diff --git "a/29867/metadata.json" "b/29867/metadata.json" new file mode 100644--- /dev/null +++ "b/29867/metadata.json" @@ -0,0 +1,46992 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "29867", + "quality_score": 0.9031, + "per_segment_quality_scores": [ + { + "start": 92.28, + "end": 92.58, + "probability": 0.1298 + }, + { + "start": 94.46, + "end": 96.98, + "probability": 0.6403 + }, + { + "start": 100.26, + "end": 102.14, + "probability": 0.5345 + }, + { + "start": 102.58, + "end": 105.54, + "probability": 0.9836 + }, + { + "start": 106.44, + "end": 108.58, + "probability": 0.9941 + }, + { + "start": 108.98, + "end": 110.2, + "probability": 0.7883 + }, + { + "start": 110.66, + "end": 112.12, + "probability": 0.9299 + }, + { + "start": 117.52, + "end": 118.04, + "probability": 0.2314 + }, + { + "start": 124.5, + "end": 126.1, + "probability": 0.2885 + }, + { + "start": 135.84, + "end": 139.42, + "probability": 0.6718 + }, + { + "start": 139.66, + "end": 140.28, + "probability": 0.3898 + }, + { + "start": 140.7, + "end": 142.98, + "probability": 0.9798 + }, + { + "start": 143.04, + "end": 145.3, + "probability": 0.8253 + }, + { + "start": 146.12, + "end": 147.38, + "probability": 0.9701 + }, + { + "start": 155.68, + "end": 161.52, + "probability": 0.9971 + }, + { + "start": 161.52, + "end": 166.7, + "probability": 0.4832 + }, + { + "start": 167.38, + "end": 169.69, + "probability": 0.7791 + }, + { + "start": 170.06, + "end": 174.92, + "probability": 0.9854 + }, + { + "start": 175.42, + "end": 176.2, + "probability": 0.7885 + }, + { + "start": 180.56, + "end": 181.16, + "probability": 0.5749 + }, + { + "start": 181.34, + "end": 183.54, + "probability": 0.2097 + }, + { + "start": 183.54, + "end": 186.06, + "probability": 0.879 + }, + { + "start": 187.76, + "end": 188.56, + "probability": 0.8088 + }, + { + "start": 190.08, + "end": 193.68, + "probability": 0.938 + }, + { + "start": 195.8, + "end": 198.04, + "probability": 0.8584 + }, + { + "start": 198.52, + "end": 200.36, + "probability": 0.9409 + }, + { + "start": 201.54, + "end": 202.72, + "probability": 0.4957 + }, + { + "start": 203.54, + "end": 204.8, + "probability": 0.9509 + }, + { + "start": 205.74, + "end": 207.03, + "probability": 0.6821 + }, + { + "start": 208.16, + "end": 209.0, + "probability": 0.8765 + }, + { + "start": 209.76, + "end": 212.12, + "probability": 0.8364 + }, + { + "start": 212.32, + "end": 213.22, + "probability": 0.3678 + }, + { + "start": 213.3, + "end": 214.12, + "probability": 0.5989 + }, + { + "start": 215.6, + "end": 218.06, + "probability": 0.6702 + }, + { + "start": 218.5, + "end": 218.98, + "probability": 0.7058 + }, + { + "start": 220.2, + "end": 221.16, + "probability": 0.8609 + }, + { + "start": 221.34, + "end": 222.34, + "probability": 0.9408 + }, + { + "start": 222.46, + "end": 223.54, + "probability": 0.5945 + }, + { + "start": 223.72, + "end": 223.94, + "probability": 0.5911 + }, + { + "start": 224.5, + "end": 225.5, + "probability": 0.6222 + }, + { + "start": 226.48, + "end": 229.89, + "probability": 0.9838 + }, + { + "start": 230.78, + "end": 231.88, + "probability": 0.9533 + }, + { + "start": 235.98, + "end": 240.88, + "probability": 0.9888 + }, + { + "start": 241.84, + "end": 247.36, + "probability": 0.9843 + }, + { + "start": 248.96, + "end": 251.56, + "probability": 0.7383 + }, + { + "start": 251.56, + "end": 255.74, + "probability": 0.9907 + }, + { + "start": 256.36, + "end": 258.36, + "probability": 0.9726 + }, + { + "start": 259.22, + "end": 263.74, + "probability": 0.9313 + }, + { + "start": 264.32, + "end": 268.7, + "probability": 0.8457 + }, + { + "start": 269.22, + "end": 271.28, + "probability": 0.9686 + }, + { + "start": 272.24, + "end": 276.32, + "probability": 0.9809 + }, + { + "start": 276.32, + "end": 281.28, + "probability": 0.9952 + }, + { + "start": 281.36, + "end": 283.28, + "probability": 0.7538 + }, + { + "start": 284.72, + "end": 287.54, + "probability": 0.5403 + }, + { + "start": 288.06, + "end": 295.62, + "probability": 0.8003 + }, + { + "start": 296.98, + "end": 303.7, + "probability": 0.8109 + }, + { + "start": 304.78, + "end": 306.36, + "probability": 0.8145 + }, + { + "start": 306.92, + "end": 310.0, + "probability": 0.9285 + }, + { + "start": 311.82, + "end": 313.8, + "probability": 0.8883 + }, + { + "start": 313.94, + "end": 316.94, + "probability": 0.9756 + }, + { + "start": 317.42, + "end": 319.52, + "probability": 0.92 + }, + { + "start": 320.0, + "end": 322.26, + "probability": 0.8135 + }, + { + "start": 322.36, + "end": 327.14, + "probability": 0.7098 + }, + { + "start": 328.28, + "end": 331.74, + "probability": 0.7589 + }, + { + "start": 331.74, + "end": 335.48, + "probability": 0.9956 + }, + { + "start": 336.18, + "end": 337.34, + "probability": 0.3692 + }, + { + "start": 337.86, + "end": 339.78, + "probability": 0.9951 + }, + { + "start": 340.34, + "end": 344.04, + "probability": 0.9299 + }, + { + "start": 345.86, + "end": 349.02, + "probability": 0.8434 + }, + { + "start": 349.02, + "end": 353.44, + "probability": 0.7921 + }, + { + "start": 354.48, + "end": 357.8, + "probability": 0.9329 + }, + { + "start": 358.44, + "end": 360.74, + "probability": 0.9732 + }, + { + "start": 361.38, + "end": 367.66, + "probability": 0.9448 + }, + { + "start": 368.12, + "end": 375.76, + "probability": 0.989 + }, + { + "start": 376.46, + "end": 379.5, + "probability": 0.7821 + }, + { + "start": 380.36, + "end": 384.3, + "probability": 0.2694 + }, + { + "start": 385.08, + "end": 386.76, + "probability": 0.488 + }, + { + "start": 388.26, + "end": 392.56, + "probability": 0.8278 + }, + { + "start": 394.34, + "end": 396.64, + "probability": 0.9958 + }, + { + "start": 396.92, + "end": 400.16, + "probability": 0.95 + }, + { + "start": 401.22, + "end": 401.96, + "probability": 0.4853 + }, + { + "start": 402.04, + "end": 402.32, + "probability": 0.7391 + }, + { + "start": 402.32, + "end": 403.04, + "probability": 0.7123 + }, + { + "start": 403.14, + "end": 404.1, + "probability": 0.7425 + }, + { + "start": 404.34, + "end": 405.9, + "probability": 0.7097 + }, + { + "start": 405.92, + "end": 407.06, + "probability": 0.9744 + }, + { + "start": 407.68, + "end": 412.68, + "probability": 0.9518 + }, + { + "start": 413.38, + "end": 415.24, + "probability": 0.9621 + }, + { + "start": 415.36, + "end": 416.92, + "probability": 0.6478 + }, + { + "start": 417.38, + "end": 419.36, + "probability": 0.7096 + }, + { + "start": 419.7, + "end": 422.44, + "probability": 0.811 + }, + { + "start": 423.6, + "end": 425.04, + "probability": 0.979 + }, + { + "start": 425.82, + "end": 427.18, + "probability": 0.9683 + }, + { + "start": 427.34, + "end": 427.8, + "probability": 0.9969 + }, + { + "start": 428.38, + "end": 429.08, + "probability": 0.6424 + }, + { + "start": 429.26, + "end": 429.66, + "probability": 0.3944 + }, + { + "start": 429.66, + "end": 430.48, + "probability": 0.7285 + }, + { + "start": 431.08, + "end": 432.36, + "probability": 0.9182 + }, + { + "start": 433.18, + "end": 435.58, + "probability": 0.8781 + }, + { + "start": 435.86, + "end": 438.18, + "probability": 0.9564 + }, + { + "start": 439.2, + "end": 439.84, + "probability": 0.4226 + }, + { + "start": 439.88, + "end": 441.94, + "probability": 0.5353 + }, + { + "start": 443.68, + "end": 447.04, + "probability": 0.9171 + }, + { + "start": 451.48, + "end": 455.72, + "probability": 0.7025 + }, + { + "start": 456.26, + "end": 459.6, + "probability": 0.9871 + }, + { + "start": 460.08, + "end": 461.72, + "probability": 0.614 + }, + { + "start": 461.88, + "end": 462.1, + "probability": 0.2808 + }, + { + "start": 462.14, + "end": 462.46, + "probability": 0.7358 + }, + { + "start": 462.72, + "end": 465.68, + "probability": 0.8116 + }, + { + "start": 465.68, + "end": 468.96, + "probability": 0.8069 + }, + { + "start": 469.76, + "end": 470.68, + "probability": 0.6805 + }, + { + "start": 470.8, + "end": 471.54, + "probability": 0.8157 + }, + { + "start": 471.68, + "end": 475.82, + "probability": 0.9957 + }, + { + "start": 475.82, + "end": 479.96, + "probability": 0.9672 + }, + { + "start": 480.12, + "end": 485.24, + "probability": 0.8324 + }, + { + "start": 485.38, + "end": 490.88, + "probability": 0.9596 + }, + { + "start": 491.28, + "end": 492.34, + "probability": 0.9066 + }, + { + "start": 492.8, + "end": 493.62, + "probability": 0.5463 + }, + { + "start": 493.64, + "end": 495.0, + "probability": 0.5195 + }, + { + "start": 496.21, + "end": 500.48, + "probability": 0.8369 + }, + { + "start": 500.48, + "end": 504.38, + "probability": 0.826 + }, + { + "start": 504.76, + "end": 509.36, + "probability": 0.5953 + }, + { + "start": 509.62, + "end": 511.2, + "probability": 0.8449 + }, + { + "start": 511.26, + "end": 516.6, + "probability": 0.8732 + }, + { + "start": 516.74, + "end": 519.6, + "probability": 0.7939 + }, + { + "start": 519.66, + "end": 520.34, + "probability": 0.8055 + }, + { + "start": 520.56, + "end": 520.88, + "probability": 0.8801 + }, + { + "start": 521.64, + "end": 521.98, + "probability": 0.3237 + }, + { + "start": 522.14, + "end": 523.76, + "probability": 0.5859 + }, + { + "start": 523.8, + "end": 526.25, + "probability": 0.8556 + }, + { + "start": 526.48, + "end": 528.5, + "probability": 0.8833 + }, + { + "start": 528.5, + "end": 529.04, + "probability": 0.7492 + }, + { + "start": 529.16, + "end": 530.66, + "probability": 0.8525 + }, + { + "start": 530.78, + "end": 536.48, + "probability": 0.9663 + }, + { + "start": 537.1, + "end": 541.88, + "probability": 0.9922 + }, + { + "start": 542.66, + "end": 545.66, + "probability": 0.9175 + }, + { + "start": 546.58, + "end": 550.1, + "probability": 0.9738 + }, + { + "start": 550.22, + "end": 558.22, + "probability": 0.8923 + }, + { + "start": 558.72, + "end": 560.15, + "probability": 0.9897 + }, + { + "start": 561.36, + "end": 564.2, + "probability": 0.9634 + }, + { + "start": 564.3, + "end": 565.08, + "probability": 0.7643 + }, + { + "start": 565.12, + "end": 568.18, + "probability": 0.9836 + }, + { + "start": 568.6, + "end": 571.0, + "probability": 0.6666 + }, + { + "start": 571.88, + "end": 574.76, + "probability": 0.926 + }, + { + "start": 575.44, + "end": 578.1, + "probability": 0.9672 + }, + { + "start": 578.52, + "end": 581.12, + "probability": 0.988 + }, + { + "start": 581.18, + "end": 582.26, + "probability": 0.98 + }, + { + "start": 583.1, + "end": 585.88, + "probability": 0.9792 + }, + { + "start": 586.06, + "end": 588.76, + "probability": 0.6762 + }, + { + "start": 589.38, + "end": 592.28, + "probability": 0.9565 + }, + { + "start": 592.4, + "end": 593.72, + "probability": 0.9685 + }, + { + "start": 594.16, + "end": 595.64, + "probability": 0.8444 + }, + { + "start": 596.28, + "end": 599.62, + "probability": 0.9517 + }, + { + "start": 599.9, + "end": 604.5, + "probability": 0.988 + }, + { + "start": 605.24, + "end": 608.2, + "probability": 0.9894 + }, + { + "start": 608.4, + "end": 611.26, + "probability": 0.9983 + }, + { + "start": 611.68, + "end": 613.46, + "probability": 0.6744 + }, + { + "start": 614.04, + "end": 616.94, + "probability": 0.8966 + }, + { + "start": 617.64, + "end": 619.58, + "probability": 0.998 + }, + { + "start": 619.72, + "end": 620.34, + "probability": 0.9614 + }, + { + "start": 621.16, + "end": 623.26, + "probability": 0.3528 + }, + { + "start": 623.32, + "end": 624.92, + "probability": 0.8303 + }, + { + "start": 625.38, + "end": 628.2, + "probability": 0.9951 + }, + { + "start": 628.2, + "end": 629.1, + "probability": 0.9678 + }, + { + "start": 629.64, + "end": 633.26, + "probability": 0.9116 + }, + { + "start": 633.32, + "end": 635.72, + "probability": 0.9085 + }, + { + "start": 636.13, + "end": 643.18, + "probability": 0.9497 + }, + { + "start": 643.84, + "end": 647.94, + "probability": 0.9653 + }, + { + "start": 649.04, + "end": 651.96, + "probability": 0.6332 + }, + { + "start": 651.96, + "end": 656.64, + "probability": 0.9302 + }, + { + "start": 657.32, + "end": 658.12, + "probability": 0.6483 + }, + { + "start": 659.04, + "end": 660.7, + "probability": 0.9778 + }, + { + "start": 661.38, + "end": 664.16, + "probability": 0.8728 + }, + { + "start": 665.08, + "end": 667.0, + "probability": 0.7271 + }, + { + "start": 667.4, + "end": 670.9, + "probability": 0.9034 + }, + { + "start": 671.55, + "end": 676.18, + "probability": 0.9957 + }, + { + "start": 676.18, + "end": 679.42, + "probability": 0.8657 + }, + { + "start": 679.5, + "end": 680.12, + "probability": 0.6146 + }, + { + "start": 680.32, + "end": 681.8, + "probability": 0.9398 + }, + { + "start": 682.26, + "end": 689.64, + "probability": 0.9081 + }, + { + "start": 689.8, + "end": 690.7, + "probability": 0.7502 + }, + { + "start": 690.84, + "end": 691.56, + "probability": 0.7699 + }, + { + "start": 692.44, + "end": 694.28, + "probability": 0.9746 + }, + { + "start": 695.3, + "end": 698.58, + "probability": 0.9414 + }, + { + "start": 699.92, + "end": 700.52, + "probability": 0.525 + }, + { + "start": 700.62, + "end": 701.34, + "probability": 0.6015 + }, + { + "start": 701.42, + "end": 702.54, + "probability": 0.9159 + }, + { + "start": 702.6, + "end": 703.37, + "probability": 0.6922 + }, + { + "start": 703.72, + "end": 705.4, + "probability": 0.714 + }, + { + "start": 706.28, + "end": 712.12, + "probability": 0.9696 + }, + { + "start": 712.18, + "end": 713.12, + "probability": 0.9866 + }, + { + "start": 713.34, + "end": 715.68, + "probability": 0.8668 + }, + { + "start": 716.58, + "end": 717.54, + "probability": 0.7337 + }, + { + "start": 717.82, + "end": 719.88, + "probability": 0.9762 + }, + { + "start": 720.04, + "end": 722.92, + "probability": 0.8829 + }, + { + "start": 722.92, + "end": 726.54, + "probability": 0.9951 + }, + { + "start": 727.34, + "end": 730.26, + "probability": 0.9551 + }, + { + "start": 730.94, + "end": 732.88, + "probability": 0.9354 + }, + { + "start": 733.2, + "end": 735.2, + "probability": 0.9196 + }, + { + "start": 735.32, + "end": 736.26, + "probability": 0.7184 + }, + { + "start": 736.72, + "end": 741.87, + "probability": 0.9841 + }, + { + "start": 742.8, + "end": 743.04, + "probability": 0.8256 + }, + { + "start": 743.56, + "end": 746.36, + "probability": 0.9866 + }, + { + "start": 746.46, + "end": 747.6, + "probability": 0.8076 + }, + { + "start": 747.66, + "end": 749.2, + "probability": 0.3035 + }, + { + "start": 749.96, + "end": 755.18, + "probability": 0.8213 + }, + { + "start": 755.7, + "end": 758.86, + "probability": 0.6661 + }, + { + "start": 759.4, + "end": 765.66, + "probability": 0.9655 + }, + { + "start": 765.66, + "end": 769.76, + "probability": 0.9829 + }, + { + "start": 770.72, + "end": 772.74, + "probability": 0.8824 + }, + { + "start": 772.8, + "end": 774.36, + "probability": 0.9346 + }, + { + "start": 774.86, + "end": 775.94, + "probability": 0.6458 + }, + { + "start": 776.16, + "end": 776.86, + "probability": 0.9087 + }, + { + "start": 776.92, + "end": 779.18, + "probability": 0.842 + }, + { + "start": 779.76, + "end": 782.0, + "probability": 0.8718 + }, + { + "start": 782.7, + "end": 787.62, + "probability": 0.967 + }, + { + "start": 790.32, + "end": 790.68, + "probability": 0.3081 + }, + { + "start": 790.68, + "end": 790.68, + "probability": 0.0651 + }, + { + "start": 790.68, + "end": 792.16, + "probability": 0.8622 + }, + { + "start": 792.3, + "end": 795.56, + "probability": 0.8679 + }, + { + "start": 796.88, + "end": 801.26, + "probability": 0.7913 + }, + { + "start": 801.52, + "end": 802.64, + "probability": 0.7282 + }, + { + "start": 803.16, + "end": 808.94, + "probability": 0.9854 + }, + { + "start": 809.08, + "end": 810.28, + "probability": 0.9088 + }, + { + "start": 810.36, + "end": 811.68, + "probability": 0.9694 + }, + { + "start": 811.68, + "end": 813.4, + "probability": 0.7711 + }, + { + "start": 814.64, + "end": 819.84, + "probability": 0.9943 + }, + { + "start": 821.02, + "end": 825.66, + "probability": 0.9978 + }, + { + "start": 826.38, + "end": 827.38, + "probability": 0.8489 + }, + { + "start": 827.52, + "end": 828.24, + "probability": 0.731 + }, + { + "start": 828.3, + "end": 829.34, + "probability": 0.9172 + }, + { + "start": 829.42, + "end": 830.84, + "probability": 0.9948 + }, + { + "start": 831.46, + "end": 836.28, + "probability": 0.9879 + }, + { + "start": 836.8, + "end": 842.2, + "probability": 0.9888 + }, + { + "start": 843.0, + "end": 843.78, + "probability": 0.7974 + }, + { + "start": 843.88, + "end": 844.76, + "probability": 0.7509 + }, + { + "start": 845.04, + "end": 847.56, + "probability": 0.9707 + }, + { + "start": 848.84, + "end": 852.68, + "probability": 0.9919 + }, + { + "start": 853.76, + "end": 857.24, + "probability": 0.9793 + }, + { + "start": 857.44, + "end": 859.28, + "probability": 0.9971 + }, + { + "start": 860.22, + "end": 861.68, + "probability": 0.9107 + }, + { + "start": 861.9, + "end": 862.68, + "probability": 0.7011 + }, + { + "start": 862.68, + "end": 867.52, + "probability": 0.9137 + }, + { + "start": 868.02, + "end": 869.88, + "probability": 0.9836 + }, + { + "start": 870.1, + "end": 870.52, + "probability": 0.7994 + }, + { + "start": 870.88, + "end": 872.94, + "probability": 0.6914 + }, + { + "start": 873.34, + "end": 876.64, + "probability": 0.8389 + }, + { + "start": 877.26, + "end": 879.26, + "probability": 0.8139 + }, + { + "start": 880.02, + "end": 884.1, + "probability": 0.9718 + }, + { + "start": 884.16, + "end": 886.16, + "probability": 0.8811 + }, + { + "start": 886.32, + "end": 888.04, + "probability": 0.8951 + }, + { + "start": 888.46, + "end": 889.3, + "probability": 0.8209 + }, + { + "start": 889.44, + "end": 895.08, + "probability": 0.9312 + }, + { + "start": 895.48, + "end": 898.26, + "probability": 0.959 + }, + { + "start": 898.26, + "end": 901.78, + "probability": 0.9672 + }, + { + "start": 902.36, + "end": 903.16, + "probability": 0.8192 + }, + { + "start": 903.78, + "end": 906.46, + "probability": 0.9716 + }, + { + "start": 906.98, + "end": 909.56, + "probability": 0.7385 + }, + { + "start": 910.82, + "end": 916.84, + "probability": 0.946 + }, + { + "start": 916.96, + "end": 918.4, + "probability": 0.8344 + }, + { + "start": 918.58, + "end": 919.54, + "probability": 0.7768 + }, + { + "start": 919.8, + "end": 924.96, + "probability": 0.9668 + }, + { + "start": 925.2, + "end": 928.72, + "probability": 0.9653 + }, + { + "start": 928.84, + "end": 929.92, + "probability": 0.9622 + }, + { + "start": 930.04, + "end": 934.64, + "probability": 0.9648 + }, + { + "start": 934.64, + "end": 937.7, + "probability": 0.9358 + }, + { + "start": 938.06, + "end": 941.74, + "probability": 0.8517 + }, + { + "start": 942.0, + "end": 942.84, + "probability": 0.9531 + }, + { + "start": 943.54, + "end": 946.02, + "probability": 0.7562 + }, + { + "start": 947.74, + "end": 952.98, + "probability": 0.4599 + }, + { + "start": 952.98, + "end": 955.8, + "probability": 0.5882 + }, + { + "start": 956.72, + "end": 957.94, + "probability": 0.826 + }, + { + "start": 958.1, + "end": 958.46, + "probability": 0.4515 + }, + { + "start": 958.58, + "end": 958.96, + "probability": 0.8383 + }, + { + "start": 959.06, + "end": 960.24, + "probability": 0.8472 + }, + { + "start": 960.3, + "end": 961.98, + "probability": 0.7673 + }, + { + "start": 963.16, + "end": 966.6, + "probability": 0.9093 + }, + { + "start": 967.49, + "end": 969.35, + "probability": 0.7639 + }, + { + "start": 970.58, + "end": 972.08, + "probability": 0.7132 + }, + { + "start": 974.1, + "end": 978.4, + "probability": 0.8477 + }, + { + "start": 978.4, + "end": 982.08, + "probability": 0.9735 + }, + { + "start": 983.4, + "end": 984.86, + "probability": 0.7313 + }, + { + "start": 984.96, + "end": 990.14, + "probability": 0.8333 + }, + { + "start": 990.72, + "end": 994.08, + "probability": 0.8116 + }, + { + "start": 994.3, + "end": 995.9, + "probability": 0.4922 + }, + { + "start": 996.08, + "end": 1000.9, + "probability": 0.9869 + }, + { + "start": 1001.44, + "end": 1001.76, + "probability": 0.1534 + }, + { + "start": 1001.76, + "end": 1003.0, + "probability": 0.5143 + }, + { + "start": 1004.6, + "end": 1008.1, + "probability": 0.6054 + }, + { + "start": 1008.6, + "end": 1010.64, + "probability": 0.7974 + }, + { + "start": 1010.68, + "end": 1011.66, + "probability": 0.6325 + }, + { + "start": 1011.94, + "end": 1012.22, + "probability": 0.629 + }, + { + "start": 1012.32, + "end": 1014.2, + "probability": 0.7733 + }, + { + "start": 1014.3, + "end": 1017.34, + "probability": 0.9937 + }, + { + "start": 1017.38, + "end": 1018.3, + "probability": 0.8924 + }, + { + "start": 1018.82, + "end": 1019.66, + "probability": 0.7558 + }, + { + "start": 1019.94, + "end": 1021.1, + "probability": 0.9146 + }, + { + "start": 1021.24, + "end": 1022.6, + "probability": 0.9912 + }, + { + "start": 1025.32, + "end": 1026.96, + "probability": 0.6425 + }, + { + "start": 1029.5, + "end": 1030.82, + "probability": 0.4106 + }, + { + "start": 1031.34, + "end": 1031.48, + "probability": 0.6587 + }, + { + "start": 1031.94, + "end": 1038.86, + "probability": 0.7898 + }, + { + "start": 1039.86, + "end": 1040.78, + "probability": 0.9723 + }, + { + "start": 1041.34, + "end": 1042.18, + "probability": 0.9915 + }, + { + "start": 1042.24, + "end": 1043.02, + "probability": 0.9684 + }, + { + "start": 1043.12, + "end": 1045.48, + "probability": 0.7214 + }, + { + "start": 1046.14, + "end": 1047.37, + "probability": 0.8833 + }, + { + "start": 1048.64, + "end": 1053.72, + "probability": 0.8295 + }, + { + "start": 1054.32, + "end": 1058.48, + "probability": 0.8832 + }, + { + "start": 1058.92, + "end": 1061.46, + "probability": 0.9961 + }, + { + "start": 1061.46, + "end": 1065.88, + "probability": 0.9964 + }, + { + "start": 1066.84, + "end": 1067.88, + "probability": 0.6967 + }, + { + "start": 1068.0, + "end": 1071.68, + "probability": 0.9741 + }, + { + "start": 1071.84, + "end": 1073.56, + "probability": 0.9451 + }, + { + "start": 1074.1, + "end": 1078.1, + "probability": 0.9003 + }, + { + "start": 1079.66, + "end": 1083.76, + "probability": 0.9906 + }, + { + "start": 1083.82, + "end": 1084.46, + "probability": 0.8345 + }, + { + "start": 1085.16, + "end": 1087.96, + "probability": 0.7871 + }, + { + "start": 1089.22, + "end": 1094.2, + "probability": 0.9937 + }, + { + "start": 1094.22, + "end": 1099.04, + "probability": 0.999 + }, + { + "start": 1100.78, + "end": 1103.42, + "probability": 0.8616 + }, + { + "start": 1103.82, + "end": 1106.14, + "probability": 0.9905 + }, + { + "start": 1106.14, + "end": 1110.82, + "probability": 0.8544 + }, + { + "start": 1111.42, + "end": 1117.56, + "probability": 0.9579 + }, + { + "start": 1117.56, + "end": 1121.86, + "probability": 0.9502 + }, + { + "start": 1123.08, + "end": 1125.26, + "probability": 0.8821 + }, + { + "start": 1125.7, + "end": 1128.5, + "probability": 0.9727 + }, + { + "start": 1128.8, + "end": 1130.71, + "probability": 0.9604 + }, + { + "start": 1130.98, + "end": 1134.42, + "probability": 0.8513 + }, + { + "start": 1135.1, + "end": 1137.2, + "probability": 0.8259 + }, + { + "start": 1137.88, + "end": 1140.72, + "probability": 0.9889 + }, + { + "start": 1140.72, + "end": 1144.94, + "probability": 0.9799 + }, + { + "start": 1145.1, + "end": 1146.36, + "probability": 0.8158 + }, + { + "start": 1146.48, + "end": 1148.04, + "probability": 0.6763 + }, + { + "start": 1148.08, + "end": 1148.64, + "probability": 0.9073 + }, + { + "start": 1148.98, + "end": 1152.34, + "probability": 0.7784 + }, + { + "start": 1153.3, + "end": 1157.2, + "probability": 0.9717 + }, + { + "start": 1157.6, + "end": 1162.34, + "probability": 0.9819 + }, + { + "start": 1163.0, + "end": 1166.56, + "probability": 0.9732 + }, + { + "start": 1166.56, + "end": 1170.86, + "probability": 0.9809 + }, + { + "start": 1171.04, + "end": 1175.66, + "probability": 0.9875 + }, + { + "start": 1176.28, + "end": 1180.14, + "probability": 0.9849 + }, + { + "start": 1180.14, + "end": 1182.72, + "probability": 0.9833 + }, + { + "start": 1183.36, + "end": 1188.12, + "probability": 0.9725 + }, + { + "start": 1188.12, + "end": 1192.82, + "probability": 0.9973 + }, + { + "start": 1193.7, + "end": 1194.04, + "probability": 0.7401 + }, + { + "start": 1194.46, + "end": 1195.28, + "probability": 0.7656 + }, + { + "start": 1195.9, + "end": 1196.2, + "probability": 0.3601 + }, + { + "start": 1196.56, + "end": 1199.36, + "probability": 0.9582 + }, + { + "start": 1201.6, + "end": 1203.62, + "probability": 0.655 + }, + { + "start": 1204.62, + "end": 1206.92, + "probability": 0.8794 + }, + { + "start": 1208.9, + "end": 1210.88, + "probability": 0.9756 + }, + { + "start": 1210.98, + "end": 1212.94, + "probability": 0.9452 + }, + { + "start": 1213.68, + "end": 1215.38, + "probability": 0.5493 + }, + { + "start": 1215.56, + "end": 1216.74, + "probability": 0.7965 + }, + { + "start": 1217.04, + "end": 1219.0, + "probability": 0.9854 + }, + { + "start": 1219.78, + "end": 1223.7, + "probability": 0.5334 + }, + { + "start": 1224.22, + "end": 1227.08, + "probability": 0.9653 + }, + { + "start": 1227.64, + "end": 1230.74, + "probability": 0.9148 + }, + { + "start": 1230.96, + "end": 1233.6, + "probability": 0.9582 + }, + { + "start": 1234.16, + "end": 1235.66, + "probability": 0.9652 + }, + { + "start": 1236.06, + "end": 1239.62, + "probability": 0.9579 + }, + { + "start": 1239.76, + "end": 1240.74, + "probability": 0.8074 + }, + { + "start": 1241.16, + "end": 1243.1, + "probability": 0.9695 + }, + { + "start": 1243.5, + "end": 1244.6, + "probability": 0.7243 + }, + { + "start": 1244.64, + "end": 1244.76, + "probability": 0.1118 + }, + { + "start": 1245.16, + "end": 1250.36, + "probability": 0.9788 + }, + { + "start": 1250.42, + "end": 1251.01, + "probability": 0.9634 + }, + { + "start": 1251.38, + "end": 1252.84, + "probability": 0.9656 + }, + { + "start": 1253.3, + "end": 1253.66, + "probability": 0.7267 + }, + { + "start": 1253.72, + "end": 1255.18, + "probability": 0.937 + }, + { + "start": 1255.82, + "end": 1256.52, + "probability": 0.8772 + }, + { + "start": 1256.62, + "end": 1259.84, + "probability": 0.9923 + }, + { + "start": 1259.84, + "end": 1262.3, + "probability": 0.7757 + }, + { + "start": 1262.3, + "end": 1262.3, + "probability": 0.6395 + }, + { + "start": 1262.6, + "end": 1263.06, + "probability": 0.3674 + }, + { + "start": 1263.08, + "end": 1263.62, + "probability": 0.5483 + }, + { + "start": 1263.98, + "end": 1265.94, + "probability": 0.9497 + }, + { + "start": 1266.14, + "end": 1268.16, + "probability": 0.928 + }, + { + "start": 1268.58, + "end": 1272.94, + "probability": 0.9888 + }, + { + "start": 1273.1, + "end": 1273.46, + "probability": 0.8966 + }, + { + "start": 1273.62, + "end": 1274.04, + "probability": 0.752 + }, + { + "start": 1274.4, + "end": 1275.6, + "probability": 0.6967 + }, + { + "start": 1275.74, + "end": 1277.24, + "probability": 0.5638 + }, + { + "start": 1277.76, + "end": 1278.8, + "probability": 0.8198 + }, + { + "start": 1278.9, + "end": 1279.26, + "probability": 0.8965 + }, + { + "start": 1281.2, + "end": 1283.36, + "probability": 0.868 + }, + { + "start": 1285.0, + "end": 1287.46, + "probability": 0.9608 + }, + { + "start": 1287.94, + "end": 1289.3, + "probability": 0.3815 + }, + { + "start": 1289.88, + "end": 1290.2, + "probability": 0.1214 + }, + { + "start": 1291.84, + "end": 1293.68, + "probability": 0.9346 + }, + { + "start": 1294.64, + "end": 1295.34, + "probability": 0.7017 + }, + { + "start": 1296.06, + "end": 1299.98, + "probability": 0.8099 + }, + { + "start": 1300.9, + "end": 1302.92, + "probability": 0.9525 + }, + { + "start": 1303.02, + "end": 1306.9, + "probability": 0.9422 + }, + { + "start": 1308.06, + "end": 1308.36, + "probability": 0.6232 + }, + { + "start": 1308.46, + "end": 1309.24, + "probability": 0.4567 + }, + { + "start": 1309.42, + "end": 1311.2, + "probability": 0.9885 + }, + { + "start": 1315.8, + "end": 1320.12, + "probability": 0.6012 + }, + { + "start": 1321.4, + "end": 1323.38, + "probability": 0.9714 + }, + { + "start": 1324.18, + "end": 1326.76, + "probability": 0.6295 + }, + { + "start": 1327.44, + "end": 1328.72, + "probability": 0.388 + }, + { + "start": 1329.9, + "end": 1336.06, + "probability": 0.8483 + }, + { + "start": 1336.06, + "end": 1339.76, + "probability": 0.9668 + }, + { + "start": 1340.34, + "end": 1343.98, + "probability": 0.9672 + }, + { + "start": 1344.58, + "end": 1345.12, + "probability": 0.7993 + }, + { + "start": 1345.78, + "end": 1345.9, + "probability": 0.1739 + }, + { + "start": 1346.1, + "end": 1350.62, + "probability": 0.6488 + }, + { + "start": 1350.8, + "end": 1354.14, + "probability": 0.9187 + }, + { + "start": 1355.04, + "end": 1355.62, + "probability": 0.3934 + }, + { + "start": 1355.8, + "end": 1356.9, + "probability": 0.8171 + }, + { + "start": 1357.48, + "end": 1358.66, + "probability": 0.8379 + }, + { + "start": 1359.12, + "end": 1359.92, + "probability": 0.7036 + }, + { + "start": 1360.14, + "end": 1362.66, + "probability": 0.5977 + }, + { + "start": 1362.66, + "end": 1365.38, + "probability": 0.996 + }, + { + "start": 1365.74, + "end": 1367.5, + "probability": 0.7539 + }, + { + "start": 1367.74, + "end": 1368.12, + "probability": 0.6862 + }, + { + "start": 1368.14, + "end": 1369.96, + "probability": 0.9876 + }, + { + "start": 1370.52, + "end": 1373.64, + "probability": 0.9109 + }, + { + "start": 1374.52, + "end": 1376.1, + "probability": 0.7698 + }, + { + "start": 1376.66, + "end": 1380.0, + "probability": 0.9716 + }, + { + "start": 1380.8, + "end": 1382.0, + "probability": 0.6507 + }, + { + "start": 1382.3, + "end": 1386.06, + "probability": 0.9818 + }, + { + "start": 1386.06, + "end": 1389.52, + "probability": 0.998 + }, + { + "start": 1390.34, + "end": 1391.32, + "probability": 0.8719 + }, + { + "start": 1391.72, + "end": 1394.8, + "probability": 0.9983 + }, + { + "start": 1395.08, + "end": 1395.76, + "probability": 0.5772 + }, + { + "start": 1396.34, + "end": 1398.82, + "probability": 0.9957 + }, + { + "start": 1398.82, + "end": 1401.56, + "probability": 0.9858 + }, + { + "start": 1402.52, + "end": 1404.62, + "probability": 0.783 + }, + { + "start": 1406.18, + "end": 1408.54, + "probability": 0.9956 + }, + { + "start": 1408.54, + "end": 1411.28, + "probability": 0.9756 + }, + { + "start": 1411.84, + "end": 1413.56, + "probability": 0.789 + }, + { + "start": 1414.4, + "end": 1417.76, + "probability": 0.9434 + }, + { + "start": 1418.18, + "end": 1421.08, + "probability": 0.9857 + }, + { + "start": 1423.22, + "end": 1425.78, + "probability": 0.9753 + }, + { + "start": 1425.78, + "end": 1429.52, + "probability": 0.9841 + }, + { + "start": 1429.72, + "end": 1434.24, + "probability": 0.6452 + }, + { + "start": 1434.48, + "end": 1435.76, + "probability": 0.9723 + }, + { + "start": 1436.26, + "end": 1439.1, + "probability": 0.9869 + }, + { + "start": 1439.86, + "end": 1443.16, + "probability": 0.9795 + }, + { + "start": 1443.16, + "end": 1445.14, + "probability": 0.9934 + }, + { + "start": 1445.72, + "end": 1447.92, + "probability": 0.9645 + }, + { + "start": 1447.92, + "end": 1450.26, + "probability": 0.8609 + }, + { + "start": 1450.76, + "end": 1453.86, + "probability": 0.998 + }, + { + "start": 1454.5, + "end": 1457.44, + "probability": 0.9787 + }, + { + "start": 1460.36, + "end": 1461.7, + "probability": 0.6002 + }, + { + "start": 1461.82, + "end": 1464.32, + "probability": 0.9597 + }, + { + "start": 1465.86, + "end": 1472.22, + "probability": 0.9062 + }, + { + "start": 1472.98, + "end": 1474.4, + "probability": 0.9141 + }, + { + "start": 1475.36, + "end": 1478.08, + "probability": 0.9095 + }, + { + "start": 1478.12, + "end": 1480.9, + "probability": 0.9358 + }, + { + "start": 1481.08, + "end": 1481.92, + "probability": 0.4 + }, + { + "start": 1482.2, + "end": 1482.96, + "probability": 0.9325 + }, + { + "start": 1483.28, + "end": 1485.32, + "probability": 0.7545 + }, + { + "start": 1485.48, + "end": 1489.3, + "probability": 0.8308 + }, + { + "start": 1489.56, + "end": 1494.6, + "probability": 0.8381 + }, + { + "start": 1495.26, + "end": 1498.4, + "probability": 0.9614 + }, + { + "start": 1499.42, + "end": 1499.54, + "probability": 0.1762 + }, + { + "start": 1499.54, + "end": 1499.89, + "probability": 0.4765 + }, + { + "start": 1500.1, + "end": 1502.58, + "probability": 0.8529 + }, + { + "start": 1502.6, + "end": 1504.52, + "probability": 0.7414 + }, + { + "start": 1504.68, + "end": 1504.7, + "probability": 0.4413 + }, + { + "start": 1504.74, + "end": 1505.1, + "probability": 0.7161 + }, + { + "start": 1505.6, + "end": 1509.86, + "probability": 0.9807 + }, + { + "start": 1510.04, + "end": 1510.46, + "probability": 0.937 + }, + { + "start": 1511.2, + "end": 1513.56, + "probability": 0.9954 + }, + { + "start": 1513.94, + "end": 1514.18, + "probability": 0.3852 + }, + { + "start": 1514.28, + "end": 1514.72, + "probability": 0.9916 + }, + { + "start": 1514.92, + "end": 1517.86, + "probability": 0.9932 + }, + { + "start": 1518.14, + "end": 1520.02, + "probability": 0.9919 + }, + { + "start": 1520.02, + "end": 1522.24, + "probability": 0.998 + }, + { + "start": 1522.62, + "end": 1524.2, + "probability": 0.9961 + }, + { + "start": 1524.2, + "end": 1526.6, + "probability": 0.9981 + }, + { + "start": 1527.06, + "end": 1530.12, + "probability": 0.9907 + }, + { + "start": 1530.12, + "end": 1533.52, + "probability": 0.8966 + }, + { + "start": 1533.66, + "end": 1536.82, + "probability": 0.7965 + }, + { + "start": 1537.12, + "end": 1539.28, + "probability": 0.807 + }, + { + "start": 1540.76, + "end": 1543.98, + "probability": 0.6986 + }, + { + "start": 1544.96, + "end": 1547.94, + "probability": 0.954 + }, + { + "start": 1548.28, + "end": 1549.46, + "probability": 0.7438 + }, + { + "start": 1549.62, + "end": 1551.02, + "probability": 0.4577 + }, + { + "start": 1551.9, + "end": 1553.2, + "probability": 0.8101 + }, + { + "start": 1553.34, + "end": 1555.82, + "probability": 0.7315 + }, + { + "start": 1556.46, + "end": 1560.68, + "probability": 0.9238 + }, + { + "start": 1560.74, + "end": 1564.72, + "probability": 0.9065 + }, + { + "start": 1565.38, + "end": 1565.9, + "probability": 0.6511 + }, + { + "start": 1566.0, + "end": 1570.86, + "probability": 0.8173 + }, + { + "start": 1570.88, + "end": 1573.96, + "probability": 0.7046 + }, + { + "start": 1577.1, + "end": 1578.7, + "probability": 0.4969 + }, + { + "start": 1581.06, + "end": 1581.76, + "probability": 0.468 + }, + { + "start": 1583.6, + "end": 1588.34, + "probability": 0.8517 + }, + { + "start": 1589.2, + "end": 1592.32, + "probability": 0.9325 + }, + { + "start": 1592.86, + "end": 1593.68, + "probability": 0.782 + }, + { + "start": 1594.58, + "end": 1598.76, + "probability": 0.7721 + }, + { + "start": 1599.36, + "end": 1603.66, + "probability": 0.9591 + }, + { + "start": 1604.32, + "end": 1605.4, + "probability": 0.7351 + }, + { + "start": 1606.04, + "end": 1613.08, + "probability": 0.8376 + }, + { + "start": 1614.22, + "end": 1614.68, + "probability": 0.5155 + }, + { + "start": 1614.78, + "end": 1615.7, + "probability": 0.5575 + }, + { + "start": 1615.7, + "end": 1615.96, + "probability": 0.8823 + }, + { + "start": 1616.12, + "end": 1621.02, + "probability": 0.9321 + }, + { + "start": 1621.14, + "end": 1622.34, + "probability": 0.7129 + }, + { + "start": 1622.38, + "end": 1624.18, + "probability": 0.9747 + }, + { + "start": 1624.8, + "end": 1626.84, + "probability": 0.9338 + }, + { + "start": 1627.42, + "end": 1628.26, + "probability": 0.83 + }, + { + "start": 1628.34, + "end": 1630.2, + "probability": 0.7918 + }, + { + "start": 1630.42, + "end": 1632.26, + "probability": 0.9072 + }, + { + "start": 1632.82, + "end": 1635.8, + "probability": 0.8715 + }, + { + "start": 1635.86, + "end": 1638.02, + "probability": 0.979 + }, + { + "start": 1638.02, + "end": 1640.2, + "probability": 0.8412 + }, + { + "start": 1640.62, + "end": 1641.62, + "probability": 0.9897 + }, + { + "start": 1641.78, + "end": 1643.08, + "probability": 0.9238 + }, + { + "start": 1643.18, + "end": 1644.4, + "probability": 0.936 + }, + { + "start": 1644.5, + "end": 1645.42, + "probability": 0.8347 + }, + { + "start": 1646.32, + "end": 1649.92, + "probability": 0.9076 + }, + { + "start": 1650.28, + "end": 1652.86, + "probability": 0.98 + }, + { + "start": 1652.86, + "end": 1655.12, + "probability": 0.9973 + }, + { + "start": 1655.66, + "end": 1660.54, + "probability": 0.9695 + }, + { + "start": 1660.64, + "end": 1660.76, + "probability": 0.5912 + }, + { + "start": 1660.8, + "end": 1661.92, + "probability": 0.8981 + }, + { + "start": 1662.34, + "end": 1664.08, + "probability": 0.8597 + }, + { + "start": 1664.22, + "end": 1666.4, + "probability": 0.9959 + }, + { + "start": 1666.98, + "end": 1668.14, + "probability": 0.6876 + }, + { + "start": 1668.26, + "end": 1668.88, + "probability": 0.6268 + }, + { + "start": 1668.94, + "end": 1671.96, + "probability": 0.9317 + }, + { + "start": 1671.96, + "end": 1675.4, + "probability": 0.9819 + }, + { + "start": 1675.54, + "end": 1678.6, + "probability": 0.9885 + }, + { + "start": 1678.7, + "end": 1679.4, + "probability": 0.8832 + }, + { + "start": 1680.84, + "end": 1682.02, + "probability": 0.8092 + }, + { + "start": 1682.14, + "end": 1685.4, + "probability": 0.9712 + }, + { + "start": 1685.46, + "end": 1688.26, + "probability": 0.9943 + }, + { + "start": 1689.66, + "end": 1694.78, + "probability": 0.9895 + }, + { + "start": 1695.18, + "end": 1696.16, + "probability": 0.9221 + }, + { + "start": 1697.48, + "end": 1698.68, + "probability": 0.9595 + }, + { + "start": 1699.14, + "end": 1699.9, + "probability": 0.8938 + }, + { + "start": 1699.98, + "end": 1701.84, + "probability": 0.937 + }, + { + "start": 1702.64, + "end": 1706.9, + "probability": 0.8395 + }, + { + "start": 1707.62, + "end": 1708.26, + "probability": 0.9855 + }, + { + "start": 1708.78, + "end": 1715.16, + "probability": 0.9713 + }, + { + "start": 1715.56, + "end": 1717.3, + "probability": 0.9927 + }, + { + "start": 1717.76, + "end": 1719.1, + "probability": 0.952 + }, + { + "start": 1719.56, + "end": 1722.04, + "probability": 0.9421 + }, + { + "start": 1722.26, + "end": 1723.84, + "probability": 0.9679 + }, + { + "start": 1723.98, + "end": 1724.4, + "probability": 0.6736 + }, + { + "start": 1724.74, + "end": 1725.18, + "probability": 0.5596 + }, + { + "start": 1725.24, + "end": 1726.74, + "probability": 0.8461 + }, + { + "start": 1726.88, + "end": 1727.3, + "probability": 0.7003 + }, + { + "start": 1727.32, + "end": 1728.26, + "probability": 0.9557 + }, + { + "start": 1728.4, + "end": 1729.58, + "probability": 0.9267 + }, + { + "start": 1732.92, + "end": 1734.7, + "probability": 0.9364 + }, + { + "start": 1735.5, + "end": 1736.3, + "probability": 0.818 + }, + { + "start": 1736.72, + "end": 1737.94, + "probability": 0.8307 + }, + { + "start": 1738.42, + "end": 1742.5, + "probability": 0.9935 + }, + { + "start": 1742.58, + "end": 1745.24, + "probability": 0.9723 + }, + { + "start": 1746.26, + "end": 1749.14, + "probability": 0.9346 + }, + { + "start": 1749.3, + "end": 1750.32, + "probability": 0.9156 + }, + { + "start": 1750.4, + "end": 1751.1, + "probability": 0.9612 + }, + { + "start": 1751.16, + "end": 1752.2, + "probability": 0.777 + }, + { + "start": 1753.1, + "end": 1761.42, + "probability": 0.9646 + }, + { + "start": 1761.82, + "end": 1763.05, + "probability": 0.9702 + }, + { + "start": 1763.6, + "end": 1764.94, + "probability": 0.6579 + }, + { + "start": 1765.92, + "end": 1767.9, + "probability": 0.9158 + }, + { + "start": 1768.16, + "end": 1769.72, + "probability": 0.6473 + }, + { + "start": 1770.02, + "end": 1773.64, + "probability": 0.985 + }, + { + "start": 1773.92, + "end": 1778.16, + "probability": 0.948 + }, + { + "start": 1778.16, + "end": 1782.42, + "probability": 0.9909 + }, + { + "start": 1782.68, + "end": 1784.3, + "probability": 0.9961 + }, + { + "start": 1784.62, + "end": 1787.43, + "probability": 0.9727 + }, + { + "start": 1787.86, + "end": 1788.49, + "probability": 0.8784 + }, + { + "start": 1789.16, + "end": 1794.24, + "probability": 0.9879 + }, + { + "start": 1795.06, + "end": 1796.88, + "probability": 0.9915 + }, + { + "start": 1797.18, + "end": 1797.92, + "probability": 0.6405 + }, + { + "start": 1798.0, + "end": 1799.24, + "probability": 0.9104 + }, + { + "start": 1799.5, + "end": 1800.5, + "probability": 0.8591 + }, + { + "start": 1800.88, + "end": 1802.78, + "probability": 0.904 + }, + { + "start": 1803.66, + "end": 1808.06, + "probability": 0.9577 + }, + { + "start": 1808.16, + "end": 1808.58, + "probability": 0.7107 + }, + { + "start": 1809.64, + "end": 1810.84, + "probability": 0.8894 + }, + { + "start": 1810.9, + "end": 1811.34, + "probability": 0.8578 + }, + { + "start": 1811.42, + "end": 1812.38, + "probability": 0.8803 + }, + { + "start": 1812.5, + "end": 1812.78, + "probability": 0.5032 + }, + { + "start": 1812.96, + "end": 1814.04, + "probability": 0.9463 + }, + { + "start": 1816.76, + "end": 1820.96, + "probability": 0.9642 + }, + { + "start": 1822.0, + "end": 1823.13, + "probability": 0.5298 + }, + { + "start": 1823.68, + "end": 1826.26, + "probability": 0.5572 + }, + { + "start": 1826.38, + "end": 1827.52, + "probability": 0.8645 + }, + { + "start": 1827.58, + "end": 1828.42, + "probability": 0.9692 + }, + { + "start": 1829.4, + "end": 1833.78, + "probability": 0.7491 + }, + { + "start": 1834.32, + "end": 1836.56, + "probability": 0.7337 + }, + { + "start": 1836.88, + "end": 1838.98, + "probability": 0.9417 + }, + { + "start": 1839.64, + "end": 1843.84, + "probability": 0.9458 + }, + { + "start": 1844.02, + "end": 1847.74, + "probability": 0.7446 + }, + { + "start": 1847.84, + "end": 1848.26, + "probability": 0.5595 + }, + { + "start": 1848.92, + "end": 1851.57, + "probability": 0.8475 + }, + { + "start": 1852.84, + "end": 1856.02, + "probability": 0.7816 + }, + { + "start": 1856.1, + "end": 1857.32, + "probability": 0.8308 + }, + { + "start": 1857.4, + "end": 1858.04, + "probability": 0.7418 + }, + { + "start": 1858.28, + "end": 1860.34, + "probability": 0.7215 + }, + { + "start": 1860.46, + "end": 1861.6, + "probability": 0.8342 + }, + { + "start": 1862.12, + "end": 1863.48, + "probability": 0.8244 + }, + { + "start": 1863.5, + "end": 1867.8, + "probability": 0.6849 + }, + { + "start": 1868.18, + "end": 1869.67, + "probability": 0.3855 + }, + { + "start": 1870.2, + "end": 1871.8, + "probability": 0.812 + }, + { + "start": 1871.92, + "end": 1873.34, + "probability": 0.5925 + }, + { + "start": 1873.54, + "end": 1876.12, + "probability": 0.9408 + }, + { + "start": 1876.68, + "end": 1878.46, + "probability": 0.9925 + }, + { + "start": 1878.68, + "end": 1879.48, + "probability": 0.2078 + }, + { + "start": 1879.86, + "end": 1885.38, + "probability": 0.6961 + }, + { + "start": 1885.64, + "end": 1885.96, + "probability": 0.4978 + }, + { + "start": 1886.12, + "end": 1889.3, + "probability": 0.992 + }, + { + "start": 1889.64, + "end": 1894.06, + "probability": 0.8344 + }, + { + "start": 1894.8, + "end": 1898.94, + "probability": 0.319 + }, + { + "start": 1898.94, + "end": 1899.7, + "probability": 0.9707 + }, + { + "start": 1900.04, + "end": 1902.32, + "probability": 0.9021 + }, + { + "start": 1902.62, + "end": 1903.94, + "probability": 0.9268 + }, + { + "start": 1903.94, + "end": 1907.4, + "probability": 0.9492 + }, + { + "start": 1907.48, + "end": 1908.68, + "probability": 0.5469 + }, + { + "start": 1908.7, + "end": 1909.2, + "probability": 0.604 + }, + { + "start": 1909.3, + "end": 1910.98, + "probability": 0.7381 + }, + { + "start": 1911.2, + "end": 1911.76, + "probability": 0.6511 + }, + { + "start": 1911.92, + "end": 1912.72, + "probability": 0.5723 + }, + { + "start": 1913.18, + "end": 1913.62, + "probability": 0.7136 + }, + { + "start": 1914.16, + "end": 1915.86, + "probability": 0.7944 + }, + { + "start": 1916.58, + "end": 1918.0, + "probability": 0.673 + }, + { + "start": 1918.06, + "end": 1919.12, + "probability": 0.8499 + }, + { + "start": 1919.18, + "end": 1919.76, + "probability": 0.3736 + }, + { + "start": 1919.96, + "end": 1920.68, + "probability": 0.9563 + }, + { + "start": 1920.76, + "end": 1923.42, + "probability": 0.9653 + }, + { + "start": 1923.62, + "end": 1926.32, + "probability": 0.6861 + }, + { + "start": 1926.32, + "end": 1929.0, + "probability": 0.9995 + }, + { + "start": 1929.06, + "end": 1932.7, + "probability": 0.9751 + }, + { + "start": 1933.08, + "end": 1935.04, + "probability": 0.9686 + }, + { + "start": 1935.24, + "end": 1939.3, + "probability": 0.9676 + }, + { + "start": 1939.96, + "end": 1940.62, + "probability": 0.6976 + }, + { + "start": 1940.68, + "end": 1943.0, + "probability": 0.9933 + }, + { + "start": 1943.1, + "end": 1946.46, + "probability": 0.989 + }, + { + "start": 1946.78, + "end": 1948.88, + "probability": 0.9946 + }, + { + "start": 1949.06, + "end": 1949.58, + "probability": 0.8752 + }, + { + "start": 1949.88, + "end": 1952.0, + "probability": 0.9928 + }, + { + "start": 1952.08, + "end": 1953.32, + "probability": 0.9918 + }, + { + "start": 1954.44, + "end": 1959.78, + "probability": 0.9092 + }, + { + "start": 1960.2, + "end": 1960.84, + "probability": 0.9012 + }, + { + "start": 1960.88, + "end": 1961.68, + "probability": 0.9628 + }, + { + "start": 1961.92, + "end": 1965.32, + "probability": 0.8008 + }, + { + "start": 1965.52, + "end": 1967.42, + "probability": 0.8918 + }, + { + "start": 1973.58, + "end": 1975.39, + "probability": 0.8086 + }, + { + "start": 1976.32, + "end": 1978.32, + "probability": 0.824 + }, + { + "start": 1978.54, + "end": 1980.82, + "probability": 0.6678 + }, + { + "start": 1980.94, + "end": 1982.34, + "probability": 0.9603 + }, + { + "start": 1984.34, + "end": 1985.54, + "probability": 0.8188 + }, + { + "start": 1988.94, + "end": 1989.08, + "probability": 0.3176 + }, + { + "start": 1989.08, + "end": 1989.08, + "probability": 0.0666 + }, + { + "start": 1989.08, + "end": 1991.0, + "probability": 0.796 + }, + { + "start": 1991.78, + "end": 1995.26, + "probability": 0.8625 + }, + { + "start": 1996.46, + "end": 1997.9, + "probability": 0.9699 + }, + { + "start": 2000.23, + "end": 2003.58, + "probability": 0.8625 + }, + { + "start": 2005.79, + "end": 2008.86, + "probability": 0.8569 + }, + { + "start": 2008.94, + "end": 2012.64, + "probability": 0.9564 + }, + { + "start": 2012.86, + "end": 2015.3, + "probability": 0.9976 + }, + { + "start": 2015.32, + "end": 2017.48, + "probability": 0.8332 + }, + { + "start": 2017.9, + "end": 2018.8, + "probability": 0.8212 + }, + { + "start": 2027.32, + "end": 2027.58, + "probability": 0.2598 + }, + { + "start": 2027.58, + "end": 2028.34, + "probability": 0.6164 + }, + { + "start": 2029.08, + "end": 2032.3, + "probability": 0.7826 + }, + { + "start": 2032.5, + "end": 2032.88, + "probability": 0.7374 + }, + { + "start": 2033.32, + "end": 2034.22, + "probability": 0.7038 + }, + { + "start": 2035.36, + "end": 2037.08, + "probability": 0.7727 + }, + { + "start": 2038.22, + "end": 2040.56, + "probability": 0.546 + }, + { + "start": 2041.44, + "end": 2044.9, + "probability": 0.9588 + }, + { + "start": 2045.5, + "end": 2046.04, + "probability": 0.7275 + }, + { + "start": 2047.36, + "end": 2051.68, + "probability": 0.9044 + }, + { + "start": 2053.74, + "end": 2055.54, + "probability": 0.842 + }, + { + "start": 2056.52, + "end": 2060.36, + "probability": 0.9825 + }, + { + "start": 2061.46, + "end": 2063.3, + "probability": 0.538 + }, + { + "start": 2064.36, + "end": 2068.56, + "probability": 0.6121 + }, + { + "start": 2068.74, + "end": 2072.58, + "probability": 0.8751 + }, + { + "start": 2073.66, + "end": 2075.91, + "probability": 0.9892 + }, + { + "start": 2075.94, + "end": 2079.98, + "probability": 0.7627 + }, + { + "start": 2080.08, + "end": 2081.24, + "probability": 0.9865 + }, + { + "start": 2081.38, + "end": 2083.06, + "probability": 0.8317 + }, + { + "start": 2083.96, + "end": 2086.66, + "probability": 0.9917 + }, + { + "start": 2086.7, + "end": 2089.16, + "probability": 0.8892 + }, + { + "start": 2091.08, + "end": 2095.12, + "probability": 0.9885 + }, + { + "start": 2095.86, + "end": 2098.26, + "probability": 0.9327 + }, + { + "start": 2098.48, + "end": 2099.82, + "probability": 0.8884 + }, + { + "start": 2100.84, + "end": 2104.88, + "probability": 0.9508 + }, + { + "start": 2105.42, + "end": 2109.66, + "probability": 0.9639 + }, + { + "start": 2110.68, + "end": 2113.7, + "probability": 0.9987 + }, + { + "start": 2113.7, + "end": 2116.32, + "probability": 0.9945 + }, + { + "start": 2117.48, + "end": 2120.32, + "probability": 0.9683 + }, + { + "start": 2120.32, + "end": 2125.4, + "probability": 0.986 + }, + { + "start": 2125.78, + "end": 2126.28, + "probability": 0.6785 + }, + { + "start": 2126.68, + "end": 2127.47, + "probability": 0.7345 + }, + { + "start": 2128.84, + "end": 2129.12, + "probability": 0.4047 + }, + { + "start": 2129.12, + "end": 2133.52, + "probability": 0.9897 + }, + { + "start": 2134.4, + "end": 2137.12, + "probability": 0.975 + }, + { + "start": 2137.18, + "end": 2138.38, + "probability": 0.8323 + }, + { + "start": 2138.38, + "end": 2139.98, + "probability": 0.6059 + }, + { + "start": 2140.08, + "end": 2140.18, + "probability": 0.4836 + }, + { + "start": 2140.26, + "end": 2142.34, + "probability": 0.8837 + }, + { + "start": 2142.42, + "end": 2143.9, + "probability": 0.9824 + }, + { + "start": 2144.84, + "end": 2147.46, + "probability": 0.714 + }, + { + "start": 2148.54, + "end": 2151.66, + "probability": 0.7374 + }, + { + "start": 2152.68, + "end": 2153.48, + "probability": 0.6053 + }, + { + "start": 2153.54, + "end": 2154.4, + "probability": 0.8558 + }, + { + "start": 2154.46, + "end": 2155.14, + "probability": 0.8813 + }, + { + "start": 2155.18, + "end": 2155.92, + "probability": 0.7287 + }, + { + "start": 2155.94, + "end": 2156.72, + "probability": 0.9553 + }, + { + "start": 2156.74, + "end": 2158.04, + "probability": 0.8388 + }, + { + "start": 2158.7, + "end": 2158.8, + "probability": 0.0409 + }, + { + "start": 2158.8, + "end": 2159.66, + "probability": 0.7523 + }, + { + "start": 2159.86, + "end": 2160.68, + "probability": 0.8731 + }, + { + "start": 2160.76, + "end": 2161.46, + "probability": 0.7741 + }, + { + "start": 2161.5, + "end": 2163.44, + "probability": 0.9481 + }, + { + "start": 2163.92, + "end": 2166.0, + "probability": 0.988 + }, + { + "start": 2166.26, + "end": 2168.26, + "probability": 0.9495 + }, + { + "start": 2169.78, + "end": 2174.06, + "probability": 0.7622 + }, + { + "start": 2174.06, + "end": 2175.82, + "probability": 0.9886 + }, + { + "start": 2176.56, + "end": 2179.7, + "probability": 0.9981 + }, + { + "start": 2179.84, + "end": 2181.4, + "probability": 0.9692 + }, + { + "start": 2182.06, + "end": 2184.62, + "probability": 0.9957 + }, + { + "start": 2184.62, + "end": 2187.96, + "probability": 0.9966 + }, + { + "start": 2190.0, + "end": 2192.86, + "probability": 0.998 + }, + { + "start": 2193.2, + "end": 2195.72, + "probability": 0.9946 + }, + { + "start": 2196.32, + "end": 2197.86, + "probability": 0.9988 + }, + { + "start": 2199.38, + "end": 2201.88, + "probability": 0.8376 + }, + { + "start": 2202.56, + "end": 2203.44, + "probability": 0.0933 + }, + { + "start": 2203.44, + "end": 2204.7, + "probability": 0.5224 + }, + { + "start": 2205.41, + "end": 2208.34, + "probability": 0.6748 + }, + { + "start": 2209.24, + "end": 2211.13, + "probability": 0.9635 + }, + { + "start": 2213.02, + "end": 2213.6, + "probability": 0.8078 + }, + { + "start": 2213.7, + "end": 2216.16, + "probability": 0.9769 + }, + { + "start": 2216.44, + "end": 2218.26, + "probability": 0.9348 + }, + { + "start": 2219.12, + "end": 2222.7, + "probability": 0.9827 + }, + { + "start": 2224.04, + "end": 2225.06, + "probability": 0.0197 + }, + { + "start": 2225.46, + "end": 2227.66, + "probability": 0.9609 + }, + { + "start": 2228.72, + "end": 2234.12, + "probability": 0.998 + }, + { + "start": 2235.17, + "end": 2238.22, + "probability": 0.9673 + }, + { + "start": 2238.32, + "end": 2241.12, + "probability": 0.9605 + }, + { + "start": 2242.4, + "end": 2243.14, + "probability": 0.6912 + }, + { + "start": 2243.6, + "end": 2246.18, + "probability": 0.9966 + }, + { + "start": 2246.36, + "end": 2249.02, + "probability": 0.9961 + }, + { + "start": 2250.38, + "end": 2251.04, + "probability": 0.9415 + }, + { + "start": 2251.32, + "end": 2257.55, + "probability": 0.514 + }, + { + "start": 2259.92, + "end": 2259.92, + "probability": 0.1219 + }, + { + "start": 2259.92, + "end": 2259.92, + "probability": 0.096 + }, + { + "start": 2259.92, + "end": 2259.92, + "probability": 0.2563 + }, + { + "start": 2259.92, + "end": 2259.92, + "probability": 0.0093 + }, + { + "start": 2259.92, + "end": 2259.92, + "probability": 0.0908 + }, + { + "start": 2259.92, + "end": 2259.92, + "probability": 0.1162 + }, + { + "start": 2259.92, + "end": 2260.38, + "probability": 0.2649 + }, + { + "start": 2260.9, + "end": 2262.18, + "probability": 0.5299 + }, + { + "start": 2262.22, + "end": 2263.28, + "probability": 0.7162 + }, + { + "start": 2264.68, + "end": 2267.02, + "probability": 0.9966 + }, + { + "start": 2267.02, + "end": 2270.06, + "probability": 0.9977 + }, + { + "start": 2271.26, + "end": 2271.86, + "probability": 0.8242 + }, + { + "start": 2272.04, + "end": 2272.62, + "probability": 0.8284 + }, + { + "start": 2272.84, + "end": 2274.68, + "probability": 0.994 + }, + { + "start": 2274.84, + "end": 2276.0, + "probability": 0.9601 + }, + { + "start": 2277.76, + "end": 2279.7, + "probability": 0.991 + }, + { + "start": 2279.94, + "end": 2280.2, + "probability": 0.5114 + }, + { + "start": 2280.2, + "end": 2283.54, + "probability": 0.8915 + }, + { + "start": 2283.66, + "end": 2284.78, + "probability": 0.9536 + }, + { + "start": 2284.88, + "end": 2286.3, + "probability": 0.9514 + }, + { + "start": 2286.84, + "end": 2288.76, + "probability": 0.9678 + }, + { + "start": 2288.82, + "end": 2289.9, + "probability": 0.861 + }, + { + "start": 2291.12, + "end": 2291.7, + "probability": 0.3489 + }, + { + "start": 2291.72, + "end": 2295.2, + "probability": 0.99 + }, + { + "start": 2295.62, + "end": 2297.1, + "probability": 0.82 + }, + { + "start": 2297.12, + "end": 2298.6, + "probability": 0.9204 + }, + { + "start": 2299.42, + "end": 2299.44, + "probability": 0.0941 + }, + { + "start": 2299.44, + "end": 2300.69, + "probability": 0.6778 + }, + { + "start": 2301.4, + "end": 2303.44, + "probability": 0.1537 + }, + { + "start": 2304.54, + "end": 2305.96, + "probability": 0.103 + }, + { + "start": 2305.96, + "end": 2305.96, + "probability": 0.4585 + }, + { + "start": 2305.96, + "end": 2305.96, + "probability": 0.0625 + }, + { + "start": 2305.96, + "end": 2307.28, + "probability": 0.1364 + }, + { + "start": 2307.88, + "end": 2311.86, + "probability": 0.9507 + }, + { + "start": 2311.86, + "end": 2312.12, + "probability": 0.51 + }, + { + "start": 2312.14, + "end": 2313.42, + "probability": 0.7584 + }, + { + "start": 2313.46, + "end": 2314.12, + "probability": 0.405 + }, + { + "start": 2314.26, + "end": 2318.22, + "probability": 0.6319 + }, + { + "start": 2318.5, + "end": 2318.92, + "probability": 0.0125 + }, + { + "start": 2318.92, + "end": 2318.92, + "probability": 0.0257 + }, + { + "start": 2318.92, + "end": 2319.66, + "probability": 0.3577 + }, + { + "start": 2319.88, + "end": 2321.12, + "probability": 0.4426 + }, + { + "start": 2321.12, + "end": 2322.18, + "probability": 0.5261 + }, + { + "start": 2322.44, + "end": 2324.4, + "probability": 0.4849 + }, + { + "start": 2324.46, + "end": 2329.3, + "probability": 0.9297 + }, + { + "start": 2329.42, + "end": 2330.02, + "probability": 0.8734 + }, + { + "start": 2330.14, + "end": 2331.02, + "probability": 0.0366 + }, + { + "start": 2331.02, + "end": 2331.52, + "probability": 0.3134 + }, + { + "start": 2331.52, + "end": 2333.44, + "probability": 0.8518 + }, + { + "start": 2333.86, + "end": 2334.64, + "probability": 0.3091 + }, + { + "start": 2335.36, + "end": 2335.74, + "probability": 0.0729 + }, + { + "start": 2335.84, + "end": 2339.48, + "probability": 0.0946 + }, + { + "start": 2341.8, + "end": 2342.44, + "probability": 0.0038 + }, + { + "start": 2342.82, + "end": 2343.31, + "probability": 0.3891 + }, + { + "start": 2343.94, + "end": 2347.22, + "probability": 0.0193 + }, + { + "start": 2347.22, + "end": 2347.34, + "probability": 0.0537 + }, + { + "start": 2347.34, + "end": 2347.98, + "probability": 0.1076 + }, + { + "start": 2347.98, + "end": 2351.1, + "probability": 0.0221 + }, + { + "start": 2360.0, + "end": 2360.0, + "probability": 0.0 + }, + { + "start": 2360.0, + "end": 2360.0, + "probability": 0.0 + }, + { + "start": 2360.0, + "end": 2360.0, + "probability": 0.0 + }, + { + "start": 2360.0, + "end": 2360.0, + "probability": 0.0 + }, + { + "start": 2360.0, + "end": 2360.0, + "probability": 0.0 + }, + { + "start": 2365.22, + "end": 2365.44, + "probability": 0.1486 + }, + { + "start": 2366.7, + "end": 2368.08, + "probability": 0.0377 + }, + { + "start": 2368.12, + "end": 2369.54, + "probability": 0.1055 + }, + { + "start": 2369.54, + "end": 2372.56, + "probability": 0.0185 + }, + { + "start": 2372.56, + "end": 2377.5, + "probability": 0.2616 + }, + { + "start": 2377.5, + "end": 2378.6, + "probability": 0.1652 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.0, + "end": 2486.0, + "probability": 0.0 + }, + { + "start": 2486.1, + "end": 2486.16, + "probability": 0.0561 + }, + { + "start": 2486.16, + "end": 2488.62, + "probability": 0.9884 + }, + { + "start": 2489.04, + "end": 2492.52, + "probability": 0.957 + }, + { + "start": 2492.9, + "end": 2495.5, + "probability": 0.762 + }, + { + "start": 2495.64, + "end": 2496.82, + "probability": 0.9225 + }, + { + "start": 2497.8, + "end": 2498.36, + "probability": 0.8393 + }, + { + "start": 2498.86, + "end": 2499.8, + "probability": 0.6403 + }, + { + "start": 2499.82, + "end": 2502.2, + "probability": 0.9746 + }, + { + "start": 2502.26, + "end": 2503.3, + "probability": 0.9932 + }, + { + "start": 2503.38, + "end": 2505.1, + "probability": 0.9299 + }, + { + "start": 2505.34, + "end": 2508.92, + "probability": 0.9896 + }, + { + "start": 2508.92, + "end": 2512.2, + "probability": 0.954 + }, + { + "start": 2512.7, + "end": 2518.06, + "probability": 0.9012 + }, + { + "start": 2518.52, + "end": 2518.8, + "probability": 0.0128 + }, + { + "start": 2519.27, + "end": 2519.86, + "probability": 0.4114 + }, + { + "start": 2519.86, + "end": 2521.13, + "probability": 0.5769 + }, + { + "start": 2521.2, + "end": 2522.56, + "probability": 0.8095 + }, + { + "start": 2522.56, + "end": 2524.06, + "probability": 0.9644 + }, + { + "start": 2524.06, + "end": 2524.62, + "probability": 0.0025 + }, + { + "start": 2526.96, + "end": 2531.86, + "probability": 0.0718 + }, + { + "start": 2536.56, + "end": 2539.0, + "probability": 0.0303 + }, + { + "start": 2539.0, + "end": 2539.56, + "probability": 0.1532 + }, + { + "start": 2539.58, + "end": 2542.28, + "probability": 0.0406 + }, + { + "start": 2544.27, + "end": 2545.32, + "probability": 0.182 + }, + { + "start": 2545.7, + "end": 2548.82, + "probability": 0.1338 + }, + { + "start": 2553.42, + "end": 2556.72, + "probability": 0.0903 + }, + { + "start": 2556.72, + "end": 2557.14, + "probability": 0.226 + }, + { + "start": 2557.56, + "end": 2559.42, + "probability": 0.0205 + }, + { + "start": 2559.7, + "end": 2562.88, + "probability": 0.1569 + }, + { + "start": 2562.88, + "end": 2563.18, + "probability": 0.0637 + }, + { + "start": 2563.18, + "end": 2563.18, + "probability": 0.0683 + }, + { + "start": 2563.18, + "end": 2563.24, + "probability": 0.1274 + }, + { + "start": 2563.44, + "end": 2566.28, + "probability": 0.0859 + }, + { + "start": 2566.78, + "end": 2571.72, + "probability": 0.2005 + }, + { + "start": 2572.1, + "end": 2572.1, + "probability": 0.0934 + }, + { + "start": 2572.1, + "end": 2572.32, + "probability": 0.47 + }, + { + "start": 2572.66, + "end": 2573.95, + "probability": 0.6675 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2606.0, + "end": 2606.0, + "probability": 0.0 + }, + { + "start": 2612.92, + "end": 2614.9, + "probability": 0.5676 + }, + { + "start": 2635.98, + "end": 2637.74, + "probability": 0.0871 + }, + { + "start": 2643.78, + "end": 2646.08, + "probability": 0.0426 + }, + { + "start": 2646.08, + "end": 2646.28, + "probability": 0.2759 + }, + { + "start": 2646.34, + "end": 2646.92, + "probability": 0.1706 + }, + { + "start": 2646.92, + "end": 2648.28, + "probability": 0.2581 + }, + { + "start": 2651.5, + "end": 2652.68, + "probability": 0.0296 + }, + { + "start": 2652.68, + "end": 2655.3, + "probability": 0.1643 + }, + { + "start": 2655.68, + "end": 2659.22, + "probability": 0.778 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.0, + "end": 2729.0, + "probability": 0.0 + }, + { + "start": 2729.42, + "end": 2731.88, + "probability": 0.5932 + }, + { + "start": 2731.94, + "end": 2732.48, + "probability": 0.7948 + }, + { + "start": 2733.44, + "end": 2733.54, + "probability": 0.1237 + }, + { + "start": 2733.74, + "end": 2738.46, + "probability": 0.7086 + }, + { + "start": 2739.08, + "end": 2742.36, + "probability": 0.7132 + }, + { + "start": 2742.98, + "end": 2743.3, + "probability": 0.264 + }, + { + "start": 2746.48, + "end": 2746.92, + "probability": 0.4673 + }, + { + "start": 2746.92, + "end": 2747.74, + "probability": 0.1271 + }, + { + "start": 2748.1, + "end": 2748.32, + "probability": 0.0922 + }, + { + "start": 2748.32, + "end": 2749.62, + "probability": 0.5747 + }, + { + "start": 2749.82, + "end": 2756.4, + "probability": 0.2016 + }, + { + "start": 2757.32, + "end": 2760.66, + "probability": 0.5855 + }, + { + "start": 2761.08, + "end": 2765.04, + "probability": 0.973 + }, + { + "start": 2765.34, + "end": 2767.04, + "probability": 0.9974 + }, + { + "start": 2767.14, + "end": 2768.0, + "probability": 0.8106 + }, + { + "start": 2768.8, + "end": 2773.14, + "probability": 0.9132 + }, + { + "start": 2773.9, + "end": 2776.78, + "probability": 0.8133 + }, + { + "start": 2776.82, + "end": 2777.34, + "probability": 0.6897 + }, + { + "start": 2778.74, + "end": 2783.36, + "probability": 0.0374 + }, + { + "start": 2784.3, + "end": 2785.26, + "probability": 0.0024 + }, + { + "start": 2785.96, + "end": 2785.98, + "probability": 0.0267 + }, + { + "start": 2785.98, + "end": 2785.98, + "probability": 0.0533 + }, + { + "start": 2785.98, + "end": 2785.98, + "probability": 0.3321 + }, + { + "start": 2785.98, + "end": 2788.86, + "probability": 0.3434 + }, + { + "start": 2789.82, + "end": 2792.0, + "probability": 0.0067 + }, + { + "start": 2797.04, + "end": 2803.0, + "probability": 0.0685 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0056 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.0, + "end": 2860.0, + "probability": 0.0 + }, + { + "start": 2860.64, + "end": 2861.14, + "probability": 0.0282 + }, + { + "start": 2861.14, + "end": 2864.34, + "probability": 0.2651 + }, + { + "start": 2864.64, + "end": 2865.94, + "probability": 0.3876 + }, + { + "start": 2866.5, + "end": 2866.56, + "probability": 0.1832 + }, + { + "start": 2866.56, + "end": 2868.24, + "probability": 0.439 + }, + { + "start": 2870.92, + "end": 2875.6, + "probability": 0.4515 + }, + { + "start": 2876.3, + "end": 2879.12, + "probability": 0.6189 + }, + { + "start": 2879.18, + "end": 2879.66, + "probability": 0.8437 + }, + { + "start": 2880.46, + "end": 2881.78, + "probability": 0.1457 + }, + { + "start": 2883.54, + "end": 2885.0, + "probability": 0.0262 + }, + { + "start": 2885.98, + "end": 2886.82, + "probability": 0.665 + }, + { + "start": 2887.02, + "end": 2891.02, + "probability": 0.9668 + }, + { + "start": 2891.46, + "end": 2893.74, + "probability": 0.8774 + }, + { + "start": 2894.26, + "end": 2896.62, + "probability": 0.8903 + }, + { + "start": 2896.78, + "end": 2899.08, + "probability": 0.9009 + }, + { + "start": 2899.8, + "end": 2902.64, + "probability": 0.9646 + }, + { + "start": 2902.92, + "end": 2906.84, + "probability": 0.997 + }, + { + "start": 2907.1, + "end": 2909.28, + "probability": 0.1729 + }, + { + "start": 2911.42, + "end": 2911.8, + "probability": 0.2412 + }, + { + "start": 2911.8, + "end": 2911.8, + "probability": 0.2266 + }, + { + "start": 2911.8, + "end": 2912.9, + "probability": 0.044 + }, + { + "start": 2912.9, + "end": 2917.47, + "probability": 0.7468 + }, + { + "start": 2917.8, + "end": 2923.1, + "probability": 0.9713 + }, + { + "start": 2923.6, + "end": 2926.4, + "probability": 0.9825 + }, + { + "start": 2926.54, + "end": 2929.94, + "probability": 0.9951 + }, + { + "start": 2930.1, + "end": 2932.18, + "probability": 0.8136 + }, + { + "start": 2932.46, + "end": 2934.2, + "probability": 0.9963 + }, + { + "start": 2934.26, + "end": 2936.4, + "probability": 0.9862 + }, + { + "start": 2936.82, + "end": 2938.88, + "probability": 0.0634 + }, + { + "start": 2939.42, + "end": 2939.44, + "probability": 0.0309 + }, + { + "start": 2939.44, + "end": 2942.05, + "probability": 0.4972 + }, + { + "start": 2942.86, + "end": 2942.94, + "probability": 0.0854 + }, + { + "start": 2942.94, + "end": 2947.3, + "probability": 0.967 + }, + { + "start": 2947.82, + "end": 2951.46, + "probability": 0.9517 + }, + { + "start": 2951.6, + "end": 2956.16, + "probability": 0.9951 + }, + { + "start": 2956.7, + "end": 2958.64, + "probability": 0.8877 + }, + { + "start": 2959.12, + "end": 2962.84, + "probability": 0.8535 + }, + { + "start": 2963.24, + "end": 2964.4, + "probability": 0.6884 + }, + { + "start": 2964.8, + "end": 2970.47, + "probability": 0.9961 + }, + { + "start": 2971.66, + "end": 2971.66, + "probability": 0.0835 + }, + { + "start": 2971.66, + "end": 2972.1, + "probability": 0.5768 + }, + { + "start": 2973.9, + "end": 2974.41, + "probability": 0.8493 + }, + { + "start": 2975.1, + "end": 2975.1, + "probability": 0.145 + }, + { + "start": 2975.76, + "end": 2978.8, + "probability": 0.739 + }, + { + "start": 2979.48, + "end": 2986.66, + "probability": 0.9919 + }, + { + "start": 2986.78, + "end": 2992.44, + "probability": 0.9949 + }, + { + "start": 2992.74, + "end": 2994.66, + "probability": 0.9927 + }, + { + "start": 2994.66, + "end": 3004.36, + "probability": 0.0815 + }, + { + "start": 3005.12, + "end": 3005.7, + "probability": 0.0077 + }, + { + "start": 3005.7, + "end": 3005.86, + "probability": 0.0466 + }, + { + "start": 3005.86, + "end": 3005.92, + "probability": 0.1173 + }, + { + "start": 3005.92, + "end": 3005.92, + "probability": 0.11 + }, + { + "start": 3005.92, + "end": 3005.92, + "probability": 0.0458 + }, + { + "start": 3005.92, + "end": 3006.16, + "probability": 0.5201 + }, + { + "start": 3006.42, + "end": 3012.14, + "probability": 0.8901 + }, + { + "start": 3012.64, + "end": 3014.04, + "probability": 0.6152 + }, + { + "start": 3016.14, + "end": 3016.66, + "probability": 0.276 + }, + { + "start": 3017.02, + "end": 3017.38, + "probability": 0.0271 + }, + { + "start": 3017.38, + "end": 3018.52, + "probability": 0.3253 + }, + { + "start": 3018.76, + "end": 3022.0, + "probability": 0.3746 + }, + { + "start": 3022.2, + "end": 3022.96, + "probability": 0.3941 + }, + { + "start": 3023.14, + "end": 3024.48, + "probability": 0.0652 + }, + { + "start": 3024.48, + "end": 3024.58, + "probability": 0.2107 + }, + { + "start": 3024.58, + "end": 3024.58, + "probability": 0.1909 + }, + { + "start": 3024.58, + "end": 3025.26, + "probability": 0.5407 + }, + { + "start": 3025.48, + "end": 3030.1, + "probability": 0.7954 + }, + { + "start": 3030.48, + "end": 3032.22, + "probability": 0.9001 + }, + { + "start": 3032.42, + "end": 3033.16, + "probability": 0.8064 + }, + { + "start": 3033.2, + "end": 3033.92, + "probability": 0.831 + }, + { + "start": 3034.06, + "end": 3039.42, + "probability": 0.6461 + }, + { + "start": 3039.52, + "end": 3042.1, + "probability": 0.9944 + }, + { + "start": 3042.46, + "end": 3043.18, + "probability": 0.0115 + }, + { + "start": 3048.28, + "end": 3048.28, + "probability": 0.0259 + }, + { + "start": 3048.28, + "end": 3048.36, + "probability": 0.033 + }, + { + "start": 3048.36, + "end": 3051.29, + "probability": 0.4188 + }, + { + "start": 3052.5, + "end": 3053.1, + "probability": 0.1777 + }, + { + "start": 3053.1, + "end": 3055.86, + "probability": 0.1587 + }, + { + "start": 3062.52, + "end": 3065.06, + "probability": 0.2899 + }, + { + "start": 3065.26, + "end": 3067.58, + "probability": 0.876 + }, + { + "start": 3067.76, + "end": 3073.54, + "probability": 0.0291 + }, + { + "start": 3073.54, + "end": 3073.62, + "probability": 0.1454 + }, + { + "start": 3073.62, + "end": 3077.45, + "probability": 0.083 + }, + { + "start": 3077.86, + "end": 3077.86, + "probability": 0.014 + }, + { + "start": 3078.16, + "end": 3079.6, + "probability": 0.0784 + }, + { + "start": 3079.62, + "end": 3081.38, + "probability": 0.2495 + }, + { + "start": 3081.76, + "end": 3084.8, + "probability": 0.1542 + }, + { + "start": 3085.48, + "end": 3085.8, + "probability": 0.1503 + }, + { + "start": 3085.81, + "end": 3088.26, + "probability": 0.135 + }, + { + "start": 3088.42, + "end": 3088.42, + "probability": 0.0161 + }, + { + "start": 3088.42, + "end": 3088.42, + "probability": 0.1784 + }, + { + "start": 3088.42, + "end": 3088.9, + "probability": 0.0602 + }, + { + "start": 3088.94, + "end": 3088.94, + "probability": 0.2648 + }, + { + "start": 3088.94, + "end": 3088.94, + "probability": 0.2067 + }, + { + "start": 3089.0, + "end": 3089.0, + "probability": 0.0 + }, + { + "start": 3089.0, + "end": 3089.0, + "probability": 0.0 + }, + { + "start": 3089.0, + "end": 3089.0, + "probability": 0.0 + }, + { + "start": 3089.0, + "end": 3089.0, + "probability": 0.0 + }, + { + "start": 3089.0, + "end": 3089.0, + "probability": 0.0 + }, + { + "start": 3089.0, + "end": 3089.0, + "probability": 0.0 + }, + { + "start": 3089.0, + "end": 3089.0, + "probability": 0.0 + }, + { + "start": 3089.0, + "end": 3089.0, + "probability": 0.0 + }, + { + "start": 3089.0, + "end": 3089.0, + "probability": 0.0 + }, + { + "start": 3089.0, + "end": 3089.0, + "probability": 0.0 + }, + { + "start": 3089.0, + "end": 3089.0, + "probability": 0.0 + }, + { + "start": 3089.0, + "end": 3089.0, + "probability": 0.0 + }, + { + "start": 3089.0, + "end": 3089.0, + "probability": 0.0 + }, + { + "start": 3089.0, + "end": 3089.0, + "probability": 0.0 + }, + { + "start": 3089.0, + "end": 3089.0, + "probability": 0.0 + }, + { + "start": 3089.56, + "end": 3091.62, + "probability": 0.7791 + }, + { + "start": 3091.7, + "end": 3092.5, + "probability": 0.1588 + }, + { + "start": 3092.5, + "end": 3096.22, + "probability": 0.985 + }, + { + "start": 3096.44, + "end": 3096.58, + "probability": 0.6799 + }, + { + "start": 3096.64, + "end": 3098.6, + "probability": 0.9354 + }, + { + "start": 3098.92, + "end": 3102.06, + "probability": 0.886 + }, + { + "start": 3102.22, + "end": 3106.64, + "probability": 0.9631 + }, + { + "start": 3107.18, + "end": 3108.7, + "probability": 0.6321 + }, + { + "start": 3111.94, + "end": 3112.84, + "probability": 0.0136 + }, + { + "start": 3117.72, + "end": 3118.9, + "probability": 0.3747 + }, + { + "start": 3118.9, + "end": 3121.59, + "probability": 0.5628 + }, + { + "start": 3122.76, + "end": 3123.32, + "probability": 0.0252 + }, + { + "start": 3123.84, + "end": 3125.39, + "probability": 0.3332 + }, + { + "start": 3125.86, + "end": 3126.78, + "probability": 0.894 + }, + { + "start": 3126.86, + "end": 3131.41, + "probability": 0.8905 + }, + { + "start": 3132.08, + "end": 3134.74, + "probability": 0.9418 + }, + { + "start": 3136.08, + "end": 3136.78, + "probability": 0.0619 + }, + { + "start": 3136.78, + "end": 3137.46, + "probability": 0.5462 + }, + { + "start": 3137.56, + "end": 3137.76, + "probability": 0.4782 + }, + { + "start": 3137.92, + "end": 3139.7, + "probability": 0.6399 + }, + { + "start": 3139.84, + "end": 3142.14, + "probability": 0.6779 + }, + { + "start": 3142.18, + "end": 3143.16, + "probability": 0.856 + }, + { + "start": 3143.24, + "end": 3143.94, + "probability": 0.9232 + }, + { + "start": 3143.96, + "end": 3146.6, + "probability": 0.8287 + }, + { + "start": 3146.62, + "end": 3149.24, + "probability": 0.6362 + }, + { + "start": 3149.54, + "end": 3150.24, + "probability": 0.7057 + }, + { + "start": 3150.26, + "end": 3151.5, + "probability": 0.9325 + }, + { + "start": 3151.56, + "end": 3152.48, + "probability": 0.9443 + }, + { + "start": 3152.6, + "end": 3152.8, + "probability": 0.1529 + }, + { + "start": 3152.98, + "end": 3155.78, + "probability": 0.7564 + }, + { + "start": 3156.54, + "end": 3158.32, + "probability": 0.1843 + }, + { + "start": 3159.18, + "end": 3159.18, + "probability": 0.0657 + }, + { + "start": 3159.18, + "end": 3159.18, + "probability": 0.4906 + }, + { + "start": 3159.18, + "end": 3159.18, + "probability": 0.5993 + }, + { + "start": 3159.18, + "end": 3159.18, + "probability": 0.4173 + }, + { + "start": 3159.18, + "end": 3159.66, + "probability": 0.3319 + }, + { + "start": 3159.66, + "end": 3160.68, + "probability": 0.1434 + }, + { + "start": 3160.76, + "end": 3162.86, + "probability": 0.6208 + }, + { + "start": 3163.0, + "end": 3164.0, + "probability": 0.5539 + }, + { + "start": 3164.28, + "end": 3164.54, + "probability": 0.3977 + }, + { + "start": 3166.52, + "end": 3169.38, + "probability": 0.1401 + }, + { + "start": 3172.2, + "end": 3172.58, + "probability": 0.3011 + }, + { + "start": 3172.58, + "end": 3174.0, + "probability": 0.7027 + }, + { + "start": 3174.44, + "end": 3179.04, + "probability": 0.6092 + }, + { + "start": 3179.06, + "end": 3183.22, + "probability": 0.78 + }, + { + "start": 3183.8, + "end": 3186.7, + "probability": 0.751 + }, + { + "start": 3188.2, + "end": 3189.04, + "probability": 0.7604 + }, + { + "start": 3194.66, + "end": 3196.76, + "probability": 0.7863 + }, + { + "start": 3196.86, + "end": 3198.06, + "probability": 0.6967 + }, + { + "start": 3198.56, + "end": 3206.94, + "probability": 0.9803 + }, + { + "start": 3207.5, + "end": 3210.16, + "probability": 0.9976 + }, + { + "start": 3210.24, + "end": 3211.58, + "probability": 0.9583 + }, + { + "start": 3212.08, + "end": 3218.26, + "probability": 0.9967 + }, + { + "start": 3218.66, + "end": 3222.16, + "probability": 0.7179 + }, + { + "start": 3222.58, + "end": 3223.24, + "probability": 0.7331 + }, + { + "start": 3223.28, + "end": 3226.88, + "probability": 0.9599 + }, + { + "start": 3227.32, + "end": 3230.54, + "probability": 0.8586 + }, + { + "start": 3230.92, + "end": 3233.34, + "probability": 0.9077 + }, + { + "start": 3233.96, + "end": 3236.02, + "probability": 0.9963 + }, + { + "start": 3236.82, + "end": 3238.16, + "probability": 0.5894 + }, + { + "start": 3238.32, + "end": 3241.62, + "probability": 0.9946 + }, + { + "start": 3241.62, + "end": 3245.68, + "probability": 0.9191 + }, + { + "start": 3246.46, + "end": 3251.72, + "probability": 0.9927 + }, + { + "start": 3252.16, + "end": 3254.23, + "probability": 0.7556 + }, + { + "start": 3254.6, + "end": 3255.66, + "probability": 0.9109 + }, + { + "start": 3256.14, + "end": 3259.44, + "probability": 0.9943 + }, + { + "start": 3259.98, + "end": 3263.22, + "probability": 0.976 + }, + { + "start": 3264.0, + "end": 3266.6, + "probability": 0.9601 + }, + { + "start": 3267.1, + "end": 3272.66, + "probability": 0.9981 + }, + { + "start": 3273.4, + "end": 3274.68, + "probability": 0.9857 + }, + { + "start": 3274.72, + "end": 3275.6, + "probability": 0.8482 + }, + { + "start": 3275.68, + "end": 3277.86, + "probability": 0.8145 + }, + { + "start": 3278.16, + "end": 3280.54, + "probability": 0.9689 + }, + { + "start": 3280.64, + "end": 3282.03, + "probability": 0.9678 + }, + { + "start": 3282.88, + "end": 3285.42, + "probability": 0.9595 + }, + { + "start": 3286.2, + "end": 3288.32, + "probability": 0.9863 + }, + { + "start": 3289.02, + "end": 3290.04, + "probability": 0.7783 + }, + { + "start": 3290.72, + "end": 3293.32, + "probability": 0.9043 + }, + { + "start": 3293.78, + "end": 3294.23, + "probability": 0.9863 + }, + { + "start": 3294.5, + "end": 3298.1, + "probability": 0.9551 + }, + { + "start": 3299.38, + "end": 3300.86, + "probability": 0.9338 + }, + { + "start": 3300.96, + "end": 3301.68, + "probability": 0.7389 + }, + { + "start": 3301.76, + "end": 3302.88, + "probability": 0.9805 + }, + { + "start": 3302.88, + "end": 3304.34, + "probability": 0.9868 + }, + { + "start": 3304.5, + "end": 3305.3, + "probability": 0.8157 + }, + { + "start": 3305.36, + "end": 3307.62, + "probability": 0.7955 + }, + { + "start": 3307.7, + "end": 3308.98, + "probability": 0.941 + }, + { + "start": 3309.56, + "end": 3314.74, + "probability": 0.981 + }, + { + "start": 3315.08, + "end": 3315.72, + "probability": 0.8445 + }, + { + "start": 3315.82, + "end": 3316.52, + "probability": 0.6827 + }, + { + "start": 3316.68, + "end": 3317.5, + "probability": 0.8528 + }, + { + "start": 3317.92, + "end": 3321.84, + "probability": 0.9798 + }, + { + "start": 3322.36, + "end": 3325.67, + "probability": 0.9939 + }, + { + "start": 3326.06, + "end": 3329.92, + "probability": 0.9925 + }, + { + "start": 3330.14, + "end": 3330.64, + "probability": 0.7967 + }, + { + "start": 3331.42, + "end": 3333.44, + "probability": 0.831 + }, + { + "start": 3334.6, + "end": 3340.68, + "probability": 0.9377 + }, + { + "start": 3341.56, + "end": 3343.04, + "probability": 0.7228 + }, + { + "start": 3343.64, + "end": 3345.89, + "probability": 0.728 + }, + { + "start": 3346.14, + "end": 3349.78, + "probability": 0.9673 + }, + { + "start": 3349.78, + "end": 3354.52, + "probability": 0.9676 + }, + { + "start": 3355.44, + "end": 3360.28, + "probability": 0.9788 + }, + { + "start": 3360.82, + "end": 3365.56, + "probability": 0.9974 + }, + { + "start": 3365.56, + "end": 3371.4, + "probability": 0.9906 + }, + { + "start": 3371.76, + "end": 3374.32, + "probability": 0.9916 + }, + { + "start": 3374.42, + "end": 3375.92, + "probability": 0.9316 + }, + { + "start": 3376.26, + "end": 3377.02, + "probability": 0.8587 + }, + { + "start": 3377.38, + "end": 3378.62, + "probability": 0.8033 + }, + { + "start": 3379.4, + "end": 3384.34, + "probability": 0.9203 + }, + { + "start": 3385.06, + "end": 3386.2, + "probability": 0.8825 + }, + { + "start": 3387.04, + "end": 3390.32, + "probability": 0.8487 + }, + { + "start": 3390.54, + "end": 3391.12, + "probability": 0.5283 + }, + { + "start": 3391.14, + "end": 3393.0, + "probability": 0.9392 + }, + { + "start": 3393.08, + "end": 3393.96, + "probability": 0.9257 + }, + { + "start": 3394.02, + "end": 3398.84, + "probability": 0.9658 + }, + { + "start": 3399.26, + "end": 3399.38, + "probability": 0.1703 + }, + { + "start": 3399.38, + "end": 3402.08, + "probability": 0.8955 + }, + { + "start": 3402.26, + "end": 3407.23, + "probability": 0.9026 + }, + { + "start": 3407.82, + "end": 3411.82, + "probability": 0.9907 + }, + { + "start": 3411.82, + "end": 3415.28, + "probability": 0.9148 + }, + { + "start": 3416.1, + "end": 3419.75, + "probability": 0.941 + }, + { + "start": 3420.38, + "end": 3425.98, + "probability": 0.9972 + }, + { + "start": 3426.1, + "end": 3426.26, + "probability": 0.135 + }, + { + "start": 3427.14, + "end": 3427.4, + "probability": 0.0688 + }, + { + "start": 3427.4, + "end": 3428.62, + "probability": 0.2437 + }, + { + "start": 3428.72, + "end": 3430.18, + "probability": 0.9031 + }, + { + "start": 3430.32, + "end": 3431.04, + "probability": 0.6029 + }, + { + "start": 3431.12, + "end": 3435.16, + "probability": 0.7907 + }, + { + "start": 3435.16, + "end": 3435.23, + "probability": 0.5318 + }, + { + "start": 3435.82, + "end": 3435.82, + "probability": 0.5851 + }, + { + "start": 3435.82, + "end": 3435.82, + "probability": 0.4886 + }, + { + "start": 3435.82, + "end": 3435.82, + "probability": 0.8138 + }, + { + "start": 3435.82, + "end": 3438.3, + "probability": 0.2868 + }, + { + "start": 3438.38, + "end": 3438.64, + "probability": 0.764 + }, + { + "start": 3438.66, + "end": 3440.32, + "probability": 0.693 + }, + { + "start": 3440.42, + "end": 3441.49, + "probability": 0.9001 + }, + { + "start": 3441.84, + "end": 3443.02, + "probability": 0.5039 + }, + { + "start": 3443.04, + "end": 3443.98, + "probability": 0.2481 + }, + { + "start": 3444.06, + "end": 3445.56, + "probability": 0.4914 + }, + { + "start": 3445.64, + "end": 3448.32, + "probability": 0.4676 + }, + { + "start": 3448.48, + "end": 3453.0, + "probability": 0.2353 + }, + { + "start": 3453.7, + "end": 3453.8, + "probability": 0.0323 + }, + { + "start": 3453.8, + "end": 3453.8, + "probability": 0.0982 + }, + { + "start": 3453.8, + "end": 3454.76, + "probability": 0.6724 + }, + { + "start": 3454.98, + "end": 3457.08, + "probability": 0.9161 + }, + { + "start": 3457.14, + "end": 3457.56, + "probability": 0.6119 + }, + { + "start": 3457.6, + "end": 3459.76, + "probability": 0.9936 + }, + { + "start": 3459.88, + "end": 3462.98, + "probability": 0.9556 + }, + { + "start": 3462.98, + "end": 3465.92, + "probability": 0.9979 + }, + { + "start": 3466.04, + "end": 3467.3, + "probability": 0.3477 + }, + { + "start": 3467.42, + "end": 3472.14, + "probability": 0.7666 + }, + { + "start": 3472.42, + "end": 3475.4, + "probability": 0.8336 + }, + { + "start": 3475.52, + "end": 3477.64, + "probability": 0.7826 + }, + { + "start": 3478.0, + "end": 3481.08, + "probability": 0.3454 + }, + { + "start": 3484.76, + "end": 3486.14, + "probability": 0.037 + }, + { + "start": 3486.88, + "end": 3490.68, + "probability": 0.7048 + }, + { + "start": 3491.48, + "end": 3496.78, + "probability": 0.8306 + }, + { + "start": 3497.64, + "end": 3498.9, + "probability": 0.9506 + }, + { + "start": 3499.52, + "end": 3503.3, + "probability": 0.9643 + }, + { + "start": 3505.34, + "end": 3507.98, + "probability": 0.9081 + }, + { + "start": 3508.8, + "end": 3509.1, + "probability": 0.7319 + }, + { + "start": 3509.86, + "end": 3510.74, + "probability": 0.5098 + }, + { + "start": 3511.34, + "end": 3514.58, + "probability": 0.9175 + }, + { + "start": 3515.5, + "end": 3517.18, + "probability": 0.6885 + }, + { + "start": 3517.7, + "end": 3519.92, + "probability": 0.9069 + }, + { + "start": 3520.64, + "end": 3522.32, + "probability": 0.9453 + }, + { + "start": 3523.0, + "end": 3524.94, + "probability": 0.9734 + }, + { + "start": 3525.66, + "end": 3525.98, + "probability": 0.9915 + }, + { + "start": 3526.5, + "end": 3530.34, + "probability": 0.9868 + }, + { + "start": 3531.34, + "end": 3533.36, + "probability": 0.7738 + }, + { + "start": 3533.84, + "end": 3537.16, + "probability": 0.7586 + }, + { + "start": 3537.46, + "end": 3540.58, + "probability": 0.9393 + }, + { + "start": 3540.96, + "end": 3543.78, + "probability": 0.9302 + }, + { + "start": 3544.48, + "end": 3548.66, + "probability": 0.8044 + }, + { + "start": 3549.54, + "end": 3549.92, + "probability": 0.9894 + }, + { + "start": 3550.48, + "end": 3554.84, + "probability": 0.9669 + }, + { + "start": 3555.9, + "end": 3558.2, + "probability": 0.8905 + }, + { + "start": 3559.48, + "end": 3559.84, + "probability": 0.7652 + }, + { + "start": 3560.78, + "end": 3562.04, + "probability": 0.4176 + }, + { + "start": 3562.86, + "end": 3563.28, + "probability": 0.9647 + }, + { + "start": 3563.86, + "end": 3564.64, + "probability": 0.9096 + }, + { + "start": 3565.72, + "end": 3567.62, + "probability": 0.8125 + }, + { + "start": 3568.36, + "end": 3570.66, + "probability": 0.9876 + }, + { + "start": 3571.34, + "end": 3573.52, + "probability": 0.886 + }, + { + "start": 3574.26, + "end": 3574.72, + "probability": 0.9823 + }, + { + "start": 3575.28, + "end": 3576.22, + "probability": 0.9282 + }, + { + "start": 3577.04, + "end": 3579.26, + "probability": 0.9924 + }, + { + "start": 3579.96, + "end": 3583.36, + "probability": 0.9788 + }, + { + "start": 3583.92, + "end": 3584.86, + "probability": 0.8595 + }, + { + "start": 3586.18, + "end": 3590.62, + "probability": 0.6974 + }, + { + "start": 3591.6, + "end": 3591.88, + "probability": 0.7091 + }, + { + "start": 3592.52, + "end": 3593.56, + "probability": 0.8678 + }, + { + "start": 3594.58, + "end": 3596.7, + "probability": 0.9857 + }, + { + "start": 3597.58, + "end": 3599.6, + "probability": 0.9944 + }, + { + "start": 3600.3, + "end": 3600.82, + "probability": 0.9521 + }, + { + "start": 3601.36, + "end": 3602.32, + "probability": 0.8924 + }, + { + "start": 3607.14, + "end": 3607.86, + "probability": 0.807 + }, + { + "start": 3608.68, + "end": 3609.68, + "probability": 0.6469 + }, + { + "start": 3611.38, + "end": 3612.62, + "probability": 0.8478 + }, + { + "start": 3613.18, + "end": 3613.98, + "probability": 0.6519 + }, + { + "start": 3614.9, + "end": 3617.06, + "probability": 0.8848 + }, + { + "start": 3618.2, + "end": 3622.56, + "probability": 0.89 + }, + { + "start": 3623.26, + "end": 3623.72, + "probability": 0.9764 + }, + { + "start": 3624.5, + "end": 3625.5, + "probability": 0.9642 + }, + { + "start": 3626.26, + "end": 3626.76, + "probability": 0.9665 + }, + { + "start": 3627.3, + "end": 3628.3, + "probability": 0.8719 + }, + { + "start": 3630.56, + "end": 3632.78, + "probability": 0.8661 + }, + { + "start": 3633.66, + "end": 3636.24, + "probability": 0.8101 + }, + { + "start": 3639.62, + "end": 3640.54, + "probability": 0.7643 + }, + { + "start": 3641.2, + "end": 3642.48, + "probability": 0.7678 + }, + { + "start": 3643.16, + "end": 3645.12, + "probability": 0.9341 + }, + { + "start": 3646.56, + "end": 3646.88, + "probability": 0.957 + }, + { + "start": 3647.62, + "end": 3648.68, + "probability": 0.9625 + }, + { + "start": 3650.12, + "end": 3653.36, + "probability": 0.7775 + }, + { + "start": 3653.92, + "end": 3654.92, + "probability": 0.7907 + }, + { + "start": 3658.12, + "end": 3660.46, + "probability": 0.8336 + }, + { + "start": 3661.54, + "end": 3662.24, + "probability": 0.9842 + }, + { + "start": 3662.84, + "end": 3663.86, + "probability": 0.9518 + }, + { + "start": 3664.42, + "end": 3665.02, + "probability": 0.9591 + }, + { + "start": 3665.7, + "end": 3666.56, + "probability": 0.7541 + }, + { + "start": 3667.44, + "end": 3669.24, + "probability": 0.787 + }, + { + "start": 3670.82, + "end": 3673.16, + "probability": 0.7448 + }, + { + "start": 3673.84, + "end": 3674.5, + "probability": 0.9468 + }, + { + "start": 3675.38, + "end": 3677.22, + "probability": 0.9712 + }, + { + "start": 3679.32, + "end": 3681.54, + "probability": 0.8386 + }, + { + "start": 3682.5, + "end": 3684.4, + "probability": 0.9331 + }, + { + "start": 3685.78, + "end": 3688.92, + "probability": 0.8575 + }, + { + "start": 3689.74, + "end": 3691.94, + "probability": 0.9064 + }, + { + "start": 3692.62, + "end": 3693.06, + "probability": 0.9873 + }, + { + "start": 3695.48, + "end": 3696.34, + "probability": 0.8907 + }, + { + "start": 3697.3, + "end": 3699.04, + "probability": 0.6884 + }, + { + "start": 3699.82, + "end": 3700.14, + "probability": 0.9009 + }, + { + "start": 3700.82, + "end": 3702.0, + "probability": 0.9831 + }, + { + "start": 3702.6, + "end": 3704.74, + "probability": 0.9394 + }, + { + "start": 3705.56, + "end": 3707.82, + "probability": 0.9822 + }, + { + "start": 3710.54, + "end": 3712.56, + "probability": 0.8739 + }, + { + "start": 3713.82, + "end": 3716.38, + "probability": 0.8309 + }, + { + "start": 3716.9, + "end": 3718.74, + "probability": 0.9902 + }, + { + "start": 3720.18, + "end": 3723.12, + "probability": 0.8874 + }, + { + "start": 3723.66, + "end": 3729.04, + "probability": 0.8557 + }, + { + "start": 3729.94, + "end": 3732.52, + "probability": 0.9864 + }, + { + "start": 3733.34, + "end": 3735.84, + "probability": 0.9916 + }, + { + "start": 3738.64, + "end": 3744.28, + "probability": 0.74 + }, + { + "start": 3745.72, + "end": 3747.78, + "probability": 0.7531 + }, + { + "start": 3748.34, + "end": 3749.14, + "probability": 0.8911 + }, + { + "start": 3750.12, + "end": 3750.42, + "probability": 0.7233 + }, + { + "start": 3751.08, + "end": 3752.12, + "probability": 0.6497 + }, + { + "start": 3753.96, + "end": 3758.02, + "probability": 0.8026 + }, + { + "start": 3758.72, + "end": 3760.54, + "probability": 0.9081 + }, + { + "start": 3761.72, + "end": 3765.48, + "probability": 0.9765 + }, + { + "start": 3766.28, + "end": 3766.7, + "probability": 0.9631 + }, + { + "start": 3767.74, + "end": 3768.5, + "probability": 0.7268 + }, + { + "start": 3773.96, + "end": 3775.0, + "probability": 0.6546 + }, + { + "start": 3776.26, + "end": 3776.54, + "probability": 0.7373 + }, + { + "start": 3777.5, + "end": 3777.98, + "probability": 0.8342 + }, + { + "start": 3779.2, + "end": 3781.64, + "probability": 0.9382 + }, + { + "start": 3782.3, + "end": 3784.5, + "probability": 0.9653 + }, + { + "start": 3787.04, + "end": 3787.86, + "probability": 0.886 + }, + { + "start": 3788.4, + "end": 3789.54, + "probability": 0.9174 + }, + { + "start": 3790.48, + "end": 3790.92, + "probability": 0.9873 + }, + { + "start": 3791.46, + "end": 3793.02, + "probability": 0.9407 + }, + { + "start": 3793.8, + "end": 3794.26, + "probability": 0.9878 + }, + { + "start": 3795.46, + "end": 3800.54, + "probability": 0.95 + }, + { + "start": 3801.46, + "end": 3801.98, + "probability": 0.9888 + }, + { + "start": 3802.68, + "end": 3803.68, + "probability": 0.9021 + }, + { + "start": 3804.52, + "end": 3805.04, + "probability": 0.5784 + }, + { + "start": 3805.78, + "end": 3806.84, + "probability": 0.8218 + }, + { + "start": 3808.2, + "end": 3813.18, + "probability": 0.901 + }, + { + "start": 3814.2, + "end": 3815.2, + "probability": 0.5381 + }, + { + "start": 3816.0, + "end": 3816.28, + "probability": 0.8857 + }, + { + "start": 3817.06, + "end": 3818.0, + "probability": 0.8184 + }, + { + "start": 3819.66, + "end": 3819.88, + "probability": 0.5726 + }, + { + "start": 3823.12, + "end": 3824.16, + "probability": 0.5194 + }, + { + "start": 3825.06, + "end": 3828.66, + "probability": 0.869 + }, + { + "start": 3829.18, + "end": 3830.28, + "probability": 0.8028 + }, + { + "start": 3831.36, + "end": 3831.74, + "probability": 0.8053 + }, + { + "start": 3832.3, + "end": 3833.38, + "probability": 0.9381 + }, + { + "start": 3834.26, + "end": 3836.56, + "probability": 0.9399 + }, + { + "start": 3837.28, + "end": 3839.3, + "probability": 0.9202 + }, + { + "start": 3842.7, + "end": 3844.78, + "probability": 0.8732 + }, + { + "start": 3846.82, + "end": 3849.42, + "probability": 0.823 + }, + { + "start": 3850.7, + "end": 3850.9, + "probability": 0.5456 + }, + { + "start": 3851.64, + "end": 3852.44, + "probability": 0.7456 + }, + { + "start": 3853.4, + "end": 3853.72, + "probability": 0.9785 + }, + { + "start": 3854.32, + "end": 3855.6, + "probability": 0.8641 + }, + { + "start": 3861.1, + "end": 3862.29, + "probability": 0.6721 + }, + { + "start": 3863.14, + "end": 3863.48, + "probability": 0.9614 + }, + { + "start": 3864.34, + "end": 3865.18, + "probability": 0.8574 + }, + { + "start": 3865.74, + "end": 3866.18, + "probability": 0.8853 + }, + { + "start": 3866.8, + "end": 3867.84, + "probability": 0.9617 + }, + { + "start": 3868.56, + "end": 3870.78, + "probability": 0.9827 + }, + { + "start": 3872.18, + "end": 3874.84, + "probability": 0.9598 + }, + { + "start": 3875.76, + "end": 3878.28, + "probability": 0.9881 + }, + { + "start": 3880.17, + "end": 3883.04, + "probability": 0.9419 + }, + { + "start": 3885.46, + "end": 3885.82, + "probability": 0.8811 + }, + { + "start": 3886.5, + "end": 3888.3, + "probability": 0.9393 + }, + { + "start": 3889.64, + "end": 3890.54, + "probability": 0.5965 + }, + { + "start": 3891.64, + "end": 3894.32, + "probability": 0.8212 + }, + { + "start": 3896.5, + "end": 3898.98, + "probability": 0.6626 + }, + { + "start": 3899.94, + "end": 3901.82, + "probability": 0.9511 + }, + { + "start": 3902.8, + "end": 3903.1, + "probability": 0.8101 + }, + { + "start": 3903.64, + "end": 3904.58, + "probability": 0.9464 + }, + { + "start": 3905.82, + "end": 3907.82, + "probability": 0.9302 + }, + { + "start": 3908.4, + "end": 3911.16, + "probability": 0.9563 + }, + { + "start": 3912.18, + "end": 3912.52, + "probability": 0.9507 + }, + { + "start": 3913.32, + "end": 3914.62, + "probability": 0.7052 + }, + { + "start": 3915.44, + "end": 3915.84, + "probability": 0.9934 + }, + { + "start": 3921.32, + "end": 3922.16, + "probability": 0.6094 + }, + { + "start": 3922.3, + "end": 3926.46, + "probability": 0.982 + }, + { + "start": 3926.58, + "end": 3928.58, + "probability": 0.7858 + }, + { + "start": 3928.64, + "end": 3929.88, + "probability": 0.782 + }, + { + "start": 3930.22, + "end": 3933.08, + "probability": 0.2684 + }, + { + "start": 3934.34, + "end": 3935.22, + "probability": 0.9861 + }, + { + "start": 3937.74, + "end": 3938.82, + "probability": 0.7416 + }, + { + "start": 3939.88, + "end": 3940.5, + "probability": 0.8902 + }, + { + "start": 3941.24, + "end": 3942.08, + "probability": 0.8182 + }, + { + "start": 3943.32, + "end": 3944.02, + "probability": 0.9921 + }, + { + "start": 3944.8, + "end": 3945.76, + "probability": 0.9679 + }, + { + "start": 3946.66, + "end": 3947.58, + "probability": 0.9887 + }, + { + "start": 3948.38, + "end": 3949.28, + "probability": 0.9251 + }, + { + "start": 3950.5, + "end": 3951.36, + "probability": 0.9938 + }, + { + "start": 3952.34, + "end": 3953.3, + "probability": 0.9084 + }, + { + "start": 3954.26, + "end": 3955.48, + "probability": 0.5253 + }, + { + "start": 3957.86, + "end": 3958.92, + "probability": 0.9661 + }, + { + "start": 3960.82, + "end": 3963.14, + "probability": 0.9649 + }, + { + "start": 3964.84, + "end": 3967.06, + "probability": 0.5187 + }, + { + "start": 3968.98, + "end": 3970.6, + "probability": 0.9631 + }, + { + "start": 3971.28, + "end": 3971.98, + "probability": 0.7444 + }, + { + "start": 3973.76, + "end": 3976.06, + "probability": 0.2213 + }, + { + "start": 3976.06, + "end": 3977.18, + "probability": 0.127 + }, + { + "start": 3977.88, + "end": 3979.52, + "probability": 0.1515 + }, + { + "start": 3983.06, + "end": 3986.36, + "probability": 0.7851 + }, + { + "start": 3987.5, + "end": 3990.9, + "probability": 0.4241 + }, + { + "start": 3992.0, + "end": 3993.36, + "probability": 0.7396 + }, + { + "start": 3994.78, + "end": 3995.98, + "probability": 0.8867 + }, + { + "start": 3997.38, + "end": 3999.68, + "probability": 0.8445 + }, + { + "start": 4000.98, + "end": 4001.78, + "probability": 0.8328 + }, + { + "start": 4004.64, + "end": 4005.62, + "probability": 0.7101 + }, + { + "start": 4006.76, + "end": 4008.16, + "probability": 0.8459 + }, + { + "start": 4009.4, + "end": 4010.42, + "probability": 0.7212 + }, + { + "start": 4011.82, + "end": 4013.28, + "probability": 0.9262 + }, + { + "start": 4016.1, + "end": 4017.0, + "probability": 0.7456 + }, + { + "start": 4018.08, + "end": 4019.7, + "probability": 0.8773 + }, + { + "start": 4020.36, + "end": 4021.36, + "probability": 0.8293 + }, + { + "start": 4023.22, + "end": 4024.02, + "probability": 0.9242 + }, + { + "start": 4024.68, + "end": 4025.54, + "probability": 0.9127 + }, + { + "start": 4027.3, + "end": 4027.76, + "probability": 0.894 + }, + { + "start": 4029.48, + "end": 4030.32, + "probability": 0.8659 + }, + { + "start": 4031.08, + "end": 4032.62, + "probability": 0.9778 + }, + { + "start": 4033.16, + "end": 4034.64, + "probability": 0.7438 + }, + { + "start": 4034.78, + "end": 4041.64, + "probability": 0.9639 + }, + { + "start": 4043.12, + "end": 4044.5, + "probability": 0.5354 + }, + { + "start": 4045.48, + "end": 4048.58, + "probability": 0.9526 + }, + { + "start": 4051.12, + "end": 4055.3, + "probability": 0.9665 + }, + { + "start": 4058.7, + "end": 4060.16, + "probability": 0.1064 + }, + { + "start": 4063.34, + "end": 4066.36, + "probability": 0.2428 + }, + { + "start": 4070.6, + "end": 4073.38, + "probability": 0.097 + }, + { + "start": 4073.38, + "end": 4074.62, + "probability": 0.3151 + }, + { + "start": 4074.62, + "end": 4077.04, + "probability": 0.0517 + }, + { + "start": 4078.42, + "end": 4080.24, + "probability": 0.2808 + }, + { + "start": 4081.8, + "end": 4082.38, + "probability": 0.0507 + }, + { + "start": 4082.98, + "end": 4083.66, + "probability": 0.1827 + }, + { + "start": 4086.26, + "end": 4088.08, + "probability": 0.1011 + }, + { + "start": 4088.4, + "end": 4091.62, + "probability": 0.0497 + }, + { + "start": 4095.37, + "end": 4097.92, + "probability": 0.0313 + }, + { + "start": 4098.85, + "end": 4101.24, + "probability": 0.0274 + }, + { + "start": 4102.24, + "end": 4103.2, + "probability": 0.043 + }, + { + "start": 4103.2, + "end": 4104.0, + "probability": 0.0626 + }, + { + "start": 4107.32, + "end": 4109.68, + "probability": 0.1222 + }, + { + "start": 4109.88, + "end": 4110.64, + "probability": 0.2642 + }, + { + "start": 4110.64, + "end": 4110.96, + "probability": 0.0144 + }, + { + "start": 4110.96, + "end": 4110.96, + "probability": 0.1714 + }, + { + "start": 4110.96, + "end": 4110.96, + "probability": 0.0614 + }, + { + "start": 4110.96, + "end": 4110.98, + "probability": 0.0707 + }, + { + "start": 4111.0, + "end": 4111.0, + "probability": 0.0 + }, + { + "start": 4111.0, + "end": 4111.0, + "probability": 0.0 + }, + { + "start": 4111.0, + "end": 4111.0, + "probability": 0.0 + }, + { + "start": 4111.0, + "end": 4111.0, + "probability": 0.0 + }, + { + "start": 4111.0, + "end": 4111.0, + "probability": 0.0 + }, + { + "start": 4114.92, + "end": 4115.42, + "probability": 0.0328 + }, + { + "start": 4119.66, + "end": 4119.66, + "probability": 0.0293 + }, + { + "start": 4119.66, + "end": 4120.92, + "probability": 0.1971 + }, + { + "start": 4121.2, + "end": 4121.3, + "probability": 0.6133 + }, + { + "start": 4121.3, + "end": 4122.54, + "probability": 0.1216 + }, + { + "start": 4124.26, + "end": 4125.28, + "probability": 0.2843 + }, + { + "start": 4125.64, + "end": 4126.38, + "probability": 0.1565 + }, + { + "start": 4127.16, + "end": 4127.74, + "probability": 0.0719 + }, + { + "start": 4130.08, + "end": 4132.74, + "probability": 0.8386 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.4, + "end": 4232.5, + "probability": 0.0214 + }, + { + "start": 4234.13, + "end": 4237.14, + "probability": 0.4215 + }, + { + "start": 4237.76, + "end": 4239.88, + "probability": 0.9972 + }, + { + "start": 4240.04, + "end": 4241.16, + "probability": 0.8002 + }, + { + "start": 4241.42, + "end": 4242.18, + "probability": 0.7102 + }, + { + "start": 4243.28, + "end": 4243.7, + "probability": 0.5009 + }, + { + "start": 4243.8, + "end": 4246.04, + "probability": 0.3471 + }, + { + "start": 4246.34, + "end": 4247.78, + "probability": 0.8597 + }, + { + "start": 4248.0, + "end": 4249.9, + "probability": 0.5075 + }, + { + "start": 4252.12, + "end": 4253.24, + "probability": 0.4893 + }, + { + "start": 4253.56, + "end": 4258.7, + "probability": 0.7463 + }, + { + "start": 4258.94, + "end": 4260.86, + "probability": 0.9019 + }, + { + "start": 4261.06, + "end": 4262.55, + "probability": 0.7568 + }, + { + "start": 4263.14, + "end": 4264.46, + "probability": 0.4108 + }, + { + "start": 4264.98, + "end": 4265.0, + "probability": 0.4599 + }, + { + "start": 4265.0, + "end": 4268.34, + "probability": 0.2637 + }, + { + "start": 4268.34, + "end": 4269.86, + "probability": 0.8503 + }, + { + "start": 4270.12, + "end": 4271.28, + "probability": 0.6871 + }, + { + "start": 4271.7, + "end": 4273.72, + "probability": 0.6787 + }, + { + "start": 4274.98, + "end": 4275.3, + "probability": 0.169 + }, + { + "start": 4275.94, + "end": 4276.32, + "probability": 0.6964 + }, + { + "start": 4279.42, + "end": 4280.62, + "probability": 0.7304 + }, + { + "start": 4280.68, + "end": 4281.3, + "probability": 0.7188 + }, + { + "start": 4281.6, + "end": 4282.18, + "probability": 0.4039 + }, + { + "start": 4282.18, + "end": 4282.76, + "probability": 0.7407 + }, + { + "start": 4282.9, + "end": 4285.24, + "probability": 0.9966 + }, + { + "start": 4287.22, + "end": 4290.22, + "probability": 0.9586 + }, + { + "start": 4290.62, + "end": 4293.62, + "probability": 0.801 + }, + { + "start": 4293.92, + "end": 4295.86, + "probability": 0.8251 + }, + { + "start": 4295.92, + "end": 4297.84, + "probability": 0.9038 + }, + { + "start": 4299.26, + "end": 4301.76, + "probability": 0.9495 + }, + { + "start": 4301.86, + "end": 4303.24, + "probability": 0.9413 + }, + { + "start": 4303.34, + "end": 4304.42, + "probability": 0.9863 + }, + { + "start": 4304.54, + "end": 4305.46, + "probability": 0.898 + }, + { + "start": 4306.14, + "end": 4307.52, + "probability": 0.9399 + }, + { + "start": 4308.28, + "end": 4310.38, + "probability": 0.8211 + }, + { + "start": 4311.64, + "end": 4316.8, + "probability": 0.9077 + }, + { + "start": 4317.46, + "end": 4320.58, + "probability": 0.9949 + }, + { + "start": 4321.08, + "end": 4322.52, + "probability": 0.9847 + }, + { + "start": 4322.78, + "end": 4324.22, + "probability": 0.6933 + }, + { + "start": 4324.26, + "end": 4327.3, + "probability": 0.8433 + }, + { + "start": 4327.74, + "end": 4329.4, + "probability": 0.7348 + }, + { + "start": 4330.9, + "end": 4334.38, + "probability": 0.994 + }, + { + "start": 4334.64, + "end": 4337.0, + "probability": 0.9601 + }, + { + "start": 4337.58, + "end": 4338.5, + "probability": 0.869 + }, + { + "start": 4338.5, + "end": 4339.22, + "probability": 0.6346 + }, + { + "start": 4339.28, + "end": 4339.88, + "probability": 0.8056 + }, + { + "start": 4340.08, + "end": 4343.58, + "probability": 0.8954 + }, + { + "start": 4343.78, + "end": 4344.88, + "probability": 0.9516 + }, + { + "start": 4345.44, + "end": 4346.72, + "probability": 0.9284 + }, + { + "start": 4346.86, + "end": 4352.58, + "probability": 0.994 + }, + { + "start": 4352.82, + "end": 4353.7, + "probability": 0.9323 + }, + { + "start": 4353.84, + "end": 4357.52, + "probability": 0.955 + }, + { + "start": 4359.76, + "end": 4361.9, + "probability": 0.9371 + }, + { + "start": 4362.28, + "end": 4364.64, + "probability": 0.8571 + }, + { + "start": 4365.02, + "end": 4367.16, + "probability": 0.9716 + }, + { + "start": 4367.82, + "end": 4370.32, + "probability": 0.9594 + }, + { + "start": 4371.3, + "end": 4374.08, + "probability": 0.739 + }, + { + "start": 4374.84, + "end": 4377.42, + "probability": 0.8375 + }, + { + "start": 4377.52, + "end": 4381.86, + "probability": 0.8669 + }, + { + "start": 4383.04, + "end": 4386.04, + "probability": 0.8965 + }, + { + "start": 4386.72, + "end": 4387.16, + "probability": 0.5741 + }, + { + "start": 4387.26, + "end": 4387.88, + "probability": 0.4362 + }, + { + "start": 4387.94, + "end": 4388.48, + "probability": 0.6168 + }, + { + "start": 4388.54, + "end": 4391.04, + "probability": 0.9386 + }, + { + "start": 4391.1, + "end": 4392.62, + "probability": 0.7747 + }, + { + "start": 4393.66, + "end": 4398.5, + "probability": 0.9269 + }, + { + "start": 4398.66, + "end": 4404.06, + "probability": 0.9469 + }, + { + "start": 4404.7, + "end": 4404.74, + "probability": 0.0695 + }, + { + "start": 4404.82, + "end": 4406.94, + "probability": 0.9357 + }, + { + "start": 4407.22, + "end": 4407.64, + "probability": 0.506 + }, + { + "start": 4407.66, + "end": 4408.0, + "probability": 0.8635 + }, + { + "start": 4408.32, + "end": 4409.94, + "probability": 0.9544 + }, + { + "start": 4410.36, + "end": 4413.74, + "probability": 0.8452 + }, + { + "start": 4414.84, + "end": 4418.58, + "probability": 0.7778 + }, + { + "start": 4420.06, + "end": 4421.06, + "probability": 0.7949 + }, + { + "start": 4421.44, + "end": 4425.26, + "probability": 0.8815 + }, + { + "start": 4425.36, + "end": 4429.92, + "probability": 0.9691 + }, + { + "start": 4430.26, + "end": 4432.86, + "probability": 0.9318 + }, + { + "start": 4433.4, + "end": 4434.48, + "probability": 0.6506 + }, + { + "start": 4435.38, + "end": 4440.04, + "probability": 0.8496 + }, + { + "start": 4440.6, + "end": 4445.54, + "probability": 0.9634 + }, + { + "start": 4447.18, + "end": 4450.26, + "probability": 0.8102 + }, + { + "start": 4450.78, + "end": 4451.72, + "probability": 0.9521 + }, + { + "start": 4452.68, + "end": 4455.78, + "probability": 0.9943 + }, + { + "start": 4456.64, + "end": 4460.46, + "probability": 0.9722 + }, + { + "start": 4461.84, + "end": 4464.8, + "probability": 0.9867 + }, + { + "start": 4465.94, + "end": 4469.84, + "probability": 0.9204 + }, + { + "start": 4470.48, + "end": 4472.5, + "probability": 0.7575 + }, + { + "start": 4473.66, + "end": 4477.46, + "probability": 0.964 + }, + { + "start": 4478.0, + "end": 4479.84, + "probability": 0.9478 + }, + { + "start": 4480.88, + "end": 4483.22, + "probability": 0.9859 + }, + { + "start": 4483.22, + "end": 4487.18, + "probability": 0.9943 + }, + { + "start": 4487.92, + "end": 4491.52, + "probability": 0.9446 + }, + { + "start": 4492.44, + "end": 4496.54, + "probability": 0.9492 + }, + { + "start": 4497.56, + "end": 4498.06, + "probability": 0.78 + }, + { + "start": 4498.6, + "end": 4500.4, + "probability": 0.9866 + }, + { + "start": 4501.26, + "end": 4507.08, + "probability": 0.9968 + }, + { + "start": 4507.78, + "end": 4509.04, + "probability": 0.9073 + }, + { + "start": 4510.46, + "end": 4515.14, + "probability": 0.8093 + }, + { + "start": 4516.1, + "end": 4520.82, + "probability": 0.9831 + }, + { + "start": 4521.84, + "end": 4522.72, + "probability": 0.4979 + }, + { + "start": 4523.3, + "end": 4525.94, + "probability": 0.8609 + }, + { + "start": 4526.72, + "end": 4527.38, + "probability": 0.4502 + }, + { + "start": 4528.56, + "end": 4533.18, + "probability": 0.8697 + }, + { + "start": 4536.24, + "end": 4536.96, + "probability": 0.6789 + }, + { + "start": 4537.24, + "end": 4537.5, + "probability": 0.2723 + }, + { + "start": 4537.58, + "end": 4541.24, + "probability": 0.9186 + }, + { + "start": 4542.22, + "end": 4545.84, + "probability": 0.9951 + }, + { + "start": 4546.36, + "end": 4550.22, + "probability": 0.999 + }, + { + "start": 4550.84, + "end": 4554.48, + "probability": 0.9673 + }, + { + "start": 4555.8, + "end": 4558.42, + "probability": 0.9416 + }, + { + "start": 4559.32, + "end": 4561.1, + "probability": 0.7943 + }, + { + "start": 4561.64, + "end": 4566.02, + "probability": 0.7744 + }, + { + "start": 4566.02, + "end": 4569.76, + "probability": 0.9928 + }, + { + "start": 4570.58, + "end": 4572.6, + "probability": 0.9893 + }, + { + "start": 4573.46, + "end": 4575.6, + "probability": 0.9917 + }, + { + "start": 4575.96, + "end": 4577.56, + "probability": 0.894 + }, + { + "start": 4577.86, + "end": 4582.22, + "probability": 0.9931 + }, + { + "start": 4582.22, + "end": 4586.48, + "probability": 0.9975 + }, + { + "start": 4587.46, + "end": 4592.76, + "probability": 0.9948 + }, + { + "start": 4593.3, + "end": 4598.0, + "probability": 0.9987 + }, + { + "start": 4599.32, + "end": 4601.8, + "probability": 0.8931 + }, + { + "start": 4602.32, + "end": 4604.26, + "probability": 0.981 + }, + { + "start": 4605.1, + "end": 4608.06, + "probability": 0.9824 + }, + { + "start": 4608.18, + "end": 4610.68, + "probability": 0.9755 + }, + { + "start": 4611.86, + "end": 4613.18, + "probability": 0.5918 + }, + { + "start": 4613.74, + "end": 4615.6, + "probability": 0.9679 + }, + { + "start": 4616.78, + "end": 4617.42, + "probability": 0.619 + }, + { + "start": 4618.56, + "end": 4621.12, + "probability": 0.9684 + }, + { + "start": 4622.32, + "end": 4625.18, + "probability": 0.9907 + }, + { + "start": 4625.68, + "end": 4627.62, + "probability": 0.9445 + }, + { + "start": 4628.26, + "end": 4630.68, + "probability": 0.7618 + }, + { + "start": 4630.76, + "end": 4632.06, + "probability": 0.7558 + }, + { + "start": 4632.38, + "end": 4633.22, + "probability": 0.8537 + }, + { + "start": 4634.58, + "end": 4637.36, + "probability": 0.9756 + }, + { + "start": 4637.36, + "end": 4641.4, + "probability": 0.995 + }, + { + "start": 4643.26, + "end": 4645.32, + "probability": 0.78 + }, + { + "start": 4645.4, + "end": 4646.96, + "probability": 0.8945 + }, + { + "start": 4647.92, + "end": 4649.72, + "probability": 0.6528 + }, + { + "start": 4650.26, + "end": 4652.87, + "probability": 0.998 + }, + { + "start": 4653.44, + "end": 4654.76, + "probability": 0.9894 + }, + { + "start": 4655.68, + "end": 4656.38, + "probability": 0.8063 + }, + { + "start": 4656.66, + "end": 4658.34, + "probability": 0.8886 + }, + { + "start": 4658.4, + "end": 4659.24, + "probability": 0.8978 + }, + { + "start": 4659.74, + "end": 4661.69, + "probability": 0.998 + }, + { + "start": 4661.74, + "end": 4664.4, + "probability": 0.9897 + }, + { + "start": 4664.98, + "end": 4667.64, + "probability": 0.9214 + }, + { + "start": 4668.2, + "end": 4669.61, + "probability": 0.9558 + }, + { + "start": 4671.24, + "end": 4674.48, + "probability": 0.9954 + }, + { + "start": 4675.3, + "end": 4676.3, + "probability": 0.8469 + }, + { + "start": 4677.34, + "end": 4679.96, + "probability": 0.9743 + }, + { + "start": 4680.1, + "end": 4680.84, + "probability": 0.832 + }, + { + "start": 4681.06, + "end": 4681.76, + "probability": 0.8812 + }, + { + "start": 4682.38, + "end": 4683.32, + "probability": 0.8792 + }, + { + "start": 4684.7, + "end": 4687.88, + "probability": 0.994 + }, + { + "start": 4689.1, + "end": 4690.44, + "probability": 0.7402 + }, + { + "start": 4691.26, + "end": 4692.54, + "probability": 0.971 + }, + { + "start": 4693.08, + "end": 4694.94, + "probability": 0.9862 + }, + { + "start": 4696.3, + "end": 4697.14, + "probability": 0.8425 + }, + { + "start": 4697.74, + "end": 4701.46, + "probability": 0.9956 + }, + { + "start": 4702.02, + "end": 4703.88, + "probability": 0.8907 + }, + { + "start": 4704.5, + "end": 4706.26, + "probability": 0.8819 + }, + { + "start": 4707.0, + "end": 4707.54, + "probability": 0.9958 + }, + { + "start": 4708.48, + "end": 4711.36, + "probability": 0.5862 + }, + { + "start": 4712.32, + "end": 4715.24, + "probability": 0.9655 + }, + { + "start": 4715.98, + "end": 4718.08, + "probability": 0.9649 + }, + { + "start": 4718.7, + "end": 4720.84, + "probability": 0.9482 + }, + { + "start": 4721.44, + "end": 4724.7, + "probability": 0.9503 + }, + { + "start": 4725.92, + "end": 4727.9, + "probability": 0.972 + }, + { + "start": 4727.96, + "end": 4729.42, + "probability": 0.9552 + }, + { + "start": 4729.48, + "end": 4730.12, + "probability": 0.7111 + }, + { + "start": 4730.3, + "end": 4736.9, + "probability": 0.787 + }, + { + "start": 4748.43, + "end": 4753.22, + "probability": 0.5616 + }, + { + "start": 4755.04, + "end": 4755.04, + "probability": 0.2697 + }, + { + "start": 4755.04, + "end": 4755.04, + "probability": 0.1839 + }, + { + "start": 4755.04, + "end": 4756.34, + "probability": 0.6256 + }, + { + "start": 4756.46, + "end": 4757.5, + "probability": 0.7898 + }, + { + "start": 4757.86, + "end": 4758.3, + "probability": 0.2601 + }, + { + "start": 4760.94, + "end": 4762.62, + "probability": 0.5753 + }, + { + "start": 4763.94, + "end": 4763.96, + "probability": 0.029 + }, + { + "start": 4763.96, + "end": 4764.46, + "probability": 0.0852 + }, + { + "start": 4765.14, + "end": 4765.58, + "probability": 0.043 + }, + { + "start": 4766.66, + "end": 4769.06, + "probability": 0.7122 + }, + { + "start": 4769.92, + "end": 4770.06, + "probability": 0.3175 + }, + { + "start": 4770.22, + "end": 4771.22, + "probability": 0.1822 + }, + { + "start": 4771.4, + "end": 4771.82, + "probability": 0.3866 + }, + { + "start": 4777.24, + "end": 4778.68, + "probability": 0.7215 + }, + { + "start": 4781.14, + "end": 4782.38, + "probability": 0.8462 + }, + { + "start": 4783.56, + "end": 4785.32, + "probability": 0.7505 + }, + { + "start": 4786.3, + "end": 4787.52, + "probability": 0.8132 + }, + { + "start": 4787.62, + "end": 4788.72, + "probability": 0.9605 + }, + { + "start": 4788.88, + "end": 4789.7, + "probability": 0.96 + }, + { + "start": 4790.86, + "end": 4791.72, + "probability": 0.2771 + }, + { + "start": 4792.76, + "end": 4793.9, + "probability": 0.9797 + }, + { + "start": 4795.38, + "end": 4797.9, + "probability": 0.9493 + }, + { + "start": 4800.56, + "end": 4801.24, + "probability": 0.9872 + }, + { + "start": 4801.78, + "end": 4801.96, + "probability": 0.853 + }, + { + "start": 4803.32, + "end": 4805.22, + "probability": 0.8337 + }, + { + "start": 4806.42, + "end": 4807.52, + "probability": 0.7199 + }, + { + "start": 4809.04, + "end": 4812.8, + "probability": 0.9357 + }, + { + "start": 4814.42, + "end": 4816.64, + "probability": 0.9526 + }, + { + "start": 4818.5, + "end": 4820.98, + "probability": 0.9726 + }, + { + "start": 4821.98, + "end": 4822.8, + "probability": 0.5844 + }, + { + "start": 4823.94, + "end": 4825.14, + "probability": 0.8448 + }, + { + "start": 4826.68, + "end": 4830.14, + "probability": 0.9745 + }, + { + "start": 4831.1, + "end": 4834.44, + "probability": 0.8702 + }, + { + "start": 4835.62, + "end": 4836.64, + "probability": 0.696 + }, + { + "start": 4837.3, + "end": 4840.36, + "probability": 0.868 + }, + { + "start": 4843.32, + "end": 4847.64, + "probability": 0.9865 + }, + { + "start": 4848.86, + "end": 4851.6, + "probability": 0.9985 + }, + { + "start": 4854.9, + "end": 4857.78, + "probability": 0.8401 + }, + { + "start": 4860.24, + "end": 4861.46, + "probability": 0.9135 + }, + { + "start": 4863.54, + "end": 4867.1, + "probability": 0.9838 + }, + { + "start": 4868.56, + "end": 4870.16, + "probability": 0.525 + }, + { + "start": 4872.26, + "end": 4875.38, + "probability": 0.9675 + }, + { + "start": 4876.54, + "end": 4877.76, + "probability": 0.9681 + }, + { + "start": 4880.8, + "end": 4882.9, + "probability": 0.9415 + }, + { + "start": 4884.94, + "end": 4890.32, + "probability": 0.9492 + }, + { + "start": 4890.88, + "end": 4892.64, + "probability": 0.8057 + }, + { + "start": 4893.58, + "end": 4895.78, + "probability": 0.8761 + }, + { + "start": 4897.76, + "end": 4900.02, + "probability": 0.96 + }, + { + "start": 4901.28, + "end": 4907.43, + "probability": 0.9922 + }, + { + "start": 4909.58, + "end": 4912.66, + "probability": 0.9958 + }, + { + "start": 4914.52, + "end": 4917.42, + "probability": 0.8971 + }, + { + "start": 4918.8, + "end": 4922.78, + "probability": 0.9631 + }, + { + "start": 4924.1, + "end": 4927.9, + "probability": 0.8564 + }, + { + "start": 4931.18, + "end": 4932.4, + "probability": 0.7391 + }, + { + "start": 4935.76, + "end": 4936.68, + "probability": 0.7362 + }, + { + "start": 4938.18, + "end": 4942.24, + "probability": 0.9939 + }, + { + "start": 4943.4, + "end": 4947.28, + "probability": 0.8525 + }, + { + "start": 4947.36, + "end": 4950.02, + "probability": 0.9705 + }, + { + "start": 4952.76, + "end": 4956.12, + "probability": 0.9931 + }, + { + "start": 4957.42, + "end": 4958.34, + "probability": 0.9721 + }, + { + "start": 4961.38, + "end": 4966.45, + "probability": 0.9935 + }, + { + "start": 4968.26, + "end": 4974.64, + "probability": 0.9849 + }, + { + "start": 4974.76, + "end": 4980.3, + "probability": 0.7909 + }, + { + "start": 4980.84, + "end": 4984.36, + "probability": 0.9985 + }, + { + "start": 4987.16, + "end": 4990.68, + "probability": 0.9613 + }, + { + "start": 4993.06, + "end": 4996.3, + "probability": 0.9146 + }, + { + "start": 4997.86, + "end": 4999.24, + "probability": 0.9895 + }, + { + "start": 5000.04, + "end": 5000.8, + "probability": 0.8674 + }, + { + "start": 5001.36, + "end": 5002.22, + "probability": 0.5951 + }, + { + "start": 5003.48, + "end": 5005.58, + "probability": 0.9265 + }, + { + "start": 5005.7, + "end": 5007.24, + "probability": 0.9959 + }, + { + "start": 5007.32, + "end": 5007.98, + "probability": 0.9095 + }, + { + "start": 5010.02, + "end": 5010.5, + "probability": 0.8439 + }, + { + "start": 5012.06, + "end": 5013.84, + "probability": 0.8748 + }, + { + "start": 5015.44, + "end": 5017.32, + "probability": 0.9911 + }, + { + "start": 5017.42, + "end": 5019.98, + "probability": 0.9355 + }, + { + "start": 5023.32, + "end": 5025.72, + "probability": 0.9262 + }, + { + "start": 5027.8, + "end": 5033.24, + "probability": 0.9834 + }, + { + "start": 5033.66, + "end": 5035.32, + "probability": 0.9915 + }, + { + "start": 5036.82, + "end": 5038.94, + "probability": 0.9902 + }, + { + "start": 5039.36, + "end": 5041.42, + "probability": 0.9831 + }, + { + "start": 5041.54, + "end": 5041.64, + "probability": 0.8369 + }, + { + "start": 5043.24, + "end": 5046.76, + "probability": 0.9536 + }, + { + "start": 5047.94, + "end": 5049.64, + "probability": 0.9946 + }, + { + "start": 5051.3, + "end": 5052.54, + "probability": 0.8958 + }, + { + "start": 5053.1, + "end": 5054.28, + "probability": 0.7618 + }, + { + "start": 5055.76, + "end": 5056.8, + "probability": 0.8484 + }, + { + "start": 5059.44, + "end": 5062.12, + "probability": 0.9992 + }, + { + "start": 5065.18, + "end": 5068.18, + "probability": 0.9064 + }, + { + "start": 5069.18, + "end": 5070.77, + "probability": 0.7759 + }, + { + "start": 5073.0, + "end": 5074.9, + "probability": 0.9924 + }, + { + "start": 5076.38, + "end": 5079.4, + "probability": 0.9979 + }, + { + "start": 5080.22, + "end": 5082.46, + "probability": 0.9668 + }, + { + "start": 5083.9, + "end": 5086.84, + "probability": 0.9894 + }, + { + "start": 5088.44, + "end": 5091.48, + "probability": 0.8477 + }, + { + "start": 5092.62, + "end": 5095.2, + "probability": 0.9593 + }, + { + "start": 5096.18, + "end": 5099.2, + "probability": 0.9946 + }, + { + "start": 5099.86, + "end": 5103.68, + "probability": 0.9953 + }, + { + "start": 5104.82, + "end": 5107.72, + "probability": 0.9964 + }, + { + "start": 5108.66, + "end": 5112.44, + "probability": 0.9922 + }, + { + "start": 5112.5, + "end": 5117.38, + "probability": 0.9965 + }, + { + "start": 5119.42, + "end": 5121.78, + "probability": 0.7645 + }, + { + "start": 5122.46, + "end": 5124.42, + "probability": 0.0063 + }, + { + "start": 5125.06, + "end": 5125.22, + "probability": 0.1192 + }, + { + "start": 5125.22, + "end": 5125.22, + "probability": 0.2307 + }, + { + "start": 5125.22, + "end": 5126.0, + "probability": 0.0694 + }, + { + "start": 5126.0, + "end": 5127.2, + "probability": 0.3851 + }, + { + "start": 5128.64, + "end": 5129.16, + "probability": 0.8084 + }, + { + "start": 5129.38, + "end": 5131.68, + "probability": 0.7051 + }, + { + "start": 5131.88, + "end": 5138.06, + "probability": 0.9692 + }, + { + "start": 5138.12, + "end": 5139.08, + "probability": 0.8676 + }, + { + "start": 5140.66, + "end": 5143.98, + "probability": 0.758 + }, + { + "start": 5147.66, + "end": 5149.48, + "probability": 0.9964 + }, + { + "start": 5150.8, + "end": 5152.6, + "probability": 0.9709 + }, + { + "start": 5153.4, + "end": 5154.96, + "probability": 0.7065 + }, + { + "start": 5156.26, + "end": 5156.58, + "probability": 0.36 + }, + { + "start": 5159.32, + "end": 5159.8, + "probability": 0.0245 + }, + { + "start": 5159.8, + "end": 5159.8, + "probability": 0.0588 + }, + { + "start": 5159.8, + "end": 5160.0, + "probability": 0.0085 + }, + { + "start": 5160.84, + "end": 5161.66, + "probability": 0.0789 + }, + { + "start": 5161.66, + "end": 5162.32, + "probability": 0.4991 + }, + { + "start": 5163.12, + "end": 5164.32, + "probability": 0.804 + }, + { + "start": 5164.34, + "end": 5165.1, + "probability": 0.146 + }, + { + "start": 5165.2, + "end": 5165.72, + "probability": 0.6448 + }, + { + "start": 5165.78, + "end": 5167.2, + "probability": 0.4771 + }, + { + "start": 5168.08, + "end": 5169.46, + "probability": 0.7998 + }, + { + "start": 5172.12, + "end": 5173.96, + "probability": 0.7628 + }, + { + "start": 5177.98, + "end": 5180.8, + "probability": 0.9969 + }, + { + "start": 5182.3, + "end": 5184.44, + "probability": 0.9961 + }, + { + "start": 5186.58, + "end": 5187.76, + "probability": 0.9929 + }, + { + "start": 5191.6, + "end": 5194.14, + "probability": 0.9527 + }, + { + "start": 5194.22, + "end": 5196.14, + "probability": 0.9978 + }, + { + "start": 5196.86, + "end": 5200.52, + "probability": 0.9782 + }, + { + "start": 5201.88, + "end": 5201.88, + "probability": 0.3044 + }, + { + "start": 5202.88, + "end": 5203.92, + "probability": 0.9892 + }, + { + "start": 5206.08, + "end": 5206.72, + "probability": 0.7815 + }, + { + "start": 5207.88, + "end": 5208.36, + "probability": 0.3826 + }, + { + "start": 5213.48, + "end": 5218.7, + "probability": 0.9873 + }, + { + "start": 5218.82, + "end": 5219.6, + "probability": 0.8633 + }, + { + "start": 5220.02, + "end": 5221.44, + "probability": 0.5851 + }, + { + "start": 5225.68, + "end": 5226.98, + "probability": 0.8888 + }, + { + "start": 5228.4, + "end": 5229.32, + "probability": 0.695 + }, + { + "start": 5230.04, + "end": 5231.75, + "probability": 0.6973 + }, + { + "start": 5235.84, + "end": 5244.06, + "probability": 0.9976 + }, + { + "start": 5245.6, + "end": 5250.74, + "probability": 0.9986 + }, + { + "start": 5250.82, + "end": 5251.92, + "probability": 0.9655 + }, + { + "start": 5252.02, + "end": 5254.38, + "probability": 0.9004 + }, + { + "start": 5255.82, + "end": 5258.46, + "probability": 0.9766 + }, + { + "start": 5260.44, + "end": 5263.24, + "probability": 0.8501 + }, + { + "start": 5264.86, + "end": 5269.76, + "probability": 0.9822 + }, + { + "start": 5270.96, + "end": 5272.11, + "probability": 0.8239 + }, + { + "start": 5273.84, + "end": 5275.02, + "probability": 0.9961 + }, + { + "start": 5275.14, + "end": 5276.4, + "probability": 0.9259 + }, + { + "start": 5276.48, + "end": 5276.6, + "probability": 0.4183 + }, + { + "start": 5276.86, + "end": 5279.96, + "probability": 0.9479 + }, + { + "start": 5281.58, + "end": 5282.44, + "probability": 0.8128 + }, + { + "start": 5282.56, + "end": 5285.92, + "probability": 0.9905 + }, + { + "start": 5287.04, + "end": 5288.24, + "probability": 0.8779 + }, + { + "start": 5289.54, + "end": 5293.58, + "probability": 0.9554 + }, + { + "start": 5294.64, + "end": 5296.36, + "probability": 0.9428 + }, + { + "start": 5296.6, + "end": 5297.46, + "probability": 0.7968 + }, + { + "start": 5297.58, + "end": 5300.96, + "probability": 0.9947 + }, + { + "start": 5302.88, + "end": 5304.08, + "probability": 0.8629 + }, + { + "start": 5305.56, + "end": 5306.7, + "probability": 0.6383 + }, + { + "start": 5306.78, + "end": 5310.24, + "probability": 0.929 + }, + { + "start": 5311.44, + "end": 5312.36, + "probability": 0.8133 + }, + { + "start": 5314.9, + "end": 5316.58, + "probability": 0.938 + }, + { + "start": 5317.08, + "end": 5318.78, + "probability": 0.871 + }, + { + "start": 5318.98, + "end": 5320.0, + "probability": 0.4922 + }, + { + "start": 5321.8, + "end": 5324.08, + "probability": 0.9424 + }, + { + "start": 5324.28, + "end": 5325.68, + "probability": 0.9622 + }, + { + "start": 5326.92, + "end": 5327.62, + "probability": 0.4938 + }, + { + "start": 5327.74, + "end": 5331.62, + "probability": 0.9993 + }, + { + "start": 5333.92, + "end": 5336.16, + "probability": 0.9364 + }, + { + "start": 5336.16, + "end": 5339.68, + "probability": 0.9657 + }, + { + "start": 5342.62, + "end": 5345.06, + "probability": 0.9004 + }, + { + "start": 5350.18, + "end": 5352.26, + "probability": 0.9932 + }, + { + "start": 5356.98, + "end": 5361.28, + "probability": 0.8459 + }, + { + "start": 5362.18, + "end": 5363.72, + "probability": 0.8466 + }, + { + "start": 5364.7, + "end": 5365.88, + "probability": 0.9915 + }, + { + "start": 5366.18, + "end": 5367.38, + "probability": 0.967 + }, + { + "start": 5367.48, + "end": 5369.1, + "probability": 0.953 + }, + { + "start": 5370.32, + "end": 5371.6, + "probability": 0.9917 + }, + { + "start": 5373.44, + "end": 5375.5, + "probability": 0.9915 + }, + { + "start": 5377.12, + "end": 5378.24, + "probability": 0.9144 + }, + { + "start": 5379.98, + "end": 5380.78, + "probability": 0.9871 + }, + { + "start": 5381.54, + "end": 5382.36, + "probability": 0.9952 + }, + { + "start": 5383.14, + "end": 5385.86, + "probability": 0.948 + }, + { + "start": 5388.34, + "end": 5392.26, + "probability": 0.9987 + }, + { + "start": 5392.26, + "end": 5396.42, + "probability": 0.9951 + }, + { + "start": 5397.7, + "end": 5399.7, + "probability": 0.9839 + }, + { + "start": 5400.78, + "end": 5407.42, + "probability": 0.9749 + }, + { + "start": 5409.36, + "end": 5409.7, + "probability": 0.3273 + }, + { + "start": 5409.86, + "end": 5411.14, + "probability": 0.5158 + }, + { + "start": 5411.26, + "end": 5415.92, + "probability": 0.8655 + }, + { + "start": 5416.54, + "end": 5422.04, + "probability": 0.9849 + }, + { + "start": 5422.98, + "end": 5424.08, + "probability": 0.9055 + }, + { + "start": 5424.92, + "end": 5430.76, + "probability": 0.9641 + }, + { + "start": 5431.32, + "end": 5432.11, + "probability": 0.8123 + }, + { + "start": 5433.44, + "end": 5435.38, + "probability": 0.9359 + }, + { + "start": 5436.22, + "end": 5442.26, + "probability": 0.9882 + }, + { + "start": 5444.76, + "end": 5445.84, + "probability": 0.8809 + }, + { + "start": 5448.54, + "end": 5452.1, + "probability": 0.9973 + }, + { + "start": 5453.48, + "end": 5455.38, + "probability": 0.9876 + }, + { + "start": 5456.72, + "end": 5461.38, + "probability": 0.9954 + }, + { + "start": 5462.94, + "end": 5470.52, + "probability": 0.981 + }, + { + "start": 5474.16, + "end": 5474.76, + "probability": 0.7324 + }, + { + "start": 5477.36, + "end": 5479.96, + "probability": 0.8757 + }, + { + "start": 5480.7, + "end": 5484.5, + "probability": 0.9862 + }, + { + "start": 5486.6, + "end": 5487.82, + "probability": 0.9305 + }, + { + "start": 5489.24, + "end": 5490.72, + "probability": 0.9776 + }, + { + "start": 5492.1, + "end": 5493.52, + "probability": 0.7849 + }, + { + "start": 5495.88, + "end": 5496.96, + "probability": 0.9499 + }, + { + "start": 5497.14, + "end": 5498.96, + "probability": 0.9775 + }, + { + "start": 5499.06, + "end": 5502.18, + "probability": 0.9979 + }, + { + "start": 5504.82, + "end": 5506.84, + "probability": 0.9712 + }, + { + "start": 5509.44, + "end": 5510.4, + "probability": 0.7797 + }, + { + "start": 5512.96, + "end": 5517.44, + "probability": 0.9489 + }, + { + "start": 5518.88, + "end": 5520.4, + "probability": 0.9479 + }, + { + "start": 5522.8, + "end": 5525.54, + "probability": 0.7533 + }, + { + "start": 5527.14, + "end": 5532.06, + "probability": 0.9864 + }, + { + "start": 5532.06, + "end": 5536.64, + "probability": 0.9946 + }, + { + "start": 5539.78, + "end": 5540.92, + "probability": 0.9708 + }, + { + "start": 5542.9, + "end": 5544.86, + "probability": 0.92 + }, + { + "start": 5545.94, + "end": 5547.4, + "probability": 0.9826 + }, + { + "start": 5549.18, + "end": 5550.58, + "probability": 0.9989 + }, + { + "start": 5554.1, + "end": 5558.82, + "probability": 0.9995 + }, + { + "start": 5562.0, + "end": 5564.3, + "probability": 0.998 + }, + { + "start": 5565.4, + "end": 5566.56, + "probability": 0.9896 + }, + { + "start": 5567.64, + "end": 5568.6, + "probability": 0.9595 + }, + { + "start": 5570.0, + "end": 5571.09, + "probability": 0.9517 + }, + { + "start": 5572.24, + "end": 5573.41, + "probability": 0.938 + }, + { + "start": 5574.82, + "end": 5577.38, + "probability": 0.7057 + }, + { + "start": 5577.64, + "end": 5578.06, + "probability": 0.8645 + }, + { + "start": 5578.32, + "end": 5580.34, + "probability": 0.8569 + }, + { + "start": 5580.58, + "end": 5581.0, + "probability": 0.8289 + }, + { + "start": 5581.14, + "end": 5583.45, + "probability": 0.8267 + }, + { + "start": 5585.02, + "end": 5586.78, + "probability": 0.9306 + }, + { + "start": 5589.1, + "end": 5590.16, + "probability": 0.8854 + }, + { + "start": 5591.38, + "end": 5591.62, + "probability": 0.4533 + }, + { + "start": 5591.62, + "end": 5593.04, + "probability": 0.6957 + }, + { + "start": 5593.04, + "end": 5595.16, + "probability": 0.9856 + }, + { + "start": 5595.52, + "end": 5596.14, + "probability": 0.7662 + }, + { + "start": 5597.86, + "end": 5598.46, + "probability": 0.6854 + }, + { + "start": 5600.36, + "end": 5604.66, + "probability": 0.9164 + }, + { + "start": 5606.94, + "end": 5607.62, + "probability": 0.9438 + }, + { + "start": 5609.44, + "end": 5616.56, + "probability": 0.995 + }, + { + "start": 5619.8, + "end": 5622.18, + "probability": 0.9972 + }, + { + "start": 5622.32, + "end": 5623.52, + "probability": 0.8261 + }, + { + "start": 5623.92, + "end": 5629.2, + "probability": 0.9922 + }, + { + "start": 5630.42, + "end": 5631.08, + "probability": 0.9576 + }, + { + "start": 5635.54, + "end": 5637.3, + "probability": 0.8437 + }, + { + "start": 5638.62, + "end": 5640.4, + "probability": 0.9115 + }, + { + "start": 5641.94, + "end": 5642.78, + "probability": 0.9806 + }, + { + "start": 5644.72, + "end": 5646.04, + "probability": 0.9869 + }, + { + "start": 5646.62, + "end": 5647.46, + "probability": 0.9216 + }, + { + "start": 5647.62, + "end": 5648.78, + "probability": 0.8969 + }, + { + "start": 5649.18, + "end": 5650.38, + "probability": 0.9739 + }, + { + "start": 5650.48, + "end": 5653.34, + "probability": 0.7467 + }, + { + "start": 5654.58, + "end": 5655.96, + "probability": 0.8806 + }, + { + "start": 5656.7, + "end": 5657.86, + "probability": 0.9353 + }, + { + "start": 5660.12, + "end": 5661.16, + "probability": 0.9368 + }, + { + "start": 5663.86, + "end": 5664.56, + "probability": 0.7156 + }, + { + "start": 5668.3, + "end": 5671.84, + "probability": 0.9878 + }, + { + "start": 5674.28, + "end": 5675.8, + "probability": 0.9976 + }, + { + "start": 5676.98, + "end": 5677.98, + "probability": 0.9848 + }, + { + "start": 5678.7, + "end": 5679.42, + "probability": 0.7362 + }, + { + "start": 5680.08, + "end": 5680.54, + "probability": 0.7184 + }, + { + "start": 5686.42, + "end": 5689.4, + "probability": 0.9814 + }, + { + "start": 5690.12, + "end": 5693.86, + "probability": 0.9937 + }, + { + "start": 5695.88, + "end": 5697.84, + "probability": 0.918 + }, + { + "start": 5698.6, + "end": 5701.96, + "probability": 0.9926 + }, + { + "start": 5703.5, + "end": 5704.66, + "probability": 0.9304 + }, + { + "start": 5706.48, + "end": 5709.5, + "probability": 0.9478 + }, + { + "start": 5710.06, + "end": 5712.8, + "probability": 0.9951 + }, + { + "start": 5715.1, + "end": 5716.16, + "probability": 0.9995 + }, + { + "start": 5719.82, + "end": 5721.7, + "probability": 0.8205 + }, + { + "start": 5721.76, + "end": 5722.26, + "probability": 0.3753 + }, + { + "start": 5722.3, + "end": 5723.9, + "probability": 0.986 + }, + { + "start": 5726.52, + "end": 5727.96, + "probability": 0.8979 + }, + { + "start": 5729.92, + "end": 5730.66, + "probability": 0.974 + }, + { + "start": 5735.62, + "end": 5739.1, + "probability": 0.9616 + }, + { + "start": 5740.78, + "end": 5742.63, + "probability": 0.9924 + }, + { + "start": 5743.9, + "end": 5746.12, + "probability": 0.9832 + }, + { + "start": 5749.08, + "end": 5749.7, + "probability": 0.9021 + }, + { + "start": 5751.2, + "end": 5752.52, + "probability": 0.7499 + }, + { + "start": 5752.7, + "end": 5755.8, + "probability": 0.9114 + }, + { + "start": 5756.0, + "end": 5756.78, + "probability": 0.7425 + }, + { + "start": 5757.18, + "end": 5757.66, + "probability": 0.8134 + }, + { + "start": 5759.4, + "end": 5764.08, + "probability": 0.9897 + }, + { + "start": 5764.2, + "end": 5767.56, + "probability": 0.8939 + }, + { + "start": 5767.56, + "end": 5770.76, + "probability": 0.8992 + }, + { + "start": 5771.18, + "end": 5771.78, + "probability": 0.9749 + }, + { + "start": 5772.14, + "end": 5773.64, + "probability": 0.9979 + }, + { + "start": 5773.78, + "end": 5777.32, + "probability": 0.988 + }, + { + "start": 5777.76, + "end": 5780.06, + "probability": 0.9969 + }, + { + "start": 5784.72, + "end": 5787.94, + "probability": 0.9899 + }, + { + "start": 5793.7, + "end": 5793.96, + "probability": 0.6877 + }, + { + "start": 5796.46, + "end": 5797.52, + "probability": 0.7751 + }, + { + "start": 5799.5, + "end": 5800.73, + "probability": 0.9985 + }, + { + "start": 5802.14, + "end": 5803.46, + "probability": 0.9795 + }, + { + "start": 5806.78, + "end": 5808.76, + "probability": 0.9324 + }, + { + "start": 5810.22, + "end": 5811.75, + "probability": 0.9717 + }, + { + "start": 5813.62, + "end": 5814.54, + "probability": 0.8334 + }, + { + "start": 5818.84, + "end": 5820.06, + "probability": 0.9339 + }, + { + "start": 5821.86, + "end": 5823.14, + "probability": 0.998 + }, + { + "start": 5825.5, + "end": 5831.72, + "probability": 0.9976 + }, + { + "start": 5833.06, + "end": 5835.52, + "probability": 0.9755 + }, + { + "start": 5837.14, + "end": 5839.1, + "probability": 0.9901 + }, + { + "start": 5840.3, + "end": 5846.14, + "probability": 0.9987 + }, + { + "start": 5847.66, + "end": 5856.86, + "probability": 0.9084 + }, + { + "start": 5858.04, + "end": 5859.76, + "probability": 0.9539 + }, + { + "start": 5861.82, + "end": 5864.62, + "probability": 0.9908 + }, + { + "start": 5867.58, + "end": 5869.68, + "probability": 0.991 + }, + { + "start": 5869.76, + "end": 5871.52, + "probability": 0.9205 + }, + { + "start": 5872.08, + "end": 5874.14, + "probability": 0.8926 + }, + { + "start": 5874.28, + "end": 5875.8, + "probability": 0.9224 + }, + { + "start": 5875.9, + "end": 5876.82, + "probability": 0.9166 + }, + { + "start": 5878.0, + "end": 5878.58, + "probability": 0.8227 + }, + { + "start": 5889.78, + "end": 5891.52, + "probability": 0.683 + }, + { + "start": 5891.74, + "end": 5894.1, + "probability": 0.6485 + }, + { + "start": 5894.22, + "end": 5895.22, + "probability": 0.9304 + }, + { + "start": 5895.88, + "end": 5903.16, + "probability": 0.9791 + }, + { + "start": 5904.1, + "end": 5907.2, + "probability": 0.9917 + }, + { + "start": 5907.2, + "end": 5911.42, + "probability": 0.6774 + }, + { + "start": 5911.8, + "end": 5914.27, + "probability": 0.9717 + }, + { + "start": 5914.6, + "end": 5916.32, + "probability": 0.9022 + }, + { + "start": 5916.68, + "end": 5918.26, + "probability": 0.9872 + }, + { + "start": 5918.82, + "end": 5921.3, + "probability": 0.9859 + }, + { + "start": 5921.3, + "end": 5926.06, + "probability": 0.9735 + }, + { + "start": 5926.4, + "end": 5928.46, + "probability": 0.5841 + }, + { + "start": 5930.28, + "end": 5932.58, + "probability": 0.6784 + }, + { + "start": 5933.3, + "end": 5937.68, + "probability": 0.8912 + }, + { + "start": 5938.32, + "end": 5941.7, + "probability": 0.9956 + }, + { + "start": 5941.88, + "end": 5943.5, + "probability": 0.9385 + }, + { + "start": 5943.78, + "end": 5945.5, + "probability": 0.8035 + }, + { + "start": 5946.74, + "end": 5948.83, + "probability": 0.8805 + }, + { + "start": 5949.96, + "end": 5952.72, + "probability": 0.9542 + }, + { + "start": 5953.44, + "end": 5958.24, + "probability": 0.9183 + }, + { + "start": 5958.52, + "end": 5960.2, + "probability": 0.9439 + }, + { + "start": 5960.3, + "end": 5962.7, + "probability": 0.6687 + }, + { + "start": 5962.8, + "end": 5966.74, + "probability": 0.9944 + }, + { + "start": 5966.74, + "end": 5970.18, + "probability": 0.9973 + }, + { + "start": 5970.28, + "end": 5971.72, + "probability": 0.9525 + }, + { + "start": 5971.82, + "end": 5972.92, + "probability": 0.8896 + }, + { + "start": 5973.44, + "end": 5973.52, + "probability": 0.8911 + }, + { + "start": 5973.62, + "end": 5977.04, + "probability": 0.9966 + }, + { + "start": 5977.58, + "end": 5979.5, + "probability": 0.9346 + }, + { + "start": 5980.22, + "end": 5984.64, + "probability": 0.9523 + }, + { + "start": 5984.94, + "end": 5986.32, + "probability": 0.9468 + }, + { + "start": 5986.52, + "end": 5987.8, + "probability": 0.8368 + }, + { + "start": 5988.12, + "end": 5990.59, + "probability": 0.8408 + }, + { + "start": 5992.02, + "end": 5993.52, + "probability": 0.7299 + }, + { + "start": 5993.54, + "end": 5995.08, + "probability": 0.8264 + }, + { + "start": 5995.18, + "end": 5996.69, + "probability": 0.5538 + }, + { + "start": 5997.58, + "end": 6000.56, + "probability": 0.9953 + }, + { + "start": 6000.56, + "end": 6004.06, + "probability": 0.9974 + }, + { + "start": 6004.68, + "end": 6008.32, + "probability": 0.9908 + }, + { + "start": 6008.32, + "end": 6011.32, + "probability": 0.9982 + }, + { + "start": 6011.64, + "end": 6017.02, + "probability": 0.8743 + }, + { + "start": 6017.02, + "end": 6021.04, + "probability": 0.7162 + }, + { + "start": 6021.4, + "end": 6022.82, + "probability": 0.6955 + }, + { + "start": 6022.98, + "end": 6025.26, + "probability": 0.844 + }, + { + "start": 6025.46, + "end": 6030.95, + "probability": 0.9897 + }, + { + "start": 6031.46, + "end": 6032.94, + "probability": 0.7949 + }, + { + "start": 6033.24, + "end": 6033.56, + "probability": 0.4612 + }, + { + "start": 6033.62, + "end": 6040.1, + "probability": 0.9913 + }, + { + "start": 6040.1, + "end": 6044.42, + "probability": 0.9951 + }, + { + "start": 6044.74, + "end": 6049.12, + "probability": 0.9583 + }, + { + "start": 6049.12, + "end": 6051.22, + "probability": 0.6454 + }, + { + "start": 6051.24, + "end": 6051.96, + "probability": 0.9072 + }, + { + "start": 6052.26, + "end": 6055.78, + "probability": 0.8695 + }, + { + "start": 6056.98, + "end": 6059.08, + "probability": 0.9313 + }, + { + "start": 6059.14, + "end": 6061.82, + "probability": 0.9542 + }, + { + "start": 6062.32, + "end": 6064.02, + "probability": 0.9021 + }, + { + "start": 6064.14, + "end": 6068.2, + "probability": 0.9897 + }, + { + "start": 6068.4, + "end": 6069.3, + "probability": 0.6986 + }, + { + "start": 6069.7, + "end": 6072.4, + "probability": 0.9976 + }, + { + "start": 6072.58, + "end": 6073.96, + "probability": 0.9567 + }, + { + "start": 6074.14, + "end": 6074.6, + "probability": 0.412 + }, + { + "start": 6075.04, + "end": 6077.98, + "probability": 0.9093 + }, + { + "start": 6078.26, + "end": 6080.02, + "probability": 0.9938 + }, + { + "start": 6080.1, + "end": 6084.98, + "probability": 0.9843 + }, + { + "start": 6085.24, + "end": 6085.56, + "probability": 0.1555 + }, + { + "start": 6085.72, + "end": 6087.36, + "probability": 0.8239 + }, + { + "start": 6087.5, + "end": 6088.56, + "probability": 0.509 + }, + { + "start": 6088.84, + "end": 6091.82, + "probability": 0.8709 + }, + { + "start": 6092.84, + "end": 6095.2, + "probability": 0.9753 + }, + { + "start": 6095.84, + "end": 6096.38, + "probability": 0.3569 + }, + { + "start": 6096.7, + "end": 6097.74, + "probability": 0.6084 + }, + { + "start": 6097.86, + "end": 6102.68, + "probability": 0.8812 + }, + { + "start": 6103.24, + "end": 6106.9, + "probability": 0.0661 + }, + { + "start": 6107.81, + "end": 6110.42, + "probability": 0.7896 + }, + { + "start": 6110.56, + "end": 6113.3, + "probability": 0.4618 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6239.0, + "end": 6239.0, + "probability": 0.0 + }, + { + "start": 6244.24, + "end": 6246.24, + "probability": 0.1177 + }, + { + "start": 6246.24, + "end": 6246.92, + "probability": 0.0845 + }, + { + "start": 6246.96, + "end": 6250.42, + "probability": 0.0764 + }, + { + "start": 6250.56, + "end": 6252.22, + "probability": 0.3767 + }, + { + "start": 6275.3, + "end": 6277.86, + "probability": 0.0062 + }, + { + "start": 6278.7, + "end": 6285.72, + "probability": 0.1083 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.0, + "end": 6389.0, + "probability": 0.0 + }, + { + "start": 6389.14, + "end": 6389.46, + "probability": 0.0028 + }, + { + "start": 6389.46, + "end": 6389.52, + "probability": 0.0894 + }, + { + "start": 6389.52, + "end": 6389.52, + "probability": 0.386 + }, + { + "start": 6389.52, + "end": 6389.52, + "probability": 0.0109 + }, + { + "start": 6389.52, + "end": 6391.59, + "probability": 0.4179 + }, + { + "start": 6392.76, + "end": 6394.74, + "probability": 0.7923 + }, + { + "start": 6394.84, + "end": 6396.04, + "probability": 0.9399 + }, + { + "start": 6396.3, + "end": 6399.04, + "probability": 0.9914 + }, + { + "start": 6399.28, + "end": 6401.24, + "probability": 0.9636 + }, + { + "start": 6402.22, + "end": 6403.72, + "probability": 0.9225 + }, + { + "start": 6403.88, + "end": 6405.14, + "probability": 0.9922 + }, + { + "start": 6406.1, + "end": 6408.8, + "probability": 0.9904 + }, + { + "start": 6411.78, + "end": 6413.84, + "probability": 0.998 + }, + { + "start": 6414.28, + "end": 6416.88, + "probability": 0.9866 + }, + { + "start": 6417.02, + "end": 6420.3, + "probability": 0.7788 + }, + { + "start": 6420.46, + "end": 6422.02, + "probability": 0.9925 + }, + { + "start": 6422.16, + "end": 6423.48, + "probability": 0.9616 + }, + { + "start": 6424.6, + "end": 6426.36, + "probability": 0.9661 + }, + { + "start": 6427.2, + "end": 6428.96, + "probability": 0.9629 + }, + { + "start": 6429.22, + "end": 6431.7, + "probability": 0.8867 + }, + { + "start": 6432.24, + "end": 6434.32, + "probability": 0.8474 + }, + { + "start": 6434.84, + "end": 6436.14, + "probability": 0.9362 + }, + { + "start": 6436.46, + "end": 6437.8, + "probability": 0.978 + }, + { + "start": 6439.16, + "end": 6442.08, + "probability": 0.8942 + }, + { + "start": 6442.32, + "end": 6448.82, + "probability": 0.92 + }, + { + "start": 6449.38, + "end": 6450.32, + "probability": 0.6624 + }, + { + "start": 6450.36, + "end": 6452.18, + "probability": 0.8565 + }, + { + "start": 6452.34, + "end": 6453.84, + "probability": 0.9505 + }, + { + "start": 6456.22, + "end": 6459.92, + "probability": 0.8743 + }, + { + "start": 6460.76, + "end": 6466.24, + "probability": 0.9957 + }, + { + "start": 6466.36, + "end": 6470.96, + "probability": 0.7142 + }, + { + "start": 6471.76, + "end": 6472.74, + "probability": 0.5103 + }, + { + "start": 6472.82, + "end": 6474.1, + "probability": 0.8196 + }, + { + "start": 6474.16, + "end": 6477.1, + "probability": 0.8774 + }, + { + "start": 6477.22, + "end": 6478.14, + "probability": 0.9698 + }, + { + "start": 6478.22, + "end": 6479.28, + "probability": 0.9751 + }, + { + "start": 6479.88, + "end": 6480.62, + "probability": 0.6432 + }, + { + "start": 6480.7, + "end": 6483.58, + "probability": 0.9783 + }, + { + "start": 6484.76, + "end": 6486.34, + "probability": 0.9644 + }, + { + "start": 6486.58, + "end": 6488.74, + "probability": 0.9613 + }, + { + "start": 6489.36, + "end": 6489.92, + "probability": 0.8754 + }, + { + "start": 6490.6, + "end": 6495.78, + "probability": 0.9937 + }, + { + "start": 6495.78, + "end": 6502.12, + "probability": 0.9989 + }, + { + "start": 6502.22, + "end": 6503.08, + "probability": 0.8571 + }, + { + "start": 6503.16, + "end": 6504.22, + "probability": 0.9219 + }, + { + "start": 6504.46, + "end": 6505.14, + "probability": 0.9729 + }, + { + "start": 6505.22, + "end": 6506.04, + "probability": 0.9862 + }, + { + "start": 6506.16, + "end": 6507.28, + "probability": 0.5071 + }, + { + "start": 6507.5, + "end": 6508.41, + "probability": 0.9382 + }, + { + "start": 6508.86, + "end": 6511.74, + "probability": 0.9984 + }, + { + "start": 6513.6, + "end": 6516.26, + "probability": 0.7462 + }, + { + "start": 6516.42, + "end": 6520.0, + "probability": 0.9896 + }, + { + "start": 6520.26, + "end": 6521.82, + "probability": 0.9878 + }, + { + "start": 6522.16, + "end": 6523.42, + "probability": 0.8647 + }, + { + "start": 6523.46, + "end": 6525.12, + "probability": 0.9232 + }, + { + "start": 6527.04, + "end": 6527.62, + "probability": 0.8492 + }, + { + "start": 6528.46, + "end": 6532.44, + "probability": 0.9874 + }, + { + "start": 6533.26, + "end": 6535.16, + "probability": 0.6417 + }, + { + "start": 6536.38, + "end": 6536.5, + "probability": 0.269 + }, + { + "start": 6537.86, + "end": 6541.7, + "probability": 0.9924 + }, + { + "start": 6541.7, + "end": 6546.56, + "probability": 0.9654 + }, + { + "start": 6547.1, + "end": 6548.3, + "probability": 0.8742 + }, + { + "start": 6548.42, + "end": 6549.28, + "probability": 0.9524 + }, + { + "start": 6549.44, + "end": 6554.18, + "probability": 0.9736 + }, + { + "start": 6555.44, + "end": 6560.52, + "probability": 0.9425 + }, + { + "start": 6560.84, + "end": 6565.23, + "probability": 0.8577 + }, + { + "start": 6565.92, + "end": 6566.88, + "probability": 0.7372 + }, + { + "start": 6566.88, + "end": 6568.68, + "probability": 0.9774 + }, + { + "start": 6568.94, + "end": 6571.14, + "probability": 0.9392 + }, + { + "start": 6571.3, + "end": 6571.5, + "probability": 0.8782 + }, + { + "start": 6571.58, + "end": 6574.08, + "probability": 0.9582 + }, + { + "start": 6574.16, + "end": 6576.04, + "probability": 0.9961 + }, + { + "start": 6576.22, + "end": 6576.92, + "probability": 0.6826 + }, + { + "start": 6578.08, + "end": 6580.56, + "probability": 0.9897 + }, + { + "start": 6580.64, + "end": 6581.42, + "probability": 0.8052 + }, + { + "start": 6581.58, + "end": 6582.84, + "probability": 0.5765 + }, + { + "start": 6583.0, + "end": 6584.73, + "probability": 0.8115 + }, + { + "start": 6585.26, + "end": 6587.62, + "probability": 0.8716 + }, + { + "start": 6587.8, + "end": 6590.52, + "probability": 0.9555 + }, + { + "start": 6591.76, + "end": 6594.06, + "probability": 0.5336 + }, + { + "start": 6594.9, + "end": 6595.64, + "probability": 0.8269 + }, + { + "start": 6596.66, + "end": 6598.44, + "probability": 0.9498 + }, + { + "start": 6599.26, + "end": 6602.16, + "probability": 0.9518 + }, + { + "start": 6602.66, + "end": 6604.06, + "probability": 0.8154 + }, + { + "start": 6605.88, + "end": 6607.74, + "probability": 0.6556 + }, + { + "start": 6608.52, + "end": 6613.08, + "probability": 0.9586 + }, + { + "start": 6613.4, + "end": 6614.74, + "probability": 0.8 + }, + { + "start": 6614.8, + "end": 6615.14, + "probability": 0.5833 + }, + { + "start": 6615.2, + "end": 6616.94, + "probability": 0.6792 + }, + { + "start": 6616.94, + "end": 6617.92, + "probability": 0.5289 + }, + { + "start": 6619.26, + "end": 6621.72, + "probability": 0.5497 + }, + { + "start": 6621.98, + "end": 6623.3, + "probability": 0.968 + }, + { + "start": 6624.34, + "end": 6625.63, + "probability": 0.9399 + }, + { + "start": 6626.42, + "end": 6629.77, + "probability": 0.9536 + }, + { + "start": 6631.18, + "end": 6632.66, + "probability": 0.7128 + }, + { + "start": 6632.94, + "end": 6634.62, + "probability": 0.9559 + }, + { + "start": 6637.64, + "end": 6640.76, + "probability": 0.9715 + }, + { + "start": 6640.8, + "end": 6643.42, + "probability": 0.9331 + }, + { + "start": 6643.96, + "end": 6646.88, + "probability": 0.7528 + }, + { + "start": 6647.64, + "end": 6650.94, + "probability": 0.9938 + }, + { + "start": 6651.02, + "end": 6651.66, + "probability": 0.5657 + }, + { + "start": 6651.8, + "end": 6651.9, + "probability": 0.3998 + }, + { + "start": 6652.02, + "end": 6652.4, + "probability": 0.7219 + }, + { + "start": 6653.14, + "end": 6654.4, + "probability": 0.9854 + }, + { + "start": 6656.74, + "end": 6661.22, + "probability": 0.7755 + }, + { + "start": 6661.28, + "end": 6663.2, + "probability": 0.9395 + }, + { + "start": 6663.44, + "end": 6665.22, + "probability": 0.937 + }, + { + "start": 6667.58, + "end": 6671.0, + "probability": 0.782 + }, + { + "start": 6671.68, + "end": 6673.98, + "probability": 0.9829 + }, + { + "start": 6674.18, + "end": 6677.1, + "probability": 0.9899 + }, + { + "start": 6678.62, + "end": 6679.8, + "probability": 0.7972 + }, + { + "start": 6680.3, + "end": 6682.44, + "probability": 0.6004 + }, + { + "start": 6683.38, + "end": 6685.46, + "probability": 0.9945 + }, + { + "start": 6685.68, + "end": 6686.5, + "probability": 0.819 + }, + { + "start": 6686.74, + "end": 6689.9, + "probability": 0.9796 + }, + { + "start": 6692.18, + "end": 6693.48, + "probability": 0.9817 + }, + { + "start": 6694.64, + "end": 6698.88, + "probability": 0.9884 + }, + { + "start": 6699.1, + "end": 6702.66, + "probability": 0.991 + }, + { + "start": 6703.72, + "end": 6705.36, + "probability": 0.7141 + }, + { + "start": 6706.85, + "end": 6712.5, + "probability": 0.9619 + }, + { + "start": 6713.48, + "end": 6715.5, + "probability": 0.958 + }, + { + "start": 6716.42, + "end": 6721.92, + "probability": 0.9927 + }, + { + "start": 6722.28, + "end": 6722.4, + "probability": 0.8569 + }, + { + "start": 6722.52, + "end": 6725.56, + "probability": 0.4847 + }, + { + "start": 6725.72, + "end": 6726.12, + "probability": 0.8073 + }, + { + "start": 6726.22, + "end": 6727.68, + "probability": 0.9329 + }, + { + "start": 6727.84, + "end": 6730.66, + "probability": 0.9726 + }, + { + "start": 6732.5, + "end": 6734.84, + "probability": 0.7198 + }, + { + "start": 6735.3, + "end": 6740.48, + "probability": 0.9736 + }, + { + "start": 6740.48, + "end": 6743.78, + "probability": 0.9836 + }, + { + "start": 6745.54, + "end": 6746.2, + "probability": 0.6009 + }, + { + "start": 6746.28, + "end": 6747.48, + "probability": 0.9556 + }, + { + "start": 6747.74, + "end": 6751.64, + "probability": 0.9973 + }, + { + "start": 6751.64, + "end": 6759.92, + "probability": 0.8232 + }, + { + "start": 6760.36, + "end": 6768.2, + "probability": 0.981 + }, + { + "start": 6768.38, + "end": 6769.85, + "probability": 0.9961 + }, + { + "start": 6773.64, + "end": 6773.8, + "probability": 0.1341 + }, + { + "start": 6773.92, + "end": 6775.76, + "probability": 0.9199 + }, + { + "start": 6775.86, + "end": 6777.5, + "probability": 0.9408 + }, + { + "start": 6777.72, + "end": 6781.7, + "probability": 0.8037 + }, + { + "start": 6782.86, + "end": 6783.0, + "probability": 0.4502 + }, + { + "start": 6783.0, + "end": 6784.18, + "probability": 0.5665 + }, + { + "start": 6784.18, + "end": 6786.76, + "probability": 0.7924 + }, + { + "start": 6786.92, + "end": 6788.28, + "probability": 0.9131 + }, + { + "start": 6788.42, + "end": 6791.92, + "probability": 0.542 + }, + { + "start": 6792.32, + "end": 6792.8, + "probability": 0.8337 + }, + { + "start": 6792.86, + "end": 6793.64, + "probability": 0.9373 + }, + { + "start": 6793.74, + "end": 6795.44, + "probability": 0.978 + }, + { + "start": 6795.62, + "end": 6796.66, + "probability": 0.7837 + }, + { + "start": 6797.14, + "end": 6801.92, + "probability": 0.8114 + }, + { + "start": 6802.18, + "end": 6803.14, + "probability": 0.4022 + }, + { + "start": 6803.68, + "end": 6804.48, + "probability": 0.3157 + }, + { + "start": 6804.8, + "end": 6806.28, + "probability": 0.8958 + }, + { + "start": 6806.48, + "end": 6808.98, + "probability": 0.0606 + }, + { + "start": 6809.64, + "end": 6810.48, + "probability": 0.549 + }, + { + "start": 6810.58, + "end": 6813.84, + "probability": 0.9795 + }, + { + "start": 6814.24, + "end": 6815.8, + "probability": 0.84 + }, + { + "start": 6816.02, + "end": 6818.42, + "probability": 0.8903 + }, + { + "start": 6818.5, + "end": 6819.69, + "probability": 0.8131 + }, + { + "start": 6819.88, + "end": 6823.24, + "probability": 0.8564 + }, + { + "start": 6824.46, + "end": 6825.96, + "probability": 0.8877 + }, + { + "start": 6826.76, + "end": 6828.36, + "probability": 0.9645 + }, + { + "start": 6828.38, + "end": 6830.46, + "probability": 0.0269 + }, + { + "start": 6830.9, + "end": 6833.0, + "probability": 0.9972 + }, + { + "start": 6834.16, + "end": 6834.74, + "probability": 0.5717 + }, + { + "start": 6835.04, + "end": 6835.16, + "probability": 0.6294 + }, + { + "start": 6835.24, + "end": 6836.31, + "probability": 0.9591 + }, + { + "start": 6836.44, + "end": 6840.4, + "probability": 0.882 + }, + { + "start": 6840.5, + "end": 6843.22, + "probability": 0.989 + }, + { + "start": 6843.8, + "end": 6844.52, + "probability": 0.7202 + }, + { + "start": 6844.7, + "end": 6846.88, + "probability": 0.984 + }, + { + "start": 6847.04, + "end": 6849.68, + "probability": 0.9912 + }, + { + "start": 6849.68, + "end": 6852.8, + "probability": 0.9933 + }, + { + "start": 6853.82, + "end": 6856.06, + "probability": 0.6543 + }, + { + "start": 6857.38, + "end": 6860.36, + "probability": 0.9736 + }, + { + "start": 6861.52, + "end": 6864.52, + "probability": 0.9927 + }, + { + "start": 6864.54, + "end": 6865.22, + "probability": 0.8223 + }, + { + "start": 6865.28, + "end": 6865.78, + "probability": 0.9944 + }, + { + "start": 6866.04, + "end": 6866.5, + "probability": 0.9918 + }, + { + "start": 6866.54, + "end": 6867.4, + "probability": 0.7795 + }, + { + "start": 6867.76, + "end": 6869.18, + "probability": 0.8652 + }, + { + "start": 6869.56, + "end": 6872.28, + "probability": 0.9711 + }, + { + "start": 6872.78, + "end": 6873.44, + "probability": 0.7694 + }, + { + "start": 6874.7, + "end": 6879.22, + "probability": 0.7397 + }, + { + "start": 6879.26, + "end": 6880.12, + "probability": 0.9461 + }, + { + "start": 6880.26, + "end": 6884.66, + "probability": 0.9602 + }, + { + "start": 6884.76, + "end": 6886.74, + "probability": 0.8341 + }, + { + "start": 6886.88, + "end": 6889.04, + "probability": 0.9565 + }, + { + "start": 6889.16, + "end": 6892.76, + "probability": 0.9142 + }, + { + "start": 6892.76, + "end": 6897.74, + "probability": 0.9651 + }, + { + "start": 6898.4, + "end": 6900.26, + "probability": 0.7539 + }, + { + "start": 6912.88, + "end": 6914.18, + "probability": 0.9014 + }, + { + "start": 6915.56, + "end": 6916.72, + "probability": 0.7885 + }, + { + "start": 6916.86, + "end": 6918.46, + "probability": 0.792 + }, + { + "start": 6918.9, + "end": 6920.46, + "probability": 0.6922 + }, + { + "start": 6920.58, + "end": 6925.78, + "probability": 0.9447 + }, + { + "start": 6926.08, + "end": 6927.38, + "probability": 0.4953 + }, + { + "start": 6927.5, + "end": 6929.76, + "probability": 0.9875 + }, + { + "start": 6930.88, + "end": 6933.96, + "probability": 0.5487 + }, + { + "start": 6934.22, + "end": 6935.42, + "probability": 0.9319 + }, + { + "start": 6935.64, + "end": 6937.78, + "probability": 0.9825 + }, + { + "start": 6938.47, + "end": 6941.6, + "probability": 0.9199 + }, + { + "start": 6942.36, + "end": 6944.4, + "probability": 0.1616 + }, + { + "start": 6944.56, + "end": 6946.87, + "probability": 0.8646 + }, + { + "start": 6947.4, + "end": 6948.88, + "probability": 0.8289 + }, + { + "start": 6949.12, + "end": 6949.75, + "probability": 0.3964 + }, + { + "start": 6950.14, + "end": 6951.62, + "probability": 0.6542 + }, + { + "start": 6952.33, + "end": 6956.92, + "probability": 0.9587 + }, + { + "start": 6957.52, + "end": 6960.22, + "probability": 0.182 + }, + { + "start": 6961.4, + "end": 6962.76, + "probability": 0.8885 + }, + { + "start": 6962.86, + "end": 6966.91, + "probability": 0.9032 + }, + { + "start": 6967.44, + "end": 6970.9, + "probability": 0.7279 + }, + { + "start": 6971.06, + "end": 6974.38, + "probability": 0.7418 + }, + { + "start": 6976.19, + "end": 6980.18, + "probability": 0.9667 + }, + { + "start": 6981.08, + "end": 6985.3, + "probability": 0.9382 + }, + { + "start": 7001.3, + "end": 7002.66, + "probability": 0.9136 + }, + { + "start": 7011.68, + "end": 7012.58, + "probability": 0.6122 + }, + { + "start": 7012.58, + "end": 7015.14, + "probability": 0.677 + }, + { + "start": 7015.2, + "end": 7016.68, + "probability": 0.6798 + }, + { + "start": 7018.18, + "end": 7022.82, + "probability": 0.9626 + }, + { + "start": 7022.82, + "end": 7026.66, + "probability": 0.9137 + }, + { + "start": 7027.6, + "end": 7034.62, + "probability": 0.7874 + }, + { + "start": 7034.8, + "end": 7036.98, + "probability": 0.547 + }, + { + "start": 7037.84, + "end": 7039.04, + "probability": 0.877 + }, + { + "start": 7040.16, + "end": 7041.2, + "probability": 0.0975 + }, + { + "start": 7042.42, + "end": 7046.6, + "probability": 0.8619 + }, + { + "start": 7046.7, + "end": 7052.47, + "probability": 0.9126 + }, + { + "start": 7053.3, + "end": 7055.3, + "probability": 0.8523 + }, + { + "start": 7056.18, + "end": 7057.74, + "probability": 0.9974 + }, + { + "start": 7058.44, + "end": 7061.38, + "probability": 0.9549 + }, + { + "start": 7062.62, + "end": 7068.92, + "probability": 0.9839 + }, + { + "start": 7069.8, + "end": 7070.22, + "probability": 0.8103 + }, + { + "start": 7071.52, + "end": 7077.3, + "probability": 0.9722 + }, + { + "start": 7078.16, + "end": 7079.1, + "probability": 0.9619 + }, + { + "start": 7079.54, + "end": 7080.85, + "probability": 0.9978 + }, + { + "start": 7081.04, + "end": 7084.74, + "probability": 0.9754 + }, + { + "start": 7086.36, + "end": 7092.76, + "probability": 0.9597 + }, + { + "start": 7093.84, + "end": 7098.14, + "probability": 0.9199 + }, + { + "start": 7099.62, + "end": 7104.3, + "probability": 0.8882 + }, + { + "start": 7105.38, + "end": 7107.06, + "probability": 0.9346 + }, + { + "start": 7108.56, + "end": 7110.08, + "probability": 0.9963 + }, + { + "start": 7111.3, + "end": 7112.6, + "probability": 0.8154 + }, + { + "start": 7113.44, + "end": 7115.28, + "probability": 0.9854 + }, + { + "start": 7116.31, + "end": 7118.96, + "probability": 0.9834 + }, + { + "start": 7119.69, + "end": 7122.28, + "probability": 0.8086 + }, + { + "start": 7122.4, + "end": 7126.42, + "probability": 0.9556 + }, + { + "start": 7127.46, + "end": 7128.26, + "probability": 0.7755 + }, + { + "start": 7129.22, + "end": 7132.6, + "probability": 0.6709 + }, + { + "start": 7134.1, + "end": 7135.6, + "probability": 0.9146 + }, + { + "start": 7136.28, + "end": 7137.24, + "probability": 0.9744 + }, + { + "start": 7137.28, + "end": 7143.42, + "probability": 0.9924 + }, + { + "start": 7144.4, + "end": 7146.44, + "probability": 0.884 + }, + { + "start": 7147.2, + "end": 7151.24, + "probability": 0.9928 + }, + { + "start": 7151.42, + "end": 7153.62, + "probability": 0.9327 + }, + { + "start": 7154.26, + "end": 7160.44, + "probability": 0.9829 + }, + { + "start": 7160.74, + "end": 7165.64, + "probability": 0.7736 + }, + { + "start": 7167.2, + "end": 7170.2, + "probability": 0.9365 + }, + { + "start": 7170.92, + "end": 7172.0, + "probability": 0.5872 + }, + { + "start": 7172.94, + "end": 7173.82, + "probability": 0.9512 + }, + { + "start": 7174.0, + "end": 7178.56, + "probability": 0.7537 + }, + { + "start": 7179.98, + "end": 7180.64, + "probability": 0.6621 + }, + { + "start": 7182.38, + "end": 7183.8, + "probability": 0.88 + }, + { + "start": 7184.82, + "end": 7186.8, + "probability": 0.9834 + }, + { + "start": 7188.44, + "end": 7191.58, + "probability": 0.9551 + }, + { + "start": 7192.52, + "end": 7195.04, + "probability": 0.5517 + }, + { + "start": 7197.26, + "end": 7201.02, + "probability": 0.9734 + }, + { + "start": 7201.58, + "end": 7204.52, + "probability": 0.9865 + }, + { + "start": 7206.2, + "end": 7209.6, + "probability": 0.9411 + }, + { + "start": 7210.8, + "end": 7214.48, + "probability": 0.6563 + }, + { + "start": 7216.12, + "end": 7216.8, + "probability": 0.6666 + }, + { + "start": 7217.46, + "end": 7221.34, + "probability": 0.8982 + }, + { + "start": 7223.0, + "end": 7229.02, + "probability": 0.9629 + }, + { + "start": 7229.54, + "end": 7230.24, + "probability": 0.513 + }, + { + "start": 7230.26, + "end": 7234.28, + "probability": 0.9937 + }, + { + "start": 7234.28, + "end": 7237.7, + "probability": 0.8866 + }, + { + "start": 7239.02, + "end": 7242.44, + "probability": 0.9473 + }, + { + "start": 7242.56, + "end": 7243.3, + "probability": 0.7949 + }, + { + "start": 7243.94, + "end": 7244.84, + "probability": 0.9321 + }, + { + "start": 7245.02, + "end": 7245.96, + "probability": 0.9036 + }, + { + "start": 7246.1, + "end": 7247.28, + "probability": 0.9946 + }, + { + "start": 7248.8, + "end": 7253.14, + "probability": 0.6509 + }, + { + "start": 7254.14, + "end": 7256.82, + "probability": 0.5741 + }, + { + "start": 7258.54, + "end": 7259.3, + "probability": 0.8617 + }, + { + "start": 7260.22, + "end": 7265.6, + "probability": 0.864 + }, + { + "start": 7266.62, + "end": 7267.76, + "probability": 0.8706 + }, + { + "start": 7269.52, + "end": 7273.38, + "probability": 0.8944 + }, + { + "start": 7278.84, + "end": 7281.92, + "probability": 0.3904 + }, + { + "start": 7283.26, + "end": 7284.24, + "probability": 0.9265 + }, + { + "start": 7286.83, + "end": 7292.38, + "probability": 0.9491 + }, + { + "start": 7293.46, + "end": 7299.68, + "probability": 0.908 + }, + { + "start": 7300.92, + "end": 7304.3, + "probability": 0.9934 + }, + { + "start": 7306.28, + "end": 7308.14, + "probability": 0.9805 + }, + { + "start": 7308.14, + "end": 7310.98, + "probability": 0.4927 + }, + { + "start": 7311.06, + "end": 7312.1, + "probability": 0.3813 + }, + { + "start": 7313.82, + "end": 7315.48, + "probability": 0.424 + }, + { + "start": 7316.42, + "end": 7318.04, + "probability": 0.0052 + }, + { + "start": 7318.04, + "end": 7320.18, + "probability": 0.9984 + }, + { + "start": 7321.32, + "end": 7323.58, + "probability": 0.998 + }, + { + "start": 7324.46, + "end": 7329.88, + "probability": 0.4994 + }, + { + "start": 7330.3, + "end": 7332.78, + "probability": 0.5793 + }, + { + "start": 7333.88, + "end": 7334.54, + "probability": 0.4907 + }, + { + "start": 7335.16, + "end": 7340.78, + "probability": 0.574 + }, + { + "start": 7341.64, + "end": 7345.3, + "probability": 0.8837 + }, + { + "start": 7345.42, + "end": 7345.96, + "probability": 0.5916 + }, + { + "start": 7345.96, + "end": 7347.04, + "probability": 0.6481 + }, + { + "start": 7347.44, + "end": 7351.72, + "probability": 0.9141 + }, + { + "start": 7351.78, + "end": 7353.44, + "probability": 0.9548 + }, + { + "start": 7355.26, + "end": 7360.82, + "probability": 0.9824 + }, + { + "start": 7361.82, + "end": 7365.46, + "probability": 0.9702 + }, + { + "start": 7367.16, + "end": 7367.58, + "probability": 0.5927 + }, + { + "start": 7368.74, + "end": 7370.78, + "probability": 0.9977 + }, + { + "start": 7371.54, + "end": 7375.28, + "probability": 0.9774 + }, + { + "start": 7375.28, + "end": 7379.74, + "probability": 0.915 + }, + { + "start": 7382.56, + "end": 7385.44, + "probability": 0.9346 + }, + { + "start": 7386.18, + "end": 7391.24, + "probability": 0.8039 + }, + { + "start": 7392.6, + "end": 7397.06, + "probability": 0.7262 + }, + { + "start": 7399.71, + "end": 7403.08, + "probability": 0.9655 + }, + { + "start": 7403.46, + "end": 7405.86, + "probability": 0.9856 + }, + { + "start": 7406.2, + "end": 7409.7, + "probability": 0.7675 + }, + { + "start": 7412.6, + "end": 7414.18, + "probability": 0.9963 + }, + { + "start": 7415.58, + "end": 7417.54, + "probability": 0.992 + }, + { + "start": 7418.68, + "end": 7420.26, + "probability": 0.7751 + }, + { + "start": 7420.82, + "end": 7423.6, + "probability": 0.792 + }, + { + "start": 7424.52, + "end": 7426.72, + "probability": 0.946 + }, + { + "start": 7428.18, + "end": 7429.98, + "probability": 0.8768 + }, + { + "start": 7430.56, + "end": 7434.62, + "probability": 0.9907 + }, + { + "start": 7435.5, + "end": 7440.46, + "probability": 0.9774 + }, + { + "start": 7441.9, + "end": 7445.78, + "probability": 0.6696 + }, + { + "start": 7445.9, + "end": 7451.58, + "probability": 0.7951 + }, + { + "start": 7451.6, + "end": 7455.89, + "probability": 0.8969 + }, + { + "start": 7456.94, + "end": 7457.71, + "probability": 0.071 + }, + { + "start": 7459.32, + "end": 7461.76, + "probability": 0.9941 + }, + { + "start": 7463.0, + "end": 7465.76, + "probability": 0.986 + }, + { + "start": 7465.8, + "end": 7466.32, + "probability": 0.8069 + }, + { + "start": 7466.96, + "end": 7467.88, + "probability": 0.9585 + }, + { + "start": 7468.12, + "end": 7468.86, + "probability": 0.612 + }, + { + "start": 7469.54, + "end": 7470.02, + "probability": 0.6556 + }, + { + "start": 7471.12, + "end": 7471.87, + "probability": 0.967 + }, + { + "start": 7472.7, + "end": 7474.22, + "probability": 0.907 + }, + { + "start": 7475.0, + "end": 7477.6, + "probability": 0.9723 + }, + { + "start": 7477.8, + "end": 7479.76, + "probability": 0.9321 + }, + { + "start": 7480.0, + "end": 7480.64, + "probability": 0.9536 + }, + { + "start": 7480.78, + "end": 7481.06, + "probability": 0.7069 + }, + { + "start": 7481.16, + "end": 7481.52, + "probability": 0.7459 + }, + { + "start": 7481.6, + "end": 7484.5, + "probability": 0.9012 + }, + { + "start": 7485.84, + "end": 7487.83, + "probability": 0.9949 + }, + { + "start": 7488.02, + "end": 7489.18, + "probability": 0.9609 + }, + { + "start": 7490.12, + "end": 7492.92, + "probability": 0.9622 + }, + { + "start": 7493.02, + "end": 7495.92, + "probability": 0.9688 + }, + { + "start": 7496.06, + "end": 7497.54, + "probability": 0.9883 + }, + { + "start": 7498.22, + "end": 7500.71, + "probability": 0.7664 + }, + { + "start": 7501.48, + "end": 7505.86, + "probability": 0.9928 + }, + { + "start": 7506.02, + "end": 7507.1, + "probability": 0.9812 + }, + { + "start": 7507.92, + "end": 7509.7, + "probability": 0.496 + }, + { + "start": 7509.94, + "end": 7512.46, + "probability": 0.9207 + }, + { + "start": 7513.14, + "end": 7513.42, + "probability": 0.6456 + }, + { + "start": 7514.16, + "end": 7517.86, + "probability": 0.8848 + }, + { + "start": 7518.6, + "end": 7520.88, + "probability": 0.987 + }, + { + "start": 7522.02, + "end": 7523.52, + "probability": 0.8197 + }, + { + "start": 7523.62, + "end": 7524.96, + "probability": 0.9214 + }, + { + "start": 7527.06, + "end": 7530.24, + "probability": 0.5955 + }, + { + "start": 7530.5, + "end": 7531.64, + "probability": 0.9961 + }, + { + "start": 7532.12, + "end": 7534.46, + "probability": 0.9207 + }, + { + "start": 7535.64, + "end": 7537.74, + "probability": 0.9821 + }, + { + "start": 7538.3, + "end": 7539.82, + "probability": 0.925 + }, + { + "start": 7539.88, + "end": 7541.58, + "probability": 0.9844 + }, + { + "start": 7542.72, + "end": 7543.8, + "probability": 0.5621 + }, + { + "start": 7544.18, + "end": 7549.56, + "probability": 0.9888 + }, + { + "start": 7550.86, + "end": 7554.78, + "probability": 0.7773 + }, + { + "start": 7555.7, + "end": 7558.52, + "probability": 0.7578 + }, + { + "start": 7559.1, + "end": 7559.34, + "probability": 0.3793 + }, + { + "start": 7560.94, + "end": 7563.18, + "probability": 0.9167 + }, + { + "start": 7563.7, + "end": 7565.06, + "probability": 0.9935 + }, + { + "start": 7565.14, + "end": 7565.36, + "probability": 0.6709 + }, + { + "start": 7565.94, + "end": 7567.98, + "probability": 0.9866 + }, + { + "start": 7568.0, + "end": 7570.86, + "probability": 0.9941 + }, + { + "start": 7583.14, + "end": 7585.2, + "probability": 0.6171 + }, + { + "start": 7585.8, + "end": 7590.2, + "probability": 0.6575 + }, + { + "start": 7590.9, + "end": 7593.36, + "probability": 0.9341 + }, + { + "start": 7593.76, + "end": 7597.58, + "probability": 0.8088 + }, + { + "start": 7598.22, + "end": 7599.1, + "probability": 0.669 + }, + { + "start": 7599.4, + "end": 7606.04, + "probability": 0.9541 + }, + { + "start": 7606.56, + "end": 7612.16, + "probability": 0.9575 + }, + { + "start": 7612.66, + "end": 7614.24, + "probability": 0.8975 + }, + { + "start": 7614.38, + "end": 7618.82, + "probability": 0.9953 + }, + { + "start": 7619.24, + "end": 7621.56, + "probability": 0.8506 + }, + { + "start": 7621.72, + "end": 7622.58, + "probability": 0.922 + }, + { + "start": 7622.68, + "end": 7623.2, + "probability": 0.9054 + }, + { + "start": 7623.26, + "end": 7624.1, + "probability": 0.9779 + }, + { + "start": 7624.2, + "end": 7624.84, + "probability": 0.9539 + }, + { + "start": 7625.12, + "end": 7626.78, + "probability": 0.9886 + }, + { + "start": 7626.96, + "end": 7628.78, + "probability": 0.9383 + }, + { + "start": 7629.64, + "end": 7634.64, + "probability": 0.9683 + }, + { + "start": 7635.12, + "end": 7638.4, + "probability": 0.7818 + }, + { + "start": 7638.9, + "end": 7640.78, + "probability": 0.9722 + }, + { + "start": 7641.32, + "end": 7645.12, + "probability": 0.8573 + }, + { + "start": 7646.2, + "end": 7646.62, + "probability": 0.6057 + }, + { + "start": 7647.16, + "end": 7648.32, + "probability": 0.8993 + }, + { + "start": 7648.92, + "end": 7651.22, + "probability": 0.9576 + }, + { + "start": 7651.46, + "end": 7651.8, + "probability": 0.8551 + }, + { + "start": 7652.18, + "end": 7653.1, + "probability": 0.9217 + }, + { + "start": 7653.54, + "end": 7657.04, + "probability": 0.9902 + }, + { + "start": 7657.04, + "end": 7663.18, + "probability": 0.8298 + }, + { + "start": 7663.6, + "end": 7665.8, + "probability": 0.9307 + }, + { + "start": 7666.47, + "end": 7671.2, + "probability": 0.9824 + }, + { + "start": 7671.7, + "end": 7674.72, + "probability": 0.9733 + }, + { + "start": 7675.16, + "end": 7677.94, + "probability": 0.9317 + }, + { + "start": 7678.32, + "end": 7683.3, + "probability": 0.9318 + }, + { + "start": 7684.02, + "end": 7687.66, + "probability": 0.8394 + }, + { + "start": 7688.18, + "end": 7692.32, + "probability": 0.7813 + }, + { + "start": 7692.46, + "end": 7694.94, + "probability": 0.9811 + }, + { + "start": 7695.82, + "end": 7699.6, + "probability": 0.7856 + }, + { + "start": 7700.6, + "end": 7702.66, + "probability": 0.7683 + }, + { + "start": 7702.76, + "end": 7706.26, + "probability": 0.9203 + }, + { + "start": 7707.22, + "end": 7710.6, + "probability": 0.9799 + }, + { + "start": 7716.64, + "end": 7718.12, + "probability": 0.0275 + }, + { + "start": 7718.74, + "end": 7719.3, + "probability": 0.0271 + }, + { + "start": 7720.1, + "end": 7721.48, + "probability": 0.4993 + }, + { + "start": 7722.32, + "end": 7726.5, + "probability": 0.1333 + }, + { + "start": 7730.78, + "end": 7732.5, + "probability": 0.0898 + }, + { + "start": 7733.52, + "end": 7736.92, + "probability": 0.0391 + }, + { + "start": 7737.9, + "end": 7739.22, + "probability": 0.4486 + }, + { + "start": 7745.67, + "end": 7746.69, + "probability": 0.0284 + }, + { + "start": 7749.04, + "end": 7754.22, + "probability": 0.8187 + }, + { + "start": 7754.8, + "end": 7758.75, + "probability": 0.8804 + }, + { + "start": 7761.72, + "end": 7762.18, + "probability": 0.038 + }, + { + "start": 7762.18, + "end": 7762.18, + "probability": 0.04 + }, + { + "start": 7762.18, + "end": 7765.28, + "probability": 0.2956 + }, + { + "start": 7765.34, + "end": 7767.05, + "probability": 0.7269 + }, + { + "start": 7767.58, + "end": 7769.44, + "probability": 0.9292 + }, + { + "start": 7769.5, + "end": 7770.36, + "probability": 0.717 + }, + { + "start": 7772.56, + "end": 7776.54, + "probability": 0.9749 + }, + { + "start": 7776.7, + "end": 7778.62, + "probability": 0.9202 + }, + { + "start": 7799.7, + "end": 7800.9, + "probability": 0.2864 + }, + { + "start": 7801.68, + "end": 7803.44, + "probability": 0.8276 + }, + { + "start": 7804.98, + "end": 7808.0, + "probability": 0.8313 + }, + { + "start": 7809.74, + "end": 7811.88, + "probability": 0.74 + }, + { + "start": 7813.9, + "end": 7814.98, + "probability": 0.9832 + }, + { + "start": 7816.14, + "end": 7823.28, + "probability": 0.985 + }, + { + "start": 7825.22, + "end": 7826.02, + "probability": 0.627 + }, + { + "start": 7827.04, + "end": 7829.34, + "probability": 0.9429 + }, + { + "start": 7830.64, + "end": 7832.2, + "probability": 0.9644 + }, + { + "start": 7833.82, + "end": 7835.68, + "probability": 0.9271 + }, + { + "start": 7836.98, + "end": 7839.4, + "probability": 0.858 + }, + { + "start": 7841.06, + "end": 7842.9, + "probability": 0.8264 + }, + { + "start": 7848.3, + "end": 7849.72, + "probability": 0.7665 + }, + { + "start": 7850.36, + "end": 7851.04, + "probability": 0.6443 + }, + { + "start": 7852.36, + "end": 7859.08, + "probability": 0.796 + }, + { + "start": 7859.62, + "end": 7862.22, + "probability": 0.9907 + }, + { + "start": 7863.56, + "end": 7864.9, + "probability": 0.7915 + }, + { + "start": 7864.98, + "end": 7866.36, + "probability": 0.8456 + }, + { + "start": 7866.5, + "end": 7866.94, + "probability": 0.5923 + }, + { + "start": 7867.04, + "end": 7868.1, + "probability": 0.5337 + }, + { + "start": 7869.94, + "end": 7875.4, + "probability": 0.9974 + }, + { + "start": 7876.7, + "end": 7879.95, + "probability": 0.9844 + }, + { + "start": 7881.4, + "end": 7887.4, + "probability": 0.9664 + }, + { + "start": 7889.08, + "end": 7889.56, + "probability": 0.6715 + }, + { + "start": 7890.76, + "end": 7896.42, + "probability": 0.8846 + }, + { + "start": 7897.06, + "end": 7897.9, + "probability": 0.9791 + }, + { + "start": 7900.36, + "end": 7903.82, + "probability": 0.995 + }, + { + "start": 7903.82, + "end": 7906.76, + "probability": 0.7753 + }, + { + "start": 7907.92, + "end": 7908.82, + "probability": 0.7419 + }, + { + "start": 7909.84, + "end": 7911.68, + "probability": 0.9411 + }, + { + "start": 7912.62, + "end": 7916.44, + "probability": 0.9833 + }, + { + "start": 7917.48, + "end": 7919.54, + "probability": 0.9646 + }, + { + "start": 7921.16, + "end": 7922.94, + "probability": 0.9736 + }, + { + "start": 7923.98, + "end": 7927.14, + "probability": 0.8629 + }, + { + "start": 7928.34, + "end": 7929.46, + "probability": 0.9252 + }, + { + "start": 7931.14, + "end": 7932.12, + "probability": 0.8111 + }, + { + "start": 7933.66, + "end": 7936.48, + "probability": 0.8388 + }, + { + "start": 7937.54, + "end": 7938.9, + "probability": 0.6148 + }, + { + "start": 7940.34, + "end": 7942.74, + "probability": 0.9955 + }, + { + "start": 7944.16, + "end": 7947.54, + "probability": 0.8625 + }, + { + "start": 7948.54, + "end": 7949.8, + "probability": 0.986 + }, + { + "start": 7951.12, + "end": 7951.72, + "probability": 0.9472 + }, + { + "start": 7952.68, + "end": 7953.78, + "probability": 0.9448 + }, + { + "start": 7954.36, + "end": 7955.18, + "probability": 0.7654 + }, + { + "start": 7956.82, + "end": 7960.66, + "probability": 0.8442 + }, + { + "start": 7960.66, + "end": 7961.36, + "probability": 0.6898 + }, + { + "start": 7961.5, + "end": 7964.34, + "probability": 0.9797 + }, + { + "start": 7964.5, + "end": 7970.66, + "probability": 0.9961 + }, + { + "start": 7971.1, + "end": 7971.76, + "probability": 0.4537 + }, + { + "start": 7972.52, + "end": 7976.37, + "probability": 0.958 + }, + { + "start": 7977.8, + "end": 7980.8, + "probability": 0.944 + }, + { + "start": 7981.7, + "end": 7982.82, + "probability": 0.9717 + }, + { + "start": 7983.6, + "end": 7986.2, + "probability": 0.9627 + }, + { + "start": 7987.66, + "end": 7988.42, + "probability": 0.9416 + }, + { + "start": 7989.04, + "end": 7990.22, + "probability": 0.6816 + }, + { + "start": 7991.2, + "end": 7993.24, + "probability": 0.9984 + }, + { + "start": 7993.34, + "end": 7996.0, + "probability": 0.7619 + }, + { + "start": 7997.0, + "end": 8004.5, + "probability": 0.982 + }, + { + "start": 8005.06, + "end": 8006.22, + "probability": 0.9547 + }, + { + "start": 8006.96, + "end": 8008.16, + "probability": 0.924 + }, + { + "start": 8008.2, + "end": 8011.48, + "probability": 0.9818 + }, + { + "start": 8012.84, + "end": 8014.14, + "probability": 0.9394 + }, + { + "start": 8015.76, + "end": 8015.98, + "probability": 0.6359 + }, + { + "start": 8017.04, + "end": 8019.76, + "probability": 0.9124 + }, + { + "start": 8020.36, + "end": 8023.69, + "probability": 0.9872 + }, + { + "start": 8024.06, + "end": 8027.94, + "probability": 0.981 + }, + { + "start": 8028.36, + "end": 8029.18, + "probability": 0.7459 + }, + { + "start": 8029.84, + "end": 8033.28, + "probability": 0.9878 + }, + { + "start": 8034.16, + "end": 8036.38, + "probability": 0.8088 + }, + { + "start": 8036.82, + "end": 8037.68, + "probability": 0.7494 + }, + { + "start": 8037.7, + "end": 8038.02, + "probability": 0.6268 + }, + { + "start": 8038.8, + "end": 8042.12, + "probability": 0.9904 + }, + { + "start": 8043.92, + "end": 8046.58, + "probability": 0.9622 + }, + { + "start": 8047.76, + "end": 8049.92, + "probability": 0.8848 + }, + { + "start": 8051.08, + "end": 8054.32, + "probability": 0.776 + }, + { + "start": 8054.86, + "end": 8055.98, + "probability": 0.9547 + }, + { + "start": 8056.1, + "end": 8057.32, + "probability": 0.9579 + }, + { + "start": 8057.46, + "end": 8058.08, + "probability": 0.8198 + }, + { + "start": 8058.32, + "end": 8060.28, + "probability": 0.9864 + }, + { + "start": 8060.92, + "end": 8061.94, + "probability": 0.924 + }, + { + "start": 8062.86, + "end": 8064.66, + "probability": 0.8309 + }, + { + "start": 8065.0, + "end": 8066.06, + "probability": 0.9268 + }, + { + "start": 8066.1, + "end": 8067.0, + "probability": 0.8383 + }, + { + "start": 8067.94, + "end": 8072.14, + "probability": 0.97 + }, + { + "start": 8072.5, + "end": 8075.08, + "probability": 0.8481 + }, + { + "start": 8075.96, + "end": 8079.28, + "probability": 0.9646 + }, + { + "start": 8080.42, + "end": 8083.58, + "probability": 0.87 + }, + { + "start": 8084.56, + "end": 8087.74, + "probability": 0.9014 + }, + { + "start": 8089.24, + "end": 8092.72, + "probability": 0.997 + }, + { + "start": 8093.0, + "end": 8093.68, + "probability": 0.8922 + }, + { + "start": 8093.82, + "end": 8098.44, + "probability": 0.9976 + }, + { + "start": 8099.98, + "end": 8101.48, + "probability": 0.7568 + }, + { + "start": 8101.88, + "end": 8103.12, + "probability": 0.9937 + }, + { + "start": 8104.5, + "end": 8106.16, + "probability": 0.7514 + }, + { + "start": 8106.2, + "end": 8110.28, + "probability": 0.9782 + }, + { + "start": 8110.28, + "end": 8114.72, + "probability": 0.9753 + }, + { + "start": 8115.46, + "end": 8116.65, + "probability": 0.9971 + }, + { + "start": 8118.2, + "end": 8121.15, + "probability": 0.842 + }, + { + "start": 8121.3, + "end": 8121.54, + "probability": 0.5993 + }, + { + "start": 8122.08, + "end": 8123.56, + "probability": 0.9771 + }, + { + "start": 8124.58, + "end": 8125.7, + "probability": 0.9961 + }, + { + "start": 8126.38, + "end": 8129.2, + "probability": 0.8669 + }, + { + "start": 8130.22, + "end": 8133.96, + "probability": 0.9091 + }, + { + "start": 8134.8, + "end": 8137.95, + "probability": 0.978 + }, + { + "start": 8138.92, + "end": 8140.68, + "probability": 0.9408 + }, + { + "start": 8141.58, + "end": 8142.18, + "probability": 0.8521 + }, + { + "start": 8142.4, + "end": 8147.56, + "probability": 0.8748 + }, + { + "start": 8148.56, + "end": 8152.52, + "probability": 0.9808 + }, + { + "start": 8153.3, + "end": 8154.14, + "probability": 0.7653 + }, + { + "start": 8155.4, + "end": 8160.14, + "probability": 0.833 + }, + { + "start": 8161.12, + "end": 8162.32, + "probability": 0.8759 + }, + { + "start": 8163.12, + "end": 8164.54, + "probability": 0.9397 + }, + { + "start": 8164.68, + "end": 8166.0, + "probability": 0.964 + }, + { + "start": 8166.06, + "end": 8167.14, + "probability": 0.9479 + }, + { + "start": 8167.32, + "end": 8167.82, + "probability": 0.8985 + }, + { + "start": 8168.0, + "end": 8168.84, + "probability": 0.8465 + }, + { + "start": 8169.7, + "end": 8172.5, + "probability": 0.8876 + }, + { + "start": 8173.72, + "end": 8176.28, + "probability": 0.9821 + }, + { + "start": 8176.28, + "end": 8179.38, + "probability": 0.7328 + }, + { + "start": 8180.1, + "end": 8184.34, + "probability": 0.9749 + }, + { + "start": 8185.02, + "end": 8187.88, + "probability": 0.6921 + }, + { + "start": 8188.7, + "end": 8192.94, + "probability": 0.9124 + }, + { + "start": 8193.74, + "end": 8200.08, + "probability": 0.6919 + }, + { + "start": 8201.62, + "end": 8203.9, + "probability": 0.9666 + }, + { + "start": 8203.9, + "end": 8207.4, + "probability": 0.9806 + }, + { + "start": 8208.1, + "end": 8210.68, + "probability": 0.7773 + }, + { + "start": 8212.22, + "end": 8213.62, + "probability": 0.9512 + }, + { + "start": 8213.88, + "end": 8221.06, + "probability": 0.9413 + }, + { + "start": 8223.36, + "end": 8227.6, + "probability": 0.9625 + }, + { + "start": 8227.78, + "end": 8228.9, + "probability": 0.7833 + }, + { + "start": 8229.82, + "end": 8234.04, + "probability": 0.9666 + }, + { + "start": 8235.12, + "end": 8235.7, + "probability": 0.7252 + }, + { + "start": 8235.96, + "end": 8237.44, + "probability": 0.7098 + }, + { + "start": 8237.48, + "end": 8240.74, + "probability": 0.9067 + }, + { + "start": 8241.24, + "end": 8243.54, + "probability": 0.9495 + }, + { + "start": 8243.55, + "end": 8246.1, + "probability": 0.995 + }, + { + "start": 8247.38, + "end": 8250.72, + "probability": 0.9213 + }, + { + "start": 8252.1, + "end": 8253.02, + "probability": 0.8217 + }, + { + "start": 8253.9, + "end": 8256.2, + "probability": 0.842 + }, + { + "start": 8256.34, + "end": 8258.08, + "probability": 0.8059 + }, + { + "start": 8259.04, + "end": 8261.54, + "probability": 0.8488 + }, + { + "start": 8263.12, + "end": 8269.18, + "probability": 0.9878 + }, + { + "start": 8269.68, + "end": 8271.94, + "probability": 0.8596 + }, + { + "start": 8273.06, + "end": 8275.6, + "probability": 0.9607 + }, + { + "start": 8276.24, + "end": 8279.98, + "probability": 0.9573 + }, + { + "start": 8280.72, + "end": 8283.92, + "probability": 0.9868 + }, + { + "start": 8284.44, + "end": 8288.64, + "probability": 0.9917 + }, + { + "start": 8290.0, + "end": 8291.7, + "probability": 0.9253 + }, + { + "start": 8292.3, + "end": 8293.38, + "probability": 0.8279 + }, + { + "start": 8293.42, + "end": 8295.2, + "probability": 0.9004 + }, + { + "start": 8295.46, + "end": 8296.24, + "probability": 0.9515 + }, + { + "start": 8296.32, + "end": 8296.86, + "probability": 0.7373 + }, + { + "start": 8297.04, + "end": 8299.1, + "probability": 0.8561 + }, + { + "start": 8299.92, + "end": 8302.18, + "probability": 0.863 + }, + { + "start": 8302.3, + "end": 8303.5, + "probability": 0.7993 + }, + { + "start": 8303.52, + "end": 8308.0, + "probability": 0.6072 + }, + { + "start": 8308.04, + "end": 8308.7, + "probability": 0.6844 + }, + { + "start": 8309.5, + "end": 8310.5, + "probability": 0.8199 + }, + { + "start": 8311.08, + "end": 8312.14, + "probability": 0.8368 + }, + { + "start": 8312.3, + "end": 8313.26, + "probability": 0.7639 + }, + { + "start": 8313.7, + "end": 8316.28, + "probability": 0.8577 + }, + { + "start": 8317.06, + "end": 8321.34, + "probability": 0.9795 + }, + { + "start": 8322.28, + "end": 8329.92, + "probability": 0.9712 + }, + { + "start": 8330.84, + "end": 8331.3, + "probability": 0.7237 + }, + { + "start": 8332.12, + "end": 8332.56, + "probability": 0.7681 + }, + { + "start": 8333.74, + "end": 8336.09, + "probability": 0.7866 + }, + { + "start": 8338.68, + "end": 8339.58, + "probability": 0.8857 + }, + { + "start": 8339.76, + "end": 8341.0, + "probability": 0.6002 + }, + { + "start": 8341.46, + "end": 8341.7, + "probability": 0.7044 + }, + { + "start": 8342.12, + "end": 8345.8, + "probability": 0.9904 + }, + { + "start": 8348.2, + "end": 8351.62, + "probability": 0.5761 + }, + { + "start": 8352.72, + "end": 8354.99, + "probability": 0.7492 + }, + { + "start": 8355.38, + "end": 8355.52, + "probability": 0.3881 + }, + { + "start": 8355.84, + "end": 8356.48, + "probability": 0.9123 + }, + { + "start": 8356.88, + "end": 8359.6, + "probability": 0.9491 + }, + { + "start": 8360.18, + "end": 8360.44, + "probability": 0.8727 + }, + { + "start": 8360.88, + "end": 8362.34, + "probability": 0.9702 + }, + { + "start": 8362.98, + "end": 8365.14, + "probability": 0.9197 + }, + { + "start": 8379.92, + "end": 8380.8, + "probability": 0.5251 + }, + { + "start": 8381.0, + "end": 8381.72, + "probability": 0.8385 + }, + { + "start": 8381.82, + "end": 8383.8, + "probability": 0.8169 + }, + { + "start": 8383.88, + "end": 8388.38, + "probability": 0.9627 + }, + { + "start": 8388.38, + "end": 8391.34, + "probability": 0.9835 + }, + { + "start": 8391.5, + "end": 8392.42, + "probability": 0.9637 + }, + { + "start": 8392.54, + "end": 8393.1, + "probability": 0.9905 + }, + { + "start": 8394.46, + "end": 8395.38, + "probability": 0.9537 + }, + { + "start": 8395.5, + "end": 8396.64, + "probability": 0.6776 + }, + { + "start": 8396.68, + "end": 8399.92, + "probability": 0.7492 + }, + { + "start": 8400.94, + "end": 8404.52, + "probability": 0.9642 + }, + { + "start": 8404.64, + "end": 8405.42, + "probability": 0.8534 + }, + { + "start": 8406.34, + "end": 8411.62, + "probability": 0.9937 + }, + { + "start": 8412.46, + "end": 8415.2, + "probability": 0.8914 + }, + { + "start": 8416.0, + "end": 8420.54, + "probability": 0.9796 + }, + { + "start": 8420.74, + "end": 8423.0, + "probability": 0.9958 + }, + { + "start": 8423.84, + "end": 8425.86, + "probability": 0.9685 + }, + { + "start": 8425.98, + "end": 8429.86, + "probability": 0.8158 + }, + { + "start": 8429.92, + "end": 8432.94, + "probability": 0.9274 + }, + { + "start": 8433.72, + "end": 8434.76, + "probability": 0.9679 + }, + { + "start": 8434.88, + "end": 8435.38, + "probability": 0.555 + }, + { + "start": 8435.42, + "end": 8437.3, + "probability": 0.969 + }, + { + "start": 8437.92, + "end": 8438.98, + "probability": 0.6913 + }, + { + "start": 8439.0, + "end": 8439.8, + "probability": 0.9138 + }, + { + "start": 8439.88, + "end": 8440.77, + "probability": 0.9688 + }, + { + "start": 8441.16, + "end": 8442.92, + "probability": 0.7268 + }, + { + "start": 8443.54, + "end": 8446.76, + "probability": 0.9852 + }, + { + "start": 8447.58, + "end": 8449.56, + "probability": 0.7374 + }, + { + "start": 8449.64, + "end": 8451.58, + "probability": 0.8865 + }, + { + "start": 8451.86, + "end": 8453.32, + "probability": 0.9001 + }, + { + "start": 8454.02, + "end": 8455.46, + "probability": 0.9432 + }, + { + "start": 8455.76, + "end": 8456.6, + "probability": 0.9149 + }, + { + "start": 8457.26, + "end": 8459.04, + "probability": 0.9601 + }, + { + "start": 8459.56, + "end": 8459.86, + "probability": 0.2716 + }, + { + "start": 8459.9, + "end": 8462.36, + "probability": 0.907 + }, + { + "start": 8462.52, + "end": 8465.14, + "probability": 0.9397 + }, + { + "start": 8465.2, + "end": 8465.7, + "probability": 0.7885 + }, + { + "start": 8466.54, + "end": 8468.32, + "probability": 0.876 + }, + { + "start": 8468.62, + "end": 8470.36, + "probability": 0.8521 + }, + { + "start": 8471.28, + "end": 8475.3, + "probability": 0.9344 + }, + { + "start": 8479.96, + "end": 8482.76, + "probability": 0.8587 + }, + { + "start": 8486.6, + "end": 8487.84, + "probability": 0.9047 + }, + { + "start": 8490.84, + "end": 8492.38, + "probability": 0.328 + }, + { + "start": 8493.34, + "end": 8494.18, + "probability": 0.0727 + }, + { + "start": 8495.56, + "end": 8497.02, + "probability": 0.2562 + }, + { + "start": 8497.84, + "end": 8499.02, + "probability": 0.6972 + }, + { + "start": 8499.2, + "end": 8500.16, + "probability": 0.9702 + }, + { + "start": 8500.28, + "end": 8505.28, + "probability": 0.8706 + }, + { + "start": 8505.28, + "end": 8510.12, + "probability": 0.9897 + }, + { + "start": 8510.2, + "end": 8511.1, + "probability": 0.9717 + }, + { + "start": 8511.22, + "end": 8512.66, + "probability": 0.916 + }, + { + "start": 8513.26, + "end": 8515.72, + "probability": 0.8312 + }, + { + "start": 8516.4, + "end": 8520.32, + "probability": 0.9415 + }, + { + "start": 8521.54, + "end": 8522.76, + "probability": 0.9736 + }, + { + "start": 8523.38, + "end": 8524.55, + "probability": 0.9328 + }, + { + "start": 8526.76, + "end": 8527.49, + "probability": 0.7998 + }, + { + "start": 8528.64, + "end": 8534.08, + "probability": 0.8916 + }, + { + "start": 8535.42, + "end": 8542.86, + "probability": 0.9676 + }, + { + "start": 8543.94, + "end": 8545.22, + "probability": 0.9767 + }, + { + "start": 8546.12, + "end": 8547.84, + "probability": 0.9018 + }, + { + "start": 8549.46, + "end": 8553.1, + "probability": 0.9976 + }, + { + "start": 8553.52, + "end": 8555.48, + "probability": 0.8194 + }, + { + "start": 8556.14, + "end": 8558.24, + "probability": 0.958 + }, + { + "start": 8558.38, + "end": 8562.42, + "probability": 0.9681 + }, + { + "start": 8563.46, + "end": 8564.16, + "probability": 0.9263 + }, + { + "start": 8565.64, + "end": 8569.94, + "probability": 0.998 + }, + { + "start": 8570.6, + "end": 8574.1, + "probability": 0.9062 + }, + { + "start": 8574.1, + "end": 8577.36, + "probability": 0.9689 + }, + { + "start": 8578.04, + "end": 8580.03, + "probability": 0.9473 + }, + { + "start": 8580.64, + "end": 8583.34, + "probability": 0.9956 + }, + { + "start": 8584.14, + "end": 8588.44, + "probability": 0.9954 + }, + { + "start": 8588.44, + "end": 8593.14, + "probability": 0.9677 + }, + { + "start": 8593.24, + "end": 8595.61, + "probability": 0.9956 + }, + { + "start": 8596.48, + "end": 8599.26, + "probability": 0.9989 + }, + { + "start": 8599.68, + "end": 8601.52, + "probability": 0.9841 + }, + { + "start": 8603.1, + "end": 8604.6, + "probability": 0.7334 + }, + { + "start": 8604.72, + "end": 8606.1, + "probability": 0.9814 + }, + { + "start": 8608.16, + "end": 8608.82, + "probability": 0.9824 + }, + { + "start": 8608.92, + "end": 8612.5, + "probability": 0.9591 + }, + { + "start": 8612.58, + "end": 8615.2, + "probability": 0.6489 + }, + { + "start": 8615.28, + "end": 8616.9, + "probability": 0.8617 + }, + { + "start": 8616.94, + "end": 8617.62, + "probability": 0.7123 + }, + { + "start": 8618.18, + "end": 8621.24, + "probability": 0.9329 + }, + { + "start": 8621.76, + "end": 8622.62, + "probability": 0.866 + }, + { + "start": 8623.28, + "end": 8627.12, + "probability": 0.6785 + }, + { + "start": 8627.78, + "end": 8634.26, + "probability": 0.9395 + }, + { + "start": 8634.58, + "end": 8637.54, + "probability": 0.6296 + }, + { + "start": 8638.82, + "end": 8639.95, + "probability": 0.9072 + }, + { + "start": 8641.8, + "end": 8643.22, + "probability": 0.9702 + }, + { + "start": 8643.78, + "end": 8645.58, + "probability": 0.9849 + }, + { + "start": 8646.5, + "end": 8651.98, + "probability": 0.9025 + }, + { + "start": 8653.42, + "end": 8654.33, + "probability": 0.9458 + }, + { + "start": 8655.62, + "end": 8658.1, + "probability": 0.9005 + }, + { + "start": 8659.0, + "end": 8661.92, + "probability": 0.9925 + }, + { + "start": 8662.72, + "end": 8665.56, + "probability": 0.8221 + }, + { + "start": 8666.22, + "end": 8666.7, + "probability": 0.4281 + }, + { + "start": 8666.78, + "end": 8667.38, + "probability": 0.955 + }, + { + "start": 8667.5, + "end": 8667.92, + "probability": 0.9518 + }, + { + "start": 8668.04, + "end": 8670.22, + "probability": 0.9337 + }, + { + "start": 8670.44, + "end": 8671.68, + "probability": 0.9546 + }, + { + "start": 8672.32, + "end": 8676.22, + "probability": 0.8871 + }, + { + "start": 8676.94, + "end": 8677.04, + "probability": 0.1227 + }, + { + "start": 8677.28, + "end": 8680.12, + "probability": 0.5937 + }, + { + "start": 8680.12, + "end": 8680.3, + "probability": 0.268 + }, + { + "start": 8680.46, + "end": 8680.58, + "probability": 0.4895 + }, + { + "start": 8680.58, + "end": 8683.28, + "probability": 0.9675 + }, + { + "start": 8683.88, + "end": 8686.48, + "probability": 0.8057 + }, + { + "start": 8686.9, + "end": 8688.06, + "probability": 0.8722 + }, + { + "start": 8688.4, + "end": 8691.74, + "probability": 0.6389 + }, + { + "start": 8691.84, + "end": 8692.5, + "probability": 0.6074 + }, + { + "start": 8692.98, + "end": 8694.58, + "probability": 0.8945 + }, + { + "start": 8694.74, + "end": 8699.54, + "probability": 0.9859 + }, + { + "start": 8699.86, + "end": 8701.58, + "probability": 0.742 + }, + { + "start": 8701.74, + "end": 8704.82, + "probability": 0.4859 + }, + { + "start": 8705.6, + "end": 8705.74, + "probability": 0.1473 + }, + { + "start": 8707.18, + "end": 8709.52, + "probability": 0.0196 + }, + { + "start": 8710.28, + "end": 8716.2, + "probability": 0.2093 + }, + { + "start": 8716.6, + "end": 8717.16, + "probability": 0.0137 + }, + { + "start": 8718.86, + "end": 8719.36, + "probability": 0.0494 + }, + { + "start": 8721.62, + "end": 8722.72, + "probability": 0.4721 + }, + { + "start": 8722.94, + "end": 8728.24, + "probability": 0.5405 + }, + { + "start": 8728.68, + "end": 8730.38, + "probability": 0.9207 + }, + { + "start": 8731.18, + "end": 8734.72, + "probability": 0.9385 + }, + { + "start": 8735.38, + "end": 8737.02, + "probability": 0.8065 + }, + { + "start": 8737.96, + "end": 8739.04, + "probability": 0.8721 + }, + { + "start": 8739.2, + "end": 8741.14, + "probability": 0.8608 + }, + { + "start": 8741.32, + "end": 8744.14, + "probability": 0.697 + }, + { + "start": 8745.04, + "end": 8745.9, + "probability": 0.979 + }, + { + "start": 8747.56, + "end": 8749.36, + "probability": 0.9705 + }, + { + "start": 8749.42, + "end": 8750.92, + "probability": 0.9795 + }, + { + "start": 8750.96, + "end": 8752.26, + "probability": 0.9977 + }, + { + "start": 8752.34, + "end": 8754.2, + "probability": 0.6704 + }, + { + "start": 8755.0, + "end": 8758.32, + "probability": 0.7335 + }, + { + "start": 8758.74, + "end": 8760.88, + "probability": 0.8651 + }, + { + "start": 8760.88, + "end": 8761.8, + "probability": 0.5219 + }, + { + "start": 8762.0, + "end": 8763.74, + "probability": 0.4047 + }, + { + "start": 8764.02, + "end": 8765.62, + "probability": 0.9244 + }, + { + "start": 8765.92, + "end": 8766.86, + "probability": 0.809 + }, + { + "start": 8778.8, + "end": 8782.48, + "probability": 0.499 + }, + { + "start": 8782.6, + "end": 8783.68, + "probability": 0.665 + }, + { + "start": 8783.94, + "end": 8785.36, + "probability": 0.6751 + }, + { + "start": 8785.56, + "end": 8788.3, + "probability": 0.9625 + }, + { + "start": 8789.08, + "end": 8790.98, + "probability": 0.9606 + }, + { + "start": 8791.38, + "end": 8792.71, + "probability": 0.9951 + }, + { + "start": 8793.78, + "end": 8795.84, + "probability": 0.8953 + }, + { + "start": 8796.02, + "end": 8798.52, + "probability": 0.7866 + }, + { + "start": 8798.6, + "end": 8799.12, + "probability": 0.5829 + }, + { + "start": 8799.44, + "end": 8799.56, + "probability": 0.6675 + }, + { + "start": 8800.34, + "end": 8801.76, + "probability": 0.4004 + }, + { + "start": 8802.38, + "end": 8805.31, + "probability": 0.3816 + }, + { + "start": 8805.8, + "end": 8807.58, + "probability": 0.3679 + }, + { + "start": 8811.62, + "end": 8812.94, + "probability": 0.5346 + }, + { + "start": 8812.94, + "end": 8813.82, + "probability": 0.6878 + }, + { + "start": 8814.12, + "end": 8818.76, + "probability": 0.98 + }, + { + "start": 8819.14, + "end": 8822.34, + "probability": 0.8639 + }, + { + "start": 8822.44, + "end": 8822.68, + "probability": 0.8729 + }, + { + "start": 8825.06, + "end": 8826.66, + "probability": 0.7899 + }, + { + "start": 8827.82, + "end": 8830.72, + "probability": 0.534 + }, + { + "start": 8830.92, + "end": 8831.66, + "probability": 0.5981 + }, + { + "start": 8831.66, + "end": 8831.66, + "probability": 0.7699 + }, + { + "start": 8831.66, + "end": 8832.94, + "probability": 0.4226 + }, + { + "start": 8833.02, + "end": 8834.22, + "probability": 0.5525 + }, + { + "start": 8834.24, + "end": 8835.94, + "probability": 0.0047 + }, + { + "start": 8835.94, + "end": 8840.3, + "probability": 0.615 + }, + { + "start": 8840.3, + "end": 8840.4, + "probability": 0.0516 + }, + { + "start": 8840.4, + "end": 8843.18, + "probability": 0.979 + }, + { + "start": 8843.66, + "end": 8844.18, + "probability": 0.8722 + }, + { + "start": 8844.26, + "end": 8845.48, + "probability": 0.8042 + }, + { + "start": 8846.32, + "end": 8848.25, + "probability": 0.9237 + }, + { + "start": 8849.34, + "end": 8851.7, + "probability": 0.8698 + }, + { + "start": 8851.74, + "end": 8852.64, + "probability": 0.5681 + }, + { + "start": 8852.78, + "end": 8853.64, + "probability": 0.9827 + }, + { + "start": 8853.9, + "end": 8855.14, + "probability": 0.9099 + }, + { + "start": 8855.18, + "end": 8856.0, + "probability": 0.9338 + }, + { + "start": 8857.4, + "end": 8860.78, + "probability": 0.4519 + }, + { + "start": 8875.74, + "end": 8879.35, + "probability": 0.1332 + }, + { + "start": 8880.1, + "end": 8880.7, + "probability": 0.0443 + }, + { + "start": 8881.62, + "end": 8882.06, + "probability": 0.0188 + }, + { + "start": 8884.2, + "end": 8884.48, + "probability": 0.0634 + }, + { + "start": 8884.48, + "end": 8884.48, + "probability": 0.2438 + }, + { + "start": 8884.48, + "end": 8884.48, + "probability": 0.0623 + }, + { + "start": 8884.48, + "end": 8884.48, + "probability": 0.0251 + }, + { + "start": 8884.48, + "end": 8885.82, + "probability": 0.5265 + }, + { + "start": 8886.32, + "end": 8890.48, + "probability": 0.8359 + }, + { + "start": 8890.48, + "end": 8893.42, + "probability": 0.6241 + }, + { + "start": 8893.52, + "end": 8894.88, + "probability": 0.7262 + }, + { + "start": 8902.0, + "end": 8903.54, + "probability": 0.1301 + }, + { + "start": 8905.78, + "end": 8909.56, + "probability": 0.8651 + }, + { + "start": 8910.24, + "end": 8910.6, + "probability": 0.3403 + }, + { + "start": 8911.52, + "end": 8914.98, + "probability": 0.9561 + }, + { + "start": 8916.02, + "end": 8916.42, + "probability": 0.6009 + }, + { + "start": 8917.42, + "end": 8917.58, + "probability": 0.1859 + }, + { + "start": 8917.58, + "end": 8920.26, + "probability": 0.1086 + }, + { + "start": 8920.26, + "end": 8920.66, + "probability": 0.0467 + }, + { + "start": 8920.82, + "end": 8925.98, + "probability": 0.9242 + }, + { + "start": 8926.7, + "end": 8930.24, + "probability": 0.8073 + }, + { + "start": 8930.46, + "end": 8931.98, + "probability": 0.822 + }, + { + "start": 8932.88, + "end": 8933.18, + "probability": 0.4362 + }, + { + "start": 8933.54, + "end": 8933.96, + "probability": 0.1678 + }, + { + "start": 8934.46, + "end": 8935.22, + "probability": 0.1654 + }, + { + "start": 8935.54, + "end": 8937.74, + "probability": 0.2136 + }, + { + "start": 8937.76, + "end": 8937.92, + "probability": 0.1459 + }, + { + "start": 8937.92, + "end": 8938.08, + "probability": 0.1127 + }, + { + "start": 8938.08, + "end": 8940.96, + "probability": 0.9341 + }, + { + "start": 8941.76, + "end": 8943.72, + "probability": 0.9761 + }, + { + "start": 8944.36, + "end": 8945.7, + "probability": 0.4254 + }, + { + "start": 8945.7, + "end": 8947.24, + "probability": 0.7861 + }, + { + "start": 8947.34, + "end": 8948.36, + "probability": 0.8446 + }, + { + "start": 8948.74, + "end": 8950.8, + "probability": 0.9612 + }, + { + "start": 8950.82, + "end": 8955.96, + "probability": 0.9827 + }, + { + "start": 8956.22, + "end": 8956.78, + "probability": 0.1172 + }, + { + "start": 8957.02, + "end": 8959.28, + "probability": 0.1544 + }, + { + "start": 8959.94, + "end": 8962.74, + "probability": 0.1143 + }, + { + "start": 8962.9, + "end": 8963.54, + "probability": 0.2045 + }, + { + "start": 8963.54, + "end": 8964.67, + "probability": 0.7689 + }, + { + "start": 8964.94, + "end": 8967.28, + "probability": 0.9969 + }, + { + "start": 8967.42, + "end": 8969.14, + "probability": 0.7598 + }, + { + "start": 8969.3, + "end": 8972.32, + "probability": 0.9713 + }, + { + "start": 8972.74, + "end": 8975.6, + "probability": 0.938 + }, + { + "start": 8975.6, + "end": 8976.86, + "probability": 0.5428 + }, + { + "start": 8977.34, + "end": 8977.34, + "probability": 0.363 + }, + { + "start": 8977.34, + "end": 8977.72, + "probability": 0.0985 + }, + { + "start": 8978.06, + "end": 8979.3, + "probability": 0.5828 + }, + { + "start": 8979.48, + "end": 8984.08, + "probability": 0.2627 + }, + { + "start": 8984.2, + "end": 8986.97, + "probability": 0.468 + }, + { + "start": 8987.34, + "end": 8988.78, + "probability": 0.5349 + }, + { + "start": 8989.26, + "end": 8990.48, + "probability": 0.0383 + }, + { + "start": 8990.76, + "end": 8990.76, + "probability": 0.0234 + }, + { + "start": 8990.76, + "end": 8993.46, + "probability": 0.516 + }, + { + "start": 8993.7, + "end": 8996.74, + "probability": 0.4283 + }, + { + "start": 8996.76, + "end": 9000.18, + "probability": 0.8053 + }, + { + "start": 9000.3, + "end": 9004.0, + "probability": 0.8009 + }, + { + "start": 9004.66, + "end": 9008.32, + "probability": 0.9632 + }, + { + "start": 9008.44, + "end": 9008.78, + "probability": 0.0194 + }, + { + "start": 9008.78, + "end": 9010.4, + "probability": 0.6424 + }, + { + "start": 9010.46, + "end": 9011.88, + "probability": 0.7263 + }, + { + "start": 9011.88, + "end": 9017.66, + "probability": 0.9362 + }, + { + "start": 9017.9, + "end": 9020.5, + "probability": 0.9447 + }, + { + "start": 9020.7, + "end": 9022.7, + "probability": 0.009 + }, + { + "start": 9023.26, + "end": 9023.6, + "probability": 0.2438 + }, + { + "start": 9023.6, + "end": 9026.84, + "probability": 0.4185 + }, + { + "start": 9027.46, + "end": 9027.52, + "probability": 0.0461 + }, + { + "start": 9027.52, + "end": 9027.52, + "probability": 0.042 + }, + { + "start": 9027.52, + "end": 9027.64, + "probability": 0.3625 + }, + { + "start": 9027.68, + "end": 9028.46, + "probability": 0.7387 + }, + { + "start": 9028.64, + "end": 9029.6, + "probability": 0.6934 + }, + { + "start": 9029.7, + "end": 9030.58, + "probability": 0.3732 + }, + { + "start": 9030.76, + "end": 9032.4, + "probability": 0.9325 + }, + { + "start": 9034.42, + "end": 9036.28, + "probability": 0.431 + }, + { + "start": 9036.46, + "end": 9037.81, + "probability": 0.2038 + }, + { + "start": 9038.2, + "end": 9039.38, + "probability": 0.06 + }, + { + "start": 9039.62, + "end": 9040.12, + "probability": 0.2507 + }, + { + "start": 9040.12, + "end": 9041.0, + "probability": 0.696 + }, + { + "start": 9041.14, + "end": 9046.6, + "probability": 0.9791 + }, + { + "start": 9047.4, + "end": 9047.9, + "probability": 0.6824 + }, + { + "start": 9048.02, + "end": 9049.3, + "probability": 0.7893 + }, + { + "start": 9049.34, + "end": 9050.3, + "probability": 0.9655 + }, + { + "start": 9050.36, + "end": 9054.68, + "probability": 0.9398 + }, + { + "start": 9055.02, + "end": 9057.46, + "probability": 0.8075 + }, + { + "start": 9058.9, + "end": 9060.26, + "probability": 0.7066 + }, + { + "start": 9062.96, + "end": 9063.3, + "probability": 0.1677 + }, + { + "start": 9063.3, + "end": 9063.3, + "probability": 0.0362 + }, + { + "start": 9063.3, + "end": 9065.58, + "probability": 0.1862 + }, + { + "start": 9069.04, + "end": 9072.4, + "probability": 0.8719 + }, + { + "start": 9073.64, + "end": 9076.62, + "probability": 0.8981 + }, + { + "start": 9076.9, + "end": 9080.44, + "probability": 0.9769 + }, + { + "start": 9081.16, + "end": 9084.12, + "probability": 0.9905 + }, + { + "start": 9084.18, + "end": 9084.32, + "probability": 0.873 + }, + { + "start": 9094.82, + "end": 9098.02, + "probability": 0.6603 + }, + { + "start": 9099.08, + "end": 9104.96, + "probability": 0.8826 + }, + { + "start": 9104.96, + "end": 9109.62, + "probability": 0.9788 + }, + { + "start": 9110.44, + "end": 9112.2, + "probability": 0.9457 + }, + { + "start": 9112.58, + "end": 9116.82, + "probability": 0.9552 + }, + { + "start": 9116.96, + "end": 9118.18, + "probability": 0.666 + }, + { + "start": 9118.72, + "end": 9119.46, + "probability": 0.7085 + }, + { + "start": 9119.62, + "end": 9122.22, + "probability": 0.9531 + }, + { + "start": 9122.72, + "end": 9125.76, + "probability": 0.9307 + }, + { + "start": 9126.18, + "end": 9131.04, + "probability": 0.9879 + }, + { + "start": 9132.2, + "end": 9137.38, + "probability": 0.9669 + }, + { + "start": 9138.22, + "end": 9139.02, + "probability": 0.767 + }, + { + "start": 9139.6, + "end": 9143.72, + "probability": 0.9839 + }, + { + "start": 9144.78, + "end": 9150.08, + "probability": 0.9272 + }, + { + "start": 9151.3, + "end": 9155.96, + "probability": 0.9983 + }, + { + "start": 9156.64, + "end": 9157.24, + "probability": 0.4173 + }, + { + "start": 9157.34, + "end": 9165.42, + "probability": 0.9749 + }, + { + "start": 9166.04, + "end": 9171.44, + "probability": 0.8967 + }, + { + "start": 9172.02, + "end": 9175.54, + "probability": 0.7268 + }, + { + "start": 9177.0, + "end": 9182.38, + "probability": 0.9634 + }, + { + "start": 9182.38, + "end": 9185.36, + "probability": 0.989 + }, + { + "start": 9186.04, + "end": 9191.38, + "probability": 0.9779 + }, + { + "start": 9191.6, + "end": 9194.7, + "probability": 0.9793 + }, + { + "start": 9194.82, + "end": 9198.22, + "probability": 0.9692 + }, + { + "start": 9198.64, + "end": 9199.82, + "probability": 0.8264 + }, + { + "start": 9200.28, + "end": 9203.58, + "probability": 0.7049 + }, + { + "start": 9204.04, + "end": 9206.26, + "probability": 0.942 + }, + { + "start": 9206.36, + "end": 9207.48, + "probability": 0.9443 + }, + { + "start": 9207.92, + "end": 9210.88, + "probability": 0.9924 + }, + { + "start": 9211.54, + "end": 9213.52, + "probability": 0.9722 + }, + { + "start": 9213.6, + "end": 9220.24, + "probability": 0.9652 + }, + { + "start": 9221.88, + "end": 9224.56, + "probability": 0.888 + }, + { + "start": 9224.64, + "end": 9226.04, + "probability": 0.5313 + }, + { + "start": 9226.14, + "end": 9229.3, + "probability": 0.9759 + }, + { + "start": 9229.38, + "end": 9230.2, + "probability": 0.8642 + }, + { + "start": 9230.36, + "end": 9230.66, + "probability": 0.632 + }, + { + "start": 9232.04, + "end": 9237.14, + "probability": 0.9956 + }, + { + "start": 9237.14, + "end": 9243.04, + "probability": 0.9879 + }, + { + "start": 9244.64, + "end": 9248.76, + "probability": 0.9961 + }, + { + "start": 9250.75, + "end": 9252.1, + "probability": 0.0305 + }, + { + "start": 9252.1, + "end": 9254.86, + "probability": 0.6249 + }, + { + "start": 9256.22, + "end": 9261.2, + "probability": 0.9951 + }, + { + "start": 9261.32, + "end": 9263.0, + "probability": 0.854 + }, + { + "start": 9263.7, + "end": 9264.47, + "probability": 0.9868 + }, + { + "start": 9264.76, + "end": 9267.72, + "probability": 0.9916 + }, + { + "start": 9268.4, + "end": 9269.22, + "probability": 0.968 + }, + { + "start": 9269.74, + "end": 9273.6, + "probability": 0.9972 + }, + { + "start": 9274.26, + "end": 9277.96, + "probability": 0.9792 + }, + { + "start": 9278.06, + "end": 9282.92, + "probability": 0.9966 + }, + { + "start": 9283.3, + "end": 9287.48, + "probability": 0.9888 + }, + { + "start": 9287.98, + "end": 9289.94, + "probability": 0.9857 + }, + { + "start": 9290.34, + "end": 9292.04, + "probability": 0.9714 + }, + { + "start": 9293.88, + "end": 9295.46, + "probability": 0.9623 + }, + { + "start": 9295.64, + "end": 9301.58, + "probability": 0.9116 + }, + { + "start": 9302.12, + "end": 9303.21, + "probability": 0.9929 + }, + { + "start": 9304.16, + "end": 9305.94, + "probability": 0.9951 + }, + { + "start": 9306.02, + "end": 9308.7, + "probability": 0.9946 + }, + { + "start": 9309.12, + "end": 9311.76, + "probability": 0.9958 + }, + { + "start": 9312.18, + "end": 9312.76, + "probability": 0.965 + }, + { + "start": 9312.86, + "end": 9313.46, + "probability": 0.9779 + }, + { + "start": 9313.56, + "end": 9314.62, + "probability": 0.9674 + }, + { + "start": 9315.0, + "end": 9316.78, + "probability": 0.8696 + }, + { + "start": 9317.54, + "end": 9320.74, + "probability": 0.9368 + }, + { + "start": 9321.16, + "end": 9322.76, + "probability": 0.9474 + }, + { + "start": 9323.24, + "end": 9328.54, + "probability": 0.9858 + }, + { + "start": 9329.16, + "end": 9332.42, + "probability": 0.9437 + }, + { + "start": 9333.28, + "end": 9336.36, + "probability": 0.9893 + }, + { + "start": 9336.9, + "end": 9340.28, + "probability": 0.9973 + }, + { + "start": 9340.9, + "end": 9342.58, + "probability": 0.9888 + }, + { + "start": 9343.08, + "end": 9345.62, + "probability": 0.9961 + }, + { + "start": 9345.62, + "end": 9348.16, + "probability": 0.997 + }, + { + "start": 9348.72, + "end": 9350.92, + "probability": 0.9897 + }, + { + "start": 9350.92, + "end": 9354.9, + "probability": 0.9392 + }, + { + "start": 9355.54, + "end": 9357.74, + "probability": 0.9983 + }, + { + "start": 9358.32, + "end": 9362.26, + "probability": 0.998 + }, + { + "start": 9362.38, + "end": 9362.58, + "probability": 0.7944 + }, + { + "start": 9362.68, + "end": 9364.02, + "probability": 0.9726 + }, + { + "start": 9364.2, + "end": 9364.68, + "probability": 0.3054 + }, + { + "start": 9365.26, + "end": 9366.06, + "probability": 0.7207 + }, + { + "start": 9366.24, + "end": 9367.12, + "probability": 0.9359 + }, + { + "start": 9367.34, + "end": 9368.12, + "probability": 0.9591 + }, + { + "start": 9368.24, + "end": 9369.28, + "probability": 0.8792 + }, + { + "start": 9369.58, + "end": 9370.2, + "probability": 0.9281 + }, + { + "start": 9370.26, + "end": 9371.04, + "probability": 0.9921 + }, + { + "start": 9371.12, + "end": 9371.76, + "probability": 0.7848 + }, + { + "start": 9372.2, + "end": 9375.2, + "probability": 0.9967 + }, + { + "start": 9375.2, + "end": 9378.58, + "probability": 0.9971 + }, + { + "start": 9378.96, + "end": 9380.02, + "probability": 0.987 + }, + { + "start": 9380.66, + "end": 9382.3, + "probability": 0.9119 + }, + { + "start": 9382.36, + "end": 9386.18, + "probability": 0.9941 + }, + { + "start": 9386.26, + "end": 9387.26, + "probability": 0.9028 + }, + { + "start": 9388.13, + "end": 9390.63, + "probability": 0.7786 + }, + { + "start": 9390.72, + "end": 9391.2, + "probability": 0.7664 + }, + { + "start": 9391.32, + "end": 9391.98, + "probability": 0.8092 + }, + { + "start": 9392.28, + "end": 9397.76, + "probability": 0.9911 + }, + { + "start": 9398.24, + "end": 9398.42, + "probability": 0.4796 + }, + { + "start": 9398.48, + "end": 9400.86, + "probability": 0.7806 + }, + { + "start": 9400.88, + "end": 9402.86, + "probability": 0.873 + }, + { + "start": 9402.86, + "end": 9402.88, + "probability": 0.1588 + }, + { + "start": 9402.88, + "end": 9404.5, + "probability": 0.9644 + }, + { + "start": 9404.66, + "end": 9405.64, + "probability": 0.9971 + }, + { + "start": 9406.22, + "end": 9406.88, + "probability": 0.5141 + }, + { + "start": 9410.34, + "end": 9412.5, + "probability": 0.2171 + }, + { + "start": 9412.5, + "end": 9413.18, + "probability": 0.0795 + }, + { + "start": 9413.34, + "end": 9417.22, + "probability": 0.2634 + }, + { + "start": 9418.18, + "end": 9418.3, + "probability": 0.0448 + }, + { + "start": 9418.44, + "end": 9421.68, + "probability": 0.9655 + }, + { + "start": 9422.28, + "end": 9424.58, + "probability": 0.8403 + }, + { + "start": 9425.54, + "end": 9426.0, + "probability": 0.0616 + }, + { + "start": 9426.0, + "end": 9426.66, + "probability": 0.6755 + }, + { + "start": 9426.9, + "end": 9430.24, + "probability": 0.8986 + }, + { + "start": 9432.12, + "end": 9435.1, + "probability": 0.9761 + }, + { + "start": 9435.82, + "end": 9437.3, + "probability": 0.5578 + }, + { + "start": 9437.52, + "end": 9442.7, + "probability": 0.9828 + }, + { + "start": 9443.1, + "end": 9444.7, + "probability": 0.9805 + }, + { + "start": 9445.32, + "end": 9446.3, + "probability": 0.7943 + }, + { + "start": 9446.48, + "end": 9451.2, + "probability": 0.9737 + }, + { + "start": 9451.74, + "end": 9454.56, + "probability": 0.5975 + }, + { + "start": 9454.82, + "end": 9457.38, + "probability": 0.352 + }, + { + "start": 9457.38, + "end": 9458.2, + "probability": 0.5314 + }, + { + "start": 9458.2, + "end": 9458.7, + "probability": 0.3087 + }, + { + "start": 9459.0, + "end": 9460.34, + "probability": 0.9196 + }, + { + "start": 9461.02, + "end": 9465.04, + "probability": 0.3841 + }, + { + "start": 9465.2, + "end": 9467.24, + "probability": 0.5936 + }, + { + "start": 9467.7, + "end": 9468.72, + "probability": 0.189 + }, + { + "start": 9468.89, + "end": 9469.66, + "probability": 0.16 + }, + { + "start": 9469.96, + "end": 9472.98, + "probability": 0.7448 + }, + { + "start": 9473.1, + "end": 9474.64, + "probability": 0.8185 + }, + { + "start": 9475.04, + "end": 9475.68, + "probability": 0.8312 + }, + { + "start": 9475.74, + "end": 9475.9, + "probability": 0.8389 + }, + { + "start": 9476.02, + "end": 9478.5, + "probability": 0.8799 + }, + { + "start": 9478.76, + "end": 9480.78, + "probability": 0.9774 + }, + { + "start": 9481.58, + "end": 9484.8, + "probability": 0.9035 + }, + { + "start": 9485.32, + "end": 9486.28, + "probability": 0.8898 + }, + { + "start": 9486.38, + "end": 9487.46, + "probability": 0.9922 + }, + { + "start": 9488.4, + "end": 9489.66, + "probability": 0.2986 + }, + { + "start": 9490.9, + "end": 9494.7, + "probability": 0.8354 + }, + { + "start": 9495.4, + "end": 9496.82, + "probability": 0.9137 + }, + { + "start": 9497.0, + "end": 9500.07, + "probability": 0.8413 + }, + { + "start": 9500.38, + "end": 9501.08, + "probability": 0.9312 + }, + { + "start": 9501.88, + "end": 9503.02, + "probability": 0.9589 + }, + { + "start": 9503.68, + "end": 9506.9, + "probability": 0.9792 + }, + { + "start": 9507.02, + "end": 9507.82, + "probability": 0.8457 + }, + { + "start": 9507.94, + "end": 9509.62, + "probability": 0.8053 + }, + { + "start": 9509.8, + "end": 9511.16, + "probability": 0.9404 + }, + { + "start": 9511.44, + "end": 9515.98, + "probability": 0.9984 + }, + { + "start": 9516.24, + "end": 9519.17, + "probability": 0.9982 + }, + { + "start": 9519.64, + "end": 9521.16, + "probability": 0.9657 + }, + { + "start": 9521.32, + "end": 9522.6, + "probability": 0.9586 + }, + { + "start": 9523.38, + "end": 9527.28, + "probability": 0.929 + }, + { + "start": 9527.9, + "end": 9531.42, + "probability": 0.9344 + }, + { + "start": 9531.52, + "end": 9533.2, + "probability": 0.9907 + }, + { + "start": 9533.72, + "end": 9537.91, + "probability": 0.9969 + }, + { + "start": 9538.3, + "end": 9538.98, + "probability": 0.8118 + }, + { + "start": 9539.12, + "end": 9542.14, + "probability": 0.9788 + }, + { + "start": 9542.4, + "end": 9544.94, + "probability": 0.9778 + }, + { + "start": 9544.94, + "end": 9547.44, + "probability": 0.9691 + }, + { + "start": 9548.2, + "end": 9550.72, + "probability": 0.9724 + }, + { + "start": 9550.78, + "end": 9552.02, + "probability": 0.9944 + }, + { + "start": 9552.48, + "end": 9554.22, + "probability": 0.8074 + }, + { + "start": 9554.8, + "end": 9558.28, + "probability": 0.9839 + }, + { + "start": 9558.74, + "end": 9561.28, + "probability": 0.8688 + }, + { + "start": 9561.82, + "end": 9564.48, + "probability": 0.9561 + }, + { + "start": 9564.6, + "end": 9566.0, + "probability": 0.9725 + }, + { + "start": 9566.62, + "end": 9568.36, + "probability": 0.9886 + }, + { + "start": 9568.76, + "end": 9569.96, + "probability": 0.9235 + }, + { + "start": 9570.76, + "end": 9574.54, + "probability": 0.9854 + }, + { + "start": 9574.62, + "end": 9575.08, + "probability": 0.886 + }, + { + "start": 9575.2, + "end": 9575.5, + "probability": 0.8302 + }, + { + "start": 9575.62, + "end": 9577.14, + "probability": 0.7618 + }, + { + "start": 9577.52, + "end": 9579.98, + "probability": 0.9866 + }, + { + "start": 9580.6, + "end": 9584.64, + "probability": 0.8823 + }, + { + "start": 9585.14, + "end": 9587.0, + "probability": 0.9009 + }, + { + "start": 9587.48, + "end": 9588.0, + "probability": 0.861 + }, + { + "start": 9588.52, + "end": 9594.04, + "probability": 0.9702 + }, + { + "start": 9594.36, + "end": 9596.72, + "probability": 0.991 + }, + { + "start": 9596.72, + "end": 9600.02, + "probability": 0.8752 + }, + { + "start": 9600.44, + "end": 9601.86, + "probability": 0.9305 + }, + { + "start": 9602.68, + "end": 9603.32, + "probability": 0.892 + }, + { + "start": 9603.8, + "end": 9605.78, + "probability": 0.9957 + }, + { + "start": 9606.2, + "end": 9607.88, + "probability": 0.9971 + }, + { + "start": 9608.24, + "end": 9611.6, + "probability": 0.9318 + }, + { + "start": 9612.02, + "end": 9612.44, + "probability": 0.4578 + }, + { + "start": 9612.5, + "end": 9617.68, + "probability": 0.9865 + }, + { + "start": 9618.06, + "end": 9618.64, + "probability": 0.748 + }, + { + "start": 9619.3, + "end": 9621.08, + "probability": 0.7217 + }, + { + "start": 9621.26, + "end": 9623.88, + "probability": 0.9539 + }, + { + "start": 9637.16, + "end": 9638.1, + "probability": 0.4367 + }, + { + "start": 9638.24, + "end": 9638.76, + "probability": 0.6665 + }, + { + "start": 9639.06, + "end": 9642.26, + "probability": 0.9811 + }, + { + "start": 9642.9, + "end": 9644.94, + "probability": 0.738 + }, + { + "start": 9645.0, + "end": 9646.24, + "probability": 0.9276 + }, + { + "start": 9647.24, + "end": 9648.82, + "probability": 0.9712 + }, + { + "start": 9648.94, + "end": 9654.02, + "probability": 0.6648 + }, + { + "start": 9654.74, + "end": 9656.25, + "probability": 0.7993 + }, + { + "start": 9656.96, + "end": 9657.48, + "probability": 0.8881 + }, + { + "start": 9657.5, + "end": 9658.84, + "probability": 0.9328 + }, + { + "start": 9658.96, + "end": 9660.0, + "probability": 0.9016 + }, + { + "start": 9660.12, + "end": 9664.1, + "probability": 0.9183 + }, + { + "start": 9665.24, + "end": 9665.8, + "probability": 0.3402 + }, + { + "start": 9666.44, + "end": 9667.54, + "probability": 0.8735 + }, + { + "start": 9667.58, + "end": 9668.9, + "probability": 0.8527 + }, + { + "start": 9669.32, + "end": 9670.28, + "probability": 0.7617 + }, + { + "start": 9670.34, + "end": 9670.64, + "probability": 0.7804 + }, + { + "start": 9671.68, + "end": 9672.7, + "probability": 0.6383 + }, + { + "start": 9673.02, + "end": 9679.38, + "probability": 0.6849 + }, + { + "start": 9679.4, + "end": 9680.6, + "probability": 0.9368 + }, + { + "start": 9680.8, + "end": 9681.32, + "probability": 0.2984 + }, + { + "start": 9681.38, + "end": 9682.96, + "probability": 0.9691 + }, + { + "start": 9686.02, + "end": 9688.04, + "probability": 0.7525 + }, + { + "start": 9688.52, + "end": 9691.22, + "probability": 0.9951 + }, + { + "start": 9691.22, + "end": 9693.58, + "probability": 0.998 + }, + { + "start": 9694.3, + "end": 9697.4, + "probability": 0.914 + }, + { + "start": 9698.8, + "end": 9700.48, + "probability": 0.8896 + }, + { + "start": 9702.52, + "end": 9708.48, + "probability": 0.8218 + }, + { + "start": 9709.66, + "end": 9713.64, + "probability": 0.5849 + }, + { + "start": 9713.88, + "end": 9716.08, + "probability": 0.8093 + }, + { + "start": 9716.26, + "end": 9717.0, + "probability": 0.8799 + }, + { + "start": 9717.08, + "end": 9719.32, + "probability": 0.9763 + }, + { + "start": 9721.68, + "end": 9727.48, + "probability": 0.0472 + }, + { + "start": 9730.98, + "end": 9731.38, + "probability": 0.036 + }, + { + "start": 9731.38, + "end": 9731.5, + "probability": 0.268 + }, + { + "start": 9731.5, + "end": 9731.5, + "probability": 0.0472 + }, + { + "start": 9731.5, + "end": 9731.5, + "probability": 0.0513 + }, + { + "start": 9731.5, + "end": 9731.94, + "probability": 0.4118 + }, + { + "start": 9732.24, + "end": 9733.04, + "probability": 0.1684 + }, + { + "start": 9734.34, + "end": 9736.84, + "probability": 0.895 + }, + { + "start": 9740.98, + "end": 9744.94, + "probability": 0.9844 + }, + { + "start": 9745.8, + "end": 9748.16, + "probability": 0.8473 + }, + { + "start": 9748.26, + "end": 9750.68, + "probability": 0.8998 + }, + { + "start": 9750.8, + "end": 9751.96, + "probability": 0.8019 + }, + { + "start": 9751.96, + "end": 9754.6, + "probability": 0.4971 + }, + { + "start": 9755.4, + "end": 9758.34, + "probability": 0.9976 + }, + { + "start": 9758.9, + "end": 9761.04, + "probability": 0.8255 + }, + { + "start": 9767.54, + "end": 9770.4, + "probability": 0.644 + }, + { + "start": 9771.92, + "end": 9773.76, + "probability": 0.9092 + }, + { + "start": 9774.54, + "end": 9777.32, + "probability": 0.935 + }, + { + "start": 9777.94, + "end": 9780.76, + "probability": 0.7161 + }, + { + "start": 9780.98, + "end": 9782.78, + "probability": 0.6676 + }, + { + "start": 9783.88, + "end": 9790.56, + "probability": 0.9556 + }, + { + "start": 9790.72, + "end": 9795.4, + "probability": 0.954 + }, + { + "start": 9795.46, + "end": 9798.72, + "probability": 0.9373 + }, + { + "start": 9799.18, + "end": 9801.36, + "probability": 0.938 + }, + { + "start": 9801.42, + "end": 9801.64, + "probability": 0.7095 + }, + { + "start": 9802.8, + "end": 9804.58, + "probability": 0.6114 + }, + { + "start": 9804.72, + "end": 9805.96, + "probability": 0.9319 + }, + { + "start": 9806.1, + "end": 9810.44, + "probability": 0.9797 + }, + { + "start": 9810.44, + "end": 9814.4, + "probability": 0.9538 + }, + { + "start": 9815.24, + "end": 9819.71, + "probability": 0.8142 + }, + { + "start": 9820.4, + "end": 9822.84, + "probability": 0.9182 + }, + { + "start": 9823.64, + "end": 9823.9, + "probability": 0.4656 + }, + { + "start": 9824.1, + "end": 9826.26, + "probability": 0.7632 + }, + { + "start": 9826.38, + "end": 9827.57, + "probability": 0.9695 + }, + { + "start": 9828.04, + "end": 9829.62, + "probability": 0.9857 + }, + { + "start": 9829.96, + "end": 9830.78, + "probability": 0.5357 + }, + { + "start": 9831.22, + "end": 9833.24, + "probability": 0.9852 + }, + { + "start": 9833.3, + "end": 9835.4, + "probability": 0.9969 + }, + { + "start": 9835.62, + "end": 9838.56, + "probability": 0.9844 + }, + { + "start": 9838.94, + "end": 9842.06, + "probability": 0.9443 + }, + { + "start": 9842.64, + "end": 9843.66, + "probability": 0.3574 + }, + { + "start": 9843.82, + "end": 9845.79, + "probability": 0.6196 + }, + { + "start": 9847.92, + "end": 9850.4, + "probability": 0.9312 + }, + { + "start": 9850.52, + "end": 9852.29, + "probability": 0.9878 + }, + { + "start": 9853.56, + "end": 9857.53, + "probability": 0.9115 + }, + { + "start": 9857.74, + "end": 9860.68, + "probability": 0.7151 + }, + { + "start": 9862.78, + "end": 9865.64, + "probability": 0.991 + }, + { + "start": 9866.64, + "end": 9869.28, + "probability": 0.8989 + }, + { + "start": 9872.94, + "end": 9876.78, + "probability": 0.8428 + }, + { + "start": 9876.84, + "end": 9877.83, + "probability": 0.8283 + }, + { + "start": 9880.88, + "end": 9886.8, + "probability": 0.9769 + }, + { + "start": 9887.34, + "end": 9888.81, + "probability": 0.9241 + }, + { + "start": 9890.16, + "end": 9892.06, + "probability": 0.9442 + }, + { + "start": 9893.08, + "end": 9894.84, + "probability": 0.8669 + }, + { + "start": 9895.82, + "end": 9896.66, + "probability": 0.4888 + }, + { + "start": 9897.28, + "end": 9901.12, + "probability": 0.9639 + }, + { + "start": 9901.6, + "end": 9902.86, + "probability": 0.4756 + }, + { + "start": 9904.01, + "end": 9908.24, + "probability": 0.9799 + }, + { + "start": 9908.24, + "end": 9910.4, + "probability": 0.9775 + }, + { + "start": 9911.36, + "end": 9913.12, + "probability": 0.994 + }, + { + "start": 9915.58, + "end": 9919.22, + "probability": 0.9967 + }, + { + "start": 9919.84, + "end": 9920.79, + "probability": 0.9736 + }, + { + "start": 9921.66, + "end": 9925.2, + "probability": 0.9937 + }, + { + "start": 9925.94, + "end": 9928.64, + "probability": 0.9824 + }, + { + "start": 9929.08, + "end": 9931.16, + "probability": 0.8073 + }, + { + "start": 9931.2, + "end": 9932.34, + "probability": 0.8145 + }, + { + "start": 9932.4, + "end": 9933.56, + "probability": 0.9812 + }, + { + "start": 9937.12, + "end": 9937.86, + "probability": 0.4368 + }, + { + "start": 9938.32, + "end": 9942.4, + "probability": 0.5396 + }, + { + "start": 9942.64, + "end": 9947.16, + "probability": 0.9486 + }, + { + "start": 9947.26, + "end": 9948.42, + "probability": 0.9622 + }, + { + "start": 9949.16, + "end": 9951.19, + "probability": 0.9341 + }, + { + "start": 9952.04, + "end": 9954.64, + "probability": 0.9946 + }, + { + "start": 9955.4, + "end": 9957.84, + "probability": 0.9967 + }, + { + "start": 9958.88, + "end": 9960.92, + "probability": 0.9934 + }, + { + "start": 9962.75, + "end": 9966.7, + "probability": 0.9937 + }, + { + "start": 9968.5, + "end": 9972.3, + "probability": 0.9971 + }, + { + "start": 9973.3, + "end": 9975.06, + "probability": 0.9958 + }, + { + "start": 9975.82, + "end": 9978.52, + "probability": 0.9598 + }, + { + "start": 9979.28, + "end": 9982.68, + "probability": 0.8221 + }, + { + "start": 9983.28, + "end": 9986.4, + "probability": 0.9076 + }, + { + "start": 9986.58, + "end": 9988.44, + "probability": 0.7042 + }, + { + "start": 9988.8, + "end": 9989.23, + "probability": 0.3313 + }, + { + "start": 9989.84, + "end": 9991.96, + "probability": 0.7383 + }, + { + "start": 9992.32, + "end": 9993.7, + "probability": 0.646 + }, + { + "start": 9993.76, + "end": 9995.6, + "probability": 0.8073 + }, + { + "start": 9996.34, + "end": 9997.12, + "probability": 0.7816 + }, + { + "start": 9997.32, + "end": 9997.9, + "probability": 0.6627 + }, + { + "start": 9997.98, + "end": 10001.66, + "probability": 0.9768 + }, + { + "start": 10002.08, + "end": 10006.27, + "probability": 0.9734 + }, + { + "start": 10006.58, + "end": 10008.74, + "probability": 0.9836 + }, + { + "start": 10009.24, + "end": 10012.6, + "probability": 0.702 + }, + { + "start": 10013.3, + "end": 10018.98, + "probability": 0.9956 + }, + { + "start": 10018.98, + "end": 10026.14, + "probability": 0.9914 + }, + { + "start": 10026.32, + "end": 10027.56, + "probability": 0.84 + }, + { + "start": 10027.62, + "end": 10028.86, + "probability": 0.8875 + }, + { + "start": 10029.32, + "end": 10032.38, + "probability": 0.9846 + }, + { + "start": 10033.44, + "end": 10038.66, + "probability": 0.878 + }, + { + "start": 10040.82, + "end": 10043.78, + "probability": 0.9975 + }, + { + "start": 10043.78, + "end": 10048.7, + "probability": 0.9935 + }, + { + "start": 10049.3, + "end": 10055.54, + "probability": 0.7558 + }, + { + "start": 10059.78, + "end": 10064.3, + "probability": 0.9532 + }, + { + "start": 10064.8, + "end": 10069.2, + "probability": 0.9673 + }, + { + "start": 10070.0, + "end": 10071.44, + "probability": 0.8332 + }, + { + "start": 10071.68, + "end": 10074.82, + "probability": 0.6354 + }, + { + "start": 10075.1, + "end": 10077.04, + "probability": 0.9827 + }, + { + "start": 10077.24, + "end": 10077.74, + "probability": 0.3785 + }, + { + "start": 10078.08, + "end": 10079.88, + "probability": 0.9885 + }, + { + "start": 10079.88, + "end": 10081.34, + "probability": 0.9061 + }, + { + "start": 10083.06, + "end": 10084.32, + "probability": 0.7985 + }, + { + "start": 10084.32, + "end": 10086.86, + "probability": 0.8348 + }, + { + "start": 10086.86, + "end": 10088.72, + "probability": 0.8296 + }, + { + "start": 10089.26, + "end": 10092.48, + "probability": 0.943 + }, + { + "start": 10093.26, + "end": 10095.5, + "probability": 0.8408 + }, + { + "start": 10095.58, + "end": 10096.16, + "probability": 0.7294 + }, + { + "start": 10096.72, + "end": 10099.44, + "probability": 0.9376 + }, + { + "start": 10100.06, + "end": 10100.75, + "probability": 0.894 + }, + { + "start": 10101.12, + "end": 10104.12, + "probability": 0.9847 + }, + { + "start": 10105.28, + "end": 10106.96, + "probability": 0.9788 + }, + { + "start": 10107.36, + "end": 10110.04, + "probability": 0.7068 + }, + { + "start": 10110.92, + "end": 10114.88, + "probability": 0.9642 + }, + { + "start": 10114.88, + "end": 10119.52, + "probability": 0.943 + }, + { + "start": 10119.58, + "end": 10120.72, + "probability": 0.6209 + }, + { + "start": 10121.34, + "end": 10123.1, + "probability": 0.6753 + }, + { + "start": 10123.18, + "end": 10126.58, + "probability": 0.792 + }, + { + "start": 10126.66, + "end": 10126.9, + "probability": 0.781 + }, + { + "start": 10141.42, + "end": 10141.6, + "probability": 0.0882 + }, + { + "start": 10144.56, + "end": 10145.38, + "probability": 0.564 + }, + { + "start": 10146.22, + "end": 10149.02, + "probability": 0.7458 + }, + { + "start": 10150.4, + "end": 10155.2, + "probability": 0.8755 + }, + { + "start": 10155.74, + "end": 10157.86, + "probability": 0.6949 + }, + { + "start": 10158.44, + "end": 10161.79, + "probability": 0.9563 + }, + { + "start": 10163.2, + "end": 10163.9, + "probability": 0.5357 + }, + { + "start": 10164.36, + "end": 10167.96, + "probability": 0.8676 + }, + { + "start": 10167.96, + "end": 10172.06, + "probability": 0.962 + }, + { + "start": 10172.22, + "end": 10172.76, + "probability": 0.8516 + }, + { + "start": 10173.2, + "end": 10177.3, + "probability": 0.9015 + }, + { + "start": 10177.34, + "end": 10177.8, + "probability": 0.8472 + }, + { + "start": 10178.82, + "end": 10180.72, + "probability": 0.7407 + }, + { + "start": 10181.44, + "end": 10185.28, + "probability": 0.9865 + }, + { + "start": 10185.28, + "end": 10190.73, + "probability": 0.9235 + }, + { + "start": 10193.44, + "end": 10196.24, + "probability": 0.559 + }, + { + "start": 10196.64, + "end": 10203.28, + "probability": 0.967 + }, + { + "start": 10203.9, + "end": 10206.6, + "probability": 0.9979 + }, + { + "start": 10207.82, + "end": 10210.4, + "probability": 0.8799 + }, + { + "start": 10211.34, + "end": 10212.74, + "probability": 0.8846 + }, + { + "start": 10215.18, + "end": 10218.52, + "probability": 0.6665 + }, + { + "start": 10219.02, + "end": 10222.68, + "probability": 0.9858 + }, + { + "start": 10222.68, + "end": 10226.82, + "probability": 0.9971 + }, + { + "start": 10227.44, + "end": 10229.8, + "probability": 0.9956 + }, + { + "start": 10231.88, + "end": 10236.62, + "probability": 0.862 + }, + { + "start": 10237.5, + "end": 10241.5, + "probability": 0.8484 + }, + { + "start": 10241.5, + "end": 10245.26, + "probability": 0.9987 + }, + { + "start": 10245.62, + "end": 10247.86, + "probability": 0.9802 + }, + { + "start": 10248.28, + "end": 10253.18, + "probability": 0.9362 + }, + { + "start": 10253.18, + "end": 10257.78, + "probability": 0.9995 + }, + { + "start": 10258.52, + "end": 10263.3, + "probability": 0.9966 + }, + { + "start": 10263.82, + "end": 10266.24, + "probability": 0.9879 + }, + { + "start": 10266.82, + "end": 10270.2, + "probability": 0.996 + }, + { + "start": 10270.5, + "end": 10273.18, + "probability": 0.9929 + }, + { + "start": 10273.5, + "end": 10273.92, + "probability": 0.642 + }, + { + "start": 10274.3, + "end": 10276.02, + "probability": 0.8313 + }, + { + "start": 10277.18, + "end": 10278.58, + "probability": 0.9768 + }, + { + "start": 10282.6, + "end": 10284.42, + "probability": 0.8143 + }, + { + "start": 10286.52, + "end": 10289.88, + "probability": 0.5164 + }, + { + "start": 10291.06, + "end": 10293.06, + "probability": 0.8497 + }, + { + "start": 10293.42, + "end": 10295.64, + "probability": 0.9919 + }, + { + "start": 10295.86, + "end": 10297.76, + "probability": 0.8101 + }, + { + "start": 10298.5, + "end": 10304.72, + "probability": 0.903 + }, + { + "start": 10305.62, + "end": 10307.44, + "probability": 0.8325 + }, + { + "start": 10307.44, + "end": 10308.78, + "probability": 0.8958 + }, + { + "start": 10308.8, + "end": 10309.96, + "probability": 0.8128 + }, + { + "start": 10310.2, + "end": 10310.7, + "probability": 0.811 + }, + { + "start": 10310.74, + "end": 10312.32, + "probability": 0.988 + }, + { + "start": 10312.38, + "end": 10314.07, + "probability": 0.9118 + }, + { + "start": 10314.96, + "end": 10316.06, + "probability": 0.9724 + }, + { + "start": 10316.24, + "end": 10319.76, + "probability": 0.8381 + }, + { + "start": 10321.24, + "end": 10321.84, + "probability": 0.4743 + }, + { + "start": 10322.02, + "end": 10324.92, + "probability": 0.906 + }, + { + "start": 10325.18, + "end": 10326.16, + "probability": 0.3965 + }, + { + "start": 10326.48, + "end": 10326.9, + "probability": 0.5258 + }, + { + "start": 10327.0, + "end": 10327.48, + "probability": 0.4396 + }, + { + "start": 10328.22, + "end": 10330.18, + "probability": 0.9897 + }, + { + "start": 10330.26, + "end": 10332.12, + "probability": 0.9639 + }, + { + "start": 10332.7, + "end": 10333.58, + "probability": 0.9536 + }, + { + "start": 10334.12, + "end": 10336.48, + "probability": 0.8205 + }, + { + "start": 10336.62, + "end": 10338.8, + "probability": 0.9108 + }, + { + "start": 10339.38, + "end": 10340.01, + "probability": 0.5038 + }, + { + "start": 10340.24, + "end": 10345.34, + "probability": 0.9336 + }, + { + "start": 10346.08, + "end": 10346.86, + "probability": 0.8799 + }, + { + "start": 10347.04, + "end": 10349.64, + "probability": 0.9961 + }, + { + "start": 10350.02, + "end": 10353.62, + "probability": 0.9198 + }, + { + "start": 10353.72, + "end": 10356.84, + "probability": 0.9788 + }, + { + "start": 10357.56, + "end": 10360.34, + "probability": 0.8623 + }, + { + "start": 10360.82, + "end": 10363.02, + "probability": 0.6361 + }, + { + "start": 10363.46, + "end": 10365.82, + "probability": 0.8955 + }, + { + "start": 10366.0, + "end": 10367.98, + "probability": 0.9601 + }, + { + "start": 10368.4, + "end": 10369.16, + "probability": 0.7393 + }, + { + "start": 10369.18, + "end": 10372.8, + "probability": 0.8104 + }, + { + "start": 10373.0, + "end": 10375.22, + "probability": 0.7948 + }, + { + "start": 10375.74, + "end": 10377.94, + "probability": 0.2044 + }, + { + "start": 10378.86, + "end": 10380.38, + "probability": 0.6967 + }, + { + "start": 10380.46, + "end": 10382.62, + "probability": 0.9966 + }, + { + "start": 10382.94, + "end": 10384.54, + "probability": 0.7835 + }, + { + "start": 10384.64, + "end": 10386.68, + "probability": 0.8966 + }, + { + "start": 10387.14, + "end": 10388.5, + "probability": 0.9748 + }, + { + "start": 10388.58, + "end": 10392.8, + "probability": 0.9891 + }, + { + "start": 10393.2, + "end": 10394.84, + "probability": 0.8207 + }, + { + "start": 10395.12, + "end": 10396.2, + "probability": 0.9941 + }, + { + "start": 10396.32, + "end": 10397.46, + "probability": 0.9655 + }, + { + "start": 10397.48, + "end": 10400.5, + "probability": 0.9899 + }, + { + "start": 10400.52, + "end": 10401.18, + "probability": 0.7018 + }, + { + "start": 10401.3, + "end": 10402.74, + "probability": 0.9687 + }, + { + "start": 10403.1, + "end": 10404.58, + "probability": 0.7812 + }, + { + "start": 10404.64, + "end": 10404.94, + "probability": 0.4192 + }, + { + "start": 10405.48, + "end": 10407.02, + "probability": 0.7578 + }, + { + "start": 10407.2, + "end": 10408.2, + "probability": 0.9241 + }, + { + "start": 10408.52, + "end": 10411.86, + "probability": 0.9798 + }, + { + "start": 10415.84, + "end": 10420.04, + "probability": 0.787 + }, + { + "start": 10420.34, + "end": 10422.96, + "probability": 0.8092 + }, + { + "start": 10423.06, + "end": 10424.26, + "probability": 0.7935 + }, + { + "start": 10424.72, + "end": 10430.76, + "probability": 0.3324 + }, + { + "start": 10432.56, + "end": 10436.18, + "probability": 0.0351 + }, + { + "start": 10436.82, + "end": 10441.34, + "probability": 0.0955 + }, + { + "start": 10441.64, + "end": 10444.16, + "probability": 0.038 + }, + { + "start": 10444.16, + "end": 10445.04, + "probability": 0.0987 + }, + { + "start": 10445.08, + "end": 10445.38, + "probability": 0.4256 + }, + { + "start": 10445.62, + "end": 10452.4, + "probability": 0.8228 + }, + { + "start": 10452.62, + "end": 10454.56, + "probability": 0.9637 + }, + { + "start": 10455.26, + "end": 10457.94, + "probability": 0.8983 + }, + { + "start": 10458.64, + "end": 10463.56, + "probability": 0.9922 + }, + { + "start": 10463.82, + "end": 10464.74, + "probability": 0.5267 + }, + { + "start": 10465.54, + "end": 10469.18, + "probability": 0.9626 + }, + { + "start": 10469.52, + "end": 10473.54, + "probability": 0.9922 + }, + { + "start": 10480.7, + "end": 10481.84, + "probability": 0.5406 + }, + { + "start": 10499.64, + "end": 10504.2, + "probability": 0.6585 + }, + { + "start": 10505.22, + "end": 10510.3, + "probability": 0.9752 + }, + { + "start": 10510.66, + "end": 10511.36, + "probability": 0.8722 + }, + { + "start": 10511.82, + "end": 10516.48, + "probability": 0.9583 + }, + { + "start": 10516.66, + "end": 10524.7, + "probability": 0.8262 + }, + { + "start": 10525.12, + "end": 10526.22, + "probability": 0.7788 + }, + { + "start": 10526.32, + "end": 10528.83, + "probability": 0.9688 + }, + { + "start": 10529.6, + "end": 10531.86, + "probability": 0.9685 + }, + { + "start": 10532.12, + "end": 10535.9, + "probability": 0.6735 + }, + { + "start": 10536.36, + "end": 10537.26, + "probability": 0.7951 + }, + { + "start": 10537.38, + "end": 10538.3, + "probability": 0.9316 + }, + { + "start": 10538.46, + "end": 10539.58, + "probability": 0.8561 + }, + { + "start": 10540.52, + "end": 10541.58, + "probability": 0.9358 + }, + { + "start": 10542.18, + "end": 10544.64, + "probability": 0.7827 + }, + { + "start": 10546.16, + "end": 10547.44, + "probability": 0.6662 + }, + { + "start": 10547.84, + "end": 10551.24, + "probability": 0.9802 + }, + { + "start": 10551.24, + "end": 10555.06, + "probability": 0.9801 + }, + { + "start": 10555.96, + "end": 10558.48, + "probability": 0.979 + }, + { + "start": 10558.48, + "end": 10560.98, + "probability": 0.9934 + }, + { + "start": 10562.22, + "end": 10566.0, + "probability": 0.972 + }, + { + "start": 10566.34, + "end": 10567.1, + "probability": 0.8907 + }, + { + "start": 10567.7, + "end": 10569.08, + "probability": 0.9941 + }, + { + "start": 10569.44, + "end": 10570.32, + "probability": 0.8135 + }, + { + "start": 10570.78, + "end": 10572.85, + "probability": 0.989 + }, + { + "start": 10573.0, + "end": 10573.5, + "probability": 0.9873 + }, + { + "start": 10574.02, + "end": 10576.48, + "probability": 0.7582 + }, + { + "start": 10577.06, + "end": 10579.12, + "probability": 0.8851 + }, + { + "start": 10580.04, + "end": 10582.76, + "probability": 0.9944 + }, + { + "start": 10582.76, + "end": 10586.26, + "probability": 0.9903 + }, + { + "start": 10586.56, + "end": 10587.94, + "probability": 0.9774 + }, + { + "start": 10588.62, + "end": 10592.12, + "probability": 0.9933 + }, + { + "start": 10592.3, + "end": 10596.62, + "probability": 0.9824 + }, + { + "start": 10597.42, + "end": 10602.92, + "probability": 0.929 + }, + { + "start": 10603.6, + "end": 10604.24, + "probability": 0.6169 + }, + { + "start": 10604.6, + "end": 10605.64, + "probability": 0.3219 + }, + { + "start": 10606.0, + "end": 10610.58, + "probability": 0.9901 + }, + { + "start": 10610.76, + "end": 10613.92, + "probability": 0.6123 + }, + { + "start": 10614.04, + "end": 10616.96, + "probability": 0.9882 + }, + { + "start": 10617.2, + "end": 10621.64, + "probability": 0.9678 + }, + { + "start": 10622.28, + "end": 10625.96, + "probability": 0.9901 + }, + { + "start": 10626.88, + "end": 10630.86, + "probability": 0.913 + }, + { + "start": 10631.44, + "end": 10633.5, + "probability": 0.9867 + }, + { + "start": 10633.76, + "end": 10635.16, + "probability": 0.9021 + }, + { + "start": 10635.58, + "end": 10638.1, + "probability": 0.9847 + }, + { + "start": 10638.58, + "end": 10640.28, + "probability": 0.994 + }, + { + "start": 10641.3, + "end": 10642.86, + "probability": 0.9571 + }, + { + "start": 10643.58, + "end": 10645.52, + "probability": 0.9899 + }, + { + "start": 10646.6, + "end": 10648.78, + "probability": 0.8479 + }, + { + "start": 10649.46, + "end": 10653.04, + "probability": 0.9929 + }, + { + "start": 10653.92, + "end": 10655.4, + "probability": 0.9863 + }, + { + "start": 10655.74, + "end": 10657.88, + "probability": 0.928 + }, + { + "start": 10657.88, + "end": 10659.22, + "probability": 0.7982 + }, + { + "start": 10660.02, + "end": 10660.28, + "probability": 0.924 + }, + { + "start": 10660.34, + "end": 10661.92, + "probability": 0.9305 + }, + { + "start": 10662.16, + "end": 10668.26, + "probability": 0.9899 + }, + { + "start": 10669.44, + "end": 10675.04, + "probability": 0.966 + }, + { + "start": 10675.16, + "end": 10676.66, + "probability": 0.6035 + }, + { + "start": 10677.52, + "end": 10681.58, + "probability": 0.9086 + }, + { + "start": 10682.28, + "end": 10682.72, + "probability": 0.9503 + }, + { + "start": 10683.29, + "end": 10686.2, + "probability": 0.995 + }, + { + "start": 10686.48, + "end": 10688.1, + "probability": 0.9672 + }, + { + "start": 10688.54, + "end": 10690.32, + "probability": 0.9941 + }, + { + "start": 10690.62, + "end": 10692.9, + "probability": 0.9961 + }, + { + "start": 10693.2, + "end": 10694.56, + "probability": 0.9954 + }, + { + "start": 10694.68, + "end": 10696.0, + "probability": 0.9174 + }, + { + "start": 10696.48, + "end": 10699.52, + "probability": 0.9956 + }, + { + "start": 10699.82, + "end": 10701.36, + "probability": 0.8967 + }, + { + "start": 10701.78, + "end": 10702.95, + "probability": 0.8274 + }, + { + "start": 10703.62, + "end": 10704.91, + "probability": 0.9674 + }, + { + "start": 10705.14, + "end": 10707.66, + "probability": 0.8781 + }, + { + "start": 10707.84, + "end": 10709.78, + "probability": 0.9217 + }, + { + "start": 10710.42, + "end": 10715.1, + "probability": 0.9849 + }, + { + "start": 10715.22, + "end": 10716.5, + "probability": 0.6864 + }, + { + "start": 10719.18, + "end": 10721.18, + "probability": 0.7568 + }, + { + "start": 10721.54, + "end": 10723.62, + "probability": 0.6138 + }, + { + "start": 10723.62, + "end": 10726.86, + "probability": 0.9728 + }, + { + "start": 10728.02, + "end": 10732.28, + "probability": 0.9635 + }, + { + "start": 10732.42, + "end": 10735.85, + "probability": 0.95 + }, + { + "start": 10736.32, + "end": 10738.26, + "probability": 0.9865 + }, + { + "start": 10738.38, + "end": 10738.98, + "probability": 0.4946 + }, + { + "start": 10739.4, + "end": 10741.46, + "probability": 0.9829 + }, + { + "start": 10741.54, + "end": 10744.96, + "probability": 0.9723 + }, + { + "start": 10746.18, + "end": 10747.6, + "probability": 0.9977 + }, + { + "start": 10749.02, + "end": 10752.26, + "probability": 0.9888 + }, + { + "start": 10752.34, + "end": 10754.48, + "probability": 0.9296 + }, + { + "start": 10755.1, + "end": 10756.52, + "probability": 0.8975 + }, + { + "start": 10756.84, + "end": 10758.48, + "probability": 0.9689 + }, + { + "start": 10758.48, + "end": 10761.5, + "probability": 0.9747 + }, + { + "start": 10761.52, + "end": 10762.38, + "probability": 0.8891 + }, + { + "start": 10762.92, + "end": 10765.16, + "probability": 0.8794 + }, + { + "start": 10765.68, + "end": 10767.0, + "probability": 0.9976 + }, + { + "start": 10767.12, + "end": 10769.54, + "probability": 0.998 + }, + { + "start": 10769.94, + "end": 10772.32, + "probability": 0.9905 + }, + { + "start": 10772.48, + "end": 10774.22, + "probability": 0.6592 + }, + { + "start": 10774.82, + "end": 10776.44, + "probability": 0.9963 + }, + { + "start": 10776.56, + "end": 10779.68, + "probability": 0.7371 + }, + { + "start": 10780.04, + "end": 10780.9, + "probability": 0.9834 + }, + { + "start": 10781.0, + "end": 10782.12, + "probability": 0.8494 + }, + { + "start": 10782.9, + "end": 10785.3, + "probability": 0.9761 + }, + { + "start": 10785.54, + "end": 10787.36, + "probability": 0.9343 + }, + { + "start": 10787.46, + "end": 10789.1, + "probability": 0.9849 + }, + { + "start": 10789.48, + "end": 10793.5, + "probability": 0.999 + }, + { + "start": 10794.24, + "end": 10794.56, + "probability": 0.653 + }, + { + "start": 10794.64, + "end": 10797.0, + "probability": 0.9114 + }, + { + "start": 10797.08, + "end": 10798.54, + "probability": 0.8874 + }, + { + "start": 10798.74, + "end": 10801.48, + "probability": 0.9949 + }, + { + "start": 10804.42, + "end": 10811.18, + "probability": 0.993 + }, + { + "start": 10811.18, + "end": 10815.06, + "probability": 0.9305 + }, + { + "start": 10816.12, + "end": 10818.94, + "probability": 0.9921 + }, + { + "start": 10819.66, + "end": 10824.16, + "probability": 0.9686 + }, + { + "start": 10824.86, + "end": 10827.84, + "probability": 0.9385 + }, + { + "start": 10828.3, + "end": 10832.22, + "probability": 0.9897 + }, + { + "start": 10832.78, + "end": 10836.68, + "probability": 0.8973 + }, + { + "start": 10836.68, + "end": 10840.02, + "probability": 0.9512 + }, + { + "start": 10840.18, + "end": 10840.76, + "probability": 0.7113 + }, + { + "start": 10841.04, + "end": 10845.42, + "probability": 0.8036 + }, + { + "start": 10845.86, + "end": 10846.6, + "probability": 0.9763 + }, + { + "start": 10846.84, + "end": 10847.82, + "probability": 0.7874 + }, + { + "start": 10848.16, + "end": 10849.46, + "probability": 0.9515 + }, + { + "start": 10849.66, + "end": 10851.32, + "probability": 0.88 + }, + { + "start": 10851.54, + "end": 10853.6, + "probability": 0.9956 + }, + { + "start": 10853.84, + "end": 10854.82, + "probability": 0.9279 + }, + { + "start": 10855.0, + "end": 10856.34, + "probability": 0.9929 + }, + { + "start": 10856.54, + "end": 10857.76, + "probability": 0.9268 + }, + { + "start": 10858.02, + "end": 10859.18, + "probability": 0.7756 + }, + { + "start": 10859.3, + "end": 10861.54, + "probability": 0.9435 + }, + { + "start": 10862.38, + "end": 10863.54, + "probability": 0.9285 + }, + { + "start": 10863.6, + "end": 10865.82, + "probability": 0.8911 + }, + { + "start": 10866.16, + "end": 10868.14, + "probability": 0.6802 + }, + { + "start": 10868.56, + "end": 10870.14, + "probability": 0.9431 + }, + { + "start": 10870.2, + "end": 10871.3, + "probability": 0.9775 + }, + { + "start": 10871.66, + "end": 10874.84, + "probability": 0.9919 + }, + { + "start": 10875.34, + "end": 10876.2, + "probability": 0.6012 + }, + { + "start": 10876.32, + "end": 10877.36, + "probability": 0.9622 + }, + { + "start": 10879.38, + "end": 10883.5, + "probability": 0.9762 + }, + { + "start": 10883.72, + "end": 10885.8, + "probability": 0.9242 + }, + { + "start": 10885.98, + "end": 10887.16, + "probability": 0.8812 + }, + { + "start": 10887.78, + "end": 10888.78, + "probability": 0.887 + }, + { + "start": 10889.34, + "end": 10892.76, + "probability": 0.9526 + }, + { + "start": 10892.98, + "end": 10895.72, + "probability": 0.9583 + }, + { + "start": 10895.78, + "end": 10896.42, + "probability": 0.6756 + }, + { + "start": 10896.46, + "end": 10898.06, + "probability": 0.9716 + }, + { + "start": 10898.14, + "end": 10899.38, + "probability": 0.9568 + }, + { + "start": 10900.5, + "end": 10903.8, + "probability": 0.976 + }, + { + "start": 10903.8, + "end": 10907.9, + "probability": 0.983 + }, + { + "start": 10908.32, + "end": 10912.82, + "probability": 0.9853 + }, + { + "start": 10913.18, + "end": 10919.04, + "probability": 0.9846 + }, + { + "start": 10919.24, + "end": 10919.52, + "probability": 0.7639 + }, + { + "start": 10919.6, + "end": 10920.04, + "probability": 0.9435 + }, + { + "start": 10920.16, + "end": 10921.24, + "probability": 0.7483 + }, + { + "start": 10921.3, + "end": 10922.3, + "probability": 0.9471 + }, + { + "start": 10922.96, + "end": 10924.48, + "probability": 0.9614 + }, + { + "start": 10925.34, + "end": 10928.74, + "probability": 0.954 + }, + { + "start": 10929.48, + "end": 10929.56, + "probability": 0.2322 + }, + { + "start": 10929.58, + "end": 10930.38, + "probability": 0.9688 + }, + { + "start": 10930.7, + "end": 10932.2, + "probability": 0.9395 + }, + { + "start": 10932.56, + "end": 10935.72, + "probability": 0.9886 + }, + { + "start": 10935.94, + "end": 10938.46, + "probability": 0.995 + }, + { + "start": 10938.86, + "end": 10940.06, + "probability": 0.8998 + }, + { + "start": 10940.64, + "end": 10943.76, + "probability": 0.762 + }, + { + "start": 10944.14, + "end": 10946.52, + "probability": 0.8182 + }, + { + "start": 10946.86, + "end": 10947.28, + "probability": 0.4337 + }, + { + "start": 10947.4, + "end": 10947.86, + "probability": 0.6481 + }, + { + "start": 10947.94, + "end": 10949.32, + "probability": 0.9004 + }, + { + "start": 10950.9, + "end": 10954.62, + "probability": 0.9421 + }, + { + "start": 10955.36, + "end": 10956.62, + "probability": 0.9265 + }, + { + "start": 10956.84, + "end": 10960.68, + "probability": 0.9816 + }, + { + "start": 10961.0, + "end": 10963.46, + "probability": 0.9971 + }, + { + "start": 10963.74, + "end": 10966.32, + "probability": 0.9875 + }, + { + "start": 10966.62, + "end": 10971.96, + "probability": 0.9963 + }, + { + "start": 10972.3, + "end": 10975.66, + "probability": 0.9956 + }, + { + "start": 10975.92, + "end": 10976.92, + "probability": 0.9358 + }, + { + "start": 10977.34, + "end": 10979.68, + "probability": 0.9775 + }, + { + "start": 10980.04, + "end": 10983.0, + "probability": 0.9821 + }, + { + "start": 10983.16, + "end": 10985.22, + "probability": 0.9803 + }, + { + "start": 10987.38, + "end": 10987.68, + "probability": 0.1275 + }, + { + "start": 10987.68, + "end": 10989.3, + "probability": 0.8724 + }, + { + "start": 10989.36, + "end": 10991.4, + "probability": 0.6179 + }, + { + "start": 10991.42, + "end": 10994.95, + "probability": 0.9937 + }, + { + "start": 10995.4, + "end": 10999.02, + "probability": 0.9921 + }, + { + "start": 11000.98, + "end": 11004.58, + "probability": 0.9313 + }, + { + "start": 11004.9, + "end": 11006.42, + "probability": 0.8548 + }, + { + "start": 11006.48, + "end": 11006.92, + "probability": 0.8384 + }, + { + "start": 11007.66, + "end": 11008.48, + "probability": 0.9696 + }, + { + "start": 11008.6, + "end": 11012.56, + "probability": 0.995 + }, + { + "start": 11013.06, + "end": 11015.86, + "probability": 0.9973 + }, + { + "start": 11016.0, + "end": 11016.84, + "probability": 0.6616 + }, + { + "start": 11017.3, + "end": 11019.7, + "probability": 0.986 + }, + { + "start": 11019.7, + "end": 11021.86, + "probability": 0.9969 + }, + { + "start": 11022.46, + "end": 11026.1, + "probability": 0.9681 + }, + { + "start": 11026.2, + "end": 11029.98, + "probability": 0.9873 + }, + { + "start": 11030.66, + "end": 11031.32, + "probability": 0.8201 + }, + { + "start": 11031.36, + "end": 11033.02, + "probability": 0.9458 + }, + { + "start": 11033.12, + "end": 11033.34, + "probability": 0.7814 + }, + { + "start": 11034.32, + "end": 11035.68, + "probability": 0.6486 + }, + { + "start": 11035.86, + "end": 11038.44, + "probability": 0.8199 + }, + { + "start": 11040.4, + "end": 11042.54, + "probability": 0.8299 + }, + { + "start": 11045.42, + "end": 11046.78, + "probability": 0.609 + }, + { + "start": 11046.88, + "end": 11047.8, + "probability": 0.7705 + }, + { + "start": 11048.34, + "end": 11049.4, + "probability": 0.8726 + }, + { + "start": 11050.8, + "end": 11055.48, + "probability": 0.9775 + }, + { + "start": 11055.56, + "end": 11056.64, + "probability": 0.9447 + }, + { + "start": 11057.76, + "end": 11061.12, + "probability": 0.9559 + }, + { + "start": 11062.0, + "end": 11067.26, + "probability": 0.9644 + }, + { + "start": 11067.5, + "end": 11068.34, + "probability": 0.8877 + }, + { + "start": 11069.72, + "end": 11072.02, + "probability": 0.9961 + }, + { + "start": 11073.0, + "end": 11077.08, + "probability": 0.8546 + }, + { + "start": 11077.36, + "end": 11078.9, + "probability": 0.4467 + }, + { + "start": 11079.06, + "end": 11083.64, + "probability": 0.447 + }, + { + "start": 11084.12, + "end": 11085.54, + "probability": 0.2447 + }, + { + "start": 11085.54, + "end": 11086.17, + "probability": 0.6858 + }, + { + "start": 11086.48, + "end": 11086.9, + "probability": 0.8116 + }, + { + "start": 11087.34, + "end": 11088.3, + "probability": 0.9883 + }, + { + "start": 11088.54, + "end": 11090.56, + "probability": 0.5865 + }, + { + "start": 11090.72, + "end": 11091.86, + "probability": 0.6325 + }, + { + "start": 11091.96, + "end": 11094.12, + "probability": 0.3765 + }, + { + "start": 11094.66, + "end": 11097.84, + "probability": 0.9609 + }, + { + "start": 11098.39, + "end": 11103.78, + "probability": 0.9657 + }, + { + "start": 11104.52, + "end": 11106.46, + "probability": 0.8689 + }, + { + "start": 11107.1, + "end": 11111.1, + "probability": 0.8987 + }, + { + "start": 11111.76, + "end": 11116.6, + "probability": 0.984 + }, + { + "start": 11117.96, + "end": 11121.26, + "probability": 0.9797 + }, + { + "start": 11122.7, + "end": 11123.24, + "probability": 0.8299 + }, + { + "start": 11124.3, + "end": 11128.22, + "probability": 0.9312 + }, + { + "start": 11128.22, + "end": 11132.62, + "probability": 0.9984 + }, + { + "start": 11133.6, + "end": 11134.1, + "probability": 0.6398 + }, + { + "start": 11135.1, + "end": 11137.72, + "probability": 0.8271 + }, + { + "start": 11138.46, + "end": 11143.18, + "probability": 0.9386 + }, + { + "start": 11143.74, + "end": 11145.44, + "probability": 0.8468 + }, + { + "start": 11146.4, + "end": 11149.96, + "probability": 0.7797 + }, + { + "start": 11150.64, + "end": 11154.16, + "probability": 0.914 + }, + { + "start": 11154.86, + "end": 11156.74, + "probability": 0.9701 + }, + { + "start": 11158.56, + "end": 11162.46, + "probability": 0.9866 + }, + { + "start": 11163.12, + "end": 11166.34, + "probability": 0.9973 + }, + { + "start": 11167.22, + "end": 11168.52, + "probability": 0.9251 + }, + { + "start": 11169.04, + "end": 11173.42, + "probability": 0.978 + }, + { + "start": 11174.22, + "end": 11175.08, + "probability": 0.4135 + }, + { + "start": 11175.96, + "end": 11180.46, + "probability": 0.9976 + }, + { + "start": 11180.46, + "end": 11186.86, + "probability": 0.9969 + }, + { + "start": 11187.04, + "end": 11188.26, + "probability": 0.8014 + }, + { + "start": 11189.02, + "end": 11189.76, + "probability": 0.8085 + }, + { + "start": 11190.38, + "end": 11192.64, + "probability": 0.8867 + }, + { + "start": 11192.72, + "end": 11195.86, + "probability": 0.9832 + }, + { + "start": 11196.02, + "end": 11200.86, + "probability": 0.9927 + }, + { + "start": 11201.64, + "end": 11203.87, + "probability": 0.8169 + }, + { + "start": 11204.98, + "end": 11205.72, + "probability": 0.892 + }, + { + "start": 11207.44, + "end": 11212.76, + "probability": 0.9673 + }, + { + "start": 11213.78, + "end": 11216.98, + "probability": 0.9985 + }, + { + "start": 11217.5, + "end": 11220.2, + "probability": 0.989 + }, + { + "start": 11220.86, + "end": 11224.06, + "probability": 0.9949 + }, + { + "start": 11224.16, + "end": 11228.72, + "probability": 0.9901 + }, + { + "start": 11229.62, + "end": 11232.4, + "probability": 0.6959 + }, + { + "start": 11232.92, + "end": 11235.16, + "probability": 0.9788 + }, + { + "start": 11236.71, + "end": 11238.52, + "probability": 0.9888 + }, + { + "start": 11239.16, + "end": 11239.88, + "probability": 0.9902 + }, + { + "start": 11240.46, + "end": 11247.26, + "probability": 0.9359 + }, + { + "start": 11248.14, + "end": 11249.78, + "probability": 0.897 + }, + { + "start": 11250.34, + "end": 11251.76, + "probability": 0.9973 + }, + { + "start": 11251.94, + "end": 11252.76, + "probability": 0.5732 + }, + { + "start": 11253.34, + "end": 11256.22, + "probability": 0.5626 + }, + { + "start": 11256.38, + "end": 11259.3, + "probability": 0.7519 + }, + { + "start": 11259.96, + "end": 11261.48, + "probability": 0.9346 + }, + { + "start": 11261.66, + "end": 11265.0, + "probability": 0.8167 + }, + { + "start": 11265.2, + "end": 11266.38, + "probability": 0.8204 + }, + { + "start": 11266.72, + "end": 11268.28, + "probability": 0.736 + }, + { + "start": 11269.1, + "end": 11270.26, + "probability": 0.8833 + }, + { + "start": 11270.32, + "end": 11271.42, + "probability": 0.9468 + }, + { + "start": 11271.58, + "end": 11271.86, + "probability": 0.7426 + }, + { + "start": 11272.58, + "end": 11273.18, + "probability": 0.519 + }, + { + "start": 11273.46, + "end": 11275.0, + "probability": 0.8833 + }, + { + "start": 11275.1, + "end": 11276.74, + "probability": 0.9135 + }, + { + "start": 11276.88, + "end": 11277.52, + "probability": 0.7721 + }, + { + "start": 11277.94, + "end": 11278.62, + "probability": 0.6162 + }, + { + "start": 11279.0, + "end": 11279.9, + "probability": 0.9893 + }, + { + "start": 11280.06, + "end": 11280.68, + "probability": 0.9933 + }, + { + "start": 11280.84, + "end": 11281.3, + "probability": 0.9516 + }, + { + "start": 11281.62, + "end": 11282.42, + "probability": 0.7105 + }, + { + "start": 11282.74, + "end": 11285.68, + "probability": 0.9704 + }, + { + "start": 11285.96, + "end": 11286.36, + "probability": 0.5771 + }, + { + "start": 11286.4, + "end": 11290.04, + "probability": 0.9792 + }, + { + "start": 11290.5, + "end": 11290.7, + "probability": 0.8994 + }, + { + "start": 11290.9, + "end": 11291.7, + "probability": 0.6439 + }, + { + "start": 11291.88, + "end": 11293.22, + "probability": 0.8516 + }, + { + "start": 11300.36, + "end": 11302.82, + "probability": 0.5807 + }, + { + "start": 11303.12, + "end": 11306.02, + "probability": 0.9382 + }, + { + "start": 11317.2, + "end": 11318.5, + "probability": 0.9594 + }, + { + "start": 11318.6, + "end": 11318.78, + "probability": 0.7189 + }, + { + "start": 11318.9, + "end": 11320.62, + "probability": 0.6843 + }, + { + "start": 11320.84, + "end": 11321.68, + "probability": 0.9424 + }, + { + "start": 11322.02, + "end": 11323.2, + "probability": 0.9978 + }, + { + "start": 11325.26, + "end": 11329.84, + "probability": 0.8284 + }, + { + "start": 11330.08, + "end": 11331.02, + "probability": 0.6125 + }, + { + "start": 11331.22, + "end": 11333.66, + "probability": 0.9388 + }, + { + "start": 11333.76, + "end": 11334.85, + "probability": 0.6257 + }, + { + "start": 11334.94, + "end": 11337.46, + "probability": 0.7545 + }, + { + "start": 11337.52, + "end": 11338.5, + "probability": 0.7922 + }, + { + "start": 11338.56, + "end": 11338.96, + "probability": 0.6313 + }, + { + "start": 11339.28, + "end": 11340.96, + "probability": 0.9961 + }, + { + "start": 11341.44, + "end": 11344.4, + "probability": 0.9985 + }, + { + "start": 11344.54, + "end": 11347.64, + "probability": 0.9607 + }, + { + "start": 11347.74, + "end": 11348.18, + "probability": 0.6462 + }, + { + "start": 11348.36, + "end": 11349.36, + "probability": 0.8923 + }, + { + "start": 11349.7, + "end": 11353.12, + "probability": 0.8036 + }, + { + "start": 11353.48, + "end": 11354.92, + "probability": 0.9514 + }, + { + "start": 11356.5, + "end": 11357.17, + "probability": 0.5456 + }, + { + "start": 11357.56, + "end": 11360.02, + "probability": 0.4213 + }, + { + "start": 11360.08, + "end": 11362.9, + "probability": 0.949 + }, + { + "start": 11363.66, + "end": 11364.08, + "probability": 0.6522 + }, + { + "start": 11364.26, + "end": 11364.9, + "probability": 0.9021 + }, + { + "start": 11364.98, + "end": 11368.64, + "probability": 0.9857 + }, + { + "start": 11368.64, + "end": 11371.94, + "probability": 0.9888 + }, + { + "start": 11372.0, + "end": 11375.6, + "probability": 0.9868 + }, + { + "start": 11376.24, + "end": 11379.0, + "probability": 0.8715 + }, + { + "start": 11379.12, + "end": 11380.38, + "probability": 0.9517 + }, + { + "start": 11380.46, + "end": 11380.58, + "probability": 0.6854 + }, + { + "start": 11380.74, + "end": 11381.42, + "probability": 0.7135 + }, + { + "start": 11381.52, + "end": 11383.86, + "probability": 0.9812 + }, + { + "start": 11384.26, + "end": 11385.44, + "probability": 0.8746 + }, + { + "start": 11385.54, + "end": 11386.24, + "probability": 0.9003 + }, + { + "start": 11386.34, + "end": 11386.88, + "probability": 0.6648 + }, + { + "start": 11387.0, + "end": 11389.72, + "probability": 0.825 + }, + { + "start": 11389.92, + "end": 11391.82, + "probability": 0.8558 + }, + { + "start": 11392.44, + "end": 11396.72, + "probability": 0.9936 + }, + { + "start": 11396.72, + "end": 11402.48, + "probability": 0.9946 + }, + { + "start": 11402.86, + "end": 11407.48, + "probability": 0.9941 + }, + { + "start": 11408.16, + "end": 11409.5, + "probability": 0.7684 + }, + { + "start": 11409.74, + "end": 11411.74, + "probability": 0.929 + }, + { + "start": 11412.16, + "end": 11414.66, + "probability": 0.6211 + }, + { + "start": 11415.42, + "end": 11416.76, + "probability": 0.9652 + }, + { + "start": 11416.88, + "end": 11418.72, + "probability": 0.9451 + }, + { + "start": 11418.76, + "end": 11419.8, + "probability": 0.9834 + }, + { + "start": 11420.32, + "end": 11423.21, + "probability": 0.9854 + }, + { + "start": 11423.96, + "end": 11425.36, + "probability": 0.8243 + }, + { + "start": 11425.46, + "end": 11427.54, + "probability": 0.9955 + }, + { + "start": 11428.28, + "end": 11432.04, + "probability": 0.9822 + }, + { + "start": 11432.86, + "end": 11434.24, + "probability": 0.4277 + }, + { + "start": 11434.24, + "end": 11437.74, + "probability": 0.859 + }, + { + "start": 11437.74, + "end": 11441.42, + "probability": 0.9912 + }, + { + "start": 11441.7, + "end": 11441.96, + "probability": 0.6326 + }, + { + "start": 11442.28, + "end": 11444.1, + "probability": 0.7339 + }, + { + "start": 11444.36, + "end": 11445.26, + "probability": 0.8076 + }, + { + "start": 11446.1, + "end": 11447.16, + "probability": 0.9157 + }, + { + "start": 11447.86, + "end": 11448.84, + "probability": 0.5068 + }, + { + "start": 11448.88, + "end": 11450.2, + "probability": 0.8457 + }, + { + "start": 11450.2, + "end": 11451.58, + "probability": 0.8853 + }, + { + "start": 11451.74, + "end": 11452.28, + "probability": 0.5334 + }, + { + "start": 11452.3, + "end": 11453.08, + "probability": 0.729 + }, + { + "start": 11453.5, + "end": 11455.76, + "probability": 0.9907 + }, + { + "start": 11455.96, + "end": 11461.02, + "probability": 0.9479 + }, + { + "start": 11461.5, + "end": 11463.88, + "probability": 0.7969 + }, + { + "start": 11475.26, + "end": 11478.24, + "probability": 0.682 + }, + { + "start": 11479.44, + "end": 11480.7, + "probability": 0.0194 + }, + { + "start": 11481.96, + "end": 11482.32, + "probability": 0.0592 + }, + { + "start": 11482.32, + "end": 11482.32, + "probability": 0.0523 + }, + { + "start": 11482.32, + "end": 11483.59, + "probability": 0.106 + }, + { + "start": 11489.81, + "end": 11490.04, + "probability": 0.3841 + }, + { + "start": 11490.58, + "end": 11494.26, + "probability": 0.6703 + }, + { + "start": 11495.08, + "end": 11499.42, + "probability": 0.9203 + }, + { + "start": 11500.44, + "end": 11501.64, + "probability": 0.5374 + }, + { + "start": 11504.42, + "end": 11506.64, + "probability": 0.5929 + }, + { + "start": 11506.82, + "end": 11507.22, + "probability": 0.4218 + }, + { + "start": 11507.3, + "end": 11508.52, + "probability": 0.5472 + }, + { + "start": 11508.62, + "end": 11511.04, + "probability": 0.9164 + }, + { + "start": 11511.62, + "end": 11513.92, + "probability": 0.5905 + }, + { + "start": 11514.62, + "end": 11515.76, + "probability": 0.8472 + }, + { + "start": 11515.84, + "end": 11516.84, + "probability": 0.3901 + }, + { + "start": 11518.54, + "end": 11518.6, + "probability": 0.0244 + }, + { + "start": 11518.6, + "end": 11519.8, + "probability": 0.4672 + }, + { + "start": 11519.9, + "end": 11521.12, + "probability": 0.8317 + }, + { + "start": 11523.24, + "end": 11526.9, + "probability": 0.6268 + }, + { + "start": 11526.94, + "end": 11528.02, + "probability": 0.2641 + }, + { + "start": 11528.22, + "end": 11529.96, + "probability": 0.7209 + }, + { + "start": 11530.02, + "end": 11534.34, + "probability": 0.7788 + }, + { + "start": 11534.42, + "end": 11534.96, + "probability": 0.0687 + }, + { + "start": 11535.64, + "end": 11536.44, + "probability": 0.2222 + }, + { + "start": 11539.0, + "end": 11539.86, + "probability": 0.3052 + }, + { + "start": 11540.04, + "end": 11540.9, + "probability": 0.705 + }, + { + "start": 11541.02, + "end": 11542.36, + "probability": 0.7362 + }, + { + "start": 11542.7, + "end": 11547.14, + "probability": 0.9819 + }, + { + "start": 11548.08, + "end": 11550.02, + "probability": 0.8723 + }, + { + "start": 11550.62, + "end": 11553.82, + "probability": 0.9539 + }, + { + "start": 11554.04, + "end": 11555.26, + "probability": 0.9746 + }, + { + "start": 11556.0, + "end": 11558.24, + "probability": 0.9258 + }, + { + "start": 11558.46, + "end": 11559.44, + "probability": 0.895 + }, + { + "start": 11559.56, + "end": 11560.54, + "probability": 0.8913 + }, + { + "start": 11561.0, + "end": 11563.5, + "probability": 0.9971 + }, + { + "start": 11563.5, + "end": 11567.22, + "probability": 0.9974 + }, + { + "start": 11568.16, + "end": 11569.52, + "probability": 0.9728 + }, + { + "start": 11569.66, + "end": 11570.76, + "probability": 0.765 + }, + { + "start": 11570.86, + "end": 11573.14, + "probability": 0.988 + }, + { + "start": 11574.08, + "end": 11577.5, + "probability": 0.9954 + }, + { + "start": 11578.06, + "end": 11579.88, + "probability": 0.9919 + }, + { + "start": 11580.28, + "end": 11581.6, + "probability": 0.8777 + }, + { + "start": 11581.68, + "end": 11582.7, + "probability": 0.9708 + }, + { + "start": 11582.84, + "end": 11583.9, + "probability": 0.5981 + }, + { + "start": 11584.3, + "end": 11585.68, + "probability": 0.9522 + }, + { + "start": 11585.74, + "end": 11587.36, + "probability": 0.8024 + }, + { + "start": 11588.54, + "end": 11589.4, + "probability": 0.6912 + }, + { + "start": 11589.58, + "end": 11590.72, + "probability": 0.7233 + }, + { + "start": 11590.82, + "end": 11593.04, + "probability": 0.9331 + }, + { + "start": 11593.46, + "end": 11596.32, + "probability": 0.9911 + }, + { + "start": 11596.8, + "end": 11598.76, + "probability": 0.9682 + }, + { + "start": 11599.18, + "end": 11600.12, + "probability": 0.5706 + }, + { + "start": 11601.06, + "end": 11604.24, + "probability": 0.9604 + }, + { + "start": 11604.58, + "end": 11605.58, + "probability": 0.8413 + }, + { + "start": 11605.62, + "end": 11609.48, + "probability": 0.9884 + }, + { + "start": 11610.46, + "end": 11612.38, + "probability": 0.6609 + }, + { + "start": 11613.8, + "end": 11616.02, + "probability": 0.9857 + }, + { + "start": 11616.92, + "end": 11618.7, + "probability": 0.8068 + }, + { + "start": 11618.76, + "end": 11624.06, + "probability": 0.9863 + }, + { + "start": 11624.84, + "end": 11629.98, + "probability": 0.8371 + }, + { + "start": 11631.12, + "end": 11636.76, + "probability": 0.9845 + }, + { + "start": 11637.16, + "end": 11639.12, + "probability": 0.9946 + }, + { + "start": 11639.58, + "end": 11642.4, + "probability": 0.9832 + }, + { + "start": 11642.9, + "end": 11645.38, + "probability": 0.9922 + }, + { + "start": 11645.38, + "end": 11648.54, + "probability": 0.9145 + }, + { + "start": 11649.14, + "end": 11654.16, + "probability": 0.9819 + }, + { + "start": 11654.8, + "end": 11659.09, + "probability": 0.9575 + }, + { + "start": 11659.12, + "end": 11663.32, + "probability": 0.7405 + }, + { + "start": 11663.96, + "end": 11664.4, + "probability": 0.4506 + }, + { + "start": 11664.44, + "end": 11665.56, + "probability": 0.7806 + }, + { + "start": 11665.62, + "end": 11666.92, + "probability": 0.8804 + }, + { + "start": 11667.42, + "end": 11668.62, + "probability": 0.5364 + }, + { + "start": 11668.74, + "end": 11670.9, + "probability": 0.9792 + }, + { + "start": 11671.3, + "end": 11672.54, + "probability": 0.8558 + }, + { + "start": 11673.16, + "end": 11676.62, + "probability": 0.9464 + }, + { + "start": 11677.14, + "end": 11682.16, + "probability": 0.9045 + }, + { + "start": 11682.26, + "end": 11685.12, + "probability": 0.9928 + }, + { + "start": 11685.66, + "end": 11687.14, + "probability": 0.8907 + }, + { + "start": 11687.28, + "end": 11690.1, + "probability": 0.9937 + }, + { + "start": 11690.38, + "end": 11696.12, + "probability": 0.9879 + }, + { + "start": 11697.06, + "end": 11699.42, + "probability": 0.6363 + }, + { + "start": 11699.54, + "end": 11703.74, + "probability": 0.9807 + }, + { + "start": 11703.88, + "end": 11705.0, + "probability": 0.4285 + }, + { + "start": 11706.14, + "end": 11707.06, + "probability": 0.7627 + }, + { + "start": 11707.64, + "end": 11709.36, + "probability": 0.8853 + }, + { + "start": 11709.5, + "end": 11712.06, + "probability": 0.9916 + }, + { + "start": 11712.42, + "end": 11715.46, + "probability": 0.9943 + }, + { + "start": 11716.0, + "end": 11720.18, + "probability": 0.9899 + }, + { + "start": 11720.54, + "end": 11722.82, + "probability": 0.9884 + }, + { + "start": 11724.24, + "end": 11727.5, + "probability": 0.9486 + }, + { + "start": 11728.46, + "end": 11729.59, + "probability": 0.8274 + }, + { + "start": 11729.8, + "end": 11730.0, + "probability": 0.6358 + }, + { + "start": 11730.04, + "end": 11731.52, + "probability": 0.9977 + }, + { + "start": 11732.12, + "end": 11734.78, + "probability": 0.9828 + }, + { + "start": 11735.52, + "end": 11737.82, + "probability": 0.9915 + }, + { + "start": 11737.92, + "end": 11740.24, + "probability": 0.9573 + }, + { + "start": 11740.34, + "end": 11741.34, + "probability": 0.8199 + }, + { + "start": 11741.42, + "end": 11743.22, + "probability": 0.9443 + }, + { + "start": 11744.57, + "end": 11749.76, + "probability": 0.7493 + }, + { + "start": 11749.94, + "end": 11753.62, + "probability": 0.955 + }, + { + "start": 11754.36, + "end": 11755.66, + "probability": 0.7607 + }, + { + "start": 11755.82, + "end": 11758.32, + "probability": 0.9575 + }, + { + "start": 11759.18, + "end": 11765.82, + "probability": 0.9906 + }, + { + "start": 11766.0, + "end": 11770.04, + "probability": 0.9915 + }, + { + "start": 11770.22, + "end": 11772.62, + "probability": 0.9961 + }, + { + "start": 11773.24, + "end": 11774.0, + "probability": 0.8247 + }, + { + "start": 11774.08, + "end": 11774.62, + "probability": 0.6824 + }, + { + "start": 11774.68, + "end": 11778.54, + "probability": 0.9947 + }, + { + "start": 11779.06, + "end": 11781.2, + "probability": 0.9888 + }, + { + "start": 11781.38, + "end": 11783.4, + "probability": 0.6724 + }, + { + "start": 11783.98, + "end": 11787.04, + "probability": 0.899 + }, + { + "start": 11787.04, + "end": 11790.36, + "probability": 0.9568 + }, + { + "start": 11790.48, + "end": 11793.8, + "probability": 0.9863 + }, + { + "start": 11794.84, + "end": 11798.98, + "probability": 0.9536 + }, + { + "start": 11799.04, + "end": 11801.38, + "probability": 0.8261 + }, + { + "start": 11801.38, + "end": 11804.44, + "probability": 0.9886 + }, + { + "start": 11804.56, + "end": 11804.56, + "probability": 0.0024 + }, + { + "start": 11805.36, + "end": 11810.88, + "probability": 0.2278 + }, + { + "start": 11810.88, + "end": 11814.2, + "probability": 0.4947 + }, + { + "start": 11814.8, + "end": 11814.8, + "probability": 0.1391 + }, + { + "start": 11814.8, + "end": 11814.8, + "probability": 0.0698 + }, + { + "start": 11814.8, + "end": 11814.8, + "probability": 0.1441 + }, + { + "start": 11814.8, + "end": 11816.42, + "probability": 0.4544 + }, + { + "start": 11816.78, + "end": 11820.04, + "probability": 0.692 + }, + { + "start": 11820.14, + "end": 11823.98, + "probability": 0.6865 + }, + { + "start": 11824.08, + "end": 11825.96, + "probability": 0.8297 + }, + { + "start": 11826.06, + "end": 11829.12, + "probability": 0.5244 + }, + { + "start": 11829.12, + "end": 11830.14, + "probability": 0.602 + }, + { + "start": 11830.14, + "end": 11831.21, + "probability": 0.9631 + }, + { + "start": 11831.64, + "end": 11835.3, + "probability": 0.9846 + }, + { + "start": 11835.7, + "end": 11838.36, + "probability": 0.7213 + }, + { + "start": 11839.43, + "end": 11843.42, + "probability": 0.6674 + }, + { + "start": 11843.84, + "end": 11844.7, + "probability": 0.7705 + }, + { + "start": 11844.8, + "end": 11846.72, + "probability": 0.7977 + }, + { + "start": 11846.78, + "end": 11850.08, + "probability": 0.9688 + }, + { + "start": 11851.62, + "end": 11853.18, + "probability": 0.5709 + }, + { + "start": 11853.84, + "end": 11859.1, + "probability": 0.9841 + }, + { + "start": 11860.62, + "end": 11862.44, + "probability": 0.5741 + }, + { + "start": 11862.54, + "end": 11866.9, + "probability": 0.926 + }, + { + "start": 11867.88, + "end": 11868.88, + "probability": 0.927 + }, + { + "start": 11869.06, + "end": 11871.3, + "probability": 0.9504 + }, + { + "start": 11871.58, + "end": 11873.6, + "probability": 0.9795 + }, + { + "start": 11873.76, + "end": 11874.6, + "probability": 0.7791 + }, + { + "start": 11874.96, + "end": 11876.98, + "probability": 0.9873 + }, + { + "start": 11877.08, + "end": 11881.04, + "probability": 0.9945 + }, + { + "start": 11881.16, + "end": 11882.65, + "probability": 0.936 + }, + { + "start": 11882.8, + "end": 11883.56, + "probability": 0.9612 + }, + { + "start": 11883.66, + "end": 11885.9, + "probability": 0.9775 + }, + { + "start": 11886.7, + "end": 11891.54, + "probability": 0.9811 + }, + { + "start": 11891.66, + "end": 11894.46, + "probability": 0.9751 + }, + { + "start": 11894.62, + "end": 11897.72, + "probability": 0.814 + }, + { + "start": 11899.7, + "end": 11900.72, + "probability": 0.6662 + }, + { + "start": 11901.06, + "end": 11904.52, + "probability": 0.8693 + }, + { + "start": 11904.52, + "end": 11909.84, + "probability": 0.96 + }, + { + "start": 11910.2, + "end": 11911.62, + "probability": 0.6884 + }, + { + "start": 11911.78, + "end": 11916.62, + "probability": 0.9951 + }, + { + "start": 11917.36, + "end": 11919.9, + "probability": 0.9967 + }, + { + "start": 11919.9, + "end": 11923.72, + "probability": 0.8662 + }, + { + "start": 11924.0, + "end": 11928.14, + "probability": 0.9848 + }, + { + "start": 11928.45, + "end": 11930.84, + "probability": 0.5135 + }, + { + "start": 11931.9, + "end": 11933.04, + "probability": 0.0792 + }, + { + "start": 11933.22, + "end": 11934.86, + "probability": 0.8102 + }, + { + "start": 11934.86, + "end": 11937.86, + "probability": 0.722 + }, + { + "start": 11938.86, + "end": 11942.42, + "probability": 0.9422 + }, + { + "start": 11942.56, + "end": 11946.76, + "probability": 0.9465 + }, + { + "start": 11947.48, + "end": 11948.02, + "probability": 0.6055 + }, + { + "start": 11948.14, + "end": 11949.8, + "probability": 0.9332 + }, + { + "start": 11949.9, + "end": 11954.02, + "probability": 0.9308 + }, + { + "start": 11954.06, + "end": 11955.17, + "probability": 0.7995 + }, + { + "start": 11955.28, + "end": 11956.4, + "probability": 0.9036 + }, + { + "start": 11956.6, + "end": 11958.08, + "probability": 0.4967 + }, + { + "start": 11958.62, + "end": 11960.44, + "probability": 0.9951 + }, + { + "start": 11961.96, + "end": 11965.98, + "probability": 0.9774 + }, + { + "start": 11965.98, + "end": 11970.48, + "probability": 0.967 + }, + { + "start": 11970.48, + "end": 11975.88, + "probability": 0.9915 + }, + { + "start": 11976.86, + "end": 11978.18, + "probability": 0.7161 + }, + { + "start": 11978.24, + "end": 11979.56, + "probability": 0.6224 + }, + { + "start": 11979.68, + "end": 11980.98, + "probability": 0.6474 + }, + { + "start": 11981.04, + "end": 11981.56, + "probability": 0.499 + }, + { + "start": 11981.64, + "end": 11982.98, + "probability": 0.9309 + }, + { + "start": 11984.74, + "end": 11987.06, + "probability": 0.6929 + }, + { + "start": 11987.12, + "end": 11988.62, + "probability": 0.9635 + }, + { + "start": 11989.12, + "end": 11994.62, + "probability": 0.9453 + }, + { + "start": 11994.78, + "end": 11996.72, + "probability": 0.9521 + }, + { + "start": 11997.24, + "end": 11999.0, + "probability": 0.9966 + }, + { + "start": 11999.32, + "end": 12003.04, + "probability": 0.9696 + }, + { + "start": 12003.6, + "end": 12005.34, + "probability": 0.9722 + }, + { + "start": 12005.76, + "end": 12010.66, + "probability": 0.9834 + }, + { + "start": 12011.28, + "end": 12014.22, + "probability": 0.9968 + }, + { + "start": 12014.22, + "end": 12017.96, + "probability": 0.999 + }, + { + "start": 12018.48, + "end": 12020.48, + "probability": 0.7265 + }, + { + "start": 12020.62, + "end": 12023.5, + "probability": 0.9963 + }, + { + "start": 12024.34, + "end": 12026.82, + "probability": 0.9858 + }, + { + "start": 12026.82, + "end": 12029.84, + "probability": 0.8877 + }, + { + "start": 12031.14, + "end": 12035.12, + "probability": 0.8166 + }, + { + "start": 12036.98, + "end": 12037.3, + "probability": 0.1025 + }, + { + "start": 12037.3, + "end": 12037.96, + "probability": 0.3827 + }, + { + "start": 12038.1, + "end": 12038.76, + "probability": 0.535 + }, + { + "start": 12039.16, + "end": 12041.68, + "probability": 0.7077 + }, + { + "start": 12041.8, + "end": 12042.62, + "probability": 0.9919 + }, + { + "start": 12044.17, + "end": 12046.48, + "probability": 0.69 + }, + { + "start": 12046.68, + "end": 12046.88, + "probability": 0.6512 + }, + { + "start": 12051.06, + "end": 12052.48, + "probability": 0.6506 + }, + { + "start": 12053.14, + "end": 12057.28, + "probability": 0.9707 + }, + { + "start": 12057.42, + "end": 12060.42, + "probability": 0.9982 + }, + { + "start": 12061.22, + "end": 12065.14, + "probability": 0.9972 + }, + { + "start": 12065.28, + "end": 12066.4, + "probability": 0.9824 + }, + { + "start": 12067.66, + "end": 12071.54, + "probability": 0.9821 + }, + { + "start": 12072.0, + "end": 12073.32, + "probability": 0.858 + }, + { + "start": 12073.46, + "end": 12076.06, + "probability": 0.994 + }, + { + "start": 12076.58, + "end": 12081.72, + "probability": 0.9679 + }, + { + "start": 12081.72, + "end": 12085.32, + "probability": 0.991 + }, + { + "start": 12085.44, + "end": 12086.22, + "probability": 0.6452 + }, + { + "start": 12086.32, + "end": 12087.96, + "probability": 0.6773 + }, + { + "start": 12088.48, + "end": 12092.68, + "probability": 0.9248 + }, + { + "start": 12092.68, + "end": 12096.3, + "probability": 0.9885 + }, + { + "start": 12096.7, + "end": 12100.5, + "probability": 0.9973 + }, + { + "start": 12100.5, + "end": 12104.3, + "probability": 0.9809 + }, + { + "start": 12104.34, + "end": 12104.92, + "probability": 0.7406 + }, + { + "start": 12107.18, + "end": 12107.82, + "probability": 0.6035 + }, + { + "start": 12107.9, + "end": 12110.69, + "probability": 0.9122 + }, + { + "start": 12123.64, + "end": 12123.88, + "probability": 0.3847 + }, + { + "start": 12124.7, + "end": 12124.9, + "probability": 0.1651 + }, + { + "start": 12124.9, + "end": 12124.9, + "probability": 0.1564 + }, + { + "start": 12124.9, + "end": 12126.42, + "probability": 0.6059 + }, + { + "start": 12127.22, + "end": 12131.3, + "probability": 0.983 + }, + { + "start": 12131.3, + "end": 12133.48, + "probability": 0.8861 + }, + { + "start": 12133.56, + "end": 12136.5, + "probability": 0.7983 + }, + { + "start": 12137.46, + "end": 12141.36, + "probability": 0.8467 + }, + { + "start": 12141.92, + "end": 12145.59, + "probability": 0.9849 + }, + { + "start": 12146.4, + "end": 12150.1, + "probability": 0.8998 + }, + { + "start": 12150.1, + "end": 12153.88, + "probability": 0.9648 + }, + { + "start": 12154.7, + "end": 12157.82, + "probability": 0.9865 + }, + { + "start": 12157.82, + "end": 12160.68, + "probability": 0.9941 + }, + { + "start": 12161.64, + "end": 12165.28, + "probability": 0.9823 + }, + { + "start": 12165.42, + "end": 12167.78, + "probability": 0.9564 + }, + { + "start": 12168.46, + "end": 12174.8, + "probability": 0.9952 + }, + { + "start": 12175.38, + "end": 12179.02, + "probability": 0.9373 + }, + { + "start": 12179.76, + "end": 12182.5, + "probability": 0.9871 + }, + { + "start": 12183.56, + "end": 12186.38, + "probability": 0.9965 + }, + { + "start": 12186.38, + "end": 12189.22, + "probability": 0.9906 + }, + { + "start": 12189.66, + "end": 12193.0, + "probability": 0.9967 + }, + { + "start": 12193.94, + "end": 12195.78, + "probability": 0.9107 + }, + { + "start": 12195.94, + "end": 12199.88, + "probability": 0.9711 + }, + { + "start": 12199.98, + "end": 12200.84, + "probability": 0.9953 + }, + { + "start": 12200.94, + "end": 12203.64, + "probability": 0.9794 + }, + { + "start": 12203.78, + "end": 12206.58, + "probability": 0.995 + }, + { + "start": 12207.42, + "end": 12211.7, + "probability": 0.9854 + }, + { + "start": 12212.82, + "end": 12215.26, + "probability": 0.9927 + }, + { + "start": 12215.38, + "end": 12215.46, + "probability": 0.3349 + }, + { + "start": 12215.56, + "end": 12216.6, + "probability": 0.8928 + }, + { + "start": 12216.73, + "end": 12221.32, + "probability": 0.9829 + }, + { + "start": 12222.4, + "end": 12223.04, + "probability": 0.5142 + }, + { + "start": 12223.28, + "end": 12223.58, + "probability": 0.0632 + }, + { + "start": 12223.7, + "end": 12225.98, + "probability": 0.9105 + }, + { + "start": 12226.5, + "end": 12227.18, + "probability": 0.9178 + }, + { + "start": 12227.32, + "end": 12228.2, + "probability": 0.9691 + }, + { + "start": 12228.4, + "end": 12230.42, + "probability": 0.9579 + }, + { + "start": 12230.58, + "end": 12230.9, + "probability": 0.2737 + }, + { + "start": 12231.02, + "end": 12232.68, + "probability": 0.9181 + }, + { + "start": 12233.78, + "end": 12234.58, + "probability": 0.8666 + }, + { + "start": 12234.62, + "end": 12236.26, + "probability": 0.941 + }, + { + "start": 12236.36, + "end": 12237.69, + "probability": 0.9761 + }, + { + "start": 12238.18, + "end": 12240.02, + "probability": 0.981 + }, + { + "start": 12240.86, + "end": 12244.98, + "probability": 0.9612 + }, + { + "start": 12245.4, + "end": 12247.02, + "probability": 0.9468 + }, + { + "start": 12247.74, + "end": 12250.86, + "probability": 0.8144 + }, + { + "start": 12251.26, + "end": 12254.44, + "probability": 0.9076 + }, + { + "start": 12255.22, + "end": 12258.34, + "probability": 0.979 + }, + { + "start": 12258.8, + "end": 12262.0, + "probability": 0.8773 + }, + { + "start": 12262.78, + "end": 12267.58, + "probability": 0.8201 + }, + { + "start": 12268.04, + "end": 12274.6, + "probability": 0.9559 + }, + { + "start": 12275.36, + "end": 12278.04, + "probability": 0.9497 + }, + { + "start": 12278.24, + "end": 12280.46, + "probability": 0.8994 + }, + { + "start": 12280.54, + "end": 12280.92, + "probability": 0.2187 + }, + { + "start": 12281.02, + "end": 12282.94, + "probability": 0.9585 + }, + { + "start": 12284.44, + "end": 12288.86, + "probability": 0.6806 + }, + { + "start": 12289.04, + "end": 12289.18, + "probability": 0.815 + }, + { + "start": 12290.42, + "end": 12291.06, + "probability": 0.9575 + }, + { + "start": 12294.21, + "end": 12296.58, + "probability": 0.754 + }, + { + "start": 12296.74, + "end": 12299.94, + "probability": 0.459 + }, + { + "start": 12300.87, + "end": 12306.34, + "probability": 0.7856 + }, + { + "start": 12308.71, + "end": 12311.14, + "probability": 0.9968 + }, + { + "start": 12311.26, + "end": 12313.84, + "probability": 0.9487 + }, + { + "start": 12314.05, + "end": 12318.0, + "probability": 0.978 + }, + { + "start": 12318.42, + "end": 12319.32, + "probability": 0.577 + }, + { + "start": 12319.4, + "end": 12321.84, + "probability": 0.8889 + }, + { + "start": 12323.06, + "end": 12328.84, + "probability": 0.9893 + }, + { + "start": 12329.3, + "end": 12336.2, + "probability": 0.9485 + }, + { + "start": 12336.78, + "end": 12336.78, + "probability": 0.1677 + }, + { + "start": 12336.78, + "end": 12338.08, + "probability": 0.5603 + }, + { + "start": 12340.84, + "end": 12343.49, + "probability": 0.992 + }, + { + "start": 12344.22, + "end": 12346.22, + "probability": 0.9123 + }, + { + "start": 12346.32, + "end": 12347.0, + "probability": 0.9196 + }, + { + "start": 12347.08, + "end": 12348.26, + "probability": 0.9736 + }, + { + "start": 12348.36, + "end": 12349.41, + "probability": 0.7814 + }, + { + "start": 12362.9, + "end": 12363.38, + "probability": 0.0684 + }, + { + "start": 12363.38, + "end": 12363.38, + "probability": 0.0277 + }, + { + "start": 12363.38, + "end": 12363.38, + "probability": 0.0479 + }, + { + "start": 12363.38, + "end": 12363.38, + "probability": 0.0913 + }, + { + "start": 12363.38, + "end": 12365.0, + "probability": 0.075 + }, + { + "start": 12365.0, + "end": 12366.86, + "probability": 0.5085 + }, + { + "start": 12367.1, + "end": 12367.56, + "probability": 0.2035 + }, + { + "start": 12367.68, + "end": 12369.74, + "probability": 0.9849 + }, + { + "start": 12370.12, + "end": 12375.82, + "probability": 0.8535 + }, + { + "start": 12375.82, + "end": 12377.08, + "probability": 0.9902 + }, + { + "start": 12377.68, + "end": 12384.0, + "probability": 0.9495 + }, + { + "start": 12384.0, + "end": 12386.54, + "probability": 0.9971 + }, + { + "start": 12387.36, + "end": 12390.78, + "probability": 0.6718 + }, + { + "start": 12390.86, + "end": 12391.06, + "probability": 0.4428 + }, + { + "start": 12391.1, + "end": 12391.82, + "probability": 0.7721 + }, + { + "start": 12392.24, + "end": 12396.42, + "probability": 0.9014 + }, + { + "start": 12396.9, + "end": 12398.92, + "probability": 0.5372 + }, + { + "start": 12399.0, + "end": 12399.78, + "probability": 0.7849 + }, + { + "start": 12399.92, + "end": 12400.86, + "probability": 0.9286 + }, + { + "start": 12401.54, + "end": 12404.34, + "probability": 0.8315 + }, + { + "start": 12405.58, + "end": 12407.98, + "probability": 0.3191 + }, + { + "start": 12409.74, + "end": 12410.46, + "probability": 0.0353 + }, + { + "start": 12410.46, + "end": 12410.74, + "probability": 0.2195 + }, + { + "start": 12411.4, + "end": 12412.36, + "probability": 0.7258 + }, + { + "start": 12412.68, + "end": 12413.76, + "probability": 0.644 + }, + { + "start": 12413.8, + "end": 12414.26, + "probability": 0.0143 + }, + { + "start": 12414.56, + "end": 12415.36, + "probability": 0.5734 + }, + { + "start": 12415.44, + "end": 12416.92, + "probability": 0.98 + }, + { + "start": 12419.84, + "end": 12425.04, + "probability": 0.9898 + }, + { + "start": 12425.04, + "end": 12428.78, + "probability": 0.9978 + }, + { + "start": 12429.06, + "end": 12429.94, + "probability": 0.8747 + }, + { + "start": 12430.1, + "end": 12433.84, + "probability": 0.9905 + }, + { + "start": 12433.94, + "end": 12436.0, + "probability": 0.9277 + }, + { + "start": 12436.08, + "end": 12437.94, + "probability": 0.9985 + }, + { + "start": 12438.16, + "end": 12439.88, + "probability": 0.8137 + }, + { + "start": 12440.44, + "end": 12444.58, + "probability": 0.9208 + }, + { + "start": 12444.68, + "end": 12447.52, + "probability": 0.995 + }, + { + "start": 12447.78, + "end": 12453.06, + "probability": 0.9919 + }, + { + "start": 12453.42, + "end": 12454.52, + "probability": 0.7186 + }, + { + "start": 12455.15, + "end": 12458.68, + "probability": 0.966 + }, + { + "start": 12458.9, + "end": 12462.16, + "probability": 0.9836 + }, + { + "start": 12462.38, + "end": 12465.36, + "probability": 0.9977 + }, + { + "start": 12465.36, + "end": 12468.1, + "probability": 0.9995 + }, + { + "start": 12468.3, + "end": 12470.0, + "probability": 0.9108 + }, + { + "start": 12470.3, + "end": 12473.42, + "probability": 0.998 + }, + { + "start": 12473.48, + "end": 12475.18, + "probability": 0.9974 + }, + { + "start": 12475.24, + "end": 12476.74, + "probability": 0.7119 + }, + { + "start": 12476.76, + "end": 12477.0, + "probability": 0.6486 + }, + { + "start": 12478.0, + "end": 12479.64, + "probability": 0.5831 + }, + { + "start": 12479.84, + "end": 12482.6, + "probability": 0.9434 + }, + { + "start": 12484.36, + "end": 12485.76, + "probability": 0.2383 + }, + { + "start": 12489.28, + "end": 12490.08, + "probability": 0.2462 + }, + { + "start": 12491.9, + "end": 12495.36, + "probability": 0.0222 + }, + { + "start": 12501.99, + "end": 12504.83, + "probability": 0.07 + }, + { + "start": 12504.83, + "end": 12505.47, + "probability": 0.0239 + }, + { + "start": 12505.83, + "end": 12505.91, + "probability": 0.0488 + }, + { + "start": 12505.91, + "end": 12505.91, + "probability": 0.0746 + }, + { + "start": 12505.91, + "end": 12511.97, + "probability": 0.5748 + }, + { + "start": 12513.65, + "end": 12516.26, + "probability": 0.9038 + }, + { + "start": 12531.83, + "end": 12537.35, + "probability": 0.9757 + }, + { + "start": 12537.35, + "end": 12541.45, + "probability": 0.9973 + }, + { + "start": 12542.41, + "end": 12546.13, + "probability": 0.7858 + }, + { + "start": 12546.59, + "end": 12547.57, + "probability": 0.8327 + }, + { + "start": 12548.69, + "end": 12549.25, + "probability": 0.4459 + }, + { + "start": 12549.31, + "end": 12553.63, + "probability": 0.9821 + }, + { + "start": 12553.67, + "end": 12555.95, + "probability": 0.9487 + }, + { + "start": 12556.27, + "end": 12558.15, + "probability": 0.8431 + }, + { + "start": 12558.45, + "end": 12561.55, + "probability": 0.9824 + }, + { + "start": 12562.23, + "end": 12563.42, + "probability": 0.9614 + }, + { + "start": 12563.81, + "end": 12567.31, + "probability": 0.8733 + }, + { + "start": 12567.97, + "end": 12569.69, + "probability": 0.6428 + }, + { + "start": 12569.75, + "end": 12570.55, + "probability": 0.7986 + }, + { + "start": 12571.27, + "end": 12574.57, + "probability": 0.6596 + }, + { + "start": 12575.93, + "end": 12576.33, + "probability": 0.7253 + }, + { + "start": 12577.45, + "end": 12582.44, + "probability": 0.9788 + }, + { + "start": 12583.75, + "end": 12586.53, + "probability": 0.9724 + }, + { + "start": 12587.83, + "end": 12592.13, + "probability": 0.9752 + }, + { + "start": 12592.13, + "end": 12598.91, + "probability": 0.9869 + }, + { + "start": 12598.95, + "end": 12601.49, + "probability": 0.8123 + }, + { + "start": 12601.63, + "end": 12602.65, + "probability": 0.9875 + }, + { + "start": 12604.93, + "end": 12606.79, + "probability": 0.7877 + }, + { + "start": 12607.73, + "end": 12612.83, + "probability": 0.693 + }, + { + "start": 12612.95, + "end": 12613.61, + "probability": 0.8562 + }, + { + "start": 12615.33, + "end": 12623.17, + "probability": 0.9448 + }, + { + "start": 12623.81, + "end": 12625.21, + "probability": 0.8636 + }, + { + "start": 12626.17, + "end": 12627.78, + "probability": 0.9399 + }, + { + "start": 12628.67, + "end": 12629.92, + "probability": 0.9834 + }, + { + "start": 12631.49, + "end": 12632.27, + "probability": 0.5072 + }, + { + "start": 12632.6, + "end": 12634.05, + "probability": 0.9934 + }, + { + "start": 12634.15, + "end": 12635.63, + "probability": 0.8231 + }, + { + "start": 12635.75, + "end": 12636.01, + "probability": 0.685 + }, + { + "start": 12636.19, + "end": 12636.57, + "probability": 0.9429 + }, + { + "start": 12636.65, + "end": 12641.07, + "probability": 0.9924 + }, + { + "start": 12641.75, + "end": 12646.37, + "probability": 0.9949 + }, + { + "start": 12646.47, + "end": 12651.57, + "probability": 0.9761 + }, + { + "start": 12651.79, + "end": 12652.79, + "probability": 0.794 + }, + { + "start": 12653.49, + "end": 12657.61, + "probability": 0.8904 + }, + { + "start": 12658.65, + "end": 12660.07, + "probability": 0.9277 + }, + { + "start": 12660.11, + "end": 12660.71, + "probability": 0.6501 + }, + { + "start": 12660.83, + "end": 12661.55, + "probability": 0.929 + }, + { + "start": 12661.61, + "end": 12663.91, + "probability": 0.929 + }, + { + "start": 12664.71, + "end": 12666.27, + "probability": 0.8432 + }, + { + "start": 12666.81, + "end": 12668.31, + "probability": 0.8434 + }, + { + "start": 12669.87, + "end": 12671.61, + "probability": 0.0134 + }, + { + "start": 12673.51, + "end": 12674.91, + "probability": 0.6693 + }, + { + "start": 12675.13, + "end": 12679.99, + "probability": 0.9735 + }, + { + "start": 12680.41, + "end": 12681.49, + "probability": 0.7977 + }, + { + "start": 12681.85, + "end": 12684.24, + "probability": 0.97 + }, + { + "start": 12685.51, + "end": 12689.63, + "probability": 0.9878 + }, + { + "start": 12690.45, + "end": 12694.95, + "probability": 0.6693 + }, + { + "start": 12695.03, + "end": 12699.07, + "probability": 0.9944 + }, + { + "start": 12699.25, + "end": 12701.87, + "probability": 0.8193 + }, + { + "start": 12701.91, + "end": 12705.8, + "probability": 0.9976 + }, + { + "start": 12707.01, + "end": 12708.41, + "probability": 0.838 + }, + { + "start": 12709.09, + "end": 12710.25, + "probability": 0.9515 + }, + { + "start": 12710.79, + "end": 12712.75, + "probability": 0.8041 + }, + { + "start": 12713.17, + "end": 12716.89, + "probability": 0.9958 + }, + { + "start": 12716.99, + "end": 12720.17, + "probability": 0.9981 + }, + { + "start": 12720.69, + "end": 12722.21, + "probability": 0.9871 + }, + { + "start": 12722.35, + "end": 12725.03, + "probability": 0.9983 + }, + { + "start": 12725.03, + "end": 12729.17, + "probability": 0.9967 + }, + { + "start": 12729.69, + "end": 12730.11, + "probability": 0.5317 + }, + { + "start": 12730.49, + "end": 12731.79, + "probability": 0.6389 + }, + { + "start": 12731.87, + "end": 12733.25, + "probability": 0.9771 + }, + { + "start": 12733.35, + "end": 12737.75, + "probability": 0.9911 + }, + { + "start": 12738.01, + "end": 12740.47, + "probability": 0.8146 + }, + { + "start": 12740.53, + "end": 12741.52, + "probability": 0.501 + }, + { + "start": 12741.67, + "end": 12741.83, + "probability": 0.8807 + }, + { + "start": 12741.89, + "end": 12742.91, + "probability": 0.9079 + }, + { + "start": 12742.99, + "end": 12744.62, + "probability": 0.9046 + }, + { + "start": 12745.19, + "end": 12751.09, + "probability": 0.9639 + }, + { + "start": 12751.09, + "end": 12756.39, + "probability": 0.9932 + }, + { + "start": 12756.91, + "end": 12758.89, + "probability": 0.5169 + }, + { + "start": 12759.63, + "end": 12760.53, + "probability": 0.736 + }, + { + "start": 12760.59, + "end": 12761.17, + "probability": 0.9052 + }, + { + "start": 12761.25, + "end": 12763.19, + "probability": 0.9443 + }, + { + "start": 12763.27, + "end": 12763.99, + "probability": 0.5868 + }, + { + "start": 12764.53, + "end": 12766.97, + "probability": 0.7852 + }, + { + "start": 12767.27, + "end": 12769.73, + "probability": 0.8228 + }, + { + "start": 12770.15, + "end": 12772.87, + "probability": 0.9459 + }, + { + "start": 12773.01, + "end": 12774.89, + "probability": 0.9747 + }, + { + "start": 12775.23, + "end": 12777.41, + "probability": 0.9978 + }, + { + "start": 12777.53, + "end": 12778.32, + "probability": 0.9822 + }, + { + "start": 12778.51, + "end": 12778.93, + "probability": 0.9596 + }, + { + "start": 12779.19, + "end": 12779.35, + "probability": 0.5392 + }, + { + "start": 12779.71, + "end": 12781.07, + "probability": 0.9958 + }, + { + "start": 12782.03, + "end": 12782.46, + "probability": 0.9071 + }, + { + "start": 12782.81, + "end": 12785.04, + "probability": 0.9208 + }, + { + "start": 12785.75, + "end": 12786.97, + "probability": 0.9473 + }, + { + "start": 12787.15, + "end": 12791.19, + "probability": 0.916 + }, + { + "start": 12791.31, + "end": 12792.69, + "probability": 0.8362 + }, + { + "start": 12792.91, + "end": 12793.03, + "probability": 0.5282 + }, + { + "start": 12793.41, + "end": 12794.45, + "probability": 0.9821 + }, + { + "start": 12794.73, + "end": 12797.53, + "probability": 0.9969 + }, + { + "start": 12798.55, + "end": 12800.25, + "probability": 0.988 + }, + { + "start": 12800.37, + "end": 12801.95, + "probability": 0.9985 + }, + { + "start": 12801.97, + "end": 12802.55, + "probability": 0.9373 + }, + { + "start": 12802.61, + "end": 12805.05, + "probability": 0.9595 + }, + { + "start": 12805.59, + "end": 12807.09, + "probability": 0.9181 + }, + { + "start": 12807.39, + "end": 12808.43, + "probability": 0.7104 + }, + { + "start": 12808.51, + "end": 12812.99, + "probability": 0.9745 + }, + { + "start": 12813.35, + "end": 12814.89, + "probability": 0.9576 + }, + { + "start": 12814.95, + "end": 12816.25, + "probability": 0.993 + }, + { + "start": 12816.81, + "end": 12817.91, + "probability": 0.988 + }, + { + "start": 12819.23, + "end": 12821.97, + "probability": 0.9948 + }, + { + "start": 12822.51, + "end": 12823.63, + "probability": 0.7558 + }, + { + "start": 12823.71, + "end": 12825.79, + "probability": 0.9668 + }, + { + "start": 12825.85, + "end": 12828.81, + "probability": 0.988 + }, + { + "start": 12829.17, + "end": 12830.55, + "probability": 0.9366 + }, + { + "start": 12831.11, + "end": 12833.39, + "probability": 0.9802 + }, + { + "start": 12834.01, + "end": 12835.06, + "probability": 0.796 + }, + { + "start": 12835.85, + "end": 12836.57, + "probability": 0.4162 + }, + { + "start": 12836.61, + "end": 12839.33, + "probability": 0.9707 + }, + { + "start": 12839.37, + "end": 12841.01, + "probability": 0.9927 + }, + { + "start": 12841.65, + "end": 12843.91, + "probability": 0.7525 + }, + { + "start": 12845.81, + "end": 12846.73, + "probability": 0.8533 + }, + { + "start": 12847.93, + "end": 12848.79, + "probability": 0.7816 + }, + { + "start": 12849.35, + "end": 12850.95, + "probability": 0.9601 + }, + { + "start": 12851.17, + "end": 12851.75, + "probability": 0.7071 + }, + { + "start": 12851.79, + "end": 12854.73, + "probability": 0.8825 + }, + { + "start": 12854.83, + "end": 12856.81, + "probability": 0.9015 + }, + { + "start": 12857.77, + "end": 12860.47, + "probability": 0.9884 + }, + { + "start": 12860.65, + "end": 12861.59, + "probability": 0.7227 + }, + { + "start": 12861.69, + "end": 12863.91, + "probability": 0.8379 + }, + { + "start": 12864.03, + "end": 12866.83, + "probability": 0.9926 + }, + { + "start": 12868.07, + "end": 12871.03, + "probability": 0.9785 + }, + { + "start": 12871.03, + "end": 12874.13, + "probability": 0.8142 + }, + { + "start": 12874.77, + "end": 12875.59, + "probability": 0.7586 + }, + { + "start": 12875.63, + "end": 12877.99, + "probability": 0.9718 + }, + { + "start": 12878.33, + "end": 12879.91, + "probability": 0.8541 + }, + { + "start": 12880.33, + "end": 12881.59, + "probability": 0.9683 + }, + { + "start": 12882.25, + "end": 12884.97, + "probability": 0.9827 + }, + { + "start": 12885.51, + "end": 12887.57, + "probability": 0.9805 + }, + { + "start": 12888.11, + "end": 12888.85, + "probability": 0.9252 + }, + { + "start": 12889.17, + "end": 12890.89, + "probability": 0.7013 + }, + { + "start": 12891.01, + "end": 12891.99, + "probability": 0.7305 + }, + { + "start": 12892.31, + "end": 12895.43, + "probability": 0.8158 + }, + { + "start": 12895.45, + "end": 12897.55, + "probability": 0.9149 + }, + { + "start": 12897.85, + "end": 12899.33, + "probability": 0.9691 + }, + { + "start": 12899.33, + "end": 12901.01, + "probability": 0.9098 + }, + { + "start": 12901.17, + "end": 12902.21, + "probability": 0.7404 + }, + { + "start": 12902.82, + "end": 12904.99, + "probability": 0.9531 + }, + { + "start": 12905.07, + "end": 12905.41, + "probability": 0.8786 + }, + { + "start": 12905.45, + "end": 12907.85, + "probability": 0.9468 + }, + { + "start": 12907.95, + "end": 12908.75, + "probability": 0.9918 + }, + { + "start": 12909.05, + "end": 12915.91, + "probability": 0.9418 + }, + { + "start": 12916.79, + "end": 12918.77, + "probability": 0.9744 + }, + { + "start": 12919.35, + "end": 12921.03, + "probability": 0.999 + }, + { + "start": 12921.85, + "end": 12924.21, + "probability": 0.9525 + }, + { + "start": 12925.11, + "end": 12925.93, + "probability": 0.8532 + }, + { + "start": 12926.17, + "end": 12926.47, + "probability": 0.7226 + }, + { + "start": 12926.81, + "end": 12927.83, + "probability": 0.6394 + }, + { + "start": 12927.87, + "end": 12929.13, + "probability": 0.8118 + }, + { + "start": 12929.57, + "end": 12934.59, + "probability": 0.9974 + }, + { + "start": 12935.49, + "end": 12936.03, + "probability": 0.8396 + }, + { + "start": 12937.17, + "end": 12940.95, + "probability": 0.7182 + }, + { + "start": 12942.24, + "end": 12945.01, + "probability": 0.7277 + }, + { + "start": 12945.91, + "end": 12947.99, + "probability": 0.5767 + }, + { + "start": 12948.05, + "end": 12951.02, + "probability": 0.9861 + }, + { + "start": 12952.09, + "end": 12954.19, + "probability": 0.8005 + }, + { + "start": 12954.97, + "end": 12958.19, + "probability": 0.9922 + }, + { + "start": 12958.39, + "end": 12963.43, + "probability": 0.9812 + }, + { + "start": 12963.65, + "end": 12964.25, + "probability": 0.9045 + }, + { + "start": 12964.33, + "end": 12965.05, + "probability": 0.5581 + }, + { + "start": 12965.23, + "end": 12968.09, + "probability": 0.9212 + }, + { + "start": 12968.91, + "end": 12971.61, + "probability": 0.7091 + }, + { + "start": 12971.71, + "end": 12973.91, + "probability": 0.8789 + }, + { + "start": 12974.39, + "end": 12974.63, + "probability": 0.3307 + }, + { + "start": 12974.81, + "end": 12974.97, + "probability": 0.4872 + }, + { + "start": 12975.15, + "end": 12975.57, + "probability": 0.8933 + }, + { + "start": 12975.63, + "end": 12976.37, + "probability": 0.9816 + }, + { + "start": 12976.99, + "end": 12980.62, + "probability": 0.991 + }, + { + "start": 12981.17, + "end": 12984.11, + "probability": 0.9619 + }, + { + "start": 12984.55, + "end": 12991.14, + "probability": 0.8279 + }, + { + "start": 12991.31, + "end": 12996.43, + "probability": 0.9575 + }, + { + "start": 12996.49, + "end": 12999.31, + "probability": 0.9766 + }, + { + "start": 12999.31, + "end": 13003.39, + "probability": 0.9944 + }, + { + "start": 13003.45, + "end": 13007.69, + "probability": 0.6898 + }, + { + "start": 13008.13, + "end": 13008.97, + "probability": 0.8571 + }, + { + "start": 13009.11, + "end": 13009.65, + "probability": 0.9211 + }, + { + "start": 13009.85, + "end": 13013.49, + "probability": 0.9447 + }, + { + "start": 13013.73, + "end": 13014.93, + "probability": 0.8292 + }, + { + "start": 13015.27, + "end": 13016.19, + "probability": 0.6368 + }, + { + "start": 13016.31, + "end": 13018.03, + "probability": 0.7438 + }, + { + "start": 13018.45, + "end": 13019.95, + "probability": 0.9733 + }, + { + "start": 13020.41, + "end": 13022.41, + "probability": 0.9689 + }, + { + "start": 13022.45, + "end": 13024.12, + "probability": 0.9751 + }, + { + "start": 13024.51, + "end": 13025.23, + "probability": 0.9849 + }, + { + "start": 13025.57, + "end": 13026.97, + "probability": 0.6879 + }, + { + "start": 13027.03, + "end": 13030.07, + "probability": 0.9951 + }, + { + "start": 13030.97, + "end": 13033.93, + "probability": 0.9607 + }, + { + "start": 13035.16, + "end": 13040.45, + "probability": 0.9518 + }, + { + "start": 13040.59, + "end": 13040.97, + "probability": 0.0423 + }, + { + "start": 13040.97, + "end": 13040.97, + "probability": 0.1689 + }, + { + "start": 13040.97, + "end": 13040.97, + "probability": 0.2852 + }, + { + "start": 13040.97, + "end": 13040.97, + "probability": 0.3724 + }, + { + "start": 13040.97, + "end": 13040.97, + "probability": 0.0823 + }, + { + "start": 13040.97, + "end": 13042.9, + "probability": 0.8405 + }, + { + "start": 13043.67, + "end": 13046.47, + "probability": 0.959 + }, + { + "start": 13047.49, + "end": 13048.27, + "probability": 0.4198 + }, + { + "start": 13048.33, + "end": 13050.17, + "probability": 0.8569 + }, + { + "start": 13050.55, + "end": 13050.99, + "probability": 0.7172 + }, + { + "start": 13051.01, + "end": 13052.11, + "probability": 0.9638 + }, + { + "start": 13052.69, + "end": 13054.81, + "probability": 0.8063 + }, + { + "start": 13054.99, + "end": 13056.37, + "probability": 0.9509 + }, + { + "start": 13056.71, + "end": 13058.43, + "probability": 0.5102 + }, + { + "start": 13059.57, + "end": 13060.82, + "probability": 0.6836 + }, + { + "start": 13063.25, + "end": 13064.67, + "probability": 0.7417 + }, + { + "start": 13064.79, + "end": 13066.87, + "probability": 0.8787 + }, + { + "start": 13066.99, + "end": 13068.41, + "probability": 0.9676 + }, + { + "start": 13068.47, + "end": 13071.81, + "probability": 0.9588 + }, + { + "start": 13072.69, + "end": 13073.65, + "probability": 0.8553 + }, + { + "start": 13073.93, + "end": 13074.41, + "probability": 0.3021 + }, + { + "start": 13074.77, + "end": 13076.09, + "probability": 0.7839 + }, + { + "start": 13076.71, + "end": 13080.31, + "probability": 0.9794 + }, + { + "start": 13080.47, + "end": 13081.89, + "probability": 0.8464 + }, + { + "start": 13082.03, + "end": 13084.31, + "probability": 0.9822 + }, + { + "start": 13085.45, + "end": 13086.03, + "probability": 0.9712 + }, + { + "start": 13086.29, + "end": 13086.93, + "probability": 0.9188 + }, + { + "start": 13087.15, + "end": 13088.37, + "probability": 0.9846 + }, + { + "start": 13088.47, + "end": 13089.57, + "probability": 0.9645 + }, + { + "start": 13090.15, + "end": 13094.43, + "probability": 0.919 + }, + { + "start": 13094.57, + "end": 13096.71, + "probability": 0.8597 + }, + { + "start": 13096.75, + "end": 13097.27, + "probability": 0.4958 + }, + { + "start": 13097.31, + "end": 13097.77, + "probability": 0.8101 + }, + { + "start": 13098.13, + "end": 13100.37, + "probability": 0.8918 + }, + { + "start": 13100.43, + "end": 13103.55, + "probability": 0.8676 + }, + { + "start": 13103.59, + "end": 13107.09, + "probability": 0.9319 + }, + { + "start": 13107.17, + "end": 13111.61, + "probability": 0.9929 + }, + { + "start": 13112.05, + "end": 13113.41, + "probability": 0.9443 + }, + { + "start": 13113.61, + "end": 13115.01, + "probability": 0.9697 + }, + { + "start": 13115.37, + "end": 13119.01, + "probability": 0.8692 + }, + { + "start": 13119.25, + "end": 13120.11, + "probability": 0.8325 + }, + { + "start": 13120.15, + "end": 13126.95, + "probability": 0.9492 + }, + { + "start": 13127.37, + "end": 13130.65, + "probability": 0.9705 + }, + { + "start": 13131.17, + "end": 13133.03, + "probability": 0.9836 + }, + { + "start": 13133.47, + "end": 13138.52, + "probability": 0.9958 + }, + { + "start": 13139.03, + "end": 13139.83, + "probability": 0.6433 + }, + { + "start": 13139.91, + "end": 13140.91, + "probability": 0.5052 + }, + { + "start": 13141.35, + "end": 13143.75, + "probability": 0.8743 + }, + { + "start": 13143.99, + "end": 13145.79, + "probability": 0.8116 + }, + { + "start": 13145.87, + "end": 13147.05, + "probability": 0.4255 + }, + { + "start": 13147.17, + "end": 13149.17, + "probability": 0.8285 + }, + { + "start": 13150.67, + "end": 13151.01, + "probability": 0.4189 + }, + { + "start": 13151.03, + "end": 13154.69, + "probability": 0.8594 + }, + { + "start": 13155.27, + "end": 13156.93, + "probability": 0.764 + }, + { + "start": 13157.11, + "end": 13159.31, + "probability": 0.9525 + }, + { + "start": 13160.05, + "end": 13165.33, + "probability": 0.9761 + }, + { + "start": 13165.37, + "end": 13166.83, + "probability": 0.769 + }, + { + "start": 13166.89, + "end": 13168.09, + "probability": 0.9941 + }, + { + "start": 13168.15, + "end": 13170.37, + "probability": 0.8225 + }, + { + "start": 13171.15, + "end": 13172.09, + "probability": 0.5621 + }, + { + "start": 13172.91, + "end": 13173.91, + "probability": 0.9307 + }, + { + "start": 13174.61, + "end": 13175.89, + "probability": 0.8994 + }, + { + "start": 13175.95, + "end": 13179.37, + "probability": 0.9738 + }, + { + "start": 13179.49, + "end": 13183.07, + "probability": 0.9971 + }, + { + "start": 13183.45, + "end": 13184.55, + "probability": 0.8078 + }, + { + "start": 13185.25, + "end": 13186.39, + "probability": 0.6993 + }, + { + "start": 13187.25, + "end": 13188.23, + "probability": 0.894 + }, + { + "start": 13188.79, + "end": 13195.73, + "probability": 0.9685 + }, + { + "start": 13196.83, + "end": 13197.89, + "probability": 0.9741 + }, + { + "start": 13198.09, + "end": 13199.75, + "probability": 0.9914 + }, + { + "start": 13200.61, + "end": 13203.07, + "probability": 0.9988 + }, + { + "start": 13203.73, + "end": 13209.27, + "probability": 0.9901 + }, + { + "start": 13209.87, + "end": 13211.53, + "probability": 0.939 + }, + { + "start": 13212.27, + "end": 13214.65, + "probability": 0.8115 + }, + { + "start": 13214.71, + "end": 13216.03, + "probability": 0.8761 + }, + { + "start": 13216.39, + "end": 13218.93, + "probability": 0.9456 + }, + { + "start": 13219.51, + "end": 13220.29, + "probability": 0.8176 + }, + { + "start": 13220.39, + "end": 13225.19, + "probability": 0.9915 + }, + { + "start": 13225.51, + "end": 13226.26, + "probability": 0.8677 + }, + { + "start": 13226.69, + "end": 13228.33, + "probability": 0.8878 + }, + { + "start": 13229.23, + "end": 13231.24, + "probability": 0.9782 + }, + { + "start": 13231.61, + "end": 13232.59, + "probability": 0.9159 + }, + { + "start": 13232.65, + "end": 13234.47, + "probability": 0.9885 + }, + { + "start": 13234.57, + "end": 13235.41, + "probability": 0.933 + }, + { + "start": 13235.49, + "end": 13238.43, + "probability": 0.9679 + }, + { + "start": 13238.55, + "end": 13240.91, + "probability": 0.5745 + }, + { + "start": 13241.55, + "end": 13243.33, + "probability": 0.7492 + }, + { + "start": 13243.71, + "end": 13247.97, + "probability": 0.9868 + }, + { + "start": 13248.39, + "end": 13249.83, + "probability": 0.8613 + }, + { + "start": 13250.39, + "end": 13252.55, + "probability": 0.9976 + }, + { + "start": 13252.81, + "end": 13254.76, + "probability": 0.9131 + }, + { + "start": 13255.73, + "end": 13259.53, + "probability": 0.9413 + }, + { + "start": 13259.65, + "end": 13259.67, + "probability": 0.3296 + }, + { + "start": 13259.67, + "end": 13259.81, + "probability": 0.1102 + }, + { + "start": 13259.99, + "end": 13262.33, + "probability": 0.9214 + }, + { + "start": 13262.81, + "end": 13266.03, + "probability": 0.972 + }, + { + "start": 13266.29, + "end": 13266.59, + "probability": 0.2589 + }, + { + "start": 13266.59, + "end": 13267.01, + "probability": 0.5609 + }, + { + "start": 13267.25, + "end": 13269.03, + "probability": 0.6909 + }, + { + "start": 13269.11, + "end": 13269.65, + "probability": 0.4492 + }, + { + "start": 13269.65, + "end": 13270.73, + "probability": 0.9695 + }, + { + "start": 13271.87, + "end": 13272.51, + "probability": 0.8806 + }, + { + "start": 13272.59, + "end": 13275.49, + "probability": 0.9625 + }, + { + "start": 13275.85, + "end": 13277.2, + "probability": 0.8546 + }, + { + "start": 13279.43, + "end": 13282.63, + "probability": 0.658 + }, + { + "start": 13283.37, + "end": 13286.59, + "probability": 0.9292 + }, + { + "start": 13286.59, + "end": 13288.87, + "probability": 0.9925 + }, + { + "start": 13289.99, + "end": 13295.87, + "probability": 0.8225 + }, + { + "start": 13296.91, + "end": 13300.19, + "probability": 0.9258 + }, + { + "start": 13300.19, + "end": 13303.99, + "probability": 0.9847 + }, + { + "start": 13304.93, + "end": 13308.39, + "probability": 0.9022 + }, + { + "start": 13309.19, + "end": 13309.93, + "probability": 0.9464 + }, + { + "start": 13310.09, + "end": 13311.45, + "probability": 0.9719 + }, + { + "start": 13311.69, + "end": 13315.45, + "probability": 0.9778 + }, + { + "start": 13316.27, + "end": 13321.17, + "probability": 0.8039 + }, + { + "start": 13321.17, + "end": 13325.61, + "probability": 0.9938 + }, + { + "start": 13326.77, + "end": 13331.03, + "probability": 0.9415 + }, + { + "start": 13331.67, + "end": 13332.77, + "probability": 0.8406 + }, + { + "start": 13333.37, + "end": 13336.03, + "probability": 0.9818 + }, + { + "start": 13336.59, + "end": 13342.33, + "probability": 0.9805 + }, + { + "start": 13343.29, + "end": 13344.17, + "probability": 0.8601 + }, + { + "start": 13344.25, + "end": 13345.31, + "probability": 0.6972 + }, + { + "start": 13345.75, + "end": 13350.01, + "probability": 0.9129 + }, + { + "start": 13350.39, + "end": 13351.83, + "probability": 0.6454 + }, + { + "start": 13352.27, + "end": 13353.19, + "probability": 0.819 + }, + { + "start": 13353.31, + "end": 13357.47, + "probability": 0.9792 + }, + { + "start": 13357.49, + "end": 13358.85, + "probability": 0.7408 + }, + { + "start": 13359.03, + "end": 13360.97, + "probability": 0.9972 + }, + { + "start": 13361.85, + "end": 13363.37, + "probability": 0.9513 + }, + { + "start": 13364.69, + "end": 13369.13, + "probability": 0.8398 + }, + { + "start": 13369.19, + "end": 13372.11, + "probability": 0.7813 + }, + { + "start": 13372.93, + "end": 13375.55, + "probability": 0.9869 + }, + { + "start": 13375.63, + "end": 13377.1, + "probability": 0.7563 + }, + { + "start": 13377.41, + "end": 13378.63, + "probability": 0.9412 + }, + { + "start": 13379.51, + "end": 13380.53, + "probability": 0.9623 + }, + { + "start": 13380.71, + "end": 13381.71, + "probability": 0.6529 + }, + { + "start": 13381.91, + "end": 13382.67, + "probability": 0.8599 + }, + { + "start": 13382.67, + "end": 13383.69, + "probability": 0.9441 + }, + { + "start": 13384.61, + "end": 13387.89, + "probability": 0.9654 + }, + { + "start": 13388.01, + "end": 13388.74, + "probability": 0.9261 + }, + { + "start": 13389.79, + "end": 13390.44, + "probability": 0.7673 + }, + { + "start": 13390.61, + "end": 13391.99, + "probability": 0.9007 + }, + { + "start": 13391.99, + "end": 13392.53, + "probability": 0.8684 + }, + { + "start": 13392.63, + "end": 13393.59, + "probability": 0.9089 + }, + { + "start": 13394.87, + "end": 13395.31, + "probability": 0.5535 + }, + { + "start": 13395.49, + "end": 13395.73, + "probability": 0.228 + }, + { + "start": 13395.77, + "end": 13396.47, + "probability": 0.626 + }, + { + "start": 13396.91, + "end": 13398.79, + "probability": 0.9748 + }, + { + "start": 13398.89, + "end": 13402.05, + "probability": 0.9663 + }, + { + "start": 13402.83, + "end": 13405.29, + "probability": 0.952 + }, + { + "start": 13406.19, + "end": 13409.35, + "probability": 0.9922 + }, + { + "start": 13410.13, + "end": 13411.47, + "probability": 0.9874 + }, + { + "start": 13411.63, + "end": 13412.93, + "probability": 0.8745 + }, + { + "start": 13413.35, + "end": 13416.81, + "probability": 0.9549 + }, + { + "start": 13417.33, + "end": 13419.35, + "probability": 0.7395 + }, + { + "start": 13419.91, + "end": 13421.43, + "probability": 0.8789 + }, + { + "start": 13421.71, + "end": 13423.73, + "probability": 0.9896 + }, + { + "start": 13424.21, + "end": 13425.53, + "probability": 0.9731 + }, + { + "start": 13426.05, + "end": 13427.93, + "probability": 0.589 + }, + { + "start": 13428.29, + "end": 13432.81, + "probability": 0.9814 + }, + { + "start": 13433.51, + "end": 13434.97, + "probability": 0.9786 + }, + { + "start": 13435.77, + "end": 13441.45, + "probability": 0.9833 + }, + { + "start": 13442.71, + "end": 13444.45, + "probability": 0.9691 + }, + { + "start": 13444.71, + "end": 13445.83, + "probability": 0.9851 + }, + { + "start": 13446.01, + "end": 13447.55, + "probability": 0.7395 + }, + { + "start": 13448.11, + "end": 13450.07, + "probability": 0.8164 + }, + { + "start": 13450.57, + "end": 13454.21, + "probability": 0.9762 + }, + { + "start": 13455.81, + "end": 13458.35, + "probability": 0.9749 + }, + { + "start": 13458.97, + "end": 13461.57, + "probability": 0.9829 + }, + { + "start": 13462.01, + "end": 13465.03, + "probability": 0.9077 + }, + { + "start": 13466.41, + "end": 13470.23, + "probability": 0.7386 + }, + { + "start": 13470.89, + "end": 13475.37, + "probability": 0.9247 + }, + { + "start": 13475.37, + "end": 13480.35, + "probability": 0.8901 + }, + { + "start": 13481.33, + "end": 13483.79, + "probability": 0.8965 + }, + { + "start": 13484.65, + "end": 13488.67, + "probability": 0.9602 + }, + { + "start": 13489.17, + "end": 13490.83, + "probability": 0.8974 + }, + { + "start": 13491.13, + "end": 13492.79, + "probability": 0.7719 + }, + { + "start": 13493.41, + "end": 13497.31, + "probability": 0.9932 + }, + { + "start": 13497.97, + "end": 13501.23, + "probability": 0.9414 + }, + { + "start": 13501.23, + "end": 13501.45, + "probability": 0.8007 + }, + { + "start": 13501.55, + "end": 13503.16, + "probability": 0.688 + }, + { + "start": 13503.21, + "end": 13504.87, + "probability": 0.8226 + }, + { + "start": 13504.89, + "end": 13505.71, + "probability": 0.8262 + }, + { + "start": 13505.83, + "end": 13506.81, + "probability": 0.7736 + }, + { + "start": 13508.25, + "end": 13511.81, + "probability": 0.9797 + }, + { + "start": 13513.39, + "end": 13514.89, + "probability": 0.9915 + }, + { + "start": 13525.53, + "end": 13525.91, + "probability": 0.4015 + }, + { + "start": 13525.97, + "end": 13526.39, + "probability": 0.5961 + }, + { + "start": 13530.25, + "end": 13530.33, + "probability": 0.2783 + }, + { + "start": 13530.41, + "end": 13530.89, + "probability": 0.5637 + }, + { + "start": 13531.75, + "end": 13532.84, + "probability": 0.6377 + }, + { + "start": 13534.19, + "end": 13538.27, + "probability": 0.9683 + }, + { + "start": 13538.27, + "end": 13543.55, + "probability": 0.9722 + }, + { + "start": 13543.79, + "end": 13544.73, + "probability": 0.6672 + }, + { + "start": 13546.93, + "end": 13551.31, + "probability": 0.9836 + }, + { + "start": 13551.63, + "end": 13556.65, + "probability": 0.9856 + }, + { + "start": 13556.85, + "end": 13557.25, + "probability": 0.7954 + }, + { + "start": 13558.33, + "end": 13562.47, + "probability": 0.9192 + }, + { + "start": 13563.29, + "end": 13566.35, + "probability": 0.9896 + }, + { + "start": 13567.19, + "end": 13569.93, + "probability": 0.9628 + }, + { + "start": 13570.67, + "end": 13571.49, + "probability": 0.6555 + }, + { + "start": 13572.47, + "end": 13573.35, + "probability": 0.9928 + }, + { + "start": 13573.53, + "end": 13575.79, + "probability": 0.9927 + }, + { + "start": 13576.19, + "end": 13577.79, + "probability": 0.9694 + }, + { + "start": 13578.69, + "end": 13581.83, + "probability": 0.9775 + }, + { + "start": 13584.09, + "end": 13587.67, + "probability": 0.9946 + }, + { + "start": 13589.19, + "end": 13591.35, + "probability": 0.758 + }, + { + "start": 13592.15, + "end": 13593.21, + "probability": 0.9725 + }, + { + "start": 13593.97, + "end": 13596.97, + "probability": 0.967 + }, + { + "start": 13597.63, + "end": 13597.93, + "probability": 0.9128 + }, + { + "start": 13598.09, + "end": 13599.73, + "probability": 0.98 + }, + { + "start": 13600.75, + "end": 13608.45, + "probability": 0.9967 + }, + { + "start": 13609.09, + "end": 13612.27, + "probability": 0.9682 + }, + { + "start": 13613.67, + "end": 13617.87, + "probability": 0.994 + }, + { + "start": 13620.85, + "end": 13626.07, + "probability": 0.996 + }, + { + "start": 13626.07, + "end": 13629.65, + "probability": 0.9906 + }, + { + "start": 13630.73, + "end": 13632.46, + "probability": 0.8877 + }, + { + "start": 13632.77, + "end": 13633.6, + "probability": 0.8853 + }, + { + "start": 13634.75, + "end": 13637.49, + "probability": 0.9302 + }, + { + "start": 13638.09, + "end": 13639.89, + "probability": 0.9912 + }, + { + "start": 13641.37, + "end": 13644.69, + "probability": 0.9526 + }, + { + "start": 13645.67, + "end": 13647.33, + "probability": 0.9922 + }, + { + "start": 13647.47, + "end": 13649.45, + "probability": 0.8294 + }, + { + "start": 13649.47, + "end": 13650.17, + "probability": 0.5464 + }, + { + "start": 13651.05, + "end": 13652.29, + "probability": 0.9392 + }, + { + "start": 13653.65, + "end": 13654.95, + "probability": 0.9467 + }, + { + "start": 13656.25, + "end": 13659.05, + "probability": 0.9961 + }, + { + "start": 13660.81, + "end": 13661.21, + "probability": 0.5788 + }, + { + "start": 13662.27, + "end": 13664.05, + "probability": 0.9956 + }, + { + "start": 13664.79, + "end": 13666.81, + "probability": 0.995 + }, + { + "start": 13668.37, + "end": 13670.05, + "probability": 0.9684 + }, + { + "start": 13670.91, + "end": 13675.57, + "probability": 0.9361 + }, + { + "start": 13676.73, + "end": 13679.15, + "probability": 0.8719 + }, + { + "start": 13679.35, + "end": 13680.43, + "probability": 0.8154 + }, + { + "start": 13680.53, + "end": 13681.46, + "probability": 0.9078 + }, + { + "start": 13681.95, + "end": 13683.19, + "probability": 0.9535 + }, + { + "start": 13684.81, + "end": 13686.15, + "probability": 0.9902 + }, + { + "start": 13686.33, + "end": 13688.17, + "probability": 0.9333 + }, + { + "start": 13688.71, + "end": 13693.01, + "probability": 0.9578 + }, + { + "start": 13703.35, + "end": 13703.91, + "probability": 0.7622 + }, + { + "start": 13703.91, + "end": 13703.91, + "probability": 0.1022 + }, + { + "start": 13703.91, + "end": 13703.91, + "probability": 0.0341 + }, + { + "start": 13703.91, + "end": 13706.39, + "probability": 0.6777 + }, + { + "start": 13706.77, + "end": 13708.37, + "probability": 0.4707 + }, + { + "start": 13709.17, + "end": 13709.94, + "probability": 0.5393 + }, + { + "start": 13710.51, + "end": 13713.95, + "probability": 0.9517 + }, + { + "start": 13715.41, + "end": 13720.33, + "probability": 0.9787 + }, + { + "start": 13720.33, + "end": 13724.57, + "probability": 0.9462 + }, + { + "start": 13725.41, + "end": 13726.55, + "probability": 0.0609 + }, + { + "start": 13726.55, + "end": 13726.95, + "probability": 0.7939 + }, + { + "start": 13727.17, + "end": 13727.17, + "probability": 0.008 + }, + { + "start": 13727.17, + "end": 13728.25, + "probability": 0.4278 + }, + { + "start": 13728.69, + "end": 13730.25, + "probability": 0.6851 + }, + { + "start": 13731.13, + "end": 13732.51, + "probability": 0.8157 + }, + { + "start": 13733.15, + "end": 13734.25, + "probability": 0.6176 + }, + { + "start": 13734.41, + "end": 13739.55, + "probability": 0.8472 + }, + { + "start": 13739.57, + "end": 13741.56, + "probability": 0.9961 + }, + { + "start": 13742.17, + "end": 13743.79, + "probability": 0.6665 + }, + { + "start": 13743.89, + "end": 13744.53, + "probability": 0.7203 + }, + { + "start": 13744.57, + "end": 13746.05, + "probability": 0.8888 + }, + { + "start": 13746.59, + "end": 13751.01, + "probability": 0.7256 + }, + { + "start": 13751.75, + "end": 13754.77, + "probability": 0.9354 + }, + { + "start": 13755.19, + "end": 13756.71, + "probability": 0.9812 + }, + { + "start": 13757.59, + "end": 13759.35, + "probability": 0.7173 + }, + { + "start": 13759.43, + "end": 13760.85, + "probability": 0.9509 + }, + { + "start": 13761.87, + "end": 13762.55, + "probability": 0.6348 + }, + { + "start": 13763.05, + "end": 13764.59, + "probability": 0.8748 + }, + { + "start": 13773.65, + "end": 13774.17, + "probability": 0.1626 + }, + { + "start": 13775.15, + "end": 13777.11, + "probability": 0.4484 + }, + { + "start": 13777.11, + "end": 13778.53, + "probability": 0.7017 + }, + { + "start": 13780.03, + "end": 13784.85, + "probability": 0.9929 + }, + { + "start": 13785.63, + "end": 13787.21, + "probability": 0.6313 + }, + { + "start": 13788.41, + "end": 13788.63, + "probability": 0.4643 + }, + { + "start": 13788.73, + "end": 13791.97, + "probability": 0.9906 + }, + { + "start": 13792.81, + "end": 13798.61, + "probability": 0.961 + }, + { + "start": 13799.33, + "end": 13802.89, + "probability": 0.9243 + }, + { + "start": 13803.77, + "end": 13805.03, + "probability": 0.8214 + }, + { + "start": 13805.79, + "end": 13809.97, + "probability": 0.9517 + }, + { + "start": 13810.59, + "end": 13812.01, + "probability": 0.967 + }, + { + "start": 13812.45, + "end": 13813.23, + "probability": 0.991 + }, + { + "start": 13813.41, + "end": 13814.09, + "probability": 0.9806 + }, + { + "start": 13814.35, + "end": 13816.63, + "probability": 0.8231 + }, + { + "start": 13817.67, + "end": 13819.41, + "probability": 0.7926 + }, + { + "start": 13820.13, + "end": 13822.59, + "probability": 0.9479 + }, + { + "start": 13823.41, + "end": 13826.37, + "probability": 0.9112 + }, + { + "start": 13827.05, + "end": 13828.03, + "probability": 0.7893 + }, + { + "start": 13828.13, + "end": 13828.71, + "probability": 0.5013 + }, + { + "start": 13828.79, + "end": 13830.2, + "probability": 0.8867 + }, + { + "start": 13831.81, + "end": 13835.07, + "probability": 0.9702 + }, + { + "start": 13835.47, + "end": 13836.45, + "probability": 0.9714 + }, + { + "start": 13836.67, + "end": 13837.39, + "probability": 0.9337 + }, + { + "start": 13838.27, + "end": 13839.85, + "probability": 0.9092 + }, + { + "start": 13840.15, + "end": 13844.29, + "probability": 0.9968 + }, + { + "start": 13844.97, + "end": 13845.99, + "probability": 0.6542 + }, + { + "start": 13846.55, + "end": 13847.94, + "probability": 0.9269 + }, + { + "start": 13848.39, + "end": 13849.09, + "probability": 0.7111 + }, + { + "start": 13849.25, + "end": 13851.31, + "probability": 0.9646 + }, + { + "start": 13851.93, + "end": 13855.99, + "probability": 0.9885 + }, + { + "start": 13857.39, + "end": 13860.51, + "probability": 0.8679 + }, + { + "start": 13860.73, + "end": 13861.45, + "probability": 0.7666 + }, + { + "start": 13861.59, + "end": 13862.81, + "probability": 0.8712 + }, + { + "start": 13863.55, + "end": 13865.29, + "probability": 0.7938 + }, + { + "start": 13865.37, + "end": 13867.61, + "probability": 0.9639 + }, + { + "start": 13868.39, + "end": 13869.39, + "probability": 0.9726 + }, + { + "start": 13869.67, + "end": 13873.49, + "probability": 0.9728 + }, + { + "start": 13874.43, + "end": 13875.15, + "probability": 0.9858 + }, + { + "start": 13875.93, + "end": 13878.69, + "probability": 0.7711 + }, + { + "start": 13879.49, + "end": 13881.91, + "probability": 0.8141 + }, + { + "start": 13883.01, + "end": 13886.65, + "probability": 0.9595 + }, + { + "start": 13887.13, + "end": 13889.81, + "probability": 0.4952 + }, + { + "start": 13890.81, + "end": 13895.11, + "probability": 0.9935 + }, + { + "start": 13895.59, + "end": 13896.19, + "probability": 0.4936 + }, + { + "start": 13896.51, + "end": 13897.75, + "probability": 0.7885 + }, + { + "start": 13899.23, + "end": 13901.57, + "probability": 0.8712 + }, + { + "start": 13902.77, + "end": 13903.61, + "probability": 0.725 + }, + { + "start": 13903.77, + "end": 13907.13, + "probability": 0.9423 + }, + { + "start": 13908.01, + "end": 13910.93, + "probability": 0.9776 + }, + { + "start": 13911.53, + "end": 13913.93, + "probability": 0.9922 + }, + { + "start": 13914.49, + "end": 13916.67, + "probability": 0.9413 + }, + { + "start": 13916.67, + "end": 13919.21, + "probability": 0.9754 + }, + { + "start": 13920.65, + "end": 13922.23, + "probability": 0.8029 + }, + { + "start": 13922.89, + "end": 13925.01, + "probability": 0.9253 + }, + { + "start": 13925.47, + "end": 13926.19, + "probability": 0.8493 + }, + { + "start": 13926.45, + "end": 13930.43, + "probability": 0.9228 + }, + { + "start": 13931.61, + "end": 13933.35, + "probability": 0.9467 + }, + { + "start": 13933.57, + "end": 13934.67, + "probability": 0.6412 + }, + { + "start": 13934.87, + "end": 13936.47, + "probability": 0.7735 + }, + { + "start": 13936.97, + "end": 13939.73, + "probability": 0.8566 + }, + { + "start": 13939.89, + "end": 13941.63, + "probability": 0.8336 + }, + { + "start": 13943.57, + "end": 13946.21, + "probability": 0.9896 + }, + { + "start": 13946.21, + "end": 13949.03, + "probability": 0.9932 + }, + { + "start": 13950.09, + "end": 13951.41, + "probability": 0.8381 + }, + { + "start": 13951.63, + "end": 13952.19, + "probability": 0.8179 + }, + { + "start": 13952.29, + "end": 13952.89, + "probability": 0.8477 + }, + { + "start": 13953.21, + "end": 13956.03, + "probability": 0.8419 + }, + { + "start": 13957.35, + "end": 13958.11, + "probability": 0.9476 + }, + { + "start": 13958.69, + "end": 13961.19, + "probability": 0.9609 + }, + { + "start": 13961.61, + "end": 13962.21, + "probability": 0.6428 + }, + { + "start": 13962.85, + "end": 13965.85, + "probability": 0.8964 + }, + { + "start": 13965.93, + "end": 13967.3, + "probability": 0.9681 + }, + { + "start": 13967.67, + "end": 13969.85, + "probability": 0.8958 + }, + { + "start": 13970.03, + "end": 13970.87, + "probability": 0.5064 + }, + { + "start": 13970.91, + "end": 13970.91, + "probability": 0.2648 + }, + { + "start": 13970.97, + "end": 13972.31, + "probability": 0.1958 + }, + { + "start": 13973.63, + "end": 13977.39, + "probability": 0.948 + }, + { + "start": 13977.57, + "end": 13978.59, + "probability": 0.7367 + }, + { + "start": 13979.23, + "end": 13981.63, + "probability": 0.7887 + }, + { + "start": 13981.85, + "end": 13984.67, + "probability": 0.9481 + }, + { + "start": 13984.67, + "end": 13987.11, + "probability": 0.9666 + }, + { + "start": 13987.17, + "end": 13988.49, + "probability": 0.9581 + }, + { + "start": 13989.13, + "end": 13991.67, + "probability": 0.9041 + }, + { + "start": 13992.25, + "end": 13997.67, + "probability": 0.9643 + }, + { + "start": 13998.27, + "end": 13999.37, + "probability": 0.9457 + }, + { + "start": 13999.43, + "end": 14003.51, + "probability": 0.9528 + }, + { + "start": 14003.63, + "end": 14004.01, + "probability": 0.3045 + }, + { + "start": 14004.01, + "end": 14005.2, + "probability": 0.7493 + }, + { + "start": 14005.51, + "end": 14007.84, + "probability": 0.9551 + }, + { + "start": 14011.69, + "end": 14012.99, + "probability": 0.7961 + }, + { + "start": 14016.21, + "end": 14019.37, + "probability": 0.8693 + }, + { + "start": 14019.73, + "end": 14021.69, + "probability": 0.8539 + }, + { + "start": 14022.81, + "end": 14023.29, + "probability": 0.3798 + }, + { + "start": 14030.45, + "end": 14031.61, + "probability": 0.5807 + }, + { + "start": 14032.57, + "end": 14033.33, + "probability": 0.8193 + }, + { + "start": 14034.35, + "end": 14035.77, + "probability": 0.9013 + }, + { + "start": 14036.51, + "end": 14037.07, + "probability": 0.5237 + }, + { + "start": 14037.63, + "end": 14038.07, + "probability": 0.5005 + }, + { + "start": 14040.49, + "end": 14041.19, + "probability": 0.6273 + }, + { + "start": 14041.27, + "end": 14046.25, + "probability": 0.8349 + }, + { + "start": 14046.87, + "end": 14047.97, + "probability": 0.9646 + }, + { + "start": 14048.79, + "end": 14050.47, + "probability": 0.833 + }, + { + "start": 14051.65, + "end": 14052.57, + "probability": 0.6103 + }, + { + "start": 14052.71, + "end": 14054.33, + "probability": 0.9756 + }, + { + "start": 14054.67, + "end": 14056.17, + "probability": 0.8464 + }, + { + "start": 14057.53, + "end": 14059.21, + "probability": 0.981 + }, + { + "start": 14059.91, + "end": 14060.28, + "probability": 0.8608 + }, + { + "start": 14060.67, + "end": 14062.75, + "probability": 0.986 + }, + { + "start": 14063.11, + "end": 14064.55, + "probability": 0.9891 + }, + { + "start": 14064.59, + "end": 14065.63, + "probability": 0.9822 + }, + { + "start": 14067.73, + "end": 14068.92, + "probability": 0.7887 + }, + { + "start": 14070.57, + "end": 14071.75, + "probability": 0.5665 + }, + { + "start": 14071.87, + "end": 14076.71, + "probability": 0.9731 + }, + { + "start": 14077.41, + "end": 14079.63, + "probability": 0.9332 + }, + { + "start": 14079.69, + "end": 14082.49, + "probability": 0.8516 + }, + { + "start": 14083.63, + "end": 14087.09, + "probability": 0.9581 + }, + { + "start": 14087.17, + "end": 14090.21, + "probability": 0.9978 + }, + { + "start": 14091.17, + "end": 14092.45, + "probability": 0.9394 + }, + { + "start": 14092.97, + "end": 14094.03, + "probability": 0.9791 + }, + { + "start": 14095.43, + "end": 14099.37, + "probability": 0.7942 + }, + { + "start": 14099.91, + "end": 14101.63, + "probability": 0.9587 + }, + { + "start": 14102.37, + "end": 14105.77, + "probability": 0.9211 + }, + { + "start": 14106.29, + "end": 14108.01, + "probability": 0.9443 + }, + { + "start": 14108.07, + "end": 14112.57, + "probability": 0.942 + }, + { + "start": 14113.49, + "end": 14115.25, + "probability": 0.8722 + }, + { + "start": 14116.11, + "end": 14116.71, + "probability": 0.6801 + }, + { + "start": 14116.85, + "end": 14118.41, + "probability": 0.9537 + }, + { + "start": 14119.21, + "end": 14122.31, + "probability": 0.8915 + }, + { + "start": 14122.34, + "end": 14125.75, + "probability": 0.6998 + }, + { + "start": 14125.81, + "end": 14127.55, + "probability": 0.8959 + }, + { + "start": 14128.45, + "end": 14129.25, + "probability": 0.6294 + }, + { + "start": 14130.13, + "end": 14133.25, + "probability": 0.3211 + }, + { + "start": 14133.93, + "end": 14135.69, + "probability": 0.9178 + }, + { + "start": 14136.37, + "end": 14139.31, + "probability": 0.8127 + }, + { + "start": 14139.77, + "end": 14142.79, + "probability": 0.8159 + }, + { + "start": 14142.89, + "end": 14143.61, + "probability": 0.5573 + }, + { + "start": 14144.09, + "end": 14145.57, + "probability": 0.6673 + }, + { + "start": 14145.61, + "end": 14147.21, + "probability": 0.959 + }, + { + "start": 14147.71, + "end": 14149.11, + "probability": 0.7413 + }, + { + "start": 14149.21, + "end": 14150.87, + "probability": 0.9982 + }, + { + "start": 14151.25, + "end": 14156.51, + "probability": 0.9194 + }, + { + "start": 14156.91, + "end": 14158.21, + "probability": 0.9966 + }, + { + "start": 14159.39, + "end": 14161.93, + "probability": 0.9048 + }, + { + "start": 14162.53, + "end": 14164.05, + "probability": 0.7424 + }, + { + "start": 14164.73, + "end": 14166.25, + "probability": 0.9907 + }, + { + "start": 14167.21, + "end": 14168.99, + "probability": 0.6645 + }, + { + "start": 14169.25, + "end": 14171.77, + "probability": 0.9507 + }, + { + "start": 14171.87, + "end": 14175.2, + "probability": 0.9595 + }, + { + "start": 14175.49, + "end": 14176.51, + "probability": 0.8044 + }, + { + "start": 14177.11, + "end": 14177.59, + "probability": 0.5064 + }, + { + "start": 14177.71, + "end": 14178.55, + "probability": 0.4805 + }, + { + "start": 14178.65, + "end": 14180.83, + "probability": 0.8713 + }, + { + "start": 14181.13, + "end": 14182.19, + "probability": 0.7804 + }, + { + "start": 14182.99, + "end": 14188.69, + "probability": 0.9895 + }, + { + "start": 14188.91, + "end": 14189.99, + "probability": 0.9486 + }, + { + "start": 14190.09, + "end": 14191.57, + "probability": 0.8112 + }, + { + "start": 14191.91, + "end": 14193.41, + "probability": 0.4764 + }, + { + "start": 14193.45, + "end": 14194.97, + "probability": 0.6362 + }, + { + "start": 14196.33, + "end": 14197.31, + "probability": 0.9675 + }, + { + "start": 14198.19, + "end": 14201.99, + "probability": 0.7372 + }, + { + "start": 14202.09, + "end": 14203.17, + "probability": 0.69 + }, + { + "start": 14203.65, + "end": 14206.23, + "probability": 0.9895 + }, + { + "start": 14206.31, + "end": 14208.45, + "probability": 0.9536 + }, + { + "start": 14208.53, + "end": 14209.21, + "probability": 0.9368 + }, + { + "start": 14209.41, + "end": 14210.17, + "probability": 0.7567 + }, + { + "start": 14210.23, + "end": 14210.8, + "probability": 0.9541 + }, + { + "start": 14211.07, + "end": 14213.15, + "probability": 0.9057 + }, + { + "start": 14213.33, + "end": 14213.57, + "probability": 0.1935 + }, + { + "start": 14213.57, + "end": 14215.59, + "probability": 0.702 + }, + { + "start": 14216.01, + "end": 14218.23, + "probability": 0.6187 + }, + { + "start": 14218.25, + "end": 14219.41, + "probability": 0.573 + }, + { + "start": 14219.81, + "end": 14221.95, + "probability": 0.874 + }, + { + "start": 14222.93, + "end": 14225.81, + "probability": 0.8353 + }, + { + "start": 14226.23, + "end": 14228.57, + "probability": 0.7599 + }, + { + "start": 14229.11, + "end": 14233.07, + "probability": 0.8939 + }, + { + "start": 14233.13, + "end": 14233.7, + "probability": 0.7996 + }, + { + "start": 14234.03, + "end": 14237.29, + "probability": 0.8896 + }, + { + "start": 14237.45, + "end": 14239.35, + "probability": 0.9709 + }, + { + "start": 14239.43, + "end": 14240.35, + "probability": 0.8142 + }, + { + "start": 14240.47, + "end": 14241.47, + "probability": 0.7316 + }, + { + "start": 14242.05, + "end": 14247.05, + "probability": 0.9473 + }, + { + "start": 14247.65, + "end": 14250.11, + "probability": 0.9644 + }, + { + "start": 14250.69, + "end": 14252.25, + "probability": 0.6992 + }, + { + "start": 14252.79, + "end": 14256.75, + "probability": 0.7921 + }, + { + "start": 14257.19, + "end": 14257.93, + "probability": 0.5938 + }, + { + "start": 14258.01, + "end": 14259.09, + "probability": 0.8915 + }, + { + "start": 14259.15, + "end": 14261.05, + "probability": 0.9326 + }, + { + "start": 14261.39, + "end": 14262.81, + "probability": 0.9775 + }, + { + "start": 14262.81, + "end": 14264.07, + "probability": 0.799 + }, + { + "start": 14264.35, + "end": 14265.37, + "probability": 0.8667 + }, + { + "start": 14265.41, + "end": 14265.96, + "probability": 0.8258 + }, + { + "start": 14266.49, + "end": 14269.07, + "probability": 0.9599 + }, + { + "start": 14269.17, + "end": 14269.51, + "probability": 0.8805 + }, + { + "start": 14269.63, + "end": 14270.11, + "probability": 0.722 + }, + { + "start": 14270.39, + "end": 14271.93, + "probability": 0.9692 + }, + { + "start": 14272.01, + "end": 14272.87, + "probability": 0.4764 + }, + { + "start": 14273.51, + "end": 14274.33, + "probability": 0.4448 + }, + { + "start": 14274.47, + "end": 14276.19, + "probability": 0.7463 + }, + { + "start": 14276.27, + "end": 14277.69, + "probability": 0.9373 + }, + { + "start": 14295.69, + "end": 14297.97, + "probability": 0.7252 + }, + { + "start": 14299.87, + "end": 14302.13, + "probability": 0.8252 + }, + { + "start": 14302.27, + "end": 14303.75, + "probability": 0.9881 + }, + { + "start": 14303.81, + "end": 14307.09, + "probability": 0.7866 + }, + { + "start": 14307.51, + "end": 14312.29, + "probability": 0.9772 + }, + { + "start": 14313.09, + "end": 14315.49, + "probability": 0.995 + }, + { + "start": 14315.59, + "end": 14317.03, + "probability": 0.8914 + }, + { + "start": 14317.49, + "end": 14322.67, + "probability": 0.9309 + }, + { + "start": 14322.71, + "end": 14327.27, + "probability": 0.8965 + }, + { + "start": 14327.91, + "end": 14329.39, + "probability": 0.8625 + }, + { + "start": 14330.13, + "end": 14330.47, + "probability": 0.4423 + }, + { + "start": 14330.59, + "end": 14330.79, + "probability": 0.8228 + }, + { + "start": 14330.87, + "end": 14332.21, + "probability": 0.9649 + }, + { + "start": 14332.65, + "end": 14333.49, + "probability": 0.8848 + }, + { + "start": 14333.69, + "end": 14337.05, + "probability": 0.5119 + }, + { + "start": 14337.13, + "end": 14337.83, + "probability": 0.8403 + }, + { + "start": 14338.29, + "end": 14341.23, + "probability": 0.7271 + }, + { + "start": 14341.33, + "end": 14344.13, + "probability": 0.6745 + }, + { + "start": 14345.13, + "end": 14347.07, + "probability": 0.7267 + }, + { + "start": 14347.29, + "end": 14348.63, + "probability": 0.7746 + }, + { + "start": 14349.11, + "end": 14351.38, + "probability": 0.9299 + }, + { + "start": 14353.13, + "end": 14356.3, + "probability": 0.9697 + }, + { + "start": 14357.05, + "end": 14357.65, + "probability": 0.7838 + }, + { + "start": 14358.05, + "end": 14359.19, + "probability": 0.5135 + }, + { + "start": 14359.83, + "end": 14363.95, + "probability": 0.9278 + }, + { + "start": 14365.19, + "end": 14367.99, + "probability": 0.8317 + }, + { + "start": 14369.41, + "end": 14370.09, + "probability": 0.4187 + }, + { + "start": 14371.23, + "end": 14374.77, + "probability": 0.9745 + }, + { + "start": 14375.39, + "end": 14377.01, + "probability": 0.9119 + }, + { + "start": 14377.79, + "end": 14378.97, + "probability": 0.7994 + }, + { + "start": 14379.57, + "end": 14382.31, + "probability": 0.8736 + }, + { + "start": 14382.47, + "end": 14387.12, + "probability": 0.9272 + }, + { + "start": 14387.13, + "end": 14389.67, + "probability": 0.9911 + }, + { + "start": 14390.35, + "end": 14391.01, + "probability": 0.7419 + }, + { + "start": 14391.01, + "end": 14395.09, + "probability": 0.9808 + }, + { + "start": 14395.25, + "end": 14395.77, + "probability": 0.6724 + }, + { + "start": 14395.91, + "end": 14398.37, + "probability": 0.0517 + }, + { + "start": 14398.37, + "end": 14400.03, + "probability": 0.6048 + }, + { + "start": 14400.51, + "end": 14405.05, + "probability": 0.8381 + }, + { + "start": 14405.27, + "end": 14406.45, + "probability": 0.9328 + }, + { + "start": 14406.93, + "end": 14407.55, + "probability": 0.6848 + }, + { + "start": 14407.59, + "end": 14413.45, + "probability": 0.9667 + }, + { + "start": 14414.51, + "end": 14417.63, + "probability": 0.9956 + }, + { + "start": 14418.23, + "end": 14419.97, + "probability": 0.6992 + }, + { + "start": 14420.57, + "end": 14421.89, + "probability": 0.8938 + }, + { + "start": 14422.31, + "end": 14425.71, + "probability": 0.8491 + }, + { + "start": 14426.11, + "end": 14428.03, + "probability": 0.8645 + }, + { + "start": 14429.79, + "end": 14432.93, + "probability": 0.9653 + }, + { + "start": 14433.29, + "end": 14434.45, + "probability": 0.9096 + }, + { + "start": 14435.25, + "end": 14436.07, + "probability": 0.7307 + }, + { + "start": 14436.21, + "end": 14437.03, + "probability": 0.9812 + }, + { + "start": 14437.17, + "end": 14442.93, + "probability": 0.8789 + }, + { + "start": 14443.39, + "end": 14444.17, + "probability": 0.8965 + }, + { + "start": 14444.29, + "end": 14448.49, + "probability": 0.967 + }, + { + "start": 14448.91, + "end": 14450.94, + "probability": 0.9654 + }, + { + "start": 14452.03, + "end": 14453.27, + "probability": 0.9392 + }, + { + "start": 14453.79, + "end": 14456.72, + "probability": 0.855 + }, + { + "start": 14456.91, + "end": 14458.99, + "probability": 0.974 + }, + { + "start": 14459.79, + "end": 14461.87, + "probability": 0.9962 + }, + { + "start": 14462.59, + "end": 14463.71, + "probability": 0.9111 + }, + { + "start": 14464.31, + "end": 14467.95, + "probability": 0.9677 + }, + { + "start": 14468.03, + "end": 14471.53, + "probability": 0.9978 + }, + { + "start": 14472.03, + "end": 14473.55, + "probability": 0.7776 + }, + { + "start": 14474.19, + "end": 14474.47, + "probability": 0.6248 + }, + { + "start": 14474.59, + "end": 14478.35, + "probability": 0.9966 + }, + { + "start": 14478.91, + "end": 14479.41, + "probability": 0.9943 + }, + { + "start": 14480.35, + "end": 14480.47, + "probability": 0.442 + }, + { + "start": 14480.47, + "end": 14483.61, + "probability": 0.8861 + }, + { + "start": 14484.87, + "end": 14490.09, + "probability": 0.9764 + }, + { + "start": 14490.17, + "end": 14490.83, + "probability": 0.6569 + }, + { + "start": 14491.17, + "end": 14495.01, + "probability": 0.9963 + }, + { + "start": 14495.55, + "end": 14496.83, + "probability": 0.6244 + }, + { + "start": 14498.29, + "end": 14500.75, + "probability": 0.9727 + }, + { + "start": 14501.21, + "end": 14502.09, + "probability": 0.8917 + }, + { + "start": 14502.13, + "end": 14502.75, + "probability": 0.5459 + }, + { + "start": 14502.89, + "end": 14503.85, + "probability": 0.953 + }, + { + "start": 14504.35, + "end": 14505.67, + "probability": 0.8765 + }, + { + "start": 14506.51, + "end": 14507.23, + "probability": 0.8896 + }, + { + "start": 14507.77, + "end": 14511.01, + "probability": 0.9289 + }, + { + "start": 14511.41, + "end": 14513.53, + "probability": 0.9506 + }, + { + "start": 14513.91, + "end": 14515.81, + "probability": 0.9431 + }, + { + "start": 14516.27, + "end": 14517.41, + "probability": 0.9679 + }, + { + "start": 14518.57, + "end": 14519.97, + "probability": 0.7698 + }, + { + "start": 14520.29, + "end": 14523.65, + "probability": 0.9969 + }, + { + "start": 14525.23, + "end": 14527.05, + "probability": 0.6686 + }, + { + "start": 14527.71, + "end": 14531.11, + "probability": 0.8301 + }, + { + "start": 14531.29, + "end": 14532.01, + "probability": 0.8068 + }, + { + "start": 14532.07, + "end": 14533.27, + "probability": 0.7654 + }, + { + "start": 14533.99, + "end": 14534.27, + "probability": 0.8204 + }, + { + "start": 14534.27, + "end": 14537.93, + "probability": 0.9534 + }, + { + "start": 14538.27, + "end": 14538.99, + "probability": 0.3619 + }, + { + "start": 14540.19, + "end": 14540.25, + "probability": 0.015 + }, + { + "start": 14540.25, + "end": 14542.43, + "probability": 0.9503 + }, + { + "start": 14543.57, + "end": 14545.93, + "probability": 0.9967 + }, + { + "start": 14546.73, + "end": 14551.23, + "probability": 0.993 + }, + { + "start": 14551.33, + "end": 14552.63, + "probability": 0.7045 + }, + { + "start": 14553.05, + "end": 14554.31, + "probability": 0.8812 + }, + { + "start": 14555.13, + "end": 14556.57, + "probability": 0.979 + }, + { + "start": 14559.13, + "end": 14564.35, + "probability": 0.9823 + }, + { + "start": 14565.21, + "end": 14566.72, + "probability": 0.8733 + }, + { + "start": 14567.91, + "end": 14567.91, + "probability": 0.1412 + }, + { + "start": 14567.91, + "end": 14570.77, + "probability": 0.991 + }, + { + "start": 14571.51, + "end": 14573.33, + "probability": 0.8164 + }, + { + "start": 14573.47, + "end": 14577.33, + "probability": 0.9082 + }, + { + "start": 14578.07, + "end": 14581.95, + "probability": 0.9663 + }, + { + "start": 14582.55, + "end": 14583.71, + "probability": 0.9704 + }, + { + "start": 14584.33, + "end": 14586.89, + "probability": 0.9605 + }, + { + "start": 14587.09, + "end": 14589.02, + "probability": 0.9741 + }, + { + "start": 14589.29, + "end": 14589.97, + "probability": 0.7367 + }, + { + "start": 14590.41, + "end": 14592.73, + "probability": 0.9948 + }, + { + "start": 14593.21, + "end": 14595.29, + "probability": 0.6007 + }, + { + "start": 14595.31, + "end": 14596.13, + "probability": 0.8358 + }, + { + "start": 14596.57, + "end": 14598.45, + "probability": 0.7403 + }, + { + "start": 14598.81, + "end": 14599.69, + "probability": 0.9405 + }, + { + "start": 14599.81, + "end": 14603.27, + "probability": 0.9042 + }, + { + "start": 14603.43, + "end": 14606.47, + "probability": 0.9538 + }, + { + "start": 14606.99, + "end": 14607.69, + "probability": 0.675 + }, + { + "start": 14608.31, + "end": 14610.59, + "probability": 0.962 + }, + { + "start": 14611.41, + "end": 14614.31, + "probability": 0.9287 + }, + { + "start": 14615.23, + "end": 14616.0, + "probability": 0.681 + }, + { + "start": 14616.71, + "end": 14619.63, + "probability": 0.8613 + }, + { + "start": 14619.63, + "end": 14623.41, + "probability": 0.9466 + }, + { + "start": 14624.59, + "end": 14625.14, + "probability": 0.8455 + }, + { + "start": 14626.55, + "end": 14629.93, + "probability": 0.9965 + }, + { + "start": 14630.29, + "end": 14631.2, + "probability": 0.6612 + }, + { + "start": 14631.69, + "end": 14632.52, + "probability": 0.9871 + }, + { + "start": 14633.49, + "end": 14635.45, + "probability": 0.7791 + }, + { + "start": 14635.73, + "end": 14635.91, + "probability": 0.8882 + }, + { + "start": 14635.97, + "end": 14637.94, + "probability": 0.8218 + }, + { + "start": 14638.05, + "end": 14639.05, + "probability": 0.9202 + }, + { + "start": 14639.17, + "end": 14643.47, + "probability": 0.7819 + }, + { + "start": 14643.63, + "end": 14644.53, + "probability": 0.5294 + }, + { + "start": 14645.03, + "end": 14646.43, + "probability": 0.9956 + }, + { + "start": 14647.35, + "end": 14647.51, + "probability": 0.6508 + }, + { + "start": 14647.57, + "end": 14649.33, + "probability": 0.8779 + }, + { + "start": 14649.55, + "end": 14650.49, + "probability": 0.8352 + }, + { + "start": 14650.89, + "end": 14651.39, + "probability": 0.6635 + }, + { + "start": 14651.77, + "end": 14653.45, + "probability": 0.9902 + }, + { + "start": 14654.37, + "end": 14656.77, + "probability": 0.8884 + }, + { + "start": 14657.31, + "end": 14658.71, + "probability": 0.9082 + }, + { + "start": 14659.35, + "end": 14660.11, + "probability": 0.818 + }, + { + "start": 14660.55, + "end": 14666.59, + "probability": 0.9814 + }, + { + "start": 14667.37, + "end": 14669.07, + "probability": 0.9966 + }, + { + "start": 14670.09, + "end": 14675.63, + "probability": 0.9614 + }, + { + "start": 14675.71, + "end": 14678.09, + "probability": 0.9653 + }, + { + "start": 14678.53, + "end": 14680.25, + "probability": 0.9531 + }, + { + "start": 14680.69, + "end": 14687.21, + "probability": 0.8732 + }, + { + "start": 14687.35, + "end": 14688.21, + "probability": 0.9796 + }, + { + "start": 14688.61, + "end": 14692.85, + "probability": 0.9907 + }, + { + "start": 14694.75, + "end": 14697.01, + "probability": 0.9434 + }, + { + "start": 14697.41, + "end": 14702.85, + "probability": 0.9757 + }, + { + "start": 14703.47, + "end": 14703.89, + "probability": 0.8442 + }, + { + "start": 14704.01, + "end": 14705.21, + "probability": 0.9302 + }, + { + "start": 14705.69, + "end": 14705.83, + "probability": 0.9059 + }, + { + "start": 14705.87, + "end": 14708.59, + "probability": 0.9902 + }, + { + "start": 14709.09, + "end": 14710.53, + "probability": 0.973 + }, + { + "start": 14710.87, + "end": 14712.07, + "probability": 0.955 + }, + { + "start": 14712.53, + "end": 14713.67, + "probability": 0.6738 + }, + { + "start": 14713.75, + "end": 14715.53, + "probability": 0.8634 + }, + { + "start": 14716.53, + "end": 14719.43, + "probability": 0.9267 + }, + { + "start": 14720.29, + "end": 14722.31, + "probability": 0.8057 + }, + { + "start": 14723.13, + "end": 14725.09, + "probability": 0.8751 + }, + { + "start": 14725.25, + "end": 14732.01, + "probability": 0.9912 + }, + { + "start": 14733.05, + "end": 14733.73, + "probability": 0.7226 + }, + { + "start": 14733.79, + "end": 14734.69, + "probability": 0.7765 + }, + { + "start": 14735.13, + "end": 14737.91, + "probability": 0.9751 + }, + { + "start": 14737.91, + "end": 14740.81, + "probability": 0.998 + }, + { + "start": 14741.39, + "end": 14742.23, + "probability": 0.9202 + }, + { + "start": 14742.41, + "end": 14744.27, + "probability": 0.9357 + }, + { + "start": 14744.63, + "end": 14745.71, + "probability": 0.7728 + }, + { + "start": 14746.61, + "end": 14750.81, + "probability": 0.993 + }, + { + "start": 14750.85, + "end": 14752.27, + "probability": 0.799 + }, + { + "start": 14752.61, + "end": 14755.89, + "probability": 0.9728 + }, + { + "start": 14756.99, + "end": 14757.57, + "probability": 0.8228 + }, + { + "start": 14758.33, + "end": 14758.63, + "probability": 0.4789 + }, + { + "start": 14758.75, + "end": 14759.97, + "probability": 0.8823 + }, + { + "start": 14760.33, + "end": 14761.19, + "probability": 0.7284 + }, + { + "start": 14761.37, + "end": 14762.59, + "probability": 0.8988 + }, + { + "start": 14762.71, + "end": 14763.27, + "probability": 0.3908 + }, + { + "start": 14763.49, + "end": 14765.08, + "probability": 0.8804 + }, + { + "start": 14765.95, + "end": 14766.79, + "probability": 0.9355 + }, + { + "start": 14767.37, + "end": 14767.85, + "probability": 0.6449 + }, + { + "start": 14769.77, + "end": 14770.75, + "probability": 0.678 + }, + { + "start": 14773.57, + "end": 14776.79, + "probability": 0.7086 + }, + { + "start": 14778.21, + "end": 14779.23, + "probability": 0.9329 + }, + { + "start": 14784.35, + "end": 14784.97, + "probability": 0.9883 + }, + { + "start": 14785.27, + "end": 14785.37, + "probability": 0.613 + }, + { + "start": 14785.53, + "end": 14785.81, + "probability": 0.6403 + }, + { + "start": 14786.31, + "end": 14791.63, + "probability": 0.9425 + }, + { + "start": 14792.93, + "end": 14795.07, + "probability": 0.9521 + }, + { + "start": 14796.39, + "end": 14797.49, + "probability": 0.995 + }, + { + "start": 14798.23, + "end": 14801.75, + "probability": 0.9462 + }, + { + "start": 14801.81, + "end": 14803.67, + "probability": 0.9893 + }, + { + "start": 14804.33, + "end": 14807.23, + "probability": 0.9971 + }, + { + "start": 14807.35, + "end": 14808.57, + "probability": 0.9146 + }, + { + "start": 14809.59, + "end": 14810.71, + "probability": 0.8285 + }, + { + "start": 14810.83, + "end": 14811.75, + "probability": 0.9397 + }, + { + "start": 14811.77, + "end": 14813.87, + "probability": 0.9758 + }, + { + "start": 14814.17, + "end": 14815.23, + "probability": 0.7891 + }, + { + "start": 14815.73, + "end": 14818.67, + "probability": 0.898 + }, + { + "start": 14819.19, + "end": 14821.81, + "probability": 0.9697 + }, + { + "start": 14822.67, + "end": 14826.55, + "probability": 0.9858 + }, + { + "start": 14826.63, + "end": 14829.47, + "probability": 0.978 + }, + { + "start": 14829.47, + "end": 14832.57, + "probability": 0.999 + }, + { + "start": 14833.91, + "end": 14835.43, + "probability": 0.8292 + }, + { + "start": 14836.43, + "end": 14841.29, + "probability": 0.9854 + }, + { + "start": 14841.95, + "end": 14844.79, + "probability": 0.8492 + }, + { + "start": 14845.53, + "end": 14846.19, + "probability": 0.6556 + }, + { + "start": 14846.33, + "end": 14850.75, + "probability": 0.8975 + }, + { + "start": 14852.43, + "end": 14853.05, + "probability": 0.9134 + }, + { + "start": 14853.31, + "end": 14855.55, + "probability": 0.9127 + }, + { + "start": 14855.63, + "end": 14858.47, + "probability": 0.9625 + }, + { + "start": 14859.07, + "end": 14862.55, + "probability": 0.9489 + }, + { + "start": 14862.79, + "end": 14863.77, + "probability": 0.6237 + }, + { + "start": 14863.77, + "end": 14865.29, + "probability": 0.5752 + }, + { + "start": 14865.57, + "end": 14866.11, + "probability": 0.7961 + }, + { + "start": 14866.45, + "end": 14867.22, + "probability": 0.9212 + }, + { + "start": 14867.47, + "end": 14872.39, + "probability": 0.8975 + }, + { + "start": 14872.49, + "end": 14875.39, + "probability": 0.9444 + }, + { + "start": 14875.87, + "end": 14877.26, + "probability": 0.9952 + }, + { + "start": 14878.19, + "end": 14880.75, + "probability": 0.7279 + }, + { + "start": 14880.77, + "end": 14882.33, + "probability": 0.6981 + }, + { + "start": 14883.09, + "end": 14887.01, + "probability": 0.9877 + }, + { + "start": 14887.61, + "end": 14888.01, + "probability": 0.6345 + }, + { + "start": 14888.77, + "end": 14889.43, + "probability": 0.2155 + }, + { + "start": 14889.43, + "end": 14889.65, + "probability": 0.404 + }, + { + "start": 14889.67, + "end": 14890.81, + "probability": 0.9103 + }, + { + "start": 14891.97, + "end": 14893.91, + "probability": 0.8025 + }, + { + "start": 14894.77, + "end": 14896.95, + "probability": 0.7591 + }, + { + "start": 14897.07, + "end": 14901.17, + "probability": 0.9959 + }, + { + "start": 14901.89, + "end": 14906.43, + "probability": 0.9966 + }, + { + "start": 14906.43, + "end": 14910.23, + "probability": 0.9959 + }, + { + "start": 14910.43, + "end": 14910.71, + "probability": 0.299 + }, + { + "start": 14910.95, + "end": 14913.41, + "probability": 0.9912 + }, + { + "start": 14913.53, + "end": 14914.17, + "probability": 0.6581 + }, + { + "start": 14914.29, + "end": 14915.13, + "probability": 0.9481 + }, + { + "start": 14915.19, + "end": 14916.76, + "probability": 0.9918 + }, + { + "start": 14921.11, + "end": 14922.05, + "probability": 0.1138 + }, + { + "start": 14923.33, + "end": 14923.37, + "probability": 0.227 + }, + { + "start": 14923.37, + "end": 14925.33, + "probability": 0.6734 + }, + { + "start": 14925.53, + "end": 14928.81, + "probability": 0.9849 + }, + { + "start": 14929.29, + "end": 14931.13, + "probability": 0.8404 + }, + { + "start": 14931.67, + "end": 14934.12, + "probability": 0.8174 + }, + { + "start": 14934.71, + "end": 14936.37, + "probability": 0.9918 + }, + { + "start": 14937.17, + "end": 14937.8, + "probability": 0.9353 + }, + { + "start": 14938.63, + "end": 14940.23, + "probability": 0.9868 + }, + { + "start": 14941.25, + "end": 14945.49, + "probability": 0.9795 + }, + { + "start": 14946.23, + "end": 14947.25, + "probability": 0.8305 + }, + { + "start": 14947.37, + "end": 14948.53, + "probability": 0.9243 + }, + { + "start": 14948.89, + "end": 14949.84, + "probability": 0.8263 + }, + { + "start": 14950.03, + "end": 14950.87, + "probability": 0.6279 + }, + { + "start": 14951.45, + "end": 14952.39, + "probability": 0.7831 + }, + { + "start": 14952.43, + "end": 14955.07, + "probability": 0.8966 + }, + { + "start": 14955.67, + "end": 14958.93, + "probability": 0.7154 + }, + { + "start": 14959.05, + "end": 14960.23, + "probability": 0.7436 + }, + { + "start": 14960.59, + "end": 14962.33, + "probability": 0.7639 + }, + { + "start": 14962.73, + "end": 14963.96, + "probability": 0.9846 + }, + { + "start": 14964.31, + "end": 14967.21, + "probability": 0.9015 + }, + { + "start": 14967.93, + "end": 14973.57, + "probability": 0.99 + }, + { + "start": 14973.97, + "end": 14977.63, + "probability": 0.9295 + }, + { + "start": 14978.01, + "end": 14983.25, + "probability": 0.9888 + }, + { + "start": 14983.97, + "end": 14985.55, + "probability": 0.5942 + }, + { + "start": 14986.84, + "end": 14989.41, + "probability": 0.5984 + }, + { + "start": 14989.61, + "end": 14992.05, + "probability": 0.9282 + }, + { + "start": 14992.11, + "end": 14992.45, + "probability": 0.3252 + }, + { + "start": 14994.13, + "end": 14996.43, + "probability": 0.4692 + }, + { + "start": 14997.01, + "end": 14998.87, + "probability": 0.2758 + }, + { + "start": 14999.29, + "end": 14999.29, + "probability": 0.2373 + }, + { + "start": 14999.29, + "end": 14999.29, + "probability": 0.2871 + }, + { + "start": 14999.29, + "end": 15004.05, + "probability": 0.814 + }, + { + "start": 15004.93, + "end": 15005.93, + "probability": 0.9584 + }, + { + "start": 15007.21, + "end": 15007.75, + "probability": 0.2252 + }, + { + "start": 15007.93, + "end": 15009.07, + "probability": 0.3615 + }, + { + "start": 15009.33, + "end": 15009.65, + "probability": 0.3932 + }, + { + "start": 15010.03, + "end": 15012.85, + "probability": 0.9346 + }, + { + "start": 15012.99, + "end": 15014.91, + "probability": 0.6415 + }, + { + "start": 15015.11, + "end": 15016.03, + "probability": 0.877 + }, + { + "start": 15019.23, + "end": 15020.33, + "probability": 0.9603 + }, + { + "start": 15020.51, + "end": 15020.51, + "probability": 0.9043 + }, + { + "start": 15020.75, + "end": 15021.53, + "probability": 0.9888 + }, + { + "start": 15022.89, + "end": 15024.19, + "probability": 0.7878 + }, + { + "start": 15030.55, + "end": 15030.55, + "probability": 0.166 + }, + { + "start": 15030.55, + "end": 15030.63, + "probability": 0.4341 + }, + { + "start": 15030.69, + "end": 15030.87, + "probability": 0.2395 + }, + { + "start": 15031.19, + "end": 15031.53, + "probability": 0.2509 + }, + { + "start": 15031.59, + "end": 15031.89, + "probability": 0.5266 + }, + { + "start": 15032.25, + "end": 15034.72, + "probability": 0.9481 + }, + { + "start": 15035.59, + "end": 15037.81, + "probability": 0.8599 + }, + { + "start": 15038.55, + "end": 15039.29, + "probability": 0.7121 + }, + { + "start": 15040.07, + "end": 15040.85, + "probability": 0.0518 + }, + { + "start": 15040.85, + "end": 15041.37, + "probability": 0.6533 + }, + { + "start": 15041.51, + "end": 15044.19, + "probability": 0.9372 + }, + { + "start": 15045.07, + "end": 15048.43, + "probability": 0.8209 + }, + { + "start": 15049.43, + "end": 15051.87, + "probability": 0.7537 + }, + { + "start": 15052.59, + "end": 15054.41, + "probability": 0.6119 + }, + { + "start": 15063.29, + "end": 15065.67, + "probability": 0.7413 + }, + { + "start": 15066.97, + "end": 15067.63, + "probability": 0.7276 + }, + { + "start": 15067.77, + "end": 15069.27, + "probability": 0.9274 + }, + { + "start": 15069.53, + "end": 15069.81, + "probability": 0.6753 + }, + { + "start": 15070.63, + "end": 15070.67, + "probability": 0.0041 + }, + { + "start": 15071.75, + "end": 15072.29, + "probability": 0.6161 + }, + { + "start": 15073.61, + "end": 15074.75, + "probability": 0.5867 + }, + { + "start": 15074.85, + "end": 15076.45, + "probability": 0.687 + }, + { + "start": 15076.51, + "end": 15076.73, + "probability": 0.7958 + }, + { + "start": 15076.89, + "end": 15077.01, + "probability": 0.4429 + }, + { + "start": 15077.07, + "end": 15077.91, + "probability": 0.976 + }, + { + "start": 15078.61, + "end": 15081.21, + "probability": 0.9554 + }, + { + "start": 15081.29, + "end": 15083.23, + "probability": 0.7476 + }, + { + "start": 15083.33, + "end": 15084.93, + "probability": 0.5359 + }, + { + "start": 15085.01, + "end": 15085.85, + "probability": 0.9615 + }, + { + "start": 15086.53, + "end": 15088.81, + "probability": 0.8009 + }, + { + "start": 15093.69, + "end": 15095.93, + "probability": 0.5078 + }, + { + "start": 15097.59, + "end": 15098.63, + "probability": 0.8668 + }, + { + "start": 15098.99, + "end": 15100.61, + "probability": 0.4585 + }, + { + "start": 15101.15, + "end": 15101.45, + "probability": 0.6948 + }, + { + "start": 15102.89, + "end": 15103.65, + "probability": 0.6376 + }, + { + "start": 15106.29, + "end": 15107.77, + "probability": 0.907 + }, + { + "start": 15110.79, + "end": 15113.11, + "probability": 0.9778 + }, + { + "start": 15115.79, + "end": 15119.43, + "probability": 0.9958 + }, + { + "start": 15119.43, + "end": 15124.35, + "probability": 0.9684 + }, + { + "start": 15124.67, + "end": 15128.23, + "probability": 0.8442 + }, + { + "start": 15128.29, + "end": 15129.67, + "probability": 0.973 + }, + { + "start": 15130.77, + "end": 15132.57, + "probability": 0.9954 + }, + { + "start": 15132.65, + "end": 15136.31, + "probability": 0.9486 + }, + { + "start": 15136.53, + "end": 15139.43, + "probability": 0.9743 + }, + { + "start": 15140.49, + "end": 15145.43, + "probability": 0.9746 + }, + { + "start": 15145.67, + "end": 15148.79, + "probability": 0.9484 + }, + { + "start": 15150.77, + "end": 15154.67, + "probability": 0.8425 + }, + { + "start": 15154.77, + "end": 15154.79, + "probability": 0.0842 + }, + { + "start": 15154.85, + "end": 15155.49, + "probability": 0.5754 + }, + { + "start": 15156.44, + "end": 15160.33, + "probability": 0.9442 + }, + { + "start": 15161.15, + "end": 15163.49, + "probability": 0.9801 + }, + { + "start": 15164.17, + "end": 15167.13, + "probability": 0.991 + }, + { + "start": 15167.81, + "end": 15172.67, + "probability": 0.9722 + }, + { + "start": 15173.19, + "end": 15177.81, + "probability": 0.8773 + }, + { + "start": 15179.47, + "end": 15186.33, + "probability": 0.9786 + }, + { + "start": 15187.15, + "end": 15189.7, + "probability": 0.7393 + }, + { + "start": 15190.13, + "end": 15193.94, + "probability": 0.9804 + }, + { + "start": 15195.15, + "end": 15196.19, + "probability": 0.5447 + }, + { + "start": 15196.27, + "end": 15198.13, + "probability": 0.6805 + }, + { + "start": 15198.63, + "end": 15201.53, + "probability": 0.9319 + }, + { + "start": 15202.59, + "end": 15205.19, + "probability": 0.9507 + }, + { + "start": 15205.71, + "end": 15207.09, + "probability": 0.9715 + }, + { + "start": 15207.53, + "end": 15211.51, + "probability": 0.9679 + }, + { + "start": 15212.13, + "end": 15214.91, + "probability": 0.9266 + }, + { + "start": 15215.81, + "end": 15218.31, + "probability": 0.9731 + }, + { + "start": 15218.31, + "end": 15221.75, + "probability": 0.9951 + }, + { + "start": 15221.97, + "end": 15224.69, + "probability": 0.9941 + }, + { + "start": 15225.71, + "end": 15227.21, + "probability": 0.93 + }, + { + "start": 15228.03, + "end": 15230.47, + "probability": 0.9452 + }, + { + "start": 15231.21, + "end": 15232.43, + "probability": 0.8775 + }, + { + "start": 15233.19, + "end": 15234.9, + "probability": 0.9001 + }, + { + "start": 15236.37, + "end": 15242.73, + "probability": 0.9932 + }, + { + "start": 15243.57, + "end": 15245.59, + "probability": 0.906 + }, + { + "start": 15247.01, + "end": 15251.79, + "probability": 0.9147 + }, + { + "start": 15251.99, + "end": 15252.39, + "probability": 0.8176 + }, + { + "start": 15252.95, + "end": 15254.51, + "probability": 0.9092 + }, + { + "start": 15254.69, + "end": 15256.55, + "probability": 0.9434 + }, + { + "start": 15257.71, + "end": 15261.89, + "probability": 0.9741 + }, + { + "start": 15261.99, + "end": 15263.47, + "probability": 0.971 + }, + { + "start": 15263.73, + "end": 15265.31, + "probability": 0.9919 + }, + { + "start": 15266.31, + "end": 15267.29, + "probability": 0.7247 + }, + { + "start": 15267.33, + "end": 15270.09, + "probability": 0.9763 + }, + { + "start": 15270.29, + "end": 15271.83, + "probability": 0.9936 + }, + { + "start": 15271.95, + "end": 15273.53, + "probability": 0.8899 + }, + { + "start": 15273.61, + "end": 15275.79, + "probability": 0.9973 + }, + { + "start": 15276.97, + "end": 15280.73, + "probability": 0.9064 + }, + { + "start": 15280.83, + "end": 15281.75, + "probability": 0.792 + }, + { + "start": 15281.79, + "end": 15283.47, + "probability": 0.8753 + }, + { + "start": 15283.73, + "end": 15286.59, + "probability": 0.9771 + }, + { + "start": 15286.65, + "end": 15288.25, + "probability": 0.9683 + }, + { + "start": 15288.33, + "end": 15294.09, + "probability": 0.9484 + }, + { + "start": 15294.27, + "end": 15295.53, + "probability": 0.9924 + }, + { + "start": 15297.27, + "end": 15297.61, + "probability": 0.8421 + }, + { + "start": 15298.55, + "end": 15299.33, + "probability": 0.8637 + }, + { + "start": 15299.93, + "end": 15302.69, + "probability": 0.9577 + }, + { + "start": 15304.23, + "end": 15307.79, + "probability": 0.8579 + }, + { + "start": 15309.19, + "end": 15311.75, + "probability": 0.9415 + }, + { + "start": 15312.41, + "end": 15316.55, + "probability": 0.9502 + }, + { + "start": 15316.91, + "end": 15318.45, + "probability": 0.9828 + }, + { + "start": 15319.29, + "end": 15322.71, + "probability": 0.9881 + }, + { + "start": 15322.85, + "end": 15323.71, + "probability": 0.7453 + }, + { + "start": 15323.85, + "end": 15324.93, + "probability": 0.9702 + }, + { + "start": 15326.05, + "end": 15328.75, + "probability": 0.9966 + }, + { + "start": 15329.85, + "end": 15333.27, + "probability": 0.9886 + }, + { + "start": 15333.91, + "end": 15335.27, + "probability": 0.8091 + }, + { + "start": 15335.59, + "end": 15341.53, + "probability": 0.9762 + }, + { + "start": 15341.57, + "end": 15343.42, + "probability": 0.8276 + }, + { + "start": 15345.57, + "end": 15348.16, + "probability": 0.9639 + }, + { + "start": 15348.31, + "end": 15351.05, + "probability": 0.98 + }, + { + "start": 15351.13, + "end": 15353.51, + "probability": 0.9976 + }, + { + "start": 15353.99, + "end": 15356.39, + "probability": 0.9984 + }, + { + "start": 15356.71, + "end": 15357.41, + "probability": 0.6992 + }, + { + "start": 15357.73, + "end": 15359.31, + "probability": 0.9769 + }, + { + "start": 15359.73, + "end": 15363.85, + "probability": 0.9967 + }, + { + "start": 15364.37, + "end": 15367.23, + "probability": 0.84 + }, + { + "start": 15368.01, + "end": 15371.55, + "probability": 0.9972 + }, + { + "start": 15372.09, + "end": 15372.45, + "probability": 0.8426 + }, + { + "start": 15372.69, + "end": 15372.87, + "probability": 0.6276 + }, + { + "start": 15373.21, + "end": 15374.69, + "probability": 0.7878 + }, + { + "start": 15375.37, + "end": 15377.21, + "probability": 0.9238 + }, + { + "start": 15377.25, + "end": 15379.57, + "probability": 0.7418 + }, + { + "start": 15395.39, + "end": 15396.57, + "probability": 0.3728 + }, + { + "start": 15397.67, + "end": 15398.35, + "probability": 0.6503 + }, + { + "start": 15399.47, + "end": 15405.33, + "probability": 0.9643 + }, + { + "start": 15406.01, + "end": 15408.03, + "probability": 0.732 + }, + { + "start": 15409.05, + "end": 15413.17, + "probability": 0.8538 + }, + { + "start": 15414.03, + "end": 15418.29, + "probability": 0.9985 + }, + { + "start": 15418.51, + "end": 15420.29, + "probability": 0.9575 + }, + { + "start": 15421.43, + "end": 15427.45, + "probability": 0.9885 + }, + { + "start": 15430.05, + "end": 15430.81, + "probability": 0.8647 + }, + { + "start": 15430.91, + "end": 15432.46, + "probability": 0.9458 + }, + { + "start": 15432.93, + "end": 15437.21, + "probability": 0.944 + }, + { + "start": 15437.21, + "end": 15442.17, + "probability": 0.9917 + }, + { + "start": 15443.83, + "end": 15448.99, + "probability": 0.9536 + }, + { + "start": 15449.75, + "end": 15451.95, + "probability": 0.9895 + }, + { + "start": 15451.95, + "end": 15455.03, + "probability": 0.979 + }, + { + "start": 15456.01, + "end": 15458.25, + "probability": 0.9592 + }, + { + "start": 15460.63, + "end": 15466.28, + "probability": 0.9958 + }, + { + "start": 15466.67, + "end": 15468.61, + "probability": 0.999 + }, + { + "start": 15469.05, + "end": 15473.41, + "probability": 0.8398 + }, + { + "start": 15474.13, + "end": 15474.85, + "probability": 0.6156 + }, + { + "start": 15475.09, + "end": 15476.25, + "probability": 0.8118 + }, + { + "start": 15476.35, + "end": 15476.65, + "probability": 0.4791 + }, + { + "start": 15476.65, + "end": 15477.65, + "probability": 0.8559 + }, + { + "start": 15477.69, + "end": 15478.23, + "probability": 0.7108 + }, + { + "start": 15478.29, + "end": 15481.73, + "probability": 0.1495 + }, + { + "start": 15483.37, + "end": 15486.57, + "probability": 0.8831 + }, + { + "start": 15486.61, + "end": 15490.35, + "probability": 0.8093 + }, + { + "start": 15490.93, + "end": 15492.07, + "probability": 0.9977 + }, + { + "start": 15493.21, + "end": 15494.21, + "probability": 0.8989 + }, + { + "start": 15494.27, + "end": 15495.24, + "probability": 0.9922 + }, + { + "start": 15495.61, + "end": 15499.71, + "probability": 0.9883 + }, + { + "start": 15500.03, + "end": 15501.01, + "probability": 0.0692 + }, + { + "start": 15501.19, + "end": 15501.73, + "probability": 0.0095 + }, + { + "start": 15502.05, + "end": 15506.15, + "probability": 0.0201 + }, + { + "start": 15510.33, + "end": 15511.22, + "probability": 0.0685 + }, + { + "start": 15511.37, + "end": 15513.15, + "probability": 0.2271 + }, + { + "start": 15514.19, + "end": 15514.85, + "probability": 0.8263 + }, + { + "start": 15515.39, + "end": 15518.81, + "probability": 0.7502 + }, + { + "start": 15518.91, + "end": 15523.37, + "probability": 0.9632 + }, + { + "start": 15523.51, + "end": 15524.95, + "probability": 0.9827 + }, + { + "start": 15525.95, + "end": 15528.91, + "probability": 0.9961 + }, + { + "start": 15528.91, + "end": 15531.83, + "probability": 0.9941 + }, + { + "start": 15532.03, + "end": 15532.59, + "probability": 0.6727 + }, + { + "start": 15533.75, + "end": 15537.71, + "probability": 0.8313 + }, + { + "start": 15538.65, + "end": 15545.53, + "probability": 0.9976 + }, + { + "start": 15546.03, + "end": 15546.69, + "probability": 0.8704 + }, + { + "start": 15547.37, + "end": 15549.19, + "probability": 0.9681 + }, + { + "start": 15551.05, + "end": 15555.35, + "probability": 0.9926 + }, + { + "start": 15555.43, + "end": 15560.65, + "probability": 0.9992 + }, + { + "start": 15561.79, + "end": 15565.73, + "probability": 0.9937 + }, + { + "start": 15567.17, + "end": 15568.41, + "probability": 0.98 + }, + { + "start": 15569.25, + "end": 15574.79, + "probability": 0.9967 + }, + { + "start": 15575.87, + "end": 15578.93, + "probability": 0.9933 + }, + { + "start": 15580.53, + "end": 15584.01, + "probability": 0.9971 + }, + { + "start": 15584.01, + "end": 15590.83, + "probability": 0.9612 + }, + { + "start": 15590.83, + "end": 15594.11, + "probability": 0.9941 + }, + { + "start": 15595.31, + "end": 15597.25, + "probability": 0.9175 + }, + { + "start": 15597.45, + "end": 15599.45, + "probability": 0.8344 + }, + { + "start": 15599.53, + "end": 15601.97, + "probability": 0.9133 + }, + { + "start": 15602.19, + "end": 15605.87, + "probability": 0.9979 + }, + { + "start": 15605.87, + "end": 15608.15, + "probability": 0.85 + }, + { + "start": 15609.05, + "end": 15611.29, + "probability": 0.9968 + }, + { + "start": 15611.33, + "end": 15613.93, + "probability": 0.9867 + }, + { + "start": 15614.85, + "end": 15617.45, + "probability": 0.9793 + }, + { + "start": 15618.11, + "end": 15620.81, + "probability": 0.9697 + }, + { + "start": 15620.87, + "end": 15624.85, + "probability": 0.9775 + }, + { + "start": 15625.53, + "end": 15626.97, + "probability": 0.8784 + }, + { + "start": 15627.71, + "end": 15629.73, + "probability": 0.9844 + }, + { + "start": 15630.41, + "end": 15632.89, + "probability": 0.8688 + }, + { + "start": 15633.15, + "end": 15634.6, + "probability": 0.8689 + }, + { + "start": 15635.49, + "end": 15637.35, + "probability": 0.9912 + }, + { + "start": 15637.41, + "end": 15639.33, + "probability": 0.9717 + }, + { + "start": 15640.11, + "end": 15644.09, + "probability": 0.9756 + }, + { + "start": 15644.53, + "end": 15646.41, + "probability": 0.9122 + }, + { + "start": 15647.05, + "end": 15650.89, + "probability": 0.9924 + }, + { + "start": 15651.61, + "end": 15653.61, + "probability": 0.6702 + }, + { + "start": 15653.73, + "end": 15655.42, + "probability": 0.719 + }, + { + "start": 15657.09, + "end": 15657.47, + "probability": 0.5026 + }, + { + "start": 15658.51, + "end": 15660.55, + "probability": 0.9076 + }, + { + "start": 15665.43, + "end": 15666.31, + "probability": 0.5975 + }, + { + "start": 15681.95, + "end": 15685.91, + "probability": 0.8311 + }, + { + "start": 15686.85, + "end": 15687.05, + "probability": 0.5759 + }, + { + "start": 15687.19, + "end": 15689.55, + "probability": 0.8077 + }, + { + "start": 15689.77, + "end": 15692.77, + "probability": 0.8338 + }, + { + "start": 15693.25, + "end": 15694.27, + "probability": 0.9575 + }, + { + "start": 15694.57, + "end": 15696.31, + "probability": 0.941 + }, + { + "start": 15696.47, + "end": 15698.09, + "probability": 0.8517 + }, + { + "start": 15698.19, + "end": 15698.81, + "probability": 0.532 + }, + { + "start": 15699.13, + "end": 15699.61, + "probability": 0.8386 + }, + { + "start": 15700.19, + "end": 15702.37, + "probability": 0.9634 + }, + { + "start": 15703.09, + "end": 15706.55, + "probability": 0.9937 + }, + { + "start": 15706.99, + "end": 15710.35, + "probability": 0.9919 + }, + { + "start": 15710.49, + "end": 15711.37, + "probability": 0.5619 + }, + { + "start": 15711.99, + "end": 15714.13, + "probability": 0.9725 + }, + { + "start": 15714.37, + "end": 15715.97, + "probability": 0.9916 + }, + { + "start": 15716.25, + "end": 15717.11, + "probability": 0.8394 + }, + { + "start": 15717.35, + "end": 15718.37, + "probability": 0.8804 + }, + { + "start": 15718.99, + "end": 15720.51, + "probability": 0.9718 + }, + { + "start": 15720.59, + "end": 15721.63, + "probability": 0.5256 + }, + { + "start": 15721.71, + "end": 15723.61, + "probability": 0.9634 + }, + { + "start": 15725.05, + "end": 15728.13, + "probability": 0.7089 + }, + { + "start": 15728.99, + "end": 15730.93, + "probability": 0.9946 + }, + { + "start": 15731.45, + "end": 15733.66, + "probability": 0.9976 + }, + { + "start": 15734.19, + "end": 15734.63, + "probability": 0.7015 + }, + { + "start": 15735.13, + "end": 15738.03, + "probability": 0.9944 + }, + { + "start": 15738.53, + "end": 15740.69, + "probability": 0.969 + }, + { + "start": 15740.93, + "end": 15745.61, + "probability": 0.9913 + }, + { + "start": 15746.23, + "end": 15747.65, + "probability": 0.9537 + }, + { + "start": 15748.07, + "end": 15750.45, + "probability": 0.9858 + }, + { + "start": 15750.95, + "end": 15752.71, + "probability": 0.9949 + }, + { + "start": 15753.35, + "end": 15755.57, + "probability": 0.799 + }, + { + "start": 15755.73, + "end": 15758.91, + "probability": 0.9938 + }, + { + "start": 15759.33, + "end": 15760.33, + "probability": 0.5601 + }, + { + "start": 15761.01, + "end": 15763.61, + "probability": 0.9419 + }, + { + "start": 15763.91, + "end": 15765.14, + "probability": 0.9302 + }, + { + "start": 15765.51, + "end": 15768.71, + "probability": 0.9626 + }, + { + "start": 15769.59, + "end": 15773.91, + "probability": 0.9316 + }, + { + "start": 15774.55, + "end": 15777.33, + "probability": 0.9513 + }, + { + "start": 15778.29, + "end": 15779.81, + "probability": 0.8078 + }, + { + "start": 15779.83, + "end": 15785.53, + "probability": 0.9816 + }, + { + "start": 15785.69, + "end": 15787.47, + "probability": 0.8595 + }, + { + "start": 15787.47, + "end": 15793.53, + "probability": 0.7612 + }, + { + "start": 15794.11, + "end": 15797.61, + "probability": 0.4704 + }, + { + "start": 15797.65, + "end": 15799.07, + "probability": 0.6646 + }, + { + "start": 15799.61, + "end": 15803.35, + "probability": 0.6004 + }, + { + "start": 15804.17, + "end": 15807.99, + "probability": 0.8215 + }, + { + "start": 15808.29, + "end": 15809.85, + "probability": 0.7012 + }, + { + "start": 15810.33, + "end": 15812.97, + "probability": 0.9946 + }, + { + "start": 15813.63, + "end": 15815.77, + "probability": 0.6036 + }, + { + "start": 15816.51, + "end": 15817.25, + "probability": 0.7237 + }, + { + "start": 15817.29, + "end": 15819.29, + "probability": 0.8655 + }, + { + "start": 15819.35, + "end": 15820.23, + "probability": 0.7095 + }, + { + "start": 15821.01, + "end": 15824.63, + "probability": 0.986 + }, + { + "start": 15824.73, + "end": 15827.93, + "probability": 0.9561 + }, + { + "start": 15828.07, + "end": 15828.89, + "probability": 0.7687 + }, + { + "start": 15829.45, + "end": 15831.69, + "probability": 0.9099 + }, + { + "start": 15831.97, + "end": 15838.17, + "probability": 0.9237 + }, + { + "start": 15838.29, + "end": 15841.31, + "probability": 0.8101 + }, + { + "start": 15842.01, + "end": 15848.55, + "probability": 0.7769 + }, + { + "start": 15848.85, + "end": 15850.91, + "probability": 0.8154 + }, + { + "start": 15851.21, + "end": 15856.61, + "probability": 0.9939 + }, + { + "start": 15857.55, + "end": 15859.19, + "probability": 0.8586 + }, + { + "start": 15859.39, + "end": 15861.09, + "probability": 0.9979 + }, + { + "start": 15861.11, + "end": 15863.01, + "probability": 0.9966 + }, + { + "start": 15863.05, + "end": 15864.43, + "probability": 0.7508 + }, + { + "start": 15864.55, + "end": 15869.15, + "probability": 0.9873 + }, + { + "start": 15869.23, + "end": 15870.91, + "probability": 0.9191 + }, + { + "start": 15871.39, + "end": 15876.83, + "probability": 0.992 + }, + { + "start": 15877.39, + "end": 15877.69, + "probability": 0.415 + }, + { + "start": 15877.69, + "end": 15879.89, + "probability": 0.8641 + }, + { + "start": 15880.07, + "end": 15882.33, + "probability": 0.987 + }, + { + "start": 15882.83, + "end": 15883.91, + "probability": 0.9071 + }, + { + "start": 15884.09, + "end": 15884.91, + "probability": 0.7791 + }, + { + "start": 15885.39, + "end": 15888.85, + "probability": 0.958 + }, + { + "start": 15889.21, + "end": 15892.53, + "probability": 0.8715 + }, + { + "start": 15892.53, + "end": 15896.37, + "probability": 0.9499 + }, + { + "start": 15896.81, + "end": 15900.73, + "probability": 0.934 + }, + { + "start": 15901.43, + "end": 15901.85, + "probability": 0.5895 + }, + { + "start": 15902.17, + "end": 15906.19, + "probability": 0.9987 + }, + { + "start": 15906.19, + "end": 15910.75, + "probability": 0.9953 + }, + { + "start": 15911.21, + "end": 15913.53, + "probability": 0.9961 + }, + { + "start": 15913.65, + "end": 15917.75, + "probability": 0.9965 + }, + { + "start": 15918.37, + "end": 15921.63, + "probability": 0.8447 + }, + { + "start": 15921.71, + "end": 15923.83, + "probability": 0.8789 + }, + { + "start": 15924.25, + "end": 15925.03, + "probability": 0.5411 + }, + { + "start": 15925.07, + "end": 15926.65, + "probability": 0.6999 + }, + { + "start": 15927.03, + "end": 15927.61, + "probability": 0.8969 + }, + { + "start": 15928.25, + "end": 15930.69, + "probability": 0.8229 + }, + { + "start": 15930.77, + "end": 15933.75, + "probability": 0.904 + }, + { + "start": 15942.87, + "end": 15943.09, + "probability": 0.2706 + }, + { + "start": 15943.41, + "end": 15944.63, + "probability": 0.6908 + }, + { + "start": 15945.17, + "end": 15946.37, + "probability": 0.7877 + }, + { + "start": 15947.81, + "end": 15951.33, + "probability": 0.8972 + }, + { + "start": 15952.79, + "end": 15956.71, + "probability": 0.9865 + }, + { + "start": 15956.71, + "end": 15960.05, + "probability": 0.985 + }, + { + "start": 15961.33, + "end": 15966.32, + "probability": 0.9585 + }, + { + "start": 15967.77, + "end": 15972.65, + "probability": 0.8561 + }, + { + "start": 15973.27, + "end": 15978.01, + "probability": 0.9443 + }, + { + "start": 15978.05, + "end": 15981.71, + "probability": 0.5072 + }, + { + "start": 15986.99, + "end": 15992.17, + "probability": 0.5544 + }, + { + "start": 15992.17, + "end": 16005.85, + "probability": 0.8827 + }, + { + "start": 16006.37, + "end": 16010.09, + "probability": 0.9699 + }, + { + "start": 16011.47, + "end": 16012.51, + "probability": 0.4754 + }, + { + "start": 16012.67, + "end": 16013.85, + "probability": 0.6718 + }, + { + "start": 16013.89, + "end": 16017.27, + "probability": 0.7054 + }, + { + "start": 16017.79, + "end": 16021.27, + "probability": 0.9875 + }, + { + "start": 16021.81, + "end": 16027.47, + "probability": 0.8037 + }, + { + "start": 16027.63, + "end": 16027.91, + "probability": 0.2158 + }, + { + "start": 16028.47, + "end": 16029.33, + "probability": 0.6448 + }, + { + "start": 16029.45, + "end": 16033.51, + "probability": 0.5059 + }, + { + "start": 16034.63, + "end": 16037.05, + "probability": 0.2729 + }, + { + "start": 16037.95, + "end": 16044.33, + "probability": 0.9272 + }, + { + "start": 16044.33, + "end": 16050.13, + "probability": 0.9469 + }, + { + "start": 16051.29, + "end": 16056.11, + "probability": 0.9971 + }, + { + "start": 16056.69, + "end": 16061.93, + "probability": 0.9976 + }, + { + "start": 16062.55, + "end": 16064.53, + "probability": 0.9812 + }, + { + "start": 16065.63, + "end": 16068.61, + "probability": 0.9144 + }, + { + "start": 16069.01, + "end": 16071.53, + "probability": 0.9875 + }, + { + "start": 16072.01, + "end": 16073.43, + "probability": 0.7999 + }, + { + "start": 16073.55, + "end": 16074.05, + "probability": 0.513 + }, + { + "start": 16074.15, + "end": 16075.71, + "probability": 0.5787 + }, + { + "start": 16075.77, + "end": 16075.89, + "probability": 0.8326 + }, + { + "start": 16076.09, + "end": 16079.39, + "probability": 0.823 + }, + { + "start": 16080.27, + "end": 16081.57, + "probability": 0.96 + }, + { + "start": 16081.69, + "end": 16083.61, + "probability": 0.9917 + }, + { + "start": 16084.65, + "end": 16087.99, + "probability": 0.6814 + }, + { + "start": 16088.53, + "end": 16093.31, + "probability": 0.983 + }, + { + "start": 16094.03, + "end": 16095.33, + "probability": 0.5803 + }, + { + "start": 16098.15, + "end": 16099.57, + "probability": 0.2838 + }, + { + "start": 16099.71, + "end": 16100.35, + "probability": 0.4444 + }, + { + "start": 16102.03, + "end": 16102.55, + "probability": 0.0837 + }, + { + "start": 16103.87, + "end": 16107.09, + "probability": 0.7661 + }, + { + "start": 16107.35, + "end": 16109.63, + "probability": 0.852 + }, + { + "start": 16111.55, + "end": 16115.03, + "probability": 0.9961 + }, + { + "start": 16115.03, + "end": 16119.91, + "probability": 0.7497 + }, + { + "start": 16120.61, + "end": 16124.03, + "probability": 0.9266 + }, + { + "start": 16124.95, + "end": 16126.73, + "probability": 0.9629 + }, + { + "start": 16127.43, + "end": 16133.03, + "probability": 0.7499 + }, + { + "start": 16133.93, + "end": 16140.39, + "probability": 0.9172 + }, + { + "start": 16141.25, + "end": 16143.25, + "probability": 0.9071 + }, + { + "start": 16143.83, + "end": 16150.27, + "probability": 0.9897 + }, + { + "start": 16150.57, + "end": 16152.64, + "probability": 0.7654 + }, + { + "start": 16153.76, + "end": 16157.37, + "probability": 0.9185 + }, + { + "start": 16158.13, + "end": 16161.33, + "probability": 0.9722 + }, + { + "start": 16161.87, + "end": 16165.23, + "probability": 0.9653 + }, + { + "start": 16165.99, + "end": 16167.49, + "probability": 0.9749 + }, + { + "start": 16167.59, + "end": 16170.55, + "probability": 0.9919 + }, + { + "start": 16171.07, + "end": 16177.99, + "probability": 0.5465 + }, + { + "start": 16178.85, + "end": 16181.23, + "probability": 0.3947 + }, + { + "start": 16181.75, + "end": 16182.91, + "probability": 0.8679 + }, + { + "start": 16183.11, + "end": 16183.69, + "probability": 0.8114 + }, + { + "start": 16183.81, + "end": 16186.89, + "probability": 0.7547 + }, + { + "start": 16187.47, + "end": 16190.05, + "probability": 0.9894 + }, + { + "start": 16190.05, + "end": 16192.55, + "probability": 0.9436 + }, + { + "start": 16192.79, + "end": 16196.33, + "probability": 0.9966 + }, + { + "start": 16196.43, + "end": 16196.97, + "probability": 0.8409 + }, + { + "start": 16197.09, + "end": 16198.97, + "probability": 0.8539 + }, + { + "start": 16199.45, + "end": 16203.37, + "probability": 0.975 + }, + { + "start": 16203.97, + "end": 16207.07, + "probability": 0.835 + }, + { + "start": 16207.61, + "end": 16210.65, + "probability": 0.9961 + }, + { + "start": 16211.29, + "end": 16214.31, + "probability": 0.7139 + }, + { + "start": 16214.31, + "end": 16214.65, + "probability": 0.5416 + }, + { + "start": 16215.19, + "end": 16217.91, + "probability": 0.8101 + }, + { + "start": 16217.91, + "end": 16219.39, + "probability": 0.9241 + }, + { + "start": 16221.91, + "end": 16225.11, + "probability": 0.8535 + }, + { + "start": 16226.21, + "end": 16228.85, + "probability": 0.9217 + }, + { + "start": 16229.92, + "end": 16231.43, + "probability": 0.9115 + }, + { + "start": 16232.53, + "end": 16232.97, + "probability": 0.8812 + }, + { + "start": 16242.33, + "end": 16242.61, + "probability": 0.3681 + }, + { + "start": 16242.63, + "end": 16243.19, + "probability": 0.6171 + }, + { + "start": 16243.33, + "end": 16244.79, + "probability": 0.9264 + }, + { + "start": 16244.91, + "end": 16244.99, + "probability": 0.443 + }, + { + "start": 16244.99, + "end": 16252.23, + "probability": 0.8074 + }, + { + "start": 16252.93, + "end": 16253.77, + "probability": 0.8832 + }, + { + "start": 16254.49, + "end": 16258.99, + "probability": 0.7664 + }, + { + "start": 16261.03, + "end": 16265.27, + "probability": 0.6301 + }, + { + "start": 16266.41, + "end": 16267.61, + "probability": 0.9246 + }, + { + "start": 16267.73, + "end": 16268.49, + "probability": 0.6293 + }, + { + "start": 16268.61, + "end": 16268.99, + "probability": 0.5709 + }, + { + "start": 16269.11, + "end": 16270.59, + "probability": 0.8154 + }, + { + "start": 16270.73, + "end": 16273.99, + "probability": 0.9571 + }, + { + "start": 16274.03, + "end": 16276.27, + "probability": 0.9957 + }, + { + "start": 16276.93, + "end": 16280.09, + "probability": 0.6498 + }, + { + "start": 16280.23, + "end": 16280.91, + "probability": 0.9705 + }, + { + "start": 16282.39, + "end": 16284.61, + "probability": 0.8227 + }, + { + "start": 16286.79, + "end": 16290.65, + "probability": 0.9819 + }, + { + "start": 16290.65, + "end": 16294.51, + "probability": 0.9893 + }, + { + "start": 16295.63, + "end": 16298.49, + "probability": 0.9937 + }, + { + "start": 16298.51, + "end": 16304.47, + "probability": 0.9972 + }, + { + "start": 16304.55, + "end": 16305.23, + "probability": 0.8698 + }, + { + "start": 16306.41, + "end": 16310.13, + "probability": 0.9943 + }, + { + "start": 16311.07, + "end": 16316.41, + "probability": 0.9891 + }, + { + "start": 16316.97, + "end": 16322.17, + "probability": 0.6476 + }, + { + "start": 16322.17, + "end": 16328.09, + "probability": 0.9945 + }, + { + "start": 16328.85, + "end": 16331.85, + "probability": 0.9646 + }, + { + "start": 16332.41, + "end": 16334.15, + "probability": 0.952 + }, + { + "start": 16334.29, + "end": 16336.89, + "probability": 0.7171 + }, + { + "start": 16337.83, + "end": 16337.93, + "probability": 0.0066 + }, + { + "start": 16337.93, + "end": 16338.35, + "probability": 0.0175 + }, + { + "start": 16338.35, + "end": 16339.17, + "probability": 0.7041 + }, + { + "start": 16342.37, + "end": 16343.17, + "probability": 0.4638 + }, + { + "start": 16343.23, + "end": 16348.25, + "probability": 0.8544 + }, + { + "start": 16348.39, + "end": 16351.85, + "probability": 0.9508 + }, + { + "start": 16352.59, + "end": 16355.91, + "probability": 0.971 + }, + { + "start": 16356.45, + "end": 16357.53, + "probability": 0.9941 + }, + { + "start": 16358.49, + "end": 16360.31, + "probability": 0.8681 + }, + { + "start": 16360.99, + "end": 16363.51, + "probability": 0.937 + }, + { + "start": 16364.37, + "end": 16370.41, + "probability": 0.9618 + }, + { + "start": 16370.83, + "end": 16372.19, + "probability": 0.9223 + }, + { + "start": 16373.23, + "end": 16375.17, + "probability": 0.9134 + }, + { + "start": 16375.85, + "end": 16378.23, + "probability": 0.8649 + }, + { + "start": 16379.11, + "end": 16383.57, + "probability": 0.9842 + }, + { + "start": 16384.53, + "end": 16390.75, + "probability": 0.8853 + }, + { + "start": 16391.59, + "end": 16394.77, + "probability": 0.9785 + }, + { + "start": 16395.41, + "end": 16396.47, + "probability": 0.7024 + }, + { + "start": 16396.95, + "end": 16403.79, + "probability": 0.9892 + }, + { + "start": 16404.53, + "end": 16407.45, + "probability": 0.9997 + }, + { + "start": 16408.13, + "end": 16415.93, + "probability": 0.9988 + }, + { + "start": 16416.55, + "end": 16419.49, + "probability": 0.832 + }, + { + "start": 16420.25, + "end": 16423.29, + "probability": 0.8575 + }, + { + "start": 16423.83, + "end": 16424.85, + "probability": 0.6201 + }, + { + "start": 16425.11, + "end": 16426.86, + "probability": 0.8547 + }, + { + "start": 16427.83, + "end": 16430.87, + "probability": 0.8728 + }, + { + "start": 16431.01, + "end": 16432.09, + "probability": 0.7268 + }, + { + "start": 16434.41, + "end": 16442.67, + "probability": 0.9614 + }, + { + "start": 16443.43, + "end": 16449.19, + "probability": 0.9702 + }, + { + "start": 16449.74, + "end": 16454.23, + "probability": 0.9857 + }, + { + "start": 16454.79, + "end": 16456.81, + "probability": 0.9387 + }, + { + "start": 16457.33, + "end": 16460.27, + "probability": 0.8778 + }, + { + "start": 16460.87, + "end": 16463.93, + "probability": 0.9775 + }, + { + "start": 16465.21, + "end": 16466.89, + "probability": 0.7912 + }, + { + "start": 16466.99, + "end": 16467.55, + "probability": 0.9402 + }, + { + "start": 16467.71, + "end": 16470.69, + "probability": 0.6704 + }, + { + "start": 16471.23, + "end": 16475.49, + "probability": 0.9126 + }, + { + "start": 16476.09, + "end": 16478.33, + "probability": 0.8384 + }, + { + "start": 16478.93, + "end": 16483.33, + "probability": 0.9513 + }, + { + "start": 16483.75, + "end": 16486.35, + "probability": 0.9613 + }, + { + "start": 16486.77, + "end": 16488.21, + "probability": 0.9823 + }, + { + "start": 16488.41, + "end": 16489.63, + "probability": 0.9929 + }, + { + "start": 16490.19, + "end": 16491.88, + "probability": 0.9656 + }, + { + "start": 16492.47, + "end": 16493.87, + "probability": 0.9918 + }, + { + "start": 16496.51, + "end": 16498.91, + "probability": 0.8932 + }, + { + "start": 16499.07, + "end": 16500.09, + "probability": 0.936 + }, + { + "start": 16500.25, + "end": 16501.93, + "probability": 0.9502 + }, + { + "start": 16502.21, + "end": 16505.47, + "probability": 0.9526 + }, + { + "start": 16505.99, + "end": 16509.15, + "probability": 0.9958 + }, + { + "start": 16510.03, + "end": 16511.01, + "probability": 0.7065 + }, + { + "start": 16511.19, + "end": 16511.65, + "probability": 0.7484 + }, + { + "start": 16511.75, + "end": 16514.23, + "probability": 0.9072 + }, + { + "start": 16514.83, + "end": 16515.49, + "probability": 0.9389 + }, + { + "start": 16515.99, + "end": 16518.07, + "probability": 0.918 + }, + { + "start": 16518.17, + "end": 16519.07, + "probability": 0.7183 + }, + { + "start": 16519.11, + "end": 16520.15, + "probability": 0.9866 + }, + { + "start": 16521.57, + "end": 16522.74, + "probability": 0.9819 + }, + { + "start": 16523.29, + "end": 16525.71, + "probability": 0.9749 + }, + { + "start": 16526.31, + "end": 16530.63, + "probability": 0.9966 + }, + { + "start": 16531.37, + "end": 16537.79, + "probability": 0.9018 + }, + { + "start": 16538.31, + "end": 16540.27, + "probability": 0.9523 + }, + { + "start": 16541.67, + "end": 16545.89, + "probability": 0.8619 + }, + { + "start": 16546.53, + "end": 16547.61, + "probability": 0.9574 + }, + { + "start": 16548.31, + "end": 16551.29, + "probability": 0.9692 + }, + { + "start": 16551.37, + "end": 16555.83, + "probability": 0.9947 + }, + { + "start": 16556.81, + "end": 16558.59, + "probability": 0.8168 + }, + { + "start": 16559.29, + "end": 16560.27, + "probability": 0.906 + }, + { + "start": 16561.17, + "end": 16562.23, + "probability": 0.9344 + }, + { + "start": 16563.15, + "end": 16563.53, + "probability": 0.8168 + }, + { + "start": 16564.31, + "end": 16565.71, + "probability": 0.9958 + }, + { + "start": 16566.45, + "end": 16568.61, + "probability": 0.9469 + }, + { + "start": 16569.57, + "end": 16573.43, + "probability": 0.9291 + }, + { + "start": 16573.43, + "end": 16578.47, + "probability": 0.9956 + }, + { + "start": 16578.65, + "end": 16579.25, + "probability": 0.2411 + }, + { + "start": 16579.31, + "end": 16580.17, + "probability": 0.8717 + }, + { + "start": 16580.89, + "end": 16582.17, + "probability": 0.9187 + }, + { + "start": 16582.89, + "end": 16585.61, + "probability": 0.8635 + }, + { + "start": 16585.83, + "end": 16589.13, + "probability": 0.7457 + }, + { + "start": 16589.47, + "end": 16590.63, + "probability": 0.8448 + }, + { + "start": 16591.13, + "end": 16592.33, + "probability": 0.9875 + }, + { + "start": 16592.67, + "end": 16593.32, + "probability": 0.892 + }, + { + "start": 16594.07, + "end": 16597.67, + "probability": 0.992 + }, + { + "start": 16598.19, + "end": 16603.47, + "probability": 0.8398 + }, + { + "start": 16604.03, + "end": 16606.69, + "probability": 0.9819 + }, + { + "start": 16606.89, + "end": 16608.23, + "probability": 0.7526 + }, + { + "start": 16609.47, + "end": 16610.65, + "probability": 0.6978 + }, + { + "start": 16610.99, + "end": 16614.51, + "probability": 0.9164 + }, + { + "start": 16614.79, + "end": 16619.03, + "probability": 0.9671 + }, + { + "start": 16619.99, + "end": 16620.83, + "probability": 0.8693 + }, + { + "start": 16620.93, + "end": 16621.71, + "probability": 0.9687 + }, + { + "start": 16621.81, + "end": 16622.83, + "probability": 0.7479 + }, + { + "start": 16622.91, + "end": 16623.61, + "probability": 0.8975 + }, + { + "start": 16624.91, + "end": 16627.87, + "probability": 0.9906 + }, + { + "start": 16628.51, + "end": 16632.77, + "probability": 0.8997 + }, + { + "start": 16633.19, + "end": 16636.27, + "probability": 0.9808 + }, + { + "start": 16636.83, + "end": 16638.25, + "probability": 0.9822 + }, + { + "start": 16639.01, + "end": 16639.83, + "probability": 0.5895 + }, + { + "start": 16639.95, + "end": 16641.04, + "probability": 0.9849 + }, + { + "start": 16641.31, + "end": 16642.25, + "probability": 0.6416 + }, + { + "start": 16642.55, + "end": 16643.63, + "probability": 0.6988 + }, + { + "start": 16643.67, + "end": 16644.13, + "probability": 0.8142 + }, + { + "start": 16645.13, + "end": 16645.81, + "probability": 0.9295 + }, + { + "start": 16646.47, + "end": 16647.83, + "probability": 0.9697 + }, + { + "start": 16647.89, + "end": 16650.61, + "probability": 0.8425 + }, + { + "start": 16651.17, + "end": 16652.79, + "probability": 0.9979 + }, + { + "start": 16652.85, + "end": 16653.33, + "probability": 0.9429 + }, + { + "start": 16654.09, + "end": 16654.49, + "probability": 0.7467 + }, + { + "start": 16655.43, + "end": 16657.03, + "probability": 0.9749 + }, + { + "start": 16659.35, + "end": 16663.77, + "probability": 0.8447 + }, + { + "start": 16664.31, + "end": 16667.29, + "probability": 0.966 + }, + { + "start": 16668.01, + "end": 16673.28, + "probability": 0.9601 + }, + { + "start": 16673.45, + "end": 16680.73, + "probability": 0.9927 + }, + { + "start": 16681.95, + "end": 16686.33, + "probability": 0.9113 + }, + { + "start": 16686.33, + "end": 16691.14, + "probability": 0.9902 + }, + { + "start": 16693.13, + "end": 16696.75, + "probability": 0.7447 + }, + { + "start": 16697.85, + "end": 16700.58, + "probability": 0.9802 + }, + { + "start": 16701.95, + "end": 16703.23, + "probability": 0.9071 + }, + { + "start": 16703.99, + "end": 16705.27, + "probability": 0.9912 + }, + { + "start": 16705.81, + "end": 16706.87, + "probability": 0.9863 + }, + { + "start": 16707.43, + "end": 16709.73, + "probability": 0.9747 + }, + { + "start": 16710.05, + "end": 16712.95, + "probability": 0.9933 + }, + { + "start": 16713.85, + "end": 16715.91, + "probability": 0.8434 + }, + { + "start": 16716.49, + "end": 16717.61, + "probability": 0.9932 + }, + { + "start": 16719.95, + "end": 16720.97, + "probability": 0.897 + }, + { + "start": 16721.69, + "end": 16722.23, + "probability": 0.9536 + }, + { + "start": 16722.43, + "end": 16726.03, + "probability": 0.9365 + }, + { + "start": 16726.49, + "end": 16728.79, + "probability": 0.8979 + }, + { + "start": 16729.57, + "end": 16732.09, + "probability": 0.9912 + }, + { + "start": 16732.09, + "end": 16736.17, + "probability": 0.9949 + }, + { + "start": 16736.43, + "end": 16738.41, + "probability": 0.9961 + }, + { + "start": 16738.93, + "end": 16740.29, + "probability": 0.7469 + }, + { + "start": 16740.91, + "end": 16743.89, + "probability": 0.9429 + }, + { + "start": 16744.71, + "end": 16747.03, + "probability": 0.7863 + }, + { + "start": 16747.65, + "end": 16752.63, + "probability": 0.995 + }, + { + "start": 16752.63, + "end": 16758.01, + "probability": 0.9973 + }, + { + "start": 16758.89, + "end": 16761.87, + "probability": 0.9263 + }, + { + "start": 16762.37, + "end": 16766.43, + "probability": 0.9968 + }, + { + "start": 16766.95, + "end": 16770.07, + "probability": 0.804 + }, + { + "start": 16770.95, + "end": 16775.85, + "probability": 0.8739 + }, + { + "start": 16776.19, + "end": 16782.31, + "probability": 0.9863 + }, + { + "start": 16782.31, + "end": 16790.01, + "probability": 0.9909 + }, + { + "start": 16790.17, + "end": 16797.83, + "probability": 0.9697 + }, + { + "start": 16797.83, + "end": 16802.67, + "probability": 0.9725 + }, + { + "start": 16803.49, + "end": 16806.71, + "probability": 0.9563 + }, + { + "start": 16807.43, + "end": 16809.01, + "probability": 0.6839 + }, + { + "start": 16809.65, + "end": 16813.65, + "probability": 0.9985 + }, + { + "start": 16814.19, + "end": 16817.99, + "probability": 0.9449 + }, + { + "start": 16818.25, + "end": 16822.27, + "probability": 0.9912 + }, + { + "start": 16822.81, + "end": 16827.27, + "probability": 0.9285 + }, + { + "start": 16827.31, + "end": 16834.39, + "probability": 0.9966 + }, + { + "start": 16834.39, + "end": 16842.35, + "probability": 0.9855 + }, + { + "start": 16843.21, + "end": 16845.97, + "probability": 0.9707 + }, + { + "start": 16846.79, + "end": 16850.35, + "probability": 0.7342 + }, + { + "start": 16850.99, + "end": 16853.45, + "probability": 0.9726 + }, + { + "start": 16854.13, + "end": 16857.59, + "probability": 0.9912 + }, + { + "start": 16857.83, + "end": 16859.13, + "probability": 0.8302 + }, + { + "start": 16859.53, + "end": 16862.23, + "probability": 0.9799 + }, + { + "start": 16863.25, + "end": 16865.59, + "probability": 0.9907 + }, + { + "start": 16865.71, + "end": 16868.09, + "probability": 0.9175 + }, + { + "start": 16868.73, + "end": 16874.75, + "probability": 0.939 + }, + { + "start": 16875.43, + "end": 16878.23, + "probability": 0.9521 + }, + { + "start": 16878.81, + "end": 16880.75, + "probability": 0.8914 + }, + { + "start": 16881.31, + "end": 16883.05, + "probability": 0.9893 + }, + { + "start": 16883.63, + "end": 16885.39, + "probability": 0.913 + }, + { + "start": 16885.71, + "end": 16891.88, + "probability": 0.9938 + }, + { + "start": 16893.47, + "end": 16899.77, + "probability": 0.9474 + }, + { + "start": 16900.25, + "end": 16900.99, + "probability": 0.9857 + }, + { + "start": 16901.53, + "end": 16906.77, + "probability": 0.8736 + }, + { + "start": 16907.41, + "end": 16910.77, + "probability": 0.8945 + }, + { + "start": 16911.41, + "end": 16913.03, + "probability": 0.7686 + }, + { + "start": 16913.65, + "end": 16915.09, + "probability": 0.9103 + }, + { + "start": 16915.25, + "end": 16915.45, + "probability": 0.8657 + }, + { + "start": 16915.57, + "end": 16918.49, + "probability": 0.9686 + }, + { + "start": 16919.01, + "end": 16924.23, + "probability": 0.9854 + }, + { + "start": 16924.83, + "end": 16926.61, + "probability": 0.9102 + }, + { + "start": 16927.11, + "end": 16927.41, + "probability": 0.8164 + }, + { + "start": 16929.61, + "end": 16933.95, + "probability": 0.9321 + }, + { + "start": 16934.81, + "end": 16936.99, + "probability": 0.8643 + }, + { + "start": 16937.63, + "end": 16941.11, + "probability": 0.8228 + }, + { + "start": 16942.07, + "end": 16943.83, + "probability": 0.4274 + }, + { + "start": 16946.51, + "end": 16951.31, + "probability": 0.8483 + }, + { + "start": 16951.45, + "end": 16952.13, + "probability": 0.9871 + }, + { + "start": 16953.05, + "end": 16953.97, + "probability": 0.1552 + }, + { + "start": 16954.85, + "end": 16956.25, + "probability": 0.9448 + }, + { + "start": 16956.83, + "end": 16958.85, + "probability": 0.842 + }, + { + "start": 16959.39, + "end": 16961.09, + "probability": 0.79 + }, + { + "start": 16961.75, + "end": 16963.43, + "probability": 0.9316 + }, + { + "start": 16964.29, + "end": 16967.81, + "probability": 0.7216 + }, + { + "start": 16968.37, + "end": 16971.41, + "probability": 0.8572 + }, + { + "start": 16972.03, + "end": 16973.61, + "probability": 0.9826 + }, + { + "start": 16974.71, + "end": 16977.25, + "probability": 0.9032 + }, + { + "start": 16978.53, + "end": 16980.49, + "probability": 0.659 + }, + { + "start": 16981.35, + "end": 16981.89, + "probability": 0.7768 + }, + { + "start": 16982.45, + "end": 16985.05, + "probability": 0.9813 + }, + { + "start": 16986.07, + "end": 16990.85, + "probability": 0.9763 + }, + { + "start": 16991.89, + "end": 16994.53, + "probability": 0.9982 + }, + { + "start": 16995.05, + "end": 16997.87, + "probability": 0.9751 + }, + { + "start": 16998.45, + "end": 17001.83, + "probability": 0.8642 + }, + { + "start": 17004.03, + "end": 17004.75, + "probability": 0.6392 + }, + { + "start": 17005.49, + "end": 17007.37, + "probability": 0.9266 + }, + { + "start": 17007.85, + "end": 17009.81, + "probability": 0.9939 + }, + { + "start": 17010.97, + "end": 17012.39, + "probability": 0.8891 + }, + { + "start": 17015.19, + "end": 17016.21, + "probability": 0.6496 + }, + { + "start": 17017.17, + "end": 17020.17, + "probability": 0.9649 + }, + { + "start": 17020.41, + "end": 17022.03, + "probability": 0.6652 + }, + { + "start": 17022.69, + "end": 17024.23, + "probability": 0.8041 + }, + { + "start": 17024.41, + "end": 17028.77, + "probability": 0.9827 + }, + { + "start": 17029.37, + "end": 17034.59, + "probability": 0.9725 + }, + { + "start": 17035.45, + "end": 17038.23, + "probability": 0.9656 + }, + { + "start": 17039.19, + "end": 17041.07, + "probability": 0.8586 + }, + { + "start": 17041.71, + "end": 17042.47, + "probability": 0.8341 + }, + { + "start": 17043.69, + "end": 17045.33, + "probability": 0.9224 + }, + { + "start": 17046.27, + "end": 17051.27, + "probability": 0.8198 + }, + { + "start": 17052.77, + "end": 17059.67, + "probability": 0.9596 + }, + { + "start": 17060.19, + "end": 17060.81, + "probability": 0.3305 + }, + { + "start": 17060.85, + "end": 17061.35, + "probability": 0.8603 + }, + { + "start": 17061.43, + "end": 17063.06, + "probability": 0.9736 + }, + { + "start": 17064.47, + "end": 17065.91, + "probability": 0.7635 + }, + { + "start": 17066.93, + "end": 17067.43, + "probability": 0.4928 + }, + { + "start": 17069.37, + "end": 17071.01, + "probability": 0.9813 + }, + { + "start": 17071.89, + "end": 17074.37, + "probability": 0.8652 + }, + { + "start": 17075.13, + "end": 17075.97, + "probability": 0.9559 + }, + { + "start": 17076.45, + "end": 17077.37, + "probability": 0.9792 + }, + { + "start": 17077.49, + "end": 17079.39, + "probability": 0.9888 + }, + { + "start": 17081.17, + "end": 17081.91, + "probability": 0.6988 + }, + { + "start": 17083.37, + "end": 17088.43, + "probability": 0.9716 + }, + { + "start": 17089.27, + "end": 17092.33, + "probability": 0.9719 + }, + { + "start": 17093.85, + "end": 17096.89, + "probability": 0.7617 + }, + { + "start": 17098.01, + "end": 17099.93, + "probability": 0.86 + }, + { + "start": 17100.95, + "end": 17102.77, + "probability": 0.9861 + }, + { + "start": 17103.79, + "end": 17105.19, + "probability": 0.6119 + }, + { + "start": 17107.19, + "end": 17108.67, + "probability": 0.4999 + }, + { + "start": 17109.21, + "end": 17115.61, + "probability": 0.9822 + }, + { + "start": 17116.23, + "end": 17118.73, + "probability": 0.987 + }, + { + "start": 17119.87, + "end": 17120.01, + "probability": 0.5992 + }, + { + "start": 17121.13, + "end": 17122.57, + "probability": 0.9882 + }, + { + "start": 17122.91, + "end": 17124.51, + "probability": 0.9639 + }, + { + "start": 17124.57, + "end": 17128.05, + "probability": 0.8912 + }, + { + "start": 17128.43, + "end": 17132.79, + "probability": 0.9413 + }, + { + "start": 17132.89, + "end": 17133.01, + "probability": 0.6482 + }, + { + "start": 17133.11, + "end": 17138.15, + "probability": 0.8063 + }, + { + "start": 17138.33, + "end": 17138.45, + "probability": 0.1453 + }, + { + "start": 17140.97, + "end": 17143.01, + "probability": 0.3314 + }, + { + "start": 17143.19, + "end": 17148.17, + "probability": 0.9902 + }, + { + "start": 17148.51, + "end": 17149.95, + "probability": 0.6609 + }, + { + "start": 17150.21, + "end": 17153.91, + "probability": 0.9972 + }, + { + "start": 17154.03, + "end": 17154.33, + "probability": 0.9404 + }, + { + "start": 17158.45, + "end": 17159.91, + "probability": 0.7141 + }, + { + "start": 17160.59, + "end": 17161.15, + "probability": 0.1349 + }, + { + "start": 17161.49, + "end": 17162.65, + "probability": 0.6033 + }, + { + "start": 17162.73, + "end": 17165.25, + "probability": 0.9106 + }, + { + "start": 17165.37, + "end": 17167.31, + "probability": 0.894 + }, + { + "start": 17169.55, + "end": 17170.67, + "probability": 0.6689 + }, + { + "start": 17172.01, + "end": 17173.03, + "probability": 0.3041 + }, + { + "start": 17175.24, + "end": 17175.31, + "probability": 0.1414 + }, + { + "start": 17175.31, + "end": 17175.31, + "probability": 0.0274 + }, + { + "start": 17175.31, + "end": 17176.47, + "probability": 0.5949 + }, + { + "start": 17176.65, + "end": 17179.83, + "probability": 0.7667 + }, + { + "start": 17182.45, + "end": 17182.45, + "probability": 0.2702 + }, + { + "start": 17182.45, + "end": 17182.63, + "probability": 0.4277 + }, + { + "start": 17182.71, + "end": 17185.29, + "probability": 0.9917 + }, + { + "start": 17185.33, + "end": 17186.05, + "probability": 0.8065 + }, + { + "start": 17188.89, + "end": 17189.73, + "probability": 0.7376 + }, + { + "start": 17189.73, + "end": 17194.29, + "probability": 0.9668 + }, + { + "start": 17194.53, + "end": 17195.67, + "probability": 0.9796 + }, + { + "start": 17196.93, + "end": 17198.45, + "probability": 0.7374 + }, + { + "start": 17199.05, + "end": 17201.05, + "probability": 0.7346 + }, + { + "start": 17201.69, + "end": 17201.77, + "probability": 0.1452 + }, + { + "start": 17201.77, + "end": 17204.65, + "probability": 0.6878 + }, + { + "start": 17206.27, + "end": 17209.71, + "probability": 0.9971 + }, + { + "start": 17211.13, + "end": 17218.19, + "probability": 0.9646 + }, + { + "start": 17219.27, + "end": 17220.05, + "probability": 0.5905 + }, + { + "start": 17220.47, + "end": 17221.31, + "probability": 0.3173 + }, + { + "start": 17221.41, + "end": 17224.09, + "probability": 0.6755 + }, + { + "start": 17224.39, + "end": 17225.55, + "probability": 0.2317 + }, + { + "start": 17225.57, + "end": 17230.33, + "probability": 0.5027 + }, + { + "start": 17231.11, + "end": 17235.39, + "probability": 0.9182 + }, + { + "start": 17235.91, + "end": 17240.75, + "probability": 0.9956 + }, + { + "start": 17241.43, + "end": 17242.53, + "probability": 0.6652 + }, + { + "start": 17242.89, + "end": 17245.07, + "probability": 0.5782 + }, + { + "start": 17245.25, + "end": 17246.61, + "probability": 0.8029 + }, + { + "start": 17247.35, + "end": 17249.39, + "probability": 0.9532 + }, + { + "start": 17250.21, + "end": 17250.86, + "probability": 0.9434 + }, + { + "start": 17251.93, + "end": 17255.75, + "probability": 0.9606 + }, + { + "start": 17256.05, + "end": 17259.57, + "probability": 0.7701 + }, + { + "start": 17260.23, + "end": 17261.85, + "probability": 0.8152 + }, + { + "start": 17262.05, + "end": 17265.63, + "probability": 0.7878 + }, + { + "start": 17266.09, + "end": 17267.96, + "probability": 0.9462 + }, + { + "start": 17269.05, + "end": 17269.84, + "probability": 0.8907 + }, + { + "start": 17270.59, + "end": 17275.07, + "probability": 0.9961 + }, + { + "start": 17275.35, + "end": 17279.15, + "probability": 0.9547 + }, + { + "start": 17279.21, + "end": 17279.45, + "probability": 0.3853 + }, + { + "start": 17279.45, + "end": 17279.67, + "probability": 0.4791 + }, + { + "start": 17279.81, + "end": 17282.05, + "probability": 0.9862 + }, + { + "start": 17282.53, + "end": 17284.16, + "probability": 0.9439 + }, + { + "start": 17284.47, + "end": 17286.67, + "probability": 0.8023 + }, + { + "start": 17286.67, + "end": 17289.09, + "probability": 0.5948 + }, + { + "start": 17290.05, + "end": 17290.21, + "probability": 0.0184 + }, + { + "start": 17290.21, + "end": 17291.23, + "probability": 0.1413 + }, + { + "start": 17291.23, + "end": 17296.62, + "probability": 0.9545 + }, + { + "start": 17297.33, + "end": 17300.07, + "probability": 0.7274 + }, + { + "start": 17300.29, + "end": 17303.89, + "probability": 0.7549 + }, + { + "start": 17303.97, + "end": 17304.43, + "probability": 0.3221 + }, + { + "start": 17304.43, + "end": 17308.69, + "probability": 0.8759 + }, + { + "start": 17308.69, + "end": 17308.71, + "probability": 0.1188 + }, + { + "start": 17308.71, + "end": 17311.31, + "probability": 0.8341 + }, + { + "start": 17311.73, + "end": 17316.85, + "probability": 0.8815 + }, + { + "start": 17317.11, + "end": 17317.11, + "probability": 0.2015 + }, + { + "start": 17317.11, + "end": 17317.11, + "probability": 0.3749 + }, + { + "start": 17317.11, + "end": 17317.11, + "probability": 0.0297 + }, + { + "start": 17317.11, + "end": 17317.86, + "probability": 0.3658 + }, + { + "start": 17318.31, + "end": 17318.77, + "probability": 0.6309 + }, + { + "start": 17318.81, + "end": 17319.55, + "probability": 0.7153 + }, + { + "start": 17319.87, + "end": 17320.65, + "probability": 0.5104 + }, + { + "start": 17321.39, + "end": 17324.03, + "probability": 0.9629 + }, + { + "start": 17324.49, + "end": 17326.81, + "probability": 0.7121 + }, + { + "start": 17327.27, + "end": 17331.87, + "probability": 0.8357 + }, + { + "start": 17333.57, + "end": 17334.89, + "probability": 0.9884 + }, + { + "start": 17335.81, + "end": 17336.81, + "probability": 0.6016 + }, + { + "start": 17337.23, + "end": 17338.05, + "probability": 0.766 + }, + { + "start": 17338.27, + "end": 17339.63, + "probability": 0.6195 + }, + { + "start": 17340.41, + "end": 17343.01, + "probability": 0.6395 + }, + { + "start": 17344.09, + "end": 17345.41, + "probability": 0.8779 + }, + { + "start": 17346.05, + "end": 17346.47, + "probability": 0.5833 + }, + { + "start": 17347.53, + "end": 17348.37, + "probability": 0.9935 + }, + { + "start": 17348.53, + "end": 17350.03, + "probability": 0.8403 + }, + { + "start": 17350.11, + "end": 17351.03, + "probability": 0.9347 + }, + { + "start": 17352.49, + "end": 17357.71, + "probability": 0.9293 + }, + { + "start": 17358.49, + "end": 17361.99, + "probability": 0.7904 + }, + { + "start": 17362.91, + "end": 17364.53, + "probability": 0.9318 + }, + { + "start": 17365.07, + "end": 17366.65, + "probability": 0.8553 + }, + { + "start": 17367.37, + "end": 17368.41, + "probability": 0.9285 + }, + { + "start": 17368.89, + "end": 17369.63, + "probability": 0.9771 + }, + { + "start": 17369.67, + "end": 17370.77, + "probability": 0.8746 + }, + { + "start": 17371.09, + "end": 17372.07, + "probability": 0.8781 + }, + { + "start": 17372.39, + "end": 17375.73, + "probability": 0.9723 + }, + { + "start": 17376.03, + "end": 17377.51, + "probability": 0.5628 + }, + { + "start": 17378.81, + "end": 17381.69, + "probability": 0.9198 + }, + { + "start": 17381.73, + "end": 17384.85, + "probability": 0.918 + }, + { + "start": 17384.85, + "end": 17388.51, + "probability": 0.7988 + }, + { + "start": 17391.47, + "end": 17392.09, + "probability": 0.5099 + }, + { + "start": 17392.17, + "end": 17393.21, + "probability": 0.8024 + }, + { + "start": 17393.79, + "end": 17394.79, + "probability": 0.9102 + }, + { + "start": 17396.51, + "end": 17397.19, + "probability": 0.8556 + }, + { + "start": 17397.23, + "end": 17398.47, + "probability": 0.8721 + }, + { + "start": 17398.73, + "end": 17399.53, + "probability": 0.9095 + }, + { + "start": 17399.53, + "end": 17400.79, + "probability": 0.9624 + }, + { + "start": 17401.43, + "end": 17402.43, + "probability": 0.9839 + }, + { + "start": 17403.69, + "end": 17405.79, + "probability": 0.8557 + }, + { + "start": 17406.97, + "end": 17408.67, + "probability": 0.8008 + }, + { + "start": 17409.59, + "end": 17413.43, + "probability": 0.8033 + }, + { + "start": 17415.12, + "end": 17416.82, + "probability": 0.9983 + }, + { + "start": 17417.15, + "end": 17418.79, + "probability": 0.9287 + }, + { + "start": 17418.87, + "end": 17419.41, + "probability": 0.5549 + }, + { + "start": 17419.53, + "end": 17421.23, + "probability": 0.8166 + }, + { + "start": 17421.29, + "end": 17422.39, + "probability": 0.9801 + }, + { + "start": 17423.09, + "end": 17427.41, + "probability": 0.9651 + }, + { + "start": 17427.57, + "end": 17427.81, + "probability": 0.7242 + }, + { + "start": 17429.01, + "end": 17433.61, + "probability": 0.6956 + }, + { + "start": 17433.71, + "end": 17434.49, + "probability": 0.8261 + }, + { + "start": 17435.03, + "end": 17436.37, + "probability": 0.949 + }, + { + "start": 17436.57, + "end": 17439.97, + "probability": 0.8608 + }, + { + "start": 17440.45, + "end": 17441.65, + "probability": 0.9371 + }, + { + "start": 17442.17, + "end": 17445.14, + "probability": 0.5804 + }, + { + "start": 17447.98, + "end": 17452.75, + "probability": 0.853 + }, + { + "start": 17452.85, + "end": 17454.73, + "probability": 0.9943 + }, + { + "start": 17455.65, + "end": 17457.91, + "probability": 0.9829 + }, + { + "start": 17458.53, + "end": 17461.15, + "probability": 0.9958 + }, + { + "start": 17461.67, + "end": 17467.59, + "probability": 0.9769 + }, + { + "start": 17468.31, + "end": 17469.52, + "probability": 0.9858 + }, + { + "start": 17470.25, + "end": 17471.29, + "probability": 0.9651 + }, + { + "start": 17471.81, + "end": 17472.79, + "probability": 0.95 + }, + { + "start": 17473.31, + "end": 17479.41, + "probability": 0.9442 + }, + { + "start": 17480.45, + "end": 17481.37, + "probability": 0.6103 + }, + { + "start": 17481.53, + "end": 17483.19, + "probability": 0.6746 + }, + { + "start": 17484.97, + "end": 17486.29, + "probability": 0.0775 + }, + { + "start": 17486.59, + "end": 17487.41, + "probability": 0.7756 + }, + { + "start": 17487.71, + "end": 17487.99, + "probability": 0.4271 + }, + { + "start": 17488.05, + "end": 17490.23, + "probability": 0.849 + }, + { + "start": 17490.53, + "end": 17490.55, + "probability": 0.4807 + }, + { + "start": 17490.55, + "end": 17492.71, + "probability": 0.9037 + }, + { + "start": 17492.77, + "end": 17494.35, + "probability": 0.9897 + }, + { + "start": 17495.15, + "end": 17495.43, + "probability": 0.111 + }, + { + "start": 17495.43, + "end": 17496.79, + "probability": 0.5234 + }, + { + "start": 17497.79, + "end": 17502.35, + "probability": 0.8735 + }, + { + "start": 17503.23, + "end": 17505.91, + "probability": 0.835 + }, + { + "start": 17506.01, + "end": 17506.93, + "probability": 0.9272 + }, + { + "start": 17507.63, + "end": 17513.09, + "probability": 0.5259 + }, + { + "start": 17513.29, + "end": 17515.23, + "probability": 0.775 + }, + { + "start": 17515.83, + "end": 17516.95, + "probability": 0.9865 + }, + { + "start": 17516.99, + "end": 17518.59, + "probability": 0.9939 + }, + { + "start": 17520.29, + "end": 17524.39, + "probability": 0.8479 + }, + { + "start": 17525.85, + "end": 17527.65, + "probability": 0.9835 + }, + { + "start": 17531.25, + "end": 17532.77, + "probability": 0.9889 + }, + { + "start": 17532.77, + "end": 17533.19, + "probability": 0.658 + }, + { + "start": 17533.65, + "end": 17535.47, + "probability": 0.9231 + }, + { + "start": 17535.71, + "end": 17539.73, + "probability": 0.8834 + }, + { + "start": 17540.37, + "end": 17542.09, + "probability": 0.9898 + }, + { + "start": 17542.71, + "end": 17544.17, + "probability": 0.9145 + }, + { + "start": 17544.41, + "end": 17549.77, + "probability": 0.9938 + }, + { + "start": 17550.19, + "end": 17550.43, + "probability": 0.6517 + }, + { + "start": 17550.47, + "end": 17551.51, + "probability": 0.8229 + }, + { + "start": 17553.33, + "end": 17556.89, + "probability": 0.8771 + }, + { + "start": 17557.21, + "end": 17563.71, + "probability": 0.9747 + }, + { + "start": 17564.09, + "end": 17570.05, + "probability": 0.8224 + }, + { + "start": 17570.15, + "end": 17571.57, + "probability": 0.7471 + }, + { + "start": 17571.81, + "end": 17573.03, + "probability": 0.6227 + }, + { + "start": 17573.09, + "end": 17576.71, + "probability": 0.8933 + }, + { + "start": 17577.31, + "end": 17580.73, + "probability": 0.9944 + }, + { + "start": 17580.79, + "end": 17581.37, + "probability": 0.4254 + }, + { + "start": 17581.57, + "end": 17582.91, + "probability": 0.8073 + }, + { + "start": 17583.29, + "end": 17585.39, + "probability": 0.9897 + }, + { + "start": 17586.03, + "end": 17586.63, + "probability": 0.1401 + }, + { + "start": 17586.63, + "end": 17589.43, + "probability": 0.6482 + }, + { + "start": 17589.97, + "end": 17593.93, + "probability": 0.7963 + }, + { + "start": 17594.49, + "end": 17597.25, + "probability": 0.9126 + }, + { + "start": 17598.23, + "end": 17599.29, + "probability": 0.8018 + }, + { + "start": 17599.69, + "end": 17601.65, + "probability": 0.7988 + }, + { + "start": 17602.37, + "end": 17604.65, + "probability": 0.716 + }, + { + "start": 17604.81, + "end": 17604.83, + "probability": 0.3566 + }, + { + "start": 17604.95, + "end": 17605.09, + "probability": 0.2876 + }, + { + "start": 17605.13, + "end": 17609.33, + "probability": 0.9952 + }, + { + "start": 17609.97, + "end": 17610.18, + "probability": 0.3564 + }, + { + "start": 17611.35, + "end": 17612.79, + "probability": 0.6649 + }, + { + "start": 17612.95, + "end": 17614.31, + "probability": 0.7744 + }, + { + "start": 17616.11, + "end": 17616.95, + "probability": 0.9101 + }, + { + "start": 17618.77, + "end": 17620.07, + "probability": 0.4447 + }, + { + "start": 17620.25, + "end": 17622.07, + "probability": 0.813 + }, + { + "start": 17622.09, + "end": 17622.67, + "probability": 0.1586 + }, + { + "start": 17622.79, + "end": 17627.23, + "probability": 0.0484 + }, + { + "start": 17627.41, + "end": 17628.35, + "probability": 0.544 + }, + { + "start": 17630.68, + "end": 17635.83, + "probability": 0.3791 + }, + { + "start": 17636.47, + "end": 17636.47, + "probability": 0.0429 + }, + { + "start": 17636.47, + "end": 17636.47, + "probability": 0.0247 + }, + { + "start": 17636.47, + "end": 17636.47, + "probability": 0.0742 + }, + { + "start": 17636.47, + "end": 17636.47, + "probability": 0.1673 + }, + { + "start": 17636.47, + "end": 17636.47, + "probability": 0.101 + }, + { + "start": 17636.47, + "end": 17638.37, + "probability": 0.1939 + }, + { + "start": 17638.41, + "end": 17640.17, + "probability": 0.7527 + }, + { + "start": 17640.73, + "end": 17642.05, + "probability": 0.6305 + }, + { + "start": 17642.15, + "end": 17642.63, + "probability": 0.3789 + }, + { + "start": 17642.65, + "end": 17645.49, + "probability": 0.9104 + }, + { + "start": 17654.59, + "end": 17654.85, + "probability": 0.0758 + }, + { + "start": 17655.21, + "end": 17657.45, + "probability": 0.736 + }, + { + "start": 17658.61, + "end": 17662.35, + "probability": 0.9217 + }, + { + "start": 17662.91, + "end": 17663.15, + "probability": 0.4794 + }, + { + "start": 17663.31, + "end": 17666.55, + "probability": 0.9219 + }, + { + "start": 17667.21, + "end": 17668.73, + "probability": 0.8985 + }, + { + "start": 17668.81, + "end": 17672.03, + "probability": 0.9544 + }, + { + "start": 17672.03, + "end": 17675.19, + "probability": 0.9865 + }, + { + "start": 17675.85, + "end": 17676.87, + "probability": 0.7761 + }, + { + "start": 17676.97, + "end": 17680.57, + "probability": 0.901 + }, + { + "start": 17681.41, + "end": 17684.79, + "probability": 0.7876 + }, + { + "start": 17684.79, + "end": 17685.65, + "probability": 0.9267 + }, + { + "start": 17685.77, + "end": 17688.96, + "probability": 0.6879 + }, + { + "start": 17689.01, + "end": 17691.15, + "probability": 0.9424 + }, + { + "start": 17691.29, + "end": 17693.87, + "probability": 0.8784 + }, + { + "start": 17694.43, + "end": 17695.81, + "probability": 0.8529 + }, + { + "start": 17696.73, + "end": 17697.05, + "probability": 0.2512 + }, + { + "start": 17697.09, + "end": 17697.37, + "probability": 0.4486 + }, + { + "start": 17697.47, + "end": 17698.99, + "probability": 0.7741 + }, + { + "start": 17700.09, + "end": 17702.21, + "probability": 0.7925 + }, + { + "start": 17702.41, + "end": 17702.41, + "probability": 0.5136 + }, + { + "start": 17702.59, + "end": 17703.73, + "probability": 0.7667 + }, + { + "start": 17703.79, + "end": 17705.11, + "probability": 0.6919 + }, + { + "start": 17705.15, + "end": 17706.21, + "probability": 0.8502 + }, + { + "start": 17706.75, + "end": 17708.37, + "probability": 0.601 + }, + { + "start": 17708.95, + "end": 17713.75, + "probability": 0.9797 + }, + { + "start": 17714.35, + "end": 17716.39, + "probability": 0.7287 + }, + { + "start": 17716.53, + "end": 17719.83, + "probability": 0.99 + }, + { + "start": 17721.41, + "end": 17722.63, + "probability": 0.4983 + }, + { + "start": 17723.11, + "end": 17724.17, + "probability": 0.4704 + }, + { + "start": 17724.39, + "end": 17726.23, + "probability": 0.9761 + }, + { + "start": 17726.97, + "end": 17729.57, + "probability": 0.6642 + }, + { + "start": 17730.05, + "end": 17732.23, + "probability": 0.8623 + }, + { + "start": 17732.65, + "end": 17733.69, + "probability": 0.9517 + }, + { + "start": 17733.91, + "end": 17734.97, + "probability": 0.9832 + }, + { + "start": 17735.77, + "end": 17738.79, + "probability": 0.6847 + }, + { + "start": 17738.89, + "end": 17739.21, + "probability": 0.743 + }, + { + "start": 17739.95, + "end": 17742.33, + "probability": 0.9032 + }, + { + "start": 17743.53, + "end": 17745.41, + "probability": 0.7812 + }, + { + "start": 17746.19, + "end": 17747.35, + "probability": 0.9803 + }, + { + "start": 17748.13, + "end": 17749.57, + "probability": 0.9482 + }, + { + "start": 17750.15, + "end": 17751.07, + "probability": 0.3768 + }, + { + "start": 17751.69, + "end": 17753.49, + "probability": 0.5708 + }, + { + "start": 17753.95, + "end": 17754.91, + "probability": 0.568 + }, + { + "start": 17755.31, + "end": 17756.55, + "probability": 0.9886 + }, + { + "start": 17756.61, + "end": 17757.23, + "probability": 0.7705 + }, + { + "start": 17757.89, + "end": 17758.79, + "probability": 0.6366 + }, + { + "start": 17758.99, + "end": 17760.45, + "probability": 0.2222 + }, + { + "start": 17761.05, + "end": 17766.01, + "probability": 0.6796 + }, + { + "start": 17766.54, + "end": 17767.45, + "probability": 0.0381 + }, + { + "start": 17768.15, + "end": 17768.33, + "probability": 0.0373 + }, + { + "start": 17768.33, + "end": 17768.33, + "probability": 0.3921 + }, + { + "start": 17768.33, + "end": 17768.33, + "probability": 0.2517 + }, + { + "start": 17768.33, + "end": 17768.73, + "probability": 0.0258 + }, + { + "start": 17769.19, + "end": 17771.79, + "probability": 0.8145 + }, + { + "start": 17772.37, + "end": 17773.03, + "probability": 0.3948 + }, + { + "start": 17773.23, + "end": 17775.37, + "probability": 0.8593 + }, + { + "start": 17775.95, + "end": 17776.21, + "probability": 0.3548 + }, + { + "start": 17776.75, + "end": 17778.75, + "probability": 0.5427 + }, + { + "start": 17779.55, + "end": 17780.19, + "probability": 0.7036 + }, + { + "start": 17781.37, + "end": 17782.09, + "probability": 0.6119 + }, + { + "start": 17782.19, + "end": 17783.07, + "probability": 0.9459 + }, + { + "start": 17783.93, + "end": 17785.11, + "probability": 0.4683 + }, + { + "start": 17785.53, + "end": 17785.53, + "probability": 0.3709 + }, + { + "start": 17785.65, + "end": 17786.47, + "probability": 0.5363 + }, + { + "start": 17786.55, + "end": 17787.39, + "probability": 0.7778 + }, + { + "start": 17789.09, + "end": 17790.01, + "probability": 0.9797 + }, + { + "start": 17791.45, + "end": 17791.87, + "probability": 0.427 + }, + { + "start": 17792.13, + "end": 17792.27, + "probability": 0.1411 + }, + { + "start": 17792.35, + "end": 17792.83, + "probability": 0.6919 + }, + { + "start": 17794.71, + "end": 17796.63, + "probability": 0.8108 + }, + { + "start": 17796.75, + "end": 17804.37, + "probability": 0.9897 + }, + { + "start": 17804.43, + "end": 17805.01, + "probability": 0.8137 + }, + { + "start": 17805.71, + "end": 17807.43, + "probability": 0.9942 + }, + { + "start": 17808.59, + "end": 17811.83, + "probability": 0.9245 + }, + { + "start": 17812.47, + "end": 17812.71, + "probability": 0.75 + }, + { + "start": 17812.77, + "end": 17815.03, + "probability": 0.6716 + }, + { + "start": 17815.11, + "end": 17816.77, + "probability": 0.5891 + }, + { + "start": 17817.45, + "end": 17817.79, + "probability": 0.8252 + }, + { + "start": 17818.79, + "end": 17821.17, + "probability": 0.6816 + }, + { + "start": 17821.73, + "end": 17824.15, + "probability": 0.979 + }, + { + "start": 17824.15, + "end": 17827.13, + "probability": 0.896 + }, + { + "start": 17829.67, + "end": 17833.97, + "probability": 0.9674 + }, + { + "start": 17835.23, + "end": 17835.63, + "probability": 0.7638 + }, + { + "start": 17836.29, + "end": 17842.53, + "probability": 0.924 + }, + { + "start": 17843.29, + "end": 17846.63, + "probability": 0.9973 + }, + { + "start": 17847.71, + "end": 17849.43, + "probability": 0.9974 + }, + { + "start": 17850.13, + "end": 17854.21, + "probability": 0.9666 + }, + { + "start": 17855.11, + "end": 17856.15, + "probability": 0.9961 + }, + { + "start": 17856.91, + "end": 17858.75, + "probability": 0.985 + }, + { + "start": 17859.85, + "end": 17865.21, + "probability": 0.9843 + }, + { + "start": 17865.31, + "end": 17866.24, + "probability": 0.9971 + }, + { + "start": 17867.29, + "end": 17873.31, + "probability": 0.9941 + }, + { + "start": 17874.09, + "end": 17875.95, + "probability": 0.9849 + }, + { + "start": 17877.21, + "end": 17879.53, + "probability": 0.8243 + }, + { + "start": 17880.53, + "end": 17884.89, + "probability": 0.9686 + }, + { + "start": 17885.75, + "end": 17889.53, + "probability": 0.7884 + }, + { + "start": 17890.23, + "end": 17891.09, + "probability": 0.9151 + }, + { + "start": 17892.05, + "end": 17893.89, + "probability": 0.9997 + }, + { + "start": 17894.83, + "end": 17897.61, + "probability": 0.9995 + }, + { + "start": 17897.61, + "end": 17901.13, + "probability": 0.9917 + }, + { + "start": 17902.27, + "end": 17905.29, + "probability": 0.6626 + }, + { + "start": 17905.85, + "end": 17908.43, + "probability": 0.9935 + }, + { + "start": 17908.89, + "end": 17909.35, + "probability": 0.7179 + }, + { + "start": 17910.75, + "end": 17911.63, + "probability": 0.8633 + }, + { + "start": 17912.43, + "end": 17912.89, + "probability": 0.9092 + }, + { + "start": 17913.47, + "end": 17914.85, + "probability": 0.6788 + }, + { + "start": 17915.39, + "end": 17920.37, + "probability": 0.5593 + }, + { + "start": 17921.11, + "end": 17924.37, + "probability": 0.7223 + }, + { + "start": 17926.78, + "end": 17928.28, + "probability": 0.6957 + }, + { + "start": 17928.43, + "end": 17929.52, + "probability": 0.9897 + }, + { + "start": 17929.75, + "end": 17930.81, + "probability": 0.4485 + }, + { + "start": 17931.71, + "end": 17934.13, + "probability": 0.967 + }, + { + "start": 17934.83, + "end": 17937.29, + "probability": 0.9556 + }, + { + "start": 17938.07, + "end": 17944.87, + "probability": 0.9463 + }, + { + "start": 17945.39, + "end": 17946.85, + "probability": 0.8042 + }, + { + "start": 17947.61, + "end": 17949.09, + "probability": 0.9941 + }, + { + "start": 17949.51, + "end": 17951.11, + "probability": 0.877 + }, + { + "start": 17951.49, + "end": 17952.63, + "probability": 0.8746 + }, + { + "start": 17955.45, + "end": 17958.91, + "probability": 0.9958 + }, + { + "start": 17959.99, + "end": 17963.45, + "probability": 0.9832 + }, + { + "start": 17963.55, + "end": 17964.61, + "probability": 0.9955 + }, + { + "start": 17965.09, + "end": 17967.35, + "probability": 0.998 + }, + { + "start": 17968.53, + "end": 17973.37, + "probability": 0.8992 + }, + { + "start": 17974.07, + "end": 17975.59, + "probability": 0.998 + }, + { + "start": 17976.77, + "end": 17980.47, + "probability": 0.992 + }, + { + "start": 17980.49, + "end": 17981.65, + "probability": 0.9158 + }, + { + "start": 17981.71, + "end": 17983.01, + "probability": 0.8853 + }, + { + "start": 17983.73, + "end": 17986.35, + "probability": 0.9913 + }, + { + "start": 17986.35, + "end": 17989.63, + "probability": 0.996 + }, + { + "start": 17990.27, + "end": 17991.79, + "probability": 0.7829 + }, + { + "start": 17991.95, + "end": 17992.87, + "probability": 0.9929 + }, + { + "start": 17993.63, + "end": 17994.23, + "probability": 0.3772 + }, + { + "start": 17994.35, + "end": 17998.69, + "probability": 0.9894 + }, + { + "start": 17999.33, + "end": 18001.41, + "probability": 0.897 + }, + { + "start": 18001.75, + "end": 18005.33, + "probability": 0.903 + }, + { + "start": 18005.91, + "end": 18006.93, + "probability": 0.9746 + }, + { + "start": 18007.55, + "end": 18011.69, + "probability": 0.8973 + }, + { + "start": 18011.89, + "end": 18012.91, + "probability": 0.7318 + }, + { + "start": 18013.55, + "end": 18014.97, + "probability": 0.5139 + }, + { + "start": 18015.65, + "end": 18019.63, + "probability": 0.8928 + }, + { + "start": 18019.73, + "end": 18021.11, + "probability": 0.5333 + }, + { + "start": 18022.41, + "end": 18025.99, + "probability": 0.9825 + }, + { + "start": 18028.07, + "end": 18029.59, + "probability": 0.0629 + }, + { + "start": 18029.59, + "end": 18029.59, + "probability": 0.6876 + }, + { + "start": 18029.59, + "end": 18032.79, + "probability": 0.9238 + }, + { + "start": 18032.79, + "end": 18036.85, + "probability": 0.9187 + }, + { + "start": 18037.49, + "end": 18038.99, + "probability": 0.6912 + }, + { + "start": 18039.35, + "end": 18040.53, + "probability": 0.9719 + }, + { + "start": 18041.43, + "end": 18044.09, + "probability": 0.9541 + }, + { + "start": 18044.43, + "end": 18044.63, + "probability": 0.6926 + }, + { + "start": 18046.19, + "end": 18048.8, + "probability": 0.833 + }, + { + "start": 18049.21, + "end": 18050.71, + "probability": 0.9792 + }, + { + "start": 18056.59, + "end": 18056.67, + "probability": 0.4071 + }, + { + "start": 18079.11, + "end": 18080.01, + "probability": 0.6658 + }, + { + "start": 18080.73, + "end": 18081.73, + "probability": 0.8771 + }, + { + "start": 18082.29, + "end": 18083.21, + "probability": 0.7755 + }, + { + "start": 18084.91, + "end": 18087.63, + "probability": 0.7256 + }, + { + "start": 18087.73, + "end": 18090.65, + "probability": 0.9918 + }, + { + "start": 18091.81, + "end": 18095.73, + "probability": 0.9746 + }, + { + "start": 18096.93, + "end": 18099.51, + "probability": 0.9565 + }, + { + "start": 18099.57, + "end": 18100.95, + "probability": 0.9649 + }, + { + "start": 18100.99, + "end": 18103.81, + "probability": 0.7004 + }, + { + "start": 18103.89, + "end": 18105.7, + "probability": 0.9746 + }, + { + "start": 18106.43, + "end": 18107.49, + "probability": 0.9682 + }, + { + "start": 18108.49, + "end": 18110.4, + "probability": 0.8882 + }, + { + "start": 18110.73, + "end": 18116.37, + "probability": 0.9187 + }, + { + "start": 18116.41, + "end": 18117.11, + "probability": 0.7592 + }, + { + "start": 18118.43, + "end": 18120.98, + "probability": 0.9185 + }, + { + "start": 18121.79, + "end": 18125.13, + "probability": 0.9938 + }, + { + "start": 18126.71, + "end": 18128.05, + "probability": 0.9634 + }, + { + "start": 18128.99, + "end": 18132.49, + "probability": 0.9949 + }, + { + "start": 18132.91, + "end": 18134.81, + "probability": 0.9868 + }, + { + "start": 18135.39, + "end": 18136.15, + "probability": 0.8075 + }, + { + "start": 18136.35, + "end": 18136.75, + "probability": 0.4277 + }, + { + "start": 18136.95, + "end": 18143.61, + "probability": 0.8233 + }, + { + "start": 18143.61, + "end": 18148.71, + "probability": 0.9728 + }, + { + "start": 18149.57, + "end": 18150.17, + "probability": 0.4044 + }, + { + "start": 18150.23, + "end": 18152.79, + "probability": 0.9818 + }, + { + "start": 18152.85, + "end": 18155.19, + "probability": 0.9471 + }, + { + "start": 18156.23, + "end": 18157.89, + "probability": 0.998 + }, + { + "start": 18158.59, + "end": 18161.27, + "probability": 0.9917 + }, + { + "start": 18161.85, + "end": 18164.63, + "probability": 0.9951 + }, + { + "start": 18164.85, + "end": 18166.33, + "probability": 0.9474 + }, + { + "start": 18167.55, + "end": 18170.09, + "probability": 0.778 + }, + { + "start": 18170.93, + "end": 18174.23, + "probability": 0.9975 + }, + { + "start": 18174.47, + "end": 18177.31, + "probability": 0.9443 + }, + { + "start": 18177.79, + "end": 18178.67, + "probability": 0.8962 + }, + { + "start": 18178.73, + "end": 18179.57, + "probability": 0.9985 + }, + { + "start": 18183.19, + "end": 18184.8, + "probability": 0.7128 + }, + { + "start": 18185.33, + "end": 18186.03, + "probability": 0.6666 + }, + { + "start": 18186.59, + "end": 18188.37, + "probability": 0.4028 + }, + { + "start": 18188.75, + "end": 18193.91, + "probability": 0.9141 + }, + { + "start": 18194.99, + "end": 18197.01, + "probability": 0.8932 + }, + { + "start": 18197.71, + "end": 18198.81, + "probability": 0.9303 + }, + { + "start": 18199.77, + "end": 18204.96, + "probability": 0.9806 + }, + { + "start": 18206.35, + "end": 18209.45, + "probability": 0.9684 + }, + { + "start": 18210.41, + "end": 18212.57, + "probability": 0.5995 + }, + { + "start": 18213.23, + "end": 18218.33, + "probability": 0.9536 + }, + { + "start": 18219.95, + "end": 18221.29, + "probability": 0.9132 + }, + { + "start": 18222.03, + "end": 18226.99, + "probability": 0.9886 + }, + { + "start": 18227.13, + "end": 18229.59, + "probability": 0.8417 + }, + { + "start": 18229.71, + "end": 18231.51, + "probability": 0.9954 + }, + { + "start": 18231.85, + "end": 18235.55, + "probability": 0.5877 + }, + { + "start": 18235.69, + "end": 18236.73, + "probability": 0.7327 + }, + { + "start": 18237.31, + "end": 18238.61, + "probability": 0.9025 + }, + { + "start": 18238.77, + "end": 18242.05, + "probability": 0.9163 + }, + { + "start": 18242.15, + "end": 18249.79, + "probability": 0.9574 + }, + { + "start": 18250.45, + "end": 18252.49, + "probability": 0.9828 + }, + { + "start": 18252.65, + "end": 18253.03, + "probability": 0.4574 + }, + { + "start": 18255.49, + "end": 18261.69, + "probability": 0.9971 + }, + { + "start": 18263.17, + "end": 18267.75, + "probability": 0.9226 + }, + { + "start": 18269.07, + "end": 18272.65, + "probability": 0.5544 + }, + { + "start": 18273.19, + "end": 18274.99, + "probability": 0.9502 + }, + { + "start": 18275.09, + "end": 18278.27, + "probability": 0.7397 + }, + { + "start": 18278.63, + "end": 18280.23, + "probability": 0.9004 + }, + { + "start": 18280.59, + "end": 18281.76, + "probability": 0.9014 + }, + { + "start": 18282.27, + "end": 18285.21, + "probability": 0.9834 + }, + { + "start": 18285.73, + "end": 18286.77, + "probability": 0.8106 + }, + { + "start": 18287.75, + "end": 18289.73, + "probability": 0.9434 + }, + { + "start": 18290.51, + "end": 18295.01, + "probability": 0.7825 + }, + { + "start": 18295.77, + "end": 18298.95, + "probability": 0.8092 + }, + { + "start": 18299.67, + "end": 18302.61, + "probability": 0.9829 + }, + { + "start": 18303.77, + "end": 18306.91, + "probability": 0.7989 + }, + { + "start": 18307.29, + "end": 18310.63, + "probability": 0.7357 + }, + { + "start": 18310.65, + "end": 18312.27, + "probability": 0.8784 + }, + { + "start": 18312.91, + "end": 18313.79, + "probability": 0.5884 + }, + { + "start": 18314.29, + "end": 18317.83, + "probability": 0.9802 + }, + { + "start": 18318.41, + "end": 18319.75, + "probability": 0.9966 + }, + { + "start": 18320.55, + "end": 18323.59, + "probability": 0.9729 + }, + { + "start": 18324.01, + "end": 18327.03, + "probability": 0.9976 + }, + { + "start": 18327.47, + "end": 18331.21, + "probability": 0.6674 + }, + { + "start": 18331.43, + "end": 18333.79, + "probability": 0.99 + }, + { + "start": 18334.07, + "end": 18334.93, + "probability": 0.5528 + }, + { + "start": 18335.01, + "end": 18335.83, + "probability": 0.7 + }, + { + "start": 18336.09, + "end": 18340.27, + "probability": 0.9445 + }, + { + "start": 18340.79, + "end": 18342.71, + "probability": 0.8743 + }, + { + "start": 18343.13, + "end": 18344.19, + "probability": 0.8821 + }, + { + "start": 18344.29, + "end": 18344.59, + "probability": 0.8612 + }, + { + "start": 18344.61, + "end": 18348.01, + "probability": 0.9945 + }, + { + "start": 18350.43, + "end": 18350.99, + "probability": 0.0534 + }, + { + "start": 18350.99, + "end": 18352.19, + "probability": 0.6508 + }, + { + "start": 18352.53, + "end": 18354.21, + "probability": 0.8692 + }, + { + "start": 18354.57, + "end": 18356.69, + "probability": 0.8672 + }, + { + "start": 18357.41, + "end": 18358.03, + "probability": 0.5916 + }, + { + "start": 18358.09, + "end": 18359.16, + "probability": 0.8298 + }, + { + "start": 18359.61, + "end": 18363.77, + "probability": 0.9388 + }, + { + "start": 18363.77, + "end": 18369.93, + "probability": 0.9171 + }, + { + "start": 18370.27, + "end": 18372.09, + "probability": 0.6712 + }, + { + "start": 18372.39, + "end": 18378.91, + "probability": 0.921 + }, + { + "start": 18379.57, + "end": 18381.13, + "probability": 0.8475 + }, + { + "start": 18381.27, + "end": 18381.55, + "probability": 0.5322 + }, + { + "start": 18381.55, + "end": 18381.95, + "probability": 0.3789 + }, + { + "start": 18382.03, + "end": 18383.43, + "probability": 0.7348 + }, + { + "start": 18385.13, + "end": 18385.77, + "probability": 0.5014 + }, + { + "start": 18385.89, + "end": 18387.89, + "probability": 0.9397 + }, + { + "start": 18388.09, + "end": 18388.85, + "probability": 0.4785 + }, + { + "start": 18389.67, + "end": 18393.21, + "probability": 0.8468 + }, + { + "start": 18393.93, + "end": 18397.93, + "probability": 0.8869 + }, + { + "start": 18399.43, + "end": 18401.15, + "probability": 0.9272 + }, + { + "start": 18401.35, + "end": 18404.57, + "probability": 0.7849 + }, + { + "start": 18407.55, + "end": 18408.69, + "probability": 0.8377 + }, + { + "start": 18408.87, + "end": 18410.37, + "probability": 0.8524 + }, + { + "start": 18410.79, + "end": 18411.53, + "probability": 0.7769 + }, + { + "start": 18412.67, + "end": 18414.37, + "probability": 0.9672 + }, + { + "start": 18415.27, + "end": 18418.6, + "probability": 0.9363 + }, + { + "start": 18420.57, + "end": 18427.47, + "probability": 0.9235 + }, + { + "start": 18428.15, + "end": 18428.69, + "probability": 0.7814 + }, + { + "start": 18428.79, + "end": 18429.35, + "probability": 0.8534 + }, + { + "start": 18429.37, + "end": 18431.11, + "probability": 0.5952 + }, + { + "start": 18431.11, + "end": 18433.47, + "probability": 0.7592 + }, + { + "start": 18434.45, + "end": 18436.83, + "probability": 0.8068 + }, + { + "start": 18437.45, + "end": 18438.73, + "probability": 0.8166 + }, + { + "start": 18438.87, + "end": 18439.43, + "probability": 0.8562 + }, + { + "start": 18439.49, + "end": 18441.33, + "probability": 0.8472 + }, + { + "start": 18442.19, + "end": 18444.27, + "probability": 0.7256 + }, + { + "start": 18445.29, + "end": 18446.53, + "probability": 0.8789 + }, + { + "start": 18446.61, + "end": 18448.19, + "probability": 0.9953 + }, + { + "start": 18448.51, + "end": 18450.11, + "probability": 0.9868 + }, + { + "start": 18450.69, + "end": 18451.35, + "probability": 0.508 + }, + { + "start": 18452.51, + "end": 18454.81, + "probability": 0.8684 + }, + { + "start": 18454.83, + "end": 18455.33, + "probability": 0.5478 + }, + { + "start": 18455.33, + "end": 18456.51, + "probability": 0.7962 + }, + { + "start": 18456.53, + "end": 18457.01, + "probability": 0.8165 + }, + { + "start": 18457.23, + "end": 18458.23, + "probability": 0.8729 + }, + { + "start": 18458.37, + "end": 18459.63, + "probability": 0.9277 + }, + { + "start": 18459.65, + "end": 18461.26, + "probability": 0.9393 + }, + { + "start": 18461.87, + "end": 18465.67, + "probability": 0.9778 + }, + { + "start": 18465.85, + "end": 18466.81, + "probability": 0.9478 + }, + { + "start": 18468.39, + "end": 18470.45, + "probability": 0.8931 + }, + { + "start": 18473.29, + "end": 18477.67, + "probability": 0.9976 + }, + { + "start": 18478.81, + "end": 18480.55, + "probability": 0.8871 + }, + { + "start": 18481.13, + "end": 18481.57, + "probability": 0.782 + }, + { + "start": 18481.69, + "end": 18482.71, + "probability": 0.8247 + }, + { + "start": 18482.71, + "end": 18483.83, + "probability": 0.6805 + }, + { + "start": 18483.95, + "end": 18484.33, + "probability": 0.4009 + }, + { + "start": 18485.55, + "end": 18487.03, + "probability": 0.8617 + }, + { + "start": 18489.15, + "end": 18490.37, + "probability": 0.8951 + }, + { + "start": 18492.01, + "end": 18492.51, + "probability": 0.8227 + }, + { + "start": 18493.19, + "end": 18494.17, + "probability": 0.7633 + }, + { + "start": 18495.09, + "end": 18496.42, + "probability": 0.9077 + }, + { + "start": 18498.86, + "end": 18500.09, + "probability": 0.8735 + }, + { + "start": 18500.17, + "end": 18501.07, + "probability": 0.7316 + }, + { + "start": 18501.07, + "end": 18502.39, + "probability": 0.9741 + }, + { + "start": 18502.79, + "end": 18504.07, + "probability": 0.8599 + }, + { + "start": 18505.81, + "end": 18506.75, + "probability": 0.9964 + }, + { + "start": 18506.81, + "end": 18508.15, + "probability": 0.9956 + }, + { + "start": 18509.65, + "end": 18510.57, + "probability": 0.6085 + }, + { + "start": 18511.27, + "end": 18515.25, + "probability": 0.7927 + }, + { + "start": 18515.35, + "end": 18518.67, + "probability": 0.9158 + }, + { + "start": 18518.89, + "end": 18519.67, + "probability": 0.6342 + }, + { + "start": 18519.77, + "end": 18521.29, + "probability": 0.9817 + }, + { + "start": 18521.45, + "end": 18522.09, + "probability": 0.9823 + }, + { + "start": 18523.13, + "end": 18525.67, + "probability": 0.8943 + }, + { + "start": 18525.67, + "end": 18526.91, + "probability": 0.7925 + }, + { + "start": 18529.79, + "end": 18530.74, + "probability": 0.9728 + }, + { + "start": 18532.17, + "end": 18533.59, + "probability": 0.9599 + }, + { + "start": 18535.19, + "end": 18538.27, + "probability": 0.9978 + }, + { + "start": 18539.25, + "end": 18540.19, + "probability": 0.7911 + }, + { + "start": 18542.25, + "end": 18543.81, + "probability": 0.9946 + }, + { + "start": 18543.97, + "end": 18547.89, + "probability": 0.9594 + }, + { + "start": 18548.05, + "end": 18550.41, + "probability": 0.9215 + }, + { + "start": 18551.35, + "end": 18553.09, + "probability": 0.9207 + }, + { + "start": 18553.51, + "end": 18556.35, + "probability": 0.9583 + }, + { + "start": 18556.49, + "end": 18556.95, + "probability": 0.2151 + }, + { + "start": 18556.95, + "end": 18558.25, + "probability": 0.6631 + }, + { + "start": 18558.47, + "end": 18559.96, + "probability": 0.9766 + }, + { + "start": 18560.31, + "end": 18561.41, + "probability": 0.7642 + }, + { + "start": 18561.47, + "end": 18563.79, + "probability": 0.5773 + }, + { + "start": 18564.55, + "end": 18566.47, + "probability": 0.8979 + }, + { + "start": 18567.05, + "end": 18567.4, + "probability": 0.7793 + }, + { + "start": 18567.73, + "end": 18568.65, + "probability": 0.9763 + }, + { + "start": 18568.73, + "end": 18570.35, + "probability": 0.8187 + }, + { + "start": 18571.03, + "end": 18572.71, + "probability": 0.8019 + }, + { + "start": 18573.91, + "end": 18576.53, + "probability": 0.971 + }, + { + "start": 18577.13, + "end": 18582.37, + "probability": 0.9572 + }, + { + "start": 18582.81, + "end": 18584.47, + "probability": 0.8045 + }, + { + "start": 18584.89, + "end": 18587.59, + "probability": 0.8661 + }, + { + "start": 18588.27, + "end": 18592.37, + "probability": 0.9829 + }, + { + "start": 18592.47, + "end": 18593.95, + "probability": 0.9916 + }, + { + "start": 18594.45, + "end": 18594.67, + "probability": 0.499 + }, + { + "start": 18594.69, + "end": 18596.33, + "probability": 0.8748 + }, + { + "start": 18596.45, + "end": 18597.87, + "probability": 0.9763 + }, + { + "start": 18598.39, + "end": 18601.17, + "probability": 0.9205 + }, + { + "start": 18602.29, + "end": 18604.87, + "probability": 0.7658 + }, + { + "start": 18605.26, + "end": 18607.81, + "probability": 0.5968 + }, + { + "start": 18608.11, + "end": 18611.69, + "probability": 0.9673 + }, + { + "start": 18612.25, + "end": 18613.63, + "probability": 0.9617 + }, + { + "start": 18614.15, + "end": 18615.99, + "probability": 0.7726 + }, + { + "start": 18616.51, + "end": 18617.19, + "probability": 0.4295 + }, + { + "start": 18617.45, + "end": 18622.13, + "probability": 0.9695 + }, + { + "start": 18622.17, + "end": 18624.21, + "probability": 0.1676 + }, + { + "start": 18624.39, + "end": 18625.33, + "probability": 0.7255 + }, + { + "start": 18625.41, + "end": 18628.31, + "probability": 0.7758 + }, + { + "start": 18628.33, + "end": 18630.51, + "probability": 0.8994 + }, + { + "start": 18631.11, + "end": 18633.57, + "probability": 0.9929 + }, + { + "start": 18634.65, + "end": 18636.31, + "probability": 0.5963 + }, + { + "start": 18636.53, + "end": 18639.21, + "probability": 0.9172 + }, + { + "start": 18639.33, + "end": 18640.79, + "probability": 0.5088 + }, + { + "start": 18640.87, + "end": 18641.57, + "probability": 0.6739 + }, + { + "start": 18642.01, + "end": 18643.0, + "probability": 0.9521 + }, + { + "start": 18645.49, + "end": 18649.95, + "probability": 0.9114 + }, + { + "start": 18653.45, + "end": 18656.71, + "probability": 0.9958 + }, + { + "start": 18656.79, + "end": 18658.07, + "probability": 0.8772 + }, + { + "start": 18658.55, + "end": 18660.77, + "probability": 0.9892 + }, + { + "start": 18661.89, + "end": 18662.63, + "probability": 0.9136 + }, + { + "start": 18662.77, + "end": 18665.45, + "probability": 0.9513 + }, + { + "start": 18665.59, + "end": 18666.75, + "probability": 0.9717 + }, + { + "start": 18667.05, + "end": 18669.25, + "probability": 0.9558 + }, + { + "start": 18669.91, + "end": 18672.05, + "probability": 0.9935 + }, + { + "start": 18672.07, + "end": 18673.97, + "probability": 0.7638 + }, + { + "start": 18674.01, + "end": 18675.63, + "probability": 0.9823 + }, + { + "start": 18676.17, + "end": 18677.73, + "probability": 0.4917 + }, + { + "start": 18678.39, + "end": 18679.15, + "probability": 0.5445 + }, + { + "start": 18679.33, + "end": 18680.25, + "probability": 0.975 + }, + { + "start": 18680.33, + "end": 18681.83, + "probability": 0.8347 + }, + { + "start": 18681.91, + "end": 18682.97, + "probability": 0.9451 + }, + { + "start": 18683.53, + "end": 18683.83, + "probability": 0.8201 + }, + { + "start": 18683.93, + "end": 18684.61, + "probability": 0.6032 + }, + { + "start": 18684.69, + "end": 18687.67, + "probability": 0.9523 + }, + { + "start": 18687.75, + "end": 18691.99, + "probability": 0.9615 + }, + { + "start": 18697.11, + "end": 18698.51, + "probability": 0.8692 + }, + { + "start": 18705.47, + "end": 18707.99, + "probability": 0.7901 + }, + { + "start": 18708.91, + "end": 18712.85, + "probability": 0.9913 + }, + { + "start": 18712.85, + "end": 18716.15, + "probability": 0.9832 + }, + { + "start": 18717.47, + "end": 18721.15, + "probability": 0.9415 + }, + { + "start": 18721.87, + "end": 18726.25, + "probability": 0.9377 + }, + { + "start": 18726.71, + "end": 18727.97, + "probability": 0.8926 + }, + { + "start": 18728.23, + "end": 18729.35, + "probability": 0.9218 + }, + { + "start": 18729.41, + "end": 18731.91, + "probability": 0.926 + }, + { + "start": 18731.97, + "end": 18734.85, + "probability": 0.7246 + }, + { + "start": 18735.27, + "end": 18736.67, + "probability": 0.9351 + }, + { + "start": 18736.77, + "end": 18738.73, + "probability": 0.9966 + }, + { + "start": 18739.01, + "end": 18740.51, + "probability": 0.8876 + }, + { + "start": 18740.67, + "end": 18743.63, + "probability": 0.8542 + }, + { + "start": 18743.73, + "end": 18749.11, + "probability": 0.7994 + }, + { + "start": 18749.67, + "end": 18752.57, + "probability": 0.8756 + }, + { + "start": 18752.57, + "end": 18757.35, + "probability": 0.9919 + }, + { + "start": 18757.39, + "end": 18758.35, + "probability": 0.694 + }, + { + "start": 18758.81, + "end": 18760.49, + "probability": 0.8449 + }, + { + "start": 18760.99, + "end": 18761.01, + "probability": 0.7344 + }, + { + "start": 18762.57, + "end": 18767.93, + "probability": 0.9924 + }, + { + "start": 18769.47, + "end": 18773.11, + "probability": 0.9719 + }, + { + "start": 18774.27, + "end": 18776.91, + "probability": 0.8067 + }, + { + "start": 18777.31, + "end": 18779.51, + "probability": 0.9104 + }, + { + "start": 18780.35, + "end": 18783.26, + "probability": 0.9927 + }, + { + "start": 18784.95, + "end": 18788.09, + "probability": 0.9899 + }, + { + "start": 18788.09, + "end": 18793.05, + "probability": 0.8751 + }, + { + "start": 18793.61, + "end": 18797.79, + "probability": 0.8323 + }, + { + "start": 18797.79, + "end": 18801.83, + "probability": 0.9833 + }, + { + "start": 18802.29, + "end": 18804.21, + "probability": 0.9236 + }, + { + "start": 18805.81, + "end": 18809.69, + "probability": 0.9919 + }, + { + "start": 18810.73, + "end": 18814.75, + "probability": 0.6629 + }, + { + "start": 18814.85, + "end": 18817.43, + "probability": 0.9844 + }, + { + "start": 18817.57, + "end": 18818.81, + "probability": 0.966 + }, + { + "start": 18819.51, + "end": 18823.43, + "probability": 0.9375 + }, + { + "start": 18823.87, + "end": 18825.65, + "probability": 0.9983 + }, + { + "start": 18825.71, + "end": 18828.75, + "probability": 0.9652 + }, + { + "start": 18829.41, + "end": 18830.37, + "probability": 0.8094 + }, + { + "start": 18831.13, + "end": 18832.21, + "probability": 0.8741 + }, + { + "start": 18832.97, + "end": 18833.39, + "probability": 0.3002 + }, + { + "start": 18833.95, + "end": 18834.57, + "probability": 0.6394 + }, + { + "start": 18835.55, + "end": 18836.03, + "probability": 0.8434 + }, + { + "start": 18836.59, + "end": 18839.07, + "probability": 0.941 + }, + { + "start": 18839.21, + "end": 18841.85, + "probability": 0.9175 + }, + { + "start": 18842.25, + "end": 18842.57, + "probability": 0.9528 + }, + { + "start": 18842.65, + "end": 18844.67, + "probability": 0.9951 + }, + { + "start": 18844.99, + "end": 18846.23, + "probability": 0.9129 + }, + { + "start": 18846.41, + "end": 18849.83, + "probability": 0.8911 + }, + { + "start": 18849.89, + "end": 18850.89, + "probability": 0.9212 + }, + { + "start": 18851.09, + "end": 18852.43, + "probability": 0.3137 + }, + { + "start": 18852.93, + "end": 18855.99, + "probability": 0.9946 + }, + { + "start": 18855.99, + "end": 18858.61, + "probability": 0.9295 + }, + { + "start": 18859.41, + "end": 18862.41, + "probability": 0.9764 + }, + { + "start": 18863.33, + "end": 18869.45, + "probability": 0.9895 + }, + { + "start": 18871.07, + "end": 18873.49, + "probability": 0.9982 + }, + { + "start": 18873.49, + "end": 18876.91, + "probability": 0.9899 + }, + { + "start": 18878.19, + "end": 18880.47, + "probability": 0.55 + }, + { + "start": 18880.77, + "end": 18881.83, + "probability": 0.7328 + }, + { + "start": 18881.95, + "end": 18883.85, + "probability": 0.3057 + }, + { + "start": 18884.11, + "end": 18887.01, + "probability": 0.8772 + }, + { + "start": 18887.83, + "end": 18888.49, + "probability": 0.6304 + }, + { + "start": 18888.55, + "end": 18893.93, + "probability": 0.9236 + }, + { + "start": 18894.29, + "end": 18897.47, + "probability": 0.7486 + }, + { + "start": 18897.47, + "end": 18904.25, + "probability": 0.8608 + }, + { + "start": 18904.31, + "end": 18908.63, + "probability": 0.9873 + }, + { + "start": 18909.37, + "end": 18911.83, + "probability": 0.9176 + }, + { + "start": 18912.51, + "end": 18915.75, + "probability": 0.9883 + }, + { + "start": 18916.39, + "end": 18921.47, + "probability": 0.879 + }, + { + "start": 18921.55, + "end": 18925.15, + "probability": 0.7817 + }, + { + "start": 18926.43, + "end": 18926.87, + "probability": 0.5536 + }, + { + "start": 18928.07, + "end": 18928.71, + "probability": 0.706 + }, + { + "start": 18929.75, + "end": 18930.53, + "probability": 0.9009 + }, + { + "start": 18931.13, + "end": 18933.99, + "probability": 0.917 + }, + { + "start": 18935.01, + "end": 18940.05, + "probability": 0.9332 + }, + { + "start": 18940.75, + "end": 18945.6, + "probability": 0.9592 + }, + { + "start": 18946.69, + "end": 18948.05, + "probability": 0.9803 + }, + { + "start": 18948.77, + "end": 18949.91, + "probability": 0.8868 + }, + { + "start": 18950.49, + "end": 18952.85, + "probability": 0.9883 + }, + { + "start": 18953.91, + "end": 18958.15, + "probability": 0.9785 + }, + { + "start": 18959.31, + "end": 18961.01, + "probability": 0.9464 + }, + { + "start": 18961.99, + "end": 18965.45, + "probability": 0.9763 + }, + { + "start": 18965.65, + "end": 18967.73, + "probability": 0.4995 + }, + { + "start": 18968.29, + "end": 18972.19, + "probability": 0.9929 + }, + { + "start": 18972.99, + "end": 18974.69, + "probability": 0.8474 + }, + { + "start": 18975.49, + "end": 18978.03, + "probability": 0.9976 + }, + { + "start": 18978.03, + "end": 18980.77, + "probability": 0.9021 + }, + { + "start": 18981.35, + "end": 18984.13, + "probability": 0.8207 + }, + { + "start": 18985.13, + "end": 18990.29, + "probability": 0.9565 + }, + { + "start": 18990.79, + "end": 18995.47, + "probability": 0.9907 + }, + { + "start": 18995.51, + "end": 18995.87, + "probability": 0.7339 + }, + { + "start": 18996.35, + "end": 18998.55, + "probability": 0.6111 + }, + { + "start": 18998.93, + "end": 19000.13, + "probability": 0.8783 + }, + { + "start": 19000.31, + "end": 19001.27, + "probability": 0.8787 + }, + { + "start": 19001.43, + "end": 19003.91, + "probability": 0.8384 + }, + { + "start": 19004.11, + "end": 19004.81, + "probability": 0.4383 + }, + { + "start": 19005.27, + "end": 19009.13, + "probability": 0.9521 + }, + { + "start": 19009.19, + "end": 19009.87, + "probability": 0.9427 + }, + { + "start": 19011.61, + "end": 19012.17, + "probability": 0.8652 + }, + { + "start": 19012.25, + "end": 19015.73, + "probability": 0.9894 + }, + { + "start": 19015.73, + "end": 19019.11, + "probability": 0.9342 + }, + { + "start": 19019.77, + "end": 19020.59, + "probability": 0.7571 + }, + { + "start": 19020.83, + "end": 19025.55, + "probability": 0.8045 + }, + { + "start": 19026.31, + "end": 19030.72, + "probability": 0.9829 + }, + { + "start": 19033.25, + "end": 19035.47, + "probability": 0.7961 + }, + { + "start": 19035.91, + "end": 19041.97, + "probability": 0.9478 + }, + { + "start": 19042.59, + "end": 19043.05, + "probability": 0.728 + }, + { + "start": 19043.27, + "end": 19048.31, + "probability": 0.9123 + }, + { + "start": 19048.31, + "end": 19053.59, + "probability": 0.9301 + }, + { + "start": 19054.63, + "end": 19061.19, + "probability": 0.9766 + }, + { + "start": 19062.25, + "end": 19063.91, + "probability": 0.9697 + }, + { + "start": 19064.45, + "end": 19065.39, + "probability": 0.9488 + }, + { + "start": 19065.47, + "end": 19068.21, + "probability": 0.9692 + }, + { + "start": 19068.65, + "end": 19070.59, + "probability": 0.9902 + }, + { + "start": 19070.59, + "end": 19073.81, + "probability": 0.9935 + }, + { + "start": 19074.07, + "end": 19078.39, + "probability": 0.8753 + }, + { + "start": 19078.87, + "end": 19082.99, + "probability": 0.9934 + }, + { + "start": 19084.19, + "end": 19088.47, + "probability": 0.8904 + }, + { + "start": 19089.01, + "end": 19089.87, + "probability": 0.9603 + }, + { + "start": 19090.07, + "end": 19091.45, + "probability": 0.619 + }, + { + "start": 19091.51, + "end": 19094.69, + "probability": 0.8885 + }, + { + "start": 19094.71, + "end": 19097.85, + "probability": 0.9454 + }, + { + "start": 19098.07, + "end": 19100.4, + "probability": 0.9031 + }, + { + "start": 19100.57, + "end": 19101.25, + "probability": 0.5388 + }, + { + "start": 19101.53, + "end": 19102.43, + "probability": 0.9844 + }, + { + "start": 19104.11, + "end": 19110.41, + "probability": 0.8592 + }, + { + "start": 19110.75, + "end": 19113.31, + "probability": 0.9601 + }, + { + "start": 19113.51, + "end": 19115.91, + "probability": 0.9524 + }, + { + "start": 19116.89, + "end": 19119.65, + "probability": 0.9818 + }, + { + "start": 19119.65, + "end": 19122.17, + "probability": 0.9904 + }, + { + "start": 19123.79, + "end": 19130.89, + "probability": 0.8804 + }, + { + "start": 19131.61, + "end": 19135.31, + "probability": 0.9785 + }, + { + "start": 19135.53, + "end": 19141.77, + "probability": 0.9122 + }, + { + "start": 19142.05, + "end": 19145.73, + "probability": 0.9823 + }, + { + "start": 19145.93, + "end": 19147.09, + "probability": 0.8977 + }, + { + "start": 19147.65, + "end": 19150.35, + "probability": 0.991 + }, + { + "start": 19150.65, + "end": 19155.33, + "probability": 0.9916 + }, + { + "start": 19155.45, + "end": 19155.51, + "probability": 0.3715 + }, + { + "start": 19155.59, + "end": 19155.73, + "probability": 0.7464 + }, + { + "start": 19155.95, + "end": 19156.87, + "probability": 0.7625 + }, + { + "start": 19156.91, + "end": 19158.35, + "probability": 0.9394 + }, + { + "start": 19158.43, + "end": 19160.75, + "probability": 0.9491 + }, + { + "start": 19160.91, + "end": 19168.79, + "probability": 0.9614 + }, + { + "start": 19170.43, + "end": 19172.91, + "probability": 0.906 + }, + { + "start": 19173.59, + "end": 19173.93, + "probability": 0.3544 + }, + { + "start": 19174.05, + "end": 19178.61, + "probability": 0.9127 + }, + { + "start": 19178.61, + "end": 19184.19, + "probability": 0.992 + }, + { + "start": 19184.79, + "end": 19188.67, + "probability": 0.9967 + }, + { + "start": 19188.99, + "end": 19192.81, + "probability": 0.9757 + }, + { + "start": 19193.31, + "end": 19195.79, + "probability": 0.6392 + }, + { + "start": 19195.87, + "end": 19199.53, + "probability": 0.9956 + }, + { + "start": 19199.91, + "end": 19203.23, + "probability": 0.9913 + }, + { + "start": 19203.43, + "end": 19203.97, + "probability": 0.6347 + }, + { + "start": 19204.21, + "end": 19206.17, + "probability": 0.9941 + }, + { + "start": 19207.53, + "end": 19212.95, + "probability": 0.8911 + }, + { + "start": 19212.95, + "end": 19215.07, + "probability": 0.9945 + }, + { + "start": 19215.77, + "end": 19217.55, + "probability": 0.9733 + }, + { + "start": 19218.25, + "end": 19219.55, + "probability": 0.0999 + }, + { + "start": 19219.97, + "end": 19222.03, + "probability": 0.9524 + }, + { + "start": 19222.19, + "end": 19226.23, + "probability": 0.8565 + }, + { + "start": 19226.85, + "end": 19229.75, + "probability": 0.9967 + }, + { + "start": 19229.75, + "end": 19233.71, + "probability": 0.9647 + }, + { + "start": 19235.11, + "end": 19241.11, + "probability": 0.6703 + }, + { + "start": 19241.67, + "end": 19243.59, + "probability": 0.9849 + }, + { + "start": 19244.21, + "end": 19247.97, + "probability": 0.9981 + }, + { + "start": 19248.61, + "end": 19251.39, + "probability": 0.9298 + }, + { + "start": 19252.11, + "end": 19253.41, + "probability": 0.9007 + }, + { + "start": 19253.93, + "end": 19258.05, + "probability": 0.8686 + }, + { + "start": 19258.79, + "end": 19260.33, + "probability": 0.8796 + }, + { + "start": 19260.55, + "end": 19262.19, + "probability": 0.9733 + }, + { + "start": 19262.57, + "end": 19266.87, + "probability": 0.9873 + }, + { + "start": 19267.57, + "end": 19269.25, + "probability": 0.9375 + }, + { + "start": 19269.77, + "end": 19272.73, + "probability": 0.9958 + }, + { + "start": 19273.31, + "end": 19278.91, + "probability": 0.9624 + }, + { + "start": 19279.65, + "end": 19281.79, + "probability": 0.972 + }, + { + "start": 19284.09, + "end": 19285.69, + "probability": 0.8723 + }, + { + "start": 19286.01, + "end": 19287.37, + "probability": 0.7678 + }, + { + "start": 19287.49, + "end": 19289.67, + "probability": 0.9701 + }, + { + "start": 19291.23, + "end": 19293.63, + "probability": 0.7007 + }, + { + "start": 19295.15, + "end": 19295.91, + "probability": 0.2142 + }, + { + "start": 19299.47, + "end": 19300.33, + "probability": 0.711 + }, + { + "start": 19300.57, + "end": 19300.95, + "probability": 0.8152 + }, + { + "start": 19308.05, + "end": 19309.77, + "probability": 0.5485 + }, + { + "start": 19310.65, + "end": 19312.55, + "probability": 0.7325 + }, + { + "start": 19322.45, + "end": 19325.33, + "probability": 0.569 + }, + { + "start": 19325.49, + "end": 19325.69, + "probability": 0.7528 + }, + { + "start": 19332.21, + "end": 19334.97, + "probability": 0.606 + }, + { + "start": 19336.07, + "end": 19337.85, + "probability": 0.9373 + }, + { + "start": 19337.93, + "end": 19339.55, + "probability": 0.9903 + }, + { + "start": 19339.73, + "end": 19339.97, + "probability": 0.0162 + }, + { + "start": 19340.39, + "end": 19341.09, + "probability": 0.6643 + }, + { + "start": 19341.09, + "end": 19344.17, + "probability": 0.7745 + }, + { + "start": 19344.71, + "end": 19346.05, + "probability": 0.9302 + }, + { + "start": 19346.23, + "end": 19350.61, + "probability": 0.8842 + }, + { + "start": 19351.37, + "end": 19351.37, + "probability": 0.3842 + }, + { + "start": 19351.55, + "end": 19356.81, + "probability": 0.9631 + }, + { + "start": 19357.39, + "end": 19361.53, + "probability": 0.9811 + }, + { + "start": 19361.83, + "end": 19366.03, + "probability": 0.6286 + }, + { + "start": 19366.13, + "end": 19370.17, + "probability": 0.8677 + }, + { + "start": 19370.37, + "end": 19370.75, + "probability": 0.9214 + }, + { + "start": 19370.87, + "end": 19372.33, + "probability": 0.9658 + }, + { + "start": 19372.85, + "end": 19375.23, + "probability": 0.7597 + }, + { + "start": 19375.89, + "end": 19378.81, + "probability": 0.9109 + }, + { + "start": 19379.37, + "end": 19382.79, + "probability": 0.708 + }, + { + "start": 19382.87, + "end": 19385.09, + "probability": 0.5371 + }, + { + "start": 19385.13, + "end": 19386.49, + "probability": 0.931 + }, + { + "start": 19386.59, + "end": 19388.73, + "probability": 0.9532 + }, + { + "start": 19388.77, + "end": 19390.13, + "probability": 0.7995 + }, + { + "start": 19390.65, + "end": 19393.31, + "probability": 0.9858 + }, + { + "start": 19393.41, + "end": 19394.35, + "probability": 0.6714 + }, + { + "start": 19394.75, + "end": 19396.41, + "probability": 0.9205 + }, + { + "start": 19396.53, + "end": 19396.93, + "probability": 0.6643 + }, + { + "start": 19397.07, + "end": 19400.13, + "probability": 0.9142 + }, + { + "start": 19400.25, + "end": 19401.33, + "probability": 0.7827 + }, + { + "start": 19401.99, + "end": 19405.27, + "probability": 0.8872 + }, + { + "start": 19406.23, + "end": 19407.99, + "probability": 0.8396 + }, + { + "start": 19408.05, + "end": 19408.92, + "probability": 0.6944 + }, + { + "start": 19409.51, + "end": 19413.01, + "probability": 0.7521 + }, + { + "start": 19413.01, + "end": 19417.11, + "probability": 0.9915 + }, + { + "start": 19417.19, + "end": 19419.23, + "probability": 0.9758 + }, + { + "start": 19420.57, + "end": 19423.79, + "probability": 0.8356 + }, + { + "start": 19424.13, + "end": 19424.71, + "probability": 0.8419 + }, + { + "start": 19424.75, + "end": 19426.59, + "probability": 0.9409 + }, + { + "start": 19426.93, + "end": 19429.33, + "probability": 0.9185 + }, + { + "start": 19429.35, + "end": 19429.47, + "probability": 0.4083 + }, + { + "start": 19430.05, + "end": 19432.35, + "probability": 0.6531 + }, + { + "start": 19432.51, + "end": 19437.21, + "probability": 0.308 + }, + { + "start": 19438.11, + "end": 19441.43, + "probability": 0.8621 + }, + { + "start": 19441.71, + "end": 19441.95, + "probability": 0.6934 + }, + { + "start": 19441.95, + "end": 19443.53, + "probability": 0.5301 + }, + { + "start": 19443.65, + "end": 19447.01, + "probability": 0.6902 + }, + { + "start": 19447.13, + "end": 19448.69, + "probability": 0.8504 + }, + { + "start": 19450.01, + "end": 19451.35, + "probability": 0.5826 + }, + { + "start": 19453.76, + "end": 19456.59, + "probability": 0.9528 + }, + { + "start": 19458.21, + "end": 19465.17, + "probability": 0.8607 + }, + { + "start": 19465.61, + "end": 19468.01, + "probability": 0.897 + }, + { + "start": 19468.71, + "end": 19472.31, + "probability": 0.6208 + }, + { + "start": 19475.25, + "end": 19477.35, + "probability": 0.6918 + }, + { + "start": 19478.17, + "end": 19483.33, + "probability": 0.9961 + }, + { + "start": 19483.99, + "end": 19485.51, + "probability": 0.8599 + }, + { + "start": 19486.71, + "end": 19488.39, + "probability": 0.554 + }, + { + "start": 19488.57, + "end": 19490.77, + "probability": 0.2552 + }, + { + "start": 19491.03, + "end": 19491.59, + "probability": 0.6421 + }, + { + "start": 19492.05, + "end": 19493.09, + "probability": 0.7473 + }, + { + "start": 19493.53, + "end": 19499.43, + "probability": 0.3594 + }, + { + "start": 19500.69, + "end": 19502.03, + "probability": 0.2712 + }, + { + "start": 19505.55, + "end": 19505.69, + "probability": 0.0068 + }, + { + "start": 19505.69, + "end": 19505.75, + "probability": 0.2186 + }, + { + "start": 19506.35, + "end": 19508.42, + "probability": 0.7169 + }, + { + "start": 19509.05, + "end": 19513.03, + "probability": 0.9396 + }, + { + "start": 19513.11, + "end": 19514.23, + "probability": 0.9731 + }, + { + "start": 19515.19, + "end": 19517.97, + "probability": 0.8743 + }, + { + "start": 19518.11, + "end": 19520.59, + "probability": 0.4718 + }, + { + "start": 19520.59, + "end": 19521.23, + "probability": 0.634 + }, + { + "start": 19521.33, + "end": 19522.32, + "probability": 0.8148 + }, + { + "start": 19523.03, + "end": 19523.71, + "probability": 0.9004 + }, + { + "start": 19523.73, + "end": 19524.37, + "probability": 0.8793 + }, + { + "start": 19524.53, + "end": 19525.77, + "probability": 0.6481 + }, + { + "start": 19526.47, + "end": 19528.59, + "probability": 0.8708 + }, + { + "start": 19529.53, + "end": 19531.21, + "probability": 0.7668 + }, + { + "start": 19531.75, + "end": 19534.31, + "probability": 0.6335 + }, + { + "start": 19534.59, + "end": 19537.11, + "probability": 0.978 + }, + { + "start": 19537.11, + "end": 19539.89, + "probability": 0.6596 + }, + { + "start": 19540.13, + "end": 19541.17, + "probability": 0.9283 + }, + { + "start": 19541.21, + "end": 19541.93, + "probability": 0.9241 + }, + { + "start": 19542.01, + "end": 19543.43, + "probability": 0.6234 + }, + { + "start": 19543.51, + "end": 19544.43, + "probability": 0.6418 + }, + { + "start": 19544.57, + "end": 19547.57, + "probability": 0.8577 + }, + { + "start": 19547.66, + "end": 19549.59, + "probability": 0.8096 + }, + { + "start": 19550.65, + "end": 19554.49, + "probability": 0.699 + }, + { + "start": 19555.09, + "end": 19559.83, + "probability": 0.7356 + }, + { + "start": 19565.15, + "end": 19565.67, + "probability": 0.3925 + }, + { + "start": 19565.79, + "end": 19566.51, + "probability": 0.5731 + }, + { + "start": 19567.19, + "end": 19570.83, + "probability": 0.5523 + }, + { + "start": 19570.91, + "end": 19571.37, + "probability": 0.8361 + }, + { + "start": 19590.39, + "end": 19592.45, + "probability": 0.3692 + }, + { + "start": 19593.65, + "end": 19593.65, + "probability": 0.0491 + }, + { + "start": 19593.65, + "end": 19593.65, + "probability": 0.0719 + }, + { + "start": 19593.65, + "end": 19593.65, + "probability": 0.1622 + }, + { + "start": 19593.65, + "end": 19596.57, + "probability": 0.6167 + }, + { + "start": 19596.57, + "end": 19601.73, + "probability": 0.8986 + }, + { + "start": 19602.91, + "end": 19603.35, + "probability": 0.0367 + }, + { + "start": 19605.29, + "end": 19608.13, + "probability": 0.6263 + }, + { + "start": 19608.27, + "end": 19609.53, + "probability": 0.01 + }, + { + "start": 19609.53, + "end": 19609.53, + "probability": 0.232 + }, + { + "start": 19609.53, + "end": 19609.53, + "probability": 0.2645 + }, + { + "start": 19609.53, + "end": 19609.53, + "probability": 0.3133 + }, + { + "start": 19609.53, + "end": 19609.53, + "probability": 0.0342 + }, + { + "start": 19609.53, + "end": 19611.07, + "probability": 0.8315 + }, + { + "start": 19611.25, + "end": 19612.37, + "probability": 0.7053 + }, + { + "start": 19612.41, + "end": 19614.19, + "probability": 0.6384 + }, + { + "start": 19614.23, + "end": 19616.75, + "probability": 0.8215 + }, + { + "start": 19633.71, + "end": 19634.71, + "probability": 0.6052 + }, + { + "start": 19635.61, + "end": 19637.03, + "probability": 0.4432 + }, + { + "start": 19641.38, + "end": 19645.39, + "probability": 0.6729 + }, + { + "start": 19646.53, + "end": 19650.51, + "probability": 0.805 + }, + { + "start": 19650.65, + "end": 19652.33, + "probability": 0.9697 + }, + { + "start": 19653.75, + "end": 19655.57, + "probability": 0.9598 + }, + { + "start": 19656.55, + "end": 19663.89, + "probability": 0.9949 + }, + { + "start": 19665.31, + "end": 19670.51, + "probability": 0.9937 + }, + { + "start": 19671.73, + "end": 19672.37, + "probability": 0.7547 + }, + { + "start": 19672.55, + "end": 19677.78, + "probability": 0.9863 + }, + { + "start": 19678.35, + "end": 19681.85, + "probability": 0.9954 + }, + { + "start": 19682.27, + "end": 19684.95, + "probability": 0.7999 + }, + { + "start": 19685.65, + "end": 19689.45, + "probability": 0.9666 + }, + { + "start": 19690.17, + "end": 19690.93, + "probability": 0.9214 + }, + { + "start": 19691.23, + "end": 19691.75, + "probability": 0.8676 + }, + { + "start": 19691.79, + "end": 19693.29, + "probability": 0.8708 + }, + { + "start": 19693.33, + "end": 19695.45, + "probability": 0.9874 + }, + { + "start": 19695.57, + "end": 19700.03, + "probability": 0.9885 + }, + { + "start": 19700.81, + "end": 19704.35, + "probability": 0.9955 + }, + { + "start": 19704.85, + "end": 19708.55, + "probability": 0.7797 + }, + { + "start": 19708.55, + "end": 19710.49, + "probability": 0.5439 + }, + { + "start": 19710.57, + "end": 19711.43, + "probability": 0.835 + }, + { + "start": 19715.43, + "end": 19718.81, + "probability": 0.7221 + }, + { + "start": 19719.25, + "end": 19723.51, + "probability": 0.9797 + }, + { + "start": 19723.65, + "end": 19724.89, + "probability": 0.7519 + }, + { + "start": 19725.69, + "end": 19727.95, + "probability": 0.9739 + }, + { + "start": 19728.29, + "end": 19731.67, + "probability": 0.9051 + }, + { + "start": 19731.99, + "end": 19733.05, + "probability": 0.9256 + }, + { + "start": 19734.71, + "end": 19735.55, + "probability": 0.722 + }, + { + "start": 19735.59, + "end": 19739.43, + "probability": 0.991 + }, + { + "start": 19740.19, + "end": 19743.49, + "probability": 0.8949 + }, + { + "start": 19744.05, + "end": 19746.57, + "probability": 0.9622 + }, + { + "start": 19746.93, + "end": 19749.98, + "probability": 0.9988 + }, + { + "start": 19750.33, + "end": 19753.17, + "probability": 0.9971 + }, + { + "start": 19753.67, + "end": 19755.79, + "probability": 0.9214 + }, + { + "start": 19755.87, + "end": 19757.11, + "probability": 0.8179 + }, + { + "start": 19757.45, + "end": 19759.13, + "probability": 0.9641 + }, + { + "start": 19759.97, + "end": 19762.81, + "probability": 0.9856 + }, + { + "start": 19763.57, + "end": 19764.07, + "probability": 0.845 + }, + { + "start": 19764.19, + "end": 19765.21, + "probability": 0.8403 + }, + { + "start": 19765.29, + "end": 19766.67, + "probability": 0.9142 + }, + { + "start": 19766.75, + "end": 19768.01, + "probability": 0.991 + }, + { + "start": 19768.21, + "end": 19768.93, + "probability": 0.8136 + }, + { + "start": 19769.67, + "end": 19769.95, + "probability": 0.9692 + }, + { + "start": 19770.95, + "end": 19773.25, + "probability": 0.9675 + }, + { + "start": 19773.35, + "end": 19774.99, + "probability": 0.9946 + }, + { + "start": 19775.81, + "end": 19776.51, + "probability": 0.9434 + }, + { + "start": 19776.93, + "end": 19777.73, + "probability": 0.896 + }, + { + "start": 19777.79, + "end": 19780.71, + "probability": 0.9828 + }, + { + "start": 19781.13, + "end": 19783.49, + "probability": 0.9645 + }, + { + "start": 19784.43, + "end": 19787.43, + "probability": 0.9569 + }, + { + "start": 19788.05, + "end": 19790.45, + "probability": 0.9665 + }, + { + "start": 19790.99, + "end": 19792.03, + "probability": 0.9363 + }, + { + "start": 19792.43, + "end": 19794.0, + "probability": 0.8298 + }, + { + "start": 19795.03, + "end": 19797.11, + "probability": 0.9076 + }, + { + "start": 19797.43, + "end": 19801.81, + "probability": 0.9961 + }, + { + "start": 19802.25, + "end": 19803.07, + "probability": 0.5346 + }, + { + "start": 19803.15, + "end": 19804.32, + "probability": 0.9463 + }, + { + "start": 19804.47, + "end": 19805.38, + "probability": 0.9746 + }, + { + "start": 19805.51, + "end": 19806.46, + "probability": 0.9041 + }, + { + "start": 19807.19, + "end": 19809.11, + "probability": 0.9821 + }, + { + "start": 19809.11, + "end": 19811.87, + "probability": 0.9804 + }, + { + "start": 19812.47, + "end": 19815.23, + "probability": 0.9802 + }, + { + "start": 19815.29, + "end": 19815.91, + "probability": 0.609 + }, + { + "start": 19816.05, + "end": 19817.37, + "probability": 0.8081 + }, + { + "start": 19817.53, + "end": 19818.11, + "probability": 0.9689 + }, + { + "start": 19818.53, + "end": 19819.98, + "probability": 0.9868 + }, + { + "start": 19820.67, + "end": 19823.37, + "probability": 0.9289 + }, + { + "start": 19823.95, + "end": 19825.39, + "probability": 0.708 + }, + { + "start": 19825.43, + "end": 19827.37, + "probability": 0.9883 + }, + { + "start": 19827.65, + "end": 19828.79, + "probability": 0.37 + }, + { + "start": 19829.45, + "end": 19829.59, + "probability": 0.0426 + }, + { + "start": 19829.59, + "end": 19832.35, + "probability": 0.4481 + }, + { + "start": 19833.17, + "end": 19835.65, + "probability": 0.7904 + }, + { + "start": 19835.79, + "end": 19838.13, + "probability": 0.9935 + }, + { + "start": 19838.17, + "end": 19842.23, + "probability": 0.913 + }, + { + "start": 19842.89, + "end": 19845.21, + "probability": 0.9954 + }, + { + "start": 19845.41, + "end": 19847.09, + "probability": 0.7749 + }, + { + "start": 19847.91, + "end": 19849.29, + "probability": 0.9964 + }, + { + "start": 19849.51, + "end": 19851.17, + "probability": 0.994 + }, + { + "start": 19851.71, + "end": 19853.11, + "probability": 0.9976 + }, + { + "start": 19853.49, + "end": 19855.62, + "probability": 0.9854 + }, + { + "start": 19856.27, + "end": 19858.07, + "probability": 0.9801 + }, + { + "start": 19858.39, + "end": 19860.85, + "probability": 0.9754 + }, + { + "start": 19860.89, + "end": 19862.17, + "probability": 0.936 + }, + { + "start": 19862.59, + "end": 19864.27, + "probability": 0.9819 + }, + { + "start": 19864.87, + "end": 19867.79, + "probability": 0.9838 + }, + { + "start": 19868.49, + "end": 19873.71, + "probability": 0.9304 + }, + { + "start": 19873.81, + "end": 19874.39, + "probability": 0.763 + }, + { + "start": 19874.67, + "end": 19876.03, + "probability": 0.745 + }, + { + "start": 19876.13, + "end": 19877.97, + "probability": 0.7383 + }, + { + "start": 19878.03, + "end": 19878.51, + "probability": 0.4354 + }, + { + "start": 19878.53, + "end": 19879.57, + "probability": 0.9685 + }, + { + "start": 19880.07, + "end": 19880.17, + "probability": 0.9018 + }, + { + "start": 19888.03, + "end": 19890.05, + "probability": 0.7435 + }, + { + "start": 19894.55, + "end": 19895.57, + "probability": 0.7608 + }, + { + "start": 19897.03, + "end": 19898.63, + "probability": 0.9305 + }, + { + "start": 19899.17, + "end": 19900.39, + "probability": 0.9499 + }, + { + "start": 19901.81, + "end": 19902.59, + "probability": 0.7931 + }, + { + "start": 19904.15, + "end": 19904.81, + "probability": 0.9351 + }, + { + "start": 19905.99, + "end": 19906.05, + "probability": 0.511 + }, + { + "start": 19906.05, + "end": 19908.1, + "probability": 0.8741 + }, + { + "start": 19909.59, + "end": 19910.47, + "probability": 0.5691 + }, + { + "start": 19912.65, + "end": 19913.01, + "probability": 0.1672 + }, + { + "start": 19913.01, + "end": 19914.11, + "probability": 0.6984 + }, + { + "start": 19914.33, + "end": 19915.87, + "probability": 0.9391 + }, + { + "start": 19917.17, + "end": 19917.71, + "probability": 0.585 + }, + { + "start": 19918.57, + "end": 19919.95, + "probability": 0.9068 + }, + { + "start": 19920.17, + "end": 19920.81, + "probability": 0.8396 + }, + { + "start": 19920.83, + "end": 19921.87, + "probability": 0.8943 + }, + { + "start": 19922.01, + "end": 19923.35, + "probability": 0.9408 + }, + { + "start": 19924.41, + "end": 19927.07, + "probability": 0.9314 + }, + { + "start": 19927.63, + "end": 19931.29, + "probability": 0.9114 + }, + { + "start": 19932.11, + "end": 19936.35, + "probability": 0.7751 + }, + { + "start": 19937.39, + "end": 19941.01, + "probability": 0.6783 + }, + { + "start": 19941.89, + "end": 19943.69, + "probability": 0.8973 + }, + { + "start": 19944.29, + "end": 19949.13, + "probability": 0.9834 + }, + { + "start": 19949.13, + "end": 19954.09, + "probability": 0.844 + }, + { + "start": 19954.51, + "end": 19954.93, + "probability": 0.9543 + }, + { + "start": 19955.47, + "end": 19956.74, + "probability": 0.964 + }, + { + "start": 19957.03, + "end": 19958.57, + "probability": 0.9761 + }, + { + "start": 19959.01, + "end": 19962.37, + "probability": 0.91 + }, + { + "start": 19963.03, + "end": 19964.33, + "probability": 0.8971 + }, + { + "start": 19966.64, + "end": 19968.77, + "probability": 0.8396 + }, + { + "start": 19968.97, + "end": 19970.91, + "probability": 0.9744 + }, + { + "start": 19971.29, + "end": 19971.99, + "probability": 0.2844 + }, + { + "start": 19972.05, + "end": 19973.01, + "probability": 0.8267 + }, + { + "start": 19973.07, + "end": 19980.01, + "probability": 0.9111 + }, + { + "start": 19980.11, + "end": 19983.71, + "probability": 0.9784 + }, + { + "start": 19983.71, + "end": 19986.35, + "probability": 0.9898 + }, + { + "start": 19986.79, + "end": 19989.13, + "probability": 0.802 + }, + { + "start": 19991.05, + "end": 19996.33, + "probability": 0.9974 + }, + { + "start": 19998.01, + "end": 19998.97, + "probability": 0.6733 + }, + { + "start": 19999.03, + "end": 20000.03, + "probability": 0.863 + }, + { + "start": 20000.03, + "end": 20004.79, + "probability": 0.8098 + }, + { + "start": 20004.89, + "end": 20006.41, + "probability": 0.8174 + }, + { + "start": 20006.83, + "end": 20010.93, + "probability": 0.9604 + }, + { + "start": 20011.87, + "end": 20015.83, + "probability": 0.9355 + }, + { + "start": 20017.17, + "end": 20017.93, + "probability": 0.7688 + }, + { + "start": 20019.71, + "end": 20022.83, + "probability": 0.9227 + }, + { + "start": 20023.29, + "end": 20023.85, + "probability": 0.8336 + }, + { + "start": 20023.93, + "end": 20024.39, + "probability": 0.5597 + }, + { + "start": 20024.47, + "end": 20025.61, + "probability": 0.5067 + }, + { + "start": 20025.73, + "end": 20026.19, + "probability": 0.8468 + }, + { + "start": 20026.52, + "end": 20028.91, + "probability": 0.9591 + }, + { + "start": 20028.97, + "end": 20031.59, + "probability": 0.9663 + }, + { + "start": 20031.75, + "end": 20035.73, + "probability": 0.9961 + }, + { + "start": 20035.85, + "end": 20041.83, + "probability": 0.9308 + }, + { + "start": 20042.95, + "end": 20044.59, + "probability": 0.8331 + }, + { + "start": 20044.91, + "end": 20049.59, + "probability": 0.9219 + }, + { + "start": 20050.11, + "end": 20051.55, + "probability": 0.7614 + }, + { + "start": 20052.39, + "end": 20053.23, + "probability": 0.9801 + }, + { + "start": 20053.37, + "end": 20055.1, + "probability": 0.9704 + }, + { + "start": 20055.49, + "end": 20063.74, + "probability": 0.9557 + }, + { + "start": 20064.29, + "end": 20068.67, + "probability": 0.8989 + }, + { + "start": 20068.79, + "end": 20069.69, + "probability": 0.6579 + }, + { + "start": 20069.75, + "end": 20070.59, + "probability": 0.8149 + }, + { + "start": 20070.95, + "end": 20072.77, + "probability": 0.7432 + }, + { + "start": 20073.69, + "end": 20077.07, + "probability": 0.9327 + }, + { + "start": 20077.31, + "end": 20078.01, + "probability": 0.9905 + }, + { + "start": 20078.75, + "end": 20079.3, + "probability": 0.9795 + }, + { + "start": 20080.05, + "end": 20080.59, + "probability": 0.9932 + }, + { + "start": 20081.29, + "end": 20081.75, + "probability": 0.9746 + }, + { + "start": 20082.19, + "end": 20084.15, + "probability": 0.9929 + }, + { + "start": 20084.65, + "end": 20085.23, + "probability": 0.7598 + }, + { + "start": 20085.31, + "end": 20085.83, + "probability": 0.4589 + }, + { + "start": 20085.83, + "end": 20086.09, + "probability": 0.585 + }, + { + "start": 20086.13, + "end": 20086.21, + "probability": 0.3082 + }, + { + "start": 20086.21, + "end": 20087.27, + "probability": 0.6283 + }, + { + "start": 20087.27, + "end": 20087.73, + "probability": 0.4534 + }, + { + "start": 20087.79, + "end": 20090.31, + "probability": 0.9816 + }, + { + "start": 20090.53, + "end": 20091.67, + "probability": 0.2767 + }, + { + "start": 20093.23, + "end": 20095.73, + "probability": 0.9788 + }, + { + "start": 20095.89, + "end": 20097.55, + "probability": 0.9479 + }, + { + "start": 20097.61, + "end": 20099.35, + "probability": 0.6731 + }, + { + "start": 20099.55, + "end": 20100.73, + "probability": 0.8953 + }, + { + "start": 20101.73, + "end": 20102.88, + "probability": 0.9001 + }, + { + "start": 20103.37, + "end": 20104.63, + "probability": 0.4346 + }, + { + "start": 20104.85, + "end": 20105.99, + "probability": 0.9663 + }, + { + "start": 20123.15, + "end": 20124.03, + "probability": 0.7041 + }, + { + "start": 20124.35, + "end": 20125.43, + "probability": 0.8053 + }, + { + "start": 20126.01, + "end": 20126.65, + "probability": 0.8703 + }, + { + "start": 20126.77, + "end": 20127.51, + "probability": 0.833 + }, + { + "start": 20128.33, + "end": 20131.13, + "probability": 0.9964 + }, + { + "start": 20132.23, + "end": 20133.45, + "probability": 0.9934 + }, + { + "start": 20133.51, + "end": 20136.77, + "probability": 0.9663 + }, + { + "start": 20136.91, + "end": 20140.27, + "probability": 0.8198 + }, + { + "start": 20140.97, + "end": 20142.95, + "probability": 0.8984 + }, + { + "start": 20142.99, + "end": 20143.95, + "probability": 0.9846 + }, + { + "start": 20144.11, + "end": 20144.27, + "probability": 0.474 + }, + { + "start": 20145.99, + "end": 20148.33, + "probability": 0.9525 + }, + { + "start": 20149.31, + "end": 20150.19, + "probability": 0.2972 + }, + { + "start": 20150.71, + "end": 20151.79, + "probability": 0.9482 + }, + { + "start": 20152.39, + "end": 20152.89, + "probability": 0.875 + }, + { + "start": 20153.79, + "end": 20155.1, + "probability": 0.8722 + }, + { + "start": 20156.59, + "end": 20160.17, + "probability": 0.9731 + }, + { + "start": 20160.99, + "end": 20163.42, + "probability": 0.9968 + }, + { + "start": 20164.13, + "end": 20165.85, + "probability": 0.9862 + }, + { + "start": 20165.85, + "end": 20167.79, + "probability": 0.989 + }, + { + "start": 20168.41, + "end": 20171.24, + "probability": 0.9956 + }, + { + "start": 20171.91, + "end": 20173.4, + "probability": 0.9946 + }, + { + "start": 20173.51, + "end": 20177.65, + "probability": 0.7588 + }, + { + "start": 20178.05, + "end": 20178.53, + "probability": 0.5677 + }, + { + "start": 20178.65, + "end": 20180.91, + "probability": 0.9249 + }, + { + "start": 20180.91, + "end": 20183.25, + "probability": 0.9974 + }, + { + "start": 20183.29, + "end": 20185.69, + "probability": 0.9359 + }, + { + "start": 20186.05, + "end": 20187.89, + "probability": 0.9886 + }, + { + "start": 20188.29, + "end": 20188.83, + "probability": 0.8074 + }, + { + "start": 20188.87, + "end": 20189.03, + "probability": 0.8491 + }, + { + "start": 20189.59, + "end": 20191.11, + "probability": 0.9497 + }, + { + "start": 20191.25, + "end": 20192.51, + "probability": 0.7041 + }, + { + "start": 20193.09, + "end": 20194.63, + "probability": 0.9827 + }, + { + "start": 20194.91, + "end": 20196.71, + "probability": 0.9757 + }, + { + "start": 20196.75, + "end": 20197.41, + "probability": 0.9512 + }, + { + "start": 20197.63, + "end": 20198.31, + "probability": 0.8189 + }, + { + "start": 20198.73, + "end": 20199.63, + "probability": 0.9347 + }, + { + "start": 20199.73, + "end": 20200.83, + "probability": 0.9166 + }, + { + "start": 20201.17, + "end": 20201.91, + "probability": 0.7393 + }, + { + "start": 20203.39, + "end": 20206.91, + "probability": 0.9422 + }, + { + "start": 20207.39, + "end": 20210.59, + "probability": 0.9954 + }, + { + "start": 20211.63, + "end": 20211.95, + "probability": 0.4101 + }, + { + "start": 20212.05, + "end": 20212.79, + "probability": 0.8446 + }, + { + "start": 20212.87, + "end": 20216.21, + "probability": 0.9854 + }, + { + "start": 20216.21, + "end": 20218.97, + "probability": 0.939 + }, + { + "start": 20220.15, + "end": 20221.79, + "probability": 0.9871 + }, + { + "start": 20222.81, + "end": 20224.75, + "probability": 0.9915 + }, + { + "start": 20225.51, + "end": 20227.69, + "probability": 0.8226 + }, + { + "start": 20227.93, + "end": 20233.17, + "probability": 0.9908 + }, + { + "start": 20233.17, + "end": 20237.05, + "probability": 0.9879 + }, + { + "start": 20237.77, + "end": 20238.43, + "probability": 0.6848 + }, + { + "start": 20241.41, + "end": 20243.53, + "probability": 0.5201 + }, + { + "start": 20244.17, + "end": 20247.39, + "probability": 0.8799 + }, + { + "start": 20247.55, + "end": 20249.63, + "probability": 0.9702 + }, + { + "start": 20249.83, + "end": 20252.09, + "probability": 0.8025 + }, + { + "start": 20252.13, + "end": 20253.58, + "probability": 0.8826 + }, + { + "start": 20254.53, + "end": 20255.45, + "probability": 0.6926 + }, + { + "start": 20255.53, + "end": 20256.23, + "probability": 0.8977 + }, + { + "start": 20256.35, + "end": 20259.27, + "probability": 0.9897 + }, + { + "start": 20259.77, + "end": 20261.21, + "probability": 0.9033 + }, + { + "start": 20261.29, + "end": 20264.31, + "probability": 0.9954 + }, + { + "start": 20265.11, + "end": 20267.45, + "probability": 0.8205 + }, + { + "start": 20270.05, + "end": 20271.87, + "probability": 0.9469 + }, + { + "start": 20272.25, + "end": 20273.49, + "probability": 0.9964 + }, + { + "start": 20273.63, + "end": 20278.15, + "probability": 0.7909 + }, + { + "start": 20278.23, + "end": 20282.21, + "probability": 0.9746 + }, + { + "start": 20283.47, + "end": 20285.41, + "probability": 0.9966 + }, + { + "start": 20286.41, + "end": 20289.81, + "probability": 0.7548 + }, + { + "start": 20289.81, + "end": 20291.67, + "probability": 0.9985 + }, + { + "start": 20291.99, + "end": 20292.57, + "probability": 0.8696 + }, + { + "start": 20293.39, + "end": 20294.97, + "probability": 0.541 + }, + { + "start": 20295.71, + "end": 20297.43, + "probability": 0.8388 + }, + { + "start": 20297.81, + "end": 20298.71, + "probability": 0.7915 + }, + { + "start": 20299.07, + "end": 20301.87, + "probability": 0.8997 + }, + { + "start": 20302.31, + "end": 20302.93, + "probability": 0.8738 + }, + { + "start": 20302.95, + "end": 20306.45, + "probability": 0.9866 + }, + { + "start": 20307.19, + "end": 20309.03, + "probability": 0.9932 + }, + { + "start": 20309.39, + "end": 20311.79, + "probability": 0.9929 + }, + { + "start": 20312.51, + "end": 20314.59, + "probability": 0.9874 + }, + { + "start": 20315.21, + "end": 20315.41, + "probability": 0.1679 + }, + { + "start": 20316.19, + "end": 20316.33, + "probability": 0.2217 + }, + { + "start": 20316.33, + "end": 20316.33, + "probability": 0.1472 + }, + { + "start": 20316.33, + "end": 20319.35, + "probability": 0.9773 + }, + { + "start": 20319.63, + "end": 20324.13, + "probability": 0.991 + }, + { + "start": 20324.77, + "end": 20326.25, + "probability": 0.904 + }, + { + "start": 20327.05, + "end": 20330.26, + "probability": 0.8323 + }, + { + "start": 20331.11, + "end": 20332.79, + "probability": 0.8137 + }, + { + "start": 20332.85, + "end": 20338.37, + "probability": 0.8242 + }, + { + "start": 20338.93, + "end": 20340.49, + "probability": 0.9688 + }, + { + "start": 20341.23, + "end": 20341.99, + "probability": 0.4826 + }, + { + "start": 20342.23, + "end": 20344.53, + "probability": 0.8865 + }, + { + "start": 20344.61, + "end": 20346.59, + "probability": 0.5202 + }, + { + "start": 20347.01, + "end": 20348.25, + "probability": 0.885 + }, + { + "start": 20348.45, + "end": 20351.11, + "probability": 0.4879 + }, + { + "start": 20351.31, + "end": 20352.23, + "probability": 0.1383 + }, + { + "start": 20352.23, + "end": 20352.23, + "probability": 0.0182 + }, + { + "start": 20352.23, + "end": 20352.23, + "probability": 0.0795 + }, + { + "start": 20352.23, + "end": 20353.33, + "probability": 0.4996 + }, + { + "start": 20353.55, + "end": 20354.29, + "probability": 0.2331 + }, + { + "start": 20354.29, + "end": 20354.64, + "probability": 0.4999 + }, + { + "start": 20354.89, + "end": 20355.21, + "probability": 0.5983 + }, + { + "start": 20355.29, + "end": 20356.81, + "probability": 0.8969 + }, + { + "start": 20357.25, + "end": 20358.55, + "probability": 0.9432 + }, + { + "start": 20358.85, + "end": 20360.97, + "probability": 0.6675 + }, + { + "start": 20361.29, + "end": 20362.55, + "probability": 0.7489 + }, + { + "start": 20363.15, + "end": 20368.11, + "probability": 0.9872 + }, + { + "start": 20368.13, + "end": 20368.96, + "probability": 0.7201 + }, + { + "start": 20369.07, + "end": 20369.39, + "probability": 0.8088 + }, + { + "start": 20369.99, + "end": 20372.26, + "probability": 0.6716 + }, + { + "start": 20372.99, + "end": 20376.41, + "probability": 0.8387 + }, + { + "start": 20377.23, + "end": 20378.61, + "probability": 0.8655 + }, + { + "start": 20378.99, + "end": 20384.19, + "probability": 0.8169 + }, + { + "start": 20385.07, + "end": 20387.45, + "probability": 0.4905 + }, + { + "start": 20387.99, + "end": 20389.41, + "probability": 0.4963 + }, + { + "start": 20389.95, + "end": 20392.73, + "probability": 0.5202 + }, + { + "start": 20392.79, + "end": 20393.33, + "probability": 0.9373 + }, + { + "start": 20394.51, + "end": 20399.31, + "probability": 0.3111 + }, + { + "start": 20400.01, + "end": 20403.81, + "probability": 0.8065 + }, + { + "start": 20404.73, + "end": 20407.11, + "probability": 0.9919 + }, + { + "start": 20407.57, + "end": 20408.03, + "probability": 0.6331 + }, + { + "start": 20408.33, + "end": 20412.57, + "probability": 0.8565 + }, + { + "start": 20412.81, + "end": 20415.63, + "probability": 0.9357 + }, + { + "start": 20415.79, + "end": 20418.71, + "probability": 0.8168 + }, + { + "start": 20419.63, + "end": 20423.63, + "probability": 0.9372 + }, + { + "start": 20424.17, + "end": 20426.89, + "probability": 0.9949 + }, + { + "start": 20429.83, + "end": 20430.45, + "probability": 0.408 + }, + { + "start": 20431.09, + "end": 20433.55, + "probability": 0.9958 + }, + { + "start": 20434.25, + "end": 20438.23, + "probability": 0.978 + }, + { + "start": 20438.45, + "end": 20438.81, + "probability": 0.6969 + }, + { + "start": 20438.83, + "end": 20443.73, + "probability": 0.956 + }, + { + "start": 20443.73, + "end": 20448.47, + "probability": 0.9305 + }, + { + "start": 20448.49, + "end": 20453.61, + "probability": 0.8713 + }, + { + "start": 20455.21, + "end": 20457.53, + "probability": 0.8347 + }, + { + "start": 20458.67, + "end": 20459.41, + "probability": 0.7828 + }, + { + "start": 20459.47, + "end": 20460.65, + "probability": 0.8257 + }, + { + "start": 20460.89, + "end": 20465.17, + "probability": 0.9436 + }, + { + "start": 20465.39, + "end": 20467.47, + "probability": 0.9649 + }, + { + "start": 20467.91, + "end": 20469.53, + "probability": 0.8778 + }, + { + "start": 20469.65, + "end": 20472.55, + "probability": 0.964 + }, + { + "start": 20472.68, + "end": 20477.63, + "probability": 0.9797 + }, + { + "start": 20477.83, + "end": 20479.53, + "probability": 0.7534 + }, + { + "start": 20480.33, + "end": 20482.59, + "probability": 0.9402 + }, + { + "start": 20482.85, + "end": 20484.63, + "probability": 0.8403 + }, + { + "start": 20484.71, + "end": 20485.26, + "probability": 0.8832 + }, + { + "start": 20485.51, + "end": 20487.13, + "probability": 0.9963 + }, + { + "start": 20487.99, + "end": 20491.05, + "probability": 0.6376 + }, + { + "start": 20492.47, + "end": 20496.45, + "probability": 0.8706 + }, + { + "start": 20496.91, + "end": 20497.55, + "probability": 0.3539 + }, + { + "start": 20498.37, + "end": 20500.75, + "probability": 0.9829 + }, + { + "start": 20501.71, + "end": 20503.97, + "probability": 0.8734 + }, + { + "start": 20504.55, + "end": 20506.61, + "probability": 0.9902 + }, + { + "start": 20507.31, + "end": 20508.33, + "probability": 0.9629 + }, + { + "start": 20508.97, + "end": 20510.93, + "probability": 0.9932 + }, + { + "start": 20511.89, + "end": 20514.45, + "probability": 0.9937 + }, + { + "start": 20515.78, + "end": 20515.99, + "probability": 0.2311 + }, + { + "start": 20515.99, + "end": 20516.15, + "probability": 0.3339 + }, + { + "start": 20516.69, + "end": 20516.97, + "probability": 0.2468 + }, + { + "start": 20516.97, + "end": 20518.05, + "probability": 0.5259 + }, + { + "start": 20518.39, + "end": 20518.76, + "probability": 0.6111 + }, + { + "start": 20518.99, + "end": 20522.11, + "probability": 0.965 + }, + { + "start": 20522.11, + "end": 20523.27, + "probability": 0.7455 + }, + { + "start": 20523.35, + "end": 20523.87, + "probability": 0.7435 + }, + { + "start": 20524.07, + "end": 20525.21, + "probability": 0.9471 + }, + { + "start": 20525.23, + "end": 20528.67, + "probability": 0.7037 + }, + { + "start": 20528.81, + "end": 20528.81, + "probability": 0.5487 + }, + { + "start": 20528.81, + "end": 20532.29, + "probability": 0.9408 + }, + { + "start": 20532.47, + "end": 20533.75, + "probability": 0.8244 + }, + { + "start": 20533.83, + "end": 20534.47, + "probability": 0.8262 + }, + { + "start": 20534.51, + "end": 20536.47, + "probability": 0.9572 + }, + { + "start": 20536.51, + "end": 20538.79, + "probability": 0.9623 + }, + { + "start": 20539.07, + "end": 20541.73, + "probability": 0.9906 + }, + { + "start": 20541.73, + "end": 20545.41, + "probability": 0.981 + }, + { + "start": 20545.73, + "end": 20551.27, + "probability": 0.9614 + }, + { + "start": 20551.71, + "end": 20555.01, + "probability": 0.9326 + }, + { + "start": 20555.57, + "end": 20556.72, + "probability": 0.9894 + }, + { + "start": 20557.39, + "end": 20562.19, + "probability": 0.99 + }, + { + "start": 20562.19, + "end": 20566.21, + "probability": 0.808 + }, + { + "start": 20566.37, + "end": 20567.86, + "probability": 0.9291 + }, + { + "start": 20568.43, + "end": 20569.25, + "probability": 0.8893 + }, + { + "start": 20569.77, + "end": 20571.77, + "probability": 0.9902 + }, + { + "start": 20572.13, + "end": 20574.65, + "probability": 0.9343 + }, + { + "start": 20574.75, + "end": 20575.83, + "probability": 0.833 + }, + { + "start": 20575.91, + "end": 20576.25, + "probability": 0.5433 + }, + { + "start": 20576.39, + "end": 20577.75, + "probability": 0.9607 + }, + { + "start": 20578.07, + "end": 20580.67, + "probability": 0.9884 + }, + { + "start": 20580.93, + "end": 20584.49, + "probability": 0.746 + }, + { + "start": 20584.59, + "end": 20589.23, + "probability": 0.998 + }, + { + "start": 20589.63, + "end": 20590.27, + "probability": 0.0163 + }, + { + "start": 20590.81, + "end": 20591.35, + "probability": 0.2011 + }, + { + "start": 20591.43, + "end": 20592.21, + "probability": 0.4221 + }, + { + "start": 20592.27, + "end": 20592.75, + "probability": 0.8813 + }, + { + "start": 20592.79, + "end": 20594.86, + "probability": 0.6919 + }, + { + "start": 20595.43, + "end": 20596.86, + "probability": 0.8426 + }, + { + "start": 20597.07, + "end": 20598.57, + "probability": 0.7417 + }, + { + "start": 20598.77, + "end": 20600.55, + "probability": 0.9616 + }, + { + "start": 20601.67, + "end": 20602.47, + "probability": 0.1265 + }, + { + "start": 20602.63, + "end": 20602.63, + "probability": 0.2223 + }, + { + "start": 20602.77, + "end": 20604.17, + "probability": 0.3136 + }, + { + "start": 20604.27, + "end": 20608.43, + "probability": 0.9553 + }, + { + "start": 20608.67, + "end": 20611.37, + "probability": 0.9963 + }, + { + "start": 20611.83, + "end": 20613.66, + "probability": 0.9966 + }, + { + "start": 20614.25, + "end": 20617.49, + "probability": 0.9967 + }, + { + "start": 20617.77, + "end": 20619.45, + "probability": 0.9961 + }, + { + "start": 20619.53, + "end": 20620.33, + "probability": 0.967 + }, + { + "start": 20620.41, + "end": 20622.91, + "probability": 0.8099 + }, + { + "start": 20622.99, + "end": 20624.01, + "probability": 0.8739 + }, + { + "start": 20624.13, + "end": 20626.37, + "probability": 0.9596 + }, + { + "start": 20626.71, + "end": 20630.19, + "probability": 0.8729 + }, + { + "start": 20630.55, + "end": 20634.47, + "probability": 0.9974 + }, + { + "start": 20634.77, + "end": 20636.81, + "probability": 0.7995 + }, + { + "start": 20636.93, + "end": 20638.91, + "probability": 0.9 + }, + { + "start": 20638.97, + "end": 20641.41, + "probability": 0.9507 + }, + { + "start": 20641.49, + "end": 20643.05, + "probability": 0.7429 + }, + { + "start": 20643.47, + "end": 20645.47, + "probability": 0.8535 + }, + { + "start": 20645.77, + "end": 20647.03, + "probability": 0.9634 + }, + { + "start": 20647.09, + "end": 20648.11, + "probability": 0.7849 + }, + { + "start": 20648.59, + "end": 20651.77, + "probability": 0.9913 + }, + { + "start": 20651.85, + "end": 20651.93, + "probability": 0.6146 + }, + { + "start": 20651.99, + "end": 20654.59, + "probability": 0.999 + }, + { + "start": 20654.67, + "end": 20654.81, + "probability": 0.7695 + }, + { + "start": 20654.83, + "end": 20656.57, + "probability": 0.7726 + }, + { + "start": 20656.73, + "end": 20659.06, + "probability": 0.8114 + }, + { + "start": 20659.97, + "end": 20662.79, + "probability": 0.6791 + }, + { + "start": 20663.05, + "end": 20663.71, + "probability": 0.5561 + }, + { + "start": 20663.87, + "end": 20667.91, + "probability": 0.9937 + }, + { + "start": 20667.99, + "end": 20669.11, + "probability": 0.9937 + }, + { + "start": 20669.53, + "end": 20670.49, + "probability": 0.9761 + }, + { + "start": 20670.55, + "end": 20671.01, + "probability": 0.8221 + }, + { + "start": 20671.71, + "end": 20676.33, + "probability": 0.9584 + }, + { + "start": 20676.77, + "end": 20678.89, + "probability": 0.63 + }, + { + "start": 20678.89, + "end": 20679.99, + "probability": 0.7987 + }, + { + "start": 20680.91, + "end": 20682.57, + "probability": 0.6987 + }, + { + "start": 20683.45, + "end": 20685.49, + "probability": 0.8784 + }, + { + "start": 20686.67, + "end": 20689.91, + "probability": 0.9969 + }, + { + "start": 20690.81, + "end": 20696.57, + "probability": 0.9809 + }, + { + "start": 20697.17, + "end": 20700.61, + "probability": 0.959 + }, + { + "start": 20701.19, + "end": 20704.59, + "probability": 0.9736 + }, + { + "start": 20705.23, + "end": 20710.07, + "probability": 0.9783 + }, + { + "start": 20710.07, + "end": 20714.74, + "probability": 0.9292 + }, + { + "start": 20715.51, + "end": 20716.79, + "probability": 0.6728 + }, + { + "start": 20717.11, + "end": 20719.83, + "probability": 0.4039 + }, + { + "start": 20720.31, + "end": 20723.97, + "probability": 0.9828 + }, + { + "start": 20723.97, + "end": 20725.01, + "probability": 0.8818 + }, + { + "start": 20725.71, + "end": 20729.59, + "probability": 0.9585 + }, + { + "start": 20729.59, + "end": 20731.21, + "probability": 0.8978 + }, + { + "start": 20732.61, + "end": 20734.51, + "probability": 0.5982 + }, + { + "start": 20735.45, + "end": 20737.03, + "probability": 0.3315 + }, + { + "start": 20737.57, + "end": 20738.69, + "probability": 0.985 + }, + { + "start": 20739.17, + "end": 20744.41, + "probability": 0.9919 + }, + { + "start": 20744.95, + "end": 20749.49, + "probability": 0.9238 + }, + { + "start": 20749.87, + "end": 20752.75, + "probability": 0.7491 + }, + { + "start": 20753.01, + "end": 20754.17, + "probability": 0.8292 + }, + { + "start": 20754.43, + "end": 20756.91, + "probability": 0.8903 + }, + { + "start": 20757.61, + "end": 20761.07, + "probability": 0.9683 + }, + { + "start": 20761.41, + "end": 20764.99, + "probability": 0.6347 + }, + { + "start": 20765.37, + "end": 20767.09, + "probability": 0.7742 + }, + { + "start": 20767.13, + "end": 20771.17, + "probability": 0.9104 + }, + { + "start": 20771.29, + "end": 20771.85, + "probability": 0.6678 + }, + { + "start": 20771.89, + "end": 20773.59, + "probability": 0.9993 + }, + { + "start": 20773.69, + "end": 20774.21, + "probability": 0.5872 + }, + { + "start": 20774.97, + "end": 20775.89, + "probability": 0.994 + }, + { + "start": 20776.45, + "end": 20780.15, + "probability": 0.8941 + }, + { + "start": 20780.73, + "end": 20782.71, + "probability": 0.9556 + }, + { + "start": 20782.83, + "end": 20784.13, + "probability": 0.9069 + }, + { + "start": 20784.23, + "end": 20789.07, + "probability": 0.708 + }, + { + "start": 20789.17, + "end": 20790.65, + "probability": 0.791 + }, + { + "start": 20790.79, + "end": 20791.52, + "probability": 0.813 + }, + { + "start": 20791.93, + "end": 20792.31, + "probability": 0.8792 + }, + { + "start": 20792.45, + "end": 20792.67, + "probability": 0.2767 + }, + { + "start": 20792.77, + "end": 20794.17, + "probability": 0.972 + }, + { + "start": 20794.61, + "end": 20797.31, + "probability": 0.8413 + }, + { + "start": 20797.83, + "end": 20801.05, + "probability": 0.6936 + }, + { + "start": 20802.07, + "end": 20803.41, + "probability": 0.7148 + }, + { + "start": 20803.45, + "end": 20806.21, + "probability": 0.971 + }, + { + "start": 20806.71, + "end": 20810.29, + "probability": 0.9844 + }, + { + "start": 20810.29, + "end": 20814.23, + "probability": 0.8667 + }, + { + "start": 20814.61, + "end": 20816.93, + "probability": 0.7212 + }, + { + "start": 20817.33, + "end": 20819.65, + "probability": 0.9653 + }, + { + "start": 20819.99, + "end": 20821.13, + "probability": 0.7759 + }, + { + "start": 20822.81, + "end": 20824.65, + "probability": 0.6434 + }, + { + "start": 20824.99, + "end": 20826.31, + "probability": 0.8306 + }, + { + "start": 20826.49, + "end": 20827.23, + "probability": 0.5289 + }, + { + "start": 20827.27, + "end": 20829.41, + "probability": 0.8102 + }, + { + "start": 20829.95, + "end": 20832.39, + "probability": 0.9443 + }, + { + "start": 20833.69, + "end": 20837.53, + "probability": 0.8243 + }, + { + "start": 20837.79, + "end": 20838.89, + "probability": 0.7246 + }, + { + "start": 20838.95, + "end": 20840.13, + "probability": 0.5643 + }, + { + "start": 20840.31, + "end": 20843.17, + "probability": 0.7211 + }, + { + "start": 20843.67, + "end": 20845.29, + "probability": 0.7816 + }, + { + "start": 20845.73, + "end": 20846.51, + "probability": 0.7047 + }, + { + "start": 20846.63, + "end": 20847.69, + "probability": 0.7474 + }, + { + "start": 20847.73, + "end": 20849.69, + "probability": 0.9478 + }, + { + "start": 20849.97, + "end": 20851.05, + "probability": 0.9663 + }, + { + "start": 20851.55, + "end": 20852.03, + "probability": 0.7676 + }, + { + "start": 20852.07, + "end": 20854.07, + "probability": 0.4995 + }, + { + "start": 20854.19, + "end": 20854.67, + "probability": 0.3389 + }, + { + "start": 20854.83, + "end": 20856.91, + "probability": 0.8656 + }, + { + "start": 20857.83, + "end": 20861.27, + "probability": 0.5947 + }, + { + "start": 20861.51, + "end": 20862.69, + "probability": 0.6775 + }, + { + "start": 20863.01, + "end": 20864.79, + "probability": 0.9021 + }, + { + "start": 20864.87, + "end": 20867.59, + "probability": 0.9647 + }, + { + "start": 20868.03, + "end": 20868.03, + "probability": 0.0158 + }, + { + "start": 20868.03, + "end": 20869.21, + "probability": 0.7231 + }, + { + "start": 20869.77, + "end": 20871.53, + "probability": 0.9323 + }, + { + "start": 20871.95, + "end": 20874.93, + "probability": 0.7488 + }, + { + "start": 20875.11, + "end": 20875.83, + "probability": 0.7974 + }, + { + "start": 20876.01, + "end": 20877.11, + "probability": 0.5327 + }, + { + "start": 20877.17, + "end": 20878.01, + "probability": 0.9009 + }, + { + "start": 20878.61, + "end": 20882.91, + "probability": 0.5871 + }, + { + "start": 20882.97, + "end": 20885.36, + "probability": 0.8258 + }, + { + "start": 20885.95, + "end": 20887.47, + "probability": 0.5668 + }, + { + "start": 20888.55, + "end": 20891.69, + "probability": 0.6911 + }, + { + "start": 20892.23, + "end": 20895.11, + "probability": 0.7806 + }, + { + "start": 20895.23, + "end": 20897.65, + "probability": 0.9122 + }, + { + "start": 20898.45, + "end": 20901.35, + "probability": 0.9235 + }, + { + "start": 20902.15, + "end": 20903.45, + "probability": 0.689 + }, + { + "start": 20903.49, + "end": 20904.49, + "probability": 0.7309 + }, + { + "start": 20904.49, + "end": 20906.39, + "probability": 0.8765 + }, + { + "start": 20906.49, + "end": 20906.95, + "probability": 0.6168 + }, + { + "start": 20906.97, + "end": 20908.25, + "probability": 0.9062 + }, + { + "start": 20908.55, + "end": 20912.21, + "probability": 0.781 + }, + { + "start": 20912.29, + "end": 20915.89, + "probability": 0.9429 + }, + { + "start": 20916.29, + "end": 20916.89, + "probability": 0.9405 + }, + { + "start": 20917.05, + "end": 20917.63, + "probability": 0.9449 + }, + { + "start": 20917.67, + "end": 20918.13, + "probability": 0.693 + }, + { + "start": 20918.15, + "end": 20918.75, + "probability": 0.0583 + }, + { + "start": 20918.77, + "end": 20919.11, + "probability": 0.3011 + }, + { + "start": 20919.11, + "end": 20919.75, + "probability": 0.4988 + }, + { + "start": 20920.15, + "end": 20921.17, + "probability": 0.7885 + }, + { + "start": 20921.41, + "end": 20922.21, + "probability": 0.9335 + }, + { + "start": 20922.27, + "end": 20926.49, + "probability": 0.9722 + }, + { + "start": 20927.37, + "end": 20931.05, + "probability": 0.8782 + }, + { + "start": 20931.43, + "end": 20934.1, + "probability": 0.9985 + }, + { + "start": 20934.41, + "end": 20935.27, + "probability": 0.7989 + }, + { + "start": 20935.41, + "end": 20936.51, + "probability": 0.9185 + }, + { + "start": 20936.61, + "end": 20938.09, + "probability": 0.9927 + }, + { + "start": 20938.57, + "end": 20939.19, + "probability": 0.8989 + }, + { + "start": 20939.31, + "end": 20940.61, + "probability": 0.8668 + }, + { + "start": 20940.97, + "end": 20941.97, + "probability": 0.9562 + }, + { + "start": 20942.43, + "end": 20943.15, + "probability": 0.3356 + }, + { + "start": 20943.19, + "end": 20943.85, + "probability": 0.9665 + }, + { + "start": 20944.53, + "end": 20946.25, + "probability": 0.9747 + }, + { + "start": 20946.33, + "end": 20946.85, + "probability": 0.8894 + }, + { + "start": 20946.91, + "end": 20949.65, + "probability": 0.8257 + }, + { + "start": 20949.73, + "end": 20950.47, + "probability": 0.8654 + }, + { + "start": 20950.57, + "end": 20951.87, + "probability": 0.696 + }, + { + "start": 20952.07, + "end": 20953.03, + "probability": 0.9097 + }, + { + "start": 20953.11, + "end": 20953.37, + "probability": 0.8684 + }, + { + "start": 20954.01, + "end": 20955.33, + "probability": 0.7448 + }, + { + "start": 20955.43, + "end": 20958.05, + "probability": 0.968 + }, + { + "start": 20958.71, + "end": 20959.06, + "probability": 0.3334 + }, + { + "start": 20960.17, + "end": 20962.57, + "probability": 0.9879 + }, + { + "start": 20968.69, + "end": 20969.57, + "probability": 0.723 + }, + { + "start": 20969.67, + "end": 20970.95, + "probability": 0.8822 + }, + { + "start": 20971.01, + "end": 20971.63, + "probability": 0.597 + }, + { + "start": 20971.85, + "end": 20975.31, + "probability": 0.9663 + }, + { + "start": 20975.31, + "end": 20978.47, + "probability": 0.98 + }, + { + "start": 20978.69, + "end": 20979.45, + "probability": 0.9662 + }, + { + "start": 20979.95, + "end": 20982.33, + "probability": 0.9812 + }, + { + "start": 20983.15, + "end": 20984.75, + "probability": 0.8265 + }, + { + "start": 20985.37, + "end": 20990.07, + "probability": 0.5042 + }, + { + "start": 20990.31, + "end": 20996.87, + "probability": 0.9038 + }, + { + "start": 20997.39, + "end": 20997.87, + "probability": 0.7859 + }, + { + "start": 20997.87, + "end": 21002.25, + "probability": 0.9726 + }, + { + "start": 21002.25, + "end": 21005.27, + "probability": 0.9976 + }, + { + "start": 21006.03, + "end": 21007.21, + "probability": 0.4854 + }, + { + "start": 21007.35, + "end": 21009.05, + "probability": 0.9361 + }, + { + "start": 21010.21, + "end": 21014.53, + "probability": 0.8817 + }, + { + "start": 21014.77, + "end": 21017.69, + "probability": 0.8722 + }, + { + "start": 21017.89, + "end": 21019.18, + "probability": 0.9589 + }, + { + "start": 21020.37, + "end": 21022.31, + "probability": 0.9018 + }, + { + "start": 21022.37, + "end": 21027.31, + "probability": 0.9394 + }, + { + "start": 21027.43, + "end": 21028.97, + "probability": 0.6693 + }, + { + "start": 21030.33, + "end": 21032.73, + "probability": 0.9239 + }, + { + "start": 21033.71, + "end": 21034.87, + "probability": 0.6643 + }, + { + "start": 21034.95, + "end": 21035.57, + "probability": 0.7424 + }, + { + "start": 21035.87, + "end": 21039.57, + "probability": 0.9938 + }, + { + "start": 21039.69, + "end": 21040.65, + "probability": 0.7705 + }, + { + "start": 21040.99, + "end": 21044.79, + "probability": 0.9957 + }, + { + "start": 21045.19, + "end": 21047.43, + "probability": 0.9767 + }, + { + "start": 21047.83, + "end": 21049.57, + "probability": 0.6152 + }, + { + "start": 21050.13, + "end": 21051.55, + "probability": 0.1517 + }, + { + "start": 21051.97, + "end": 21052.93, + "probability": 0.6688 + }, + { + "start": 21053.19, + "end": 21057.59, + "probability": 0.7729 + }, + { + "start": 21057.79, + "end": 21062.55, + "probability": 0.785 + }, + { + "start": 21063.26, + "end": 21070.55, + "probability": 0.7664 + }, + { + "start": 21070.81, + "end": 21071.35, + "probability": 0.5947 + }, + { + "start": 21071.45, + "end": 21074.57, + "probability": 0.8538 + }, + { + "start": 21074.71, + "end": 21077.25, + "probability": 0.8967 + }, + { + "start": 21077.89, + "end": 21082.19, + "probability": 0.9132 + }, + { + "start": 21083.45, + "end": 21084.79, + "probability": 0.5649 + }, + { + "start": 21084.95, + "end": 21085.55, + "probability": 0.2218 + }, + { + "start": 21085.69, + "end": 21088.43, + "probability": 0.89 + }, + { + "start": 21088.51, + "end": 21089.69, + "probability": 0.5858 + }, + { + "start": 21090.03, + "end": 21090.87, + "probability": 0.7287 + }, + { + "start": 21091.17, + "end": 21091.93, + "probability": 0.7008 + }, + { + "start": 21092.19, + "end": 21093.93, + "probability": 0.9498 + }, + { + "start": 21094.07, + "end": 21101.45, + "probability": 0.9404 + }, + { + "start": 21101.57, + "end": 21103.33, + "probability": 0.7164 + }, + { + "start": 21103.39, + "end": 21105.82, + "probability": 0.9422 + }, + { + "start": 21106.13, + "end": 21106.95, + "probability": 0.3678 + }, + { + "start": 21108.89, + "end": 21112.91, + "probability": 0.8521 + }, + { + "start": 21113.21, + "end": 21114.67, + "probability": 0.6304 + }, + { + "start": 21115.03, + "end": 21117.63, + "probability": 0.8872 + }, + { + "start": 21118.57, + "end": 21121.37, + "probability": 0.8635 + }, + { + "start": 21122.13, + "end": 21124.73, + "probability": 0.5205 + }, + { + "start": 21125.57, + "end": 21126.57, + "probability": 0.645 + }, + { + "start": 21126.69, + "end": 21128.43, + "probability": 0.9753 + }, + { + "start": 21128.71, + "end": 21130.77, + "probability": 0.8767 + }, + { + "start": 21130.77, + "end": 21133.47, + "probability": 0.726 + }, + { + "start": 21133.57, + "end": 21133.95, + "probability": 0.4718 + }, + { + "start": 21134.05, + "end": 21138.47, + "probability": 0.926 + }, + { + "start": 21138.87, + "end": 21140.95, + "probability": 0.6997 + }, + { + "start": 21141.47, + "end": 21142.95, + "probability": 0.9192 + }, + { + "start": 21143.81, + "end": 21146.41, + "probability": 0.9334 + }, + { + "start": 21147.11, + "end": 21148.75, + "probability": 0.948 + }, + { + "start": 21149.48, + "end": 21150.67, + "probability": 0.0505 + }, + { + "start": 21152.15, + "end": 21152.55, + "probability": 0.233 + }, + { + "start": 21152.55, + "end": 21153.51, + "probability": 0.6225 + }, + { + "start": 21153.67, + "end": 21155.73, + "probability": 0.9653 + }, + { + "start": 21155.99, + "end": 21162.25, + "probability": 0.9807 + }, + { + "start": 21162.49, + "end": 21166.05, + "probability": 0.9976 + }, + { + "start": 21166.15, + "end": 21167.89, + "probability": 0.9912 + }, + { + "start": 21168.05, + "end": 21170.81, + "probability": 0.9218 + }, + { + "start": 21170.85, + "end": 21172.1, + "probability": 0.9299 + }, + { + "start": 21173.67, + "end": 21177.77, + "probability": 0.9072 + }, + { + "start": 21178.17, + "end": 21179.57, + "probability": 0.9623 + }, + { + "start": 21179.61, + "end": 21181.19, + "probability": 0.832 + }, + { + "start": 21182.01, + "end": 21186.61, + "probability": 0.9896 + }, + { + "start": 21186.73, + "end": 21187.81, + "probability": 0.9299 + }, + { + "start": 21188.69, + "end": 21190.91, + "probability": 0.8778 + }, + { + "start": 21191.63, + "end": 21193.83, + "probability": 0.9994 + }, + { + "start": 21193.95, + "end": 21195.21, + "probability": 0.983 + }, + { + "start": 21195.59, + "end": 21197.75, + "probability": 0.9735 + }, + { + "start": 21198.31, + "end": 21204.21, + "probability": 0.9926 + }, + { + "start": 21204.21, + "end": 21207.01, + "probability": 0.9712 + }, + { + "start": 21207.33, + "end": 21208.99, + "probability": 0.9507 + }, + { + "start": 21209.43, + "end": 21211.79, + "probability": 0.7696 + }, + { + "start": 21211.83, + "end": 21214.19, + "probability": 0.8081 + }, + { + "start": 21214.35, + "end": 21215.73, + "probability": 0.8145 + }, + { + "start": 21216.01, + "end": 21218.23, + "probability": 0.0052 + }, + { + "start": 21218.93, + "end": 21220.83, + "probability": 0.8264 + }, + { + "start": 21221.13, + "end": 21222.73, + "probability": 0.0436 + }, + { + "start": 21222.73, + "end": 21223.31, + "probability": 0.2118 + }, + { + "start": 21223.41, + "end": 21224.73, + "probability": 0.4235 + }, + { + "start": 21224.73, + "end": 21226.95, + "probability": 0.8796 + }, + { + "start": 21228.13, + "end": 21230.47, + "probability": 0.7011 + }, + { + "start": 21230.79, + "end": 21231.31, + "probability": 0.5454 + }, + { + "start": 21231.51, + "end": 21233.18, + "probability": 0.5955 + }, + { + "start": 21233.79, + "end": 21236.03, + "probability": 0.9495 + }, + { + "start": 21236.11, + "end": 21238.63, + "probability": 0.9389 + }, + { + "start": 21238.69, + "end": 21239.32, + "probability": 0.8 + }, + { + "start": 21239.51, + "end": 21240.62, + "probability": 0.8142 + }, + { + "start": 21240.85, + "end": 21244.64, + "probability": 0.9147 + }, + { + "start": 21246.89, + "end": 21247.01, + "probability": 0.0538 + }, + { + "start": 21247.01, + "end": 21247.45, + "probability": 0.1675 + }, + { + "start": 21247.67, + "end": 21251.15, + "probability": 0.867 + }, + { + "start": 21251.43, + "end": 21252.61, + "probability": 0.6201 + }, + { + "start": 21252.75, + "end": 21254.02, + "probability": 0.9927 + }, + { + "start": 21254.57, + "end": 21257.07, + "probability": 0.8209 + }, + { + "start": 21257.57, + "end": 21259.71, + "probability": 0.8626 + }, + { + "start": 21259.99, + "end": 21264.31, + "probability": 0.7297 + }, + { + "start": 21264.83, + "end": 21265.59, + "probability": 0.926 + }, + { + "start": 21265.87, + "end": 21266.97, + "probability": 0.9109 + }, + { + "start": 21267.09, + "end": 21270.99, + "probability": 0.9445 + }, + { + "start": 21271.11, + "end": 21271.71, + "probability": 0.5409 + }, + { + "start": 21271.79, + "end": 21274.93, + "probability": 0.9973 + }, + { + "start": 21275.29, + "end": 21278.13, + "probability": 0.9897 + }, + { + "start": 21278.27, + "end": 21278.93, + "probability": 0.4902 + }, + { + "start": 21279.45, + "end": 21281.21, + "probability": 0.8848 + }, + { + "start": 21281.23, + "end": 21285.71, + "probability": 0.9905 + }, + { + "start": 21286.98, + "end": 21289.33, + "probability": 0.7681 + }, + { + "start": 21289.51, + "end": 21289.51, + "probability": 0.1245 + }, + { + "start": 21289.51, + "end": 21291.45, + "probability": 0.7308 + }, + { + "start": 21292.49, + "end": 21293.19, + "probability": 0.4621 + }, + { + "start": 21293.33, + "end": 21294.49, + "probability": 0.9164 + }, + { + "start": 21294.61, + "end": 21295.87, + "probability": 0.9728 + }, + { + "start": 21295.93, + "end": 21297.68, + "probability": 0.8059 + }, + { + "start": 21298.13, + "end": 21300.55, + "probability": 0.7562 + }, + { + "start": 21300.71, + "end": 21303.11, + "probability": 0.5962 + }, + { + "start": 21303.97, + "end": 21304.81, + "probability": 0.6057 + }, + { + "start": 21304.85, + "end": 21305.77, + "probability": 0.7098 + }, + { + "start": 21305.99, + "end": 21310.31, + "probability": 0.95 + }, + { + "start": 21310.49, + "end": 21312.39, + "probability": 0.8727 + }, + { + "start": 21312.47, + "end": 21313.43, + "probability": 0.9278 + }, + { + "start": 21313.81, + "end": 21315.45, + "probability": 0.9436 + }, + { + "start": 21316.71, + "end": 21317.91, + "probability": 0.9363 + }, + { + "start": 21317.95, + "end": 21320.03, + "probability": 0.9775 + }, + { + "start": 21320.23, + "end": 21322.27, + "probability": 0.7648 + }, + { + "start": 21322.85, + "end": 21324.09, + "probability": 0.5557 + }, + { + "start": 21324.25, + "end": 21324.8, + "probability": 0.7589 + }, + { + "start": 21325.03, + "end": 21327.47, + "probability": 0.8006 + }, + { + "start": 21327.65, + "end": 21328.51, + "probability": 0.8119 + }, + { + "start": 21328.81, + "end": 21335.55, + "probability": 0.9243 + }, + { + "start": 21336.05, + "end": 21338.61, + "probability": 0.9061 + }, + { + "start": 21338.81, + "end": 21339.81, + "probability": 0.791 + }, + { + "start": 21340.21, + "end": 21340.73, + "probability": 0.4795 + }, + { + "start": 21340.77, + "end": 21341.23, + "probability": 0.9064 + }, + { + "start": 21341.29, + "end": 21342.21, + "probability": 0.9633 + }, + { + "start": 21342.53, + "end": 21343.63, + "probability": 0.756 + }, + { + "start": 21343.71, + "end": 21344.27, + "probability": 0.9292 + }, + { + "start": 21344.37, + "end": 21345.07, + "probability": 0.7678 + }, + { + "start": 21345.11, + "end": 21348.61, + "probability": 0.9639 + }, + { + "start": 21350.31, + "end": 21351.03, + "probability": 0.7538 + }, + { + "start": 21351.27, + "end": 21352.67, + "probability": 0.7537 + }, + { + "start": 21353.14, + "end": 21354.35, + "probability": 0.1378 + }, + { + "start": 21354.41, + "end": 21354.69, + "probability": 0.4537 + }, + { + "start": 21355.36, + "end": 21358.75, + "probability": 0.8704 + }, + { + "start": 21359.27, + "end": 21361.47, + "probability": 0.9791 + }, + { + "start": 21362.07, + "end": 21363.47, + "probability": 0.855 + }, + { + "start": 21363.99, + "end": 21366.09, + "probability": 0.9961 + }, + { + "start": 21366.57, + "end": 21370.69, + "probability": 0.9534 + }, + { + "start": 21370.87, + "end": 21372.59, + "probability": 0.8308 + }, + { + "start": 21372.71, + "end": 21373.47, + "probability": 0.8987 + }, + { + "start": 21373.77, + "end": 21378.21, + "probability": 0.9653 + }, + { + "start": 21378.45, + "end": 21379.18, + "probability": 0.631 + }, + { + "start": 21379.43, + "end": 21381.36, + "probability": 0.9236 + }, + { + "start": 21381.97, + "end": 21382.89, + "probability": 0.8522 + }, + { + "start": 21382.95, + "end": 21383.93, + "probability": 0.9075 + }, + { + "start": 21384.15, + "end": 21386.17, + "probability": 0.993 + }, + { + "start": 21386.53, + "end": 21386.55, + "probability": 0.241 + }, + { + "start": 21386.55, + "end": 21387.29, + "probability": 0.7288 + }, + { + "start": 21387.41, + "end": 21393.83, + "probability": 0.9785 + }, + { + "start": 21394.67, + "end": 21397.51, + "probability": 0.1291 + }, + { + "start": 21397.51, + "end": 21398.45, + "probability": 0.4202 + }, + { + "start": 21398.55, + "end": 21398.71, + "probability": 0.9272 + }, + { + "start": 21398.85, + "end": 21402.4, + "probability": 0.9051 + }, + { + "start": 21404.25, + "end": 21406.17, + "probability": 0.8984 + }, + { + "start": 21406.93, + "end": 21407.21, + "probability": 0.1647 + }, + { + "start": 21407.21, + "end": 21407.21, + "probability": 0.0349 + }, + { + "start": 21407.21, + "end": 21407.21, + "probability": 0.0275 + }, + { + "start": 21407.21, + "end": 21408.69, + "probability": 0.3244 + }, + { + "start": 21408.69, + "end": 21412.21, + "probability": 0.8774 + }, + { + "start": 21412.69, + "end": 21415.23, + "probability": 0.9311 + }, + { + "start": 21415.85, + "end": 21417.91, + "probability": 0.6003 + }, + { + "start": 21418.09, + "end": 21421.59, + "probability": 0.062 + }, + { + "start": 21421.85, + "end": 21423.67, + "probability": 0.8825 + }, + { + "start": 21423.75, + "end": 21426.41, + "probability": 0.5757 + }, + { + "start": 21426.47, + "end": 21429.43, + "probability": 0.9688 + }, + { + "start": 21429.69, + "end": 21431.37, + "probability": 0.6515 + }, + { + "start": 21431.37, + "end": 21432.05, + "probability": 0.4175 + }, + { + "start": 21432.19, + "end": 21436.59, + "probability": 0.9722 + }, + { + "start": 21436.59, + "end": 21441.43, + "probability": 0.9978 + }, + { + "start": 21441.57, + "end": 21442.81, + "probability": 0.9326 + }, + { + "start": 21442.89, + "end": 21443.49, + "probability": 0.807 + }, + { + "start": 21443.83, + "end": 21444.87, + "probability": 0.907 + }, + { + "start": 21444.89, + "end": 21448.97, + "probability": 0.795 + }, + { + "start": 21449.09, + "end": 21450.25, + "probability": 0.6512 + }, + { + "start": 21450.31, + "end": 21452.19, + "probability": 0.9691 + }, + { + "start": 21452.87, + "end": 21454.89, + "probability": 0.5233 + }, + { + "start": 21455.37, + "end": 21460.67, + "probability": 0.9625 + }, + { + "start": 21461.31, + "end": 21461.85, + "probability": 0.6519 + }, + { + "start": 21462.03, + "end": 21466.23, + "probability": 0.9962 + }, + { + "start": 21466.65, + "end": 21471.35, + "probability": 0.9692 + }, + { + "start": 21471.81, + "end": 21471.97, + "probability": 0.003 + }, + { + "start": 21472.17, + "end": 21472.39, + "probability": 0.2547 + }, + { + "start": 21473.07, + "end": 21476.31, + "probability": 0.1699 + }, + { + "start": 21477.01, + "end": 21480.91, + "probability": 0.0471 + }, + { + "start": 21481.19, + "end": 21481.33, + "probability": 0.0314 + }, + { + "start": 21484.42, + "end": 21487.29, + "probability": 0.3392 + }, + { + "start": 21487.35, + "end": 21487.81, + "probability": 0.1043 + }, + { + "start": 21488.01, + "end": 21488.63, + "probability": 0.2547 + }, + { + "start": 21488.85, + "end": 21492.43, + "probability": 0.5889 + }, + { + "start": 21492.63, + "end": 21494.55, + "probability": 0.9826 + }, + { + "start": 21495.11, + "end": 21498.39, + "probability": 0.7764 + }, + { + "start": 21499.13, + "end": 21501.71, + "probability": 0.7778 + }, + { + "start": 21501.79, + "end": 21502.29, + "probability": 0.7742 + }, + { + "start": 21502.41, + "end": 21505.07, + "probability": 0.8975 + }, + { + "start": 21505.07, + "end": 21507.25, + "probability": 0.9587 + }, + { + "start": 21507.51, + "end": 21508.63, + "probability": 0.4277 + }, + { + "start": 21509.11, + "end": 21510.57, + "probability": 0.8714 + }, + { + "start": 21510.67, + "end": 21510.67, + "probability": 0.8652 + }, + { + "start": 21511.39, + "end": 21511.69, + "probability": 0.0151 + }, + { + "start": 21511.69, + "end": 21511.89, + "probability": 0.038 + }, + { + "start": 21512.21, + "end": 21513.19, + "probability": 0.6109 + }, + { + "start": 21513.89, + "end": 21517.23, + "probability": 0.6212 + }, + { + "start": 21518.03, + "end": 21521.51, + "probability": 0.7717 + }, + { + "start": 21522.53, + "end": 21525.63, + "probability": 0.8723 + }, + { + "start": 21526.21, + "end": 21527.21, + "probability": 0.6767 + }, + { + "start": 21527.35, + "end": 21527.87, + "probability": 0.5681 + }, + { + "start": 21527.95, + "end": 21528.79, + "probability": 0.7425 + }, + { + "start": 21529.03, + "end": 21529.93, + "probability": 0.6534 + }, + { + "start": 21530.07, + "end": 21532.23, + "probability": 0.9946 + }, + { + "start": 21532.43, + "end": 21536.67, + "probability": 0.873 + }, + { + "start": 21536.77, + "end": 21539.63, + "probability": 0.9883 + }, + { + "start": 21539.87, + "end": 21543.45, + "probability": 0.9652 + }, + { + "start": 21543.53, + "end": 21543.61, + "probability": 0.2922 + }, + { + "start": 21543.65, + "end": 21544.41, + "probability": 0.668 + }, + { + "start": 21544.63, + "end": 21545.15, + "probability": 0.4822 + }, + { + "start": 21545.49, + "end": 21546.71, + "probability": 0.9756 + }, + { + "start": 21547.15, + "end": 21548.51, + "probability": 0.9984 + }, + { + "start": 21548.51, + "end": 21551.67, + "probability": 0.9835 + }, + { + "start": 21551.95, + "end": 21552.41, + "probability": 0.8549 + }, + { + "start": 21552.57, + "end": 21555.49, + "probability": 0.9438 + }, + { + "start": 21556.75, + "end": 21560.51, + "probability": 0.4774 + }, + { + "start": 21561.37, + "end": 21562.35, + "probability": 0.4894 + }, + { + "start": 21562.51, + "end": 21564.65, + "probability": 0.844 + }, + { + "start": 21566.27, + "end": 21567.37, + "probability": 0.938 + }, + { + "start": 21568.23, + "end": 21568.79, + "probability": 0.4532 + }, + { + "start": 21568.79, + "end": 21570.85, + "probability": 0.7958 + }, + { + "start": 21570.89, + "end": 21572.99, + "probability": 0.8101 + }, + { + "start": 21573.31, + "end": 21574.71, + "probability": 0.8408 + }, + { + "start": 21575.11, + "end": 21575.77, + "probability": 0.6765 + }, + { + "start": 21577.87, + "end": 21578.85, + "probability": 0.3922 + }, + { + "start": 21578.93, + "end": 21579.43, + "probability": 0.6063 + }, + { + "start": 21579.43, + "end": 21582.17, + "probability": 0.8887 + }, + { + "start": 21583.41, + "end": 21584.35, + "probability": 0.5054 + }, + { + "start": 21584.43, + "end": 21585.14, + "probability": 0.8698 + }, + { + "start": 21585.69, + "end": 21586.45, + "probability": 0.5488 + }, + { + "start": 21586.55, + "end": 21587.17, + "probability": 0.8582 + }, + { + "start": 21588.95, + "end": 21590.73, + "probability": 0.7074 + }, + { + "start": 21591.79, + "end": 21592.45, + "probability": 0.7126 + }, + { + "start": 21592.47, + "end": 21593.35, + "probability": 0.9052 + }, + { + "start": 21593.49, + "end": 21594.45, + "probability": 0.1877 + }, + { + "start": 21596.85, + "end": 21598.27, + "probability": 0.2595 + }, + { + "start": 21599.31, + "end": 21600.24, + "probability": 0.885 + }, + { + "start": 21601.83, + "end": 21602.25, + "probability": 0.9308 + }, + { + "start": 21604.65, + "end": 21608.43, + "probability": 0.9832 + }, + { + "start": 21609.43, + "end": 21610.85, + "probability": 0.855 + }, + { + "start": 21610.95, + "end": 21614.66, + "probability": 0.9819 + }, + { + "start": 21615.31, + "end": 21617.85, + "probability": 0.9383 + }, + { + "start": 21618.43, + "end": 21621.91, + "probability": 0.9487 + }, + { + "start": 21622.69, + "end": 21627.19, + "probability": 0.8347 + }, + { + "start": 21627.47, + "end": 21630.59, + "probability": 0.9708 + }, + { + "start": 21631.17, + "end": 21633.63, + "probability": 0.9869 + }, + { + "start": 21633.63, + "end": 21636.65, + "probability": 0.9401 + }, + { + "start": 21637.19, + "end": 21638.53, + "probability": 0.998 + }, + { + "start": 21638.61, + "end": 21639.21, + "probability": 0.8835 + }, + { + "start": 21640.07, + "end": 21641.57, + "probability": 0.7599 + }, + { + "start": 21641.69, + "end": 21644.27, + "probability": 0.8576 + }, + { + "start": 21644.35, + "end": 21648.57, + "probability": 0.9283 + }, + { + "start": 21648.59, + "end": 21649.6, + "probability": 0.9849 + }, + { + "start": 21649.93, + "end": 21652.61, + "probability": 0.9958 + }, + { + "start": 21653.25, + "end": 21653.51, + "probability": 0.5309 + }, + { + "start": 21654.99, + "end": 21657.15, + "probability": 0.6253 + }, + { + "start": 21657.23, + "end": 21658.41, + "probability": 0.6963 + }, + { + "start": 21658.51, + "end": 21659.15, + "probability": 0.8356 + }, + { + "start": 21659.47, + "end": 21659.87, + "probability": 0.5924 + }, + { + "start": 21659.99, + "end": 21660.49, + "probability": 0.8767 + }, + { + "start": 21660.49, + "end": 21661.47, + "probability": 0.9102 + }, + { + "start": 21661.69, + "end": 21664.35, + "probability": 0.8365 + }, + { + "start": 21664.47, + "end": 21667.37, + "probability": 0.95 + }, + { + "start": 21668.13, + "end": 21669.23, + "probability": 0.236 + }, + { + "start": 21669.25, + "end": 21670.97, + "probability": 0.9236 + }, + { + "start": 21671.25, + "end": 21671.25, + "probability": 0.5404 + }, + { + "start": 21671.47, + "end": 21672.69, + "probability": 0.9421 + }, + { + "start": 21672.89, + "end": 21674.51, + "probability": 0.9474 + }, + { + "start": 21674.63, + "end": 21675.67, + "probability": 0.98 + }, + { + "start": 21675.77, + "end": 21677.65, + "probability": 0.9783 + }, + { + "start": 21677.79, + "end": 21680.15, + "probability": 0.9396 + }, + { + "start": 21680.93, + "end": 21681.51, + "probability": 0.8222 + }, + { + "start": 21684.83, + "end": 21687.43, + "probability": 0.664 + }, + { + "start": 21688.89, + "end": 21692.43, + "probability": 0.9933 + }, + { + "start": 21692.57, + "end": 21694.35, + "probability": 0.9969 + }, + { + "start": 21695.45, + "end": 21698.36, + "probability": 0.9387 + }, + { + "start": 21699.65, + "end": 21701.73, + "probability": 0.9323 + }, + { + "start": 21701.89, + "end": 21706.93, + "probability": 0.9771 + }, + { + "start": 21706.93, + "end": 21711.09, + "probability": 0.997 + }, + { + "start": 21711.99, + "end": 21713.81, + "probability": 0.948 + }, + { + "start": 21714.55, + "end": 21716.33, + "probability": 0.8931 + }, + { + "start": 21716.85, + "end": 21718.15, + "probability": 0.9982 + }, + { + "start": 21718.83, + "end": 21719.53, + "probability": 0.4296 + }, + { + "start": 21719.99, + "end": 21723.21, + "probability": 0.9939 + }, + { + "start": 21723.81, + "end": 21725.89, + "probability": 0.985 + }, + { + "start": 21726.37, + "end": 21727.27, + "probability": 0.6284 + }, + { + "start": 21727.47, + "end": 21730.01, + "probability": 0.7816 + }, + { + "start": 21730.45, + "end": 21735.67, + "probability": 0.96 + }, + { + "start": 21735.67, + "end": 21740.01, + "probability": 0.8453 + }, + { + "start": 21740.43, + "end": 21745.27, + "probability": 0.9962 + }, + { + "start": 21746.03, + "end": 21749.43, + "probability": 0.994 + }, + { + "start": 21749.77, + "end": 21750.83, + "probability": 0.8198 + }, + { + "start": 21750.89, + "end": 21753.27, + "probability": 0.9183 + }, + { + "start": 21753.73, + "end": 21757.07, + "probability": 0.9127 + }, + { + "start": 21757.69, + "end": 21762.81, + "probability": 0.9717 + }, + { + "start": 21762.97, + "end": 21763.13, + "probability": 0.5945 + }, + { + "start": 21763.59, + "end": 21767.87, + "probability": 0.9978 + }, + { + "start": 21768.35, + "end": 21769.85, + "probability": 0.9634 + }, + { + "start": 21770.29, + "end": 21772.65, + "probability": 0.9971 + }, + { + "start": 21773.33, + "end": 21774.37, + "probability": 0.9324 + }, + { + "start": 21774.37, + "end": 21776.11, + "probability": 0.5182 + }, + { + "start": 21776.87, + "end": 21777.57, + "probability": 0.8505 + }, + { + "start": 21778.11, + "end": 21778.33, + "probability": 0.849 + }, + { + "start": 21780.31, + "end": 21783.25, + "probability": 0.9373 + }, + { + "start": 21790.15, + "end": 21791.37, + "probability": 0.6845 + }, + { + "start": 21791.91, + "end": 21792.71, + "probability": 0.8337 + }, + { + "start": 21793.53, + "end": 21794.85, + "probability": 0.7407 + }, + { + "start": 21796.45, + "end": 21800.31, + "probability": 0.8296 + }, + { + "start": 21801.21, + "end": 21803.87, + "probability": 0.7236 + }, + { + "start": 21803.97, + "end": 21804.69, + "probability": 0.9823 + }, + { + "start": 21804.83, + "end": 21807.19, + "probability": 0.6187 + }, + { + "start": 21808.15, + "end": 21809.43, + "probability": 0.9836 + }, + { + "start": 21810.17, + "end": 21814.43, + "probability": 0.9743 + }, + { + "start": 21814.97, + "end": 21819.57, + "probability": 0.9424 + }, + { + "start": 21820.05, + "end": 21824.99, + "probability": 0.8378 + }, + { + "start": 21826.33, + "end": 21826.97, + "probability": 0.721 + }, + { + "start": 21827.11, + "end": 21829.73, + "probability": 0.5768 + }, + { + "start": 21829.73, + "end": 21832.95, + "probability": 0.5417 + }, + { + "start": 21833.57, + "end": 21834.67, + "probability": 0.9211 + }, + { + "start": 21834.89, + "end": 21835.09, + "probability": 0.5914 + }, + { + "start": 21835.29, + "end": 21839.19, + "probability": 0.9897 + }, + { + "start": 21839.65, + "end": 21842.97, + "probability": 0.9097 + }, + { + "start": 21842.97, + "end": 21847.11, + "probability": 0.9377 + }, + { + "start": 21847.57, + "end": 21850.09, + "probability": 0.7964 + }, + { + "start": 21850.61, + "end": 21853.17, + "probability": 0.9127 + }, + { + "start": 21853.53, + "end": 21855.95, + "probability": 0.9624 + }, + { + "start": 21856.47, + "end": 21858.56, + "probability": 0.9768 + }, + { + "start": 21859.13, + "end": 21862.25, + "probability": 0.8789 + }, + { + "start": 21862.29, + "end": 21862.69, + "probability": 0.8853 + }, + { + "start": 21863.47, + "end": 21864.95, + "probability": 0.9807 + }, + { + "start": 21865.07, + "end": 21869.21, + "probability": 0.8132 + }, + { + "start": 21870.83, + "end": 21871.29, + "probability": 0.867 + }, + { + "start": 21871.93, + "end": 21872.21, + "probability": 0.9019 + }, + { + "start": 21872.29, + "end": 21872.99, + "probability": 0.7496 + }, + { + "start": 21873.19, + "end": 21875.27, + "probability": 0.993 + }, + { + "start": 21875.89, + "end": 21877.25, + "probability": 0.9302 + }, + { + "start": 21878.15, + "end": 21880.89, + "probability": 0.5786 + }, + { + "start": 21881.97, + "end": 21883.71, + "probability": 0.9512 + }, + { + "start": 21883.85, + "end": 21885.19, + "probability": 0.7165 + }, + { + "start": 21886.05, + "end": 21887.25, + "probability": 0.9634 + }, + { + "start": 21888.61, + "end": 21891.85, + "probability": 0.8772 + }, + { + "start": 21892.75, + "end": 21894.85, + "probability": 0.8178 + }, + { + "start": 21896.07, + "end": 21901.63, + "probability": 0.981 + }, + { + "start": 21903.11, + "end": 21906.05, + "probability": 0.9854 + }, + { + "start": 21908.95, + "end": 21913.47, + "probability": 0.997 + }, + { + "start": 21914.27, + "end": 21916.22, + "probability": 0.5774 + }, + { + "start": 21916.89, + "end": 21917.72, + "probability": 0.7404 + }, + { + "start": 21918.79, + "end": 21925.09, + "probability": 0.8529 + }, + { + "start": 21925.65, + "end": 21927.23, + "probability": 0.9355 + }, + { + "start": 21927.71, + "end": 21929.23, + "probability": 0.9912 + }, + { + "start": 21929.83, + "end": 21934.71, + "probability": 0.9889 + }, + { + "start": 21935.61, + "end": 21937.33, + "probability": 0.7623 + }, + { + "start": 21937.37, + "end": 21937.82, + "probability": 0.7441 + }, + { + "start": 21938.59, + "end": 21940.11, + "probability": 0.9508 + }, + { + "start": 21940.65, + "end": 21941.23, + "probability": 0.9839 + }, + { + "start": 21941.67, + "end": 21944.17, + "probability": 0.8251 + }, + { + "start": 21944.45, + "end": 21946.35, + "probability": 0.7942 + }, + { + "start": 21947.47, + "end": 21948.95, + "probability": 0.6085 + }, + { + "start": 21949.99, + "end": 21951.19, + "probability": 0.7789 + }, + { + "start": 21951.73, + "end": 21954.11, + "probability": 0.6551 + }, + { + "start": 21954.69, + "end": 21955.61, + "probability": 0.6135 + }, + { + "start": 21955.79, + "end": 21956.45, + "probability": 0.8377 + }, + { + "start": 21975.33, + "end": 21979.79, + "probability": 0.2612 + }, + { + "start": 21979.87, + "end": 21981.03, + "probability": 0.1507 + }, + { + "start": 21981.67, + "end": 21981.69, + "probability": 0.0707 + }, + { + "start": 21981.69, + "end": 21981.93, + "probability": 0.1109 + }, + { + "start": 21981.93, + "end": 21984.89, + "probability": 0.6084 + }, + { + "start": 21985.57, + "end": 21987.29, + "probability": 0.0443 + }, + { + "start": 21988.37, + "end": 21989.67, + "probability": 0.0318 + }, + { + "start": 21989.97, + "end": 21990.25, + "probability": 0.1532 + }, + { + "start": 21990.25, + "end": 21990.25, + "probability": 0.1634 + }, + { + "start": 21990.25, + "end": 21994.99, + "probability": 0.844 + }, + { + "start": 21996.73, + "end": 21997.41, + "probability": 0.6248 + }, + { + "start": 21997.49, + "end": 21998.49, + "probability": 0.7359 + }, + { + "start": 22019.79, + "end": 22019.79, + "probability": 0.083 + }, + { + "start": 22019.79, + "end": 22019.79, + "probability": 0.3751 + }, + { + "start": 22019.79, + "end": 22019.79, + "probability": 0.1683 + }, + { + "start": 22019.79, + "end": 22021.09, + "probability": 0.2854 + }, + { + "start": 22021.97, + "end": 22025.17, + "probability": 0.6741 + }, + { + "start": 22026.71, + "end": 22031.55, + "probability": 0.8843 + }, + { + "start": 22033.91, + "end": 22034.35, + "probability": 0.3247 + }, + { + "start": 22034.35, + "end": 22034.55, + "probability": 0.2785 + }, + { + "start": 22034.55, + "end": 22035.29, + "probability": 0.4756 + }, + { + "start": 22036.91, + "end": 22036.91, + "probability": 0.0739 + }, + { + "start": 22036.91, + "end": 22038.31, + "probability": 0.5136 + }, + { + "start": 22038.37, + "end": 22039.69, + "probability": 0.8987 + }, + { + "start": 22040.91, + "end": 22041.01, + "probability": 0.479 + }, + { + "start": 22041.01, + "end": 22041.63, + "probability": 0.3612 + }, + { + "start": 22041.63, + "end": 22042.57, + "probability": 0.2963 + }, + { + "start": 22044.19, + "end": 22045.91, + "probability": 0.0717 + }, + { + "start": 22047.11, + "end": 22047.79, + "probability": 0.2527 + }, + { + "start": 22047.91, + "end": 22049.91, + "probability": 0.8106 + }, + { + "start": 22051.99, + "end": 22053.87, + "probability": 0.8529 + }, + { + "start": 22055.57, + "end": 22057.99, + "probability": 0.741 + }, + { + "start": 22059.29, + "end": 22062.39, + "probability": 0.5118 + }, + { + "start": 22063.29, + "end": 22067.91, + "probability": 0.9375 + }, + { + "start": 22067.91, + "end": 22070.81, + "probability": 0.8409 + }, + { + "start": 22072.87, + "end": 22075.59, + "probability": 0.9927 + }, + { + "start": 22075.59, + "end": 22080.43, + "probability": 0.9278 + }, + { + "start": 22082.13, + "end": 22084.19, + "probability": 0.9884 + }, + { + "start": 22084.29, + "end": 22087.69, + "probability": 0.9561 + }, + { + "start": 22089.01, + "end": 22090.71, + "probability": 0.5523 + }, + { + "start": 22090.83, + "end": 22091.47, + "probability": 0.7157 + }, + { + "start": 22092.91, + "end": 22096.22, + "probability": 0.9922 + }, + { + "start": 22097.13, + "end": 22099.95, + "probability": 0.8572 + }, + { + "start": 22100.91, + "end": 22102.19, + "probability": 0.9987 + }, + { + "start": 22103.01, + "end": 22106.85, + "probability": 0.9966 + }, + { + "start": 22108.15, + "end": 22110.92, + "probability": 0.9209 + }, + { + "start": 22112.27, + "end": 22116.07, + "probability": 0.8187 + }, + { + "start": 22116.73, + "end": 22121.61, + "probability": 0.9865 + }, + { + "start": 22123.47, + "end": 22124.52, + "probability": 0.4429 + }, + { + "start": 22126.29, + "end": 22130.19, + "probability": 0.9074 + }, + { + "start": 22131.07, + "end": 22134.59, + "probability": 0.9936 + }, + { + "start": 22135.99, + "end": 22137.91, + "probability": 0.9968 + }, + { + "start": 22137.99, + "end": 22140.65, + "probability": 0.7703 + }, + { + "start": 22141.39, + "end": 22147.77, + "probability": 0.7352 + }, + { + "start": 22148.77, + "end": 22152.55, + "probability": 0.8436 + }, + { + "start": 22153.13, + "end": 22157.09, + "probability": 0.8457 + }, + { + "start": 22157.87, + "end": 22159.79, + "probability": 0.9335 + }, + { + "start": 22160.31, + "end": 22161.43, + "probability": 0.6738 + }, + { + "start": 22161.89, + "end": 22163.29, + "probability": 0.7715 + }, + { + "start": 22165.41, + "end": 22168.23, + "probability": 0.9855 + }, + { + "start": 22168.23, + "end": 22171.53, + "probability": 0.9785 + }, + { + "start": 22172.25, + "end": 22176.05, + "probability": 0.5136 + }, + { + "start": 22176.65, + "end": 22179.87, + "probability": 0.9396 + }, + { + "start": 22180.75, + "end": 22181.89, + "probability": 0.9891 + }, + { + "start": 22182.67, + "end": 22183.51, + "probability": 0.7942 + }, + { + "start": 22184.05, + "end": 22185.17, + "probability": 0.698 + }, + { + "start": 22185.71, + "end": 22189.79, + "probability": 0.9949 + }, + { + "start": 22190.47, + "end": 22194.43, + "probability": 0.98 + }, + { + "start": 22194.43, + "end": 22197.79, + "probability": 0.9814 + }, + { + "start": 22198.49, + "end": 22202.82, + "probability": 0.8867 + }, + { + "start": 22205.23, + "end": 22211.15, + "probability": 0.993 + }, + { + "start": 22211.51, + "end": 22213.67, + "probability": 0.9843 + }, + { + "start": 22215.99, + "end": 22217.03, + "probability": 0.6007 + }, + { + "start": 22217.93, + "end": 22218.91, + "probability": 0.3919 + }, + { + "start": 22219.03, + "end": 22221.27, + "probability": 0.7749 + }, + { + "start": 22222.37, + "end": 22223.45, + "probability": 0.9256 + }, + { + "start": 22224.07, + "end": 22227.25, + "probability": 0.9818 + }, + { + "start": 22228.01, + "end": 22229.43, + "probability": 0.7674 + }, + { + "start": 22229.95, + "end": 22231.21, + "probability": 0.7802 + }, + { + "start": 22232.07, + "end": 22234.89, + "probability": 0.9172 + }, + { + "start": 22235.47, + "end": 22238.17, + "probability": 0.5205 + }, + { + "start": 22238.31, + "end": 22241.31, + "probability": 0.9578 + }, + { + "start": 22241.99, + "end": 22246.73, + "probability": 0.7583 + }, + { + "start": 22247.49, + "end": 22247.63, + "probability": 0.6931 + }, + { + "start": 22248.01, + "end": 22249.51, + "probability": 0.9932 + }, + { + "start": 22249.61, + "end": 22251.41, + "probability": 0.8877 + }, + { + "start": 22251.43, + "end": 22252.33, + "probability": 0.6164 + }, + { + "start": 22252.67, + "end": 22254.19, + "probability": 0.5867 + }, + { + "start": 22254.21, + "end": 22254.41, + "probability": 0.9027 + }, + { + "start": 22255.41, + "end": 22258.07, + "probability": 0.0814 + }, + { + "start": 22270.3, + "end": 22270.51, + "probability": 0.029 + }, + { + "start": 22270.51, + "end": 22271.15, + "probability": 0.4649 + }, + { + "start": 22272.69, + "end": 22274.53, + "probability": 0.7043 + }, + { + "start": 22276.25, + "end": 22280.53, + "probability": 0.9611 + }, + { + "start": 22280.53, + "end": 22284.21, + "probability": 0.9141 + }, + { + "start": 22286.37, + "end": 22290.77, + "probability": 0.9963 + }, + { + "start": 22291.71, + "end": 22292.65, + "probability": 0.9761 + }, + { + "start": 22292.99, + "end": 22296.71, + "probability": 0.9501 + }, + { + "start": 22297.67, + "end": 22301.19, + "probability": 0.8872 + }, + { + "start": 22301.87, + "end": 22304.95, + "probability": 0.9246 + }, + { + "start": 22305.61, + "end": 22308.47, + "probability": 0.9968 + }, + { + "start": 22308.47, + "end": 22312.23, + "probability": 0.9678 + }, + { + "start": 22313.37, + "end": 22315.39, + "probability": 0.9976 + }, + { + "start": 22315.39, + "end": 22317.51, + "probability": 0.9937 + }, + { + "start": 22318.51, + "end": 22319.75, + "probability": 0.9985 + }, + { + "start": 22320.85, + "end": 22322.87, + "probability": 0.9165 + }, + { + "start": 22323.99, + "end": 22325.15, + "probability": 0.9941 + }, + { + "start": 22325.99, + "end": 22329.75, + "probability": 0.9934 + }, + { + "start": 22330.67, + "end": 22333.77, + "probability": 0.9966 + }, + { + "start": 22334.39, + "end": 22337.27, + "probability": 0.9506 + }, + { + "start": 22338.03, + "end": 22341.61, + "probability": 0.9985 + }, + { + "start": 22343.11, + "end": 22346.37, + "probability": 0.9951 + }, + { + "start": 22347.03, + "end": 22348.29, + "probability": 0.8719 + }, + { + "start": 22348.55, + "end": 22351.37, + "probability": 0.9705 + }, + { + "start": 22351.81, + "end": 22354.77, + "probability": 0.9864 + }, + { + "start": 22355.45, + "end": 22358.73, + "probability": 0.7862 + }, + { + "start": 22359.49, + "end": 22361.37, + "probability": 0.6571 + }, + { + "start": 22361.43, + "end": 22362.33, + "probability": 0.4287 + }, + { + "start": 22362.51, + "end": 22363.83, + "probability": 0.6325 + }, + { + "start": 22364.59, + "end": 22366.87, + "probability": 0.9819 + }, + { + "start": 22367.81, + "end": 22368.63, + "probability": 0.6452 + }, + { + "start": 22369.61, + "end": 22370.39, + "probability": 0.6419 + }, + { + "start": 22370.41, + "end": 22374.09, + "probability": 0.8681 + }, + { + "start": 22374.75, + "end": 22379.69, + "probability": 0.9783 + }, + { + "start": 22380.19, + "end": 22384.81, + "probability": 0.9636 + }, + { + "start": 22386.15, + "end": 22386.45, + "probability": 0.0006 + }, + { + "start": 22386.53, + "end": 22387.17, + "probability": 0.2849 + }, + { + "start": 22387.59, + "end": 22390.49, + "probability": 0.9938 + }, + { + "start": 22390.49, + "end": 22393.93, + "probability": 0.863 + }, + { + "start": 22394.41, + "end": 22395.89, + "probability": 0.8486 + }, + { + "start": 22396.41, + "end": 22397.03, + "probability": 0.7144 + }, + { + "start": 22397.07, + "end": 22397.83, + "probability": 0.6785 + }, + { + "start": 22398.07, + "end": 22400.49, + "probability": 0.9277 + }, + { + "start": 22400.97, + "end": 22401.69, + "probability": 0.7975 + }, + { + "start": 22402.15, + "end": 22404.53, + "probability": 0.6121 + }, + { + "start": 22404.57, + "end": 22408.61, + "probability": 0.7544 + }, + { + "start": 22408.87, + "end": 22410.39, + "probability": 0.6821 + }, + { + "start": 22410.95, + "end": 22411.67, + "probability": 0.4835 + }, + { + "start": 22412.35, + "end": 22414.61, + "probability": 0.788 + }, + { + "start": 22415.19, + "end": 22421.01, + "probability": 0.937 + }, + { + "start": 22421.11, + "end": 22421.61, + "probability": 0.4139 + }, + { + "start": 22421.73, + "end": 22422.39, + "probability": 0.5754 + }, + { + "start": 22422.49, + "end": 22422.97, + "probability": 0.6141 + }, + { + "start": 22424.03, + "end": 22425.03, + "probability": 0.9508 + }, + { + "start": 22426.29, + "end": 22427.93, + "probability": 0.8341 + }, + { + "start": 22429.59, + "end": 22430.65, + "probability": 0.9332 + }, + { + "start": 22432.09, + "end": 22435.33, + "probability": 0.9842 + }, + { + "start": 22436.21, + "end": 22436.91, + "probability": 0.8899 + }, + { + "start": 22437.01, + "end": 22438.01, + "probability": 0.9292 + }, + { + "start": 22438.37, + "end": 22438.57, + "probability": 0.8645 + }, + { + "start": 22439.43, + "end": 22441.39, + "probability": 0.9464 + }, + { + "start": 22441.47, + "end": 22443.65, + "probability": 0.8372 + }, + { + "start": 22444.45, + "end": 22445.65, + "probability": 0.6503 + }, + { + "start": 22446.79, + "end": 22448.85, + "probability": 0.962 + }, + { + "start": 22460.13, + "end": 22460.89, + "probability": 0.6282 + }, + { + "start": 22461.75, + "end": 22462.81, + "probability": 0.6899 + }, + { + "start": 22463.83, + "end": 22465.88, + "probability": 0.9515 + }, + { + "start": 22466.89, + "end": 22470.61, + "probability": 0.8422 + }, + { + "start": 22471.17, + "end": 22471.59, + "probability": 0.9062 + }, + { + "start": 22472.25, + "end": 22477.79, + "probability": 0.0827 + }, + { + "start": 22477.79, + "end": 22477.79, + "probability": 0.0896 + }, + { + "start": 22477.79, + "end": 22478.87, + "probability": 0.487 + }, + { + "start": 22479.13, + "end": 22479.49, + "probability": 0.031 + }, + { + "start": 22480.33, + "end": 22480.49, + "probability": 0.0121 + }, + { + "start": 22480.63, + "end": 22480.81, + "probability": 0.0995 + }, + { + "start": 22480.91, + "end": 22483.35, + "probability": 0.5636 + }, + { + "start": 22484.6, + "end": 22490.29, + "probability": 0.9871 + }, + { + "start": 22490.33, + "end": 22491.37, + "probability": 0.7646 + }, + { + "start": 22491.77, + "end": 22492.97, + "probability": 0.5514 + }, + { + "start": 22493.09, + "end": 22496.65, + "probability": 0.7918 + }, + { + "start": 22496.71, + "end": 22499.67, + "probability": 0.972 + }, + { + "start": 22499.83, + "end": 22500.77, + "probability": 0.7744 + }, + { + "start": 22501.45, + "end": 22502.75, + "probability": 0.9853 + }, + { + "start": 22502.75, + "end": 22503.33, + "probability": 0.9087 + }, + { + "start": 22503.41, + "end": 22504.33, + "probability": 0.9757 + }, + { + "start": 22505.05, + "end": 22507.73, + "probability": 0.9246 + }, + { + "start": 22508.45, + "end": 22513.07, + "probability": 0.8803 + }, + { + "start": 22513.17, + "end": 22514.21, + "probability": 0.9036 + }, + { + "start": 22515.25, + "end": 22516.97, + "probability": 0.9463 + }, + { + "start": 22517.05, + "end": 22517.69, + "probability": 0.8464 + }, + { + "start": 22517.83, + "end": 22519.53, + "probability": 0.9718 + }, + { + "start": 22520.03, + "end": 22521.71, + "probability": 0.9717 + }, + { + "start": 22522.31, + "end": 22525.05, + "probability": 0.9457 + }, + { + "start": 22525.37, + "end": 22527.49, + "probability": 0.8319 + }, + { + "start": 22528.15, + "end": 22528.73, + "probability": 0.8103 + }, + { + "start": 22529.37, + "end": 22532.99, + "probability": 0.9905 + }, + { + "start": 22533.61, + "end": 22534.83, + "probability": 0.8486 + }, + { + "start": 22535.41, + "end": 22538.75, + "probability": 0.7739 + }, + { + "start": 22541.27, + "end": 22543.41, + "probability": 0.9907 + }, + { + "start": 22544.01, + "end": 22544.13, + "probability": 0.4583 + }, + { + "start": 22544.13, + "end": 22544.41, + "probability": 0.3497 + }, + { + "start": 22544.53, + "end": 22549.13, + "probability": 0.9799 + }, + { + "start": 22549.17, + "end": 22550.15, + "probability": 0.9979 + }, + { + "start": 22551.19, + "end": 22551.91, + "probability": 0.7516 + }, + { + "start": 22552.55, + "end": 22554.49, + "probability": 0.7824 + }, + { + "start": 22555.47, + "end": 22559.55, + "probability": 0.9935 + }, + { + "start": 22559.55, + "end": 22563.47, + "probability": 0.9185 + }, + { + "start": 22563.61, + "end": 22569.57, + "probability": 0.9065 + }, + { + "start": 22569.57, + "end": 22571.69, + "probability": 0.9911 + }, + { + "start": 22572.59, + "end": 22573.27, + "probability": 0.8634 + }, + { + "start": 22573.61, + "end": 22574.23, + "probability": 0.8896 + }, + { + "start": 22574.33, + "end": 22575.85, + "probability": 0.9907 + }, + { + "start": 22576.23, + "end": 22576.75, + "probability": 0.8659 + }, + { + "start": 22577.33, + "end": 22579.43, + "probability": 0.9507 + }, + { + "start": 22580.01, + "end": 22584.51, + "probability": 0.8102 + }, + { + "start": 22584.65, + "end": 22584.99, + "probability": 0.8823 + }, + { + "start": 22586.85, + "end": 22589.81, + "probability": 0.9943 + }, + { + "start": 22589.81, + "end": 22592.79, + "probability": 0.9914 + }, + { + "start": 22593.29, + "end": 22594.23, + "probability": 0.4033 + }, + { + "start": 22594.51, + "end": 22598.19, + "probability": 0.9179 + }, + { + "start": 22598.19, + "end": 22600.35, + "probability": 0.791 + }, + { + "start": 22600.45, + "end": 22600.99, + "probability": 0.6838 + }, + { + "start": 22601.03, + "end": 22603.95, + "probability": 0.979 + }, + { + "start": 22605.03, + "end": 22608.05, + "probability": 0.8994 + }, + { + "start": 22608.63, + "end": 22610.21, + "probability": 0.9848 + }, + { + "start": 22612.69, + "end": 22613.03, + "probability": 0.8356 + }, + { + "start": 22613.15, + "end": 22616.27, + "probability": 0.7993 + }, + { + "start": 22616.45, + "end": 22620.75, + "probability": 0.9513 + }, + { + "start": 22621.59, + "end": 22622.03, + "probability": 0.9183 + }, + { + "start": 22622.09, + "end": 22625.45, + "probability": 0.8748 + }, + { + "start": 22626.01, + "end": 22630.39, + "probability": 0.8054 + }, + { + "start": 22630.79, + "end": 22632.01, + "probability": 0.9226 + }, + { + "start": 22632.15, + "end": 22633.03, + "probability": 0.8627 + }, + { + "start": 22633.09, + "end": 22634.59, + "probability": 0.9127 + }, + { + "start": 22635.27, + "end": 22636.93, + "probability": 0.9025 + }, + { + "start": 22636.97, + "end": 22638.45, + "probability": 0.9975 + }, + { + "start": 22638.53, + "end": 22639.53, + "probability": 0.9699 + }, + { + "start": 22639.89, + "end": 22641.51, + "probability": 0.9867 + }, + { + "start": 22641.85, + "end": 22644.45, + "probability": 0.9922 + }, + { + "start": 22644.55, + "end": 22645.15, + "probability": 0.9587 + }, + { + "start": 22645.93, + "end": 22647.2, + "probability": 0.9922 + }, + { + "start": 22648.13, + "end": 22652.19, + "probability": 0.9951 + }, + { + "start": 22652.75, + "end": 22654.91, + "probability": 0.9235 + }, + { + "start": 22655.35, + "end": 22657.33, + "probability": 0.8492 + }, + { + "start": 22657.91, + "end": 22659.87, + "probability": 0.9986 + }, + { + "start": 22659.93, + "end": 22664.55, + "probability": 0.998 + }, + { + "start": 22665.11, + "end": 22667.09, + "probability": 0.8082 + }, + { + "start": 22667.89, + "end": 22670.45, + "probability": 0.3986 + }, + { + "start": 22670.55, + "end": 22670.97, + "probability": 0.5548 + }, + { + "start": 22671.13, + "end": 22674.35, + "probability": 0.9093 + }, + { + "start": 22674.75, + "end": 22677.47, + "probability": 0.9592 + }, + { + "start": 22677.61, + "end": 22682.01, + "probability": 0.9736 + }, + { + "start": 22682.11, + "end": 22682.61, + "probability": 0.75 + }, + { + "start": 22683.23, + "end": 22684.41, + "probability": 0.9685 + }, + { + "start": 22684.97, + "end": 22689.05, + "probability": 0.9658 + }, + { + "start": 22689.65, + "end": 22690.53, + "probability": 0.9007 + }, + { + "start": 22690.73, + "end": 22691.53, + "probability": 0.9885 + }, + { + "start": 22691.71, + "end": 22692.43, + "probability": 0.9828 + }, + { + "start": 22692.61, + "end": 22694.11, + "probability": 0.9396 + }, + { + "start": 22694.61, + "end": 22695.29, + "probability": 0.6456 + }, + { + "start": 22695.69, + "end": 22696.29, + "probability": 0.5527 + }, + { + "start": 22696.57, + "end": 22697.25, + "probability": 0.8247 + }, + { + "start": 22697.45, + "end": 22699.97, + "probability": 0.8275 + }, + { + "start": 22700.41, + "end": 22701.59, + "probability": 0.5632 + }, + { + "start": 22702.57, + "end": 22705.69, + "probability": 0.9517 + }, + { + "start": 22706.29, + "end": 22708.43, + "probability": 0.9921 + }, + { + "start": 22708.47, + "end": 22708.97, + "probability": 0.8379 + }, + { + "start": 22709.39, + "end": 22712.71, + "probability": 0.9818 + }, + { + "start": 22712.71, + "end": 22716.85, + "probability": 0.9707 + }, + { + "start": 22717.37, + "end": 22720.53, + "probability": 0.8853 + }, + { + "start": 22721.05, + "end": 22722.25, + "probability": 0.8713 + }, + { + "start": 22722.51, + "end": 22726.81, + "probability": 0.9787 + }, + { + "start": 22727.43, + "end": 22730.65, + "probability": 0.9104 + }, + { + "start": 22731.63, + "end": 22733.37, + "probability": 0.7902 + }, + { + "start": 22733.45, + "end": 22736.31, + "probability": 0.942 + }, + { + "start": 22736.31, + "end": 22737.97, + "probability": 0.7955 + }, + { + "start": 22738.67, + "end": 22740.07, + "probability": 0.9452 + }, + { + "start": 22741.1, + "end": 22744.45, + "probability": 0.35 + }, + { + "start": 22744.45, + "end": 22746.19, + "probability": 0.9974 + }, + { + "start": 22746.25, + "end": 22748.03, + "probability": 0.655 + }, + { + "start": 22748.19, + "end": 22749.05, + "probability": 0.9269 + }, + { + "start": 22749.87, + "end": 22751.27, + "probability": 0.9631 + }, + { + "start": 22751.77, + "end": 22754.77, + "probability": 0.9872 + }, + { + "start": 22755.19, + "end": 22755.71, + "probability": 0.7202 + }, + { + "start": 22755.83, + "end": 22758.31, + "probability": 0.9165 + }, + { + "start": 22758.53, + "end": 22759.89, + "probability": 0.5399 + }, + { + "start": 22760.45, + "end": 22761.55, + "probability": 0.8937 + }, + { + "start": 22761.63, + "end": 22762.05, + "probability": 0.9206 + }, + { + "start": 22779.63, + "end": 22781.55, + "probability": 0.8796 + }, + { + "start": 22784.29, + "end": 22785.93, + "probability": 0.7002 + }, + { + "start": 22786.91, + "end": 22788.75, + "probability": 0.7002 + }, + { + "start": 22788.83, + "end": 22790.39, + "probability": 0.9739 + }, + { + "start": 22790.69, + "end": 22798.85, + "probability": 0.5877 + }, + { + "start": 22798.85, + "end": 22803.13, + "probability": 0.8994 + }, + { + "start": 22803.27, + "end": 22808.23, + "probability": 0.9454 + }, + { + "start": 22808.79, + "end": 22812.93, + "probability": 0.7697 + }, + { + "start": 22813.03, + "end": 22815.81, + "probability": 0.9432 + }, + { + "start": 22816.47, + "end": 22819.01, + "probability": 0.9538 + }, + { + "start": 22820.12, + "end": 22826.09, + "probability": 0.9841 + }, + { + "start": 22826.75, + "end": 22830.63, + "probability": 0.9834 + }, + { + "start": 22830.69, + "end": 22832.21, + "probability": 0.9897 + }, + { + "start": 22833.03, + "end": 22834.91, + "probability": 0.9847 + }, + { + "start": 22835.35, + "end": 22837.67, + "probability": 0.7931 + }, + { + "start": 22838.01, + "end": 22839.91, + "probability": 0.8005 + }, + { + "start": 22839.97, + "end": 22841.37, + "probability": 0.8451 + }, + { + "start": 22842.27, + "end": 22846.55, + "probability": 0.938 + }, + { + "start": 22847.19, + "end": 22849.67, + "probability": 0.8836 + }, + { + "start": 22850.69, + "end": 22852.07, + "probability": 0.9865 + }, + { + "start": 22852.53, + "end": 22854.57, + "probability": 0.7739 + }, + { + "start": 22855.17, + "end": 22855.51, + "probability": 0.6637 + }, + { + "start": 22855.63, + "end": 22859.65, + "probability": 0.9897 + }, + { + "start": 22860.57, + "end": 22865.43, + "probability": 0.9924 + }, + { + "start": 22866.13, + "end": 22868.63, + "probability": 0.8223 + }, + { + "start": 22868.73, + "end": 22872.59, + "probability": 0.8036 + }, + { + "start": 22872.59, + "end": 22876.79, + "probability": 0.7496 + }, + { + "start": 22877.35, + "end": 22880.13, + "probability": 0.5862 + }, + { + "start": 22881.21, + "end": 22882.99, + "probability": 0.9937 + }, + { + "start": 22883.61, + "end": 22887.93, + "probability": 0.7909 + }, + { + "start": 22888.94, + "end": 22894.31, + "probability": 0.9926 + }, + { + "start": 22895.11, + "end": 22895.21, + "probability": 0.2746 + }, + { + "start": 22896.49, + "end": 22899.21, + "probability": 0.8051 + }, + { + "start": 22899.77, + "end": 22905.09, + "probability": 0.9785 + }, + { + "start": 22905.15, + "end": 22905.67, + "probability": 0.8378 + }, + { + "start": 22906.09, + "end": 22909.85, + "probability": 0.8981 + }, + { + "start": 22909.95, + "end": 22912.25, + "probability": 0.9959 + }, + { + "start": 22912.41, + "end": 22915.39, + "probability": 0.821 + }, + { + "start": 22915.99, + "end": 22916.5, + "probability": 0.8867 + }, + { + "start": 22918.07, + "end": 22918.15, + "probability": 0.0423 + }, + { + "start": 22918.15, + "end": 22919.91, + "probability": 0.9525 + }, + { + "start": 22920.57, + "end": 22925.77, + "probability": 0.9775 + }, + { + "start": 22926.29, + "end": 22930.61, + "probability": 0.9268 + }, + { + "start": 22931.17, + "end": 22933.79, + "probability": 0.8916 + }, + { + "start": 22934.01, + "end": 22935.37, + "probability": 0.802 + }, + { + "start": 22935.69, + "end": 22936.53, + "probability": 0.9234 + }, + { + "start": 22936.93, + "end": 22937.75, + "probability": 0.754 + }, + { + "start": 22938.21, + "end": 22941.23, + "probability": 0.9861 + }, + { + "start": 22941.29, + "end": 22944.89, + "probability": 0.996 + }, + { + "start": 22945.13, + "end": 22945.37, + "probability": 0.7502 + }, + { + "start": 22946.45, + "end": 22949.25, + "probability": 0.9767 + }, + { + "start": 22950.63, + "end": 22952.23, + "probability": 0.9954 + }, + { + "start": 22952.93, + "end": 22953.89, + "probability": 0.7361 + }, + { + "start": 22954.51, + "end": 22954.71, + "probability": 0.0707 + }, + { + "start": 22957.17, + "end": 22957.79, + "probability": 0.3716 + }, + { + "start": 22959.13, + "end": 22960.73, + "probability": 0.2091 + }, + { + "start": 22962.33, + "end": 22963.03, + "probability": 0.6509 + }, + { + "start": 22963.25, + "end": 22963.27, + "probability": 0.1632 + }, + { + "start": 22963.27, + "end": 22963.57, + "probability": 0.1023 + }, + { + "start": 22963.57, + "end": 22965.51, + "probability": 0.4903 + }, + { + "start": 22966.17, + "end": 22966.17, + "probability": 0.2284 + }, + { + "start": 22966.17, + "end": 22970.95, + "probability": 0.9104 + }, + { + "start": 22971.35, + "end": 22976.93, + "probability": 0.9119 + }, + { + "start": 22977.77, + "end": 22978.05, + "probability": 0.1213 + }, + { + "start": 22980.85, + "end": 22983.87, + "probability": 0.8537 + }, + { + "start": 22984.01, + "end": 22984.79, + "probability": 0.2421 + }, + { + "start": 22985.51, + "end": 22986.01, + "probability": 0.0001 + }, + { + "start": 23007.59, + "end": 23007.59, + "probability": 0.0155 + }, + { + "start": 23007.59, + "end": 23007.75, + "probability": 0.5824 + }, + { + "start": 23008.67, + "end": 23011.51, + "probability": 0.7045 + }, + { + "start": 23013.17, + "end": 23015.19, + "probability": 0.8044 + }, + { + "start": 23016.21, + "end": 23018.15, + "probability": 0.9636 + }, + { + "start": 23018.87, + "end": 23021.23, + "probability": 0.9933 + }, + { + "start": 23022.05, + "end": 23026.83, + "probability": 0.8437 + }, + { + "start": 23028.37, + "end": 23035.15, + "probability": 0.9744 + }, + { + "start": 23036.83, + "end": 23040.35, + "probability": 0.9004 + }, + { + "start": 23041.25, + "end": 23042.99, + "probability": 0.9784 + }, + { + "start": 23043.59, + "end": 23045.67, + "probability": 0.995 + }, + { + "start": 23047.99, + "end": 23048.49, + "probability": 0.4766 + }, + { + "start": 23050.43, + "end": 23054.19, + "probability": 0.9825 + }, + { + "start": 23055.44, + "end": 23058.67, + "probability": 0.8868 + }, + { + "start": 23060.09, + "end": 23062.71, + "probability": 0.9433 + }, + { + "start": 23063.71, + "end": 23066.29, + "probability": 0.9943 + }, + { + "start": 23068.33, + "end": 23071.85, + "probability": 0.9911 + }, + { + "start": 23071.85, + "end": 23077.29, + "probability": 0.9835 + }, + { + "start": 23077.37, + "end": 23078.49, + "probability": 0.8669 + }, + { + "start": 23079.01, + "end": 23079.95, + "probability": 0.7623 + }, + { + "start": 23081.11, + "end": 23083.29, + "probability": 0.6973 + }, + { + "start": 23083.79, + "end": 23084.47, + "probability": 0.5297 + }, + { + "start": 23086.57, + "end": 23087.96, + "probability": 0.6641 + }, + { + "start": 23089.43, + "end": 23092.57, + "probability": 0.9894 + }, + { + "start": 23093.09, + "end": 23094.13, + "probability": 0.8832 + }, + { + "start": 23096.33, + "end": 23098.61, + "probability": 0.9842 + }, + { + "start": 23099.45, + "end": 23100.45, + "probability": 0.9878 + }, + { + "start": 23102.71, + "end": 23104.01, + "probability": 0.6123 + }, + { + "start": 23104.27, + "end": 23113.29, + "probability": 0.9956 + }, + { + "start": 23114.73, + "end": 23116.59, + "probability": 0.7513 + }, + { + "start": 23116.75, + "end": 23117.8, + "probability": 0.8309 + }, + { + "start": 23118.23, + "end": 23119.37, + "probability": 0.7946 + }, + { + "start": 23119.97, + "end": 23121.01, + "probability": 0.8188 + }, + { + "start": 23121.85, + "end": 23122.47, + "probability": 0.8527 + }, + { + "start": 23123.75, + "end": 23130.33, + "probability": 0.9414 + }, + { + "start": 23130.35, + "end": 23130.97, + "probability": 0.6442 + }, + { + "start": 23132.17, + "end": 23134.49, + "probability": 0.9873 + }, + { + "start": 23134.85, + "end": 23135.33, + "probability": 0.4684 + }, + { + "start": 23135.57, + "end": 23141.55, + "probability": 0.9844 + }, + { + "start": 23141.55, + "end": 23145.81, + "probability": 0.9979 + }, + { + "start": 23146.33, + "end": 23148.33, + "probability": 0.1343 + }, + { + "start": 23148.79, + "end": 23150.53, + "probability": 0.6605 + }, + { + "start": 23151.47, + "end": 23156.63, + "probability": 0.9939 + }, + { + "start": 23157.19, + "end": 23159.21, + "probability": 0.8629 + }, + { + "start": 23159.33, + "end": 23161.97, + "probability": 0.9937 + }, + { + "start": 23162.79, + "end": 23169.61, + "probability": 0.9254 + }, + { + "start": 23170.29, + "end": 23173.53, + "probability": 0.5227 + }, + { + "start": 23174.05, + "end": 23175.2, + "probability": 0.4898 + }, + { + "start": 23176.05, + "end": 23176.58, + "probability": 0.8914 + }, + { + "start": 23177.99, + "end": 23179.35, + "probability": 0.9575 + }, + { + "start": 23181.61, + "end": 23186.77, + "probability": 0.6475 + }, + { + "start": 23186.77, + "end": 23190.01, + "probability": 0.9833 + }, + { + "start": 23191.25, + "end": 23193.95, + "probability": 0.7902 + }, + { + "start": 23194.45, + "end": 23195.37, + "probability": 0.9417 + }, + { + "start": 23195.45, + "end": 23196.07, + "probability": 0.7295 + }, + { + "start": 23196.19, + "end": 23200.03, + "probability": 0.9259 + }, + { + "start": 23201.99, + "end": 23203.83, + "probability": 0.9915 + }, + { + "start": 23204.71, + "end": 23206.51, + "probability": 0.9876 + }, + { + "start": 23208.25, + "end": 23210.19, + "probability": 0.8647 + }, + { + "start": 23210.91, + "end": 23213.99, + "probability": 0.4414 + }, + { + "start": 23214.09, + "end": 23215.19, + "probability": 0.7333 + }, + { + "start": 23216.07, + "end": 23221.73, + "probability": 0.953 + }, + { + "start": 23221.79, + "end": 23222.15, + "probability": 0.958 + }, + { + "start": 23223.13, + "end": 23226.17, + "probability": 0.955 + }, + { + "start": 23226.97, + "end": 23227.65, + "probability": 0.5568 + }, + { + "start": 23229.09, + "end": 23234.17, + "probability": 0.9536 + }, + { + "start": 23235.25, + "end": 23235.55, + "probability": 0.4449 + }, + { + "start": 23235.57, + "end": 23238.05, + "probability": 0.9031 + }, + { + "start": 23238.47, + "end": 23239.32, + "probability": 0.8245 + }, + { + "start": 23240.23, + "end": 23242.11, + "probability": 0.8728 + }, + { + "start": 23242.81, + "end": 23244.44, + "probability": 0.9502 + }, + { + "start": 23245.39, + "end": 23247.37, + "probability": 0.9398 + }, + { + "start": 23248.19, + "end": 23249.33, + "probability": 0.8616 + }, + { + "start": 23249.97, + "end": 23256.27, + "probability": 0.9888 + }, + { + "start": 23256.37, + "end": 23257.43, + "probability": 0.9283 + }, + { + "start": 23257.91, + "end": 23260.52, + "probability": 0.5964 + }, + { + "start": 23261.39, + "end": 23262.43, + "probability": 0.8992 + }, + { + "start": 23263.35, + "end": 23264.97, + "probability": 0.8706 + }, + { + "start": 23266.65, + "end": 23271.09, + "probability": 0.7945 + }, + { + "start": 23272.15, + "end": 23273.71, + "probability": 0.9025 + }, + { + "start": 23274.67, + "end": 23277.79, + "probability": 0.9162 + }, + { + "start": 23278.89, + "end": 23279.97, + "probability": 0.9495 + }, + { + "start": 23280.75, + "end": 23284.67, + "probability": 0.9932 + }, + { + "start": 23286.57, + "end": 23288.01, + "probability": 0.7406 + }, + { + "start": 23288.83, + "end": 23292.68, + "probability": 0.9471 + }, + { + "start": 23294.19, + "end": 23297.11, + "probability": 0.9987 + }, + { + "start": 23298.09, + "end": 23303.09, + "probability": 0.8539 + }, + { + "start": 23303.41, + "end": 23310.89, + "probability": 0.986 + }, + { + "start": 23312.19, + "end": 23313.01, + "probability": 0.6297 + }, + { + "start": 23314.61, + "end": 23315.77, + "probability": 0.9816 + }, + { + "start": 23316.61, + "end": 23320.37, + "probability": 0.9739 + }, + { + "start": 23320.37, + "end": 23323.81, + "probability": 0.9596 + }, + { + "start": 23325.03, + "end": 23326.09, + "probability": 0.8976 + }, + { + "start": 23327.17, + "end": 23335.71, + "probability": 0.9711 + }, + { + "start": 23335.71, + "end": 23343.21, + "probability": 0.9943 + }, + { + "start": 23344.07, + "end": 23345.25, + "probability": 0.9053 + }, + { + "start": 23345.75, + "end": 23347.59, + "probability": 0.9973 + }, + { + "start": 23349.14, + "end": 23353.99, + "probability": 0.9238 + }, + { + "start": 23354.83, + "end": 23359.11, + "probability": 0.6897 + }, + { + "start": 23359.11, + "end": 23359.41, + "probability": 0.6545 + }, + { + "start": 23359.79, + "end": 23362.23, + "probability": 0.9463 + }, + { + "start": 23362.61, + "end": 23363.31, + "probability": 0.5577 + }, + { + "start": 23363.47, + "end": 23365.19, + "probability": 0.5889 + }, + { + "start": 23365.65, + "end": 23366.67, + "probability": 0.9192 + }, + { + "start": 23367.01, + "end": 23371.03, + "probability": 0.9673 + }, + { + "start": 23371.97, + "end": 23373.47, + "probability": 0.8888 + }, + { + "start": 23374.49, + "end": 23375.23, + "probability": 0.4905 + }, + { + "start": 23375.99, + "end": 23377.47, + "probability": 0.9847 + }, + { + "start": 23377.47, + "end": 23382.53, + "probability": 0.7778 + }, + { + "start": 23383.23, + "end": 23386.17, + "probability": 0.9541 + }, + { + "start": 23387.55, + "end": 23390.53, + "probability": 0.8646 + }, + { + "start": 23391.15, + "end": 23392.67, + "probability": 0.7782 + }, + { + "start": 23392.81, + "end": 23395.61, + "probability": 0.9854 + }, + { + "start": 23395.73, + "end": 23396.19, + "probability": 0.8007 + }, + { + "start": 23396.27, + "end": 23397.25, + "probability": 0.9586 + }, + { + "start": 23397.59, + "end": 23398.67, + "probability": 0.978 + }, + { + "start": 23399.25, + "end": 23400.86, + "probability": 0.9985 + }, + { + "start": 23402.09, + "end": 23403.83, + "probability": 0.825 + }, + { + "start": 23404.79, + "end": 23412.77, + "probability": 0.9626 + }, + { + "start": 23413.23, + "end": 23420.29, + "probability": 0.9907 + }, + { + "start": 23420.75, + "end": 23420.93, + "probability": 0.3428 + }, + { + "start": 23421.31, + "end": 23423.03, + "probability": 0.7762 + }, + { + "start": 23423.05, + "end": 23425.67, + "probability": 0.8619 + }, + { + "start": 23437.43, + "end": 23437.43, + "probability": 0.3375 + }, + { + "start": 23437.43, + "end": 23438.05, + "probability": 0.5552 + }, + { + "start": 23438.15, + "end": 23439.58, + "probability": 0.7795 + }, + { + "start": 23439.69, + "end": 23439.99, + "probability": 0.6849 + }, + { + "start": 23440.19, + "end": 23444.09, + "probability": 0.9747 + }, + { + "start": 23444.83, + "end": 23449.63, + "probability": 0.9779 + }, + { + "start": 23450.29, + "end": 23454.75, + "probability": 0.9823 + }, + { + "start": 23456.17, + "end": 23458.75, + "probability": 0.784 + }, + { + "start": 23459.01, + "end": 23460.97, + "probability": 0.9746 + }, + { + "start": 23462.37, + "end": 23468.09, + "probability": 0.9826 + }, + { + "start": 23468.95, + "end": 23470.91, + "probability": 0.7435 + }, + { + "start": 23472.27, + "end": 23474.73, + "probability": 0.7729 + }, + { + "start": 23476.11, + "end": 23476.75, + "probability": 0.8278 + }, + { + "start": 23476.85, + "end": 23478.43, + "probability": 0.9411 + }, + { + "start": 23479.23, + "end": 23480.91, + "probability": 0.9717 + }, + { + "start": 23480.99, + "end": 23481.55, + "probability": 0.6253 + }, + { + "start": 23481.61, + "end": 23484.81, + "probability": 0.9937 + }, + { + "start": 23485.19, + "end": 23485.89, + "probability": 0.7206 + }, + { + "start": 23486.45, + "end": 23486.83, + "probability": 0.7349 + }, + { + "start": 23487.53, + "end": 23488.45, + "probability": 0.9011 + }, + { + "start": 23488.95, + "end": 23490.15, + "probability": 0.94 + }, + { + "start": 23490.55, + "end": 23491.75, + "probability": 0.9702 + }, + { + "start": 23492.13, + "end": 23492.61, + "probability": 0.7187 + }, + { + "start": 23493.13, + "end": 23494.27, + "probability": 0.6398 + }, + { + "start": 23494.33, + "end": 23496.24, + "probability": 0.9839 + }, + { + "start": 23496.75, + "end": 23497.59, + "probability": 0.9846 + }, + { + "start": 23497.67, + "end": 23499.57, + "probability": 0.8054 + }, + { + "start": 23499.77, + "end": 23499.79, + "probability": 0.9604 + }, + { + "start": 23500.41, + "end": 23505.79, + "probability": 0.9893 + }, + { + "start": 23506.27, + "end": 23506.71, + "probability": 0.4059 + }, + { + "start": 23506.75, + "end": 23508.05, + "probability": 0.7931 + }, + { + "start": 23508.47, + "end": 23512.43, + "probability": 0.9445 + }, + { + "start": 23512.95, + "end": 23515.09, + "probability": 0.9106 + }, + { + "start": 23515.67, + "end": 23517.69, + "probability": 0.9606 + }, + { + "start": 23518.29, + "end": 23519.79, + "probability": 0.9817 + }, + { + "start": 23520.53, + "end": 23522.47, + "probability": 0.8247 + }, + { + "start": 23523.19, + "end": 23526.25, + "probability": 0.8541 + }, + { + "start": 23527.09, + "end": 23528.35, + "probability": 0.8683 + }, + { + "start": 23528.49, + "end": 23531.71, + "probability": 0.9363 + }, + { + "start": 23532.29, + "end": 23533.43, + "probability": 0.9684 + }, + { + "start": 23535.21, + "end": 23538.43, + "probability": 0.777 + }, + { + "start": 23538.65, + "end": 23539.31, + "probability": 0.8906 + }, + { + "start": 23539.47, + "end": 23540.81, + "probability": 0.9224 + }, + { + "start": 23541.09, + "end": 23543.21, + "probability": 0.9896 + }, + { + "start": 23543.31, + "end": 23548.39, + "probability": 0.9865 + }, + { + "start": 23548.51, + "end": 23548.93, + "probability": 0.9419 + }, + { + "start": 23549.05, + "end": 23549.61, + "probability": 0.8456 + }, + { + "start": 23549.65, + "end": 23550.51, + "probability": 0.9861 + }, + { + "start": 23550.89, + "end": 23552.05, + "probability": 0.6593 + }, + { + "start": 23552.53, + "end": 23556.03, + "probability": 0.9787 + }, + { + "start": 23556.51, + "end": 23558.31, + "probability": 0.8281 + }, + { + "start": 23558.65, + "end": 23559.97, + "probability": 0.8068 + }, + { + "start": 23560.03, + "end": 23561.85, + "probability": 0.9737 + }, + { + "start": 23561.93, + "end": 23562.89, + "probability": 0.9668 + }, + { + "start": 23564.17, + "end": 23568.11, + "probability": 0.9946 + }, + { + "start": 23569.35, + "end": 23572.37, + "probability": 0.4375 + }, + { + "start": 23572.43, + "end": 23573.29, + "probability": 0.3776 + }, + { + "start": 23573.35, + "end": 23574.59, + "probability": 0.8574 + }, + { + "start": 23574.59, + "end": 23575.11, + "probability": 0.745 + }, + { + "start": 23576.33, + "end": 23577.07, + "probability": 0.4923 + }, + { + "start": 23577.21, + "end": 23578.2, + "probability": 0.7495 + }, + { + "start": 23578.27, + "end": 23579.08, + "probability": 0.6221 + }, + { + "start": 23580.01, + "end": 23584.11, + "probability": 0.7402 + }, + { + "start": 23584.69, + "end": 23586.25, + "probability": 0.3835 + }, + { + "start": 23586.49, + "end": 23586.49, + "probability": 0.2089 + }, + { + "start": 23586.49, + "end": 23587.13, + "probability": 0.766 + }, + { + "start": 23587.75, + "end": 23588.85, + "probability": 0.8661 + }, + { + "start": 23590.95, + "end": 23593.99, + "probability": 0.9937 + }, + { + "start": 23595.33, + "end": 23595.81, + "probability": 0.3326 + }, + { + "start": 23595.83, + "end": 23596.19, + "probability": 0.4745 + }, + { + "start": 23596.25, + "end": 23596.67, + "probability": 0.8693 + }, + { + "start": 23613.69, + "end": 23613.69, + "probability": 0.2183 + }, + { + "start": 23613.69, + "end": 23613.69, + "probability": 0.0545 + }, + { + "start": 23613.69, + "end": 23614.95, + "probability": 0.114 + }, + { + "start": 23615.55, + "end": 23617.21, + "probability": 0.4823 + }, + { + "start": 23617.37, + "end": 23621.4, + "probability": 0.2881 + }, + { + "start": 23623.69, + "end": 23624.95, + "probability": 0.0943 + }, + { + "start": 23624.95, + "end": 23625.01, + "probability": 0.0269 + }, + { + "start": 23625.01, + "end": 23626.15, + "probability": 0.5066 + }, + { + "start": 23627.19, + "end": 23630.41, + "probability": 0.5296 + }, + { + "start": 23631.45, + "end": 23635.31, + "probability": 0.7028 + }, + { + "start": 23643.59, + "end": 23644.01, + "probability": 0.825 + }, + { + "start": 23646.45, + "end": 23648.35, + "probability": 0.7489 + }, + { + "start": 23649.03, + "end": 23650.97, + "probability": 0.8365 + }, + { + "start": 23652.01, + "end": 23655.19, + "probability": 0.8162 + }, + { + "start": 23655.41, + "end": 23660.42, + "probability": 0.8552 + }, + { + "start": 23660.91, + "end": 23662.23, + "probability": 0.9961 + }, + { + "start": 23662.35, + "end": 23663.89, + "probability": 0.7011 + }, + { + "start": 23664.71, + "end": 23666.6, + "probability": 0.8132 + }, + { + "start": 23666.81, + "end": 23667.31, + "probability": 0.3545 + }, + { + "start": 23667.39, + "end": 23668.03, + "probability": 0.961 + }, + { + "start": 23668.57, + "end": 23669.17, + "probability": 0.9808 + }, + { + "start": 23670.65, + "end": 23671.09, + "probability": 0.7347 + }, + { + "start": 23671.25, + "end": 23674.33, + "probability": 0.9924 + }, + { + "start": 23674.39, + "end": 23675.23, + "probability": 0.4827 + }, + { + "start": 23675.27, + "end": 23676.01, + "probability": 0.9658 + }, + { + "start": 23677.05, + "end": 23679.67, + "probability": 0.4913 + }, + { + "start": 23680.65, + "end": 23681.85, + "probability": 0.898 + }, + { + "start": 23682.57, + "end": 23684.07, + "probability": 0.754 + }, + { + "start": 23684.71, + "end": 23687.47, + "probability": 0.286 + }, + { + "start": 23687.63, + "end": 23689.53, + "probability": 0.2606 + }, + { + "start": 23689.67, + "end": 23691.51, + "probability": 0.3798 + }, + { + "start": 23691.77, + "end": 23693.25, + "probability": 0.6066 + }, + { + "start": 23693.53, + "end": 23694.15, + "probability": 0.9468 + }, + { + "start": 23694.43, + "end": 23695.13, + "probability": 0.9502 + }, + { + "start": 23696.27, + "end": 23697.35, + "probability": 0.8984 + }, + { + "start": 23698.27, + "end": 23700.29, + "probability": 0.5886 + }, + { + "start": 23700.41, + "end": 23703.03, + "probability": 0.9219 + }, + { + "start": 23703.65, + "end": 23705.33, + "probability": 0.6975 + }, + { + "start": 23705.89, + "end": 23706.47, + "probability": 0.6761 + }, + { + "start": 23706.85, + "end": 23707.69, + "probability": 0.7913 + }, + { + "start": 23708.71, + "end": 23710.61, + "probability": 0.6204 + }, + { + "start": 23712.89, + "end": 23715.15, + "probability": 0.8706 + }, + { + "start": 23715.37, + "end": 23716.35, + "probability": 0.0964 + }, + { + "start": 23717.09, + "end": 23722.79, + "probability": 0.7731 + }, + { + "start": 23723.77, + "end": 23725.67, + "probability": 0.9119 + }, + { + "start": 23725.77, + "end": 23726.59, + "probability": 0.9893 + }, + { + "start": 23726.67, + "end": 23727.47, + "probability": 0.8173 + }, + { + "start": 23728.19, + "end": 23731.91, + "probability": 0.9781 + }, + { + "start": 23732.85, + "end": 23734.45, + "probability": 0.9835 + }, + { + "start": 23734.57, + "end": 23737.27, + "probability": 0.9272 + }, + { + "start": 23738.41, + "end": 23741.18, + "probability": 0.9202 + }, + { + "start": 23741.89, + "end": 23743.55, + "probability": 0.8321 + }, + { + "start": 23743.57, + "end": 23745.67, + "probability": 0.9271 + }, + { + "start": 23746.31, + "end": 23748.47, + "probability": 0.8374 + }, + { + "start": 23750.37, + "end": 23750.91, + "probability": 0.3857 + }, + { + "start": 23751.77, + "end": 23752.61, + "probability": 0.8231 + }, + { + "start": 23752.79, + "end": 23753.81, + "probability": 0.8174 + }, + { + "start": 23754.11, + "end": 23755.11, + "probability": 0.6344 + }, + { + "start": 23755.53, + "end": 23756.49, + "probability": 0.8862 + }, + { + "start": 23757.05, + "end": 23758.47, + "probability": 0.5812 + }, + { + "start": 23758.89, + "end": 23759.93, + "probability": 0.9836 + }, + { + "start": 23760.45, + "end": 23762.73, + "probability": 0.707 + }, + { + "start": 23763.47, + "end": 23766.87, + "probability": 0.9893 + }, + { + "start": 23766.95, + "end": 23767.81, + "probability": 0.8943 + }, + { + "start": 23768.19, + "end": 23769.51, + "probability": 0.9951 + }, + { + "start": 23770.03, + "end": 23771.96, + "probability": 0.9844 + }, + { + "start": 23772.01, + "end": 23772.84, + "probability": 0.5938 + }, + { + "start": 23773.07, + "end": 23773.95, + "probability": 0.823 + }, + { + "start": 23773.99, + "end": 23774.71, + "probability": 0.7238 + }, + { + "start": 23775.41, + "end": 23777.23, + "probability": 0.9929 + }, + { + "start": 23777.89, + "end": 23778.86, + "probability": 0.631 + }, + { + "start": 23779.05, + "end": 23779.53, + "probability": 0.5904 + }, + { + "start": 23780.01, + "end": 23781.31, + "probability": 0.9502 + }, + { + "start": 23782.61, + "end": 23785.91, + "probability": 0.795 + }, + { + "start": 23786.45, + "end": 23787.19, + "probability": 0.8063 + }, + { + "start": 23788.67, + "end": 23789.73, + "probability": 0.4218 + }, + { + "start": 23789.73, + "end": 23790.23, + "probability": 0.865 + }, + { + "start": 23790.57, + "end": 23792.79, + "probability": 0.8643 + }, + { + "start": 23793.13, + "end": 23795.05, + "probability": 0.8906 + }, + { + "start": 23795.55, + "end": 23796.37, + "probability": 0.767 + }, + { + "start": 23796.45, + "end": 23796.97, + "probability": 0.6632 + }, + { + "start": 23798.27, + "end": 23801.97, + "probability": 0.9838 + }, + { + "start": 23802.21, + "end": 23803.11, + "probability": 0.8346 + }, + { + "start": 23803.29, + "end": 23803.97, + "probability": 0.8576 + }, + { + "start": 23804.39, + "end": 23805.11, + "probability": 0.8197 + }, + { + "start": 23805.11, + "end": 23805.33, + "probability": 0.6647 + }, + { + "start": 23805.43, + "end": 23806.33, + "probability": 0.9641 + }, + { + "start": 23806.57, + "end": 23807.63, + "probability": 0.7524 + }, + { + "start": 23807.71, + "end": 23808.03, + "probability": 0.6901 + }, + { + "start": 23808.55, + "end": 23811.39, + "probability": 0.8696 + }, + { + "start": 23811.99, + "end": 23814.41, + "probability": 0.9326 + }, + { + "start": 23814.95, + "end": 23816.73, + "probability": 0.9111 + }, + { + "start": 23817.53, + "end": 23819.39, + "probability": 0.7827 + }, + { + "start": 23819.39, + "end": 23819.53, + "probability": 0.7236 + }, + { + "start": 23820.69, + "end": 23821.79, + "probability": 0.597 + }, + { + "start": 23821.93, + "end": 23823.16, + "probability": 0.5848 + }, + { + "start": 23824.87, + "end": 23825.97, + "probability": 0.8934 + }, + { + "start": 23826.01, + "end": 23826.91, + "probability": 0.9785 + }, + { + "start": 23828.81, + "end": 23829.53, + "probability": 0.3099 + }, + { + "start": 23829.53, + "end": 23830.77, + "probability": 0.8196 + }, + { + "start": 23830.83, + "end": 23832.05, + "probability": 0.9242 + }, + { + "start": 23832.13, + "end": 23832.71, + "probability": 0.9103 + }, + { + "start": 23832.83, + "end": 23833.23, + "probability": 0.8354 + }, + { + "start": 23833.67, + "end": 23834.51, + "probability": 0.5396 + }, + { + "start": 23834.73, + "end": 23835.23, + "probability": 0.641 + }, + { + "start": 23835.61, + "end": 23836.43, + "probability": 0.8932 + }, + { + "start": 23836.51, + "end": 23837.61, + "probability": 0.8871 + }, + { + "start": 23838.73, + "end": 23839.75, + "probability": 0.9199 + }, + { + "start": 23840.47, + "end": 23843.03, + "probability": 0.9022 + }, + { + "start": 23843.69, + "end": 23844.23, + "probability": 0.9606 + }, + { + "start": 23844.43, + "end": 23846.07, + "probability": 0.8743 + }, + { + "start": 23846.07, + "end": 23846.43, + "probability": 0.7495 + }, + { + "start": 23846.51, + "end": 23847.27, + "probability": 0.8914 + }, + { + "start": 23848.19, + "end": 23850.59, + "probability": 0.8127 + }, + { + "start": 23851.19, + "end": 23852.37, + "probability": 0.6134 + }, + { + "start": 23853.73, + "end": 23853.89, + "probability": 0.8083 + }, + { + "start": 23856.31, + "end": 23858.99, + "probability": 0.4926 + }, + { + "start": 23859.47, + "end": 23860.87, + "probability": 0.7332 + }, + { + "start": 23861.53, + "end": 23862.19, + "probability": 0.9422 + }, + { + "start": 23862.25, + "end": 23862.99, + "probability": 0.8701 + }, + { + "start": 23863.13, + "end": 23865.51, + "probability": 0.9572 + }, + { + "start": 23865.89, + "end": 23868.99, + "probability": 0.3727 + }, + { + "start": 23870.53, + "end": 23873.33, + "probability": 0.1329 + }, + { + "start": 23873.93, + "end": 23874.63, + "probability": 0.9127 + }, + { + "start": 23874.71, + "end": 23876.31, + "probability": 0.2579 + }, + { + "start": 23876.47, + "end": 23878.25, + "probability": 0.7041 + }, + { + "start": 23878.43, + "end": 23879.09, + "probability": 0.8713 + }, + { + "start": 23879.27, + "end": 23880.03, + "probability": 0.8821 + }, + { + "start": 23880.13, + "end": 23880.45, + "probability": 0.3975 + }, + { + "start": 23880.45, + "end": 23881.23, + "probability": 0.9717 + }, + { + "start": 23882.13, + "end": 23884.17, + "probability": 0.7734 + }, + { + "start": 23884.25, + "end": 23887.05, + "probability": 0.6349 + }, + { + "start": 23887.75, + "end": 23890.37, + "probability": 0.978 + }, + { + "start": 23891.21, + "end": 23892.01, + "probability": 0.9249 + }, + { + "start": 23892.57, + "end": 23893.71, + "probability": 0.885 + }, + { + "start": 23894.55, + "end": 23898.73, + "probability": 0.6993 + }, + { + "start": 23899.99, + "end": 23900.85, + "probability": 0.6836 + }, + { + "start": 23901.29, + "end": 23901.83, + "probability": 0.4991 + }, + { + "start": 23902.35, + "end": 23904.09, + "probability": 0.9635 + }, + { + "start": 23904.73, + "end": 23905.49, + "probability": 0.7903 + }, + { + "start": 23905.57, + "end": 23906.01, + "probability": 0.5542 + }, + { + "start": 23906.13, + "end": 23910.25, + "probability": 0.9318 + }, + { + "start": 23910.35, + "end": 23910.89, + "probability": 0.4347 + }, + { + "start": 23910.91, + "end": 23912.99, + "probability": 0.7022 + }, + { + "start": 23913.11, + "end": 23913.39, + "probability": 0.6032 + }, + { + "start": 23913.49, + "end": 23914.27, + "probability": 0.7982 + }, + { + "start": 23914.61, + "end": 23916.47, + "probability": 0.7906 + }, + { + "start": 23917.19, + "end": 23920.01, + "probability": 0.9324 + }, + { + "start": 23920.67, + "end": 23922.15, + "probability": 0.8814 + }, + { + "start": 23922.15, + "end": 23924.65, + "probability": 0.9932 + }, + { + "start": 23925.97, + "end": 23927.03, + "probability": 0.6817 + }, + { + "start": 23927.23, + "end": 23930.45, + "probability": 0.9217 + }, + { + "start": 23931.05, + "end": 23932.65, + "probability": 0.7275 + }, + { + "start": 23933.29, + "end": 23934.06, + "probability": 0.308 + }, + { + "start": 23934.85, + "end": 23934.93, + "probability": 0.2799 + }, + { + "start": 23935.05, + "end": 23935.25, + "probability": 0.7332 + }, + { + "start": 23935.35, + "end": 23937.15, + "probability": 0.9253 + }, + { + "start": 23937.19, + "end": 23937.49, + "probability": 0.7104 + }, + { + "start": 23937.91, + "end": 23938.89, + "probability": 0.9454 + }, + { + "start": 23939.43, + "end": 23941.13, + "probability": 0.9363 + }, + { + "start": 23941.79, + "end": 23944.44, + "probability": 0.9716 + }, + { + "start": 23945.47, + "end": 23946.93, + "probability": 0.9399 + }, + { + "start": 23947.89, + "end": 23949.07, + "probability": 0.8482 + }, + { + "start": 23949.17, + "end": 23950.75, + "probability": 0.8803 + }, + { + "start": 23951.42, + "end": 23952.83, + "probability": 0.8124 + }, + { + "start": 23953.15, + "end": 23954.93, + "probability": 0.8909 + }, + { + "start": 23955.53, + "end": 23955.69, + "probability": 0.9338 + }, + { + "start": 23955.73, + "end": 23956.31, + "probability": 0.9538 + }, + { + "start": 23956.43, + "end": 23958.09, + "probability": 0.9205 + }, + { + "start": 23959.21, + "end": 23959.93, + "probability": 0.8927 + }, + { + "start": 23960.05, + "end": 23961.63, + "probability": 0.9904 + }, + { + "start": 23961.69, + "end": 23962.33, + "probability": 0.8842 + }, + { + "start": 23962.83, + "end": 23963.67, + "probability": 0.9426 + }, + { + "start": 23964.39, + "end": 23968.39, + "probability": 0.8782 + }, + { + "start": 23969.41, + "end": 23973.21, + "probability": 0.7788 + }, + { + "start": 23974.05, + "end": 23977.51, + "probability": 0.9358 + }, + { + "start": 23978.41, + "end": 23979.19, + "probability": 0.871 + }, + { + "start": 23979.69, + "end": 23981.91, + "probability": 0.8668 + }, + { + "start": 23982.69, + "end": 23983.91, + "probability": 0.9901 + }, + { + "start": 23984.31, + "end": 23986.93, + "probability": 0.9484 + }, + { + "start": 23987.83, + "end": 23988.37, + "probability": 0.3684 + }, + { + "start": 23988.37, + "end": 23989.13, + "probability": 0.472 + }, + { + "start": 23989.47, + "end": 23990.81, + "probability": 0.9412 + }, + { + "start": 23991.35, + "end": 23992.97, + "probability": 0.9772 + }, + { + "start": 23993.51, + "end": 23995.55, + "probability": 0.8666 + }, + { + "start": 23995.55, + "end": 23998.51, + "probability": 0.9352 + }, + { + "start": 23998.67, + "end": 23999.89, + "probability": 0.9105 + }, + { + "start": 24000.85, + "end": 24003.43, + "probability": 0.9854 + }, + { + "start": 24004.09, + "end": 24006.85, + "probability": 0.9968 + }, + { + "start": 24006.85, + "end": 24009.43, + "probability": 0.9709 + }, + { + "start": 24009.55, + "end": 24010.79, + "probability": 0.8262 + }, + { + "start": 24011.39, + "end": 24012.75, + "probability": 0.8565 + }, + { + "start": 24013.17, + "end": 24015.39, + "probability": 0.5729 + }, + { + "start": 24015.93, + "end": 24017.87, + "probability": 0.9694 + }, + { + "start": 24018.59, + "end": 24020.07, + "probability": 0.9343 + }, + { + "start": 24020.91, + "end": 24022.27, + "probability": 0.6648 + }, + { + "start": 24022.57, + "end": 24023.05, + "probability": 0.8865 + }, + { + "start": 24023.23, + "end": 24027.01, + "probability": 0.6849 + }, + { + "start": 24028.25, + "end": 24028.71, + "probability": 0.9363 + }, + { + "start": 24029.75, + "end": 24032.11, + "probability": 0.9865 + }, + { + "start": 24032.63, + "end": 24034.43, + "probability": 0.9398 + }, + { + "start": 24034.95, + "end": 24038.69, + "probability": 0.9892 + }, + { + "start": 24039.47, + "end": 24042.98, + "probability": 0.991 + }, + { + "start": 24043.23, + "end": 24045.79, + "probability": 0.9692 + }, + { + "start": 24045.89, + "end": 24046.99, + "probability": 0.9563 + }, + { + "start": 24047.21, + "end": 24048.61, + "probability": 0.9353 + }, + { + "start": 24048.77, + "end": 24049.59, + "probability": 0.7676 + }, + { + "start": 24049.97, + "end": 24050.49, + "probability": 0.9232 + }, + { + "start": 24050.51, + "end": 24051.77, + "probability": 0.914 + }, + { + "start": 24051.85, + "end": 24052.77, + "probability": 0.9126 + }, + { + "start": 24053.75, + "end": 24056.37, + "probability": 0.9463 + }, + { + "start": 24056.39, + "end": 24056.85, + "probability": 0.846 + }, + { + "start": 24057.51, + "end": 24061.73, + "probability": 0.7513 + }, + { + "start": 24062.39, + "end": 24064.21, + "probability": 0.5219 + }, + { + "start": 24065.86, + "end": 24067.45, + "probability": 0.3842 + }, + { + "start": 24067.79, + "end": 24068.21, + "probability": 0.4992 + }, + { + "start": 24068.25, + "end": 24070.57, + "probability": 0.5474 + }, + { + "start": 24070.85, + "end": 24070.85, + "probability": 0.0915 + }, + { + "start": 24070.85, + "end": 24074.81, + "probability": 0.7058 + }, + { + "start": 24075.75, + "end": 24076.57, + "probability": 0.8879 + }, + { + "start": 24076.97, + "end": 24078.45, + "probability": 0.8374 + }, + { + "start": 24078.51, + "end": 24079.27, + "probability": 0.6064 + }, + { + "start": 24079.89, + "end": 24084.03, + "probability": 0.9246 + }, + { + "start": 24084.29, + "end": 24088.17, + "probability": 0.9159 + }, + { + "start": 24088.43, + "end": 24088.92, + "probability": 0.6482 + }, + { + "start": 24090.96, + "end": 24092.93, + "probability": 0.5139 + }, + { + "start": 24092.99, + "end": 24096.81, + "probability": 0.9342 + }, + { + "start": 24097.61, + "end": 24101.39, + "probability": 0.744 + }, + { + "start": 24102.29, + "end": 24102.29, + "probability": 0.4418 + }, + { + "start": 24102.29, + "end": 24102.71, + "probability": 0.5142 + }, + { + "start": 24103.05, + "end": 24103.79, + "probability": 0.8474 + }, + { + "start": 24104.73, + "end": 24105.98, + "probability": 0.2876 + }, + { + "start": 24107.37, + "end": 24108.59, + "probability": 0.6615 + }, + { + "start": 24109.11, + "end": 24109.89, + "probability": 0.0428 + }, + { + "start": 24111.15, + "end": 24114.71, + "probability": 0.2728 + }, + { + "start": 24115.25, + "end": 24116.19, + "probability": 0.3558 + }, + { + "start": 24117.77, + "end": 24117.87, + "probability": 0.1897 + }, + { + "start": 24118.45, + "end": 24118.45, + "probability": 0.4831 + }, + { + "start": 24118.45, + "end": 24118.45, + "probability": 0.0465 + }, + { + "start": 24118.45, + "end": 24118.45, + "probability": 0.0739 + }, + { + "start": 24118.45, + "end": 24122.61, + "probability": 0.6533 + }, + { + "start": 24123.59, + "end": 24124.33, + "probability": 0.7753 + }, + { + "start": 24124.61, + "end": 24126.37, + "probability": 0.9937 + }, + { + "start": 24126.61, + "end": 24128.19, + "probability": 0.8216 + }, + { + "start": 24128.21, + "end": 24129.75, + "probability": 0.9721 + }, + { + "start": 24130.39, + "end": 24131.85, + "probability": 0.6798 + }, + { + "start": 24131.85, + "end": 24133.15, + "probability": 0.9719 + }, + { + "start": 24133.55, + "end": 24134.72, + "probability": 0.8271 + }, + { + "start": 24135.03, + "end": 24137.91, + "probability": 0.7543 + }, + { + "start": 24138.29, + "end": 24141.45, + "probability": 0.9296 + }, + { + "start": 24141.53, + "end": 24144.17, + "probability": 0.7585 + }, + { + "start": 24144.45, + "end": 24145.83, + "probability": 0.6747 + }, + { + "start": 24146.94, + "end": 24148.83, + "probability": 0.9762 + }, + { + "start": 24149.11, + "end": 24150.59, + "probability": 0.6036 + }, + { + "start": 24150.59, + "end": 24152.65, + "probability": 0.9832 + }, + { + "start": 24153.33, + "end": 24155.47, + "probability": 0.9911 + }, + { + "start": 24156.91, + "end": 24158.77, + "probability": 0.8935 + }, + { + "start": 24159.17, + "end": 24160.35, + "probability": 0.9377 + }, + { + "start": 24161.71, + "end": 24162.31, + "probability": 0.5396 + }, + { + "start": 24162.47, + "end": 24168.85, + "probability": 0.9002 + }, + { + "start": 24168.85, + "end": 24172.21, + "probability": 0.9562 + }, + { + "start": 24172.79, + "end": 24174.95, + "probability": 0.7544 + }, + { + "start": 24175.67, + "end": 24176.53, + "probability": 0.6734 + }, + { + "start": 24176.69, + "end": 24178.47, + "probability": 0.9672 + }, + { + "start": 24178.53, + "end": 24179.02, + "probability": 0.8438 + }, + { + "start": 24179.37, + "end": 24180.77, + "probability": 0.5058 + }, + { + "start": 24181.29, + "end": 24181.69, + "probability": 0.2823 + }, + { + "start": 24181.81, + "end": 24182.61, + "probability": 0.7613 + }, + { + "start": 24182.85, + "end": 24186.75, + "probability": 0.757 + }, + { + "start": 24187.69, + "end": 24187.79, + "probability": 0.0999 + }, + { + "start": 24187.79, + "end": 24188.09, + "probability": 0.5687 + }, + { + "start": 24189.09, + "end": 24189.89, + "probability": 0.7168 + }, + { + "start": 24190.53, + "end": 24192.59, + "probability": 0.7333 + }, + { + "start": 24192.59, + "end": 24194.99, + "probability": 0.9748 + }, + { + "start": 24195.53, + "end": 24196.65, + "probability": 0.9729 + }, + { + "start": 24197.21, + "end": 24198.33, + "probability": 0.9292 + }, + { + "start": 24198.37, + "end": 24200.99, + "probability": 0.9619 + }, + { + "start": 24201.91, + "end": 24202.42, + "probability": 0.9604 + }, + { + "start": 24203.55, + "end": 24205.55, + "probability": 0.9443 + }, + { + "start": 24205.65, + "end": 24206.27, + "probability": 0.6387 + }, + { + "start": 24206.51, + "end": 24206.97, + "probability": 0.7856 + }, + { + "start": 24207.03, + "end": 24207.79, + "probability": 0.548 + }, + { + "start": 24208.41, + "end": 24210.77, + "probability": 0.9087 + }, + { + "start": 24211.35, + "end": 24211.87, + "probability": 0.6133 + }, + { + "start": 24211.95, + "end": 24213.35, + "probability": 0.928 + }, + { + "start": 24213.51, + "end": 24214.45, + "probability": 0.6628 + }, + { + "start": 24214.63, + "end": 24215.43, + "probability": 0.8428 + }, + { + "start": 24215.63, + "end": 24216.35, + "probability": 0.9663 + }, + { + "start": 24216.45, + "end": 24216.83, + "probability": 0.9412 + }, + { + "start": 24217.23, + "end": 24218.93, + "probability": 0.8451 + }, + { + "start": 24219.29, + "end": 24219.79, + "probability": 0.5944 + }, + { + "start": 24219.89, + "end": 24220.55, + "probability": 0.8097 + }, + { + "start": 24220.81, + "end": 24221.91, + "probability": 0.9476 + }, + { + "start": 24222.41, + "end": 24225.33, + "probability": 0.9164 + }, + { + "start": 24226.03, + "end": 24227.33, + "probability": 0.8524 + }, + { + "start": 24227.75, + "end": 24230.32, + "probability": 0.6994 + }, + { + "start": 24230.83, + "end": 24231.89, + "probability": 0.8901 + }, + { + "start": 24232.45, + "end": 24234.39, + "probability": 0.8777 + }, + { + "start": 24234.83, + "end": 24236.63, + "probability": 0.985 + }, + { + "start": 24236.63, + "end": 24238.91, + "probability": 0.9175 + }, + { + "start": 24239.25, + "end": 24240.89, + "probability": 0.9237 + }, + { + "start": 24241.51, + "end": 24246.99, + "probability": 0.9718 + }, + { + "start": 24247.13, + "end": 24248.43, + "probability": 0.6438 + }, + { + "start": 24249.21, + "end": 24250.79, + "probability": 0.9912 + }, + { + "start": 24253.21, + "end": 24253.71, + "probability": 0.183 + }, + { + "start": 24255.09, + "end": 24260.27, + "probability": 0.6472 + }, + { + "start": 24260.71, + "end": 24262.91, + "probability": 0.9362 + }, + { + "start": 24263.01, + "end": 24263.85, + "probability": 0.5889 + }, + { + "start": 24264.07, + "end": 24266.75, + "probability": 0.6902 + }, + { + "start": 24266.75, + "end": 24268.25, + "probability": 0.8293 + }, + { + "start": 24268.75, + "end": 24269.55, + "probability": 0.7925 + }, + { + "start": 24269.61, + "end": 24271.83, + "probability": 0.503 + }, + { + "start": 24272.03, + "end": 24274.76, + "probability": 0.9635 + }, + { + "start": 24275.25, + "end": 24276.65, + "probability": 0.9299 + }, + { + "start": 24276.99, + "end": 24277.87, + "probability": 0.8837 + }, + { + "start": 24278.05, + "end": 24279.65, + "probability": 0.9803 + }, + { + "start": 24279.93, + "end": 24280.23, + "probability": 0.6001 + }, + { + "start": 24280.51, + "end": 24281.17, + "probability": 0.9391 + }, + { + "start": 24281.23, + "end": 24283.59, + "probability": 0.9592 + }, + { + "start": 24283.65, + "end": 24283.93, + "probability": 0.6268 + }, + { + "start": 24283.95, + "end": 24284.95, + "probability": 0.7506 + }, + { + "start": 24285.01, + "end": 24285.59, + "probability": 0.2776 + }, + { + "start": 24285.75, + "end": 24288.75, + "probability": 0.4409 + }, + { + "start": 24289.07, + "end": 24289.09, + "probability": 0.6212 + }, + { + "start": 24289.09, + "end": 24289.85, + "probability": 0.8937 + }, + { + "start": 24289.95, + "end": 24291.41, + "probability": 0.9819 + }, + { + "start": 24292.35, + "end": 24293.79, + "probability": 0.874 + }, + { + "start": 24293.83, + "end": 24295.35, + "probability": 0.8564 + }, + { + "start": 24296.03, + "end": 24298.53, + "probability": 0.9004 + }, + { + "start": 24298.65, + "end": 24300.37, + "probability": 0.7938 + }, + { + "start": 24300.85, + "end": 24302.91, + "probability": 0.9454 + }, + { + "start": 24304.93, + "end": 24310.29, + "probability": 0.9473 + }, + { + "start": 24311.03, + "end": 24314.19, + "probability": 0.6786 + }, + { + "start": 24314.33, + "end": 24315.09, + "probability": 0.9404 + }, + { + "start": 24315.15, + "end": 24315.72, + "probability": 0.7208 + }, + { + "start": 24336.43, + "end": 24336.81, + "probability": 0.6024 + }, + { + "start": 24337.91, + "end": 24340.89, + "probability": 0.8525 + }, + { + "start": 24340.91, + "end": 24344.73, + "probability": 0.9935 + }, + { + "start": 24346.05, + "end": 24346.23, + "probability": 0.5724 + }, + { + "start": 24346.29, + "end": 24348.45, + "probability": 0.9626 + }, + { + "start": 24348.45, + "end": 24350.85, + "probability": 0.998 + }, + { + "start": 24350.93, + "end": 24351.55, + "probability": 0.9225 + }, + { + "start": 24352.91, + "end": 24354.75, + "probability": 0.9995 + }, + { + "start": 24354.93, + "end": 24356.14, + "probability": 0.8449 + }, + { + "start": 24356.45, + "end": 24357.67, + "probability": 0.9605 + }, + { + "start": 24358.61, + "end": 24361.37, + "probability": 0.7776 + }, + { + "start": 24362.31, + "end": 24363.85, + "probability": 0.9697 + }, + { + "start": 24365.68, + "end": 24369.83, + "probability": 0.7542 + }, + { + "start": 24370.83, + "end": 24372.27, + "probability": 0.8647 + }, + { + "start": 24372.77, + "end": 24375.69, + "probability": 0.8921 + }, + { + "start": 24376.97, + "end": 24378.61, + "probability": 0.3969 + }, + { + "start": 24379.49, + "end": 24382.25, + "probability": 0.7989 + }, + { + "start": 24382.85, + "end": 24385.01, + "probability": 0.9486 + }, + { + "start": 24385.11, + "end": 24390.61, + "probability": 0.9062 + }, + { + "start": 24391.19, + "end": 24392.73, + "probability": 0.9377 + }, + { + "start": 24393.53, + "end": 24394.67, + "probability": 0.9771 + }, + { + "start": 24395.21, + "end": 24400.93, + "probability": 0.995 + }, + { + "start": 24401.55, + "end": 24405.65, + "probability": 0.9946 + }, + { + "start": 24406.43, + "end": 24410.51, + "probability": 0.9346 + }, + { + "start": 24410.89, + "end": 24411.49, + "probability": 0.9139 + }, + { + "start": 24411.85, + "end": 24412.31, + "probability": 0.9461 + }, + { + "start": 24412.97, + "end": 24413.45, + "probability": 0.5043 + }, + { + "start": 24414.21, + "end": 24416.23, + "probability": 0.9346 + }, + { + "start": 24416.83, + "end": 24417.79, + "probability": 0.9674 + }, + { + "start": 24417.93, + "end": 24420.68, + "probability": 0.9927 + }, + { + "start": 24421.29, + "end": 24422.41, + "probability": 0.958 + }, + { + "start": 24422.67, + "end": 24423.25, + "probability": 0.4153 + }, + { + "start": 24423.81, + "end": 24425.29, + "probability": 0.9305 + }, + { + "start": 24425.95, + "end": 24427.47, + "probability": 0.9941 + }, + { + "start": 24427.61, + "end": 24429.31, + "probability": 0.7658 + }, + { + "start": 24429.85, + "end": 24432.69, + "probability": 0.9096 + }, + { + "start": 24433.27, + "end": 24436.75, + "probability": 0.9727 + }, + { + "start": 24437.55, + "end": 24439.09, + "probability": 0.7517 + }, + { + "start": 24440.15, + "end": 24442.05, + "probability": 0.9307 + }, + { + "start": 24442.37, + "end": 24443.53, + "probability": 0.945 + }, + { + "start": 24443.59, + "end": 24446.03, + "probability": 0.7247 + }, + { + "start": 24446.61, + "end": 24450.15, + "probability": 0.6527 + }, + { + "start": 24450.41, + "end": 24450.89, + "probability": 0.7542 + }, + { + "start": 24451.01, + "end": 24453.01, + "probability": 0.9223 + }, + { + "start": 24454.05, + "end": 24455.73, + "probability": 0.9814 + }, + { + "start": 24456.61, + "end": 24458.61, + "probability": 0.7207 + }, + { + "start": 24459.39, + "end": 24459.95, + "probability": 0.6883 + }, + { + "start": 24460.65, + "end": 24461.19, + "probability": 0.6187 + }, + { + "start": 24461.25, + "end": 24461.59, + "probability": 0.4488 + }, + { + "start": 24462.23, + "end": 24463.71, + "probability": 0.5871 + }, + { + "start": 24483.41, + "end": 24486.23, + "probability": 0.4035 + }, + { + "start": 24486.83, + "end": 24486.85, + "probability": 0.0614 + }, + { + "start": 24486.85, + "end": 24486.85, + "probability": 0.1313 + }, + { + "start": 24486.85, + "end": 24486.85, + "probability": 0.1635 + }, + { + "start": 24486.85, + "end": 24488.79, + "probability": 0.6235 + }, + { + "start": 24489.63, + "end": 24491.49, + "probability": 0.5636 + }, + { + "start": 24491.49, + "end": 24493.39, + "probability": 0.5493 + }, + { + "start": 24493.71, + "end": 24493.81, + "probability": 0.0322 + }, + { + "start": 24493.81, + "end": 24495.17, + "probability": 0.6754 + }, + { + "start": 24495.23, + "end": 24497.03, + "probability": 0.945 + }, + { + "start": 24519.73, + "end": 24520.57, + "probability": 0.7106 + }, + { + "start": 24521.43, + "end": 24522.71, + "probability": 0.8729 + }, + { + "start": 24525.47, + "end": 24528.77, + "probability": 0.9987 + }, + { + "start": 24530.21, + "end": 24531.21, + "probability": 0.9523 + }, + { + "start": 24534.31, + "end": 24538.17, + "probability": 0.9985 + }, + { + "start": 24539.11, + "end": 24539.81, + "probability": 0.9267 + }, + { + "start": 24541.01, + "end": 24544.07, + "probability": 0.9875 + }, + { + "start": 24545.73, + "end": 24547.51, + "probability": 0.9834 + }, + { + "start": 24549.21, + "end": 24550.61, + "probability": 0.9684 + }, + { + "start": 24553.61, + "end": 24554.25, + "probability": 0.9378 + }, + { + "start": 24555.03, + "end": 24555.91, + "probability": 0.998 + }, + { + "start": 24556.45, + "end": 24557.49, + "probability": 0.7821 + }, + { + "start": 24558.97, + "end": 24565.37, + "probability": 0.9382 + }, + { + "start": 24566.35, + "end": 24568.01, + "probability": 0.9911 + }, + { + "start": 24568.71, + "end": 24569.31, + "probability": 0.9663 + }, + { + "start": 24571.53, + "end": 24572.79, + "probability": 0.8354 + }, + { + "start": 24577.45, + "end": 24578.47, + "probability": 0.9292 + }, + { + "start": 24579.63, + "end": 24585.47, + "probability": 0.9775 + }, + { + "start": 24588.59, + "end": 24589.45, + "probability": 0.9044 + }, + { + "start": 24591.63, + "end": 24594.77, + "probability": 0.9961 + }, + { + "start": 24595.31, + "end": 24596.47, + "probability": 0.9424 + }, + { + "start": 24598.59, + "end": 24600.73, + "probability": 0.9884 + }, + { + "start": 24601.83, + "end": 24602.47, + "probability": 0.148 + }, + { + "start": 24606.51, + "end": 24609.75, + "probability": 0.6581 + }, + { + "start": 24609.83, + "end": 24611.27, + "probability": 0.9725 + }, + { + "start": 24613.63, + "end": 24616.03, + "probability": 0.9593 + }, + { + "start": 24617.29, + "end": 24618.57, + "probability": 0.978 + }, + { + "start": 24619.85, + "end": 24623.67, + "probability": 0.9897 + }, + { + "start": 24624.71, + "end": 24626.35, + "probability": 0.9984 + }, + { + "start": 24627.71, + "end": 24629.31, + "probability": 0.9769 + }, + { + "start": 24629.65, + "end": 24632.25, + "probability": 0.5795 + }, + { + "start": 24632.93, + "end": 24635.09, + "probability": 0.7902 + }, + { + "start": 24636.04, + "end": 24641.11, + "probability": 0.7297 + }, + { + "start": 24641.25, + "end": 24643.23, + "probability": 0.9214 + }, + { + "start": 24644.39, + "end": 24646.25, + "probability": 0.1409 + }, + { + "start": 24647.13, + "end": 24648.47, + "probability": 0.8884 + }, + { + "start": 24648.47, + "end": 24648.63, + "probability": 0.0062 + }, + { + "start": 24650.51, + "end": 24652.07, + "probability": 0.8436 + }, + { + "start": 24652.11, + "end": 24653.57, + "probability": 0.9621 + }, + { + "start": 24653.61, + "end": 24654.87, + "probability": 0.894 + }, + { + "start": 24655.07, + "end": 24656.51, + "probability": 0.9938 + }, + { + "start": 24657.29, + "end": 24660.85, + "probability": 0.9742 + }, + { + "start": 24661.31, + "end": 24663.45, + "probability": 0.944 + }, + { + "start": 24664.31, + "end": 24665.21, + "probability": 0.9375 + }, + { + "start": 24665.35, + "end": 24665.77, + "probability": 0.7822 + }, + { + "start": 24666.05, + "end": 24666.59, + "probability": 0.9327 + }, + { + "start": 24667.21, + "end": 24668.51, + "probability": 0.4885 + }, + { + "start": 24668.71, + "end": 24669.92, + "probability": 0.9417 + }, + { + "start": 24670.31, + "end": 24671.37, + "probability": 0.247 + }, + { + "start": 24671.37, + "end": 24672.49, + "probability": 0.6175 + }, + { + "start": 24672.49, + "end": 24674.07, + "probability": 0.4673 + }, + { + "start": 24674.55, + "end": 24676.35, + "probability": 0.4262 + }, + { + "start": 24677.15, + "end": 24680.67, + "probability": 0.9663 + }, + { + "start": 24681.05, + "end": 24682.01, + "probability": 0.8708 + }, + { + "start": 24682.85, + "end": 24684.23, + "probability": 0.9962 + }, + { + "start": 24684.89, + "end": 24686.65, + "probability": 0.9961 + }, + { + "start": 24688.13, + "end": 24689.73, + "probability": 0.9764 + }, + { + "start": 24690.85, + "end": 24695.15, + "probability": 0.9824 + }, + { + "start": 24695.51, + "end": 24696.21, + "probability": 0.9744 + }, + { + "start": 24698.81, + "end": 24702.65, + "probability": 0.9885 + }, + { + "start": 24703.65, + "end": 24707.65, + "probability": 0.8652 + }, + { + "start": 24709.57, + "end": 24711.39, + "probability": 0.9388 + }, + { + "start": 24711.53, + "end": 24713.23, + "probability": 0.9511 + }, + { + "start": 24713.81, + "end": 24719.55, + "probability": 0.9899 + }, + { + "start": 24721.37, + "end": 24722.49, + "probability": 0.6948 + }, + { + "start": 24723.33, + "end": 24724.91, + "probability": 0.853 + }, + { + "start": 24725.87, + "end": 24727.81, + "probability": 0.9962 + }, + { + "start": 24729.19, + "end": 24730.25, + "probability": 0.9964 + }, + { + "start": 24731.45, + "end": 24732.99, + "probability": 0.9134 + }, + { + "start": 24733.21, + "end": 24734.17, + "probability": 0.8394 + }, + { + "start": 24734.25, + "end": 24735.49, + "probability": 0.9448 + }, + { + "start": 24735.81, + "end": 24735.81, + "probability": 0.7959 + }, + { + "start": 24736.73, + "end": 24739.77, + "probability": 0.8673 + }, + { + "start": 24740.73, + "end": 24744.63, + "probability": 0.938 + }, + { + "start": 24744.95, + "end": 24747.53, + "probability": 0.8018 + }, + { + "start": 24748.35, + "end": 24750.25, + "probability": 0.9159 + }, + { + "start": 24750.99, + "end": 24753.35, + "probability": 0.6021 + }, + { + "start": 24753.89, + "end": 24756.51, + "probability": 0.8372 + }, + { + "start": 24757.25, + "end": 24758.69, + "probability": 0.2779 + }, + { + "start": 24759.11, + "end": 24761.85, + "probability": 0.8601 + }, + { + "start": 24761.89, + "end": 24762.92, + "probability": 0.7642 + }, + { + "start": 24763.55, + "end": 24763.63, + "probability": 0.3809 + }, + { + "start": 24763.93, + "end": 24766.05, + "probability": 0.6877 + }, + { + "start": 24766.31, + "end": 24766.61, + "probability": 0.1816 + }, + { + "start": 24766.71, + "end": 24767.65, + "probability": 0.7627 + }, + { + "start": 24767.81, + "end": 24768.67, + "probability": 0.7539 + }, + { + "start": 24768.77, + "end": 24770.78, + "probability": 0.89 + }, + { + "start": 24771.29, + "end": 24772.85, + "probability": 0.4999 + }, + { + "start": 24773.07, + "end": 24774.99, + "probability": 0.8945 + }, + { + "start": 24775.13, + "end": 24775.79, + "probability": 0.8867 + }, + { + "start": 24776.03, + "end": 24780.67, + "probability": 0.9448 + }, + { + "start": 24782.05, + "end": 24783.49, + "probability": 0.3927 + }, + { + "start": 24783.59, + "end": 24784.19, + "probability": 0.5129 + }, + { + "start": 24784.29, + "end": 24789.39, + "probability": 0.9989 + }, + { + "start": 24791.19, + "end": 24793.01, + "probability": 0.7759 + }, + { + "start": 24793.13, + "end": 24795.73, + "probability": 0.9821 + }, + { + "start": 24796.05, + "end": 24799.11, + "probability": 0.6674 + }, + { + "start": 24800.09, + "end": 24800.43, + "probability": 0.4299 + }, + { + "start": 24800.43, + "end": 24804.41, + "probability": 0.8905 + }, + { + "start": 24804.87, + "end": 24807.27, + "probability": 0.8852 + }, + { + "start": 24808.13, + "end": 24808.89, + "probability": 0.8863 + }, + { + "start": 24808.93, + "end": 24809.69, + "probability": 0.7689 + }, + { + "start": 24809.75, + "end": 24810.63, + "probability": 0.667 + }, + { + "start": 24810.63, + "end": 24813.21, + "probability": 0.9875 + }, + { + "start": 24813.59, + "end": 24814.67, + "probability": 0.8802 + }, + { + "start": 24814.89, + "end": 24815.65, + "probability": 0.1359 + }, + { + "start": 24817.03, + "end": 24818.65, + "probability": 0.4171 + }, + { + "start": 24818.77, + "end": 24819.05, + "probability": 0.2732 + }, + { + "start": 24819.05, + "end": 24820.13, + "probability": 0.302 + }, + { + "start": 24821.31, + "end": 24821.99, + "probability": 0.5624 + }, + { + "start": 24821.99, + "end": 24821.99, + "probability": 0.373 + }, + { + "start": 24822.31, + "end": 24825.05, + "probability": 0.7389 + }, + { + "start": 24825.29, + "end": 24826.57, + "probability": 0.8008 + }, + { + "start": 24826.73, + "end": 24827.79, + "probability": 0.5746 + }, + { + "start": 24828.01, + "end": 24829.53, + "probability": 0.8236 + }, + { + "start": 24830.39, + "end": 24830.87, + "probability": 0.1918 + }, + { + "start": 24830.87, + "end": 24830.97, + "probability": 0.1167 + }, + { + "start": 24831.55, + "end": 24835.13, + "probability": 0.4684 + }, + { + "start": 24835.49, + "end": 24836.57, + "probability": 0.8347 + }, + { + "start": 24836.73, + "end": 24839.25, + "probability": 0.7197 + }, + { + "start": 24839.29, + "end": 24841.31, + "probability": 0.9829 + }, + { + "start": 24841.39, + "end": 24843.19, + "probability": 0.9082 + }, + { + "start": 24843.37, + "end": 24845.39, + "probability": 0.8677 + }, + { + "start": 24845.83, + "end": 24848.47, + "probability": 0.9824 + }, + { + "start": 24849.65, + "end": 24849.65, + "probability": 0.3111 + }, + { + "start": 24849.65, + "end": 24851.53, + "probability": 0.942 + }, + { + "start": 24852.01, + "end": 24853.61, + "probability": 0.9883 + }, + { + "start": 24853.83, + "end": 24855.45, + "probability": 0.7616 + }, + { + "start": 24856.63, + "end": 24857.75, + "probability": 0.7983 + }, + { + "start": 24859.13, + "end": 24864.19, + "probability": 0.9908 + }, + { + "start": 24864.73, + "end": 24865.45, + "probability": 0.9983 + }, + { + "start": 24866.07, + "end": 24869.55, + "probability": 0.8619 + }, + { + "start": 24870.51, + "end": 24871.35, + "probability": 0.7446 + }, + { + "start": 24871.57, + "end": 24872.57, + "probability": 0.9934 + }, + { + "start": 24873.03, + "end": 24873.25, + "probability": 0.8467 + }, + { + "start": 24873.33, + "end": 24876.23, + "probability": 0.9489 + }, + { + "start": 24876.33, + "end": 24877.23, + "probability": 0.863 + }, + { + "start": 24877.75, + "end": 24879.12, + "probability": 0.9729 + }, + { + "start": 24880.23, + "end": 24882.63, + "probability": 0.8516 + }, + { + "start": 24883.43, + "end": 24884.57, + "probability": 0.6568 + }, + { + "start": 24886.09, + "end": 24888.87, + "probability": 0.979 + }, + { + "start": 24890.71, + "end": 24892.09, + "probability": 0.8568 + }, + { + "start": 24892.63, + "end": 24893.87, + "probability": 0.9421 + }, + { + "start": 24894.99, + "end": 24898.31, + "probability": 0.7812 + }, + { + "start": 24898.93, + "end": 24901.85, + "probability": 0.7422 + }, + { + "start": 24902.65, + "end": 24904.1, + "probability": 0.9652 + }, + { + "start": 24904.35, + "end": 24905.87, + "probability": 0.8157 + }, + { + "start": 24906.85, + "end": 24909.91, + "probability": 0.9219 + }, + { + "start": 24910.59, + "end": 24913.35, + "probability": 0.9882 + }, + { + "start": 24914.49, + "end": 24916.21, + "probability": 0.7841 + }, + { + "start": 24916.73, + "end": 24917.55, + "probability": 0.9898 + }, + { + "start": 24917.91, + "end": 24918.73, + "probability": 0.8719 + }, + { + "start": 24919.67, + "end": 24922.55, + "probability": 0.6356 + }, + { + "start": 24923.27, + "end": 24925.69, + "probability": 0.8433 + }, + { + "start": 24926.59, + "end": 24929.19, + "probability": 0.658 + }, + { + "start": 24929.49, + "end": 24930.57, + "probability": 0.8531 + }, + { + "start": 24931.69, + "end": 24932.51, + "probability": 0.6838 + }, + { + "start": 24933.67, + "end": 24936.93, + "probability": 0.9092 + }, + { + "start": 24938.77, + "end": 24942.79, + "probability": 0.9965 + }, + { + "start": 24943.87, + "end": 24949.05, + "probability": 0.9775 + }, + { + "start": 24950.97, + "end": 24952.49, + "probability": 0.985 + }, + { + "start": 24953.67, + "end": 24959.47, + "probability": 0.8662 + }, + { + "start": 24960.55, + "end": 24964.75, + "probability": 0.9225 + }, + { + "start": 24964.85, + "end": 24965.61, + "probability": 0.6421 + }, + { + "start": 24966.03, + "end": 24968.77, + "probability": 0.9154 + }, + { + "start": 24970.53, + "end": 24971.13, + "probability": 0.8539 + }, + { + "start": 24972.55, + "end": 24973.47, + "probability": 0.9668 + }, + { + "start": 24974.49, + "end": 24976.49, + "probability": 0.9536 + }, + { + "start": 24978.49, + "end": 24980.45, + "probability": 0.9989 + }, + { + "start": 24981.19, + "end": 24983.47, + "probability": 0.6786 + }, + { + "start": 24984.05, + "end": 24985.07, + "probability": 0.9457 + }, + { + "start": 24986.37, + "end": 24987.87, + "probability": 0.9146 + }, + { + "start": 24988.87, + "end": 24992.53, + "probability": 0.9289 + }, + { + "start": 24993.13, + "end": 24994.45, + "probability": 0.6407 + }, + { + "start": 24995.37, + "end": 24997.87, + "probability": 0.1953 + }, + { + "start": 24998.49, + "end": 25001.77, + "probability": 0.8158 + }, + { + "start": 25003.57, + "end": 25008.33, + "probability": 0.9746 + }, + { + "start": 25009.15, + "end": 25011.17, + "probability": 0.9282 + }, + { + "start": 25013.61, + "end": 25015.95, + "probability": 0.6081 + }, + { + "start": 25016.61, + "end": 25019.43, + "probability": 0.673 + }, + { + "start": 25020.11, + "end": 25023.13, + "probability": 0.9067 + }, + { + "start": 25023.23, + "end": 25023.83, + "probability": 0.3985 + }, + { + "start": 25023.89, + "end": 25024.19, + "probability": 0.7115 + }, + { + "start": 25024.23, + "end": 25024.69, + "probability": 0.7645 + }, + { + "start": 25026.01, + "end": 25028.89, + "probability": 0.946 + }, + { + "start": 25030.01, + "end": 25031.23, + "probability": 0.9418 + }, + { + "start": 25034.19, + "end": 25037.69, + "probability": 0.9873 + }, + { + "start": 25038.67, + "end": 25040.11, + "probability": 0.5023 + }, + { + "start": 25041.49, + "end": 25043.27, + "probability": 0.9619 + }, + { + "start": 25044.69, + "end": 25047.87, + "probability": 0.989 + }, + { + "start": 25048.63, + "end": 25049.97, + "probability": 0.9496 + }, + { + "start": 25050.49, + "end": 25051.69, + "probability": 0.7325 + }, + { + "start": 25053.01, + "end": 25054.81, + "probability": 0.9792 + }, + { + "start": 25055.65, + "end": 25057.35, + "probability": 0.9393 + }, + { + "start": 25058.37, + "end": 25059.67, + "probability": 0.6131 + }, + { + "start": 25060.17, + "end": 25064.01, + "probability": 0.7781 + }, + { + "start": 25064.27, + "end": 25065.25, + "probability": 0.928 + }, + { + "start": 25066.07, + "end": 25072.43, + "probability": 0.9441 + }, + { + "start": 25072.43, + "end": 25077.99, + "probability": 0.9941 + }, + { + "start": 25078.69, + "end": 25082.35, + "probability": 0.9712 + }, + { + "start": 25083.21, + "end": 25085.55, + "probability": 0.9866 + }, + { + "start": 25085.67, + "end": 25086.75, + "probability": 0.8995 + }, + { + "start": 25087.87, + "end": 25090.83, + "probability": 0.9965 + }, + { + "start": 25090.97, + "end": 25092.11, + "probability": 0.5866 + }, + { + "start": 25092.55, + "end": 25096.13, + "probability": 0.9806 + }, + { + "start": 25096.35, + "end": 25096.73, + "probability": 0.546 + }, + { + "start": 25097.01, + "end": 25097.89, + "probability": 0.9155 + }, + { + "start": 25098.37, + "end": 25099.19, + "probability": 0.9194 + }, + { + "start": 25099.51, + "end": 25100.09, + "probability": 0.6437 + }, + { + "start": 25100.15, + "end": 25101.25, + "probability": 0.8375 + }, + { + "start": 25101.81, + "end": 25102.92, + "probability": 0.8669 + }, + { + "start": 25103.59, + "end": 25104.21, + "probability": 0.6167 + }, + { + "start": 25104.43, + "end": 25106.23, + "probability": 0.8706 + }, + { + "start": 25106.37, + "end": 25107.79, + "probability": 0.9533 + }, + { + "start": 25108.13, + "end": 25108.39, + "probability": 0.7834 + }, + { + "start": 25108.47, + "end": 25109.09, + "probability": 0.977 + }, + { + "start": 25109.11, + "end": 25109.73, + "probability": 0.9545 + }, + { + "start": 25109.77, + "end": 25109.99, + "probability": 0.5194 + }, + { + "start": 25110.19, + "end": 25111.11, + "probability": 0.9199 + }, + { + "start": 25111.23, + "end": 25113.33, + "probability": 0.9687 + }, + { + "start": 25114.13, + "end": 25115.29, + "probability": 0.9961 + }, + { + "start": 25116.55, + "end": 25117.11, + "probability": 0.8503 + }, + { + "start": 25118.99, + "end": 25120.49, + "probability": 0.9945 + }, + { + "start": 25122.25, + "end": 25124.59, + "probability": 0.9932 + }, + { + "start": 25124.69, + "end": 25127.89, + "probability": 0.9712 + }, + { + "start": 25128.75, + "end": 25130.03, + "probability": 0.8031 + }, + { + "start": 25131.57, + "end": 25132.63, + "probability": 0.8727 + }, + { + "start": 25133.49, + "end": 25136.61, + "probability": 0.8966 + }, + { + "start": 25137.21, + "end": 25138.39, + "probability": 0.2866 + }, + { + "start": 25138.39, + "end": 25142.77, + "probability": 0.7784 + }, + { + "start": 25142.79, + "end": 25143.55, + "probability": 0.6234 + }, + { + "start": 25143.69, + "end": 25144.57, + "probability": 0.8896 + }, + { + "start": 25144.79, + "end": 25145.65, + "probability": 0.9007 + }, + { + "start": 25145.73, + "end": 25145.99, + "probability": 0.7666 + }, + { + "start": 25146.17, + "end": 25147.93, + "probability": 0.8073 + }, + { + "start": 25148.23, + "end": 25151.07, + "probability": 0.8802 + }, + { + "start": 25151.07, + "end": 25152.85, + "probability": 0.6356 + }, + { + "start": 25152.89, + "end": 25154.83, + "probability": 0.573 + }, + { + "start": 25155.57, + "end": 25156.41, + "probability": 0.8117 + }, + { + "start": 25156.91, + "end": 25158.21, + "probability": 0.829 + }, + { + "start": 25158.77, + "end": 25158.83, + "probability": 0.1155 + }, + { + "start": 25158.83, + "end": 25160.36, + "probability": 0.1867 + }, + { + "start": 25160.75, + "end": 25160.79, + "probability": 0.2677 + }, + { + "start": 25160.79, + "end": 25161.03, + "probability": 0.1611 + }, + { + "start": 25161.31, + "end": 25163.71, + "probability": 0.2139 + }, + { + "start": 25164.39, + "end": 25165.09, + "probability": 0.2459 + }, + { + "start": 25165.17, + "end": 25165.25, + "probability": 0.434 + }, + { + "start": 25165.25, + "end": 25166.92, + "probability": 0.7607 + }, + { + "start": 25167.51, + "end": 25168.35, + "probability": 0.3096 + }, + { + "start": 25168.49, + "end": 25169.63, + "probability": 0.6707 + }, + { + "start": 25169.83, + "end": 25171.59, + "probability": 0.1812 + }, + { + "start": 25171.95, + "end": 25172.77, + "probability": 0.476 + }, + { + "start": 25172.77, + "end": 25173.39, + "probability": 0.6975 + }, + { + "start": 25173.55, + "end": 25173.77, + "probability": 0.2131 + }, + { + "start": 25173.85, + "end": 25174.97, + "probability": 0.9521 + }, + { + "start": 25175.09, + "end": 25176.36, + "probability": 0.0568 + }, + { + "start": 25176.89, + "end": 25177.04, + "probability": 0.0986 + }, + { + "start": 25177.47, + "end": 25177.59, + "probability": 0.3196 + }, + { + "start": 25177.71, + "end": 25178.55, + "probability": 0.3228 + }, + { + "start": 25179.23, + "end": 25180.53, + "probability": 0.2698 + }, + { + "start": 25180.53, + "end": 25182.57, + "probability": 0.5396 + }, + { + "start": 25182.89, + "end": 25183.99, + "probability": 0.5317 + }, + { + "start": 25185.01, + "end": 25186.25, + "probability": 0.4269 + }, + { + "start": 25186.39, + "end": 25186.93, + "probability": 0.0016 + }, + { + "start": 25186.93, + "end": 25188.05, + "probability": 0.3516 + }, + { + "start": 25188.77, + "end": 25188.79, + "probability": 0.0091 + }, + { + "start": 25188.79, + "end": 25192.51, + "probability": 0.4003 + }, + { + "start": 25192.53, + "end": 25193.35, + "probability": 0.5911 + }, + { + "start": 25194.63, + "end": 25195.56, + "probability": 0.7048 + }, + { + "start": 25196.13, + "end": 25197.24, + "probability": 0.0731 + }, + { + "start": 25197.89, + "end": 25198.24, + "probability": 0.374 + }, + { + "start": 25199.07, + "end": 25200.35, + "probability": 0.1269 + }, + { + "start": 25200.37, + "end": 25200.89, + "probability": 0.2499 + }, + { + "start": 25200.95, + "end": 25201.09, + "probability": 0.0435 + }, + { + "start": 25201.09, + "end": 25201.09, + "probability": 0.0819 + }, + { + "start": 25201.09, + "end": 25202.35, + "probability": 0.4421 + }, + { + "start": 25203.7, + "end": 25210.23, + "probability": 0.7761 + }, + { + "start": 25212.19, + "end": 25213.15, + "probability": 0.2456 + }, + { + "start": 25213.63, + "end": 25214.33, + "probability": 0.2543 + }, + { + "start": 25214.75, + "end": 25215.09, + "probability": 0.5513 + }, + { + "start": 25215.75, + "end": 25216.55, + "probability": 0.4002 + }, + { + "start": 25216.71, + "end": 25218.91, + "probability": 0.3522 + }, + { + "start": 25219.63, + "end": 25221.71, + "probability": 0.382 + }, + { + "start": 25221.93, + "end": 25225.17, + "probability": 0.947 + }, + { + "start": 25226.19, + "end": 25230.05, + "probability": 0.7899 + }, + { + "start": 25230.67, + "end": 25232.87, + "probability": 0.7887 + }, + { + "start": 25234.03, + "end": 25234.07, + "probability": 0.0379 + }, + { + "start": 25234.07, + "end": 25237.03, + "probability": 0.8435 + }, + { + "start": 25237.45, + "end": 25238.49, + "probability": 0.9939 + }, + { + "start": 25239.43, + "end": 25242.61, + "probability": 0.9917 + }, + { + "start": 25243.03, + "end": 25243.52, + "probability": 0.7488 + }, + { + "start": 25244.51, + "end": 25247.85, + "probability": 0.9766 + }, + { + "start": 25248.01, + "end": 25249.75, + "probability": 0.7477 + }, + { + "start": 25249.91, + "end": 25252.99, + "probability": 0.9233 + }, + { + "start": 25253.07, + "end": 25253.77, + "probability": 0.782 + }, + { + "start": 25253.87, + "end": 25256.35, + "probability": 0.7486 + }, + { + "start": 25256.55, + "end": 25257.59, + "probability": 0.8741 + }, + { + "start": 25258.33, + "end": 25258.49, + "probability": 0.278 + }, + { + "start": 25258.59, + "end": 25264.81, + "probability": 0.9385 + }, + { + "start": 25265.53, + "end": 25275.43, + "probability": 0.8685 + }, + { + "start": 25275.77, + "end": 25276.27, + "probability": 0.7507 + }, + { + "start": 25276.87, + "end": 25280.29, + "probability": 0.8951 + }, + { + "start": 25280.85, + "end": 25281.65, + "probability": 0.9865 + }, + { + "start": 25282.47, + "end": 25283.65, + "probability": 0.8973 + }, + { + "start": 25284.01, + "end": 25285.03, + "probability": 0.9526 + }, + { + "start": 25285.41, + "end": 25286.87, + "probability": 0.8933 + }, + { + "start": 25287.49, + "end": 25289.21, + "probability": 0.8066 + }, + { + "start": 25291.85, + "end": 25295.59, + "probability": 0.9105 + }, + { + "start": 25295.73, + "end": 25298.43, + "probability": 0.6046 + }, + { + "start": 25299.13, + "end": 25299.53, + "probability": 0.6357 + }, + { + "start": 25299.55, + "end": 25299.87, + "probability": 0.6938 + }, + { + "start": 25299.93, + "end": 25300.35, + "probability": 0.9492 + }, + { + "start": 25303.87, + "end": 25307.07, + "probability": 0.2627 + }, + { + "start": 25307.45, + "end": 25307.57, + "probability": 0.0796 + }, + { + "start": 25307.57, + "end": 25307.57, + "probability": 0.0096 + }, + { + "start": 25307.57, + "end": 25307.57, + "probability": 0.0766 + }, + { + "start": 25307.57, + "end": 25308.73, + "probability": 0.1491 + }, + { + "start": 25309.95, + "end": 25313.87, + "probability": 0.7064 + }, + { + "start": 25314.49, + "end": 25316.29, + "probability": 0.8801 + }, + { + "start": 25316.61, + "end": 25318.11, + "probability": 0.7956 + }, + { + "start": 25318.53, + "end": 25320.49, + "probability": 0.8027 + }, + { + "start": 25320.63, + "end": 25320.75, + "probability": 0.5322 + }, + { + "start": 25320.93, + "end": 25323.09, + "probability": 0.4713 + }, + { + "start": 25323.09, + "end": 25324.53, + "probability": 0.6167 + }, + { + "start": 25324.73, + "end": 25328.65, + "probability": 0.8599 + }, + { + "start": 25328.65, + "end": 25332.95, + "probability": 0.9577 + }, + { + "start": 25333.37, + "end": 25335.57, + "probability": 0.9976 + }, + { + "start": 25336.67, + "end": 25339.09, + "probability": 0.9946 + }, + { + "start": 25339.09, + "end": 25343.48, + "probability": 0.774 + }, + { + "start": 25343.59, + "end": 25347.35, + "probability": 0.8993 + }, + { + "start": 25350.45, + "end": 25350.77, + "probability": 0.791 + }, + { + "start": 25350.77, + "end": 25351.95, + "probability": 0.6074 + }, + { + "start": 25351.95, + "end": 25354.25, + "probability": 0.6903 + }, + { + "start": 25354.33, + "end": 25355.63, + "probability": 0.83 + }, + { + "start": 25356.17, + "end": 25357.79, + "probability": 0.7831 + }, + { + "start": 25357.83, + "end": 25360.89, + "probability": 0.8972 + }, + { + "start": 25361.01, + "end": 25364.33, + "probability": 0.1367 + }, + { + "start": 25364.95, + "end": 25367.43, + "probability": 0.3736 + }, + { + "start": 25367.61, + "end": 25370.53, + "probability": 0.5602 + }, + { + "start": 25371.11, + "end": 25371.91, + "probability": 0.5083 + }, + { + "start": 25372.13, + "end": 25374.27, + "probability": 0.7674 + }, + { + "start": 25374.47, + "end": 25375.05, + "probability": 0.2988 + }, + { + "start": 25375.05, + "end": 25375.85, + "probability": 0.276 + }, + { + "start": 25375.85, + "end": 25376.23, + "probability": 0.1616 + }, + { + "start": 25376.27, + "end": 25376.77, + "probability": 0.5471 + }, + { + "start": 25376.85, + "end": 25378.05, + "probability": 0.7397 + }, + { + "start": 25378.39, + "end": 25379.59, + "probability": 0.7396 + }, + { + "start": 25379.99, + "end": 25381.65, + "probability": 0.8191 + }, + { + "start": 25381.71, + "end": 25382.57, + "probability": 0.7681 + }, + { + "start": 25382.99, + "end": 25384.11, + "probability": 0.8277 + }, + { + "start": 25384.19, + "end": 25385.47, + "probability": 0.7318 + }, + { + "start": 25385.51, + "end": 25387.89, + "probability": 0.4633 + }, + { + "start": 25388.27, + "end": 25389.55, + "probability": 0.9409 + }, + { + "start": 25390.13, + "end": 25390.61, + "probability": 0.5126 + }, + { + "start": 25390.73, + "end": 25391.01, + "probability": 0.6786 + }, + { + "start": 25391.73, + "end": 25394.99, + "probability": 0.1488 + }, + { + "start": 25395.75, + "end": 25397.11, + "probability": 0.9306 + }, + { + "start": 25397.79, + "end": 25402.07, + "probability": 0.843 + }, + { + "start": 25402.93, + "end": 25405.05, + "probability": 0.7997 + }, + { + "start": 25418.37, + "end": 25418.71, + "probability": 0.4756 + }, + { + "start": 25432.99, + "end": 25433.55, + "probability": 0.5053 + }, + { + "start": 25436.33, + "end": 25438.71, + "probability": 0.2881 + }, + { + "start": 25440.64, + "end": 25444.77, + "probability": 0.5574 + }, + { + "start": 25445.17, + "end": 25445.17, + "probability": 0.0354 + }, + { + "start": 25445.17, + "end": 25446.95, + "probability": 0.6293 + }, + { + "start": 25448.09, + "end": 25450.55, + "probability": 0.8187 + }, + { + "start": 25451.31, + "end": 25452.07, + "probability": 0.9837 + }, + { + "start": 25454.51, + "end": 25456.65, + "probability": 0.7814 + }, + { + "start": 25457.79, + "end": 25460.49, + "probability": 0.6628 + }, + { + "start": 25461.89, + "end": 25463.33, + "probability": 0.7754 + }, + { + "start": 25465.19, + "end": 25468.77, + "probability": 0.939 + }, + { + "start": 25469.23, + "end": 25469.63, + "probability": 0.8189 + }, + { + "start": 25471.01, + "end": 25475.55, + "probability": 0.9436 + }, + { + "start": 25476.87, + "end": 25478.03, + "probability": 0.9324 + }, + { + "start": 25478.79, + "end": 25479.27, + "probability": 0.5803 + }, + { + "start": 25479.79, + "end": 25481.11, + "probability": 0.7737 + }, + { + "start": 25482.13, + "end": 25483.67, + "probability": 0.8291 + }, + { + "start": 25484.03, + "end": 25485.53, + "probability": 0.9948 + }, + { + "start": 25485.91, + "end": 25487.89, + "probability": 0.6351 + }, + { + "start": 25488.07, + "end": 25488.37, + "probability": 0.9763 + }, + { + "start": 25489.91, + "end": 25491.61, + "probability": 0.1044 + }, + { + "start": 25491.61, + "end": 25493.25, + "probability": 0.3901 + }, + { + "start": 25493.39, + "end": 25494.09, + "probability": 0.1982 + }, + { + "start": 25494.57, + "end": 25495.39, + "probability": 0.7216 + }, + { + "start": 25495.39, + "end": 25496.23, + "probability": 0.3295 + }, + { + "start": 25497.99, + "end": 25500.49, + "probability": 0.6339 + }, + { + "start": 25501.63, + "end": 25504.15, + "probability": 0.7897 + }, + { + "start": 25506.03, + "end": 25508.89, + "probability": 0.9951 + }, + { + "start": 25508.89, + "end": 25512.21, + "probability": 0.9685 + }, + { + "start": 25512.87, + "end": 25513.69, + "probability": 0.7796 + }, + { + "start": 25514.15, + "end": 25515.17, + "probability": 0.9634 + }, + { + "start": 25516.01, + "end": 25519.23, + "probability": 0.945 + }, + { + "start": 25519.91, + "end": 25520.55, + "probability": 0.7472 + }, + { + "start": 25520.67, + "end": 25521.95, + "probability": 0.9846 + }, + { + "start": 25522.01, + "end": 25524.53, + "probability": 0.9901 + }, + { + "start": 25525.21, + "end": 25526.59, + "probability": 0.9609 + }, + { + "start": 25527.43, + "end": 25527.85, + "probability": 0.6359 + }, + { + "start": 25528.17, + "end": 25529.31, + "probability": 0.7713 + }, + { + "start": 25529.51, + "end": 25533.15, + "probability": 0.9921 + }, + { + "start": 25534.46, + "end": 25537.93, + "probability": 0.8648 + }, + { + "start": 25538.53, + "end": 25539.17, + "probability": 0.9789 + }, + { + "start": 25540.07, + "end": 25543.53, + "probability": 0.9153 + }, + { + "start": 25544.43, + "end": 25546.93, + "probability": 0.9906 + }, + { + "start": 25547.69, + "end": 25549.67, + "probability": 0.9755 + }, + { + "start": 25550.19, + "end": 25551.69, + "probability": 0.9823 + }, + { + "start": 25552.23, + "end": 25558.79, + "probability": 0.9696 + }, + { + "start": 25559.79, + "end": 25563.8, + "probability": 0.9183 + }, + { + "start": 25565.33, + "end": 25571.71, + "probability": 0.9911 + }, + { + "start": 25572.67, + "end": 25576.91, + "probability": 0.867 + }, + { + "start": 25579.39, + "end": 25580.89, + "probability": 0.5512 + }, + { + "start": 25584.55, + "end": 25586.03, + "probability": 0.4898 + }, + { + "start": 25587.03, + "end": 25589.35, + "probability": 0.7864 + }, + { + "start": 25589.35, + "end": 25593.47, + "probability": 0.6996 + }, + { + "start": 25594.23, + "end": 25595.21, + "probability": 0.9532 + }, + { + "start": 25598.01, + "end": 25599.33, + "probability": 0.6656 + }, + { + "start": 25599.79, + "end": 25602.69, + "probability": 0.7957 + }, + { + "start": 25603.11, + "end": 25604.5, + "probability": 0.8807 + }, + { + "start": 25605.09, + "end": 25607.61, + "probability": 0.972 + }, + { + "start": 25608.55, + "end": 25612.77, + "probability": 0.861 + }, + { + "start": 25613.11, + "end": 25615.89, + "probability": 0.9034 + }, + { + "start": 25616.75, + "end": 25621.85, + "probability": 0.9713 + }, + { + "start": 25622.69, + "end": 25625.75, + "probability": 0.9605 + }, + { + "start": 25627.33, + "end": 25630.89, + "probability": 0.8687 + }, + { + "start": 25630.93, + "end": 25631.71, + "probability": 0.8726 + }, + { + "start": 25633.03, + "end": 25634.13, + "probability": 0.6939 + }, + { + "start": 25634.83, + "end": 25636.39, + "probability": 0.9963 + }, + { + "start": 25637.47, + "end": 25639.41, + "probability": 0.6971 + }, + { + "start": 25640.47, + "end": 25641.21, + "probability": 0.7522 + }, + { + "start": 25643.25, + "end": 25643.79, + "probability": 0.6838 + }, + { + "start": 25644.79, + "end": 25644.89, + "probability": 0.345 + }, + { + "start": 25647.11, + "end": 25648.41, + "probability": 0.9915 + }, + { + "start": 25650.23, + "end": 25652.09, + "probability": 0.9331 + }, + { + "start": 25653.03, + "end": 25653.73, + "probability": 0.7685 + }, + { + "start": 25654.09, + "end": 25656.81, + "probability": 0.8687 + }, + { + "start": 25657.33, + "end": 25661.67, + "probability": 0.9651 + }, + { + "start": 25662.15, + "end": 25665.87, + "probability": 0.8281 + }, + { + "start": 25665.87, + "end": 25668.33, + "probability": 0.9901 + }, + { + "start": 25669.27, + "end": 25672.47, + "probability": 0.9969 + }, + { + "start": 25673.21, + "end": 25678.07, + "probability": 0.9913 + }, + { + "start": 25678.83, + "end": 25682.51, + "probability": 0.9924 + }, + { + "start": 25682.53, + "end": 25686.27, + "probability": 0.9962 + }, + { + "start": 25687.37, + "end": 25690.21, + "probability": 0.6959 + }, + { + "start": 25691.07, + "end": 25695.13, + "probability": 0.7545 + }, + { + "start": 25695.13, + "end": 25698.77, + "probability": 0.9936 + }, + { + "start": 25699.65, + "end": 25703.79, + "probability": 0.9612 + }, + { + "start": 25704.09, + "end": 25705.11, + "probability": 0.8571 + }, + { + "start": 25705.77, + "end": 25709.67, + "probability": 0.9421 + }, + { + "start": 25710.79, + "end": 25713.33, + "probability": 0.9933 + }, + { + "start": 25714.09, + "end": 25718.75, + "probability": 0.9634 + }, + { + "start": 25719.43, + "end": 25721.65, + "probability": 0.9345 + }, + { + "start": 25722.33, + "end": 25722.47, + "probability": 0.4293 + }, + { + "start": 25722.59, + "end": 25727.77, + "probability": 0.9147 + }, + { + "start": 25728.73, + "end": 25730.21, + "probability": 0.8679 + }, + { + "start": 25731.17, + "end": 25735.47, + "probability": 0.9224 + }, + { + "start": 25736.27, + "end": 25737.65, + "probability": 0.8855 + }, + { + "start": 25737.75, + "end": 25738.47, + "probability": 0.8185 + }, + { + "start": 25738.83, + "end": 25740.09, + "probability": 0.8305 + }, + { + "start": 25741.05, + "end": 25744.83, + "probability": 0.7335 + }, + { + "start": 25746.59, + "end": 25748.63, + "probability": 0.9842 + }, + { + "start": 25748.75, + "end": 25752.17, + "probability": 0.9858 + }, + { + "start": 25752.23, + "end": 25754.07, + "probability": 0.984 + }, + { + "start": 25756.79, + "end": 25757.53, + "probability": 0.9275 + }, + { + "start": 25758.35, + "end": 25759.21, + "probability": 0.7207 + }, + { + "start": 25759.33, + "end": 25760.37, + "probability": 0.5988 + }, + { + "start": 25760.39, + "end": 25760.98, + "probability": 0.8249 + }, + { + "start": 25761.35, + "end": 25763.45, + "probability": 0.6508 + }, + { + "start": 25763.71, + "end": 25764.5, + "probability": 0.673 + }, + { + "start": 25765.91, + "end": 25767.75, + "probability": 0.8196 + }, + { + "start": 25768.29, + "end": 25772.29, + "probability": 0.5927 + }, + { + "start": 25772.59, + "end": 25773.15, + "probability": 0.9691 + }, + { + "start": 25774.09, + "end": 25775.37, + "probability": 0.9674 + }, + { + "start": 25776.55, + "end": 25777.97, + "probability": 0.922 + }, + { + "start": 25778.59, + "end": 25779.23, + "probability": 0.9587 + }, + { + "start": 25780.13, + "end": 25781.61, + "probability": 0.8979 + }, + { + "start": 25782.57, + "end": 25786.53, + "probability": 0.9946 + }, + { + "start": 25787.69, + "end": 25788.33, + "probability": 0.8201 + }, + { + "start": 25788.47, + "end": 25789.05, + "probability": 0.5344 + }, + { + "start": 25789.15, + "end": 25793.31, + "probability": 0.8546 + }, + { + "start": 25793.31, + "end": 25798.29, + "probability": 0.9875 + }, + { + "start": 25799.17, + "end": 25802.31, + "probability": 0.9092 + }, + { + "start": 25802.89, + "end": 25803.47, + "probability": 0.7238 + }, + { + "start": 25804.57, + "end": 25804.87, + "probability": 0.9751 + }, + { + "start": 25805.61, + "end": 25809.99, + "probability": 0.9976 + }, + { + "start": 25811.11, + "end": 25811.99, + "probability": 0.7998 + }, + { + "start": 25812.55, + "end": 25813.19, + "probability": 0.8701 + }, + { + "start": 25813.73, + "end": 25814.69, + "probability": 0.7271 + }, + { + "start": 25815.05, + "end": 25815.4, + "probability": 0.873 + }, + { + "start": 25815.79, + "end": 25819.93, + "probability": 0.6855 + }, + { + "start": 25820.31, + "end": 25821.07, + "probability": 0.5468 + }, + { + "start": 25821.55, + "end": 25823.65, + "probability": 0.9169 + }, + { + "start": 25824.59, + "end": 25828.85, + "probability": 0.9747 + }, + { + "start": 25829.45, + "end": 25829.65, + "probability": 0.6651 + }, + { + "start": 25830.69, + "end": 25832.53, + "probability": 0.9796 + }, + { + "start": 25832.85, + "end": 25835.99, + "probability": 0.7207 + }, + { + "start": 25836.65, + "end": 25837.72, + "probability": 0.6724 + }, + { + "start": 25837.97, + "end": 25840.89, + "probability": 0.7651 + }, + { + "start": 25841.49, + "end": 25842.11, + "probability": 0.78 + }, + { + "start": 25845.23, + "end": 25846.65, + "probability": 0.3754 + }, + { + "start": 25848.79, + "end": 25850.23, + "probability": 0.0537 + }, + { + "start": 25850.29, + "end": 25850.33, + "probability": 0.6058 + }, + { + "start": 25850.33, + "end": 25852.31, + "probability": 0.7381 + }, + { + "start": 25852.39, + "end": 25853.33, + "probability": 0.9785 + }, + { + "start": 25854.07, + "end": 25855.85, + "probability": 0.7145 + }, + { + "start": 25856.05, + "end": 25860.95, + "probability": 0.9881 + }, + { + "start": 25861.03, + "end": 25862.29, + "probability": 0.9718 + }, + { + "start": 25862.99, + "end": 25863.86, + "probability": 0.9951 + }, + { + "start": 25864.81, + "end": 25866.33, + "probability": 0.0254 + }, + { + "start": 25866.33, + "end": 25866.95, + "probability": 0.3025 + }, + { + "start": 25867.21, + "end": 25869.09, + "probability": 0.7637 + }, + { + "start": 25869.53, + "end": 25872.77, + "probability": 0.6451 + }, + { + "start": 25874.61, + "end": 25875.07, + "probability": 0.0541 + }, + { + "start": 25875.07, + "end": 25878.17, + "probability": 0.5983 + }, + { + "start": 25878.81, + "end": 25880.29, + "probability": 0.8828 + }, + { + "start": 25881.39, + "end": 25881.85, + "probability": 0.6967 + }, + { + "start": 25881.93, + "end": 25882.51, + "probability": 0.4013 + }, + { + "start": 25882.63, + "end": 25884.29, + "probability": 0.9578 + }, + { + "start": 25884.87, + "end": 25886.49, + "probability": 0.8625 + }, + { + "start": 25886.49, + "end": 25889.33, + "probability": 0.8887 + }, + { + "start": 25890.01, + "end": 25890.65, + "probability": 0.2708 + }, + { + "start": 25891.37, + "end": 25894.23, + "probability": 0.1449 + }, + { + "start": 25894.31, + "end": 25895.13, + "probability": 0.118 + }, + { + "start": 25895.51, + "end": 25897.73, + "probability": 0.194 + }, + { + "start": 25898.39, + "end": 25902.31, + "probability": 0.6887 + }, + { + "start": 25902.55, + "end": 25906.67, + "probability": 0.9924 + }, + { + "start": 25907.55, + "end": 25908.69, + "probability": 0.6585 + }, + { + "start": 25909.11, + "end": 25911.09, + "probability": 0.811 + }, + { + "start": 25912.15, + "end": 25913.91, + "probability": 0.5693 + }, + { + "start": 25914.09, + "end": 25914.47, + "probability": 0.5176 + }, + { + "start": 25914.51, + "end": 25914.81, + "probability": 0.6178 + }, + { + "start": 25936.43, + "end": 25936.53, + "probability": 0.5863 + }, + { + "start": 25936.53, + "end": 25936.53, + "probability": 0.1831 + }, + { + "start": 25936.53, + "end": 25938.03, + "probability": 0.2098 + }, + { + "start": 25938.73, + "end": 25941.45, + "probability": 0.5501 + }, + { + "start": 25941.87, + "end": 25943.53, + "probability": 0.7138 + }, + { + "start": 25944.27, + "end": 25946.23, + "probability": 0.8825 + }, + { + "start": 25946.35, + "end": 25947.11, + "probability": 0.0299 + }, + { + "start": 25947.11, + "end": 25947.91, + "probability": 0.3061 + }, + { + "start": 25948.77, + "end": 25952.49, + "probability": 0.8314 + }, + { + "start": 25952.75, + "end": 25953.03, + "probability": 0.8709 + }, + { + "start": 25967.13, + "end": 25970.43, + "probability": 0.6875 + }, + { + "start": 25972.09, + "end": 25983.94, + "probability": 0.9297 + }, + { + "start": 25984.91, + "end": 25985.59, + "probability": 0.8644 + }, + { + "start": 25985.67, + "end": 25990.21, + "probability": 0.9344 + }, + { + "start": 25991.15, + "end": 25993.01, + "probability": 0.96 + }, + { + "start": 25995.43, + "end": 25999.63, + "probability": 0.8547 + }, + { + "start": 26000.09, + "end": 26005.21, + "probability": 0.983 + }, + { + "start": 26007.47, + "end": 26015.55, + "probability": 0.8505 + }, + { + "start": 26016.09, + "end": 26019.89, + "probability": 0.6731 + }, + { + "start": 26021.29, + "end": 26023.62, + "probability": 0.9375 + }, + { + "start": 26024.89, + "end": 26025.79, + "probability": 0.7025 + }, + { + "start": 26026.87, + "end": 26033.05, + "probability": 0.9894 + }, + { + "start": 26035.43, + "end": 26044.53, + "probability": 0.9601 + }, + { + "start": 26045.33, + "end": 26047.58, + "probability": 0.9085 + }, + { + "start": 26050.33, + "end": 26052.41, + "probability": 0.7478 + }, + { + "start": 26055.35, + "end": 26059.39, + "probability": 0.9852 + }, + { + "start": 26060.39, + "end": 26062.77, + "probability": 0.9306 + }, + { + "start": 26065.03, + "end": 26070.41, + "probability": 0.9937 + }, + { + "start": 26070.41, + "end": 26073.79, + "probability": 0.9545 + }, + { + "start": 26074.81, + "end": 26075.41, + "probability": 0.6687 + }, + { + "start": 26076.09, + "end": 26079.41, + "probability": 0.8711 + }, + { + "start": 26081.95, + "end": 26085.01, + "probability": 0.8294 + }, + { + "start": 26085.97, + "end": 26088.47, + "probability": 0.7124 + }, + { + "start": 26092.53, + "end": 26093.91, + "probability": 0.7305 + }, + { + "start": 26094.15, + "end": 26095.35, + "probability": 0.9416 + }, + { + "start": 26095.51, + "end": 26098.31, + "probability": 0.7535 + }, + { + "start": 26098.87, + "end": 26101.35, + "probability": 0.6894 + }, + { + "start": 26102.01, + "end": 26103.87, + "probability": 0.9771 + }, + { + "start": 26104.77, + "end": 26108.93, + "probability": 0.7495 + }, + { + "start": 26109.55, + "end": 26111.75, + "probability": 0.9138 + }, + { + "start": 26112.31, + "end": 26114.83, + "probability": 0.6519 + }, + { + "start": 26116.71, + "end": 26120.53, + "probability": 0.9074 + }, + { + "start": 26120.99, + "end": 26122.83, + "probability": 0.7764 + }, + { + "start": 26124.85, + "end": 26124.85, + "probability": 0.1547 + }, + { + "start": 26125.67, + "end": 26127.69, + "probability": 0.9718 + }, + { + "start": 26128.41, + "end": 26132.67, + "probability": 0.5487 + }, + { + "start": 26134.67, + "end": 26138.81, + "probability": 0.7874 + }, + { + "start": 26139.11, + "end": 26140.57, + "probability": 0.9751 + }, + { + "start": 26141.01, + "end": 26145.33, + "probability": 0.9221 + }, + { + "start": 26149.03, + "end": 26150.03, + "probability": 0.9383 + }, + { + "start": 26150.61, + "end": 26152.77, + "probability": 0.6805 + }, + { + "start": 26153.97, + "end": 26157.25, + "probability": 0.9508 + }, + { + "start": 26158.35, + "end": 26159.93, + "probability": 0.9622 + }, + { + "start": 26160.55, + "end": 26165.27, + "probability": 0.9862 + }, + { + "start": 26166.23, + "end": 26167.37, + "probability": 0.6937 + }, + { + "start": 26168.49, + "end": 26175.3, + "probability": 0.7495 + }, + { + "start": 26176.43, + "end": 26176.81, + "probability": 0.6848 + }, + { + "start": 26176.91, + "end": 26180.81, + "probability": 0.7966 + }, + { + "start": 26180.87, + "end": 26185.43, + "probability": 0.9262 + }, + { + "start": 26187.25, + "end": 26188.99, + "probability": 0.7516 + }, + { + "start": 26191.81, + "end": 26194.37, + "probability": 0.8467 + }, + { + "start": 26197.27, + "end": 26198.79, + "probability": 0.7764 + }, + { + "start": 26200.77, + "end": 26206.57, + "probability": 0.7723 + }, + { + "start": 26207.97, + "end": 26210.35, + "probability": 0.9668 + }, + { + "start": 26212.05, + "end": 26213.17, + "probability": 0.6923 + }, + { + "start": 26214.37, + "end": 26216.37, + "probability": 0.9638 + }, + { + "start": 26216.47, + "end": 26218.05, + "probability": 0.8145 + }, + { + "start": 26219.03, + "end": 26219.77, + "probability": 0.6417 + }, + { + "start": 26225.53, + "end": 26231.89, + "probability": 0.9263 + }, + { + "start": 26233.07, + "end": 26235.75, + "probability": 0.9554 + }, + { + "start": 26237.03, + "end": 26240.91, + "probability": 0.9831 + }, + { + "start": 26241.23, + "end": 26243.37, + "probability": 0.9048 + }, + { + "start": 26243.45, + "end": 26244.73, + "probability": 0.7317 + }, + { + "start": 26245.03, + "end": 26245.37, + "probability": 0.8105 + }, + { + "start": 26245.93, + "end": 26246.43, + "probability": 0.8887 + }, + { + "start": 26247.97, + "end": 26251.09, + "probability": 0.9437 + }, + { + "start": 26251.17, + "end": 26251.63, + "probability": 0.7991 + }, + { + "start": 26251.69, + "end": 26256.53, + "probability": 0.9907 + }, + { + "start": 26257.23, + "end": 26262.69, + "probability": 0.9352 + }, + { + "start": 26263.53, + "end": 26264.25, + "probability": 0.7318 + }, + { + "start": 26265.25, + "end": 26267.47, + "probability": 0.8576 + }, + { + "start": 26269.21, + "end": 26275.15, + "probability": 0.9336 + }, + { + "start": 26276.95, + "end": 26279.91, + "probability": 0.9702 + }, + { + "start": 26280.05, + "end": 26280.69, + "probability": 0.8259 + }, + { + "start": 26280.77, + "end": 26283.03, + "probability": 0.9546 + }, + { + "start": 26283.25, + "end": 26284.67, + "probability": 0.3003 + }, + { + "start": 26285.01, + "end": 26289.35, + "probability": 0.9141 + }, + { + "start": 26290.31, + "end": 26296.49, + "probability": 0.9339 + }, + { + "start": 26297.05, + "end": 26300.23, + "probability": 0.9896 + }, + { + "start": 26300.23, + "end": 26302.89, + "probability": 0.9732 + }, + { + "start": 26304.73, + "end": 26311.25, + "probability": 0.7795 + }, + { + "start": 26311.89, + "end": 26312.59, + "probability": 0.8506 + }, + { + "start": 26313.73, + "end": 26320.85, + "probability": 0.996 + }, + { + "start": 26321.63, + "end": 26323.83, + "probability": 0.8013 + }, + { + "start": 26324.91, + "end": 26327.81, + "probability": 0.9871 + }, + { + "start": 26328.81, + "end": 26329.87, + "probability": 0.8625 + }, + { + "start": 26330.09, + "end": 26331.97, + "probability": 0.9609 + }, + { + "start": 26331.97, + "end": 26335.19, + "probability": 0.8761 + }, + { + "start": 26336.01, + "end": 26339.29, + "probability": 0.9119 + }, + { + "start": 26340.27, + "end": 26341.19, + "probability": 0.9763 + }, + { + "start": 26341.77, + "end": 26345.15, + "probability": 0.937 + }, + { + "start": 26345.43, + "end": 26347.09, + "probability": 0.9956 + }, + { + "start": 26347.45, + "end": 26350.33, + "probability": 0.9888 + }, + { + "start": 26351.71, + "end": 26356.79, + "probability": 0.9849 + }, + { + "start": 26358.17, + "end": 26363.97, + "probability": 0.7903 + }, + { + "start": 26364.91, + "end": 26368.39, + "probability": 0.9485 + }, + { + "start": 26368.47, + "end": 26369.41, + "probability": 0.9736 + }, + { + "start": 26371.61, + "end": 26377.93, + "probability": 0.9326 + }, + { + "start": 26378.89, + "end": 26381.41, + "probability": 0.8826 + }, + { + "start": 26381.69, + "end": 26387.07, + "probability": 0.9029 + }, + { + "start": 26387.93, + "end": 26388.13, + "probability": 0.7188 + }, + { + "start": 26388.29, + "end": 26389.51, + "probability": 0.9829 + }, + { + "start": 26389.83, + "end": 26394.39, + "probability": 0.952 + }, + { + "start": 26395.67, + "end": 26399.89, + "probability": 0.9933 + }, + { + "start": 26400.63, + "end": 26403.25, + "probability": 0.6366 + }, + { + "start": 26404.05, + "end": 26405.87, + "probability": 0.9954 + }, + { + "start": 26407.45, + "end": 26410.59, + "probability": 0.337 + }, + { + "start": 26411.47, + "end": 26415.99, + "probability": 0.7528 + }, + { + "start": 26416.89, + "end": 26420.41, + "probability": 0.8397 + }, + { + "start": 26421.91, + "end": 26425.41, + "probability": 0.9698 + }, + { + "start": 26425.93, + "end": 26429.0, + "probability": 0.7372 + }, + { + "start": 26429.45, + "end": 26431.95, + "probability": 0.9939 + }, + { + "start": 26434.89, + "end": 26435.93, + "probability": 0.7797 + }, + { + "start": 26439.13, + "end": 26440.51, + "probability": 0.7197 + }, + { + "start": 26441.41, + "end": 26445.75, + "probability": 0.9121 + }, + { + "start": 26446.79, + "end": 26449.25, + "probability": 0.9486 + }, + { + "start": 26450.51, + "end": 26454.87, + "probability": 0.9447 + }, + { + "start": 26454.97, + "end": 26455.77, + "probability": 0.7082 + }, + { + "start": 26456.05, + "end": 26458.09, + "probability": 0.9809 + }, + { + "start": 26458.85, + "end": 26460.09, + "probability": 0.7438 + }, + { + "start": 26460.47, + "end": 26465.55, + "probability": 0.9846 + }, + { + "start": 26465.79, + "end": 26466.85, + "probability": 0.5736 + }, + { + "start": 26467.65, + "end": 26469.81, + "probability": 0.4802 + }, + { + "start": 26470.29, + "end": 26471.28, + "probability": 0.1036 + }, + { + "start": 26471.61, + "end": 26472.65, + "probability": 0.1597 + }, + { + "start": 26473.27, + "end": 26473.79, + "probability": 0.0184 + }, + { + "start": 26474.37, + "end": 26475.13, + "probability": 0.2821 + }, + { + "start": 26475.67, + "end": 26476.75, + "probability": 0.7517 + }, + { + "start": 26476.95, + "end": 26481.59, + "probability": 0.9264 + }, + { + "start": 26482.31, + "end": 26484.39, + "probability": 0.8084 + }, + { + "start": 26485.73, + "end": 26490.81, + "probability": 0.9963 + }, + { + "start": 26491.37, + "end": 26494.89, + "probability": 0.8278 + }, + { + "start": 26495.53, + "end": 26495.97, + "probability": 0.9739 + }, + { + "start": 26497.33, + "end": 26507.31, + "probability": 0.9772 + }, + { + "start": 26508.57, + "end": 26512.15, + "probability": 0.7952 + }, + { + "start": 26512.25, + "end": 26514.47, + "probability": 0.9202 + }, + { + "start": 26514.53, + "end": 26515.61, + "probability": 0.81 + }, + { + "start": 26516.07, + "end": 26517.07, + "probability": 0.7239 + }, + { + "start": 26517.19, + "end": 26521.01, + "probability": 0.8508 + }, + { + "start": 26521.65, + "end": 26526.19, + "probability": 0.8256 + }, + { + "start": 26527.07, + "end": 26528.55, + "probability": 0.4999 + }, + { + "start": 26528.61, + "end": 26532.05, + "probability": 0.8094 + }, + { + "start": 26532.09, + "end": 26534.13, + "probability": 0.9614 + }, + { + "start": 26534.33, + "end": 26542.09, + "probability": 0.9816 + }, + { + "start": 26542.33, + "end": 26542.63, + "probability": 0.6395 + }, + { + "start": 26542.83, + "end": 26544.79, + "probability": 0.7494 + }, + { + "start": 26545.31, + "end": 26547.79, + "probability": 0.7428 + }, + { + "start": 26549.83, + "end": 26550.97, + "probability": 0.9065 + }, + { + "start": 26554.03, + "end": 26556.77, + "probability": 0.1429 + }, + { + "start": 26557.59, + "end": 26560.55, + "probability": 0.3944 + }, + { + "start": 26560.85, + "end": 26563.45, + "probability": 0.5908 + }, + { + "start": 26564.17, + "end": 26567.37, + "probability": 0.9866 + }, + { + "start": 26568.95, + "end": 26570.45, + "probability": 0.0801 + }, + { + "start": 26570.53, + "end": 26570.65, + "probability": 0.2443 + }, + { + "start": 26570.83, + "end": 26572.56, + "probability": 0.0781 + }, + { + "start": 26573.69, + "end": 26577.77, + "probability": 0.8315 + }, + { + "start": 26578.45, + "end": 26579.55, + "probability": 0.9536 + }, + { + "start": 26579.67, + "end": 26581.71, + "probability": 0.6881 + }, + { + "start": 26582.63, + "end": 26586.31, + "probability": 0.8276 + }, + { + "start": 26587.45, + "end": 26588.37, + "probability": 0.9681 + }, + { + "start": 26588.85, + "end": 26591.99, + "probability": 0.9491 + }, + { + "start": 26592.29, + "end": 26593.67, + "probability": 0.8969 + }, + { + "start": 26594.59, + "end": 26598.79, + "probability": 0.9803 + }, + { + "start": 26598.79, + "end": 26601.95, + "probability": 0.6333 + }, + { + "start": 26602.41, + "end": 26603.71, + "probability": 0.7556 + }, + { + "start": 26604.03, + "end": 26604.69, + "probability": 0.7853 + }, + { + "start": 26606.47, + "end": 26609.74, + "probability": 0.9476 + }, + { + "start": 26610.15, + "end": 26615.01, + "probability": 0.9909 + }, + { + "start": 26615.67, + "end": 26620.15, + "probability": 0.7893 + }, + { + "start": 26620.27, + "end": 26621.91, + "probability": 0.9943 + }, + { + "start": 26622.73, + "end": 26625.61, + "probability": 0.9858 + }, + { + "start": 26626.03, + "end": 26629.83, + "probability": 0.0435 + }, + { + "start": 26629.89, + "end": 26633.05, + "probability": 0.5625 + }, + { + "start": 26633.11, + "end": 26637.67, + "probability": 0.9424 + }, + { + "start": 26638.07, + "end": 26638.91, + "probability": 0.8084 + }, + { + "start": 26640.93, + "end": 26641.31, + "probability": 0.4999 + }, + { + "start": 26641.39, + "end": 26645.89, + "probability": 0.8866 + }, + { + "start": 26645.99, + "end": 26650.39, + "probability": 0.9668 + }, + { + "start": 26650.39, + "end": 26654.11, + "probability": 0.7418 + }, + { + "start": 26654.21, + "end": 26656.73, + "probability": 0.9894 + }, + { + "start": 26657.63, + "end": 26658.15, + "probability": 0.6864 + }, + { + "start": 26658.19, + "end": 26661.41, + "probability": 0.7687 + }, + { + "start": 26661.43, + "end": 26664.57, + "probability": 0.8542 + }, + { + "start": 26665.61, + "end": 26669.91, + "probability": 0.9303 + }, + { + "start": 26670.13, + "end": 26672.87, + "probability": 0.8478 + }, + { + "start": 26673.03, + "end": 26676.83, + "probability": 0.808 + }, + { + "start": 26678.67, + "end": 26681.27, + "probability": 0.9517 + }, + { + "start": 26681.41, + "end": 26682.35, + "probability": 0.8379 + }, + { + "start": 26682.47, + "end": 26684.75, + "probability": 0.9661 + }, + { + "start": 26685.13, + "end": 26685.23, + "probability": 0.7154 + }, + { + "start": 26685.67, + "end": 26686.45, + "probability": 0.9854 + }, + { + "start": 26686.89, + "end": 26692.41, + "probability": 0.9482 + }, + { + "start": 26692.49, + "end": 26695.91, + "probability": 0.8962 + }, + { + "start": 26696.37, + "end": 26698.03, + "probability": 0.986 + }, + { + "start": 26698.61, + "end": 26701.83, + "probability": 0.8701 + }, + { + "start": 26703.01, + "end": 26704.45, + "probability": 0.9052 + }, + { + "start": 26704.61, + "end": 26706.91, + "probability": 0.9336 + }, + { + "start": 26707.43, + "end": 26710.61, + "probability": 0.984 + }, + { + "start": 26712.83, + "end": 26717.47, + "probability": 0.969 + }, + { + "start": 26717.47, + "end": 26722.87, + "probability": 0.5097 + }, + { + "start": 26723.21, + "end": 26725.63, + "probability": 0.7959 + }, + { + "start": 26725.69, + "end": 26730.23, + "probability": 0.9649 + }, + { + "start": 26730.77, + "end": 26732.15, + "probability": 0.8233 + }, + { + "start": 26732.19, + "end": 26735.53, + "probability": 0.8792 + }, + { + "start": 26735.87, + "end": 26738.97, + "probability": 0.9583 + }, + { + "start": 26739.41, + "end": 26740.95, + "probability": 0.9112 + }, + { + "start": 26741.59, + "end": 26742.59, + "probability": 0.8976 + }, + { + "start": 26742.65, + "end": 26746.95, + "probability": 0.9935 + }, + { + "start": 26747.69, + "end": 26750.77, + "probability": 0.9956 + }, + { + "start": 26750.77, + "end": 26754.91, + "probability": 0.9987 + }, + { + "start": 26756.09, + "end": 26757.59, + "probability": 0.9723 + }, + { + "start": 26758.23, + "end": 26760.74, + "probability": 0.1477 + }, + { + "start": 26761.55, + "end": 26762.43, + "probability": 0.686 + }, + { + "start": 26763.69, + "end": 26765.59, + "probability": 0.6794 + }, + { + "start": 26766.77, + "end": 26769.49, + "probability": 0.3732 + }, + { + "start": 26771.19, + "end": 26771.29, + "probability": 0.095 + }, + { + "start": 26771.29, + "end": 26774.07, + "probability": 0.6085 + }, + { + "start": 26774.37, + "end": 26776.93, + "probability": 0.9084 + }, + { + "start": 26780.09, + "end": 26781.45, + "probability": 0.7386 + }, + { + "start": 26781.71, + "end": 26782.23, + "probability": 0.6411 + }, + { + "start": 26782.23, + "end": 26782.99, + "probability": 0.7709 + }, + { + "start": 26790.17, + "end": 26792.85, + "probability": 0.2521 + }, + { + "start": 26797.47, + "end": 26797.67, + "probability": 0.0955 + }, + { + "start": 26799.44, + "end": 26802.15, + "probability": 0.5906 + }, + { + "start": 26803.23, + "end": 26804.07, + "probability": 0.0431 + }, + { + "start": 26804.07, + "end": 26805.45, + "probability": 0.1255 + }, + { + "start": 26807.35, + "end": 26810.25, + "probability": 0.0652 + }, + { + "start": 26810.25, + "end": 26815.09, + "probability": 0.0862 + }, + { + "start": 26816.49, + "end": 26816.53, + "probability": 0.0342 + } + ], + "segments_count": 9395, + "words_count": 46411, + "avg_words_per_segment": 4.94, + "avg_segment_duration": 2.0893, + "avg_words_per_minute": 103.5955, + "plenum_id": "29867", + "duration": 26880.12, + "title": null, + "plenum_date": "2013-07-03" +} \ No newline at end of file