6220.3, + "probability": 0.4029 + }, + { + "start": 6220.3, + "end": 6220.64, + "probability": 0.3517 + }, + { + "start": 6221.2, + "end": 6222.96, + "probability": 0.9586 + }, + { + "start": 6223.4, + "end": 6227.86, + "probability": 0.9898 + }, + { + "start": 6227.92, + "end": 6231.54, + "probability": 0.9792 + }, + { + "start": 6231.54, + "end": 6235.68, + "probability": 0.9943 + }, + { + "start": 6236.56, + "end": 6237.4, + "probability": 0.998 + }, + { + "start": 6238.74, + "end": 6239.26, + "probability": 0.6034 + }, + { + "start": 6239.9, + "end": 6240.48, + "probability": 0.9526 + }, + { + "start": 6242.0, + "end": 6243.12, + "probability": 0.0648 + }, + { + "start": 6243.12, + "end": 6245.14, + "probability": 0.6007 + }, + { + "start": 6245.36, + "end": 6245.64, + "probability": 0.3399 + }, + { + "start": 6245.66, + "end": 6246.22, + "probability": 0.1246 + }, + { + "start": 6246.78, + "end": 6247.86, + "probability": 0.8468 + }, + { + "start": 6247.92, + "end": 6248.68, + "probability": 0.986 + }, + { + "start": 6248.8, + "end": 6251.38, + "probability": 0.9453 + }, + { + "start": 6251.9, + "end": 6254.48, + "probability": 0.9404 + }, + { + "start": 6255.44, + "end": 6257.18, + "probability": 0.9787 + }, + { + "start": 6257.4, + "end": 6260.42, + "probability": 0.6837 + }, + { + "start": 6260.54, + "end": 6264.94, + "probability": 0.9915 + }, + { + "start": 6265.04, + "end": 6266.5, + "probability": 0.6118 + }, + { + "start": 6267.02, + "end": 6271.2, + "probability": 0.9927 + }, + { + "start": 6272.16, + "end": 6272.88, + "probability": 0.5289 + }, + { + "start": 6273.72, + "end": 6279.46, + "probability": 0.9751 + }, + { + "start": 6280.08, + "end": 6283.24, + "probability": 0.9887 + }, + { + "start": 6283.24, + "end": 6286.2, + "probability": 0.9903 + }, + { + "start": 6286.78, + "end": 6288.96, + "probability": 0.8854 + }, + { + "start": 6289.28, + "end": 6290.76, + "probability": 0.9744 + }, + { + "start": 6291.16, + "end": 6292.5, + "probability": 0.9766 + }, + { + "start": 6292.92, + "end": 6293.44, + "probability": 0.6124 + }, + { + "start": 6294.42, + "end": 6295.62, + "probability": 0.5127 + }, + { + "start": 6296.16, + "end": 6297.0, + "probability": 0.8588 + }, + { + "start": 6297.8, + "end": 6300.2, + "probability": 0.9848 + }, + { + "start": 6300.66, + "end": 6301.8, + "probability": 0.9219 + }, + { + "start": 6302.14, + "end": 6303.52, + "probability": 0.6628 + }, + { + "start": 6303.92, + "end": 6305.54, + "probability": 0.9597 + }, + { + "start": 6306.0, + "end": 6306.88, + "probability": 0.9883 + }, + { + "start": 6307.42, + "end": 6308.16, + "probability": 0.9106 + }, + { + "start": 6308.7, + "end": 6310.5, + "probability": 0.7897 + }, + { + "start": 6311.64, + "end": 6314.52, + "probability": 0.017 + }, + { + "start": 6315.22, + "end": 6317.0, + "probability": 0.222 + }, + { + "start": 6317.9, + "end": 6321.76, + "probability": 0.952 + }, + { + "start": 6322.04, + "end": 6322.5, + "probability": 0.8907 + }, + { + "start": 6336.55, + "end": 6338.94, + "probability": 0.6318 + }, + { + "start": 6338.94, + "end": 6338.94, + "probability": 0.2628 + }, + { + "start": 6338.94, + "end": 6339.08, + "probability": 0.1002 + }, + { + "start": 6339.86, + "end": 6340.66, + "probability": 0.5097 + }, + { + "start": 6340.82, + "end": 6341.76, + "probability": 0.7391 + }, + { + "start": 6341.88, + "end": 6342.88, + "probability": 0.5674 + }, + { + "start": 6343.04, + "end": 6343.98, + "probability": 0.8813 + }, + { + "start": 6344.4, + "end": 6345.9, + "probability": 0.5536 + }, + { + "start": 6348.02, + "end": 6353.72, + "probability": 0.9506 + }, + { + "start": 6354.88, + "end": 6357.38, + "probability": 0.7962 + }, + { + "start": 6358.06, + "end": 6358.3, + "probability": 0.787 + }, + { + "start": 6359.54, + "end": 6361.12, + "probability": 0.5899 + }, + { + "start": 6374.18, + "end": 6377.66, + "probability": 0.9673 + }, + { + "start": 6378.6, + "end": 6381.86, + "probability": 0.8615 + }, + { + "start": 6382.56, + "end": 6384.92, + "probability": 0.8967 + }, + { + "start": 6385.66, + "end": 6387.66, + "probability": 0.9152 + }, + { + "start": 6388.24, + "end": 6390.86, + "probability": 0.9445 + }, + { + "start": 6390.94, + "end": 6392.02, + "probability": 0.5667 + }, + { + "start": 6392.1, + "end": 6394.2, + "probability": 0.6911 + }, + { + "start": 6394.76, + "end": 6395.58, + "probability": 0.9706 + }, + { + "start": 6396.12, + "end": 6397.28, + "probability": 0.9273 + }, + { + "start": 6397.86, + "end": 6399.26, + "probability": 0.5947 + }, + { + "start": 6401.0, + "end": 6405.12, + "probability": 0.9611 + }, + { + "start": 6406.14, + "end": 6408.32, + "probability": 0.8789 + }, + { + "start": 6409.08, + "end": 6411.68, + "probability": 0.959 + }, + { + "start": 6413.06, + "end": 6417.02, + "probability": 0.7098 + }, + { + "start": 6417.72, + "end": 6419.23, + "probability": 0.3988 + }, + { + "start": 6420.14, + "end": 6424.04, + "probability": 0.7249 + }, + { + "start": 6424.82, + "end": 6426.7, + "probability": 0.9637 + }, + { + "start": 6427.5, + "end": 6430.66, + "probability": 0.8518 + }, + { + "start": 6431.9, + "end": 6435.18, + "probability": 0.9011 + }, + { + "start": 6435.28, + "end": 6439.32, + "probability": 0.7944 + }, + { + "start": 6440.26, + "end": 6447.26, + "probability": 0.8144 + }, + { + "start": 6448.78, + "end": 6452.16, + "probability": 0.7399 + }, + { + "start": 6452.86, + "end": 6454.76, + "probability": 0.6278 + }, + { + "start": 6454.94, + "end": 6456.08, + "probability": 0.9741 + }, + { + "start": 6456.62, + "end": 6457.86, + "probability": 0.812 + }, + { + "start": 6458.4, + "end": 6460.02, + "probability": 0.949 + }, + { + "start": 6460.64, + "end": 6461.62, + "probability": 0.9632 + }, + { + "start": 6463.55, + "end": 6470.12, + "probability": 0.0205 + }, + { + "start": 6488.78, + "end": 6491.3, + "probability": 0.6741 + }, + { + "start": 6491.76, + "end": 6495.08, + "probability": 0.6139 + }, + { + "start": 6495.68, + "end": 6496.02, + "probability": 0.4185 + }, + { + "start": 6496.06, + "end": 6500.28, + "probability": 0.8646 + }, + { + "start": 6500.6, + "end": 6501.5, + "probability": 0.6574 + }, + { + "start": 6501.64, + "end": 6504.44, + "probability": 0.6466 + }, + { + "start": 6504.96, + "end": 6507.66, + "probability": 0.9326 + }, + { + "start": 6508.54, + "end": 6509.62, + "probability": 0.9934 + }, + { + "start": 6510.4, + "end": 6510.7, + "probability": 0.4942 + }, + { + "start": 6510.8, + "end": 6511.58, + "probability": 0.9319 + }, + { + "start": 6511.76, + "end": 6512.14, + "probability": 0.7136 + }, + { + "start": 6512.2, + "end": 6513.54, + "probability": 0.9414 + }, + { + "start": 6513.96, + "end": 6516.1, + "probability": 0.946 + }, + { + "start": 6516.96, + "end": 6521.34, + "probability": 0.8909 + }, + { + "start": 6521.82, + "end": 6526.46, + "probability": 0.7241 + }, + { + "start": 6527.16, + "end": 6534.2, + "probability": 0.9758 + }, + { + "start": 6535.52, + "end": 6536.26, + "probability": 0.8117 + }, + { + "start": 6536.86, + "end": 6541.1, + "probability": 0.7548 + }, + { + "start": 6541.64, + "end": 6544.98, + "probability": 0.6734 + }, + { + "start": 6545.56, + "end": 6547.0, + "probability": 0.9872 + }, + { + "start": 6547.8, + "end": 6548.6, + "probability": 0.8086 + }, + { + "start": 6549.36, + "end": 6552.46, + "probability": 0.7515 + }, + { + "start": 6552.54, + "end": 6556.7, + "probability": 0.9097 + }, + { + "start": 6556.7, + "end": 6557.12, + "probability": 0.5113 + }, + { + "start": 6557.22, + "end": 6560.56, + "probability": 0.9118 + }, + { + "start": 6560.84, + "end": 6564.98, + "probability": 0.9082 + }, + { + "start": 6566.62, + "end": 6571.88, + "probability": 0.6865 + }, + { + "start": 6573.46, + "end": 6573.86, + "probability": 0.5485 + }, + { + "start": 6574.28, + "end": 6575.36, + "probability": 0.9657 + }, + { + "start": 6575.86, + "end": 6578.14, + "probability": 0.8332 + }, + { + "start": 6578.36, + "end": 6581.24, + "probability": 0.9789 + }, + { + "start": 6582.28, + "end": 6585.7, + "probability": 0.8784 + }, + { + "start": 6586.12, + "end": 6590.42, + "probability": 0.7697 + }, + { + "start": 6591.02, + "end": 6592.09, + "probability": 0.9927 + }, + { + "start": 6592.84, + "end": 6598.38, + "probability": 0.8931 + }, + { + "start": 6599.04, + "end": 6600.02, + "probability": 0.4456 + }, + { + "start": 6600.44, + "end": 6600.86, + "probability": 0.6329 + }, + { + "start": 6600.94, + "end": 6606.06, + "probability": 0.9062 + }, + { + "start": 6606.6, + "end": 6610.5, + "probability": 0.9557 + }, + { + "start": 6611.04, + "end": 6614.02, + "probability": 0.8329 + }, + { + "start": 6614.68, + "end": 6617.54, + "probability": 0.999 + }, + { + "start": 6618.04, + "end": 6621.48, + "probability": 0.9984 + }, + { + "start": 6621.92, + "end": 6625.46, + "probability": 0.9053 + }, + { + "start": 6627.26, + "end": 6630.1, + "probability": 0.7304 + }, + { + "start": 6631.28, + "end": 6632.94, + "probability": 0.8452 + }, + { + "start": 6633.28, + "end": 6633.92, + "probability": 0.459 + }, + { + "start": 6634.04, + "end": 6634.74, + "probability": 0.8088 + }, + { + "start": 6634.94, + "end": 6635.7, + "probability": 0.8668 + }, + { + "start": 6636.12, + "end": 6638.56, + "probability": 0.9562 + }, + { + "start": 6639.08, + "end": 6641.44, + "probability": 0.6689 + }, + { + "start": 6642.0, + "end": 6643.44, + "probability": 0.7972 + }, + { + "start": 6643.68, + "end": 6644.08, + "probability": 0.9525 + }, + { + "start": 6644.78, + "end": 6647.96, + "probability": 0.4999 + }, + { + "start": 6648.3, + "end": 6651.7, + "probability": 0.9918 + }, + { + "start": 6651.78, + "end": 6652.34, + "probability": 0.5725 + }, + { + "start": 6652.96, + "end": 6653.6, + "probability": 0.7882 + }, + { + "start": 6654.66, + "end": 6655.44, + "probability": 0.7066 + }, + { + "start": 6657.78, + "end": 6660.2, + "probability": 0.9449 + }, + { + "start": 6669.0, + "end": 6673.42, + "probability": 0.9224 + }, + { + "start": 6674.2, + "end": 6677.76, + "probability": 0.9697 + }, + { + "start": 6679.0, + "end": 6685.78, + "probability": 0.9674 + }, + { + "start": 6686.74, + "end": 6690.82, + "probability": 0.9331 + }, + { + "start": 6691.7, + "end": 6693.34, + "probability": 0.939 + }, + { + "start": 6694.5, + "end": 6696.48, + "probability": 0.8879 + }, + { + "start": 6696.84, + "end": 6697.54, + "probability": 0.8388 + }, + { + "start": 6697.88, + "end": 6698.36, + "probability": 0.8972 + }, + { + "start": 6698.72, + "end": 6699.42, + "probability": 0.9734 + }, + { + "start": 6700.18, + "end": 6700.92, + "probability": 0.8639 + }, + { + "start": 6701.6, + "end": 6705.66, + "probability": 0.9141 + }, + { + "start": 6705.88, + "end": 6711.66, + "probability": 0.9355 + }, + { + "start": 6712.16, + "end": 6713.96, + "probability": 0.9927 + }, + { + "start": 6714.06, + "end": 6717.24, + "probability": 0.9802 + }, + { + "start": 6717.76, + "end": 6720.7, + "probability": 0.9811 + }, + { + "start": 6721.24, + "end": 6722.66, + "probability": 0.8745 + }, + { + "start": 6723.46, + "end": 6728.86, + "probability": 0.8833 + }, + { + "start": 6729.38, + "end": 6731.4, + "probability": 0.9228 + }, + { + "start": 6732.02, + "end": 6735.32, + "probability": 0.8058 + }, + { + "start": 6735.6, + "end": 6736.96, + "probability": 0.8466 + }, + { + "start": 6737.06, + "end": 6737.56, + "probability": 0.8789 + }, + { + "start": 6737.8, + "end": 6739.88, + "probability": 0.7485 + }, + { + "start": 6740.04, + "end": 6742.1, + "probability": 0.9029 + }, + { + "start": 6742.78, + "end": 6744.04, + "probability": 0.9865 + }, + { + "start": 6745.66, + "end": 6750.36, + "probability": 0.9535 + }, + { + "start": 6751.1, + "end": 6757.76, + "probability": 0.9858 + }, + { + "start": 6758.26, + "end": 6758.9, + "probability": 0.9784 + }, + { + "start": 6759.0, + "end": 6760.3, + "probability": 0.9829 + }, + { + "start": 6760.94, + "end": 6761.84, + "probability": 0.9828 + }, + { + "start": 6762.46, + "end": 6763.54, + "probability": 0.9854 + }, + { + "start": 6764.16, + "end": 6765.04, + "probability": 0.7327 + }, + { + "start": 6765.68, + "end": 6770.26, + "probability": 0.9079 + }, + { + "start": 6770.92, + "end": 6772.14, + "probability": 0.6458 + }, + { + "start": 6772.36, + "end": 6774.06, + "probability": 0.974 + }, + { + "start": 6774.66, + "end": 6779.7, + "probability": 0.8654 + }, + { + "start": 6779.9, + "end": 6781.56, + "probability": 0.9795 + }, + { + "start": 6781.62, + "end": 6782.85, + "probability": 0.9351 + }, + { + "start": 6783.84, + "end": 6784.43, + "probability": 0.9946 + }, + { + "start": 6785.6, + "end": 6786.9, + "probability": 0.8478 + }, + { + "start": 6787.6, + "end": 6789.58, + "probability": 0.9036 + }, + { + "start": 6789.84, + "end": 6790.42, + "probability": 0.4285 + }, + { + "start": 6790.82, + "end": 6792.2, + "probability": 0.7778 + }, + { + "start": 6792.28, + "end": 6796.76, + "probability": 0.9775 + }, + { + "start": 6796.94, + "end": 6797.92, + "probability": 0.9688 + }, + { + "start": 6798.52, + "end": 6799.52, + "probability": 0.8074 + }, + { + "start": 6800.82, + "end": 6806.32, + "probability": 0.8909 + }, + { + "start": 6806.48, + "end": 6807.52, + "probability": 0.7914 + }, + { + "start": 6807.9, + "end": 6808.6, + "probability": 0.7366 + }, + { + "start": 6808.84, + "end": 6808.98, + "probability": 0.6802 + }, + { + "start": 6809.34, + "end": 6811.12, + "probability": 0.896 + }, + { + "start": 6812.34, + "end": 6812.68, + "probability": 0.3217 + }, + { + "start": 6813.02, + "end": 6815.28, + "probability": 0.8309 + }, + { + "start": 6815.34, + "end": 6818.18, + "probability": 0.9184 + }, + { + "start": 6818.62, + "end": 6820.72, + "probability": 0.8579 + }, + { + "start": 6821.78, + "end": 6827.04, + "probability": 0.98 + }, + { + "start": 6829.88, + "end": 6834.76, + "probability": 0.9872 + }, + { + "start": 6835.32, + "end": 6837.68, + "probability": 0.9951 + }, + { + "start": 6838.64, + "end": 6845.02, + "probability": 0.9985 + }, + { + "start": 6845.82, + "end": 6850.78, + "probability": 0.9922 + }, + { + "start": 6851.34, + "end": 6855.32, + "probability": 0.987 + }, + { + "start": 6855.6, + "end": 6862.42, + "probability": 0.876 + }, + { + "start": 6862.58, + "end": 6866.4, + "probability": 0.8783 + }, + { + "start": 6866.64, + "end": 6867.76, + "probability": 0.8566 + }, + { + "start": 6869.42, + "end": 6871.26, + "probability": 0.6919 + }, + { + "start": 6872.22, + "end": 6882.72, + "probability": 0.9697 + }, + { + "start": 6883.66, + "end": 6884.82, + "probability": 0.9821 + }, + { + "start": 6886.54, + "end": 6888.4, + "probability": 0.9434 + }, + { + "start": 6888.66, + "end": 6890.64, + "probability": 0.7695 + }, + { + "start": 6891.36, + "end": 6893.97, + "probability": 0.5163 + }, + { + "start": 6894.44, + "end": 6895.6, + "probability": 0.9198 + }, + { + "start": 6895.9, + "end": 6897.96, + "probability": 0.9907 + }, + { + "start": 6898.88, + "end": 6901.64, + "probability": 0.9971 + }, + { + "start": 6901.74, + "end": 6903.66, + "probability": 0.9116 + }, + { + "start": 6903.72, + "end": 6907.04, + "probability": 0.9901 + }, + { + "start": 6907.04, + "end": 6911.68, + "probability": 0.9983 + }, + { + "start": 6911.9, + "end": 6912.5, + "probability": 0.8967 + }, + { + "start": 6912.74, + "end": 6913.42, + "probability": 0.7675 + }, + { + "start": 6914.7, + "end": 6915.4, + "probability": 0.5144 + }, + { + "start": 6916.38, + "end": 6917.86, + "probability": 0.8674 + }, + { + "start": 6919.07, + "end": 6922.66, + "probability": 0.9923 + }, + { + "start": 6923.88, + "end": 6927.8, + "probability": 0.9907 + }, + { + "start": 6928.96, + "end": 6931.6, + "probability": 0.8203 + }, + { + "start": 6931.94, + "end": 6932.7, + "probability": 0.8552 + }, + { + "start": 6932.8, + "end": 6934.74, + "probability": 0.855 + }, + { + "start": 6935.2, + "end": 6938.04, + "probability": 0.9128 + }, + { + "start": 6938.7, + "end": 6940.88, + "probability": 0.8198 + }, + { + "start": 6941.04, + "end": 6944.72, + "probability": 0.9486 + }, + { + "start": 6945.16, + "end": 6945.96, + "probability": 0.8505 + }, + { + "start": 6946.12, + "end": 6946.76, + "probability": 0.7526 + }, + { + "start": 6947.34, + "end": 6949.26, + "probability": 0.9449 + }, + { + "start": 6949.44, + "end": 6951.22, + "probability": 0.9963 + }, + { + "start": 6951.66, + "end": 6953.18, + "probability": 0.9778 + }, + { + "start": 6953.84, + "end": 6953.88, + "probability": 0.5477 + }, + { + "start": 6953.98, + "end": 6954.94, + "probability": 0.9113 + }, + { + "start": 6955.16, + "end": 6957.66, + "probability": 0.9438 + }, + { + "start": 6957.76, + "end": 6960.0, + "probability": 0.9381 + }, + { + "start": 6960.44, + "end": 6963.98, + "probability": 0.8019 + }, + { + "start": 6964.1, + "end": 6966.92, + "probability": 0.9852 + }, + { + "start": 6967.42, + "end": 6969.94, + "probability": 0.8799 + }, + { + "start": 6970.28, + "end": 6975.32, + "probability": 0.9936 + }, + { + "start": 6975.42, + "end": 6978.22, + "probability": 0.9964 + }, + { + "start": 6978.68, + "end": 6979.92, + "probability": 0.2544 + }, + { + "start": 6980.02, + "end": 6981.46, + "probability": 0.8016 + }, + { + "start": 6981.74, + "end": 6983.58, + "probability": 0.9265 + }, + { + "start": 6984.08, + "end": 6985.7, + "probability": 0.9823 + }, + { + "start": 6986.38, + "end": 6987.16, + "probability": 0.8108 + }, + { + "start": 6987.24, + "end": 6989.6, + "probability": 0.874 + }, + { + "start": 6989.64, + "end": 6992.32, + "probability": 0.6849 + }, + { + "start": 6992.4, + "end": 6994.48, + "probability": 0.9172 + }, + { + "start": 6994.66, + "end": 6997.6, + "probability": 0.9825 + }, + { + "start": 6998.12, + "end": 6999.82, + "probability": 0.8593 + }, + { + "start": 7001.46, + "end": 7006.04, + "probability": 0.9725 + }, + { + "start": 7007.04, + "end": 7008.26, + "probability": 0.8484 + }, + { + "start": 7009.22, + "end": 7014.56, + "probability": 0.9755 + }, + { + "start": 7015.04, + "end": 7021.9, + "probability": 0.9805 + }, + { + "start": 7023.52, + "end": 7026.52, + "probability": 0.9421 + }, + { + "start": 7027.16, + "end": 7030.14, + "probability": 0.9263 + }, + { + "start": 7030.3, + "end": 7030.84, + "probability": 0.569 + }, + { + "start": 7031.44, + "end": 7033.28, + "probability": 0.8039 + }, + { + "start": 7033.98, + "end": 7035.12, + "probability": 0.9566 + }, + { + "start": 7036.04, + "end": 7038.22, + "probability": 0.9712 + }, + { + "start": 7039.06, + "end": 7040.64, + "probability": 0.9429 + }, + { + "start": 7040.72, + "end": 7041.98, + "probability": 0.9429 + }, + { + "start": 7042.12, + "end": 7047.14, + "probability": 0.9407 + }, + { + "start": 7047.36, + "end": 7050.38, + "probability": 0.9856 + }, + { + "start": 7050.44, + "end": 7054.62, + "probability": 0.9384 + }, + { + "start": 7055.56, + "end": 7056.32, + "probability": 0.6221 + }, + { + "start": 7056.36, + "end": 7056.7, + "probability": 0.9198 + }, + { + "start": 7056.94, + "end": 7058.87, + "probability": 0.9888 + }, + { + "start": 7059.56, + "end": 7060.82, + "probability": 0.8287 + }, + { + "start": 7061.72, + "end": 7065.48, + "probability": 0.9864 + }, + { + "start": 7066.52, + "end": 7070.34, + "probability": 0.9164 + }, + { + "start": 7070.68, + "end": 7074.94, + "probability": 0.988 + }, + { + "start": 7075.04, + "end": 7078.2, + "probability": 0.9661 + }, + { + "start": 7078.72, + "end": 7083.8, + "probability": 0.9956 + }, + { + "start": 7084.36, + "end": 7087.02, + "probability": 0.7779 + }, + { + "start": 7087.66, + "end": 7091.75, + "probability": 0.9958 + }, + { + "start": 7091.86, + "end": 7095.64, + "probability": 0.9946 + }, + { + "start": 7097.0, + "end": 7100.8, + "probability": 0.9704 + }, + { + "start": 7100.8, + "end": 7104.14, + "probability": 0.9953 + }, + { + "start": 7105.5, + "end": 7108.3, + "probability": 0.9961 + }, + { + "start": 7108.3, + "end": 7111.9, + "probability": 0.9982 + }, + { + "start": 7112.0, + "end": 7113.04, + "probability": 0.8601 + }, + { + "start": 7113.4, + "end": 7116.12, + "probability": 0.9938 + }, + { + "start": 7116.86, + "end": 7119.64, + "probability": 0.9141 + }, + { + "start": 7120.28, + "end": 7123.66, + "probability": 0.9971 + }, + { + "start": 7123.66, + "end": 7127.6, + "probability": 0.9952 + }, + { + "start": 7128.54, + "end": 7131.4, + "probability": 0.991 + }, + { + "start": 7131.54, + "end": 7134.28, + "probability": 0.9712 + }, + { + "start": 7134.48, + "end": 7135.16, + "probability": 0.9731 + }, + { + "start": 7136.12, + "end": 7141.51, + "probability": 0.9861 + }, + { + "start": 7142.42, + "end": 7145.5, + "probability": 0.9978 + }, + { + "start": 7146.04, + "end": 7149.6, + "probability": 0.9805 + }, + { + "start": 7149.7, + "end": 7153.9, + "probability": 0.9973 + }, + { + "start": 7155.02, + "end": 7156.68, + "probability": 0.3902 + }, + { + "start": 7156.92, + "end": 7158.18, + "probability": 0.9004 + }, + { + "start": 7158.38, + "end": 7162.34, + "probability": 0.9927 + }, + { + "start": 7162.74, + "end": 7163.94, + "probability": 0.8665 + }, + { + "start": 7164.0, + "end": 7164.54, + "probability": 0.9044 + }, + { + "start": 7164.94, + "end": 7167.38, + "probability": 0.8594 + }, + { + "start": 7167.9, + "end": 7170.82, + "probability": 0.9957 + }, + { + "start": 7171.48, + "end": 7172.34, + "probability": 0.664 + }, + { + "start": 7173.32, + "end": 7176.36, + "probability": 0.9718 + }, + { + "start": 7180.86, + "end": 7182.72, + "probability": 0.9131 + }, + { + "start": 7183.3, + "end": 7188.8, + "probability": 0.9033 + }, + { + "start": 7193.68, + "end": 7194.52, + "probability": 0.6653 + }, + { + "start": 7195.78, + "end": 7196.86, + "probability": 0.8794 + }, + { + "start": 7199.3, + "end": 7200.44, + "probability": 0.8589 + }, + { + "start": 7202.4, + "end": 7204.44, + "probability": 0.3526 + }, + { + "start": 7205.82, + "end": 7205.92, + "probability": 0.2307 + }, + { + "start": 7205.92, + "end": 7211.04, + "probability": 0.9971 + }, + { + "start": 7212.18, + "end": 7214.54, + "probability": 0.9995 + }, + { + "start": 7215.62, + "end": 7220.22, + "probability": 0.957 + }, + { + "start": 7221.28, + "end": 7223.03, + "probability": 0.9878 + }, + { + "start": 7224.12, + "end": 7225.28, + "probability": 0.9294 + }, + { + "start": 7226.62, + "end": 7230.84, + "probability": 0.8291 + }, + { + "start": 7232.0, + "end": 7235.64, + "probability": 0.8793 + }, + { + "start": 7236.64, + "end": 7239.44, + "probability": 0.9715 + }, + { + "start": 7240.14, + "end": 7241.4, + "probability": 0.9903 + }, + { + "start": 7247.1, + "end": 7248.54, + "probability": 0.9377 + }, + { + "start": 7248.6, + "end": 7249.2, + "probability": 0.91 + }, + { + "start": 7249.26, + "end": 7251.88, + "probability": 0.9784 + }, + { + "start": 7252.9, + "end": 7255.4, + "probability": 0.9886 + }, + { + "start": 7256.28, + "end": 7257.66, + "probability": 0.7044 + }, + { + "start": 7258.34, + "end": 7260.32, + "probability": 0.9921 + }, + { + "start": 7261.36, + "end": 7263.02, + "probability": 0.7384 + }, + { + "start": 7263.32, + "end": 7263.82, + "probability": 0.8607 + }, + { + "start": 7263.92, + "end": 7269.0, + "probability": 0.9231 + }, + { + "start": 7269.72, + "end": 7273.06, + "probability": 0.9536 + }, + { + "start": 7274.42, + "end": 7279.22, + "probability": 0.9958 + }, + { + "start": 7280.04, + "end": 7287.0, + "probability": 0.989 + }, + { + "start": 7288.04, + "end": 7289.4, + "probability": 0.7669 + }, + { + "start": 7290.14, + "end": 7294.62, + "probability": 0.9608 + }, + { + "start": 7294.7, + "end": 7295.91, + "probability": 0.7205 + }, + { + "start": 7296.32, + "end": 7297.48, + "probability": 0.9864 + }, + { + "start": 7298.9, + "end": 7302.0, + "probability": 0.7755 + }, + { + "start": 7302.64, + "end": 7305.42, + "probability": 0.9741 + }, + { + "start": 7306.8, + "end": 7307.32, + "probability": 0.5763 + }, + { + "start": 7308.3, + "end": 7311.06, + "probability": 0.9076 + }, + { + "start": 7311.58, + "end": 7312.1, + "probability": 0.9542 + }, + { + "start": 7312.52, + "end": 7313.06, + "probability": 0.9476 + }, + { + "start": 7313.48, + "end": 7314.58, + "probability": 0.9411 + }, + { + "start": 7314.9, + "end": 7315.86, + "probability": 0.9781 + }, + { + "start": 7315.88, + "end": 7316.5, + "probability": 0.9786 + }, + { + "start": 7316.88, + "end": 7317.38, + "probability": 0.9858 + }, + { + "start": 7317.5, + "end": 7318.24, + "probability": 0.8932 + }, + { + "start": 7319.52, + "end": 7322.68, + "probability": 0.8388 + }, + { + "start": 7323.86, + "end": 7327.68, + "probability": 0.7618 + }, + { + "start": 7328.28, + "end": 7332.12, + "probability": 0.9503 + }, + { + "start": 7332.12, + "end": 7334.9, + "probability": 0.9878 + }, + { + "start": 7335.88, + "end": 7337.6, + "probability": 0.7563 + }, + { + "start": 7338.22, + "end": 7343.12, + "probability": 0.9795 + }, + { + "start": 7343.76, + "end": 7346.16, + "probability": 0.9125 + }, + { + "start": 7346.94, + "end": 7349.48, + "probability": 0.9493 + }, + { + "start": 7350.8, + "end": 7355.12, + "probability": 0.8376 + }, + { + "start": 7355.74, + "end": 7356.66, + "probability": 0.7807 + }, + { + "start": 7358.06, + "end": 7359.78, + "probability": 0.871 + }, + { + "start": 7360.46, + "end": 7363.7, + "probability": 0.9065 + }, + { + "start": 7365.02, + "end": 7370.64, + "probability": 0.9576 + }, + { + "start": 7372.18, + "end": 7373.76, + "probability": 0.9436 + }, + { + "start": 7374.56, + "end": 7379.0, + "probability": 0.9585 + }, + { + "start": 7379.68, + "end": 7382.6, + "probability": 0.9103 + }, + { + "start": 7383.5, + "end": 7387.12, + "probability": 0.9861 + }, + { + "start": 7387.96, + "end": 7390.4, + "probability": 0.9932 + }, + { + "start": 7390.94, + "end": 7394.94, + "probability": 0.9989 + }, + { + "start": 7396.0, + "end": 7396.9, + "probability": 0.6271 + }, + { + "start": 7397.82, + "end": 7399.08, + "probability": 0.8099 + }, + { + "start": 7399.84, + "end": 7401.04, + "probability": 0.8684 + }, + { + "start": 7402.24, + "end": 7403.54, + "probability": 0.8959 + }, + { + "start": 7404.34, + "end": 7406.9, + "probability": 0.629 + }, + { + "start": 7407.52, + "end": 7410.6, + "probability": 0.9128 + }, + { + "start": 7411.56, + "end": 7413.66, + "probability": 0.9799 + }, + { + "start": 7414.3, + "end": 7416.4, + "probability": 0.8529 + }, + { + "start": 7417.06, + "end": 7418.7, + "probability": 0.8579 + }, + { + "start": 7419.82, + "end": 7423.76, + "probability": 0.9643 + }, + { + "start": 7424.74, + "end": 7425.42, + "probability": 0.6954 + }, + { + "start": 7426.02, + "end": 7431.24, + "probability": 0.9438 + }, + { + "start": 7432.66, + "end": 7438.04, + "probability": 0.9915 + }, + { + "start": 7438.92, + "end": 7441.28, + "probability": 0.9937 + }, + { + "start": 7441.92, + "end": 7444.1, + "probability": 0.991 + }, + { + "start": 7445.02, + "end": 7446.02, + "probability": 0.0907 + }, + { + "start": 7446.8, + "end": 7451.62, + "probability": 0.9863 + }, + { + "start": 7452.32, + "end": 7455.44, + "probability": 0.9219 + }, + { + "start": 7455.86, + "end": 7456.66, + "probability": 0.6311 + }, + { + "start": 7457.1, + "end": 7461.52, + "probability": 0.9719 + }, + { + "start": 7462.1, + "end": 7466.3, + "probability": 0.8775 + }, + { + "start": 7466.86, + "end": 7466.96, + "probability": 0.8258 + }, + { + "start": 7467.84, + "end": 7468.62, + "probability": 0.8782 + }, + { + "start": 7469.8, + "end": 7470.16, + "probability": 0.7275 + }, + { + "start": 7470.86, + "end": 7474.54, + "probability": 0.9951 + }, + { + "start": 7475.06, + "end": 7476.24, + "probability": 0.951 + }, + { + "start": 7476.88, + "end": 7481.06, + "probability": 0.9361 + }, + { + "start": 7481.88, + "end": 7487.32, + "probability": 0.9649 + }, + { + "start": 7488.06, + "end": 7490.96, + "probability": 0.8826 + }, + { + "start": 7491.88, + "end": 7496.44, + "probability": 0.9609 + }, + { + "start": 7497.34, + "end": 7501.38, + "probability": 0.9785 + }, + { + "start": 7502.34, + "end": 7502.94, + "probability": 0.3258 + }, + { + "start": 7503.06, + "end": 7509.86, + "probability": 0.9953 + }, + { + "start": 7510.96, + "end": 7514.96, + "probability": 0.5165 + }, + { + "start": 7515.44, + "end": 7519.5, + "probability": 0.9972 + }, + { + "start": 7520.14, + "end": 7524.26, + "probability": 0.739 + }, + { + "start": 7525.14, + "end": 7529.5, + "probability": 0.9819 + }, + { + "start": 7529.5, + "end": 7532.3, + "probability": 0.9961 + }, + { + "start": 7533.32, + "end": 7537.98, + "probability": 0.9932 + }, + { + "start": 7538.76, + "end": 7545.08, + "probability": 0.9985 + }, + { + "start": 7545.64, + "end": 7546.78, + "probability": 0.9998 + }, + { + "start": 7547.4, + "end": 7551.3, + "probability": 0.9546 + }, + { + "start": 7551.76, + "end": 7553.7, + "probability": 0.8818 + }, + { + "start": 7554.2, + "end": 7559.26, + "probability": 0.9907 + }, + { + "start": 7560.32, + "end": 7564.14, + "probability": 0.9844 + }, + { + "start": 7564.98, + "end": 7566.28, + "probability": 0.9581 + }, + { + "start": 7566.96, + "end": 7571.82, + "probability": 0.9886 + }, + { + "start": 7572.52, + "end": 7573.42, + "probability": 0.0246 + }, + { + "start": 7574.52, + "end": 7575.71, + "probability": 0.0107 + }, + { + "start": 7577.8, + "end": 7579.18, + "probability": 0.0504 + }, + { + "start": 7581.08, + "end": 7581.22, + "probability": 0.0294 + }, + { + "start": 7581.22, + "end": 7585.04, + "probability": 0.8936 + }, + { + "start": 7585.38, + "end": 7585.9, + "probability": 0.3581 + }, + { + "start": 7586.08, + "end": 7587.62, + "probability": 0.9196 + }, + { + "start": 7602.58, + "end": 7603.76, + "probability": 0.6643 + }, + { + "start": 7605.3, + "end": 7605.78, + "probability": 0.8062 + }, + { + "start": 7612.46, + "end": 7615.5, + "probability": 0.7798 + }, + { + "start": 7618.42, + "end": 7622.3, + "probability": 0.9815 + }, + { + "start": 7623.7, + "end": 7625.48, + "probability": 0.9965 + }, + { + "start": 7626.12, + "end": 7628.14, + "probability": 0.4598 + }, + { + "start": 7629.94, + "end": 7631.06, + "probability": 0.9937 + }, + { + "start": 7631.62, + "end": 7636.62, + "probability": 0.8539 + }, + { + "start": 7637.36, + "end": 7639.72, + "probability": 0.4976 + }, + { + "start": 7639.78, + "end": 7642.5, + "probability": 0.7086 + }, + { + "start": 7644.7, + "end": 7649.82, + "probability": 0.9309 + }, + { + "start": 7651.66, + "end": 7653.76, + "probability": 0.3352 + }, + { + "start": 7654.36, + "end": 7658.06, + "probability": 0.7407 + }, + { + "start": 7661.2, + "end": 7662.98, + "probability": 0.7489 + }, + { + "start": 7663.88, + "end": 7664.44, + "probability": 0.8561 + }, + { + "start": 7666.38, + "end": 7667.8, + "probability": 0.6236 + }, + { + "start": 7668.42, + "end": 7669.32, + "probability": 0.7552 + }, + { + "start": 7670.0, + "end": 7671.44, + "probability": 0.6369 + }, + { + "start": 7672.44, + "end": 7676.3, + "probability": 0.5527 + }, + { + "start": 7681.08, + "end": 7685.1, + "probability": 0.9702 + }, + { + "start": 7686.94, + "end": 7691.04, + "probability": 0.9585 + }, + { + "start": 7692.84, + "end": 7696.24, + "probability": 0.9712 + }, + { + "start": 7696.24, + "end": 7701.82, + "probability": 0.9393 + }, + { + "start": 7703.46, + "end": 7708.14, + "probability": 0.9984 + }, + { + "start": 7709.24, + "end": 7711.22, + "probability": 0.8653 + }, + { + "start": 7711.96, + "end": 7713.82, + "probability": 0.8583 + }, + { + "start": 7714.94, + "end": 7717.62, + "probability": 0.6862 + }, + { + "start": 7718.36, + "end": 7723.5, + "probability": 0.9402 + }, + { + "start": 7725.22, + "end": 7728.0, + "probability": 0.7453 + }, + { + "start": 7728.54, + "end": 7730.56, + "probability": 0.9613 + }, + { + "start": 7731.56, + "end": 7735.4, + "probability": 0.9582 + }, + { + "start": 7735.72, + "end": 7738.46, + "probability": 0.9973 + }, + { + "start": 7739.34, + "end": 7742.82, + "probability": 0.9012 + }, + { + "start": 7746.12, + "end": 7751.4, + "probability": 0.9849 + }, + { + "start": 7756.48, + "end": 7758.1, + "probability": 0.6082 + }, + { + "start": 7758.76, + "end": 7760.95, + "probability": 0.831 + }, + { + "start": 7761.32, + "end": 7763.82, + "probability": 0.7342 + }, + { + "start": 7765.38, + "end": 7768.64, + "probability": 0.918 + }, + { + "start": 7769.72, + "end": 7771.78, + "probability": 0.2455 + }, + { + "start": 7772.84, + "end": 7776.54, + "probability": 0.9138 + }, + { + "start": 7778.88, + "end": 7781.86, + "probability": 0.7224 + }, + { + "start": 7781.86, + "end": 7784.88, + "probability": 0.9946 + }, + { + "start": 7786.84, + "end": 7792.16, + "probability": 0.949 + }, + { + "start": 7792.26, + "end": 7792.58, + "probability": 0.782 + }, + { + "start": 7794.76, + "end": 7797.7, + "probability": 0.9834 + }, + { + "start": 7798.6, + "end": 7799.92, + "probability": 0.7785 + }, + { + "start": 7801.22, + "end": 7805.3, + "probability": 0.996 + }, + { + "start": 7805.3, + "end": 7810.28, + "probability": 0.9121 + }, + { + "start": 7812.16, + "end": 7816.46, + "probability": 0.8649 + }, + { + "start": 7817.02, + "end": 7818.66, + "probability": 0.8899 + }, + { + "start": 7819.52, + "end": 7822.72, + "probability": 0.7014 + }, + { + "start": 7822.72, + "end": 7825.92, + "probability": 0.996 + }, + { + "start": 7826.04, + "end": 7827.02, + "probability": 0.786 + }, + { + "start": 7827.16, + "end": 7828.22, + "probability": 0.9443 + }, + { + "start": 7829.14, + "end": 7831.94, + "probability": 0.8929 + }, + { + "start": 7833.72, + "end": 7838.46, + "probability": 0.6625 + }, + { + "start": 7843.5, + "end": 7847.28, + "probability": 0.8866 + }, + { + "start": 7848.0, + "end": 7851.7, + "probability": 0.9365 + }, + { + "start": 7851.86, + "end": 7853.26, + "probability": 0.9484 + }, + { + "start": 7856.32, + "end": 7857.42, + "probability": 0.96 + }, + { + "start": 7857.48, + "end": 7858.88, + "probability": 0.8577 + }, + { + "start": 7859.28, + "end": 7864.06, + "probability": 0.6851 + }, + { + "start": 7867.08, + "end": 7873.62, + "probability": 0.9877 + }, + { + "start": 7874.28, + "end": 7875.68, + "probability": 0.961 + }, + { + "start": 7876.82, + "end": 7878.22, + "probability": 0.8833 + }, + { + "start": 7880.11, + "end": 7883.92, + "probability": 0.8935 + }, + { + "start": 7886.88, + "end": 7890.54, + "probability": 0.9552 + }, + { + "start": 7891.42, + "end": 7894.2, + "probability": 0.9937 + }, + { + "start": 7894.6, + "end": 7897.0, + "probability": 0.9635 + }, + { + "start": 7898.58, + "end": 7899.6, + "probability": 0.7176 + }, + { + "start": 7901.12, + "end": 7904.28, + "probability": 0.6276 + }, + { + "start": 7905.48, + "end": 7908.07, + "probability": 0.8698 + }, + { + "start": 7908.66, + "end": 7914.24, + "probability": 0.9384 + }, + { + "start": 7915.1, + "end": 7919.14, + "probability": 0.7255 + }, + { + "start": 7919.98, + "end": 7921.1, + "probability": 0.9156 + }, + { + "start": 7922.1, + "end": 7923.06, + "probability": 0.9849 + }, + { + "start": 7923.6, + "end": 7924.6, + "probability": 0.8987 + }, + { + "start": 7924.92, + "end": 7925.78, + "probability": 0.572 + }, + { + "start": 7926.04, + "end": 7928.3, + "probability": 0.8161 + }, + { + "start": 7928.38, + "end": 7930.83, + "probability": 0.8518 + }, + { + "start": 7933.74, + "end": 7935.74, + "probability": 0.8564 + }, + { + "start": 7937.14, + "end": 7940.0, + "probability": 0.8862 + }, + { + "start": 7940.06, + "end": 7940.58, + "probability": 0.8983 + }, + { + "start": 7940.64, + "end": 7941.3, + "probability": 0.9791 + }, + { + "start": 7941.4, + "end": 7941.9, + "probability": 0.9539 + }, + { + "start": 7941.98, + "end": 7942.62, + "probability": 0.8876 + }, + { + "start": 7942.76, + "end": 7943.94, + "probability": 0.6104 + }, + { + "start": 7946.46, + "end": 7953.4, + "probability": 0.8888 + }, + { + "start": 7953.4, + "end": 7955.6, + "probability": 0.4844 + }, + { + "start": 7958.18, + "end": 7963.9, + "probability": 0.6662 + }, + { + "start": 7964.76, + "end": 7967.1, + "probability": 0.9675 + }, + { + "start": 7967.1, + "end": 7970.18, + "probability": 0.9901 + }, + { + "start": 7970.22, + "end": 7972.1, + "probability": 0.6557 + }, + { + "start": 7972.64, + "end": 7973.5, + "probability": 0.4839 + }, + { + "start": 7974.98, + "end": 7980.22, + "probability": 0.863 + }, + { + "start": 7981.7, + "end": 7983.54, + "probability": 0.8853 + }, + { + "start": 7984.78, + "end": 7990.78, + "probability": 0.9376 + }, + { + "start": 7991.64, + "end": 7992.12, + "probability": 0.304 + }, + { + "start": 7992.2, + "end": 7993.9, + "probability": 0.7962 + }, + { + "start": 7994.74, + "end": 7997.5, + "probability": 0.9887 + }, + { + "start": 7998.78, + "end": 8001.14, + "probability": 0.9392 + }, + { + "start": 8005.4, + "end": 8006.02, + "probability": 0.541 + }, + { + "start": 8006.88, + "end": 8009.0, + "probability": 0.8255 + }, + { + "start": 8010.94, + "end": 8012.06, + "probability": 0.9306 + }, + { + "start": 8013.42, + "end": 8015.18, + "probability": 0.8501 + }, + { + "start": 8016.68, + "end": 8017.3, + "probability": 0.951 + }, + { + "start": 8018.02, + "end": 8020.54, + "probability": 0.8571 + }, + { + "start": 8021.26, + "end": 8022.32, + "probability": 0.9897 + }, + { + "start": 8023.58, + "end": 8027.82, + "probability": 0.9961 + }, + { + "start": 8027.82, + "end": 8030.9, + "probability": 0.9995 + }, + { + "start": 8032.54, + "end": 8036.18, + "probability": 0.9973 + }, + { + "start": 8037.46, + "end": 8040.02, + "probability": 0.9874 + }, + { + "start": 8041.2, + "end": 8045.0, + "probability": 0.921 + }, + { + "start": 8046.08, + "end": 8046.78, + "probability": 0.9434 + }, + { + "start": 8048.56, + "end": 8050.02, + "probability": 0.5988 + }, + { + "start": 8051.34, + "end": 8054.1, + "probability": 0.961 + }, + { + "start": 8054.74, + "end": 8056.28, + "probability": 0.8945 + }, + { + "start": 8058.02, + "end": 8063.5, + "probability": 0.9919 + }, + { + "start": 8065.44, + "end": 8067.08, + "probability": 0.8714 + }, + { + "start": 8067.14, + "end": 8067.6, + "probability": 0.4849 + }, + { + "start": 8067.72, + "end": 8069.16, + "probability": 0.9847 + }, + { + "start": 8069.68, + "end": 8070.14, + "probability": 0.8435 + }, + { + "start": 8071.6, + "end": 8071.6, + "probability": 0.2742 + }, + { + "start": 8072.34, + "end": 8073.56, + "probability": 0.9972 + }, + { + "start": 8074.62, + "end": 8078.08, + "probability": 0.9786 + }, + { + "start": 8079.28, + "end": 8079.82, + "probability": 0.8467 + }, + { + "start": 8080.46, + "end": 8083.2, + "probability": 0.9192 + }, + { + "start": 8086.52, + "end": 8087.9, + "probability": 0.5238 + }, + { + "start": 8088.74, + "end": 8089.44, + "probability": 0.9377 + }, + { + "start": 8090.28, + "end": 8095.92, + "probability": 0.9587 + }, + { + "start": 8097.48, + "end": 8101.12, + "probability": 0.9937 + }, + { + "start": 8102.28, + "end": 8104.02, + "probability": 0.9927 + }, + { + "start": 8105.62, + "end": 8107.28, + "probability": 0.7656 + }, + { + "start": 8108.88, + "end": 8109.96, + "probability": 0.8784 + }, + { + "start": 8112.44, + "end": 8114.52, + "probability": 0.7771 + }, + { + "start": 8115.26, + "end": 8118.58, + "probability": 0.9823 + }, + { + "start": 8119.7, + "end": 8120.16, + "probability": 0.7448 + }, + { + "start": 8121.1, + "end": 8123.54, + "probability": 0.9889 + }, + { + "start": 8124.82, + "end": 8125.84, + "probability": 0.8021 + }, + { + "start": 8127.12, + "end": 8130.58, + "probability": 0.9915 + }, + { + "start": 8131.38, + "end": 8132.94, + "probability": 0.9885 + }, + { + "start": 8133.62, + "end": 8135.24, + "probability": 0.6536 + }, + { + "start": 8136.46, + "end": 8138.6, + "probability": 0.9625 + }, + { + "start": 8140.54, + "end": 8143.86, + "probability": 0.8008 + }, + { + "start": 8145.0, + "end": 8153.06, + "probability": 0.9845 + }, + { + "start": 8153.7, + "end": 8154.32, + "probability": 0.8813 + }, + { + "start": 8155.2, + "end": 8156.44, + "probability": 0.7779 + }, + { + "start": 8162.2, + "end": 8164.88, + "probability": 0.8027 + }, + { + "start": 8166.6, + "end": 8167.84, + "probability": 0.9543 + }, + { + "start": 8169.58, + "end": 8170.04, + "probability": 0.8995 + }, + { + "start": 8171.22, + "end": 8172.64, + "probability": 0.8621 + }, + { + "start": 8173.68, + "end": 8174.2, + "probability": 0.7471 + }, + { + "start": 8174.9, + "end": 8178.66, + "probability": 0.9846 + }, + { + "start": 8179.54, + "end": 8183.86, + "probability": 0.9964 + }, + { + "start": 8184.94, + "end": 8186.21, + "probability": 0.95 + }, + { + "start": 8187.34, + "end": 8192.08, + "probability": 0.8447 + }, + { + "start": 8193.66, + "end": 8194.02, + "probability": 0.5423 + }, + { + "start": 8195.08, + "end": 8199.3, + "probability": 0.9227 + }, + { + "start": 8200.64, + "end": 8204.32, + "probability": 0.978 + }, + { + "start": 8206.18, + "end": 8206.66, + "probability": 0.4153 + }, + { + "start": 8207.24, + "end": 8208.9, + "probability": 0.8172 + }, + { + "start": 8210.54, + "end": 8214.4, + "probability": 0.945 + }, + { + "start": 8215.04, + "end": 8216.02, + "probability": 0.8098 + }, + { + "start": 8216.78, + "end": 8218.88, + "probability": 0.9845 + }, + { + "start": 8219.66, + "end": 8221.14, + "probability": 0.8224 + }, + { + "start": 8221.96, + "end": 8223.32, + "probability": 0.9675 + }, + { + "start": 8224.18, + "end": 8226.64, + "probability": 0.9946 + }, + { + "start": 8227.24, + "end": 8230.46, + "probability": 0.9894 + }, + { + "start": 8230.66, + "end": 8233.6, + "probability": 0.9585 + }, + { + "start": 8233.6, + "end": 8236.26, + "probability": 0.9836 + }, + { + "start": 8237.34, + "end": 8238.26, + "probability": 0.7958 + }, + { + "start": 8238.56, + "end": 8239.28, + "probability": 0.7349 + }, + { + "start": 8239.64, + "end": 8240.24, + "probability": 0.57 + }, + { + "start": 8240.66, + "end": 8241.81, + "probability": 0.575 + }, + { + "start": 8243.78, + "end": 8249.2, + "probability": 0.9749 + }, + { + "start": 8249.38, + "end": 8249.98, + "probability": 0.8661 + }, + { + "start": 8250.94, + "end": 8251.64, + "probability": 0.678 + }, + { + "start": 8252.78, + "end": 8253.58, + "probability": 0.9554 + }, + { + "start": 8254.88, + "end": 8256.04, + "probability": 0.7466 + }, + { + "start": 8256.88, + "end": 8259.6, + "probability": 0.9893 + }, + { + "start": 8260.72, + "end": 8261.34, + "probability": 0.7528 + }, + { + "start": 8262.12, + "end": 8263.83, + "probability": 0.749 + }, + { + "start": 8264.56, + "end": 8267.34, + "probability": 0.9708 + }, + { + "start": 8268.24, + "end": 8268.84, + "probability": 0.8408 + }, + { + "start": 8269.48, + "end": 8270.98, + "probability": 0.7817 + }, + { + "start": 8271.76, + "end": 8273.53, + "probability": 0.9871 + }, + { + "start": 8274.64, + "end": 8276.86, + "probability": 0.9783 + }, + { + "start": 8277.84, + "end": 8284.78, + "probability": 0.977 + }, + { + "start": 8285.3, + "end": 8285.9, + "probability": 0.6021 + }, + { + "start": 8286.68, + "end": 8287.94, + "probability": 0.8152 + }, + { + "start": 8289.0, + "end": 8291.54, + "probability": 0.936 + }, + { + "start": 8291.92, + "end": 8292.36, + "probability": 0.8921 + }, + { + "start": 8292.66, + "end": 8294.28, + "probability": 0.9581 + }, + { + "start": 8295.36, + "end": 8297.72, + "probability": 0.9958 + }, + { + "start": 8298.58, + "end": 8302.14, + "probability": 0.7715 + }, + { + "start": 8305.7, + "end": 8308.72, + "probability": 0.9963 + }, + { + "start": 8310.86, + "end": 8314.12, + "probability": 0.9772 + }, + { + "start": 8314.98, + "end": 8315.42, + "probability": 0.3918 + }, + { + "start": 8315.62, + "end": 8320.66, + "probability": 0.9785 + }, + { + "start": 8321.3, + "end": 8322.23, + "probability": 0.859 + }, + { + "start": 8323.36, + "end": 8325.74, + "probability": 0.9893 + }, + { + "start": 8327.42, + "end": 8328.1, + "probability": 0.9162 + }, + { + "start": 8330.14, + "end": 8330.78, + "probability": 0.9932 + }, + { + "start": 8331.98, + "end": 8332.58, + "probability": 0.962 + }, + { + "start": 8333.16, + "end": 8334.76, + "probability": 0.9912 + }, + { + "start": 8335.36, + "end": 8335.78, + "probability": 0.7935 + }, + { + "start": 8337.24, + "end": 8341.12, + "probability": 0.99 + }, + { + "start": 8342.1, + "end": 8346.66, + "probability": 0.9535 + }, + { + "start": 8347.3, + "end": 8349.8, + "probability": 0.9756 + }, + { + "start": 8350.98, + "end": 8353.04, + "probability": 0.7043 + }, + { + "start": 8353.96, + "end": 8355.5, + "probability": 0.9787 + }, + { + "start": 8356.12, + "end": 8357.28, + "probability": 0.9028 + }, + { + "start": 8358.04, + "end": 8359.92, + "probability": 0.8969 + }, + { + "start": 8360.56, + "end": 8363.98, + "probability": 0.9768 + }, + { + "start": 8363.98, + "end": 8368.5, + "probability": 0.9918 + }, + { + "start": 8369.5, + "end": 8370.2, + "probability": 0.8172 + }, + { + "start": 8370.74, + "end": 8371.92, + "probability": 0.7574 + }, + { + "start": 8372.54, + "end": 8373.36, + "probability": 0.8566 + }, + { + "start": 8374.22, + "end": 8376.04, + "probability": 0.995 + }, + { + "start": 8377.5, + "end": 8381.22, + "probability": 0.9802 + }, + { + "start": 8382.16, + "end": 8387.26, + "probability": 0.9731 + }, + { + "start": 8388.22, + "end": 8390.86, + "probability": 0.9969 + }, + { + "start": 8391.46, + "end": 8397.14, + "probability": 0.9832 + }, + { + "start": 8397.22, + "end": 8402.6, + "probability": 0.998 + }, + { + "start": 8403.58, + "end": 8404.72, + "probability": 0.7323 + }, + { + "start": 8404.92, + "end": 8407.78, + "probability": 0.861 + }, + { + "start": 8407.88, + "end": 8411.48, + "probability": 0.9719 + }, + { + "start": 8412.1, + "end": 8414.78, + "probability": 0.9979 + }, + { + "start": 8415.32, + "end": 8416.78, + "probability": 0.9987 + }, + { + "start": 8418.26, + "end": 8419.18, + "probability": 0.6835 + }, + { + "start": 8420.28, + "end": 8421.12, + "probability": 0.766 + }, + { + "start": 8421.76, + "end": 8423.0, + "probability": 0.9761 + }, + { + "start": 8423.72, + "end": 8425.58, + "probability": 0.9428 + }, + { + "start": 8426.18, + "end": 8427.04, + "probability": 0.7211 + }, + { + "start": 8427.8, + "end": 8428.72, + "probability": 0.9372 + }, + { + "start": 8429.6, + "end": 8430.3, + "probability": 0.8828 + }, + { + "start": 8430.5, + "end": 8431.24, + "probability": 0.7705 + }, + { + "start": 8431.44, + "end": 8433.74, + "probability": 0.9844 + }, + { + "start": 8434.62, + "end": 8438.0, + "probability": 0.9887 + }, + { + "start": 8439.0, + "end": 8441.32, + "probability": 0.7603 + }, + { + "start": 8443.8, + "end": 8445.06, + "probability": 0.6449 + }, + { + "start": 8454.62, + "end": 8455.76, + "probability": 0.7926 + }, + { + "start": 8456.32, + "end": 8457.6, + "probability": 0.848 + }, + { + "start": 8458.22, + "end": 8460.82, + "probability": 0.8103 + }, + { + "start": 8462.06, + "end": 8462.64, + "probability": 0.7473 + }, + { + "start": 8465.2, + "end": 8466.88, + "probability": 0.9756 + }, + { + "start": 8468.38, + "end": 8470.1, + "probability": 0.9807 + }, + { + "start": 8472.5, + "end": 8474.24, + "probability": 0.7856 + }, + { + "start": 8475.22, + "end": 8475.36, + "probability": 0.0011 + }, + { + "start": 8476.06, + "end": 8478.8, + "probability": 0.9897 + }, + { + "start": 8478.94, + "end": 8481.34, + "probability": 0.8311 + }, + { + "start": 8483.68, + "end": 8486.16, + "probability": 0.8238 + }, + { + "start": 8488.94, + "end": 8495.76, + "probability": 0.9817 + }, + { + "start": 8498.56, + "end": 8504.7, + "probability": 0.8093 + }, + { + "start": 8505.0, + "end": 8506.06, + "probability": 0.7907 + }, + { + "start": 8506.46, + "end": 8507.66, + "probability": 0.7704 + }, + { + "start": 8510.06, + "end": 8511.4, + "probability": 0.9905 + }, + { + "start": 8513.14, + "end": 8515.12, + "probability": 0.9148 + }, + { + "start": 8516.54, + "end": 8518.36, + "probability": 0.9964 + }, + { + "start": 8519.6, + "end": 8521.6, + "probability": 0.9895 + }, + { + "start": 8522.82, + "end": 8524.58, + "probability": 0.9622 + }, + { + "start": 8527.02, + "end": 8529.7, + "probability": 0.9366 + }, + { + "start": 8530.12, + "end": 8531.46, + "probability": 0.7713 + }, + { + "start": 8531.58, + "end": 8533.1, + "probability": 0.8365 + }, + { + "start": 8534.82, + "end": 8538.98, + "probability": 0.9954 + }, + { + "start": 8539.2, + "end": 8541.52, + "probability": 0.9988 + }, + { + "start": 8542.54, + "end": 8544.08, + "probability": 0.8704 + }, + { + "start": 8546.66, + "end": 8548.94, + "probability": 0.0707 + }, + { + "start": 8551.64, + "end": 8553.64, + "probability": 0.9546 + }, + { + "start": 8555.88, + "end": 8559.96, + "probability": 0.8412 + }, + { + "start": 8562.54, + "end": 8566.04, + "probability": 0.9497 + }, + { + "start": 8566.86, + "end": 8570.98, + "probability": 0.7455 + }, + { + "start": 8571.88, + "end": 8572.92, + "probability": 0.6566 + }, + { + "start": 8575.28, + "end": 8578.3, + "probability": 0.7795 + }, + { + "start": 8579.8, + "end": 8581.04, + "probability": 0.5742 + }, + { + "start": 8581.76, + "end": 8582.42, + "probability": 0.9596 + }, + { + "start": 8583.9, + "end": 8584.58, + "probability": 0.98 + }, + { + "start": 8586.56, + "end": 8590.76, + "probability": 0.9849 + }, + { + "start": 8592.26, + "end": 8593.58, + "probability": 0.7964 + }, + { + "start": 8596.64, + "end": 8600.72, + "probability": 0.9644 + }, + { + "start": 8601.8, + "end": 8603.42, + "probability": 0.9061 + }, + { + "start": 8604.66, + "end": 8607.68, + "probability": 0.9327 + }, + { + "start": 8610.26, + "end": 8611.14, + "probability": 0.4085 + }, + { + "start": 8611.52, + "end": 8611.92, + "probability": 0.6072 + }, + { + "start": 8611.94, + "end": 8616.3, + "probability": 0.9289 + }, + { + "start": 8616.78, + "end": 8617.36, + "probability": 0.9664 + }, + { + "start": 8618.86, + "end": 8622.38, + "probability": 0.8822 + }, + { + "start": 8624.14, + "end": 8629.8, + "probability": 0.87 + }, + { + "start": 8630.4, + "end": 8630.56, + "probability": 0.9168 + }, + { + "start": 8635.9, + "end": 8638.8, + "probability": 0.9682 + }, + { + "start": 8640.24, + "end": 8641.72, + "probability": 0.9401 + }, + { + "start": 8642.32, + "end": 8644.68, + "probability": 0.9628 + }, + { + "start": 8645.84, + "end": 8646.88, + "probability": 0.9141 + }, + { + "start": 8648.7, + "end": 8650.26, + "probability": 0.9989 + }, + { + "start": 8651.24, + "end": 8652.74, + "probability": 0.9528 + }, + { + "start": 8656.78, + "end": 8659.38, + "probability": 0.9965 + }, + { + "start": 8660.44, + "end": 8663.4, + "probability": 0.8602 + }, + { + "start": 8665.42, + "end": 8669.24, + "probability": 0.9396 + }, + { + "start": 8671.12, + "end": 8678.64, + "probability": 0.7732 + }, + { + "start": 8679.9, + "end": 8681.9, + "probability": 0.9534 + }, + { + "start": 8683.56, + "end": 8685.34, + "probability": 0.9292 + }, + { + "start": 8686.48, + "end": 8689.82, + "probability": 0.9815 + }, + { + "start": 8691.4, + "end": 8692.68, + "probability": 0.6267 + }, + { + "start": 8693.68, + "end": 8694.54, + "probability": 0.9071 + }, + { + "start": 8695.08, + "end": 8695.82, + "probability": 0.969 + }, + { + "start": 8696.12, + "end": 8697.14, + "probability": 0.9439 + }, + { + "start": 8697.26, + "end": 8697.99, + "probability": 0.9312 + }, + { + "start": 8698.38, + "end": 8700.18, + "probability": 0.9731 + }, + { + "start": 8702.28, + "end": 8704.86, + "probability": 0.9958 + }, + { + "start": 8706.38, + "end": 8709.08, + "probability": 0.9946 + }, + { + "start": 8710.84, + "end": 8712.86, + "probability": 0.9771 + }, + { + "start": 8713.46, + "end": 8715.6, + "probability": 0.7572 + }, + { + "start": 8716.84, + "end": 8720.0, + "probability": 0.948 + }, + { + "start": 8721.54, + "end": 8725.98, + "probability": 0.9875 + }, + { + "start": 8728.04, + "end": 8731.25, + "probability": 0.6915 + }, + { + "start": 8732.22, + "end": 8736.66, + "probability": 0.9883 + }, + { + "start": 8737.62, + "end": 8738.12, + "probability": 0.7245 + }, + { + "start": 8738.94, + "end": 8741.86, + "probability": 0.9882 + }, + { + "start": 8742.2, + "end": 8742.42, + "probability": 0.6599 + }, + { + "start": 8743.32, + "end": 8745.66, + "probability": 0.7589 + }, + { + "start": 8746.04, + "end": 8749.08, + "probability": 0.9952 + }, + { + "start": 8750.42, + "end": 8753.24, + "probability": 0.9097 + }, + { + "start": 8755.78, + "end": 8756.04, + "probability": 0.3732 + }, + { + "start": 8756.04, + "end": 8757.3, + "probability": 0.5127 + }, + { + "start": 8762.34, + "end": 8765.68, + "probability": 0.8125 + }, + { + "start": 8767.56, + "end": 8772.68, + "probability": 0.9917 + }, + { + "start": 8774.42, + "end": 8778.4, + "probability": 0.9992 + }, + { + "start": 8779.3, + "end": 8781.8, + "probability": 0.9893 + }, + { + "start": 8783.2, + "end": 8785.48, + "probability": 0.8311 + }, + { + "start": 8787.6, + "end": 8789.3, + "probability": 0.7673 + }, + { + "start": 8790.2, + "end": 8792.2, + "probability": 0.9783 + }, + { + "start": 8793.42, + "end": 8795.76, + "probability": 0.9708 + }, + { + "start": 8796.26, + "end": 8799.54, + "probability": 0.9805 + }, + { + "start": 8800.38, + "end": 8806.3, + "probability": 0.9761 + }, + { + "start": 8807.6, + "end": 8811.44, + "probability": 0.9946 + }, + { + "start": 8812.34, + "end": 8816.2, + "probability": 0.8105 + }, + { + "start": 8817.14, + "end": 8820.78, + "probability": 0.988 + }, + { + "start": 8822.54, + "end": 8825.58, + "probability": 0.9824 + }, + { + "start": 8826.78, + "end": 8828.8, + "probability": 0.9976 + }, + { + "start": 8829.38, + "end": 8833.7, + "probability": 0.9995 + }, + { + "start": 8835.44, + "end": 8837.07, + "probability": 0.9985 + }, + { + "start": 8838.06, + "end": 8839.66, + "probability": 0.9995 + }, + { + "start": 8841.82, + "end": 8845.62, + "probability": 0.9989 + }, + { + "start": 8846.0, + "end": 8847.44, + "probability": 0.9694 + }, + { + "start": 8848.12, + "end": 8849.62, + "probability": 0.9976 + }, + { + "start": 8850.74, + "end": 8851.5, + "probability": 0.9937 + }, + { + "start": 8853.42, + "end": 8859.02, + "probability": 0.9813 + }, + { + "start": 8860.76, + "end": 8861.7, + "probability": 0.9657 + }, + { + "start": 8863.44, + "end": 8865.6, + "probability": 0.9875 + }, + { + "start": 8869.14, + "end": 8871.16, + "probability": 0.9902 + }, + { + "start": 8872.12, + "end": 8873.2, + "probability": 0.6353 + }, + { + "start": 8875.68, + "end": 8880.12, + "probability": 0.9702 + }, + { + "start": 8881.2, + "end": 8887.22, + "probability": 0.9908 + }, + { + "start": 8888.56, + "end": 8893.12, + "probability": 0.9908 + }, + { + "start": 8893.12, + "end": 8897.9, + "probability": 0.9947 + }, + { + "start": 8899.36, + "end": 8905.32, + "probability": 0.9986 + }, + { + "start": 8906.9, + "end": 8910.8, + "probability": 0.9115 + }, + { + "start": 8912.18, + "end": 8915.96, + "probability": 0.9305 + }, + { + "start": 8917.42, + "end": 8921.56, + "probability": 0.9316 + }, + { + "start": 8922.06, + "end": 8924.46, + "probability": 0.9971 + }, + { + "start": 8925.3, + "end": 8926.26, + "probability": 0.9908 + }, + { + "start": 8928.06, + "end": 8931.96, + "probability": 0.9786 + }, + { + "start": 8934.06, + "end": 8938.64, + "probability": 0.9919 + }, + { + "start": 8939.44, + "end": 8940.54, + "probability": 0.9278 + }, + { + "start": 8941.58, + "end": 8948.34, + "probability": 0.9872 + }, + { + "start": 8948.34, + "end": 8954.14, + "probability": 0.9328 + }, + { + "start": 8954.7, + "end": 8955.32, + "probability": 0.8685 + }, + { + "start": 8956.9, + "end": 8959.98, + "probability": 0.9976 + }, + { + "start": 8960.8, + "end": 8968.86, + "probability": 0.9891 + }, + { + "start": 8969.36, + "end": 8971.68, + "probability": 0.7953 + }, + { + "start": 8972.36, + "end": 8973.6, + "probability": 0.8253 + }, + { + "start": 8974.16, + "end": 8974.76, + "probability": 0.5289 + }, + { + "start": 8975.34, + "end": 8976.06, + "probability": 0.894 + }, + { + "start": 8977.72, + "end": 8981.56, + "probability": 0.9971 + }, + { + "start": 8982.22, + "end": 8984.74, + "probability": 0.9912 + }, + { + "start": 8985.38, + "end": 8985.98, + "probability": 0.7448 + }, + { + "start": 8986.14, + "end": 8986.94, + "probability": 0.9697 + }, + { + "start": 8987.0, + "end": 8996.18, + "probability": 0.9929 + }, + { + "start": 8996.18, + "end": 9001.74, + "probability": 0.9681 + }, + { + "start": 9004.0, + "end": 9008.64, + "probability": 0.9219 + }, + { + "start": 9009.88, + "end": 9014.42, + "probability": 0.9926 + }, + { + "start": 9015.04, + "end": 9016.8, + "probability": 0.9707 + }, + { + "start": 9017.92, + "end": 9020.54, + "probability": 0.9973 + }, + { + "start": 9021.28, + "end": 9024.8, + "probability": 0.9759 + }, + { + "start": 9026.66, + "end": 9029.38, + "probability": 0.9985 + }, + { + "start": 9030.18, + "end": 9034.16, + "probability": 0.985 + }, + { + "start": 9035.8, + "end": 9037.82, + "probability": 0.6665 + }, + { + "start": 9038.86, + "end": 9039.55, + "probability": 0.9584 + }, + { + "start": 9041.48, + "end": 9043.32, + "probability": 0.9958 + }, + { + "start": 9044.98, + "end": 9046.32, + "probability": 0.9039 + }, + { + "start": 9047.8, + "end": 9048.98, + "probability": 0.9995 + }, + { + "start": 9049.98, + "end": 9051.14, + "probability": 0.8923 + }, + { + "start": 9052.18, + "end": 9054.12, + "probability": 0.9918 + }, + { + "start": 9055.46, + "end": 9057.76, + "probability": 0.9923 + }, + { + "start": 9058.86, + "end": 9060.78, + "probability": 0.7408 + }, + { + "start": 9061.62, + "end": 9064.0, + "probability": 0.8551 + }, + { + "start": 9065.02, + "end": 9067.66, + "probability": 0.8856 + }, + { + "start": 9068.1, + "end": 9071.32, + "probability": 0.9742 + }, + { + "start": 9071.96, + "end": 9072.06, + "probability": 0.0008 + }, + { + "start": 9073.1, + "end": 9078.62, + "probability": 0.8464 + }, + { + "start": 9079.54, + "end": 9080.24, + "probability": 0.4763 + }, + { + "start": 9081.72, + "end": 9083.6, + "probability": 0.8612 + }, + { + "start": 9084.96, + "end": 9085.72, + "probability": 0.5128 + }, + { + "start": 9086.52, + "end": 9090.44, + "probability": 0.9839 + }, + { + "start": 9091.26, + "end": 9093.46, + "probability": 0.9515 + }, + { + "start": 9094.38, + "end": 9095.94, + "probability": 0.6627 + }, + { + "start": 9096.88, + "end": 9100.62, + "probability": 0.9937 + }, + { + "start": 9101.28, + "end": 9104.02, + "probability": 0.8462 + }, + { + "start": 9104.66, + "end": 9108.02, + "probability": 0.9949 + }, + { + "start": 9109.02, + "end": 9110.44, + "probability": 0.7462 + }, + { + "start": 9111.89, + "end": 9113.82, + "probability": 0.9517 + }, + { + "start": 9113.82, + "end": 9115.22, + "probability": 0.747 + }, + { + "start": 9115.24, + "end": 9118.38, + "probability": 0.8174 + }, + { + "start": 9119.38, + "end": 9121.34, + "probability": 0.719 + }, + { + "start": 9121.84, + "end": 9124.92, + "probability": 0.9949 + }, + { + "start": 9125.82, + "end": 9128.3, + "probability": 0.8729 + }, + { + "start": 9130.5, + "end": 9132.78, + "probability": 0.5341 + }, + { + "start": 9133.64, + "end": 9134.28, + "probability": 0.8596 + }, + { + "start": 9137.66, + "end": 9138.28, + "probability": 0.6241 + }, + { + "start": 9138.66, + "end": 9140.0, + "probability": 0.8931 + }, + { + "start": 9141.52, + "end": 9142.2, + "probability": 0.9777 + }, + { + "start": 9144.88, + "end": 9148.7, + "probability": 0.9499 + }, + { + "start": 9149.64, + "end": 9150.76, + "probability": 0.9913 + }, + { + "start": 9151.88, + "end": 9153.22, + "probability": 0.792 + }, + { + "start": 9153.44, + "end": 9154.35, + "probability": 0.8894 + }, + { + "start": 9155.78, + "end": 9155.94, + "probability": 0.3321 + }, + { + "start": 9156.02, + "end": 9157.07, + "probability": 0.7741 + }, + { + "start": 9157.66, + "end": 9158.5, + "probability": 0.9439 + }, + { + "start": 9158.6, + "end": 9162.8, + "probability": 0.9548 + }, + { + "start": 9163.46, + "end": 9165.76, + "probability": 0.835 + }, + { + "start": 9165.76, + "end": 9166.28, + "probability": 0.971 + }, + { + "start": 9166.32, + "end": 9169.32, + "probability": 0.8757 + }, + { + "start": 9170.1, + "end": 9170.72, + "probability": 0.9521 + }, + { + "start": 9170.98, + "end": 9173.58, + "probability": 0.9941 + }, + { + "start": 9174.06, + "end": 9177.08, + "probability": 0.9857 + }, + { + "start": 9177.44, + "end": 9178.82, + "probability": 0.9753 + }, + { + "start": 9179.56, + "end": 9180.34, + "probability": 0.98 + }, + { + "start": 9180.74, + "end": 9182.98, + "probability": 0.964 + }, + { + "start": 9183.36, + "end": 9185.18, + "probability": 0.9008 + }, + { + "start": 9185.64, + "end": 9187.3, + "probability": 0.9543 + }, + { + "start": 9189.2, + "end": 9193.64, + "probability": 0.9522 + }, + { + "start": 9194.48, + "end": 9197.38, + "probability": 0.9774 + }, + { + "start": 9198.0, + "end": 9200.44, + "probability": 0.9229 + }, + { + "start": 9200.46, + "end": 9201.26, + "probability": 0.9483 + }, + { + "start": 9201.48, + "end": 9205.08, + "probability": 0.9839 + }, + { + "start": 9205.08, + "end": 9209.26, + "probability": 0.9963 + }, + { + "start": 9210.44, + "end": 9215.28, + "probability": 0.9896 + }, + { + "start": 9215.98, + "end": 9221.22, + "probability": 0.9949 + }, + { + "start": 9221.5, + "end": 9225.1, + "probability": 0.8654 + }, + { + "start": 9225.98, + "end": 9229.16, + "probability": 0.9541 + }, + { + "start": 9229.82, + "end": 9230.44, + "probability": 0.6445 + }, + { + "start": 9230.5, + "end": 9231.9, + "probability": 0.8899 + }, + { + "start": 9232.38, + "end": 9236.84, + "probability": 0.7867 + }, + { + "start": 9237.58, + "end": 9240.94, + "probability": 0.8922 + }, + { + "start": 9241.56, + "end": 9244.44, + "probability": 0.9683 + }, + { + "start": 9245.24, + "end": 9247.72, + "probability": 0.8293 + }, + { + "start": 9248.74, + "end": 9250.0, + "probability": 0.6642 + }, + { + "start": 9250.7, + "end": 9251.54, + "probability": 0.7487 + }, + { + "start": 9252.06, + "end": 9252.98, + "probability": 0.8864 + }, + { + "start": 9253.44, + "end": 9254.56, + "probability": 0.9771 + }, + { + "start": 9254.68, + "end": 9255.82, + "probability": 0.6976 + }, + { + "start": 9255.96, + "end": 9259.68, + "probability": 0.9718 + }, + { + "start": 9260.22, + "end": 9261.14, + "probability": 0.9307 + }, + { + "start": 9261.4, + "end": 9262.78, + "probability": 0.9168 + }, + { + "start": 9263.18, + "end": 9266.5, + "probability": 0.7905 + }, + { + "start": 9266.74, + "end": 9268.4, + "probability": 0.9601 + }, + { + "start": 9269.76, + "end": 9276.68, + "probability": 0.8055 + }, + { + "start": 9277.76, + "end": 9280.1, + "probability": 0.9918 + }, + { + "start": 9280.62, + "end": 9281.26, + "probability": 0.9207 + }, + { + "start": 9282.36, + "end": 9287.2, + "probability": 0.9639 + }, + { + "start": 9287.96, + "end": 9293.32, + "probability": 0.9507 + }, + { + "start": 9293.94, + "end": 9297.74, + "probability": 0.9712 + }, + { + "start": 9298.7, + "end": 9305.3, + "probability": 0.9946 + }, + { + "start": 9305.38, + "end": 9307.76, + "probability": 0.33 + }, + { + "start": 9308.6, + "end": 9310.46, + "probability": 0.9711 + }, + { + "start": 9310.62, + "end": 9313.08, + "probability": 0.5164 + }, + { + "start": 9313.54, + "end": 9315.66, + "probability": 0.7074 + }, + { + "start": 9316.22, + "end": 9320.16, + "probability": 0.8321 + }, + { + "start": 9320.96, + "end": 9323.28, + "probability": 0.8985 + }, + { + "start": 9323.96, + "end": 9326.22, + "probability": 0.9459 + }, + { + "start": 9326.78, + "end": 9328.5, + "probability": 0.9727 + }, + { + "start": 9328.88, + "end": 9329.76, + "probability": 0.8485 + }, + { + "start": 9329.9, + "end": 9331.96, + "probability": 0.866 + }, + { + "start": 9332.06, + "end": 9333.66, + "probability": 0.8396 + }, + { + "start": 9334.24, + "end": 9337.32, + "probability": 0.9332 + }, + { + "start": 9337.88, + "end": 9339.68, + "probability": 0.693 + }, + { + "start": 9340.46, + "end": 9343.38, + "probability": 0.9938 + }, + { + "start": 9344.3, + "end": 9348.06, + "probability": 0.9985 + }, + { + "start": 9349.4, + "end": 9352.78, + "probability": 0.9583 + }, + { + "start": 9352.94, + "end": 9353.76, + "probability": 0.7697 + }, + { + "start": 9353.9, + "end": 9354.86, + "probability": 0.8828 + }, + { + "start": 9355.56, + "end": 9357.1, + "probability": 0.9852 + }, + { + "start": 9357.46, + "end": 9359.84, + "probability": 0.9796 + }, + { + "start": 9360.6, + "end": 9362.28, + "probability": 0.7193 + }, + { + "start": 9362.68, + "end": 9364.78, + "probability": 0.9839 + }, + { + "start": 9365.2, + "end": 9370.66, + "probability": 0.9741 + }, + { + "start": 9371.12, + "end": 9373.92, + "probability": 0.9535 + }, + { + "start": 9374.06, + "end": 9375.44, + "probability": 0.5029 + }, + { + "start": 9376.32, + "end": 9381.04, + "probability": 0.9695 + }, + { + "start": 9381.68, + "end": 9387.56, + "probability": 0.9958 + }, + { + "start": 9388.26, + "end": 9389.82, + "probability": 0.9354 + }, + { + "start": 9389.96, + "end": 9390.94, + "probability": 0.9671 + }, + { + "start": 9391.04, + "end": 9392.34, + "probability": 0.9011 + }, + { + "start": 9392.44, + "end": 9395.22, + "probability": 0.9568 + }, + { + "start": 9396.06, + "end": 9397.23, + "probability": 0.9549 + }, + { + "start": 9399.36, + "end": 9402.96, + "probability": 0.9031 + }, + { + "start": 9403.74, + "end": 9407.32, + "probability": 0.9751 + }, + { + "start": 9407.36, + "end": 9408.36, + "probability": 0.8859 + }, + { + "start": 9408.36, + "end": 9409.62, + "probability": 0.3494 + }, + { + "start": 9409.7, + "end": 9412.26, + "probability": 0.9854 + }, + { + "start": 9413.6, + "end": 9414.7, + "probability": 0.8916 + }, + { + "start": 9414.96, + "end": 9415.58, + "probability": 0.7889 + }, + { + "start": 9415.72, + "end": 9416.7, + "probability": 0.7339 + }, + { + "start": 9416.7, + "end": 9417.24, + "probability": 0.7636 + }, + { + "start": 9417.88, + "end": 9421.32, + "probability": 0.8602 + }, + { + "start": 9422.08, + "end": 9424.46, + "probability": 0.8564 + }, + { + "start": 9425.42, + "end": 9430.58, + "probability": 0.8315 + }, + { + "start": 9431.1, + "end": 9432.86, + "probability": 0.967 + }, + { + "start": 9433.56, + "end": 9435.68, + "probability": 0.9803 + }, + { + "start": 9436.1, + "end": 9439.06, + "probability": 0.9787 + }, + { + "start": 9439.62, + "end": 9442.08, + "probability": 0.9969 + }, + { + "start": 9442.46, + "end": 9447.56, + "probability": 0.9857 + }, + { + "start": 9447.56, + "end": 9453.94, + "probability": 0.9851 + }, + { + "start": 9454.04, + "end": 9455.32, + "probability": 0.7294 + }, + { + "start": 9455.84, + "end": 9457.1, + "probability": 0.9664 + }, + { + "start": 9457.7, + "end": 9458.12, + "probability": 0.812 + }, + { + "start": 9458.78, + "end": 9459.94, + "probability": 0.98 + }, + { + "start": 9460.98, + "end": 9463.88, + "probability": 0.996 + }, + { + "start": 9463.88, + "end": 9467.92, + "probability": 0.9941 + }, + { + "start": 9467.92, + "end": 9471.28, + "probability": 0.9895 + }, + { + "start": 9472.24, + "end": 9473.56, + "probability": 0.9375 + }, + { + "start": 9474.38, + "end": 9479.36, + "probability": 0.9943 + }, + { + "start": 9480.02, + "end": 9484.68, + "probability": 0.8234 + }, + { + "start": 9484.86, + "end": 9486.37, + "probability": 0.5576 + }, + { + "start": 9487.18, + "end": 9492.48, + "probability": 0.9834 + }, + { + "start": 9492.58, + "end": 9493.3, + "probability": 0.4407 + }, + { + "start": 9493.52, + "end": 9494.16, + "probability": 0.9263 + }, + { + "start": 9494.84, + "end": 9498.44, + "probability": 0.9231 + }, + { + "start": 9498.54, + "end": 9501.24, + "probability": 0.9766 + }, + { + "start": 9501.64, + "end": 9507.88, + "probability": 0.9236 + }, + { + "start": 9508.84, + "end": 9509.2, + "probability": 0.7169 + }, + { + "start": 9509.32, + "end": 9512.76, + "probability": 0.9339 + }, + { + "start": 9512.76, + "end": 9516.12, + "probability": 0.7349 + }, + { + "start": 9517.1, + "end": 9518.86, + "probability": 0.9834 + }, + { + "start": 9519.3, + "end": 9521.68, + "probability": 0.9429 + }, + { + "start": 9522.04, + "end": 9522.58, + "probability": 0.8442 + }, + { + "start": 9523.22, + "end": 9523.8, + "probability": 0.7611 + }, + { + "start": 9523.92, + "end": 9524.06, + "probability": 0.464 + }, + { + "start": 9524.14, + "end": 9526.2, + "probability": 0.5734 + }, + { + "start": 9526.48, + "end": 9530.32, + "probability": 0.7118 + }, + { + "start": 9531.02, + "end": 9533.3, + "probability": 0.8797 + }, + { + "start": 9533.78, + "end": 9537.13, + "probability": 0.8922 + }, + { + "start": 9537.74, + "end": 9542.88, + "probability": 0.9268 + }, + { + "start": 9543.16, + "end": 9548.44, + "probability": 0.9932 + }, + { + "start": 9548.44, + "end": 9554.32, + "probability": 0.7418 + }, + { + "start": 9554.53, + "end": 9559.76, + "probability": 0.8552 + }, + { + "start": 9560.5, + "end": 9561.16, + "probability": 0.8708 + }, + { + "start": 9561.68, + "end": 9564.58, + "probability": 0.9609 + }, + { + "start": 9565.14, + "end": 9568.66, + "probability": 0.9922 + }, + { + "start": 9569.54, + "end": 9571.6, + "probability": 0.9214 + }, + { + "start": 9572.22, + "end": 9573.14, + "probability": 0.6201 + }, + { + "start": 9573.86, + "end": 9576.3, + "probability": 0.9791 + }, + { + "start": 9582.08, + "end": 9583.02, + "probability": 0.5653 + }, + { + "start": 9583.44, + "end": 9583.94, + "probability": 0.8637 + }, + { + "start": 9589.3, + "end": 9591.04, + "probability": 0.6462 + }, + { + "start": 9591.68, + "end": 9592.26, + "probability": 0.9204 + }, + { + "start": 9593.64, + "end": 9594.72, + "probability": 0.9971 + }, + { + "start": 9596.1, + "end": 9599.78, + "probability": 0.9878 + }, + { + "start": 9601.08, + "end": 9601.82, + "probability": 0.9795 + }, + { + "start": 9602.1, + "end": 9605.74, + "probability": 0.9854 + }, + { + "start": 9606.82, + "end": 9607.38, + "probability": 0.9453 + }, + { + "start": 9609.51, + "end": 9614.82, + "probability": 0.6236 + }, + { + "start": 9616.1, + "end": 9620.26, + "probability": 0.9607 + }, + { + "start": 9620.92, + "end": 9622.2, + "probability": 0.8589 + }, + { + "start": 9623.02, + "end": 9623.84, + "probability": 0.9961 + }, + { + "start": 9625.0, + "end": 9625.58, + "probability": 0.9948 + }, + { + "start": 9626.92, + "end": 9628.4, + "probability": 0.9991 + }, + { + "start": 9629.82, + "end": 9630.46, + "probability": 0.9483 + }, + { + "start": 9631.8, + "end": 9633.22, + "probability": 0.9073 + }, + { + "start": 9633.8, + "end": 9638.4, + "probability": 0.958 + }, + { + "start": 9638.84, + "end": 9639.8, + "probability": 0.596 + }, + { + "start": 9641.22, + "end": 9644.5, + "probability": 0.9299 + }, + { + "start": 9645.44, + "end": 9649.44, + "probability": 0.9735 + }, + { + "start": 9650.76, + "end": 9652.3, + "probability": 0.8503 + }, + { + "start": 9653.8, + "end": 9655.64, + "probability": 0.9758 + }, + { + "start": 9657.72, + "end": 9660.16, + "probability": 0.8668 + }, + { + "start": 9662.8, + "end": 9663.38, + "probability": 0.6965 + }, + { + "start": 9664.22, + "end": 9665.66, + "probability": 0.9702 + }, + { + "start": 9666.66, + "end": 9668.24, + "probability": 0.9664 + }, + { + "start": 9669.86, + "end": 9672.1, + "probability": 0.9819 + }, + { + "start": 9673.0, + "end": 9673.62, + "probability": 0.9229 + }, + { + "start": 9675.9, + "end": 9679.28, + "probability": 0.974 + }, + { + "start": 9680.18, + "end": 9680.98, + "probability": 0.9878 + }, + { + "start": 9682.48, + "end": 9684.66, + "probability": 0.996 + }, + { + "start": 9686.08, + "end": 9689.88, + "probability": 0.9868 + }, + { + "start": 9690.94, + "end": 9691.68, + "probability": 0.8708 + }, + { + "start": 9692.52, + "end": 9693.12, + "probability": 0.7495 + }, + { + "start": 9694.16, + "end": 9697.78, + "probability": 0.9851 + }, + { + "start": 9698.22, + "end": 9701.16, + "probability": 0.9709 + }, + { + "start": 9702.96, + "end": 9707.08, + "probability": 0.8595 + }, + { + "start": 9708.74, + "end": 9711.9, + "probability": 0.9971 + }, + { + "start": 9712.76, + "end": 9714.82, + "probability": 0.9723 + }, + { + "start": 9716.24, + "end": 9717.48, + "probability": 0.9394 + }, + { + "start": 9718.88, + "end": 9720.2, + "probability": 0.9688 + }, + { + "start": 9721.04, + "end": 9721.75, + "probability": 0.9155 + }, + { + "start": 9722.76, + "end": 9724.2, + "probability": 0.8634 + }, + { + "start": 9725.3, + "end": 9730.52, + "probability": 0.9927 + }, + { + "start": 9731.62, + "end": 9732.22, + "probability": 0.933 + }, + { + "start": 9735.38, + "end": 9737.34, + "probability": 0.9968 + }, + { + "start": 9738.04, + "end": 9740.88, + "probability": 0.8699 + }, + { + "start": 9742.24, + "end": 9746.62, + "probability": 0.9995 + }, + { + "start": 9747.6, + "end": 9749.26, + "probability": 0.5834 + }, + { + "start": 9750.38, + "end": 9753.12, + "probability": 0.8371 + }, + { + "start": 9754.14, + "end": 9754.58, + "probability": 0.4059 + }, + { + "start": 9755.76, + "end": 9756.0, + "probability": 0.6403 + }, + { + "start": 9756.78, + "end": 9758.08, + "probability": 0.9616 + }, + { + "start": 9759.68, + "end": 9762.84, + "probability": 0.9548 + }, + { + "start": 9765.34, + "end": 9766.26, + "probability": 0.828 + }, + { + "start": 9768.78, + "end": 9772.78, + "probability": 0.9521 + }, + { + "start": 9774.02, + "end": 9775.6, + "probability": 0.9089 + }, + { + "start": 9777.34, + "end": 9778.52, + "probability": 0.7424 + }, + { + "start": 9780.46, + "end": 9783.4, + "probability": 0.8424 + }, + { + "start": 9784.04, + "end": 9785.36, + "probability": 0.9555 + }, + { + "start": 9787.76, + "end": 9789.3, + "probability": 0.9736 + }, + { + "start": 9790.24, + "end": 9793.4, + "probability": 0.9414 + }, + { + "start": 9796.14, + "end": 9798.94, + "probability": 0.9961 + }, + { + "start": 9799.86, + "end": 9800.78, + "probability": 0.7619 + }, + { + "start": 9802.36, + "end": 9805.32, + "probability": 0.9983 + }, + { + "start": 9807.16, + "end": 9808.84, + "probability": 0.9767 + }, + { + "start": 9810.78, + "end": 9811.54, + "probability": 0.9457 + }, + { + "start": 9812.88, + "end": 9820.24, + "probability": 0.9865 + }, + { + "start": 9820.96, + "end": 9823.54, + "probability": 0.881 + }, + { + "start": 9825.88, + "end": 9828.06, + "probability": 0.7799 + }, + { + "start": 9830.58, + "end": 9832.98, + "probability": 0.9883 + }, + { + "start": 9833.58, + "end": 9835.98, + "probability": 0.8186 + }, + { + "start": 9836.9, + "end": 9837.74, + "probability": 0.8258 + }, + { + "start": 9839.34, + "end": 9844.1, + "probability": 0.9978 + }, + { + "start": 9845.02, + "end": 9845.58, + "probability": 0.9926 + }, + { + "start": 9847.26, + "end": 9848.06, + "probability": 0.6658 + }, + { + "start": 9850.06, + "end": 9853.7, + "probability": 0.9851 + }, + { + "start": 9855.94, + "end": 9859.32, + "probability": 0.9312 + }, + { + "start": 9861.6, + "end": 9864.54, + "probability": 0.9653 + }, + { + "start": 9866.36, + "end": 9868.48, + "probability": 0.7168 + }, + { + "start": 9871.26, + "end": 9874.34, + "probability": 0.986 + }, + { + "start": 9876.84, + "end": 9878.26, + "probability": 0.9808 + }, + { + "start": 9879.26, + "end": 9880.68, + "probability": 0.9334 + }, + { + "start": 9882.44, + "end": 9883.8, + "probability": 0.9479 + }, + { + "start": 9884.46, + "end": 9885.2, + "probability": 0.9995 + }, + { + "start": 9886.12, + "end": 9893.24, + "probability": 0.8893 + }, + { + "start": 9894.2, + "end": 9897.68, + "probability": 0.9956 + }, + { + "start": 9897.82, + "end": 9900.64, + "probability": 0.8885 + }, + { + "start": 9901.06, + "end": 9902.6, + "probability": 0.6955 + }, + { + "start": 9903.64, + "end": 9905.94, + "probability": 0.9115 + }, + { + "start": 9907.3, + "end": 9909.18, + "probability": 0.9551 + }, + { + "start": 9910.26, + "end": 9911.19, + "probability": 0.994 + }, + { + "start": 9912.1, + "end": 9913.42, + "probability": 0.9165 + }, + { + "start": 9914.28, + "end": 9914.54, + "probability": 0.7588 + }, + { + "start": 9915.3, + "end": 9916.06, + "probability": 0.9641 + }, + { + "start": 9916.66, + "end": 9918.54, + "probability": 0.9377 + }, + { + "start": 9919.32, + "end": 9922.08, + "probability": 0.9854 + }, + { + "start": 9922.2, + "end": 9922.38, + "probability": 0.8528 + }, + { + "start": 9923.08, + "end": 9925.58, + "probability": 0.4874 + }, + { + "start": 9926.58, + "end": 9928.64, + "probability": 0.9943 + }, + { + "start": 9929.42, + "end": 9929.82, + "probability": 0.7992 + }, + { + "start": 9931.0, + "end": 9932.0, + "probability": 0.7132 + }, + { + "start": 9932.92, + "end": 9933.24, + "probability": 0.8745 + }, + { + "start": 9941.8, + "end": 9943.84, + "probability": 0.8087 + }, + { + "start": 9944.48, + "end": 9945.28, + "probability": 0.9322 + }, + { + "start": 9945.7, + "end": 9946.7, + "probability": 0.7791 + }, + { + "start": 9946.72, + "end": 9947.96, + "probability": 0.5552 + }, + { + "start": 9948.94, + "end": 9953.42, + "probability": 0.9967 + }, + { + "start": 9954.52, + "end": 9955.67, + "probability": 0.9744 + }, + { + "start": 9956.46, + "end": 9961.68, + "probability": 0.7409 + }, + { + "start": 9962.56, + "end": 9963.66, + "probability": 0.9987 + }, + { + "start": 9964.52, + "end": 9965.68, + "probability": 0.9338 + }, + { + "start": 9966.58, + "end": 9966.88, + "probability": 0.9816 + }, + { + "start": 9968.9, + "end": 9970.84, + "probability": 0.8097 + }, + { + "start": 9971.88, + "end": 9977.3, + "probability": 0.9958 + }, + { + "start": 9978.72, + "end": 9983.06, + "probability": 0.6526 + }, + { + "start": 9983.6, + "end": 9983.82, + "probability": 0.9896 + }, + { + "start": 9985.7, + "end": 9991.62, + "probability": 0.9927 + }, + { + "start": 9992.54, + "end": 9994.24, + "probability": 0.8676 + }, + { + "start": 9995.14, + "end": 9995.24, + "probability": 0.9323 + }, + { + "start": 9996.64, + "end": 9997.42, + "probability": 0.998 + }, + { + "start": 9999.12, + "end": 10002.1, + "probability": 0.6482 + }, + { + "start": 10002.68, + "end": 10003.98, + "probability": 0.933 + }, + { + "start": 10004.98, + "end": 10006.56, + "probability": 0.8688 + }, + { + "start": 10007.74, + "end": 10010.24, + "probability": 0.9746 + }, + { + "start": 10011.06, + "end": 10018.84, + "probability": 0.6922 + }, + { + "start": 10020.26, + "end": 10024.42, + "probability": 0.6439 + }, + { + "start": 10025.9, + "end": 10031.0, + "probability": 0.9786 + }, + { + "start": 10032.44, + "end": 10034.82, + "probability": 0.9917 + }, + { + "start": 10036.66, + "end": 10037.2, + "probability": 0.9894 + }, + { + "start": 10037.84, + "end": 10041.74, + "probability": 0.9868 + }, + { + "start": 10042.94, + "end": 10046.98, + "probability": 0.9991 + }, + { + "start": 10048.04, + "end": 10049.58, + "probability": 0.8188 + }, + { + "start": 10050.14, + "end": 10056.46, + "probability": 0.9976 + }, + { + "start": 10057.62, + "end": 10060.88, + "probability": 0.7362 + }, + { + "start": 10062.06, + "end": 10065.78, + "probability": 0.9714 + }, + { + "start": 10067.4, + "end": 10068.45, + "probability": 0.9855 + }, + { + "start": 10069.06, + "end": 10071.54, + "probability": 0.901 + }, + { + "start": 10072.22, + "end": 10076.02, + "probability": 0.8639 + }, + { + "start": 10077.1, + "end": 10078.54, + "probability": 0.4998 + }, + { + "start": 10079.96, + "end": 10083.72, + "probability": 0.7375 + }, + { + "start": 10085.72, + "end": 10086.78, + "probability": 0.571 + }, + { + "start": 10087.7, + "end": 10088.46, + "probability": 0.6957 + }, + { + "start": 10089.9, + "end": 10092.82, + "probability": 0.9902 + }, + { + "start": 10094.82, + "end": 10099.06, + "probability": 0.9491 + }, + { + "start": 10099.92, + "end": 10103.82, + "probability": 0.7459 + }, + { + "start": 10105.26, + "end": 10107.06, + "probability": 0.5629 + }, + { + "start": 10108.3, + "end": 10113.8, + "probability": 0.9432 + }, + { + "start": 10114.54, + "end": 10120.18, + "probability": 0.7671 + }, + { + "start": 10121.82, + "end": 10122.46, + "probability": 0.9665 + }, + { + "start": 10123.34, + "end": 10127.56, + "probability": 0.9359 + }, + { + "start": 10128.16, + "end": 10129.1, + "probability": 0.9935 + }, + { + "start": 10130.24, + "end": 10131.08, + "probability": 0.401 + }, + { + "start": 10132.54, + "end": 10133.04, + "probability": 0.3356 + }, + { + "start": 10133.84, + "end": 10135.44, + "probability": 0.7833 + }, + { + "start": 10136.68, + "end": 10142.26, + "probability": 0.8127 + }, + { + "start": 10144.46, + "end": 10148.62, + "probability": 0.3652 + }, + { + "start": 10149.32, + "end": 10154.58, + "probability": 0.9674 + }, + { + "start": 10155.9, + "end": 10157.26, + "probability": 0.988 + }, + { + "start": 10158.42, + "end": 10159.76, + "probability": 0.6898 + }, + { + "start": 10160.32, + "end": 10161.24, + "probability": 0.9131 + }, + { + "start": 10162.96, + "end": 10163.66, + "probability": 0.591 + }, + { + "start": 10164.34, + "end": 10165.98, + "probability": 0.8239 + }, + { + "start": 10166.94, + "end": 10169.36, + "probability": 0.5809 + }, + { + "start": 10170.18, + "end": 10171.2, + "probability": 0.9626 + }, + { + "start": 10172.08, + "end": 10173.74, + "probability": 0.6079 + }, + { + "start": 10174.7, + "end": 10179.1, + "probability": 0.9372 + }, + { + "start": 10180.66, + "end": 10182.14, + "probability": 0.9227 + }, + { + "start": 10182.94, + "end": 10185.58, + "probability": 0.6472 + }, + { + "start": 10186.7, + "end": 10189.12, + "probability": 0.9527 + }, + { + "start": 10190.52, + "end": 10194.68, + "probability": 0.8541 + }, + { + "start": 10195.44, + "end": 10196.68, + "probability": 0.9787 + }, + { + "start": 10198.24, + "end": 10199.1, + "probability": 0.8857 + }, + { + "start": 10199.8, + "end": 10201.92, + "probability": 0.9927 + }, + { + "start": 10202.56, + "end": 10203.0, + "probability": 0.8008 + }, + { + "start": 10203.74, + "end": 10206.76, + "probability": 0.9974 + }, + { + "start": 10208.52, + "end": 10210.98, + "probability": 0.9238 + }, + { + "start": 10211.74, + "end": 10214.2, + "probability": 0.9962 + }, + { + "start": 10214.84, + "end": 10219.1, + "probability": 0.9542 + }, + { + "start": 10219.88, + "end": 10226.0, + "probability": 0.9586 + }, + { + "start": 10226.42, + "end": 10227.38, + "probability": 0.5464 + }, + { + "start": 10227.66, + "end": 10229.64, + "probability": 0.5537 + }, + { + "start": 10229.72, + "end": 10230.3, + "probability": 0.6893 + }, + { + "start": 10232.1, + "end": 10234.53, + "probability": 0.8262 + }, + { + "start": 10236.68, + "end": 10239.3, + "probability": 0.8056 + }, + { + "start": 10239.38, + "end": 10241.74, + "probability": 0.891 + }, + { + "start": 10243.08, + "end": 10247.24, + "probability": 0.9616 + }, + { + "start": 10247.24, + "end": 10247.96, + "probability": 0.9703 + }, + { + "start": 10250.62, + "end": 10251.74, + "probability": 0.701 + }, + { + "start": 10251.88, + "end": 10252.56, + "probability": 0.7655 + }, + { + "start": 10252.96, + "end": 10256.7, + "probability": 0.9873 + }, + { + "start": 10257.14, + "end": 10261.42, + "probability": 0.7795 + }, + { + "start": 10262.76, + "end": 10263.88, + "probability": 0.6946 + }, + { + "start": 10264.36, + "end": 10267.52, + "probability": 0.9559 + }, + { + "start": 10267.74, + "end": 10272.04, + "probability": 0.989 + }, + { + "start": 10272.64, + "end": 10275.9, + "probability": 0.952 + }, + { + "start": 10277.04, + "end": 10278.3, + "probability": 0.6823 + }, + { + "start": 10278.4, + "end": 10282.64, + "probability": 0.9352 + }, + { + "start": 10283.12, + "end": 10286.12, + "probability": 0.8203 + }, + { + "start": 10286.28, + "end": 10287.38, + "probability": 0.8187 + }, + { + "start": 10287.38, + "end": 10290.3, + "probability": 0.4176 + }, + { + "start": 10291.58, + "end": 10294.6, + "probability": 0.9425 + }, + { + "start": 10295.96, + "end": 10297.22, + "probability": 0.7991 + }, + { + "start": 10297.42, + "end": 10297.96, + "probability": 0.7784 + }, + { + "start": 10298.12, + "end": 10298.78, + "probability": 0.7288 + }, + { + "start": 10299.12, + "end": 10303.26, + "probability": 0.0911 + }, + { + "start": 10311.42, + "end": 10311.42, + "probability": 0.1075 + }, + { + "start": 10311.42, + "end": 10312.14, + "probability": 0.6091 + }, + { + "start": 10312.74, + "end": 10314.26, + "probability": 0.4618 + }, + { + "start": 10315.42, + "end": 10316.68, + "probability": 0.7718 + }, + { + "start": 10316.98, + "end": 10316.98, + "probability": 0.6128 + }, + { + "start": 10317.92, + "end": 10319.21, + "probability": 0.9202 + }, + { + "start": 10320.56, + "end": 10322.24, + "probability": 0.4731 + }, + { + "start": 10322.28, + "end": 10322.82, + "probability": 0.8254 + }, + { + "start": 10325.6, + "end": 10328.28, + "probability": 0.8139 + }, + { + "start": 10329.16, + "end": 10331.36, + "probability": 0.9893 + }, + { + "start": 10331.36, + "end": 10334.94, + "probability": 0.9288 + }, + { + "start": 10335.48, + "end": 10335.68, + "probability": 0.8021 + }, + { + "start": 10336.88, + "end": 10337.4, + "probability": 0.5675 + }, + { + "start": 10338.2, + "end": 10339.82, + "probability": 0.7881 + }, + { + "start": 10344.08, + "end": 10347.32, + "probability": 0.75 + }, + { + "start": 10351.74, + "end": 10352.28, + "probability": 0.0507 + }, + { + "start": 10353.68, + "end": 10355.09, + "probability": 0.9932 + }, + { + "start": 10356.0, + "end": 10357.0, + "probability": 0.4889 + }, + { + "start": 10358.05, + "end": 10361.7, + "probability": 0.9321 + }, + { + "start": 10364.4, + "end": 10367.16, + "probability": 0.9924 + }, + { + "start": 10380.08, + "end": 10383.76, + "probability": 0.8 + }, + { + "start": 10384.8, + "end": 10387.0, + "probability": 0.8955 + }, + { + "start": 10388.3, + "end": 10389.72, + "probability": 0.9046 + }, + { + "start": 10390.3, + "end": 10393.14, + "probability": 0.8059 + }, + { + "start": 10393.8, + "end": 10394.8, + "probability": 0.9165 + }, + { + "start": 10396.42, + "end": 10396.82, + "probability": 0.387 + }, + { + "start": 10396.82, + "end": 10399.23, + "probability": 0.7266 + }, + { + "start": 10399.86, + "end": 10401.3, + "probability": 0.7113 + }, + { + "start": 10402.22, + "end": 10403.14, + "probability": 0.7571 + }, + { + "start": 10403.34, + "end": 10404.3, + "probability": 0.8246 + }, + { + "start": 10404.98, + "end": 10405.62, + "probability": 0.7639 + }, + { + "start": 10406.58, + "end": 10407.0, + "probability": 0.6264 + }, + { + "start": 10407.08, + "end": 10407.4, + "probability": 0.9347 + }, + { + "start": 10407.68, + "end": 10409.78, + "probability": 0.5919 + }, + { + "start": 10410.1, + "end": 10413.7, + "probability": 0.7488 + }, + { + "start": 10413.74, + "end": 10415.76, + "probability": 0.9443 + }, + { + "start": 10416.6, + "end": 10417.57, + "probability": 0.7619 + }, + { + "start": 10418.92, + "end": 10422.88, + "probability": 0.9062 + }, + { + "start": 10422.9, + "end": 10426.02, + "probability": 0.6163 + }, + { + "start": 10427.04, + "end": 10429.94, + "probability": 0.7678 + }, + { + "start": 10431.16, + "end": 10433.52, + "probability": 0.9976 + }, + { + "start": 10434.08, + "end": 10442.6, + "probability": 0.8879 + }, + { + "start": 10443.96, + "end": 10446.24, + "probability": 0.573 + }, + { + "start": 10446.84, + "end": 10450.26, + "probability": 0.9093 + }, + { + "start": 10450.74, + "end": 10451.84, + "probability": 0.8407 + }, + { + "start": 10451.92, + "end": 10452.42, + "probability": 0.9049 + }, + { + "start": 10454.92, + "end": 10459.24, + "probability": 0.7202 + }, + { + "start": 10459.6, + "end": 10461.0, + "probability": 0.5171 + }, + { + "start": 10462.08, + "end": 10463.72, + "probability": 0.7411 + }, + { + "start": 10464.46, + "end": 10470.82, + "probability": 0.9859 + }, + { + "start": 10472.24, + "end": 10473.51, + "probability": 0.7273 + }, + { + "start": 10474.1, + "end": 10475.86, + "probability": 0.9962 + }, + { + "start": 10476.7, + "end": 10479.48, + "probability": 0.9956 + }, + { + "start": 10479.86, + "end": 10481.16, + "probability": 0.8688 + }, + { + "start": 10481.7, + "end": 10482.98, + "probability": 0.8925 + }, + { + "start": 10484.9, + "end": 10486.78, + "probability": 0.6514 + }, + { + "start": 10488.02, + "end": 10489.44, + "probability": 0.9038 + }, + { + "start": 10490.22, + "end": 10490.72, + "probability": 0.6713 + }, + { + "start": 10491.28, + "end": 10494.84, + "probability": 0.9874 + }, + { + "start": 10497.58, + "end": 10502.36, + "probability": 0.9793 + }, + { + "start": 10503.66, + "end": 10504.42, + "probability": 0.9477 + }, + { + "start": 10505.48, + "end": 10508.46, + "probability": 0.9908 + }, + { + "start": 10509.1, + "end": 10511.76, + "probability": 0.9883 + }, + { + "start": 10513.3, + "end": 10515.24, + "probability": 0.8384 + }, + { + "start": 10516.38, + "end": 10519.58, + "probability": 0.9829 + }, + { + "start": 10520.62, + "end": 10521.48, + "probability": 0.9185 + }, + { + "start": 10522.42, + "end": 10525.38, + "probability": 0.9972 + }, + { + "start": 10526.1, + "end": 10526.78, + "probability": 0.9963 + }, + { + "start": 10527.98, + "end": 10528.5, + "probability": 0.9237 + }, + { + "start": 10529.56, + "end": 10532.94, + "probability": 0.9215 + }, + { + "start": 10533.14, + "end": 10534.53, + "probability": 0.9591 + }, + { + "start": 10534.68, + "end": 10535.9, + "probability": 0.7434 + }, + { + "start": 10536.44, + "end": 10540.56, + "probability": 0.9741 + }, + { + "start": 10542.48, + "end": 10543.08, + "probability": 0.7786 + }, + { + "start": 10544.3, + "end": 10544.6, + "probability": 0.915 + }, + { + "start": 10545.56, + "end": 10549.64, + "probability": 0.9644 + }, + { + "start": 10550.96, + "end": 10554.98, + "probability": 0.9979 + }, + { + "start": 10555.76, + "end": 10559.68, + "probability": 0.998 + }, + { + "start": 10560.12, + "end": 10561.98, + "probability": 0.9979 + }, + { + "start": 10564.48, + "end": 10566.86, + "probability": 0.9915 + }, + { + "start": 10567.8, + "end": 10569.38, + "probability": 0.999 + }, + { + "start": 10569.72, + "end": 10574.82, + "probability": 0.9922 + }, + { + "start": 10574.84, + "end": 10576.53, + "probability": 0.7939 + }, + { + "start": 10576.68, + "end": 10577.0, + "probability": 0.4249 + }, + { + "start": 10577.04, + "end": 10579.22, + "probability": 0.5873 + }, + { + "start": 10579.54, + "end": 10582.3, + "probability": 0.7985 + }, + { + "start": 10582.98, + "end": 10583.22, + "probability": 0.3743 + }, + { + "start": 10583.34, + "end": 10584.06, + "probability": 0.7705 + }, + { + "start": 10584.16, + "end": 10585.86, + "probability": 0.9288 + }, + { + "start": 10586.44, + "end": 10587.62, + "probability": 0.9467 + }, + { + "start": 10588.1, + "end": 10590.3, + "probability": 0.856 + }, + { + "start": 10590.32, + "end": 10590.66, + "probability": 0.3285 + }, + { + "start": 10592.84, + "end": 10594.48, + "probability": 0.6644 + }, + { + "start": 10594.86, + "end": 10597.46, + "probability": 0.9907 + }, + { + "start": 10597.86, + "end": 10598.93, + "probability": 0.7653 + }, + { + "start": 10600.1, + "end": 10601.18, + "probability": 0.9798 + }, + { + "start": 10601.18, + "end": 10601.28, + "probability": 0.3097 + }, + { + "start": 10601.44, + "end": 10602.36, + "probability": 0.8405 + }, + { + "start": 10602.4, + "end": 10604.8, + "probability": 0.8011 + }, + { + "start": 10604.96, + "end": 10606.96, + "probability": 0.7058 + }, + { + "start": 10607.04, + "end": 10608.12, + "probability": 0.7881 + }, + { + "start": 10608.72, + "end": 10609.54, + "probability": 0.9919 + }, + { + "start": 10610.44, + "end": 10611.6, + "probability": 0.6331 + }, + { + "start": 10613.34, + "end": 10617.92, + "probability": 0.851 + }, + { + "start": 10618.84, + "end": 10619.54, + "probability": 0.4821 + }, + { + "start": 10620.76, + "end": 10622.44, + "probability": 0.6517 + }, + { + "start": 10623.54, + "end": 10624.66, + "probability": 0.9551 + }, + { + "start": 10625.38, + "end": 10627.78, + "probability": 0.7244 + }, + { + "start": 10628.5, + "end": 10630.58, + "probability": 0.9535 + }, + { + "start": 10631.04, + "end": 10633.0, + "probability": 0.9967 + }, + { + "start": 10634.02, + "end": 10635.2, + "probability": 0.9275 + }, + { + "start": 10635.34, + "end": 10640.06, + "probability": 0.988 + }, + { + "start": 10640.86, + "end": 10641.38, + "probability": 0.8063 + }, + { + "start": 10643.02, + "end": 10644.27, + "probability": 0.9951 + }, + { + "start": 10644.46, + "end": 10645.12, + "probability": 0.5431 + }, + { + "start": 10645.12, + "end": 10647.74, + "probability": 0.9324 + }, + { + "start": 10648.28, + "end": 10650.16, + "probability": 0.6407 + }, + { + "start": 10651.4, + "end": 10655.36, + "probability": 0.9946 + }, + { + "start": 10655.5, + "end": 10659.38, + "probability": 0.9972 + }, + { + "start": 10659.92, + "end": 10662.08, + "probability": 0.9957 + }, + { + "start": 10662.68, + "end": 10663.28, + "probability": 0.9904 + }, + { + "start": 10663.88, + "end": 10667.68, + "probability": 0.989 + }, + { + "start": 10668.16, + "end": 10669.24, + "probability": 0.6816 + }, + { + "start": 10669.36, + "end": 10670.38, + "probability": 0.8037 + }, + { + "start": 10671.82, + "end": 10673.34, + "probability": 0.9961 + }, + { + "start": 10674.12, + "end": 10677.0, + "probability": 0.8565 + }, + { + "start": 10677.62, + "end": 10677.9, + "probability": 0.8104 + }, + { + "start": 10678.12, + "end": 10681.52, + "probability": 0.9878 + }, + { + "start": 10681.88, + "end": 10682.38, + "probability": 0.6206 + }, + { + "start": 10683.36, + "end": 10685.5, + "probability": 0.7025 + }, + { + "start": 10685.74, + "end": 10688.66, + "probability": 0.7392 + }, + { + "start": 10689.78, + "end": 10690.4, + "probability": 0.9044 + }, + { + "start": 10690.98, + "end": 10692.54, + "probability": 0.9048 + }, + { + "start": 10698.52, + "end": 10699.18, + "probability": 0.8473 + }, + { + "start": 10700.14, + "end": 10700.98, + "probability": 0.9784 + }, + { + "start": 10702.12, + "end": 10702.78, + "probability": 0.7577 + }, + { + "start": 10703.8, + "end": 10706.74, + "probability": 0.8614 + }, + { + "start": 10707.3, + "end": 10707.98, + "probability": 0.6247 + }, + { + "start": 10709.32, + "end": 10711.1, + "probability": 0.4127 + }, + { + "start": 10711.7, + "end": 10714.86, + "probability": 0.7973 + }, + { + "start": 10715.26, + "end": 10716.46, + "probability": 0.7685 + }, + { + "start": 10717.54, + "end": 10720.44, + "probability": 0.9565 + }, + { + "start": 10721.16, + "end": 10722.52, + "probability": 0.8575 + }, + { + "start": 10723.28, + "end": 10723.92, + "probability": 0.4078 + }, + { + "start": 10724.96, + "end": 10727.56, + "probability": 0.7838 + }, + { + "start": 10727.78, + "end": 10728.82, + "probability": 0.606 + }, + { + "start": 10728.84, + "end": 10733.06, + "probability": 0.7013 + }, + { + "start": 10733.28, + "end": 10734.74, + "probability": 0.419 + }, + { + "start": 10735.44, + "end": 10739.0, + "probability": 0.9902 + }, + { + "start": 10739.92, + "end": 10742.5, + "probability": 0.8048 + }, + { + "start": 10743.84, + "end": 10745.76, + "probability": 0.6719 + }, + { + "start": 10746.5, + "end": 10747.74, + "probability": 0.941 + }, + { + "start": 10748.36, + "end": 10750.88, + "probability": 0.9174 + }, + { + "start": 10751.02, + "end": 10752.08, + "probability": 0.9267 + }, + { + "start": 10752.1, + "end": 10759.1, + "probability": 0.7505 + }, + { + "start": 10759.66, + "end": 10762.58, + "probability": 0.9883 + }, + { + "start": 10763.66, + "end": 10769.4, + "probability": 0.9102 + }, + { + "start": 10769.52, + "end": 10771.58, + "probability": 0.806 + }, + { + "start": 10772.52, + "end": 10773.08, + "probability": 0.5393 + }, + { + "start": 10773.14, + "end": 10778.04, + "probability": 0.7671 + }, + { + "start": 10779.24, + "end": 10783.54, + "probability": 0.9792 + }, + { + "start": 10784.24, + "end": 10785.58, + "probability": 0.9523 + }, + { + "start": 10786.14, + "end": 10787.96, + "probability": 0.8719 + }, + { + "start": 10788.46, + "end": 10793.48, + "probability": 0.9419 + }, + { + "start": 10793.96, + "end": 10795.0, + "probability": 0.872 + }, + { + "start": 10795.3, + "end": 10796.66, + "probability": 0.9395 + }, + { + "start": 10797.12, + "end": 10799.14, + "probability": 0.9968 + }, + { + "start": 10801.16, + "end": 10802.88, + "probability": 0.971 + }, + { + "start": 10805.84, + "end": 10809.44, + "probability": 0.9937 + }, + { + "start": 10809.7, + "end": 10811.5, + "probability": 0.7356 + }, + { + "start": 10813.56, + "end": 10818.54, + "probability": 0.9747 + }, + { + "start": 10819.08, + "end": 10819.88, + "probability": 0.4744 + }, + { + "start": 10821.06, + "end": 10826.06, + "probability": 0.8784 + }, + { + "start": 10826.6, + "end": 10829.36, + "probability": 0.7372 + }, + { + "start": 10829.94, + "end": 10830.36, + "probability": 0.631 + }, + { + "start": 10831.24, + "end": 10833.7, + "probability": 0.3817 + }, + { + "start": 10834.32, + "end": 10836.0, + "probability": 0.8704 + }, + { + "start": 10837.34, + "end": 10839.52, + "probability": 0.8704 + }, + { + "start": 10840.14, + "end": 10840.96, + "probability": 0.5372 + }, + { + "start": 10841.6, + "end": 10843.76, + "probability": 0.7586 + }, + { + "start": 10844.68, + "end": 10845.96, + "probability": 0.5212 + }, + { + "start": 10846.88, + "end": 10848.18, + "probability": 0.907 + }, + { + "start": 10848.62, + "end": 10851.38, + "probability": 0.7436 + }, + { + "start": 10851.88, + "end": 10854.12, + "probability": 0.9715 + }, + { + "start": 10854.8, + "end": 10855.52, + "probability": 0.8976 + }, + { + "start": 10856.28, + "end": 10857.99, + "probability": 0.7909 + }, + { + "start": 10858.46, + "end": 10864.76, + "probability": 0.6517 + }, + { + "start": 10865.7, + "end": 10869.52, + "probability": 0.895 + }, + { + "start": 10869.6, + "end": 10873.48, + "probability": 0.846 + }, + { + "start": 10873.92, + "end": 10874.76, + "probability": 0.584 + }, + { + "start": 10875.98, + "end": 10878.38, + "probability": 0.8065 + }, + { + "start": 10879.68, + "end": 10882.3, + "probability": 0.9887 + }, + { + "start": 10882.88, + "end": 10885.86, + "probability": 0.9846 + }, + { + "start": 10886.14, + "end": 10888.64, + "probability": 0.8928 + }, + { + "start": 10889.02, + "end": 10890.01, + "probability": 0.7169 + }, + { + "start": 10890.3, + "end": 10891.6, + "probability": 0.8164 + }, + { + "start": 10892.12, + "end": 10894.4, + "probability": 0.9946 + }, + { + "start": 10894.68, + "end": 10898.86, + "probability": 0.9355 + }, + { + "start": 10899.3, + "end": 10901.1, + "probability": 0.962 + }, + { + "start": 10901.94, + "end": 10903.94, + "probability": 0.8657 + }, + { + "start": 10905.18, + "end": 10907.0, + "probability": 0.8506 + }, + { + "start": 10907.02, + "end": 10911.06, + "probability": 0.681 + }, + { + "start": 10911.38, + "end": 10912.2, + "probability": 0.8608 + }, + { + "start": 10912.72, + "end": 10915.9, + "probability": 0.8057 + }, + { + "start": 10916.56, + "end": 10917.48, + "probability": 0.783 + }, + { + "start": 10917.6, + "end": 10921.22, + "probability": 0.8618 + }, + { + "start": 10921.88, + "end": 10924.22, + "probability": 0.2512 + }, + { + "start": 10924.42, + "end": 10925.38, + "probability": 0.3174 + }, + { + "start": 10925.38, + "end": 10925.38, + "probability": 0.2693 + }, + { + "start": 10925.4, + "end": 10927.82, + "probability": 0.6411 + }, + { + "start": 10927.92, + "end": 10929.88, + "probability": 0.6014 + }, + { + "start": 10930.2, + "end": 10930.68, + "probability": 0.828 + }, + { + "start": 10930.78, + "end": 10933.08, + "probability": 0.8379 + }, + { + "start": 10933.58, + "end": 10935.08, + "probability": 0.8218 + }, + { + "start": 10936.3, + "end": 10938.68, + "probability": 0.5472 + }, + { + "start": 10938.84, + "end": 10939.92, + "probability": 0.5376 + }, + { + "start": 10939.98, + "end": 10940.98, + "probability": 0.8511 + }, + { + "start": 10941.34, + "end": 10943.92, + "probability": 0.8196 + }, + { + "start": 10943.98, + "end": 10944.5, + "probability": 0.5614 + }, + { + "start": 10945.96, + "end": 10949.58, + "probability": 0.714 + }, + { + "start": 10951.86, + "end": 10952.54, + "probability": 0.8219 + }, + { + "start": 10954.04, + "end": 10955.84, + "probability": 0.2786 + }, + { + "start": 10955.9, + "end": 10958.56, + "probability": 0.7933 + }, + { + "start": 10960.14, + "end": 10960.68, + "probability": 0.205 + }, + { + "start": 10960.94, + "end": 10961.16, + "probability": 0.223 + }, + { + "start": 10961.4, + "end": 10966.2, + "probability": 0.7974 + }, + { + "start": 10969.42, + "end": 10969.94, + "probability": 0.8125 + }, + { + "start": 10970.2, + "end": 10970.36, + "probability": 0.863 + }, + { + "start": 10973.58, + "end": 10975.82, + "probability": 0.5455 + }, + { + "start": 10976.14, + "end": 10976.8, + "probability": 0.673 + }, + { + "start": 10976.94, + "end": 10977.1, + "probability": 0.9222 + }, + { + "start": 10978.12, + "end": 10981.2, + "probability": 0.9476 + }, + { + "start": 10982.34, + "end": 10982.66, + "probability": 0.6878 + }, + { + "start": 10983.56, + "end": 10984.63, + "probability": 0.0266 + }, + { + "start": 10984.76, + "end": 10987.44, + "probability": 0.5746 + }, + { + "start": 10987.48, + "end": 10988.32, + "probability": 0.89 + }, + { + "start": 10988.54, + "end": 10991.72, + "probability": 0.3634 + }, + { + "start": 10994.14, + "end": 10996.5, + "probability": 0.8483 + }, + { + "start": 10996.76, + "end": 10999.61, + "probability": 0.4917 + }, + { + "start": 11000.38, + "end": 11001.44, + "probability": 0.7761 + }, + { + "start": 11002.46, + "end": 11005.4, + "probability": 0.9926 + }, + { + "start": 11006.04, + "end": 11006.78, + "probability": 0.755 + }, + { + "start": 11008.12, + "end": 11008.32, + "probability": 0.7983 + }, + { + "start": 11008.84, + "end": 11009.68, + "probability": 0.9024 + }, + { + "start": 11010.21, + "end": 11011.7, + "probability": 0.8675 + }, + { + "start": 11012.96, + "end": 11020.12, + "probability": 0.9838 + }, + { + "start": 11020.46, + "end": 11020.86, + "probability": 0.8506 + }, + { + "start": 11021.28, + "end": 11021.94, + "probability": 0.8426 + }, + { + "start": 11022.38, + "end": 11023.7, + "probability": 0.6604 + }, + { + "start": 11024.22, + "end": 11024.46, + "probability": 0.7454 + }, + { + "start": 11025.36, + "end": 11028.84, + "probability": 0.9261 + }, + { + "start": 11030.68, + "end": 11031.58, + "probability": 0.7328 + }, + { + "start": 11032.22, + "end": 11033.64, + "probability": 0.7995 + }, + { + "start": 11034.62, + "end": 11037.46, + "probability": 0.6873 + }, + { + "start": 11039.11, + "end": 11039.6, + "probability": 0.6722 + }, + { + "start": 11039.9, + "end": 11040.5, + "probability": 0.737 + }, + { + "start": 11040.78, + "end": 11042.5, + "probability": 0.3342 + }, + { + "start": 11043.3, + "end": 11043.74, + "probability": 0.6305 + }, + { + "start": 11044.52, + "end": 11046.1, + "probability": 0.8007 + }, + { + "start": 11047.1, + "end": 11048.46, + "probability": 0.7484 + }, + { + "start": 11051.48, + "end": 11052.68, + "probability": 0.7393 + }, + { + "start": 11072.32, + "end": 11072.58, + "probability": 0.1433 + }, + { + "start": 11072.58, + "end": 11075.54, + "probability": 0.7197 + }, + { + "start": 11075.74, + "end": 11081.56, + "probability": 0.9833 + }, + { + "start": 11084.06, + "end": 11085.38, + "probability": 0.7404 + }, + { + "start": 11086.52, + "end": 11088.74, + "probability": 0.1025 + }, + { + "start": 11088.74, + "end": 11092.16, + "probability": 0.7425 + }, + { + "start": 11092.98, + "end": 11096.86, + "probability": 0.6484 + }, + { + "start": 11097.14, + "end": 11098.72, + "probability": 0.9645 + }, + { + "start": 11100.6, + "end": 11100.94, + "probability": 0.7123 + }, + { + "start": 11103.24, + "end": 11103.92, + "probability": 0.1136 + }, + { + "start": 11104.76, + "end": 11105.38, + "probability": 0.9188 + }, + { + "start": 11107.7, + "end": 11111.62, + "probability": 0.6144 + }, + { + "start": 11112.88, + "end": 11117.48, + "probability": 0.9626 + }, + { + "start": 11117.48, + "end": 11123.5, + "probability": 0.8699 + }, + { + "start": 11124.26, + "end": 11127.1, + "probability": 0.9712 + }, + { + "start": 11128.28, + "end": 11131.48, + "probability": 0.9958 + }, + { + "start": 11131.48, + "end": 11135.48, + "probability": 0.998 + }, + { + "start": 11136.64, + "end": 11138.56, + "probability": 0.8911 + }, + { + "start": 11139.88, + "end": 11142.48, + "probability": 0.9963 + }, + { + "start": 11142.52, + "end": 11146.12, + "probability": 0.9944 + }, + { + "start": 11147.0, + "end": 11152.46, + "probability": 0.8848 + }, + { + "start": 11153.62, + "end": 11155.42, + "probability": 0.998 + }, + { + "start": 11156.44, + "end": 11160.58, + "probability": 0.9949 + }, + { + "start": 11160.58, + "end": 11164.64, + "probability": 0.9976 + }, + { + "start": 11164.64, + "end": 11169.08, + "probability": 0.999 + }, + { + "start": 11170.5, + "end": 11172.36, + "probability": 0.8907 + }, + { + "start": 11173.08, + "end": 11176.08, + "probability": 0.9188 + }, + { + "start": 11176.6, + "end": 11180.22, + "probability": 0.9958 + }, + { + "start": 11180.88, + "end": 11184.02, + "probability": 0.9969 + }, + { + "start": 11184.86, + "end": 11186.16, + "probability": 0.8325 + }, + { + "start": 11186.36, + "end": 11190.98, + "probability": 0.9674 + }, + { + "start": 11191.66, + "end": 11196.34, + "probability": 0.9868 + }, + { + "start": 11197.26, + "end": 11201.92, + "probability": 0.9916 + }, + { + "start": 11202.8, + "end": 11207.04, + "probability": 0.9967 + }, + { + "start": 11207.04, + "end": 11211.4, + "probability": 0.9833 + }, + { + "start": 11212.64, + "end": 11213.04, + "probability": 0.8699 + }, + { + "start": 11214.12, + "end": 11217.88, + "probability": 0.9944 + }, + { + "start": 11218.62, + "end": 11223.08, + "probability": 0.8565 + }, + { + "start": 11224.48, + "end": 11225.7, + "probability": 0.8911 + }, + { + "start": 11226.38, + "end": 11232.14, + "probability": 0.9911 + }, + { + "start": 11232.66, + "end": 11233.84, + "probability": 0.9805 + }, + { + "start": 11234.54, + "end": 11236.28, + "probability": 0.927 + }, + { + "start": 11237.02, + "end": 11239.36, + "probability": 0.9907 + }, + { + "start": 11240.02, + "end": 11244.84, + "probability": 0.9933 + }, + { + "start": 11245.48, + "end": 11249.82, + "probability": 0.9905 + }, + { + "start": 11251.06, + "end": 11252.56, + "probability": 0.7819 + }, + { + "start": 11253.2, + "end": 11254.36, + "probability": 0.967 + }, + { + "start": 11254.74, + "end": 11255.42, + "probability": 0.969 + }, + { + "start": 11256.18, + "end": 11259.56, + "probability": 0.8761 + }, + { + "start": 11259.56, + "end": 11263.8, + "probability": 0.9822 + }, + { + "start": 11264.7, + "end": 11266.32, + "probability": 0.8573 + }, + { + "start": 11266.96, + "end": 11267.8, + "probability": 0.7921 + }, + { + "start": 11268.34, + "end": 11270.02, + "probability": 0.8991 + }, + { + "start": 11270.8, + "end": 11272.44, + "probability": 0.9512 + }, + { + "start": 11273.02, + "end": 11274.66, + "probability": 0.8859 + }, + { + "start": 11275.2, + "end": 11279.48, + "probability": 0.9507 + }, + { + "start": 11279.8, + "end": 11282.94, + "probability": 0.8699 + }, + { + "start": 11282.94, + "end": 11286.54, + "probability": 0.9825 + }, + { + "start": 11287.06, + "end": 11289.62, + "probability": 0.7643 + }, + { + "start": 11290.14, + "end": 11291.54, + "probability": 0.951 + }, + { + "start": 11293.12, + "end": 11293.58, + "probability": 0.9398 + }, + { + "start": 11294.16, + "end": 11295.7, + "probability": 0.9351 + }, + { + "start": 11296.44, + "end": 11299.3, + "probability": 0.9062 + }, + { + "start": 11299.7, + "end": 11300.94, + "probability": 0.8156 + }, + { + "start": 11301.78, + "end": 11302.82, + "probability": 0.7917 + }, + { + "start": 11303.46, + "end": 11307.76, + "probability": 0.9703 + }, + { + "start": 11308.4, + "end": 11310.82, + "probability": 0.9312 + }, + { + "start": 11310.9, + "end": 11314.18, + "probability": 0.9912 + }, + { + "start": 11314.75, + "end": 11317.67, + "probability": 0.9712 + }, + { + "start": 11318.78, + "end": 11320.15, + "probability": 0.7272 + }, + { + "start": 11320.78, + "end": 11322.14, + "probability": 0.8093 + }, + { + "start": 11322.5, + "end": 11325.24, + "probability": 0.915 + }, + { + "start": 11326.14, + "end": 11326.8, + "probability": 0.594 + }, + { + "start": 11327.96, + "end": 11332.72, + "probability": 0.9813 + }, + { + "start": 11333.36, + "end": 11336.42, + "probability": 0.9933 + }, + { + "start": 11337.28, + "end": 11341.46, + "probability": 0.7484 + }, + { + "start": 11342.38, + "end": 11347.0, + "probability": 0.9646 + }, + { + "start": 11347.68, + "end": 11350.48, + "probability": 0.9987 + }, + { + "start": 11350.48, + "end": 11353.4, + "probability": 0.9967 + }, + { + "start": 11354.42, + "end": 11355.06, + "probability": 0.7744 + }, + { + "start": 11355.7, + "end": 11360.16, + "probability": 0.9951 + }, + { + "start": 11360.88, + "end": 11366.84, + "probability": 0.9937 + }, + { + "start": 11366.84, + "end": 11371.36, + "probability": 0.9825 + }, + { + "start": 11372.46, + "end": 11376.92, + "probability": 0.9745 + }, + { + "start": 11379.14, + "end": 11380.44, + "probability": 0.8494 + }, + { + "start": 11380.68, + "end": 11385.44, + "probability": 0.9566 + }, + { + "start": 11385.48, + "end": 11391.34, + "probability": 0.9905 + }, + { + "start": 11392.6, + "end": 11396.8, + "probability": 0.9936 + }, + { + "start": 11398.34, + "end": 11402.74, + "probability": 0.9878 + }, + { + "start": 11402.74, + "end": 11406.08, + "probability": 0.9699 + }, + { + "start": 11407.12, + "end": 11408.26, + "probability": 0.9817 + }, + { + "start": 11408.86, + "end": 11410.04, + "probability": 0.929 + }, + { + "start": 11410.56, + "end": 11413.64, + "probability": 0.7632 + }, + { + "start": 11414.26, + "end": 11418.12, + "probability": 0.9963 + }, + { + "start": 11418.86, + "end": 11420.04, + "probability": 0.9416 + }, + { + "start": 11420.92, + "end": 11424.56, + "probability": 0.9144 + }, + { + "start": 11425.28, + "end": 11428.68, + "probability": 0.9895 + }, + { + "start": 11428.82, + "end": 11431.11, + "probability": 0.9943 + }, + { + "start": 11431.84, + "end": 11435.54, + "probability": 0.9767 + }, + { + "start": 11435.92, + "end": 11439.2, + "probability": 0.9508 + }, + { + "start": 11439.36, + "end": 11441.02, + "probability": 0.5266 + }, + { + "start": 11442.58, + "end": 11444.52, + "probability": 0.9774 + }, + { + "start": 11445.02, + "end": 11448.08, + "probability": 0.9395 + }, + { + "start": 11448.2, + "end": 11452.0, + "probability": 0.9883 + }, + { + "start": 11453.08, + "end": 11456.86, + "probability": 0.9908 + }, + { + "start": 11456.86, + "end": 11461.24, + "probability": 0.9994 + }, + { + "start": 11461.86, + "end": 11466.8, + "probability": 0.9958 + }, + { + "start": 11468.71, + "end": 11470.04, + "probability": 0.3533 + }, + { + "start": 11470.04, + "end": 11470.32, + "probability": 0.728 + }, + { + "start": 11471.48, + "end": 11473.38, + "probability": 0.4953 + }, + { + "start": 11474.0, + "end": 11478.58, + "probability": 0.8925 + }, + { + "start": 11478.9, + "end": 11479.78, + "probability": 0.0159 + }, + { + "start": 11479.82, + "end": 11480.94, + "probability": 0.9292 + }, + { + "start": 11481.56, + "end": 11482.14, + "probability": 0.3385 + }, + { + "start": 11483.82, + "end": 11484.4, + "probability": 0.3811 + }, + { + "start": 11484.4, + "end": 11485.5, + "probability": 0.4237 + }, + { + "start": 11485.78, + "end": 11486.88, + "probability": 0.9146 + }, + { + "start": 11487.04, + "end": 11487.38, + "probability": 0.4753 + }, + { + "start": 11487.48, + "end": 11488.52, + "probability": 0.8449 + }, + { + "start": 11488.74, + "end": 11490.96, + "probability": 0.9348 + }, + { + "start": 11492.06, + "end": 11492.32, + "probability": 0.5559 + }, + { + "start": 11492.88, + "end": 11493.5, + "probability": 0.8961 + }, + { + "start": 11515.24, + "end": 11516.08, + "probability": 0.2836 + }, + { + "start": 11517.84, + "end": 11523.02, + "probability": 0.8296 + }, + { + "start": 11524.52, + "end": 11527.28, + "probability": 0.6215 + }, + { + "start": 11528.06, + "end": 11530.28, + "probability": 0.9685 + }, + { + "start": 11533.37, + "end": 11533.96, + "probability": 0.6831 + }, + { + "start": 11535.88, + "end": 11542.74, + "probability": 0.9561 + }, + { + "start": 11542.74, + "end": 11543.92, + "probability": 0.6319 + }, + { + "start": 11544.86, + "end": 11546.4, + "probability": 0.8655 + }, + { + "start": 11547.78, + "end": 11548.16, + "probability": 0.6423 + }, + { + "start": 11549.54, + "end": 11551.66, + "probability": 0.7929 + }, + { + "start": 11553.94, + "end": 11557.84, + "probability": 0.7781 + }, + { + "start": 11559.1, + "end": 11561.26, + "probability": 0.9161 + }, + { + "start": 11561.9, + "end": 11563.16, + "probability": 0.9561 + }, + { + "start": 11564.76, + "end": 11566.78, + "probability": 0.7527 + }, + { + "start": 11567.44, + "end": 11568.61, + "probability": 0.4035 + }, + { + "start": 11570.46, + "end": 11573.9, + "probability": 0.8539 + }, + { + "start": 11574.56, + "end": 11574.68, + "probability": 0.1773 + }, + { + "start": 11574.68, + "end": 11574.84, + "probability": 0.358 + }, + { + "start": 11575.0, + "end": 11578.66, + "probability": 0.6045 + }, + { + "start": 11579.92, + "end": 11586.46, + "probability": 0.988 + }, + { + "start": 11587.7, + "end": 11591.06, + "probability": 0.8812 + }, + { + "start": 11591.96, + "end": 11593.6, + "probability": 0.7432 + }, + { + "start": 11594.34, + "end": 11595.58, + "probability": 0.7078 + }, + { + "start": 11597.0, + "end": 11597.6, + "probability": 0.4428 + }, + { + "start": 11598.18, + "end": 11599.22, + "probability": 0.9933 + }, + { + "start": 11599.74, + "end": 11600.82, + "probability": 0.9992 + }, + { + "start": 11601.62, + "end": 11604.86, + "probability": 0.8234 + }, + { + "start": 11606.62, + "end": 11609.04, + "probability": 0.9945 + }, + { + "start": 11609.62, + "end": 11612.84, + "probability": 0.777 + }, + { + "start": 11614.18, + "end": 11615.74, + "probability": 0.5006 + }, + { + "start": 11616.78, + "end": 11620.98, + "probability": 0.9062 + }, + { + "start": 11621.68, + "end": 11623.44, + "probability": 0.9796 + }, + { + "start": 11625.24, + "end": 11632.34, + "probability": 0.8918 + }, + { + "start": 11632.86, + "end": 11633.62, + "probability": 0.7445 + }, + { + "start": 11635.58, + "end": 11638.8, + "probability": 0.7472 + }, + { + "start": 11639.62, + "end": 11642.14, + "probability": 0.884 + }, + { + "start": 11642.52, + "end": 11643.7, + "probability": 0.9768 + }, + { + "start": 11645.22, + "end": 11650.58, + "probability": 0.9767 + }, + { + "start": 11651.26, + "end": 11655.18, + "probability": 0.9614 + }, + { + "start": 11655.88, + "end": 11656.9, + "probability": 0.6592 + }, + { + "start": 11658.78, + "end": 11660.18, + "probability": 0.9633 + }, + { + "start": 11661.32, + "end": 11663.72, + "probability": 0.9719 + }, + { + "start": 11664.54, + "end": 11667.64, + "probability": 0.7367 + }, + { + "start": 11668.4, + "end": 11669.08, + "probability": 0.6555 + }, + { + "start": 11669.94, + "end": 11672.64, + "probability": 0.7394 + }, + { + "start": 11672.86, + "end": 11674.64, + "probability": 0.9723 + }, + { + "start": 11674.8, + "end": 11675.26, + "probability": 0.7222 + }, + { + "start": 11676.76, + "end": 11682.06, + "probability": 0.877 + }, + { + "start": 11682.26, + "end": 11685.98, + "probability": 0.965 + }, + { + "start": 11686.46, + "end": 11687.42, + "probability": 0.9576 + }, + { + "start": 11689.08, + "end": 11693.62, + "probability": 0.9927 + }, + { + "start": 11693.64, + "end": 11698.44, + "probability": 0.8806 + }, + { + "start": 11699.86, + "end": 11700.83, + "probability": 0.9968 + }, + { + "start": 11701.86, + "end": 11702.6, + "probability": 0.9813 + }, + { + "start": 11703.52, + "end": 11705.08, + "probability": 0.8091 + }, + { + "start": 11705.2, + "end": 11707.85, + "probability": 0.9129 + }, + { + "start": 11709.34, + "end": 11713.66, + "probability": 0.5962 + }, + { + "start": 11713.72, + "end": 11713.86, + "probability": 0.5477 + }, + { + "start": 11714.32, + "end": 11715.08, + "probability": 0.9139 + }, + { + "start": 11715.28, + "end": 11716.76, + "probability": 0.9203 + }, + { + "start": 11717.76, + "end": 11719.86, + "probability": 0.9086 + }, + { + "start": 11720.73, + "end": 11724.12, + "probability": 0.9888 + }, + { + "start": 11724.22, + "end": 11724.34, + "probability": 0.7611 + }, + { + "start": 11724.54, + "end": 11725.06, + "probability": 0.9444 + }, + { + "start": 11725.16, + "end": 11731.02, + "probability": 0.7388 + }, + { + "start": 11731.1, + "end": 11733.06, + "probability": 0.6273 + }, + { + "start": 11734.02, + "end": 11735.46, + "probability": 0.9959 + }, + { + "start": 11736.38, + "end": 11740.74, + "probability": 0.9795 + }, + { + "start": 11741.44, + "end": 11744.14, + "probability": 0.9305 + }, + { + "start": 11744.56, + "end": 11746.9, + "probability": 0.9963 + }, + { + "start": 11748.02, + "end": 11748.36, + "probability": 0.0277 + }, + { + "start": 11748.4, + "end": 11749.76, + "probability": 0.6645 + }, + { + "start": 11750.32, + "end": 11753.04, + "probability": 0.7683 + }, + { + "start": 11754.34, + "end": 11757.14, + "probability": 0.2301 + }, + { + "start": 11757.58, + "end": 11758.74, + "probability": 0.6346 + }, + { + "start": 11759.82, + "end": 11760.78, + "probability": 0.9255 + }, + { + "start": 11763.1, + "end": 11763.32, + "probability": 0.074 + }, + { + "start": 11763.32, + "end": 11766.22, + "probability": 0.9704 + }, + { + "start": 11767.8, + "end": 11768.84, + "probability": 0.9961 + }, + { + "start": 11770.14, + "end": 11775.4, + "probability": 0.9229 + }, + { + "start": 11775.78, + "end": 11778.72, + "probability": 0.98 + }, + { + "start": 11779.6, + "end": 11785.58, + "probability": 0.7512 + }, + { + "start": 11787.04, + "end": 11790.98, + "probability": 0.823 + }, + { + "start": 11791.78, + "end": 11792.62, + "probability": 0.5273 + }, + { + "start": 11793.66, + "end": 11794.54, + "probability": 0.5128 + }, + { + "start": 11796.14, + "end": 11799.64, + "probability": 0.9902 + }, + { + "start": 11801.5, + "end": 11803.7, + "probability": 0.6664 + }, + { + "start": 11804.94, + "end": 11808.9, + "probability": 0.9979 + }, + { + "start": 11808.9, + "end": 11813.14, + "probability": 0.983 + }, + { + "start": 11814.04, + "end": 11814.4, + "probability": 0.1621 + }, + { + "start": 11814.48, + "end": 11818.88, + "probability": 0.8357 + }, + { + "start": 11819.32, + "end": 11822.58, + "probability": 0.991 + }, + { + "start": 11824.1, + "end": 11824.96, + "probability": 0.7273 + }, + { + "start": 11825.72, + "end": 11829.22, + "probability": 0.8301 + }, + { + "start": 11829.8, + "end": 11831.28, + "probability": 0.6484 + }, + { + "start": 11832.0, + "end": 11833.12, + "probability": 0.8263 + }, + { + "start": 11833.98, + "end": 11836.3, + "probability": 0.9919 + }, + { + "start": 11836.62, + "end": 11838.04, + "probability": 0.9023 + }, + { + "start": 11838.74, + "end": 11842.36, + "probability": 0.828 + }, + { + "start": 11843.66, + "end": 11845.97, + "probability": 0.9604 + }, + { + "start": 11848.44, + "end": 11849.1, + "probability": 0.7464 + }, + { + "start": 11849.58, + "end": 11853.48, + "probability": 0.8603 + }, + { + "start": 11853.98, + "end": 11854.12, + "probability": 0.4476 + }, + { + "start": 11854.5, + "end": 11854.72, + "probability": 0.6344 + }, + { + "start": 11855.02, + "end": 11858.48, + "probability": 0.918 + }, + { + "start": 11859.54, + "end": 11863.34, + "probability": 0.8834 + }, + { + "start": 11864.5, + "end": 11865.02, + "probability": 0.8617 + }, + { + "start": 11865.62, + "end": 11866.9, + "probability": 0.2736 + }, + { + "start": 11867.76, + "end": 11870.76, + "probability": 0.7713 + }, + { + "start": 11871.62, + "end": 11875.56, + "probability": 0.9902 + }, + { + "start": 11876.14, + "end": 11877.4, + "probability": 0.8869 + }, + { + "start": 11878.44, + "end": 11883.12, + "probability": 0.9634 + }, + { + "start": 11883.78, + "end": 11886.68, + "probability": 0.995 + }, + { + "start": 11887.74, + "end": 11892.6, + "probability": 0.9717 + }, + { + "start": 11893.44, + "end": 11896.24, + "probability": 0.9619 + }, + { + "start": 11896.24, + "end": 11901.44, + "probability": 0.9841 + }, + { + "start": 11902.66, + "end": 11903.54, + "probability": 0.4797 + }, + { + "start": 11905.0, + "end": 11909.94, + "probability": 0.6881 + }, + { + "start": 11910.84, + "end": 11912.56, + "probability": 0.7302 + }, + { + "start": 11913.08, + "end": 11914.86, + "probability": 0.9248 + }, + { + "start": 11916.44, + "end": 11917.96, + "probability": 0.9834 + }, + { + "start": 11918.74, + "end": 11920.5, + "probability": 0.9902 + }, + { + "start": 11921.92, + "end": 11923.98, + "probability": 0.7207 + }, + { + "start": 11925.52, + "end": 11927.08, + "probability": 0.998 + }, + { + "start": 11927.5, + "end": 11928.59, + "probability": 0.9844 + }, + { + "start": 11929.6, + "end": 11933.34, + "probability": 0.8774 + }, + { + "start": 11934.24, + "end": 11937.24, + "probability": 0.9577 + }, + { + "start": 11937.96, + "end": 11939.84, + "probability": 0.8014 + }, + { + "start": 11940.64, + "end": 11941.78, + "probability": 0.9394 + }, + { + "start": 11942.38, + "end": 11945.74, + "probability": 0.9814 + }, + { + "start": 11947.16, + "end": 11949.6, + "probability": 0.9893 + }, + { + "start": 11950.3, + "end": 11950.68, + "probability": 0.7992 + }, + { + "start": 11950.68, + "end": 11951.52, + "probability": 0.6442 + }, + { + "start": 11951.82, + "end": 11951.82, + "probability": 0.1424 + }, + { + "start": 11951.82, + "end": 11954.84, + "probability": 0.7363 + }, + { + "start": 11954.94, + "end": 11956.54, + "probability": 0.6506 + }, + { + "start": 11956.7, + "end": 11957.06, + "probability": 0.2579 + }, + { + "start": 11957.1, + "end": 11958.94, + "probability": 0.7964 + }, + { + "start": 11959.14, + "end": 11959.24, + "probability": 0.2538 + }, + { + "start": 11959.68, + "end": 11961.26, + "probability": 0.5984 + }, + { + "start": 11961.58, + "end": 11961.6, + "probability": 0.5506 + }, + { + "start": 11961.66, + "end": 11964.6, + "probability": 0.938 + }, + { + "start": 11965.22, + "end": 11967.08, + "probability": 0.9265 + }, + { + "start": 11967.18, + "end": 11969.38, + "probability": 0.9771 + }, + { + "start": 11970.44, + "end": 11971.36, + "probability": 0.8284 + }, + { + "start": 11971.84, + "end": 11973.94, + "probability": 0.342 + }, + { + "start": 11974.08, + "end": 11977.26, + "probability": 0.7543 + }, + { + "start": 11977.38, + "end": 11980.16, + "probability": 0.7551 + }, + { + "start": 11980.54, + "end": 11984.0, + "probability": 0.8801 + }, + { + "start": 11984.42, + "end": 11989.7, + "probability": 0.817 + }, + { + "start": 11990.3, + "end": 11991.12, + "probability": 0.953 + }, + { + "start": 11991.48, + "end": 11993.94, + "probability": 0.8428 + }, + { + "start": 11994.26, + "end": 11998.78, + "probability": 0.6587 + }, + { + "start": 11998.9, + "end": 11999.82, + "probability": 0.4967 + }, + { + "start": 11999.88, + "end": 12001.34, + "probability": 0.6511 + }, + { + "start": 12001.76, + "end": 12002.7, + "probability": 0.4997 + }, + { + "start": 12003.32, + "end": 12004.9, + "probability": 0.1765 + }, + { + "start": 12005.1, + "end": 12005.98, + "probability": 0.6999 + }, + { + "start": 12006.18, + "end": 12007.19, + "probability": 0.8414 + }, + { + "start": 12007.68, + "end": 12008.54, + "probability": 0.6504 + }, + { + "start": 12008.58, + "end": 12009.24, + "probability": 0.586 + }, + { + "start": 12010.76, + "end": 12012.3, + "probability": 0.4718 + }, + { + "start": 12012.44, + "end": 12013.98, + "probability": 0.4809 + }, + { + "start": 12014.32, + "end": 12018.02, + "probability": 0.9604 + }, + { + "start": 12018.14, + "end": 12020.42, + "probability": 0.9382 + }, + { + "start": 12020.68, + "end": 12022.9, + "probability": 0.9679 + }, + { + "start": 12023.44, + "end": 12027.08, + "probability": 0.8121 + }, + { + "start": 12027.82, + "end": 12029.62, + "probability": 0.9963 + }, + { + "start": 12030.68, + "end": 12030.84, + "probability": 0.6606 + }, + { + "start": 12031.74, + "end": 12032.82, + "probability": 0.9595 + }, + { + "start": 12033.78, + "end": 12037.6, + "probability": 0.9785 + }, + { + "start": 12038.28, + "end": 12041.2, + "probability": 0.996 + }, + { + "start": 12041.2, + "end": 12044.8, + "probability": 0.5789 + }, + { + "start": 12045.4, + "end": 12045.86, + "probability": 0.6948 + }, + { + "start": 12046.1, + "end": 12048.76, + "probability": 0.8127 + }, + { + "start": 12049.3, + "end": 12049.92, + "probability": 0.6837 + }, + { + "start": 12049.94, + "end": 12051.14, + "probability": 0.9966 + }, + { + "start": 12051.74, + "end": 12054.02, + "probability": 0.6686 + }, + { + "start": 12054.92, + "end": 12055.42, + "probability": 0.5615 + }, + { + "start": 12055.6, + "end": 12057.04, + "probability": 0.3522 + }, + { + "start": 12057.32, + "end": 12058.28, + "probability": 0.8926 + }, + { + "start": 12059.4, + "end": 12067.6, + "probability": 0.9515 + }, + { + "start": 12067.84, + "end": 12068.14, + "probability": 0.4567 + }, + { + "start": 12068.58, + "end": 12070.72, + "probability": 0.97 + }, + { + "start": 12070.72, + "end": 12073.76, + "probability": 0.9978 + }, + { + "start": 12074.04, + "end": 12074.34, + "probability": 0.6959 + }, + { + "start": 12074.38, + "end": 12074.56, + "probability": 0.5822 + }, + { + "start": 12075.02, + "end": 12076.94, + "probability": 0.8463 + }, + { + "start": 12077.64, + "end": 12080.12, + "probability": 0.522 + }, + { + "start": 12080.62, + "end": 12080.96, + "probability": 0.0605 + }, + { + "start": 12081.18, + "end": 12081.82, + "probability": 0.1744 + }, + { + "start": 12082.08, + "end": 12084.56, + "probability": 0.831 + }, + { + "start": 12084.86, + "end": 12086.13, + "probability": 0.3604 + }, + { + "start": 12086.62, + "end": 12087.36, + "probability": 0.0863 + }, + { + "start": 12087.68, + "end": 12089.96, + "probability": 0.6935 + }, + { + "start": 12090.58, + "end": 12091.22, + "probability": 0.5095 + }, + { + "start": 12092.98, + "end": 12094.38, + "probability": 0.8098 + }, + { + "start": 12094.56, + "end": 12097.08, + "probability": 0.8589 + }, + { + "start": 12098.4, + "end": 12099.8, + "probability": 0.4854 + }, + { + "start": 12099.8, + "end": 12100.36, + "probability": 0.6924 + }, + { + "start": 12100.64, + "end": 12103.24, + "probability": 0.5492 + }, + { + "start": 12103.74, + "end": 12106.15, + "probability": 0.9739 + }, + { + "start": 12106.56, + "end": 12107.06, + "probability": 0.9951 + }, + { + "start": 12107.88, + "end": 12111.08, + "probability": 0.9318 + }, + { + "start": 12111.66, + "end": 12111.66, + "probability": 0.0471 + }, + { + "start": 12111.66, + "end": 12113.88, + "probability": 0.848 + }, + { + "start": 12114.9, + "end": 12116.4, + "probability": 0.8804 + }, + { + "start": 12118.25, + "end": 12119.96, + "probability": 0.0113 + }, + { + "start": 12119.96, + "end": 12120.34, + "probability": 0.3387 + }, + { + "start": 12120.62, + "end": 12121.18, + "probability": 0.9108 + }, + { + "start": 12123.14, + "end": 12124.1, + "probability": 0.051 + }, + { + "start": 12124.7, + "end": 12125.06, + "probability": 0.7309 + }, + { + "start": 12125.44, + "end": 12128.22, + "probability": 0.4725 + }, + { + "start": 12128.26, + "end": 12132.56, + "probability": 0.9312 + }, + { + "start": 12132.76, + "end": 12134.82, + "probability": 0.9408 + }, + { + "start": 12135.36, + "end": 12136.46, + "probability": 0.8444 + }, + { + "start": 12136.56, + "end": 12139.4, + "probability": 0.6729 + }, + { + "start": 12139.52, + "end": 12141.4, + "probability": 0.9309 + }, + { + "start": 12142.06, + "end": 12144.5, + "probability": 0.9693 + }, + { + "start": 12145.02, + "end": 12146.84, + "probability": 0.9172 + }, + { + "start": 12147.14, + "end": 12150.54, + "probability": 0.9105 + }, + { + "start": 12151.16, + "end": 12152.74, + "probability": 0.8151 + }, + { + "start": 12152.9, + "end": 12154.16, + "probability": 0.647 + }, + { + "start": 12154.32, + "end": 12156.04, + "probability": 0.9085 + }, + { + "start": 12156.4, + "end": 12160.18, + "probability": 0.9092 + }, + { + "start": 12160.24, + "end": 12160.76, + "probability": 0.2802 + }, + { + "start": 12160.78, + "end": 12161.06, + "probability": 0.7806 + }, + { + "start": 12161.12, + "end": 12162.7, + "probability": 0.8386 + }, + { + "start": 12163.1, + "end": 12163.46, + "probability": 0.7624 + }, + { + "start": 12163.54, + "end": 12165.56, + "probability": 0.7241 + }, + { + "start": 12165.72, + "end": 12168.9, + "probability": 0.9021 + }, + { + "start": 12169.06, + "end": 12170.2, + "probability": 0.8526 + }, + { + "start": 12170.4, + "end": 12172.26, + "probability": 0.7809 + }, + { + "start": 12172.92, + "end": 12172.96, + "probability": 0.7266 + }, + { + "start": 12172.96, + "end": 12174.64, + "probability": 0.8771 + }, + { + "start": 12175.22, + "end": 12179.22, + "probability": 0.579 + }, + { + "start": 12179.28, + "end": 12179.92, + "probability": 0.5421 + }, + { + "start": 12180.1, + "end": 12180.88, + "probability": 0.8936 + }, + { + "start": 12181.98, + "end": 12184.86, + "probability": 0.8204 + }, + { + "start": 12185.38, + "end": 12185.62, + "probability": 0.2243 + }, + { + "start": 12186.26, + "end": 12187.02, + "probability": 0.4011 + }, + { + "start": 12188.22, + "end": 12188.22, + "probability": 0.1521 + }, + { + "start": 12188.22, + "end": 12189.36, + "probability": 0.6042 + }, + { + "start": 12189.54, + "end": 12190.82, + "probability": 0.843 + }, + { + "start": 12191.0, + "end": 12191.98, + "probability": 0.7804 + }, + { + "start": 12191.98, + "end": 12193.4, + "probability": 0.8182 + }, + { + "start": 12193.4, + "end": 12194.32, + "probability": 0.8891 + }, + { + "start": 12200.02, + "end": 12200.6, + "probability": 0.5221 + }, + { + "start": 12201.28, + "end": 12203.94, + "probability": 0.479 + }, + { + "start": 12204.78, + "end": 12207.48, + "probability": 0.6794 + }, + { + "start": 12221.48, + "end": 12221.74, + "probability": 0.2266 + }, + { + "start": 12222.02, + "end": 12222.24, + "probability": 0.2758 + }, + { + "start": 12222.28, + "end": 12222.64, + "probability": 0.6373 + }, + { + "start": 12222.8, + "end": 12223.78, + "probability": 0.3247 + }, + { + "start": 12223.94, + "end": 12230.38, + "probability": 0.6646 + }, + { + "start": 12230.58, + "end": 12231.32, + "probability": 0.7208 + }, + { + "start": 12231.84, + "end": 12232.86, + "probability": 0.8184 + }, + { + "start": 12232.94, + "end": 12233.36, + "probability": 0.7912 + }, + { + "start": 12233.44, + "end": 12234.69, + "probability": 0.8831 + }, + { + "start": 12237.48, + "end": 12238.2, + "probability": 0.9045 + }, + { + "start": 12239.2, + "end": 12240.34, + "probability": 0.5475 + }, + { + "start": 12240.34, + "end": 12241.24, + "probability": 0.4641 + }, + { + "start": 12241.24, + "end": 12242.78, + "probability": 0.8011 + }, + { + "start": 12242.96, + "end": 12246.96, + "probability": 0.7608 + }, + { + "start": 12248.18, + "end": 12249.4, + "probability": 0.7735 + }, + { + "start": 12249.4, + "end": 12249.4, + "probability": 0.6825 + }, + { + "start": 12249.62, + "end": 12254.84, + "probability": 0.8027 + }, + { + "start": 12254.88, + "end": 12260.24, + "probability": 0.7275 + }, + { + "start": 12260.86, + "end": 12261.28, + "probability": 0.4788 + }, + { + "start": 12261.46, + "end": 12263.31, + "probability": 0.783 + }, + { + "start": 12263.74, + "end": 12264.64, + "probability": 0.4928 + }, + { + "start": 12264.86, + "end": 12266.91, + "probability": 0.9626 + }, + { + "start": 12269.02, + "end": 12271.62, + "probability": 0.6359 + }, + { + "start": 12272.56, + "end": 12273.02, + "probability": 0.7393 + }, + { + "start": 12273.04, + "end": 12275.31, + "probability": 0.8996 + }, + { + "start": 12275.66, + "end": 12280.36, + "probability": 0.9979 + }, + { + "start": 12280.72, + "end": 12283.22, + "probability": 0.8475 + }, + { + "start": 12283.38, + "end": 12284.12, + "probability": 0.2303 + }, + { + "start": 12285.02, + "end": 12290.18, + "probability": 0.9468 + }, + { + "start": 12290.34, + "end": 12294.9, + "probability": 0.9943 + }, + { + "start": 12295.78, + "end": 12297.5, + "probability": 0.9253 + }, + { + "start": 12298.04, + "end": 12300.06, + "probability": 0.8114 + }, + { + "start": 12300.84, + "end": 12303.92, + "probability": 0.9551 + }, + { + "start": 12303.92, + "end": 12306.58, + "probability": 0.9959 + }, + { + "start": 12308.12, + "end": 12310.84, + "probability": 0.513 + }, + { + "start": 12313.71, + "end": 12316.72, + "probability": 0.7631 + }, + { + "start": 12317.52, + "end": 12319.2, + "probability": 0.7768 + }, + { + "start": 12319.82, + "end": 12321.24, + "probability": 0.7025 + }, + { + "start": 12323.66, + "end": 12325.0, + "probability": 0.9276 + }, + { + "start": 12325.78, + "end": 12327.26, + "probability": 0.7841 + }, + { + "start": 12327.5, + "end": 12331.34, + "probability": 0.9782 + }, + { + "start": 12331.6, + "end": 12333.24, + "probability": 0.8846 + }, + { + "start": 12334.84, + "end": 12337.34, + "probability": 0.8247 + }, + { + "start": 12337.34, + "end": 12340.02, + "probability": 0.9711 + }, + { + "start": 12340.52, + "end": 12344.72, + "probability": 0.8179 + }, + { + "start": 12344.72, + "end": 12349.36, + "probability": 0.9714 + }, + { + "start": 12351.04, + "end": 12353.98, + "probability": 0.9827 + }, + { + "start": 12353.98, + "end": 12356.92, + "probability": 0.9985 + }, + { + "start": 12357.7, + "end": 12358.14, + "probability": 0.7004 + }, + { + "start": 12358.8, + "end": 12361.62, + "probability": 0.9692 + }, + { + "start": 12362.8, + "end": 12364.68, + "probability": 0.965 + }, + { + "start": 12365.92, + "end": 12367.04, + "probability": 0.9639 + }, + { + "start": 12367.2, + "end": 12370.64, + "probability": 0.8583 + }, + { + "start": 12370.9, + "end": 12371.2, + "probability": 0.8781 + }, + { + "start": 12372.18, + "end": 12376.48, + "probability": 0.929 + }, + { + "start": 12377.0, + "end": 12379.39, + "probability": 0.671 + }, + { + "start": 12380.22, + "end": 12386.86, + "probability": 0.6692 + }, + { + "start": 12387.4, + "end": 12388.84, + "probability": 0.9647 + }, + { + "start": 12389.88, + "end": 12392.64, + "probability": 0.9681 + }, + { + "start": 12393.48, + "end": 12396.3, + "probability": 0.9876 + }, + { + "start": 12397.08, + "end": 12400.44, + "probability": 0.6963 + }, + { + "start": 12400.98, + "end": 12404.58, + "probability": 0.9889 + }, + { + "start": 12404.58, + "end": 12407.36, + "probability": 0.9937 + }, + { + "start": 12409.78, + "end": 12412.0, + "probability": 0.7329 + }, + { + "start": 12412.18, + "end": 12412.24, + "probability": 0.2112 + }, + { + "start": 12412.24, + "end": 12412.9, + "probability": 0.2564 + }, + { + "start": 12413.12, + "end": 12415.38, + "probability": 0.9658 + }, + { + "start": 12415.7, + "end": 12418.52, + "probability": 0.9873 + }, + { + "start": 12419.32, + "end": 12420.36, + "probability": 0.6296 + }, + { + "start": 12420.44, + "end": 12423.32, + "probability": 0.9802 + }, + { + "start": 12423.86, + "end": 12425.88, + "probability": 0.7399 + }, + { + "start": 12426.58, + "end": 12430.82, + "probability": 0.8204 + }, + { + "start": 12431.58, + "end": 12433.98, + "probability": 0.9409 + }, + { + "start": 12434.12, + "end": 12436.94, + "probability": 0.7987 + }, + { + "start": 12437.64, + "end": 12439.08, + "probability": 0.9156 + }, + { + "start": 12439.8, + "end": 12441.0, + "probability": 0.9763 + }, + { + "start": 12441.42, + "end": 12443.34, + "probability": 0.9602 + }, + { + "start": 12445.04, + "end": 12447.18, + "probability": 0.5209 + }, + { + "start": 12447.86, + "end": 12451.72, + "probability": 0.9626 + }, + { + "start": 12451.72, + "end": 12457.18, + "probability": 0.7093 + }, + { + "start": 12457.46, + "end": 12458.8, + "probability": 0.3847 + }, + { + "start": 12458.82, + "end": 12459.06, + "probability": 0.5375 + }, + { + "start": 12467.5, + "end": 12469.38, + "probability": 0.9 + }, + { + "start": 12469.74, + "end": 12472.48, + "probability": 0.739 + }, + { + "start": 12473.08, + "end": 12475.96, + "probability": 0.9751 + }, + { + "start": 12476.58, + "end": 12477.44, + "probability": 0.9929 + }, + { + "start": 12477.94, + "end": 12480.84, + "probability": 0.9888 + }, + { + "start": 12481.72, + "end": 12484.78, + "probability": 0.8757 + }, + { + "start": 12484.84, + "end": 12488.36, + "probability": 0.7192 + }, + { + "start": 12488.38, + "end": 12488.92, + "probability": 0.6683 + }, + { + "start": 12489.66, + "end": 12490.46, + "probability": 0.785 + }, + { + "start": 12490.7, + "end": 12495.66, + "probability": 0.9377 + }, + { + "start": 12495.88, + "end": 12499.48, + "probability": 0.9924 + }, + { + "start": 12500.78, + "end": 12503.14, + "probability": 0.8623 + }, + { + "start": 12503.9, + "end": 12509.06, + "probability": 0.7063 + }, + { + "start": 12509.58, + "end": 12512.48, + "probability": 0.957 + }, + { + "start": 12513.28, + "end": 12516.44, + "probability": 0.996 + }, + { + "start": 12517.22, + "end": 12518.62, + "probability": 0.9421 + }, + { + "start": 12520.2, + "end": 12523.08, + "probability": 0.9482 + }, + { + "start": 12523.34, + "end": 12528.1, + "probability": 0.9963 + }, + { + "start": 12529.32, + "end": 12534.04, + "probability": 0.9927 + }, + { + "start": 12535.12, + "end": 12536.56, + "probability": 0.7648 + }, + { + "start": 12537.04, + "end": 12537.92, + "probability": 0.7174 + }, + { + "start": 12538.4, + "end": 12541.72, + "probability": 0.9976 + }, + { + "start": 12542.24, + "end": 12545.16, + "probability": 0.9403 + }, + { + "start": 12545.68, + "end": 12546.92, + "probability": 0.7123 + }, + { + "start": 12546.96, + "end": 12551.14, + "probability": 0.9869 + }, + { + "start": 12551.96, + "end": 12551.96, + "probability": 0.5062 + }, + { + "start": 12551.96, + "end": 12554.44, + "probability": 0.9773 + }, + { + "start": 12554.44, + "end": 12556.66, + "probability": 0.998 + }, + { + "start": 12557.18, + "end": 12561.42, + "probability": 0.768 + }, + { + "start": 12561.42, + "end": 12564.6, + "probability": 0.9925 + }, + { + "start": 12565.28, + "end": 12568.34, + "probability": 0.9896 + }, + { + "start": 12569.8, + "end": 12571.96, + "probability": 0.7176 + }, + { + "start": 12572.5, + "end": 12575.14, + "probability": 0.9806 + }, + { + "start": 12575.18, + "end": 12575.66, + "probability": 0.81 + }, + { + "start": 12576.18, + "end": 12581.4, + "probability": 0.861 + }, + { + "start": 12581.7, + "end": 12582.1, + "probability": 0.8494 + }, + { + "start": 12583.12, + "end": 12583.66, + "probability": 0.655 + }, + { + "start": 12583.66, + "end": 12586.94, + "probability": 0.9691 + }, + { + "start": 12587.08, + "end": 12588.4, + "probability": 0.7085 + }, + { + "start": 12589.53, + "end": 12591.06, + "probability": 0.5312 + }, + { + "start": 12591.94, + "end": 12593.3, + "probability": 0.6257 + }, + { + "start": 12595.68, + "end": 12597.4, + "probability": 0.6497 + }, + { + "start": 12597.8, + "end": 12599.04, + "probability": 0.4295 + }, + { + "start": 12599.38, + "end": 12601.82, + "probability": 0.9702 + }, + { + "start": 12602.0, + "end": 12604.72, + "probability": 0.8271 + }, + { + "start": 12604.84, + "end": 12605.08, + "probability": 0.2023 + }, + { + "start": 12605.34, + "end": 12607.16, + "probability": 0.5353 + }, + { + "start": 12607.4, + "end": 12609.06, + "probability": 0.8651 + }, + { + "start": 12609.22, + "end": 12611.16, + "probability": 0.8932 + }, + { + "start": 12613.14, + "end": 12613.48, + "probability": 0.07 + }, + { + "start": 12613.48, + "end": 12617.6, + "probability": 0.5063 + }, + { + "start": 12617.9, + "end": 12618.26, + "probability": 0.2651 + }, + { + "start": 12618.26, + "end": 12618.88, + "probability": 0.314 + }, + { + "start": 12619.16, + "end": 12621.36, + "probability": 0.5011 + }, + { + "start": 12621.4, + "end": 12624.22, + "probability": 0.8917 + }, + { + "start": 12624.8, + "end": 12624.9, + "probability": 0.2509 + }, + { + "start": 12625.8, + "end": 12628.48, + "probability": 0.511 + }, + { + "start": 12628.64, + "end": 12629.04, + "probability": 0.727 + }, + { + "start": 12629.14, + "end": 12631.02, + "probability": 0.9897 + }, + { + "start": 12632.46, + "end": 12632.54, + "probability": 0.6056 + }, + { + "start": 12632.54, + "end": 12637.42, + "probability": 0.5001 + }, + { + "start": 12638.46, + "end": 12638.72, + "probability": 0.2632 + }, + { + "start": 12638.72, + "end": 12643.59, + "probability": 0.6238 + }, + { + "start": 12644.14, + "end": 12645.58, + "probability": 0.7677 + }, + { + "start": 12652.78, + "end": 12653.36, + "probability": 0.1242 + }, + { + "start": 12653.4, + "end": 12654.96, + "probability": 0.1551 + }, + { + "start": 12654.96, + "end": 12657.78, + "probability": 0.0442 + }, + { + "start": 12660.42, + "end": 12660.74, + "probability": 0.19 + }, + { + "start": 12674.9, + "end": 12678.26, + "probability": 0.6626 + }, + { + "start": 12678.26, + "end": 12685.7, + "probability": 0.8322 + }, + { + "start": 12685.8, + "end": 12686.4, + "probability": 0.5687 + }, + { + "start": 12686.4, + "end": 12686.96, + "probability": 0.7294 + }, + { + "start": 12687.02, + "end": 12688.71, + "probability": 0.384 + }, + { + "start": 12689.78, + "end": 12690.66, + "probability": 0.4499 + }, + { + "start": 12692.44, + "end": 12692.44, + "probability": 0.0555 + }, + { + "start": 12692.44, + "end": 12695.26, + "probability": 0.9387 + }, + { + "start": 12701.92, + "end": 12703.7, + "probability": 0.6885 + }, + { + "start": 12703.92, + "end": 12705.54, + "probability": 0.8167 + }, + { + "start": 12705.58, + "end": 12706.78, + "probability": 0.633 + }, + { + "start": 12707.19, + "end": 12710.22, + "probability": 0.8176 + }, + { + "start": 12710.84, + "end": 12711.68, + "probability": 0.4727 + }, + { + "start": 12712.44, + "end": 12712.86, + "probability": 0.6849 + }, + { + "start": 12713.06, + "end": 12713.84, + "probability": 0.9332 + }, + { + "start": 12714.94, + "end": 12716.46, + "probability": 0.9154 + }, + { + "start": 12718.44, + "end": 12724.02, + "probability": 0.9348 + }, + { + "start": 12725.22, + "end": 12727.54, + "probability": 0.3816 + }, + { + "start": 12727.58, + "end": 12727.9, + "probability": 0.1836 + }, + { + "start": 12727.9, + "end": 12728.63, + "probability": 0.6715 + }, + { + "start": 12729.32, + "end": 12732.66, + "probability": 0.5496 + }, + { + "start": 12732.68, + "end": 12734.8, + "probability": 0.6626 + }, + { + "start": 12734.84, + "end": 12736.56, + "probability": 0.4563 + }, + { + "start": 12736.78, + "end": 12739.96, + "probability": 0.9546 + }, + { + "start": 12739.98, + "end": 12740.34, + "probability": 0.3804 + }, + { + "start": 12740.9, + "end": 12741.04, + "probability": 0.4332 + }, + { + "start": 12741.04, + "end": 12742.56, + "probability": 0.9821 + }, + { + "start": 12743.62, + "end": 12744.08, + "probability": 0.6554 + }, + { + "start": 12745.6, + "end": 12747.36, + "probability": 0.6331 + }, + { + "start": 12747.66, + "end": 12748.06, + "probability": 0.0829 + }, + { + "start": 12748.72, + "end": 12751.7, + "probability": 0.8602 + }, + { + "start": 12751.94, + "end": 12754.42, + "probability": 0.1002 + }, + { + "start": 12754.72, + "end": 12756.78, + "probability": 0.5035 + }, + { + "start": 12757.14, + "end": 12757.2, + "probability": 0.4391 + }, + { + "start": 12758.06, + "end": 12758.98, + "probability": 0.3194 + }, + { + "start": 12759.52, + "end": 12761.12, + "probability": 0.965 + }, + { + "start": 12761.88, + "end": 12766.82, + "probability": 0.693 + }, + { + "start": 12767.46, + "end": 12768.6, + "probability": 0.7765 + }, + { + "start": 12769.74, + "end": 12772.76, + "probability": 0.9955 + }, + { + "start": 12773.64, + "end": 12777.42, + "probability": 0.9474 + }, + { + "start": 12778.5, + "end": 12779.6, + "probability": 0.8874 + }, + { + "start": 12779.74, + "end": 12787.06, + "probability": 0.9975 + }, + { + "start": 12787.88, + "end": 12792.04, + "probability": 0.9957 + }, + { + "start": 12792.2, + "end": 12792.7, + "probability": 0.4679 + }, + { + "start": 12792.72, + "end": 12796.48, + "probability": 0.9876 + }, + { + "start": 12797.16, + "end": 12799.14, + "probability": 0.8228 + }, + { + "start": 12805.6, + "end": 12806.28, + "probability": 0.2875 + }, + { + "start": 12806.32, + "end": 12812.22, + "probability": 0.7356 + }, + { + "start": 12812.8, + "end": 12813.86, + "probability": 0.85 + }, + { + "start": 12814.68, + "end": 12815.06, + "probability": 0.4614 + }, + { + "start": 12815.18, + "end": 12817.74, + "probability": 0.9502 + }, + { + "start": 12818.1, + "end": 12820.78, + "probability": 0.9703 + }, + { + "start": 12820.78, + "end": 12824.1, + "probability": 0.7059 + }, + { + "start": 12824.58, + "end": 12825.96, + "probability": 0.8143 + }, + { + "start": 12826.42, + "end": 12830.62, + "probability": 0.9631 + }, + { + "start": 12830.72, + "end": 12831.72, + "probability": 0.0002 + }, + { + "start": 12832.24, + "end": 12833.6, + "probability": 0.3836 + }, + { + "start": 12834.22, + "end": 12837.0, + "probability": 0.9887 + }, + { + "start": 12837.0, + "end": 12841.0, + "probability": 0.9095 + }, + { + "start": 12841.32, + "end": 12846.64, + "probability": 0.9902 + }, + { + "start": 12846.94, + "end": 12847.84, + "probability": 0.7297 + }, + { + "start": 12847.94, + "end": 12848.16, + "probability": 0.6748 + }, + { + "start": 12848.24, + "end": 12849.02, + "probability": 0.605 + }, + { + "start": 12849.64, + "end": 12851.38, + "probability": 0.5015 + }, + { + "start": 12851.56, + "end": 12854.48, + "probability": 0.742 + }, + { + "start": 12854.66, + "end": 12856.26, + "probability": 0.8185 + }, + { + "start": 12856.54, + "end": 12859.02, + "probability": 0.7626 + }, + { + "start": 12859.72, + "end": 12860.46, + "probability": 0.4451 + }, + { + "start": 12862.34, + "end": 12865.36, + "probability": 0.8203 + }, + { + "start": 12865.36, + "end": 12873.62, + "probability": 0.676 + }, + { + "start": 12874.1, + "end": 12876.72, + "probability": 0.6901 + }, + { + "start": 12877.28, + "end": 12880.9, + "probability": 0.9679 + }, + { + "start": 12881.34, + "end": 12881.86, + "probability": 0.6209 + }, + { + "start": 12883.26, + "end": 12883.94, + "probability": 0.1574 + }, + { + "start": 12883.96, + "end": 12885.22, + "probability": 0.4656 + }, + { + "start": 12885.42, + "end": 12887.66, + "probability": 0.4856 + }, + { + "start": 12887.88, + "end": 12888.6, + "probability": 0.3833 + }, + { + "start": 12889.24, + "end": 12890.2, + "probability": 0.1667 + }, + { + "start": 12890.3, + "end": 12891.38, + "probability": 0.6673 + }, + { + "start": 12893.25, + "end": 12901.14, + "probability": 0.8097 + }, + { + "start": 12901.16, + "end": 12902.44, + "probability": 0.8864 + }, + { + "start": 12902.6, + "end": 12904.62, + "probability": 0.9245 + }, + { + "start": 12905.12, + "end": 12906.82, + "probability": 0.3702 + }, + { + "start": 12909.06, + "end": 12912.3, + "probability": 0.5019 + }, + { + "start": 12913.18, + "end": 12917.32, + "probability": 0.8838 + }, + { + "start": 12917.96, + "end": 12919.84, + "probability": 0.7776 + }, + { + "start": 12920.02, + "end": 12920.54, + "probability": 0.5582 + }, + { + "start": 12920.54, + "end": 12921.02, + "probability": 0.5424 + }, + { + "start": 12921.6, + "end": 12922.18, + "probability": 0.7875 + }, + { + "start": 12922.66, + "end": 12923.96, + "probability": 0.9399 + }, + { + "start": 12924.44, + "end": 12930.28, + "probability": 0.6905 + }, + { + "start": 12930.46, + "end": 12931.0, + "probability": 0.9455 + }, + { + "start": 12931.1, + "end": 12931.78, + "probability": 0.9434 + }, + { + "start": 12932.44, + "end": 12935.74, + "probability": 0.9958 + }, + { + "start": 12936.28, + "end": 12937.26, + "probability": 0.1505 + }, + { + "start": 12937.84, + "end": 12939.4, + "probability": 0.7192 + }, + { + "start": 12939.82, + "end": 12941.26, + "probability": 0.8003 + }, + { + "start": 12941.7, + "end": 12943.02, + "probability": 0.9795 + }, + { + "start": 12943.46, + "end": 12948.0, + "probability": 0.929 + }, + { + "start": 12948.06, + "end": 12950.66, + "probability": 0.7375 + }, + { + "start": 12951.04, + "end": 12953.2, + "probability": 0.7649 + }, + { + "start": 12953.3, + "end": 12955.22, + "probability": 0.7952 + }, + { + "start": 12955.7, + "end": 12958.92, + "probability": 0.7126 + }, + { + "start": 12959.22, + "end": 12961.12, + "probability": 0.5712 + }, + { + "start": 12961.58, + "end": 12963.1, + "probability": 0.4331 + }, + { + "start": 12963.74, + "end": 12964.76, + "probability": 0.918 + }, + { + "start": 12965.26, + "end": 12967.1, + "probability": 0.8998 + }, + { + "start": 12967.42, + "end": 12968.22, + "probability": 0.6415 + }, + { + "start": 12968.36, + "end": 12970.1, + "probability": 0.9213 + }, + { + "start": 12970.62, + "end": 12972.12, + "probability": 0.921 + }, + { + "start": 12972.5, + "end": 12974.66, + "probability": 0.9722 + }, + { + "start": 12974.98, + "end": 12976.8, + "probability": 0.9189 + }, + { + "start": 12977.28, + "end": 12979.9, + "probability": 0.9034 + }, + { + "start": 12980.32, + "end": 12982.86, + "probability": 0.9888 + }, + { + "start": 12983.38, + "end": 12984.88, + "probability": 0.9431 + }, + { + "start": 12985.18, + "end": 12986.8, + "probability": 0.9618 + }, + { + "start": 12987.16, + "end": 12989.72, + "probability": 0.9846 + }, + { + "start": 12989.92, + "end": 12990.12, + "probability": 0.6793 + }, + { + "start": 12990.7, + "end": 12992.0, + "probability": 0.6412 + }, + { + "start": 12992.06, + "end": 12998.32, + "probability": 0.9865 + }, + { + "start": 12998.64, + "end": 12999.74, + "probability": 0.8143 + }, + { + "start": 13000.3, + "end": 13003.66, + "probability": 0.8244 + }, + { + "start": 13003.68, + "end": 13004.38, + "probability": 0.9128 + }, + { + "start": 13006.36, + "end": 13007.98, + "probability": 0.0334 + }, + { + "start": 13029.34, + "end": 13029.98, + "probability": 0.0785 + }, + { + "start": 13030.34, + "end": 13034.1, + "probability": 0.6951 + }, + { + "start": 13035.73, + "end": 13039.26, + "probability": 0.5443 + }, + { + "start": 13042.16, + "end": 13044.54, + "probability": 0.9912 + }, + { + "start": 13045.36, + "end": 13046.96, + "probability": 0.916 + }, + { + "start": 13047.58, + "end": 13050.82, + "probability": 0.9951 + }, + { + "start": 13052.46, + "end": 13053.0, + "probability": 0.6183 + }, + { + "start": 13053.66, + "end": 13054.89, + "probability": 0.9977 + }, + { + "start": 13055.82, + "end": 13058.02, + "probability": 0.998 + }, + { + "start": 13058.58, + "end": 13061.1, + "probability": 0.9973 + }, + { + "start": 13061.1, + "end": 13065.16, + "probability": 0.9977 + }, + { + "start": 13065.78, + "end": 13068.54, + "probability": 0.8602 + }, + { + "start": 13069.04, + "end": 13072.74, + "probability": 0.7941 + }, + { + "start": 13072.8, + "end": 13074.38, + "probability": 0.0515 + }, + { + "start": 13074.38, + "end": 13079.12, + "probability": 0.6118 + }, + { + "start": 13080.5, + "end": 13084.56, + "probability": 0.9611 + }, + { + "start": 13085.2, + "end": 13089.12, + "probability": 0.6393 + }, + { + "start": 13090.28, + "end": 13090.56, + "probability": 0.0153 + }, + { + "start": 13091.32, + "end": 13093.02, + "probability": 0.4704 + }, + { + "start": 13093.83, + "end": 13095.4, + "probability": 0.8145 + }, + { + "start": 13096.84, + "end": 13098.34, + "probability": 0.5661 + }, + { + "start": 13099.76, + "end": 13102.72, + "probability": 0.7949 + }, + { + "start": 13103.36, + "end": 13106.3, + "probability": 0.9443 + }, + { + "start": 13107.28, + "end": 13110.56, + "probability": 0.981 + }, + { + "start": 13110.84, + "end": 13111.36, + "probability": 0.8628 + }, + { + "start": 13111.48, + "end": 13111.96, + "probability": 0.81 + }, + { + "start": 13112.74, + "end": 13117.34, + "probability": 0.9937 + }, + { + "start": 13118.2, + "end": 13121.7, + "probability": 0.9521 + }, + { + "start": 13123.1, + "end": 13123.46, + "probability": 0.8419 + }, + { + "start": 13123.64, + "end": 13127.16, + "probability": 0.9562 + }, + { + "start": 13127.16, + "end": 13131.16, + "probability": 0.5687 + }, + { + "start": 13132.04, + "end": 13133.36, + "probability": 0.6693 + }, + { + "start": 13133.96, + "end": 13134.84, + "probability": 0.7938 + }, + { + "start": 13137.32, + "end": 13140.68, + "probability": 0.9147 + }, + { + "start": 13141.28, + "end": 13142.22, + "probability": 0.9558 + }, + { + "start": 13143.08, + "end": 13145.26, + "probability": 0.7387 + }, + { + "start": 13146.22, + "end": 13149.06, + "probability": 0.996 + }, + { + "start": 13149.62, + "end": 13152.3, + "probability": 0.9958 + }, + { + "start": 13152.3, + "end": 13154.84, + "probability": 0.9816 + }, + { + "start": 13156.42, + "end": 13157.02, + "probability": 0.8301 + }, + { + "start": 13158.8, + "end": 13161.58, + "probability": 0.9891 + }, + { + "start": 13161.68, + "end": 13165.62, + "probability": 0.9657 + }, + { + "start": 13166.6, + "end": 13172.74, + "probability": 0.9554 + }, + { + "start": 13173.96, + "end": 13176.74, + "probability": 0.9714 + }, + { + "start": 13178.22, + "end": 13179.7, + "probability": 0.996 + }, + { + "start": 13181.08, + "end": 13185.54, + "probability": 0.9915 + }, + { + "start": 13185.54, + "end": 13189.72, + "probability": 0.9859 + }, + { + "start": 13191.7, + "end": 13196.08, + "probability": 0.9961 + }, + { + "start": 13196.98, + "end": 13199.66, + "probability": 0.7002 + }, + { + "start": 13200.42, + "end": 13201.82, + "probability": 0.8419 + }, + { + "start": 13203.04, + "end": 13204.7, + "probability": 0.9951 + }, + { + "start": 13206.58, + "end": 13209.3, + "probability": 0.8663 + }, + { + "start": 13209.96, + "end": 13211.44, + "probability": 0.9839 + }, + { + "start": 13211.46, + "end": 13214.92, + "probability": 0.9727 + }, + { + "start": 13216.24, + "end": 13217.62, + "probability": 0.9811 + }, + { + "start": 13218.76, + "end": 13223.6, + "probability": 0.9963 + }, + { + "start": 13223.68, + "end": 13226.88, + "probability": 0.7953 + }, + { + "start": 13228.0, + "end": 13229.6, + "probability": 0.543 + }, + { + "start": 13230.68, + "end": 13232.0, + "probability": 0.8974 + }, + { + "start": 13233.1, + "end": 13236.44, + "probability": 0.9838 + }, + { + "start": 13238.02, + "end": 13241.38, + "probability": 0.9922 + }, + { + "start": 13242.6, + "end": 13246.72, + "probability": 0.9971 + }, + { + "start": 13249.38, + "end": 13249.94, + "probability": 0.26 + }, + { + "start": 13250.5, + "end": 13252.1, + "probability": 0.9119 + }, + { + "start": 13252.62, + "end": 13254.1, + "probability": 0.955 + }, + { + "start": 13254.78, + "end": 13260.96, + "probability": 0.5183 + }, + { + "start": 13260.96, + "end": 13265.26, + "probability": 0.8975 + }, + { + "start": 13266.18, + "end": 13269.02, + "probability": 0.9951 + }, + { + "start": 13269.72, + "end": 13271.78, + "probability": 0.7494 + }, + { + "start": 13272.38, + "end": 13275.78, + "probability": 0.0983 + }, + { + "start": 13275.78, + "end": 13276.78, + "probability": 0.7056 + }, + { + "start": 13277.24, + "end": 13279.52, + "probability": 0.9952 + }, + { + "start": 13281.44, + "end": 13285.46, + "probability": 0.9473 + }, + { + "start": 13286.3, + "end": 13290.2, + "probability": 0.8938 + }, + { + "start": 13290.78, + "end": 13291.42, + "probability": 0.8594 + }, + { + "start": 13291.96, + "end": 13292.46, + "probability": 0.9255 + }, + { + "start": 13293.02, + "end": 13294.76, + "probability": 0.8456 + }, + { + "start": 13295.74, + "end": 13297.28, + "probability": 0.9885 + }, + { + "start": 13297.78, + "end": 13299.08, + "probability": 0.989 + }, + { + "start": 13299.26, + "end": 13300.02, + "probability": 0.9276 + }, + { + "start": 13300.52, + "end": 13303.4, + "probability": 0.9565 + }, + { + "start": 13303.86, + "end": 13304.82, + "probability": 0.9126 + }, + { + "start": 13305.5, + "end": 13307.0, + "probability": 0.9893 + }, + { + "start": 13307.64, + "end": 13309.82, + "probability": 0.9982 + }, + { + "start": 13310.52, + "end": 13312.94, + "probability": 0.9158 + }, + { + "start": 13314.12, + "end": 13314.8, + "probability": 0.8925 + }, + { + "start": 13315.42, + "end": 13315.82, + "probability": 0.9673 + }, + { + "start": 13316.32, + "end": 13321.52, + "probability": 0.991 + }, + { + "start": 13321.62, + "end": 13325.12, + "probability": 0.9411 + }, + { + "start": 13325.6, + "end": 13331.08, + "probability": 0.9563 + }, + { + "start": 13331.12, + "end": 13332.02, + "probability": 0.8047 + }, + { + "start": 13332.58, + "end": 13334.22, + "probability": 0.9528 + }, + { + "start": 13335.1, + "end": 13336.88, + "probability": 0.9395 + }, + { + "start": 13337.9, + "end": 13341.89, + "probability": 0.9963 + }, + { + "start": 13343.38, + "end": 13346.74, + "probability": 0.9553 + }, + { + "start": 13347.36, + "end": 13350.3, + "probability": 0.9649 + }, + { + "start": 13352.36, + "end": 13356.8, + "probability": 0.9453 + }, + { + "start": 13357.78, + "end": 13360.68, + "probability": 0.7928 + }, + { + "start": 13360.68, + "end": 13362.94, + "probability": 0.9448 + }, + { + "start": 13363.54, + "end": 13366.8, + "probability": 0.9709 + }, + { + "start": 13367.18, + "end": 13368.06, + "probability": 0.5243 + }, + { + "start": 13368.06, + "end": 13368.08, + "probability": 0.6238 + }, + { + "start": 13368.08, + "end": 13369.2, + "probability": 0.662 + }, + { + "start": 13370.88, + "end": 13373.34, + "probability": 0.0384 + }, + { + "start": 13374.6, + "end": 13376.72, + "probability": 0.8687 + }, + { + "start": 13377.36, + "end": 13379.8, + "probability": 0.9579 + }, + { + "start": 13380.76, + "end": 13382.46, + "probability": 0.81 + }, + { + "start": 13382.86, + "end": 13386.3, + "probability": 0.9912 + }, + { + "start": 13387.04, + "end": 13390.9, + "probability": 0.9307 + }, + { + "start": 13391.46, + "end": 13392.86, + "probability": 0.8262 + }, + { + "start": 13393.84, + "end": 13394.72, + "probability": 0.9551 + }, + { + "start": 13395.54, + "end": 13399.0, + "probability": 0.8547 + }, + { + "start": 13399.0, + "end": 13403.04, + "probability": 0.9715 + }, + { + "start": 13403.64, + "end": 13406.46, + "probability": 0.8427 + }, + { + "start": 13406.68, + "end": 13406.9, + "probability": 0.7676 + }, + { + "start": 13407.6, + "end": 13413.0, + "probability": 0.9929 + }, + { + "start": 13413.36, + "end": 13418.34, + "probability": 0.9829 + }, + { + "start": 13418.62, + "end": 13419.48, + "probability": 0.9033 + }, + { + "start": 13419.58, + "end": 13420.4, + "probability": 0.6318 + }, + { + "start": 13420.86, + "end": 13421.24, + "probability": 0.6554 + }, + { + "start": 13421.24, + "end": 13422.22, + "probability": 0.5327 + }, + { + "start": 13422.56, + "end": 13422.76, + "probability": 0.9526 + }, + { + "start": 13423.06, + "end": 13425.16, + "probability": 0.9788 + }, + { + "start": 13445.7, + "end": 13445.7, + "probability": 0.2769 + }, + { + "start": 13445.7, + "end": 13447.58, + "probability": 0.9521 + }, + { + "start": 13447.62, + "end": 13450.9, + "probability": 0.8301 + }, + { + "start": 13451.38, + "end": 13452.32, + "probability": 0.8408 + }, + { + "start": 13454.56, + "end": 13456.06, + "probability": 0.0922 + }, + { + "start": 13456.06, + "end": 13457.08, + "probability": 0.8431 + }, + { + "start": 13457.6, + "end": 13458.02, + "probability": 0.7587 + }, + { + "start": 13458.7, + "end": 13459.88, + "probability": 0.4723 + }, + { + "start": 13460.08, + "end": 13461.82, + "probability": 0.6828 + }, + { + "start": 13461.96, + "end": 13462.98, + "probability": 0.8385 + }, + { + "start": 13463.18, + "end": 13463.58, + "probability": 0.4696 + }, + { + "start": 13463.96, + "end": 13464.06, + "probability": 0.7502 + }, + { + "start": 13464.9, + "end": 13466.46, + "probability": 0.6131 + }, + { + "start": 13467.48, + "end": 13469.98, + "probability": 0.8652 + }, + { + "start": 13470.34, + "end": 13472.04, + "probability": 0.5223 + }, + { + "start": 13473.07, + "end": 13475.78, + "probability": 0.9849 + }, + { + "start": 13475.86, + "end": 13476.78, + "probability": 0.8062 + }, + { + "start": 13476.86, + "end": 13477.34, + "probability": 0.7635 + }, + { + "start": 13478.26, + "end": 13480.22, + "probability": 0.9922 + }, + { + "start": 13480.32, + "end": 13481.76, + "probability": 0.514 + }, + { + "start": 13482.56, + "end": 13487.7, + "probability": 0.9697 + }, + { + "start": 13489.3, + "end": 13490.2, + "probability": 0.9018 + }, + { + "start": 13490.26, + "end": 13491.36, + "probability": 0.9325 + }, + { + "start": 13491.46, + "end": 13492.78, + "probability": 0.9803 + }, + { + "start": 13492.9, + "end": 13497.28, + "probability": 0.9737 + }, + { + "start": 13498.76, + "end": 13501.66, + "probability": 0.9326 + }, + { + "start": 13501.78, + "end": 13502.74, + "probability": 0.9482 + }, + { + "start": 13502.84, + "end": 13507.02, + "probability": 0.9941 + }, + { + "start": 13507.94, + "end": 13508.8, + "probability": 0.8838 + }, + { + "start": 13509.82, + "end": 13512.46, + "probability": 0.8867 + }, + { + "start": 13513.9, + "end": 13515.02, + "probability": 0.9837 + }, + { + "start": 13516.24, + "end": 13517.74, + "probability": 0.7223 + }, + { + "start": 13517.94, + "end": 13518.2, + "probability": 0.4837 + }, + { + "start": 13518.38, + "end": 13520.7, + "probability": 0.972 + }, + { + "start": 13520.72, + "end": 13522.66, + "probability": 0.8026 + }, + { + "start": 13523.54, + "end": 13524.58, + "probability": 0.9423 + }, + { + "start": 13525.66, + "end": 13532.08, + "probability": 0.9842 + }, + { + "start": 13533.64, + "end": 13535.28, + "probability": 0.2187 + }, + { + "start": 13535.98, + "end": 13538.82, + "probability": 0.5098 + }, + { + "start": 13540.66, + "end": 13543.5, + "probability": 0.8269 + }, + { + "start": 13543.96, + "end": 13544.72, + "probability": 0.7994 + }, + { + "start": 13544.82, + "end": 13546.74, + "probability": 0.9792 + }, + { + "start": 13548.02, + "end": 13551.12, + "probability": 0.9465 + }, + { + "start": 13551.32, + "end": 13552.56, + "probability": 0.9725 + }, + { + "start": 13553.9, + "end": 13557.22, + "probability": 0.7332 + }, + { + "start": 13559.84, + "end": 13562.98, + "probability": 0.4923 + }, + { + "start": 13563.66, + "end": 13565.7, + "probability": 0.9927 + }, + { + "start": 13566.72, + "end": 13570.18, + "probability": 0.6748 + }, + { + "start": 13570.36, + "end": 13574.48, + "probability": 0.9941 + }, + { + "start": 13574.58, + "end": 13575.08, + "probability": 0.6472 + }, + { + "start": 13575.86, + "end": 13581.04, + "probability": 0.9377 + }, + { + "start": 13582.26, + "end": 13582.82, + "probability": 0.3283 + }, + { + "start": 13582.96, + "end": 13587.8, + "probability": 0.5633 + }, + { + "start": 13588.72, + "end": 13590.12, + "probability": 0.9211 + }, + { + "start": 13591.18, + "end": 13594.52, + "probability": 0.9089 + }, + { + "start": 13595.18, + "end": 13598.72, + "probability": 0.9197 + }, + { + "start": 13598.82, + "end": 13599.06, + "probability": 0.3905 + }, + { + "start": 13599.06, + "end": 13599.88, + "probability": 0.9172 + }, + { + "start": 13601.34, + "end": 13603.14, + "probability": 0.8305 + }, + { + "start": 13603.38, + "end": 13606.6, + "probability": 0.8241 + }, + { + "start": 13607.62, + "end": 13610.0, + "probability": 0.9105 + }, + { + "start": 13610.52, + "end": 13611.05, + "probability": 0.9804 + }, + { + "start": 13612.2, + "end": 13614.32, + "probability": 0.8455 + }, + { + "start": 13614.92, + "end": 13616.9, + "probability": 0.9826 + }, + { + "start": 13618.14, + "end": 13622.5, + "probability": 0.9284 + }, + { + "start": 13623.64, + "end": 13624.43, + "probability": 0.9207 + }, + { + "start": 13625.68, + "end": 13627.7, + "probability": 0.9321 + }, + { + "start": 13627.98, + "end": 13631.42, + "probability": 0.3277 + }, + { + "start": 13632.99, + "end": 13638.24, + "probability": 0.9861 + }, + { + "start": 13638.72, + "end": 13639.8, + "probability": 0.9707 + }, + { + "start": 13639.9, + "end": 13640.48, + "probability": 0.7332 + }, + { + "start": 13641.1, + "end": 13641.74, + "probability": 0.937 + }, + { + "start": 13642.42, + "end": 13644.78, + "probability": 0.9377 + }, + { + "start": 13644.84, + "end": 13645.68, + "probability": 0.9816 + }, + { + "start": 13645.68, + "end": 13646.6, + "probability": 0.6675 + }, + { + "start": 13647.53, + "end": 13648.45, + "probability": 0.0537 + }, + { + "start": 13649.0, + "end": 13649.62, + "probability": 0.6195 + }, + { + "start": 13650.12, + "end": 13652.1, + "probability": 0.9548 + }, + { + "start": 13652.14, + "end": 13654.86, + "probability": 0.9131 + }, + { + "start": 13655.7, + "end": 13658.94, + "probability": 0.9856 + }, + { + "start": 13659.56, + "end": 13663.68, + "probability": 0.9715 + }, + { + "start": 13664.14, + "end": 13664.64, + "probability": 0.2714 + }, + { + "start": 13665.28, + "end": 13668.86, + "probability": 0.9749 + }, + { + "start": 13669.62, + "end": 13670.14, + "probability": 0.7452 + }, + { + "start": 13670.86, + "end": 13674.02, + "probability": 0.7696 + }, + { + "start": 13674.58, + "end": 13676.8, + "probability": 0.9355 + }, + { + "start": 13677.76, + "end": 13683.26, + "probability": 0.9937 + }, + { + "start": 13684.24, + "end": 13686.22, + "probability": 0.5095 + }, + { + "start": 13686.48, + "end": 13687.04, + "probability": 0.1778 + }, + { + "start": 13687.04, + "end": 13687.4, + "probability": 0.5661 + }, + { + "start": 13687.7, + "end": 13689.49, + "probability": 0.9307 + }, + { + "start": 13691.34, + "end": 13692.32, + "probability": 0.8435 + }, + { + "start": 13692.52, + "end": 13696.68, + "probability": 0.922 + }, + { + "start": 13697.26, + "end": 13701.44, + "probability": 0.8793 + }, + { + "start": 13702.2, + "end": 13703.76, + "probability": 0.9856 + }, + { + "start": 13704.52, + "end": 13707.82, + "probability": 0.8457 + }, + { + "start": 13708.4, + "end": 13710.04, + "probability": 0.9433 + }, + { + "start": 13710.28, + "end": 13712.68, + "probability": 0.8003 + }, + { + "start": 13713.18, + "end": 13717.14, + "probability": 0.9868 + }, + { + "start": 13717.64, + "end": 13721.68, + "probability": 0.8593 + }, + { + "start": 13722.54, + "end": 13726.32, + "probability": 0.8712 + }, + { + "start": 13726.76, + "end": 13727.88, + "probability": 0.9277 + }, + { + "start": 13728.5, + "end": 13731.75, + "probability": 0.9966 + }, + { + "start": 13732.3, + "end": 13736.36, + "probability": 0.9932 + }, + { + "start": 13737.28, + "end": 13741.66, + "probability": 0.9148 + }, + { + "start": 13741.88, + "end": 13742.12, + "probability": 0.7795 + }, + { + "start": 13742.4, + "end": 13743.24, + "probability": 0.7592 + }, + { + "start": 13743.58, + "end": 13745.79, + "probability": 0.661 + }, + { + "start": 13746.6, + "end": 13747.0, + "probability": 0.6759 + }, + { + "start": 13755.12, + "end": 13755.16, + "probability": 0.6551 + }, + { + "start": 13755.16, + "end": 13757.06, + "probability": 0.7208 + }, + { + "start": 13758.44, + "end": 13758.88, + "probability": 0.8794 + }, + { + "start": 13762.14, + "end": 13763.1, + "probability": 0.2587 + }, + { + "start": 13763.18, + "end": 13763.86, + "probability": 0.6541 + }, + { + "start": 13763.94, + "end": 13766.2, + "probability": 0.4768 + }, + { + "start": 13766.7, + "end": 13766.8, + "probability": 0.4063 + }, + { + "start": 13767.46, + "end": 13769.08, + "probability": 0.5374 + }, + { + "start": 13769.36, + "end": 13770.34, + "probability": 0.8647 + }, + { + "start": 13770.44, + "end": 13771.06, + "probability": 0.8151 + }, + { + "start": 13771.12, + "end": 13772.2, + "probability": 0.824 + }, + { + "start": 13772.46, + "end": 13773.3, + "probability": 0.3163 + }, + { + "start": 13775.96, + "end": 13778.56, + "probability": 0.1987 + }, + { + "start": 13778.93, + "end": 13784.8, + "probability": 0.9971 + }, + { + "start": 13784.88, + "end": 13787.34, + "probability": 0.7032 + }, + { + "start": 13787.76, + "end": 13788.62, + "probability": 0.7062 + }, + { + "start": 13790.14, + "end": 13790.68, + "probability": 0.1125 + }, + { + "start": 13790.94, + "end": 13793.5, + "probability": 0.5067 + }, + { + "start": 13793.8, + "end": 13796.7, + "probability": 0.9779 + }, + { + "start": 13798.58, + "end": 13804.08, + "probability": 0.9879 + }, + { + "start": 13805.04, + "end": 13806.48, + "probability": 0.8196 + }, + { + "start": 13807.1, + "end": 13809.14, + "probability": 0.9433 + }, + { + "start": 13810.1, + "end": 13812.2, + "probability": 0.7339 + }, + { + "start": 13813.78, + "end": 13820.32, + "probability": 0.9979 + }, + { + "start": 13822.64, + "end": 13825.46, + "probability": 0.84 + }, + { + "start": 13826.16, + "end": 13830.16, + "probability": 0.9871 + }, + { + "start": 13832.82, + "end": 13838.2, + "probability": 0.9895 + }, + { + "start": 13838.28, + "end": 13838.92, + "probability": 0.476 + }, + { + "start": 13841.28, + "end": 13847.63, + "probability": 0.9324 + }, + { + "start": 13847.9, + "end": 13852.62, + "probability": 0.9762 + }, + { + "start": 13853.2, + "end": 13856.38, + "probability": 0.9766 + }, + { + "start": 13859.52, + "end": 13863.28, + "probability": 0.9976 + }, + { + "start": 13863.28, + "end": 13867.7, + "probability": 0.9959 + }, + { + "start": 13868.34, + "end": 13871.06, + "probability": 0.8481 + }, + { + "start": 13872.2, + "end": 13873.72, + "probability": 0.9324 + }, + { + "start": 13874.7, + "end": 13875.7, + "probability": 0.9839 + }, + { + "start": 13877.68, + "end": 13878.2, + "probability": 0.9272 + }, + { + "start": 13878.26, + "end": 13879.36, + "probability": 0.6607 + }, + { + "start": 13879.52, + "end": 13882.58, + "probability": 0.7263 + }, + { + "start": 13883.8, + "end": 13886.12, + "probability": 0.9822 + }, + { + "start": 13886.34, + "end": 13889.58, + "probability": 0.995 + }, + { + "start": 13889.58, + "end": 13893.1, + "probability": 0.9685 + }, + { + "start": 13894.58, + "end": 13896.62, + "probability": 0.9884 + }, + { + "start": 13899.88, + "end": 13902.18, + "probability": 0.9897 + }, + { + "start": 13902.62, + "end": 13904.46, + "probability": 0.9924 + }, + { + "start": 13905.94, + "end": 13911.62, + "probability": 0.999 + }, + { + "start": 13912.16, + "end": 13913.0, + "probability": 0.6173 + }, + { + "start": 13914.92, + "end": 13917.22, + "probability": 0.774 + }, + { + "start": 13918.14, + "end": 13920.26, + "probability": 0.6646 + }, + { + "start": 13920.94, + "end": 13924.44, + "probability": 0.973 + }, + { + "start": 13926.02, + "end": 13930.46, + "probability": 0.9778 + }, + { + "start": 13931.66, + "end": 13936.6, + "probability": 0.9966 + }, + { + "start": 13938.98, + "end": 13941.5, + "probability": 0.9646 + }, + { + "start": 13941.88, + "end": 13942.96, + "probability": 0.7818 + }, + { + "start": 13943.38, + "end": 13944.38, + "probability": 0.8489 + }, + { + "start": 13945.24, + "end": 13947.38, + "probability": 0.9868 + }, + { + "start": 13947.38, + "end": 13953.74, + "probability": 0.9965 + }, + { + "start": 13954.54, + "end": 13955.62, + "probability": 0.9606 + }, + { + "start": 13955.86, + "end": 13956.68, + "probability": 0.8313 + }, + { + "start": 13956.84, + "end": 13957.38, + "probability": 0.9101 + }, + { + "start": 13957.44, + "end": 13959.78, + "probability": 0.9272 + }, + { + "start": 13963.14, + "end": 13963.94, + "probability": 0.3459 + }, + { + "start": 13964.12, + "end": 13970.6, + "probability": 0.8483 + }, + { + "start": 13971.72, + "end": 13973.36, + "probability": 0.9932 + }, + { + "start": 13974.06, + "end": 13976.02, + "probability": 0.9918 + }, + { + "start": 13977.74, + "end": 13984.78, + "probability": 0.9307 + }, + { + "start": 13985.3, + "end": 13990.68, + "probability": 0.9951 + }, + { + "start": 13992.06, + "end": 13992.3, + "probability": 0.695 + }, + { + "start": 13992.32, + "end": 13992.56, + "probability": 0.9464 + }, + { + "start": 13992.68, + "end": 13999.74, + "probability": 0.9844 + }, + { + "start": 14001.1, + "end": 14004.38, + "probability": 0.9762 + }, + { + "start": 14005.74, + "end": 14009.7, + "probability": 0.9851 + }, + { + "start": 14010.2, + "end": 14013.52, + "probability": 0.9809 + }, + { + "start": 14015.18, + "end": 14019.26, + "probability": 0.833 + }, + { + "start": 14019.38, + "end": 14020.22, + "probability": 0.7524 + }, + { + "start": 14020.82, + "end": 14023.0, + "probability": 0.772 + }, + { + "start": 14024.4, + "end": 14026.14, + "probability": 0.5227 + }, + { + "start": 14027.78, + "end": 14032.6, + "probability": 0.9418 + }, + { + "start": 14033.44, + "end": 14034.84, + "probability": 0.9033 + }, + { + "start": 14036.02, + "end": 14039.7, + "probability": 0.9854 + }, + { + "start": 14040.54, + "end": 14043.32, + "probability": 0.9742 + }, + { + "start": 14043.96, + "end": 14045.86, + "probability": 0.9964 + }, + { + "start": 14046.16, + "end": 14047.16, + "probability": 0.5969 + }, + { + "start": 14047.68, + "end": 14050.82, + "probability": 0.9823 + }, + { + "start": 14052.78, + "end": 14054.82, + "probability": 0.0775 + }, + { + "start": 14055.82, + "end": 14059.54, + "probability": 0.9901 + }, + { + "start": 14061.1, + "end": 14063.8, + "probability": 0.9513 + }, + { + "start": 14063.8, + "end": 14067.72, + "probability": 0.9395 + }, + { + "start": 14068.52, + "end": 14072.38, + "probability": 0.8242 + }, + { + "start": 14073.14, + "end": 14076.96, + "probability": 0.9153 + }, + { + "start": 14078.86, + "end": 14079.94, + "probability": 0.7718 + }, + { + "start": 14080.52, + "end": 14083.62, + "probability": 0.9838 + }, + { + "start": 14084.5, + "end": 14084.82, + "probability": 0.8224 + }, + { + "start": 14084.96, + "end": 14085.92, + "probability": 0.5436 + }, + { + "start": 14086.04, + "end": 14087.6, + "probability": 0.9786 + }, + { + "start": 14088.56, + "end": 14091.14, + "probability": 0.9878 + }, + { + "start": 14091.76, + "end": 14094.34, + "probability": 0.6507 + }, + { + "start": 14095.1, + "end": 14097.34, + "probability": 0.8289 + }, + { + "start": 14098.5, + "end": 14102.66, + "probability": 0.9464 + }, + { + "start": 14104.69, + "end": 14112.16, + "probability": 0.9095 + }, + { + "start": 14113.2, + "end": 14118.3, + "probability": 0.9965 + }, + { + "start": 14119.22, + "end": 14121.98, + "probability": 0.9604 + }, + { + "start": 14122.34, + "end": 14122.76, + "probability": 0.8854 + }, + { + "start": 14122.84, + "end": 14125.28, + "probability": 0.9695 + }, + { + "start": 14126.12, + "end": 14128.02, + "probability": 0.6017 + }, + { + "start": 14129.24, + "end": 14130.0, + "probability": 0.7694 + }, + { + "start": 14154.64, + "end": 14155.22, + "probability": 0.3097 + }, + { + "start": 14155.4, + "end": 14156.24, + "probability": 0.4649 + }, + { + "start": 14156.64, + "end": 14157.6, + "probability": 0.4653 + }, + { + "start": 14157.97, + "end": 14159.54, + "probability": 0.3399 + }, + { + "start": 14159.54, + "end": 14159.94, + "probability": 0.7894 + }, + { + "start": 14161.76, + "end": 14162.18, + "probability": 0.4741 + }, + { + "start": 14163.2, + "end": 14164.18, + "probability": 0.7132 + }, + { + "start": 14166.32, + "end": 14170.3, + "probability": 0.3903 + }, + { + "start": 14171.72, + "end": 14174.24, + "probability": 0.9621 + }, + { + "start": 14176.58, + "end": 14179.02, + "probability": 0.9376 + }, + { + "start": 14180.0, + "end": 14184.84, + "probability": 0.9536 + }, + { + "start": 14184.94, + "end": 14185.14, + "probability": 0.8793 + }, + { + "start": 14185.3, + "end": 14186.1, + "probability": 0.725 + }, + { + "start": 14187.02, + "end": 14187.74, + "probability": 0.9967 + }, + { + "start": 14188.64, + "end": 14193.12, + "probability": 0.9902 + }, + { + "start": 14195.76, + "end": 14199.76, + "probability": 0.985 + }, + { + "start": 14200.2, + "end": 14202.6, + "probability": 0.9969 + }, + { + "start": 14203.42, + "end": 14204.02, + "probability": 0.6499 + }, + { + "start": 14204.08, + "end": 14204.78, + "probability": 0.6749 + }, + { + "start": 14204.84, + "end": 14207.7, + "probability": 0.89 + }, + { + "start": 14210.24, + "end": 14211.52, + "probability": 0.0465 + }, + { + "start": 14212.06, + "end": 14212.84, + "probability": 0.7074 + }, + { + "start": 14214.07, + "end": 14215.26, + "probability": 0.7788 + }, + { + "start": 14215.6, + "end": 14219.88, + "probability": 0.4691 + }, + { + "start": 14219.88, + "end": 14220.18, + "probability": 0.1303 + }, + { + "start": 14220.26, + "end": 14224.06, + "probability": 0.5503 + }, + { + "start": 14225.09, + "end": 14227.82, + "probability": 0.5977 + }, + { + "start": 14230.18, + "end": 14232.46, + "probability": 0.4696 + }, + { + "start": 14233.08, + "end": 14233.9, + "probability": 0.0084 + }, + { + "start": 14235.1, + "end": 14237.0, + "probability": 0.5015 + }, + { + "start": 14238.7, + "end": 14239.38, + "probability": 0.1042 + }, + { + "start": 14239.38, + "end": 14242.54, + "probability": 0.8181 + }, + { + "start": 14245.76, + "end": 14249.9, + "probability": 0.9776 + }, + { + "start": 14249.98, + "end": 14252.62, + "probability": 0.9639 + }, + { + "start": 14254.08, + "end": 14257.98, + "probability": 0.8875 + }, + { + "start": 14258.34, + "end": 14259.14, + "probability": 0.7789 + }, + { + "start": 14259.22, + "end": 14263.36, + "probability": 0.8528 + }, + { + "start": 14264.26, + "end": 14267.86, + "probability": 0.9347 + }, + { + "start": 14269.22, + "end": 14271.56, + "probability": 0.6489 + }, + { + "start": 14271.56, + "end": 14275.0, + "probability": 0.9847 + }, + { + "start": 14276.8, + "end": 14282.28, + "probability": 0.9165 + }, + { + "start": 14284.12, + "end": 14286.24, + "probability": 0.7817 + }, + { + "start": 14286.26, + "end": 14287.72, + "probability": 0.7607 + }, + { + "start": 14288.1, + "end": 14288.42, + "probability": 0.6775 + }, + { + "start": 14288.48, + "end": 14289.62, + "probability": 0.9235 + }, + { + "start": 14290.51, + "end": 14293.06, + "probability": 0.9334 + }, + { + "start": 14293.54, + "end": 14295.3, + "probability": 0.3142 + }, + { + "start": 14295.42, + "end": 14296.2, + "probability": 0.0147 + }, + { + "start": 14296.72, + "end": 14302.64, + "probability": 0.9683 + }, + { + "start": 14302.64, + "end": 14304.4, + "probability": 0.987 + }, + { + "start": 14304.72, + "end": 14309.3, + "probability": 0.9972 + }, + { + "start": 14309.3, + "end": 14310.68, + "probability": 0.6871 + }, + { + "start": 14310.98, + "end": 14313.5, + "probability": 0.889 + }, + { + "start": 14313.5, + "end": 14317.17, + "probability": 0.8262 + }, + { + "start": 14317.26, + "end": 14318.68, + "probability": 0.8882 + }, + { + "start": 14318.86, + "end": 14319.46, + "probability": 0.7347 + }, + { + "start": 14320.4, + "end": 14321.5, + "probability": 0.4681 + }, + { + "start": 14323.42, + "end": 14328.98, + "probability": 0.1268 + }, + { + "start": 14329.04, + "end": 14330.32, + "probability": 0.5052 + }, + { + "start": 14331.3, + "end": 14332.78, + "probability": 0.8483 + }, + { + "start": 14333.58, + "end": 14336.72, + "probability": 0.735 + }, + { + "start": 14336.76, + "end": 14337.22, + "probability": 0.9061 + }, + { + "start": 14337.66, + "end": 14338.14, + "probability": 0.556 + }, + { + "start": 14338.31, + "end": 14340.64, + "probability": 0.5962 + }, + { + "start": 14340.78, + "end": 14341.22, + "probability": 0.3444 + }, + { + "start": 14341.22, + "end": 14341.24, + "probability": 0.4105 + }, + { + "start": 14341.24, + "end": 14341.24, + "probability": 0.073 + }, + { + "start": 14341.24, + "end": 14345.04, + "probability": 0.6603 + }, + { + "start": 14345.04, + "end": 14348.54, + "probability": 0.7555 + }, + { + "start": 14349.34, + "end": 14350.92, + "probability": 0.9834 + }, + { + "start": 14351.04, + "end": 14351.83, + "probability": 0.2834 + }, + { + "start": 14352.16, + "end": 14354.65, + "probability": 0.7383 + }, + { + "start": 14355.36, + "end": 14356.72, + "probability": 0.9881 + }, + { + "start": 14356.86, + "end": 14359.52, + "probability": 0.9959 + }, + { + "start": 14360.48, + "end": 14362.96, + "probability": 0.8226 + }, + { + "start": 14364.01, + "end": 14369.12, + "probability": 0.5041 + }, + { + "start": 14369.9, + "end": 14374.52, + "probability": 0.8083 + }, + { + "start": 14374.96, + "end": 14376.66, + "probability": 0.8965 + }, + { + "start": 14377.7, + "end": 14380.31, + "probability": 0.7721 + }, + { + "start": 14381.04, + "end": 14386.94, + "probability": 0.7034 + }, + { + "start": 14386.94, + "end": 14388.86, + "probability": 0.6515 + }, + { + "start": 14389.62, + "end": 14393.32, + "probability": 0.999 + }, + { + "start": 14394.0, + "end": 14399.2, + "probability": 0.8671 + }, + { + "start": 14399.7, + "end": 14402.94, + "probability": 0.9501 + }, + { + "start": 14403.3, + "end": 14404.56, + "probability": 0.6417 + }, + { + "start": 14404.88, + "end": 14405.92, + "probability": 0.8295 + }, + { + "start": 14406.3, + "end": 14410.78, + "probability": 0.8913 + }, + { + "start": 14410.94, + "end": 14412.18, + "probability": 0.7946 + }, + { + "start": 14412.2, + "end": 14412.86, + "probability": 0.8214 + }, + { + "start": 14413.64, + "end": 14416.54, + "probability": 0.6561 + }, + { + "start": 14417.56, + "end": 14420.76, + "probability": 0.8697 + }, + { + "start": 14420.76, + "end": 14422.75, + "probability": 0.802 + }, + { + "start": 14422.9, + "end": 14423.54, + "probability": 0.8427 + }, + { + "start": 14424.34, + "end": 14424.68, + "probability": 0.6852 + }, + { + "start": 14425.4, + "end": 14426.12, + "probability": 0.6255 + }, + { + "start": 14429.36, + "end": 14430.5, + "probability": 0.2682 + }, + { + "start": 14433.26, + "end": 14434.88, + "probability": 0.9098 + }, + { + "start": 14436.04, + "end": 14440.48, + "probability": 0.2537 + }, + { + "start": 14440.54, + "end": 14442.84, + "probability": 0.9243 + }, + { + "start": 14443.02, + "end": 14443.02, + "probability": 0.3487 + }, + { + "start": 14443.02, + "end": 14444.94, + "probability": 0.5825 + }, + { + "start": 14445.12, + "end": 14446.44, + "probability": 0.7969 + }, + { + "start": 14446.66, + "end": 14448.06, + "probability": 0.8441 + }, + { + "start": 14448.1, + "end": 14451.64, + "probability": 0.9656 + }, + { + "start": 14453.2, + "end": 14455.18, + "probability": 0.9644 + }, + { + "start": 14455.18, + "end": 14457.06, + "probability": 0.9308 + }, + { + "start": 14457.96, + "end": 14459.98, + "probability": 0.9741 + }, + { + "start": 14461.74, + "end": 14463.08, + "probability": 0.6537 + }, + { + "start": 14463.7, + "end": 14464.4, + "probability": 0.5149 + }, + { + "start": 14464.4, + "end": 14468.08, + "probability": 0.6943 + }, + { + "start": 14468.28, + "end": 14471.04, + "probability": 0.2678 + }, + { + "start": 14476.42, + "end": 14480.54, + "probability": 0.8626 + }, + { + "start": 14481.22, + "end": 14483.48, + "probability": 0.6422 + }, + { + "start": 14484.06, + "end": 14484.64, + "probability": 0.8029 + }, + { + "start": 14484.64, + "end": 14487.46, + "probability": 0.6125 + }, + { + "start": 14487.6, + "end": 14488.42, + "probability": 0.8523 + }, + { + "start": 14492.42, + "end": 14496.74, + "probability": 0.535 + }, + { + "start": 14497.94, + "end": 14500.15, + "probability": 0.9937 + }, + { + "start": 14500.58, + "end": 14503.9, + "probability": 0.9906 + }, + { + "start": 14504.1, + "end": 14506.0, + "probability": 0.6595 + }, + { + "start": 14506.1, + "end": 14506.32, + "probability": 0.6008 + }, + { + "start": 14508.02, + "end": 14510.3, + "probability": 0.0334 + }, + { + "start": 14510.68, + "end": 14511.04, + "probability": 0.6699 + }, + { + "start": 14511.92, + "end": 14515.18, + "probability": 0.5318 + }, + { + "start": 14516.02, + "end": 14518.34, + "probability": 0.5192 + }, + { + "start": 14519.36, + "end": 14520.62, + "probability": 0.8331 + }, + { + "start": 14522.58, + "end": 14523.75, + "probability": 0.5592 + }, + { + "start": 14536.45, + "end": 14539.7, + "probability": 0.2953 + }, + { + "start": 14539.7, + "end": 14541.08, + "probability": 0.3209 + }, + { + "start": 14542.05, + "end": 14548.06, + "probability": 0.8865 + }, + { + "start": 14548.22, + "end": 14550.32, + "probability": 0.8582 + }, + { + "start": 14550.56, + "end": 14551.81, + "probability": 0.7915 + }, + { + "start": 14552.36, + "end": 14556.1, + "probability": 0.8054 + }, + { + "start": 14556.22, + "end": 14557.12, + "probability": 0.8657 + }, + { + "start": 14557.52, + "end": 14559.1, + "probability": 0.929 + }, + { + "start": 14559.64, + "end": 14560.92, + "probability": 0.3188 + }, + { + "start": 14561.18, + "end": 14561.38, + "probability": 0.5757 + }, + { + "start": 14561.52, + "end": 14566.0, + "probability": 0.8989 + }, + { + "start": 14566.0, + "end": 14567.84, + "probability": 0.8232 + }, + { + "start": 14568.0, + "end": 14571.3, + "probability": 0.6943 + }, + { + "start": 14571.4, + "end": 14572.08, + "probability": 0.6293 + }, + { + "start": 14582.38, + "end": 14584.24, + "probability": 0.6505 + }, + { + "start": 14586.1, + "end": 14587.56, + "probability": 0.3474 + }, + { + "start": 14588.38, + "end": 14590.12, + "probability": 0.8035 + }, + { + "start": 14590.22, + "end": 14592.72, + "probability": 0.8582 + }, + { + "start": 14593.08, + "end": 14596.62, + "probability": 0.7851 + }, + { + "start": 14596.72, + "end": 14598.06, + "probability": 0.943 + }, + { + "start": 14598.5, + "end": 14600.54, + "probability": 0.856 + }, + { + "start": 14601.1, + "end": 14601.38, + "probability": 0.783 + }, + { + "start": 14601.98, + "end": 14605.1, + "probability": 0.9354 + }, + { + "start": 14605.46, + "end": 14605.48, + "probability": 0.1151 + }, + { + "start": 14605.48, + "end": 14607.82, + "probability": 0.8475 + }, + { + "start": 14607.88, + "end": 14609.95, + "probability": 0.8807 + }, + { + "start": 14610.06, + "end": 14611.06, + "probability": 0.9045 + }, + { + "start": 14611.4, + "end": 14613.1, + "probability": 0.7192 + }, + { + "start": 14613.44, + "end": 14614.4, + "probability": 0.2718 + }, + { + "start": 14614.96, + "end": 14615.9, + "probability": 0.4231 + }, + { + "start": 14616.02, + "end": 14618.54, + "probability": 0.8379 + }, + { + "start": 14618.74, + "end": 14622.84, + "probability": 0.517 + }, + { + "start": 14625.26, + "end": 14625.8, + "probability": 0.4084 + }, + { + "start": 14627.7, + "end": 14632.36, + "probability": 0.6475 + }, + { + "start": 14633.02, + "end": 14639.44, + "probability": 0.7242 + }, + { + "start": 14639.44, + "end": 14642.86, + "probability": 0.7582 + }, + { + "start": 14643.56, + "end": 14645.04, + "probability": 0.9736 + }, + { + "start": 14645.52, + "end": 14646.62, + "probability": 0.5005 + }, + { + "start": 14647.02, + "end": 14647.8, + "probability": 0.8508 + }, + { + "start": 14648.44, + "end": 14649.52, + "probability": 0.7246 + }, + { + "start": 14649.6, + "end": 14650.58, + "probability": 0.8939 + }, + { + "start": 14650.94, + "end": 14651.3, + "probability": 0.1395 + }, + { + "start": 14651.9, + "end": 14656.88, + "probability": 0.2628 + }, + { + "start": 14659.2, + "end": 14660.44, + "probability": 0.0505 + }, + { + "start": 14663.76, + "end": 14663.86, + "probability": 0.3754 + }, + { + "start": 14667.98, + "end": 14668.26, + "probability": 0.1317 + }, + { + "start": 14672.38, + "end": 14674.24, + "probability": 0.4455 + }, + { + "start": 14674.34, + "end": 14678.42, + "probability": 0.9717 + }, + { + "start": 14678.54, + "end": 14679.96, + "probability": 0.602 + }, + { + "start": 14680.12, + "end": 14682.64, + "probability": 0.7501 + }, + { + "start": 14683.4, + "end": 14686.36, + "probability": 0.7924 + }, + { + "start": 14687.39, + "end": 14690.42, + "probability": 0.7483 + }, + { + "start": 14691.56, + "end": 14694.76, + "probability": 0.7558 + }, + { + "start": 14714.22, + "end": 14717.65, + "probability": 0.8857 + }, + { + "start": 14718.14, + "end": 14719.34, + "probability": 0.0235 + }, + { + "start": 14723.74, + "end": 14725.36, + "probability": 0.6021 + }, + { + "start": 14725.44, + "end": 14727.94, + "probability": 0.5741 + }, + { + "start": 14727.98, + "end": 14731.24, + "probability": 0.8365 + }, + { + "start": 14731.36, + "end": 14734.98, + "probability": 0.6706 + }, + { + "start": 14735.04, + "end": 14735.86, + "probability": 0.7645 + }, + { + "start": 14736.6, + "end": 14736.6, + "probability": 0.0005 + }, + { + "start": 14752.97, + "end": 14753.35, + "probability": 0.7624 + }, + { + "start": 14753.39, + "end": 14754.01, + "probability": 0.5796 + }, + { + "start": 14754.11, + "end": 14754.61, + "probability": 0.8594 + }, + { + "start": 14755.51, + "end": 14755.73, + "probability": 0.8262 + }, + { + "start": 14756.54, + "end": 14756.69, + "probability": 0.0096 + }, + { + "start": 14757.8, + "end": 14758.63, + "probability": 0.8474 + }, + { + "start": 14758.75, + "end": 14761.69, + "probability": 0.3059 + }, + { + "start": 14762.87, + "end": 14764.63, + "probability": 0.6677 + }, + { + "start": 14764.75, + "end": 14769.83, + "probability": 0.7746 + }, + { + "start": 14770.43, + "end": 14771.07, + "probability": 0.0103 + }, + { + "start": 14771.07, + "end": 14772.42, + "probability": 0.4636 + }, + { + "start": 14774.01, + "end": 14779.63, + "probability": 0.7967 + }, + { + "start": 14779.83, + "end": 14780.51, + "probability": 0.7651 + }, + { + "start": 14784.25, + "end": 14788.53, + "probability": 0.1259 + }, + { + "start": 14788.53, + "end": 14789.39, + "probability": 0.0133 + }, + { + "start": 14793.17, + "end": 14797.35, + "probability": 0.0417 + }, + { + "start": 14799.63, + "end": 14800.71, + "probability": 0.3699 + }, + { + "start": 14802.15, + "end": 14802.33, + "probability": 0.0178 + }, + { + "start": 14802.33, + "end": 14803.35, + "probability": 0.0617 + }, + { + "start": 14803.99, + "end": 14804.67, + "probability": 0.1608 + }, + { + "start": 14805.71, + "end": 14807.47, + "probability": 0.143 + }, + { + "start": 14809.79, + "end": 14810.21, + "probability": 0.0282 + }, + { + "start": 14810.27, + "end": 14812.05, + "probability": 0.0368 + }, + { + "start": 14812.25, + "end": 14817.71, + "probability": 0.2301 + }, + { + "start": 14818.35, + "end": 14818.61, + "probability": 0.0672 + }, + { + "start": 14818.61, + "end": 14818.61, + "probability": 0.3409 + }, + { + "start": 14818.61, + "end": 14818.61, + "probability": 0.0418 + }, + { + "start": 14818.61, + "end": 14818.79, + "probability": 0.1554 + }, + { + "start": 14819.0, + "end": 14819.0, + "probability": 0.0 + }, + { + "start": 14819.0, + "end": 14819.0, + "probability": 0.0 + }, + { + "start": 14819.0, + "end": 14819.0, + "probability": 0.0 + }, + { + "start": 14819.0, + "end": 14819.0, + "probability": 0.0 + }, + { + "start": 14819.0, + "end": 14819.0, + "probability": 0.0 + }, + { + "start": 14819.0, + "end": 14819.0, + "probability": 0.0 + }, + { + "start": 14819.0, + "end": 14819.0, + "probability": 0.0 + }, + { + "start": 14819.0, + "end": 14819.0, + "probability": 0.0 + }, + { + "start": 14819.0, + "end": 14819.0, + "probability": 0.0 + }, + { + "start": 14819.0, + "end": 14819.0, + "probability": 0.0 + }, + { + "start": 14820.25, + "end": 14821.3, + "probability": 0.1975 + }, + { + "start": 14822.48, + "end": 14824.92, + "probability": 0.9009 + }, + { + "start": 14825.84, + "end": 14830.7, + "probability": 0.959 + }, + { + "start": 14831.0, + "end": 14831.0, + "probability": 0.5058 + }, + { + "start": 14831.0, + "end": 14836.4, + "probability": 0.9781 + }, + { + "start": 14838.0, + "end": 14843.22, + "probability": 0.999 + }, + { + "start": 14844.2, + "end": 14846.1, + "probability": 0.4865 + }, + { + "start": 14846.2, + "end": 14850.58, + "probability": 0.9458 + }, + { + "start": 14852.1, + "end": 14854.74, + "probability": 0.9618 + }, + { + "start": 14855.74, + "end": 14860.4, + "probability": 0.8879 + }, + { + "start": 14860.4, + "end": 14863.62, + "probability": 0.9942 + }, + { + "start": 14864.48, + "end": 14867.56, + "probability": 0.968 + }, + { + "start": 14868.18, + "end": 14870.47, + "probability": 0.9194 + }, + { + "start": 14871.36, + "end": 14874.26, + "probability": 0.9102 + }, + { + "start": 14876.08, + "end": 14877.72, + "probability": 0.5219 + }, + { + "start": 14878.44, + "end": 14882.74, + "probability": 0.7598 + }, + { + "start": 14883.66, + "end": 14888.26, + "probability": 0.8887 + }, + { + "start": 14889.28, + "end": 14893.52, + "probability": 0.6671 + }, + { + "start": 14896.24, + "end": 14903.28, + "probability": 0.9695 + }, + { + "start": 14905.0, + "end": 14906.66, + "probability": 0.6031 + }, + { + "start": 14906.72, + "end": 14907.76, + "probability": 0.9233 + }, + { + "start": 14907.84, + "end": 14909.42, + "probability": 0.8421 + }, + { + "start": 14916.32, + "end": 14919.4, + "probability": 0.7231 + }, + { + "start": 14920.1, + "end": 14926.34, + "probability": 0.8263 + }, + { + "start": 14926.96, + "end": 14930.48, + "probability": 0.9594 + }, + { + "start": 14931.4, + "end": 14935.26, + "probability": 0.5338 + }, + { + "start": 14935.82, + "end": 14943.64, + "probability": 0.7222 + }, + { + "start": 14944.66, + "end": 14948.5, + "probability": 0.793 + }, + { + "start": 14948.94, + "end": 14949.12, + "probability": 0.6904 + }, + { + "start": 14949.58, + "end": 14953.38, + "probability": 0.8183 + }, + { + "start": 14953.38, + "end": 14956.96, + "probability": 0.988 + }, + { + "start": 14956.96, + "end": 14960.86, + "probability": 0.9836 + }, + { + "start": 14961.6, + "end": 14965.19, + "probability": 0.8209 + }, + { + "start": 14966.04, + "end": 14968.16, + "probability": 0.9705 + }, + { + "start": 14968.72, + "end": 14970.08, + "probability": 0.5848 + }, + { + "start": 14970.62, + "end": 14971.26, + "probability": 0.5585 + }, + { + "start": 14971.28, + "end": 14973.8, + "probability": 0.7658 + }, + { + "start": 14973.82, + "end": 14976.54, + "probability": 0.7211 + }, + { + "start": 14976.68, + "end": 14977.7, + "probability": 0.973 + }, + { + "start": 14977.88, + "end": 14978.38, + "probability": 0.5208 + }, + { + "start": 14978.5, + "end": 14979.7, + "probability": 0.6171 + }, + { + "start": 14979.84, + "end": 14981.2, + "probability": 0.9007 + }, + { + "start": 14981.34, + "end": 14985.66, + "probability": 0.998 + }, + { + "start": 14987.04, + "end": 14988.76, + "probability": 0.6473 + }, + { + "start": 14989.22, + "end": 14994.2, + "probability": 0.9838 + }, + { + "start": 14994.76, + "end": 14997.32, + "probability": 0.9983 + }, + { + "start": 14998.78, + "end": 14999.44, + "probability": 0.5203 + }, + { + "start": 15001.46, + "end": 15005.9, + "probability": 0.9214 + }, + { + "start": 15006.62, + "end": 15009.56, + "probability": 0.992 + }, + { + "start": 15009.6, + "end": 15014.1, + "probability": 0.8687 + }, + { + "start": 15014.38, + "end": 15016.96, + "probability": 0.7247 + }, + { + "start": 15018.38, + "end": 15019.18, + "probability": 0.2746 + }, + { + "start": 15019.46, + "end": 15020.98, + "probability": 0.7425 + }, + { + "start": 15022.06, + "end": 15026.32, + "probability": 0.9721 + }, + { + "start": 15026.32, + "end": 15028.62, + "probability": 0.9905 + }, + { + "start": 15029.14, + "end": 15031.88, + "probability": 0.9268 + }, + { + "start": 15032.0, + "end": 15033.46, + "probability": 0.9951 + }, + { + "start": 15033.7, + "end": 15035.38, + "probability": 0.881 + }, + { + "start": 15036.12, + "end": 15037.2, + "probability": 0.8671 + }, + { + "start": 15038.16, + "end": 15039.28, + "probability": 0.408 + }, + { + "start": 15039.44, + "end": 15042.74, + "probability": 0.9105 + }, + { + "start": 15043.44, + "end": 15045.44, + "probability": 0.2981 + }, + { + "start": 15046.5, + "end": 15051.9, + "probability": 0.7251 + }, + { + "start": 15052.14, + "end": 15052.2, + "probability": 0.0046 + } + ], + "segments_count": 4536, + "words_count": 23203, + "avg_words_per_segment": 5.1153, + "avg_segment_duration": 2.3216, + "avg_words_per_minute": 92.3949, + "plenum_id": "1953", + "duration": 15067.71, + "title": null, + "plenum_date": "2009-05-13" +} \ No newline at end of file